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P r e f a c e 

Fluid flows both in nature and laboratory show many spectacular phenomena (see 
Professor Milton van Dyke's excellent photograph collection, An Album of Fluid 
Motion. Parabolic Press, Stanford, 1982). The remarkable periodicity of the 
vortex street in the wake of a circular cylinder, the structure and motion of vortex 
rings, the capillary instability of a liquid jet, convection cells in the form of 
hexagons, and the instability of the shear layer between two parallel streams are 
cases in point. 

This book is concerned with a discussion of the dynamical behavior of a fluid. 
Drawing on a subject of enormous extent and variety, this book seeks to provide 
the readers with a sound and systematic account of the most important and 
representative types of fluid flow phenomena. At the same time, particular 
attention has been given to placing emphasis throughout on the most generally 
useful fundamental ideas of fluid dynamics. Nonetheless, some personal bias may 
be discernible occasionally, though I have tried to temper it by using the physical 
content as a criterion both in selecting a topic and in determining the extent to 
which it is discussed. 

This book is addressed primarily to graduate students and researchers in applied 
mathematics and theoretical physics (graduate students and researchers in 
engineering will, nonetheless, find the ideas and formulations in this book very 
useful, as confirmed by some book reviews on the first edition). Accordingly, this 
book adopts a middle-of-the-road applied mathematician's approach (as opposed to 
the empiricism of the engineer and the abstract precision of the pure 
mathematician) which is, besides, thoroughly analytical. 

However, even an introductory account of the main branches of fluid 
dynamics, like the one aimed at by this book, becomes comprehensive enough to 
make it difficult, if not impossible, to deal with the various topics with complete 
thoroughness. Consequently, many engineering details, like the skin-friction 
calculations in boundary layer theory (even though the skin-friction calculation 
was the primary objective of boundary-layer theory, in the first place), have been 
squeezed out of this book. Furthermore, the discussion is confined to Newtonian 
fluids, for which the coefficient of viscosity is independent of the rate of 
deformation of the fluid. 

In the text, flows of an incompressible fluid have been given especially large 
coverage because of their central place in the subject. In the Bibliography provided 
at the end, I have tried to include some important papers and a few others relevant 
for the material in this book; this list is not to be construed as being complete. 
Furthermore, a few exercises have been provided at the end of each section. The 

x v i i 
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reader will find their solutions not only rewarding in enhancing, but also 
sometimes essential to understanding, the ideas and formulations discussed in this 
book. 

The second edition, in addition to constituting an extensive rewrite of the text, 
incorporates the following features: 

* refinements and additions of several mathematical developments and 
physical discussions 

* addition of several new exercises 

* updating several topics like stability and turbulence 

* experimental information where pertinent 

* addition of new material (Hamiltonian formulation, more on nonlinear 
water waves and nonlinear sound waves, more on stability of a fluid layer 
heated from below, Couette flow and shear flows, application of Arnol'd 
stability approach, equilibrium statistical mechanics of turbulence, two-
dimensional turbulence, among others). 

For the readership, an elementary background in fluid dynamics and some 
familiarity with the theory and the analytical methods (perturbation methods, in 
particular) of solution of differential equations are essential prerequisites. 

Orlando, 1997 Bhimsen K. Shivamoggi 
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1 

REVIEW OF BASIC 
CONCEPTS AND 
EQUATIONS OF FLUID 
DYNAMICS 

1.1. Introduction to Fluid Dynamics 

Fluid Model of Systems 

In dealing with a fluid, one is in reality dealing with a system which has many 
particles which interact with one another. The main utility of fluid dynamics is 
the ability to develop a formalism which deals solely with a few macroscopic 
quantities like pressure, ignoring the details of the particle interactions. Therefore, 
the techniques of fluid dynamics have often been found useful in modeling 
systems with complicated structure where interactions (either not known or very 
difficult to describe) take place between the constituents. Thus, the first successful 
model of the fission of heavy elements was the liquid drop model of the nucleus, 
which treats the nucleus as a fluid and hence replaces the problem of calculating 
the interactions of all of the protons and neutrons with the much simpler problem 
of calculating the pressures and surface tension in a fluid. Of course, this 
treatment gives only a very rough approximation to reality, but it is nonetheless 
a very useful way of approaching the problem. 

The Objective of Fluid Dynamics 

The primary purpose is to study the causes and effects of the motion of fluids. 
Fluid dynamics seeks to construct a mathematical theory of fluid motion, which 
shall be based on the smallest number of dynamical principles and which shall be 
sufficiently comprehensive to correlate the different types of fluid flow so far as 
their macroscopic features are concerned: In many circumstances, the 
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2 Review of Basic Concepts and Equations of Fluid Dynamics 

incompressible and inviscid model of a fluid is sufficiently representative of its 
real properties to provide a satisfactory account of a great variety of types of 
motion. It turns out that such a model makes sufficiently accurate predictions for 
the airflow around streamlined bodies moving at low speeds. Indeed, in dealing 
with streamlined bodies (which minimize flow-separation) in flows of fluids of 
small viscosities, one may divide the flow field into two parts: a thin layer 
adjacent to the body and a small wake behind the body where the viscous effects 
are appreciable, and the rest of the flow field behaving essentially inviscid. Such a 
division greatly facilitates the mathematical analysis in that the inviscid flow field 
can first be determined independent of the boundary layer near the body, and the 
pressure field obtained from the inviscid-flow calculation is, then, used to 
calculate the flow in the boundary layer. 

While amongst the attractive features of hydrodynamics is its provision of 
ample room for the application of many different ideas and methods of 
mathematical analysis, the subject is expounded in the following as a branch of 
theoretical physics. 

The Fluid State 

A fluid is a material that deforms continually upon the application of surface 
forces. A fluid does not have a preferred shape, and different elements of a 
homogeneous fluid may be rearranged freely without affecting the macroscopic 
properties of the fluid, i.e., the fluids are mobile. A fluid offers resistance to 
attempts to produce relative motions of its different elements, i.e., a deformation, 
and this resistance vanishes with the rate of deformation. Fluids, unlike solids, 
cannot support a tension or negative pressure. (Thus, the occurrence of negative 
pressures in a mathematical solution of a fluid flow is an indication that this 
solution does not correspond to a physically possible situation.) However, a thin 
layer of fluid can support a large normal load while offering very little resistance 
to tangential motion - a property which finds practical use in lubricated bearings. 

A fluid is, of course, discrete on the microscopic level, and the fluid properties 
fluctuate violently when viewed on this level. However, in considering problems 
in which the dimensions of interest are very large compared with molecular 
distances, one may ignore the molecular structure and endow the fluid with a 
continuous distribution of matter. The fluid properties can, then, be taken to vary 
smoothly in space and time. The characteristics of a fluid which are due to 
molecular effects such as viscosity enter the equation of fluid flows as parameters 
obtained by experiment. 

Fluids can exist in either of two stable phases - liquids and gases. In gases 
under ordinary conditions the molecules are so far apart from each other that each 
molecule moves independently of its neighbors except when making an 
occasional collision. In liquids, on the other hand, a molecule is continually 
within the strong cohesive force fields of several neighbors at all times. Gases can 
be compressed much more readily than liquids, and consequently, for a gas, any 
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motion involving appreciable variations in pressure will be accompanied by much 
larger changes in density. However, in cases where the fluid flows are 
accompanied by only slight variations in pressure, gases and liquids behave 
similarly. 

In formulations of fluid flows, it is useful to think of a fluid particle which is 
small enough on a macroscopic level that it may be taken to have uniform 
macroscopic properties, yet it is large enough to contain sufficient molecules to 
diminish the molecular fluctuations and to allow one to associate with it a 
macroscopic property (which is a statistical average of the corresponding 
molecular property of large number of molecules). This is the continuum 
hypothesis. 

As an illustration of the limiting process by which the local continuum 
properties are defined, consider the mass density ρ. Imagine a small volume δΎ 
surrounding a point P, let 5m be the total mass of material in δΎ 
instantaneously. The ratio δτη/δΎ as δΎ reduces to δΎ', where δΎ' is the 
volume of fluid particle is taken to give the mass density ρ at P. 

Description of the Flow-Field 

The continuum model affords a field description, in that the average properties in 
the volume δΎ' surrounding the point Ρ are assigned in the limit to the point Ρ 
itself. If q represents a t fi 1 continuum property, then one has a fictitious 
continuum characterized by an aggregate of such local values of q, i.e., 
q = q(x,t). This enables one to consider what happens at every fixed point in 
space as a function of time - the so-called Eulerian description. In an alternative 
approach, called the Lagrangian description, the dynamical quantities, as in 
particle mechanics, refer more fundamentally to identifiable pieces of matter, and 
one looks for the dynamical history of a selected fluid element. 

Imagine a fluid moving in a region Ω. Each particle of fluid follows a certain 
trajectory. Thus, for each point x 0 in Ω, there exists a pathline σ( ί ) given by 

σ ( ί ) : χ = φ ( / , χ 0 ) with φ ( θ , χ 0 ) = χ 0 and φ{ί+ τ , χ 0 ) = φ ( ί , 0 ( τ , χ ο ) ) , (1) 

where the mapping φ : Ω => Ω is one-to-one and onto. 

The velocity of the flow is given by 

υ ( ' · Χ ) = ΐ = ! Φ ( Γ ' Χ ο ) · ( 2 ) 

We then have the following results. 

THEOREM (Existence): Assume that the flow velocity v(t,x) is a C' function 

of χ and t. Then for each pair ( f 0 , * 0 ) m e r e exists a unique integral curve - the 

path line o-(/), defined on some small interval in t about f0, such that 
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THEOREM (Boundedness): Consider a region Ω with a smooth boundary 3Ω. 
If the flow velocity ν is parallel to ΘΩ, then the integral curves for v, i.e., the 
path lines starting in Ω remain in Ω. 

Streamlines s(t) are obtained by holding / fixed, say t = t0, and solving the 
differential equation 

Streamlines coincide with pathlines if the flow is steady, i.e., if υ ( / , χ ) = v ( x ) . 

The transformation from the Eulerian to the Lagrangian description is given 

Though we shall use the Eulerian description in preference to the Lagrangian 
description which renders the formalism cumbersome, we shall find the concept of 
material volumes, surfaces and lines which consist always of the same fluid 
particles and move with them useful even in the Eulerian description. 

Volume Forces and Surface Forces 

One may think of two distinct kinds of forces acting on a fluid continuum. Long-
range forces such as gravity penetrate into the interior of the fluid and act on all 
elements of the fluid. If such a force F(x,t) varies slowly in space, then the force 
acts equally on all the matter within a fluid particle of density ρ and volume δΎ 
and the total force on the latter is proportional to its mass and is equal to 
F(x,t) ρδΎ. In this sense, long-range forces are called body forces. 

The short-range forces (which have a molecular origin) between two fluid 
elements, on the other hand, become effective only if they interact through direct 
mechanical contact. Since the short range forces on an element are determined by 
its surface area, one considers a plane surface element of area δΑ in the fluid and 
specifies the local short-range force as the total force exerted on the fluid on one 
side of the element by the fluid on the other side and equal to Σ(π,χ , / )&4 whose 

direction is not known a prion for a viscous fluid (unlike an inviscid fluid). Here, 
h is the unit normal to the surface element δΑ, and it points away from the fluid 
on which Σ acts. The total force exerted across δΑ on the fluid on the side into 
which π points is - Σ ( « , χ , ί ) ά 4 = X(-n,x,f) so that Σ is an odd function of 
ή. In this sense, short-range forces are called surface forces. 

In order to determine the dependence of X on η, consider all the forces acting 
instantaneously on the fluid within an element of volume δΎ in the shape of a 
tetrahedron (Figure 1.1). The three orthogonal faces have areas δΑνδΑ2, and δΑ3 

and unit outward normals -i,-j,-k, and the fourth inclined face has area δΑ and 
unit outward normal η. Surface forces will act on the fluid in the tetrahedron, 
across each of the four faces, and their resultant is 

s'(t)=v{t0,s(t)). (3) 

by 

(4) 
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Χ(π) δΑ + XJ-i) ά4, + X(-j) &42 + S(-Jfc) &43 

or 

{χ(π) - [ί • ή ) + j · π X(j) + * η X(jfc)]} Μ. 

Now, since the body force and inertia force on the fluid within the tetrahedron are 
proportional to the volume δΎ, they become negligible compared with the 
surface forces if the linear dimensions of the tetrahedron are made to approach zero 
without changing its shape. Then, application of Newton's second law of motion 
to this fluid element gives 

Σ(ή) = ί ·π l(i) + j-n X(j) + kn X(k). (1) 

Thus, the resultant of stress (force per unit area) across an arbitrarily oriented 
plane surface element with a unit normal η is related to the resultant of stress 
across any three orthogonal plane surface elements at the same position in the 
fluid as if it were a vector with orthogonal components X(i j , ^(jfc). Note 

that η and Σ do not depend at all on the choice of the reference axes, nor does the 
quantity 

τ = ί Σ ( / ) + ; χ ( ; ) + * Σ ( * ) , (2) 

which is a second-order tensor called the stress tensor and prescribes the state of 
stress at a point in the fluid. This leads to the following theorem. 

THEOREM (Cauchy): There exists a matrix function τ, such that 
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where xxj is the /'-component of the force per unit area exerted across a plane 
surface element normal to the /-direction. Thus, the state of stress at a point is 
characterized by normal stresses (τ,·,) and shear stresses (τν, i* acting on 

three mutually perpendicular planes passing through the point, i.e., by nine 
cartesian components. 

One may use an argument similar to the above to demonstrate that the nine 
components of the stress tensor are not all independent. This time, let us consider 
the moments of the various forces acting on the fluid within a volume δΎ of 
arbitrary shape. The ith component of the total moment, about a point Ο within 
this volume, exerted by the surface forces at the boundary of the volume is 

δΛ 

where ejjk is the Levi-Civita tensor and χ describes the position of the surface 

element ndA relative to O. This can be written using the divergence theorem as 

sv σ χ ι SY \
 σχι J 

Let us now reduce the volume δΎ to zero without changing its shape. Equating 
the rate of change of angular momentum of the fluid instantaneously in δΎ to 
the total moment of the body and surface forces acting on δΎ, dropping the 
terms of θ(δΎ} as δΎ becomes very small, one obtains 

or 

τν = τβ (4) 

so that the stress tensor is symmetrical and has only six independent components. 

In a fluid at rest, the shearing stresses (which are set up by a shearing motion 
with the parallel layers of fluid sliding relative to each other) all vanish. Further, 
the normal stresses are, then, all equal because a fluid is unable to withstand any 
tendency by applied forces to deform it without change of volume. Thus, in a 
fluid at rest, the stress tensor becomes isotropic, 

τϋ=-ρδ9. (5) 

where ρ is called the hydrostatic pressure. Thus, in a fluid at rest, the stress 
excited across a plane surface element with unit normal η is -pn, which is a 
normal force of the same magnitude for all directions of η at a given point. 
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Relative Motion Near a Point 

The stress tensor at a point in a fluid depends on the local deformation of the fluid 
caused by the motion. Therefore, as a prelude to dynamical considerations, it is 
necessary to analyze the relative motion in the neighborhood of any point. 

Consider now the deformation of the fluid. Let («, υ,νν) denote the 

components of the instantaneous velocity at the point P(x,y,z)- Then, the 

velocity at a neighboring point (x + 5xty + δγ, ζ + δζ) is given by 

~ du _ du ~ du _. 
u + bu = u + — & + — Oy +— δζ + • • · , 

dx dy dy 

c dv s dv - dv ~ ι 
ν + δν = ν + — δχ + —δγ + —δζ+··, )• (6a) 

dx dy dy 

~ dw _ dw „ dw c w + ow = w + — ox + ——oy + —-oz + •• 
dx dy dy 

The geometrical character of the relative velocity δν regarded as a linear function 
of δχ can be recognized by decomposing Vw, which is a second-order tensor 
into symmetrical and antisymmetrical parts, 

ou = εαδχ + e^by + ε„δζ + ηδζ- ζδγ, 

δν = ε^δχ + eyy5y + εηδι + ζδχ- ξδζ, 

δ\ν = ε„δχ + ε̂ ό> + εαδζ + ξδy- ηδχ. 

(6b) 

where 

ε„ = — 
du 
dx' 

dv 
E" dy' ε„ = 

dw 
Ik' 

dv + du" 
dx dy / 

f dw _ <9ιΛ 
dy dz 

_Udw dv^ 
~2{dy + dz, 

_ 1 ( du dw 
~2\Jk~~dx~) 

_ 1 (du dw 

1 c-1- 'dv_duy 

I ζ ~ 2 Kdx dy, 

If one imagines a rectangular fluid particle having the sides δχ,δγ,δζ initially, 
then, the total motion of the particle may be decomposed into 

(1) a pure translation with velocity components («, υ , w) ; 

(2) a mean rigid-body rotation with components [ξ, η, ζ) (each of the latter 

quantities defines the mean angular velocity of two mutually 
perpendicular fluid line-elements); 
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X 

Figure 1.2. Deformation near a point in a fluid. 

(3) a dilatation corresponding to the three strain rates , eyy, eu; 

(4) a shear deformation corresponding to the three strain rates eiy, ε η , ε α . 

In order to see these identifications, consider a two-dimensional flow. The 
deformation rates of a line element of fluid PQ (see Figure 1.2) are written as 

fdv 
2 

dv = -
2 

Kdx ay J 

'dv du^ 

< dx dy 

dy + 

dx + 

du . 1 
— dx + -
dx 2 Vdx+ dy) 

dy 

(dv + du\ 
dx dy 

The velocity of Q relative to Ρ is 

V = 
f du , du , 

ι. + 
( dv 

dx + — dy 
dy 

dv 

The contribution of the ^-component of VQP to the rotational speed of PQ about 

Ρ is given by 

du du sin θ 
~d~R 

or 

' du . . _ du . 2 s\ 
- — s i n θ • cos θ + —-sin θ . 

{dx dy J 

Similarly, the contribution of the y-component of VQP to the rotational speed of 

PQ about Ρ is given by 

y\ 
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(dv 2 n dv . a _λ 

— c o s Θ +—sinΘ-cosy 
dx dy 

Thus, as a whole, the rotational speed of PQ about Ρ is 

dv du 
cos 2 θ sin2 θ + 

<?y dx 

The average rotational speed of PQ about Ρ is then 

sin θ • cos Θ. 

ω - - Ϊ ^ - c o s 2 θ - ^ - s i n 2 θ + 
ear ojy 

dvdu^ 
[dy dx, 

sin θ cos θ άθ 

_ 1 [ dv du 

which characterizes the rotation in the neighborhood of P. Thus, this quantity 
evaluated at P(x, y) for a given velocity field represents the instantaneous average 

angular speed of line segment PQ within the neighborhood of Ρ and describes a 
rigid-body rotation of the fluid element at P. 

Note that the vorticity Ω, defined by 

Ω- — - — 
dx dy' 

is twice the angular velocity ω . 

Thus, the velocity field in the neighborhood of a point relative to the point is 
made up of two parts - caused, respectively, by the rigid-body rotation and the 
rate of straining of the element at the point. 

The translation and the rigid-body rotation do not produce any change of shape 
of the fluid particle and result only in displacing it. On the other hand, the strain 
rates ε produce a deformation of the fluid particle; and since they obey the 
transformation laws of tensor, they form a strain order formation tensor ε^ which 

is symmetric by construction. 

E« = 2 
dVj t dVj 

dxj dXj 
(7) 

In order to see the further significance of the strain tensor £ l } , consider a curve 

r(s) in a region Ω. Under the flow je0 => d>(f,x0), this curve maps according to 

r(s) d>(/,r(j)). The tangent vector r ' ( s ) to this curve maps according to 

r ' (s)=> Vfy(t,r(s))r'(s). Indeed, any vector w at χ maps according to 

w => w(t) = V<b(/,jc) w. Further, if two vectors wx and w2 at χ are mapped by 

the flow onto H»,(i) and w 2 ( / ) , then the time rate of change of the inner product 

of >•>,(;) and H>2(i) is given by 
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^ . (0 -^ (0 I =^[(νφ(/,χ)Η ' Ι).(νφ(ί >χ).Η.2)] 
(=0 , 

d_ 
dt 

1=0 

= —— w. Oitw2 +0,,w. — L w 2 =2 E^w.w, W 

where summation is implied on repeated indices. Equation (8) shows that the time 
rate of change of the inner product of two time-dependent vectors is completely 
characterized by the strain tensor εν. 

Note that the strain tensor can be further decomposed into the sum of a 
volume-preserving deformation and a shearless pure dilatation: 

ε,.· -- *-δ 
\ dXk J 

(9) 

which is also apparent in (6b). 

Stress-Strain Relations 

In a fluid at rest, as we saw previously, only normal stresses that are equal in all 
directions at a point exist, and the stress tensor has the isotropic form 

For a fluid in motion, one may write 

τ^-ρδ,+d,, (10) 

where the nonisotropic part di} represents the tangential stresses that arise only in 

a moving fluid, and note that, for a fluid in motion, 

ρ = - \ τ . , (11) 

and ρ represents the average of the three normal stresses for any orthogonal set of 
axes and reduces to the hydrostatic pressure when the fluid is at rest; we shall call 
it the pressure in a moving fluid. Since fluid in relative motion is not in a state 
of thermodynamic equilibrium, ρ here is not a state variable in thermodynamics. 

In order to relate dtj to the local strain rate, first note that the local velocity 

gradient dvjdxj is a measure of the local strain rate. Let us assume that the 

fluid is isotropic and has no memory effects and that the strain rates are not too 
large, and write a linear relation, 

ϊί=2μεΙί+μ'δυε„ί, (12) 
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where μ and μ ' are scalar coefficients. Note that in an isotropic fluid, d:j cannot 
depend on pure rotation. Next, since du = 0, (12) gives 

2μ + 3μ ' = 0 

or 

μ' = - \ μ (13) 

so (12) becomes 

ά,=2μ[είΓ

λ-δ,ε^. (14) 

μ is called the shear viscosity coefficient. The effect of viscosity is to redistribute 
and equalize the momenta of different fluid particles. 

Experiments involving a variety of fluid flows have shown that this linear 
relation between the strain rate and the nonisotropic part of the stress may hold 
over a wide range of values of the strain rates. The fluids for which this is a valid 
model are called Newtonian fluids. In this book, we shall be exclusively dealing 
with such fluids. 

Equations of Fluid Flows 

The laws governing the motion of fluids are: 

(1) the law of conservation of mass; 

(2) Newton's law of motion; 

(3) the First Law of thermodynamics. 

These laws typically refer to a system, i.e., a collection of matter of fixed 
identity. 

In deriving equations governing the motion of fluids embodying these laws, 
one may hence consider a particular portion W of the fluid consisting of the same 
fluid particles and, hence, moving with the fluid - the Lagrangian description. 
The space coordinates defining Wwill then be functions of time since they depend 
on the changing locations of the fluid particles as time progresses. A typical 
macroscopic property is then represented by a material integral (which is one that 
always refers to the same fluid particles): 

Q = jjjq(t,x)pdY, (15) 

where a property q has been associated with a fluid particle of fixed identity and 
mass pdY. 

Alternatively, one may consider a fixed region of space called the control 
volume through which the fluid flows so that different fluid particles occupy this 
region at different times - the Eulerian description. A typical macroscopic 
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J, i l l * - ) * - i f / 
<t>(i.iv) *(:W) 

where W is any subregion of Ω. 

dx, (17) 

LEMMA: Let J(t,x) be the Jacobian determinant of the flow φ ( ί , χ ) , i.e., 

9φ, 
7(f,x) = det > 0 . 

Then, if t is in the range in question, then 

• f J(t,x) = J(t,x)Vv(t,x). 
at 

Proof: We have 

j —/ 

<?l>, d<Pk 

dxk dXj 
summation on k 

dXj dXj 

because the nonvanishing contribution arises only for k = i. 

(18) 

Proof: We have, on using (18), 

property is here represented by an integral over the control volume Τ fixed in 
space: 

Q = \\\q{t,x)dx, (16) 
ν 

where q{t,x) is a scalar field (e.g., density or a velocity component) associated 
with the fluid. 

Thus, the value of DQ/Dt associated with the material system 
instantaneously occupying the control volume receives contributions from the 
changes with time in Ύ for this material system and the flux of Q out of T . 

The Transport Theorem 

THEOREM: Let v ( / , x ) be a C 2 vector field on a region Ω, parallel to the 
boundary 9Ω, with flow φ ( ί , χ ) , and let q{t,x) be a scalar field associated with 
the fluid on β . If φ ( ί , χ ) is invertible as a function of χ for a range of f, then, 
in this range, 

d 
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= JJJ 
Φ(ι.ιν) L-

dq_ 
dt + V •(?!>) Λ . 

Q.E.D. 

Γλβ Material Derivative 

The time rate of change of q as one follows the given fluid particle is called the 
material derivative D/Dt of q and is given by 

f ^ M ( ' - o ) ) = f + V , v . (19) 

Thus, even in a steady flow, a fluid particle can change its properties by simply 
moving to a place where these properties have different values. 

The Law of Conservation of Mass 

Since the total amount of fluid in a control volume Τ is conserved, one has 

d 

When one uses (17), (20) leads to 

ill f + v . ( H 
dt 

dx = 0. 

(20) 

(21) 

Since equation (21) must apply even to an infinitesimal control volume, one 
obtains 

or 

| U v . ( p v ) = 0 

£P+pVv=0. 
Dt K 

(22a) 

(22b) 

Equation of Motion 

In applying Newton's law of motion to a finite, extended mass of fluid, one 
equates the external resultant force to the rate of change of resultant momentum 
which is calculated for a mass of fluid consisting always of the same fluid 
particles. Thus, 

j - j\jvpdx = jjJFpdx + jjfndS, (23) 
ν r s 

where F is the body force per unit volume acting on the fluid, S is the control 
surface enclosing Ύ, and h is the unit outward normal to the area element dS. 

Using (17), this becomes 
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^-{pv) + V ( p v v ) dx = ( [ [ F p d x + ίίτ-π τ-ndS. (24) 

Using Green's theorem, equation (24) may be rewritten as 

—(pi>) + V ( p v v ) - p F - V T dx = 0, (25) 

from which we have 

— (ρυ) + V(pvv) = pF + V - T . (26) 

When we use equation (22), equation (26) becomes 

ρ i-^p + v - V v l = p F + V - T . (27) 

The Energy Equation 

Consider the energy balance for the fluid in the control volume Ύ. Work is done 
on this mass of fluid by both body and surface forces, and heat may also be 
transferred across the control surface S. Some of this work done and heat 
transferred shows up as an increase in the kinetic energy of the fluid, and the 
remainder shows up as an increase in the internal energy of the fluid (the latter is 
associated with the thermal motion of the molecules), according to the First law 
of thermodynamics. It may be noted that the additivity of these two forms of 
energy in the total energy of a fluid particle is valid if the fluid is only slightly 
dissipative. 

Since a fluid flow necessarily occurs under thermodynamic nonequilibrium 
conditions, a revision of the definition of some of the thermodynamic quantities 
is necessary before proceeding further to set up an equation embodying the 
conservation of energy of the fluid. If one assumes that a fluid particle is passing 
through a succession of states in which the departure from equilibrium is small, 
one may define an internal energy Ε for this fluid particle at any instant as the 
value corresponding to a hypothetical equilibrium state that is attainable 
instantaneously by suddenly isolating the fluid particle from the surroundings and 
making it reach equilibrium adiabatically and without any work being done on it. 
Next, the density ρ may be defined as usual as the ratio of mass to instantaneous 
volume of the fluid particle. Knowledge of the two properties of state Ε and ρ at 
any instant then enables one to determine other quantities as in equilibrium 
thermodynamics. 

As smooth as this procedure may look, there appears to be a small difficulty, 
however. The thermodynamic pressure plh so calculated may not be equal to the 
mechanical pressure p. Indeed, one may write 

where Κ is a scalar coefficient called the bulk viscosity coefficient. Equation (28) 
indicates the lag in the adjustment of the mechanical pressure to the continually 

Ρ -Ρ,Η = -κ ε. (28) 
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changing values of ρ and £ in a fluid flow. Physically, this lag is consequent to 
the delay in the equipartition of energy between the various modes (translational, 
rotational and vibrational) of a molecule. 

However, in most cases the dilatation rates are very much smaller than the 
shear rates so that the bulk viscosity will not play an important role. We shall, 
therefore, neglect it and take ρ and ρΛ as being identical everywhere in the 
following. 

The equation expressing the First law of thermodynamics is then 

DQ DW 
Dt Dt 

(29) 

where e is the internal energy of the fluid per unit mass, U is the potential energy 
of the fluid in a conservative body-force field F = - V I / , Q is the heat transfer to 
the system, and W the work delivery from the system. 

When we use (17) and write 

Q = \\\qdx, W = jjjwdx, 

equation (29) becomes 

e + -v2+U 
2 

Μ r r 
+ V \pv e + - v 2 + U 

2 

Dq Dw 

Dt Dt 

(30) 

dx=0, (31) 

from which we have 

d_ 
dt 

I 1 2 , ,Ή V7 f 1 2 , Λ Ι Dq Dw ρ\e + — v2+U } + V<pv e + — v2 + U > = — . 
1 2 J) Γ I 2 J Dt Dt 

When we use equation (22), equation (32) becomes 

Ρ •^-(e + - v 2 +u) + v-v(e + - v 2 +U 
dtV 2 J V 2 

When we use equation (10) and (27), equation (33) becomes 

Dq Dw 
Dt Dt 

De D 
— + ρ — 
Dt y Dt Dt " dXi 

(32) 

(33) 

(34) 

Note, from (14), that 

dv 
d>i ~σγ=ε·^=2μ[ε^~3ε^J 

and thus equation (34) becomes 
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De D 
+ p— 

Dt H Dt Dt 
2H ε ν - - ε α δ ϋ 

(35) 

Note that the last term on the right-hand side in equation (35) is always positive 
and represents the viscous heating. 

If the heat flux occurs as a consequence of molecular transport between 
contiguous portions of fluid across the control surface, noting that the molecular 
transport of heat is proportional to the local gradient of temperature Τ (which is a 
measure of the kinetic energy of the random molecular motion) of the fluid, one 
has 

I H ^ d x = $KVT iidS- (36) 

and using Green's Theorem, equation (36) becomes 

Dq 
(37) 

(38) 

γ γ 

so that, if the thermal conductivity Κ is constant, 

Dt 

Note that an equation of state of the form ρ = p(p) is needed to close equations 
(22), (27), (35), and (38). 
The Equation of Vorticity 

Upon taking the curl of equation (27), one obtains for the vorticity SI = V χ υ , 

^ + ( v - V ) f t = ( l l - V ) « — ί - V p x V p + zi 
dt ρ 

- V 2 ί l - - ! - V p x { V 2 υ + 
p ρ 2 1 

+ Ι ν (ν · υ )} + V x p F . (39) 

The second term on the right-hand side represents the baroclinic generation of 
vorticity which is due to the misalignment of the density and pressure gradients. 
This mechanism is the cause of generation of vorticity by shock waves (see 
Chapter 3). 

For an inviscid, barotropic fluid for which p = p(p), equation (39) becomes, 
in the absence of the body force F, 

D 
Dt Ρ ) Ρ 

(40) 

The Incompressible Fluid 
A fluid is said to be incompressible when the density of an element of fluid is not 
affected by changes of pressure, and Dp/Dt = 0 . Equations (22), (27), (35), and 
(39) then become 
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dv „ 

dt 

V v = 0 , 

= p F - V > + / i V 2 v , 

e = const., 

^ + v V n = f t Vv + V x F + vV 2 f t , 

where ν is the kinematic viscosity, 

(41) 

(42) 

(43) 

(44) 

Now, in a two-dimensional flow the fluid particles move in plane paths in 
which all such planes are parallel, and streamline patterns are identical in each 
plane. For a two-dimensional flow (in the Λν-plane), letting 

il = coiz 

and assuming that the body force F is conservative, equation (44) leads to 

dco d(i) dm 
— + u — +v— = v 
dt dx dy 

fd2a> ΡωΛ 

, dx1 + dy1 

(45) 

(46) 

where 

υ = (κ,υ,0), 

dv du 

dx dy 
ω = 

Introducing the stream function Ψ, such that 

dx u = V = 

equation (46) leads to 

3)ΨΨ 
dt 

3ψ 3Κ/1Ψ dH1 3Κ2Ψ 
dy dx dx dy 

= v V 4 f . 

(47) 

(48) 

(49) 

The boundary conditions required in solving equations (22), (27), and (35) are 
that there be neither a penetration of the fluid into, nor a gap between the fluid 
and the boundary, at any solid boundary; this means that the fluid velocity 
component normal to the boundary at the boundary must be zero. When the 
boundary itself is in motion, the fluid velocity component normal to the 
boundary must equal the velocity of the boundary normal to itself. No restrictions 
are placed on the tangential component of fluid velocity at a boundary when 
inviscid fluids are considered. However, in a viscous fluid, even the tangential 
component of the fluid velocity at a boundary is the same as that of the boundary 
so that there is no slip of the fluid at a boundary. 
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At a boundary given by F(x, ν ,ζ , ί ) = 0 moving with the fluid, one has the 

kinematic condition 

^ = 0 (50) 
Dt 

so that such a boundary is always in contact with the same fluid particles. 

When the fluid is set into motion by the body moving through it, a necessary 
condition is that the fluid at infinity remains at rest. If this were not so, it would 
imply that the finite forces acting on the bodies had imparted to the fluid infinite 
kinetic energy in finite time, which violates the principles of work and energy. 

Hamiltonian Formulation of Fluid-Flow Problems 

Hamiltonian formulations have traditionally played an important role in both the 
classical and quantum mechanics of particles and fields. Hamiltonian formulations 
not only offer a new perspective on familiar results, but also provide powerful 
tools like the conservation laws and stability theorems. However, Hamiltonian 
formulations were not introduced into fluid flow problems until recently. This is 
because of the fact that the Eulerian variables in fluid-flow problems are 
noncanonical (Salmon). 

The Lagrangian (particle-following) variables of a fluid flow are canonical, 
i.e., their time evolution is given by equations of the form of Hamilton's 
equations. The Lagrangian equations of motion possess an additional particle-
relabeling symmetry, in that the Hamiltonian is invariant under translations of 
fluid particles along lines of constant vorticity. Such translations are invisible in 
the Eulerian description; consequently, the conserved quantities are no longer 
related to explicit symmetries of the Hamiltonian and cannot be obtained from 
Noether's Theorem, but become instead Casimir invariants (see below). 
Hamiltonian Dynamics of Continuous Systems 
Equations of continuous systems are continuous in space and thus represent 
infinite-dimensional dynamical systems. Functions of state F(u) then become 
functionals of state S ' ( K ) , and the partial derivatives <?F/d«f now become the 
functional (or variational) derivatives S&'/Su,^ which is defined by 

^ 5u J v ' 
for admissible but otherwise arbitrary variations διι, where (·,·) is the relevant 

inner product for the function space {u}. If 

'The symbol δ is used to denote an increment everywhere else in this book, but in this section it 
denotes the variational derivative in keeping with the standard notation. 

(51) 
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then 

So, 

9{u) = j F(x,u,ux) dx, 

du ' 
d_ 
dx du X J 

Sudx. 

53y 
Su 

dF__d_ 
du dx 

( dF 
du 

(52) 

(53) 

(54) 
χ J 

Consider a Hamiltonian dynamical system represented in the symplectic (i.e., 
nondegenerate and skew-symmetric) form 

" ' = y 1 7 ( 5 5> 
where u(x,t) is the dynamical variable, 3€(H) is the Hamiltonian functional, and 
J is a sympletic operator, which is a skew-symmetric transformation from {«}to 
{u} satisfying 

(u,Jv) = -(Ju,v). (56) 
An equivalent Poisson bracket2 statement is 

d9 (δ& λ {δ& δΚλ 
dt Su 

•J-
5m 5m 

Equation (7) immediately implies that the Hamiltonian 
invariant of this system: 

djt 
dt 

' δϋ δΧ 
v 5m 5m 

f 

κ 5m 
δπ δκ 

5μ ) 
= ο. 

(57) 

is an integral 

(58) 

Now suppose that there exists some steady state u = U of this system. If the 
Hamiltonian representation is canonical in the sense that J is invertible, it 
follows that the steady state u = U is a conditional extremum of 3f, namely, 

In the Euclidean space R2" with coordinates (p,q), the Poisson bracket for a canonical system is 

\9,Ή 
dq, dPi 

39 3Ή 
dp, dq, 

where 
0 - I 0\ 

where / is the η χ η identity matrix. Note that the Poisson bracket operation is bilinear and skew-
symmetric and satisfies the Jacobi identity: 

[[9,<S\,'X] + [[<§,,X],9] + [[X,&],<§] = 0. 
Any system in the Hamiltonian form, with J a nonsingular, skew-symmetric matrix of constants, 

can be reduced locally, by a linear transformation of the dependent variable u, to a system in the 
canonical (Darboux) form with J given as above. 
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* * | = 0 . 

If, on the other hand, the Hamiltonian representation is noncanonical, in the 
sense that J is singular and noninvertible, then we have instead 

5u 
= 0 (59) 

implying that 
δ'Κ 
5u ' Su 

(61) 

for some Casimir functional which satisfies 

y f r ° - ( 6 2 ) 

Thus, the steady state u = U is a constrained conditional extremum of Έ; 
equivalently, it is a conditional extremum of the combined invariant 

Equation (62) implies that 

= 0, V ? (63a) 

and in particular, 
[3Κ,<€] = 0. (63b) 

It follows immediately from (63) that Casimir functionals are integral invariants 
of the dynamical system, because 

— = = 0. (64) 
dt 

The usual invariants are associated with explicit symmetries of the 
Hamiltonian itself. When these symmetries are continuous ones (like the 
translations in time and space), Noether's Theorem provides the connection 
between the two. 
THEOREM (Noether): If is invariant under translations in x, generated by the 
functional M, i.e., 

δΜ _ du 
~~Tx 

then Μ is invariant, i.e., 
5m 

dM 
dt 

= 0. 

(65) 

(66) 

Proof: We have 
dM 
dt 

'δΜ j 5 9Ί 
^ 6u δκ 

du 5jR 
dx' 5w 

) _ ( «5 
J-

J V 
dVC 

= 0. = 0. 
dx 

which implies 

(60) 
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Corollary: If 2ί is invariant under translations in t, then 3£ is an invariant, i.e., 

dt 
In addition to these usual invariants, noncanonical Hamiltonian systems 

possess Casimir invariants which cannot be obtained from Noether's Theorem. 
Casimir invariants are not associated with any property of the Hamiltonian 
function itself, but rather arise from the degenerate nature of the symplectic 
operator J. (Note that a canonical system has no nontrivial Casimir invariants 
because, when J is invertible, the condition 

y ^ = o 
6u 

implies 

Su 
which, in turn, implies that is simply a constant.) 
Three-Dimensional Incompressible Flows 

Consider a three-dimensional incompressible flow in a domain D c S ! . The 
governing equations are [see equations (41) and (42)] 

V ν = 0 (68) 

^--vxQ, = -Vb, (69) 
dt 

where 

b = p + -V2, i l = V x v . 
y 2 

Upon taking the curl, we obtain the vorticity equation from equation (69): 

— - V x ( v x f t ) = 0. (70) 
dt v ' 

The Hamiltonian for this system is 

% = - | ψ - Ω 4 τ , (71) 
2 D 

where 
υ = V χ ψ . 

In deriving (71), we have put | ψ | = 0 on the boundary dD (alternatively, one 

may impose the preservation of circulation on dD, i.e., δΓ = 0 on dD), and ψ 
is made unique by imposing the gauge condition 

ν ψ = 0 . (72) 
If one chooses ft to be the canonical (Darboux) variable and takes the skew-

symmetric operator to be (Olver) 

J = - V x ( f t x V x ( ) ) , (73) 

Hamilton's equation is 

ψ = ̂  = -νχ( ί1χνχ(ψ)) = ν χ ( υ χ Ω ) , (74) 
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δίΐ 
i l x V x ff€ 

δίϊ) 
= 0 , 

which implies that 

δίϊ = v . 

Then, a Casimir is the helicity 

= jv Ω dx, 

(75) 

(76) 

(77) 

which characterizes the knottedness of the vortex line topology (Moffatt). The 
total helicity is not positive definite, so one cannot imagine a development of the 
minimum helicity state. Actually, one obtains a Beltrami flow (which has 
velocity parallel to vorticity) by minimizing energy while conserving the total 
helicity (see below). 

Extremization of the Hamiltonian (71), keeping the Casimir invariant (77) 
fixed, leads to 

OX <?€ 
•μ-

or 

or 

<5ft r δ£ϊ 

ψ = μ υ 

υ = μ SI (78) 
where μ is a constant. The flows for which equations (78) are true are called 
Beltrami flows. 

1.2. Surface Tension 

Surface tension is a cause of the fact that small water drops in air and small gas 
bubbles in water take up a spherical form. Surface tension is a consequence of 
intermolecular cohesive forces. When one of two media in contact is a liquid 
phase, work must be done on a molecule approaching the interface from the 
interior of the liquid because this molecule experiences an unbalanced cohesive 
force directed away from the interface. This results in a higher potential energy for 
the molecules at the interface and a tendency for all molecules of the liquid near 
the interface to move inward. Consequently, the interface tends to contract as if it 
were in a state of tension like a stretched membrane. In a state of equilibrium the 
interface energy must be a minimum, and for a given volume the sphere is the 
shape with the least surface area so that a water drop in air and an air bubble in 
water are spherical. 

Consider the interface between two stationary fluids. In order to determine the 
shape of the interface corresponding to a mechanical equilibrium, note that a 

which is just equation (70)! Thus, in the Hamiltonian formulation, the Euler 
equations describe the equations for the geodesic flow on an infinite-dimensional 
group of volume-preserving diffeomorphisms. 

The Casimirs for this problem are the solutions of 
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curved surface under tension exerts a normal stress across the surface. First, note 
that if the latter is described by 

ζ-ζ{χ,γ) = 0, (1) 

the unit normal to the interface, at the origin 0, is given by 

dx dy J 
(2) 

The resultant of the tensile forces acting on a portion of the interface 
containing 0 is 

-T&n x dx. (3) 

where Τ is the surface tension, and dx is a line element of the closed curve 
bounding the portion of the interface. This resultant is a force parallel to the z-
axis, (which is the normal at 0) and is of magnitude 

= τ (3
2ζ 

—f- + 
92ζ' 

) Kdx2 

dy2) 
dA, (4) 

where dA is an area element of this portion of the interface. 

Now, let the interface deviate only slightly from the plane z = 0 so that ζ is 
everywhere small. The area S of the interface is given by 

Hi l + l - 2 -
dx 

1 
. . ft 

+ dxdy - Jj 
,dy, J J 

1+1 
2 

( 3 ζ ) 
2 1 

-I ί*1 
2" 

2 ,dy, 
dxdy, (5) 

from which the change in the interface area on deformation is given by 

ss-jj 9ζ θδζ t 9ζ 9δζ 
dx dx dy dy 

άχάγδζ. (6) 

Let /?, and R2 be the principal radii of curvature at a given point of the surface. 
Let dlx and dl2 be two length elements on the surface which are also elements of 
circumference of circles with radii Λ, and R2. Hence, 

s 

from which 

On comparing (6) and (8), one obtains 

— + — dxdy. 

(7) 

(8) 
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Thus, the tension acting on a curve bounding the interface element is 
dynamically equivalent to a pressure at 0 on the interface of magnitude 

( : > 2 / - X>-r\ ( ' « A 

= 7" 
d2; ό2ζ 
dx2 + dy2 

1 1 
+ -R 

(10) 
2 J 

Note that it is necessary to recognize /?, and R2 as having appropriate signs, since 
the contribution to the equivalent pressure on the interface is directed toward the 
center of curvature. 

Since the interface has negligible mass, a curved interface can be in 
equilibrium only if the effective pressure due to surface tension is balanced by the 
difference between the pressures in the fluids on the two sides of the interface, 
i.e., 

Δρ = Τ (11) 
x2 ) 

Capillary Rises in Liquids 
Consider a free liquid meeting a plane vertical rigid wall (Figure 1.3). Let us 
determine the interface shape ζ = ζ(γ). Noting that the principal curvatures of the 
interface are 

- U o , 
R< 

1 

* 2 ( i + r ) 
3/2 (12) 

with primes being differentials with respect to y, one has from equation (11) the 
following: 

Τ ζ" 
3/2 = 0 , 

where we have used the fact that 

oo: ζ,ζ',ζ"=>0. 

(13) 

(14) 

Solid 

Figure 1.3. Free liquid meeting a plane vertical rigid wall. 
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An integration using these boundary conditions gives 

(15) 

from which the rise of the liquid near the wall is given by 

h1 = — ( 1 - s i n Θ). 
P8 

(16) 

where θ is the contact angle. 

The fact that the free surface of a liquid rises or falls to meet a rigid wall leads 
to phenomena (called capillarity) which manifest themselves in small tubes. 

1.3. A Program for Analysis of the Governing 
Equations 

The set of equations governing the fluid flows given in the previous section is 
too complicated to render a direct mathematical approach feasible. Further, 
progress is possible only by isolating as much as possible the various physical 
features represented by these equations and then analyzing specific flow fields 
embodying these features separately. When assembled and interpreted 
appropriately, these special cases provide an insight into the totality of 
phenomena described by the governing equations. 

Thus, as a first step, one considers a fluid as being endowed with inertia and no 
other physical properties - inviscid, incompressible fluid (Chapter 2). Though 
apparently a very restricted model, it nonetheless exhibits a wide variety of the 
properties of flows of a real fluid. Next, one may allow for variations in density 
brought about by flow-velocity variations - compressible fluid (Chapter 3). 
Further, one may recognize the nonzero resistance offered by a fluid to shearing 
deformations imposed on it - viscous fluid (Chapter 4). 

E X E R C I S E S 

1. Consider a vessel containing a fluid of nonuniform subject gravity and 
density rotating steadily about the vertical z-axis, and assume that the fluid 
has taken up the same steady rotation. Show that the surfaces of constant 
pressure are paraboloids of revolution about the vertical axis. 

2. Consider a capillary rise of a liquid in circular tube of small radius a. Find 
the height of the column of liquid in the tube supported by the surface 
tension against gravity. 
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2 

DYNAMICS OF INVISCID, 
INCOMPRESSIBLE FLUID 
FLOWS 

2.1 . Fluid Kinematics and Dynamics 

Stream Function 

As discussed in Section 1.1, streamlines have the property that the instantaneous 
fluid velocity at any point is tangent to the streamline through that point. A 
surface made up entirely of streamlines instantaneously is called a stream surface 
or, when it has the appropriate shape (i.e., when the streamlines pass through a 
given closed curve in the fluid), a stream tube. The motion of a given fluid 
particle in space describes a pathline in space-time. In steady flow, the pathlines 
coincide with the instantaneous streamlines. 

Streamlines are given by intersections of stream surfaces given by 

g(x,y,z) = b, J 

or, if ν = (u, υ , w) denotes the fluid velocity, by 

(1) 

uf+vfy + wfz = 0, 

ugx+vgy+wgz = 0 , 
(2) 

from which, one has 

" = l{fygl-fgy)> 

™ = *-{fxgy-fyg.\ 

(3) 

2 7 
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where λ is an arbitrary constant. 

For incompressible fluids, (3) gives 

v = V / x V g (4) 

For two-dimensional flows, g = - ζ , / = Ψ, so that (4) leads to 

η = -Ψ^ υ=Ψχ. (5) 

Ψ is called the stream function because the streamlines for the flow are, in 
fact, the set of level curves given by Ψ(χ,γ,ί) = / ( / ) with f(t) arbitrary. This 
may be seen by noting that the differential equation of the streamlines is 

^ = ^ . (6) 
u υ 

When one uses equation (5), equation (6) leads to 

dx + dy = 0 
dx dy 

or 

άΨ = 0> 

or 

Ψ{χ,γ,ή = /(ή (7) 

along a streamline. 

In order to see further significance of the stream function, introduce, in a 
surface on which the streamlines lie, a set of orthogonal coordinates (α,β); the 
velocity component normal to an area element dS = hk da άβ is 

hk 

Then the discharge through a portion 5 of the surface bounded by the traces of 

/ ( w ) = /„ / ( w ) = /2,l ( 9 ) 

g{x,y,z) = g], g{x,y,z) = g2,\ 

is given by 

Q = \\vndS = \\ (fagp - fpga )άαάβ = ] ) df dg = (f2 - / , ) ( « , - « , ) • (10) 

Note that β is independent of the choice of the paths joining / , to / 2 , and g, to 
8i-
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In two-dimensional flows, the discharge per unit length across an arc AB is 
ΨΒ - ΨΑ. In axisymmetric flows, the discharge across the surface generated by a 

revolving arc AB about the axis of symmetry is 2π{ΨΒ -ΨΑ)· For the latter, 
g = -(p and F = Ψ, and the radius and axial velocity components are given by 

u = - ψ , w = - - ψ . (11) 
r 1 r ' 

Here, φ is the azimuthal angle. Note that a stream tube cannot end in the interior 
of the fluid; it must either be closed, or end on the boundary of the fluid, or 
extend to infinity. 

Finally, one should note the possibility that Ψ is a many-valued function of 
position whenever sources of mass exist in the flow field. 

Equations of Motion 

Referring to Section 1.1, the equation of conservation of mass is 

^ + ν-(ρυ) = 0. 
dt 

where ρ is the mass density of the fluid. 

The equation of motion (called Euler's equation) is 

— + (v-V)v 
dt 

= p F - V p , 

where F is the body force per unit volume, and ρ is the pressure. 

Next, the equation of conservation of internal energy e is 

dt 
+ ( v V ) e + - - pF v-Vpv — ρ V · ν; 

and when one uses equation (2), equation (14a) becomes 

de 

dt 
+ (v-V)e -pVv. 

(12) 

(13) 

(14a) 

(14b) 

Integrals of Motion 

Equation (2) can be written as 

dv 

dt 
• + V 

) 
- v x ( V x w ) = pF-Vp. (15) 

When the body force F is conservative, i.e., 

F = -VU 
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and the motion is steady, the integration of equation (15) is possible along a 
streamline, and one obtains along a streamline 

υ ρ 
— + — + U= const. (16) 

On the other hand, when the body force F is conservative and the flow is 
irrotational, i.e., 

V χ υ = 0 or ν = Vi> (17) 

(where the velocity potential Φ may be single-valued or multivalued depending 
on whether the region is simply connected or not, see below), the integration of 
equation (15) for an unsteady flow is possible in any direction, and one obtains 
Bernoulli's equation: 

3Φ ν ρ 
+ — + -+U= F(t). 

dt 2 ρ 
(18) 

In any event, for a steady flow and conservative body forces, equation (15) 
gives 

2 ν ρ 
— +U + - = u x ( V x v ) . 
2 ρ 

For a two-dimensional flow, equation (16) gives 

(19) 

dx 

dy 

'ul + I / + £ | = 1Jn 

V 2 Ρ j 
= -κΩ, 

(20a) 

where 

ft = V x v = i2i . 

Using the stream function T, (20a) becomes 
2 

— + υ + - + ΩΨ= const. (20b) 

Capillary Waves on a Spherical Drop 

As an illustration of the use of the Bernoulli integral (18), consider small 
oscillations of a spherical drop of an incompressible fluid under the action of 
capillary forces. The area of surface given in spherical polar coordinates (r, θ, φ) 

by a function r= γ(Θ, φ) is 
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sin2 θ dcp) 
r sin θ άθάφ. (21) 

For small deviations from a spherical surface of radius R, one may write 
r= R + ζ, \ζ\^^R,so that (21) may be approximated by 

2κκ 

0 0 

Υ ι 
+ • ^ 

y sin θ 

sinQ άθάφ (22) 

from which the small change in the surface area is given by 

in a 

0 0 
2κ π 

- a 
de 99 sin θ dtp dtp 

sin θ άθάφ 

2(J? + 0 -
sin0^f?V d9) sin2 θ dtp2 

ι r . a d ; 
sin© — δζ sine άθάφ. (23) 

If /?, and Λ2 are the principal radii of curvature, then noting that 

R(R + 2ζ) sin θ άθάφ 

one then obtains, on comparison with (23), 

J_ + J _ _ 2__ 2 £ 1_ 

/?, R2 R R2 R2 

l ά2ζ I d f 

[ s in 2 θ dφ1 sin θ dO 
• Λ Κ sinfl — 

de) 

(24) 

(25) 

The Bernoulli integral (18) then gives 

d<P 
2 2ζ 1 ί 1 d ( . Λ dC) 

- J I sine — 
de) 

R R2 R2 sine d0 

1 ά2ζ 

sin 2 θ de2 
= const., (26) 

where Τ is the surface tension, and Φ is the velocity potential, given by 
v = V<J>. 

Differentiating (26) with respect to time and using the kinematic condition at 
the surface of the drop, 

_ 9ζ d<t> 
r=R: — = 

dt dr 
(27) 

(signifying the fact that a fluid particle on the surface of the drop always remains 
there), one obtains 
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r = R: ρ 
<?2Φ Τ 
dt2 R2 

dΦ d 1 d 
dr dr sinfl <90 

sin θ 3Φ 
d6 

1 <?2Φ 
sin2 θ d(p2 

= 0. 

One may now put 

0 = e-io"f(r,9,(p) 

with 

/(Γ,θ,φ) = /ΥΙη(θ,φ), 

where Ytm{Q, φ) are the spherical harmonics, satisfying the equation 

1 

s in0 3Θ 
sin θ 

dY tm 

de ) 

1 d2Y. 

sin2 θ d(p2 
• + e(e + \ ) Y l n = o 

(28) 

(29) 

(30) 

(31) 

and 

Υ(Λθ,φ) = Ρ Π ^ Θ ) β ^ , 

P?(cosrj) = sin"θ ^ T ^ 0 0 ! ? ? m = 0±l ,±2 , . . . ,±< ; ί = 0,1.2, 
if (cos θ) 

(32) 

and P " ( c o s 0 ) are the associated Legendre polynomials, and P,(cos0) are the 

Legendre polynomials. 

Equation (28) then gives 

2 _ T ( i - \ ) ( e + 2) 

PR' 
(33) 

Since, for a given t, there are (2i +1) different eigenfunctions, these frequencies 
have a degeneracy of {21 +1 ) . Note that 

ί = 0 , 1 : ω = 0 . (34) 

The case £ = 0 corresponds to radial oscillations, and in an incompressible fluid 
such oscillations are impermissible. The case £ = 1 corresponds to a translation of 
the drop as a whole. 

Cavi ta t ion 

For an incompressible fluid and for F = 0 , one obtains, from equation (15), 

VV = - I v V = - p ^ ^ . (35) 
2 dx dx. 

I 1 
Integrating equation (35) over a volume V enclosed by a surface S, one obtains 
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^dx<0 (36) 

from which, it is obvious that ρ can have a minimum value only at the boundary 
and not in the interior of the fluid. (Note, however, that the pressure can have a 
maximum value in the interior of the fluid.) Now, cavitation or bubble formation 
occurs in a fluid when the absolute pressure falls below a critical value, say, zero 
(such is the case near the tips of rapidly rotating turbine blades and ship 
propellers); since a liquid cannot withstand tension, the cavitation will occur first 
at some point on the boundary as the pressure everywhere is decreased. However, 
when the pressure in the neighborhood of a cavity rises above the vapor pressure 
again, the cavity collapses. The continual collapse of cavities leads to a 
deterioration and erosion of surfaces of solid bodies immersed in the liquid. 

Rates of Change of Material Integrals 

Consider the line integral of a scalar field F(x, t), 

taken along a material curve joining the points Ρ and Q. Since this curve moves 
with the fluid and consists of the same fluid particles, the integral above is a 
function only off. In order to determine its rate of change with time, suppose that 
the curve PQ moves to the curve P'Q' at time f + St (see Figure 2.1). 

Then, note that 

Q 

Ρ 

Q Q' 

Figure 2.1. Displacement of a material curve. 
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r e 
- J F ( x , t ) d x = Jim — JF(x',i + 5t) dx-JF(x,t) dx (37) 

Dividing the curves PQ and P'Q' into η segments by the points P. and 
Ρ', ι = 0,1,... ,n, respectively, such that the segment P,PM of the curve PQ at 
time ί moves to become the segment P'P'+l of the curve P'Q' at time t + St, 
one has 

JF(jc,/)^ = l i m X F ( x , , i ) / ^ t l , 
ρ " β i=l 

? -ι -> 
jF(x',r + 5f)£fcc = lim £F(x,' , i + 5 i ) />?>;„ 

(38) 

where x ; and x\ are the position vectors of Ρ and P ' + 1 , respectively. 

Now, writing 

F(*i',i + 5 f ) » F ( * j , f + 5 i ) + Ρ , Ρ / ν f (x , . , /+o" / ) + 0 Ρ.Ρ,' 

β F(X i , f) + ^ M fi, + « ( x , , f ) · V F ( * „ / ) + o(Sr 2 ) 

Ή+, · v v(x,,i)5f, (39) 

one has 

F(*;.r + 5 f ) /»^ + l -F(x , , r ) /» /» i+l 

A 
+ v(x, ,f) · VF(x, , f ) Ρ Ρ 

+ F(x„r) P , P 1 + 1 V ^ x ^ L f + OJSf 2 ) . (40) 

Using (38) and (40), (37) leads to 

Q Q 
d r . r DF 
dt 

[Fdx= f dx+ f F(dx V) υ . (41) 
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If F(x,t) is a vector field, 

F(x,t) = F,(*,f) ix + F2 (x,t)iy + F , ( x , t ) i z , 

then one has, on successive use of equation (41), 
e a Q 

— [F dx= f dx + \F-(dx-V)v. 
ώ }

F i Dt l 
(42) 

Irrotational Flow 

The circulation is defined by 

Γ = ^ν ds (43) 

where C is a closed curve made up of the same fluid particles. Assuming the 
region to be simply connected and using Stokes' Theorem, (43) becomes 

r = JJ(Vxv) ndS = jjil AdS (44) 

where S is a surface bounded by the closed curve C, and π is the unit normal to 
the surface element dS. Thus, the circulation around any reducible closed curve is 
equal to the integral of vorticity over an open surface bounded by the curve. 

Using equation (42), one has 

= dj—- · ώ +& ν • (ds Vv). 
dt I Dt J 

c c 

Using equation (13), equation (45) becomes 

= SfFds —i 
dt ι ι 

ι 2 ds. 

(45) 

(46) 

If the body forces are conservative and the fluid is barotropic (i.e., V p / p can be 
written as a perfect differential), (46) gives 

dT d ai a f f _ . ,„ „ 
— = — ft ndS = 0, 
dt dt JJ 

(47) 

which implies that the circulation around any closed material curve and the 
strength of the vortex tube looped by the latter are invariants. Thus, under the 
action of conservative body forces, all motions of an inviscid, barotropic fluid 
setup from a state of rest or uniform motion are permanently irrotational. 

The boundary-value problems for irrotational flows are, then, governed by the 
Laplace equation for the velocity potential Φ 

ν 2 Φ = ο. (48) 
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It is remarkable that equations (11), which are nonlinear, can be avoided in the 
study of kinematics of irrotational flows of an ideal fluid, which are governed by 
the Laplace equation. After the velocity field is determined, the pressure can be 
found from the Bernoulli equation [equation (18)], the only equation in which the 
nonlinearity of the Euler equation is manifested. 

In a simply connected region, all closed curves C are reducible (i.e., they can 
be shrunk continuously down to a point without leaving the region), and one has 

so that Φ is single-valued. Whereas in a doubly connected region some closed 
curves C are not reducible and then Φ may be multivalued for irreducible curves 
C, the various values of the potential differ from one another by multiples of the 
circulation. 

One has, from equation (48), some standard results from the potential theory, 
which can be readily proved: 

* The potential Φ can neither have a maximum nor a minimum in the interior 
of the fluid. 

* The solution of the Neumann exterior problem (where in the derivatives of Φ 
are prescribed on the boundaries) in a simply connected region is unique up to an 
additive constant. 

* The solution of the Neumann exterior problem in a doubly connected region is 
uniquely determined (up to an additive constant) only when the circulation is 
specified. 

The lack of explicit appearance of time variation in equation (48) implies that 
the instantaneous flow pattern depends only on the instantaneous boundary 
conditions and not on the history of the flow. 

Thus, when a rigid body moves through a fluid which is otherwise stationary, 
the flow field is determined uniquely by the instantaneous velocity of the body 
(together with its shape); neither the acceleration nor the past history of motion 
of the body is relevant. (This is, of course, valid only when the compressibility 
of the fluid is ignored, as in equation (48), so that the speed of sound is infinity!) 

Simple -F low Patterns 

Since Laplace's equation (48) is linear, it is permissible to build up some flow 
patterns by superposing certain singular solutions of equation (48). Let us first 
consider a few two-dimensional simple-flow patterns. 
The Source Flow 

Consider a flow directed radially from a point source (see Figure 2.2). The 
incompressibility condition 

(49) 
s c 



dr 

gives 

τΚ) = ° (50) 

A 
« , = - . (51) 

r 

where A is an arbitrary constant. 

The conservation of mass, expressed by 

q = jur τ ί / 0 = const. (52) 
0 

on using (51), gives 

2π 

When one uses (53), (51) becomes 

A = —. (53) 

« , = — · (54) 
2/rr 

Then, from the relations [see (4) and (17)] 

u ' = - ^ = - r ( 5 5 ) 

rde dr 
one obtains the following for the stream function Ψ and the velocity potential 
Φ. 
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(56) 

q may be called the source strength. Note that the stream function is a many-
valued function of position, owing to the existence of a nonzero volume flux 
across a closed curve around the origin. 

The Doublet Flow 

Consider the superposition of a sink (strength -q) at (-α,Ο), and a source 
(strength q) at (Ο,α) (see Figure 2.3). From (56), one obtains the following for 
the velocity potential of the combined flow: 

Φ = — In λ / γ 2 +a -2ra cosf? — — In -v/r2 + a 2 + 2 r a cos0 
2π 2π 

Ara cos θ 

r2 +a2 +2ra cos θ 
(57) 

If a is small enough, (57) may be approximated by 

(58) 

Consider the limit 
lim q-2a = μ = finite (59) 

so that (58) becomes, in this limit, 
μ cos θ 

(60) 

The stream function for this flow is, then, given by 

Ρ 

-a 

Doublet 

Figure 2.3. Doublet flow. 
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Ψ = 
μ sin θ 

2πτ 
In cartesian coordinates, (60) and (61) become 

μχ 
Φ = — 

3 9 

2n(x2

+y2)' ' 2n(x2

+y2)' 

Thus, the equipotentials given by Φ = constant are the coaxial circles 

x2 +y2 =2ktx, 

and the streamlines given by Ψ = constant are the coaxial circles 

x2+y2 = 2k2y. 

The first family has centers (it,, θ) and radii fc,; the second family has centers 

(0,k2) and radii * 2 (see Figure 2.3). The two families are mutually orthogonal. 

The Vortex Flow 

Consider a flow given by the streamlines in concentric circles. The velocity 
potential and the stream function for this flow are given by 

Γθ Γ 
Φ = — , Ψ = l n r , (63) 

2π 2π 
where Γ is the circulation of the flow. 

Let us now build up some simple-flow patterns using these singular 
solutions. 
Doublet in a Uniform Stream 

The velocity potential and the stream function for a uniform stream with velocity 
(U, V) are given by 

Φ = ί/χ + νν, I 
y = -Vx+Uy.\ 

(64) 

For a doublet in a uniform stream (U,0), one obtains the following equation 
for the stream function: 

Ψ = Ur s in0-
μ sin0 

= U sin θ 
2π r 

The velocity components are, then, given by 

r ΒΘ 

1 

2nU r. 
(65) 

ur=—— = U\ 1 T cos0, 
1 2kU r2 1 

dr 
= -U\\ + 

2nU 
sine. 

(66) 

which shows the stagnation points given by υ = 0 , at Γ = ^μ/2πΙ!, and 

(61) 

(62) 
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θ = 0,π. Equation (66) also shows that it represents the flow past a circular 
cylinder of radius 

2kU 

because the kinematic condition 

r = a: ur = 0 

is automatically satisfied on such a body. 

The stream function (65) may, then, be rewritten as 

(67) 

(68) 

Ψ =U 

2 \ 

1 - - r sin Θ. (69) 

Using (69) in (18), one obtains the following condition for the pressure on the 
cylinder: 

\ 2 

r = a: P-P~ 
= C „ = 1 - P M = l - 4 s i n 2 0 , 

U \/2pU2 - » - ' · · ' " ( 7 0 ) 

which is symmetric about the direction of streaming so that in such a flow there 
is neither a drag nor a lift on the cylinder. 

Uniform Flow Past a Circular Cylinder with Circulation 

The stream function for a uniform flow past a circular cylinder with circulation 
(see Figure 2.4) is, on using (63) and (69), given by 

2 

Ψ = υ Γ s in0 + — In 
2π 

Ua 
sin Θ, (71) 

Figure 2.4. Uniform flow past a circular cylinder with circulation. 
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ua=-— = -U 
or 1 + 7 ~ s i n 0 - -

2nr 

(72) 

which shows the stagnation points given by ur = 0, ue = 0 at 

θ = sin"1 (r/AnUa). For r > a, these are given by 

cos θ = 0 or θ = ± — 
2 

r = a. 

and 

t/ 1 + 7 " = + 2/rr 
(73) 

which gives real values for r if Γ>4πίία. There are two stagnation points 
r = r , , r 2 such that r , r 2 = a 3 . Hence, one stagnation point lies outside r = a and 
the other inside. The tangential velocity on the cylinder is, then, given by 

r-a: u e = - | 2 i / s i n 0 + - — ) , 
' V 2m)' 

which is everywhere in the direction of Γ . 

For r = a, from (73) the stagnation points are given by 

Γ = - AnUa s i n0 . (74) 

If Γ = 4nUa sin a , then the stagnation points are given by 

- s in θ = sin a or θ = -α and π + α . (75) 

The flow pattern is shown in Figure 2.5. 

Using (72) in (18), one obtains the following condition for the pressure on the 
cylinder: 

Γ ΓΓ7 
r = a: ρ = Η -4U2 s in 2 θ — s i n © 

4m m 
(76) 

where Η is an arbitrary constant. 

The net force on the cylinder is directed along the y-axis, called the lift, and is 
given by 

L = -jp s in0 ade = pUT. (77) 
ο 

This result is, in fact, independent of the shape of the cross section of the cylinder 
(see Section 2.7). 

from which the velocity components are given by 

cos θ 

9Ψ 
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r = o Γ < 4 π ί / α 

Γ = AnUa Γ > 4 π ί / α 

Figure 2.5. Uniform flows past a circular cylinder with various values of the 
circulation. 

E X E R C I S E S 

1. Consider a vortex flow, as well as a doublet flow between two circular 
cylinders of radii RVR2. Calculate the kinetic energy of the fluid between 
the two cylinders by a volume integral and an area integral over the 
boundaries separately. 

2. Show that the irrotational flow of a fluid is impossible if the boundaries are 
fixed.1 

The Complex Potential 

Since the properties exhibited by the velocity potential and stream function of a 
two-dimensional irrotational flow of an inviscid fluid, namely, 

2.2. The Complex-Variable Method 

<?2φ <?2φ 
dx1 + dy2 

0, 

3Φ ΘΨ 
dx dy 

9Φ 
dy dx ' 

(1) 

£Φ dV | 3Φ dV 
dx dx dy dy 

'This result implies that when the solid boundaries in motion are instantaneously brought to rest, the 
flow of the fluid will instantaneously cease to be irrotational but will not come to stop! 
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are identical to those exhibited by the real and imaginary parts of an analytic 
function of a complex variable, it is natural to combine Φ and ψ into an 
analytic function F of a complex variable z = x + iy in the region of the z-plane 
occupied by the flow, i.e., F(z) has a unique derivative with respect to ζ at all 
points of this region. Thus, consider 

F{z)=4>(x,y) + i*F(x,y). (2) 

This result makes all the resources of the theory of function of a complex variable 
available for the investigation of two-dimensional irrotational flows. From (2), 
one obtains for the "complex" velocity the following equation: 

dF „, . , 3Φ .9Ψ 9Ψ .3Φ 
— = W(z) = + i = 1 = u-iv. (3) 
dz dx dx dy dy 

Example 1: For a uniform flow, we have 

F(z) = AZ. (4) 

Example 2: For a source flow or a vortex flow, one has 

F{z) = A\nz, (5) 

depending on whether A is real or imaginary. 

Example 3: For a flow in a corner of angle α , one has 

F(z) = Az"*, (6) 

which is valid only in the neighborhood of the corner. 

For illustration, consider the case a = π/2, for which (6) becomes 

F(z) = Az2 (7) 

which describes the stagnation-point flow at a plane (by symmetry). 

For the velocity potential and the stream function, (7) gives 

Φ = A(x1~y^), x¥ = 2Axy. (8) 

Thus, the equipotentials are the rectangular hyperbolae (Figure 2.6) 

x -y = const. 

with the asymptotes y = ± χ. The streamlines are also the rectangular hyperbolae 
(Figure 2.6) 

xy = const. 

with the axes χ = 0, y = 0 as asymptotes. These two families of hyperbolae are 
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orthogonal to each other. Further, the only stagnation point in the flow occurs at 
the origin. 

Now, the fact that there is no flow across a streamline implies that the flow is 
unaltered if any one of the streamlines is replaced by a rigid barrier. (The present 
case, namely a = π/2, corresponds to replacing the axes χ = 0, y = 0 by rigid 
boundaries.2) 

Example 4: For a doublet flow, upon superposing a source at (a,0) and a sink 
at (-α,Ο), one obtains 

q 2a 
F{z) = — \n(z-a)—2- ln(z + a) = — In 

2π 2π 2π 

Consider the limit 

so that (9) becomes 

ν z + a, 2π ζ 

lim 2qa = U = finite, 
O=>0 

(9) 

(10) 

2πζ 
(Π) 

Figure 2.6. Flow in a corner of angle π / 2 . 

2 This implies prescribing an appropriate system of images in the barrier for the flow on the other 
side (see below). 
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Conformal Mapping of Flows 

Consider a two-dimensional flow, for which the velocity potential Φ satisfies 
Laplace's equation: 

d2Φ ά2Φ 
= 0 . 

dx1 dy1 

Consider a transformation given by 

(χ,γ)=>[ξ{χ,γ), η(χ,γ)\ 

Φ(χ,γ)=>Φ(ξ,η). 

Then, equation (12) leads to 

(12) 

(13) 

dx dy 

d2Φ 

< dx 

dn 
dy) 

dΦ 

dx2 

~9ξ + dx2 dy2 

£ φ 

dn1 

3Φ 

+ 2 
dx dx 

= 0. (14) 
dy dy 

If the transformation (13) is to relate the solution for one two-dimensional 
potential flow for one geometry with that for another geometry, i.e., 

d2Φ d2Φ 
• = 0 , 

then one requires, from equations (14) and (15), 

(15) 

'dp 
2
 f<V 

1* [dx, 1* 

(16) 
dx2 dy2 dx2 dy2 ' 

dx dx dy dy 

which are identified to be the rules governing the real and imaginary parts of an 
analytic function of a complex variable, i.e., ζ = ξ + ίη is an analytical function 
of ζ = x + iy. If ζ=ζ(ζ) describes a mapping of the z-plane onto the f -p lane , 
then both the magnification ratio | ζ'(ζ) \ and the angular rotation arg| f ' ( z ) | are 
the same for all curves C passing through the same point. Then, the 
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corresponding infinitesimal figures in the z- and ^ -p lanes are similar. This 
forms the raison d'etre for the conformal mapping of flows.3 

Example 5: Consider the flow past a parabolic cylinder (see Figure 2.7). The 
mapping 

U 

< 

4 

U 

Figure 2.7. Flow past a parabolic cylinder. 

3 At a critical point of the mapping (where the latter is not conformal), the angles between two 
curves intersecting at this point are magnified π times, when ά'ζ/dz" is the lowest derivative that 
does not vanish at this point. 
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W = — 
VI 

Example 6: Consider the transformation 

z=CcosA£, 

which leads to the following relations: 

C 2 cos/ i 2 ^ C 2 sinh24 

^——^ -1. C cos 2 r\ Csin 2 η 

Thus, ξ = ξ0 gives an ellipse with major and minor radii, respectively: 

a = C c o s / i | 0 , 6 = CsinA(i;0, 

from which 

maps the paraboloid in the z-plane into a plane ξ = ξ0 in the ζ -plane (see 

Figure 2.7), since from 

χ = ξ 2 - η 2 , γ = 2ξη 

corresponding to ξ = <ξ0, we obtain 

χ - ξ 2 = - ± -

The flow impinging perpendicularly on a plane in the ζ -plane is given by 

Πζ) = -Α(ζ-ζ0)2 

so that for the complex velocity in the z-plane, one obtains 

w_dF/dC_ 2Α{ζ-ξ0) 

dz/άζ 2ζ 

Using the boundary condition dictating that the two flows at infinity be the 
same, i.e., 

\ζ|=>oo ; W=>-U 

one obtains 

A = U. 

Thus, the complex velocity in the z-plane is given by 
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η 

Figure 2.8. Body-fixed coordinates. 

a2-b2=C2 

a±b = Ce±i° 

or 
1 a + b 

ξ0=-1η—-. 
2 a-b 

Now, the boundary condition at the body requiring that the flow has no 
component normal to the body gives (see Figure 2.8) 

ds ds 

from which 
Ψ -Uy+ const., at the body. 

Note that this prescription satisfies the boundary condition identically for any 
shape of the body translating in the x-direction. 

Consider, for illustration, the flow in the ζ -plane to be given by 

F = -Ce'(, 

from which the velocity potential and the stream function are given by 

Φ =-CVf 4 cos rj, Ψ= Οε'ξ sin η. 

The boundary condition at the body then gives 

y I 
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C=Ubei°=UbJa + h 

a-b 

so that the stream function becomes 

\a + b _{ 
V^UbJ e ξύηη. 

which gives the flow produced by a translating elliptic cylinder. 

For a steady flow past an elliptic cylinder, on the other hand, the complex 
potential is given by 

F = Ub — e^-UCcoshC. 
a-b 

Example 7: Consider a rigid body rotating about an axes through the origin. 
From the boundary condition at the body (see Figure 2.9), we obtain 

9Ψ dr 
= ω r cos θ = ω r — 

ds ds 
from which we obtain 

ψ = - — (or1 +const. 

Consider, for illustration, the flow to be given by the complex potential, 

F = -iAz2 

so that the velocity potential and the stream function are given by 

Φ = 2Αχγ, Ψ = -α(χ2-y2). 

The boundary condition at the body gives 

A(x2-y2) = ±<02(x2

+y2)-C 

from which we obtain 

= 1, 

which is an ellipse if A < ω/2. If a and b the major and minor radii of this 
ellipse, i.e., 

(ω Λ / (ω Λ / (ω Ί 
c / A C — + A 
/ K2 ) U J 

2 C 
a = b 2 = - £ -

ω/2-A ω/2 + A 
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y I 

π 

Figure 2.9. Rigid body rotating in a fluid. 

then we obtain 

ω a2-b2 

2 a + b 

Thus, the stream function becomes 

ω a -b2 , 2 ι χ 

Ψ = ; — τ [ χ - y )· 

2 a2+b2 v ; 

which represents the flow within an elliptic cylinder. 

Consider next the transformation 

ζ = C cos/i^ 
and the flow in the ζ"-plane to be given by the complex potential 

F = -iCe~2i 

so that the velocity potential and the stream function are given by 

Φ = -Οε'2ξ sin2r/, Ψ = -Ce~2ξ cos2r/ . 

The boundary condition at the body gives 

-Ce'2i° cos2rj = - - C 2 w(cosA2^ 0 +cos2 r / )+ D, 
4 

from which 



The Complex-Variable Method 5 1 

or 

ί„ · . ι- , »- ο + b e = sin η ς 0 + cos Λς0 = 

so 

χ2 ω C = (a + fc)2 

4 

Thus, the stream function becomes 

V = - — (a + bYe-2li cos2rj , 
4 

which represents flow due to rotation of an elliptic cylinder. 

Hydrodynamic Images 

The hydrodynamic images are defined to be distributions of sources and vortices 
inside a body B, which would produce, outside B, the disturbance flow actually 
generated when β is placed in a field of flow. Thus, the image of a uniform 
stream (U,0) in the circular cylinder r = a is a doublet of moment {-2πϋα2,0J 
at the center (0 ,0) . 

Consider a source outside a plane wall (Figure 2.10). The complex potential is 
given by 

F = -?-[ln(z-z0) + ln(z + z0)]. (17) 
2n 

The presence of the image source ensures, on superposition with the given 
source, that the plane wall remains a streamline of the flow. 

Let us next determine the complex potential representing motion of a fluid in 
the presence of an interior boundary of circular form. Let the complex potential of 
a given flow be given by 

which is free from singularities in the region z'ia. If now a stationary circular 
cylinder of radius a is placed with its center at the origin, one requires, for every 
singularity at zQ of f(z) (outside z = a), an image in the circular boundary at 

a2/z0 such that the two together will render the circle a streamline. Thus, for the 

C e ' 1 4 , = - C 2 £ U , -C2cocosh2L-D = 0. 
4 4 

If a and b are the major and minor radii of the elliptic cylinder given by ξ = ξ0, 

then one obtains 

a = C cos/ i^ 0 , fe = C sin Λ<!;0 
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Figure 2.10. Source outside a plane wall. 

complex potential for the flow in the presence of a circular cylinder, one obtains 

which is purely real on | ζ \ = a, and the latter is, therefore, a streamline. 

Example 8: Consider flow due to a point source of strength q at ζ = z 0 ; then, 

for the complex potential, we obtain 

/ ( z ) = — l n ( z - z 0 ) . 
In 

(18) 

In the presence of a circular cylinder of radius a < | z01, with its center at the 

origin, the complex potential becomes 

F = — l n ( z - Z o ) + — In 
2TT ^ ^' 2π 

- £ , n ( z - z 0 ) + £ l n 

(a2 

• - Z o 

-2 Λ 
Ζ — 

2π 
In ζ, (19) 

which shows that, for a source outside the cylinder, the image system consists of 
(a) a source q at the inverse point ζ = a2/z0 and (b) a sink —q at the origin. 
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Principles of Free-Streamline Flow 

The boundary conditions imposed on the flow cases in the preceding examples do 
not permit separation of flow from a boundary. The assumption of free 
streamlines permits separation of the flow to occur at those sudden changes in 
direction of boundaries which otherwise cause infinite velocities. At separation 
points in steady flow of a fluid around a body, the streamlines leave the body. 
These dividing streamlines are called free streamlines in two-dimensional flow, 
and the fluid in contact with the body downstream from the separation points and 
separated from the main flow (assumed to be inviscid and irrotational) by the free 
streamlines is known as the wake. The fluid in the wake is assumed to be at rest 
in steady-flow problems. Since this is not quite so in actuality (the fluid in the 
wake is in a relatively slow recirculating flow), the theory yields better results if 
the wake contains another fluid of much less density. 

If the effects of gravity are ignored, the pressure in the wake is constant, and 
the pressure along the free streamline must also be constant. From Bernoulli's 
equation [equation (18)] in Section 2.1, the velocity of the free streamline must 
also be constant. This somewhat alleviates the difficulty that the location of the 
free streamlines is not known beforehand. 

The method of solution involves introducing a new complex variable 

β = 1η(.Ι) = 1η* + ,·β. 

where W = qe , e . Note that the real part of Q is constant on each free streamline 
and that the imaginary part of Q is constant on each straight portion of the rigid 
boundary, and on both of these boundaries the stream function Ψ is prescribed 
because they are streamlines. Consequently, the flow region is mapped onto a 
straight-sided figure in the Q-plane. One may then use a Schwartz-Christoffel 
transformation to map the interior of the straight-sided figure into the upper half 
of another plane. 

Schwartz-Christoffel Transformation 

This transformation maps the inside of a polygon in the z-plane onto the upper 
half of the ζ -plane. Consider the transformation given by 

Υ^Υ[{ζ-α,)\ (20) 

where the a, are real and are ordered as follows: 

From equation (20), we obtain 

arg 
rdz^ 

= a r g C + /3, a r g ^ - e j + ft a r g ( f - α 2 ) + ··· + β„ a r g ( f - a „ ) . (21) 
A ) 

Now, since ζ is real, one has 



5 4 

arg 
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arg(C-a*) = (23) 

Further, when ζ lies on the real axis between a{ and aM, note that 

[0, *< / ' , 

| π , k > i. 

Using (22) and (23), (21) gives 

0 , . = a r g C + *(/Jj+1+A>2 + - + / U 
Thus, all points of the real axis segment aM - α are mappings of a line segment 
with slope 6t in the j -p lane (see Figure 2.11). Further, 

βΜ-θ,=-*βΜ· (24) 
Noting that 

- 3 = * - « , . . . (25) 
where aM is the interior angle at each corner (see Figure 2.11), one obtains 

or 

Figure 2.11. Schwartz-Christoffel mapping. 

= arg(dz) = 0 , in the ith interval. (22) 
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π 

Thus, (25) becomes 

c m - * * ) 

(26) 

(27) 

the scale factor C prescribes both the relative scale and the relative angular 
orientation of the two geometries. The transformation (27) transforms the real 
axis in the ζ -plane into the boundary of a polygon in the z-plane in such a way 
that the vertices of the polygon correspond to the points α, ,α 2 , . . . , and the 
interior angles of the polygon are α,, a 2 

Example 9: Consider a source of strength q in a channel (see Figure 2.12). 
One then sees, from (27), that the relation 

R / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 

77777777777777777777777777777 
C 0 χ D 

1q 

D 

B,C ξ 

Figure 2.12. Conformal mapping for a source in a channel. 



5 6 Dynamics of Inviscid Incompressible Fluid Flows 

Im(a) 

'//////////////////////////// D 

t 

77777777777777777777777 D 
Re(C) 

2π 2π 

p \ \ y n 1 / x l / ^ d 

-1 1 ξ 

Figure 2.13. Conformal Mappings for a flow past a corner. 

dz__£ 

or 

y\ 
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π 

transforms the given flow in the z-plane onto one in the ζ -plane, as shown in 
Figure 2.12. For the latter we obtain 

F(C) = — ln(C- l )— q - l n f = - i lns in* — . 
2π 2π π a 

Example 10: Consider the flow past a corner (see Figure 2.13). Making the 
hodograph transformation first, given by 

Q=\n = ln + ίθ, 

where U is the uniform flow speed away from the corner, the given flow maps 
onto a region shown in Figure 2.13. Note that the applicability of the Schwartz-
Christoffel transformation depends crucially on the representation of the flow 
region into a polygon in the Q-plane, and this is possible only if all the solid 
boundaries are straight (the gravity effects on the free streamlines, of course, 
being neglected). Next, making the Schwartz-Christoffel transformation 

dQ = c(c + i ) - V 2 ( i - i ) \ - l /2 

or 

Q = - c o s / f ' i 
π 

the given flow maps onto the one shown in Figure 2.13. The complex potential 
for the latter is given by 

F ( i ) = l n ( £ - l ) - l n ( i + l ) . 

The sources at ζ = ± 1 have a strength of 2π. 

Example 11: Consider a jet emerging from an orifice (see Figure 2.14). Again, 
one makes the hodograph transformation, first, 

-J -J 
\ 

where U is the uniform speed of the liquid on the free streamlines separating from 
the edges of the orifice, and this is also the speed in the interior of the jet far 
downstream from the orifice where the streamlines are straight and parallel. 

One now makes the Schwartz-Christoffel transformation 
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y 

A Β B' A' 

...\ X 

ψ = ο \ / Ψ = π 

—Jc 

MQ) 

V/////////////// 

C,C / " π / 2 
Re(G) 

/Ϋ7777777777777777 
B' A ' 

η 

- ι , X ^ , ' 
///////////////////////// 

A Β C,C B ' A ' ξ 

Figure 2.14. Conformal mappings for a jet emerging from an orifice. 

•1/2 

or 

Q=C J 

which, on using 
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becomes 

C = - l : Q = 0, 1 
ζ = \: Q = -m,\ 

Q -- cos Λ- 1 ζ-πι. 

This transformation maps the given flow to the one shown in Figure 2.14. The 
complex potential for the latter is given by 

F(C) = - I n C . 

Note that, on the free streamline BC (see Figure 2.14), one has 

, άζ dfcos h(i9 + m)] d{cose) 
ds = d<P = — - = l- - ^ = — - = - t a n 0 < f 0 , 

cos h («0 + in) cos 0 

from which 

sin2 0 
<£t = s in0 d6, dy = ——άθ. 

COS0 
Thus, the free streamline BC is given by 

jc = 1 — cos Θ, y = - s i n 0 + ln 

The coefficient of contraction of the jet is, then, given by 

2xc π 

(Θ 7t) 
tan 

U 4 J 

2xB π+ 2 

Hodograph Method 

This affords an alternate approach to solution of problems of free streamline 
flows. First, noting that 

/ ^ ) = Φ + ιΨ, 

dF 
dz = -qe 

we obtain 

dz = - ~ dF = - — 

Since dz is a perfect differential, (29) implies 

from which we obtain 

d F ι dF i n — dq + — de 
{dq 9Θ 

d e dF _ d ( '« e dF' 

de , a d q , ' d q κ q d e , 

(28) 

(29) 

(30) 
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dF 1 dF 
ι— = · (31) 

dq q 9Θ 

Equating real and imaginary parts of (31), we obtain 

3Φ 1 3Ψ dy* \ d0 

from which we derive 

(32) 
dq q 39 dq q de 

5 2 V I d*F 1 i 2 f 

dq q dq q de 

If it is possible to specify the boundary conditions in terms of q and Θ, 
equation (33) enables one to solve for Ψ^,θ). Using (32), one then solves for 

dF/dq, dF/de. Using (29), one then determines z = z(q,e), and next 

x = x(q,e) and y = y{q,6). 

Example 12: Consider a uniform flow past a flat plate of breadth 4a, placed 
broadside. 

Now, the complex potential 

F = -U 
' a2^ 

z + — (34) 

represents the flow of a uniform stream U in the x-direction past a circular 
cylinder | ζ \ = a. If the uniform stream makes an angle a with the ^-direction, 

one has, on putting ζ = ε~'αζ, for the complex potential the following: 

F=-U 
2 ί α "\ 

a e 
ζ 

The Joukowski transformation (see Section 2.7) 

Ζ=Χ + ίΥ=ζ + - or 
Z + Vz2 - 4 a 2 

(35) 

(36) 

transforms the circular cylinder into a flat plate leaving the direction of the 
uniform stream unaltered. Thus, the flow past a flat plate —2a < X < 2a, Y = 0 of 
a uniform stream U in a direction making an angle α with the X-direction is 
given by 
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F = -U 
Z + V z 2 - 4 a 

J , 2 ·<* + a e 
Ζ + Vz2 - 4 a 2 

2 

γ 
J. 

= - { / ^Z cos α - /' Vz2 - 4 a 2 sin α 

If α = π / 2 , (37) becomes 

(37) 

F = /i/Vz2 - 4 α 2 . (38) 

This solution is, however, physically not acceptable because 

Z = ±2a: —=> ~ 

and the velocity becomes infinite at the edges of the plate. Further, the flow given 
by this solution is symmetrical with respect to the plane of the plate, whereas in 
reality the flow separates from the edges of the plate. 

Instead of looking for a free-streamline flow type of solution of the problem 
in which the flow is divided into two regions - in one of which the fluid is at 
rest, while in the other it flows irrotationally - let us consider instead a somewhat 
simpler problem of two-dimensional jet impinging on a flat plate. The jet is 
supposed to originate as a uniform stream U of width 2K/U at χ => - ° ° and is 
separated from the stagnant fluid by the free streamlines Ψ = ± Κ. The jc-axis is 
taken to be one axis of symmetry so that V = 0 is the dividing streamline 
composed of the negative half of the x-axis together with the y-axis . It is 
sufficient to consider only the region y > 0. Referring to Figure 2.15, the points 

A and Β represent points at infinity. 

The hodograph of the free streamline AB where Ψ = -Κ is a quadrant of the 
circle q = U and those of the dividing streamlines OX and OY where Ψ = 0 are 
the axis OA and the ordinate OB. Noting that 

0 = 0 , - : Ψ = 0 
2 

(39) 

one obtains, from equation (33), 

(40) 

The boundary condition 

Ψ(υ,θ) = -Κ, 0<θ<- (41) 

then gives 



υ Ψ = 0 A U x 

Figure 2.15. Row impinging on a vertical wall (from Rutherford, 1959). 

-A" = £ a t / 2 l s i n 2 j 0 , 0<θ<π/2 (42) 

from which 

a,u 4 r . _ , 4 
—J = — sxnlstdt = — 

Κ π l π 
Using (43), (40) becomes 
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~ * ( 2 p + l ) 

Thus, the complex potential is given by 

1 

υ 
s in2 (2p + l )0 . 

' qe 1 

π _= 0 4 p + 2 U 

%K γ ζ 
π p = 0 4 ρ + 2 ' 

where 

Z = qe_ 
U 

Noting, from (45), that 

Udz 
dF 8K 

η 
Y4Z*tdZ = -

%K dZ 

p=Q 
π Ι - Ζ ' 

one obtains, on integration, 

2K 
In 

fl + Z) 
+ i In 

fl-iZ] 
ζ — In + i In 

U U - z j l l + i'Zj 

In 
1 - Ζ 

1- iZ 
A + iZ 

one obtains finally 

In 

ΘΛ in , 0 
-In ι tan— = In tan — , 

I 2) 2 2 
^ in , (θ ηλ in , 

= In tan —+ — = In 
J 2 {2 4) 2 

6 3 

(44) 

(45) 

(46) 

(47) 

On the bounding streamline Ψ = -Κ, one has q = U or Ζ = e~' . Noting, 
then, that 

1 + ZN 

1 +tan 0/2 
1- tan 0/2 

2K 
Z = x + ty = -

nU 

ιπ , η . , (\ -1 
In t + — + 1 In 

2 2 U + f 
where t = tan 0 / 2 . Thus, for the free streamlines we have 

2K 2K Λ η 
χ = In/ 

nU \ 2 
y = 

nU 2 \l + t) 

(48) 

(49) 

E X E R C I S E S 

1. Find the complex potential for the flow past a wedge of angle 2a. 
2. Find the complex potential due to a doublet-flow outside a circular cylinder. 
3. Find the complex potential for the orifice flow shown in Figure 2.16a. Use 

the Schwartz-Christoffel transformation. 

AK 
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. L _ . 

\ \ \ \ \ \ \ \ \ \ \ S \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 
Figure 2.16a. Orifice flow. 

y A 

Ψ = 0 
Τ 
b 
* 

X 

Β 

Figure 2.16b. Flow past a flat plate placed perpendicular to the flow. 

4. Find the complex potential for the flow past a flat plate with a cavity of 
constant ambient pressure, shown in Figure 2.16b. Calculate the drag on the 
plate. Use the Schwartz-Christoffel transformation. 

2.3. Three-Dimensional Irrotational Flows 

Because of the fact that the region occupied by the fluid is necessarily doubly 
connected in a two-dimensional flow field and singly connected in a three-
dimensional flow field, significant differences between the properties of the two 
flow fields may be expected to arise. 

Special Singular Solutions 

Just like that in two-dimensional flows, one may build up complicated three-
dimensional flow fields by superposing certain singular solutions of Laplace's 
equation. 
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The Source Flow 

On using the spherical polar coordinates ( Λ , θ , φ ) , for the velocity potential we 

obtain 

* ( * ) = - · (1) 
R 

Using the condition of mass conservation, 

q = VO A dS = const., (2) 
s 

(1) gives 

Thus, (1) becomes 

From the relations 

A = - - £ - . (3) 
An 

Φ = - γ ~ . (4) 
AnR 

' dR R2 sin θ d9 ' * R 99 R sin 9 dR 

we obtain, for the stream function, 

¥> = - ^ i £ ( 6 ) 
An 

Example 1: Consider a source in a uniform flow. Then for the stream function 
we have 

1 2 ι q cos θ 
Ψ = - UR2sin20-^- . 

2 An 
On noting that the stagnation point would be on the line 9 = η, the stagnation 
streamline is then given by 

2 4 π Απ 
which represents the flow past a body of revolution of asymptotic radius (see 
Figure 2.17) 

0=>O : R s in0 = J — . 
V nU 

The velocity potential for this flow is given by 
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Figure 2.17. Flow past a body of revolution. 

<t> = UR c o s 0 - -
4nR 

from which the velocity components are given by 

( / Φ . , „ q 
«„ = = U COS θ + τ-, dR 4nR* 

1 9 Φ n o 
ua= — = -U s\nd. 

6 R 9Θ 
The stagnation points S is therefore at 

0 = 7T, R = 
4 nU 

The Doublet Flow 

Note that one can generate the doublet flow from the source flow by simply 
differentiating the velocity potential corresponding to the source flow in a 
direction opposite to the doublet axis, thus, one obtains 

dx 
dx = -

μ cos θ 

4nR2 

where 
μ - lim q dx. 

dx=>0 

(7) 

(8) 

From the relations 



Three-Dimensional Irrotational Flows 6 7 

9Φ ι <?y 
dR /? 2 s in0 9Θ ' 

1 ΘΦ = - 1 9Ψ 
"β ~ R 9Θ ~ /?sin0 dR ' 

one obtains, for the stream function, 

(9) 

Ψ = 
μ sin 0 

4π/? 
(10) 

Example 2: Consider a doublet in a uniform stream. For the velocity 
potential, one then has 

μ cos θ 
0 = UR cos0 + -

4 π/Τ 

from which the velocity components are given by 

us=\U-
2nR3 

cos 0, 

"» = -[ V + —^~~r I sin 0, 

The stream function is then given by 

fUR2 

4nR 
sin 0, 

from which the stagnation streamline is given by 

R=R0 = 
f μ ν * 

\2kU ) 

This flow therefore represents the flow past a sphere of radius a = R0. Thus, 

the velocity potential is given by 

0 = U 
_ 3 Λ 

1 + — /?COS0 

with the velocity components 

uR=U cos 0, 

, 3 \ 

1 + -
2R3 

sin0. 

The pressure on the surface of the sphere is then given by 
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R = a : c = f ^ - = i - 4 = i - - s i n 2 e , 

2 K 

which is symmetric about 0 = 0 and π/2, so that there is no net force exerted by 
the flow on the sphere - d'Alembert'sparadox. 

d'Alembert's Paradox 

Example 2 appears to indicate that the zero resultant force exerted by the fluid on 
a sphere moving with uniform translational velocity in a quiescent unbounded 
ideal fluid has to do with the particular flow geometry, namely, the flow around a 
sphere. However, this result has greater generality and one may show, as in the 
following, that there is no resultant force exerted by the fluid on a finite body of 
arbitrary shape translating steadily through a quiescent unbounded ideal fluid. 

Consider a finite body bounded by a surface S translating with constant 
velocity U in an unbounded fluid occupying a region Ύ at rest at infinity. The 
boundary-value problem for the velocity potential Φ then consists of 

ν 2 Φ = 0 in Ύ (11) 

along with boundary conditions 

ΘΦ 
= U η on S, 

dn (12) 

J νΦ I => 0 at infinity,] 

where η is the unit normal vector to 5 in a direction pointing away from S. 

The force exerted by the fluid on the body is given by 

F = -jjnpdS (13a) 

or in the component form 

F^-jjnjpdS. (13b) 

Using the Bernoulli equation [equation (18)] in Section 2.1, (13b) becomes 

F.=-p_ {in.dS + p f k — dS + -p f[/i ( V * ) 2 d S , (14) 

where pm is the constant pressure at infinity. 

Now, one may note the following results: 
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jjrijdS = 0 

9Φ ΘΦ dxi 

dx. 
(ΥΦ) 2 

"' dx, 
lu. ^ z . = 2 ^ - ( « . « , . ) , 

d_ 
dx. 

\\ η, ( ν Φ ) 2 dS = JJJ A (VO) 2 Λ - j j nt ( ν Φ ) 2 Λ 
5 V Μ 1 Ζ 

5 Ζ Ζ 

= 2U, iJnpjdS, (15) 
s 

where Σ is the surface at infinity enclosing the region Ύ , and the boundary 
conditions (12) have been used in deriving the last result. 

Using (15), (14) becomes 

-(.«/, JJ 
^ duj du ^ 

dx dx 
dS + pU, \\(nlUj-n.u)dL 

1 J 

= 0 (16) 

on noting the boundary conditions (12) and that the velocity field is irrotational, 
i.e., V χ υ = 0 . Thus, a finite body of arbitrary shape translating steadily through 
a quiescent unbounded ideal fluid experiences no resultant force exerted by the 
fluid. This result is called d'Alembert's paradox because it is contrary to 
experience. It is to be noted that the fallacy is less related to the neglect of 
viscous effects than to the assumption that there is no vorticity in the fluid 
outside the body. Thus, the above result is applicable to a streamlined body for 
which there is only a thin wake containing vorticity. 

Image of a Source in a Sphere 

Let us find the image of a source of strength m at (0,0, a) in the sphere of radius 

b(b<a) with center at the origin. In the absence of the sphere, the potential for 

the source is (see Figure 2.18) m/^jr2 +a2 - 2ar cos θ, so that for the flow in 
the presence of the sphere we may write, 



where 

One may write 

φ = φ.+ m 

Λ/Γ2 +a —War cos θ 

r>b: V20,=O,1 
r =><*•: V0=>O. j 

*.=Σ 4r f , . ( c o s e )-

where Pn{z) are the Legendre polynomials. Thus from (17) and (19), for 
one has 

Β fur" 
—=- P (cosd) + ̂ — Ρ (cos θ) 

n+1 η \ / «+l " v ' 

The boundary condition on the sphere, 

' - * = ι ? - ° · 
or 

then gives 

Β =• 
b(n + \){a) 

L2 V 

Using (22), (20) becomes 

Σ πι 

Τ 
n = 0 Ο 

1 - -
κ + 1 

ί Ί . 2 \ 

— - Ρ (cos0) . 

Note that the first term on the right in (23) can be written as 
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2 Λ n+1 

Σ τ τ ^ ^ ) ~ Σ P„(cosf9) 

(mb/a) 

Jr2 +(b2/af -2r(b2/a) cost? 

which corresponds to a source of strength mb/a located at ^0 ,0 , i? 2 / a j . Next, the 

second term on the right in (23) can be written as 

-Σ m (b2 V + 1 

\ « J Γ P n = 0 ο Γ 

l>7« 

= ί 
fc o JS+z2 -2rz cose' 

which corresponds to a uniform line sink of strength m/b per unit length 

stretching from (0,0,0) to ( θ , 0 , £ 2 / α ) . The image system consists of a source 

mb/a at (o,0,fc2/ a) and this line sink. 

Flow Past an Arbitrary Body 

Let us use Green's Theorem for the region Ύ between the body and an infinite 
sphere enclosing the body. It turns out that the nonvanishing contribution to the 
velocity potential from the surface integral on the infinite sphere is a constant; 
one then has (on ignoring the latter contribution) 

^{Φ^Φ2-Φ^ΦΧ) • AdS = υ|(Φ,ν 2Φ2 - Φ 2 ν 2 Φ , ) αχ., (24) 
s. ν 

where S 0 is the surface of the body. 

If one takes 

1 
Φ , = - Φ, = Φ , with ν 2 Φ = 0 , (25) 

where >? = | x - j r ' | is the distance between the point of interest P(x) and an 

element of area dS(x') on the body, then (24) becomes 

1 fl^ — ν Φ - Φ ν - •ndS =JJJ - ν 2 Φ - Φ ν 2 

R \Rj 
dx. (26) 

If the point P(x) is not in V, then (26) gives 
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-\7Φ-Φν 
R 

η dS = 0. (27) 

If the point P(x) is within T , enclose it by a small sphere ε , then (26) 
gives 

"\R dR R2 η 
1νΦ -Φν 
R 

•AdS = 0. 

As ε => 0 , this gives 

- νΦ-Φν 
r 

(28) 

which shows explicitly how Φ is determined throughout the fluid by conditions 
on the body. 

One may write 

1 1 , d (l\ 1 , , d2 (V 
* β 7 " * ' a " 7 + 2 Χ · Χ ^ 1 ~ ] + 

(29) 

which is convergent for r <r\ here | χ | = r, | x ' | = r . 

Using (29), (28) gives 

(30) 

where 

c = <Η»ή · νΦ^5 
4π 

C|. = j - ${x'h • νΦ -η,Φ) rf5 

etc. 
Thus, the flow field at large distances from a moving body can be expressed as 

that due to a sum of multipole flow fields where the coefficients are certain 
integrals on the given body. At such large distances, the dominant action of the 
moving body on the fluid is equivalent to the exertion of a point force, with the 
detailed distribution of the surface forces on the moving body being unimportant. 
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Unsteady Flows 

As an example of unsteady flows, consider an infinite mass of fluid initially at 
rest and having a spherical cavity of radius R^. The fluid is made to move 

outwards by a pressure applied uniformly over the surface of the cavity; there is 
no pressure at infinity and no body forces act . 4 Since the motion is spherically 
symmetric, Laplace's equation for the velocity potential takes the form 

— \R2 — 
dR V dR 

= 0 (31) 

while the kinematic condition at the surface of the cavity is 

«•*')= if 4 
Equation (32) implies that the radius of the cavity increases at a rate equal to the 
local fluid velocity, so that no fluid ever crosses the cavity surface, and the latter 
always consists of the same fluid particles. 

From (31) and (32), one obtains 

R2(t) 
Φ(/?,/) = - -

R 
(33) 

where the primes denote differentiation with respect to t. 

Using (33), the Bernoulli equation, namely (18) in Section 2.1, then gives 

1 
p+-

2 

fR2R'^ 

If 

R2R" + 2RR'2 

• 0. 

Using the adiabatic equation of state (see Chapter 3), 

Po 

(34) 

(35) 

where γ is the ratio of specific heats of the gas in the cavity and px is the 

pressure at R = R, one obtains from (34), for R = R, 

RR" + - R'2 

Upon integrating (36) and using 

Po. 

Po 
(36) 

R=R • R' = 0, (37) 

4 T h e cavity dynamics takes different characters depending on whether the cavity consists of a 
permanent noncondensable gas or the vapor of the surrounding fluid. In the former case, the inertia 
of the surrounding fluid plays a dominant role, while in the latter case the latent heat flow associated 
with boiling phenomena plays a dominant role. 
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is the speed of sound in the gas. 

According to (38), the velocity approaches infinity as R => 0 , which implies 
that the approximations underlying the derivation of (38) will break down as the 
collapse process develops. 

R 
(38) 

Added Mass of Bodies Moving Through a Fluid 

The reaction of the fluid to a body translating through it is to change the inertia 
of the body. As an example, consider a sphere of radius a translating unsteadily 
through a fluid with velocity U = Uix. Thus for the velocity potential we obtain 

0 = i ^ c o s ^ l f l 3 ( £ ^ ) ( 3 9 ) 

2 R2 2 R3 

The kinetic energy of the fluid set into motion by this translating sphere is 
given by 

T = -p \\\(V4>Ydx = - - ρ$Φ — dS, (40) 
2 ν 2 s d n 

where S denotes the surface of the sphere, and the normal A points into the fluid. 
Using (39), (40) leads to 

Ρ re U COS θ , 1 
Γ = - — < ΰ - s {-U cos0) dS = -

'2πα}ρλ 

2JJ

S 2 2 
U2. (41) 

It is obvious from (41) that one may view the kinetic energy of the fluid as an 
added mass 

m = — ( 4 2 ) 
3 

for the body moving through the fluid. Note that this added mass is half the mass 
of the fluid displaced by the sphere. 

In order to see the dynamical significance of the added mass further, let us 
calculate the force exerted by the fluid on the sphere. 

Using (39) and noting that 

one obtains 

3 ( 7 - 1 ) 

where 
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3Φ _ 1 3 

dt 2 

U cos θ U2 3 ( / 2 c o s 2 0 

with 

the Bernoulli equation (namely, (18) in Section 2.1) gives the following equation 
for the pressure at a point on the sphere: 

= A. ~ - t / 2 ( 4 c o s 2 f? + sin2 θ) --(Ua cos θ+ U2 -3U2 cos 2 θ). (43) 
8 2 

where p_ is the constant pressure at infinity. 

The force exerted by the fluid on the sphere is thus given by 

F = jjnp \ dS = -ixjjp\ cos θ dS - iy JJ ρ | sinf9 dS; 

and on using (43) we obtain 

F = -
(2πρα^ 

(44) 

(45) 

which is simply the inertia force of the accelerating fluid matter of mass equal to 
the added mass given in (42) and is in the direction opposing the motion of the 
sphere. 

E X E R C I S E S 

1. Find the velocity potential for a doublet-flow outside a sphere when the axis 
of the doublet passes through the center of the sphere. 

2. A spherical bubble of gas of radius R0 and at a pressure p0 starts to expand 
in an infinite mass of fluid of density ρ with zero pressure at infinity. 
Suppose that the gas is initially at rest and that its pressure and volume Τ 
are related to one another by the equation of state p T * / 5 = constant. Show 
that the bubble radius becomes double the original value R0 in time 

(28/^/15) fipT,. 

3. Calculate the added mass of a plate (length 4£) moving normal to its plane 
in a fluid. Use the Joukowski transformation (see Section 2.7). 

4. Calculate the added mass of a sphere moving through a fluid inside a bigger 
hollow sphere. 

5. Determine the flow past a nearly spherical surface given by 
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the flow at infinity being uniform with a velocity U in the x-direction. 

2.4. Vortex Flows 

Vortex Tubes 

The Euler equations of motions for an incompressible fluid are 

ν · υ = 0 , (1) 

dt ρ 

The vorticity is given by 

Ω = V x v . 

— + (v-V)v = - - V/7. (2) 

(3) 
The vortex lines are those which are tangential everywhere to the local vorticity 
vector. The surface in the fluid formed by all the vortex lines passing through a 
given reducible closed curve drawn in the fluid is a vortex tube. Consider the 
integral of vorticity over an open surface S bounded by this same closed curve and 
lying entirely in the fluid 

from which it follows that this integral has the same value for any such open 
surface lying in the fluid and bounded by any closed curve lying on the vortex 
tube and passing around it once and is called the strength of the vortex tube. 
Thus, the vortex tubes are constant in strength and are either closed tubes or end 
nowhere in the interior of the fluid. Further, since a vortex tube consists always 
of the same fluid particle, its volume is conserved. Consequently, any stretching 
of the vortex tube would intensify the local vorticity. 

For the vorticity, equation (2) gives 

s 
where η dS is an element of area of this surface. From (3) one obtains 

V Ω = 0 , (4) 

— = V x ( v x i l ) , 
dt 

(5a) 

which, on using equation (1), becomes 

— + ( v V ) = ( f t V ) v . (5b) 
dt 
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Now, if di is an infinitesimal material line element, one has the following 
kinematical equation governing the stretching and reorientation of this element 
(see Section 2.1): 

dt 
d€=(d€V)v. (6) 

Thus it follows from equation (5b) that i l changes like the vector representing a 
material line element which coincides instantaneously with an element of the 
local vortex line. Consequently, vortex lines move with the fluid. 

The terms on the right-hand side in equation (5b) represents the vortex-line 
stretching. This leads to a concentration and intensification of vorticity, no matter 
how dispersed the vorticity may be initially. An example is the bath-plug vortex 
wherein the extension due to the draining motion of the vortex lines produces a 
concentration of the vorticity. 

For a two-dimensional flow, equation (5) gives 

— + ( v - V ) f l = 0, (7) 
dt 

where Ω is the component of vorticity normal to the flow. 

Induced Velocity Field 
Noting, from equation (1), that the velocity field is solenoidal, one may write 

» = - V x A . (8) 
Then, the vorticity is given by 

- Ω = V x v = V x ( V x A ) = V ( V - A ) - V 2 A . (9) 

Now, note that the vector potential A is not uniquely determined by (8) when 
the velocity ν is known. In fact, 

Α' = Α + νχ (10) 

represents the same field. But, it is always possible to choose χ such that 

V 2 * = V A (11) 

so that 

V A ' = 0 (12) 
and, consequently, (9) gives 

V A = i l , (13) 

from which we have 
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One may, in fact, verify that V· A = 0, in accordance with equation (12), if the 
vorticity vanishes at infinity. Finally, using (14) in (8), one has the following 
equation for the velocity field: 

4π JJJ r - r 

Biot-Savart's Law 

From (14), note that for a vortex tube shown in Figure 2.19, one has 

(15) 

(16) 

Noting that 

d(=—di, r = nSldS, 
lot 

where Γ is the circulation about the vortex tube, (16) becomes 

4π r-r' 

Using (18), (8) gives 

Sv(r) = Vrx 
r de 

4π r - r 

(17) 

(18) 

(19a) 

Figure 2.19. Vortex tube in a fluid. 
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from which 

(19b) 

Example 1: Consider a line vortex of finite length £ (Figure 2.20). Examples 
of such a concentration of vorticity are tornadoes, whirlpools, etc. 

Let 

r, = r-r 

Thus we obtain (see Figure 2.20) 

dr' x r, - rldr' sin 0 e, 

where e is the unit vector pointing into the plane of the paper. 

Hence, (19b) gives 

Γ f sin θ . . . ι t s in» , 
v(n = e — } ~ r d r • 

Noting, from Figure 2.20, that 

4 π - r-

r, = h cosec 0, r0-r' = h cot 0 , 

Figure 2.20. A line vortex. 
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one obtains 

v(r) = e — [sinfl dQ-e (cose, - c o s 0 2 ) . 
Απ ί ΑπΗ 

Example 2: Consider a closed vortex filament. Then, on using Stokes' 
Theorem, (19) gives, 

which is the solid angle subtended by the line vortex at r. 

Example 3: Consider a vortex between two perpendicular planes (Figure 2.21). 
The image system corresponding to the given vortex at A consists of vortices at 
Λ,,Α 2 ,Λ 3 as shown in Figure 2.21. The velocity induced at A by the image 

system is (on using the results of Example 1) 

where 

Γ f 1 cose s ine Γ 
Απτ' 2π \AA2 ΑΛ, AA3 

from which 
1 dr 

= - 2 cot 2 0 
r άθ 

or 
r sin 2 θ = const. 

Putting 

u = — 
r 

one obtains 
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Figure 2.21. A line vortex between two perpendicular planes. 

de2 
• + u = - 3 « , 

which implies that the radial acceleration of the vortex A is 3 Γ /Ϊ6π r and that 
the transverse acceleration is zero. Therefore, the vortex A moves as if it were 
under a repulsion from the origin, inversely proportional to r 3 . 

Example 4: Consider an infinite system of equal parallel rectilinear vortices 
each of strength Γ arranged along the x-axis at x = 0,±a,±2a,.... Then, the 

complex potential for the resulting flow is given by (see Section 2.2) 

Σ-τΐ Κ*-*.) = £ ln[(z) • {ζ2 -a2) · {z2 - 4 « 2 ) . . . ] 

= In 
2π 

πζ ( 
1 - -

Aa1 2π 

«Γ ( . πζ 
In s i n — 

2π ν a 
where we have used the result 

sin ζ 1 2 -2 

η π 

Now, recall that any particular vortex will move with the fluid so that the 
motion of any particular line vortex in the above row cannot take place in 
isolation and has to be induced by the other line vortices in the row. The complex 
potential at the mux line vortex due to all the others is 
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2κ „___ z=n 

The corresponding complex velocity at the mth line vortex is, then, given by 

H ^ ( z ) = - f t Τ Hz-na)\ = - ^ X _ L ^ = 0 , 
2n n = . _ dz z=™> 2n n=^(m-n)a 

so that all line vortices in the row are at rest. 

The streamlines for this flow are given by 

Γ 
V = - [ F ( Z ) - F ( z ) ] = - — In 

2i 4 π 
. πζ 

s i n — • sin 
πζ^ 

a ) 

= - ϋ . η 
4π 

π(ζ-ζ) π(ζ + ζ) 
cos cos 

In 
4 π 

, 2πν 2πχ 
cos η cos + — In 2 = const. 

4π 

Next, for the velocity components we obtain 

dy 

υ = -

_Γ_ 
2a 

sin /i 
27Cy 

, 2πν 2πχ 
cos h —— — cos 

a a 

sin 
2ja 

a (9Ψ = _T_ 

σ χ Δ α cosh—--cos 
a a 

Note that 

ν Γ 
I: u = + — for >< g 0 

α 2α 
1 3 η χ =—α,α, — α , . . . : υ = ϋ. 

2 2 
If, now, one places another row of vortices, which are similar, but of opposite 

sign, at the points 

± - a,b 
2 

± -a,b 
. 2 

a typical vortex of the new set has a velocity, induced by the first set, given by 
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u — — 2a 

sin ft 
2nb 

, 2m , 
cos Λ + 1 

a 

Γ , nb 
tan Λ — , 

2a a 

υ = 0. 

From symmetry considerations, the first set must have exactly the same velocity, 
so that the whole double row of vortices, called a Karman vortex sheet, moves 
with speed Γ/2α tan/i nb/a in the negative x-direction. Such a vortex sheet can 
be used to represent the wake behind a body moving slowly through a fluid.^ 

Vortex Ring 
In an axisymmetric flow with cylindrical polar coordinates (r, θ,ζ), the velocity 
field is given by 

v = ur{r,z,t) ir +uz{r,z,t) ί . (20) 

Thus streamlines lie in planes θ =const and the vorticity is given by SI = Ωίβ, 
where 

du. du. 
Ω = 

dz dr 
(21) 

In an axisymmetric flow, the vortex tubes are, therefore, ring-shaped around the 
axis of symmetry. During their motion with the fluid, the vortex rings will 
expand and contract about the axis of symmetry. However, since the fluid is 
incompressible, the volume of these rings must remain constant so that the 
vorticity Ω will be proportional to the length of the ring 2nr. In fact, for the 
present situation, equation (5b) becomes 

D (Ωλ 

Dt 
(22) 

V r ) 

Consider now an arbitrarily thin circular vortex filament. Upon introducing the 
axisymmetric stream function Ψ according to 

1 d*F 
U'~ r dz' 

u - I — 
r dr 

(23) 

one obtains, from (21), 

3 For the flow past a body such a cylinder, when the flow speed is small, the streamline pattern is 
essentially symmetrical both fore and aft of the cylinder, but as the flow speed increases, 
asymmetry of the flow develops. Eddies are observed to form in regions of separated flow attached 
to the downstream side of the cylinder. With further increase in the flow speed, these eddies detach 
from the cylinder and are carried downstream. The eddies are shed alternately from the top and 
bottom of the cylinder on its downstream side, which then give a chase to the cylinder and their 
pattern is closely simulated by the Karman vortex Sheet. Observations of Karman vortex sheet date 
back to several centuries - they are clearly visible in Lionardo da Vinci's sketches. 
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92Ψ 92Ψ 1 9Ψ 

dz dr r dr 

Outside the ring, one has an irrotational flow, so that equation (24) leads to 

<?>' d2Y \dY 

dz1 dr2 r dr 
= 0. 

Putting 

f = £r, Ψ' = χ'Γ, 

equations (24) and (25) lead to 
l 2 . . l 2 d χ d χ 1 dr χ 

—γ + —γ + — - - - γ + β = 0, 
dz dr r dr r 

<?V | d2x ^\dx χ = Q 

dz1 dr2 r dr r2 

(25) 

(26) 

(27) 

(28) 

which imply that χ cos 0 is the potential of a distribution of matter of density 
Ω cos 0/4 π which occupies the same region of space as the vortex ring. 

Then (see Figure 2.22) one obtains 

cos θ dQ „ τηΩσ 
χ cos 0 = — 

4π + r + r0 — 2rr0 cos 
(29) 

where σ is the cross section of the core of the ring, and rQ is the radius of the 

ring. 

Putting 

θ'-θ = ε, (30) 

(29) becomes 

I 0 

β ( / 0 , θ ' , ζ ' ) \ ^ 
θ ' 

Figure 2.22. A vortex ring. 

+ ΓΩ = 0. (24) 
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χ 0 Ο 5 θ = Ξ ^ \ cos a t e 
2 2 2 „ 

+ r + r 0 - 2 r r 0 cose 
|l/2 

So, from (26), one obtains 

σΩη, 

2 * ί [ ( ζ - ζ ' ) 

cos β/ε 
2 2 2 ™ 

+ r + r0 - 2rra cose 
,1/2 · 

Putting 

k = - 2("b) 
1/2 

1/2 

(31) becomes 

2τ? = ε, 

(rr 0 ) ' / 2 t ( 2 c o s 2 r j - l ) 

π * (l - * 2 cos 2 77) 

or 

where 

Ψ = σΩ Κ) 1/2 
Ϊ 2 1 2 

--* .U J 

*/2 

\'/2 

ir/2 

, E(k)= J ( l - * 2 cos 2 η)"2άη ο ( l -A: 2 cos 2 77)' ο 

are the elliptic integrals of first and second kinds. 

The streamline pattern for this flow is sketched in Figure 2.23. 

Noting that, on the surface of the ring, ζ ~ z, r - r0,k - 1, so that 

1/2 
M 2 ) 

E(*) = l + l ( l - * 2 ) 

: M 7 In 
( I - . 2 ) 1/2 - 1 

In 
Μ 2 ) 2y/2 2 

we obtain, from (34), for the velocity components 

Γ 
u = — 

Γ 
π 

2 r o 3 q 

a 4rn 

f . n ^ - 1 
^ α 2 

z - z 

2r0a 
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Axis of symmetry 

Figure 2.23. Streamline pattern near a vortex ring (from Batchelor, 1967). 

u = • 
2nr0 

( Κ λ 
In — £ - 1 , (37) 

V a J 

where a is the radius of the vortex core, and Γ=Γ0Ω. Note that at 

ζ = z \ ur = 0, so that radius of the ring remains unchanged. 

Thus, an isolated vortex ring in an unbounded ideal fluid will move without 
noticeable change of size in a direction perpendicular to its plane with a constant 
velocity. Equation (37) also shows that the axial speed is greater for small values 
of rQ. In order to illustrate the consequences of the latter, consider two similar 

vortex rings at same distance apart on a common axis of symmetry. The velocity 
field induced by the vortex ring in the rear has a radially outward component at the 
position of the vortex ring in the front so that the radius of the latter gradually 
increases. According to (37), this leads to a decrease in its speed of motion, and 
conversely, there is a corresponding increase in the speed of motion of the vortex 
ring in the rear, which subsequently passes through the larger vortex ring in the 
front and becomes the front vortex ring. This "leap-frogging" sequence keeps 
repeating itself. 
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Hill's Spherical Vortex 

Hill's spherical vortex corresponds to a flow configuration in which the vorticity 
is confined to the interior of a sphere of radius a, say. Here, the vortex lines are 
circles about an axis passing through the center of the sphere while the 
streamlines lie in meridional planes. The flow outside the sphere is irrotational. 

The equations of continuity and vorticity transport for a steady axisymmetric 
flow in cylindrical polar coordinates are 

. dM 
dr dz 

= 0, (38) 

3{uQ) [ 3{αΩ) q 

dr dz 
(39) 

from which we derive 

dr v. r j 
+ u 

zdz \ r J 
= 0 (22) 

or, in terms of a streamfunction Ψ, 

1 d*¥ d (Ω\ XdV d f Ω^ 

r dz dr \ r J r dr dz 

Equation (40) implies that 

\ r J 
= 0. 

r 

(40) 

(41) 

Using equation (41), equation (24) becomes in spherical polar coordinates 

( Λ , β , φ ) : 

d f 1 ΘΨ) 4_ d f ι dv' 

dR k sin θ dR j r de U2 
sine de J 

= / ? 2 s i n 6 3 / C P ) . (42) 

f< smtf dV J 

If / ( ψ ) = constant = A, putting 
Ψ =F(R) sin2 Θ, (43) 

then equation (42) gives 

R2F"-2F = AR\ (44) 

where primes denote differentiation with respect to the argument. Thus, 

F(R) = - + CR2+ — . (45) 
R 10 

Equations (43) and (44) describe the motion within a fixed sphere of radius a; i.e., 
the surface of this sphere is a material surface if Ψ is well-behaved for R<a, 
and the normal velocity of this flow vanishes at the boundary, i.e., if 
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1 9Ψ 

Using (43) and (45), (46) gives 

= 0 . 

C = — 
Ao. 

10 

Using (45), (46), and (47), (43) leads to 

R<a : Ψ = (a2-R2)R2sin2 θ. 
1 0 v ' 

(46) 

(47) 

(48) 

Figure 2.24 shows the streamlines in the meridian plane. The vortex lines are 
circles perpendicular to the axis of symmetry. 

If such a vortex is immersed in an irrotational flow of a fluid with a uniform 
speed then one obtains a uniformly translating spherical vortex: 

R < a : ψ = -—(a2-R2)R2 sin2 Θ, 
10 v ; 

Figure 2.24. Streamline pattern in Hill's vortex. 

B = 0 
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Vortex Sheet 

Surfaces on which the vorticity is infinite and the tangential component of the 
velocity field is discontinuous are not only kinematically possible but also can 
exist in the limit of vanishing viscosity as long as the discontinuities are 
consistent with the integral forms of the Euler equations of flow. 

An example of a surface concentration of vorticity is the flow field behind an 
airplane wing (see Section 2.7). Let 

lim [Ωάη = Γ= const., (51) 
e=>0 J 

ε 

where η is the distance normal to the sheet and the integral is over some small 
range ε containing the surface. Using (51), (19) gives 

4n \ r ~ r I 
For a single plane sheet of uniform vorticity, (52) becomes 

4π 

or 

/ ^ r -
v(r) = — χ π 

4π 

tn(r-r') . 

5 \ r ~ r I 
= - Γ χ η , (53) 

2 

where η is the unit normal to the sheet directed to the side on which the point r 
lies. Thus, the fluid velocity produced by the vortex sheet is uniform and parallel 
to the sheet on each side, but in opposite direction on the two sides. 6 

Note that even if Γ is not constant, and the sheet were not plane, one has, 
from (52), the following equation for the local jump across the sheet in the 
induced flow velocity: 

[υ] = Γ χ ή . (54) 

Consider next a vortex sheet in the form of a cylinder of arbitrary cross 
section, over which Γ defined in (51) is uniform and Γ is everywhere at right 
angles to the generators of the cylinder (so that the vortex lines are plane curves, 
all of the same shape, passing round the cylinder). Equation (52), then, gives 

r i } [ r ~ r ' ) x d e { r ' ) , λ 

4π I r - r 

The application of integral form of Euler's equation to an element of the vortex sheet shows that 
the pressure as well as the normal component of the velocity field are continuous across the vortex 
sheet. 
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Figure 2.25. Sectional view of a cylindrical vortex sheet (from Batchelor, 1967). 

where ds(r') is an element of length of a generator and dt{r') a vector element 

of length of a vortex line (Figure 2.25). The component of (r - r') parallel to the 

generators makes no contribution to the integral with respect to s so that (55a) 
becomes 

Γ „ tpxdeir') 
v(r) = V A- - i - i , (55b) 

2/r J

c p2 

where ρ is the projection of ( r - r ' ) on a cross-sectional plane. | ρ x d€ (r')\J p1 

is the angle subtended at r by dt in this cross-sectional plane so that, at any 
point r within the cylinder, υ is parallel to the generators and has a uniform 
magnitude Γ, while at any point r outside the cylinder υ is zero. 

Example 5: Consider η equal rectlinear vortex filaments arranged 
symmetrically as the generators of a circular cylinder of radius a. For the complex 
potential of this flow, one has 

F(z) = f £ l n ( z - « - ) = f in f l ( z - a e ^ ) = f h fV- e - ) . 
The stream function Ψ of this flow is, then, given by 

2 / f = F-F 

or 

e4"*'r =z"z"-a" (zn +Γ) + α2η = r 2 " - 2 a V cosnf? + a 2 " = const. 

The velocity components are, further, given by 
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1 9Ψ 
u, = 

- r , i a V ~ ' s inn0 

r dQ 2n(r2n-2a"r" cosnG + a2")' 

3ψ ΓΠ(Γ2"-1 -a"r"-lcosne) 

~~dr~~ 2π (r2n - 2a V cos ηθ + a2")' 

For η i> 1 and r > a, these give 

Γη 
ur = 0, ue « ; 

and for π > 1 and r < a, these give 

ι ι , - Ο , M e = 0 . 

One obtains a cylindrical vortex sheet by letting η => «> and keeping 
η Γ = constant. Outside this sheet, therefore, the fluid moves as if all the vorticity 
were concentrated along its own axis; inside the sheet the fluid is stagnant. 

The Vortex Breakdown: Brooke Benjamin's Theory 

Vortex breakdown refers to major structural changes undergone by a concentrated 
vortex core embedded in a decelerating irrotational flow. Typically, this involves 
the formation of an internal stagnation point on the vortex axis, followed by a 
localized reversed axial flow. Downstream of the breakdown region, a new vortex 
structure with an expanded core develops. As a model of the vortex breakdown 
process consider an otherwise cylindrical vortex, embedded in a decelerating 
irrotational flow, that passes through a region of noncylindrical flow; at some 
distance downstream, the cylindrical state (i.e., no variations in the flow 
properties along the axis) prevails again. Initially, one has 

r < a: uz = Ui, ue = ω r, 

ωα2 

r>a: « t = l / „ « , = — , ( 5 6 a ) 

and finally one has 

r>b: uz=U2, u e = ^ - . (56b) 

In the theoretical models the principal mechanism underlying the vortex 
breakdown process are assumed to exist in axisymmetric flow conditions (this is, 
however, known now to be inaccurate). Note that, for an axisymmetric flow, the 
vorticity components are given by 

β = , 5 Κ ) ω = _ 9 ^ Ω β = ^ _ ^ ( 5 7 ) 

r dr dz dz dr 

while the velocity components are given by 
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1 9Ψ 1 3Ψ 

r dr ' 

Using (23), (57) leads to 

( !>2 9ιΨ +(ΓΨ__^9Ψ_ 

ιιΩβ - Μ β β = 

<9ζ r dr J 

Next, the equations of motion give, for a steady axisymmetric flow, 

dH_ 

dz ' 

dr ' 

where 

From equations (57) and (61), one obtains 

D 

Dt 
K ) = o. 

which implies that 

When one uses (63), (57) gives 

Ω =M. 
dC 

When one uses (64), (59) gives 

C dC dH 

rL r άΨ άΨ 

When one uses (65), (58) gives 

32Ψ 32Ψ 1 ΘΨ 2dH 

dz1 dr2 r dr άΨ άψ' 

(23) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

The functions Η and C are arbitrary and must be prescribed to suit a given 
flow. They can be determined uniquely by the flow properties on open streamlines 
extending to upstream infinity where the flow properties are uniform along the 
axis. The functional forms so determined will then apply to all regions of the 
flow permeated by these streamlines. At upstream infinity, one has, on using 
(63), 



Vortex Flows 9 3 

1 dp _ u\ _ C2 

ρ dr r r3 
(67) 

Using (67), one obtains 

HW^-U+ul+uiy^dr 
2 r 

or 

2 r dr 

σ dc 
(68) 

If the flow far upstream has an axial velocity i/, and rotates as a rigid body with 
angular velocity ω, then one has 

Ψ = - υ / , C = <or2. (69) 

When one uses (69), (68) becomes 

Η(Ψ) = - U2+w2r2. (70) 

When one uses (69) and (70), the upstream conditions may be alternately 
written as 

€(ψ) = ^-Ψ, Η(Ψ) = - υ 2

+ — Ψ . 
υ, 

(71) 

When one uses (71), (66) becomes 

92Ψ 32Ψ 1 9Ψ 2ω2

 2 4α>2 

dz2 dr2 r dr U, 
r -- Ψ 

U 
(72) 

which is linear! 

When one uses 

equation (72) leads to 

Ψ(ζ^) = -υ/+ΓΡ(ζ,ή, 
2 

d2F d2F 1 dF ( 

dz2 dr2 r dr + + 
1 ^ 

k2-
\ r J 

F = 0, 

where 

(73) 

(74) 

When one uses the boundary condition (56b), (73) leads to 
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r = b: F = -U, (75) 

From equations (74) and (75), one obtains 

F - Λ η 
'a1 

- 1 
bJ{{kr) 

Jt(kb) ' 

where J„(x) is Bessel's function of order n. 

When one uses (73) and (76), (23) gives 

2 
2 

from which 

ut=Ui+-Ut 

'a2 

- 1 
kbJ0{kr) 

Jt(kb) ' J J \ 

(76) 

(77) 

f \ 
u 

, = 0 

1 + 
( a 2 ^ 

- r - 1 
-kb 

J,{kb) 
(78) 

= 1 + τ — Ι 

kbJ0(kb) 

J,(kb) 
(79) 

^ 2 Λ. 

Figure 2.26. Variation of the axial velocity in the vortex core with the radius of 
the vortex Filament (from Batchelor, 1967). 
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Equation (78) shows that a change in the axial velocity in the irrotational flow 
surrounding a vortex produces significant changes (see Figure 2.26) in the 
structure of the vortex (particularly, when the external fluid is decelerated). 

Figure 2.27 shows the way in which kb varies with ί / , / ί / 2 ( > 1) for a given 

value ka [ 0 < ka < 2 ,4 , the first zero of J0{x)] according to (79). One observes 

that the increased thickening of the vortex due to deceleration of the external 

stream becomes catastrophic at a critical value ( t / 2 / t / , ) of ( t / 2 / t / , ) - an event 

identified to be the vortex breakdown. 

Figure 2.27 predicts the possibility of a finite transition from a state on the 
lower part to a state on the upper part. Indeed, Brooke Benjamin proposed that the 
vortex breakdown be viewed as such a finite transition between dynamically 
conjugate states of axisymmetric flow. The transition is from a supercritical flow, 
which cannot support standing waves, to a subcritical flow, which can. In support 
of Brooke Benjamin's proposal were Harvey's experimental results that 

* the breakdown can be made axisymmetric, whereas the original flow is of a 
kind that is highly stable to axisymmetric disturbances; 

* the breakdown can then comprise an abrupt expansion of the stream surfaces 
near the axis; 

* the above configuration can be made approximately steady. 

Typically, the transitional breakdown region occupies a small length so that 
the oncoming and emerging regions may be thought of as joined by a sudden 
jump. The jump conditions connecting these two regions follow from the 
continuity of the fluxes of mass and momentum: 

Uxa = U,b2 (80) 

kb 

2.4 

0 

Figure 2.27. Variation of the size of the vortex with the axial flow (from 
Batchelor, 1967). 
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from which we obtain 

(82) 

The energy fluxes on both sides of the transition are not the same, and their 
difference is the amount of energy dissipated in the transition. Thus, 

a b 

άε=2ηρ ^UiHlrdr-2np $U2H2rdr (83a) 

or 

where 

2QQ2 

4a2b2 

ι 2 2 

b +b a Vba +a (b-a), (83b) 

H = ?- + -(U2 +ul), Q = napUx 

ρ 2 

and it is easy to verify that 

b a 
b*+b

ia- — + bai+at>0. 
3 

Then, Δε > 0 implies 

b > a. (84) 

Therefore, in such a transition the vortex always expands. 
Next, from equation (77), it is seen that there is a maximum value for b/a 

only below which it is possible to preserve axisymmetry in the flow downstream 
of the transition. From equation (74), it is seen that the presence of a wavemotion 
downstream of the transition increases this maximum value of b/a. In other 
words, a wavemotion promotes the possibility of axisymmetric flow downstream 
of the transition. 

E X E R C I S E S 

1. Find the velocity induced on the axis of a vortex ring. 

a b 

2n j(Pl + pU2 + pul) rdr = In \{p2 + pU\ + pu\)rdr, (81) 
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2. Find the motion of the line vortices of equal and opposite strengths ±Γ 
located at z = ±a. 

3. Consider a two-dimensional incompressible flow bounded by perpendicular 
rigid walls ΟΧ,ΟΥ, with a line vortex of strength Γ at a point (x,y) in the 
fluid. Show that this line vortex moves along a path given by 

The dominance of Coriolis forces in a rotating flow can lead to interesting 
consequences. One example is when the flow is steady relative to the rotating 
axes; there occurs a strong tendency in the flow toward two-dimensionality. In 
general, rotation imparts some kind of rigidity to the flow. Rotation also confers 
a certain elasticity on the fluid that makes possible the propagation of waves in a 
rotating fluid. 

Governing Equations and Elementary Results 

When the motion of a uniformly rotating fluid is referred to a frame of reference 
that rotates with the fluid, the equation of motion of the fluid is changed only by 
the addition of an apparent body force, 

— + - V ( v v ) + ( V x v ) x v + 2f tx t> + ftx(ilxr) = - - Vp, (1) 
dt 2 ρ 

where SI is the angular velocity of the fluid. 

The centrifugal force Ω Χ ( Ω Χ Γ ) plays a significant role only when the 
density ρ is nonuniform. On the other hand, if ρ is uniform, the centrifugal 
force is conservative and is equivalent to an effective radial pressure gradient and 
may be transformed away by incorporating this effective pressure in the actual 
pressure. 

Thus, when we put 

2 , 2 „ 2 2 

x +y ~Cx y . 

2.5. Rotating Flows 

P = - p-~\Slxr\2 , 
pi 2 

(2) 

equation (1) becomes 

dv 1 
— + - V ( v v ) + ( V x v ) x v + 2 i l x v = - V P , (3) 

so that the effects of rotation are contained only in the term 2SI χ υ , called the 
Coriolis force. The Coriolis force does no work on the fluid but serves only to 
change the direction of velocity of the latter. 
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Taylor-Proudman Theorem 

If equation (3) is written in a dimensionless form by introducing reference 
lenght and velocity scales L and U, one finds that the following dimensionless 
parameter, called by Rossby number, 

U 
K= — < (4) 

QL 

occurs. The Rossby number measures the importance of the nonlinear convective 
acceleration term relative to the Coriolis term. For small Rossby number flows 
(like the steady large-scale circulations of the oceans and atmospheres) the inertia 
forces are negligible, and equation (3) reduces to a balance between the Coriolis 
term and the pressure-gradient term: 

2 f t x v = - V p . (5) 

This is called the geostrophic approximation Ρ 

Taking the curl of equation (5), one obtains 

- ( 2 i l - V ) w = 0. (6) 

Thus, the velocity components of such a flow do not vary in the direction of the 
angular velocity. This leads to the Taylor-Proudman Theorem: 

THEOREM: All steady, slow motions in a rotating inviscid fluid are very nearly 
two-dimensional. 

In fact, experimentally, if a solid cylinder of finite height and horizontal ends 
is towed steadily and horizontally in a fluid rotating about the vertical axis, then a 
fluid column coaxial with the solid cylinder is found to move along with the 
latter. This is due to the fact that when the lateral velocity is made to vanish at a 
point along the direction of the angular velocity by a small obstruction, this 
velocity will vanish at all points along the direction of the angular velocity. The 
fluid will, then, flow two-dimensionally around this so-called Taylor column.** 

If we take the angular velocity i i to be along the z-di rec t ion, say 
i\ = (f/z) i z , and include a body force - V 0 , (<p = gz), due to gravity, then, 
equation (5) gives 

- ^ - / υ = 0 , (7) 
ρ dx 

'Geostrophic flows are governed by equation (5), which is mathematically degenerate, being of 
lower order than the complete equation of motion, namely, equation (3), and consequently 
incapable of solution under all the necessary initial/boundary conditions. Therefore, boundary 
layers characterized by highly nongeostrophic flows necessarily appear in geostrophic flows. 
^Taylor demonstrated this dramatically moving a rather short cylinder, standing on end, slowly 
across the bottom of a rotating slab of water and coloring matter appropriately introduced into the 
water. The streamlines were then observed to flow discretely around the column of water directly 
above the cylinder - apparently almost as if this column is impenetrable (see Figure 2.28). 
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Figure 2.28. "Taylor column" experimental arrangement. 

1 dp 
- — + fu = 0, (8) 
Ρ dy 
1 dp 

-~£ + g = 0. (9) 
ρ dz 

Equation (9) is simply the hydrostatic approximation, while equations (7) and (8) 
can be combined to give 

dp dp 
u — +v— = 0. (10) 

dx dy 

Equation (10) shows that the horizontal streamlines of a steady geostrophic flow 
are perpendicular to the (horizontal) pressure gradient or are along the isobars. 

On the other hand, elimination of ρ from equations (7) and (8) gives 

du dv 

which shows that the strong Coriolis forces oppose any nonsolenoidal flow in a 
lateral plane. 

Propagation of Waves in a Rotating Fluid 

Thanks to a certain elasticity conferred on a fluid by rotation, a restoring 
mechanism becomes available in the fluid to sustain the propagation of waves. 
This restoring force arises from the tendency of the Coriolis forces to oppose any 
lack of solenoidal flow in the lateral plane associated with perturbations on a 
rigid-body rotation. 

One has 
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<?υ. dvt dP „ 
—'- + υ. — '- = + 2ε .ν Ω., 
Α ' dx dx: "k ' k 

dx. 
= 0. 

Seeking solutions of the form 

e 

equations (12) and (13) give 

inu, + ikjvjvi =-ikP+2eijkvpk, 

* , υ , · = 0 . 

Multiplying equation (15) by υ , i2 ; , one obtains 

nv2 = 0 , 

ηνίΩί+Pkp,= 0. 

When we let 

Ά = (Ωχ,0,Ω:), A: = ( 0 , 0 , * ) , 

(16) gives 

kvz = 0 or « ; ξ 0 . 

When we use (20) and (21), equations (17H19) become 

n(v2

x + v2

y) = 0, 

2iΩxvy=kP, 

ηΩ.ν = - * / > β , 

from which 

υ = 0 

or 
η = ±2Ωζ. 

When we use (25), equations (22)-<24) give 
ν =±iv , 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

which implies that the waves are transverse, and circularly polarized. 

(12) 
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Plane Inertial Flows 
Having just seen that small disturbances in a uniformly rotating, incompressible 
fluid can propagate as wavemotions, let us now go on to study some special 
features of wave propagation in a rotating fluid. For the linearized motion in a 
rotating fluid, one has 

V v = 0 , (27) 

— + 2 i l x w = - V p . (28) 
dt 

When we look plane wave solutions of the form 

} (29) 
p = Pei(k*-°'\\ 

equation (27) gives 

V-* = 0 ; (30) 

i.e., the velocity is perpendicular to the propagation direction and the waves are 
transverse. This is the only possible type of motion in an incompressible fluid. 
Equation (28) gives 

- / ' ω ν · υ = 0. (31) 

When we put 

v=a + ib, (32) 

equation (31), in turn, gives 

a =b2 and ab = Q, (33) 

which implies that the waves are circularly polarized and that a, b, k form an 
orthogonal triad. 

Equation (22) also lends to the following dispersion relation: 

σ = ± 2 Ω · ΐ ί , (34) 
where 

1*1 
The phase velocity of the wave moving in the direction k is 

C=2 k. (35) 
' 1 * 1 

Equation (35) implies that the phase speed is inversely proportional to the 
magnitude of the wave vector and that the waves are, in general, dispersive and 
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The phase velocity is 

and the group velocity is 

' ft* Λ 

± 2 — + U k 
*l 

k , (39) 

Cg = ± j - ^ j * x ( f t x * ] + t / . (40) 

Note that the frequency is corrected for a Doppler shift, and the wavespeeds are 
augmented by the free-stream convection. 

Suppose U were in a direction opposite to that of ft. Then, energy can be 
transmitted upstream, against the streaming flow if Cg ft > 0, i.e., if 

— Γί22-ίίΙ·*)Ί><7. 
kQl v -I 

anisotropic. The long waves (small |A:|) travel fastest and the short waves 

slowest, like the surface waves on water (see Section 2.6). 

The group velocity of the waves is the velocity of energy propagation and is 
given by 

C =V.fj(Jfc) = — ft-2 — it (36a) 
1*1 1*1 

or 

C = — Jfcx(ftxfc), (36b) 
1 1*1 1 j 

which shows that the energy transport is at right angles to the phase velocity. 

When σ ~ ft k ~ 0, the phase velocity C is zero; however, there is a steady 
propagation of wave energy along the axis of rotation with a group velocity 
Cg = 2f t / | k I. This leads to the formation of Taylor columns in a rotating fluid. 

Consider now wave propagation in a flow field which otherwise has a rigid 
rotation with angular velocity ft and a uniform streaming motion with velocity 
U. For linearized wave motion in this flow field, one has 

V v = 0 , (27) 

dv 
— + t / V v + 2f tx i> = -V/>. (37) 
dt 

Looking for plane wave solution of the form (29), we note that equation (37) 
gives 

a = ±2Slk + Uk. (38) 
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Thus, waves with wavenumber k can propagate against the streaming flow if 
U < 2Q/k. 

Forced Wavemotion in a Rotating Fluid 
Consideration of forced wavemotion in a rotating fluid shows that the equation 
governing the waves is elliptic, parabolic, or hyperbolic, depending on whether 
the frequency of forcing oscillation (O is greater than, equal to, or less than twice 
the angular velocity Ω of the fluid. Further, in the hyperbolic case, there exist 
real characteristic surfaces in the flow (similar to the Mach cones in gas 
dynamics, see Chapter 3) across which the disturbances become discontinuous. 
The experiments have confirmed the predicted dependence of the apex angle of the 
cone on the forcing frequency. We will give here a linearized calculation of the 
motion induced by an oscillatory point source in a rotating incompressible, 
inviscid fluid. (Since the flow velocities near the source are large, the linearization 
of the equations governing the flow is valid only at distances far away from the 
source.) The solutions in the elliptic and hyperbolic cases are obtained using the 
Fourier-transform method. In the hyperbolic case, an appropriate radiation 
condition has to be imposed to find the correct solution. We will find that in the 
elliptic case, the flow is continuous everywhere; in the hyperbolic case, a cone 
with vertex at the source and axis along the axis of rotation becomes a surface of 
discontinuity dividing the flow into three separate regions with different 
characteristic features. 

Consider the motion induced by an oscillatory point source of strength p0qe,a" 
and placed at the origin in an inviscid, incompressible fluid rotating with a 
constant angular velocity about the ^-direction through the origin. The linearized 
equations for this flow, when referred to a frame rotating with the fluid, are 

du' dv' dw' „ , . „ . . „ , . 
— + — + — = ηειω,δ(χ)δ{γ)δ(ζ), (41) 
dx dy dz 

du' dP' 
~T = ^~' ( 4 2 ) 

dt dx 

Μ „ ~ . dP' 
2flw' = , (43) 

dt dz 
dw' _ , dP' 

+ 2Ων = , (44) 
dt dy 

where 

The primes denote the disturbances, the subscript 0 refers to the basic state of the 
fluid, and for the latter we obtain 
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- ^ y = - % , 

-Ω 2 ζ = -

dy 

dz 

Using equations (41M44), one obtains 

dt2 dt2 [dy dz 

Using equations (43) and (44), one has 

= -ia>3qeia'S{x)S(y)S(z). 

d2 dw' dv'] _ d (dv' dw' 
= -2Ω — + dt2 

, dy dzj dt [dy dz) 

which, on using equations (41) and (42), becomes 
•>2 ( 

dt' 

dw' dv 

~~dy~~~dz ) 
= -2Ωίω qeia'5{x) δ(γ)δ(ζ) + 2Ω 

d2P' 

dx2 

Using equation (47), equation (46) becomes 

V2/>' + 4Ω2 - ^ 4 " = ίω(4Ω2 - ω2) qeim5{x) 5{y) δ(ζ). 
dt dx 

Upon Fourier-transforming, according to 

F(e,m,n) = — l — j J )e(txm)f{x,y,z,t) dxdydz, 
(2πγ>2 _ 

equation (52) gives, on inversion, 

ί ^ ω ( 4 β 2 - ω 2 ) 
P' = 

8 * 3 ί ί ί - t 2 ( * Ω 2 - ω 2 ) + ω2 (m2 + n2) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

We shall evaluate the integral in (50) by first performing the ^-integration by 
the method of residues, and then, the m,n integrations by changing the variables. 
Two cases are distinguished: 

Β2 = ω2 - 4Ω2 > 0 : elliptic case 

Β2 = 4Ω2 - co2 >0 : hyperbolic case. 

The Elliptic Case 

The poles of the integrand in (50) now occur at, 
icos 

£ = ± 
B, 

(51) 

(52) 

where 
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2 _ 2 2 

s = m + η . 
For j c > 0 , the path of £-integration along the Re(£)-axis is closed by a 

large semicircle in the upper-half of the ^-plane. The contribution to the integral 
in (50) then comes from the positive values in (52), and one obtains 

p , = _We ( n e - ^ l ^ y ^ d m d n ( 5 3 ) 

8 π 2 £ £ ί 

When we change the variables according to 

* = rcosr?, y = r sin0 cos0, ζ = r sin θ sin 0,1 

m = s cos ψ, n = isinv/, J 
(54) 

(53) becomes 

P' = -
8 π 2 

= _*2fi£!l Jie—rcerf/̂  / ο ( Γ 8 ί η θ . , ) , Λ > ( 5 5 ) 

where is the Bessel function of order υ . Upon carrying out the integration 

in (55) further, one obtains 

Ρ = f-^J . (56) 
A K r ^ O ) 2 - 4 f l 2 s i n 2 θ 

Equation (56) shows that the flow is continuous everywhere. 

The Hyperbolic Case 

The poles of the integrand in (50) now occur at 

(OS 

e = ± — . (57) 

For χ > 0 , the path of £-integration along the Re (f)-axis is closed again by 
a large semicircle in the upper half of the €-plane. In order to determine which of 
the two poles in (57) contributes to the integral in (50), one imposes an 
appropriate radiation condition by giving ω a small negative imaginary part 
- ι ' ε ( ε = > 0 + ) . (This is equivalent to posing a more realistic initial-value 

problem, rather than a steady-wave problem as in the foregoing, with the applied 
steady source being switched-on at time t = 0.) The contribution to the integral 
in (50), then, comes from the negative value in (57), and one obtains, upon 
changing the variables, according to (54), 
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s ώάψ 

(58) 

> sin Θ, 
2Ω 4 π τ Λ / ω 2 - 4 Ω 2 sin2 θ ' 

qB]e" 
(59) 

4 π τ Λ / 4 Ω 2 5 ί η 2 θ - ω 2 ' 

ω 
— <si 
2Ω 

Equation (59) shows that the pressure becomes infinity on the cone 
0)/2Ω = sin θ with vertex at the source and axis along the axis of rotation which 
is a surface of discontinuity in the flow dividing the latter into three separate 
regions with different characteristic features. Observe that the solution inside the 
cone resembles that of the elliptic case. The adjustment of the flow from inside 
the cone to the outside is made through thin viscous shear layers about the surface 
of the cone. 

Note that when ω = 2Ω the pressure vanishes everywhere except on the cone 
of discontinuity, which now becomes a plane through the source and 
perpendicular to the axis of rotation. 

Slow Motion Along the Axis of Rotation 

Let us consider a simple case of transient evolution of inertial waves to illustrate 
the process by which these waves organize to form a Taylor column ahead of the 
body producing the waves. Specifically, consider a finite disk of radius r 0 that is 

initially rotating rigidly with an infinite body of fluid. The disk is then moved 
slowly perpendicular to itself along the axis of rotation. Since only the projected 
shape of a body on a plane perpendicular to the axis of rotation is important as far 
as steady longitudinal motion of the body is concerned, it appears that a body of 
any shape in slow forward motion is related to a disk of the same projected cross-
sectional area. 

The linearized problem for the slow forward motion of the disk in a rotating 
frame of cylindrical coordinates with the z-axis along the axis of rotation is 
governed by 

(60) 

(61) 

with 
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f > 0 : vk = U on r<r0,z = 0\ 

ν => 0 as I r I => oo 

f < 0 : v s O . 

(62) 

(63) 

We shall apply the Laplace and Hankel transforms consecutively to reduce the 
above partial differential equation to ordinary differential equations with ζ as the 
independent variable. If (ur,ug,uz) denote the velocity components along the 
(r, θ,ζ)-directions, let us first introduce a stream function ψ, through 

I dw 1 dw 
ur= , uz = , 

r dz r dr 
(64) 

so that equation (60) is identically satisfied. Upon Laplace transforming, 
according to 

equation (61) leads to 

d 1 dw 
r — + 

dr r dr 
1 + -

4 Λ 2 Λ d2\jf 

dz' 
= 0, 

with (62) giving 

Z = 0, r<r0: jr-—. 
r or s 

z = > « : i/7 0. 

One solves equation (66) by applying the Hankel transform to obtain 

W = r]A{k)J,{kr)e-kMl^r]7dk. 
ο 

Then, (67) gives 

r<r0: J kA(k)J0{kr)dk = - - , 

r > r0: jkA(k)Jl{kr)dk = 0, 

from which we have 

*A(*) = H 
KS 

When one uses (70), (68) leads to 

cos k -
sink 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 
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_ lUr rJ\Kr)l sinfc 1 -(faVU'+tav*' ι 
ψ= l v ' \ cosft \--e n 'dk, (71) 

π I k V k j s 

and equation (60) gives 

-<b)/(̂ 5V7) 
ua = 17, (kr) • I cos £ -

4 T / I 2 7 . , ( . SIRUT Î E 

ο s2^|ϊ+4ΩΎJs2 

dk. (72) 

Let us now find an asymptotic approximation for large /. In inverting the Laplace 
transform, note that there is a simple pole at s = 0 and two branch points at 
s = ± 2ίΩ, and a branch cut is introduced between the latter. Further, the 
condition that a certain minimum time must elapse before waves of a given 
wavenumber arrive at a given location on the axis of rotation implies that one 
requires 

' > — • (73) 
C 

s 
where 

_ 2Ω 
C g ~ T ' 

is the group velocity of plane waves of wavenumber k whose phase velocity is in 
a direction perpendicular to the axis of rotation; the group velocity is, therefore, 
along the latter direction. Thus, inversion of (71) and (72) leads to 

Ψ 
π 

2Ur 2"c/z J,{kr) ( . smk\ 
cos k - -

V k 

J J^kr) (cosk-
2ΌΩ 2T. ,. J . S I N I O 

dk, (74) 

dk. (75) 

In the frame of reference moving with the disk, the stream function is 

Ψ = - Ur2 + ψ (76) 
2 

and u9 is unchanged. Figure 2.29 shows the instantaneous streamlines Ψ about 

the disk. Observe the appearance of a stagnation point in the flow, the broad bluff 
front, and the reverse cellular flow behind it. This is similar to the flow about an 
imaginary obstacle of the same projected cross-sectional area as the disk, but of a 
constantly increasing dimension along the axis of rotation, and represents, of 
course, the formation and development of a Taylor column. Note that the latter 
cannot form if the waves are convected downstream by a stream flowing with a 
speed exceeding their group velocities. 
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ζ 
2iitra 

Figure 2.29. Instantaneous streamline pattern about a rotating disk moving 
slowly perpendicular to itself along the axis of rotation (from Greenspan, 1968). 

Figure 2.30 shows the variation of the azimuthal velocity ue with r for 
different values of 2Qtr0/z- Observe the formation of a velocity discontinuity 
across the cylinder circumscribing the disk, with the generators parallel to the axis 
of rotation. This implies simply the existence of a thin viscous shear layer there. 
In this layer, the Taylor-Proudman Theorem does not apply, and there is, in fact, 
some interchange of fluid between the interior and the exterior of the Taylor 
column. 

Figure 2.30. Variation of the azimuthal velocity with radius for different values 
of 2Qtr0/z (from Greenspan, 1968). 
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ω = — : — L - l z s . ^ ( 8 0 ) 

R sinr? 

and one obtains, from equations (77) and (78), 

9 l t turns out. essentially because of the density stratification, no matter how small, and because the 
layer is thin, that the geophysical flows normally have a horizontal scale that is large compared with 
the vertical scale and have velocity vectors that are nearly horizontal, and in such cases the vertical 
component alone of the angular velocity i l influences the motion. 

Rossby Waves 

Rossby waves occur in oceans and atmospheres and are transverse waves 
propagating in a plane perpendicular to the earth's angular velocity ft. Rossby 
waves arises due to the variation of the vertical component of ft with latitude, 
i.e., dQjdy*0. If one assumes that dQJdy = constant * 0 , this 
approximation simulates, in the tangent plane, the first-order effect of the 
planet's curvature and supplies a steady gradient of planetary vorticity Ωζ along a 
meridian. The law of vorticity conservation, then, implies that a displaced fluid 
element is subjected to a restoring torque. 

In order to study large-scale motions in a layer of fluid on a rotating globe, 
one makes further the following assumptions: 

* The upper boundary of the layer of fluid remains spherical. 

* The bulk motion of the fluid is nearly horizontal, and is uniform across the 
layer.9 

Thus the equations of motion in spherical polar coordinates are 

Dt R PR 9Θ 

Dva υ . υ cotf9 1 dp 
S- 2-2 + fvg= , (78) 

Dt R pR sin θ dtp 
where / i s the vertical component of the angular velocity ft, 

/ = 2 i 2 c o s 0 , (79) 

the complementary latitude angle θ is measured from the north pole, 

D _ d ι υ · d ι V * — 
Dt dt R d6 R sin θ dtp 

and Ρ is the effective pressure that includes the centrifugal force arising from 
rotation of the coordinate system [see (2)]. Equation (79) expresses the fact that 
the angular velocity ft of the rotating sphere makes different angles with the 
vertical at different latitudes. 

The radial component of the vorticity of the motion of the fluid relative to the 
globe is 
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^ = _ J W 1 ffo.sinfl) | 9 υ 9 \ 
Dt R άθ R sin θ \ 9Θ 3φ J 

Now, from the conservation of mass, one has 

1 

R sin θ 

d(ve s i n e ) t dv9 

de dtp 

1 DH 

Η Dt ' 

(81) 

(82) 

where Η is the thickness of the layer. We consider here flows with a horizontal 
characteristic length L large compared with the layer thickness H. 

Using equation (81), equation (82) gives 

D ff + ω" 

Dt 
= 0 (83) 

Η 

According to equation (83), the absolute vorticity of each individual column of 
fluid changes whenever the latter moves to a place where the height of the fluid 
column is different. Equation (83) also implies that a fluid column of constant 
height will experience a decreasing (increasing) cyclonic rotation when displaced 
towards higher (lower) latitudes, where the cyclonic vertical component of the 
earth's angular velocity is stronger (weaker). 

Localized motions, near the latitude θ = θ0, say, whose scale is relatively 
small compared with the earth's radius, may be modeled by a plane layer flow. 
Thus, we have a plane horizontal layer of fluid rotating about a vertical axis with 
angular velocity equal to the vertical component / = 2Ω s i n 0 o of the earth's 
angular velocity. Introducing 

χ = R sin θ φ, the eastward coordinate Ί 
/ χ ( 8 4 > y = R (θ - θ0), the northward coordinate, I 

one has, for the material derivative, 

D d d d 
— - — + u — + υ —. 
Dt dt dx dy 

One may improve upon this approximation by including the variation of the 
vertical component / o f the earth's angular velocity i l with latitude. Thus, one 
may write 

/ = / „ + £ > , (85) 

where 

β_2Ω Βίηθ0 

R 
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Thus, the flow field may now be regarded as occurring in a plane layer with a 
normal rotation vector /whose magnitude varies linearly in the y-direction. This 
is called the β-plane approximation. 

Let us demonstrate the existence of Rossby waves in a plane layer of fluid of 
uniform thickness, and with / varying linearly. For such a wave in a fluid 
otherwise at rest, we have for the stream function 

ψ - e'1***'*. (86) 

The concomitant relative vorticity is 

co = -V2w = (k2 +£2)ψ. (87) 

Then, the invariance of the absolute vorticity of a material element set forth by 
equation (83) leads to 

dx dy 1 ; dt 

from which 

• + ( k 2 + i 2 ) ^ - = i w ^ k - a(k2 + i 2 ) ] = 0, (88) 

fik 
σ = —Γ—ϊ- (89) 

k2 + i 2 

These are transverse waves, for which the fluid velocity is everywhere at right 
angles to the wave vector (k,£). Rossby waves propagate toward west, opposite 
to the direction of earth's rotation, and have far lower frequency than that of the 
inertial waves for which σ > 2Ω [see (38)]. 

Let us now consider the Rossby wave generation in a setting that includes in 
the basic state a horizontal flow perpendicular to the planetary vorticity gradient. 
Such a situation arises in the atmosphere when zonal winds move past a 
topographical obstale. Thus, consider next the steady flow over a ridge in the 
form of a step along a north-south line at jc = 0 (Figure 2.31). Let the oncoming 
stream have a uniform velocity U0 along the x-direction and zero relative 

vorticity. Thus, from the conservation of mass and absolute vorticity, one has 
over the ridge, 

Figure 2.31. Streamline pattern for steady flow over a ridge in the form a step 
along the north-south line at χ = 0 (from Batchelor, 1967). 
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Η, 

1 1 3 

•ι " ο 

Now, at χ = 0 , one has for the stream function Ψ = U.y, so from (90) one 
has 

/ + ω = — L 

Thus, in the region χ > 0 , one has 

f + — f 
y i J 

or 

where 

V 2 T = / o 
\ H o J 

ρ2 = Ά 

/ o + — Ψ 

+βν-ρψ. 

When we put 

f = 

equation (93) leads to 

β) 
F{*) + \fo 

\ Ho J 

^ F 

dx1 

+ p2F = 0. 

The boundary conditions are 

jc = 0: F + -^r = U„ — = 0. 
ρ 1 Λ 

When we use (95) and (96), (94) becomes 

<F = Uiy + U] 

^ H0 -//,Λ 1 - cos px 
» 

0 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

which is sketched in Figure 2.32. 

Note that the existence of the waves is associated with nonuniformity of the 
Coriolis parameter. Further, the effect of the bottom topography is to generate a 
relative vorticity at χ = 0 and then turn the flow toward the south. 

(90) 
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1. For the steady case, find an integral of motion for a rotating flow of a fluid. 

2.6. Water Waves 

The phenomenon of water waves has provided a great deal of impetus and 
background for the development of theory of dispersive waves. The purpose of 
this chapter is to give a brief account of the mathematical theory of wavemotion 
in liquids with a free surface and subjected to gravitational and other forces. 

There are two types of surface-wave motions. Shallow-water waves arise 
when the wavelength of the oscillations is much greater than the depth of the 
liquid. The vertical acceleration of the liquid is small in comparison with the 
horizontal acceleration in the case of shallow-water waves. Surface waves 
correspond to disturbances that do not extend far below the surface. The 
wavelength is much less than the depth of the liquid, and the vertical acceleration 
is then no longer negligible. 

The features that make an analysis of surface waves difficult are 

* the presence of nonlinearities; 

* the free surface being unknown a prion, besides being variant with time. 

In order to make progress with the theory of surface waves, it is usually necessary 
to simplify the model by making special hypothesis of one kind or another which 
suggest themselves on the basis of general physical circumstances contemplated 
in a given class of problems. Thus, two approximate theories result when 

* the amplitude of the surface waves is considered small or 

* the depth of the water is considered small with respect to wavelength. 

The first hypothesis leads to a linear theory and to boundary-value problems of 
nearly classical type; while the second leads to a nonlinear theory for initial-value 
problems, which, in the lowest order, is of the type corresponding to wave 
propagation in compressible fluids (see Chapter 3). 

Governing Equations 

The equilibrium configuration of a liquid in a container of finite size is one of rest 
with a plane surface. One may produce a wavemotion on the surface which is due 
to the action of gravity that acts in the direction of restoring the undisturbed state 
of rest. If the wavemotion is assumed to have started from rest relative to the 
undisturbed state of flow, which is itself assumed irrotational, then the 
wavemotions will be irrotational. The wave propagation is taken to occur along 

E X E R C I S E 



Water Waves 1 1 5 

the ^-direction, and the gravity acts opposite to the z-direction. For the velocity 
potential Φ we have 

92Φ d2Φ n 

(1) 

= 0 . (2) 

dx1 dz2 

and at a rigid stationary boundary we have 

9Φ 
3n 

If ζ = denotes the displacement of the free surface from its mean 
position (or equilibrium position), since a fluid particle on that surface will 
remain there, we have the following kinematic condition expressing the fact that 
the free surface remains a material surface: 

Dr ξ) = ο 

and upon linearizing, (3) gives 

9Φ 3ξ 
dz~ dt' 

The dynamic condition at the free surface is 

p = -T 
1 1 

· + -

(3) 

(4) 

(5) 
2 J 

where /?, and R2 axe. the two principal radii at the free surface, counted positive 
when the center of curvature is above the surface (see Section 1.2), and Τ is the 
surface tension. Upon linearizing, (5) gives 

dx 
The Bernoulli equation 

3Φ 
dt 

P_ 
Ρ 

•gz--
u2+w2 

+/(0. 

(6) 

(7) 

upon linearization and combining with (4) and (6), gives 

d2Φ (T d2 ϊ <?Φ 
z = 0 : 

dt2 

Τ d2 ^ 
J-g 

J ρ dx2 dz 
(8) 

Here, the fluid velocity is ν = (κ, υ,νν). 

The neglect of the no-slip condition at the bottom wall and the shear stress of 
the free surface imply that there must be boundary layers (see Chapter 4) at the 
bottom wall and the free surface which are contaminated by vorticity. However, if 
the viscosity of the fluid is small, these boundary layers are thin and thus may be 
neglected in the following. 
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Surface Waves in a Liquid Layer of Finite Depth 

One requires now on the bottom surface (which is taken to be rigid and stationary) 

z = -h0: - r - = 0 . (2)' 
dz 

Any irrotational-flow solution so obtained involves a nonzero tangential velocity 
at the boundary, which in a viscous fluid has to be reconciled with the exact 
boundary condition of zero fluid velocity at a stationary solid surface through the 
intervention of a boundary layer (see Chapter 4) between the irrotational flow and 
the surface. 

From (1) and (2)', one obtains 

Φ = C coshk(z + h0) cosk(x-ct). (14) 

When one uses (14) in (8), there follows 

2 

c = 
kT 

8 + — 
V Ρ 

λ tan hkh0 

which is sketched in Figure 2.32. 

For long waves, (15) gives 

Surface Waves in a Semi-infinite Liquid 

If the liquid fills the semi-infinite space, - °° < ζ < 0, - <» < * < <*>, with a free 
surface at ζ = 0, then one requires 

<9Φ 
z = > - o o : — = > 0 . (9) 

dz 

From (1) and (9), one finds 

<P = Cekz c o s k ( x - c t ) . (10) 

When one uses (10) in (8), there follows the dispersion relation 
2 g kT 

c 2 = £ + — . (11) 
k ρ 

For long waves, gravity effects dominate and (11) yields 

c 2 = £ . (12) 
k 

For short waves, capillary effects dominate and (11) yields 

2 kT 
c 2 = — . (13) 

Ρ 
Both (12) and (13) show that the waves are dispersive. 
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Figure 2.32. Dispersion curve for surface waves. 

c =gh0. 

For short waves, (15) gives, on the other hand, 

c 2 = 
kT 

The fluid velocity components are given, from (14), by 

« = = -kC coshk(z + h0) sink(x-ct), 
dx 

w = = kC sinhkyz + h0) cosk(x-ct). 
dz 

For long waves w = 0 , so that the vertical acceleration is negligible 
pressure distribution in the liquid is then nearly hydrostatic. 

The locus of a material particle is given by 

u = • 
dX 
dt ' 

dZ 
dt ' 

so, on using (18) and (19), this leads to 

X = -— coshk(z + h0) cosk(x -ct), 
c 

Z = sinhk(z + h0) sin A: (JC - cf). 

c 

It is obvious that the locus is an ellipse in a vertical plane, 

Χ 2 Z 2 

A B1 

where 
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Shal low-Water Waves 

It was seen in the foregoing that if the wavelength is large compared with the 
depth, the horizontal velocity at any section normal to the direction of 
propagation is very nearly constant, and that the pressure distribution is nearly 
hydrostatic due to very small vertical accelerations. Then, the fluid particles 
originally in a vertical plane remain so. 

One has, for the two-dimensional flow in a layer of liquid over a rigid surface 
at bottom, 

ux+wz=0, (24) 

ζ = ξ: £ + < - w = 0 , (25) 

ζ = ξ: p = 0, (26) 

ζ = -h0 : w/y + w = 0 , (27) 

where we have allowed for a spatial variation in the bottom topography. 

From (24), (25), and (27), one obtains 

ξ 

-Α» 

or 

The shallow-water wave theory results from an assumption that the vertical 
acceleration of the fluid is negligible so that the pressure behaves hydrostatically 
as 

Ρ = Ρ8(ξ-ζ)- (29) 

When we use (29), the equation of motion becomes 

u, + uux = ^ ξ χ . (30) 

Equation (28) gives, upon integration, 

C C 
A = — cosM(z + /i 0 ) , B-— s inM(z + / i 0 ) . 

c c 
Note that, at z = - / i 0 , the ellipse degenerates into a horizontal line segment. 
Consequently, the particles on the bottom surface move only to and fro and do 
not rise and fall. For infinite depth, the locus is a circle, since 

lim — = 1. (23) 
*.=»- Β 
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[«{ξ + ^ Ι — ξ , . (31) 
If h0 = const., (30) and (31) give, upon linearization, 

« „ - 4 - H « = 0 - (32) 

Thus, the solution of a problem of elliptic type is approximated in the lowest 
order by the solution of a problem of hyperbolic type. 

Analogy with Gas Dynamics: It turns out that the equations of shallow-water 
wave theory become analogous to those of one-dimensional gas flows (see 
Chapter 3). Introducing 

p=p{4 + h0), (33) 

ξ 
P=\pdz (34) 

and using (29), one obtains 

P = f ( W = ^ P 2 - (35) 
Using (35), the equation of motion, then leads to 

p{u,+uux) = -px=gppx (36) 

and (31) leads to 

(pu)x=-p,. (37) 

If hg = const., the speed of the waves, in analogy with gas dynamics (see 
Chapter 3), is given by 

c = -jjj|=>/*($ + M- (38) 
Breaking of Waves: The nonlinear shallow-water equations which neglect 
dispersion altogether lead to breaking of the typical hyperbolic kind (see Chapter 
3), with the development of a vertical slope and a multivalued profile. In 
particular, noting that 

(o^eg^+h,), 

one observes that a wave crest will travel faster than a trough, and any wave 
profile will gradually steepen until it ultimately falls over forward, as is seen in 
the breaking of waves on the sea shore when they reach shallow water. 
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0(*) = J - jf(x)costedx. (42) 

The solution for ξ, for χ > 0 , at any subsequent position and time, with the 
initial conditions (39), is 

ξ = -Χ= \<t>(k) cos(kx-cot) dk. (43) 
ν 2 π *_ 

Since co/k = h(k), waves of different wavenumber propagate at different 
velocities. Consequently, the overall wave profile, represented by (43), changes 
its shape as it moves. 

As an example, let us take 

A 
—, -a < χ < a, 
2a 
0, otherwise. 

(44) 

Then, one has, from (42), 

ΦΜ = Μ]±^0χ=(ϊϊψ^. (45) V π J 2a ν π ka 
-a 

Consider the asymptotic behavior of (43) as r=>°° , with x/t held fixed. 
Write (43) as 

1 ξ = 1 _ Re[J^(*)e-*(*,,rfik], (46) 

where 

Water Waves Generated by an Initial Displacement Over a 
Localized Region 

Consider water waves generated by an initial displacement over a localized region 
near the origin, according to 

f = 0: ξ = /(χ), & = 0. (39) 
dt 

If 

/ ( * ) = / ( " * ) . (40) 

then one has the Fourier transform 

f(x)= \-]<t>{k) costedk, (41) 

where 

11 
π 
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X(k) = a>(k)-k±, 

and x/t is presently a fixed parameter. This integral is evaluated by using the 
method of stationary phase. This is based on the fact that wave components with 
nearly same phase will reinforce, and those differing in phase will annul each 
other due to mutual interference. Therefore, one looks for positions and times at 
which a large number of harmonic components have the same phase. 

If X(k) possesses no stationary point and if X'(k) * 0, one may use Cauchy's 
Theorem to deform the path of integration from the real-it axis, on which x(k) 
is real, to a path on which x(k) has a negative imaginary part (if x'(k)>0, 
lower the path of integration from the real-* axis and vice versa); this will reduce 
the modulus of the integrand for t => °° so that the integral becomes 
exponentially small. 

However, if x(k) possesses a stationary point at k = kg, where 

continuity, the path of integration must go through k = k0 wherein the imaginary 
part of x(k) is zero and, therefore, the main nonvanishing contribution to the 
integral comes from the neighborhood of the stationary point at k = k0. 
(Physically, the stationary phase condition corresponds to maximum constructive 
interference of the various Fourier components, which occurs when the latter are 
nearly in phase with each other.) Thus, as r=><», the integral takes an 
asymptotic form determined entirely in terms of values of k where the phase 
X(k) is stationary, i.e., by the value of k where x'(k) = 0. 

For k = k0, one writes 

on one side of k0 where x'(k0) < 0 , the path of integration must be raised; and 

on the other side, where x'(k0)>0, it must be lowered. In order to preserve 

0 ( U 

xW X(k0) + 1(k-k0)2X"{k0), (48) 

provided that x"(k0) * 0. 

From (46), one then has 

(49) 

This approximation becomes valid and accurate as t => °°. The remaining integral 
is reduced to the real error integral 
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J ν a 
(50) 

by rotating the path of integration through +7Γ /4 [the sign being that of 

X"(*<>)]· m ' s corresponds to changing to the path of steepest descents. 

Thus, the asymptotic form of ξ, for t => <», is 

£(;<:, f) = Re * ( * o ) 

- 0 ( * o ) 
1 

cos 

From (51), one has, for the wave amplitude 

a = F{k0) 

•'[ζ(*ο)'+*/4«β» *"(*<>)] 

k0x-co(k0)t-^sgnco"(k0) 

1 -i(>r/4)sgn m-(t0) 

'(Ml 
Consider 

G(0 = J | e | 2 ^ . 

When one uses (52), (53) may be rewritten as 
* 0 2 

(51) 

(52) 

(53) 

(54) 

If we let 

χ, = o>'(*0 1) t, x 2 = ω ' (* 0 2 ) r (55) 

and hold k0l and fc02 fixed, as t varies, then Q{t) remains constant. Thus, the 

total amount of \ af between points jc, and x2 moving with the group velocity 

remains unchanged. Thus, 

dx = 0, (56) 

where 

q = \a\\ C=fi»'(*o). 

Equation (56) implies that 

(57a) 
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or 

(57b) 
A V dx\ 

In this sense, | α | 2 (which may be proportional to energy in some simple cases) 

propagates with the group velocity. 

Thus, in the special case of a wavepacket where the initial disturbance is 
localized around χ = 0 and contains appreciable amplitude only in wavenumbers 
close to some value k0 = K0, say, the resulting disturbance will evolve as a 
group around k0 = Ka and the above wavepacket as a whole moves with the 
particular group velocity ω'[Κ0). 

For gravity waves, one has [see (11)], 

fgk- (58) ω •• 

When one uses (45) and (58), (51) becomes 

A 2x 

ngt2 

.7 
. gt a 

sin cos 
Ax 

v 
Ax 

(59) 

Now, consider the initial disturbance to be an infinite displacement 
concentrated at the origin, i.e., let a => 0 . Equation (58) then becomes 

f At 2g 
ξ=—. — cos 

( .2 
gt 

A V πχ' { Ax 

On the other hand, for very large x, (54) becomes 
At 

ξ -
2g 

πχ 
cos 

'gt1 

Ax 

(69a) 

(60b) 

From the identity between (60a) and (60b), one finds that the asymptotic behavior 
of water waves very far away from a finite localized region of their generation 
around the origin corresponds to that of water waves generated by an infinite line 
displacement concentrated at the origin. 

Water Waves Generated by a Finite Train of Harmonic Waves 

Consider water waves generated by an initial displacement consisting of a limited 
train of harmonic waves. Let 

t = 0: ξ = /(χ\ f = 0. (61) 

If f(x) is symmetrical with respect to the origin, then, as before, 
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f(x) = ^"\j>(k) cos kxdk, 

(j)(k) = J f{x) coskxdx. 

(62) 

Further, if f(x) is zero except for a range of (in +1/2) Ιπ/k' > χ > 0 , within 

which it is cosfc'jc, then one has 

<l>(k) = ^— J cos k'x cos kx dx = ^ 
f 2n + 

rot" 
cos f 2n + -I 2 j Jfc' 

k'2- *2 
(63) 

The solution for ξ , for x>0, at / > 0 , with the initial conditions (61), is 
then given, on using (63) in (43), by 

Π nk 

(64) 
»cos 2n + • . , 

ξ ( * ' ή = π ί V 2 J 2 k C ° S ( * * " ω ή d k ' 

As t => oo, x/f remaining constant, one finds, from (64), by using the method of 
steepest descent, 

1 6 . i - -t 'x5 / 2 r 

i / c i ' 2 4 2 . 4 

16A: χ -g t 
cos 

2j4k'x2 

cos 
v 4 * 4 y 

(65) 

The variation of the amplitude Λ [the coefficient of cos(gf 2 /4. t - ττ/4)] with 

k is shown in Figure 2.33. 

*= 
4 * 2 

Figure 2.33. Variation of the amplitude with wavenumber for waves generated by 
an initial displacement. 
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The main undulatory disturbance appears as a simple group around k = k', 
moving forward with d(o/dk = 1/2 (o/k. But in advance of this main group of 
undulations there are two or three subsidiary groups of appreciable amplitude and 
larger wavelengths. In the rear of the main group, a series of alternating groups 
show up, following each other much more quickly, and their wavelengths and 
velocities are less separated out than those in advance of the main group. Hence 
the disturbance in the rear, close to the origin, may be expected to consist of 
small, irregular motions resulting from the superposition of this latter system of 
groups. 

Waves on a Steady Stream 

We now study the waves which stand steady in a uniform stream of velocity U. 
We take the source to be an external steady pressure applied to the surface of the 
stream, rather than a prescribed displacement, since this represents the effect of a 
floating body more correctly. 

In solving steady-wave problems by Fourier transforms, one has to impose an 
appropriate radiation condition to ensure uniqueness. One may avoid this by 
posing a more realistic unsteady problem with suitable initial conditions applied 
at some finite time in the past - f = -f0, say - and then let f0 =>«> in the 
solution. 

We take the applied pressure on ζ = 0 to be 

One, then, has the following boundary-value problem for the velocity potential 
Φ: 

Ρ 
= f{x,y)ea, ε>0. (66) 

z<0 ν 2 Φ = ο (67) 

z = 0 (68) 

z = 0 (69) 

Z => - o o Φ = > 0 . (70) 

Upon Fourier transforming according to 

Φ = — J B(k)ei{k-**k'y)- dk, 

ξ = — ]A(k)ei{k-x+k'>]dk, (71) 
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. e r kF(k)e dk 
ξ(χ,ή = — I 2 — , 

2 π J„(kxU-ie) - ω 0

2 ( * ) 
where 

(72) 

wl=gk + - k \ k = jkj+kj. 

The poles of the integrand in (72) lie at 

Α χ

2 ί / 2 - ω 2 ( * ) = 0, (73) 

which is also the condition for the waves to stand steady in the stream. 

One-Dimensional Gravity Waves 

One has, for the one-dimensional gravity waves, from (72), 

2* L{k,V-U)'-lk, 

If the applied pressure is localized around χ = 0 , i.e., 

f(x)=PS(x), (75) 

then from (71) we have 

F{kx)=P. (76) 

When one uses (76), (74) becomes 

Pe" 7 k eik-x 

ξ(χ,ή = 2 - - 5£-5 Λ , (77) 
2π l(kxu-ie)2-gkx 

or 

M £ d ) = l i m d K . 
Ρ «-ο* ±kxU2-2ieU - g 1 

For λ > 0 , the path of ^-integration along the Re(frJ-axis is closed by a large 
semicircle in the upper half of the kx -plane. Thus (78) becomes 

^"''K-e**, x>0, (79) 
Ρ 

where 

g 

(78) 

K = 

For χ < 0 , the path of integration is fixed the other way, and one then obtains 

U2 

one finds, from (67)-(70), 
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^ 1 = 0. (80) 
Ρ 

Therefore, standing gravity waves appear downstream (JC > 0) of the applied 
pressure disturbance. 

One-Dimensional Capillary-Gravity Waves 

Upon including the surface tension, (78) becomes 

2*ξ(χ,ή _ | ; _ ? eik-'dk = lim f — ^ = — . (81) 
~°* LkxU2-2ieU-g--k] 

Ρ 

The poles of the integrand in (81) lie at 

kxU2=g + ?-k2 or t / « c ( * , ) , (82) 

which is again the condition for the waves to stand steady in the stream. If 
U < c m i n , then there are no real roots for kx, so there is no standing wave pattern. 
If U > cmin (see Figure 2.32), there are two real roots: 

* , = * , , . * „ . (83) 

where 

and the poles will lie at 

k x = k x +

 2PU

 i e > k x = k x

 2PU

 i e . ( 8 4 ) 

For χ > 0 , the path of integration for the first integral may be fixed as before. 
Contributions then come from the poles at kx=kx . Consequently, gravity waves 

appear downstream of the source. For χ < 0 , the paths of integration may be 
fixed the other way, and one then obtains capillary waves upstream of the source. 
Thus, one obtains 

-IPρ 
sin kxx, x> 0, 

( * * r - * * , ) 7 

-2Pp . t n Ο») 
sin kx, x< 0. 

Ship Waves 

Consider the wave pattern produced by a ship traveling with uniform velocity U 
in the negative x-direction on the surface of deep water. Consider a reference 
frame in which the ship is fixed, and so there is a uniform stream with velocity U 
in the Jt-direction. In this frame, the ship is equivalent to an applied pressure 
localized at χ = 0, y = 0 , i.e., 
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f{x,y) = PS(x,y), 

so that one has, from (71), 

F(k) = P. 

When one uses (87), (74) gives 

4 π 2 υ 2 ξ ( χ , ή = _a 

Ρ ι . ' £ 1* 
u2 

dkxdky. 

(86) 

(87) 

(88) 

When one puts 

χ = r cos a, y = r sin α λ 

kx = -k cos χ, ky = k s in^ j (89) 

and note that the contribution from the range π /2 < χ < 3π/2 is the conjugate of 
the range - π / 2 < χ < π / 2 , (88) becomes 

2 π 2 υ 2 ξ ( χ , ή 

where 

= Re 
ε=»0* J C O S V J J „ COS y * * - ^ n 1Γ/2 Λ 0 « 

dk (90) 

lie 
U2 cos2 χ U cosx 

The pattern is symmetrical about the Jt-axis, so it is sufficient to consider the 
range 0 < α < π . When cos(a+x)>0, i.e., -π/2<χ< π/l-a, the path of 

integration in the Λ-plane may be closed by a large semicircle in the upper half of 
the Jfc-plane, and the pole at k = k0 contributes (physically this implies that the 
ship can feed energy continuously to a wave only when its bow travels with the 
crest of the wave, which is like the "surf-r iding" condition!); when 
c o s ( a + ^ ) < 0 , i.e., - π / 2 > χ > π/2 - a, the path of integration is fixed the 
other way, and the pole at k = k0 does not contribute. Thus, 

The exponent in (91), namely, 

π / 2 - α - , V c o s ( a + x ) 

-nil 
cos* χ 

dX (91) 

/ \ • / \ g c o s ( a + y) 
s{x) = k0cos(a + x) = \ v , Λ>, 

υ cos χ 

has a stationary point at χ = ψ, where 

t a n ( a + ψ-) = 2tan ψ, 

so by using the method of stationary phase we obtain 
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gP 
nU4 

Im 
2π -i«(v)-m'/4sgnj"(v) 

r s 'Mi 
(92) 

or 

ρ (l + 4 tan2 y/) 
1/4 

Ttr U'cos'w i _ 2 tan2 ν |V2 

x sin cos (a + y^) + — sgn 

where 

(93) 

U2 cos 2 ^ 

Note that the amplitude is singular at the maximum wedge angle 
a = amiX = 19.5° where tan ψ = l /V2 . This is where the lateral and transverse 
crests meet at a cusp (see Figure 2.34) and corresponds in the analysis to the 
confluence of the two stationary point of the exponent s(x). Thus, the wave 

pattern is confined to a wedge-shaped region spreading out behind the ship, and 
the semi vertex angle of the wedge is 19.5°. Note that this result is independent of 
the ship velocity U, provided that the latter is constant. It depends only on the 
fact that the ratio of the group velocity and the phase velocity for deep water 
waves is 1/2 (see (12))! 

Figure 2.34. Ship-wave pattern. 
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" o W = V2T \ a ^ e > k X d k < 

*„(*) =-7= )b{k)e^dk. (100) 

one obtains, from equation (97) 

1 
«(Λ,ί) = - ^ J a ( * K m + - j = JB(k)e,{tx+u"]dk, (101) 

where 

Gravity Waves in a Rotating Fluid 

Consider wavemotions in a liquid of depth A0, rotating with an angular velocity 

Ω about a vertical axis (along the z-direction). Consider long waves for which 
the vertical accelerations are negligible, and one may assign, for the pressure, the 
hydrostatic value corresponding to the distance from the free surface given by 
ζ = h0 + ξ. Thus, one has the following linearized equations in the rotating 

frame: 

~<*>—g& (94) 
dt dx 

dt dy 
, du , dv 

— = ~h0 h0—. (96) 
dt dx dy 

Considering one-dimensional waves, one obtains, from equations (94)-<96), 

where c is the phase velocity of long surface waves in water of depth L [see (16)], 

Let us prescribe the initial conditions: 

t = 0: u = u0,^ = s0. (98) 
dt 

Consider traveling waves of the form e''*"™1, for which equation (97) yields 
the dispersion relation 

ω = ο^2+Ω2/ο2 . (99) 

Upon Fourier transforming, according to 

1 
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W - 5 

Thus, 

u{x,t) = -j— \a{k)eikx cos[^jk2+a2/c2 c/) dk 

1 1 
+ _ - 7 = C V27T 

sm(Jk2+n2/c2 ct) 
\b{k)eik* X . 1 dk 

L Jk2+a2/c2 

or 

u(x,t) = - \α0(ξ)άξ Jcos *(x-£)cos [sjk2 + Q 2 / c 2 c?) 

, - - sin(j/V2+n2/c2 cf) 
+ — U(5)rf§ fcos*(x-i) — ^ — ^ Λ . (102) 

Equation (102) may be written as 

1 5 

where 

G(x 
- s i n t i C + Q 2 / c 2 τ 

. ! ) • ICOSC* \ (104) 

which can, in turn, be written as 

, - sin Vi 2 + f l 2 A 2 τ 
G(x,T) = I \eitx V 1 dC. 

2.J. ^ζ2

+Ω2/ο2 * 

If we put 

(105) becomes 

ζ = — sin ft φ, 
c 

(105) 

(106) 

G(x,T) = i J ^ ' - ^ s i n ^ cos Αφ) <z>. 

Thus, 
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G(x,T) = \ 
τ>χ, 

(107) 
0, τ < χ, 

which implies that G(x, τ) assumes the role as the propagator of causal effects 
from the source region. Here, J„(x) is Bessel's function of first kind of order n. 
When one uses (107), (103) gives 

^ χ+α Ρ 

x-ct 

x+ct 

«o(«) Ίξ 

or 

"(*. 0 = 2 ["o (* -
 c0 + "o (* +

 c0] 

^Υ-(χ-ξ)2 

^ν-(χ-ξ)2 

2c J c " 
Λ - C f 

Let us now assume an excitation moving with a speed c, i.e., 

Equation (108) then becomes 

u(x,t) = u0(x-ct) 

_ c 
2c ' Or J 

(108) 

(109) 

cf + ( x - £ ) ] « 0 ( £ ) « / £ (110) 

If the excitation is localized around JC = 0 , i.e., 

(110) becomes 

, . . . ΑΩ ct + χ , 
u(x, t) = Αδ{χ- ct) - — • J 

2c -Jc

2t2-x2 

The excitation represented by this expression comprises a sharp front advancing in 
the x-direction at the speed c, behind which a wavetrain extends over the steadily 

(HI) 

(112) 

π , (Ω r~i ϊΛ 
2 \c ) 
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widening range | χ \ < ct, with an amplitude that diminishes as the trailing edge 

χ = -ct is approached. As t => °°, this wavetrain is described by 

(ct + x) 
u(x,t) - A 

Ω 

2nc (CV 3/4 COS 
c 

χ + — 
4 

(113) 

Theory of Tides 

The tides are periodic rise and fall of the free level of water in the oceans caused 
by the lunar gravitational attraction. Let us consider here the equatorial tides. 

In the long-wave approximation, one has the following equations for the flow: 

0 = -&-pg or p = Po+pgih + ξ-ζ), (115) 

du dw „ , du 
+ = 0 or w = -h—, (116) 

dx dz dx 

z = 0:^f = w, (117) 
dt 

where h is the depth of water and Fx is the gravitational force (see Figure 2.35). 
From (114)—<117), one obtains 

* ξ _ . 3 * ξ hdFx 

~dt2~ ~ 'dx2 ~ ~dx 4f = ^ i T - ^ - 0 1 8 ) 

The net potential due to lunar gravitation at Ρ on earth (see Figure 2.35) is 
given by 

(D2 +a2 -2aD c o s ^ 2 D - a c o s ^ ' 
Ά = ~ — — Γ — τ T W + T^ « · - : , (119) 

where a is the radius of the earth, and D the distance to moon. Here, we have 
noted that the gravitational field due to moon at the center of earth is nearly 
uniform and is directed along the line joining the latter to the moon and has the 
potential 

GM„ 
D-a cos φ 

Since a/D <l 1,(119) can be approximated by 

( 1 - 3 c o s 2 * ) . (120) 



134 Dynamics of Inviscid, Incompressible Fluid Flows 

ζ 

Figure 2.35. The earth-moon system. 

Let us neglect the dynamical effects of the earth's rotation (i.e., neglect 
centrifugal and Coriolis forces), and let the only effect of this rotation be an 
apparent revolution of the moon (as seen by an observer) around the earth once 
each day. Let us assume further that the earth is a uniform sphere covered with a 
static ocean of uniform depth, and ignore the presence of land masses. 

When we use (120), the tidal force Fz is given by 

9Ω 
dx 

3Ω 
α9φ 

3 GMma 
2 Z>3 

sin 2 0 . (121) 

cos 2 0 . (122) 

When we use (121), (118) becomes 

92ξ gh 92ξ = 3GMmh 
dt2 α2 9φ2 D 3 

Let ft) be the frequency of the moon about the earth, as observed from the 
point P; then 

φ = ωι, (123) 

so that (122) gives 

dt2 

3GM ah 

D' gh 

ω2a2 J 

cos2a>f, (124) 

from which 

ξ = 
2>GMmaLh 

4 D 3 (gA-ft)V) 
cos 2ft) t. (125) 

Note from (125) that 
* the tides are semidiurnal, i.e., the water level at a particular point will reach 

its maximum value twice a day - even though the moon traverses its path 
only once in the same period of time; 

* since gh <̂  ω1 a1, the tide is inverted, i.e., one has a low tide when the 
moon is directly overhead. 
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Nonlinear Shallow Water Waves 

Nonlinear effects in a train of surface waves lead to many essential observed 
phenomena. In deep water, the wave profile becomes distorted, with the crests 
slightly sharper than the troughs and the phase speed increasing slightly with 
increasing wave slope. In shallow water, the nonlinear effects are stronger and 
thus more easily observed; consequently, the linearized model here entails much 
more stringent conditions on the wave amplitude than that in deep water. 

Consider small (but finite)-amplitude long waves of amplitude a and 
wavelength λ in shallow water of depth h so that 

a = - < \ and β = ^-<\. (126) 
h λ 

Two limiting cases arise for such waves depending on whether the parameter 
S^a/β2 =αλ2/η' is much greater than one (the Stokes approximation) or is 
near one (the Boussinesq approximation). The first case leads to nonlinear periodic 
waves, while the second case affords a balance between nonlinearity and dispersion 
and leads to solitary waves. 

Consider a homogeneous, incompressible fluid whose undisturbed depth above 
a rigid horizontal boundary is . Let the disturbed free surface be at a height 
h(x,t) (see Figure 2.36). We will assume that the flow is two-dimensional and 
that there is no dependence on the transverse horizontal coordinate. 

Thus one has the following boundary-value problem for the velocity potential 
φ: 

(127) 

Figure 2.36. Surface waves on water of mean depth f\. 



z = 0: * = 0, 
dz 

-h- d ° - ^ ι 3 Φ * 
dz dt dx dx' 
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«9ξ2 dz2 
= 0, 

z = n : ^ = e ^ + £ 

dz dr 
dw ^ dh_ 

dp 

£ 2 d ^ _ d ^ + l 

dx 

If we put 

equation (132) leads to 

h = h0 + ehl + ε h2 + ••·,] 

ψ = εψι+ε2ψ2 + J 

(131) 

(132) 

(133) 

(134) 

+ £g{h-hQ) = 0. (135) 

(136) 

dz2 

dz 2 + dt2 

= 0, 

= 0, « > 1 . 

(137) 

(138) 

One obtains, from equations (137) and (138), on using (133), 

Ψ ι =Ψι{ξ<τ)< 

1 .2 <?V, 
9ξ2 ' 

(128) 

(129) 
o»z cr ox ax 

-s-ii l-s-JH-s-Jp*-^" 0 - < ' 3 0 ) 

Consider propagation of waves moving only to the right and introduce 

ξ = νε(*-<ν), τ = ε 3 / 2 ί , ν̂  = ε 1 / 2 Φ-

so that (127H130) become 
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ν 3 = 
_ 1 .4<?>, 

9ξ* ' 24 

etc. (139) 

The boundary conditions (134) and (135) are imposed at a boundary which is 
unknown without the solution and varies slightly with the perturbation parameter 
ε . If the solution is analytic in spatial coordinates, the transfer of the boundary 
conditions to the basic configuration of the boundary corresponding to ε = 0 is 
effected by expanding the solution in a Taylor series about the values at the basic 
configuration. Thus, (134) and (135) give 

0 9ξ 

dz 

etc. 

and 

c ^ 
0 9ξ 

dz2 dx 0 3ξ θξ 9ξ ' 

(140) 

3ψι r < f y 2 

etc. 

1 
+ — 

2 
+ g>h = 0 , 

From (139)—(141), one derives 

dh, 3cn Ί ι - " - 0 ""I 
dx 2\ 1 

dhl_ cX d \ 

9ξ 6 9ξ> 

which is the Korteweg-deVries equation. 

Recall the linear dispersive relation for water waves 

ft)2 = gk tan hkhg, 

from which, for shallow-water waves, one has 

(141) 

(142) 

kh^ < 1 : ft) = kc0 

(15)' 

(143) 

Observe that the coefficient of the dispersive term on the right-hand side of the 
Korteweg-deVries equation (142) is the same as the coefficient of k1 in the linear 
dispersion relation (143)! 

Solitary Waves 

Write the Korteweg-deVries equation (142) in the form 

φ, + κφφχ+φ„,=0. (144) 
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and again equation (147) gives 

\ φ \ = ^ φ 2 - f * 3 . (148) 

from which 

J «κ (149) 

The integral in (149) is of the form 

άφ 
3 φ φ - σ φ 

If we put 

ψ = φ-σφ, σ = — , (151) 
31/ 

(150) becomes 

άψ _ 1 - j / 

V 
When we use (152), (149) leads to 

= _ 2 [ ^ i u _ = l n l z J 
J 1 - ψ 2 1 + ι 

1 + ψ 

from which 

Noting, from (151), that 

(152) 

(153) 

1 - ν 1 

0 = — , (151)' 

Looking for steady, progressing, and localized wave solutions of the form 

φ(χ,ή = φ{ξ), ξ = χ - ω , (145) 

equation (144) gives 

φξ{κφ-υ) + φ ξ ξ ξ = 0, 

| £ | = > ~ : 0 ( ^ , ^ = > θ . (146) 

Upon integrating, equation (146) gives 

φ ξ ξ = υ φ - ^ φ 2 (147) 
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one obtains, on using (154), 

1 . JTl F VI . Γ,/77 1 
(155) φ = — —— τ = — sech2 ^RA. - — s e c h 2 

σ | ] + e ^ ) 2 σ 2 κ 

which represents a unidirectional solitary wave. Equation (155) shows that 

• this solitary wave moves with a velocity larger than the speed of the gravity 
waves, viz., c 0 , by an amount proportional to the square root of its 
amplitude (this is a consequence of the nonlinearity of the wave); 

• the width of the solitary wave is inversely proportional to the square root of 
its amplitude (this is a consequence of the spreading of the wave due to 
dispersion); this result, of course, confirms the condition a - β2 discussed 
before [see (126)]! 

Solitary waves are localized waves propagating without change of shape and 
v e l o c i t y . 1 0 The essential quality of a solitary wave is the balance between 
nonlinearity, which tends to steepen the wavefront in consequence of the increase 
of the wavespeed with amplitude, and dispersion, which tends to spread the 
wavefront. Solitary waves are found to preserve their identity and to be stable in 
processes of mutual collisions (see Figure 2.37). Solitary waves are strictly 
nonlinear phenomena with no counterparts in linear theory. 

Solitary waves were first observed by J. Scott Russell on the Edinburgh-Glasgow canal in 1834. 
Russell also performed laboratory experiments on solitary waves and empirically deduced that the 
speed u of the solitary wave is given by 

"2 =*K +«)· 
where a is the amplitude of the wave and h0 is the undisturbed depth of water. 
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± υ φ 1 + 1 φ 3 + Ι φ 2 = Α φ + Β , ( 1 5 7 ) 

λ Ο λ 

where A and Β are constants of integration. 

Equation (157) may be written in the form 

3 , , 3(7 , 6Λ 6B . , 
- φ =-φ3+—φ2+—φ + — = / ( * ) . (158) 
κ κ κ κ 

Under certain conditions, equation (158) may give a periodic solution between 
two consecutive real zeros of / ( * ) , where /(φ) > 0 . Note that /(φ) is a cubic 
and therefore has three zeros. Hence one has two separate cases to consider: 

(a) Only one zero is real (Figure 2.38). 

For a real solution, one has to restrict φ to 0 < ct, . In this region, one 
obtains, from equation (158), 

/(Φ) 

Figure 2.38. The case with one real zero. 

Stability of solitary waves has been demonstrated with respect to o n e -
dimensional perturbations (Jeffrey and Kakutani, Benjamin) and two-dimensional 
perturbations (Kadomtsev and Petviashvili, Oikawa et al.). 

Periodic Cnoidal Waves 

Korteweg-deVries equation also possesses periodic cnoidal-wave solutions given 
in terms of Jacobi elliptic functions. Consider the Korteweg-deVries equation in 
the form 

Φ, + κφφ,+Φ^^Ο (144) 

and look for stationary solutions of the form 

φ(χ,ή = φ{ξ), ξ = χ-υΐ. (145) 

Equation (144) leads to 

-υφξ + κφφξ + φξξί = 0 . (156) 

Integrating equation (156) twice, one obtains 



Water Waves 1 4 1 

(159) 

However, note that this solution becomes unbounded, since 

φ => -β» : /(φ) => oo. 

(b) All three zeros are real (Figure 2.39). Here, one has three subcases: 

(bl) all three real roots α, β, γ are distinct (curve A); 

(b2) two roots are equal β = γ (curve B); 

(b3) two roots are equal β = a (curve C). 

Writing 

ί{φ) = (φ-Ύ){φ-β){α-φ), 

one has from (158) 

(160) 

(161) 

1 , „ 

-1-(αβ + βγ + γα) = - , 
6 κ 

-αβγ = - . 
6 κ 

For the solution to be real and bounded, one requires β <φ<α for curve A 
and β - y < φ < a for curve B. For curve C, φ< γ appears acceptable, but the 
solution becomes unbounded as in case (a). 

Figure 2.39. The cases with three real zeros. 
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Incidentally, one has from (161) 

U2

+2Ak = — \{α-β)2+{β-γ)2+{γ-α)21 
ι ο l J 

(162) 

from which, in order that the zeros α, β, and γ are real, one requires 

U2+2Ak>0. (163) 

(bl) Here, there is a local maximum at a (since f'(a)<0) and a local 

minimum at β (since /'(β)> 0) . Thus, φ' will change sign at these points and 

since the behavior near them is algebraic, consecutive points φ = α, φ = β will 

be a finite distance apart, and hence, ( α - β) can be considered as a measure of 

the amplitude of the wave. One has, from (159) and (160), 

άφ _ άξ 

If we put 

(164) becomes 

άξ 

[{φ-γ){φ-β){α-

Ρ2=α-φ, 

lap 

1/2 

3/κ 

( 3 Ϊ Ϊ ~ [ { { α - γ ) - ρ

2 } { { α - β ) - ρ

2 ψ ' 

Further, if we put 

(166) becomes 

where 

q = 

άξ Idq 

/νΠ(ι-«ν)(ι-«Τ 

2 

s = α- γ 

Ρ 

0<s < 1 , 

α-φ 

Ρ^β) ^α-β 

Recall that, here, β < φ < a, and from (165) and (167), note that 

φ = α: q-0, 

φ = β: q = l. 

(164) 

(165) 

(166) 

(167) 

(168) 

(169) 
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If we take 

(168) gives 

Η 
from which 

12 

κ(α-γ) 

q = 0: ξ = 0, 

dq 

!y(l-iV)(l-*2) 
12 

v(a-y) 

(170) 

sn'\q,s), (171) 

0(ξ) = /ϊ + (α-/?)«ι' 
V 12 

(172) 

where in and cn are the Jacobian elliptic functions. 

The period of φ(ξ) (which is the period of cn2) is given by 

' dq P = 2 
12 

J- = 4 K(s2), (173) 
κ(α- γ) { J(i-s2q2)(l-q2) ~ ^ κ(α- γ) 

where Κ(s2) is the complete elliptic integral of the first kind. Thus, the bounded 
solution of the Korteweg-deVries equation represents a periodic wave. Figure 
2.40 shows the cnoidal wave solutions for s2 = 0, 0.6, and 0.9. Observe that the 
crests become narrower and the troughs become wider as s2 increases. The actual 
wave profile is a curve called trochoid. 

Note that the linear case corresponds to the limit s2 => 0 [see (169)]; noting, 
further, that 
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we see that (172) leads to 

φ{ξ) = β + {α-β)™*2 

as to be expected! 

(b2) One has now, from (159) and (160), 

ί ί^Ξήξ] 
12 

άφ 

(φ-γ)^(α-φ) 

which leads to the solitary wave: 

0 ( £ ) = y + ( a - v ) s e c A 2 κ{α-γ) 

12 
11 

The period of this wave, from (173), is given by 

, = 4 ^ ( « 3 - χ ) ί 

dq 
\-q2 

(174) 

(175) 

(176) 

(177) 

as to be expected! 

Noting, from (176), that 

£ = > ± o o : 0 = > y , (178) 

one recognizes that 0„ = γ denotes the uniform state corresponding to ξ => + °°. 
Therefore, one may write 

a = a - y (179) 

and interpret a as the amplitude of the wave. Thus, (176) may be rewritten as 

φ(ξ)-φ„ - a seen 2 χ - φ„κ + -ακ 

3 ; 
(180) 

which (on identifying a with W/κ) precisely is the solitary wave solution (155), 
as we obtained before! 

' 'Alternatively, note that this case corresponds to s 1 = 1 [see (169)] - the "most nonlinear" case; 
noting further that 

cn(£, l) = sec/if, 
we see that (172) leads to 

0(<£) = 7 + ( a - r ) s e c / i 2 
f ( g - r ) 

as in (176)! 

12 

C/j(£,0) = cos ζ , 
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Interacting Solitary Waves 

We will now consider the behavior of two interacting solitary waves by using a 
method due to Hirota. This method involves transforming the Korteweg-deVries 
equation into homogeneous bilinear forms, and then developing the bilinear 
equations in series expansions which "self-truncate." Consider Korteweg-deVries 
equation in the form, 

φ, + κφφχ + φχχχ=0. (181) 

If we put 

φ = — (\nF)a, (182) 

equation (181) gives 

F{F, + FXXI)x-Fx(F, + Fxxx) + 3{F2

xx- ΡχΡχχχ) = 0• (183) 

When we look for a solution of the form 

F = l + eFl + e2F2 + · · · , ε « 1 , (184) 

equation (183) leads to the following hierarchy of equations: 

(Fl, + Flxxx)x=0, (185) 

{F2, + Fu»)M = -*(FL ~ Fu Flxxx), (186) 

{F3, + O , = ~Fi ( f 2 . + F ^ ) x

 + Fix (Flt + F2xxx) 

-^FlxxF2xx-FuF2xxx-F2xFXxxx\ 0 8 7 ) 

{F4I + F^l = -F2(F2U + F2xxxx) + F2x {F2t + F2xxx)-3(F2

2x -F2x F2xxx), (188) 

etc. 

Equation (185) has the solution 

F\= f\ + / 2 . ; = 1,2. (189) 

When we use equation (189), equation (186) becomes 

{F2, + F2xxx)x = 3α ,α 2 [ a 2 - a , ) 2 f j 2 , (190) 

from which 

( a , - a , ) 2 

F2=)~J
 l i r f J i - (191) 

When we use equations (189) and (191), equation (187) becomes 
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(F> + = J ^ J [ - ( / , + Λ ) { ( / , / , ) „ + ( / / , ) „ } 

+ ( / . χ + Λ , ) { ( / . Λ ) , + ( / . Λ ) „ } - 3 { 2 ( / 1 β + / 2 β ) 

x ( / , / 2 L - ( / . , + / 2 , ) ( / . Λ ) „ - ( / . Λ ) , ( / . « 

= r _ ^ + 3 / l x / 2 j B , + 3 / , „ / 2 j l ) 
( a 2 + o , ) 

+ (/,, + / 2 , ) ( 3 / u / 2 „ + 3 / j e / 2 x ) - 3 {2 ( / ,„ + / 2 j B ) 

x ( / , „ / 2 + 2 / 1 J t / 2 , + / , / 2 e ) - ( / u + / 2 j t ) 

x ( / ΐ β , Λ + 3 / ι „ / ϊ , + 3 / u / 2 „ + / , / 2 β ) 

- ί / ΐ χ / 2 + / ΐ Λ , ) ( / ΐ « , + / 2 „ ) } ] 

= ^ " " ' L / ι Λ [ -3« , a 2 («, + « 2 )(/> + Λ ) 
( « 2 + « . ) 

+ 3 a , a 2 (a , / , + a 2 / 2 ) - 3 {2 (a , + a 2 ) (a , 2 / , + a 2 / 2 ) 

- (« i + « 2 ) 2 ( a i / . + « 2 / 2 ) " ( « ι 7 ι + « 2 3 / 2 [ 

= 0, (192) 

so that 

F 3 = 0 . (193) 

When we use equations (189), (191) and (193), equation (188) becomes 

(F4, + F 4 * J , = 0 , (194) 

so that 
F 4 = 0 . (195) 

Thus, 

F„=0, n>2. (196) 

Therefore, (184), (189), (191), and (196) imply that 

. , (or, - a,)' 
F = 1 + e ( / , + / 2 ) + £ 2 ^ ^ j - / , / , (197) 

( « 2 + « l ) 

is an exact solution! Consequently, one may put ε - 1. 
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Thus, one has from (182) and (197) 

[(α1

2/ι+α2

2/2) + 2(α2-α,)2/ 1/ 2 

-Φ = 
12 "|2 

» + (/. +Λ + ^ ^ 
( « 2 + « , ) 

Note, from (198), that a single solitary wave is given by 

« 7 
12 0 (l + /V 

Note that 

3 α 2 

(198) 

occurs on 
f - l , x = s+at. 

Next, note that 

» 7 i 

0 + / > ) 2 

1 2 (1 + / , ) ( « 2 + « , ) 

The latter is a solitary wave with s, replaced by s,, where 

1 ! 

sl=st In 
or, 

" 2 + « . 

v«2-«.y 
which signifies a finite displacement of the profile in the x-direction. Similarly, 
when f2 ~ 1 and / , is either large or small, one has the solitary wave a2 with 
or without a shift in s 2 . Where / , = 1 and / 2 = 1, one has the interaction region. 
Where / , and f2 are both small or large, one has 0 = 0 . 

In order to consider the behavior of two interacting solitary waves, let 
a2 > or, > 0 ; the solitary wave a2 is bigger and thus moves faster than the wave 
a , . As t => - o o , one has 

fx = 1, f2 <\: wave a, on χ = s, + aft 

f2 =1 , ft > I: wave a 2 on JC = s2 —— In 
a-, 

+ ah 
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* ι t ^ ι 1 , ( oc, -f- or, 
/ι = *· Λ ^* 1 : w a v e a , on χ = s. In 1 —2 1 

/ 2 = 1, / , <t 1: wave a 2 on χ = s 2 + a 2 / 

and elsewhere 0 = 0 . 

Thus, the solitary waves emerge unchanged in form with the original 
parameters a, and a2, with the faster wave or2 now being ahead of the slower 
wave or,. The only remnant of the collision process is a forward shift 

In 

a, 
a, +a 

for the wave or2, and a backward shift 

— In 
a , 

or2 + a, 

v a 2 - a , , 

for the wave or,, from where they would have been in the absence of a collision. 

Zabusky and Kruskal introduced the term soliton to describe such remarkably 
stable nonlinear structures. 

Stokes Waves 

Irrotational, steady, progressive waves were considered first by Stokes and are 
called Stokes waves. The Korteweg-deVries equation (144) can be written as 

dh, 
dt 

i + 2 ^ 
2 h 0 / 

dh, 
dx 

d \ 
+ Ydx> 

- 0, (199) 

where 

Y = 
Co Κ 

Let us find the next approximation to the linear periodic wave train using the 
method of strained parameters. Thus let 

2 - = £Λ υ ( θ ) + ε 2 A,12' (θ) + ε1 A,(3) (β) + 

ω = ω 0 (£) + ε ω , (£) + ε2α>2(£) + · · · , 

(200) 

where 
θ = k χ - ωί. 

When we use (200), (199) leads to the following hierarchy of equations: 

and elsewhere φ = 0 . 

As f => ο», one has 
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(m-c0k)hf] -yk^hf = 0 , (201) 

{<o-c0k)h(f-yk\f =-c0kh«]hf -α>Λ("', (202) 
2 

( ω - c 0 k ) h ? - yk\f = 1 c0 k(h<? h?) - co2hf, (203) 

etc. 

Equation (201) gives the linear result: 

Λ,(1> = cos 0, ft>0(/t) = c0k-yk\ (204) 

When we use (204), the removal of secular terms on the right-hand side in 
(202) requires 

ω, = 0. (205) 

When we use (204) and (205), (202) gives 

* ( 2 ) = _ £ o _ c o s 2 0 . (206) 
%yk2 

When we use (204)-(206), the removal of secular terms on the right-hand side 
in (203) requires 

3cl 
ω = — ° — . (207) 

32 y it 

Thus, 

ft, n 3ε2 

— = ε cost? + — r ^ - cos20 + 
Κ 4kX 
ω 1 2 2 9ε2 

— - l - - / t ft,, + — + ••· 
c0k 6 0 16/t2ft2 

(208) 

Equation (208) exhibits two essential effects of nonlinearities: 

* Periodic solutions of the form £, (**"ω ) may exist, but they are no longer 
sinusoidal. 

* The amplitude appears in the dispersion relation. 

Stokes showed that the Stokes waves have a limiting form with a sharp crest 
enclosing an angle of 120°. A simple and accurate analytical approximation to 
the Stokes wave profile was given by Longuet-Higgins: 

dh 
— = tan χ . 
dx 

It should be mentioned that the two-dimensional waves described by the 
Korteweg-deVries equation are more likely to be found only under controlled 
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conditions in the laboratory than in a natural setting where depth variations, 
nonuniform currents, and other effects lead to three-dimensional wave patterns. 
The propagation of three-dimensional, finite-amplitude, long waves is described 
by the Kadomtsev-Petviashvili equation, which is a generalization of the 
Korteweg-deVries equation to incorporate weak three-dimensional effects. This 
equation provides a suitable framework to describe oblique interactions of solitary 
waves (Miles) and periodic waves (Segur and Finkel). 

Modulational Instability and Envelope Solitons 

Let us superimpose a slowly varying weak modulation on a stationary weakly 
nonlinear wave, and study the evolution of such a modulation. Let us assume that 
the basic wave can be taken to be sinusoidal, i.e., 

Because of the nonlinearities, the dispersion relation is of the form [see (208)] 

Consequent to the superimposition of the modulation, let us assume that the 
wave is still plane periodic, but with the amplitude and phase varying slowly in χ 
and t: 

ψ = α0 cos θ0, θ0 = k0x - a y . (209) 

(210) 

a = a(x, t), 

θ(χ, t) = kQx - (O0t + φ(χ, t). 
(211) 

(212) 

For weak modulations, one may write 

a>-al) + ^-{k-k0) + ^ ( k - k J + --- (213) 

so that using (212), one obtains 

(214) 

where u0 is the group velocity, 

Next, note, from (212), that 

(215) Ψ χ-
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Further, since the given wave has been assumed to be weakly nonlinear, we may 
make use of the result 

When we use (215), (57) leads to 

When we introduce 

ξ = χ - « 0 ί . ^ " i n -

equations (214) and (216) become 

1 1 
x 2Ψξ u' \ d a l j 

(a2-a2

Q) = 0, 

If we let 

φ, {α*-αΙ)~â^-α<\ 

one then obtains, on linearizing equations (218) and (219), 

^ 2 = Q p d(Q 
u'0 da2 x2. 

Therefore, instability arises if 

1 dco n 

— T T < 0 -
"ο dao 

(57) 

(216) 

(217) 

(218) 

(219) 

(220) 

(221) 

(222) 

If in (213), one replaces ( ω - ω 0 ) by the operator i(d/dt) and (k-k0) by 

-i(d/dx), one obtains the so-called nonlinear Schrodinger equation: 

da da> da 1 d ω 
— + + — dt dx 2 

d a d(i) I, a t i 2 \ 

p - p - H - h l ) e e 0 - <223> 
In the frame of reference moving with the group velocity, equation (223) 

becomes 

da 1 d2a , ,2 

ι — + -+K\a\ a = 0 , 
dr 2<9£2 

(224) 

where we have put a = Ü ί , ' ( Α"/ ί α») ' a n c j : put 

. do) 
ξ=χ-—ί, 

dL 
τ = • 

d2co 

dkt 
t, κ = 

do)/da2

0 

d2a)/dk2 
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Plane-wave solutions of equation (224) are modulationally unstable if κ > 0 , 
i.e., a ripple on the envelope of the wave will tend to grow. 

In order to see why the sign of κ matters, consider a ripple on the envelope 
(see Figure 2.41). Suppose 9ω)9αΙ < 0 . Then, the phase velocity u)//fc = c 
becomes somewhat smaller in the region of high intensity. This causes the wave 
crests to pile up on the left in Figure 2.41 and to spread out on the right. If 
d20)/dk2 > 0, the group velocity u = dco/dk will be larger on the left than on 
the right, so the wave energy will pile up into a smaller space. Thus, the ripple 
on the envelope will become narrower and larger and an instability ensues. On the 
other hand, if dco/dal and d20)/dk2 were of the same sign, this modulational 
instability will not develop. Alternatively, one may regard equation (224) as the 
Schrodinger equation for "quasi-particles" whose wave function is given by a and 
which are trapped by a self-generated localized potential well Τ = Jf|a|2. If 

K">0, this potential has an attractive sign. Therefore, if the "quasi-particle" 
density | a | 2 increases, the potential depth increases, and if κ > 0 , more "quasi-
particles" are attracted, leading to a further increase in the potential depth. In this 
sense, the instability may be regarded as a consequence of the self-trapping of the 
"quasi-particles." 

Let us now construct a localized stationary solution of equation (224). When 
we put 

α = υ(ξ-υτ) (225) 

equation (224) gives 

Ι Õ - + - ( 2 χ - ί / ) υ ' + J / 2 

- — υ + κ·| υ | υ = 0. 
(226) 

J 

When we let 

Figure 2.41. Modulational instability. 
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γ = . 
U 

S~ 2 2 ' 

equation (226) becomes 

υ -αυ + 2κν = 0 . 

Upon integrating once, equation (228) gives 

/ 2 2 4 

υ =αυ -κυ , 
from which 

If we put 

(230a) leads to 

from which 

dv 

κí 

1 - κυ 

a 

2 l + w 
If κ > 0 , a > 0, one obtains, from (232), 

υ = — sec Λ V a (ξ - t/τ), 
V κ 

(227) 

(228) 

(229) 

(230a) 

(231) 

(230b) 

(232) 

(233) 

which represents an envelope soliton (Figure 2.42) that propagates unchanged in 
shape and with constant velocity. The latter result arises because the nonlinearity 
and dispersion exactly balance each other - a result which turns out to be unique 

Figure 2.42. An envelope soliton. 
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to one-dimensional solutions. Further, if the wave energy is to move along with 
the above envelope, the latter must move near the group velocity u of the wave in 
question. 

Note that this solution is possible only if modulational instability occurs, i.e., 
if K>0. This suggests that the end result of an unstable wavetrain subject to 
small modulations is a series of envelope solitons. 

For nonlinear gravity waves in water, according to (208), one has 

do) „ d2(0 

so that according to (222), such waves are unstable to small modulations. Indeed, 
careful experiments of Benjamin and Feir on waves in wavetanks showed that 
consequent to such a modulational instability, an originally almost uniform 
wavetrain degenerates into a series of wavegroups. Figure 2.43 shows the 
experimental traces of waveheight as a function of distances from the wave-
making device at one end of the wavetank. At 200 feet the amplitude of the wave 
was almost uniform, while at 400 feet it was not. 

It is found that the above modulational instabilities exhibit a nonergodic 
behavior in their long-time evolution. The numerical solution of the nonlinear 
Schrodinger equation (224) with periodic boundary conditions and with a 
modulationally unstable initial condition shows that (Lake et al.) a state of 
maximum modulation is reached by the unstable wave system. After that, the 
solution demodulates and eventually returns to an unmodulated state. This process 
is repeated in time. Thus, the end state is neither random (no thermalization) nor 
steady, but consists of a time-periodic spreading and regrouping of wave energy 
initially confined to carrier wavenumber and its linearly unstable harmonics and 

Figure 2.43. Experimental traces of wave height as a function of time. Upper 
trace: 200 feet from the wavemaker. Lower trace, 400 feet from the wavemaker 
(from Benjamin, 1967). 
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sidebands (Figure 2.44). This is similar to the Fermi-Pasta-Ulam recurrence 
observed in oscillations of an anharmonic lattice. This is due to the fact that the 
actively participating modes in this long-time evolution are few and clearly 
identifiable (with those which are modulationally unstable), and these linearly 
unstable modes nonlinearly evolve into a superperiodic state. 

According to (222), a finite-amplitude uniform wavetrain is unstable to 
infinitesimal modulations with sufficiently long wavelengths while it is stable to 
modulations with short wavelengths so that a threshold for instability exists. The 
long-time behavior of the linearly unstable modulation near this threshold for 
instability shows that (Janssen) the nonlinear effects stabilize the linearly 
unstable modulations and produce a periodic motion. For this purpose, let us put 

a = e + <p (235) 

and first write equation (224) in the form 

<*+HJ£H*f - l*f )» - 0 - < * 9 
dt 2 σξ v ' 

In order to investigate the modulational instability of the wavetrain whose 
evolution is governed by equation (236), one puts 

φ=ñ"2âίσ, (237) 

so that equation (236) gives 

ρ , + ( ρ σ χ ) , = 0 , (238) 

σ'+2σ*+ wñ2χ ~ip~Pxx~ k(P-P°)=0- ( 2 3 9 ) 

In order to perform the linear stability analysis, one puts next 

e'lK"a'\ (240) 

where Κ is the wavenumber and Ù is the frequency of the modulation. Assuming 
that | p , | <̂  | p 0 |, and keeping only the terms linear in p, and σ,, we obtain, 
from equations (238) and (239), 

Ù2 =- Κ2(κ2 -ΑκñΛ. (241) 
4 

V 
= + 

Figure 2.44. Recurring modulation and demodulation of the wave envelope (from 
Lake et al., 1977). 
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Thus, if κ>0, Ω2 is negative for | Κ\<^Ακρû. 

We will now consider the nonlinear development of the initially linearly 
unstable modulation. For this purpose, we consider the initial-value problem for 
modulations with wavenumbers near the threshold for instability given by 
Κ1 = 4 κ ρ 0 . 

We look for a solution of the following form: 

ρ{χ,Þ = ρ0 + ερι{χ,τ) + ε2ρ2{χ,τ) + • 

σ(χ, Þ = εσ, (χ, τ) + ε2σ2 (χ, τ) + 

Κ1 =4ρ0κ + ε2χ+ •··, (242) 

where ε is a small parameter that characterizes the departure of Κ from the 
linear stability threshold value 4 p 0 v , and τ-ει is a slow time scale 

characterizing slow time evolutions near the stability threshold. We have 
introduced an explicit detuning parameter χ in (242). 

Substituting (242) into equations (238) and (239), we obtain the following 
systems of equations to various orders in ε : 

θ(ε"): 4i"] = S " (A> 'P . . " -P . -p°" · ó - ) · " = 1 · 2 ( 2 4 3 > 

where 

Ls 

0 

1 d2 

d2 

0 

and the function Sn depends on the solutions up to θ(ε" 

We obtain, from equation (243), to 0 ( ε ) : 

= 0 (244) 

the solution which corresponds to the neutrally stable case of the linear problem: 

p, = A(T)e'Kx + c .c , 

σ, - α(τ), 

Κ2 = 4ρ()κ, 

where c.c. means complex conjugate. 

Using (241), we obtain, from equation (243), to θ ( ε 2 j : 

(245) 
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dA i K . 
e + C . C , 

dt 

-K\A\2

+PU^ + {-IKAV"* + c.c>, 

(246) 

from which 

+ c.c, 
1 da . . | 2 A' 

Pt= \ A \ + e 
K2 κ άτ 1 1 2 p 0 

1 dA ,Kx 

σ , = — 5 e'Kx +c.c . 
2 4 ρ 2 κ </τ 

Using (245) and (247), we obtain, from equation (243), to θ ( ε 3 ) : 

1 d2a + d\Al 

(247) 

κ· dx2 άτ 

——^-A- + — yA + -^—\A\2A + 
ΑΡοκάχ2 4 Λ 2 ρ 0 ' 1 

2κΑ'\-— - | Λ Γ l ^ ' A * + c . c 
κ: 

+ nonsecular terms. (248) 

Removal of the secular terms in the first member of equation (248) requires 

(249) 
1 dec - .2 

| Λ | =const. 

Let us take the constant above to be zero. Thus, removal of the secular terms in 
the second member of equation (248) then requires 

d2A 
άτ2 

(ρ0κχ + 2κ2\Α\2Α) = 0. 

If we impose the following initial conditions, 

T = 0: A = A, — = 0 , 
dx 

and take A to be real, we obtain, from equation (250), 

dA 

{dx 
= κ2(λ2-Α2)(Α2-β), 

(250) 

(251) 

(252) 

where 
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Equation (252) shows that A is bounded and oscillates between A and y/J if 

β > 0 and oscillates between 0 and A if β < 0. This demonstrates the nonlinear 

saturation of the linearly unstable modulation [χ < 0) near the linear-instability 

threshold. 

Nonl inear T h r e e - W a v e Resonant Interact ions of C a p i l l a r y -
Gravity Waves 

When two waves with frequencies <0 3 ,ω 2 and wavevectors k3,k2 respectively, are 
present, the nonlinear terms in the equations of fluid flow may contain the 
product of the wave amplitudes, viz., 

, ' ( * l - * 2 ) i » - ' ( < » l - < B l ) ' 

which is a beat-frequency wave. If the frequency α>3 - ω2 = <u, and the wave 
vector k} - k2 = kl of the beat happen to be a normal mode of the fluid, then this 

mode will be generated by the interaction of the first two waves. An exchange of 
energy and momentum takes place between these waves and the process is called 
resonant wave interaction. Thus, the interactions are selective in that only certain 
combinations of wave components are capable of significant energy exchange. 
Further, if the wave amplitudes are small, the interactions are weak because, even 
for the resonant combinations, the interaction time is large compared with a 
typical wave period. However, although the secondary interactions among wave 
components are given by a perturbation term that is algebraically smaller than 
that representing the primary interaction, their cumulative dynamical effect is 
much more pronounced because of the existence of resonant wavenumbers and 
frequencies with the concomitant growth in time of one or more of the wave 
amplitudes. The wave amplitudes show a slow modulation in time, with the 
modulation envelopes being given in terms of the Jacobian elliptic functions. 

Consider an initially quiescent water of infinite depth whose mean surface level 
is given by y - 0 . The water is assumed to be inviscid and is subjected to a 
gravity g = —gi acting normal to the surface and directed toward the water. Let 

us consider the wave propagation to be two-dimensional. If y = T}{x,t) denotes 
the disturbed shape of the surface, one has the following boundary value problem: 

y < r / : φ„+φ„=0, (253a) 

y = r?: Φ, = η, + Φ,ηΧ, (254) 

γ = η: φ, +±{φ] +φ]) +ζη-Ô-ηχχ{\ + η]γ12 = 0 , (255) 

ν = > - ~ : φ}, =>0 . (256) 

Let us now transfer the boundary conditions (254) and (255) from the actual 
location of the surface y = η to the mean location of the surface y - 0 . This is 
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accomplished by an expansion of φ(χ,γ,ί) in Taylor's series about the values at 
y - 0 . Let us retain the nonlinearities only of quadratic order since we shall 
consider only the second-order interactions. The system (253)-(256) now 
becomes 

y<0: Φα+Φ„=0, (253b) 

y = 0: φ,-η,=-φ„η + φπηχ, (257) 

Τ 1 y = 0: φ ι + Î η — - η ι α = - φ ν η - -
Ρ *-

• 0 , 

(258) 

(256) y =>-°°: Φ}. 
where the left-hand sides represent the linear problem and the right-hand sides 
contain the nonlinearities that produce the interaction between the waves. 

Let us consider unidirectional wave propagation since this case is well suited 
for experimental verification, and consider waves of the form 

φ(χ,γ,Þ~ε»-1*} 

Φ , ' ) J 
where we have noted (253) and (256). Let us now introduce 

(259) 

where 

α=η φ, 
ω 

ω 2 =gk + - k\ 

(260) 

Using the linear parts in (257) and (258), one then obtains 

da 
— = icoa, 
dt 

(261) 

so that α is a normal mode of the linearized problem associated with (253)-(256). 
When the nonlinear terms are included, one obtains, from (257) and (258), 

da ik 
— -,ωα = φ η-φ,ηχ+ — 
dt ω 

Φ 9 η + ^(φ]+Φΐ) (262) 

Let us now consider two capillary-gravity waves of the form e'^' and 

e'W V) p r 0 p a g a t i n g in the jc-direction with 

Τ 
ω1 = S * 3 + - *3· 

Τ 
ω1 = g * 2 + - * 2 · 

Ρ 

Γ 

Ρ 

(263) 
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Due to nonlinear interaction between these two waves, let another capillary-
gravity wave of the form e ' ^ ' ' ' k ' x \ propagating in the ^-direction, be excited such 
that 

ω 3 - ω2 = ω,, (264) 

For the linearized problem, one obtains 

a 
η = 2 ' 

Λ 1 ( 0 

-t(ci)t-kx) 

(265) 

a = a(t)e * ' +a (t)e 

where a(t) is a slowly varying function of time. 

Using (265), equation (262) gives, upon keeping only the resonant terms 
[according to (264)] on its right hand side, 

da 
ιω,α, = ——!—- a.a,, 

dt 3 3 2 ω , 1 2 

da, /'Λ,ω,ίû, 
—~ - ιωºαº = ^—- α3αι, 
dt 

da. 

2ω2 

_ ι£ ,ω 3 ω 2 

d t ' l C 0 ^ = — t o T a ^ ' 

(266) 

(267) 

(268) 

and in terms of the φ, equations (266)-(268) become 

ψ={^2)φ}φ2 

ψ = .(^2)φ3φΐ. 

(269) 

(270) 

(271) 

where d/dt characterizes only the slow variations in the amplitude suffered by 
the waves undergoing resonant interactions. 

, 2 I t may be noted that whether or not solutions of (264) exist depends upon the form of the 
dispersion relation involved. Thus, it turns out that three-wave resonant interactions are not possible 
for deep-water gravity waves, which allow instead four-wave resonant interactions to occur with 
the concomitant matching conditions (Phillips: 

ù, + ù 2 = <o3 + ù 4 , 



Water Waves 1 6 1 

For some prescribed initial values of the amplitudes of the three waves, 
equations (269)-{271) can be solved by quadratures and the general solution can be 
expressed in terms of Jacobi elliptic functions. As an illustration, let us consider 
a case wherein only the modes φι and φ2 are present initially, and mode φ} is 
then absent, i.e., let 

t = t0: φ12=φ<$, 03 = 0 - (272) 

Equations (267>-(271) then indicate the generation and growth of the mode 0 3 at 
the expense of the modes 0, and φ2. 

One obtains, from equations (267)-(271) 
|2 

I ο , I I 
:0 

d_ 
dt 

ΦÀ 03 

k k k k 

or 

M = 0 i o ) 
! *3 Μ 

*ι 0<O) : 

(273) 

Similarly, 

φ2 f = φ. (0) 
*2 φ^' 

(274) 

When one uses equations (273) and (274), equation (269) becomes 

<?03 

dt 

from which 

= Φι <t>2 * Λ 

\̂ ( 

l - = i 
I 
•1 

*. U(0> (0) 
(275) 

03 = 0<°> in (276) 

where 

ò = 0 1

( ο ) * 1 λ / * ^ ( r - r 0 ) , 

10) 

(277) 

Let us assume that /w < 1. Noting that 
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d_ 
dt Φ\0) 

d_ 
dt 

*2 Φ? f 
= m, (278) 

we may regard m as measuring the extent to which resonant partners participate in 
the interaction. In particular, m < 1 implies that the mode k2 is decreasing at a 
rate faster than the mode kx. 

When we use equation (276), equations (273) and (274) give 

φ =φ'. (0) cn (Ó/m), 

φλ=ΦÃ dn(Z/m). 

(279) 

(280) 

Here, sn, cn, and dn are Jacobian elliptic functions with real parameter. The 
solutions (276), (279), and (280) represent a system for which energy is 
transferred around periodically among the three waves k{,k2,k3. Initially, the 
energy in mode k} increases at the expense of both modes kt and k2. Eventually, 
the energy in mode k2 vanishes (since we have assumed the mode k2 to decay at 
a faster rate than the mode kt). Then, the direction of energy transfer is reversed, 
modes it, and k2 now increase at the expense of the mode £ 3 until the initial state 
is reached again, and this sequence of energy transfer repeats itself. The period of 
this energy transfer is 

2K(m) 
— 

(0) 
(281) 

k2k} 

where K(m) is the complete elliptic integral of the first kind. 

The case kx=k2- ^g/2T - k}/2, which corresponds to the second harmonic 

resonance, is a degenerate case of the triad resonances for which two members of 
the triad are identical, the closure being their second harmonic. Since m = 1 for 
this case and we have 

2 
m • \: K{m)~\n (282) 

the period of the energy transfer from (281) is infinite, and the interaction takes 
on an asymptotic character. Thus, (276), (279), and (280) become 

Φι = 
AO) tan hL, (283) 

02 

(0) sec hL, 

</>'0) sec/ ιΣ. 

(284) 

(285) 
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We will discuss the second-harmonic resonance in detail below. 

Second-Harmonic Resonance 

If a typical surface disturbance is characterized by a sinusoidal traveling wave with 
amplitude a' and wavelength λ', then let us nondimensionalize all physical 
quantities in the following with respect to a reference length ( λ ' / 2 π ) and a time 

(A'/27Tg')1/2, where g' denotes the acceleration due to gravity; the primes here 
denote the dimensional quantities. The potential function of the motion of the 
liquid is taken to be ^ ' 1 / 2 ( λ ' / 2 π ) 3 / 2 φ. If y = η denotes the disturbed shape of the 
surface (whose mean level is given by y = 0 ) , one has the following boundary-
value problem: 

y = ri 

Φα+Φ„=ο, 
φ , = η,+ηΑ· 

(286) 

(287) 

(288) 

(289) 

where 

Let us look for traveling waves and introduce 
ξ =x-ct, 

so that (206H209) become 
y<r/: φκ+φ„=0, 

y = rj: φγ=(φξ-ήηξ. 

(290) 

(291) 

(292) 

(293) 

y => -°°: 0 => 0. 

Seek solutions to (209), (211)-(213) of the form 

(289) 

0(S,y;e) = £ e "0„(£,y) , 

(294) 

c{k;e) = ^e\{k). 
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where 

, 2 π , 
ε = α <\. 

λ' 
Using (294), one obtains from (289), (291 )-(293) the following hierarchy of 

boundary-value problems: 
0(ε): 

y < 0 : φ]ξξ+φ1π=0, (295) 

y = 0: φίγ=-€0η,ξ, (296) 

η, =c , 0 l i +A o

2 T ; l 4 4 , (297) 

y=>-co: 0b. =>0. (298) 

y < 0 : φ2ξξ+φ2)7 =0, (299) 

y = 0: φ2,+Φι„ηι=-€0η1ξ+(φιξ-οι)ηι(, (300) 

^ = *o(*2 4
 +ΦìΑ)~\[Φι(

 +K) + C A +ko\x + 2 * 0 * , τ ? ι κ , (301) 

ν = > - ~ : 02, =»0 . (302) 

θ(ε>): 

y < 0 : 0 3 ί ί + 0 3 „ = Ο , (303) 

y = 0: f v + 02„.γ/, + 0l w,r/2 + ^0,wi7, 2 , 

= - c o T i J i + (ΦÀξ - c i ) f 2 i + ( ^ +0ΐί,.Π, - ί · 2 ) τ ? 1 ξ . (304) 

-Φ>ξ(φ^ +Φ^)-Φ^+<Ì,)+*0χξ 

3 2 2 

+ 2k0ktf2g + 2k0krfHi · (305) 

ν =>-*>: 03 > = » 0 . (306) 
Let 

η, = Λ cos ξ. (307) 

Then, from (295Μ298), one obtains 
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<l>\{$>y) = A c a e y s i n ^ 

Next, letting 

η2= Β cos2^ 

and using (307H310) , one then obtains, from (299), (300), and (302), 

12 Λ 
B--

2) 
e y 5ίη2ξ+clAey sin ξ. 

(308) 

(309) 

(310) 

(311) 

Using (307)—(311), one finds that the removal of secular terms in (301) requires 

/ t , = c , = 0 (312) 

and then 

B = 
2(l-2k2

0) 
(313) 

The case k0 = ± y l / 2 , where the above solution breaks down, corresponds to the 

second-harmonic resonance, which we shall treat shortly. 

Using (307H313) , one obtains, from (303), (304), and (306), 

cl/4 3 ^ 
<t>M>y) = A -cnA' 

\-2kl 8 + c, ey sin ξ + higher harmonics. (314) 

Using (307)-(314), one finds that the removal of secular terms in (305) requires 

( „2 2 ^ gp/2 , 1 3 * 0

2 

l-2k2

0 2 8 c 0 , 
A2, k,=0, (315) 

which is again not valid for k0 = ± λ / Ú / 2 . 

In order to treat the case of second-harmonic resonance, wherein k = ± yJ\/2 , 

first note that for this case, the fundamental component 

77;"= A cos £ 1 

φ\ι) = Ac0ey sin ξ} 

and its second harmonic 

η{2) = ficos2£, I 

φ{2) = Bc0e2y sin 2ξ{ 

have the same linear wave velocity c 0 , so that the two can interact resonantly 
with each other. In order to treat this nonlinear resonant interaction, put 

rj, = Α οο&ξ + Β οο&2ξ, (316) 
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0, = c0 [Aey sin ξ + Be2y sin 2ξ). 

Using (316) and (317), one obtains, from (299), (300), and (302), 

(317) 

3AB 
c0 + Ac, sin ξ 

+ {-A2c0 + 2Bc^-e2y ýη2ξ+ higher harmonics. (318) 

Using (316M318), one finds that the removal of secular terms in (301) requires 

-c] B + 2c0cx-2k0k\ = 0 , 

1 „ 2 CoA + 4c0Bcl-UnklB = 0, 

from which 

B- c l ±] 4 c0kx , 

k^K+dikp Co ìúτττ 
1 2c 0 2 \ 4 0 1 ' 

(319) 

(320) 

(321) 

(322) 

which show that purely phase-modulated waves are possible for wavenumbers 
near the second-harmonic resonant values. 

Hydraulic Jump 

Flow in a channel downstream of a sluice gate experiences a sudden transition 
from a supercritical (V > sfgh, where h is the water depth) flow to a subcritical 

V< ^fgh} flow. Under these conditions, infinitesimal disturbances cannot travel 

upstream, but finite disturbances can travel with a speed equal to V to make a 
stationary jump possible. The free surface rises sharply and is usually covered 
with a mass of foam beneath which there is a violent turbulent motion; this is 
called a hydraulic jump, which is analogous to a shock wave in supersonic gas 
flows (see Section 3.3). The relations between the values of the flow variables on 
either side of the discontinuity can be obtained from the conditions of continuity 
of fluxes of mass and momentum. The mass flux density is pVh. The 
momentum flux density is 

](p + pV2)dz = pV2h + ^pgh2, (323) 

where we have noted that for a shallow water ρ = pgz. If the states upstream and 
downstream of the discontinuity are denoted by subscripts 1 and 2, then one has 
the following conditions: 
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Vlhl = V2h2, (324) 

Vfy + ^ 2 = V f o ( 3 2 5 ) 

The energy fluxes on the two sides of the discontinuity are not the same, and 
their difference accounts for the rate of energy dissipated in the discontinuity. The 
energy flux density is 

][p + 1 V 2 j pV dz = i P V A (gh + V1), (326) 

0 
so that its drop is 

Thus, /ij > Λ,, or the liquid attains a higher surface level across such a jump. 

The Froude numbers F=v/-Jgh upstream and downstream of the jump are 

given by 

1 vSr 

2 ^ Ë / 2 / ^ 

(327) 

Thus the result h1>h\ then gives 

F, >1 and F 2 <1 , (328) 

as with the Mach numbers upstream and downstream of the shock wave in 
supersonic gas flows (see Section 3.3). 

E X E R C I S E S 

Show that the wavelength λ of stationary waves on a stream of depth h and 
flow speed U is given by 

2 g*- , , 2nh U = — tan h 
27Γ λ 

and hence deduce that such stationary waves exist provided that U < ^[gh . 

Show that the semivertex angle of the shipwave pattern is 19.5° by merely 
in invoking the fact that the ratio of the group velocity and the phase 
velocity for deep-water waves is 1/2. 
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3. The linear dispersion relation ω = gk for gravity waves in deep water can 
be generalized to the two-dimensional case by interpreting k as the 
magnitude of the wavevector k=(t,m). This leads to the nonlinear 
dispersion relation 

1 
ft) = g4e^n7 + i V F ( i 2 + « 2 ) V 4

f l

2 . 

Expanding this about k0 = (* 0 .θ) with perturbation (*, ,* 2 ) , show that 

2k0 ' 8*2 ' Akl 2 

where ft>0 = -\jgk0. Show that this relation, then, leads, to the following 

nonlinear Schrodinger equation describing the evolution of the t w o -
dimensional modulated gravity waves (Zakharov): 

da ω0 da 

dt 2k0 dx 

ω„ d a ft)„ d a 1 
• + -

8*„ dx' 4*o dy 2 
-±ωΧ(\α\2-\α0ήα = 0. 

Investigate the stability of the three-dimensional modulations by putting 

α = [ñ(ξΜÔ^'\ ξ = Χ - ^ , η = γ, 

jLKq 

Ρ = Ρο+Ρι{ξ<11>Þ> σ = σ,(ξ ,Ã / , ί) , 

Ρι(ξ,η,Þ and σ^Þ-â*"**"** 

and by linearizing in p, and σ,, show that the growth rate Ω is given by 

which shows that the instability region for three-dimensional modulations, 

unlike that for two-dimensional modulations, is unbounded in (KrK1)-

space! 

2.7 . Applications to Aerodynamics 

We shall now deal with the aerodynamic forces which act on a lifting surface in 
flight. This information is required for performance and structural-strength 
calculations or, in the unsteady case, for purposes of stability and control. 
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Though ideal-fluid aerodynamics assumes that the fluid is inviscid, it does 
recognize and account for the gross features of the flow which would not be 
present if the fluid were truly inviscid. ^ The circulation about an airfoil, the 
Kutta condition, and the shedding of free vorticies at the trailing edge of the wing 
whenever the circulation varies along the wing span are cases in point. One may 
assume that the viscous processes involving boundary-layer separation and the 
shedding of vortices into the flow occur so rapidly upon a change of flow 
conditions that the Kutta condition at the trailing edge can be taken to be satisfied 
at each instant. The success of the two-dimensional airfoil theory for unsteady 
flows (e.g., flows over oscillating airfoils) where one supposes the vorticity in 
the wake to be concentrated into a plane vortex sheet, adjusting itself with zero 
delay time to the requirement of smooth flow at the trailing edge, indicates that 
such adjustment is, in fact, very rapid. 

Airfoil Theory: Method of Complex Variables 

Consider a wing of infinite aspect ratio, whose generators are parallel to the z -
axis. The cross section of the wing is the same in all planes parallel to the x, y -
plane, and it will therefore suffice to consider the conditions in that plane only. 
Since the third dimension ζ no longer appears, ζ may be reassigned to mean 
something else, as in the following. 

Force and Moments on an Arbitrary Body 

In a classical approach the force exerted on a fluid by a moving body is calculated 
by first calculating the momentum in the fluid and then differentiating the latter 
with respect to time. This method fails when applied to bodies in uniform steady 
motion because the fluid would have then received an infinite momentum from 
the constant force acting on it for an infinite time. A more workable approach is 
to calculate the forces in steady motion by integration of the pressures on the 
moving body. 

THEOREM (Blasius): Let C be a simple closed curve in R2 which constitutes 
the trace of an arbitrary body in the x, y-plane (Figure 2.45). Let υ be a steady 
two-dimensional velocity field defined on the exterior of C such that υ is parallel 
to C on C. The force exerted by the fluid on the body is given by 

(1) 

where 
W(z) = Ve-ie, z = j 

Proof: We have, on using the Bernoulli integral, 
ζ = χ + ty. 

In an attached flow past a wing, the viscous effects are actually confined to a thin boundary layer 
adjacent to the wing surface and the wake. The presence of the boundary layer changes the 
effective cross section of the wing, and therefore, it influences the pressure distribution over the 
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Figure 2.45. Force exerted by a fluid on a body. 

X - iY = j p(-dy - idx) = £ f (u 2 + υ 2 ){idx + dy) 
c 2 c 

= | j(u-iv)2(dx + idy) = ^ j[W(z)f dz, 
c c 

where we have noted that ν on C is parallel to C so that udy = vdx. 
The moment about 0, exerted by the fluid on the body, is given by 

M = jp(-y sinfl + x cos0) ds = -^- Re ^[W(z)f zdz, (2) 
c 2 c 

where the moment Μ is reckoned positive when clockwise. 
Using Cauchy's integral Theorem, the integration may be carried out around an 

infinitely large circle S enclosing C, provided that there are no singularities 
between S and C. 

As an example, consider the flow with velocity V_ in the x-direction and a 
clockwise circulation Γ past a cylinder of arbitrary cross section. Then, W(z) is 
regular except possibly at or inside the contour of the body. Therefore, it can be 
expanded into a Laurent series 

W(z) = X^-, (3) 

where 

2π 
Thus, 

[ ν ν ù ] 2 = χ % , (4) 

wing. However, the inviscid theory affords the correct first approximation for most of the flow 
field, provided that the flow remains attached over most of the airfoil. 
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where 
Bq—Aq, Z? 1 =2A 3 i4 1 , B2 = AX + 2 A q A 2 , — 

Using (4), (1) gives the following equation for the forces exerted by the fluid 
on the body: 

X-iY = y · 2rtiB, = ipVS\ (5a) 

thus the lift is given, as before, by 
Y = pV„r. (5b) 

Next, using (4), (2) gives the following equation for the moment, about 0, 
exerted by the fluid on the body: 

M = ~ Re{2mB2) = -2pV_Re(iA2). (6) 

Flow Past an Arbitrary Cylinder 

In order to calculate flow past an arbitrary cylinder, one first writes down the 
complex potential of the flow past a circular cylinder in an auxiliary ζ -plane and 
then tries to find a suitable complex transformation that maps the region outside 
the circle onto the region outside the cross section of the given cylinder (Figure 
2.46). Such a transformation is possible only when referred to axes fixed in the 
interior boundaries. 

y ι 

Figure 2.46. Conformal mapping of a flow past an arbitrary cylinder on to a 
flow past a circular cylinder. 
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from which 

or 

1 + <"» dz/Üζ % ζ1 

For the flow in the £-plane, one has, for the complex potential. 

V 
' c + 4V^lnt (11) 

ζ) 2π a 

where, referring to Figure 2.46, one has 

where a is the angle of attack. Thus, 

^ ) = ^ ( ί - ^ - + ^ . η ί ί ^ 1 + Κ . ^ 1 , (,2) 
2π ae ζ-μ 

from which 

dF „ ÚΓ 1 V_a1e'a 

Using the expansions 

From the relation 

m=m- (7) 

and the condition that the flow upstream infinity, for the two cases, is the same, 
one requires, for the transformation ζ = ζ(ζ), 

f = > ~ : ^ = * 1 . (8) 
dz 

Thus, this transformation changes the shape of the interior boundary and the flow 
in its neighborhood. Noting that ζ(ζ) is an analytic function everywhere in the 
region in the ζ -plane outside the circle of radius a and satisfies (8), one may 
write 
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(13) may be written as 

where 

ζ-μ f V V 
1 1 2μ 

(ζ-μ)2=ζ1 + ζ ί + " 

Αι = V„e~ia, 

2π' 

ÚΓ 

4 = 

in 
etc. 

Thus, 

where 

Ç)} = * o + f 
B, B2 

ζ ζ2 

B0 = K = Vle-2,a, 

etc. 

When we use (7) and (15), (1) gives, for the lift, 

and (2) gives, for the moment about 0, 

M0 = -P-Rc[2ni(2B0Cl + B2)] 
2 

= Re (LMe- a - ι 2 π ρ V 2 C , c - 2 , a ) . 

When we put 

μ = ηχε'\ Cx=^1eliy, 

(17) becomes 

M0 = lmcos(5-a) + 2KpVi ^ 2 s i n 2 ( y 
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Figure 2.47. Flow near the trailing edge of an airfoil. 

Flow Around a Flat Plate 

The flow past an airfoil at an angle of attack (see Figure 2.47) near the trailing 
edge resembles that around a flat plate (see Figure 2.48). One has, for the latter 
(see Section 2.2), 

W{z) = Azvl, (20) 

from which 

Ø = ÁÃ,/2 s i n - . (21) 
2 

It turns out that the very low pressure near the sharp edge produces a nonzero 
total force on the boundary. One may see this by calculating the force on a 
boundary coinciding with a streamline Ø = Ø0 (which is a parabola) and then 
allowing Ø0 => 0 . The total force exerted by the fluid on the finite portion of 
this boundary lying within the circle r = R, say, is parallel to the x-axis (Θ = 0) 
by symmetry, and the x-component is 

F„=jpdy, (22) 

with the integral being taken over the section of the curve defined by 

V / 2 s i n - = f 0 or y = l(^-] c o t - (23) 
2 V A J 2 

that lies between θ = ε and θ = 2π-ε, where 
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. ε Ø0 

Sin — = jpr . 
2 Ar1'2 

Using the Bernoulli integral, we obtain 

P = Po-P^-\p\V<t>\2 (24) 

Thus, (22) gives 

A* . 2 θ 
Pa ~P τ sin — 
H o K 8 f 2 2 

f c o s e c 2 - Üθ, 
A2 2 

from which 

Fx~--npA2 as ε = » 0 , (25) 
4 

which represents a suction force concentrated at the sharp trailing edge and parallel 
to the plate and pointing upstream. The effect of this suction force is to make the 
drag force on the plate zero, while the latter still experiences a lift even though 
the existence of a lift would imply the existence of a drag because the pressure on 
either side of the plate acts in a direction normal to the plate. 

Flow Past an Airfoil 

For an airfoil with a sharp trailing edge, the angle ψζ at the trailing edge is not 
equal to ψζ at the corresponding point on the circle in the ζ -plane (see Figure 
2.49), so that the mapping is not conformal at the trailing edge. If the first 
(n-\) derivatives of the transformation function ζ = ζ(ζ) vanish at ζ=ζτ, 
then, since ψζ = π, one has 

so that 

τ-2π-ηπ = π(2 - «) = 0 

gives 

n = 2. 
Therefore, 

ζ = ζτ-Λ = 0. (26) 
"ζ 

For an airfoil with a sharp cusped trailing edge aligned parallel to the direction 
of motion of the airfoil, the flow separation at the rear of the airfoil caused by the 
presence of a stagnation point there would be reduced so that the streams of fluid 
on the two sides would flow toward the sharp edge and join there smoothly. If the 
stagnation point is not located at the sharp edge itself but is located, instead, on 
the upper surface, flow occurs around it with infinite velocity and experiences an 



1 7 6 Dynamics of Inviscid, Incompressible Fluid Flows 

η 

Figure 2.49. Conformal mapping of the flow near the trailing edge of an airfoil 
(from Karamcheti, 1966). 

enormous adverse pressure gradient so that boundary-layer separation (see Section 
4.3) and vorticity shedding occur at the trailing edge which continue until the 
stagnation point has moved to the trailing edge. These transient flow adjustments 
brought about by viscous effects (!) occur rapidly, and one ultimately has a steady 
flow with the flow velocity finite and tangential to the airfoil at the trailing edge; 
this is called the Kutta condition}^ From (26) and (7), this requires 

ζ = ζτ: Ψ{ζ) = 0. (27) 

Using (13), (27) gives 

r = 4naV„s in (a + i3), (28) 

where 

ζτ-μ=α6-'â. 

1 4 However , for a flat plate airfoil, the velocity at the leading edge remains infinite. In 
designing an airplane wing section, it is, therefore, necessary to round off the leading edge 
to reduce the velocity there. However, it is desirable to sharpen the trailing edge since this 
reduces the size of the wake and reduces the drag in a real fluid. 
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y7& 
Figure 2.50. Flow past a circular cylinder in the mapped ζ -plane (from 
Karamcheti, 1966). 

which is represented in Figure 2.50. Equation (27) implies that the circulation 
setup around an airfoil should be of a strength just sufficient to make the flow 
leave the airfoil smoothly at the trailing edge. Thus, for uniform irrotational flow 
past an airfoil with a sharp trailing edge there is just one value of the circulation 
Γ , for which the velocity is finite everywhere. The starting process by which 
this circulation is generated involves shedding of vorticity into the fluid. This 
may be seen by applying Kelvin's circulation Theorem (see Section 2.1) to a 
closed path enclosing the initial position and the present position of the airfoil 
and noting that the circulation around this path must remain zero. As a result, a 
starting vortex, of opposite sense to the circulation round the airfoil, is left at the 
place from which it started. If the viscous effects are negligible, the starting 
vortex would remain there forever! 

Now, from (19), the moment about any point z is given by 

Mz =Μμ +lhcos((p-a), (29a) 

where 

Μμ = -InpVl ξ2 sin2{y-a)) 

z-ì =hev J 

Using (16) and (28), (29a) may be written as 

Μ = 2npV2 ξ1 sin 2(α - γ) - ^ {sin {â + φ) + sin (2α + â - φ)} (29b) 

Equation (29b) shows that the aerodynamic center, i.e., the point about which the 
moment is independent of the angle of attack, is given by 
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I2 

Λ = -2-, φ=β+2γ 
a 

and that the moment about the aerodynamic center is given by 

MAC =2πρν2_ξι s in2(y + /3), 

(30) 

(31) 

which can be verified, from (19), to be the same as that corresponding to zero lift, 
as indeed it must be. 

The Joukowski Transformation 

In order to generate airfoil-like profiles from a circle, one considers a 
transformation 

from which 

If one writes 

dz _ χ C, 2C 2 

(9) 

dz_ 

then one has, on comparison, 

1-«L 

ζ 

\ f 

ζ) 

( ζ Ί 
1--24-

ζ) 

The Joukowski transformation is given by 

dz_ C V 

so that 

Æ = ζ + γ = ζ + γ , say. 

(32) 

(33) 

The inverse of equation (33) is 

ζ = ^ζ + Λ ζ 2 - € 2 

2 V4 
which shows that there are branch points at ζ = ±2C. In order to eliminate the 
multivalued nature of the above expression, we cut the z-plane along the real axis 

between z = - 2 C and z = 2C , and interpret -^1/4 z2-C2 as meaning that 

branch of the function, which behaves like 1/2 ζ as | ζ \ => °° • The latter ensures 

that ζ ~ ζ as | ζ | => °o. 

Note that the transformation (33) maps the circle ζ = Ce'B into the strip 
-2C<x<2C. Thus, one generates a flat-plate airfoil (see Figure 2.51) by 
putting μ = 0, C = a, and β = 0 . 
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-2a 0 la 

Figure 2.51. Conformal mapping of a strip on to a circle. 

Equation (13) then becomes 

= Vme-'a + 
ÚΓ Va2e" 

where 

Then (7) gives 

2πζ ζ2 ' 

Γ = 4παν„ sin α . 

ú Γ Va2eia 

V_e-,a+-
W(z) = -

and on the plate, (35) becomes 

2πζ ζ2 

i-cVf2 

V_ cos , , f s i n a - s i n ( a - r 9 ) l 

W(z) = l r-5 >AV„= ff 

sin θ υ 

Ç ) 
cos-

Noting that 
χ = 2C cos θ 

from (36), the stagnation points on the plate are given by 

• + (sin2 α - c o s 2 a ) = 0 . 
x2 jcs in 2 a 

(34) 

4C 

(35) 

(36) 

(37) 

(38) 

y 
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The velocity at the trailing edge, from (36), is given by 

W = V„ cos a ' 

From (30), the aerodynamic center is at 1/4 of the chord (chord is the straight 
segment from leading to trailing edge), from the leading edge. Also, at zero 
incidence, from (19), the moment acting on the plate (about any point) vanishes 
(since the pressure is constant everywhere), and so the moment about the 
aerodynamic center vanishes at all incidence. This means that the force on the 
plate acts through the aerodynamic center. 

By putting ì = me'"11, a = C sec â, and â Φ 0 , one generates a circular-arc 
airfoil because, from (33), one derives 

z - 2 C _ ( C ~ C ) 
z + 2C (ζ+C)2 

Thus, if 

( 

arg = <p, (39) 

then (see Figure 2.52) 

y 

-2C 0 2 C χ 

η 

ζ + c ζ 
ζ - c 

-c ξ 

Figure 2.52. Conformal mapping of a circular arc on to a circle (from 
Karamcheti, 1966). 
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" 8 ( ΐ 7 § ) = 2"· < 4 0 ) 

Next, by putting μ = ιηε"',β = 0, one generates a symmetric airfoil (see 
Figure 2.53) given by 

z = {ae'e-m) + , . f (41) 
\ae -mj 

from which 

* = 2 C c o s 0 , y = C e ( 2 s i n 0 - s i n 2 0 ) , (42) 

where 

a = m + C = C(l + e ) . 

Thus, by displacing the center μ of the circle in the ζ -plane along the η-
axis from the origin, one produces a camber (the camber line is the locus of mid-
points of segments cut out by the airfoil on the straight lines perpendicular to the 
chord, and the camber is the maximum distance of the camber line from the chord) 
for the airfoil in the z-plane, and by displacing μ along the ξ -axis from the 
origin one produces thickness for the airfoil in the z-plane. 

y 

Figure 2.53. Conformal mapping of a symmetric profile on to a circle (from 
Karamcheti, 1966). 
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Thin Airfoil Theory 

We will now consider the more difficult problem of determining the pressure 
distribution on an airfoil of given profile. The theory in the following gives only 
an approximate solution to the problem and involves determination of the 
singularity distribution representing the airfoil, which satisfies the kinematic 
boundary conditions in the presence of a wake or a trail of free vortices. 

Consider a steady flow past a stationary airfoil. Then, one has the boundary-
value problem for the velocity potential Φ: 

V 2 0 = O (43) 

V<PVF = 0 on F(x,y) = 0 (44) 

\V(p\^V„ at infinity (45) 

Kutta condition at trailing edge, (46) 

where the airfoil profile is given by 

F(x, y) = εη(χ) -y = 0, ε <? 1. (47) 

The kinematic condition (44) indicates that the flow should occur tangential to the 
surface of the body, and implies that 

-r- = E-f- on γ = εη„(χ), 
Φχ dx 

Φ. Üη, , . 
-r- = e-T- on y = ex\,(x\ 
Φ . dx 

(48) 

where the subscripts u and / refer to the upper and the lower parts of the profile 
(see Figure 2.54). Note that 

n.W = [»?,(•*)+»?CW]-<*. ] 
(49) 

ni W = [-¢, W+1c W] - «*. J 
where the subscripts t and c refer to the thickness part and the camber part, 
respectively. 

When we put 

Φ = í„χ + ε<Ι>{χ^), (50) 

(43), (45), and (48) give, upon linearization, 

*„ + 0 „ = O , (51) 
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ν = εη1 1(χ) 

ν = εη , (χ ) 

Figure 2.54. Airfoil section and camberline. 

φχ,φ}, =>0 at infinity. (54) 

The assumption of small perturbations requires that both the angle of attack and 
the airfoil thickness be sufficiently small. 

One now splits (51)—(54) into three simpler problems: Let 

Φ - Φ\ + 0 2 + Φι > 

where 

(i) V 2 0 , = O , (55) 

y = 0* : 0. =±Vm4lk, 0<x<l, (56) 
dx 

| V0, | => 0 at infinity; (57) 

(ii) V 2 0 2 = O , (58) 

y = 0i: φ = V „ ^ , 0<x<l, (59) 
dx 

IV021 => 0 at infinity, (60) 

Kutta condition at χ -1; (61) 

(iii) V 2 0 3 =O, (62) 

y = 0*: 03). = - V i a , 0 < x < / , (63) 

|V0 3 |=*O, (64) 

Kutta condition at χ = I. (65) 
In the kinematic condition (56), the ± signs correspond to the upper and lower 
surfaces. Thus, 0, corresponds to the thickness problem, 02 to the camber 
problem, and 0 3 to the angle of attack problem. 

y ι 
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The pressure on the airfoil is given (in terms of the pressure coefficient) by 

C p = 4 ^ = l - 4 = - — ( 6 6 ) 

2H " 

Thickness Problem 

This corresponds to a symmetrical airfoil at zero angle of attack. 

One has 

V 2 0 = O, 

y = 0±: φ = ± V _ ^ , 0<x<l, 
dx 

IV0,1 => 0 at infinity. 

(55) 

(56) 

(57) 

There is no Kutta condition because there is no circulation around the airfoil in 
the thickness problem. 

The thickness problem is equivalent to a superposition of uniform stream and 
a source distribution (see Figure 2.55), so that one may write 

φ(χ^ = ±'^(ξ)Àη{(χ-ξ)2+γψÜξ, 

from which the velocity components are given by 

u(x' y>= τζ J τ*1—2 Ü ξ ' 
Ι(χ-ξ) 

2π i (χ-ζ) + ν 2 

(67) 

(68) 

Figure 2.55. Superposition of a uniform stream and a source distribution. 
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i fr ,0») = l i m ± - L r 
^ 1 [2π {(χ-ξγ+y2 

When we put 

= ± V _ ^ - , 0 < x < / . 
dx 

ξ-; 

(56)' becomes 

where 

v(x,0+Um±±]4&%=±Vm*L, v ' )=»o 2π J l + η2 dx 

Thus, 

from which 

ηοι = η{χ = 0,1). 

1 , . "r dr\ 

2π l + r/' dx 

2 K ' dx 
Note that at any point of the strip, the jump in υ across the strip is equal 
source strength at the point. Thus, (68) becomes 

φ(Χ^\^(ξ)ΐη[(χ-ξÕ^'^ξ. 

If one introduces 

jc = - (l + cosfl), -π<θ<π, 

ξ=1- (1 + cos.p), 

(68), evaluated at y = 0 , namely, 

π i dx x-c 

gives 

Üψ. 
π 1 dx cos φ - c o s θ 

Noting that Üη,/Üχ(θ) is an odd function of Θ, one may write 

When we use (68), (56) - the kinematic condition - gives 
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0 

When we use (73), (72) becomes 

π { dx 

4 ^ = J T A „ cos, ,0, (74) 
V„ -_| 

where we have used the result 

1 rsinrtcu-sinoj , . 
— I — Üψ — cos/ic?. (75) 
π 1 cos θ - cos φ 

Note that is an even function of Θ. 

Camber Problem 

This corresponds to a camber profile at zero angle of attack (see Figure 2.56). 

One has 

V 2 0 = O, (58) 

y = 0 ± : <py = V„^±, (59) 
dx 

I V<t> I 0 at infinity, (60) 

Kutta condition at χ = / . (61) 

The camber problem is equivalent to a superposition of uniform stream and a 
vortex distribution so that one may write 

y 

y= ε η , ( χ ) 

Figure 2.56. Flow past a cambered profile at zero angle of attack. 

^(θ) = ΣΑ„ýηηθ. (73) 

Equation (73) shows that Üη,/Üχ vanishes at θ = 0, π, and 

_ 2 Un, 
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from which, the velocity components are given by 

(76) 

2π 0{χ-ξ) +y 

2π 1{χ-ξ) + y 

(77) 

Note, from (77), that 

ö , Ο * ) = lim ± -L f - ^ - άξ = ± ^ (78) 

so that, at any point on the strip, the jump in u across the strip is equal to the 
vortex strength at that point. 

Using (77), the kinematic condition (59) gives 

lim ± 
, = > o " 2 * + 

from which 

2 π J j t - ò <£r 

(79) 

(80) 

and the Kutta condition requiring that there be no jump in « at χ = I implies, 
from (78), that γ(£) = 0. 

Introducing again 

x = - ( l + cose), -π<θ<π, 
2 

(71) 

(80) becomes 

I f Ì S t n < P d<p = ^(e). 
π J 2V_ cos φ - c o s β dx 

Noting that dr]Jdx{e) is an even function of È, one may write 

(81) 

(82) 

where 
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Let 

where, noting that 

Bn=- \-^{Θ) cosnddd. 
π J dx 

γ(θ)=γι(θ)+γ2{θ) + -?-, (83) 
sin θ 

}

0 cos φ - cos θ 

one sees that the last term on the right hand side in (83) represents the 
homogeneous solution to (81). 

When one uses (83) in (81), one may choose and y2 such that 

l _ j r M ^ n ^ d < p = ^ c o s n e , ( 8 4 ) 

π J 2 V M cos φ - c o s θ 

1]IM ™<p ά φ Λ . ( 8 5 ) 

π J 2 V _ cos φ - c o s θ 2 

When one uses (75), (84) leads to 

r,(e) = - 2 V . . JTa. sinnfl. (86) 

When one has 

(85) gives 

I r cos 
η ' cos φ -

2*2—d9 = 1. (87) 
cos θ 

y 2 (e) = v . f i 0 ^ £ | . (88) 
sin θ 

When one uses (86) and (88), (83) becomes 

= - 2 V_ JT β„ sin ηθ + V. Z?0 + -β-. (89) 
~ sin θ sin θ 

Applying the Kutta condition 

γ(χ = 1)=γ{θ = 0) = 0 (61) 

so that there is no jump in ì at χ = / , one obtains, from (89), 
K = ~V_B0. (90) 

When one uses (90), (89) becomes 

2 }dnc 
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Next, the pressure on the airfoil, using (78), is given by 

. + , 2u( j [ ,0 ± ) γ(χ) 
ct(x,ot) = — i = + Z£l 

and using (91), (92) becomes 

C,(0) = 2 
ft, l - cos f9 ^ . Λ 

— + LB» s m " e 

2 sin θ 

The lift on the airfoil is given by 

and on using (92), this becomes 

0 - = p V - \r(x)dx. 

The moment (about the leading edge) is given by 

Μ = -pV„ jγ(χ)χÜχ. 

When one uses (71), (94a) and (95a) become 

1 = ^-\γ{β)ý«βÜ$, 

4V_ 
Jy(0)-(l + cos0) ýηθÜθ. 

Using (91), one see that (94b) and (95b) become 

pi 1 = -(Β0 + Β ι ) π ^ 

Writing (97a) as 

M = Pi2 

and using (96), one has 

^(B0 + Bl) + ^(Bl+B2) 

L . ρ / 2 π , . „ , 
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from which the velocity components are given by 

When one uses (100), the kinematic condition (63) gives 

ι ί )<«)•(*-*) lim 

from which 

2 π { ( χ - ξ γ + γ 

Üξ = -V_a, 0<χ<1, 

Limi^ = v ^ 0< 
π { χ-ξ 

χ<1. 

When one reintroduces 

(101) becomes 

x = - (l + cos0), -π<θ<π, 

£ = ·^ (l + cosp), 

1 r γ(ψ) sin φ 
κ J

Q cos φ - cos θ 

Equation (102) implies that 

(99) 

(100) 

(101) 

(71) 

(102) 

which shows the lift acting at the 1/4-chord point - the aerodynamic center. 

Flat Plate at an Angle of Attack 

One has 

V 2 0 = O, (62) 

y = 0*: 0 3 ) = - Κ . α , 0<x<l, (63) 

IV031 => 0 at infinity, (64) 

Kutta condition at x = l. (65) 

The angle of attack problem, like the camber problem, is equivalent to 
superposition of uniform stream and a vortex distribution, so that one may write 
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Thus, the lift on the airfoil and the moment (about the leading edge) are given 
by 

1 = ψ)Πθ) sin θ Üθ = παρΙ, 

Μ = -—?!- Jy(0)(l + cos0) s i n θ Ü θ = - ^ - πα 
Κ. 4 4 

L 
4 

(107) 

(108) 

Equation (108) shows that the force system on the flat plate is again equivalent to 
a lift force acting at the quarter chord point. This point is, therefore, the 
aerodynamic center. 

Combined Aerodynamic Characteristics 

One thus has from (73) and (82) 

άη 
— (0) = -^- + Óβ<. cos/i0 + ^ A „ sinnfl, 

Bn = - f ^ ( 0 ) cosnQde, 
π J dx 

An=— f — ( β ) ýηηθÜθ. 
π {dx 

Using (74), (93), and (106), one obtains for the pressure on the airfoil 

where 

(109) 

C , = 2 
B0 1 - cos θ ^-ι . (1 - c o s 0 ι ν " . 

-- +2_Bn 5\ηηθ-α - > A c o s r t 0 
sin θ ι 

sin 0 
(110) 

from which the lift on the airfoil and the moment (about the leading edge) are 
given by 

(103) 

(104) 

(105) 

(106) 

/ Λ \ AT _ . , cosf2 
Y{9) = —z-2V„a—-. 

sin θ sin θ 

The Kutta condition y(0) = 0 gives, from (103), 

K = 2V„a. 

When one uses (104), (103) becomes 

7(e) = ^ = £ ( l - c o s e ) . 
sin θ 

The pressure on the airfoil is then given, from (92), by 

V_ \ sin θ 
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y 

y = ±ej\-x2 

v. 
-1 ^\$SSi ̂ NNNN7 1 χ 

Figure 2.57. Uniform flow past a thin elliptic airfoil. 

1 = ^-[Àπα-π{Β0 + Βί)}, 

M = Pi2 

" 4 4 
π {B] + B2) 

(111) 

(112) 

Note that the quarter chord point is again the aerodynamic center. 

The Leading-Edge Problem of a Thin Airfoil 

The foregoing theory breaks down at the stagnation points (such as one at the 
leading edge) because of the violation of the assumption of small disturbances 
there. In order to see how one can handle the leading-edge problem, consider a 
uniform flow past a thin elliptic airfoil (see Figure 2.57). If the fluid velocity is 
given by 

v = VV4>, 

then one has the following boundary-value problem, 

Φ. 

Φα + Φ„=0 

Φ, 
+ = +ε at y = ± ε Vl - jc 2 =εΤ(χ), 

Φ ~ * + 0(1) as (x2+y2)-. 

Seeking a solution of the form 

Φ(χ,γ;ε) = χ + εφι+ε2φ2 +••, ε<1, 

(113H115) lead to the following hierarchy of problems: 

0(ε): 

* . „ + * i w = 0 . 

(113) 

(114) 

(115) 

(116) 

(117) 
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> = 0*: 0, = + 

0, =0(1) as {x2+y2) = 

θ(ε2): 

0 2 « + 0 2 „ = O , 

1 9 3 

y = 0±: 02 (. = + - f i = , 0 u + + V r ^ r 0 ; 

or 

4\ 

(121) 

(122) 0 2 =O(1) as (jc2 +y2)=>o„. 

The flow speed at the airfoil is then given by 

f = [{l + f ( i + ^ J « \ + " f + K + ^ , + - l ! [ ; (123) 

When one uses (118) and (121), (123) becomes 

— = \ + εφÀΛ(χ,0) + ε2 02, Ì - Ι 1 χ2 

• + — -, Γ Γ + 
( I - , 2 ) 2 ( , - , 2 ) 

(124) 

Representing the body by a distribution of sources along the axis, one has 
from (68), on nondimensionalizing the lengths using the semichord length /, 

_ ι \(χ-ξ)φ„γ(ξ,0±)Üξ 
2+y2 

71 u (χ-ξ) "2+y2 

(125) 

and on the surface, (125) gives 

π J , x-c ξ 

When one uses the kinematic condition (118), (126) gives 

K(x>o) = -- ί τ = 
π J. Ji -\ ^ ( χ - ξ ) ' 

(126) 

(127) 

from which 

(118) 

(119) 

(120) 
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y = 0: φ1χ=· 
1-

x'-l 

x2<\, 

x2>\. 
(128) 

Note that the problem for φ2 is identical with that of φ,, and thus the flow speed 
on the airfoil is, from (124), given by 

— = 1 + ε - ε 2 7 2 (129) 
V_ 1 - xL 

When one puts 

s = \ + x (130) 

(129) gives, in the neighborhood of the leading edge χ = - 1 , where s <ξ 1, 

V = ν„(1 + ε) 1 - -
4^(1 +ε ) • + (131) 

Note that the assumption of small disturbances has been violated at the stagnation 
points (such as at χ = - 1 ) , so that (131) breaks down there locally. Note that the 
region of nonuniformity is of order ε 2 . 

One way to remove this singularity is to sum the patently divergent series in 
(131) by pretending that the latter is not divergent, i.e., s ~ 0(1), though this is 
not justified. Thus, (131) becomes 

V m ? J l ^ m W l & m V M + e ) n 
ε2/2' 

(132) 

which is an exact result that corresponds to a uniform flow of speed ν„.(1 + ε) 
past a parabola of nose radius ε 2 ! This is how the flow appears near the leading 
edge for this problem, and the latter result ensues from the leading-edge value of 
the exact expression for the flow speed on the airfoil (which can be obtained by 
the method of complex variables, see Van Dyke), 

V _ l + ε 

V~ ~ I 
, 1 + ε 2 

(133) 

l-x2 

Another way of removing the singularity in (131) is to write a multiplicative 
correction factor converting the formal thin-airfoil solution V for the flow speed 
on an airfoil of nose radius ε 2 into a uniformly valid approximation V: 

4s 

(134) 
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which gives the result that near the leading edge the flow speed on the airfoil is 
nearly that on the osculating parabola, and far from the leading edge the correction 
factor approaches unity, so that the thin-airfoil solution for the airfoil is 
recovered. One may write (134) as 

V_ 
V_ Ρ + ε2/2 

V_ ε_ 
V_ As 

(135a) 

or 
l + x ( 

V_ \ \ + χ + ε2/2 
1 + ε + 

ε2 \-2χΛ 

4 l-x 
(135b) 

Although the singularity at the leading edge has been removed, the one at the 
trailing edge remains. The latter too can be removed by applying the above 
correction again with s = 1 - χ. Thus one obtains the fully uniform result 

V_ 
V 

l-x2 

l-x2 +ε2 +ε4/Α 
1 + ε + — 

2 
(136) 

Slender-Body Theory 

Slender-body theory is concerned with the calculation of flows past bodies whose 
lateral dimensions change slowly with distance parallel to the flow direction. 

One chooses a singularity distribution along the axis of symmetry of a slender 
body in such a way that the potential flow associated with these singularities in 
combination with a uniform stream satisfies approximately the condition of zero 
normal component of velocity at the surface of the body of given shape. Thus, for 
a uniform stream past a slender body (of length /) simulated by a doublet 
distribution of strength m(x), with χ being the distance along the axis of 
symmetry, one has 

\ ^ ) 
A) φ = -í_χ + (137) 

from which the velocity components are given by 

<?Φ _ 1 f τη(ξ)τ 
u = — dr Απ + r 

V2 

9Φ .. l r 
w = —ζ— = vi + — Απ J dx 2

+ r 2 3/2 άξ. 

(138) 

One may write (138) as 
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4 7 Ã Ã J 

+ 1 

3/2 (139) 

For a slender body, r is very small; thus (139) may be approximated by 

u~—— mix) f - — ^ - τ τ η =——m{x). 
1 

(140) 
4 π Γ * ' i ( r / 2 + l ) ^ 2;rr 

When one uses (140), the boundary condition at the surface of the body 
= F(x), 

r = F{x): m = V. 
dF 
dx' 

gives 

m(x) = 2nV„F—. 
dx 

(141) 

(142) 

When one uses (142), (137) becomes 

2

+ s 
(143) 

Lifting-Line Theory for Wings 

For wings of finite span, one has to take into account the three-dimensional 
effects. This is handled satisfactorily by the lifting-line theory to Prandtl, 
provided that 
* the wing is of sufficiently large aspect ratio (which is span/chord); 

* the wing section (made by a plane perpendicular to the span) does not vary 
too rapidly along the span. 

The lifting-line model envisages the following simplifying conditions: 

1. The variation (which is taken to be symmetric about the center line of the 
wing) of circulation Γ around a wing section along the wing span leads to 
the shedding of the vorticity from the wing; this forms a sheet of trailing 
vortices, which extends downstream from the trailing edges of the wing; this 
sheet may be supposed to consist of line vortices, which are parallel to the 
direction of flow; this sheet is unstable and rolls up at the edges, which is 
here, however, ignored; the circulation is presumed to drop to zero at the 
wing-tips, i.e., 

Γ = Γ ( ν ) , r(+y)=r(-y), r ( ± f ) = ° - ( 1 4 4 ) 

<'-*> ηχ{ξ) 
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ζ 

/ 
/ 

V. 

χ 

-b/2 
/ 

/ 
/ 

/ 

Figure 2.58. Lifting-line configuration (from Karamcheti, 1966). 

2. The span b of the wing is sufficiently large compared with the chord / so 
that the variation of the velocity in the spanwise direction is small compared 
with the variation in a plane normal to the span. 

3. The wing for a very large aspect ratio is replaced by a lifting line (see Figure 
2.58) having the same distribution of lifting forces along the span as the 
wing; the disturbances caused by the lifting line are small. 

4. The velocity field induced at the wing by the trailing vortices consists of a 
small downwash for wings of large aspect ratio; as a consequence, the flow 
at each sectional plane can be considered as two-dimensional flow around an 
airfoil; the only additional feature for the flow in the sectional plane is the 
modification of the angle of attack (see Figure 2.59) as defined by the 
undisturbed flow, on account of the induced velocity. 

Figure 2.59. Flow at a sectional plane perpendicular to the lifting line (from 
Karamcheti, 1966). 

ζ 

-b/2 

χ 
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y I 

w 

V 0 * 

r(y) 

Figure 2.60. The trailing vortex sheet (from Karamcheti, 1966). 

The flow situation at a wing section is represented in Figure 2.60. Now, from the 
thin airfoil theory, namely, (28), one has 

r(y)=nl(y)VR(y)aR(y), (145) 

where the effective angle of attack ccR{y) (taken to be small) is given by 

w(y) a„(y) = « (y ) - t an ~ (146) 

The velocity induced by an element of trailing vortex sheet of strength γ(η) 
(see Figure 2.61) is given by (see Section 2.4) 

5w{y) = ± linl. 
Απ η-y 

(147) 

where, by the conservation of vorticity, the strength y( r/) of the vortex sheet is 
given by 

dy 
(148) 

b/2 

η 

1 
Γ γ 

y 
i _ 

γ(η) 

b/2 

Figure 2.61. Flow situation in a wing section (from Karamcheti, 1966). 
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r(y) = tf/(y) 

with the boundary condition 

4 π -Ι/ζ dy y-η 
(150) 

r(±|) = 0 . (144) 

The force on a section dy is given by 
5F(y) = pVR(y)xr(y)dyiy, (151) 

from which the lift and the induced drag on the wing element at y are given by 
dl{y)~pVS{y)dy, (152) 

SD,{y)-pHy)r{y)*y- <153> 
Thus, for the whole wing, one obtains 

bp. 

L = PV_ jr{y)dy, (154) 
-6/2 

b/2 

D=p \™{y)T{y)dy. (155) 
-6/2 

An essential biproduct with lift on a three-dimensional body is the existence of a 
trailing vertex sheet. Energy spent by the body constantly in maintaining these 
trailing vortices shows up as the induced drag. 

The moment on the wing is given by 
6/2 6/2 6/2 

M = jyiyx{jISDi+izSl)j = -iz ]ySD,+ix jy6l = My +MR\ (156) 
-6/2 -6/2 -6/2 

the first term My on the right-hand side in (156) corresponds to yawing of the 
wing and the second term MR to rolling. 

Consider a loading on the wing given by 

r(6) = 2bV„ JTA„sinn0, (157) 

where 

y = - c o s 0 (158) 

Thus, for the whole trailing vortex sheet, one obtains 

When one uses (146) and (149) and assumes w/V„ < 1, (145) gives an 

integral equation for Γ ( ν ) , 
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and the boundary conditions (144) have been incorporated. 

When one uses (157), (149) gives 

Þηηθ 
sin θ 

(159) 

When one uses (157)—(159), (154)—(156) give the following equations for the 
lift, induced drag, and moments on the wing: 

2 ' 

D^pVlb^^nAl 

MY=^pVib} X(2n + 1 ) A A + 1 -

For a body of minimum induced drag, one has, from (161), 
Λ „ = 0 for n>l, 

which, from (157), corresponds to an elliptic lift distribution. 

Further, equation (150) gives, on using (164), 

πα πΑ, 

(160) 

(161) 

(162) 

(163) 

(164) 

1(θ) 
2b 2b 

= A, sin θ 

or 

or 

/ ( 0 ) ~ s i n 0 

l(y)~^-{2y/bf , (165) 

which corresponds an elliptic plan form for the wing. 

Thus, for a wing with elliptic platform and an elliptic lift distribution, namely, 

r(y) = r j i - ( 2 y / f c ) 2 , 

l(y) = l0^-(2y/bY (166) 

equation (150) gives 

Γ 

2b 

or 
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Oscillating Thin-Airfoil Theory: Theodorsen's Theory 

The unsteady airfoil theory has important applications, like in the flutter problem 
and the forces experienced by airplanes flying through gusts. 

When an airfoil performs oscillations around a given mean position, the 
circulation around the airfoil also undergoes periodic variations. This, in 
conjunction with the total vorticity conservation constraint, leads to the shedding 
of free vorticity from the trailing edge. This vorticity is equal in strength but 
opposite in sign to the change in the circulation around the airfoil and is carried 
downstream by the flow. The velocity field induced around the airfoil by these free 
vortices causes changes in the instantaneous angles of attack of the airfoil with 
the consequence that the oscillating part of the lift lags behind the motion of the 
airfoil. 

Within the framework of a linearized theory, solutions may be superposed to 
generate another solution. The solution of an oscillating airfoil with finite but 
small thickness and camber at a given mean angle of attack can, therefore, be 
obtained by a superposition of an unsteady motion for an oscillating airfoil of 
zero thickness and zero camber at zero mean angle of attack, along with a steady-
state solution for an airfoil of the given thickness and camber at the given mean 
angle of attack. 

One has, for a uniform flow past an oscillating airfoil (see Figure 2.62), the 
following boundary-value problem: 

í2φ = 0, (168) 

z = 0: W = w a = % + V : % , -b<x<b, (169) 
at ox 

x-b: Kutta condition. (170) 

Here, ζ = za{x,t) describes the surface of the airfoil, and the subscript a refers to 
the latter location. In (170), we overlook any possibility of lag in the adjustment 
of flow at the trailing edge.1 

In order to find a solution to (168)—(170) one chooses an appropriate 
distribution of sources and sinks just above and below the line z = 0 , and a 
pattern of vortices on this line with countervortices along the wake to infinity in 

The success of this model, as it turns out, indicates that such adjustment is, in fact, very rapid. 

2KbV a 
Γ0 = 5 5 - , (167) 

1 + 

which reduces to the two-dimensional airfoil result, namely (28), in the limit 
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-b 0 b χ 

Figure 2.62. Uniform flow past an oscillating airfoil. 

such a way that Kutta's condition is fulfilled without disturbing the boundary 
conditions at the surface of the airfoil. The flow components due to the sources 
and vortices are most conveniently obtained by using Joukowski's conformal 
transformation, namely (33), to map a circle of radius b/2 onto the projection of 
the airfoil. It is 

x + iz = {X + iZ) + -
b2/A 

(X + iZ)' 

On the surface of the airfoil and its mapped image, one has, from (171), 

2 ' 
χ = b cos β, ζ = 0, 0 < θ < π 

and the complex velocity, 

2 sin θβ'" 2 sin θ 

Since the transformation (171) is conformal, (173) gives 

1e 
2 sin θ 2 s in0 

0 < θ< π. 

(171) 

(172) 

(173) 

(174) 

Distribute sources on the upper half of the circle, and distribute sinks of equal 
strength on the lower half. Corresponding to the source sheet on the airfoil in the 
x, z-plane, one has 

φ(χ,ζ,Þ = ^]Η-{ξ,Þ\η[{χ-ξ)2

+ζú]Üξ, (175) 
-b 

from which the velocity component along z-direction, on the upper surface of the 
airfoil, is given by 

ζ ι 
z = za{x) 
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^ , 0 V ) = -Llim f . Η + { ξ ' 2 ' ) ζ ,αξ 

= — Ηºχ,Þ lim 
2π ν ' 

ε=>0 

= -Η*(χ,Þ. 
2 ν ; 

tan - - t a n -

(176a) 

Similarly, the velocity component along the z-direction on the lower surface of 
the airfoil is given by 

w(x,0-,t) = -^H-{x,t). 

In the X, Z-plane, from (174) and (176), one has 

H* i|,e,rl = 2 9 r = 4 i v . sin0, 

(176b) 

H-\ -,Θ,Ι | = - 4 w a s i n 0 . 

(177) 

Corresponding to a source of strength H*(pl2)d<p at θ=φ (see Figure 

2.63), one has at Ρ the flow speed 

dq* = 
H+-d<p 

2 Y wa sin φ Üψ 
ο L. · ίψ-θλ . (φ-θÕ 27TPsin /rsin 

\ 2 ) \ 2 ) 

(178) 

similarly, for a sink of strength Η {bl2)d<p at θ = -φ, one has at Ρ the flow 

speed 

π sin 
<p + fl 

(179) 

Noting 

= W \ s m \ ^ - Y \ d a - I s i n ^ + * 

(180) 

and using (178) and (179), one has the following equation for the flow velocity 
components at P: 

.2 _ 2wa sin φÜφ 
7r(cOS^>-COS0) 

(181) 
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( φ + θ ) 

Figure 2.63. Source and sink distribution on the circle generated by Joukowski's 
mapping of the airfoil (from Bisplinghoff, Ashley, and Halfman, 1955). 

Equation (182) implies that the circle is a streamline. 

One obtains, from (181), for the whole airfoil, 

2 r wa sin2 φÜφ _ l r wa sin φ αφ 
^ β 7Γ J (cos φ - cos θ) 

Now, one has 

where 

(182) 

(183) 

(184) 

(185) φ(π,Þ = 0 since φ'(-θ,Þ = -φ*(θ,Þ. 

When one uses (183) and (185), (184) gives the following equation for the 
noncirculatory part of the flow: 

b f f w a s m 2
 ψÜψÜθ 

k c ( m = - M J ? S 1 " Ø Ö : Ë 

π J

e

J

0 ( c o s φ - c o s Θ ) 

(186) 

. • ( φ - β ) 
osin — -
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On the airfoil, one has, from the Bernoulli equation, upon using (185), the 
following equation for the pressure jump across the airfoil: 

(p+-p-) = -2p 

Further, on using (172), one obtains 

{p*-p-) = -2p 

dx dt 

d<i> d£_ V 
dt bsmd d6 ) 

(187) 

The lift and the moment on the airfoil corresponding to the noncirculatory part 
of the flow are, then, given by 

(Llc = "JiV -P~)dx = 2pbjj<p+ sinθάθ, 
-b 0 

-b 
b -. b 

= 2pV„ \φ*Üχ-2ρ^- \φ* (x-ba)dx 

(188) 

t d r 
= 2pVJ> U + s in0 i /0 -2pb2 — | φ* (cosO-α)ýηθÜθ, (189) 

J dt J 

where 0 < a < 1. 

Now, the temporal variation of the total circulation around the airfoil generates 
a wake of two-dimensional countervortices along the j - a x i s from the trailing 
edge to infinity. The latter are continually moving away from the airfoil at the 
free-stream velocity. By pairing with each wake vortex a bound one of opposite 
circulation at the image position inside the circle, one ensures that the circle and 
the airfoil slit remain streamlines of the vortex flow so that the boundary 
conditions remain undisturbed. 

Consider the flow due to a single bound vortex of strength Γ and its image 
-Γ (see Figure 2.64). At Ρ one has, by the Biot-Savart Law (see Section 2.4), 

qe = q cos(#2 - θ) -1 <7+ cos(0, - Θ) 

= _Γ 
~ 2π 

Since, from Figure 2.55, 

r 2 cos(0 2 - 9) r, cos (θ, - θ) (190) 
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Figure 2.64. Flow generated by a system of wake vortices and image vortices in 
the circle (from Bisplinghoff, Ashley, and Halfman, 1955). 

( ui \ r2 = 

14* 
.'*Y Λ b1 b a 

+ - - 2 cos0, 
,2) 4χ 2 

f b \ b 
r2

2 = X2+ -} - 2 ^ - c o s 6 > , 

(190) becomes 

r 2 cos (0 2 -θ) = — -χ cosO, 

r. cos(6. -θ) = — - — cos0, 
V 2 4 * 

Γ 
q° = -Vb 

X2-(b/2)2 

_X2+(b/2) -xbcosO 

Using (192) and (185), one has, from (184), 

(191) 

(192) 

r\X

2-(b/2)2} ' Üθ 
iX

2+{b/2Y-Xbcose 

tan 
X-b/2 1 + cosfl 
X + b/2 V L - c o s 0 

(193) 
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Noting that, if ξ is the distance of a countervortex from the origin the x, y-
plane, one has 

ξ = χ+—< dt 
= V 

from which 

ξ-b =X-b/2 
ξ + b χ + b/l' 

When one uses (195), (193) becomes 

^ ( 6 ' i ) - 7 t a n V (ξ+ * ) ( ! - c o , β) 

(194) 

(195) 

(196) 

When one uses (196), the Bernoulli equation, namely (187), 

(„•-,-) = -2p 
9ξ dt b sin θ 3Θ 

gives the following equation for the pressure jump across the airfoil, 

, + , pV„r{4 + b cose) 
(p -p ) r = r%—r-

r Kb sin θ • sjξ2-b2 

The corresponding lift and the moment on the airfoil are given by 

)r=-lb,ne-de.(p^-p-)r=^ML, 

(197) 

(198) 

Κ )r=){b cos θ - ba) b sin θ • άθ • (ñ* - ñ \ = ^L^L (| α - Χ- ) . (199) 

Note that, as ξ => «>, the flow approaches that of a single-bound vortex Ã. 
The lift ñ V„r, then, acts at midchord. 

For the complete wake, one obtains the following equations for the circulatory 
flow, from (197H199): 

_ pk. 
nb sin6 5 

+ . Ι | ± ί C O S 0 
ξ-b 

(1-cosfl) 

( L ) c = - p ^ J ^ ^ M £ ' K 

(200) 

(201) 
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(M,)t=pVmb\ L i l l J + 1 Υκ{ξ,ÞÜξ. (202) 

Here we have replaced Γ by γκÜξ, where y H is the circulation per unit length of 
the wake. 

From (174), one has the Kutta condition at θ = 0 : 

<7 β =0 . 

When one uses (186) and (196), (203) leads to 

2 ' r w . s i n V y J_~r £*± , , 
π J cos<p-l nb[^-b Ύ ^ ' ' α ò 

(203) 

(204) 

which is an integral equation for y w . 

When we put 

ξ' = cos φ, 

(204) becomes 

(205) 

(206) 

Note that for the bound vortices distributed on the airfoil, one has the total 
circulation, 

Γ0{Þ=\γ0(χ,ÞÜχ. (207) 

The velocity induced by this vortex distribution is given by (see Section 2.4) 

1 WW / \ l Γ Υ\Λ 

"ο(*) = - τ - I — 
2?r J.x — x, 

•b 

dx,. 

Now, in order to invert 

- . w - f ί — Λ ' 2π 0 χ-xt 

one may write 

Y{x) = jdx]w0(xl) ψ(χ,χ,). 
0 

When one uses (210), (209) implies that 

2π i x-x, 

(208) 

(209) 

(210) 

(211) 
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χδ(χ-ξ) = - - dx, ^ j - J - J ^ , 
2π 0 2ττ 0 x - x , 

2π 0 

Equation (212), in turn, gives 

\dxl i i—i i = — \dxl Vfax,}. 

2π 0 x - x , 2π 0 

Let 

( χ , - ξ ) ^ , χ , ) = Λ ( £ ) 7 ι ( χ , ) 

with 

2 π Q X - X , 

Equation (215) implies that 

When one uses (214) and (215), (213) gives 

A ^ - L j d x , ^ , x , ) . 
2π i 

Consider 

ο <Λ 2 π ^ 0 
from which we have 

r , ( / - « ) = — / λ , 
2tt „ 

- J 

When one uses (215) and (217), (219) becomes 

¾Μ-ξ) = -2πΑ{ξ). 

Using (210), (214), (216), and (220), one obtains 

from which we have 
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r.(x.r) = - ^ — ^ J ^ - ^ ^ 

When one uses (222), (207) gives 

When one uses (223), (206) becomes 

(222) 

(223) 

(224) 

Example 1: Consider an airfoil in vertical translation h(t), and a rotation 
about an axis at x = ba, through an angle a. One then has 

wa(x,t) = -h-V_a-a(x-ba). (225) 

When one uses (225), (186) gives 

b (; .. \ r r sin2(pd<pd9 fc(*.») = g ( n + y - « ) J J Ã í Ψ \ 
π V ' J J (cosφ-cosΘ) 

b2a r r sin2<p-(cos<p-a)d<pi/e 
(cos φ - c o s θ) 

= fc(/i +V_a) s in0 + i>2a s in f?^ 
cos0 

— a (226) 

When one uses (226), (188) and (189) give, for the lift and the moment on the 
airfoil corresponding to the noncirculatory part of the flow, 

(l)NC = Kpb2 [h + V„a - baa), 

V h + bah + V2 a-b2\- + a2 | a 
8 

(227) 

(228) 

In order to calculate the corresponding quantities for the circulatory part of the 
flow, let us take 

Wa(X<')=Wa(X)e'°" 

so that one has for the wake vortices 

When one uses (230), note that 

(229) 

(230) 

Thus, 
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F . ξ γΛξ,ήάξ Ί - 4 = 

(k) + iH?(k) 
= C(k), say, (231) 

where H^\x) is Hankel's function of second kind, and 

k = 
cob 
~V~' 

In order to ensure the convergence of the integrals in C(k), one needs to impose 
an appropriate radiation condition, namely, that k is a complex quantity with a 
negative imaginary part. 

When one uses (225), the Kutta condition (224) leads to 

2 * 
= — J(l + cos<p)[/i + V_a + a6(cos<p-a)] Üφ 

= 2 (232) 

Thus, using (227), (228), (201), (202), (231) and (232), one obtains the 
following equations for the total lift and the moment on the airfoil: 

L = ( L ) ^ + (L)c = npb2(h + V_a - baa) 

+ 2npV„bC{k) 

= npb2 

h + V a + b\ α Ά 
2 

(233) 

bah-V_b\--a)a-b2\- + a2 \a 
2 

h + V a + b\ —α \Ü 
2 

= 2npV_b2 a + -\C(k) (234) 

In deriving (234), note that certain cancellations have occurred between circulatory 
and noncirculatory parts of the moment expressions. 
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E X E R C I S E S 

1. Using the Joukowski transformation, calculate the flow about an elliptic 
cylinder with its major axis aligned with the flow direction, and also 
calculate the moment about the leading edge acting on the cylinder. 

2. Calculate the flow at the trailing edge of a symmetric airfoil (with 
μ = me", β = 0 ) at zero incidence in a uniform flow. 

3. Calculate the camber-l ine shape of an airfoil, given the loading 
γ(θ) = const. = k, by thin-airfoil theory. 

4. Using equation (150), solve for the coefficients A N in the prescription 

r(6) = 2bU JT/V,sin/IE. 
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D Y N A M I C S O F I N V I S C I D , 
C O M P R E S S I B L E F L U I D 
F L O W S 

3 . 1 . Review of Thermodynamics 

The laws of thermodynamics apply to equilibrium states of matter in bulk. 
Thermodynamics is concerned with connecting the initial and final states of a 
system undergoing a process rather than the detailed evolution of the system 
during the process. Equilibrium thermodynamics is directly applicable to the 
mechanics of ideal fluids. But the mechanics of real fluids has to include the 
various transport phenomena which upset the state of thermodynamic 
equilibrium. 

Thermodynamic System and Variables of State 

A thermodynamic system is a quantity of matter isolated from the surroundings 
for the purpose of observation. The system we consider is a simple, 
homogeneous system composed of a single fluid. 

An isolated system reaches a state of equilibrium, i.e., the macroscopic state 
becomes steady. Variables of state determine the state of the system. For a simple 
system, one has an equation of state of the form 

P = P(V,T), (1) 

where ρ is the pressure, V the volume, and Τ the temperature. The Zeroth law of 
thermodynamics states that there exists a variable of state, the temperature T; two 
systems that are in thermal contact are in equilibrium only if Τ is the same in 
both. 

In the context of exchange of work or heat of a system with its surroundings, 
one introduces another variable of state, the internal energy E, which measures the 

2 1 3 
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energy stored in the system. Furthermore, it is necessary to introduce another 
variable of state, the entropy S, which determines whether a state is in stable 
equilibrium. 

The equations of state are 

E=E{V,T), 

S = S{V,T). 

A variable of state is uniquely defined for any equilibrium state of the system and 
is independent of the process by which system arrived at that state in the first 
place. 

An extensive variable of state depends on the mass of the system, e.g.., 
E,V,S. An intensive variable of state does not depend on the mass of the system, 
e.g., p,T. 

The First Law of Thermodynamics; Reversible and Irreversible 
Processes 

The First law of thermodynamics asserts mutual equivalence between heat energy 
and mechanical work. If a system is transformed from a state of equilibrium A to 
another one, B, by a process in which a certain amount of work W is done by the 
surroundings, and a certain quantity of heat Q leaves the surroundings, then one 
defines the internal energy Å by 

EA-Ea=Q+W. (3) 

The internal energy Å measures the energy stored in the system. For a small 
change of state (so that the process is reversible and the system passes through a 
succession of equilibrium states; the pressure in the fluid remains uniform), (3) 
gives 

dE = dQ + dW = dQ-pdV, (4) 

or, in terms of specific quantities, 

de = dq — pdv. 

Note that £ is a variable of state, whereas Q and W depend on the process 
followed in changing the state.1 

' This may be seen by considering a perfect gas for which equation (5) becomes 
Q 

dq = CvdT + pdv = — d(pv) + pdv 
R 

l + ^lpdv + ^-vdp^^-pdv + ^-vdp 
R J R R R 

on using (6), (8), and (10). This shows that dq is not an exact differential because 

dp{ R ) dv{ R ) 
on account of Cp*Cv. Therefore, Q is not a variable of state. 
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The First law of thermodynamics dictates only the magnitude of the change of 
state of a system by (4), but does not dictate the direction of this change of state. 

However, all natural or spontaneous processes are irreversible. Note that during 
an irreversible process the system deviates from equilibrium. 

A perfect gas is taken to have no interparticle forces of repulsion or attraction, 
and although the particles have mass, they occupy no space. A perfect gas is 
described by the equation of state 

P = pRT (6) 

where, R is the gas constant, ρ the density of the gas. 

One may define the specific heats at constant volume and constant pressure 
according to 

(7) 

Using equation (5), one obtains 

dT 

P + 
(9Λ ](dv) (3Λ = dh_ 
{dv)T\{dT) + {dTl~ dT 

where h is the enthalpy. 

Using (6), one has 

h = e + ρυ. 

CP=CV+R. 

(8) 

(9) 

(10) 

For an adiabatic, reversible (also called isentropic) process, one has, from (5) 
and (9), 

de = -pdv 

dh = vdp (11) 

or 
de , de 
— dv + — dT = -pdv, 
dv dT 
dfi , dh ,_, - d P + -dT = vdp. 

(12) 

When one uses (8), (12) leads to 



2 1 6 Dynamics of Inviscid, Compressible Fluid Flows 

dv C [dv + P 

de 

dP C

P Ι Φ 

For a perfect gas, given by (6), (13) yields 

υ izT _ _K 
Tdv~ Cv 

P_d^R_ 
Tdp~C/ 

-v 

Furthermore, (14) leads to 

from which 

υ dp 
ρ dv 

_ P 

where 

•= const., 

(13) 

(14) 

(15) 

(16) 

Consider next irreversible processes. For an isolated system, one 
following equation for the two end states denoted by A and B, 

•eA=0. 

For an adiabatic flow, on the other hand, one has 

has the 

(17) 

(18) 

The Second Law of Thermodynamics 

The evolution of a system is dictated by certain natural tendencies, and all natural 
or spontaneous processes are irreversible. There is considerable departure from 
equilibrium in the latter. By contrast, a system remains in equilibrium during a 
reversible process. In this context, one introduces a new variable of state, called 
the entropy S. 

First note that the internal energy has the character of a potential energy; for an 
adiabatic reversible change of state of a system, one has from (4) 

When one defines 

dT 1 
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„. , dE 
T = -\ — 

dS) 
(20) 

the equation of state 

gives 

E = £(V,S) (21) 

dE = ^-dV + ^-dS. (22) 
dV dS 

When one uses (19) and (20), equation (22) becomes 

dE = -pdV + TdS. (23) 

On comparing (23) with (4), we have 

TdS = dQ. (24) 

By virtue of the manner of definition, S, a variable of stated is defined only for a 
system in equilibrium, or for reversible changes of state. 

For an irreversible process, one has 

S B S A > ] ^ , (25) 

where the equality prevails for a reversible process. Thus, for an adiabatic 
irreversible process, the entropy can only increase. 

A system has reached a state of equilibrium if no further spontaneous processes 
are possible, for which 

d s A 
Τ 

On the other hand, the system is in stable equilibrium if, for every process 
compatible with the constraints of the system, one has 

Τ 

For an isolated system, this gives 

SS < 0 ; 

i.e., the entropy for an isolated system reaches a maximum. 

One obtains from equation (23) 

•^This may be seen by noting (see footnote I) that, for a perfect gas, 

Ô υ ñ 
which shows thai dS is a perfect differential because 

dp \ V ) dv y ñ 
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_ r de r dv 

•5 = J y + J p y + const. (26) 

When one considers a perfect gas given by (6) and uses (8), equation (26) leads to 

S = J c „ ^ + f l l n u + const. (27) 

or, alternatively, 

5 = Jcp — -R\n ρ + const. (28) 

If the specific heats Cp, Cv are constants, then (28) leads to 

S1~Sl=C 111 
(τ \ 

l 2 
/ λ 

Pi_ 

UJ κ Pi j 
(29) 

Next, when one considers a perfect gas given by (6) and uses (8), (23) leads to 

dS = c A + c A (30) 
ρ - υ 

and, on integrating, (30) gives 

, n J L + S l n J U ^ V , (3,) 
Po c» υ 0 Cu 

or in terms of the mass density ρ = 1/υ, (31) becomes 

P = kp\ (32) 

where 

pi 
Note that, for an isentropic process, (32) gives 

P~P\ (33) 

in agreement with (16). 

Liquid and Gaseous Phases 

A given material may exist in the liquid phase for some values of the two 
parameters of state (p and υ , say) and in the gaseous phase for other values. The 
manner in which the intermolecular force varies with molecular spacing is 
responsible for the occurrence of these two distinct phases. 

At low temperature and high pressures, the molecules in a gas are brought so 
close together that in many cases, actual condensation to the liquid state and the 
formation of a free surface separating vapor and liquid sets in, but above a certain 
temperature, no amount of compression can produce such an interface. 
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Figure 3.1 shows the isothermals for C 0 2 . The lower curves all pass through 
a horizontal step, which signifies a change in volume at constant pressure. To the 
left of this step, one has a liquid state, wherein it takes a large increase of pressure 
to produce a small change of volume, implying that liquids are nearly 
incompressible. To the right is the vapor or gaseous region, these curves 
eventually become hyperbolas: pv =constant. The constant pressure on an 
isothermal through the polyphase region is the saturated vapor pressure pv, i.e., 
the pressure existing in pure vapor which is in contact with the liquid at the given 
temperature. The effect of reducing the pressure of a liquid below the saturated 
vapor pressure is of importance in fluid dynamics, since this leads to the 
formation of vapor packets distributed throughout the liquid. The occurrence of 
such vapor packets, called cavitation, has important mechanical consequences on 
objects placed in such flows, (see Section 2.1). 

At 31°C, for C 0 2 , the constant pressure step is reduced to a pause in passing, 
and above this temperature, the isothermal passes steadily from high to low 
pressure with no marked distinction between gas and liquid; 31.5°C is called the 
critical temperature for C 0 2 . 

Application of Thermodynamics to Fluid Flows 

Classical thermodynamics deals with a uniform, static system whose state is 
specified by certain variables of state and which exchanges energy with its 
surroundings. In applying classical thermodynamics to fluid flows, a fluid 
particle, small enough to be assumed uniform, is taken to be the system in local 
thermodynamic equilibrium. (The conditions of equilibrium cannot be strictly 
attained in a real, nonuniform flow, since a fluid particle must adjust itself 
continuously to the new conditions that it encounters; the rate at which the 
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adjustments must be made depends on the gradients, in the flow and is a measure 
of the departure from equilibrium.) One may then ascribe state variables 
(Τ,ρ, ρ,h,s,etc.) to the fluid particle and, as before, relate them to each other by 

equations of state. Here, ρ is the thermodynamic pressure if the fluid is 
compressible, while it is simply an independent dynamical variable otherwise. 

3 . 2 . Isentropic Flows 

The Energy Equation 

The conservation of energy of a fluid particle in an adiabatic flow may be 
expressed by the energy equation 

H + -V2 =const. (1) 
2 

For a perfect gas, one has 

*" R ρ γ-l ρ r - 1 

where 

Λ = Γ Γ 4 £ = ^ = - , (2) 

(3) 

is the speed of sound in the gas. The disturbances produced in a fluid by a sound 
wave are so small that each fluid particle undergoes a nearly isentropic process. 
Besides, the frequencies of the sound wave are assumed to be not so great as to 
allow large departures from thermodynamic equilibrium. 

When one uses equation (2), equation (1) gives 

- + — = const = — — , (4) 
7 - 1 2 7 - 1 

where the subscript 0 refers to the stagnation values. The latter are the values that 
would result if the fluid particle were brought to rest isentropically, and they are 
different from the values measured by an observer moving with the particle, 
(called the static properties). This is due to the exchanges occurring between the 
kinetic energy, the internal energy, and the potential energy (due to the pressure) 
of the fluid particle with those of the surrounding fluid particles. 

One obtains from equation (4), upon using (3), 

^ = i l + ^ M J \ (5) 

where Μ is the Mach number, 
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V2 

Using (5), one obtains the following relations 

ρ \ 2 J ρ \ 2 

If Μ = V/a 1, (6a) leads to the following expansion 

ρ 2 8 

or 

P o - P = | p ? 2 ( l + ^ 2 j + - , (7) 

so that, when Μ < 1, one obtains 

Po = P + |p<72. (8) 

the same as for the incompressible flow. 

Let a = a correspond to the location where V = a, then for a, equation (4) 
gives 

Stream-Tube Area and Velocity Relations 

The conservation of mass for steady flow in a stream tube requires 

pVA = const. , (10) 

where A is the cross-sectional area of the stream tube. One may write equation 
(10), alternatively, as 

dp dV dA 
^ + — + — = 0. (11) 
ρ V A 

The equation of motion of the fluid in the stream tube is 

ν ^ = _!* = _£ΐί£ ( 1 2 ) 
dx ρ dx ρ dx 

where χ is the distance along the stream-tube, and we have assumed the flow to 
be one-dimensional. 

When one uses equation (12), equation (11) gives 

dA dV,.., s 



2 2 2 Dynamics of Inviscid, Compressible Fluid Flows 

which shows that, in subsonic flow (Λί < 1), an increase in speed is produced by 
a decrease in the stream-tube area, and in a supersonic flow (M > 1), an increase 
in speed is produced by an increase in area. This is so because in supersonic 
flows, the decrease in density overweighs the increase in velocity. Also, note that 
the acceleration of a fluid from a subsonic speed to a supersonic speed requires 
that the flow pass through a throat, where the flow is sonic (M = 1). 

Noting, from (29) (Section 3.1), that, for an isentropic flow, 

P_ 
Pa yTo; 

1-

r/(r-i) 

one obtains 

V = . 
\2YRT0 

7 - 1 
1 - 1 ^ 

Po. 

(r-O/r 

The mass flux is then given by 

G = pV=p0 

which reaches its maximum at 

2YRT0 

7 - 1 

dG 

<P/P0) 
= o, 

' p \ ^ l y 

i.e., at 

or 

Ρ ( 2 λ 

[PoJ c U + 1 J 

vc--
i 7 + 1 

r/(r-0 

(14) 

(15) 

(16) 

a , 
- v r + 1 

i.e., at the throat. 

In order to show that the flow is indeed sonic at the throat, note, from (5), that 

where we have used 

a i = 4 L = k Y p r - > = a i o - L { y - l ) V i , 
dp 2 

= k = const. 

(17) 

When we use equation (17), equation (10) gives 
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ir-i Vr 1 =const. 

Differentiating equation (18) with respect to V, one obtains 

( r - i ) ^ ^ - I ( y - i ) v 2 

vr'2 -^{y1 -l)W = 0, 

which shows that 

^ - = 0: a

2=Ur + l)V2 or V = a, 
dV 2 

(18) 

(19) 

(20) 

as also shown by (13). Further, at V = a*, (19) gives, upon one more 
differentiation, 

$ \ [al-±(Y-l)V2]v-A(Y + l)V = 0, 

from which 

d2A 
dV2 

A{r+i) =A(Y+\)\O 

so that A reaches a minimum at V = a'. 

Next, from 

pVA=p'V'A' = 
f 2 \(r-i)/2(r+i) 

U + 1 

one obtains 

_A___1_ 
A' ~ Μ 

2 (• Y-A„2 , 1 + -^—-M 
7 + R 2 

Ρ ο α ο Λ ' · 

(r+i)/2(r-0 

(21) 

(22) 

which, for a given value of in general, gives two values of M, one 

subsonic and the other supersonic, except at A/A' = 1, where the two roots for Μ 
coalesce at Μ = 1. 

E X E R C I S E S 

1. Show that at very-small Mach-number flows, the changes in the flow 
velocity are much larger than those in the speed of sound in the fluid, and 
the reverse is true at very-large Mach-number flows. 
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It turns out that (see Section 3.7), in the absence of dissipative effects such as 
viscosity and heat conductivity, propagation and convection of compressional 
disturbances with speeds increasing with compression leads to a continual 
steepening of waveforms that eventually can no longer be expressed by single-
valued functions of position. One then has to introduce into the flow a 
discontinuity to get over this difficulty. A shock wave is a surface in a flow field 
across which the flow variables change discontinuously. The existence of shock 
waves is also necessary in order that one may admit certain types of boundary 
conditions that could not be satisfied in a continuous flow pattern. 

Of course, a real fluid cannot sustain an actual discontinuity, so that the latter 
is only an idealization of the sharp gradients in the flow variables that occur in 
reality in a shock wave. Consequent to these flow gradients, various transport 
processes such as those due to viscosity and heat conductivity show up inside the 
shock. One can in fact give an explicit solution for the flow structure within the 
shock when viscosity and heat conductivity are included for the particular Prandtl 
number P-Cpjk = 3/4 (see Section 4.1).^ 

The Normal Shock Wave 

The changes in flow properties which occur across a shock wave may be 
determined without reference to the specific dissipation processes occurring within 
the shock wave. The dissipation processes influence only the structure within the 
shock wave. Consider a stationary shock wave with its plane normal to the flow. 

For a one-dimensional flow of gas, one has 

dp dp du n 

(du du\ dp -

f + 4 = 0 , (3a, 
dt dx 

or 

-*It may be noted that real gas effects can provide additional thermodynamics relaxation processes 
to support the flow gradients in a shock wave. In the case of the very weakest shocks, the process 
with the longest relaxation time is adequate to support the concomitant flow gradient. But, when the 
shock becomes stronger, the next longest relaxation-time process is called into play to sustain the 
main shock transition, followed by a slower relaxation involving only the longer relaxation-time 
process. Finally, when the shock becomes so strong that all these thermodynamic relaxations are 
insufficient to support the steep flow gradients occurring inside the shock, strongest dissipative 
processes like viscosity and thermal conductivity are called into play to sustain the main shock 
transition, followed by slower thermodynamic relaxations. 

3 . 3 . Shock Waves 
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de de ρ 
dt dx p 

'dp dP\ . 

which may be rewritten in conservation form 

| ( p u ) + J-(p„> + p ) = 0 , 

d(\ 2 -[-pu +pe pu +pe \u + pu = 0 . 

Equations (4>-(6) can be represented by 

dq d 
— + — 
dt dx 

which may be rewritten as 

where 

V-F = 0, 

d_ ? d_ 
' dx+,'dt' 

(3b) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

If φ is a smooth function with compact support in the (x,t) plane, then 
equation (8) is equivalent to 

V<p. (10) 

(Π) 

φν • F dxdt = 0 

On integrating by parts, equation (10) leads to 

j J V ^ F dxdt = 0. 

If q is smooth, equations (8) and ( II) are, of course, equivalent. However, if q 
is not smooth, equation (11) may remain valid even when equation (8) does not. 
In fact, a weak solution of equation (8) is defined to be a function q that satisfies 
equation (11) for all smooth functions φ with compact support. Note that a weak 
solution is capable of exhibiting a discontinuous behavior. 

Let us now consider properties of a weak solution q of equation (8) near a 
jump discontinuity across a smooth curve Ó in the (x, t) plane. If φ is a smooth 
function vanishing outside the region S that is divided into 5, and S2 by the curve 
Ó (see Figure 3.2), so S = 5, u S2, one has, from equation (11), 

||V<p F dxdt = jjv<p F dxdt + jj V<p· F dxdt = 0 . (12) 

Note that 
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lfr<pF dxdt = ]jV((pF) dxdt- JJ <pV F dxdt. 
S, 5, S, 

If q is assumed to be smooth in 5,, then equation (8) prevails in 5,, and one 
obtains 

JJíφ -F dxdt = J ^ F , η ds, 
s, ζ 

where F, denotes the value taken by F on Ó as the limit is taken from the 
region 5,. Similarly, one obtains 

Jjv<p-F dxdt = -J<jffF2 π <fc, 

where the negative sign on the right hand side corresponds to the fact that the 
outward normal h for 5, is the inward normal for S2. 

When one substitutes these results, equation (12) leads to 

j<p(F,-F2)A ds = 0, νφ, 
t 

from which the jump condition is obtained: 

[Fn] = 0 on Ó, (13) 

where the rectangular bracket denotes the jump of the contents across Ó. 

If the curve Ó is parameterized by t and is given by χ = x{t), one has 
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ή_ (i-u) t 

Vi + i / 2 ' 
where U = dx/dl is the speed of the discontinuity. Equation (13) then becomes 

-U[q] + [f{q)} = 0 on Ó. (14) 

Thus, a weak solution q satisfies equation (7) where possible and (14) across a 
jump discontinuity. 

Applying the jump conditions (14) to equations (4)-(6), one obtains the 
following jump conditions across a discontinuity Ó in the (jc,f)-plane, like a 
shock wave, moving with speed dx/dt = U, 

-U[p] + [pu] = 0, (15) 

-U[pu] + [pu2 +p] = 0, (16) 

-U ^pu2+pe + ^pu2 +peju + pu = 0 . (17) 

Transforming to a frame of reference moving with the shock wave, i.e., 
putting 

v = U-u, (18) 

equations (7)-(9) become 

[pv] = 0, (19) 

[ρ+ρυ2-pvU] = 0, (20) 

pv^h + ^ υ 2 j - ( ρ + ρ υ 2 )u + ^ pvU2 = 0, 

or 

[ρυ] = 0 , 

[ρ + ρυ2} = 0 

1 
h + - v 2 

2 
= 0, 

(21) 

(22) 

(23) 

(24) 

which merely highlight (compare with equations (15H17)) the fact that equations 
( 1 H 3 ) are Galilean-invariant. Thus, 

Ρ|*Ί=Ρ2^2· (25) 

Pi+PtV;=P2+PiV}, (26) 

(27) 
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where the subscripts 1 and 2 refer to the flow conditions in front of and behind the 
shock. Equations (17)—(19) are called the Rankine-Hugoniot relations. 

The Rankine-Hugoniot relations are not sufficient to determine a unique, 
physically correct weak solution of equations (1 )-(3); one needs to impose further 
conditions, like the causality condition, for this purpose. The causality condition 
stipulates that, when a shock separates characteristics of one family4 (see below), 
the characteristics on each side can be traced back to the initial data so that the 
shock is determined by the given initial data and not by future events. For a 
perfect gas, the causality condition is equivalent to the thermodynamic entropy 
condition (see below) which stipulates that the entropy increases across a shock, 
making the flow transition across a shock an irreversible process. 

From equations (25) and (26), one obtains 

ft 1 >\ 
V2={p<-p2) —+ — 

I Pi Pi 
(28) 

When one uses equation (28), equation (27) gives 

{Ρι-Ρι)( 1 . 1 Λ 

— + 
ν Pi P2 J 

E± 
v P . 

.Ei 
Pi) 

from which we have 

y + 1 

7 + 1 

~γ~-À 
Pi 

^ - 1 
Pi 

P± 

Pi 

(29a) 

and 

Pi 

7 + 1 El 
Pi 

+ 1 

El 
Pi 

y - 1 
7 + 1 

o r Ρι-Ρι = ã Pi + Pi 

Pi-Pi Pl+Pl 
(29b) 

which is represented (called the Hugoniot curve) along with an isentrope (for 
which ρ ~ pr) in Figure 3.3. Note that 

Pi Pi y - i 

Next, one has, from equation (27), 

(30) 

A discontinuity separates a family of characteristics if, through each point of the graph of the 
discontinuity in the (x,t) plane, there exist two characteristics, both of which either point forward 
in time or can be traced backward in time. 
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Isentrope 

Normal shock 

Y - l 
γ + 1 

Figure 3.3. The Hugoniot curve. 

P / 
/p 

1 1 _ . 
1 + ^ t f » 

Tx 1 + ̂ V (31) 

and from the perfect gas equation of state and equation (25), one has 

T2 -PL.PI -PI .YJ_-PI .*L ,T 
i 'i 

>\ P\ Pi f 

Using (31) and (32), one obtains 

v, Pl M, -y r, 

EL 

Pi 

Af.Jl + l V K 

M η+\1-λ\Μι 

Also from equation (26), one obtains 

Pi ^ 1 + yA/,2 

From (33) and (34), one obtains 

M\=-
1 + Ϊ1ΪΜΪ 

7 Mi -
y - l 

(32) 

(33) 

(34) 

(35) 
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PI 7 + 1 { ' 

On using (36), we obtain the following equation from (29b) and (25): 

(36) 

P2 _. 
1 + 

χ - 1 
(37) 

MR 

Noting, from (5) and (9) in Section 3.2, that 

V2 

' " l — — 

1 + 1 ^ l M f 

and using (37), one obtains the Prandtl relation 

V ,V 2 =a* 2 or M\M\=\, (38) 

so that if the flow ahead of the normal shock is supersonic, the flow behind is 
subsonic. 

Next, the entropy change across the shock wave is given by [see equation (31)] 
in Section 3.1) 

(s 2 -s , ) = c > 

When we use (29a), (39) becomes 

PI J 
£I 

\PIJ 
(39) 

S2 - SI = CV LN 

( 

I P i . 
(o Y 

( 7 + 1) & - ( 7 - 1 ) 
VPi J 

' p 2

v + 1 

Pi) 

(40) 

Now, the dissipative effects associated with the transport processes inside a 
shock wave would raise the entropy of the fluid, so that from (40) we require 

\ ( η λ r+i ( η λ r f 

= ( 7 - 0 
J 

Ρχ - ( 7 + 1) Ρχ + ( 7 + 1) = ( 7 - 0 
J <P\ ) 

- ( 7 + 1) 
, P > , V 

The function g ( p 2 / P i ) ' s sketched in Figure 3.4. It is seen that 

g{pi/Pi)>0 if P 2 / P i > l 

or, if Μ, > 1, from (37), 

i.e., if Μ2 < 1, from (35), (42) 

When one uses (35), (34) gives 
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Figure 3.4. Entropy variation across a shock. 

so that only the compression shocks are admissible and the expansion shocks are 
not. 

Let us consider weak shock waves next. One has [see equation (23) in Section 
3.1] 

TAS = h~hx-\^.. 
i Ρ 

Using equations (27) and (28), one has 

1 

<P Pu 

In order to evaluate the integral in (43), note the trapezoidal rule, 

]f(x)dx = ±(x1-xl)[f{xl) + f{x1)} 
x\ 

~ -fi (Xl -*> ^ f"(Xl ) + ({{X2-Xl)4] 8 8 * 2 = » * Ι · 

so that 

J η Ρ 2 
— + — 

VP P\) dp2 P) 

(43) 

(44) 

(45) 

(p-Plf+0[(p-P]y]. (46) 

When one uses equations (44) and (46), equation (43) becomes 
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TAS = — 
12 dp1 

(p-Pl)}+o[(p-Pl)4 (47) 

This means that the Hugoniot curve for the normal shock and the isentrope in 
Figure 3.2 have the same tangent and curvature at the point ( ρ , , ρ , ) . 

Further, since for a weak shock, equations (25)-(27) reduce to 

pdV + Vdp = 0, 

dp + pVdV = 0, 

CpdT+VdV = 0, 

one has 

P-Px . 1 P-Pi 

P, Y P. 

v - v , . 1 P-Pi 

v, Y Px 

T-T, _ γ-\ p - P i 

7", Y P\ 

(48) 

(49) 

(50) 

(51) 

Comparison of equations (51) with equation (47) shows that one may treat the 
weak shock waves to a good approximation as being isentropic. 

The Oblique Shock Wave 

Consider a stationary shock wave with its plane now oblique to the flow 
direction. The equations expressing the conservation of mass, momenta tangential 
and normal to the shock, and energy are 

PiK =PiV., (52) 

( ρ , ν „ , ) ν „ = ( ρ Λ Κ · 

Ρι+ΡιΚ = Ρι+ñ*Κ> 

V2 

1 2 

(53) 

(54) 

(55) 

where the subscripts η and t denote the values perpendicular and parallel to the 
shock wave. 

From equation (53), it follows that 

û 
Ñ, 2 y 

7 - 1 

2 7 
(56) 
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£2.= 
Pi 

7 + 1 a 2 - Y ~ l 

K+K) 2 y 2γ 

Using equation (56) and (57), equation (54) gives 

•V, V. V. =a2 7 1 " 2 

7 + 2 

(57) 

(58) 

Since the superposition of a uniform velocity V, does not affect the static 

properties of the flow, the normal-shock jump relations can be carried over 
merely by replacing Λί, by Mx sin σ (see Figure 3.4). Thus, we have, from (35)-
(37), 

7 + Γ 

£2,-. 
Pi 

Λί, sin a 

+ 1 

Pi_ _ 
Pi 

1 M, sin ο 
I 2 J 1 

= l + - ^ ( M , 2 s i n 2 a - l ) , 

(59) 

1 + 1 £A |Af2sin2CT 
M 2 s i n 2 σ = 

γ Μ2 sin2 σ- 7 - 1 

Noting, from equation (52) and Figure 3.5, that 
vn. tan σ Pi 

Pi V Àáç(σ-δ) 

(60) 

(61) 

(62) 

and using equation (59), one obtains the following equation for the flow 
deflection across the shock: 

tan 8 = 
(A/2 sin2 ( T - l ) c o t ( 

1 + M, 
(63) 

Now since 

one requires 

M | S i n a > 1, 

sin 
< 1 ^ 

2 

Equation (63) shows that 

π . _, 
σ = —, sin 

2 

( 1 ^ 
5 = 0. 

(64) 

(65) 

For sin 1 (l/Λί,) < σ < π/2,δ is positive and reaches a maximum (see Figure 

3.6). 5 r a i x is the maximum angle of flow deflection for which there can exist an 
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Shock 

Figure 3.5. The oblique shock. 

attached shock. Further, as indicated by (63), Sma increases with A/,. Note that 
for δ < 5 m „ for each value of δ and A/, there are two possible shock waves 
corresponding to two different values of σ - one a strong shock (M2 < l ) , and 
the other a weak shock (Λ/2 > l ) . 

Consider now weak oblique shock waves. Equation (63) then gives 

A / 2 s i n 2 a - l = Y + ] , M* δ. (66) 
2 Jr

MJZ\ 

When one uses (66), (60) gives 

P-Px . , YM, 

Noting, from (51), that 

one obtains from (67) 

{P-PJ-PMV-K)' 

v-v{ δ 

(67) 

(68) 

A centered-fan of such weak oblique waves may be used to simulate the flow 
past a gentle convex corner - the Prandtl-Meyer flow (see Section 3.5). 

Blast Waves: Sedov's Solution 

Consider the propagation of a very strong spherical shock wave produced by a 
strong explosion, i.e., from the instantaneous release of a large quantity of energy 
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0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 
σ 

Figure 3.6. Variation of flow-deflection angle with the inclination of the shock 
to the incoming flow (from Liepmann and Roshko, 1957). 

£ in a small volume. Let us consider the wave at distances small enough from the 
source so that its amplitude is still large, but at distances large enough compared 
with the dimensions of the source so that the latter can be taken to be a point. 
Since the shock wave is strong, one may neglect the pressure px of the 
undisturbed stagnant gas in front of it in comparison with the pressure p2 

immediately behind it, and the density ratio p 2 / p , then approaches its limiting 
value ( y + l ) / ( y - 1 ) . Thus, as Taylor argued, the gas flow pattern is essentially 
determined by two parameters, Å and p , ; this enables one to find some self-
similar solutions to the flow. First, let us form a dimensionless parameter 

* \Et2 

1/5 

(69) 

where R is the radial distance. 

It turns out that such a choice leads to a Constance of the total energy (which 
follows it one neglects pt), 

- + -pV2 

1 2 K 
47tR2dR, (70) 
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^ 0 - <30 (71a) 
Pi J 

from which the rate of propagation of the shock wave is given by 

« , - ^ Α (72) 
1 dt 5t y ' 

Equation (71) implies, as Taylor deduced, that 

Ro-t2'5. (71b) 

This relationship was confirmed in an impressive manner by the observations of 
the mushroom cloud generated by the explosion of the first atomic bomb (see 
Figure 3.7). 

The state of the gas immediately behind the shock is given by (on using the 
results from Exercise 1) 

1 0 . 5 r -

9.5 

6 0 
Ο 

in I (N 

8 . 5 h 

7.51 I I I I I I 

-4.0 -3.0 -2.0 -1.0 

log1 0f 

Figure 3.7. Variation with time of the radius RQ of a strong spherical shock 
wave (from Faber, 1995). The straight line corresponds to (71b), while the 
crosses correspond to the observations. 

of the gas within the sphere bounded by the shock if one assumes that ρ,ρ, V are 
all functions only of ξ. 

The position of the shock wave corresponds to a certain constant ξ0 of ξ, and 
if R = RQ denotes the shock radius at time t, one has 
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2«Ι „ u, 
2 = " 1 - Ì 2 = 7 + Ί ' A P l 7 + T 

P 2 = P i 
7 + 1 

(73) 

In order to determine the gas flow throughout the region behind the shock, let us 
make a similarity transformation: 

7 + 1 

P = : 

5(7 + 1) t 

8p, 

7 - 2 P.P'(S). 

25(7 + 1) i 2 

and on the shock wave, one has 

ξ = ξ0: V',p',p' = l. 

The equations governing the flow are 

\_dp_ 
ñ dR' 

dp d . „ , 2pV n 

+ — (ρ V) + - ί — = 0, 
dt dRK ' R 

A <?/?; [pr 1 

(74) 

(75) 

(76) 

(77) 

(78) 

and when one uses equation (74), equations (76)-(78) become ordinary differential 
equations: 

ξ ν ' - 1 ] ^ + £ ΐ 
5)Üξ' p' 

: - V ' ( V ' - l ) - 2 - ^ - , 
V ' P' 

Üξ l 5)ρ' Üξ 

f \ dp' 7 ö Λ 

= -3V", 

= - 2 ( V " - l ) . 

(79) 

(80) 

(81) 

The integration of equations (79)-(81) is facilitated by noting the existence of 
another integral. This is obtained from the Constance of the total energy between 
any two similarity lines R/t2,s = const., i.e., from 

- ^ + V 
or 

7 - 1 2 j 

p' _ 7 + 1 - 2 V " 
p> 2γí-{γ+ΐ) 

(82a) 

(82b) 
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An ingenious solution of equations (79)-{83) was given by Sedov, 

UJ 

P' = 

5(γ + \)-2(3γ-\)í' 

1-Y 

2 γ í - ( γ + ϊ) 

2 y V ' - ( y + l) 5(y + l ) - 2 ( 3 y - l ) V 

where 

y - 1 

1 3 y 2 - 7 y + 12 
( 3 y - l ) ( 2 y + l ) ' 

13y2 - 7 y + 12 

7 - y 

. 5 ( y - l ) 
2y + l ' 

y + l - 2 V 

y - i 

2y + l 

(83) 

4 ( 2 - y ) ( 3 y - l ) ( 2 y + l ) ' 5 y - 2 ' 

The constant ξ0 is determined from the condition (70): 

3 2 ^ o ^ j j l ^ + f p l ^ ' l . (84) 

One has from (83) 

^ 0 : 
f R ^ r - D 

(85) 
V_ _tf p_ 

Figure 3.8 shows V/V2, p/p2, p/p2 vs. R/R^, as given by (75), for air 

(y = 1.4). Observe the sharp fall of the density away from the shock front, and 

note that the gas is almost completely concentrated in a thin layer behind the 
shock. 

1.0 

0.5 

V/Vy/ \ 

p/py 

0 0.5 1.0 

Figure 3.8. Variation of flow properties behind a blast wave (from Sedov, 1959). 
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3 . 4 . Flows with Heat Transfer 

Rayleigh Flow 

Consider a steady one-dimensional flow with a heat transfer. The latter may be 
caused by external agents or some chemical reactions in the flow. One has (see 
equation (23) in Section 3.1), 

TdS = dQ = dh-& = -Z*-dT-&. 
ρ r-i ρ 

When one uses the perfect-gas equation of state, 

Ρ = pRT, 
equation (1) becomes 

TdS = dQ •-
yRT 

y - 1 

dp dp 

Ρ Ρ 

dp_ 

Ρ 

When one uses the continuity equation 

pV = const., 

equation (3) becomes 

TdS = dQ = 
y - 1 

dp_ dV_ 

Ρ V ) Ρ 

When one uses the equation of motion, 

pVdV = -dp, 

equation (5) becomes 

dp 
TdS = dQ = 

ρΜ\γ-\) 
— ( Λ ί 2 - ΐ ) . 

0 ) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Equation (7) shows that the heat addition (dQ > 0) will accelerate a subsonic 
flow and decelerate a supersonic flow. 

In order to see this effect a little better, consider the steady one-dimensional 
flow in a variable-area (A = A(x)) stream tube. For this flow, one then has 

\ dV | 1 dp | 1 dA _ 
V dx ρ dx A dx 

dx ρ dx 

(8) 

(9) 

E X E R C I S E 

1. Study the nature of flow transitions across a very strong shock wave. 
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(10) 

From equations (8)—(10), one derives 

1 d V _ 1 1 dA 1 dQ 
(Π) 

V dx \-M2[Adx CpT dx j 

which shows that the heat addition (dQ > 0) acts, in general, like a narrowing of 
the stream tube. This explains why the heat addition accelerates a subsonic flow 
and decelerates a supersonic flow. 

Detonation and Deflagration Waves 

The rate at which a chemical reaction takes place in a mixture of gases depends on 
the temperature of the gases and increases with this temperature. If the reaction is 
exothermic, i.e., if heat is released as the reaction proceeds, the temperature will 
rise and increase the rate of reaction, so that such a reaction is self-sustaining. 
This is called combustion of the mixture, and the zone of reaction is called a 
flame. The speed of a flame is usually very small, and its rate of propagation 
depends primarily on the thermal conductivity, which enables heat to be 
transferred from the hot products to the unburnt gas. If the combustion zone is 
very thin, then the flame can be treated as a discontinuous front separating the 
burnt products from the unburnt gas. 

Detonation wave is composed of a shock wave followed by a chemical reaction 
zone (the shock wave raises the temperature of the gases sufficiently to start off a 
chemical reaction, and the latter is assumed to occur instantaneously across the 
sharp front). It moves with a supersonic velocity relative to the unburnt gas, and 
it is sustained by the energy released in the chemical reaction. 

Consider a detonation wave moving through a gas with speed U (Figure 3.9); 
the gas behind the wave is set into motion with a speed u2 with respect to a 
stationary observer. The Rankine-Hugoniot relations now have to be modified to 
allow for the liberation of chemical energy across the wave. Thus, 

ptU = p2(U-u2), 

pl+p,U1=p2+p2(U-u2f, 

(12) 

(13) 

Pi 2 p2 2 
(14) 

where q is the quantity of heat per unit mass of the gas released on passage 
through the wave front. 

One derives from equations (12) and (13) 
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u U-u, 

Figure 3.9. Flow through a detonation wave. 

From (15), the shock waves with p2 > p, and p 2 > p, are called detonations, and 
those with p2 < px and p 2 < p , are called deflagrations (see Figure 3.10). 

The Hugoniot curve (see Figure 3.10) for the combustion wave is displaced 
from the Hugoniot curve for a normal shock wave because of the fact that dQ > 0 
for the former and dQ = 0 for the latter. The Hugoniot curve for the combustion 
wave consists of two separate branches, exhibiting the fact that the conservation 
laws are compatible with two quite distinct types of processes - detonation and 
deflagration. 

At points D and C, called the Chapman-J ouguet points, on the Hugoniot 
curve for the combustion wave, a straight line from 0 ' (the point representing the 
initial state of the gas), is tangential to the latter (see Figure 3.10), so that one 
has there 

dp P-Pi 
d{\/p) 1 /p - l /p , 

= -pV. 

Now, 

TdS = d h - ^ . 

(16) 

(17) 

Now (recall equation (21) in Section 3.3), 

_ (p-py h-h, = --

from which 

dh = -<* 
v A P. 

{Pi +PJ 

ë . {P~Pi)dp 

(18) 

(19) 

When one uses (16) and (19), (17) gives 

TdS = 0, 

so that the transitions corresponding to the Chapman-Jouguet points D and C are 
isentropic. 

Next, one obtains from (12) and (13) 
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IΑ Ρ - p . 

and when one uses (16), (20) becomes 

i/ = x P £ Z A , ( 2 0 ) 

U = +a-P-. (21) 

Also, when one uses (16), (15) gives 
f 

£ - 1 
\Pi . 

(22) 

When one uses (21), (22) becomes 
u2=U±a at £>,C; (23) 

so that corresponding to the transitions represented by the Chapman-Jouguet 
points D and C, the burnt gas behind the combustion wave travels at the speed of 
sound relative to the wave front. 

Now, corresponding to the region AB on the Hugoniot curve for a combustion 
wave, one has (see Figure 3.8) 

£ - > l , £ - > l ; 
Pi Pi 

so that from (15), u2 will be imaginary for that region. This means that the 
transitions corresponding to the region A Β on the Hugoniot curve for a 
combustion wave are forbidden. 
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Experimentally, while many different detonational wave speeds have been 
observed, the detonation wave, after a very short period, evolves into a state 
represented by the Chapman-Jouguet point D. This is understandable because, 
only for a detonation wave corresponding to the Chapman-Jouguet point £), the 
wave moves with the speed of sound relative to the burnt gas and is so out of 
reach of the disturbances originating from the burnt gas and is stable. In contrast, 
a detonation wave corresponding to a point to the left of the Chapman-Jouguet 
point D moves with a subsonic speed relative to the burnt gas and is thus within 
the reach of the disturbances originating from the burnt gas which weaken it until 
it reaches a state represented by the Chapman-Jouguet point D. On the other 
hand, a deflagration wave corresponding to a point to the right of the Chapman-
Jouguet point C moves with supersonic speed relative to the burnt gas and 
subsonic speed relative to the unburnt gas; it is, therefore, excluded by the 
causality condition (rather than the thermodynamic entropy condition). 

E X E R C I S E 

1. Obtain the expressions for changes in pressure, density, and temperature of 
the fluid in a Rayleigh flow. 

Governing Equations 

The equations expressing the conservation of mass, momentum, and energy are 

3 . 5 . Potential Flows 

0 ) 

dvi + <?t>, _ 1 dp 
dt ' dxj ρ dxj ' 

(2) 

Equation (3) may be expressed alternatively 

de de 

(3a) 

dv, 
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υ, = · 
ÜΦ 
dx. 

then equations (1) and (2) become 

1 dp d20 1 dp n 

— — + + — υ —^ = 0 , 
p dt at ρ ' <?jc 

dt * dxk J a2p dxj ρ dxj ' 

where a is the speed of sound. 

The Bernoulli integral of equation (2), viz., 

d0 υ2 r dp 

(4) 

(5) 

(6) 

d t + 2 
— + I — =const., 

2 J ρ 

gives 
d20 dvj a2 dp n 

Z-+ V: ~ + — = 0 . 

dt2 ' dt p dt 

Using equations (6) and (8), equation (5) gives the potential-flow equation 

(7) 

(8) 

1 - -ö 1 - -
Φ 

Φ + 
yy 

Φ.Φ, 
- 2 ^ Φ ) : - 2 ^ 4 ^ Φα=\(Φ,,^ΦχΦα+2ΦγΦ^2ΦιΦα). (9) 

Φ2 

α ) α 

Ö , Ö í 

' > φ 
2 Ø*>-

α α α 

For an adiabatic process with the relation 
p/pr =const., 

(7) leads to 

a2 + ^γ~(Φ2

χ + Φ] + Φ]) + {Υ ~ 1)Φ, = const. = α2

0. 

(10) 

(11) 

Streamline Coordinates 

Consider a two-dimensional situation in streamline coordinates (see Figure 3.11). 
The equations expressing the conservation of mass and momentum in a steady 
flow are 

I ^ + 1 ^ + _ L ^ L = 0 , (12) 

ρ ds V ds Äη ds 

_,.dV dp 

For a potential flow, one may write 
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Figure 3.11. The streamline coordinate system. 

When one uses that (see Figure 3.9) 

1 dAn _ dQ 
An ds dn ' 

equations (12) and (13) give 

a2 jV ds dn 

(15) 

^ - Ì ~ ~ = 0 . (16) 

Next, the energy-conservation equation is (see equation (23) in Section 3.1) 

£ - H r . i ± (Ha) 
an dn ρ dn 

or 

^ = Ô ^ . + í Ù , ( 1 7 b ) 
dn dn 

where h0 is the stagnation enthalpy, and Ω is the vorticity 

where R is the radius of curvature of the streamline in question. Equation (17) 
shows that the variation of total enthalpy and entropy across streamlines is related 
to the vorticity in the flow. An example of a flow with vorticity is the flow 
downstream of a curved shock wave. Since the inclination of the shock wave 
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relative to the oncoming flow determines its strength (see Section 3.3) and hence 
the entropy change experienced by the fluid, the entropy continually varies on the 
downstream side. This leads to the production of vorticity in the flow there. 

Conical Flows 

In cylindrical-polar coordinates for a steady flow, equation (9) becomes 

Φ 2 \ 

% - 2 Φ Γ Φ β - % + ( α 2 - Φ 2 ) φ „ + ^ Φ, 2 Ν 
= 0. (19) 

For a conical flow (say, if the flow properties are constant on the rays from the 
origin), one has 

Φ = 0 , 

- Φ β = Φ,β· 

while the irrotationality condition gives 

ι 
r 

It follows from (20) and (21) that 

Φ(Ã,θ) = κφ(θ). 

When one uses (20) and (21), equation (19) gives 

(20) 

(21) 

(22) 

Φ. + Φα a 2 - Φ 2 \ 

= 0 

or 

Φ« 

Noting that 

Φ, = ^ 2 - ^ £ = V V2 - a2 = Vf^T = V co s ( , V), 

one has 

sin(r,V) = —, 
v ' V 

(23) 

(24) 

(25) 

so that the radius vector intersects the streamline at the Mach angle and hence 
must be a Mach line. The Prandtl-Meyer flow (Figure 3.12) is such an example. 
This flow consists of two regions of uniform flow separated by a fan-shaped 
region of expansion where the positive characteristics (see below) are all straight 
lines through the corner 0. 

Note that using (23), one obtains from energy conservation (see equation (4) in 
Section 3.2) 
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1111111111111111 
0 

Figure 3.12. The Prandtl-Meyer flow. 

^ Τ ú ú Ο ' - - · - ) · ( 2 6 ) 

When one uses (22) and (23), (26) gives 

Note that, according to (27), the streamlines become radial when 

θ=θ =-* 
2 

If the angle turned through by the streamline is larger than 0 m M , then a region of 
zero pressure will form between the fluid and the wall. Referring to Figure 3.12, 
the angle turned by a streamline from M, = 1 to Μ > 1 is given by 

111 
y - l - l (28) 

Mach lines 
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y = θ + tan 1—&J— 
\2 J Φ, 

= i £ - e | + tan-' 
2 7 + 1 υ y 

-Λ (π 
+ 11 2 

= tan ' 1 V M 2 - 1 + tan" y - i 
7 + 1 

Vw 2 - ι (29) 

Small Perturbation Theory 

Consider small disturbances introduced into a steady stream by a small body 
placed in it. Let 

Φ = υ„χ + φ(χ,γ,ζ). (30) 

When one uses (30), (9) gives, on linearization in φ, 

[ΐ-Μί)φ„+φ„ + φα=0, (31) 

where 

and the subscript •» denotes conditions in the free stream. 

The pressure is given by 

2 ^ 

2 
- 1 

J 

2 (ô) 
7Λ*! 

- 1 
J 

- 1 (32) 

When one uses the energy conservation equation (see equation (4) in Section 3.2) 

(í- + Ö÷)
2+Ö2,+ÖÀ a2 _ ai Ui 

(32)can be expanded as 

7 - 1 7 - 1 

2þ ι , χ φ2 φ2. + Φ2 

U v ' U2 U2 

(33) 

(34) 

Note that this expansion is not valid either when A/_ = 1 or when A/_ > 1. 

The requirement that the streamline near the surface of the body be tangential 
to it leads to the boundary condition, upon linearization, 

U„ dx 

where y = f(x, z) describes the surface of the body. 

(35) 
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φ(χ, y) = — , £ " e x p i - y a - v / l - M 2 , ) cos ax, 
ψ-Ml v ' 

so that 

(37) 

(38) 

y = 0: C p = - 2 e C C since*. (39) 

On the other hand, for the case M_ > 1, (37) has the solution 

= - ,EU~ sinalx-yyJMl-l), (40) 

so that 

2εα 
y = 0: C = , cos ax. (41) 

Note the differences between the subsonic-flow and the supersonic-flow 
solutions, as indicated by (38>—(41): 

1. The disturbances in a supersonic flow propagate unattenuated to infinity, 
whereas those in a subsonic flow attenuate at infinity, 

2. The pressure changes in a supersonic flow are proportional to the slope of 
the boundary, whereas those in a subsonic flow are proportional to the 
curvature of the boundary, 

3. As a consequence of point 2, a nonzero drag force exists on the wavy wall 
in a supersonic flow, whereas there is no drag force on the wavy wall in a 
subsonic flow, 

4. Thanks to the limited upstream influence in a supersonic flow, the analysis 
of the latter becomes simpler than that of a subsonic flow. 

Characterist ics 

One distinguishing property of hyperbolic equations is the existence of certain 
characteristic surfaces across which there can exist discontinuities in the normal 
derivatives of the dependent variables. The governing system of partial differential 
equations imposes certain restrictions on the relative magnitudes of these jumps. 

Example 1: Consider the flow past a wavy wall given by 

y = E sin Or = f(x), (36) 

for which we have the following boundary-value problem: 

{1-Μί)φα+Φ„=0, 

y = 0: 0 y = eU^acosax. 

For the case ΛίΜ < 1, (37) has the solution 
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These relations form a linear, homogeneous system, and the solvability condition 
for this system produces restrictions on the possible orientations of the 
characteristic surface. Thanks to the admissibility of discontinuities in the normal 
derivatives of the velocity on the characteristic surfaces, it is possible to patch 
different flows together at these surfaces, the only restriction being that the 
velocity itself must be continuous. Furthermore, the fact that the dependent 
variables satisfy certain compatibility relations of the characteristic surfaces can 
be made the basis of a graphical procedure to compute the flow. Such a 
computational aid is not possible for an elliptic problem wherein the region of 
computation must be completely bounded and each point is influenced by all 
other points in the region. 

For steady two-dimensional potential flow, one has 

(42) 

Consider a system of partial differential equations, 

Α Φ „ + 2 β Φ ν + Ο Φ „ = 0 , 

ÜΦχ=ΦχχÜχ + Φχ^, 

ÜΦγ = Φ)ΧÜχ + Φ>>4γ, (43) 

from which we have 

A 0 C 

φ =J '- - ! = —I 
" A IB C a 

^ 2 

dx dy 0 

0 dx dy 
so that the physical (f,g) characteristics are given by 

Ä2 = 0 

dx ÜΦχ 0 

0 ÜΦ^ dy Λχ 

(44) 

or 

(45) 

and the hodograph (f,g) characteristics, which are the images of the physical 

characteristics in the hodograph plane, are given by 
A, = 0 

or 

(46) 
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When one uses (45), (46) becomes 

ÜΦ' B±4B2-AC 
c 

(47) 

For equation (42), the physical and the hodograph characteristics are then given 
by 

Φ.Φ. ö2 + ÖΙ (dy\ _ a

2 'T| g 

{dx)f,g 1 - Φ 2 / * 2 

- 1 

ÜΦ, 
Φ] + Φ) . 

Χ-Φ] I a2 

(48) 

(49) 

According to (48) and (49), the characteristics can exist only in a supersonic flow. 
Also, note that 

ay ÜΦ„ 
= - 1 . 

When one puts 

(48) becomes 

Φ , = V c o s 0 , Φ , ^ Ι ^ ί η θ , 

- A / 2 s i n f l c o s 0 + V A / 2 - 1 
1 - M2 c o s 2 θ 

( é + Ë / ë / 2 - l c o t e ) - i W 2 ( l - c o s 2 θ)οο\.θ + ^Μ2 - 1 

(50) 

(51) 

1 + Ë / ë / 2 - l c o t e ) 

- c o t f l ± V i W 2 - 1 

l + V M 2 - l c o t © 

t a n ( 0 ± ^ ) , 

1 - A i 2 c o s 2 0 

(52) 

where 

tan ì 
V M 2 - 1 ' 

Equation (52) shows that the Mach lines are the physical characteristics. 

Similarly, (49) becomes 

ÜΦγ 

1.1 

dV 
vdej, 

1 = + tan ì . (53) 
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Figure 3.13. Physical and hodograph characteristics. 

The physical and the hodograph characteristics are sketched in Figure 3.13. 

Next, it turns out that along the characteristics, the dependent variables satisfy 
some compatibility relations. In order to determine the latter, recall that, in 
streamline coordinates, the equation of motion is (recall equation (16)) 

^ i l £ ^ - ^ = 0 , (54) 
V ds dn 

while one has from the geometry (see Figure 3.11) 

When one puts 

dv = cot u •• 
V 

Üν = ζο\μ , (56) 

equations (54) and (55) become 

— - t a n p — = 0, (57) 
ds dn 

dv de n ,„. 
t a n p - :~ = 0. (58) 

dn ds 
From equations (57) and (58), one has 

— ( v T 0 ) ± t a n j i — ( v + - 0 ) = O. (59) 
ds dn 

If η and ξ measure distances along the two characteristics, then 
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5 For a general First-order quasilinear hyperbolic system in one dimension we have 
u, +A(x,t,u) ul = B(x,i,u) 

where u =u(x,t) is an π-component vector function of χ and I, B(x,l,u) is a nonlinear vector 

function of u, and Λ is an η χ π matrix function of x, r, and u that has η distinct real eigenvalues 
Α, A„; and therefore η linearly independent eigenvectors, the Riemann invariants Λ, ,...,Λ„ that 

are constant along the characteristics associated with the eigenvalues Λ, A„, respectively, are 
given by 

r dh. dht 

A — - = A , — - , no sum on k. 
du du 

Note that if the characteristic associated with the eigenvalue A, is given by 

t = t(sk). x = x(st); k = 1 η 
with 

then 

dt 
dsk 

•• 1 and 
dx 
ds. 

:A , ; k = \,...,n. 

A . ^ dht du, ^« dhk 

Ó" dum . du, 

l m dx * 3-

du, du, dx 

dt dx dsk 

dx 

Σ -ΣΑ~> 
τ A 

du. 

du, 

~dx~ 

^ dhk du, ^ dhk du, 

' du. dx * dx 
= 0. 

^One may find an explicit expression for ν as follows. Using the relation 
a = Vsin^ 

in the energy-conservation equation 

one obtains 

V 2 a1 

— + =const., 
2 r - i 

dV 2 sin ì cos ì 

V ( y - l ) + 2 s i n 2 ^ 
When one uses (56), this equation becomes 

2 cot 2 ì 
dv-

άì=0. 

άì. 

When one puts 

this equation, in turn, becomes 

( y - l ) c o t 2 / i + ( v + l ) 

/ = cot ì , 

— — = — ± t a n — 
dη' üξ ds dn 

and equation (59) implies that 

νΤΘ =const. along (f,g) characteristics, (60) 

which are called the Riemann invariants (see Section 3.7).^'^ 
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Now, the fact that each equation in characteristic form involves a particular 
linear combination of the derivatives can be used to gain insight into the structure 
of solutions of the equations, such as the correct number of boundary conditions 
and the domain of dependence, by considering a construction of the solution at 
successive small time increments. In order to see this, let us express the equations 
in the characteristic form 

^ + / t (* , r , . | i ) = 0 on ^ = ο , ( χ , ί , ψ ) . (61) 

Consider the initial value problem in χ > 0, t > 0, with data prescribed on the 
x-axis (which is transverse to the characteristics, i.e., nowhere tangent to them) 
at t = 0 . 7 If Ρ and Qk are two neighboring points on the kth characteristic, then 
one obtains from (61) 

ψ , ( ñ ) - - ia,)]=o. 

4P)~x(Qt) = ck(Qk)[t(P)-t{Qk)\ 

Further, the values at Ρ will depend only on the data between Pl and P2 on the x-
axis where PPX and PP2 are the two characteristics through Ρ (see Figure 3.14). 
In other words, PtP2 is the domain of dependence of P. Thus, for the full initial 
problem, with y/k given on / = 0, - °° < χ < o o , the solution can be constructed 
in t > 0 and it is unique. 

Therefore, it is as if the characteristics carry information from the boundaries 
into the region concerned. Physically, the characteristics correspond to paths of 
waves propagating with the velocities ck. 

A Singular-Perturbation Problem for Hyperbolic Systems 
Consider 

= o — + b — , (62) 
dx dt 

ε 
'd2v d2v^ 
v dx2 dt2 j 

which has real characteristics (see Figure 3.15), 
r = t-xy s = t + x. (63) 

The characteristics serve to define the region of influence, propagating into the 
future, of a disturbance at a point Q (see Figure 3.15). The manner of 

dv-. 

from which we obtain 

tan 
y - i 

y-11 2 , < 2 + l - — r +1 
r + i 

y - i 
y + i 

cot ì -tan 1 (cot ì) + const. 

^If data are prescribed on the characteristic, the differential equation does not determine the 
solution at any point not on the characteristic. 
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t 

Ρ 

specification of boundary conditions on an arc for a fully posed boundary-value 
problem depends on the nature of the arc with respect to the characteristic 
directions of propagation. One boundary condition is specified on the time-like 
arc (see Figure 3.16) corresponding to one characteristic leading into the adjacent 
region in which the solution is defined. Two boundary conditions are given on the 
space-like arc (see Figure 3.16) corresponding to the two characteristics leading 
into the adjacent domain. When the boundary curves are along the characteristic 
curves, only one condition can be prescribed, and the characteristic relations must 
hold. The characteristic-initial-value problem describes one condition each on AB 
and on AC to define the solution in ABCD (see Figure 3.17). 

Consider the initial-value problem corresponding to equation (62) in 
-«> < χ < oo with 

Figure 3.15. Characteristics and region of influence (from Kevorkian and Cole, 

, = 0: v = F(x), v,=G{x). (64) 

0 

1980). 
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According to the general theory of characteristics, the solutions at a point P{x,t) 
(see Figure 3.18) can depend only on that part of the initial data which can send a 
signal to P. This is part of the initial line contained between the backward 
running characteristics through < χ < x2). 

Now, corresponding to ε = 0 , equation (62) gives 

a—— + b—— = 0, (65) 
dx dt 

from which 

υ ( 0 ) ( * , ί ) = / ( * - ^ ' ) · (66) 

In the limit ε => 0 the solution v(x,t) depends only on the data connected to Ρ 
along a subcharacteristic of equation (62) given by 

Figure 3.16. Time-like arc and space-like arc (from Kevorkian and Cole, 1980). 

Figure 3.17. Domain of influence in a characteristic initial-value problem (from 
Kevorkian and Cole, 1980). 
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t 

bx-at = const. (67) 

Now the subcharacteristic, reaching P, originates at point A between xt,x2 if 

I bja I > 1, i.e., if it is time-like. Then the limit ε => 0 preserves the domain of 

influence. However, if | b/a | < 1, the subcharacteristic reaching Ρ is space-like 
and lies outside the domain of influence, originating at Β (see Figure 3.18). In 
this case, the limit ε => 0 increases the domain of influence - a behavior that is 
not physically permissible. 

It turns out that even the issue of stability of the solutions v(x,t) is related to 
whether the subcharacteristics are time-like or space-like. In order to see that, 
note that in terms of the characteristic coordinates (63), equation (62) becomes 

. d2v ,, .dv , , , <?υ 
- 4 ε — — = (b-a) — + (b + a)—. 

drds dr ds 

Consider the propagation of a jump in dv/dr along r -

Let 

(68) 

dv 
dr 

dv 
dr 

dv" 
(69) 

Assuming that V itself is continuous across r = r 0 , one finds from equation (68) 

dK 
- 4 ε ^ = ψ-α)Κ, 

ds 
from which 

Κ = K0exp 
b-a 

4s 
(70) 

Figure 3.18. Domain of influence and time-like and space-like subcharacteristics 
(from Kevorkian and Cole, 1980). 



2 5 8 Dynamics of Inviscid, Compressible Fluid Flow 

where 

and 

t 
t = δ(ε) 

/ ? , , δ=>0 as ε = » 0 

with the associated inner limit process ε => O.jc.F held fixed. If one takes 

âι(ε) = δ(ε), (75) 

(64) gives 

t = 0 : υ " = F(x), t/° = 0 for η > 0 

ί - _ 0 : ^ = 0. « = C W . 
dt dl 

dv" (76) 
— = - = 0 for n>l. 

dt 
When one chooses <5(ε) = ε and substitutes (74) and (75), (62) gives 

d2v{i) dv(i) 

Now, a jump across a characteristic propagates to infinity along that 
characteristic. When one uses (69) and (70), this implies 

(b - a) > 0 => stability, 
(71) 

(b - a) < 0 => instability. 

Similarly, a consideration of a jump in dv/ds across a characteristic s = s0 gives 

(b + a) > 0 => stability, 
(72) 

(b + a) < 0 => instability. 

From (71) and (72), one obtains 

I b/a I > 1 for stability. (73) 
We restrict further discussion to the stable case. 

Now, note that the solutions υ < 0 ) ( χ , ί ) given in (66) can only satisfy one 
initial condition, so that one may expect the existence of boundary layer on the 
line f = 0 . 

Assume an initially valid expansion 
v{i)(x,i; ε) = ν^(χ,ΐ) + âι(ε)ν[ί)(χ,ΐ)+ · · · , (74) 
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2,>(0 d2v\ <9υί'> 
dt' 

— —a-
dt dx 

(78) 

Notice that the boundary-layer equations (77) and (78) are ordinary-differential 
equations, which is a feature of the boundary layers that do not occur on a 
subcharacteristic. This is true for any hyperbolic-initial value problem, since a 
space-like arc can never be a subcharacteristic. 

Using (76), equations (77) and (78) give 

v^(x,t) = F(x), 

l - e x p ( - / ) ] - | F F ' ( x ) , 

so that 

υ ( , ) ( * , / ; e)=F(x) + £ jc(*) + ^ ' ( * ) } { l - e x p ( - f ) } - ^ ? F ' ( x ) 

(79) 

(80) 

(81) 

Note that (81) possesses terms that persist in the limit t => °°, as well as terms 
that decay in time which are typical of a boundary layer (further details of this are 
found in Section 4.3). 

Next, construct an outer expansion, with the associated outer limit process 
ε => 0, χ, t held fixed, 

υ ( 0 ) (χ, t, ε) = υ<°' (χ,Þ + ε υ [ 0 ) {χ, Þ + • • • 

so that equation (82) gives 

dx dt 
= 0, 

dx + ^ dt 

One obtains from equation (83) 

<?υί0) . , dv™ (d2vf d2v™ 
dx2 dt2 

When one uses (85), (84) becomes 

dv^ . dv\0) 

dx 
+ b-

dt 

(82) 

(83) 

(84) 

(85) 

(86) 

from which 

so that 

υί°»=. a b2-a 
b2 b2 

-^Τ(χ + -À)Γ(ξ) + ^(ξ), (87) 
+ a V a J 
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vi0){x,t; ε) = /(ξ) + ε a b2 — α2 ι u é „ / e N 

The asymptotic matching between v{" and i r ' requires (see Section 4.3) 

υ ( 0 ) ( χ , 0 ; ε) + ε?υ , ( 0 ) ( χ ,0 ; ε)+ ••• = υ ( , ) ( χ , ° ο ; å ) . 

When one uses (81) and (88), (89) gives 

f(x)=F(x), 

f M + V ^77 x f " { x ) = G{x)+f F ' w ' 

so that (88) becomes 

b2-a2 

(88) 

(89) 

(90) 

b' + ba2 
tF"\x--t 

a α \ J a 
+ -F' x - - t +G x - - t 

b V fry V b 
(91) 

Consider, next, a radiation problem in which boundary conditions are 
prescribed on a time-like arc and propagate into the quiescent medium in χ > 0 
(Figure 3.19). When the boundary condition is prescribed for instance, at χ = 0 , 
one has to distinguish two cases depending on whether the subcharacteristics run 
into or out of the boundary χ = 0 . Recall, from (67), that the subcharacteristics 
are given by 

ξ = χ 1 = const. 
* b 

(67) 

Note that the characteristics are incoming or outgoing according as a § 0 . Let 
the boundary condition be 

x = 0: v = F(t), t>0. (92) 

Outgoing Characteristics: Assume an outer solution, 

vm(x, t; ε) = υ<0 ) (χ, t) + ε v\0) (χ, t) + · · ·, (93) 

where 

a 
(66) 

When one substitutes (92), (66) gives 

0, 
„(o) = 

b 
t < — x, 

a 
b 

t>—x. 
a 

(94) 
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Subcharacteristics 

t 

a > 0 x 

Figure 3.19. Radiation problem with boundary conditions prescribed on a finite 
portion of the boundary (from Kevorkian and Cole, 1980). 

This solution obviously has a discontinuity on the particular subcharacteristic 
through the origin. However, such a discontinuity is not permitted in the solution 
to equation (62) with ε * 0 . Thus, in order to obtain a uniformly valid solution, 
a suitable boundary layer must be introduced on the particular subcharacteristic 
£ = 0 which supports the discontinuity in the outer solution i / 0 ) . Assume an 
inner expansion 

υ ( 0 ( ί . ? ; ε) = υ « ( ί , 7 ) + ì ( ε ) υ 1

( ' ) ( ί , ί ) + · · · , 

where 

a 

'Χ = 1δϊεÔ· ( 9 5 ) 

t = t, 
and 

δ => 0 as ε = > 0 , 



262 Dynamics of In viscid, Compressible Fluid Flow 

with an associated inner limit process ε => Ο,ίχ,ί ) held fixed. When one chooses 

and substitutes (95), (62) gives in the limit ε => 0 

where 

2 
a 

1 — Γ 

κ = —£->ο, 
b 

which ensures that t = t is a positive timelike variable so that (96) is a diffusion 
equation that describes the spreading of the discontinuity in the outer expansion 
t>(0) on the subcharacteristic ζ = 0. Matching υ'1'to υ(0) asymptotically, as 

before, one obtains 

/ -
v${x,t) = ^-1erfc (97) 

\2V? 
Incoming Characteristics: Assume an outer expansion 

U(0)(JC,f; ε) = υ<0) (χ,ή + ευ[0) (jt,t) + ■ ■ ■. (98) 

Since the disturbances now propagate along the subcharacteristics from the 
quiescent region to the boundary, one has 

υ ( 0 ) Ξθ . (99) 

Then the discontinuity in υ(0' occurs at the boundary JC = 0 , so that one has a 
boundary layer at x = 0. Since the line x = 0 is not a subcharacteristic, the 
boundary layer equations should now be ordinary differential equations. Assume 
an inner expansion 

vU)(x,t; ε) = υ</)(ί,ί) + ν1(ε)υ1
(')(ί,/)+ ■■-, (100) 

where 

Jf = ——-, / = / , and v, =>0 as £=>0 (101) 
δ(ε) 

with an associated inner limit process ε=>0 , ί , ί held fixed. If one chooses 
δ = ε, (62) gives, on substituting (100), 

from which, on using (92), one obtains 

v%> (xJ) = F(t) exp(ox), a < 0. (103) 
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E X E R C I S E S 

1. Show that the rate of change of circulation Γ around a closed curve C made 
up of the same fluid particles, for nonisentropic cases, is 

2. Show that one can produce the Prandtl-Meyer solution starting from the 
flow-deflection formula for a weak oblique shock. 

3. Show that the hodograph curve described by (29) is an epicycloid. 

4. Derive the compatibility conditions for flow variables in the nonisentropic 
cases (to emphasize the utility of characteristics in calculating more general 
flows as well) along the characteristics. 

It turns out that the problem of plane steady potential flow of a gas becomes 
linear when the velocity components are used as independent variables. However, 
the advantages of linearity are somewhat offset by 

(1) the practical difficulty of fulfilling boundary conditions prescribed in the 
physical plane; 

(2) the fact that the shape of the body cannot be prescribed in advance, unless 
they have a simple representation in the hodograph, such as wedges; 

(3) the fact that the shape of the body changes if either the freestream Mach 
number or the thickness ratio is altered. 

The Hodograph Transformation 

Recall that the equations of motion in the streamline coordinates for a t w o -
dimensional steady potential flow are (equations (54) and (55) in Section 3.5) 

Dt c 

3 6. The Hodograph Method 

(i) 

ι dv de 

V dn ds 
(2) 

When one puts 

V 
d0 
ds ' 

pv 

Po dn ' 
(3) 

equations (1) and (2) become 

(4) 
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Now, from 

one obtains 

vde__P_dv_ = Q 
9Φ p0 9Ψ 

dO dO 
d& = —dv +—de, 

dV de 

dV 3Θ 

dv=i(gLd^^l 
Α{9Θ de 

,a 1 ( dT _ dO J U / 
άθ = —\ — — i/0 + —-d*¥ 

A\ dV dV 
where Δ is the Jacobian of the transformation from Φ, Ψ to V, Θ: 

9Φ 3Φ 

dV de 
Δ = 

9Ψ 3Ψ 

dV 3Θ 

When one uses equation (7), equations (4) and (5) give 
pV 9Φ i ιχ9Ψ „ 
- + Ι1-ΛΓ) = 0, 
p0 dV V 'dQ 

ν9Ψ_ρ_9Φ=() 

dv p0 de 

When one puts 

dW dV 

equations (8) and (9) become 

W 

— = Vl-M2 — 
W V 

* » β _ & ν π ^ ^ . 
dw de 

de p dw 

Let us now make the tangent-gas approximation, i.e., let 

( l - M 2 ) = l, 

v P) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13a) 
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dp 
= V2. 

,Pj\dP 

When one differentiates with respect to ρ, (13b) gives 

1-
( \ 1 ' ,2 ( \ 

P_ P_ 

<PoJ dp1 Po dp dp 

When one uses the momentum-conservation relation, 

dp ρ dp 

equation (14) becomes 

1 -
( \ 

P_ 
2 " 

~d*p 2 dp 
Ç — 1 -

.Pa, .dp2 ρ dp 
= 0 , 

from which 

dp 2 dp 
+ - = 0 . 

dp2 ρ dp 
The solution of equation (17) is 

Β 
p = A . 

Ρ 

2 6 5 

(13b) 

(14) 

(15) 

(16) 

(17) 

(18) 

This amounts to replacing the isentrope by a tangent to it at a certain point; let 
us choose the free stream for the latter, (see Figure 3.20). This is the von 
Karman-Tsien approximation. Equation (13) and (18) then lead to the following 
relations: 

P-P- =P„a„ 
1 1 

P - P) 
Ul-al=V2-a2, 

1 + 
KaoJ 

(19) 

which may be rewritten as 
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V P 

Figure 3.20. The tangent-gas approximation. 

where the subscript °° denotes the conditions in the free stream. 

Using (19), one has from (10) 

2V 

i + V i + ( v v « 0 ) 2 ' 4 a ° 

(20) 

Next, in order to relate the geometries in the compressible physical plane and 
the incompressible hodograph plane, note 

where 

so that 

dΦ 
dx 

dx 

d4> . d<t> , 
dQ> = —-dx + —-dy, 

dx dy 

d*V =—— dx + —— dy, 
dx dy 

Vcos0, = Vsinf?, 
dy 

pV . <?Ψ pV 
• - - — s i n f l , = -—cosf?, 

Po dy p0 

_ 1 (pV 
~ D <Po 

_ 1 (pV 
~ D ,Po 

-cos0 ÜΦ-Vsin0 ÜΨ 

(21) 

(22) 

(23) 
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where D is the Jacobian of the transformation from Φ, ψ to V, θ: 

Vcos0 Vsinfl 
D = 

P o P o 

P o 

Thus, 

J l/2 

Φ ΛΦ + 

Φ,,ίίΦ + 

'ρ,Υ 

\P j 

When one uses (10), (24) may be written alternatively as 

dx = 

dy = 

f Ψ2Λ 

ÜΦ- υ, f w 2 > 

[ 1 - ÜΦ- 2 1 + 
w2 

V W2 

V 

f w2S 

άΦ + υ, f W 2 > 

I 1 - άΦ + 1 1 + 
w2 w2 

4 « o , 

where 

If 

(7,=Wcosr9, i 7 2 = W s i n r 3 . 

</F 
Z = x + iy, q = Ul+iU2, F=0 + i*P, g = , 

then (25) may be rewritten as 

dz = — —q—dF = Üζ--^—Üζ, 
4a n 4 a ; 

which gives a relation between the geometries in the physical pla 
hodograph plane. 

The Lost Solution 

The hodograph transformation is degenerate when V = V(9), i.e., 

dv dV de de 
9Φ ΟΨ dv <9Φ dH> 
9Θ de ~ de de de 
9Φ dΦ 9Ψ 
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Such a situation prevails for a Prandtl-Meyer flow, for example, whereby the 
nonuniform flow is represented by just a line in the hodograph plane. Equations 
(1) and (2) now become 

from which 

or 

9Θ ι 2 v 1 dV 9Θ 
— + (l-M2) = 0, 
dn V ' V άθ ds 

de^_ \_dv_de__o 

ds V άθ dn 

de_ 

dn 
l + ( l - M 2 ) -

1 (dV 

dV 
= + 

Wde 

de 

= o 

Μ - 1 

(29) 

(30) 

(31) 

(32) 

so that the hodograph transformation is degenerate when the hodograph curve 
becomes tangential locally to a characteristic. 

The Limit Line 

Recall the relations 

dx = 
cos θ 

άΦ-
Po sin θ 

V Ρ V 

dy = sin θ ,. άΦ + Po cos θ 
<f Ψ. dy = 

V Ρ V 

When one uses (6), (23) becomes 

= c o s 0 (d&\_ Po_ s in0 (<?T^ 

dy = 

V \3V) ñ V \dV ) 

zo$e(d&\ p0s\neidV 

v {de) p í t d e 

" s i n e p o ^ t p0 c o s e p y 
ν I <?e J + p ν I de 

dV 

de 

dV 

de. 

When one uses (8) and (9), (33) becomes 

(23) 

(33) 
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P v 
- 1 - Μ Ί — + s in0 —— > dV 

\{ ' v de dv j 

+\ Vcos è4^ - sin è?X\de 

1 dv de\ 

ñ í ι l v ι V 

+\ V sin θ ~ ~ - + cos è ~~- \ de 
1 dv de J 

cosf? —— r aV 
<?0 <?V 

(34) 

On the streamlines, (34) becomes 

_ p o c o s 0 

(35) 

Note the Jacobian of the transformation from x, y to V, è: 

•\í2ψ2

í-(Μ2-ΐ)ψ2

â]. (36) V y = a ( x , y ) = 3 ( < p , y ) / a ( y , g ) = 

<9(ν,è) 9(Φ,Ψ)/9{χ,γ) [ñ 

Solutions of hodograph equations correspond to real flows only when 7 * 0 , so 
that the transformation is one-to-one. The case 7 = 0 corresponds to the limit 
line and can occur only in a sonic or supersonic flow (M > 1). 

The fluid acceleration / o n a streamline is given, on using (7), by 

(udV) V— ν 
k ds, ψ V 

dv 
d0 

= Lv2™ Ä de 
(37) 

which shows that the fluid acceleration becomes infinite on a limit line. 

Note that dx,dy change their signs across the lines 7 = 0, whereas the slope 
of the streamlines does not change across 7 = 0. Thus, the streamline must have 
a cusp there. The solution there is no longer physically possible: this is known 
as the limit line. At a point on the limit line, the streamline is locally tangential 
to a hodograph characteristic; thus the limit line which exists only in supersonic 
flows must be the envelope of one family of Mach waves. Physically, the 
existence of a limit line implies that the assumption of isentropic processes has 
broken down. 

Example 2: Consider the case 

ρ dV V 
Kt = const. 
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or 
Ψ = ΚΧΘ + Κ2. 

Using this, equations (8) and (9) give 

and (33) gives 

ö β = 0 , Φ ν = - ^ ( 1 - Ì 2 ) 
ρ V 

de ρ V 

i l = ^ c o s e . 
de ρ ν 

On integrating, one obtains 
A . C O S 0 

1 ρ V 

P o s i n 0 

from which, on choosing K3,/f 4 =0,Kt = (p / p 0 ) « r 

Then, one obtains from equations (8), (9), and (33) 

dx _ ^ s ine dx _^ cosf? 
~JV~~ ι~íÃ' ~d6~ 1 V ' 

dy _ ^ cos θ dy _^ sin θ 

~dV~ ' V2 ' 

On integrating, one obtains 
, sinf? cos θ 

x = K, , y = Kt , 
V V 

so that the streamlines are circles. Choosing AT, = r a , one obtains 

r a 

r V 

which represents a vortex flow. Note that r = r represents a limit line. 

Example 3: Consider the case 

Ø= Ψ(θ). 

Equations (8) and (9) then give 
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r ρ a 

r ρ V 

Note that r = r represents the limit line. 

Next, consider the acceleration 

dr dr/dV 

where now 

dr _ pr a 

dV ρ K pV dV V2 

Using the tangent-gas approximation (19), 

1 dp 1 

pV dV a] + V2 

one obtains 

dr r ρ a 

dV ρ 

r ρ a rM2-Y 

where (19) has been used again. Thus, 

V^ = ±-
pV> 

dr r'p'a'^M2-\)' 

so that the acceleration becomes infinite at the limit line (M = 1). 

This solution represents a source flow and is confined to the region r> r 

Example 4: Note that 

0 = - ^ - C O S 0 , 
sin θ 

pV V 

is a particular integral of equations (8) and (9), which is called Ringleb's solution. 

Using (23), one obtains along the streamlines 

Now, noting 

, cos θ sin θ 
dx = ÜΦ, dy = ÜΦ. 

9Φ 3Φ 
ÜΦ = dV + d0 

dV de 
and using equations (8) and (9), one obtains 
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ÜΦ = — ^ 2 - ( 1 - A i 2 ) c o s θ θ Üθ. 
pV2 κ ' pV 

Now, along the streamlines, one has 

sin θ cos θ 
ÜΨ = -dV + Üθ = 0 

so that 

pV 
cos 2 θ 
sin θ 

Thus, the streamlines are given by 

( l - A / 2 ) + sinf3 Üθ. 

Üχ = - - ^ [ c o t 2 θ · (l - Μ2) + l]sin θ cos θ Üθ, 

pV 

For Μ => 0, this gives 

ay = - - ^ j - j c o t 2 θ• (l - M2) + l]sin2 θ Üθ. 

sin2 θ 

dy = -—r-de, 
sin θ 

where 

it = S ' n ^ = const, along the streamlines. 
V 

Thus, 

χ = -2sin θ 
y = k cot θ 

or 

2 I 4 

y =k 
which represents a family of confocal parabolic symmetrical curves about the 
jc-axis with focus at the origin. Thus, in the Μ 0 limit, the above solution 
represents the flow past a semi-infinite wall. 

The limit line is given by 

( l - M 2 ) + V 2 = 0 , 
V \dQ) VdV) 

where 
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'sinV 

< 2 
y a 2 -"o 'sinV 

. * 2 ) 
Thus, the limit line is given by 

s i n 4 0 - - ^ - s i n 2 0 + * 2 a 2 = 0 , 

from which 

sin2 0 = 

In order that a streamline does not cross a limit line, one requires 

k2> 
y + 1 

V 4 a o 

so that a smooth transition from Μ < 1 to Μ > 1 then again to Μ < 1 is possible 
if Μ < Λί„„, where 

Such a smooth transition is similar to that which can occur on the upper surface 
of an airfoil in transonic flow. 

E X E R C I S E 

1. In Example 4, derive the range of values for k in which a streamline can 
have an encounter with a limit line. 

3 . 7 . Nonlinear Theory of Plane Sound Waves 

In linear acoustics (Section 3.5), one considers the disturbances on a constant 
ambient state to be small so that the governing equations are linearized by 
retaining only the first-order terms in the small disturbances. The latter then 
satisfy the classical wave equation. One would then inquire, How does this linear 
solution relate to the original nonlinear equations? Further, one wants to know 
what were the essential nonlinear features that were lost in the linearization of the 
original equations. 
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Riemann Invariants 

Consider a one-dimensional propagation of plane waves in a fluid. The equations 
expressing the conservation of mass and momentum are 

When one introduces 

equation (1) and (2) give 

du du) 

Ρ 

dp 
dx 

(dp) 

Jp 

— + u — + a—-0 
dt dx dx 

du du dP n 

— + u — + a— = 0, 
dt dx ax 

(1) 

(2) 

(3) 

(4) 

(5) 

from which 

•Z-{u±P) + {u±a)-Z-(u±P) = 0. 
dt dx 

Equation (6) gives the Riemann invariants8 

dx 
u + P= const, along C + : — = u±a. 

6 1 dt 
The lines dx/dt = u±a are called the characteristics C±. 

(6) 

(7) 

^Equation (7) may also be derived alternatively by noting that equations (1) and (2) may be 
rewritten as follows 

p) (P} 
+ A • 

u } 1 u 
= 0 , 

where 

Ρ 
ºñ «. 

The Riemann invariants Λ± are then given by (see footnote 5) 

\dhjdp 

dhjdu 

where we have noted that the eigenvalues of Λ are u±a. Thus, 

(see 

u a2/p]\dhjdp] 

'dhjdp ±a/p 

dhjdu 1 
from which 

as in equation (7). 

Ht=u±\ad-£-. 
J Ο 
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The existence of two families of characteristics greatly facilitates solution of 
hyperbolic systems. For a linear problem, the characteristics are found by simple 
integration, and a knowledge of the Riemann invariants along the characteristics 
then completes the solution. But, this is not possible for equations (4) and (5), 
which are nonlinear and depend on unknown variables u and a, making integration 
impossible. Nonetheless, in certain special geometries with the concomitant 
special boundary conditions, one family of characteristics reduces to a set of 
straight lines and one of the Riemann invariants is constant everywhere (i.e., it 
takes the same constant value on every characteristic of its family) and integration 
of equations (4) and (5) becomes possible. Suppose, for instance, that the 
condition 

u - f a ^ = c o n s t . (8) 
J Ρ 

holds everywhere. Then, since u + ja(dp/p) is constant on a given characteristic 

dx/dt = u + a, it follows that, on this characteristic, u and ja(dp/p) must 

separately be constant. If the flow is homentropic,9 then a = α(ρ) , and, therefore, 

a is constant on this characteristic. Thus, u + a is also constant on it, and the 
characteristic is a straight line. The family of characteristics dx/dt = u + a, 
therefore, consists of straight lines, and, since one of these passes through each 
point of (χ , ί ) space (as does one of the other family), the solutions of equations 
(1) and (2) for this region called the simple wave region takes the form 

u = f[x-{u + a)t]. (9) 

If one has the initial condition 

r = 0: u = «o(x), (10) 

then (9) becomes 

u = u0[x-{u + a)t\ (11) 

If u o ( x ) > 0 , u + a will be positive everywhere. Thus, the family of 
characteristics carrying the wave has positive slope in the (x,t) plane, and the 
wave is said to be forward-progressing. 

If the time history of the velocity of a fluid particle is known at a particular 
place, say, 

x = 0: u = g{t), (12) 

the solution is 

u = g t--
âκ±α0) 

(13) 

flow is called homentropic is the entropy of each fluid particle is the same and remains so for all 
times. 
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where 

Thus, a simple wave situation with one family of straight-line characteristics 
occurs when all the members of the other family come from a region of uniform 
flow conditions in the (x,t) plane (as, for example, at infinity upstream in a 
uniform flow of infinite extent). An example of this is the Prandtl-Meyer 
expansion of a supersonic flow around a convex corner; if the corner is sharp the 
straight-line characteristics bunch into a fan centered on the corner itself (Section 

Example 5: Consider an initial-value problem wherein all the fluid except 
that in a finite interval BF of χ is undisturbed (see Figure 3.21). 

One has from (7) 

Note that ahead of and behind C*, u = P(p) = 0. Also, ahead of C[ and 

behind C+

e , u = P(p) = 0. During the time 0<t<t' (Figure 3.21), the 

disturbances become disentangled and thereafter propagate as two simple waves 
(one forward and one backward) with an undisturbed region in between. 

Consider the region ahead of CF_ between C* and C[. Since u + Ρ is constant 
along each C + which becomes 2u= const in this region along each C + . This 
means ρ = const or a = const along each C+ in this region or 

so that the characterstics dx = (u + a)dt are straight lines in this region. 

3.5). 

ahead of C _ , 
B · 

behind C_ , 

behind , 

ahead of C+, 

ñ 

u + a = cons, t along C+, 

cB 

Β F χ 

Figure 3.21. The initial-value problem with the initial perturbation prescribed 
on a finite portion of the boundary (from Lighthill, 1978). 
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Example 6: Consider plane sound waves in a perfect gas. One has 

( V 
— = I — I . 
Po I P o J 

a2 = dp_^TP_ 
dp ρ ' 

so that 

Hence 

a 
an 

( \ ( / - ι )Λ £_ 

When one uses this, (3) gives 

Then, for a simple wave, the relation 

gives 

so that 

u = Ρ 

« = « o + - ( r - 0 " . 

p_ 
P o 

i + I ( y - , ) A 
2 <3„ 

V(y-i) 

Now the signal is propagated at the velocity 

dx 1 / ,\ 
— = u + a = an+— ( y + l ) u , 
Λ 0 2 ν ' ; 

which implies that the characteristics would intersect and the solution then 
becomes multivalued unless a shock is introduced to prevent it. Thus, finite-
amplitude compressive waves continually steepen with time (see Figure 3.22) 
until a discontinuity develops. One then has to include the effects of viscosity and 
heat conductivity (see Section 4.1) so as to produce balance between the effects of 
nonlinear steepening and dissipative spreading, leading to a steady profile. It turns 
out that the transition layer over which this balance takes effect has a thickness of 
the order of a few mean free paths. One then obtains a shock wave. This shock 
region is, however, idealized into a discontinuity in the inviscid theory, and 
one simply adds the jump conditions across the discontinuity of the flow 
variables to the inviscid theory, as done in Section 3.3. 
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u 

χ 

Figure 3.22. Nonlinear steepening of plane waves. 

It turns out that the isentropic flow considered above possesses an exact 
explicit solution (due to Fubini-Ghiron). First, note that using the relation (see 
Example 6) 

(9) becomes 

u = f 7 + 1 , x-\ an+-i—u \t 

Consider the initially sinusoidal motion defined by the condition 

Then, (14) becomes 

i = 0: « = u0sinfcx. 

u = u0 sin k 
y + 1 

x-\ an+——u \t 

If one expands «/«„ in a Fourier series 

— = Õ B„ sin n(kx - (Dt), 
"o fx 

where 

1 2* u 
Bn=— [— sin n(kx-(Ot) d(kx-cot), 

π oMo 
one has 

Bn =— jsmζ•sm^nζ-n^^ί•sinζ^•^l-^l-i-ίcosζΛjdζ 

Y + \j( 2nt 
nt \ γ + 1 

where Λ is the Bessel function of the first kind of order n. Hence, 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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" ^ " ο Σ \ Y + ]J sinn(fct-ax), t < ^ - . (20) 
I j 2 

Example 7: Consider the waves produced by the prescribed motion of a 
piston at the end of a long tube. The gas is assumed to be at rest with a uniform 
state u = 0, a = a0 in χ > 0 at t = 0 . Since the piston is itself a particle path, all 
particle paths originate on the x-axis in the uniform region, and the flow is 
isentropic. 

The C. characteristics start on the x-axis in the uniform region, and on each 
of them we have 

2a 2an 

u = —— = const., 
y - 1 y - 1 

which holds throughout the flow. 

The C + characteristics start on the piston, and on each of them we have 

2a 
+ « = const. 

y - 1 

or 
dx y + 1 

u - const, on — = a„ + - u, 
dt 2 

so that the C + characteristics will be a family of straight lines (see Figure 3.23). 
The leading C + characteristic starts on the jc-axis and is given by χ = a0t. 

Note that since the C + are straight lines with slope dx/dt increasing with u, 
these characteristics will overlap if « ever increases on the piston. This is the 
typical nonlinear breaking that is resolved by the introduction of shocks. This 
happens in the compressive parts of the disturbance. 
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Nonlinear Propagation of a Sound Wave 

Consider unidirectional propagation of sound waves in an ideal fluid. The 
governing equations are 

du du\ dp 
dx' 

d_ 

dt 

Noting, from equation (23), that 

( \ ( \ 

Ñ + u d 
Ñ + u 

UyJ dx ÉÑº 
= 0. 

( \ 
a P_ 

, P o , 

(21) 

(22) 

(23) 

(24) 
and putting 

Ρ = Ρο( ΐ+Ρ) 

and nondimensionalizing u,x and f, suitably, equations (21) and (22) become 

dp . du dp [ du 
dt dx dx •pTx< 

du dp du . s o dp 
dt dx dx V 1 + p dx 

(25) 

(26) 

Let us now treat equations (25) and (26) by using a method based on 
perturbing the characteristics (Lin and Fox). Thus, look for a solution of the 
form, 

u(x, t;e) = ει/, (ί,, s2, / ) + e 2 « 2 (ί,, s2, r) + · · ·, 

p(x, t; ε) = ερ, (s,, s2, t) + ε2ρ2 (s,, s2, F) + • • ·, 

where 

J , 2 = t + Χ. 

(27) 

(28) 

Here, ε < 1 represents the amplitude of the sound wave and t = εί represents the 
slow time scale characterizing the modulation of the given sound wave. 

Substituting equations (27) and (28) in equations (25) and (26), one obtains the 
following conditions upon equating coefficients of equal powers of ε to zero: 

0 ( ε ) : 

( d f 3 d) 
+ — P l + — — — {ds2 dsj P l + [ds2 dsj 

= 0 , (29) 
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ds2 dsx 

d d_] 
^ ds2 dsx 

P i = 0 , (30) 

dt 

P2 + yds2 ds,j 

y ds2 dsx j 

a? 

^ ds2 dst 

« i + ( 2 - r ) p , 

p.-p. 

p2 

,*2 * i y 

d_± 
ds2 dst J V ^ 2 * i y 

P.-

One has from equations (29) and (30) 

dstds2 

(31) 

(32) 

(33) 

Assuming the given wave to be a right-running wave, one has from equation 
(33) 

"ι = / ( * ι · ' ) = Ñ ι · 

Using equation (34), one has from equations (31) and (32) 

(34) 

- 2 as, a? (35) 

Removal of the secular terms on the right-hand side in equation (35) requires 

( 7 + l ) - 2 — — = 0 
as, a? 

or 

from which 

dt { 2 ) J ds, 

f = F\ 5 1 + I ± I / 7 

(36) 

(37) 

Thus, from equation (34), 
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u~ eF , 7 + 1 1 + - u I f - j c (38) 

Equation (38) implies that the uniformly valid first-order solution for the 
nonlinear problem is simply the solution for the corresponding linear problem, 
with the respective characteristic replaced by the characteristic calculated by 
including the first-order nonlinearities in the problem. In other words, the 
solution to the linear problem, when the first-order nonlinearities are included, 
may still have the right form, but not quite at the right place. 

Incidentally, as we saw before (equation (9)), (38) becomes the exact result if 
one considers simple waves for which 

(dp (dp 
u+ a— or m - a — 

Ρ 1 Ρ 

is constant for all jc. 

Nonlinear Resonant Three—Wave Interactions of Sound Waves 

Sound waves are nondispersive in the linear regime, so the frequency and wave 
vector matching conditions (see (45) below) imply that resonant wave interaction 
in a triad of sound waves occurs when the wavevectors are collinear 
(Shivamoggi). 

Consider again unidirectional propagation of sound waves in an ideal fluid. The 
equations governing this situation are equations (21)—(23). Putting, 

P = P o ( l + p ) 

and using the relation 

7 - 1 
a = an + u 

ο 2 

equations (21) and (22) may be rewritten as 
dp du dp - du 
dt dx dx dx 

du 2 dp du 2 
p - ( 7 - 0 -

dp 
(39) 

dt 0 dx dx 0 1 + p dx 

Observe that, in equations (25) and (39), the left-hand sides represent the linear 
problem and the right-hand sides contain the nonlinearities that give rise to the 
interactions among the sound waves. 

Consider the waves of the form 

u(x,t) and p(x,t) ~ el{b~"\ (40) 
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where ù/k = c0. Let us use the method of Section 2.6 to treat the nonlinear 
three-wave resonant interactions of sound waves. In this method, one introduces 
an auxiliary variable 

ù „ 
a = u + — p , (41) 

k 
which turns out to be a normal mode of the linearized problem associated with 
equations (25) and (39). This may be verified by noting that the linear parts in 
equations (25) and (39) leads to 

— + éùá = 0. (42) 
dt 

The nonlinear analysis of the wave-wave interactions, as will be seen below, 
becomes very convenient when formulated in terms of this auxiliary variable a. 
When the nonlinear terms are included, one obtains from equations (25) and (39) 

da du ù2 

— + éùá = -« — + — 
dt dx k2 p - ( x - i ) -

co 

/, ^dp ù( dp ~du\ 
^-^fx+l{-Udx-pTx\ ( 4 3 ) 

Let us now consider two sound waves of the form e^"'"^ and e'^1" <Uj'' 
propagating in the x-direction with 

t = t = c ° - ( 4 4 ) 

Due to nonlinear interaction between these two waves, let another sound wave of 

the form e'^'"'^, propagating in the x-direction, be excited such that 

ω 3 - ω 2 =</>,, k3-k2=kt, (45) 

where coJkt = c0. 

If one puts 

aj(x,t) = aj(t)e
y' ''+aj(t)e *' '', (46) 

then the nonlinear terms on the right hand side in equation (43), which represent 
coupling of these sound waves, lead to slow variations with time in the 
amplitudes 

Now, note that we have from the linearized problem associated with equations 
(25) and (39), 

a . it 

u = —, p = a. (47) 
2 K 2 ω ' 

Using (47) on the right hand side in equation (43) and keeping only the resonant 
terms (according to (45)) thereof, we obtain from this equation 
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dt ù,ù 2 Α: 3

L 

2 _ 

- ( 7 - ΐ ) ω 3 ( ω , * 2

2 + ω 2 * 2 ) ] 5,a2, 

—1/4 r 
Λ ω3ω,Α:2 

dt ω2ω^ 

{γ~\)ω2{ω^+ω^1)\ Ü,Ü,*, 

ί / ? 4 [ω1λ3(ω1Α:2 -ω 2 Α: 1 ) -ω 3 λ , (ω ι Α: 2 + ω2Λ,) 

- ( χ - 1 ) ω, ( ω 2 * 2 + ω3*2

2)] a352*. 

When we express aj in terms of p . , recall (44), and put, 

{ Y+l 

equations (48)-(50) become 

φβ), t = Λ / ω , ω 2 ω 3 ί , 

4 
1 Γ " ^ 2 ' 

^ 2 . I ? 

^ = ^ 3 0 2 · 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

Equations (52)-(54) show that the three sound waves have positive energy, which 
means that the wave interactions under consideration are nonexplosive. 

One obtains from equations (52)-(54) the following Manley-Rowe relations: 

J r ( | ^ 2 f + | * J I' 1 = 0 . 

i d 
2 - Φ2

 2 1 = 0 . 

(55) 

(56) 

(57) 

Equations (55)-(57) imply a periodic exchange of energy among the three 
sound waves 0,, φ2 and 0 3 . Consider, for instance, a case wherein only the low-
frequency modes φ, and φ2 are present initially and the high-frequency mode φ3 

is absent, i.e., 

(58) 
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Suppose J $ 0 ) J < j φ\0) j · Equations (55) and (56) then show that initially the 

energy in mode 0 3 increases at the expense of both modes 0, and φ2. Eventually, 

(0) 
2 Then the direction of the energy in mode φ2 vanishes ^since | φ 

energy transfer is reversed: Modes 0, and φ2 now increase at the expense of the 

mode φ3 until the initial state is attained again, and this sequence of energy 

transfer repeats itself. 

Explicit solutions of equations (52)-(54), for the initial condition (58), can be 
given as follows: 

0 3 = # o ) s n ( < ^ ) / 

* , = f l 0 ) d n ( > i ) , 

where sn, cn, and dn are Jacobian elliptic functions with real parameter, and 

H#0)l(?-fo)' 

(59) 

( 0 ) 

< i ; 
(60) 

m may be regarded as a measure of the extent to which resonant partners 

participate in the interaction. In particular, m < 1 implies that the mode φ2 is 

decreasing at a rate faster than the mode 0,. Using the solutions (59) and (60), the 

period of the resonant energy exchange among the three modes φνφ2, and φ3 is 

given by 

2 
(0) (61) 

where K(m) is the complete elliptic integral of the first kind. 

The case ω, = <o2 = ω 3 /2 and = $ 2

0 ) constitutes the degenerate case of the 
triad resonances for which two members of the triad are identical, with the closure 
being their second harmonic. Since m = 1 for this case and we have 

4 
m = 1 : K(m) - In 

m 

the period of the energy transfer from (61) is 

(62) 

(63) 
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dt 
i+ 0 2

 2 + 0 , 2 | 0 3 = O , ( 6 5 ) 

^ • ( i ^ r - i ^ i > 2 = o , 

(1*2 f - | ^ r ) * i = o . 

2 " l l r ι ι ι τ Λ ι ι τ L - ' ( ^ 6 ) 

> L + ( I M -\ΦΛ l * , = 0 . ( 6 7 ) 
« 9 2 0 

dt 

Consider now the case wherein the high-frequency mode 0 3 is initially much 

stronger than the low-frequency modes 0 , and 0 2 , i.e., 

t-'θ- | * 3 \»\φ\ I a n d
 | * 2 | · ( 6 8 ) 

One may then take <j>} to be constant for small times subsequent to t = i 0 in the 

evolution of 0 , and 0 2 . If we further assume 

0 , and * 2 - e>"" (69) 

we obtain from equations (66) and (67) 

Õ = \Φι\- (70) 

Equations (69) and (70) show that, for small times following t = t 0 , the high-
frequency mode 0 3 undergoes a decay instability into two low-frequency modes 
0 , and 0 2 which grow exponentially until the nonlinear regime is reached where 
a saturation state develops. In this nonlinear saturation state, the amplitudes of 
the three modes are 

I*, | = | * 2 1 = | * 3 1 · (7i) 

Thus, nonlinear resonant three-wave interactions of sound waves exhibits two 
different evolution scenarios depending on the particular set of initial conditions: 

(1) a periodic exchange of energy among three sound waves (an exception 
occurring for the degenerate case with two members of the triad identical, 
for which the period of the energy exchange becomes infinite); 

The resonant interactions now take on an asymptotic character, and (26) then 
becomes 

03 = 0< o ) t anh£ 1 
3 \. (64) 

$ 2 = $ , = f l 0 , s e c h £ j 

Equations (52)-(54) also indicate the development of a nonlinear saturation 
state under certain conditions. In order to see this, we first derive, from equations 
(52)-(54), the following equations: 
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(2) a decay instability of the high-frequency mode into two low-frequency 
modes followed by a nonlinear saturation state. 

Burgers' Equation 

A real gas cannot sustain an actual discontinuity mentioned above, so that the 
latter is only an idealization of the sharp gradients in the flow variables that occur 
in reality in a shock wave. Consequent to these flow gradients, various transport 
processes such as those due to viscosity and heat conductivity show up inside the 
shock. The evolution of the flow structure within the shock when viscosity and 
heat conductivity are included can in fact be satisfactorily described by an 
approximate model represented by Burgers' equation. We will now divert from the 
inviscid fluid model concerned with in this chapter to give here a discussion of the 
Burgers' equation, since this is otherwise the most appropriate place for this 
topic. 

Let us consider here weak shock waves so that flow of interest is a 
perturbation on a uniform sonic flow of velocity a . The equations governing the 
flow are those describing the conservation of mass, momentum, and energy 

Dp du 

Du _ dp 4 d2u 
Dt~ dx 3 ì dx2 P ^ — ^ - i P ^ (73) 

= T / M ^ I + * ^ T . (74) 
1 Dp ypjpDp ^ 4 JduY Kd2T 

γ-l Dt / - I Dt 3 [dxj dx 

where ì is the coefficient of viscosity, and Κ is the coefficient of heat 
conductivity; μ and Κ are taken to be constants, and 

D_=d_ d_ 
Dt ~ dt dx' 

Using equation (72), one can rewrite equation (74) as 

Dp 2 du , t\,,d2T 4 , J duY _ 
¸ + α ñ Ô χ - { γ - ^ - 1 ì ^ - % Ô χ ) = 0 - ( 7 5 ) 

When one uses the approximate relations 

dp = -pudu, 

CdT = -udu 
(76) 

and drops (du/dx)2 in comparison with [«(<? 2 u /d t 2 ) ] , equation (75) gives 

du dp τ du Κ ι \ d2u 

- p u l i + u f x

+ p a T x + T p ^ u ^ ° - ( 7 7 ) 

Now, when one multiplies through by u, equation (73) gives 
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du 2 du dp 4 d2u 
p u T t

+ p u T x

+ U y x " p u ^ = 0 - ( 7 8 ) 

One obtains from equations (77) and (78) 

du i 2 i\du 4 f , Y-\)d2u „ 

where 

For weak shocks, one may write (see Section 3.2) 

u1 -a1 ~(Y+\)u[u-a), 

so that equation (79) becomes 

du (γ+\λ( .\du d2u 
— + \(u-a ) — = v — τ · (80) 
dt \ 2 Ρ 1 dx dx2 

where 

3 p V Pr 

When one puts 

WB-r^-r, X = x - ( ^ \ a t , (81) 
2(y + l) 

• + W ^ - = v ^ = - . (82) 

equation (80) becomes 

dw „, aw a2w 
— - + W—— = v — ô 

ar ax ax2 

which is Burgers' equation. Burgers' equation is the simplest equation combining 
the nonlinear propagation effects and the dissipative diffusion effects. 

An explicit solution to Burgers' equation can in fact be found, thanks to the 
Hopf-Cole transformation. On putting 

W = - 2 v - ^ , (83) 
Ψ 

one finds that equation (82) gives the heat equation: 

Ψ,=νψ„. (84) 

Let us prescribe an initial condition 

f = 0: W = F{X); (85) 

and from (83), this gives 
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ί = 0: ι/λ = ψ(Χ) = βχρ 

One may now solve equation (84), using (86), to obtain 

44πíº ^ 4vr 
v(*,r) = 

Thus, 

W(X,f) = 

where 

It 
υ 

As an example, let us consider a single-hump solution, F(X) 
Then, one obtains 

G(rj): It 

It 

J?>0, 

-Α, η < 0, 

so that (88) gives 

W 
( e * - l ) e x p | -

= F ν 4 w 

^ r + ( ^ - i ) / Λ ò -

where 

/? = -
2v 

Note, from (91), that 

R<1: W = J—R exp 
v m 

( χ*\ 
4vf 

In order to investigate the limit R S> 1 , first introduce 
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e-z** Ú2Α (eR-\) 
v v = | Z A V = i 1 ( 9 4 ) 

z4r 

Now, note, from (94), that 

(TT ι 
R>\: Z < 0 : W ~ , — 

V t ë/Ë 

2 > 0 : W ~ J — j-rrr, (95) 

where we have used the results 

\e ζºÜζ = 4π, \e ζ1Üζ = -— as η 
J J 2tj 

η 

Thus, for R > 1 , we have 

0 < Z < 1 : W-J—Z 
V t 

Z>1: W=>0 (96a) 

or 

w\x/t, 0 < X < V 2 A 7 , ( % b ) 

[0, outside, 

which represents a shock at X = ̂ jlAt with velocity V = ̂ Ajlt. Observe that 

the shock amplitude at large times is independent of the source strength 
signifying that the saturation has been reached. 

Let us next find a stationary solution of equation (82) with 

\í{Χ,ή=ψ(ξ), (97) 

where 

ξ = χ - Ut. (98) 

Equation (82) now becomes 

-υ\íξ + = νΨξξ. (99) 

When one integrates once, equation (99) gives 

^W2-UW + C=vW^ (100) 

where C is an arbitrary constant. 

Let us impose infinity conditions 

so that (91) becomes 
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from which 

or 

ξ 2 , W2-W 
I n - ^ — — (104a) ν W2-Wl W - W , 

W=W>+ ,uT2 Ji\ . (104b) 
l + e X p w2 {X-Ut) 

V 2v J 

which represents a shock wave connecting two different uniform states 

W(X=>+oo)=^Wl,Wi. 

Thus, the diffusive term on the right hand side in equation (82) prevents the 
development of steep wave profiles and tends to spread the sharp discontinuities 
into smooth profiles. 

E X E R C I S E S 

1. A source of finite duration produces a wavemotion only in the plane case. 
Show that in the spherical case, the time-integral of the wave-amplitude at 
any fixed location vanishes. 

2. Consider the waves produced by a piston moving, for time t > 0 , with a 
constant velocity u0 out of a semi-infinite tube containing gas at rest at 

t = 0 . Show that the ensuing flow consists of two uniform regions in the 

(jc,f)-plane, joined by an expansion fan for -a01 < χ < ((χ +1) /2 u - a 0 ) f . 
Further, deduce that the latter region has a similarity solution, depending 
only on the variable x/t, and is given by 

2an f γ -1 λχ 
ç ^ ' » ; r + i \j+T)t-

Consider the piston problem, in which a piston at rest begins at time t = 0 
to move smoothly with a given displacement X(t), so that one has the 
boundary condition 

x = X{t): u=X'(t)h{t). 

ξ=> ±oo; W=*Wl2. (101) 

When one uses equation (101), equation (100) gives 

i/ = I ( lV 1 + W2), C = ^ W , W 2 . (102) 

When one uses equation (102), equation (100) becomes 

(W-Wl)(W2-W) = -2vWi, (103) 
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Show that the solution of this problem is given by 
r 

u = X'(<p)h t + — 
\ ao 

where 

βΧ'{φ)±α0 2 

Note that the parameter φ represents the time at which a given signal left 
the piston. 

3 .8 . Applications to Aerodynamics 

Thin Airfoil Theory 

Thin Airfoil in a Linearized Supersonic Flows 

If the airfoil is thin and at a small angle of attack, one may make use of the 
small-perturbation theory. With the assumption of small disturbances, the 
vorticity generated by any shock wave standing on the airfoil will be small, and 
if, in addition, the flow around the airfoil is assumed to be attached, the vorticity 
generated by viscous effects in the boundary layer will be confined to the latter 
region, so the flow may be assumed to be irrotational. From equation (40), 
Section 3.5, the general solution to the linearized potential-flow equation is of 
the form 

φ{χ^) = Á÷-λγ) + 8{÷ + λγ), (1) 

where — 1. Since the disturbances are carried only along downstream-
running Mach lines (see Figure 3.24), one has for the airfoil 

i / ( * - A y ) , y > 0 , 

[g{x + ty\ y<o. 
The boundary conditions at the airfoil surface y = F{x) are 

y = 0+: φ =-*f>(x) = U_^, 
dx 

y = 0-: i t = ^ ( i ) = l / . ^ , (3) 
dx 

where the subscripts u and / denote the upper surface and the lower surface of the 
airfoil, and t/_ is the free-stream velocity. 

Thus, the pressure on the airfoil is then given by 
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Now note that the potential φ is constant outside the wavezone 
0 < χ - Ay < c (c being the chordlength of the airfoil), and from (4) there is a 

jump of pressure, for example, across x = Xy if F ' ( 0 ) * 0 . This jump is a 
linearized version of a shock wave. 

Further, equation (3) implies that 

φγ=υ^(χ-λγ) for y > 0 , 0<x-Xy<c 

so that in the wavezone 0 < χ - Xy < c, the slope of the streamlines (φ .̂ jU„ in 
the linearized theory) is F'u(x-Xy), which is constant along lines 
χ - Xy = const. Thus, inside the wavezone 0 < χ - Xy < c, each streamline has 
the same shape as that of the airfoil profile. 

When one uses (3), (4) becomes 
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dF 
u 

dx 

éßÜË 
dx 

y > 0 , 

, y < 0 . 

(5) 

If the airfoil is at an angle of attack a, then one obtains 

21 '- + a 
dx 

Λ / Ì ! 7 ! 

y > 0 , 

y < 0 . 

(6) 

The lift of the airfoil is given by 

c = — 

and the drag of the airfoil is given by 

1/c 

4 a 

V M l - 1 
(7) 

2 

] ( < £ - « H ( < - £ H * 

[ σ 2 + σ , 2 + 2 α 2 ] , (8) 

where 

-2 ' f C ' " ' . l V ^ 

Note that shaφ corners do not cause any difficulty in supersonic flows. Recall 
from Section 2.7 that for subsonic flows, on the other hand, the negative 
pressures at the sharp corners tended to become infinitely large. Further, note that, 
thanks to the absence of upstream influence in supersonic flows, one does not 
impose the Kutta condition in supersonic flows, unlike the case with subsonic 
flows. 

Far-Field Behavior of Supersonic Flow Past a Thin Airfoil 

Consider a supersonic flow past a thing airfoil. The solution given in (2) is based 
on the linear equation 

φ„-λ2φ„=0. 
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Ρ„-λ1φ„=Μί 

+ 2{l+ φχ)φ A + Φ* Φη\ (9) 

The boundary condition at the airfoil is 

Ö 
y = £F(x): -I2— = CF'(X), 0<x<c, ε « 1, (10) 

1 + 0, 

and at upstream infinity we have 

φ{χ,γ)=>0. (Π) 

It is convenient to transfer the boundary condition (10) from y = £F(x) to 
y = 0 by using the following Taylor's expansion 

0(*,eF) = 0(;t,O) + eF0/x,O) + ± e

2 F 2 0 J , ( ; t , O ) + ·•• (12) 

so that (10) gives 
0,( , .O) + e F 0 , > , O ) + . . . 

1 + 0 , ( χ ,Ο)+ · · · 1 ' 

Seek solutions to (9), (11), and (13) of the form 

0 = ε 0 , + ε 2 0 2 + ·-·, (14) 

so that one obtains the following equations upon equating coefficients of equal 
powers of ε to zero. 

0(e): 

* i w - * l * , „ = 0 (15) 

y = 0: 0„, =F'(x), 0<x<c, (16) 

upstream: 0 ,=>O; (17) 

θ ( ε 2 ) : 

Ö ú η = M l [ ( / + 1 ) 0 , ^ + ( 7 - l ) 0 „ 0 l „ . + 2 0 l y 0 , 4 dS) 
y = 0 : Φ2> = Ö^'(÷)- 0,„.F(A:), 0 < ÷ < c , (19) 

upsteam: 0 2 = > O . (20) 

Although the solution of this equation is a valid first approximation at or near the 
airfoil, it fails at large distances from the airfoil since it predicts disturbances 
propagating undiminished along the free-stream Mach lines to infinity, whereas 
in reality the Mach lines are neither straight or parallel, and shock waves arise and 
decay. The latter is brought about by the cumulative effect of the nonlinear terms 
in the full potential flow equation. 

For the corresponding nonlinear problem (from equations (9) and (30) in 
Section 3.5), one has 

1^1(20, + 0 2 +0y

2)(0„ +0„.) + (20, + φ])Φχχ 
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<t>i{x,y) = -jHx-*y)-

When one uses equation (21), equation (18) becomes 

02» ~^202« =• F'(*-Ay)F"(;t-Ay). 
Put 

ξ = χ- λγ, η = χ + Xy 

so that equation (23) becomes 

n o w . 

from which 

8λ 

When one uses (25), (19) gives 

fc~^[rtt)jV<«). 

C ' ( { ) - 4 λ 4 
1 -

A / 4 ( y + l ) 

8A1 f ' 2 _ / T ' / T " 

Using (14), (21), (25), and (26), one obtains 

— = ±- = \-e , 
U_ U_ X 

y + 1 AC 
2 λ 3 

+ ε ' 
1 f, 7 + 1 Μ, ' - f f TO 

yF'(c;)F"(c;)-F(c;)F"(£) •θ(ε>). 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Observe that (27) is not uniformly valid and that it becomes inaccurate in the far 
field. 

In order to remove this nonuniformity, let us use Lighthill 's method of 
strained coordinates in a modified form due to Pritulo. Thus, set 

ξ = ξ0 + εξι+θ{ε2) (28) 

so that (27) can be written as 

u 
õ X 

' 7 + 1 Μ[Λ 

v 4 X2 {r&)Y 

{ Ψ f yF'&)^] ^ - m 0 ) F ' % ^ ) , (29) 

thus the nonuniform term can be eliminated by simply choosing 

Equations (15H17) give 
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7 + 1 Mi 
(30) 

2 λ 2 

Then, to first approximation, (29) gives 

(31) 

where 

7 + 1 Λ/4 

(32) 
2 λ 2 

Thus, as we saw in Section 3.7, the uniformly valid first-order solution for 
the nonlinear problem is simply the solution for the corresponding linear 
problem, with the respective characteristic replaced by the characteristic calculated 
by including the first-order nonlinearities in the problem. 

Thin Airfoil in Transonic Flows 

The term transonic refers to flows in which the free-stream Mach number M_ is 
not too far removed from 1. The need for a special theory for transonic flows 
arises from the fact that the foregoing linearized treatment (that was valid for 
supersonic flows) breaks down when applied to transonic flows. The difficulties is 
solving the transonic flow-field arise from the facts that the governing partial 
differential equation turns out to be nonlinear and of mixed elliptic-hyperbolic 
type. 

In order to appreciate the latter situation physically, consider the flow pattern 
past a symmetrical airfoil as the free-stream Mach number Μ is increased from a 
subsonic value. When the free-stream Mach number Μ reaches a critical Mach 
number M' the maximum local Mach number in the flow near the airfoil 
becomes unity. For Μ > Λ/*, a supersonic region appears on the airfoil which is 
then terminated by a shock wave across which the flow is retarded back to a 
subsonic one. As Μ increases further, the shock wave moves aft and the size of 
the supersonic region as well as the strength of the shock wave increase (see 
Figure 3.25). 

Shock waves in transonic flows are, however, necessarily weak. Along any 
streamline, recall, from Section 3.3, that the change in entropy through a normal 
shock is proportional to (Λί2 - l ) 3 . This means that outside the shock waves and 
boundary layers, the flow can be considered irrotational. 

For simplicity, let us consider only airfoils that are symmetric about the x-
axis. For a two-dimensional potential flow (see Section 3.5), one has 

(a2 - Φ\) Φα + (a2 - Φ2) φ η - 2 Φ „ Φ , Φ , = 0 , (33) 

(34) 
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M_ 

(a) M _ < M * 

Μ = 1 line 

V 

M_ M<1 (M> \ ) M<\ 
1 

\ 

(b) M„> Ivf 

Figure 3.25. Influence of the free-stream Mach number on the flow past a 
symmetrical airfoil. 

y = 5F(x):^- = 6F'(x), (35) 

Φ =>Ux at upstream infinity, (36) 

where δ is a small parameter characterizing the thin nature of the airfoil. 

In order to treat cases with Λ/_ = 1, put 

ΜÀ = \ + αν(δ), (37) 

where 

lim ν(δ) => 0 
ß = > 0 v ' 

and a is going to be made 0(1) in a distinguished limit. Seek a solution of the 
form 

φ(χ,γ;Μ„,δ) = υ„[χ + ε{δ)φ{χ,γ,α)+ · · ·], (38) 

where 

y = A(S)y, λ = ^Μΐ-1, 

Hm ε(δ), λ(δ) => 0. 

The spatial scalings in (38) are motivated by the fact that, in the limit M_ => 1, 
the linearized supersonic-flow theory (see Section 3.5) indicates that the 
disturbances are propagated practically undiminished to infinity in the y-direction, 
but are restricted to a small width in the Jt-direction. 

Using (37) and (38), equation (33) becomes 

M < 1 
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φ.. = (γ +1) ε2φχφα + higher-order terms. (39) 

A distinguished limit occurs if 

ελ2 = 
or 

A = Ve, v = e. (40) 

Then, equation (15) gives 

[α + (Γ + ΐ)*,]0„-^=Ο. (41) 

This equation is expected to contain the essential features of mixed subsonic-
supersonic flow with embedded shock waves. 

Next, using (38), (35) becomes 

When one uses (40) and (42), (37) gives 

which is the so-called transonic similarity parameter. 

The parabolic nature of the transonic-flow equation (41) allows no upstream 
influence, so only the region 0 < χ < c is of interest. Furthermore, it means that 
the flow in the region y > 0 is independent of that for y < 0. 

The nonlinear nature of equation (41) makes it very difficult to solve it 
exactly. As a first approximation, one may propose a linearized model for 
transonic flows. But then the calculated flow does not exhibit the mixed-flow 
character that is essential of a transonic flow, because the differential equation so 
obtained by assuming φ^ to be constant in the nonlinear term is everywhere 
parabolic when Λί„ = 1 rather than being so only on the sonic line. Some steps 
have been taken in the literature to improve upon this method, but they are not a 
lot more rigorous, though more successful. 

Slender Bodies of Revolution 

Let us adopt cylindrical coordinates (x,r, Θ), with the jc-axis aligned with the 
axis of the body of revolution (Figure 3.26) 

y = XSF(x): εí2φ. = SF'(x), 

from which 

ε = δ2'\ (42) 

(44) 
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In order to derive the boundary condition at the surface of the body, note that 
whereas in plane flows the normal velocity at the chord differs little from that at 
the airfoil surface, in axisymmetric flows the radial velocity becomes infinite at 
the axis in order that it becomes finite at the body surface. The latter follows from 
the continuity equation 

du 1 d , . 
— + - — ( w ) = 0 , (45) 
dx r dr 

which shows that the product (vr) stays finite. Thus, one writes the boundary 
condition at surface of the body given by r = R(x) in the form 

The pressure is then given by (see Section 3.5) 

where we have retained the term quadratic in t> since the latter is of a lower order 
than u near the axis. 

Let us construct the solution to (44) and (46) as a superposition of the singular 
source solution to equation (44). Thus, for a subsonic flow we have 

φ(χ,ή = -{ . m2=]-Ml>0. (48) 
J I f r \ 2 . 2 2 + tn r 
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r 

χ 

Figure 3.27. Domain of influence in supersonic flows. 

In a supersonic flow, note that the flow conditions at a point (x, r) are affected 
by the sources on the body only up to ξ = χ - λ Ã since, for the sources 
downstream of the latter point, the point (x,r) lies ahead of their Mach cones 
(see Figure 3.27) and such sources have no effect on the flow conditions at (JC, r). 

The region of influence of the body in the three-dimensional case extends over 
the whole fluid downstream of the Mach cone x-Xr = 0. (By contrast, in the 
two-dimensional case the region of influence of the body is bounded by the Mach 
lines at the leading and trailing edges of the body because the effect of the body is 
felt only on these Mach lines.) 

In order to obtain the velocity components from (49), note that the integrand 
in (49) diverges at the upper limit, so that one introduces 

Thus, 

M2_-\>0. (49) 

ξ = χ - λτ cosh a. (50) 

Then, (49) becomes 

(51) 
0 

from which, if / (0 ) = 0, one obtains 

0 
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cosh "(χ/λί) 

φΓ=- jf'(x-Xr cosh σ) · ( -λ cosh σ) da 

so that 

. . - J 

\<γ (χ-ξ)Ã(ξ)άξ 
(53) 

Example 8: Consider a supersonic flow past a cone, with /(ξ) = αξ. Thus, 
(51) gives 

φ(χ, r) = - j (αχ - αλτ cosh σ) Ax 

or 

0(x,r) = -ax 

from which, on the surface of the cone, one has 

c o s h - f - J l - i ^ 
Kr 

þ = -a cosh 1 — , þ = αλ , 
λτ \\ 

Note that both φχ and φΓ are functions of xfr, i.e., constant along each ray from 
the origin; such a flow is called conical (see Section 3.5). (The solution for the 
flow past a nonslender cone may therefore be constructed by fitting a conical flow 
to a conical shock.) 

When one uses these expressions for φχ and φΓ, (46) gives 

aVcot2 δ-λ2 

U_ - a c o s h " ' ^ C O t ^ 
= tan δ , 

from which, for 5 <ί 1 ( δ being the semivertex angle of the cone), one obtains 

a«Um5\ 

thus 

φ = -υ„δ2χ I n ^ - l . 
Xr 

from which the pressure on the cone is given, on using (74), by 

(52) 
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Note that for a supersonic flow past a thin wedge of nose angle 28, the 
pressure rise occurs completely at the nose shock, and one has from (4) 

Observe that the pressure rise on the cone is much less than that on the wedge - a 
result traceable to the three-dimensional flow effect for the cone, and occurs 
continuously downstream of the Mach cone at the nose. 

Let us now evaluate the integral in (49) for Xr/x < 1. Since the integrand is 
singular near the upper limit of integration, it proves convenient to write 

(54) 

where 

In /,, one may expand the integrand in powers of X2r2, 

Then, integration term by term gives, as Ar => 0 + , 
χ—ε 

(55) 
ο 

where we have noted that 

/ (0 ) = 0. 

In order to evaluate / 2 , introducing 

ξ = Jt-ArcoshCT, (50) 

one obtains 

ο 
Expanding the integrand in powers of Ar, one obtains 
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Using (55) and (56), (54) leads to 

_2_ 
Ar 

φ = -f(x) lnf--jf'tf)\n(x- ξ) Üξ. (57) 
ο 

The boundary condition at the surface of the body given by r = R(x) then 
becomes 

r = R: ^ = M = i / ^ 
dr R dx 

or 

/w-f~- (58) 

2π dx 
where 

AsnR2. 
Equation (58) implies that the source strength is proportional only to the rate of 
change of area of the body. 

When one uses (58), (57) becomes 

^ Α\χ)\*^-± ]Α»{ξ) Ιη(χ-ξ) Üξ. (59) 

Consider next the flow past a body of revolution at an angle of attack (see 
Figure 3.28). Even though the flow is no longer axisymmetric, the linearity of 
the potential-flow equation permits one to write 

<!>{χ,Ã,θ)=φα(χ,Þ + φ,(χ,Ã<θ), (60) 

where the subscripts a and c denote the axial flow and the cross flow, respectively, 
and one has 

92φ 9φ ,, 92φ 

32φ€ 9φ \ d \ λ 2 ü 2 Φ ί = ( ) 

dr1 rdr r2 3θ2 dx" 
From equations (61) and (62), it is easy to verify that 

0 c = c o s 0 . f ^ L ( ( 6 3 ) 

dr 

I2=~f(x) \do + Xr ] / ' ( * ) cosh 
0 0 

which, as Ar => 0 + , leads to 

I2=-f(x)\nj--f(x)\ne+-. (56) 
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Figure 3.28. Uniform flow past a slender body of revolution at an angle of 
attack. 

so that, on using (53), one obtains 

' I ^-ξ)'-λΨ 

The boundary conditions are 

^ = - t / c cos0 . 
or 

Alternatively, one has, from (64), as r 0 + , 

r 
where σ(χ), on using (65), is given by 

a(x) = Uc[R(x)]\ 

(64) 

(65) 

(66) 

(67) 

so that the doublet strength modeling the cross flow is proportional to the local 
section area. This implies that the cross flow at any section is the same as if the 
latter were part of an infinite cylinder normal to a uniform flow. Thus, 

(68) 0C = U_ sin a 1 1 cos Θ, a s r = > 0 + , 
r 

which simply represents the incompressible flow normal to an infinitely long 
cylinder. This means that in a linearized approximation, the cross flow prevails 
under incompressible conditions, at least near the body. This is to be expected if 
the cross flow at a cross section is independent of the cross flow at other sections. 
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a2 dt2 a dxdt r dx2 dy2 

where 

When one puts 

equation (69) becomes 

When one puts 

equation (71) becomes 

When one lets 

equation (73) gives 

M_ 
τ = t + —f-x = t + ax, 

ξ = 4~. Π = · £ . C70) pa pa 

Φ„ = φξξ+Φηη. (71) 

£ = /-'cos0, r\ = r' sin0, (72) 

Φπ = Φ,, + γ,<Ι>,·+-ñϊΦοθ- (73) 

isinrti?] , , 
φ = ε·°"\ JR(r'), (74) 

d2R 1 dR ( 2 n1} · + + ω 
dr'2 r' dr' 

R = 0, (75) 

from which 

R = An{ " V '}. (76) 

Oscillating Thin Airfoil in Subsonic Flows: Possio's Theory 
Further complications arise due to compressibility effects because of the facts: 
1. Additional phase lags appear, 

2. Flow patterns do not adjust themselves immediately to changing boundary 
conditions; thus the flow properties do not just depend on the instantaneous 
accelerations and velocities of the body, but are affected by their time 
history. 

For a linearized unsteady subsonic flow past a thin airfoil (see Section 3.5), 
one has 

1 32φ 2Mm 92φ 2 92φ _ ü2φ 
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(JC) and H^\x) are Hankel's functions of the first kind and second kind. 

Note that (76) gives a source at the origin for η = 0 and a doublet for η = 1. 
Let us now introduce what is called the acceleration potential, which makes the 

formulation in the following more simple. The equation of motion is 
£>υ, = 1 dp 
Dt ρ dxt ' 

Let 

(77) 

where 

DVj _ d<p 
Dt ~ dx.' 

φ+ f^P= const. (79) 
J Ñ 
Pa r 

For a barotropic fluid and thin airfoils, φ will be continuous everywhere. 
(When the wake is idealized into a thin surface, the velocity potential is 
discontinuous across that surface, but φ is continuous; this means that one 
would have in the equation for φ no source terms arising from the wake due to 
the vorticity shed from the trailing edges.) 

Consider small disturbances in an otherwise uniform, rectilinear, steady flow. 
Let 

p = p - + p ' . Ñ = Ñ . + Ñ ' , p'<p^ p' < p_; (80) 
one then obtains from (79) 

φ = ~ϊ-. (81) 
Ñ-

Since the pressure may be considered to be a potential for the acceleration field, 
from (81), one may call φ the acceleration potential. 

Now, the discontinuity of the pressure field across an oscillating airfoil can be 
represented by a layer of doublets, the strength of which of course varies with 
time. Thus, for a line distribution of doublets (with vertical axes), upon noting 
(74) and that, for a linearized flow, φ satisfies the same equation as that for φ, 
viz. equation (69), one has 

φ(χ, y, t) = ei0" J B(x') sin θ Η™ {ωτ') e ^ ' ^ dx', (82) 
ο 

where we have chosen H\2)(a)r') rather than //,( 1 )(a)r') in accordance with the 
radiation condition (see Section 2.6), and 

(78) 
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Figure 3.29. An element of the airfoil. 

1 

θ = tan 
\x — x') 

Consider a small element of length 2ε, at χ = ξ (see Figure 3.29). If L is the 
lift per unit length at (x,0), applying the force balance, one finds 

2εÀ(ξ,ί) = Jp'dx = - p „ Jp(jt,y,r) <£t 
c c 

= 2p„ lim |φ(χ ,δ , ί ) 

From (82), note that 

where 

H\2\z)~- for | z | « 1, 

sin θ = to 

Thus, 

" " 2 / p"3a lim φ(χ,δ,Þ = eia,B(x) lim [ — B± - 2 _ Λ ' 

= U ^ £ e - f i ( j c ) lim t a n - ^ 

2/)82α ,„, 
ω 

When one uses (85), (83) gives 

(83) 

χ+ε χ+ε 

lim J φ(Λ, δ, f)dx = J i m sin β//, ( 2 ) (ωτ') etc', (84) 

(85) 
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ω 
Consider next the velocity field. From the linearized equation of motion, 

dtp _ dv + dv 

dy dt dx 

with 

one obtains 
itttt 

υ, φ ~ e , 

/ \ 1 ( úωχλ "r dq> 
v\x*y) = — e x P —^ exp 

U_ 
dx'. 
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Without loss of generality, one may put the doublet at the origin. Then, (88) 
leads to 

v(x,y,t) = — exp 
iCux 

U 
J B ^ ^ J s i n e . / / , ' 2 ^ / ) ] ^ ' , (89) 

where 

K = a + 1 1 

When one notes that 
dQ _ cos θ 9Θ _ sin θ dr' _ sin θ dr' _ cos θ 
dy βα/' dx ~ fi2ar'' dy ~ βα ' ºχ~~ψα~' 
η 

(90) 
-H„(Z)-H;(Z) = H„MI 
ζ 

(89) becomes 

v(x>y>t) = -7r-exp 
r \ x 1 ico t U_co 

which is divergent when y = 0, jc > 0. 

When one notes that 

<? 2 

J ^ i f l f W l i ' , (91) 
dy 

(91) becomes 

(92) 

/ ί α <£t 
dx' = I.+L, (93) 

(86) 

(87a) 

(87b) 

(88) 
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A = —-— exp 
U„co K 

on using (86). 
When one notes that 

Ι2=Αβ2\ω 

ιω 
L ί iw — exp 

Λ cos© 
Ρ a 

x eiaK* -0)2K2 ]eiaKx Η{2){ωτ')Üχ'\, (94) 

(93) becomes 

ν{χ,γ,ι) = Αβ2ωε^\-Η?\ωτ')^ + ίΚΗ(2\ωτ') 

+ A η^-β'Κ2 ω2 \e"^H^{car')dx', 
[pa J 

from which 

v(x, Μ - Ç " - * 2\\ W\)^+H™(\W I) 

Αω1 

ui 
(2) ' X' Ë 

ω—τ— dx', 

where 

ω W = ^-x = a>M„Kx. 
β2α 

Consider 

I = je-^Hi2) 

U2« J 
where 

When one notes that 
u = ωΚχ'. 

Üξ _ úπ„{2). 

(95) 

(96) 

je-"H^}(Mmu)du, (97) 

(98) 

(97) becomes 
I 

where 
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When one puts 

(99) becomes 

When one notes that 

ξ = cosh η, 

πω { 1 + Af_ cosh η 

ί 
J 1 + cosa 

cosh χ 
= 2 coseca tanh"11 tanh — tan — 

(100) becomes 

πω •yjl-Ml 
tanh" \-M_ , η 

- tanh — 
1 + M_ 2 

or 

\-M_ 2UB , l + Jl-Ml 
— f In * πω y 1 + Λ/_ πω Λί _ 

When one uses (97) and (102), (96) becomes 

where 

(99) 

(100) 

(101) 

(102) 

(103) 

x ( ^ l n ^ + T > ^ 2 , K i « i 4 

φ , 0 , ί ) = _ ^ Γ | L ( 5 , f ) j c ( M . , * - 5 ) ^ (104) 

Thus, for the whole airfoil, one obtains an integral equation 

ω 

with the Kutta condition in the form of continuity of the pressure at the trailing 
edge: 

ξ = α: L = 0. 

Note that κ"(Α/„, χ - ξ) has a singularity at χ = ξ. 

(105) 



(106) 

312 Dynamics of Inviscid, Compressible Fluid Flows 

(108) 

(110) 

'^Even though transonic flows are patently nonlinear, the nonlinear characteristics in an unsteady 
situation manifest themselves only in low-frequency airfoil motions. For sufficiently high 
frequencies, even the unsteady transonic flow problem becomes a linear one like the subsonic- and 
supersonic-flow cases! 

Oscillating Thin Airfoils in Supersonic Flows: Stewartson's 
Theory 
The treatment of oscillating thin airfoils in supersonic flows becomes simpler 
than that in subsonic flows because, in the supersonic case, the flows above and 
below the airfoil are independent of each other, and the flow over the airfoil is 
independent of the conditions in the wake. 

For the linearized unsteady potential flows,10 one has 

(l - Mi) φα + φπ -2Ml φχι - Mi φ„ = 0, 

y = Q: ^ = υ 0 ( χ , / ) , x>0. 

When one assumes a harmonic time dependence, 

υ ο ( * . 0 = υ ο ( * ) * ' " , φ(χ^ή = φ(χ^°", 

(106) becomes 

(Mi -ΐ)φα-φπ + 2Mi ίωφχ - Mi ω2φ = 0, 

y = 0: φγ=υ0{χ), x>0. 

Upon Laplace-transforming according to 

fo,y) = ]e"*<p(x,y)dx, (109) 
0 

(108) becomes 

Φ„-ì'φ = 0, 

y = 0: 0 = ûο(ί), 

where 

ì 2 = s

2(Mi -1) + 2Mi ('cos - ω2Mi. 

One obtains from (110) 

i>(s,y) = -H<Me->'>< y>0\ ( H I ) 
ì 

When one inverts the Laplace transform, (111) gives 
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exp 
<A/> 

(x"*i) 

iic,. 

As Λ/_ => 1 or ω => o o , note that (112) becomes 

. r 

Λ 

-J υ 0 (*,)-

exp 
dx. 

Using (112), the Bernoulli integral gives the pressure on the airfoil, 

/K*.o) = 1 
VA/I-I L 

« ο W - J « ο (*ι) ^ ~ Λ, + úω J υ 0 (*,) G(xx) dxl 

where 

G(jc,jr,) = exp A/I ω / χ 
- ι — τ — ( * - * , ) 

Α/_ω 
Ml-I Mi-I 

Example 9: Consider a sharp-edged gust, given by 
[0, χ > t. 

! V, JC<f, 

so that 

from which 

v(<o) = jvg{t)ei°'dt = ^e 

7 '<"(*-/) 
2ττυ (i) = tV ί dm. 

* 1 ω 
When one uses (117), (114) becomes 

ρ(ω,χ)-. — e - I — e ' i t , + i f t ) — c ' G(xAdxx 

ω 

from which 
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EXERCISES 
1. Estimate the error incurred in writing the boundary condition (46). 
2. Obtain the solution for a supersonic flow past a cone by starting with the 

assumption that the flow is conical (and not using the slender axisymmetric 
body theory). 

3. Linearize the transonic-flow equation using the hodograph transformation, 
and investigate the prospects of its solvability. 

4. Set up the boundary-value problem for a nonlinear axisymmetric flow past 
a cone, and investigate its prospects of solvability. 



4 

DYNAMICS OF VISCOUS 
FLUID FLOWS 

4.1 . Exact Solutions to Equations of Viscous 
Fluid Flows 

The mathematical theory of ideal-fluid flow given so far provides a powerful 
approach to the solution of several problems and gives satisfactory descriptions of 
such characteristics of flows of the real fluid as (a) the main characteristics of 
wave motion and (b) the pressure field on streamlined bodies placed in flows. 
However, this theory is unable to indicate how nearly the flow field (the whole or 
part of it) will be irrotational. Therefore, application of the results from this 
theory requires the clarification of the circumstances in which the ideal-fluid 
assumption is valid. Basically, the ideal-fluid assumption is useful insofar as it 
may describe the behavior of a real fluid in the limit of vanishing viscosity. 
However, because of the contamination by vorticity within a boundary layer near 
a solid surface, the ideal-fluid theory does not give a correct description of the 
flows near solid boundaries and cannot describe such things as skin friction and 
form drag of a body placed in a flow. In order to remove these discrepancies, an 
understanding and inclusion of the effects of viscosity of a real fluid is essential. 

Among the effects produced by the fluid viscosity are 

(1) generation of shearing stresses in the fluid; 
(2) maintenance of a zero slip-velocity of the fluid at a solid boundary. 

In the following, we shall consider only the Newtonian fluids for which the 
coefficient of viscosity ì is independent of the rate of deformation of the fluid. 
Furthermore, we shall restrict ourselves to laminar flows wherein the viscous 
processes have their origin in the molecular transport processes. 

Channel Flows 
One has for a steady, unidirectional flow in a channel bounded by rigid wall the 

315 
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Figure 4.1. Couette flow. 

equation of motion (Chapter 1) 

dp 
dx dy2 

(i) 

For this case, the nonlinear convective term in the equation of motion vanishes 
identically, and the latter becomes linear. 

For a Couette flow (see Figure 4.1), for which 
y = 0: u = 0 
y = h: u = U, (2) 

equation (1) gives 

(3) 
h 2μ dx h\ h 

which gives the linear profile shown in Figure 4.1 if dp/dx = 0. 

For a Poiseuille flow (see Figure 4.2) fluid enters a channel with a uniform 
velocity over the whole cross section. Thanks to the no-slip condition, the fluid 
next to the wall will be slowed down and boundary layers form on the channel 
walls. These boundary layers grow and ultimately meet producing the Poiseuille 
flow in the channel with a parabolic velocity profile. 

The boundary conditions for a Poiseuille flow are 
y = ±b: u = 0, (4) 

/ / / / , / / / s s 

Figure 4.2. Poiseuille flow. 
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(5) 

Decay of a Line Vortex 
Consider the decay of a vortex filament in an incompressible fluid. Use the 
cylindrical coordinates and take the z-axis along the axis of the filament. The 
vorticity is governed by 

dt 
• = ν + — ^ dr2 r dr ) 

(6) 

where 

dr r ρ 

so that from equation (6) we obtain 

1 d'jru.) 
r drdt 

ld>(ru.) 1 B\ru,) 1 d(rue) 
' 1 -V r dr3 r2 dr2 

(7) 

Nondimensionalize the various quantities using a reference length L and a 
reference time τ, so that 

1 
drdt + ε 

1 < ? 3 K ) 1 d2{rue) 1 d2(rue) 
dr1 dr2 dr 

= 0, (8) 

where 

ε = ντ 

The boundary conditions are 

r = 0: ue=0 
r = > o o : ue => 0 

for r > 0 . (9) 

Let us seek a solution of equation (8) in the form of a straightforward 
expansion: 

(10) 

Substituting in equation (8) and equating the coefficients of equal powers of ε, 
one obtains 

ι <?2R>) 1 - 7 b r i = 0 ' 
r drdt 

(Π) 

and equation (1) gives 

2μ dx 1 3 ' 
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, <?2K)_, ^ κ ) ι <?2Κ) ι d « ) 
drdt dr' dr1 + 7 dr 

(12) 

+ (13) 

From the nature of the equation (11) and (12), it is clear that their solutions 
cannot satisfy both of the boundary conditions (9), and one of them must be 
dropped. 

Solving for the first two terms of (10) and requiring the satisfaction of the 
boundary conditions ue°^ => 0 as r => °°, one finds 

r r L r 

Note K g 0 ) => °° at r => 0 so that the error in (10) is not uniform over [0,<»], and 
the expansion (10) breaks down at the axis. It is of interest to note that the 
higher-order terms in the expansion (10) introduce successively higher-order 
singularities at the axis. This simply implies that the problem (7) is of singular-
perturbation type. 

In order to understand further the nature of the nonuniformity, note the exact 
solution of equation (7), 

2nr 
1-exp 

4ε/ 
(Ç) 

which is in agreement with the first term in (13) and satisfies the boundary 
condition ue(°<>)=>0 ( Γ 0 can be shown to be the circulation of the vortex 
filament at time ί = 0). In order to understand what happens at the boundary 
r = 0, write (14) in the form 

2nr 2nr exp 
2 \ r 

4εί 

The second term in the above is not negligible even as ε => 0 since we are 
interested in the region r=>0. Besides, in this form, the order of the error is 
uniform [0,«>]. The behavior of ue is shown in Figure 4.3 together with the first 
term of ue°\ Note that near r = 0, the motion is a rigid-body rotation. It can be 
seen that for small ε, ue agrees with ue

a) except in the small region near the axis 
where it changes rapidly in order to satisfy the boundary condition there which is 
about to be lost. Physically, this means that for small times there is a narrow 
vortex core near the axis, and the rest of the flow field is irrotational. 

For r<^]4vt, we have, from (14), 
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0 r 

Figure 4.3. Velocity distribution in a vortex filament. 

which corresponds to an almost rotation with angular velocity Γ0/&πνί. The 
intensity of the vortex thus decreases with time as the core spreads radially 
outward. 

Line Vortex in a Uniform Stream 
Consider a uniform flow t/_ parallel to the x-axis which is slightly perturbed by 
a unit line source of vorticity at the origin. One has 

When one puts 

equation (15) gives 

from which we have 

i£ = JL v2<r 

v2/ = *2/, 

(15) 

(16) 

(17) 

f(r)=K0(kr), (18) 

where K0(z) is the modified Bessel function of the second kind of order 0. Thus 

ζ = exp(*r cos0) K0(kr). (19) 

For kr> 1, (19) gives 
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i = { e x p [ - A : r ( l - c o s 0 ) ] } ^ ; 

and for 0 = 0,(20) gives 

- f o r -
2 ' 

(20) 

(21) 

which shows a wake region behind the line vortex. 

Diffusion of a Localized Vorticity Distribution 
It turns out that in the problem of diffusion of a localized vorticity distribution 
the nonlinear effects become negligible in what may be called the final period, 
(i.e., ί =>«>). Further, the diffusion process in this limit turns out to be 
independent of the detailed nature of the initial condition. 

The equation for the transport of vorticity ξ is 

| + ( υ ν ) ξ = (ξ-ν)υ + ν ν 2 ξ ; (22) 

and for the axisymmetric case, in cylindrical coordinates, equation (22) tends to 

d_(dug\ ( d d\duB 

dt\dz 

^du, 

•
 9 d 

{dr r 

dz 

d' d dut 

dz dz dr 
2 1 d 32 Λ 

*2J 
due 

dz * 
(23) 

d_ 
dt 

dul dut 

dr ~lk 

a*e , ue 
dr r 

'£ 
(dr 

d d 
dr 

du^ 
dz 

d due d 
dz dz dr 

+ ν ll_ d_ 
+ r dr+dz2 

2 Λ 

dr 

d_(dug_+u£ 
dt V dr r , 

dz 

dr r 

(24) 

dug +

ue^ 3

 + < ê & 
dr r I dz dz dr 
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The continuity of mass gives 

dr r dz 
(26) 

In order to study the behavior of equations (23M26) in the limit t = > ° o , it is 
natural to introduce, for a fluid with small viscosity (such as air), the following 
renormalized variables: 

τ = et, ••4ε ι ε ξ — «ι, 
LU 

(27) 

where L, andi/ denote reference length and velocity, respectively. Let us consider a 
two-dimensional situation with no dependence on z. Then, equation (25) becomes 

+ 1=2 + - d ? {dr 

where 
y. dua u„ 

Seeking solutions of the form 

ζÓ(?,τ;ε) = ±ε"ζ?(?,τ), 

« Γ ( Γ . τ ; ε ) = 5 ; ε " « Ì ( Γ , τ ) . 

£ . (28) 

(29) 

«l(?.r.£) = £e"i .W(r ,T) . 

we obtain from equation (28) 

+ - — if = 0 . dr [dr2 ' f dr 

In order to solve equation (30), let us consider the initial-value problem: 

ill ί!ί=ΐû£ 
dx2 + dy2 ν dt' 

t = 0: ξ{χ,γ,Þ = /(χ,γ). 

Upon Fourier-transforming according to 

K*,M) = ̂  J ^{x^e-'^dxdy. 

(30) 

(31) 

(32) 

(33) 

(34) 
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and when one uses equation (32), equation (35) gives 

where 

| (*„* 2 .0) = ^ J J ^ . y . O ) , - ' ^ ' dxdy 

= ^]]f(x,y)e-i{k"^dxdy 

= ~f{kt,k2). 

Thus, 

el Λ 7 7 <Λ|^2 ' ( M + M 

5(x,y,i) = J J —^~2-* 

' Λ , , ' / Υ , , Λ -'(*.*'+*ι/)-(*.!+*ί) w xjjdfc'rfy'/(jc,,/)e' 

= ]]dx'dy'f(x',y') 
exp 

Λ * 

4vf 

4πνί 

(35) 

(36) 

(37) 

(38) 

Using equation (38), we obtain for equation (30), on reverting to the original 
variables, and letting 

t = 0: £0)=/(r), r<a. (39) 

the following solution: 
a 

;z{r,t) = J27Cr'dr'f{r')G(r,f,r') + 0(e), 
ο 

where the Green's function G(r,t\t') is given by 

r2+r" -2rr^cos{e-^) 

(40) 

i. e x P 4vr 
4πν/ 

Üθ'. (41) 

Note that because 

equation (31) gives 
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e+2* 

J exp 
β 

2ττ' cos(t9-g /) 
4vt rf0- = 2 j e x p [ £ ^ l * T = 2 * / e [ £ : | . (42) 2vt 2vt 

(41) becomes 

G{r,rS) = —I0(—) exp 
4vr 

(43) 

where l0(z) is a modified Bessel function of the first order 0. 

For a localized vorticity distribution, if the point of observation lies in the far 
field, one may expand the quantity 

Λ2ν> exp 

as follows 

ο, ^ ,exP 

f r2+r'2^ 
4vt : exp 

k 4v/ 

4vi 

r2r'2 

16vV exp 4vt 

Then, (40) can be written as 

a 
\2nr'dr%r') 

C«(M) = - " 
4πνί exp 4vt 

\2itr"dr'f{r') 

64>rvV exp 4vt , 

(44) 

(45) 

so that / = > o o , the diffusion of a localized vorticity distribution corresponds to 
that of a line vortex filament at the origin with strength equal to the total 
vorticity. Further, in the limit t => » , any lack of symmetry does not show up at 
the leading term but in the higher-order terms. 

Note that if one assumes then, in fact, only a single vortex filament at the 
origin, at t = 0, i.e., 

f(r) = r0S{r), (46) 

where Γ 0 denotes the circulation about the sigle vortex filament, then in the 
limit t = > oo we have from (45) 

fl(r,r) = - i i - e x p 
4πνί 

from which the circulation is given by 
r 

Γ(Γ,Þ = 2π \;zrdr = ra 

ο 
The azimuthal velocity is then given by 

v 4vi 

1-exp 

(47) 

(48) 
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„ ( r > t ) = _ L = 

2/rr 2nr 
1-exp r 

4vr 

2 Y] 

J 

(49) 

which is the same as that given in (14). 

Flow Due to a Suddenly Accelerated Plane 
Consider a semi-infinite region of stationary fluid which is bounded by a rigid 
plane given by y = 0. The plane is suddenly given a velocity U in its own plane, 
and thereafter maintained at that velocity. The viscous stresses at the plane set the 
fluid into motion, which is governed by 

du d2u 
dy1 

(50) 

with the following initial and boundary conditions: 
f<0 : u = 0 

f>0; y = 0: u = U 
y = > o o ; u => 0 

where u is the fluid velocity component in the direction of motion of the plane 
When we introduce the similarity variables 

(51) 

(52) 

y 
2Vw ' 

(50M52) give 
/ " + 2η/Γ' = 0, 

η = 0: f = V 
η=>°°: f => O.J 

The boundary-value problem (54) and (55), has the solution 

-ν/π 

Therefore, 

u = U 1-4- L-^rfrj 

Note that the vorticity corresponding to this velocity field is given by 
„2 >\ 

yl \ 1 
^ ' , ) = ^ ~ V v 7 e x p 

y 
4vr 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

If initially the vorticity is concentrated in a thin layer of thickness δ near the 
plane (which will be due to the discontinuity in the tangential velocity arising 



Exact Solutions to Equations of Viscous Fluid Flows 325 

near the boundary at / = 0), then from the conservation of vorticity in the flow 
we have 

When one uses (58), (59) gives 

8 r 

(59) 

(60) 

(61) 

from which 

dt ~ 2 V t 
Equation (61) gives the rate at which the vorticity, initially concentrated near the 
plane, diffuses into the flow. Note that the rate of diffusion decreases at t 
increases, because the velocity gradient and its spatial rate of change becomes 
progressively smaller. 

For the flow due to a plane set impulsively into an oscillation, we have the 
following initial and boundary conditions: 

f < 0 : u = 0 
f > 0 ; y = 0 : n = £/cos<Of (62) 

y => °°: u => 0. 

Equation (62), in conjunction with equation (50), leads to the following steady 
periodic state -

\ f r r r \ f I Λ f I 
u(y.rj = (/exp — J — y cos cot-J—y { V2v ) { I2v 

(63) 

Notice the phase lag in the fluid motion caused by the viscous effects. Equation 
(63) also exhibits clearly the intrinsic damping due to viscosity. 

The Round Laminar Jet: Landau's Solution 
We discuss here an exact solution for the case of axial symmetry. The calculated 
flow turns out to be a round laminar jet emerging from an orifice. 

In spherical coordinates (r, θ, φ) with θ measured from the axis of the jet, 
one has 

-Li-(r2«) + — — ~(Þηθυ) = 0, (64) 
r drX ' runQ 9θΚ ' 

du υ du V2 1 dp ( „ 2 2 k 2 dv 2ucot0 > \ _ 
U — + - - = ^- + v V 2 « - — τ - — - - , (65) 

dr r d0 r ρ dr \ r2 r2 d6 r2 ) 
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dv V dv uv _ 1 dp 
dr r de r ~ pr de 
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+ ν 
VT2 2 du V V + - 7 - -

V r2 dd r2 sin2 θ 

where the fluid velocity í has components υ = (u, υ,Ο), and 

V 2 = - ^ 
1 d 

r2 dr dr 
1 

r sin e de 
d (. a d 

sin0 —— 
de 

Let the stream function be written as 

f = vr/(0). 

The fluid velocity components are then given by 
1 <9Ψ ν 

u = 

υ = • 

r 2 s in0 de 

-1 <9Ψ 
θ dr ' rsin 

rsin0 

ν 
rsin0 

Ã(θ), 

so that 

V2« = 

V2t> = 

r 2 sin0 0̂1, d6 

1 d ( . dv 
—z sin0—— 
r2sin0 de I de 

du__u dv _ V 
dr r' dr r 

Using equations (68) and (69), we obtain from equation (64) 
dv . . « + — + ucot0 = O. 
de 

When we use equations (68)—(71), equations (65) and (66) become 

u2 + í2

 ; υ du _ 1 dp 
r r de 

V dv 
r de 

We have from equation (73) 

Ρ 

ñ dr r sin 0 de 

d f. du 
sine-—— 

de 
1 dp ν du 

~p~r'de+~r1'de 

- p 0 _ V vu c 
ñ 2 r r 

where c, is an arbitrary constant. 

When we use equation (74), equation (72) becomes 

υ du 1 du 2c, 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(66) 

(74) 
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Figure 4.4. Steamline pattern for a jet issuing from a nozzle. 

When we put 

μ = cos θ (76) 

and use equation (68), equation (75) gives 

[r(M)f+/(M)r(/i) = 2/'(M) + ^ [ ( l - ^ 2 ) / » ] - 2 c , (77) 

Equation (77) can be integrated to give 

# ' = 2 / + ( l - M 2 ) / " - 2 c , / i - c 2 ; (78) 

where c2 is an arbitrary constant. Integrating equation (78) again, we obtain 

f = AM + 2(1 - μ2) / ' - 2(c,/i2 + α2μ + c 3) , (79) 

where c3 is an arbitrary constant. 

Now in order that the flow be free from singularities, one requires from (68) 
that 

ì = ± 1 : / ~ ( ΐ + ì ) . (80) 

Using (80), we have from (79) 
c,,c2 ,c 3 = 0 (81) 

Equation (79) then becomes 

α + 1-ì a + l - c o s 0 

where a is an arbitrary constant which determines the nature of the flow described 
by (67) and (82). Thus, when α ä> 1, the flow is symmetric about the plane 
θ = π/2, and the flow becomes asymmetric about the latter plane when a is 
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reduced. Equation (82) can be interpreted as a jet (see Figure 4.4) issuing from a 
nozzle which coincides with one of the streamlines as far as its throat (whose 
position is given by cos# = l/(a + l)) and entraining slow-moving fluid outside 
the jet. In the limit, a < 1, the throat position corresponds to θ = 0 so that the 
jet flow is sharply peaked around 0 = 0 . In order to make this jet flow possible, 
it must be assumed, however, that a special frictional boundary condition is 
satisfied on the walls of the nozzle. 

Ekman Layer at a Free Surface in a Rotating Fluid 
Consider a fluid bounded by a horizontal free surface at which a uniform and 
constant stress ì5 is applied. This problem is of interest in connection with the 
drift at the surface of the sea due to wind blowing over it; the drift is found to 
occur somewhat to the right of the direction of the wind. Use a rectangular 
coordinate system rotating steadily with angular velocity Ω, with the z-axis 
along the vertical direction and with the x-axis in the direction of the stress 
applied at the surface. The fluid velocity associated with the flow generated by the 
latter can then be taken to lie in the horizontal plane everywhere and vary only in 
the vertical direction, so that the nonlinear convective derivative (v-V)v 
vanishes identically. Then the equations of motion (see Section 2.6) give 

1 dp d2u 
ρ dx dz 

- 2 « β , - ^ ΐ ν ^ , (83) 

2 " ° ' β 4 ! + Í Τ ? · ( 8 4 ) 

ρ dy dz 
If geostropic flow prevails in the limit ζ => we have from equation (83) 

and (84) 
_ 2 V f l f = - ! f i . (85) 

ρ dx 

2 W 2 j = - l f . (86) 
ρ dy 

Combining equations (85) and (86) with equations (83) and (84), we obtain 
d2u 

- 2 υ ί 2 ζ = ν — , (87a) 
dz 

2ýΩζ=ν—r, (87b) 
dz 

where 
u = u-U, v = v-V. 

The boundary conditions are 



Exact Solutions to Equations of Viscous Fluid Flows 

from which 

where 

ν — — º — - = 2úΩζ (Μ + ι'ý), 

2k 

k = . 

We have from (90) 

e cos 

υ = — e sin htz , 
* Ë / 2 I 4 1 

which are sketched in Figure 4.5. 

-6 

/ -3 

-2 

Direction of applied 
stress at free surface 

8fa = 0 

Velocity 
vector 

Figure 4.5. Variation of the velocity vector in the Ekman layer (from 
1967). 

du dv 
z = 0: — = 5, —- = 0, 

dz dz 
ζ => -ο»: u,v=>0, 

where Ω: is the component of Ω along the z-axis. 

One may write equation (87) and (88) in the form 

d2(u + iv) 
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Note that as the depth below the free surface increases, due to the Coriolis 
force, the direction of the velocity rotates uniformly in a clockwise sense (for 
Ωζ > 0), and its magnitude falls off exponentially. This solution explains the 
observed discrepancy in movement between the sea current and floating pieces of 
ice. 

Centrifugal Flow Due to a Rotating Disk 
Consider a plane disk of large diameter which is made to rotate in its own plane 
with a steady angular velocity Ω in fluid which, at infinity, is rotating rigidly 
with a slightly smaller angular velocity Γ (the latter generalization is due to 
Batchelor). The relative motion of the disk and the fluid leads to viscous stresses, 
which tend to drag the fluid around with the disk. An exactly circular motion of 
fluid near the disk cannot occur because the enhanced centrifugal force near the 
disk is too great for the pressure gradient in the ambient fluid, and the fluid near 
the disk therefore spirals outward. This outward radial motion near the disk must 
lead to an axial motion toward the disk in order to ensure conservation of mass, 
and this prevents the vorticity generated at the boundary from spreading far from 
it. Thus, when the disk is rotating faster (Ω > Γ), the vorticity is confined to the 
vicinity of the rotating disk by convection toward the latter induced by the 
centrifugal action on the fluid near the disk. 

Let us look for a solution of the form (an ansatz suggested by von Karman) 

—, —, w - functions of ζ only, (92) 
r r 

where («,υ,νν) are velocity components parallel to the (r,φ,ζ) directions in a 
cylindrical coordinate system with r = 0 on the axis of the disk. 

The equations of continuity and motion then give 

^ + ^ = 0 , (93) 
r dz 

ρ dw 1 2

 1 r~ 2 
— = V IV + — / > , 
ρ dz 2 2 

(94) 

- + ^ _ ^ V = v ^ M _ r 2 , (95) 
r) dz \r) dz1 

2 « % w ^ e v ^ d . (96) 
r1 dz dz 

The boundary conditions are 
z = 0: « = w = 0, υ = ilr 
ζ => oo: u => 0, υ = ΓΥ. 

(97) 

When we introduce the similarity variables 
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1/2 

• > « s ( f ) , » = ( ν Ω Γ ) , ( ? ) . 

equations (93)-{97) give 

2 2 2 Ιβ 
-gh' + g'h = g", 

ζ = 0: h = h' = 0, g = \, 

£=>°°: A'=>0, g: 
Ω 

Let us look for solutions of the form 

s = i + |gi I « i; 
we have, from equation (100), that 

\h\ <\. 

When we use (102) and (103) and linearize, equations (99)—(101) give 

C = 0: A = A' = g ,=0 , 

£=>°°: A'=>0, g, => — - 1 , 
* Ω 

(98) 

(99) 

(100) 

(101) 

(102) 

(103) 

(104) 

(105) 

(106) 

from which 

g, = £ - ^ ( l - e - f cosf), 

A' = 2 ^ - ^ e - f sinf. 
Ω * 

(107) 

Note from (107) that there is a net drift of fluid in the radial direction inwards 
when Γ > Ω, and vice versa. Such a drift leads to an axial flow toward the disk if 
Γ < Ω and away from it if Γ > Ω, as surmised before.1 

In general, equations (99) and (100) in conjunction with the boundary 
conditions (101) may not have a solution (Evans) or have infinitely many 
solutions (Zandbergen and Dijkstra). 

'Related to this problem is the so-called spin-up problem where an impulsive change in the 
rotation rate of a container of fluid leads to a boundary-layer-induced acceleration and 
inviscid pumping of the interior flow until a new steady state is attained. 
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Shock Structure: Becker's Solution 

In Section 3.3, the theory of shock waves was given entirely in terms of an 
inviscid fluid. In a real fluid, as discussed in Section 3.7, however, the shock 
discontinuity gets spread out due to viscous and heat-conducting effects. Indeed, it 
turns out that the equations of conservation of mass, momentum, and energy for a 
perfect Newtonian gas (i.e., viscosity coefficient μ = constant) of Prandtl number 
Pr =μ Cp J Κ = 3/4 (Κ being the thermal conductivity) admit a smooth steady 
one-dimensional solution describing a shock transition in which the flow 
properties tend to the values corresponding to the uniform state at the limits 
χ => ±°o. 

The conservation equations for a one-dimensional flow are 

where is the stagnation enthalpy fo the fluid. We have from equations (108)-

£ ( p . ) - 0 . (108) 

(109) 

(110) 
pu = Q = const., ( H I ) 

— = Ρ = const., (112) 

(113) 

When we use equation (111), equations (112) and (113) become 

(114) 

(115) 

If μΟρ/Κ = 3/4, then (115) becomes 

(116) 

from which, on noting that 
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•loo : —(h + -uA=^0, 
dx{ 2 J 

we obtain 

i. 1 2 E 

h + -u2 =—. 
2 Q 

When we use (117), (114) becomes 

4 du „ Λ ' y + 1 γ-l Å Ιλ 

l u + — 
2y γ Q u 

Noting that 

we can write (115) as 

where 

• du 
JC = > ± ° ° : — => 0, 

4 du = γ + l («,-«)(«-«,) 
3 <it 2χ u 

χ = > ± ° ° : U = > K , ; 

On integration, (119) gives 

(m, + « 2 ) - ( « , - u2) tan A χ — -
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which is sketched in Figure 4.6. This solution describes a continuous variation 
between two asymptotic states 

χ => <*> : u => u2. J 

Couette Flow of a Gas 
Consider the plane flow of a viscous, heat-conducting gas between two infinite 
plates at y = 0,L, with the plate at y = 0 at rest and with the plate at y = L 
moving with a constant velocity (/, in its own plane. 

Nondimensionalize the various flow variables as follows 

r = - , p ' = -iL = _ e _ μ'=* 
7| Pi PJRTx 

(121) 

where the subscript 1 denotes the conditions at the wall at y - L. 

The equations governing the flow are 

(122) 

(123) 

(124) 

(125) 

where Μ2=υ2/γûΤχ. 
From equation (122), one obtains 

(126) 
from equation (124), one obtains 

(127) 

and from equation (123), one obtains 
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ray_ 
J ì' 

When one uses equation (128), equation (125) gives 

n' = -2-i—. (128) 
dy' 

from which 

Pr dy' y r ' 2 dy' μ' 

£ + ί Τ ζ ] ) Ì , ν ! = β | ^ + β ! . (,30, 
r 0 " 

When one uses the boundary conditions 

/ = 0: *' = *;," 
/ = 1: *' = *,'. 

equation (130) gives 

2 
{K-K)+{^-MtPr 

(131) 

(132) 

EXERCISES 

Calculate the steady flow between two infinitely long rotating circular 
cylinders of radii r,, r2 and angular speeds ω,, ω 2 . 

Consider a fluid bounded by two rigid boundaries at y = 0,d, and initially at 
rest. The lower plate is suddenly brought to the steady velocity U in its own 
plane, the upper plate being held stationary. Calculate the subsequent 
motion of the fluid. 

Calculate the motion generated from rest in the fluid contained within a 
circular cylinder of radius a, the cylinder being rotated with steady angular 
velocity Ω. 

4 .2. Flows at Low Reynolds Numbers 

Motion of a body through a fluid at low Reynolds numbers, called creeping flow, 
is of relevance in many physical contexts, such as the settling of sediment in a 
liquid, and the fall of mist droplets in air. After all, high-school experiments use 
the Stokes formula to calculate the drag of an oil drop. 
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Stokes' Flow Past a Rigid Sphere 

Consider a uniform flow -Uix past a rigid sphere of radius a centered at the 
origin. This problem is of interest in several physical contexts - e.g., the fall of 
mist droplets in air. Choose a coordinate system relative to which the fluid at 

Dimensional Analysis 
The Navier-Stokes equations for incompressible, viscous flows are 

ν · υ = 0, (1) 

_ = __V> + v v V (2) 

The boundary conditions being that at a solid surface with which the fluid is in 
contact, there be a zero slip-velocity of the fluid relative to the solid surface. 

Using the free-stream velocity U and a characteristic length L of the body 
placed in the flow, nondimensionalize the various flow variables as follows: 

. χ . tU . ν . ( p - p . ) L 
L L L μΙΙ 

where ρ„ is the free-steam pressure. Equations (1) and (2) then become 

Vv'=0, (4a) 

* f | V = - V y + V ' V , (5) 

where R E is the Reynolds number: 

Note from equation (5) that one has a low-Reynolds-number flow if the flow 
is very slow, if the body is very small, or if the fluid is very viscous. When 
R E < 1 the viscous effects will dominate the convective effects, at least in the 
neighborhood of the body. On the mathematical side, note that such a limit also 
improves the solvability of the system (4) and (5), through the elimination of the 
nonlinear convective terms. Thus, in the limit R E =>0, equations (4) and (5) 
describing the Stokes' flow become 

V - v " = 0 , (4a) 

V y = V V , (6a) 

and reverting to dimensional variables, we obtain 

V •!> = (), (4b) 

Vp = / i W (6b) 
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V V Ρ 
and vanishes at infinity, it can be represented as a series of spherical solid 
harmonics of negative degree in r. Next, the only term of this series that is 
compatible with form (p-ñ„)/ì = UxF(r2/a2) is of degree 2 (which 
corresponds to a dipole), so that 

^ = C^-. (9) 
ì r3 

Further, noting from equation (6b) that the vorticity i l = V χ υ satisfies 

V 2 i l = 0 (10) 
and vanishes at infinity, and from equation (6b) that 

íñ = ìíχÙ, (11) 

we obtain 

i l = C ^ ± . (12) 
r 

Using a spherical-polar coordinate system (γ,Θ,Φ) with the polar axis along 
the x-axis, we have 

r dr r do 

where ν = (i>r, υ β , υφ). 

Introducing the stream function Ψ for the axisymmetric flow under 
consideration, 

\ ΘΨ 1 3Ψ 
V > = 2 • Q - w

 υâ= (14) 
r sin θ d0 r sin θ dr 

and using (12), we obtain from (13) 

infinity is at rest and the origin of which instantaneously coincides with the 
center of the sphere; one then has the following boundary conditions 

ν = Uis at the body surface (7) 

ν => 0, ρ - p„ => 0 at infinity. 

Note that ν and (ρ-ρ„)/μ must be symmetrical about the x-axis and that 

ν lies in a plane through the x-axis. It follows that (ρ-ρ_)/ì must be of the 

form UxF[r2/a2), where r = |x | . Noting from equations (4b) and (6b) that 

(p~P-)/P satisfies 

" 1 = 0, (8) 
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When we put 

equation (15) gives 

from which 
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dly¥ sing d ( 1 9Ψ}_ ^υýη2θ 
dr2 + * --' C r2 9θ{ýηθ 9Θ 

Ψ = / ( r ) • ( / s in 2 0 , 

d2f 2 / = C 
dr2 r2 r ' 

f(r) = -Cr + - + Br2. 

From (14) and (16), we then obtain 

\rdr) r2\r2 r 

The boundary conditions (7) give 
r = a: Vr = U cos θ 

υβ = -U sin0 
r=>oo; υ Γ ,υ β =>0. 

Equations (18H20) give 
-3 Ca2 „ 3a 

B = 0, A = 
2 2 

C = -

Thus, 

from which 

<F = Ur2 sin2 θ 
r3a_^_ 

4r 4r 3 

υ =-2 

υΛ=-

(Ua3 3ί!αΛ 

4r 3 4r 
COS0, 

Ua3 3Ua 
4r 3 4r 

s i n 0 . 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

The streamline pattern given by (22) is shown in Figure 4.7. The steamlines 
are symmetric about the equatorial plane normal to the x-axis. 

The resultant force acting on the surface of the sphere is, by symmetry, in the 
^-direction and is given by 

F = 2na2 j" r„s in0 de, (24) 

(15) 

(16) 
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Figure 4.7. Stokes' flow past a sphere. 

where 
r„ = Tr r cos θ - τΓβ sin θ 

Figure 4.8. Drag on a sphere at low Reynolds numbers. Experimental points 
from Liebster (1927) (x) and Schmiedel (1928) (·) , both using the falling 
sphere method. The line represents equation (26), plotted by Tritton (1988). 
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When we use (9), (21), (23), and (25), (24) gives 

sin3f? Üθ = 6πìαυ. (26) 

Figure 4.8 shows a comparison of (26) with experimental observations. 
Departures from Stokes' law (26) are observed to occur when the Reynolds 
number becomes high. 

An obvious application of Stokes' formula (26) is in determining the 
coefficient of viscosity by measuring the drag of small spheres dropped in the 
fluid. Millikan's famous oil drop experiment to determine the charge on an 
electron was a case in point. 

Stokes' Flow Past a Spherical Drop 
Consider a spherical drop of radius a translating with velocity U in a fluid. We 
suppose that the two fluids are immiscible and that the surface tension at the 
interface is sufficiently strong to keep the drop approximately spherical against 
the deforming tendencies of viscous forces. Let the motion both outside and inside 
the drop occur at small Reynolds number. One determines the solution for the 
flow outside the drop as in the previous section except that the boundary 
conditions are now somewhat different. One has inside the drop (denoted by 
circumflex) 

V à = 0 , (27) 

Vp = ^VxSl, (28) 

V 2 p = 0, V20=0. (29) 
The boundary conditions are now 

ν and (p- p„) finite inside the drop, (30) 

r = a : ην = nv = n-V, (31) 

it xv -h x v , (32) 

Þ χ ( Þ · τ ) = π χ ( Þ · τ ) , (33) 

where h denotes the unit normal to the drop. Equation (31) and (32) imply that 
there can be no relative motion of the two fluids at the interface. Equation (33) 
sets forth the fact that the tangential stresses at the interface on the two sides are 
equal and opposite. 

We obtain from equations (28) and (29) 

^ ^ - = CUxy il=--CUxx. (34) 
U 2 

Introducing the stream function Ψ, 
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from which 

/ = — Cr*+- + Br2. 
20 r 

(37) 

Removal of the singularity at r = 0 requires A = 0. Using (35) and (37), we 
then obtain from the kinematic condition (31) 

- 1 1 - , 
B = - - — Ca2. 

2 20 
Thus, 

v=u-fiC[u{a2-2r2) + x(U-x)]. 

(38) 

(39) 

When we use (16), (19), (22), and (39), (32) gives 

C a = — Ca + a. 
2 10 

Next, the ith component of the force per unit area exerted on the drop at the 
position χ = an is given by 

(40) 

-Ρδ„+μ 
v dxj dxt 

. . . / " 6 / ' 10/ 
-ρη,+μη,υ-ηΐ ~ — + —2 j -

r r r 

-ñ0 + 3μ 1 3 
a ν a 

U f C 
+ 3 ì - ^ 1 - -

a V a 

Then, (33) gives 

^-(a-C) = —fiaC. 
2 v ; 1 0 ^ 

From (40) and (42), we obtain 

c= — 2 μ+μ α' μ+μ 

The drag force exerted on the drop by the external flow is then given by 

(41) 

(42) 

(43) 

Ψ = }{r)Usin2 θ, 

and proceeding as in the previous section, we obtain 

(35) 

(36) 
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δπαìû, 

0" 

Figure 4.9. Variation of drag force with viscosity of the fluid in the drop. 

= -4πìί/,σ = -6παìί/, 1 + (ì/ì) 
(44) 

The dependence of | F, | on (ì/ì) is sketched in Figure 4.9. Note that the case 
of the flow past a rigid sphere is recovered in the limit ì/ì => 0. The case of a 
gas bubble moving through the liquid corresponds to ì/ì => °°. 

Stokes' Flow Past a Rigid Circular Cylinder 
Consider a circular cylinder of radius a moving with a velocity U in the x-
direction normal to its axis in a fluid. The flow is now two-dimensional. Using 
the cylindrical-polar coordinates (r, Θ), one has, like in equations (9) and (12), 

ì r r 

Then, 

Ω, = 
dr rdQ 

(45) 

(46) 

gives upon using 
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υ'~θ' "'"IT' (4?) 

f = / ( r ) t/sinfl (48) 

the following equation for f(r), 

from which 
dr2 r dr r2 

2 r 
The boundary conditions are 

(49) 

f{r) = --Cr\nr + Ar + - . (50) 

r = a: ^ = 1, = 1, (51) 
r ar 

r=>°°: / = > 0 . (52) 
r 

When one uses (50), (51) requires 

A = l + —+ —lna, B = - — . (53) 
4 2 4 

But, when one uses (53) in (50), (52) shows that no choice of C satisfies the 
upstream-infinity condition. Thus the above solution is not valid at infinity. 
That is, for two-dimensional flow of an unbounded fluid past a body, solutions of 
the Stokes equations satisfying the proper conditions do not exist; this is called 
Stokes' paradox. This is simply due to the fact that the Stokes approximation (of 
ignoring the convective terms in equation (5)) is not valid uniformly in space. 
There is thus a region in which inertia forces are significant, and this region gets 
closer to the cylinder as the Reynolds number increases. The remedy for this is to 
go back and include the convective terms in equation (5) in at least some 
approximate form; one then obtains the so-called Oseen flow. 

Oseen's Flow Past a Rigid Sphere 
The Oseen equations are obtained by linearizing the Navier-Stokes equations (1) 
and (2) about the free-stream velocity say υ_ = Uix. (By constrast, the Stokes 
equations can be viewed as a linearization about zero velocity.) Therefore, Oseen's 
equations are more accurate than Stokes' equations in the region away from the 
sphere where the flow velocity is close to the free-stream velocity. (Stokes' 
equations are accurate on the region near the sphere where the flow velocity is 
close to zero.) Thus, 

V υ = 0, (54) 
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When we put 

equations (57) and (59) give 

where 

from which 

(58) 

The boundary conditions are 

r = a: v = Uix, 1 
r => oo; υ => 0, ρ -/>_=> O.J 

We have from equations (56) and (57) 

V 2 p = 0. (59) 

v = -V0 + v', (60) 

V > = 0, (61) 

V2+2k~\v' = 0, (62) 
dx J 

2v 

Using the axisymmetric nature of the flow, we may write 

v' = Vx + 2kXix, (63) 

so that equation (62) gives 

ν 2 * = - 2 * ^ - , (64) 
dx 

X = -eHr-x). (65) 
r 

Let us now obtain an approximate solution by expanding φ and χ in series in 
descending powers of r. Thus we have from (65) 

dv dv 1 , 
-d7 + U ^ = - ^ + v V v - <55) 

Consider a sphere moving through a fluid with a velocity Uix, and in the 
frame of reference moving with the body the flow is steady. One then has 

V v = 0, (56) 

-U^- = --Vp + vW2v. (57) 
dx ρ 
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Figure 4.10. Oseen's flow past a sphere. 

jr = C ^ + t-y+-J, (66) 
and outside the sphere we obtain 

0 = ^ + Λ/>(cos0) + ^ P 2 ( c o s 0 ) + --- (67) 
r r r 

where the polar axis is taken along the direction of motion of the sphere, and 

a x 

cos θ = — 
r 

and P„ (cos Θ) is Legendre's polynomial of order n. 

Using (60), (63), (66), and (67) in (58), we obtain for ka = Ua/2v « 1 

C = - ^ a v = Ao, Al=-Uai. (68) 
2 4 

Noting 

u r = - - ^ + ^ - 2 ^ c o s 6 » , 
dr dr 

â 
Ψ = r2 j vr sin θ Üθ (69) 

ο 
and using (65), (67), and (68), we obtain 

ί/α3 sin2 θ 3av 
Ψ = -̂—— + —^—(l — cos θ)[\ - e-*««°">]. (70) 
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Near the sphere, where kr < 1, (70) gives 

Ψ = + r 

4 I 3r J 
(71) 

which agrees with the Stokes solution (22). 
The streamline pattern given by (70) is sketched in Figure 4.10. Note that the 

streamlines are no longer symmetrical about the plane Θ = π/2. The flow tends 
to become radial far from the sphere as if it were created by a source of fluid at the 
sphere, except within a wake directly behind the sphere. Note that when kr> 1 
the flow has different forms depending on whether as (1 + cos θ) is small or large 
compared with unity. For the latter case, we obtain from (70), 

which describes the radial flow from a source at the origin of strength 3πα2 U/k. 
For the former case (i.e., within the wake), we obtain from (70) 

Far from the sphere, the vorticity is zero in the source-flow region and is 
confined to the wake, whereas in the Stokes' approximation the vorticity diffuses 
out in all directions from the sphere. 

Oseen's Approximation for Periodically Oscillating Wakes 
Periodic oscillating flows are well described by von Karman's classical theory of 
vortex sheets (see Section 2.4). In this theory, the motion of discrete vortices in a 
perfect fluid is considered. At considerable distances downstream, viscous forces 
must have had a significant influence on the vortices, so that Oseen's 
approximation may be applied. 

Consider a small disturbance superposed on a uniform stream with velocity U. 
The linearized vorticity equation is 

Ψ-Ua2 — (1-cos 
4 * v (72) 

(73) 

9ζ ,,9ζ ( d2 d2 

—2- + U—2. = v 1 

dt dx ydx2 dy2 

(74) 

where 

; = {dvldx)-{duldy). 

Seeking solutions of the form 
,ιý» (75) 

we obtain from equation (75) 



Flows at Low Reynolds Numbers 

{dx2+'dy2 

When we put 

where 

equation (76) gives 

where 

a = -
U_ 
2v' 

> 2 + < ? y 2 

« = 0. 

it2 = α 2 ( ΐ + 8πι^), j8 = 
2πί/ 2 

Thus, 

*(•*· y) = £ Κ c o s Λ θ + β " s i n η θ ) K * ( k r )< 

where 

347 

(78) 

(79) 

χ = r cos Θ, y = r sin θ; 

and (£r) is the modified Bessel function, with 

kr^~: Kn{kr)~^-e-kr. 
V 2kr 

When we use (77) and (79), (75) gives 

ζ (χ, y, ί) = JT A", (kr) [A„ cos ηβ + Bn sin ηθ], (80) 

from which 

V 2kr „_0 

This vorticity distribution vanishes very fast exponentially with increasing 
distance except when the real part of (ax - kr) is small. Now, 

Re(ax-kr) ~ a(x-r) = or(cos#- l)r 

and is finite at large distances only for a parabolic region where θ is of the order 
of ( l /Vr) - i.e., the wake. In this region, one may make the approximation 

(76) 

(77) 

< d2 . ^ 
1 

J 
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r~x, 0 = i a r ( l - c o s 0 ) = - i - , r/ = y J — , 
χ 2 V 2vx i/ 

so that (81) becomes 

exp ν 2 , 

V7 exp 101 t 
U 

A + 

Equation (82) has a symmetrical part 

ζ, = -τ e x P 
f It} 

and an antisymmetrical part 

Β ζα = - η exp 
( η2Λ 

2 J 

exp 

exp 

ιω\ t 

ΐβ)Ι t 

(82) 

We shall now discuss various flows represented by the superposition of such 
solutions. 

1. For ω = 0 the symmetrical part represents a steady shear flow with velocity 
difference 

Au —.ÌΉττ A 

and 
Av < U. 

2. For ω = 0 the antisymmetrical part represents the wake solution with 
velocity distribution 

B' 
u = expl B' = B 

3. A double row of vortices arranged like the von Karman vortex sheet may be 
represented by 

r A 

ζ = - 7 = exp 
sx 
º~χ exp 

l + A sintw t 
U 

1 - A sinuJ / 
U 

where 

n0 = y0 

u 
2vx 
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For small values of x, the vortices are nearly discrete, and are located on the lines 
y = ±y0. The initial spacing between the two rows is 

1. Show that in a slow, steady, two-dimensional flow of an incompressible 
viscous fluid, the stream function Ψ satisfies the biharmonic equation: 

2. Calculate the terminal velocity which a sphere would have when falling 
freely under gravity through a field. 

3. Consider the low Reynolds number flow of a fluid between two parallel flat 
plates which are fixed at a small distance h apart (Hele-Shaw flow). Show 
that this flow is governed, to a leading approximation, by the following 
equations: 

Downstream it is 

Exercise 

νν=ο. 
Further, deduce that χφ,γφ and (x2 +yJJ0 are solutions of this equatioi 

provided that φ(χ,γ) is a harmonic function. 

η 

du | dv | dm 
dx dy dz 

with 
z = 0 and h: u,v,m = 0. 

Hence, show that 

where 
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This leads to the mean velocity in the plane of the Hele-Shaw cell given by 

which predicts that the mean velocity field for a Hele-Shaw flow 
corresponds to a potential flow in the two dimensions with the "mean" 
velocity potential given by -A 3 p/l2v satisfying the Laplace equation! 

For flows past streamlined bodies at large Reynolds numbers (i.e., in fluids of 
small viscosity), Prandtl proposed that one must recognize the effects of viscosity 
only in a thin layer-boundary layer adjacent to the body and that the rest of the 
flow may be considered inviscid. As a first approximtion, the inviscid-flow 
equations are solved with appropriate boundary conditions, ignoring the presence 
of the boundary layer. However, in general, the inviscid flow will not satisfy the 
condition of the no-slip of the fluid at the body, and it is necessary to introduce a 
boundary layer between the inviscid flow and the body to adjust the inviscid 
solution toward satisfying this condition on the body. Within the boundary layer, 
the flow is not irrotational since vorticity is generated along the surface of the 
body and is diffused across and convected along the boundary layer. Besides, the 
presence of the boundary layer helps one to explain the very common 
phenomenon of separation of flow at the rear of many bodies placed in the flow. 

Prandtl's Boundary-Layer Concept 
Certain qualitative features of boundary layers may be explained from 
considerations of the relative importance of convection and diffusion of vorticity 
generated at the surface of a body placed in a flow with velocity U. The 
mechanism for the generation of a sheet of concentrated vorticity at the surface of 
a body is provided by the no-slip condition at the body. This vorticity is 
convected downstream with a velocity of 0((/), and the problem of flow due to a 
suddenly accelerated plane (Section 4.1) showed that this vorticity will diffuse 
outward with an effective velocity -Jvft. One may then expect that there will be 
an effective region of influence of vorticity called the boundary layer similar to 
the Mach cone in inviscid supersonic flows. The width of this region is 
approximately given by 

4.3. Flows at High Reynolds Numbers 
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or 

where 

and L is a characteristic length of body. Thus, for R E > 1, the convective effects 
on the vorticity outweigh the diffusive effects on the latter, and consequently the 
vorticity layer is very thin relative to a typical dimension of the body. Such a 
layer is then called a boundary layer. 

Downstream of the body the vorticity which has been carried by convection is 
essentially confined to a region called the wake, which at a distance d far 
downstream from the body has a width of 0(vd/U). Outside the wake and the 
vorticity layer near the body, the flow is essentially irrotational. Note that the 
boundary layer thickness δ increases as the square root of the distance from the 
leading edge of the plate because, as flow occurs past the plate, more and more 
fluid is retarded, besides there is no flow velocity component convecting vorticity 
toward the plate to counter diffusion of vorticity from it. 

Prandtl's boundary-layer theory can be embedded in a systematic scheme of 
successive approximations via the method of matched asymptotic expansions. 
However, this solution, which is represented by an infinite series in powers of 
R~1/2 (RE being the Reynolds number), turns out to be asymptotic. 

The Method of Matched Asymptotic Expansions 
In cases where a small parameter multiplies the highest derivative in a differential 
equation there occurs a sharp change in the dependent variable in a certain region 
of the domain of the independent variable. In constructing a solution to the 
differential equaiton through uniformly valid expansions, one characterizes the 
sharp changes by a modified scale for the independent variable that is different 
from the scale characterizing the behavior of the dependent variable outside the 
boundary-layer regions. In other words, one represents the solution by two 
different asymptotic expansions using the independent variables χ and χ/ε, say; 
this is the method of matched asymptotic expansions. Since they are different 
asymptotic representations of the same function, they should be related to each 
other in a rational manner; this leads to the asymptotic matching principle (the 
latter makes also the two representations completely determinate). 

Consider the problem 
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-l±Vl-4e 
12 2 ε 

Equation (2) may be approximated by 

y = be1-'+(a-be)e"{'/e)+0^), (3) 

a form which is uniformly valid. Note that this expansion cannot be obtained 
keeping either χ or χ/ε fixed. In the former case, we obtain 

y ( 0 ) = be1-" +0(ε) , (4) 

which is not valid in the boundary layer near χ = 0 since 

ym{0) = be*a. 

In the latter case, we obtain 

y{i)(\) = be + {a-be)e-"e +0(e), (5) 

which is not valid as χ => 1 since 

y{i)(\) = be*b; 

y, y ( 0 ) , and y w are sketched in Figure 4.11. 

This suggests that we represent the solution by two different asymptotic 
expansions using the variables χ and χ/ε. 

Thus, we seek an outer expansion 

^°\χ;ε) = Õε^(χ) + 0{εÍ), (6) 
/i=0 

where in accordance with the outer limit process we have 

y(0)-Σε^(χ) 
χ fixed 

Substituting (6) in equation (1), and equating the coefficients of equal powers 
of ε, we obtain 

£y" + / + y = 0, o<x<l, ε<\, 
χ = 0: y = a, 

x = l: y = b, (1) 

the exact solution of which is 
(ae'> -b)e''x +(b-ae'')e''x 

>-- (,"-<') ® 
where 
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Figure 4.11. The inner, outer and composite solutions. 

> , ( W = - y o 0 ) etc. (7) 

Notice that since a small parameter ε multiplies the highest derivative in 
equation (1), a regular perturbation scheme, such as (6), misses that derivative in 
the first approximation so that the order of the differential equation (1) is reduced. 
Therefore, the system (7) cannot, in general, take on both of the boundary 
conditions, and one of these boundary conditions, y(0) = a, should be dropped. 
This means that the outer solution (6) is valid everywhere except in the region 
χ = 0(e), and we have 

*(0)(i)=o, etc. 
Thus, we obtain 

(o) _ = be' 

y[0)=b(l-x)e1-', etc., 

so that 

y ( 0 ) = f r [ l + e ( l - x ) ] βι-χ+θ(ε2). 

(8) 

(9) 

(10) 

For small ε this solution is close to the exact solution (3) everywhere, except in 
a small interval at χ = 0, where the exact solution (3) changes rapidly (see Figure 
4.11) in order to retrieve the boundary condition there which is about to be lost. 

In order to determine an expansion valid in the boundary layer in χ = 0(ε), 
one magnifies the independent variable as 
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ξ = £ . (Π) 
Å 

so that the size of the boundary-layer region then remains independent of ε as 
ε => 0 and the width of the boundary-layer region becomes of order unity. This 
artifice leads to the retention of the highest derivative in equation (1) as ε => 0, 
which is essential to represent the rapidly varying behavior of the solution in the 
boundary layer. When we use (11), equation (1) becomes 

d2y dy 

Now, let us seek an inner expansion, 

y w ( e i ; e ) = l e"y i? ( i ) + 0(e*). (13) 

where, in accordance with the inner limit process, we have 

> - ( * ) - j £ ? — * i = — · ( l 4 ) 

ί fixed 

Substituting (13) in equation (12) and equating the coefficients of equal powers of 
ε, we obtain 

d2yf . dtf 
Üξ2 Üξ υ' 

d ? * * - * ' CtC' ( 1 5 ) 

Noting that the inner solution is valid only in the region χ = 0(ε), we have 

yo"(0) = a, 

y,(i)(0) = 0, etc. (16) 

Thus, we have 

y « = f l - A , ( l - e - 4 ) , 

> , ( ' ) = Α 1 ( ΐ - β - ί ) - [ α - Λ 0 ( ΐ + ί- 4 )]ξ, etc., (17) 

so that 

y( i ) = a - A,(l - ) + ε\λχ (l - ) - [a - \(\ + â'ξ)} ξ] + è(ε 2 ) . (18) 

Next, in order to relate the outer solution (10) and the inner solution (18) to 
each other, we presuppose the existence of an overlapping region where the two 
expansions are valid. One version of the asymptotic matching principle, due to 
Shivamoggi, states 
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lim y ( 0 ) = lim y{", 

355 

where the left-hand side, viz., the inner limit of the outer expansion, is 
essentially represented by a formal Laurent's series about the inner boundary. 
Thus, in the neighborhood of χ = 0, we write 

/ ) ( ^ = y°)(0) + xy( 0 ) '(0) + 0(jc2) 

or 

(Ο)/ ;y™(0) + yi»(0) An 
and, written in terms of the inner variable ξ, 

y ( 0 ) (x) = y<°> (0) + ε[&<0 ) ' (0) + y , » ] + θ (ε 2 ) . (20) 

Formally, this asymptotic matching principle may be enunciated as follows 

f The η - term formal Laurent's] 
series expansion of the outer 

-j expansion about the inner 
boundary written in terms of 
the inner variable 

The η - term formal outer | 
limit of the inner expansion/ 

Using (10) and (18) in (19), we obtain 

be + ε[be-beξ] + 0(ε2) = (a-\) + ε[Al-{a-Ao}ξ] + 0(ε2), 

from which we have 

Aq = a- be, AT =be, 
so that (18) becomes 

y ( , ) =be + {a-be)e-i 

+ ε{^(ΐ -e-^-lbe-ia-bey^ + O^2). 

(21) 

(22) 

Location and Nature of the Boundary Layers 
Consider an elliptic equation of the form 

d2u , d2u d2u 

where <xjp a, and b are constants, ε < 1, and 

— a^U + b^U 

dx dy 
(23) 

« 1 2 - « M « 2 2 < 0 . 

(19) 
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£[Al««+2A12M

i,+A22"^] = « T (26) 

where 

_ anb2 -2anab + aua2 

a2+b2 

anab + an(b2 -a2)-a22ab 

_ <xna +2al2ab + a22b 
a2+b2 

Now, in equation (26), let 

lim Ç(ξ,η;ε)=*α{0)(ξ), (27) 
r=»0 

ξ,η fixed 

Figure 4.12. The subcharacteristics. 

In order to determine a solution u(x,y;e) to equation (23) uniquely, it is 
sufficient to prescribe one boundary condition on u or its normal derivative, or a 
combination on a closed boundary. 

Consider an interior boundary-value problem with u = uB(xB) prescribed on a 
closed boundary curve (see Figure 4.12). 

The curves 

ξ = bx - ay = const. (24) 

are the characteristics of equation (23), in the limit ε => 0, and are called the sub-
characteristics of equation (1) (Section 3.5). 

When we introduce 

η = ax + by (25) 

and transform the independent variables x, y to ξ, η, equation (23) becomes 
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where the boundary condition on one side of the domain (see Figure 4.13) is 
sufficient to determine « ( 0 ) (^) uniquely in the whole domain, but Μ(0)(ξ) does 
not, in general, satisfy the boundary condition on the other side of the domain, so 
that one may expect a boundary layer to arise there. In order to study the latter 
region, we introduce 

η = ^ ψ (28) 
δ{ε) 

and an associated limit process ε => 0, η' ,ξ is held fixed. The retention of the 
highest-order derivatives in equation (26) then requires δ(ε) = ε ν 2 . When we seek 
an asymptotic solution of the form 

ιι'(ξ,η;ε) = α0{ξ,η) + 0(ε), (29) 

equation (26) gives, in the limit ε => 0, 

^ ) % · „ · = % - · (3°) 
where 

κ{ξ)^Αηη\ξ -2ΑηηΒξ+ A12. 

The elliptic nature of equation (26) ensures that κ(ξ) > 0. 

We obtain from equation (30) 

Ç0{ξ,η) = Α{ξ)+Β{ξ)εχρ (31) 

η = ηβ(ξ) 

Figure 4.13. Production of a boundary layer on u = «<„(£) (from Kevorkian and 
Cole, 1980). 
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(31) shows that the boundary layer occurs on the upper boundary. Matching (31) 
asymptotically to the interior solution Μ^0)(ξ), we obtain 

" ; ( ^ ) = « Ç £ ) ψ ^ ) - " Π φ * ρ | 

where the subscript U refers to values on η = ηΒ(ξ). 

This solution breaks down for the case when the boundary is a sub-
characteristic, say ξ = ξ1. We then introduce 

ξ ' = ^ - (32) 

and assume an asymptotic expansion 

^(ξ',η·ε) = ^(ξ\η) + 0(ε) (33) 

with an associated limit process ε => 0, ξ', η held fixed. Then equation (26) gives 

Since A,, >0, η is a time-like coordinate, which means that one requires the 
prescription 

ξ'=ξ]: « = « , ( γ / ) . (35) 

Further, the requirement of matching of u0 with the interior solution gives 

ξ · = > ~ : Ç0{ξ\Ç)^Á£\ξ). (36) 

Thus, the boundary layers arising on the subcharacteristics are characterized by a 
diffusion-like behavior, which we also saw in Section 3.4. 

For the problem of a viscous flow past a body, the boundary layer is along a 
streamline of the inviscid flow (since the body contour is such a streamline) - a 
subcharacteristic of the full problem. Now, the characteristic surfaces in general 
are the locus of possible discontinuities, and streamlines of an inviscid flow can 
support a discontinuity in vorticity. In the inviscid limit, in which the ambient 
flow is irrotational, such a discontinuity occurs at the surface of the body where 
the velocity component tangential to the body jumps so as to meet the no-slip 
condition at the surface of the body. 

Incompressible Flow Past a Flat Plate 
We consider here the problem of two-dimensional viscous incompressible flow 
past a flat plate. It turns out that the external inviscid flow is associated with an 
outer limit process and that the boundary layer is associated with an inner-limit 
process. The order of the differential equations is lowered in the outer limit, and 
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the boundary condition of no-slip of the flow at the plate is lost so that the 
problem under consideration is one of singular-perturbation type. 

The Outer Expansion 
Let χ measure the distance along the plate from the leading edge, and let y 
measure the distance normal to the plate. In terms of the stream function 
Ψ(χ,γ), the boundary-value problem in nondimensionalized flow variables is 

given by 

ø a ø ___ú_ν2 

dx dy RE 

V 2 f = 0, 

y = 0: Ψ = 0, Ψ, =0 , 0 < J C < 1 or « , 

upstream: Ψ ~ y, 

(37) 

(38) 

where 
pUL 

where U is the velocity of the fluid in the free stream. If the plate is semi-
infinite, then there is no natural length in the problem, and the apparent difficulty 
is circumvented by choosing some reference length L. 

Let us seek a straightforward asymptotic expansion, as R E => ° o , of the form 

V(x,y-,RE) = ¥?\x,y) + S?\RE)w[°\x,y)+ - (39) 
with the associated outer limit process R E => °°,x,y fixed. Then, equation (37) 
gives 

v>!0 )=o, 

from which 

If the oncoming stream is irrotational, equation (41) gives 

vV<0)=o 
with 

y = 0: ψι 

upstream: 

Note that the no-slip condition 

(0) = 0, 

Ψ (0) 

(40) 

(41) 

(42) 

(43) 

y = 0: <> = 0 

has been dropped since, in the outer limit, the order of the differential equation 
(37) has dropped. 
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(44) 

so that, in the limit R E » , a flat plate causes no disturbance. 

The Inner Expansion 

Because of the loss of the no-slip condition, the basic inviscid solution is not 
valid close to the flat plate. Therefore, assume an inner expansion valid within the 
boundary layer 

¥

{i){x,y;RE) = ̂ '(igtfV Y) + $ \ R E ) ¥ « \ X , K)+ · - (45) 

with the associated inner limit process R E => °°, χ, Y fixed, where 

y = 
5ί°(Λ)' 

Then, equation (37) gives 

Ψ ι τ dx W u dr Ø é ã À Ί™ Ìί')2(Λ). ΨλÕÕÕÕ' (46) 

so that the retention of the highest derivative [the term on the right-hand side in 
(46)] requires 

1 

Thus, 

and equation (46) becomes 

dY2 

Y = JR~E 

d) d in d ψ^=0 

or 

(47) 

(48) 

(49) 

(50) 

(51) 

from which we have 

where f(x) is proportional to the pressure gradient impressed on the plate by the 
inviscid flow. Note that this implies that the pressure is almost constant across 
the boundary layer. 

The asymptotic matching between the outer and the inner solutions gives 

ψ\ί\χ,οΟ)=γψ^(χ,0)+-, 

from which 

From (42) and (43), we obtain 
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^"(x , r ' ) = V27/ l (r ,) , η = 

(54) and (55) give 

/,"'+/,/>"= 0, (58) 

< ) ( * . - ) = < ) ( * . 0 ) . (52) 

which simply implies that the tangential velocity of the boundary-layer flow 
approaches the inviscid flow velocity ^ " ' ( J C . O ) at the outer edge of the boundary 
layer, y => °°. 

Using the outer inviscid solution, equation (51) becomes 

A + tf? - Vi? Ψ& = - < ( ^ 0 ) < ( * , 0 ) . (53) 

Notice that the boundary-layer equation is parabolic with χ acting as a time-
like variable, although the original Navier-Stokes equations were elliptic. This is 
in agreement with the result in the previous subsection that the boundary layers 
arising on the subcharacteristics are characterized by a diffusion-like behavior. 
This means that the upstream influence is lost so that the first-order boundary-
layer solution on a flat plate is not affected by the trailing edge (if the plate is 
finite) and the wake beyond. 

For a flat plate, equation (53) becomes 

ψ\γττ + Ψ^ψ\η-ψ^Ψ^ίτ=0, (54) 

with the boundary conditions being 

γ = 0: ^ ί ' ) = ° . Ψιί=0 for 0 < x < l o r ° ° , 

y=>oo: y/f> = l. 

For a finite flat plate, the boundary layers at the top and bottom surfaces merge 
at the trailing edge and leave the plate as a wake without separating, so that the 
boundary-layer approximation continues to be valid in the wake. One then needs 
only replace the no-slip-of-the-flow at y = 0 by a symmetry requirement of the 

form 

y = 0: V/f^=0, x>l. (56) 

Now, the problem given by (54) and (55) is invariant under the transformation 

ψ^^>εψ['\ x=>c2x, Y=*cY, 

so that it is possible to look for solutions in which y/\'\x,y occur in certain 
combinations - self-similar solutions. This also reduces equation (54) to an 
ordinary differential equation. Thus, when we put 



362 Dynamics of Viscous Fluid Flows 

n~~. / . ' - i . 1 ( 5 9 ) 

where the primes denote differentiation with respect to η. Note that 

« = /.'(»?). « = ( # , ' - / , ) . 
which implies that the velocity profile in the boundary layer is the same for all χ 
except for the change of scale. 

In order to find the asymptotic behavior of the solution of (58) and (59), note 
first that equation (58) admits solution of the form 

/ . - ^ . (60) 

This implies that equation (58) has the following scaling group 

/ . =α"7ι· η = αη- (61) 
We may therefore introduce the following canonical coordinates: 

dr) 

The transformation from (s,t) to ( / , η) is given differentially by 

ds _ dt] 
t + s η 

The transformation rules of the various derivatives are 
J2 , 

(62) 

(63) 

d A 2 1 dt . . 
drf if rf dsy ' 

6 5 , .dt 1 d2t . λ 2 1 (dtX, . ( M i 

drf η* η*κ 'ds η4 ds2K ' r\*Kds) Κ ' 

In terms of the new coordinates (s,t), the boundary-value problem (58) and 
(59) becomes 

/ v2 Λ / J dt ,\dt ,. .dt , 5 Γ _ . ,dt~\ n 

+ dsT + ('t + S\ls'+ )~ds" {'t + S)Ts+ l[~2t + (t + s)~dl = ' ( 6 5 ) 

ί = 0: ί = 0, Ι 
(66) 

J = > o o ; t => °°,J 

Near s = 0, equation (65) shows that 
/ = ks, (67) 

with 
(λ + ΐ ) 2 - 5 λ ( Λ + ΐ) + 6Λ =0 (68a) 

77 = 0: / 1 = 0 , / ; = 0 . 
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s = r , 3 . 

Hence, we have from (62) 

7?=>0: f,=T)\ 

Next, near s => °° , equation (65) shows that 
t = Xs, 

with 

- 2 λ + λ ( λ + ΐ) = 0 

or 

λ = ι. 

1.0 -
y--θ—^ Τ 

/' • 
.08 -

U 

û 0/ 
0.6 • Λ 

*a 
•ñ Ux 

0.4 
• 

Ã ·/ 
V 
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+1.1Χ106 
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Figure 4.14. Theoretical Blasius profile (Schlichting, 1972) and experimental 
confirmation (Dhawan, 1952), plotted by Tritton (1988). 

λ = 1,2; 

λ = 1 turns out to be the spurious root. For λ = 2, we obtain from (63) 
ds _ dr\ 
3s η 

from which we have 

(68b) 

(69) 

(70) 

(71) 

(72) 

(73a) 

(73b) 
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ds_ 
2s 

(74) 

(75) 

r/=>~: /, = 77- /3 , (76) 

as expected! Here, /J, is an arbitrary constant. 

Figure 4.14 shows the numerical solution of equation (58) due to Schlichting 
compared with the experimental data for several values of Reynolds numbers. The 
agreement between the two shows the validity of the various approximations and 
assumptions made in the boundary-layer theory. Besides, the velocity profile is 
seen to preserve its shape as one moves downstream despite the fact that the 
boundary layer thickness is changing. 
Flow Due to Displacement Thickness 
When we use (39), (44), (45), (47), (54), (71), and (76), the asymptotic matching 
gives 

1 

1 2x 

1 

Thus, 

•v/2K 

2x, 

β ^ + 

as Y=>°° 

as Y => oo. (77) 

y = 0 : *I0 )—A I2x, (78) 

so that ψ(0) = 0 aty = (l/V^T)/̂  V^JC , which implies that the presence of 
boundary layer endows certain thickness to the plate, which then displaces the 
outer inviscid flow like a solid parabola of nose radius β2 /RE . 

For a semi-infinite flat plate, we then have 

v > f = 0 (79) 

We then obtain from (63) 

from which we have 

Hence, we have from (62) 
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y = 0: y/f]=0, x<0, 
ψ[

2

0)=-β^, x>0, 

upstream: = ° ( v ) ' 

(80) 

which corresponds to linearized flow for a body given by y = /J, {^2x/RE j, and 
we have 

wT=^RE[42{x + iy)\ (81) 

Thus, even though the flow outside the wake and the boundary layer is 
essentially irrotational, it is not accurately described by the solution for potential 
flow past the given body. One has to take into account the apparent change of 
shape of the body caused by the displacement-thickness effect of the boundary 
layer. 

Note that the foregoing theory is not valid within a distance of order v/U from 
the leading edge of the plate where the thickness of the boundary layer is 
comparable with the distance from the leading edge. 

Separation of Flow in a Boundary Layer: Landau's Theory 
For streamlined bodies, one obtains a useful agreement between the inviscid 
theory and experimental results. Indeed, the mathematical results of irrotational 
flow associated with a rigid body moving in an otherwise stationary unbounded 
fluid may be applied directly to cases of flow at large Reynolds numbers in which 
a separation of flow does not occur in the boundary layer. For such flows, the 
boundary layers play a passive role by simply effecting a smooth transition 
between a given ambient flow and no-slip condition at the wall. However, 
sometimes the boundary layers can exert a controlling influence on the flow as a 
whole. One such case occurs with bodies of other shapes, especially those of 
blunt form such as cylinders, wherein an adverse pressure gradient arises (i.e., the 
pressure increases in the flow direction along the body). The retardation of the 
fluid particles under these circumstances leads to an abrupt thickening of the 
boundary layer which may then separate from the body. Mathematically, the only 
way in which this can happen is via a breakdown of the solution of the boundary-
layer equations.^ 

This may be seen mathematically by generalizing equation (58) to take account of a 
varying ambient velocity. If 9ø\]/dy t/(jr) as y => <*• and U(x) - x", then a self-similar 
solution can still exist, with equation (58) replaced by 

/Γ+("! + ! ) / , / , " = 2 m ( / , 2 - l ) . 
Numerical work (Schlichting, 1972) shows that this equation has a unique solution for 
m > 0 , two solutions (one of which represents reverse flow) for -0 .0904 < m < 0 , and no 

solution for m < - 0 . 0 9 0 4 . 
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Downstream of this point (or line) of breakaway, the original boundary-layer 
fluid passes over a region of recirculating flow. (Thus, separation involves the 
existence of a region in which the vorticity has opposite sign from that associated 
with the flow as a whole.) The point at which the thin boundary layer breaks 
away from the surface and which divides the region of downstream-directed flow 
from the region of recirculating flow is known as the separation point. (For two-
dimensional steady flow over fixed walls, the point of vanishing shear coincides 
with the point of separation; but this is not true for two-dimensional steady flow 
over moving walls, two-dimensional unsteady flow, and three-dimensional steady 
flow.) Two different types of post-separation behavior are known to exist. In 
some cases, the original boundary layer passes over the region of recirculating 
fluid and reattaches to the body at some point downstream, trapping a bubble of 
recirculating fluid beneath it. In other cases, the original boundary-layer never 
reattaches to the body but passes downstream, mixing with recirculating fluid, to 
form a wake. It is obvious that the recirculating flow alters the effective body 
shape and hence the inviscid ambient flow about the body so that separation is the 
controlling feature of many fluid flows. 

Consider a boundary layer on a plane wall. One has for the flow in the 
boundary layer, 

du du du 1 dp d2u 
— + « — + υ — = - f + v T T ' ( 8 2 ) 

dt dx dy ρ dx dy 
f i + ^ = 0. (83) 
dx dy 

The flow near separation is controlled by the pressure gradient. In fact, 
equations (82) and (83) show that in the presence of an adverse pressure gradient 
dp fax > 0 , we have 

dy2 
> 0 . (84) 

Consider now the flow upstream of the point at which du/dy \ = 0. Equation (84) 

then implies that the boundary-layer velocity profile must have an inflection 
point. 

As one approaches the point (or line) of separation, the flow moves away from 
the boundary and toward the interior of the fluid. Then the velocity component 
normal to the wall ceases to be small compared with the velocity component 
tangential to the wall and is now of at least of the same order of magnitude. This 
implies an essentially unlimited magnification of normal velocity component as 
one goes toward the interior of the fluid from the point of separation, i.e., 
dv/dy at the latter point. From equation (83), this means in turn that 
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When we use equations (86) and (87), equation (82) gives 

(87) 

! ^ - « „ ! £ + / φ = 0. (88) 
üψ dt üψ üψ 

from which 

β(ψ,Þ = Α(Þ[α0(ψ,Þ-υ,(Þ] (89) 

where 

t / , ( r ) = A . Λ ' dt 
When we use equation (89), equations (86) and (87) become 

Φ , , , , ) = Λ Μ Μ ! ^ Ç ^ + Α ( ν , , , ) + . . , <„, 

3 In fact, differentiating equations (82) and (83), one obtains, when y = 0 , 

d_ 

dx 
1 [in 
2{dy) 

ill 
dy'' 

If d'ujdy* is nonzero at the point of separation, the above equation implies 

dy 
-(x0-x) , 

in agreement with (85)! 

du/dx => °° at the same location. Thus, one may write in the neighborhood of 
the point of separation^ 

(x0 -x) = (u0 - uf f(y, t) + 0(u0 - uf, (85) 

where the subscript 0 denotes the conditions at the point of separation. 

Equivalently, one may write 

where 

X = x0(t)-x and Y = y-yQ(t). 

One then finds from equation (83) 
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Thus, at the point of separation we have 

y = 0: υ 0 = 0 , ^ = 0, u0 = Us. (92) 

Note that a point on the surface of the body, where du/dy = 0, corresponds to the 
point of separation. 

It should be noted that, for a satisfactory formulation of separated flows, one 
really needs an extension of classical boundary-layer theory incorporating the 
interaction between the ambient pressure gradient and the separating boundary 
layer. This is necessitated by the fact that the pressure gradient in the separated 
boundary layer is determined by the ambient flow which is, in turn, strongly 
influenced by the former. 

Boundary Layers in Compressible Flows 
The main differences between boundary layers in incompressible and compressible 
flows arise from thermal effects. In a compressible boundary layer flow the 
transport coefficients of the fluid (like viscosity and thermal conductivity) are 
functions of temperature Τ of the fluid which, because of viscous dissipation in 
the fluid and heat transport at the wall, vary considerably across the boundary 
layer. Consequently, the equations of motion and energy reduce to a pair of 
coupled equations whose solution is usually difficult. 

However, the effect of the rise in temperature of the fluid is to diminish the 
density ρ of the fluid and increase the viscosity μ. These lead to a thickening of 
the boundary layer and a decrease in the velocity gradient in the boundary layer. 
The skin friction, given by 

consequently, changes slowly. It is actually independent of the free-stream Mach 
number Λ/„ and the plate temperature, if μ ~T, and the free-stream speed 
U_ = const. 

Further, there is no qualitative difference between supersonic and subsonic 
boundary layers as such, because unlike the inviscid flows, which change 
dramatically as the speed of sound is surpassed, the pressure is not the dominant 
force controlling the flow in the boundary. Nonetheless, since the free-stream 
Mach number Λί_ also enters the problem through the boundary conditions, 
differences in the interaction of the two boundary layers with the exterior inviscid 
flow are likely to occur. For example, regions of influence and domains of 
dependence take effect again via the displacement effect. 

Consider a viscous, compressible, perfect gas flowing steadily past a body. 
The equations for the flow are 
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, du du^ 

, dv dv 

dx 3 dx 
du dv 

+ 2 ^ · — + ^ . 
dx dx dy 

Kdx + dy j 
2 dp 
3 dx 

'du_+dv 
Kdx dy, 

du dv 
{~dy~ + ~dx~ 

( J 2 

+μ 
J 

2 . Λ d2u cfu_ 
{dx2+dy2 (94) 

dy 3 dy(dx dy J 3 dy(dx dy > 

dy dy dx 
du dv 
~dy~ + lk) 

(d2v d2v\ 
+μ {dx2 +'dy2 (95) 

PC, 
dT dT 

u κ v-
dx 

+ υ ^ + -Ç K^- \ + — dy J dx dy dx { dx) dy 

P=pRT, 

where Φ is the viscous dissipation term, 

I dy) 
+ Φ, (96) 

(97) 

du\2 , (dv\ ^ 
Φ = 2ì1Ôχ) + ^[dy 

dv du\ 2 (du dv\ 
+ ì\Ôχ+^ - 3 μ dx dy 

R is the perfect-gas constant and Κ is the thermal conductivity of the fluid. 
Following a procedure like the one in Section 4.4, one arrives from (94)-(96) 

at the following equations for the flow in the boundary layer 
f 3 . . 3 . Λ !)_ η f du du) dp d 

u — + V— =—- +— 
dx dy J dx dy 

du 
dy)' 

o = 
dp 
dy' 

PC, +μ 
(du 

dy) 

(98) 

(99) 

.(100) udT + vdT]= dp_ + ±_ 
dx dy) dx dy 

Equations (93) and (97) remain unchanged. 
The boundary conditions at the body are 

y = 0: «,υ = 0, ^ = 0 or Τ = Τω 

dy 
depending on whether the wall is thermally insulated or isothermal. Next, as 
y=>°°, the boundary-layer solution must be matched to the inviscid-flow 
solution valid outside the boundary layer; i.e., 

y=>oo; u=>U(x), Γ=>7-_(χ), p=>p_{x). (102) 
Using (99), one obtains for the inviscid flow outside the boundary layer 

(101) 

(93) 
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dx dx 
If this inviscid flow is isoenergetic, then we have 

1 
CT+-U1 = const. Ρ - 2 

Crocco's Integral 
If 

then equation (100) becomes 

T = T{u), 

( du du] dp d 
u — + V— = M - T - + — 

dx dy J dx dy 
KT„ 4-

rdu^ 
udy) -{dy) 

(104) 

(105) 

(106) 

When we use equation (98), equation (106) becomes 

C Τ 
P " 

dp d 
— - +— 

dx dy 

( du\ 
{^dy 

= u± + T — 
dx " dy { 

from which 

dp - f ( v . ••)•>·. . ^y j dy 

dy) 

id λ2 

For the case of flow over a flat plate, we obtain 
dp 
dx 

and 

and equation (107) gives 

Equation (109) leads to 

Ρ, = — = 1, Κ 

Κ 

τ = — 
2C 

+ Au + B. 

If we consider an insulated wall, for which the boundary conditions are 

^ = 0: « = 0, ^ = 0 or ^ = 0, 
dy du 

(108) 

(109) 

(110) 

( H I ) 

(110) becomes 

(103) 
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T = T_ + U
2-u2 

2C„ 
(Ð2) 

On the other hand, if we consider an isothermal wall, for which the boundary 
conditions are 

y = o : « = 0, Τ=Τω, 
>>=>«>: u=>U, T=>T_ 

(110) becomes 

7Λ, - Τ - ML 
2C, 

± + T _JL_ 
U ω 2C„ 

(113) 

(114) 

Note from (114) that, depending upon 

7Λ. - T_ ML 
2C„ 

there is a heat transfer from the wall to the fluid or vice versa. 
Flow Past a Flat Plate: Howarth-Dorodnitsyn Transformation 
For the flow in a boundary layer on a flat plate, equations (93), (98), and (100) 
become 

< dx dy dy 
du 

dT dT u — + υ \ 1 d f 
11 

dT* _1_ P- 'du' 
, Pr dy Ρ I 

ò ,dyy 

When we introduce 

y.Sj-4,. 
ο 

X, = X, 

the stream-function relations obtained from equation (115) 

g i v e 

P« = P» 

3Ψ 

dy' dx 

dy, 
3Ψ ( Jdy, 
dx { dx 

When we use (118) and (120), equations (116) and (117) become 

ΒΨ d2xP dΨ d2yP 
dy, dx{dyt dxt dy, dyAp„ dy 

2 11/Λ μρ d2lF 

(115) 

(116) 

(117) 

(118) 

(119) 

(120) 

(121) 
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9Ψ dT 9Ψ dT 1 d {μρ ΘΤΛ 

dyx dx, dx, dy, Pr dy. 

When we put 

μρ 

ι J cPPl [ Ê ) 

ψ = Juhj;/{η), Τ = Τ{η), 
õ 

2v_x, 

equations (121) and (122) give 

r + PrfT' = -P, μρ 
,μ-Pj C, if')

1 

The boundary conditions (101) and (102) give 
ij = 0: / , / ' = 0, T=Tm, 
η =>°°: / ' = > 1 , Γ=>Γ_. 

If the fluid behaves like a perfect gas and 
μ~Τ, Pr = 1, Ta= const., 

then equations (124) and (125) become 
ff" + f"' = 0. 

T" + fT' = -(Y-l)MlT„(f")2 

where 

(122) 

(123) 

(124) 

(125) 

(126) 

(127) 

(128) 

(129) 

Note that equation (128) is the same as equation (58) for incompressible flows, 
and this establishes a correlation between the two boundary layers. 

Equation (129) may be integrated to give, on using equation (126), 

û = 1 + 2 z i M i ( l - / ' 2 ) + 
Τ 2

 K ' 

(T v - 1 N 

Τ 2 (WO- (130) 

Flow in a Mixing Layer Between Two Parallel Streams 
Consider the flow in a mixing layer between two parallel streams (see Figure 
4.15). 
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y 

ο χ 

Figure 4.15. The mixing layer between two streams. 

We adopt for this flow the boundary-layer model, so we make the following 
assumptions: 
1. The change of velocity from that of one stream to the other takes place in a 

mixing region of small thickness as compared with the length of mixing, 
2. The normal component of the velocity is small as compared with the 

component of velocity parallel to the main flow. 
Note that there are only two apparent boundary conditions: viz., 

The absence of a third boundary condition leads to the admission of an infinite 
number of solutions to the mixing layer. However, the difference between any 
two of the solutions is simply equivalent to a shift of the velocity profile as a 
whole in the y-direction. In other words, the location of the dividing streamline 

Consider the mixing flow for the case when i/, = U2. For this flow we have 

(131) 

remains indeterminate to O(\/T[R^\ HSRE => °°. 

dy dxdy dx dy2 ~ R E dy3 ' 
(132) 

When we put 

(133) 

where 

U = Ux+U2 

2 
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(134M136) give 
2/Γ'+77/,"=0, (138) 

7}=0: / , = 0 , 
7 7 = > ± « : / , ' = + ! 

from which we have 

0 

When we use (137) and (140), (133) gives 

£/,+£/2 

2 

(139) 

(140) 

(141) 

Geometrical Characteristics of the Mixing Flow 
The conservation of mass in the mixing layer (see Figure 4.15) gives 

X- )pudy = j[p{Uiyi - Vtx) + p{-U2y7 + V2x)], (142) 

where (U, V) are the velocity components in the (x,y)-directions, respectively. 

The momentum conservation gives 

i ]pu2dy = - VlX) + pU2(-U2y2 + V.x)]. (143) 

Multiply (142) by i/, and subtract from (143), so that 

and use (133), equation (134) gives 
ff" + 2f"' = 0. (134) 

The boundary conditions (131) give 
r j ^ i o o ; f' = l±X, (135) 

where 

λ = ^ « 1 . 
ul+u2 

Putting the dividing streamline arbitrarily at y = 0, one has 

r, = 0: / = 0. (136) 

When we seek solutions to (134)—(136) of the form 
/ = TJ + A / , + - , (137) 
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from which we have 

and 

2 
">2 

V2=j-[pmUiy2+!pj, (149) 

where 

^ 2 
m = — - . 

The transverse equilibrium of the mixing flow gives, on using (142) and 
(147), 

pV^t/.y, - Vxx) = -pV2(-U2y2 + V2x), (150) 

from which 
Vt=-V2. (151) 

When we use (147), (151) gives 
y, = -my2 (152) 

\pu(Ul-u)dy=p(Ul-U1)(-U1y2+V2x). (144) 
->'j 

Similarly, we have 
y, 

jpu(u-U2)dy=p(Ul-U2)(Ulyl-V1x). (145) 
-5Ί 

Now, noting that the momentum lost by one stream is equal to the 
momentum gained by the other, we have 

jpu(Ul-u)dy= jpu{u-U2)dy. (146) 
- λ -yi 

When we use (144) and (145), (146) gives 
-U2y2+V2x = Ulyl-Vlx. (147) 

When we use (147), (142) gives 

1 Λ Μ 
p(-U2y2 + V2x) = p(i/,y, - V,x) = -\pudy^—, (148) 
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\yA = m\yi\ 

or 

| y , | < | y 2 | if m<\. (153) 

Equation (153) shows that the mixing layer penetrates more into the lower-speed 
stream than it does into the higher-speed stream. If one assumes y = 0 to be the 
dividing streamline, (152) implies the two streams contribute equally to the total 
amount of mass flux through the mixing layer. 

Narrow Jets 
Another example wherein a boundary-layer type flow occurs is a narrow jet, in 
which the steep gradients of velocity originate at an orifice, with the total change 
of velocity across the layer being zero. Consider a steady, two-dimensional jet 
discharged from an orifice in the form of a long slit. The pressure in the 
surrounding, nearly stationary, fluid is uniform and one obtains 

du du _ ^ d2u 
dx dy dy1 

(154) 

The x-axis is taken along the axis of the jet. The force acting on the fluid at the 
origin shows up as flux of momentum across a surface surrounding the origin 
and, at a section χ = const., is given by 

F = p ju2 dy, (155) 

which is independent of χ because of the momentum conservation of the jet as a 
whole. This follows from the fact that, on using equation (154), we have 

dF . t du , r 

= -2p]u^dy + 2p 

du d2u 
dy 

-UV+V 
du_ 
dy 

= 0. 

Note, however, that the rate of efflux from the orifice, namely, 

d ~ — jpudy>0 

so that the amount of the fluid transported downstream by the jet increases with 
distance downstream. This is caused by the entrainment of the ambient fluid by 
the jet. 

When we introduce a stream function with the similarity form 

(156) 
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or 

P = ~. <? = - · (158) 

Thus, we have 

^ = 6v^ 3 / ( i7) , r\ = -^, (159) 

so 

u = (,νχ-^f, υ = 2νχ - 2 / 3 ( 2 /7 / ' - / ) (160) 

and equation (154) gives 

r + ljf' + lf'1 = 0 (161) 

with the boundary conditions and symmetry conditions 
r)=*±°o; f'=>0 (162) 

and 

/'(r?) = / ' ( -* . ) · (163) 
The solution of (160H162) is 

f = a tanh αη, (164) 

from which 

u = 6vx-V3a sech2 αη. (165) 

When we use (165), (155) becomes 

F = 36pv2a* Jsech4ct77i/77 = 48pv 2 a 3 . (166) 

It appears that a jet with an arbitrary initial velocity profile approaches 
asymptotically, as x=>°o, the similarity form (165). However, this form may 
not be observable because of instability of the jet flow. 

Wakes 
Wake refers to the region of vorticity on the downstream side of a body placed in 
an otherwise uniform flow. Although the velocity distribution in the wake is 
complicated near the body, for a steady flow far downstream the streamlines 
become nearly straight and parallel again, and a boundary-layer type flow prevails 
asymptotically. If we assume that the departures from the free-stream velocity U 
(taken in the x-direction) are small in this region, then for the asymptotic wake 
flow (i.e., as χ => °°) we have 

equations (154) and (155) give 
p + q = l 2p-q = 0 (157) 
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l / ~ (167) 
.du= dht 
dx V By2 

with the boundary conditions 

y=>±°°: u=>U. (168) 

We have from equations (167) and (168) 

Avx 

where 

QU ( "~2λ 

£ / , - " = > , exp (169) 

Q= j(U-u)dy = const. 

Note that the total drag on the body giving rise to the wake is related to this 
velocity defect, and for a nonlifting body moving steadily through the fluid, it is 
given by 

D = pUJ{U-u)dy = pUQ. (170) 

Periodic Boundary-Layer Flows 
In problems of unsteady motion of bodies through a fluid, viscous effects are 
generally limited to a thin boundary layer region only for small values of the time 
since the onset of motion. A low level of vorticity persists beyond the boundary 
layer, in general. 

For a two-dimensional boundary-layer flow in the x-direction past the plane 
y = 0, we have 

dx dy 

du du du dU r,dU d2u 
— + Μ — + υ — = — + (/—- + v — , (172) 
dt dx dy dt dx dy2 

where U(x,t) represents the ambient flow. If L denotes a representative length in 
the Λ-direction, {/_ represents the reference velocity at infinity, and Τ is a 
representative time interval, the validity of equations (171) and (172) requires 

or 
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This means that vorticity will be confined to a thin boundary layer only within a 
comparatively small time interval from the onset of motion. It does not imply 
the complete breakdown of the boundary-layer approximations at large T, but 
only that vorticity has diffused or has been convected beyond the boundary-layer 
region, where it is no longer negligible. 

Consider a periodic flow produced by the oscillations of an infinite plate 
parallel to itself in a fluid at rest at infinity. If the amplitude of the motion is 
assumed small, we may assume an expansion of the form 

u - un + εκ, + ε2κ, + · · · | 
\ ε<*\. (174) 

υ = ε υ 0 + ε υ, + ··· J 

In the frame of reference moving with the plate, we have 

U{x,t) = U0(x)e"". (175) 

Let us assume that du/dx ~ 0(ε). Then, equation (172) gives 

du0 d2u0 _ dU 
º)Ã~íº)γ~Ã~Ôί - - v _ r = ^ , ( 1 7 6 ) 

du, d «, ,, dU dun dun 

ir-vV=u^-u^-v°-di' 
etc., with 

y = 0: «„,«,,... = 0, 
y = oo; u0 = U(x,t); U,,U2,... = 0. 

We may satisfy equation (171) identically by introducing 

° ~ dy' 0" dx' 

Ψο=β^υà(χ)/à(η)âια·, η - . v J f . 
l σ V 2v 

Equation (176) then gives 

from which 

(177) 

(178) 

(179) 

f'0=\-e-{x+i)n. (181) 

Therefore, 

«0 = t / 0 ( jc)[cosar-iT' 'cos(ar- η)], (182) 

which shows that, at high frequencies, motion is in phase with that of the plate. 
Next, let us introduce for the 0(ε) problem a stream function given by 
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Ψ ι = ̂  U0U'0M[fi(v)e^+g^)l ( 1 8 3 ) 

so that equation (177) gives 

Wi'e1"' - \ {ίΓ<?'°' + g?) = Re {U0e"') Re {U'0e"") - [Re ( / 0 V " ) ] 2 

+ Re( / 0 < ; " " )Re( / 0 Y" ) , <1 8 4> 

from which 

2 ί / , ' ~ /Γ=^( ΐ - / ο ' 2 + /ο /ο" ) . 

| g i " = { ( 1 " fX) + \{fX + /o/o'") <1 8 5> 
with 

Tj = 0: 

77=><* 

Thus, 

/ ; = _ I i e - 0 ^ + | - e - ( M o _ I ( i _ ] ) 7 ? £ - ( . + . ) P ( l g 7 ) 

3 1 1 1 
g[ = - — + — e~2η + 2e~n sin TJ + — e'n cos η - — ηâ'η(οο5 η - sin η). (188) 

Of significance is the existence of a steady component of velocity υου^(η)/σ 
induced by the oscillatory potential flow. Such a steady motion can lead to 
extensive migration of fluid elements in an apparently purely oscillatory system. 

Exercises 

1. Upon using χ and Ψ as the independent variables instead of χ and y, show 
that the boundary-layer equation can be reduced to a diffusion equation. 

2. Consider a columnar jet formed by forcing a fluid through a small circular 
hole in a wall. Taking the x-axis along the axis of the jet, using cylindrical 
coordinates (r, θ,χ), and making arguments concerning the relative sizes of 
velocity gradients in the jet, similar to those used for a two-dimensional jet, 
show that the equations of motion and continuity for the columnar-jet flow 
may be approximated by 

/ , . / , '= 0, 
*..*•= 0. 
/ , '=*o. 

(186) 
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du du ν d ( du 
u — + v— - — Ç r — ι. 

dx dr r dry dr) 

j-(ru) + j-(rv) = 0, 

where u and υ are the velocity components along the x, r-directions, 
respectively. The boundary conditions for this flow are 

r = 0: 

r —> ° o : K - > 0 . 

Show that the flux of momentum of the fluid forced through the hole, 
namely, 

Μ = 2πρ ju2rdr, 

is constant. Introducing a Stokes stream function defined by 

r dr · 
1 üΨ 

V r dx ' 

determine a similarity solution of the form Ψ = χ' f[rxq j . 

3. Consider the compressible flow in a boundary layer on a flat plate. Using 
Howarth-Dorodnitsyn transformation and assuming a constant-plate 
temperature, find the integral for the energy equaiton (i.e., the counterpart of 
(130)) for the case Pr*\. 

4. Consider a semifinite region of a stationary perfect gas which is bounded by 
a rigid plane. The plane is suddenly given a velocity U in its own plane and 
thereafter maintained at that velocity. Using Howarth-Dorodnitsyn 
transformation, calculate the ensuing flow. 

4.4. Jeffrey-Hamel Flow 

The so-called Jeffrey-Hamel flow refers to a two-dimensional flow in the region 
between two intersecting plane walls. The steady flow between the stationary 
walls is caused by the presence of a source or sink of fluid at the point of 
intersection of the walls. This example affords an impressive illustration of the 
combined effects of convection and diffusion of vorticity generated at a rigid 
boundary. 
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The Exact Solution 

Let us use the cylindrical polar coordinates (r,0) with the plane walls located at 
θ = ±a (Figure 4.16). We then have for this flow 

OUa dua 

du, du, Ua λ dp 
u—- + ue—1---2- =—+ 

dr rdQ r ) dr 

r"8 Ί _ dP UM 
P^-d7 + U ^ + r J rdQ 

μ 

+μ 

2 -2de 
2 -2dd 

where 

dur ur 1 due ——+ — + —~ = 0, 
dr r r d9 

2 d2 I d 

(1) 

(2) 

(3) 

V2 = • + --<?r2 r dr r2d62 

Let us look for a purely radial flow and put 

so that equation (3) is identically satisfied, and equations (1) and (2) give 

f\ = _\dp ν 
r 2 -l 3 J 

ρ dr r 

pr dd r 

(4) 

(5) 

(6) 

where the primes denote differentiation with respect to Θ. The boundary 
conditions on/are 

θ = ±α: f = 0. (7) 

We obtain from equation (6) 

Ρ r 

When we use equation (8), equation (5) gives 
dF_ 
dr 

rH rl A r 3 dF 
vf +f+ 4vf = r — = const. = A, 

from which 

F(r) = - ± + B , 

(8) 

(9) 

(10) 

where A and Β are arbitrary constants. 
Multiplying equation (9) by / ' , integrating between θ = -α,θ, and using 

equation (7), we obtain 
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Figure 4.16. The Jeffrey-Hamel flow. 

- / 3 + 2 ν / 2 + ^ / ' 2 = Λ / + ò , (11) 

where C, is an arbitrary constant. Rewriting (11), we have 

/ ' 2 = - f / 3 - 4 / 2

+ ^ - + ^ C , = - f G( / ) , 
3v ν ν 3v 

from which 

df 

(12) 

a = ± J T = J _ . (,3) 
HG{/) 

Let us write 

G(f) = {f-el){f-e2){f-e3). (14) 

We then have, from (12), 
e, +e2 +c 3 = -6v . (15) 

We now have two cases: 

1. Only et is real and positive; G(f) then looks as shown in Figure 4.17. We 
then have pure outflow, and (13) becomes 

from which 

1 1 2 \ + οη{ΜΘ,χ) 

where 
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Figure 4.17. Variation of the function G with / fo r the case wherein only e, is 
real and positive. 

2. c,,e2, andc3 are real and distinct; G(f) then looks as shown in Figure 
4.18. For inflow we then have 

from which 

/ = ve, -6vk2m2sn2(K-me,k), (19) 

where 

G < 0 

Figure 4.18. Variation of the function G with / for the case wherein 
e,,e2, and e} are real and distinct. 

G\ 
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lit — , #v — 

6 e , -* , 

and K[k2) is the complete elliptic integral of the first kind. For outflow, 

from which 

/ = ve,-6k2m2sn2(me,k) (21) 
/ and / ' for cases 1 and 2 are sketched in Figures 4.19 and 4.20. Note that 
/ = f{9) is not periodic for case 1, while it is periodic with period 2(β + a) for 
case 2, where 

Using (7), we have 2β,2α<2π. 

Figure 4.19. Variation of / ' with / for the two cases illustrated in Figures 4.17 
and 4.18. 
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Figure 4.20. Variation of / with θ for the two cases illustrated in Figures 4.17 
and 4.18. 

The flows corresponding to cases 1 and 2 are shown in Figure 4.21. Note that 

/ (0) = { £ ; if « ,ÎΟ. (22) 

Note that the possibility of finding compound flows with zero values of / a t 
θ = ±α, increases as a / (0) /v increases. 

Flows at Low Reynolds Numbers 
When we nondimensionalize according to 

f-mr (23) 

equation (9) becomes 

d2f _ -j A 
Üθ2 J EJ v/(0) 

θ = ±α: f = 0 (24) 

* £ = / ( 0 ) / v = el i 2 /v < 1. 
where 
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Figure 4.21. Diverging and converging flows at low Reynolds numbers. 

Thus, the Reynolds number is based on the local maximum velocity and the local 
width of the region concerned. 

Let us seek solutions of the form 

/(θ) = / ο ( θ ) + Λ £ / , ( θ ) + - , 

A = Αû + Λ£Λ, + · • ·, 

so that we have from (24) and (7) 
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άθ-

θ = ±α: / 0 = 0 , 

θ = ±α: / , = 0 , 
etc. 

We have, from (26), 

- _ Aj Λ cos20^ 
0 4 I cos2aJ' 

When / 0 ( 0 ) = 1,(28) gives 

4 " l — L 
cos 2 a 

When we use (29) to write (28) as 

/ 0 = a(lb-cos20), 

(27) becomes 

4 + 
de2 

4/; = - a 2 ( > - c o s 2 0 ) 2 

0 = ± a : / , = 0 , 

0 = 0: / , = 0 . 

We have from (31) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

/ , (0) = C 2 ( cos20- l ) + ̂ y - 0sin20 + - | j -(cos40-l) , (32) 

where 

a 2 ^ 2 a2 

a s i n 2 a + — ( c o s 4 a - l ) 
2 24 v ' 

1 

cos 2a - 1 

The solutions (25), (31), and (32) are sketched in Figure 4.22. Note that 
whereas for purely convergent flow, the effect of increasing RE is to produce a 
flatter velocity profile at the center of the channel with steep velocity gradients 
near the walls, the effect in purely divergent flow is to concentrate the flux of 
fluid at the center of the channel with smaller velocity gradients at the walls. This 
suggests that one may expect the boundary-layer flows to arise near the walls in 
purely convergent flows and not in purely divergents flows; this is verified in 
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detail below. Notice the occurrence of backflow in a diverging channel as RE 

increases. In order to investigate this backflow, let us note from (12) that 
\2 

C=^ df_ 
Üθ)β=±α 

so that the onset of backflow is characterized by 
C, = 0 . 

Using 
0 = 0: f = ex, / ' = 0, 

we have from (12) 

e\ +6ve2 -3Aex -3C, = 0 . 

When we use (36), (12) becomes 

/ 2

+ / ( 6 v + e,) + ^ 
«1 

(33) 

(34) 

(35) 

(36) 

(37) 

from which corresponding to the onset of backflow (i.e., C, = 0) we obtain 

-Q~ 0 " ' θ - È 0 È 
RE > 0 RE < 0 

Figure 4.22. Diverging and converging flows at low Reynolds numbers. 
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θ - ί df 

3v ( e , - / ) [ / 2 + / ( 6 v + e i ) ] 

- F 
dt 

1 + 1 + — 

3v 
3v + e, 

( e Λ 

v 3v + e , y 

(38) 

Flows at High Reynolds Numbers 
We mentioned above that as the Reynolds number RE becomes large, the flow 
tends to become uniform except for boundary layers near the walls. This may be 
seen by referring to (19); since m becomes large, it follows that so must be 
K{k2) or k ~ 1. Then e2 ~ e3, sn / ~ tanhf, and e, = -6v - 2 e 2 = -2e2, so that 

r ι ι 1 

f = e2 3vtanh2 J - £ L ( a - 0 ) + 0 - 2 (39) 

where 

β = tanh 

Thus / is approximately equal to e2 except in the boundary layer of thickness 
proportional to l/^]-e2 . 

In order to verify these features in detail, write equation (24) as 

d'f df 
- 4 + 4-2- + 2 /? , / -2- = 0 

ιλ3 i n t J m 
dO de de 

(40) 

In the limit RE =>°°, i.e. corresponding to the outer core flow, equation (40) 

gives 

with 

m i l 
de 

= o 

0 = 0: / (0) 

We have from (41) and (42) 

/ ( 0 ) ^ 1 , 

(41) 

(42) 

(43) 
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È = 7ÃÌ ( α - 0 ) , (44) 

so that equation (40) becomes 

rf©3 |*£|* dQ+2\RE\} ÜΘ °- ( 4 5 ) 

In the limit RE => <», equation (45) gives the following equation for the flow 
in a convergent channel: 

For the flow in a divergent channel, equation (45) gives 

— - + ( / ( 0 ) =1- (47) ÜΘ1 

Thus, putting 

/ ( ί ) = 1 + Λ( / )(È) (48) 

and noting that the boundary-layer nature of the flow near the wall requires / ( , ) to 
match asymptotically with the outer-core flow, given by (43), we have 

0 = > o o : Λ ( , ) =>0. (49) 

From equations (46) and (47), we have for a convergent channel 

ÜΘ2 

or 
Γ(') - α ζ,-^θ 

/ i w = V H , (50) 
and for a divergent channel we have 

ÜΘ2 

or 

h{i) = D, sin V2 È + D2 cosV2 È. (51) 

Therefore, it is obvious that there can be no boundary-layer flow in a divergent 
channel. 

so that for RE > 1 the radial velocity is nearly uniform over θ = ( -α , a) except 
in boundary layers close to the wall. 

In order to consider the flow near the wall, let us put 
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H Y D R O D Y N A M I C 
S T A B I L I T Y 

5.1 . Introduction to Hydrodynamic Stability 

The equations of fluid dynamics admit some simple patterns of flow as stationary 
solutions which can exist only for certain ranges of the parameters characterizing 
them. This is traced to their inherent instability, i.e., in their inability to sustain 
themselves against any small perturbations acting on them. The objective of the 
theory of hydrodynamic stability is to examine the stability of admissible 
stationary solutions of the equations of fluid dynamics. 

In the case of a dynamical system with a finite number degrees of freedom, a 
definition of stability of equilibrium or of steady motion can easily be given 
because the motion is determined by the initial conditions only. But, the case of a 
continuous medium renders this task difficult in that the determination of the 
motion requires a knowledge not only of the condition at time / = 0, but also the 
boundary conditions for t > 0. 

Mathematically, the problem consists of following the subsequent career of a 
hydrodynamically possible disturbance which is superposed on the basic steady 
flow. If the disturbances vanish at t => °°, the motion is stable, otherwise it is 
unstable. 

In order to study the behavior of disturbances, one must follow the solution of 
a system of nonlinear partial differential equations which, in general, is very 
difficult. Sometimes, one assumes that the disturbances are small so that the 
equations governing the disturbances may be linearized, i.e., the terms quadratic or 
higher in the disturbances and their derivatives may be neglected. The resultant 
linear and homogeneous system of equations contains time t only through 
derivatives with respect to t, so that the solutions containing an exponential time 
factor e" may be expected. The boundary conditions for the disturbances (which 
require the vanishing of quantities like the disturbance velocities at the boundaries) 

393 
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are normally homogeneous; consequently, we have a characteristic-value problem 
with c as the parameter. If all characteristic values of c have negative real parts, 
the motion is stable with respect to infinitesimal disturbances provided the 
characteristic functions form a complete set in terms of which any physically 
realizable initial state can be expanded. If some of the characteristic values of c 
have positive real parts, the motion is said to be unstable. However, it must be 
noted that such a linear instability does not necessarily lead to turbulence. It could 
lead to another, more stable state of laminar flow. Thus, linear stability theory is 
adequate if one is interested only in the onset of instability of a given basic state. 

In the method of normal modes, one linearizes the governing equations for 
small perturbations about a stationary state of the system. Each disturbance is 
then resolved into dynamically independent wave components (which, because of 
linearity, do not interact with each other), and one examines the stability of the 
system with respect to each of these modes by posing a linear characteristic-value 
problem for a typical mode. The requirement that the governing equations for the 
normal modes allow nontrivial solutions satisfying the prescribed boundary 
conditions leads to a characteristic-value problem. The latter problem sometimes 
admits singular solutions with a continuous spectrum of characteristic values in 
addition to well-behaved solutions with a discrete spectrum. 

5.2. Thermal Instability of a Layer of Fluid 
Heated from Below 

Consider a horizontal layer of fluid in which an adverse temperature gradient is 
maintained by heating the underside. Due to thermal expansion, the fluid at the 
bottom will become lighter than the fluid at the top, so that this will be a 
potentially unstable top-heavy arrangement. This instability will cause the fluid 
to redistribute itself so as to remedy the weakness in the arrangement. However, 
since the fluid viscosity will inhibit this behavior, the adverse temperature 
gradient maintained in the fluid may be expected to exceed a certain value before 
the instability can manifest itself. When the instability sets in, it is found 
experimentally that the ensuing motions have a stationary cellular character. 

The Characteristic-Value Problem 
One has the following equations governing the motion of the fluid, 

0) 
dv, dv. 

= pXi (2) 
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Λ dv, 
-p—'-+Φ, At. (3) 

where 

Φ = ì dv, t dv2 ^ 
^dx2 dx, J 

' dv2 | dv-, 
Kdx, dx2 j 

rdv, | dvA2 

^ dx, dx, ^ +> 

2 
+ 3» 

'dv, dv2 'dv2 _dv± 2 'dv} 

2" 

^dx, dx2 J ydx2 dx3j 
+ ^dx, άχΧι 

p = p0[l-a{T-T0)]. 

(4) 

(5) 

Based on experience in practice, one may treat ρ as a constant in all terms in 
the equations of motion except the one in the external force - the Boussinesq 
approximation. Then equations (l)-(3) give 

dv, 

dv, dv, 1 dp (, δñ 
—J-+vj—·- = l + - £ 
dt dXj p0 dx, { p 0 J 

δρ = -ρ0α(Τ-Τ0), 

dt dXj p 0 C u 

X, + vV 2 u, 

(6) 

(7) 

(8) 

(9) 

where δρ is the change in density, and the viscous heat generation Φ has been 
ignored. 

Consider an infinite horizontal layer of fluid in which a steady adverse 
temperature gradient is maintained; further, let there be no motions initially. The 
initial state is given by 

vt=0, Τ=Τ(λ,χ,), χ = λ,χ„ (10) 

(Π) 

(12) p = p0[l + a{T0-T)], 

V 2 7 = 0, (13) 
where λ = (0,0,1) is a unit vector in the direction of the vertical. Equations (10)-
(13) give 

Τ = Τ0-βλ,χ„ (14) 
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δρ 

dt dX; { Ñ ) + ga.eXi + vV vn 

3/3 

— = / t t y u + K V 2 0 , 
dt 

d± 
dx> 

0. 

Taking the curl of equation (18), one obtains for the vorticity i l 
<?fl, de . n ! . 

and taking the curl again, one obtains 

A.V 2 0-A d29 + vV 4 u 

Multiplying equation (22) by λ,., one obtains 

d / o 2 s (d26 d26^ 
+ vW 

Equation (19) can be written as 

where 

—=fiw+kv2e, 
dt 

w = λ, υ, 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

If the fluid is confined between the planes (assumed to be infinitely conducting) 
z = 0,d, one has the boundary conditions 

z = 0,d: w = 0, 0 = 0. (26) 

On a rigid surface, at ζ = 0, d, one must also have 
« = 0, υ = 0; (27) 

ρ = ρ0(ΐ + αρ*λ Λ ) , (15) 

Ρ = Pa -#Ñο̂ ν,· + ̂ #ίλ,·¥)'] · <16> 
Let Vj denote the velocity in the perturbed state; and let the altered temperature 

distribution be 
Τ' = Τ0-βλιΧ, + θ (17) 

and let δρ denote the change in pressure. Then, upon linearization, equations (6)-
(9) give 

<?u d f Χ-Λ 
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and from equation (20), equation (27) gives 

^ = 0. 
dz 

On a free surface, 
du dv 
¾ζ' Tz~ ; 

and from equation (20), equation (29) gives 

d2w 
dz2 

= 0. 

(28) 

(29) 

(30) 

Let us analyze the disturbances into normal modes, and look for solutions of 
the form 

w=W(z)e 

0 = È ( ζ Κ ( Μ + * ' > ) + ' " , 

so that equations (23) and (24) give 

' 4 V 
ydz2 j 

( J2 

W = -gak2e + v 
d - - k 2 W, 

ñθ = â\í+Κ 
<d2 λ 

dz2 
-k' Θ, k2=k2

x+k2

y. 

The boundary conditions (26), (28), and (30) become 
z = 0, d: 0 = 0, W = 0 

on a rigid surface: = 0, 
dz 

on a free surface: d2W 
dz2 

0. 

(31) 

(32) 

(33) 

(34) 

(35) 

Nondimensionalize various quantities using d,v; then equations (32) and (33) 
become 

(D2 -a2)(D2-a2 -a)W = [^-d2 ) α2Θ, 

(D2-α2-Ρσ)θ = -

(36) 

(37) 

where 

D = — , P = -L a = kd, a = ^L 
dz Κ í 
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Note 
1 1 

J WF'dz = j W(D2 - a2 - a)G'dz 
0 0 

I 

= JG'{(D2-a2)W-a'w}dz 
ο 

= j{ | G |2 + σ [I DW | 2 + a2 \ W | 2 ]}dz. <45> 
ο 

Using (45) in (44), the vanishing of the imaginary and real parts give 

One obtains from equations (36) and (37) 

(D2 - a2 )(D2 - a2 - σ ) ( θ 2 - a2 - Ρσ) W = -RAa2W, (38) 

where RA is the Rayleigh number 

RA=^d\ 
Kv 

with 

Z = 0,1,:W = 0, (D2-a2)(D2-a2-a)W = 0, (39) 

on a right surface: DW = 0, 

on a free surface: D2 W = 0. 

If at the onset of instability a stationary pattern of motions prevails, then one 
says that the principle of the exchange of stabilities is valid and that instability 
sets in as stationary cellular convection. In order to establish that the principle of 
the exchange of instabilities holds for the present problem (i.e., that σ is real and 
that the marginal states are characterized by σ = 0), put 

G = (D2-a2)\V, 

F = (D2- a2)(D2-a2-a)W = (D2-a2- a) G, 

so that equations (38)-(40) give 

(D2 - a2 -Pa)F = -RAa2W, (42) 

z = 0,1: W = 0, F = 0. (43) 

Multiply equation (42) by F' (the complex conjugate of F) and integrate between 
ζ = 0,1; then one obtains 
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The Variational Problem 
The characteristic-value problem for the marginal state is given by 

(D2 -a2)F = -RAa2W, (50) 

ζ = 0,1: W = 0, F = 0, and either DW = 0) 
ι . (51) 

or D2W = Q.\ 

Let Wj be the characteristic solution corresponding to a characteristic value 
RA ; then, upon multiplying equation (50) by Ff and integrating over (0,1), 

1 I 

J F<(D2 - a2) Fj dz = —RAa2 J W.(D 2 - a2) G, dz (52) 

or 
ι ι 

J (DF, • DFj + a2 Ffi) dz = RA a2 j GiGj dz (53) 

' The characteristic values here are degenerate because, to each characteristic value RA, there 
exist an infinite number of convection patterns with the same wavenumber a. This degeneracy is, of 
course, a consequence of the assumption that the fluid layer is of infinite extent in the horizontal 
plane. 

Im(ff) jpJ| F\2dz + RAa2 j[| DWf + a2 \ Wf ]<fej = 0, (46a) 

R e ( a ) < 0 when RA<0. (46b) 

Equation (46b) is physically obvious, and equation (46a) gives 

Im (σ) = 0 when RA > 0, (47) 

so that a is real for RA > 0. 
Now, since σ is real for RA > 0 (i.e., for all adverse temperature gradients), it 

follows that the transition from stability to instability must occur via a stationary 
state. Then, corresponding to a marginal state, (38)-(4Q) become 

(D2 -a2fw = -RAa2W, (48) 

2 = 0,1: W = 0, (D2-a2)2W = 0, (49) 

on a right surface: DW = 0, 

on a free surface: D2W = 0. 

One thus has a characteristic-value problem for RA.1 The minimum with respect 
to a2 of the characteristic value so obtained is the critical Rayleigh number at 
which instability will manifest itself. 
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ΚΛ=* i (57) 
a I2 

(58) 

SR. = 

where 

a I2 

Si, -f 5l2Ú = -L-fa ~R^2SI2), (59) 

ι ι 

SI, = 2 J (DF D8F + a2F-8F^dz = -2J8F(D2 -a2)~Fdz (60) ο 
1 

SI2 =2$W(D2-a2)2 SWdz = 2 jwSFdz. (61) 
0 0 

When we use (60) and (61), (59) becomes 

and interchanging ί and j , (53) becomes 
1 I 

j(DFt • DF, + a2F,./r) dz = R^a2 JG;G, dz. (54) 
ο ο 

Upon subtracting (54) from (53), one obtains 
ι 
JGiGjdz = 0 if (55) 
0 

If i = j , then (53) gives 

i[(DFj)2^a2F2]dz 

^ = i • (56) 
a2\G)dz 

ο 
Indeed, the quotient 

\[{DF)2+a2F2]dz 

a2JG2dz 
ο 

is stationary if F = F,. In order to show this, use for W some arbitrary function 
IV that satisfies the boundary conditions. Let SRA be the change in RA 

consequent to the variation 5W in W, with SW being compatible with the 
boundary conditions on W, i.e., 

z = 0,l: SW = Q, SF = 0, andeither D5W = 0 

or D2SW = 0. 

Note that 

1 
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Example I: As an illustration, consider the case with free boundaries. The 
boundary conditions are 

z = 0,l: W = 0, D2W = 0, D4W = 0. (64) 

In order to satisfy (64), one may choose 
W = A sin ηπζ, η = 1,2,.... (65) 

When we use (65), (57) gives 

K * 5 ' (66) 

« Λ 

\ Convect ion 

1 
1 

Conduction 

a a 
Figure 5.1. The marginal curve for the onset of thermal convection according to 
the linear theory. 

8RA = — — f 8F{(D2 -a2)F + RAa2w\ dz, (62) 
a !2 ο 

so that 
8RA = 0 (63) 

if 

(D 2 -a2)F = -RAa2W. 

Conversely, if 8RA = 0 for any arbitrary 8W compatible with the boundary 
conditions of the problem, then W is a characteristic solution. This analysis only 
established that RA is stationary when F = F } . It can be shown also that RA is a 
minimum. 

Physically, this implies that instability occurs at the minimum temperature 
gradient at which a balance can be steadily maintained between the kinetic energy 
dissipated by viscosity and the internal energy released by the buoyance force. 
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the minimum value of which (corresponding to η = 1) is 

R. = i r - A (67) 
a 

The variation of RA with a is shown in Figure 5.1. For Rayleigh numbers less 
than the critical value RA , only the basic state is possible in which the heat is 
conducted upwards in obeyance to Fourier's law, and the fluid rests in hydrostatic 
equilibrium. As the Rayleigh number increases through the critical value the 
static state becomes unstable. The new state consists of an interlocking pattern of 
steadily overturning cells, which can, under properly controlled conditions, be 
strikingly regular (see Figure 5.2.).2 The solution for η = 1 corresponds to a 
convection roll that is almost as wide horizontally as the fluid is deep. The fluid 
in the cells draws heat from the lower boundary and, due to its resulting 
expansion, can rise by buoyancy to the upper boundary, where it gives up its 
heat, contracts and sinks to replenish its supply. These convective motions 
substantially enhance the efficiency of the layer in transporting heat.3 

Observe from (66) that if the rolls are too wide compared with their height, 
i.e., a/n<\, the convective motions are inhibited by enhanced viscous 
dissipation. On the other hand, if the rolls are too tall compared with their width, 

Ο c ο 

^ ) 

L 
J ^ J 

L 

Ο c Ο 

* = 0 

Figure 5.2. Periodic mode of convection visible in a cross-section through a 
body of fluid heated from below. 

The cellular pattern usually reflects the geometrical configuration of the side walls. In a 
rectangular fluid layer the rolls tend to align with the shorter sides while a circular lateral wall gives 
rise to a roll pattern in the form of concentric rings. 
^lt is to be noted that, in cases where the physical properties of the fluid layer are not symmetric 
with respect to the mid-plane, a hexagonal cellular pattern is preferred (Block) This is the case, as 
in the original experiments of Benard, when the fluid layer has a free surface with the surface 
tension there being temperature-dependent. Hexagonal cellular patterns are of two types: one with 
upward motion and the other with downward motion in the center of the cells. 
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i.e., a/n$> 1, convective motions are again inhibited by enhanced losses due to 
thermal conduction of the available free energy. Therefore, convective motions 
that arise first when the Rayleigh number is increased steadily from zero are those 
that correspond to the rolls with 

since this leads to a minimum value of the Rayleigh number in (67). 
Experiments have confirmed that the onset of convection occurs for Rayleigh 

numbers at the critical values given by (67) and (68) to within a 3% margin of 
experimental error, provided that the horizontal extension of the fluid layer is large 
compared with the depth. 

Nonlinear Effects 

As the amplitude of the convection rolls becomes large, the mean temperature 
profile in the fluid layer is modified which will impede further growth of the 
perturbation.4 Consequently, supercritical convective motions may be expected, 
as experiments have confirmed, to lead to steady and stable two-dimensional rolls. 

There is another feature of convective motions that is produced by the 
nonlinear effects. As shown by Figure 5.1, for Rayleigh numbers greater than the 
critical value, a continuous spectrum of modes becomes unstable which would 
indicate a rather complicated convective flow pattern. However, experiments 
indicate a marked tendency toward a simple cellular pattern which is apparently 
attributable to nonlinear effects (though in a real experimental situation, the side 
walls may play an important role in this process). 

One theoretical explanation of the observed phenomena near the linear 
instability threshold is based on the use of a two-dimensional model equation, due 
to Segel, that is much simpler than the full hydrodynamical equations and yet 
correctly describes the development of the supercritical equilibrium. This model 
equation is 

-W, +A1W-RAAlW = (WWz)a, (69) 

where 

AWsA^ + W^, AlWsWix + Wyy 

and subscripts denote the derivative. The boundary conditions are 

For large-amplitude convective motions, the mean temperature gradient becomes sharp near the 
boundaries while that in the interior of the fluid layer can even reverse. The latter aspect merely 
reflects the efficiency of the convective heat transfer which can supersede even a reversed 
conductive heat flux. 
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ζ = 0,1: W . W ^ a n d W ^ O , 

x2+y2 • oo; VV bounded. 
(70) 

For supercritical Rayleigh numbers, one may seek the steady solution by using 
a perturbation method (Gorkov; Malkus and Veronis). In this method, the 
physical variable W as well as the Rayleigh number RA are expanded in power 
series in a small parameter ε, which is a measure of the amplitude of the 
convective motion: 

W{x,y,z;e) = Yde"Wn{x,y,z), 
«1=1 

(71) 

The unknown constants RA are successively determined by the solvability 
conditions applied to the sequence of inhomogeneous linear partial differential 
equations for the Wn. 

Substituting (71), (69), and (70) give, 

ì3-Λ>,)νν,=0, 

(Ä3-^Äι)\í2 = - W 

(Ä3 - /?; Ä,) W3 = (W,W 2 ) e + RA AtW2 + ΛΛι Ä, Wt, 

etc., 
with boundary conditions 

2 = 0.1: W„,(W„) i i and(W;)_=0. 

Consider a roll pattern given by 
W, =cosax - s in7 rz , 

which satisfies equation (72), provided that 

KA ~ 1 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

Equation (77) is the same as (67), so that the model equation (69) incorporates the 
principal qualitative aspects underlying the full hydrodynamical equations 
governing the thermal convection problem in the Boussinesq approximation. 

Now, equation (73) will have a solution, provided that its right-hand side is 
orthogonal to the solution Wt of the corresponding homogeneous solution. This 
leads to 
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wr\I w2 

[νν,,Λ,νν,] 
where [f,g] denotes the inner product, 

1 2úΓ/α 

[/,*] = / jfgdxdz. 

When we use (76), (78) leads to 
R. = 0. 

Therefore, equation (73) has the solution 

W2 =(A + Bsin2^z)cos2ax, 

where 

A = -
1 

B = 
64 π 3 6θ(π2+α2) 

Next, the solvability condition for equation (74) leads to 

K(*w)J 
R. 

[νν,,/ι,νν,] 

(78) 

(79) 

(80) 

(81) 

Figure 5.3. Dependence of the maximum vertical velocity component on 
(RA - /?*) (from Dubois and Berge, 1978). 
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When we use (76) and (80), (81) gives 

π\2Α + Β) 
4a2 

(82) 

When we use (79) and (82), (71) then implies, for the supercritical equilibrium 

Experimental measurements (Dubois and Berge) of the maximum amplitude of 
the vertical component of the velocity showed very good agreement with this 
result (see Figure 5.3). 

Instability of the Roll Pattern 
Theoretical work (Clever and Busse) has shown that, as the Rayleigh number 
increases beyond the supercritical value, the roll pattern becomes unstable and 
develops a wavy shape. However, the experimental evidence for this does not 
seem to be conclusive (Koschmieder). 

EXERCISE 

1. Study the effect of uniform rotation about the z-axis on the thermal 
stability of a layer of fluid heated from below. Assume free boundaries. 

The origin of instabilities here is a potentially unstable arrangement of flow 
resulting from a prevailing adverse gradient of angular momentum. The simplest 
example of such instability occurs in Couette flow, i.e., in the steady circular 
flow of a liquid between two rotating coaxial cylinders. Experiments show that 
this instability leads to a secondary flow in the form of toroidal vortices (with 
opposite circulations in adjacent vortices) which are regularly spaced along the 
axis of the cylinders (see Figure 5.4). This secondary flow tends to redistribute the 
angular momentum of the basic flow in such a way as to reduce the adverse 
angular momentum gradient. 

Inviscid Couette Flow: Rayleigh Criterion 
Heuristic Derivation 
For axisymmetric flows of an incompressible inviscid fluid, one has the 
following governing equations: 

state, the following behavior^: 

(83) 

5.3. Stability of Couette Flow 

This is reminiscent of the mean-field result for the order parameter for continuous, second-order 
phase transitions in statistical mechanics. 
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Figure 5.4. The secondary circulation resulting from the instability of Couette 
flow between two rotating coaxial cylinders. 

dr r dz 

dv, dv, dv, 
— - + υ — - + ν —-
dt ' dr 1 dz 

dve dve 

dv, dv. 

dve 

dz 

dz 

dr 

υ„υ, 
- = 0, 

dfp^ 
dz 

One obtains from equation (3) 

(1) 

(2) 

(3) 

(4) 

(5) 

α = Ã 2 Ω = const. (6) 

Corresponding to the force v\jr that arises in the radial motion, one may 
associate a potential energy pa2fir2. Consider now the interchange of fluid 
contained in two elementary rings of equal heights and masses at 
r = r , , r 2 , ( r 2 > η ) , so that 2Krxdr,=2nr2dr2. The change in the potential 
energy consequent to such an interchange is given by 

±(rve) = ±(r2n) = 0, 
dtK dtX 1 

so that 
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r2 r 2 2nrxdrx =(a2 - or,2) 
v r , 2 r 2 

2nr,dr, 
2 y 

so that for stability one requires a2 > or,. Therefore, if one introduces 

r ar r dr ' 
then one has for stability 

Ö ( γ ) > 0 : Rayleigh's criterion. 

(7) 

(8) 

(9) 

Rigorous Derivation 
Consider the stability of a stationary state given by 

υ Γ = 0 , υ Σ = 0 , ve=V(r) = rQ(r). 

Let the perturbed state be described by 

vr, V + vg, vz,co 
\ Ρ 

The linearized equations governing these perturbations are 

dv, 
dt 

dv, 

^-2-νθ = -

dt+{-r+7r-)V'=°< 

dvt _ d(b 
dt ~~~dz~' 

dr r dz 
Seek solutions to equations (12H15) of the form 

*~*(r)e« t a + ">. 

so that equations (12)—(15) give 

ιρνΓ-2Ωνβ=- — , 
dr 

ipvg+ Ω +—(ÃΩ) υ Γ = 0 , 
L dr J 

ipvz = -ikcb. 

du) 

r dr 
dV\ 

dvr vr ., n —r- + — + ikvr = 0 . 
dr r 

(10) 

(Π) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

Introduce 
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dQ 
ν,=úρξΓ, νβ=ÀρξÂ-Ã—ξτ, υζ=ίρξζ, 

so that equations (17)-(20) become 

^ - 2 r f l ^ ) ξ,+2ίΩρξ. 

ρ2ξθ-2ίΩρξ,=0, 

ρ2ξζ =ik(b, 

dr r 

da) 

from which one derives 

or 

p2-2rQ^) ξ,-4Ω2ξ,= 
dr 

Üω 
~dr 

and 

or 

P

2\*L+^ 
F 1 dr r 

= ω 

409 

(26) 

I d , . , k2 . 

The boundary conditions are 
r=RrR2: ξ,=0, 

where /?, and R2 are the radii of the inner and outer cylinders, respectively. 

From equations (26) and (27), we have 

d_ 
dr 

1 d l ϊ\ 
Ρ 

(27) 

(28) 

(29) 

with 
r=RvR2: £ = 0 , 

which constitutes the classical Sturm-Liouville characteristic-value problem. And 
thus the characteristic values of k2jp2 are all positive if Φ(Ã) is everywhere 
positive and vice versa. 

From (29), indeed, we have, on using (28), 

(21) 

(22) 

(23) 

(24) 

(25) 
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P2_ (30) 
dr 

which sets forth the variational character of the problem. Rayleigh's stability 
criterion (9) follows from (30) immediately. 

Couette Flow with Axial Velocity: Howard-Gupta Theory 
Consider the stability of a stationary state, with an axial flow W(r), given by 

υ Γ = 0 , vt=W(r), ve = V(r)=rQ(r). 

Let the perturbed state be described by 

vr,V+vB,W+v, ,þ =-£ l Ρ , 
The linearized equations governing these perturbations are 

dv, ... dvr „ V d(0 _ , + ^ - 2 - υ β = - - , 

dv, ºνβ „,dv8 (V dV\ 
dt dz \ r dr J 

dt dz 
da) 

~dz' 

dr r dz 
Seek solutions to equations (33)-(36) of the form 

g~q(r)e^K 

so that equations (33)-(36) give 
da> 

ΐσυ -2Ùí„ = , 
9 dr 

ισν„ + 

where 

Ω + ^ ( , Ω ) ] υ , = 0 , 

ίσνζ =-ik(b, 

dr r 

σ = p + kW. 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(16) 

(37) 

(38) 

(39) 

(40) 

When we introduce 
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ÜΩ υÃ=ϊσξÃ>υâ = ίσξâ-Ã—ξÃ, υζ=ϊσξζ 

dr 
equations (37H40) become 

(V-2ri2^) ξ,+2ίΩσξβ 

σ2ξβ-2ίΩσξ,=0, 

σ2ξζ = ik(b, 

dr r 

do) 
~dr~' 

from which we derive 
Üω 
~dr~ 

or 

and 

or 

[σ2-Φ(Þ] ξ,= Üþ 
~d7 

dr r 
= k20) 

σ2 1 d , , ν -

We have from equations (46) and (47) 

d_ 
dr 

411 

(46) 

(47) 

{W + i)2~rcTr{rl) - k 2 { W + $tr=-<»(rKr- (48) 

The boundary conditions are 

/· = /?„*,: ξΓ=0. (28) 

Suppose that the boundary-value problem (48) and (28) has a nontrivial 

solution ξΓ with lm(p)>0. Then, since + does n o t v a n i s n o n
 [ ^ P ^ ] -

one may consider a square root I ^ + which is as smooth as W is. We 

assume W to be continuous and piecewise continuously differentiable. When we 
put 

equation (48) becomes 

(41) 

(42) 

(43) 

(44) 

(45) 

(49) 
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d_ 
dr 

+ -I : — \G 
2 r dr dr1 

_ ι ^ Í _ ó _ _ ^ 2 ^ + Ζ Í + Φ 

4\dr) W + R { k) W+-
= 0. (50) 

k k 

Multiplying equation (50) by rG' and integrating over (/?,,/?2), we obtain 
Ri / \ Γι ι ι |2 

.2 I r- I 2 

2 j l dr2 drY 1 

•M) rdr = 0. (51) 

If Im(/?) > 0, the imaginary part of equation (51) gives 

+ k2\G\2 dr 

*\dr) W + -
r dr = 0, (52) 

which is impossible if Φ > l/4(dW/dr)2 everywhere. Thus, a sufficient condition 
for stability is that 

4 U ; 
(53) 

everywhere. 

Viscous Couette Flow: Synge's Theory 
The Navier-Stokes equations for an axisymmetric viscous incompressible flow 
are 

—=- + (v-V) vr

 e- = 
dt r dr 

dve . υ υ 
— 2 - + (v-V)t>f l+——- = v 

P_ + ν ί ν 2 υ 
r , 

dt 
υ ^ 

r2 ) 

(54) 

(55) 
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dve fdV íλ υΛ 

dt 
9þ 
~dz~ 

+ vV2t> 

where 
dr r dz 

dr2 + rdr+ dz2 

(63) 

(64) 

(65) 

Let us analyze the disturbance into normal modes and seek solutions of the 
form 

vr = u(r) ep> cos kz, 

υθ = v(r) ep' cos kz, 

vz = w(r)ep' sin kz, 

0) = cb(r)e'" cos kz, 

so that equations (62)-{65) give 

v(DD,-k2-P]u + 2^v = ^ -
\ ν J r dr 

(66) 

v^DD.-*2—£J υ-(αν)« = 0. 

vfu.D-k2-£)w = -kcb, 

D.u = —lew. 

(67) 

(68) 

(69) 

(70) 

where 

V2 = D.D-k2 = DD. + —^- — k2 

Ds — 
dr 

n

 d 1 

D. = — + - . 

From equations (67)-(70) we derive 

jr[DD,-k2-l^(DD.-k2)u = 2^v, 

V(DD. -k2 -£] v = (D.V)u. 
\ v. 

When we measure r in units of the radius R2 of the outer cylinder and write 

(71) 

(72) 
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2ARi 

equations (71) and (72) become 

(DD.-a -a)(DD,-a)u = -Ta v, 

(DD.-O2 -a)v = u, 

where Τ is the Taylor number 

AAB 2_4Q2R: (À-μ)(\-μ/η2) 
2 2 2 ( . 2 \ 2 

ν v (l - r? ) 
and 

Í = — 
AR2

2 l-μ/η2 

Β \-μ 
The boundary conditions are 

r= l , r / :u = 0, υ = 0, Du = 0. 

Note that if f(r) and g(r) are any two functions and if 

r = l,rj:/(r) = 0, 

then 

and if 

then 

r = l ,r / : /(r) = 0, / ' ( r ) = 0, 

jrfDD.gdr = jrgDDJdr. 

415 

(76) 

(77a) 

(77b) 

(78a) 

(78b) 

When we multiply equation (74) by u , the complex conjugate of u, and 
integrate from η to 1, then 

I I 

j ru | (DA - a2 ) 2 u - a(DD. - a2 )u}dr = -Ja2 J r0(r) υκ* dr, (79) 

where 

, r AQ2R* (i-μ/η2) 
J = -— = —ΛΓË-η—^ Φ = (é-ì) \r ) 

(73) 

(74) 

(75) 
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dr (80) 

dv \\v\2) 
dr 

"Γ 
r ) 

dr+2(l-n)[±*fdr. 
J r dr 

When we use (80) and (81), (79) becomes 

σ/, + / 2 =Ja2 { (α 2 +σ*) / 3 + / 4 } , 

(81) 

(82) 

where 

I 

-J /, = I < r 
du 
dr 

+ \ l + a2r\\u\1\dr, 
. r 

I2 =j\(DD.-a2)u^rdr, 
ι 

ι 

ί, = {<Κήήí\2άÃ, 
n 
ι / 

h=\<Kr) 
dv 
dr 

|2 \ 

Note that /, and / 2 are positive definite and that 

- ( l - r j 2 ) forr = l, 

so that μ > 0 implies 

- ^ ( l - ? ? 2 ) for r = j?, 
(83) 

Using (77) and (78), note that 

jru'i^DD, ~a2fu-a(DD, -a2)u} dr 
η 

= } r | ( D D . - a

2 ) U f a r + a|jr|f|2+(I + a V ) „ | 2 } 

and 
ι ι 
j r<p{r) vu'dr = J r#(r) v(DD. - a2 - ó ) õ dr 
η n 

ι ι 

= -(á2 + a')^{r)r\vf dr + j r0(r)vDD,v'dr 
n n 

= -(a2

+a')\^r)r\vUr 
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Re (M = J * ( r ) 
dv ν 
dr r 

dr. 

When we use (83H85), (82) gives 

Re[a](/, - / a 2 / 3 ) +I2 - Ja2 (a21, + Re[/4]) = 0, 

from which, noting that J < 0 when μ > η2, we have that 

Re[rr]< 0 when μ>η2, 

and then the flow is stable, as before. 
Next, the imaginary part of equation (82) gives 

417 

Im (σ) • \ /, + Ja2 / 31 = -2 To2 Im ( Γ 4 — d r ^ 
1 1 1 r dr 

(88) 

But, no general conclusion can be drawn from this equation. In order to be able to 
obtain some definitive information about Im(ff), let us consider the case wherein 
the gap (/?2 -/?,) between the two cylinders is small compared to their mean 
radius 1/2 (R2+R,). Then 

D. ~ D, V = Q.r 1 - ( À - μ ) ^ 
R2-R, 

(89) 

Let us measure radial distances from the surface of the inner cylinder in the unit 
d= R2- >?,. Further, when we put 

C_r-R, 
S d 

equations (71) and (72) become 

, a pd2 

d ν 

(D2-a2-a)(D2-α2)α = ^-α2[\-(\-μ)ζ]ν, 

(D2-a2-a)v = ^ u . 

Let us replace 

« by 2Q,d2a2 

so that equations (91) and (92) become 

(D 2 - a2 - σ)(D2 - a2)u = (l + αζ) ν, 

(90) 

(91) 

(92) 

(93) 

(94) 

φ>0; 

then / 3 is also positive definite. Next, note that 

(84) 

(85) 

(86) 

(87) 
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7V D2-a2)u\2d; + a\(\ Du\2+a2\u\2)dC 
0 

Dv\2+a2\v\2)dC + a j\v\2dC, (99) 

the imaginary part of which gives 

Im (cr) Τα2\(\θ^2

+α2\α\2)Üζ + \\υ\2Üζ = 0 (100) 

In this limit, equations (94) and (95) are identical (following a minor redefinition of the variables) 
to equations (36) and (37) describing the thermal instability of a fluid layer heated from below in 
Section 5.2! This, of course, reflects the similarity between the instability mechanisms of the two 
systems. 

( θ 2 - α 2 - σ ) υ = -7α 2 κ, (95) 

where the Taylor number Τ is now given by 

4ΑΩ.ÜΛ 

and 

α = -{\-ì). 

The boundary conditions (96) are 
C = 0,1: u,v,Du = 0. (96) 

Let us consider the case μ ~ 1 so that we may ignore the term linear in ζ on 
the right-hand side in equation (94.)^ Multiply equation (94) by u and integrate 
over the range of ζ; one then obtains 

\υα'Üζ = J«'[(D2 -a2f -σ(û2 - α2)] πÜζ 
0 0 

= \\(D2~a2)u\2d; + a](\Du\2+a2\u\2)dC. (97) 
ο ο 

Now, multiply the complex conjugate of equation (95) by ν and integrate over 
the range of ζ; one then obtains 

I 1 

-To2 J υηÜζ = jv(D2-a2-σ)υÜζ 
0 0 

= - } [ | θ υ | 2 + ( α 2 + σ ) | υ | 2 ] ^ . (98) 
ο 

One obtains from equations (97) and (98) 
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so that 
lm(tf) = 0. (101) 

This shows that the marginal state is stationary. Indeed experiments show that the 
instability sets in as a secondary stationary flow. 

Nonlinear Effects 
The exponential growth of disturbances predicted by the linear theory is modified 
by the nonlinear effects when the critical Taylor number Γ* has been exceeded. In 
particular, the amplitude growth of supercritical toroidal vortices (called the Taylor 
vortices) tapers off once the amplitude reaches an equilibrium value. The 
theoretical work of Stuart and Davey et al. on weakly nonlinear Taylor vortex 
flow between infinite cylinders has shown that this equilibrium amplitude is 
proportional to I Τ- Τ 1 as in the case of the thermal instability of a fluid layer 

heated from below (Section 5.2). This result was confirmed in a qualitative 
manner by the experiments of Donnelly and Schwarz and later by Gollub and 
Freilich. 

Instability of the Toroidal Vortices 
As the Taylor number increases beyond the supercritical value, the toroidal 
vortices become unstable and develop a wavy pattern. However, experiments 
(Coles) have shown that the spatial structure is nonunique: different axial and 
azimuthal wavenumbers are observed at the same Taylor number and the wavy 
pattern depends on the manner in which the Taylor number increases or decreases 
and on the initial conditions of the experiment. 

EXERCISE 

1. Consider a cylindrical column of liquid of radius rotating about its axis with 
a uniform angular velocity Ù. Show that the frequencies of oscillations are 
given by 

^ = ± ( l + A V a T " ' m ' 
where a = ICRQ, and or is a root of the equation 

< ( a ) ± m ( l + A 7 « 2 ) ^ B ( a ) = 0 , 

with Jm{x) being the Bessel's function of the first kind (Chandrasekhar). 
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5.4. Rayleigh-Taylor Instability of 
Superposed Fluids 

The instability the interface between two fluids having different densities and 
accelerated toward each other is called the Rayleigh-Taylor instability. A static 
state, in which an incompressible fluid of variable density subject to a vertical 
acceleration is arranged in horizontal strata and the pressure and the density ρ are 
functions of the vertical coordinate ζ only, is obviously a kinematically realizable 
one. However, whether this state is also a dynamically realizable is related to the 
issue of stability with respect to small disturbances. 

If viscosity is neglected, the flow can be assumed to be irrotational and the 
velocity potential of each fluid satisfies the Laplace equation. The difficulty in 
solving this type of problem, however, arises from the nonlinear boundary 
conditions at an unknown interface. On the other hand, if one assumes the 
disturbance amplitude to be infinitesimal, the boundary conditions can be 
linearized and a solution to the linear problem can be readily obtained. For the 
linear problem of two different inviscid and incompressible fluids in contact and 
subject to an acceleration directed from the heavier fluid toward the lighter one, it 
turns out, for the case of zero surface tension, that any slight disturbance in the 
plane interface grows exponentially with time. The effect of the surface tension in 
the linear problem is to produce a critical wavenumber kc, so that the interface is 
unstable or stable depending on whether the wavenumber is less or greater than 
kc. The surface tension, therefore, has a stabilizing effect on the interface, at 

sufficiently short wavelengths. 

The Linear Problem 

The two fluids are taken to be inviscid and incompressible, and if the motion of 
the whole system is supposed to start from rest, it may be assumed to be 
irrotational. The applied acceleration g' is directed from heavier to lighter fluid 
(see Figure 5.5). Initially, the interface is taken to be disturbed according to a 
simple sinusoidal standing wave with an amplitude a' and a wavelength λ'. 

If y = η denotes the disturbed shape of the interface, then one has with the 
velocity potentials, Φ., such that ν = - Υ Φ , 

Further, one has the following boundary conditions at the interface: 
1. Kinematic Condition: This expresses the fact that a fluid particle initially 

on the interface must stay on the interface during the course of perturbation. This 
requires 

γ$η: ν 2 Φ ; = 0 ; j = l ,2. (1) 

j = l2. (2) 
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y 

X 

Pi 
p!>P 2 

Figure 5.5. The interface accelerated normally and subjected to a perturbation. 

2. Dynamic Condition: This refers to the force balance across the interface. In 
order to derive the dynamic condition, note that in the presence of a surface 
tension 7", at the interface, for equilibrium, the normal stresses acting on the two 
sides of an interfacial element dS' must differ by an amount given by 

where p' is the normal pressure exerted by the fluid, nk is the outward normal to 
dS', and R[ is the principal radius of curvature of dS'. The convention regarding 
signs is that (see Section 1.2) R[ is to be considered positive if the corresponding 
center of curvature lies on side 1 of dS'. For the case under consideration, note 
that 

Using the Bernoulli integral, the dynamic condition at the interface becomes 

y = ij: Φ1ι--(íΦι)2+η-ί Φ 2 , - _ ( ν Φ 2 ) 2 + 

where 

and the initial conditions are 
t = 0: r/ = ε cos x. (4) 

where 

ε = α'(2π/λ'). 

The conditions at infinity are 

y - * ( - i y ~ : Φ;}. - » 0 . (5) 
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All quantities in equations (l)-{5) have been nondimensionalized with respect to a 
reference length λ'/2π, a time (X'/2Kg')112, where primes denote dimensional 
quantities. 

Make a change of variable 
τ = at (6) 

so that (1H3) become 

ySr / : V2<Dy=0; ;' = 1,2 (7) 

γ = η: ση,-η,Φ,, + Φ „ = 0 (8) 

When we linearize the system (7)-{9), (4) and (5) becomes 

- 3 / 2 

y$0: 

y = 0: 

y = 0: 

): V2<r =0; ; = 1,2 

): σητ+φ„. = 0 

): σφ]τ + η-ú(σφ2τ + η) + ^ηχχ=0 

y->(- l ) J oo : <^_>0 

τ = 0: η = cos JC, r/t = 0. 

From (10), (11), (13), and (14), one obtains 
η(χ, τ) = cos J C C O S τ, 

0y(*,y, r) = - ( - l ) J cos χ sin T e " < _ 1 ) y . 

When we use (15) and (16), (12) gives the dispersion relation 

σ 2 = k'+s-l 
s + l 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Note from (17) that: 
1. In the absence of the surface tension, the interface is stable or unstable 

depending on p[ § p'2, 

2 . In the presence of the surface tension, the interface is stable or unstable 
according as k'^ k'c, where 

Ã 
(18) 

indicating a stabilizing effect of the surface tension at sufficiently short 
wavelengths. 
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The Nonlinear Problem 
When the interface is unstable according to the linear theory, the evolution of the 
interface quickly gets out of the linear regime because the predicted growth is 
exponential. It turns out that the nonlinear problem of instability of a vertically 
accelerated horizontal two-dimensional interface between two different fluids is 
one of singular perturbation type. One may therefore use the method of strained 
parameters to develop a uniformly valid solution for the above problem for wave 
numbers near the linear cutoff value. The density ratio of the fluids is now found 
to have a significant role in the stability or growth of the interface. Further, the 
interfacial waves are found to grow even at k = kc despite the cutoff predicted by 
the linear theory so that the instability in question is a subcritical instability. 

Seek solutions to equations (7)-(9), (4), and (5), of the form, for wavenumbers 
near the linear cutoff value kc, 

Φ,(χ,?,τ;ε) = JT£"' φ<;\χ,γ,τ), (19) 
ιι=1 

η{χ,í,ε) = ^ε"ηκ(χ,τ), (20) 

ó(*;ε) = ]£>"-' a„(k), (21) 
n=l 

* 2 (ε ) = * 2 + ε 2 Κ + è(ε 3 ) . (22) 

In (22), one could include an 0(ε) term on the right-hand side, but it turns out to 
be zero anyway. 

Upon substitution of (19M22) into (7H9), (4), and (5), one obtains 
0(ε): 

y £ 0 : φ%+φ^=0, (23) 

y = 0: arflt+$f}=0, (24) 

y = 0: ó, φ\? +77, -5 (ó, φ^ + TJ, ) + k] 77,,, = 0, (25) 

y ->(- l ) J °o : φ?}->0, (26) 

T = 0: 77,= cos χ, Πι Γ =0; (27) 

0 ( ε 2 ) : 

y$0: = 0 , (28) 

y = 0: ó, 772T + 0<2) = 77,, φ™ - φ% ι/, - ó 2 77,Γ, (29) 
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y = 0: σ, 1® + rh-fa & + η,)** η2χχ = \[(φ^ + «>)2] 

+s(a^lU+°^)> ( 3 0 ) 

y - > ( - i y « : 0<2)->O, (31) 

τ = 0: 7} 2 =0, T72 T=0. (32) 

0 ( ε 3 ) : 

ySO: = 0 , (33) 

y = 0: ó, r/J r + ̂  = r/2 - ψ<2> η, - X- ^ „ rj2 + T J , , 

+ C 1, »7u + *f, ¢τ> ~σ2ri2< -σ3η1τ, (34) 

y = 0: ο-, + 7 , 3 - 5 (σ, φ™ + 773) + * 2 η 3 „ = - σ 2 (φ™ + 0^ TJ, ) 

-σ3 - σ, (*<2> τ,, +1®, η2 + 1 0<'>, τ,,2 ]] + (<> 0<2> 

+ ^ C Ðι + <> C + < < + 4 ? U. 

« 2 ? + ^ < /?,) + | 1 7 , „ (35) 

y-»(-iy"-:*i? ->0 , (36) 
τ = 0: 7 ] 3 = 0 , « 3 τ = 0 . (37) 

One obtains for the 0(f) problem, as before for the linearized problem, 

rj,(x, r) = cos χ • cos τ, (38) 

^ ( χ , ν , τ ) = - ( - ! ) ' cos x-sin T-e'('iYy, (39) 

è] = " ' · - · . (40) * 2 + s - l 
i + 1 

The linear cutoff wavenumber fcc is given by 

σ , 2 =0 or j t 2 + s - l = 0 . (18) 

One may expect to construct uniformly valid solutions only for wavenumbers 
larger than kc. But it turns out, upon a consideration of the nonlinear problem in 
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Next, using (38), (39), (46), and (47), the system (33H37) becomes 

y$0: φ%χ+φ™=0. (48) 

y = 0: φ^ =-^γ cos 2*sin 2τ-(σ2-CT 3)cos jcsin τ , (49) 

y = 0: (1 - s)rj3 + k2 η}„ = [-(1 + s)a2 + Κ -1(1 - 5 ) cos χ • cos τ , (50) 

y -»( - l ) ' -« : ^ - X ) , (51) 
τ = 0: r / 3 =0 , r / 3 r = 0 . (52) 
The removal of the secular terms in (50) requires 

(l + s)a2-K + l(l-s) = 0 
Ο 

Γ λ Ί ι / 2 

σ2=± , 
1 + Λ 

(53) 

so that one has 

the following, that this is possible only for wavenumbers greater than kc by a 
definite amount, namely, ε2Κ. 

For wavenumbers near kc, using (38) and (39), the system (28)-(32) becomes 

y § 0 : φ?λ+Φ{&=0, (41) 

y = 0: φιΡ = σ 2 cos χ sin τ , (42) 

y = 0: ( l - 5 ) r , 2 + * c

2 r 7 2 x x = 0 , (43) 

y - » ( - l ) ' o . : 0<2 )->O, (44) 

τ = 0: r j 2 =0 , r / 2 r = 0 , (45) 
from which 

η2(χ, T ) = c o s x ( l - c o s T ) , (46) 

φ{?)(χ,γ,τ) = -(-1)' σ2 cos xsin r-e'('>Yy, (47) 

where σ 2 is now nonzero but is arbitrary in the θ ( ε 2 ) problem. 
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ε 
Linear cutoff 

Unstable 

Nonlinear cutoff 

k 

Figure 5.6. Linear and nonlinear cutoffs for Rayleigh-Taylor instability. 

which is graphically represented in Figure 5.6. 
It is to be noted that the interfacial waves grow even at k = kc despite the cut-

off predicted by the linear theory. On the other hand, the onset of instability even 
below the linear stability threshold when the disturbance has finite amplitude 
implies that this instability is a subcriticai instability. 

EXERCISE 

1. Study the effect of uniform rotation about the y-axis on the Rayleigh-
Taylor instability of the interface between two fluids having different 
densities. 

K<-{\-s): instability, 
8 
3 

Κ = — (1 - s): neutral stability, 
8 

A' > —(1 — 5 ) : stability 

and corresponding to neutral stability, one has 

(54) 

5.5. Kelvin-Helmholtz Instability 

When two superposed fluids of different densities flow one over the other with a 
relative velocity parallel to the plane interface, the instability of the plane 
interface between the two fluid is called the Kelvin-Helmholtz instability. 
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The Stratified Fluid in Nonuniform Streaming 
Consider the character of equilibrium of an incompressible, inviscid, stratified 
fluid when the different layers are in relative motion with velocity U(z) in the x-
direction. The assumption that the fluid is inviscid allows one to choose for U 
any arbitrary function of z. The equations governing linearized disturbances 
superposed on this flow are 

(du ,,du dU} dSp 
p\—+U — + w = - , (1) 
H(dt dx dz) dx 

d5p ,,d5p dp n 

—— + U——+ w — = 0, (4) 
dt dx dz 

du + dv_ + dw_ _ q 
dx dy dz 

Analyzing the disturbances into normal modes, one seeks solutions of the form 

q~q{z)eK '. (6) 

Equations (l)-(5) then give 

ip{n + kxU)u + p(DU)w = -ikx5p, (7) 

ip(n + kxU)v=-iky5p, (8) 

ip(n + k,V)w=-DSp-gSp, (9) 

i(n + kxU)5p + wDp = 0, (10) 

i(kxu + kyv) + Dw = 0, (11) 

where 

D s — . 

Multiply equation (7) by -ikx and equation (8) by -ik , add and use equation 
(11), so that 

ip(n + kxU)Dw- ipkx [DU)w = -k25p, (12) 

where 

*2 

From equations (9) and (10), one obtains, on the other hand, 
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ip(n + kxU)w = -DSp - ig • Dp ! 
n + k.U (13) 

Eliminating δ ρ between equations (12) and (13), one obtains 

D{p(n + kxU)Dw-pkxDUw}-k2p(n + kxU)w = gk2 Dp-—-—. (14) 
η + kxU 

If ρ and U change discontinuously at some point z = zs, then one may obtain 
from equation (14) a jump condition at ζ = zs by integrating equation (14) over an 
infinitesimal element (ζ, - ε, zs + ε) and passing to the limit ε => 0. Noting, 
from the kinematic condition at such an interface, that 

n + k.U 
is continuous at z = zs. 

one thus obtains 

[p(n + kxU)Dw- pkx DUw] = gk2 [p] 
n + kxU , 

(15) 

(16) 

where the rectangular brackets denote the jump of the contents at ζ = zs 

The Case of Two Uniform Fluids in Relative Motion Parallel to 
the Plane Interface 
Consider two uniform fluids of densities p , ,p 2 and constant velocities Ut,U2 

separated by the plane ζ = 0 (Figure 5.7). Let p 2 < p, so that in the absence of 
streaming, the arrangement is a stable one. Equation (14) then becomes 

z§0 : (D2-k2)w = 0, (17) 

from which, upon using (15), 

z f 

Figure 5.7. The interface between two streams accelerated normally and subjected 
to a perturbation. 
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«1.2 = • 

Pl+P2 
From (20), one has for stability 

g(a,-a2) 

k<—^~r ^ττ, (21) 
« . « 2 ( ^ 1 - ^ 2 ) 

so that in the presence of streaming, a statically stable arrangement becomes 
unstable when there are disturbances of sufficiently small wavelengths. 

A Shear Layer in a Stratified Fluid 
Consider a shear layer given by 

U = U0X&nh- (22) 
d 

in a stratified fluid. 
For disturbances propagating along the direction of streaming (i.e., ky = 0, 

kx * 0), equation (14) becomes 

(l + U){D2-k2)W-D2U.W-g°P-?— = 0. (23) 
\k Γ ' ρ U + n/k 

When we 

ρ = ρ0β'βζ, β = const., (24) 

equation (23) becomes 

(U-c)(D2 -k2)w-D2Uw + Jjj^— = 0, (25) 

where the length and velocity have been nondimensionalized using d and U0, 
respectively, and 

kU0 u2 

z<0:wi=A(n + kxUl)ekz, (18a) 

z > 0 : w2 = A(n + kxU2)e'kz. (18b) 

When one uses (18), (16) gives 

P1(n + kIU1)2+Pl(n + kxU])2 =gk{p2-Pl), (19) 

from which 

» = -^{aA+a2U2)±[gk{al-a2)-k2

x α,α 2 ( ί / , -U2)2^\ (20) 

where 

Pa 
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_d_ 
dU 

(l-U2)^ 
K >dU 

ο * 2 2 T- + 
\-U2 U2(l-U2) 

w = 0 (27) 

with the boundary conditions 
U = ±l: w = 0. (28) 

The singular points of equation (27) are at U = ±1,0. In order to determine the 
behavior of the solutions of equation (27) at the singular points U = ±1, put 

i/ = l + y, y<U, (29) 

so that equation (27) becomes 

from which 

w~y\v2=±(k2-j). (31) 
Therefore, a solution of equation (27) regular at U = ±1 must have the behavior 

U = ±l: w~(l-U2)\ (32) 

and it is necessary that Re(v)>0. 
Similarly, the behavior of w at U = 0 is 

νν~{/",ì = - + - Ë / ΐ - 4 7 . (33) 
M 2 2 ' 

Equation (32) and (33) suggest that one seek a solution of the form 

η = υì(\-υ2)νχ, (34) 

where χ is regular at U = ±1. Equation (27) then gives 

Next, note that, if w(z) is a characteristic function of equation (25) with 
c = cr+ ic, (c, > θ), then, vv(-z) is also a characteristic function with the same 
a but with c = -cr+icn since U(z) is odd. Since there can be only one 
unstable mode for a given a, one requires c, = 0. Thus, for neutrally stable 
disturbances, equation (25) becomes 

U{D2 -k2)w-D2Uw + Jj^ = 0. (26) 

One transforms equation (26) using U as the independent variable, an elegant 
idea due to Drazin; noting that 

— = secA2z = l-f/ 2 , ^L = -2U[\-U2), 
dz dz 

equation (26) becomes 
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1 
ΐí + ì + ζ = — + ºÊ~ - J + 

Equation (36) gives 

2ν + ì + 2 = - + >/*2 -J + - V l - 4 7 * 0 . (37) 
2 2 

1 1 
i v + ì — \ = \ κ~ — J — 

from which 

2ν + ì - 1 = ν*2-·/-- + -νΐ-4/ = 0, (38a) 
2 2 

J = k2(\-k2). (38b) 

When we use (37), (31) and (33) give 

v = ^k2, ì = 1 - * 2 , (39) 

so that corresponding to the characteristic value given by (38b) the characteristic 
solution is 

W ~ ( i - u 2 f 2 u ^ 

or 

w - (sec hzf • (ΐ3ηΛζ)('"*λ (40) 

Figure 5.8. The marginal stability curve for a shear layer in a stratified fluid. 

d2

X \ì 2(v + l ) ( / | <fr (2ν + ì + 2)(2ν + ì - ΐ ) 
dU1 \u (\-U2)\dU l-U2 χ { } 

Equation (35) admits a solution χ = const, provided that 

(2ν + ì + 2)(2ν + ì - ΐ ) = 0. (36) 

Note from (31) and (33) that 
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The curve of marginal stability, given by (38), is sketched in Figure 5.8. Note 
that one has 7 m a x =1/4 corresponding to k1 =1/2, and the flow is stable for 
J > 1/4. In the latter case, the stabilizing effect of gravity (associated with the 
density decreasing with height) is sufficient to overcome the destabilizing effect of 
the shear. 

Stability of an Interface Between a Liquid and Gas Stream 
We consider here the stability of the wave motion at the interface between a liquid 
layer and a gas stream adjacent to it. It turns out that the nature of the waves 
generated at the interface depends markedly upon the state of flow of the gas. For 
supersonic gas flow, the gas pressure at the interface is out of phase with the 
surface tension so that a purely oscillatory constant-amplitude motion of the 
interface is not possible. For a subsonic gas flow, however, the stabilizing effect 
of the surface tension gives rise to cutoff frequencies. 

We consider a body force directed toward the liquid, and the effects of the 
surface tension of the liquid. The liquid is assumed to be initially quiescent and of 
infinite depth whose mean level of contact with a gas flowing past it is the 
horizontal surface y = 0 (see Figure 5.9). Both the liquid and the gas are assumed 
to be inviscid, and the effects of the viscous boundary layer at the interface are 
ignored. If the motion of the whole system is supposed to start from rest, it may 
be assumed to be irrotational. If a typical interfacial disturbance is characterized by 
a sinusoidal traveling wave with an amplitude a' and wavelength λ ' , then all the 
quantities in the following are nondimensionalized with respect to a reference 
length λ'/Àπ and a time (λ ' /2π£ ' ) ι / 2 , and the inertial effects of the gas motion 
are characterized by the ratio of the wave speed to the gas speed. The gas density 
p't is small so that the corresponding body force is negligible. The potential 
function of the motions of the liquid and the gas are taken to be, respectively, 

(41) 

y 

X 

Pi 

Figure 5.9. The interface between a gas stream and a liquid. 
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G_(X'G'\ 1 wave speed ^ ^ 
\2π ) U'_ gas speed 

Here, y = Ç(χ,ι) denotes the disturbed shape of the interface, and U'„ and Λ/_ are 
the ambient gas velocity and the Mach number. One has the following boundary 
conditions at the interface 

(1) kinematic condition 

y = 0: <PY = rf,, (44) 

y = 0: ÖÃ=ÄÇ,+Ç×; (45) 

(2) dynamic condition 

where 

€ρ=-2φχ-2δφ„ 

and Ô denotes the surface tension. 
The infinity conditions are 

y=>-oo: (PY =>0, (47) 

y => oo; 0y => 0 if the gas flow is subsonic. (48) 

Since we are looking for traveling waves, let us introduce 
4=x-ct, (49) 

so that (42)-(47) become 

y < 0 : ψχ+φ„=0, (50) 

y > 0 : γ%+Φ„. = 0 , (51) 

y = 0: φ,=-οτ\ξ, (52) 

y = 0: Ö,=(À-&:)ÇÍ (53) 

y = 0: N = c<Pi+ka(l- δε)ÖÎ +^ÇÎÎ, (54) 

We consider here a linearized problem; the latter is governed by the following 
equations 

y<r/: φ „ + φ „ . = 0 , (42) 

y>r j : φ„-(ΜÀ-À)φ„-Μί(2δφÉÁ+Äίφιι)^0, (43) 
where 
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where 

Subsonic Gas Flow 
Let 

γ2 =l-Ml + 25cMl. 

η(ξ) = Αοο&ξ; (57) 

then from (50)-(53), (55), and (56), one obtains 

φ(ξ,γ) = Ace'sin ξ, (58) 

*(£,y) = y ( l - & ) e - » s i n £ . (59) 

Using (57)-(59) in (54), one obtains the dispersion relation 

c» + toQ-2&)_(l + J t , ) a 8 0 t ( 6 0 ) 

from which 

where 

1 Af. 2 >\ 

m 2m J 
±Ä, (61) 

4 = J i t 2 - — + 1, m = 4\-M2_ 
It is obvious that the inertial effects of the gas motion lead to overstability 
(because Re(c) * 0 when Im(c) = 0). 

The cutoff wavenumbers correspond to 

Κ =-^TJ-^V-1. (62) 

Thus, thanks to the stabilizing effect of the surface tension, there are two cut-
off wavenumbers, and all disturbances with wavenumbers above or below these 
values propagate without growth or decay. 
Supersonic Gas Flow 
Let 

η{ξ) = Αε,ξ; (63) 

then from (50)-(53), and (55), one obtains 

Φ{ξ.í) = -%(ι-*)''{ξ'Λ,)> W 
<p(£,y) = - i A c ^ + , i , (65) 

y =>-«>: φγ=>0, (55) 

y » : þ => 0 if the flow is subsonic, (56) 
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where 

A1 = Ml-\-2ScMl. 

Using (63)-(65) in (54), one obtains the dispersion relation 

] = c 2 + iko(l-Scf_k 

A 
(66) 

from which 

(67) 

where 

m 

It is seen that the physical condition is always one of instability, regardless of the 
presence of surface tension. The inertial effects of the gas motion worsen this 
instability. However, interestingly enough, note that the inertial effects of the gas 
motion disappear in the linear model at Μ2 = 2! 

EXERCISES 
1. Deduce the variational characterization of the problem corresponding to 

U = 0. Show, hence or otherwise, that if Dp < 0 throughout the flow, all 
the values of n2 are positive (so the flow is stable), and vice versa. 

2. Show that the stability criterion 7 > l / 4 in Section 5.3 holds for more 
general velocity profiles as well (Miles' criterion). 

We study here the linear stability of a cylindrical column of an ideal fluid, of 
circular cross section, under the action of surface tension. A columnar jet of 
circular cross section is formed when a liquid issues under pressure through a 
small circular orifice into the air when the gravity effect may be neglected. Since 
surface tension tries to minimize surface area the jet may become unstable under a 
small disturbance. The instability causes the jet to disintegrate into drops since 
the latter have smaller surface area. 

The jet fluid is assumed to be inviscid and incompressible and has density p[ 
and axial velocity U' (which is constant). The undisturbed jet is assumed to be 
circular with radius R'. The jet is surrounded by a stagnant fluid which is also 

5.6. Capillary Instability of a Liquid Jet 
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r 

Figure 5.10. The liquid jet. 

inviscid and incompressible and has density p\ (Figure 5.10). The disturbances 
are taken to be axisymmetric (the jet turns out to be more stable relative to 
nonaxisymmetric disturbances, see Exercise 1), and they are considered to be 
sinusoidal waves propagating along the jet axis with wavenumber kR' and 
amplitude a' (which is small). The various quantities are nondimensionalized 
using a characteristic length R' and a characteristic time (ρ'Λ' 3 /Γ'), where 7" 

denotes the surface tension at the interface. Here, primes denote dimensional 
quantities. 

The flow is assumed to start from rest so that it can be represented by velocity 
potentials 

V'R'[Ux + <p(x,r,t)] and V'R'(p(x,r,t), (1) 

where 
7" 

p'Rn 

for the jet-fluid and the surrounding fluid, respectively. If r - 1 = η(χ, t) denotes 
the disturbed shape of the interface, one has 

Ã<1 + η : φ „ + ^ - + Φχχ=0, (2) 
r 

Ã > ϊ + η: φ „ + — + ψχχ=0. (3) 
r 

The boundary conditions at the interface are: 

(1) kinematic condition 

Γ=1 + η: φÃ=η,+(υ + φχ)ηχ (4) 

r = l + jj: φ , = η , + φ χ η χ . (5) 
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(2) dynamic condition 
r = l + Tj: 

(6) 

where 

In order to derive an initial condition, consider an initially sinusoidal 
disturbance (called a varicose deformation) which preserves rotational symmetry 
about the jc-axis, 

r = Λ + ecosfcc, ε = • R' 
(7) 

From the conservation of mass of a column of liquid of length π/k and volume 
π1 Ik, one obtains 

π2 "r 
— = \ n{R + ε cos kxfdx, (8) 

from which 

R= 1 -
.2 Λ 

2 j 

1/2 

so that one has the initial condition 

/ = 0: η = 
f p2 \V2 

1 - — l + ecosfcc, η, =0. 

(9) 

(10) 

Linearize the system (4(-(6) and (10), and look for traveling waves by 
introducing 

ξ = χ - ct 
so that (2H6), and (10) give 

r<l: φ„+^ + φ,,=0, 

r>l: φ„+^ + φ =0, 
r " 

r=\ 

r = l 

r = l 

φ,=(υ-£)ηξ, 

ξ = χ: η = cos kx, η. = 0. 

(Ð) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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One obtains from (12)—(15), 

<t> = -(U-c) 

η = cos Ιίξ, 

sin Ι(ξ, 

(18) 

(19) 

> = -c sin k%, (20) 
K0(kr) 
Kt(k) 

where /„ and Kn are modified Bessel functions of first kind and second kind, 
respectively, and order n. 

Using (18)-(20) in (16), one obtains the dispersion relation 

(U-c)2ak + sc^k = k2-1, (21) 
where 

From (21), 

K0(k) 

c = 
a U±. 

j*1-ή *αâ 
k(a + sfi) (a + sfif 

U2 (22) 

Note, from (22), that: 
1. In the absence of an axial flow in the jet, the jet is stable or unstable with 

respect to an axisymmetric disturbance depending upon whether its wavelength is 
less or greater than the circumference of the jet, 

2. The physically significant effects of the axial flow on the linear-stability 
characteristics of the jet arise only in the presence of a fluid surrounding the jet. 

3. The linear cutoff wavenumber corresponds to the positive root kc of 

,,2 (*αâυ2^ 
k-l = 0 (23) 

and the destabilizing effect of the axial flow is obvious by observing from (23) 
that ke>l, while k = 1 is the linear cutoff value corresponding to the case 
U = 0. 

4. In the absence of the axial flow, on the other hand, it is clear that the 
presence of the fluid surrounding the jet has no effect on the stability criterion for 
the interface, but merely reduces the frequencies of oscillation by a certain 
amount. 

The nonlinear problem of capillary instability of a liquid jet is also one of 
singular perturbation type. However, despite many attempts, a fully satisfactory 
perturbatory treatment of the problem for wavenumbers near the linear cutoff 
value kc = 1 does not seem to be available yet. Nonetheless, the instability in 
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question appears to be a subcritical instability, like the Rayleigh-Taylor 
instability. 

EXERCISE 

1. Show that the jet is more stable with respect to nonaxisymmetric 
disturbances. 

5.7. Stability of Parallel Flows 

The most extensive discussion of hydrodynamic stability has been the study of 
inertial instabilities in parallel flows. The physical cause of instability of parallel 
flows is a bit suble compared with several other kinds of instability such as 
thermal instability, interfacial instability, etc., we considered before. The basic 
premise of the theory that the stability or instability of infinitesimal disturbances 
depends only on their frequency or wavelength and on the Reynolds number was 
confirmed by the experiments of Schubauer and Skramstad showing that the 
transition to turbulence was preceded by this instability. 

The subject of hydrodynamic stability of parallel flows remains, however, well 
known for its controversial nature. The effect of viscosity in parallel flows is one 
such example. Intuition would suggest that viscosity is essentially dissipative in 
nature and therefore provides a mechanism for damping out the disturbances. If 
one further observes that instability generally occurs at large Reynolds numbers, 
one might reason that the principal features of the mechanism of instability may 
be obtained by first neglecting the viscous effects and then incorporating them 
later as a stabilizing influence. 

But experiments show that viscous effects can also serve as a cause of 
instability. In the case of plane Poiseuille flow, Rayleigh's criterion would 
certainly indicate stability in the absence of viscosity. The theory does show that 
the flow is stable with respect to disturbances of a given wavelength, provided 
that the Reynolds number is high enough. However, experiments show that, for 
wavelengths beyond a certain lower limit, there is always a finite range of 
Reynolds number for which the motion is unstable. This is so since, by some 
means, viscosity also promotes the transfer of energy from the basic laminar flow 
to the disturbance, which is thereby amplified. Physically, the dual action of 
viscosity is connected with the fact that its effects are diffusive as well as 
dissipative in character; consequently, it can assist in spreading any local 
concentration of vorticity to neighboring parts of the fluid. This diffusive action 
materializes since the theory shows that the supposed regions of concentrated 
vorticity do exist in the disturbed flow. (Indeed, Rayleigh believed that an 
investigation in which viscosity is altogether ignored may not be applicable to 
the limiting case of a viscous fluid when the viscosity approaches zero.) 
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(1) 

The Orr-Sommerfeld Equation 
Consider two-dimensional flows of an incompressible fluid between parallel 
planes. Let χ denote the distance parallel to the flow, y the distance normal to the 
planes, and ζ the distance normal to the flow, but coplanar with the bounding 
planes. Let («,v, w) be the corresponding velocity components. Let the various 
flow variables be nondimensionalized using a reference length L and a reference 
velocity U and mass density ρ. The Navier-Stokes equations are then 

du du du du dp 1 
— + u — +v — + w— =—+ — VV 
dt dx dy dz dx RE 

dv dv dv du dp 1 „ 2 

— + u — +v — + w— = -^- + — ν 2 υ , (2) 
dt dx dy dz dy RE 

dw dw dw dw dp 1 
— + u — +v — + w— = --^- + —~ VV (3) 
dt dx dy dz dz RE 

— + — + — - 0 (4) 
dx dy dz 

where 

dx> dy* dz2' E μ ' 

Consider perturbations about a mean parallel flow u(y) parallel to the x-axis, 

u-U + u', V = v', w = w', p = p + p'. (5) 

When we use (5) and linearize the perturbations, equations (l)-(4) give 
du' _du' ,du dp' 1 „ 2 , 

— + K — +v'— = —%- + — VV, (6) 
dt dx dy dx RE 

dv' _dv' dp' 1 „ 2 -— + u—— = —f- + — V 2 u 
dt dx dy RE 

dw' _dw' dp' 1 ^ 
—— + u —— = —ζ- + — V 
dt dx dz RF 

(7) 

(8) 

dx dy dz 

In the theory of normal-modes, one looks for solutions of the form 

{ M ' ,u ' , W ' ,p '} = { M ' (y) , U ' (y) ,vv ' (y) ,p ' (y)}e '^- a c ' ) , (10) 

where a and β are real, and c = cr+ icj so that the disturbances grow or die away 
in time like eac''. When we use (10) and eliminate p', equations (6)-(9) give 
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(« - c)(D2 - γ2) υ ' - v'D2U = — — ( D 2 - γ2 f υ ' , (11) 
ccRE 

(M - c)(pV - ανν') - — υ ' £>« = — — (D 2 - y2 )(pV - crw'), (12) 

iau' + ipV + £M/ = 0, (13) 

where 

D = —-, 7 * Î α * + / 3 2 . 

The boundary conditions for a flow bounded by rigid planes at y = 0,1 are 

y = 0,l: u',v',w' = 0 (14a) 

or, using (13), 

y = 0,l: v',Dv' = 0. (14b) 

From equation (12), note that it is possible to make the transformation 

βι*'-οην' = γà',αûε = γΙΙÅ (15) 

to arrive at an equivalent two-dimensional problem (/J = 0). Thus, the three-
dimensional evolution of a disturbance at a Reynolds number RE is equivalent to 
the two-dimensional evolution of the disturbance at a lower Reynolds number RE 

(because it is only the component of the mean flow in the direction of 
propagation of the disturbance that matters). In the case of neutral disturbances 
(c, = θ), therefore, the minimum critical Reynolds number occurs for a two-
dimensional disturbance, so that in seeking a sufficient criterion for instability 
one may consider only the two-dimensional disturbances, which greatly 
simplifies the analysis. This is the so-called Squire's Theorem. (Alternatively, 
one may also show that in an unstable parallel flow, the disturbance with the 
greatest rate of amplification occi at a given value of RE is two-dimensional.) 
However, Squire's Theorem does not imply that the most dangerous disturbance at 
any Reynolds number about the critical value necessarily two-dimensional. 

Using Squire's Theorem and introducing 

u' = ^ , υ' = -úαφ, (16) 
dy 

where φ is the amplitude of a stream function 

ψ = φ(γ)β

,φ-"\ (17) 

equation (11) gives the Orr-Sommerfeld equation 
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(« - c)(0" -α2 ψ)- u"<f> = — 1 — ( φ " " - 2α2φ" + α* φ), (18) 
aRE 

where the bar over u has been dropped without causing further ambiguity, and the 
primes now denote differentiation with respect to y. 

The boundary conditions (14) become 
y = 0,l: φ,φ'^0. (19) 

The characteristic-value relation for this problem then takes the form 

F(a,c,RE) = 0. 

In the usual temporal stability problem, in which one considers the growth of a 
disturbance in time, one takes a and RE to be real and given. The characteristic-
value relation above then defines a discrete set of characteristic values 
Cj,(j = 1,2,...). If one writes 

c = cr(a,RE) + ici(a,RE), 

then the curves of neutral stability are given by c,(a, RE) = 0. 

The Inviscid Solutions 
In the inviscid limit, (18) and (19) become 

{u-c)(D2-α2)φ-Ο2ιιφ = 0, (20) 

y = 0,l: 0 = 0, (21) 

where u is now an arbitrary function of y. 
Note that, in the inviscid limit, the order of the equation for φ has dropped by 

two, so one needs to drop the boundary condition of no-slip at the walls. 

Next, note that unless 

(«") =o 
V /use 

the point y = yc, where u = c, in the complex y-plane is a regular singularity of 
equation (20). Otherwise, the inviscid system (20) and (21) would have a well-
defined characteristic-value problem. The singular nature of equation (20) is also 
one of the chief difficulty in constructing uniformly valid asymptotic solutions to 
equation (18). Besides, if c, = 0 ore, < 0 , it turns out that a regular solution of 
equation (20) satisfying the boundary conditions (21) does not exist if 0 < yc < 1. 

Corresponding to a = 0, equation (20) has two solutions: 
0 1 O = K - C , 

dy 

o ( " - c ) 

(22) 
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Seeking solutions to equation (20), then, in ascending powers of α 2 , 

Φι =0io+a2*ii + -.l 
φ2 =Φ20 + α1φη + -,\ 

(23) 

and noting that equation (20) can be written as 

n = l,2, 

one obtains 

ο ν / ο 
« = 1,2. (24) 

Now, in order that 0,, φ2 may be valid approximations to the regular solution 
of equation (18) all along the path of integration between the point y = 0 and 
y = y on the real axis, that path must lie wholly in a region in which the 
asymptotic expansions of the regular solutions for large values of RE are valid. 
But, within the framework of the inviscid problem alone, it is not obvious in the 
normal-mode approach how should one negotiate the point y = yc, particularly 
when c is real. 

An efficient way to resolve this difficulty is to pose the problem of stability as 
an initial-value problem. (Another advantage of the latter approach is the 
revelation that the singularity at u = c leads to a continuous spectrum of 
characteristic values that are in addition to the discrete spectrum of characteristic 
values, which may be real or complex.) Consideration of the initial-value 
problem (see below) or the viscous problem (see below) shows that the path of 
integration from y = 0 to y is continued around the critical point y = yc (when c 
is real) from below the real axis in the complex y-plane, when u'c > 0, and vice 
versa. 

Next, let us obtain two linearly independent solutions in the neighborhood of 
the point y = yc. First, write (« — c) as a Taylor-series expansion around the 
point y = yc, 

u-c = (25) 

where 

n = y-yc 

so that equation (20) becomes 

ηφ ^• + α2η φ = 0. (26) 
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Since η = 0 is a regular singular point of equation (26), seek a solution of 
equation (26) of the form (Frobenius' method) 

0 I = » f t,W> ri>0. (27) 

By substituting (27), equation (26) gives 

n=-i 
from which 

[ a 0 ( m - l ) , 7 i ] r f - ' + a , ( m + l ) m — c - a0 

a„^(m + nXm + n + \) —c

7an -α2α„_, η — = 0 . (28) 

Equating the coefficient of each power of η to zero, one obtains from (28), first, 
the indicial equation 

a 0 ( m - l ) m = 0, (29) 

from which, since a0 * 0, 

m = l or 0. (30) 
Next, one obtains from (28) 

2 «' 

so that 

0I(n) = FLO 
1 u" 2 

2 w„ 

(31) 

(32) 

Now, note that since the two roots of the indicial equation (29) differ by an 
integer, the other linearly independent solution is given by 

(33) 

By substituting (33), equation (26) gives 
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a\ao^+ · jln77 + 2 a a 0 | l + ^ -r ,+ - U 

1 I 1 
2 «' 

"c" 1 «Γ 2 

2 «, 

4 Ó ì π - « 2 Ó ì " + Ι = Ο . (34) 

Equating the coefficient of the term r/° to zero, one obtains 

— 7 bQ+aa0=0. 

By using (35), (33) may be rewritten as 

<t>2(ri) = 

(35) 

(36) 

Note that because of the singular nature of φ2(η) at least in the neighborhood 
of yc (where it is discontinuous and multivalued), it cannot be a uniformly valid 
asymptotic approximation to any solution of equation (18). Further, the main 
problem here is to decide the proper branch to be taken in connection with the 
logarithmic singularity at yc. This reduces to the determination of the domain of 
the complex y-plane (excluding the neighborhood of yc) in which (36) is 
asymptotic to a solution of equation (18). If one assumes the neutral modes as the 
limit of unstable modes, then one has the following analytical continuation for 
In η: 

In η 
In η, η > 0, 

ln |r j | - / /r , rj<0. 

The Initial-Value Problem: Case-Dikii Theory 
In the normal-mode approach, each disturbance is resolved into dynamically 
independent components and each mode of perturbation is assumed to be of the 
form times an amplitude function of y. One then searches for those values 
of c for which the linearized equations of the flow with appropriate boundary 
conditions possess nontrivial solutions. If there are admissible values of c with 
Im(c) > 0, the perturbed basic flow is said to be unstable. Otherwise, it is stable. 
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One may seek to justify the normal-mode procedure by following the 
subsequent time evolution of a small perturbation, introduced, say at f = 0, 
through a normal-mode expansion (assuming that the normal modes are 
complete). If any of the normal modes have lm(c)>0, the perturbation would 
grow, and one may then claim instability in the physical sense. But this also 
indicates that the problem of hydrodynamic stability is really an initial-value 
problem and should be, strictly speaking, posed as such. In particular, one really 
wants to know whether an initial perturbation grows in time. In most problems 
the initial-value-problem approach gives results that complement those due to 
the normal-mode approach. It turns out, for instance, that in an initial-value-
problem analysis, one cannot miss the modes associated with a continuous 
spectrum of characteristic values unlike that in a normal-mode analysis. But, a 
notable merit of the initial-value-problem approach is its ability to resolve some 
of the difficulties that arise (as we saw previously) in the course of a normal-
mode analysis, without having to go outside the inviscid model for a fluid. 

Such considerations are not peculiar to fluid dynamics. A classical example in 
other fields is that of longitudinal plasma oscillations in plasma physics. The 
ambiguities that arise in a straightforward Fourier-transform approach are 
resolvable readily when one poses the issue as an initial-value problem, as 
Landau did. 

The initial-value problem corresponding to (20) and (21) is 

u 

a dt -or » - M ' > = 0 

with the boundary conditions 
y = 0,l: φ = 0 

and the initial conditions, say, 

ί = 0: φ = φ0. 

Upon Laplace transforming, according to 

(37) 

(21) 

(38) 

φ{γ) = ]ε-"φ(γ,Þþ, 

(37), (38), and (21) give 

is 
u 

a where 
-or φ-α"φ=Î(γ), (39) 

*ω=-^(*ο'-«2*ο)· 
a 

One may construct an explicit solution to (39), using the Green-function method: 
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Hy)=] ViO0 r,(«) 
«(«)--

a . 

1 

Ii 
(40) 

where 

Ή) — Μ 

F,(0) = 0, y2(i) = o, 

(̂̂ i. 2̂) = ¥i(y) ¥'i{y) - W'i{y) Ψ2 (>)· 

One may construct ψ,, ψ2 from the two linearly independent solutions 0,, φ2 

as follows: 

Thus, 
^=£(y)?20)-a(i)fc(y)-

^{ψι,ψ2) = -ψ(φι,φ2)Ä, 

where 

Ä = 0,(0) 02(O) 
0.(0 020)' 

The solution to (37), (38), and (21) is, then, given on inversion, 

0M = ^ T \*{y)e"ds. (41) 

The path of integration in (41) corresponds to the Bromwich contour, which 
lies to the right of all the singularities of </>(y). In the absence of singularities 
other than the one at u = is/a on the imaginary axis, one may push the path of 
integration along the imaginary axis (5 0) and continue around the pole at 
u = is/a from the right, if u'c > 0, and vice versa. 

In the normal-mode formulation, s => -iac, this would imply that the path of 
integration is continued around the critical point y = yc (when c is real) from 
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Ο Re(y) 

Figure 5.11. Indentation of contour of integration at y = yc. 

below the real axis in the complex y-plane when u'c > 0, and vice versa (see 
Figure 5.11). 

Other poles of <j>(y) arise at 

ψ(ψι,ψ2) = 0 or Ä=0 for Re( i )>0, 

which is simply the characteristic-value relation for the discrete spectrum of 
normal modes with Im(c) > 0. 

Thus, one obtains from (41) 

1 '~+lL 
<Ky,t) = yr \<!>{y)es'ds 

Σ (exponentials growing like e - a l l m ( ' r ) l ' j . (42) 
discrete 
spectnim 

Consider the asymptotic behavior of the first term on the right-hand side in (42). 
The integral picks up contributions from the poles at u = is/a = c. Recall, from 
(32) and (36), that φ, and φ2 in the neighborhood of the singular point y = yc are 
given by 

2V»cJ 

<t>2(y) = £ ln (y -y c ) *.O0 + 

(43) 

Thus, the contributions to the integral come from a simple pole at « = c and 
from the logarithmic term in φ2. Upon inversion, this simple pole produces a 
simple exponential e'm' (c real), while the logarithm produces a term behaving 
like 1/r. Therefore, for large t, the dominant contribution to the solution will 
come from the discrete spectrum, if there is one, and from the term growing like 
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e«[Hc)]/ for the largest value of a[lm(c)], with lm(e)>0. This means that the 
continuous spectrum does not correspond to instability, and the discrete spectrum 
alone is associated with instability. Thus, in seeking a criterion for instability, 
one may use the method of normal modes and ignore the continuos spectrum. 

Example 1: As an example of the initial-value problem approach, consider a 
plane Couette flow between infinite parallel plates at y = 0 and 1, with 

u(y) = y. (44) 

(1) The Normal Mode Approach: For the present case, one has in the normal-
mode approach 

0 " - a 2 0 = O (45) 

y = 0,l: 0 = 0. (21) 

The solution is 
0 = 0. (46) 

This does not mean, however, that an inviscid plane Couette flow has no 
nontrivial solutions. In going from equation (20) to equation (45) we have 
eliminated the modes corresponding to a continuous spectrum of characteristic 
values. These can be recovered by posing an initial-value problem. 

(2) The Initial-Value Problem Approach: Fourier transforming in x, and 
Laplace transforming in t, as 

j{<x,y,s) = ]e-"dt ]e-,axw{x,y,t)dx, (47) 
ο 

one obtains from (45) and (21) 

φ»-α>φ=Κζ^, (48) 
i + i'ory 

y = 0,l: 0 = 0, (21) 

where 

f = 0: 0 = 0O. (38) 

Upon inverting the Laplace transform, equation (48) gives 

φ"-α2φ = ε-α>'(φÆ-α2φ0). (49) 

Since there are no nonzero 0O, such that 

φ'ο'-<χ2φ0=0, 1 

y = 0,l: 0 O =O, 
(50) 
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the right-hand side in equation (49) cannot be identically zero. What is giving us 
relief now is exactly what caused us dismay in the normal-mode approach! 

In order to solve equation (49) with the boundary conditions(21), let us use the 
Green-function method; let 

( J 2 

dy2 •a G(y,y) = S(y-y), 

y = 0,l: C(y,y) = 0, 

y = y. [G] = 0, 
dG 

dy 
(51) 

where the rectangular brackets denote the jump of their contents at y = y. Thus, 

sin hay • sin Aa(l - y) 
a sin ha 

sin hay • sin ha(l - y) G{y,y) = 

a sin ha 

-. y<y, 

-. y>y-
(52) 

Then 

0(a,y,f) = J G ( y , y ) e - , a 

V dy 
dy. 

Consider the case wherein 

^ - « > 0 = c5(y-y0). 

(53) 

(54) 

ζ = - ^ ^ - α 2 φ , (55) 

Since the vorticity is given by 

L[£± ~I. 
a{dy2 

(54) corresponds to introduction of a concentrated vorticity at y = y0 at t = 0. 
When we use (54), (53) gives 

0{a,y,t) = 

sin/iory0sin^o:(l-y) _i c %, 
. . e < y<> y> a sin ha 

sin hay • sin ha(l-y0) _,. 
e , y0 >)'• 

(56) 

α sin Λα 

Upon inverting the Fourier transform, one obtains 

1 ur(x,y,i) = — \e"*t(a,y,t)da. 
2/Γ 

(57) 

Closing the contour of integration along the real axis by an infinite semicircle 
in the lower half plane, the contributions come from the poles at 
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a = -inn, 

Thus, one obtains from (56) and (57) 

η = 1,2,3 

sin nrcy0un nn{\-y) „„(x.yol) 

ηπ 
sin n n y s i n ηπ(\-γ0) „ x ( x _ y o , } 

ηπ 

y0 < 

y0 > y-

(58) 

Since y 0 can take any value between 0 and 1, (58) represents a set of 
continuum modes. Note that as r = > ° ° , these continuum modes decay 
exponentially and not as a power of t. 

However, the above continuum modes are not normal modes (associated with a 
discrete spectrum of characteristic values). And it should be noted that whereas a 
well-behaved initial perturbation will decay according to a power law, special 
singular solutions, like the one above, can behave differently. 

Let us reconsider what has happened. Corresponding to 

two classes of solutions occur. 

(1) Discrete solutions, which satisfy 

£ - « > - 0 
dy 
y = 0,1 : φ = 0 

This class is empty for a plane Couette flow. 

(2) Continuum solutions, which satisfy 

0, (59) 

(60) 

from which 

dy 

y = 0,l : 0 = 0, 

<P = G(y,c) 

(61) 

(62) 

with a continuum spectrum of characteristic values c, running between 0 and 1. 
The normal-mode approach recognizes only the first possibility and ignores the 
second possibility and therefore produces only a trivial result for a plane Couette 
flow. 

Inviscid Stability Theory 
Discontinuities in the Mean Flow 
Note that for the basic flow we have 
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d2u = dp 
μ dy2~ dx' 

where dp/dx = constant. Thus, the class of strictly parallel flows is rather limited 

since u can at most be quadratic in y. However, for an inviscid fluid, u(y) can be 

an arbitrary function of y and even discontinuities are admissible. Thus, if u or u' 
is discontinuous at y0, say, then the pressure must be continuous at the material 
interface with mean position at y = y0. Therefore, noting that 

(« - c) φ" -α"φ = {(« - c) φ' - α'φ) = {/>}', 

one has 

[{α-ε)φ'-α'φ} = 0 (63) 

at y = y0, where the square brackets denote the jump of their contents at such a 
discontinuity. Also, the normal velocity of the fluid must be continuous at the 
material interface. Let this interface be represented by 

y = y0 + ξ{x,t), (64) 

where 

Then, one has 

ia[x-ct) 

v' = K = K + u f = ia(u-c)4. (65) 
dt dt dx 

Noting υ' = αφ, one obtains 

Γ þ 1 
(66) 

at y = y0-

Explicit solutions of the characteristic-value problem of (20), (21) are difficult 
to find in practice for smoothly varying functions u(y). However, when u(y) is a 

piecewise linear function, the situation is tractable, and one can then join up such 
solutions by using conditions (63) and (66). As an illustration, consider the 
Kelvin-Helmholtz instability problem of two uniform fluids in relative horizontal 
motion separated by a horizontal boundary. 

Example 2: Let two uniform fluids of velocities i / , , t / 2 be separated by a 
horizontal boundary at y = 0 . One has 

y^O: φ'^-α2φι2=0, (67) 

from which, noting that 

y =>±°°: φι2 => 0 
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and using (66), one obtains 

y>0: 0 , = A ( t / , - c ) «Γ0*/! 

y<0: 42=A(UI-c)e'*.]' 

When one uses (68), (63) gives the dispersion relation 

( i / , - c ) 2 + ( l / 2 - C ) 2 = 0 , 

from which 

- o c = i ( i / 1 + i / 2 ) ± ^ | i / 1 - i / 2 | , 

so that such an interface is always unstable. 

It is possible to effect some inhibition of the instability of such an interface by 
introducing a vorticity appropriately in the two streams. Let us introduce a 
constant vorticity ω (along the z-direction) in the two streams. The velocity 
distribution in the two streams in the steady state is, then, given by 

(68) 

(69a) 

(69b) 

y*0: ul2=Ul2 1 -

When one uses (68) and (70), (63) gives the dispersion relation 

(i/, - c ) 2 + (U2 -cf - ωα{υ, - U2) = 0, 

from which 

-ac = -(U.+U,)±-
2 2 

2ω 

a 
( t / , - i / 2 ) - ( t / , - t / 2 ) 2 

1>/2 

(70) 

(71a) 

(71b) 

which shows that if the ambient shear is opposite in sign to that of the interfacial 
shear, it is possible to inhibit the instability of such an interface. In order to 
understand this result physically, let us recall that the instability of an interface 
between two streams is caused by the relative motion of the fluids tangential to 
the interface - in other words, an interfacial shear. One may then expect that any 
agent, such as an ambient shear, that opposes the interfacial shear, effectively, 
reduces the relative motion of the fluids at the interface, and hence, would inhibit 
the instability of the latter. 

Odd and Even Solutions 

Next, the solutions for the disturbances exhibit certain symmetries when the basic 
flow is symmetric, i.e., say the flow domain is transformed from (0,1) to (—1,1), 
and u(y) is an even function. In that case, if φ(γ) is a characteristic function for 
a given a, it follows that the even part 

(72) 

and the odd part 
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Φο=ú[Φ(>)-Φ(-ν)] (73) 

of φ are also characteristic functions for the same c, α . It can be shown further 
that either φ0 or 0f is identically zero. In order to see this, multiply equation (1) 
for φι by φ0 and subtract φ, times the corresponding equation for φ0. Then, one 
obtains 

Thus, in general, φ0 and φί are linearly dependent, which is possible only if one 
of them is identically zero. Thus, it follows that a characteristic function is either 
odd or even, except when c is real. 

In fact, both even and odd characteristic functions can be found for the same 
basic symmetric flow, but they have different characteristic values of c for each 
α . The oddness and evenness of φ allows one to reduce the effective field of flow 
to the half domain, 0 < y < 1, applying the symmetry condition φ' = 0 (or 
0 = 0) at y = 0 and the original boundary condition φ = 0 at y = 1. 

Next, suppose that the basic flow profile is antisymmetric, with the flow 
domain (0,1) => (-1,1) and odd u(y). Then, for each characteristic function φ 

with a characteristic value c, there is a characteristic function 0*(-y) with a 

characteristic value c* =-cr+ici for the same a. When the characteristic 
solution is unique, the Hermitian symmetry implies that cr = 0 , as we saw in 
Section 5.5, and 0*(-y) = 0(y)- Otherwise, there may be a pair of characteristic 
solutions with phase velocities ±cr(a) and the same c,(or), with one function 
being the Hermitian conjugate of the other. 
Self-Excited and Damped Disturbances 

It would appear that, for the inviscid problem (20) and (21), it is meaningless to 
distinguish between self-excited and damped disturbances, because for each 
characteristic function with characteristic value c, for a given a , there is another 
complex conjugate characteristic function φ' with characteristic value 
c* = c r - icf for the same a. (This is evident by taking the complex conjugate of 
(20) and (21).) Thus to each amplified wave there would be a damped wave and 
vice versa, which merely signifies the time symmetry of the problem, comprising 
periodic motion of inviscid fluid with steady boundaries. However, this is not 
correct since the inviscid equations have meaning only as the limiting case of the 
complete viscous equations, and the latter are not invariant under complex 
conjugation unlike the inviscid problem. 

Φ,Φ'»-φ0Φ"=® (74) 

where u * c. Therefore, 

Φ,Φ¼ - ΦοΦ', =const- = 0 • (75) 
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Local and Global Necessary Conditions for the Existence of Non-
neutral and Neutral Modes 

THEOREM: If the flow possesses a non-neutral mode of disturbance with a 
finite wavelength, the mean velocity profile has an inflection point at some point 
y = ys, where 0 ^ y < 1, i.e., it satisfies a local necessary condition 

(«") = 0 · 
\ />·=>·, 

Furthermore, in the case of a neutral mode, one must have u(ys) = c, c = cr. 

PROOF: Multiply equation (20) by φ', the complex conjugate of φ, and 
integrate from 0 to 1; then, using (21), one obtains 

-\[^f + a^\2]dy = \ ^ - ^ \ 2 d y . 

The imaginary part of equation (76) gives 

' \u-ci 

(76) 

(77) 

If c, / 0 , it follows that u" must change sign at one or more points in the flow 
field. Assuming that u" is continuous for 0 < y < 1, there must be at least one 
point in the interval (0,1), where one has 

(«") = 0 - (78) 

Next, in order to show, in the case of a neutral mode, that one must have 
u(ys) = c, c = cr, multiply equation (20), written in the form 

u-c 
-a' 0 = 0, (79) 

by φ' and subtract from the resulting equation its complex conjugate, and then 
there follows 

d_ 
dy 

^ ' 0 * - 0 ' > j - ( c - c * ) 
M " - C I J 

M 2 = o . 

When we introduce the Wronskian, 

W ^ ( # " - 0 ' 0 * } , 

equation (80) gives 

dW 
dy -c. 

\ \ u ~ c \ J 
M 2 = o . 

(80) 

(81) 

(82) 
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If we let c, => 0 in equation (82), we obtain results corresponding to neutral 
disturbances. Thus, 

W = const. (83) 

except possibly at the critical point yc (where u = c, c = cr), which may now lie 

in the real interval (0,1). If it does (we shall soon show that it must), W has a 

discontinuity at the point. Integrate equation (82) from y~ to y*, then 

(84) 

where the subscript c refer to the values at the point uc. Note that this is of the 
form 

- Α(ξ) 

Let 

1 + 

χ-ξ 

(85a) 

so that 

or 

Ely 

/ ( * , 0 + ) = A(*)1im f - ^ -
£=>0 -C/> 

/ ( x , 0 + ) = 2A(x)j lim -ι ε tan — 

Taking the limits y => 0*, ε => 0 in such a way that e/y=>°°, one finds 

l(x,0+) = Kh(x). (85b) 

Thus, as C; => 0 , equation (84) gives 

w{y:)-W(y:) = [W}c = n!£\<j>c\ (86) 

provided in this limit, c; > 0 , and u* > uc. Equation (86) shows that if a neutral 
mode is to exist, there are two possibilities: 

(1) either all the jumps [ W ] c = 0 , i.e., «" = 0 at all points where u = c, 
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Adding 

o l « - c l 

to the left-hand side of equation (87), one obtains 

0 I U C I 0 

from which we obtain a global necessary condition for the existence of a non-
neutral or neutral mode 

u"(u-us)<0 (89) 

where, for 0 < y < 1, 

= 0 (90) 

and 

«,=«(>,)• 

In particular, if u{y) is a monotonic function, and u" vanishes only once in the 
flow field, 0 < y < l , a combined local and global necessary condition for 
instability is that 

u"-(u-us)<0 (91) 

(2) several of the jumps [W]c cancel out, then u" changes sign at the various 
points where « = c, c = cr. 

If the mean flow profiles are monotonic, then, the first possibility prevails. In 
this case, equation (20) has regular solutions which are physically possible in the 
absence of viscous effects. 

Application of this result to plane Poiseuille flow «(y) = l - . y 2 shows that 
the latter is globally stable. For plane Couette flow u(y) = y, equation (76) 
shows that φ Î 0 . Thus, in the inviscid case, plane Poiseuille and Couette flows 
are stable to linear disturbances. 

A Global Necessary Condition: We next deduce a global necessary condition 
for the existence of a non-neutral or neutral mode. 

The real part of equation (76) gives 
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throughout the flow field 0 < y < 1, with equality valid only where y = ys 

(Fjortoft's Theorem). Physically, this means that the magnitude of vorticity | « ' | , 
at the point of inflection, ys, must be a maximum. 

It is not difficult to find a counterexample to the sufficiency of the above 
necessary condition for instability involving an inflection point in the mean 
velocity profile. 

(92) 

Example 3: Consider a mean flow given by (Drazin and Howard) 

yl<y<y2: u = siny 

for which 

D2u = 0 wheny = ys = ηπ; n = Q, ± 1 , ± 2 (93) 

If there is no value y, in the interval (yl,y2), the flow is certainly stable by the 
above necessary condition for instability. If there is at least one value, one may 
suppose ys = 0 without loss of generality, so y, < 0 < y2. Since u(y) is odd, for 

each characteristic function φ(γ) with a characteristic value c, there is a 
characteristic function φ(-γ) with a characteristic value c =-cr+icit for the 
same a. The uniqueness of the characteristic solution again implies that cr = 0 . 
Thus, one has for the odd solution, from equation (20), 

Ω2φ + (À-α2)φ = 0, (94) 

y = y „ y 2 : 0 = 0 , (21) 

from which 

where 

φ = sin- iy-*) 
yi-yi 

a - 1 
η π 

1V2 

(95) 

(96) 
( Λ - 3 Ί ) 

for each positive integer η < (y2 - y j / τ τ . It then follows that the flow is unstable 

if (y2 - y,) > Ð, but stable otherwise, although the point of inflexion lies at 

y = 0 in the field of flow. This problem also illustrates the stabilizing effect of 

the walls on the flow. 

Howard's Semicircle Theorem 

We next deduce a Semicircle Theorem for non-neutral disturbances. First 
construct a function g(y), which is regular in the interval (0,1): 
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u(y)-c 

Then, equation (20) becomes 

j-[(u-c)2g']-a2(u-cYg = 0. (98) 

Multiply equation (97) by g\ where g' is the complex conjugate of g, and 
integrate between (0,1), then 

) ( « - c ) 2 { U ' | 2

+ a 2 M 2 } d y = 0, (99) 
ï 

where we have transformed the first part by partial integration. 
THEOREM: If cj * 0, c r must lie within the range of u. 

PROOF: The real and imaginary parts of equation (99) give 

\{(u-cr)2-cf}{\g'\2

+a>\g\2}dy = 0 (100) 
ï 

and 
ι 

c, J (K -c r ) { |g ' | 2 +a 2 | g | 2 }<fy = 0 . (101) 
ï 

Equation (101) shows that cr must lie within the range of Ì if c, * 0 . 

THEOREM: The complex wave velocity for a self-excited mode lies inside the 
semicircle in the upper half of the c-plane, which has the range of ti for its 
diameter along the real axis. 

PROOF: From equation (101), for c, * 0 , 

\u{\g'\2 +a2\g\2}dy = ]cr{\g>\2

 +a2\g\2} dy. (102) 
U 0 

When one uses equation (102), equation (100) becomes 

\^{\g'\2

+a2\g\2}dy = \{c2

+c2){\g'\2

+a2\g\2}dy. (103) 
0 0 

Using (102) and (103) in the inequality, 
ι 

0>\(u-umm){u-um„){\g'\2

+a2\g\2}dy (104) 
ï 

one obtains 
1 

J {\g'f + « 2 U Γ } [{c2 +cf)-{umm+umix)cr+umnum2X]dy<0, (105) 
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1 
2 C r - - ( " m i „ + « m a x ) + C ^ T T ( » m a x - » m , n ) 

1 
2 

(106) 
21 

which shows that the complex wave velocity for a self-excited mode must lie 
inside the semicircle in the upper half of the complex c-plane, which has the 
range of u for its diameter along the real axis. 

Sufficient Conditions for the Existence of Self-Excited and 
Neutral Modes 

Once the global necessary condition in the form 

u" 

« O 0 - « ( y . ) 
> 0, 0 < y < 1 

holds, we turn to the question of sufficient conditions for the existence of self-
excited and neutral modes. Toward this we first exhibit the variational character of 
the inviscid problem for monotonic symmetrical type of mean flow and then use 
the Sturm-Liouville Theorem to show that there exists a neutrally stable 
characteristic solution with c = cr =us, and then we construct unstable solutions 

that are contiguous with the neutral modes, i.e., c => us, as c, => 0 + . 

THEOREM: Regular neutral modes, i.e., 
φ = φ„ a = a„ c = cs=us, (107) 

are possible if the mean flow profiles are monotonic, and if there is satisfied in 
the flow field 

("") = 0 · 

PROOF: First, write equation (20) as 

φ" + Κ(γ)φ + λφ = 0, (108) 

where 

λ = - α 2 , K(y) = - — . 

Let there be a point y = ys, such that 

and 

(«') * 0 . 

from which we have 

+ cf - ("min + " m a , ) C, + " m , n « m „ ^ 0 

or 



Stability of Parallel Flows 4 6 1 

In addition, let u(y) > 0 for 0 < y < 1 and assume that K(y) is a regular function 
for 0 < y < 1. Then, equation (108) is a real nonsingular equation which makes up 
a Sturm-Liouville problem with boundary condition (21). This characteristic-
value problem possesses an infinite sequence of characteristic values. In order to 
show that there is a characteristic value a for which a neutral mode exists with 
c = u(y5), where c = cr, we have to identify λ with -a2, i.e., we must show 
that at least one of the characteristic values of equation (108) is negative. 

Multiply equation (108) by φ' and integrate from 0 to 1, and using the 
boundary conditions (21), one obtains 

\\\φ'\2-Κ\φ\2]α-γ 

λ =-2 ; ; (109) 

J i f f * 
0 

as we shall presently see, this is a characteristic value problem for the parameter 
λ = -a2 and is associated with the variational principle 

* j [ | * ' | 2 - A : | * | 2 ] r f y = o 
0 

subject to 
ι 
J | 0 | 2 d y = const. (110) 
ï 

We now show that the variational principle associated with equation (108) 
gives the least characteristic value (109). In particular, if φ really satisfies 
equation (108) as well as the boundary conditions (21), then λ is determined from 
equation (109) by noting that λ is stationary, if φ is given a slight variation δφ 
satisfying only the boundary conditions (21). If δλ corresponds to δφ, then 

2 / J(φ'δφ'-Κφδφ) dy-2J^d\pdy 
δλ = —& -= S , (111) 

where 

Noting 

imj^dy, J = \[W\2-KW2\dy. 

I 1 

J φ'δφ' dy = - J φ"8φ dy 
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since 

δφ' = {δφ)', 

we see that equation (111) becomes 
, ι 

--δλ = J [ f + Κφ + λφ]δφÜγ. (112) 
2 ï 

Equation (112) implies, on using equation (108), 

<5A=0. (113) 

Conversely, if δλ vanishes for all variations δφ satisfying the boundary 
conditions and possessing a derivative which, like φ, is square-integrable, then 
equation (112) shows that the corresponding function φ satisfies equation (108). 
Equation (125) merely shows that the characteristic value λ is stationary; in order 
to show that λ is a minimum, note that when c, * 0, the real part of equation 
(76) gives 

0 0 I
 u c

 I 

Thus, 

^ - A , H 2 U = j i ^ £ Κ\φ\2α-γ<\κ\φ\2α·γ, 
J I u — c \ 

from which 

or 

or 

Thus, 

where 

\[-\φ'\2

+Κ\φ\2Üγ 

λ , < ^ , 

- λ , < - λ 

λ < λ , . 

λ = min(A,), 



Stability of Parallel Flows 

dy 

\\xtdy 

4 6 3 

(114) 

where χ is any function possessing a square-integrable derivative and satisfying 
the boundary conditions (21). 

Replace χ by the test function u, and recalling that K(y)>0, one obtains 
from (114) 

ι ,, ι 
I.λ = f ——liifii. ί/y = — Γ Kuusdy < 0 , (115) 

{ u-u. I 

where 

provided that w(y) > 0 . Therefore, λ is negative, and a real and positive, for 
which there is a neutrally stable mode. 

Next we deduce the existence of a self-excited mode in the neighborhood of the 
neutral disturbance, i.e., unstable modes whose limit as c, => 0 + is the neutral 
mode. If 

("") = o (78) 

holds somewhere within the flow field, one ensures the existence of neutral 
disturbances. If the conditions at such a point are denoted by a subscript s, one has 
a solution cs = u (where cs is real). 

That the neutral solution has a neighboring self-excited solution will be 
shown here by considering the dependence of c on λ = -a2 in the characteristic 
value problem of equation (20). Recalling that there is a characteristic function φ: 

corresponding to the characteristic value c = cs, - a2 = Xs, one has 

Φ'/-
u-c. 

Ρ,+λ,φ,=0. (116) 

Multiply equation (20) by φ:, multiply equation (116) by φ, and subtract, so 
that 

-^[Φ,Φ'-Φ:Φ] + (λ-λ,)φφ,-

Integrating between (0,1), one obtains 

u-c u-c. 
ΦΦ,=ο. (117) 
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u-c u-c, 

which, in the limit A => Xs, c => c 5 , φ => φ, gives 

f) j | ^ | > = , i m ) - J L _ M ^ 

The right-hand side of equation (118) is 

„ « -
Ì — C , 

u-c 

+ i 

u 
u-c, 

1 I 2 

M - C 
0, f^y-

The limit of the real part becomes the principal value of the integral 

Γ w 1 
u — c, 

•c 

The imaginary part tends to the limit 

u 

J 1 ^ I *,\'*y J u — c a s 

π | * , f > 0 

as c, 0 + . Equation (118) gives, then, an equation of the form 

B > 0 = A + iB, 
dc 

or 
dc dc A-iB 
dX d(a2) A2 + B2' 

(118) 

(119) 

If a2 decreases slightly, equation (119) shows that c ; becomes positive, which 
proves the existence of a self-excited disturbance in the neighborhood of the 
neutral disturbance. In other words, when viscosity is neglected, if the flow can 
execute a small neutral oscillation of finite wavelength, it can also execute self-
excited oscillation of longer wavelengths and execute damped oscillation of shorter 
wavelengths. 
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Viscous Theory 

Because the situations of interest correspond to large values of the Reynolds 
number, the asymptotic methods of analysis should play an important role in the 
theory. In the asymptotic theory, the sacrifice of the uniformity of approximation 
is compensated by greater simplicity. 

We shall now construct asymptotic solutions to equation (18) using a WKBJ 
method. Thus, seek solutions to equation (18) of the form 

<t> = JsiyH' (120) 

so that equation (18) gives 

(« - c) {{g1 + g') - a2} - u" = —{g"" + 6 g y + 3g'2 + 4gg" + g'" 
(121) 

-2a2{g2

+g') + a*}. 

Let us solve equation (121) by expanding g(y) in powers of aRE, as 

^ ) = { a R £ f f o ( y ) + g,(y) + ( a R £ ) - , / 2 g 2 ( y ) + · · · , (122) 

so that equation (121) gives 

(u-c)g2

0=-igi (123) 

(« - c) {g'0 + 2gogl) = -i(4g}

ogl + 6g2g'0), (124) 

etc., 
from which 

* 0 = ± V i ( « - c ) , (125) 

* . = - — . (126) 
2 g0 

etc. 

Thus, 

±Ĵ iaR£(u-C) dy 
<l>(y) = (u-cY"e ' . (127) 

The domain of validity and the proper branch of the multiple-valued 
asymptotic solutions (122) can be revealed again by a careful examination of the 
manner in which the latter represent valid asymptotic approximations to the exact 
solution of equation (18). 

Note that the WKBJ solutions (127) are not valid in a domain of the complex 
y-plane that contains the critical point u = c, nor do they give the boundary 
values of the solutions sufficiently accurate if \y-yc \ ~(aRE)~'/3. The point 
u = c appears in the inviscid solutions as a logarithmic branch point. Here, it 
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appears as an algebraic point. Again the determination of the correct branch so as 
to achieve the analytical continuation of the functions across the point u = c 
should be such that (127) yields a valid asymptotic solution of equation (18) all 
along the path. This is necessary a fortiori if the critical point yc lies below or on 
the real axis joining (0,1) where the boundary conditions are to be satisfied. One 
must therefore take a path from 0 to 1 in the complex y-plane such that the real 

part of ^ji(xRE(u-c) dy increases monotonically. It turns out that if one takes 

a path below the critical point yc, one is then always in a region in the complex 
y-plane where the above asymptotic solutions are valid (see Figure 5.12). 

In order to determine the location of the point yc as a function of the sign of 
c, in the complex y-plane, let us write y = yr+ i'y,, and analytically continue the 

ï 

velocity field w(y) in the complex y-plane. Then, u = u(y) will be an analytical 

function. One has u(y) -> «(y r ) as y, -» 0 and the equation u(y) = c must have 

a solution, namely, « ( y r ) = c. In order to determine yc, let yc=y, +iyr 

Separating the relation 

« ( y r + / y , ) = c (128) 

into real and imaginary parts, one has 

(129) 

from which 
(130) 

For small y,, one may write (130) as 

(131) 

When we use the Cauchy-Riemann conditions 

Im (v) =o 

Figure 5.12. Path of integration to ensure validity of the asymptotic solutions. 
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dur _ diij 
(132) 

(131) becomes 

c>=uM+-£rM-y>- (133) 

Since w, —»0 as y; -» 0 , (133) implies that if u'c > 0 and c, > 0 , the point yc lies 
above the real axis in the complex y-plane. Likewise, if u'c > 0 and c, < 0 , then 
the point yc lies below the real axis in the complex y-plane. 

Thus, if c, > 0 and u'c > 0 , the point yc lies above the real axis, and the 
asymptotic solutions (127) are valid all along the real axis of y. If c, = 0 , the 
point yc lies on the real axis of y where the asymptotic solutions (127) cease to 
be valid. If c, < 0 , the point yc lies below the real axis of y, and one may use the 
asymptotic solutions (127) only along the part of the real axis of y and their 
analytic continuation must be determined by a path circling below the critical 
point. The two inner viscous layers for damped disturbances, therefore, coalesce 
into one in the case of neutral disturbances and disappear altogether for self-
excited disturbances. Consequently, for the self-excited disturbances, the viscous 
solutions tend to the corresponding inviscid solutions throughout the part of the 
real axis of the complex y-plane corresponding to the flow field, as RE => °°. For 

the damped disturbances, the viscous solutions do not tend to the corresponding 
inviscid solutions along the whole of the real axis of the complex y - p l a n e 
corresponding to the flow field. 

Let us now deduce two viscous solutions which are valid in a complex 
neighborhood of the critical point yc. First, note that the quantity l/RE 

multiplies the highest derivative in equation (18), so that a straightforward 
expansion in terms of the parameter \/RE will not be uniformly valid. An 

alternative method is to choose a small parameter ε related to (ccRE) V 3 and make 

a transformation 

|2 ' 

(134) 

(135) 

(137) 

(136) 

etc. 
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The four basic solutions of equation (136) are 

Þ ι ) = ι 

3/2 

χ{

0

4) = ]Üη]η^Η\ 3/2 (138) 

where Η§\ and Η$ denote Hankel functions of order 1/3. The solutions and 
correspond to the terms of lowest powers of η in the inviscid solutions φ{ 

and 02 of (32) and (36). On the other hand, and χ0

Λ) are viscous solutions. 
By using the asymptotic properties of the Hankel functions, it can be shown that 
for large values of η , tends to zero for large positive η, and;^ 4 ' tends to 
zero for large negative η. If one assumes that u'c is positive, then ε is positive, 
so that η is negative at the wall (assuming the wall to be at y = 0) and positive 

on the other side of yc. Consequently, χ0

}) is the physically realistic solution in 
representing the boundary layer at the wall. 

Thanks to the idea of a composite approximation which is commonly used in 
connection with the method of matched asymptotic approximations, one may 
continue the foregoing approximations to form composite approximations which 
are valid in domains that do not shrink to zero as ε -> 0 . The WKBJ solutions 
are valid provided that [ y — yc | »̂ £ . Thus , if | ε | | y-yc | and 

- 7/6 π < Phase (y - y c ) < 5/6 π, then one has from (127) 

Φ - C2 [«; e x P [ - f ( y - y c f (iaREu:fj 

The inner solutions (135) are valid, provided that | y - y c | | ε | 3 / 5 

1 « 1771 « | ε | " 2 / 5 and | Phase(r/)|< π, becomes 

1 

(139a) 

Thus, if 

l4n 
(140) 

If these l imiting forms are both valid in the overlap domain 
|3/5 

I ε I <6 I y-yc \ < \ ε | 3 / 5 , with | Phase(rj) | < π, their matching gives 

1 / , \ 5 / 4 

2Λ/τγ Μ - Ο 39b) 

Heisenberg Criterion 

For boundary-layer type of flows, the boundary conditions are 
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0(0) 0(0) 

Now, from (127), one has 

from which 

where 

- ^ = -[,ccRE(u-c)\ - + ··· 
0(y) 4 u-c 

u'0 0(0) 4 

When we write 

equation (142) becomes 

where 

Z = 
V "0 / 

«'(o) = «S. 

w = , , < Φ(0) 
c 0'(O) 

W-l 
w 

= G(Z) , 

(142) 

(143) 

(144) 

(145) 

(146) 

σ ( ζ Ç ζ 3 / í / 4 - ^ 

or 

Also, note that 

Z 3 / 2 1 5 
G(Z) 4 

(147) 

G(Z) = 
i + le-"/*z^ + ... 

5 

,3 /2 1+ ··· 
4 Z 3 / 2 

Z = > 0 

Ζ => ° o 

(148) 

y = 0,°°: 0 = 0' = O. (141) 

The required solution is given by a linear combination of the solutions φ of 

equation (20) and φ of equation (18), and the boundary condition at y = 0 leads to 

the characteristic-value equation 

0'(O) _ 0'(O) 
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Some general stability characteristics in a viscous fluid can now be deduced by 
means of the asymptotic behavior of the above expressions. 

The inviscid solutions are (see (36)) 

1 + . . .+ \[n\z\-in\ z<0, 

1 + . . .+ 7ΦΜ 

(149) 
[In z], z>0, 

where 

.(π) = π + ~ ί ? 2 + · 
2 u„ 

n = y-yc-

For real values of c = cs, one finds from equation (146) 

(«") 
Im[G(»j)] = - * -

When we use (150), (147) gives 

Im[c] = 
NL/3 

" A y c . V ;" = c- 4 

(32) 

(150) 

(151) 

If we restrict ourselves to cases where a and c do not approach zero along the 
neutral curve as RE => °° (i.e., α = as Φ 0, c = cs * θ ) , one finds from equation 
(151) that 

c, > 0 

or that the disturbance a = as, neutrally stable (c = cs) in the inviscid case, is 

unstable when viscosity comes into the picture. One therefore has the Heisenberg 
criterion: If a parallel flow has an inviscid neutral disturbance with a = as&0 
and c = cs * 0, the disturbance a = as is unstable in the real fluid for sufficiently 
large values of the Reynolds number (when viscous effects appear). 

Thus, for boundary-layer flows, instability prevails for large Reynolds 
numbers, no matter whether the inviscid instability criterion 

("") = o 
is satisfied or not. 

General Characteristics of the Neutral-Stability Curve 

A brief discussion of the significance of the neutral stability curve (see Figure 
5.13) is in order: 

1. The region bounded by the two asymptotic branches of the curve signifies 
instability. 
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Figure 5.13. Neutral-stability curves for free shear-layer flows (A) and 
boundary-layer flows (B). 

2. For free shear-layer flows, the two branches of the curve approach two 
different asymptotes a = 0 a n d a = a , , leaving a finite unstable region for 
RE => °°. For boundary-layer flows, the two branches approach the same 
asymptote α =* 0 , so that one has only the disturbance a => 0 at RE = > o o . The 
lowest Reynolds number on each curve is the critical Reynolds number, RE . 

3. One may conjecture that the neutral stability curve could also correspond to 
cases of minimum damping with stable regions on both sides of it. In order to 
clarify this, we have to show that c, > 0 in the neighborhood of the neutral curve. 
Indeed, if we regard c as a function of the two independent parameters a and 
aRE = R'E, we need only show that 

dR'E 

< 0 

for the upper branch of the neutral curve. Note that this is simply analogous to 
the viscous stability criterion we have enunciated in the foregoing. 

From equation (146), we have 

G - l = - - L . 
w 

(152) 

Regard now a as fixed and consider the variation of R'E and Ζ with c. Taking the 
logarithmic derivatives of both sides of equation (146), one finds 

G' _ W 
~ W ' 

(153) 
G - l 

Now, the characteristic value equation (153) involves the inviscid solutions only 
in the combination φ'/φ, and the latter can be directly found. It is also 
convenient to determine the asymptotic behavior of the neutral curve. In the case 
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of boundary-layer type of flows, a => 0 along both branches of the neutral curve, 
as aRE => °°, and it is then natural to seek an approximation to W that is valid 
for small values of a. 

When we put 

Φ' (154) 

(20) gives a Riccati equation 

H' + H1 =• • + a . (155) 

Consider the boundary-layer flows for which the velocity profiles are 
monotonically increasing, and let 

Φ' 
y = > o ° : = > -a. 

Φ 
Then, from (154), one has 

y=>°°: H(y) => -a. 

Seek a solution to equation (155) of the form 

H{y) = -a + H2{y)+-. 

Upon substituting this expression into equation (155), one obtains 

H2(y) = e-^\^e2a>-dy'. 
J u — c 

From equations (145) and (154), one obtains 

or 

c H(0) 

ι ν - ι - û ί . 1 

c H{0) 

Using (160), one obtains from equation (146) 

~cH(0) 
G ( Z ) = 1 - £ M + 

(156) 

(157) 

(158) 

(159) 

(160) 

(161) 

Noting that on the upper branch of the neutral curve, Ζ => °°, and using (148) 
and (161), one obtains 
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i*/4 ]_e 
2 Z 3 / 2 Rr 

3 c " / 4 

l + u'0/c + 2 Z 3 / 2 

(162) 

from which, for small ct (i.e., for the neighborhood of the neutral curve), one has 

dR'E j 
< 0 . (163) 

Note, however, that only for the particular disturbance a => 0 , for which one is 
on the lower branch of the neutral curve, a decrease of RE promotes stability, so 

that for this particular case, viscosity is in the nature of stabilizing the flow. 

Computation of the Neutral Stability Curve 

Since equation (18) is of the fourth order, the solution consists of a linear 
combination of four basic solutions: 

<t> = Cl<l>i+C2<t>1+C1<t>J + Ci<t>i, (164) 

where C, ,C 2 ,C 3 , and C 4 are arbitrary constants. The functions 0, and φ2 are the 
inviscid solutions, and φ3 and φΛ are the viscous solutions. The viscous effects 
become important both near the critical point u = c and near a rigid wall. When 
considering a rigid wall, one of the viscous solutions (03) decreases 
exponentially with distance from the wall and is the one which is physically 
realistic, while the other (04) increases exponentially with distance from the 
wall. 

For plane Poiseuille flow, u is an even function of y, so that the general 
solution, φ, of equation (18) may be split into odd and even solutions. If one 
considers only the even solution, corresponding to an antisymmetric disturbance, 
one may focus attention on the half-channel y = - 1 toy = 0. If one ignores the 
solution which increases exponentially with distance from the wall, one has the 
following three boundary conditions: 

y = - l : φ,φ' = 0,1 
(165) 

y = 0 : φ' = 0. J 
For a boundary-layer flow near a flat plate, one may assume that the viscous 

effects are negligible for the disturbance at the edge of, and outside, the boundary 
layer. Since the flow velocity u is constant in this region, the two inviscid 
solutions will be proportional to c ± a > , of which only e~°* is physically realistic. 
Thus, the three boundary conditions appropriate for boundary-layer flows are 

y = 0 : φ,φ' = 0, ) 

y - » ° o : φ +αφ-0.] 
(166) 
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For plane Poiseuille flow, (165) results in the following characteristic-value 
relation: 

03h _ Φ\*Φºο ~02»C (167) 

where the second subscript, w or o, denotes conditions at the wall or at the center 
of the channel, respectively. 

For the boundary-layer flow, (167) results in the following characteristic-value 
relation: 

03» _Φ^ι-~Φι^χ-
ΦΙ 0ίÇΦ2--02ΉΦ,. 

(168) 

where = 0Þ- + α0„». a r | d the second subscript, w or °°, denotes the wall or 
the edge of the boundary layer, respectively. 

The right-hand sides of (167) and (168) can be calculated by using the inviscid 
solutions. The left-hand sides can be calculated by using 03 = χ0

3). If y = y, 
denotes the wall (y, = - 1 for plane Poiseuille flow and ο for the boundary layer), 
(167) becomes 

01»02O -φÀ,Φºο 

and (168) becomes 

where 

F(Y) = -

F(Y) = -

I 

yi-yc 

1 
yi-yc 

Φ'\«Φºο-Φ'ú*ΦΙ 

0 . . Φ 2 - - 0 2 Ç Φ ί 

Φ Ι ^ - Φ º ^ . 

(169) 

(170) 

^ - ( i L = K » t r ^ - y , ) , 

F(Y) = -

The function F(Y) has been tabulated. 

The characteristic-value relation, (169) or (170), depends on a , c r , zndRE. 
Since it is a complex relation, it may be separated into two real relations. If cr is 
eliminated, then one has a relation between a and RE. The neutral-stability curve 
is the result of plotting a against RE (Figure 5.13). 

In general, the relation a = a(RE) must be obtained through computer 

calculations (Orszag), although (for large Reynolds numbers) several analytical 
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representations are known in the form of uniform approximations (Lakin et al.) 
and triple-deck approximations (Hall and Smith). 

The linear theory predicts the critical Reynolds number of 5772 for plane 
Poiseuille flow which is far above the observed value 1000 for typical transition 
to turbulence.^ The linear theory prediction for plane Couette flow is even worse 
because no instability is indicated for the latter. 

Nonlinear Theory 

The first paper to appear with really definite and coherent predictions about the 
effects of nonlinearity on instability was that of Landau. Although Landau's work 
appeared to be conjectural in part, many of the ideas advanced there have later been 
justified more rigorously (Stuart). 

If RE slightly exceeds REc, only a narrow band of wavemember modes around 
ac will be amplified, producing a wavepacket consisting of a modulated carrier 
wave with wavenumber ac. In the nonlinear theory for RE> RE, one therefore 

considers a perturbation of the form A(t) φ(γ) e where cp is real and 

φ(γ) shows that the same spatial structure as the linear mode; A(t) is found to 

satisfy an equation of the form 
dA •> 
— = aciA + kA\A\ , (171) 
dt 

where aci is the growth rate determined by the linear characteristic-value relation. 
Solving equation (171), one obtains 

Equation (172) shows that: 

1. If k < 0, the solution A = 0 is unstable for acj > 0 and then A approaches 

{-acjkf2 as ί — » ο » ; this new steady-state solution is called a supercritical 

equilibrium. 

2. If k>0 and cec ,<0, then the solution A = 0 is stable for 

A2(0)<(-acJk) but is unstable for A2(0)>(-acJk); this instability is 

called a subcritical instability. 

In the case of a supercritical equilibrium ^RE > RE j , the nonlinear effects bring an 

exponentially growing disturbance to a new equilibrium state (see Figure 5.14a); 

Instability of plane Poiseuille flow at transitional Reynolds numbers appears to be explainable in 
terms of a three-dimensional linear instability of two-dimensional secondary flows (Orszag and 
Patera). 
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Stable 

Figure 5.14a. Supercritical equilibrium. 

in the case of a subcritical instability [ûÅ < R£ the nonlinear effects produce 

instability if the amplitude exceeds a threshold (see Figure 5.14b). Experiments 
(Nishioka and Asai) have shown that in plane Poiseuille flow transition to 
turbulence occurs at Reynolds numbers well below the critical value, so that a 
subcritical instability appears to be operational here. The other nonlinear scenario 
takes effect in the thermal convection problem and the Couette flow problem 
where a steady cellular patter comes into being when the Rayleigh/Taylor number 
becomes supercritical. 

Arnol'd Stability Approach 

In the normal mode method, discussed in the foregoing, one keeps track of each 
disturbance mode satisfying the linearized equations of motion and the boundary 
conditions. This approach is valid if the discrete spectrum alone is associated with 
instability. It also leaves open the question of stability with respect to arbitrary 
disturbances. 

In the Liapunov stability method, one identifies a functional, say X, of the 
perturbation field that is a dynamical invariant (i£ could be the second variation of 
the Hamiltonian). If can then be shown to be positive definite for all possible 
perturbations, then stability with respect to the given norm is established. The 
advantage of the Liapunov stability method over the normal-mode method is that 
the former also covers algebraic instabilities, if any, and establishes an explicit 
norm that measures the growth of perturbations without regard to their initial 
form. 



Stability of Parallel Flows 4 7 7 

The Arnold stability method extends the Liapunov stability method from 
finite-dimensional to infinite-dimensional systems and seeks to establish 
sufficient conditions for stability. 

Nonlinear stability theory seeks to establish stability of a steady state by 
showing that it is a local extremum of energy with respect to finite-amplitude, 
Casimir-preserving perturbations. But, Arnold type stability Theorems may turn 
out to be too powerful for some cases: The hypotheses required to establish the 
convexity estimates generally prove global stability, so that the extremum is 
actually global rather than just local. This implies that there can be at most one 
state satisfying an Arnol'd-type stability Theorem, while one may expect the 
existence of local extrema of energy. On the other hand, it becomes difficult to 
find nontrivial stable states satisfying Arnol'd-type stability criteria. 

Consider a constrained conditional extremum u = U of a noncanonical 
Hamiltonian system given by 

5(3€+c€) = 0 , (173) 

where §f is the Hamiltonian and % is a Casimir invariant. In order to determine 
the stability of this extremum, one tests the sign-definiteness of the second 
variation δ 2 (3£+<«). 8 

8 Here 1/2 ä 2 (3ί+ < €) is a Hamiltonian for the dynamics of 

u, = J 
Su 

linearized about 
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For finite-dimensional systems, where all norms are equivalent, this so-called 
formal stability, namely, 

δ(^¥€) = 0 and δ 2 (?τ;+<€)*0 V 5w, (174) 

implies normed stability to finite-amplitude perturbations (Liapunov stability), 
namely, Ve > 0, 3δ > 0 such that 

| « ( 0 ) | < * - ö ( ί ) | < ε V f . 

Note that a criterion for stability with respect to norm places a definite constraint 
on the fully nonlinear evolution of the system, in the sense that the system is 
required to remain close to a stable state if it starts there. 

For infinite-dimensional systems, on the other hand, formal stability does not, 
in itself, prove normed stability. Here, one must, instead, examine the sign of the 
exact invariant 

A^=,3i(u)+(€(u)-['3C(U)+^(U)] (175) 

to which the second variation 1/2 5 2 (3 t+ c 6) is only the small-amplitude 

approximation. One must, in particular, show that Ä3> can be sandwiched 

between two norms, which involves establishing certain convexity estimates on 

the functional 3(u) (which ensure that the functional $(u) is convex in a small 

but finite neighborhood of the extremum U). One looks a priori for constants 

c, and c 2 (both positive) and some norm || · \] such that 

\u{t)[<claHt) = clAm<clc2\u(0)\ V f . 

The Arnold stability method then consists of implementation of the following 
program: Suppose the system in question conserves both the energy and an 
infinite family of Casimir invariants (see Chapter 1). The Arnold invariant, 
which is a conserved quadratic integral of the linearized equations for a 
perturbation, is constructed by taking the sum (or the difference) of the energy and 
a suitable Casimir invariant. (The first-order terms in the perturbation in this 
invariant cancel if the zeroth-order solution is stationary.) If this invariant is 
positive or negative definite, then it can be used to define a norm, and the 
stationary solution is stable in this norm. (The energy extremum is then isolated 
under variations that conserve all Casimir invariants.) 
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* = - - J J t f A r f y , (177) 

assuming that ψ = 0 on the boundary dD which is taken to be simply 
connected. 

If one chooses ζ to be the canonical (Darboux) variable and takes the skew-
symmetric operator J to be 

J = -d(C,),9 (178) 
Hamilton's equation is 

which is just equation (176)! 

The Casimir invariants for this problem are the solutions of 

= 0, (180) 

which implies, for some function F ( f ) , 

δζ 
Thus, the Casimir invariant is 

^The Poisson bracket for this problem is given by 

4 1 - ^ o - ( « é ) 

Hamiltonian Formulation of Two-Dimensional Incompressible 
Flows 

Consider a two-dimensional incompressible flow in DcR2. The governing 
equations are 

Κ + 9(ψ,ζ) = 0, (176) 

where 

v = i; χ¥ψ, ζ = \Æ Vxv = VV. 

The Hamiltonian for this system is 
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Note that 

δπ δ"3ί 
dt {δζ' δζ 

ί δκ δκΛ 
Γ δζ ' δζ 

= 0. (183) 

In fact, translational symmetry with respect to time implies the existence of an 
invariant Μ satisfying 

' 3 M 
which implies 

Thus, 

æ^] = -ζ,=-9(ψ,ζ), (184) 

δΜ 
Τ7=Ψ- (185) 
°ζ 

Μ = JJ ψζÜχÜγ = - 2 3ί . (186) 

So, Μ is indeed proportional to 3f! 

If this system has translational symmetry along the ^-direction, according to 
Noether's Theorem (which provides conservation laws associated with the 
symmetry groups), there exists an invariant Μ given by 

δΜ = 9ζ 
δζ dx' 

(187) 

which implies that 

Μ=^γζÜχÜγ. (188) 

Equation (188) is simply the x-component of Kelvin's impulse. 

On the other hand, translational symmetry along the ^-direction also implies 
that 

ζ{χ,γ,Þ = ζ{χ-α,γ), (189) 

which means, in turn, 

dx dt 

Thus, 

090, 

<e=jJF{C)dxdy (182) 
D 

Equation (182) may be understood by noting from equation (176) that material 
fluid elements carry their values of vorticity with them so that vorticity is 
actually a Lagrangian invariant. Consequently, any integral function of vorticity 
would be conserved. 
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or 

,δΜ ,δΚ 

"ºÃ'ºξ <19,) 

J V '=0. (192) 
δζ 

Therefore, translationally symmetric states correspond to extremizing (3f - cM) 

under variations that preserve the Casimir invariants. 

Example 4. Consider a two-dimensional flow with a steady-state solution 
given by 

Then, the quantity 

ζ = Ψψ = ì{ψ + íγ). 

where 3f and % are the perturbation energy and enstrophy, respectively, 

Dt = \\{VW)2dxdy, 
D 

C€ = | J ( V V ) J dxdy, 
D 

is an invariant. 

Consider the linear instability of a plane wave of wavenumber m produced by a 
triadic interaction with two other plane waves of wavenumbers / and η (Carnevale 
et al.). Let this interaction be described by 

x = ayz, 

y = bzx, 

z = cxy, 

where 

a = n2-m2, b = l 2 - n 2 , c = m2-l2. 

This system conserves energy 

and enstrophy, 

! = x2 +y2 +z2 

% = l2x2+m2y2+n2z2. 

In order to investigate the stability of the plane wave with wavenumber m, 
consider the invariant 
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1 (cx2-az2) 
$=M—= - 5 " · 

m m 
Note that $ is of definite sign if a and c are of opposite signs (i.e., ca < 0 ) , 

which implies that m must be either the largest or the smallest of the three 
wavenumbers. This simply reflects the fact that one cannot conserve both energy 
and enstrophy by transferring energy in one direction only. On the other hand, 3> 
is of indefinite sign if a and c are of the same sign (i.e., ca > 0 ) , which implies 
that m is intermediate in size between / and n. Then, the plane wave with 
wavenumber m is unstable and the instability proceeds by transferring energy both 
to larger and smaller scales. 

Arnol'd Stability of Two-Dimensional Incompressible Flows 

(a) Linear Stability: The stationary state is a stationary point of the functional 

<Hy) = Χ{ψ)Μ(ψ) = Jl{\(Vv)2 + Çζ)} dxdy (193) 

and is given by the first variation of ψ), 

δί{ψ) = \1{-ψ+Ã(ζ)}δζαχάγ = 0, (194) 
D 

from which 

ψ = Ρ'(ζ)οτζ = Ρ{ψ). (195) 

Next, the second variation of $( ψ) is given by 

δ23 = \1 \(oV¥f+±F"(t)W)2}dxdy. (196) 

A sufficient condition for linear stability in the Liapunov sense is that δ2 3> is 
positive (or negative) definite for all variations δψ and δζ. This requires, from 
(192), that 

F " ( i ) > 0 , V ( * , y ) e D (197) 

and leads to the following Theorem. 

THEOREM: The steady state ί ) is linearly stable in the Liapunov sense 

with respect to the perturbation norm 

\(δψ.δζ)\ = {δ>3(ψ)Υ (19g) 

if the Casimir function F, given by (182), satisfies 

F " ( f ) > 0 , V ( x , y ) e D . (199) 
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Example 2: If the system has translational symmetry along the Jt-direction, 
(197) may be rewritten as 

(d\r/dy + c) 

or 

(u-c)^>0. 

(»-c)^<0. 
dy 

Consider the case of parallel shear flows, Ð = u(y); the stability criterion then 

reduces to Fjortoft's Theorem: 

£» 
dy1 

Note that the stability criterion is applicable to an arbitrary perturbation ψ which 
allows ${ψ) to exist. Thus, Fjortoft's Theorem is generalizable to arbitrary 
perturbations and implies even the normed stability! 

(b) Nonlinear Stability: For infinite-dimensional systems, the positive (or 
negative) definiteness of the second variation of the functional $ does not imply 
nonlinear stability (unlike finite-dimensional Hamiltonian systems) because of 
topological difficulties besetting infinite-dimensional function spaces. For this 
purpose, one needs to examine the sign of the exact invariant 

Ä*(ψ) = *(ψ)-*(ψ) (200) 

to which the second variation 1/2 δ1} is only the smal l -ampl i tude 
approximation. If this invariant is positive (or negative) definite, then it can be 
used to define a perturbation norm, and the steady state is nonlinearly stable in 
this norm. This requires imposition of additional convexity conditions on the 
functional ${ ψ) in order to ensure that the functional ψ) is convex in a small 
but finite neighborhood of the steady state ψ. 

Let us write the functional Ä3*(ψ) as follows: 

Ä${ψ) = ${ψ+ψ)-$(ψ), (201) 

where ψ is the finite-amplitude perturbation imposed on the steady state ψ. 

Using (193) in (201) , we have 

A*{Ψ) = \JJ(VψÚ *"*y - JJ F'(ttdxdy + jj[F{C+;)- F(f)] dxdy. (202) 
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<Χ-β£. (204) 

I jJ[(V^) 2

+ a 1 C 2 ]^y<4^(v>)<ijj[(V^) 2

+ AC 2 

D D 

dxdy. (205) 

(205) shows that the convexity condition (203) is sufficient to establish the 
positive (or negative) definiteness of A ψ}. 

If one defines a perturbation norm by 

\ψ\\ = {ÄÚ{ψ)γ, (206) 

where 

D 

then (205) shows that this norm is bounded from above. We thus have the 
following Nonlinear Stability Theorem: 

THEOREM: Suppose that the Casimir function F satisfies the following 
convexity condition 

0 < α, < Ρ"{ζ) <β,<°°, ºζ (207) 

for some real constants or, and βι. Then, the steady state ψ, determined by F 
through the relation (195), is nonlinearly stable in the Liapunov sense with 
respect to the perturbation norm: 

| * | = { 4 * * ( $ Γ ) } Ú . (208) 

It may be mentioned that there are some restrictions on the direct applicability 
of the Arnol'd stability method for many problems. One such restriction is placed 
by Andrews' Theorem, which states that the Arnol'd stable flows of a system 

function f(x) is convex if 

for Vjt.y in the domain o f / 

Observe that if (202) is Taylor-expanded about the steady state ψ, the leading-

order term is just the second variation 1/2 δ2 $, given by (196)! 

Suppose that the Casimir function F(£) satisfies the convexity condit ion 1 0 

0 < a, < F"(() < ft < « ο , Vf , (203) 

where a , and /J, are real numbers. Condition (203) implies 

Using (204) in (202), we have 
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must have the same symmetry properties as the system. This property places 
significant limitations on the utility of the Arnol'd stability method. Thus, this 
method runs into difficulties in handling translationally invariant or steadily 
translating structures. 

E X E R C I S E 

1. For the type of mean-flow profiles that lead to the satisfaction of the global 
necessary condition (108) in the flow field, show that there can be no more 
than (Ë - 1 ) linearly-independent unstable characteristic function of equation 

(120) if a1 > -λη; λ, , λ 2 , . . . being the increasing sequence of characteristic 

values of equation (120). (In other words, the number of distinct unstable 
modes cannot exceed the number of neutral modes associated with the points 
where (u"\ = 0 . ) 
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6 

T U R B U L E N C E 

6.1 . The Origin and Nature of Turbulence 

Usually, in flows which are originally laminar, turbulence arises from the onset 
of instabilities at large Reynolds numbers. The details of the mechanism of 
transition of laminar flow to turbulence are not well understood at present. Much 
of the theory of instabilities in fluid flow, as discussed in Chapter 5, is a linear 
formalism that is valid only for very small disturbances. And the mechanism of 
transition is not contained within the framework of such a linear theory. 

Among the characteristics of turbulence are: 

(1) large fluctuations of the flow properties about the mean values (similar to 
the thermal motion of the molecules in a gas) at any point; 

(2) increased diffusivity which causes rapid mixing and enhanced rates of 
momentum, heat, and mass transport; 

(3) when three-dimensional, the presence of vortex-stretching cascade 
mechanism that creates motion at ever smaller scales; 

(4) the existence of some energy sources, such as shear, in flow to sustain 
turbulence (in the absence of energy sources, turbulence decays). 

Fourier analysis of the turbulent velocity field shows that wave fluctuations in 
a range of frequencies and wavenumbers are present, with the width of the range 
changing with certain flow parameters like the Reynolds number. The various 
component motions interact through the nonlinear terms in the equations of 
motion, and the observed properties of the turbulence are thought of as being the 
statistical result of such interactions. 

Mathematically, the description of these interactions should center on invariant 
measures. Although there is no rigorous theory about the existence of strictly 
invariant measures in turbulence, experimental observations strongly support the 
idea that turbulence at small scales organizes itself into a statistically stationary 
universal state. Apparently, as the Reynolds number of the flow becomes infinite, 

4 8 7 
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all the invariance properties of the Navier-Stokes equations, possibly broken by 
the mechanisms producing the turbulence, are recovered asymptotically at small 
scales in a statistical sense. Thus, Kolmogorov argued that the small-scale 
structure has a scale-invariant and universal character in turbulence at high 
Reynolds numbers of the flow. This implies that there exists, for large 
wavenumbers, an inertial range where the statistical properties of the small-scale 
components are isotropic, uniquely determined by the average energy dissipation 
rate ε and the kinematic viscosity v, and independent of the detailed form of the 
large-scale features of the flow. 

Statistical theories of the turbulence can be viewed as models which have in 
common with the original problem several structural properties like energy 
conservation and Galilean invariance. They can give information about energy 
transfer and turbulent transport coefficients. However, the basic problem in the 
description of turbulent flows, when treated in terms of the time average of the 
dynamical variables and their correlations, is that an open-ended hierarchy of 
formally exact moment equations results from a systematic treatment of the 
equations governing the flow. This so-called closure problem is due to the 
nonlinearity of the Navier-Stokes equations and refers to the fact that the 
evolution of second-order moments involves triple correlations, and so on. This 
problem is just one manifestation of the intractable nature of turbulent flows, and 
it is usually overcome by making some hypothesis to complement the averaged 
equations. But, as in many statistical problems, it is not possible to directly 
check this hypothesis, so only its consequences are open for experimental 
verification. In the phenomenological approach, one addresses oneself only to a 
study of the mean flow and formulates the effects of turbulence on the mean flow 
in some statistical fashion rather than attending to the enormously detailed 
structure of turbulence. Typically, a phenomenological approach is based on a 
superficial resemblance between the way momentum and heat are transferred by 
the molecular motions and turbulent velocity fluctuations and thus recognizes the 
existence of suitable transport coefficients for the latter. However, the concept of 
transport coefficients can be systematically justified only when there is motion on 
widely separated scales, whereas in turbulent flows the dominant interactions are 
believed to occur among contiguous, rather than widely separated scales. Besides, 
the turbulent transport is a complex process which is dependent among others on 
the history of flow dynamics (because flow elements retain their identity over 
long intervals of time) and cannot be simply related to the local functional of the 
mean-flow properties unlike the molecular transport. Besides, whereas molecular 
viscosity is a property of fluids, turbulence is a characteristic of flows. In the 
following we shall avoid the phenomenological approach and take instead the 
statistical approach. (It may be mentioned that there is also a dynamical systems 
approach (Frisch) which provides new methods of characterizing turbulent 
behavior.) 
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6 .2. Three-Dimensional Turbulence 

A Statistical Formalism 

A characteristic feature of turbulence at fairly large Reynolds numbers is the 
presence of an extremely irregular temporal variation of the velocity at each point. 
The velocity continually fluctuates about some mean value, and the amplitude of 
this variation is in general not small in comparison with the magnitude of the 
velocity itself. This amplitude distribution is Gaussian, i.e., the number of times 
during a long time interval that a given magnitude of fluctuation is reached varies 
with the magnitude according to the error curve.* Even though an exact 
description of the temporal variation of the velocity distribution in the fluid 
requires prescription of the initial conditions, the actual initial conditions cease to 
have any effect after sufficiently long intervals of time. Besides, since the detailed 
velocity pattern of a turbulent flow is always changing and never repeats, even if 
one could measure the complete sequence of changes, the measurements would 
relate only to that particular experiment. Therefore, one may attach general 
significance only to the statistical specifications of the velocity field in 
turbulence, i.e., to the joint probability distribution function which determines 
the probability of occurrence of a given combination of velocities at a point in 
space at a given time. However, it turns out to be feasible to consider only a few 
moments of this probability distribution function, which are usually mean values 
of some flow properties. 

In the statistical studies of random processes, one does not investigate the 
individual realizations ξ^(Þ of the random function ξ(Þ but the characteristics 
of a whole set of ensemble of realizations by means of suitable averages which 
are reproducible from experiment to experiment. The classical theory of 
turbulence tacitly assumes that individual realizations of a turbulent flow are 
sensitive to initial conditions and that averages do not exhibit such sensitivity 
because the fluctuations become uncorrelated before too long. 

If the ergodic theorem is valid, at least in some weak sense, then the time 
averages of the flow field are interpreted as ensemble average, i.e., averages over a 
large number of flow realizations prepared under nearly identical initial and 
boundary conditions. A distribution function can then be defined at each point for 
any given flow variable at a given time, as the ratio of the number of times the 
given variable is observed to occur to the total number of observations made in 

However, the joint probability distributions have been shown experimentally to be of a more 

general type. If 4 V , represent the velocity difference between two points a distance ( apart, 

laboratory experiments and numerical simulations show that the probability distribution function 

P{AV,) differs significantly from Gaussian, being reduced for small values of AV, and enhanced 

for large values. This means that the statistical properties are dominated by sparsely distributed 

large fluctuation amplitudes showing the presence of spatial intermittency. 



4 9 0 Turbulence 

X Measurements 
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Figure 6.1. Probability density function of the velocity component w, in the 
direction of the stream for the turbulence generated by a square-mesh grid in a 
wind tunnel measured by Townsend (1947). 

the limit, with the latter tending to infinity. However, averaging results in loss of 
information and the lost information must somehow be replaced empirically! 

The mathematical formulation of the problem can be given as follows: One 
has a flow realization satisfying the Navier-Stokes equations 

V v = 0 , (1) 

^ + (v -V)v = - - V / > + v V V (2) 
at ñ 

and at some initial instant the velocity of the fluid is a random function of 
position described by certain probability laws which are independent of position. 
The problem is to determine the probability laws that describe the motion of the 
fluid at subsequent times.' This problem is not trivial because one has to solve 
the nonlinear equations to find statistical information at any point within the 
domain, which are required to satisfy initial and boundary conditions that are 
given only statistically. 

Since the initial conditions are random functions of position, the broad range 
of variation of initial conditions renders the investigation of particular sets of 
initial conditions virtually useless. However, thanks to the large degrees of 
freedom of the system which are coupled to each other, such a system is likely to 
approach a statistical state which is independent of the initial conditions. Hence, 
rather than investigating the motion consequent to a particular set of initial 
conditions, one explores the solutions which are asymptotic in the sense that they 
change very little with further passage of time. 

The Probability Density 

In order to investigate how fluctuations are distributed around an average value, 
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\2π 

so that 

0(*) = V 2 ^ X ^ > ' " ) . (8) 

Note that 

0(*) = - T = \cos ku'B(u')du' + -jL, f sin ku' • B(u')du', 
V 2 t t · y 2 n J 

(9) 

so that is real if B(u') is symmetric. 

Note further that 

one introduces the probability density and its Fourier transform - the 
characteristic function. Let us restrict ourselves to fluctuating quantities that are 
statistically steady (or stationary), i.e., their mean values are not functions of 
time. One introduces probability density B(u) as the probability of finding u(f) 
between u and u + Au; note that 

B(u)>0, JB(u)du = l. (3) 

The mean value of a quantity / ( « ) is then given by 

(f)=]f(u)B(u)du. (4) 

If 

« = <«) + " ' , (5) 

then (κ') = 0 (the prime denotes the fluctuations). Any lack of symmetry in 
B(u) does not contribute to ( κ ' 2 ) (the variance), but only that contributes to 
(u'*) (the skewness). 

Let us next introduce the Fourier transform of the probability density - the 
characteristic function 

<Kk) = ^]eitu'B(u')du' (6a) 

with 

B(u') = ̂ L]e-ik"<t>(k)dk. (6b) 

The moments of u' are related to 0(/t) in a simple manner 
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λ/2τγ 
jeiku'B{u')du' 

where we have used Schwartz's inequality. So, 

| 0 ( * ) | < « H o ) = i. 

Note also that if B(u') is broad, 0(A:) is narrow and vice versa. 

Note that if B(u') has a discontinuity, then from 

1 ' [ e

i k u ' dB{u') 

(10a) 

(10b) 

du' 
du (Π) 

one concludes, when the spike in dB(u')/du' is infinitely narrow at u' = s, that 

0(jfc) for large k. 
k 

(12) 

Consider two functions f(x) and g(x) with Fourier transforms F(k) and 
G(k), respectively. Then, one has Parseval's relation 

]f(x)g*(x)dx=]F(k)G*(k)dk, (13) 

where the star denotes a complex conjugate. 

In order to see how an operation carried out on a function affects its Fourier 
transform, consider the averaging of f(x) over an interval - X < J C < X . This 
requires a choice 

g*{x) = \2X (14) 
0, otherwise. 

As g*{x) becomes wider, G*(k) becomes narrower (see Figure 6.2); thus (13) 
gives 

JR , . I - 1 

1 r „ , . F(0) dk\ (15) 

which implies that average of a function is related only to its Fourier component 
at zero frequency. 



The Autocorrelation 

In order to examine how adjacent fluctuations (in space and time) are related to 
each other, one introduces the autocorrelation and its Fourier transform - the 
energy spectrum. Consider the probability density for two variables u' and v ' , 
with zero mean, simultaneously. One introduces the joint probability density 
B(u', v') as the probability of finding «'(/) and v'(/) simultaneously between u' 
and u' + Au', v' and ν' + Äν', respectively. Note that 

β ( κ ' , ν ' ) > 0 , j JB(u',v')du'dv' = l 

and 

JB(u'y) 
rdu" 

A ( « % 
(16) 

where Bu.{u') andfl v .(v') are the individual probability densities for M ' a n d v ' . 
Note that if u' and v' are statistically independent, one has 

B(u'y) = Bu.(u')B,(v')- (17) 

The correlation between u' and v' is given by 

( « V > = J ju'v'B(u'y)du'dv'. (18) 
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Note that the correlation is a measure of asymmetry of B(u', v'). 

The autocorrelation (u'(f) «'(*')) describes evolution of a fluctuating function 
u'(t). For stationary variables, the autocorrelation must be a symmetric function 
of τ = ί ' - 1 . Further, note that 

(« ' 2 ( r ) ) = (u2(t')) = constant = ( « ' 2 ) . (19) 

Thus, one introduces an autocorrelation coefficient 

(20) 

From Schwartz inequality, one has 

| ( Ì ' (0« ' ( ί ' ) ) |< | (« ' 2 (0) ( Ì ' 2 (Ο )Γ- (2D 

so there follows 

| p ( T ) | < p ( 0 ) = l . (22) 

Note that ñ is real, symmetric and vanishes faster than 1 / t (see Figure 6.3). 

Expanding ρ in a Taylor series about the origin, one obtains 
„2 

Ñ ( τ ) - 1 - | τ · (23) 

where λ is the microscale defined by 

V ^ 2 A=o 

_2_ 
' λ 2 

Figure 6.3. The autocorrelation coefficient (from Tennekkes and Lumley, 1973). 
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Further, note that 

(24) 

from which, on using (23), one obtains 

* ' V \ 2 ( " ' 2 ) (25) 

Consider now the average value of u(t) over a finite interval: 

ï 

(26) 

Then, the difference between UT and the true mean value U is given by 

' o * ï 

from which the mean square error is given by 

(27) 

((UT-Uy) = ^]]p(t>-t)dtdt' = ^](l-±)p(r)dr. (28) 
0 0 0 ^ ' 

so that τ /Γ = 0 in the range of values of τ where p ( r ) * 0 (see Figure 6.3), 
then (28) gives 

Thus, the difference between the time average of u and its true mean is due to the 
existence of a correlation of κ with itself. 

The requirement that a time average should converge to a mean value, i.e., that 
the error should become smaller as the integration time increases and that the 
mean value found this way should always be the same, is called ergodicity. An 
ergodic variable thus becomes uncorrelated with itself at large time differences. 

Introduce the Fourier transform of ρ ( τ ) - the energy spectrum: 

If T>/, where / is the integral scale, 

(29) 
ï 

(30) 

with 
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ρ ( τ ) = V2T ]e'tmsWda>- (31> 

Note that the condition on the behavior of the correlation at large time separations 
may be translated into a condition on the behavior of the spectrum near the origin 
- the derivatives of the spectrum near the origin are the moments of the 
correlation coefficient. Further, S(co) is real because ρ(τ) is symmetric, and 
5(ω) is symmetric because ρ(τ) is real; note from (22) and (29) that 

-jL Js (a i ) r f (B = l, S(0) = ^ - I . (32) 

If 

then 

à'τ(ω,ί)Β±;-Χ- je'"u'{t')dt', (33) 
Τ ν2π 

lim r(| «;(<». f)|2) = ̂ i 5(ω); (34) 
12π 

hence the name energy spectrum for S(co). 

The Central Limit Theorem 

It turns out that the probability density of a group of stationary variables is 
independent of the probability densities of the individual variables and tends to a 
limit when the number of the latter becomes very large. 

Consider Í statistically independent quantities x„(t). Assume that all x„(t) 
have identical probability densities and that their mean values are zero. Let us 
introduce a normalized sum variable, 

w ( ' )=^ i> . (0 - ( 3 5 ) 

The variance of w is given by 

where cr2 is the variance of xn, which is the same for each xn because they have 
identical probability densities, and the double sum becomes a single sum because 
xn and xm(n * m) are uncorrected. Note that the presence of the factor 1/-\[n in 
w(r) leads to the independence of the variance of w(t) on N. 

The characteristic function 0H (k) of w(t) is given by 
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^ ( A ) = 7 2 T e x p ( ' M i ) ) = V 2 7 e x p < 

( k (37) 

where 

ik 

is the same for all x„(t) since they have identical probability densities, and the 
factorization became possible because xn(t) are statistically independent. 

If the first few moments of the probability density of xn exist, then 

may be expanded in a Taylor series 

Φ 
k Ú 

4n) in \4n ) 

So, as Í => °o, (37) gives 

^ (*)=l im(2/ r ) 
N/2 2 ~ 2 Λ 

1 -
2N = (2;rf 'exp 

kW 

from which the probability distribution function of the sum is given by 

B{W): 
4~2 πσ 

exp w 
2 ^ 

2σ2 

(38) 

(39) 

(40) 

Thus, we have the following result (Central Limit Theorem). 

THEOREM: The sum of a large number of identically distributed statistically 
independent variables has a Gaussian probability density, regardless of the shape 
of the density of the variables themselves. 

Example 1: Consider an integral of «'(r) over a time interval T. If u'(t) is a 
stationary random variable, this integral will also be a stationary random variable. 
Now, an integral is like a sum, so that under suitable conditions the Central 
Limit Theorem becomes applicable in finding its probability distribution. If the 
integration time Τ is large compared with the integral scale /, the integral may be 
divided into sections of length larger that 21 so as to render the sections 
approximately independent (recall that / is a measure of the time over which u'(t) 
is correlated with itself): 
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ju'{t)dt = ju'{t)dt + ju'(t)dt + •••. (41) 
0 0 nl 

As η increases, the sections of integral become more nearly independent because 
neighboring sections depend on each other only near the ends. Noting that nl is 
the length of each section and T/nl is the number of sections, it is possible to 
choose η such that both nl and T/nl go to infinity as Ô => °°. We then have 
more and more sections and they become more and more nearly independent so 
that the probability distribution of the given integral becomes Gaussian. 

Let us use this result to analyze the motion of a marked fluid particle in 
stationary, homogeneous turbulence without mean velocity - a problem which is 
of relevance in the spreading of a spot of dye injected into a turbulent fluid. Let 
V(a,t) be a Lagrangian velocity at time / of a moving point which was at the 
point x=a at f = 0 . V(a,t) is a stationary function. The position of the 
wandering point is given by 

X{a,t) = a + \v{a,t')dt'. (42) 
0 

Since V is stationary, the application of Central Limit Theorem shows that 
(X-a)k asymptotically has a Gaussian probability density, with variance (or 

dispersion) given by 

((X-a)\) = )dt')dt"{Vk{a,t')Vk{ay)) 
0 0 

ι t' 
= 2Jdt'ldt"(vt(a,t')Vk(a,t")) 

0 0 

t r' 
= 2Jdt'jdT(Vk(a,t')Vk(aj'-r)) 

0 0 

= 2(Vk

2)\dt'] dxPkk{x) 
0 0 

= 2 ( K > j f l - f ) p M ( T ) r f T . < 4 3 > 
0 ^ ' 

which gives the root mean square (rms) dispersion of a marked fluid particle in 
terms of the Lagrangian velocity autocorrelation coefficient pkk ( r ) , defined by 

pJr)^j^(vk(a,t)Vk(a,t-T)). 

For long times, (43) gives the result corresponding to the classical random 
walk of discontinuous movements: 
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((X-a)2

k} = 2(vl)tIkt, 

where / u is the Lagrangian integral scale defined by 

ï 

Thus, for long times, the dispersion increases as if there were a constant "eddy 
diffusivity" of (v^) / u showing that the concept of diffusion is valid in this 

limit. (In general, the concept of a diffusion coefficient is, however, a crude 
approximation because the variation of statistical properties of interest in 
turbulent diffusion occurs over scales comparable to that of the turbulent motion 

For short times, p w = 1 so that, according to (43), the dispersion goes like t2 

(as in free steaming) and the probability density of (X-a)k is still nearly 
Gaussian because V is Gaussian distributed. 

Symmetry Condit ions 

The infinite field of turbulent motion is determined statistically by the complete 
system of joint probability distributions of the values of the velocities at any η 
points of space-time. The statistical properties of this flow field at different times 
are uniquely related by the equations of continuity and momentum. Analysis 
becomes simpler if fields of turbulence satisfy certain symmetry conditions in a 
statistical sense. These symmetry conditions are imposed on the joint probability 
distribution of the values of the velocity at η points of space at a given time. For 
a spatially homogeneous case, the joint probability distribution is independent of 
arbitrary spatial translations of the configuration formed by the η points, for an 
isotropic case, it is independent also of arbitrary rigid body rotations of the 
configuration relative to the fluid.2 

Now, the axes to which the velocities are referred must rotate with the 
configuration of η points so that one may consider the joint probability 
distribution of the velocity components in specified directions at the η points. In 
order to determine the consequences of the above symmetry conditions, note that 
the typical member (of order m, m > η) of the set of mean values of the velocity 
product derived from the joint probability distribution of the velocities at η points 

itself.) 

s 

Q!:).p(r,s,...,t) = (ui(xi,t)uJ{x2,t)...up{xm,t)), (44) 

where 

The concept of homogeneous and isotropic turbulence is introduced in order to separate individual 
macroscopic effects connected with the geometry of the particular system and the mechanism of 
turbulence generation from the more universal behavior at small scales. 
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r=x2-xl, s=x3-x2, etc. 

The invariance of the joint probability distribution function with respect to 
arbitrary translations and rigid-body rotations and reflections of the configuration 
formed by r,s,... implies that Q\f p{r,s,...,t) can be expressed in terms of the 
fundamental invariants, under the same operation, of r,s Therefore, 

e < J

m ' , ( r , i , . . . , r ) = X A ( r 2 , i

2 , r - S , . . . ) r , 5 ; . . . . (45) 

In particular, 

Qi(r) = Ar„ 

QiJ(r) = ArirJ+BSij, 

β , » = ΑτιΎί + Brfijk + Crfr, + Dr„5u, 

etc., (46) 

where the scalar functions A, B, C, D, etc., are all even functions of r. 

uk(x,t) is said to be a stationary random variable if the associated many-time 
probability distribution depends only on the differences between measuring times 
and not on their absolute values. 

Spectral Theory 

According to the cascade process advanced by Richardson, large vortices in 
turbulence break up via the mechanism of vortex stretching into smaller vortices 
which themselves break up into still smaller scales, and so on until viscous 
effects take over and turbulence is damped out. 

Fourier analysis of the velocity field, when it is a stationary random function 
of position, affords a convenient identification of the scales of motion with 
Fourier modes and a view of the turbulent motion as comprised of the 
superposition of motions of a large number of components of different length 
scales. These Fourier components contribute additively to the total energy and 
interact with each other according to the nonlinear inertial terms in the equations 
of flow. The observed properties of the turbulent field are thought of as being the 
statistical result of such interactions. It should be noted that Fourier 
representation is natural for infinitely extended homogeneous turbulent fields but 
not for inhomogeneous flows for which there is only a weak relation between the 
structure in real space and the Fourier modes. 

It is convenient to work with the Fourier components in a box of side L and 
apply periodic boundary conditions. One may then express the flow properties at 
any point χ at time i, as a superposition of plane waves of the form 
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v(x.t)^V(k,t)eik-', 

(47) 
^p(x,t) = ^P(k,t)e'k', 

where the summation is over all wavenumbers permitted by the cyclic boundary 
conditions. If L is finite, the wavevector k is an infinite but countable sequence, 
while if L is infinite, k will be a continuous variable. Note that ν and ρ are 
actually measurable so that 

V(-k) = V*{k), P(-k) = P*(k). 

Here, and in the following, we are dropping the argument t for convenience. 

When we use equation (47), equations (1) and (2) give 

* α ν ο ( - * ) = 0 , (48) 

- + vk1 \Va(k) = -ikaP(k)-ikp X V a ( k - j)V„{j). 
at J 

(49) 

Multiplying equation (49) by ka, summing over a and using equation (48), 
we obtain 

k*P(k) = -*„*/, Σ ~J)W- (50) 

When we use equation (50), equation (49) becomes 

dt νβ(*)=-ο β 7 (*)* / ,Σν/.(·/)Μ*-»· (51) 

where Day{k) is the transverse projection operator, 

|2 * 

Now, the symmetry of the right-hand side in equation (52) with respect to the 
indices β and γ may be made explicit by introducing the symmetrized transverse 
projection operator Ma0r(k): 

Ma?r{k)^^Dar{k) + krDafi(k)]. 

Equation (51) may then be rewritten as 

^«(*)=^(*)Σ^θ)Μ*->)· (52) 

Now, note that 
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(í«{*)íâ{í)) = ±\Ιαχαχ' {va(*j)Vp(x',t)) e " ^ ' 

If the turbulence is spatially homogeneous, then we obtain 

(va(^tK(x',t)) = Qap(rj),r=x-x' 

so that 

{K(k)Vfi(k')) = ^\\dxdr Qap{r) 

Similarly, 

Taking the average of equation (52) and using equation (53), we have 

d 2 — + vk 
dt L J 

(Va(k))= — Ma0r(k)Sko=O, 

(53a) 

{va(k)V,(k')VrW) = (^j δΜ«.Λ Q^iKk'). (53b) 

which is apparent since, for a spatially homogeneous turbulence, the mean 
velocity is either zero or constant over all space. 

Next, when we multiply equation (52) by V< T(-Jt) and a similar equation for 
Va(-k) by Va(k), add the two, and take the average, we obtain 

dt 
2vk2)(Va(k)V0(-k))= M^(k) £ ( v f l ( y ) V r ( f t - i ) V ; ( - * ) ) 

' i 

+ M^(-k)^(vfi(j)Vr(-k~j)Va(k)) 

or 

+2vk2)(2aa(k)=Af^wXe^O'.* -J) 
' j 

+ ^(-k)^Q^(j,-k-j). (54a) 

Observe, from equation (54a) that the equation for the spectral density tensor 
Qafi involves QapY- Similarly, the equation for ζ)αβγ involves Q„Pra, and so on. 

Thus, the equations for cumulants form an open-ended hierarchy (the closure 
problem). This hierarchy of equations is, therefore, useless until a suitable closure 
scheme is prescribed to reduce the problem to a finite set of equations. 
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Heisenberg's Theory 

Setting σ = a, we have, from equation (54a), 

— + 2v* J 

dt 
E{k) = JdW(k,k'), (54b) 

where 

£ ( * ) 4 | v ( * ) | \ 

W(k,k')mAi^(k) Q ^ k - k ^ + M^i-k) fiftai*',-*-*')· 

Equation (54b) describes the transport of the turbulent kinetic energy in the 
wavenumber space. 

The nonlinear inertial transfer term Wapy(k,j) only redistributes energy in 

wavenumber space so that we have 

Ι - Ó w + Ó 2 ν * 2 £ ( * ) = Ó Ó wik'k')=°· 

Therefore, the turbulent energy dissipation rate ε is given by 

ε = Ó 2 ν * 2 E{k). 
k 

Now, the vortex stretching process is believed to cause the amplification of 
enstrophy (which is the mean square of vorticity) and the associated spectral flux 
of energy toward small scales. If viscosity is very small, this leads to an 
unlimited enstrophy explosion at infinitely small scales. Nonetheless, since the 
viscous dissipation of energy, ε , is given by the product of viscosity and 
enstrophy, it remains finite even in the limit ν ^ 0 . This leads to the property of 
inviscid dissipation of energy in three-dimensional turbulence. As a result, three-
dimensional turbulence is strongly dissipative even in fluids with negligible 
viscosity. 

Note that 

W{k,k') = -W(k',k); (55) 

thus if 

k'<k. W>0, 

then 

k'>k: W<0 

and vice versa. This is physically understood by noting that W is the contribution 
to the energy increase of the kth mode due to nonlinear interaction with all other 
modes. Thus, W > 0 for interactions with modes of smaller wavenumbers and 
vice versa. Let us write 
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^{k,k')^^{k,k')-J^W^(k',k), (56a) 

where denotes the energy gained from the modes with smaller wavenumbers, 
and IV( 2 ) denotes the energy loss to the modes with larger wavenumbers. 
Equation (56a) describes a cascade process by which energy is passed from the 
smallest-wavenumber modes to the largest-wavenumber modes which lose their 
energy by dissipation.3 

When the volume of the flow region becomes very large, one may replace the 
Fourier sum by a Fourier integral. Thus, one may write 

^W(k',k) = JT(k',k)dk', (56b) 

where T(k',k)dk' is the net energy gain by modes of wavenumber k from all 
modes in the range k' to k' + dk'. Equation (54), then, becomes 

dt 
E(k) = JT(k',k)dk'. (57) 

Now, instead of dealing with modes of wide-ranging wavenumbers, it may be 
more useful to "integrate out" the modes with large wavenumbers to obtain a 
coarse-grained description of the flow at the integral scale. This coarse-graining 
leads to a renormalization of the molecular transport coefficients to include the 
effect of modes with large wavenumbers and is accomplished by making some 
assumption about the nonlinear transfer of energy across the spectrum. If one 
assumes, then, that the latter is of the same form as that for molecular transport 
(at least for modes with large wavenumbers or small eddies), then one may write 

T(k',k) = 
2AE(k')k Λ | ^ 

-2AE{k)k2 
E(k') 

(58) 

, k'>k, 

where A is a constant. Using (58) in equation (57), the rate of energy loss by 
modes with wavenumbers less than some value it is given by 

One assumes sometimes, as in the Kolmogorov theory, that the nonlinear interaction among the 
various Fourier modes is local, i.e., | /t | , and |Jt — Jfc'[ are comparable. On the other hand, 
numerical simulations (Ohkitani and Kida) have now confirmed that the most energetic interactions 
are nonlocal. However, while some distant interactions transfer large amounts of energy into a 
certain wavenumber, other distant interactions remove equally large amounts of energy from that 
wavenumber. Consequently, local interactions apparently still make a dominant contribution to the 
net energy transfer at a particular wavenumber, thereby validating the assumption of the statistical 
independence of the large- and small-scale modes in the Kolmogorov theory. 
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i dt 
dk" = -2v\E(k")k"2dk" 

-l\dk"E{k")k"2\A}^ 

k 
= -2(v + v t ) JE(k")k"2dk", (59) 

where vk is the 'eddy viscosity' given by 

-J' dk\ 

Equations (57) and (59) imply that the transfer of energy from one mode to 
another mode at a higher wavenumber is a cascade process which can be visualized 
in terms of a suitably defined eddy viscosity vk. The analogy with molecular 

viscosity is imperfect, however, because of the presence of continuous scales of 
motion in a turbulent flow. 

Let us now replace 

i dt 

by the total rate of decay of energy ε if only a negligible amount of energy is 
contained in wavenumbers greater than k. Equation (59) then becomes 

e = 2 V + A 

dH(k') 

H(k), (60) 

where 

it 

/ / ( J T ) = j A r " 2 £ ( r ' ) ^ " 

One obtains, from equation (60), 

dH(k)^4A2 [H(k)]4 

dk ε2 k5 

Noting, from equation (60), that 

ε 
2v 

(61) 

(62) 

equation (61) can be solved to give 
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(63) 

Therefore, 

Equation (64) shows that for small wavenumbers we obtain 

E(k) ~ AT5'3, 

whereas for large wavenumbers we have 

1-4/3 

(64) 

(65) 

E(k) - k -7 (66) 

Equation (65) holds in the so-called inertial subrange (see below). However, 
(66) is not quite acceptable because it leads to the divergence of higher-order 
moments of the spectrum. 

Kolmogorov's Universal Equil ibrium Theory 

We have seen that inertial effects cause a transfer of energy from modes with 
small wavenumbers to modes with large wavenumbers wherein this energy is 
dissipated by viscous damping. If the Reynolds number of the turbulent motion is 
sufficiently high, the viscous effects occur selectively in small-scale modes 
whereas the large-scale modes become independent of viscosity and are influenced 
only by the boundary conditions on the flow. If the energy-containing and 
dissipation ranges of the spectrum are widely separated so that the detailed 
statistical information about the large scales is degraded in the cascade, one may 
think of a range of wavenumbers near the upper end of the spectrum which have 
little connection with the details of the large-scale structure of the motion and are 
governed by 

(1) the removal of energy by viscous dissipation chiefly at the upper end of 
this range; 

(2) the supply of energy ε by inertial effects at the lower end of the range. 

This reasoning led Kolmogorov to postulate that this range of wavenumbers will 
have a statistically steady, universal and isotropic structure that is determined by 
the parameters ε and v. If one defines the basis length and velocity parameters 

Λ . 3 \ " 4 

V 
í = (νε)' (67) 
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and expresses all lengths in units of η and all velocities in units of V, the 
motion associated with the equilibrium^ range of wavenumbers will have a 
universal statistical form. 

One may then write for the correlation function 

( ( M ; - « ; ) 2 ) ~ ( v £ ) , / 2 C ( r / r , ) (68) 

where G(r/r/) has a universal form for small values of r. If the Reynolds number 

is very large, Kolmogorov argued that, there is a range of r, called the inertial 
subrange, at the upper end of the universal range where the viscous effects do not 
play an explicit role. Equation (68), then, gives in this inertial subrange 

((u;-u>)2)~(err. (69) 

Thus, the energy spectrum is given by 

E{k)~V^H{kr,), (70) 

where H{kr]) has a universal form for large values of k. This implies that the 
energy spectrum for different kinds of turbulence collapses into a single curve at 
large k, if it is normalized according to the similarity law. In the inertial 
subrange, (70) reduces to 

E{k)~ e 2 / 3 r 5 / 7 ( * r / ) , (71) 

where the scaling function f(x) is constant for small χ and decays rapidly for 
large x. 

The Kolmogorov law (71) has been verified remarkably well in experiments5 

(see Figure 6.4). The range of scales over which the Kolmogorov law (71) holds 
is found to increase with the Reynolds number. So, this scaling appears to be a 
universal asymptotic property of very-high-Reynolds-number turbulence for 
which the energy-containing and dissipation wavenumbers are widely separated. 

Equilibrium Statistical Mechanics: Lee's Theory 

Let us consider a three-dimensional turbulence within a box which can be 
expanded into an infinite series of discrete wave vectors kn with velocity 

The equilibrium range is not in equilibrium in the usual statistical mechanical sense because there 
is no detailed balance. On the other hand, thanks to viscosity, the equilibrium range continually 
dissipates energy with a stationary state maintained due to the shortness of the characteristic time 
scales compared with large-scale evolutionary times so that the high-wavenumber modes adjust 
themselves rapidly to changing conditions in the mean flow. 
^Experiments are typically limited to a one-dimensional surrogate for the local energy dissipation 
given by 
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W A V E N U M B E R (rn 1) 

Figure 6.4. One-dimensional spectrum measured in a tidal channel; line has 
slope of - 5 / 3 . Data from Grant el al. (1962) plotted by Tritton (1988). 

amplitudes V(kn,t) related by Euler's equations in Fourier space. These equations 
are truncated^ by retaining the modes lower than a cutoff wavenumber kmi (so as 
to preserve the validity of the inviscid model) and are suitably normalized to give 
for the velocity amplitude 

±v,(k) = -Lpijm (51) 
σ ' 1 *=*'+*· 

where 

Let y n ( f ) andy n j ( f ) be the real and imaginary parts of each mode V(Ar„). 
Then, if the truncated system contains Í wave vectors, the system can be 

Thanks to the detailed balance relations for the triadic interactions satisfying 
*=*' + *" 

the quadratic invariants like the kinetic energy are sufficiently robust or "rugged" to survive this 
truncation. 
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represented by a point of 4/V coordinates yn.{t) (t = l,2) in a phase space 

determined by y 0 ( r ) ( a = l 4/V). 

Equation (51) conserves the kinetic energy 

which implies that the system evolves ergodically in the phase space on a sphere 
of radius equal to the initial kinetic energy. Let us consider a collection of such 
systems which is represented at each instant of time by a cluster of points in the 
phase space of density p(y,,.. . , y4N, f) in the phase space. Since the total number 

of such systems and hence the volumes are preserved as they wander around in the 
phase space, we have the Liouville Theorem: 

The Liouville Theorem is crucial to the statistical formulation since it determines 
the measure in the phase space. 

Ergodicity on surfaces of constant kinetic energy implies that an arbitrary 
smooth initial ensemble on this surface converges weakly (i.e., finite-order 
moments of the distribution converge) to a uniform distribution over the energy 
surface. The distribution does not itself become uniform everywhere but rather 
develops a fine-grained structure. The typical approach of statistical mechanics is 
to explain the statistical behavior of a system in terms of its structural properties, 
like the conservation of energy, which specify representative ensembles pertinent 
to the system. This would allow one to study the equilibrium spectra of three-
dimensional turbulence from the viewpoint of canonical ensemble averages. 

By the elementary Gibbsian methods of statistical mechanics, equilibrium 
solutions of equation (73) are constructed as functions of the conserved quantities 
and are given by the Boltzmann-type distribution, which will be uniform over the 
surface of constant total energy given by (72), 

1 

/ > ( v 1 , . . . . y 4 J = - e 2 " , (74) 

where σ is a positive constant and Ζ is the partition function of the system 

Z = ) ~\e -' dyv..dy,N. (75) 

One then assumes that the canonical ensemble average (p(y,,. . . , y4N, tf} of an 

ensemble of given systems p (y , , . . . ,y 4 N , i ) obeying equations (52) and (73) will 

eventually relax toward the equilibrium distribution (74) over the entire region of 
phase space permitted by the total energy constant (72). 
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Homogeneous, Isotropic Turbulence: Taylor's Correlation Theory 

We consider here a turbulence with zero mean so that the primes are unnecessary. 
The velocity correlation tensor for two points separated by a distance r is 

Rii(r) = (ui(x)uj(x + r)). (77) 

In a homogeneous turbulence, one has 

Α,,Ï-) = */,(-')· (78) 

The energy spectrum tensor Φ, ;(Λ) is the Fourier transform of the correlation 

tensor 

* „ ( * ) = Κ ( 0 ^ * 7 - 4 ^ . (79) 

( 8 7 Γ J 

where 
dk 

/ ? , , . ( Γ ) = | φ , . . ( * ê 
\l/2 · 

(««") 
Note that Φ ί ; (&) possesses Hermitian symmetry 

*,,(*)=<M-*)=*;,(*)• <80> 
Further, 

Rij(Q) = (Ui(x)uj(x)) = \0u(k)-^-U7 (81) 
[in ) 

The mean variance of the mode " a " of the velocity is given by 

{yl(')) = ^lJyle''2°^ldyl.^N=^ (76) 

which turns out to be independent of a. Thus, there is an equipartition of energy 
among the modes a = 1,...,4/V. Since the number of modes is, in three 
dimensions proportional to 4nk2, the energy spectrum E(k) is proportional to 

k2. This shows an accumulation of energy at JFCM„ and an ultraviolet catastrophe 
in the absence of a high wavenumber cut-off. 

Though an inviscid finite system has here been seen to evolve towards an 
equipartition of energy among all Fourier modes, real flows behave quite 
differently and evolve toward the Kolmogorov scaling law 

E{k)~k-5'3 (71) 

in the energy cascade. Thus, truncation of the modes acts as a barrier preventing 
possible cascades and can produce a significant alteration in the statistical 
properties of the system. 
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so that Φ,;(£) represents a density in the wavenumber space of contributions to 

^ui(x)Uj(x)>j and thus describes a distribution of kinetic energy over the Fourier 

spectrum, and is, therefore, called the energy spectrum tensor. 

In isotropic turbulence, note, from (46), that 

R^r^Ftfrfj+Gir)^. (82) 

The solenoidal condition on the velocity field then gives 

— ! i = r \4F+rF' + -G' = 0 
dr, 1 \ 4 

or 

4F+rF' + -G' = 0 
4 

(83) 

where primes denote differentiation with respect to the argument. 

Introduce longitudinal and lateral velocity correlation coefficients (see Figure 
6.5) 

/ W = 7 y y { " p ( * K ( * + r ) ) -

(84) 

where up and un are the velocity components parallel and perpendicular to r, and 

(u2

p) = (u2„) = u2. Note, from (77) and (82), that 

U„(x) UAx+r) 

USx) Un(x+r) 

Figure 6.5. Longitudinal and lateral velocity correlations. 
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(«,(*)«,(*+!·)) = r2F(r) + G(r) = u2f(r)} 

(un(x)u„(x + r)) = G(r) = u2g(r). j 

When we use (85) and (83), (82) becomes 

Rii(r) = u 1 { ^ r i r j + g S i j \ = W 
f ( 1 

- — r r , + f + -rf'\5n 

Now, the homogeneity condition 

(85) 

(86) 

(87) 

implies that f(r) is an even function of r. Let us expand f(r) and g(r) as a 
Taylor series in powers of r, about r = 0, where they reach their maxima: 

f(r) = l + \f0"r2

+.-, 

i ( r ) = l + | f t - T 1 + - , 

where the subscript 0 refers to values at r = 0 , and 

/ ; . * i < o . 
Note, from (85) and (83), that 

| r ^ ( r ) r f r = | / - [ / + i ^ ' ) d r = ( ^ ) | r - / ( r ) r f r , 

where we assumed that / ( r ) vanishes rapidly enough as r=>»>. Thus, 

]rg(r)dr = 0. 

m>\: jrmg(r)dr<0. 

This leads to a graphical representation in Figure 6.6. 

Next, one has for the energy spectrum tensor 

0ij(k) = A{k)kiki + B(k)Sij. 

Then, the condition (49) gives 

When we use (92), (93) gives 

B = -k2A 

(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 
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Figure 6.6. Scalars characterizing longitudinal and lateral velocity coefficients 
(from Batchelor, 1953). 

so that the density in the wavenumber space of contributions to the total energy 
is 

±0u(k) = -k2A(k). (95) 

The contribution to the total energy from that part of wavenumber space between 
spheres of radii k and k + dk is E(k) dk, so 

£(*) = Ank2 -0..{k) = -4KkAA(k). 
2 

When we use (94) and (96), equation (92) becomes 

E(k) 

from which 

If Ru(r) = 2R(r), then (98) gives 

£(*) = (32π) 1 / 2 JR{r)kr sinkrdr, 
ο 

Since from (86) and (85) we obtain 

R;M = u2(f + 2g) = u2{3f + rf'), 

(99a) gives 

(96) 

(97) 

(98) 

(99a) 

(99b) 

(100) 
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£(*) = (4ÔÃ)" 2 ]u

2f(r)k2r2(— -coskr dr. 

" 7 ( 0 = 1 ]E(k)-
1 ( sin kr 

[Απ ) J

0 k r Κ kr 
• - cos kr dk. 

(101a) 

(101b) 

The longitudinal one-dimensional spectrum function, on using (97), becomes 

*(*.) = ̂ = J M V 0 . 0 K ' V A = : 7 ^ )u2f{r^k,rxdrx 

= T- J / φ π ( * . · Ì , ) < Ì * , = - Ì 2π i i Απ \ 

1 
1 - 2 

ν * J 

E(k) 
dk. (102) 

Next, the lateral one-dimensional spectrum function is similarly calculated as 

Ë / 2 /Ã J V2ir 

2 π 8/r : 
1 + - r 

E(k) 
dk 

2 2 ' 
(103) 

Note the relation between the derivatives of E(k) at A: = 0 and the integral 
moments of R(r) (use (99) and (100)): 

d2mE{k) 
= Zms[27t ( - l ) m + 1 J r 2 m t f (r )dr , m = l ,2 , . . . 

ï 

^Zrn-JlH {m-\)(-\)mu2]r2mf{r)dr. (104) 

Note, from (99H101) , that 

J t f ( r ) d r = « 2 J / ( r ) < i r = -
2 J

0 k 

u2]r2f(r)dr=n]^dk. 

Recall, from (96), that 

E{k) = Ck* +0(k6), 

(105) 

(106) 

(107) 
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where C is a constant. Using (107), (104) gives 

C = -j2nu \r*f{r)dr. 
3 „ 

(108) 

Next, one obtains from (100) and (101) 

d2mR{r) 
dr2m 

= | ( 2 m + 3 ) M

2 d2mf(r) 
dr ,2m 

-º£Ϊ^Ψ \K"MDK- <L09) 

from which 

•U- )k2E{k)dk, (110) 

which shows how the dispersion of the energy in wavenumber space determines 
the radius of curvature of the correlation curves at r = 0 . 

Consider, finally, the third-order correlation tensor 

Siil(r) = (ui(x)uj(x)Ul(x+rj). 

For isotropic turbulence, one has from (46) 

Siit(r) = Arfjr, + B(r ,S ; , + r,$„) + Dr,Su. 

The solenoidal condition on the velocity field gives 

dS, •ijl _ = 0. 

( H I ) 

(112) 

(113) 

(114) 

(115) 

2B + 3 D + r D ' = 0. (116) 
Now, note that Sul is a first-order isotropic tensor so that, from (46), it may 

be written as 

SiH=A{r)r,. (117) 

Thus the solenoidal condition on the velocity field gives 

Using (112), this gives, in turn, 

^5 A + rA' + ^ B' j r / . + (2B + 3D + rD') δυ = 0 , 

from which 

5A + rA' + -B' = 0, 
r 
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When we use (117), (118) gives 

from which 

dr, 
• 5 , , = 0 . 

3A + M ' = 0 , 

- 7 · 

Turbulence 

where C is a constant. In order to have a smooth behavior, one then has to 
prescribe C = 0. Therefore, 

S l i l S 0 . 

When we use (112), (121) gives 

r 2 A + 2B + 3D = 0. 

When we solve (115), (116), and (122), one obtains 

A = -D\ B = --(3D+rD'). 
r 2 

Introduce a specific third-order correlation (see Figure 6.7) 

(ul(x)up(x + r)) = u3h(r); 

then, from (101), one has 

u*h{r) = rD{r). 

When we use (123) and (125), (112) becomes 

(121) 

(122) 

(123) 

SIJI -

rh'-h rh' + 2h / c _ \ h _ 
r.r.r, : [rfi,, + ri5jl) + - ηδ,, •i'j'l 2r 

(124) 

(125) 

(126) 

The experimentally measured double and triple correlations are shown in 
Figure 6.8. 

Vp(x+r) 

Figure 6.7. A third-order velocity correlation. 

(118) 

(119) 

(120) 
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- 0 . 0 2 

- 0 . 0 1 

x/M = 2 0 

2 

r,cm 

4 

r,cm 

x/M = 2 0 

J 

Figure 6.8. Top, double, and triple correlation functions involving velocity 
fluctuation u behind a heated grid set perpendicular to a uniform air stream (from 
Kistler et al., 1956). Here, χ and r denote distance in the direction of the stream, 
and Μ is the mesh width of the grid. 

Introduce the Fourier transforms of 5 1 > ( (r): 

Then, from equation (113), one obtains 

Using (128), one may express Yjj,(k) as 

Yijt(k) = iY(k) 

Noting, from (126), that 

S,ii(r) = -u3(h' + 4 i y j = L H { r ) r . < s a y > 

(127) 

(128) 

(129) 

(130) 

one has 

1 0 

8 

6 
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i d 7 . . 2 sin kr 
dr 

- j = = — — 

4ϊπ dkj [I kr 
i kt }d(r3n) s in kr 

dr. (131) 
V2TT * 2 J

0 dr kr 

Using (129), one then obtains 

Y(k) — — f r — + 3 H(r)kr sin kr dr. 
k6 {{ dr J 

(132) 

The von Karman-Howarth Equation 

We have just seen that the correlations of the components of the velocities at two 
points and three points can each be expressed in terms of single scalar functions 
when the turbulence is isotropic. We shall see below that the Navier-Stokes 
equation provides a differential equation connecting these two scalar functions. 

Let us here use the notation 

u' = uj (x + r). 

Multiply equation (2) for M, by u\, and vice versa, average, and add the two; one 
then obtains 

(133) 

which may be written as 

(134) 

where 
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Now (p"y) is a solenoidal first-order isotropic tensor, so, as in (121), it is 

identically zero. Therefore, 

(135) 

Next, note from (130) that 

T„=-^[siki(r)-Slkl(-r)] = 2— Siki(r) = (rH' + 3H). (136) 

Let 

so that 

V 2 & , = « 2 

2 ) " 2r ' J] 

V2Ru=u2{3s + rs'). 

But, from (100), one has 

r or r2fr(3f + rf') 

Comparing (138) with (139), one obtains 

s = f" + -f. 

(137) 

(138) 

(139) 

(140) 

Then, contracting the subscripts i and j in equation (134), using (100), (135), 
(136), and (138), one obtains 

— [κ2 ( 3 / + rf')] = (3/7 + rH') + 2vu2 (3s + rs'). 
dt 

An obvious first integral of equation (141) is 

— (uf) = H + 2vu2s. 
dtv 

On using (130) and (140), equation (142) becomes 

dt 
(u2f) = -2u> h' + -h 

V r J 
+ 2vu 

4 Ί /" + - / ' 
r ) 

(141) 

(142) 

(143) 

which is the von Karmdn-Howarth equation. Noting that equation (143) can be 
written as 

d ι ,\ d 
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- (u2f) + 2u} 1 -(/h) = 2vu2 - - ( / £ , 
dt r4 drK ' r4 dr{ dr) 

(144) 

we have 

d_ 
dt 

uljr*f{r)dr = 0 

and hence the integral invariant -

u2 jr*f(r)dr = const., (145) 

which is called Loitsiansky's invariant. From (107) and (108), physically, this 
implies the permanence of the spectral density at very low wavenumbers. 

6.3. Two-Dimensional Turbulence 

A principal reason for interest in two-dimensional turbulence is the possibility of 
applying the theory to planetary boundary layers. Strictly two-dimensional flow 
in a layer of fluid requires that the velocity vector everywhere lie in a given plane 
and that there be no variation of the velocity field perpendicular to that plane. On 
a global scale, the earth's atmosphere and oceans are a very thin layer so that it is 
reasonable to expect two-dimensional motion on scales large compared with the 
layer thickness. Besides, the rotation of the earth plays a crucial role in preserving 
the two-dimensional nature of the motion. (This follows from the Taylor-
Proudman Theorem (see Section 2.5), which shows that uniform rotation of a 
plane layer of fluid about an axis, say z-axis, perpendicular to the plane tends to 
lock the fluid into two-dimensional motion independent of z.) 

Two inertial ranges become possible in a two-dimensional turbulence: the 
energy subrange in which energy propagates to larger scales, and the enstrophy 
subrange in which enstrophy cascades to smaller scales. Kraichnan and Batchelor 
invoked arguments similar to those used in Kolmogorov's theory of three-
dimensional isotropic hydrodynamic turbulence to surmise that if the Reynolds 
number is sufficiently high the large-scale components are influenced only by the 
boundary conditions on the system. The statistical properties of the small-scale 
components of velocity and vorticity fields in the inertial range were assumed to 
have some universality and to be uniquely determined by the mean energy and 
enstrophy dissipation rates ε and r , respectively, and the kinematic viscosity ν 
and to depend only weakly on the large-scale features of these fields. By using 
dimensional arguments, it"5 ' 3 and k~* power laws were derived for the spectrum 
of kinetic energy density of the fluctuations in the stationary state for the energy 
subrange and enstrophy subrange, respectively (see below). 
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Conserved Quantities for a Two-Dimensional Flow 

The Navier-Stokes equations for an incompressible fluid are 

V v = 0 , 

dv 

dt 
+ ( « V ) v = - V + vV v . 

(1) 

(2) 

Equations (1) and (2) are known to be well-posed in the following sense. If the 
initial vorticity field is Holder continuous and the initial velocity is C", then the 
velocity field will remain so for all finite time. Taking the curl of equation (2) 
and using equation (1), we find that the vorticity Ω = V χ ν obeys 

— + ( i » V ) f t = ( f t - V ) v + v V 2 f t . 
dt 

(3) 

For a two-dimensional flow, taking the scalar product of equation (2) and (3) 
with ν and ft, respectively, we obtain 

d_ 

dt 

( 2 > ( 2 λ 
V 

+ V- Í ρ + V- ν— + v — = 
I 2 J I 2

 ρ) 

d ί ί ΐ η + ν · fft
2 l 

— + ν · —ν 
dt I 2 J { 2 ) 

= v V ( v x f t ) - v f t 2 , 

= v V [ f t x ( V x f t ) ] - v ( V x f t ) 2 

(4a) 

(4b) 

If the fluid is surrounded by a rigid boundary so that the normal component of 
velocity vanishes on the boundary, we have from equations (4) 

— = — [— dx = i(vxn)ds-[vn2 dx,1 (5a) 
dt dt J 2 J 3 

dJLsJL\QL <fr = | v f t x ( V x f t ) - d s - [ v ( V x f t ) 2 dx. (5b) 
dt dtJ 2 J 3 

In the absence of viscous dissipation (v = 0) , equation (5) gives the 
conservations of the total energy Å and the total enstrophy U (which is the mean 
square vorticity): 

£ = const., U = const. (6a,b) 

Thus, in two-dimensional turbulence, there are two conserved quantities: the 
energy and the enstrophy.8 (Due to a finite viscosity, however, the enstrophy is 
dissipated at a nonnegligible rate; therefore, the maintenance of a stationary state 
requires an external source since the vortex stretching, which acts like a source of 

Note that the energy balance equation (5) does not show any contribution from the nonlinear term 
in equation (2). This is because the nonlinear term merely redistributes energy among the various 
scales of motion without affecting the global energy balance. 
8Vorticity itself is a Lagrangian invariant, because, according to equation (3), material fluid 
elements carry their values of vorticity with them. Thus, any integral function of vorticity is 
conserved. 
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vorticity, is inoperative here unlike the three-dimensional turbulence. However, 
energy dissipation will tend to zero as v = > 0 , so that two-dimensional 
turbulence, unlike its three-dimensional counterpart is almost nondissipative as 
ν => 0.) Therefore, there are two types of inertial ranges: one for energy and one 
for enstrophy. 

If the enstrophy vanishes during the direct cascade, equation (5) shows that 
dE/dt => 0 even in the presence of a viscous dissipation. This implies that the 
system will evolve toward a state of minimum enstrophy with constant energy. 
Thus, there exists a selective dissipation process among the conserved quantities 
in a two-dimensional flow when dissipation is introduced: The enstrophy decays 
faster than the energy. 

The evolution of the system toward a state of minimum enstrophy with 
constant energy implies that 

5[Jfl2dr + A j | V ^ | 2 d i r ] = 0, (7) 

which yields 

Ψ Ω = -λΩ 

or 
Ω - ψ. (8) 

However, laboratory experiments on dipole vortices (van Heijst and Flor) have 
shown that the relation between Ω and ψ is not linear, as predicted by (8), and is 
given by 

i 2 ~ s i n / i v / . 9 (9) 

Fourier Analysis of the Turbulent Velocity Field 

Let us express the flow properties at any point χ at time r, as a superposition of 
plane waves of the form 

= Σ ν (*· ' )* '" . -p(x,t) = ^P(k,t)eikx. (10) 
k Ρ k 

Since V and Ρ are actually measurable, they must be real so that 

V'(k) = V(-k), P'(k) = P(-k). 

We have dropped the argument t for convenience. We then obtain from equations 
(1) and (2) the following equation: 

"Consider the mechanical analogy of a membrane clamped at its edge, in which stream function is 
displacement and vorticity is load. The minimum-energy arrangement of the load is then achieved 
by moving it as close as possible to the edge so that the support bears its weight. The maximum-
energy configuration is found by placing the load in the middle of the membrane as far as possible 
from the edge. 
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^ - + v*2 

dt 
Vj(k) = -ikm Σ^(*' )ν , (*-*' ) . 

which describes the mode coupling among different Fourier components. 

In terms of the stream function ψ, defined by 

we have for the vorticity i l 

and equation (3) becomes 

ft = Vxv = -V2\yit, 

— í2ψ + (íψχίf)v(v» = vvV. 
dt V ') \ I 

Upon Fourier analyzing ψ(χ, t) according to 
W{x,t) = ^{k,t)eik', 

equation (14) becomes 

\dt 

where 

A ^ ^ ^ i k ' x k - y i ^ - k " * ) , 

5 2 3 

(12) 

(13) 

(14) 

(15) 

(16) 

and we have again dropped the argument t for convenience. A becomes large 
when k,k', a n d * " have comparable magnitudes so that the modal cascade is 
dominated by local interactions in Ac-space. 

Energy and Enstrophy Cascades 

Consider a source in the spectral space at k = kt with energy Es = E{ks) (the 

omnidi rec t ional energy spectrum E(k) is de f ined such tha t 

j E(k)dk = £ | V(A) | 2 gives the total energy). 

Through mode-mode coupling this source would decay into two modes with 
wavenumbers k, andk 2 with energies £, a n d E 2 , (k<ks corresponds to the 
inertial range for energy and k > ks corresponds to the inertial range for 
enstrophy.) Since energy and enstrophy are conserved, we have 

E,=Et + E2, (17) 

k2Es=k2Ei+k2

2E2, (18) 

from which the energy is partitioned as 

(11) 
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Å = _ Λ 2 

Å2 = 
(19) 

This implies that 

A:2 >kf >k2 (20) 

so that the mode with wavenumber ks decays into a mode with wavenumber 
/fc, < ks and to another mode with wavenumber k2> ks. 

Let us assume that a mode ks first decays into modes kt(kt -Jpk^ and 

k2{k2 = + ρ ks; ρ< l ) , with corresponding energies E{ = pEs and 

£ 2 = (l - p) and enstrophies Ul = k) p1 Es and U2 = &2 (l - p1) £ , . In the next 

step of the cascade, the mode kx decays into a mode -\[p kx = pks and another 

mode -^1 + ρ fc, =^p(l + p) ks, while the mode k2 decays into a mode 

s[p k2 =^p(\ + p) ks and another mode -y/l + ρ k2 = (l + p)ks. The energies for 

the modes pks, -^p(\ + p) ks and (l + p)ks are p2Es, 2p(\ —p)Es and 

(l - pf Es, respectively. Thus, at the nth step of the cascade, the energy is given 

by 

E(k2=p"-'{\ + p)rk]) = ^p"-'{\-pYEs. (21) 

Now, by the de Moivre-Laplace approximation, we have for the binomial 
distribution, as η => °°, 

pr-(i-pY~ 
1 

{n-r-npf 

(22) 
^J2mp(l - p) 

so that the binomial distribution in (21) peaks at r/n = 1 — p as η => °°. The 
corresponding wavenumber is 

/t2 = l im p"-'(\ + p)'k2 = l im 

= lim + />)'-'IV (23) 

Since, for 0<p<\, pp(l +p)'p < 1 , we obtain it.2 = 0 . This means that the 
peak of the energy distribution moves to k 0, as η => °°. Hence, the energy 
cascades inversely and condensates at A: => 0 (or at the longest wavelength 
permissible for the system). 
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Next, the enstrophies for the modes pks, + p)ks and (\ + p)ks are 

k2p*Es, 2k2p2(l - p2)Es and k2 (l-p2f Es, respectively. Thus, at the nth step 

of the cascade, the enstrophy is given by 

U(k2 = jT (1 + P)' k]) = Γ p2^(1 - pJ)' k)E.. (24) 

The binomial distribution in (24) peaks at r/n = \-p2 as η =>·*>. The 
corresponding wavenumber is 

peak of the enstrophy distribution moves to k => °°, as η => °°. Hence, the 
enstrophy cascades directly and condensates at k => °° (where strong viscous 
dissipation sets in). 

Self-Organization and Self -Degradat ion 
in Two-Dimens ional Flows 

The energy cascade to lower wavenumbers has the result that random excitation at 
intermediate wavenumbers drives the (necessarily coherent) largest spatial scales 
of the system. Thus, two-dimensional flows seem to have a self-organizing 
character. The smooth structure of the stream function is expected to evolve 
toward a smooth structure as a consequence of the inverse cascade of the energy to 
large wavelengths, while the vorticity is expected to evolve toward a convoluted 
structure as a result of the enstrophy cascading to smaller wavelengths. 

In order to understand the self-degradation of vorticity, consider equations (12)-
(14) in the inviscid limit, 

k2=\\m pn"{l + p)rk] 

Γ ι-- Λ" 

= lim ρ " ( l + o ) » k2 

= lim [ / ( ΐ + />)'-'Ί\2. 

(25) 

Since, for 0 < ρ < 1, pp (l + p) " > 1, we obtain k2 = o o . This means that the 

4: + m] fl(r) = 0, (26) 

(27) 
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Let us split the operator L(t) into a mean part L(t) and a fluctuating part 
L'(t) as follows: 

L(t) = L(t) + L'(t). (28) 

Upon averaging, equation (26) gives 

Ω(Þ = -(υ(ÞΩ'(Þ), (29) 

where the bars overhead (or ( ) ) refer to the average, and the primes refer to the 

fluctuation, and 

Ω{Þ = Ω(Þ + Ω'(Þ. 

Upon subtracting equation (29) from equation (26), we obtain 

V(t) = -L'(t)i2(t) + ((L'(t)V(t))), (30) 

where 

If we introduce Green's function G(t,t') for the operator 

by 

H(t) = JG{t,t')H(t')dt', (31) 

the solution of equation (30) can be written formally as 

Ω'(ί) = J G(r, / ' ) [(L'{t') Ω'{ί')) - L'(r') Ω (/')] dt' (32a) 

and, on iteration, as the Neumann series: 

Ω 'Ï ) = - J G(t, t') L'(t') Ω( / ' ) dt' 

- jG(i,0((i'(0jG(//,OL'(r)i2(r)A''^A'+ ••• . (32b) 

As a first approximation we will retain only the first term on the right-hand side 
of equation (32). Thus, equation (29) and the fluctuating part of equation (27) 
become 

Ω (ή = J dt' (L'(t) G (t, r') L'(t')) ¿(Ï, (33) 

V 2 ψ'{Þ = j dt' G(f . t ' ) L ' ( t ' ) Ω ( t ' ) . (34) 

If we now suppose that the integrand on the right in equation (33) peaks near 
t' = t for a short period of time of the order of T c , the correlation time of the 

, defined 
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fluctuations (or the eddy turnover time), and that Ω(Þ is sufficiently smooth and 
does not change significantly during this period, we may ignore the nonlocal 
character of the diffusion operator in equation (33) - Markovianization. The latter, 
then, becomes the Fokker-Planck equation, 

- + v - V 
U 

a M = ±.D{xj).*°™, (35) 
dx dx 

and equation (34) becomes 

[ V x W ' ( * , 0 ] 1 = - ^ ^ \dt'G(t,t')v\x,t'). (36) 
dx 

Here, assuming that the fluctuations are stationary, the diffusion coefficient D is 
given by 

D(x, t) = j dt' ( v ' (χ, I) G (t, t -1')v'(x, / - / ' ) ) , (37) 

which embodies the Kubo's Fluctuation-Dissipation Theorem. 

Equation (35) signifies the self-degradation of vorticity and implies that the 
evolution of vorticity in two-dimensional turbulence can be considered to be a 
Markov process. This is plausible if we note that when the vorticity has evolved 
for a time long compared with the correlation time of the enstrophy cascade the 
enstrophy-transfer process would have completed a large number of steps in the 
cascade, each of which produces a small random contribution. 

Batchelor-Kraichnan Theory of the Inertial Ranges 

Komogorov's theory of the inertial range occupies a central place in the theory of 
three-dimensional turbulence. As we saw in Section 6.2, Kolmogorov argued that 
there exists a certain range, called the inertial range, in the wavenumber space 
which is in a state of statistical equilibrium in the sense that there is neither a 
source nor a sink of energy. The energy spectrum is assumed to cascade here 
smoothly through nonlinear processes in a stationary state. Furthermore, the 
energy spectrum E(k) in the inertial range is assumed to depend only on the 
wavenumber k and on the rate £ at which energy is cascaded per unit mass. 
Dimensional arguments then imply that E(k) has the form 

E(k) = Ce2/ik-s/i, (38) 

where C is a dimensionless constant. 

In two-dimensional turbulence the existence of two conserved quantities, 
energy and enstrophy, imply the possibility of two cascades with inertial ranges 
of the Kolmogorov type. Using dimensional arguments, Kraichnan and Batchelor 
gave for the inertial-range energy spectrum E(k), the following form in the 
energy cascade: 

£·(*) = C,e 2 / 3 r 5 / 3 ; (39) 
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and they gave the following form in the enstrophy cascade: 

£(*) = C 2 r 2 / 3 r 3 . (40) 
Here £ and τ are the rate of transfer of energy and enstrophy per unit area, 
respectively, and C,, C2 are dimensionless constants. 

The energy spectrum (40) in the enstrophy range leads to violation of locality 
in the latter range. In order to see this, note that the eddy turnover time T(k) for 
a scale k is given, on dimensional grounds, by 

7 « ~ S i £ ; (4.) τ 

and note that on using (40), (41) becomes 

T(k)~ τ " " 3 . (42) 

According to (42), T(k) does not decrease with decreasing scale, so that the 
characteristic timescales of the small eddies will not be small compared with that 
of the large eddies, and the small eddies will not remain in equilibrium with the 
latter. Kraichnan suggested a phenomenalogical solution to the nonlocality in the 
enstrophy range by taking the eddy turnover time T(k) to be, instead, 

η-1/2 

\p2E{p)dp (43) T{k) 

which then leads to the log-corrected spectrum: 

Å ( * ) - τ ^ Τ > ( * / Α 0 ) ] ~ ν \ (44) 

Here, k0 is the scale at which forcing is introduced. 

Equilibrium Statistical Mechanics: Kraichnan's Theory 

Let us consider a two-dimensional turbulence within a square which can be 
expanded into an infinite series of discrete wave vectors kn with velocity 

amplitudes V(kn,t) related by Euler 's equations in Fourier space. These 

equations are truncated by retaining the modes lower than a cutoff wavenumber 
jfcmis (so as to preserve the validity of the inviscid model) and are suitably 
normalized to give for the stream function ψ (recall equation (16)): 

(45) 

L e t y„i ( 0 and yn2 (i) be the real and imaginary parts of each mode Ψ^η). 
Then, if the truncated system contains Í wave vectors, the system can be 
represented by a point of 2N coordinates yn (/)(/ = 1,2) in a phase space 

determined by ya(t)(cc = l,...,2N). Equation (45) conserves the kinetic energy 
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and the enstrophy 1 0 

1 k. L
 O=! 

1 ι 1 L N 

ί k. L
 O=L 

which implies that the system evolves ergodically in the phase space on the 
intersection of the kinetic energy sphere and the enstrophy ellipsoid. Let us 
consider a collection of systems which is represented at each instant of time by a 
cluster of points in the phase space of density p(y, , . . . , y2N, r) in the phase space. 
Since the total number of such systems and hence the volumes are preserved as 
they wander around in the phase space, we have the Liouville Theorem: 

By the elementary Gibbsian methods of statistical mechanics, equilibrium 
solutions of equation (48) are constructed as functions of the conserved quantities, 
and are given by the Boltzmann type distribution 

P{y, y 2 „ ) = - * 2 - . (49) 

where a and μ are two positive constants, and Ζ is the partition function of the 
system 

Z = J - J I 2 - dy,...dy1N. (50) 

One then assumes that the microcanonical ensemble average (p{y y2N<{)) °f 

an ensemble of given systems p(yi,--.,y2N<t) obeying equations (45) and (48) 
will eventually relax toward the equilibrium distribution (49) over the entire 
region of phase space permitted by the total energy and the total enstrophy 
constants (46) and (47). 

The mean variance of the mode a of the stream function is given by 

{y2A<)) = -\-\yle >« dyt...dy2N=— -χ. (51) 

Thus, 

( i n * ) f ) = 
* α ( σ + ì * 2 ) 

(52) 

'^Note again that only the quadratic invariants (energy and enstrophy) survive the spectral 
truncation because they are conserved by an interacting triad. 
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and the energy spectrum is then given by 

E ( t ) = rt'(|Wf)---l_ (53) 

Equation (53) shows that for the case σ < 0, high-energy states are statistically 
favored relative to the low-energy states and the energy spectrum is dominated by 

the contributions form the largest wavelengths [k = fcrain = ^-σ/μ}. This again 

implies that the energy cascades toward large scales and leads to coalescence of 
vortices of the same sign which represent states of high-energy. Observe further 
that for k => 0 (this also corresponds to abandoning the enstrophy conservation 
condition) (53) gives the spectrum of equipartition of kinetic energy among the 
modes: 

E(k)~k. (54) 

Thus, an inviscid finite system evolves toward an equipartition of energy 
among all Fourier modes. However, as we saw before, the situation is quite 
different for real flows (with infinite degrees of freedom), which evolve toward the 
Batchelor-Kraichnan scaling laws: 

E{k) ~ AT5/3 (55) 

in the inverse energy cascade and 

£ (* ) - -Γ 3 (56) 

in the direct enstrophy cascade. Thus, truncation of the modes acts as a barrier 
preventing possible cascades and can produce a significant alteration of the 
statistical properties of the system. 

Figure 6.9. Experimentally observed energy spectra in a two-dimensional 
turbulence (from Sommeria, 1986). Arrow indicates the injection wavenumber. 
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The whole theory of two-dimensional turbulence had, until recently, remained 
almost an academic exercise, notwithstanding its possible connections with 
atmospheric and oceanic large-scale flows. Recently, truly two-dimensional 
flows were produced to a close approximation in laboratory experiments. 
Experimental evidence of the existence of inverse energy cascade was first 
obtained by Couder on this liquid soaps films, then by Sommeria in a shallow 
mercury layer immersed in a strong normal magnetic field. 

The inverse energy cascade in a statistically steady forced two-dimensional 
turbulence (without forcing, the inverse cascade cannot develop), experimentally 
investigated by Sommeria, showed a k's/i behavior at large wavenumbers and a 
kl behavior corresponding to an equilibrium energy equipartition spectrum at 
small wavenumbers (Figure 6.9). 

6.4. Turbulent Dispersion: Lin's Theory 

While the theory of turbulence is usually developed in the Eulerian description, 
the dispersion process requires Lagrangian viewpoint because it is concerned with 
relative motion between neighboring particles. 

Let us analyze the one-dimensional relative motion of two particles which are 
close to each other and have essentially the same initial velocity but have different 
initial accelerations, if the distance between the particles exceeds the range of 
Eulerian correlation of pressure gradient. Such particles will begin to have 
different velocities and will consequently drift apart. 

Let Z, (/) and Z 2 (/) be the position of two particles which were close to each 
other at f = 0 . Then, 

Z,(0) = Z 2 (0 ) = 0. (1) 

If W, (f) and W2 (/) are their respective velocities, then we have 

W , ( 0 ) = W 2 ( 0 ) . (2) 

Let their relative displacement at time t be 

z(t) = Z2(t)~Zl(t) (3) 

and their relative velocity be 

»(t)=W2(t)-Wl(t). (4) 

Then, the initial conditions (1) and (2) can be reexpressed as 

z(0) = 0, w(0) = 0 . (5) 

Let the relative acceleration of the two particles be 

a(t)=W2(t)-Wl(t). (6) 
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From the relations 

and using (5), we obtain 

dz j dw 
w = — and a - — (7) 

dt dt y ) 

ι 

w(t) = \a(t')dt, (8) 
0 

t 
z(t) = j(t-t')a(t')dt'. (9) 

ï 

Multiplying each of these equations by a(t) and averaging over an ensemble of 
pairs of such particles, we obtain 

1 d 
\jt{^{t)) = \{a{t)a{t'))dt\ (10) 

\ ^ { z \ t ) ) = ^{t)) + \{t-t')(a{t)a{t'))dt'. (11) 
0 

If we now assume the acceleration to be stationary, we may then write 

(a(t)a(t')) = a2 Λ(τ), T = t'-t. (12) 

The correlation coefficient R(T) satisfies the following asymptotic properties: 

R(0) = \, 1 

L I R N / ? ( T ) = 0.j ( 1 3 ) 

The first property follows from the definition of R(T), while the second 
expresses the obvious physical fact that events which are widely separated in time 
become uncorrected. 

We then have from (10) and (11) 

l

1j-y{t)) = al'\R{T)dx, (14) 

\^{z\t)) = {w\t)) + al\rR{z)dx. (15) 
ï 

We obtain from (14) and (15) 

(w\t)) = 2a2j(t-T)R(T)dx, (16) 

Then 

α ( 0 ) * 0 . 
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(z2(0) = } ( ' - r ) 3 R ( T ) d T + a 2 j ( t - T ) 2 T R ( T ) d T 
0 0 

' 3 ' 1 ' 

i3 J / ? ( T ) ^ T - w 2 J TR{r)dr + ± j T3R{r)dT (17) 

Since R(T) vanishes rapidly for large value of τ , we have approximately 

; Ô 

JR(r)dT = J /?(r )</T, for t>T. (18) 
ï ï 

Also for such large values of /, we have 

t > 

t 
jrR{T)dT 

t 

J T 3 R{r)dT 
. 0 

f3 S> . 0 

JR(r)dT 
t 
JR(r)di 

(19) 

Under such conditions, (16) and (17) yield the following approximate relations 

(z2(t)) = ^Bt\ (20) 

{w2{t)) = 2Bt, (21) 

where 
τ 

B = a2. JR(r)dT. 
ο 

Equation (20) is called the Richardson's law. 

Note that the validity of the above formulation requires that the time involved 
in the correlation of the forces be very short compared with the time scale of the 
observations. Indeed, the function describing the dependence of force as a function 
of time should resemble a δ-function. Thus, one may visualize that the fluid 
particle has been subjected to successive small impulsive forces, like those 
experienced by a Brownian particle, i.e., the particles are moving almost freely 
and subjected only to "small" random forces having a very short-ranged 
correlation. 

If we define a dispersion coefficient by 

then we have from (19) 

D = Bt = (23) 
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Equation (23) implies that the dispersion coefficient increases as the 4/3 power of 

scale. Such a relationship was earlier discovered by Richardson from a purely 

empirical analysis of atmospheric dispersion. 
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Fluid particle, 3 
Fluid state, 2 
Force exerted on an arbitrary body, 

169 
Forced wave motion in a rotating 

fluid, 103 
Free shear flows 

flow in a mixing layer between 
two parallel streams, 372 

jet flow, 376 
periodic oscillating wake flow, 

346 
wake flow, 377 

Free streamline flow, 53 
flow impinging on a vertical 

wall, 61 
flow in a corner, 57 
hodograph method, 59 
jet emerging from an orifice, 57 
Schwartz-Christoffel 

transformation, 53 
Frictional heating, 16 

G 
Gases, 2, 218 
Gas flows 

conical gas flows, 246 
Couette flow, 334 

flow past a convex corner 
(Prandtl-Meyer flow), 246 

flow past a slender body of 
revolution, 196, 299 

flow past a wavy wall, 249 
flow with heat transfer (Rayleigh 

flow), 237 
potential flows, 243 
Riemann invariants, 253, 274 
small perturbation theory, 248 
supersonic flow past a cone, 302 
transonic flows, 297 

Geostrophic flows, 98 
Gravity waves, 116, 126 
Gravity waves in a rotating fluid, 

130 

Growth of a spherical bubble, 73 

Ç 

Hamiltonian formulation, 18, 479 
Heat flux, 15 
Heisenberg's criterion for viscous 

stability of shear flows, 468 
Heisenberg's theory of turbulence, 

503 
Helicity, 22 
High Reynolds number flows, 350, 

390 
Hill's spherical vortex, 87 
Hodograph Method 

characteristics, 250 
compressible flows, 263 
hodograph curve, 263 
incompressible flows, 59 
Karman-Tsien approximation, 

265 
limit line, 268 

Homentropic flows, 275 
Homogeneous turbulence, 499 
Howard's semi-circle Theorem for 

stability of shear flows, 458 
Howarth-Dorodnitsyn 

transformation, 371 



5 5 0 Index 

Hugoniot curve, 229 
Hydraulic jump, 166 
Hydrodynamic images, 44, 51, 69 
Hydrodynamic stability 

Arnol'd stability approach, 476 
capillary instability of a liquid 

jet, 435 
Couette flow, 406 
Couette flow with axial 

velocity, 410 
Fjortoft's Theorem, 458, 483 
Heinsenberg criterion for viscous 

stability of shear flows, 468 
Howard's semi-circle Theorem 

for stability of shear flows, 
458 

initial-value problem for 
stability of plane Couette 
flow, 449 

initial-value problem for 
stability of shear flows, 445 

interface between a liquid and a 
gas stream, 432 

inviscid stability of Couette 
flow, 406 

inviscid stability theory for shear 
flows, 451 

Kelvin-Helmholtz instability, 
426 

Liapunov stability, 482 
neutral-stability curves for shear 

flows, 470 
normal-mode method, 394 
Orr-Sommerfeld equation, 440 
principle of exchange of 

instabilities, 398 
Rayleigh number, 398 
Rayleigh's criterion for stability 

of Couette flow, 406 
Rayleigh-Taylor instability, 420 
self-excited and neutral modes in 

shear flows, 455 
shear flows, 439 

shear layer in a stratified fluid, 
429 

Squire's Theorem for shear 
flows, 441 

Taylor number, 415 
thermal instability of a fluid 

layer heated from below, 394 
viscous Couette flow, 412 
viscous theory for stability of 

shear flows, 465 
Hydrostatic pressure, 6 

I 
Incompressible fluid, 2, 16 
Initial-value problem for stability 

of plane Couette flow, 449 
Initial-value problem for stability 

of shear flows, 445 
Integrals of motion, 29 
Intermittency in turbulence, 489 
Internal energy, 14, 213 
Inviscid fluid, 2 
Inviscid stability of shear flows, 

451 
Irreversible processes, 214 
Irrotational flows 

Bernoulli's equation, 30 
circulation, 35 
doublet flow, 38, 66 
doubly-connected region, 36 
growth of a spherical bubble, 73 
image of a source in a sphere, 69 
Laplace's equation, 36, 45 
multi-connected region, 30 
multipole flow fields, 72 
Neumann interior and exterior 

problems, 36 
simply-connected region, 30, 36 
source flow, 36, 65 
unsteady flows, 73 
velocity potential, 30 
vortex flow, 39 

Isentrope, 228 
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Isentropic flows, 220 
Isentropic process, 215 
Isotropic turbulence, 499 

J 
Jeffrey-Hamel flow, 381 
Jet emerging from an orifice, 57 
Jet flow, 376 
Jet impinging on a flat plate, 61 
Joint probability density in 

turbulence, 495 
Joukowsky transformation, 60, 178 
Jump discontinuity, 225 

Κ 
Kadomtsev-Petviashvili equation, 

150 
Karmah-Howarth equation, 518 
Kirman-Tsien approximation, 265 
Kantian vortex street, 83, 346 
Kelvin-Helmholtz instability, 426 
Kinematic viscosity, 17 
Kinetic energy, 14 
Kolmogorov theory of turbulence, 

506 
Korteweg-deVries equation, 137 
Kutta condition, 169, 176 

L 
Lagrangian description, 3 
Lagrangian invariant, 480 
Laplace's equation, 36, 45 
Laminar jet, 325 
Leading-edge problem of airfoil, 

177, 192 
Lift, 41 , 174 
Lift of airfoil, 174 
Lift of wings, 200 
Lifting line theory of wings, 196 
Limit line, 268 
Linearized supersonic flows, 292 
Liouville Theorem, 509 
Liquids, 2, 218 

Location and nature of boundary 
layers, 355 

Loitsiansky's invariant, 520 
Low Reynolds number flows, 335, 

386 

Μ 
Mach cone, 301 
Mach line, 246 
Mach number, 220 
Mass density, 3 
Manley-Rowe relations, 284 
Material curve, 35 
Material derivative 13, 
Material integral, 13, 33 
Method of matched asymptotic 

expansions, 351 
Method of strained parameters, 419 
Mixing layer flow, 372 
Modulational instability, 150 
Moment exerted on an arbitrary 

body, 171, 178, 192 
Multi-connected region, 30 
Multipole flow fields, 72 

Í 
Neumann interior and exterior 

problems, 36 
Neutral stability curves for shear 

flows, 470 
Newton's Law of Motion, 11 
Newtonian fluid, 11 
Noether's Theorem, 20, 480 
Nonlinear resonant three-wave 

interactions, 282 
Nonlinear Schrodinger equation, 

151 
Nonlinear shallow water waves, 

135 
Nonlinear sound waves, 273 
Nonlinear stability theory, 399, 

419, 423, 475, 483 
Nonlinear steepening of waves, 282 
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Nonlinear supersonic flows, 294 
Normal-mode method in 

hydrodynamic stability, 394 
Normal shock waves, 224 
Normal stresses, 6 

Ο 
Oblique shock, 232 
Orr-Sommerfeld equation, 440 
Oscillating airfoil in 

incompressible flows, 201 
Oscillating airfoil in subsonic 

flows, 306 
Oscillating airfoil in supersonic 

flows, 312 
Oseen's flow past a rigid sphere, 

343 

Ñ 
Pathline, 27 
Perfect gas, 215 
Periodic boundary layer flows, 378 
Periodic oscillating wake flow, 346 
Poiseuille flow, 316 
Poisson's brackets, 19, 479 
Potential flows, 243 
Prandtl-Meyer flow, 246 
Pressure, 6 
Principle of exchange of 

instabilities, 398 
Probability density in turbulence, 

490 

R 
Rankine-Hugoniot equations, 228 
Rayleigh number, 398 
Rayleigh's criterion for stability of 

Couette flow, 402 
Rayleigh flow, 239 
Rayleigh-Taylor instability, 420 
Reversible processes, 214 
Reynolds number, 336 
Riemann invariants, 253, 274 

Rigid body rotating in a fluid, 49 
Rigid body rotation of a 

deformation field, 9 
Rossby number, 98 
Rossby waves, 110 
Rotating flows 

centrifugal flow due to a rotating 
disk, 330 

Coriolis force, 97 
Ekman layer at a free surface in a 

rotating fluid, 328 
forced wavemotions in a rotating 

fluid, 105 
geostrophic flows, 98 
plane inertial flows, 101 
Rossby number, 98 
Rossby waves, 110 
slow motion along axis of 

rotation, 106 
Taylor-Proudman Theorem, 98 
Taylor column, 98 
wave propagation, 99 

S 
Schwartz-Christoffel 

transformation, 53 
Second-harmonic resonance of water 

waves, 163 
Second Law of thermodynamics, 

216 
Self-excited and neutral modes in 

shear flows, 455 
Separation of boundary layer flows, 

365 
Shallow water waves, 114, 118 
Shear deformation, 8 
Shear viscosity coefficient, 11 
Shearing stress, 6 
Shock waves 

blast waves, 234 
Burgers' equation, 287 
combustion wave, 241 
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detonation and deflagration 
waves, 240 

Hugoniot curve, 229 
normal shock waves, 224 
oblique shock, 232 
Rankine-Hugoniot equations, 

228 
shock structure, 332 

Similarity transformation, 237, 361 
Simply-connected region, 30, 36 
Singular perturbation problem for 

hyperbolic systems, 254 
Slender body theory, 195 
Slow motion along axis of 

rotation, 106 
Small perturbation theory for gas 

flows, 248 
Solitary waves, 137 
Sound waves 

Burgers' equation, 287 
nonlinear propagation, 280 
nonlinear resonant interactions, 

282 
Riemann invariants, 253, 274 
wave steepening, 282 

Source flow, 36, 65 
Specific heats of a gas, 215 
Spectral theory of turbulence, 500 
Speed of sound, 74, 220 
Spin-up problem, 331 
Squire's Theorem for stability of 

shear flows, 441 
Stability of an interface between a 

liquid and a gas stream, 432 
Stability of inviscid Couette flow, 

406 
Stability of shear flows, 439 
Stability of a shear layer in a 

stratified fluid, 429 
Stability of viscous Couette flow, 

412 
Stagnation points, 39 
Stagnation properties, 220 

Static properties, 220 
Stokes' flow past a rigid circular 

cylinder, 342 
Stokes' flow past a rigid sphere, 

336 
Stokes' flow past a spherical drop, 

340 
Stokes' waves, 148 
Strain tensor, 9 
Stream function, 17, 27 
Streamlined bodies, 2 
Streamline coordinates, 244 
Streamlines, 27 
Stream surface, 27 
Stream tube, 27 
Stress-strain relation, 10 
Stress tensor, 5 
Subcharacteristics, 256, 358 
Subsonic flows, 222 
Supersonic flows, 222 
Supersonic flow past a cone, 302 
Surface forces, 4 
Surface tension, 22 
Surface waves, 114, 116 
Symmetric airfoil in 

incompressible flows, 181 
Symplectic form, 19 

Τ 
Tangent-gas approximation, 264 
Taylor column, 98 
Taylor number, 411 
Taylor-Proudman Theorem, 98 
Taylor's statistical theory of 

turbulence, 510 
Temperature, 213 
Thermal conductivity, 16 
Thermal instability of a fluid layer 

heated from below, 394 
Thermodynamic relaxation 

processes, 224 
Thermodynamic variables of state, 

213 
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Thermodynamics of fluid flows, 14, 
219 

Tides, 133 
Transonic similarity parameter, 299 
Transport Theorem, 12 
Trailing vortices, 197 
Transonic flows, 297 
Turbulence 

auto-correlation, 493 
Batchelor-Kraichnan theory of 

two-dimensional turbulence, 
527 

Central Limit Theorem, 496 
ergodicity, 495 
energy spectrum, 495 
equilibrium statistical 

mechanics, 507, 528 
Heisenberg's theory, 503 
homogeneous turbulence, 499 
intermittency, 489 
joint probability density, 493 
Karman-Howarth equation, 518 
Kolmogorov theory, 506 
Loitsiansky's invariant, 520 
probability density, 490 
spectral theory, 500 
Taylor's statistical theory, 510 
turbulent dispersion, 498, 531 
two-dimensional turbulence, 520 

U 

Unsteady flows, 73 

V 

Velocity potential, 30 
Viscosity, 2 
Viscous flows, 316 
Viscous fluid, 25 
Viscous theory of stability of shear 

flows, 465 
Volume forces, 4 
Vortex breakdown, 91 
Vortex flows 

Biot-Savart's law, 78 
decay of a line vortex, 317 
diffusion of a localized vorticity 

distribution, 320 
equation of vorticity, 16 
flow induced by a line vortex, 77 
Hill's spherical vortex, 87 
Karman vortex street, 83, 346 
line vortex in a uniform stream, 

319 
vortex breakdown, 91 
vortex line, 76 
vortex ring, 85 
vortex sheet, 91 
vortex tube, 35, 76 
vorticity, 16, 76 

W 
Wake flows, 377 
Water waves 

breaking of waves, 119 
capillary-gravity waves, 116, 

127 
envelope solitons, 150 
gravity waves, 116, 126 
gravity waves in a rotating fluid, 

130 
hydraulic jump, 166 
Korteweg-deVries equation, 137 
modulational instability, 150 
nonlinear resonant three-wave 

interactions, 158 
nonlinear shallow water waves, 

135 
nonlinear Schrodinger equation, 

151 
periodic cnoidal waves, 140 
second harmonic resonance, 163 
shallow water waves, 114, 118 
ship waves, 127 
solitary waves, 137 
Stokes' waves, 148 
surface waves, 114, 116 
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tides, 133 
water waves generated by an 

initial displacement over a 
localized region, 120 

water waves generated by a finite 
train of harmonic waves, 123 

water waves on a steady stream, 
125 

Wave propagation in rotating 
flows, 99 

Weak solution, 225 
Wing theory 

aspect ratio, 197 

downwash due to trailing vortex 
sheet, 198 

induced drag, 199 
lift, 200 
lifting line theory, 197 
moment, 200 
trailing vortices, 197 

Ζ 
Zeroth law of Thermodynamics, 

213 
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