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Preface

Computational fluid dynamics (CFD) has become an indispensable tool for engineers.

CFD simulations provide insight into the details of how products and processes work,

and allow new products to be evaluated in the computer, even before prototypes have

been built. It is also successfully used for problem shooting and optimization. The

turnover time for a CFD analysis is continuously being reduced since computers are

becoming ever more powerful and software uses ever more efficient algorithms. Low

cost, satisfactory accuracy and short lead times allow CFD to compete with building

physical prototypes, i.e. ‘virtual prototyping’.

There are many commercial programs available, which have become easy to use, and

with many default settings, so that even an inexperienced user can obtain reliable results

for simple problems. However, most applications require a deeper understanding of fluid

dynamics, numerics and modelling. Since no models are universal, CFD engineers have

to determine which models are most appropriate to the particular case. Furthermore, this

deeper knowledge is required since it gives the skilled engineer the capability to judge

the potential lack of accuracy in a CFD analysis. This is important since the analysis

results are often used to make decisions about what prototypes and processes to build.

Our ambition is that this book will provide sufficient background for CFD engineers

to solve more advanced problems involving advanced turbulence modelling, mixing,

reaction/combustion and multiphase flows. This book presents the equations that are to

be solved, but, more importantly, the essential physics in the models is described, and

the limitations of the models are discussed. In our experience, the most difficult part for

a CFD engineer is not to select the best numerical schemes but to understand the fluid

dynamics and select the appropriate models. This approach makes the book useful as

an introduction to CFD irrespective of the CFD code that is used, e.g. finite-volume,

finite-element, lattice Boltzmann etc.

This book requires a prior knowledge of transport phenomena and some understanding

of computer programming. The book (and the tutorials/project) is primarily intended

for engineering students. The objective is to teach the students how to do CFD analysis

correctly but not to write their own CFD code. Beyond this, the book will give an

understanding of the strengths and weakness of CFD simulations. The book is also

useful for experienced and practicing engineers who want to start using CFD themselves

or, as project managers, purchase these services from consulting firms.

We have added several questions of reflective character throughout the book; it

is recommended that you read these to confirm that the most important parts have
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x Preface

been understood. However, the book intentionally contains few simulation results and

worked-through examples. Instead we have developed three tutorials and one larger

project that give students the required hands-on experience. The tutorials take 6–8 hours

each to run; the project takes 30 hours to run and write a report. These tutorials and

the project are available from the authors. We have chosen to use a commercial code

(ANSYS/Fluent) in our course, but the problem formulations are written very gener-

ally and any commercial program could be used. Our experience is that commercial

CFD programs can be obtained for teaching purposes at very low cost or even free. An

alternative is to use an open-source program, e.g. OpenFoam. Unfortunately, the user

interface in OpenFoam is not as well developed as are those in the commercial programs,

so students will have additional problems in getting their programs working.

This book has successfully been used in a CFD course at Chalmers University since

2004. Every year approximately 60 chemical and mechanical engineering students take

the course. Over the years this book has also been used for PhD courses and courses in

the industry. The text has been rewritten every year to correct errors and in response to

very valuable suggestions from the students. PowerPoint lecture notes are also available

from the authors.

Scope

Chapter 1 provides an introduction to what can be solved with a CFD program and what

inputs are required from the user. It also gives an insight into what kind of problems are

easy or difficult to solve and how to obtain reliable results.

Chapter 2 contains the equations that are solved by the CFD software. The student

should know these equations from their prior courses in transport phenomena, but we

have included them because they are the basis for CFD and an up-to-date knowledge of

them is essential.

In Chapter 3 the most common numerical methods are presented and the importance

of boundedness, stability, accuracy and convergence is discussed. We focus on the finite

volumes on which most commercial software is based and only a short comparison with

the finite-element method is included. There is no best method available for all simula-

tions since the balance among stability, accuracy and speed depends on the specific task.

Chapter 4 gives a solid introduction to turbulence and turbulence modelling. Since

simulation of turbulent flows is the most common application for engineers, we have

set aside a large part of the chapter to describe the physics of turbulence. With this

background it is easier to present turbulence modelling, e.g. why sources and sinks for

turbulence are important. The k–ε model family, k–ω, Reynolds stress and large-eddy

models are presented and boundary conditions are discussed in detailed.

Chapter 5 carefully analyses turbulent mixing, reaction and combustion. The physics

of mixing is presented and the consequence of large fluctuations in concentration

is discussed. A probability distribution method is presented and methods to solve

instantaneous, fast and slow kinetics are formulated. A simple eddy-dissipation model

is also presented.
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Preface xi

In Chapter 6 multiphase models are presented. First various tools with which to charac-

terize multiphase flow and forces acting on particles are presented. Eulerian–Lagrangian,

Euler–Euler, mixture (algebraic slip), volume-of-fluid and porous-bed models are pre-

sented and various closures for drag, viscosity etc. are formulated. Simple models for

mass and heat transfer between the phases are also presented.

Finally, Chapter 7 contains a best-practice guideline. It is based on the guidelines

presented by the European Research Community on Flow Turbulence and Combustion,

ERCOFTAC, in 2000 and 2009 for single-phase and multiphase systems, respectively.

In Tutorial 1 reactions inside a spherical porous catalyst particle are studied. The

reaction is exothermic and flow, heat and species must be modelled. The student will

learn how to draw and mesh a two-dimensional (2D) geometry. They will also specify

boundary conditions and select the models to solve. The kinetics is written as a user-

defined function (UDF) and the student will learn how to implement a UDF in a CFD

simulation. Convergence is a problem, and the student will learn about physical reaction

instability, numerical instabilities, under-relaxation and numerical diffusion. In the report

the student is required to show that their simulations fulfil the criteria given in the best

practice guidelines.

In Tutorial 2 turbulent mixing and combustion in a bluff-body stabilized non-premixed

turbulent flame is studied. An instantaneous adiabatic equilibrium reaction, i.e. combus-

tion of methane in air, is simulated. The student should select an appropriate turbulence

model and solve for flow, turbulence, mean mixture fraction, mixture fraction variance,

species and heat with appropriate boundary conditions, e.g. wall functions. Mesh adap-

tation to obtain the proper y+ for the wall functions is introduced. The students should

analyse whether jets and recirculations exist in the flow and whether the reaction is fast

compared with turbulent mixing.

In Tutorial 3 a spray is modelled using an Eulerian–Lagrangian multiphase model.

Continuous phase and spray velocity combined with heat transfer and evaporation are

modelled. The student should analyse the fluid–spray interaction and choose what forces

should be included in the model.

The Project is dedicated to the design of an industrial-scale selective catalytic reduc-

tion (SCR) process. The student generates a three-dimensional (3D) computer-aided

design (CAD) model and mesh, analyses the performance, and suggests and evaluates

design improvements of the SCR reactor.

Acknowledgements

We are very grateful to the students who have given us very valuable feedback and thus

helped us to improve the book. We would also like to thank Mrs Linda Hellström, who

did the graphics, and Mr Justin Kamp, who corrected most of our mistakes in the English

language.

Bengt Andersson
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1 Introduction

The purpose of this chapter is to explain the input needed to solve CFD problems, e.g.

CAD geometry, computational mesh, material properties, boundary conditions etc. The

difficulty and accuracy of CFD simulations for various applications, such as laminar and

turbulent flows, single-phase and multiphase flows and reactive systems are discussed

briefly.

1.1 Modelling in engineering

Traditional modelling in engineering is heavily based on empirical or semi-empirical

models. These models often work very well for well-known unit operations, but are not

reliable for new process conditions. The development of new equipment and processes

is dependent on the experience of experts, and scaling up from laboratory to full scale is

very time-consuming and difficult. New design equations and new parameters in existing

models must be determined when changing the equipment or the process conditions out-

side the validated experimental database. A new trend is that engineers are increasingly

using computational fluid dynamics (CFD) to analyse flow and performance in the design

of new equipment and processes. CFD allows a detailed analysis of the flow combined

with mass and heat transfer. Modern CFD tools can also simulate transport of chemical

species, chemical reactions, combustion, evaporation, condensation and crystallization.

1.2 CFD simulations

Simple, single-phase laminar flow can be simulated very accurately, and for most single-

phase turbulent flows the simulations are reliable. However, many systems in engineering

are very complex, and simulations of multiphase systems and systems including very

fast reactions are at present not very accurate. For these systems, the traditional models

using well-proven design equations that have been verified over many years are more

accurate than the best CFD simulations. However, design equations are available only for

existing equipment and for a limited range of process conditions, and CFD simulations

can be very useful even when no accurate predictions are possible, e.g. by calibrating

the model to get a solution that is verified experimentally. From this simulation we can
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2 Introduction

Table 1.1 Potential CFD simulations in engineering

Flow Mass transfer Heat transfer

Laminar Convection Convection

Turbulent Diffusion Conduction

Single-phase Reaction Radiation

Multiphase Phase transfer

do parameter studies by implementing small changes in the parameters, e.g. to assess

what will result from changes in temperature, flow, viscosity etc.

One advantage using CFD is that it is possible to obtain detailed local information on

the simulated system. In a fluidized bed it is possible to simulate not only the conversion

but also the local temperature, the entrainment of particles, the backmixing and bubble

formation. This detailed information will help by building a qualitative understanding of

the process, and a parameter study can reveal additional information such as the bottle

necks and the operational limits of the equipment.

CFD simulation without proper knowledge can be a very uncertain tool. The commer-

cial CFD programs have many default settings and will almost always give results from

the simulations, but, to obtain reliable results, the model must be chosen with a logical

methodology. A converged solution displays the results of the specific chosen model

with the given mesh; however, it does not reveal the truth. Without proper understanding

of the CFD program and the modelling theory behind it, CFD can become limited to

‘colourful fluid display’.

1.3 Applications in engineering

Virtual prototyping is now the standard method to develop new products in e.g. the auto-

motive industry. This very effective method is now being introduced into other fields of

engineering. Within chemical engineering we find applications in most fields, e.g. reac-

tor modelling, separations and heat transfer. Unfortunately, we seldom have single-phase

laminar flow that can easily be simulated. Chemical reactors are almost always turbulent

and often multiphase. Mixing of the reactants and removal of the heat produced are the

main objectives for typical reactors such as stirred-tank reactors, bubble columns, trickle

beds and fluidized beds. Almost all separations are multiphase, e.g. distillations, extrac-

tions, filtering and crystallization. Most heat-transfer equipment involves single-phase

flow, yet boiling and condensation are also commonly used. Modern CFD programs can

simulate a very wide range of systems and Table 1.1 lists possible simulations in CFD.

1.4 Flow

It is useful to separate the properties of fluids and flows. The properties of fluids, e.g.

viscosity, density, surface tension, diffusivity and heat conduction, are intrinsic properties
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1.4 Flow 3

that can be described as functions of temperature, pressure and composition. Properties

that depend on the flow include pressure, turbulence and turbulent viscosity.

From a CFD modelling point of view it is useful to separate possible flows into the

following categories:

laminar–turbulent

steady–transient

single-phase–multiphase

1.4.1 Laminar flow

In laminar flow the Navier–Stokes equations describe the momentum transport of flow

that is dominated by viscous forces. It is possible with CFD to obtain very accurate

flow simulations for single-phase systems, provided that the flow is always laminar.

The transitions between laminar and turbulent flow, both from turbulent to laminar and

from laminar to turbulent, are difficult to simulate accurately. In this region the flow can

fluctuate between laminar and turbulent and turbulent slugs can frequently appear in

laminar flow far below the critical Reynolds number for transition to turbulent flow.

Simulation of heat transfer is also often very accurate and a good prediction of temper-

ature can easily be obtained. Mass transfer in the gas phase is also quite straightforward.

However, the diffusivities in liquids are about four orders of magnitude lower than those

in the gas phase at atmospheric pressure and accurate mass-transport simulations in

laminar liquids are difficult. An estimation of the transport distance due to diffusion in

laminar flow can be calculated from x =
√

Dt . The diffusivity in liquids is of the order

of 10−9 m2 s−1 and the average transport distance in 1 s is about 3 µm, i.e. very dense

grids are required. The corresponding transport distance in the gas phase is 300 µm,

with a gas-phase diffusivity of 10−5 m2 s−1.

1.4.2 Turbulent flow

The Navier–Stokes equations describe turbulent flows, but, due to the properties of

the flow, it is seldom possible to solve the equations for real engineering applications

even with supercomputers. In a stirred-tank reactor the lifetime and size of the smallest

turbulent eddies, the Kolmogorov scales, are about 5 ms and 50 µm, respectively. A very

fine time and space resolution is needed when solving the Navier–Stokes equations and

it is at present not possible. Direct solution of the Navier–Stokes equations (DNS) for

small systems is, however, very useful for developing an understanding of turbulence,

and for developing new models.

A more cost-effective method is to resolve only the large-scale turbulence, by filtering

out the fine-scale turbulence, and model these small scales as flow-dependent effective

viscosity. This method, large-eddy simulation (LES), is growing in popularity since it

makes it possible to simulate simple engineering flows on a fast PC. The simulations

are, however, very time consuming on a PC, and several weeks can often be needed to

obtain good statistical averages even for rather simple flows.
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4 Introduction

For more complex flows, it is not possible to resolve the turbulence fluctuations at all.

Most engineering simulations are done with Reynolds-averaged Navier–Stokes (RANS)

methods. In these models the turbulent fluctuations are time averaged, yet reasonable

velocity averages can be simulated from these models. However, there are important

properties of the flow that are not resolved. Everything that occurs on a scale below

the size of the grid is not resolved, e.g. mixing of chemical species or the break-up and

coalescence of bubbles and drops in multiphase flow. Additional models must be added

to the RANS models in order to include these phenomena.

1.4.3 Single-phase flow

In single-phase laminar flow we can obtain very accurate solutions and in turbulent flow

we can in most cases obtain satisfactory flow simulations. The main problem is usually

simulation of the mixing of reactants for fast reactions in laminar or turbulent flow.

When the reaction rate is fast compared with mixing, there will be strong concentration

gradients that cannot be resolved in the grid, and a model for mixing coupled with a

chemical reaction must be introduced. Combustion in the gas phase and ion–ion reactions

in the liquid phase belong to this category.

1.4.4 Multiphase flow

Multiphase flow may consist of gas–liquid, gas–solid, liquid–liquid, liquid–solid or gas–

liquid–solid systems. For a multiphase system containing very small particles, bubbles

or drops that follow the continuous phase closely, reasonable simulation results can be

obtained. Systems in which the dispersed phase has a large effect on the continuous

phase are more difficult to simulate accurately, and only crude models are available for

multiphase systems with a high load of the dispersed phase. At the moment, the quality

of the simulations is limited not by the computer speed or memory but by the lack

of good models for multiphase flow. However, multiphase flows are very important in

engineering since many common processes involve multiphase flow.

The mass and heat transfer between the phases are of interest in many applications,

e.g. in boiling, heterogeneous catalysis and distillation. For these simulations we must

introduce empirical or semi-empirical correlations to describe mass and heat transfer.

The mass- and heat-transfer coefficients are usually calculated from the traditional

correlations for the Sherwood, Sh, and Nusselt, Nu, numbers. The advantage with CFD

is that Sh and Nu can be computed using local flow properties. The mass and heat

transfer are also affected by the coalescence and break-up of bubbles and drops. The

phenomenon of break-up and coalescence is not included in this book since only very

simple models are available for simulation of the effect of turbulence and shear rate on

drop or bubble size distributions.

1.5 CFD programs

There are many commercial general-purpose CFD programs available, e.g. Fluent, CFX,

Star-CD, FLOW-3D and Phoenics. There are also some very specialized programs
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1.5 CFD programs 5

Figure 1.1 Steps in CFD simulations.

simulating combustion in engines, cooling of semiconductors and simulation of weather.

A very useful open-source program that can handle most CFD problems is OpenFoam.

However, the documentation and the user interface are not as well developed as those

for the commercial codes.

Commercial CFD packages contain modules for CAD drawing, meshing, flow simu-

lations and post-processing. In solving a problem using CFD there are many steps that

must be defined, as is illustrated in Figure 1.1.

Geometry modelling

Solving a CFD problem starts with a two-dimensional (2D) or three-dimensional (3D)

drawing of the geometry of the system. A CAD program is included in all commercial
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6 Introduction

CFD programs but the geometry of the system can usually be drawn in any CAD program

and imported into the grid-generation program. However, CAD programs not designed

for CFD often contains details that cannot be included in CFD drawings, e.g. nuts and

bolts. These drawings must be cleaned before they can be used in a meshing program.

Grid generation (meshing)

The equations for momentum transport are nonlinear, which means that the computa-

tional volume must be discretized properly to obtain an accurate numerical solution of

the equations. Accurate meshing of the computational domain is as important as defining

the physical models. An ill-conditioned mesh can give rise to very inaccurate results,

so the quality of the mesh, e.g. its aspect ratio and skewness, must be evaluated prior

to the simulations. Most CFD programs have also the possibility of adaptation, which,

after a preliminary result has been obtained, enables local refinement of the grid where

necessary.

Define models

For single-phase laminar flow, the Navier–Stokes equations can be solved directly, but

for turbulent and multiphase flows the user must select the most appropriate model.

There are few generally accepted models for turbulence and multiphase flow, but there

are hundreds of models to choose from. For each model there are also several parameters

that must be set. Usually the default values are the best choice, but in some cases the user

can find more suitable parameters. In most commercial CFD programs it is also possible

to write your own model as a user-defined subroutine/function (UDS/UDF) in Fortran

or C. Not all properties are resolved in the CFD program, and many semi-empirical

models must be defined. The momentum, heat and mass transfer between the dispersed

and continuous phases in multiphase flow are defined by empirical models for drag and

Sherwood and Nusselt numbers as functions of the local particle Reynolds number or

turbulence intensity.

Set properties

All physical properties of the fluids must be defined, e.g. the viscosity and density and

their temperature, composition and pressure dependence. Some are built into the CFD

software or easily found in available databases. The programs also provide polynomials

for which you can add your own constants. It is also possible to write a UDS/UDF that

is added to the CFD program for calculating the properties.

Set boundary and initial conditions

All inlet and outlet conditions must be defined, as must conditions on the walls and other

boundaries. Rotational symmetry and other symmetries, e.g. periodic induced boundary

conditions, must also be defined. Periodic boundary conditions are very useful with

rotating equipment, e.g. a turbine, when only a part is modelled. Initial conditions for

transient simulations or an initial guess to start the iterations for steady-state simulations

must also be provided.
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1.5 CFD programs 7

Solve

For the solver you can choose either a segregated or a coupled solver, pressure- or density-

based, and for unsteady problems you must choose either implicit or explicit time-

stepping methods. Numerical schemes to enhance convergence, e.g. multigrid, upwind

schemes or under-relaxation factors, must be defined. The quality of an acceptable

solution in terms of the convergence criteria must also be defined.

Post-processing/analysis

The first objective in the post-processing is to analyse the quality of the solution. Is

the solution independent of the grid size, the convergence criterion and the numerical

schemes? Have the proper turbulence model and boundary conditions been chosen, and

is the solution strongly dependent on those choices?

Analysis of the final simulation results will then give local information about flow,

concentrations, temperatures, reaction rates etc.

For very complex systems the results are not very accurate, but CFD can still be very

useful in answering the question ‘What if?’. Starting with an adjusted CFD simulation

that fits the available experimental results, a parameter study can reveal how e.g. the

mixing is affected by an increase in molecular viscosity.

Questions

(1) What can be simulated in a CFD program?

(2) Why is it not possible to solve Navier–Stokes equations for turbulent flows for

typical engineering applications?

(3) What steps are involved in solving a typical CFD problem?
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2 Modelling

In CFD the equations for continuity, momentum, energy and species are solved. These

coupled partial nonlinear differential equations are in general not easy to solve numer-

ically and analytical solutions are available for only very few limited cases. The reader

is expected to have a basic knowledge of transport phenomena but, since all CFD is

based on these few equations, they are given here in tensor notation so that the reader

can become familiar with this notation.

A general balance formulation in tensor notation for a scalar, vector or tensor φ can

be formulated as

∂φ

∂t
+ Ui

∂φ

∂xi

= D
∂

2
φ

∂xi∂xi

+ S(φ), (2.1)

where the terms have the following meanings:

{

rate of

accumulation

}

+

{

transport by

convection

}

=

{

transport by

diffusion

}

+

{

source

terms

}

This notation will be used throughout the book and the reader must be familiar with this

notation. In this convention there is an understood summation that is written explicitly

below (see the appendix for further information):

∂φ

∂t
+

∑

i

Ui

∂φ

∂xi

=
∑

i

D
∂

2
φ

∂x2
i

+ S(φ)

In 3D Cartesian coordinates i can take the values 1, 2 and 3, and for a scalar φ the

equation above becomes

∂φ

∂t
+ U1

∂φ

∂x1

+ U2

∂φ

∂x2

+ U3

∂φ

∂x3

= D

(

∂
2
φ

∂x2
1

+
∂

2
φ

∂x2
2

+
∂

2
φ

∂x2
3

)

+ S(φ). (2.2)

Note that since φ is a scalar there is only one equation describing how φ is distributed

in the three dimensions x1, x2 and x3. The easiest way to understand the notation is to

identify whether the dependent variable is a scalar, vector or tensor. When φ is a scalar,

e.g. temperature, T, only one equation is possible, since there is only one temperature at

a given position. When φ is a vector, e.g. φ = [U1U2U3]T, there will be one equation

for each of the three velocities. Equation (2.21) below is a tensor notation of the three

momentum equations written in Eq. (2.20). For a tensor τ ij there will be nine equations

in three dimensions, cf. Eq. (2.7) below.
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2.1 Mass, heat and momentum balances 9

Figure 2.1 The effect of random movement of molecules on momentum transfer.

Accumulation, convection, diffusion and a source term will appear in many equations,

and by identifying these terms it will be easier to refer to the various parts in the equations.

The accumulation is recognized from the time derivative, the convection term from the

velocity term and the first-order derivative, and the diffusion term from the second-order

derivative and the transport coefficient, e.g. diffusivity, conductivity, or viscosity. The

source term is a function solely of the local variables.

2.1 Mass, heat and momentum balances

All modelling is easier when the underlying physics can be understood and momentum

balances are the basis of all fluid dynamics. Transport of mass, heat and momentum

occurs by convection of the mean flow and by random movement of molecules or in

turbulent flow by random movement of fluid elements. Viscous transport of momentum

is due to the random movement of molecules carrying their average momentum in all

directions as shown in Figure 2.1.

2.1.1 Viscosity, diffusion and heat conduction

There are many similarities among viscosity, diffusion and heat conduction in fluids.

The mechanism for transport in all these cases is random movement of molecules or

fluid elements. According to the kinetic theory of gases a molecule moves randomly in

all directions, giving a mean velocity of u =
√

8RT/ (π Mv
). This molecule will move

a distance corresponding to the mean free path λ = kBT/(
√

2πd2 P) before it collides

with another molecule and transfers momentum and heat to that molecule. For oxygen

at room temperature and atmospheric pressure, u = 444 m s−1 and λ = 71.4 nm. For

an ideal gas the kinetic viscosity, the diffusivity and the heat diffusivity are all of the

same order, ν ≈ D ≈ DH ≈ 1
3
uλ. Heat conduction is related to heat diffusivity by the

amount of energy that each molecule carries, k = ρcpDH. From this simple model one

can also observe that, for gases, the viscosity depends on the temperature, pressure,

relative molecular mass, Mv, and size of the molecule, d. The Schmidt number Sc = ν/D
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10 Modelling

Figure 2.2 The viscous stress for Newtonian and non-Newtonian fluids.

and the Prandtl number Pr = ρcpν/k describe the ratio between viscosity and diffusivity

and that between viscosity and heat conduction, respectively. Both Sc and Pr are of the

order of 0.7 for air.

In liquids, the transport is somewhat different. The molecules are in close contact

with neighbouring molecules and the movement of the molecules can be modelled as

movement with viscous drag. Momentum and heat are transported much faster than mass,

because the momentum and heat can be transferred to other molecules by collisions,

while diffusion is limited to the movement of the single molecules. This difference can

be seen by noting that Sc ≈ 1000 while Pr ≈ 7 for transport in water.

The mechanism for momentum, mass and heat transport is similar in turbulent flow.

Here the random movement of turbulent eddies will transfer fluid elements containing

momentum, species and energy. The turbulent viscosity is of the order of the turbulent

velocity times the average distance travelled by a turbulent eddy. Since all transport is

by the turbulent eddies, the turbulent Sc and Pr numbers are all of the order of unity,

both for gases and for liquids. The kinetic theory of gases is also the governing idea in

some of the models for viscosity in multiphase flow, e.g. the kinetic theory for granular

flow (KTGF).

Newton’s law of viscosity

The viscous stress as a function of velocity gradients can vary significantly for different

fluids depending on how the molecules arrange themselves when exposed to strain, as

shown in Figure 2.2.

The simplest fluid is the Newtonian fluid, and fortunately many of the common fluids

are very close to Newtonian, e.g. gases, water and other simple liquids. In Newtonian

fluids the viscous stress is a linear function of the rate of strain. In Figure 2.3 a simple

laminar flow with velocity U1 flows in only one dimension x1. The resistance of the flow

that is observed in a pressure drop is due to the fact that the momentum in the velocity

direction x1 is transported in the x2 direction due to viscous forces.
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2.1 Mass, heat and momentum balances 11

Figure 2.3 The distortion of a fluid element due to strain rate dU1/dx2.

Figure 2.4 Translation, rotation and distortion of a fluid element.

For a Newtonian fluid the linear dependence between stress and the velocity gradient

is expressed as

τ21 = μ

dU1

dx2

. (2.3)

Here the first index of τ 21 denotes the direction of transport and the second the

direction of the momentum. Note that the stress tensor is written with a positive sign.

There is a tradition in chemical engineering of viewing the stress tensor as the transport

of momentum and consequently defining it with a negative sign since the direction of

momentum transport is opposite to the direction of the gradient analogous to heat and

mass transfer.

The velocity gradient in itself does not cause the stresses, but rather the stresses arise

due to the distortion of the fluid element. A pure translation or rotation of the element

will not give rise to viscous stress (Figure 2.4).

In a 2D case, the viscous stress will depend on distortion of the fluid element and the

viscous stress becomes a linear function of the strain rate

τ12 = τ21 = μ

(

∂U1

∂x2

+
∂U2

∂x1

)

. (2.4)

The expression is symmetric in the two dimensions and the two stresses must be equal,

τ 12 = τ 21.

The normal stresses are also affected by the compression of the fluid elements,

τ11 = 2μ

∂U1

∂x1

−
(

2
3
μ − κ

)

(

∂U1

∂x1

+
∂U2

∂x2

)

(2.5)

and

τ22 = 2μ

∂U2

∂x2

−
(

2
3
μ − κ

)

(

∂U1

∂x1

+
∂U2

∂x2

)

. (2.6)
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12 Modelling

In 3D the nine possible stresses become

τi j = τ j i = μ

(

∂Ui

∂x j

+
∂U j

∂xi

)

−
(

2
3
μ − κ

)

δi j

(

∂Uk

∂xk

)

, (2.7)

where δi j is the Kronecker delta

δi j = (I)i j =

{

1 if i = j,

0 if i �= j.

Sometimes the pressure is added to the normal stresses and the stress tensor is

written

σi j = μ

(

∂U1

∂x1

+
∂U2

∂x2

)

−
(

2
3
μ − κ

)

δi j

(

∂Uk

∂xk

)

− δi j P. (2.8)

The dilatational viscosity κ is important only for shock waves and sound waves. From

the kinetic theory of gases it has also been shown that κ is zero for monatomic gases at

low pressure. In this book we will mostly describe non-compressible fluids, for which

the term ∂Uk/∂xk on the right-hand side is zero and the viscous stress for a Newtonian

fluid is described by

τi j = τ j i = μ

(

∂Ui

∂x j

+
∂U j

∂xi

)

. (2.9)

2.2 The equation of continuity

A material balance over a stationary fluid element �x1�x2�x3 is written

{accumulation} = {transport in} − {transport out} ,

�x1 �x2 �x3

∂ρ

dt
= �x2 �x3

[

(ρU1)|x1
− (ρU1)|x1+�x1

]

+�x1 �x3

[

(ρU2)|x2
− (ρU2)|x2+�x2

]

+�x1 �x2

[

(ρU3)|x3
− (ρU3)|x3+�x3

]

. (2.10)

See Figure 2.5. This formulation corresponds to the finite-volume formulation of the

continuity equation for a hexahedral mesh aligned with the coordinate axis. Dividing by

�x1 �x2 �x3 and taking the limit �x → 0 gives the continuity equation

∂ρ

∂t
+

∂ρU1

∂x1

+
∂ρU2

∂x2

+
∂ρU3

∂x3

= 0 or
∂ρ

∂t
= −(∇ ·ρU). (2.11)

Tensor notation is mostly applied to equations in the book and the equation above is

written

∂ρ

∂t
+

∂ρU j

∂x j

= 0. (2.12)

In 3D the index j is 1, 2 and 3, giving Eq. (2.11).

The continuity equation is difficult to solve numerically. In CFD programs, the con-

tinuity equation is often combined with the momentum equations (see below) to form
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2.2 The equation of continuity 13

x3

(ρU1)|x1
(ρU1)|x1 + ∆x1

x2

x1

x1 + ∆x1, x2 + ∆x2, x3 + ∆x3

∆x1

∆x2

∆x3

Figure 2.5 A material balance over a fluid element.

a Poisson equation for pressure. For constant density and viscosity the new equation

will be

∂

∂xi

(

∂ P

∂xi

)

= −
∂

∂xi

[

∂

(

ρUiU j

)

∂x j

]

. (2.13)

This equation has more suitable numerical properties and can be solved by proper

iteration methods. The Navier–Stokes equations are used for simulation of velocity and

pressure. The Poisson formulation introduces pressure as a dependent variable, and the

momentum equations can be formulated to solve for velocity. The Poisson equation and

other methods to solve the continuity are discussed in Chapter 3.

In many cases it is more convenient to describe the change in flow of a fluid element

that moves with the flow. On performing the derivation in Eq. (2.12) we obtain

∂ρ

∂t
+ U1

∂ρ

∂x1

+ U2

∂ρ

∂x2

+ U3

∂ρ

∂x3

= −ρ

(

∂U1

∂x1

+
∂U2

∂x2

+
∂U3

∂x3

)

. (2.14)

The left-hand side is the substantial derivative of density, i.e. the time derivative for a

fluid element that follows the fluid motion. The equation can be abbreviated as

Dρ

Dt
= −ρ

∂Ui

∂xi

(2.15)

and the substantial operator defined as

D

Dt
≡

∂

∂t
+ U1

∂

∂x1

+ U2

∂

∂x2

+ U3

∂

∂x3

. (2.16)

Incompressible flow is defined by having constant density along the streamline, i.e. the

left-hand side of Eq. (2.15) is zero and

∂Ui

∂xi

= 0. (2.17)

The assumption of incompressible flow will simplify the modelling substantially, and

we will use it throughout the book. Truly incompressible flow does not exist, but the

assumption of incompressible flow is valid for most engineering applications. A local

change in pressure will spread with the speed of sound, and, when modelling phenomena
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x3

x2

x1

(x1 + ∆x1, x2 + ∆x2, x3 + ∆x3)

τ31|x3

τ11|x1 + ∆x1

τ31|x3 + ∆x3

τ21|x2 + ∆x2

τ11|x1

τ21|x2

Figure 2.6 Momentum balance over a fluid element.

much slower than the speed of sound, we can safely assume that the new pressure is

reached in each time step, i.e. compressible flows can be characterized by the value of

the Mach number M = U/c. Here, c is the speed of sound in the gas c =
√

γ RT , where

γ is the ratio of specific heats cp/cv. At Mach numbers much less than 1.0 (M < 0.1),

compressibility effects are negligible and the variation of the gas density due to pressure

waves can safely be ignored in the flow modelling. The density change due to pressure

drops and temperature variations will automatically be compensated for by the state

equation that describes how the density is related to pressure and temperature.

2.3 The equation of motion

The momentum balance for the U1 momentum over the volume �x1�x2�x3 is given by

⎧

⎨

⎩

rate of

momentum

accumulation

⎫

⎬

⎭

=

⎧

⎨

⎩

rate of

momentum

in

⎫

⎬

⎭

−

⎧

⎨

⎩

rate of

momentum

out

⎫

⎬

⎭

+

⎧

⎨

⎩

sum of forces

acting on

the system

⎫

⎬

⎭

.

(2.18)

Newton’s law requires that the change in momentum in each direction should be

balanced by the forces acting in that direction. The arrows in Figure 2.6 describe the

direction of viscous transport of Ui momentum. A balance for the momentum of the

velocity component in the x1 direction, i.e. U1, is written

�x1 �x2 �x3

∂ρU1

∂x1

= �x2 �x3

[

(ρU1U1)|x
1
− (ρU1U1)|x

1
+�x

1

]

− τ11|x
1
+ τ11|x

1
+�x

1

+�x1 �x3

[

(ρU2U1)|x
2
− (ρU2U1)|x

2
+�x

2

]

− τ21|x
2
+ τ21|x

2
+�x

2

+�x1 �x2

[

(ρU3U1)|x
3
− (ρU3U1)|x

3
+�x

3

]

− τ31|x
3
+ τ31|x

3
+�x

3

+�x2 �x3

[

(P)|x
1
− (P)|x

1
+�x

1

]

+ �x1 �x2 �x3 ρg1. (2.19)
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2.3 The equation of motion 15

From our definition of τ it is –τ that denotes the momentum that is transported

into the fluid element at x. Equation (2.19) corresponds to a finite-volume formulation

of the momentum equations for a hexahedral mesh aligned with the coordinate axis.

Dividing by �x1 �x2 �x3 and taking the limit �x → 0 gives for all three components

the Navier–Stokes equations

∂U1

∂t
+ U1

∂U1

∂x1

+ U2

∂U1

∂x2

+ U3

∂U1

∂x3

= −
1

ρ

∂ P

∂x1

+
1

ρ

∂τ11

∂x1

+
1

ρ

∂τ21

∂x2

+
1

ρ

∂τ31

∂x3

+ g1,

∂U2

∂t
+ U1

∂U2

∂x1

+ U2

∂U2

∂x2

+ U3

∂U2

∂x3

= −
1

ρ

∂ P

∂x2

+
1

ρ

∂τ12

∂x1

+
1

ρ

∂τ22

∂x2

+
1

ρ

∂τ32

∂x3

+ g2,

∂U3

∂t
+ U1

∂U3

∂x1

+ U2

∂U3

∂x2

+ U3

∂U3

∂x3

= −
1

ρ

∂ P

∂x3

+
1

ρ

∂τ13

∂x1

+
1

ρ

∂τ23

∂x2

+
1

ρ

∂τ33

∂x3

+ g3.

(2.20)

These three equations can be rewritten as

∂Ui

∂t
+

∑

j

U j

∂Ui

∂x j

= −
1

ρ

∂ P

∂xi

+
∑

j

1

ρ

∂τ j i

∂x j

+ gi .

Note that there is no summation over i, since i represents the three equations. In tensor

notation these three equations are written

∂Ui

∂t
+ U j

∂Ui

∂x j

= −
1

ρ

∂ P

∂xi

+
1

ρ

∂τ j i

∂x j

+ gi , (2.21)

which for a Newtonian fluid becomes

∂Ui

∂t
+ U j

∂Ui

∂x j

= −
1

ρ

∂ P

∂xi

+ ν

∂

∂x j

(

∂Ui

∂x j

+
∂U j

∂xi

)

+ gi . (2.22)

Equation (2.22) can be written in different forms since

ν

∂

∂x j

(

∂Ui

∂x j

+
∂U j

∂xi

)

= ν

∂
2Ui

∂x j∂x j

in incompressible flow with constant ρ and ν. In addition to gravity, there are additional

external sources that may affect the acceleration of the fluid, e.g. electrical and magnetic

fields. When reading Eq. (2.21) note that j should be summed over all dimensions, i.e.

j = 1, 2 and 3, and i appears in all terms and for three dimensions, constituting the three

equations as in Eq. (2.20).

Strictly it is the momentum equations that form the Navier–Stokes equations, but

sometimes the continuity and the momentum equations together are called the Navier–

Stokes equations. The Navier–Stokes equations are limited to macroscopic conditions.

In reality the molecules move some distance before they collide, and the kinetic energy

and consequently the velocity of the individual molecules are Boltzmann distributed.

These effects must be accounted for at low pressures and in very small volumes. The

Knudsen number relates the mean free path, λ, to the system dimension, Kn = λ/L.

The average distance between collisions, i.e. the mean free path, in air at 1 atm and

room temperature is ∼80 nm, and a correction of the Navier–Stokes equations and the
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boundary conditions is required for Knudsen numbers larger than ∼0.02. Simulation

of microfluids at dimensions below 5 µm at atmospheric pressure will require special

boundary conditions [1].

2.4 Energy transport

Energy is present in many forms in flow, e.g. as kinetic energy due to the mass and

velocity of the fluid, as thermal energy and as chemically bounded energy. We can then

define the enthalpy as

h = hm + hT + hC + � total energy,

hm = 1
2
ρUiUi kinetic energy,

hT =
∑

n

mn

T
∫

Tref

cp,n dT thermal energy,

hC =
∑

n

mnhn chemical energy,

� = ρgi xi potential energy,

where mn is the mass fraction, cp,n the heat capacity and hn the standard state enthalpy

(heat of formation) for species n. The potential energy is often included in the kinetic

energy.

The balance equation for total energy is

∂h

∂t
= −

∂

∂x j

[

hU j − keff

∂T

∂xi

+
∑

n

mnhn jn − τk jUk

]

+ Sh . (2.23)

Here jn is the diffusional flux of species n,

jn = −Dn

∂Cn

∂x j

.

The couplings between the energy equations and the momentum equations are weak

for incompressible flows, and the equations for kinetic, thermal and chemical energies

can be written separately.

2.4.1 The balance for kinetic energy

An equation for the kinetic energy including the potential energy can be deduced from

the momentum equation by multiplying by velocity Ui:

Ui

∂Ui

∂t
+ UiU j

∂Ui

∂x j

= −
1

ρ

Ui

∂ P

∂xi

+
Ui

ρ

∂τi j

∂x j

+ Ui gi . (2.24)
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By using

Ui

∂Ui

∂xi

=
1

2

∂U 2
i

∂xi

and defining e ≡ 1
2
(U 2

1 + U 2
2 + U 2

3 ) [J kg−1 fluid] we obtain

∂e

∂t
+ U j

∂e

∂x j

= −
1

ρ

Ui

∂ P

∂xi

+
1

ρ

Ui

∂τi j

∂x j

+ Ui gi . (2.25)

Note that this is a scalar equation and the expanded equation is obtained by summation

over i and j. On multiplying by the density of the fluid and defining hm = ρe [J m−3

fluid] and using the relations

∂(PUi )

∂xi

= Ui

∂ P

∂xi

+ P
∂Ui

∂xi

and
∂(τi jUi )

∂xi

= Ui

∂τi j

∂xi

+ τi j

∂Ui

∂xi

we obtain

∂(hm)

∂t
= −U j

∂(hm)

∂x j

+ P
∂Ui

∂xi

−
∂(PUi )

∂xi

+
∂(τi jUi )

∂xi

− τi j

∂Ui

∂xi

+ ρgUi . (2.26)

The accumulation and convection terms (the first two terms on the right-hand side) are

straightforward and need no further comments. The work done by the gravity force

(the sixth term on the right-hand side) is the change in potential energy due to gravity.

Reversible conversion to heat (the third term on the right-hand side) stems from the

thermodynamic cooling when a gas expands or heating when it is compressed. The work

done by viscous forces (the fourth term on the right-hand side) is the accumulation of

strain in some fluids, e.g. a rubber band. The irreversible conversion of kinetic energy

into heat (the fifth term on the right-hand side) is, for Newtonian fluids,

ε = −
1

ρ

τi j

∂Ui

∂x j

=
1

2
ν

[(

∂Ui

∂x j

+
∂U j

∂xi

)

−
2

3

∂Ui

∂xi

]2

. (2.27)

Owing to the fact that this is a squared term, the viscous dissipation term is always

positive for Newtonian fluids. Heat is actually random movement of molecules or atoms,

i.e. translational, rotational and vibrational movement. The difference between kinetic

energy and heat is that kinetic energy has an average direction of movement whereas heat

is random movement. With this perspective the dissipation term can be seen as viscous

transport of fast molecules into areas with low average velocity and of slow molecules

into areas with high average velocity. The molecules will collide with other molecules,

transferring their average momentum, but will very soon lose their directional average

and the movement is defined as heat.

The dissipation term is usually small and only with a very high velocity gradient

will it be possible to measure the temperature increase due to viscous dissipation. In a

stirred-tank reactor the power input by the impeller is of the order of 1 kW m−3, which

corresponds to a temperature increase of about 1 K h−1. However, in turbulent flow this
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term becomes very important since it describes the decay of turbulence when the energy

in the turbulent eddies is transferred into heat.

2.4.2 The balance for thermal energy

A balance for heat can be formulated generally by simply adding the source terms from

the kinetic-energy balance and from chemical reactions:

∂(ρcpT )

∂t
= −U j

∂(ρcpT )

∂x j

+ keff

∂
2T

∂x j ∂x j

− P
∂U j

∂x j

+ τk j

∂Uk

∂x j

+
∑

m

Rm(C, T )(−�Hm) + ST , (2.28)

where the terms on the right-hand side are for accumulation, convection, conduction,

expansion, dissipation and the reaction source.

Here the terms in the equation for transformation between thermal and kinetic energy,

i.e. expansion and dissipation, occur as source terms. The relation to change in chemical

energy is seen in the term for heat formation due to chemical reactions. Examples of the

source term ST are absorption and emission of radiation.

2.5 The balance for species

The balance for transport and reaction for species in constant-density fluids is described

by

∂Cn

∂t
+ U j

∂Cn

∂x j

=
∂

∂x j

(

Dn

∂Cn

∂x j

)

+ R(C, T ) + Sn. (2.29)

In most CFD programs, the concentration is replaced with the mass fraction

yn =
Mv,nCn

ρ

. (2.30)

Transport and reaction will be discussed further in Chapter 5.

2.6 Boundary conditions

The 3D Navier–Stokes equations contain four dependent variables, U1, U2, U3 and P.

Depending on the conditions of the flow, we can define the boundary conditions in

many different ways. The boundary conditions are just as important as the differential

equations that determine the system, and the results of the simulations depend on the

inlet and outlet conditions and the conditions at the walls as well as on the differential

equations. We may also introduce boundary conditions due to simplifications of the

computational domain, e.g. symmetry.
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2.6.1 Inlet and outlet boundaries

The inlet velocity can be defined in terms of velocities or mass flow rate. In most CFD

programs it is possible to enter the inlet condition as an average flow perpendicular to the

surface or as a velocity-component distribution over the inlet surface. The way we define

boundaries may affect the results, e.g. defining the inlet by an average velocity or by a

parabolic laminar flow distribution will give the flow different momentum distributions

and the total energy added by the inlet flow will be different in these two cases. An

alternative to defining inlet velocities is the pressure inlet boundary condition that can

be used when the inlet pressure is known without knowledge of the flow rate. The

pressure inlet boundary condition is also useful when it is unknown whether the flow

enters or exits at this position.

The standard outlet boundary condition is the zero-diffusion flux condition applied

at outflow cells, which means that the conditions of the outflow plane are extrapolated

from within the domain and have no impact on the upstream flow, i.e.

φ|L− = φ|L+ . (2.31)

The pressure outlet boundary condition is often the default condition used to define the

static pressure at flow outlets. The use of a pressure outlet boundary condition instead

of an outflow condition often results in a better rate of convergence when backflow

occurs during iteration. Pressure outflow is also useful when there are several outflows.

Specified outflow boundary conditions are used to model flow exits where the details of

the inlet flow velocity and pressure are not known prior to solution of the flow problem.

They are appropriate where the exit flow is close to a fully developed condition, since

the standard outflow boundary condition assumes a normal gradient of zero for all flow

variables except pressure.

Scalars, e.g. temperature and species, are usually defined as temperature and mass

fractions in the inlet flow. Standard outlet conditions are usually the default.

2.6.2 Wall boundaries

The usual boundary condition for velocity at the walls is the ‘no-slip condition’, i.e. the

relative velocity between the wall and the fluid is set to zero. For high-Reynolds-number

turbulent flow the no-slip condition is still valid but the grid resolution is usually too

coarse to specify the no-slip condition. In this case the velocity and shear close to the

wall are modelled using a wall function. (See Chapter 4 for further details.) The no-slip

condition may be inappropriate for non-Newtonian and multiphase flow and at large

Knudsen numbers (Kn > 0.02), i.e. for low pressure or small dimensions.

For heat transfer, walls can be considered insulated or heat may be transferred through

the walls. For heat there are several choices for boundary conditions, e.g. fixed heat flux,

fixed temperature, convective heat transfer, radiation heat transfer or a combination

of these boundary conditions. Heat transfer by radiation occurs mainly between solid

surfaces, and the CFD program must be able also to calculate view angles in order to

obtain accurate radiation boundary conditions.

Cambridge Books Online © Cambridge University Press, 2012



20 Modelling

The boundary conditions for species are usually termed ‘no penetration’, but diffusion

to and reaction at the walls can occur. Evaporation and condensation are also possible

wall boundary conditions.

2.6.3 Symmetry and axis boundary conditions

The time taken for simulations can be reduced significantly by using the geometrical

symmetry of the problem. Mirror symmetry can halve or even further reduce the calcu-

lation region, and rotational symmetry, by defining a rotation axis, reduces a problem

from 3D to 2D, which can decrease the time taken for simulation by several orders of

magnitude. Symmetric initial and boundary conditions do not guarantee that the solution

is symmetric, e.g. buoyancy-driven flows have a tendency to have several possible solu-

tions depending on the initial conditions, and enforced symmetry conditions can produce

erroneous results. Two-dimensional simulations may give very misleading results, e.g.

the bubbles appearing in a simulation of a fluidized bed are cylinders in 2D and toroids

in rotational symmetry. It should also be recognized that no net transport is allowed

across a symmetry plane.

Periodic boundaries are convenient for DNS and LES simulations of turbulent flows

since time-resolved inlet conditions are required. In periodic boundaries the inlet is set

to the outlet. In this way the time-resolved solution will transfer the outlet solution to

the inlet. However, to avoid having the boundary condition affect the simulation results,

the residence time in the simulation domain should be long compared with the lifetime

of the turbulent eddies. Periodic boundaries are also useful for rotating systems when

only a fraction of the tangential direction is resolved, e.g. in simulation of turbines.

2.6.4 Initial conditions

Since the Navier–Stokes equations are nonlinear it is necessary to have an initial guess

from which the solver can start the iterations. The better the initial conditions, the faster

the final solution will convergence. It is also possible that the specified problem has

multiple solutions and that the solution will converge to different solutions depending

on the initial guess. It is always recommended that different initial conditions should be

tested to evaluate convergence and to determine whether there are multiple stationary

solutions. When multiple solutions are possible, the simulations must be transient,

starting from correct initial conditions.

If a time-dependent solution is required, the actual initial conditions must be specified.

Initial conditions for all variables that are to be solved must be specified. For example, in

turbulence modelling the initial conditions for the variables describing the turbulence,

e.g. the turbulence kinetic energy and the rate of dissipation, must also be set.

Owing to the numerical properties in transient simulations, it is in some cases more

efficient to solve a steady-state case by transient simulations. In this case, we are not

interested in accurate simulation of the transient behaviour, but only in obtaining a

reliable steady-state solution. Exact initial conditions are not necessary, and it is possible

to use larger time steps to obtain faster convergence.
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Figure 2.7 A mesh with a rotating and a stationary part.

2.6.5 Domain settings

There are occasions when we are interested only in relative velocities, e.g. flow through

rotor blades in a compressor or flow in a centrifuge. We can then define the flow relative

to the moving surfaces, and the CFD program will add volume forces due to acceleration,

e.g. the centrifugal force.

It is also possible to have rotational parts together with stationary parts, e.g. in a

stirred-tank reactor the impeller is rotating and the walls and baffles are stationary. We

can then define a cylindrical volume around the impeller that is moving with the impeller

and define the rest of the tank as stationary as shown in Figure 2.7.

In this model we do not have to specify the fluid velocities at the moving walls.

Standard wall boundary conditions, e.g. no-slip conditions, are sufficient. By choosing

the boundary between the moving and stationary parts at a point where the change in

flow in the tangential direction is small, it is possible to obtain very good time-resolved

flow simulations. The inner volume is stepped in time and the flow is distributed to the

connecting cells in the outer volume. In some CFD programs it is also possible to use the

average flow to obtain a steady-state solution. By proper choice of a rotating or sliding

mesh it is even possible to obtain good average properties of a stirred-tank reactor.

2.7 Physical properties

Most physical properties of fluids, e.g. viscosity, density, diffusion, heat conductivity

and surface tension, will vary locally due to variations in temperature, pressure and com-

position of the fluid. Algebraic equations describing these properties must be specified

in the CFD program.
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2.7.1 The equation of state

The relations among density, temperature, pressure and composition are described by the

equation of state. For gases at low pressure the ideal-gas law can be used for compressible

flows:

ρ =
P

RT
∑

n

yn/Mw,n

. (2.32)

The ideal-gas law is also an option for incompressible flow if the pressure variation is

moderate. The model will then correctly express the relationship between density and

temperature required for e.g. natural convection problems.

For non-ideal gases many choices can be found in the literature, the most common of

which are the law of corresponding states and the cubic equations of state. The law of

corresponding states is defined as

Z =
PV

RT
, (2.33)

where Z is a function of the reduced temperature and pressure. The cubic equations are

in the form

P =
RT

V − b
−

a

V 2 + ubV + wb2
, (2.34)

where a, b, u and w are parameters. Depending on the parameters, they form van der

Waals, Redlich–Kwong, Soave and Peng–Robinson equations of state.

For liquids the pressure dependence can often be neglected and a simple polynomial

can describe the temperature dependence:

ρ = A + BT + CT 2 + DT 3 + · · · . (2.35)

2.7.2 Viscosity

At low pressure the viscosity increases slowly with temperature but there is only a small

pressure dependence. The Chapman–Enskog theory provides an expression for the gas

viscosity:

μgas =
5

16

√
πmkBT

πσ
2
�T ∗

. (2.36)

A more compressed form is Sutherland’s law,

μ =
C1T 3/2

T + C2

, (2.37)

where C1 and C2 are constants. For a multi-component system the total viscosity depends

in a nonlinear fashion on the individual viscosities μi and mole fractions Xi:

μ =
∑

i

X iμi
∑

j

X iφi j

, (2.38)
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where

φi j =

[

1 +

(

μi

μ j

)1/2 (

Mw, j

Mw,i

)1/4
]2/

[

8

(

1 +
Mw,i

Mw, j

)]1/2

. (2.39)

The viscosity increases with temperature for gases, whereas the viscosity decreases expo-

nentially with temperature for liquids. The temperature dependence for liquid viscosity

is often written as

μliq = aeb/T
. (2.40)

For non-Newtonian fluids there are several models available. In this book we will cover

only Newtonian fluids, but the interested reader can find additional theories in standard

textbooks [2]. The standard models for turbulent flows assume Newtonian fluids, and

empirical models are required for modelling turbulent viscosity.

Questions

(1) Why are diffusivity, kinematic viscosity and thermal diffusion similar in gases at

low pressure?

(2) What is the molecular mechanism for viscous transport of momentum in gases?

(3) Why is it necessary to rewrite the continuity equation in CFD software?

(4) Why can a gas be treated as incompressible when there is a pressure drop?

(5) Why does viscous dissipation of kinetic energy form heat?

(6) What are standard outlet conditions?

(7) What is a no-slip condition at the wall and when can it be used?

(8) What is a periodic boundary condition?

(9) What are symmetry and axis boundary conditions?

(10) What is an equation of state?
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3 Numerical aspects of CFD

This chapter introduces commonly used numerical methods. The aim is to explain

the various methods so that the reader will be able to choose the appropriate method

with which to perform CFD simulations. There is an extensive literature on numerical

methods, and the interested reader can easily find textbooks. Appropriate references

are [3, 4].

3.1 Introduction

In the previous chapter the physics of fluid flow has been presented. The concepts of how

the flow is modelled, with and without turbulence, have been introduced. The Navier–

Stokes, continuity and pressure equations have been derived, and model equations for

some turbulence quantities will be discussed in following chapters. Expressions for

heat and mass transfer have also been presented. The expressions for velocity, pressure,

turbulence quantities and heat and mass transfer, together with the appropriate boundary

conditions, constitute the core of the CFD problem.

So far there has been no discussion of how these equations are solved. This chapter will

deal with the most fundamental aspects of numerical procedures for solving problems

with CFD. The scope of the chapter is to give the reader a numerical background and

an understanding of some of the numerical problems that can occur. Being aware of the

existence of these problems and being able to avoid them are of crucial importance.

The general transport equation for an arbitrary variable φ in conservative form is

now stated:

ρ

∂φ

∂t
+ ρ

∂(U jφ)

∂x j

=
∂

∂x j

(

Ŵ

∂φ

∂x j

)

+ Sφ . (3.1)

This equation has been used in the previous chapter, e.g. the Navier–Stokes equations,

Eq. (2.21), which actually are nothing other than transport equations for momentum

(or rather velocity). The equation also appears as the transport equation for various

turbulence quantities in Chapter 4. Unfortunately, it is generally not possible to solve

equations of this type analytically, since they are nonlinear and often contain both spatial

and temporal derivatives. This requires the application of numerical methods.
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3.2 Numerical methods for CFD

The pioneers of CFD employed finite differences to approximate the governing equations

describing fluid mechanics. With finite differences, the partial spatial and temporal

derivatives appearing in the equations are approximated through Taylor series. Although

there is no formal restriction, finite differences are typically employed only on Cartesian

geometries. Since most of the problems engineers tackle do not take place in a square

box, finite differences are not often used for practical problems.

Finite-element methods require a 2D or 3D mesh and are very flexible in terms of

geometry and mesh elements; almost any type of mesh element can be employed. At

each mesh element, a base function is used. This base function should locally describe

the solution of (part of) the governing equation to be approximated. The finite-element

method aims to minimize the difference between the exact solution and the collection

of base functions; this can be done e.g. by a Galerkin method. There is no dispute

that finite-element methods are the preferred method of choice for solid-mechanics

problems.

However, problems in the fluid-mechanics area are generally governed by local con-

servation. For instance, the continuity equation dictates the local conservation of mass.

Local conservation is not necessarily a property of the finite-element method, since the

difference between the base functions and the exact solution is minimized globally. The

adaptation of the finite-element method to reflect local conservation is still very much

the focus of numerical research, therefore the method has historically not been used as

much for CFD.

3.2.1 The finite-volume method

The principle of the finite-volume method is local conservation, and this is the key

reason for its success in CFD. To solve the equations numerically with the finite-

volume method, the entire computational domain is divided into ‘small’ sub-volumes,

so-called cells. Employing Gauss’ law, the partial derivatives expressing a conservation

principle, such as div u, can be rewritten at each cell as an algebraic contribution. The

governing equation, expressed in the partial differential equations, is reformulated, at

each computational cell, into a set of linear algebraic equations

Usually, these equations are solved numerically in an iterative manner. The price

for this so-called discretization of the domain is the introduction of a numerical error

into the solution. It is important to control the magnitude of the error after a solution

has been obtained, and, since it can be shown that this error vanishes as the cell size

approaches zero, a sufficient decrease of the cell size will often reduce the error well

enough. On the other hand, reducing the cell size too much will create an unnecessarily

large number of cells, which will increase the computational effort required and possibly

yield prohibitive simulation times. Finding a fast but still accurate way of solving the

CFD problem is one of the CFD engineer’s most important tasks.
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Figure 3.1 Control volumes. The cell-centred algorithm (left) and the node-centred algorithm

(right). The mesh elements are depicted with thin lines, and the control volumes with dashed

lines.

3.2.2 Geometrical definitions

Now some definitions have to be made. The cell has already been defined. Each cell

is surrounded by its faces. These faces form a grid pattern throughout the domain. A

grid that contains only cells with all internal angles equal to 90◦ is called a structured

grid, and this is the type of grid that will be dealt with in this chapter. Since a structured

grid requires that the physical geometry itself must be rectangular, this type of grid is

not very common in reality. Many industrial cases contain parts of complex geometry

that cannot be divided into purely rectangular cells. Grids can be created in 1D, 2D or

3D, depending on the number of computational dimensions. A problem can often be

regarded as being of 1D or 2D even though all fluid flows are 3D in ‘reality’.

In the work of defining the grid it must also be taken into account whether the solver

is to use a cell-centred or a node-centred algorithm. A cell-centred solver algorithm

creates control volumes that are completely identical to the grid. A node-centred solver

creates its control volumes around the grid nodes instead. A grid node is situated at

each intersection of cell edges, see also Figure 3.1. Even though choosing the algorithm

is primarily a solver issue, the choice has to be made already during the stage of grid

creation. This follows as a consequence of the fact that the two algorithms put different

demands on the grid, especially in near-wall regions.

3.3 Cell balancing

Integrating the general transport equation, Eq. (3.1), over a control volume (c.v.) yields

∫

c.v.

ρ

∂φ

∂t
dV +

∫

c.v.

ρ

∂

(

U jφ

)

∂x j

dV =

∫

c.v.

∂

∂x j

(

Ŵ

∂φ

∂x j

)

dV +

∫

c.v.

Sφ dV. (3.2)

For the time being, only steady problems are considered. Thus, the accumulation term

will be zero. Transient problems (unsteady problems) are studied in later sections in this

chapter.

The next step in solving a problem with finite volumes is to reformulate Eq. (3.2) in

algebraic form. This requires the elimination of all integral signs and derivatives. To do
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Figure 3.2 The faces of a control volume.

this, some approximations have to be introduced. The following section will discuss the

process in detail.

3.3.1 The convective term

The terms in Eq. (3.2) are now studied one by one, starting with the convective term

∫

c.v.

ρ

∂(U jφ)

∂x j

dV. (3.3)

This term represents the net flux of φ transported out of the cell by convection, i.e.

transported with the flow. The flow can enter or leave the cell only through any of its

faces. According to Gauss’ theorem it is possible to rewrite Eq. (3.3) as

∫

c.s.

ρU j nφ dA, (3.4)

where c.s. denotes the control-volume surfaces, i.e. the faces that surround the cell, and

dA is the area that surrounds the volume dV. Here n is a normal vector pointing outwards

from dA. The product Ujn is thus the velocity perpendicular to the surface dA. In a

structured grid one can evaluate Eq. (3.4) into

−ρ

[

(AUφ)w − (AUφ)e + (AV φ)s − (AV φ)n + (AWφ)t − (AWφ)b

]

. (3.5)

Here, A is the appropriate face area and U, V and W are the velocities in the x, y and z

directions, respectively. The indices w, e, s, n, b and t denote the west, east, south, north,

bottom and top cell faces. The term (AVφ)n thus takes into account the flux of φ through

the northern cell face that has size �x�z. See also Figure 3.2.

The negative signs in Eq. (3.5) come from the definition of west, east etc. in rela-

tion to the coordinate axis. For example, n equals −1 at the west surface, giving that

the flux (Uφ)w is negative if U is positive there. If Eq. (3.5) is regarded as an inte-

gral mass balance, it makes sense in the way that what goes into the cell also comes
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out for source-free, steady conditions when there is no other means of transport than

convection.

An apparent problem when evaluating the convective term is that the face values of

Uj and φ must be known. As mentioned earlier, the transport equations are not solved

on the faces. Several approaches to overcome this will be discussed later in the section

about discretizing schemes.

3.3.2 The diffusion term

Next, a closer look is taken at the diffusion term,
∫

c.v.

∂

∂x j

(

Ŵ

∂φ

∂x j

)

dV . (3.6)

The diffusion term takes into account the transport of φ by diffusion. Equation (3.6) can

be treated in a similar way to the convective term, Eq. (3.3). By making use of Gauss’

theorem,
∫

c.s.

Ŵ

∂φ

∂x j

n dA. (3.7)

Using the same notation as in the convective case, Eq. (3.7) can be evaluated to give a

similar expression:

−

[(

AŴ

∂φ

∂x

)

w

−

(

AŴ

∂φ

∂x

)

e

+

(

AŴ

∂φ

∂y

)

s

−

(

AŴ

∂φ

∂y

)

n

+

(

AŴ

∂φ

∂z

)

t

(

AŴ

∂φ

∂z

)

b

]

.

(3.8)

3.3.3 The source term

The last term in the general transport equation is the source term,
∫

c.v.

Sφ dV . (3.9)

The source term takes into account any generation or dissipation of φ. The body force

due to gravity in the Navier–Stokes equation for the y momentum is an example of a

source term as discussed previously. The pressure gradient term in the Navier–Stokes

equation is another example. To be able to rewrite Eq. (3.9) without using any integral

signs, simply take a cell mean value of Sφ and move it outside the integral sign. Thus,
∫

c.v.

Sφ dV ≈ SφV . (3.10)

Here, Sφ is the mean value of Sφ in the cell.

The original transport equation, Eq. (3.1), is now transformed into equations that

can be solved algebraically, Eqs. (3.5), (3.8) and (3.10). It has also been concluded
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Figure 3.3 The experimental set-up in Example 1.

that the face values of φ, Ŵ and Uj need to be predicted, and the gradient of φ at

the faces is needed. If a source is present, the correct mean values of the sources in

all cells must be created. It must also be remembered that there can be many dif-

ferent scalars, and that they are usually dependent on each other, forcing us to solve

their equations simultaneously in each cell. Hence, the set of equations often becomes

nonlinear.

Equation (3.5), (3.8) and (3.10) will now be used to solve an easy and clarifying 1D

problem, Example 1.

3.4 Example 1 – 1D mass diffusion in a flowing gas

The flow of an inert gas I between two perforated surfaces is simulated. The distance

between the surfaces is 10 cm, and it is assumed that the surface areas are infinite. This

assumption is made so that the problem can be treated as being 1D. The gas velocity is

1 mm s−1. At the west surface the species concentration is 10 moles m−3 of A and at the

east surface the concentration is 100 moles m−3 of A. Assuming that the total density

is 1 kg m−3, the diffusion constant for A in I is 10−4 m2 s−1. The objective is to predict

the profile of A between the surfaces, using ten equidistant cells. See Figure 3.3 for the

simulation set-up.

3.4.1 Solution

This is a 1D problem. The general transport equation, Eq. (3.1), can be evaluated

according to the previous sections with a somewhat simpler expression than for the

general 3D case. By way of illustration, the steps are presented. Here, φ denotes the

molar concentration of A.
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Figure 3.4 Neighbouring cells and cell faces.

Integrating Eq. (3.1) over a 1D control volume forms

e
∫

w

ρ

∂φ

∂t
dx +

e
∫

w

ρ

∂ (Uφ)

∂x
dx =

e
∫

w

∂

∂x

(

Ŵ

∂φ

∂x

)

dx +

e
∫

w

Sφ dx . (3.11)

Here Ŵ = ρD, where D is the diffusion constant and ρ the total density.

Compared with Eq. (3.2) for the 3D case, it can be seen that the 3D control volumes

have been replaced with 1D control volumes. This simply requires integration from the

west face to the east instead of over the 3D volume. As shown earlier, it is assumed that

steady conditions prevail and thereby it is possible to neglect the accumulation term.

Further, there is no internal source of species A in our system. This results in the reduced

equation

e
∫

w

ρ

d(Uφ)

dx
dx =

e
∫

w

d

dx

(

Ŵ

dφ

dx

)

dx .

This can be evaluated into the algebraic form

[

(ρUφ)e − (ρUφ)w

]

=

[(

Ŵ

dφ

dx

)

e

−

(

Ŵ

dφ

dx

)

w

]

. (3.12)

This equation holds for all cells. To proceed, estimates are required for the face values

of φ and U and the gradient of φ at the faces. This can be done in many ways, but the

most straightforward solution is to use a linear interpolation from neighbouring cells.

Starting with the face values of φ,

φw =
φW + φP

2
,

φe =
φP + φE

2
.

(3.13)

Here, W denotes the western neighbour cell, E the eastern neighbour cell and P the

present cell (w and e are the face values as defined earlier). See also Figure 3.4. Be

aware that Eq. (3.13) is merely an approximation and through this a numerical error

is introduced into the solution. U is constant at 1 mm s−1 so the face values of U are

already known. To estimate the gradient of φ at the faces, the following equations are

used:
(

dφ

dx

)

w

=
φP − φW

xP − xW

,

(

dφ

dx

)

e

=
φE − φP

xE − xP

(3.14)
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Figure 3.5 The cells. The shadow cells 0 and 11 are situated outside the physical domain. φA and

φB are the boundary values at the western and eastern physical surfaces, respectively.

This is a first-order Taylor approximation and xE, xW and xP are the cell coordinates of

the eastern, western and present cells, respectively. Also, by using Eq. (3.14) a numerical

error is introduced.

Equations (3.12), (3.13) and (3.14) can now be combined, which results in

[(

ρU
φP + φE

2

)

−

(

ρU
φP + φW

2

)]

=

[(

Ŵ

φE − φP

xE − xP

)

−

(

Ŵ

φP − φW

xP − xW

)]

. (3.15)

Equation (3.15) can be solved once for each cell, giving a total of ten equations (one

per cell). Each equation will contain three unknowns, φW, φE and φP. However, the

unknown value of, for example, φE in the equation for cell number 4 will come back as

φP on solving Eq. (3.15) for cell number 5. Thus, the total number of unknown variables

will be 12; one φ per cell plus two extra φ values for the farmost eastern and farmost

western surfaces, i.e. the boundaries. Numerical values for the boundaries are given in

the assignment, giving ten equations and ten unknown variables. The equation system

can thus be solved and the profile determined.

Before solving the equation system, Eq. (3.15) is re-arranged in a slightly different

form:

(

Ŵ

xE − xP

+
Ŵ

xP − xW

)

︸ ︷︷ ︸

B

φP +

(

ρU

2
−

Ŵ

xE − xP

)

︸ ︷︷ ︸

C

φE +

(

−
ρU

2
−

Ŵ

xP − xW

)

︸ ︷︷ ︸

A

φW = 0.

(3.16)

Cells 2–9 are identical in the sense that the distances to the neighbouring cells are

identical. For the cells that are closest to the boundaries, i.e. cells 1 and 10, there

are no cells directly to the west and east, respectively. These cells thus require extra

attention. A way to avoid having to treat these two cells in a special way is to create

two ‘imaginary’ cells, so-called shadow cells, outside the computational domain. If

the shadow cells are placed so that the distance from them to the closest real cell is

the same as the distance between two real cells, then cells 1 and 10 are not treated

any differently. This will make the solution procedure easier. See Figure 3.5 for more

details. The shadow cells are called φ0 and φ11, respectively, and the boundary values are

called φA and φB. Using linear interpolation, the shadow cell is calculated from φA =

(φ0 + φ1)/2.
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Figure 3.6 A plot of molar concentration as a function of distance from the left plate solved with

Gaussian elimination. The exact solution of the PDE has been added for comparison.

Ten identical equations are now arranged for cells 1–10 and two slightly modified

ones for the shadow cells. In matrix form,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0 0 0 0 0 0 0 0 0

A B C 0 0 0 0 0 0 0 0 0

0 A B C 0 0 0 0 0 0 0 0

0 0 A B C 0 0 0 0 0 0 0

0 0 0 A B C 0 0 0 0 0 0

0 0 0 0 A B C 0 0 0 0 0

0 0 0 0 0 A B C 0 0 0 0

0 0 0 0 0 0 A B C 0 0 0

0 0 0 0 0 0 0 A B C 0 0

0 0 0 0 0 0 0 0 A B C 0

0 0 0 0 0 0 0 0 0 A B C

0 0 0 0 0 0 0 0 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

φ0

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10

φ11

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2φA

0

0

0

0

0

0

0

0

0

0

2φB

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.17)

where the constants A, B and C are defined in Eq. (3.16). Since the coefficients

A, B and C are not functions of φi, it is possible to solve Eq. (3.17) analyti-

cally with Gaussian elimination. This gives the following numerical values of φi

at the cells: φ0 = 7.38, φ1 = 12.61, φ2 = 18.39, φ3 = 24.78, φ4 = 31.84, φ5 = 39.65,

φ6 = 48.28, φ7 = 57.81, φ8 = 68.35, φ9 = 80.00, φ10 = 92.88 and φ11 = 107.11.

Remember that cells 0 and 11 are shadow cells and are used only to make the solution

procedure easier. They are listed here for paedagogical reasons. For a plot of the results,

please refer to Figure 3.6. It can be observed that there is only a very small deviation

from the exact solution of Eq. (3.11) even though the approximations in Eq. (3.13) and

Eq. (3.14) have been introduced.
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3.4.2 Concluding remarks

The solution strategy for a simple CFD problem has now been demonstrated. However,

it must be kept in mind that the solved example contained many simplifications and was

well defined in many ways. Generally, it is not possible to solve a CFD problem with a

direct method, such as Gaussian elimination. The focus is then turned towards iterative

methods.

Some examples of simplifications in the solved Example 1 are the following.

� The problem could be treated as 1D due to symmetries. A problem in 2D or 3D would,

of course, generate more cells; in this case a 3D treatment would give 1000 cells

instead of 10, assuming that the grid density was kept constant and the computational

domain had a cubic geometry. The cells were placed with constant spacing, generating

a so-called equidistant grid.
� Further, the presence of a constant velocity made the solution process easier. Usually,

the velocities cannot be predetermined, and thus one requires a solution to a transport

equation for each velocity component as well. If this is the case, the equation system,

Eq. (3.16), will contain nonlinear terms like ρUφ, where both U and φ are variables.

This means that matrices can no longer be created with constant coefficients like in

Eq. (3.17). The equation system must then be solved by some iterative technique, e.g.

the Gauss–Seidel method (see below for more details).
� Another simplification introduced was the linear approximations of the variables and

the gradients at the faces. Obviously, at high positive flow rates, the face values

between, for example, cell 1 and cell 2 must be more dependent on cell 1 than on

cell 2. Thus, linear interpolation, or central differencing, must be used with caution.
� The fluid properties were assumed to be constant. In non-isothermal situations, the

temperature must be calculated in order for these entities to be predicted. A transport

equation for temperature has to be solved. However, in order to solve the energy

equation, the fluid properties must be known. This requires iterative methods.

Questions

(1) Propose a general expression for the transport of the entity φ. Give a physical

interpretation and units to the terms.

(2) What is discretization? Is it always a necessary step in the solving of a CFD problem?

(3) How many boundary conditions are required in order to solve a steady diffusion–

convection problem in n computational dimensions? Does this number change if

diffusion is neglected? Give a physical explanation!

(4) What sources of error were introduced in Example 1?

3.5 The Gauss–Seidel algorithm

As discussed earlier, iterative methods are always used in CFD. Most commercial CFD

codes use some variant of the Gauss–Seidel algorithm (GSA). Some basic knowledge
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of the GSA makes it easier to understand how these codes work and also what problems

can occur.

For demonstration, Example 1 will be solved again, this time with the GSA. First,

some general words about the GSA are in order. Starting with Eq. (3.16), it is possible

to isolate φP from the equation:

φP =
aEφE + aWφW

aP

, (3.18)

where

aE =

(

−
ρU

2
+

Ŵ

xE − xP

)

,

aW =

(

ρU

2
+

Ŵ

xP − xW

)

,

aP =

(

Ŵ

xE − xP

+
Ŵ

xP − xW

)

.

(3.19)

The main difference between using the GSA and Gaussian elimination is that the GSA

is an iterative method. Equation (3.18) is solved for each cell in an iterative manner.

Start with cell 1; to be able to solve for this cell, the numerical value of the variable in

the shadow cell, φ0, and also the numerical value in cell 2, φ2, are needed. Since there is

no numerical value of φ in any cell, a starting guess, an initialization, for all φi must be

made. φ1 is then solved for. Shifting our attention to φ2, Eq. (3.18) is solved for this cell.

In the calculation of φ2, the calculated value of φ1 and the starting guess for φ3 are used.

Thus, the GSA uses the values calculated already in the same iteration sweep, which

makes the solution converge faster. The procedure is then carried out until φi in all cells

have been calculated. But, there is a problem here; since φ1 was calculated as a function

of φ0 and φ2, the equation for φ1 is no longer satisfied since a new value of φ2 has been

calculated. Thus, the procedure must be repeated many times; i.e. it requires iteration.

This is done until convergence is reached, i.e. the numerical values of φi change by less

than a specified threshold amount set by the user. Discussion of how this is usually done

in practice will come later.

3.6 Example 2 – Gauss–Seidel

This time, Example 1 will be solved numerically using the GSA. The procedure given

in Figure 3.7 will be followed.

On looking at the expressions for aW, aE and aP, one may see that they are identical

for all cells and do not change during the iterations. We use the numerical values given

in the assignment, aE = 0.0095, aW = 0.0105 and aP = 0.0200, for all cells. A high

numerical value of e.g. aE means that cell (P) is highly influenced by it, whereas a low

number means the opposite; see Eq. (3.18). As can be seen here, aW is larger than aE,

meaning that the value for cell P is more influenced by its western neighbour than by

its eastern one. This shouldn’t come as any surprise, knowing that the gas is flowing

from west to east and, thus, the western cell should play a more dominant role in the

calculation of cell P.
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Figure 3.7 The Gauss–Seidel solving procedure for Example 2.

Next, starting values for all cells are initialized. For simplicity, set all φi equal to

50 moles m−3. Making a ‘good’ starting guess is not that important in this example, but

in more complex problems the starting guess can be vital even to reach convergence.

This will be discussed further in the section about unsteady problems. Special attention

is required for the shadow cells. As discussed earlier, it was through these cells that the

boundary conditions were introduced. Given the numerical value of the boundaries, the

numerical value of the shadow cells can be determined.

φ0 = 2φA − φ1 = −30,

φ11 = 2φB − φ10 = 150.

Now, Eq. (3.18) can be solved for all cells, beginning with cell 1 (see also Figure 3.7):

φ1 =
0.0095 × 50 + 0.0105 × (−30)

0.0200
= 8,

φ2 =
0.0095 × 50 + 0.0105 × 8

0.0200
= 27.95,

φ3 =
0.0095 × 50 + 0.0105 × 27.95

0.0200
= 38.42,

· · ·

φ9 =
0.0095 × 50 + 0.0105 × 49.53

0.0200
= 49.75,

φ10 =
0.0095 × 150 + 0.0105 × 49.75

0.0200
= 97.37.
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Figure 3.8 A plot of molar concentration as a function of the distance from the left plate at

different stages in the iterative process.

On looking at the numerical values of the cells, a tendency for the low value at the

western boundary to ‘spread’ through the domain can be seen. This is because iterations

are sweeping from west to east, not vice versa. Iterating from east to west would have

resulted in a profile, at this stage, with cell values higher than 50 for almost all cells.

In the present iteration, information is transported from west to east, from low cell

numbers to higher cell numbers. At convergence, the mode of iteration should not have

any impact on the result, but it often affects the computational time that is required for

convergence.

Additional iterations are run before continuing the discussion. For iteration

40 φ1 = 12.6027, φ2 = 18.3587, φ3 = 24.7271, φ4 = 31.7741, φ5 = 39.5721, φ6 =

48.2000, φ7 = 57.7443, φ8 = 68.2998, φ9 = 79.9706 and φ10 = 92.8714. See

Figure 3.8.

From the numerical data produced during the iterative process, it is possible to see that

the rate of change of a numerical value at a specific cell decreases with iteration. This

is also shown in Figure 3.9, where all cell values have been plotted against the number

of iterations. Eventually, after continuing iterations for a ‘very long’ time, the same

solution as was obtained in Example 1 will be reached, but already after a few iterations

this solution is very close. Notice that there have been no additional sources of error

introduced into the equations apart from the previously discussed discretization error

and the error stemming from face-value or face-gradient approximations. However, if

the iterations are interrupted ‘too soon’, the solution obtained can be far from the ‘true

numerical’ solution. Thus, knowing when to stop iterating is important. In previous

sections, the concept of convergence was briefly discussed; and it was stated that a

solution is converged when it’s ‘close enough’ to the solution to the original set of

partial differential equations (PDEs). A proper measure of convergence will now be

discussed.
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Figure 3.9 A plot of molar concentration at the cells during iterations.

3.7 Measures of convergence

The objective with measuring convergence is to know when to stop a CFD simulation.

The code should iterate until a criterion is fulfilled. It should then stop. There are several

different approaches that can be employed to find out when a solution has converged.

Since the exact solution to the set of PDEs is generally unknown (otherwise there would

be no need for any iterations), it is not possible to compare the numerical solution with

this exact solution. Other methods must be found. Maybe the easiest one is to state

that ‘when no cell value differs by more than a small threshold, for example 0.01, from

iteration to iteration, the solution has converged’. In Example 2, this would probably be

quite a good measure. On the other hand, if the boundary values were very small, like

0.001 for the western boundary and 0.002 for the eastern boundary, then the solution

would probably have converged before we’d even started iterating. The cell values would

not change enough in an absolute sense. So just looking at the absolute difference

∣

∣

φ
new
i − φ

old
i

∣

∣

< εthres

is not always an appropriate measure.

A similar approach would instead be to study the relative change

∣

∣

∣

∣

φ
new
i − φ

old
i

φ
old
i

∣

∣

∣

∣

< εthres.

A problem with this approach can occur if the cell values are very close to zero,

since then the relative change would always be very large, and numerical problems can

arise. However, this approach is used quite often, primarily because it’s relatively easy

to implement in a code and it turns out to be quite good.
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A very common approach is to calculate the error in Eq. (3.18),

R =
∑

all cells

|aPφP − aWφW − aEφE|. (3.20)

If this error is scaled with an appropriate factor, a dimensionless number on which one

can impose a criterion results. For example, if F is an appropriate scaling factor,

R

F
< εthres, e.g. F =

∑

all cells

∣

∣apφp

∣

∣+ |aWφW| + |aEφE|.

In some commercial CFD software the scaling factor is simply set to the highest unscaled

residual obtained within the first iterations. Hence, a bad starting guess makes it easier

to reach convergence, and vice versa.

A completely different way to measure convergence is to check whether the domain

upholds conservativeness. In the previous examples one could check the amount of A

being transported into the domain and subtract the amount that is being transported

out from it. For convergence, this difference should of course be zero, since there are

no sources inside the domain. In mathematical terms, the total flux (convection plus

diffusion) is given as F and this criterion is expressed as

|FW + FE| < εthres.

It must also be mentioned here that εthres can take different numerical values for

different variables. The numerical values of εthres are often in the range 10−3–10−6 for

single precision modes depending on which definition of a convergent solution is used.

Probably, the best way to ensure convergence is a combination of the criteria described

above. Being able to determine convergence is one of the most crucial parts of CFD.

Almost all commercial codes have various built-in functions to check convergence, but

nevertheless it is often worth the extra effort to do some extra manual checks. Remember

that a solution that has not converged is an ‘incorrect’ solution.

More about convergence can be found in Chapter 7.

Question

(1) In Examples 1 and 2 the same problem was solved in two completely different ways.

Which solution procedure puts the highest demand on the computer in terms of

memory usage and processor performance?

3.8 Discretization schemes

Look back at Example 1. When Eq. (3.18) was solved for the cells, the numerical

values of aE, aW and aP were used. These were obtained from Eq. (3.19). In turn,

these expressions relied on the assumptions made in Eqs. (3.13) and (3.14). A linear

interpolation was assumed in order to get accurate face values for φ. On the other hand,

it was later argued that this was an assumption that lacks physical reliability in cases
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with strong convection. This means that the western-face value of, for example, cell 4

should be more influenced by cell 3 than by cell 4 as a consequence of the flow direction.

To investigate the possible effects of non-physical assumptions, Example 1 is solved

yet again, now with an increased flow rate.

3.8.1 Example 3 – increased velocity

The same data as in Example 1 are used, but the gas velocity is now 5 cm s−1. Using the

same solution procedure as in Example 2, Eq. (3.19) gives

aE = −0.0150,

aW = 0.0350,

aP = 0.0200.

(3.21)

Equation (3.18) is now solved for all cells. One Gauss–Seidel iteration with the

same starting guess as in Example 2 gives φ1 = −90.0000, φ2 = −195.0000,

φ3 = −378.7500, φ4 = −700.3125, φ5 = −1263.0469, φ6 = −2247.8320, φ7 =

−3971.2061, φ8 = −6987.1106, φ9 = −12 264.9435 and φ10 = −21 576.1512.

If some more iterations are run, the numerical values of φ will become even larger. The

values will fluctuate between very large positive values and very large negative values

from iteration to iteration. This behaviour is typical for a diverged solution. A diverged

solution gives incorrect results. In this case it is quite obvious since φ represents the molar

concentration of species A, and of course can’t take negative values. The question one

should ask is that of why the solution diverged. The only difference from the successfully

solved Example 2 is that the flow rate was increased and thereby the convective transport

became more dominant.

Perhaps a look at the value of aE, Eq. (3.21), can give a hint regarding what’s wrong. It

has already been concluded that the value of the coefficient is a measure of the strength

of the interaction between the eastern and present cells. A high number means a strong

interaction, and vice versa. With no interaction, the coefficient should be zero. A value

below zero lacks physical reliability. Thus, there is reason to suspect that the failure

stems from the ‘incorrect’ coefficient.

Equation (3.19) has been used to calculate the coefficients. These relations build on

the assumption that the face values of φ can be estimated using a mean value of the

neighbouring cells. As shown previously, this assumption cannot be used in cases with

strong convection. In the present case, strong convection means that

aE < 0 →
ρU

2
>

Ŵ

xE − xP

. (3.22)

This criterion can also be expressed in terms of a dimensionless number. The Péclet

number is defined as the ratio between convective mass transfer and diffusive mass

transfer,

Pe =
ρU

Ŵ/(xE − xP)
=

ρU (xE − xP)

Ŵ

. (3.23)
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The criterion for strong convection would then be (cf. Eq. (3.22))

|Pe| > 2. (3.24)

Here, it is assumed that the velocity is always positive, i.e. the flow is from west to

east. However, the flow could just as well go in the opposite direction, giving a negative

value of aW instead. This would also have resulted in a divergent solution. The absolute

sign for Pe in Eq. (3.24) evolves from this fact. In Example 3, Pe = 5, which satisfies

Eq. (3.24) and hence makes the problem diverge.

This example illustrates that it’s important to keep in mind that all assumptions must

have physical reliability. This will always be important in CFD, not only in the numerical

aspects, but also in other parts of the CFD problem. When the various turbulence

models are introduced in following chapters it is stated that each model has its physical

limitations and that overlooking these limitations can result in an incorrect solution.

Bearing in mind the physical background of the problem is thus always important.

3.8.2 Boundedness and transportiveness

A desired property of a discretization scheme is that it should uphold boundedness. A

bounded variable has a value that is neither larger nor smaller than any of the values that

are used to calculate it. In Example 1 central differencing was used to estimate the face

values of φ. The face value was then simply the mean value of the two surrounding cells.

Thus, the face values are bounded. The cell values were calculated using Eq. (3.18),

which actually is nothing other than a weighted mean value of the two neighbouring

cells. This follows from the fact that aW + aE = aP. On the other hand, Eq. (3.18) can

be seen as a mean value only for cases with positive values of the coefficients. If one

of the values is negative, it is no longer possible to say that φP is bounded, since it can

take values that are either larger or smaller than those for any of the neighbouring cells.

Thus, the central-differencing scheme is said to be conditionally bounded. It should be

noted that there are more advanced central-differencing schemes that are bounded, but

they are beyond the scope of this book.

Transportiveness is another desired property of the schemes. It has already been dis-

cussed briefly, but not defined properly. The ability of the numerical scheme to ‘feel’ in

what direction the information is being transported is a description of transportiveness.

As previously discussed, the solution in Example 3 failed partly due to the lack of this

property. Transportiveness is linked to boundedness in this case, since lack of trans-

portiveness gave an unbounded solution. The central-differencing scheme calculates the

face values without taking any notice of the direction of the flow, i.e. the direction of the

information. Thus, the central-differencing scheme does not satisfy the transportiveness

requirement.

3.8.3 The upwind schemes

From Example 3, and the discussion above, it is clear that in cases with strong convection

the face values of φ have to be estimated in some other way than using Eq. (3.13). A
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reasonable line is to suggest that the face values between, for example, cell 4 and cell 5

are dependent only upon cell values from cell 4 or cells further upstream. Schemes that

let face values be dependent only on upstream conditions are called upwind schemes.

We will now examine two of these schemes closer.

First-order upwind

The idea behind the first-order upwind scheme is to have physical reliability for convec-

tive flows simply by letting the face value between two cells be equal to the value for the

nearest upstream cell, i.e.

φw = φW,

φe = φP,
(3.25)

or, for negative velocities,

φw = φP,

φe = φE.

(3.26)

The gradients are still estimated using Eq. (3.14).

If we return to our previous examples and use the first-order upwind scheme instead

of the central-differencing scheme, we can rewrite Eq. (3.15) as

[(ρUφP) − (ρUφW)] =

[(

Ŵ

φE − φP

xE − xP

)

−

(

Ŵ

φP − φW

xP − xW

)]

. (3.27)

The physical meaning of the terms in the equation is the same as before; the difference

in convective transport of φ is balanced out by the difference in diffusion. The only

difference from Eq. (3.15) is that face values of φ have been expressed using the first-

order upwind scheme instead of the central-differencing scheme. If we write Eq. (3.27)

in the same form as Eq. (3.18), we get

aE =
Ŵ

xE − xP

,

aW =
Ŵ

xP − xW

+ ρU,

aP = ρU +
Ŵ

xE − xP

+
Ŵ

xP − xW

.

(3.28)

Then, 40 iterations with the GSA will yield the following values for the

cells: φ1 = 10.0004, φ2 = 10.0003, φ3 = 10.0003, φ4 = 10.0007, φ5 = 10.0034, φ6 =

10.0199, φ7 = 10.1191, φ8 = 10.7143, φ9 = 14.2858 and φ10 = 35.7143.

The results are as expected; the high flow rate makes the western boundary more

dominant. Almost all cells in the domain, except the most eastern, have much the same

value of φ of approximately 10. Again, this seems reasonable.

From Eq. (3.28) it follows that the first-order upwind scheme is bounded. It also fulfils

the requirement of transportiveness since care is taken regarding the direction of the flow,

cf. Eqs. (3.25) and (3.26). However, it also overestimates the transport of entities in the

flow direction. This gives rise to so-called numerical diffusion.
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Second-order upwind

To improve accuracy – we will discuss accuracy in more detail later – there is an

upwind scheme that predicts the face values using information from two upwind cells.

To estimate the eastern-face value, the scheme assumes that the gradient between the

present cell and the eastern face is the same as that between the western cell and the

present cell. In mathematical terms,

φe − φP

xe − xP

=
φP − φW

xP − xW

→ φe =
(φP − φW) (xe − xP)

xP − xW

+ φP. (3.29)

For an equidistant grid, Eq. (3.29) gives that

φe = 1.5φP − 0.5φW. (3.30)

A major drawback with the second-order upwind scheme is that it is unbounded. To

avoid the numerical problems that often arise as a result of unbounded schemes, some

bounded second-order schemes have been developed, e.g. the van Leer scheme. The

definitions will be stated here.

The van Leer scheme

If |φE − 2φP + φW| ≤ |φE − φW|, the value of φ at the eastern face is (cf. Eq. (3.29))

φe = φP +
(φE − φP) (φP − φW)

φE − φW

. (3.31)

Otherwise (cf. Eq. (3.25)),

φe = φP. (3.32)

The velocity is assumed to be positive. The van Leer scheme implements the unbounded

second-order upwind scheme, Eq. (3.31), if the gradient is ‘smooth’, i.e. the second

derivative of φ is ‘small’. Otherwise, the first-order upwind scheme, Eq. (3.32), is used.

3.8.4 Taylor expansions

Before proceeding, a short mathematical review of Taylor expansions will be given.

Taylor’s theorem for a 1D expansion of a real function f (x) about a point x = x0 is

given without a proof:

f (x) = f (x0) + (x − x0) f ′(x0) +
(x − x0)2

2!
f ′′(x0) + · · ·

+
(x − x0)n

n!
f (n)(x0) +

x
∫

x0

(x − u)n

n!
f (n+1)(u)du. (3.33)

The last term in Eq. (3.33) is called the Lagrange remainder. Taylor’s theorem, except

for the Lagrange remainder, was devised by the English mathematician Brook Taylor

in 1712 and published in Methodus in crementorum directa et inversa in 1715. The

Cambridge Books Online © Cambridge University Press, 2012



3.8 Discretization schemes 43

more terms are included in the series, the more accurate the estimation will be. Taylor

expansions will be used when discussing accuracy.

3.8.5 Accuracy

Two different types of discretization schemes have been presented, the central-

differencing scheme and the upwind schemes, one that fulfils the requirement of trans-

portiveness and one that does not. The last section concluded that for problems with

strong convection the central-differencing scheme failed. The first-order upwind scheme

was then used instead. On the other hand, the first-order upwind scheme used only one

cell to estimate the face value, compared with two cells for the central-differencing

scheme, and thus we should expect the first-order upwind scheme to be less accurate

than the central-differencing scheme. Generally, the more information is used, the better

the estimation. Accuracy can be quantified in several ways.

For the central-differencing scheme, we have

φw =
φW + φP

2
,

φe =
φP + φE

2

(3.13)

and
(

dφ

dx

)

w

=
φP − φW

xP − xW

,

(

dφ

dx

)

e

=
φE − φP

xE − xP

.

(3.14)

If it is assumed that the grid is equidistant (this has been the case in all our examples so

far), the grid spacing can be defined as �x = xP − xW = xE − xP. If a Taylor expansion

of φE and φP is made about xe, the following result is reached:

φE = φe + (�x/2)

(

dφ

dx

)

e

+
(�x/2)2

2

(

d2
φ

dx2

)

e

+
(�x/2)3

6

(

d3
φ

dx3

)

e

+
(�x/2)4

24

(

d4
φ

dx4

)

e

+ O
[

(�x)5
]

, (3.34)

φP = φe − (�x/2)

(

dφ

dx

)

e

+
(�x/2)2

2

(

d2
φ

dx2

)

e

−
(�x/2)3

6

(

d3
φ

dx3

)

e

+
(�x/2)4

24

(

d4
φ

dx4

)

e

+ O
[

(�x)5
]

. (3.35)

Here, O[(�x)n] is the truncation error. Next, Eqs. (3.34) and (3.35) are inserted into the

right-hand side of the second equation in Eqs. (3.13) and (3.14), which results in

φP + φE

2
= φe +

(�x)2

8

(

d2
φ

dx2

)

e

+
(�x)4

384

(

d4
φ

dx4

)

+ O
[

(�x)6
]

, (3.36)

φE − φP

�x
=

(

dφ

dx

)

e

+
(�x)2

24

(

d3
φ

dx3

)

e

+ O
[

(�x)5
]

. (3.37)

Cambridge Books Online © Cambridge University Press, 2012



44 Numerical aspects of CFD

According to Eqs. (3.13) and (3.14), these expressions should be equal to the face

value of φ and the gradient of φ at the eastern face, respectively, assuming that central

differencing is used. Thus, since the second-order derivative d2
φ/dx2 is unknown,

φe = φ
CD
e + O

[

(�x)2
]

(3.38)

and

(

dφ

dx

)

e

=

(

dφ

dx

)CD

e

+ O
[

(�x)2
]

. (3.39)

Before we comment on the results, we repeat the same procedure for the first-order

upwind scheme. Since the face gradient is predicted in the same way as with central

differencing, the face-value estimation, i.e. Eq. (3.25), must be examined. According to

this relation, the face value of the eastern face is simply equal to the cell value in the

present cell. A Taylor expansion of φ about xP gives

φe = φP + (�x/2)

(

dφ

dx

)

P

+
(�x/2)2

2

(

d2
φ

dx2

)

P

+ O
[

(�x)3
]

. (3.40)

Here, the first-order derivative is unknown and the outcome is

φe = φ
1u
e + O(�x). (3.41)

If Eqs. (3.38) and (3.41) are compared, it can be seen that, for a reduction of �x, the

face-value estimation seems to approach the ‘true’ value quicker in the case with the

central-differencing scheme. In other words, this means that, if the grid is made denser,

i.e. more cells are introduced, the error in the central-differencing scheme will be reduced

more quickly than in the case with the first-order upwind scheme. The lowest order of

the grid spacing in the central-differencing scheme is 2, hence the central-differencing

scheme is referred to as second-order accurate. For the first-order upwind scheme, the

corresponding number is 1; hence this scheme is referred to as first-order accurate.

Higher-order schemes are more accurate but this can be at the expense of numerical

stability. When stability is problematic it is recommended that one start with a simple

first-order upwind scheme and change to a higher-order scheme after some iterations.

Going to higher order is always necessary in order to minimize numerical diffusion when

the grids are not aligned with the flow.

3.8.6 The hybrid scheme

An attempt to combine the positive properties of both the central-differencing scheme

and the first-order upwind scheme has been proposed. This scheme is called the hybrid

differencing scheme. This scheme implements the upwind scheme at faces where the

criterion in Eq. (3.24) is fulfilled, and uses central differencing elsewhere. Thus, this

scheme takes advantage of both the high accuracy of the central-differencing scheme

and the more physical properties in terms of boundedness and transportiveness of the

upwind scheme.
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Figure 3.10 Face-value approximations of the face between cells 8 and 9 with central differencing

and first-order upwind, respectively. The analytical (‘true’) solution which, in this specific case,

corresponds to the power-law prediction has been added for comparison. U = 5 cm s−1.

3.8.7 The power-law scheme

A more accurate scheme is the power-law scheme. Briefly, the face value of φ is estimated

by solving a convection–diffusion equation (cf. Eq. (3.1)),

ρ

d(Uφ)

dx
=

d

dx

(

Ŵ

dφ

dx

)

. (3.42)

Equation (3.42) has the following solution, assuming constant fluid and flow properties:

φ(x) − φ0

φ�x − φ0

=
exp(ρU x/Ŵ) − 1

exp(ρU �x/Ŵ) − 1
, (3.43)

where the indices 0 and �x represent two neighbouring cells. If the grid spacing is

equidistant, the face is situated at x = 0.5. The face value can now be estimated using

Eq. (3.43). If the parameters from the previous examples are used, the plot of φ(x) against

x will clearly show that for U = 5 cm s−1 the face value is almost exactly the same as

for the upstream cell; see Figure 3.10. The central-differencing scheme makes a bad

estimation of the face value. This was the reason why the upwind scheme was chosen in

Example 3.

3.8.8 The QUICK scheme

Numerous successful attempts have been made to create numerical schemes with higher

accuracy than second order. One of them will very briefly be discussed, namely QUICK

(Quadratic Upstream Interpolation for Convective Kinetics). QUICK combines the
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strengths of both the upwind schemes and of the central differencing; it uses three-

point upstream quadratic interpolation to estimate the face values. For the western and

eastern faces, respectively,

φw =
6

8
φW +

3

8
φP −

1

8
φWW, (3.44)

φe =
6

8
φP +

3

8
φE −

1

8
φW. (3.45)

It has been assumed here that the velocity is positive. A Taylor expansion of φ around

the eastern face gives

φE = φe + (�x/2)

(

dφ

dx

)

e

+
(�x/2)2

2

(

d2
φ

dx2

)

e

+ O
[

(�x)3
]

, (3.34′)

φP = φe − (�x/2)

(

dφ

dx

)

e

+
(�x/2)2

2

(

d2
φ

dx2

)

e

+ O
[

(�x)3
]

, (3.35′)

φW = φe − (1.5�x)

(

dφ

dx

)

e

+
(1.5�x)2

2

(

d2
φ

dx2

)

e

+ O
[

(�x)3
]

. (3.46)

On inserting Eqs. (3.34′), (3.35′) and (3.46) into Eq. (3.45), we get

φe = φ
QUICK
e + O

[

(�x)3
]

. (3.47)

Thus, the QUICK scheme is third-order accurate. Further, it can be shown that it is

unbounded but fulfils the transportiveness criterion. The use of QUICK is restricted to

hexahedral meshes.

3.8.9 More advanced discretization schemes

The discretization schemes mentioned previously are only a few among the many avail-

able. In most commercial CFD codes there are many variations of schemes, and it is

not our intention to provide a complete list in Table 3.1. However, two more will be

mentioned here without going into too much detail.

� MUSCL (Monotone Upstream-centred Schemes for Conservation Laws). The

MUSCL scheme shows a similar degree of accuracy to QUICK, but is not limited to

hexahedral meshes.
� HRIC (High-Resolution Interface Capturing). The HRIC scheme is primarily used in

multiphase flows when tracking the interface between the phases. HRIC has proven

to be more accurate than QUICK for VOF simulations (see Chapter 6).

For all of the discretization schemes that have been presented here, the error tends

to zero as the grid spacing is reduced infinitely. Schemes that uphold this property are

said to be consistent. It should also be mentioned that the definitions of some of the

discretization schemes presented here seem to differ in the literature.
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Table 3.1 Discretization schemes

Discretization

scheme Advantages and disadvantages

Central Works well when diffusion dominates. Bounded variants are recommended

for LES simulations.

First-order

upwind

Good when convection dominates and the flow is aligned with the grid.

Bounded and robust, and a good scheme to start off the calculation. May

introduce numerical diffusion and should be replaced with higher-order

schemes for the final calculations.

Second-order

upwind

Good for all Péclet numbers, but it is unbounded and not as robust as

first-order upwind.

Power law Good for intermediate values of the Péclet number (Pe < 10).

QUICK Good for all Péclet numbers. Better accuracy than the second-order scheme

for rotating or swirling flows. In general the second-order scheme is

sufficient. Applicable only to quadrilateral or hexahedral meshes.

MUSCL Better accuracy than the second-order scheme for rotating or swirling flows.

The scheme is used on all types of meshes.

HRIC Used primarily for interface tracking in VOF simulations. Better accuracy

than QUICK.

3.9 Solving the velocity field

In the previous examples and discussions it has been assumed that the velocity field has

somehow been determined; see Eq. (3.19) as an illustrative example of this. Example 1

also concluded that the predetermined velocity gave rise to a set of linear equations.

However, most commonly the user does not know the velocity from the start, and hence

has to solve for it as well. Solving the velocity field requires some extra attention; we

will examine this now.

The transport equations for momentum (also called Navier–Stokes equations) and the

continuity equation are

∂ρUi

∂t
+

∂ρUiU j

∂x j

=
∂

∂x j

(

μ

∂Ui

∂x j

)

−
∂ P

∂xi

(3.48)

and

∂ρ

∂t
+

∂ρU j

∂x j

= 0. (3.49)

These expressions were derived in Chapter 2. As can be seen, the momentum equation

is very similar to the transport equations that have been solved in previous examples.

There is a small difference, though, that makes the solution procedure much more

complicated than in previous cases, and that is the fact that there now exists a source

term in the equation. The source term has the formulation of a pressure gradient, which

shouldn’t be surprising. A pressure gradient in e.g. a tube gives rise to the momentum

in the streamwise direction. Summing the number of variables in Eqs. (3.48) and (3.49),

there are four variables, namely three velocities and one pressure (remember that we
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have assumed incompressible flow!). The total number of equations is four (3 + 1), so

it should be possible to solve the system straight away. Normally, Eq. (3.48) is used

for the three velocity components. Unfortunately, Eq. (3.49) cannot be used to solve for

pressure. Hence, the equation must be modified first. Taking the divergence of Eq. (3.48)

gives

∂
2

∂xi ∂t
(ρUi ) +

∂
2

∂xi ∂x j

(

ρUiU j

)

=
∂

2

∂xi ∂x j

(

μ

∂Ui

∂x j

)

−
∂

2 P

∂xi ∂xi

. (3.50)

The first term on the left-hand side and the first term on the right-hand side can be

rewritten (assuming constant density and viscosity) as

∂

∂xi

(

∂ρUi

∂t

)

=
∂

∂t

(

∂ρUi

∂xi

)

,

∂

∂xi

[

∂

∂x j

(

μ

∂Ui

∂x j

)]

=
∂

∂x j

[

∂

∂x j

(

μ

∂Ui

∂xi

)]

.

Owing to continuity (see Eq. (3.49)), the right-hand sides of both these expressions are

equal to zero. Equation (3.50) can thus be written in the following way:

∂
2 P

∂xi ∂xi

= −
∂

2

∂xi ∂x j

(

ρUiU j

)

. (3.51)

Equation (3.51), which is a scalar equation, can be used as a direct equation for pressure.

However, numerical problems are commonly encountered, for reasons that will not be

discussed in this book. Therefore, in almost all commercial CFD software an iterative

procedure for solving Eq. (3.51) is adopted, thereby avoiding the numerical problems.

Some of the most widely used algorithms are SIMPLE, SIMPLEC, SIMPLER and PISO.

The algorithms of the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

family use a starting guess for pressure and velocity to solve for the corresponding

velocities via the momentum equations. Since the starting guess of the pressure will

not be correct, the velocities obtained will not satisfy continuity. Hence, correction

factors for pressure and velocity are introduced, and transport equations for these factors

are proposed and solved to give corrected velocities and pressure. The other transport

equations, e.g. for various scalars, are then solved. Then, a check for convergence is made

and the procedure is repeated until convergence is reached. SIMPLER and SIMPLEC

are improved variants of SIMPLE. The PISO algorithm is mostly used for unsteady

flow. It can be seen as an extension of the SIMPLE algorithm, but it uses two levels of

correction instead of one as is the case with SIMPLE.

It is generally not possible to say that a specific scheme is always better than another

with respect to efficiency or robustness. These properties are very dependent on the

flow conditions at hand, but a proper choice of scheme can sometimes speed up the

simulations significantly. The performance and behaviour of the schemes have been

thoroughly examined, and a few conclusions are mentioned here.

For a laminar backward-facing step it has been shown that PISO performs twice as

fast as SIMPLE, while it has been shown to be four times as slow for a case concerning

flow through a heated fin. For steady flow problems, SIMPLER has been shown to need
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30%–50% less computer time than SIMPLE to solve problems in general. The degree

of coupling between the momentum equations and scalar equations has been shown to

have a significant impact sometimes. In problems where there is only a weak coupling or

no coupling at all between the momentum and scalar equations, PISO has been shown

to have the most robust convergence and is quicker than SIMPLEC and SIMPLER. If

the opposite is valid, i.e. there is a strong coupling between the momentum and scalar

equations, SIMPLER and SIMPLEC have been shown to perform better than PISO.

Further, it has not been possible to claim that either SIMPLER or SIMPLEC is superior

to the other in general. SIMPLEC usually performs better in situations in which the

rate of convergence is limited by the pressure–velocity coupling, such as non-complex

laminar-flow cases.

In order to solve the transport equations for momentum, Eq. (2.21), it is required

that the pressures at the cell faces are known. As in the cases with other transported

quantities, this is achieved by interpolation of the values in the neighbouring cells. Most

commercial CFD software offers a variety of interpolation schemes. Each scheme uses

its own interpolation function.

The standard scheme uses the coefficients ap, ae, etc. to interpolate the pressure on

the cell faces. As long as the pressure variation between the cells is smooth, the scheme

usually works fine. For flows with large body forces the standard scheme has been shown

to be troublesome. In such cases it is recommended that the body force-weighted scheme

be used. This scheme assumes that the normal gradient of the difference between the

body force and pressure is constant. For swirling flows and flows with natural convection,

the PRESTO! scheme should be used. The PRESTO! scheme uses the discrete continuity

equation to calculate the pressure field on a mesh that is geometrically shifted so that the

new cell centres are where the faces of the ordinary mesh are placed. This means that the

pressures on the faces are now known. The PRESTO! scheme is also recommended for

VOF simulations. The second-order pressure scheme is analogous to the second-order

discretization scheme presented earlier and is recommended for compressible flows. The

second-order scheme can be numerically unstable if it is used at the start of a calculation

or on a bad mesh.

3.9.1 Under-relaxation

The momentum equations, Eq. (3.48), contain nonlinear terms, e.g. ρV2 in the momen-

tum equation for V. To avoid divergence due to nonlinearities, so-called under-relaxation

is used in the solving procedure. The under-relaxation factor α is defined as

φnew = αφsolver + (1 − α) φold, (3.52)

where φnew is the new value at the cell, φsolver is the value for the solution to the last

iteration, and φold is the previous value at the cell that is used to compute φsolver. Thus,

a large value of α means that the new value will be very influenced by the solved value,

and vice versa. α lies usually in the range between zero and one. In many cases the

under-relaxation factor can be increased during iterations. Each transport equation or

pressure equation has its ‘own’ corresponding under-relaxation factor. Too low a value
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Figure 3.11 High- and low-frequency errors. The correct values correspond to a constant value

throughout the domain.

of the under-relaxation factor gives unmotivated long computational times. Too large a

value can give a diverged solution. Thus, choosing optimal values is of great practical

importance.

Questions

(1) Since the central-differencing scheme uses a weighted average (see Eq. (3.18)) of the

neighbouring cells to calculate the present cell, by definition it cannot be unbounded.

This is obviously wrong! What restrictions must be put on aE/aP and aW/aP in order

to keep φP bounded, i.e. between φE and φW.

(2) Describe what factors determining what discretization scheme should be used in a

specific situation. Can these factors always be determined before the simulation has

been performed?

(3) Is a higher-order differencing scheme always better than a scheme with lower order?

Consider robustness, accuracy, CPU time and memory demand.

3.10 Multigrid

An efficient way to enhance convergence speed is to use a so-called multigrid solver.

The idea is to use at least two levels of grid spacing. Take the previous examples as

illustration! Since the Gauss–Seidel solver calculates the cell value only by using the

values of the neighbouring cells, it is very efficient in eliminating local errors, see

also Figure 3.11. However, there could be situations in which there is an extra need

for information to be transported fast through the domain. Let’s say, for instance, that

the pressure is increased in an area within the domain. This pressure increase will

affect the entire domain instantly. In the CFD simulation the pressure increase will

be transported as the Gauss–Seidel algorithm sweeps through the domain. However, if

the computational domain contains many cells, it will take a significant time before
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φ(x, t)

T1

T2

t

〈φ(x, t)〉

Figure 3.12 The mean and fluctuation of an instantaneous flow variable as a function of time.

If T1 ≪ T2, the mean flow and fluctuating quantities are uncorrelated.

information is transported from cells at one end to cells at the other. This will mean

that much iteration has to be performed before a converged solution is obtained. Here is

where the different grid levels come in. By using a level with larger cells, information can

be transported faster than would be possible without this level. Information is transferred

from coarser to denser grid levels via so-called prolongation and in the other direction

by the so-called restriction process. Altogether, this means that the rate of convergence

is enhanced, often by as much as several orders of magnitude.

3.11 Unsteady flows

Before starting to discuss unsteady flows, we need clarity regarding the definition of

the term ‘unsteady’. Defining an unsteady flow as a flow that shows variation in time

would imply that almost all flows are unsteady. Remember that most flows of indus-

trial importance are turbulent and that turbulence is always time-dependent! Hence,

the definition of unsteadiness must be tuned. In most CFD problems, the flow stud-

ied is turbulent, forcing one to solve for mean quantities instead of instantaneous

ones and to use an appropriate turbulence model to model the interaction between

sub-scale motions and the mean flow (see Chapter 4). In these cases unsteadiness

must mean that the mean quantities rather than the instantaneous quantities change

with time. Further, it is required that there is a large separation in timescales to

be able to distinguish between turbulent fluctuations and mean flow fluctuations, see

also Figure 3.12. Unfortunately, in most engineering applications concerning unsteady

flows this criterion is not completely fulfilled, giving a non-zero correlation between

the mean flow and the fluctuating quantity. In such cases, turbulence is moved

from the turbulence model to the unsteady term in the time-averaged Navier–Stokes

equation.

The procedure for solving unsteady problems follows the same path as for steady

problems. First, the general transport equation is integrated, with respect to both space
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and time,

∫

c.v.

⎛

⎝

t+�t
∫

t

ρ

∂φ

∂t
dt

⎞

⎠ dV +

t+�t
∫

t

⎡

⎣

∫

c.v.

ρ

∂

(

U jφ

)

∂x j

dV

⎤

⎦ dt

=

t+�t
∫

t

⎡

⎣

∫

c.v.

∂

∂x j

(

Ŵ

∂φ

∂x j

)

dV

⎤

⎦ dt +

t+�t
∫

t

⎛

⎝

∫

c.v.

Sφ dV

⎞

⎠ dt. (3.53)

The order of integration is reversed in the accumulation term. To clarify the steps needed,

an example is given.

3.11.1 Example 4 – time-dependent simulation

Using the same experimental set-up as in Example 1, but this time without any con-

vection, the unsteady case is solved. Initially there is no species A in the domain. The

boundary conditions are the same as in the original example.

The integrated transport equation for φ in the present example is

e
∫

w

⎛

⎝

t+�t
∫

t

ρ

dφ

dt
dt

⎞

⎠ dx =

t+�t
∫

t

⎡

⎣

e
∫

w

d

dx

(

Ŵ

dφ

dx

)

dx

⎤

⎦dt . (3.54)

Using central differencing allows us to rewrite Eq. (3.54) as

e
∫

w

⎛

⎝

t+�t
∫

t

ρ

dφ

dt
dt

⎞

⎠ dx =

t+�t
∫

t

(

Ŵe

φE − φP

�x
− Ŵw

φP − φW

�x

)

dt . (3.55)

To proceed with the time integration an appropriate temporal discretization scheme is

needed. As in the case with spatial discretization there is a choice of scheme; either

‘earlier’ or ‘later’ times (or a mixture of them) can be used to estimate the temporal

derivative at the ‘present’ time. For now,

ρ[φP (t + �t) − φP (t)]�x =

t+�t
∫

t

(

Ŵe

φE − φP

�x
− Ŵw

φP − φW

�x

)

dt . (3.56)

To continue, φ on the right-hand side of Eq. (3.56) is evaluated at each time step. φ

changes in time, so there are at least three different ways to get values for φ: (1) let φ be

equal to φ(t), (2) let φ be equal to φ(t + �t), and (3) let φ be a mixture of the two.

We now define the weight factor θ :

t+�t
∫

t

φ dt = [θφ(t + �t) + (1 − θ )φ(t)]�t. (3.57)

The case θ = 0 means that only the old value of φ is used when evaluating

Eq. (3.56). This leads to so-called explicit discretization of this equation. The other

extreme, θ = 1, corresponds to a discretization where only the new value of φ is used
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in the discretization, the so-called ( fully) implicit discretization. Of course, θ can take

values also between zero and one; e.g. the Crank–Nicolson scheme for θ = 0.5.

Using Eq. (3.57) to express φi in Eq. (3.56),

ρ

[

φP − φ
o
P

]

�x =

[

θ

(

Ŵe

φE − φP

�x
− Ŵw

φP − φW

�x

)

+ (1 − θ)

(

Ŵe

φ
o
E − φ

o
P

�x
− Ŵw

φ
o
P − φ

o
W

�x

)]

�t. (3.58)

Here, φo
i means the value for cell i at time t. φi means the value for cell i at time t + �t.

To examine the properties of Eq. (3.58), it is rewritten as
[

ρ

�x

�t
+ θ

(

Ŵe

�x
+

Ŵw

�x

)]

φP

=
Ŵe

�x

[

θφE + (1 − θ )φo
E

]

+
Ŵw

�x

[

θφW + (1 − θ )φo
W

]

+

[

ρ

�x

�t
− (1 − θ )

Ŵe

�x
− (1 − θ)

Ŵw

�x

]

φ
o
P. (3.59)

This leads to (cf. Eq. (3.19))

aPφP = aW

[

θφW + (1 − θ ) φ
o
W

]

+ aE

[

θφE + (1 − θ) φ
o
E

]

+
[

ao
P − (1 − θ ) aW − (1 − θ ) aE

]

φ
o
P, (3.60)

where

aP = θ (aW + aE) + ao
P,

ao
P = ρ

�x

�t
,

aW =
Ŵw

�x
,

aE =
Ŵe

�x
.

(3.61)

An unsteady problem must be solved in a different way from a steady problem. This is as

a consequence of having to solve the set of equations for many different times. Evidently,

Eq. (3.60) must be satisfied within each time step, thus it is necessary to sub-iterate within

each time step. When a convergent solution has been obtained, move forward one time

step and repeat the sub-iterations. This is continued until the appropriate time has been

reached. The starting guess for the next time step is the solution to the previous time

step. In that way, the number of sub-iterations required within each time step usually

decreases with time, provided that the time step is sufficiently small. The presence of a

starting solution instead of a starting guess is required for the initial time step.

The example is finally solved using the different discretization methods.
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Figure 3.13 A plot of molar concentration as a function of the distance at different times. The time

step is 0.4 s and the discretization method is explicit. The initial condition was c = 0 everywhere.

Explicit method

With θ = 0, Eq. (3.60) gives

φP =
aWφ

o
W + aEφ

o
E +
(

ao
P − aW − aE

)

φ
o
P

aP

(3.62)

and the coefficients

aP = ao
P,

ao
P = ρ

�x

�t
,

aW =
Ŵw

�x
,

aE =
Ŵe

�x
.

(3.63)

The next question is what time step to choose. A time step is chosen in order to be able

to evaluate φP. As earlier, the scheme needs to be bounded, and therefore the time step

should be chosen so that ao
P − aW − aE > 0. This implies

�t <

ρ(�x)2

Ŵe + Ŵw

. (3.64)

In the example, this means that the time step cannot be larger than 0.5 seconds. Solving

Eq. (3.62) with the coefficients from Eq. (3.63) using �t from Eq. (3.64) gives a plot of

the molar concentration at different times, see Figure 3.13.

The results look reasonable. Initially there is no species A in the system, and the more

time elapses, the more of the species has diffused from the walls. The explicit method

will be discussed more later on.
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Figure 3.14 A plot of molar concentration as a function of the distance at different times. The time

step is 0.5 s and the discretization method is fully implicit. The initial condition was c = 0

everywhere.

An advantage with the explicit method is that there is no need for sub-iterations.

Looking at Eq. (3.62) explains why; all values are taken from ‘old’ time steps. Thus, its

name explicit. The method is also called global time stepping.

Fully implicit method

As defined before, in the fully implicit method the new values of φ are used as an

estimate of φ during the whole step of integration, i.e. θ = 1 in this method. Equation

(3.60) is then reduced to

aPφP = aWφW + aEφE + ao
Pφ

o
P (3.65)

with the following coefficients:

aP = aW + aE + ao
P,

ao
P = ρ

�x

�t
,

aW =
Ŵw

�x
,

aE =
Ŵe

�x
.

(3.66)

An obvious advantage with the fully implicit method is that the coefficients in

Eq. (3.66) are always positive, giving unconditional boundedness. Thus, there is no

strict upper limit in the choice of the appropriate time step. However, there is usually an

optimal number of iterations to be used in each time step, which will restrict its value.

Solving Eq. (3.65) with the coefficients in Eq. (3.66) with the time step �t = 0.5 s

gives a similar plot to that in the explicit case, see Figure 3.14. As in the explicit case,

Cambridge Books Online © Cambridge University Press, 2012



56 Numerical aspects of CFD

Figure 3.15 A plot of molar concentration as a function of the distance at different times. The time

step is 0.5 s and the discretization method is Crank–Nicolson. The initial condition was

c = 0 everywhere.

the results are reasonable. Diffusion takes care of the transport of species A into the

domain.

The Crank–Nicolson method

In the Crank–Nicolson method, both the old value and the new value of φ are used to

estimate the integral value of φ over a time step θ = 0.5. Equation (3.60) then becomes

aPφP = aW

[

1

2
φW +

1

2
φ

o
W

]

+ aE

[

1

2
φE +

1

2
φ

o
E

]

+

[

ao
P −

1

2
aW −

1

2
aE

]

φ
o
P (3.67)

with the coefficients

aP =
1

2
(aW + aE) + ao

P,

ao
P = ρ

�x

�t
,

aW =
Ŵw

�x
,

aE =
Ŵe

�x
.

(3.68)

Solving Eq. (3.67) together with its coefficients in Eq. (3.68) yields with �t = 0.5 s

the results shown in Figure 3.15.

Just as in the previous cases, the results look well shaped. Before moving on, we note

that

�t <

ρ(�x)2

Ŵ

(3.69)

must be fulfilled in order to avoid unbounded solutions.
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3.11.2 Conclusions on the different time discretization methods

As when the different discretization methods for spatial discretization were presented and

evaluated in earlier sections of this chapter, accuracy, boundedness and transportiveness

will be discussed here. The explicit method as well as the fully implicit method are

first-order accurate, which we state here, without proof,

φ = φ
ex + O(�t) ,

φ = φ
im + O(�t) .

This follows from the fact that the value of φ in each time step is taken from either

the old value or the new one. The Crank–Nicolson method is second-order accurate, or

in mathematical terms,

φ = φ
C−N + O

[

(�t)2
]

.

The Crank–Nicolson method has major resemblances to the central-differencing

scheme for spatial discretization, cf. Eqs. (3.13) and (3.57) with θ = 0.5. A reduc-

tion of the time-step size thus gives a more significant improvement in the results if

the Crank–Nicolson method is used than for first-order methods. There also exist many

higher-order numerical schemes for time discretization. Figure 3.15 shows a simulation

using the Crank–Nicolson method.

As concluded earlier, the explicit method is only conditionally bounded. This imposes

a constraint on the choice of the time step, cf. Eq. (3.64). If this criterion is violated,

the solution often diverges. On the other hand, being without the need to sub-iterate, the

explicit method is faster than the other two.

The fully implicit method is unconditionally bounded. This is a great advantage with

the method, and, in most commercial CFD codes, the fully implicit method is the default

method for time discretization.

The Crank–Nicolson method is only conditionally bounded, cf. Eq. (3.69). This

constraint is, however, not as restrictive as in the explicit method; it differs by a

factor of 2.

The time step is determined by the Courant number (CFL). Since the time step is

determined by the fluxes in each cell and the general rule is that the time step should be

shorter than the time it takes to transport past the cell,

�t < CFL min

(

ρ(�x)2

Ŵ

,

�x

U

)

, (3.70)

where CFL = 1 for an explicit solver and CFL = 5 or higher for a fully implicit solver.

A fully implicit solver should be stable for all time steps, but, due to nonlinearities in the

equations, it is recommended that one start with a low Courant number (5) and increase

it during the iterations.

Among the most recent transient solvers, the use of the method of lines is very common.

This method reformulates the transient PDE into a transient ordinary differential equation
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(ODE) by discretizing the spatial coordinates only. Then an ordinary ODE solver is used

to solve the equations.

Questions

(1) The first term in Eq. (3.53) can be seen as a convective term for time. Why is there

no diffusion term for time? What would such a term look like?

(2) What does Figure 3.12 tell us? What consequences does it enforce on the dependent

variables?

3.12 Meshing

Finally, a few words will be said about meshing. So far, it has been assumed in all the

examples that a proper mesh has been provided. However, this is generally not the case.

Thus, meshing becomes an important part of the CFD engineer’s work. Bad meshes

often give numerical problems and bad results.

3.12.1 Mesh generation

There are several commercial software packets for mesh generation. To generate a mesh

is in general a very complex procedure, and only some of the basics will be mentioned

here.

Traditionally, grids have been divided into structured grids and unstructured grids.

The structured grids are built up from quadrilateral elements, i.e. four-edged elements,

but not necessarily rectangles, in 2D and hexahedra (elements with six faces) in 3D.

Indexing and finding neighbouring cells is very easy with these elements. CFD pro-

grams using structured grids are usually faster and require less memory than programs

using unstructured grids. Unstructured grids are built from different elements, quadri-

lateral and triangular elements in 2D and tetrahedra, hexahedra, pyramids, prisms and

even dodecahedra in 3D. Usually, a structured grid will require less memory and have

better numerical properties. However, it is not always possible to mesh complex geome-

tries using structured mesh and today most solvers can handle both structured and

unstructured grids. Figure 3.16 shows typical building elements for meshing in 2D

and 3D.

Most meshing programs allow the user to draw the geometry in the program itself, but

most commonly the geometry is imported from a general CAD program. The geometry

is built from single points, lines or 2D and 3D shapes, e.g. rectangles, circles, boxes or

cylinders. The points can be combined to make lines, and lines to 2D shapes etc., so any

geometrical shape can be formed. It is then possible to unite, subtract or intersect these

shapes and form new shapes.

Elements at the walls must be handled carefully. The angle between the wall and the

grid line should be close to 90◦. The easiest way to obtain this is to start the meshing by

forming a regular mesh that is built from the surface. When a fine resolution is needed
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Figure 3.16 Building elements for meshing in 2D and 3D.

Figure 3.17 A boundary-layer mesh.

on the boundary, a mesh that increases in size with distance from the wall can be formed

as shown in Figure 3.17.

There are many other properties of the mesh that should be taken into account in

order to produce an accurate solution. For example, it can be shown that, if adjacent

cells are very different in size (or volume), the numerical error will increase. It can also

be shown that a high skewness of the cells can lead to instabilities and lower accuracy.

The optimal situation is to have cells that have 90◦ corners and edges of equal length.

For example, optimal quadrilateral meshes will have vertex angles close to 90◦, while

triangular meshes should preferably have angles close to 60◦ and have all angles less

than 90◦. In tetrahedral meshes the angles should be kept between 40◦ and 140◦. One

way to decrease the number of cells and enhance the convergence rate is to stretch the

cells along a coordinate axis. This will increase their aspect ratio, but this is usually

acceptable as long as the aspect ratio is kept below 5. For example, in long thin channels,
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Figure 3.18 The effect of numerical diffusion. In the cases shown, the grid is aligned with the flow

(left), and has inclined alignment (right).

it could be a good idea to use long cells in the streamwise direction since there are hardly

any gradients in that direction.

3.12.2 Adaptation

It has already been concluded that the distance between adjacent cells, namely the grid

spacing, �x, plays an important role in determining the accuracy of the solution. The

denser the mesh, the more accurate the solution. If consistency is upheld, the solution to

the discretized problem tends to the exact solution of the set of PDEs as the grid spacing

is reduced infinitely. It has also been shown that the required grid spacing is related to

the order of the discretization scheme.

In many cases, a good idea could be to use different grid spacings in different regions

of the grid. In this way, it is possible to resolve some areas to a very large extent, while

other areas are not resolved any more than is necessary in order to avoid divergence.

Boundary-layer flows, for example, generally require a very dense mesh close to the

wall, while the flow far from the wall does not have to be resolved in detail. This is a

consequence of the fact that areas with large gradients normally contain larger errors

and thus have to be better resolved. In order to know where the largest gradients are, a

simulation has to be performed or the user has to trust his or her intuition and previous

experience. Then grid refinement/coarsening is done in the appropriate areas. A new

simulation is then performed. If necessary, further refinement/coarsening can be done.

Most CFD software has a built-in grid adaptation/coarsening algorithm.

3.12.3 Numerical diffusion

Care must be taken when choosing the directions of the cell axes. In a structured grid it

is common to dispose the cells in a manner parallel to the flow. To illustrate what can

happen if the cells are disposed in an inclined manner, consider the following (see also

Figure 3.18).

A liquid stream with a non-diffusing species is flowing with a constant velocity. If the

cells are parallel to the flow, there will be no transfer of the species in the wall-normal

direction. This would of course be the case in reality as well. However, if the cells are

not parallel to the flow, there will be a transport of species due to the fact that the value

of the species entity is the same throughout the cell. Hence, there will be transport

Cambridge Books Online © Cambridge University Press, 2012



3.13 Summary 61

due to the discretization. This is called numerical, or false, diffusion. By refining the

mesh it is possible to reduce the effect of numerical diffusion. The use of higher-order

discretization schemes will also reduce this effect.

3.13 Summary

The basics of the numerics behind a CFD simulation have now been presented. It is

important to keep in mind that this has only been a short introduction. At this stage the

reader should be able to understand the fundamentals of commercial CFD software. The

reader should also be able to understand some of the problems that can occur and how

they can be avoided.

Questions

(1) Explain what is meant by adaptation.

(2) Describe the principle of multigrid methods.

(3) What is meant by the Courant number?

(4) Describe the difference between implicit and explicit methods.

(5) What is numerical diffusion and how can it be minimized?
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4 Turbulent-flow modelling

This chapter provides an insight into the physical nature of turbulence and the math-

ematical framework that is used in numerical simulations of turbulent flows. The aim

is to explain why turbulence must be modelled and how turbulence can be modelled,

and also to explain what is modelled with different turbulence models. In addition, the

limitations of the turbulence models are discussed. The intention is to give you such an

understanding of turbulence modelling that you can actually suggest appropriate turbu-

lence models for different kinds of turbulent flows depending upon their complexity and

the required level of description.

4.1 The physics of fluid turbulence

Turbulence is encountered in most flows in nature and in industrial applications. Nat-

ural turbulent flows can be found in oceans, in rivers and in the atmosphere, whereas

industrial turbulent flows can be found in heat exchangers, chemical reactors etc. Most

flows encountered in industrial applications are turbulent, since turbulence significantly

enhances heat- and mass-transfer rates. In industry a variety of turbulent multiphase

flows can be encountered. Turbulence plays an important role in these types of flows

since it affects processes such as break-up and coalescence of bubbles and drops, thereby

controlling the interfacial area between the phases. Thus, turbulence modelling becomes

one of the key elements in CFD.

In order to determine which turbulence-modelling approach is best suited to a particu-

lar application, we need to understand the limitations of various turbulence models. This

insight requires a certain level of understanding of fluid turbulence. Probably everyone

has an intuitive understanding of what turbulence is, since turbulence is encountered

daily. From everyday experiences e.g. mixing coffee and milk, we know that turbulence

increases the disorder in a fluid, resulting in an efficient mixing of fluid elements. As

has already been mentioned, turbulence significantly affects mass-, momentum- and

heat-transfer rates. High mass- and heat-transfer rates are positive and crucial aspects

of many processes. In contrast, increased momentum transfer is usually undesirable,

since it results in higher skin friction and hence drag. In other words, turbulence is

an unavoidable feature of many chemical processes because high throughputs imply

turbulent conditions. In this section we will take a closer look at what characterizes

turbulence.
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According to Hinze [5], turbulence can be characterized as follows:

Turbulent fluid motion is an irregular condition of flow in which the various quantities show

random variation with time and space coordinates, so that statistically distinct average values

can be discerned.

Indeed, turbulence is a state of fluid flow that can be characterized by random and chaotic

motions. However, we need a deeper understanding of fluid turbulence before we can

discuss turbulence modelling and understand the limitations of particular turbulence

models.

4.1.1 Characteristic features of turbulent flows

Since it is difficult to give an exact definition of turbulence, we will look into several

characteristic features of fluid turbulence. Observations of whirling smoke above a

cigarette or other turbulent motions clearly show that large vortices in such motions are

unstable and break up into smaller vortices. From such an observation it can also be seen

that the flow becomes less chaotic far away from the cigarette. These two observations

tell us that turbulence is a decaying process whereby large turbulent structures break

up into subsequently smaller and smaller structures until the flow becomes laminar.

Actually, turbulence dies out rather quickly if energy is not continuously supplied. There

are more characteristic features of turbulence that can be identified by studying turbulent

flows. Tennekes and Lumley [6] did not give a precise definition of turbulence; instead

they listed the most important features of turbulence. These characteristic features are

as follows.

(1) Irregularity. Turbulent flows are irregular, random and chaotic, and consist of a wide

range of length scales, velocity scales and timescales. The large-scale motions in

turbulent flows are usually referred to as large eddies or large vortices. A turbulent

eddy is a turbulent motion that over a certain region is at least moderately coherent.

The region occupied by a large turbulent eddy can also contain smaller turbulent

eddies. This means that different scales coexist and smaller scales exist inside large

scales. In turbulent flows the largest scales are bounded by the geometry of the

flow, whereas the smallest scales are bounded by viscosity. The smallest eddies

are generally several order of magnitudes smaller than large eddies. While eddies

move they stretch, rotate and break up into two or more eddies. The irregularity

of turbulent flows and the wide range of length scales and timescales make a

deterministic approach to turbulence simulation very difficult. Statistical models

are therefore frequently used in practical engineering simulations. An instantaneous

representation of turbulent eddies in a pipe flow is shown in Figure 4.1.

Passages of large and small eddies through a certain point in a turbulent-flow field

induce irregular velocity fluctuations. A point measurement of the instantaneous

velocity in a turbulent flow yields a fluctuating velocity field similar to the one

shown in Figure 4.2. Note that passages of large eddies through this point induce
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Figure 4.1 Large- and small-scale turbulent structures in a turbulent pipe flow.
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Figure 4.2 Instantaneous velocity at a certain point in a turbulent flow.

fluctuations of large amplitude and low frequency, whereas small eddies induce

fluctuations of small amplitude and high frequency.

(2) Diffusivity. Probably the most important characteristic of turbulence is that it is

diffusive. The turbulent diffusive transport is due to the chaotic motions in the flow

and allows faster mixing rates of species, momentum and energy than would be

allowed by the molecular diffusion alone. These rates are generally several orders

of magnitude larger than the rate of molecular diffusion. Since turbulence is a 3D

phenomenon, the turbulent transport occurs in all three dimensions. A simplified

illustration of this turbulent transport is shown in Figure 4.3. In this figure two fluid

elements are transported perpendicular to the streamlines. In contrast to laminar

flow, this transport occurs even though the mean velocity component is zero in the

y direction.

(3) Instability at large Reynolds numbers. Turbulence arises due to instabilities occurring

at high Reynolds numbers. From a physical point of view this happens when the

timescale for viscous damping of a velocity fluctuation is much larger than the

timescale for convective transport. An extended discussion of this process is given in

Section 4.1.3. From a mathematical point of view this can also be seen in the Navier–

Stokes equation, where the nonlinear convective term becomes more important
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Figure 4.3 Transport due to turbulent convection.

than the viscous term with increasing Reynolds number. In dimensionless form the

Navier–Stokes equation reads

∂
˜Ui

∂ t̃
+˜U j

∂
˜Ui

∂ x̃ j

= −
∂
˜P

∂ x̃i

+
1

Re

∂
2
˜Ui

∂ x̃ j ∂ x̃ j

. (4.1)

Thus the tendency towards instability, which is damped by viscosity, increases with

the Reynolds number. Turbulent flows appear random in time and space, and are

not experimentally reproducible in detail. Note that the nature of turbulence is ran-

dom even though the Navier–Stokes equations are deterministic. In any turbulent

flow there are unavoidable perturbations in initial conditions, boundary conditions

and material properties. Turbulent fields display an acute sensitivity to such per-

turbations. This means that turbulence is stochastic even though the Navier–Stokes

equations are deterministic.

(4) Three-dimensional structures. Turbulence is intrinsically 3D. The reason for this is

that mechanisms such as vortex stretching and vortex tilting cannot occur in two

dimensions (see the discussion in Section 4.1.6). Nevertheless, turbulent flows can be

2D in a statistical sense, hence 2D simulations of turbulent flows can be performed.

Actually most turbulence modelling applied to practical engineering applications is

based on models in which the 3D fluctuations are filtered out, thus not resolving the

turbulent fluctuations, but do resolve the coupling between the fluctuations and the

mean flow field.

(5) Dissipation of turbulent kinetic energy. In all turbulent flows there is a flux of energy

from the largest turbulent scales to the small scales. At the smallest scales the

turbulent kinetic energy is dissipated into heat due to viscous stresses. This flux of

energy is commonly referred to as the energy cascade. The idea of the energy cascade

is that kinetic energy enters the turbulence at the largest scales at which energy is

extracted from the mean flow. By inviscid processes this energy is then transferred

to smaller and smaller scales. The reason for this energy flux is that large eddies are
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Figure 4.4 Energy flux from large to small scales.

unstable and break up into smaller eddies, thereby transferring the energy to smaller

scales. These smaller eddies undergo similar break-up processes and transfer the

energy to yet smaller eddies. On the smallest scale we find the dissipative eddies,

whose energy is dissipated into heat by viscous action due to molecular viscosity.

This energy flux is illustrated in Figure 4.4. A consequence of the dissipation is

that turbulence decays rapidly if no energy is supplied to the system. In chemical

processes energy is supplied to systems in numerous ways. In a turbulent pipe flow,

the energy is supplied by the pump, whereas in a stirred-tank reactor the energy is

supplied by the impeller. The amount of energy supplied to these systems can be

determined from the pressure drop and torque, respectively. It should be pointed out

that the total energy input equals the sum of energy losses due to energy dissipation

in the fluid and at the walls.

(6) Continuum. Turbulence is a continuum phenomenon in which even the smallest

scales of turbulence are much larger than the molecular length scale. The motion of

fluids is therefore described by the conservation equations for mass and momentum

conservation supplemented by initial and boundary conditions.

(7) Turbulent flows are flows. Turbulence is a feature of a flow, not a fluid. This means

that all fluids can be turbulent at high enough Reynolds number.

4.1.2 Statistical methods

More than a century ago, Reynolds introduced statistical averaging methods for turbulent

flows. Statistical methods still remain crucial in the theory of turbulence and in turbulence

modelling. These methods are used to study mean values of flow properties in space and

time. By using statistical methods, the need for information about the flow is reduced and

the flow description is considerably simplified. In this book we will focus on single-point

statistics. Even though one-point quantities do not encompass the full statistics of the

flow, they still include many of the more important measures of turbulent flows such as

the mean flow velocity, 〈Ui〉, and the turbulent kinetic energy per unit mass, 〈ui ui 〉
/

2.

Spectral analysis is an example of another method that better describes the flow. With

this method, it is even possible to capture the contributions of different scales to the
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Figure 4.5 Velocity decomposition of instantaneous velocity.

overall energetics of turbulence. For more information about spectral analysis and other

advanced methods the reader is referred to textbooks on turbulence [7–12].

One-point measurement of the instantaneous velocity reveals that passage of small

eddies induces fluctuations of small amplitude and high frequency, whereas passage

of large eddies induces fluctuations of large amplitude and low frequency. Frequencies

ranging from 1 Hz to 10 000 Hz are commonly observed in air and water flows. An

example of such a measurement is shown in Figure 4.5. In this figure it can be seen that

fluctuations with different frequencies exist. In the one-point statistics, the instantaneous

velocity at any particular position and time, Ui(x, t), is divided into an average and a

fluctuating part. The average represents the mean velocity, whereas the fluctuating parts

is usually interpreted as representing the turbulence. Decomposition of the instantaneous

velocity into its mean and fluctuating parts is then represented as

Ui = 〈Ui 〉 + ui , (4.2)

where the average velocity is defined as

〈Ui 〉 =
1

2T

T
∫

−T

Ui dt. (4.3)

The timescale used in this filtering operation is chosen so that the instantaneous variables

are averaged over a time period that is large compared with the turbulent timescales but

small compared with the timescale of the mean components. Thus, turbulent flows can

be considered to consist of randomly varying components superimposed on a mean
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motion. This decomposition is known as Reynolds decomposition since Reynolds first

introduced the concept in the analysis of turbulent flows. The intensities of velocity

fluctuation in different directions can be measured in terms of the turbulent kinetic

energy per unit mass

k =
1

2
〈ui ui 〉 =

1

2

3
∑

i=1

〈

u2
i

〉

=
1

2

(〈

u2
1

〉

+
〈

u2
2

〉

+
〈

u2
3

〉)

. (4.4)

Let us now define what we mean by turbulent kinetic energy. The kinetic energy of the

fluid (per unit mass) at a specific point in time is given by

E =
1

2
UiUi . (4.5)

The mean of the kinetic energy can be decomposed into two parts,

〈E〉 =
1

2
〈(〈Ui 〉 + ui )(〈Ui 〉 + ui )〉 =

1

2
(〈Ui 〉〈Ui 〉 + 〈ui ui 〉)

=
1

2
〈Ui 〉〈Ui 〉 + k = E + k, (4.6)

where E is the kinetic energy of the mean flow and k is the turbulent kinetic energy per

unit mass, 1
2
〈ui ui 〉.

To solve the Navier–Stokes equations, the pressure is decomposed in a similar way:

P = 〈P〉 + p. (4.7)

For incompressible fluids there is no need for decomposition of any other quantities

than velocity and pressure. However, for compressible fluids the density must also be

decomposed.

Definition of various statistical symmetries

A steady or stationary turbulent flow is defined as one whose statistical properties do

not change with time. Homogeneity implies that, given any number of different spatial

points and times, the statistics will remain unchanged if all positions are shifted by the

same constant displacement. In other words, the statistics of the flow are invariant under

translation. If the statistics are also invariant under rotation and reflection, the flow

is isotropic. Isotropy is therefore a stricter criterion than homogeneity. Assumptions

of homogeneous and isotropic turbulence are often made in theoretical studies, since

these assumptions simplify equations and analysis. We can summarize the statistical

symmetries as

� statistically stationary, if all statistics are invariant under a shift in time;
� statistically homogeneous, if all statistics are invariant under a shift in position

(translation);
� statistically isotropic, if all statistics are invariant under rotations and reflections.

Even though homogeneous turbulence is rarely encountered in practice it is still possible

to produce laboratory flows close to homogeneity. Grid-generated turbulence is an

example of approximately homogeneous turbulence. These flows are homogeneous in
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Figure 4.6 Pipe flow.

the sense that the variations of the statistical properties take place over distances large

compared with the length scales of the turbulence itself. Grid turbulence in wind tunnels

is therefore extensively studied in academia. Knowledge originating from experiments

of this type has been widely used to develop and validate turbulence models.

4.1.3 Flow stability

Recall that the Reynolds number is often used to determine the transition between laminar

and turbulent flows. The Reynolds number is the ratio of inertial force to viscous force,

Re =
〈U 〉L

ν

. (4.8)

Hence, increasing the Reynolds number represents a relative increase in the inertial force

in relation to the viscous force. Transition from laminar to turbulent flow is related to

the presence of a disturbance and its amplification. Thus the damping or amplification

of a small velocity fluctuation in laminar flow determines the stability of the flow. If the

disturbance is damped, the flow remains stable and laminar. On the other hand, if it is

amplified, the flow becomes unstable and this can lead to turbulence through transition.

Transition from laminar to turbulent flow occurs when the time taken to equilibrate with

a wall due to diffusive transport is much larger than the time for convective transport.

Consider a pipe flow, illustrated in Figure 4.6, characterized by a pipe diameter L, an

average velocity 〈U〉 and a velocity fluctuation u.

Turbulent eddies are created in the near-wall region and, when there is a lack of

damping by viscosity, they can move across the pipe, keeping the flow turbulent. If u is

the eddy velocity and L is proportional to the nearest surface that can damp the turbulent

fluctuations, the necessary time for this transport is

tc = L/u. (4.9)

During this time period viscosity acts on a distance

l = (tcν)1/2
. (4.10)

This means that viscosity is able to damp velocity fluctuations of scale smaller than l.

The condition for turbulent flow is then given by

l < L , (4.11)
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or

l = (tcν)1/2
< L . (4.12)

Substitution of Eq. (4.9) into Eq. (4.12) leads to the condition

uL

ν

≫ 1. (4.13)

Note that the velocity fluctuations, u, are usually much smaller than the average velocity

in the pipe, 〈U〉. Thus, the criterion for turbulent flow in pipes in terms of the average

velocity is given by

Re =
〈U 〉L

ν

≫ 1. (4.14)

This means that, for high-Reynolds-number flows, Re ≫ 1, viscosity cannot damp veloc-

ity fluctuations and the flow becomes turbulent. The first systematic studies regarding

the transition to turbulence were carried out by Osborne Reynolds more than a century

ago. Reynolds studied flow in glass tubes and obtained a critical Reynolds number 2100

at which the flow ceased to be laminar. By eliminating disturbances at the inlet of the

tube, it has been possible to maintain laminar flow even for Reynolds numbers one order

of magnitude larger than that.

Experimental studies have shown that the following Reynolds-number criteria can be

used to predict the transition from laminar to turbulent flow.

(1) For internal flows,
� pipe flow, Re > 2100;
� flow between parallel plates, Re > 800.

(2) For external flows,
� flow around a sphere, Re > 350.

(3) Boundary layers,
� flow along surfaces, Re > 500 000.

Note that different characteristic lengths are used in the definitions of the Reynolds

numbers above. It should also be noted that surface roughness affects the transition

as well.

4.1.4 The Kolmogorov hypotheses

In 1941, Kolmogorov stated three prominent hypotheses that are of fundamental impor-

tance for the understanding of turbulence. The first hypothesis concerns the isotropy of

small-scale turbulent motions. Kolmogorov argued that there are reasons to expect that at

high Reynolds number the directional information is lost in the chaotic scale-reduction

process. Whereas the anisotropic large-scale structures, l0, depend on geometry and

boundary conditions, it is assumed that the small scales have small timescales and that

these motions are statistically independent of the large-scale turbulence and of the mean

flow. In other words, somewhere in the process whereby turbulent eddies are reduced in

Cambridge Books Online © Cambridge University Press, 2012



4.1 The physics of fluid turbulence 71

size all directional information is lost. On this scale turbulence is statistically isotropic

and these scales are therefore independent of the geometry.

Kolmogorov’s hypothesis of local isotropy:

At sufficiently high Reynolds numbers, the small scales of turbulent motions, l ≪ l0, are statistically

isotropic.

Kolmogorov also argued that the statistics of small-scale motions are universal, i.e.

similar in every high-Reynolds-number flow. This argument forms the basis for the sec-

ond hypothesis. For the small-scale motions, the isotropic scales (l< lEI), the transfer of

energy to successively smaller scales and energy dissipation are the dominant processes.

This leads to the conclusion that the energy-transfer rate and the kinematic viscosity

are the two important parameters determining the statistics of the small-scale motions.

In other words, turbulent structures much smaller than the anisotropic structures are

universal, being solely determined by the energy-dissipation rate, ε, and the viscosity, ν.

This hypothesis is known as ‘Kolmogorov’s first similarity hypothesis’.

Kolmogorov’s first similarity hypothesis (dissipative range):

In every turbulent flow at sufficiently high Reynolds number, the statistics of the small-scale

motions, l < lEI, have a universal form that is uniquely determined by viscosity, ν, and dissipation

rate, ε.

The characteristic length scale, velocity scale and timescale in the dissipative range

are thus given by the energy-dissipation rate, ε, and the viscosity, v. These scales are

also known as the Kolmogorov scales. The Kolmogorov scale, η, characterizing the size

of the smallest turbulent eddies, which is the scale for dissipation of turbulent kinetic

energy, is

η =

(

ν
3

ε

)1/4

(4.15)

and the Kolmogorov velocity scale is given by

uη = (εν)1/4
. (4.16)

The Kolmogorov timescale, τ η, for viscous dissipation is given by

τη =

(

ν

ε

)1/2
. (4.17)

By definition Kolmogorov’s length and velocity scales give a Reynolds number equal

to 1. Thus, the smallest-scale motion of turbulence is laminar, being solely determined

by viscous forces.

Within the range l < lEI the timescales are small compared with the timescales for the

large eddies. This means that the small eddies can adapt quickly to maintain a dynamic

equilibrium with the energy-transfer rate imposed by the large eddies. Since the statistics

of the small-scale motions are universal, this range l < lEI is often referred to as the

universal equilibrium range.

Kolmogorov also stated a ‘second similarity hypothesis’ in which it is assumed that

for a special range of structures within the universal equilibrium range viscosity plays
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Figure 4.7 The cascade of turbulence energy on a logarithmic scale.

a negligible role in the motions. This means that only the energy-dissipation rate, ε,

determines the statistics of the motions in this range. This is the so-called inertial range.

Kolmogorov’s second similarity hypothesis (inertial range):

In every turbulent flow at sufficiently high Reynolds number, the statistics of the motions of

scale l in the range η ≪ l ≪ l0 have a universal form that is uniquely determined by ε and

independent of ν.

On introducing a length scale lDI = 60η, the inertial range is given by lDI < l < lEI.

Note that the length scale lDI splits the universal equilibrium range into two subranges.

These subranges are the inertial range, lDI < l < lEI, and the dissipative range, l < lDI.

Thus, according to the two similarity hypotheses, the motions in the inertial subrange

are determined solely by inertial effects, whereas the motions in the dissipation range

experience significant viscous effects. Figure 4.7 shows the various length scales and

ranges.

4.1.5 The energy cascade

The basic idea in the energy-cascade theory, illustrated in Figure 4.7, is that there is a

net flux of energy from large to small eddies. The idea of energy transfer from large to

subsequently smaller scales was introduced by Richardson in 1922. In the energy cascade

there is a source of turbulent energy, P, at the largest scales. On the largest scales energy

is extracted from the mean flow instabilities. This means that, if there were no flow, no

fluctuations would be sustained; hence the mean flow drives the fluctuations. Thus, the

energy cascades start with energy transfer from the mean flow to the largest eddies. It

is assumed that large eddies contain the largest part of the energy and contribute little

to the energy dissipation. It is also assumed that the largest eddies in turbulent flows do

most of the transport of momentum and other quantities. Since the continuous supply

of energy can neither accumulate in large eddies nor just disappear, there must be a

sink of energy. The sink of energy is twofold. Energy is finally transferred to heat on

the bounding surfaces and it goes into heating up the fluid itself. Actually, the energy-

cascade theory explains the latter mechanism. It is assumed that the flux of energy

continues to successively smaller scales until the viscous stress becomes effective. On

this scale, turbulent kinetic energy is dissipated as heat by molecular viscosity. The
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Table 4.1 Correlations for various turbulence scales

Scale Length Time Velocity

Large scale l = k3/2
/ε τl = k/ε ul =

(

2

3
k
)

1/2

Smallest scale η = (ν3
/ε)1/4

τη = (ν/ε)1/2 uη = (εν)1/4

energy-dissipation process is a result of viscous friction between layers of fluid moving

at different velocities. An important consequence of the viscous stress is that it prevents

the generation of infinitely small eddies. Hence, in all fluid flows there is a minimum

scale of turbulent structures.

Discussions of the energy cascade often refer to the universal equilibrium range. This

terminology is based on the argument that the small eddies will evolve much more

rapidly than the large eddies. Thus eddies in the universal range can adjust so quickly to

changes in external conditions that they can be assumed to be always in a state of local

equilibrium. The transfer of energy in the cascade is given by

TEI = T (lEI) = T (l) = TDI = T (lDI) = ε. (4.18)

In conclusion, the energy-cascade theory places production at the beginning and

dissipation at the end of a sequence of processes. L and l0 in Figure 4.7 are the flow scale

and the scale of the largest eddies, respectively. The length scale l0 is a measure of the

largest turbulent eddies, which contain most of the turbulent kinetic energy. l0 is given

by

l0 =
k3/2

ε

. (4.19)

The characteristic timescale for the large eddies, τ l, is the time necessary to decrease

a turbulent structure of size l0, that is the ‘eddy lifetime’. This timescale can also be seen

as the timescale for transfer of turbulent kinetic energy from the scale l0 to η, which

means that it is a measure for the turbulence decay rate. τ l is given by

τl =
k

ε

. (4.20)

Since k is defined as 1
2

(

u2
1 + u2

2 + u2
3

)

, the characteristic velocity scale for the large

eddies is given by

ul =

(

2

3
k

)1/2

. (4.21)

As a rule of thumb, lEI can be used as a demarcation between anisotropic and isotropic

turbulent eddies, see Figure 4.7. The length scale of the anisotropic large eddies is then

given by l > lEI and that for isotropic eddies by l < lEI. This demarcation requires an

approximation of lEI, which is given by lEI ≈ 1
6

l0. The relations for the various scales of

turbulent motions are summarized in Table 4.1.

Cambridge Books Online © Cambridge University Press, 2012



74 Turbulent-flow modelling

Figure 4.8 Stretching of a vortex tube concentrates vorticity on progressively smaller scales.

From the correlations in Table 4.1 we can determine the smallest turbulent scales

(Kolmogorov scales) in a 100-W kitchen mixer. Assume that the mixer is filled with 1

litre of water (ν = 10−6 m2 s−1 and ρ = 103 kg m−3) and that all energy put into the

system is dissipated homogeneously in the fluid. Since W = J s−1 = m2 kg s−3, the

energy-dissipation rate per unit mass, ε, is equal to 100 m2 s−3. Hence, the smallest

turbulent length scale in the mixer is η = (ν3
/ε)1/4 = 10 µm and the characteristic

timescale for these eddies is τη = (ν/ε)1/2 = 0.1 ms.

4.1.6 Sources of turbulence

Turbulent flows require a continuous supply of energy since turbulence is inherently

dissipative. In the energy-cascade theory the source of energy enters at the largest scale,

at which energy is extracted from the mean flow by the large-scale eddies. Whereas

large eddies extract energy from the mean flow, small eddies are supplied with energy

from the flux of energy from the large eddies. This energy transfer between eddies is

assumed to be related to vortex stretching and the conservation of angular momentum

when eddies are stretched. The interaction between vorticity and velocity gradients is

an important mechanism to create and maintain turbulence. Two idealized mechanisms

that result from this interaction are vortex stretching and vortex tilting. On average

these mechanisms create smaller and smaller scales. Hence, stretching and tilting of

vortices create and maintain turbulence at smaller scales. The stretching mechanism

is illustrated in Figure 4.8. Stretching of a vortex tube means that the cross-section

of the vortex tube decreases in size (for an incompressible fluid). In other words, the

size of the vortex, as estimated from its transverse dimensions, becomes smaller. This

argument shows how larger vortices or eddies in a turbulent fluid can give rise to smaller

ones. The stretching work done by the mean flow on large eddies provides the energy

which maintains turbulence. Smaller eddies are themselves stretched by somewhat larger

eddies. In this way, energy transfers to progressively smaller scales. In this process the

orientation of large eddies imposed by the mean flow is lost. Thus small scales will be
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Figure 4.9 Turbulent kinetic energy spectrum.

isotropic. Turbulent flows dissipate energy as the viscous stresses act on the smallest

scales. On this scale energy is dissipated into heat due to molecular viscosity.

4.1.7 The turbulent energy spectrum

At high Reynolds numbers, turbulent flows are characterized by the existence of a wide

range of length scales that are bounded from above by the dimensions of the flow field

and bounded from below by the diffusive action of molecular viscosity. One important

tool for analysing the different regions of turbulence is the energy spectrum. It is common

practice to use wave numbers instead of length scales. The dimension of a wave number

is one over length, thus we can think of the wave number as inversely proportional to

the eddy radius, i.e. κ ∝ 1/r. This means that large wave numbers correspond to small

eddies and small wave numbers to large eddies. Eddies with wave numbers in the region

of κe, Figure 4.9, contain the largest part of the energy and contribute little to the energy

dissipation. However, the small eddies, which are of very high frequency, in the region of

κd, dissipate energy. Here, turbulent kinetic energy is dissipated into heat by molecular

viscosity. The viscous stresses prevent the generation of eddies with higher frequency.

In wave-number space, the energy of eddies from κ to κ + dκ can be expressed as

E(κ)dκ. (4.22)

The total turbulent kinetic energy, k, which is the sum of the kinetic energies of the

three fluctuating velocity components, i.e. k = 1
2
〈uiuj〉, is obtained by integrating over

the whole wave-number space

k =

∞
∫

0

E(κ)dκ. (4.23)
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The energy spectrum of fully developed homogeneous turbulence is thought to be

composed of three distinct wave-number regions (see Figure 4.9).

A. In this region the large energy-containing eddies are found. These eddies interact

with the mean flow and extract energy from the mean flow. The energy is transferred

to slightly smaller scales and eventually into region B.

B. This region is the inertial subrange. In this region turbulent kinetic energy is neither

produced nor dissipated. However, there is a net flux of energy through this region

from A to C. The existence of this region requires that the Reynolds number is high.

C. This is the dissipative region where turbulent kinetic energy is dissipated into heat.

Eddies in this region are isotropic and the scales are given by the Kolmogorov scales.

A spectral analysis of the turbulence scales often reveals a region where the distribution

obeys the following relationship:

E (κ) = Cκε
2/3

κ
−5/3

,

1

l0

≪ κ ≪
1

η

. (4.24)

This equation is called the Kolmogorov spectrum law, or simply the −5/3 law. The

equation states that, if the flow is fully turbulent, the energy spectra should exhibit

a −5/3 decay. The region where this law applies is known as the inertial subrange

and is the region where the energy cascade proceeds in local equilibrium. This law is

often used in experiments and simulations (DNS, LES) to verify that the flow is fully

turbulent. Note that the largest eddies, κe, contain most of the turbulence energy and are

therefore responsible for most of the turbulent transport. Nevertheless, the small eddies

are responsible for mixing on the small scales.

Questions

(1) Describe the process of transition from laminar to turbulent flow.

(2) Discuss how turbulence can be characterized.

(3) Explain the source of the energy supplied to eddies, why eddies have a lower limit

in size and why the turbulent velocity field is isotropic within that range.

(4) Explain what is meant by the energy-containing range, the inertial subrange and the

dissipative range in the energy spectrum.

(5) Explain what is meant by vortex stretching and relate it to the energy cascade through

the eddy sizes.

4.2 Turbulence modelling

Turbulence modelling ranges from weather forecasts to virtual prototyping of novel

cars, airplanes, heat exchangers, gas-turbine engines, chemical reactors etc. Accurate

simulations of turbulent flows are therefore of high interest both for society and in

industry. Hence, turbulence modelling is one of the key elements in CFD. This section
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Figure 4.10 Schematic characterization of the modelling process.

will discuss some of the numerous approaches to modelling turbulent flows that have

been suggested in the literature.

Unfortunately turbulent flows are characterized by fluctuating velocity fields in which

there exist small-scale and high-frequency fluctuations. Thus an enormous amount of

information is required if one is to describe turbulent flows completely. High-Reynolds-

number flows are therefore too computationally expensive to simulate in detail. Fortu-

nately, we usually require something less than the complete time history of every flow

property over all spatial coordinates. Instead of simulating the exact governing equations,

these equations can be manipulated to remove the small-scale high-frequency fluctua-

tions, resulting in a modified set of equations that it is computationally less expensive to

solve. As a consequence of the manipulation, the modified equations contain additional

unknown variables. Hence, turbulence models are needed in order to determine these

variables. Turbulence modelling can therefore be described as the process of closing the

modified Navier–Stokes equations by providing required turbulence models.

During the last few decades numerous turbulence models of varying complexity have

been proposed. The selection among these models is crucial for a successful simulation.

In the ideal case the selection process will be a straightforward procedure as shown in

Figure 4.10. As indicated in Figure 4.10, knowledge about the flow (i.e. whether or not

the flow involves separation, whether the features of the flow result from anisotropy

etc.) significantly simplifies the decision by reducing the number of turbulence models
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Figure 4.11 A schematic overview of turbulence modelling.

that can be used. Furthermore, in practical engineering applications the selection of

turbulence models can be restricted by the computational resources that are available

or affordable. It is not always the case that the required simulation accuracy implies

the use of a turbulence model that can be matched with the available computational

power.

In this section we give an overview of the most commonly used turbulence models

and their limitations. Be forewarned that no models exist for general purposes and

that every model must be used with care. A general trend for the turbulence models is

that the fewer approximations are introduced, the more computational power is required.

Figure 4.11 gives an overview of the different turbulence models discussed in this section.

As is clearly illustrated in the figure, there is a trade-off between model accuracy and

computational cost.

The choice among the models presented in Figure 4.11 is crucial for successful sim-

ulations. For simple flows good predictions can be obtained with simple turbulence

models such as one-equation models. Even though the result may be less accurate for

complex flows, such models may still allow one to screen effects of various design

changes early in a project. The quality of the simulations is then reduced to obtaining

information about trends rather than obtaining an overall accurate prediction. With the

rapid development of computers and CFD codes it is expected that routine simulations

will incorporate increasingly more advanced turbulence models in the future. Neverthe-

less, during the next few decades simulations of engineering applications will be based

on turbulence models with various levels of approximation.
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4.2.1 Direct numerical simulation

Direct numerical simulation (DNS) of turbulent flows may at first glance seem to be

the most obvious and straightforward approach with which to simulate turbulent flows.

Using DNS, in which the unsteady 3D Navier–Stokes equations are solved directly, there

is no need for a turbulence model since the equations correctly describe fluid flows both

for laminar and for turbulent conditions. The difficulty is actually solving these equations

at high Reynolds number. Recall that a wide range of length scales and timescales exists

in high-Reynolds-number turbulent flows. This means that all these turbulent scales

must be resolved in the simulations. The scale of resolution needed is roughly described

by the Kolmogorov length scale and timescale. Hence, very dense computational grids

and short time steps are required. Add also that the equations are nonlinear and it is

clear that this will challenge the computational solution algorithms, thus making any

simulation very time-consuming. In fact, it will not be possible to perform DNS for

real engineering problems until many more generations of computers have come and

gone. Even if it were possible to perform these simulations for practical engineering

applications, the amount of data would be overwhelming. At the present time DNS is a

research tool rather than an aid to engineering design. The computational cost of DNS

is high and it increases as the cube of the Reynolds number. For the interested reader, it

can be mentioned that the computational cost for DNS of reactive flows is given by

t ∝ Re3Sc2
. (4.25)

Note that for gases Sc ∼ 1, for liquids like water Sc ∼ 103 and for very viscous

liquids Sc ∼ 106. DNS is thus mainly used for gaseous flows at moderate Reynolds

numbers due to the high computational cost. Such deterministic simulations are useful

for developing closures for statistical turbulence models and for validation of these

models, but in practical engineering simulations DNS is less useful. Since DNS is of

no use for practical engineering flow simulations, it will not be discussed further in this

chapter.

4.2.2 Large-eddy simulation

Since the main problem in simulating high-Reynolds-number flows is the presence of

very small length scales and timescales, a logical solution is to filter the equations, thus

resolving only intermediate-to-large turbulence scales. Large-eddy simulation (LES)

extends the usefulness of DNS for practical engineering applications by intentionally

leaving the smallest turbulence scales unresolved. In LES the dynamics of the large scales

are computed explicitly. Therefore, LES needs to be 3D and transient. The advantages

of LES arise from the fact that the large eddies, which are hard to model in a universal

way since they are anisotropic, are simulated directly. In contrast, small eddies are more

easily modelled since they are closer to isotropy and adapt quickly to maintain a dynamic

equilibrium with the energy-transfer rate imposed by the large eddies. The effects of the

non-resolved scales, which cannot be neglected, are accounted for with subgrid stress

models. This means that the subgrid models should be universal. In LES the turbulence
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scales are usually resolved down to the inertial subrange, Figure 4.9. As a general rule

of thumb at least 80% of the turbulence energy should be resolved in the calculated

velocities. Substantial savings in computational cost are realized in LES, since a coarser

grid is employed than that required for DNS, Figure 4.11. This allows modelling of

flows at higher Reynolds number. Nevertheless, the computational cost for LES is high

in comparison with those of other turbulence models. The high computational cost

stems from a very fine grid, short time steps and long computational time taken to obtain

reliable statistics.

Filtering of the Navier–Stokes equations

The governing equations for LES are obtained by spatially filtering over small scales. A

generalized filter can be defined by

Ui (x, t) =

∫∫∫

G(x − ξ ; �)Ui(ξ, t)d3
ξ, (4.26)

where the filter function is interpreted as acting to keep values of Ui occurring on scales

larger than the filter width �. Basically the filter function, G, is some function that is

effectively zero for values of Ui occurring at the small scales. Thus, filtering eliminates

eddies whose scales are smaller than the filter width. Examples of such filters are the box,

Gaussian and sharp spectral filters etc. [11]. By filtering the Navier–Stokes equations,

the scales which will be modelled are separated from those which will be calculated

directly.

The velocity field has the decomposition,

Ui (x, t) = Ui (x, t) + ui (x, t). (4.27)

An important difference between this decomposition and the Reynolds decomposition,

which is widely used in turbulence modelling, is that U i is a random field and that in

general the filtered residual is not zero,

ui (x, t) �= 0. (4.28)

The filtered continuity equation is

∂U j

∂x j

= 0 (4.29)

and the filtered momentum equation is

∂U i

∂t
+

∂U iU j

∂x j

= −
1

ρ

∂ P

∂x j

+ ν

∂
2U i

∂x j ∂x j

−
∂τi j

∂x j

. (4.30)

The closure problem in LES arises from the residual stress tensor, τ ij, which is also

commonly referred to as the subgrid stress tensor. Here the term τ ij describes the transfer

of momentum by turbulence at scales that are smaller than the filter,

τi j = UiU j − U iU j . (4.31)

The filtered velocities U i and U j are solved for but the correlation UiU j is unknown

and a satisfactory subgrid stress model must be provided for τ ij. The simplest models
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usually involve modelling of a subgrid viscosity. An important difference between the

subgrid viscosity and the traditional eddy viscosity is that it acts as a correction to the

behaviour of the small scales, not as a correction of the entire influence of turbulence on

the mean flow. This means that the subgrid viscosity is small compared with the eddy

viscosity used in the eddy-viscosity models.

One frequently used model is the Smagorinsky–Lilly model. In this model the isotropic

stress is included in the modified filtered pressure

p̃ = p +
2

3
τi i (4.32)

and the anisotropic part is modelled using a linear eddy-viscosity model,

τi j − 1
3
τkkδi j = −2μt Si j . (4.33)

The subgrid viscosity is then calculated from

μt = ρL2
S

∣

∣S
∣

∣

, (4.34)

where

∣

∣S
∣

∣ =

√

2Si j Si j and L S = min(κd, CSV 1/3), (4.35)

κ is the von Kármán constant, d is the distance to the nearest wall and V is the volume

of the computational cell. The Smagorinsky coefficient CS is of the order of 0.17 but

depends, unfortunately, on the flow conditions and grid size. The interested reader is

referred to [7, 11] for more information about LES. More advanced LES models, e.g.

dynamic LES, also estimate the Smagorinsky coefficient by filtering on two different

scales.

4.2.3 Reynolds decomposition

Industrial applications of LES are expected to increase in the near future. However, like

DNS, LES is currently too computationally expensive for routine simulations. In many

cases the industrial and academic communities need even simpler models than LES.

In this chapter we introduce turbulence models that are widely used for simulations of

engineering applications. These models are based on a method by which the scales can

be separated. Recall that in the LES approach the small length scales and timescales

were filtered out. However, even the intermediate-to-large turbulence scales must be

filtered out to obtain a set of equations that can be used for routine simulations. Hence,

the solution of these equations remains the only viable means for routine simulations of

turbulent flows encountered in engineering practice. More than 100 years ago Reynolds

proposed that the instantaneous variables could be split into a mean part and a fluctuating

part,

Ui = 〈Ui 〉 + ui (4.36)
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and

P = 〈P〉 + p. (4.37)

This method is therefore referred to as Reynolds decomposition. All turbulence mod-

els in the following sections of this chapter share the fact that they are mathematically

based on the Reynolds-decomposition concept. With Reynolds decomposition, the flow

is described statistically by the mean flow velocity and the turbulence quantities. By time

averaging over a reasonable time period the turbulence fluctuations are separated from

the non-turbulence quantities. Hence, the set of equations obtained with this method

is called the Reynolds averaged Navier–Stokes equations, or simply the RANS equa-

tions. In many practical cases it is necessary to simulate non-steady flows, where the

instantaneous variables are averaged over a time period that is large compared with the

turbulence timescales but small compared with the timescale of the mean components.

This means that the time derivative of the mean flow in the RANS equations accounts

for variations at timescales larger than those of turbulence.

Recall that for incompressible flows the continuity equation reads

∂U j

∂x j

= 0 (4.38)

and the Navier–Stokes equations read

∂Ui

∂t
+ U j

∂Ui

∂x j

= −
1

ρ

∂ P

∂xi

+ ν

∂
2Ui

∂x j ∂x j

. (4.39)

The equations for the mean variables of these quantities are derived by substituting

the decomposed form into the Navier–Stokes equations and taking the average. Let us

now substitute for the instantaneous variables in Eqs. (4.38) and (4.39) the decomposed

variables. By substituting we obtain

∂(〈Ui 〉 + ui )

∂xi

= 0 (4.40)

and

∂(〈Ui 〉 + ui )

∂t
+ (
〈

U j

〉

+ u j )
∂(〈Ui 〉 + ui )

∂x j

= −
1

ρ

∂(〈P〉 + p)

∂xi

+ ν

∂
2(〈Ui 〉 + ui )

∂x j∂x j

.

(4.41)

After decomposing the dependent variables into mean and fluctuating quantities we

then time-average the equations using the operator

〈φ〉 =
1

τ

t+τ
∫

t

φ(x, t̃ )dt̃ . (4.42)

Equation (4.40) then reads
〈

∂(〈Ui 〉 + ui )

∂xi

〉

= 0 (4.43)
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and Eq. (4.41) becomes
〈

∂(〈Ui 〉 + ui )

∂t

〉

+

〈

(〈

U j

〉

+ u j

) ∂(〈Ui 〉 + ui )

∂x j

〉

= −
1

ρ

〈

∂(〈P〉 + p)

∂xi

〉

+ ν

〈

∂
2(〈Ui 〉 + ui )

∂x j ∂x j

〉

. (4.44)

Note that all terms linear in fluctuating variables give zero on averaging:

〈ui 〉 =
〈

u j

〉

= 0. (4.45)

This does not apply for the nonlinear term:

〈

UiU j

〉

=
〈

(〈Ui 〉 + ui )
(〈

U j

〉

+ u j

)〉

=
〈(

〈Ui 〉
〈

U j

〉

+ u j 〈Ui 〉 + ui

〈

U j

〉

+ ui u j

)〉

= 〈Ui 〉
〈

U j

〉

+
〈

u j

〉

〈Ui 〉 + 〈ui 〉
〈

U j

〉

+
〈

ui u j

〉

= 〈Ui 〉
〈

U j

〉

+
〈

ui u j

〉

.

(4.46)

Equations (4.43) and (4.44) reduce to

∂〈Ui 〉

∂xi

= 0 (4.47)

and

∂〈Ui 〉

∂t
+
〈

U j

〉 ∂〈Ui 〉

∂x j

+

〈

∂ui u j

∂x j

〉

= −
1

ρ

∂〈P〉

∂xi

+ ν

∂
2〈Ui 〉

∂x j ∂x j

. (4.48)

By re-arranging we obtain the general form of the RANS equation

∂〈Ui 〉

∂t
+
〈

U j

〉 ∂〈Ui 〉

∂x j

= −
1

ρ

∂〈P〉

∂xi

+ ν

∂
2〈Ui 〉

∂x2
j

−
∂

〈

ui u j

〉

∂x j

, (4.49)

which can be written as

∂〈Ui 〉

∂t
+
〈

U j

〉 ∂〈Ui 〉

∂x j

= −
1

ρ

∂

∂x j

{

〈P〉δi j + μ

(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

− ρ〈ui u j 〉

}

.

(4.50)

This equation was first derived by Reynolds in 1895 and is very similar to the original

Navier–Stokes equations (4.39) apart from the additional term −ρ〈uiuj〉. This term is

referred to as the Reynolds stresses and is very important since it introduces a coupling

between the mean and fluctuating parts of the velocity field. Note that sometimes 〈uiuj〉

is referred to as the Reynold stresses even though the precise definition of the Reynolds

stresses is −ρ〈uiuj〉. Since the Reynolds stress term contains products of the velocity

fluctuations this term must be modelled in order to close Eq. (4.49). This is the sole

purpose of RANS turbulence modelling.

Note that by averaging over all timescales of turbulence one performs averaging over

the longest timescales of turbulence. This means that the only dynamic behaviour that

will be resolved in the simulations is that of the mean flow. For flows that are statistically

steady the Reynolds averaged equations of motion do not resolve any of the dynamics
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Figure 4.12 One-point representation of resolved turbulence scales in a steady turbulent flow.

even though the effects of turbulence on mass-, momentum- and heat-transfer rates are

accounted for. Figure 4.12 illustrates that DNS, LES and RANS resolve scales of different

sizes. Note that, while DNS resolves all scales, LES resolves only the largest scales.

The non-resolved scales in LES which are more universal can be seen as small-scale

fluctuations superposed on the large scales.

Reynolds stresses

Recall that the statistical-averaging process introduced unknown correlations into the

mean-flow equations, namely the Reynolds stresses, τ ij =−ρ〈uiuj〉. The Reynolds stress

term is a second-order tensor that represents a second-order moment of the velocity

components at a single point in space. These stresses appear as an additional fictitious

stress tensor in Eq. (4.49) by which the fluctuating parts interact and force the mean

flow. Therefore they are often called apparent stresses. It is important to point out that,

although the Reynolds stress term formally appears similar to the viscous stress term, it

is not part of the fluid stress but instead represents the average momentum flux due to

the velocity fluctuations, thus characterizing the transfer of momentum by turbulence.

The individual Reynolds stresses in the stress tensor, τ ij =−ρ〈uiuj〉, are

τi j =

⎡

⎣

−ρ〈u1u1〉 −ρ〈u1u2〉 −ρ〈u1u3〉

−ρ〈u2u1〉 −ρ〈u2u2〉 −ρ〈u2u3〉

−ρ〈u3u1〉 −ρ〈u3u2〉 −ρ〈u3u3〉

⎤

⎦. (4.51)

Since the Reynolds stress tensor is symmetric, 〈u1u2〉 = 〈u2u1〉, 〈u1u3〉 = 〈u3u1〉 and

〈u2u3〉 = 〈u3u2〉 there are three normal stresses −ρ〈u1u1〉, −ρ〈u2u2〉 and −ρ〈u3u3〉 and

three shear stresses −ρ〈u1u2〉, −ρ〈u1u3〉 and −ρ〈u2u3〉. This means that the Reynolds

stress tensor contains six unknown terms that must be modelled. One straightforward

approach to close Eq. (4.49) would be to derive transport equations for the Reynolds

stresses. Unfortunately, this results in third-order moments of the velocity components.

An attempt to derive equations describing the evolution of the third-order moments yields

equations containing fourth-order moments. This goes on indefinitely and is referred to

as the closure problem.
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In high-Reynolds-number flows, the Reynolds stress tensor can easily be 1000 times

larger than the mean viscous stress tensor,

ρ

∥

∥

〈

ui u j

〉∥

∥≫ μ

∥

∥

∥

∥

∥

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

∥

∥

∥

∥

∥

. (4.52)

This means that at high Reynolds numbers the viscous stress may generally be

neglected when compared with the Reynolds stress insofar as the mean flow equations

are concerned. However, this does not apply towards boundaries of the flow. In these

regions (thin layers adjacent to the walls) the turbulence is damped, the mean velocity

gradients grow larger and the viscous stress becomes comparable to the Reynolds stress.

Thus, in this region we have

ρ

∥

∥

〈

ui u j

〉
∥

∥ ≈ μ

∥

∥

∥

∥

∥

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

∥

∥

∥

∥

∥

. (4.53)

A discussion about these viscous regions and how they can be modelled is given in

Section 4.3.

The Boussinesq approximation

To summarize, when the RANS equations were derived we introduced the Reynolds

stresses, which are unknown terms, without adding any extra equations. This means that

the Reynolds stresses must be modelled since the total number of unknowns is more than

the total number of equations. Unless some assumptions are made about the Reynolds

stresses it is not possible to solve Eqs. (4.47) and (4.49). One way to model the Reynolds

stresses is to relate them to the dependent variables they are meant to transport. Such

turbulence models make the prediction of turbulence feasible with a reasonable amount

of computer time.

A simple approximation is to express the Reynolds stress tensor, −ρ〈uiuj〉, in terms

of the mean velocity itself. This closure has an approximate character, which means that

the solution of the RANS equations is always an approximation. In what follows we

consider closures that are based on the concept of turbulent eddy viscosity.

The Boussinesq approximation is based on the assumption that the components of the

Reynolds stress tensor are proportional to the mean velocity gradients. The Boussinesq

relation proposes that the transport of momentum by turbulence is a diffusive process and

that the Reynolds stresses can be modelled using a turbulent viscosity (eddy viscosity),

which is analogous to molecular viscosity. The Boussinesq approximation reads

τi j

ρ

= −
〈

ui u j

〉

= νT

(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

−
2

3
kδi j , (4.54)

or

τi j

ρ

= −
〈

ui u j

〉

= νTSi j −
2

3
kδi j , (4.55)

Cambridge Books Online © Cambridge University Press, 2012



86 Turbulent-flow modelling

where

Si j =
1

2

(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

is the strain-rate tensor and k is the turbulent kinetic energy per unit mass. The turbulent

kinetic energy per unit mass is defined as half the trace of the Reynolds stress tensor

k = 1
2
〈ui ui 〉. In contrast to the molecular viscosity, the turbulent viscosity is not a fluid

property but depends strongly on the state of turbulence.

The second term on the right-hand side of Eq. (4.54) represents normal stresses. Thus,

a term analogous to the pressure occurs in the usual stress tensor for a viscous fluid,

which can be absorbed into the real pressure term. Hence we finally obtain

∂〈Ui 〉

∂t
+
〈

U j

〉 ∂〈Ui 〉

∂x j

= −
1

ρ

∂

(

〈P〉 + 2
3
ρk
)

∂xi

+
∂

∂x j

[

(ν + νT)
∂〈Ui 〉

∂x j

]

, (4.56)

or

∂〈Ui 〉

∂t
+
〈

U j

〉 ∂〈Ui 〉

∂x j

= −
1

ρ

∂〈P〉

∂xi

−
2

3

∂k

∂xi

+
∂

∂x j

[

(ν + νT)

(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)]

.

(4.57)

Thus, if specific details of the turbulence are not important we can interpret the fluid

itself as a pseudo-fluid with an increased viscosity (effective viscosity, νeff = ν + νT)

that roughly approximates the turbulent mixing processes to diffusion of momentum and

other flow properties. This means that diffusion models convection, where ∂

〈

ui u j

〉

/∂x j

is transport of 〈Ui〉 in Eq. (4.49).

Regardless of the approach used to determine vT, there are several limitations with

the Boussinesq approximation. Among others, the Boussinesq approximation assumes

that eddies behave like molecules, that turbulence is isotropic and that there exists

local equilibrium between stress and strain. As a consequence of these assumptions,

predictions of simple flows may fail, e.g. in channel flows, where measurements show that

−〈u2
1〉 �= −〈u2

2〉 �= −〈u2
3〉. Hence, models that are based on the Boussinesq approximation

are limited to prediction of isotropic flows in local equilibrium. Despite the shortcomings

of the Boussinesq approximation it is one of the cornerstones in several turbulence

models. The reasons for this are the cost of using more elaborate turbulence models and

problems with obtaining closures for higher moments.

4.2.4 Models based on the turbulent viscosity hypothesis

Most models evaluating the Reynolds stress tensor simplify the situation through the

Boussinesq eddy-viscosity concept. Thus, as part of quantitative turbulence modelling

this eddy viscosity, vT, must be determined. So when it comes to turbulence mod-

elling based on the RANS equations and the eddy-viscosity concept, the turbulence

model can be seen as the set of equations that are needed to determine this viscosity.
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As in the kinetic theory of gases, the viscosity is proportional to velocity times dis-

tance. The turbulent-viscosity models are based on appropriate velocity, u, and length

scales, l, describing the local turbulent viscosity, vT. The dimension of vT is [m2 s−1],

which means that the product of these two scales gives the right dimension; that is,

we have

νT = Cν

l2

t
= Cνul. (4.58)

In this expression u and l are the characteristic scales for the large turbulent eddies and

Cν is a proportionality constant. This is reasonable because these scales are responsible

for most of the turbulent transport. The turbulent eddy viscosity, vT, in Eq. (4.57) may

vary with position and time and must be specified before the set of equations can be

closed. A proper turbulence model therefore involves a closed set of equations, i.e. the

total number of unknown variables equals the total number of equations. There exist

numerous methods that provide values for the turbulent viscosity. These methods are

usually categorized by the number of additional transport equations that are required

for closure, i.e. the equations required to determine the velocity and length scales

describing the local turbulence. In the simplest categories of models no additional

transport equations are used. These models are therefore referred to as zero-equation

models. Furthermore, there are one- and two-equation models in which respectively one

and two PDEs are solved together with the RANS equations. The degree of accuracy

of each turbulence model depends on the validity of the assumptions behind it. In what

follows we will discuss some of the zero-, one- and two-equation models that are used

for this purpose. Among these models, the two-equation models are the most widely

used for routine simulation of engineering applications.

Zero-, one- and two-equation models

The number of additional PDEs considered in addition to the RANS and continuity

equations is used to classify the turbulence models. Hence algebraic models are classified

as zero-equation models. One of the most well-known zero-equation models is Prandtl’s

mixing-length model. In this model vT is calculated using an analogy between the chaotic

motions of eddies and the random motion of molecules in gases (kinetic gas theory).

The mixing length, l, depends strongly on the nature of the flow and is generally space-

dependent. This model offers an improvement over the constant-viscosity models and is

capable of predicting some simple flows. The motivation for developing more advanced

models than the zero-equation models is that it is very difficult to estimate the distribution

of the mixing length. Another limitation with this model is that the eddy viscosity is

instantaneously affected by the shear rate and vanishes whenever the velocity gradient

is zero. This does not agree with experimental data. The reason for this is that the

turbulent stresses result not only from events at a single point but also from events in the

region, since they are transported by convection and diffusion and they have a certain

lifetime before the energy is dissipated. Hence, zero-equation models are unsuitable

for general use since they do not account for effects of accumulation and transport

on turbulence.

Cambridge Books Online © Cambridge University Press, 2012



88 Turbulent-flow modelling

Since turbulent eddies have a certain lifetime and are transported by convection,

turbulence is not completely determined by the local conditions but depends also on

the history of the eddies. One way to overcome the limitations of the zero-equation

models is to relate the turbulent viscosity to a transported turbulent quantity instead

of relating it to the mean velocity gradient. In contrast to the zero-equation models

the one-equation models allow history effects to be accounted for. It was independently

suggested by Kolmogorov and Prandtl that the square root of the time-averaged turbulent

kinetic energy, k, should be employed as the characteristic turbulent velocity scale, u.

Examples of such models include Prandtl’s k–l model and the Spalart–Allmaras model.

From the above discussion it can be concluded that transport of the turbulent kinetic

energy is taken into account in one-equation models at the cost of solving one additional

PDE. The problem with one-equation models is that only the characteristic velocity

scale is determined from a transport equation, and the length scale must therefore be

specified algebraically. An obvious solution would then be to determine the length scale

from an additional transport equation. That is actually what is done in two-equation

models.

Two-equation models

Zero- and one-equation models are still used for certain applications but they are rarely

used for general-purpose flow simulations. For general-purpose flow simulations, the

more sophisticated two-equation models are frequently used. As the number of equa-

tions increases, the computational cost increases as well. It should be mentioned that the

two-equation models are sometimes referred to as complete models, since they allow

the turbulent velocity and length scales to be determined independently. For practical

engineering purposes, the most successful models involve two or more transport equa-

tions. This is due to the fact that it takes two quantities to characterize the length and

velocity scales of turbulent flows. Using transport equations to describe these variables

means that the turbulence-production and -dissipation processes can have localized

rates. Without the transport mechanism turbulence has to instantly adjust to local con-

ditions, thereby giving unrealistically large production and dissipation rates. In many

cases a high local value of turbulence is due to convection of upstream-generated

eddies.

A straightforward approach to model the turbulent velocity and length scales is to

solve the k equation for the velocity scale and the l equation for the length scale. Usually

the names of the turbulence models are logical in the sense that they reflect what is

modelled. Hence, a two-equation model that models k and l is simply called a k–l model.

More often the second transport equation describes transport of some property other

than the length scale, l. Obviously it must be possible to determine the length scale

explicitly from this property. Generally we can write an arbitrary property, φ, which is

related to the length scale, l, in the following way:

φ = kαlβ . (4.59)
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Table 4.2 Commonly used properties for determination of the turbulence length scale

Alternative

α β φ symbol to φ Interpretation of φ

0 1 l l Length scale

1 −2 k/l2
ω Vorticity scale

1/2 −1 k1/2
/l f Frequency scale

−1/2 1 k−1/2l τ Timescale

3/2 −1 k3/2
/l ε Dissipation rate

This means that for the k–l model α = 0 and β = 1, hence φ = l. There are many

possible choices for the second turbulence variable, resulting in different values of α

and β. Some of the proposed variables are given in Table 4.2.

The energy-dissipation rate, ε, is the most commonly used of these variables. As

implied by its name, the k–ε model describes turbulence using two variables, namely the

turbulent kinetic energy, k, and the energy-dissipation rate, ε. The relation between the

turbulence length scale and the energy-dissipation rate is

φ = k3/2
/ l = ε. (4.60)

The length scale is simply the turbulent velocity,
√

k, times the lifetime of the turbulent

eddies k/ε,

l =
√

k
k

ε

=
k3/2

ε

, (4.61)

and the turbulent viscosity is given by

νT = Cνul = Cνk1/2 k3/2

ε

= Cν

k2

ε

. (4.62)

Two-equation models are widely used for simulation of engineering applications.

Even though these models impose limitations, they continue to be favourable since they

are robust and inexpensive to implement.

The standard k–ε model

The k–ε model has become very popular due to the important role played by ε in the

interpretation of turbulence in addition to the fact that ε appears directly in the transport

equation for k. This turbulence model provides a good compromise between generality

and economy for many CFD problems. Before looking at the modelled transport equa-

tions for k and ε, one should be aware that these equations are actually simplifications

of the exact transport equations for k and ε. This means that the k–ε model is one of

several possible closures by which the RANS equations are simplified even further. In

the following section we will look particularly at the closures introduced to solve the

exact k and ε equations. Note that these types of closures are not unique to the k–ε

model but are in fact required to close all models that are based on statistical averaging,

due the higher-order moments that are introduced. The exact transport equation for the
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turbulent kinetic energy, k, can be deduced from the equation for the kinetic energy

Eq. (2.26) by Reynolds decomposition and reads

∂k

∂t
︸︷︷︸

I

+
〈

U j

〉 ∂k

∂x j
︸ ︷︷ ︸

II

= −
〈

ui u j

〉 ∂〈Ui 〉

∂x j
︸ ︷︷ ︸

III

− ν

〈

∂ui

∂x j

∂ui

∂x j

〉

︸ ︷︷ ︸

IV

+
∂

∂x j

⎛

⎜

⎜

⎜

⎝

ν

∂k

∂x j
︸ ︷︷ ︸

V

−

〈

ui ui u j

〉

2
︸ ︷︷ ︸

VI

−

〈

u j p
〉

ρ

︸ ︷︷ ︸

VII

⎞

⎟

⎟

⎟

⎠

. (4.63)

The physical interpretation of the terms in the Eq. (4.63) is as follows.

I. Accumulation of k.

II. Convection of k by the mean velocity.

III. Production of k, large eddies extract energy from the mean flow.

IV. Dissipation of k by viscous stress, whereby turbulent kinetic energy is transformed

into heat.

V. Molecular diffusion of k.

VI. Turbulent transport by velocity fluctuations.

VII. Turbulent transport by pressure fluctuations.

In Eq. (4.63) the terms III, IV, VI and VII are unknown and, unless some approxima-

tions are introduced, it is not possible to solve this equation. Hence, closures are required

for the production, dissipation and diffusion terms. The production term represents the

production of turbulent kinetic energy due to the mean flow strain rate. If the equation

for the kinetic energy of the mean flow is considered, this term actually appears as a

sink in the equation. This clearly shows that the production of turbulent kinetic energy is

indeed a result of the mean flow losing kinetic energy, recalling that 〈E〉 = E + k. Note

that the production term is the Reynolds stresses times the shear rates and maximum

production will occur where both are large. This is mainly in the boundary layers close

to the walls, and for flow parallel to the wall the maximum production is at y+ ≈ 12.

The Reynolds stresses can be identified in the production term and it is assumed that the

Boussinesq approximation can be used to model this term by relating it to gradients of

the mean flow

−
〈

ui u j

〉

= νT

(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

−
2

3
kδi j . (4.64)

This means that the production of turbulent kinetic energy can be modelled as

−
〈

ui u j

〉 ∂〈Ui 〉

∂x j

= νT

(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

∂〈Ui 〉

∂x j

−
2

3
k
∂〈Ui 〉

∂xi

. (4.65)
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Note that the last term in Eq. (4.65) is zero for incompressible flow due to continuity.

It is important to recall that the Boussinesq approximation is an isotropic model for the

Reynolds stresses and assumes that the normal stresses are all equal.

The second closure needed to model the k equation is a relation for the energy-

dissipation rate, which is the rate of destruction of turbulent kinetic energy. Note that

the energy dissipation of turbulent kinetic energy is defined as

ε = ν

〈

∂ui

∂x j

∂ui

∂x j

〉

. (4.66)

The third closure is required to describe the turbulent transport of k. These higher-

order moments (terms VI and VII) are usually modelled by assuming a gradient-diffusion

transport mechanism. This assumption allows the turbulent transport due to velocity and

pressure fluctuations to be modelled as

−

〈

ui ui u j

〉

2
−

〈

u j p
〉

ρ

=
νT

σk

∂k

∂x j

. (4.67)

Here, σk is a model coefficient known as the Prandtl–Schmidt number and vT is the

turbulent viscosity. Substituting these closures into the exact transport equation for k

gives the modelled equation for k

∂k

∂t
+
〈

U j

〉 ∂k

∂x j

= νT

[(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

∂〈Ui 〉

∂x j

]

− ε +
∂

∂x j

[(

ν +
νT

σk

)

∂k

∂x j

]

.

(4.68)

To close the k equation we need to calculate ε and the turbulent viscosity. Obviously,

the energy-dissipation rate is modelled with a second transport equation. Note that

the production of turbulent kinetic energy is modelled as the product of the turbulent

viscosity and average velocity gradients.

The exact ε equation can be written as

∂ε

∂t
︸︷︷︸

I

+
〈

U j

〉 ∂ε

∂x j
︸ ︷︷ ︸

II

= −2ν

(〈

∂ui

∂xk

∂u j

∂xk

〉

+

〈

∂uk

∂xi

∂uk

∂x j

〉)

∂〈Ui 〉

∂x j
︸ ︷︷ ︸

III

− 2ν

〈

uk

∂ui

∂x j

〉

∂
2 〈Ui 〉

∂xk∂x j
︸ ︷︷ ︸

IV

− 2ν

〈

∂ui

∂xk

∂ui

∂x j

∂uk

∂x j

〉

︸ ︷︷ ︸

V

− 2νν

〈

∂
2ui

∂xk∂x j

∂
2ui

∂xk∂x j

〉

︸ ︷︷ ︸

VI

+
∂

∂x j

⎛

⎜

⎜

⎜

⎝

ν

∂ε

∂x j
︸ ︷︷ ︸

VII

− ν

〈

u j

∂ui

∂x j

∂ui

∂x j

〉

︸ ︷︷ ︸

VIII

− 2
ν

ρ

〈

∂p

∂x j

∂u j

∂x j

〉

︸ ︷︷ ︸

IX

⎞

⎟

⎟

⎟

⎠

. (4.69)

Cambridge Books Online © Cambridge University Press, 2012



92 Turbulent-flow modelling

The physical interpretation of some of the terms in Eq. (4.69) is as follows.

I. Accumulation of ε.

II. Convection of ε by the mean velocity.

III and IV. Production of dissipation, due to interactions between the mean flow and the

products of the turbulent fluctuations.

V and VI. Destruction rate of the dissipation, due to turbulent velocity fluctuations.

VII. Viscous diffusion of ε.

VIII. Turbulent transport of ε due to velocity fluctuations.

IX. Turbulent transport of ε due to pressure–velocity fluctuations.

In Eq. (4.69) there are several unknown terms containing correlations of fluctuating

velocities and gradients of fluctuating velocities and pressure, namely terms III, IV, V,

VI, VIII and IX. Again we need several closures for the unknown terms in order to

close the equation. The result of introducing closures is that the modelled equation is

drastically simplified. To avoid tedious manipulation of the exact ε equation we simply

give the general form of the modelled ε equation:

∂ε

∂t
︸︷︷︸

I

+
〈

U j

〉 ∂ε

∂x j
︸ ︷︷ ︸

II

= Cε1νT

ε

k

[(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

∂〈Ui 〉

∂x j

]

︸ ︷︷ ︸

III

− Cε2

ε
2

k
︸ ︷︷ ︸

IV

+
∂

∂x j

[(

ν +
νT

σε

)

∂ε

∂x j

]

︸ ︷︷ ︸

V

. (4.70)

The physical interpretation of the terms in Eq. (4.70) is as follows.

I. Accumulation of ε.

II. Convection of ε by the mean velocity.

III. Production of ε.

IV. Dissipation of ε.

V. Diffusion of ε.

The time constant for turbulence is calculated from the turbulent kinetic energy and the

rate of dissipation of turbulent kinetic energy:

τ = k/ε. (4.71)

Note that the source term in the ε equation is the same as that in the k equation divided

by the time constant τ in Eq. (4.71) and the rate of dissipation of ε is proportional to

ε/τ = ε
2
/k. (4.72)

The turbulent viscosity must be calculated to close the k–ε model. Recall that the

turbulent viscosity is given as the product of the characteristic velocity and length

scales, νT ∝ ul. This means that we have

νT = Cμ

k2

ε

. (4.73)
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Table 4.3 Closure coefficients in

the standard k–ε model

Constant Value

Cμ 0.09

Cε1 1.44

Cε2 1.92

σ k 1.00

σ ε 1.30

Finally, the five closure coefficients (Cμ, Cε1, Cε2, σ k and σ ε) in the k–ε model are

assumed to be universal and thus constant, although they can vary slightly from one flow

to another. The values for these constants are given in Table 4.3.

The robustness and the easily interpreted model terms make the k–ε model the most

widely used two-equation model. However, the standard k–ε model does not always give

good accuracy. Examples of flows that cannot be predicted accurately with the standard

k–ε model are flows with streamline curvature, swirling flows and axisymmetric jets. The

inaccuracies stem from the underlying Boussinesq hypothesis which imposes isotropy

and from the way in which the dissipation equation is modelled. Actually this model

was derived and tuned for flows with high Reynolds numbers. This implies that it is

suited for flows in which the turbulence is nearly isotropic and flows in which the

energy cascade proceeds in local equilibrium with respect to generation. Furthermore,

the model parameters in the k–ε model are a compromise to give the best performance

for a wide range of different flows. The accuracy of the model can therefore be improved

by adjusting the parameters for particular experiments. As the strength and weaknesses

of the standard k–ε model have become known, improvements have been made to the

model to improve its performance. In the literature, numerous modifications for the

turbulence models have been suggested. The most well-known variants of the standard

model are the RNG and the realizable k–ε models. It is not within the scope of this book

to discuss all these modifications; however, a closer look will be taken at the RNG and

realizable k–ε models. In fact, the k–ε model and its variants have become a workhorse

in practical engineering flow simulations.

The RNG k–ε model

The main physical difference between the standard model and the RNG k–ε model lies in

a different formulation of the dissipation equation. In the RNG k–ε model, an additional

source term, Sε, is added and the equation is given by

∂ε

∂t
+
〈

U j

〉 ∂ε

∂x j

= Cε1νT

ε

k

[(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

∂〈Ui 〉

∂x j

]

− Cε2

ε
2

k
+

∂

∂x j

[(

ν +
νT

σε

)

∂ε

∂x j

]

− Sε, (4.74)
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where the source term Sε is given by

Sε = 2νSi j

〈

∂ul

∂xi

∂ul

∂x j

〉

. (4.75)

In the RNG k–ε model the additional term, Sε, is modelled as

Sε =
Cμη

3(1 − η/η0) ε
2

(

1 + βη
3
)

k
. (4.76)

Here

η =
k

ε

√

2Si j Si j

and Sij is the strain-rate tensor. The constants η0 and β take the values 4.38 and 0.012,

respectively. This additional term is an ad-hoc model that is largely responsible for the

differences in performance compared with the standard model.

The standard k–ε model is known to be too dissipative, namely the turbulent viscosity

in recirculations tends to be too high, thus damping out vortices. In regions with large

strain rate the additional term in the RNG model results in smaller destruction of ε,

hence augmenting ε and reducing k, which in effect reduces the effective viscosity.

Improvements can therefore be expected for swirling flows and flows in which the

geometry has a strong curvature. Hence the RNG model is more responsive to the

effects of rapid strain and streamline curvature than the standard k–ε model. Although

the RNG model is very good for predicting swirling flows, its predictions for jets and

plumes are inferior to the standard k–ε model. By using a mathematical renormalization-

group (RNG) technique, the k–ε model can be derived from the Navier–Stokes equation,

which results in different, analytical, model constants. The constants stemming from the

RNG analysis differ slightly from the empirically determined constants in the standard

k–ε model.

The realizable k–ε model

The realizable model differs from the standard k–ε model in that it features a realizability

constraint on the predicted stress tensor, thereby giving it the name of realizable k–ε

model. The difference comes from a correction of the k equation where the normal

stress can become negative in the standard k–ε model for flows with large mean strain

rates. This can be seen by analysing the normal components of the Reynolds stress

tensor:

〈ui ui 〉 =
∑

i

〈

u2
i

〉

=
2

3
k − 2νT

∂〈Ui 〉

∂x j

. (4.77)

Note that the normal stress 〈uiui〉 must be larger than zero by definition, since it is a

sum of squares. However, Eq. (4.77) implies that, if the strain is sufficiently large, the

normal stress becomes negative. The realizable k–ε model uses a variable Cμ so that this
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will never occur. In fact, Cμ is no longer taken to be a constant; instead, it is a function

of the local state of the flow to ensure that the normal stresses are positive under all flow

conditions, i.e. to ensure realizability. In other words, the realizable k–ε model ensures

that the normal stresses are positive, i.e. 〈u2
i 〉 ≥ 0. Neither the standard nor the RNG k–ε

model is realizable. Realizability also means that the stress tensor satisfies 〈u2
i 〉〈u

2
j 〉−

〈uiuj〉
2 ≥ 0, i.e. Schwarz’s inequality is fulfilled. Hence, the model is likely to provide

better performance for flows involving rotation and separation.

In addition, this model generally involves a modification of the ε equation. This

modification involves a production term for turbulent energy dissipation that is not

found in either the standard or the RNG model. The standard k–ε model predicts the

spreading rate in planar jets reasonably well, but poorly predicts the spreading rate

for axisymmetric jets. This is considered to be mainly due to the modelled dissipa-

tion equation. It is noteworthy that the realizable k–ε model resolves the round-jet

anomaly, i.e. it predicts the spreading rate for axisymmetric jets as well as for planar

jets. It is important to realize that this model is better suited to flows in which the

strain rate is large. This includes flows with strong streamline curvature and rotation.

Validation of complex flows, e.g. boundary-layer flows, separated flows and rotating

shear flows, has shown that the realizable k–ε model performs better than the standard

k–ε model.

The k–ω models

Another popular two-equation model is the k–ω model. In this turbulence model the

specific dissipation, ω, is used as the length-determining quantity. This quantity is called

specific dissipation by definition, where ω ∝ ε/k, and it should be interpreted as the

inverse of the timescale on which dissipation occurs. The modelled k equation is

∂k

∂t
+
〈

U j

〉 ∂k

∂x j

= νT

[(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

∂〈Ui 〉

∂x j

]

− βkω +
∂

∂x j

[(

ν +
νT

σk

)

∂k

∂x j

]

(4.78)

and the modelled ω equation is

∂ω

∂t
+
〈

U j

〉 ∂ω

∂x j

= α

ω

k
νT

[(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

∂〈Ui 〉

∂x j

]

− β
∗
ω

2

+
∂

∂x j

[(

ν +
νT

σω

)

∂ω

∂x j

]

, (4.79)

where the turbulent viscosity is calculated from

νT =
k

ω

. (4.80)

An advantage of this model compared with the k–ε model is the performance in regions

with low turbulence when both k and ε approach zero. This causes problems because

both k and ε must go to zero at a correct rate since the dissipation term in the ε equation
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includes ε
2
/k. In contrast, no such problems occur in the k–ω model. Furthermore, the

k–ω model has been shown to reliably predict the law of the wall when the model is used

in the viscous sub-layer, thereby eliminating the need to use wall functions, except for

computational efficiency. The k–ω model proves to be superior in this area due to the

fact that the k–ε model requires either a low-Reynolds-number modification or the use

of wall functions when applied to wall-bounded flows. However, the low-Re k–ω model

requires a very fine mesh close to the wall with the first grid below y+ = 5.

For constant-pressure boundary-layer flow, both the k–ε model and the k–ω model

give good predictions. However, for boundary layers with adverse pressure gradients the

k–ω model is claimed to give better predictions. For further information the reader is

referred to [12].

4.2.5 Reynolds stress models (RSMs)

Turbulence models based on the Boussinesq approximation are inaccurate for flows with

sudden changes in the mean strain rate. This is because history effects of the Reynolds

stresses persist for long distances in turbulent flows due to a relatively slow exchange

of momentum between eddies. Recall that the Boussinesq approximation assumes that

eddies behave like molecules and exchange momentum quickly. In the Reynolds stress

models, the isotropic eddy-viscosity concept, which is the primary weakness of the two

equation models, is not used. Abandoning the isotropic eddy-viscosity concept, the RSM

closes the RANS equations via solution of the transport equations for Reynolds stresses,

τ ij =−ρ〈uiui〉, and for the energy-dissipation rate, ε. The RSM solves one equation for

each Reynolds stress and hence does not need any modelling of the turbulence to the first

order. The Reynolds stress models are nonlinear eddy-viscosity models, and are usually

referred to as second-moment closures (second-order closures) since the only terms

modelled are of third order or higher. The primary advantage of stress-transport models

is the natural approach in which non-local and history effects are accounted for. These

models can significantly improve the performance under certain conditions, since they

account for effects of streamline curvature, swirl, rotation and rapid changes in strain

rate in a more rigorous manner than do the two-equation models. In principle, stress-

transport modelling is a much better approach but the problem is in providing closures

to the extra unknown correlations that arise in the derivation of the exact equations. The

interest in using Reynolds stress-transport equations is also held back by the fact that

these equations are much more expensive to compute, since 6 + 1 additional PDEs are

solved, and they are susceptible to numerical instability since they are strongly coupled.

However, the Reynolds stress model must be used when the flow features of interest are

the result of anisotropy in the Reynolds stresses.

Stress-transport modelling

The stress-transport model solves one transport equation for each Reynolds stress. The

equations describing the transport of Reynolds stresses can be obtained directly from

the Navier–Stokes equations by using the Reynolds decomposition and averaging.
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The complete transport equations for the Reynolds stresses are

∂

〈

ui u j

〉

∂t
︸ ︷︷ ︸

I

+〈Uk〉
∂

〈

ui u j

〉

∂xk
︸ ︷︷ ︸

II

= −

(

〈ui uk〉
∂

〈

U j

〉

∂xk

+
〈

u j uk

〉 ∂〈Ui 〉

∂xk

)

︸ ︷︷ ︸

III

− 2ν

〈

∂ui

∂xk

∂u j

∂xk

〉

︸ ︷︷ ︸

IV

+

〈

p

ρ

(

∂ui

∂x j

+
∂u j

∂xi

)〉

︸ ︷︷ ︸

V

−
∂

∂xk

(

〈

ui u j uk

〉

+ δik

〈

u j p
〉

ρ

+ δ jk

〈ui p〉

ρ

− ν

∂

〈

ui u j

〉

∂xk

)

︸ ︷︷ ︸

VI

.

(4.81)

The terms in Eq. (4.81) represent the following effects.

I. Accumulation of 〈uiuj〉.

II. Convection of 〈uiuj〉 by the mean velocity.

III. Production of 〈uiuj〉, generation rate of the turbulent stresses by mean shear, large

eddies extract energy from the mean flow strain rate.

IV. Viscous dissipation of 〈uiuj〉, dissipation rate of turbulent stresses, whereby turbulent

kinetic energy is transformed into heat.

V. Pressure–strain correlation, which gives redistribution among the Reynolds stresses.

VI. Transport terms, all terms except the last term, which is molecular diffusion, account

for turbulent transport.

Equation (4.81) may be written in the following shorthand notation:

∂

〈

ui u j

〉

∂t
+ 〈Uk〉

∂

〈

ui u j

〉

∂xk

= Pi j − εi j + φi j + di j . (4.82)

The physical interpretation of Eq. (4.82) is that the individual stresses are generated,

convected and dissipated at different rates. Hence, the modelling is at a higher fun-

damental level than the approach of obtaining a turbulent viscosity. Consequently, the

eddy-viscosity hypothesis is not needed, which eliminates one of the major shortcom-

ings of the models described in the previous section. The main difference between the

turbulent kinetic energy and stress equations is term V, which has no equivalent in the k

equation. This term is called the pressure–strain or pressure-scrambling term. The term

acts to redistribute turbulent energy from one stress component to another. This concept

can be shown through a summation of the equations for the normal stresses by using the

continuity of the diagonal elements

φi i =

〈

p

ρ

(

∂ui

∂xi

+
∂ui

∂xi

)〉

= 0. (4.83)

This means that, if the normal stress in one direction is less than that in the other

direction, it will receive energy through φij. Thus, this process can be thought of as
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redistributive, tending to return the turbulence to an isotropic state, with no direct

influence on the level of turbulence energy.

Equation (4.81) gives six equations for the Reynolds stresses. Note that terms I, II and

III are exact in that they contain only the Reynolds stresses and the mean strains. Except

for the first three terms, all other terms must be modelled. Actually, it is possible to derive

a set of equations for the unknowns. However, this will merely introduce higher-order

terms that require closure. Hence, at some level, turbulence models must be introduced

in order to close the set of equations.

The dissipative terms are modelled assuming that they are isotropic since the dissipa-

tive processes occur at the smallest scales,

εi j = 2ν

〈

∂ui

∂xk

∂u j

∂xk

〉

=
2

3
εδi j . (4.84)

Here the energy dissipation, ε, is obtained from its own transport equation.

The contributions from turbulence–turbulence interactions and from mean strains are

usually accounted for in modelling of the pressure–strain term as

φi j =

〈

p

ρ

(

∂ui

∂x j

+
∂u j

∂xi

)〉

= φi j1 + φi j2. (4.85)

Here, φij1 is the slow pressure–strain term which serves to redistribute energy among

the Reynolds stresses and φij2 is the rapid pressure–strain term which counteracts the

production of anisotropy. The term giving a return to isotropy, or slow pressure–strain

term, φij1, is modelled as

φi j1 = −c1ε

(

〈

ui u j

〉

k
−

2

3
δi j

)

(4.86)

and the rapid pressure–strain term, φij2, is modelled as

φi j2 = −c2

(

Pi j −
2

3
Pkkδi j

)

, (4.87)

where

Pi j = −

(

〈ui uk〉
∂

〈

U j

〉

∂xk

+
〈

u j uk

〉 ∂〈Ui 〉

∂xk

)

. (4.88)

The turbulent transport terms are often modelled on the basis of a gradient-diffusion

hypothesis

〈ukφ〉 ∝ −
k

ε

〈ukul〉
∂φ

∂xl

(4.89)

and assuming a negligible pressure-diffusion. Hence, the term is modelled as

di j = −
∂

∂xk

(

〈

ui u j uk

〉

+ δik

〈

u j p
〉

ρ

+ δ jk

〈ui p〉

ρ

− ν

∂

〈

ui u j

〉

∂xk

)

=
∂

∂xk

(

cs

k

ε

〈ukul〉
∂

〈

ui u j

〉

∂xl

)

. (4.90)
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Note that it is good practice to include wall correction terms in the modelled equations

to account for wall reflection effects. Note also that an additional transport equation for

the energy-dissipation rate is solved. Thus, we have a solvable set of equations, e.g.

11 equations for 11 unknowns, 〈Ui〉, 〈uiuj〉, 〈P〉 and ε.

4.2.6 Advanced turbulence modelling

Turbulence models that fall beyond the bounds of the categories presented earlier have

been developed. It is difficult to sum up all the progress in this field in a few sentences;

instead, the interested reader is referred to textbooks on advanced turbulence modelling

for further insight into this exciting area. It should also be mentioned that research in

this area still remains active.

4.2.7 Comparisons of various turbulence models

In the previous sections, we have presented turbulence models that are commonly

encountered in commercial CFD codes. In these sections the physical and mathematical

principles underlying the turbulence models were presented together with discussions

about their limitations. Table 4.4 gives a short summary of the advantages and short-

comings of these models.

In general the turbulence models are developed to predict velocities accurately. The

parameters in the models, e.g. k and ε, may very well be off by a factor of 3. Using

these parameters in other models, e.g. for mixing or bubble break-up, should be done

with the awareness that the parameters do not have exact physical relevance but only

show the trend.

4.3 Near-wall modelling

Most flows of engineering interest involve situations in which the flow is constrained

by a solid wall. Ludwig Prandtl was the first to realize that the relative magnitude of

the inertial and viscous forces changed on going from a layer near the wall to a region

far from the wall. In the early 1900s he presented the theory which describes boundary-

layer effects. The wall no-slip condition ensures that, over some region of the wall

layer, viscous effects on the transport processes must be large. Recall that particular

turbulence models such as the k–ε model are not valid in the near-wall region, where

viscous effects are dominant. Furthermore, rapid variation of the flow variables occurs

within this region. This implies that a very fine computational mesh is required in order

to resolve the steep gradients of the flow variables accurately. Representation of these

processes within a CFD model raises problems. Basically, there are two approaches that

can be used to model the near-wall region. In the first approach the viscosity-affected

near-wall region is not resolved. Instead, wall functions are used to obtain boundary

conditions for the mean velocity components and the turbulent quantities at the first
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Table 4.4 General advantages and disadvantages for different classes of turbulence models

Turbulence model Advantages Shortcomings/limitations

Zero-equation

models, e.g.

mixing-length

model

Cost-effective model applicable for

a limited number of flows.

When ∂U/∂y = 0 ⇒ νT = 0.

Lack of transport of turbulent

scales. Estimation of the mixing

length is difficult. Cannot be used

as a general turbulence model.

One-equation

models, e.g.

k-algebraic

model

Cost-effective model applicable for

a limited number of flows.

The use of an algebraic equation for

the length scale is too restrictive.

Transport of the length scale is

not accounted for.

Two-equation

models, k–ε

group standard,

RNG, realizable,

k–ω and SST

Complete models in the sense that

velocity and length scales of

turbulence are predicted with

transport equations. Good results

for many engineering

applications. Especially good for

trend analysis. Robust,

economical and easy to apply.

Limited to an eddy-viscosity

assumption. Turbulent viscosity

is assumed to be isotropic.

Convection and diffusion of the

shear stresses are neglected.

Standard k–ε The most widely used and validated

model.

Not good for round jets and flows

involving significant curvature,

swirl, sudden acceleration,

separation and low-Re regions.

RNG k–ε Modification of the standard k–ε

model gives improved

simulations for swirling flows and

flow separation.

Not as stable as the standard k–ε

model. Not suited for round jets.

Realizable k–ε Modification of the standard k–ε

model gives improved

simulations for swirling flows and

flow separation. Can also handle

round jets.

Not as stable as the standard k–ε

model.

k–ω model Works well at low Re. Does not

need wall functions. Works well

with adverse pressure gradients

and separating flow.

Needs fine mesh close to the wall,

first grid point at y+
< 5.

SST model Uses k–ε in the free stream and k–ω

in the wall-bounded region.

Works well with adverse pressure

gradients and separating flow.

Many authors recommend that

the SST model should replace the

k–ε model as the first choice.

Needs fine mesh close to the wall.

Overpredicts turbulence in

regions with large normal strain,

e.g. stagnation regions and

regions with strong acceleration,

but is better than k–ε.

Reynolds stress

models, (RSMs)

Applicable for complex flow where

the turbulent-viscosity models

fail. Accounts for anisotropy.

Good performance for many

complex flows, e.g. swirl, flow

separation and planar jets.

Computationally expensive with

11 transport equations. Several

terms in the transport equations

must be closed. Poor

performance for some flows due

to the closures introduced in the

model.
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Table 4.4 (cont.)

Turbulence model Advantages Shortcomings/limitations

Large-eddy

Simulation

(LES)

Applicable to complex flows. Gives

information about structures in

turbulent flows. Gives a lot of

information that cannot be

obtained otherwise.

High computational cost. Large

amount of data that must be

stored and post-processed.

Difficult to find proper

time-resolved boundary

conditions for flow.

DNS No turbulence models are

introduced. Useful at low Re

numbers, especially for gaseous

flows. Useful to develop and

validate turbulence models.

Extreme computational cost for

practical engineering flow

simulations. Huge amount of

data.

grid point far from the wall. The other approach involves modification of the turbulence

models, which allows the viscosity-affected region to be resolved.

4.3.1 Turbulent boundary layers

At a solid wall, the relative velocity between the fluid and the wall is zero. This is

called the ‘no-slip condition’. The relative velocity is zero because molecules, moving

with random motions plus the mean fluid velocity, hit the solid wall and all the relative

momentum is lost, being transferred to the solid wall. Molecules bouncing back into

the flow slow down the fluid in the wall layer. Thus, a ‘boundary layer’ is created.

In this region the velocity increases rapidly from zero at the wall to the free-stream

velocity. Note that boundary layers may be either laminar or turbulent, depending on

the Reynolds number. Turbulent boundary layers, from high Reynolds numbers, are

characterized by unsteady swirling flows inside the boundary layer, which give higher

mass-, momentum- and heat-transfer rates than apply to a laminar boundary layer, which

arises from a low Reynolds number. The efficient momentum transport in turbulent

boundary layers increases the wall shear stress. Thus, at high Reynolds numbers we

encounter turbulent boundary layers, which produce a greater drag. Hence, details of the

flow within boundary layers may be very important in many CFD simulations.

Turbulent boundary layers, of thickness δ, can be divided into an inner region, 0 < y

< 0.2δ, and an outer region, 0.2δ < y < δ, as shown in Figure 4.13.

It is common practice to divide the inner region into sub-layers on the basis of the

relative magnitude of the viscous and turbulent parts of the total shear stress, τ xy,

τxy = ρν

d〈Ux 〉

dy
− ρ

〈

ux u y

〉

. (4.91)

In the innermost layer, the viscous sub-layer, the flow is almost laminar and molecular

viscosity plays a dominant role in momentum transfer. The viscous sub-layer is defined

as the region where the viscous stress is dominant. Near the wall, viscous damping

reduces the tangential velocity fluctuations, while kinematic blocking reduces the normal
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y

Ux,∞

Ux(y)

Outer region

Inner region

Figure 4.13 The boundary layer in a turbulent flow.

Figure 4.14 Sub-layers in the inner region.

fluctuations. Note that the boundary conditions of the velocities, ux, uy → 0 as y → 0,

imply that the Reynolds stresses vanish rapidly as the wall is approached. At the wall

the stress is entirely due to viscous shear,

τw = ρν

d〈Ux 〉

dy

∣

∣

∣

∣

y=0

. (4.92)

In fact, the turbulence in the boundary layer takes its origin from this region. But almost

all turbulent eddies are aligned with the wall, and the effective turbulence perpendicular

to the wall is almost zero in the vicinity of the wall. Further away from the wall, the

viscous and turbulent stresses are equally important. This interim region is the transition

layer often referred to as the buffer layer. At even larger distances from the wall the

turbulent stresses become dominant. This region is called the fully turbulent layer. Here

turbulence plays a major role and viscous effects are negligible. Figure 4.14 shows the

three sub-layers.

It is common practice to express the physical extent of these sub-layers in terms of

wall variables. The characteristic velocity scale for the sub-layers is given by

u∗ =
√

τw/ρ, (4.93)
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Figure 4.15 Near-wall stresses in the inner region of the turbulent boundary layer.

where u* is the wall friction velocity, which is of the same order as the r.m.s. value of

the velocity fluctuations. This allows us to define a characteristic wall length scale as

l∗ = ν/u∗. (4.94)

Note that the Reynolds number based on u∗ and l∗ is equal to one, thus l∗ determines the

domain of the flow which is significantly affected by the viscosity. On the basis of the

characteristic velocity and length scales it is common to use scaled variables to express

the physical extent of the sub-layers:

u+ = U/u∗ (4.95)

and

y+ = y/ l∗ = yu∗/ν. (4.96)

The following classification of the inner region, which is based on experimental inves-

tigations, is commonly used.

(1) Viscous sub-layer 0 < y+
< 5.

(2) Buffer sub-layer 5 < y+
< 30.

(3) Fully turbulent sub-layer 30 < y+
< 400 (y/δ = 0.1–0.2).

The viscous and turbulent stresses, given as functions of the y+ values, are shown in

Figure 4.15. Note that the total shear stress is almost constant over the inner region and

is approximately equal to τw. Thus, this region is often referred to as the constant-stress

layer.

In many situations it is inevitable that the boundary layer becomes detached from

the wall. Boundary layers tend to separate from walls when there is an increasing fluid

pressure in the direction of the flow; this is known as an adverse pressure gradient.

While adverse pressure gradients reduce the wall shear stress through decreasing the

flow velocity close to the wall, separation is often associated with a large increase in

drag. Turbulent boundary layers can prevent or delay separation, thereby reduce the drag

significantly. Thus, numerous methods by which to avoid or delay separation by creating

turbulent boundary layers have been invented. The dimples on a golf ball are a good
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Figure 4.16 Application of wall functions to CFD simulation.

example of this. The interested reader can find more information about boundary-layer

theory in [13].

4.3.2 Wall functions

Wall functions are empirical rules that are based on the logarithmic law of the wall. The

wall functions may be needed in order to avoid having dense meshes in CFD simulations

or they may be needed since particular turbulence models are not valid in the viscosity-

affected near-wall region. The wall functions estimate the velocities 〈Ui〉, k and ε or

〈uiuj〉 in the RANS models in the first cell close to the wall. A wall function is also

used for estimation of temperature, T, and concentration, C, in heat- and mass-transfer

simulations.

Standard wall functions

The basic idea of the wall-function approach is to apply boundary conditions some

distance away from the wall so that the turbulence model is not solved close to the wall.

The wall functions allow calculations to be carried out with the first grid point, P, in

the region where the wall function is valid, rather than on the wall itself, as shown in

Figure 4.16. The boundary conditions are used at P, which represents the first grid point,

and W represents the corresponding point on the wall. Thus, the wall functions allow the

rapid variations of flow variables that occur within the near-wall region to be accounted

for without resolving the viscous near-wall region.

In addition, the use of wall functions obviates the need to modify the turbulence

models to account for the viscosity-affected near-wall regions. The mean velocity in the

inner region of the boundary layer can be formulated in the universal form

〈U 〉+ = f
(

y+
)

. (4.97)

Assuming that the total stress τw is constant and the turbulent part of the total stress

tensor is negligible in the viscous sub-layer, Eq. (4.91) reduces to

τw

ρ

= ν

d〈Ux 〉

dy
. (4.98)
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Figure 4.17 The law of the wall.

Integrating with respect to y and applying the no-slip boundary condition gives

〈Ux 〉 =
τw y

ρν

=
u2

∗y

ν

(4.99)

or in dimensionless form

〈Ux 〉
+ = y+

. (4.100)

In the fully turbulent layer, the total stress tensor reduces to τ xy =−ρ〈uxuy〉. Since

the shear stress is almost constant over the inner region of the boundary layer and is

approximately equal to τw, we obtain

τw = −ρ

〈

ux u y

〉

. (4.101)

By introducing Prandtl’s mixing-length model and the relation l = κy, we obtain

τw

ρ

= −
〈

ux u y

〉

= l2

(

d〈Ux 〉

dy

)2

= κ
2 y2

(

d〈Ux 〉

dy

)2

. (4.102)

Recall that the characteristic velocity scale for the sub-layers is given by u∗ =
√

τw/ρ.

Equation (4.102) can now be written as

u2
∗ = κ

2 y2

(

d〈Ux 〉

dy

)2

. (4.103)

On taking the square root of both sides and integrating with respect to y, we obtain

the logarithmic velocity profile, which in dimensionless form reads

〈Ux 〉
+ =

1

κ

ln
(

y+
)

+ B, (4.104)

where κ ≈ 0.42 and B ≈ 5.0 (κ is the von Kármán constant). Equation (4.104) is referred

to as the logarithmic law of the wall or simply the log law. Thus, in the viscous sub-layer

the velocity varies linearly with y+ , whereas in the buffer sub-layer it approaches the

log law, as shown in Figure 4.17.
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Besides the logarithmic profile for the mean velocity, the wall functions also consist of

equations for the near-wall turbulence quantities. There is no transport of k to the wall,

while ε often has a maximum at the wall, but the derivation of the boundary conditions

for the turbulence quantities is beyond the scope of this book. Note that, in the derivation

of the boundary conditions for the turbulence quantities, it is assumed that the flow is

in local equilibrium, which means that production equals dissipation. The boundary

condition for k is given by

k =
u2

∗

C
1/2
μ

(4.105)

and that for ε by

ε =
u3

∗

κy
. (4.106)

The use of wall functions requires that the first grid point adjacent to the wall is

within the logarithmic region. Ideally, the first grid point should be placed as close

to the lower bound of the log-law region as possible in order to get as many grid

points in the boundary layer as possible. In terms of dimensionless distance, that is

30 < y+
< 100. The wall-function approach saves considerable computational resources

because the viscosity-affected near-wall region does not need to be resolved. The log

law has proven very effective as a universal function for the inner region of the flat-

plate turbulent boundary layer and it has been verified experimentally in numerous

studies. Wall functions can successfully be used in many CFD simulations, and most

CFD programs adjust the wall function accordingly when y+
< 30, but y+

> 300 should

be avoided. However, doubts can be raised about the validity of wall functions under

conditions such as strong pressure gradients and separated and impinging flows. Under

such conditions the quality of the predictions is likely to be compromised. This does

not mean that such flows cannot be simulated, rather that standard wall functions are

not an appropriate choice. In the following sections we will introduce non-equilibrium

wall functions and also a near-wall modelling approach whereby the viscous sub-layer

actually is resolved.

Wall functions for non-equilibrium turbulent boundary layers

Non-equilibrium turbulent boundary layers are boundary layers that have been perturbed

from the normal flat-plate boundary-layer state. Recall that the log law for the normal

flat-plate boundary layer was derived under the assumption of constant shear. A local

equilibrium between production and dissipation was also assumed in the derivation of the

turbulence quantities. Thus, difficulties arise in applying standard wall functions when

the simplifying assumptions upon which the wall functions are based are not applica-

ble. Constant shear and the local-equilibrium hypothesis are therefore the conditions

that most restrict the universality of the standard wall functions. In a boundary layer

experiencing an adverse pressure gradient, the fluid closest to the wall is retarded due

to the pressure increase in the streamwise direction. As a result, the wall shear stress is

decreased. Consequently, adverse pressure gradients alter the mean velocity profile as
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Figure 4.18 (a) Flow separation with a recirculation zone and a reattachment point. (b) Impinging

flow.

well as the turbulence in the boundary layer. This means that, when the pressure gradient

is strong enough, the logarithmic boundary-layer representation (the log law) cannot be

used. Hence, for several flow conditions, e.g. flow separation and reattachment, strong

pressure gradients and flow impinging on a wall (Figure 4.18), the flow situation departs

significantly from the ideal conditions and the accuracy of the standard wall functions

is low.

Modified wall functions that are capable to some extent of accounting for the effects of

pressure gradients and departure from equilibrium have been developed. By using such

modified wall functions for non-equilibrium boundary layers, improved predictions can

be obtained. These wall functions typically consist of a log law for the mean velocity,

which is sensitized to pressure-gradient effects. Boundary conditions for the turbulence

quantities are derived using methods whereby the equilibrium condition is relaxed. Thus,

these modifications further extend the applicability of the wall-function approach and

allow improvements to be obtained for complex flow conditions.

4.3.3 Improved near-wall modelling

Improved modelling of wall-bounded flows can be achieved using a two-layer zonal

approach or using low-Reynolds-number turbulence models. These techniques permit

the governing equations to be solved all the way to the wall, thereby eliminating the

use of wall functions and hence improving the wall shear-stress and wall heat-transfer

predictions. Obviously resolution of the near-wall region including the viscous sub-layer

requires a very fine near-wall grid resolution. Hence, this modelling approach requires

a large amount of computational power compared with the wall-function approach.

Two-layer zonal modelling

In the two-layer zonal approach, the domain is divided into two zones or regions, as the

name implies. These two regions may be identified by the wall-distance-based Reynolds

number

Rey = y

√
k

ν

, (4.107)

where y is the distance to the nearest wall.
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The fully turbulent region is normally taken to have Rey > 200 and the viscosity

affected region to have Rey < 200. In the viscosity-affected near-wall region, a one-

equation turbulence model for the turbulent kinetic energy is applied and an algebraic

relation is used to determine the energy-dissipation rate. In contrast, a two-equation

model such as the standard or more advanced k–ε model is employed in the fully

turbulent region. Thus, in the viscous zone the energy dissipation is calculated from

ε =
k3/2

lε
, (4.108)

where lε is an appropriate length scale.

It is common practice to use a blending function to calculate the turbulent viscosity in

the transition region. This function simply blends the turbulent viscosity in the viscosity-

affected region with the turbulent viscosity in the turbulent region to obtain a smooth

transition. Thus the blending function is defined as unity far from the wall and zero

at the wall. The two-layer zonal approach requires approximately the same boundary-

layer resolution as in the low-Reynolds-number approach. Since the energy dissipation

is calculated from an algebraic equation, this approach may be more stable than the

low-Reynolds-number approach.

Low-Reynolds-number turbulence models

One way of characterizing turbulence models is to distinguish between high- and low-

Reynolds-number models. In the former, wall functions are used to approximate turbu-

lence quantities close to walls. The standard k–ε model is an example of a high-Reynolds-

number model. Whereas high-Reynolds-number models are valid for turbulent core

flows, they are not valid in regions close to walls, where viscous effects predominate

over turbulent ones. Low-Reynolds-number models are examples of models that are

valid also in the viscous wall region and can thus be integrated all the way to the wall.

The low-Reynolds-number modifications typically consist of damping functions for

the source terms in the transport equation for ε and in the expression for the turbulent

viscosity. These modifications allow the equations to be integrated through the turbulent

boundary layer, including the viscous sub-layer, thereby giving better predictions for

near-wall flows. It is important to point out that these models are applicable for flows

with high global Reynolds number wherein the flow is fully turbulent. These models

are not useful for solving flows with low global Reynolds numbers. For that a transition

model is needed. It should also be noted that these models are of ad-hoc nature and cannot

be relied upon to give consistently good results for all types of flows. Low-Reynolds-

number variants of the k–ε model include the Launder–Sharma and Lam–Bremhorst

models.

For low-Reynolds-number models, the general transport equations for k are given by

∂k

∂t
+
〈

U j

〉 ∂k

∂x j

=
∂

∂x j

((

ν +
νT

σk

)

∂k

∂x j

)

+ νT

[(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

∂〈Ui 〉

∂x j

]

− ε

(4.109)
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and the general transport equations for ε are given by

∂ε̃

∂t
+
〈

U j

〉 ∂ε̃

∂x j

=
∂

∂x j

((

ν +
νT

σε

)

∂ε̃

∂x j

)

+ C1ε f1νT

ε̃

k

[(

∂〈Ui 〉

∂x j

+
∂

〈

U j

〉

∂xi

)

∂〈Ui 〉

∂x j

]

− C2ε f2

ε̃
2

k
+ E, (4.110)

where the turbulent viscosity is calculated from

νT = fμCμ

k2

ε̃

(4.111)

and the energy dissipation, ε, is related to ε̃ by

ε = ε0 + ε̃. (4.112)

The quantities ε0 and E are defined differently for each model; ε0 is the value of ε

at the wall. The difference between these models and the standard k–ε model is the

damping functions f1 and f2 in the transport equation of ε and the damping function fμ.

The damping functions are generally written in terms of specifically defined Reynolds

numbers

Ret =
k2

νε

(4.113)

and

Rey =

√
ky

ν

. (4.114)

Obviously the global Reynolds number has nothing to do with the low-Reynolds-

number turbulence models. The low Reynolds number comes from the local Reynolds

number.

4.3.4 Comparison of three near-wall modelling approaches

As has already been pointed out, the near-wall treatment determines the accuracy of the

wall stresses and of the near-wall turbulence prediction. Hence, appropriate near-wall

turbulence modelling is crucial in order to capture important flow features such as flow

separation, reattachment and heat- and mass-transfer rates. Figure 4.19 illustrates the

implementation of the three near-wall treatment approaches mentioned in the previous

sections.

The general recommendation for a standard wall function is 30 < y+
<100, preferably

in the lower region. At high Re the log law is valid up to higher y+ and the upper limit

may increase to 300–500. For low-Re models and enhanced wall functions the first

grid point should be close to y+ =1, and there should be at least ten grid points in the

viscosity-affected near-wall region, i.e. y+
< 20.

The lengths corresponding to y+ =1 and y+ = 30 for pipe flows at various Reynolds

numbers are given in Table 4.5 to give a feeling for the actual dimensions.
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Table 4.5 Physical lengths corresponding to y+ for flow through a

smooth pipe, as a function of the Reynolds number

Re y+ = 1 y+ = 30

5000 145 µm 4.4 mm

50 000 20 µm 0.60 mm

500 000 2.5 µm 0.075 mm

5 000 000 0.30 µm 0.0090 mm

Table 4.6 A summary of near-wall modelling approaches

Modelling approach Physics Grid requirements Numerics

Wall functions − + +

Low-Reynolds-number

modifications

+ / − − + / −

Zonal modelling + / − − +

Figure 4.19 Illustrations of various near-wall treatment approaches: (a) the wall function; (b) the

two-layer zonal approach; (c) low-Reynolds-number modifications.

It might not always be apparent what near-wall modelling approach to use in a

certain simulation. As with the choice of selecting an appropriate turbulence model, the

choice among the near-wall modelling approaches is strongly coupled to the physics

of the particular flow and the computational resources available. The general pros and

cons of the three approaches illustrated in Figure 4.19 are summarized in Table 4.6.

This table indicates the level of physics involved, the computational power required

and the numerical difficulties involved in implementing the three near-wall modelling

approaches in CFD simulations.

4.4 Inlet and outlet boundary conditions

Simulation of turbulent flows requires knowledge of the turbulent quantities at all

boundaries where the flow enters the computational domain. For a two-equation
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Figure 4.20 Velocity and turbulence properties in a cross-section of a pipe at Re = 200 000.

turbulence model, such as the k–ε model, both the turbulent kinetic energy and the

energy-dissipation rate should be specified. However, since it is the specification of the

turbulence timescales, velocity scales and length scales entering the domain that defines

the turbulence, it need not necessarily be the values of the turbulent kinetic energy and

its dissipation rate that are specified. Instead of specifying these values, the boundary

conditions are often specified in terms of the turbulence intensity, which is defined by the

ratio of the fluctuating component of the velocity to the mean velocity, and a character-

istic turbulence length scale. For internal flows, a turbulence intensity of 5%–10% and

a length scale of 1%–10% of the hydraulic diameter are usually appropriate. Specifying

boundary conditions for the Reynolds stress transport model is more difficult than for

two-equation models, since all the stresses must be specified. If these are not available

turbulence could be assumed to be isotropic at the inlet, i.e. zero shear stresses and

the normal stresses given by 2
3
k. Always select boundary conditions with care since

inconsistent boundary conditions may cause unrealistic reduction of the turbulence after

the inlet, or turbulence may flow through the entire domain without changing.

Velocity and turbulence are usually not constant at the inlet and outlet, but depend

both on upstream and on downstream conditions. The inlet and outlet should be located

as far away from the region of interest as possible so that the approximations under the

given conditions will not affect the results of the simulations. Figure 4.20 shows the

radial variation of velocity and turbulence properties in a pipe at Re = 200 000. Using

the average properties for velocity, i.e. U =1 m s−1, is reasonable but k and ε have large

radial variation and average values will not describe the actual inlet conditions. A better

approximation is to use the turbulence intensity and turbulence length scale.
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The turbulence intensity for a pipe at high Reynolds number can be estimated from

I =
u

〈U 〉
= 0.16Re−1/8 (4.115)

and the turbulence length scale is given by

l = 0.07L , (4.116)

where L is the hydraulic diameter and U the average velocity. It is then possible to

estimate k and ε from

k =
3

2
(〈U 〉)2 and ε = C3/4

μ

k3/2

l
. (4.117)

4.5 Summary

Turbulence is of considerable importance in most flows of engineering interest, so

turbulence modelling is one of the key elements to successful CFD simulations. In this

chapter the physical and mathematical principles underlying turbulence modelling were

explained. The purpose of this chapter was, besides providing a survey of turbulence

models, also to indicate their validity and limitations in various applications. Even

though we have far from exhausted all aspects, this chapter serves as an overview of

turbulence modelling. Readers who are particularly interested in turbulence modelling

are encouraged to turn their attention to the references given in this book for more

in-depth discussions of this subject.

Questions

(1) Discuss why turbulence has to be modelled.

(2) Explain the origin of the Reynolds stresses in the RANS equations and explain

what is meant by the closure problem.

(3) Explain what is meant by the Boussinesq approximation.

(4) What limitations does the Boussinesq approximation impose on a turbulence

model?

(5) Discuss the application of zero-, one- and two-equation models.

(6) Discuss the differences between Reynolds stress modelling and eddy-viscosity-

based modelling.

(7) Explain what is meant by large-eddy simulations.

(8) Explain what is meant by wall functions, why they are used and when it is appro-

priate to use them.

(9) Discuss how the near-wall treatment can be improved, i.e. when the wall-function

approach is not appropriate.

(10) Discuss what turbulence boundary conditions it is appropriate to use.
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5 Turbulent mixing and
chemical reactions

The purpose of this chapter is to give an introduction to problems faced by engineers

wanting to use CFD for detailed modelling of turbulent reactive flows. After reading

this chapter you should be able to describe the physical process of turbulent mixing

and know why this can have an effect on the outcome of chemical reactions, e.g.

combustion. The problem arises when the grid and time resolution is not sufficient to

resolve the concentration and the average concentration in the cells is a poor estimation

of the actual concentration as shown in Figure 5.1. The local concentration changes fast,

and we need models that can predict the space- and time-average reaction rate in each

computational cell.

The average concentration in a computational cell can be used to describe macromix-

ing (large-scale mixing) in the reactor and is relatively straightforward to model. The

concentration fluctuations, on the other hand, can be used to describe micromixing

(small-scale mixing on the molecular level). To quantify micromixing, the variance of

the concentration fluctuations is used. Chemical reactions can take place only at the

smallest scales of the flow, after micromixing has occurred, because reactions occur

only as molecules meet and interact. An expression for the instantaneous rate of chem-

ical reactions is often known for homogeneous mixtures. However, the average rate

of chemical reactions in a reactor subject to mixing will depend also on the rate of

micromixing.

In modelling fast reactions it is not sufficient to know the time-average concentration

since at a specific position only one of the reactants may be present for some fraction

of the time and no reaction will occur. The models for the average reaction rate make

use both of the average concentrations and of the variance. The time average alone will

not tell us whether both reactants were present simultaneously. A large variance tells us

that the instantaneous concentration is far from the average and the probability that both

reactants are present is low, whereas a small variance tells us that the concentrations

of both reactants are close to the average and there is a high probability that both are

present simultaneously. Hence, it is of great importance to understand that the average

and variance represent macromixing and micromixing on the largest and smallest scales

of the flow, respectively. In this chapter we will present the tools required to describe the

flow and simulate concentration variations using probability density functions (PDFs),

and use them to calculate average reaction rates.
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Figure 5.1 The instantaneous concentration field in a turbulent flow.

5.1 Introduction

Mathematical modelling of turbulent reactive flows is of great interest for a wide variety

of applications in chemical-process engineering and combustion engineering. In chemi-

cal engineering a reactor serves, among other things, to mix species in an effort to obtain

a desired reaction. It has been realized that the way in which reactants are mixed can

actually be very important for the outcome of mixing-sensitive reactions. Only recently

have efficient and reliable mathematical models that are able to incorporate these effects

of mixing been developed. More exactly, these models are able to describe the initial

mixing between fluids accurately, which can be of crucial importance. In this regard CFD

is an invaluable tool since the whole reactor, including the injection, can be discretized

and modelled in great detail.

Nonetheless, the process industry has been rather slow at taking advantage of this

fact, and highly advanced CFD models are not very often used in the development of

chemical reactors. In mechanical engineering there has always been a greater incentive

for development, since there is here a major economical benefit to be derived from even

the slightest improvement of a turbulent combustion engine. There are also a wider

range of utilities (e.g. diesel engines, spark-ignition engines, furnaces, gas turbines),

more severe reacting conditions and generally more stringent regulations for pollution,

forcing improvements of existing tools. Of interest to the engineer is the fact that the bulk

of the mathematical models derived for non-premixed turbulent gaseous combustion are

equally valid for the liquid flows more commonly encountered in the process industry.

However, the relative success of a CFD analysis will be completely reliant on the

accuracy of the mathematical model used for describing the underlying physics. Fur-

thermore, as will be shown in this section, there will always have to be a certain level

of modelling, since the physics of turbulent reactive flows is too complex to be fully

resolved from first principles. In general there will have to be a trade-off between level
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of description and computational efficiency, in a hierarchy of models. In fact, the more

of the flow is modelled, the less expensive the computations will be.

The highest-level mathematical descriptions of a turbulent reactive flow use only

first principles and no modelling, i.e. direct numerical simulation (DNS). However, this

approach is completely impractical for all industrial applications due to the enormous

computational cost. The next-level large-eddy simulation (LES) models only the smallest

scales of the flow (molecular mixing and chemical reactions), whereas the lowest level

computes only statistical properties. Except for the highest level, the calculations are in

general still not accurate enough to make experiments superfluous. However, for many

systems there are models available that can give at least reasonably reliable predictions,

completely without the aid of experiments. Still, it is our firm belief that the optimal

design of a chemical reactor or combustion unit will be achieved through a balanced

unification of experience, experiments and simulations.

The most common application area for reactive-mixing models is in turbulent com-

bustion. The problem of mixing and reaction is exactly the same in combustion as in

chemical reactors, but one must also take into account the sometimes large density and

temperature fluctuations in combustion. This complicates the mathematical description

and sometimes requires models that are used only for combustion. In combustion it

is also common for the species to be premixed, whereupon reactions start only after

ignition. This exact problem is not encountered in chemical reactors. In what follows we

will assume that the reactants are initially separated (non-premixed), that the heat release

from the reactions is small (so that the temperature fluctuations will be negligible) and

that the density is constant. We will address only pure reaction-and-mixing problems,

i.e. problems in which turbulent mixing has a direct effect on the outcome of chemi-

cal reactions. This is commonly referred to as the turbulence-chemistry effect. Hence

we will not discuss more classical reaction problems involving more than one phase,

e.g. packed beds, monoliths, reactive distillation etc.

5.2 Problem description

Danckwerts (in 1958) was the first chemical engineer to study the influence of mixing on

the evolution of chemical reactions. Danckwerts established that for some reactions the

way in which species were mixed could severely affect the product selectivity. This was

in sharp contrast to reactor models routinely used by chemical engineers that neglected

the effects of mixing, e.g. ideal batch, perfectly mixed continuously stirred tank reactors

or plug flow. However, far from all reactions are mixing-sensitive, and these reactor

models still serve a purpose in the process industry. In general, if chemical reactions

are slow, mixing has no influence on the mean rate of reaction and the 1D ideal reactor

models suffice. This follows since the reactants will be well mixed on the smallest scales

(micromixing will be complete) before substantial reactions can occur. The only real

problem is then that of how to obtain an accurate rate expression for the chemistry.

When the typical time required for mixing is of the same order as, or longer than, the

typical time required for reactions, mixing models must be introduced to describe the
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physics and to get realistic results for selectivity calculations. Furthermore, fast reactions

depend very much on how reactants are mixed and on the geometry of the reactor. CFD

simulations are then necessary for sufficient accuracy.

To illustrate the main problem in modelling of reactive flows, consider a single

irreversible reaction leading to some products:

A + B k1−→ products. (5.1)

The chemical reaction rate is now assumed to be second order with rate constant k1.

Mathematically this can be represented as

SA = SB = −k1CACB. (5.2)

In statistical modelling of turbulent reactive flows one is interested in the average, not

the instantaneous, rate of the chemical reactions. For this reason it is common to introduce

Reynolds decomposition (see Section 4.2.3) of the instantaneous concentration into its

mean and fluctuating parts. Representing the average with angle brackets and fluctuation

about the average with primes, the instantaneous concentration can be decomposed as

Cα = 〈Cα〉 + C′
α. Inserting for this in Eq. (5.2) and taking the average leads to the

following expression for the average reaction rate:

〈SA〉 = 〈SB〉 = −〈k1CACB〉 = −k1

(

〈CA〉〈CB〉 +
〈

C ′
AC ′

B

〉)

. (5.3)

The time-averaged concentrations 〈CA〉 and 〈CB〉 are easily available in the simulations,

but the covariance of the fluctuating components 〈C′
AC′

B〉 is the major problem in mod-

elling of turbulent reactive flows. Note that for slow reactions that term will be zero,

since there will be no fluctuations left when the reactions start to occur, i.e. micromixing

will be complete and the mixture will be homogeneous. Hence for slow reactions there

is no turbulence-chemistry effect and Eq. (5.3) will be closed. Since fast chemical reac-

tions occur during the early stages of mixing, there will during the course of reactions

be large local concentration fluctuations, as illustrated in Figure 5.2. In Figure 5.2 there

are large areas containing only A or only B, where no reactions can occur. The reactions

occur only when A and B are present simultaneously, and here the term 〈C′
AC′

B〉 can be

significant.

The term 〈C′
AC′

B〉 is the reactive-mixing analogy to the Reynolds stress uiuj. We

know from Chapter 4 that the convective Reynolds stress usually can be modelled as a

diffusion process, due to the chaotic nature of turbulence. In other words, diffusion is

used to model convection. Unfortunately, there is no such analogy known for 〈C′
AC′

B〉. In

fact, it has been proven that in general it is not possible to model 〈C′
AC′

B〉 using merely

the average (macroscale) concentrations 〈CA〉 and 〈CB〉, their gradients or the rate of

mixing, which complicates matters significantly. In other words, it has been realized that,

for sufficient accuracy in modelling of chemical reactions, greater levels of complexity

are necessary than for pure flow computations. Since the complexity is so high, we will

not go into great detail or give a complete review of the current state of the art. Instead,

we will first discuss the nature of reactive mixing and then discuss the simplest models

that can be incorporated into commercial CFD software.
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Figure 5.2 Mixing across an interface. (a) Concentration profiles across an interface between

fluids A and B at the position shown with the thick white line in (b). (b) An instantaneous image

of mixing between A and B in a turbulent flow field. The image is 2 mm × 2 mm. ηB ≈ 3 µm and

ηK ≈ 150 µm (see Section 5.4), which gives a diffusion distance of about ηK.

5.3 The nature of turbulent mixing

Mixing is the process that acts on initially separated (non-premixed) fluids, resulting in

a final homogeneous mixture. When white milk is poured into a cup of black coffee,

the result will eventually be a new homogeneous, brown mixture. If the cup is initially

stirred with a spoon the mixing time can be seconds. However, without stirring the milk

can take several minutes to blend in. In other words, stirring can significantly increase

the rate of mixing.

The nature of reactive mixing is quite easily understood once you realize that it is

all about getting molecules to meet and interact. The most efficient way to achieve

this is generally through agitation (stirred tanks) or simply by creating a high enough

velocity to obtain turbulence (pipe flow). Either way, the main objective is to achieve

turbulence. First of all the mean flow and the largest scales of turbulence lead to efficient

macromixing, i.e. the reacting components can be quickly distributed over the whole

reactor geometry. Hence, macromixing is mixing on the largest scales of the reactor.

However, chemical reactions occur at the smallest scales of the flow where molecules

meet and diffusion is important. In fluid mixing, turbulence is the process that acts on

a fluid element, causing continuous deformation and stretching (to reduce the size of

fluid elements) followed by engulfment, which occurs at the very smallest scales and

significantly increases the interface area between the fluid element and the bulk. At

the smallest scales the reacting components from different fluid elements diffuse into

contact and thus reaction can occur.

Understanding what happens at the interfacial area between mixtures is thus of great

importance. It is known from experiments that fluid elements in turbulent flows align in

layers of lamellas where the concentrations across an interface can be well approximated

mathematically with an error function. Figure 5.2(b) shows an instantaneous snap-shot
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of binary mixing between fluids A and B in a turbulent flow field. The size of the

measured volume corresponds to a computational cell in CFD, and it is evident that

the average concentration in a computational cell will give a poor description of the

concentration during mixing and fast chemical reactions. The theoretical concentrations

and mixing rate (scalar dissipation rate) across an interface are presented in Figure 5.2(a)

with error functions. At the smallest scales in Figure 5.2(a) only diffusion is important

for the mixing process. Turbulence quickly increases the interfacial area between fluid

elements and thus reduces the required diffusion distance, so that the required diffusion

time will be small. If turbulence is intense, diffusion will limit the rate of mixing, and

vice versa if the intensity is too low.

It is of great importance to estimate whether mixing can be a rate-limiting step in

the process. The mixing time must then be compared with a timescale for reaction. A

quantity that compares the timescale of chemical reactions with the timescale of mixing

is the Dahmköhler number (Da):

Da =
Typical time required for mixing

Typical time required for chemical reactions
. (5.4)

The time for mixing is described in the following equation and the typical time for

chemical reactions can be estimated with Cα as the concentration of the limiting reactant:

τ =
Cα

r
=

Cα

kCαCβ

=
1

kCβ

.

There are three possible outcomes from analysis of the Dahmköhler number:

(1) Da ≪ 1. Reactions are slow compared with the rate of mixing. In other words, the

reactor will have a homogeneous mixture (no segregation) before any substantial

reaction can take place. The concentrations in the computational cells are sufficiently

well described by the average concentration in the cell. For this scenario standard

chemical-reactor models such as the plug-flow reactor or the continuously stirred

tank reactor may suffice.

(2) Da ≫ 1. Reactions are very fast or instantaneous, e.g. acid–base reactions, ion–ion

reactions and some gaseous combustion reactions. This problem often benefits from

CFD modelling since the common reactor models are inapplicable. Furthermore,

since the reactions are instantaneous, it can be shown that studying the evolution

of a conserved scalar suffices to get a complete description of the problem (see

Section 5.5.2). A conserved scalar is an inert, or passive, tracer, and it is is much easier

to study the conserved scalar than reactive species because the (usually nonlinear)

chemical reaction rate need not be modelled.

(3) Da ≈ 1. The timescales for reaction and mixing are of the same order of magnitude.

This scenario is by far the most difficult and requires complex modelling for accurate

predictions of the mean chemical reaction rates. The case cannot be described by

traditional reactor models. Engineers have commonly solved this problem by using

Lagrangian micromixing models. However, these models neglect inhomogeneities

and reactor geometry.
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In modelling of cases (2) and (3) the most successful CFD models calculate first the

mixing of a conserved scalar to predict the intensity of segregation of the mixture (the

state of mixedness). This information can further be used to obtain closures for the

mean chemical reaction rate. When reading Section 5.4 it is important to remember that,

even though we are addressing only a conserved scalar, prediction of the mean chemical

reaction rate is the overall main objective.

5.4 Mixing of a conserved scalar

To estimate the Dahmköhler number it is necessary to get an idea of the relevant length

scales and timescales for mixing and reactions in the system concerned. These scales

can be found from simulations of the flow field (the turbulence variables k and ε are

usually sufficient) with some model taken from Section 4.2, or from experiments. It is,

for example, possible to measure the pressure drop over a chemical reactor and from

this estimate the corresponding average rate of energy dissipation. It is also necessary

to gain knowledge of the rate expressions for the chemical reactions (like Eq. (5.2))

and the diffusivity of the reacting species. The smallest length scales and timescales

that are important for chemical reactions are generally not the same as for the flow (see

Chapter 4 about the Kolmogorov scales). This follows since the molecular diffusivity of

species in liquids is usually much lower than the kinematic viscosity of the fluid. The

smallest relevant length scale for reacting flows will be the average distance a molecule

diffuses during the Kolmogorov timescale. This scale is characterized by the Batchelor

length scale ηB, which is represented as

ηB = Sc−1/2
ηK. (5.5)

The Schmidt number Sc describes how fast transport of momentum is relative to the

transport of molecules (Sc = ν/D). For gases the Schmidt number is approximately unity

and the Batchelor scale more or less equals the Kolmogorov scale. For water-like liquids

and not-too-large molecules, the Schmidt number is usually close to 1000. The Schmidt

number is high for liquids since momentum can be transported by collisions of molecules,

whereas molecular diffusion represents the movement of individual molecules.

5.4.1 Mixing timescales

The stages of mixing during which fluid elements are deformed and reduced in size

followed by molecular diffusion are referred to in combination as micromixing. The

initial step, i.e. deformation and stretching, is referred to as inertial–convective mix-

ing since the fluid elements are merely transported from large eddies to small eddies

through convection. The timescale for this process is merely the inverse of the rate of

mixing. Hence, modelling of timescales and modelling of mixing rates are equivalent,

the timescale used for describing inertial–convective mixing being

τIC = θ

k

ε

, (5.6)
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where θ is a constant commonly set to 0.5. There is no Schmidt-number dependence

since viscosity and diffusion are not relevant. For gases (Sc ≈ 1) this single timescale

suffices for a complete description of the mixing process.

At scales just below ηK convective and viscous mixing are of the same order of

magnitude, whereas diffusion is still too slow to interfere for Sc ≫ 1. Mixing on this scale

is commonly referred to as engulfment or viscous–convective mixing. The timescale for

engulfment is often determined by

τVC = 17.25

√

ν

ε

. (5.7)

The final stage of mixing during which all spatial gradients disappear and a homogeneous

mixture is obtained occurs near the Batchelor scale. Mixing at this scale is referred to as

viscous–diffusive mixing since both viscosity and diffusion are important. The timescale

for viscous–diffusive mixing is given as

τVD =
τVC

0.303 + 17 050Sc−1
, (5.8)

which is proportional to the viscous–convective timescale, but with a Schmidt-number

dependence.

Typical average data for a large stirred-tank reactor with water at room temperature

are k ≈ 0.05 m2 s−2 and ε ≈ 1 W kg−1, giving τ IC = 25 ms, τVC = 17 ms and τVD ≈

1 ms. Only fast reactions in which a noticeable amount has reacted within 1 s need to

be modelled using mixing models. The mixing time for the reactor, i.e. the time taken

to reach the same concentration in the whole reactor, is of the order of minutes, and the

ideal stirred-tank reactor may still be a poor model. The local rate of dissipation around

the impeller is an order of magnitude higher than the average, and good mixing for fast

reactions can be obtained when the reactants are added in the impeller region and the

opposite behaviour is obtained close to the reactor surface.

The characterization of timescales for mixing described in this section is only one

of several suggestions that have appeared in the literature. However, all mixing models

are similar insofar as one must make use of the same parameters that are available from

flow-field computations (ν, k, ε and Sc). The important lesson is that you now have

some tools that can be used to get a first understanding of the problem at hand, through

describing the reactions as slow, fast or instantaneous compared with mixing. You can,

for example, use the knowledge from this section to determine the local rate of mixing

in a stirred tank, which is important for finding the optimal position for injection of a

reactant. Usually it is most efficient to inject where the rate of mixing is fastest, e.g. in

the impeller region.

5.4.2 Probability density functions

In modelling of reactive mixing a very important tool is the probability density function

(PDF) of a mixture fraction (a conserved scalar, i.e. a non-reacting species). The mixture

fraction ξ (x, t) is defined for binary mixtures (mixtures with two inlets) as unity for one

inlet stream and zero for the other. The name mixture fraction is thus logical since it
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Figure 5.3 Mixing in pipe flow.

Figure 5.4 Measurements of the mixture fraction at a position in the mixing zone in Figure 5.3. (a)

Raw data. (b) Histogram (PDF) of the instantaneous measurements. Here the solid line

represents the beta-PDF with mean and variance taken from the experiment. The bars represent

the experimental data.

describes how large a fraction of the flow at a certain point has historically come from

the injection with a value of unity. Consider an injection in the centre of a turbulent

pipe flow (Figure 5.3). This figure shows the instantaneous concentration of the mixture

fraction at the injection. If you measure continuously at any (infinitesimally small) point

in the pipe, you will obtain a time series of concentrations as shown in Figure 5.4.

Figure 5.4(a) shows the raw data with all the characteristics of a chaotic turbulent flow.

Like all turbulent measurements, the data will make sense only when some averaging

procedure is performed. Figure 5.4(b) shows the histogram, or probability density, of

the raw data.

The PDF ϕ is defined as the probability of measuring a certain concentration η of the

tracer:

ϕ(η)dη ≡ probability of {η ≤ ξ ≤ η + dη}, (5.9)
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where η is a sample-space variable for ξ . A sample space is the collection of all possible

outcomes of an event. A variable used to describe a single event in sample space is

a sample-space variable. In mixture-fraction space η is thus the sample-space variable

used to describe the real event ξ .

The sample space of the mixture fraction spans from zero to unity, as shown in

Figure 5.4(b), since these two extremes represent pure mixtures. A logical effect of

mixing is that the mixture fraction cannot take on values outside this range. For a single

bin in the histogram of Figure 5.4(b), dη is chosen to have the discrete value of 0.05, but

for a continuous PDF dη → 0. By definition the integral of the PDF must equal unity:

1
∫

0

ϕ(η)dη = 1. (5.10)

For the discrete histogram the integral is defined as the summation over all the bins:
∑

bins

ϕ(η)dη = 1. (5.11)

Another way to think of the PDF is that it describes the fraction of time that the mixture

fraction spends in the state η, i.e. the fraction of time a certain concentration or mixture

fraction is observed.

The PDF contains all single-point information of the mixture fraction. Given the PDF,

all mixture fraction moments (mean, variance, skewness etc.) can be found by integration

over mixture-fraction space. The mean 〈ξ 〉 and variance σ
2 (second central moment) of

the mixture fraction are defined through the PDF as

〈ξ 〉 =

1
∫

0

ηϕ(η)dη and σ
2 =

1
∫

0

(η − 〈ξ 〉)2
ϕ(η)dη. (5.12)

It can be seen from Figure 5.4(b) that for this particular PDF the probability of measuring

a mixture fraction close to the mean is relatively large. In other words, the variance is

small. What happens during mixing is that the variance will gradually decrease until

eventually the mixture is homogeneous, the variance will be zero and the PDF can be

described by a single delta-function. In Figure 5.5 the evolution of the PDF for mixing

in a homogeneous turbulent flow field with a presumed beta-PDF as a model for ϕ (the

mean mixture fraction will be constant and the variance will decrease exponentially in

time) is shown. The beta-PDF uses the mean and variance of the mixture fraction to give

a continuous distribution. The beta-PDF ϕB is defined as

ϕB(η; a, b) =
η

a−1 (1 − η)b−1

B(a, b)
, (5.13)

A semicolon is used to denote that η is a sample-space variable, whereas a and b are fixed

parameters. The coefficients are easily calculated from the average ξ and the variance

σ
2 as

a = 〈ξ 〉

[

〈ξ 〉(1 − 〈ξ 〉)

σ
2

− 1

]

, b =
1 − 〈ξ 〉

〈ξ 〉
a (5.14)
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Figure 5.5 Mixing in homogeneous turbulence as described with the beta-PDF. 〈ξ〉 = 0.5.

and B(a, b) is given by the gamma-function Ŵ that can be found in most mathematical

tables:

B(a, b) =

1
∫

0

sa−1(1 − s)b−1ds =
Ŵ(a) Ŵ(b)

Ŵ(a + b)
. (5.15)

It can be seen from Figure 5.5 that the PDF from the experiment nearly coincides with

the presumed beta-PDF. This simple observation (that the shape of the beta-PDF nearly

resembles the experimentally observed shape of the mixture-fraction PDF) has been used

extensively in many closures for reactive flows. There is still no theoretical justification

for using the beta-PDF, though, but it is known to give a very good description of mixing

in homogeneous flows. For inhomogeneous flows the accuracy is known to be worse, and

it is not necessarily a good approximation. Inhomogeneous flows have significant spatial

gradients of the calculated properties. In other words, convection and diffusion cannot

be neglected in the governing equations. It is generally possible to obtain homogeneous

flows only in laboratories or in numerical experiments (DNS).

Nonetheless, the presumed beta-PDF is the most extensively used PDF even for

inhomogeneous flows. The advantage with the beta-PDF is that it is a function only of

the average ξ and the variance σ
2, and only ξ and σ

2 must be simulated in order to

obtain the PDF. Note that the beta-PDF can be accurate only when there are two distinct

inlet streams. Consider a case of three separate inlets. One stream has pure tracer

(ξ = 1), one stream has only water (ξ = 0) and the last is a diluted-tracer stream (e.g. a

recirculation stream with ξ = 1
2
). The initial PDF will then exhibit three distinct peaks

at 0, 1
2

and 1. The beta-PDF can initially only peak at 0 and 1, and is thus unable to

reproduce the experimentally observed PDF. To be able to compute PDFs with multiple

peaks, one will have to use more than two moments of the mixture fraction or more than

just the one single-mixture fraction. A discussion of this difficult topic is beyond the

scope of this book, though.

The presumed beta-PDF has no physical foundation; it is only a convenient description

of the mixing, and there are other suggestions for the presumed PDF. The most common

are a clipped Gaussian or some ensemble of delta-functions. A presumed PDF that can
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Figure 5.6 Some presumed PDFs. The three realizations of the Gaussian and the statistically most

likely PDFs have the same moments (〈ξ〉 = 0.5, 〈ξ ′2〉 = 0.15, 0.05, 0.02). The delta PDF has 〈ξ〉

= 0.48 and 〈ξ ′2〉 = 0.19.

take any number of moments from the mixture fraction is the statistically most likely

(SML) PDF [14]. Owing to the possibility of including more moments, the SML PDF

can accurately describe even strongly inhomogeneous flows. However, the parameters

of the SML PDF have to be found from iterations and thus more computational power

is required than for the beta-PDF. Also, the closures for higher moments of the mixture

fraction are not nearly as well investigated as those for the mean and the variance. In

Figure 5.6 some realizations of the different presumed PDFs are shown.

5.4.3 Modelling of turbulent mixing

The mixture-fraction PDF involves just the first two moments of the mixture fraction,

and these moments must be predicted in the mixing model. Transport equations for

any moment follow quite simply from manipulations of the transport equation for the

instantaneous mixture fraction:

∂ξ

∂t
+ U j

∂ξ

∂x j

=
∂

∂x j

(

D
∂ξ

∂x j

)

. (5.16)

In the simplest case the mixture fraction is merely a normalized concentration and this

equation is identical to Eq. (2.1) without the reaction and source terms. We know that

Eq. (5.16) can in general not be solved directly, since Ui is unknown, and requires

an extremely dense grid resolution for accurate solutions (DNS, see Section 4.2.1).

Reynolds decomposition of the velocity and mixture fraction (Ui = 〈Ui〉+ ui and ξ =

〈ξ 〉+ ξ
′) followed by Reynolds averaging of the resulting equation leads to an equation

that is more easily solved, but that contains information only on the average mixture

fraction:

∂〈ξ 〉

∂t
+

〈

U j

〉 ∂〈ξ 〉

∂x j

= −
∂

∂x j

(

〈

u jξ
′
〉

− D
∂〈ξ 〉

∂x j

)

. (5.17)

In Eq. (5.17) the first term is accumulation, the second is convection by the mean

flow, the third is turbulent transport and the last is molecular diffusion, which usually

can be neglected since D is small. The flux 〈ujξ
′〉 is unclosed and requires modelling

(e.g. Eq. (5.24)). The mean mixture fraction is represented by a thick line in Figure

5.4(a). All detailed information is lost upon this averaging. The mean mixture fraction
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describes macromixing and gives information about the largest scales of the reactor. It is,

however, useless for predicting the level of mixing on the smallest scales (micromixing)

which are important for fast or instantaneous chemical reactions.

Micromixing is often described by the mixture-fraction variance which was previously

defined through the PDF in Eq. (5.12). The variance can be interpreted as a local

average departure from homogeneity, and it is thus a local measure of segregation.

With reference to Figure 5.4(a), the variance can be understood as the intensity of the

fluctuations around the mean. Strong fluctuations mean a large variance (high degree of

segregation). The maximum variance that can be achieved occurs when all measurements

are either zero or unity (the existence of no intermediate values means that no mixing has

occurred). The value of the variance will then equal σ
2
max = 〈ξ 〉(1 − 〈ξ 〉), which is often

used for normalization. The resulting normalized variance is termed the intensity of

segregation IS:

IS =
σ

2

〈ξ 〉(1 − 〈ξ 〉)
. (5.18)

The intensity of segregation always starts with the value of unity under non-premixed

initial conditions.

A transport equation for σ
2 can be found by multiplying Eq. (5.16) by 2ξ , Reynolds

decomposing Ui and ξ , and then taking the Reynolds average of the whole equation:

∂σ
2

∂t
+

〈

U j

〉 ∂σ
2

∂x j

= −
∂

∂x j

(

〈

u jξ
′2
〉

− D
∂σ

2

∂x j

)

− 2
〈

u jξ
′
〉 ∂ 〈ξ 〉

∂x j

− 2D

〈

∂ξ
′

∂x j

∂ξ
′

∂x j

〉

.

(5.19)

To derive Eq. (5.19) we have also used Eq. (5.17) and the following identity:

ξ

∂ξ

∂xi

=
1

2

∂ξ
2

∂xi

. (5.20)

The left-hand side of Eq. (5.19) is accumulation and convection. On the right-hand side

the first term is turbulent transport and molecular diffusion, the second is production

due to interaction between a flux and the gradient of the mean mixture fraction, and

the last term is twice the mean scalar dissipation rate, which we henceforth denote 〈N〉

(see Eq. (5.32)). The mean scalar dissipation rate is the scalar analogue of the mean

energy-dissipation rate ε and is always positive. Physically, this term describes how fast

the mixture-fraction variance is disappearing due to diffusion at the smallest scales.

Note that, even though Eq. (5.19) is an exact equation for the mixture-fraction variance,

problems could arise from its solution. The intensity of segregation cannot, by definition,

be larger than unity. However, with the solution of Eq. (5.19) there is nothing to ensure

that this limit is respected. Problems can arise due to the production term and the closure

for the first-order flux 〈ujξ
′〉 (see Eq. (5.24)). There is a nice solution to this problem,

though. Instead of solving for Eq. (5.19) directly, you can solve for the equivalent
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second raw moment σ
2
R. The second raw moment is defined as the second moment

around zero:

σ
2
R =

〈

ξ
2
〉

=

1
∫

0

η
2
ϕ(η)dη. (5.21)

A transport equation for σ
2
R can be found by exactly the same procedure as for

Eq. (5.19), but without decomposition of ξ . The resulting equation reads

∂σ
2
R

∂t
+

〈

U j

〉 ∂σ
2
R

∂x j

= −
∂

∂x j

(

〈

u jξ
2
〉

− D
∂σ

2
R

∂x j

)

− 2D

〈

∂ξ

∂x j

∂ξ

∂x j

〉

. (5.22)

On implementing Eq. (5.22) instead of Eq. (5.19) you will not get any problems of

realizability (unphysical results) since there is no production involved. It also ensures

that the intensity of segregation initially starts out as exactly unity. To obtain the central

variance from the raw moment, simply apply the following formula:

σ
2 = σ

2
R − 〈ξ 〉2

. (5.23)

In Eqs. (5.17), (5.19) and (5.22) closure is required for 〈ujξ
′〉, 〈ujξ

′2〉, 〈ujξ
2〉 and 〈N〉,

so these terms will now be discussed further. The first three terms are fluxes, and are

thus required to conserve the mean upon transport (the spatial derivative of the flux is

convection, which is conservative). The only way to achieve this is through gradient-

diffusion models or by deriving completely new transport equations for the fluxes (that

again will contain unknown terms requiring closure). In engineering only the first option

is usually employed. The closures for the fluxes thus become

〈

u jξ
′
〉

= −DT

∂〈ξ 〉

∂x j

, (5.24)

〈

u jξ
′2
〉

= −DT

∂σ
2

∂x j

(5.25)

〈

u jξ
2
〉

= −DT

∂σ
2
R

∂x j

. (5.26)

Here DT is the turbulent diffusivity, which is commonly calculated as

DT =
νT

ScT

. (5.27)

The exact form of DT will depend on the turbulence model used for νT (see

Chapter 4). The turbulence Schmidt number ScT is known to vary between approxi-

mately 0.5 and 1.5, but is most commonly set to 0.7. The near-unity value of ScT means

that turbulent transport (macromixing) of momentum and species is almost identical

for most flows. Note that the gradient closures (Eqs. (5.24) − (5.26)) are closely related

to the Boussinesq hypothesis used for modelling of the Reynolds stresses discussed in

Section 4.2.4.
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Figure 5.7 Concentration fluctuations (left) and scalar dissipation (right).

The closed models for the average mixture fraction, the variance and the raw variance

are then obtained as

∂〈ξ 〉

∂t
+

〈

U j

〉 ∂〈ξ 〉

∂x j

=
∂

∂x j

(

(D + DT)
∂〈ξ 〉

∂x j

)

, (5.28)

∂σ
2

∂t
+

〈

U j

〉 ∂σ
2

∂x j

=
∂

∂x j

(

(D + DT)
∂σ

2

∂x j

)

+ 2DT

∂〈ξ 〉

∂x j

∂〈ξ 〉

∂x j

− 2D

〈

∂ξ
′

∂x j

∂ξ
′

∂x j

〉

,

(5.29)

∂σ
2
R

∂t
+

〈

U j

〉 ∂σ
2
R

∂x j

=
∂

∂x j

(

(D + DT)
∂σ

2
R

∂x j

)

− 2D

〈

∂ξ

∂x j

∂ξ

∂x j

〉

. (5.30)

The most important term to close in turbulent mixing is the mean scalar dissipation

rate. In Figure 5.2(a) we have already shown a realization of the instantaneous scalar

dissipation rate. When the instantaneous scalar dissipation is sampled at the same point

over a sufficiently long period of time, we obtain the mean. Note that the mean scalar

dissipation rate is the only term, besides transport, that requires closure for turbulent-

mixing problems. The scalar dissipation rate describes how fast the final small-scale

mixing occurs, or how fast we are obtaining a homogeneous mixture. In Figure 5.2 we

have shown the interface between two fluids undergoing mixing. The scalar dissipation

rate is defined as the molecular diffusivity times the square of the gradient of the scalar:

N = D
∂ξ

∂x j

∂ξ

∂x j

. (5.31)

Since the magnitude of the scalar gradient is largest at the centre of the interface, this is

where mixing will be fastest. Figure 5.7 shows that the interfaces can be very narrow in

high-Schmidt-number liquids, which is why mixing is often referred to as an intermittent

phenomenon. By this we mean that a very small part of the total volume of a reactor

actually contributes to the final micromixing. Since mixing is fastest at the centre of an
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Figure 5.8 The variance cascade in the TMM model.

interface, this is also where the rate of fast chemical reactions (mixing controlled) will

peak.

The scalar dissipation rate is more difficult to close for liquids than gases since there is

a large separation of scales and any one of inertial–convective, viscous–convective and

viscous–diffusive mixing can be rate limiting (see Section 5.4.1). The simplest closures

for 〈N〉 employ a mixing-frequency closure

〈N 〉 =
σ

2

2τ

, (5.32)

where τ is usually calculated as the inertial–convective timescales defined in Eq. (5.6).

(Any of the other timescales can still be employed, though.) If this method for predicting

〈N〉 is too crude, it is possible to obtain higher accuracy through deriving an exact

transport equation for 〈N〉. In practice this is rarely justified, though.

To further complicate modelling of 〈N〉, the scalar is injected on an inertial scale that

usually differs from the largest scales of the flow. Consider again injection at the centre

of a turbulent pipe flow (see Figure 5.3). The injected scalar enters the pipe with eddies

whose sizes are determined by the radius of the injection pipe. This pipe is, however,

much smaller than the radius of the outer pipe, which determines the largest eddies in

the main flow. Consequently, close to the injection there will be a transitional region

where variance is produced and the largest scale of mixing approaches that of the main

flow. To be able to describe this transitional region, a dynamical multi-scale model must

be employed. Such a model has been described in detail by Fox [15]. A more intuitive

model denoted the turbulent mixer model (TMM) has been described by Baldyga [14]

and is presented here. The TMM assumes that the local value of σ
2 can be divided

into three parts according to the scales of segregation, namely inertial–convective (σ 2
1 ),

viscous–convective (σ 2
2 ) and viscous–diffusive (σ 2

3 ):

σ
2 = σ

2
1 + σ

2
2 + σ

2
3 . (5.33)

Further, it is assumed that variance is produced on the macrolevel and dissipated to

the smaller scales in a cascade as shown in Figure 5.8. Hence dissipation of σ
2
1 leads to
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Table 5.1 Constants in the

turbulent mixer model

α Pα Dα

1 2DT

∂ 〈ξ〉

∂x j

∂ 〈ξ〉

∂x j

σ
2
1

τIC

2
σ

2
1

τIC

σ
2
2

τVC

3
σ

2
2

τVC

σ
2
3

τVD

production of σ
2
2 and dissipation of σ

2
2 leads to production of σ

2
3 . Dissipation of σ

2
3 , on

the other hand, leads to complete mixing. The transport equations for all variances are

given as

∂σ
2
α

∂t
+

〈

U j

〉 ∂σ
2
α

∂x j

=
∂

∂x j

[

(D + DT)
∂σ

2
α

∂x j

]

+ Pα − Dα for α =1, 2, 3 (5.34)

and the production Pα and dissipation Dα terms are given in Table 5.1. The molecular-

diffusion term in Eq. (5.34) is usually negligible since in general DT ≫ D.

The first three terms of Eq. (5.34) account merely for accumulation and transport.

The difficult term here is the sink term for the variance, i.e. the scalar dissipation. In the

TMM model it is set as the variance divided by the relevant time for each scale.

By summation of the three transport equations and subtraction of Eq. (5.19) we find

that the mean scalar dissipation rate is given indirectly as

〈N 〉 =
σ

2
3

2τVD

. (5.35)

The variance describes the concentration fluctuations in time and at the inlets. With

constant concentration all central variances have initial values of zero.

Direct implementations of the TMM will usually lead to realizability problems due to

the production term P1. As discussed before, the solution to this problem is to use raw,

instead of central, moments for the inertial–convective variance σ
2
1 . For the small-scale

variances (σ 2
2 and σ

2
3 ) there will be no problems of realizability, since the production here

does not include spatial gradients. Hence they are not subject to discretization errors.

To be able to use the TMM for raw moments, simply omit P1 and set the appropriate

initial conditions (σ 2
R1, = 1, where 〈ξ 〉 = 1 according to Eq. (5.21), but still with σ

2
2 =

σ
2
3 = 0). The dissipation term D1 must still contain the central variance, now expressed

as σ
2
1 = σ

2
R1 − 〈ξ 〉2. The true raw moment can be recovered as

σ
2
R = σ

2
R1 + σ

2
2 + σ

2
3 (5.36)

and the central moment through Eq. (5.23).
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In this section we have discussed only pure mixing. By solving the equations above,

we obtain the local mean mixture fraction and variance. The intention has been to obtain

a tool for predicting the turbulence-chemistry effect in order to be able to predict the

average rate of chemical reactions in each computational cell. In the next section we will

discuss how the modelling of a conserved scalar is used in reference to this.

5.5 Modelling of chemical reactions

The modelling hierarchy for reactive flows closely resembles that of pure flows (see

Chapter 4). In general you have to give up information in return for computational

efficiency. In this regard it is important to understand what information you are giving up

and how this can be modelled through simplified relations. As for turbulence modelling

the word ‘simplified’ is actually very misleading. The problem is not easier than direct

numerical simulation (DNS) of the governing equations. However, DNS is possible only

for simple geometries and low Reynolds numbers. Hence, DNS is not an option for

chemical reactors and will most likely remain just a research tool in the foreseeable

future.

The instantaneous equation for reacting species that is solved in DNS consists of

standard accumulation, convection, diffusion and reaction terms:

∂Cα

∂t
+ U j

∂Cα

∂x j

=
∂

∂x j

(

D
∂Cα

∂x j

)

+ Sα
(C) . (5.37)

Here C denotes a vector of all the reacting species in the flow, meaning that the source

term for species α, Sα, could depend on any of the other existing species. Since

Eq. (5.37) can be solved only for simple geometries with extremely dense meshes

(DNS), we must introduce some sort of averaging. Here we consider only Reynolds

averaging.

Consider again the reaction described in Eq. (5.1). For a reaction rate r = kCACB the

characteristic chemical-reaction timescale can now be given as either τR = minimum of

1/(k1CA) and 1/(k1CB) or τR = 1/(k1CA + k1CB), where the concentrations are defined

at the inlets. (Note that, since this is only an approximate timescale, the definitions are

not strict.) This timescale should now be used to predict the Dahmköhler number to see

which scenario of Section 5.3 is relevant.

5.5.1 Da ≪ 1

If the Dahmköhler number is small there is no problem, since there is sufficient time for

local mixing and the covariance term in Eq. (5.3) will be zero. The reaction rate can be

expressed merely through the mean concentrations that are already known. The reaction

described in Eqs. (5.1)–(5.3) can now easily be closed by neglecting the covariance in

Eq. (5.3), and we obtain

SA = −k1CACB. (5.38)
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Figure 5.9 A reactive-mixing layer. The reacting species are initially separated by a wall.

The concentrations for A and B are then obtained from the following equations that are

easily solved by the CFD software:

∂〈CA〉

∂t
+ U j

∂〈CA〉

∂x j

=
∂

∂x j

[

(D + DT)
∂〈CA〉

∂x j

]

+ γAk〈CA〉〈CB〉 (5.39)

and

∂〈CB〉

∂t
+ U j

∂〈CB〉

∂x j

=
∂

∂x j

[

(D + DT)
∂〈CB〉

∂x j

]

+ γBk〈CA〉〈CB〉. (5.40)

5.5.2 Da ≫ 1

The reaction rate defined in Eq. (5.3) is

〈SA〉 = 〈SB〉 = −〈k1CACB〉 = −k1(〈CA〉〈CB〉 + 〈C ′
AC ′

B〉). (5.41)

For instantaneous reactions, k1 will have a very large value and the only way to obtain

finite reaction rates is if we have

−
〈

C ′
AC ′

B

〉

≈ 〈CA〉〈CB〉. (5.42)

Hence in this case the average reaction rate will be approximately zero, which is possible

only if the diffusion distance shown in Fig. 5.2(a) is infinitely short. Equation (5.42) is not

a closure, though. The closure for instantaneous reactions assumes that A and B cannot

coexist in fluid elements. It will be shown below that it is then sufficient to calculate the

mixture-fraction PDF (see Section 5.4.2) to completely describe the reacting system.

Physically the rate of instantaneous reactions will peak at the centre of a mixing layer

(see Figure 5.2), since this is where mixing is most intense.

Consider the instantaneous reaction between species A and B, for any combination of

A and B and for any rate expression S:

γAA+γBB k1−→ products. (5.43)

Here γ A and γ B determine the stoichiometry and the initial conditions are given in

Figure 5.9.

The instantaneous transport equations (not Reynolds averaged) for A and B read

∂CA

∂t
+ U j

∂CA

∂x j

=
∂

∂x j

(

D
∂CA

∂x j

)

+ γAS (5.44)
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and

∂CB

∂t
+ U j

∂CB

∂x j

=
∂

∂x j

(

D
∂CB

∂x j

)

+ γBS, (5.45)

where we have assumed that A and B have the same molecular diffusivity D. Multiplying

Eq. (5.44) by γ B and Eq. (5.45) by γ A and then subtracting Eq. (5.45) from Eq. (5.44)

leads to

∂(γBCA − γACB)

∂t
+ U j

∂(γBCA − γACB)

∂x j

=
∂

∂x j

(

D
∂(γBCA − γACB)

∂x j

)

. (5.46)

By inspection it can be seen that the constructed variable (γ BCA − γ ACB) is satisfied by

the same transport equation as the mixture fraction (see Eq. (5.16)) since the source term

has disappeared. To be completely identical, the constructed variable must also have the

same initial values as the mixture fraction. Normalization leads to a coupling between

reactive scalars and the mixture fraction:

ξ =
γBCA − γACB + γACB0

γBCA0 + γACB0

. (5.47)

On substituting for (γ BCA − γ ACB) from Eq. (5.46) we obtain Eq. (5.16). The inlet

containing CA = CA0 and CB = 0 gives ξ = 1, and for the inlet containing CB = CB0

and CA = 0 we obtain ξ = 0. It is not possible to solve Eq. (5.16) for turbulent flows, but

an estimation of the instantaneous mixture fractions can be done using the beta-PDF. By

taking the Reynolds average in Eq. (5.28) and solving for the mixture-fraction average 〈ξ 〉

and the variance in Eq. (5.29) or Eq. (5.34), we can reconstruct the beta-PDF using

Eqs. (5.13)–(5.15).

For an instantaneous irreversible reaction this relation is especially favourable, since

we know that A and B cannot coexist in a fluid element. So, if CA > 0, we know that

CB = 0 and vice versa. We also know that there must be a point in mixture-fraction

space where CA = CB = 0. This point is termed the stoichiometric mixture fraction ξ s

and is given by Eq. (5.47) as

ξs =
γACB0

γBCA0 + γACB0

. (5.48)

On dividing Eq. (5.47) by Eq. (5.48) we can construct linear correlations between the

reactive concentrations and the mixture fraction for all mixture fractions:

γBCA − γACB = γACB0

(

ξ

ξs

− 1

)

. (5.49)

We do not know the exact value of ξ , but we can estimate a possible distribution of

ξ . In other words, the reactive concentrations are given conditional on the value of the

mixture fraction. Since these concentrations are constructed in mixture-fraction space,

we use the sample-space variable η for ξ .

For η ≤ ξ s, CA(η) = 0 and

CB(η) = CB0

(

1 −
η

ξs

)

. (5.50)
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(a) (b)

Figure 5.10 A schematic representation of the concentrations of reactive species in

mixture-fraction space. The reaction between A and B is instantaneous.

For η ≥ ξ s, CB(η) = 0 and

CA(η) = CB0

γA

γB

(

η

ξs

− 1

)

. (5.51)

The concentrations of the reactive species are shown schematically in Figure 5.10(a).

The total amount of A and B can then be calculated if we know the mixture-fraction

distribution ϕ(η) in the computational cell shown in Figure 5.10(b). The average con-

centration in the cell is the integration of the concentration at a given mixture fraction η

times the frequency of the appearance of that mixture fraction, i.e. the PDF ϕ(η). The

mean concentrations can easily be calculated from Eqs. (5.50) and (5.51) weighted by

the probability of finding that mixture fraction estimated from the presumed PDF of the

mixture fraction:

〈CA〉 =

1
∫

0

CA(η)ϕ(η)dη = CB0

γA

γB

1
∫

ξs

[

η

ξs

− 1

]

ϕ(η)dη (5.52)

and

〈CB〉 =

1
∫

0

CB(η)ϕ(η)dη = CB0

ξs
∫

0

[

1 −
η

ξs

]

ϕ(η)dη. (5.53)

The only term that needs to be modelled in Eqs. (5.52) and (5.53) is the mixture-

fraction PDF ϕ(η), which can be closed with, for example, the beta-PDF (see

Section 5.4.2). Hence, for instantaneous reactions there is no need to calculate a mean

reaction rate explicitly and there is no need for transport equations of the reactive species.

For instantaneous reactions ‘mixed is reacted’ is valid, and only the fraction not mixed

need be calculated. The progress of the reaction is simply obtained by calculating the

average concentrations 〈CA〉 and 〈CB〉 along the reactor. It is important to realize that
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Figure 5.11 The implementation strategy for instantaneous reactions.

the expressions in Eqs. (5.50) and (5.51) follows from the instantaneous-reaction rate

assumption that A and B cannot coexist in fluid elements.

Figure 5.11 shows the computational procedure to simulate the average concentration

of A and B. First, the flow field is simulated using standard turbulence models. The PDF

is obtained from simulation of the average mixture fraction and variance, and finally the

average concentrations are obtained from integration of Eqs. (5.52) and (5.53).

In many fast reactions thermodynamics limits the conversion, but these reactions can

also be simulated using the PDF method. The only restrictions are that there is no kinetic

limitation and that the concentrations of reactants and products can be calculated as

functions of the mean mixture fraction 〈ξ 〉 and the variance σ
2. For an isothermal or

adiabatic reaction it is possible to calculate the chemical composition and temperature

corresponding to the minimum Gibbs energy for all mean mixture fractions and vari-

ances. These calculations will require large computational power if they are done in

each iteration, but, since the calculations depend only on the mean mixture fraction, the

variance and the inlet conditions, it is possible to do the calculations in advance and

store them in a look-up table.

The look-up table can be constructed by assuming an equilibrium reaction written as

γAA + γBB −→
←− γCC + γDD (5.54)

with the reaction rate

S = k+CACB − k−CCCD, (5.55)

where k+ and k− are the forward and backward reaction rate constants, respectively. On

inserting this reaction rate into Eqs. (5.37) and (5.38) a mixture fraction can be formed

by subtracting one of these two equations from the other:

ξ =
γBCA − γACB + γAC0

B

γBC0
A + γAC0

B

. (5.56)

We can also write transport equations for the products

∂CC

∂t
+ U j

∂CC

∂x j

=
∂

∂x j

(

D
∂CC

∂x j

)

+ γCS (5.57)

and

∂CD

∂t
+ U j

∂CD

∂x j

=
∂

∂x j

(

D
∂CD

∂x j

)

+ γDS. (5.58)
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Figure 5.12 Concentrations as functions of the mixture fraction for an equilibrium reaction

assuming that CB0 = 2CA0.

After multiplying by stoichiometric coefficients and adding Eqs. (5.37) and (5.57), we

obtain

∂(γCCA + γACC)

∂t
+ U j

∂(γCCA + γACC)

∂x j

=
∂

∂x j

(

D
∂(γCCA + γACC)

∂x j

)

. (5.59)

On defining the mixture fraction

ξ =
γCCA + γACC

γCC0
A

, (5.60)

we obtain Eq. (5.16). Since the mixture fractions formulated with Eq. (5.56) and

Eq. (5.60) are identical and have the same boundary conditions, ξ = 1 for CA = CA0 and

ξ = 0 for CB = CB0, they have the same solution and hence

ξ =
γCCA + γACC

γCC0
A

=
γBCA − γACB + γAC0

B

γBC0
A + γAC0

B

(5.61)

everywhere. For an equilibrium reaction the equilibrium balance

C
γC

C C
γD

D

C
γA

A C
γB

B

= K (T ) (5.62)

must be fulfilled and the equilibrium constant is obtained from the thermodynamics:

K (T ) = e�S/Re−�H/(RT ) = e−�G/(RT )
, (5.63)

where �S is the entropy, �H is the enthalpy and �G is the Gibbs free energy for the

reaction. For an adiabatic reaction, the temperature will depend on the inlet temperature

and the heat of reaction:

T = T1 + (T2 − T1)ξ +
(−�H )CC

γCρC p

, (5.64)

where T1 is the temperature at ξ = 0 and T2 is that at ξ = 1. Here it is assumed that the

heat capacity is equal for each compound and also constant over the temperature range.

The four equations (5.61)–(5.64) contain four unknowns. Hence all the concentrations

and the temperature can be calculated as a function of the mixture fraction. Figure 5.12
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shows how CA, CB and CC vary with the mixture fraction for a typical equilibrium

reaction. For non-adiabatic reactions, the heat loss must be integrated along the reaction

path.

The average concentration and temperature are obtained by integrating the instanta-

neous variations shown in Figure 5.12 using the PDF ϕ(η):

〈CA〉 =

1
∫

0

CA(η)ϕ(η)dη. (5.65)

The PDF is obtained from the simulated mean mixture fraction 〈ξ 〉 and variance σ
2

shown in Figure 5.10(b) using the beta-PDF. The data in Figure 5.12 are obtained from

the inlet conditions and thermodynamics, and the average concentrations are functions

only of the mean mixture fraction 〈ξ 〉 and variance σ
2. Consequently, it is possible

to pre-calculate average concentrations and temperature in a 2D look-up table. This

method also allow predictions of radical species’ concentrations and dissociation effects

at high temperature without knowing the reaction rate, since an equilibrium condition is

assumed. The cost of doing these predictions comes directly from the cost of generating

a more advanced look-up table. An important limitation with excluding the kinetics is

that we cannot predict ignition or extinction of reactions in combustion systems. If these

phenomena are of interest, there is no way around the problem and the kinetics must be

included in the simulations.

The assumption that there are no kinetic limitations and that the reaction is determined

only by thermodynamics is very important. According to the equilibrium model methane

can burn at room temperature. Another common problem is when the equilibrium

changes very much with temperature, e.g. NO is formed from oxidation of nitrogen

above 1500 K and reaches high concentrations in internal combustion engines above

2000 K. The equilibrium model will predict a reversible reaction back to nitrogen

and oxygen during the fast cooling due to expansion in the cylinder. In reality this

will not happen, since the reaction rate for decomposition of NO is very slow below

2000 K. It is recommended that nitrogen oxides should not be included in the equilibrium

calculations if the temperature is below 2000 K. However, formation of nitrogen oxides

can often be added as a homogeneous reaction since nitrogen and oxygen are already

premixed in the air.

Figure 5.13 shows the different steps in modelling the oxidation of methane in air. First

the look-up table is calculated. In Figures 5.13(c) and (f) the mole fraction of methane

and temperature are visualized, but a look-up table will be calculated for all compounds

that you selected, e.g. CO2, CO, H2O, H, CH etc. Note that the variable ξ ranges from

0 to 1 and σ
2 ranges from 0 to 0.25, which is the theoretical maximal variance of

unmixed reactants. In the second step the flow, mean mixture fraction and variance are

simulated. The temperature and composition can then be found in the look-up tables to

obtain the right properties of the fluid. The mean mixture fraction, variance, methane

mole fraction and temperature are shown in Figures 5.13(c)–(f). Note that the conserved

scalar disappears due to dilution whereas the reactant disappears due to combustion.
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Figure 5.13 Simulation of adiabatic oxidation of methane in air: (a) configuration, (b) look-up

table, (c) temperature, (d) mean mixture fraction, (e) variance and (f) mole fraction of CH4.
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It is also possible to use such methods for non-adiabatic reactions. The compositions

and temperatures in the look-up tables will then be functions of energy loss or gain also.

During the iterations the energy loss or gain is estimated, which allows convection and

radiation from the flame to be included in the simulations.

As mentioned before, the PDF methods have been developed only for two distinct

inlet streams. For more complicated systems the theories break down and simpler models

must be employed.

5.5.3 Da ≈ 1

For intermediate Dahmköhler numbers A and B can coexist, and this case is by far the

most difficult to close. The very simplest models which are able to give reasonably good

a-priori predictions use a reaction-progress variable in conjunction with the presumed

PDF of a mixture fraction. The reaction-progress variable models are similar in form to

the solution presented for instantaneous reactions in Section 5.5.2. The only significant

difference is that a transport equation needs to be solved for the reaction-progress

variable, which in turn requires the explicit calculation of the average reaction rate.

Owing to the mathematical complexity of these models, we will in this section present

only one such solution for a simple reaction scheme. For a complete review of today’s

state of the art, the reader is referred to [15].

To be able to predict mean concentrations with a presumed PDF method, the instan-

taneous concentrations of the reactive species need to be known or closed subject to

the mixture fraction. The instantaneous concentration subject to the mixture fraction is

usually referred to as a conditional average. For instantaneous reactions the conditional

concentrations have been shown to be linear in mixture-fraction space and hence closed

(see Eqs. (5.50) and (5.51)). For intermediate Da, the assumption leading to Eqs. (5.50)

and (5.51) does not hold and other relationships must be found. Baldyga and Bourne

[14] described a model that uses piecewise linear interpolation between the extreme

limits of instantaneous (k1 = ∞) and slow (k1 = 0) chemistry to obtain closure. Here

we present this model, again for the simplest case of one fast, but irreversible, reaction

as illustrated in Eq. (5.43). It is possible, though, to extend the model to more complex

reaction systems.

As has already been stated, the instantaneous rate assumption fails for intermediate Da,

so it is necessary to find alternative closures for Eqs. (5.50) and (5.51). The interpolation

model exploits the fact that the conditional concentrations have to fall within the extremes

of instantaneous and slow, for which the solutions are known. Hence the conditional

concentration of A is limited according to

C0
A

CA0

≥
CA

CA0

≥
C∞

A

CA0

⇒ η ≥
CA

CA0

≥
(

ηξ
−1
s − 1

) γACB0

γBCA0

, (5.66)

whereas the conditional concentration of B is limited according to

C0
B

CB0

≥
CB

CB0

≥
C∞

B

CB0

⇒ 1 − η ≥
CB

CB0

≥ 1 − ηξ
−1
s . (5.67)
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Figure 5.14 Concentrations of reactive species in mixture-fraction space. The reaction between A

and B is fast.

Note that C0
α corresponds to pure mixing with no reaction, whereas C∞

α corresponds

to the instantaneous reaction according to Eqs. (5.50) and (5.51). The interpolation

model is now obtained by introducing a reaction progress variable Yp (0 ≤ Yp ≤ 1), such

that the conditional concentrations are found as

Cα

Cα0

=
C0

α

Cα0

Yp +
C∞

α

Cα0

(

1 − Yp

)

, for α = A or B, (5.68)

corresponding to the dotted lines in Figure 5.14. Hence the instantaneous limit is obtained

for Yp = 0, whereas the no-reaction limit is obtained for Yp = 1. Equation (5.68) replaces

Eqs. (5.50) and (5.51) in the interpolation model. However, Eq. (5.68) is still not closed

due to Yp. The closure for the reaction-progress variable reads

Yp =
〈Cα〉 −

〈

C∞
α

〉

〈

C0
α

〉

−
〈

C∞
α

〉 , for α = A or B. (5.69)

The terms in angle brackets are averages computed straightforwardly as e.g.

〈

C∞
α

〉

=

1
∫

0

C∞
α (η)ϕ(η)dη. (5.70)

Note that Yp is computed for just one of the species A and B, since, given either, the

other can be found through Eq. (5.47). Naturally, one reaction-progress variable suffices

to describe one reaction. To close Eq. (5.70) a separate transport equation for 〈Cα〉 is

also required:

∂〈Cα〉

∂t
+

〈

U j

〉 ∂〈Cα〉

∂x j

=
∂

∂x j

(

DT

∂〈Cα〉

∂x j

)

− γαk1〈CACB〉. (5.71)
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Figure 5.15 An implementation strategy for the interpolation model.

For the current purpose α can be either A or B. The average reaction rate can be computed

as

k1〈CACB〉 = k1

1
∫

0

CA(η)CB(η)ϕ(η)dη. (5.72)

where CA(η) is computed from Eq. (5.68) and CB(η) can be computed from Eq. (5.47)

with ξ = η and γ A = γ B as

CB(η) = CA(η) + CB0 − η(CA0 + CB0). (5.73)

Equation (5.72) closes the problem and the interpolation model can be implemented

using the strategy of Figure 5.15. First (1) the flow field needs to be computed to

provide the turbulent kinetic energy and energy-dissipation rates. These parameters are

then used for calculating the mean and variance of a mixture fraction using e.g. the

TMM model (2) that further can be used to close the mixture fraction PDF from e.g.

Eqs (5.13)–(5.15). With the PDF we can (3) compute the average reaction rate that closes

the transport equation for the average reactive species.

Any model can be used for steps (1) and (2) in Figure 5.15 as long as the

mixture-fraction PDF is delivered to the final step. The final step requires solution of

Eq. (5.71) using Eqs. (5.47), (5.68)–(5.70) and (5.72). The average concentration in the

computational cell is iterated. An initial guess of 〈CA〉 gives the progress variable in Eq.

(5.69) that is used for calculating the reaction rate in Eq. (5.72). This reaction rate is

then used in solving Eq. (5.71), which produces a new value of 〈CA〉. Note that there is

only one more transport equation that needs to be solved in the CFD problem. All the

remaining equations are algebraic and must be solved for in user-defined functions to

provide the reaction rate as input for the transported species.

A more general procedure for implementing reaction-progress variables that can be

more easily extended to multiple reactions has been described by Fox [15].

The state of the art for presumed PDF methods is the conditional moment closure that

actually solves transport equations for the conditional concentrations in mixture-fraction

space, instead of relying on the linear interpolations. The conditional moment closure

has been applied both to combustion and to mixing-sensitive liquid reactions. One

major disadvantage of the conditional moment closure is that the governing transport

equations are five-dimensional (three spatial, one time and one mixture-fraction space)

and thus computationally demanding. The large-dimensionality space is also one of the

major problems of today’s state of the art in modelling of reactive mixing, the full PDF

methods, which solve transport equations for the joint PDF of reactive species. In full

PDF methods the dimensional space is proportional to the number of reacting species,

which can be substantial.
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Table 5.2 Mixing and reaction

of species A and B from different

initial conditions and volume

fractions

Scenario (a)

CA = 1 CA = 0

CB = 0 CB = 1

VA = 0.5 VA = 0.5

Scenario (b)

CA = 2/3 CA = 0

CB = 0 CB = 2

VA = 3/4 VB = 1/4

5.6 Non-PDF models

The most common reaction models found in most CFD software are based on eddy-

dissipation (ED) modelling and do not incorporate a mixture-fraction PDF. The idea

behind ED models is that the rate of mixing limits the mean rate of reaction. In

ED two rates are computed: the reaction rate based on the mean concentrations (the

slow-chemistry limit) and a scalar mixing time. Since the ED model was originally

developed for combustion, the mixing time has traditionally been computed with the

inertial–convective τ IC timescale. However, better results could probably be obtained for

liquids using, for example, the mean scalar dissipation rate in the turbulent-mixer model

(Eq. (5.35)) or some other model developed for high Schmidt numbers. The mean

reaction rate calculated with the ED model is

〈Sα〉 = min[Skinetic, Smixing] = min[S (〈C〉), ci 〈Cα〉1
/

τ ], (5.74)

where 〈Cα〉 is the limiting reactant. The rate expression means that the reaction rate

cannot be faster than a constant, ci, times the rate of mixing. In its simplest form the

rate of scalar dissipation is calculated from the inertial–convective timescale 〈N 〉 =

1/τ ∝ ε/k. The ED model works well for slow reactions and instantaneous reactions,

and is here a simple alternative to the mixture-fraction approach. It works well for

certain combustion units since the combustion reaction is slow before ignition, but

can be extremely fast once ignition has started. However, the ED model gives a very

simplified picture of the physics and, unfortunately, for intermediate Da it is not possible

to correlate the average reaction rate with the slow and instantaneous limits. Further, the

model cannot predict the dependence of mixing-sensitive reactions on the initial volume

fractions of the reacting flows. From experiments it is well known that the reaction rates

depend very much on the initial volume fractions of the fluids and the two scenarios in

Table 5.2 should lead to very different average reaction rates despite the fact that the

average concentrations are equal, 〈CA〉 = 〈CB〉 = 0.5.

This dependence can be captured only by incorporating the structure of the mixture,

which is achieved with the more advanced mixture-fraction models discussed above.

The ED model can be useful for predicting trends for instantaneous reactions, and is

useful if there are multiple injections, recirculation streams or other complicating factors.
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The ED model is applicable for any initial configuration, which mainly accounts for its

popularity in commercial software.

5.7 Summary

In this chapter we have discussed the problems specific to reactive mixing of turbulent

incompressible, isothermal flows. The major emphasis has been on modelling of a

conserved scalar and the use of a conserved scalar in modelling of chemical reactions,

through presumed PDF methods.

Questions

(1) What is the most important parameter to study when you are first presented with a

reactive-mixing problem?

(2) What is meant by the mixture-fraction PDF? What is a conserved scalar?

(3) What is the physical interpretation of the mixture-fraction variance?

(4) Explain the most important features of the turbulent-mixer model.

(5) What is the smallest relevant length scale for turbulent mixing? What is the physical

interpretation of this scale?

(6) What is described by the Schmidt number? What is described by the turbulent

Schmidt number?

(7) Why is it difficult to solve problems in which Da ≈ 1?
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6 Multiphase flow modelling

Most books on fluid mechanics, especially books on turbulence, will have a statement

along the lines of ‘most important fluid flows are turbulent’. That statement can be made

for multiphase flows as well. Most of the flows around us are multiphase. They exist in

nature, such as rain or snow in the sky, or the flow of a river, which may transport all

kinds of solids and has a large interface with the air above it. Also, the flow of blood

in our veins is a good example of a mixture of a fluid and particles. Such cases prevail

even more so in industry, especially in the processing industry. In the pharmaceutical

industry, pills are made from small particles. Also droplets can be dispersed so that they

can be inhaled into lungs. There is an abundance of multiphase flows in chemical-process

industries, e.g. flow of catalyst particles, fuel, plastics, gases, etc. The energy-producing

industry has many examples too, such as the burning of coal particles and fuel sprays and

the boiling of water. Bubbly flows prevail in the nuclear industry, where the science of

studying multiphase flows all started. These are just a few of the multitude of examples of

multiphase flows. Some examples of multiphase flows and their applications are shown

in Table 6.1.

The word ‘phase’ in multiphase flows refers to the solid, liquid or vapour state of

matter. The prefix ‘multi’ means multiple. So a multiphase flow is the flow of a mixture

of phases such as gases (bubbles) in a liquid, or liquid (droplets) in gases or particles

in liquids and/or gases. This definition should not be taken too strictly; for instance, the

flow of two immiscible liquids does not contain multiple phases in a thermodynamic

sense, yet, because there are multiple different liquids, and this is in fact quite similar to

the situation of a droplet in a gas flow, they are still considered within the research area

of multiphase flow. A more detailed disussion of multiphase flows can be found in [16].

The research area of multiphase flows is extremely broad and not very well defined.

This has led to a very wide field of research, both fundamental and applied. It has also led

to a lot of confusion – so much confusion that, today, there is not even agreement upon

the governing equations which are to be used, let alone all the empirical closure models

obtained from measured data. There are some areas where reliable ab-initio simulations

are possible, whereas in other areas only parameter studies around experimentally vali-

dated simulations are possible. In general simulations of multiphase flows are reliable at

low particle loading with particles that follow the continous phase closely. In contrast,

multiphase systems that are dominated by non-ideal particle–particle collisions are very

difficult so simulate accurately. This chapter tries to give an overview of the modelling
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Table 6.1 Summary of two-phase flow systems and some industrial applications

Continuous phase–dispersed

phase Industrial applications

Gas–solid flows Pneumatic conveying, fluidized beds, solid separation (filters,

cyclones)

Liquid–solid flows Stirred vessels, liquid–solid separation, hydraulic conveying

Gas–liquid (droplet) flows Spray drying, spray cooling, spray painting

Liquid–droplet flows Mixing, separations, extraction

Liquid–gas (bubble) flows Flotation, aeration, bubble columns

Figure 6.1 A separated (stratified) multiphase flow (left) versus a dispersed multiphase

flow (right).

possibilities for dispersed and separated two-phase flows. Bubble and drop break-up and

coalescence and population-balance modelling are not included.

6.1 Introduction

An important classification of multiphase flow is made in terms of whether the different

phases present in the flow are separated or dispersed, as shown in Figure 6.1. In a

dispersed flow, one phase is typically present in the form of particles or droplets and

there are many individual interfaces. In a separated flow, the phases present are relatively

separated, with only a few interfaces.

Commonly, dispersed two-phase flows are separated into two types of flow regime,

the dilute regime and the dense regime. In the dilute regime, the spacing between the

particles or droplets is quite large, so their behaviour is governed by the continuous

phase (fluid) forces. In dense phase systems, the spacing is smaller, so the inter-particle

interactions are typically very important. Very roughly, flows with a spacing of less than

ten particle diameters are considered to be dense.

6.1.1 Characterization of multiphase flows

Several, mostly dimensionless, parameters are used to characterize multiphase flows.

The most important one is the volume fraction, which defines how much of the local

volume is occupied by either of the phases. The dispersed-phase volume fraction is the

volume occupied by the particles in a unit volume,

αd =

Nd
∑

i=1

V i

V
, (6.1)
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where V i is the volume occupied by particle or droplet i and Nd is the total amount of

particles or droplets present in volume V. The characteristic size of the dispersed phase

is given as

Dd,i =
6(V i )

π

1/3

, (6.2)

which assumes that the volume occupied by one particle has a spherical shape. For some

types of particle this is not a very good approximation, for instance for a fiber or a

deformed droplet. Then, a sphericity factor depending upon the area or volume of the

particle as seen by the flow can be introduced.

The ‘typical’ distance between the particles, assuming that they are homogeneously

arranged, is given by

L = Dd

(

π

6αd

)1/3

, (6.3)

and this is one of the parameters used to determine the importance of inter-particle

interactions. The volume fraction of the continuous phase is given as

αf = 1 − αd. (6.4)

Typically, the inertia of the phases in multiphase flow modelling is expressed in terms

of the bulk density, αdρd, instead of just the intrinsic density ρd. The bulk density is a

measure for the potential inertia, and will thus be employed to construct the mass and

momentum balances. The mixture density is the sum of the dispersed-phase density and

the continuous-phase density.

Sometimes, in the engineering literature, the flux of the dispersed phase is expressed

in terms of the mass loading, which is defined as the mass flux of the dispersed phase

divided by that of the continuous phase,

m =
αdρdUd

(1 − αd)ρfUf

. (6.5)

Timescales and length scales are important measures in fluid mechanics and even more

so in the case of the timescale for a particular physical mechanism in the multiphase

flow. Examples of these mechanisms are collisions, inertia and dissipation.

It is difficult to define one unique scale for a flow or a dispersed phase, since these

are given by large distributions. But it is still useful to determine or estimate a dom-

inant dimensionless number specifying the ratio of a dispersed-phase timescale and a

continuous-phase timescale. This ratio is called the Stokes number, and a Stokes num-

ber much bigger than unity means the particles are relatively insensitive to that specific

timescale of the continuous-phase behaviour. For instance, the turbulence Stokes number

is given as

StT =
τd

τT

, (6.6)

where τ d is the timescale of the dispersed phase and τT is the relevant timescale of the

turbulence. An estimation of the particle response time is obtained by solving Eq. (6.9)
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Figure 6.2 Effects of a turbulent eddy (solid line) on particle trajectory (dashed line) for different

Stokes-number limits.

below. For simple flow at low Reynolds numbers the response time will be

τd =
ρd D2

18μf

. (6.7)

When StT → 0, for instance for very small particles, the particles follow the flow

completely. For flows in which StT → ∞, the behaviour of the particles is uncorrelated

with the flow characteristics. This effect is depicted in Figure 6.2.

Another important Stokes number is the collision Stokes number,

Stc =
τd

τc

, (6.8)

where τ c represents the timescale of the inter-particle interactions. If Stc < 1, a flow may

be assumed dilute; if Stc > 1, a flow may be considered dense. This measure can be used

as an additional measure to determine the importance of particle–particle interactions,

next to that of particle spacing.

6.1.2 Coupling between a continuous phase and a dispersed phase

A general classification of dispersed two-phase flows with regard to the interaction with

the continuous phase was provided by Elgobashi in 1994. There are three possible ways

of coupling, which are listed in Table 6.2. If the particles do not influence the flow and

their interactions are negligible, only the effect of the fluid on the particles is important.

The terms describing how the particles affect the flow and how they affect each other

may be neglected. This is defined as one-way coupling.

If particles have a Stokes number larger than unity or the volume fraction is sufficiently

large to affect the average denisty of the mixture, their effect on the flow is no longer

negligible, and modelling of the effect of the particles on the flow has to be incorporated

into the governing equations for the continuous phase. If the flow is still sufficiently

dilute, inter-particle interactions may safely be neglected. This is defined as two-way

coupling.

If the volume fraction of the dispersed phase is sufficiently large, typically above

10−3, inter-particle interactions become important. Inter-particle interactions may be

collisions, but also more indirect phenomena, such as two particles approaching each
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Table 6.2 The various types of coupling between the dispersed phase and the continuous phase. The

choice of coupling can be made on the basis of the length scale of the dispersed phase, or on the basis

of the Stokes number

Type of coupling Definition Implementation

One-way Dispersed phase senses continuous

phase, but the continuous phase

is unaffected

Particle tracking may be done in a

post-processor

Two-way Dispersed phase senses continuous

phase and continuous phase

senses dispersed phase

The presence of the dispersed phase

should be reflected in the

governing equations of the fluid

Four-way Dispersed particles interact A model for particle–particle

interactions should be included

other in a viscous liquid. Although they will most probably not collide, their interaction

may still be important. This is defined as four-way coupling (note that one particle

affecting the other and the other affecting the first is counted as two coupling terms).

Note that this classification does not specify how accurate a model should be. The

dispersed phase may be represented by a momentum source in the governing equations

for the continuous phase, or, alternatively, the complete flow around a particle may be

resolved. Although they are very different in terms of the level of detail, both these

models fall into the category of two-way coupling.

6.2 Forces on dispersed particles

Newton’s second law can be applied to the dispersed particles. The main controversy

has been over how to describe the forces acting on the particles. The original work by

Basset (1888), Boussinesq (1885) and Oseen (1927), abbreviated as the BBO equa-

tion, described a few small particles in a uniform flow with particle Reynolds number

ReP ≪ 1. The original work was later adjusted for higher particle Reynolds numbers

and turbulent flows. In a more general framework, the forces on a single particle are

given by

md

dUi,d

dt
= Fi,Drag + Fi,Press + Fi,Virt + Fi,History + Fi,Bouy + Fi,Lift + Fi,Therm

+ Fi,Turb + Fi,Brown, (6.9)

where Ui,d is the linear velocity of the particle, md is the mass of the particle, Fi,Drag

is the drag force, Fi,Press is the pressure force due to the pressure gradient, Fi,Virt is the

virtual mass force due to acceleration of the surrounding fluid, Fi,History is the history

or Basset force due to changes in the boundary layer, Fi,Bouy denotes forces due to

gravity, Fi,Lift is the Saffman and Magnus lift force due to the velocity gradient and

particle rotation, Fi,Therm is the thermophoretic force due to a temperature gradient,

Fi,Turb denotes forces due to turbulent fluctuations and Fi,Brown is the Brownian force due

to molecular collisions. These forces are described briefly below and a more detailed

discussion can be found in [17].
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The Magnus force is due to the rotation of the particle and a torque balance is required.

This balance between rotational velocity, ωi, inertia, Ii, and torque, Ti, is given by

Ii

dωi

dt
= Ti .

However, the Magnus force is usually small and not well defined outside the laminar

region, and the torque balance is not discussed further in this book.

The forces in Eq. (6.9) above are briefly described below. Note that the detailed flow

around the particles is not resolved. The model requires that the particles are much

smaller than the computational cell and that the continuous phase is resolved on a large

scale. The effect of the dispersed phase on the continuous phase is treated as a source

term arriving from all particles in the cell.

For a single particle the drag force is expressed as a function of the relative velocity

between the two phases,

Fi,Drag =
1

2
AdCDρf |Uf − Ud| (Ui,f − Ui,d) , (6.10)

where Ad is the projected area normal to the flow, i.e. π D2
p/4 for a sphere. The drag

coefficient CD is discussed in more detail in Section 6.4.1.

The second term represents the pressure and shear forces from the fluid on the particle.

This is usually expressed in terms of the pressure and shear gradient over the particle

surface. Assuming a constant pressure and shear gradient over the volume of the particle,

this force can be written

Fi,Press = Vd

(

−
∂ P

∂xi

+
∂τi j

∂x j

)

, (6.11)

where Vd is the volume of the particle.

The third term represents the virtual-, apparent- or added-mass force. This force

arises from the acceleration or deceleration of the fluid surrounding an accelerating or

decelerating particle. The effect of this term is an increase in the apparent mass of the

particle, whence the name added-mass force. This force is written in the form

Fi,Virt = −CVMρf Vd

D

Dt
(Ui,d − Ui,f ), (6.12)

where D/Dt is the substantial operator and represents the relative acceleration of the

particle compared with the fluid along the path of the particle. The virtual-mass force

coefficient CVM is usually close to 0.5, which indicates that a volume of the continuous

phase corresponding to half the volume of the particle is accelerated with the particle.

This force can be neglected when the density of the continuous phase is much lower

than the density of the particle and the virtual mass is much less than the mass of the

particle.

The fourth term, the history force, arises from the time required to develop the

boundary layer around the particle when the particle is accelerated or decelerated. This

development leads to a separation of timescales between the fluid and the particle,

thereby creating the necessity for the time integral in the force. This time integral makes
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the history force computationally very expensive – the calculation times may increase

by an order of magnitude.

The fifth term represents the bouyancy force, the volume of the particle multiplied by

the density difference between the phases and the gravitational acceleration constant.

The Saffman and Magnus lift forces are due to the higher velocity on one side of the

particle arising from flow in a velocity gradient (the Saffman lift force) or rotation of the

particle (the Magnus lift force). Accurate models are available only for spherical bodies

at low particle Reynolds numbers. There is very little empirical data for both types of lift

force at higher Reynolds numbers. Owing to boundary-layer separation and deformation

of fluid particles, even the direction of the lift force can be difficult to predict.

The thermophoretic force represents the force due to a temperature gradient in the fluid.

Hot molecules move faster than cold molecules and a large temperature gradient will

give a net force in the direction opposite to the temperature gradient. This thermophoretic

force is important only for very small particles, and will lead to a separation of particles

depending on their size.

The origin of the Brownian force is random collisions of individual molecules. This

force is usually modelled as Gaussian white noise. The momentum transferred by colli-

sion of individual molecules is very small and the Brownian force is important only for

submicrometer particles.

The forces due to turbulence are often modelled as a random addition to the fluid

velocity that is sustained for a time corresponding to the minimum of the lifetime of the

turbulent eddies and the time taken for a particle to pass through a turbulent eddy.

The importance of the terms in the above equation of motion for one particle can

be analysed by dividing all the forces by the particle density. If the particle density is

much larger than the fluid density, as in gas–solid and gas–droplet flows, terms linear

in ρf/ρd may be neglected. This means that only drag, the pressure and shear-stress

gradient, and the buoyancy are important in such flows. If terms containing ρf/ρd may

not be neglected, such as for rising bubbles and liquid–solid flows, the added-mass force

and the history force are typically important. It is much more difficult to calculate the

trajectories of particles in such flows.

The original BBO equation is valid for one (or very few) particles in a homogeneous

flow with particle Re < 1. Most industrial applications do not deal with a few particles

in a homogeneous and low-Reynolds-number flow, so empirical extensions of the forces

from their original derivation are required. For the drag force, this has been a very

successful approach; here the empirical coefficient is called the drag coefficient. The lift

coefficient, virtual-mass coefficient, and history-force coefficient have been found to be

more prone to error, and the form of the terms in Eq. (6.9) may be less suitable. Closure

models for these terms are discussed later.

6.3 Computational models

There are many different kinds of model available for multiphase flow. The models

presented in this book can be subdivided into five main classes:
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� the Euler–Lagrange model
� the Euler–Euler model
� the mixture or algebraic-slip model
� the volume-of-fluid (VOF) model
� porous-bed models.

In Euler–Lagrange modelling the fluid phase is modelled as a continuum by solving

the Navier–Stokes equations, while for the dispersed phase a large number of individual

particles is modelled. The dispersed phase can exchange momentum, mass and energy

with the fluid phase. Since the particle or droplet trajectories are computed for each

particle or for a bundle of particles that are assumed to follow the same trajectory, the

approach is limited to systems with a low volume fraction of dispersed phase.

In Euler–Euler models the different phases are all treated as continuous phases, and

momentum and continuity equations are solved for each phase. The Euler–Euler model

can handle very complex flows, but does not always give the best results since empirical

information is needed in order to close the momentum equations. Typical applications

are risers and fluidized beds.

In the mixture model (algebraic-slip model) the flows of phases are assumed to interact

strongly and it is not necessary to solve the momentum balances for the different phases

separately. In this model the viscosity is estimated for the mixture. The velocities of the

different phases are thereafter calculated from buoyancy, drag and other forces, giving

the relative velocities in comparison with the mean velocity of the mixture. Typical

applications are bubble columns, fine particle suspensions and stirred-tank reactors.

The volume-of-fluid (VOF) model is an Euler–Euler model whereby the interface

between the different phases is tracked. The model is suitable for stratified flow, free

surface flows and movement of large bubbles in liquids. Since the interface between

the fluids must be resolved, it is not applicable for a system with many small drops or

bubbles.

In the porous-bed model, the pressure drop across a porous bed is modelled. In a

bed containing many particles, it is not possible to resolve the geometry and solve

the Navier–Stokes equations. Instead the pressure drop is calculated from an equation

similar to the Ergun equation for the pressure drop in fixed beds [18].

6.3.1 Choosing a multiphase model

In selecting the most appropriate multiphase model, the physics of the system must be

analysed and understood. Initially, there are some questions that must be asked.

� Are the phases separated or dispersed?
� Will the particles follow the continuous phase? What is the Stokes number?
� How large are the local volume fractions?
� How many particles are there in the system?
� What kind of coupling occurs? Is it one-, two- or four-way coupling?
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Figure 6.3 The concept of true direct numerical simulation (a), and the point-particle approach

(b). In (c) an example of the point-particle approach is shown.

For separated flows only the VOF model will work. The model predicts the location of

the interface and uses single-phase models to predict the flow in each phase. The model

requires a fine mesh to resolve the curvature of the interface.

The porous-bed model is applicable to a system dominated by viscous and inertial

forces, and the pressure drop can be calculated as a function of the flow properties by

using an empirical a-priori given function.

For dispersed multiphase systems several models are possible. The most accurate

is usually the Euler–Lagrange model. It works well for systems with one- or two-way

coupling, but requires additional closures for four-way coupling. In such cases the

computational time increases and the quality of the simulations is poor except for very

ideal systems. The limitation for the Euler–Lagrange model is the number of particles. A

few hundred thousand particles or bundles of particles is the limit on a desktop computer.

The general models for dispersed multiphase flow are the mixture and Euler–Euler

models. The mixture model requires that the Stokes number is low and that the phases

accelerate together. The mixture model is more stable and faster than the Euler–Euler

model and should be used whenever possible. It may also be used to obtain good initial

conditions for an Euler–Euler simulation. The Euler–Euler approach can be used when

no other model is possible.

6.3.2 Direct numerical simulations

Resolving the behaviour of a flow all the way down to the smallest scales is called direct

numerical simulation (DNS). If particles have a fluid Stokes number larger than unity,

hence two-way coupling, the flow around the particles must be resolved as shown in

Figure 6.3(a). Although this is possible, it requires efficiently developed algorithms and
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Figure 6.4 Lagrangian control volume.

a lot of patience; at the time of writing, only about 103 particles can be considered. This

might be useful for research objectives, but is useless for industrial purposes.

6.3.3 Lagrangian particle simulations, the point-particle approach

In this technique the particles are tracked individually, and the gas phase is treated

in a continuous framework. This can be done by resolving the flow around the parti-

cles, or by representing the particles as source terms in the flow. This is depicted in

Figures 6.3(a) and (b), and in Figure 6.3(c) a Lagrangian particle simulation for a small

fluidized bed is shown.

In point-particle-approach simulations, the single-phase Navier–Stokes equations for

the continous phase are solved in conjunction with tracking the individual particles,

∂(αfρf )

∂t
+

∂(αfρfUi,f )

∂xi

= SC, (6.13)

∂(αfρfUi,f )

∂t
+ Ui,f

∂(αfρfU j,f )

∂xi

= −αf

∂ P

∂xi

+
∂(αfτi j,f )

∂x j

+ Si,p, (6.14)

where SC is a source term describing mass transfer between the phases and Si,p represents

momentum exchange between the particles and the fluid. All forces on the right-hand

side of Eq. (6.9) except gravity are due to interaction with the continous phase and

must appear in the source term Si,p of Eq. (6.14). Equation (6.14) is written per volume

and Eq. (6.9) per particle, and the term Si,p must include the number of particles, per

volume, i.e. n/V = 6αd/(πD3
p) assuming spherical particles. For successful employment

of the Euler–Lagrange model, the particles have to be much smaller than the fluid-phase

grid cells as shown in Figure 6.4. This restriction arises because the velocity field, Uf,

required to calculate the source term needs to be the undisturbed velocity field.

The flow of the continuous fluid (Eqs. (6.13) and (6.14)) can be solved with traditional

RANS or LES models with the additional terms describing the interaction between the

continuous and dispersed phases. The movement of all the particles is simulated by
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integrating the trajectory Eq. (6.15) and the force balance Eq. (6.9) with given initial

position for all particles:

dxi

dt
= Ui,d. (6.15)

The number of particles is limited because it involves solving an ODE for all particles.

However, it is possible to bundle particles that behave identically into packages contain-

ing thousands of particles. This will give a correct source term for the continuous phase.

The limitation is that the bundle will be modelled assuming that the properties at the

centre of gravity for the bundle are valid for all particles and that the source term for the

bundle is at the centre of gravity.

Euler–Lagrange models are usually accurate at low volume fraction with one- or two-

way coupling. At higher volume fraction, when the particles collide the model requires

additional closures (see Section 6.4.2). The simulations become very demanding at high

particle loading due to the high number of collisions. It is not possible to calculate all

potential collisions beween all particles, and most CFD programs simulate collisions

only for particles that are within the same computational cell. More advanced algorithms

may also include neighbouring cells. In all cases, the number of particles must be low and

the time step must be limited so that no particle moves by more than one computational

cell in one time step. In addition it is not possible to model how the particles will

collide. Even if the momentum is conserved and the absolute value of the velocity is

known, the direction is unknown. There are stochastic models that calculate a probability

distribution of velocities of a large number of collisions after each time step. However,

the use of Euler–Lagrange models with four-way coupling is not yet a feasible approach

in engineering.

Turbulence modelling

The continuous phase may be modelled using standard RANS or LES methods. In the

k–ε model a source term for the additional turbulence energy arising from the movement

of the particles may be included. The turbulence energy generated from the movement

of particles can be formulated as a source term in the equation for k:

Sk =
αdρd

τdρc

(Ud − 〈Uf 〉)
2
. (6.16)

The dissipation is assumed to increase in proportion to the increase in kinetic energy

divided by the timescale for the large eddies, k/ε, as in the standard ε equation

Sε = Cε3

ε

k
Sk, (6.17)

where the constant Cε3 is about 1.8. However, the size of the turbulent eddies formed

by the particles is usually much smaller than that of the energy-containing eddies that

contain most of the turbulent kinetic energy and also transport most of the momentum.

The small eddies formed by the particles will decay very fast and transport only a small

fraction of the momentum. The extra source term should be included only when the

turbulent eddies formed by the particles are large compared with the energy-containing

eddies.
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The effect of fluid-phase turbulence on the particles may be important, depending

upon the Stokes number. In determining a drag force, the instantaneous drag forces on

each particle are averaged into a drag force, which becomes a function of the mean

or average relative velocity. The turbulent eddies in the continous phase will move the

single particles in all directions and away from the average path. At the end particles

injected at the same point will not end up at the same position due to the turbulence, and

this phenomenon must be taken into account.

The information on the turbulence provided by RANS models is available only in sta-

tistical terms, for instance, in terms of the turbulent kinetic energy and energy-dissipation

rates. To couple the behaviour of the particles effectively with the local fluid properties,

however, instantaneous fluid properties are required. A popular way of determining a

non-unique set of instantaneous fluid properties from the given statistical turbulence

models is use of the so-called random-walk models. The instantaneous fluid velocity at

a particle location is determined from the averaged fluid velocity, which is deterministic,

and a random component for which the magnitude, direction and timescales obey the

statistical (averaged) properties of the local fluid turbulence.

In the discrete-random-walk (DRW) model it is assumed that the effect of turbulence

can be modelled by adding a random velocity to the continuous phase for a specific time

T, where T is the time the particle spent in a turbulent eddy. This time is estimated as

the minimum of the time taken for a particle to pass through the turbulent eddy and

the lifetime of the turbulent eddy. The time taken to pass through the turbulent eddy is

estimated from the size of the turbulent eddy and the slip velocity,

T ≈ −τ ln

(

1 −
l

τ |Ud − 〈Uf 〉|

)

, (6.18)

where τ is the particle response time (Eq. (6.7)) and l is the size of the turbulent eddy

(Eq. (4.19)). The lifetime of a turbulent eddy in RANS models is

T ∝
k

ε

. (6.19)

The turbulent velocity fluctuations are assumed to have a Gaussian probability distribu-

tion and the turbulent fluctuations are added to the continuous-phase velocity

u′
i = ξi

√

u2
i , (6.20)

where ξ i is a Gaussian random number.

In isotropic turbulence 〈u2
1〉 = 〈u2

2〉 = 〈u2
3〉 = 2k/3 and the continuous-phase velocity

fluctuation is calculated from

ui = ξi

√

2k

3
. (6.21)

All three velocity fluctuations are known in Reynolds stress modelling and all the

individual fluctuating components can be calculated. The random velocity u′
i is then

added to the average fluid velocity 〈Ui,f〉 and kept constant during the time step defined

by T above. A new random number ξ i is chosen after each time step.
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Figure 6.5 A stratified flow simulation (left) versus a dispersed flow simulation (right).

6.3.4 Euler–Euler models

The Euler–Euler model treats a dispersed multiphase flow as two (or more) fully inter-

penetrating quasi-fluids, and is therefore often referred to as the two-fluid model. The

two-fluid model is derived by ensemble averaging or volume averaging. A very impor-

tant quantity appearing in the equation because of the averaging is the volume fraction

αk. This quantity alone does not say anything about the size or behaviour of the dis-

persed phase, and this generally comes in via closure models. Within the Euler–Euler

framework both stratified and dispersed flow are modelled. In this book we present the

Euler–Euler model as a general model for most kinds of multiphase flow, the mixture

model as a simplification of the Euler–Euler model and the volume-of-fluid model for

stratified flows as shown in Figure 6.5.

Intuitively, it is easiest to imagine the derivation of the two-fluid model in terms

of volume averaging. A small volume, much smaller than that of the large-scale flow

structures, but much larger than that of individual dispersed particles, in which both

phases are present is used in this model. The volume fraction is defined on the basis of the

distribution of phases and the size of the computational volume. The local instantaneous

equations describing both phases may then be averaged in the volume, considering the

bulk density of each of the phases. The two-fluid model equations for each phase are

given by the following equations, where k is not an index but represents a phase:

∑

k

αk = 1, (6.22)

∂αkρk

∂t
+

∂αkρkUi,k

∂xi

= −

p
∑

l=1

(ṁkl − ṁlk), (6.23)

∂αkρkUi,k

∂t
+

∂αkρkUi,kU j,k

∂x j

= −αk

∂ P

∂xi

+
∂αkτi j,k

∂xk

+ αkρk gi + Fi,k, (6.24)
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where p represents the number of phases, ṁkl mass transport from phase k to phase l

and Fk the interaction force with the other phases. The difficulty of solving these sets

of equations is twofold. First, these equations are difficult from a numerical point of

view, since there are many coupled equations with one shared pressure. Secondly, to

solve the equations, closure models are required for τ and Fk. Here τ represents the

rheology of the phase, and very complex models are typically required if the phase is

not a Newtonian fluid but, for instance, a particle mixture. Models for estimation of

viscosity in multiphase flows are presented in Section 6.4.2. The interaction force with

the other phases, Fk, typically comprises collisions with the other dispersed phases and

all important physical mechanisms described by Eq. (6.9).

It is important to realize that all variables appearing in this equation are averaged

variables, rather than real point variables. This makes concepts such as LES and RANS

for the two-fluid model quite complex; the equation does not revert back to a DNS

simulation on reducing the grid size.

All physical phenomena, apart from the quantities provided by the principle of momen-

tum conservation, must be modelled by closure models. This includes the rheology of

the dispersed phase and the momentum transfer between the phases. The continuous

fluid is often modelled using a k–ε or RSM model, but the dispersed phases need more

elaborate models. Some of these closure models are discussed later in this chapter.

Turbulence modelling

Standard k–ε and RSM models can be used with the Euler–Euler multiphase model for

dilute systems and when the phases can be approximated with one set of momentum

models for the mixture as in Section 6.3.2. For the continuous phase in a dilute system k

is modelled with the standard k equation with an additional source term describing the

additional turbulence energy arising from the relative velocities of the continuous phase

and the dispersed phases. For the dispersed phases the timescales and length scales for

the particles are used to evaluate dispersion coefficients and the turbulent kinetic energy

for each phase.

For dense systems, when a turbulence model is required for each phase, the commercial

CFD software usually includes only the k–ε model. These models tend to be very

unstable, and the quality of the simulations is usually low. The simulations often need

calibration and should be combined with validation experiments in similar systems.

6.3.5 The mixture model

The mixture model is similar to the Euler–Euler model, but assumes one more simplifi-

cation. This simplification is that the coupling between the phases is very strong and the

relative velocity between the phases is in local equilibrium, i.e. they should accelerate

together. In performing a simulation with the mixture model, one set of equations is

solved for the mixture, i.e. the unknowns are the flow properties of the mixture, not

those of the individual phases. The flow properties of the individual phases can be

reconstructed with an algebraic model for the relative velocity, which is often referred to

as the algebraic-slip model. The individual phase’s velocity relative to the mean velocity
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is called the drift velocity and is denoted Ui,dr,k for phase k, while the velocity relative

to the continuous phase is the slip velocity. The advantage of employing the mixture

model is that only one set of equations is computed, leading to a substantial decrease of

computational effort compared with the full Euler model. This set of equations is given

as

∂ρm

∂t
+

∂(ρmUi,m)

∂xi

= 0, (6.25)

∂(ρmUi,m)

∂t
+

ρm ∂(U j,mUi,m)

∂x j

= −
∂ P

∂xi

+
∂τi j,m

∂x j

+ ρmgi −
∂

∑

k αkρkUi,dr,kU j,dr,k

∂x j

,

(6.26)

where the subscript m represents the mixture property and Ui,dr,k the drift velocity for

phase k, so that

Ui,k = Ui,dr,k + Ui,m. (6.27)

The last term in Eq. (6.26) arises from the nonlinear inertial term in the Navier–Stokes

equations, which can be written as the second term on the left-hand side plus the last

term on the right-hand side in Eq. (6.26), since

∂

∑

k

αkρkUi,kU j,k

∂x j

=
ρm ∂(Ui,mU j,m)

∂x j

+

∂

∑

k

αkρkUi,dr,kU j,dr,k

∂x j

. (6.28)

The mixture properties are typically weighed by the volume fraction, e.g.

μm =
∑

m

αkμk, (6.29)

where the viscosity μk for dispersed flows may be estimated using the same models

as in standard Euler–Euler modelling (see the discussion of granular flow models in

Section 6.4.2).

Typically, a steady-state algebraic expression based on Eq. (6.9) is specified for the

drift or slip velocity for each phase to close the mixture model. The volume fractions

can be determined from the conservation equation for the continuity of each phase as

described by Eq. (6.23).

Turbulence modelling

Standard RANS and LES models can be used for turbulence modelling using the average

properties for density and viscosity. In the k–ε model the turbulent viscosity is calculated

from k and ε in the same way as for single-phase flow with a small correction for systems

in which the drift velocity is large compared with the velocity of the turbulent eddies.

The effect of turbulent diffusion is also added to the drift velocity calculated using

Eq. (6.9),

(Ui,dr,k)turb = Ui,dr,k −
μt

σt

(

1

αk

∂αk

∂xi

−
∂αf

∂xi

)

, (6.30)

where the turbulence Schmidt number, σ t, is of the order of 0.7.
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Figure 6.6 A rising bubble from the perspective of the level-set method (left) and the

volume-of-fluid method (right).

6.3.6 Models for stratified fluid–fluid flows

One objective in modelling stratified fluid flows is to track the interface, and the

Lagrange and Euler–Euler models are not suitable for modelling stratified flows. Instead,

front-tracking, level-set or volume-of-fluid methods should be employed, as shown in

Figure 6.6. These models may also be employed for DNS of dispersed multiphase flows

in cases with a few deformable interfaces, for instance to study the deformation of

two colliding droplets. Note that all of these methods assume a no-slip condition at the

fluid–fluid interface, and thus have to be resolved to the Kolmogorov length scale. The

methods are combined with a single-phase Navier–Stokes type equation,

∂Ui

∂t
+

∂(UiU j )

∂x j

= −
1

ρf

∂ P

∂xi

+
1

ρf

∂τ j i

∂x j

+ gi , (6.31)

where the local fluid properties, e.g. density and viscosity, are given by the presence of

the phase,

φf (x) =
∑

αkφfk . (6.32)

If only one phase is present the properties will be for that phase, and a volume-weighted

average is used for cells that are shared between two or more phases. The volume

fraction is modelled with the continuity equation (6.23). In addition, an extra source

term to account for surface-tension effects is also required in these cells.

Although front-tracking, level-set and volume-of-fluid methods are similar, there

are some distinct differences, leading to the applicability of each method for different

problems. However, only volume-of-fluid methods will be described here.

Volume-of-fluid methods

Volume-of-fluid (VOF) methods use the value of the volume fraction on a grid-cell basis

to describe the position of the interface. The advective part of the equation is solved

by special advection schemes, such as Lagrangian schemes, geometrical schemes and

compressive schemes. These schemes can deal much better with cross-flow situations,

and tend to be more mass-conserving than their level-set counterparts. Strictly speaking,
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(a) (b) (c)

Figure 6.7 Volume-of-fluid (VOF) modelling of a fluid–fluid surface: (a) is the real surface,

(b) the volume fraction calculated by the VOF model and (c) the linear reconstruction of the

surface.

however, the accuracy is still of first order and a very fine mesh is needed. Typically,

about 20 cells/diameter will be needed in order to obtain satisfactory resolution of a

spherical bubble or drop.

As soon as an interface between two different fluids ceases to be straight, it has a

finite curvature and surface-tension forces may become important. Usually, the surface-

tension force is included as an additional momentum source term in a stratified flow

model:

∂(ρUi )

∂t
+ Ui

∂(ρUi )

∂xi

= −
∂τi j

∂x j

+
∂ P

∂xi

+ ρgi + Si,s. (6.33)

It is only in the cells that are shared between the phases that the momentum equation

is different from those in the single-phase models. A volume-weighted average of the

physical properties according to Eq. (6.32) is used. Numerical instabilities may occur if

the properties in the phases are very different, e.g. viscosity ratio >103.

The direction of the surface-tension force depends upon the interface normals, and its

magnitude depends on the interface curvature as shown in Figure 6.7(a). The interface

normal, n, in a continuous framework is mostly given as the gradient of the volume

fraction,

ni =
∂α/∂xi

∣

∣

∣

∑

j ∂α/∂xi

∣

∣

∣

. (6.34)

To include surface tension between two immiscible, pure fluids in the framework of a

front-tracking, VOF or level-set method, usually a continuum surface tension is applied

in the form of

Si,s =
σρκniŴ

1
2
(ρ1 + ρ2)

, (6.35)

where σ is the surface-tension coefficient and is usually assumed to be constant, Ŵ is an

interface indicator function and κ is the curvature of the interface. In the most popular

continuum surface-tension model, that proposed by Brackbill et al. in 1992, the interface
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indicator, the curvature of the interface and the interface normal are directly related to

the volume fraction,

Ŵ =

∣

∣

∣

∣

∑

j

∂α

∂x j

∣

∣

∣

∣

, (6.36)

κ = −
∂ni

∂xi

. (6.37)

Hence, the curvature is a measure of how fast (magnitude) and in which direction (sign)

the normal of an interface changes in space. The surface tension aims at minimizing

the interface area. For bubbles or droplets, the minimized interface area is spherical;

for a fully stratified flow, the minimized interface area is a straight line. The influ-

ence from surface tension can be neglected for capillary numbers Ca =μU/σ ≫ 1 or

Weber numbers We = ρLU2
/σ ≫ 1. For large interfaces, such as in stratified flows,

but also for interfaces of bubbles or droplets of diameter larger then a few centime-

tres, the surface-tension force may be negligible. However, for very large curvatures,

for example small bubbles with a diameter of a few millimetres, the surface tension

may be dominant and in that case ensures that the interface is spherically shaped at all

times.

One complication with surface tension not dealt with here is that, in mixtures and

with temperature gradients, the surface tension is not constant, and there will appear

tangential to the surface a force aiming at minimizing surface energy globally.

Turbulence modelling

In theory the interface should be resolved to the Kolmogorov length scale. This might

not be possible in all cases, and standard RANS models must be used with caution. The

bulk properties are used, and the damping of turbulence at the interface that is expected

when the properties of the phases are very different might not be modelled corectly. Wall

functions are not possible since the location of the interface is not given a priori. The

k–ω model might be a better choice than the k–ε model, but will require a denser mesh.

Large-eddy simulation works better with VOF since the momentum transport across the

interface on the subgrid level is much less.

6.3.7 Models for flows in porous media

Flow in a porous medium is driven by the pressure drop over the medium. Examples

of such flows occur in fixed-bed reactors, filters and trays in distillation columns. The

pressure drop and the resistance of the medium are the most important terms in the

governing equations for the fluid phase, i.e. the accelerations are usually small. It is

generally not possible to resolve the flow around each object or cavity in a porous

medium, so a rough estimate of the pressure drop over the bed is made. The pressure

drop in a packed bed originates from viscous resistance, which is proportional to the
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viscosity and velocity of the fluid phase, and an inertial resistance that is proportional

to the density and the velocity squared,

dP

dxi

= −AμUi − B

(

1

2
ρ|U |Ui

)

. (6.38)

The simplest model for this is called Darcy’s law, wherein inertial effects are neglected

(i.e. B = 0). This is quite frequently used in, for example, simulations of the flow in oil

reservoirs. A is then inversely proportional to the area of the pores in the reservoir.

The model of Ergun (dating from 1952) is valid for flow through packed beds for a

wide range of velocities and includes both a viscous resistance and an inertial resistance,

A =
150(1 − α)2

d2
pα

3
, (6.39)

B =
1.75(1 − α)

dpα
3

, (6.40)

where α is the void fraction and dp is the particle diameter. Note that these values are

valid only for flow though beds containing rigid spherical particles. For other types of

particles, e.g. fibres and compressible particles, an empirical determination of A and B

is required.

6.4 Closure models

Multiphase flow simulations without the requirement of closure models are either

extremely computationally expensive, or apply only for very simplified situations.

Almost all multiphase flow simulations for engineering applications need closure mod-

els to some extent. Most closure models are empirical, meaning that they are determined

by experiments and are valid only for the conditions under which the experiments were

performed. Some closure models are based upon more theoretical considerations, but

most often require assumptions as well. It is important to verify these assumptions and

determine whether they are applicable to the simulated conditions. Some of the most

popular closure models are discussed here.

6.4.1 Interphase drag

Equation (6.10) is valid for a single particle, i.e. at low volume fraction of the dispersed

phase. To model the drag between a fluid and dispersed particles at high volume fraction

of the dispersed phase, the drag as formulated in Eq. (6.10) must be adjusted,

Fi,D =
1

2
AdCDρfα

−2.65
f |Ui,f − Ui,d| (Ui,f − Ui,d) , (6.41)

where CD represents the drag coefficient. For spherical particles, this coefficient is a

scalar, since it does not depend upon the stream direction of the flow on the particle.
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Figure 6.8 The standard drag curve for solid spheres in laminar flows.

Note that the drag is also dependent on particle loading as seen in the αf dependence

in Eq. (6.41). The drag coefficient has different Reynolds-number dependences in the

viscous, intermediate and inertial flow regimes, as shown in Figure 6.8, and they are

typically divided into three regions,

CD =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

24

Red

if Red < 0.5

24

Red

(1 + 0.15Re0.687
d ) if 0.5 < Red< 1000

0.44αf if Red > 1000,

(6.42)

where the dispersed-phase Reynolds number, Red, is defined as

Red =
ρf Dd|Uf − Ud|

μf

. (6.43)

The drag coefficients in Eq. (6.42) are for particles in laminar continuous phase. The

results from experimental studies of drag in turbulent flows have been contradictory, but

usually the drag increases with increasing turbulence intensity.

The drag is in general lower for fluid particles, i.e. bubbles and drops due to the

circulation of fluid within the particle. For fluid–fluid systems the drag will depend on

the viscosity ratio κ = μd/μc at low Reynolds numbers:

CD = CD0

(

2
3

+ κ

1 + κ

)

, (6.44)

where CD0 is the drag for a solid particle. For gases in pure liquids the drag is a function

of Re for small bubbles and of the Eötvös number, Eö, for large bubbles,

CD = min

(

16

Re
,

8

3

Eö

Eö + 4

)

, (6.45)

where the Eötvös number is defined as

Eö =
g|ρp − ρc|D

2
p

σ

. (6.46)
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Figure 6.9 The rarefaction effect on drag.

For contaminated systems, e.g. tap water, the surface tension is not constant over the

surface, making the bubble more rigid, and the drag coefficient is the same as for a solid

particle, i.e. Eq. (6.42).

Much more complex equations are required for non-spherical particles. Large bubbles

and drops are deformed and oscillate at high Reynolds number (Re > 200), and the drag

coefficient cannot be described by a simple function.

In the models above, no slip is assumed for solid particles. In reality most gas

molecules adsorb on the surface and will leave the surface in a random direction with

the same temperature as the surface. A fraction of the molecules will bounce on the

surface and transfer only a part of their momentum to the surface, and they will not

be in thermal equilibrium with the surface. However, all molecules will soon collide

with other gas-phase molecules, and these molecules will subsequently transfer their

added momentum to the surface. The net effect is that the no-slip condition describes

the momentum transfer accurately for large particles. However, for small particles or

at low pressures the bouncing molecule may collide with other molecules far from the

particle, and no secondary collision will occur. This is called the rarefaction effect and

will be noticeable when the size of the particle is of the order of the distance between the

molecules in the gas, i.e. the mean free path. This is described by the Knudsen number

K n =
λ

dp

,

where λ is the mean free path and dp the particle diameter. The mean free path is of the

order of 75 nm in air at room temperature and 1 atm and rarefaction is important for

particles with dp < 1 µm. Figure 6.9 shows the correction of the standard drag curve due

to rarefaction.

6.4.2 Particle interactions

In dense two-fluid flows, particle–particle interactions are important. The interactions

can be indirect, whereby the dispersed particles never touch, or direct, whereby the
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particles actually touch. Examples of indirect interactions occur in bubble columns,

between interacting bubbles. However, indirect interactions between two particles may

also occur; this is often referred to as the lubrication effect. When the fluid density and

viscosity are low, interactions are most often direct.

Models for indirect interactions are required when the behaviour of continuous fluid

between the two dispersed particles is not fully resolved. The models depend on how

much of the fluid behaviour between the particles is unresolved, which may vary for each

simulation. Typically, these models have the form of a long-range potential force, 1/rγ ,

where r is the distance between the bodies and γ provides a measure for the strength of

the interaction. Such models are typically empirical.

Direct interactions typically involve solid particles colliding. There are two character-

istic regimes for colliding particles, namely slow granular flow and rapid granular flow.

Slow granular flow is characterized by very high volume fractions of solids, low rela-

tive velocities between the particles and enduring, multi-body contact. Rapid granular

flow is characterized by moderate volume fractions of solids and binary, instantaneous

collisions.

Lagrangian particle collisions

When dealing with particle–particle collisions, two types of collision model are widely

employed, namely the hard-sphere model and the soft-sphere model. Hard-sphere mod-

els describe the dynamics of individual, binary collisions in terms of conservation

of momentum and energy. In an ideal collision the momentum is conserved, and the

momentum transferred during a collision can be quantified as

J = m1(Ud,1 − U ′
d,1) = −m2(Ud,2 − U ′

d,2), (6.47)

where m1 represents the mass of particle 1, Ud,1 the velocity prior to collision of particle

1 and U′
d,1 the velocity right after the collision. The post-collision velocities U′

d,1 and U′
d,2

can be found by making use of the principle of conservation of energy. More advanced

hard-sphere models employ a coefficient of restitution, so part of the kinetic energy of

the particles prior to collision is transferred to thermal energy during the collision.

The restitution coefficient describes the damping of velocity at the collision. It is

defined as

ed =
U ′

d,2 − U ′
d,1

Ud,1 − Ud,2

. (6.48)

A restitution coefficient of unity corresponds to ideal collision with no energy losses.

Soft-sphere models aim to estimate the local deformation of the particles during colli-

sion. This deformation is due to reversible deformation of the particle. The deformation

is related to a linear ‘overlap’ of the particles during collision. The force resulting from

the deformation is typically written in terms of a so-called spring–slider–dashpot model.

The spring force is typically the dominant contribution, and is formulated as

F = −kδ
α

n n, (6.49)
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Figure 6.10 Mechanisms for momentum transfer beween particles.

where k is the spring constant, δ represents the overlap and the vector n represents the

collision normal, the unit vector attaching the centres of the particles under collision.

The exponent α equals 1 for simpler collision models, in which the spring constant

cannot be directly related to the physical properties of the particles under collision,

whereas a value for α of 3/2 corresponds to a physically sounder model. The slider and

dashpot components of the model represent the irreversibility of the collision, e.g. due

to a coefficient of restitution, and the tangential interactions during a collision.

Granular flow models in the continuum framework

Viscosity models for the dispersed phase model the momentum transport between the

dispersed particles within the same phase. The interactions with the other phases are

described with the interaction coefficients. There are no particle–particle collisions at low

loading with one- or two-way coupling, and the granular viscosity will consequently be

negligible. The quality of viscosity models at high loading, i.e. with-four way coupling,

is very dependent on how ideal the collisions between the particles are. Ideal hard

spheres, wood chips or gas bubbles react very differently to collisions, and the quality

of the predicted viscosity will vary.

Granular flow models describe the rheology of a suspension of dry granular material.

In the continuum framework, granular flow models are based upon simple models for

particle interactions, and aim at transforming these interactions towards the continuum

scale. Only a brief presentation of the models is given below, with no theoretical deriva-

tion of the equations. However, the presentation will give an understanding of what

variables are important, e.g. the granular temperature, restitution coefficient and particle

pressure.

There are three mechanisms for viscosity, namely particle movement, collision and

friction, as shown in Figure 6.10. At low loading with large distances between the

particles, most of the momentum transfer occurs by individual particles moving into

areas with different average velocities before they collide and transfer momentum. This

mechanism is similar to momentum transfer in gases. At higher loading, the particles

can move only a short distance before they collide, and most of the momentum transfer
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occurs by frequent collisions. This mechanism is similar to momentum transfer in

liquids. In both these mechanisms, the viscosity depends on the fluctuation motion of

the particles, i.e. the granular temperature defined below. At the highest loading the

particles are in constant contact and slide over each other. Here the mechanism for

momentum transfer is friction, and the viscosity depends on the granular temperature

via the particle pressure pd. Granular flow models are usually divided into two families of

models, the slow granular flow models and the rapid granular flow models. Slow granular

flow is related to momentum transfer by friction and frequent collision of particles in a

dense environment, whereas in rapid granular flow the momentum transport occurs by

movement and collision of particles.

A popular model in the rapid granular flow regime is the kinetic theory for granular

flow [19]. The kinetic theory of granular flow predicts the stresses in moderately dense

flows quite accurately, and it has successfully been employed in many applications in this

regime. In the rapid granular flow regime, the solids stress arises from particle momentum

exchange due to translation and collision. A key parameter in the constitutive closures

for the solids phase is the energy associated with the fluctuating motion of the particles,

the so-called granular temperature. The granular temperature is defined as the random

movement of particles corresponding to how the random movement of molecules in

kinetic theory of gases constitutes temperature,

θ =
1

3

(〈

u2
1

〉

+
〈

u2
2

〉

+
〈

u2
3

〉)

, (6.50)

where u represents the fluctuating velocity of a particle, which has a zero mean by

definition. The kinetic theory of granular flows aims to derive a transport equation for

the granular temperature. The shearing of the particles causes granular temperature to be

produced, and the damping non-ideal component of the collisions, transferring kinetic

energy to heat, causes a dissipative effect in granular temperature. The terms in the

granular temperature balance arise from collisions and the streaming of particles. In this

process, quite a few closures are required, and some of these remain topics for discussion

and further research. The balance for granular temperature is very similar to the balance

for thermal energy, Eq. (2.28) in Chapter 2. The equation is formulated as

3

2

[

∂(ρdαdθ )

∂t
+ U j,d

∂(ρdαdθ )

∂x j

]

= κd

∂
2
θ

∂xi ∂x j

− pd

∂U j,d

∂x j

+ τk j,d

∂Uk,d

∂x j

− γd, (6.51)

where κd is the conductivity of granular temperature and the dissipation of fluctuation

energy is described by

γd = 3
(

1 − e2
d

)

α
2
dρdg0

(

4

dd

√

θ

π

−
∂Ui,d

∂xi

)

, (6.52)

where ed is the coefficient of restitution for particle collisions. The models presented

below are frequently used, but there is no general agreement on a best model. The

granular temperature conductivity κd is a complex function of granular temperature,
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restitution coefficient etc. that is not given here. The radial distribution function at

particle contact is

g0 =

[

1 −

(

αd

αd,max

)1/3
]−1

, (6.53)

where the maximum volume fraction of the dispersed phase αd,max is used to calculate

a dimensionless particle–particle distance. This function (g0) also certifies that the

maximum particle loading is never surpassed by increasing the particle pressure to

infinity when αd → αd,max. The total particle pressure due to the streaming and collisions

of particles is given as

pd = αdρdθ + 2ρd(1 + ed)α2
d g0θ. (6.54)

The kinetic and collision parts of the granular viscosity can be formulated as

μd,kin =
αdddρd

√
θπ

6 (1 − ed)

[

1 +
2

5
(1 + ed)(3ed − 1)αdg0

]

, (6.55)

μd,coll =
4

5
αdρdddg0(1 + ed)

(

θ

π

)1/2

. (6.56)

Slow granular flow models are based upon theories of soil mechanics, including a global

inertia effect in the governing equations of the solids. The volume fractions of slow

granular flows are typically very large, just below the maximum packing of the particles.

Therefore, gradients of the volume fraction are typically neglected. The random kinetic

energy of individual particles, the granular temperature, is very low and neglected as

well. The granular flow is dominated by frictional stress, and the classical slow granular

flow models based upon Mohr–Coulomb models have successfully been employed to

predict the particle flow in, for instance, hoppers and chutes. Such models describe how

normal pressure and viscosity depend upon the strain-rate tensor; for instance, for the

frictional viscosity

μd,fr =
pd sin φ

2
√

I2D

, (6.57)

where I2D is related to the principal strain-rate tensor. Some parameters must be set in

the model, i.e. the coefficient of restitution for particle collisions ed and the angle of

internal friction φ. The angle of internal friction φ is the maximum angle of a stable

slope determined by friction, cohesion and the shapes of the particles.

Although rapid granular flow occurs less often in nature than slow granular flow, there

are much sounder models for this flow regime. The basic assumption for such models

is that particle interactions comprise binary, instantaneous and nearly elastic collisions.

The particle rheology is directly expressed in the granular temperature. Since the number

of particles is strongly dependent upon the solids volume fraction, the particle stresses

have a strong dependence upon the solids volume fraction. When the solids volume

fraction reaches the maximum packing, the number of collisions is infinite, and so are

the predicted particulate stresses. Rapid granular flow models are not very accurate in

this very dense regime, since the inter-particle interaction is no longer instantaneous,
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Figure 6.11 Mass and heat transfer between a particle and the bulk fluid.

and a transition to slow granular flow models should be made. For example, adding the

stresses arising from the rapid granular flow regime to the slow granular flow regime,

μd = μd,kin + μd,col + μd,fr

gives a model that can handle the whole range of particle loading reasonably well.

6.4.3 Heat and mass transfer

Heat and/or mass transfer often plays an important role in multiphase flows. Examples

are evaporating liquid droplets, reactions on catalysts, burning of coal particles and the

creation of bubbles by means of cavitation. Models describing mass and heat transfer are

typically quite crude and are built upon empirical or simplified relations of the Sherwood

or Nusselt dimensionless parameters. The particles may be inert particles that can be

heated or cooled, droplets that can evaporate or condense, fuel particles that may burn

or catalyst particles that catalyse reactions.

When the net flow from or to the particle is small, mass transfer between a particle

and the bulk fluid can be estimated using the film model. The mass flux [mol m−2 s−1]

is then expressed as

Nn = kc,n (Cn,s − Cn,bulk) , (6.58)

where Cn,s is the concentration of species n on the surface and Cn,bulk is the concentration

in the fluid bulk surrounding the particle (Figure 6.11). The mass-transfer coefficient kc,i

is often described by a Sherwood number, Sh,

Sh =
kc,i dp

Di

= 2 + 0.6Re
1/2
d Sc1/3

. (6.59)

According to this correlation the mass transfer between particles and a fluid depends on

the molecular diffusivity, the size of the particles, the viscosity and the relative velocity

between the fluid and the particles. One advantage using CFD is that the local Red and

local Sh are obtained. However, evaporation, condensation and chemical reactions cause

a net flow to or from the particle that may decrease or increase mass and heat transfer,

and Eq. (6.58) must be adjusted accordingly. The drag is also affected by the net flow to

and from the particles.
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Heat transfer is described in a similar way using the Nusselt number, Nu,

Nu =
hdp

λ

= 2 + 0.6Re
1/2
d Pr1/3

, (6.60)

and the heat balance of a particle is written

mpcp

dTp

dt
= h Ap

(

Tbulk − Tp

)

+
dmp

dt
hfg + R�H + Apεpσ (T 4

surr − T 4
p ), (6.61)

where mp is the mass of the particle, hfg the enthalpy of evaporation, R the reaction rate

and �H the reaction enthalpy. In this balance we have included the accumulation of heat

in the particle, the decrease in particle weight due to evaporation with corresponding

heat loss, the heat due to a reaction in the particle and radiation from the particle to the

surrounding.

In boiling, condensation and cavitation phase changes occur. This requires an addi-

tional term in the equation for conservation of mass,

∂(αkρk)

∂t
+

∂(αkρkui,k)

∂xi

= ṁk, (6.62)

where ṁk represents the mass transfer from or to phase k per unit volume and unit time.

6.5 Boundaries and boundary conditions

When performing simulations with multiphase flows, boundary conditions should be

given for each phase at each boundary. The boundary conditions for the continuous

phase resemble the type of boundary condition for single-phase flows. At an inlet, a

velocity profile or mass flow rate may be specified. Additionally, a volume fraction

is often specified. If a turbulence model is employed for the continuous phase, the

turbulence properties of the flow entering the domain should also be specified. At the

outlet, typically a pressure or reference pressure is specified. If there is no backflow

entering the outlet, the setting of most flow properties is not very important. If there is

a flow entering the domain through the outlet, some of the outlet boundary conditions

may be specified in a manner similar to what is done for an inlet.

At walls usually a ‘no-slip’ boundary condition is specified for the continuous phase,

with additional wall functions when the flow is turbulent. Particle–wall collisions are

of importance in most confined flows. Because particle–wall collisions are non-ideal,

a particle–wall impact is associated with a deceleration of the particle, which is re-

accelerated on re-entering the flow. Hence, a particle–wall impact indirectly extracts

momentum from the continuous phase, causing a pressure loss. This effect is enhanced

in the case of ‘soft’ walls.

6.5.1 Lagrangian dispersed phase

In Lagrangian particle simulations, particle–wall collisions are treated by using models

similar to those for particle–particle collisions. If a hard-sphere model is adopted, the
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Figure 6.12 A particle colliding with a rough wall.

particle–wall collision may dissipate kinetic energy as heat that can be estimated from

the coefficient of restitution. The restitution coefficient is defined as the ratio of the

velocity after collision and that before collision. If a soft-sphere model is adopted, the

effect of the wall may be described using a spring–slider–dashpot model based upon

heuristics or upon a number of physical parameters. Note that, in the application both

of hard-sphere and of soft-sphere models, the properties of the wall are not necessarily

the same as the properties of the particles. Most often, a wall can be treated as a particle

with infinite mass and radius.

Rough walls

Experiments and simulations have shown that wall roughness may have a considerable

effect on the particle–wall collision process, and thus on the complete flow characteris-

tics. This has two causes. First, the normal of the actual wall might not be constant across

the wall. This means that the impact normal is a function of the local wall roughness.

This can be modelled by including a ‘random’ component on top of the average wall

normal. Secondly, the so-called shadow effect results in a shift of the effective roughness

distribution for small impact angles. Both effects are shown in Figure 6.12: (1) the local

wall normal changes along the wall, affecting the collision normal; and (2) particles with

small impact angles can no longer collide with parts of the wall, making certain collision

normals more likely than others (this was called the shadow effect by Sommerfeld in

1996).

6.5.2 Eulerian dispersed phase

Boundary conditions for walls in Eulerian models are less obvious than in the Lagrangian

framework. In most simulations, particles are assumed to slip freely along the walls. This

assumption originates from experimental observations, in which most particles seem to

move rather freely along walls. More realistically, a slip condition can be specified at the

walls,

∂Ui,d

∂ni

= f, (6.63)

Cambridge Books Online © Cambridge University Press, 2012



6.6 Summary 171

where f specifies the amount of slip. If f = 0, the free-slip conditions are obtained. It is

generally observed that convergence becomes difficult for higher values of f.

Boundary conditions for the granular temperature at the wall may have a significant

impact on the flow. Various models that mimic the wall functions for single-phase

turbulent flows are available. These have a production term, accounting for the dispersion

effect of the particles, and a dissipation term, accounting for the non-ideal effect of the

collision. In most simulations, specifying a zero gradient of granular temperature at

walls gives satisfactory results.

6.6 Summary

In this chapter the Euler–Lagrange, Euler–Euler, mixture, volume-of-fluid and packed-

bed models are presented. In many cases, it is not evident which model to choose.

Each of the models is based on a number of assumptions and provides a specific level

of detail. Some models describe individual particles or interface segments, whereas

other models are expressed in terms of averaged properties. When selecting a model,

numerical stability and computational cost must also be considered.

The Euler–Euler model is obtained by averaging the flow properties of a multiphase

flow of dispersed particles smaller than the computational cells. The model solves the

momentum and continuity equations for each phase. It is the most general model and

should in principle work for all kinds of multiphase flows. However, it is usually less

stable than the other models, and it requires closure models to describe all interactions

between the phases, so empirical models for the specific system are often required.

The mixture model is a simplification of the Euler–Euler model that is more stable but

requires a strong coupling between the phases, i.e. low Stokes number. It shares with the

Euler–Euler model the problem that empirical closures are required for any interaction

between the phases.

In the Euler–Lagrange model the transport equations for each particle or a bundle

of particles that behave identically are solved. It is most accurate and works very well

for systems with a limited number of particles, often in cases in which particle–particle

collisions can be neglected, i.e. when the particle–particle distance is larger than ten

particle diameters. In principle, inter-particle collisions can be taken into account, but

this is usually very expensive. The upper limit for the number of particles or bundles of

particles is a few hundred thousand when the simulations are done on a PC. The model

tracks the centre of gravity of the bundle, and a limit for the bundle size is that most of

the particles in the bundle should be within one computational cell if one is to describe

the interaction with the continuous phase accurately. The Euler–Lagrange model can

easily take into account particle-size or density distributions. For a large size or density

distribution the Euler–Euler model requires several phases to describe the system and

relations to describe their interactions. In these cases, the Euler–Lagrange model will

be more stable and will predict the flow better.

The volume-of-fluid (VOF) model is intended for gas–liquid and liquid–liquid segre-

gated flows. The model resolves the interface between the phases and requires that the
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Table 6.3 Suggested multiphase models for some common processes

System Criterion Example Model

Gas/liquid–solid Few particles or bundles of particles.

Particle–particle distance <10dp

Sedimentation Euler–Lagrange

Many particles St < 1 Stirred tank Mixture

Many particles St > 1 Fluidized bed

Cyclone

sedimentation

Euler–Euler

Bubbly flow Few bubbles, bubble–bubble distance

>10dp

Euler–Lagrange

Large volume fraction of gas Bubble column Mixture

Segregated

gas–liquid

Large fluid particles Slugs, waves Volume of fluid

Sprays Few drops or bundles of drops Spray Euler–Lagrange

Liquid–liquid Stokes number St < 1 Extraction Mixture

Stokes number St > 1 Euler–Euler

Large fluid particles Volume of fluid

Gas–liquid–

solid

Stokes number St > 1 Slurry reactor Mixture

Stokes number St < 1 Flotation Euler–Euler

fluid particles, e.g. droplets or bubbles, are much larger than the computational cells.

The phases are modelled using a single velocity field, and the computational cells that

are shared between the phases have to be averaged. The model works well in flows with

not too high a viscosity or density ratio between the phases. Since the method requires

a DNS resolution of the flow at the interface, the damping of turbulence at the interface

in turbulent flows is not well modelled and the VOF model may overestimate the shear

stress at the interface. The model requires a large number of mesh cells, and Cartesian

mesh cells make the method much more accurate.

The porous-bed model predicts flow in channels and cavities much smaller than the

mesh. The model requires that the volume fraction of the continuous phase is given a

priori and that the pressure drop is given by an algebraic model.

6.6.1 Guidelines for selecting a multiphase model

In selecting the best multiphase model, the first step is to identify the porous domains

and attribute appropriate flow models to each area. The second step is to characterize

the flow as segregated or dispersed. Other parameters that are important in selecting

the best model are the particle loading and the Stokes number. The particle loading

will give an estimate for the number of particles and the probability of particle–particle

collisions. The Stokes number predicts how independently the dispersed phase behaves

relative to the continuous phase. The scheme in Figure 6.13 gives a crude view of the

choices. However, the choices are not clear-cut insofar as there might be other reasons

for selection of models (Table 6.3). Very often it is the stability of the solution and

available data that decide the selection.
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Figure 6.13 A schematic guide for the selection of multiphase models.

Questions

(1) Describe a few key parameters that are useful for characterizing multiphase flows.

(2) What is the physical interpretation of the Stokes number?

(3) Several forces act on a single particle in a fluid flow. Discuss the most important of

these.

(4) Discuss what is meant by phase coupling.

(5) Explain what models it is appropriate to use for different types of dispersed phase

flows and stratified flow.

(6) What closure models are required for multiphase flow simulations?

(7) Explain the concept of viscosity modelling for granular flows.

Cambridge Books Online © Cambridge University Press, 2012



Cambridge Books Online © Cambridge University Press, 2012



7 Best practice guidelines

Computational fluid dynamics does not provide an exact solution to all problems, but

is in many cases a reliable tool that can provide useful results when it is employed

by an experienced user. An inexperienced user, on the other hand, may obtain very

nice graphs that are very far from being a prediction of the stated problem. Some of

the problems arise from the many default settings in commercial CFD codes, since

the user may obtain results without knowing what the code is doing by accepting set-

tings that are not appropriate for the specific problem. The user must make an active

decision regarding each setting due to the fact that many problems can arise from

a user failing to understand what the proper settings should be. This chapter pro-

vides some guidelines that can help a new user to avoid the most common mistakes.

Many more recomendations selected by experienced CFD users can be found in the

‘Best Practice Guidelines’ for single-phase flows [20] and for dispersed multiphase

flows [21] by the European Research Community on Flow Turbulence and Combustion

(ERCOFTAC).

A CFD simulation contains both errors and uncertainties. An error is defined as a

recognizable deficiency that is not due to a lack of knowledge, whereas an uncertainty

is a potential deficiency that is due to a lack of knowledge.

Poor simulation results may arise for many different reasons; the user may make

mistakes in formulating the problem to solve or in formulating the geometry and mesh-

ing. Numerical errors may occur due to lack of convergence and a poor choice of

discretization methods. The models for turbulence, reactions and multiphase flow are

not exact descriptions of the real world, and poor results may be introduced by not

selecting the best model for the specific case. In the end, the robustness and reliability

of the simulations should be analysed by sensitivity analysis, verification, validation and

calibration.

In general, it is good practice to study the obtained simulation results critically. CFD

is not (yet) at the stage at which it can be treated as a black box. Simulation results

should be verified with experimental findings, fluid-mechanics theory and, sometimes,

instinct. It may also help to understand the limitations of the CFD model if a simulation

is performed for a case regarding which the results are known, prior to exploring new

ground with the model. Some common errors and recommendations for best practice

are given in this chapter.
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7.1 Application uncertainty

Many problems in CFD simulations arise from inaccurately stated problems. The actual

problem that is being solved is not always straightforward. It is seldom possible to select

the right settings from the beginning. The properties of the flow are not all known in

advance. The flow can be laminar or turbulent, or laminar in some regions and turbulent

in other regions. The local hold-up in multiphase flow and the local Dahmköhler number

in reacting systems can affect the choice of model. The flow within the system may also

affect the flow at the inlet and the outlet. These are just a few of the possibilities.

7.1.1 Geometry and grid design

A number of general guidelines can be given.

� Make sure that the CAD geometry is complete for the flow simulation. The CAD

drawing should be kept as simple as possible, but it must not be simpler than that. All

details smaller than the computational cells can in most cases be removed, but small

details on the surface can sometimes be important for the flow, e.g. a welded joint may

induce flow separation.
� Symmetric boundary conditions restrict the solution to a symmetric solution, and no

transport is allowed across the symmetry plane, e.g. bubble columns and fluidized

beds are poorly described by 2D simulations.
� When the inflow and outflow are not known exactly, they should be put far from the

region of interest.
� With constant-pressure outflow, specify the direction of the outflow (e.g. normal to

the plane) to minimize the pressure difference across the surface.
� Use pressure outflow for multiple outflow boundaries.
� Avoid having non-orthogonal cells close to the boundaries. The angle between the

grid lines and the boundary should be close to 90◦. Use body-fitted grids when the

grid cannot be aligned with the surface.
� Avoid the use of highly skewed cells. The angles should be kept between 40◦ and 140◦.

The maximum skewness should be <0.95 and the average below 0.33. The aspect

ratio should be below 5, but may be up to 10 inside the boundary layer.
� The squish index describes how the cell faces are oriented, where 0 is a perfect cell and

the upper limit is 1. The recommendation is that the maximum squish index should

be below 0.99.
� Perform a grid check to avoid problems due to incorrect connectivity. This can often

be done in the mesh-generator software.

7.2 Numerical uncertainty

7.2.1 Convergence

Poor convergence is the most common numerical reason for poor results. Residuals are

defined differently in various programs, and monitoring the residual is in most cases not

sufficient to verify that a converged solution has been reached. Convergence problems
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for steady-state simulations may also indicate that a steady solution does not exist. The

residual should always be combined with other measures of convergence. Keep in mind

that a converged solution is not always a correct one.

� Use different convergence criteria for different variables. Concentration may need a

lower residual than velocity.
� Monitor integral quantities of solution-sensitive variables.
� Make global balances for mass, momentum and energy.
� Monitor the solution at specific important points.
� Test for steady state by switching to a transient solver.
� Plot the residual to evaluate whether the solution is poor in some regions of the

computational domain.

7.2.2 Enhancing convergence

There are many different methods by which to enhance convergence.

� Use more robust numerical schemes, e.g. initially employ first-order upwind, changing

to a higher order for the final iterations.
� Reduce the under-relaxation or CFL number initially.
� Examine the local residual. The convergence problem might be localized to one small

region. Use grid adaptation to refine or coarsen the mesh in areas where it is needed.

Using a fine grid throughout may diminish the convergence rate.
� Solve steady-state problems transiently.
� Try different initial guesses, e.g. obtain an initial guess from a short transient simula-

tion or obtain an initial guess from a steady-state simulation.
� Solve for only a few variables at a time, e.g. solve for the flow field first and keep the

velocities constant whilst solving concentration and chemical reactions. Finally solve

for all variables.
� Use the coupled solver for high-speed compressible flows, highly coupled flows with

strong body forces or flows being solved on very fine meshes. Keep in mind that the

coupled solver requires 1.5–2 times more memory than needed by a segregated solver.

7.2.3 Numerical errors

The numerical error is the difference between the exact solution and the numerical

solution.

� Avoid the use of first-order schemes. First order can be used initially when you have

convergence problems, but will always lead to problems with numerical diffusion.
� Estimate the discretization error by showing that the solution is independent of the

mesh density.
� Use node-based gradients with unstructured tetrahedral meshes.
� If possible, compare the solutions with different orders of accuracy.
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� Perform refinement or coarsening of the computational mesh. Ideally, the solution

should become less dependent on the mesh as it is refined. If the results reveal a strong

dependence on the computational mesh spacing, further refinement is required.

7.2.4 Temporal discretization

The choice of time step depends on the flow features being studied. Large-eddy simula-

tion requires very short time steps to resolve the turbulent eddies. Some of the turbulent

structures can also be resolved with RANS models, i.e. unsteady RANS or URANS, but

usually the time step is much larger than the turbulence timescales and only the transient

behaviour of the mean flow is resolved.

� Start with a short time step, i.e. a low CLF number that can increase with time.
� The time step should be selected so that fewer than 20 iterations are needed in each

time step with an implicit solver.
� Make sure that the solution has converged for each iteration for implicit schemes.
� For temporal accuracy, a second-order-accurate discretization scheme is recom-

mended, such as Crank–Nicolson or second-order backward Euler.

7.3 Turbulence modelling

Only DNS is an exact formulation of the Navier–Stokes equations. All other turbulence

models contain model approximations. Table 4.4 contains a comparison of turbulence

models.

� Test different turbulence models. The cost of running a second model starting from

a converged solution is usually not high. Different values of the model constants that

are recommended for specific kinds of flows should also be tested.
� Transition between turbulent and laminar flow is very difficult to simulate for all

models. Simulations involving transition must be verified with experimental data.
� Be aware of the limitations of the specific model, e.g. the k–ε model will suppress

swirl in a flow and the absence of swirl in a k–ε model does not certify that swirl

would not appear with another turbulence model.
� Many physical phenomena are not captured by turbulence models and require under-

standing from the user. Examples include, but are not limited to, transition, separation,

unsteady boundary layers and low-Reynolds-number turbulence.

7.3.1 Boundary conditions

� The exact inlet conditions for the turbulence properties are usually not known exactly.

The value of k/ε times the average velocity gives an order-of-magnitude estimation

of how far into the system the settings at the inlet will survive.
� Exact inlet conditions for LES are not possible. Modern CFD programs can generate

simple turbulent eddies at the inlet, but the inlet should be far from the area of
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interest in order to allow a proper statistical distribution of eddies to develop. Periodic

boundary conditions should be used when possible, but may introduce unphysical

correlations. As always, it is important to verify the obtained solution critically.
� For RANS models, the lower level of y+ should typically be between 20 and 30 at

the walls. Some commercial CFD programs can be made to accept lower y+ levels

by adjusting the appropriate model. (Check the manual for actual values.) The upper

limit of y+ is usually in the range 80–100.
� LES models require additional treatment at no-slip walls.
� For low-Re turbulence models the first grid should be at y+

< 4, preferably at y+ ≈ 1

with 5–10 mesh points below y+ = 20.
� Standard wall functions are not recommended for flow with a negative pressure

gradient, e.g. with flow separation at the wall.

7.4 Reactions

� Check the Dahmköhler number. Slow chemical reactions with Da ≪ 1 are straightfor-

ward. Very fast, mixing-controlled, isothermal chemical reactions with Da ≫ 1 can

be modelled rather accurately. Most other conditions with Da ≈ 1 and reactions that

lead to heat formation and changes in density will give uncertain results.
� Very low residuals as a convergence criterion for concentration are often required,

and monitoring integral quantities for mass balances or steady local concentrations

usually provides more reliable indicators than low residuals.

7.5 Multiphase modelling

Generally speaking, multiphase flows are more challenging than single-phase flows,

and errors in multiphase flow simulations are typically larger than those in single-phase

simulations. These errors may have a number of different origins.

� Not knowing the most important physical mechanisms. Because of the wide variety

of multiphase flow types, there is not one ‘generic’ model for multiphase flows. Before

attempting to model a multiphase flow system, it is very important to understand the

physical mechanisms occurring in the flow system. This includes understanding the

most important forces and mechanisms in the flow and the properties of the fluid(s)

and/or solids, as well as a good estimate of the length scales and timescales of the

physical processes. Only with this knowledge can appropriate models be selected and

their shortcomings in a simulation estimated.
� Closure models. Most errors in multiphase flow simulations arise from shortcomings

of the closure models employed. Most closure models are empirically determined,

which makes them applicable, strictly speaking, only under conditions similar to

those for the data they are built from. Analytical closure models are developed for

‘ideal’ conditions, which are hardly ever met in reality. Using closure models for
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conditions or regimes different from those to which they are applicable may be asking

for trouble.
� Timescale and length-scale separation. In the derivation of turbulence models, a

separation between the timescales and length scales of the ‘large’ eddies carrying the

energy and the scale(s) at which energy is dissipated is assumed. Similar assumptions

are required in order to derive governing and closure models for multiphase flows. For

instance, many closure models require the particles to be smaller than the large-scale

flow structures in a flow.
� Choice of model and governing equations. It is important to understand the impli-

cations and assumptions of each multiphase model, and under what conditions it may

be employed. For instance, in the derivation of the Euler–Euler or two-fluid model,

the pressure gradient over large interfaces, which is important in separated-flow sit-

uations, is neglected. This means that such a model will not capture the dynamics of

free surfaces very accurately.
� Numerical errors. Many numerical errors potentially arising in single-phase calcu-

lations may also arise in multiphase flow calculations. Therefore, it is important to

check the best-practice guidelines for single-phase flow computations. However, there

may be additional problems. Many of the ideas employed in solving multiphase flows

arise from single-phase flows, leading to slow convergence, or, worse, an erroneous

result.

To minimize the potential problems occurring when performing multiphase flow simu-

lations, the following checklist may be employed,

1. If possible, start the simulation with a single-phase flow situation resembling the

system. This simulation can be optimized in terms of grid size, time step, etc. by

using the best-practice guidelines for single-phase flow.

2. Determine the regime of the multiphase flow in terms of dimensionless parameters

(Re, We, St, . . . ). This enables the choice of suitable closure models and may give

insight into the expected flow situation.

3. Make an estimate of the forces acting on bubbles, particles or droplets and under

which conditions these forces will occur.

4. Make a suitable selection of the turbulence model and decide which terms (and

coupling to the dispersed phase) are important.

5. If possible, start with a geometry, flow properties and dispersed-phase properties sim-

ilar to those of a system of which you know the behaviour or for which experimental

data are available. This creates confidence in the models employed.

6. If there is a large size distribution of the dispersed phase, a multi-fluid approach might

be required for the dispersed phase. This allows the use of a range of size classes,

which can be monitored separately. Size distributions can have a big effect on the

flow.

7. First-order-accurate models, such as the VOF model and the surface-tension models,

require a very fine mesh – in these cases a relatively mesh-independent solution is

very important.
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8. Make sure that iterations are well converged. Many popular commercial CFD solvers

will start with a new time step when a specified maximum number of iterations is

reached, regardless of convergence criteria. This may be detrimental in terms of the

quality of results obtained.

7.6 Sensitivity analysis

There are many choices that are uncertain, and sensitivity analysis is one way to examine

the effect of the specific choice. It is good practice to start from a converged solution

and change all uncertain settings in the model.

7.7 Verification, validation and calibration

Verification is a procedure to ensure that the program solves the equations correctly.

Validation is done to test how accurately the model represents reality, and calibration

is often used to adjust the simulation to known experimental data in order to study

parameter sensitivity (‘what if’) in the design process.
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Einstein or tensor notation

In mathematics, especially in applications of linear algebra to fluid mechanics, the

Einstein notation or Einstein summation convention is a notational convention that

is useful when dealing with coordinate equations or formulas.

According to this convention, when an index variable appears twice in a single term,

it implies that we are summing over all of its possible values. In typical applications,

these are 1, 2 and 3 (for calculations in Euclidean space).

Definitions

In the traditional usage, one has in mind a vector space V with finite dimension n, and a

specific basis of V. We can write the basis vectors as e1, e2, . . . , en. Then, if v is a vector

in V, it has coordinates v1, . . . , vn relative to this basis.

The basic rule is

(v)i = vi ei .

In this expression, it is assumed that the term on the right-hand side is to be summed

as i goes from 1 to n, because the index i appears twice. The index i is known as a dummy

index since the result is not dependent on it; thus we could also write, for example,

(v) j = v j e j .

An index that is not summed over is a free index, and should be found in each term of

the equation or formula.

If H is a matrix and v is a column vector, then Hv is another column vector. To define

w = Hv, we can write

wi = Hi jv j . .

The dot product of two vectors u and v can be written

u · v = uivi . .

There are two useful symbols that simplify multiplication rules, the
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Kronecker delta,

δi j = (I)i j =

{

1 if i = j

0 if i �= j,

and the Levi-Civita symbol e (or ε),

ei jk =

⎧

⎨

⎩

1 if (i jk) is a positive permutation of (1, 2, 3)

−1 if (i jk) is a negative permutation of (1, 2, 3)

0 if (i jk) is a not a permutation of (1, 2, 3) at all;

(1, 2, 3), (3, 1, 2 ) and (2, 3, 1) are positive, (3, 2, 1), (1, 3, 2) and (2, 1, 3) are negative

and (1, 2, 2) etc. are not permutations of (1, 2, 3).

If n = 3, we can write the cross product, using the Levi-Civita symbol. Specifically,

if w is u × v, then

wi = ei jku jvk . .

Operators

For general operations on scalars, vectors and matrices in fluid mechanics, φ is any

scalar having the rank 0, u is a velocity vector

u =

⎡

⎣

u1

u2

u3

⎤

⎦

having the rank 1 and � is a (3 × 3) tensor

� =

⎡

⎣

τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎤

⎦

having the rank 2.

Various operators will change the rank of the tensor:

� gradients will increase the rank by 1,
� × product decreases the rank by 1,
� • product decreases the rank by 2,
� : product decreases the rank by 4.
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The gradient of a scalar is

∇φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂φ

∂x1

∂φ

∂x2

∂φ

∂x3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or

(∇φ)i =
∂

∂xi

φ.

The rank is 0 + 1 = 1.

The Laplacian is

∇ · ∇φ = ∇2
φ = �φ =

∂
2
φ

∂x2
1

+
∂

2
φ

∂x2
2

+
∂

2
φ

∂x2
3

=

(

∂
2

∂x2
1

+
∂

2

∂x2
2

+
∂

2

∂x2
3

)

φ

or

�φ =
∂

2
φ

∂xi ∂xi

.

The rank is 0 + 1 – 1 = 0.

For u

∇2u =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂
2u1

∂x2
1

+
∂

2u1

∂x2
2

+
∂

2u1

∂x2
1

∂
2u2

∂x2
1

+
∂

2u2

∂x2
2

+
∂

2u2

∂x2
3

∂
2u3

∂x2
1

+
∂

2u3

∂x2
2

+
∂

2u3

∂x2
3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or

(�u)i =
∂

2ui

∂x j ∂x j

.

The rank is 1 + 1 – 1 = 1.

For the dot product, the divergence,

∇ · u =
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3
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or

∇ · u =
∂

∂xi

ui ;

u · ∇u =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u1

∂u1

∂x1

+ u2

∂u1

∂x2

+ u3

∂u1

∂x3

u1

∂u2

∂x1

+ u2

∂u2

∂x2

+ u3

∂u2

∂x3

u1

∂u3

∂x1

+ u2

∂u3

∂x2

+ u3

∂u3

∂x3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or

(u · ∇u)i = u j

∂ui

∂x j

.

The rank is 1 + (1 + 1) − 2 = 1.

For the cross product, the curl,

∇ × u =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂u3

∂x2

−
∂u2

∂x3

∂u1

∂x3

−
∂u3

∂x1

∂u2

∂x1

−
∂u1

∂x2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

or

(∇ × u)i = ei jk

∂

∂x j

uk .

The rank is 1 + 1 – 1 = 1.

For the Frobenius inner product

� : ∇U = τ11

∂U1

∂x1

+ τ12

∂U1

∂x2

+ τ13

∂U1

∂x3

+ τ21

∂U2

∂x1

+ τ22

∂U2

∂x2

+ τ23

∂U2

∂x3

+ τ31

∂U3

∂x1

+ τ32

∂U3

∂x2

+ τ33

∂U3

∂x3

or

� : ∇U = τi j

∂Ui

∂x j

.

The rank is 2 + (1 + 1) − 4 = 0.
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accuracy, 43, 176

adaptation, 60, 178

algebraic slip model, 150

angular momentum, 74

anisotropic, 70, 71

application uncertainty, 175

aspect ratio, 59

average concentrations, 133

average reaction rate, 116, 140

Batchelor length scale, 119

BBO equation, 147

beta-PDF, 122

boundary conditions, 18–21

axis, 20

best-practice guidelines, 177

inlet, 19, 111

outlet, 19

periodic, 6

symmetry, 20

wall functions, 106

walls, 19

boundary layers, see turbulent boundary layers

boundedness, 40

Boussinesq approximation, 85

bouyancy force, 149

Brownian force, 149

calibration, 180

capillary number, 160

cell-centred, 26

central differencing, 40

chemical energy, 16

chemical reactions, 130–40

best-practice guidelines, 178

collision viscosity, 167

combustion, 137

conditionally bounded, 40

conservativeness, 38

conserved scalar, 119

consistent, 46

continuity equation, 12

control volume, 26

convergence, 37

best-practice guidelines, 175

Courant number (CFL), 57, 176

Crank–Nicolson, 56

Dahmköhler number, 118

dense regime, 144

dilatational viscosity, 12

dilute regime, 144

direct numerical simulation (DNS), 79

discrete random walk (DRW), 154

discretization schemes, 38–46, 176

comparison, 46

dispersed flow, 144

dissipation, 91

dissipative subrange, 73, 76

drag coefficient, 162

drag force, 148

drag models, 161

drift velocity, 157

dynamic LES, 81

eddy dissipation (ED), 141

eddy viscosity, 86

effective viscosity, 86

energy cascade, 72

energy-containing subrange, 73, 76

energy spectrum, 75

energy transport, 16

engulfment, 117

Eötvös number, 162

equation of state, 22

equilibrium reaction, 135

Euler–Euler, 150, 155

Euler–Lagrange, 150, 152

explicit method, 54

face value, 28

film model, 168

filtered residual, 80

filtered velocity, 80

finite differences, 25

finite elements, 25
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finite volumes, 25

first-order accurate, 44

first-order upwind, 41, 176

forces on dispersed particles, 147–9

bouyancy force, 149

Brownian force, 149

drag force, 148

history force, 148

Magnus lift force, 148

pressure force, 148

Saffman lift force, 149

shear force, 148

thermophoretic force, 149

turbulence force, 149

virtual mass force, 148

four-way coupling, 147

friction velocity, 103

frictional viscosity, 167

Gauss theorem, 27

Gauss–Seidel, 34

granular flow models, 165

granular temperature, 166

granular viscosity, 167

collision, 167

friction, 167

kinetic, 167

heat transfer, 168

hexahedral, 58

history force, 148

HRIC scheme, 46

implicit method, 55, 177

incompressible flow, 13

inertial subrange, 73, 76

initial conditions, 20, 34

best-practice guidelines, 176

intensity of segregation, 125

inter-particle distance, 145

isotropic, 68, 71, 75

kinetic energy, 16

kinetic energy balance, 16

kinetic theory of granular flow (KTGF),

166

kinetic viscosity, 167

Knudsen number, 15, 163

Kolmogorov hypotheses, 70

Kolmogorov spectrum law, 76

Kronecker delta, 12

k–ε model, 89

k–ω model, 95

large-eddy simulation (LES), 79

law of the wall, 105

look-up table, 134

low-Reynolds-number models, 108

Mach number, 14

macromixing, 113

Magnus lift force, 148

mass transfer, 168

mean concentrations, 133

mean free path, 9

mesh generation, 58

best practice guidelines, 175

micromixing, 113

mixing segregation, 128

mixing timescales, 119

inertial–convective mixing, 119

viscous–convective mixing, 120

viscous–diffusive mixing, 120

mixture fraction, 119–30, 132

closures, 126

instantaneous, 124

mean, 124

variance, 122, 125

mixture model, 150, 156

momentum balance, 14

multigrid, 50

multiphase flows

characterization, 144

coupling, 146

loading, 145

particle forces, 147

particle spacing, 145

response time, 146

Stokes number, 145

volume fraction, 144

multiphase modelling, 149–69

best-practice guidelines, 178

boundary conditions, 169

Euler–Euler, 150, 155

Euler–Lagrange, 150, 152

guideline, 172

mixture model, 150, 156

porous-bed model, 150, 160

turbulence, 153, 156, 160

volume-of-fluid (VOF) model, 150,

158

MUSCL scheme, 46

Navier–Stokes equations, 15

near-wall modelling, 99–110

Newtonian fluid, 10

node-centred, 26

non-PDF models, 141

normal stress, 11, 84

numerical diffusion, 60, 176

numerical errors, 176

Nusselt number, 169
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one-way coupling, 146

particle collisions, 164

particle interactions, 163

particle pressure, 167

particle response time, 146

particle Reynolds number, 162

particle spacing, 145

particle–particle collisions, 169

Péclet number, 39

phase coupling, 146

PISO, 48

Poisson equation, 13

porous-bed model, 150, 160

potential energy, 16

power-law scheme, 45

Prandtl number, 10

Prandtl’s mixing length, 105

pressure force, 148

pressure-strain, 98

PRESTO!, 49

presumed PDF, 122

probability density function (PDF), 120

QUICK scheme, 45

radial distribution function, 167

RANS equations, 82

rapid granular flow, 166

rarefaction effect, 163

rate of strain, 10

raw moment, 126

reaction-progress variable, 138

realizable k–ε model, 94

residuals, 38

restitution coefficient, 164

Reynolds decomposition, 81

Reynolds number, 69

Reynolds stress models (RSM), 96

Reynolds stress tensor, 84

Reynolds stresses, 84

RNG k–ε model, 93

rotational velocity, 148

Saffman lift force, 149

sample-space variable, 122

scalar dissipation rate, 127

scales of segregation, 128

Schmidt number, 9

second-order accurate, 44

second-order upwind, 42

sensitivity analysis, 180

separated flow, 144

shear force, 148

shear stress, 11, 84, 101

Sherwood number, 168

SIMPLE, 48

SIMPLEC, 48

SIMPLER, 48

size distribution, 179

skewness, 59, 175

slip velocity, 157

slow granular flow, 166

Smagorinsky–Lilly model, 81

species balance, 18

specific dissipation, 95

squish index, 175

statistical methods, 66

stoichiometric mixture fraction, 132

Stokes number, 145

strain rate, 10

stratified flow, 144

structured grid, 26, 58

subgrid stress model, 80

subgrid stress tensor, 80

subgrid viscosity, 81

substantial operator, 13

surface-tension model, 159

Taylor expansion, 42

tensor notation, 8

tetrahedral, 58

thermal energy, 16

thermal energy balance, 18

thermophoretic force, 149

third-order accurate, 46

time step, 177

transportiveness, 40

truncation error, 43

turbulence

characteristics, 63

energy cascade, 72

energy spectrum, 75

kinetic energy, 68, 90

statistics, 66

timescales and length scales, 73

transition, 69

turbulence modelling, 76–99

best-practice guidelines, 177

comparison, 99

direct numerical simulation (DNS), 79

energy dissipation, 91

k–ω model, 95

large-eddy simulation (LES), 79

low-Reynolds-number models, 95, 108

near-wall region, 107

realizable k–ε model, 94

Reynolds stress models (RSM), 96

RNG k–ε model, 93

standard k–ε model, 89

turbulent viscosity, 85, 86

zonal modelling, 107
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turbulent boundary conditions, 99–112

inlet, 111

unsteady, 20

walls, see wall functions

turbulent boundary layers, 101

buffer sub-layer, 102

fully turbulent sub-layer, 102

viscous sub-layer, 101

turbulent diffusivity, 126

turbulent energy dissipation, 91

turbulent intensity, 112

turbulent kinetic energy, 68, 90

turbulent mixer model (TMM), 128

turbulent mixing, 117

turbulent viscosity, 85, 86

two-way coupling, 146

u, 103

unbounded, 46

under-relaxation, 49, 176

universal equilibrium range, 73, 76

unsteady flows, 51, 177

unstructured grid, 58

validation, 180

van Leer scheme, 42

velocity decomposition, 67

verification, 180

virtual mass force, 148

viscosity models, 22

viscous dissipation, 17

viscous stress, 10

volume fraction, 144

volume-of-fluid (VOF) model, 150, 158

von Kármán constant, 81

vortex stretching, 74

vorticity, 74

wall friction velocity, 103

wall functions, 104–7

best-practice guidelines, 177

non-equilibrium, 106

standard, 104

wave number, 75

Weber number, 160

y + , 103
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