


Fluid Dynamics of
OIL PRODUCTION



This page intentionally left blank



Fluid Dynamics of
OIL PRODUCTION

BAKYTZHAN ZHUMAGULOV

VALENTIN MONAKHOV

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Gulf Professional Publishing is an imprint of Elsevier



Gulf Professional Publishing is an imprint of Elsevier

525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

32 Jamestown Road, London NW1 7BY, UK

225 Wyman Street, Waltham, MA 02451, USA

Copyright r 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means electronic, mechanical, photocopying,

recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology

Rights, Department in Oxford, UK: phone (144) (0) 1865 843830; fax (144) (0)

1865 853333; email: permissions@elsevier.com. Alternatively, visit the

Science and Technology Books website at www.elsevierdirect.com/rights for

further information.

Notice

No responsibility is assumed by the publisher for any injury and/or damage to

persons, or property as a matter of products liability, negligence or otherwise, or

from any use or, operation of any methods, products, instructions or ideas

contained in the material herein. Because of rapid advances in the medical

sciences, in particular, independent verification of diagnoses and drug dosages

should be made.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-416635-6

For information on all Gulf Professional Publishing

visit our website at elsevierdirect.com

Printed and bound in the United States of America

14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

mailto:permissions@elsevier.com
http://www.elsevierdirect.com/rights
http://elsevierdirect.com


CONTENTS

Preface vii

Acknowledgements xiii

1. Fluid Flow Models 1

1.1 Introduction 1

1.2 Single-Phase and Two-Phase Fluid Flow Models 2

1.3 The Transformation of ML Model Equations 15

1.4 The MLT Model for Constant Residual Saturations 28

1.5 Non-isothermal Flow of Immiscible Fluids with Variable Residual

Saturations (The MLT Model) 30

1.6 The Combination of Well and Reservoir Flows of Viscous

Incompressible Fluids 33

1.7 A Formation Flow Model of Waxy, High Gas Content Oil

Displacement 37

1.8 Formation Flow of Two Immiscible Inhomogeneous Fluids 40

2. Analytical and One-Dimensional Models
of Thermal Two-Phase Flow 45

2.1 Introduction 45

2.2 Boundary Value Problems for Ordinary Differential Equations 46

2.3 Numerical and Analytical Methods of Investigation of Thermal

Two-Phase Flow Problems 55

2.4 Analytical Problems of Thermal Two-Phase Flow in the Case of Variable Residual

Saturations 68

2.5 The Qualitative Properties of Analytical MLT Model Solutions 76

2.6 An Analytical Solution of Flow Equations for Two Nonlinearly

Viscous Fluids 90

2.7 Validation of the Use of a Specific Approximate Method in

Two-Phase Non-Isothermal Flow 97

2.8 Combination of the Principal Models of Two-Phase Fluid Flow 101

2.9 One-dimensional Flow of Two Interpenetrating Viscous

Incompressible Fluids 111

v



3. Multidimensional Numerical Models of
Subsurface Fluid Dynamics 129

3.1 Introduction 129

3.2 Convergence of Finite-difference Schemes for a Navier-Stokes Model

with Velocity � Pressure Variables 130

3.3 Numerical Realization of Navier-Stokes Model in Multiply Connected

Domain in Velocity � Flow Function Variables 152

3.4 Implementing the Method of Splitting into Underlying Physical

Processes in Complex Geometrical Regions 165

3.5 Numerical Simulation of the Oil Displacement Process Based

on the N.E. Zhukovsky Model 177

3.6 Numerical Model to Find Formation Pressure 183

3.7 Convective Warm-up of an Inhomogeneous Porous Medium 197

3.8 The Splitting of Physical Processes under Non-isothermal Two-phase

Fluid Flow in a Porous Medium 205

3.9 Flow of Two Immiscible Inhomogeneous Fluids in Porous Media 214

3.10 Numerical Solution of the Problem of Two-dimensional

Two-phase Flow 220

3.11 Geological and Mathematical Models of the Reservoir 231

References 249

Index 257

vi Contents



PREFACE

SUBSURFACE FLUID DYNAMICS

At the present time, mathematical modelling is frequently applied to the

mechanics of continuous media and in particular to subsurface fluid

dynamics. The latter deals with such important theoretical and practical

issues as water flow through dams, soil salinization, the spread of pollution

by groundwater flows, oil production, groundwater flow into artesian

wells and many others. The similarity of the physical processes involved

in these phenomena means that their models also have many similarities,

although the model equations all have their own special characteristics. It

is in fact these special characteristics that make it very difficult to validate

the models and solve the equations.

Filtration is defined as fluid flow through a porous medium. A

medium is regarded as porous if it contains a large number of voids which

are small by comparison with the typical dimensions of the medium.

Porosity is defined quantitatively by the ratio of pore volume to bulk vol-

ume: m5Vpor=Vtotal. Mathematical flow models are based on the law of

conservation, the mechanics of continuous media, their effects, and other

accepted equations. Primary equations include the continuity equation

(taking porosity into account), the heat balance equation and equations of

state. The main assumption of the flow theory is the replacement of

Euler’s or Navier-Stokes equations of motion with Darcy’s Law.

The simplest two-phase flow model is the well-known Buckley-

Leverett (BL) model (Chapter 1, Section 1.1), which assumes the equality

of phase pressures, and therefore does not allow for the effect of capillary

forces on fluid flow. The difficulties which arise in solving its equations

(the potential ambiguity of the solution) are resolved by making the flow

process mathematically ideal by assuming that the final function contains a

point of inflexion. Convective processes are central to the BL model. To

take additional effects into account, the mathematical flow model needs

to be adjusted in various ways.

The introduction of capillary forces produces the Muskat-Leverett (ML)

model (Chapter 1, Sections 1.1�1.4) which uses a Laplace equation to allow

for these forces. Unidimensional transformation of the model produces a
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non-linear degenerate second-order differential equation. The solution of

this equation has no point of inflexion, and the high-gradient region is con-

fined to a limited area, which is perfectly justified in physical terms. Another

advantage of this equation is that although it is parabolic, the model retains

an important and physically natural property, in that it allows perturbations

to propagate within a defined range of velocities (provided that its functional

parameters have been correctly selected) (Chapter 2, Section 2.1).

The flow model is further refined (and therefore further complicated)

if we allow for the interaction of velocity and temperature in oil-bearing

formations, which means that an energy equation needs to be added to

the model. Models of non-isothermal two-phase flow were studied by

O.B. Bocharov, V.N. Monakhov, R. Yuing (MLT-model) [2; 15; 16; 44],

E.B. Chekalyuk [140] and others. O.B. Bocharov and V.N. Monakhov

[16] proposed and investigated an even more generalized MLT-model,

which included variable (temperature-dependent) residual saturation.

Other generalized flow models include non-linear, multiphase and

multicomponent flow models and others.

In our book, we concentrate on the effect of temperature on fluid

flow processes as applied to modelling water-oil displacement and the

production of fluid. The inclusion of non-isothermal flow makes it possi-

ble to approximate the real conditions, making the physical and therefore

the mathematical model less abstract, and provides some corrections to

the accepted hydrodynamic methods of calculating oil production.

Studies have shown that oil recovery factors can be significantly increased

only by changing the physical and physico-chemical properties of the dis-

placed phase, withthermal recovery being increasingly favoured. The impor-

tance of thermal recovery methods is largely due to the fact that they use

easily available media�water and air. Another major advantage over most

other methods (e.g. physico-chemical) is the potential for increasing recov-

ery in a variety of physico-geological oil field conditions. Thermal recovery

methods are based on the fact that the viscosity of oil decreases considerably

when it is heated, so that their primary application is in high-viscosity oil

fields. At the same time, thermal recovery involves virtually all known oil

displacement mechanisms, together with a variety of phase transitions, so

that it offers promise even in the case of low-viscosity oil fields which have

long been operated under water injection. It should be noted that the injec-

tion of water at a temperature lower than formation temperature (e.g. sea

water or injection during winter) reduces oil recovery. In particular, it may

lead to wax precipitation directly in the porous medium.
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It is well known that in water wet rocks capillary forces can play a

very important role in the process of oil displacement. If a

low-permeability section is surrounded by high�permeability rock, the

water will flow around the oil contained in the section. If water wet for-

mations are flooded, the oil can be frequently recovered only by the use

of capillary forces. The existence of this mechanism has been confirmed

both experimentally and by analysing fields consisting of inhomogeneous

water wet rocks. Capillary saturation may also have a decisive influence

on the mechanism of oil recovery in stratified beds. Therefore, we need

to know how the non-isothermal process of oil displacement by capillary

forces will affect the recovery of oil from such heterogeneous formations.

All these phenomena require thorough study, and the Muskat-Leverett

thermal flow model provides an effective tool.

Many problems formulated using these models can be studied in a

given sequence, forming a specific process cycle, such as for instance

steam treatment (Chapter 2, Section 2.1), which may be described in a

simplified form as consisting of the following steps (the corresponding

mathematical statements are shown in brackets):

1. Steam (superheated water) injection at a specified temperature and

flow rate (non-isothermal two-phase flow with convective forces

predominating);

2. Soaking for a specified time without water injection (thermocapillary

saturation)

3. Steam or water injection (possibly, at a different temperature and flow

rate) (non-isothermal two-phase flow with convective forces

predominating).

Therefore, if we know how to model these steps we can use them to

study more complicated processes and make multivariate optimizing

calculations.

For all the above models, we need to find specific solutions, including

self-similar (analytical) solutions, and this problem is dealt with in

Sections 2.1�2.5 of Chapter 2.

NUMERICAL MODELLING OF OIL PRODUCTION PROCESSES

The most common oil-field development systems are based on symmetri-

cal well patterns. This means that rather than studying a whole field, we

can study a single development unit, which usually consists of two wells.

For example, for a five-spot water flood, the basic element is a rectangle
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with no flow boundaries, containing an injection and a production well

in opposite corners.

Since calculations of the development of basic elements of symmetri-

cal well patterns can be reduced to calculations of linear flow (for an

in-line pattern) or a plane-radial flow (for an areal pattern), this simplifies

flow model equations, making them one�dimensional.

The formulation of the initial and boundary conditions for the basic

elements is also simplified: the production rate, pressure or saturation are

specified for each well. Consolidated figures are then calculated for the pro-

duction unit as a whole, followed by the calculation of the 2D process of

two-phase flow in the basic element�this program can be attached to

more detailed multi-parameter ID programs, providing them with coeffi-

cients allowing for the fact that the processes are not unidimensional.

However, the 2D basic element calculation is important not only because it

supplements the ID programs but also as a stand-alone petroleum engineer’s

tool, in which the multiple parameters of the ID models can be incorpo-

rated, provided sufficient computing power is available. In addition, as field

development proceeds, well patterns and well operation become asymmet-

rical, and this can only be allowed for by 2D calculations, performed by a

program which calculates the process of oil production in a 2D basic ele-

ment without assuming that the boundary conditions are symmetrical.

The calculation program produces oil saturation and pressure fields

within the basic element and calculates the oil recovery factor and water

cut as a function of the injected pore volumes of water. The information

may be presented in graphical form and then printed out as data files for

use in further analysis of the oil production process and/or printed out as

numerical files.

The contents of the book. If we include submodels and combined

models, Chapter 1 contains the description of over 30 different mathe-

matical models of oil formations, provides analyses of a number of some

generally accepted flow models and offers new models of some physical

effects not covered elsewhere. In designing these models, we have

attempted to achieve a good numerical implementation without increas-

ing the number of their key parameters. As a rule, the proposed model

design changes are accompanied by small “slippage” terms introduced

into the equation by analogy with the computing “slippage” in finite-

difference equations. It should be noted that other authors have also

introduced some of the filtration model changes proposed in Chapter 1,

but did not analyse the resultant models sufficiently.
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S.N. Antontsev and V.N. Monakhov [4] proposed a general oil forma-

tion flow model containing a range of functional parameters. By making

a careful selection, some of the models proposed in Chapter 1 can be

derived from them.

Mathematical models can be subdivided into three main classes:

1. Single-phase Darcy models and contact models (Section 1.1);

2. Two-phase models (e.g. the Muskat-Leverett model2 Sections 1.1�1.4);

3. Combined models (e.g. of two inhomogeneous liquids2 Section 1.7).

In addition to the conventional Darcy and Muskat-Leverett models

and the Muskat-Leverett thermal model (in the form proposed by O.B.

Bocharov and V.N. Monakhov [15; 16]), Chapter 1 describes the Navier-

Stokes and Zhukovsky models (Section 1.1), used by the authors to opti-

mize oil production control and production forecasts.

The book also contains some unconventional models, such as the

models describing the process of “foaming” in oil formations (Section

1.6), the combination of reservoir flow with liquid flow in wells (Section

1.5) and others.

Of the new and modified models (e.g. the reduced-pressure ML and

MLT models) Chapter 1 discusses only the models developed by V.N.

Monakhov and studied by him and his colleagues and students, S.N.

Antontsev, O.B. Bocharov, A.A. Papin, R. Yuing, E.M. Turganbayev, V.

N. Starovoitov, N.V. Khusnutdinov, A.E. Osokin, and others [4; 15; 16;

18; 20; 32; 44; 61; 69; 75; 91; 94; 101; 124; 134].

Chapter 2 presents a theoretical and numerical analysis of one-

dimensional and self-similar (analytical) thermal two-phase flow patterns,

while its Section 2.1 provides additional information based on the ordinary

differential equation theory, which is also of independent interest.

The core of the chapter is formed by Sections 2.2 and 2.3, which pres-

ent the results of V.N. Monakhov, O.B. Bocharov, A.E. Osokin, and T.V.

Kantayeva’s work [20; 69; 92]. These include the theorem of existence of

self-similar (analytical) solutions of the MLT model for constant and vari-

able residual saturation, the identification of a restricted range of velocities

of propagation of perturbations, and the computer implementations of the

numerical algorithms proposed by the authors and their substantiation.

Section 2.4 contains a theoretical analysis of the analytical solutions

(B.T. Zhumagulov, V.N. Monakhov [58].

The existence and uniqueness of self-similar (analytical) solutions of

the model of two-phase flow of non-linear-viscous liquids is demon-

strated in 2.5 (E.G. Galkina, A.A. Papin [32]). Section 2.6 establishes the
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convergence of Rothe-type methods in a one-dimensional MLT model

(A. E. Osokin [100]).

Section 2.7 is devoted to the substantiation of a new method of inte-

grating ML and BL model solutions and to their numerical implementa-

tion (I.G. Telegin, [129]; B.T. Zhumagulov, Sh.S. Smagulov, V.N.

Monakhov, N.V. Zubov [61]).

The existence and uniqueness of “im Kleinen” (small-scale) solutions of

the first boundary-value problem, based on the initial data for the two

interpenetrating viscous liquids flow model is demonstrated in Section 2.8

(A. A. Papin [101]).

Chapter 3 deals with numerical modelling of two-dimensional subsur-

face hydrodynamics processes with reference to Muskat-Leverett isothermal

and temperature models as well as Navier-Stokes and Zhukovsky models.

In this chapter, Section 3.1 demonstrates the convergence and stability

of effective finite�difference schemes [38] for Navier-Stokes velocity vs.

pressure finite difference equations, while Section 3.2 uses velocity vs.

flux function and the method of virtual regions to provide numerical

calculations of reservoir flows in multiply connected regions [45] and

geometrically complex regions (Section 3.3) [45]. In Section 3.4, similar

numerical methods are applied to the Zhukovsky model. [49].

Section 3.5 provides a solution to a key problem of subsurface hydro-

dynamics�that of determining formation pressure from measured well

pressure values [49]. We have performed a numerical calculation of for-

mation heating, which forms one of the stages of steam treatment, based

on the classical thermal convection model (Section 3.6) [63]. Section 3.9

[49] provides a numerical solution of water-oil displacement from inho-

mogeneous oil formations, based on the ML model, while Section 3.7

and Section 3.8 present the mathematical substantiation of the finite-

difference equations used in Section 3.8 for more general models [18,

44]. And finally, Section 3.10 offers a hydrodynamic analysis of the results

of numerical calculations of subsurface hydrodynamics problems based on

different formation models [57].

Sections 3.1�3.6 and 3.9 present the results obtained by B.T.

Zhumagulov and his colleagues, Sh.S. Smagulov, N.T. Danayev, B.G.

Kuznetsov, G.T. Balakayeva, N.T. Temirbekov, K.Zh. Baigelov, K.M.

Baimirov, K.B. Esikeyev [38; 47-52; 56; 59].

Results obtained jointly by V.N. Monakhov with R. Ewing [44],

O. B. Bocharov [18] and B.T. Zhumagulov [57] appear in Sections 3.7,

3.8 and 3.10.
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CHAPTER11
Fluid Flow Models

1.1 INTRODUCTION

In this chapter we analyze a number of well-known mathematical models

of homogeneous and non-homogeneous fluid flow in porous media, and

propose some new models. As the existing models [89; 105; 143] are

based on specific conceptions of these processes, the inclusion of each

new effect requires a revision of their underlying assumptions, as well as a

revision of the model.

The fact that there are many forms of Darcy’s Law means that we

need to ask ourselves how to select the form which will best describe

each specific situation. While the work on this question has progressed in

recent decades, it has involved virtually no review of the fundamentals of

conventional models. Frequently, experimental data processed to fit the

conventional models have been unstable (not easily reproducible), while

published experimental results did not, as a rule, provide sufficient infor-

mation to fit them to other models. Some effects are simply impossible to

describe in terms of the existing models.

Basic mathematical analysis of the various forms of flow models may

prove extremely useful for the modelling of phenomena. At the same

time, new physical factors need to be taken into account, that is, the

minor effects which stabilize the numerical calculations (i.e. the physical

“slippage terms” in the equations). For instance, transition to linear mod-

els often leads to a loss of divergence in equations, and when it comes to

numerical calculations, does not simplify the initial nonlinear model.

Equally, striving to achieve a mathematically satisfactory model can lead

to a lack of conformity with the physics of the phenomenon, as is the

case with the divergent form of Darcy’s Law for inhomogeneous media,

proposed by Sheidegger [143].

At present, the widespread use of computers has led to the establishment

of a well-defined “process flow diagram” for solving specific problems in the

mechanics of continuous media, including multiphase fluid flow. The work

flow progresses from the problem under consideration to a mathematical

1Fluid Dynamics of Oil Production
© 2014 Elsevier Inc.
All rights reserved.



model, from there to a numerical algorithm, the implementation software

and finally to the analysis of the results. While the individual components of

the process are not isolated but interconnected, linking both forwards and

backwards, the most important factor for success is likely to be the choice

of an appropriate mathematical model.

There are several principal requirements applicable to phenomenological

flow models:

1. Experiment reproducibility. The ability to define all parameters exper-

imentally, without needing to involve additional “theories”, and good

reproducibility of the experiments.

2. A clear distinction between the underlying hypotheses, and a clear

definition of the limits of their applicability, both in qualitative terms

(what kinds of physical effects they can describe) and quantitatively.

3. Ability to incorporate simpler models into higher-level models, so

that new physical factors can be taken into account.

4. Mathematical feasibility and correctness.

Needless to say, these are not rigid requirements and could even be

seen as programmes of study of the models. Moreover, the features of

phenomenological models can be determined in laboratory conditions,

using higher-level models containing independently determined para-

meters. For instance, the Navier-Stokes model could be used to deter-

mine phase permeabilities in two-phase flow models and to check various

properties (e.g. saturation). Below we comment on several examples of

multiphase fluid flow. There is no point in calculating total oil recovery

using models which specify the total flow rate for injection wells, and the

flow rate of only the displaced phase for production wells. If the phases

are incompressible, then the answer lies in correctly stating the well

conditions.

With these examples, we hope to have provided some insight into the

difficulties of choosing an appropriate model with which to describe the

physical process of fluid flow in porous media as it occurs in reality.

1.2 SINGLE-PHASE AND TWO-PHASE FLUID FLOW MODELS

1.2.1 Darcy’s Model and Contact Models
1.2.1.1 The Properties of Porous Media
The main property of a porous material, its porosity (effective or

dynamic), is described by the ratio m5Vn=V0, where Vn is the intercon-

nected pore volume and V0 is the bulk volume.

2 Fluid Dynamics of Oil Production



If the compressibility of the medium is taken into account, and it is

assumed that the medium is elastic, i.e. it obeys Hooke’s Law, then

m5m01 ðp2 p0Þβm; ð1:1Þ

where p is the fluid pressure; p0 is the average pressure of the porous

medium.

As a rule in inhomogeneous medium m and m0 are functions of the

coordinates x5 ðx1; x2; x3Þ.
The adsorption of molecules on the walls of porous materials results

in high near-wall concentrations. Using the kinetic theory of gases,

Langmuir calculated the mass wa of adsorbed gas at a gas pressure p:

ωa5
abp

11 ap
ða; b5 constÞ: ð1:2Þ

Changes in pore pressure can result in the escape of the adsorbed gas,

i.e. in gas sorption. Taking these processes into account, we can calculate

the total mass w of gas in a porous medium from the formula

ω5mpð12mÞ abp

11 ap
5ωðp; xÞ: ð1:3Þ

The flow properties of porous media are described by a symmetrical flow

tensor K 5 fkijg, whose terms kij have an areal dimension.

We shall define an ideal porous medium as consisting of a porous material

which is incompressible, homogeneous and isotropic, and displays a linear

resistance to the fluid flow.

For an ideal porous medium, the flow tensor is expressed by

K 5 kE;

where E is the identity matrix; k5 const is the permeability coefficient.

In the case of inhomogeneous media, the permeability coefficient is a

function of the coordinates k5 kðxÞ, and in the case of compressible media

k5 kðpÞ; if its resistance behaviour is nonlinear it is k5 kðrpÞ, whereas in
the case of anisotropic media K 5 fkijg is a symmetrical flow tensor.

1.2.1.2 Fluid Properties
Fluid properties are a flow velocity vector ~v whose value v5 j~vj coincides
with specific fluid flow rate per unit of time through a porous area normal

3Fluid Flow Models



to ~v; pressure p and density ρ. The relationship between flow velocity ~v
and average fluid particlevelocity ~u is described by the formula

~v5m~u5m
d~x

dt
; ~x5 ðx1; x2; x3Þ:

1.2.1.3 Darcy’s Model
Flow theory is based on Darcy’s Law, which is a law derived experimen-

tally for stationary flows and describing the resistance of porous media to

fluids flowing through them [87, 89, 105]; Darcy’s Law establishes the

relationship between flow velocity ~v; and pressure gradient p.

In the general case, Darcy’s Model (D) is based on Darcy’s Law com-

bined with the equation of continuity and equation of state for fluids:

2~v5Kμ21ðrp1 ρ~gÞ; @

@t
ωðp; xÞ1 divρ~v5 0; ρ5 ρðpÞ; ðDÞ

where μ is the dynamic fluid viscosity; ρ~g is the gravity acceleration vec-

tor; the total mass of gas ωðρÞ is described by (1.3) (in the case of fluids

ω5mρ).
By substituting ~v5~vðx; p;rpÞ, taken from the second equation, in the

first equation (D), we obtain a single equation for pressure p:

@

@t
ωðp; xÞ1 div~vðx; p;rpÞ5 0; ρ5 ρðpÞ ð1:4Þ

Equation (1.4) is usually a degenerate (simplified) parabolic equation.

In the specific case of an ideal porous medium and incompressible

fluid ðρ5 constÞ, Darcy’s model assumes the following simple form:

2~v5
k

μ
ðrp1 ρ~gÞ; div~v5 0: ðD0Þ

A mathematical theory of two-dimensional stationary flow in ideal porous

media [in (D0),k5 const] was first put forward in P. Ya. Polubarinova-

Kochina’s ground-breaking work, described in her monograph [105], which

also includes the research of her students.

V.N. Monakhov developed boundary value theory methods for

elliptical equation systems and quasi-conformal mappings, which made

it possible to investigate the mathematical correctness of fluid flow

problems in specified regions, as well as free boundary regions in non-

ideal porous media ([89, Chapter 8], [90]), when K 5 kij is a tensor (D)

and kijð~x; p; j~vjÞ.
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1.2.1.4 The Forms of Darcy’s Law in the Case of Homogeneous
Fluid Flow in Inhomogeneous Porous Media
As noted by Sheidegger [143], if we allow for the inhomogeneity of the

medium, we obtain the following two different generalized forms of Darcy’s

Law for the same type of fluid flow:

~v5 kμ21rϕ; ðD1Þ

~v52rðkμ21ϕÞ; k5 kðxÞ; ðD2Þ

These two forms are equivalent if the medium is homogeneous, and

k5 const (ϕ5 p1 gρh, grh5~h). Form (D2) of Darcy’s Law is mathemati-

cally more convenient, since the introduction of a new potential Φ5
k

k0
ϕ,

where k05 const- average permeability, reduces it to the form

~v52k0μ21rΦ, which corresponds to a homogeneous medium.

However, in this case the inhomogeneity of the medium affects flow

velocity ~v only through the values of kðxÞ and rk at the boundary Γ5 @Ω
of flow region Ω. In particular, when kðxÞjΓ5 const and rkjΓ5 0, the

distribution of flow velocity ~v in Ω does not depend on the inhomogeneity

of the medium. Consequently, form (D2) of Darcy’s Law is physically unac-

ceptable, while form (D1) is not able to account properly for the anisotropy

of permeability in stratified formations.

Darcy’s Law can also take another form in inhomogeneous media:

~v52 k0μ21rϕ1~qðxÞ; ðD3Þ

where ~qðxÞ- mobility. Formally, (D1) may be transformed into (D3), if

wesubstitute ~q5ϕrkμ21.

1.2.1.5 Contact Models of Flow
Let Ω5Ω1ðtÞ,Ω2ðtÞ,Γ be the region of inhomogeneous fluid flow,

whose two components flow respectively through regions ΩiðtÞ which

have a common (contact) boundary ΓðtÞ5Ω1ðtÞ-Ω2ðtÞ. Regions ΩiðtÞ,
satisfy equations (D0) which relate the fluid component characteristics

~vi; pi; ρi and μi to characteristics of the porous medium and m; ki, at
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ΓðtÞ5 f~x; tjf ð~x; tÞ5 0g and at t5 0 with the following initial conditions

and conditions of conjugation:

~vi ~n5 vn; p22 p15 p0; mft 1 vnfn5 0; ð~x; tÞAΓ

f jt505 f0ð~xÞ; pijt50 5 p0i ð~xÞ; ~xAΩið0Þ; i5 1; 2

)
ð1:5Þ

wheref0ð~xÞ, p0i ð~xÞ and p0ð~x; tÞ (not equal to zero if capillary forces are

taken into account) are the given and vnð~x; tÞ and f ð~x; tÞ are the target

functions, fn5~n rfx.
The problem described by (D0) (1.5) was first formulated and solved

for incompressible fluids ðρi 5 constÞ by Muskat (who made certain spe-

cific assumptions), and is named after him [105, 143]. The Muskat model

is used to describe the movement of the oil�water contact (the outer oil

limit) in oil formations and of the boundary between salt water and fresh

water, and to solve other flow problems.

In the case of compressible fluids whose equation of state

ρi5λiðpi1 aiÞðλi; ai 2 constantÞ, the problem described by (D0), (1.5) was

studied by N.N. Verigin, and is frequently referred to as Verigin’s prob-

lem. Several approximate methods of solving (D0), (1.5) [110] have been

proposed; A.M. Meiramov [88] was able to demonstrate that Verigin’s

problem was correct in the case of one-dimensional flows.

1.2.1.6 Nonhomogeneous Incompressible Fluid Flow Model
(NF, Nonhomogeneous Fluid)
V.N. Monakhov proposed using the condition of incompressibility [91] as

the equation of state in Darcy’s model (D):

mρt 1~vrρ5 0;

This condition is true for fluids, providing a high degree of accuracy. It

therefore follows from the equation of continuity in (D) that div~v5 0,

and we can write (D) in the form

2~v5 kðρ;~xÞðrp1 ρ~gÞ; mρt 1~vrρ5 0; div~v5 0: ðNFÞ

The law of logarithmic dependence of viscosity μðρÞ5 k0ð~xÞ=kðρ;~xÞ
on density ρ[113] is used to close equations (NF):

lnðμ=μ1Þ5
ρ2 ρ2
ρ12 ρ2

lnðμ2=μ1Þ
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in which case

k5 k0μ21
1 e2λSðρÞ; λ5 ln μ2=μ1; S5 ðρ2 ρ2Þðρ12ρ2Þ21: ð1:6Þ

As in 1.5 above, we can use equations (NF) to describe the movement

of the contact boundary ΓðtÞ in a stratified fluid and, in particular, the

movement of an (unknown) free boundary [105, 113], if we take into

account the movement of its contacting air.

In his paper [91], V.N. Monakhov established that the stationary flow

problem can be solved for the (NF) model.

Let us assume stratified fluid flow in Ω5 ðΩ1,Ω2,ΓÞ, Γ being an

unknown direction of flux and ρ5 ρi5 const in Ωi. In these conditions,

at ρ2-0 the solution of the problem in Ω1is reduced to the solution of

the classical problem of free-boundary flow [91].

V.N. Starovoitov [124] demonstrated that a similar three-dimensional

non-stationary problem can also be solved for an (NF) model with natural

physical conditions at unknown boundary Γ, relating to surface tension

forces.

1.2.2 Navier-Stokes and Zhukovsky models
1.2.2.1 The Navier-Stokes (NS) model
This model assumes that a porous medium is a randomly ordered system

for which the Gibbs concept of an assembly of identical systems is true, as

is the ergodic theorem which states that time averaging may be replaced

by assembly averaging and vice versa. It considers that the trajectory of an

individual fluid particle obeys the micro-laws of viscous flow.

Consequently, a micro-flow of fluid flowing at a velocity ~u5
d~x

dt
through

pores (capillaries) can be described by Navier-Stokes equations for a vis-

cous compressible fluids:

L~u � ρ
d~u

dt
2μΔ~u52rp2~f ; ρt 1 divρ~u5 0; ρ5 ρðpÞ; ðNSÞ

Where
d

dt
5

@

@t
1 ð~u � rÞ; ~f � the vector of external forces.

There are several ways of deriving Darcy’s law as approximations for

the conservation of momentum in (NS). Two principal such methods are

described below.
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1.2.2.2 N.E. Zhukovsky’s Hypothesis and Model (1896, see [105])
This hypothesis regards the porous medium and fluid as two components

of an inhomogeneous fluid whose velocities are~v05 0 (the stationary com-

ponent) and ~v5m~u (flow velocity). It assumes that in each point xAR3

there exist both the porous medium and the flowing fluid. Therefore, the

surface forces of resistance of the porous medium to the movement of

the fluid may be regarded as bulk forces, and in accordance with N.E.

Zhukovsky’s hypothesis we may assume

~f 5 ρ~g1λð~v2~v0Þ5 ρ~g1λ~v; λ5μ=k; ð1:7Þ
where λ is the resistance factor (for simplicity, the porous medium is

assumed to be isotropic).

Let us now introduce Darcy’s operator

Dð~v; pÞ � k

μ
ðrp1 ρ~gÞ1~v ð1:8Þ

and incorporate (1.7), rewriting the (NS) equations in the form

L~u � ρ
d~u

dt
2μΔ~u52λDð~v; pÞ; ρt 1 divρ~u5 0; ρ5 ρðpÞ ðZhÞ

We shall name this system of equations Zhukovsky’s model (Zh).

Zhukovsky’s model [105] requires the following conditions to be met

ðρj~utj; ρjð~u � rÞ~uj; μjr~uÞ{λj~vj;
which makes the model similar to Darcy’s model. A less stringent condition

of their similarity is the inequality

jL~uj{λj~vj:
An even less stringent condition is:

kμ21jL~uj{jDð~v; pÞj � δα; α$ 1;

Where δ{1 is related to Reynolds number.

1.2.2.3 The Irmey Hypothesis of the Closeness of the NS
and D Models
Let us now introduce the “static mean values” proposed by Irmey [24, p. 75],

which are determined by the dimensionally correct relationship

Δ~u52γ~u;
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where γ depends on permeability K, viscosity μ and pore dimensions.

Substituting this equation in (NS), with ~f 5 ρ~g, and discarding the non-

stationary and inertial terms ~utand ð~u � rÞ~u, as proposed by Zhukovsky,

we arrive at Darcy’s model (D).

1.2.2.4 The Oldroyd-Zhukovsky (OZh) Model
Let us consider viscoelastic fluid flow in a limited region Ω of Euclidean

space R3, consisting of a medium whose resistance is proportional to fluid

velocity (Zhukovsky’s hypothesis). Following Oldroyd [134] let us write

out a system of equations describing the fluid flow:

Re½~ut 1 ð~u � rÞ~uÞ�1rp1 γ~u5 ð12αÞ �Δ~u1r � S1~f ;

div ~u5 0;

S1We � ½St 1 ð~u � rÞS�5 2αD in QT 5Ω3 ½O;T �;

9>=
>; ðOZhÞ

where ~u is the fluid velocity; p is pressure; and S is the elastic part of the

stress tensor, all the unknown values of time t and point x;

D5 ðr �~u1 ðr �~uÞT Þ=2- strain rate tensor; Re5UL=μ and

We5λ1U=L are respectively Reynolds and Weissenberg numbers;

α5 12λ2=λ1 is the numerical parameter; λ1 is relaxation time; λ2 is the

delay time; 0,λ2,λ1; U ;L is the characteristic velocity and model

size; γ~u is the resistance force of the medium, γ. 0.

E. M. Turganbayev [134] demonstrated that the initial boundary value

problem shown below can be solved for (OZh):

uðx; tÞ5 0; xAΓ; tA½0;T �;
Sðx; 0Þ5 S0ðxÞ;
uðx; 0Þ5 u0ðxÞ; xAΩ; div u0 5 0; u0j5 0:

9=
;

1.2.3 Two-phase Fluid Flow Models
1.2.3.1 The Muskat-Leverett Model (ML-model)
Mathematical models of the flow of two immiscible fluids (for example,

water and oil) through a porous medium are much more complex than

Darcy’s model. Experiments have shown that in this particular case each

of the fluids selects its own circuitous route which does not change.

As saturation si (the part of pore space occupied by component i)

decreases, one of the fluids destroys the channels, breaking them up until

9Fluid Flow Models



only isolated regions occupied by this fluid remain. This phenomenon is

known as residual oil or water saturation, with the corresponding values

of si designated s0i .

However, a mathematical description of a more complex physical process

may use the concept of a continuous medium.

Let us regard a two-component fluid as a collection of continua filling

the same volume of incompressible pore space. For each of these continua,

density ρi, flow velocity ~vi and pressure pi, let us introduce saturation si.

Then, by analogy with (1.1), we can write the continuum equations

for each fluid component in the form

@

@t
ðmρisiÞ1 divðρi ~viÞ5 0 i5 1; 2: ð1:9Þ

Bearing in mind the qualitative aspects of multiphase flow, Muskat (cf. [31])

proposed the following formal generalization of Darcy’s Law for each of the

fluids:

~vi52K
ki

μi

ðrρi1 ρigÞ i5 1; 2; ð1:10Þ

where K is the flow coefficient of the porous medium’s for homogeneous

fluid, as before, (or the symmetrical tensor in the case of an anisotropic

medium); μi is the dynamic viscosity coefficients, and ki must depend on

saturation si, as part of the pore space is occupied by another fluid.

The fact that ki are simply the functions of si and are virtually

independent of pressure, flow rate and other fluid flow parameters, was

repeatedly confirmed by laboratory experiments.

In accordance with its definition, saturation s. varies within the range

0, s0i # si# 12 s0j , 1; j 6¼ i ðs1 1 s25 1Þ
and when it reaches si5 s0i , the movement of the ith component ceases

when the condition

kiðs0i Þ5 0; i5 1; 2

has been met.

When analysing immiscible multiphase flows, it is important to take

into account the effect of forces acting on their interface. When two

immiscible fluids (I and II) come into contact with one another and with

the solid surface of the pores (Fig. 1.1) the liquid�liquid interface Γ1;2

approaches the solid wall at a contact angle θ. If θ is an acute angle,
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fluid I is called the wetting fluid (since it tends to spread over the solid),

and fluid II is called the non-wetting fluid. The phase pressure difference

which occurs at boundary Γ1;2 is called capillary pressure:

p2 2 p15 pcðx; sÞ$ 0;
s02 s02

12 s012 s02
� sA 0; 1½ �: ð1:11Þ

Capillary pressure pc depends on the curvature of Γ1;2, the saturation s1
of the wetting fluid and the properties of the porous medium, and is

expressed by the Laplace formula:

pcðx; sÞ5 pcðxÞjðsÞ; pc 5σ cos θ
m

jK0j

� �1=2
ð1:12Þ

where σ is the interfacial tension coefficient; JðsÞ is the Leverett function,

while jK0j is the determinant of matrix fkijg if K0 is the symmetrical flow

tensor of an anisotropic porous medium.

Experiments have shown that the order in which pore space is filled

by the two phases determines the shape of the JðsÞ curves. This phenome-

non is known as capillary pressure hysteresis. As a rule, relative phase

permeabilities ki and Leverett functions JðsÞ are calculated in saturation

experiments, when capillary forces cause the wetting phase to displace the

non-wetting phase filling the whole of the porous material, eliminating

the hysteresis effect.

In the case of an isothermal (constant temperature) flow, the equation

system (1.9)�(1.11) can be closed with respect to ~vi; pi; ρi and

s5
s12 s01

12 s012 s02
of immiscible fluids flowingin a porous medium, by speci-

fying equations of state for the fluids:

ρi 5 ρiðpiÞ; i5 1; 2:

θ

1,2

I

II

Γ

Figure 1.1 A two-component fluid.
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In what follows, unless stated otherwise, both fluids are assumed to be

incompressible, i.e. ρi 5 const.

The resultant mathematical model of multiphase incompressible fluid

flow [equations (1.9)�(1.11)] is called the Muskat-Leverett model in hon-

our of Muskat who first proposed the generalization (1.10) of Darcy’s and

Leverett’s Law and was also the first to use Laplace’s Law (1.11), (1.12).

The Muskat-Leverett model assumes that parameters m;K0; ki are the

prescribed functions of the variables x and s and that all the numerical

parameters (μi; ρi; s
0
i and others) are fixed. A typical curve describing the

relationship between relative permeability ki and the Leverett J function

on the one hand and reduced saturation sA½0; 1� on the other is shown in

Fig.2. If we take into account the equality kiðs0i Þ5 0, the phase permeabil-

ities kiðsÞ5 kiðsÞ=μI , will have the following characteristics:

kiðsÞ. 0; sAð0; 1Þ; k1ð0Þ5 k2ð1Þ5 0:

To decide how the compressibility of the formation can be taken into

account, let us consider the continuity equation (1.9). It should be noted

that the assumptions about relative phase permeabilities in regions where

si5 s0i . 0; produce~vi � 0:

Let m5mðpÞ and p5 pi1 fiðsiÞ be average pressure, and let us consider

a fixed region Ω with a boundary Γ5 @Ω, in which the saturation of

one of fluids reaches its residual value si5 s0i . It follows from the

properties of phase permeabilities that in this case v5 0, hence

@mρisi
@t

5 s0i
@mρi
@t

5 5 s0i
@ðpiρiÞ
@t

5 0 and therefore
@pi
@t

5 0 in Ω. The lat-

ter equality shows that the flow in Ω should be stationary irrespective of

the values of pi at Γ5 @Ω, and at
@pi
@t

6¼ 0 at Γ.

k2 k1pc

Sδ 1

Figure 1.2 A typical curve describing the relationship between relative permeability
and the Leverett J function on the one hand and reduced saturation on the other.
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This contradiction suggests that in this particular case it was wrong to

introduce porosity and that instead the residual values of saturation should

have been included in effective porosity.

It is obvious that we should consider σi 5
si2 s0i

12 s012 s02
as dynamic

saturations and σiA 0; 1½ �; i5 1; 2 ðσ11σ25 1Þ at the same time, and

assume that the m described by formula (1.1) includes residual saturation.

In that case, the saturation equation will assume the form

@ðmρiσiÞ
@t

1 divðρi ~viÞ5 0 i5 1; 2: ð1:13Þ
For incompressible formations, the continuity equation can also be con-

veniently presented in the form (1.13).

1.2.3.2 Boundary Conditions and Initial Conditions
Let us begin by considering isothermal flow.

Impermeable boundaries. These are formed by the top and bottom of the

formation through which a non-homogeneous (or homogeneous) liquid

flows. The impermeability condition of this boundary Γ0 has the same

form for all phases:

~vi~n5 0; x5 ðx1; x2; x3ÞAΓ0; i5 1; r1 1; ð1:14Þ
where ~n is the vector of the outward normal to the boundary Γ5 @Ω of

the finite multiply-connected flow region Ω and Γ0CΓ.
Wells. Values specified for injection and production wells can be either

the distribution of phase pressures and saturations

pi5 pi0ðx; tÞ; si5 si0ðx; tÞ; xAΓ1; i5 1; r1 1; ð1:15Þ
or phase flow rates

~vi~n5
ki

k
Qðx; tÞ; k5

Xr11

i
ki; xAΓi; i5 1; r1 1 ð1:16Þ

where Qðx; tÞ is the specified mixed flow rate. Equation (1.16) shows that

the mixtures are selected and injected in proportion to phase mobilities.

In the case of a two-phase liquid, the conditions described by (1.16) can

be obtained if the following conditions are met:

a. The specified mixed flow rate is ð~v11~v2Þ~n5Qðx; tÞ; xAΓ1;

b. Gravity forces operating in the wells are not taken into account and

the capillary pressure gradient pc is ignored as being negligible in com-

parison with the phase pressure gradients, i.e. rp1~n5rp2~n.
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Boundaries with a homogeneous fluid at rest. It is assumed that the pressure

p1 of a fluid at rest is distributed in accordance with the hydrostatic law,

that this boundary is the same as the pressure of the corresponding phase,

and that saturation s1is continuous at Γ2:

p15 p01 ρ1gh; s1 5 12
X2

1
s0i ; xAΓ2; ð1:17Þ

where p0 is fluid pressure at some fixed level ðh5 0Þ; h is height measured

from this level; ρ1 is the fluid density. For the second component, either

(1.14) is true at xAΓ2, or, if the fluid at rest is in a permeable medium, then

it is natural to assume that

p25 p02; s25 s02; xAΓ2; ð1:18Þ
where p02 is pressure at residual saturation s02 with the phase in question. It

should be noted that conditions (1.17), (1.18) are identical to (1.15).

Free boundaries. As a rule, a free (unknown) boundary Γ3 is a line of

contact discontinuity between one or several saturation levels (e.g. when

a homogeneous fluid flows into “dry” rock). In addition to the conditions

of impermeability of Γ3 described by (1.14), it is assumed that the flow

velocity of all phases is the same as the mixed flow velocity as a whole

(a kinematic condition) and that the “average” pressure of the mixed flow

is continuous throughout the neighborhood of Γ3.

Initial conditions. In the case of incompressible fluids ðρi5 constÞ, it is
assumed that the specified initial distribution of saturation is

sijt505 si0ðx; 0Þ; xAΩ; i5 1; 2 ð1:19Þ
and that the distribution of the “average” pressure of the mixed flow can

also be specified in order to allow for the compressibility of the liquids

and the rock:

pjt505 p0ðx; 0Þ; xAΩ ð1:20Þ
Occasionally, by idealizing the process of flow in various ways, the

dimensionality of the space of independent variables may be reduced (in a

general case this refers to four-dimensional space: t; x1; x2; x3), e.g. by

assuming a stationary flow (independent of time), or a linear flow in an

infinite formation of uniform thickness, not subject to the forces of

gravity (independent of gravity), or a planar flow in an infinite formation

uniform along one of its horizontal coordinates, or a one-dimensional

flow, assuming that the formation is infinite and uniform along two of its

spatial coordinates.
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However, in some flow problems, idealizations of this type may make

it impossible for the resultant model to describe important qualitative

characteristics of the physical process. For instance, when describing fluid

flow to an ideal well using the plane flow model we may lose the connec-

tivity of the flow region, so that the resultant problem becomes mathe-

matically incorrect. In a spatially three-dimensional problem this situation

would not present any additional mathematical difficulties.

1.3 THE TRANSFORMATION OF ML MODEL EQUATIONS

1.3.1 The Muskat-Leverett (ML) Model
The ML model of two-phase incompressible fluid flow ðρi 5 constÞ through
porous media contains an equation system (1.9)�(1.11) [1.2] describing

phase flow velocities vi, pressures pi and saturations s1; s2ðs1 1 s25 1Þ:

m
@

@t
ρisi 1 div ρi~vi 5 0; 2~vi 5Kiðrpi 1 ρi~gÞ; i5 1; 2;

p22 p15 pcðx; sÞ;
s12s0

1

12 s012 s02
� sAx 0; 1½ �

 ! ð1:21Þ

In this system, Ki 5K0ðxÞ � kiðsÞ a symmetrical tensor of phase permeability;

K0 is thetensor of homogeneous fluid flow and ki5
kiðsÞ
μi

are relative phase

permeabilities.

Let us transform system (1.21) into a more convenient form by adding

the continuity equations [the first equations of (1.21)], divided by

ρi5 const, we obtain

div~v5 0; ~v5~v11~v2; ð1:22Þ

in which ~v is the mixed flow velocity vector and (j~vj is the total specific

mixed flow rate.

Let us now introduce “reduced” (“average”) pressure (first proposed

by V.N. Monakhov) as the new target function:

p5 p12

ð1
s

@pc
@s

k1

k
dξ1 ρigh; ð1:23Þ
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where k5 k11 k2, rgh5~g. To explain this choice of target function, let

us begin by using Darcy’s Law [the second equations of (1.21)] to express

the vector ~v in terms of the gradients of functions p1 and s:

2~v5
X2
1

Kiðrpi1 pi~gÞ5 kK0 rp11
@pc
@s

k2

k
rs1 k2

k
rpc

� �
1

1
X2
1

Kiρi~g5 kK0r p12

ð1
s

@pc
@s

k2

k
dξ

� �
1 kK0

ð1
s

r@pc
@s

k2

k
dξ1K0k2rpc

1
X

K1ρi~g:

In this way, the substitution (1.23) enables us to express vector ~v in terms

of rp and s, making it independent of rs:

~v52ðKrp1~f Þ �~vðs; pÞ; K 5 kK0; ð1:24Þ

where ~f 5K
Ð 1
s
r @pc

@s

k2

k
dξ1K2rpc 1K2ðρ22 ρ1Þ~g and r is used only

with respect to x, which occurs explicitly, i.e.

rpcðx; sÞ5
@

@x1
pc;

@

@x2
pc;

@

@x3
pc

� �
:

By analogy with (1.23), we obtain

2~v1 5K1ðrp11 ρ1~gÞ5K1 rp2 @pc
@s

k2

k
rs1

ð1
s

r @pc
@s

k2

k
dξ

� �
:

Whence, assuming a52
@pc
@s

k1k2

k11 k2
and f05K1

Ð 1
s
r @pc

@s

k2

k
dξ, we obtain

2~v15K0ars1K1rp1~f 0 � 2~v1ðs; pÞ: ð1:25Þ

By using (1.24), we can calculate K1rp52K1K
21ð~v11~f Þ, and noting

that this definition yields K1 5 k1K0 and K25 k2K0;K1K
21 5 k1=k5 bðsÞ

we can rewrite equation (1.25) as

2~v15K0ars2 b~v1 ~F ; ~F 5~f 0 2 b~f : ð1:26Þ
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By substituting (1.25) in the continuity equation for the first phase, we

obtain a system of equations with respect to fs; pg:

m
@s

@t
5 divðK0ars1K1rp1~f 0Þ � 2div~v1ðs; pÞ; ð1:27Þ

divðKrp1~f Þ � 2div~vðs; pÞ5 0; ð1:28Þ
and by substituting (1.26) we obtain an equivalent system with respect to

fs; p;~vg:

m
@s

@t
5 divðK0ars2 b~v1 ~F Þ; m5mð12 s012 s02Þ; ð1:29Þ

divðKrp1~f Þ5 0; 2~v5Krp1~f : ð1:30Þ

It should be noted that the flow tensor K0ðxÞ is assumed tobe symmetrical

and positively defined, i.e.

k0ij 5 k0ji; ϑjξj2# ðK0ξ; ξÞ5
X

i;j
k0ijξiξj #ϑ21jξj2; ξ. 0; ð1:31Þ

jξj25Piξ
2
i , and that capillary pressure (pc) and relative phase permeabil-

ities have the following properties:

@pc
@s

, 0; k5 k11 k2. 0; ð1:32Þ

and therefore, if we include (1.31), we obtain aðx; sÞ. 0 when sAð0; 1Þ
and aðx; 0Þ5 aðx; 1Þ5 0.

Hence, (1.27), (1.28) form a quasi-linear system consisting of a uni-

formly elliptical equation for pðx; tÞ and a parabolic equation for sðx; tÞ,
which assumes a degenerate form at s5 0:1.

1.3.2 The Initial Boundary Value Problem
Let us consider flow in a specified finite region Ω with a piecewise-

smooth boundary Γ5 @Ω. As described in Section 1.2, the different

boundary conditions corresponding to the actual physical flow can be

used to divide Γ into several coherent components Γi.

Let ΩT 5Ω � ½0;T �;ΓiT 5Γi � ½0; T �, and let ~n be the outward normal

to Γ. Let us now rewrite the boundary data from Section 1.2 for the
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s and p functions. Based on (1.24), (1.25), the no-flow conditions (1.34)

Γ0CΓ given in 1.2 for both phases are equivalent to

~vðs; pÞ~n5~v1ðs; pÞ~n5 0; ðx; tÞAΓ0T : ð1:33Þ

The boundary conditions (1.39) and (1.40) (Section 1.2) now become

p5 pðp1; sÞ5 p0ðx; tÞ; s5 s0ðx; tÞ; ðx; tÞAΓ2T ; ð1:34Þ

~vðs; pÞ~n5Qðx; tÞ; ðx; tÞAΓ1T ; ð1:35Þ

~v1ðs; pÞ~n5 bQðx; tÞ; ðx; tÞAΓ1T : ð1:36Þ

Because (1.35) and (1.36) become equivalent to (1.33) when Qðx; tÞ � 0,

then it is natural to include Γ0 in Γ1 and assume that Γ1 consists of several

components, in some of which Q5 0.

Thus, Γ5Γ1 ,Γ2. Clearly, (1.27) and (1.28) cannot satisfy the

Cauchy-Kovalevskaya theorem (as the second equation does not contain

@p

@t
), and therefore the initial condition need only be specified for

saturation:

sjt50 5 s0ðx; tÞ; xAΩ ð1:37Þ
Note that Γ need not contain Γ1or Γ2, so that it may be the case that

Γ � Γ1 or Γ � Γ2. When Γ � Γ1, the law of conservation of mass of the

mixed flow in Ω generates the necessary conditionð
Ω
pðx; tÞdx5

ð
Γ
Qðx; tÞdx5 0; tA½0;T �: ð1:38Þ

We conclude this section with a summary of formulae for the coefficients

of equations (1.27)�(1.30) and of the boundary conditions (1.33)�(1.36):

a5
@pc
@s

����
���� k1k2k ; k5 k11 k2; b5

k1

k
� K1K

21;

~f 05K1

ð1
s

r @pc
@s

k2

k
dξ; Ki5 kiK0 ði5 1; 2Þ; ð1:39Þ
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~f 5K1K
21f01K2½ðρ22 ρ1Þ~g1 k2rpc�; K 5K11K2;

~F 5~f 02 b~f 52k1k2k
21K0½rpc 1 ðρ22 ρ1Þ~g�:

1.3.3 The Independence of Total Flow Velocity from
the Distribution of Saturation
If the coefficients K 5K0ðxÞkðsÞ and ~f ðx; sÞ in (1.28) do not depend on

then the equation system (1.27), (1.28) breaks down and allows us to calcu-

late the velocity field ~v and phase saturations siðx; tÞ one after the other,

while formulae (1.39) allow us to state these conditions in terms of the

functional parameters used in the Muskat-Leverett model:

1. k5 k1ðsÞ1 k2ðsÞ5 const: This assumption is true with sufficient

accuracy for miscible fluids for which k15λs, k25λð12 sÞ;λ5 const.

In the case of immiscible fluids, the value shows significant deviation

from the constant only in the vicinity of the limiting values of reduced

saturation s5 0; 1.

2.
1

mðxÞ detK0ðxÞ5 const, in which case pc 5 pcðsÞ, i.e.
@pc
@xi

5 0

3. Either gravity forces are not taken into account (for example, in a

plane flow), or the fluids have similar densities ρ15 ρ2.
It follows from (1.39) that assumptions (1.22) and (1.23) enable the

condition
@~f

@s
5 0 to be satisfied.

1.3.4 Some Shortcomings of the Muskat-Leverett Model
Some of the model’s shortcomings were noted above.

1. The model’s solutions do not remain robust when its functional parameters

change. Experiments to determine relative phase permeabilities kiðsÞ and
capillary pressures pcðsÞ, have shown that these functions are poorly speci-

fied in the vicinity of s5 s�; s�. At the same time, the values of
dki

ds
and

dp

ds
in the vicinity of these saturations s decisively influence the structure of the

solution of (1.27), (1.28).

Indeed, the behaviour of k2ðsÞ and pcðsÞ in the vicinity of s5 s� is

well described by

k2ðsÞ5 f1ðsÞðs2s�Þλ1 ; pcðsÞ5
f2ðsÞ

ðs2 s�Þ
λ2; ð1:40Þ

19Fluid Flow Models



where λi5 const. 0, and 0, fiðsÞAC1½s�; sÞ. For many formations it

may be assumed that λ15 3 [143, p. 176] and λ25 2 [110, p. 208].

At these values of λ1; aðs�Þ5
k1k2jp0c
k11 k2

����
s5s�

6¼ 0 and, consequently, aðsÞ
and k1ðsÞ, become zero only when s5 s�. To provide a full picture, let us

consider the case of one-dimensional flow through homogeneous rock at

a specified mixed flow rate v11 v25QðtÞ. The system (1.27), (1.28)

then becomes equivalent to the Rappoport-Liss equation

m
@s

@t
5

@

@x
aðsÞ @s

@x
1QðtÞbðsÞ

� �
; bðsÞ5 k2

k11 k2
: ð1:41Þ

The next task is to find a solution to equation (1.41), which will sat-

isfy the condition

sjt505 s0ðxÞ; xA½0;X �; sjx50 5 s�2 δ; sjx5X 5 s�; ð1:42Þ

where s�# s0ðxÞ# s02 δ; δ. 0.

Noting that, because equation (1.41) is uniformly parabolic [since

a5 ðs�Þ 6¼ 0], and because of the maximum principle sðx; tÞ. s for all

the finite values of t. 0 and 0, x,X , even when, at X $ x. 0,

s0ðxÞ � s�. On the other hand, if λ12λ22 1. 0 (and some theories

and experiments make the value of λ1 3,5-4 [110, p. 181]), then

aðs�Þ5 0, and the propagation velocity of perturbations becomes finite

(as established by N.V.Khusnutdinova for s�), and if s0ðxÞ � s at

x$ x0. 0 ðx,XÞ, then, provided that XðT Þ is sufficiently large, and

in particular, when X 5N, for each finite T . 0 there exists a point

x5 ξðT Þ. 0 such that sðX ;TÞ � s, at x$ ξðTÞ. 0.

For the sake of clarity, let us assign water the index 1, and oil the

index 2.

It should be noted that if X ,N (the production well x5X is

located at a finite distance) and s�ðxÞ � s�; sA½x0;X �; x0. 0, as before,

then the minimum time t5T . 0, during which water saturation

sðX ;TÞ. s, at x,X and sðX ;T Þ5 s is called pure oil withdrawal time.

In the first case ½aðs�Þ 6¼ 0� there is no such T . 0, but in the second

case ½aðs�Þ5 0� it can be uniquely defined. This makes it impossible to

trust forecasts of the time of water encroachment of production wells,

in particular those based on the Muskat-Leverett model.
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2. The boundary paradox. This drawback of the Muskat-Leverett model

is also conveniently illustrated by a one-dimensional model with a

specified mixed (water/oil) flow rate, v11 v25QðtÞ. Alekseev and

Khusnutdinova [1] demonstrated that, given specified smoothness con-

ditions, equations (1.41), (1.42) have a unique solution at tA½0;T � for
any finite T . 0. However, the existence of a solution within any

arbitrary interval 0# t#T contradicts the physical implications of the

initial model, since it must be the case that when water is injected

into injection well ðx5 0Þ, pure oil cannot indefinitely continue to be

recovered from production well ðx5XÞ.
This paradox makes it difficult to formulate physically

acceptable conditions for production wells. Moreover, asymptotics

studies suggest that over a period of time these equations produce

unrestricted growth of the saturation gradient in production wells.

This is a boundary effect which must also be allowed for in numerical

calculations.

3. The initial function becomes indeterminate if the medium is only weakly

saturated with the wetting fluid. Let a wetting fluid (e.g. water) be

injected into a formation, and let its initial saturation s0ðxÞ be lower

than its residual saturation ðs0ðxÞ, s�; xAΩ0CΩÞ and, in particular,

s0ðxÞ � 0; xAΩ0CΩ. Because the Muskat-Leverett model is valid

only for 0, s�# sðx; tÞ# s�, 1, it can only begin to apply from a

time t0, 0 which satisfies these conditions. The model cannot tell us

what the saturation profile would be at a time t0. 0.

At the same time, B.I. Pleshchinsky, using an oil formation model,

was able to demonstrate experimentally [103] that there is a significant

relationship between a formation’s initial water saturation and the

movement of the water saturation front.

4. Darcy’s laws lose their uniformity in the Muskat form. The relationship

between the phase flow velocities ~ui at which the fluids flow through

pores, and flow velocities~vi is described by~vi 5msi~ui. Consequently, the
left hand sides of Darcy’s Law equations are proportional to partial veloci-

ties ðsi~uiÞ, whereas the right hand sides contain total rather than partial

phase pressures and densities. It will be shown below that this formal

non-uniformity of Darcy’s Law makes the equivalent Muskat-Leverett

model and its saturation s and reduced pressure equations much more

complicated than the corrected model. This becomes particularly impor-

tant when we attempt to take fluid compressibility into account.
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1.3.5 The Displacement Model
Because the model we are proposing (V.N. Monakhov [75]) is phenome-

nological, as is the Muskat-Leverett model, it must be constructed so as

to allow experimental determination of its characteristics. The model’s

characteristics naturally fall into the categories of formation, liquid and

flow characteristics.

The Characteristics of (Homogeneous) Formations
a. Average permeability k5 kðsÞ: this characteristic depends on residual

water and oil saturation. Its limiting values are determined in standard

permeability experiments: k� 5 kðs�Þ is determined on the basis of oil

flow in a water saturated sample (Darcy’s experiment), while average

formation permeability does not change and is the same as k� i.e.

kðsÞ5 k�, k�; at s$ s�:

Experiments [e.g. 103] have shown that when fluid flows into “dry”

rock, permeability can be described by the formula

kðsÞ5 k�1 k0
s

s�

� �λ
; k05 const; λ$ 3 at 0# s# s�;

k0 can then be found from kðs�Þ5 k�, together with kðsÞ:

kðsÞ5
k�; s$ s�

k� 1 ðk�2 k�Þ s
s�

� �λ

; sA 0; s�½ �:

8<
:

b. Phase permeabilities: These are input as required by the specific model.

The Characteristics of (Flowing) Fluids
a. Average density: ρ5σρ11 ð12σÞρ2 � ρ11 ρ2, ρi � true densities,

and ρi � partial density, σ5
s2 s�
s�2 s�

.

b. Average pressure: p5σp11 ð12σÞp2 � p11 p2.

c. Average viscosity: ln μ5σ ln μ11 ð12σÞ ln μ2 (see [113, p. 289]).

μðσÞ may also take other forms, determined in independent experiments,

or in displacement experiments, in which case it can be determined

simultaneously with formation characteristics.

d. Average phase and mixed flow velocities: ~v1;~v2 and ~v5~v11~v2.
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Let the fluids be incompressible and let the formation be water-saturated

ðsðx; tÞ$ s�Þ. It is assumed that the mixed flow follows Darcy’s Law:

~v52
k�

μ
ðrp1 ρ~gÞ; div~v5 0; ð1:43Þ

where k� is the effective permeability coefficient, introduced above and

based on the assumption that stationary phases (at s5 s�; s�) are classed as

pore space.

Here, p5σp11 ð12σÞp2; ρ5σρ11 ð12σÞβ; μ5μ1e
χσðχ5 ln

μ2=μ1Þ are the pressure, density and viscosity of the mixed flow,

σ5
s2 s�
s� 2 s�

.

The flow of the displacement fluid (water, assigned the index 1) is the

same as in the case of incomplete saturation, and follows the relevant law

[40, p. 180]:

~v152
k�

μ0

σλðrp11 ρ1~gÞ; m1

@σ
@t

1 div~v1 5 0; ð1:44Þ

where m15mðs�2 s�Þ;λ5 const$ 3, and μ0 either equals μ1, or we can

assume that μ05μðσÞ. However, we need to add to the system the

following Laplace Law:

p2 2 p15 pcðσÞ � pc½sðσÞ� ð1:45Þ
The known properties of pc [74] give us

pcðσÞ5
12σ
σ2

~pcðσÞ; 0, ~pc ,N; σA 0; 1½ �:

Let k5
k�

μ
; k15

k�

μ0

σλ and let us express ~v1 in terms of ~v and σ. This

gives us

p15 p1 ðσ2 1Þpc � p2 p0ðσÞ; p0 5 ð12σÞpc
(note that p00ðσÞ52 pc 1 ð12σÞp0c , 0). Hence

~v152
k1

k
~v1 k1p

0
0rσ1 k1ðρ22 ρ1Þð12σÞ~g

or

~v152 a1rσ2 b~g1 c~v;
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where

a152k1p
0
0; ða1jσ50;15 0Þ; b5 k1ð12σÞðρ2 2 ρ1Þ c5 k1=k5 ðμ=μ0Þσλ:

Substituting ~v1 in the second equation (1.44), we obtain the system

m1

@σ
@t

5 divða1rσ2 b~g1 c~vÞ; divkðrp1 ρ~gÞ5 0; ð1:46Þ

which has the same form as (1.27), (1.28) in the Muskat-Leverett model.

In the case of an unsaturated formation (containing regions where

s, s�), the relevant Darcy’s laws can assume the form

~v52
k

μ
ðrρ1 ρ~gÞ; v152

k

μ0

ðrp11 ρ1~gÞ; ð1:47Þ

and when 0# s# s�; pðsÞ � p2; ρðsÞ � ρ2;μ � μ2;μ0 � μ1, where as kðsÞ
is as determined above.

It follows from the design of displacement models that all their

parameters, which should be determined directly from displacement

experiments, are constants (1.3.4 point 1). However, equations (1.47)

additionally make it possible to describe flow in unsaturated formations

(1.3.4 point 4).

It should be noted that the solution of this problem is especially topical,

since it relates to coal seam degasification, which usually involves injecting

fluid into “dry” rock.

We have also proposed another model describing the flow of immiscible

fluids in formations incompletely saturated with the wetting phase. This

model will not be discussed here.

1.3.6 A Model Including Partial Pressures and Densities.
Provision for the Compressibility of Fluids
Let sA½s�; s�� and let the following analogues of Darcy’s Law, flowing

phase continuity equation and Laplace Law [76] be satisfied for each of

the phases:

~vi 5 kiðpi 1 ρi~gÞ; m1

@ðσiρiÞ
@t

1 divðρi~viÞ5 0; p22 p1 5 pcðσÞ; ð1:48Þ

where pi5σipi and pi 5σiρi are respectively the partial phase pressures and

densities, σ1 � σ5
s2 s�
s� 2 s�

;σ25 12σ; pcðsÞ � pc σðsÞ½ �, and ki5 kiðs; xÞ
are analogues of phase permeabilities, m15mðs� 2 s�Þ.
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It should be noted that pi are determined with an accuracy of up to

constant p0i (average pressures). Therefore, if fluctuations δi, of the func-

tions ðpi2 p0iÞA½0; δi� are small as compared to their gradients rpi, the first
equations in (1.23), (1.27) approach the usual form of Darcy’s Laws when

ki 5
ki

σi

� ciσλi21
i ðλi $ 3; ci5 constÞ; ð1:49Þ

since, on this assumption, ðpi2 p0iÞ; ki;σi can be regarded as small. To

close system (1.32), we need to add equations of state of fluids which we

will assume to be compressible:

ρi5 γipi; i5 1; 2 ðγi5 const. 0Þ: ð1:50Þ

From Laplace Law and equations of state of the fluids we find

Fðσ; ρ1ρ2Þ �
ρ2

γ2ð12σÞ 2
ρ1
γ1σ

2 pcðσÞ5 0;

and since p0c # 0, we have
@F

@σ
. 0, and have therefore established the existence

of the implicit function σ5σ1 5 f1ðρ1; ρ2Þ; ðσ2 5 12σ � f2Þ.
It follows therefore that equations (1.48), (1.50) are equivalent to the

following parabolic system of equations with respect to the ρ1 functions:

m1

@ρi
@t

5 divA1ðrρi1 γiρi~gÞ; Ai5
kiρi
γifi

; i5 1; 2: ð1:51Þ

If, as above, ðpi2 p0iÞ are small compared to rpi, it follows from (1.50)

that ρi � const.

Consequently, if we take (1.49) into account, this makes the model

described by (1.48), (1.50) close to the Muskat-Leverett model. This

being the case, we can regard equations (1.51) as a physical regularization

of equations (1.21), corresponding to the Muskat-Leverett model.

Continuing to generalize the above modification of Darcy’s laws, let

us present them in the form

vi 52k0ðxÞ; rðχiϕiÞ; i5 1; 2; ð1:52Þ

where ϕi5 pi 1 ρigh is the hydraulic pressure head of the phases

ðgrh5 gÞ; k05 ðxÞ is the average permeability of the medium to homoge-

neous fluids and ðμiχiÞ are analogues of relative phase permeabilities k0iðsÞ.
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If fluctuations δi of the functions ðϕi2ϕ0iÞA½0; δ�;ϕ0i5 const are small

by comparison with rϕi, it is easy to verify, as before, that equations

(1.52) are close to Darcy’s laws in the Muskat-Leverett model when

μiχiðsÞ5 k0iðsÞ.
Let us now assume that the fluids are incompressible ðρi 5 constÞ. The

equation divð~v11~v2Þ5 0 then gives us

div½k0ðxÞðχ1ϕ11χ2ϕ2Þ� � div½k0ðxÞϕ�5 0: ð1:53Þ

Conditions (1.34), (1.36) [respectively (1.34) and (1.35)] for functions s

and p correspond to the following boundary value problem for the target

function ϕðx; tÞ:

rϕ~njΓ1
5 0; ϕjΓ2

5ϕ0ðk; tÞ ðk0rϕ~n5 qðx; tÞÞ; ð1:54Þ

where ϕ0ðx; tÞ is calculated explicitly via σ0ðx; tÞ and p0ðx; tÞ.
Let ϕ5Φðx; tÞ be the solution of the boundary value problem (1.53),

(1.54), and let us use Laplace Law to calculate

χ1ϕ1 5
χ1

χ1 1χ2

Φ2χ2pc 2χ2ðρ22 ρ1Þgh
� � � Fðs; x; tÞ;

Substituting this into the first phase continuity equation produces the

equation for s:

m
@s

@t
5 div0 kðxÞFðs; x; tÞ½ �: ð1:55Þ

In this way, by using Darcy’s laws in the form shown in (1.52), we have

reduced the initial problem to the integration of a decomposable equation

system (1.53), (1.54) (in the limiting one-dimensional case, pressure p is

explicitly calculable).

Functions χiðsÞ should be such as to satisfy the condition of parabo-

licity of (1.55),
@F

@s
. 0; sAðs�; s�Þ. This is especially true for the similar-

ity of (1.52) to the ordinary Darcy’s laws discussed above, with the

system (1.53), (1.55) again representing a physical regularization of

equations (1.21). The proposed method of regularization of equations

(1.21) may also be used locally, in particular to plot their differential

approximation.
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It is interesting to note that when k5 const (in the case of a homoge-

neous formation), a similar situation occurs even with the ordinary form

of Darcy’s Law if we consider a linear problem with the condition

k1ðsÞ
μ1

1
k2ðsÞ
μ2

5 const (see especially [73], formulations of s;ψ). Such

splitting of the initial problem seems not to be accidental, since numerical

calculations suggest that the link between bulk pressure or flow paths and

saturation is weak.

1.3.7 Boundary Layer Approximations
For simplicity, let us consider a two-dimensional problem of the flow of

immiscible fluids in the region Ωf0, x, 1; 0, y, hg, bounded by an

impermeable top and bottom of the formation ðy5 0; y5 hÞ, and by an injec-
tion ðx5 0Þ and a production ðx5 1Þ well. Let us write equations (1.27),

(1.28) in the following equivalent form:

m
@S

@t
5 divðars1 b~g1 c~vÞ; ð1:56Þ

2~v5 krp1 f~g; div~v5 0; ð1:57Þ

where c5
k2

k
; b5 cf ; ~v5 ðu; vÞ:

Let us assume that the formation is thin (h=l is small), and that

ki5 δ2 ~ki; x5 ~x; y5 δ ~y; u5 ~u; v5 δ ~v: ð1:58Þ
We will also assume that the form of Darcy’s Law remains the same,

whatever the formation thickness [so that equations (1.57) do not

change]. Taking into account (1.58), let us transform equation (1.56) to

represent saturation, discarding terms proportional to δ and δ2. Returning

to the previous variables and target functions, we obtain

@S

@t
2 c0u

@S

@x
5

@

@y
a
@S

@y

� �
1 c0v

@S

@y
ðc0 , 0Þ: ð1:59Þ

When u$ 0, the fact that (1.59) is an evolutionary equation for x in a

production well ðx5 1Þ makes it unnecessary to specify the boundary

conditions for sðx; y; tÞ, while the saturation profile for x5 1 takes shape

as the non-wetting fluid is displaced. Let us note that the proposed model

[76] can also be used locally, but only in the vicinity of production wells.
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1.4 THE MLT MODEL FOR CONSTANT
RESIDUAL SATURATIONS

In the temperature model of two-phase fluid flow proposed by O.B.

Bocharov and V.N. Monakhov [15] (the MLT model), the effect of thermal

processes on the nature of fluid flow is taken into account by changing

the viscosities and the capillary properties of the various components of the

fluid, in accordance with their own temperature and that of the pore space

matrix. The mathematical model representing these assumptions consists

of a composite equation system which includes a parabolic temperature

equation and a system of elliptic and parabolic equations for the saturation

of one of the fluid components and the average pressure of the mixed flow.

A feature of the MLT model is that all its component equations, except for

the equations of Darcy’s Law and Laplace Law, follow from the laws of

conservation of the mechanics of continuous media. In addition, the MLT

model is easy to work with, in the sense that its description uses only

functional parameters capable of experimental determination.

1.4.1 Derivation of Equations
Let siði5 1; 2Þ be phase saturations; m0 is porosity; αi5m0si ði5 1; 2Þ and
α35 12m0 are the volumes of the fluids and of the solid phase (the

pore space matrix) respectively; ρi; pi and ~ui are respectively the densities of

incompressible fluids ðρi5 constÞ, their pressures and velocities;

~vi5αi~ui5m0si~ui ði51;2Þ is the phase flow velocities, and ~v5ðα1~u11
α2~u2Þ5 ~v11~v2 are mixed flow velocities.

Let us write down the energy balance equation. Let us assume that in

each point of the porous medium there exists a thermal equilibrium, i.e.

that the phase temperatures θi are the same, θi � θ ði5 1; 2; 3Þ. Let

cpi5 const ði5 1; 2; 3Þ (phase heat capacity at a constant pressure); ei 5 cpiθ
is the internal phase energy; ~qi52αiλiðθÞrθ ith phase heat inflow vector

(from Fourier’s Law). If we then divide both parts of the phase energy

balance equations by ðρicpiÞ [40]:

ρiαi

@ei
@t

1~uirei
� �

52div~qi; i5 1; 2; 3

and add them term-by-term, we will arrive at the equation for θ:

@θ
@t

5 div λðx; s; θÞrθ2~vθ½ �: ð1:60Þ
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In this equation, λ5
P3

1 αiλiðρicpiÞ21; s5 ðs1 2 s01Þð12s012s02Þ21 is the

reduced saturation ðs0i 5 constÞ. It is assumed that the rocks are stable and

that the phase flow follows the Muskat-Leverett model [40]:

@αisi

@t
1 divρi~vi 5 0; vi52K0ðxÞ

kiðsÞ
μiðθÞ

ðrpi2 ρi~gÞ;

p2 2 p15 γðθÞ cos αðθÞ m0ðxÞ
K0ðxÞ

� �1=2
; jðsÞ � pcðx; θ; sÞ;

where K0ðxÞ is the absolute permeability tensor of the medium; kiðsÞ is

the relative phase permeabilities; μi is the phase viscosities; ~g is accelera-

tion of gravity; γ is the surface tension coefficient; α is wetting angle; JðsÞ
is Leverett capillary pressure function. The following designations are

used below: kiðs; θÞ � kiðsÞμ21
i ðθÞ.

1.4.2 The Transformation of the Muskat-Leverett Equations
Problem statement. Let us introduce a formula for average pressure, based

on an analogy with [65]:

p5 p21

ð1
s

k1

k11 k2
ðξ; θÞ @

@ξ
pcðx; ξ; θÞdξ:

After the appropriate transformations, the Muskat-Leverett equations are

reduced to the following system:

m
@s

@t
5 div Kða1rs2 a2rθ1~f 1Þ2 b1~v

h i
� ð2r �~v1Þ; ð1:61Þ

ð2r �~vÞ � div½Kðrp1~f 21 a3rθÞ�5 0: ð1:62Þ
In this system, m5m0ð12 s012 s02Þ � effective porosity,

bi5 kiðk11k2Þ21 ði5 1; 2Þ; K 5K0ðk11 k2Þ; a05 k1k2ðk11k2Þ22;

a15 jpcsja0; a25 pcθa0; ~f 1 5 ½2rxpc 1 ðρ12 ρ2Þ~g�a0;

a352k1pcθ2
ð1
s

@

@θ
ðb1pcsÞds; ~f 25

ð1
s

2rxpcsb2ds2 b21
1
~f 1:
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Let ΩAR3 be a bounded region. Let us assume that ~θ5 ðs; θÞ and divide

the boundary @Ω into several components in accordance with their

boundary conditions:

ðp; s; vÞ5 ðp0; s0; v0Þ; ðx; tÞAΣ15Γ13 ½0;T �;

~vi �~n5 biR; i5 1; 2; v5 v0ðx; tÞ; ðx; tÞAΣ25Γ23 ½0;T �; ð1:63Þ

vi � ni5 0; i5 1; 2; λ
@v

@n
5βðv0 2 vÞ; ðx; tÞAΣ35Γ33 0;T½ �;

where ~n is the unit vector of the outward normal to

Γ; β5
P3

1 βiðρi3 cpiÞ21;βi is the ith phase heat transfer coefficient.

Sections Γ1;Γ2 model the injection and withdrawal sections and the con-

tact with homogeneous fluid at rest, while Γ3 represents contact with the

surrounding impermeable rocks.

Boundary conditions (1.63) need to be augmented by the initial con-

dition for ~θ:

~θjt505~θ0ðx; 0Þ; xAΩ: ð1:64Þ

When Γ15[, the law of conservation of mass of the mixed flow in

region Ω produces the necessary conditionð
Ω
pðx; tÞdx5

ð
Γ
Rðx; tÞdx5 0; tA½0;T � ðΓ15[Þ: ð1:65Þ

1.5 NON-ISOTHERMAL FLOW OF IMMISCIBLE FLUIDS WITH
VARIABLE RESIDUAL SATURATIONS (THE MLT MODEL)

The model considered in this section was proposed in Eqn 1.36 and dif-

fers from the model considered in Section 1.4 in that it takes into account

the fact that residual phase saturations depend on the temperature of the

inhomogeneous fluid, which we were able to establish experimentally.

The inclusion of this effect enables the model to describe the movement

of the boundary between the inhomogeneous fluid and its stationary

components (the Stephan problem).
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1.5.1 The Model Equations and Problem Statement
Following the assumptions made in Section 1.4, the energy balance equa-

tion for an inhomogeneous fluid becomes

@θ
@t

5 div λðx; s; θÞrθ2~vθ½ �; ð1:66Þ

where θ is temperature; λ is the thermal diffusivity; s5 s1 is wetting phase

saturation; ~v5~v11~v2 is average mixed flow velocity, and ~vi is the phase

flow velocities.

The phase flow follows the patterns described by the Muskat-

Leverett model [40], where residual saturations are not constant,

s0i 5 s0i ðθÞ$ s0i 5 const$ 0. These properties s0i ; ði5 1; 2Þ produce the

following conditions of wetting phase saturation sðx; tÞ:

0# const5 s� # s�ðθÞ# sðx; tÞ# s�ðθÞ# s�5 const# 1; ðAÞ

where s�5 s01ðθÞ; s�5 12 s02ðθÞ; 0# s�5 inf θ s�ðθÞ; s�5 supθ s
�ðθÞ# 1.

Analysis of experimental and theoretical work [2, 90, 143] shows that

it would be natural to consider the functional parameters of the Muskat-

Leverett model (relative phase permeabilities ki and the Leverett J func-

tion) as dependent on the dynamic saturation of the wetting phase:

σ5
s2 s�ðθÞ

s�ðθÞ2 s�ðθÞ
; s�# s# s�; σ5 0; s, s�; σ5 1; ðBÞ

s. s�:

This condition determines the function σ5Φðs; θÞ; sA½0; 1�.
The Muskat-Leverett equations can be reduced to the following equa-

tion system [16]:

m
@S

@t
5 div Ka0ða1rσ2 a2rθ1~f 1Þ2 b1~v

h i
� div~v1; ð1:67Þ

div~v � div½Kðrp1 a3rθ1~f 2Þ�5 0; σ5Φðs; θÞ; ð1:68Þ
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where Kðx; θ;σÞ is a tensor associated with the permeability of the medium:

a05 a0ðθÞ; ai 5 aiðσ; θÞ; i5 1; 2; 3; bk5 bkð0; θÞ; f k5 f kðx;σ; θÞ; k5 1; 2;

a0ð0Þ5 a0ð1Þ5 b1ð0; θÞ5 0; ln f a1$α0. 0:

Let ΩCR3 be a bounded region whose boundary @Ω is divided into sev-

eral components on the basis of their boundary conditions:

ðp; s; θÞ5 ðp0; s0; θ0Þ; ðx; tÞAΣ15Γ13 ½0;T �;

~vi~n5 biR; i5 1; 2; θ5 θ0ðx; tÞ; ðx; tÞAΣ25Γ23 ½0;T �;

vin5 0; i5 1; 2; λ
@θ
@n

5βðθ02 θÞ; ðx; tÞAΣ35Γ33 0;T½ �:

In this system, ~n is the unit vector of the outward normal to @Ω, sections
Γ1 and Γ2 model the injection and withdrawal sections and the contact

with homogeneous fluid at rest, while Γ3 represents the contact with sur-

rounding impermeable rocks.

Boundary conditions need to be augmented by the initial condition

ðs; θÞjt505 ðs0; θ0Þðx; 0Þ; xAΩ: ð1:69Þ
When Γ15 0, the law of conservation of mass of the mixed flow in

region Ω produces the necessary conditionð
pðx; tÞdx5

ð
Γ
Rðx; tÞdx5 0; tA½0;T �: ð1:70Þ

Dynamic saturation σ0 is reestablished with respect to θ0 and s0at t5 0,

and at Σ1; by means of the unique dependence (B): σ05Φðs0; θ0Þ.

Note: Let σ be a reasonably smooth function, making the boundaries γk
of sets Gk5 fσðx; tÞ5 kg; k5 0 piecewise smooth curves. For this to be

the case, γk must satisfy the following conditions:

½~v~nk�k5 0; λ
@θ
@nk

� �
k

5 0; mUnk ½s�k52K a0a1
@σ
@nk

� �
k

;

where ½ϕ� is the difference between the values of ϕðx; tÞ to the right and

to the left of γk; nk is the outward normal to Gk and Unk is the velocity of
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motion of γk in the direction nk. Only one phase flows in regions Gk,

so that their saturation s is constant, and depends on the history of their

formation. Thus, the velocity of the boundaries γk2Unk may be deter-

mined both on the basis of Stephan conditions at ½s� 6¼ 0, and on the basis

of Verigin conditions at s5 s�ðθÞ in G0 and s5 s�ðθÞ in G1.

The validity of the initial boundary value problems formulated here for

the models described in Sections 1.4 and 1.5, divided into classes of gener-

alized solutions, is shown in Eqns 1.35 and 1.36.

1.6 THE COMBINATION OF WELL AND RESERVOIR FLOWS
OF VISCOUS INCOMPRESSIBLE FLUIDS

Introduction. Mathematical modelling of processes taking place in the near-

well zone is complicated primarily by the heterogeneous nature of the

multicomponent flow in the well and in the surrounding porous

medium.

Let us explain the dynamics of reservoir flow in the near-well zone. For

simplicity, we will assume that the fluid enters the well only from its lower

section, and that its movement is due to the pressure head generated by the

difference between formation and atmospheric pressure (at the wellhead).

In such circumstances, the fluid flow is satisfactorily described by the

well-known exact solutions of the Navier-Stokes equations (such as the

Poiseuille solution), or by their boundary layer modifications. At real fluid

pressure head values, the average velocity of fluid flowing in the well is

quite high by comparison with the slow flow of fluid through the sur-

rounding porous medium, and this explains the difficulty of describing the

combined flow of fluid in a well and in a porous medium. This difficulty

is usually resolved by constructing various intermediate models of fluid

flow in the transition zone (merging asymptotic expansions, boundary layer

smoothing, ignoring the reverse effect of fluid flow inside the well on

reservoir flow, etc.).

However, the application of these models to flow dynamics shows that

they provide a poor representation of the physical nature of fluid flows in

transition zones and that they greatly distort the general characteristics of

the flows even far away from the transition zones.

V.N. Monakhov and N.V. Khusnutdinova [94] have proposed a model

describing the combined high-velocity flow of a viscous fluid inside a
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well and the reservoir flow of the same fluid through the surrounding

porous medium in terms of boundary layer approximations of both flows.

1.6.1 Problem Statement
Plane stationary flow of an incompressible fluid in a well is described by

the Navier-Stokes equation:

ð~urÞ~u5μΔ~u2rp1 ~F ; ~u5 0; ðx; yÞAðD1Þ;

where ~u5 ðu; vÞ is the flow velocity vector of a fluid with a density

ρ � 1;μ5 const is viscosity; p5 p01 ρgh; p is pressure, ðg5 ghÞ; ~F 5 0.

We will also use the Navier-Stokes equations to describe reservoir flow in

region D2, adjacent to D1. In these equations, in accordance with the flow

theory (1.71), ~F 52λ~u;λðx; yÞ5 mμ
k

2m is porosity, k is the permeability

of the porous medium (~v5m~u- flow velocity).

We will consider only problems dealing with the combination of

reservoir flow in a porous medium (the formation) and in a group of

imperfect wells (a “plane well” or simply “well”) corresponding to a ver-

tical section of the formation ðg5 ð2 g; 0ÞÞ.
Let the direction of axis O x be parallel to the direction of fluid flow

in the well. Assuming the well diameter ð2hÞ to be much smaller than its

length and assuming that j~vj{j~uj, we can replace the initial equations

with boundary layer equations:

ð~urÞ~u5μ~uyy 2 pxr �~u5 0; ðx; yÞAD1: ð1:71Þ

Let the reservoir flow (along Oy) be perpendicular to the fluid flow in the

well, and let the thickness of the formation (region D2) be much smaller than

its length. On this basis, assuming that j~uj{j~vj, we can derive boundary layer

equations:

ð~urÞ~v5μ~vyy2 py2λ~v; r �~u5 0; ðx; yÞAD2: ð1:72Þ

It is assumed that flow velocity vector and pressure p are continuous along

the flow transition curve ðΓ5D1-D2Þ:
½~u�5 0; ½p�5 0; ðx; yÞAΓ; ð1:73Þ

where ½f �5 f jΓ2
2 f jΓ1

;Γk5ΓCDk; ðk5 1; 2Þ, and fDk
- boundary values

f ðx; yÞ at ðx; yÞADk.
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Note that if we take into account the direction of reservoir flow after

the substitution of x5 y; y52 x; u5~v; v52~u, at λ5 0 equations

(1.71), (1.72) become Prandtl’s boundary layer equation (1.71) for

~uðx; yÞ;~vðx; yÞ.
Polubarinova-Kochina [105] noted the appearance of a slippage effect

in experimental studies of fluid flow in the vicinity of porous surfaces and

proposed a simple model to describe it.

Let us assume for clarity that the flow convergence line Γ:y5 0 and

that therefore D1:y, 0;D2:y. 0.

According to [105], this is a situation which instead of satisfying

conditions (1.73), satisfied the conditions of convergence ½v�5 ½p�5 0:

u

y
5

αffiffiffi
k

p ðu2QÞ;

Where f 5 f ðx6 0Þ;Q1 is the fluid flow rate through the porous surface;

α is a constant, describing the porous medium in the vicinity of Γ;
k is permeability.

1.6.2 The Combination of Formation Flow and Free Flow
Near the Well Wall
Let D15 fx. 0; 2 h, y, 0g be a region corresponding to a symmetrical

section of the well (with respect to y52 h), and let D2 5 fx. 0; y. 0g
represent the formation flow region.

Let us assume that near the wall y5 0, velocity vector ~u and pressure p

are continuous, satisfying condition (1.73), where ½f �5 f ðx1 0Þ2 f ðx2 0Þ.
Let us also assume that the condition of no flow is satisfied near the

wall, y5 0, while the condition of symmetry is satisfied along the line

y52 h, that the fluid flow at the wellhead, x5 0, is

~ujy50 5 ðuy; vÞjy52h5 0; ujx505 u0ðyÞ$ 0; ð1:74Þ

and that u0ðyÞ � 0; yA½2 h; 0Þ, in the case of a perfect well.

Having solved problems (1.71) and (1.74), and on the basis of condi-

tion (1.73) and the existence of no flow conditions at the bottom of the

formation, we can calculate the boundary data for equations (1.73):

ujx505 vjx505 0; vjy505 v0ðxÞ; ð1:75Þ

where v0ðxÞ5 vðx2 0Þ.
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If we regard the line y52h as the well wall, (1.74) assumes the form:

ujy505 ðu; vÞjy52h5 0; ujx505 u0ðyÞ$ 0: ð1:76Þ

1.6.3 The Combination of Formation Flow and
Free Flow at the V,well Entry Point
Let us assume the well to be an open hole completion [89, p. 419], so that

D15 f0, y, h; x. 0g; D25 fx, 0; y. 0g:
The flow in such a well can be calculated by solving the boundary value

problem

~ujy5h5 ðv; uÞjy505 0; uxjx505 0 ð1:77Þ
for equations (1.71).

Having solved problems (1.71) and (1.77), we can calculate the

boundary data for the boundary layer equations (1.72) in region D2,

having taken well symmetry (with respect to y5 0) into account:

ujx505 u0ðyÞ; y. 0; uyjy505 0; ð1:78Þ
where u0 � 0; y. h; u05 qðyÞ;U05 0; 0# y# h; q5 uð1 0; yÞ.

In the opposite situation, if the line y5 h is the axis of symmetry and

the line y5 0; x. 0 is the well wall, boundary conditions (1.77), (1.78)

are replaced by

ujy505 ðv; uÞjy505 0; ujy5h5 uðxÞ; 0# x#X ; uxjx50 5 0; ð1:79Þ

ujx505uð10;yÞ5u0ðyÞ;0,y,h;vjx5050;vjy505v1ðxÞ;x,0; ð1:80Þ

limx-10ðx;yÞ5v� const.0; 0,y,h:

1.6.4 Thermal Boundary Layer in Formation Flow Problems
The flow of fluid through a porous medium in which the two-dimensional

fluid flow region is greatly elongated in one direction (a thin formation), can

be described by thermal boundary-layer equations

ρ~uru5 ðuuyÞy 2 px1 ρf1; divðρ~uÞ5 0;

ρ~urθ5 ðλθyÞy1μu2y 1 upx;
ð1:81Þ
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in which the external force ~F 5 ðf1; f2Þ is represented, as suggested by

Zhukovsky (see Section 1.2), as ~F 52γ~u.
In the above equations, ~u5 ðu; vÞ is the velocity vector; ρ5 ρðθ; pÞ

is density; μ5μðθÞ is viscosity; p5 pðxÞ is pressure; θ5
Ð T
T0
cpðξÞdξ-

enthalpy; T is the temperature; λ5λðθÞ is thermal conductivity coeffi-

cient; γ5mμ=ρk;mðxÞ is porosity; kðxÞ is permeability.

Let us assume that the Prandtl number is 1, that is μρ5λρc1p 5σðθÞ0
and px5 0.

We can then use Mises variables ðx;ψÞ (ψ is flow function

jρu5ψy; ρv2 vðxÞ52ψx; v0ðxÞρvjy50) to write equations (1.81) for the

horizontal component uðx;ψÞ of the velocity vector ~u5 ðu; vÞ, and for

total energy h5 θ1 1=2u2, in the following form:

L~h � ðσu~hψÞψ2 v0ðxÞ~hψ2~hx5~γ f0; ðx;ψÞAD; ð1:82Þ
where ~h5 ðu; hÞ; ~f 05 ðI ; uÞ;D5 fx;ψj0, x,X ;ψ. 0g.

We can also consider the following problem of boundary layer con-

tinuation (1.82):

~hjx505~h0ðψÞ;ψ$ 0; ðu; h2 h1Þjψ505 0; xA½0;X �: ð1:83Þ
V.N. Monakhov, and N.V. Khusnutdinova [94] have demonstrated the

existence of generalized solutions of (1.82), (1.83) which could represent

fluid flow accompanied by the development of no flow zones ðu � 0Þ and
thus demonstrate that @u=@ψ can tend towards infinity.

1.7 A FORMATION FLOW MODEL OF WAXY, HIGH GAS
CONTENT OIL DISPLACEMENT

1.7.1 Process Description
The main distinguishing parameter associated with high gas content oil

flow is saturation pressure pH . If high gas content oil pressure falls below

saturation pressure, the gas phase is released from the oil. A characteristic

parameter of waxy oil flow is wax crystallization temperature θK ; when for-

mation temperature falls below this point, crystalline wax is precipitated

onto the pore surfaces. These factors need to be taken into consideration

in the development of waxy, high gas content oil fields, when it is impor-

tant to maintain formation pressure p, aiming at p. pH . The essential pro-

cess requirement is to maintain a high formation temperature, and that is

achieved by injecting steam or hot water into the formation. The
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development of heavy oil deposits where the oil contains large quantities of

gas presents an especially difficult problem, because such formations con-

tain areas where both the gas and the wax approach their critical points:

jp2 pH j{1; jθ2 θkj{1:

Oil production in such doubly (!) critical conditions is associated with

physical effects which it is difficult to explain in theoretical terms. For

instance, in some wells, production rates can fall virtually to zero, and

do not respond to formation pressure increases. When such sections are

re-drilled, the pores of core samples are found to contain quite a

stable “foam” consisting of gas bubbles plugged with wax crystals. It is

clear that in such circumstances oil recovery can be enhanced only by

increasing formation temperature, i.e. by steady steam injection into the

formation. To calculate the steam flow rates and temperatures required

for this process, we need suitable mathematical models, capable of taking

the interaction of pH and θk into account. Below, we propose a simple

mathematical model describing this process.

1.7.2 The Proposed Mathematical Model
Let pH be the bubble point pressure of gas-cut heavy oil whose reduced

density is ρ5 1 at p. pH . The process of gas separation at p, pH is

allowed for by considering a special equation of state for the mixed oil

and gas flow:

ρ5 ρðpÞ5 1; p$ pH
δðp2 pH Þ1 1 p# pH



ð1:84Þ

where δ5 const. In what follows, let Y 5Y ðθÞ be the internal energy

corresponding to wax crystallization, θ is the equilibrium temperature,

m5 const is porosity and k5 kðθ; pÞ is permeability. Assuming the fluid

flow to be one-dimensional and planar (orthogonal to the gravity vector)

we arrive at the following equations describing the formation flow of

waxy, high gas content oil:

m
@ρðpÞ
@t

2
@

@x
ρk

@p

@x

 !
5 0; v52 k

@p

@x
;

@

@t
Y ðθÞ2 @

@x
λ
@θ
@x

2 vθ

 !
5 0; λ5λðθÞ

8>>>><
>>>>:

ð1:85Þ
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Below we describe solutions of (1.85) which take the form of a simple

wave: p5 pðξÞ; θ5 θðξÞ; ξ5 x2 at; a5 const. They transform (1.85) into

the form

d

dξ
maρ1 ρk

dp

dξ

 !
5 0;

d

dξ
aY 1λ

dθ
dξ

2 vθ

 !
5 0

8>>>><
>>>>:

ð1:86Þ

dE; vdE, Integrating equations (1.85) and introducing a new function

ϕ5

ðp
p0

Kðθ; ηÞηdη � Φðθ; pÞ;

we obtain

ϕξ 2Φθθξ 5 c1ρ21 2 am � ψ1ðθ; pÞ;

ðλ2ΦθÞθξ 1ϕξ 5 c2 2 aY � ψ2ðθÞ; ð1:87Þ
and finally

ϕξ 5 f1ðθ;ϕ; ξÞ; θξ 5 f2ðθ;ϕ; ξÞ; ð1:88Þ
where λf15 ðλ2ΦθÞψ11Φθψ2;λf25ψ22ψ1; c1 and c1 are arbitrary real

constants.

1.7.3 The Development of High Gas Content Heavy Oil
Displacement Algorithms and the Validation of
Numerical Models
Equation (1.88), which describes the formation flow of waxy, high gas

content oil using simple wave analytical variables, has a standard structure,

which allows us to use the classical iteration system

ϕn11
ξ 5 f1ðθn;ϕn; ξÞ; θn11

ξ 5 f2ðθn;ϕn; ξÞ: ð1:89Þ

The only unusual feature of (1.88) is that internal energy Y ðθÞ which

forms part of coefficient (1.88), is not a smooth function. However, this

does not prevent us from using the iterative function (1.89).

We have also developed a full description of the solution of boundary-

value problems for (1.88) and have carried out a computer implementation.

39Fluid Flow Models



1.8 FORMATION FLOW OF TWO IMMISCIBLE
INHOMOGENEOUS FLUIDS

The practical implementation of the Muskat-Leverett model describing

two-phase (two-component) fluid flow (1.4) requires the determination

of three functional parameters (relative phase permeabilities and the

Leverett J function), a process which presents considerable experimental

difficulties. The flow models of an n-component fluid when n$ 3

require even more functional parameters which it is virtually impossible

to determine experimentally.

We have proposed a mathematical model of the flow of two immiscible

inhomogeneous fluids (such as water/steam or oil/gas), using only the

Muskat-Leverett functional parameters, and replacing the usual constant

density condition with the conditions of incompressibility of fluids. Similar

models have proved useful in oceanography and hydrology.

A flow model for one inhomogeneous fluid was first proposed in [91]

and the validity of the application of initial boundary value problems to

this model was examined in [91, 124]. In this book, we present a study of

these problems in relation a flow model of two inhomogeneous fluids.

1.8.1 Problem Statement
It is assumed that the flow of inhomogeneous fluids in a porous medium

is described by the laws of two-phase fluid flow which form the Muskat-

Leverett model (1.2): the law of conservation of mass, Darcy’s laws and

Laplace laws for capillary pressure discontinuity:

mðsiρiÞt 1 divðρi~viÞ5 0 ðs11 s25 1Þ;
~vi52K0kiðrpi2 ρi~gÞ; p22 p15 pcðx; sÞ:



ð1:90Þ

In these equations, siði5 1; 2Þ are phase saturations; ρi; pi;~vi is the corre-

sponding densities, pressures and flow velocity vectors; pcðx; sÞ is the capil-
lary pressure; k0 5 k0ðxÞ is the absolute permeability tensor of the

medium; ki5~kiðsiÞ � μ21
i is the relative phase permeabilities; μi5 const is

fluid viscosities; ~g is the gravity acceleration vector.

Instead of using equations of state of the fluids to close equation

(1.90), we have used the conditions of their incompressibility:

ρit 1~uirρi5 0 ~vi 5msi~ui; ð1:91Þ
which indicate that the fluids retain their densities p, along the trajectories

of their flow (~ui are their flow velocity vectors).
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Using equations (1.90) and (1.91), we obtain

ρi½msit 1 div~vi�1msi½ρit 1~uirρi�5 0; ð1:92Þ
and this gives us the equations for si, which coincide with the relevant

equations when ρi5 const:

msit 1 div~vi 5 0; i5 1; 2:

Therefore, if we introduce the average pressure from 1.2 ðs � s1Þ:

p5 p21

ðs�
s

b
@

@ξ
pcðx; ξÞdξ; b5 k1=k ð1:93Þ

equations (1.90) are transformed into

mst 5 div½k0ða1rs1~f 1Þ2 b~v� � 2div~v1;

05 div½kðrp1~f 2Þ� � 2div~v;

(
ð1:94Þ

where ~v5~v11~v2 � mixed flow velocity; s� . 0; 12 s�. 0 � residual

phase saturations.

a15 jpcsja0; a0 5 k1k2=k; k5 k11 k2; k5 k0k;

~f 15 a0½2rxpc 1 ðρ12 ρ2Þ~g�; ~f 2 5

ðs�
s

rxpcsk2k
21ds2~f 1b

21;

where k1ðs�Þ5 k2ðs�Þ5 pcðs�Þ5 0.

System (1.94) is closed by density equations ρI , which may be equa-

tions (1.91) or, in view of (1.92), their equivalent equations (1.93).

To calculate the pressure of the target functions ðs; ρ1; ρ2; pÞ, we examine

the initial boundary-value problem

sjt505 s0ðxÞ; vi �~nj@Ω 5 0;

ðρ1; ρ2Þjt5o 5 ρi0ðxÞ; xAΩ;

where ΩCR3;ΩT 5Ω½0;T �.

1.8.2 The Thermal Model Equation
Let si ði5 1; 2Þ be the phase saturations of pore space ðs11 s2 5 1Þ;m is

porosity, αi 5msi ði5 1; 2Þ;α35 12m is the exchange concentrations of

the fluids and the solid phase (the pore space matrix), ρi; pi;~ui is density,
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pressure and fluid flow velocity, ~vi 5αi~ui5msi~ui ði5 1; 2Þ is phase flow

velocities, ~v5~v11~v2 is the mixed flow velocity. It is assumed that the

rocks are not subject to deformation, and that each point of the porous

medium is in a state of thermal equilibrium, i.e. that their phase tempera-

tures θi are the same: θi 5 θ ði5 1; 2; 3Þ.
It is further assumed that the phase flow is as described by the

Muskat-Leverett model (1.2):

@msiρi
@t

1 divρi~vi 5 0; ð1:95Þ

~vi52K0ðxÞ
σiðsÞ
μiðθÞ

ðrpi 2 ρi~gÞ; ð1:96Þ

p22 p1 5 γðθÞ cos αðθÞ mðxÞ
jK0ðxÞj

� �1=2
JðsÞ � pcðx; θ; sÞ; s � s1 ð1:97Þ

In the above equation system, K0ðxÞ is the absolute permeability

tensor of the medium; σiðsÞ is relative phase permeabilities;

σ1ðs�Þ5σ2ðs�Þ5 0; s�; 12 s� is residual phase saturations; μi is phase

viscosities; ~g is the acceleration of gravity; γ is the surface tension coeffi-

cient; α is the wetting angle; JðsÞ is the Leverett capillary pressure func-

tion. In what follows, kiðs; θÞ5σiðsÞμ21
i ðθÞ; k5 k1 1 k2.

We now replace the fluid equations of state, (1.95)�(1.97), with the

conditions for an incompressible fluid:

@ρi
@t

1~uirρi 5 0; ði5 1; 2Þ; ð1:98Þ

which indicate that the fluids retain their densities ρi along the trajectories

of their flow. If we take into account only convective heat transfer and

thermal conductivity, we can write down the mixed flow energy balance

equation in the form

@θ
@t

1 divð~vθ2λðx; θ; sÞrθÞ5 0: ð1:99Þ

In this equation, λ is the thermal diffusivity of the mixed flow (consisting

of the two fluids and the porous matrix). In [15], we describe equation

(1.99), derived from general energy balance equations for components
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with constant phase densities and heat capacities, for a mixed flow which

is in thermal equilibrium, where

λ5
X3

i51
αiλi: ð1:100Þ

In a more generalized case of an inhomogeneous incompressible fluid,

equations (1.99) and (1.100) derived in [15] remain valid, provided that

the product of multiplication of phase densities by their heat capacity

remains constant.

1.8.3 Transformation of Equations. Problem Statement
By expanding the differentiation in (1.95) and using (1.96), we obtain

ρiðmsit 1 div~viÞ1msiðρit 1~uirρiÞ5 0;

and this provides us with equations for si, whose form is the same as that

of the corresponding equations for ρi5 const 1.2:

msit 1 div~vi5 0 i5 1; 2: ð1:101Þ
Because s25 12 s1 this system is equivalent to the system for s; v1and v:

mst 1 div~v1 5 0;
div~v5 0:

�
ð1:102Þ

Following the principle used in Section 1.2, let us now introduce average

pressure

p5 p21

ðs�
s

b1
@

@ξ
pcðx; θ; ξÞdξ; bi5 ki=k; i5 1; 2:

By transforming (1.96), (1.97) and (1.102), we arrive at the following sys-

tem of equations fors; p; θ; ρ1; ρ2:

mst 5 div½K0ða1rs2 a2rθ1 f1Þ2 b1~v� � 2div~v1ðs; p; ρi; θÞ;
05 divK0kðrp1 f21 a3rθÞ � 2div~vðs; p; ρi; θÞ;
@θ
@t

1 divð~vθ2λðx; θ; sÞrθÞ5 0;

@msiρi
@t

1 divρi~vi 5 0; i5 1; 2

8>>>>>>>>>><
>>>>>>>>>>:

ð1:103Þ
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where

a15 jpcsja0; a25 pcθa0; a05 b1k2; a352k1pcθ2

ðs�
s

@

@θ
ðb1pcsÞds;

f15 a0½ðρ1 2 ρ2Þg2rxpc�; f25
ðs�
s

b2rxpcsds2 gðb1ρ11 b2ρ2Þ:

Let ΩCR3 be a bounded region, ΩT 5Ω3 ½0;T �; @Ω5 s;Γ5 s3 ½0;T �;
s5 s1, s2, and Γi5 si3 ½0;T �. To calculate the target functions, let us

consider the following initial boundary value problem:

ðs; θ; ρ1; ρ2Þj505 ðs; θ; ρ1; ρ2Þ0ðxÞ; xAΩ;

~vi~njΓ5 0; θjΓ1
5 θ0ðx; tÞ; λ

@θ
@n

����
Γ2

5βðθ02 θÞ

8><
>: ð1:104Þ

In this equation, ~n is the unit vector of the outward normal to Γ;βðsÞ is the
heat transfer coefficient for a three-component mixed flow. In the above

exact derivation of (1.99), this component had the form

β5
P3

i51 αiβiðρiciÞ21; βi being the heat transfer coefficient of the ith

phase.
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CHAPTER22
Analytical and One-Dimensional
Models of Thermal Two-Phase
Flow

2.1 INTRODUCTION

Virtually all methods of calculation of oil recovery parameters assume that

the field can be divided into so-called basic elements of symmetry, corre-

sponding to specific regular well patterns. As a result, the first stage of all

methods of evaluation of field development systems consists of analyzing

the process of oil recovery from this basic element. It is usually assumed

that the basic element can be regarded as a closed system with symmetry

conditions at its boundaries, boundary conditions specified for the wells

(production rate, pressure or saturation) and uniform formation para-

meters within the element itself. The figures for all the basic elements are

then added together in order to calculate overall field performance.

The flow of inhomogeneous fluid through the porous medium of each

basic element can be described by one-dimensional models of subsurface

fluid flow, which form the basis of all computer-aided oil production

management systems. Accordingly, we have devoted considerable attention

to the development and validation of one-dimensional numerical models of

subsurface fluid flow (Sections 1.7�1.8).

In reservoir engineering, there is a special role for simplified models

of fluid flow, based on providing a range of exact (analytical) solutions of

one-dimensional models: stationary solutions, analytical parabolic or trav-

eling wave solutions and others.

Muskat’s displacement laws, as well as Polubarinova-Kochina and

Charnov’s assessments of near-wellbore zones, based on the parabolic self-

similarity of the simplest flow models, still provide us with the tools of

assessing some development parameters.

Analytical solutions of flow equations are widely used for the follow-

ing purposes:

1. They are of independent interest as special solutions of the initial equations;
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2. They are used as reference standards (tests) of the various approximate

methods of solving more general equations;

3. They are used for preliminary numerical or analytical studies of the

singularities of the initial equations;

4. In many cases, they represent asymptotic forms of the solutions of a

broad range of problems, in particular those in which the detailed

structure of boundary conditions as well as initial conditions becomes

less important, although they are frequently of the greatest interest;

5. Combined with comparison theorems, they provide an efficient theoreti-

cal tool for the study of the properties of solutions for the initial variables;

6. In some applied fields (e.g. in oil production), they can serve as a fore-

casting tool.

In this chapter, we focus on the theory and numerical construction of

analytical solutions of subsurface flow dynamics equations (1.2–1.6).

2.2 BOUNDARY VALUE PROBLEMS FOR ORDINARY
DIFFERENTIAL EQUATIONS

2.2.1 Functional Spaces
Let us consider the Banach spaces described below, using an arbitrary

measurable set EC½0; l�; l. 0:

LpðEÞ5 f ðxÞ
ð
E

jf ðxÞjpdp
� �1

p

� kf kp;E ,N

( )
; p$ 1;

kf k22;E 5 ðf ; f ÞE 5
ð
E

jf ðxÞj2dx ½L2ðEÞ2Hilbert space�;

W 1
p ðEÞ5 f ðxÞjj f jjp:E 1 jj fxjjp:E � jj f jjð1Þp:E ,N

n o
; p$ 1;

Wk
p ðEÞ5 f ðxÞ

Xk
s50

jjf ðsÞx jjp:E � jjf jjðkÞp:E ,N

( )
; p$ 1; k� integer; k$ 1;

CðEÞ5 f ðxÞmax
E

j f ðxÞj � j f jE ,N

 �

;

CaðEÞ5 f ðxÞ max
x;yAE

f ðxÞ1 j f ðxÞ � f ðyÞj
jx� yja

 !
� j f ja;E ,N

( )
;

Ck1aðEÞ5 f ðxÞ
Xk
s50

j f ðsÞx ja:E � jf jðkÞa:E ,N

( )
; k� integer; aA½0; 1Þ:
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In space LpðEÞ, the functions on CNðEÞ are dense, and we can

replace functions approximating f ðxÞALpðEÞ functions with their averaged

forms:

fpðxÞ5
ð
E

ωρðjx2 yjÞf ðyÞdy; ρ ! 0; ð2:1Þ

where ωρðrÞ5 ρ21ωðr=ρÞ, ωðτÞ is a non-negative infinitely differentiable

function, τ$ 0, which equals zero at τ$ 1 and is such thatÐ
τ# 1

ωðτÞdτ5 1.

Space W 1
p ðEÞ (as is LpðEÞ), p$ 1 consists of a class of equivalent func-

tions f ~ðxÞ; k f ~ðxÞ2 f ðxÞkð1Þp;E 5 0, which can always be represented by

f ðxÞ5 limp!0mes
21Eρ

ð
EpðxÞ

f ðyÞdy; χAE;

EpðxÞ5 IpðxÞ\E; IpðxÞ5 fy jx2 yj, ρg; kf ðxÞ2 f ðxÞkρ;E 5 0

f ðxÞ is absolutely continuous for almost all xAE, and its derivative is cal-

culated as an ordinary derivative of an absolutely continuous function and

coincides almost everywhere in E with the generalized derivative fx, i.e.

f x5 fxALpðEÞ.
Therefore, in what follows we will always understand f ðxÞAW 1

p ðEÞ to
mean f ðxÞ, being a representative of a class of equivalent f ðxÞ functions.
This is also how the further properties of functions f ðxÞAW 1

p ðEÞ should
be understood.

Let f ðxÞAW 1
p ðEÞ; p$ 1. Let us extend fx5

df

dx
; xAE by a section

½0; l�*E, assuming
df

dx
5 0; xAð 0; l½ �\EÞ and representing

f ðxÞ5
ðx
x0

df

dt
dt1 f ðx0Þ; x0AE: ð2:2Þ

From expression (2.2), we obtain

maxjf 2 f0j#
ð
E

df

dt

����
����dt; that is jf 2 f0jE # kfxk1;E;

in this case W 1
1 ðEÞCCCðEÞ (W 1

1 ðEÞ fits compactly into CðEÞ).
Let now f ðxÞAW 1

p ðEÞ; 1p 1 1
q
5 1. Then

f ðx2Þ2 f ðx1Þ
�� ��# ðx2

x1

1U
df

dx

����
����dx# k1kq;½x1;x2�Ukfxkp;E 5 ðx22x1Þ1=qkfxkp;E;

ð fx5 0; xA½0; l�\EÞ;
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Therefore,

jf jα;E # kf kð1Þp;E; α5
p2 1

p
$ 0; ð2:3Þ

and W 1
p ðEÞCCCαðEÞ.

Let f ðx0Þ5 0; x0AE. Then, representation (2.2) gives us

f ðxÞ
�� ��# ðx

0

df

dt

����
����dt#

ð l
0

df

dt

����
����dt5

ð
E

1U
df

dt

����
����dt# ðmesEÞ1=qkfxkp;E;

1

p
1

1

q
5 1

df

dx
5 0; xAE

� �
:

Consequently,ð
E

f ðxÞ
�� ��sdx
 �1=s

# ðmesEÞ1=qkfxkp;E
ð
E

1dt


 �1=s

5 ðmesEÞ1=s11=qkfxkp;E:

In this way, we arrive at the Poincare inequality

kf ks;E # ðmesEÞβUkfxkp;E; f x0ð Þ5 0; x0AE; ð2:4Þ
where p. 1; s. 1;β5

p2 1

p
1
1

s
.

2.2.2 Convergence in LpðEÞ; p$ 1

In this section, we consider the following types of convergence for the

sequence ffkðxÞg of functions fkðxÞALpðEÞ; p$ 1:

1. fk���!
Lp

f ðfk converge to f strongly in LpÞ;
if kfk2 f kp;E ! 0; k ! N;

2. fk���!
a:e:

f ðfk converge to f almost everywhere on EÞ, if in the set

E~CE;mes ~E5mesE all fkðxÞ and f ðxÞ assumes finite values and

jfkðxÞ2 f ðxÞj ! 0; k ! N; xA ~E;
3. fk���!

Cπ
f ðfk converge to f weaklyÞ, ifð
E

fkðxÞ2 f ðxÞ� �
ϕðxÞdx ! 0;’ϕALpðEÞ;

1

p
1

1

q
5 1; p. 1:

Theorem 1

a. if fk���!
Lp

f ðxÞ, then there exists a subsequence ffkng; fkn���!
a:e:

f ;
n ! N;

b. if fk���!
a:e:

f , then ’ε. 0 there exists EεCE;mesEε$mesE2 ε and

fk���!
eq:

f on Eε (Egorov theorem);
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c. if fk���!
L1

f and kfkkp;E #M ; p. 1 (M doesn’t depend on k), then

fk���!
Lp

f ,’p, p and fk���!
Lp

f ;

d. if fk���!
Cπ:

f and kfkk2;E ! kf k2;E, then fk���!
L2

f .

2.2.3 The Properties of Truncations in W 1
p ðEÞ; p$ 1

Let us consider the measurable sets

Em 5 fxjf ðxÞ.mg;E0
m5 fxjf ðxÞ5mg and Em5Em

[
E0
m; f ðxÞAW 1

p ðEÞ:
And let us note the following properties of these sets:

Em5
[
’ε. 0Em1ε; Em 5

\
’ε. 0Em2ε;

mesðEm=Em1εÞ ! 0; mesðEm2ε=EmÞ ! 0 at ε ! 0:

Let us now introduce a truncation f ½m�ðxÞ of function f ðxÞ, assuming

f ½m�ðxÞ5maxff ðxÞ2m; 0g.

Theorem 2

a. If f ðxÞAW 1
p ðEÞ; p$ 1, then f ½m�ðxÞAW 1

p ðEÞ, in this case
df ½m�

dx
5

df

dx
; xAEm and

df ½m�

dx
5 0; xAðE=EmÞ;

b. If fk���!
Lp

f , then also f
½m�
k ���!

Lp

f ½m�, in this case

mesfðEm=E
k
mÞ-Emg ! 0;mesfEk

m=ðEk
m -EmÞg ! 0 at k ! N;

where Ek
m5 fxjfkðxÞ.mg;

c. If kfk2 f kð1Þp;E ! 0 at k ! N, then kf ½m�k 2 f
½m�
k kð1Þp;E ! 0 at k ! N.

2.2.4 Maximum Principles

Theorem 3 (the extremum principle).

Let u5 uðxÞ; xAE5 fxj0, x, lg be regular (classical) solution of the dif-

ferential equation

Lu � auxx 1 bux2 cu5 0 ðc$ 0; a. 0Þ; ð2:5Þ
with continuous coefficientsða; b; cÞACðEÞ.

In this case,uðxÞcannot reach either a negative relative minimum or a positive

relative minimum in any point xAE.
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Proof Let us introduce the function uðxÞ5 ðγ2 e2βxÞvðxÞ � αðxÞvðxÞ,
which, by virtue of (2.5), satisfies the equation

αavxx 1 ðbα1 2βae2βxÞvx2 ½βe2βxðaβ2 bÞ1 cα�v5 0:

Let us select a β sufficiently large to ensure that aβ2 b. 0; xAE,

which is possible, since a. 0, and let us then select a γ such that

α5 γ2 e2βx. 0; xAE.

This will give us the equation

Lu � avxx1 bvx2 cv5 0; ðc. 0; a. 0Þ: ð2:5�Þ
Let there be a point x2AE at which a negative minimum of vðxÞ can

be reached. In that case

vxðx2Þ5 0; vxxðx2Þ$ 0 and Lvðx2Þ$ cðx2Þjvðx2Þj. 0, which contradicts

the assumption that equation (2.5�) can be satisfied. The statement relat-

ing to the maximum can be proved in the same way.

Theorem 4 (generalized extremum principle). Let u5 uðxÞbe the regular solu-
tion of equation (2.5):

L0u1 f � auxx1 bux1 f ðx; uÞ5 0 ða. 0; c5 0Þ: ð2:6Þ
Here ða; bÞACðEÞ; f ðx; uÞAC½E3U �;U 5 fuj0, u, 1g,
f ðx; 0Þ5 f ðx; 1Þ5 0;’xAE, in this case 0#min@EuðyÞ; 1$

max@EuðyÞ.
This satisfies the estimates

ðmin@Eu$ Þ0# uðxÞ# 1ð$max@EuÞ; xAE: ð2:7Þ

Proof Let γ. 0;β. 0 be arbitrary constants which obey the condition

γ. 1ðxAE5 ð0; 1ÞÞ. Let us assume that u5 vUðγ2 e2βxÞ, and extend the

function f ðx; uÞ along the continuity

f ðx; vÞ5 f ðx; uÞ; u. 1;
0; u# 0




and introduce it into (2.6) in place of f ; f ðx; vÞ. This transforms (2.7) into

a form analogous to (2.5�):
L0v1 f ðx; vÞ5 0;

where β. 0 is selected from condition c. 0.
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Let the negative minimum of function v; vðx2Þ, 0 be achieved at

point x2AE. Then vxðx2Þ5 0; vxxðx2Þ$ 0; f ðx2; vðx2ÞÞ5 0, whence

L0vðx2Þ1 f ðx2; vðx2ÞÞ$ cðx2Þjvðx2Þj. 0;

which contradicts the assumption that equation (2.6) can be satisfied at

f 5 f at point x2AE. The lower estimate in (2.7) makes it possible to

remove the truncation from function f , i.e. to set f � f .

The upper estimate in (2.7) can be proved in the same way by intro-

ducing the function v5 ð12 uÞðγ2e2βxÞ21.

Theorem 5 Let the coefficients of equation (2.5) have the properties a. 0;
ða; bÞACðEÞ;E5 ½21; 1� and uðxÞAC2ðEÞ-CðEÞ, at c � 0, with L0u5

auxx1 bux$ 0; uðxÞ, uðx0Þ; xAE; x0A@E. In that case, ðdu=dxÞðx0Þ5
σ. 0.

Proof For the sake of clarity, let us assume that x05 1. Let us then con-

sider the sets

E05 x2
1

2

����
����, 1

2


 �
; E15 x2 1j j, 1

4


 �
; E�5E0-E1:

and introduce the auxiliary function

ω5 e2αρ2 2 e2α=4; ρ5 x2
1

2

����
����; xAE0:

If we select a sufficiently large αc1, it is obvious that

L0ω5 2αe2αρ2 a2α x2
1

2

� �2
2 a2 b x2

1

2

� �" #
. 0; xAE�;

as x2
1

2
$

1

4
; xAE�:

Since uðxÞ, uð1Þ at xAE*E�, then, provided that 0, ε{1 is suffi-

ciently small, we have

vðxÞ5 uðxÞ1 εωðxÞ, uð1Þ; x5 3

4
A@E�;

L0v5L0u1 εL0ω. 0; xAE�:

Therefore, vðxÞ cannot reach its absolute maximum in E�, and

consequently
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v
3

4

� �
, uð1Þ; vð1Þ5 uð1Þ ðωð1Þ5 0Þ:

As a result, at point x5 1

0#
dv

dx
5

du

dx
1 ε

dω
dx

;

whence du
dx
ð1Þ$ 2 ε dω

dx
ð1Þ5 εαe2α=4 � σ. 0

Note If in the assumptions of Theorem 5

L0u# 0; uðxÞ. uðx0Þ; xAE; x0A@E; then
du

dx
ðx0Þ5σ, 0:

To prove this assertion, it is sufficient to consider function

u5 uðx0Þ2 uðxÞ, for which L0u$ 0; uðxÞ, uðx0Þ5 0.

We can use Theorem 5 to state the next proposition, which is analo-

gous to Theorems 3 and 4.

Theorem 6 Each inconstant solution uðxÞAC2ðEÞ-CðEÞ of equation (2.5)

at c � 0; a. 0; ða; bÞACðEÞ satisfies the inequalities
min uðsÞ, uðxÞ,max uðsÞ; xAE; sA@E: ð2:7�Þ

Proof Let uðxÞconst have an internal maximum point x0AE and E05

fjx2 ð12 εÞx0j, εx0gCE at a sufficiently small 0, ε{1, and let

uðxÞ, uðx0Þ; xAE0.

By virtue of Theorem 5, in that point du
dx
ðx0Þ. 0, which contradicts

the equality du
dx
ðx0Þ5 0, which is true for an internal maximum point.

The next theorem follows as a direct consequence of the assertions

made by Theorems 5 and 6:

Theorem 7 In the conditions postulated by Theorem 5, the following inequal-

ities are satisfied in boundary points xkC@E; k5 0; 1

du

dx
ðxkÞ

����
����5σk. 0:

Theorem 8 Let the conditions of Theorem 4 be satisfied for the coefficients of

equation (2.6).

In that case, inequalities (2.7) will be satisfied for a regular solution of equa-

tion (2.6), which satisfies a second boundary-value problem of the type
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½ux2ϕðuÞ�x505 0; ujx515 u1A½0; 1�; ð2:8Þ
where ϕðuÞAC½0; 1�;ϕð0Þ5ϕð1Þ5 0 satisfy the inequalities (2.7).

Proof Let us extend the functions f ðx; uÞ and ϕðuÞ along a continuity, as

we did in the proof of Theorem 4, assuming that

ϕ5ϕ; f 5 f ; uA½0; 1�;ϕ5 f 5 0; uA½0; 1�;
and substitute them into (2.6) and (2.8). Let us assume that uðxÞ. 1. We

can then find a neighbourhood E05 ð0; x�Þ; x�# 1, for which uðxÞ$ 1;
xAE0; uðx�Þ5 1, in which case f 5ϕ5 0; xAE0:

If uðxÞ5 const; xAE0, then in accordance with Theorem 7 extremum

cannot be reached in the point x0ðuxðx0Þ5 0!Þ, whereas Theorem 6

makes it impossible for it to be reached in the internal points E0.

However, in that case uðxÞ5 uðx0Þ5 const; xAE0, and since uðx�Þ5 1,

then uðxÞ5 1; xAE0.

Theorem 4 applies in region fE=E0g, and thereby uðxÞ# 1; xAE. The

lower inequality of (2.7) uðxÞ$ 0; xAE is determined in a similar way.

2.2.5 Generalized Solutions of Differential Equations
Let us now consider the quasi-linear ordinary differential equations

ða1ux1a2Þx1 a31 a4ux 5 0; xAEð@E5 x0; x1Þ ð2:9Þ
and examine the boundary-value problems

ujx5xk 5 uk; k5 0; 1; ð2:10Þ

ða1uk1 a2Þjx5xk 5 0; ujx5xj 5 uj; j 6¼ k: ð2:11Þ
Coefficients ak5 akðx; uÞ; ðx; uÞAE3 ½0; 1� obey the conditions

a1. 0; ðx; uÞAE3 ð0; 1Þ; akðx; uÞju50;15 0; k5 1; 2; 3;
jakj#M0; k5 1; 2; 3; 4:



ð2:12Þ

Note that by virtue of (2.12), u � 0 and u � 1 are the solutions of

(2.9), (2.10) and (2.9), (2.11).

Let us agree to consider that akðx; uÞ have been determined for all

uAR1 extending them with the boundary values of akðx; 0Þ and akðx; 1Þ at
uA½0; 1�. Let us also introduce the notation

Ð
E
aðxÞbðxÞdx5 ða; bÞE.
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Calculation Let us define the generalized solution uðxÞAV of problems (2.9),

(2.10) and (2.9), (2.11) as represented by a function uðxÞ having the

following properties:

i. juj#M ; ja1uxj#M1; xAE;

ii. It satisfies conditions (2.10) in (2.9), (2.10) and the condition

uðxjÞ5 uj; j 6¼ k in (2.9), (2.11);

iii. It satisfies the integral identity

ða1ux1a3; ηxÞE 2 ða31a4ux; ηÞE 5 0;’ηAC1ðEÞ ð2:13Þ
when, in addition, in (2.9), (2.10), ηðxkÞ5 0; k5 0; 1, and in (2.9),

(2.11) 2ηðxjÞ5 0; j 6¼ k.

Theorem 9 (the maximum principle). The generalized solutions uðxÞAV of

boundary value problems (2.9), (2.10) and (2.9), (2.11) satisfy the inequalities

0# uðxÞ# 1; xAE; ð2:14Þ
if in (2.10) ukA½0; 1�, and in (2.11) ujx5xj 5 ujA½0; 1�; j 6¼ k.

Proof The proof follows the determination of u#M and demonstrates

that M # 1. Let us begin by assuming the opposite, i.e. that M . 1, and

let us select a v for which 1, v,M . Let us consider the problem for a

subsidiary equation of the form (2.9), in which coefficient a1 is replaced

by a15 a11 ε; ε. 0.

Let us consider the truncation u½v� 5maxfu2 v; 0g. Obviously,

u½v�ðxkÞ5 0; k5 0; 1 in (2.9), (2.10) and u½v�ðxjÞ5 0; j 6¼ k in (2.9), (2.11)

Function u½v�ðxÞ can therefore be used as a testing function ðη5 u½v�Þ
in equation (2.13) at a15 a11 ε instead of a1. This will give us

ða1ux1a2; uxÞ�5 ða31a4ux; u
½v�Þ�; ð2:15Þ

where ðu; vÞ�5
Ð
E�
uðtÞvðtÞdt;Ev 5 fxju2 v. 0g;E� 5Ev=E0

M .

Let us note that since on Ev; u. v. 1, therefore ak5 0; k5 1; 2; 3
and u½v�x 5 ux when xAEv [Theorem 2, Property (a)], and when xAE0

M 2

ux5 u½v�x 5 0 ðujE0
M
5maxEuÞ. Thus, we can use (2.15) to find

εkuxk22;E� 5 ða4ux; u2vÞ� #M0kuxk2;E� 2 ku2 vk2;E� :

Inequality (2.4) states that when s5 p5 2,

ku2 vk2;E� #mesE�kuxk2;E�
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and that provides us with the inequality

ε#M0mesE�5M0mesðEv=E
0
M Þ;

This inequality is true for each fixed ε. 0 and arbitrary vAð0;MÞ.
However, when v ! M mesE�5mesðEv=E0

M Þ ! 0 [Theorem 2,

Property (b)], and the inequality is no longer true. Consequently, the

assumption that M . 1 is wrong, and therefore uðxÞ# 1 is right. The

inequality uðxÞ$ 0 can be proved in the same way.

2.3 NUMERICAL AND ANALYTICAL METHODS OF
INVESTIGATION OF THERMAL TWO-PHASE FLOW
PROBLEMS

In this section, we suggest numerical and analytical methods of investigat-

ing the thermal flow of two-phase fluids in oil formations.

2.3.1 Thermal Recovery Methods
Thermal methods are the most commonly used and best understood

methods of developing high-viscosity and waxy oil deposits, and the

depleted sections of light (low-viscosity) oil deposits. Thermal recovery is

based on the fact that heating rapidly reduces the viscosity of the oil, and

thus increases its mobility, and in the case of waxy oils also prevents wax

crystallization in the pores.

Two principal thermal recovery methods are currently in use: steam

drive, which consists of injecting a heating medium (steam or hot water)

through injection wells, and steam treatment of production wells. A varia-

tion of this method is to inject a heating and a cooling medium (water)

alternately into either injection or production wells, shutting in some of

the wells for some of the time, or to combine the methods, and in partic-

ular to convert production wells into injection wells and vice versa.

Thermal recovery methods produce a range of different displacement

flow dynamics: unidirectional displacement in an injection well-

production well system, with alternating heating and cooling of sections

of the formation, thermocapillary saturation of shut-in wells, flow around

no-flow zones (bypassed oil) and others. This is why it is virtually impos-

sible to arrive at a realistic forecast of the effectiveness of complex thermal

recovery methods, using solely engineering approaches (e.g. material bal-

ance calculations or statistics), and why up-to-date methods of mathemat-

ical modelling need to be applied.
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2.3.2 The Muskat-Leverett Thermal Model (MLT Model)
Bocharov and Monakhov [15] have proposed and investigated a mathe-

matical model of thermal two-phase flow (the MLT model). It differs

from earlier models [140] in that it uses experimentally-determined rela-

tionships between viscosity, capillary properties and temperature, while its

energy equation follows from the laws of conservation of energy of the

fluids and the porous medium.

The equations of the one-dimensional MLT model for a homoge-

neous isotropic porous medium, transformed with respect to dynamic

water saturation θ5 θ1, equilibrium temperature θðx; tÞ and average pres-

sure x; tp assume the form (Chapter 1, 1.5)

st 5 ½aðλ1sx1a1θxÞ1a2v�x; θt 5 ðλ2θx2vθÞx; 2 vx � ðλ3px1a3θxÞx5 0;

ð2:16Þ
where v5 vðtÞ is the two-phase fluid flow rate. The coefficients aðsÞ;
a
!ðs; θÞ � ða1; a2; a3Þ and ~λðs; θÞ5 ðλ1;λ2;λ3Þ in (2.16) are expressed

explicitly by thefunctional parameters of the initial MLT model, and have

the following properties, which allow for the physical implications of

these parameters [15]:

a. aðsÞ. 0; sAð0; 1Þ; að0Þ5 að1Þ5 a2ð0Þ5 0; λiðs; θÞ$m0. 0;

b. ðaðsÞ; a!ðs; θÞ;~λðs; θÞÞAC1ðQÞ;Q5 fs; θj0# s, 1; θ�, θ, θ�g.
Assumptions ðaÞ ensure respectively the parabolicity and uniform para-

bolicity of the equations for sðx; tÞ and θðx; tÞ and the non-degeneracy

(non-simplification) of the ordinary equation for pðx; tÞ (in which t acts as

a parameter).

2.3.3 Self-similar (Analytical) Solutions Theory
The use of mathematical models, such as the MLT model or the Muskat-

Leverett model of isothermal two-phase flow [2], requires complex math-

ematical techniques, and therefore, approaches which make use of simpler

and more practical methods are especially valuable. One such approach,

still successfully used in practice, is to describe the process of oil displace-

ment by means of approximate formulae derived from exact solutions of

the initial model equations. These include stationary solutions, dependent

only on the variable x, analytical (self-similar) parabolic solutions depen-

dent on y5 xðt11Þ21=2, analytical traveling wave solutions, dependent on

z5 x1 ct ðc5 constÞ and some others. Simple Muskat formulae (displace-

ment laws), Charny’s formulae (near-wellbore zones) and others [139],
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based on parabolic self-similarity remain reliable tools of engineering

analysis of oil field development by isothermal methods.

This being the case, let us begin our examination of thermal recovery

methods by constructing analytical (self-similar) MLT model equations,

described by ordinary differential equations. Let us consider the case of

equation (2.16) with a known total mixed flow rate v5 vðtÞ, which corre-

sponds to a unidirectional mixed flow in a steam drive or steam treat-

ment. It is clear that in this case the initial functions sðx; tÞ; θðx; tÞ can be

found independently of function pðx; tÞ, which can then be reconstructed

from them. Provided that v5 ~vðt11Þ21=2 (in what follows, the tilde over

the v has been omitted), is specified, we can find solutions to (2.16)

which depend on only one independent variable y5 xðt11Þ21=2 - they

are parabolic self-similar solutions sðyÞ; θðyÞ; pðyÞ which satisfy the trans-

formed equations (2.16):

½aðλ1sy1a1θyÞ1a2v�y1
1

2
ysy5 0; ðλ2θy2vθÞy 1

1

2
yθy5 0; ð2:17Þ

λ3py1 a3θy 52 v5 const: ð2:18Þ
Let the two-phase fluid flow take place between two wells (groups of

wells), located in points y5 yk; k5 0; 1, of which let y5 y05 0 be the

location of the injection well, and y5 y1 the location of the production

well (y15N is also a possible case). The values specified for wells y5 yk
can be either s; θ; p:

ðs; θÞjy5yk 5 ðsk; θkÞ; k5 0; 1; ð2:19Þ

pjy5yk 5 pk; k5 0; 1; ð2:20Þ
or streams @s5 aðλ1sy1 a1θyÞ1 a2v; @θ5λ2θy2 vθ; @p5λ3py1 a3θy of

these values:

@sjy5yk
5 Sk; @θjy5yk

5Tk; k5 0; 1; ð2:21Þ
@pjy5yk 5Pk; k5 0; 1; ð2:22Þ

where Sk;Tk and Pk - constants.

Let us examine the first boundary value problem (2.17), (2.18) for sðyÞ
and θðyÞ. Because equation (2.17) for θ is homogeneous with respect to

the derivatives of ðv5 constÞ, we can use the linear substitution θ5 γ1 ~θ1
γ2; γk5 const to reduce the boundary conditions (2.19) for θ to θ0 5 1;
θ15 0, and we will assume that this has been done.
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Assuming the coefficient λ2ðyÞ � λ2½sðyÞ; θðyÞ� to be a known func-

tion, we can arrive at the following expression for θðyÞ:

θ5 12NFðyÞ; F5

ðy
0

λ21
2 ðξÞe2ΛðεÞdξ;Λ5

ðy
0

λ0ðξÞdξ: ð2:23Þ

Here λ05 ð0; 5y2 vÞλ21
2 ðyÞ;N 5 ½Fðy1Þ�21.

Expression (2.23) leads directly to the estimates

0# θðyÞ#M1 expð2α2y
2Þ# 1; jθyj#M2 expð2Q2y

2Þ; yAð0; y1Þ ð2:24Þ
where the constants Mi . 0 and αi. 0 do not depend on the value of

y1. 0.

Let us assume that y15N, and let us calculate the approximate value

of the constants αi and Mi in the inequality (2.24), so as to arrive at a

more exact definition of the asymptotics of jθðyÞj at y ! N. Let

y$ η05 8jvj.
In that case,

λ05
1

2
y2 v

� �
λ21
2 $

1

4
v21
0 y; v05maxλ2;

Λ5

ðy
0

λ0ðtÞdt$
ðη0
0

λ0ðtÞdt1α0ðy22 η20Þ; α05
1

8
v21
0 ;

and it can easily be seen that inequalities (2.24) occur when

M15 λ� ffiffiffiffiffiffiffiffi
8λ�p� 


=λ�;M25 ðλ�Þ2 λ�π
ffiffiffiffiffi
λ�

p� 
21

;

α15α25 ð8λ�Þ21;

where λ� 5 mins;θ λ2ðs; θÞ;λ� 5 maxs;θ λ2ðs; θÞ.
Let us now consider equation (2.17) for sðyÞ and note that irrespective

of the value of siA½0; 1�; i5 0; 1 in (4), 1.0 suggests that sðx; tÞ can be esti-

mated as

0# sðyÞ# 1; yA½0; y1� ’y1 . 0: ð2:25Þ
Let us introduce a new function u5

Ð s
0
αðξÞdξ and, assuming that the

coefficients of equation (2.17) for sðyÞ are known, let us express this equa-
tion in the form

ðλ1uy1ϕÞy5 0; uð0Þ5 u0; uðy1Þ5 u1: ð2:26Þ
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In this expression,

ui5

ðsi
0

αðξÞdξ; i5 0; 1;ϕ5 0; 5 ys1

ðy1
y

sðξÞdξ
 !

1 aa1θy 1 a2v:

Integrating (2.26), we obtain

2λ1uy5ϕ1C; uð0Þ5 u0; ð2:27Þ
where C5C21

0 u0 2 u12
Ð y1
0
λ21
1 ðξÞϕðξÞdξ� �

;C05
Ð y1
0
λ21
1 ðξÞdξ. Since,

on the basis of the assumption made in (a), λ1$m0. 0, we can use

(2.27) to find

juyj5 aðsÞjsyj#M0ðy1Þ: ð2:28Þ
Let us note that the properties of the MLT model’s functional para-

meters satisfy the inequalities [15] (Chapter 1, 1.5):

c. ða; ja2jÞ#Ksγ; ða; ja22 a2ð1; θÞjÞ#Kð12sÞγ; γ$ 1.

Theorem 1 (The finite velocity of propagation of perturbations).

Let us assume that assumptions (a), (b) and (c) have been satisfied. In that case,

when sðy1Þ5 0½or sðy1Þ5 1�; y1c1 , there exists a finite value of y� , such that

sðyÞ � 0½or sðyÞ � 1� at y$ y�; ð2:29Þ
i.e. the front s5 0 ðs5 1Þ propagates at a finite velocity.

Proof Let us assume that

y2�5Y 21K0δ21;Y 5 2KmaxðM2ja1j; jvjÞ; ð2:30Þ
where K05

Ð 1
0
aðtÞt21dt; δ5 0; 125 min λ1. Since the constants K ;K0;M2

and δ do not depend on y1 then at y1c1 the constant y� also does not

depend on y1.

Let us consider equation (2.26) for u5
Ð s
0
aðtÞdt. Since uðy1Þ5 0 and

in the vicinity y5 y1 we have uðyÞ$ 0, clearly uyðy1Þ# 0 and therefore

C52λ1ð0; 0Þuyðu1Þ$ 0, since ϕð0; 0Þ5 0. In that case,

2λ1uy5ϕ1C$
1

2
ys2 aja1kθyj2 jvka2j$

1

4
ys at y$Y ;

where Y is determined in (2.30). In this way, we arrive at the inequality

½ΦðsÞ�y1 2δy# 0; yA½Y ; y1�; sðY Þ5 s2$ 0; ð2:31Þ
where Φ5

Ð s
0
aðtÞt21dt.
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Integrating (2.31), we find

2

ðs2
s

aðtÞt21dt1 δðy22Y 2Þ# 0; y$Y :

And since

ΦðsÞ2Φðs2Þ52

ðs2
s

aðtÞt21dt$

ð1
0

aðtÞt21dt � 2K0;

then it follows from the preceding inequality that δðy22Y 2Þ2
K0# 0; y$Y , which is possible only if Y # y# y�; y� having been taken

from (2.30). Consequently, for (2.31) to be true at y$ y�, (2.29) must be

satisfied. The case of sðy1Þ5 1 can be reduced to the case we have consid-

ered, by substituting σ5 12 s.

Let us write down the expressions (2.23), (2.27) in the form of the

following Cauchy problem for the vector function u
!

5 ðu; θÞ:
u
!
y5

~ψðs; θ; yÞ; u!ð0Þ5 u
!
0 ð2:32Þ

Here,

ψ152λ21
1 ðϕ1CÞ;ϕ5 0; 5 ys1

ðy1
y

sðξÞdξ
" #

1 aa1ψ21 a2v;

ψ252λ21
2 N expð2ΛðyÞÞ;

s5 sðuÞ is the inverse function of u5 uðsÞ5 Ð s
0
aðtÞdt; the constants C;N

and function ΛðyÞ are determined in (2.23), (2.27). If the functions

ψkðs; θ; yÞ are constructed taking into account assumptions (a) and (b),

they will be continuous for a set of arguments in any y1Að0;NÞ.
The properties of the MLT model parameters [15] imply the following

analogue of conditions (c):

d. aðsÞ$m1½sð12sÞ�γ0 ; γ0. 0.

Theorem 2 (Holder continuity). Let us assume that conditions (a)�(d) have

been satisfied. If that is the case, then, the following a priori estimates are satisfied

for the solutions of u
!ðyÞ in (2.32):

k u
!ðyÞkC11αðlÞ#N0ðy1Þ;α5 ð11γ0Þ21; l5 ½0; y1�: ð2:33Þ

If sðy1Þ5 0 ½or sðy1Þ5 1� , then the constant N0 will depend only on y� for

all y1$ y� and, in particular, we can assume that y15N [ y� from (2.30)].
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Proof Let us first establish Holder continuity of the transformation

s5 sðuÞ, which is the inverse of u5
Ð s
0
aðtÞdt:

jsðu2Þ2 sðu1Þj#Kju2 2 u1jα; ðu1; u2ÞA½0; p�; p5
ð1
0

aðtÞdt:

Obviously, for this to be true, it is sufficient that juðs2Þ2 uðs1Þj$
K0js2 2 s1j11γ0 at ðs1; s2ÞA 0; 3

4

� �
1
4
; 1

� �
.

For the sake of clarity, let us assume that 0# s1# s2#
3
4
. Then

u2 2 u15

ðs2
s1

aðsÞds$K0

ðs2
s1

sγ0ð12sÞγ0ds$Kðsγ011
2 2 s

γ011
1 Þ

$Kðs22s1Þγ011;K 5K04
2αð11γ0Þ21;

The last of the series of inequalities follows from the consideration of

f ðσÞ5 ð12σγÞð12σÞ2γ; γ5 11 γ0;σ5 s1
s2
, for which minf ðσÞ5 f ð0Þ5

1ðfσ . 0; 0,σ, 1Þ:
Thus, we have proved that sðuÞACα½0; p�. Since juyj#M0, therefore

s½uðyÞ�ACα½0; y1�. Now, the expressions (2.23) and (2.27), in which the

coefficients λðyÞ � λ½sðyÞ; θðyÞ�; a2ðyÞ and others display Holder continu-

ity, produce the inequalities (2.33).

In the same way, sðy1Þ5 0 ½or sðy1Þ5 1� and y1$ y� produce the esti-

mate ½uy�#M1ðy�Þ and because of the finite velocity of propagation of

perturbations uðyÞ � 0 ðu � u1Þ at y$ y�, which clearly confirms the

truth of the theorem.

Theorem 3 (Existence). If assumptions (a)�(d) are satisfied, the Cauchy prob-

lem (2.32) has at least one solution, u
!ðyÞAC11α½0; y1� , for all y1. 0 .

If uðy1Þ5 0 uðy1Þ5
Ð 1
0
aðtÞdt � u1

� 

, then the solution is continuable at

y ! N, and uðyÞ � 0 ðuðyÞ � u1Þ, when y$ y� [ y� from (2.30)].

Proof of the first part of the theorem is based on estimates (2.33) and

properties ~ψðs; θ; yÞ, and follows from the classical results of the theory of

ordinary differential equations [138, p. 498].

The last proposition of the theorem follows as a simple consequence

of Theorems 1 and 2.

Let us regard the functions θðyÞ and s5 f ½uðyÞ�, where u
!ðyÞ � ðuðyÞ;

θðyÞÞAC11α½0; y1� is the solution of (2.32), and s5 f ðuÞ is an inverse
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mapping of u5
Ð s
0
aðtÞdt, as representing a generalised solution of (2.17),

(2.19).

The existence of such a generalized solution follows from the theorem

proved above. Clearly, in points y for which sðyÞ 6¼ 0; 1, the generalized

solution ðsðyÞ; θðyÞÞ is also the classical solution of (2.17), (2.19).

Note The second boundary value problem (2.17), (2.21) and a mixed

problem in which condition (2.19) is specified for one of the points

yk; k5 0; 1, while condition (2.21) is specified for the other, are both

examined exactly as for (2.17) and (2.19). It is also not difficult to prove

that (2.17)�(2.20) are capable of solution when the flow rate is unknown

(v in (2.17), (2.18) is the target value).

2.3.4 Computational Analysis
Computational analysis was carried out for the following three problems:

I. Unidirectional displacement [problem (2.17), (2.19)];

II. A known pressure drop � A near-wellbore zone problem [problem

(2.17)�(2.20)];

III. Countercurrentthermocapillary saturation ðv5 0Þ.
While each case has its own special characteristics, the common diffi-

culties of construction of the algorithms required for their numerical

solution are as follows:

� The range of variation of the independent variable yA½0;N� is not
limited;

� The equations forming the system are not linear, and their matrix is

not diagonal for the higher derivatives;

� The physical properties of oil formations mean that the coefficients

of syy and θyy are quite small, while those of sy and θy change their

sign, i.e. that there exist transition points which depend on the solu-

tion, and this results in the appearance of internal boundary layers

[which are regions of high saturation and temperature gradients sðyÞ
and θðyÞ].
Estimate (2.24) enables us to calculate a y2 such that jθj# ε at y$ y2,

where ε is a reasonably small number which depends on the required

accuracy of solution. Thereafter, since in the case of sðyÞ perturbations

propagate at a finite velocity (Theorem 1), the semi-infinite interval

boundary value problem is reduced to a finite interval problem ½0; y1�,
where y1 5maxðy2; y�Þ. The exact value of y1, can be determined during
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the process of computation by introduction iteration with respect to the

unknown parameter y1 (free boundary) and using a priori estimates as

the initial approximations of y1. By normalizing the interval ðy5 y=y1Þ
of the solution, we can solve the problem for the intercept ½0; 1�, but
the target parameter y1 then becomes included in the coefficients of the

equation system (in what follows, the vinculum over the y has been

omitted).

We then arrive at a finite-difference equation, by means of integration

and interpolation [114], using equations for s and θ which give a conser-

vative view of flow:

½aðλ1sy1a1θyÞ1a2v10; 5ys�y 2 0; 5s5 0; ð2:34Þ

½λ2θy1ð0; 5y2vÞθ�y2 0; 5θ5 0: ð2:35Þ
The non-linear finite-difference temperature equation is made linear

by simple iteration. In the finite-difference saturation equation, which is

the equivalent of (2.34), a2v is linearized with respect to s using the

Newtonian method, since in the s5 0; 1 degeneration zones this is in fact

the highest term. In all remaining non-linear equations, simple iteration is

used. Our computation involves two iteration processes: y1 iteration

(outer iteration cycle) and coefficient nonlinearity iteration (inner itera-

tion cycle). The latter process was combined with iterations leading to

the fragmentation of the equations.

In oil field practice, the key parameter is water saturation sðyÞ, whose
equation appears to be the most complex: it becomes degenerate at

s5 0; 1, but even in the absence of degeneration, the coefficient of syy is

very small in real field conditions.This corresponds to singular degenera-

tion of the equation, requiring special approximation methods [42]. In

our main experiments, we used a monotonic conservative directed differ-

ence approximation (“System 1”) and a conservative, variant of

Samarsky’s monotonic equation [115] constructed as proposed in [14]

(“System 2”). The first system is simpler, but includes only first order

approximation. The second system provides better approximation, and

converges uniformly to the degeneration of [42].

Let us consider for example, the abstract quasi-linear degenerating

operator [aðuÞ5 0 at u5 0; 1] which corresponds to the principal part of

the saturation problem

Lu � ½aðuÞux1bðuÞ�x;
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which has been linearized as described above:

Lnun11 � ½aðunÞun11
x 1bðunÞ1b0ðunÞðun112unÞ�x

where (u5 uðxÞ; xA½0; 1�, and n-iteration number). In [117], the approxi-

mation of Lu in an arbitrary internal node xi of a uniform grid

ω5 fxi5 ih; i5 0; . . .;N ; h5 1=Ng (with a spacing h) along the intercept

½0; 1� is defined as

Λhu
n11 � μ0;5u

n11
x 2μ20;5u

n11
x 1 f ðα; un11Þ2 f ðα; unÞ1 f ðβ; bnÞ:

and introduces the following designations:

ϕ6 0;5 � ϕi6 0;55ϕð0; 5ðuni 1 uni6 1ÞÞ;

ui � uðxiÞ;μ5 ða1εÞ2=hða1 ε1 0; 5ξhrÞ; r5 jb0ðunÞj;

α15 c10;5;α25 c20;5;α35 c120;5;α4 5 c220;5;

ϕ6 5 0; 5ðϕ6 jϕjÞ; c5 b0ðunÞ; βi 5 sign αi;

f ðα; uÞ5 h21ðα1ui111 ðα22α3Þui2α4ui21Þ;
where ε is the regularization parameter of degeneration. ξ5 0 produces

System 1, while ξ5 1 produces System 2.

Within the specified accuracy range (grid spacing approximately 0.01

and accuracy of iteration 1024), there was virtually no difference between

the solutions produced by Systems 1 and 2. If the available computer power

makes it impossible to calculate for a grid spacing of 0.01, System 1 should

be preferred, as it needs fewer arithmetical operations. In addition, computa-

tional analysis [137] shows that this system can describe integrated oil recov-

ery and water saturation indicators withgood accuracy even if the grid

spacing is large. In a general case, Newtonian iteration requires reasonably

accurate initial approximations, and they are difficult to calculate. Much

attention is usually devoted to this problem in practical calculations, and in

particular in solving formation flow problems in the complex conditions of

real oil fields. We were able to calculate initial iterations for problems I-III

by using estimated locations of transition points [from equations (2.34),

(2.35)] and combining analytical solutions of the equation for θ at a constant
λ2, corresponding to θ5 θ0; θ5 θ1; s5 0; 1; 0; 5, with exact solutions of

the Buckley-Leverett equation (no capillary interaction between phases),

and thus to reduce the number of iterations by a whole order of magnitude.

64 Fluid Dynamics of Oil Production



It should be noted that in the case of problems I-III, nonlinear iteration is

fairly stable, and there is convergence at virtually all initial approximations

satisfying the boundary conditions, although the number of iterations needs

to be increased as appropriate.

We have considered two types of solution of the linear finite differ-

ence equation system: scalar runs with iterations between equations and

matrix runs. Computational analysis has shown them to be equivalent to

one another in terms of the required number of iterations: this was due

to the rapid convergence of the temperature iterations with the solution.

The fact that this section is no more than an overview of the problem

means that we cannot provide detailed descriptions of the results of

computational analysis for each of the problems. We will therefore briefly

highlight some of the singularities identified by the calculations.

Unidirectional displacement (Problem 1). Fig. 2.1 shows the estimated

distribution of s and θ. The fine line shows the distribution of saturation

in the isothermal case, at θ5 θ1, (in situ conditions).

Computational analysis has shown that if the temperature front lags

behind the saturation front, heating ðθ0. θ1Þ results in increasing only

the final oil recovery. In calculations, this takes the form of an additional

displacement front (representing regions of high saturation gradients)

which corresponds to a temperature front (representing regions of high

temperature gradients). Thus, the fact that in these circumstances the for-

mation flow is non-isothermal (the water phase is either heated or

0 y

s

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

θ

θ, s

Figure 2.1 The estimated distribution of s and θ.
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cooled) allows the distribution of saturation to be controlled in the region

½0; y21 δ2� where δ2. 0 is specified as part of the problem and, as will be

seen from Fig. 2.1, can be easily calculated numerically.

Near-wellbore zone (Problem II). The singularity of Problem II is that

flow rate v is a functional of s; θ; p.
In our case, it can be expressed explicitly as

v52 p12 p0 1

ðy1
y0

a3ðs; θÞλ21
3 ðs; θÞθydξ

 ! ðy1
y0

λ21
3 ðs; θÞdξ

 !21

ð2:36Þ

This is the expression we have used in our calculations. The distribu-

tion of s; θ; p is shown in Fig. 2.2.

Fig. 2.3 shows the values of v calculated from (2.17) (fine line) and

from (2.36). It will be seen that in the regions of high s and θ gradients,

flow rate v calculated from (2.18) contains a large error. In a non-one-

dimensional case, in the absence of the integral function (2.36), special

care must be taken in the saturation and temperature front areas. In addi-

tion, Problem II calculations take much longer, due to the need to calcu-

late the integrals in (2.36).

In Problem III, which deals with the thermocapillary saturation of low-

permeability streaks, the issue of boundary conditions [114] remains

unsolved. We have therefore focused our computational analysis of

Problem III on the behaviour of the solution at y5 0. Fig. 2.4 shows

families of solutions for a sequence of left hand side boundary conditions

0.2

0.2

0.4

0.4

0.6

0.6

0.8

Y

S

0

p

θ, p

θ

Figure 2.2 The distribution of s; θ; p.
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s0 5 12 0; 1j; j5 0; 1; . . .; 9. It will be seen that when s0A½0; 6; 1�, the

position of the saturation front y� remains virtually unchanged.This sug-

gests that in this interval the exact value of s0 does not have a significant

effect on the saturation rate.

It should be noted that the value of y� is important from the process

point of view, since it determines the displacement rate, the saturation

rate of low-permeability sections, and the near-wellbore zone.

0,8

0,6

0,4

0,2

0 0,2 0,4 0,6 0,8

S

y

Figure 2.4 Families of solutions for a sequence of left hand side boundary condi-
tions s0 5 12 0; 1j; j5 0; 1; . . .; 9.
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υ .10–3

Figure 2.3 The values of v calculated from (2.17) (fine line) and from (2.36).
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2.4 ANALYTICAL PROBLEMS OF THERMAL TWO-PHASE
FLOW IN THE CASE OF VARIABLE RESIDUAL SATURATIONS

The need for enhanced oil recovery means that thermal field develop-

ment methods occupy an important place in the industry. This need and

the increasing power of computer and information systems have generated

an interest in the mathematical model of nonisothermal two-phase fluid

flow in porous media. The model adds the energy equation [15, 16] to

the classical equations of the Muskat-Leverett model.

2.4.1 Problem Statement
This section is devoted to analytical solutions of the model proposed in

[16], which describes one-dimensional flow of a two-phase fluid with

variable residual saturations:

st 5 ðaa1σx1aa2θx2va3Þx; θt 5 ðλθx2vθÞx;σ5Φðθ; sÞ: ð2:37Þ
Assuming that vðtÞ5 vðt11Þ21=2; v5 const, we can move forward to the

analytical variable y5 xðt11Þ21=2 and derive a system of ordinary differ-

ential equations for temperature θ, saturation s and dynamic (relative) sat-

uration σ of one of the phases:

ðaa1σy1aa2θy2va3Þy1
1

2
ysy5 0; ðλθy2vθÞy1

y

2
θy5 0;σ5Φðθ; sÞ:

ð2:38Þ
Here λ5λðs; θÞ; a5 aðσÞ; ai5 aiðσ; θÞ; i5 1; 2; 3 are the given func-

tions; function σ5Φðs; θÞ is calculated from the formula:

Φðs; θÞ5

0; if s, s�;

s2 s�
s� 2 s�

; if s� # s#

1; if s. s�;

s�;

8>>>>><
>>>>>:

ð2:39Þ

where s�ðθÞ; 12 s�ðθÞ - variable residual water and oil saturations.

Let Ω5 fyj05 y1, y, y2g, and let us consider the first boundary

value problem

ðσ; θÞjy505 ðσ0; θ0Þ; ðσ; θÞjy5y2
5 ðσ1; θ1Þ; ð2:40Þ

in this case y2c1 and, possibly, y25N.
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2.4.2 The Solvability of the Regularized Problem
Let the functional parameters of system (2.38) satisfy the following

assumptions of smoothness, boundedness and the existence of a fixed

sign:

i. ka; ai;λkC1ðΩÞ#M0; i5 1; 2; 3; jln m; lna1; lnλ; a3θa21j#M0,

ðs�ðθÞ; s�ðθÞÞACðΩÞ;Ω5 fσ; θjð0; 1Þ3 ðθ�; θ�Þg;

a0ðσÞ. 0

at
σAð0; 1Þ; a#Mσð12σÞ:

Let us assume that

u5

ðσ
0

aðξÞdξ: ð2:41Þ

Determination 1 Let us designate the set of functions ðu; θÞAC1ðΩÞ
and sALNðΩÞ a generalized solution of problem (2.38)�(2.40), if it meets the

following conditions:

1. Almost everywhere in Ω σ5Φðs; θÞ;
’η;ψAC1ðΩÞ satisfies the integral identities

ðaa1σy;ψyÞ1 ðaa2θy2 aa3ψyÞ1
1

2
ys1

ðy1
y

sðξÞdξ;ψy

 !
5 0;

ðλθy; ηyÞ1 v2
y

2

 !
θy; η

 !
5 0; ð:; :Þ5 ð:; :ÞΩ;

ð2:42Þ

2. The functions ðσ; θÞ satisfy boundary conditions (2.40).

3. Let us designate δ05 minθ s
�ðθÞ2 maxθ s�ðθÞ, select εA½0; ðδ0=4Þ� and

construct a piecewise-linear function on s

σε � Φεðs; θÞ5

sðs� 1 ε2 s�Þ
δðθÞðs� 1 εÞ ; if sA½0; s� 1 εÞ;
s2 s�
δðθÞ ; if sA s� 1 ε; s�2 ε½ �;

ðs2 1Þðs�2 ε2 s�Þ
δðθÞðs�2 ε2 1Þ ; if sAðs�2 ε; 1�;

8>>>>>>>><
>>>>>>>>:

ð2:43Þ

0, δ0# δðθÞ5 s�ðθÞ2 s�ðθÞ# 1:
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Let us extend the values of σ; s, and θ beyond the intercepts

½0; 1�; ½s�; s�� and ½θ�; θ��; without restriction of generality, let us take as

their boundary values (having normalized the functions s; s�; s�),
s�5minθs� 5 0; s�5maxθs

�5 1. Let us now substitute the resultant func-

tions ~σðσÞ; ~sðsÞ; ~θðθÞ in the coefficients of (2.38) and replace a0a1 with

a0a1; a05 a01 ε. Let us extend the piecewise linear function Φεðs; θÞ to

the exterior of the set ½0; 1�, so that Φε 5 0; s# 0 and Φε5 1; s$ 1, and

having replaced θ with ~θ, derive a biunique relationship between σ and s.

We have thus obtained a regularized problem which retains boundary

conditions (2.40), and which we will designate I�.

Determination 2 Let us designate the aggregate of functions

ðu; θÞAC1ðΩÞ; sALNðΩÞ, which satisfy conditions (2.38), (2.39)

(Determination 1) and include identities (2.42) transformed as described

above, the generalized solution of problem I�.

Theorem 1 If conditions (i) are satisfied, then the regularized problem I�

has at least one generalized solution.

The proof of validity of this statement can be reduced to the applica-

tion of the Birkhoff-Kellogg theorem [100, p. 498].

2.4.3 Lemma 2 (The Maximum Principle)
In the generalized solutions of the auxiliary problem I� the estimates shown below

apply to virtually the whole of Ω

θ�# θ# θ�; s� # s# s�; 0#σ# 1: ð2:44Þ
Proof Since equation (2.38) for θ does not degenerate, then, by analogy

with 2.2, we can arrive at an estimate on θ. Estimates for s, and therefore

also for σ, follow from the results obtained in 2.2.

Note In follows from the estimates of the lemma that identity (2.42) is satis-

fied for I� when it includes real coefficients, but not with truncated ~σ; ~s; ~θ.

Lemma 2 For generalized solutions of I� , the estimates shown below are true if

they are uniform with respect to ε

ðjθyj; jðλθyÞyjÞ#Mexpð2αy2 1βyÞ; ð2:45Þ
ðja0σyj; jða0σyÞyjÞ#M : ð2:46Þ
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Indeed, both (2.45) and the weighted estimate on s and its derivative,

identical to (2.46), have been derived in 2.3. The estimate on σ follows

from the equation

ða1uy2Fðs; θ; yÞÞy5 0; u5

ðσ
0

aðtÞdt; ð2:47Þ

where Fðs; θ; yÞ52 0; 5m ys1
Ð y1
y
sðtÞdt

� 

1 aa2θy2 a3v

h i
:

Finally, in view of the monotonicity of function Φε in s, it can be eas-

ily demonstrated that s;σ; θ are linked by the relationship σ5Φðs; θÞ
[16]. Indeed, for any θ we have ðΦεðv1; θÞ2 ðΦεðv2; θÞ; v12 v2Þ$ 0. Let

us assume that v15 sε; in that case, ε ! 0, (a passage to the limit), and

this leads to ðσ2Φðv2; θÞ; s2 v2Þ$ 0. Let us assume

v25 s2 rω; r5 const. 0; ωAC1ðΩÞ, reduce it by r and let r ! 0 (a pas-

sage to the limit). Since Φ is continuous, this leads to ðσ2Φðs; θÞ;ωÞ$ 0.

Since ω was selected arbitrarily, σ5Φðs; θÞ virtually throughout Ω.
Allowing ε ! 0 (a passage to the limit) confirms the assertion.

Theorem 2 If conditions (i) are satisfied, then the problem (2.38)�(2.40) has

at least one generalized solution ðu; θÞAC1½0; y2�;’y2,N , which satisfies the

inequalities (2.44)�(2.46).

2.4.4 The Numerical Model
The construction of numerical solution algorithms for problem (2.38)-

(2.40) is more difficult than in the case of the problems in 2.3, for the fol-

lowing reasons:

1. Residual saturations depend on temperature,

2. The function s5Φðθ;σÞ with respect to σ and s is not biunique along

the intercept ½ ~σ0
1; 12 ~σ0

2�, where ~σ0
15minθσ0

1ðθÞ; ~σ0
25minθσ0

2ðθÞ.
Let us formulate our principal ideas on how these problems might be

solved. We discussed (2.38)�(2.40) in the case of constant residual satura-

tions in (2.3). It was solved by non-linear iteration (representing a combi-

nation of Newtonian and simple iterations) which converged, given a

wide range of initial approximations. With this in mind, let us extend

the iteration process to ψðθ; sÞ (Newtonian iteration with respect to s),

and therefore also to variable residual saturations as a function of tempera-

ture (thus solving Problem 1). This will result in each iteration represent-

ing a problem which has already been solved for constant residual

saturations.
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Problem 2 is solved by the regularization of s5Φðθ;σÞ described

below.

Let us designate Δ5 12maxθσ0
2ðθÞ2maxθσ0

1ðθÞ and let us then

select a ε. 0 sufficiently small to ensure that ε,Δ=4, and construct a

piecewise-linear function on σ

s5Φεðθ;σÞ �

εðσ2 ~σ0
1Þ

δðε1σ0
12 ~σ0

1Þ
; if σA½ ~σ0

1;σ
0
11 εÞ;

Φðθ;σÞ; if σA½σ0
11 ε; 12σ0

22 ε�;
12

εð12 ~σ0
12σÞ

δðε2 ~σ0
21σ0

2Þ
; if σAð12σ0

22 ε; 12 ~σ0
2�;

8>>>>>><
>>>>>>:

ð2:48Þ
where 0#Δ, δðθÞ � 12σ0

2ðθÞ2σ0
1ðθÞ# 1. The resultant function will

be biunique, so that it can be used to recreate uniquely the inverse func-

tion σ5ψεðθ; sÞ.
Fig. 2.5 shows typical plots of s5Φðθ;σÞ (fine line) and s5Φεðθ;σÞ

(bold line) for a fixed value of θ5 θ1.

2.4.5 Numerical Calculation Results
Fig. 2.6 shows the calculated distribution of dimensionless temperature

θ5 ðθ2 θ2Þ=ðθ12 θ2Þ (fine line) and saturation σ (the vinculum over

dimensionless values has been omitted in the diagram).

For comparison purposes, Fig. 2.7 shows the values of σ for noni-

sothermal flow with variable (fine line) and constant residual saturations.
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Figure 2.5 The function s5Φðθ;σÞ and its regularization s5Φεðθ;σÞ.
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Let us now consider the boundary-value problem for equation systems

which describe two-phase fluid flow in thermocapillary saturation q5 0,

and take into account the variability of residual saturation:

ðk0aa1sy1k0aa2θyÞy1
1

2
yψy5 0; ðλθyÞy1

1

2
yθy5 0; ð2:49Þ

σðy1Þ5 12σ0
2ðθðy1ÞÞ;σðy2Þ5σ0

1ðθðy2ÞÞ; θðy1Þ5 θ1; θðy2Þ5 θ2; ð2:50Þ
where y15 0; y25N.
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Figure 2.6 Final distributions of saturation σ and temperature θ.
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Figure 2.7 The values of σ for nonisothermal flow with variable (fine line) and con-
stant residual saturations.
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The solution algorithm for this problem in the case of constant resid-

ual saturations σ0
1;σ

0
2 was described in Section 2.4.2 and for q 6¼ 0 in this

section.

The distribution of saturation σ in the case of variable and constant

saturation

The problem of the non-biunique relationship s5Φðθ;σÞ was solved
for q 6¼ 0 by regularization. However, the inverse function σ5ψεðθ; sÞ is
not continuously differentiable, and this created difficulties with the

numerical implementation of the algorithm for thermocapillary satura-

tion, and required the use of the derivative
dψεðθ;sÞ

ds
for the segment

½ ~σ0
1; 12 ~σ0

2�. At the same time, the discontinuity of the derivative resulted

in quite strong oscillations of the numerical solution ahead of the front.

For this reason, we resorted to the following regularization of function

s5Φðθ;σÞ, which was smooth (continuously differentiable) along the

segment ½ ~σ0
1; 12 ~σ0

2�:

s5Φεðθ;σÞ �
P3ðθ;σÞ; if σA½ ~σ0

1;σ
0
11 εÞ;

Φðθ;σÞ; if σA½σ0
11 ε; 12σ0

22 ε�;
Q3ðθ;σÞ; if σAð12σ0

2 2 ε; 12 ~σ0
2�:

8<
: ð2:51Þ

Here, P3ðθ;σÞ and Q3ðθ;σÞ are third degree polynomials, which are

defined by the conditions of continuous differentiability of Φεðθ;σÞ at σ
along the segment ½ ~σ0

1; 12 ~σ0
2�.

Fig. 2.8 shows a typical plot of s5Φεðθ;σÞ (bold line) for a fixed

value of θ. For comparison purposes, the fine line shows s5Φðθ;σÞ.
We used the above reasoning to perform numerical calculations, using

the following forms of variable residual saturations and boundary values
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Figure 2.8 The function s5Φðθ;σÞ and its continuously differentiable regularization.
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of temperature: σ0
1ðθÞ5 0; 152 0; 001Uðθ2 60Þ;σ0

2ðθÞ5 0; 152 0; 002U
ðθ2 60Þ.

Fig. 2.9 shows the calculated distribution of dimensionless temperature

θ5 ðθ2 θ2Þ=ðθ12 θ2Þ (fine line) and saturation σ (the vinculum over

dimensionless values has been omitted in the diagram).

For comparison purposes, Fig. 2.10 shows σ in the case of nonisother-

mal flow, for variable (fine line) and constant residual saturations. It will
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Figure 2.9 Final distributions of saturation σ and temperature θ.
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Figure 2.10 Distributions of saturation σ at variable and constant residual
saturations.
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be seen that the only difference between the plots occurs in a part of the

left hand side of the graph, but the high rate of saturation change in

this area makes it impossible to represent the difference graphically with

sufficient accuracy. The crucial aspect of the diagram is that the plot for

the solution with variable residual saturations is higher than the plot for

constant saturations.

It was noted in 2.3 that a change of the left boundary value of s1 in the

region ½0; 6; 1� does not significantly affect the saturation rate. In our case,

this means that if the variability of residual saturations is taken into account,

the value of σ increases at the left hand side end of the segment (in the small

neighborhood of the injection well) if hot water is injected, but does not

lead to an additional advance of the right saturation front.

The dashed lines show the majorants of the distribution of saturation

σ for variable (the upper line) and constant (the lower line) residual

saturations. The rectangular area between the dashed lines is an area of

potential additional oil displacement obtained when flow modelling takes

into account the variability of residual saturations.

2.5 THE QUALITATIVE PROPERTIES OF ANALYTICAL
MLT MODEL SOLUTIONS

In this section, we examine the qualitative properties of the exact solutions

of the thermal two-phase flow equations (the MLT model) constructed in

2.3, paying particular attention to the physical interpretation of the various

properties of these solutions which are of practical importance to oil pro-

duction: finite velocity of propagation of perturbations, the monotonicity of

two-phase mixed flow characteristics (uniform water encroachment and for-

mation heating), and the finite stabilization time of the process.

2.5.1 The Muskat-Leverett Thermal (MLT) Model
The transformed equations of the one-dimensional MLT model of a

homogeneous isotropic porous medium for dynamic water saturation

sðx; tÞ, equilibrium temperature θðx; tÞ and average pressure pðx; tÞ have

the form (Chapter 1, 1.2)

st 5 ða0λ1sx1a1θx1a2vÞx; θt 5 ðλ2θx2vθÞx; 2 vx � ðλ3px1a3θxÞx5 0;

ð2:52Þ
where v5 vðtÞ is the total flow rate of the two-phase fluid. The system

(2.52) coefficients aðsÞ; a!ðs; θÞ � ða0; a1; a2; a3Þ and ~λðs; θÞ5 ðλ1;λ2;λ3Þ
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are expressed explicitly by the functional parameters of the initial MLT

model, and if we take into account their physical reality, have the proper-

ties (Chapter 1, 1.2):

a. a0ðsÞ. 0; sAð0; 1Þ; akð0Þ5 akð1Þ5 a2ð0Þ5 0;λkðs; θÞ$m0. 0; k5 0; 1;
b. ða!ðs; θÞ;~λðs; θÞÞAC1ðQÞ;Q5 fs; θj0# s, 1; θ�, θ, θ�g.

Assumptions (a) ensure respectively the parabolicity and uniform para-

bolicity of the equations for sðx; tÞ sðx; tÞ and Qðx; tÞθðx; tÞ and the nonde-

generacy of the ordinary equation for pðx; tÞ (in which t acts as a

parameter).

The use of complex mathematical models, such as the MLT model or

the Muskat-Leverett model of isothermal two-phase flow [2] ðθ � constÞ,
requires the creation of mathematical techniques accessible at least to

experienced oilfield engineers. One such approach, successfully used in

practice, is to describe the process of oil displacement by means of

approximate formulae derived from exact solutions of the initial model

equations. These include stationary solutions, dependent only on the vari-

able x, analytical (self-similar) parabolic solutions dependent on y5

xðt11Þ21=2, analytical traveling wave solutions, dependent on z5 x1

ctðc5 constÞ and some others. Simple Muskat formulae (displacement

laws), Charny’s formulae (near-wellbore zones) and others [139], based

on parabolic self-similarity remain reliable tools of engineering analysis of

oil field development by isothermal methods.

This being the case, we propose to begin our examination of thermal

recovery methods by constructing analytical (self-similar) MLT model

solutions, described by ordinary differential equations.

2.5.2 Parabolic Analytical Solutions
Provided that v5 ~vðt11Þ21=2; ~v5 const is specified (in what follows, the v

is used without the tilde), it is possible to find solutions of (2.52) depen-

dent only on one independent variable y5 xðt11Þ21=2 - parabolic analyt-

ical solutions sðyÞ; θðyÞ; pðyÞ which satisfy the following transformed

equations (2.52):

ða0λ1sy1a1θy1a2vÞy1
1

2
ysy5 0; v5 const; ðλ2θy2vθÞy1

1

2
yθy5 0:

ð2:53Þ
In this equation, pressure pðyÞ is found from equation λ3py 1 a3θy5

2 v5 const after solving the system (2.53) for sðyÞ; θðyÞ.
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Let the two-phase fluid flow take place between two wells (groups of

wells), located in points y5 yk; k5 0; 1, of which let y5 y05 0 be the

location of the injection well, and y5 y1 the location of the production

well (y15N is also a possible case). Let the values of ðs; θÞ be specified

for wells y5 yk:

ðs; θÞjy5yk 5 ðsk; θkÞ; k5 0; 1: ð2:54Þ
Assuming that the coefficient λ2ðyÞ � λ2½sðyÞ; θðyÞ� is a known func-

tion, we can derive the following expression for θðyÞ:

θ5 12NFðyÞ; F5

ðy
0

λ21
2 ðξÞe2Λ ξð Þdξ;Λ5

ðy
0

λ0ðξÞdξ: ð2:55Þ

Here λ05 ð0; 5y2 vÞλ21
2 ðyÞ;N 5 ½Fðy1Þ�21.

Expression 2 (2.55) leads directly to the estimates

0# θðyÞ#M1e
2α1y

2

# 1; jθyj#M2e
2α2y

2

; yA½0; y1�; ð2:56Þ
where the constants Mi. 0 and αi. 0 do not depend on value y1. 0.

Now let us consider equation (2.53) for sðyÞ and note that irrespective of

the value of siA½0; 1�; i5 0; 1 (2.54) provides the following estimates (2.3)

0# sðyÞ# 1; yA½0; y1�;’y1 . 0: ð2:57Þ
Let us introduce a new function u5

Ð s
0
a0ðξÞdξ and assuming that the

coefficients of equation (2.53) for sðyÞ are known, let us express this equa-
tion in the form

ðλ1uy1ϕÞy5 0; uð0Þ5 u0; uðy1Þ5 u1: ð2:58Þ

Here ui 5
Ð si
0
a0ðξÞdξ; i5 0; 1;ϕ5 0; 5 ys1

Ð y1
y
sðξÞdξ

� 

1 a1θy1 a2v.

Integrating (2.58), we obtain

2λ1uy5ϕ1C; uð0Þ5 u0; ð2:59Þ

where C5C21
0 u02 u12

Ð y1
0
λ21
1 ðξÞϕðξÞdξ� �

;C05
Ð y1
0
λ21
1 ðξÞdξ. Since,

on the basis of the assumption made in (a), λ1$m0. 0, we can use

(2.59) to find

juyj5 a0ðsÞjsyj#M0ðy1Þ: ð2:60Þ
Estimate (2.60) leads directly to the Holder continuity of sðyÞACαðΩÞ;

α. 0;Ω5 ð0; y1Þ so that equations (2.53) give us ðu; θÞ � v
!
AC11αðΩÞ;

α. 0; u5
Ð s
0
a0ðtÞdt(2.3).
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Therefore, evidently, the construction of generalized solutions of

(2.53), (2.54) is the equivalent of solving the Cauchy problem

2λ1uy5ϕ1C; 2λ2θy 5ψ1K; v!ð0Þ5 v
!
0: ð2:61Þ

where the function ϕ and the constant C are as determined in (2.59):

ψ5
1

2
yθ1

ðy1
0

θðtÞdt
� �

2 vθ;K 5K21
0 12

ðy1
0

ψðtÞλ21
2 ðtÞdt

� �
;

K0 5

ðy1
0

λ21
2 ðtÞdt:

The classical solvability of (2.61) was demonstrated in 2.3.

2.5.3 The Theorem (of Finite Velocity)
Let the following inequalities be satisfied in addition to conditions (a) and (b):

ða0ðsÞ; ja2ðs; θÞjÞ#Msγ; or ða0; ja22 a2ð1; 0Þj#Mð12sÞγÞ; γ$ 1: ð2:62Þ
In that case, when sðy1Þ5 0ðor sðy1Þ5 1Þ; y1c1 there exists a value

y�,N such that

sðyÞ � 0ðor sðyÞ � 1Þat y$ y�5 ðy21M0δ21Þ1=2; ð2:63Þ
Where M0 5

Ð 1
0
a0ðtÞt21dt; δ5 1=4 min λ1; y5 2 M maxðM2ja1j; jvjÞ.

The proof of this theorem will be found in 2.3.

Note 1 Let the boundary-value problem be solved for system (2.53) in

the interval ½2 y0; y1�; ðy0; y1Þc1 and let sð2 y0Þ5 1; sðy1Þ5 0. Then,

according to the theorem, we have a wave-type solution:

sðyÞ � 1 at y# 2 y�; sðyÞ � 0 at y$ y�: ð2:64Þ

2.5.4 Finite Velocity Interpretation
The family of parabolae shown in Fig. 2.11 corresponds to the analytical

variable y5 ðt11Þ21=2 in phase plane ðx; tÞ.
According to the constructions arrived at in the preceding subsection,

the component uðsÞ5 Ð s
0
a0ðξÞdξ which forms part of the solution of

(2.61), as well as s5 sðyÞ has a finite velocity of propagation of perturba-

tions 2 sðyÞ5 uðyÞ � 0; y$ y� (Fig. 2.12).
In Fig. 2.11, this property of sðyÞ corresponds to region D1 (in the

wave-type solution these are regions D6 , where s � const).
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The structure of D1 allows us to interpret the property of finite

velocity of the function sðx; tÞ � s xffiffiffiffiffiffiffi
t1 1

p
� 


in the following way:

1. For each point of time t0 there exists a point x05 y�
ffiffiffiffiffiffiffiffiffiffiffiffi
t01 1

p
, such

that sðx; t0Þ � 0 at x$ x0;

2. For each point x0 . y� there exists a time interval ½0; t0�; x05ð
y�

ffiffiffiffiffiffiffiffiffiffiffiffi
t01 1

p Þ, such that sðx0; tÞ � 0; tA½0; t0�, i.e. for each x0 . y� the

movement of the front s5 0 is delayed by a time t05 t0ðx0Þ.
2.5.5 The Near-wellbore Zone
Note that in the case of one-dimensional flow, the term “well” should be

understood to mean a group of wells orthogonal to the OX axis.

Let a fluid-filled formation be completed in a well and let the fluid

begin to flow into the well. In this situation, the near-wellbore zone is

u,s

u=u(y)

y

Figure 2.12 A finite velocity of propagation of perturbations 2sðyÞ5 uðyÞ �
0; y$ y�.

y

t0
D+

s = 0

x = y

–1

x0 x

Figure 2.11 The family of parabolae shown corresponds to the analytical variable
y5 ðt11Þ21=2in phase plane ðx; tÞ.
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determined by the distance lðtÞ from the well beyond which the fluid

level is regarded as undisturbed. We have used the Boussinesq equation

ht 5 k0ðh2Þxx for the ordinate h5 hðx; tÞ of the free surface (Fig. 2.13) to

define this zone.

Kochina, Charny, Muskat and others have found, using a variety of

methods, that lðtÞ5K
ffiffi
t

p
;K being expressed in terms of the parameters

of the porous medium and the fluid flowing through it [110, p. 193-195].

The near-wellbore zone is therefore the parabola x5K
ffiffi
t

p
on the

phase plane ðx; tÞ.
If we apply this reasoning to oil production problems and consider

that the near-wellbore zone also obeys the analytical law lffiffiffiffiffiffiffi
t1 1

p 5 const, the

solution of (2.61) maybe sought in a finite region. If this is so, then the

injection well can be located at a point y5 0 (and therefore x5 0), and

there will be a point y5 y1,N corresponding to the production well’s

near-wellbore zone xffiffiffiffiffiffiffi
t1 1

p 5 y1 and the boundary conditions sðy1Þ5 s1$ 0

may be specified within this parabola in the plane ðx; tÞ.

2.5.6 The Thermodynamic Properties of Coefficients
In order to examine further properties of analytical solutions, we must

examine the properties of the coefficients of (2.53) in greater detail, pro-

ceeding from the physical meaning of the MLT model’s functional

parameters.

2.5.6.1 Coefficient Expressions

a0ðsÞ5 k1ðsÞk2ðsÞ; k1ð0Þ5 k2ð1Þ5 0;λ1 5
@pc
@s

����
����vðs; θÞ;

h

l(t) y

Figure 2.13 The Boussinesq equation ht 5 k0ðh2Þxx for the ordinate h5 hðx; tÞ of the
free surface defines this zone.
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v215 k0μ1μ2ðk11 k2Þ; ki5 kiðsÞμiðθÞ; i5 1; 2;

a152a0v
@pc
@θ

; 2 a25 k1ðk11k2Þ21;λ25
X3
1

m0siλi;

λi5λ
iðθÞðρicpiÞ21:

In the above equations, ki 5 kiðsÞ;μi 5μiðθÞ; siðs1 � s; s25 12 sÞ; ρi 5
const; i5 1; 2 are respectively phase permeabilities, viscosities, dynamic satura-

tions and densities; m0 is porosity; cpi 5 const;λiðθÞ; i5 1; 2; 3 is the phase

coefficients of heat capacity and thermal conductivity of the fluids ði5 1; 2Þ
and the porous mediumði5 3Þ; s35 12m0

m0
. Capillary pressure is expressed

by pc 5 γ cos αjðsÞ, where γ5 γðθÞ is the interfacial tension coefficient;

α5αðθÞ is the wetting angle; JðsÞ is the Leverett J function (which also

includes the strain constant associated with average formation permeability).

2.5.6.2 The Properties of a2
Let μ5μ2=μ1; 2 a25 k1ðk11μk2Þ21. Then 2a2θ5 a0ðk11μk2Þ22μθ;
μθ5μ21

1 ðμ2θ2μμ1θÞ. Since ðμ1θÞ{1 (the viscosity of water is only

slightly dependent on temperature) and μ5μ2μ
21
1 {1, therefore

a2# 0;μθ# 0; a2θ$ 0; a2s# 0 ð2:65Þ
The latter inequality results from the properties of phase permeability:

k1s $ 0; k2s # 0.

2.5.6.3 The Properties of a1
Interfacial tension decreases as temperature increases, i.e. γθ# 0. The

wetting angle increases as temperature increases (in a state of equilibrium,

when jθjc1;α5π=2), i.e. αθ$ 0. Therefore d
dθ ðγ cos αÞ# 0, and con-

sequently
@pc
@θ 5 ðγ cos αÞθUjðsÞ# 0 and hence a152 @pc

@θ va0$ 0; a1 � 0 at

pcθ5 0.

Note 2 Normalization of the boundary conditions for θ may produce

θ5 ðT02T ÞUδ; δ5 const. 0;T05 const. 0 and T is temperature, in

which case

a1θx52 va0
@pc
@θ

θx52 va0
@pc
@T

Tx;

i.e. the properties of a1θx do not depend on the normalization of

temperature.
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2.5.6.4 The Properties of λi

We know that @v
@θ 52 v2ðk1μ2θ1 k2μ1θÞ and since μiθ # 0, therefore

vθ$ 0. In that case

λ1θ5 jpcsjvθ$ 0 at pcθ5 0: ð2:66Þ
It is often assumed that the thermal characteristics of the fluid and the

porous medium do not depend on temperature, i.e.

λi
θ5λ2θ5 0; i5 1; 2; 3: ð2:68Þ

2.5.7 Monotonicity Conditions of Water Saturation sðyÞ
Let a15 a1λ21

2 ; q5 v2 1=2y and let us transform the regularized equation

(2.53) for sðyÞ, and substitute aε5 a01 ε for a0. Using equation (2.53) for

θðyÞ, let us solve
zy1 dz 52 g; z � aελ1sy; aε5 a01 ε; ε. 0; ð2:69Þ

d5
1

2
y1 va2s 1 a1sλ2θy

� �
ðaελ1Þ21; g5λ2a1θθ2y 1 a1qθy1 va2θθy:

Having integrated (2.69), we obtain

z5 e2DðyÞ zð0Þ2
ðy
0

eD tð ÞgðtÞdt
� �

;D5

ðy
0

dðtÞdt: ð2:70Þ

Since sð0Þ5 1 and sðyÞ# 1, then syð0Þ# 0 and, consequently, zð0Þ5
ðaελ1syÞð0Þ# 0. Therefore, if gðyÞ$ 0; yA½0; y0� for some y0. 0, then it

follows from equation (2.70) that sy# 0 at gðyÞ$ 0; yA½0; y0�.
If it proves that y0$ y�, where y� is a point of the saturation front

ðsðyÞ � 0; y$ y�Þ; sðyÞ will be monotonic at yA½0;NÞ. It follows from the

property (2.65), (2.66) of coefficients a1; a2 that a sufficient condition of

monotonicity of sðyÞ is:
sy # 0 at pcθ 5 0 and θy$ 0; yA½0; y��: ð2:71Þ

The requirement θy$ 0 means that the temperature of the injection

water is θð0Þ5 θ0# θl- average formation temperature ðθl 5 θðNÞÞ, in

which case in equation (2.55) we have θy5NFy$ 0; yA½0;NÞ, where
N05 ðθl 2 θ0ÞF2 1ðy1Þ, and FðyÞ as determined in (2.55).

Note 3 Conditions (2.71) are satisfied in the case of isothermal flow

ðθ � constÞ, i.e. when sy # 0; yA½0;NÞ.
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The introduction of new stimulation methods and processes is

intended to provide a solution to one of the main oilfield problems, that

of creating a uniform flood front (uniform water encroachment) and thus

achieving more complete oil recovery. Bearing this in mind, we can

interpret the monotonicity conditions of sðyÞ derived above as follows.

In each fixed section of the formation x5 x0. 0, its water encroach-

ment sðx0; tÞ5 sð x0ffiffiffiffiffiffiffi
t1 1

p Þ increases monotonically with time: sð x0ffiffiffiffiffiffiffi
t1 1

p Þ !
sð0Þ5 1 at t ! N.

2.5.8 Local Monotonicity of sðyÞ
Let the thermal conductivity coefficients λ1;λ2 (of the fluids) and λ3 (of

the porous medium) change slightly, i.e let conditions (2.68) be satisfied.

Let us also make one of the following assumptions:

A. The function σðθÞ5 γ cos α is linear: σ5σðθ�Þ1σθðθ�Þðθ2 θ�Þ;
σθðθ�Þ# 0; θ� 5 const.

In this case

2pcθ5 jσθðθ�ÞjjðsÞ; @
2pc
@θ2 5 0, from which a1θ$ 0.

B. The function γðθÞ is linear and α5 const:

γ5 γðθ�Þ1 γθðθ�Þðθ2 θ�Þ; γθðθ�Þ# 0:

In that case again
@2pc
@θ2 5 0 and therefore a1θ$ 0.

Now, let condition (2.68), and either assumption A or assumption B, be

satisfied. Consequently, a1θ 5λ21
2 a1θ$ 0, i.e. gðyÞ$ 0 at y# 2v, whence

syðyÞ# 0 at yA½0; 2v�: ð2:72Þ

Note 4 Let us introduce the function T 5
Ð y
0
λ2θtdt and express equation

(2.53) for θ in the form Tyy5λ21
2 v2 1

2
y

� �
Ty � RðyÞ.

Where, because of the assumption, θy$ 0 and therefore Ty$ 0. We

obtain RðyÞ$ 0 when y# 2v and RðyÞ, 0 when y. 2v, i.e. the point

y05 2v, for which the inequality (2.72) is satisfied, is the inflexion point

of function TðyÞ.
Similarly, having introduced the variable yðyÞ5 Ð y

0
λ21
2 ðtÞdt, let us

write down (2.53) in the form θyy5 v2 1
2
yðyÞ� �

θy � RðyÞ.
Now, the point y05 yðyÞ0 is the inflexion point of function θðyÞ.
In the isothermal case ðθ � constÞ, the assertion is stronger than in

(2.72): sy, 0; yAðy0; y1Þ, where yi are the boundary points where

uyðyiÞ5 aðyiÞsyðyiÞ5 0; sðy0Þ5 1; sðy1Þ5 0 (at y. y1; sðyÞ � 0 at y, y0;
sðyÞ � 1).
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Indeed, let us assume that there is an interval ½α; β�Cðy0; y1Þ contain-
ing a point y5 y2Aðα; βÞ, where syðy2Þ5 0, and 0, sðyÞ, 1; yA½α; β�
and syðαÞ 6¼ 0. To examine the function ϕðyÞ5 uyðyÞ5 a0sy let us con-

sider the Cauchy problem ϕy5 qϕ; 2 q5 a21
0 ð1

2
y1 va2sÞ;ϕðαÞ5ϕ0 6¼ 0,

whose solution takes the form asy � ϕ5ϕ0e
QðyÞ;Q5

Ð y
0
qðtÞdt:

Because s 6¼ 0; 1 when yA½α; β�, then jqj#M ,N. Consequently,

based on the expression derived for ϕ5 a0sy; sy 6¼ 0 at yA½α; β�, and this

contradicts the initial assumption syðy2Þ5 0. We have therefore established

that sy, 0 at yAðy0; y1Þ.

2.5.9 Local Extrema of sðyÞ
Let us assume that

a1θ5 ða1λ21
2 Þθ5 0; a2θ5 0 ðthat is μθ5 0Þ: ð2:73Þ

In that case, the regularized equation (2.53) for sðyÞ will take the form
Ls5 aελ1syy 1Csy1 a1ðv2 1=2yÞθy5 0; aε5 a01 ε; ε. 0; ð2:74Þ

where C5 ðλ1aεÞy1 a1sθy 1 va2s1 1=2y.
Let us assume that R5 ðv2 1=2yÞa1θy and let θy, 0. In that case

R, 0 when y, y05 2v and R. 0 when y. y0.

Let y be the minimum point of sðyÞ;min sðyÞ5 sðyÞ � s. 0, and

y2max sðyÞ5 sðyÞ � s, 1. If y, y0, then RðyÞ, 0; syyðyÞ, 0; syyðyÞ# 0;
syðyÞ5 0 and the equality LsðyÞ5 0 is impossible. At y. y0, there is no

contradiction with the equality LsðyÞ5 0. If y. y0 then RðyÞ. 0;
syyðyÞ$ 0; syðyÞ5 0, which contradicts the equality LsðyÞ5 0.

Thus, the relationship between the minimum and maximum points y

and y of sðyÞ is expressed by the inequalities y# y0# y. In addition, as

there can be no maxima of sðyÞ to the left of y05 2v, only one minimum

of sðyÞ is possible. Similarly, only one maximum of sðyÞ may occur to the

right of y0 (Fig. 2.14). Let us note that this property of analytical MLT

S

1

y y0 y y* y

Figure 2.14 Only one maximum of sðyÞ may occur to the right of y0.
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model solutions was also identified in the course of numerical calculations

(2.3, Figs. 2.1 and 2.2).

Let us now assume that sðyÞ5 0 and consider the Cauchy problem

Ls � aελ1syy 1Csy1Rls5 0; sðyÞ5 0; syðyÞ5 0;

where l5 a1s
21$ 0. At y, y0RðyÞ, 0; yA½0; y�, and the resultant Cauchy

problem has only the trivial solution sðyÞ � 0; y# y, which is impossible.

Let there be a point y such that sðyÞ5 1. By replacing 12 s5 z, we

arrive at the above problem for z. Therefore, min sðyÞ. 0;max sðyÞ, 1;
yAð0; y�Þ.

The case of θy. 0; yAð0; y�Þ, can be analysed in exactly the same way

as that of ðθy, 0Þ.

2.5.10 No Flow Zones
Let us formulate the regularity conditions of (2.52) for sðx; tÞ derived in

[44] as they apply to the one-dimensional case of two-phase flow in

homogeneous rock:

ðμ1θ;μ2θ; pcθÞ5 0 at s =2 ½δ0; 12 δ1�; ð2:75Þ
where 0, δ0 , 12 δ1, 1. The physical condition expressed by (2.75)

means that if a flow is predominantly the flow of one fluid

ðs15 s# δ0; s25 12 s# δ1Þ the equilibrium temperature θ of the porous

medium and the fluids should be close to the temperature of the flowing

fluid ðθ � constÞ. In these circumstances, the thermal characteristics should

be constant: γ cos α5 const;μi 5 const; i5 1; 2.
The maximum principle for generalized solutions of equations (2.53)

for sðyÞ, allows us to arrive at the inequalities shown below, when condi-

tions (2.75) are satisfied:

0, δ0# sðy1Þ# sðyÞ# sð0Þ# 12 δ1, 1: ð2:76Þ
Thus, if ðsð0Þ; sðy1ÞÞ 6¼ 0; 1, then, based on (2.76), sðyÞ 6¼ 0; 1 at

yA ½0; y1�, indicating the absence of no flow zones (s � 0 or s � 1).

2.5.11 Traveling Waves
Up to this point, we have considered parabolic analytical solutions of sys-

tem (2.52), in which there is a parabolic relationship between the coordi-

nates x and t; x5 y
ffiffiffiffiffiffiffiffiffiffi
t1 1

p
, where y is the analytical variable. Another

class of analytical solutions which is of importance to applications consists
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of (simple) traveling wave solutions, in which the analytical variable y is a

linear function of x and t; y5 x2 qt, where q5 const is the wave velocity.

Formation flow of this kind occurs, for instance, during early field devel-

opment, in bottom-hole zones treated with chemicals, in thermal devel-

opment methods and in many other cases. If we introduce the variable

y5 x2 q, system (2.52) will be transformed into

ða0λ1sy1a1θy1a2v1qsÞy5 0; ðλ2θy2vθ1qθÞy5 0: ð2:77Þ
The physical reality of the water drive process means that the solutions of

equation (2.53) should have the following properties:

1. @s
@x # 0 at a fixed t, i.e. water encroachment decreases with distance

fromthe injection well;

2. @s
@x $ 0 at fixed x, i.e. the water encroachment of the section increases

withtime.

Thus, transition to the analytical variable y5 x2 qt should produce
@s
@x # 0, which corresponds to the assumption q5 const. 0, where q is

wave propagation velocity: sx5 sy # 0; st 52 qsy$ 0.

Let us note that, formally, when q5 0 we arrive at a stationary prob-

lem in which s5 sðxÞ; θ5 θðxÞ.

2.5.12 Isothermal Traveling Waves ðθ5 constÞ
In the isothermal case, the sðyÞ problem assumes the following simple

form:

ðaðsÞsy2vbðsÞ1qsÞy5 0; sð0Þ5 1; sðlÞ5 0: ð2:77Þ
In this equation, a5a0λ1;b52a25k1ðk11k2Þ21$0;bs$0;bð0Þ5

0;bð1Þ51;q5 const.0 - wave propagation velocity; v5 const.0 - total

mixed flow rate.

2.5.12.1 Wave Velocity Greater than Flow Rate ðq. vÞ
Let us additionally require vbs# q; sA½0; 1�, which is equivalent to the

inequality

CðsÞ5 qðsÞ2 vbðsÞ. 0; sAð0; 1Þ: ð2:78Þ
Clearly, for (2.78) to be satisfied, it is sufficient that qcv (Fig. 2.15).

Let us integrate equation (2.78)

aðsÞsy � uy52 ½CðsÞ1K �;K 5 const$ 0
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and solve the function for y5 yðsÞ:

y5 l2

ðs
0

aðtÞdt
CðtÞ1K

� l2Φðs;KÞ;Φð1;KÞ5 l: ð2:80Þ

Let us assume that Φð1; 0Þ5 Ð 1
0

aðtÞdt
CðtÞ � l0.

The properties of the coefficients of (2.78) provide a5γ0ðsÞsαð12sÞβ ;
ðα;βÞ.1; bs5a½sð12sÞ21�γ1ðsÞ; jln γij#M ; i50;1;Cs5q2vbs. Therefore

Φðs;KÞ,N at sA½0;1�;K,N (including the stationary case 2q50),

Φðs;NÞ50; @Φðs;KÞ
@K ,0; sAð0;1�:

A. Let l# l0. In this case, based on the properties of Φðs;KÞ, there exists

a K such that Φð1;KÞ5 l. This means that in these circumstances

there exists a classical solution of (2.78), expressed by a formula inverse

to (2.80): s5ψðyÞ � ½12Φðs;KÞ�½21� (the shaded area of Fig. 2.16).

B. Let l. l0. In this case, the generalized solution of (2.78) takes the

form

s5ψðyÞ5 ½l2Φðs; 0Þ�½21�; yA½0; l0�;
s5 0; yA½l0; l�:



ð2:81Þ

q

1 S

υ

ϕ

ϕ=qs

ϕ=υb

Figure 2.15 qcv.

u

yl l0 l

u=∫a(t)dt
s

0

Figure 2.16 The shaded area in this figure is expressed by a formula inverse to 2.80:
s5ψðyÞ � ½12Φðs; KÞ�½21�.
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As du
dy
jy5l0 5C sðl0Þ½ �5 0, the function u5

Ð sðyÞ
0

aðtÞdt, where s5 s(y)

is expressed by the formula (2.81), is in fact a generalized solution of

(2.78).

2.5.12.2 Wave Velocity Equal to Flow Rateðq5 vÞ, The Soliton
Equation
Let the condition (2.79) be satisfied as before. This condition is equivalent

to the assumption bs , 1; sAð0; 1Þ when q5 v. In this case

Cð1Þ5 q2 bð1Þv5 0, and the solution of (2.78) can be written down as

s � ψðy2 δÞ; yA δ; l01 δ½ �;
s � 1; y, δ# l2 l0; s5 0; y. l01 δ;



ð2:82Þ

where ψðξÞ is as determined in (2.81). This means that the shaded area in

Fig. 2.17 can be moved to the right δA½0; l2 l0� and that the correspond-

ing function uðyÞ5 Ð sðyÞ
0

aðtÞdt, with sðyÞ determined in (2.81), is a gener-

alized solution of (2.78), since asyjs50;15 uyjs50;15CðsÞjs50;15 0.

The solution of uðsÞ is a soliton equation (a bank) which is represented

in (2.82) by a moving profile s5ψðy2 δÞ; yA½δ; l01 δ�;’δ. 0.

2.5.12.3 Flow Rate Greater than Wave Velocity ðv. qÞ
In this case, Cð1Þ5 q2 v, 0. Taking bs $ 0; bsð0Þ5 0 and bearing in mind

that usually bsð1Þ5 0, in the neighborhood of points Cs 5 q2 vbs $ 0.

Consequently, function ϕ5CðsÞ has the appearance shown in Fig. 2.18.

Let min0# s# 1CðsÞ5Cðs0Þ, 0; 0, s0, 1. Let us assume that

CðsÞ5CðsÞ2Cðs0Þ$ 0; sA½0; 1�. In that case, the solution of (2.78) for

the inverse function y5 yðsÞ can be written down as

y5 l2

ðs
0

aðtÞdt
CðtÞ1K

� l2Φðs;KÞ;Φð1;KÞ5 l: ð2:83Þ

sδ l0 + δ l

Figure 2.17 The shaded area in this figure can be moved to the right δA½0; l2 l0�.
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As Φð1; 0Þ5NðCðs0Þ5 0Þ and Φð1;NÞ5 0, there exists a K . 0

such that Φð1;KÞ5 l in which case sðyÞ5 ½12Φðs;KÞ�½21� represents a

classical solution of (2.78).

2.5.13 Traveling Wave Solutions
Unlike parabolic analytical solutions, in traveling wave solutions the plane

of the variables ðx; tÞ can be covered by a family of straight lines x5 qt1 y,

where y is the analytical variable. Fig. 2.19 shows a bank, which is one of

the most interesting traveling wave families plotted in Section 2.5.12.2.

In the shaded regions D0 and D1; s � const. Region D1, which repre-

sents a finite stabilization time is of particular importance: for each sec-

tion x5 x0 . δ there exists a finite time t0 5 ðx02 δÞq21, when

sðx0; tÞ � 1 at t$ t0.

2.6 AN ANALYTICAL SOLUTION OF FLOW EQUATIONS FOR
TWO NONLINEARLY VISCOUS FLUIDS

2.6.1 Introduction
Mathematical modelling of fluid flow through porous media uses the laws

of conservation of mass, momentum and empirical Darcy’s Law which

t

t0

x = qt

s = 1

D1

x0

x=qt+υ

l0 + δ

D0

s ≡ 0 

xδ

Figure 2.19 A bank.

s
0 1

q-υ

ϕ

ϕ=C(s)

Figure 2.18 Function ϕ5 CðsÞ.
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links velocity vectors with pressure gradients [107]. Many researchers

have studied models which do not use Darcy’s Law. Let us consider one-

dimensional isothermal flow of two viscous fluids in a nondeformable

porous medium. In the absence of phase transitions, this model’s equa-

tions take the form [27, 61].

@

@t
ðρisiÞ1

@

@x
ðρisiviÞ5 0; s15ms; s25mð12 sÞ;

ρisi
@vi
@t

1 vi
@vi
@x

� �
5

@siσi

@x
1 fi 1 ρisig;σi 52 pi 1μi

@vi
@x

;

fi 5 pi
@si
@x

1ϕi; p12 p25 pcðsÞ ði5 1; 2Þ;

where ρi is the density of the ith phase; vi is its true velocity; m is porosity; s is

the phase saturation of the pore space with the first fluid; pi is phase pressure;

pcðsÞ is capillary pressure; μi is the dynamic viscosity coefficient; fi is phase

interaction force; ϕi is interfacial friction force, ϕ152ϕ25Kðv22 v1Þ; K
is the phase interaction coefficient; g is the acceleration of gravity. The condi-

tion ρi5 const leads to a closed system of equations for si; vi; pi:

@si
@t

1
@

@x
ðsiviÞ5 0; ð2:84Þ

ρisi
@vi
@t

1 vi
@vi
@x

� �
2

@

@x
μisi

@vi
@x

� �
52 si

@pi
@x

1ϕi1 ρisig; ð2:85Þ

s11 s25m;ϕ15Kðv22 v1Þ52ϕ2; p12 p2 5 pcðsÞ: ð2:86Þ
where K 5 const. 0;μi5μij@vi=@xjα;μi5 const. 0;α5 const$ 0. It is

also assumed that, m5 1; g5 0; pcðsÞ5 0; p15 p2 � p.

In this section, we consider a traveling wave analytical solution of the

system (2.84)�(2.86). Assuming that all the target functions depend only

on the variable ξ5 x2 ct (where c is a constant parameter), we obtain the

following equation system:

ðρivi 2 cρiÞ0 5 0; ρiðviv0i 2 cv0iÞ2 ðμisiv
0
iÞ

0
52 sip

0 1ϕi ð2:87Þ
ði5 1; 2Þ, in which the prime indicates differentiation in ξ. We consider sys-

tem (2.86), (2.87) for ξ. 0, augmenting it with the boundary conditions

við0Þ5 v0i ; s1ð0Þ5 s0; limξ!NviðξÞ5 u1; limξ!Ns1ðξÞ5 s1 ði5 1; 2Þ;
ð2:88Þ
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where v01; v
0
2; s

0; s1 are specified constants which satisfy the conditions

s0 6¼ s1; v01 6¼ v02. Because it follows from (2.87) that siðvi2 cÞ5Ai; i5 1; 2,
then by bringing in (2.88) we can arrive at the following equation system

for the unknown constants A1;A2; u1; c:

s0ðv012 cÞ5A1; s
1ðu12 cÞ5A1; ð12 s0Þðv022 cÞ5A2; ð12 s1Þðu12 cÞ5A2:

This system is solved using the formulae

c5
s1ð12 s0Þv02 2 s0ð12 s1Þv01

s12 s0
; u15 s0v01 1 ð12 s0Þv02;

A15 s0ð12 s0Þðv01 2 v02Þ
s1

s12 s0
;A25

s1

s12 s0
A1:

Adding the momentum equations for i5 1 and 2 to one another, we

arrive at the equation for pðξÞ:

p0ðξÞ5
X2
i51

ðviρiðc2 viÞ1μisiv
0
iÞ0: ð2:89Þ

Taking (2.89) into consideration, we can use (2.88) to derive the

equation for sðξÞ:

λα a1ðsÞðjs0jαs0Þ
0
1

2α1 1

2α1 2

� �
js0jαjs0j2 da1

ds

� �
1λa2ðsÞs02Ka3ðsÞðs2 s1Þ5 0;

ð2:90Þ
where

a1ðsÞ5
μ1ðs1Þα11

s2α12
1

μ2ð12s1Þα11

ð12sÞ2α12
;λ5

s0ð12 s0Þðv01 2 v02Þ
s0 2 s1

;

a2ðsÞ5
ρ1ðs1Þ2

s3
1

ρ2ð12s1Þ2
ð12sÞ3 ; a3ðsÞ5

1

s2ð12sÞ2 :

Equation (2.90) is the complemented with the relevant conditions for

sðξÞ taken from (2.88). Our aim in this section is to prove the existence

of a unique solution of this problem for sðξÞ.

2.6.2 Problem Solvability
In what follows, we will assume that conditions

λ. 0; s1 6¼ s0; ðs1; s0ÞAð0; 1Þ: ð2:91Þ
required by these equations have been satisfied.
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Our proof of the existence of a solution is based on Schauder’s theo-

rem [138] and uses standard auxiliary constructions. Having designated

aðsÞ5 a
ð2α11Þ=ð2α12Þ
1 ðsÞ, let us rewrite equation (2.90) in a divergent form:

λα½aðsÞjs0jαs0�0 1λ
a2ðsÞ

a1=ð2α11ÞðsÞ s
0 2K

a3ðsÞ
a1=ð2α11ÞðsÞ ðs2 s1Þ5 0: ð2:92Þ

Assuming that in (2.92) uðsðξÞÞ5 Ð sðξÞ
s1

aχðτÞdτ, where χ51=α11.0,

we obtain

ðju0jαu0Þ0 1λ0bðuÞu0 2λ2αKdðuÞu5 0; uð0Þ5
ðs0
s1
aχðτÞdτ � u0; uðNÞ5 0;

ð2:93Þ
where λ05λ12α; bðuÞ5 a2ðsðuÞÞ

a1=ð2α11ÞðsðuÞÞ ; dðuÞ5
a3ðsðuÞÞ

a1= 2α11ð ÞðsðuÞÞ U
sðuÞ2 s1

u
.

It follows from the conditions of the problem that the constants K

and λ are positive, while functions dðsÞ; aðsÞ and a3ðsÞ are positive for all

sAð0; 1Þ. In whatfollows, we will assume that s1, s0 (the case of s1. s0

will be considered in a similar way).

Examining the intercept ½0; n�, let us consider the auxiliary problem

for vðξÞ5 Ð sðξÞ
s1

aχðτÞdτ:

ðjv0jαv0Þ0 1λ0bðvÞv0 2λ2αKdðvÞv5 0; vð0Þ5 u0; vðnÞ5 0: ð2:94Þ
The maximum principle means that the solutions of this equation sat-

isfy the inequalities u0$ vðξÞ$ 0 for all ξA½0; nÞ. Consequently, the func-
tions bðvÞ and dðvÞ are strictly positive and bounded. Let us assume that

a0ðτÞ5 ½μ1ðs1Þα11ð12τÞ2ðα11Þ1μ2ð12s1Þα11τ2ðα11Þ�ð2α11Þ=ð2α12Þ;

b0ðτÞ5 ðρ1ðs1Þ2ð12τÞ31 ρ2ð12s1Þ2τ3Þ=a01=ð2α11Þ:

In that case

aðτÞ5 a0ðτÞ
½τð12τÞ�2α11

; bðτÞ5 b0ðτÞ
τ2ð12τÞ2 ; τdðτÞ5

τ2 s1

a
1=ð2α11Þ
0 ðτÞτð12 τÞ

:

Let α1;α2- be the minimum values of the functions a0ðτÞ; b0ðτÞ, and
β1;β2 their maximum values at τA½0; 1� (clearly, αi;βi are strictly positive

and depend only on μi; ρi; s
1; i5 1; 2). This results in

α�
1 5

α1

½s0ð12s1Þ�2α11
# aðvÞ# β1

½s1ð12s0Þ�2α11
5β�

1; ð2:95Þ
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α�
2 5

α2

½s0ð12s1Þ�2 # bðvÞ# β2

½s1ð12s0Þ�2 5β�
2; ð2:96Þ

α�
3 5

1

s0ð12 s1Þðβ1Þ1=ð2α11Þ #
vdðvÞ

sðvÞ2 s1
#

1

s1ð12 s0Þðα1Þ1=ð2α11Þ 5β�
3:

ð2:97Þ
The derivative of the solution of (2.94) at the point ξ5 n is nonposi-

tive, since in view of the boundary condition vðnÞ5 0, the assumption

that v0ðnÞ. 0, contradicts the non-negativeness of vðξÞ. Rewriting (2.94)

in the form

[0 5λ2αKvdðvÞ$ 0;[5 jv0jαv01λ0

ðv
0

bðτÞdτ; ð2:98Þ

we conclude that the monotonically increasing function [ðξÞ is nonposi-
tive. Therefore, v0ðξÞ# 0 for all ξA½0; n�.

It follows from (2.98) and (2.95)�(2.97) that jv0jαv0 1λ0α�
2v# 0.

Multiplying this inequality by vα0 . 0 and taking into account that

vα11# vα0 v, we obtain the inequality vα0 jv0jαv0 1λ0α�
2v

α11 # 0. In that

case, v01β0v# 0, where β0 5 ðλ0α�
2=v

α
0 Þ1=ðα11Þ.

We can now obtain

vðξÞ# v0expð2β0ξÞ: ð2:99Þ

Let us rewrite equation (2.94) in the form

jv0jαv01λ0

ðv
0

bðτÞdτ
� �0

2λ2αKvdðvÞ5 0

and integrate ξ from 0 to the current value ξ:

jv0ðξÞjαv0ðξÞ2 jv0ð0Þjαv0ð0Þ5λ0

ðv0
vðξÞ

bðτÞdτ1λ2αK
ðξ
0

τdðτÞdτ�ϕðξÞ$0:

This gives jv0ð0Þj2ϕ1=ðα11ÞðξÞ# ðjv0ð0Þjα112ϕðξÞÞ1=ðα11Þ52 v0ðξÞ.
Integrating this inequality over ξ from 0 to n, we obtain

jv0ð0Þj# 1

n

ðn
0

ϕ1= α11ð ÞðτÞdτ1 v0

� �
� N ,N: ð2:100Þ
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As [ð0Þ#[ðξÞ#[ðnÞ, we have

jv0ð0Þjαv0ð0Þ1λ0

ðv0
0

bðτÞdτ# jv0ðξÞjαv0ðξÞ1λ0

ðvðξÞ
0

bðτÞdτ:

From this it follows that for all ξA½0; n�
jv0ðξÞj# jv0ð0Þj#N : ð2:101Þ

By virtue of (2.100), (2.101)

y � jv0ðξÞjα11# jv0ð0Þjαjv0ðξÞj#Nαy1=ðα11Þ: ð2:102Þ
Let us rewrite equation (2.94) in the form

y0 1λ0bðvÞy1=ðα11Þ1λ2αKdðvÞv5 0:

Taking into account (2.102), we arrive at the inequality y0 1 b0y# 0,

from which it follows that

jv0ðξÞj#Nexpð2b0ξÞ; ð2:103Þ
where b0. 0 depends on the data specified in the problem, and does not

depend on n.

Let us rewrite the solution of (2.95) in the form

vðξÞ5 v02

ðξ
0

ðjv0ð0Þjα112ϕðτÞÞ1=ðα11Þdτ � T ðvÞ; ð2:104Þ

where jv0ð0Þj is calculated fromðn
0

ðjv0ð0Þjα112ϕðξÞÞ1=ðα11Þdξ5 v0:

Examining the space of continuous functions C½0; n�, let us consider
the closed, bounded convex set M 5 fvðξÞj0# vðξÞ# u0; ξA½0; n�g. The
operator T is determined on the set M , and the maximum principle leads

to the nesting T ðMÞCM . The continuity of T can be checked directly

by means of (2.104). It follows from estimates (2.99), (2.101), (2.103) that

T is compact. Therefore, in accordance with Schauder’s theorem, (2.94)

has at least one solution in the set M . This solution is unique if

ðvdðvÞÞ0v . 0. Indeed, let f ðξÞ be a sufficiently smooth function determined

in the interval ½0; n� and equal to zero at ξ5 0 and ξ5 n. Let us multiply

both parts of equation (2.94) by f ðξÞ and integrate the resultant equality
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over ξ from zero to n, in a process of single integration by parts. This will

yield the following integral equality:ðn
0

jv0ðξÞjαv0ðξÞf 0 1λ0f
0
ðv
0

bðzÞdz1λ2αKfvdðvÞ
� �

dξ5 0: ð2:105Þ

Let v1 and v2 be two different solutions of (2.94). Let us assume that

A5 jv01 ξð Þjαv01ðξÞ2 jv02ðξÞjαv02 ξð Þ. Hence A5 ðv12 v2Þ0Bðv01; v02Þ, where

Bðv01; v02Þ5 jv02ðξÞjα 1αjv01ðξÞjθα21; θA½jv01j; jv02j�3θA½jv02j; jv01j�. Let us also
assume that U 5 v12 v2;Uð0Þ5UðnÞ5 0. Following integration by parts,

(2.105) yields ðn
0

U ½ðBf 0Þ0 2λ0B1ðξÞf 02λ2αKB2ðξÞf �dξ5 0;

where

B1ðξÞ5U21

ðv2
v1

bðzÞdz;B2ðξÞ5U21ðv1dðv1Þ2 v2dðv2ÞÞ. 0:

Let us determine f ðξÞ as the solution of the linear problem ðBf 0Þ0 2
λ0B1ðξÞf 0 2λ2αB2ðξÞf 5 hðξÞ; f ð0Þ5 f ðnÞ5 0, where hðξÞ-is an arbitrary

continuous function. As stated in [138], and taking into account the

boundedness and positive nature of B, this problem is solvable for any

continuous right hand side, and therefore U 5 0.

Let us now solve (2.88), (2.93) for an infinite interval, producing the

solution in the form of a limit of the sequence fvnðξÞg of solutions vnðξÞ
of (2.94) for n ! N, and using estimates of (2.99), (2.101) and (2.103)

which do not depend on n. Because the solutions of (2.94) are unique,

the bounded sequence fvnðξÞg increases monotonically and thus converges

to a function uðξÞ. By performing passages to the limit on the equalities

(2.104) written down for vnðξÞ, we arrive at a similar equality for the

limiting function. This means that uðξÞ represents a classical solution of

(2.88), (2.93). The asymptotic behaviour of the solution is due to the

inequalities (2.99), (2.101), (2.103).

Let us formulate sufficient conditions of uniques of the solution of

(2.94) in terms of the initial data of (2.88), (2.92). Condition ðvdðvÞÞ0 . 0

is equivalent to

rðsÞ
s2α15ð12sÞ2α15a

ð2α13Þ=ð2α12Þ
1 ðsÞ

. 0:

In this fraction, the denominator is always positive for sAð0; 1Þ, and the

numerator takes the form rðsÞ5μ1ðs1Þα11ð12sÞ2gðs; s1Þ1μ2ð12s1Þα11

s2gð12 s; 12 s1Þ, where gðτ; ηÞ5 2τ22 3ητ1 η5 2τðτ2 ηÞ1 ηð12 τÞ.
Note that gðτ; ηÞ. 0 when η, 8=9; τAð0; 1Þ. Let s0. s1, in which case
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gðs; s1Þ. 0. For gð12 s; 12 s1Þ to be positive, it is sufficient to require

12 s1, 8=9, to be satisfied, i.e. s1. 1=9, in which case rðsÞ. 0. In the

same way, when s0, s1; gð12 s; 12 s1Þ. 0. For gðs; s1Þ to be positive, it

is sufficient to require that s1, 8=9 and rðsÞ. 0.

We have therefore proved the following assertion:

Theorem When conditions s1A 1
9
; 8
9

� �
and (2.91) are satisfied, there

exists a unique classical solution of (2.88), (2.93).

2.7 VALIDATION OF THE USE OF A SPECIFIC APPROXIMATE
METHOD IN TWO-PHASE NON-ISOTHERMAL FLOW

2.7.1 A One-dimensional Model
In the case of two-phase non-isothermal flow in a homogeneous

medium, the model’s one-dimensional equations have the form

θt 5 ðλθx2vθÞx;mst 5 ða1sx1a2θx2vbÞx;
vx � 2ðkðPx1a3θxÞÞx 5 0;

ð2:106Þ

where x is distance; t is time; θ is temperature; s is the saturation of the aque-

ous phase of the mixed flow; p is pressure; v is mixed flow rate;

m5 const; a1; a2; a3; k; b;λ are the preset class C2 functions of θ and s.

Furthermore, jlnðλ; a1; kÞj#M 5 const, i.e. the case we are considering is

nondegenerative. Without restriction of generality, let us assume that m � 1.

Antimontsev, Papin and Kruzhkov [6, 76] have examined the application

of approximate methods to this model in the case of isothermal flow. Their

application to nonisothermal flow is discussed in Section 2.1. In this section,

we examine an approximate method of solving the first boundary value

problem for (2.106), which is the same as that described in [6, 76], but

applies to nonisothermal flow, and assumes unidimensionality and a preset

flow rate. These assumptions have enabled us to prove the convergence of

the approximate solution to the exact one.

2.7.2 The Analytical Variables

On the assumption that v � vðtÞ5 qffiffiffiffiffiffiffiffiffiffi
t1 1

p ; q5 const, equations (2.106)

permit analytical solutions having the form sðyÞ; θðyÞ; y5 x=
ffiffiffiffiffiffiffiffiffiffi
t1 1

p
,

which satisfy the equation system:

ðλθy2qθÞy 1 ð1=2Þyθy5 0; ða1sy1a2θy2qbÞy1
1

2

� �
ysy5 0: ð2:107Þ
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Assuming that v � vðtÞ5 qffiffiffiffiffiffiffiffiffiffi
t1 1

p ; q5 const, replace the variables in

equations (2.106) as follows: x5
xffiffiffiffiffiffiffiffiffiffi
t1 1

p ; t5 lnðt1 1Þ.
Let us now formulate the initial boundary value problem for the

region R5 fðx; tÞ:xA½0;X �; tA½0;T �g: in new variables (the vinculum

over t and x has been omitted):

θt 5 ðλθx2qθÞx 1
1

2

� �
xθx; st 5 ða1sx1a2θx2qbÞx1 ð1=2Þxsx;

θð0; tÞ5 θ1; θðX ; tÞ5 θ2; θðx; 0Þ5 θ0ðxÞ; ð2:108Þ

sð0; tÞ5 s1; sðX ; tÞ5 s2; sðx; 0Þ5 s0ðxÞ:
Note that the solutions of (2.107) [analytical solutions of (2.106)] are sta-

tionary solutions of (2.108). The theorem of existence of generalized

solutions of (2.108) was proved in [15], and the solution was further

smoothed for some conditions in [44]. In what follows, we shall assume

that these conditions have been satisfied.

In the case of (2.108), we would propose the following approximate

method [6, 44]. Let us divide the time interval ½0;T � into N sections

ðτ5T=N Þ and let us solve the problem with respect to θi11ðx; tÞ;
si11ðx; tÞ: separately for each section Ii � ½iτ; ði1 1Þτ�ði5 0; . . .;N 2 1Þ:

L1θi11 � 2ðθi11Þt 1 ½ðλðiÞθi11Þx2qθi11�x1
1

2
xðθi11Þx 5 0;

L2si11 � 2ðsi11Þt 1 ½aðiÞ1 ðsi11Þx1a
ðiÞ
2 ðθi11Þx2qbðiÞ�x1

1

2
xðsi11Þx5 0;

ð2:109Þ

θi11ð0; tÞ5 θ1; θi11ðX ; tÞ5 θ2; θi11ðx; iτÞ5 θðiÞðxÞ;

si11ð0; tÞ5 s1; si11ðX ; tÞ5 s2; si11ðx; iτÞ5 sðiÞðxÞ:
Here θðiÞðxÞ � θiðx; iτÞ; θð0ÞðxÞ � θ0ðxÞ; sðiÞðxÞ � siðx; iτÞ; sð0ÞðxÞ � s0ðxÞ

and if a5 aðθ; sÞ, then aðiÞ5 aðθðiÞðxÞ; sðiÞðxÞÞ:
For each section Ii (2.109), there exists a system of linear uniformly

parabolic equations with smooth coefficients for which the general theory
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of parabolic equations postulates the existence of a classical solution. Let

us introduce the designations Ω5 ½0;X �; I�i 5 ½iτ; t1�; t1-an arbitrary point

selected from Ii=fiτg; θτðx; tÞ5 θi11ðx; tÞ; sτðx; tÞ5 si11ðx; tÞ for xAΩ; tAIi
ði5 0; . . .;N 2 1Þ. In this way, we have determined functions θτðx; tÞ and
sτðx; tÞ for the whole of the region R.

Let us make use of the designations of functional spaces and norms

adopted in [83]. All C;Ck;Ckl-type constants are independent of τ.

2.7.3 Convergence of the Family of Functions ðθτ ; sτ Þ

Theorem When τ ! 0, the functions ðθτðx; tÞ; sτðx; tÞÞ converge to a

classical solution ðθðx; tÞ; sðx; tÞÞ of (2.108),with the rate of convergence

estimated as follows:

kθ2 θτkV2
1 ks2 sτkV2

#Cτ; ð2:110Þ

kθ2 θτkN1 s2 ksτkN#Cτβ; βAð0; 1Þ: ð2:111Þ

Proof Examining the region Ω3 Ii let us subtract the first equation in

(2.109) from the first equation in (2.108), and also the second equations in

each case. Let us designate ω5 θ2 θτ ; u5 s2 sτ ;ωiðxÞ5 θðx; iτÞ2 θðiÞðxÞ;
uiðxÞ5 sðx; iτÞ2 sðiÞðxÞ. This will yield the following problem for ~ω5

ðω; uÞ; ~ω i 5 ðωi; uiÞ, as described in [76, formulae (80), (81)]:

2~ω t 1 ðAðx; tÞ~ωx1Bðx; tÞ~ω ix2Q~ωÞx 1 0; 5x~ωx1 c
!ðx; tÞτ5 0;

~ωð0; tÞ5 ð0; 0Þ; ~ωðX ; tÞ5 ð0; 0Þ; ~ωðx; 0Þ5 ð0; 0Þ; ð2:112Þ

~ωðx; iτÞ5 ðθðx; iτÞ2 θτðx; iτÞ; sðx; iτÞ2 sτðx; iτÞÞ;
where the components of matrices A;B and the vector~c are complex func-

tions of θðx; iτÞ; sðx; iτÞ; θiðxÞ; siðxÞ; θðx; tÞ; sðx; tÞ; θxðx; tÞ; sxðx; tÞ and of the

coefficients of (2.108) and (2.109). In the above equation, A125Q125

Q215Q225 0;Q11 5 q.

Let us multiply the equation for ωðx; tÞ in (2.112) by ωðx; tÞ and

integrate it first over Ω, and then over I�i . Using integration by parts
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(and taking boundary conditions into account), applying the Cauchy

inequality with e and selecting the appropriate constants Ckl, we obtain

the following inequality [76, formula (87)]:

kωðx; t1Þk22 1C11

Ð
I�i
kωxk22dt# ð11C12τÞkωik221C13

Ð
I�i
kuik22dt

1C14

Ð
I�i
kωk22dt1C15τ3:

ð2:113Þ

In the same way, by multiplying the equation for uðx; tÞ in (2.112) by

uðx; tÞ, we obtain the inequality

kuðx; t1Þk22 1C21

Ð
I�i
kuxk22dt# ð11C22τÞkuik221C23

Ð
I�i
kωik22dt

1C24

Ð
I�i
kωik22dt1C25

Ð
I�i
kuk22dt1C26τ3;

ð2:114Þ

Using (2.113) from inequality (2.114), we obtain

kuðx; t1Þk221C31

Ð
I�i
kuxk22dt# ð11C32τÞkuik221 ð11C33τÞkωik22

1C34

Ð
I�i
ðkuk22 1 kωk22Þdt1C35τ3:

ð2:115Þ
Adding (2.113) and (2.115), discarding the integrals from the left hand

side of the resultant inequality and designating zi 5 zðiτÞ; zðt1Þ5
kωðx; t1Þk221 kuðx; t1Þk22, we obtain zðt1Þ# ð11C1τÞzi1C2

Ð
I�i
zðtÞdt1

C3τ3. Assuming that t1 5 τði1 1Þ, from Gronwall’s lemma we obtain

zðtÞ � zi11 # ½ð11C1τÞzi 1C3τ3�expðC2τÞ, whence zi11# ð11
C4τÞzi 1C5τ3. From there, it is easily demonstrated that zi11#

C5τ3½11 ð11C4τÞ1 ð11C4τÞ21?1 ð11C4τÞi�5C5τ2ððð11C4τÞi11

21Þ=C4Þ# C6τ2.
Returning to designations ðω; uÞ, we obtain

sup0# t#T ðkωk221 kuk22Þ#C6τ2: ð2:116Þ

From (2.113), (2.115), (2.116) we derive

ð
I�i

ðkωxk221 kuxk22Þdt#C7τ2: ð2:117Þ

From (2.116), (2.117) we obtain an estimate of the convergence rate of

(2.110), and from (2.110) and the interpolation inequality supQjzj#
CðβÞðkzkV2

ÞβðkzkCαÞ12β;βAð0; 1Þ we obtain estimate (2.111).
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2.7.4 Numerical Calculations
We have carried out numerical calculations for problem (2.108), basing

them on the substitution of the time derivative with backward difference

and on the existing method of solving the analytical problem (2.108) [93,

99]. Fig. 2.20 shows the computed distributions of saturation s and dimen-

sionless temperature θ5 ðθ2 θ1Þ
ðθ2 2 θ1Þ during consecutive moments in time, up

to the point when the solutions reach stationary profiles (the vinculum

over θ has been omitted in the diagrams).

Fig. 2.21 shows analytical solutions of sðyÞ (Curve 1) and θðyÞ (Curve 2)
ðy5 x=

ffiffiffiffiffiffiffiffiffiffi
t1 1

p Þ are shown. A comparison of Figs. 2.20 and 2.21 demon-

strates that, as was to be expected, stationary solutions of (2.108) coincide

with analytical solutions of (2.106). Therefore, while the numerical algo-

rithm of the analytical solution of (2.107) forms an integral part of the

method of solving (2.108), the analytical solution itself forms one of the tests

of the numerical solution of (2.108).

2.8 COMBINATION OF THE PRINCIPAL MODELS
OF TWO-PHASE FLUID FLOW

This section is devoted to the theoretical and numerical analysis of the

problem of combining the two principal models of two-phase fluid flow:

the Muskat-Leverett model (MLT model), which takes into account the

discontinuity between the capillary pressures of the phases, and the

0.8

s θ

0.6

0.4

0.2

0.8
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0.4

0.2

0 0.2 0 0.20.4 0.6 0.8 ξ ξ

Figure 2.20 The computed distributions of saturation and dimensionless temperature
θ5 ðθ2 θ1Þ

ðθ2 2 θ1Þ during consecutive moments in time, up to the point when the solutions
reach stationary profiles (the vinculum over θ has been omitted in the diagrams).
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Buckley-Leverett model (BL model), in which the phase pressures coin-

cide. Problems of this type need to be examined when modelling the var-

ious stages of water drive, each with a different duration and sweep. For

instance, in water-encroached parts of the formation, from which virtu-

ally all the mobile oil has been displaced, the effect of capillary forces on

two-phase fluid flow is slight, and the BL model can be used. Where

water encroachment is slight, capillary forces must be taken into account,

and therefore the MLT model must be used.

Another situation requiring a combination of the two models is the

so-called end effect problem which, in mathematical terms, amounts to

the gradient of phase saturation being unlimited in the vicinity of produc-

tion wells. To obtain boundary conditions capable of numerical imple-

mentation for a production well, it is usually assumed that phase pressures

coincide in the near-wellbore zone.

Having made this assumption, and regarding the near-wellbore zone

as fairly small, we can derive the conditions of proportionality of the

phase flow rates and phase “mobilities”.

2.8.1 The Combination of MLT and BL Models
In this section, we consider a one-dimensional MLT model of two-phase

fluid flow in a homogeneous isotropic porous medium, in the absence of

mass forces (Chapter 1, Section 1.1):

mst 5 ðKaðsÞsx2bðsÞQðtÞÞx:

0.8

θ, s

1

2

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 ξ

Figure 2.21 Analytical solutions of sðyÞ (Curve 1) and θðyÞ (Curve 2) ðy5 x=
ffiffiffiffiffiffiffiffiffiffi
t1 1

p Þ.
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Here s is the dynamic water saturation; m is porosity; a5 j0ðsÞk1ðsÞk2ðsÞ
ðk11k2Þ21; ki5 ki 5 kiμ21

i ; ki and μi are phase permeabilities and viscosities;

jðsÞ is the Leverett J function which reflects the presence of capillary forces;

bðsÞ5 k1ðk11k2Þ21 is the “mobility” coefficient of the displacing phase

(water); K 5 kσ cos θðm=kÞ1=2; k is permeability; θ is wetting angle; σ is

interfacial tension.

Let us introduce the following new variables: x5L21x; t5 ðmLÞ21Ð t
0
QðξÞdξ (L-characteristic length) and let us rewrite the initial equation

in the form

st 5 ðλðtÞaðsÞsx2bðsÞÞx � 2vx; ð2:118Þ
where λ5KðLQðtðtÞÞÞ21; v5 vðx; tÞ is the relative flow velocity (flow

rate) of the displacing phase.

Let the line Γ 0 5 fx; tjx5 0; t$ 0g represent the injection well, Γ1 5

fx; tjx5 1; t$ 0g the MLT and BL model combination line, and

Γl 5 fx; tjx5 l$ 1; t$ 0g - the production well. Let us designate Ωn5

fx; tj0, x, n; t. 0g.
In region Ω1, the two-phase fluid flow is described by the MLT

model and therefore in (2.118) λ 6¼ 0, whereas in region Ω5 ðΩl=Ω1Þ it
is described by the BL model and therefore in (2.118) λ � 0. To solve

equation (2.118) for sðx; tÞ; ðx; tÞAΩl and the resultant function λðtÞ we
propose to examine the initial boundary value problem

sjx505 1; sjt505 s0ðxÞ; xA½0; l�; ½s�x515 ½v�x515 0; ð2:119Þ
where ½f �x51 5 ff ð12 0; tÞ2 f ð11 0; tÞg is the discontinuity of the func-

tion f ðx; tÞ on Γ15 fx; tjx5 1; t$ 0g.
If the function sðx; tÞ is smooth, then the equality asxjx51205 0

follows from condition (2.119) along the model combination line Γ1.

As a result, the problem divides into two problems, one in Ω1 and other

in Ω5 ðΩl=Ω1Þ:
Ls � st 2 ðλasx2bÞx 5 0; sjt505 s0ðxÞ; sjx505 1; sxjx515 0; ð2:120Þ

vx 1ϕ0t 5 0; vjt505 v0; vjx515 v1ðtÞ: ð2:121Þ

Here, ϕ0ðvÞ5 bð21ÞðvÞ; s5 bð21ÞðvÞ is the inverse of v5 bðsÞ; v0 5
b½s0ð1Þ�; v1ðtÞ5 b½sðtÞ�, and the function sðtÞ5 sðx; tÞjx51 is determined

from the solution of (2.120) for sðx; tÞ. The coefficients aðsÞ; bðsÞ;λðtÞ
satisfy the standard requirements of smoothness and the existence of a
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fixed sign, which follow from the physical properties of the functional

parameters k1ðsÞ; k2ðsÞ and jðsÞ which define the MLT and BL models

(Chapter 1, 1.0):

i. ða; bÞAC21α½0; 1�;α. 0; ða; b; bsÞ. 0; sAð0; 1Þ; aðsÞs2γ0ð12sÞγ1 #M ,

N; bðsÞs2γ0 #M ; sA½0; 1�; 0# γi # 4, only in isolated points skA½0; 1�;
ii. s0ðxÞAC21α½0; l�; s0xð1Þ5 0; s0ðxÞ5 δ$ 0 at x$ 1; 0, s0ðxÞ, 1; xA

ð0; 1Þ;λðtÞAC21α½0;NÞ;α. 0 and 0, δ0# λðtÞ#M ; tA½0;NÞ.

2.8.2 Regularization
Let us regularize equations (2.120), replacing the coefficient aðsÞ with the

function aεðsÞ5 aðsÞ1 ε; ε. 0. Problems (2.120) regularized in this way

have a classical solution sðx; tÞAC21α;11α=2ðΩ1Þ � H21αðΩ1Þ;α. 0 [83]. To

obtain estimates of the solution of sðx; tÞ, which do not depend on the regu-

larization parameter ε, let us extend the solution into the region Ω2 5

ð0; 2Þ3 ð0;T Þ, assuming that sðx; tÞ5 sð12 x; tÞ when xA½1; 2�. The resul-

tant function sðx; tÞ5 sð12 x; tÞ; xA½0; 2�; ðsðx; tÞ5 sðx; tÞxA½1; 2�Þ satisfies

the initial boundary problem

L0s � st 2 ðλaεsxÞx 1 γðxÞbssx5 0; ðx; tÞAΩ2; ð2:122Þ

sjt505 s0ðxÞ; xA½0; 2�; sjx50;25 1; tA½0;T �; ð2:123Þ

where γðxÞ5 1 at xA½0; 1�; s05 s0ð22 xÞ; γðxÞ52 1, at xA½1; 2�; s0ðxÞA
C21α½0; 2�.

Let us now proceed to the regularization of problem (2.121).

Let us introduce the function uðx; tÞ5 vðx; tÞ2 v0; xA½1; l�; v05
bðδÞ5 const and extend it for t, 0, assuming that uðx; tÞ5 uðx; 2 tÞ; t, 0.

Let us consider the following Cauchy problem within a band Пl 5

fx; tj1, x, l; jtj,Ng:

Λu � ux1ϕtðuÞ2 εutt 5 0; ujx515 u0ðtÞ; jtj,N; ð2:124Þ

where u0 5 v0ðtÞ2 δ at t. 0 and u05 v0ð2 tÞ2 δ at t, 0;ϕðuÞ5
ϕ0ðu1 δÞ.

At ε5 0, the function vðx; tÞ5 uðx; tÞ1 δ; ðx; tÞAΩ;Ω5 ðΩl=Ω1Þ satis-
fies equation (2.121).

Note The problem (2.120), (2.121) and the corresponding regularized

problem (2.122)�(2.124) involves the combination of the solutions of
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s5 sðx; tÞ; ðx; tÞAΩ1 in (2.120), which is evolutionary for t, and of the

function sðx; tÞ5ϕ½uðx; tÞ�; ðx; tÞAΩ5 ðΩl=Ω1Þ, expressed by the solutions

of uðx; tÞ in (2.121) and (2.124), which is evolutionary for x.

The problem of the conjugation of orthogonal flows of the values of sðx; tÞ
as applied to boundary layer equations was first examined by Monakhov and

Khusnutdiniova [94].

2.8.3 The Solvability of Problem (2.120)
The maximum principle provides the following values for the solution of

(2.122), (2.123):

0, δ# sðx; tÞ, 1; ðx; tÞAΩ2; ð2:125Þ

so that when ε5 0, (2.122) becomes degenerate (simplified) at only one

value, s5 1, of the desired solution.

Assuming that σ5 12 s, the results described in 2.0 provide us with

an estimate which is uniform for ε

ajsxj#M ; ðx; tÞAΩ2: ð2:126Þ

Consequently, ψðx; tÞ5 Ð sðx;tÞ
0

aεðξÞdξ is a Holder continuous function,

uAC1;1=2ðΩ2Þ, as is sðx; tÞACβðΩ2Þ;β. 0 (2.0). Substituting sðx; tÞA
CβðΩ2Þ into coefficients aεðsÞ and bðsÞ in (2.122), we obtain the following

estimates (2.0):

jsjjCβðΩ2Þj#M0; jsxjjCβðΩρÞj#MðρÞ; ρAð0; 1Þ; β. 0; ð2:127Þ

where Ωρ5 ðρ; 22 ρÞ3 ð0;T Þ, with the constants M0;M not dependent

on ε. We have thus proved the assertion.

Lemma 1 Problem (2.120) has at least one solution sðx; tÞAH21α

ðΩ1Þ;α. 0 and the estimates (2.125)�(2.127) are true for this solution in

regions Ω1CΩ2 and Ω0
ρ5 ðρ; 1Þ3 ð0;T ÞCΩρ; 0, ρ, 1 respectively.

Note 2 Because (2.120) does not degenerate in the neighbourhood of

Γ15 fx; tjx5 1; t$ 0g, therefore sðx; tÞAH21αðΩ1Γ1ρÞ;Γ1ρ5 fx; tjx5
1; t$ ρ. 0g. If in addition to assertions (i), (ii) point x5 1; t5 0 also satisfies

first-order matching conditions, then sðx; tÞAH21αðΩ1Γ1Þ [83, p. 364].
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2.8.4 The Solvability of the Conjugation Problem
On the basis of assumptions (ii), the function ϕ5ϕðvÞ; v5 u1 δ in

(2.124) has the properties:

0,
dϕ
dv
ðsÞ,N at sAð0; 1Þ and function

d2ϕ
dv2

ðsÞ can have only a finite

number of zeroes in the interval sAð0; 1Þ.

Determination Let us define the generalized solution of the Cauchy problem

(2.124) for ε5 0, as a function uðx; tÞ, bounded in band Πl which assumes

its initial condition at x5 1 and has the following properties [67, 76]:

1. It is continuously differentiable everywhere in Πl except for a finite

number of smooth lines, where there exist limiting values uðx; tÞ located
on either side of the line of discontinuity, possibly with the exception

of a finite number of points;

2. The inequalityþ
Πl

ðju2Cjft 1 sgnðu2CÞ½ϕðuÞ2ϕðCÞ�Þfxdtdx$ 0: ð2:128Þ

is satisfied for any constant C and any smooth function f ðx; tÞ$ 0,

finite in Πl.

It clearly follows from the inequality (2.128) at C5 6supjuðx; tÞj and
due to the arbitrariness of f ðx; tÞ$ 0, that uðx; tÞ satisfies problem (2.124)

for ε5 0, within the meaning of the integral identity

þ
Πl

ðuft 1ϕðuÞfxiÞdtdx5 0;’fAC
0
NðΠlÞ: ð2:129Þ

Similarly, the Cauchy problem for the parabolic equation (2.124) at

ε5 0 has a single solution uðx; tÞAH21αðΠlÞ, which satisfies the inequality

(2.125):

ϕðδÞ# uðx; tÞ1 δ#ϕð1Þ; ðx; tÞAΠl:

The truth of this assertion follows from the results obtained in [67; 76]

and from the passage to the limit at ε ! 0.

Lemma 2 There exists a generalized solution of the Cauchy problem

(2.124) at ε$ 0.
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Theorem 1 The problem of conjugation of (2.120), (2.121) has a gener-

alized solution sðx; tÞ; ðx; tÞAðΩlÞ with the following properties:

a. sðx; tÞAH21αðΩ1Þ;α. 0;

b. sðx; tÞ5 b21½uðx; tÞ1 δ�; ðx; tÞAΩ5 ðΩl=Ω1Þ, where the function uðx; tÞ is
a generalized solution of the Cauchy problem (2.124) at ε5 0 .

The truth of this assertion follows directly from Lemmas 1 and 2.

2.8.5 Finite-difference Equations
The Muskat-Leverett model (MLT model). Let us introduce a uniform grid

E with nodes xi 5 ih; tn 5 nτ; i5 1. . .N ; n5 0; 1. . .M1; h - space coordi-

nate interval, τ - time interval.

Let us approximate the initial boundary value problem (2.120) con-

taining the regularized operator Les with the equation

sn11
i 2 sni

τ
5

1

h2
λan

εi11/2
ðsn11
i11 2 sn11

i Þ2λan
εi21/2

ðsn11
i 2 sn11

i21 Þ
� 


2bnsi
sn11
i 2 sn11

i21

h

 !
; i5 1. . .N 2 1;

sn11
0 5 sn05 1; s0i 5 s0i;

sn11
N 2 snN

τ
52

2

h2
λan

εN2
1/2
ðsn11
N 2 sn11

N21Þ
� 


2bnsN
sn11
N 2 sn11

N21

h

 !
:

ð2:130Þ

We have taken the relationship between the grid spacings to be

τ5Kh2. The second boundary-value problem [142] was approximated in

the same way.

We used regularization to improve convergence of the numerical solu-

tion of (2.130).We compared ðΔεðEÞ2ΔεkðEÞÞ � δðEÞ, where δðEÞ is

the regularizer error. We selected the largest εk which still retained the

order of approximation of Bτ. In our numerical calculations, we used

the regularizer 1028.

We obtained the numerical solution of (2.130), by the right-hand-side

run method [68].

107Analytical and One-Dimensional Models of Thermal Two-Phase Flow



We selected the function s5 a2ð12xÞ21 a0, which satisfies the

boundary conditions sjx505 sn05 1; sxjx515 0, as the test function.

The values of s served as initial data for (2.130) - sjt505 s0ðxÞ. We

then calculated Lεs5 f ðxÞ using the regularized operator Lε from (2.130).

The grid value of f ðEÞ was added to the right hand side of part (2.130)

and the resultant solution sðx; tÞ was compared with sðxÞ.
We tested the second boundary value problem in a similar way. The

order of magnitude of the error was OðτÞ.
We also compared a mixed and a second boundary value problem as

part of the same test. The error (at h5 1022;K 5 1), Δð0Þ5 ks0ðtÞ2
sð0Þk � 1024;ΔðEÞ5 ks1ðx; tÞ2 s2ðx; tÞ k � 1025 where s0ðtÞ5 sjx50 was

found from the solution of the second boundary-value problem; s1ðx; tÞ is
a grid function which solves the second boundary-value problem with

f ðEÞ in its right hand side, and s2ðx; tÞ is a grid function calculated from

(2.130) with f ðEÞ in its right hand side.

The Buckley-Leverett model (BL model). Let us approximate (2.124) by

the following finite-difference equation:

uni112 uni
h

1ϕn
ui

uni112 un21
i11

τ
5 ε

un11
i11 2 2uni111 un21

i11

τ2
; uMi 5 u2M

i11 ; u
n
0 5 un0:

ð2:131Þ

Note that in (2.131), the evolutionary variable is x, while t plays

the role of the space coordinate. Accordingly, we selected the relationship

between h and τ on the basis of the condition h5Kτ2. We obtained the

numerical solution of (2.131) by the right-hand-side run method [67].

We selected a regularizer for (2.130) as well. In our numerical calcula-

tions, we used a regularizer of 1027.

The test procedure was as described for (2.130). We used the function

s5 a2x
21 a0, where a2 and a0 were selected from condition sM 5 s2M 5

s2M
i11 5 uMi11 as the test function. The deviation from the test solution was

of the order of OðhÞ, where at x$ 1; hB1024.

We examined the regularized problem (2.121) with the initial bound-

ary conditions described below, for small ðl2 1Þ values: vjt505 b½s0ð1Þ�;
vjt515 b½sð1; 1Þ�; vjx51 5 b½SðtÞ�.

A comparison of the solutions of this equation at tAð0; 1Þ with the

solutions of (2.124) showed the order of the error to be B1025. Since

ϕuu is sign-variable in the interval uAð0; 1Þ, we usually solved problem

(2.124) in our numerical calculations.
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2.8.6 Numerical Solution of the Problem of Conjugation
of Equations (2.120), (2.121)
Equation (2.130) was selected because of the need to calculate sjx51 with-

out introducing additional grid nodes.

In our numerical experiments, we used the normalized functional

parameter values quoted in [142].

When performing numerical calculations, we used a grid El for

(2.130) with h5 1022; τ5 1024; ðK 5 1Þ. The sðtÞ5 sjx51 function calcu-

lated from (2.130) was monotonic and therefore, when τ was increased

by 100 times, the values of sðtÞ on the new grid El were calculated for its

corresponding nodes. Since in (2.131) the variable x is evolutionary,

we assumed h5 τ25 1024. We then found the initial data for the calcula-

tion of BL u0i 5 bðsiÞ2 δ, making the calculation in accordance with

(2.131). At small values of ðl2 1Þ, the deviation between the solutions of

the conjugation problem and the mixed problem in the segment ½0; l� was
of the order of 10232 1024. At large values of l, the solutions did not

compare well.

2.8.7 Discussion
Low water encroachment levels produce a “blocking effect”. In the blocking

effect, the wetting phase does not flow out of the formation before

the breakthrough (or before the arrival of water at the production well as

predicted by the BL model). The effect is due to the change of the sign of

bss. The blocking effect becomes stronger when l increases, but is not much

affected by changes of λðtÞ at Q5 const. When μ5μ1=μ2 (the wetting/

non-wetting phase viscosity ratio), decreases, so does the blocking effect.

When different μ values are considered, the water encroachment of the pro-

duction well, calculated from the conjugation problem for a moment a time

following the breakthrough is different from that calculated from the mixed

problem (2.120) for the segment ½0; l�. For instance, if μ is small, then the

water encroachment predicted by the BL model shall be less as compared to

problem solution (2.120) on ½0; l�.
Fig. 2.22 shows the movement of water saturation fronts at

μ5 0; 5;λ5 0; 629; s05 0; 041 (normalized). The solid line shows water

saturation calculated from the conjugation problem, and the dotted line

the saturation calculated from the mixed problem for ½0; l�.
For comparison purposes, Fig. 2.23 shows the movement of water sat-

uration fronts calculated using the same parameters from the conjugation
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Figure 2.22 The movement of water saturation fronts at μ5 0; 5;λ5 0; 629;
s0 5 0; 041 (normalized).
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Figure 2.23 The movement of water saturation fronts calculated using the same
parameters from the conjugation problem (2.122)�(2.124) (solid line) and from the
second boundary value problem on ½0; l� (dotted line).
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problem (2.122)�(2.124) (solid line) and from the second boundary value

problem on ½0; l� (dotted line).

2.9 ONE-DIMENSIONAL FLOW OF TWO INTERPENETRATING
VISCOUS INCOMPRESSIBLE FLUIDS

In this section, we prove the theorems of the existence and uniqueness of

the first boundary value problem “im kleinen” (in small), using the initial

data for the equations of flow of two interpenetrating viscous incompress-

ible fluids.

2.9.1 Problem Statement
Below, we consider one-dimensional isothermal two phase flow of viscous

incompressible fluids, occurring at the same pressure (Rakhmatulin’s hypoth-

esis, [95, 112]) and with no phase transitions. Continuity and momentum

equations for each of the phases ði5 1; 2Þ have the form [95, 112]:

@ρi
@t

1
@

@x
ðρiviÞ5 0; ρi

@vi
@t

1 vi
@vi
@x

� �
5

@siσi

@x
1Fi:

In these equations, vi is the relevant phase velocity; ρi is reduced density,

linked to true density ρi
0 and volume concentration si by the relationship

ρi5 siρ0i . The condition s11 s25 1 arises from the determination of ρi.
The phase pressure tensor σi is an analogue of Stokes’ hypothesis [135]:

σi52p1μi
@vi
@x, where p is pressure (common for the two phases), μi. 0 is

the dynamic viscosity coefficient of the phases. It is postulated that forces Fi
have the form [95, 135]: Fi5 p @si

@x 1ϕi1 ρig, where ϕ15Kðv2 2 v1Þ;
ϕ252ϕ1;K - phase interaction coefficient (a present function of their

concentrations [95]), and g5 ðx; tÞ is a given. The condition ρ0i 5 const. 0

yields the following closed system of equations for siðx; tÞ; viðx; tÞ and pðx; tÞ:
@si
@t

1
@

@x
ðsiviÞ5 0; i5 1; 2; ð2:132Þ

ρi
@vi
@t

1 vi
@vi
@x

� �
2

@

@x
μisi

@vi
@x

� �
52si

@p

@x
1ϕi1 ρig; ð2:133Þ

s11 s25 1;ϕ1 5Kðv22 v1Þ52ϕ2: ð2:134Þ
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We consider this system for the region QT 5 fxj0, x, 1g3 ð0;TÞ,
in the following conditions:

vij@QT
5 0; vijt505 v0i ðxÞ: ð2:135Þ

It is assumed that the initial value of s0ðxÞ is strictly less than unity and

strictly positive:

0,m0# s0ðxÞ#M0, 1; xAΩ; 5 fxj0# x# 1g: ð2:136Þ
In what follows, we use the designations adopted in [2; 83] (in partic-

ular, kuðtÞk� is the norm of uðx; tÞ in L2ðΩÞ; ux5 @u
@x).

We will define a generalized solution of (2.132)�(2.135) as consisting

of a set of functions ðsi; vi; pÞ; i5 1; 2.

siðx; tÞALNð0;T ;W 2
2 ðΩÞÞ; sitALNð0;T ;W 1

2 ðΩÞÞ;

viðx; tÞALNð0;T ;W 1
2 ðΩÞÞ-L2ð0;T ;W 2

2 ðΩÞÞ; ðvit; pxÞAL2ðQT Þ;
which satisfy the equations (2.132)�(2.135) at virtually every point in QT

and which assume specified boundary and initial values in the sense of the

traces of the above functions.

Functions ðsi; vi; pÞ are termed classical solutions of (2.132)�(2.135), if

they have continuous derivatives forming part of (2.132)�(2.134), and

satisfy the equations together with the initial and boundary conditions as

continuous functions in QT 5Ω3 ½0;T �.

Theorem 1 Let the data for the problem (2.132)�(2.135) satisfy the following

conditions: KðsÞAC2ð0; 1Þ; gAL2ð0;T ;W 1
2 ðΩÞÞ and in addition, in the case

of (2.136):

v0i ðxÞAW 1
2 ðΩÞ; s0ðxÞAW 2

2 ðΩÞ; v0i ð0Þ5 v0i ð1Þ5 0; i5 1; 2:

In those conditions, there exists a t0. 0; t0Að0;T Þ such that for all t# t0
there exists a unique generalized solution ðsi; vi; pÞ of the problem, and there exist

numbers m;M such that

0,m# sðx; tÞ#M , 1; ðx; tÞAQt0 5Ω3 ½0; t0�: ð2:137Þ

If in addition gðx; tÞAC11α;11α=2ðQT Þ; ðs0ðxÞ; u0ðxÞÞAC21αðΩÞ and the condi-
tions of conformity of initial and boundary data are satisfied, then there exists in

Qt0 a unique classical solution of the problem, which satisfies the inequlity (2.137).
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The proof of Theorem 1 appears in [101] and involves the investiga-

tion of the auxiliary problems (2.141), (2.150), (2.156) discussed below

(in these classes of functions it is possible to change from the auxiliary

functions ðs; u;RÞ to ðsi; vi; pÞ).

2.9.2 Continuation of the Solution
In this section, we derive estimates of solutions dependent only on the

data of (2.132)�(2.135) and on T, and independent of the interval of

existence of the local solution ½0; t0�. This makes it possible to extend the

local solution to the entire segment ½0;T �.
We adopt the following expression for the phase interaction coeffi-

cient: K 5K0ðsÞ½sð12sÞ�2β; s � s1;βAð2N; 1NÞ and assume the exis-

tence of a constant k0 such that 0, k21
0 #K0ðsÞ# k0 for all sA½0; 1�.

2.9.2.1 Velocity and Concentration Energy Inequalities

Lemma 1 The following equations are satisfied for any tA½0;T �:

0# siðx; tÞ# 1; xA½0; 1�;
ð1
0

siðx; tÞdx5
ð1
0

s0i ðxÞdx; i5 1; 2 ð2:138Þ

and there exists a bounded measurable function aðtÞ such that 0# aðtÞ# 1;
siðaðtÞ; tÞ5 s0i ðaðtÞÞ.

The proof of the above is identical to that set out in [2, p. 50].

From (2.132), by virtue of (2.134), (2.135) we obtain

sv11 ð12 sÞv25 0: ð2:139Þ
Let us assume μ5μ11μ2; β1 5μ1=μ; β2 5μ2=μ and introduce a new

target function uðx; tÞ5β1v1ðx; tÞ2β2v2ðx; tÞ. Using (2.139), we obtain

v1 5
12 s

aμ
u; v252

s

aμ
u; aμ � β1ð12 sÞ1β2s: ð2:140Þ

Hence, at i5 1, equation (2.132) may take the form

st 1 ðaðsÞuÞx5 0; aðsÞ � sð12 sÞ
aμ

; sjt505 s0ðxÞ: ð2:141Þ
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Lemma 2 The following inequality is true for any tA½0;T �:ð1
0

X2

i51
ρ0i siv

2
i dx1 2

ðt
0

ð1
0

X2

i51
μisiv

2
ix1Kðv12v2Þ2

h i
dxdτ

#
Ð 1
0

P2
i51 ρ

0
i s
0
i ðv0i Þ2dx1 2

P2
i51 ρ

0
i

Ð 1
0
s0i ðxÞdx

� 
 Ð 1
0
ðjgðx; 0Þj1 jgðx; tÞj



dx

�
1
Ð t
0

Ð 1
0

gτðx; tÞ
�� ��dxdτÞ � N1ðtÞ:

ð2:142Þ

Proof Let us multiply equation (2.133) by v1ðx; tÞ and v2ðx; tÞ respectively,
and let us add the resultant equalities. After integrating over Qt we obtain

the following equation (having implicitly assumed summation of i from 1

to 2, over a repeating index i)Ð 1
0
ρ0i siv

2
i dx2

Ð 1
0
ρ0i s

0
i ðv0i Þ2dx1 2

Ð 1
0

Ð t
0
ðμisiv

2
ix 1Kðv12v2Þ2Þdxdτ

5 2
Ð 1
0

Ð t
0
ρ0i sivigdxdτ � 2I0ðtÞ:

Taking into account (2.138) and (2.132), we obtain

I0ðtÞ#
X2

i51
ρ0i

ð1
0

s0i ðxÞdx
� � ð1

0

ðjgðx;0Þj1jgðx; tÞjÞdx1
ðt
0

ð1
0

jgτðx;τÞjdxdτ
� �

:

and thus arrive at (2.142), which proves the lemma.

Let us consider a set of functions ψβðsÞ, which satisfy the equation

d2ψβ

ds2
5K0ðsÞ

1

sð12sÞ

� �21β

; sAð0; 1Þ;βAð2N; 1NÞ: ð2:143Þ

For β. 0, let us represent the right hand side of (2.143) in the form

δð0ÞðsÞ1 δð1ÞðsÞ, where

δð0ÞðsÞ5 K0ðsÞ
s21βð12sÞq 1

Xn11

j51
cj

K0ðsÞ
sj1qð12sÞq ;

δð1ÞðsÞ5 K0ðsÞ
ð12sÞ21βsq

1
Xn11

j51
bj

K0ðsÞ
ð12sÞj1qsq

;

n is the whole part of a real number β; q5β2 nA½0; 1�; cj; bj are positive

numbers obtained by constructive calculation. In that case

ψβðsÞ5C01ψð0Þ
β ðsÞ1ψð1Þ

β ðsÞ; ð2:144Þ
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where C0 is an arbitrary constant

ψð0Þ
β ðsÞ5

ð1
s

ð1
ξ
δ 0ð ÞðyÞdy

� �
dξ;ψð1Þ

β ðsÞ5
ðs
0

ðξ
0

δ 1ð ÞðyÞdy
� �

dξ:

There exist positive numbers C
ð0Þ
β and C

ð1Þ
β , dependent only β and k0,

for which the inequalities are true

ψð0Þ
β ðsÞ$ k21

0

2βð11 βÞsβ 2C
ð0Þ
β ;ψð1Þ

β ðsÞ$ k21
0

2βð11βÞð12sÞβ 2C
ð1Þ
β :

Having selected C05C
ð0Þ
β 1C

ð1Þ
β in (2.144), we obtain

ψβðsÞ$
k21
0

2βð11βÞ
1

sβ
1

1

ð12sÞβ
� �

. 0:

For β5 0 we have ψ0 � ψβjβ50$ k21
0 ψ̂0, where ψ̂052 ln sð12 sÞ1

2s ln s1 2ð12 sÞlnð12 sÞ1 2. 0. For β, 0 there exists a bounded solu-

tion of (2.143) in the form (2.144), which is positive for all sA½0; 1�.
By virtue of (2.136), we have ψβðsÞjt50#Cðm0;M0;β; k0Þ,N for all β.

Lemma 3 The following inequality is true for any tA½0;T �:ð1
0

�X2

i51

μi

siðx; tÞ
ðsixðx; tÞÞ21ψβðsðx; tÞÞ

�
dx#

ð1
0

�X2

i51

�
3

μi

s0i ðxÞ
ðs0ixðxÞÞ21 2

ðρ0i Þ2
μi

s0i ðxÞðv0i ðxÞÞ2
�
1 4ψβðs0ðxÞÞ

�
dx

1 8

�
ρ01
μ1

1
ρ02
μ2

�
N11 12ρ0

ðt
0

ð1
0

½jgðx; τÞj1 jgxðx; τÞj�dxdτ � N2ðtÞ:

ð2:145Þ

Proof Let us substitute derivatives vix in equations (2.133), taking them

we from the corresponding equations (2.132). Let us now multiply the

transformed equations (2.133) by six=si and add the resultant equalities.

Integrating over Qt and taking into account the estimate ρ0i visix#
μis

2
ix=4si1 ðρ0i Þ2siv2i =μi, we obtain the inequality (by summation over the

repeating index i from 1 to 2)

1

4

ð1
0

μi

si
s2ixdx#

ð1
0

3μi

4s0i
ðs0ixÞ21

ðρ0i Þ2
2μi

s0i ðv0i Þ2
" #

dx1
ðρ0i Þ2
μi

ð1
0

siv
2
i dx1

ρ0i
Ð t
0

Ð 1
0
siv

2
ixdxdτ1 ρ0i

Ð t
0

Ð 1
0
sixgdxdτ1 I1ðtÞ1 I2ðtÞ;

ð2:146Þ
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in which

I1ðtÞ5
ðt
0

ð1
0

K
sx

s
ðv22 v1Þdxdτ; I2ðtÞ5

ðt
0

ð1
0

K
ð12sÞx
12 s

ðv12 v2Þdxdτ:

Let us transform the terms I1ðtÞ and I2ðtÞ, expressing viðx; tÞ, in accor-

dance with (2.142), through uðx; tÞ. Then

I1ðtÞ1 I2ðtÞ52

ðt
0

ð1
0

K
usx

sð12 sÞaμ
dxdτ: ð2:147Þ

Let us then write down equation (2.141) in the form

ðψβðsÞÞt 1 ðaðsÞψ0
βðsÞuÞx5 aðsÞψvβðsÞusx:

Integrating the above equation over Qt and taking into account

(2.147), we derive

I1ðtÞ1 I2ðtÞ52

ð1
0

ψβðsðx; tÞÞdx1
ð1
0

ψβðs0ðxÞÞdx:

Let us now estimate the remaining terms of the right hand side of

(2.146). It follows from (2.142) that

X2

i51

ρ0i
μi

ð1
0

ρ0i siv
2
i dx1

X2

i51

ðt
0

ð1
0

ρ0i siv
2
xidxdτ# 2

ρ01
μ1

1
ρ02
μ2

� �
N1:

Let us integrate terms containing gðx; tÞ by parts and estimate the

resultant relation using (2.138) and the multiplicative inequalities [83,

p. 79]. We will then obtain

X2

i51
ρ0i

ðt
0

ð1
0

gsixdxdτ

������
������# 3ρ0

ðt
0

ð1
0

½jgðx; tÞj1 jgxðx; tÞj�dxdτ

and thus arrive at (2.145), which proves the lemma.

In what follows, it is assumed that functions N1ðtÞ and N2ðtÞ are

bounded for all tA½0;T �. By virtue of Lemma 1 and of equation (2.145),

the function

FðsÞ5
ðsðx;tÞ

sðaðtÞ;tÞ

1

τð12τÞψβðτÞ
� �1=2

dτ

is also bounded for all ðx; tÞAQT . Therefore at β$ 1 there exist numbers

m and M , depending on the data contained in the problem and on T ,
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and such that inequalities (2.137) are true for all ðx; tÞAQT . The values m

and M may be specified constructively if we include the estimates which

follow from (2.144), (2.145) at β$ 1:ð1
0

s2x
sð12 sÞ 1

1

sβð12sÞβ
� �

dx#
μ

μ1μ2

1
k0βð12βÞ

2

� �
N2ðtÞ � N3ðtÞ:

ð2:148Þ

Lemma 4 If β$ 1, then inequality (2.137) in which m5m0e
2N3 ;M 5

ð12M0Þe2N3 at β5 1 is true for any tA½0;T �; xA½0; 1�. If β. 1, then

m5 km0;M 5 12 kð12M0Þ; k5 11 1
2
ðβ21ÞN3m

β21
2

0

� 
 2
12β
:

Lemma 4 yields the estimatesðt
0

ðkuxðτÞk21 kuðτÞk21 kuðτÞsxðτÞk2Þdτ1 kuðtÞk21 ksxðτÞk2#C1N3ðtÞ;

ð2:149Þ
in which the constant C1 depends only on β;μi; ρi;m;M ; k0.

Note 1 At sufficiently “low” values of N2ðtÞ estimate (2.137) is valid also

for β, 1.

2.9.2.2 Estimation of max0# x#1juðx; tÞj
By excluding pressure from system (2.133), we arrive at the following

equation for uðx; tÞðuj@QT
5 0; ujt505β1v

0
1ðxÞ2β2v

0
2ðxÞ � u0ðxÞÞ:

ut 2 vðb0ðsÞuxÞx1 v1
b0ðsÞ

a3μðsÞaðsÞ
us2x1

a0ðsÞ
a11βðsÞ u5 v b0ðsÞ

a0ðsÞ
a2μðsÞaðsÞ

2 b00ðsÞ
 !

uxsx2 a2ðsÞuux2 a3ðsÞu2sx1 b0ðsÞg0;
ð2:150Þ

where

v15 vβ1β2; v5
μ
ρ0

; ρ05 ρ011 ρ02; a0ðsÞ5
K0ðsÞb0ðsÞ
ρ0a21β

μ ðsÞ
; b0ðsÞ5

aμðsÞ
aρðsÞ

;

aρ � α1ð12 sÞ1α2s;αi 5
ρ0i
ρ0

; i5 1; 2; a2ðsÞ5 a1ðsÞ1
b00ðsÞ
b20ðsÞ

; a35
a01ðsÞ
2

1

a0ðsÞb00ðsÞ
b20ðsÞ

; a1ðsÞ5
ðα1ð12sÞ22α2s

2Þ
a2μ

; a01ðsÞ �
da1

ds
; g0 � ðα12α2Þg:
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Let us assume that

C25min vmin0#s#1b0ðsÞ; v1min0#s#1

b0ðsÞ
a3μðsÞ

;min0#s#1a0ðsÞ
( )

;

C35max max0#s#1ja02ðsÞj; vmax0#s#1b0 sð Þ ja
0
0ðsÞj
a2μðsÞ

;max0#s#1b0ðsÞ;
(

max0#s#1ja3ðsÞj
�
:

Lemma 5 In the conditions of Lemma 4, the following estimate is valid

for all tA½0;T �:

max0#x#1juðx; tÞj# max0#x#1ju0ðxÞj1C03

Ð t
0
max0#x#1jg0ðx; τÞjdτ

� �
3 exp 2C1

C2
3

C2

N3ðtÞ
( )

� N4ðtÞ

ð2:151Þ

Proof Let us multiply equation (2.150) by u2l21ðx; tÞ; l. 1 and integrate

the resultant equality over xA½0; 1�, integrating term a2ðsÞu2lux by parts.

This yields the inequality

2

2lC2

d

dt

ð1
0

u2ldx1 ð2l2 1Þ
ð1
0

u2l22u2xdx1

ð1
0

1

aðsÞ u
2ls2x1

1

a11βðsÞ u
2l

" #
dx

#
C3

C2

ð1
0

11
1

aðsÞ

 !
juxsxj1 u2jsxj1 jg0j

" #
juj2l21dx5

X3

i51
Ai:

ð2:152Þ

The following estimates are true for the terms Ai of the right hand

side of (2.152):

A1#
ð2l21Þ

2

ð1
0

u2l22u2xdx1
C3

C2

� �2
1

ð2l21Þmax0#x#1
1

aðsðx; tÞÞ

� �ð1
0

1

aðsÞu
2ls2xdx;
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A2#
1

2

ð1
0

1

aðsÞu
2ls2xdx1

C3

C2

� �2ð1
0

aðsÞu2l12dx;

A3#
C3

C2

ð1
0

jg0j2ldx
� �1=2l ð1

0

u2ldx

� �ð2l21Þ=2l
:

Let us select a number l0 on the basis of the condition

1

2
2

C3

C2

� �2
1

ð2l02 1Þmax0#x#1

1

aðsðx; tÞÞ

� �
$

1

4
:

In that case, for all l$ l0 we have

1

2lC2

d

dt

ð1
0

u2ldx1
ð2l21Þ

2

ð1
0

u2l21u2xdx1

ð1
0

1

4aðsÞ u
2ls2x1

1

a11βðsÞu
2l

" #
dx

#
C3

C2

ð1
0

jg0j2ldx
� �1=2l ð1

0

u2ldx

� �ð2l21Þ=2l
1

C2

C1

 !2 ð1
0

aðsÞu2l12dx:

ð2:153Þ
Let us estimate the last term of the right hand side of (2.153) as

follows: ð1
0

aðsÞu2l12dx#max0# x# 1aðsÞu2ðx; tÞ
ð1
0

u2ldx:

This yields the following inequality for yðtÞ5 Ð 1
0
u2ldx

� 
1=2l
:

dyðtÞ
dt

#C3

ð1
0

g2l0 dx

� �1=2l
1

C2
3

C2

max0#x#1aðsÞu2ðx; tÞUyðtÞ;

from which it follows that

yðtÞ# yð0Þ1C3

ð1
0

g2l0 dx

� �1=2l !
exp

C2
3

C2

ðt
0

max0#x#1aðsÞu2ðx; τÞdτ

 �

:

ð2:154Þ
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Taking into account the estimate which follows from (2.149):

ðt
0

max0#x#1aðsÞu2ðx; τÞdτ#C1ðmax0#s#1aðsÞÞN3ðtÞ

and passing to the limit in (2.154) at l ! N, we obtain (2.151).

2.9.2.3 Estimation of Derivatives
Let us express the derivative @vi

@x as stated in equation (2.132) and substitute

it into equation (2.133). We will then obtain

@Ri

@t
1 vi

@Ri

@x
52

@p

@x
1

ϕi

si
1 ρ0i g;Ri � ρ0i vi1

μi

si

@si
@x

; i5 1; 2: ð2:155Þ

Let us introduce function Rðx; tÞ, assuming

Rðx; tÞ5R1ðx; tÞ2R2ðx; tÞ5
μ
aðsÞ

@s

@x
1 bðsÞu; bðsÞ � ρ0

aρ

aμ
:

By excluding pressure from (2.155) and using (2.140), we arrive at the

following equation for Rðx; tÞðU � a0ðsÞu; δ5μ2ρ
0
12μ1ρ

0
2Þ:

Rtg1URx2
β1β2

a3μ
uRsx52

δ
μa2μ

aðsÞuux1
β1ð12 sÞ2β2s

a2μ
u2sx

" #

2
K

a2μaðsÞ
u1 ρ0g0 � f1;Rjt505R0ðxÞ:

ð2:156Þ
Let us assume that ρðx; tÞ5 aðsÞR2ðx; tÞ. By virtue of (2.141), (2.156)

we have

ρt 1 ðUρÞx5 2aðsÞRf1 � f2: ð2:157Þ

The following estimates are true for ρðx; tÞ and f2ðx; tÞ:

k
ffiffiffiffiffiffiffiffi
ρðtÞ

p
k2#C4N3ðtÞ; jf2j#C4ðjRuuxj1 ρu21 jRu3j1 juRj1 jg0RjÞ;

where the constant C4 depends only on m;M ;μi; k0; ρ
0
i ; i5 1; 2.
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Lemma 6 In the conditions of Lemma 5, the following inequalities are

true for all tA½0;T �:

ksxðtÞuðtÞk21 kuxðtÞk21
ðt
0

kuτðtÞk2dτ#C5 ks0xu0k21 ku0xk2
�

1

ðt
0

kg0ðτÞk2dτ1K1N3ðtÞ
� � N5ðtÞ;

ð2:158Þ

ðt
0

ð1
0

juxxjdx
� �2

dτ#C5ðN51K2N3ðtÞÞ; ð2:159Þ

where the constant C5 depends only on m;M ;μi; k0; ρ
0
i ; i5 1; 2,

K1ðtÞ5max0#x#1max0#τ#tjgðx; τÞj1
P4

i51 ðNt
4Þi 1 ðNt

3Þ31 ðNt
3Þ3=21

ðNt
3Þ2 1Nt

3N
t
41 ðNt

3Þ2Nt
4;K2ðtÞ5 11Nt

31Nt
4;N

t
35

max0#τ#tN3ðτÞ;Nt
45max0# τ# tN4ðτÞ:

Proof Let us rewrite equation (2.150) in the form

aρ

aμ
ut 2 vuxx 2 v

a0ðsÞ
aðsÞ ; uxsx1

vβ1β2

μ2a3μ
uρ5 g0 2

Ku

ρ0aðsÞa2μ
2

1

2
ða1ðsÞu2Þx

2
aρ

aμ

 !0

ust 2
vβ1β2aðsÞ
μ2a3μ

2ρ0
aρ

aμ
uR1 ρ0

aρ

aμ

 !2

u2

 !
u � f3:

ð2:160Þ
Let us now multiply (2.160) by aðsÞut and integrate the resultant

equality over xA½0; 1�. Let us integrate the left hand side of the equa-

tion by parts, using (2.157). These transformations yield the equality

ðv2 � vβ1β2=μ2Þ:

1

2

d

dx

ð1
0

vaðsÞu2x1 v2
aðsÞ
a3μ

u2ρ

 !
dx1

ð1
0

aðsÞ aρ
aμ

u2t dx52
v

2

ð1
0

a0ðsÞUsxu2xdx

2
v

2

ð1
0

aðsÞa0ðsÞu3xdx2
v2

2

ð1
0

aðsÞ
a3μ

 !0

aðsÞu2ρuxdx2 v2
Ð 1
0

aðsÞ
a3μ

Uuρuxdx

1
v2

2

ð1
0

aðsÞ
a3μ

u2f2dx1

ð1
0

aðsÞf3utdx �
X6
i51

BiðtÞ:

ð2:161Þ
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Let us estimate terms B1;B3 2B6 from the right hand side of (2.161):

B1ðtÞ#Cmax0# x# 1juðx; tÞuxðx; tÞjUksxðtÞkUkuxðtÞk;

jB3ðtÞj1 jB4ðtÞj#Cmax0# x# 1ju2ðx; tÞuxðx; tÞjUksxðtÞk2#
Cmax0# x# 1juxðx; tÞjUksxðtÞk2UkuðtÞkUkuxðtÞk;

jB5ðtÞj#CksxðtÞuðtÞk½ðmax0# x# 1juðx; tÞjÞ2ðksxðtÞuðtÞk1 kuxðtÞkÞ1 kuðtÞk
ððmax0# x# 1juðx; tÞjÞ31max0# x# 1juðx; tÞj1max0# x# 1jg0ðx; tÞjÞ�;

jB6ðtÞj# ε1kutðtÞk21
C

ε1
½kg0ðtÞk21 ðmax0# x# 1juðx; tÞjÞ2ðksxðtÞuðtÞk21

kuxðtÞk21 ðmax0# x# 1juðx; tÞjÞ2kuðtÞk2Þ�:

Here ε1 is an arbitrary positive number; and the constant C depends

only on m;M ;μi; k0; ρ
0
i ; i5 1; 2.

Let us rewrite B2 in the form

B2ðtÞ5
v

2

ð1
0

ðaa0Þ0usxu2xdx1
ð1
0

aρ

aμ
aa0uuxutdx2 v

ð1
0

ða0Þ2usxu2xdx1

v2

ð1
0

aa0

a3μ
u2uxρdx2

ð1
0

aa0uuxf3dx �
X5

i51
Bi
2ðtÞ:

B1
2ðtÞ and B3

2ðtÞ are estimated in the same way as B1ðtÞ, while B4
2ðtÞ is

estimated in the same way as B3ðtÞ. For B2
2ðtÞ and B5

2ðtÞ we have

jB2
2ðtÞj# ε2kutðtÞk21

C

ε2
ðmax0# x# 1juðx; tÞjÞ2kuxðtÞk2;

jB5
2ðtÞj#CkuxðtÞk½max0# x# 1jg0ðx; tÞjUkuðtÞk1max0# x# 1juðx; tÞjðkuðtÞk

1 kuxðtÞk1 ksxðtÞuðtÞkÞ�:

Here ε2 is an arbitrary positive number and the constant C depends

only on m;M ;μi; k0; ρ
0
i ; i5 1; 2.
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Let us introduce the following designations:

AðtÞ5max0# x# 1max0# τ# tjuðx; τÞj;BðtÞ5max0# τ# tkuðτÞk2;
DðtÞ5max0# τ# tksxðτÞk2;

ZðtÞ5
ðt
0

ðkuxðτÞk21 kuðτÞk21 ksxðτÞuðτÞk2Þdτ:

It follows from (2.148) and (2.149) that

AðtÞ#Cmax0#τ# tN4ðτÞ;BðtÞ1DðtÞ#Cmax0#τ# tN3ðτÞ;ZðtÞ#CN3ðτÞ:

Therefore,ðt
0

ðjB5ðτÞj1 jB6ðτÞj1 jB2
2ðτÞj1 jB5

2ðτÞjÞdτ# ðε11 ε2Þðt
0

kuτðτÞ2kdτ1
C

ε1

ðt
0

kg0ðτÞk2dτ1C

�
max0# x# 1max0# τ# tjg0ðx; τÞj

1
1

ε2
A21A1A31A4

�
ZðtÞ:

Let us continue the estimation of B1ðtÞ. Since uð0; tÞ5 uð1; tÞ, there
exists a point x0ðtÞA½0; 1� such that uxðx0ðtÞ; tÞ5 0. Therefore, from

(2.160) we deduce that

max0# x# 1juxðx; tÞj#
Ð 1
0
juxxðx; tÞjdt#C

½kutðtÞk1 kuxðtÞkUksxðtÞk1max0# x# 1juðx; tÞjðksxðtÞk2 1 kuðtÞk2Þ
1 kg0ðtÞk1 kuðtÞkðksxðtÞuðtÞk1 kuxðtÞk1 1Þ�

ð2:162Þ
and therefore

ðt
0

B1ðτÞ
�� ��dτ# ε3

ðt
0

kuτðτÞk2dτ1C

ðt
0

kg0ðτÞk2dτ

1C
1

ε3
A21AD1ADB

1

2
1A2DB

1

2
1A2D2

2
64

3
75ZðtÞ:
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Here ε3 is an arbitrary positive number, and the constant C depends

only on m;M ;μi; k0; ρ
0
i and mesΩ. In the same way, for B3ðtÞ;B4ðtÞ and an

arbitrary number ε4 we haveðt
0

jB3ðτÞj1 jB4ðτÞjdτ# ε4
ðt
0

kuτðτÞk2dτ1C

ðt
0

kg0ðτÞk2dτ1

C
1

ε4
BD2 1B1=2D1BD1ADB

" #
ZðtÞ:

Combining the estimates for B1ðtÞ2B6ðtÞ, let us select εi on the basis

of the condition
P4

i51 εi#
1

2
minm# s#MaðsÞ

aρðsÞ
aμðsÞ

. Integrating (2.161)

over time and taking into account (2.148), (2.149), we arrive at the

inequality

ksxðtÞuðtÞk21kuxðtÞk21
Ð t
0
kuτðτÞk2dτ#C

�
ks0xu0k21ku0xk2

1

ðt
0

kg0ðτÞk2dτ1
�
max0#x1max0#τ# tjg0ðx;τÞj1

X4

i51
Ai1AD1A2D2

1ADB1=21A2DB1=21BD21B1=2D1BD1ABD

�
ZðtÞ

�
;

which leads to (2.158). By squaring the inequality (2.162) and integrating

it over time, we arrive at estimate (2.159).

Note 2 If the function gðx; tÞ satisfies the conditions

sup0# t,Nmax0# x# 1jgðx; tÞj1
ðN
0

kgðtÞk2dt1
ðN
0

ð1
0

½jgtðx; tÞj1 jgxðx; tÞj

1 jgðx; tÞj�dxdt#N6 ,N;

ð2:163Þ
then the estimations of Lemmas 1-6 are uniform over t.

Let us obtain an estimate of the derivative sxðx; tÞ. For simplicity, we

will assume that condition (2.163) has been satisfied, and that will allow
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us to regard the constants N12N5 as independent of time (the case of Ni

being dependent on t does not introduce major difficulties into the

equation).

Let us multiply equation (2.156) by function aðsÞR2p21ðx; tÞ; p. 0 and

integrate over xA½0; 1�. Let us integrate the left hand side of the equation

by parts, using equation (2.141). Using the Holder inequality to estimate

the right hand side of the resultant inequality, we obtain

1

2p

d

dt

ð1
0

aðsÞR2pdx#C6

� ðp21Þ
p

ð1
0

aðsÞR2pdx

� �2p21

2p
ð1
0

ðaðsÞuR2Þ2pdx
� �1

2p

1

ð1
0

aðsÞR2pdx

� �2p21

2p
ð1
0

ðf1Þ2pdx
� �1

2p
�
;

where the positive constant C6 depends on μ1;μ2; ρ
0
1; ρ

0
2;m;M ; k0.

Taking into account jf1j#C6ðjuuxj1 jRju2 1 juj31 juj1 jg0jÞ, we arrive

at the inequality

yðtÞ5
ð1
0

aðsÞR2pdx

� �1=2p !

dy

dt
#C6

ð1
0

ðuR2Þ2pdx
� �1

2p

1 ðmax0# x# 1juðx; tÞjÞ2yðtÞ1VpðtÞ;

Vp5

ð1
0

g
2p
0 dx

� �1
2p

1

ð1
0

ðuuxÞ2pdx
ð1
0

� �1
2p

1

ð1
0

u6pdx

� �1
2p

;

from which it follows that

max0# x# 1jRðx; tÞj

#C6

�
sup0#t,Nmax0#x#1juðx; tÞj

ðt
0

ðmax0#x#1jRðx; τÞjÞ2dτ

1max0# x# 1jR0ðxÞj1
ðt
0

VNðτÞdτ
�
e
C6

ðt
0

ðmax0# x# 1juðx; τÞjÞ2dτ
;

ð2:164Þ
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VNðtÞ5max0# x# 1jg0ðx; tÞj1max0# x# 1juðx; τÞuxðx; tÞj
1 ðmax0# x# 1juðx; tÞjÞ3:

By virtue of (2.158), (2.159), (2.163) and (2.148), (2.149) we con-

clude thatðt
0

max
0# x# 1

uðx; τÞ
�� ��� �2

dτ1 sup
0#t,N

ðt
0

VNðτÞdτ#C6ðN2;N3;N4;N5;N6Þ

is uniform over t.

Let functions u0ðxÞ and g0ðx; tÞ satisfy both (2.163) and the additional

conditions

max0#x#1ju0ðxÞj#Δ1; sup0#t,N

ðt
0

max0#x#1jg0ðx; τÞjdτ#Δ2;

ð2:165Þ

Δ5maxΔ1;Δ2f g# 1

2C2
6T

max0#x#1jR0ðxÞj1sup0#t,N

ðt
0

VNðτÞdτ
� �21

;

ð2:166Þ
where the constant C6 depends only on the data specified in the problem.

By virtue of Lemma 5 we have sup0#t,Nmax0#x#1juðx; tÞj# 2Δ, while

the inequality shown below follows from (2.164)

max0#x#1jRðx; tÞj#C6

�
max0#x#1jR0ðxÞj1 sup0#t,N

ðt
0

VNðτÞdτ

1Δ
Ð t
0
ðmax0#x#1jRðx; tÞjÞ2dτ

�
;

and provided that conditions (2.165), (2.166) are satisfied for all tA½0;T �,
this yields the estimate

max0#x#1jRðx; tÞj#2C6 max0#x#1jR0ðxÞj1sup0# t,N

ðt
0

VNðτÞdτ
� �

�N7:

Thus, if conditions (2.163), (2.166) as well as u0ðxÞAW 1
2 ðΩÞ;

s0xALNðΩÞ are satisfied, then the estimate max0# x# 1jsxðx; tÞj#
C7ðN1;N2;N3;N4;N5;N6;N7;T Þ is true for all tA½0;T �. In the same ini-

tial data conditions, Lemma 6 leads to the nesting of utAL2ðQT Þ and
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therefore of uxxAL2ðQT Þ. Let in addition ðs0ðxÞ; u0ðxÞÞAW 2
2 ðΩÞ; gðx; tÞA

L2ð0;T ;W 1
2 ðΩÞÞ.

Differentiating equation (2.156) over x, we arrive at an equation for

zðx; tÞ � Rxðx; tÞ, which takes the form ðzjt505R0
xðxÞÞ

zt 1Uzx1Uxz5 f4; jf4j#C7ð11 jzj1 juxxj1 jg0xjÞ:
It will be easily seen that zðx; tÞAL2ðQÞ and therefore RtAL2ðQÞ.

After this step, it follows from system (2.133) that viAL2ð0;T ;W 2
2 ðΩÞÞ;

pxAL2ðQT Þ, and that the coefficients of (2.160) belong to space

Cα;α=2ðQT Þ in which αAð0; 1Þ. If in addition gðx; tÞAC11α;α=2ðQT Þ;
u0ðxÞAC21αðΩÞ and the appropriate data fitting conditions are satisfied,

then uðx; tÞAC21α;11α=2ðQT Þ. Returning to the equations for Rðx; tÞ and
zðx; tÞ, we obtain zðx; tÞ;Rtðx; tÞACα;α=2ðQT Þ, and proceeding to func-

tions, we conclude that viðx; tÞAC21α;11α=2ðQT Þ; pxðx; tÞACα;α=2ðQT Þ.

Theorem 2 The assertions of theorem 1 are true for all tA½0;T �, where
T satisfies the inequality (2.166).
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CHAPTER33
Multidimensional Numerical
Models of Subsurface Fluid
Dynamics

3.1 INTRODUCTION

Currently there is significant progress in the study of complex problems

involving subsurface fluid dynamics. These advances are mainly due to

the wide implementation of computing simulation into the practice of

applied science. The most impressive results have been obtained using the

finite difference and finite element methods.

Due to nonlinearity and variability of boundary conditions in the

problems addressed by subsurface fluid dynamics and restrictions imposed

by hardware (calculation rate, memory limits, etc.) it is necessary to develop

efficient numerical models that are easy to run on computers.

The main models used in this chapter involve the ML-model, Navier-

Stokes and Zhukovsky models describing fluid flow in porous media.

Nonlinear Navier-Stokes equations are numerically solved for conven-

tional variables and for the variables: flow function � turbulence of velocity.

There is no apparent advantage of using one method relative to the other.

Each of them has its own advantage in specific situations. For instance, the

variables flow function � turbulence, velocity � flow function are widely

used to solve linear problems in fluid dynamics.

However, one is faced with the problem of calculating the turbulence

value at the surface of solid body using the boundary conditions for

velocities. If we consider problems of fluid flow inside a channel having

given tangent velocity components and 4 pressure at the inlet and outlet

then additional complications might arise in association with determining

the turbulence function for given boundary conditions. In this chapter

we consider the method of numerical integration of nonlinear equations

to describe the flow of liquid in porous media under specified boundary

conditions. This is followed by the development of a numerical algorithm

to solve a problem of liquid flow in formation adjacent to a well under
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specified pressure at the inlet and outlet for an unknown formation

pressure.

Numerical simulation of the Navier-Stokes model for variables velocity �
pressure brings about a difficulty with fixing the boundary conditions for

pressure. Therefore, the numerical solution of these equations was made

for the variables velocity � flow function. Some sections below give results of

numerical calculation for problems of classical fluid dynamics using the above

variables.

3.2 CONVERGENCE OF FINITE-DIFFERENCE SCHEMES
FOR A NAVIER-STOKES MODEL WITH VELOCITY �
PRESSURE VARIABLES

3.2.1 Introduction
In this paragraph we address the issues of stability and convergence of

implicit finite-difference splitting schemes developed for approximated

Navier-Stokes equations of the second order with space variables. The limits

and convergence of solutions of schemes considered for the above problems

in an incompressible fluid using Navier-Stokes equations are proved by

methods of a priori estimations using a periodic flow approach under

specified pressure drop inside a planar channel. Numerous studies were con-

ducted using the difference technique applied to solve problems involving

Navier-Stokes equations for variables (u; v; p) with initial-boundary condi-

tions. The system of Navier-Stokes equations describes the flow of incom-

pressible fluid, which is known to differ from the Cauchy-Kovalevskaya

system. Consequently, in many papers the efficient algorithm of numerical

solution in variables (u; v; p) is developed to approximate Navier-Stokes

equations through an evolving system approach. The numerical solution of

regularized system of Navier-Stokes equations, examination of mathematical

problems of stability and convergence of proposed finite-difference schemes

are considered, for example, in papers [29, 70, 71, 77�79, 82, 98, 130].

It should be noted that the concept to approximate Navier-Stokes equations

using equations of an evolving type was formulated in a pioneering paper

by N.N. Vladimirova, B.G. Kuznetsov and N.N. Yanenko [29]. R. Temam

[130] proposed another approach to e-approximation of the Navier-Stokes

equations while considering the behaviour of a regularized solution when

ε-0. The difference scheme examined proved that under certain conditions

imposed on τ; h; ε the solution of the difference problem converges to

a solution of the equations of Navier-Stokes. O.A.Ladyzhenskaya and
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V. Y. Rivkind [82] considered different schemes to split regularized equa-

tions and problems of stability and convergence.

In paper [98] A.P. Oskolkov analysed the parabolic approximation of

Navier-Stokes equations.

Some splitting difference schemes and iteration approaches are studied

in papers by G.M. Kobelkov [70, 71]. The convergence of a solution of

some difference splitting schemes and difference properties of the auxiliary

regularized problem were studied in papers [77, 79]. The above papers

mainly considered schemes of the first approximation order using a conven-

tional difference grid template having arbitrary convergence.

Another approach to numerical solution of the two-dimensional

Navier-Stokes equations in variables ðu; v; pÞ is provided by methods to

develop difference schemes using various grids for respective dependent

variables. This approach combines advantages of reliable methods of find-

ing solutions to equations in compressible viscous gas, hereinafter referred

to as the method of “coarse particles” for incompressible fluid. Various

modifications of the “coarse particles” method have been described in the

book by O.M. Belotserkovsky [10]. Several papers, among them those by

G.M. Kobelkov [70], G.I. Timukhin and M.M. Timukhina [131, 132],

N. Danayev, B. Zhumagulov, B.G. Kuznetsov, Sh. Smagulov [38] have

addressed the issue of stability and convergence of difference solutions

of “coarse particles” methods applied to Navier-Stokes equations in an

incompressible fluid. In [34] the stability and convergence are analysed

using a heuristic approach based on the use of a type of parabolic differ-

ence approximation.

For practical calculations the explicit method of “coarse particles” [10]

is frequently used both in our country and abroad. A downside of using

the above method is the arbitrary stability of difference solutions.

Papers [7, 11, 33�35] have considered implicit difference schemes:

~un11=22~un

τ
1 ð~un � rnÞ~un11=21rhp

n 5
1

Re
Δh~u

n11=2;

~un11 2~un11=2

τ
1rhðpn112 pnÞ5 0; divh~u

n115 0: ð�Þ

One can easily deduce that the use of implicit calculation at the initial

stage of a difference scheme allows to avoid a rigid constraint imposed on

parameters of the difference grid. The difference scheme (�) requires the

131Multidimensional Numerical Models of Subsurface Fluid Dynamics



transformation of two-dimensional operators of the type ðE2 τvΔhÞ in

each time step. Paper [132] made use of an efficient difference splitting

scheme of a stabilizing correction type. Numerical calculations were

made over a wide range of parameters considered, yet it was pointed out

that that substantiation of stability and convergence of difference solutions

was not verified.

The current section examines the use of implicit difference schemes

to split approximations of the second order against space variables to

regularize the system of Navier-Stokes equations and to substantiate the

stability and convergence of implicit splitting “coarse particle” schemes

using an example of flow of fluid having a known pressure drop inside a

planar channel.

3.2.2 Formulation of Problem Having
Initial-boundary Conditions
We assume that area ΩAR2 is a square. Inside Ω we consider the system

of Navier-Stokes equations

@~u

@t
1 ð~v � rÞ~v1rp5 νΔ~v1αðtÞrx1; div~v5 0 ð3:1Þ

having the following initial and boundary conditions:

~vðx1; x2; 0Þ5~v0ðx1; x2Þ;
@k~v

@xk1

����
x50

5
@k~v

@xk1

����
x151

;
@kp

@x1

����
x150

5
@kp

@xk1

����
x151

; k5 0; 1; 2; . . .

ð3:2Þ

~v5 0 at x2 5 0; x25 1, that is the components of velocity vector ~v are

equal to zero at the lower and upper boundaries of the calculation

domain. In this case coefficient αðtÞ in equation (3.1) characterizes the

known pressure drop.

3.2.3 Convergence of Fractional Step Difference
Schemes to Regularize a Problem
Difference properties of the problem (3.2) having initial-boundary con-

ditions for regularized system of equations (3.1) have been studied in

paper [53]. A priori estimations for solutions uniform in regularization

parameters have been obtained. Here and hereinafter we will assume
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domain Ω being covered by a rectangular grid Ωh. Let’s designate the

sets of boundary and boundary-adjacent nodes as follows:

Γ15 ðx1i;x2jÞ9i50;
1

2
;1;

3

2
; j50;

1

2
;1;

3

2
; . . .;N ; x1i5 ih;x2j5 jh;h51=N


 �
;

Γ25 ðx1i;x2jÞ9i5N2
1

2
;N ;N1

3

2
; j50;

1

2
;1;

3

2
; . . .;N ; x1i5 ih;x2j5 jh;h51=N


 �
;

Γ35 ðx1i;x2jÞ9i50;
1

2
;1;

3

2
; . . .;N ; j50;

1

2
; x1i5 ih;x2j5 jh;h51=N


 �
;

Γ45 ðx1i;x2jÞ9i50;
1

2
;1;

3

2
; j5N2

1

2
;N ; x1i5 ih;x2j5 jh;h51=N


 �
:

Similar to the method of cell particles [10], we can interpret each cell

as a volume element having a pressure that can be calculated in the cell’s

centre. Consider the following auxiliary difference scheme:

ðui11=2jÞx1x1 1 ðui11=2jÞx2x2 2 ðpijÞx1 5 0; i5 1;N 2 1; j5 1;N 2 1;

ðvij11=2Þx1x1 1 ðvij11=2Þx2x2 2 ðpijÞx2 5 0; i5 1;N 2 1; j5 1;N 2 2; ð3:3Þ

ðui11=2jÞx1 1 ðvij11=2Þx2 5 ρh; i5 2;N 1 1; j5 1;N 2 1; or i5 1;N ;

having boundary conditions

~u9Γ1
5~u9Γ2

;~p9Γ1
5~p9Γ2

;~u9Γ3,Γ4
5 0; ð3:4Þ

accounting for the fact that
PN

i51

PN21
j51 pijh

25 0.

3.2.3.1 Estimates of Difference Solutions

Lemma 1 Solution of problems (3.3),(3.4) can be estimated as

:vx1x1:
2
1 :vx1x2:

2
# c:ph;x1:

2
: ð3:5Þ

Estimation (3.5) is proved just in the same way as lemma 1 in paper [54].
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Further we consider the system of equations (3.3) and (3.4) with

inhomogeneous boundary conditions, that is

vi;1=25ψ1ðx1Þ; vi;N21=25ψ2ðx1Þ; ð3:6Þ

assuming that ρh5 0.

We assume that ψ1;ψ2- are sufficiently smooth functions which are

periodic in x1 and that the corresponding conformity conditions are met.

Lemma 2 Solution of problems (3.3),(3.4),(3.5) can be estimated as follows

:~vx1x1:
2
1 :vx1x2:

2
1 :px1:

2

# c
1

h

XN

i51

�
ððψ1;iÞx1Þ21 ðψ2;i;x1Þ2

�
h1

�
ðψ1;i;x1;x1Þ21 ðψ2;i;x1;x1Þ2

�
h

( )
;

ð3:7Þ
where c is a constant independent of grid spacing h0.

Proof Let’s introduce an auxiliary function

ξij11=25

ψ1ðx1Þ; 0# x1# 1; j5 0

0; 0# x1 # 1; j5 1;N 2 1

ψ2ðx1Þ; 0# x1# 1; j5N :

8>><
>>:

Multiply the first equation (3.3) by h2ui11=2j, the second equation (3.3)

by h2ðvij11=22 ξij11=2Þ.

Using formula of summation by parts we have

:~vx1:
2
1 :~vx2:

2
1
PN21

j51

PN11
i52 pijðui11=2jÞx1h2

1
PN

j51

PN
i52 pijðuij11=22ξij11=2Þx2 1 ðvx1 ; ξx1 �1 ðvx2 ; ξx2 �5 0:

This brings us to expression

1=2ð:~vx1:
2
1 :~vx2:

2Þ1 PN11
i52

PN
j51 pijðξij11=2Þx2h2

1
PN

j51

PN11
i52 pijðui11=2; j;x1 1 vij11=2;x2Þh2# cð:~ξx1:

2
1 :~ξx2:

2Þ:
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that yields the estimation

:~vx1:
2

L2ðΩnÞ1 :~vx2:
2

L2ðΩnÞ1 :p:2
L2ðΩnÞ# cð:~ξx1:

2

L2ðΩnÞ1 :~ξx2:
2

L2ðΩnÞÞ: ð3:8Þ
We note that

:~ξx1:
2
1 :~ξx2:

2
# c
XN

i51
1=2½ðψi;1Þ21 ðψ2;iÞ2�1 ðψ1;i;x1Þ2 1 ðψ2;i;x1Þ2
� �

h:

ð3:9Þ
If we differentiate equation (3.3) against x1 and introduce designations

px1 5 q; ux1 5 ~u; vx1 5 ~v;ψ1;x1 5
~ψ1;ψ2;x1 5

~ψ2, then we can formulate

problem for q; ~u, and ~v

ð ~ui11=2jÞx1x1 1 ð ~ui11=2jÞx2x2 2 ðqijÞx1 5 0;

ð~vij11=2Þx1x2 1 ð~vij11=2Þx2x2 2 ðqijÞx2 5 0; i5 1;N ; j5 1;N 2 1;

ð ~ui11=2jÞx1 1 ð~vij11=2Þx2 5 0; i5 1;N ; j5 1;N 2 1 or i5 2;N 1 1; ð3:10ÞXN

i51

XN21

j51
qijh

25 0:

The system of equations (3.10) is solved with the following conditions

~~v9Γ1
5 ~~v9Γ2

; ~~v9Γ3
5 ð0; ~ψ1Þ; q9Γ1

5 q9Γ2
; ~~v9Γ4

5 ð0; ~ψ2Þ: ð3:11Þ

:~vx1:
2

L2ðΩnÞ1 :~vx2:
2

L2ðΩnÞ1 :q:2
L2ðΩnÞ

#
c

h

XN

i51
ðψ1;i;x1Þ21 ðψ2;i;x1Þ21 ðψ1;i;x1;x1Þ21 ðψ2;i;x1;x2Þ2
� �

h
n o

:

Lemma 2 is proved.

3.2.3.2 Linear Non-stationary Problem ðλ5 0Þ
@~v

@t
1λð~v � rÞ~v1rp5 νΔ~v1αðtÞrx1; div~v5 0; ð3:12Þ

~vðx1; x2; 0Þ5~v0ðx1; x2Þ;~v9γ 5 0;

ð
Ω
pdx1dx25 0;
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@k~v

@xk1

����
x150

5
@k~v

@xk1

����
x151

;
@kp

@xk1

����
x150

5
@kp

@xk1

����
x151

; k5 0; 1; 2; . . . ð3:13Þ

In order to obtain the numerical solution for problems (3.12), (3.13)

we will use difference schemes developed for regularized systems of the

following shape:

A~vn11
t 1rhp

n11 5 vΔh~v
n111αðtn11Þrhx1 2Δt � Rð~vn11;~vnÞ; ð3:14Þ

2εpn11
t

1 divh~v
n115 0: ð3:15Þ

Here ~v is a vector having the components ðui11=2j; vij11=2Þ;
i5 1;N ; j5 1;N 2 1, so equation (3.14) is calculated at points

i5 2;N 1 1 or i5 1; . . .;N ; j5 1;N 2 1, where p- is the grid pressure in

point ði; jÞ. Operators divh and rh have the form:

divh~v
n115

ui11=2j 2 ui21=2j

h
1

vij11=22 vij21=2

h
;

rhp
n115

pi11j 2 pij

h
;
pij11 2 pij

h

� 

5 ðpx1 ; px2Þ:

Let A~vn11
t 5 ðAun11

t
;Avn11

t
Þ. R;A � are positively determined, self-

adjoint operators. In addition, the condition A.E is satisfied,

A5
E2Δtα0Δh1ΔtχΛ11 ΔtχΛ12

ΔtχΛ21 E2Δtα0Δh1ΔtχΛ22

� �
;χ5

Δt

ε
: ð3:16Þ

Difference operators Λkm; k;mA½1; 2�, are such that

Λkk~v
n115~vn11

xkxk
; k5 1; 2;Λ12v

n115Λ12v
n11
ij11=2 5 ðvn11

ij11=2Þx1x2 ;
Λ21u

n115Λ21u
n11
i11=2j 5 ðun11

i11=2jÞx1x2 :
ð3:17Þ

As to Rð~vn11;~vnÞ5 ðR1ðun11; unÞ;R2ðvn11; vnÞÞ let us assume that condi-

tions specified in paper [54] are fulfilled.
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Let’s write down components in (3.14), (3.15):

ðE2Δtα0Δh1ΔtχΛ11Þ �
un11
i11=2j 2 un

i11=2j

Δt
1ΔtχΛ12 �

vn11
ij11=2 2 vn

ij11=2

Δt

5 νΔhu
n11
i11=2j 1αðtn11Þ1χðdivh~vn11Þx1 2 pnx1 2ΔtR1ðun11

i11=2j; u
n
i11=2jÞ;

ð3:18Þ

E2Δtα0Δh1ΔtχΛ22ð Þ �
vn11
ij11=2 2 vn

ij11=2

Δt
1ΔtχΛ21 �

un11
i11=2j 2 un

i11=2j

Δt

5 νΔhu
n11
ij11=21χðdivh~vn11Þx2 2 pnx2 2ΔtR2ðvn11

ij11=2; v
n
ij11=2Þ;

ð3:19Þ

εpn11
t

1 divh~v
n115 0: ð3:20Þ

From (3.18) and (3.19) it follows that

~vn112~vn

Δt
5 ðα01 νÞΔh~v

n112α0Δh~v
n2rhp

n1χrhdivh~v
n

1αðtn11Þrhx12ΔtRð~vn11;~vnÞ:
ð3:21Þ

Using equation in (3.21)

Rð~vn11;~vnÞ5 ðα01νÞ2Λ11Λ22ð~vn11 2~vnÞ;

we obtain a stabilizing correction scheme:

~vn11=2 2~vn

Δt
5 ðα01 νÞΛ11~v

n11=21 ðα01 νÞΛ22~v
n 2α0Δh~v

n

1χrhdivh~v
n2rhp

n1αðtn11Þrhx1;

ð3:22Þ

~vn112~vn11=2

Δt
5 ðα01 νÞΛ22ð~vn112~vnÞ; pn115 pn2χdivh~vn11:

Schemes (3.18)�(3.20), and (3.22) have the boundary conditions:

~v9
t50

5~vð0Þ; p9
t50

5 0;~vn119Γ1
5~vn119Γ2

;~vn119Γ3,Γ4
5 0: ð3:23Þ
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3.2.3.3 Stability and Convergence of Difference Schemes
of a Stabilizing Correction Type (3.22), (3.23)
We assume that solution of problem (3.12), (3.13) is sufficiently smooth to

ensure conformity conditions. Condition of unique determination of pressure

is provided by
P

ωh
ph25 0.

Theorem 1 Let solution of problem (3.12),(3.13) be sufficiently smooth. Then the

solution of problems (3.14),(3.15) is stable and the following estimations are valid:

maxm:A1=2~vm:2
L2ðΩhÞ1

XM

m51
:Δ1=2

h ~vm:2
L2ðΩhÞΔt1 ε:pn11:2

L2ðΩhÞ# c;

ð3:24Þ

:A1=2~vm2A1=2~vmh :
2

L2ðΩhÞ1
XM

m51
:Δ1=2

h ~vm2Δ1=2
h ~vmh :

2

L2ðΩhÞ

Δt# cððΔtÞ21 h3Þ
ð3:25Þ

at Δt; h-0.

Proof Let us multiply (3.14), (3.15) by 2Δt~vn11h2; 2pn11Δth2 and sum with

respect to Ωh, using the Green difference formula and Cauchy inequality.

As a result we obtain estimate (3.24). Estimate (3.24) provides the stability

of the difference solution and proves that difference schemes (3.14),

(3.15) have solutions. Now we are left with proving estimate (3.25). Let

~vn11
h 5 ðun11

h;i11=2j; v
n11
h;ij11=2Þ; pn11

ij;h � is the value of exact solution of system

(3.12), (3.13) in the corresponding node. Let us consider the deficiency

A~vn11
h;t 2 νΔh~v

n11
h 1rhp

n11
h 2αðtn11Þrhx11ΔtRð~vn11

h ;~vnhÞ5~r nh; ð3:26Þ

εpn11
h;t 1 divh~v

n11
h 5 ρnh: ð3:27Þ

Let’s denote

~ωn11 5~vn11
h 2~vn11;πn115 pn11

h 2 pn11: ð3:28Þ

Then for ~ωn11;πn11we obtain equation

A~ωn11
t 5νΔh~ω

n112rhπn112ΔtRð~ωn11;~ωnÞ1~r nh;επ
n11
t 1divh~ω

n115ρnh;
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~ωð0Þ50;πð0Þ50; ð3:29Þ

~ωðn11Þ9Γ1
5~ωðn11Þ9Γ2

;πðn11Þ9Γ1
5πðn11Þ9Γ2

;

~ωðn11Þ9Γ3
5ð0;vðn11ÞÞ9Γ3

;~ωðn11Þ9Γ4
5ð0;vðn11ÞÞ9Γ4

:
ð3:30Þ

Let us consider the auxiliary problems:

1: νΔh~ϕm2rhq
m 5 0; divh~ϕ

m5 ρmh ;m5 0; 1; 2; . . .;M ; ð3:31Þ

~ϕðmÞ9Γ1
5~ϕðmÞ9Γ2

;qðmÞ9Γ1
5qðmÞ9Γ2

;~ϕðmÞ9Γ3,Γ4
50;

X
ωh

q
ðmÞ
ij h250: ð3:32Þ

2: νΔh
~ψ
m
2Δhq

m50;divh
~ψ

m
50;m50;1;2; . . .;M ; ð3:33Þ

~ψ
ðmÞ
9Γ1

5~ψ
ðmÞ
9Γ2

;~ψ
ðmÞ
9Γ3

5 ð0;vðmÞÞ9Γ3
;~ψ

ðmÞ
9Γ4

5 ð0;vðmÞÞ9Γ4
: ð3:34Þ

Owing to lemmas 1, 2 solution of problems (3.31�3.34) can be

estimated as:

:~ϕm
x1
:2
L2ðΩhÞ1 :~ϕm

x2
:2
L2ðΩhÞ1 :qm:2

L2ðΩhÞ# c:pmh :
2

L2ðΩhÞ;

:~ϕm11
tx1

:2
L2ðΩhÞ1 :~ϕm11

tx2
:2
L2ðΩhÞ1 :qm11

t
:2
L2ðΩhÞ# c:pm11

h;t
:2
L2ðΩhÞ;

ð3:35Þ

:~ϕx1x1
:2
L2ðΩhÞ1 :~ϕx1x2

:2
L2ðΩhÞ# c:ph;x1:

2

L2ðΩhÞ; ð3:36Þ

:~ψ
m

x1
:2
L2ðΩhÞ1:~ψ

m

x2
:2
L2ðΩhÞ1:qm:2

L2ðΩhÞ

# c
PN

i51

1

h

�
vmh;i;1=2Þ21

�
vmh;i;N11=2


2� �
1
�
vh;i;1=2


2
x1
1
�
vh;i;N11=2


2
x1

� �
h

(

1
�
vm
h;i;1=2


2
x1
1
�
vm
h;i;N21=2


2
x1

� �
h

)
;

ð3:37Þ
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:~ψ
m11

tx1
:2
L2ðΩhÞ1:~ψ

m11

tx2
:2
L2ðΩhÞ1:qm11

t
:2
L2ðΩhÞ

#
c

h

XN

i51

h�
vm11
h;i;1=2t


2
1
�
vm11
h;i;N11=2;t


2i
h


 �

1 c
PN

i51

h�
vm11
h;i;1=2tx1


2
1
�
vm11
h;i;N11=2;t ;x1


2i
h;

ð3:38Þ

:~ψ
m

x1x1
:2
L2ðΩhÞ1:~ψ

m

x1x2
:2
L2ðΩhÞ#

c

h

XN

i51

h�
vmh;i;1=2x1


2
1
�
vmh;i;N21=2;x1


2i
h


 �

1 c
PN

i51

h�
vm
h;i;1=2x1x1


2
1
�
vm
h;i;N11=2;x1x1


2i
h:

ð3:39Þ

Let us make a substitution

~ωn115~ωn111~ϕn111~ψ
n11

: ð3:40Þ

Using equations (3.28), (3.40), (3.29)�(3.34) we obtain the following

problem for ~ωn11
:

A~ωn11
t 5νΔh~ω

n112rhπn112ΔtRð~ωn11;~ωnÞ1~f
n11

1~r nh;επ
n11
t

1divh~ω
n1150:

ð3:41Þ

Here

~f
n11

5νΔhð~ϕn111~ψ
n11Þ2Að~ϕn11

t 1~ψ
n11

t Þ2ΔtRð~ϕn111~ψ
n11

;~ϕn1~ψ
nÞ

with the following conditions for ~ω5 ðω1;i11=2j;ω2; j11=2iÞ:

~ωð0Þ5~ϕð0Þ1~ψ
ð0Þ

~ωðn11Þ9Γ1
5~ωðn11Þ9Γ2

; ~ωðn11Þ9Γ3,Γ4
5 0;πðn11Þ9Γ1

5πðn11Þ9Γ2
;
P

ωh
πðn11Þh25 0

ð3:42Þ
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Now let us multiply (3.41) by 2Δth2~ωðn11Þ; 2Δtπðn11Þh2 and sum in Ωh.

As a result we obtain

:A1=2~ωn11:22 :A1=2~ωn:2 1 2Δtν:Δ1=2~ωn11:21 ε
�
:πn11:2 2 :πn:2

�
# c:Δ1=2

�
~ϕn111~ψ

n11�
: � :Δ1=2~ωn11:

1 :A1=2
�
~ϕn11

t 1~ψ
n11

t

�
: � :A1=2~ωn11:Δt

1Δt:~ωn11: � :~r nh:1 2ðΔtÞ3�~ϕn11
tx1x2

1~ψ
n11

tx1x2
; ~ωn11

x1x2

�
2 ðΔtÞ2�:~ωn11

x1x2
:22 :~ωn

x1x2
:2
�
:

ð3:43Þ

From estimate (3.43) we obtain the following inequality:

:A1=2~ωn11:22:A1=2~ωn:212ν:Δ1=2~ωn11:2Δt

1ðΔtÞ2 :~ωn11
x1x2

:22:~ωn
x1x2

:2
� 


1ε :πn11:22:πn:2
� 


#c:Δ1=2~ωn11:Δt

1c :Δ1=2 ~ϕn111~ψ
n11

� 

:Δt1:A1=2 ~ϕn11

t 1~ψ
n11

t

� 

:2Δt1:Δ1=2~ωn11:2Δt

� 


1ðΔtÞ3 :~ϕn11
tx1x2

:21:~ψ
n11

tx1x2
:21:~ωn11

x1x2
:2

� 

1Δt:rnh:

2
1Δt:~ωn11:2:

ð3:44Þ

Using the difference analogy of the Gronuoll lemma (3.44) we obtain

maxm:~ω
m:2 1

PM
m51 :Δ

1=2~ωm:2Δt# c
PM

m50 :r
m
n :

2Δt

1
PM

m51 :A
1=2ð~ϕm

t 1
~ψ
m

t Þ:
2Δt1 ðΔtÞ2PM

m51 :~ϕ
m
tx1x2

1~ψ
m

tx1x2
:2Δt

1 :A1=2~ω0:2:

ð3:45Þ
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It is obvious that~r nhBOðΔt1 h2Þ. Let’s consider estimates (3.29)�(3.39).

We assume that ε5Δt, which allows us to write ρnhBOðΔt1 h2Þ. Then

:A1=2~ϕm:; :A1=2~ϕm11
t :BOðΔt1 h2Þ; vmh;i;1=2BOðh2Þ;

vmh;i;1=2x1 5
vm
h;i11;1=22 vm

n;i;1=2

h

5
vm
h;i;1=21 hðvm

h;i;1=2Þx1 1 0; 5h2ðvm
h;i;1=2Þx1x2 1Oðh3Þ2 vm

h;i;1=2

h

5 ðvmh;i;1=2Þx1 1
h

2
ðvmh;i;1=2Þx1x2 1Oðh2Þ

5 ðvh;i;0Þx1 1
h

2
ðvi;0Þx1x2 1

h2

8
ðvi;0Þx1x2x2 1

h

2
ðvi;0Þx1x2 1Oðh2Þ:

Consequently,

ðvmh;i;1=2Þðx1ÞBOðh2Þ; ðvmh;i;1=2Þðx1x1ÞBOðh2Þ; ðvmh;i;1=2Þðx1tÞBOðh2Þ;

ðvmh;i;1=2Þtx1x1ÞBOðh2Þ:
ð3:46Þ

Owing to validity of estimates (3.38), (3.39) and (3.46) we have

:A1=2~ψ
m

t :
2
; :A1=2~ψ

m
:2BOðh3Þ; :~ϕm

tx1x2
:2; :~ψ

m

tx1x2
:2BOðhÞ: ð3:47Þ

Using (3.45)�(3.47), we find

maxm:~ω
m:21

XM

m51
:Δ1=2~ωm:2Δt# cððΔtÞ2 1 h3Þ; ð3:48Þ

from which accounting for (3.48) and formula (3.41) we finally obtain

maxm:~ω
m11:21

XM

m50
:~ωm11

x :2Δt#OððΔtÞ2 1 h3Þ:

This proves theorem 1.
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3.2.3.4 Difference Scheme for Nonlinear Equation
We will examine the following difference scheme that approximates

equation (3.1):

A~vn11
t 5 νΔh~v

n112rnp
n111αðtn11Þrnx12Lhð~vnÞ2ΔtRð~vn11;~vnÞ;

εpn11
t

1 divh~v
n115 0;

ð3:49Þ
with initial-boundary conditions in the form of (3.24). Lhð~vÞis the differ-

ence operator approximating the convective terms in equation (3.1) to the

second order of accuracy [54].

We will analyse the convergence of a difference scheme solution (3.49),

which is linear relative to ~vn11. Solvability and convergence of

(3.49) are proved using method proposed for linear equations. We will

consider inversion of the nonlinear term in more detail. Let ~vn11
h 5

ðun11
i11=2j; v

n11
ij11=2Þ; ph;ij be the values of the exact solution. Let us consider the

discrepancy

A~vn11h;t 1Lhð~vnhÞ1rhp
n11
h 2νΔh~v

n111Δt �Rð~vn11h ;~vnhÞ2αðtn11Þrhx15~r nh;

εpn11
h;t

1divh~v
n11
h 5 snh:

ð3:50Þ
Using designations (3.29), we come to the solution of a problem

A~ωn11
t 5 νΔh~ω

n112rhπn112Δt � Rð~ωn11; ~ωnÞ1Lhð~vnhÞ2Lhð~vnÞ1~r nh;

επn11
t

1 divh~v
n11
h 5 snh

ð3:51Þ
having the initial-boundary conditions (3.30).

We will dwell on the nonlinear terms in more detail Lhð~vnhÞ2Lhð~vnÞ.
We have here

LhðvnhÞ2LnðvnÞ

5 un
h;i11=2ju

n

h;i11=2jx
0
1

1
1

4
ðvnh;i11j11=21vnh1;i11j21=21vnhij11=21vnhij21=2Þun

h;i11=2jx
0
1

" #

2 un
i11=2ju

n

i11=2jx
0
1

1
1

4
ðvni11j11=21vni11j21=21vnij11=21vnij21=2Þun

i11=2j;x
0
2

" #

5
P4

k51 Ik:

ð3:52Þ
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I11I35unh;i11=2ju
n

h;i11=2jx
0
1

2uni11=2; ju
n

i11=2jx
0
1

5unh;i11=2ju
n

h;i11=2jx
0
1

2
�
unh;i11=2j1ωn

1i11=2jÞðun
h;i11=2jx

0
1

1ωn

1i11=2jx
0
1



52ωn

1i11=2ju
n

h;i11=2jx
0
1

2ωn
1i11=2jω

n

1i11=2jx
0
1

2unh;i11=2; jω
n

1i11=2jx
0
1

;

ð3:53Þ

I21I452
1

4
ðωn

2i11j11=21ωn
2i11j21=21ωn

2ij11=21ωn
2ij21=2Þun

h;i11=2jx
0
2

2
1

4
ðvnhi11j11=21vnhi11j21=21vnhij11=21vnhij21=2Þωn

1i11=2jx
0
2

2
1

4
ðωn

2i11j11=21ωn
2i11j21=21ωn

2ij11=21ωn
2ij21=2Þωn

1i11=2jx
0
2

:

ð3:54Þ

Let ~ϕm; ~ψ
m
be solution of problems (3.31)�(3.34). Using substitution

(3.40) we can write equations:

A~ωn11
t 5νΔh~ω

n111~r nh2rhπn112ΔtURð~ωn11;~ωnÞ1
X4

k51
Ik

5νðΔh~ϕn111Δh
~ψ
n11Þ2Aðϕn11

t
1ψn11

t Þ
2ΔtRð~ϕn111~ψ

n11
;~ϕn1~ψ

nÞ;

ð3:55Þ

επn11
t 1divh~ω

n1150

having initial-boundary conditions (3.42).

We can multiply (3.55) by 2Δt~ωn11
h2; 2Δtπn11h2 and take sum in Ωh.

Then using an embedding inequality we obtain

:A1=2~ωn11:22:A1=2~ωn:212v:Δ1=2~ωn11:2Δt

1ðΔtÞ2ð:~ωn11
x1x2

:22:~ωn
x1x2

:2Þ1εð:πn11:22:πn:2Þ#δ:Δ1=2~ωn11:2Δt

1Δtc:Δ1=2ð~ϕn111~ψ
n11Þ:21:A1=2ðϕn11

t
1ψn11

t Þ:2

Δt1 c:A1=2~ωn11:Δt1ðΔtÞ3ð:~ϕn11
tx1x2

1~ψ
n11

tx1x2
:21:~ωn11

x1x2
:2Þ

1:~r nh:
2Δt12Δt9ðLhð~vnhÞ2Lhð~vnÞ;~ωn11Þ9:

ð3:56Þ
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Let us estimate nonlinear terms in (3.56):

ωn
1u

n

h;x
0
1

;ωn11
1

� �
5 ðωn

11ϕn
11ψn

1Þun
h;x
0
1

;ωn11
1

� �

#maxΩh

����un
h;x
0
1

�����:~ωn:
L2ðΩnÞ1 :~ϕn:

L2ðΩnÞ1 :~ψ
n
:
L2ðΩnÞ



:~ωn11:

L2ðΩnÞ

# c
�
:~ωn11:2

L2ðΩnÞ1 :~ϕn:
L2ðΩnÞ1 :~ψ

n
:2
L2ðΩnÞ1 :~ωn:2

L2ðΩnÞ



:

���� unhω
n

1x
0
;ωn11

1

� �����5
����unh ωn

1;x
0
1ϕn

1;x
0
1ψn

1;x
0

� �
ωn11
1

����
#maxΩh9unh9ð:~ωn

x: � :~ωn11:1 ð:~ϕn
x:1 :~ψ

n

x:Þ � :~ωn11:Þ# δ:~ωn
x:

2

1c
�
:~ωn11:21 :~ϕn

x:
2
1 :~ψ

n

x:
2


:

ð3:57Þ
The remaining nonlinear terms are evaluated in the same manner.

Assume that

ν2 c:~ωn
x: � :~ωn:$ 0: ð3:58Þ

Then from (3.49)�(3.51) we find

maxm:A1=2~ωm:21
XM

m51
:Δ1=2~ωm:2Δt# cððΔtÞ21 h3Þ: ð3:59Þ

Let us determine the sufficiency condition for inequality (3.58) to

take place. From (3.58) accounting for (3.59) we obtain

ν2 c:~ωx: � :~ωn:$ ν2
c

h
� :~ωn:25 ν2

c0

h
ððΔtÞ21 h3Þ$ 0: ð3:60Þ

One can easily see that when (3.60) is valid estimate (3.59) takes place.

This provides a proof to the following theorem.

Theorem 2 Let solution of problems (3.1),(3.2) be sufficiently smooth and condi-

tions (3.60) are fulfilled. Then solutions of problems (3.23),(3.49) converge to solution

of problems (3.1),(3.2) in energy metrics and

maxm:~ω
m:

L2ðΩhÞ1
XM

m51
:ωm

x :
2Δt# cððΔtÞ21 h3Þ:

Note For various choice in Rð~vn11;~vnÞ one has different types of fractional

steps bringing about different rates of solution convergence. These issues

can be analysed using above approach.
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3.2.4 Convergence of Finite-difference Schemes
of “Coarse Particles” Type
3.2.4.1 Linear Case
For linear Navier-Stokes equations (3.12) having initial-boundary condi-

tions (3.13) we can develop a difference scheme in stages.

In the first stage we solve equations:

u
n11=2
i11=2j 2 un

i11=2j

Δt
5 νððun11=2

i11=2jÞx1x1 1 ðuni11=2jÞx2x2Þ2 ðpnijÞx1 1αðtnÞ; ð3:61Þ

v
n11=2
ij11=22vn

ij11=2

Δt
5νððvn11=2

ij11=2Þx1x1 1ðvnij11=2Þ ~x2x2Þ2ðpnijÞx2 ; i51;N ; j51;N21:

In the second stage we do the same for equations:

u
n11=2
i11=2j 2 un

i11=2j

Δt
5 νðun11=2

i11=2jÞx2x2 ; ð3:62Þ

v
n11=2
ij11=2 2 vn

ij11=2

Δt
5 νðvn11=2

ij11=2Þx2x2 ; i5 1;N ; j5 1;N 2 1:

In the third stage equations

un11
i11=2j 2 u

n11=2
i11=2j

Δt
2 ðpn11

ij 2pnijÞx1 5 0;

vn11
ij11=22 v

n11=2
ij11=2

Δt
2 ðpn11

ij 2pnijÞx2 5 0; ð3:63Þ

divh~v
n115 ðun11

i11=2jÞx1 1 ðvn11
ij11=2Þx2 5 0:

are solved. Solutions (3.61)�(3.63) should meet boundary conditions of

the form (3.4).

Theorem 3 Let solution of the difference problem (3.12),(3.13) be given by a suffi-

ciently smooth function Then the solutions of difference equations (3.4),(3.61)�(3.63)

converge to solution of initial problem at a rate of OðΔt1 h3=2Þ in energy metrics.
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Proof From (3.61), (3.62) we have

u
n11=2
i11=2j 2 un

i11=2j

Δt
5 ν u

n11=2
i11=2j

� 

x1x1

1 u
n11=2
i11=2j

� 

x2x2

� �
2Δt u

n11=2
i11=2j

� 

x1x1x2x2

1αðtnÞ2 ðpnijÞx1 ;

v
n11=2
ij11=22 vn

ij11=2

Δt
5 ν v

n11=2
ij11=2

� 

x1x1

1 v
n11=2
ij11=2

� 

x2x2

� �
2Δt v

n11=2
ij11=2j

� 

x1x1x2x2

2 ðpnijÞx2 :
ð3:64Þ

Consider (3.63) and (3.64) with initial-boundary conditions (3.4).

Hereinafter we drop the “bar symbol” in (3.63), (3.64). Let us multiply (3.63)

and (3.64) by 2Δtu
n11=2
i11=2jh

2; 2Δtv
n11=2
ij11=2h

2 and 2Δtun11
i11=2jh

2; 2Δtvn11
i11=2jh

2 and

summing on Ωh. As a result we obtain

:~vn11=2:22:~vn:22:~vn11=22~vn:212ν:~vn11=2x :2Δt

1Δt :~vn11=2x1x2
:22:~vnx1x2:

2
� 


52Δt αðtnÞ;~vn11=2
� 


12Δt pn;divh~v
n11=2

� 

;

ð3:65Þ
:~vn11:22:~vn11=2:21:~vn112~vn11=2:2

522Δt Δh pn112pn
� �

;~vn11
� �

32Δt αðtnÞ;~vn11=2
� 


52Δtð~vn;~αðtnÞÞ12Δt ~vn11=22~vn;~αðtnÞ
� 


#2Δt:~vn: �:~αðtnÞ12Δt:~vn11=22~vn: �:~αðtnÞ:
12Δt ~vn112~vn11=2;qradhpn

� 

52ðΔtÞ ~vn112~vn11=2;rhðpn112pnÞ;1rhp

n11
� 


52:~vn112~vn11=2:2

22ðΔtÞ2 rhðpn112pnÞ;rhp
n11

� �
52:~vn112~vn11=2:2

2ðrtÞ2 :rhp
n11:22:rhp

n:21:qradhðpn112pnÞ:2
� 


5~vn112~vn11=2:22ðΔtÞ2 :rhp
n11:22:rhp

n:2
� 


:

ð3:66Þ
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As a result of summation in (3.65), (3.66) we obtain the estimate

maxm:~v
m:21 2νΔt

PM
m51 :~v

m11=2
x :21Δtmaxm:~v

m11=2
x1x2

:2

1 ðΔtÞ2:rhp
n11:2# :~v0:2 1Δt:~v0x1x2:

2
1 ðΔtÞ2:rhp

0:2;
ð3:67Þ

from which due to (3.65) we have

maxm:~vm11=2:2# c,N: ð3:68Þ

Estimates (3.67), (3.68) provide the stability of difference schemes

(3.61)�(3.63). We will determine the convergence of solutions for

scheme (3.4), (3.61)�(3.63).

Let u
n11=2
h;i11=2j; v

n11=2
h;ij11=2; u

n11
h;i11=2j; v

n11
h;i11=2j; p

n
h;i; j � be the values of exact

solution of difference problems (3.12), (3.13) in corresponding grid nodes.

Assume that

~vn11=2
h;t

5 νΔh~v
n11=2
h 2rhp

n
h 1αðtnÞrhx12Δtð~vn11=2

h Þx1x1x2x2 1~r nh;

~vn11
h 2~v

n11=2
h

Δt
52Δhðpn11

h 2 pnhÞ1~r n1;h; divh~v
n11
h 5 ρn11

h :

Let ~ωn115~vn11
h 2~vn11; ~ωn11=25~v

n11=2
h 2~vn11=2. Owing to (3.63),

(3.64) we obtain the following equation for ~ω

~ωn11=22~ωn

Δt
5 νΔh~ω

n11=22 qradhπn 2Δtð~ωn11=2Þx1x1x2x2 1~r nh;

~ωn112~ωn11=2

Δt
1rhðπn112πnÞ5~r n1;h; divh~ω

n115 ρn11
h ;

having conditions

~ωð0Þ50;~ωðn11=2Þ9Γ3,Γ4
5ð0;vðn11ÞÞ9Γ3,Γ4

;~ωðn11Þ9Γ3,Γ4
5ð0;vðn11ÞÞ9Γ3,Γ4

for ~ωn11; ~ωn11=2
and requirement to be periodic in x1.
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Let ~ϕm; ~ψ
m

be solution to problems (3.31)�(3.34). We introduce

designations

~ωm11=25~ωm11=21~ϕm11=21~ψ
m11=2

;~ωm115~ωm111~ϕm111~ψ
m11

: ð3:69Þ

As a result we obtain the following difference equation for ~ω :

~ωn11=22~ωn

Δt
5 νΔh~ω

n11=22Δhπn 2Δtð~ωn11=2Þx1x1x2x2
2ð~ϕn11

t 1~ψ
n11

t 2 νΔhð~ϕn111~ψ
n11ÞÞ1~r nh;

ð3:70Þ

~ωn112~ωn11=2

Δt
52Δhðπn112πnÞ1~r n1;h; divh~ω

n11

5 0; ~ω5 ðω1;i11=2j;ω2;i11=2jÞ:

The boundary conditions are met for ~ω

~ωðn11=2Þ9Γ3,Γ4
5 0; ~ωðn11Þ9Γ3,Γ4

5 0 ð3:71Þ

and periodicity conditions are held for x1.

Further we multiply (3.70) by 2Δth2~ωn11=2
and sum up on Ωh, using

Cauchy inequality and integrating by parts. As a result we obtain

:~ωn11=2:22 :~ωn:21 :~ωn11=22~ωn:21 2Δtν:~ωn11=2
x :2

1 2ðΔtÞ2:~ωn11=2
x1x2

:2# δΔtð:~ωn11=2
x :21 :~ωn11=2

x1x2
:2ΔtÞ

1Δtð:rhð~ϕn111~ψ
n11Þ:21Δt:~ϕn11

x1x2
1~ψ

n11

x1x2
:2Þ

1Δtc:~ϕn11
t 1~ψ

n11

t :21 2Δtðπn; divh~ω
n11=2Þ:

ð3:72Þ

Multiply (3.70) by 2Δth2~ωn11
and sum up over the calculation domain:

:~ωn11:22 :~ωn11=2:21 :~ωn112~ωn11=2:25 ð~r n1;h; ~ωn11Þ: (3.73)

3.2.4.2 Nonlinear Case
We will call problem (3.62), (3.63), (3.74) with conditions (3.4) problem 2.

Operators Lh;1ðun; vnÞ;Lh;2ðun; vnÞ are approximations of convective terms

in Navier-Stokes equation.
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Problem 2 is equivalent to the following:

u
n11=2
t;i11=2j

5νΔhu
n11=2
i11=2j2Δtν u

n11=2
i11=2j

� 

x1x1x2x2

2ðpnijÞx1 1αðtn11Þ1Lh;1ðun;vnÞ;

v
n11=2
t;ij11=2

5νΔhv
n11=2
ij11=22Δtν v

n11=2
ij11=2

� 

x1x1x2x2

2ðpnijÞx1 5νLh;2ðun;vnÞ;

un11
i11=2j2u

n11=2
i11=2j

Δt
1ðpn11ij 2pnijÞx1 50;

vn11
ij11=22v

n11=2
ij11=2

Δt
1ðpn11ij 2pnijÞx2 50;divh~v

n1150; i51;2; . . .;N ; j51; . . .;N21

ð3:74Þ

with initial-boundary conditions (3.4).

Let un11
h ; vn11

h ; pn11
h be exact solution of problems (3.1), (3.2), ~r nh�

discrepancy,

~Lhðun; vnÞ5 ðLh;1ðun; vnÞ;Lh;2ðun; vnÞÞ;

v
n11=2
h;t

5 νΔhv
n11=2
h 2rhp

n
h 1 ~Lhðunh; vnhÞ1~r nh 1αðtn11Þrhx1

2Δtνðvn11=2
h Þx1x1x2x2 ;

~vn11
h 2 v

n11=2
h

Δt
1rhðpn11

h 2 pnhÞ5~r n1;h; divh~v
n11
h 5 ρnh:

Assume that

~ωn115~vn11
h 2~vn11; ~ωn11=25~vn11=2

h 2~vn11=2;

~ωn11=25~ωn11=21~ϕn11=21~ψ
n11=2

;

~ωn115~ωn111~ϕn111~ψ
n11

:
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Then for ~ωn11
we obtain an equation

~ωn11=22~ωn

Δt
5 νΔh~ω

n11=22rhπn2 ~Lhðvnh; unhÞ

2 ~Lhðunh; vnhÞ2 ð~ϕn111~ψ
n11Þt 2Δtν~ωn11=2

x1x1x2x2
1~r nh

2Δtνðϕn111ψn11Þx1x1x2x2 1 νΔhð~ϕn111~ψ
n11Þ;

ð3:75Þ

~ωn11 2~ωn11=2

Δt
1Δhðπn11 2πnÞ5~r nh; divh~ω

n115 0;

where ~ωn11=2; ~ωn11
are the homogeneous boundary conditions in x1 and

periodicity conditions in x2. Let us multiply (3.75) by 2Δt~ωn11=2
h2;

2Δt~ωn11
h2 and sum up on Ωh. As a result we find

:~ωn11=2:22:~ωn:21:~ωn11=22~ωn:212Δtν:~ωn11=2
x :2

52Δtðπndivh~ω
n11=2Þ12Δtð~Lhðunh;vnhÞ2~Lhðun;vnÞ1~r nh;~ω

n11=2Þ

22ðΔtÞ2ν:~ωn11=2
x1x2

:222Δtð~ϕn11
t 1~ψ

n11

t 2νrhð~ϕn111~ψ
n11Þ;~ωn11=2Þ

12ðΔtÞ2νðð~ψn11
1~ϕn11Þx1x2 ;~ω

n11=2
x1x2

Þ;
ð3:76Þ

:~ωn11:2:~ωn11=2:1:~ωn112~ωn11=2:252Δtð~r n1;h;~ωn11Þ: ð3:77Þ
We will dwell on a nonlinear term in more detail

ððunhÞ22ðunÞ2Þ
x
0
1

;ωn11=2
1

� �
5 ðunhÞ22 ðunÞ2;ωn11=2

1;x
0
1

� �

5 ωn
1ðunh 1 unÞ;ωn11=2

1;x
0
1

� �
5 ωn

1ð2unh 1ωn
1Þ;ωn11=2

1;x
0
1

� �

5 ðωn
11ϕn

11ψn
1Þð2unh 1ωn

1 1ϕn
1 1ψn

1Þ;ωn11=2

1;x
0
1

� �
:

ð3:78Þ

We can estimate (3.78) using Helder inequality:

2 ωn
1u

n
h;ω

n11=2

1;x
0
1

� �
# c max9~unh9 � :~ωn: � :~ωn11=2

x :# δ:~ωn11=2
x :21 c:~ωn:2;
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ðωn
1Þ;ωn11=2

1;x
0
1

� �
# :ωn11=2

x : � :ωn:
L4ðΩnÞ

# c:ωn11=2
x : � :ωn: � :ωn

x: � ~ωn
1~ϕ

n
1; ~ω

n

1;x
0
1

� �

# :~ωn:
L4ðΩnÞ:~ϕ

n:
L4ðΩnÞ:~ω

n11=2
x1

:# δ
:~ϕn

x:
2

h2
:~ωn11=2

x :21 c:~ωn:2;

ð3:79Þ

ð~ωnÞ2;~ωn11=2

x
0

� �
#:~ωn11=2

x : �:~ωn:2
L4ðΩnÞ# c

1

h2
:~ωn11=2

x : �:~ωn:21:~ωn:2
� �

:

The remaining terms are estimated in the same manner. Due to

(3.76)�(3.79), we obtain the inequality

:~ωn11:22 :~ωn:21
PM

m51ð:~ωm11=2
x :21Δt:~ωm11=2

x1x2
:2ÞΔt

# c
PM

n51ð:~ϕn11
t :2 1 :~ψt:1 :rhð~ϕn111~ψ

n11Þ:

1Δt:ð~ϕn111~ψ
n11Þx1x2:ÞΔt1

PM
m51ð:~r nh:

2
1 :~r n1;h:

2ÞΔt:

So, the assertion is proved:

Theorem 4 Let the solution of problems (3.1),(3.2) be sufficiently smooth and

conditions Δt
h
#χ05 const apply. Then the solution of difference problem (3.4),

(3.61),(3.64) converges to solution of problems (3.1),(3.2) in energy metrics of

the order OðΔt1 h3=2Þ.

3.3 NUMERICAL REALIZATION OF NAVIER-STOKES
MODEL IN MULTIPLY CONNECTED DOMAIN IN
VELOCITY � FLOW FUNCTION VARIABLES

3.3.1 Introduction
Here we consider numerical calculation of a flow of viscous incompress-

ible fluid inside a planar channel having periodically located barriers in

the form of rectangular plates orthogonal to the channel walls. A similar

problem was considered earlier by authors [36, 39], but these papers failed
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to account for unique condition to determine pressure. In the case of

multiply connected domains the requirement of unique pressure determi-

nation is necessary to formulate the equivalent problem. In papers [121,

125] a unique pressure condition is used to calculate numerically the flow

of a viscous incompressible liquid in double connected domains. Paper

[121] deals with the numerical solution of a periodic problem of viscous

incompressible fluid flow around a plate inside a planar channel where the

condition of unique pressure is formulated as followsþ
1

Re
ðωy1ψty 1ωψxÞdx1 2

1

Re
ωx2ψtx1ωψy

� �
dy

� �
5 0: ð�Þ

Integrals in (�) are calculated using the Newton-Cotes formula with an

accuracy order of Oðh6Þ. Derivatives are substituted by a finite-difference

relation of the fourth order ofaccuracy, that is, calculations are conducted

with an error and it is natural that the integral (�), as is mentioned in the

above article, is accounted for in an approximate manner. In these papers

the problem is reduced to a solution of nonlinear difference equations of

the fourth order with non-local boundary conditions and no substantiation

is given in the use of the finite-difference schemes.

In this section we propose a stable numerical algorithm to solve the

Navier-Stokes equation in a double connected region at a given flow rate.

The condition of unique pressure, which is exactly satisfied under numeri-

cal calculation, is formulated. The problem is reduced to a solution of the

finite-difference equation of the second order with non-local boundary

conditions. In contrast to other papers, the algorithm can be easily imple-

mented. The problem is solved through reducing it to the underlying

physical mechanisms. A grid flow function is introduced and determined

through solution of the Poisson equation with given boundary conditions.

Accurate meeting of the requirement of unique pressure is achieved.

Numerical calculations are made according to the schemes proposed.

3.3.2 Formulation of the Problem
Navier-Stokes equations are considered inside the channel

Ω5 x; y90, x, 1; 2
1

4
, y,

1

4


 �
:

~ut 1 ð~u;rÞ~u1rp5 1

Re
~u; div~u5 0 ð3:80Þ
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They satisfy the following conditions:

a. at the walls of the planar channel Ω and on barrier

u5 v5 0ð~u5 ðu; vÞÞ;
b. periodicity conditions are met at the channel’s inlet and outlet,

that is

@k~u

@xk

����
x50

5
@k~u

@xk

����
x51

;
@k11p

@xk11

����
x50

5
@k11p

@xk11

����
x51

; k5 0; 1; . . .;m: ð3:81Þ

In this case it is assumed that the flow rate is given

ð0;25
20;25

udy5ψ05 1: ð3:82Þ

For pressure to be determined in unique manner it is required that

ð
γ
ðpxdx1 pydyÞ5 0 ð3:83Þ

for any contour of γ around the plate.

3.3.3 Description of Difference Scheme
To write down the difference scheme to solve problem (3.80)�(3.83) in

domain Ω let us consider the finite-difference grid using the splitting

method [10] in the following form:

Ωh5

xi11=25 i1
1

2

 !
Δx5 i1

1

2

 !
h1; i50;1; . . .;N ; ðN11Þh15Xmax;

yj11=25 j1
1

2

 !
Δy5 j1

1

2

 !
h2; j50;1; . . .;M ; ðM11Þh25Ymax;

8>>>>>><
>>>>>>:

where Δx5 h1;Δy5 h2- grid spacing. N ;M- corresponding number of

grid cells in directions x; y [a point with coordinates ði; jÞ coincides with
the cell centre].
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Let us consider the following difference scheme for equations of the

form (3.80) in the finite-difference scheme Ωh:

u
ðn11=2Þ
i11=2; j 2 u

ðnÞ
i11=2; j

Δt
1L1hu

ðnÞ
i11=2; j 5

1

Re
Δhu

ðnÞ
i11=2; j;

v
ðn11=2Þ
i; j11=2 2 v

ðnÞ
i; j11=2

Δt
1L2hv

ðnÞ
i; j11=25

1

Re
Δhv

ðnÞ
i; j11=2;

ð3:84Þ

u
ðn11Þ
i11=2; j 2 u

ðn11=2Þ
i11=2; j

Δt
1

p
ðn11Þ
i11; j 2 p

ðn11Þ
i; j

h1
5 0;

v
ðn11Þ
i; j11=22 v

ðn11=2Þ
i; j11=2

Δt
1

p
ðn11Þ
i; j11 2 p

ðn11Þ
i; j

h2
5 0;

ð3:85Þ

divh~u
ðn11Þ5

u
ðn11Þ
i11=2; j 2 u

ðn11Þ
i21=2; j

h1
1

v
ðn11Þ
i; j11=2 2 v

ðn11Þ
i; j21=2

h2
5 0;

L1hu
ðnÞ
i11=2;j

5
1

2
ai11;ju

ðnÞ
x1i11=2;j 1 aiju

ðnÞ
x1i11=2;j 1 bi11

2
;j11=2u

ðnÞ
x2i11=2;j 1 bi11

2
;j21=2u

ðnÞ
x2i11=2;j

� 

;

L2hv
ðnÞ
i;j11=2

5
1

2
ai11

2
;j11=2v

ðnÞ
x1i;j11=21 ai21

2
;j21=2v

ðnÞ
x1i;j11=21 bi;j11v

ðnÞ
x2i;j11=21 biju

ðnÞ
x2i;j11=2

� 

;

aij 5
1

2
u
ðnÞ
i11

2
;j11

1 u
ðnÞ
i21=2;j

� 

; bi11

2
;j11=25

1

2
v
ðnÞ
i11;j11=2 1 v

ðnÞ
i;j11=2

� 

;

ai11
2
;j11=25

1

2
u
ðnÞ
i11

2
;j11

1 u
ðnÞ
i11=2;j

� 

; bij 5

1

2
v
ðnÞ
i;j11=2 1 v

ðnÞ
i;j21=2

� 

:

Here we make use of conventional designations taken from the differ-

ence scheme theory [116], corresponding to difference approximation of
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convective terms in equations (3.80); Δh- is the Laplace difference

operator:

Δhui11=2;j 5
ui13=2;j 2 2ui11=2;j 1 ui21=2;j

h21
1

ui11
2
;j112 2ui11=2;j 1 ui11

2
;j21

h22
:

At the first stage of scheme implementation (3.84), (3.85) we can

use the explicit formulas tofind the auxiliary value u
ðn11=2Þ
i11=2; j ; v

ðn11=2Þ
i; j11=2. Then

from relation (3.85) we have ðuðn11Þ
i11=2; jÞx2 2 ðvðn11Þ

i; j11=2Þx1 5 roth~u
ðn11=2Þ5

ðuðn11=2Þ
i11=2; jÞx2 2 ðvðn11=2Þ

i; j11=2Þx1 :
Taking into account relation (3.82) and introducing the flow functions

we obtain the Poisson equation to determine ψðn11Þ
i11=2; j11=2:

Δhψ
ðn11Þ
i11=2; j11=25

u
ðn11=2Þ
i11=2; j11

2 u
ðn11=2Þ
i11=2; j

h2
2

v
ðn11=2Þ
i11; j11=2 2 v

ðn11=2Þ
i; j11=2

h1
; ð3:86Þ

The values to be found un11; vn11, are known to be determined

through relationships

u
ðn11Þ
i11=2; j 5

ψðn11Þ
i11=2; j11=2 2ψðn11Þ

i11=2; j21=2

h2
; vðn11Þ

i; j11=25
ψðn11Þ
i11=2; j11=2 2ψðn11Þ

i21=2; j11=2

h1
:

ð3:87Þ

3.3.4 Conditions Under Which Pressure is Unique
It should be noted that for finding a solution such as (3.84), (3.85) it is not

required to solve the Poisson equation for pressure with complex boundary

conditions (which have been examined in papers [7, 11, 13, 33�35]). The

conditions of pressure uniqueness (3.83) are automatically met.

Indeed, let the contour be circled in a standard manner. Taking the

sum in the second relationship (3.85) at i5 i0 and spanning j from j0 to

j12 1 we obtain:

Xj121

j5j0

ðpðn11Þ
i0; j112 p

ðn11Þ
i0; j Þ52

h2

Δt

Xj121

j5j0

ðvðn11Þ
i0; j11=22 v

ðn11=2Þ
i0; j11=2Þ;
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pi0j1 5 pi0j0 2
h2

Δt

Xj121

j5j0

ðvðn11Þ
i0; j11=22 v

ðn11=2Þ
i0; j11=2Þ:

Then we sum up the first relationship (3.85) at j5 j1 varying i from i0 to

i1 5 1, the second relationship (3.85) is summed up at i5 i1 running j

from j12 1 to j0, in the first we take j5 j0 and alter i from i1 to i0.

As a result for an unique pressure determination we find that the

following equality should be valid

I 5 h1
Xi121

i5i0
ðuðn11Þ

i11=2;j0
2 u

ðn11Þ
i11=2;j1

1 u
ðn11=2Þ
i11=2;j0

2 u
ðn11=2Þ
i11=2;j1

Þ

2 h2
Xj121

j5j0
v
ðn11Þ
i0; j11=21 v

ðn11=2Þ
i0; j11=22 v

ðn11Þ
i1; j11=21 v

ðn11=2Þ
i1; j11=2

� 

5 0:

ð3:88Þ

Equality (3.88) can be easily transformed into the following difference

analogue of an integral pressure condition:

I5h1h2
Xi121

i5i0

Xj121

j5j0
Δhψ

ðn11Þ
i11=2; j11=22 u

ðn11=2Þ
i11=2; j

� 

x2
2 v

ðn11=2Þ
i; j11=2

� 

x1

� �� �
50:

ð3:89Þ

3.3.5 Boundary Conditions for Flow Function
When numerical type of equations (3.86) is applied to calculate the flow

around a flat barrier inside a channel it is necessary to fix the boundary

value of the flow function ψðn11Þ at the boundary. This condition is

missing in the general formulation of the problem. To find value of

ψðn11Þ on the plate surface for every time step let’s make use of relation-

ship (3.88). This can be done in the following manner. Represent ψðn11Þ

in the form

ψðn11Þ5ψðn11Þ
ð2Þ 1C0ψð1Þ; ð3:90Þ

where ψð1Þis the grid function that is a solution of a difference problem

Δhψð1Þ5 0 ð3:91Þ
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with the following boundary conditions:

a. periodicity conditions are satisfied at the boundary of calculation

domain, that is at the inlet and outlet;

b. at the solid channel wall ψð1Þ5 0;

c. at the boundary ψð1Þ5 1, and the grid function ψðn11Þ
ð2Þ satisfies the

relationship.

Δhψ
ðn11Þ
ð2Þ 5 roth~u

ðn11=2Þ: ð3:92Þ

The following boundary conditions for ψðn11Þ
ð2Þ are set:

a. periodic conditions are observed at inlet and outlet;

b. for channel walls ψðn12Þ
ð2Þ 5ψðn11Þ;

c. on the surface of the plate ψðn11Þ
ð2Þ 5 0.

Note that equation (3.91) with corresponding boundary conditions is

solved only once, and the solution is entered into the computer’s memory.

The unknown value of coefficient C0 equal to the value ψðn11Þ at the
boundary can be found from relationship (3.89).

Indeed, substituting expression (3.90) into identity (3.89) for any

contour drawn around the plate we find

C0 5
D02D1ðψðn11Þ

ð2Þ Þ2D2ðψðn11Þ
ð2Þ Þ

D1ðψð1ÞÞ1D2ðψð1ÞÞ
; ð3:93Þ

where

D1ðψÞ5
h1

h2

Xi121

i5i0
ψi11

2
;j011=22ψi11

2
;j021=22ψi11

2
;j111=2 1ψi11

2
;j021=2

� 

;

D2ðψÞ5
h2

h1

Xj121

j5j0
ψi01

1
2
;j11=22ψi02

1
2
;j11=22ψi11

1
2
;j11=21ψi12

1
2
;j11=2

� 

;

D05 h2
Xj121

j5j0
ðvðn11=2Þ

i0;j11=2 2 v
ðn11=2Þ
i1;j11=2Þ2 h1

Xi121

i5i0
ðuðn11=2Þ

i11=2;j0
2 u

ðn11=2Þ
i11=2;j1

Þ:

Making use of the properties of a solution of the Laplace equation one

can readily see that denominator is different from zero in formula (3.93).

For the sake of convenience, calculations of C0 were made assuming

the contour being the same as the outer boundaries of the calculation
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domain. To conclude description of this algorithm, we will list the

sequence of steps to make computer calculations.

1. From equation (3.91) we find a corresponding value ψð1Þ and store it

in the computer memory.

2. For given initial values explicit formulae (3.85) yield auxiliary values

vðn11=2Þ; uðn11=2Þ.
3. Filling the right hand side by known values uðn11=2Þ; vðn11=2Þ we solve

the problem for equation (3.92).

4. Using formula (3.93) and known values uðn11=2Þ; vðn11=2Þ;ψð1Þ;ψ
ðn11Þ
ð2Þ

we can find coefficient C0.

5. Formula (3.90) can be used to find the value of flow function for a

new time layer.

6. Formulae (3.87) and known values of Ψ ðn11Þ can be used to find values

u
ðn11Þ
i11=2j; v

ðn11Þ
i; j11=2 within the calculation domain.

In these calculations the criterion for reaching the steady-state regime

was provided by condition����~uðn11Þ2~un

Δt

����
CðΩhÞ

# ε: ð3:94Þ

3.3.6 Numerical Solutions of Equations (3.91), (3.92)
Implementation of a numerical algorithm to solve the periodic problem

is provided by solving equations (3.91), (3.92) with corresponding

boundary conditions. For example, for equation (3.92) we have a problem

with periodic conditions at the inlet and outlet, that is

ψ21=2; j11=2 5ψN21=2; j11=2;ψ1=2; j11=25ψN11=2; j11=2; ð3:95Þ
and known conditions at solid boundaries of the calculation domain.

Taking account these peculiarities in boundary conditions the Poisson

equation (3.92) is solved using a stabilizing correction method of the

following type:

ψðn11=2Þ2ψðnÞ

τ0
5L11ψðn11=2Þ1L22ψðnÞ2 f ðxÞ: ð3:96Þ

ψðn11Þ2ψðn11=2Þ

τ0
5L11ðψðn11Þ2ψðnÞÞ; ð3:97Þ
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where τ0 is the internal iteration parameter; L11;L22 are difference operators,

corresponding to approximation of second derivatives in x1 and x2.

To find ψðn11=2Þ from relationship (3.96) a scalar run is used. As soon as

the domain of the problem considered is not regular, i.e. it is impossible

to make a direct calculation; the run is conducted in specific parts of the

calculation domain.

Let the boundary be confined between the lines corresponding to

values x1 and x2 having indices i5 i0; i5 i1; j5 j0; j5 j1. Then according

to the above comment, the first vertical runs are made at j5 1;N22 1

for i5 0; i02 1, then for j5 1; j02 1 at i5 i0; i1 , and finally for

j5 j12 1;N22 1. The final vertical runs are made at i5 i1;N1 for

j5 1;N22 1. The calculation formulas for scalar vertical runs are the same.

Now let us describe implementation of the second stage of stabiliza-

tion scheme, that is solution of equations (3.97). At this stage, calculations

are made separately for each subarea of the calculation grid. At i5 0;N
for j5 j12 1, N22 1. and j5 j11 1;N22 1equation (3.97) is realized

through cyclic run for fixed j values.

It is most interesting to implement solution of (3.97) before and after

the plate, i.e. it is reduced to the following model equations:

u05 uN ; u15 uN111;

anun11 2 bnun1 cnun2152ϕn; n5 1; n02 1; n5 n11 1;N1 ; ð3:98Þ

un0 5α; un1 5β:

First let us consider equation (3.98) for n5 n11 1;N1. The solution is

represented as a conventional run and the run coefficients can be found

in the same manner as in [116]. Taking into account the initial two equa-

tions from system (3.98) we can calculate values u0; u1; uN1
; uN111.

Indeed, in order to determine the above values we can write down

the system of four equations

u02 uN1
5 0; u12 uN1115 0; u12X1u05Y1; uN1

2XN1
uN1115YN1

;

ð3:99Þ
with denominator differing from zero, as 9Xn9# 1.

For example, from these equations u0 is calculated using the formula

u05
YN1

1Y1XN1

12X1XN1

:
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This is followed by determining all un values. Cycle calculation formulae,

as was mentioned above, are given in [116].

3.3.7 Numerical Calculations and their Comparison
with Results of Previous Studies
The method used to calculate the Navier-Stokes equations described here

differs from the earlier published splitting approach [7, 11, 13, 33�35].

First of all we take into account the boundary conditions and use a

different method of implementing the solution. As is known, in the past,

the laminar flow condition was accounted for in a line drawn through the

centre of the grid cell contacting the solid surface, whereas the no flow

conditions were held for the whole cell. The above condition required

solving the Poisson equation for the pressure using complex boundary

conditions. Here we are considering the opposite case. In our situation

the laminar flow condition is exact, whereas the no flow condition has

an order of approximation Oðh2Þ at a line h=2 away from the surface of

the solid. This enables us to introduce the flow function. In this case the

pressure can be calculated explicitly. Consequently the comparison with

results of previous studies can illustrate the potential of the approach

proposed as well as guarantee the accuracy of calculations.

As an example, we will consider a well-known problem of the flow of

a viscous incompressible fluid in a cylindrical container having a sliding

piston at the top. The calculations were made using grids (41, 41), (21, 21).

The simulation was conducted over a wide range of Reynolds

numbers. The results indicate that in every situation the steady-state flow

regime was reached. As a practical criterion of convergence and stability

of the difference scheme used we required that condition

8τν
h2

, 1; h5minðh1; h2Þ

is satisfied.

As a rule, to satisfy condition (3.94) it took � 300�500 iterations. The

data obtained are in agreement with results of the paper [102]. At Re5 500

the turbulence zone develops in the left and right bottom corners.

However, this flow is absent when Re5 100.

The coordinates of the centre of the principal turbulence obtained for

Re5 100; 500, differ from those of paper [102] by 2%.
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3.3.8 Numerical Calculations for Periodic Problem
of Streamlines Around Plates
The above algorithm was used in a simulation of the grid (41, 41)

having spacing h15 0; 025 and h25 0; 0125. A plate having length of

0,15 was located symmetrically across the channel at x5 0; 3. The fluid

flow rate inside the channel was assumed equal to 1, the Re number

varied from 100 to 250, and the time interval was selected within the

τ5 0; 000540; 005 range.

The initial velocity distribution was assumed to be symmetrical relative

to the channel axis. The optimum iteration parameters were found experi-

mentally: τ05 0; 002; τ05 0; 005. For Re5 1004250 we observed, that

the steady-state regime had reverse flow behind the plate. The typical

streamline pattern is shown in Fig. 3.1 for Re5 100. With increasing

Re the size of the turbulence zone expanded and the centre of turbulence

shifted towards the plate.

Here we will describe the numerical experiments for an asymmetrical

initial velocity distribution in more detail. In order to set u0; v0 the Laplace
equation was solved withΔhψ5 0, the boundary conditions being: ψ5 0; 1
on the plate, ψ5 6 0; 5 at the corresponding walls. The periodicity condi-

tions applied to the outer regions of the calculation domain. Then the values

u0; v0 were found using formulae (3.87). Calculations were made for

Re5 100 and 250 on the surface of the walls (41, 41) and (41, 21).

The calculation results show that the difference in the value of the

flow function at the line x5 0; 3 (where the plate is fixed) is of the order

of (56 10) % for the grids specified. When flow develops (at n-N)

a stable pulsating regime develops in streamlining flow forming vortices

next to the plate. The turbulence gets separated at a later stage.

Figure 3.1 Isolines of flow function.
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Fig. 3.2 shows the values of flow function at the plate for Re5 250.

Also, the value of the flow function is shown together with v behind

the plate for the different times on the channel’s axis of symmetry. As is

seen from the figure, after n5 1630 the periodicity of motion is clearly

visible.

Figs. 3.3�3.5 depict the isolines of the flow functions showing

sequential formation of vortices and their separation followed by the

dissipation characteristics of decaying potential vortices.

A similar behaviour of vortices was described in paper [85].

Fig. 3.6 shows the value of velocity profile for x5 0; 3 and at the

inlet for n5 1630; n5 2100, when flow function isolines are the closest

to each other. We will note that the relative error of inlet velocity in this

case is 2%, the profiles of velocity above the plate are almost identical.

0.5

1625 1750 2750250022502000

0.2

–0.2

–0.5

0
n

ψ,υ

ψ

10-1
υ

Figure 3.2 The values of flow function at the plate for Re5 250.

Figure 3.3 Flow function isolines plotted for Re5 100; T 5 2; 10.
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Figure 3.4 Flow function isolines plotted for Re5 250; T 5 1; 392.

Figure 3.5 Flow function isolines plotted for Re5 250; T 5 1; 420.
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Figure 3.6 12 n5 1630; 22 n5 2100.
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On average depending on Re it took 20435 iterations to satisfy the

steady state criterion

:Δhψn11
ð2Þ 2 roth~u

n11=2:
L2ðΩhÞ# 1024

with stabilizing corrections having the form of (3.96), (3.97) for each

time step.

3.4 IMPLEMENTING THE METHOD OF SPLITTING
INTO UNDERLYING PHYSICAL PROCESSES IN
COMPLEX GEOMETRICAL REGIONS

3.4.1 Introduction
The idea of region regularization was put forward by Teachmarch [133] for

the problem of determining. However the idea of the method of virtual

domains was used for the first time in the papers by V.K. Saulyev [120].

The method of virtual domains involves the consideration of an

auxiliary problem with a small parameter in a larger domain. The solution

of the auxiliary problem should be close to that of a solution of the initial

problem. In this section we will make a numerical calculation of the

flow of a viscous incompressible fluid inside a planar channel having

periodically arranged barriers and an arbitrary curved boundary. These

problems cannot be solved by using the regular grid and homogeneous

difference method.

A similar problem was considered earlier in the papers of B.T.

Zhumagulov, Sh.S. Smagulov, M.K. Orunkhanov, N.M. Temirbekov and

M.I. Iztleuov. However, these studies approached the problem from the

standpoint of variables: flow function � turbulence. Numerical algorithms

were developed in papers [116], [118]. Their solution convergence was

weakly dependent on a small parameter.

It is known that quite often the flow symmetry is broken in viscous

flow streamlining symmetric bodies even for relatively small Reynolds

numbers. Therefore, the numerical simulation of this problem is interesting

both from the theoretical and practical point of view.

V.A. Gushchin [33] and O. M. Belotserkovsky [10] illustrated the

efficiency of splitting up the underlying physical processes using an example

of transverse streamlining a cylinder by the homogeneous (infinite) flow of

an incompressible fluid.
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In paper [97] the method of virtual domains is used to analyse the prob-

lem of a streamlining a pair of cylinders situated inside a planar channel with

periodic boundary conditions in the cross sections. The resultant Navier-

Stokes equation is developed in flow function� turbulence variables.

In this section the problem of streamlining a cylindrical body inside a

planar channel having periodic boundary conditions is examined numeri-

cally. The method of virtual domains is used in combination with the

algorithm for splitting up the underlying physical processes.

After finding a steady-state solution with an accuracy of ε5 1024 the

flow is perturbed through equating to zero the velocity component of the

symmetrical half. Even at these conditions the numerical iterations result

in attaining a steady-state regime.

3.4.2 Formulation of the Problem
Let us consider flow in a planar channel having regular barriers (see Fig.

3.7).

We solve the Navier-Stokes equation in a double connected domain

Ω1, limited by straight lines x5 0;X and solid walls γ and γ0:

@~v

@t
1 ð~vrÞ~v5 νΔ~v2rp; div~v5 0; ð3:100Þ

~v
��
t50

5 v0ðxÞ;
@k~v

@xk1

����
x50

5
@k~v

@xk1

����
x15X

;

~v9γ 5 0;~v9γ0 5 0;

ðy
0

udy5Q;~v5 ðu; vÞ: ð3:101Þ

y

0 X x1

Ω0
Ω1

γ0

γ

γ

Figure 3.7 Flow in a planar channel with regular barriers.
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Problems (3.100), (3.101) are peculiar as they have a curvilinear

boundary γ0. In order to solve the problems using homogeneous differ-

ence schemes we will consider an auxiliary problem [22] in line with the

method of virtual domains:

@~vε

@t
1 ð~vεrÞ~vε5 νΔ~vε2

ξðxÞ
ε

~vε2rpε; div~vðεÞ5 0; ð3:100�Þ

~vε9
t50

5 v0ðxÞ;
@k~vε

@xk1

����
x150

5
@k~vε

@xk1

����
x15X

;~vε9γ 5 0;

ðy
0

udy5Q;~vε5 ðuε; vεÞ;

ð3:101�Þ

where ξðxÞ5 1 at xAΩ0 and ξðxÞ5 0 at xAΩ1.

The paper [22] proved the theorem of existence of generalized solution to

problem (3.100�), (3.101�). It was established that the solution of problems

(3.100�), (3.101�) converges to the solution of problems (3.100), (3.101) at a

rate of εα:

:~vε 2~v:
LNð0;T ;L2ðΩ1ÞÞ1

ðT
0

:~vε 2~v:2
W 1

2
ðΩ1Þ#Cεα; ð3:102�Þ

where α is a positive constant.

The steady-state Navier-Stokes equations were examined using the

methods of virtual domains in paper [122].

3.4.3 Numerical Solution Algorithm
The numerical solution of (3.100�), (3.101�) was provided by the method

of splitting into � physical processes. Assume that X 5Y 5 1 (which can

be done through scaling the variables x; y). Let

Ωh1 � x1 5 i1h1; x25 i2h2; i15
1

2
; . . .;N12

1

2
; i25 0; . . .;N2


 �
;

Ωh2 � x1 5 i1h1; x25 i2h2; i15 0; . . .;N1; i25
1

2
; . . .;N22

1

2


 �
:
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Now we will consider the difference schemes using the method of

splitting

~ui11=2; j 2 u
ðnÞ
i11=2; j

Δt
1L1

h ð~uðnÞ; uðnÞÞi11=2; j 5 νΔhu
ðnÞ
i11=2; j in Ωh1 ;

~vi; j11=22 v
ðnÞ
i; j11=2

Δt
1L2

h ð~vðnÞ; vðnÞÞi; j11=25 νΔhv
ðnÞ
i; j11=2 in Ωh2 ;

ð3:102Þ

u
ðn11Þ
i11=2; j 2 ~ui11=2; j

Δt
1

p
ðn11Þ
i11; j 2 p

ðn11Þ
ij

h2
1

ξðxÞ
ε

v
ðn11Þ
ij11=2 5 0;

v
ðn11Þ
i; j11=22 ~vi; j11=2

Δt
1

p
ðn11Þ
ij11 2 p

ðn11Þ
ij

h2
1

ξðxÞ
ε

v
ðn11Þ
ij11=2 5 0;

ð3:103Þ

u
ðn11Þ
i11=2; j 2 u

ðn11Þ
i21=2; j

h1
1

v
ðn11Þ
i; j11=22 v

ðn11Þ
i; j21=2

h2
5 0; ð3:104Þ

vðn11Þ9γh 5 uðn11Þ9γh 5 0;

ð1
0

uðn11Þdy#Q; ð3:105Þ

with conditions of periodicity in x1:L
1
h ;L

2
h are the approximation of non-

linear terms. To apply the difference schemes we will use the methods

proposed in 3.3 of the present Chapter. Let us introduce a difference ana-

logue of the flow function:

u
ðn11Þ
i11=2; j52

ψðn11Þ
i11=2; j11=22ψi11=2; j21=2

h2
;vðn11Þ

i; j11=252
ψðn11Þ
i11=2; j11=22ψðn11Þ

i21=2; j11=2

h1
:

ð3:106Þ

We can re-write (3.103) as follows:

u
ðn11Þ
i11=2; j 1

Δt

ε
ξðxÞuðn11Þ

i11=2; j

� �
1Δt

p
ðn11Þ
i11; j 2 p

ðn11Þ
ij

h1
5 ~ui11=2; j; ð3:107Þ
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v
ðn11Þ
i;j11=21

Δt

ε
ξðxÞvðn11Þ

i;j11=2

� �
1Δt

p
ðn11Þ
i;j11 2 p

ðn11Þ
ij

h2
5 ~vi;j11=2: ð3:108Þ

Differentiating (3.107) by difference in x2, (3.108) � in x1 and

subtracting the result from each other we obtain

u
ðn11Þ
i11=2;j1

Δt

ε
ξðxÞuðn11Þ

i11=2;j

� �
x2

2 v
ðn11Þ
i;j11=21

Δt

ε
ξðxÞvðn11Þ

i;j11=2

� �
x1

5 ~ui11=2;jx2 2 ~vi;j11=2x1 :

ð3:109Þ

We will note that after substitution of (3.106) equation (3.104) is

identically fulfilled. In (3.109), using formula (3.106), we obtain the

relationship for ψðn11Þ
i11=2;j11=2

2ψðn11Þ
i11=2;j11=2x2

2
Δt

ε
ξðxÞψðn11Þ

i11=2;j11=2x2

� �
x2

2 ψðn11Þ
i11=2;j11=2x1

2
Δt

ε
ξðxÞψðn11Þ

i11=2;j11=2x1

� �
x1

5 ~ui11=2;jx2 2 ~vij11=2x1 :

ð3:110Þ

Let us re-write (3.110) as follows:

11
Δt

ε
ξðxÞ

� �
ψðn11Þ
i11=2;j11=2x2

� �
x2

1 11
Δt

ε
ξðxÞ

� �
ψðn11Þ
i11=2;j11=2x1

� �
x1

5 ~ui11=2;jx2 2 ~vij11=2x1 :

ð3:111Þ
For ψðn11Þ the following boundary conditions are valid:

ψðn11Þ

i1

1
2;3
2

5 0;ψðn11Þ
i11=2;N21=25 const;

ψðn11Þ
3=2;j11=2 5ψðn11Þ

N21=2;j11=2;ψ
ðn11Þ
5=2;j11=25ψðn11Þ

N11=2;j11=2:

ð3:112Þ

The stability of the difference schemes (3.111), (3.112) is obvious

when the right hand side is known. We will assume that
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f � ðvi; j11=2x1 2 ~ui11=2; jx2ÞAL2ðΩ1Þ. Multiplying (3.111) by 2Δth1h2ψi1

1=2; j11=2ðn11Þ and summing in i; j using the formula of summation

by parts we obtain�����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

Δt

ε
ξðxÞ

r
ψðn11Þ
x2

�����
2

1

�����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

Δt

ε
ξðxÞ

r
ψðn11Þ
x1

�����
2

#C:f :2
L2ðΩhÞ: ð3:113�Þ

3.4.4 Sequence of Calculations
From equation (3.102) we can find ~ui11=2; j; ~vi; j11=2. Then implementing

the iteration method from (3.111), (3.112) we will calculate ψðn11Þ
i11=2; j11=2.

Due to formula (3.106) we obtain u
ðn11Þ
i11=2; j; v

ðn11Þ
i; j11=2. We will dwell on solv-

ing the problems (3.111), (3.112) for sufficiently small ε.
As ξðxÞ is a discontinuous function the equation refers to a class of

equations with fast alternating coefficients. The operator (3.111) and (3.112)

is positively determined and self- conjugated. The ratio of the minimum to

the maximum eigenvalue depends on ε. Consequently, equations (3.111),
(3.112) are ill-posed. It is not reasonable to apply classical iteration techni-

ques to solve problems (3.111), (3.112) as the rate of convergence of the

iteration process depends on a small parameter. Consequently, to solve

problems (3.111), (3.112) effectively, one has to develop special iteration

methods where the convergence rate is a weak function of ε. The identical
approach to solve the Dirichlet problem for an elliptical equation has been

considered in papers [21, 28, 55, 97, 116, 118, 119].

In paper [97] the Richardson method of extrapolation was used to

improve the accuracy of approximation using the method of virtual

domains. In [21, 28, 136] the method of variable directions was

proposed:

D� ψ
k11=22ψk

ω
1A

ðεÞ
1 ψk11=21A

ðεÞ
2 ψk5 f ;

D�
ε
ψk112ψk11=2

ω
1A

ðεÞ
1 ψk11=21A

ðεÞ
2 ψk115 f ;

where AðεÞ
α ψ5 11 Δt

ε ξðxÞ� �
txα

� �
xα
;α5 1; 2; which, as was mentioned

in [21], converges to a steady-state solution irrespective of D�
ε . For the

right choice of the diagonal operator D�
ε. The modified alternate-triangular
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iteration method (MATIM) was developed in papers [116; 118]. MATIM

can be applied to solve a periodic problem at the boundary of the calculation

domain in the following way [30]. We will write down the solution of the

problem (3.111), (3.112) in the form

ψn11
i11

2
;j11=25ψð0Þ

i11
2
;j11=2

1αj11=2ψ
ð1Þ
i11

2
;j11=2

1βj11=2ψ
ð2Þ
i11

2
;j11=2

; ð3:113Þ

where ψð0Þ
i11

2
;j11=2

;ψð1Þ
i11

2
;j11=2

;ψð2Þ
i11

2
;j11=2

are the solutions of the following

auxiliary problems:

��
11Δt ξðxÞε

��
ψð0Þ
i11

2
;j11=2

�
x

�
x

1

��
11Δt

ε ξðxÞ
��

ψð0Þ
i11

2
;j11=2

�
y

�
y

5 ~ui11=2;jy2 ~vi;j11=2;x;ψ
ð0Þ
i11=2;3=250;ψð0Þ

i11
2
;N21=2

5 const;ψð0Þ
3
2
;j11=2

5ψn
3
2
;j11=2;ψ

ð0Þ
N11

2
;j11=2

5ψn
N11

2
;j11=2;

ð3:114Þ

divh

��
11

Δt

ε
ξðxÞ

�
rhψð1Þ

�
50;ψð1Þ

i1

1
2;3
2

50;ψð1Þ
i11

2
;M21

2

50;

ψð1Þ
3
2
;j11=2

51;ψð1Þ
N11

2
;j11=2

50;divh

��
11Δt

ξðxÞ
ε

�
rhψð2Þ

�
50;

ð3:115Þ

ψð2Þ
i11=2;3=250;ψð2Þ

i11
2
;M21=2

50;ψð2Þ
3
2
;j11=2

50;ψð2Þ
N11

2
;j11=2

51: ð3:116Þ

The coefficients αj11=2; βj11=2 are found from the boundary condition

(3.112). We obtain the following system of equations:�
12ψð1Þ

N21=2; j11=2

�
αj11=22ψð2Þ

N21=2; j11=2βj11=25ψð0Þ
N21=2; j11=2;

2ψð1Þ
5=2; j11=2αj11=21

�
12ψð2Þ

5=2; j11=2

�
βj11=25ψð0Þ

5=2; j11=2:

8>><
>>:

ð3:117Þ
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As is shown in (3.113)�(3.117) the problems (3.115), (3.116) are

solved once, that is they do not complete a full iteration step in time.

For each full iteration step it is necessary to solve problem (3.114), in

which the values of the flow function in the lower time layer are taken as

boundary conditions for ψð0Þ
3
2
;j11=2

and ψð0Þ
N11

2
;j11=2

. One can easily notice

that the problems (3.114)�(3.116) have simpler boundary conditions than

the problem (3.111), (3.112). To solve the problem (3.114)�(3.116) one

can make use of the modified alternate-triangular method [116]. Its con-

vergence rate does not depend on the value of coefficients 11 Δt
ε ξðxÞ� �

.

We will assume

a1;ij 5 11
Δt

ε
ðξðxÞi;j11=2Þ

� �
; a2;ij 5 11

Δt

ε
ðξðxÞi11=2;jÞ

� �
:

Let’s write the difference scheme (3.114) in new designations

Λψ5
�
~u
i1

1
2
; j;x2

2 ~vij11=2;x1

�
;ψi11=2;3=250;ψ

i1
1
2
;M21=25 const;

ψ3
2
;j11=25ψn

3
2
;j11=2;ψN11

2
;j11=25ψn

N11
2
;j11=2;

ð3:118Þ
Where Λ5 ~Λ11 ~Λ2. First of all we can represent A in the form

Λ5Λ11Λ2:

Λ1ψ52
X2

α51

aα

hα
ψxα

1
1

2hα

a1α
hα

2
aα

hα

 !
ψi11

2
;j11=2

" #
;

Λ2ψ52
X2

α51

a1α
hα

ψxα
1

1

2hα

a2α
hα

2
aα

hα

 !
ψi11

2
;j11=2

" #
;

ð3:119Þ

where a11 5 a1;i11;j; a12 5 a2;i;j11.

We assume that Aαψ52Λ2ψ;α5 1; 2 for any ψAωh. Then

A5A11A252Λ. To determine operator D we can use the following

formula

dðx1; x2Þ5
X2

α51

a1α
h2α

ffiffiffiffiffiffiϕα
p 1

1

2hα

���� a1α 2 aα

hα

����
� �

1ffiffiffiffiffiffiϕα
p

1 θα
; ð3:120Þ
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ϕαðxβÞ5maxxαv
ðαÞ
1 ðxÞ; θαðxβÞ5maxxαv

ðαÞ
2 ðxÞ:

The functions v
ðαÞ
1 ðxÞ and v

ðαÞ
2 ðxÞ are determined as solutions to

problems

ða1vð1Þ1x1
Þx1 52ρð1Þ1 ; x1Aω1ðx2Þ; vð1Þ1 9γh 5 0; ρð1Þ1 5

a11;ij

h21
; ð3:121Þ

ða2vð2Þ1x2
Þx1 52ρð2Þ1 ; x2Aω2ðx1Þ; vð2Þ1 9γh 5 0; ρð2Þ1 5

a12;ij

h22
; ð3:122Þ

ða1vð1Þ2x1
Þx1 52ρð1Þ2 ; x1Aω1ðx2Þ; vð1Þ2 9γh 5 0; ρð1Þ2 5

1

2h21
9a11;ij 2 a1;ij9; ð3:123Þ

ða2vð2Þ2x2
Þx2 52ρð2Þ2 ; x2Aω2ðx1Þ; vð2Þ2 9γh 5 0; ρð2Þ2 5

1

2h22
9a12;ij 2 a2;ij9: ð3:124Þ

We have to determine only four functions: v
ð1Þ
1 ; vð2Þ1 ; vð1Þ2 ; vð2Þ2 . This can be

done using the fitting technique. Knowing v
ðαÞ
1 ðxÞ and v

ðαÞ
2 ðxÞ, we construct

the grid functions of one variable ϕαðxβÞ;ψαðxβÞ, to be followed by deter-

mining dðxÞ using formula (3.117). For the chosen dðxÞ we have [116]

δ5 1;Δ5 4maxα51;2 maxxβAωβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕαðxβÞ

p
1ψαðxβÞ

� 
2� �
: ð3:125Þ

Now we can determine parameters ω0 and the optimum set of

Chebyshev parameters fτkg. We will use the iteration scheme [116]

ðD1ωA1ÞD21ðD1ωA2Þ
ψk112ψk

τk11

1Aψk

52 ui11
2
;jx2 2 ~vij1 1

2x1

� 

; k5 0; 1; 2; . . .; n:

3.4.5 Calculation Results
For numerical calculations of the symmetrical flow of viscous incompress-

ible fluid streamlining a cylinder the parameter ε in (3.102) was chosen as

173Multidimensional Numerical Models of Subsurface Fluid Dynamics



equal to ε5 1026. The number of internal iterations to solve the

problem (3.118) was calculated through the formula [116]:

n5
lnð2=ε1Þ

ffiffiffiffi
Δ4

p

2
ffiffiffi
2

p ; ε is the required accuracy:

The dimensions of the calculation domain are x5 2; 5; y5 1. The centre

of a cylinder having radius r5 0; 2 was set at the point x5 1; y5 0; 5.
The calculation domain was split into 503 20 cells. In our calculations

for τ5 1024 and ε15 1029 the number of iterations equalled n5 367.

Solutions of the problem (3.115), (3.116) converge with accuracy of

ε15 1029 over 362 iterations.

In Fig. 3.8 the isolines of flow functions are shown for the viscous

fluid flow streamlining a cylinder for Re5 10 and Re5 50.

It is seen from the calculation results that there are no reverse flow

zones. Further, in Fig. 3.9, a we see that at Re5 100 the reverse flow zones

develop behind the cylinder.
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Figure 3.8 Isolines of flow functions for Re5 10.
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Figure 3.9 Isolines of flow functions.
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When the Re number increases the volume of reverse flow zones

becomes bigger (see Fig. 3.9 b, c).

In the case of incompressible fluid and for low or moderate Reynolds

numbers the motion behind a symmetrical finite body may develop in two

regimes: 1) symmetrical steady-state motion; 2) unsymmetrical periodic

motion. At low Reynolds numbers experiments and calculations show

[10, 11, 35] that we are dealing with the steady-state regime. It remains

stable irrespective of the value of the instantaneous initial perturbation. In our

calculations we assumed the perturbation to be as follows: the orthogonal

velocity component in front of the cylinder was set equal to zero body on the

symmetrical side. However, due to the small perturbation the finite number

of iterations resulted in attaining the symmetrical steady-state regime.

The numerical solution of the non-stationary problem of the flow

of viscous fluid streamlining a cylindrical body is interesting from the

theoretical and practical point of view. To obtain a non-stationary

flow scheme it is necessary to introduce a perturbation and to trace its

evolution. We made an attempt to model a structure of a periodic flow.

As the initial approximation we took the following function of the flow

distribution:

ψ0
i11

2
;j11=25 sin

π
2
yj 1 1=2

� 

; i5 1;N ; j5 2;M 2 1:

In numerical simulation the solution of the problem (3.111), (3.112)

was found using the following scheme of stabilizing correction:

ðE2L1ÞðE2 τL2Þ
ψðn11;k11Þ2ψðn11;kÞ

τ0
1Lψðn;kÞ5 ~ui11=2jy 2 ~vij11=2x:

ð3:127Þ
Solving the above problem for the vertical direction was made

through the scalar fitting. The method of cyclic fitting was used to solve

the problem in a horizontal direction. In numerical calculations we chose

the following parameters: Re5 250; τ5 0; 0005; τ05 0; 01.
The calculation domain was split into 503 20 cells. To obtain the

approximate solution of the problem (3.106), (3.107) with accuracy

ε5 1024 it took an average number of 20 iterations. The criterion to

attain the steady state was as follows:�����ψ
ðn11;k11Þ2ψðn11;kÞ

τ0

�����
C

# ε1:
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In practice these are asymmetric or non-stationary types of motion in

the wake that are absolutely stable.

Figs. 3.10�3.12 show the isolines of the flow functions ðψ5 constÞ for
streamlining a cylinder by a viscous fluid at Re5 250 for different points

in time.

A non-stationary flow is observed. A stable area is formed behind the

cylinder in the bottom half-plane. When the “turbulence” is separated

and fluid is discharged from this region the stable area is formed again to

be followed by separation in the upper half- plane.

Thus, the periodic (self-oscillating) regime develops for the flow of

fluid behind the cylinder. The period is T � 1.
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(a)
1.80.4 0.6 0.8 1.0 1.2 1.4 1.6

(b)
1.80.4 0.6 0.8 1.0 1.2 1.4 1.6

(c)
1.80.4

Figure 3.10 a2 t1 5 0; 443; b2 t2 5 0; 618; c2 t3 5 0; 623.
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(b)
1.80.4 0.6 0.8 1.0 1.2 1.4 1.6

(c)
1.80.4

Figure 3.12 a2 t7 5 1; 193; b2 t8 5 1; 243; c2 t9 5 1; 1293.
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(c)
1.80.4

Figure 3.11 a2 t4 5 0; 623; b2 t5 5 0; 893; c2 t6 5 1; 143.
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3.5 NUMERICAL SIMULATION OF THE OIL DISPLACEMENT
PROCESS BASED ON THE N.E. ZHUKOVSKY MODEL

3.5.1 Introduction
The method was developed to determine the velocity and pressure

distribution in formations near the bottom of a well using the

N.E. Zhukovsky model [106]. The method is based on solving the

problem through assessing the distribution of pressure in a formation

having known permeability for the known pressure inside the well

and an unknown fluid flow rate. The effect of boundary conditions of

solid impermeable walls on the pressure was taken into account. The

solution of the boundary problem may be used to evaluate practical well

operating situations [9, 23, 26, 46, 47, 86, 126].

3.5.2 Calculation of the Pressure in Bottom-hole Zones
Formulation of the problem and algorithm for numerical solution. The model

problem of a water displacing oil (“water flooding”) having horizontal

layered flow is considered. The problem is analysed in two-dimensions.

The flow region corresponds to the vertical bed section [50]. Horizontal

boundaries Γ1;Γ4 and vertical boundary Γ3 of the formation are assumed

to be impermeable; boundaries Γ5 and Γ6 are assumed to be isobars with

known injection pressure (on Γ5) and outlet pressure. The shaded area is

occupied by the porous medium.

Γ5

Γ1

Γ4

Γ3

Γ6

Γ2

Figure 3.13 The problem of water displacing oil ("water flooding") with horizontal
layered flow.
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Corresponding equations have the form

@~u

@t
1 ð~urÞ~u1rp5 1

Re
Δ~u2λðx; yÞ~u; div~u5 0: ð3:128Þ

Here ~uðu; vÞ is the velocity vector; p is the pressure; λðx; yÞ is the coeffi-

cient of resistance of a porous medium which is determined in the

following way:

λðx; yÞ5 μm=k �in porous medium;

0 �in nonporous medium;

(

Where m is the porosity coefficient; Re is the Reynolds number; k is

the permeability coefficient of porous material. The boundary condi-

tions are:

~u5 0; ðx; yÞAΓk; k5 1; 3; 4; p5 p0; v5 0; ðx; yÞAΓ5;

p5 p1; u5 0; ðx; yÞAΓ6;
@v

@x
5 0; u5 0; ðx; yÞAΓ2:

ð3:129Þ

Problem (3.128), (3.129) is solved by a finite-difference method on a

hybrid grid. The known method of splitting into the underlying physical

processes [12] was used to determine the velocity and pressure.

3.5.3 Approximation of the Boundary Conditions
At the lower boundary Γ1 the conditions of laminar flow and no flow are

set, such that un11
i11=2;1=25 0; vn11

i;1=25 0. We expand into the Taylor series

the tangent velocity component uðx; yÞ normal to y relative to Γ1 in the

wall-adjacent points xi11=2;
h
2

� �
:

un11
i11=2;1=25 un11

i11=2;12
h2

2

@u

@y

� �n11

i11=2;1

1
h22
8

@2u

@y2

� �n11

i11=2;1

1Oðh32Þ:

Let us consider the projection of equation of motion on Ox in the

same point:

@2u

@y2

� �n11

i11=2;1

5Re
@p

@x

� �n11

i11=2;1

1OðReh2Þ:
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We will substitute
@u

@y

� �n11

i11=2;1

by
@u

@y

� �n

i11=2;1

with accuracy OðτÞ:

un11
i11=2;15

h2

2

@u

@y

� �n11

i11=2;1

2
h22
8
Re

@p

@x

� �n11

i11=2;1

Let’s write down the following equality in the form

un11
i11=2;15 ~ui11=2;12 τ0

@p

@x

� �n11

i11=2;1

; τ05
h22
8
Re;

where ~ui11=2;15
h2

2

@u

@y

� �n

i11=2;1

.

We approximate
@u

@y

� �n

i11=2;1

through values un
i11=2j in nodes i1 1

2
; 1
2
;

i1 1
2
; 1; i1 1

2
; 2 and obtain

@u

@y

� �n

i11=2;1

5
24un

i11=2;1=2 1 3un
i11=2;11 un

i11=2;2

3h2
:

Taking into account the boundary condition we find

~ui11=2;15
3un

i11=2;11 un
i11=2;2

6
; i5 2; 3; . . .;N1:

Equation for pressure for j5 1 is found from equation

un
i11=2;12 un11

i11=2;1

h1
1

vn11
i;3=2

h2
5 0; i5 2; 3; . . .;N1:

Equation for pressure has the form

τ0
pn11
i11;1 2 2pn11

i;1 1 2pn11
i21;1

h21
1 τ

pn11
i;2 2 pn11

i;1

h22
5

~un11
i11=2;12 ~un11

i21=2;1

h1
1

~vn11
i;3=2

h2
:

At the boundary Γ4 when 1# i# k; j5m1 1=2 the boundary conditions

are specified as un11
i11

2
;m11=2

5 vn11
i;m11=25 0.
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Reasoning in the same way we obtain

un11
i11=2;m5 ~ui11=2;m2 τ0

pn11
i11;m2 pn11

i;m

h1
; i5 2; 3; . . .; k;

where ~ui11=2;m 5
3un

i11=2;m
1 un

i11
2
;m21

6
:

The respective continuity equations and relationships to determine

pressure at j5m have the form:

τ0
pn11i11;m22pn11i;m 1pn11i21;m

h21
1τ

pn11i;m 2pn11i;m21

h22
5

~ui11=2;m2 ~ui21=2;m
h1

2
~vi;m21=2

2
;

un11
i11=2;m2un11

i21=2;m

h1
2

vn11
i;m21=2

h2
50:

At the boundary Γ3:

i5 k1
1

2
;m1

1

2
, j,N2; u

n11
k11=2;j 5 vn11

k11
2
;j11=25 0:

For the nodes near the boundary the numerical values of velocity can

be determined as follows:

vn11
k11;j11=25 ~vk11;j11=22 τ1

pn11
k;j11 2 pn11

k;j

h2
; j5m1 1;m1 2; . . .;N2;

where ~vk11;j11=25
3vn

k11;j11=2
1 vn

k12;j11=2

6
; τ15

h21Re

8
:

The equation of continuity at i5 k1 1 takes the form

un11
k13=2;j

h1
1

vn11
k11;j11=22 vn11

k11;j21=2

h2
5 0; j5m1 2; . . .;N2:

Equations for pressure are as follows:

τ
h21

ðpn11
k12;j 2 pn11

k11;jÞ1
τ
h22

ðpn11
k11;j112 2pn11

k11;j 1 pn11
k11;j21Þ

5
~uk13=2;j

h1
1

~vk11;j11=22 ~vk12;j21=2

h2
:
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The boundary Γ2 is the symmetry axis, i5N11
1
2
; 1=2# j#N . The

difference analogue of the boundary conditions on symmetry axis can be

written as:

vn11
N121;j11=25 vn11

N111;j11=2; u
n11
N113=2j 52un11

N121=2j:

The equation of continuity in the vicinity of the symmetry axis has

the form

2
un11
N121=2;j

h1
1

vn11
N1;j11=22 vn11

N1;j21=2

h2
5 0; j5 2; 3; . . .;N22 1:

Pressure value in the nodes next to symmetry axis is given by formula

pn11
N1;j

5
pn11
N121;j

h21
1

pn11
N1;j111 pn11

N1;j21

h22
2 f

" #
1

1
h2
1

1 1
h2
2

; j5 2; 3; . . .;N22 1;

where f 5 1
τ 2

~uN121=2;j

h1
1

~vn11
N1 ;j11=2

2 ~vN1 ;j21=2

h2

� �
:

Pressure in the corner (point i5 k1 1; j5m) is calculated from the

relationship

1

h21
ðτðpn11k12;m2pn11k11;mÞ2τ0ðpn11k11;m2pn11k;m ÞÞ1

1

h22
ðτ1ðpn11k11;m112pn11k11;mÞ

2τ0ðpn11k11;m2pn11k11;m21ÞÞ5
~uk13=2;m2 ~uk11=2;m

h1
1

~vk11;m11=22 ~vk11
2
;m21=2

h2
:

3.5.4 Calculation Results
Computer simulation was carried out for various Re numbers, permeability

coefficients, and geometries.

The domain of numerical integration of the system of the difference

equations (3)�(5) was covered by a grid having a size 213 41 and

313 41. All calculations were made for the same initial approximation

until the following inequality was satisfied :un11 2 un:$ ε; ε5 23 1024.
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Fig. 3.14 shows isolines of the flow functions for Re5 100. As

Fig. 3.14, a shows the fluid flow region is not occupied by the porous

medium.

The numerical simulation shows that the pressure values decrease in

direction of the fluid flow. In front of the porous barrier the pressure

increases and velocities equilibrate. A dramatic change in velocity profile

takes place at the outlet of the layer. The maximum velocity is observed

next to the corner whereas the conditions of complete laminar flow are

met on the wall.

For 0# x# l1; 0# y# l2 the simulation domain is filled with porous

material � (a) and with the medium � (b); the grid size is 313 41;

iteration parameter t5 0; 001:

0.00
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1.00

1.50

2.00

2.50

3.00

0.00 0.50
0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 0.50
(a) (b)

Figure 3.14 Isolines of flow functions at Re5 100.
a � fluid flow in a formation without porous medium; b � a calculated region par-
tially filled by porous medium; the size of the grid is 213 41; iteration parameter
t5 0; 001; steps in spatial variables: h1 5 0; 015; h2 5 0; 0025:
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Isolines of flow functions for Re5 100 and Re5 500 are given in

Fig. 3.15. With increase of Re number and growing resistance of the

porous layer the distribution of the pressure becomes complicated. In the

middle section of the bed under the porous layer there are areas of apparent

increase in pressure. Inside the porous part the pressure is almost constant

across the channel section, whereas it significantly reduces downstream in

the filtered fluid.

Using the numerical results we can reach the following conclusions:

• stability of the fluid occurs in front of the porous layer for any parameters

controlling the flow regime;

• the flow through the porous layer is close to one-dimensional;

• the velocity increases near the wall behind the porous layer.

3.6 NUMERICAL MODEL TO FIND FORMATION PRESSURE

In this paragraph we examine the problem of viscous fluid flowing

through an L-shaped domain having set the pressure p5 pout at the outlet

(a) (b)
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0.500.50
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Figure 3.15 Isolines of the flow functions at Re5 100 (a) and Re5 500 (b).
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and zero tangent component of the velocity vector at the inlet and outlet

(uniform flow). This problem models finding formation pressure p5 pform
using its measured value p5 poutlet at the well head of a producing oil well

which is important from a practical point of view.

We prove the convergence of the difference approximation of this

problem thereby validating its general solvability in time. A computer

model was proposed to simulate more complicated problem when the

total pressure qoutlet 5 p1 1
2
9~u9 is used instead of pressure poutlet. In this

case, instead of using the Navier-Stokes the Zhukovsky model is used.

3.6.1 Substantiation of Numerical Algorithm
to Determine Bottom Hole Pressure
Let the oil flow in through the section AB and out through section DM

(Fig. 3.16). Flow is caused by the pressure drop at the boundaries AB and DM.

The problem is described by the system of differential equations:

@~u

@t
1 ð~urÞ~u5μΔ~u2rp; div~u5 0 ð3:130Þ

with initial-boundary conditions

~u9
t50

5~u0ðxÞ; ð3:131Þ

AB: p5 p05 const ðunknownÞ; v5 0;BCD:~u5 0;

DM: p5 p15 const ðknownÞ; u5 0;

ðD
M

vdx5Q=2; ð3:132Þ

X2

X1A'0A

D M

B C C' B'

D'

Figure 3.16 The oil flows in through the section AB and out through section DM.
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where Q is the flow rate;

AO: ~u5 0; OM: u5 0; vx5 0 is the symmetry condition.

Let us introduce flow function assuming u5ψx2
; v52ψx1

.

We will re-write the system of equations (3.130) in variables ψ;ω:

@ω
@t

1 Jðψ;ωÞ5μΔω;Δψ5ω;

Jðψ;ωÞ5ψx2

@ω
@x1

2ψx1

@ω
@x2

;ω5 ux2 2 vx1 :

ð3:133Þ

Conditions (3.131), (3.132) take the form:

ω9
t50

5ω0ðxÞ;AB:μ
@ω
@x1

5
@

@x1
ðψx1

;ψx2
Þ; @ψ
@x1

5 0;

AO:ψ5 0;
@ψ
@x2

5 0;OM:ψ5 0;ω5 0; ð3:134Þ

MD:
@ψ
@x2

5 0;μ
@ω
@x2

52
@

@x2
ðψx1

;ψx2
Þ;DBC:ψ5

Q

2
� 9DM9;

@ψ
@n

5 0:

The pressure on AB is calculated using the equations (3.130):

dp5νðωx2dx12ωx1dx2Þ2
@

@t
ψx2

dx11
@

@t
ψx1

dx2

2
@

@x1
ðψx2

Þ21 @

@x2
ðψx1

�ψx2
Þ

 !
dx11

@

@x1
ðψx1

�ψx2
Þ1 @

@x2
ðψx1

Þ2
 !

dx2:

ð3:135Þ
We will integrate (3.135) along an arbitrary curve connecting boundaries

DM and AB:

pAB 5PDM 1
Þ
γ μωx2 2

@

@t
ψx2

2
@

@x1
ðψx2

Þ21 @

@x2
ðψx1

Uψx2
Þ

 !
dx1

1
Þ
γ 2μωx1 1

@

@t
ψx1

1
@

@x1
ðψx1

Uψx2
Þ1 @

@x2
ðψx1

Þ2
 !

dx2;

ð3:136Þ
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In this manner we can find the pressure at bottom-hole. Sometimes instead

of the boundary condition (3.132) one can use:

AB: p1 u2 1 v2

2
5 p05 const (unknown), v5 0;

BC, CD, AO � ~u5 0 � laminar flow condition,

DM: p1 u2 1 v2

2
5 p15 const (known), u5 0;

ÐD
M
vdx5Q=2,

OM: v5 0; vx1 5 0.

Then (3.134) take the form

AB:μ
@ω
@x1

5ψx2
� ω2

1

2
ðψx2

Þ2x2 ;
@ψ
@x1

5 0;AO:ψ5 0;
@ψ
@x2

5 0; ð3:137Þ

DM:μ
@ω
@x2

52ψx1
ω1

1

2
ðψx1

Þ2x1 ;
@ψ
@x2

5 0;BCD:ψ5
Q

2
� 9DM9;

@ψ
@n

5 0:

For simplicity let us consider a linear stationary problem in a rectangular

domain. The fluid is flowing in through section AB, and leaving the domain

through section DM.

In this case DM and AO are parallel.

The functions ωðxÞ;ψðxÞ; x5 ðx1; x2Þ satisfy the boundary problem:

Δω5 f ;Δψ5ω; ð3:138Þ

AB:
@ω
@x1

5 0;
@ψ
@x1

5 0;AO:ψ5 0;
@ψ
@x2

5 0; ð3:139Þ

DM:
@ω
@x2

5 0;
@ψ
@x2

5 0;DB:ψ5 0;
@ψ
@x2

5 0;

where f is the known smooth function.

Multiplying the second equation of the system (3.138) by ψ and

integrating, we obtain ð
Ω
9Δψ92dx5

ð
Ω
f � ψdx: ð3:140Þ

We will introduce the class mðΩÞ5 fψAC4ðΩÞ; @ψ@n
��
@Ω5 0;ψ5 0 on

AO and DB, @ψ@n 5 0 on AB and DM}.

The closure mðΩÞ in W 2
2 ðΩÞ is designated as Ŵ

2

2ðΩÞ.
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Consider Ŵ
22

2 ðΩÞ having norm : f :
Ŵ

22

2 ðΩÞ5 sup:ϕ:
Ŵ

22
2

ðΩÞ519ð f � ϕÞ9.
We will construct the grid in a way that boundaries AB and AO are

located between nodes ð0; jÞ and ð1; jÞ and ðN02 1; jÞ; ðN1; jÞ:

Δhωij 5 fij;Δhψij 5ωij; ð3:141Þ

AB:ω0j 5ω1j;ψ0j 5ψ1j; j5 1;N 2 1;

DM:ωNj 5ωN21j;ψNj 5ψN21j; j5 1;N 2 1; ð3:142Þ

AO:ψi05 0;ωi05
2

h2
ψi1; i5 1;N 2 1;DB:ψi05 0;

ωiN 5
2

h2
ψN21; i5 1;N 2 1:

Lemma 1. The problem(3.141),(3.142) has a unique solution complying with

the following estimate

:Δhψ:
2
#C:f :2

h0
: ð3:143Þ

Proof. Inequality (3.143) is obtained by multiplying (3.141) by ψij and

using the Helder inequality. Using the known methods [25] the problem

(3.141), (3.142) can be reduced to the difference system of equations:

Δhωij 1CijðxÞψij 5 fij;Δhψij 5ωij; ð3:144Þ

where CijðxÞ5
2

2

h4
; i5 1;N 2 1; j5 1;N 2 1;

0:

8<
:

At boundaries AB, DM the conditions for ωij;ψij remain the same for

AO, DM. Thus,

AO:ψi05 0;ωi05 0;DB:ψi05 0;ωiN 5 0: ð3:145Þ
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The difference equations (3.144) with conditions (3.145) have quickly

alternating coefficients, therefore we should make use of special iteration

techniques:

ωn11=22ωn

Δt
5Δhωn1CijðxÞψ

n1
1
2
1 fij;Δhψ

n1
1
2
5ωn11=2;

ωn11 2ωn11=2

Δt
5Δhðωn112ωnÞ

ð3:146Þ

with relevant boundary conditions.

The solution (3.146) is provided by the modified alternate-triangular

iteration method.

To solve the nonlinear problem we can use the following scheme:

ωn11=22ωn

Δt
1 ðωn

ijψ
n11=2
ijx2

Þx1 2 ðωn
ijψ

n11=2
ijx1

Þx2 5 νΔhωn
ij 1CijðxÞψn11

2

ij 1 fij;

ð3:147Þ

Δhψn11=25ωn11=2;

ωn112ωn

Δt
5 νΔhðωn112ωnÞ

with conditions (3.142) and (3.145). The scheme (3.147), (3.142), and

(3.145) is stable in space L2ðΩhÞ [25].

3.6.2 The Case of Zhukovsky Model
Consider the following system of nonlinear equations describing the fluid

flow through a porous media:

@~u

@t
1 ð~urÞ~u1rp5μΔ~u2λðx; yÞ~u; div~u5 0: ð3:148Þ

The initial conditions are:

~u9
t50

5~u0ðx; yÞ: ð3:149Þ
The boundary conditions are given as:

AB:p5 p0 5 const ðunknownÞ; v5 0;BD:u5 v5 0; ð3:150Þ
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DM: p5 p15 const (known), u5 0;
ÐD
M
vdx5Q=2, where Q is the

fluid flow rate;

OM:u5 0;
@v

@x
5 0 ðsymmetry conditionÞ;AO:u5 v5 0:

Here λðx; yÞ5mμk21;m � porosity; k- permeability of porous medium;

μ � viscosity coefficient.

We will re-write the system of equations (3.148) using variables: flow

function and turbulence

@ω
@t

1
@uω
@x

1
@vω
@y

5μ
@2ω
@x2

1
@2ω
@y2

� �
2div λðx;yÞgradψð Þ;Δψ5ω; ð3:151Þ

where u5
@ψ
@y

; v52
@ψ
@x

;ω5
@u

@y
2

@v

@x
.

At the boundary AB we will obtain the boundary values ψ;ω, using
condition (3.150) for AB and the principal equation for AB:

u
@v

@x
1v

@v

@y
1

@p

@y

� �
AB

5μ
@2v

@x2
1

@2v

@y2

� �
AB

2 ðλðx; yÞ � vÞAB;

u
@v

@x

� �
AB

52 μ
@ω
@x

� �
AB

; μ
@ω
@x

2ω
@ψ
@y

� �
AB

52
1

2

@

@y

@ψ
@y

� �2

AB

; ð3:152Þ

@ψ
@x

� �
AB

50: ð3:153Þ

0 xA

B

M

y

D

Figure 3.17 Fluid flow through a porous media.
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Reasoning in the same manner we obtain the boundary conditions at

the outlet boundary DM:

μ
@ω
@y

1ω
@ψ
@x

� �
DM

5
1

2

@

@x

@ψ
@x

� �2

DM

; ð3:154Þ

@ψ
@y

� �
DM

5 0: ð3:155Þ

For the rest of the boundary we obtain the boundary conditions stem-

ming from (3.150):

BD:ψ5
Q

2
� 9DM9;

@ψ
@x

5 0; ð3:156Þ

AO:ψ5 0;
@ψ
@y

5 0;OM:ψ5 0;ω5 0:

Cover the region ABDMO with the uniform grid:

Ωh5
xi5 ði2 1Þh1; yj 5 ðj2 1Þh2; i5 1; . . .;N1; j5 1; 2; . . .;N2

h15 9AO9ðN12 1Þ; h25 9MO9ðN22 1Þ

( )

We will substitute the system of equations (3.151) by the difference rela-

tionships [102]:

ωn11
t 5L1hωn111L2hωn11 2 divhðλgradhψnÞ;

Δhψn115ωn11
ij

ð3:157Þ

Here the difference operators are determined in the following way:

L1hω5μðAk11=2ωxÞx;ij 2 0;5ðuk11=2;jωx;ij 1 uk21=2;jωx;ijÞ;
L2hω5μðBk11=2ωyÞy;ij 2 0;5ðvi;k11=2;ωy;ij 1 vi;k21=2;jωy;ijÞ;

ð3:158Þ

Ak11=25 11
1

μ

���� uk11=2;jh1

2

����;Bk11=25 11
1

μ

���� vik11=2h2

2

����
divhðλgradhψÞ5 ðλijψxÞx;ij 1 ðλijψyÞy;ij:
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The scheme to represent the implicit difference scheme (3.157) is

similar to that discussed in paper [25]:

ωn11=3
ij 2ωn

ij

τ
5L1hωn11=31L2hωn 2 divhðλgradhψnÞ;

ωn12=3
ij 2ωn11=3

ij

τ
5L1hωn11=31L2hωn12=32 divhðλgradhψnÞ;

ð3:159Þ

ωn11
ij 2ωn12=3

ij

τ
52 divhðλgradhðψn11 2ψnÞÞ;

Δhψn115ωn11
ij ; i5 2; 3; . . .;N1 2 1; j5 2; 3; . . .;N22 1:

We obtain the boundary conditions for the turbulence at the inlet

and outlet approximating (3.152), (3.154) though integral interpolation

method:

μ
ðx2
x1

@ω
@x

dx2

ðx2
x1

@ψ
@y

dx52
1

2

ðx2
x1

@

@y
@ψ
@y

� �2
dx;

μ
ωn11=3
2j 2ωn11=3

1j

h1
2
ψ1;j11=22ψ1;j21=2

h2
�ωn11=3

1j 52
1

2

ðψn
1j112ψn

1jÞ22ðψn
1j2ψn

1j21Þ2
h32

;

ð3:160Þ

ωn11=3
2j 2 11

h1

2μ
� ðψ1j112ψ1j21Þ

h2

� �
ωn11=3
1j 52

h1

2μ
� ðψ1j112ψ1jÞ22ðψ1j2ψ1j21Þ2

h32
:

Integrating (3.154), we find the boundary condition at the outlet:

ðyN2

yN221

μ
@ω
@y

1ω
@ψ
@y

� �
dy5

ðyN2

yN221

@ @ψ
@x

� �2
@x

dy;

μ
ωn12=3
i;N2

2ωn12=3
i;N221

h2
1ωn12=3

i;N221 �
ψn
i11=2;N2

2ψn
i21=2;N2

h2

5
1

2

ðψn
xÞ2i11=2;N2

2 ðψn
xÞ2i21=2;N2

h1
;

ð3:161Þ
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ωn12=3
i;N2

2 12
h2

2μ
� ðψ

n
i11;N2

2ψn
i21;N2

Þ
h1

 !
ωn12=3
i;N221

5
h2

2μh31
ðψn

i11;N2
2ψn

i;N2
Þ2 2 ðψn

i;N2
2ψn

i21;N2
Þ2

h i
; i5 2; 3; . . .;N12 1:

On the solid walls BD and AO we can make use of the Tom formula

[96] with relaxation. The difference scheme (3.159) is developed as

follows: using the scalar fitting with boundary conditions (3.160), (3.161)

and the known conditions on the solid wall and on the symmetry axis

from the first two relationships we calculate: ωn11=3
ij ;ωn12=3

ij ;
i5 2; 3; . . .;N1 2 1; j5 2; 3; . . .;N22 1.Then from the last two difference

equations we derive the difference equation to determine the flow func-

tion distribution on the five-point template:

1

h21
ð11τλÞi11=2jðψn11

i11;j2ψn11
i;j Þ2ð11τλÞi21=2jðψn11

i;j 2ψn11
i21;jÞ

h i
1

1

h22
ð11τλÞi;j11=2ðψn11

i;j112ψn11
i;j Þ2ð11τλÞi;j21=2ðψn11

i;j 2ψn11
i;j21Þ

h i
5

ωn12=3
ij 1τ � divhðgradhψn

ijÞ; i52;3; . . .;N121; j52;3; . . .;N221

ð3:162Þ

with the boundary conditions:

AB:ψn11
x;1j 5 0; j5 1; 2; . . .;m;BD:ψn11

1j 5 const; j5m1 1;m1 2; . . .;N2;

DM:ψn11
y;iN2

5 0; i5 1; 2; . . .;N1;OM:ψn11
N1;j

5 0; j5 1; 2; . . .;N2; ð3:163Þ

AO:ψn11
i;1 5 0; i5 1; 2; . . .;N1:

The problem (3.162), (3.163) is solved using the iteration method.

The value ωn11
ij is determined from the difference relationship:

ωn11
ij 5Δhψn11

ij ; i5 2; 3; . . .;N12 1; j5 2; 3; . . .;N22 1:
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Iteration process (3.159) stops when the following condition is met

:ωn11
j 2ωn:

C
# ε; ε. 0: ð3:164Þ

Having found the distribution of flow function and turbulence in the

calculation domain the pressure values on AB can be calculated by for-

mula (3.136). From the system of equations (3.148) we have

@p

@x
5μωy2 ðψyÞ2x1 ðψx � ψyÞy2λðx; yÞ � ψy 2 ðψyÞt;

@p

@y
52μωx1 ðψx � ψyÞx2 ðψxÞ2y 1λðx; yÞ � ψx2 ðψxÞt:

8>>>>><
>>>>>:

ð3:165Þ

Accounting for our assumption we obtain from (3.150)

PB5 pAB5 p0ðunknownÞ; pD 5 pDM 5 p1ðknownÞ: ð3:166Þ

Further integrating along the boundary line BD, we find

pD 2 pB5

ð
BD

@p

@x
dx1

@p

@y
dx

� �
; pB5 pD 2

ð
BD

@p

@x
dx1

@p

@y
dx

� �
:

Using parametric equation BD: ðx5 0; y5 t; yB# t# yDÞ, we will write

pB5 pD 2

ðyD
yB

@p

@y

����
x50

dy;

and accounting for (3.165) we can write down this relationship in the form

pB5 pD 2

ðyD
yB

ð2μωx 1 ðψx � ψyÞx2 ðψxÞ2y 1λðx; yÞψx1 ðψxÞtÞ9x50
dy:

ð3:167Þ

We will determine the integral on the right hand side of (3.167)

applying the known formulas of numerical integration. This method

yields the pressure value only at the inlet boundary AB.
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In order to determine the pressure distribution within the whole calcu-

lation domain using calculated values ψ;ω and the known pressure pDM ,

consider the finite-difference analogue of the second equation (3.165):

pn11
ij11 2 pn11

ij

h2
52μ �

ωn11
i11=2j 2ωn11

i21=2j

h1
1

�
ψn11
i11j 2ψn11

ij

��
ψi11

2
;j11=2 2ψi11

2
;j21=2

�
2
�
ψn11
ij 2ψn11

i21j

��
ψn11
i21

2
;j11=2 2ψn11

i21
2
;j21=2

�
h21h2

2λij �
ψn11
i11=2j 2ψn11

i21=2j

h1
1

ψn11
i11=2j2ψn11

i21=2j

h1

 !
t

i5 2; 3; . . .;N1 2 1; j5 2; 3; . . .;N2 2 1:

ð3:168Þ

We can find the pressure distribution from the relationship (3.168)

describing the difference scheme. The calculations were conducted in the

domain x5 0; 5y5 2 and using above finite-difference method the num-

ber of uniform grid nodes in the two- dimensional region was 213 41.

The iteration parameter was taken as τ5 0; 0001. The procedure for

optimising the iteration parameter using the upper relaxation method

was used for numerical solution of equation (3.162). This equation was

approximately solved with an accuracy of ε5 1026. The calculation

results are represented as tables and graphs. Figs. 3.18, 3.19 show the pro-

files of velocity component U for different sections, Fig. 3.20 depicts the

profiles of velocity component V, Fig. 3.21 shows the pressure values. In

Fig. 3.22 the isolines of the flow functions are displayed for Re5 100 and

Re5 250.
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Figure 3.18 Profile of velocity U at the inlet.
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Figure 3.19 Profile of velocity component U in layer (11,j).
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Figure 3.20 Profile of velocity component V in layer: a - (i, 12), b � (i, 40).
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Figure 3.21 Pressure value in nodes of grid in calculation domain: a � (1, j), b � (i, 34).
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Figure 3.22 Isolines of the flow functions at Re5 100 (a) and Re5 250 (b).
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3.7 CONVECTIVE WARM-UP OF AN INHOMOGENEOUS
POROUS MEDIUM

The numerical method of a convection problem solution in a double

connected region with nonlocal boundary conditions for temperature is

proposed. The problem is solved for the variables flow function � turbu-

lence by the method of virtual domains.

We will consider a vertical oil formation section Ω5Ω1,Ω0with an

impermeable inclusion Ω0.

Formation warm-up takes place through the well γ3 (Fig. 3.23). In

particular, thermal treatment of a well is carried out with the assistance of

hot water or steam injection.

3.7.1 Formulation of the Problem
In a double connected region Ω1 (see Fig. 3.23) there arises heat-conducting

fluid flow which is described by the following equations of thermal convec-

tion in dimensionless form [104, 127, 128]:

~ut 1 ð~urÞ~u5 1

Re
Δ~u2rp2~Γθ; div~u5 0; ð3:169Þ

θt 1 ð~urÞθ5χΔθ;

where ~Γ5 ð0;ΓÞ- Grashoff number; ~u5 ðu; vÞ � velocity vector; θ �
temperature; χ- quantity inverse to Prandtl number.

x2

x1

γ4 

γ3

γ1

Ω1

Ω

Figure 3.23 Formation warm-up takes place through the well γs.
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At the boundary @Ω0, the temperature θ9@Ω0
5 θ1 is considered the

unknown constant, possibly dependent on time and satisfying the conditionð
@Ω0

@θ
@n

dl5 0: ð3:170Þ

For the initial-boundary problem:

θ9γ3 5ϕðx1Þ; θ9γ1,γ2,γ4
5 0;~u9@Ω5 0; ð3:171Þ

~u9
t50

5~uðxÞ; θ9
t50

5 θ0ðxÞ: ð3:172Þ
For conditions (3.170)�(3.172) the boundaries of the investigated

regions are designated as follows: γ1; γ2 � left and right vertical bound-

aries of region Ω1; γ3; γ4 � lower and upper horizontal boundaries

of region Ω1; @Ω0- boundary of region Ω0; Ω5Ω0,Ω1;

@Ω5 @Ω0,γ1,γ2,γ3,γ4.

3.7.2 Problem in Variables Turbulence � Flow Function
Introducing the flow function u5ψx2

; v52ψx1
and turbulence

ω5 ux2 2 ux1 and writing equations (3.169) in these variables:

@ω
@t

1ψy

@ω
@x1

1ψx

@ω
@x2

5Δω1Γθx;Δψ5ω;

@θ
@t

1ψy

@θ
@x1

1ψx

@θ
@x2

5χΔθ

8>>><
>>>:

ð3:173Þ

From the boundary conditions (3.171) we obtain the boundary conditions

for the flow function. Let us assume ψð0; 0Þ5 0, then from the condition

v9γ3 5ψx1
9γ3 5 0 it follows that ψ9γ3 5 0 from condition u9γ1 5ψx2

9γ1 5 0

follows that ψ9γ1 5 0. Analogously we obtain ψ9γ4 5ψ9γ2 5 0.

From condition u9γ3,γ4
5ψy9γ3 5ψy9γ4 5 0 we have

@ψ
@~n

��
γ3,γ4

5 0.

In the same manner from u9γ1,γ2
5ψx9γ1 5ψx9γ2 5 0 we obtain

@ψ
@~n

��
γ1,γ2

5 0: Thus, we have

ψ9γ 5 0;
@ψ
@n

����
γ
5 0; γ5,4

k51γk;

ω9
t50

5ω0ðxÞ; θ9t50
5 θ0ðxÞ;

ð3:174Þ

198 Fluid Dynamics of Oil Production



Where ~n- is the normal vector to the boundary of domain Ω1.

From equalities u9@Ω0
5
@ψ
@y

����
@Ω0

5 0; v9@Ω0
52

@ψ
@x

����
@Ω0

5 0 we find that

@ψ
@~n

����
@Ω0

5 0;
@ψ
@τ

����
@Ω0

5 0.

Let ~τ ðτx1 ; τx2Þ � is the tangent vector to boundary @Ω0. Multiplying

the first equation (3.169) by τx1, the second � by τx2, adding them and

calculating the boundary value at @Ω0:

Δuτx1 1Δvτx2 2Γθτx29@Ω0
5

@p

@τ

����
@Ω0

: ð3:175Þ

Under the assumption that the pressure p � is a single-valued func-

tion, the left part of (3.175) becomes zero. Then from the condition of

pressure being unique it follows that:ð
@Ω0

@ω
@n

dl5 0: ð3:176Þ

Let ~n � be the normal to @Ω0. Providing here a more detailed proof

of condition (3.176) and making the following transformations:

Δu5
@

@x2
ðux2 2vx1Þ1

@

@x1

@u

@x1
1

@v

@x2

 !
;

Δv5
@

@x2
ðux2 2vx1Þ1

@

@x2

@u

@x1
1

@v

@x2

 !
;div~u50;

Δuτx1 1Δvτx2 5
@

@x2
ðux2 2vx1Þτx1 2

@

@x2
ðux2 2vx1Þτx2 5

���� τx1 5nx2

τx2 52nx1

����
5

@

@x2
ðux2 2vx1Þnx2 1

@

@x2
ðux2 2vx1Þnx1 5

@

@n
ðux2 2vx1Þ5

@ω
@n

:

From (3.175) we have
@ω
@n

2Γθτx29@Ω0
5

@p

@τ

����
@Ω0

.

Using the condition of pressure uniqueness we findð
@Ω0

@p

@τ
dτ5

ð
@Ω0

@ω
@n

dτ2Γ
ð
@Ω0

θ1τx2dτ5 0: ð3:177Þ
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We will introduce the function ϕ, assuming θ1τx2 5
@ϕ
@x1

x12
@ϕ
@x2

5 @ϕ
@τ . This

brings us to the equalities
@ϕ
@x1

5 0; @ϕ@x2 5 θ1, which we integrate and obtain

ϕ5 θ1x29@Ω0
; θ9@Ω0

5 θ15 const;
@ϕ
@x1

5 0:

Consequently, θ1τx2 5
@ϕ
@τ , where ϕ � is the single-valued function.

As a result, from (3.177) we obtain the relationship.ð
@Ω0

@p

@τ
dτ52Γ

ð
@Ω0

@ϕ
@τ

dτ1
ð
@Ω0

@ω
@n

dτ; ð3:178Þ

which is equivalent to (3.176).

Thus, we have obtained the following problem:

@ω
@t

1ψx2

@ω
@x1

2ψ
@ω
@x2

5
1

Re
Δω1Γθx1 ;Δψ5ω;

@θ
@t

1ψx2

@θ
@x1

2ψ
@θ
@x2

5χΔθ;

8>>><
>>>:

ð3:179Þ

ωjt505ω0ðxÞ;θjt505θ0ðxÞ;ψjγ50;
@ψ
@n

����
γ
50;γ5,4

k51γk;

@ψ
@τ

����
@Ω0

50;
@ψ
@n

����
@Ω0

50;

ð
@Ω0

@ω
@n

dl50;

ð
@Ω0

@θ
@n

dl50;θjγ3 5ϕðxÞ;θjγ1,γ2,γ4 50:

8>>>><
>>>>:

ð3:180Þ

3.7.3 Difference Problem
Let us apply the method of virtual domains to (3.179) and (3.180). The con-

cept of the method is as follows: an auxiliary problem with a small parameter

is solved in the domain Ω0, a certain conformity condition is set in @Ω0.

Let us consider an auxiliary problem with a small parameter in Ω
[122, 123]:

@ωε

@t
1ψε

x2

@ωε

@x1
2ψε

x1

@ωε

@x2
5

1

Re
Δωε 2 div

ξðxÞ
ε

rψε

 !
1Γθεx1 ;

@θε

@t
1ψε

x2

@θε

@x1
2ψε

x1

@θε

@x2
5 divðχεrθεÞ;Δψε5ωε;

ð3:181Þ

200 Fluid Dynamics of Oil Production



ωε9
t50

5ω0ðxÞ; θε9t50
5 θ0ðxÞ; θε9γ1,γ4,γ2

5 0;

@ψε

@n

����
γ
5ψε9γ 5 0; θε9γ3 5ϕðxÞ; γ5,4

k51γk;
ð3:182Þ

ξðxÞ5
1 in Ω0;

0 in Ω1;
χε 5

1 in Ω1;

ε in Ω0:

((
ð3:183Þ

We will cover domain Ω with the uniform grid:

Ωh5 fðx1i; x2jÞ; i5 0; 1; . . .;N ; j5 0; 1; . . .;M ; x1i5 ði2 1Þ � h1; x2j
5 ðj2 1Þ � h2;Nh15 1;Mh25 1g:

For problem (3.181)�(3.183) let us construct the difference scheme

ωn
t 1L1hωn111L2hωn1152divh

ξi;j
ε
rhψn

 !
1Γ �θnx1 ;Δhψ5ω;

θnt 1
1

2
ðψn

x2
19ψn

x2
9Þ �θn11x1

1ðψn
x2
29ψn

x2
9Þ �θn11x1

h i
2

1

2
ðψn

x1
19ψn

x1
9Þ �θn11x2

1ðψn
x1
29ψn

x1
9Þ �θn11x2

h i
5divhðχrhθn11Þ;

ð3:184Þ

Where

L1ω5
1

Re
ðAk11=2ωx1Þx1 2

1

2
ðuk11=2jωx1 1 uk21=2jωx1Þ;

L2ω5
1

Re
ðBk11=2ωx2Þx2 2

1

2
ðvik11=2ωx2 1 vik21=2ωx2Þ;

Ak11=25 11
Reh1

2
9uk11=2j9;Bk11=25 11

Reh2

2
9vik11=29:

The boundary conditions can be approximated. For the turbulence

we can take the Thom condition. For example, the condition at the

boundary γ1 may be written as

@ψ
@x1

����
γ1

5 0;ψ9γ1 5 0:
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We expand ψ1;j into the Taylor series in the vicinity of ð0; jÞ:

ψ1;j 5ψ0;j 1 h1
@ψ
@x1

� �
0;j

1
h21
2

@2ψ
@x21

� �
0;j

1Oðh31Þ:

As ω0;j 5
@2ψ
@x2

1

� 

0;j
, then ω0;j 5

2ðψ1;j 2ψ0;jÞ
h2
1

. Due to the fact that ψ0;j 5 0,

we obtain ω0;j 5
2
h2
1

ψ1;j.

In the same manner we can calculate the approximation for the other

boundaries:

γ1:ω0;j 5
2

h21
ψ1;j; γ2:ωi;0 5

2

h22
ψi;1;

γ3:ωN ;j 5
2

h21
ψN21;j; γ4:ωi;M 5

2

h22
ψi;M21:

ð3:185Þ

For the numerical modelling of scheme (3.184) a three-level differ-

ence scheme was used:

ωn11=3
i;j 2ωn

i;j

τ
1L1ωn11=31L2ωn52div

ξi;j
ε
rhψn

� �
1Γθnx1 ;

ωn12=3
i;j 2ωn11=3

i;j

τ
1L1ωn11=31L2ωn12=352div

ξi;j
ε
rhψn

� �
1Γθnx1 ;

ωn11=3
i;j 2ωn12=3

i;j

τ
52div

ξi;j
ε
rhðψn112ψnÞ;rhψn11;k11

� �
5ωn11;

θn11;k11=2
i;j 2 θn11;k

i;j

τ
1

1

2
ððψn11

x2
1 9ψn11

x2
9Þ � θn11;k11=2

x2

1 ðψn11
x2

2 9ψn11
x2

9Þ � θn11;k11=2
x2

Þ2 1

2
ððψn11

x1
1 9ψn11

x1
9Þ � θn11;k

x2

1 ðψn11
x1

2 9ψn11
x1

9Þ � θn11;k
x2

Þ5 ðχθn11;k
x1

Þx1 1 ðχθn11;k
x2

Þx2 ;
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θn11;k11=2i;j 2θn11;ki;j

τ
1

1

2
ððψn11

x2
19ψn11

x2
9Þ �θn11;k11=2x2

1ðψn11
x2

29ψn11
x2

9Þ �θn11;k11=2x2
Þ21

2
ððψn11

x1
19ψn11

x1
9Þ �θn11;k11x2

1ðψn11
x1

29ψn11
x1

9Þ �θn11;k11x2
Þ5ðχθn11;kx1

Þx1 1ðχθn11;k11x2
Þx2 ;

3.7.4 Results
The proposed method was used to solve the problem of natural convection

in the double connected domain under nonlocal temperature boundary

conditions. The calculation domain (Fig. 3.23) was covered with a grid of

313 31. Initially the program was tested for the convection problem in a

simply connected region. In Figs. 3.24 and 3.25 the isolines and isotherms

are plotted for Γ5 2500 and Pr5 0; 2.
This was followed by obtaining the results of numerical calculations

of the problem in the double connected region at Γ5 3002 3500;
Pr5 0; 22 1. Figs. 3.26 and 3.27 show the isolines of flow functions and

isotherms plotted for Γ5 3500;Pr5 1.
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Figure 3.24 The isolines and isotherms are plotted for Γ5 2500 and Pr5 0; 2.
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Figure 3.25 The isolines and isotherms are plotted for Γ5 2500 and Pr5 0; 2.
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Figure 3.26 The isolines of flow functions and isotherms plotted for Γ5 3500; Pr5 1.
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The simulation in a simply connected region is in agreement with

previous results published in [127].

3.8 THE SPLITTING OF PHYSICAL PROCESSES
UNDER NON-ISOTHERMAL TWO-PHASE
FLUID FLOW IN A POROUS MEDIUM

In this section we discuss the MLT-model, which was initially described in

[15, 16]. It accounts for effect of the thermal processes on the flow of two-

phase fluid as a function of the temperature, viscosity coefficients and the

capillary properties of the two-phase fluid.

The peculiarity of the MLT-model is that all equations involved (but

the Darcy and Laplace laws) are derived from the laws of conservation

formulated for the mechanics of solids. In particular, the motion of the

interface between the two-phase fluid and fixed boundaries (Stefan type

problem) can be described in the framework of this model.
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Figure 3.27 The isolines of flow functions and isotherms plotted for Γ5 3500; Pr5 1.
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The purpose of this section is to determine the relationship between

the degree of smoothness of the solution of the initial-boundary problem

for the MLT-model and the coefficients in the equations as well as at the

boundary conditions. Similar to [3, 6] the results obtained are then used

to prove the convergence of the iteration method for solving the MLT-

problem and finding the convergence rate.

3.8.1 Formulation of the MLT-problem
The mathematical model of nonisothermal flow includes the equation for

the equilibrium temperature θ and the ML-model which uses the Darcy

laws linking the velocities of the phases ~vk and rpk, the Laplace law

p02 p2 5 pcðx; θ; sÞ (here pc is the capillary pressure, p0; p2 are the phase

pressures) with the phase continuity laws.

Introducing the average pressure

p5 p02

ðs
0

b2ðθ; sÞpcsds

and making relevant transformations in the Muskat-Leverett equations we

obtain the following MLT-model [3, 15, 16]:

mkukt 1 div~vk5 0; k5 1; 2; 3; 2~vk5Akruk1Bkrθ2 bk~v1~f k: ð3:186Þ
Here u15 θðx; tÞ is the equilibrium temperature of the fluids and porous

medium; u2ðx; tÞ5 ðs22 s02Þð12s002s02Þ21 and s2ðx; tÞ designate the dynamic

and total saturation of the aqueous phase; s0k 5 constAð0; 1Þ; s001 s02, 1 are

the average residual phase saturations; u3ðx; tÞ5 p is the average pressure of

the mixture; ~v2 and ~v35~v are rates of phase flow and the mixture velocity;

m25m2ðxÞ is the effective porosity; m15 1;m35 b3 5B1 5~f 15 0;
b15 u1 5 θ; b25 b2ðu1; u2Þ. The properties of tensors Ak and Bk, those of

vectors ~f k; k5 1; 2; 3, and functions m2ðxÞ and b2ðu1; u2Þ will be described

below.

Occasionally the function u�2 5m2u2 is used instead of u2. For this function

the coefficients m25 1;A�
2 5m2A2;B2; 2 b2 and ~f

�
2 5

~f 2 1A2u2rðm21
2 Þ in

equation (3.186)ðk5 2Þ have the properties of the initial equation coefficients.
Let us assume that Q5Ω3 ½0;T �;ΩCR3 is a confined domain,

@Ω5,3
1Γ

k; Σk5Γk3 ½0;T �;Γ1 and Γ2 model the locations of injection,

production and contact with a homogeneous immobile fluid. Here Γ3 is an

impermeable boundary.
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The initial-boundary problem for ~u5 ðu1; u2; u3Þ may be represented

in the form

miui 5miu
0
i ; ðx; tÞAΣ0,Σ1;~vi~n5βiψ

0;

Atrθ~n5 β0ðθ02 θÞ;~vk~n5 0; ðx; tÞAΣ3;

ðx; tÞAΣ2;

8>><
>>: ð3:187Þ

Where

i5 1; 2; 3; k5 1; 2; β152b1; β252b2; β35 0; Σ05 ft5 0; xAΩg. If

Γ15[, then the law of mass conservation in Ω leads to conditions:ð
Ω
u3ðx; tÞdx5

ð
Ω
ψ0ðx; tÞdx5 0; tA½0;T �: ð3:188Þ

We will call the problem (3.186), (3.187) a MLT-problem.

3.8.2 The Regular MLT � Problem
Similar to paper [3] we will make use of the following designations for

norms

9u9
q;Ω5 9u9

LqðΩÞ; 9u9q;r;Q 5 9u9
Lq;r ðQÞ; 9u9V 2ðQÞ5 9u9

2;N;Q 1 9rxu92;Q

and Banach spaces LqðΩÞ;Lq;rðQÞ;V2ðQÞ;W 1
q ðΩÞ;W 1;0

q ðQÞ. We will assume

9u9 1ð Þ
Ω 5 9u9

ClðΩÞ;α5 ðl2 ½l�ÞA½0; 1Þ; 9u9ðl;l=2Þ
Q

5 9u9
Cl;l=2ðQÞ:

Introducing the vector of coefficients Φðx; u1; u2Þ5 ðm2;Φ1;Φ2;Φ3Þ
in the system (3.186); Φkðx; u1; u2Þ5 ðAk;Bk; 2 bk; ~f kÞ; k5 1; 2 is the

vector of coefficients of the elliptical operator ð2 div~vkÞ, a

ϕ0ðx; t; u1; u2Þ5 ð~u0;ψ0Þ; ðx; tÞAQ composes the vector of coefficients

that form part of the initial and boundary data satisfying the conditions

[3] and [15]:

i. 9Φ9ð0Þ
G

#M0;M21
0 # ðm2;β0; ðAkξ; ξÞÞ#M21

0 ; 9ξ95 1;

G5Ω3 ðθ�; θ�Þ3 ð0; 1Þ;Ak5Ak; k5 1; 3;A25α21ðu2ÞA;

0,αðu2Þ#M0; u2Að0; 1Þ; ðα;A2;B2; ~f 2Þ9u250;15 0; b2ð0Þ5 0;
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ii. ϕ05 ð~u0;ψ0Þ for ðx; tÞAQ has the following properties

0, δ0#~u02ðx; tÞ# 12 δ0; 0, θ�# u01ðx; tÞ# θ�,N;

ð:u01t; u02t:1;Q; :ϕ0;ϕ0
x:2;Q; :ψ

0:
2;Σ2Þ#M1:

In order to draw a valid analogy with the classical principle to find the

maximum saturation u2ðx; tÞ let us assume that

0, δ# u2ðx; tÞ# 12 δ; δAð0; 1Þ; ðx; tÞAQ: ð3:189Þ
The latter provides a uniform parabolic feature of equation (3.186)

when k5 2

9lnðA2ξ; ξÞ9#M2; ðx; u1; u2ÞAG; ð3:190Þ
Similar to [3] let the following conditions be met

~f 2~n9Σ5 0;
@

@θ
ðb2; ~F 2Þ5 divx~F 25 0;’u2=2ðδ; 12 δÞ; ð3:190�Þ

where Σ5Σ1,Σ2; ~F 25B2rθ1~f 2; δ. 0 is a small constant. In the

physical sense (3.190�) implies that when a single fluid flows

ðu2# δ; ð12 u2Þ# δÞ the equilibrium temperature u15 θ should be close

to that of the flowing fluid, and the porous medium saturated with this

fluid should be homogeneous.

Definition The vector~u5 ðu1; u2; u3Þ is called a regular solution of the MLT-

problem when for all points Q we have u1ðx; tÞA½θ�; θ��; u2ðx; tÞA½δ; 12 δ�,
conditions (3.190) are valid; ðu1; u2ÞAV2ðQÞ; u3AW 1;0

2 ðQÞ and ðu1; u2; u3Þ
satisfy the standard integral identities, and Σ1;Σ2 in (3.187) satisfy the

assumptions [3, 15].

The authors of [15] prove the existence of a weak solution of the

MLT-problem (without condition (3.190)).

3.8.3 Proof of the Regular Solution Smoothness

Theorem 1 Let us assume that assumptions i), ii) are fulfilled,(3.190), provided

9Φ9ðlÞ
G
#M3; ½l�# 2;α5 l2 ½l�. 0; 9B39

ð0Þ
G

# ε; ð3:191Þ
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where ε. 0 is a small number. Then there is such α0 that if α0 . 0, then

9~u9ðl0;l0=2Þ#N ðQ0Þ; l05 ½l�1α0;Q
0CQ: ð3:192Þ

In this case Q0 5Q, if in addition we have

iii. @ΩAHl1� ½3�; 9ϕ09 l1;l1=2ð Þ
#M4; l15 l1 1

and if the conformity conditions are fulfilled up to the order of ½l�.

Proof Under conditions iii) we can use a standard continuation into the

wider domain where Ω�*Ω is determined. Then the estimation (3.192)

is valid for Q05Q. Consequently we can confine our case to Q0CQ.

Inequation (3.186) for u3ðx; tÞ we substitute B3rθh instead of the term

B3rθ [θh is the Steklov averaging θðx; tÞ5 u1]. Select h. 0;N . 0 and

ε. 0 so that

ε
�
:θh:

ð2;0Þ
Q

1 :θhxxx:2;Q #N


: ð3:193Þ

As before the solution found to the problem can be designated through

~u5 ðu1; u2; u3Þ. Due to the restriction ~f 05B3rθ we obtain from equation

(3.186)ðk5 3Þ we obtain u3ACα0ðΩ0Þ-W 1
q0
ðΩ0Þ;α0 . 0; q0$ 2. Using

the equation (3.186), ðk5 1Þ, we obtain u1ACα0 (theorem 8.1 [3]).

Thus, we have

9uk9
ðα0Þ
Q0 #N ðQ0Þ;α0. 0; k5 1; 3: ð3:194Þ

We can write (3.186) in the form

2mkukt 1 divðAkrukÞ5 hk; k5 1; 2; 3; ð3:195Þ
where hk5

P
i;jq

k
ijuixujx2 γkΔθðγ15 0Þ is a smooth function with carrier

Ωρ; 9Ωρ95 ρ. When (3.194) is valid and if we consider the integral

identities corresponding to (3.195) using the multiple inequalities taken

from [3] for ðuix; ujxÞ we find

J#C
X3

k51
ðεkδ21ρ2α1 δÞ:ukxxξ2:22;Q 1 c0ðρÞ; ð3:196Þ

where J5
P3

1 JkðukÞ; JkðukÞ5 :ukxxξ2:
2

2;Q 1mk:ukξ2:
2

V ðQÞ,

:f :2
V ðQÞ5 :fx:

2

2;Q 1 :ft:
2

2;Q; and ε25 0; ε1 5 ε35 1:
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Choosing ρ. 0 and δ. 0 and splitting Q
0
into a finite number of

domains Qρ, we obtain from (3.196)

:~uxx:
2

2;Q 1
X2

j51
:uj:

2

V ðQ0Þ#N ðQ0Þ: ð3:197Þ

Expression (3.197) yields that (3.194) is valid for k5 2. Now exam-

ining the equation (3.186), k5 3, in which A3ACαðQ0Þ and

9~f 09#M ; ð~f 0 5B3rθh1~f 3Þ, we obtain u3xALq;NðQ0Þ ’qAð1;NÞ
(theorem 4.2 [3]). Then, using (3.186), we find ðu1; u2ÞALqðQ0Þ for

k5 1; k5 2 (theorem 5.3 [3]) that is

:~ux:q;Q0 #N ðq;Q0Þ’qAð1;NÞ: ð3:198Þ

Further we differentiate the equations (3.195) for functions

ðu1; u�2; u3Þ5~u; u�2 5m2u2 having variable xi; i5 1; 2; 3, assuming that

f i5 fxi (omitting asterisk �). Then uik satisfies the same equations (3.195)

ðm15m25 1Þ on the right hand side:

hix 5 div~Gik1FiðγkÞ; ~Gi15 ðθ~f 0Þi1λirθ; ~Gi35~f
i

0;

~Gi25 ðb2~f 01B2rθ1~f 2Þi; FiðγkÞ5 ½divðγkB3ru3Þ�i; γ15 θ; γ25 b2; γ3 5 0:

For the functional JkðuikxÞ in (3.196) we obtain

JkðukxÞ# ck:hkξ2:
2

2;Q 1 c0k ðQ0Þ;

:hkξ2:5 supi:hikξ
2:: ð3:199Þ

Introducing hk let us consider the function:

RiðγÞ5 ½divγ~f 0�i; γ5 u1; b2; 1:

We will assume that ~f � fx; gxi � gx, then

RiðγÞ5 ðγf2Þxx1 γðB3xxθhx1 2B3xθhxx1B3θhxxxÞ:
In accordance with (3.193) we obtain ðγf2ÞxxAL2ðQ0Þ and

ðB3θhxxxÞALNðQ0Þ on the basis of estimations (3.197), (3.198). Reasoning

along these lines we find for RiðγÞ and hence for ðhkξ2Þ

:hkξ2:
2

2;Q # δc1:~uxxxξ2:
2

2;q 1 c0ðQ0; δÞ:
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Summing up estimations obtained in terms of k for chosen small δ. 0,

we have

:~uxxx:
2

2;Q 1
X2

j51
:uj:

2

V ðQ0Þ#N ðQ0Þ: ð3:200Þ

We obtain from (3.186) that ~uxACα0ðΩ0Þ;α0 . 0. Returning to

equations (3.186) in u1; u3, and later in u2, we obtain (3.192), when

l0 5 21α0;α0. 0. This allows for a limiting transition of the averaging

parameter h. Further improvement in the degree of smoothness ~uð½l�. 2Þ
is provided by the standard method of differentiating equations (3.186).

Thus, the theorem is proved.

3.8.4 Approximation of the MLT-problem (AMLT-problem)

mku
i11
kt 5 divðΦi

krku
i11Þ; k5 1; 2

2r �~vi115 divðA3rui11
3 1Bi

3rθi 1~f
i

3Þ5 0

(
ð3:201Þ

where functions ~ui11 satisfy the conditions (3.187)ðΣ35[Þ. Here

Φi
k5Φkðx; ui1; ui2Þ;Φk5 ðAk;Bk; 2 bk; ~f kÞ, are the coefficients of the

elliptical operator 2div~vkð Þ. For uk we introduce the designation

rku5 ðruk;rθ;~v; 1Þ. As a result we have ~vk52Φkrku. In the AMLT-

problem the linear equations are solved in sequence: first for u3, then

for u1 and finally, for u2. A similar iteration technique is used to prove

theorem 1. Consequently, together with the proof of Theorem 1 the

validity of the following assertion is confirmed.

Theorem 2 Provisions of theorem 1 are valid for solutions of ~ui11of the AMLT-

problem (3.201).

3.8.5 Estimation of the Approximate Convergence Rate

Theorem 3 Let B3 5 0and½l�5 2under conditions of theorem 1 provided that

δΩ5Γ1or δΩ5Γ2. Then when i-Nfunctions ~ui11converge to the classical

solution of ~ui11;α0 . 0 of the non-linear MLT-problem (3.187) In this case

:u3i11;ru3i11:2;N;Q 1 :u1i11; u2i11:V2ðQÞ# ε; ð3:202Þ

:~ui11:N;Q # εβ ;βAð0; 1Þ; ð3:203Þ
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where ~ui11 5~ui112~u; ε5 cfðcTÞi=i!g1=2, and constant c depends only on the

given data of the problem.

Proof Similar to (3.201) we have

mk

@

@t
uki115 divfΦkrkui111 ~F

i

kg; k5 1; 2; 3; ð3:204Þ

where ~F
i

k5Φkirku
i11;Φki5Φkðx; ui1; ui2Þ2Φkðx; u1; u2Þ:

According to (3.191) we find that

9Φki9#M3ð9u1i91 9u2i9Þ;

and further we obtain for ~F
i

3:

:Fi
3:2;Ω# c0

�
:u1i:2;Ω1 :u2i:2;Ω

� � c0yiðtÞ:

Multiplying (3.204), k5 3 by u3i11 and integrating within Ω, we

finally obtain

:u3i11;ru3i11;~v3i11:2;Ω# cyiðtÞ: ð3:205Þ

Now consider ~F
i

1 and ðB2rθi11 1 ~F
i

2Þ as given vectors. Using (3.205),

we have

:uki11:
2

�# c

ðt
0

�
:uki11:

2

2;Ω1 yiðτÞ1 lk:ru1i11:
2

2;Ω

�
dτ;

:f :2�5 :f :2
2;Ω1

ðt
0

:f :2
2;Ωdτ; k5 1; 2; l15 0; l25 1:

Substituting expression
Ð t
0
:ru1i11:

2

2;Ωdτ in the inequality obtained

and making k5 1 for ’i making k5 2 we obtain

:uki11:
2

�# c

ðt
0

ðyi11ðτÞ1 yiðτÞÞdτ; k5 1; 2: ð3:206Þ
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Summing (3.206) fork5 1 and (3.206) when k5 2 leads to inequality

yi11ðtÞ# c0

ðt
0

ðyi11ðτÞ1 yiðτÞÞdτ; yi11ð0Þ5 0;

from which according to the Gronuoll inequality [3] we find

yi11ðtÞ# c

ðt
0

yiðτÞdτ; ðc5 c0e
c0T Þ: ð3:207Þ

Applying the method of induction from (3.207) for

zi5 sup
0# t#T

ðτÞ5 :u1i:
2

2;N;Q 1 :u2i:
2

2;N;Q

we obtain the following estimate:

zi# εðiÞz0; εðiÞ5
ðcT Þi
i!

;

Substituting it in (3.205), (3.206) results in (3.202). Using the interpo-

lation inequality

supQ9u9# cðβÞðkukV2ðQÞÞβðkukcαðΩÞÞ12β; βAð0; 1Þ;
we obtain the estimate (3.203). This proves the theorem.

Let’s consider now (3.201) as a system of linear equations in which

vector Φi composed of coefficients depending on the parameter i and,

in accordance with theorem 3, values Φi converge when i-N. Let us

split the domain Ω;Ω5,N
1 Ωi; 9Ωi9#M and interval ½0;T � into smaller

parts having dimensions h0. Designate the relevant normalized space as

X 5XðΩÞ describing its finite dimension analogue as Xh5XðΩhÞ;
h5 ðh0; h1Þ.

Then

:u:
Xh
# :u:

X
# 9u9ðlÞΩ ; ½l�$ 2:

Using the following assumption, similar to that used in [6].

Theorem 4 For solutions ~uh of the algebraic system of equations approx-

imating to the linear problems (3.201), (3.187) for ~ui11, the following

estimation is valid

:~ui112~uh:Xh
#MðhÞ;MðhÞ-0 at 9h9-0;

213Multidimensional Numerical Models of Subsurface Fluid Dynamics



where MðhÞ does not depend on i. Then there is such l that l$ 2 in

(3.191), for which ~uh converges to solution ~u of the initial nonlinear

problem (3.186), (3.187) having the following convergence rate:

:~u2~uh:X # cεγ 1MðhÞ; γAð0; 1� ð3:208Þ

3.9 FLOW OF TWO IMMISCIBLE INHOMOGENEOUS
FLUIDS IN POROUS MEDIA

Now we prove the theorem of existence of general solutions in time for

initial-boundary problems using the mathematical model describing the

process of flow of two immiscible inhomogeneous fluids (for example,

water to steam or oil to gas). This approach was proposed by the authors

in [15, 17]. In these papers the conventional conditions of the density

taken from the theory of flow of a two-phase fluid [15] were replaced by

the immiscibility condition of these fluids that has proved reliable in the

models used in oceanological and hydrological studies [145].

The mathematical model corresponding to the above assumptions is

developed using the system of composite differential equations including

the uniformly parabolic equation for the temperature, degenerating

elliptical-parabolic system to describe for saturation in one of the fluids

and the average pressure as well as the hyperbolic system of equations for

the density transfer.

For the first time the model of flow of a single inhomogeneous fluid

was proposed in [91], to be followed by analysis of the validity of the

initial-boundary problems [91, 124]. Similar problems were examined

in [19] for the flow model of two inhomogeneous fluids. The validity of

the initial-boundary problems set for the models of nonisothermal flow

of two homogeneous fluids having constant density was investigated in

papers [15, 16]. In this section we focus on similar problems formulated

for the general field development model [15, 19, 91]. The results

obtained are reported in paper [18].

3.9.1 Equation of the Model
Let si; i5 1; 2 be the phase saturations of the porous space, s11 s25 1;m
is the porosity, αi5msi; i5 1; 2;α35 12m are the volume concentra-

tions of fluids and that of the solid phase (or the porous space frame),

ρi; pi; ui are the density, pressure and velocity of fluid flow respectively,

vi5αiui 5msiui; i5 1; 2 are the rates of phase flowand v5 v11 v2 is the
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rate of flow of the mixture. It is assumed that rocks are nondeformable

and the thermal equilibrium is observed in each point of the porous

medium, i.e. the temperatures θi coincide in phases � θi5 θ; i5 1; 2; 3.
It is assumed that the phase motion obeys the laws of flow set forth in

the Muskat-Leverett model [2]:

@msiρi
@t

1 divρivi5 0; ð3:209Þ

vi52K0ðxÞ
σiðsÞ
μiðθÞ

ðrpi 2 ρigÞ; ð3:210Þ

p22 p1 5 γðθÞcos αðθÞ mðxÞ
9K0ðxÞ9

 !1
2

JðsÞ � pcðx; θ; sÞ; s � s1: ð3:211Þ

Here K0ðxÞ is the permeability tensor in the absolute medium; σiðsÞ
are the relative phase permeabilities; σ1ðs�Þ5σ2ðs�Þ5 0; s�; 12 s� are the

residual phase saturations; μi are the phase viscosities; g is the gravity con-

stant; γ is the surface tension coefficient; α is the wetting angle; JðsÞ is the
Leverett function for capillary pressure. Further, we designate

kiðs; θÞ5σiðsÞμ21
i ðθÞ; k5 k11 k2:

Instead of the fluid state equations written at the bottom of (3.209),

(3.210), we will make use of the conditions of fluid immiscibility:

@ρi
@t

1 uirρi5 0; i5 1; 2; ð3:212Þ

They imply fixed fluid densities ρi along the trajectory of motion.

Taking into account only the convective heat transfer and the heat con-

ductivity the energy balance equation for the mixture can be written in

the form

@θ
@t

1 divðvθ2λðx; θ; sÞrθÞ5 0: ð3:213Þ

Here λ is the temperature conductivity of the mixture (two fluids and

porous frame). In [15] equation (3.213) was obtained from the general

equations of the balance of the energy of components when the mixture

is kept under thermal equilibrium [95] provided the density was the
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same for the phases and their specific heat was identical. It was also

assumed that

λ5
X3

i51
αiλ:i ð3:214Þ

The equations (3.213), (3.214) derived in paper [15] remain valid for

a more general case of an inhomogeneous incompressible fluid under

the condition that the product of the phase densities multiplied by their

specific heat remains the same.

3.9.2 Transformation of Equations. Formulation
of the Problem
Differentiating (3.209) and using (3.212), we obtain

ρiðmsit 1 divviÞ1msiðρit 1 uirρiÞ5 0;

which leads to the equations in si, having the same form as equations

derived for ρi5 const [2]:

msit 1 divvi5 0; i5 1; 2: ð3:215Þ
Since s25 12 si, then the above system is equivalent to the system

compiled for s; v1 and v:

mst 1 divvi5 0; divv5 0: :ð3:216Þ
By analogy with [2] we will introduce the average pressure

p5 p21

ðS�
S

b1
@

@ξ
pcðx; θ; ξÞdξ; bi 5

ki

k
; i5 1; 2:

After making relevant transformations in equations (3.210), (3.211),

(3.216) we obtain the following system of equations for s; p; θ; ρ1; ρ2:

mst 5 div½K0ða1rs2 a2rθ1 f1Þ2 b1v� � 2 divv1ðs; p; ρi; θÞ;

05 divK0kðrp1 f2 1 a3rθÞ � 2 divvðs; p; ρi; θÞ;

@θ
@t

1 divðvθ2λðx; θ; sÞrθÞ5 0; ð3:217Þ

@msiρi
@t

1 divρivi 5 0; i5 1; 2;
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where

a15 9pcs9a0; a25 pcθa0; a05 b1k2; a352 k1pcθ2

ðs�
s

@

@θ
ðb1pcsÞds;

f15 a0½ðρ12 ρ2Þg2rxpc�; f2 5
ðs�
s

b2rxpcsds2 gðb1ρ11 b2ρ2Þ:

Let ΩCR3 � be the confined domain ΩT 5Ω3 ½0;T �; @Ω5 S;
Γ5 S3 ½0;T �; S5 S1,S2;Γi5 Si3 ½0;T �. To determine the functions

we are looking for, let us consider the following initial-boundary

problem:

ðs; θ; ρ1; ρ2Þ9i50
5 ðs; θ; ρ1; ρ2Þ0 xð Þ; xAΩ; ð3:218Þ

vin9Γ5 0; θ9Γ1
5 θ0ðx; tÞ;λ

@θ
@n

����
Γ2

5βðθ02 θÞ: ð3:219Þ

Here n is the unit vector of the outer normal to Γ;βðsÞ is the heat-

transfer coefficient for a three-component mixture which for the previously

discussed cases of deriving equation (3.213) can be written as follows

β5
X3

i51
αiβiðρiciÞ21;

βi-is the heat-transfer coefficient of the i-th phase.

3.9.3 Assumptions. Determination of
the Generalized Solution
Let the following be met for the coefficients of the equation and the

initial-boundary conditions are as follows:

i. ðrθ;sðki; pcÞ; pcθsÞACðGÞ;G is a closed domain in space of the variables

ðx; s; θÞ, and

M21# ðm; pcs; ðK0ξ; ξÞ;β;λÞ#M ;

jξj5 1; :rxpc:N;Ω #M :

ii. 0, ðk1; k2Þ,M ; sAð0; 1Þ; a09s5s�;s�
5 k1ðs�Þ5 k2ðs�Þ5 0;and

9lnða1a21Þ; lnða2a21Þ; b1k21
1 ; f1a

21; f2k
21
2 ; a39#M0ðMÞ; a5 k1k2:
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iii. the functions in (3.218), (3.219) have the properties

s� # s0ðx; tÞ# s�; θ�# θ0ðx; tÞ# θ�; 0,mi# ρi0ðxÞ#Mi ,N;

ð:θ0t; s0t:1;ΩT
; :rθ0;rs0:2;ΩT

Þ#M ::

Designations of functional spaces and norms are taken from paper [83].

Definition We shall call a set of functions(3.213) the generalized solution of

the problem (3.217)�(3.219), if:

i. 0, s� # s# s�, 1; 0,mi# ρi#Mi,N; i5 1; 2 in ΩT

ii. uðsÞ5 Ð s
s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ðx; ξÞ

p
dξAW 1;0

2 ðΩT Þ
iii. ðp;rpÞAL2ðΩÞ; θAV2ðΩT Þ-LNðΩT Þ
iv. the boundary conditions in Γ1 are satisfied almost everywhere;

v. the following integral identities are fulfilled:

ðms;[tÞ2 ða1rs2 a2rθ1 f1;K0r[Þ1 ðb1v;r[Þ52 ms0;[ð ÞΩ0
;

ð3:220Þ

ðθ;ψtÞ2 ðλrθ2 vθ;rψÞ52 ðβðθ02θÞ;ψÞΓ2
2 ðθ0;ψÞΩ0

; ð3:221Þ

ðrp1 a3rθ1 f2;K0rηÞ5 0; ð3:222Þ

ðρi;msiζ l 1 virζÞ52 ðmsi0ρi0; ζÞΩ0
: ð3:223Þ

Here ð�; �Þ-is the scalar product in L2ðΩT Þ, and the test functions

in [;ψ; η; ζ satisfy the conditions [;ψ; ζAW 1
2 ðΩT Þ;ψ5 0 in

Γ1;[5ψ5 ζ5 0 for t5T ; ηAð0;T ;W 1
2 ðΩÞÞ.

3.9.4 Regularization of Problem (3.217)�(3.219)
We will introduce functions SðsÞ;ΘðθÞ;RiðρiÞ which extrapolate values

s; θ; ρi outside the intervals ½s�; s��; ½θ�; θ��; ½mi;Mi� using the boundary

values. Further, instead of direct dependence of the coefficients in

equations (3.217) on s; θ; ρi we consider complex functions depending

on S;Θ;Ri. Getting rid of the degeneration in s we substitute a1 by

a11 δ5 aδ in (3.217). In order to ensure that the coefficients remain

smooth we will apply the averaging in terms of x and t with steps of h
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and τ. Let ε5 ðδ; h; τÞ be the vector of the regularization parameters.

Then, from (3.222) having a3hτrΘhτ ; f2hτ ;K0h and according to results

obtained in [83] we have pεAC21α;1
x;t ; vνAC11α;1

x;t . From (3.221) having

λht;βht; θ0ht we obtain θεAC21α;11α=2 � C21α
� ;rθAC11α

� ðΩT Þ. And

finally, from (3.220) having aδhτ ; a2hτrθ; b1hτv; f1hτ ;K0h; s0h we will have

sεAC21α
� . It is worth mentioning that after truncating in ρi and fi,

the first three equations in the system (3.217) fully comply with the prop-

erties of coefficients in paper [15]. Therefore, we obtain the following

estimates for uniformity of the regularization parameters ε:

:rθ:
2;QT

1 :rp:
2;QT

#C½:θ0t:1;QT
1 :rp0:2;QT

1 :a3:2;QT
� � N1;

:
ffiffi
a

p rs:
2;QT

#C
h
N1 1 :rs0:2;QT

1 :f1a
21=2
δ :

2;QT

i
;

ð3:224Þ

s�# s# s�; θ� # θ# θ�:

The last inequalities imply that (3.220)�(3.222) are valid for real

coefficients rather than for truncated ones because of SðsÞ and ΘðθÞ.
Due to the fact that coefficients are smooth we have inclusions

vε1AC11α;1; vεAC11α;1; vε2 5 vε2 vε1AC11α;1. As s does not become zero,

then uεi 5 vεi =ðmsεi ÞAC11α;1. It is not difficult to see that the functions

ρεi ðx; tÞ5 ρi0hðyεi ðx; t; 0ÞÞ, where
dyεi
dτ

5 uεi ðy; τÞ; y9τ5t
5 x;

satisfy the equations (3.212) for uεi [equations (4ε)] and initial conditions

(3.218). Identities (3.220), (3.222) are equivalent to equations (3.215)

with sεi and vεi [equations (7
ε)] for the smooth solutions of the regularized

problem. Multiplying (4ε) by msεi and (7ε) by ρεi and adding, we obtain

the equations (1ε) [(1) sεi ; ρ
ε
i ; v

ε
i ], from which the identities (3.223) are

easily obtained for the regularized problem. Representing solution as ρεi
we readily obtain that ρεiA½mi;Mi� and consequently, truncation in ρi does
not perturb the coefficients of the problem (3.217)�(3.219).

3.9.5 Limiting Transition
Making use of (3.224) in the same way as was discussed in papers [2, 15] we

can obtain strong compactness sε; pε; θε in LpðΩT Þ;’p$ 1; vε in L2ðΩT Þ
from (3.220)�(3.222) and weak compactness vεi in LpðΩT Þ.
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Multiply (4ε) by msεi q
21ρq21

iε (for the time being we will omit the

index ε), q$ 1 being an integer and integrate the expression using Ωt:

05 ðmsi; ðρqi ÞtÞΩt
1 ðvi;rρqi ÞΩt

52 ðρqi ;msi1div v1ÞΩt
1

ð
Ω
mðsiρqi 9t51

2 siρ
q
i 9t50

Þdx:

Due to (7ε) we obtain

ð
Ω

msiρ
q
i dx5

ð
Ω

msi0ρ
q
i0dx5 const: ð3:225Þ

Let us consider ziε5 ðmsiεÞ1=qρiε. It is obvious that ziε-zi;� � is weak in

LNðΩT Þwhen ε-0, and due to (3.225) :ziε:q;Ω � :zi0:q;Ω. In particular,

for q5 2 we have :ziε:2;Ω-:zi0:2;Ω, consequently ziε-zi is strong in

L2ðΩÞ, which implies that ’p. 2 in Lp as well. As in this case sε strongly

converges in Lp; p. 2 and 0, s� # s# s�, 1, then ρiε5 ziεðm; siεÞ21 also

converges strongly in Lp; p. 2. Strong convergence of siε; ρiε provides a

limiting transition in identity (3.223). Limiting transitions in (3.220)�(3.222)

are conducted in the same manner [15].

Thus, the following assertion is proved.

Theorem Let the following assumptions be fulfilled i)�iii). Then the

problem (3.217)�(3.219) has, at least, one general solution ðs; p; θ; ρ1; ρ2Þ
in ΩT ;’T . 0.

3.10 NUMERICAL SOLUTION OF THE PROBLEM
OF TWO-DIMENSIONAL TWO-PHASE FLOW

3.10.1 Introduction
Various fluid dynamic problems modelling water flooded oil production

were considered taking into account the capillary forces [9, 41, 51, 72,

76, 80, 84, 110, 111, 139, 141, 142, etc.]. Nevertheless, water flood

calculations remain tedious even using the approximation techniques.

One of the reasons is that the system of non-linear differential equations

in the second order partial derivatives in pressure and saturation is used to

describe the two-phase flow of the oil�water mixture featuring capillary
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effects. Nonlinearity effects � both in pressure and saturation � are

extremely complicated to describe. In many papers the one-dimensional

problems were considered in more detail. The two-dimensional- and

especially three-dimensional problems are especially difficult to solve.

In this section we consider the method of numerical solution applied

to the two- dimensional problem of water oil drive taking into account

capillary forces. This is carried out using the Muskat-Leverett mathemati-

cal model with “reduced” pressure (see Chapter 1, Section 1.2).

The nonlinear elliptical equation for pressure contains, on the right

hand side, the terms describing the oil and water flow rates. A parabolic

equation to determine water saturation is convenient to obtain the

numerical solution using the variable orientation method. The initial

water saturation values are taken as known for the initial domain, whereas

the Newmann boundary conditions are fixed for the pressure.

To draw a comparison, the numerical calculations of the same problem

were conducted using the Duglis, Pichman and Rechford schemes [51].

Of course, the results obtained were sufficiently close but the principal

algorithm is closer to the scheme developed by Duglis, Pichman and

Rechford. Solvability of this problem and the issues of convergence were

studied in paper [2].

3.10.2 Formulation of the Problem
Let us consider the following initial-boundary problem for the system

of equations inside a cylinder Q5 fD3 ð0, t,T Þg with boundary γ,
describing the flow of the two-phase incompressible fluid:

m
@s

@t
5 divðK0ðxÞaðx; sÞrs2 bðsÞ~v1 ~F ðx; sÞÞ1 q2;

divð2K0ðxÞkðsÞrp2 bðsÞ~v1~f ðx; sÞÞ1 q11 q25 0;

~v52K0ðxÞkðsÞrp2 bðsÞ~v1~f ðx; sÞ

8>>>>>><
>>>>>>:

ð3:226Þ

sðx1; x2; 0Þ5 s0ðx1; x2Þ;
@p

@n

����
γ
5 0;

@s

@n

����
γ
5 0: ð3:227Þ

Numerical modelling is conducted using the assumption that the

medium is isotropic and homogeneous, hence K0ðxÞ5 const. The relative
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phase permeabilities k1ðsÞ; k2ðsÞ were determined using the following

formulas:

k1ðsÞ � sε; k2ðsÞ5 ð12sÞδ; ε; δAð0; 1Þ;

kðsÞ5 k1ðsÞ1 k2ðsÞ5 sε1 ð12sÞδ; bðsÞ5 k1ðsÞ
kðsÞ 5

sε

sε1 ð12sÞδ ; ð3:228Þ

aðx; sÞ52 pcðxÞ � J 0ðsÞ:
k1 � k2
k

: ð3:229Þ

Here pcðxÞ is expressed through the Laplace formula:

pcðxÞ5σ � cosθ
ffiffiffiffiffiffi
m

K0

r
; ð3:230Þ

where σ � is the interphase tension coefficient; m � is the porosity coeffi-

cient; K0 � is the flow coefficient; θ � is the boundary; JðsÞ � is the

Leverett function; decreasing from N to 0 when s is changing from 0 to 1.

Usually it is assumed that J0(s)5 c � ln 1/s or J 0ðsÞ5 const=sα, where

0,α, 1. Consequently,

aðx; sÞ5 pcðxÞ
const � sε2αð12sÞδ

sε 1 ð12sÞδ ; ð3:231Þ

~F ðx; sÞ52
k1ðsÞ � ðρ22 ρ1Þ~g
k1ðsÞ1 k2ðsÞ

5
sεðρ12 ρ2Þ~g
sε1 ð12sÞδ : ð3:232Þ

If pcðxÞ 6¼ const, then

~f ðx; sÞ5K0ðxÞ:rpcðxÞ � kðsÞ �
ð1
s

J 0ðξÞ k1ðξÞ
kðξÞ dξ1K0ðxÞk2ðsÞJðsÞrpcðxÞ

1 ðρ2 2 ρ1Þ~g;

~F ðx; sÞ52K0ðxÞ �
k1ðsÞ � k2ðsÞ

kðsÞ JðsÞrpcðxÞ2
k1ðsÞ
kðsÞ ðρ22 ρ1Þ~g:
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From here on s implies that s5
s1 2 s01

12 s0
1
2 s0

2

� the dynamic water satura-

tion; s01 is the residual water saturation; s02 � is the residual oil saturation;

s1 is the true water saturation.

We consider a two dimensional (in orthogonal plane ~g) problem of

an incompressible two-phase fluid flowing at pc 5 const. In this case
~F ðx; sÞ5 ð0; 0Þ; ~f ðx; sÞ5 ð0; 0Þ and equations (3.226) take the form

m
@s

@t
5 div K0ðxÞaðx; sÞrs2~v

@b

@s
rs1 q2;

05 div ðK0ðxÞKðsÞrpÞ1 q1 1 q2;~u52K0ðxÞKðsÞrp:

8>><
>>: ð3:233Þ

To solve the problem (3.227), (3.233) numerically we will construct

the following difference scheme of variable directions to express water

saturation:

m
s
ðn11=2Þ
ij 2 s

ðnÞ
ij

τ
5 ðdi11=2js

ðn11=2Þ
x1;ij

Þx1 1 ðdij11=2s
ðnÞ
x2;ij

Þx2 2 ðbuðnÞÞx1;i11=2j

2 ðbvðnÞÞx2;ij11=21 q
ðnÞ
2;ij;

m
s
ðn11Þ
ij 2 s

ðn11=2Þ
ij

τ
5 ðdi11=2js

ðn11=2Þ
x1;ij

Þx1 1 ðdij11=2s
ðn11Þ
x2;ij

Þx2 2 ðbuðnÞÞx1;i11=2j

2 ðbvðnÞÞx2;ij11=21 q
ðnÞ
2;ij;

ð3:234Þ

where dij 5K0 � aðxij; sðnÞij Þ; xij 5 ðx1i; x2jÞ.
The calculation of pressure is provided by solution of the elliptical

equation through the following method:

p
ðn11=2Þ
ij 2p

ðnÞ
ij

0;5τ1
5ð ~di11=2jpðn11=2Þx1;ij

Þx1 1ð ~dij11=2pðnÞx2;ij
Þx2 1ðqðnÞ1 1q

ðnÞ
2 Þij; ð3:235Þ
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p
ðn11Þ
ij 2p

ðn11=2Þ
ij

0;5τ1
5 ð ~di11=2jpðn11=2Þx1;ij

Þx1 1ð ~dij11=2pðn11Þx2;ij
Þx2 1ðqðnÞ1 1q

ðnÞ
2 Þij:

The velocity distribution is determined using the Darcy law:

un11
i11=2j 52 ~dijp

n11
x1;ij

; vn11
ij11=252 ~dijp

n11
x2;ij

; ð3:236Þ

where ~dij 5K0 � kðsðnÞij Þ.
The calculation algorithm can be specified as follows: the method of

scalar fitting is used to find sðn11=2Þ; sðn11Þ. The iteration technique is used

to calculate the corresponding p
ðn11Þ
ij .

3.10.3 Analysis of Numerical Results
The algorithm developed was used to formulate a model capable of simulat-

ing the dynamics of oil displacement using the measured water saturation.

Some examples, with results for various well locations, are given below.

For instance, the following nine-spot oil production pattern was

considered (Fig. 3.28).

Eight injection wells having the same injection rates q2
(squares) are plotted on the uniform grid fðxi; yjÞ; xi5 ih;
yj 5 jh; i5 0:30; j5 0:20g. The production well (circle) having oil flow

rate q1 and water flow rate q2, proportional to the mobilities of corre-

sponding phases is placed in the centre. If q0 is the quantity of water

Figure 3.28 A nine-spot oil production pattern is considered.
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injected into the formation then the following values are given for the

production well:

q1 52
k1q0

ðk11 k2Þ
; q252

k2q0

ðk1 1 k2Þ
;

Correspondingly for injection wells the values

q15 0; q25
q0

8
are known:

We will assume that at an initial point s05 const, the porosity is con-

stant through over the calculation domain m5 0; 375, the permeability

k5 1, and dynamic viscosities are μ15 0; 00928;μ2 5 0; 00115.
During water injection the distribution of water saturation has the

following profile (Fig. 3.29). As can be seen the maximum values correspond

to the locations of the water injection wells. We stopped the calculation at

t5 0; 2792, when the time step wasΔt5 0; 000358.
Table 3.1 contains the values in nodes (i,j), where, due to symmetry

i5 0; . . .;Nx=2; j5 0; . . .;Ny=2.
The corresponding total pressure profile is as shown in Fig. 3.30.

In Table 3.2 pressures are reported as dimensionless values.

To study the symmetry in a selected domain using the same parameters

as mentioned in the first example we took 8 producing wells having

identical flow rates q1 and q2, placing an injection well having the injection

rate of q0 in the centre (Fig. 3.31).

Indeed, the water saturation pattern has a symmetry relative to the

centre (Fig. 3.32) as the formation was taken to be homogeneous, and the

water saturation at initial moment � constant (t5 0; 8234;Δt5 0; 00358).

Figure 3.29 The profile of distribution of water saturation during water injection.
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Table 3.1 Values in nodes (i,j), where, due to symmetry i5 0; . . .; Nx2 ; j5 0; . . .;Ny=2
I\l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.23 0.34 0.40 0.43 0.41 0.37 0.30

1 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.23 0.34 0.40 0.43 0.41 0.37 0.30

2 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.29 0.37 0.43 0.48 0.45 0.40 0.37

3 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.25 0.33 0.40 0.47 0.56 0.50 0.44 0.41

4 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.29 0.33 0.35 0.40 0.46 0.53 0.49 0.46 0.43

5 0.21 0.21 0.21 0.21 0.21 0.22 0.31 0.37 0.40 0.40 0.40 0.44 0.49 0.48 0.46 0.44

6 0.21 0.21 0.21 0.21 0.21 0.29 0.37 0.43 0.47 0.46 0.44 0.43 0.46 0.47 0.45 0.45

7 0.21 0.21 0.21 0.21 0.23 0.32 0.40 0.47 0.56 0.52 0.48 0.45 0.45 0.45 0.43 0.41

8 0.21 0.21 0.21 0.21 0.21 0.29 0.38 0.44 0.51 0.50 0.48 0.46 0.44 0.41 0.31 0.24

9 0.21 0.21 0.21 0.21 0.21 0.23 0.33 0.39 0.44 0.46 0.46 0.45 0.43 0.31 0.21 0.21

10 0.21 0.21 0.21 0.21 0.21 0.21 0.26 0.36 0.41 0.43 0.44 0.45 0.38 0.23 0.21 0.21



In the next example the wells are located in four rows (Fig. 3.33).

Such a pattern can be used to describe domains elongated along the

Ox axis.

In this case the values of porosity m, permeability k, viscosities μ1;μ2

are the same as those given in the previous examples. The water flow rates

in the injection wells are assumed to be equal and for producing wells the

sum of flow rates of oil q1 and water q2 is proportional to the mobilities

of the corresponding phases. For such location of wells the distribution of

water saturation has the following profile (Fig. 3.34).

Table 3.3 lists the numerical values of water saturation plotted in

Fig. 3.34 for i5 1 . . .Nx=2; j5 1. . .Ny=2.
In this section we give a numerical solution of the two-dimensional

problem of the flow of an incompressible two-phase fluid.

Various examples were used to show that the model proposed allows

forecasting the formation of isolated immobile domains in a reservoir

that occur due to the nonhomogeneity of the formation or due to water

blocking access to the producing well.

By choosing the optimum location of injection and producing wells

and varying their operating regimes it is possible to increase the volume

of oil production.

Software called “Muskat” with a service interface was developed to

solve the two-dimensional ML equations. It is capable of calculating the

water saturation and pressure at any point in time for given locations of

wells and their production rates.

Module “Gr.bas” is responsible for plotting one- and two-dimensional

graphs (in colour) during the calculations.

Figure 3.30 The corresponding total pressure profile.

227Multidimensional Numerical Models of Subsurface Fluid Dynamics



Table 3.2 Pressures (reported as dimensionless values)
I\l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,02 1,02 1,02 1,02 1,02 1,01

1 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,02 1,02 1,02 1,02 1,02 1,01

2 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,01 1,02 1,02 1,03 1,02 1,02 1,01

3 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,01 1,02 1,02 1,02 1,03 1,02 1,01 1,01

4 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,01 1,02 1,02 1,02 1,02 1,01 1,01 1,00 1,00

5 1,00 1,00 1,00 1,00 1,00 1,00 1,02 1,02 1,02 1,02 1,01 1,01 1,00 1,00 0,99 0,99

6 1,00 1,00 1,00 1,00 1,00 1,01 1,02 1,02 1,02 1,02 1,01 1,00 0,99 0,98 0,97 0,97

7 1,00 1,00 1,00 1,00 1,00 1,02 1,02 1,03 1,03 1,02 1,00 0,99 0,98 0,96 0,95 0,94

8 1,00 1,00 1,00 1,00 1,00 1,01 1,02 1,02 1,02 1,01 1,00 0,98 0,96 0,94 0,92 0,90

9 1,00 1,00 1,00 1,00 1,00 1,00 1,02 1,02 1,01 1,00 0,99 0,97 0,95 0,92 0,89 0,87

10 1,00 1,00 1,00 1,00 1,00 1,00 1,01 1,02 1,01 1,00 0,99 0,97 0,94 0,90 0,87 0,81



Figure 3.31 8 producing wells having identical flow rates q1 and q2, placing an injec-
tion well having the injection rate of q0 in the centre.
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Figure 3.32 The water saturation pattern has a symmetry relative to the centre.

Figure 3.33 Wells are located in four rows.
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Table 3.3 lists the numerical values of water saturation plotted in Fig. 3.34 for i5 1; . . .; Nx2 ; i5 1; . . .;Ny=2
I\J 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0.21 0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22

1 0.21 0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22

2 0.21 0.21 0.22 0.30 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.30

3 0.21 0.21 0.21 0.23 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.23

4 0.21 0.21 0.22 0.30 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.30

5 0.21 0.21 0.21 0.23 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.23

6 0.21 0.21 0.22 0.30 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.30

7 0.21 0.21 0.21 0.23 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.23

8 0.21 0.21 0.22 0.30 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.30

9 0.21 0.21 0.21 0.23 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.23

10 0.21 0.21 0.22 0.30 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.30



3.11 GEOLOGICAL AND MATHEMATICAL
MODELS OF THE RESERVOIR

3.11.1 Introduction
In this section we provide a comparative analysis of various mathematical

models of reservoirs, give the limits of their application and conduct the

fluid dynamic analysis of the results of numerical calculation. Also, we

consider the issues of applying the mathematical models and calculating

reservoir parameters.

Development of oil and gas fields is highly dependent on the develop-

ment of methods for mathematically modelling real reservoirs and describing

the complicated geological processes.

The characteristic parameter for the inflow of the heavy Kumkol oil is

the paraffin pour point [61] θk. At this temperature precipitating wax

sediments at the surface of the pores resulting in a dramatic decrease in

the oil production rate. To maintain the formation temperature hot water

is injected into the formation. The process of production of heavy oil

using steam flooding can be described using the model of two-phase flow.

The book [61] outlines the principles of developing various mathe-

matical models to describe reservoirs. It also explains how specific models

developed by the authors and their colleagues are applied in computer

simulation of oil field development.

The aim of this section is to solve the following problems of computer

simulation which had not been discussed in [61] or were only mentioned

briefly.
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Figure 3.34 Profile of the distribution of water saturation for such location of wells.
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1. identification of oil formation parameters (developing a geological

model);

2. adaptation of mathematical models through comparison of the field

data (in site experiments);

3. comparative analysis of the various mathematical models and defini-

tion of their applicability range;

4. numerical approximation of mathematical models and fluid dynamic

analysis of the results of numerical calculation.

3.11.2 The Main Mathematical Flow Models
3.11.2.1 Darcy, Navier-Stokes and Zhukovsky Models
Let mðxÞ and kðxÞ � are the coefficients of porosity and permeability of the

porous medium ðxAR3Þ; μ5 const. 0 and ρ5 1 � are the homogeneous

fluid viscosity and density; p0 and ~u are the pressure and the velocity vector

of the moving fluid particles; p5 p01 ρgh and ~v5m~u are the fluid head

and the flow rate. Then the main models describing the flow of the homo-

geneous fluid in porous medium may be reduced to the following two-

parameter model:

ε
d~u

dt
2μΔ~u

� �
1rp1 δλm~u5 0;r �~u5 0: ð3:237Þ

For ε5 1; δ5 0 the system of equations (3.237) becomes the Navier-

Stokes model (NS), for ε5 0; δ5 1 � we have the Darcy model (D),

and for ε5 δ5 1 � the Zhukovsky model (Zh). Here d=dt5 @=@t1 ð~u � rÞ;
λ5μ=k is the Zhukovsky coefficient and correspondingly mλ~u is the

Zhukovsky force (see Chapter 1).

For some values of parameters of the porous medium and the flowing

fluid the Irmey hypothesis is valid. According to the hypothesis

Δ~u52 γ~u ðγðxÞ. 0Þ, which, in this case, indicates that the Darcy and

Navier-Stokes models are close (see Chapter 1).

3.11.2.2 Live Oil Model
Let pH � be the saturation pressure of the live oil having reduced density

ρ5 1 at p. pH . The process of gas drive when p, pH will be accounted

by a special equation of state for an oil and gas mixture (Chapter 1):

ρðpÞ5 1; p$ pH ;
11 δðp2 pH Þ; p, pH ðδ5 const. 0Þ:�
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Assuming that the fluid flow is one-dimensional and planar (orthogonal

to the gravity vector) we obtain the following equations:

m
@ρðpÞ
@t

2
@

@x
ρk

@p

@x

� �
5 0; v52 k

@p

@x
: ð3:238Þ

3.11.2.3 The Muskat-Leverett and the Buckley-Leverett Models
The equations comprising the main mathematical models of the flow of a

two-phase fluid may be presented as a single parameter family of models:

~vi52kiðrpi1 ρi~gÞ;msit 1 div~vi 5 0; p2 2 p15 εpc; ð3:239Þ
where ~vi; pi, and ρi are the phase flow, pressure and density ði5 1; 2Þ; si;μi

and kiðsÞ are the phase saturations, viscosities and permeabilities;

ki5 kki=μi, where k - is the average permeability.

For ε5 0 expression (3.239) becomes the simplest Buckley-Leverett

model not taking into account capillary forces, for ε5 1 the Muskat-

Leverett model (ML).

Model (3.239) is transformed into the following system of equations

in the dynamic saturation sðx; tÞ and the medium pressure pðx; tÞ:
mst 2 divðεars2 b~v1~f 0Þ5 0;

div~v � 2divðk0rp1~f 1Þ5 0;



ð3:240Þ

where aðx; sÞ. 0 for sAð0; 1Þ and aðx; sÞ5 0; s5 0; 1; k0ðx; sÞ$ δ0. 0

when sA½0; 1�; ð9bs9; 9bx9,NÞ.

3.11.2.4 The Displacement Model
The previously described models were developed in such a manner that

they cannot describe the flow of a two-phase fluid under conditions

when a porous medium is undersaturated with a displacing phase (flow

into a “dry” formation). In this case we have to use the displacement

model (Chapter 1, Section 1.3), which provides the same system of equa-

tions of the type (3.240) with a potential for dynamic saturation sðx; tÞ to
take negative values.

3.11.2.5 The Boundary Layer Model
One of the disadvantages of the Muskat-Leverett model (the one that

accounts for capillary forces) deals with the “edge effect” or poor accuracy

in the boundary conditions set for the producing well. To make sure that

the boundary conditions of the producing well are generated in the course
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of the problem solution (as is the case with the Buckley-Leverett model)

simultaneously taking into account capillary forces, one can make use of the

boundary layer model (Chapter 1, Section 1.3). For the planar steady flows

of a two-phase fluid in a porous medium the boundary layer model simply

becomes an integration of the following saturation equation sðx; yÞ:

9b0ðsÞ9 @s
@x

5
@

@y
aðsÞ @s

@y
1 b0QðtÞ @s

@y

� �
; ð3:241Þ

where QðtÞ is a given flow rate in the mixture.

3.11.3 Geological Model (GM) of Oil Formation
Among the mathematical flow models (Chapter 1) there are more than

30 describing various processes in reservoirs.

To conduct numerical calculations using any of these models to

forecast field development parameters it is necessary to know the underly-

ing parameters: m5mðxÞ is porosity; k5 kðxÞ is permeability (in general

case k-tensor); kiðsÞ;μi; ρi are permeabilities, viscosities and densities of

the phases; pcðx; sÞ is capillary pressure. Besides, to estimate the para-

meters, i.e. the flow rates, pressures and saturations of the phases

~vi; pi; siði5 1; 2Þ it is necessary to collect well data at reservoir boundaries

and under initial conditions.

The basis for developing a model is provided by inputting geological

and field data for the reservoir studied, namely:

• characteristics of the geological structure;

• the geological and physical characteristics;

• the fluid dynamic characteristics (production rates, pressures, etc.);

• the approved calculation parameters � oil in place and recoverable

reserves of oil, dissolved gas, free gas and condensate;

• the field history data, etc.

The information supporting the geological model consists of geologi-

cal field data, the values directly measured in the wells (geological struc-

ture, geological and physical characteristics, field data etc.), details of field

development and approved volume of recoverable reserves, cross section

information near the wells drilled in the same area of the field.

The techniques to improve the accuracy of geological field data are

highly location dependent. They give sufficiently reliable information on

the formation parameters close to the well. Obtaining the necessary
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information for the whole of reservoir requires application of various

methods of interpolation and statistical processing [61].

Obtaining the distribution of the geological and physical parameters

of reservoir areally and with depth, modifying these parameters, using

additional information on the field and processing the parameters using

the statistical, engineering and fluid dynamic methods (inverse problems)

results in the formulation of a geological model (GM) for the reservoir.

Often the formulation of the GM for the reservoir is referred to as the

identification of the reservoir’s geological and physical parameters.

The book [61] discusses the means to obtain, store and process geological

field data in sufficient detail.

Let us consider some specific problems of modelling geological field

data using a simulation approach to model various units in the reservoir.

3.11.3.1 Selection of Calculation Domains
Any mathematical model of an oil field is designed to simulate its perfor-

mance, to determine the causes of discrepancy between pre-development

and actual indices, and to suggest corrective measures to eliminate any

discrepancies. Geological differences in fields, their development history,

substantial differences in field parameters etc., requires the modelling of

each field individually.

Let us initially focus on the problems of planar (areal) flow of nonhomo-

geneous fluid in a formation. This case corresponds to the development of

a specific formation consisting of several layers having similar permeability

and located in a limited part of the field or covering the whole field. Let us

refer to this complex system of strata as the oil bearing formations.

The practical analysis and the development plan for large fields is done

using the zonal principle as described in [26, p. 20; 41; 86, p. 50; 197].

The reservoir to be studied (bed) is divided into calculation domains

influenced by the reservoir arrangement (influencing the choice of the

coordinate system), geological properties or the field development plan (they

control the choice of domain for application of the mathematical model),

and considerations of the symmetry or location of the section close to the

field boundaries (the latter require selecting the special types of boundary

conditions) (Fig. 3.35).

Fig. 3.35, a shows the split into the calculation domains A;B;C, corre-
sponding to a different choice of the coordinate system. Fig. 3.35, b outlines

the locations of the calculation domains for the various development

schemes: A � row, B � transient, C � five-spot. The specific features for
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division into calculation domains at the field boundaries are shown in

Fig. 3.35, c.

Depending on the geometrical, geological and operational field

characteristics the number of injection and production wells varies signifi-

cantly in the calculation domain (from several to many hundreds of wells).

The calculation domains are especially important as they feature a regular

system of well spacing. They are referred to as the base symmetry elements.

It is assumed that a closed system having symmetrical conditions at the

boundaries can be considered as a base element. This element has the known

boundary conditions for the wells (the production rate, pressure or fluid

saturation) and homogeneous reservoir parameters within the boundaries of

the element. The first stage of assessing the field development plant involves

the calculation of development parameters within the base element followed

by calculation of the parameters for the complete reservoir. For example, for

the five-spot development scheme (Fig. 3.35, b, section C) the repeating

base symmetry element of water flooding is provided by a rectangle having

no flow boundaries to water with injection and production wells in the

corners (see Fig. 3.35, b, section D).

The symmetry of the above base element allows calculation of field

characteristics using one-dimensional mathematical models. However,

with time any field develops asymmetry in well spacing and production

rates which can be caused, for example, by drilling operations which

differ from those planned. This process can only be taken into account

with two-dimensional calculations using the base element and discarding

the assumption of symmetrical boundary conditions which makes such a

base element an integral calculation domain.
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Figure 3.35 The reservoir to be studied (bed) is divided into calculation domains
influenced by the reservoir arrangement.
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The next crucial moment in selecting the calculation domains deals

with field parameters describing the oil production and the rate of water

encroachment in the field. First of all, it is necessary to locate the areas in

the field (if they exist) where production wells are water-free. For such

areas the practical mathematical models are provided by homogeneous

flow (not two-phase) models. These are the models proposed by Darcy,

Navier-Stokes, and Zhukovsky.

The models describing the flow of homogeneous fluid can also be applied

to domains featuring permanent water saturation (at least over a long period

of time). Indeed, let sAð0; 1Þ be the constant water saturation in a domain,

ki5 kiðsÞμ21
i 5 const; b15 b1ðsÞ5 k1ðk11k2Þ215 const; k5 k11 k2 5 const.

Then the equation of the ML- model (3.239) can be readily reduced to

the following Darcy model: ~v52 krp; div~v5 0ðp5 p22 b1pc; p5 pcðsÞÞ,
where ~v5~v11~v2. In the same manner we can obtain the Zhukovsky

model with λ5 k
μ ;~u5~u1 1~u2.

Now let us consider the case when process of water drive of oil takes

place in the domain Ω having two poroperm features. That is throughout

Ω the permeability equals k1, and in the regions (inclusions)

ΩnCΩ; n5 1;N 2 k2{k1 [9, p 147; 23, p 92]. Then these areas are

bypassed by water and oil can be recovered from them only due to capil-

lary effects. If the domain ΩnCΩ is sufficiently large, then capillary flow

can be ignored and we consider only streamlined flow around barriers Ωn

in Ω (Sections 3.4, 3.5 in this chapter).

When, according to the Irmey hypothesis (see Section 3.11.2.1), the

flow of fluid is described by the Navier-Stokes model we obtain the descrip-

tion of the viscous flow in connected regions (Section 3.3 in this chapter).

3.11.3.2 Vertical Cross Section of the Reservoir
In the case of controlled flow the effects of sublayers with different porosity,

permeability, and residual water saturation values can be accounted for

in the mathematical model through averaging of the above parameters.

To specify the flow scheme in a reservoir, depending on the geometrical

(thickness, curvature) and fluid dynamic (porosity, permeability) charac-

teristics of the sublayers, it is necessary to study flow in the vertical direc-

tion (in a cross section) of a reservoir. Therefore, depending on the nature

of the water drive, the flow of the two-phase fluid is studied from injector

to producer. Most often, the ML-model is used to describe this flow

(see Section 3.11.2.1). In the case when for the given stage of field
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development the flow is steady then equations of the ML-model can be

split to model the underlying physical processes:

~vn11
i 52

kni
μi

� rϕn11
i ; divvn11

i 5 0 i5 1; 2; n5 1; 2; . . . ð3:242Þ

pcðsn11; xÞ5 pn22 pn1;ϕ
n
i 5 pni 1 ρigh; grh5~g: ð3:243Þ

We will note that such splitting also takes place in the steady state case.

With a fixed value s5 snðxÞ equation (3.242) describes the homogeneous

flow of fluid in nonhomogeneous porous medium having the permeability

coefficient kni 5 kiðsnÞ � kni ðxÞ, and the distribution of saturation at the

ðn1 1Þ iteration step is unambiguously given by the Laplace law (3.243) as�� @pc
@s

�� 6¼ 0 at sAð0; 1Þ.
The Darcy models obtained for each of the components ði5 1; 2Þ may

be substituted by Navier-Stokes equations (when the Irmey hypothesis is

fulfilled) or by the Zhukovsky model.

In oil practice a field may feature multilayered connected beds [26, p. 167;

86, p. 106]. This leads to study of flow in several connected regions

(Fig. 3.36). In the steady-state case as was shown above, the several connected

regions may exhibit the types of flow described by the Navier-Stokes or

Zhukovsky models (see Sections 3.3, 3.5 in this chapter).

An interesting class of problems described in this book (Chapter 1,

1.6) is encountered in the wellbore when there are two inflows: one slow

rate and one fast (Fig. 3.37).

Figure 3.37 A wellbore when there are two inflows: one slow rate and one fast.

Figure 3.36 Several connected regions.
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3.11.3.3 Combined Fluid Dynamic Characteristics
Combined fluid dynamic characteristics can be easily taken into account

in a calculation domain (areal scheme) having multiple beds (horizons).

In this case the total oil recovery and water flooding is obtained by

summing the corresponding formation parameters.

A far more complicated problem occurs when cross flow of a

two-phase fluid takes place through the common boundaries of various

domains [86, p. 165]. In this case, if the calculation domain consists only

of the base symmetry elements then the conditions given preclude fluid

cross flow between these elements. Therefore, the main fluid dynamic

characteristics of the domain are calculated as a sum of the characteristics

of the base elements. The issue of combined fluid dynamic characteristics

is solved in the same way as if it was possible to select the calculation

domains as fluid dynamically isolated or to consider the whole field as

one domain. Otherwise, the boundary conditions at the common bound-

aries must account for potential cross flow of the two- phase fluid. This

leads to the evaluation of a complex interaction between the calculation

domains (an example is provided by superposition of the volume and

channel flows in a well � see Chapter 1, Section 1.6).

3.11.4 The Mathematical Model of a Reservoir
Any mathematical model of a complicated reservoir (a section having

several wells or a section of a field containing several interlayers having

different permeabilities) is informative when the relevant geological field

data are processed to generate numerical values of the model parameters

(coefficients of differential equations and initial- boundary conditions).

The convenience of using the geological and mathematical models to

describe an oil formation depends on a degree of interaction between the

automated system and the analysis to develop these reservoirs; the potential

for direct access to geological field data and processing to derive the model

parameters; the correspondence between the forecasted parameters of the

formation developed and the additionally measured characteristics of flowing

wells. In brief, the usefulness of the models depends on comparison between

calculated and actual data and validity of the geological model.

The mathematical model of oil flow is a set of submodels developed for

each calculation domain complying with the initial and boundary condi-

tions as well as meeting the requirements for calculating the combined

effect of adjacent domains. Operation of this complex system together with
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the geological and field data (GFD) provides a reliable control on the

process of oil production. Solutions of these complex issues form the basis

of an automated system of field development. The mathematical models

and the geological field database are described in detail in paper [61].

3.11.4.1 Mathematical Models of Calculation Domains
Based on the above arguments we can make a short list of the mathemati-

cal models applied to various reservoir calculation domains.

a. The Muskat-Leverett model (see Section 3.11.2.1) is a universal instru-

ment to describe the two- phase flow under almost all conditions in

calculation domains including those featuring homogeneous fluid flow

on reaching residual saturations (s5 0 or s5 1) when it becomes the

Darcy model for a homogeneous fluid.

However, as was indicated in 1.4, if the water is flowing into a “dry”

formation, that is the dynamic saturation is negative, s5 σ2σB

12σB 2σH
,

, 0, where [σ is the true water saturation, σα is the residual oil

saturations (α5H) and water (α5B)], then it is impossible to describe

them within terms of the Muskat-Leverett model.

b. The displacement model (see Section 3.11.2.4) is included into the

group of mathematical models of an automated system to analyse field

development (ASAFD) which is intended to describe the flow of two-

and one-phase fluid into a “dry” formation (at s, 0 water flow, and at

s. 1 oil flow in the absence of residual water).

c. The Darcy, Navier-Stokes (provided the Irmey hypothesis applies) and

Zhukovsky models are mainly used to describe the flows of homogeneous

fluid. However, as the preceding overview shows (see Section 3.11.3.1),

they are also applicable in the following cases of flow of a two-phase fluid:

1. under conditions of constant water saturation;

2. under conditions of a steady two-phase flow;

3. under conditions of superposition of matrix and channel flows;

4. when the following iteration splitting two-phase flow into the

underlying physical processes is made:

2~vn115 knðrpn111 ~F
0

nÞ; div~vn115 0 ð3:244Þ

m
@sn11

@t
5 divðkn0anrsn112 bn~vn111 ~F

nÞ: ð3:245Þ

240 Fluid Dynamics of Oil Production



Here ~F 05 k21~f (~f is determined in [61, 8.0] and for any value of

ϕðs; xÞ5 ðk; k0; a; ~F 0; ~F Þ it is assumed that ϕn5ϕðsn; xÞ.
For a given value sn 5 snðx; tÞ the system (3.244) is obviously a Darcy

model describing a flow of a homogeneous incompressible fluid in a

nonhomogeneous formation caused by force ~F 0. Equation (3.245)

describes the diffusion of water saturation sn11ðx; tÞ in a given distri-

bution of flow velocity ~vn11.

The convergence of this iteration scheme was proved in book [2] under

given conditions of regular flows in which the function to be found �
sðx; tÞ satisfies the inequalities 0, s2# sðx; tÞ# s1, 1; s6 5 const. The

authors found sufficient conditions for the existence of such regular

flows.

We will note that when the ordinary conditions are met the Darcy

model (3.244) can be replaced by the Navier-Stokes or Zhukovsky

models.

d. The model of live oil flow (see Section 3.11.2.2) describes the flow of a

homogeneous fluid in an oil formation when the pressure in some areas

is below the saturation pressure ðpform, psatÞ.

3.11.4.2 Interaction of Numerical Algorithms with the Data Base
When the numerical mathematical model algorithms are included into

ASAFD it is necessary to ensure that they interact with the data bases. All

initial information on oil and gas fields is contained in three sections of

the data base: geological field, the operational and general field parameter

data [61].

The standard scheme of interaction should include:

• access and readout of the necessary data to operate a specific algorithm

from the general field parameter databank;

• access to the geological field databank and construction of a geological

model of the part of field developed;

• access and readout from the operational parameter databank of the nec-

essary data on injection and production wells, pressure, temperature

etc.;

• calculation of the field development parameters using the algorithm

for specific time intervals;

• storage of the calculation results in relevant parts of the data base.

A similar scheme is used to arrange for interaction with the data base

to apply extrapolation and statistical analytical methods.
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It should be noted, however, that the interaction of numerical algorithms

with the data base is dependent on the specifics of the problem. With

ASAFD running analysis in the “process engineer � computer” mode, for

each specific case means that the interaction of the calculation algorithms

with the data base depends on expert decisions, the process engineer in our

case. This option is provided by ASAFD.

The option of interaction with the data base at various stages of

implementation is ensured for all numerical algorithms included into the

group of mathematical models to simulate oil reservoir.

3.11.4.3 Selecting, Applying and Matching the Mathematical Model
Let us consider the following example of applying the mathematical

model. Let us take the problem of numerical calculations of two-phase

fluid flow using the ML-model between the injection and production wells

in a vertical cross section of the reservoir (a horizon, or group of sublayers).

It is assumed that the geological and physical characteristics are given

for the wells and the method of determination (for example, the linear

interpolation) is fixed for all points in the bed. In addition, we know the

information on the wells: the flow rates for the phases (the fluid produc-

tion rate and the water cut) and the average pressure profile.

Let us make numerical calculations for flow of the mixture with

known production rates. We will determine the pcalc (calculated pressures

0 and compare them with the pfield 9 field pressures). Then, we will solve

the opposite problem. Using the known distribution of pressure we calcu-

late Qk
calc, the phase production rates ðk5 1; 2Þ and compare them with

Qk
field, the actual phase production rates.

Such a comparison of the calculated and actual characteristics enables

one to improve the accuracy of the geological and physical parameters of

the reservoir between wells applying the multivariant calculation tech-

nique. In this manner the formation geological model becomes more

accurate, or, in other words, the selected mathematical model gets

localised.

Let us provide another example of model localisation.

It is necessary to specify the pressure at the inlet (pinlet) and at the

outlet (poutlet) to make a sufficiently accurate calculation of the flow of

the two-phase liquid in a producing well. Whereas poutlet can be easily

measured, this is not the case with pinlet. Without proof it is often assumed

that pinlet 5 pform (pform is the formation pressure). In this case the best

mathematical model to describe the formation not requiring the
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determination of pinlet , is provided by the model of matched boundary

layers (MMBL) or porous insert model (PIM) in which the NS and ZH

models are matched (Chapter 1, Section 1.2).

For the last example we consider the situation when localisation of

the initial mathematical model requires an unjustifiably large correction

of the geological model. In this case one should consider new physical

factors not accounted for in the initial mathematical models. Such factors,

for example, may include fracturing of the porous medium which may

lead to selecting another mathematical model.

We will dwell on the problem of matching mathematical models in

various formations. This issue was studied in Section 3.10.2, where we

mentioned the requirement to account for the combination at the bound-

aries of the formation domains (multiplication scheme). Some examples of

matching various models have been considered for the vertical cross sections

of reservoir (MMBL and PIM).

We will mention one more straightforward example of superposition of

the flow without accounting for the capillary forces (BL-model) and in the

case when the capillary effects are taken into account (ML-model) (Section

3.10 in this chapter). Obviously, it is not possible to superimpose these

flows in the well and it is required to introduce a “transient” zone. This

zone is the area which is distorted by flow into the well in which the flow

is calculated using the radial flow scheme.

We note that ASAFD provides for variants of matching various

mathematical models.

3.11.5 Numerical Reservoir Modelling
We will carry out the fluid dynamic analysis of the numerical simulation

using various mathematical models developed for the reservoir as part of

ASAFD (Sections 3.2�3.7, 3.10 in this chapter).

3.11.5.1 The Zhukovsky Numerical Model
Paper [50] (compare with 3.4) gives the results of numerical calculation

of the mixed flow of viscous fluid in an L-shaped region having a porous

section arbitrarily located at the bottom. The numerical algorithm is

described and several fluid dynamic problems are solved for different

Reynolds numbers and various locations of the porous section in the

vertical flow (to model a well) as well as in case when there are no porous

section at all.
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Let us underline the main results of the fluid dynamic considerations

and numerical calculations.

1. The hypothesis that forms the basis of the Zhukovsky model does

not require of the unknown efficient viscosity μef 6¼ μ applied by

other authors to describe the flow in porous media [43,114]. This

circumstance leads to the fact that for superposition of the volume and

channel flows considered in papers [50,59], the coefficients in front of

higher derivatives in the equations remain continuous (when we have

the same viscosity μ in Δ~u for the NS- and Zh-models). Therefore,

on one hand, there is no need to develop “theories” further to deter-

mine μef , and on the other, the stability of the difference approxima-

tions of equations is markedly improved.

2. The relations of the Kozeni type [72] are used to describe the drag coeffi-

cient λ, in flow models applied for porous media. Their experimental

confirmation was only obtained for very specific porous media. So for

the rest of physical parameters these relations have to be confirmed

experimentally. In the Zhukovsky model (3.239) the coefficient λ5μ=k
is linked only to the known geological parameters of the formation and

flowing fluid.

3. The numerical calculations were carried out in regions having complex

geometry (Sections 3.4�3.6 in this chapter), in which the flow of fluid

sharply alters its direction. In order to overcome this difficulty it was

required to introduce a special approximation of equations in the vicin-

ity of the flow turning point that allowed the retention of approxima-

tion in equations along the flow lines (Section 3.5 in this chapter).

The type of difference equation to determine the pressure of the

singularity point and its calculation algorithm are given in paper [50].

In addition we made calculations of controlled fluid flow in the porous

medium having L-shaped structure that models a section of the oil formation

(Section 3.4 in this chapter). Despite the complex geometry of the region

the results of these calculations allowed comparing the Zhukovsky model

and the Darcy model (see 2.1), proving that they are sufficiently close:

ρ9~ut9# 1021λ9~u9; ρ9ð~urÞ~u9# 3 � 1022λ9~u9;μ9Δ~u9# 1021λ9~u9:

3.11.5.2 The Numerical Simulation of Formation Pressure
In paper [46] the pioneering results of numerical modelling of the flow of

a viscous fluid in the L-shaped region having a known pressure p5 poutlet
at the outlet and the zero tangent velocity vector component at the inlet
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and outlet (uniform flow) were obtained. The problem considered models

the formation pressure p5 pform using the measured value p5 poutlet at the

producing well head which is important from a practical point of view

(Section 3.6 in this Chapter).

The convergence of the difference approximation was proved for this

problem implying that it has a solution in time. The numerical solution

algorithm of a more complex problem was proposed and practically devel-

oped for computer calculation when instead of pressure poutlet the full head

is known, i.e. qoutlet5 p1 1=29~u92; in this case instead of the Navier-

Stokes model the Zhukovsky model is used (Section 3.6 in this chapter).

A simpler problem for the Navier-Stokes equations in a rectilinear

channel was studied theoretically by V.V. Ragulin [108], V.V. Ragulin and

Sh.S. Smagulov et al. [109].

It should be noted that the problems involving the Zhukovsky model

are also applicable to describe the flows of conducting fluid in a magnetic

field. Numerical algorithms may be used to solve the applied problems in

magnetic fluid dynamics.

3.11.5.3 The Muskat-Leverett Numerical Model
In paper [64] the principal basis of the ASAFD-Muskat-Leverett model

system was developed numerically.

An example to calculate the problem of controlled two-phase flow

using the base element of the nine-spot pattern was used to demonstrate

the efficient and quick convergence of the proposed difference system.

The latter provide the necessary criteria for the numerical algorithm to

be used.

The solvability of the problem studied and convergence of method

of splitting into physical process compiled in the proposed difference

approximation were proven in book [61].

For the sake of comparison the numerical simulation of the same

problem was made applying the scheme of Duglas, Pichman and

Rechford [63] (see also [41]), in which the matrix of the steady elliptical

system of the two equations describing water saturation s and phase pres-

sure p has a non-diagonal character. It is natural that the calculation results

were pretty close but from the application point of view the second

scheme is not as good as the basic algorithm in which the matrix of the

elliptical steady system has diagonal character (this is achieved by a special

choice of the “average” pressure (Section 3.10 in this chapter).
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3.11.5.4 The Numerical Model of the Two-Phase Temperature
Flow in Analytical Variables
The theorem of existence and uniqueness of the analytical solutions

was proved for the thermal flow model in a two-phase fluid proposed by

O.B. Bocharov and V.N. Monakhov [16]. The smoothness of the solution

was studied, the finite rate of perturbation propagation was established,

and the algorithms to solve the boundary problems using numerical

algorithms were proposed and implemented as computer programs (see

Chapter 2, Section 2.2).

The comparative analysis of several difference schemes to develop

analytical solutions was conducted. The method of Roter was used to

solve the initial-boundary problems and the problems resulting in a one-

dimensional equation (Chapter 2, Section 2.7).

It was established numerically that heating up of the formation brings

about a dramatic improvement in flushing-out. The algorithms proposed to

develop analytical solutions allow the prompt evaluation of the efficiency

of the EOR methods to be applied to develop oil fields based on the

thermodynamic properties of the fluid components.

3.11.5.5 The Numerical Model of the Boundary Layer
First of all we will point out that for two-phase fluid the flow is described

by the Muskat-Leverett model. In this case the formation of the Prandtl

boundary layer is impossible in a viscous fluid because the assumed

averaging conditions at each point of the domain contain the porous

medium and two fluid components.

The model of a two-phase fluid boundary layer proposed in paper [75]

is a true mathematical approximation of the Muskat-Leverett equations in

a thin formation.

We use the model of a two-phase fluid boundary layer to solve the

“edge effect” problem [8; 142] in production wells (x5 xe), as for x5 xe
this model does not require stipulating the boundary condition for

saturation.

The algorithm to obtain the boundary conditions proposed in paper [52]

for x5 xe consists of the following stages:

1. The solution of the boundary problem for the Muskat-Leverett model

in the interval xA½0; xe� (x5 0 corresponds to injection well) for

fixed condition x5 xe is used to determine water saturation value

sðx; yÞ9
x5x0

5 s0ðyÞ for a known cross section x5 x0, xe, in proximity

to the producing well.
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2. Solving the corresponding problem for the flow boundary layer in the

interval xA½x0; xe� having s9
x5x0

5 s0ðyÞ the value s9
x5xe

5 seðyÞ is

restored.

3. The equations of the ML-model are solved for the new value of

s9
x5xe

5 seðyÞ. Then the cycle returns to stage 2 and so on.

Calculations made in paper [52] show a sufficiently quick convergence

of the iteration process proposed to generate the water saturation value

sðx; yÞ in producing well. Together with solution of the relevant problem

for the ML-model the value of sðx; yÞ is converging over the interval

½0; xe� between the injection and production wells.

3.11.5.6 Numerical Model of the Live Oil Flow
The physical aspects of the flow of the live oil are outlined in detail in

paper [56], where its reduction to the Stefan type problem is proved.

Numerical simulation was carried out in the case when the pressure p

of oil in interval xA½0; ξ0� was less than the saturation pressure psatðp, psatÞ
at the initial moment of time and p5 psatwhen x$ ξ0.

Diagram 1 in paper [56] shows the distribution of the gas factor in a

one-dimensional problem depending on the quantity q5 ðpsat 2 pÞ. It was
shown that the amount of gas released increases with an increase of q,

which agrees with the experimental data. Diagrams 2�4 in paper [56]

demonstrate the spatial scheme of propagation of gas front p5 psat.

3.11.5.7 Numerical Modelling of Flows in Several Connected Regions
The numerical model bank ASAFD contains a number of algorithms to

solve problems of the flow of homogeneous fluid in porous several con-

nected media. These algorithms are based on a numerical approach proposed

by one of the authors of this book to compile the Navier-Stokes model in

several connected regions (Section 3.3 in this chapter).

The importance of studying the flow in vertical cross section for oil

beds characterised by two different porosities and in multilayered systems

was described above in detail.
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