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SUBSURFACE FLUID DYNAMICS

At the present time, mathematical modelling is frequently applied to the
mechanics of continuous media and in particular to subsurface fluid
dynamics. The latter deals with such important theoretical and practical
issues as water flow through dams, soil salinization, the spread of pollution
by groundwater flows, oil production, groundwater flow into artesian
wells and many others. The similarity of the physical processes involved
in these phenomena means that their models also have many similarities,
although the model equations all have their own special characteristics. It
is in fact these special characteristics that make it very difficult to validate
the models and solve the equations.

Filtration is defined as fluid flow through a porous medium. A
medium is regarded as porous if it contains a large number of voids which
are small by comparison with the typical dimensions of the medium.
Porosity is defined quantitatively by the ratio of pore volume to bulk vol-
ume: m =V, / Vot Mathematical flow models are based on the law of
conservation, the mechanics of continuous media, their effects, and other
accepted equations. Primary equations include the continuity equation
(taking porosity into account), the heat balance equation and equations of
state. The main assumption of the flow theory is the replacement of
Euler’s or Navier-Stokes equations of motion with Darcy’s Law.

The simplest two-phase flow model is the well-known Buckley-
Leverett (BL) model (Chapter 1, Section 1.1), which assumes the equality
of phase pressures, and therefore does not allow for the effect of capillary
forces on fluid flow. The difficulties which arise in solving its equations
(the potential ambiguity of the solution) are resolved by making the flow
process mathematically ideal by assuming that the final function contains a
point of inflexion. Convective processes are central to the BL model. To
take additional effects into account, the mathematical flow model needs
to be adjusted in various ways.

The introduction of capillary forces produces the Muskat-Leverett (ML)
model (Chapter 1, Sections 1.1—1.4) which uses a Laplace equation to allow
for these forces. Unidimensional transformation of the model produces a

vii
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non-linear degenerate second-order differential equation. The solution of
this equation has no point of inflexion, and the high-gradient region is con-
fined to a limited area, which is perfectly justified in physical terms. Another
advantage of this equation is that although it is parabolic, the model retains
an important and physically natural property, in that it allows perturbations
to propagate within a defined range of velocities (provided that its functional
parameters have been correctly selected) (Chapter 2, Section 2.1).

The flow model is further refined (and therefore further complicated)
if we allow for the interaction of velocity and temperature in oil-bearing
formations, which means that an energy equation needs to be added to
the model. Models of non-isothermal two-phase flow were studied by
O.B. Bocharov, V.N. Monakhov, R. Yuing (MLT-model) [2; 15; 16; 44],
E.B. Chekalyuk [140] and others. O.B. Bocharov and V.N. Monakhov
[16] proposed and investigated an even more generalized MLT-model,
which included variable (temperature-dependent) residual saturation.

Other generalized flow models include non-linear, multiphase and
multicomponent flow models and others.

In our book, we concentrate on the effect of temperature on fluid
flow processes as applied to modelling water-oil displacement and the
production of fluid. The inclusion of non-isothermal flow makes it possi-
ble to approximate the real conditions, making the physical and therefore
the mathematical model less abstract, and provides some corrections to
the accepted hydrodynamic methods of calculating oil production.

Studies have shown that oil recovery factors can be significantly increased
only by changing the physical and physico-chemical properties of the dis-
placed phase, withthermal recovery being increasingly favoured. The impor-
tance of thermal recovery methods is largely due to the fact that they use
easily available media—water and air. Another major advantage over most
other methods (e.g. physico-chemical) is the potential for increasing recov-
ery in a variety of physico-geological oil field conditions. Thermal recovery
methods are based on the fact that the viscosity of oil decreases considerably
when it is heated, so that their primary application is in high-viscosity oil
fields. At the same time, thermal recovery involves virtually all known oil
displacement mechanisms, together with a variety of phase transitions, so
that it offers promise even in the case of low-viscosity oil fields which have
long been operated under water injection. It should be noted that the injec-
tion of water at a temperature lower than formation temperature (e.g. sea
water or injection during winter) reduces oil recovery. In particular, it may
lead to wax precipitation directly in the porous medium.
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It is well known that in water wet rocks capillary forces can play a
very important role in the process of oil displacement. If a
low-permeability section is surrounded by high—permeability rock, the
water will flow around the oil contained in the section. If water wet for-
mations are flooded, the oil can be frequently recovered only by the use
of capillary forces. The existence of this mechanism has been confirmed
both experimentally and by analysing fields consisting of inhomogeneous
water wet rocks. Capillary saturation may also have a decisive influence
on the mechanism of oil recovery in stratified beds. Therefore, we need
to know how the non-isothermal process of oil displacement by capillary
forces will affect the recovery of oil from such heterogeneous formations.

All these phenomena require thorough study, and the Muskat-Leverett
thermal flow model provides an effective tool.

Many problems formulated using these models can be studied in a
given sequence, forming a specific process cycle, such as for instance
steam treatment (Chapter 2, Section 2.1), which may be described in a
simplified form as consisting of the following steps (the corresponding
mathematical statements are shown in brackets):

1. Steam (superheated water) injection at a specified temperature and
flow rate (non-isothermal two-phase flow with convective forces
predominating);

2. Soaking for a specified time without water injection (thermocapillary
saturation)

3. Steam or water injection (possibly, at a different temperature and flow
rate) (non-isothermal two-phase flow with convective forces
predominating).

Therefore, if we know how to model these steps we can use them to
study more complicated processes and make multivariate optimizing
calculations.

For all the above models, we need to find specific solutions, including
self-similar (analytical) solutions, and this problem is dealt with in
Sections 2.1—-2.5 of Chapter 2.

NUMERICAL MODELLING OF OIL PRODUCTION PROCESSES

The most common oil-field development systems are based on symmetri-
cal well patterns. This means that rather than studying a whole field, we
can study a single development unit, which usually consists of two wells.
For example, for a five-spot water flood, the basic element is a rectangle



X Preface

with no flow boundaries, containing an injection and a production well
in opposite corners.

Since calculations of the development of basic elements of symmetri-
cal well patterns can be reduced to calculations of linear flow (for an
in-line pattern) or a plane-radial flow (for an areal pattern), this simplifies
flow model equations, making them one—dimensional.

The formulation of the initial and boundary conditions for the basic
elements is also simplified: the production rate, pressure or saturation are
specified for each well. Consolidated figures are then calculated for the pro-
duction unit as a whole, followed by the calculation of the 2D process of
two-phase flow in the basic element—this program can be attached to
more detailed multi-parameter ID programs, providing them with coeffi-
cients allowing for the fact that the processes are not unidimensional.
However, the 2D basic element calculation is important not only because it
supplements the ID programs but also as a stand-alone petroleum engineer’s
tool, in which the multiple parameters of the ID models can be incorpo-
rated, provided sufficient computing power is available. In addition, as field
development proceeds, well patterns and well operation become asymmet-
rical, and this can only be allowed for by 2D calculations, performed by a
program which calculates the process of oil production in a 2D basic ele-
ment without assuming that the boundary conditions are symmetrical.

The calculation program produces oil saturation and pressure fields
within the basic element and calculates the oil recovery factor and water
cut as a function of the injected pore volumes of water. The information
may be presented in graphical form and then printed out as data files for
use in further analysis of the oil production process and/or printed out as
numerical files.

The contents of the book. If we include submodels and combined
models, Chapter 1 contains the description of over 30 different mathe-
matical models of oil formations, provides analyses of a number of some
generally accepted flow models and offers new models of some physical
effects not covered elsewhere. In designing these models, we have
attempted to achieve a good numerical implementation without increas-
ing the number of their key parameters. As a rule, the proposed model
design changes are accompanied by small “slippage” terms introduced
into the equation by analogy with the computing “slippage” in finite-
difference equations. It should be noted that other authors have also
introduced some of the filtration model changes proposed in Chapter 1,
but did not analyse the resultant models sufficiently.
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S.N. Antontsev and V.N. Monakhov [4] proposed a general oil forma-
tion flow model containing a range of functional parameters. By making
a careful selection, some of the models proposed in Chapter 1 can be
derived from them.

Mathematical models can be subdivided into three main classes:

1. Single-phase Darcy models and contact models (Section 1.1);
2. Two-phase models (e.g. the Muskat-Leverett model — Sections 1.1—1.4);
3. Combined models (e.g. of two inhomogeneous liquids — Section 1.7).

In addition to the conventional Darcy and Muskat-Leverett models
and the Muskat-Leverett thermal model (in the form proposed by O.B.
Bocharov and V.N. Monakhov [15; 16]), Chapter 1 describes the Navier-
Stokes and Zhukovsky models (Section 1.1), used by the authors to opti-
mize oil production control and production forecasts.

The book also contains some unconventional models, such as the
models describing the process of “foaming” in oil formations (Section
1.6), the combination of reservoir flow with liquid flow in wells (Section
1.5) and others.

Of the new and modified models (e.g. the reduced-pressure ML and
MLT models) Chapter 1 discusses only the models developed by V.N.
Monakhov and studied by him and his colleagues and students, S.N.
Antontsev, O.B. Bocharov, A.A. Papin, R. Yuing, E.M. Turganbayev, V.
N. Starovoitov, N.V. Khusnutdinov, A.E. Osokin, and others [4; 15; 16;
18; 20; 32; 44; 61; 69; 75; 91; 94; 101; 124; 134].

Chapter 2 presents a theoretical and numerical analysis of one-
dimensional and self-similar (analytical) thermal two-phase flow patterns,
while its Section 2.1 provides additional information based on the ordinary
difterential equation theory, which is also of independent interest.

The core of the chapter is formed by Sections 2.2 and 2.3, which pres-
ent the results of V.IN. Monakhov, O.B. Bocharov, A.E. Osokin, and T.V.
Kantayeva’s work [20; 69; 92]. These include the theorem of existence of
self~similar (analytical) solutions of the MLT model for constant and vari-
able residual saturation, the identification of a restricted range of velocities
of propagation of perturbations, and the computer implementations of the
numerical algorithms proposed by the authors and their substantiation.

Section 2.4 contains a theoretical analysis of the analytical solutions
(B.T. Zhumagulov, V.N. Monakhov [58].

The existence and uniqueness of self~similar (analytical) solutions of
the model of two-phase flow of non-linear-viscous liquids is demon-
strated in 2.5 (E.G. Galkina, A.A. Papin [32]). Section 2.6 establishes the
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convergence of Rothe-type methods in a one-dimensional MLT model
(A. E. Osokin [100]).

Section 2.7 is devoted to the substantiation of a new method of inte-
grating ML and BL model solutions and to their numerical implementa-
tion (I.G. Telegin, [129]; B.T. Zhumagulov, Sh.S. Smagulov, V.N.
Monakhov, N.V. Zubov [61]).

The existence and uniqueness of “im Kleinen” (small-scale) solutions of
the first boundary-value problem, based on the initial data for the two
interpenetrating viscous liquids flow model is demonstrated in Section 2.8
(A. A. Papin [101]).

Chapter 3 deals with numerical modelling of two-dimensional subsur-
face hydrodynamics processes with reference to Muskat-Leverett isothermal
and temperature models as well as Navier-Stokes and Zhukovsky models.

In this chapter, Section 3.1 demonstrates the convergence and stability
of effective finite—difference schemes [38] for Navier-Stokes velocity vs.
pressure finite difference equations, while Section 3.2 uses velocity vs.
flux function and the method of virtual regions to provide numerical
calculations of reservoir flows in multiply connected regions [45] and
geometrically complex regions (Section 3.3) [45]. In Section 3.4, similar
numerical methods are applied to the Zhukovsky model. [49].

Section 3.5 provides a solution to a key problem of subsurface hydro-
dynamics—that of determining formation pressure from measured well
pressure values [49]. We have performed a numerical calculation of for-
mation heating, which forms one of the stages of steam treatment, based
on the classical thermal convection model (Section 3.6) [63]. Section 3.9
[49] provides a numerical solution of water-oil displacement from inho-
mogeneous oil formations, based on the ML model, while Section 3.7
and Section 3.8 present the mathematical substantiation of the finite-
difference equations used in Section 3.8 for more general models [18,
44]. And finally, Section 3.10 offers a hydrodynamic analysis of the results
of numerical calculations of subsurface hydrodynamics problems based on
different formation models [57].

Sections 3.1—3.6 and 3.9 present the results obtained by B.T.
Zhumagulov and his colleagues, Sh.S. Smagulov, N.T. Danayev, B.G.
Kuznetsov, G.T. Balakayeva, N.T. Temirbekov, K.Zh. Baigelov, K.M.
Baimirov, K.B. Esikeyev [38; 47-52; 56; 59].

Results obtained jointly by V.N. Monakhov with R. Ewing [44],
O. B. Bocharov [18] and B.T. Zhumagulov [57] appear in Sections 3.7,
3.8 and 3.10.
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In 1996, B.T. Zhumagulov, N.V. Zubov, V.N. Monakhov, and Sh.S. Smagulov
published a book entitled New Computer Technologies in Oil Production (Almaty,
Gylym). It described a computer-aided oil and gas field development analysis
system developed jointly by a team of Russian and Kazakh scientists, led by the
authors.

Subsequently, the research continued independently at the Lavrentyev
Institute of Hydrodynamics, where it was led by V.N. Monakhov, at the
Kazakhstan Engineering Academy and the Al-Farabi Kazakh State
University, where it was conducted by B.T. Zhumagulov, Sh.S. Smagulov
and their colleagues.

These studies form the basis of this book, which presents both the
authors’ own and collaborative work, except for Sections 2.3, 2.5—2.8 of
Chapter 2, which include the work of V.N. Monakhov’s students, A. A.
Panin, A. E. Osokin, T. V. Kantayeva, I.G. Telegin and E. G. Galkina.

There is no doubt of the important contribution to the content and
the scientific value of the book made by our co-authors, Sh. S. Smagulov,
S.N. Antontsev, N.T. Danayev, O.B. Bocharov, N.V. Khusnutdinov, B.G.
Kuznetsov, and N.M. Temirbekov, to all of whom we wish to express our
sincere gratitude. To our editor-in-chief, R.I. Nigmatulin, and our
reviewer, Sh.S. Smagulov, our profound gratitude for the many years of
fruitful support, which has in many ways determined the style and the
conceptual framework of the book.

Thanks are due to N.M. Temirbekov, who read the manuscript and
made many helpful suggestions.

The work was partly was financed by the Russian Fund for
Fundamental Research (Project Code 99-01-00622), and the “Universities
of Russia” science programme (Project 1788).

Fluid Dynamics of Oil Production was selected for publication from
among scientific texts submitted in 2000, and is published by the Ministry
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Fluid Flow Models

1.1 INTRODUCTION

In this chapter we analyze a number of well-known mathematical models
of homogeneous and non-homogeneous fluid flow in porous media, and
propose some new models. As the existing models [89; 105; 143] are
based on specific conceptions of these processes, the inclusion of each
new effect requires a revision of their underlying assumptions, as well as a
revision of the model.

The fact that there are many forms of Darcy’s Law means that we
need to ask ourselves how to select the form which will best describe
each specific situation. While the work on this question has progressed in
recent decades, it has involved virtually no review of the fundamentals of
conventional models. Frequently, experimental data processed to fit the
conventional models have been unstable (not easily reproducible), while
published experimental results did not, as a rule, provide sufficient infor-
mation to fit them to other models. Some eftects are simply impossible to
describe in terms of the existing models.

Basic mathematical analysis of the various forms of flow models may
prove extremely useful for the modelling of phenomena. At the same
time, new physical factors need to be taken into account, that is, the
minor effects which stabilize the numerical calculations (i.e. the physical
“slippage terms” in the equations). For instance, transition to linear mod-
els often leads to a loss of divergence in equations, and when it comes to
numerical calculations, does not simplify the initial nonlinear model.
Equally, striving to achieve a mathematically satisfactory model can lead
to a lack of conformity with the physics of the phenomenon, as is the
case with the divergent form of Darcy’s Law for inhomogeneous media,
proposed by Sheidegger [143].

At present, the widespread use of computers has led to the establishment
of a well-defined “process flow diagram” for solving specific problems in the
mechanics of continuous media, including multiphase fluid flow. The work
flow progresses from the problem under consideration to a mathematical

© 2014 Elsevier Inc.
Fluid Dynamics of Oil Production All rights reserved. 1



2 Fluid Dynamics of Oil Production

model, from there to a numerical algorithm, the implementation software

and finally to the analysis of the results. While the individual components of

the process are not isolated but interconnected, linking both forwards and
backwards, the most important factor for success is likely to be the choice
of an appropriate mathematical model.

There are several principal requirements applicable to phenomenological
flow models:

1. Experiment reproducibility. The ability to define all parameters exper-
imentally, without needing to involve additional “theories”, and good
reproducibility of the experiments.

2. A clear distinction between the underlying hypotheses, and a clear
definition of the limits of their applicability, both in qualitative terms
(what kinds of physical effects they can describe) and quantitatively.

3. Ability to incorporate simpler models into higher-level models, so
that new physical factors can be taken into account.

4. Mathematical feasibility and correctness.

Needless to say, these are not rigid requirements and could even be
seen as programmes of study of the models. Moreover, the features of
phenomenological models can be determined in laboratory conditions,
using higher-level models containing independently determined para-
meters. For instance, the Navier-Stokes model could be used to deter-
mine phase permeabilities in two-phase flow models and to check various
properties (e.g. saturation). Below we comment on several examples of
multiphase fluid flow. There is no point in calculating total oil recovery
using models which specify the total flow rate for injection wells, and the
flow rate of only the displaced phase for production wells. If the phases
are incompressible, then the answer lies in correctly stating the well
conditions.

With these examples, we hope to have provided some insight into the
difficulties of choosing an appropriate model with which to describe the
physical process of fluid flow in porous media as it occurs in reality.

1.2 SINGLE-PHASE AND TWO-PHASE FLUID FLOW MODELS

1.2.1 Darcy’s Model and Contact Models

1.2.1.1 The Properties of Porous Media

The main property of a porous material, its porosity (effective or
dynamic), is described by the ratio m = 1,/ V), where V, is the intercon-
nected pore volume and 1 is the bulk volume.
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If the compressibility of the medium is taken into account, and it is
assumed that the medium is elastic, i.e. it obeys Hooke’s Law, then

m= o+ (p = po)Bys (1.1)

where p is the fluid pressure; py is the average pressure of the porous
medium.

As a rule in inhomogeneous medium m and m are functions of the
coordinates x = (x1, X2, X3).

The adsorption of molecules on the walls of porous materials results
in high near-wall concentrations. Using the kinetic theory of gases,
Langmuir calculated the mass w, of adsorbed gas at a gas pressure p:

abp

W, = T+ ap (a, b = const). (1.2)

Changes in pore pressure can result in the escape of the adsorbed gas,
ie. in gas sorption. Taking these processes into account, we can calculate
the total mass w of gas in a porous medium from the formula

w=mp(l — m) =" = ). (1.3)
1+ap
The flow properties of porous media are described by a symmetrical flow
tensor K = {k;;}, whose terms k;; have an areal dimension.

We shall define an ideal porous medium as consisting of a porous material
which is incompressible, homogeneous and isotropic, and displays a linear
resistance to the fluid flow.

For an ideal porous medium, the flow tensor is expressed by
K = kE,

where E is the identity matrix; k = const is the permeability coefficient.

In the case of inhomogeneous media, the permeability coefficient is a
function of the coordinates k = k(x), and in the case of compressible media
k = k(p); if its resistance behaviour is nonlinear it is k = k(Vp), whereas in
the case of anisotropic media K = {k;;} is a symmetrical flow tensor.

1.2.1.2 Fluid Properties
Fluid properties are a flow velocity vector ¥ whose value v = |V/] coincides
with specific fluid flow rate per unit of time through a porous area normal
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to v; pressure p and density p. The relationship between flow velocity v
and average fluid particlevelocity # is described by the formula
d—)
B=mii=m e, %= (x1, %0, X3).

dt’

1.2.1.3 Darcy’s Model
Flow theory is based on Darcy’s Law, which is a law derived experimen-
tally for stationary flows and describing the resistance of porous media to
fluids flowing through them [87, 89, 105]; Darcy’s Law establishes the
relationship between flow velocity v; and pressure gradient p.

In the general case, Darcy’s Model (D) is based on Darcy’s Law com-
bined with the equation of continuity and equation of state for fluids:

— — — a . —
—U=KpT (Vptp; S, ) +diopi =05 p=p(p); (D)

where g is the dynamic fluid viscosity; pg¢ is the gravity acceleration vec-
tor; the total mass of gas w(p) is described by (1.3) (in the case of fluids
w = mp).

By substituting ¥ = ¥(x, p, Vp), taken from the second equation, in the
first equation (D), we obtain a single equation for pressure p:

gw(p, x) + divi(x, p, Vp) =0,  p = p(p) (1.4)

Equation (1.4) is usually a degenerate (simplified) parabolic equation.
In the specific case of an ideal porous medium and incompressible
fluid (p = const), Darcy’s model assumes the following simple form:

k
—v=—(Vp+pg), divi=0. (DO0)
e

A mathematical theory of two-dimensional stationary flow in ideal porous
media [in (Dg),k = const] was first put forward in P. Ya. Polubarinova-
Kochina’s ground-breaking work, described in her monograph [105], which
also includes the research of her students.

V.N. Monakhov developed boundary value theory methods for
elliptical equation systems and quasi-conformal mappings, which made
it possible to investigate the mathematical correctness of fluid flow
problems in specified regions, as well as free boundary regions in non-
ideal porous media ([89, Chapter 8], [90]), when K = k; is a tensor (D)
and k;i(X, p, [V]).
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1.2.1.4 The Forms of Darcy’s Law in the Case of Homogeneous
Fluid Flow in Inhomogeneous Porous Media

As noted by Sheidegger [143], if we allow for the inhomogeneity of the
medium, we obtain the following two different generalized forms of Darcy’s
Law for the same type of fluid flow:

7=k ' Ve; (D1)

V= - v(k:u_l (10)’ k= k(x)a (D2)

These two forms are equivalent if the medium is homogeneous, and

k= const (o =p+ gph, gVh= ﬁ) Form (D,) of Darcy’s Law is mathemati-

cally more convenient, since the introduction of a new potential ¢ = ™ ©,
0

where ko = const- average permeability, reduces it to the form
V= —kou_lvfb, which corresponds to a homogeneous medium.
However, in this case the inhomogeneity of the medium affects flow
velocity ¥ only through the values of k(x) and Vk at the boundary I' = 02
of flow region (). In particular, when k(x)|r = const and Vk|r =0, the
distribution of flow velocity ¥ in {2 does not depend on the inhomogeneity
of the medium. Consequently, form (D;) of Darcy’s Law is physically unac-
ceptable, while form (D) is not able to account properly for the anisotropy
of permeability in stratified formations.
Darcy’s Law can also take another form in inhomogeneous media:

V= —kopu ' Vo + G(x), (D3)

where ¢(x)- mobility. Formally, (D;) may be transformed into (Dj), if
wesubstitute § = @Vku !

1.2.1.5 Contact Models of Flow

Let Q2 =0Q4() U (f) U T be the region of inhomogeneous fluid flow,
whose two components flow respectively through regions £2,(f) which
have a common (contact) boundary I'(r) = Q(1) N Q(1). Regions (1),
satisfy equations (D0) which relate the fluid component characteristics
Vi, pi, p; and g, to characteristics of the porous medium and m, k;, at
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I'(t))={x, ¢|f (X, t) = 0} and at t =0 with the following initial conditions
and conditions of conjugation:

;i ﬁ = Vys, P2 = P1 = Po, mﬁ + Vuf;1 = O: (D_Ea I)EF (1 5)
Sfli=o = £, pili=o :P?@), ¥eQ(0), i=1,2 '

wherefy(¥), p(¥) and po(¥X,f) (not equal to zero if capillary forces are
taken into account) are the given and v,(%,f) and f(¥,t) are the target
functions, f, =7 Vf,.

The problem described by (D) (1.5) was first formulated and solved
for incompressible fluids (p; = const) by Muskat (who made certain spe-
cific assumptions), and is named after him [105, 143]. The Muskat model
is used to describe the movement of the oil—water contact (the outer oil
limit) in oil formations and of the boundary between salt water and fresh
water, and to solve other flow problems.

In the case of compressible fluids whose equation of state
p; = N(pi + a))(N\i, a; — constant), the problem described by (D), (1.5) was
studied by N.N. Verigin, and is frequently referred to as Verigin’s prob-
lem. Several approximate methods of solving (Dg), (1.5) [110] have been
proposed; A.M. Meiramov [88] was able to demonstrate that Verigin’s
problem was correct in the case of one-dimensional flows.

1.2.1.6 Nonhomogeneous Incompressible Fluid Flow Model
(NF, Nonhomogeneous Fluid)

V.N. Monakhov proposed using the condition of incompressibility [91] as
the equation of state in Darcy’s model (D):

mp, +vVp =0,

This condition is true for fluids, providing a high degree of accuracy. It
therefore follows from the equation of continuity in (D) that divi =0,
and we can write (D) in the form

— T =k, D)(Vp+ pd), mp, +FVp=0; divi=0. (NF)

The law of logarithmic dependence of viscosity u(p) = ko(X)/k(p, X)
on density p[113] is used to close equations (NF):
P~ P

1 2

In(pe/py) = In(py/ 1)
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in which case

k= ko/h_le_)\s(p); A=Inp,/py,  S=(p—p)py _Pz)_l- (1.6)
As in 1.5 above, we can use equations (NF) to describe the movement
of the contact boundary I'(¢) in a stratified fluid and, in particular, the
movement of an (unknown) free boundary [105, 113], if we take into
account the movement of its contacting air.

In his paper [91], V.N. Monakhov established that the stationary flow
problem can be solved for the (NF) model.

Let us assume stratified fluid flow in Q= (2 U 2, U T'), T being an
unknown direction of flux and p = p;, = const in €);. In these conditions,
at p, =0 the solution of the problem in €2;is reduced to the solution of
the classical problem of free-boundary flow [91].

V.N. Starovoitov [124] demonstrated that a similar three-dimensional
non-stationary problem can also be solved for an (NF) model with natural
physical conditions at unknown boundary I, relating to surface tension
forces.

1.2.2 Navier-Stokes and Zhukovsky models

1.2.2.1 The Navier-Stokes (NS) model

This model assumes that a porous medium is a randomly ordered system
for which the Gibbs concept of an assembly of identical systems is true, as
is the ergodic theorem which states that time averaging may be replaced
by assembly averaging and vice versa. It considers that the trajectory of an
individual fluid particle obeys the micro-laws of wviscous flow.

—

Consequently, a micro-flow of fluid flowing at a velocity 4 = ?9: through

pores (capillaries) can be described by Navier-Stokes equations for a vis-
cous compressible fluids:
di

Li = p— = pAii = =Vp—f, p+divpi =0, p=p(p), (NS)

d 0 -
Where "2 + (i - V); f — the vector of external forces.

There are several ways of deriving Darcy’s law as approximations for
the conservation of momentum in (NS). Two principal such methods are
described below.
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1.2.2.2 N.E. Zhukovsky's Hypothesis and Model (1896, see [105])

This hypothesis regards the porous medium and fluid as two components
of an inhomogeneous fluid whose velocities are vy = 0 (the stationary com-
ponent) and ¥ = mii (flow velocity). It assumes that in each point x€R>
there exist both the porous medium and the flowing fluid. Therefore, the
surface forces of resistance of the porous medium to the movement of
the fluid may be regarded as bulk forces, and in accordance with N.E.
Zhukovsky’s hypothesis we may assume

=08+ Mi—v0)=pg + \o,  A=p/k, (1.7)

where X\ is the resistance factor (for simplicity, the porous medium is
assumed to be isotropic).
Let us now introduce Darcy’s operator

— k —> —
D(v,p) = ;(Vp tpg) +v (1.8)

and incorporate (1.7), rewriting the (NS) equations in the form

—

d
Lii = p= = pAii = —AD@.p), p, +divgii =0, p=plp) (Zh)
We shall name this system of equations Zhukovsky’s model (Zh).
Zhukovsky’s model [105] requires the following conditions to be met
(pliel,  plGi - Vi, pl Vi) < Al

which makes the model similar to Darcy’s model. A less stringent condition
of their similarity is the inequality

|Li| < A|v].
An even less stringent condition is:
kp'|Lil| < |D(@, p)| & 6%, a=1,

Where 6§« 1 is related to Reynolds number.

1.2.2.3 The Irmey Hypothesis of the Closeness of the NS
and D Models

Let us now introduce the “static mean values” proposed by Irmey [24, p. 75],
which are determined by the dimensionally correct relationship

Al = —~id,
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where v depends on permeability K, viscosity p and pore dimensions.
Substituting this equation in (NS), with f = p¢, and discarding the non-
stationary and inertial terms #and (¥ - V)i, as proposed by Zhukovsky,
we arrive at Darcy’s model (D).

1.2.2.4 The Oldroyd-Zhukovsky (OZh) Model

Let us consider viscoelastic fluid flow in a limited region {2 of Euclidean
space R?, consisting of a medium whose resistance is proportional to fluid
velocity (Zhukovsky’s hypothesis). Following Oldroyd [134] let us write
out a system of equations describing the fluid flow:

Re[ii, + (i - V)i)| + Vp+~yii=(1—a) - A +V-S+F,
divii =0, (OZh)
S+ We-[S;+ (- V)S]=2aD in Qr=QX[O,T],

where i is the fluid velocity; p is pressure; and S is the elastic part of the
stress tensor, all the unknown wvalues of time ¢ and point x;
D=(V-i+(V-i)")/2- strain rate tensor; Re=UL/p and
We= MU/L are respectively Reynolds and Weissenberg numbers;
a=1—X/\ is the numerical parameter; A is relaxation time; \; is the
delay time; 0 <A, <Ay; U, L is the characteristic velocity and model
size; il is the resistance force of the medium, v > 0.

E. M. Turganbayev [134] demonstrated that the initial boundary value
problem shown below can be solved for (OZh):

ulx,t)=0, «xel', tel0,T];
S(X, 0) = S()(X),
u(x,0) =up(x), x€Q, divug=0, ugl=0.

1.2.3 Two-phase Fluid Flow Models
1.2.3.1 The Muskat-Leverett Model (ML-model)

Mathematical models of the flow of two immiscible fluids (for example,
water and oil) through a porous medium are much more complex than
Darcy’s model. Experiments have shown that in this particular case each
of the fluids selects its own circuitous route which does not change.

As saturation s; (the part of pore space occupied by component i)
decreases, one of the fluids destroys the channels, breaking them up until
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only isolated regions occupied by this fluid remain. This phenomenon is
known as residual oil or water saturation, with the corresponding values
of 5; designated s!.

However, a mathematical description of a more complex physical process
may use the concept of a continuous medium.

Let us regard a two-component fluid as a collection of continua filling
the same volume of incompressible pore space. For each of these continua,
density p, flow velocity ¥; and pressure p;, let us introduce saturation s;.

Then, by analogy with (1.1), we can write the continuum equations
for each fluid component in the form

d
o (mpis) + div(p 7) =0 i=1,2. (1.9)

Bearing in mind the qualitative aspects of multiphase flow, Muskat (cf. [31])
proposed the following formal generalization of Darcy’s Law for each of the

fluids:
S ki .
5= —K—(Vp+pg i=12 (1.10)
i

where K is the flow coefficient of the porous medium’s for homogeneous
fluid, as before, (or the symmetrical tensor in the case of an anisotropic
medium); g, is the dynamic viscosity coefficients, and k; must depend on
saturation s;, as part of the pore space is occupied by another fluid.

The fact that k; are simply the functions of s; and are virtually
independent of pressure, flow rate and other fluid flow parameters, was
repeatedly confirmed by laboratory experiments.

In accordance with its definition, saturation s. varies within the range

0<S?SsiS1—sJQ<l, jEi (sgts=1)

and when it reaches s; = s?, the movement of the ith component ceases
when the condition

k(shy=0, i=1,2

has been met.

When analysing immiscible multiphase flows, it is important to take
into account the effect of forces acting on their interface. When two
immiscible fluids (I and II) come into contact with one another and with
the solid surface of the pores (Fig. 1.1) the liquid—liquid interface I'j,
approaches the solid wall at a contact angle 6. If 6 is an acute angle,
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1I

Figure 1.1 A two-component fluid.

fluid I is called the wetting fluid (since it tends to spread over the solid),
and fluid II is called the non-wetting fluid. The phase pressure difference
which occurs at boundary I'y  is called capillary pressure:

50 _5(2)
p2 = p1 = pelox, s) =0, pR—

T = sel0,1]. (1.11)
S17 %

Capillary pressure p, depends on the curvature of I'1,, the saturation s;
of the wetting fluid and the properties of the porous medium, and is
expressed by the Laplace formula:

_—
pe(x,5) =px)j(s), P, =0 cosd <@> (1.12)

where ¢ is the interfacial tension coefficient; J(s) is the Leverett function,
while |Ky| is the determinant of matrix {k;} if Ky is the symmetrical flow
tensor of an anisotropic porous medium.

Experiments have shown that the order in which pore space is filled
by the two phases determines the shape of the J(s) curves. This phenome-
non is known as capillary pressure hysteresis. As a rule, relative phase
permeabilities k; and Leverett functions J(s) are calculated in saturation
experiments, when capillary forces cause the wetting phase to displace the
non-wetting phase filling the whole of the porous material, eliminating
the hysteresis effect.

In the case of an isothermal (constant temperature) flow, the equation
system  (1.9)—(1.11) can be closed with respect to ¥, p;,p; and
I SO
T 1—s) =
fying equations of state for the fluids:

Pi= p,’(Pi), i1=1,2.

of immiscible fluids flowingin a porous medium, by speci-
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0 1 N

Figure 1.2 A typical curve describing the relationship between relative permeability
and the Leverett J function on the one hand and reduced saturation on the other.

In what follows, unless stated otherwise, both fluids are assumed to be
incompressible, i.e. p, = const.

The resultant mathematical model of multiphase incompressible fluid
flow [equations (1.9)—(1.11)] is called the Muskat-Leverett model in hon-
our of Muskat who first proposed the generalization (1.10) of Darcy’s and
Leverett’s Law and was also the first to use Laplace’s Law (1.11), (1.12).

The Muskat-Leverett model assumes that parameters 7, Ko, k; are the
prescribed functions of the variables x and s and that all the numerical
parameters (;, p;,s) and others) are fixed. A typical curve describing the
relationship between relative permeability k; and the Leverett | function
on the one hand and reduced saturation s€[0, 1] on the other is shown in
Fig.2. If we take into account the equality k;(s)) = 0, the phase permeabil-
ities ki(s) = ki(s)/j1;, will have the following characteristics:

ki(s) >0, s€(0,1); k1(0)=ky(1)=0.

To decide how the compressibility of the formation can be taken into
account, let us consider the continuity equation (1.9). It should be noted
that the assumptions about relative phase permeabilities in regions where

si=s >0, produce 7; = 0.

Let m = m(p) and p = p; + fi(s;) be average pressure, and let us consider
a fixed region 2 with a boundary I' =0() in which the saturation of
9. It follows from the
properties of phase permeabilities that in this case v =0, hence

omp.s; omp. o(p;p: op;
anpsi _ S(.)ﬂ = = SQM =0 and therefore P 0 in . The lat-
ot "ot ot ot

ter equality shows that the flow in €2 should be stationary irrespective of

one of fluids reaches its residual value s;=s

Opi
the values of pi at I' = 02, and at 6_}; #0atl.
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This contradiction suggests that in this particular case it was wrong to
introduce porosity and that instead the residual values of saturation should
have been included in effective porosity.

S — S?
— 0 _0
1=5—s5

saturations and 0;€[0,1], i=1,2 (o1 + 0, =1) at the same time, and

It is obvious that we should consider ;= as dynamic

assume that the m described by formula (1.1) includes residual saturation.
In that case, the saturation equation will assume the form

d(mp,)
ot

For incompressible formations, the continuity equation can also be con-

+div(p; V) =0 i=1,2. (1.13)
veniently presented in the form (1.13).

1.2.3.2 Boundary Conditions and Initial Conditions
Let us begin by considering isothermal flow.

Impermeable boundaries. These are formed by the top and bottom of the
formation through which a non-homogeneous (or homogeneous) liquid
flows. The impermeability condition of this boundary I'y has the same
form for all phases:

vin=0, x=(x1,x,x3)€ly, i=1,r+1, (1.14)

where 7 is the vector of the outward normal to the boundary I' = 0€) of
the finite multiply-connected flow region 2 and I'y<T.

Wells. Values specified for injection and production wells can be either
the distribution of phase pressures and saturations

pi=polx, 0,  si=solx,1), xeli, i=1r+1, (1.15)
or phase flow rates

= %Q(x, 0, k= Z:H k., xel, i=T.r+1 (1.16)
where Q(x, t) is the specified mixed flow rate. Equation (1.16) shows that
the mixtures are selected and injected in proportion to phase mobilities.
In the case of a two-phase liquid, the conditions described by (1.16) can
be obtained if the following conditions are met:

a. The specified mixed flow rate is (V1 + o) = Q(x, 1), x€el'y;

b. Gravity forces operating in the wells are not taken into account and
the capillary pressure gradient p, is ignored as being negligible in com-
parison with the phase pressure gradients, i.e. Vpiii = Vpyii.
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Boundaries with a homogeneous fluid at rest. It is assumed that the pressure
p1 of a fluid at rest is distributed in accordance with the hydrostatic law,
that this boundary is the same as the pressure of the corresponding phase,
and that saturation s;is continuous at I'»:

2
pr=potpgh si=1-Y s, xely, (1.17)

where py is fluid pressure at some fixed level (h = 0); h is height measured
from this level; p; is the fluid density. For the second component, either
(1.14) is true at x€I',, or, if the fluid at rest is in a permeable medium, then
it is natural to assume that

p2=py =55, xely, (1.18)

where p} is pressure at residual saturation s with the phase in question. It
should be noted that conditions (1.17), (1.18) are identical to (1.15).

Free boundaries. As a rule, a free (unknown) boundary I'; is a line of
contact discontinuity between one or several saturation levels (e.g. when
a homogeneous fluid flows into “dry” rock). In addition to the conditions
of impermeability of I'; described by (1.14), it is assumed that the flow
velocity of all phases is the same as the mixed flow velocity as a whole
(a kinematic condition) and that the “average” pressure of the mixed flow
is continuous throughout the neighborhood of I';.

Initial conditions. In the case of incompressible fluids (p; = const), it is
assumed that the specified initial distribution of saturation is

sili=0 = si(x,0), xe€Q, i=1,2 (1.19)

and that the distribution of the “average” pressure of the mixed flow can
also be specified in order to allow for the compressibility of the liquids
and the rock:

pli=0 = po(x,0), xe€2 (1.20)

Occasionally, by idealizing the process of flow in various ways, the
dimensionality of the space of independent variables may be reduced (in a
general case this refers to four-dimensional space: f,xy,x2,x3), e.g. by
assuming a stationary flow (independent of time), or a linear flow in an
infinite formation of uniform thickness, not subject to the forces of
gravity (independent of gravity), or a planar flow in an infinite formation
uniform along one of its horizontal coordinates, or a one-dimensional
flow, assuming that the formation is infinite and uniform along two of its
spatial coordinates.
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However, in some flow problems, idealizations of this type may make
it impossible for the resultant model to describe important qualitative
characteristics of the physical process. For instance, when describing fluid
flow to an ideal well using the plane flow model we may lose the connec-
tivity of the flow region, so that the resultant problem becomes mathe-
matically incorrect. In a spatially three-dimensional problem this situation
would not present any additional mathematical difficulties.

1.3 THE TRANSFORMATION OF ML MODEL EQUATIONS

1.3.1 The Muskat-Leverett (ML) Model

The ML model of two-phase incompressible fluid flow (p; = const) through
porous media contains an equation system (1.9)—(1.11) [1.2] describing
phase flow velocities v;, pressures p; and saturations sy, s3(s; + s = 1):

0
m—psitdivpr;=0, —vi=K(Vpi+pg), i=12,

ot
s (1.21)
11—
p2 = p1 = pelx, 9), (1701_50 = sexf0, 1])

R 2

In this system, K; = Ko(x) - ki(s) a symmetrical tensor of phase permeability;

Ky is thetensor of homogeneous fluid flow and k; = 229 are relative phase
permeabilities.

Let us transform system (1.21) into a more convenient form by adding
the continuity equations [the first equations of (1.21)], divided by

p; = const, we obtain
divv = O, V= Ul + 32, (122)

in which v is the mixed flow velocity vector and (/] is the total specific
mixed flow rate.

Let us now introduce “reduced” (“average”) pressure (first proposed
by V.N. Monakhov) as the new target function:

16Pc/€1
=p — | Z=£LdE+ p.oh 1.23
P=pi J > §+ pgh, (1.23)
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where k= ky + ky, Vgh=7. To explain this choice of target function, let
us begin by using Darcy’s Law [the second equations of (1.21)] to express
the vector v in terms of the gradients of functions p; and s:

2
Op k k
—7= 3 Ki(Vpi + pid) = kK, <vpl Py by > N
1

2 1
Op. k Vp, k
+Y Kipg = IeKOV<p1 - J e 2 d§> + /«KOJ 2 fdg + Kok Vp,
1 N

+ ZK1P,§

In this way, the substitution (1.23) enables us to express vector ¥ in terms
of Vp and s, making it independent of Vis:

7=—(KVp+f)=7(p), K=FkK,, (1.24)

6}7( kZ

where f = Kf V df-i—Ksz[ + Kx(p, — py)¢ and V is used only

with respect to x, Wthh occurs explicitly, 1.e.

0 0 0
v = (—po—p—1p. ).
pe(x, 5) < o P> o P> o pc>

By analogy with (1.23), we obtain

- . Op. k ! a[/e
—vl=K1(Vp1+p1g)=K1<Vp—£—2V +J P 2d§>

Os k
Op. kik 0 ck
Whence, assuming a = — Oik 1—|-2/€ and fy = K4 f V P 22 d§ we obtain
s Ry 2
—v1 = KyaVs + K1 Vp +f0 = —Vi(s, p). (1.25)

By using (1.24), we can calculate K;Vp = — K; K~ '(¥ +f), and noting
that this definition yields K; = kyKy and Ks = ky Ko, KiK' = ky /k = b(s)
we can rewrite equation (1.25) as

-

—) =KyaVs—bs+F, FE=f,—1If. (1.26)
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By substituting (1.25) in the continuity equation for the first phase, we
obtain a system of equations with respect to {s, p}:

a -
ma—j = div(KyaVs + Ky Vp +f ) = —div 7(s, p), (1.27)

div(KVp + f) = —div 5(s, p) = 0, (1.28)

and by substituting (1.26) we obtain an equivalent system with respect to
{s,p, v}:

a —
ma—i =div(KoaVs — bv + F), m=7i(1 —s) — ), (1.29)

di(KVp+f)=0, —#=KVp+f. (1.30)

It should be noted that the flow tensor Ky(x) is assumed tobe symmetrical
and positively defined, i.e.

K=k VISP = (K&, =) ki€g=0""IEF, >0, (1.31)

€% = Zlf?, and that capillary pressure (pc) and relative phase permeabil-
ities have the following properties:

%«), b=k + k>0, (1.32)
and therefore, if we include (1.31), we obtain a(x,s) >0 when s€(0, 1)
and a(x,0) = a(x, 1) = 0.
Hence, (1.27), (1.28) form a quasi-linear system consisting of a uni-
formly elliptical equation for p(x, ) and a parabolic equation for s(x, f),
which assumes a degenerate form at s =0.1.

1.3.2 The Initial Boundary Value Problem

Let us consider flow in a specified finite region ) with a piecewise-
smooth boundary I'=0() As described in Section 1.2, the different
boundary conditions corresponding to the actual physical flow can be
used to divide I' into several coherent components I';.

Let Qr =Q [0, T],I;r=T;-[0, T], and let # be the outward normal
to I'. Let us now rewrite the boundary data from Section 1.2 for the
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s and p functions. Based on (1.24), (1.25), the no-flow conditions (1.34)
I'y<T given in 1.2 for both phases are equivalent to

17(57}’)% = ﬁl(S,P)ﬁ: Oa (X, t)EF()T. (133)

The boundary conditions (1.39) and (1.40) (Section 1.2) now become

p= P(Pls 5) = pO(x5 t)a $= SO(xa t): (:X', t) e]:12T: (134)
v(s,pi = Q(x, 1), (x,0)elyr, (1.35)
(s, p)i = bQ(x, 1), (x,0)elr. (1.36)

Because (1.35) and (1.36) become equivalent to (1.33) when Q(x, ) = 0,
then it is natural to include I’y in I'; and assume that I'y consists of several
components, in some of which Q = 0.

Thus, I'=T U T,. Clearly, (1.27) and (1.28) cannot satisfy the
Cauchy-Kovalevskaya theorem (as the second equation does not contain

0
a—[;), and therefore the initial condition need only be specified for

saturation:
S|t:O = SO(X’ t)’ er (137)

Note that I' need not contain I'yor I'5, so that it may be the case that
I'=T1 orI'=1% When I' = I'q, the law of conservation of mass of the
mixed flow in €2 generates the necessary condition

J plax, t)dx = J Q(x, t)dx =0, t€[0,T]. (1.38)
Q T

We conclude this section with a summary of formulae for the coefficients
of equations (1.27)—(1.30) and of the boundary conditions (1.33)—(1.36):

Ope | kika ky 1
= |2 ke, b= = KK
s 3 5 1 2 k 1 )
= ! apckZ
fO ZKlj Va—zdé., K,‘Z ki1<() (l= 1,2), (139)
B S
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J?Z KiK'y + Ka[(p, = p1)¢ + k2Vp], K=K +Ks,

- -

F=Ff,—bf = —kikak " Ko[Vp, + (p, — p;)E]-

1.3.3 The Independence of Total Flow Velocity from

the Distribution of Saturation

If the coefficients K = Ky(x)k(s) and f(x, s) in (1.28) do not depend on

then the equation system (1.27), (1.28) breaks down and allows us to calcu-

late the velocity field ¥ and phase saturations s;(x, t) one after the other,

while formulae (1.39) allow us to state these conditions in terms of the

functional parameters used in the Muskat-Leverett model:

1. k=k(s) + ka(s) = const: This assumption is true with sufficient
accuracy for miscible fluids for which ky = As, ko = A(1 — 5), A = const.
In the case of immiscible fluids, the value shows significant deviation
from the constant only in the vicinity of the limiting values of reduced

saturation s =0, 1.
1 ) i . Op.
—— detKy(x) = const, in which case p. = p.(s), i.e=— =0
m(x) Ox;
3. Either gravity forces are not taken into account (for example, in a
plane flow), or the fluids have similar densities p; = p,.

It follows from (1.39) that assumptions (1.22) and (1.23) enable the

condition PN =0 to be satisfied.
s

1.3.4 Some Shortcomings of the Muskat-Leverett Model

Some of the model’s shortcomings were noted above.

1. The model’s solutions do not remain robust when its functional parameters
change. Experiments to determine relative phase permeabilities k(s) and
capillary pressures p,(s), have shown that these functions are poorly speci-

. L . ; d
fied in the vicinity of s = s*, 5. At the same time, the values of — and P

ds ds

in the vicinity of these saturations s decisively influence the structure of the
solution of (1.27), (1.28).

Indeed, the behaviour of ky(s) and p.(s) in the vicinity of s = s, is
well described by

()

ka(s) =f1(5)(5—5*)>‘1’ ps) = (s — 52)

A2, (1.40)



20

Fluid Dynamics of Oil Production

where \; = const >0, and 0 <fi(s)€ C'[s4,5). For many formations it
may be assumed that A; =3 [143, p. 176] and A\, =2 [110, p. 208].

kiko |y,
AL ot

and k1 (s), become zero only when s = s*. To provide a full picture, let us

At these values of Aq, a(sy) =

consider the case of one-dimensional flow through homogeneous rock at
a specified mixed flow rate vy + v = Q(¢). The system (1.27), (1.28)
then becomes equivalent to the Rappoport-Liss equation

0

m% = £ [a(s)% + Q(t)b(S)] »b(s) =

ko
ky + ko

(1.41)

The next task is to find a solution to equation (1.41), which will sat-
isfy the condition

sli=g = s0(x), x€[0,X], sly=g=5" =0, sli=x = S (1.42)

where s, = sp(x) =50 — 6, 0>0.

Noting that, because equation (1.41) is uniformly parabolic [since
a=(s4) # 0], and because of the maximum principle s(x, t) > s for all
the finite values of +>0 and 0 <x <X, even when, at X=x>0,
50(x) = s4. On the other hand, if A{ — A\ —1>0 (and some theories
and experiments make the value of A; 3,5-4 [110, p. 181]), then
a(s4) = 0, and the propagation velocity of perturbations becomes finite
(as established by N.V.Khusnutdinova for s*), and if so(x) =s at
x = x>0 (x < X), then, provided that X(T) is sufficiently large, and
in particular, when X = o0, for each finite T >0 there exists a point
x=&(T)>0such that (X, T) =5, at x=&(T) > 0.

For the sake of clarity, let us assign water the index 1, and oil the
index 2.

It should be noted that if X << oo (the production well x =X is
located at a finite distance) and s4(x) = sy, s€ [x0, X], xo > 0, as before,
then the minimum time t= T >0, during which water saturation
(X, T)>s, at x < X and (X, T') = s is called pure oil withdrawal time.
In the first case [a(s4) 7 0] there is no such T'> 0, but in the second
case [a(s,) = 0] it can be uniquely defined. This makes it impossible to
trust forecasts of the time of water encroachment of production wells,
in particular those based on the Muskat-Leverett model.
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2. The boundary paradox. This drawback of the Muskat-Leverett model
is also conveniently illustrated by a one-dimensional model with a
specified mixed (water/oil) flow rate, vy + v, = Q(f). Alekseev and
Khusnutdinova [1] demonstrated that, given specified smoothness con-
ditions, equations (1.41), (1.42) have a unique solution at t€[0, T] for
any finite T >0. However, the existence of a solution within any
arbitrary interval O = ¢ =T contradicts the physical implications of the
initial model, since it must be the case that when water is injected
into injection well (x = 0), pure oil cannot indefinitely continue to be
recovered from production well (x = X).

This paradox makes it difficult to formulate physically
acceptable conditions for production wells. Moreover, asymptotics
studies suggest that over a period of time these equations produce
unrestricted growth of the saturation gradient in production wells.
This is a boundary effect which must also be allowed for in numerical
calculations.

3. The initial function becomes indeterminate if the medium is only weakly
saturated with the wetting fluid. Let a wetting fluid (e.g. water) be
injected into a formation, and let its initial saturation so(x) be lower
than its residual saturation (so(x) <si,x€€)<=(2) and, in particular,
so(x) = 0,xeQy<=). Because the Muskat-Leverett model is valid
only for 0 <s, =s(x,t) =s* <1, it can only begin to apply from a
time fo <0 which satisfies these conditions. The model cannot tell us
what the saturation profile would be at a time # > 0.

At the same time, B.I. Pleshchinsky, using an oil formation model,
was able to demonstrate experimentally [103] that there is a significant
relationship between a formation’s initial water saturation and the
movement of the water saturation front.

4. Darcy’s laws lose their uniformity in the Muskat form. The relationship
between the phase flow velocities #; at which the fluids flow through
pores, and flow velocities v; is described by v; = ms;u;. Consequently, the
left hand sides of Darcy’s Law equations are proportional to partial veloci-
ties (s;i;), whereas the right hand sides contain total rather than partial
phase pressures and densities. It will be shown below that this formal
non-uniformity of Darcy’s Law makes the equivalent Muskat-Leverett
model and its saturation s and reduced pressure equations much more
complicated than the corrected model. This becomes particularly impor-
tant when we attempt to take fluid compressibility into account.
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1.3.5 The Displacement Model

Because the model we are proposing (V.N. Monakhov [75]) is phenome-
nological, as is the Muskat-Leverett model, it must be constructed so as
to allow experimental determination of its characteristics. The model’s
characteristics naturally fall into the categories of formation, liquid and
flow characteristics.

The Characteristics of (Homogeneous) Formations

a. Average permeability k= k(s): this characteristic depends on residual
water and oil saturation. Its limiting values are determined in standard
permeability experiments: k, = k(s) is determined on the basis of oil
flow in a water saturated sample (Darcy’s experiment), while average
formation permeability does not change and is the same as k* i.e.

k(s) = k* <k, at s=s*.

Experiments [e.g. 103] have shown that when fluid flows into “dry”
rock, permeability can be described by the formula

A
E(S):k*+l€()<i), ko=const, A=3at0=s=g,,
s

*
ko can then be found from k(s,) = ks, together with k(s):

k*,  s=s*

TN A
MO=9 b+ —k*)(§> . sel0s]

b. Phase permeabilities: These are input as required by the specific model.

The Characteristics of (Flowing) Fluids

a. Average density: p=op, +(1 —o0)p, =p, + p,, p; — true densities,
S S

and p; — partial density, 0 = — .
§*F = 5y

b. Average pressure: p=op; + (1 —0)p> = p, + p,.

c. Average viscosity: In p =0 In p; + (1 — o) In 1, (see [113, p. 289]).
(o) may also take other forms, determined in independent experiments,
or in displacement experiments, in which case it can be determined
simultaneously with formation characteristics.

d. Average phase and mixed flow velocities: v1,v, and v = v + 1.
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Let the fluids be incompressible and let the formation be water-saturated
(s(x, £) = s,). It is assumed that the mixed flow follows Darcy’s Law:

*

k
F=—(Vp+pg), divi=0, (1.43)
I

where k* is the effective permeability coefficient, introduced above and

based on the assumption that stationary phases (at s = s, s*) are classed as
pore space.

Here,  p=op +(1—a)ps, p=0p, + (1~ )8, 5= p,e?(x =1n

ly/,) are the pressure, density and viscosity of the mixed flow,
S Sy

=5
The flow of the displacement fluid (water, assigned the index 1) is the
same as in the case of incomplete saturation, and follows the relevant law

[40, p. 180]:

k* 0
Bi=——0 Vpi +pg), m a_(: +diviiy = 0, (1.44)
0

where m; = m(s* — s,), A = const = 3, and p,, either equals (1, or we can
assume that p, = (o). However, we need to add to the system the
following Laplace Law:

p2 = p1 =pl0) = ps(0)] (1.45)
The known properties of p. [74] give us
_ l—0o. N
plo)=——plo); 0<p, <o, oel0,1]
o
Let k= —,k; = —o0" and let us express #; in terms of # and 0. This
Ho
gives us
pr=pt(c—1Dp,=p—po(o), po=(—0)p,
(note that p)(c) = —p, + (1 — 0)p. <0). Hence
- kl — / —>
vy == EV + kipy Vo + ki(p, — p)(1 —0)g

or

171 = _51VU—E§+21_;,
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where

ap = —kmé), (@ lg=0,1= O),E =ki(1=0)p,—p)c= k1/k = (N/M())UA-
Substituting v in the second equation (1.44), we obtain the system

0 _
my a—(: =div(a Vo — bg + cv), divk(Vp + pg) =0, (1.46)

which has the same form as (1.27), (1.28) in the Muskat-Leverett model.
In the case of an unsaturated formation (containing regions where
$<<s4), the relevant Darcy’s laws can assume the form

==t wm VD (47)
K Ho
and when 0 =s=s,, p(s) = p2, p(s) = Py, L = 4y, [ty = 1, Where as k(s)
is as determined above.

It follows from the design of displacement models that all their
parameters, which should be determined directly from displacement
experiments, are constants (1.3.4 point 1). However, equations (1.47)
additionally make it possible to describe flow in unsaturated formations
(1.3.4 point 4).

It should be noted that the solution of this problem is especially topical,
since it relates to coal seam degasification, which usually involves injecting
fluid into “dry” rock.

We have also proposed another model describing the flow of immiscible
fluids in formations incompletely saturated with the wetting phase. This
model will not be discussed here.

1.3.6 A Model Including Partial Pressures and Densities.
Provision for the Compressibility of Fluids

Let s€[s4,s*] and let the following analogues of Darcy’s Law, flowing
phase continuity equation and Laplace Law [76] be satisfied for each of
the phases:

Aop,)
ot
where p, = op; and p;, = 0,p; are respectively the partial phase pressures and
M =1—0,p() =plo()], and Fk=Fk(sx)

Vi = kP, + p2); m +div(pi;) = 0; p» —p1 =p0),  (1.48)

densities, 01 =0 =
§* — 5

are analogues of phase permeabilities, my = m(s* — sy).
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It should be noted that p; are determined with an accuracy of up to
constant py; (average pressures). Therefore, if fluctuations §;, of the func-
tions (p; — po;) €[0, ;] are small as compared to their gradients Vp;, the first
equations in (1.23), (1.27) approach the usual form of Darcy’s Laws when

k= Ao (N =3, ¢ = const), (1.49)

since, on this assumption, (p; — po;), ki, 0; can be regarded as small. To
close system (1.32), we need to add equations of state of fluids which we
will assume to be compressible:

p;="7pi-i=1,2 (v, = const >0). (1.50)

From Laplace Law and equations of state of the fluids we find

— P2 P£1 —
F(o,p\p)) =———— — —— —plo)=0,
1 Y(1—0) 0o

and since p. = 0, we have 2 > (0, and have therefore established the existence
o

of the implicit function 0 = o1 = f1(p, p,), (02 =1 — 0 = f).
It follows therefore that equations (1.48), (1.50) are equivalent to the
following parabolic system of equations with respect to the p, functions:

8_‘ — —
my % =divA,(Vp, + vpg), Ai=

57,
Vi

If, as above, (p; — poi) are small compared to Vp;, it follows from (1.50)

i=1,2. (1.51)

that p; & const.

Consequently, if we take (1.49) into account, this makes the model
described by (1.48), (1.50) close to the Muskat-Leverett model. This
being the case, we can regard equations (1.51) as a physical regularization
of equations (1.21), corresponding to the Muskat-Leverett model.

Continuing to generalize the above modification of Darcy’s laws, let
us present them in the form

v = _k()(x)a V(Xicpi)a i= 19 29 (152)

where ¢, =p;+ pgh is the hydraulic pressure head of the phases
(¢Vh=3), kg = (x) is the average permeability of the medium to homoge-
neous fluids and (1,;x;) are analogues of relative phase permeabilities ko;(s).
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If fluctuations 6; of the functions (¢; — ¢,,) €[0, 6], ,; = const are small
by comparison with Vg, it is easy to verify, as before, that equations
(1.52) are close to Darcy’s laws in the Muskat-Leverett model when
1iXi(s) = Roi(s).

Let us now assume that the fluids are incompressible (p; = const). The
equation div(vy + ) = 0 then gives us

divfko(x)(X191 T X2p2)] = divfko(x)p] = 0. (1.53)

Conditions (1.34), (1.36) [respectively (1.34) and (1.35)] for functions s
and p correspond to the following boundary value problem for the target
function (x, f):

vg@ﬁln = O: QO|F2 = @()(ka t) (kOVSOﬁ = Q('xa t))’ (154)

where ¢, (x, t) is calculated explicitly via og(x, t) and po(x, t).
Let ¢ = ®(x, t) be the solution of the boundary value problem (1.53),
(1.54), and let us use Laplace Law to calculate

X1
X1t Xz

X1¥1 = [‘I) — Xope — Xo(py — P1)gh] = F(s,x, 1),

Substituting this into the first phase continuity equation produces the
equation for s:

Os

prie divo[k(x)F(s, x, t)]. (1.55)

m

In this way, by using Darcy’s laws in the form shown in (1.52), we have
reduced the initial problem to the integration of a decomposable equation
system (1.53), (1.54) (in the limiting one-dimensional case, pressure p is
explicitly calculable).

Functions x;(s) should be such as to satisfy the condition of parabo-

OF
licity of (1.55), PN >0,5€(s4,5%). This is especially true for the similar-
s

ity of (1.52) to the ordinary Darcy’s laws discussed above, with the
system (1.53), (1.55) again representing a physical regularization of
equations (1.21). The proposed method of regularization of equations
(1.21) may also be used locally, in particular to plot their differential
approximation.
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It is interesting to note that when k = const (in the case of a homoge-
neous formation), a similar situation occurs even with the ordinary form
of Darcys Law if we consider a linear problem with the condition
]€1 N kg N

9 , folo

H Ho
splitting of the initial problem seems not to be accidental, since numerical

= const (see especially [73], formulations of s,1). Such

calculations suggest that the link between bulk pressure or flow paths and
saturation is weak.

1.3.7 Boundary Layer Approximations

For simplicity, let us consider a two-dimensional problem of the flow of
immiscible fluids in the region {0 <x<1,0<y<h}, bounded by an
impermeable top and bottom of the formation (y = 0, y = h), and by an injec-
tion (x =0) and a production (x=1) well. Let us write equations (1.27),
(1.28) in the following equivalent form:

oS
mo- = div(aVs + bg + @), (1.56)

—V=kVp+fg, divi=0, (1.57)

k
where ¢ = —2, b=¢, v=_(uv).
Let us assume that the formation is thin (h/[ is small), and that

ki=6k, x=% y=06y, u=i, v=~0n (1.58)

We will also assume that the form of Darcy’s Law remains the same,
whatever the formation thickness [so that equations (1.57) do not
change|. Taking into account (1.58), let us transform equation (1.56) to
represent saturation, discarding terms proportional to § and §°. Returning
to the previous variables and target functions, we obtain

g - c'ug = % (ag—j) + c’ug—i (¢ <0). (1.59)
When u=0, the fact that (1.59) is an evolutionary equation for x in a
production well (x=1) makes it unnecessary to specify the boundary
conditions for s(x, y, t), while the saturation profile for x =1 takes shape
as the non-wetting fluid is displaced. Let us note that the proposed model
[76] can also be used locally, but only in the vicinity of production wells.
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1.4 THE MLT MODEL FOR CONSTANT
RESIDUAL SATURATIONS

In the temperature model of two-phase fluid flow proposed by O.B.
Bocharov and V.N. Monakhov [15] (the MLT model), the effect of thermal
processes on the nature of fluid flow is taken into account by changing
the viscosities and the capillary properties of the various components of the
fluid, in accordance with their own temperature and that of the pore space
matrix. The mathematical model representing these assumptions consists
of a composite equation system which includes a parabolic temperature
equation and a system of elliptic and parabolic equations for the saturation
of one of the fluid components and the average pressure of the mixed flow.
A feature of the MLT model is that all its component equations, except for
the equations of Darcy’s Law and Laplace Law, follow from the laws of
conservation of the mechanics of continuous media. In addition, the MLT
model is easy to work with, in the sense that its description uses only
functional parameters capable of experimental determination.

1.4.1 Derivation of Equations

Let si{(i=1,2) be phase saturations; my is porosity; a; = mos; (i = 1,2) and
a3 =1—my are the volumes of the fluids and of the solid phase (the
pore space matrix) respectively; p,, p; and u; are respectively the densities of
incompressible  fluids  (p; = const), their pressures and velocities;
vi=ouid; =mos;id; (i=1,2) is the phase flow velocities, and v = (i +
Qiatiz) = V1 + v, are mixed flow velocities.

Let us write down the energy balance equation. Let us assume that in
each point of the porous medium there exists a thermal equilibrium, i.e.
that the phase temperatures 6; are the same, 0, =60 (i=1,2,3). Let
¢pi = const (i=1,2,3) (phase heat capacity at a constant pressure); ¢; = ¢,
is the internal phase energy; ¢, = —a;A(6)V0 ith phase heat inflow vector
(from Fourier’s Law). If we then divide both parts of the phase energy
balance equations by (p,¢,) [40]:

Oe;
P (aet + Z[,Vel) = _dii/ﬁi, i= 1, 2, 3

and add them term-by-term, we will arrive at the equation for 6:

% = div[AM(x, s, 0) VO — v0)]. (1.60)
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In this equation, A= Z? Oé,'Ai(piCp,')_l,S = (51 —sH(1 =) =5 is the
reduced saturation (5! = const). It is assumed that the rocks are stable and
that the phase flow follows the Muskat-Leverett model [40]:

aOéiS,‘ . — k() —»
+divpi =0, v =—K Vi — ),
St divpy7 o) V0= 9D

1/2
mo (X)

/

where Kpy(x) is the absolute permeability tensor of the medium; ki(s) is

p2 = p1 =(0) cos (b)) [

the relative phase permeabilities; f; is the phase viscosities; ¢ is accelera-
tion of gravity; 7 is the surface tension coefficient; « is wetting angle; J(s)
is Leverett capillary pressure function. The following designations are

used below: ki(s, 0) = /_61(5),“,-_1 (0).

1.4.2 The Transformation of the Muskat-Leverett Equations

Problem statement. Let us introduce a formula for average pressure, based
on an analogy with [65]:

'k
p=pt | o 6O Sn 60

After the appropriate transformations, the Muskat-Leverett equations are
reduced to the following system:

Os 5
e = diu[K(a1Vs — VO+T) - w} = (~V-#), (1.61)
(—V %) = div[K(Vp + [, + as V)] = 0. (1.62)

In this system, m = mo(1 — 5] — s3) — effective porosity,

bi=ki(ki+ka) ' (i=1,2), K=Ko(ki + k), ap=kika(ks+ks)2,

a1 = |pslag,  a> = pegao; J?1 =[=V.p. + (py — p>)g¢lao,

1

1 o R o
- _k1pc0 - J %(blpcs)ds, f2 = J - prfstdS - bl lf]‘

N
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Let Q2€R? be a bounded region. Let us assume that 6= (s,0) and divide
the boundary Of) into several components in accordance with their
boundary conditions:

(P, S, V) = (PO» NiB VO)’ (.X', t) € 21 = Pl X [Oa T]a

Vien=bR, i=1,2, v=w(x1), (x,0)eX*=T2X[0,T], (1.63)

8
voem=0, i=1,2; A—a"=ﬁ(w)—u), (x, ) eX3 =T3 X [0, T],
n

where # is the wunit vector of the outward normal to
I; 8= Zf Bi(p; X cpl-)_1,ﬁi is the ith phase heat transfer coefficient.
Sections I'!, I'> model the injection and withdrawal sections and the con-
tact with homogeneous fluid at rest, while I'® represents contact with the
surrounding impermeable rocks.

Boundary conditions (1.63) need to be augmented by the initial con-
dition for 6:

01— = Oo(x,0), xeQ. (1.64)

When T'' =, the law of conservation of mass of the mixed flow in
region {2 produces the necessary condition

J plx, t)dx = J R(x,)dx=0, te[0,T] (T'=). (1.65)
Q r

1.5 NON-ISOTHERMAL FLOW OF IMMISCIBLE FLUIDS WITH
VARIABLE RESIDUAL SATURATIONS (THE MLT MODEL)

The model considered in this section was proposed in Eqn 1.36 and dif-
fers from the model considered in Section 1.4 in that it takes into account
the fact that residual phase saturations depend on the temperature of the
inhomogeneous fluid, which we were able to establish experimentally.
The inclusion of this effect enables the model to describe the movement
of the boundary between the inhomogeneous fluid and its stationary
components (the Stephan problem).
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1.5.1 The Model Equations and Problem Statement

Following the assumptions made in Section 1.4, the energy balance equa-
tion for an inhomogeneous fluid becomes

% = div[\(x, s, 0)VO — 76, (1.66)

where 6 is temperature; A is the thermal diffusivity; s = s; is wetting phase
saturation; v = | + v, is average mixed flow velocity, and ¥; is the phase
flow velocities.

The phase flow follows the patterns described by the Muskat-
Leverett model [40], where residual saturations are not constant,
0 =(0)=5) = const =0. These properties s,(i=1,2) produce the
following conditions of wetting phase saturation s(x, t):

0 =< const =5, = 5,(0) = s(x, 1) = 5*(0) =5" = const = 1, (A)

where s, = 5{(0), s* =1 — $5(0), 0 =5, = inf} s.(0), 5, = sup, s*(0) = 1.

Analysis of experimental and theoretical work [2, 90, 143] shows that
it would be natural to consider the functional parameters of the Muskat-
Leverett model (relative phase permeabilities k; and the Leverett | func-
tion) as dependent on the dynamic saturation of the wetting phase:

s — s54(0)

= o o *S S*a :Oa <*5 :13 B
0 —s.0) Sy =S5=5 o s<s o (B)

§> 5,

This condition determines the function o = ®(s, §),s€[0, 1].
The Muskat-Leverett equations can be reduced to the following equa-
tion system [16]:

oS 7
WIE = div [KQO(CH Vo — an@ +f1) - b1ﬁ = dl'V171, (167)

divi = div[K(Vp + a3V + f,)]| =0; o =(s,0), (1.68)
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where K(x, 0, 0) is a tensor associated with the permeability of the medium:

ap = [1()(9), a; = ai(o-7 9), = 19 27 39 bk = ble(oa 0)9jk :.fk(xz ag, 0)9 k= 19 2a

ao(O) = a()(1) = bl(O, 9) = O, h’lf a = o> 0.

Let = R? be a bounded region whose boundary 62 is divided into sev-
eral components on the basis of their boundary conditions:

(155, 0) = (po, 50, 00), (x, ) €X' =T X [0, T,

vii=bR,i=1,2; 0="00(x,1),(x,1)ex?*=T%X]0, T],

00
vin=0,i=1,2; Aa— = B0, — 0), (x,)eX’ =T X [0, T.
n

In this system, # is the unit vector of the outward normal to 0f2, sections
I'" and T'? model the injection and withdrawal sections and the contact
with homogeneous fluid at rest, while I'® represents the contact with sur-
rounding impermeable rocks.

Boundary conditions need to be augmented by the initial condition

(s, 0)],=p = (50, 00)(x,0), x€). (1.69)

When T'' =0, the law of conservation of mass of the mixed flow in
region {2 produces the necessary condition

Jp(x, Hdx = JFR(x, Hdx =0, tel0,T]. (1.70)

Dynamic saturation gy is reestablished with respect to 6y and spat t =0,
and at ¥!, by means of the unique dependence (B): oy = ®(sy, 6o).

Note: Let o be a reasonably smooth function, making the boundaries -,
of sets Gy = {o(x,t) =k}, k=0 piecewise smooth curves. For this to be
the case, 7y, must satisfy the following conditions:
00 0
=0, |Ae—| =0; mU,[]y= —K|aa —| ,
Ong L ony, k
where [¢] is the difference between the values of (x, f) to the right and
to the left of «y,; 1, is the outward normal to G, and U, is the velocity of
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motion of 7, in the direction n,. Only one phase flows in regions Gy,
so that their saturation s is constant, and depends on the history of their
formation. Thus, the velocity of the boundaries 7y, — U, may be deter-
mined both on the basis of Stephan conditions at [s] # 0, and on the basis
of Verigin conditions at s = s,(f) in Gy and s = 5*(#) in G;.

The validity of the initial boundary value problems formulated here for
the models described in Sections 1.4 and 1.5, divided into classes of gener-
alized solutions, is shown in Eqns 1.35 and 1.36.

1.6 THE COMBINATION OF WELL AND RESERVOIR FLOWS
OF VISCOUS INCOMPRESSIBLE FLUIDS

Introduction. Mathematical modelling of processes taking place in the near-
well zone is complicated primarily by the heterogeneous nature of the
multicomponent flow in the well and in the surrounding porous
medium.

Let us explain the dynamics of reservoir flow in the near-well zone. For
simplicity, we will assume that the fluid enters the well only from its lower
section, and that its movement is due to the pressure head generated by the
difference between formation and atmospheric pressure (at the wellhead).
In such circumstances, the fluid flow is satisfactorily described by the
well-known exact solutions of the Navier-Stokes equations (such as the
Poiseuille solution), or by their boundary layer modifications. At real fluid
pressure head values, the average velocity of fluid flowing in the well is
quite high by comparison with the slow flow of fluid through the sur-
rounding porous medium, and this explains the difficulty of describing the
combined flow of fluid in a well and in a porous medium. This difficulty
is usually resolved by constructing various intermediate models of fluid
flow in the transition zone (merging asymptotic expansions, boundary layer
smoothing, ignoring the reverse effect of fluid flow inside the well on
reservoir flow, etc.).

However, the application of these models to flow dynamics shows that
they provide a poor representation of the physical nature of fluid flows in
transition zones and that they greatly distort the general characteristics of
the flows even far away from the transition zones.

V.N. Monakhov and N.V. Khusnutdinova [94] have proposed a model
describing the combined high-velocity flow of a viscous fluid inside a
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well and the reservoir flow of the same fluid through the surrounding
porous medium in terms of boundary layer approximations of both flows.

1.6.1 Problem Statement

Plane stationary flow of an incompressible fluid in a well is described by
the Navier-Stokes equation:

(@V)i = pAii —Vp+F; i=0, (x,y)e(Dy),

where o = (u,v) is the flow velocity vector of a fluid with a density

p = 1; 11 = const is viscosity; p = po + pgh, p is pressure, (¢ = gh), F = 0.
We will also use the Navier-Stokes equations to describe reservoir flow in

region Dy, adjacent to Dj. In these equations, in accordance with the flow

theory (1.71), F = — \il, X(x, y) = m—: — m is porosity, k is the permeability

of the porous medium (¥ = mii- flow velocity).

We will consider only problems dealing with the combination of
reservoir flow in a porous medium (the formation) and in a group of
imperfect wells (a “plane well” or simply “well”) corresponding to a ver-
tical section of the formation (¢ = (— g, 0)).

Let the direction of axis O x be parallel to the direction of fluid flow
in the well. Assuming the well diameter (24) to be much smaller than its
length and assuming that |v] < [ii], we can replace the initial equations
with boundary layer equations:

V)i = pi,, — p,V i =0, (x,y)eD). (1.71)

Let the reservoir flow (along Oy) be perpendicular to the fluid flow in the
well, and let the thickness of the formation (region D) be much smaller than
its length. On this basis, assuming that || < |7|, we can derive boundary layer
equations:

(V)i = i, —p, — NV, V-i=0, (x,y)eDs. (1.72)

It is assumed that flow velocity vector and pressure p are continuous along
the flow transition curve (I' = D; N D5):

[#]1=0,[p] =0, (x,p) T, (1.73)

where [f]=fIr, —flp,,[x =T =Dy, (k=1,2), and fp,- boundary values
Sf(x,y) at (x,y) € Dy.
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Note that if we take into account the direction of reservoir flow after

the substitution of x=p,y=—xXu=v,v=—u, at A=0 equations
(1.71), (1.72) become Prandtls boundary layer equation (1.71) for
(%, ), ¥(%,7).

Polubarinova-Kochina [105] noted the appearance of a slippage effect
in experimental studies of fluid flow in the vicinity of porous surfaces and
proposed a simple model to describe it.

Let us assume for clarity that the flow convergence line I':y =0 and
that therefore D;:y <0, D,:y > 0.

According to [105], this is a situation which instead of satisfying
conditions (1.73), satisfied the conditions of convergence [v] = [p] = 0:

u o

Where f =f(x % 0); Q+ is the fluid flow rate through the porous surface;
a is a constant, describing the porous medium in the vicinity of T}

k is permeability.

1.6.2 The Combination of Formation Flow and Free Flow
Near the Well Wall
Let D; = {x>0, — h <y <0} be a region corresponding to a symmetrical
section of the well (with respect to y = —h), and let D, = {x >0,y >0}
represent the formation flow region.
Let us assume that near the wall y = 0, velocity vector i and pressure p
are continuous, satisfying condition (1.73), where [f]=f(x + 0) — f(x — 0).
Let us also assume that the condition of no flow is satisfied near the
wall, y =0, while the condition of symmetry is satisfied along the line
y = — h, that the fluid flow at the wellhead, x =0, is

E[|y:0 = (”)H U)|y:*h = 07 “|x:0 = “0()’) = Oa (174)

and that uy(y) = 0, ye[ — h,0), in the case of a perfect well.

Having solved problems (1.71) and (1.74), and on the basis of condi-
tion (1.73) and the existence of no flow conditions at the bottom of the
formation, we can calculate the boundary data for equations (1.73):

Uly=o = vl=0 =0, V|y:0 = vp(x), (1.75)

where vy(x) = v(x — 0).
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If we regard the line y = —h as the well wall, (1.74) assumes the form:

M|y:() = (M, V)|y:*h = 07 ulx:() = “O(Y) =0. (176)

1.6.3 The Combination of Formation Flow and
Free Flow at the V,well Entry Point

Let us assume the well to be an open hole completion [89, p. 419], so that
D1={O<y<h,x>0}, DZZ{x<O,y>O}.

The flow in such a well can be calculated by solving the boundary value
problem

ﬁ|)/:h = (Va M)|)/:O = O’ Mx|x=() = 0 (177)

for equations (1.71).

Having solved problems (1.71) and (1.77), we can calculate the
boundary data for the boundary layer equations (1.72) in region D,
having taken well symmetry (with respect to y = 0) into account:

=g = uo(y), y>0;  uyl,=g=0, (1.78)

where up = 0,y>h;  uy=4q(y), Uy =0,0=y=h,q=u(+0,y).

In the opposite situation, if the line y = h is the axis of symmetry and
the line y=0,x>0 is the well wall, boundary conditions (1.77), (1.78)
are replaced by

”|y=0 = (Va ”)|y=0 = 05 ”|y=h = “(x)a O0=x= X, i/‘sc|x=0 = Oa (179)
Uly=o = u(+0,y) = u(y), 0 <y <h,v|,=g = 0,v] =g = v1(x),x<0, (1.80)

lim, , 40(x,y) =v=const >0, 0<y<<h.

1.6.4 Thermal Boundary Layer in Formation Flow Problems

The flow of fluid through a porous medium in which the two-dimensional
fluid flow region is greatly elongated in one direction (a thin formation), can
be described by thermal boundary-layer equations

piVu = (uu,), = p. + ph;  div(pi) = 0;

. , (1.81)
piiV = (A0,), + put, + upy,
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in which the external force F =(f;,f3) is represented, as suggested by
Zhukovsky (see Section 1.2), as F= — Y.

In the above equations, ¥ = (u,v) is the velocity vector; p = p(0, p)
is density; p = p(f) is viscosity; p = p(x) is pressure; 0= fTT“ o (§)dE-
enthalpy; T is the temperature; A = A(f) is thermal conductivity coeffi-
cient; v = mfi/ pk, m(x) is porosity; k(x) is permeability.

Let us assume that the Prandtl number is 1, that is up = )\pc; =o(0),
and p, = 0.

We can then use Mises variables (x,%) (¥ is flow function
lpu =1, pr — v(x) = — b, vo(x)prl =) to write equations (1.81) for the
horizontal component u(x, 1)) of the velocity vector # = (u,v), and for
total energy h =60 + 1/2u2, in the following form:

Ll = (ouh)),, — vo()hy — e =Ffo,  (x, 1) €D, (1.82)

where It = (u, h), [y = (I, u), D = {x, %0 < x < X, > 0}.
We can also consider the following problem of boundary layer con-
tinuation (1.82):

I/_l)|x:() = EO(w)a w = O: (”, h— hl)lpﬁ‘:() = Oa X€ [O’ X] (183)

V.N. Monakhov, and N.V. Khusnutdinova [94] have demonstrated the
existence of generalized solutions of (1.82), (1.83) which could represent
fluid flow accompanied by the development of no flow zones (1 = 0) and
thus demonstrate that 0u/0y can tend towards infinity.

1.7 A FORMATION FLOW MODEL OF WAXY, HIGH GAS
CONTENT OIL DISPLACEMENT

1.7.1 Process Description

The main distinguishing parameter associated with high gas content oil
flow is saturation pressure pg. If high gas content oil pressure falls below
saturation pressure, the gas phase is released from the oil. A characteristic
parameter of waxy oil flow is wax crystallization temperature fx; when for-
mation temperature falls below this point, crystalline wax is precipitated
onto the pore surfaces. These factors need to be taken into consideration
in the development of waxy, high gas content oil fields, when it is impor-
tant to maintain formation pressure p, aiming at p > py. The essential pro-
cess requirement is to maintain a high formation temperature, and that is
achieved by injecting steam or hot water into the formation. The
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development of heavy oil deposits where the oil contains large quantities of
gas presents an especially difficult problem, because such formations con-
tain areas where both the gas and the wax approach their critical points:

lp—pul<1, [0—06]«1.

Oil production in such doubly (!) critical conditions is associated with
physical effects which it is difficult to explain in theoretical terms. For
instance, in some wells, production rates can fall virtually to zero, and
do not respond to formation pressure increases. When such sections are
re-drilled, the pores of core samples are found to contain quite a
stable “foam” consisting of gas bubbles plugged with wax crystals. It is
clear that in such circumstances oil recovery can be enhanced only by
increasing formation temperature, i.e. by steady steam injection into the
formation. To calculate the steam flow rates and temperatures required
for this process, we need suitable mathematical models, capable of taking
the interaction of py and 6, into account. Below, we propose a simple
mathematical model describing this process.

1.7.2 The Proposed Mathematical Model

Let py be the bubble point pressure of gas-cut heavy oil whose reduced
density is p=1 at p>py. The process of gas separation at p <ppy Iis
allowed for by considering a special equation of state for the mixed oil
and gas flow:

— iy =d b p=pn

p=le) {5(p—pH)+1 p=pu (154
where ¢ = const. In what follows, let Y =Y(#) be the internal energy
corresponding to wax crystallization, € is the equilibrium temperature,
m = const is porosity and k= k(f, p) is permeability. Assuming the fluid
flow to be one-dimensional and planar (orthogonal to the gravity vector)
we arrive at the following equations describing the formation flow of
waxy, high gas content oil:

opp) 0 [ op\ _ __ .o
LY 5x<pk6x =0, =k

0 00

(1.85)
%Y(G) — ()\— - 1/9) =0, A=X\0)

Ox Ox
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Below we describe solutions of (1.85) which take the form of a simple
wave: p=p(£),0=0(§),& = x — at,a = const. They transform (1.85) into
the form

(1.86)

dE, vdE, Integrating equations (1.85) and introducing a new function

P
o= [ K(6, nyndn = (6, p).

P

we obtain

Pe @995 = 61,0_1 —am= ¢1(9,p),

(A= Pp)le + o = 2 — aY = 1,(0), (1.87)
and finally

where M; = (A — @)y, + Pp1p,, Mo =10, — ¥y, ¢ and ¢ are arbitrary real

constants.

1.7.3 The Development of High Gas Content Heavy Oil
Displacement Algorithms and the Validation of

Numerical Models

Equation (1.88), which describes the formation flow of waxy, high gas
content oil using simple wave analytical variables, has a standard structure,
which allows us to use the classical iteration system

G =000, O =£(0", ¢, €). (1.89)

The only unusual feature of (1.88) is that internal energy Y(#) which
forms part of coefficient (1.88), is not a smooth function. However, this
does not prevent us from using the iterative function (1.89).

We have also developed a full description of the solution of boundary-
value problems for (1.88) and have carried out a computer implementation.
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1.8 FORMATION FLOW OF TWO IMMISCIBLE
INHOMOGENEOUS FLUIDS

The practical implementation of the Muskat-Leverett model describing
two-phase (two-component) fluid flow (1.4) requires the determination
of three functional parameters (relative phase permeabilities and the
Leverett | function), a process which presents considerable experimental
difficulties. The flow models of an n-component fluid when n=3
require even more functional parameters which it is virtually impossible
to determine experimentally.

We have proposed a mathematical model of the flow of two immiscible
inhomogeneous fluids (such as water/steam or oil/gas), using only the
Muskat-Leverett functional parameters, and replacing the usual constant
density condition with the conditions of incompressibility of fluids. Similar
models have proved useful in oceanography and hydrology.

A flow model for one inhomogeneous fluid was first proposed in [91]
and the validity of the application of initial boundary value problems to
this model was examined in [91, 124]. In this book, we present a study of
these problems in relation a flow model of two inhomogeneous fluids.

1.8.1 Problem Statement

It is assumed that the flow of inhomogeneous fluids in a porous medium
is described by the laws of two-phase fluid flow which form the Muskat-
Leverett model (1.2): the law of conservation of mass, Darcy’s laws and
Laplace laws for capillary pressure discontinuity:
{ T(Sipi)t + div(p;v;) :i) (51 +s2=1); (1.90)
vi=—Koki(Vpi = pg);  p2 = p1 = plx, ).

In these equations, s;(i = 1,2) are phase saturations; p,, p;, v; is the corre-
sponding densities, pressures and flow velocity vectors; p.(x, s) is the capil-
lary pressure; kg = ko(x) is the absolute permeability tensor of the
medium; k; = I;i(si) - p; " is the relative phase permeabilities; ji; = const is
fluid viscosities; ¢ is the gravity acceleration vector.

Instead of using equations of state of the fluids to close equation
(1.90), we have used the conditions of their incompressibility:

pp TuiVp; =0 Vi = msiii;, (1.91)

which indicate that the fluids retain their densities p, along the trajectories
of their flow (i; are their flow velocity vectors).
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Using equations (1.90) and (1.91), we obtain
p;lmsi; + divv)] + ms;[p,, +1u;Vp] =0, (1.92)

and this gives us the equations for s;, which coincide with the relevant
equations when p; = const:

ms;s + dl‘Vﬁ,' = O, i= 1, 2.

Therefore, if we introduce the average pressure from 1.2 (s = s):

- +rbﬁ
PR Ta

equations (1.90) are transformed into

px, §)dE, b=k /k (1.93)

ms; = div[ko(a; Vs +J?1) — bv] = —divvy, (1.94)
0= div[k(Vp + [,)] = —divs, '
where ¥ =7 + 7, — mixed flow velocity; s, >0,1—5*>0 — residual

phase saturations.

a1 = |psslao, ap = kika [k, k= ki + ko, k = kok,

J?1 = ao[—V.p. + (p; — p)gl, J?z = j vxpcsk2kild3 _J?lbila
where ki(s4) = ka(s*) = p(s*) = 0.

System (1.94) is closed by density equations p;, which may be equa-
tions (1.91) or, in view of (1.92), their equivalent equations (1.93).

To calculate the pressure of the target functions (s, p;, p,, p), We examine
the initial boundary-value problem

sli=o = s0(x), v~ #ilan =0,

(Pp p2)|t:o = ,010(.’)6), era
where Q<R3 Q= Q[0, T].

1.8.2 The Thermal Model Equation

Let 5; (i=1,2) be the phase saturations of pore space (s; +s; =1),m is
porosity, o; = ms; (i=1,2),3 =1 —m is the exchange concentrations of
the fluids and the solid phase (the pore space matrix), p;, p;, #; is density,
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pressure and fluid flow velocity, v; = o;ii; = ms;i; (i = 1,2) is phase flow
velocities, ¥ =7 + v, is the mixed flow velocity. It is assumed that the
rocks are not subject to deformation, and that each point of the porous
medium is in a state of thermal equilibrium, i.e. that their phase tempera-
tures 0; are the same: ;=0 (i=1,2,3).

It is further assumed that the phase flow is as described by the
Muskat-Leverett model (1.2):

Oms;p;

+ divp7; = 0, (1.95)

Vi = _K)(X)Z:T(;))(Vp{ — P& (1.96)

m(x) >1/2

p2 — p1 = Y(0) cos a(H) <|K0(x)| J(G) = plx,0,5), s=s (1.97)

In the above equation system, Ky(x) is the absolute permeability
tensor of the medium; o(s) is relative phase permeabilities;
01(sx) = 02(s*) = 0,54,1 —s* is residual phase saturations; p,; is phase
viscosities; ¢ is the acceleration of gravity; v is the surface tension coeffi-
cient; o is the wetting angle; J(s) is the Leverett capillary pressure func-
tion. In what follows, ki(s, d) = U,r(s),ufl(e), k=1l + k.

We now replace the fluid equations of state, (1.95)—(1.97), with the
conditions for an incompressible fluid:

Op.
% +iiVp, =0, (i=1,2), (1.98)

which indicate that the fluids retain their densities p; along the trajectories
of their flow. If we take into account only convective heat transfer and
thermal conductivity, we can write down the mixed flow energy balance
equation in the form

‘Z_f + div(70 — N, 0, 5)VO) = 0. (1.99)

In this equation, A is the thermal diffusivity of the mixed flow (consisting
of the two fluids and the porous matrix). In [15], we describe equation
(1.99), derived from general energy balance equations for components
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with constant phase densities and heat capacities, for a mixed flow which
is in thermal equilibrium, where

3
A= @ (1.100)

In a more generalized case of an inhomogeneous incompressible fluid,
equations (1.99) and (1.100) derived in [15] remain valid, provided that
the product of multiplication of phase densities by their heat capacity
remains constant.

1.8.3 Transformation of Equations. Problem Statement
By expanding the differentiation in (1.95) and using (1.96), we obtain

p(ms; + divi;) + msi(p,, +u;Vp,) =0,

and this provides us with equations for s;, whose form is the same as that
of the corresponding equations for p; = const 1.2:

msy +divi; =0 i=1,2. (1.101)

Because s, =1 — 51 this system is equivalent to the system for s, vjand v:

ms, + divi, =0,} (1.102)

divy = 0.

Following the principle used in Section 1.2, let us now introduce average
pressure

*

p=p + J by %Pr(% 9, E)dﬁ, b= k,‘/k, i=1,2.

By transforming (1.96), (1.97) and (1.102), we arrive at the following sys-
tem of equations fors, p, 8, py, p5:

(ms, = div[Ko(a1 Vs — a;VO + f) — biv] = —divisy (s, p, p;, 0),
0 =divKok(Vp + fo + a3 VO) = —divii(s, p, p;, 0),
o0 .
a + div(¥0 — A(x, 0,5)VO) =0, (1.103)

Oms;p;
ot

+divp; =0, i=1,2
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where
.

0
a; = |Pm|do, a2 = phao, dp = biky, a3 = _k1pc9 - J @(blpa)d&

o

f1 = aO[(pl - pZ)g — V. c]> f2 = J b2vxpad5 _g(blpl + b2p2)’

N

Let Q<R be a bounded region, Q= Q X [0, T],00 =s,T' =5 X [0, T],
s=5 Us, and I'; =45 X [0, T]. To calculate the target functions, let us
consider the following initial boundary value problem:

(5: 97 p1a P2)|:0 = (Sa 99 /01: Pz)()(x): er:

N 00 1.104
il =0, O =00, 2D | =po-e Y
I,

In this equation, # is the unit vector of the outward normal to I'; 5(s) is the
heat transfer coefficient for a three-component mixed flow. In the above
exact derivation of (1.99), this component had the form
8= 2?21 @;B3(p;c)"", B; being the heat transfer coefficient of the ith
phase.



Analytical and One-Dimensional
Models of Thermal Two-Phase
Flow

2.1 INTRODUCTION

Virtually all methods of calculation of oil recovery parameters assume that
the field can be divided into so-called basic elements of symmetry, corre-
sponding to specific regular well patterns. As a result, the first stage of all
methods of evaluation of field development systems consists of analyzing
the process of oil recovery from this basic element. It is usually assumed
that the basic element can be regarded as a closed system with symmetry
conditions at its boundaries, boundary conditions specified for the wells
(production rate, pressure or saturation) and uniform formation para-
meters within the element itself. The figures for all the basic elements are
then added together in order to calculate overall field performance.

The flow of inhomogeneous fluid through the porous medium of each
basic element can be described by one-dimensional models of subsurface
fluid flow, which form the basis of all computer-aided oil production
management systems. Accordingly, we have devoted considerable attention
to the development and validation of one-dimensional numerical models of
subsurface fluid flow (Sections 1.7—1.8).

In reservoir engineering, there is a special role for simplified models
of fluid flow, based on providing a range of exact (analytical) solutions of
one-dimensional models: stationary solutions, analytical parabolic or trav-
eling wave solutions and others.

Muskat’s displacement laws, as well as Polubarinova-Kochina and
Charnov’s assessments of near-wellbore zones, based on the parabolic self-
similarity of the simplest flow models, still provide us with the tools of
assessing some development parameters.

Analytical solutions of flow equations are widely used for the follow-
ing purposes:

1. They are of independent interest as special solutions of the initial equations;

© 2014 Elsevier Inc.
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They are used as reference standards (tests) of the various approximate
methods of solving more general equations;

They are used for preliminary numerical or analytical studies of the
singularities of the initial equations;

In many cases, they represent asymptotic forms of the solutions of a
broad range of problems, in particular those in which the detailed
structure of boundary conditions as well as initial conditions becomes
less important, although they are frequently of the greatest interest;
Combined with comparison theorems, they provide an efficient theoreti-
cal tool for the study of the properties of solutions for the initial variables;
In some applied fields (e.g. in oil production), they can serve as a fore-
casting tool.

In this chapter, we focus on the theory and numerical construction of

analytical solutions of subsurface flow dynamics equations (1.2—1.6).

2

.2 BOUNDARY VALUE PROBLEMS FOR ORDINARY

DIFFERENTIAL EQUATIONS
2.2.1 Functional Spaces

Let us consider the Banach spaces described below, using an arbitrary
measurable set E[0,1],1>0:

L(E)= {f(x) (wanwp)’_’ = Il < o0 } p=1;

IfI5E = (f. )= JElf(x)Fdx [Lo(E) — Hilbert spacel;

WiE) = { @I e+ 1A = 1AL <o}, p=1;

k
WHE) = {f(x)leﬂf)Hp.Es |Lf||§f}_:<oo}, p=1; k—integer, k=1;

s=0

C(E) = {f(x) max | f(x)] = |flg < OO}

£(x) f(y)l)

CYE)= {f(x) max <f(x) + x T

= |f|a,E< OO},

CH(E) = {f(x)zm(s)bb = U‘|ff1)5 < o0 }, k — integer, a0, 1).
s=0
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In space L,(E), the functions on C™(E) are dense, and we can
replace functions approximating f(x)€ L,(E) functions with their averaged
forms:

) = prux Gy, p 0, 2.1)

where w,(r) = p~'w(r/p), w(T) is a non-negative infinitely differentiable
function, 7=0, which equals zero at 7=1 and is such that
|~ w(rydr = 1.

Space I/Vp1 (E) (as is L,(E)), p=1 consists of a class of equivalent func-

tions f(x), || f(x) —f(x)||;11)5 =0, which can always be represented by

J) = timyames ™ Ep|  f)y. e,
Ep(x)

E () =L()NE, L) ={ylx =y <ph If(x) =), =0

f(x) is absolutely continuous for almost all x€ E, and its derivative is cal-
culated as an ordinary derivative of an absolutely continuous function and
coincides almost everywhere in E with the generalized derivative f,, i.e.
7. = el (B

Therefore, in what follows we will always understand f(x) € I/V1 (E) to
mean f(x), being a representative of a class of equivalent f(x) functlons
This is also how the further properties of functions f(x)e I/Vpl(E) should
be understood.

Let f(x)e W1(E) p=1. Let us extend f,= 4 xeE by a section
[0,]]1DE, assumlng =0,x€([0,]\E) and representmg

=4

X0

dt +f(.’>C0) xo€EE. (22)
From expression (2.2), we obtain

d
max|f fo|<J D, thacis If = fol = 1l

in this case W(E)= = C(E) (W} (E) fits compactly into C(E)).
Let now f(x)€ VV;(E),%’ + é = 1. Then

X2 d
659 =60 = [ [ 00 Ul = 2=

(=0, «x€[0,\E),
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Therefore,
—1
Flog=If1L o= PT =0, 2.3)

and I/Vpl(E) c < C*(E).
Let f(xp) = 0, x9 € E. Then, representation (2.2) gives us

d "4 d
[F) <J D= L di:‘“:Ll' di;dts(mesﬁ)“ﬂwuﬁ,
1 1
4+ =1 <ﬂ=o,er>
p q dx

Consequently,

1/s 1/s
{JEV(X)‘de} S(mesE)l/q|[ﬁ(||p’E{JEldt} =(mesE)l/5+1/q|[fX||p’E.

In this way, we arrive at the Poincare inequality

”.f”SE - (mesE) ”.f“CHp,E; ﬁxo) = 07 X0 EE’ (24)
-1 1
where p>1,s>1 B—— +-
p s

2.2.2 Convergence in L,(E),p=1

In this section, we consider the following types of convergence for the

sequence {f¢(x)} of functions fi(x) € L,(E),p = 1:

1. f/eT>f(f1< converge to f strongly in L),

.
if ”ﬁ» _f”p,E - Oak — 0]

2. fi——>f (f converge to f almost everywhere on E), if in the set
E cE, mesE = mesE all fi(x) and f(x) assumes finite values and
[fix) = f(x)| = 0,k — o0,x€E;

3. f"T)f (fr converge to f weakly), if

p>1.

’

JE o) = f()] p(x)dx — 0,V pel, (E)

»&IH

Theorem 1

a. if fpr——>f(x), then there exists a subsequence ({f,},ft, ——f,
n— oo} o

b. iffkT)f, then Ve >0 there exists E. < E, mesE. = mesE — ¢ and

fe—>f on E. (Egorov theorem);
eq.
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c. iffkT>f and |fell,r =M,p>1 (M doesnt depend on k), then
1
So——f.Vp <pand fi—>f;
P P

d. iffka and [|fellog = If 2. thenfkT)f.

2.2.3 The Properties of Truncations in W; (E),p=1

Let us consider the measurable sets

E, = {x|f(x) > m}, E,, = {x|f(x) = m} and E,, = E,, UE,,.f (x) € W, (E).

m

And let us note the following properties of these sets:

E,= Uve >()Em+57 Em = HVg>()Em—5;
mes(E,/Ep+e) = 0,  mes(E,—c/E,) — 0ate — 0.

Let us now introduce a truncation fI"l(x) of function f(x), assuming

1 (x) = max{f(x) — m; 0}.

Theorem 2
1 [m] 1 : i df_[m] =
a. If f(x)e W, (E),p=1, then f"(x)eW,(E), in this case =
g—i,erm and %:q =0,xe(E/E,);

b. If fkT) f, then also f"'—— (" in this case
.

Ly

mes{(E,,,/Ek) NE,} — 0, mes{Eﬁ/(Ek NE,)} — Oatk— o0,

m m

where Ef = {x|fe(x) > m});

m

c. Il —fI\% > Oatk — oo, then [f" — () > Oatk — oo

2.2.4 Maximum Principles

Theorem 3 (the extremum principle).
Let u=u(x),x€ E = {x|0<x<l} be regular (classical) solution of the dif-
ferential equation

Lu=auy +bu,—cau=0 (c=0,a>0), (2.5)

with continuous coefficients(a, b, c) € C(E).
In this case,u(x)cannot reach either a negative relative minimum or a positive
relative minimum in any point x € E.
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Proof Let us introduce the function u(x) = (y— ¢ )(x) = alx)r(x),
which, by virtue of (2.5), satisfies the equation

aavy, + (bo + 2Bae ), — [Be ¥ (af — b) + calv = 0.

Let us select a 3 sufficiently large to ensure that af —b>0,x€E,
which is possible, since a>0, and let us then select a v such that
a=’y-eiﬁx>0,x€E.

This will give us the equation

Lu = ave, + bvy, — v =0, (€>0,a>0). (2.5%)

Let there be a point x, € E at which a negative minimum of v(x) can
be reached. In that case

v(x2) = 0, ve(x2) = 0 and Lv(x2) = &(x2)|v(x2)| > 0, which contradicts
the assumption that equation (2.5x%) can be satistied. The statement relat-
ing to the maximum can be proved in the same way.

Theorem 4 (generalized extremum principle). Let u = u(x)be the regular solu-
tion of equation (2.5):

Lou+ f = aug, + buy + f(x,u) =0 (a>0,c=0). (2.6)

Here (a,b)€ C(E); f(x,u)e C[EX U], U = {u|0 <u <1},
f(x,0)=f(x,1)=0,VxeE, in this case O0=mingpu(y), 1=

maxppu(y).
This satisfies the estimates

(minggu =)0 = u(x) = 1( = maxppu), x€E. 2.7)

Proof Let v>0,3>0 be arbitrary constants which obey the condition
> 1(xeE =(0,1)). Let us assume that u = v-(y — ¢ %), and extend the
function f(x, u) along the continuity

- | fw), u>1;
Fsn={

u=0

and introduce it into (2.6) in place of f, f(x, v). This transforms (2.7) into
a form analogous to (2.5%):

Lov +]_f(x, v)=0,

where 3> 0 is selected from condition ¢ > 0.
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Let the negative minimum of function v,v(x;) <0 be achieved at
point x3 € E. Then v,(x2) = 0, vy(x2) = 0, f (x2, v(x2)) = 0, whence

Lov(x2) + f (2, v(x2)) = e(o2) [(x2)| >0,

which contradicts the assumption that equation (2.6) can be satisfied at
f=f at point x,€E. The lower estimate in (2.7) makes it possible to
remove the truncation from function f, i.e. to set f = f.

The upper estimate in (2.7) can be proved in the same way by intro-
ducing the function v = (1 — u)(y—e #) 7",

Theorem 5 Let the coefficients of equation (2.5) have the properties a>> 0,
(a,b)e C(E), E=[—1,1] and u(x)e C*(E) n C(E), at ¢ =0, with Lou=
atyy, + bu, = 0; u(x) <u(xg), x€E, xo€OE. In that case, (du/dx)(xp)=
o>0.

Proof For the sake of clarity, let us assume that xop = 1. Let us then con-

sider the sets
1 1 1 "
x—=<=»,, E= |x_1|<1 , E"=Eyn Ej.

E:
0{22

and introduce the auxiliary function

1

— 2 —
w=e O — 0t p= x5

,x€Ej.

If we select a sufficiently large o> 1, it is obvious that

2 1\’ 1
Low = 2ce™ [aZa(x—§> —a—b<x—§)] >0, «x€eE*,

1_1

= - xeE".
4

as X —

Since u(x) <u(1) at xe ED E*, then, provided that 0 <e<«1 is suffi-
ciently small, we have

v(x) = u(x) + ew(x) <u(l),x= % €OE",

Lov=Lou+ eclyw> O,XEE*.

Therefore, v(x) cannot reach its absolute maximum in E*, and
consequently
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VG> < u(1), v(1) = u(1) (w(1) = 0).

As a result, at point x =1

0= — == hited
dx  dx gdx’

whence %(1) = - 5%(1) =caec Yt =0>0

dv du dw
<<

Note If in the assumptions of Theorem 5
d
Lou =0, u(x) > u(xo), x€ E, xo €OE, then d—“(xo) =0 <0.
x

To prove this assertion, it is sufficient to consider function
= u(xo) — u(x), for which Lyu =0, u(x) <u(xy) = 0.

We can use Theorem 5 to state the next proposition, which is analo-
gous to Theorems 3 and 4.

Theorem 6 Each inconstant solution u(x)e C*(E) n C(E) of equation (2.5)
at ¢ = 0,a>>0, (a, b)€ C(E) satisfies the inequalities

min u(s) < u(x) <max u(s), xe E, se OE. (2.7%)

Proof Let u(x)const have an internal maximum point xo€E and E; =
{lx = (1 —e)xg| <exp}<E at a sufficiently small 0<e<«1, and let
u(x) < u(xp), x€ Ey.

By virtue of Theorem 5, in that point %(xo) >0, which contradicts
the equality %(xo) = (), which is true for an internal maximum point.

The next theorem follows as a direct consequence of the assertions
made by Theorems 5 and 6:

Theorem 7 In the conditions postulated by Theorem 5, the following inequal-
ities are satisfied in boundary points x, OE, k=0, 1

du

—(xp)| =01, >0.
dx

Theorem 8 Let the conditions of Theorem 4 be satisfied for the coefficients of
equation (2.6).

In that case, inequalities (2.7) will be satisfied for a regular solution of equa-
tion (2.6), which satisfies a second boundary-value problem of the type
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[”x - 90(”)]9(:0 =0, M|x=1 =u€ [05 1]a (28)
where p(u) € C[0, 1], ©(0) = ©(1) = 0 satisfy the inequalities (2.7).

Proof Let us extend the functions f(x, u) and ¢(u) along a continuity, as
we did in the proof of Theorem 4, assuming that

?=o.f =f,uel0,1;5=f=0,ue[0,1],

and substitute them into (2.6) and (2.8). Let us assume that u(x) > 1. We
can then find a neighbourhood Ey = (0, x), x4 =1, for which u(x) =1,
x€Eg, u(x,) = 1, in which case f =3 = 0,x€E,.

If u(x) = const, x€ Ey, then in accordance with Theorem 7 extremum
cannot be reached in the point xo(u,(xo) =0!), whereas Theorem 6
makes it impossible for it to be reached in the internal points Ej.
However, in that case u(x) = u(x) = const,x€ Ej, and since u(xy) =1,
then u(x) =1, xe E,.

Theorem 4 applies in region {E/Ey}, and thereby u(x) = 1,x€E The
lower inequality of (2.7) u(x) = 0,x€E is determined in a similar way.

2.2.5 Generalized Solutions of Differential Equations

Let us now consider the quasi-linear ordinary differential equations
(ayuy+az), + a3 + agu, = 0,x€ E(OE = x0, x1) (2.9)

and examine the boundary-value problems

Uz, = e, k=0, 15 (2.10)

(a1 U + a2)|x:xk = O, ”|x:xj = “1’_] 5& k. (211)

Coefficients a, = ap(x, 1), (x, u) € E X [0, 1] obey the conditions

{ a > O, (X, M)GE X (09 ])5 ak(x, u)lu:(),l = Oa k = 1a2: 3a (212)

|dk| SM)? k= 132537 4.

Note that by virtue of (2.12), u =0 and u =1 are the solutions of
(2.9, (2.10) and (2.9), (2.11).

Let us agree to consider that ap(x,u) have been determined for all
ue R! extending them with the boundary values of ay(x, 0) and ap(x, 1) at
€0, 1]. Let us also introduce the notation [a(x)b(x)dx = (a, b) ..
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Calculation Let us define the generalized solution u(x)€ 1V of problems (2.9),
(2.10) and (2.9), (2.11) as represented by a function u(x) having the
following properties:
i. |u| =M, |ajuy| = M,, xeE;
ii. It satisfies conditions (2.10) in (2.9), (2.10) and the condition
u(xj) = uj,j # kin (2.9), (2.11);
iii. It satisfies the integral identity

(aruytaz, ) g — (a3 taguy, ) = 0,Vne C'(E) (2.13)

when, in addition, in (2.9), (2.10), n(xx) =0,k=0,1, and in (2.9),
@.11) —nx) =0,/ # k.

Theorem 9 (the maximum principle). The generalized solutions u(x)€V of
boundary value problems (2.9), (2.10) and (2.9), (2.11) satisfy the inequalities

0=<u(x)=1,x€eE, (2.14)
if in (2.10) we €[0,1], and in (2.11) ul =, = w;€[0,1],j # k.

Proof The proof follows the determination of u =M and demonstrates
that M = 1. Let us begin by assuming the opposite, i.e. that M >1, and
let us select a v for which 1 <v <M. Let us consider the problem for a
subsidiary equation of the form (2.9), in which coefficient a; is replaced
by @ =a; + £, >0.

Let us consider the truncation ul"!=max{u—v,0}. Obviously,
ull(x) = 0,k=0,1in (2.9), (2.10) and ul(x;) = 0, # kin (2.9), (2.11)

Function ul'l(x) can therefore be used as a testing function (1 = ul'l)
in equation (2.13) at @y = a; + € instead of a;. This will give us

(aiuy,+as, u,), = (a3 +agu,, u["])*, (2.15)

where (u,v), = fE* u(H)v(t)dt, E, = {x|u —v>0}, E, = E,/E},.

Let us note that since on E,,u>v>1, therefore a,=0,k=1,2,3
and ug’] = u, when x€E, [Theorem 2, Property (a)], and when x€ Ej, —
uy = ull =0 (| = maxgu). Thus, we can use (2.15) to find

elulls g, = (agug, u=v), = Mollullo g, =l = vl -
Inequality (2.4) states that when s =p =2,

||u — V||2,E* = mesE*||Mx||2,E*
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and that provides us with the inequality
£ = MymesE, = Momes(E, / EQ/I),

This inequality is true for each fixed € >0 and arbitrary ve (0, M).
However, when v—> M mesE, = mes(E,/E);) — 0 [Theorem 2,
Property (b)], and the inequality is no longer true. Consequently, the
assumption that M >1 is wrong, and therefore u(x) =1 is right. The
inequality u(x) =0 can be proved in the same way.

2.3 NUMERICAL AND ANALYTICAL METHODS OF
INVESTIGATION OF THERMAL TWO-PHASE FLOW
PROBLEMS

In this section, we suggest numerical and analytical methods of investigat-
ing the thermal flow of two-phase fluids in oil formations.

2.3.1 Thermal Recovery Methods

Thermal methods are the most commonly used and best understood
methods of developing high-viscosity and waxy oil deposits, and the
depleted sections of light (low-viscosity) oil deposits. Thermal recovery is
based on the fact that heating rapidly reduces the viscosity of the oil, and
thus increases its mobility, and in the case of waxy oils also prevents wax
crystallization in the pores.

Two principal thermal recovery methods are currently in use: steam
drive, which consists of injecting a heating medium (steam or hot water)
through injection wells, and steam treatment of production wells. A varia-
tion of this method is to inject a heating and a cooling medium (water)
alternately into either injection or production wells, shutting in some of
the wells for some of the time, or to combine the methods, and in partic-
ular to convert production wells into injection wells and vice versa.

Thermal recovery methods produce a range of different displacement
flow dynamics: unidirectional displacement in an injection well-
production well system, with alternating heating and cooling of sections
of the formation, thermocapillary saturation of shut-in wells, flow around
no-flow zones (bypassed oil) and others. This is why it is virtually impos-
sible to arrive at a realistic forecast of the effectiveness of complex thermal
recovery methods, using solely engineering approaches (e.g. material bal-
ance calculations or statistics), and why up-to-date methods of mathemat-
ical modelling need to be applied.
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2.3.2 The Muskat-Leverett Thermal Model (MLT Model)

Bocharov and Monakhov [15] have proposed and investigated a mathe-
matical model of thermal two-phase flow (the MLT model). It differs
from earlier models [140] in that it uses experimentally-determined rela-
tionships between viscosity, capillary properties and temperature, while its
energy equation follows from the laws of conservation of energy of the
fluids and the porous medium.

The equations of the one-dimensional MLT model for a homoge-
neous isotropic porous medium, transformed with respect to dynamic
water saturation 6 = 0y, equilibrium temperature 6(x, t) and average pres-
sure x, tp assume the form (Chapter 1, 1.5)

s = la(Aisy+a10,) +axv],, 0, = (ANl —v0),, — vy = (Aspyta3b,), =0,
(2.16)

where v =1v(¢) is the two-phase fluid flow rate. The coefficients a(s),
a(s,0) = (ar, ar,a3) and X(s, 0) = (A1, Ao, A3) in (2.16) are expressed
explicitly by thefunctional parameters of the initial MLT model, and have
the following properties, which allow for the physical implications of
these parameters [15]:
a. a(s)>0,5€(0,1),a(0) = a(1) = ax(0) = 0;  X\(s,0) = my > 0;
b. (a(s),a (s, 6), X(s, 0)eC(Q),Q={s50|0=s<1,0,<0<6").
Assumptions (a) ensure respectively the parabolicity and uniform para-
bolicity of the equations for s(x, ) and 6(x,t) and the non-degeneracy
(non-simplification) of the ordinary equation for p(x, f) (in which f acts as
a parameter).

2.3.3 Self-similar (Analytical) Solutions Theory

The use of mathematical models, such as the MLT model or the Muskat-
Leverett model of isothermal two-phase flow [2], requires complex math-
ematical techniques, and therefore, approaches which make use of simpler
and more practical methods are especially valuable. One such approach,
still successfully used in practice, is to describe the process of oil displace-
ment by means of approximate formulae derived from exact solutions of
the initial model equations. These include stationary solutions, dependent
only on the variable x, analytical (self-similar) parabolic solutions depen-
dent on y = x(t+ 1)_1/ 2, analytical traveling wave solutions, dependent on
z=x+ ct(c = const) and some others. Simple Muskat formulae (displace-
ment laws), Charny’s formulae (near-wellbore zones) and others [139],
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based on parabolic self-similarity remain reliable tools of engineering
analysis of oil field development by isothermal methods.

This being the case, let us begin our examination of thermal recovery
methods by constructing analytical (self~similar) MLT model equations,
described by ordinary differential equations. Let us consider the case of
equation (2.16) with a known total mixed flow rate v = v(¢), which corre-
sponds to a unidirectional mixed flow in a steam drive or steam treat-
ment. It is clear that in this case the initial functions s(x, t), O(x, t) can be
found independently of function p(x, t), which can then be reconstructed
from them. Provided that v = (¢ + 1)71/ % (in what follows, the tilde over
the v has been omitted), is specified, we can find solutions to (2.16)
which depend on only one independent variable y = x(t+1)71/ % _ they
are parabolic self-similar solutions s(y), 8(y), p(y) which satisfy the trans-
formed equations (2.16):

1 1
[a(Aisy+a10)) +axv], + Sy = 0, (A20,—v0), + 5)/9), =0; (2.17)

Aspy + az0, = — v = const. (2.18)

Let the two-phase fluid flow take place between two wells (groups of
wells), located in points y =y, k=0,1, of which let y =1y, =0 be the
location of the injection well, and y = y; the location of the production
well (y1 = 00 is also a possible case). The values specified for wells y =y,
can be either s, 0, p:

(55 9)|Y=Yk = (Sk’5 0/&’)5 k = 05 19 (219)
ply=y, =pe,  k=0,1, (2.20)

or streams Os = a(\is, + a10,) + axv, 00 = \20, — v0,0p = A3p, + a30, of
these values:

63|),:yk = S; 89| = Tk, k= 0, 1, (2.21)

Y=Yk
Oply=y, =Py k=0,1, (2.22)

where Si, T}, and Py, - constants.

Let us examine the first boundary value problem (2.17), (2.18) for s(y)
and 6(y). Because equation (2.17) for 6 is homogeneous with respect to
the derivatives of (v = const), we can use the linear substitution 6 = 'ylé +
Y2, Y = const to reduce the boundary conditions (2.19) for 6 to 6, =1,
0, =0, and we will assume that this has been done.
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Assuming the coefficient Ax(y) = Ao[s(y), 8(y)] to be a known func-
tion, we can arrive at the following expression for 6(y):

o=1-NFORE= [ @ Ou = [ g @2

0

Here Ao = (0,5 = A, (), N = [F(yn)] "
Expression (2.23) leads directly to the estimates

0=0(y) =M, exp(—azy’) =1, [0,] =M exp(—Qay%), ye(0,y1) (2.24)

where the constants M; >0 and ;>0 do not depend on the value of
y1 > 0.

Let us assume that y; = o0, and let us calculate the approximate value
of the constants ; and M; in the inequality (2.24), so as to arrive at a
more exact definition of the asymptotics of |A(y)] at y — o0. Let
y=1n,=38Jvl.

In that case,

1 _ 1 _
Ao = (EY_V>)\21EZ Oly, V) = maxy,

Y o 1 _
A= J )\O(t)dl = J )\()(If)dt + Oéo(yz - 773), Qo = gv() 1,
0 0

and it can easily be seen that inequalities (2.24) occur when
—1
M, = (A*JSA*)/)\*,MQ = ()\*)2<)\*7r\/)\*) ,

a1 = 0p = (8)\*)_1,

where A, = min, g Aa(s, 0), A* = max, g Aa(s, 0).

Let us now consider equation (2.17) for s(y) and note that irrespective
of the value of s;€[0,1],i =0, 1 in (4), 1.0 suggests that s(x, f) can be esti-
mated as

0=s(y)=1,y€[0,y1] Yy >0. (2.25)

Let us introduce a new function u = J}j a(§)d€ and, assuming that the
coefticients of equation (2.17) for s(y) are known, let us express this equa-
tion in the form

()\1My+§0)y = 0, I/I(O) = Ugp, l/l(yl) = u. (226)
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In this expression,

Si 4
uw = J a(§)d€,i=0,1,0=0,5 <y5 + J 5(§)d§> + aa, 0, + av.
0 y
Integrating (2.26), we obtain

—Muy, =@+ C,u(0) = u, (2.27)
where C=C,! [u() —u = [ )xi(ﬁ)@({)d{], Co= [ AN (©)de. Since,

on the basis of the assumption made in (a), A\ =my>0, we can use

(2.27) to find
luyl = a(s)lsy| = Mo(y1). (2.28)

Let us note that the properties of the MLT model’s functional para-
meters satisfy the inequalities [15] (Chapter 1, 1.5):
C. (a: |a2|) = KS’Y, ((1, |a2 - 42(1: 0)|) = K(l _S)’y: Y =1

Theorem 1 (The finite velocity of propagation of perturbations).
Let us assume that assumptions (a), (b) and (c) have been satisfied. In that case,
when s(y1) = Ofor s(y1) = 1], y1 > 1, there exists a finite value of y, , such that

s(y) = Olor s(y) = 1] at y = y,, (2.29)

i.e. the front s =0 (s = 1) propagates at a finite velocity.

Proof Let us assume that
Y2 =Y+ Ko6 ', Y = 2Kmax(Ms|ay |, |v]), (2.30)

where Ky = IJ a(t)t~'dt, 6 = 0,125 min ). Since the constants K, Ky, M,
and ¢ do not depend on y; then at y; > 1 the constant y, also does not
depend on y;.

Let us consider equation (2.26) for u= f(; a(t)dt. Since u(y;) =0 and
in the vicinity y =y; we have u(y) =0, clearly u,(y;) =0 and therefore
C = —X(0,0)u,(u1) =0, since p(0,0) = 0. In that case,

1 1
Ay, =p+C= Sy alar]|0,] — [vllax| = e aty=y,

where Y is determined in (2.30). In this way, we arrive at the inequality
[(p(s)]y +26YSO, YE[Y, Yl]aS(Y) =5 =0, (231)
where ® = IJ a(t)t'dt.
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Integrating (2.31), we find

—J‘ a0t e+ 82 — Y =0,y= Y.

And since

2 1
a()t 'dt = J a() 't = — Ky,
0

S:

B~ 0= - |

N

then it follows from the preceding inequality that &(y* — Y?) —
Ky=0,y=Y, which is possible only if Y =y = y,, y, having been taken
from (2.30). Consequently, for (2.31) to be true at y = y,, (2.29) must be
satisfied. The case of s(y;) = 1 can be reduced to the case we have consid-
ered, by substituting 0 =1 —s.

Let us write down the expressions (2.23), (2.27) in the form of the
following Cauchy problem for the vector function 1 = (u, 6):

1, = (s, 6,y), 1 (0) =, (2.32)
Here,
Y1
V==X (p+C),p=0,5 [ys + J s(f)df] + aa1, + ayv,
)/

Py == A 'N exp(— A(y));

s =s(u) is the inverse function of u = u(s) = f(; a(t)dt; the constants C, N
and function A(y) are determined in (2.23), (2.27). If the functions
Y,(s, 0, y) are constructed taking into account assumptions (a) and (b),
they will be continuous for a set of arguments in any y; €(0, 00).

The properties of the MLT model parameters [15] imply the following
analogue of conditions (c):
d. a(s) = my[s(1—3)]",~,>0.

Theorem 2 (Holder continuity). Let us assume that conditions (a)—(d) have
been satisfied. If that is the case, then, the following a priori estimates are satisfied
for the solutions of u (y) in (2.32):

|| Z(Y)”C“’“(l) = NO(Yl)a o= (1 +7())719 [= [Oa Yl] (233)

If s(y1) = 0 [or s(y1) = 1], then the constant Ny will depend only on y, for
all y1 = yy and, in particular, we can assume that yy = o0 [ y, from (2.30)].
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Proof Let us first establish Holder continuity of the transformation
s = s(u), which is the inverse of u = ﬁ a(t)dr:

1

) = )] = Kl = 0% o) 0. php = | e
0
Obviously, for this to be true, it is sufficient that |u(sy) — u(s)| =
Kolsa = 511" at (s1,52) € [0,3] [}, 1].
For the sake of clarity, let us assume that 0 =s; =5, = ;—7:. Then

52 52
Uy — U = J a(S)dSE K)J S”/u(l_s)%dsz K(S;"-H _ S'lYu'H)

1

= K(s—s1) " K = Ko *(1+7,) ",

S1

The last of the series of inequalities follows from the consideration of
flo)=0—-0o")(1—0) ",y=1+7,,0 =2, for which minf(c) =f(0) =
1(f, >0,0< 0 <1). b

Thus, we have proved that s(u)e C*[0, p]. Since |u,| = M,, therefore
s[u(y)] € C0, y1]. Now, the expressions (2.23) and (2.27), in which the
coefficients A(y) = A[s(y), 8(y)], a2(y) and others display Holder continu-
ity, produce the inequalities (2.33).

In the same way, s(y;) =0 [or s(y;) = 1] and y; = y, produce the esti-
mate [u,] = M;(y,) and because of the finite velocity of propagation of
perturbations u(y) = 0 (u = uy) at y=y,, which clearly confirms the
truth of the theorem.

Theorem 3 (Existence). If assumptions (a)—(d) are satisfied, the Cauchy prob-
lem (2.32) has at least one solution, 1 (y)€ C'T[0, y1] , for all y; >0 .

If u(yr) =0 (u(y;) = fol a(t)dt = uy |, then the solution is continuable at
y — 0, and u(y) = 0 (u(y) = wy), when y =y, [y« from (2.30)].

Proof of the first part of the theorem is based on estimates (2.33) and
properties 171(5, 0,y), and follows from the classical results of the theory of
ordinary differential equations [138, p. 498].

The last proposition of the theorem follows as a simple consequence
of Theorems 1 and 2.

Let us regard the functions 6(y) and s=fu(y)], where u (y) = (u(y),
O(y)) e C'*[0, y1] is the solution of (2.32), and s=f(u) is an inverse
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mapping of u = j(; a(t)dt, as representing a generalised solution of (2.17),
(2.19).

The existence of such a generalized solution follows from the theorem
proved above. Clearly, in points y for which s(y) # 0,1, the generalized
solution (s(y), 8(y)) is also the classical solution of (2.17), (2.19).

Note The second boundary value problem (2.17), (2.21) and a mixed
problem in which condition (2.19) is specified for one of the points
Y, k=0,1, while condition (2.21) is specified for the other, are both
examined exactly as for (2.17) and (2.19). It is also not difficult to prove

that (2.17)—(2.20) are capable of solution when the flow rate is unknown
(v in (2.17), (2.18) is the target value).

2.3.4 Computational Analysis

Computational analysis was carried out for the following three problems:
I. Unidirectional displacement [problem (2.17), (2.19)];

II. A known pressure drop — A near-wellbore zone problem [problem
(2.17)—(2.20)];

III. Countercurrentthermocapillary saturation (v = 0).

While each case has its own special characteristics, the common diffi-
culties of construction of the algorithms required for their numerical
solution are as follows:

— The range of variation of the independent variable ye[0, oo] is not
limited;

— The equations forming the system are not linear, and their matrix is
not diagonal for the higher derivatives;

— The physical properties of oil formations mean that the coefficients
of s,, and 0, are quite small, while those of s, and 6, change their
sign, 1.e. that there exist transition points which depend on the solu-
tion, and this results in the appearance of internal boundary layers
[which are regions of high saturation and temperature gradients s(y)
and 6(y)].

Estimate (2.24) enables us to calculate a y, such that |0] =€ at y = y»,
where € is a reasonably small number which depends on the required
accuracy of solution. Thereafter, since in the case of s(y) perturbations
propagate at a finite velocity (Theorem 1), the semi-infinite interval
boundary value problem is reduced to a finite interval problem [0, yi],
where y; = max(ys, y«). The exact value of y;, can be determined during
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the process of computation by introduction iteration with respect to the
unknown parameter y; (free boundary) and using a priori estimates as
the initial approximations of y;. By normalizing the interval (¥ = y/y)
of the solution, we can solve the problem for the intercept [0, 1], but
the target parameter y; then becomes included in the coefficients of the
equation system (in what follows, the vinculum over the y has been
omitted).

We then arrive at a finite-difference equation, by means of integration
and interpolation [114], using equations for s and 6 which give a conser-
vative view of flow:

[a(Aisy+ar0,)+aw+0, 5ys], — 0,55 =0, (2.34)

[Xof,+(0,5y—1)f], — 0,50 = 0. (2.35)

The non-linear finite-difference temperature equation is made linear
by simple iteration. In the finite-difference saturation equation, which is
the equivalent of (2.34), apv is linearized with respect to s using the
Newtonian method, since in the s =0, 1 degeneration zones this is in fact
the highest term. In all remaining non-linear equations, simple iteration is
used. Our computation involves two iteration processes: y; iteration
(outer iteration cycle) and coefficient nonlinearity iteration (inner itera-
tion cycle). The latter process was combined with iterations leading to
the fragmentation of the equations.

In oil field practice, the key parameter is water saturation s(y), whose
equation appears to be the most complex: it becomes degenerate at
s=0,1, but even in the absence of degeneration, the coefficient of s, is
very small in real field conditions.This corresponds to singular degenera-
tion of the equation, requiring special approximation methods [42]. In
our main experiments, we used a monotonic conservative directed differ-
ence approximation (“System 17) and a conservative, variant of
Samarsky’s monotonic equation [115] constructed as proposed in [14]
(“System 27). The first system is simpler, but includes only first order
approximation. The second system provides better approximation, and
converges uniformly to the degeneration of [42].

Let us consider for example, the abstract quasi-linear degenerating
operator [a(u) =0 at u =0, 1] which corresponds to the principal part of
the saturation problem

Lu = [a(u)u,+b(u)],,
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which has been linearized as described above:

LnMVL-H = [a(u;z)uz+1 +b(un)+b/(uﬂ)(“n+1 _””)]x
where (1= u(x),x€[0, 1], and n-iteration number). In [117], the approxi-
mation of Lu in an arbitrary internal node x; of a uniform grid
w={x;=ih,i=0,...,N,h=1/N} (with a spacing h) along the intercept
[0, 1] is defined as

Ahun+1 = ,LLQ’:’,“Z+1 _ ,UJ—O,5M;+1 +f(a, Mn+1) _f(a, Mﬂ) +f(/33 bn)

and introduces the following designations:

P05 = Pixos — ©(0,5(u; + uf.,)),
wp = u(x;), p = (a+€)2/h(a +e40,5hr),r= |V (")),

— - - _ _ -
1= G55 02 T G5 3 = (5 A4 = (55

*

0= =0,5(p x |¢|),c=b'(u"), 3; = sign a,

f(Oé, 1/!) = l/l_l(Ch Uj+1 + (Ckg - CM3)1/!,’ - @41/11_1),

where € is the regularization parameter of degeneration. £ =0 produces
System 1, while £ =1 produces System 2.

Within the specified accuracy range (grid spacing approximately 0.01
and accuracy of iteration 10™%), there was virtually no difference between
the solutions produced by Systems 1 and 2. If the available computer power
makes it impossible to calculate for a grid spacing of 0.01, System 1 should
be preferred, as it needs fewer arithmetical operations. In addition, computa-
tional analysis [137] shows that this system can describe integrated oil recov-
ery and water saturation indicators withgood accuracy even if the grid
spacing is large. In a general case, Newtonian iteration requires reasonably
accurate initial approximations, and they are difficult to calculate. Much
attention is usually devoted to this problem in practical calculations, and in
particular in solving formation flow problems in the complex conditions of
real oil fields. We were able to calculate initial iterations for problems I-III
by using estimated locations of transition points [from equations (2.34),
(2.35)] and combining analytical solutions of the equation for 6 at a constant
A2, corresponding to 6 =6,,0=60,,5s=0;1;0,5, with exact solutions of
the Buckley-Leverett equation (no capillary interaction between phases),
and thus to reduce the number of iterations by a whole order of magnitude.
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It should be noted that in the case of problems I-III, nonlinear iteration is
fairly stable, and there is convergence at virtually all initial approximations
satisfying the boundary conditions, although the number of iterations needs
to be increased as appropriate.

We have considered two types of solution of the linear finite differ-
ence equation system: scalar runs with iterations between equations and
matrix runs. Computational analysis has shown them to be equivalent to
one another in terms of the required number of iterations: this was due
to the rapid convergence of the temperature iterations with the solution.

The fact that this section is no more than an overview of the problem
means that we cannot provide detailed descriptions of the results of
computational analysis for each of the problems. We will therefore briefly
highlight some of the singularities identified by the calculations.

Unidirectional displacement (Problem 1). Fig. 2.1 shows the estimated
distribution of s and 6. The fine line shows the distribution of saturation
in the isothermal case, at 6 = 6y, (in situ conditions).

Computational analysis has shown that if the temperature front lags
behind the saturation front, heating (6y > 6;) results in increasing only
the final oil recovery. In calculations, this takes the form of an additional
displacement front (representing regions of high saturation gradients)
which corresponds to a temperature front (representing regions of high
temperature gradients). Thus, the fact that in these circumstances the for-
mation flow is non-isothermal (the water phase is either heated or

0.8 1

0.6 +

0.4+

0.2+

0 0.2 0.4 0.6 0.8 y
Figure 2.1 The estimated distribution of s and 6.
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cooled) allows the distribution of saturation to be controlled in the region
[0, y2 + 85] where 8> >0 is specified as part of the problem and, as will be
seen from Fig. 2.1, can be easily calculated numerically.

Near-wellbore zone (Problem II). The singularity of Problem II is that
flow rate v is a functional of s, 6, p.

In our case, it can be expressed explicitly as

-1

7 y

p=— (p1 —po+ J a3 (s, 0))\3_1(5, 0)0),d§) (J )\3_1(5, 9)51{) (2.36)
Yo Yo

This 1s the expression we have used in our calculations. The distribu-
tion of s, 0, p is shown in Fig. 2.2.

Fig. 2.3 shows the values of v calculated from (2.17) (fine line) and
from (2.36). It will be seen that in the regions of high s and 6 gradients,
flow rate v calculated from (2.18) contains a large error. In a non-one-
dimensional case, in the absence of the integral function (2.36), special
care must be taken in the saturation and temperature front areas. In addi-
tion, Problem II calculations take much longer, due to the need to calcu-
late the integrals in (2.36).

In Problem III, which deals with the thermocapillary saturation of low-
permeability streaks, the issue of boundary conditions [114] remains
unsolved. We have therefore focused our computational analysis of
Problem III on the behaviour of the solution at y =0. Fig. 2.4 shows
families of solutions for a sequence of left hand side boundary conditions

0.8+

0.6 + S

0.4+

0.2+

0 0.2 0.4 0.6 Y
Figure 2.2 The distribution of s, 6, p.
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Figure 2.3 The values of v calculated from (2.17) (fine line) and from (2.36).
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Figure 2.4 Families of solutions for a sequence of left hand side boundary condi-
tionssp=1-0,1,j=0,1,...,9.

s90=1—0,1j,7=0,1,...,9. It will be seen that when sy€[0,6;1], the
position of the saturation front y, remains virtually unchanged.This sug-
gests that in this interval the exact value of sO does not have a significant
effect on the saturation rate.

It should be noted that the value of y, is important from the process
point of view, since it determines the displacement rate, the saturation
rate of low-permeability sections, and the near-wellbore zone.
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2.4 ANALYTICAL PROBLEMS OF THERMAL TWO-PHASE
FLOW IN THE CASE OF VARIABLE RESIDUAL SATURATIONS

The need for enhanced oil recovery means that thermal field develop-
ment methods occupy an important place in the industry. This need and
the increasing power of computer and information systems have generated
an interest in the mathematical model of nonisothermal two-phase fluid
flow in porous media. The model adds the energy equation [15, 16] to
the classical equations of the Muskat-Leverett model.

2.4.1 Problem Statement
This section is devoted to analytical solutions of the model proposed in

[16], which describes one-dimensional flow of a two-phase fluid with
variable residual saturations:

s = (aayo+aa0,—va3),, 0, = (N0, —vl),, 0 = D(0,s). (2.37)

Assuming that v(f) = l/(t+1)_1/2,1/ = const, we can move forward to the

1/2

analytical variable y = x(t+1) /7 and derive a system of ordinary differ-

ential equations for temperature 6, saturation s and dynamic (relative) sat-
uration o of one of the phases:
1
(aayo,+aas0), —vay,)y + 315 =0,(N0, —1/9)y + %9), =0,0=®(0,5s).
(2.38)

Here A= A(s,0),a=a(0),a; = a{0,0),i=1,2,3 are the given func-
tions; function o = ®(s, 0) is calculated from the formula:

0, if s<sy,
ST S .

Peb)=] vy Tu==e (2.39)
1, if s>5%,

where s5,(0), 1 — 5*(0) - variable residual water and oil saturations.
Let Q={y|0=y; <y<ya}, and let us consider the first boundary
value problem

(U, e)ly:() = (UO, 00)3 (U’ e)ly:yz = (01 > 01 ), (240)

in this case y, > 1 and, possibly, y, = 0.
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2.4.2 The Solvability of the Regularized Problem

Let the functional parameters of system (2.38) satisty the following
assumptions of smoothness, boundedness and the existence of a fixed
sign:

i. |la, a; )‘Hcl(ﬁ) =M,,i=1,2,3, |In m,Ina;, In\, azga ' | = M,,

(s*(0), 54(0)) € C(Q); Q = {0, 60(0, 1) X (0, 6%)};

a()(a) >0
at
0€(0,1),a=Mo(1 — o).

Let us assume that

u= Jo a(&)de. (2.41)

Determination 1 Let us designate the set of functions (u,0)e C'(Q)
and s€ L., () a generalized solution of problem (2.38)—(2.40), if it meets the
following conditions:
1. Almost everywhere in o = ®(s, );

Vn, e C'(Q) satisfies the integral identities

4l
(a010y15) + a0y = ansts) + 5 <ys—r | @, ) =0

y

(2.42)
u@w+<0—9@0=m (4= (o

2. The functions (o, 0) satisfy boundary conditions (2.40).
3. Let us designate 8, = ming s*(0) — maxy s,(0), select £€[0, (6y/4)] and

construct a piecewise-linear function on s
SGy + e —50) _
o, If s€[0,5 +¢),
SO+ TR

S Sy

=060 =1 5 Tl TeT (243)

—DE —e—5
SO)(s*—e—1)

if se*—e,1],




70 Fluid Dynamics of Oil Production

Let us extend the values of o,s, and 6 beyond the intercepts
[0, 1], [54, 5] and [0, 6]; without restriction of generality, let us take as
their boundary wvalues (having normalized the functions s,s%,s,),
5 = mings, = 0;5* = maxgs™ = 1. Let us now substitute the resultant func-
tions &(0),3(s), 8() in the coefficients of (2.38) and replace apa; with
doay,dp = ap t+ €. Let us extend the piecewise linear function ®(s,6) to
the exterior of the set [0, 1], so that ®* =0,s=0 and ®°=1,5=1, and
having replaced 6 with 0, derive a biunique relationship between o and s.
We have thus obtained a regularized problem which retains boundary
conditions (2.40), and which we will designate I*.

Determination 2 Let us designate the aggregate of functions
(1,0)e C'(Q),se L, (), which satisfy conditions (2.38), (2.39)
(Determination 1) and include identities (2.42) transformed as described
above, the generalized solution of problem I*.

Theorem 1 If conditions (i) are satisfied, then the regularized problem I*
has at least one generalized solution.

The proof of validity of this statement can be reduced to the applica-
tion of the Birkhoff-Kellogg theorem [100, p. 498].

2.4.3 Lemma 2 (The Maximum Principle)

In the generalized solutions of the auxiliary problem I* the estimates shown below
apply to virtually the whole of €2

0, =0=0"5,=s=50<0=1. (2.44)

Proof Since equation (2.38) for 6 does not degenerate, then, by analogy
with 2.2, we can arrive at an estimate on 0. Estimates for s, and therefore
also for o, follow from the results obtained in 2.2.

Note In follows from the estimates of the lemma that identity (2.42) is satis-
fied for I* when it includes real coefficients, but not with truncated &, 5, 6.

Lemma 2 For generalized solutions of I'* | the estimates shown below are true if
they are uniform with respect to €

(16,1, 1(70,), ) = Mexp(— ay” + By); (2.45)
(lago, . 1(ap0ry), 1) = M. (2.46)
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Indeed, both (2.45) and the weighted estimate on s and its derivative,
identical to (2.46), have been derived in 2.3. The estimate on o follows
from the equation

(aruy,=F(s,0,y),=0,u= J a(t)dt, (2.47)
0
where F(s,0,y) = — t[O, Sm(ys + fyﬂ s(t)dt) + aay0, — azv|.

Finally, in view of the monotonicity of function ®° in's, it can be eas-
ily demonstrated that s,o,6 are linked by the relationship o = ®(s, §)
[16]. Indeed, for any 6 we have (®°(v1,0) — (P°(1,0),v; — 1) =0. Let
us assume that v; =s%; in that case, € = 0, (a passage to the limit), and
this leads to (0 —D(12,0),s —1p)=0. Let us assume
vy =s— rw,r=const >0, we C'(Q), reduce it by r and let r — 0 (a pas-
sage to the limit). Since ® is continuous, this leads to (o — ®(s, #), w) = 0.
Since w was selected arbitrarily, o= ®(s,60) virtually throughout (2.
Allowing € — 0 (a passage to the limit) confirms the assertion.

Theorem 2 If conditions (i) are satisfied, then the problem (2.38)—(2.40) has
at least one generalized solution (u,0)€ C'[0, y2], Vy, < 00, which satisfies the
inequalities (2.44)—(2.46).

2.4.4 The Numerical Model

The construction of numerical solution algorithms for problem (2.38)-

(2.40) is more difficult than in the case of the problems in 2.3, for the fol-

lowing reasons:

1. Residual saturations depend on temperature,

2. The function s = ®(, o) with respect to ¢ and s is not biunique along
the intercept [&?, 1-— 62], where 5(1) = ming(f?(&), 52 = mingag(e).

Let us formulate our principal ideas on how these problems might be
solved. We discussed (2.38)—(2.40) in the case of constant residual satura-
tions in (2.3). It was solved by non-linear iteration (representing a combi-
nation of Newtonian and simple iterations) which converged, given a
wide range of initial approximations. With this in mind, let us extend
the iteration process to 1(6,s) (Newtonian iteration with respect to s),
and therefore also to variable residual saturations as a function of tempera-
ture (thus solving Problem 1). This will result in each iteration represent-
ing a problem which has already been solved for constant residual
saturations.
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Figure 2.5 The function s = &(0, o) and its regularization s = ¢.(0, o).

Problem 2 is solved by the regularization of s= ®(6, ) described
below.

Let us designate A =1 — maxyo9(0) — maxpo(f) and let us then
select a € >0 sufficiently small to ensure that € <A/4, and construct a
piecewise-linear function on o

( ~(
5(0_01) . ~0 0
_ if celoy,o; +¢€),
8 +0Y =59 foelonoite
s=P.(0,0) =< d(,0), if celo) +e,1—05—¢],

_e(1-5)—0)

1= —
§(e — &5+ aY)

ﬁae(l—ag—e,l—&g],

(2.48)

where 0 =A <§(0) =1 — 05(0) — 0(f) = 1. The resultant function will
be biunique, so that it can be used to recreate uniquely the inverse func-
tion o = 1.(6, s).

Fig. 2.5 shows typical plots of s = ®(#, o) (fine line) and s = ®.(4, o)
(bold line) for a fixed value of 8 = 6.

2.4.5 Numerical Calculation Results

Fig. 2.6 shows the calculated distribution of dimensionless temperature
0=(0—0,)/(0, — 0) (fine line) and saturation o (the vinculum over
dimensionless values has been omitted in the diagram).

For comparison purposes, Fig. 2.7 shows the values of o for noni-
sothermal flow with variable (fine line) and constant residual saturations.
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Figure 2.6 Final distributions of saturation o and temperature 6.
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Figure 2.7 The values of o for nonisothermal flow with variable (fine line) and con-
stant residual saturations.

Let us now consider the boundary-value problem for equation systems
which describe two-phase fluid flow in thermocapillary saturation ¢ =0,
and take into account the variability of residual saturation:

1 1
(koaays, + Ieoaa29y)y + 5)/1/1), =0, ()\9),)}, + Eye}, =0, (2.49)

o(y1) = 1= 050(y1)), o(y2) = 01(6(y2)), 0(y1) = 61, 0(y2) = 0>, (2.50)

where y; =0, y, = 0.
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The solution algorithm for this problem in the case of constant resid-
ual saturations 0", 0 was described in Section 2.4.2 and for q # 0 in this
section.

The distribution of saturation o in the case of variable and constant
saturation

The problem of the non-biunique relationship s = ®(6, o) was solved
for ¢ # 0 by regularization. However, the inverse function o = .(0,s) is
not continuously differentiable, and this created difficulties with the
numerical implementation of the algorithm for thermocapillary satura-
tion, and required the use of the derivative dwd—@ for the segment
[6Y,1 — 55]. At the same time, the discontinuity of the derivative resulted
in quite strong oscillations of the numerical solution ahead of the front.

For this reason, we resorted to the following regularization of function
s=®(0,0), which was smooth (continuously differentiable) along the

segment [5], 1 — &3]:

P3(93 U), #‘UE [5-(1), O'? + 8),
s=0.(0,0) =1} D(0,0), ifoelo)+e1—0)—c¢l], (2.51)
Q5(0,0), ifoe(l— ag -, 1— 58].

Here, P5(0,0) and Qs(6,0) are third degree polynomials, which are
defined by the conditions of continuous differentiability of ®.(0,0) at o
along the segment [5), 1 — &3].

Fig. 2.8 shows a typical plot of s=®.(0,0) (bold line) for a fixed
value of §. For comparison purposes, the fine line shows s = ®(0, 7).

We used the above reasoning to perform numerical calculations, using

the following forms of variable residual saturations and boundary values

.0,
0.8
0.6 1
0.4
0.2
7 7.0) =o29) || =92
0.0 0.2 0.4 0.6 0.8 g

Figure 2.8 The function s = &(6, o) and its continuously differentiable regularization.
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of temperature: oV(6) = 0,15 —0,001(0 — 60),05(#) = 0,15 — 0,002"
(6 — 60).

Fig. 2.9 shows the calculated distribution of dimensionless temperature
0=(0—0,)/(0, — 0,) (fine line) and saturation o (the vinculum over
dimensionless values has been omitted in the diagram).

For comparison purposes, Fig. 2.10 shows o in the case of nonisother-
mal flow, for variable (fine line) and constant residual saturations. It will

0,0 7
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Figure 2.9 Final distributions of saturation ¢ and temperature 6.
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Figure 2.10 Distributions of saturation o at variable and constant residual
saturations.
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be seen that the only difference between the plots occurs in a part of the
left hand side of the graph, but the high rate of saturation change in
this area makes it impossible to represent the difference graphically with
sufficient accuracy. The crucial aspect of the diagram is that the plot for
the solution with variable residual saturations is higher than the plot for
constant saturations.

It was noted in 2.3 that a change of the left boundary value of s; in the
region [0, 6; 1] does not significantly affect the saturation rate. In our case,
this means that if the variability of residual saturations is taken into account,
the value of ¢ increases at the left hand side end of the segment (in the small
neighborhood of the injection well) if hot water is injected, but does not
lead to an additional advance of the right saturation front.

The dashed lines show the majorants of the distribution of saturation
o for variable (the upper line) and constant (the lower line) residual
saturations. The rectangular area between the dashed lines is an area of
potential additional oil displacement obtained when flow modelling takes
into account the variability of residual saturations.

2.5 THE QUALITATIVE PROPERTIES OF ANALYTICAL
MLT MODEL SOLUTIONS

In this section, we examine the qualitative properties of the exact solutions
of the thermal two-phase flow equations (the MLT model) constructed in
2.3, paying particular attention to the physical interpretation of the various
properties of these solutions which are of practical importance to oil pro-
duction: finite velocity of propagation of perturbations, the monotonicity of
two-phase mixed flow characteristics (uniform water encroachment and for-
mation heating), and the finite stabilization time of the process.

2.5.1 The Muskat-Leverett Thermal (MLT) Model

The transformed equations of the one-dimensional MLT model of a
homogeneous isotropic porous medium for dynamic water saturation
s(x, 1), equilibrium temperature (x,t) and average pressure p(x,t) have

the form (Chapter 1, 1.2)
s = (apMisy+a10,+azv) 5 0, = (Aol —v0) s — v = (Nspctazby), =0,

(2.52)

X2

where v =1(t) is the total flow rate of the two-phase fluid. The system
(2.52) coefficients a(s), a (s, 0) = (ag, a1, a2, a3) and (s, 0) = (A1, Aoy A\3)
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are expressed explicitly by the functional parameters of the initial MLT
model, and if we take into account their physical reality, have the proper-
ties (Chapter 1, 1.2):

a. ay(s)>0,5€(0,1),a,(0) = ap(1) = a2(0) = 0; Ae(s, ) =my >0,k =0, 1;
b. (7 (50), X 0)eC(Q), Q= {s,0l0=s<1,0, <0<

Assumptions (a) ensure respectively the parabolicity and uniform para-
bolicity of the equations for s(x, t) s(x, ) and Q(x, t)0(x, t) and the nonde-
generacy of the ordinary equation for p(x,t) (in which ¢ acts as a
parameter).

The use of complex mathematical models, such as the MLT model or
the Muskat-Leverett model of isothermal two-phase flow [2] (8 = const),
requires the creation of mathematical techniques accessible at least to
experienced oilfield engineers. One such approach, successtully used in
practice, is to describe the process of oil displacement by means of
approximate formulae derived from exact solutions of the initial model
equations. These include stationary solutions, dependent only on the vari-
able x, analytical (self-similar) parabolic solutions dependent on y=
x(t+l)_1/ %, analytical traveling wave solutions, dependent on z = x +
ct(c = const) and some others. Simple Muskat formulae (displacement
laws), Charny’s formulae (near-wellbore zones) and others [139], based
on parabolic self-similarity remain reliable tools of engineering analysis of
oil field development by isothermal methods.

This being the case, we propose to begin our examination of thermal
recovery methods by constructing analytical (self-similar) MLT model
solutions, described by ordinary differential equations.

2.5.2 Parabolic Analytical Solutions

Provided that v = (¢ + 1)_1/2, ¥ = const is specified (in what follows, the v
is used without the tilde), it is possible to find solutions of (2.52) depen-
dent only on one independent variable y = x(¢+ 1)71/ % _ parabolic analyt-
ical solutions s(y),8(y), p(y) which satisfy the following transformed
equations (2.52):

1 1
(aoAisy+ a6, +axw), + SV = 0, v = const; (A6, —vb), + 5)/9}, =0.
(2.53)

In this equation, pressure p(y) is found from equation Asp, + a30, =
— v = const after solving the system (2.53) for s(y), 0(y).
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Let the two-phase fluid flow take place between two wells (groups of
wells), located in points y =y, k=0,1, of which let y =1y, =0 be the
location of the injection well, and y = y; the location of the production
well (y; = o0 is also a possible case). Let the values of (s, ) be specified
for wells y = y,.:

(33 6)|y:)7k = (Sk’ 6](’), k = O, 1' (2'54)

Assuming that the coefficient A\ (y) = Mo[s(y), 0(y)] is a known func-
tion, we can derive the following expression for 6(y):

Y Y
0=1-NExF= [ '@ e A= [ @i @s9)
0 0
Here Ao = (0,57 = 0)A; (1), N = [F()I .
Expression 2 (2.55) leads directly to the estimates
0=0(y)<Mie ™ =1,10,] = Mae ", ye[0, yi], (2.56)

where the constants M; >0 and a; > 0 do not depend on value y; > 0.
Now let us consider equation (2.53) for s(y) and note that irrespective of
the value of 5;€[0, 1],i = 0,1 (2.54) provides the following estimates (2.3)

0=s(y)=1,y€[0, 1], Vy1 > 0. (2.57)

Let us introduce a new function u = fé ap(§)d€ and assuming that the
coefficients of equation (2.53) for s(y) are known, let us express this equa-
tion in the form

(A, +9), = 0,u(0) = ug, ulyr) = uy. (2.58)

Here u; = J;j’ ap(§)dé,i=0,1;0=0,5 (ys + fym s(ﬁ)d&) + a0, + arv.
Integrating (2.58), we obtain

— My, =@+ C,u(0) = uo, (2.59)

where C=C,! [uo —u — [} Af(f)go(f)dﬂ, Co= [/ AN (©dE. Since,
on the basis of the assumption made in (a), A\ =my>0, we can use
(2.59) to find

|”y| = d()(S)lSy| = Mo()’1) (260)

Estimate (2.60) leads directly to the Holder continuity of s(y) € Ca(g),
a>0,Q2=(0,y) so that equations (2.53) give us (1,0) =1 €C'T*(Q),
a>0,u= [ at)dt(2.3).
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Therefore, evidently, the construction of generalized solutions of
(2.53), (2.54) is the equivalent of solving the Cauchy problem

— Xy =+ C; = M, =1+ K; 7(0) = v, (2.61)

where the function ¢ and the constant C are as determined in (2.59):

_ 1 0+ )/19 dt) — v, K=K, '[1- " X N()d
—§<Y J (t)t> 0, K = 0( Lw(t)z(t)t>,

0
Y1

K= | o
0

The classical solvability of (2.61) was demonstrated in 2.3.

2.5.3 The Theorem (of Finite Velocity)
Let the following inequalities be satisfied in addition to conditions (a) and (b):

(ag(s), lax(s, O)]) = M7, or (ao, |a> — ax(1, 0)| = M(1—5)"),y=1. (2.62)

In that case, when s(y1)=O0(ors(y1) =1),y1>1 there exists a value
y* < o0 such that

s(y) = 0(or s(y) = Dat y=y* = (P +M5 )", (2.63)

Where M, = fol ao(H)t1dt,§ =1/4 min A\, y =2 M max(M|a|, |v]).
The proof of this theorem will be found in 2.3.

Note 1 Let the boundary-value problem be solved for system (2.53) in
the interval [ — yo, y1], (yo, y1)>1 and let s(— yy) =1,s(y;) =0. Then,
according to the theorem, we have a wave-type solution:

sp)=tlaty= —ys(y) =0ary=y". (2.64)

2.5.4 Finite Velocity Interpretation

The family of parabolae shown in Fig. 2.11 corresponds to the analytical
variable y = (¢ + 1)71/2 in phase plane (x, ).

According to the constructions arrived at in the preceding subsection,
the component u(s) = L; ap(§)d¢ which forms part of the solution of
(2.61), as well as s = s(y) has a finite velocity of propagation of perturba-
tions — s(y) = u(y) = 0,y = y* (Fig. 2.12).

In Fig. 2.11, this property of s(y) corresponds to region D¥ (in the
wave-type solution these are regions D™, where s = const).
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v

-1

Figure 2.11 The family of parabolae shown corresponds to the analytical variable
y = (t+1)""2in phase plane (x, t).

u=u(y)

y
Figure 2.12 A finite velocity of propagation of perturbations —s(y)=u(y)=
0,y =yx*.

The structure of D' allows us to_interpret the property of finite

velocity of the function s(x, t) = s \/rﬁ—1) in the following way:

1. For each point of time f, there exists a point xy = y«+/fo + 1, such
that s(x, fty) = 0 at x = x;

2. For each point xy>y* there exists a time interval [0, f], (xo =
yea/to + 1), such that s(xo,t) = 0,t€[0, o], i.e. for each x;>y* the
movement of the front s = 0 is delayed by a time £ = fy(x).

2.5.5 The Near-wellbore Zone

Note that in the case of one-dimensional flow, the term “well” should be
understood to mean a group of wells orthogonal to the OX axis.

Let a fluid-filled formation be completed in a well and let the fluid
begin to flow into the well. In this situation, the near-wellbore zone is




Analytical and One-Dimensional Models of Thermal Two-Phase Flow 81

e

3 »
> »

I y
Figure 2.13 The Boussinesq equation h; = ko(h,),, for the ordinate h = h(x, t) of the
free surface defines this zone.

determined by the distance I(f) from the well beyond which the fluid
level is regarded as undisturbed. We have used the Boussinesq equation
h; = ko(hy),, for the ordinate h = h(x,t) of the free surface (Fig. 2.13) to
define this zone.

Kochina, Charny, Muskat and others have found, using a variety of
methods, that I(f) = K4/t, K being expressed in terms of the parameters
of the porous medium and the fluid flowing through it [110, p. 193-195].

The near-wellbore zone is therefore the parabola x = K./t on the
phase plane (x, 1).

If we apply this reasoning to oil production problems and consider
that the near-wellbore zone also obeys the analytical law —-— = const, the
solution of (2.61) maybe sought in a finite region. If this is so, then the
injection well can be located at a point y =0 (and therefore x =0), and
there will be a point y = y; < 00 corresponding to the production well’s
near-wellbore zone \/t“+—1 =y and the boundary conditions s(y;) =s; =0
may be specified within this parabola in the plane (x, ?).

2.5.6 The Thermodynamic Properties of Coefficients

In order to examine further properties of analytical solutions, we must
examine the properties of the coefficients of (2.53) in greater detail, pro-
ceeding from the physical meaning of the MLT model’s functional
parameters.

2.5.6.1 Coefficient Expressions

o) = B (9, Fa 0) = 1) = 05y = | Lot )
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v = kopy pio(ky + k2), ki = k() (), i = 1,2

dp. _ > .
a = —aoVa—pe; —ay = ki(k +ka) N = Zl:mofi)\la

=X O,

In the above equations, k; = ki(s), = p0),si(s1 = s, =1—3),p, =
const, i =1, 2 are respectively phase permeabilities, viscosities, dynamic satura-
tions and densities; mg is porosity; ¢, = const;\(#),i=1,2,3 is the phase
coefficients of heat capacity and thermal conductivity of the fluids (i = 1,2)
%{:’”’. Capillary pressure is expressed
by p. =y cosa;(s), where v =(0) is the interfacial tension coefficient;
a = a(f) is the wetting angle; J(s) is the Leverett | function (which also

includes the strain constant associated with average formation permeability).

and the porous medium(i = 3);s3 =

2.5.6.2 The Properties of a,

Let o= MZ/Ml’ —dy = ]€1(I€1 +,LL]€2)71. Then —dnyg = a()(k’,l +,ule2)72,u9,
o = 1y (pap — Hptyg)- Since (py9) <1 (the viscosity of water is only
slightly dependent on temperature) and p1 = o7 ' < 1, therefore

ay = 0; f1g = 0; a9 = 0; ap, = 0 (2.65)

The latter inequality results from the properties of phase permeability:
kls = 09 k25 =0.

2.5.6.3 The Properties of a,

Interfacial tension decreases as temperature increases, i.e. ¥y =0. The
wetting angle increases as temperature increases (in a state of equilibrium,
when |0 >> l a=1/2), i.e. aff =0. Therefore - 45 (v cos @) =0, and con-
sequently = (v cos @)y j(s) =0 and hence a; = ?96) vag=0;a; =0 at

Pcﬁ—o

Note 2 Normalization of the boundary conditions for € may produce
O0=(To—T) 6,0 =const>0,Ty=const >0 and T 1is temperature, in
which case

a0, = — vag—

i.e. the properties of ajg, do not depend on the normalization of
temperature.
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2.5.6.4 The Properties of \;
We know that & = — v2(kyjiy + koptyg) and since juy =0, therefore
vg = 0. In that case

Ag = Ipfsl’/ﬂ =0atpy =0. (2-66)

It is often assumed that the thermal characteristics of the fluid and the
porous medium do not depend on temperature, i.e.

Ny =Xy =0,i=1,2,3. (2.68)

2.5.7 Monotonicity Conditions of Water Saturation s(y)

Let @ =am\;',q=v—1/2yand let us transform the regularized equation
(2.53) for s(y), and substitute a. = ay + € for ag. Using equation (2.53) for
0(y), let us solve

zytd.=—gz=aMNsy,a.=ay+e,e>0, (2.69)

1 _
d= (5}/ + Vapg + a15)\29)/> (ae)\l) 15g = AZalaei + alqu + 1/61299),.

Having integrated (2.69), we obtain

y y
z=¢ PW <z(0) - J eD<f>g(t)dt>,D = J d(f)dt. (2.70)
0 0

Since s(0) =1 and s(y) =1, then 5,(0) =<0 and, consequently, 2(0) =
(a:A15,)(0) = 0. Therefore, if g(y) =0, yel0, yo] for some y; >0, then it
follows from equation (2.70) that s, <0 at g(y) =0, y€[0, yo].

If it proves that yy =y*, where y* is a point of the saturation front
(s(y) = 0,y = y*), s(y) will be monotonic at ye[0, c0). It follows from the
property (2.65), (2.66) of coeflicients aj, a that a sufficient condition of
monotonicity of s(y) is:

sy=0atpp=0and,=0,yel0,y"]. (2.71)
The requirement 6, =0 means that the temperature of the injection
water is 6(0) = 6y =0~ average formation temperature (6, =6(o0)), in

which case in equation (2.55) we have 6, = NF, =0, ye[0, 0c0), where
Ny = (0, — 6y)F — 1(y1), and F(y) as determined in (2.55).

Note 3 Conditions (2.71) are satisfied in the case of isothermal flow
(0 = const), i.e. when 5, =0, y€[0, ).
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The introduction of new stimulation methods and processes is
intended to provide a solution to one of the main oilfield problems, that
of creating a uniform flood front (uniform water encroachment) and thus
achieving more complete oil recovery. Bearing this in mind, we can
interpret the monotonicity conditions of s(y) derived above as follows.

In each fixed section of the formation x = x>0, its water encroach—

Nl

ment s(xg, £) = s( F) increases monotonically with time: s(
s(0)=1att— oo.

2.5.8 Local Monotonicity of s(y)

Let the thermal conductivity coefficients A, Ay (of the fluids) and A; (of
the porous medium) change slightly, i.e let conditions (2.68) be satisfied.
Let us also make one of the following assumptions:
A. The function o(f) =~ cosa is linear: o= o(6*)+ ()0 — 6%),
o0(0") =0, 0" = const.
In this case .
—po = |o9(0:)]j(s), % =0, from which a9 = 0.
B. The function () is linear and « = const:
¥ =(0) +~0(67)(6 — 67),76(07) = 0.
& pL = (.
Now, let condition (2.68), and either assumption A or assumption B, be

satisfied. Consequently, d1g = )\2_1 a9 =0, i.e. g(y) =0 at y = 2v, whence

s,(y) =0at ye[0,2v]. (2.72)

Note 4 Let us introduce the function T = Lf A20.dt and express equation
(2.53) for ¢ in the form T, = A (1/ - %y) T, = R(y).

Where, because of the assumption, €, =0 and therefore T,=0. We
obtain R(y) =0 when y=2v and R(y) <0 when y>2v, ie. the point
yo = 2v, for which the inequality (2.72) is satisfied, is the inflexion point
of function T(y).

Similarly, having introduced the variable J(y) = [] A} (t)dt, let us
write down (2.53) in the form 6Oy = [ —3 y(?)] 0; = R(p).

Now, the point y, = y(y), is the inflexion point of function ().

In the isothermal case (6 = const), the assertion is stronger than in
(2.72): 5,<0,y€(yo,y1), where y; are the boundary points where
“(y())/i) = a(y)s)(y)) = 0,s(y0) = 1,s(y1) =0 (at y>y1,s(y) =0 at y<yo,
s(y)=1).
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Indeed, let us assume that there is an interval [a, B]<(yo, y1) contain-
ing a point y =y e(a, §), where 5,(y2) =0, and 0<s(y) <1, ye[a, ]
and s,(a) # 0. To examine the function ¢(y) = u,(y) = aps, let us con-
sider the Cauchy problem ¢, = qp, —¢=a; 1(2 y + vay); p(a) = ¢, # 0,
whose solution takes the form as, = ¢ = e, Q= fy q(t)dt.

Because s # 0,1 when y€[a, [], then |q|=M < co. Consequently,
based on the expression derived for ¢ = agsy,s, # 0 at ye[a, 3], and this
contradicts the initial assumption s,(y>) = 0. We have therefore established
that s, <0 at y€(yo, y1)-

2.5.9 Local Extrema of s(y)

Let us assume that

g = (al)\Z_l)g =0, axp = 0 (that is py = 0). (2.73)

In that case, the regularized equation (2.53) for s(y) will take the form
Ls=a:\isy, + Csy +a(v—1/2y)0,=0,a. = ay + £, >0, (2.74)

where C = ()qag)y + a0, + var, +1/2y.

Let us assume that R =(v—1/2y)a6, and let 6, <0. In that case
R <0 when y <yy=2vand R>0 when y> y,.

Let y be the minimum point of s(y), min s(y) = s(y) =s >0, and
¥ — max s(y) =sy)=3<1. If y<yy, then R(y) <0 syy(y) <0,5,(7) =0,
5,(7) =0 and the equality Ls(y) =0 is impossible. At 7> yo, there is no
contradiction with the equality Ls(y)=0. If y>y, then R(y) >0,
sy(y) = 0,5,(y) = 0, which contradicts the equality Ls(y) =

Thus, the relationship between the minimum and maximum points y
and y of s(y) is expressed by the inequalities y =y, =Y. In addition, as
there can be no maxima of s(y) to the left of y, = 2v, only one minimum
of s(y) is possible. Similarly, only one maximum of s(y) may occur to the
right of yy (Fig. 2.14). Let us note that this property of analytical MLT

SA

1

»
»

y o Yo ¥ Vi y

Figure 2.14 Only one maximum of s(y) may occur to the right of yo.
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model solutions was also identified in the course of numerical calculations
(2.3, Figs. 2.1 and 2.2).
Let us now assume that s(y) = 0 and consider the Cauchy problem

Ls = a: A5y, + Cs, + Rls = 0;5(y) = 0,5,(y) = 0,

where | =571 =0. At y <yR(y) <0, y€[0, y], and the resultant Cauchy
problem has only the trivial solution s(y) = 0, y = y, which is impossible.
Let there be a point § such that () = 1. By replacing 1 — s = z, we
arrive at the above problem for z. Therefore, min s(y) >0, max s(y) <1,
ye(0,y%).
The case of 0,>0,ye(0,y,), can be analysed in exactly the same way
as that of (6, <0).

2.5.10 No Flow Zones

Let us formulate the regularity conditions of (2.52) for s(x, t) derived in
[44] as they apply to the one-dimensional case of two-phase flow in
homogeneous rock:

(f419 Hogs pep) = 0 at s¢ [60,1 — 61], (2.75)

where 0 <9y, <1—0; <1. The physical condition expressed by (2.75)
means that if a flow is predominantly the flow of one fluid
(s1 =s=06p,5=1—s5=0;) the equilibrium temperature # of the porous
medium and the fluids should be close to the temperature of the flowing
fluid (@ = const). In these circumstances, the thermal characteristics should
be constant: 7y cos a = const, pt; = const, i =1,2.

The maximum principle for generalized solutions of equations (2.53)
for s(y), allows us to arrive at the inequalities shown below, when condi-
tions (2.75) are satisfied:

O<(S()SS(Y1)§S(Y)SS(O)§ 1— (51 <1. (276)
Thus, if (s(0),s(y1)) # 0,1, then, based on (2.76), s(y) #0,1 at

y € [0, y1], indicating the absence of no flow zones (s =0 or s = 1).

2.5.11 Traveling Waves

Up to this point, we have considered parabolic analytical solutions of sys-
tem (2.52), in which there is a parabolic relationship between the coordi-
nates x and f,x = ya/t+ 1, where y is the analytical variable. Another
class of analytical solutions which is of importance to applications consists
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of (simple) traveling wave solutions, in which the analytical variable y is a
linear function of x and t,y = x — qf, where g = const is the wave velocity.
Formation flow of this kind occurs, for instance, during early field devel-
opment, in bottom-hole zones treated with chemicals, in thermal devel-
opment methods and in many other cases. If we introduce the variable
y =x — ¢, system (2.52) will be transformed into

(aoA1s,+a10,+av+gqs), = 0; (A2, —v0+q0), = 0. (2.77)

The physical reality of the water drive process means that the solutions of
equation (2.53) should have the following properties:
1. % =0 at a fixed ¢, i.e. water encroachment decreases with distance
fromthe injection well;
2. % =0 at fixed x, i.e. the water encroachment of the section increases
withtime.
Thus, transition to the analytical variable y =x — gt should produce
% =0, which corresponds to the assumption ¢ = const >0, where q is
wave propagation velocity: s, =5, =<0,s5; = — ¢s, = 0.
Let us note that, formally, when g =0 we arrive at a stationary prob-

lem in which s = s(x), 6 = 0(x).

2.5.12 Isothermal Traveling Waves (6 = const)

In the isothermal case, the s(y) problem assumes the following simple
form:

(a(s)sy—vb(s)+gs), = 0;5(0) = 1, (1) = 0. (2.77)

In this equation, a=apA;;b=—ay=ki(k; + k) —1=0;bs=0,b(0)=
0,b(1)=1,g=const>0 - wave propagation velocity; v=const>>0 - total
mixed flow rate.

2.5.12.1 Wave Velocity Greater than Flow Rate (q > v)
Let us additionally require vbs = g,s€[0, 1], which is equivalent to the
inequality
C(s) = q(s) — vb(s) > 0,s€(0,1). (2.78)
Clearly, for (2.78) to be satisfied, it is sufficient that ¢> v (Fig. 2.15).
Let us integrate equation (2.78)

a(s)s, = u, = —[C(s) + K], K = const = 0



88 Fluid Dynamics of Oil Production

v

Figure 2.15 g>v.

Ll=ja(l)df
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Figure 2.16 The shaded area in this figure is expressed by a formula inverse to 2.80:

s=4(y) = [1-8(s, K] .

and solve the function for y = y(s):

*a(r)dt
=l—| =———=1—9(,K);P(1,K)=1. 2.80
y=i=| e = 1= B K 8L K) (2.50)
Let us assume that &(1,0) = |, “(C’()t{;’ =

The properties of the coeflicients of (2. 78) provide a = 70(5)5a(1—s)ﬁ
(a, B)>1,b;=da[s(1—5) "' 7,(s), |Iny,| =M, i=0,1; C, = g — vb,. Therefore
®(s,K)< oo at s€[0,1], K< oo (including the stationary case —q=0),
D(s, 00) = 0,228 <0, 5e(0,1].

A. Letl=l. In this case, based on the properties of ®(s, K), there exists
a K such that ®(1,K) =1. This means that in these circumstances
there exists a classical solution of (2.78), expressed by a formula inverse
to (2.80): s = 1(y) = [1 — B(s, K)]" Y (the shaded area of Fig. 2.16).

B. Let [> 1. In this case, the generalized solution of (2.78) takes the
form

s=YP(y) = [I=D(s, O)][fl], yelo, k],
{ s=0,yell,1]. ’ (2.81)
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Figure 2.17 The shaded area in this figure can be moved to the right 6€[0,/ — o).
As Z—; =i, = Cls(l))] = 0, the function u = E(Y) a(t)dt, where s =s(y)
is expressed by the formula (2.81), is in fact a generalized solution of

(2.79).

2.5.12.2 Wave Velocity Equal to Flow Rate(q = v), The Soliton
Equation

Let the condition (2.79) be satisfied as before. This condition is equivalent
to the assumption b,<1,5€(0,1) when g=v. In this case
C(1) =q— b(1)r =0, and the solution of (2.78) can be written down as

{5 = YP(y — 6);yeld, lh + ¢;

SEl,Y<6Sl—lO;S:O’y>ZO+6, (282)

where ¥(€) is as determined in (2.81). This means that the shaded area in
Fig. 2.17 can be moved to the right 6€[0,[ — Iy] and that the correspond-
S(Y) a(t)dt, with s(y) determined in (2.81), is a gener-
alized solution of (2.78), since asy|—o 1 = ttyl—o1 = C(s)] ;=1 = 0.

The solution of u(s) is a soliton equation (a bank) which is represented

in (2.82) by a moving profile s = i)(y — 0), y€[6, Iy + 8], V6 > 0.

ing function u(y) =

2.5.12.3 Flow Rate Greater than Wave Velocity (v > q)

In this case, C(1) = ¢ — v <0. Taking b; =0, b(0) = 0 and bearing in mind

that usually by(1) =0, in the neighborhood of points C; =g — vb,=0.

Consequently, function ¢ = C(s) has the appearance shown in Fig. 2.18.
Let minpg=,=1C(s) = C(s0) <0,0<<sp<1. Let wus assume that

C(s) = C(s) — C(s0) = 0,5€[0,1]. In that case, the solution of (2.78) for

the inverse function y = y(s) can be written down as

L% =1- (s K); ®(1,K) = . (2.83)

y=I1-



90 Fluid Dynamics of Oil Production

p=C(s)

Figure 2.18 Function ¢ = C(s).

X :A X=qt+v
0 X

0

A
t

to

Figure 2.19 A bank.

As 6(1,_0) = 0(C(s9) =0) and ®(1, c0) = 0, there exists a K>0
such that ®(1,K)=1 in which case s(y) =[1—(s, K)]" " represents a
classical solution of (2.78).

2.5.13 Traveling Wave Solutions

Unlike parabolic analytical solutions, in traveling wave solutions the plane
of the variables (x, ) can be covered by a family of straight lines x = gt + y,
where y is the analytical variable. Fig. 2.19 shows a bank, which is one of
the most interesting traveling wave families plotted in Section 2.5.12.2.

In the shaded regions Dy and Dy, s = const. Region D;, which repre-
sents a finite stabilization time is of particular importance: for each sec-
tion x=ux9>0 there exists a finite time fy= (xo— 5)q_1, when
s(xo,t) =1 att=t.

2.6 AN ANALYTICAL SOLUTION OF FLOW EQUATIONS FOR
TWO NONLINEARLY VISCOUS FLUIDS

2.6.1 Introduction

Mathematical modelling of fluid flow through porous media uses the laws
of conservation of mass, momentum and empirical Darcy’s Law which
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links velocity vectors with pressure gradients [107]. Many researchers
have studied models which do not use Darcy’s Law. Let us consider one-
dimensional isothermal flow of two viscous fluids in a nondeformable
porous medium. In the absence of phase transitions, this models equa-
tions take the form [27, 61].

0
E(Pﬁf) + a(piSiVi) = 0,51 = ms, s = m(1 —s),

Ov; . Ov; 85 iof . . Ov;
Si\ 3, TViso Sig, 0i = — Pi AL

0si .
fi= pig. +<pl,p1 p2=pls) (i=1,2),

where p; is the density of the ith phase; v; is its true velocity; m is porosity; s is
the phase saturation of the pore space with the first fluid; p; is phase pressure;
pe(s) is capillary pressure; p, is the dynamic viscosity coeflicient; f; is phase
interaction force; ¢; is interfacial friction force, ¢, = — ¢, = K(v, — 11); K
is the phase interaction coefficient; ¢ is the acceleration of gravity. The condi-
tion p; = const leads to a closed system of equations for s;, v;, p;:

63,' 0
+ 9= 2.
S 2 =0, @84
ovi o) _ 0 o\ P (2.85)
Pi\ar TV ox ) T ax Mok ox T T PG '
s+t ss=m,, =K@ — 1) = — @y, p1 — p2 = ps). (2.86)

where K = const >0, p1; = [1,|0v; / Ox|*, i, = const >0, v = const = 0. It is
also assumed that, m=1,¢g=0,p.(s) = 0,p; = p» = p.

In this section, we consider a traveling wave analytical solution of the
system (2.84)—(2.86). Assuming that all the target functions depend only
on the variable £ = x — ¢f (where ¢ is a constant parameter), we obtain the
following equation system:

(pvi = cp) = 0, p(viw), — ) = (usiv) = —sip’ + ¢, (2.87)

(i=1,2), in which the prime indicates differentiation in £. We consider sys-
tem (2.86), (2.87) for £ > 0, augmenting it with the boundary conditions

v(0) = 1/?, 51(0) = &, lime, o, vi(§) = ut, limg, o 51(§) = s (i=1,2),
(2.88)



92 Fluid Dynamics of Oil Production

where V‘f,vg,so sT are specified constants which satisfy the conditions

sO % 57,00 #£ 1), Because it follows from (2.87) that s{v; — ¢) = A, i = 1,2,
then by brmgmg in (2.88) we can arrive at the following equation system
for the unknown constants Ay, A>, u™, c:

50(1/(1) —)= A ,s+(u+ —0=A,(1— sO)(Vg —0)=A,(1 - S+)(l/l+ —0)=A>.

This system is solved using the formulae

+ 0y,0 _ 0 +3,,0
ST(I—=s)vy —s (1 — s
f= ( )i 0( )1’M+ K 0+(1 O)V(2),
sT—4

+ ot

s
Ay —50(1 - 50)(1/1 - 1/2 —So,Az = ml‘ll-

Adding the momentum equations for i =1 and 2 to one another, we
arrive at the equation for p(§):

P = Z(v,vpf(c —v) + psiv]) - (2.89)

Taking (2.89) into consideration, we can use (2.88) to derive the
equation for s(§):

Y [a1(s)(|s/|“s’)/ + <§a " 2) 1195 ] + Aax(s)d — Kaz(s)(s —sT) =0
(2.90)
where
T (T (] — )t O = OO0 — 0
a1(5) = M1§2032 + Mi§1_5)2(3+2 > (1 0 3(51 : ’
s 1—s1)? 1
a(s) = /71( i + Pz((l _5)3) ,a3(s) = 752(1 —

Equation (2.90) is the complemented with the relevant conditions for
s(€) taken from (2.88). Our aim in this section is to prove the existence
of a unique solution of this problem for s(&).

2.6.2 Problem Solvability

In what follows, we will assume that conditions
A>0,s" £ (T, e(0,1). (2.91)

required by these equations have been satisfied.
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Our proof of the existence of a solution is based on Schauder’s theo-
rem [138] and uses standard auxiliary constructions. Having designated
a(s) = (2(y+1)/ (ZLHZ)( ), let us rewrite equation (2.90) in a divergent form:

al) as(s) o
al/(2a+1)(S)S Ka1/(2a+1)(s)(5 57)=0.

ANa(s)l5 157 + A (2.92)
Assuming that in (2.92) u(s(£)) = Li(g) a¥(1)dt, where x =1/a+1>0,
we obtain

SU

(1 1%u'Y + Xob(uw)u’ — X" “Kd(uyu = 0, u(0) = j aX(1)dT = ug, u(o0) = 0,
(2.93)

where Ao = A7 b(n) = 20 d(u) = il -
It follows from the conditions of the problem that the constants K

and A are positive, while functions d(s), a(s) and az(s) are positive for all
s€(0,1). In whatfollows, we will assume that s* <s" (the case of s* > "
will be considered in a similar way).

Examining the intercept [0, #], let us consider the auxiliary problem

for (&) = [© a¥(r)dr:
(|1/|“1/) + XNob(v)v" — X" *Kd(v)r = 0, v(0) = uy, v(n) = 0. (2.94)

The maximum principle means that the solutions of this equation sat-
isfy the inequalities uy = v(§) = 0 for all £€[0, n). Consequently, the func-
tions b(v) and d(v) are strictly positive and bounded. Let us assume that

ao(T) = [ﬁl(s+)a+1(1 _T)Z(a-H) +7,(1 _S+)a+172(a+1)](2a+1)/(2a+2)’

bo(r) = (py (P =1)" + o1 =5 27) fag /),

In that case
ao(T) bo(T) T—s"

R e e (s A n T

Let o, az- be the minimum values of the functions ay(7), by(7), and
01, B, their maximum values at 7 €0, 1] (clearly, v, 3; are strictly positive
and depend only on 1, p;, sT,i=1,2). This results in

* (&3] <()< ﬁl %

YT A= T YT ra—ope T (2.95)
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= =

P _ g 2.96
T Pa—r o P @

1 vd(v) 1
of = = = = 5.
o1 - S+)(/31)1/(2a+1) s(v) — st st(1 - S())(a1)1/(20+1) :

(2.97)

The derivative of the solution of (2.94) at the point £ = n is nonposi-
tive, since in view of the boundary condition v(n) =0, the assumption
that v/(n) > 0, contradicts the non-negativeness of v(§). Rewriting (2.94)
in the form

=N "Kvd(v)=0,T = ||V + )\OJ b(T)dT, (2.98)
0

we conclude that the monotonically increasing function (&) is nonposi-
tive. Therefore, v/(§) =0 for all £€[0, n].

It follows from (2.98) and (2.95)—(2.97) that |[v/|*V + Aajv=0.
Multiplying this inequality by v{>0 and taking into account that
v =8y, we obtain the inequality v |v/|*V + Noadv®T! =0, In that
case, v + Byv =0, where 3, = (A3 / a)l/(aﬂ)

We can now obtain

(&) = voexp(— Byf). (2.99)

Let us rewrite equation (2.94) in the form

<|1/|a1/+)\0 J b(T)dT) — N *Kvd(v) =0
0

and integrate ¢ from O to the current value &:

Vo 3
b(T)dT + )\_“KJ Td(T)dT = (§) =0.

0

(&) (€) — (0] (0) = AOJ .

This gives [v/(0)] — @'/ @D = (I (O)|**" = @)/ = —v/(§).

Integrating this inequality over £ from O to n, we obtain

1 n
W (0) = - <J OO ()dr + 1/0> =N< w. (2.100)
n\Jo
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As D(0) =€) = D(n), we have

V

0 (&)
) b(T)dT < |V (E)|V (&) + \o J b(t)dT.

0

I (0)(0) + Ao J

(

From this it follows that for all £€[0, n]
(I =1v(0)] = N. (2.101)
By virtue of (2.100), (2.101)
y = O =) 1] = Ny, (2.102)
Let us rewrite equation (2.94) in the form
Y+ Aob()y"/ T + AT Kd(v)r = 0.

Taking into account (2.102), we arrive at the inequality y + byy =0,
from which it follows that

V(] = Nexp(—bo&), (2.103)

where by >0 depends on the data specified in the problem, and does not
depend on n.
Let us rewrite the solution of (2.95) in the form

$

(&) = vy — J) (17(0)|* T = () Vdr = T(v), (2.104)

(

where |¢/(0)] is calculated from

j' (VO = () @V dg = .

0

Examining the space of continuous functions C[0, n], let us consider
the closed, bounded convex set M = {v(£)|0 = v(&) = up, £€[0,n]}. The
operator T is determined on the set M, and the maximum principle leads
to the nesting T(M)< M. The continuity of T can be checked directly
by means of (2.104). It follows from estimates (2.99), (2.101), (2.103) that
T is compact. Therefore, in accordance with Schauder’s theorem, (2.94)
has at least one solution in the set M. This solution is unique if
(vd(v)), > 0. Indeed, let f(§) be a sufficiently smooth function determined
in the interval [0, n] and equal to zero at £ =0 and { = n. Let us multiply
both parts of equation (2.94) by f(£) and integrate the resultant equality
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over £ from zero to n, in a process of single integration by parts. This will
yield the following integral equality:

4

J” <|1/(§)|°‘1/(§)f/ + Aof’ L b(z)dz + )\_aKfvd(V)> d€ =0. (2.105)

0
Let v; and v, be two different solutions of (2.94). Let us assume that
A= 14(O)1W(O) ~ IO, Hence A= (v — 1) B(;,0}), where
B(v,, 1) = (O)I° + alv) ([0, 010}, [vyl]v OIsh ], v ]. Let us also
assume that U = vy — v, U(0) = U(n) = 0. Following integration by parts,
(2.105) yields

L UIBFY — MBi(©) — A\~ KBo(E)f]dé = 0,

where

B(&) = U j b(2)d2, Ba() = U™ (nrd(vn) — v2d(12)) > 0.

4]

Let us determine f(§) as the solution of the linear problem (Bf’) —
MBi(&)f — A By(&)f = W(&), f(0) =f(n) =0, where h(£)-is an arbitrary
continuous function. As stated in [138], and taking into account the
boundedness and positive nature of B, this problem is solvable for any
continuous right hand side, and therefore U = 0.

Let us now solve (2.88), (2.93) for an infinite interval, producing the
solution in the form of a limit of the sequence {v,(£)} of solutions v,(&)
of (2.94) for n — o0, and using estimates of (2.99), (2.101) and (2.103)
which do not depend on n. Because the solutions of (2.94) are unique,
the bounded sequence {v,(§)} increases monotonically and thus converges
to a function u(§). By performing passages to the limit on the equalities
(2.104) written down for v,(£), we arrive at a similar equality for the
limiting function. This means that u(§) represents a classical solution of
(2.88), (2.93). The asymptotic behaviour of the solution is due to the
inequalities (2.99), (2.101), (2.103).

Let us formulate sufficient conditions of uniques of the solution of
(2.94) in terms of the initial data of (2.88), (2.92). Condition (vd(v)) >0
is equivalent to

r(s)

- > 0.
52”+5(1 - S)2a+:,a(12a+3)/(2a+2)(5)

In this fraction, the denominator is always positive for s€(0, 1), and the
numerator takes the form r(s) = 1, (s ") (1—9)%g(s, s7) + T, (1—s)*"!
s2g(1 — 5,1 —sT), where g(7,n) =272 = 3nT + 0= 27(t —n) + n(1 — 7).
Note that g(7,7) >0 when 7<8/9,7€(0,1). Let s">s", in which case
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(s,57)>0. For g(1 —s,1—5") to be positive, it is sufficient to require
1—5"<8/9, to be satisfied, i.e. s* >1/9, in which case r(s) > 0. In the
same way, when s <s", g(1 —5,1 —s")>0. For g(s,s") to be positive, it
is sufficient to require that s* < 8/9 and r(s) > 0.

We have therefore proved the following assertion:

Theorem When conditions s*e (%,g) and (2.91) are satisfied, there
exists a unique classical solution of (2.88), (2.93).

2.7 VALIDATION OF THE USE OF A SPECIFIC APPROXIMATE
METHOD IN TWO-PHASE NON-ISOTHERMAL FLOW

2.7.1 A One-dimensional Model

In the case of two-phase non-isothermal flow in a homogeneous
medium, the model’s one-dimensional equations have the form

0, = (N0, —v0),., ms, = (ars, + a0, — vb)
Uy = _(k(Px +a30x))x =0,

where x is distance; ¢ is time; 6 is temperature; s is the saturation of the aque-

(2.106)

ous phase of the mixed flow; p is pressure; v is mixed flow rate;
m = const; ar, ay, as,k,b, \ are the preset class C> functions of 6 and s.
Furthermore, [In(A, aj, k)| = M = const, i.e. the case we are considering is
nondegenerative. Without restriction of generality, let us assume that m = 1.

Antimontsev, Papin and Kruzhkov [6, 76] have examined the application
of approximate methods to this model in the case of isothermal flow. Their
application to nonisothermal flow is discussed in Section 2.1. In this section,
we examine an approximate method of solving the first boundary value
problem for (2.106), which is the same as that described in [6, 76], but
applies to nonisothermal flow, and assumes unidimensionality and a preset
flow rate. These assumptions have enabled us to prove the convergence of
the approximate solution to the exact one.

2.7.2 The Analytical Variables

On the assumption that v = v(t) = ,q = const, equations (2.106)

q
Vit
permit analytical solutions having the form s(y),0(y),y=x/+t + 1,
which satisty the equation system:

1
(A0, —q0), + (1/2)y0, =0, (a1, + a0, —qb), + <§> ys, =0.  (2.107)
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q

Jt+1

X
Jiri

Let us now formulate the initial boundary value problem for the
region R ={(x,t):x€[0,X],t€[0, T]}: in new variables (the vinculum
over t and x has been omitted):

Assuming that v = v(r) = ,q = const, replace the variables in

equations (2.106) as follows: x = Lt=1In(t+1).

1
0, = (N0,—q0), + (E) x0y, s, = (aysy + a0, —qb), + (1/2)xs,,

0(0, t) = 01, 0(X, t) = 65, 0(x, 0) = Oy(x), (2.108)

50, 1) = 51, (X, £) = 50, 5(x, 0) = s0(x).

Note that the solutions of (2.107) [analytical solutions of (2.106)] are sta-
tionary solutions of (2.108). The theorem of existence of generalized
solutions of (2.108) was proved in [15], and the solution was further
smoothed for some conditions in [44]. In what follows, we shall assume
that these conditions have been satisfied.

In the case of (2.108), we would propose the following approximate
method [6, 44]. Let us divide the time interval [0, T] into N sections
(T=T/N) and let us solve the problem with respect to 0.+(x,1),
si+1(x, t): separately for each section I; = [iT,(i + 1)7](i =0,...,N — 1):

. 1
L0y = —(0i11), + [(A(l)ei-!—l)x_q‘gﬁl]x + Ex(9i+1)x =0,

i i i 1
Losiv1 = —(si+1), + [4(1)(51'+1)x+ag)(9i+1)x_f1b()]x + Ex(5i+1)x =0,
(2.109)

0,41(0, £) = 01, 011 (X, 1) = 02, 0,41 (x, iT) = 0V (),

5100, 1) = 51, 5101(X, 1) = 52, 541 (3, i7) = 5O (0).
Here 07(x) = 0,(x, i), 0" (x) = 0y(x), s (x) = si(x, ir), <O(x) = s0(x)
and if a = a(, 5), then a®? = (89 (x), s (x)).
For each section I; (2.109), there exists a system of linear uniformly
parabolic equations with smooth coefficients for which the general theory
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of parabolic equations postulates the existence of a classical solution. Let
us introduce the designations §2 = [0, X]; I = [iT, t1], ty-an arbitrary point
selected from L/{iT}; 0:(x, t) = Ois1(x, 1); s:(x, £) = s5;+1(x, ) for xeQ, te;
(i=0,...,N —1). In this way, we have determined functions 6.(x, f) and
sy(x, t) for the whole of the region R.

Let us make use of the designations of functional spaces and norms
adopted in [83]. All C, Cy, Cy-type constants are independent of T.

2.7.3 Convergence of the Family of Functions (0,s;)

Theorem When 7 — 0, the functions (6;(x,t), s;(x, f)) converge to a
classical solution (0(x, 1), s(x, t)) of (2.108),with the rate of convergence
estimated as follows:

160 = 0:llv, + lls = s7lly, = C7, (2.110)

10 = 0,1l +5— lls; |l . = C77, Be(0,1). (2.111)

Proof Examining the region {2 X I; let us subtract the first equation in
(2.109) from the first equation in (2.108), and also the second equations in
each case. Let us designate w =0 — 0, u =35 — s, wi(x) = O(x, iT) — o (x),
ui(x) = s(x, i) — s?(x). This will yield the following problem for & =
(w, u), &; = (wj, u;), as described in [76, formulae (80), (81)]:

—&, + (A(x, 1)@, + B(x, )0 — QL), + 0, 5x, + ¢ (x, )T =0,
©(0, ) = (0, 0), &(X, £) = (0, 0), &(x, 0) = (0, 0), (2.112)

W(x, i) = (0, iT) = 07(x, iT), s(x, iT) = 57 (x, iT)),
where the components of matrices A, B and the vector ¢ are complex func-
tions of (x, iT), s(x, iT), #(x), s'(x), O(x, 1), s(x, 1), O(x, 1), sx(x, t) and of the
coeflicients of (2.108) and (2.109). In the above equation, A, = Q2 =
Q1 =Q2=0,Q1 =g

Let us multiply the equation for w(x,t) in (2.112) by w(x,f) and
integrate it first over {2, and then over I'. Using integration by parts



100  Fluid Dynamics of Oil Production

(and taking boundary conditions into account), applying the Cauchy
inequality with e and selecting the appropriate constants Cp;, we obtain
the following inequality [76, formula (87)]:

llw(e, )15 + Cr [ lwill3de = (1 + Co)llwill3 + Cus Jj. w1 3de

2.113
+ C14Ll*||w||§dt + Ci57°. 2.113)

In the same way, by multiplying the equation for u(x, f) in (2.112) by
u(x, ), we obtain the inequality

[l e, 11) |5 + (321u|n1_*||blx||§dfS (1 + Copr)|lmill3 + C23L_*||wf||§dt

2.114
+ Coa il + Cos [ Null3de + Cog, (2114)

Using (2.113) from inequality (2.114), we obtain

lluee, 11)115 + C31j1i*||“x||§dt5 (1 + Co)lluill; + (1 + C1)llwill3
+ C34J}*(||”||§ + [|wl3)dt + Css7°.

(2.115)

Adding (2.113) and (2.115), discarding the integrals from the left hand
side of the resultant inequality and designating z; = z(iT), 2(t;) =
lw(x, )13 + lulx, t)]3, we obtain () =(1+ C7)z; + Cgfﬁz(t)dt +
C57°. Assuming that #; = 7(i + 1), from Gronwall’s lemma we obtain

2(t) = zi41 =[(1 + C17)z; + C37%exp(Co7), whence 241 = (1 +
C47)z; + Cs7°. From there, it is easily demonstrated that z44 =
G+ (14 Cr)+ (1+Cyr) + - + 1+ Cy7)] = Cr2(1+ Cyr)'™!
—1)/Cy) = Ce7>.

Returning to designations (w, #), we obtain

supg =, = r(Iwll5 + l[ull3) = Ce7™ (2.116)

From (2.113), (2.115), (2.116) we derive

J (lwsll3 + llull3)de = Cy7 (2.117)
I*

i

From (2.116), (2.117) we obtain an estimate of the convergence rate of
(2.110), and from (2.110) and the interpolation inequality supg|z| =
C(BA(z]l Vz)ﬂ(||2||co)17d, 6€(0,1) we obtain estimate (2.111).
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Figure 2.20 The computed distributions of saturation and dimensionless temperature
0= ((0‘921%‘1)) during consecutive moments in time, up to the point when the solutions

reach stationary profiles (the vinculum over 6 has been omitted in the diagrams).

2.7.4 Numerical Calculations

We have carried out numerical calculations for problem (2.108), basing
them on the substitution of the time derivative with backward difference
and on the existing method of solving the analytical problem (2.108) [93,
99]. Fig. 2.20 shows the computed distributions of saturation s and dimen-

sionless temperature 0= (%i:%])) during consecutive moments in time, up

to the point when the solutions reach stationary profiles (the vinculum
over 6 has been omitted in the diagrams).

Fig. 2.21 shows analytical solutions of s(y) (Curve 1) and 6(y) (Curve 2)
(y = x/+/t + 1) are shown. A comparison of Figs. 2.20 and 2.21 demon-
strates that, as was to be expected, stationary solutions of (2.108) coincide
with analytical solutions of (2.106). Therefore, while the numerical algo-
rithm of the analytical solution of (2.107) forms an integral part of the
method of solving (2.108), the analytical solution itself forms one of the tests
of the numerical solution of (2.108).

2.8 COMBINATION OF THE PRINCIPAL MODELS
OF TWO-PHASE FLUID FLOW

This section is devoted to the theoretical and numerical analysis of the
problem of combining the two principal models of two-phase fluid flow:
the Muskat-Leverett model (MLT model), which takes into account the
discontinuity between the capillary pressures of the phases, and the
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Figure 2.21 Analytical solutions of s(y) (Curve 1) and (y) (Curve 2) (y = x//t + 1).

Buckley-Leverett model (BL model), in which the phase pressures coin-
cide. Problems of this type need to be examined when modelling the var-
ious stages of water drive, each with a different duration and sweep. For
instance, in water-encroached parts of the formation, from which virtu-
ally all the mobile oil has been displaced, the effect of capillary forces on
two-phase fluid flow is slight, and the BL model can be used. Where
water encroachment is slight, capillary forces must be taken into account,
and therefore the MLT model must be used.

Another situation requiring a combination of the two models is the
so-called end effect problem which, in mathematical terms, amounts to
the gradient of phase saturation being unlimited in the vicinity of produc-
tion wells. To obtain boundary conditions capable of numerical imple-
mentation for a production well, it is usually assumed that phase pressures
coincide in the near-wellbore zone.

Having made this assumption, and regarding the near-wellbore zone
as fairly small, we can derive the conditions of proportionality of the
phase flow rates and phase “mobilities”.

2.8.1 The Combination of MLT and BL Models

In this section, we consider a one-dimensional MLT model of two-phase
fluid flow in a homogeneous isotropic porous medium, in the absence of
mass forces (Chapter 1, Section 1.1):

ms; = (Ka(s)sz = b(s) QD)5
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Here s is the dynamic water saturation; m is porosity; a = j'(s)k;(s)ka(s)
(k1 +k2)_1, ki = k; = E,r,ufl, k; and {; are phase permeabilities and viscosities;
j(s) is the Leverett J function which reflects the presence of capillary forces;
b(s) = ky(ky + ko)~ is the “mobility” coefficient of the displacing phase
(water); K = ko cos 0(m/ k)2 ks permeability; 6 is wetting angle; o is
interfacial tension.

Let us introduce the following new variables: x = L™ !X, t = (mL)"!
J() Q(&)d¢ (L-characteristic length) and let us rewrite the initial equation
in the form

se = (A(D)a(s)sy —b(s)), = —vy, (2.118)

where A= K(LQ(#(1))) ';v=1(x, ) is the relative flow velocity (flow
rate) of the displacing phase.

Let the line I'y = {x, t|x =0, t = 0} represent the injection well, I'; =
{x,tlx=1,t=0} the MLT and BL model combination line, and
Ii={x,tlx=1=1,t=0} - the production well. Let us designate €2, =
{x,t]0 <x<n,t>0}.

In region €2, the two-phase fluid flow is described by the MLT
model and therefore in (2.118) A\ # 0, whereas in region 2 = (€2;/€) it
is described by the BL model and therefore in (2.118) A = 0. To solve
equation (2.118) for s(x, 1), (x, ) € €2, and the resultant function \(t) we
propose to examine the initial boundary value problem

Sle=0 = 15 sl,=0 = s0(x); x€[0, I]; [s],=; = [v],=1 = O, (2.119)

where [f],—; ={f(1 =0,t) —f(1 + 0,1} is the discontinuity of the func-
tion f(x,t) on I'y = {x, tlx =1, =0}.

If the function s(x,f) is smooth, then the equality asi|,—1_o=0
follows from condition (2.119) along the model combination line T'.
As a result, the problem divides into two problems, one in €2y and other

in Q=(Q/):

Ls = 5 — (Aasy = b), = 055] =0 = 50(x), sl,=0 = 1, sl =1 =05 (2.120)

vy + @y = 0; 0|20 = v0, vl =1 = v1(2). (2.121)

Here, ©,(v) =b"D(@),s=b"(v) is the inverse of v=b(s),vy =
b[so(1)], v1(¢) = b[s(¢)], and the function s(t) = s(x,t)|,=; is determined
from the solution of (2.120) for s(x,f). The coefficients a(s), b(s), A(t)
satisfy the standard requirements of smoothness and the existence of a
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fixed sign, which follow from the physical properties of the functional
parameters ki(s), k2(s) and j(s) which define the MLT and BL models
(Chapter 1, 1.0):
i. (a,b)e C>T0,1],a>0;(a, b, b)) >0,5€(0,1); a(s)s (1—5)" =M<
00, b(s)s™ " =M, s€[0,1],0 =+, =4, only in isolated points s, €[0, 1];
ii. so(x)e C*0, 1], 50x(1) = 0,50(x) =6 =0 at x=1,0<sp(x)<1,x€
(0,1); M) e C>79[0, 00),a>0and 0 < 6y = A1) <M, te[0, o0).

2.8.2 Regularization

Let us regularize equations (2.120), replacing the coefficient a(s) with the
function a-(s) = a(s) + &, >0. Problems (2.120) regularized in this way
have a classical solution s(x, ) € C2T®!T2/2(Q)) = H2 (), o> 0 [83]. To
obtain estimates of the solution of s(x, t), which do not depend on the regu-
larization parameter €, let us extend the solution into the region (2, =
(0,2) X (0, T), assuming that 3(x, f) = s(1 — x, t) when x€[1,2]. The resul-
tant function s(x, t) = s(1 — x, 1), x€[0, 2], (s(x, ) = 3(x, t)x€[1,2]) satisfies
the initial boundary problem

Los = 5= (Maso), +1(0bse = 0, (v, )€, (2.122)

$|t:0 = SO(X)a xX€ [03 2]3 S|x:0,2 = l> te [Oa T]’ (2123)

where y(x) =1 at x€[0,1],50 = 50(2 — x),¥(x) = — 1, at x€[1,2],s0(x) €
c**t90,2].

Let us now proceed to the regularization of problem (2.121).

Let us introduce the function u(x,t)=v(x,t)—vo,x€[1,1],vo=
b(6) = const and extend it for t <0, assuming that u(x, ) = u(x, — ), 1 <O0.
Let us consider the following Cauchy problem within a band II; =
[, t]1 <x <L |t| < 00}

AM = Uy + Sot(“) — Uy = 0; u'xil = M()(t)a |t| < 0, (2124)

where uy=vp() =6 at >0 and uy=vy(—1)—8 at <0, p(u)=

©o(u+96).
At e =0, the function v(x, t) = u(x, t) + 6, (x, 1) € Q, Q = (£;/€2) satis-
fies equation (2.121).

Note The problem (2.120), (2.121) and the corresponding regularized
problem (2.122)—(2.124) involves the combination of the solutions of
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s=s(x,1),(x,£)€Q in (2.120), which is evolutionary for ¢, and of the
function s(x, £) = @[u(x, )], (x, 1) €Q = (£;/€1), expressed by the solutions
of u(x, t) in (2.121) and (2.124), which is evolutionary for x.

The problem of the conjugation of orthogonal flows of the values of s(x, t)
as applied to boundary layer equations was first examined by Monakhov and
Khusnutdiniova [94].

2.8.3 The Solvability of Problem (2.120)

The maximum principle provides the following values for the solution of

(2.122), (2.123):
0<d=s(x,)<1,(x,1)€€, (2.125)

so that when € =0, (2.122) becomes degenerate (simplified) at only one
value, s = 1, of the desired solution.

Assuming that 0 =1 — s, the results described in 2.0 provide us with
an estimate which is uniform for €

alsy| =M, (x, ) €. (2.126)

Consequently, ¥(x, t) = g(x’r) a-(€)d¢ is a Holder continuous function,

ue g’1/2(92), as is s(x,1)e C%(), 3>0 (2.0). Substituting s(x,)e
C%(,) into coeflicients a.(s) and b(s) in (2.122), we obtain the following
estimates (2.0):

IsI| CP ()| = Mo; |5, [|CH(Q,)| = M(p), pe(0,1), 3>0,  (2.127)

where 0, = (p,2 — p) X (0, T), with the constants M, M not dependent
on €. We have thus proved the assertion.

Lemma 1 Problem (2.120) has at least one solution s(x,t)e H>*®

(£21), @ >0 and the estimates (2.125)—(2.127) are true for this solution in
regions {21 =€), and Q?} =(p,1) X (0, T)=£,,0 < p <1 respectively.

Note 2 Because (2.120) does not degenerate in the neighbourhood of
Iy ={xtlx=1,t=0}, therefore s(x,t)e H***(UT,),T1,={x, tlx=

1,t= p>0}. If in addition to assertions (i), (ii) point x = 1, t = 0 also satisfies
first-order matching conditions, then s(x, ) e H>**(Q,T'y) [83, p. 364].
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2.8.4 The Solvability of the Conjugation Problem

On the basis of assumptions (ii), the function ¢ = @(v),v=u+¥§ in

(2.124) has the properties:
2

d d
0 <d—(p(s) < o0 at s€(0,1) and function d—f(s) can have only a finite
v v

number of zeroes in the interval s€(0, 1).

Determination Let us define the generalized solution of the Cauchy problem
(2.124) for € =0, as a function u(x, t), bounded in band II; which assumes
its initial condition at x = 1 and has the following properties [67, 76]:

1. It is continuously differentiable everywhere in II; except for a finite
number of smooth lines, where there exist limiting values u(x, t) located
on either side of the line of discontinuity, possibly with the exception
of a finite number of points;

2. The inequality

J;H (Ju — C|f; + sgn(u — O)p(u) — p(O)])frdtdx = 0. (2.128)

is satisfied for any constant C and any smooth function f(x, ) =0,

finite in II;.

It clearly follows from the inequality (2.128) at C = Zsup|u(x, t)| and
due to the arbitrariness of f(x, ) =0, that u(x, t) satisfies problem (2.124)
for € = 0, within the meaning of the integral identity

f{; (uf, + p(n)for)dtdx = 0, Y e C oo (IL)). (2.129)
1T

Similarly, the Cauchy problem for the parabolic equation (2.124) at
€ = 0 has a single solution u(x, t) e H**%(Il;), which satisfies the inequality
(2.125):

V(O) =u(x,t) + 6= (1), (x,t)ell,.

The truth of this assertion follows from the results obtained in [67; 76]
and from the passage to the limit at € — 0.

Lemma 2 There exists a generalized solution of the Cauchy problem
(2.124) at e = 0.
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Theorem 1 The problem of conjugation of (2.120), (2.121) has a gener-
alized solution s(x, t), (x, ) €(€;) with the following properties:
a. s(x,)e H*9(Qy), a > 0;
b. s(x, 1) = b u(x, ) + 6], (x, ) €2 = (1 /Q1), where the function u(x, t) is
a generalized solution of the Cauchy problem (2.124) at ¢ =0 .
The truth of this assertion follows directly from Lemmas 1 and 2.

2.8.5 Finite-difference Equations

The Muskat-Leverett model (MLT model). Let us introduce a uniform grid
E with nodes x; =ih,t,=n7,i=1...N,n=0,1...M;,h - space coordi-
nate interval, 7 - time interval.

Let us approximate the initial boundary value problem (2.120) con-
taining the regularized operator Les with the equation

Sn+1 _ Sn 1
i [ n ntl _ ntly _ n ntl _ ntl
n+1 n+1
ST — )
52(%)’1:1 N —1;
h
n+1 n
ST TSy 2
ntl _— n_q. 0 _ .°N N _ _ = n ntl _ nt+l
so =so =18 =T T T ()\aSN_%(sN SNy )

n+1 __ nt+1
[N SN=
sN h

We have taken the relationship between the grid spacings to be

(2.130)

7 = Kh?. The second boundary-value problem [142] was approximated in
the same way.

We used regularization to improve convergence of the numerical solu-
tion of (2.130).We compared (A (E) — A.(E)) = 6(E), where 6(E) is
the regularizer error. We selected the largest €* which still retained the
order of approximation of ~7. In our numerical calculations, we used
the regularizer 1078,

We obtained the numerical solution of (2.130), by the right-hand-side
run method [68].
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We selected the function 5= ax(1—x)>+ ay, which satisfies the
boundary conditions 5|,y = s{; = 1,5;|,=1 = 0, as the test function.

The values of 5 served as initial data for (2.130) - s|,—o = So(x). We
then calculated L.5 = f(x) using the regularized operator L. from (2.130).
The grid value of f(E) was added to the right hand side of part (2.130)
and the resultant solution s(x, f) was compared with 3(x).

We tested the second boundary value problem in a similar way. The
order of magnitude of the error was O(T).

We also compared a mixed and a second boundary value problem as
part of the same test. The error (at h=10"2, K =1), A(0) = ||so(f) —
30)| & 1074 A(E) = ||s'(x, 1) — s2(x, 1) || & 107> where so(f) = s|,.—, was
found from the solution of the second boundary-value problem; s'(x, ¢) is
a grid function which solves the second boundary-value problem with
f(E) in its right hand side, and s*(x, f) is a grid function calculated from
(2.130) with f(E) in its right hand side.

The Buckley-Leverett model (BL model). Let us approximate (2.124) by
the following finite-difference equation:

n _.n n _ .n—1 n+1 __ n n—1
Pivr 7 Wi o Min T Wi c Wiy T 2uh g Fuly S M =M
A Pui -2 > U i+1> o 0

(2.131)

Note that in (2.131), the evolutionary variable is x, while ¢ plays
the role of the space coordinate. Accordingly, we selected the relationship
between h and 7 on the basis of the condition h = K72. We obtained the
numerical solution of (2.131) by the right-hand-side run method [67].

We selected a regularizer for (2.130) as well. In our numerical calcula-
tions, we used a regularizer of 1077,

The test procedure was as described for (2.130). We used the function

3= ax® + ay, where a, and a, were selected from condition M =5 M =

s A =uM as the test function. The deviation from the test solution was
of the order of O(h), where at x =1, h~10"*.

We examined the regularized problem (2.121) with the initial bound-
ary conditions described below, for small (I — 1) values: v|,— = b[so(1)],
vl=1 = b[s(1, D], vl=1 = B[S(D)].

A comparison of the solutions of this equation at t€(0,1) with the
solutions of (2.124) showed the order of the error to be ~107>. Since
©,, 1s sign-variable in the interval u€(0, 1), we usually solved problem

(2.124) in our numerical calculations.
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2.8.6 Numerical Solution of the Problem of Conjugation

of Equations (2.120), (2.121)

Equation (2.130) was selected because of the need to calculate s|,—; with-
out introducing additional grid nodes.

In our numerical experiments, we used the normalized functional
parameter values quoted in [142].

When performing numerical calculations, we used a grid E; for
(2.130) with h=10"2,7=10"*,(K =1). The s(t) = 5|, function calcu-
lated from (2.130) was monotonic and therefore, when 7 was increased
by 100 times, the values of s(¢) on the new grid E; were calculated for its
corresponding nodes. Since in (2.131) the variable x is evolutionary,
we assumed i =72 = 10"*. We then found the initial data for the calcula-
tion of BL ! = b(s;)) — &, making the calculation in accordance with
(2.131). At small values of (I — 1), the deviation between the solutions of
the conjugation problem and the mixed problem in the segment [0, [] was
of the order of 107> —107*. At large values of /, the solutions did not
compare well.

2.8.7 Discussion

Low water encroachment levels produce a “blocking effect”. In the blocking
effect, the wetting phase does not flow out of the formation before
the breakthrough (or before the arrival of water at the production well as
predicted by the BL model). The effect is due to the change of the sign of
bs. The blocking effect becomes stronger when [ increases, but is not much
affected by changes of A(f) at Q= const. When u = p,/u, (the wetting/
non-wetting phase viscosity ratio), decreases, so does the blocking effect.
When different p values are considered, the water encroachment of the pro-
duction well, calculated from the conjugation problem for a moment a time
following the breakthrough is different from that calculated from the mixed
problem (2.120) for the segment [0, []. For instance, if g is small, then the
water encroachment predicted by the BL model shall be less as compared to
problem solution (2.120) on [0, [].

Fig. 2.22 shows the movement of water saturation fronts at
w=0,5A=0,629;50 = 0,041 (normalized). The solid line shows water
saturation calculated from the conjugation problem, and the dotted line
the saturation calculated from the mixed problem for [0, I].

For comparison purposes, Fig. 2.23 shows the movement of water sat-
uration fronts calculated using the same parameters from the conjugation
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Figure 2.22 The movement of water saturation fronts at u=0,5;\=0,629;
so = 0,041 (normalized).
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Figure 2.23 The movement of water saturation fronts calculated using the same
parameters from the conjugation problem (2.122)—(2.124) (solid line) and from the
second boundary value problem on [0, /] (dotted line).
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problem (2.122)—(2.124) (solid line) and from the second boundary value
problem on [0, /] (dotted line).

2.9 ONE-DIMENSIONAL FLOW OF TWO INTERPENETRATING
VISCOUS INCOMPRESSIBLE FLUIDS

In this section, we prove the theorems of the existence and uniqueness of
the first boundary value problem “im kleinen” (in small), using the initial
data for the equations of flow of two interpenetrating viscous incompress-

ible fluids.

2.9.1 Problem Statement

Below, we consider one-dimensional isothermal two phase flow of viscous
incompressible fluids, occurring at the same pressure (Rakhmatulin’s hypoth-
esis, [95, 112]) and with no phase transitions. Continuity and momentum
equations for each of the phases (i = 1, 2) have the form [95, 112]:

op, 0 Ov; Ov; s
Lit Z(pw) =0,p, (ﬁ + ,,.ﬁ) = 2% 4 F.

Ot Ox ot ' Ox Ox

In these equations, v; is the relevant phase velocity; p; is reduced density,
linked to true density p,” and volume concentration s; by the relationship
p; =sip). The condition s; +s, =1 arises from the determination of p;.
The phase pressure tensor o; is an analogue of Stokes’ hypothesis [135]:
o;=-p+pu g—i, where p is pressure (common for the two phases), p, >0 is
the dynamic viscosity coefficient of the phases. It is postulated that forces F;
have the form [95, 135]: F; Zp% + ¢, + pg, where ¢, = K(v, —vy),
¥, = — ¢, K - phase interaction coeflicient (a present function of their
concentrations [95]), and g = (x, f) is a given. The condition p! = const >0
yields the following closed system of equations for s;(x, ), vi(x, ) and p(x, t):

@
ot

o) (N
Pi B v o o HSi o S'@x i T P& .

si+to=1,0, =K@ —r)=—p,. (2.134)

0
+ () =0,i=1,2, (2.132)
Ox
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We consider this system for the region Qp = {x|0<x<<1} X (0, T),
in the following conditions:

vilag, = 0, vil=g = v} (x). (2.135)

It is assumed that the initial value of s”(x) is strictly less than unity and
strictly positive:

0<my="(x)=M,<1,xeQ, ={x]0=x=1}. (2.136)

In what follows, we use the designations adopted in [2; 83] (in partic-
ular, ||u(t)||— is the norm of u(x, t) in L,(2), u, = %)
We will define a generalized solution of (2.132)—(2.135) as consisting

of a set of functions (s;, v;, p), i =1,2.

si(x, )€ Lo (0, T35 W3H(2)), su€ Lo (0, T3 W, (),

vi(, 1) € Log (0, T3 W5 (1) 0 Lo(0, T3 W5 (), (v, pa) € La(Qr),

which satisty the equations (2.132)—(2.135) at virtually every point in Qr
and which assume specified boundary and initial values in the sense of the
traces of the above functions.

Functions (s, v, p) are termed classical solutions of (2.132)—(2.135), if
they have continuous derivatives forming part of (2.132)—(2.134), and
satisfy the equations together with the initial and boundary conditions as
continuous functions in Q; = Q X [0, T1.

Theorem 1 Let the data for the problem (2.132)—(2.135) satisfy the following
conditions: K(s)e C*(0,1),g€ Lo(0, T; W, () and in addition, in the case
of (2.136):

W(x)e W) (Q), " (x) e WE(Q),+)(0) =v'(1)=0,i=1,2.

In those conditions, there exists a ty >0, 1ty€ (0, T) such that for all t =t
there exists a unique generalized solution (s, v;, p) of the problem, and there exist
numbers m, M such that

0<m=s(x,)) =M<1,(x,0)eQ, = QX[0, f]. (2.137)

If in addition g(x, f)e C' 71 T2(Qy), (*(x), u'(x)) € C*T(Q) and the condi-
tions of conformity of initial and boundary data are satisfied, then there exists in
Q,, a unique classical solution of the problem, which satisfies the inequlity (2.137).
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The proof of Theorem 1 appears in [101] and involves the investiga-
tion of the auxiliary problems (2.141), (2.150), (2.156) discussed below
(in these classes of functions it is possible to change from the auxiliary
functions (s, u, R) to (s, vj, p)).

2.9.2 Continuation of the Solution

In this section, we derive estimates of solutions dependent only on the
data of (2.132)—(2.135) and on T, and independent of the interval of
existence of the local solution [0, ty]. This makes it possible to extend the
local solution to the entire segment [0, T7.

We adopt the following expression for the phase interaction coeffi-
cient: K = Ky(s)[s(1—5)] ", s= s, 8e(—00, +00) and assume the exis-
tence of a constant ky such that 0 < k; ! = Ky(s) = ko for all s€[0, 1].

2.9.2.1 Velocity and Concentration Energy Inequalities

Lemma 1 The following equations are satisfied for any t€[0, T]:

1 1

six, Hdx = J S (x)dx, i =1,2 (2.138)

0=s5/(x,)=1,x€[0, 1];J
0

0
and there exists a bounded measurable function a(f) such that 0 =<a(t) =1,
sia(r), 1) = 57 (a(1)).
The proof of the above is identical to that set out in [2, p. 50].
From (2.132), by virtue of (2.134), (2.135) we obtain
s+ (1 — sy =0. (2.139)

Let us assume (0 = pt; + fby, 81 = p4y/ s B> = o/ pt and introduce a new
target function u(x, t) = B,v1(x, t) — Bova(x, t). Using (2.139), we obtain

1—35

", vy = —iu, a, = B1(1 —s) + Bys. (2.140)
au au

=

Hence, at i = 1, equation (2.132) may take the form

s(1—y5)

a,

s+ (a(s)u), =0, a(s) = sl =g = s"(x). (2.141)
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Lemma 2 The following inequality is true for any t€[0, T]:

1 ¢l
2 0.2 2 P N2
L g oy PiSi; dx + ZJ J { E g Hisiviy + K(vy —1») ]dxdT

0J0
= Iy S AP+ 2S5 ) ) ) (1) e 0 + Lo )

+ [ [ |er(x 1) dxdr) = Ni(0).
(2.142)

Proof Let us multiply equation (2.133) by v(x, t) and va(x, t) respectively,
and let us add the resultant equalities. After integrating over Q, we obtain
the following equation (having implicitly assumed summation of i from 1
to 2, over a repeating index i)

fol p)sivrdx — fol p?s?(u?)zdx +2 fol fé(HiSngc + K(v; — 1)) dxdT

=2 J(: J"Or pYswigdxdr = 215(1).
Taking into account (2.138) and (2.132), we obtain

1 1 ¢l
Li(n= (le_l p?J()s?(x)dx) (J()(Lq(x, 0)| + |g(x, 1)) dx+ J J |gT(x,7')|dxd7'>.

0J0

and thus arrive at (2.142), which proves the lemma.

Let us consider a set of functions 14(s), which satisfy the equation

&> 1
dszﬁ = K09 (s(l —s)

For >0, let us represent the right hand side of (2.143) in the form
§Os) + 5(1)(5), where

5O (5) = Ko(s) " Zﬂﬂ Ko(s)

21— =1 TG — )1

245
> ,5€(0,1),8e(—00, +o0). (2.143)

5V () = K Z”H b Ko(s)

(1—5) s =1 (1= sy P
n is the whole part of a real number 3,9 = — ne[0, 1]; ¢, b; are positive
numbers obtained by constructive calculation. In that case

Py(s9) = Co + () + 1(s), (2.144)
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where Cy is an arbitrary constant

1 1 s 3
(0) §) = (0) (1) §) = (1) :
$0) j (Lé (y)dy>ds,wﬁ B J (Joé (y)dy>d§

There exist positive numbers C(ﬂo)and C(ﬂ]), dependent only § and kq,
for which the inequalities are true
0 k! SR k! (1
Yy ()= s y'(s) = -Gy
260 +08)5 2801+ B)1-9"

Having selected Cy = C(O) + Cm in (2.144), we obtain

k! 1 1
0= 35 (5 75) >0

For 3= 0 we have 9, = ¥3]5-0 = k()_11210, where 7:00 =—Ins(1—3s)+
2sln s+ 2(1 —s)ln(1 —s) + 2> 0. For 3 <0 there exists a bounded solu-
tion of (2.143) in the form (2.144), which is positive for all s€[0,1].
By virtue of (2.136), we have ¢4(s)|,—g = C(mqo, My, 3, ky) < o0 for all 3.

Lemma 3 The following inequality is true for any te [0, T:

! 2
J <Zl 1s(x, )(Szx(x t)) +¢ﬂ(s(x If))) dx =

0

1
| [Z2< TS +2(”’) L0 ))>+4wﬂ(s0<x>)]dx

0

0 t
; 8<& " &>Nl w120 | j lle, 7)1 + lgw(o P)dxdT = Na(t).
My Ho 0J0

(2.145)

Proof Let us substitute derivatives v;, in equations (2.133), taking them
we from the corresponding equations (2.132). Let us now multiply the
transformed equations (2.133) by s;./s; and add the resultant equalities.
Integrating over Q, and taking into account the estimate p)v;s; =
pis2 /4si + (p0)siv? / u, we obtain the inequality (by summation over the
repeating index i from 1 to 2)

Ju, 2 dx= J
4 )St

,0? Jg J"J sfvicdxdT + pf.) Jg J"01 sixgdxdt + I1(1) + L(),

ix

3#1( ) (:O;) 0( 0)] (P,) J SV-de+
0

i

(2.146)
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in which

L) = L E K%’“(Vz — v))dxdT, L(1) = JO J; K(ll__six (v, — vo)dxdr.

Let us transform the terms I;(f) and L(¢), expressing vi(x, t), in accor-
dance with (2.142), through u(x, t). Then

L)+ L(r) = —Jt Jl KdedT (2.147)

odo s(1 5)%

Let us then write down equation (2.141) in the form
(1)), + (a()Y(Iu), = als)y)"(s)usy.

Integrating the above equation over Q, and taking into account
(2.147), we derive

1 1
L(t)+ L())= —JO (s, £))do + J() wﬁ(so(x))dx.

Let us now estimate the remaining terms of the right hand side of
(2.146). It follows from (2.142) that

ZQ J ,ols, v2dx + Z; 1LJ

0 0
SVQ,»dxdTSZ lat + L] Nj.
= 0 !

H 2%)

Let us integrate terms containing g¢(x,t) by parts and estimate the
resultant relation using (2.138) and the multiplicative inequalities [83,
p. 79]. We will then obtain

t

1
F}la &MMTSBWJﬁﬂmm+@mmmMW

00 00

and thus arrive at (2.145), which proves the lemma.

In what follows, it is assumed that functions Ni(f) and N,(¢) are
bounded for all t€[0, T]. By virtue of Lemma 1 and of equation (2.145),
the function

s(x,t) 12
o= [ (sammun) o
s(a(t),1)

is also bounded for all (x, )€ Q. Therefore at 3=1 there exist numbers
m and M, depending on the data contained in the problem and on T,
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and such that inequalities (2.137) are true for all (x, f)€ Q. The values m
and M may be specified constructively if we include the estimates which

follow from (2.144), (2.145) at B =1:

s P A R T (et \ YN
Jo L(l 5 sﬂ(l—S)ﬁ] = (muz T )NZ(O = N5 ().

(2.148)
Lemma 4 If $=1, then inequality (2.137) in which m = mge ™, M =
(1 —Mpy)e ™™ at =1 is true for any te[0, T],x€[0,1] If 3> 1, then

B—1 1%
m=kmo, M =1 — k(1 — M), k= (1 + %(B_DNW%T) i

Lemma 4 yields the estimates

J)(”Mx(T)”Z + (D1 + [u(7)s (D127 + lu()I* + s(DII* = CIN3(2),
(

(2.149)
in which the constant C; depends only on 3, p,, p;, m, M, ky.

Note 1 At sufficiently “low” values of N,(f) estimate (2.137) is valid also
for f<1.

2.9.2.2 Estimation of maxg < =<1|u(x,t)]
By excluding pressure from system (2.133), we arrive at the following

equation for u(x, )(ulaq, = 0, ul,— = B1{(x) — B(x) = n'(x)):

N TC RO 10 o
)01 e " T ar iy " <“()%@n@) b“)>

sy — ax(s)umy — az(s)u’s, + bo(s)go,

(2.150)
where
Ko(s)bo(s) au(s)
V1—1/51/62, :poap _p1+p2’ 0()_ (?2+[;)()’0()_ Z(S),
0 /
a, = (1 —s) + ans, ;= Z =1,2,a(s) = a1(s) + 223 - 412(5) *
M ai(s) = (1 _S) — 04252) 5 1(5) = ,g() (o — Oéz)g

R T a2
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Let us assume that

bo(s)

2N
a,(s)

ming=,=1do(s) } 5

G = min{V ming=,<1 bo(s), viming=e=<;

|4,(5)]

— o Maxo==1bo(s),
a;(s)

G = maX{maXosSsl |a/2(5)|, v maxo==1by(s)

maxg=,=1|az(s)| }

Lemma 5 In the conditions of Lemma 4, the following estimate is valid

for all t€[0, TT:

maxo=y=1|u(x, )] = [maxo=y=1u"(x)] + Co3 [ maxo=y=1]g0(x, 7)|d7]
CQ
X exp{2C1 ?31\73(0} = N4(1)
2

(2.151)
Proof Let us multiply equation (2.150) by u*~'(x,),/>1 and integrate

the resultant equality over x€[0, 1], integrating term ax(s)u*'u, by parts.
This yields the inequality

1

2 d ", RPN
— | wdx+QI—1) | u" Tuldx+
21Cy dt ), 0 0

|
-
G Jo

The following estimates are true for the terms A; of the right hand
side of (2.152):

(21—1)J1 22, (G 1 1 J Lo
A=—7 dx+|—) —— <<t | ——— || — “dx,
T R o A TR ) B V) V) O M

—u"s —u
a(s) " a'th()

1
21 2 + 2/] dx

_ 3
lulldx = E _ A
-

(2.152)

1
T+ — | lusi| + ”2|5x| + |go|
a(s)
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1

Ar=

' G\ (!
J —u2132d +< ) J a(s)u*dx,
2 Joals) G
s 120 , @-1)/21
A3_—<J |20 |21dx) <J uZIdx) .
0} 0

Let us select a number [y on the basis of the condition

1 (G) 1 1 _ 1
> C (210 — 1) maxo=x=1 =

a(s(x, 1)) 4

In that case, for all [ = [, we have

1 ! 21—1) (! LN 1
ij wldx + g‘[ PP dxe + J — A2+ | dx
ZZCQ dt 0 2 0 * 4‘61(5) x

0 a1+;3(5)

1/21 , (21-1)/21 2
Cs C

=— <J lgo |Zldx> (J u2[dx> + (= J a(s)u* 2 dx.
C2 0 C 0

1

(2.153)
Let us estimate the last term of the right hand side of (2.153)
follows:

1
J a(s)u? 2 dx = maxg = = 1a(s)u?(x, 1) J u? dx.
0

10 1/21
This yields the following inequality for y(¢) = (Jo uZIdx) :

e 1 12 =2
ﬂ =G J g()[dx + —2 maxg=,=ials)u’(x, t)- y(0),
dt G

from which it follows that

1 1/21 CZ t
Y =1y0)+ G <J g(z)ldx> eXp{ESJ rnaxogxga(s)uz(x, T)dT}-
0

2Jo

(2.154)
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Taking into account the estimate which follows from (2.149):
t
|| w02 i = s o 9)N(0)
0

and passing to the limit in (2.154) at | — o0, we obtain (2.151).

2.9.2.3 Estimation of Derivatives
Let us express the derivative % as stated in equation (2.132) and substitute
it into equation (2.133). We will then obtain

OR; OR; op | ¥ 0 0 f1; Osi
S D P e R i D210 (2155
" ox ox g 18 P e ( :

i
Let us introduce function R(x, ), assuming

p s

—_ 0%
@8@6 + b(s)u, b(s) = p’ —.

a

R(x,t) = Ri(x,t) — Ro(x,t) =

By excluding pressure from (2.155) and using (2.140), we arrive at the
following equation for R(x, )(U = d'(s)u, & = prp| — p, p5):

6 1—35)—
Rg+ UR, — 13'82 uRs, = —— la(s)uu, + M—Z)ﬂﬁ“zsx
a a, a;
K
— 5~ u+ p’0 = fi, Rli=) = R'(x).
aza(s)

(2.156)

Let us assume that p(x, £) = a(s)R?(x, ). By virtue of (2.141), (2.156)
we have

p, T (Up), =2a(s)Rfy = f>. (2.157)

The following estimates are true for p(x, f) and f>(x, ):

I/ pOII” = CuN3(0), [h] = CylIRu| + pu? + [Ru’| + [uR] + |goR]),

where the constant C,; depends only on m, M, p;, ko, p?, i=1,2.
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Lemma 6 In the conditions of Lemma 5, the following inequalities are
true for all 1€[0, T1:

t
lse(u()I1? + N (D)1 + J lur (D12 dT = Cs(Ilsyu’ I + 1wl
0

’ (2.158)
! J() leo(MII7dT + KiNs() = Ns(0),
J; <J; |mx|dx> dr = CS(NS + KZNz,(I)), (2159)

where the constant Cs depends only on m, M, p;, ko, p?, i=1,2,
K1 () = maxp=y=1maxo=,=|g(x, 7)| + Z?zl (Ni’)" + (1\73’)3 + (1\13[)3/2 +

(N3’ + NiNI + (NSNS, Ko(f) = 1+ N + NI, N, =
maxo=r</N3(7), N} = max =< Ny(7).

Proof Let us rewrite equation (2.150) in the form

a, / (s) v3,0, Ku 1 5
- - XX 5 UySyx + = - - = %
au ut vu ( ) 2 z Mp g() p()a(s)ai 2 (ﬂl (S)M )

, 2
_[% s, — Vﬁ1fz3¢’(3) 2p0a—puR + poa_p u? |u=f.
a H=ay, a A

Let us now multiply (2.160) by a(s)u; and integrate the resultant
equality over x€[0, 1]. Let us integrate the left hand side of the equa-
tion by parts, using (2.157). These transformations yield the equality

(v2 = v Ba/ 12°):

(2.160)

14 (! 1 1
——J va(s)u? + Vzﬂuzp dx + J a(s)@utzdx = - KJ d (s)Usyiidx
2dx 0 * (1 0 a 2 0 *

1 i

1
- gJ( a(s)d (s)uyd > L (?) a(s) pudx = v ) cf 9 Uunpitdx

1 "
+ EZJ (_13) W fdx + J a(s)f3udx = ZB (0).

(2.161)
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Let us estimate terms By, B3 — By from the right hand side of (2.161):
By () = Cmaxg =y = 1]u(x, (o, O] s (DI (O],

|Bs(D)] + |By(0)] = Cmax = =112 (x, D, )] s (D> =

Cmaxg = = 1| (o, D1 s - (@) - (D],

|Bs(0] = Cllse(u(n)ll[(maxo = = 1 |uCx, D (s + (D)) + ()l

((maXOSxS1 |”(xa t)|)3 + maxp=yx=1 IM(.X', t)| + maXp=x.x=<1 |g0(x’ t)|)]’

|Bs(N)] = e lu(n)|1* + g—cj[llgo(t)ll2 + (maxg = o= 1|, D (Is(Du(n)||* +
(D17 + (maxg = =1 [, DD u()[[*)]-

Here € is an arbitrary positive number; and the constant C depends
0 —
only on m, M, p;, ko, p;,i=1,2.
Let us rewrite B, in the form

1 1 1

v a

By(t) = EJ (ad) usyidx + J a_p ad unu,dx — VJ (a/)zusxuidx +
0 0 Ay 0

1 1
aa 5 . / — > g
| Situpt | admgis= 3T B0

0 0

Bl(¢) and B5(f) are estimated in the same way as Bj(f), while B3(f) is
estimated in the same way as Bs(f). For B3(f) and B3(f) we have

C
1B3(1)] < & |lu(0)))* + 5(maxO5xs1|u(x, O (D117,

IB3(0)] = Clluy()l[maxo == 1 [0, )] ()] + maxo == 1 |uCx, DI (lu(D)
F (DN + s (Du(e) D]

Here &, is an arbitrary positive number and the constant C depends
0
only on m, M, p;, ko, p;,i=1,2.
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Let us introduce the following designations:
A(r) = maxg = = 1max0 = 7 = tfu(x, 7)|, B(1) = maxo =, = | u(7)I%,

D(t) = maxg =, = |ls:(T)II?,

2(1) = L(nux(ﬂuz IO + s @u])dr.

It follows from (2.148) and (2.149) that
A(f) = Cmaxo = =,Ny(7), B(t) + D(t) = Cmaxg = <,N3(7), Z(t) = CN5(7).

Therefore,

(IBs(T)| + |Bo(7)| + |B3(7)| + |By(T))dT =< (g1 + €2)

0
t

! C
J llur(7)* || dT + 5_J lgo(T)II>dT + C[maXOsxs1H13X0575r|g0(xa 7)|
0 1Jo

1
+ —A2+A+ A+ A‘ﬂ Z(1).
€2

Let us continue the estimation of Bi(f). Since u(0,t) =u(1,¢), there
exists a point x(f)€[0,1] such that wu,(x(t),t) =0. Therefore, from
(2.160) we deduce that

max) = = 1|5, | = [} [, )] dt = C
(O + (O] s + maxo = = 1 [uCx, O (s (O + [[u(8)]|?)

g0+ NuN (s (DuOll + llu (D] + 1]
(2.162)

and therefore

1

t t t
j \Bl(T)\dTSesj ||uT(T)||2dT+cj oI dr
0 0 0
1
2

1 5 2 2 2.2
+C|—A"+AD+ ADB + A°DB + A°D~ | Z(¥).
&3
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Here €3 is an arbitrary positive number, and the constant C depends
only on m, M, p,, ko, p} and mesQ2. In the same way, for B;(f), B4(f) and an
arbitrary number €4 we have

t

j |Bs(7')|+|B4(T)|d7'5€4J ||uT(r)||ZdT+cj lo(IPdr +
)

0 0 (

1
C|—BD? + B'>D + BD + ADB| Z(¢).

€4

Combining the estimates for By(f) — By(t), let us select &; on the basis

a’)?;. Integrating (2.161)
N

1
of the condition Z?:w’?ig EminmSSSMa(s)
&7
over time and taking into account (2.148), (2.149), we arrive at the
inequality

s D17 + DI + [ - (7)]Pd7 = C<||52MOI|2 sl
t 4 )
+ J llgo(P)II7dT + <maxO£x1maxOsTSt|go(x,T)| +y A+ AD+AD?
0 -
+ ADB'/? + A2DB'/?> + BD? + B'/2D + BD +ABD> Z(t)) ,
which leads to (2.158). By squaring the inequality (2.162) and integrating

it over time, we arrive at estimate (2.159).

Note 2 If the function g(x, ¢) satisfies the conditions

o0 o rl
SUP = < opMaXg = v =1|g(x, 1) + J llg()1|*de + J J [lge(oe, )] + |ge(ox, 1)]
0 0 0

+ 1g(x, D)]]dxdt = Ny < o0,
(2.163)

then the estimations of Lemmas 1-6 are uniform over t.

Let us obtain an estimate of the derivative s,(x, f). For simplicity, we
will assume that condition (2.163) has been satisfied, and that will allow
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us to regard the constants N — N5 as independent of time (the case of N;
being dependent on ¢ does not introduce major difficulties into the
equation).

Let us multiply equation (2.156) by function a(s)R*~!(x, ), p >0 and
integrate over x€[0, 1]. Let us integrate the left hand side of the equation
by parts, using equation (2.141). Using the Holder inequality to estimate
the right hand side of the resultant inequality, we obtain

2p—1 1

1d (! 24— -1 ! 2 7 : 2 5
Z_pEJ a(s)R7Pdx = Cg [T (J a(s)R pdx> (Jo (a(s)uR )Zpdx>

0 0
2p—1 1

e )2—p< e )2_1)}
+ (JO a(s)R*dx Jo(ﬂ) dx ,

where the positive constant C, depends on py, s, p(f, p(z), m, M, k.
Taking into account |fi| = Cy(|uuy| + |R|u? + |ul®> + |u| + |go]), we arrive

at the inequality
1 1/2p
() = <J a(s)R* dx>
0

1 %
— = Ce( (uR?)? dx> + (maxg = o= 1 [ux, D 9(1) + V,(0),
oJ O

1 5% 1 1N\ % 1 5%
V,= ( gipdx> + (J (uux)zpde ) + <J u6pdx) ,
0 0 0 0

from which it follows that

maxp=,<1 |R(x, t)|

t
=G |:Sl/lp0<t<ocmaXOstl lu(zx, 1) J (maxo=y=1 |R(x, 7)])*dT
0
t
; (maxo == 1|u(x, 7)|)*d7
+ maX()5x51|RO(x)| + J
0

b

V., (T)dT:| . J 0

(2.164)
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Vo () = maxg = = 11g0(x, £)] + maxg = < 1 |u(x, Tuy(x, )]
+ (maX05x51|u(Xa t)|)3'

By virtue of (2.158), (2.159), (2.163) and (2.148), (2.149) we con-
clude that

t 2 t
J <max |u(x, r)|) AT+ sup J Vo (T)dT = Co(N>, N3, Ny, N5, Ng)
= 0

0= 0=t<oo

is uniform over t.
Let functions u’(x) and go(x, f) satisfy both (2.163) and the additional
conditions

t
0
maxXo=y=<1|1 (x)l = Al,SMPosmoo J maXOstﬂgo(M 7')|dT =A,,
0

(2.165)

-1

t
A=max{\, A} = [maXO =x=1|R"(x)] +sup0<,<vJ Ve (T)dT] ,

1
2C§
(2.166)

where the constant Cq depends only on the data specified in the problem.
By virtue of Lemma 5 we have sup,—,. maxo=y=1|u(x, t)] =2A, while
the inequality shown below follows from (2.164)

t
maxop=y=<1|R(x, )| = Cs <maX05x51 [RY(x)| + supo=,<op J Ve (T)dT
0
# st RGO ),

and provided that conditions (2.165), (2.166) are satisfied for all t€[0, T,
this yields the estimate

t
maxo=.<1|R(x, )| =2Cq (maxo<x<1 IR (x)| + SUPY < <o J Ve (T)dT) =Ny
0

Thus, if conditions (2.163), (2.166) as well as u’(x)e W, (1),
€L, (Q) are satisfied, then the estimate maxg=,=1[s:(x, )=
C7(N1, N>, N3, N4, N5, Ng, N7, T) is true for all te [O, T] In the same ini-
tial data conditions, Lemma 6 leads to the nesting of u,€ [,(Q7) and
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therefore of u,, € L,(Qr). Let in addition (s"(x), u’(x)) € W3(Q), g(x, 1) e
Ly (0, T; W, (2)).

Differentiating equation (2.156) over x, we arrive at an equation for
2(x, t) = Ry(x, t), which takes the form (z],—, = R)(x))

<t + sz + sz :_ﬁh lf4| = (?7(1 + |Z| + |”xx| + |ng|)

It will be easily seen that z(x,f)€1,(Q) and therefore R;€[,(Q).
After this step, it follows from system (2.133) that v;€ L»(0, T; W5(Q)),
pr€L(Qr), and that the coefficients of (2.160) belong to space
C*?(Qr) in which ae(0,1). If in addition g(x,1)e C'T*/2(Qy),
u'(x)e C***(€)) and the appropriate data fitting conditions are satisfied,
then u(x, f)e C2t*1+2/2(Qy). Returning to the equations for R(x, f) and
2(x, 1), we obtain 2(x, 1), Ri(x, 1) € C**%(Q7), and proceeding to func-
tions, we conclude that v;(x, f) € C2T*1T2(Qr), pe(x, 1) € CH2(Qr).

Theorem 2 The assertions of theorem 1 are true for all t€[0, T], where
T satisfies the inequality (2.166).
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Multidimensional Numerical
Models of Subsurface Fluid
Dynamics

3.1 INTRODUCTION

Currently there is significant progress in the study of complex problems
involving subsurface fluid dynamics. These advances are mainly due to
the wide implementation of computing simulation into the practice of
applied science. The most impressive results have been obtained using the
finite difference and finite element methods.

Due to nonlinearity and variability of boundary conditions in the
problems addressed by subsurface fluid dynamics and restrictions imposed
by hardware (calculation rate, memory limits, etc.) it is necessary to develop
efficient numerical models that are easy to run on computers.

The main models used in this chapter involve the ML-model, Navier-
Stokes and Zhukovsky models describing fluid flow in porous media.

Nonlinear Navier-Stokes equations are numerically solved for conven-
tional variables and for the variables: flow function — turbulence of velocity.
There is no apparent advantage of using one method relative to the other.
Each of them has its own advantage in specific situations. For instance, the
variables flow function — turbulence, velocity — flow function are widely
used to solve linear problems in fluid dynamics.

However, one is faced with the problem of calculating the turbulence
value at the surface of solid body using the boundary conditions for
velocities. If we consider problems of fluid flow inside a channel having
given tangent velocity components and 4 pressure at the inlet and outlet
then additional complications might arise in association with determining
the turbulence function for given boundary conditions. In this chapter
we consider the method of numerical integration of nonlinear equations
to describe the flow of liquid in porous media under specified boundary
conditions. This is followed by the development of a numerical algorithm
to solve a problem of liquid flow in formation adjacent to a well under

© 2014 Elsevier Inc.
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specified pressure at the inlet and outlet for an unknown formation
pressure.

Numerical simulation of the Navier-Stokes model for variables velocity —
pressure brings about a difficulty with fixing the boundary conditions for
pressure. Therefore, the numerical solution of these equations was made
for the variables velocity — flow function. Some sections below give results of
numerical calculation for problems of classical fluid dynamics using the above
variables.

3.2 CONVERGENCE OF FINITE-DIFFERENCE SCHEMES
FOR A NAVIER-STOKES MODEL WITH VELOCITY —
PRESSURE VARIABLES

3.2.1 Introduction

In this paragraph we address the issues of stability and convergence of
implicit finite-difference splitting schemes developed for approximated
Navier-Stokes equations of the second order with space variables. The limits
and convergence of solutions of schemes considered for the above problems
in an incompressible fluid using Navier-Stokes equations are proved by
methods of a priori estimations using a periodic flow approach under
specified pressure drop inside a planar channel. Numerous studies were con-
ducted using the difference technique applied to solve problems involving
Navier-Stokes equations for variables (i, v, p) with initial-boundary condi-
tions. The system of Navier-Stokes equations describes the flow of incom-
pressible fluid, which is known to differ from the Cauchy-Kovalevskaya
system. Consequently, in many papers the efficient algorithm of numerical
solution in variables (u,v,p) is developed to approximate Navier-Stokes
equations through an evolving system approach. The numerical solution of
regularized system of Navier-Stokes equations, examination of mathematical
problems of stability and convergence of proposed finite-difterence schemes
are considered, for example, in papers [29, 70, 71, 77—79, 82, 98, 130].
It should be noted that the concept to approximate Navier-Stokes equations
using equations of an evolving type was formulated in a pioneering paper
by N.N. Vladimirova, B.G. Kuznetsov and N.N. Yanenko [29]. R. Temam
[130] proposed another approach to e-approximation of the Navier-Stokes
equations while considering the behaviour of a regularized solution when
€ — 0. The difference scheme examined proved that under certain conditions
imposed on T,h,e the solution of the difference problem converges to
a solution of the equations of Navier-Stokes. O.A.Ladyzhenskaya and
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V. Y. Rivkind [82] considered different schemes to split regularized equa-
tions and problems of stability and convergence.

In paper [98] A.P. Oskolkov analysed the parabolic approximation of
Navier-Stokes equations.

Some splitting difference schemes and iteration approaches are studied
in papers by G.M. Kobelkov [70, 71]. The convergence of a solution of
some difference splitting schemes and difference properties of the auxiliary
regularized problem were studied in papers [77, 79]. The above papers
mainly considered schemes of the first approximation order using a conven-
tional difference grid template having arbitrary convergence.

Another approach to numerical solution of the two-dimensional
Navier-Stokes equations in variables (u,v,p) is provided by methods to
develop difference schemes using various grids for respective dependent
variables. This approach combines advantages of reliable methods of find-
ing solutions to equations in compressible viscous gas, hereinafter referred
to as the method of “coarse particles” for incompressible fluid. Various
modifications of the “coarse particles” method have been described in the
book by O.M. Belotserkovsky [10]. Several papers, among them those by
G.M. Kobelkov [70], G.I. Timukhin and M.M. Timukhina [131, 132],
N. Danayev, B. Zhumagulov, B.G. Kuznetsov, Sh. Smagulov [38] have
addressed the issue of stability and convergence of difference solutions
of “coarse particles” methods applied to Navier-Stokes equations in an
incompressible fluid. In [34] the stability and convergence are analysed
using a heuristic approach based on the use of a type of parabolic difter-
ence approximation.

For practical calculations the explicit method of “coarse particles” [10]
is frequently used both in our country and abroad. A downside of using
the above method is the arbitrary stability of difference solutions.

Papers [7, 11, 33—35] have considered implicit difference schemes:

n+1/2 n
i g

1
+ (ﬁ” . vﬂ)ﬁn+1/2 + Vhpn — EAW"H/Z,
e

ﬁn+1 _ ﬁi1+1/2
+ V(" = p") =0, divyii" ! = 0. (%)
-
One can easily deduce that the use of implicit calculation at the initial
stage of a difference scheme allows to avoid a rigid constraint imposed on
parameters of the difference grid. The difference scheme (*) requires the
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transformation of two-dimensional operators of the type (E — TvA}) in
each time step. Paper [132] made use of an efficient difference splitting
scheme of a stabilizing correction type. Numerical calculations were
made over a wide range of parameters considered, yet it was pointed out
that that substantiation of stability and convergence of difference solutions
was not verified.

The current section examines the use of implicit difference schemes
to split approximations of the second order against space variables to
regularize the system of Navier-Stokes equations and to substantiate the
stability and convergence of implicit splitting “coarse particle” schemes
using an example of flow of fluid having a known pressure drop inside a
planar channel.

3.2.2 Formulation of Problem Having
Initial-boundary Conditions

We assume that area 2€R? is a square. Inside 2 we consider the system
of Navier-Stokes equations

a—)
a—”t‘ + (7 - V)P + Vp = vAT + a(f)Vixy, divi = 0 G.1)
having the following initial and boundary conditions:
” o v v o
V(X1,X2,0) = Vo(xlaxZ)a_k :_k a_p
axl x=0 8:)61 x1=1 6X1 x1=0
=P k=012,
Ox} =1

v =0 at x, =0,x, =1, that is the components of velocity vector v are
equal to zero at the lower and upper boundaries of the calculation
domain. In this case coefficient a(f) in equation (3.1) characterizes the
known pressure drop.

3.2.3 Convergence of Fractional Step Difference

Schemes to Regularize a Problem

Difference properties of the problem (3.2) having initial-boundary con-
ditions for regularized system of equations (3.1) have been studied in
paper [53]. A priori estimations for solutions uniform in regularization
parameters have been obtained. Here and hereinafter we will assume
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domain €2 being covered by a rectangular grid €2;,. Let’s designate the
sets of boundary and boundary-adjacent nodes as follows:

1313 o
Plz{(xliaij)120353155;]:03551759"'aN:xli_th:ij_]h,h_l/N}:
) 1 3 . 1 3 ) )
FZZ{(JC1,',XZJ')l:N_E,N,N‘F5;]20,5,1,5,...,]\];x1i:lh,x2]':]h,l’l:1/N},

1 3 1
;= {(xli,xzj')|i=0a§,1 5""’2\7;]:0’5; x1; = ih,x2; = jh,h = 1/N},

1 3 1
19_’]:N_5’N9 xlizih,ij :]h,h: 1/N}

F4:{(X1f,X2j)i:O,§, 2

Similar to the method of cell particles [10], we can interpret each cell
as a volume element having a pressure that can be calculated in the cell’s
centre. Consider the following auxiliary difference scheme:

(12007, T Wiv172) 05 — Wi)y, =0,i=1,N =1, j=1,N =1,

Wij+12)e3 T Wjr12) 05, — Wi)y, =0,i=1,N =1, j=1,N =2, (3.3)

(”i+1/2]’)§1 +(Vij+1/2)§2 :p/7,i:2,N+ 1,]2 1,N_ 1, ori= 1,N,

having boundary conditions

H|F1 :;"Q;mr1 =7 rzéﬁ|r3ur4=0= (-4
accounting for the fact that Zf\:1 ZJI,\:]? pih* = 0.
3.2.3.1 Estimates of Difference Solutions
Lemma 1 Solution of problems (3.3),(3.4) can be estimated as
2 2 2
HVX@ H + H’/x@z = CHP’@ H (3.5)

Estimation (3.5) is proved just in the same way as lemma 1 in paper [54].
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Further we consider the system of equations (3.3) and (3.4) with
inhomogeneous boundary conditions, that is

Vi1j2 = Yy (1), ViN—-1/2 = (1), (3.6)

assuming that p, = 0.
We assume that 1), 1,- are sufficiently smooth functions which are
periodic in x; and that the corresponding conformity conditions are met.

Lemma 2 Solution of problems (3.3),(3.4),(3.5) can be estimated as follows

N 2 2 2
”Vxﬁl ” + HVX@ H + Hp?ﬂ ”

= C{% Zf\; |:((¢1,1')x1 )y + (wz,i,xl)z] h+ |:(¢1,i,x1,§1 )y + (%,f,xl,}l)z] h},
(3.7)
where ¢ is a constant independent of grid spacing hy.
Proof Let’s introduce an auxiliary function

Pi(x1),0=x=1,=0
§ivp =1 0,0=x=1,j=1,N—-1
¢2(.’>C1),0§X1 Sl,jZN.

Multiply the first equation (3.3) by hu;44 /2j the second equation (3.3)
by hz(”rj’+1/2 - fijﬂ/z)-

Using formula of summation by parts we have
2 N—1 N+1
+ Zj=1 > e Pii(”i+1/2/)§1 >

+ Zfl1 Zfizl’ii(”tﬂl/z _€U’+1/2)§2 + (vx,, f@] + (vs,, 5@] =0.

— 2 —
[+ [

This brings us to expression
2 N+1 N
)+ Zizz Zj:lpzj(fg,'ﬂ/z)@]’lz

SEDDARD DAL RYR YRS et ( [ [y o}

1/2(|75,||* + |7
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that yields the estimation

—

|7

‘ —

+ ‘59_62

N
+ ||1/3&2

2
Lz(Qn))' (3.8)

2 > 2
Lo(Q,,) ” L) + HPH Ly() = C(||£§1 ||L2(Q,,)

We note that

1€ 17+ € 7= 300 {17200 )% + W1+ (W15 + (s ) S
(3.9)

If we differentiate equation (3.3) against x; and introduce designations
Pry = Gty = 0y Uy = 0,0 = ¢1, Yoy = ¢2, then we can formulate
problem for ¢, #, and ¥

(ﬁi+1/2j)x1§1 + (ﬁi+1/2f)xz§z B (q’l)x1

Ti+1/2)em T @ir1/2) 05, — @i)y, = 0,i=1,N, j=1,N —1,

(aH‘l/Zj)}] + (17,_‘]‘+1/2)§2 = O,IZ 1,N, _]: 1,N —lori= Z,N + 1, (310)

Zz 12 =1 q"hz

The system of equations (3.10) is solved with the following conditions

o =00 v=didl =00 G
HUE Hiz(Q,,) + ||Vx L>(Q) HquZ(Q,,)
= {30 (@) + Won) + W) + W )T

Lemma 2 is proved.

3.2.3.2 Linear Non-stationary Problem (A = 0)

ov
a—V + AW - V) + Vp=vAV + ot)Vxy, dive = (3.12)

V(x1,x2,0) = Vo(x1, x2), U‘W = O,J pdxidxz; =0
Q
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aka aka ak ak
=22 2B 2B k=012, (3.13)
Oxy x1=0 Ox; =1 Ox X =0 Oxy x=1

In order to obtain the numerical solution for problems (3.12), (3.13)
we will use difference schemes developed for regularized systems of the
following shape:

Avn+l +Vv pn+1 VA —n+1 + Oé(t,l+])V]7X1 At - R(7 —n+1 —m) (314)

—ept™ !+ div, 7" =0, (3.15)

Here ¥ is a vector having the components (u11/2,Vij+1/2),
i=1,N,j=1,N—1, so equation (3.14) 1is calculated at points
i=2,N+1ori=1,...,N, j=1,N —1, where p- is the grid pressure in

point (i, j). Operators div, and V), have the form:

dip. " = Uit1/2j — Ui—1/2j n Vij+1/2 = Vij—1/2
i h h b}

Vhpnﬂ = <pi+]jh_ p’] ,p,j+1h_ pl/) = (le :sz)-

Let AT/'?H = (Au?H,AV?H). R, A — are positively determined, self-
adjoint operators. In addition, the condition A > E is satisfied,

E— AtapgA,+ Aty A AtxyA At
A:< 08 X1 X2 ) =2 (3.16)
AtXA21 E— AtOé()Ah + AtXAgz g
Difference operators Ay,,, k, me[1,2], are such that
-nt+1 _ -nt+l n — n
Akan+ - Jﬂc:;ck’ k 17 2; AlZV = AlZV”_H/Z ( ’1+1/2)x1x2’
+1 = 1 +1 (3.17)
A" A21”:l+1/21 = (”7+1/21)xw‘cz'

Asto R@", 5"y = (Ry(u"™", u"), Ry(v"*1, 1)) let us assume that condi-
tions specified in paper [54] are fulfilled.
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Let’s write down components in (3.14), (3.15):

=t prtl =
(E_AtOé()Ah"i‘AtXA“)' i+1/2) i+1/2f +AtXA12 . y+1/2 ij+1/2
At At
= vAyu! +1/2 + alty+1) + X(d“/h_m“) w TPy, ARy (”71:1/2_," “7+1/2_,‘)’
(3.18)
n+ n ﬂ+1 —
(E_Al‘aoAh‘i‘AtXAzz) U+1/2A t_/+1/2 +AIX/121 1+1/2_/ 1+1/2_/
t At
VAh ,]+1/2 + X(@h;m ) _pm - AtRZ(VzJ-H/Z’ 1]+1/2)
(3.19)
ept™ + div, 7" = 0. (3.20)
From (3.18) and (3.19) it follows that
UWH - 1
e e + )AL — ap A" — V" + xVidiv, 7"
At (Oé() V) wv [e7yAVAY hp X h@hV (321)
+ alty+1)Vipx) — AtR(T/’”Jr1 ,0").
Using equation in (3.21)
RE™, ") = (ap +v) Ay A (@' = "),
we obtain a stabilizing correction scheme:
Dm-H/Z _=n
—n+1/2 - -
At = (CV() + I/)A]]Vn / + (Oéo + V)Angﬂ - OéoAhV” (322)

+ thﬂhl—}” - Vhpn + Oé(tn-‘-l)Vth,

S+l _ ont1/2
v

v At — (Oé() + V)AZZ(%WH _ an)’prﬂ—l :pn _ Xdivhﬁrﬁ—l

Schemes (3.18)—(3.20), and (3.22) have the boundary conditions:

=0. (3.23)

-n+1 | e | .
Iy Iy

U|z=0 = U(O);Ph 0= 05w CA |F;UF4
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3.2.3.3 Stability and Convergence of Difference Schemes

of a Stabilizing Correction Type (3.22), (3.23)

We assume that solution of problem (3.12), (3.13) 1s sufficiently smooth to
ensure conformity conditions. Condition of unique determination of pressure

is provided by > | o, ph? = 0.

Theorem 1 Let solution of problem (3.12),(3.13) be sufficiently smooth. Then the
solution of problems (3.14),(3.15) is stable and the following estimations are valid:

mamez‘ll/z_m1 La(S%) + Zm 1 HAULW L»(Q/,)At T 8Hpﬂ+1 “LQ(Q/!) =6
(3.24)
/221 /—n 1/2_" -A
HA1 21/n Al 2-m L,(Qh + Zm ’ HA 8 Ah th Lo() (325)
At= (A1) + 1)
at At, h—0.

Proof Let us multiply (3.14), (3.15) by 2Am&" ' h2, 2p" ™ Ath? and sum with
respect to €2, using the Green difference formula and Cauchy inequality.
As a result we obtain estimate (3.24). Estimate (3.24) provides the stability
of the difference solution and proves that difference schemes (3.14),

(3.15) have solutions. Now we are left with proving estimate (3.25). Let
—>n+1 _( n+1 n+1 ) n+1

, Lit1/2)° 111]+1/2 pﬁ,ll
(3.12), (3.13) in the corresponding node. Let us consider the deficiency

— is the value of exact solution of system

AV = NG Vi = oty Ve + AR ) =7, (3.26)

n+1 . oontl
epp; T div, i = p. (3.27)
Let’s denote
—-ntl _ -n+1 -n+1 +1 _ +1 _ +1
o' =y =yt =) A (3.28)

+1 - :
Then for &"" ", 7" !we obtain equation

—nt —n+ —>ntl - —nt+
AL "= A" = V™ — AR@", ”)+r,,677”+1+dw, i =p},
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" =0,70 =0, (3.29)
— (n+1) — ~(nt1) n+1 — (nt1
@ |F1_wﬂ |F2’7r( )’D_W( )‘Fz
i) 1) (3.30)
— (nt1 _ n — (n+1 _ n
G, = (0,00 H))‘n’w’ ’n_(o”’( H))‘n'
Let us consider the auxiliary problems:
1. vA" = Vig" =0,div,@" = p;',m=0,1,2,..., M, (3.31)
— (m) _ = (m) (m) ) — (m) (m) 2 _
P =8 ™ = B o, =0 d =0 (3.32)
2. uAW" — Ay =0,div, 0" =0,m=0,1,2,...,M, (3.33)
—(m) —(m) = (m) —(m)
O = =0 )T L =00 )] (334

Owing to lemmas 1, 2 solution of problems (3.31—3.34) can be
estimated as:

‘ M m

||L(Q,) “97’;12“;(9,)4'”‘1 HLZ(Q;)_CHP Lo()

(3.35)
e P - P AP el e
%3 iz(sz,,)Jr 1Pz, iz(ﬂ,,)SCHPh% Hi(m)’ (3.36)
’Wm Lo(2)) H”‘Y’? Lo(2)) qu Lo(2))

N 1 m 2 m > 2 2
SCZF1 ﬁ (Vh’M/Z) + <Vh,i,N+1/2) + (Vh,i,l/Z)El + <Vh,i,N+l/2)§l h
2 2
+ [(’/14,1',1/2)§1 + (Vh,f,N—1/2)§1:| hos

(3.37)
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—-mt+1 - m+1

H wtxl H L(£2)) H wt%z La(Q,,)
¢ N n 2 m 2
= n {Zi=1 [(V;:f/zr) + (%,E\"H/;i) } h} (3.38)

2 2
N m+1 m+1
el K”h,f,l/zixl) + <Vh,i,N+1/23,x1) ] h,

m+1

L,(Q,, H q;

—m —m 2 C N 2 2
||¢w ||L2 ) H%&z = Wiz ) T \Vnin-10m, ) B
( )T h i=1

2 2
N m m
+ed o [(Vh,i,l/ZEle) + (Vh,i,N-Fl/Z,Elxl) ]h'

(3.39)

Let us make a substitution

—n+1
L—&n+1 :C—&rﬁ-l + —n+1 +w" (340)

Using Lqu”ltiom (3.28), (3.40), (3.29)—(3.34) we obtain the following
problem for &" 1

AC—&zﬁl _l/A —nt1 V nt+1 Al‘R(_’”H —>n) +f + h’€7ry+1
(3.41)

+ dwh_”ﬁLl 0.

Here

—-n+ —ntl

f —I/A (—>n+1 ¢ ) (—>n+1+¢r ) AtR(—wﬁl w —>n w)

with the following conditions for & = (wy 112/ Wa, j+1/2):
N
5O =20 4 3

= (n+1) _ —(nt1) —(n+1) _ n+1
w ‘D W |F2’w |F3uF4 =0, 70+ r, (3.42)

= 7T(ﬂ+1) ‘]_"Z’ thﬂ-(n"'nhz = O
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Now let us multiply (3.41) by 2AHRH"Y 2A D12 and sum in €.

As a result we obtain

||A1/20—(>}n+1 ‘ 2

— A2 P+ 280 | AP e (| = [e])
= C||A1/2((1—0>n+1 —>n+1) H HA1/2%n+1 ||

—->nt1

FAvE@ )] - At A
-ntl 1

A7 2080 (B, + P 05w

— (A (@] = @i ])-
(3.43)

From estimate (3.43) we obtain the following inequality:
a2 P 4@ P av | At P A
A ( e - )

e[ Pl 7) =c a2 A

—ntl

o2 (FH ") Ak a2 (B ) PAc [ A2em Par)

xMz

— — il - -
HA (JBEE I+ [P I+ 125 1) + Arl ]+ Adj2™ .

(3.44)
Using the difference analogy of the Gronuoll lemma (3.44) we obtain
max, | &" |+ 0L AP Ac=c S0 | A
+ ol [AP@ + P A+ (A L | s, + s A

+aa
(3.45)
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It is obvious that 7} ~ O(At + h?). Let’s consider estimates (3.29)—(3.39).
We assume that £ = At, which allows us to write p ~ O(At + h*). Then

| A2, | A2 | ~ O(AL + 1), vty o~ O(I?),

m — m
" Vhir1/2 ~ Vuin/2
Vhitjox — h

2 3y _
VijA/z + h(V}Zi,l/Z)M +0,5h (UZZJ'J/Q)XWZ + O(h”) V}Zf,l/z
h

= (V;Zi,l/z)m 5 (Uhrl/Z)sz +O(h?)
i 2 h ,
= (o), E(Vi,O)xlxz + g(w,o)xmxz + E(Vi,())xlxz + O(k").

Consequently,

(VZji,l/Z)(aq) ~ O(hz), (VZfi,l/Z)(aqaq) ~ O(hz): (V;Zm/z)(x] n"~ O(hz),

2 (3.46)
(V;Z,',1/2)rx1x1) ~ O(h )

Owing to validity of estimates (3.38), (3.39) and (3.46) we have

Wk

= m H

, A1/2¢ H O(h?)

~O(h). (3.47)

Using (3.45)—(3.47), we find
max,, [@&"||” + Zm AV P Ar= (a0 + i), (3.48)
from which accounting for (3.48) and formula (3.41) we finally obtain
max,, &P+ ST @t PAr= oA + ).

This proves theorem 1.
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3.2.3.4 Difference Scheme for Nonlinear Equation
We will examine the following difference scheme that approximates
equation (3.1):

A_’”H = v\ = V" + 1) Vexy — Lu@") — AR@ET, 0,
epy* + din 7 =0,
(3.49)

with initial-boundary conditions in the form of (3.24). L,(v)is the differ-
ence operator approximating the convective terms in equation (3.1) to the
second order of accuracy [54].

We will analyse the convergence of a difference scheme solution (3.49),
which is linear relative to #""'. Solvability and convergence of
(3.49) are proved using method proposed for linear equations. We will
consider inversion of the nonlinear term in more detail. Let D’ZH
(“:::1/2] U+1/2) P,ij be the values of the exact solution. Let us consider the

discrepancy

AT L@+ Vg — T+ A RET) — altye) Vi =77,
€pz+1 + dw;,V”Jrl =35

1

(3.50)

Using designations (3.29), we come to the solution of a problem

A = pAG™ — Vet — At R@ @) + L) — L") + 70,

t
”H + div, v A”H =
(3.51)

having the initial-boundary conditions (3.30).
We will dwell on the nonlinear terms in more detail L;,(¥},) — L;(v").
We have here

Ly(v) = Lu(v")

= 11 1+1/2] 0 7 (Vh i+ 1+1/2 + Vhl,H'U 1/2 + V171/+1/2 + Vht/ 1/2)1/{ 0
h,i+1 /2]9(71 h,i+1 /2]961
ul " + - (1/ v + ol v )"
i+1/2f 0 1+1]+1/2 i+1j*1/2 ij+1/2 ij—1/2 0
12X, +1/2),%

= 22=1 I

(3.52)
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n n
h+h= ”ht+1/2j 0~ Ui/, 4

0
hyi+1/2j%, 1/2jX4
n
=t i1 /; 0 (”ll ;+1/21+w1z+1/2,)(” o TwW 0 )
hi+1/2j%, Ii+1/2iX, 1i41/2jX,
4 n _.n n
— Wi /2] 0~ Wiit/W 0o~ Unit1/2,;% 0
hyi+1/2j% 1i+1/2jx4 1i+1 /25
(3.53)
— (0
L+1= 4(w2i+1j+1/2 + W21+1J 12t W2y+1/2 + Wz;, 1/2)“ 0
hyi+1/2j%,
n
—(V} sy p T UL +v) +v) Jw"
hit1j+1/2 T Vhit1j=1/2 7 Vhir1/2 T Vhig—1/2 0 3.54
4 Vhi+1j+1/ /2 T Va2 T hi /2o (3.54)
(W2,+1J+1/2 +w21+1j 1/2 +‘*"2U+1/2 +w21] 1/2)“’ 0 -
1i41/2j%>

Let 3",7)" be solution of problems (3.31)—(3.34). Using substitution
(3.40) we can write equations:

AC—‘>)£1+1 _VAh—»n-H +77 V 7Tn+1 At R(—>n+1 —»n)+ Zk 1 A
= (43" +Ah¢ PEFICAERTI (3.55)
— ARG " B+ ",
€7Tg+] +@ha”+1=0

having initial-boundary conditions (3.42).
We can multiply (3.55) by 2A" 02, 2A " 1 h? and take sum in €.
Then using an embedding inequality we obtain

A2 P = v+ 20] AV P

OB - (@ D+ (1| - [y =] 125 e

X1X2 %1x2

—ntl |

# A AT+ 5+ 4

—ntl

A+ A2 Ar+ (A B + P 2

2 ‘ — n+1
A

)

+ Hth At""ZAl‘l(Lh(i_}Z) Lh(—’”)’—>n+1)|
(3.56)
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Let us estimate nonlinear terms in (3.56):

n,n n+1 n n-H
<W1MI 0 ’wl > <(wl + (70 T+ ¢ )1/! () , W )
l,X1

= maxqy ”Zg)c ’(‘7’““@(9”) + HS?’"“LZ(Q) HJJHHLZ(Q,,)) HW”H HLZ(Q,,)
WV

—n+1
<c(|

+ @

+ ||ﬁn

T o) BPE N A e - P }

n+1 — |,n n n n+1
(uhw )‘— uh<w +¢ 0)
1,X 1 .X'

= masgy o (@5 ] - 37| + (@4 + o] - &7 )= 6@z

se(la 1P+ 220 + 12P).

(3.57)

The remaining nonlinear terms are evaluated in the same manner.
Assume that

v—c|ay - [|@"] =o0. (3.58)
Then from (3.49)—(3.51) we find

max,, || 4'/%&" | + Z‘;; |A2S" P Ar=c((A? + 1), (3.59)

Let us determine the sufficiency condition for inequality (3.58) to
take place. From (3.58) accounting for (3.59) we obtain

v— @ - H*"y|>y—_ H&”HZZV—%@((AOZ+h3)20. (3.60)

One can easily see that when (3.60) is valid estimate (3.59) takes place.
This provides a proof to the following theorem.

Theorem 2 Let solution of problems (3.1),(3.2) be sufficiently smooth and condi-
tions (3.60) are fulfilled. Then solutions of problems (3.23),(3.49) converge to solution
of problems (3.1),(3.2) in energy metrics and

L@y " Z HW'”” Ar=c((A0)* + 1)

- m
mamew

1
Note For various choice in R(v"" ", "

) one has different types of fractional
steps bringing about different rates of solution convergence. These issues

can be analysed using above approach.



146 Fluid Dynamics of Oil Production

3.2.4 Convergence of Finite-difference Schemes
of “Coarse Particles” Type
3.2.4.1 Linear Case
For linear Navier-Stokes equations (3.12) having initial-boundary condi-
tions (3.13) we can develop a difference scheme in stages.
In the first stage we solve equations:

w12,
Uir1/2j — Yiv1/2j n+1/2
/JT/J = y((qu//zj)x]x (41 o)) — (P, + lt), (3.61)
Vn+1/2 o
ii+1/2 ij+1/2 nt1/2 —
S = U0 D s, * O ) ~ ()i = TN = TN =T,

In the second stage we do the same for equations:

ﬁﬂ+1/2 -
i+l/2l ”+1/2J' _ _n+1/2
]T = (“i+1//2/)§2§2, (3.62)
_n+1/2 )
j+1/2 'H/Z _n+1/2 )
”T” ( +1§2)X7M’ _1>N,]:1,N—l
In the third stage equations
nl _ —nt1/2
M _ (gt on =0
At (py il = U
1/’.1.+1 n+1/2
W @ =1 =0, (3.63)

. oontl n+1 n+1 _
div, 7" = (“i+1/2j)§| + (V,'j+1/2)zz =0

are solved. Solutions (3.61)—(3.63) should meet boundary conditions of
the form (3.4).

Theorem 3 Let solution of the difference problem (3.12),(3.13) be given by a suffi-
ciently smooth _function Then the solutions of difference equations (3.4),(3.61)—(3.63)
converge to solution of initial problem at a rate of O(AAt + /%) in energy metrics.
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Proof From (3.61), (3.62) we have

an+1/2 -
i+1/2j i+1/2j _n+1/2> (_n+1/2) <_n+1/2)
_—t = = . ) + (u. . - ) )
Al V<<”;+1/2J oz M) o Aty —
+ a(tn) - (pZ)M >

k12,
Viikr/2 — Y

ij+1/2 _ _n+1/2 _n+1/2 . _n+1/2
At V<<Vij+1/2>x1§1 + (Vij+1/2>x2§2> A[(Vﬁ-’—l/zj) X1X1X2X2
— (P}
(3.64)

Consider (3.63) and (3.64) with initial-boundary conditions (3.4).
Hereinafter we drop the “bar symbol” in (3.63), (3.64). Let us multiply (3.63)
and (3.64) by 2Atu7:11//;jh2, ZAtVZL1 ghz and 2Am!]] /zjhz, ZAtVI'.fllpjhz and
summing on 2. As a result we obtain

774127 = P = 72 = 2

+At(H1_/m+1/2||2 _ | T

X1X2 X1x2

2) = 2At(oz(tn ,17"“/2) + 2At<p", @hv”“/z),
(3.65)
i Bl T e e
= —20¢(A (p =), 7) X240 (a(1,), 772
— DA, (1)) + 2At<17”+1/2 - U",&(tn))
<AL - [ae) + 28|52 =] - @)
2007 =7, gradyp)
=2(A) (7 =RV =), + V) =27 2
—2(A (V! = p"), Vip ™) =27 =2
=02 (19 = |93 |+ arai 7 =) )
=t = = o (1t = V).
(3.66)
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As a result of summation in (3.65), (3.66) we obtain the estimate

maXmH—»mH +21/Atzm . H—>m+1/2H + Atmax mH_>m+1/2H2

X1X2

(3.67)
APV P =[] + At
from which due to (3.65) we have
max m”vmﬂ/zn =c< 0. (3.68)

Estimates (3.67), (3.68) provide the stability of difference schemes
(3.61)—(3.63). We will determine the convergence of solutions for
scheme (3.4), (3.61)—(3.63).

ﬂ+1/2 n+1/2 n+1 +1
Let Mht+l/2] Vhy+1/2’ hyi+1/25° hr+1/2_;’ph1/

solution of difference problems (3.12), (3.13) in corresponding grid nodes.

be the values of exact

Assume that

7ﬂ+1/2 A _>n+1/2 _ Vhp + a(tn)V/,m At(—m+1/2)

hyt aFox e
D»n+1 _ 1—}>11+1/2
h h — ntl _ n —n . oont1 n+1
A Ay(p)y )T ’uvﬂh’/h =P -
+1 —n+ —n+ +1/2 —n+1/2 —n+ :
Let "' =ptt —pmtt o 2= V) 2 _grtif2, Owing to (3.63),
(3.64) we obtain the following equation for &
a)n+1/2 _ a}n
_ S p+1/2 " S p+1/2
T = VAh(.U 2 qmd;ﬂr - AI(W / )x1§1x2§2 s

C—&n+1 _ (7}”+1/2
nt+1 ny — on . oontl . pt1
+ V/1(7T -7 ) = 1po @hw =Pn >
At ’
having conditions

=(0) — n ~(nt+1/2) — (n+1) > (n+1) — (n+1)
W =0,w ‘F3UF4_(O’Vl )‘mun’w ‘mun_(o”’l )‘mun

+1 —nt1)2 : o
for "1, ©"/?and requirement to be periodic in x;.
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Let g_o'm,lzm be solution to problems (3.31)—(3.34). We introduce
designations

a»}m+1/2 —>m+1/2 m+1/2 'lzm_‘—l/z —mtl m+1 —>m+1 _{_QZ’" 1‘ (369)

w

As a result we obtain the following difference equation for &:

—n+1/2 -1
w —Ww

A —I/A S>nt+1/2 A . _At(—>n+l/2)

1 X1X1X2X2 (370)
—nt —n
—@T T =A@ )+

C—&n+1 _ :)n+1/2
— ntl _ _n -1 . ontl

A Ay(m ") + ’1,11’@/1“’

p— - p—

= 0,0 = (Wri+1/2) Wa,i+1/2))-

The boundary conditions are met for &

- (nt+1/2) _ — (n+1) _
& \me—o,w |F3Ur4—0 (3.71)

and periodicity conditions are held for x;.
Further we multiply (3.70) by 2AHS" 2 and sum up on {2, using
Cauchy inequality and integrating by parts. As a result we obtain

i el P Bl Al R A i

+2(Ar) Hﬁ"“/zu = SAK V2 + (| @ 2P A

X1X2 X1X2

—-nt1 (3

)|* + Arget + 9o

H + 2Au(m", div _)”H/z)

—-n+1

+ A Vi@ + 4

—ntl

+ Awclprt! +

Multiply (3.70) by 2A#2&""" and sum up over the calculation domain:
H(rln+1||2 _ Han-‘-l/ZHz + H(:}n-‘-l an+1/2“ _ aylzh,@ﬂ-‘-l)‘ (373)
3.2.4.2 Nonlinear Case
We will call problem (3.62), (3.63), (3.74) with conditions (3.4) problem 2.

Operators Ly, 1 (1", v"), Ly, »(u",v") are approximations of convective terms
in Navier-Stokes equation.
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Problem 2 is equivalent to the following:
ntl1/2 Ahun-H/Z_At ( n+1/2> _ ﬂ)x1 +Oé(t,4+1)+Lh1(1/l ),
X1XIX7X7

Wiv1)2 i+1/2f +1/2j

nt+1/2 nt1/2 nt1/2 oy — non
Vigti/2 VAW At”(”x:fﬂ/Z XF10T Py, =vLn2(’, "),

M”+1/ n+1/2
i+1/2 ~ M1 wrl o
— Ar T =0
V,,1,+1 n+1/2
1/2 1/2 o ’ ‘
%4-@:#1 PZ')xz :O’thnﬂ =0,i=1,2,...,N,j=1,...N—1

(3.74)

with initial-boundary conditions (3.4).
Let uf™! vi*! pi*1 be exact solution of problems (3.1), (3.2), 7j_

discrepancy,
Ly, v") = (Lyy (", 0"), Lo (", "),

Vn+1/2 A Vﬂ +1/2 — V]'IPZ —+ Eh(uZ, VZ) + 72 + a(tn+])v/1x1

hyt
n+1/2
— Atv(v, )xmxz}z’

l—;n-H _ Vn+1/2
h n+1 ny — 2N .oontl o
7At +V, —p)= V1,ha@h”h = P

Assume that

+1 +1 +1 +1/2 n+1/2 +1/2
—n 1—}»;: g ,(YJ" /=1—}>h /_1711 /’

2 Z gnt/2 —>n+1/2 T/J”H/2

(Z}n+1 — a;n-‘-l an-‘-l + QZ’I+1
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+1 . .
Then for @""" we obtain an equation

S>ntl1/2 _ —on

w —w —n+ =
= AT = Vi = Ly )
3.75)
P oy _ (=ntl N _ —>n+1/2 S ( .
Lh(uh’ v, (90 +’¢) ) xlxlvzxg + i
nt1 nt+1 —n+1 —ntl
— A" YT ) g, T VAKET Y ),
&jn‘kl _ —ntl)/2
- +
A + A"t =7y = 7, div, 0" =0,
>n+1/2 —>ntl . .
where @ ,w"  are the homogeneous boundary conditions in x; and

periodicity conditions in x». Let us multiply (3.75) by 2A@" /212,
2AD" 2 and sum up on €2,. As a result we find

&2 = @ | + @2 =@ + 28] @)
:ZAt(Wn@h"_‘;nH/z)+2At(£h(“h, ") — Lyy(u" v”)+7Z’_m+l/2)

_Z(AI) H—>n+1/2H 2Al(¢?+l+’(_/;; —uV (—>n+1_’_¢} ) —>n+1/2)

FAAPUE + )55, B0,
(3.76)
H‘YJWHH H—>n+1/2H+”—>n+l —>n+1/2|| —2At( 111’_”1“)‘ (3.77)

We will dwell on a nonlinear term in more detail

(((Mh) _(u”) )0 , n+1/2> <(”}1) _( n) n+1/2>

1,X1

( W'l + u"), "“/2> ( Wl + W), w”*(f”) (3.78)

19(:1 1,4

((W1 + ¢l +¢ﬂ)(2”h+w1 + ot +¢”) n+1/2).

1,%4

We can estimate (3.78) using Helder inequality:

0

2wty ) semanl] |37 527 e+ o
I1ad|
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(@ y) = 1] |8y,

1,X
= a2 e e - (@@
|w w Wy w1901’w10
= [&" ] Lo 2" Hﬂ"“/ZH<(5H Al @2 + e,
Ly(S2,) Ly(S2)

(3.79)

(@37 = B2 |3 gy =l 7+ 1)

The remaining terms are estimated in the same manner. Due to
(3.76)—(3.79), we obtain the inequality

[&" 7 = @ ° + s l@n 2] + Ar@rs ") A
—->ntl

=L@+ [l + 9@ 4|
N +1
' H)At+ Zm 1(Hth + Hrlhu )At

A]Xz

+ AtH(Hn-H

So, the assertion is proved:

Theorem 4 Let the solution of problems (3.1),(3.2) be sufficiently smooth and
conditions A,’ = X, = const apply. Then the solution of difference problem (3.4),
(3.61),(3.64) converges to solution of problems (3.1),(3.2) in energy metrics of

the order O(At + h3/?).

3.3 NUMERICAL REALIZATION OF NAVIER-STOKES
MODEL IN MULTIPLY CONNECTED DOMAIN IN
VELOCITY — FLOW FUNCTION VARIABLES

3.3.1 Introduction

Here we consider numerical calculation of a flow of viscous incompress-
ible fluid inside a planar channel having periodically located barriers in
the form of rectangular plates orthogonal to the channel walls. A similar
problem was considered earlier by authors [36, 39], but these papers failed
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to account for unique condition to determine pressure. In the case of
multiply connected domains the requirement of unique pressure determi-
nation is necessary to formulate the equivalent problem. In papers [121,
125] a unique pressure condition is used to calculate numerically the flow
of a viscous incompressible liquid in double connected domains. Paper
[121] deals with the numerical solution of a periodic problem of viscous
incompressible fluid flow around a plate inside a planar channel where the
condition of unique pressure is formulated as follows

% [é (wy + 1, +wip)dx + (—éwx -, + W%) dy] =0. (%)

Integrals in (*) are calculated using the Newton-Cotes formula with an
accuracy order of O(h®). Derivatives are substituted by a finite-difference
relation of the fourth order ofaccuracy, that is, calculations are conducted
with an error and it is natural that the integral (*), as is mentioned in the
above article, is accounted for in an approximate manner. In these papers
the problem is reduced to a solution of nonlinear difference equations of
the fourth order with non-local boundary conditions and no substantiation
is given in the use of the finite-difference schemes.

In this section we propose a stable numerical algorithm to solve the
Navier-Stokes equation in a double connected region at a given flow rate.
The condition of unique pressure, which is exactly satisfied under numeri-
cal calculation, is formulated. The problem is reduced to a solution of the
finite-difference equation of the second order with non-local boundary
conditions. In contrast to other papers, the algorithm can be easily imple-
mented. The problem is solved through reducing it to the underlying
physical mechanisms. A grid flow function is introduced and determined
through solution of the Poisson equation with given boundary conditions.
Accurate meeting of the requirement of unique pressure is achieved.
Numerical calculations are made according to the schemes proposed.

3.3.2 Formulation of the Problem

Navier-Stokes equations are considered inside the channel

Q 0<x<1 1< <1
= X, X s T — .
Y 4 'y

— — — 1 — .-
u; + (0, V)d + Vp = = divii =0 (3.80)
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They satisfy the following conditions:

. at the walls of the planar channel €2 and on barrier

u=v=00 = (u,v));
periodicity conditions are met at the channels inlet and outlet,
that is

Oxk

akﬁ ak+1p

T Ak > Akt
x=0 Ox x=1 Ox x=

B ak+1p

T Akt
g Ox

k=0,1,...,m. (3.81)
x=1

In this case it is assumed that the flow rate is given

0,25
J udy =, = 1. (3.82)

—0,25

For pressure to be determined in unique manner it is required that
J (pxdx + pydy) =0 (3.83)
.

any contour of 7y around the plate.

3.3.3 Description of Difference Scheme

To

write down the difference scheme to solve problem (3.80)—(3.83) in

domain 2 let us consider the finite-difference grid using the splitting

method [10] in the following form:

1 1
xi+1/2: (l+ §>AX: <l+ E)hl,lzo,l,,N,(N"_l)hl :Xmaxa

. 1 ,
yj+l/2: <]+§) AY: (J+§> hZ,]:Oal,aMa(M—i_l)hZ:vaax:

where Ax = hy, Ay = hy- grid spacing. N, M- corresponding number of

grid cells in directions x,y [a point with coordinates (i, j) coincides with

the

cell centre].
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Let us consider the following difference scheme for equations of the
form (3.80) in the finite-difference scheme {2;:

u(n+l/2) _ u(ﬂ)
i+1/2, j i+1/2, j +L (n) A (n)
At Whipy)2 = Wiv1/2, j2

(n+1/2) (1)
Vi i+12 7 Vi j+1)2

At

(3.84)

(1) (1)
+L2hvt ]+1/2 Ah i, j+1/2°

(n+1)  _  (nt+1/2) (n+1) (nt1)
Uiv1y, 7~ Yir1/2,; +pii1,j_ b

At h

(n+1) V("+1/2) (n+1) _  (n+1)
i,j+1/2 i,j+1/2 + i, j+1 i ]
At hy

=0,
(3.85)

=0,

(n+1) (n+1) (n+1) (n+1)
u. LT U, . v. . - V. .
div ﬁ(,ﬁLl) _Tit1/2, i—1/2, j + i, j+1/2 i, j—1/2
22h -

h1 hz

(n)
Liju Uiv1)2,

1
_ (n) U () (n)
T 5 (“1'+1J”x1i+1/2,j Tz iy oy bt+11+1/2”x,1+1/2z] F byt 1/2”121+1/2J>

_1 (n) (n) (n) (n)
=5 (ai+%zj+1/2vx1izj+l/2 T aLi1oV5 1 T bfzi+]1/x2izj+1/2 + bijug x71/+1/2>

_1rw (n) _ 1w (n)
KA ( Mirtje T ”i71/2,j)’ birsjrie = ) ( Virtjria T Vi,j+1/2>’

_ 1w ) _1(w ()
Gitgi+1/2 7 5 (“i+§,/+1 T ”i+1/22/'>’ bij = 5 (”14+1/2 Tl 1/2)

Here we make use of conventional designations taken from the difter-
ence scheme theory [116], corresponding to difference approximation of
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convective terms in equations (3.80); Aj- is the Laplace difference
operator:

Uit3)2,) — 2“i+1/221 + Ui—1/2,i n Uitlj+1 ™ 2“i+1/221 + Uiplj—1

Ah”' i =
i+1/2,j B B
h1 h2

At the first stage of scheme implementation (3.84), (3.85) we can
(n+1/2)  (n+1/2)

i+1/2, ]’Vz jt1/2: Then
—(n+1/2) _

use the explicit formulas tofind the auxiliary value u

(n+1) (n+1)
)x2 ( )X1

i+1/2, ] L j+1/2 rotyu

from relation (3.85) we have (u;

(n+1/2) o (nt1/2)
(“i+1/2, j)xz ("i, j+1/2)x]

Taking into account relation (3.82) and introducing the flow functions

we obtain the Poisson equation to determine w +1/2 120

(n+1/2)  _  (nt1/2) (nt+1/2) _ (n+1/2)
A D _ Mo e T M Ve 2 T Vi
hw:‘+1/2,j+1/2 - hy Iy >

(3.86)

The values to be found "™, v"*!, are known to be determined

through relationships

(n+1) _(nt1) (n+1) o (nt1)
(n+1) wi+1/2,j+1/2 wi+1/2,j—1/2 (,1+1) wi+1/2,j+1/2 wi—1/2,]’+1/2
i+1/2,7 hZ > 1 12 T h1 :
(3.87)

3.3.4 Conditions Under Which Pressure is Unique

It should be noted that for finding a solution such as (3.84), (3.85) it is not
required to solve the Poisson equation for pressure with complex boundary
conditions (which have been examined in papers [7, 11, 13, 33—35]). The
conditions of pressure uniqueness (3.83) are automatically met.

Indeed, let the contour be circled in a standard manner. Taking the
sum in the second relationship (3.85) at i =iy and spanning j from jj to
j1 — 1 we obtain:

ji—1
(n+1) (n+1) (n+1) (n+1/2)
Z(pin,ﬂ'l biy, j ) Z( ]+1/2 10 ]+1/2)

J=io J =jo
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hy "= (ut1) St1/2)
Piyji = Pigjo — Z( W0, j¥1/2 Vi, /+1/2)
J=jo

Then we sum up the first relationship (3.85) at j =j; varying i from iy to
iy =1, the second relationship (3.85) is summed up at i =1i; running j
from j; — 1 to jo, in the first we take j = j, and alter 7 from #; to i.

As a result for an unique pressure determination we find that the
following equality should be valid

_ ii—1 (n+1) (n+1) (n+1/2) (n+1/2)
I'=h Z, l(,( i+1/250  Yitry2h T Miv1)25, 1+1/2,1)

(3.88)
—hy Zﬁﬂ (1/(’”.1) + V("fl/z) — Dy v(”ﬂ/z) ) =0.

= i, j+1/2 i, j+1/2 i, j+1/2 i j+1/2

Equality (3.88) can be easily transformed into the following difference
analogue of an integral pressure condition:

in—1 vi—1 (n+1) (n+1/2) _{ (*+1)2) _
I= h1h22 ZJ o [ Vit y2, 412 ((“iﬂ/z,j)x2 (Vi,j+1/2)xl>:| =0.

(3.89)

3.3.5 Boundary Conditions for Flow Function

When numerical type of equations (3.86) is applied to calculate the flow
around a flat barrier inside a channel it is necessary to fix the boundary
value of the flow function """ at the boundary. This condition is
missing in the general formulation of the problem. To find value of
"D on the plate surface for every time step let’s make use of relation-
ship (3.88). This can be done in the following manner. Represent Pty
in the form

YD =g + Codys (3.90)

where 1);)is the grid function that is a solution of a difterence problem

Apby =0 (3.91)
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with the following boundary conditions:

a. periodicity conditions are satisfied at the boundary of calculation
domain, that is at the inlet and outlet;

b. at the solid channel wall ¢, =

c. at the boundary ;) =1, and the grid function ¢(2) satisfies the
relationship.

Ay = ron i1/, (3.92)
The following boundary conditions for ¢Eg)+ D are set:
a. periodic conditions are observed at inlet and outlet;

b. for channel walls UJ(”+2) @ZJ(”H)

c. on the surface of the plate @Z)(”H) =0.

Note that equation (3.91) w1th corresponding boundary conditions is
solved only once, and the solution is entered into the computer’s memory.

The unknown value of coefficient C; equal to the value ¢(”+1) at the
boundary can be found from relationship (3.89).

Indeed, substituting expression (3.90) into identity (3.89) for any
contour drawn around the plate we find

Co— Dy — Dy (wﬁﬁf“) - DZ(T/JEZ)H))
0 — s
Di(Y)) + Do)

(3.93)

where

hy ih—1
Dy(y) = h_zz; (¢i+§z,})+1/z - ¢i+%z,},71/2 - wi+%zj1+1/2 + U’MJ(, 1/2)

=19

h2 j—1
Dy(y) = h_lzj, (wi(,+%zj+1/2 - %,—%ﬁl/z - wn +1j+1/2 + 1/4'] —%J+1/2>;

J=Jo

Dy = hy Zﬂ 1 (@—1/2) (n+1/2)) — Iy Zn 1 (n+1/g) (n+1/2))
i=io Viog+1/2 ~ Vij+1/2 i=iy Mit1/24, — Mit1/2,
Making use of the properties of a solution of the Laplace equation one
can readily see that denominator is different from zero in formula (3.93).
For the sake of convenience, calculations of Cy were made assuming
the contour being the same as the outer boundaries of the calculation
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domain. To conclude description of this algorithm, we will list the

sequence of steps to make computer calculations.

1. From equation (3.91) we find a corresponding value 9y and store it
in the computer memory.

2. For given initial values explicit formulae (3.85) yield auxiliary values
prE1/2) i 1/2),

3. Filling the right hand side by known values u®™1/2_ p(""1/2) e solve
the problem for equation (3.92).

4. Using formula (3.93) and known values u(’7+1/2),1/(”“/2),10(1),1/1%;;1)
we can find coefficient C,.

5. Formula (3.90) can be used to find the value of flow function for a
new time layer.

6. Formulae (3.87) and known values of """ can be used to find values
(n+1)  (nt+1)

Hiv12p Vi j+1/2

In these calculations the criterion for reaching the steady-state regime

within the calculation domain.

was provided by condition
ﬁ(”_H) —"

A =e. (3.94)

C(E2)

3.3.6 Numerical Solutions of Equations (3.91), (3.92)

Implementation of a numerical algorithm to solve the periodic problem
is provided by solving equations (3.91), (3.92) with corresponding
boundary conditions. For example, for equation (3.92) we have a problem
with periodic conditions at the inlet and outlet, that is

Yoy w12 = Una1)2, 1120 V1o, 112 = Unwa g2, 4125 (3.95)

and known conditions at solid boundaries of the calculation domain.
Taking account these peculiarities in boundary conditions the Poisson
equation (3.92) is solved using a stabilizing correction method of the
following type:

w(i1+1/2) _ ’l/J(”)

T = Ly )" 2 4 Lopp™ — £ (). (3.96)
0

w(n+1) _ w(n+1/2)

- = Ly ("D — ™), (3.97)
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where T is the internal iteration parameter; L1, Ly, are difference operators,
corresponding to approximation of second derivatives in xy and x;.

To find w(”ﬂ/ 2 from relationship (3.96) a scalar run is used. As soon as
the domain of the problem considered is not regular, i.e. it is impossible
to make a direct calculation; the run is conducted in specific parts of the
calculation domain.

Let the boundary be confined between the lines corresponding to
values xy and x, having indices i = iy, i = i1, j =jo, j =j1. Then according
to the above comment, the first vertical runs are made at j=1,N, — 1
for i=0,iy—1, then for j=1,jo—1 at i=1iy,i, and finally for
j=j1i—1,N; —1. The final vertical runs are made at i=i;, N; for
j= 1, N, — 1. The calculation formulas for scalar vertical runs are the same.

Now let us describe implementation of the second stage of stabiliza-
tion scheme, that is solution of equations (3.97). At this stage, calculations
are made separately for each subarea of the calculation grid. At i=0,N
for j=j;—1, N;—1. and j=j; + 1, N, — Tequation (3.97) is realized
through cyclic run for fixed j values.

It is most interesting to implement solution of (3.97) before and after
the plate, i.e. it is reduced to the following model equations:

Uy = UN, U1 = UN,+1,

dyUp+1 — bnun + - = — @, = 1a”0 - 19” =m + 1aN1a (398)

uﬂ() = a’ “n] = /B'

First let us consider equation (3.98) for n = n; + 1, Nj. The solution is
represented as a conventional run and the run coefficients can be found
in the same manner as in [116]. Taking into account the initial two equa-
tions from system (3.98) we can calculate values ug, 11, un,, Un, +1-

Indeed, in order to determine the above values we can write down
the system of four equations

up —un; = 0,41 —un;+1 = 0,01 — Xqup = Y, un, — Xnunj+1 = Yy
(3.99)

with denominator differing from zero, as |Xn| =1.
For example, from these equations u is calculated using the formula
Y, + Y1 Xy,

Uy =
1= X1 XN,
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This is followed by determining all u, values. Cycle calculation formulae,
as was mentioned above, are given in [116].

3.3.7 Numerical Calculations and their Comparison
with Results of Previous Studies
The method used to calculate the Navier-Stokes equations described here
differs from the earlier published splitting approach [7, 11, 13, 33—35].
First of all we take into account the boundary conditions and use a
different method of implementing the solution. As is known, in the past,
the laminar flow condition was accounted for in a line drawn through the
centre of the grid cell contacting the solid surface, whereas the no flow
conditions were held for the whole cell. The above condition required
solving the Poisson equation for the pressure using complex boundary
conditions. Here we are considering the opposite case. In our situation
the laminar flow condition is exact, whereas the no flow condition has
an order of approximation O(h?) at a line //2 away from the surface of
the solid. This enables us to introduce the flow function. In this case the
pressure can be calculated explicitly. Consequently the comparison with
results of previous studies can illustrate the potential of the approach
proposed as well as guarantee the accuracy of calculations.

As an example, we will consider a well-known problem of the flow of
a viscous incompressible fluid in a cylindrical container having a sliding
piston at the top. The calculations were made using grids (41, 41), (21, 21).

The simulation was conducted over a wide range of Reynolds
numbers. The results indicate that in every situation the steady-state flow
regime was reached. As a practical criterion of convergence and stability
of the difference scheme used we required that condition

% <1, h=min(hy, hy)
is satisfied.

As a rule, to satisfy condition (3.94) it took A~ 300—500 iterations. The
data obtained are in agreement with results of the paper [102]. At Re =500
the turbulence zone develops in the left and right bottom corners.
However, this flow is absent when Re = 100.

The coordinates of the centre of the principal turbulence obtained for
Re =100, 500, differ from those of paper [102] by 2%.
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3.3.8 Numerical Calculations for Periodic Problem

of Streamlines Around Plates

The above algorithm was used in a simulation of the grid (41, 41)
having spacing h; = 0,025 and hy =0,0125. A plate having length of
0,15 was located symmetrically across the channel at x =0,3. The fluid
flow rate inside the channel was assumed equal to 1, the Re number
varied from 100 to 250, and the time interval was selected within the
7 =0,0005=0, 005 range.

The initial velocity distribution was assumed to be symmetrical relative
to the channel axis. The optimum iteration parameters were found experi-
mentally: 7 = 0,002, 7y =0,005. For Re=100+250 we observed, that
the steady-state regime had reverse flow behind the plate. The typical
streamline pattern is shown in Fig. 3.1 for Re= 100. With increasing
Re the size of the turbulence zone expanded and the centre of turbulence
shifted towards the plate.

Here we will describe the numerical experiments for an asymmetrical
initial velocity distribution in more detail. In order to set u”, 1" the Laplace
equation was solved with A1) = 0, the boundary conditions being: 1) = 0, 1
on the plate, ¥ = £ 0,5 at the corresponding walls. The periodicity condi-
tions applied to the outer regions of the calculation domain. Then the values
u’, v’ were found using formulae (3.87). Calculations were made for
Re =100 and 250 on the surface of the walls (41, 41) and (41, 21).

The calculation results show that the difference in the value of the
flow function at the line x = 0,3 (where the plate is fixed) is of the order
of (5x10) % for the grids specified. When flow develops (at n— 00)
a stable pulsating regime develops in streamlining flow forming vortices
next to the plate. The turbulence gets separated at a later stage.

Figure 3.1 Isolines of flow function.
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Fig. 3.2 shows the values of flow function at the plate for Re = 250.

Also, the value of the flow function is shown together with v behind
the plate for the different times on the channel’s axis of symmetry. As is
seen from the figure, after n = 1630 the periodicity of motion is clearly
visible.

Figs. 3.3—3.5 depict the isolines of the flow functions showing
sequential formation of vortices and their separation followed by the
dissipation characteristics of decaying potential vortices.

A similar behaviour of vortices was described in paper [85].

Fig. 3.6 shows the value of velocity profile for x=0,3 and at the
inlet for n = 1630, n = 2100, when flow function isolines are the closest
to each other. We will note that the relative error of inlet velocity in this
case is 2%, the profiles of velocity above the plate are almost identical.

0.5

0.2F

1625 1750 A200

ol N

0.5+
Figure 3.2 The values of flow function at the plate for Re = 250.

Figure 3.3 Flow function isolines plotted for Re = 100, T = 2, 10.
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Figure 3.4 Flow function isolines plotted for Re = 250, T = 1,392.

250,T = 1,420.

Figure 3.5 Flow function isolines plotted for Re

Figure 3.6 1 —n=1630;2 —n=2100.
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On average depending on Re it took 20+35 iterations to satisfy the
steady state criterion

||Ahw?;)—1 _ mthﬁn+1/2 )S 10—4

||L2(Qh
with stabilizing corrections having the form of (3.96), (3.97) for each
time step.

3.4 IMPLEMENTING THE METHOD OF SPLITTING
INTO UNDERLYING PHYSICAL PROCESSES IN
COMPLEX GEOMETRICAL REGIONS

3.4.1 Introduction

The idea of region regularization was put forward by Teachmarch [133] for
the problem of determining. However the idea of the method of virtual
domains was used for the first time in the papers by V.K. Saulyev [120].

The method of virtual domains involves the consideration of an
auxiliary problem with a small parameter in a larger domain. The solution
of the auxiliary problem should be close to that of a solution of the initial
problem. In this section we will make a numerical calculation of the
flow of a viscous incompressible fluid inside a planar channel having
periodically arranged barriers and an arbitrary curved boundary. These
problems cannot be solved by using the regular grid and homogeneous
difference method.

A similar problem was considered earlier in the papers of B.T.
Zhumagulov, Sh.S. Smagulov, M.K. Orunkhanov, N.M. Temirbekov and
M.L. Iztleuov. However, these studies approached the problem from the
standpoint of variables: flow function — turbulence. Numerical algorithms
were developed in papers [116], [118]. Their solution convergence was
weakly dependent on a small parameter.

It is known that quite often the flow symmetry is broken in viscous
flow streamlining symmetric bodies even for relatively small Reynolds
numbers. Therefore, the numerical simulation of this problem is interesting
both from the theoretical and practical point of view.

V.A. Gushchin [33] and O. M. Belotserkovsky [10] illustrated the
efficiency of splitting up the underlying physical processes using an example
of transverse streamlining a cylinder by the homogeneous (infinite) flow of
an incompressible fluid.
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In paper [97] the method of virtual domains is used to analyse the prob-
lem of a streamlining a pair of cylinders situated inside a planar channel with
periodic boundary conditions in the cross sections. The resultant Navier-
Stokes equation is developed in flow function — turbulence variables.

In this section the problem of streamlining a cylindrical body inside a
planar channel having periodic boundary conditions is examined numeri-
cally. The method of virtual domains is used in combination with the
algorithm for splitting up the underlying physical processes.

After finding a steady-state solution with an accuracy of € = 10™* the
flow is perturbed through equating to zero the velocity component of the
symmetrical half. Even at these conditions the numerical iterations result
in attaining a steady-state regime.

3.4.2 Formulation of the Problem

Let us consider flow in a planar channel having regular barriers (see Fig.
3.7).

We solve the Navier-Stokes equation in a double connected domain
1, limited by straight lines x = 0, X and solid walls vy and ~,:

a—)
é + (BV)F = VAT — Vp, divi = 0; (3.100)
q‘ ) o o7
v _ = wo(x),— =— ;
=0 ! ax’f x=0 axlf x=X
y
1/|,y=O,1/|% =0, L udy = Q,v = (u,v). (3.101)
y 4 Y
! ‘: Q ‘II
: ’ Q :
/ Yo
0, Y X ,x:

Figure 3.7 Flow in a planar channel with regular barriers.
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Problems (3.100), (3.101) are peculiar as they have a curvilinear
boundary 7y, In order to solve the problems using homogeneous differ-
ence schemes we will consider an auxiliary problem [22] in line with the
method of virtual domains:

a_)a o < o
% + FVF = vAF = 9 v i = 0 (3.100%)
e
akl—;s akﬁe y
=€ =€ —c e €
— :VO(X),—, == vV :Oaj ”dY: Qav :(uu>1}c)5
’ =0 axl{ x1=0 ax’i xp=X |A/ 0

(3.101x%)

where &(x) =1 at x€{) and &(x) =0 at xe (2.

The paper [22] proved the theorem of existence of generalized solution to
problem (3.100%), (3.101%). It was established that the solution of problems
(3.100™), (3.101%) converges to the solution of problems (3.100), (3.101) at a
rate of €%

T
7 =7l o * | 17~y =cet G0z

where « is a positive constant.
The steady-state Navier-Stokes equations were examined using the
methods of virtual domains in paper [122].

3.4.3 Numerical Solution Algorithm

The numerical solution of (3.100%), (3.101%) was provided by the method
of splitting into * physical processes. Assume that X =Y =1 (which can
be done through scaling the variables x, y). Let

oo N —

| =

Q, = {xl =ithy, x2=ixhp, i1 =

1 1
U, = {x1 =ithy, x> =ih, iy =0,..,Ni, b= 5,---,N2—§}-
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Now we will consider the difference schemes using the method of

splitting
fi+1/2,j ~ ”1('-’?1/2 j TG
A L (i )it /2J—I/A;l +1/2 in Yy,
o (3.102)
Vi j+1/2 Vi i+1/2 2 An)  (n
< J + L2, ot ))’ 1= yAh +1/2 in U,
(nt+1)  _ ~ n+1 n+1
i+1/2, 7 Hit1/2, P,(H ? Pg ) f(x) )
At hg c t}+1/2 ’
(3.103)
(n+1) _ ~ 1 +1
Vi jr1j2 Vi j+1/2 Pl(fﬂ) Pt(,n L f(x) LD
At hy e it/ ’
(n+1) (n+1) (n+1) (n+1)
u, e A N —v
i+1/2, hl i—=1/2,j + i, j+1/2 h2 i, j—1/2 _ O, (3104)
N L =0, J Wy < Q, (3.105)

with conditions of periodicity in x:L}, L7 are the approximation of non-

linear terms. To apply the difference schemes we will use the methods

proposed in 3.3 of the present Chapter. Let us introduce a difference ana-

logue of the flow function:

(n+1) .
7/’1+1/2,j+1/2 ¢i+1/2,j—1/2_ (n+1)

(n+1) —
I Vi 12

t+l/2,]

We can re-write (3.103) as follows:

(n+1)
(n+1)

( t+1/2 j _]) + At

n+1 Pi+1
+ —§( )”1(+1/;, —

hy

(n+1) _ ot
7/’1+1/2,j+1/2 wi—1/2,1+1/2

hy

(3.106)

(n+1)

~ by ~
71 - U,‘+1/2, o (3107)
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p(n+1) _p(n+1)
(n+1) (n+1) ij+1 i~
( ,,7+1/2 T _é( ) z;+1/2> + AtT =it/ (3.108)

Differentiating (3.107) by difference in x,, (3.108) — in xy and
subtracting the result from each other we obtain

i), A (n+1) (n+1) (n+1)
( t+1/2j+ 6( ) l+1/2,j> < ’J+1/2+ g( ) P12

>X] (3.109)
= it [24x2 171'1]'+1 /2x1+
We will note that after substitution of (3.106) equation (3.104) i

104) is
identically fulfilled. In (3.109), using formula (3.106), we obtain the

relationship for wi(fl}; i+1)2

At
_ 1) _ (n+1)
( ¢i+1/22j+1/2§2 c 5(’C)qvbf+1/2=/+1/2§2>
X2

At
(n+1) (n+1)
- <1/’1'+1/2J+1/2§1 - ?f(x)zb

t+1/2J+1/2§1> = Hit1 /2,0 T Vij+1/2x¢ -
X1

(3.110)

Let us re-write (3.110) as follows:

At (n+1) At )
< <1 + ?f(x)> Vi orom, | T ?g(x) w’(*l/ZJ*l/ﬂ‘

T Wit )2, — Vij+1/2x;

(3.111)
For ¢"*V the following boundary conditions are valid:
7/1("+1—) =0, ZZJ,%T};,N_UZ = const,
- (3.112)
U = B ey Wi =Wy

The stability of the difference schemes (3.111), (3.112) is obvious
when the right hand side

is known. We will assume that
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S = 41725 — Bit1/2, jx,) € L2(§21). Multiplying (3.111) by 2Athi ot
1/2, j+1/20*D and summing in i, j using the formula of summation
by parts we obtain

T

3.4.4 Sequence of Calculations

2

5( Xy sc\m\imh). (3.113%)

From equation (3.102) we can find #ij+1/2, , ; j+1/2. Then implementing

the iteration method from (3.111), (3.112) we will calculate w i /2 12

(n+1) (n+1)
i+1/2, 2 Vi, j+1/2°

ing the problems (3.111), (3.112) for sufficiently small €.
As &(x) is a discontinuous function the equation refers to a class of

Due to formula (3.106) we obtain u We will dwell on solv-

equations with fast alternating coefficients. The operator (3.111) and (3.112)
is positively determined and self- conjugated. The ratio of the minimum to
the maximum eigenvalue depends on €. Consequently, equations (3.111),
(3.112) are ill-posed. It is not reasonable to apply classical iteration techni-
ques to solve problems (3.111), (3.112) as the rate of convergence of the
iteration process depends on a small parameter. Consequently, to solve
problems (3.111), (3.112) effectively, one has to develop special iteration
methods where the convergence rate is a weak function of €. The identical
approach to solve the Dirichlet problem for an elliptical equation has been
considered in papers [21, 28, 55, 97, 116, 118, 119].

In paper [97] the Richardson method of extrapolation was used to
improve the accuracy of approximation using the method of virtual
domains. In [21, 28, 136] the method of variable directions was
proposed:

w/\+1/2 ¢k .
A A

PR — k12 © .
5 b+1/2 k+1 __

D:Tﬁ‘z‘llw / +AZE¢+ =f,

where Aff)?/) = ((1 + %f(x)) tz, )x(k’ a=1,2; which, as was mentioned

n [21], converges to a steady-state solution irrespective of D¥. For the

right choice of the diagonal operator D¥. The modified alternate-triangular



Multidimensional Numerical Models of Subsurface Fluid Dynamics 171

iteration method (MATIM) was developed in papers [116; 118]. MATIM
can be applied to solve a periodic problem at the boundary of the calculation
domain in the following way [30]. We will write down the solution of the
problem (3.111), (3.112) in the form

n+1 (1) (2)
¢1+1,,+1/2 ¢,+1J+1/2 '+1/2¢,'+%J+1/2 + /3.i+1/2¢i+%,j+1/2’ (3.113)

(1) (2)
where th Li+1/2> w:+%g+1/2’ ¢i+%z/+1/2
auxiliary problems:

(13) () (250 (1)
X/ X Y )/

. . © O 0
= Hit1/2y V"J+1/2,x’¢i+1/2,3/2 - 0’¢i+%,[\f—1/2 = const, 3412 (3.114)

are the solutions of the following

j— 1n (0) — wﬂ
3+1/2> VN+L+1 /2 N+1j+1/2>

At
dth<(1 + ?f(x)> VMZ)(U) 0 ¢(1)1 =0 1/{_?1 ML=

(3.115)

(1) (1) _ , £(x) 2)\
Y= ¢N+%’J,+l/2—o,dw,l<(1+m )v,ﬂp( >>_

) _ (2) — (2) (2)
¢f+1/z,3/2 B O’wi+%,M—1/2 0,95 z]4—1/2 w[\]+11]+1/2 L (3.116)

The coefficients a;+1/2, 3j41/> are found from the boundary condition
(3.112). We obtain the following system of equations:

_ D e — 0
(1 7/’N—1/2,‘,'+1/2>O‘j+1/2 wl\“'—l/z,j+l/2ﬁj+1/2_1/}1\‘*—1/2,]+1/2’

(1) (2)
- ¢5/2,1+1/2aj+1/2 + <1 o ¢5/2,1'+1/2>Bj+1/2 ¢5/2 j1/2°
(3.117)
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As is shown in (3.113)—(3.117) the problems (3.115), (3.116) are
solved once, that is they do not complete a full iteration step in time.
For each full iteration step it is necessary to solve problem (3.114), in
which the values of the flow function in the lower time layer are taken as
boundary conditions for 1%3)“ P
that the problems (3.114)—(3.116) have simpler boundary conditions than
the problem (3.111), (3.112). To solve the problem (3.114)—(3.116) one
can make use of the modified alternate-triangular method [116]. Its con-

() : :
and wNJr%’jH/Z. One can easily notice

vergence rate does not depend on the value of coefticients (1 + %f(x))

We will assume

A A
arij = <1 + ?t(f(x)iz,'ﬂ/z))a @i = (1 + ?t(é(x)iﬂ/lj))‘

Let’s write the difference scheme (3.114) in new designations

Av=[n R ) =( = const
,l/} H‘%,_],xz U+1/2,X1 ”l/]l'H/Z?S/Z 51/]“,%’M—1/2 ’
_ n — n
7@,’4—1/2 = wgd'ﬂ/z’ ¢N+%J+1/2 - wN+%J+1/2’

(3.118)

Where /1=/~11 +;12. First of all we can represent A in the form
A=A, + Ay

_ 2 _aa 1 [a, _dq |
Ay = ZQ:1 o VR + TR (E h—a)%%;ﬂ/z

-

(3.119)

2 _a+ 1 [a g
Aop= — Zazl h_(;%‘" + % <i - E) ¢i+%:j+1/2

-

where af = a1,i+1,» a; = a,ij+1-

We assume that A, = —/Ap,a=1,2 for any w€ew), Then
A=A, + A, = —A. To determine operator D we can use the following
formula

, 1
>\/W+Ga’ (3.120)

2 a:: 1
o= 320 (0 * 3
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Polp) = max,, 1\ (x), 0 (x5) = max,, o5 (x).

The functions vga)(x) and v(za) (x) are determined as solutions to

problems
+
1 1 1 1 _ N
(@), = =pimewiG) | =040 = (Ga21)
1
+
2 2 2 2) _ D
(anggl)M = —pﬁ ),xz € wa(x1), Vg )‘% =0, P(1 )= hzy 5 (3.122)
2
1
1 1 1 1
(ﬂwg;)l Do = —pé ) x1 €wi(x2), Vg)|% =0, Pg) =5 ‘aiij —ayj|; (3.123)
1

1
2 2 2 2
(@), = =P meewa(a)? | = 0,057 = s |4y =yl (3.124)
2
We have to determine only four functions: 1/%1), 1/52) R Vg), 1/22) . This can be

done using the fitting technique. Knowing Vga)(x) and Vga) (x), we construct
the grid functions of one variable ¢, (x3), 1, (x3), to be followed by deter-
mining d(x) using formula (3.117). For the chosen d(x) we have [116]

0=1,A =4max,=1, <maxxdew3 <\/ gpa(xg)-ﬂpa(xg))z) . (3.125)

Now we can determine parameters wy and the optimum set of
Chebyshev parameters {7,}. We will use the iteration scheme [116]

3.4.5 Calculation Results

For numerical calculations of the symmetrical flow of viscous incompress-
ible fluid streamlining a cylinder the parameter € in (3.102) was chosen as
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equal to €=10"° The number of internal iterations to solve the
problem (3.118) was calculated through the formula [116]:

)= In(2/e)v/A
242

The dimensions of the calculation domain are x =2,5;y = 1. The centre

, € 1s the required accuracy.

of a cylinder having radius r = 0,2 was set at the point x=1,y=0,5.
The calculation domain was split into 50 X 20 cells. In our calculations
for 7=10"* and & = 1077 the number of iterations equalled n = 367.
Solutions of the problem (3.115), (3.116) converge with accuracy of
g1 =107 over 362 iterations.

In Fig. 3.8 the isolines of flow functions are shown for the viscous
fluid flow streamlining a cylinder for Re = 10 and Re = 50.

It is seen from the calculation results that there are no reverse flow
zones. Further, in Fig. 3.9, a we see that at Re = 100 the reverse flow zones

develop behind the cylinder.
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Figure 3.8 Isolines of flow functions for Re = 10.
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Figure 3.9 Isolines of flow functions.
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When the Re number increases the volume of reverse flow zones
becomes bigger (see Fig. 3.9 b, ¢).

In the case of incompressible fluid and for low or moderate Reynolds
numbers the motion behind a symmetrical finite body may develop in two
regimes: 1) symmetrical steady-state motion; 2) unsymmetrical periodic
motion. At low Reynolds numbers experiments and calculations show
[10, 11, 35] that we are dealing with the steady-state regime. It remains
stable irrespective of the value of the instantaneous initial perturbation. In our
calculations we assumed the perturbation to be as follows: the orthogonal
velocity component in front of the cylinder was set equal to zero body on the
symmetrical side. However, due to the small perturbation the finite number
of iterations resulted in attaining the symmetrical steady-state regime.

The numerical solution of the non-stationary problem of the flow
of viscous fluid streamlining a cylindrical body is interesting from the
theoretical and practical point of view. To obtain a non-stationary
flow scheme it is necessary to introduce a perturbation and to trace its
evolution. We made an attempt to model a structure of a periodic flow.
As the initial approximation we took the following function of the flow
distribution:

0 _ . (T . . —
iLjg1/p = Sin Eyj-f- 1/2),i=1,N,j=2,M — 1.

In numerical simulation the solution of the problem (3.111), (3.112)
was found using the following scheme of stabilizing correction:

(nt1,k+1) __ /1 (nt1,k)
Y Y

(E—L\)(E—TLy) - + Ly = Uit1/25y = Vjj+1/2x-
0

(3.127)

Solving the above problem for the vertical direction was made
through the scalar fitting. The method of cyclic fitting was used to solve
the problem in a horizontal direction. In numerical calculations we chose
the following parameters: Re = 250, 7 = 0, 0005; 79 = 0, 01.

The calculation domain was split into 50 X 20 cells. To obtain the
approximate solution of the problem (3.106), (3.107) with accuracy
e=10"* it took an average number of 20 iterations. The criterion to
attain the steady state was as follows:

(n+1,k+1) _ /1 (nt+1,k)
Y Y

=¢€1.

To
C
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In practice these are asymmetric or non-stationary types of motion in
the wake that are absolutely stable.

Figs. 3.10—3.12 show the isolines of the flow functions (¥ = const) for
streamlining a cylinder by a viscous fluid at Re =250 for different points
in time.

A non-stationary flow is observed. A stable area is formed behind the
cylinder in the bottom half-plane. When the “turbulence” is separated
and fluid is discharged from this region the stable area is formed again to
be followed by separation in the upper half- plane.

Thus, the periodic (self-oscillating) regime develops for the flow of
fluid behind the cylinder. The period is T & 1.

04 06 08 1.0 12 14 16 18 04 06 08 1.0 12 1.4 1.6 1.8 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8
(a) (b) ()
Figure 3.10 a —t; =0,443;b—t, =0,618;c — t; = 0, 623.

=N

04 06 08 1.0 12 1.4 1.6 1.8 04 0.6 0.8 1.0 12 1.4 1.6 1.8 04 0.6 0.8 1.0 12 1.4 1.6 1.8
(a) (b) (c)
Figure 3.11 a—ts = 0,623;b — t; = 0,893;c — ts = 1, 143.

PP (P (>

0.4 0.6 0.8 1.0 12 1.4 1.6 1.8 0.4 06 0.8 1.0 1.2 1.4 1.6 1.8 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8
(a) (b) (c)
Figure 3.12 a—t; = 1,193;b — tg = 1,243;¢ — to = 1,1293.

T
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3.5 NUMERICAL SIMULATION OF THE OIL DISPLACEMENT
PROCESS BASED ON THE N.E. ZHUKOVSKY MODEL

3.5.1 Introduction

The method was developed to determine the velocity and pressure
distribution in formations near the bottom of a well using the
N.E. Zhukovsky model [106]. The method is based on solving the
problem through assessing the distribution of pressure in a formation
having known permeability for the known pressure inside the well
and an unknown fluid flow rate. The eftect of boundary conditions of
solid impermeable walls on the pressure was taken into account. The
solution of the boundary problem may be used to evaluate practical well
operating situations [9, 23, 26, 46, 47, 86, 126].

3.5.2 Calculation of the Pressure in Bottom-hole Zones

Formulation of the problem and algorithm for numerical solution. The model
problem of a water displacing oil (“water flooding”) having horizontal
layered flow is considered. The problem is analysed in two-dimensions.
The flow region corresponds to the vertical bed section [50]. Horizontal
boundaries I'y, I'y and vertical boundary I's of the formation are assumed
to be impermeable; boundaries I's and I'g are assumed to be isobars with
known injection pressure (on I's) and outlet pressure. The shaded area is
occupied by the porous medium.

I

Figure 3.13 The problem of water displacing oil ("water flooding") with horizontal
layered flow.
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Corresponding equations have the form

o 1
A iV + Vp = — Ail — X, )i, divii = 0. (3.128)
ot Re

Here 1(u, v) is the velocity vector; p is the pressure; A(x, y) is the coeffi-
cient of resistance of a porous medium which is determined in the
following way:
pum/k  —in porous medium,
Alx, y) = , ,
0 —in nonporous medium,
Where m is the porosity coefficient; Re is the Reynolds number; k is

the permeability coefficient of porous material. The boundary condi-
tions are:

i=0,(x,y)el, k=1,3,4;p=po,v=0,(x,y)els;

v (3.129)

pP=pi,u =O,(x,y)er6,ax 0,u=0,(x,y)el,.

Problem (3.128), (3.129) is solved by a finite-difference method on a
hybrid grid. The known method of splitting into the underlying physical
processes [12] was used to determine the velocity and pressure.

3.5.3 Approximation of the Boundary Conditions
At the lower boundary I'y the conditions of laminar flow and no flow are

n+1 — ntl — : :
set, such that W = 0, Vi, =0. We expand into the Taylor series

the tangent velocity component u(x, y) normal to y relative to I'y in the
wall-adjacent points (xH_l /25 g) :

A 81/[) n+1 hz <82M> n+1

n+1 n+1 2 2 ]
u; U o\ "5 \op ¥ o)
+1/2,1/2 121 5 <8y 8 \ 0y i+1/2,1 ’

i+1/2.1

Let us consider the projection of equation of motion on Ox in the

az nt+1 P n+1
(—Z) = Re (—p> + O(Rehs).
Oy i+1/2,1 Ox i+1/2,1

same point:
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nt+1 n

0

We will substitute <_u> by (—”> with accuracy O(7):
Oy i+1/2,1 dy i+1/2,1

M”+l _ @ % n+1 _h_%Re 6_p n+1
) Oy i+1/2,1 8 Ox i+1/2,1

Let’s write down the following equality in the form

n+1 2
ntl o~ _ Op - th
Uip1/a,1 = Hit1/20 — To\ 2~ ,To = = Re,

0x/)i1/24 8

here B hy <au>”

Where uit1/21 = | = .
2 \0y i+1/2,1

. ou" :
We approximate (Y / through values ! Jo I nodes i+ %,%;
i+1/2,1

i+ %,1;1’4— %,2 and obtain

<@ ! _ =AU g T3 oy T
Oy .

i+1/2,1 3hy
Taking into account the boundary condition we find

3 +

6

n
Hiv1)2,1

n
Hir1/22
b

Uit1/2,1 = i=2,3,...,Ni.

Equation for pressure for j = 1 is found from equation

n n+1 n+1
u. — Uu. V.
i+1/2,1 i+1/2,1 ,3/2 .
/ / + / =0,i=2,3,...,N;.
h h b b 2 9
1 2

Equation for pressure has the form

n+1 _ n+1 n+1 n+l _  n+1 ~n+1 _ ~ntl ~n+1
- pivig — 2l t2p n TP;’,Q Pi1  Mit120 T Mie1/2. n Viz)2
0 2 2 - .
hy h3 hy hy

At the boundary I'y when 1 =i=k,j=m + 1/2 the boundary conditions

n+1 — V’,l-H =0.

are specified as st 1/2 = Vir1)2
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Reasoning in the same way we obtain

n+1 n+1
n+1 —_~ _ pt+1m ptm =23 k
Uit /2,m — Yit1/2m TOT, i=2,3,...,k,
- . 3t o T ”:;%,,,,_]
where i1/, = —

The respective continuity equations and relationships to determine
pressure at j = m have the form:

nt1 n+1 n+1 n+1 n+1

’ Pit1,m — 2p p1 1,m +7 Pim — Pim—1 _ ﬁi+1/2,m - ’zi—1/2,m _ ﬁi,m—1/2 X
0 E 12 Iy 2
e +1
“7+1/2,m “7—1/2,;;: _ VZm—l/Z —0
hy hy '
At the boundary I's:
—k_'_l +1<<N n+1 n+1 _O
1= 5 M5 2o W12 = Vit L1/ = V-

For the nodes near the boundary the numerical values of velocity can
be determined as follows:

p11+1 pn+l
n+1 ~ _ kyj+1 k,j .
Vet1,j+1/2 = Vit1,+1/2 1—h2 J=mF+1,m+2,..., Ny,
3" + " 2R
~ — errgt/2 T Verat1/2 _ IRe
where Uiy ji1p = — ", T1= 5

The equation of continuity at i = k + 1 takes the form

un+1 n+1 _ n+1
k+3/2,i + k+1z]+1/2 k+1z]—1/2 =0 _] —m+2 N2
h] h2 b b b

Equations for pressure are as follows:

T T
n+l _  ntl n+1 _ n+1 n+1
ﬁ(ﬁkﬂ,j pk+1,j) + ﬁ(l’kﬂ,jﬂ 2Pyt J 7 Preti ,—1)

1 2

_ We+3)/2 n Vkt1,+1/2 = Viet2,j—1/2
hy ha '
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The boundary I'; is the symmetry axis, i = Nj + %, 1/2=<j=N. The
difference analogue of the boundary conditions on symmetry axis can be
written as:

n+1 — ntl n+1 — _  ntl
Ny —14+1/2 = UNy+1,j+1/20 BN +3/2 N —1/2j°

The equation of continuity in the vicinity of the symmetry axis has
the form

Mn+1 Vﬂ+1 _ Vn+1
Ni—1/2, Ny j+1/2 1,j—1/2 .
— NCURy NHE NGTR — =03, Ny — 1.
hy hy

Pressure value in the nodes next to symmetry axis is given by formula

n+1 n+1 n+1
nt+t1l _ le_U' + leJ"'l +pl\71J_1 _ 1 i=223 N> —1
Py = |72 12 f Ty )T e ’
1 2 h% hg

~n+1

— 1| _ NIEY, YNyt /2 ~ Ny 1)
where f = - Tt I’lz

Pressure in the corner (point i=k+ 1,j=m) is calculated from the
relationship

1 +1 +1 +1 +1 1 +1 +1
ﬁ(’r(pz-%,m _pZ-H,m) - TO(pZ-H,m _PZ,m )) + ﬁ(’ﬁ (pZ+1,m+1 _pZH-Lm)
1 2

nt+1

ﬁk+3/2 m l:lk+1/2 m Vet 1,m+1/2 = Vietd m—1/2
_ ntl __ — > i ? 2
TO(Pk+1,m Pret1,m—1 )= + )

I/l1 h2

3.5.4 Calculation Results

Computer simulation was carried out for various Re numbers, permeability
coefficients, and geometries.

The domain of numerical integration of the system of the difference
equations (3)—(5) was covered by a grid having a size 21 X 41 and
31 X 41. All calculations were made for the same initial approximation
until the following inequality was satisfied || u'th — H =e,e=2X10""
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(a) (b)
Figure 3.14 Isolines of flow functions at Re = 100.
a — fluid flow in a formation without porous medium; b — a calculated region par-
tially filled by porous medium; the size of the grid is 21 X 41; iteration parameter
t =0,001; steps in spatial variables: h; = 0,015, h, = 0,0025.

Fig. 3.14 shows isolines of the flow functions for Re= 100. As
Fig. 3.14, a shows the fluid flow region is not occupied by the porous
medium.

The numerical simulation shows that the pressure values decrease in
direction of the fluid flow. In front of the porous barrier the pressure
increases and velocities equilibrate. A dramatic change in velocity profile
takes place at the outlet of the layer. The maximum velocity is observed
next to the corner whereas the conditions of complete laminar flow are
met on the wall.

For 0=x=1;,0 =y=1, the simulation domain is filled with porous
material — (a) and with the medium — (b); the grid size is 31 X 41;
iteration parameter t = 0,001.
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3.00 3.00
2.50- L 2501
2.00 2

004 20| ||F 2001

1.50 - 1.50 -
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0.0
L 050
0.00 : 0.00 :
(a) 0.50 (b)  0.00 0.50

Figure 3.15 Isolines of the flow functions at Re = 100 (a) and Re = 500 (b).

Isolines of flow functions for Re =100 and Re=500 are given in
Fig. 3.15. With increase of Re number and growing resistance of the
porous layer the distribution of the pressure becomes complicated. In the
middle section of the bed under the porous layer there are areas of apparent
increase in pressure. Inside the porous part the pressure is almost constant
across the channel section, whereas it significantly reduces downstream in
the filtered fluid.

Using the numerical results we can reach the following conclusions:

* stability of the fluid occurs in front of the porous layer for any parameters
controlling the flow regime;

+ the flow through the porous layer is close to one-dimensional;

* the velocity increases near the wall behind the porous layer.

3.6 NUMERICAL MODEL TO FIND FORMATION PRESSURE

In this paragraph we examine the problem of viscous fluid flowing
through an L-shaped domain having set the pressure p = p,, at the outlet
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and zero tangent component of the velocity vector at the inlet and outlet
(uniform flow). This problem models finding formation pressure p = pp,
using its measured value p = p,, at the well head of a producing oil well
which is important from a practical point of view.

We prove the convergence of the difference approximation of this
problem thereby validating its general solvability in time. A computer
model was proposed to simulate more complicated problem when the
total pressure Gouper =p + %‘ﬁ| is used instead of pressure poue In this
case, instead of using the Navier-Stokes the Zhukovsky model is used.

3.6.1 Substantiation of Numerical Algorithm
to Determine Bottom Hole Pressure

Let the oil flow in through the section AB and out through section DM

(Fig. 3.16). Flow is caused by the pressure drop at the boundaries AB and DM.
The problem is described by the system of differential equations:

a + (V)i = pAii — Vp, divii = 0 (3.130)

with initial-boundary conditions

it],_y = ilo(x), (3.131)

AB: p = py = const (unknown), v = 0; BCD:ii =0,

D
DM: p = p1 = const (known), u = 0; J vdx = Q/2, (3.132)
M
Xa!
DM D
B C c' B'
A 0 A X4

Figure 3.16 The oil flows in through the section AB and out through section DM.
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where Q is the flow rate;
AO: i =0; OM: u=0,v, =0 is the symmetry condition.
Let us introduce flow function assuming u = ¢,,,v = =1, .
We will re-write the system of equations (3.130) in variables 1, w:

% 4 S ) = e, A =,

(3.133)
Ow ow
J(¢,W) = ¢x2— - 1/&1 T oW T Uy, T Uy
6X1 8x2
Conditions (3.131), (3.132) take the form:
ow 0 oY
= ;ABip— = — (¢, — =0;
w ‘ =0 CU()(.’X'), 2 6961 5x1 (’l/J;x,1 5 wxz)a 8X1 B
oy
AO:=0,— =0;OM:¢p =0, w = 0; (3.134)
axz
oY ow 0 Q oY
MD:— =0, y— = — — ;DBC:yp= —- |DM|,— =0.
axz s [ axz ax2 (wxl > wxz)ﬂ w B | > on

The pressure on AB is calculated using the equations (3.130):

0 0
dp = (Wi, dx) — wy, dxp) — waz dxy + 51/}’“ dxs

N 5 o
(8—361(1/&2) + a_xz(% '%)) dxy + (a—xl(%1 )+ a—xz(%l) )dxz-

(3.135)

We will integrate (3.135) along an arbitrary curve connecting boundaries
DM and AB:

o o ., 8
= + -~ - = + .
PAB PDM ﬁy (/’waz ot ’l/}xg axl (T/sz) axz (wxl T/sz )) dxl

0 0 0 )
+¢ |- + Y+ — ), )+ —
§'y ( MWy, ot ¢x1 ax1 (¢x1 wxz) axz (¢x1) > de’
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In this manner we can find the pressure at bottom-hole. Sometimes instead
of the boundary condition (3.132) one can use:

AB: p+ ”2;”’2 = pop = const (unknown), v = 0;

BC, CD, AO — i =0 — laminar flow condition,

DM: p+ # = p; = const (known), u =10, Lﬁ vdx = Q/2,

OM: v =0;v,, =0.

Then (3.134) take the form

ow 1 0 o
AB: oo xz-w—z(szz)iz,a—z =O;AO:¢=O,8—Z =0; (3.137)

Ow _ 1 ol Q op

—_ :O‘
> On

For simplicity let us consider a linear stationary problem in a rectangular
domain. The fluid is flowing in through section AB, and leaving the domain
through section DM.

In this case DM and AO are parallel.

The functions w(x), ¥(x), x = (x1, x2) satisfy the boundary problem:

Aw=f,Ap=uw, (3.138)
A — 0.9 o a0 =02 0, (3.139)
Ox1 Ox1 Ox»
ow B o
PM: 2 =0, %Y = 0, DBy =0 0
6x2 8x2 w 8962 ’

where f is the known smooth function.
Multiplying the second equation of the system (3.138) by % and
integrating, we obtain

JQ\A¢\2dx = Jﬂf - dx. (3.140)

We will introduce the class m(2) = {y e C‘%Q),%‘ 20
AO and DB, 7“ =0 on AB and DM}.
The closure m(Q) in W3 (Q) is designated as W (Q)

=0, =0 on
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Consider Vf/z_z(ﬂ) having norm H f

i) = 5P L =19

Wz-(n)
We will construct the grid in a way that boundaries AB and AO are
located between nodes (0,5) and (1,) and (Ny — 1,), (N1, )):

Aywi; = fi, Aty = w, (3.141)
AB:wy; = wyjy o = 1pj = LN 1,

DMiwn; = wn-1j, Y5y = Un—yjpf = LN — 1, (3.142)

2
2 o
w,'N = ﬁw[\y_1,l: 1,N_ 1.

Lemma 1. The problem(3.141),(3.142) has a unique solution complying with
the following estimate

|aw]* = s, (3.143)

Proof. Inequality (3.143) is obtained by multiplying (3.141) by 1; and
using the Helder inequality. Using the known methods [25] the problem
(3.141), (3.142) can be reduced to the difference system of equations:

Apwip + Gy = fip, Aty = wyj, (3.144)
2. I,N—1,j=1,N—1
—a = LN= L g=1L N1,
where Cj(x) = h* J

0.

At boundaries AB, DM the conditions for w;, ¢; remain the same for
AO, DM. Thus,

AO:ty, = 0,wip = 0; DB:t)y, = 0, w;ny = 0. (3.145)



188  Fluid Dynamics of Oil Production

The difference equations (3.144) with conditions (3.145) have quickly
alternating coefticients, therefore we should make use of special iteration

techniques:
wn+1/2 — " n+% n+% i
A = A" + CU(X)T/) + fiis Ay =t/ ;
Wl — )2 A ) (3.146)
= W= w
At !

with relevant boundary conditions.
The solution (3.146) is provided by the modified alternate-triangular
iteration method.

To solve the nonlinear problem we can use the following scheme:
+1/2 n
w" W +1/2 +1/2 nti
n_)n _ n, ) n — n 2 .
7At + (wij ij )X1 (wij iy )X2 = I/Ahwij + C,,(.’X?)’lb” +flj’

(3.147)

n+1/2 _  n+1/2,
Ahw / =w / )

ntl _  =n

w w
At
with conditions (3.142) and (3.145). The scheme (3.147), (3.142), and
(3.145) is stable in space L»(£2;) [25].

= VAh(w”H —w")

3.6.2 The Case of Zhukovsky Model

Consider the following system of nonlinear equations describing the fluid
flow through a porous media:

a—)
é;+WVW+W@=uAU—M%QQMM=0. (3.148)

The initial conditions are:
i|,_y = io(x, y). (3.149)

The boundary conditions are given as:

AB:p = py = const (unknown), v =0; BD:u=v = 0; (3.150)
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’|
D M
B
A 0 X

Figure 3.17 Fluid flow through a porous media.

DM: p=p; = const (known), u=0; LZ vdx = Q/2, where Q is the
fluid flow rate;

0
OM:u = 0; a—V = 0 (symmetry condition); AO:u = v = 0.
x

Here \(x, y) = mpk™'; m — porosity; k- permeability of porous medium;
1 — viscosity coefficient.

We will re-write the system of equations (3.148) using variables: flow
function and turbulence

2 2
o | O O <a S 8_w> — div(\(x, y)grad)); Ay =w, (3.151)

o ox oy T\ oy
YR VR
where u 8}/’1/ o oy  ox

At the boundary AB we will obtain the boundary values 1, w, using
condition (3.150) for AB and the principal equation for AB:

ov Ov Op v v
v+ ) =pl——) - V) s
(M ox Oy aY)AB 8 (axz a)/2>AB (AP 1)

v ow ow azp) 10 (w)z
u—| =—(p=—) ;\p=—w=—| =—==—(=) ; (3.152)
< ax)AB ( ax)AB < Ox 0y ) ap 20y \0y ) 45

o\ _
<5>AB =0. (3.153)
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Reasoning in the same manner we obtain the boundary conditions at

the outlet boundary DM:
ow & 10 (oy\°
PPRCATICAA R A () R (3.154)
Oy Ox)py 2 Ox DM

o\ _
<5_)/>DM =0. (3.155)

For the rest of the boundary we obtain the boundary conditions stem-
ming from (3.150):

o

BD:wp = —
¥= S ox

=0, (3.156)

o

Ao:¢=o,a—y =0,0M:p=0,w = 0.

Cover the region ABDMO with the uniform grid:

0, = x,-=(i—1)h1, )/j:(/'_1)h2,': N1,_]':12...,N2
" = |AO|(Ny = 1), I = \Mo\(Nz—l)

We will substitute the system of equations (3.151) by the difterence rela-
tionships [102]:
W = Ly + Ly — divy(Agrady)"),

ntl _—  n+1
1ﬂ/1 - wij

(3.157)

Here the difference operators are determined in the following way:

Lipw = (A 1/2wx )55 = 0,51 /2,jWaip T the—1/2,jW5)s

(3.158)
Loyw = fi(Biet1/2w))555 = 0.5 k1 /2,050 T Vik—1/2,07,i1)s

1
App1p=1+ —

1

Vik+1/2h2
Bipip =1+ — Tiket1/2%2

2

W1 /2,711
2

divi(Agradyp) = (Njth )z + (N )y
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The scheme to represent the implicit difference scheme (3.157) is
similar to that discussed in paper [25]:

;‘1‘-0-1/3 o
I E— L, UJ”H/3 + Lo — divy(Agradiy)");
-
(3.159)

+2/3 +1/3
A V)

J L = Ly + Ly — div,(Agrad)");

n+l _ n+2/3

T = —dinyO\grady (" = 4");

&

A =witi=2,3, N = 1,j=2,3,.. , N, — .

We obtain the boundary conditions for the turbulence at the inlet
and outlet approximating (3.152), (3.154) though integral interpolation

method:
X2 5 29 X2 0
J ® e J —wdx=——J <05w) dx;
ox v Oy 5}/ ¥
nt1/3 nt1/3 n n
Wy / Wy / _1/J1J+1/2_7/’12j71/2'wn+1/3:_1(%}*1_ ) _(d) 1/111 1) .
hl h2 11 2 hg )

I

(3.160)

S (e hy (1/)1J+1 Vij-1) Wk :_ﬂ'(wlfrl_wlj)z _(1/’1j_¢1j'—1)2
¥ 2u hy b 2 3 '

Integrating (3.154), we find the boundary condition at the outlet:

2

e fw By re o)
+w—|d —& gy,
J (M oy 0y> - J ox "

YNp—1 YNy—1

nt+2/3  nt+2/3 1 o
i,N, WiN,—1 O 7/’i+1/2,N2 ¢i*1/2,]\72

h2 iNo—1 : hz
_ 1(1/}2),‘2“/2,1\72 B (wz)?*l/Z,Nz .
2 h ’

(3.161)
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h ( n o )

23 [y M2 i+1,N, i—1,N» n+2/3

WiN, Y A WiN,—1
12 1

n 2 n n
2uh3 |:(¢t+1]\77_ i,Ng) —( iNy i*l,]\z) }’ =23,...,N— L

On the solid walls BD and AO we can make use of the Tom formula
[96] with relaxation. The difference scheme (3.159) is developed as
follows: using the scalar fitting with boundary conditions (3.160), (3.161)
and the known conditions on the solid wall and on the symmetry axis
n+1/3  u+2/3
from the first two relationships we calculate: i Wi ,
i=2,3,..,Ny—1;=2,3,..., N, — 1.Then from the last two difference
equations we derive the difference equation to determine the flow func-

tion distribution on the five-point template:
1 1 1 n ﬂ
[P i =0 = e =) +

1
ﬁ[(1+7)\),=/+1/2(¢2;;11 wn-‘-l) (1+7N);- 1/2(¢n+1 7;11)}= (3.162)
2

Z+2/3 + 7 - divy(gradi)yy),i=2,3,. 1;/=2,3,..,N, — 1

with the boundary conditions:

AB: ZJU =0,j= 1,2,...,141,BD:¢'§H =const,j=m+1,m=+2,...,No,

DMl =0,i=1,2,..,Ni, OM:( 1 =0,j=1,2,...,Na,  (3.163)

AO! ! =0,i=1,2,..,Ny

The problem (3.162), (3.163) is solved using the iteration method.

n+1

The value wj"" is determined from the difference relationship:

Wittt = AT =23, N = 15 =2,3,. ., N — 1L
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[teration process (3.159) stops when the following condition is met

o™ =W =e,e>0. (3.164)

Having found the distribution of flow function and turbulence in the
calculation domain the pressure values on AB can be calculated by for-
mula (3.136). From the system of equations (3.148) we have

0
a_i = Py — (%)3 + (";Z)x ’ w)’)y — Alx, Y) ’ w}’ N (w)’)t’
(3.165)
0
5= THe W) = ]+ N ) = (W)
Accounting for our assumption we obtain from (3.150)
Pg = pap = po(unknown); pp = pppy = p1(known). (3.166)

Further integrating along the boundary line BD, we find

Op Op Op Op
—pp= P+ X4 =pp— ix+ Ldx ).
o JBD<ax’“ oy x)’pB " LD<axx o™

Using parametric equation BD: (x =0,y =, yg = t = yp), we will write

YD ap
VB ay

dy,

x=0

PB=PD ™ J
and accounting for (3.165) we can write down this relationship in the form

YD
P8 =pp— J (= pwy + (W 1), — () + Ao P, + ()] .

VB
(3.167)

We will determine the integral on the right hand side of (3.167)
applying the known formulas of numerical integration. This method
yields the pressure value only at the inlet boundary AB.
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In order to determine the pressure distribution within the whole calcu-
lation domain using calculated values 1, w and the known pressure ppar,
consider the finite-difference analogue of the second equation (3.165):

ntl _ _ntl n+1 _,nt1
P Py Wiy T Wisag n
hg hl
n+1 _ nt1 _ _ ntl _ jntl n+1 _ o ntl
( i+1j ¢1j ) (1/)[+%,j+1/2 1/),-%2/71/2) (z/)gf f—1j) ( i—Lj+1/2 /IZJ,’—%J‘—]/Z)
h%hg
ntl gt ot g
i+1/2) i—1/2j Vir172i " Yic1 . .
— - - + k) =23, N = 1, =23, Ny —
1 -
f

(3.168)

We can find the pressure distribution from the relationship (3.168)
describing the difference scheme. The calculations were conducted in the
domain x = 0,5y =2 and using above finite-difference method the num-
ber of uniform grid nodes in the two- dimensional region was 21 X 41.
The iteration parameter was taken as 7=0,0001. The procedure for
optimising the iteration parameter using the upper relaxation method
was used for numerical solution of equation (3.162). This equation was
approximately solved with an accuracy of €=10"° The calculation
results are represented as tables and graphs. Figs. 3.18, 3.19 show the pro-
files of velocity component U for different sections, Fig. 3.20 depicts the
profiles of velocity component 1] Fig. 3.21 shows the pressure values. In
Fig. 3.22 the isolines of the flow functions are displayed for Re = 100 and
Re = 250.

0.8
0.7 +
0.6 +
0.5+
04+
0.3+
0.2+
0.1+
0 } } } } } } } } } t {

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.18 Profile of velocity U at the inlet.
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Figure 3.19 Profile of velocity component U in layer (11,).
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Figure 3.20 Profile of velocity component V in layer: a - (i, 12), b — (i, 40).
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Figure 3.21 Pressure value in nodes of grid in calculation domain: a — (1, j), b — (i, 34).
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Figure 3.22 Isolines of the flow functions at Re = 100 (a) and Re = 250 (b).
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3.7 CONVECTIVE WARM-UP OF AN INHOMOGENEOUS
POROUS MEDIUM

The numerical method of a convection problem solution in a double
connected region with nonlocal boundary conditions for temperature is
proposed. The problem is solved for the variables flow function — turbu-
lence by the method of virtual domains.

We will consider a vertical oil formation section €2 = Q; U Qywith an
impermeable inclusion 2.

Formation warm-up takes place through the well vy, (Fig. 3.23). In
particular, thermal treatment of a well is carried out with the assistance of
hot water or steam injection.

3.7.1 Formulation of the Problem

In a double connected region {2y (see Fig. 3.23) there arises heat-conducting
fluid flow which is described by the following equations of thermal convec-
tion in dimensionless form [104, 127, 128]:

1 -
iy V)i = o Aii = Vp = 10, divii = 0, (3.169)

0, + (V)0 = YA,

where T' = (0,T)- Grashoff number; 4 = (u,v) — velocity vector; 6 —
temperature; Y- quantity inverse to Prandtl number.
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Figure 3.23 Formation warm-up takes place through the well ~.
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At the boundary 02, the temperature 9‘ o0 = 0, is considered the
unknown constant, possibly dependent on time and satistying the condition

ol
J —dl=0. (3.170)

N 8n

For the initial-boundary problem:
0|’>’3 :(’D(x1)’0|’huvzuw4 :0’ﬁ|aﬂ =0, (3.171)
ii],_o = 1(x), 0] _, = 00(x). (3.172)

For conditions (3.170)—(3.172) the boundaries of the investigated
regions are designated as follows: v;,7, — left and right vertical bound-
aries of region €y; 75,7, — lower and upper horizontal boundaries
of region €2; 0y~ Dboundary of region €y Q=0Qi0UQy;
02 = 00 Uy, U, Uy Uy

3.7.2 Problem in Variables Turbulence — Flow Function

Introducing the flow function u=1,,v= —1, and turbulence

and writing equations (3.169) in these variables:

X2

W= Uy, = Uy,

Oow Oow Oow

3 wy o WY, o Aw+T0,, A =w, ( |
3.173

00 00 o0

— i tih— =

o TV Thg, —XAY

From the boundary conditions (3.171) we obtain the boundary conditions
for the flow function. Let us assume (0,0) = 0, then from the condition

V|’Y3 =4, ‘% =0 it follows that 1/,|% = ( from condition u|71 =1, = 0
follows that 1/J|71 = 0. Analogously we obtain ‘ = 0 ‘ b = 0.
4
N B B _ op _

From condition u‘%U% = @ZJY‘% = ¢y|% =0 we have = ‘%U% =0.
In the same manner from u|% Uy T wx‘% = ¢Jx|,yz =0 we obtain
0
—% | = (. Thus, we have
on "M

P
Y[, = 0.5, =07= PR
nl, (3.174)

w|t:O = wo(x), 9’t:0 = 0o(x),
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Where #- is the normal vector to the boundary of domain €2;.

0 0
From equalities u‘ o = 6_¢ =0, V‘ o =~ a—w =0 we find that
Y laq, X a0,
oY oY
- =U,— =0.
af/l aQ() 67- BQ()

Let 7(Ty,, Ty,) — is the tangent vector to boundary 0€). Multiplying
the first equation (3.169) by 7., the second — by 7,,, adding them and
calculating the boundary value at 0€2y:

_%

Auty, + Avry, =107, [ 0 = 7| (3.175)
%

Under the assumption that the pressure p — is a single-valued func-
tion, the left part of (3.175) becomes zero. Then from the condition of
pressure being unique it follows that:

8
J Fa=o. (3.176)
00 af’l

Let # — be the normal to 0€). Providing here a more detailed proof
of condition (3.176) and making the following transformations:

Au=i(ux2 —um)-l-i (ﬁ +ﬁ>,

axz 8961 8x1 6x2
0 0 [Ou Ov
Av= (g, = v+ 2 | o+ 5 | divii =0,
Y axz (“ 2 b 1) 8x2 <8X1 ODCQ) wh
0 Ty = Ny,
Auty, + Avty, = —(thy, = v )Toy — 5 (thyy, = V3 )T, = .
0x2 0x2 T Ty, = Ty
0 0 0 Ow
= —(uy, — v )y, + — (i1, — = (g, —Vy) = =
ax2 (sz VM )nxz a’X’Z (“AZ Vx] )”M an(”xz VM) 511

0 0
From (3.175) we have & N @
On SN 0T o,

Using the condition of pressure uniqueness we find

0 0
J —pdTZJ —wdT—FJ 017, dT = 0. (3.177)
o0, OT o0, On o
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We will introduce the function ¢, assuming 0, 7,, = g—ixl ng =22 Z. This
brings us to the equalities g £ =, g—é = 01, which we integrate and obtam

Op
p="~01x, ‘69(,’ 9‘690 =0, = const,a—x1 =0.

Consequently, 6,7, = g—f, where ¢ — is the single-valued function.
As a result, from (3.177) we obtain the relationship.

0 0 0
J PLar= —FJ £d7+J *ar, (3.178)
0 08 o8 On

which is equivalent to (3.176).
Thus, we have obtained the following problem:

S s —hst = AW Tl Ad =,
ot ¢x2 ax waxz Re w . 1/} w
3.179)
o0 o0 (
= T, 2 A0,
PR oxy zb@xz X
0
“J|t:0:W()(x),my:o:9()(x);¢|7,20,a—w :Os’V:ngl"/k,
mly
oY a¢ J Ow J o0
or =0,| —dl=0;| —-dI=0,0 0. .. .. =0
or 892 an o2 o0, on 6()()6 |’Y SD(X), |’Y1U’)2U’)4

(3.180)

3.7.3 Difference Problem

Let us apply the method of virtual domains to (3.179) and (3.180). The con-
cept of the method is as follows: an auxiliary problem with a small parameter
is solved in the domain €2, a certain conformity condition is set in 0§2.

Let us consider an auxiliary problem with a small parameter in €
[122, 123]:

Rt <§(x)vwf> L0,

ot 2 Oxq 1 0x,  Re (3.181)
(398 oy oo ’
YL, m— Uy, s = div(XEVE), Ay = W
X2

X1

xaa
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w® | =0 = (UO(X), o | =0 = 00(36), 0" |,},1 U, U7, =0,
azpﬁ ) (3.182)
=97, = 0,67 = (), v = Ui
é’( ) 1in Qo, 11in Ql, ( )
x) = X = 3.183
01in le €1n Q().

We will cover domain ) with the uniform grid:
Qh = {(X1i,X2j);i: 0,1,. . .,N;]’:O,L. oM x = (l_ 1) . l’l1;.’X/‘2j
_(]_1) hQ,Nhl—thg }

For problem (3.181)—(3.183) let us construct the difference scheme

w!' + Ly + Lyyw™! = — div, <§i’j VhW) +I-0, , A =w,
6 1
1
9';+§[( g )0 @ — [ ) aﬂﬂ (3.184)

1
S+l Dot @, = w0 | = din(evio),

Where
1 1
Liw= E(Akﬂ/zwx] ) 5(”k+1/2ij1 + U1 2jws, )s
1 1
Lw= E(Bk+l/2wx2)?c2 - E(Vile+l/2wx2 + Vie—12W5,),
Reh1 RehZ
Apr1p=1+ e/, =1+ —— |vis1)2|-

The boundary conditions can be approximated. For the turbulence
we can take the Thom condition. For example, the condition at the
boundary 7y, may be written as

=0,9[ =0.

6x1 T



202  Fluid Dynamics of Oil Production

We expand ¢, ; into the Taylor series in the vicinity of (0, ):

oY n? &Y 5
+h + (=) + o).
QP ¢()z] 1 <ax1>()z}' ) <ax% o) ( 1)

_ (Y 2@’1, 1/’()2,) _
As woj = (a—x?> o/ then wy; = — Due to the fact that wozi =0,
we obtain wy; = ﬁ¢1j.
291,

In the same manner we can calculate the approximation for the other
boundaries:

2 2
Y1Wo; = h—%%,jﬁziwi,o = h—§¢i,1a
(3.185)

V3WN,; = ?Qz)]\uug V4 Wim = ﬁd)i,M*l'
1 2

For the numerical modelling of scheme (3.184) a three-level differ-
ence scheme was used:

nt+1/3

Y Y 4 LW 4 Lw' = —div <i V,,W) +10;,
T e
n+2/3 n+1/3
W, —W;; .

1,] 1,] + Llwn+1/3 + szn+2/3 — _dl'V<£lJV},wn> + 1—19;1,
T e

nt+1/3 _ n+2/3

iof Wi,j = —div (5 l(wn‘H 1/]”), Vhwnle,kle) — wn+1,
T

9n+1 Jkt1/2 0n+1,k 1
If 5 +1 +1 +1,k+1/2
T e

_|_( Z;—l | n+1‘) 9ﬂ+1/»+1/2) (( n+1 | n+1‘) 011+1k

n+l |wn+l ‘) azjl k) (X9n+1 kY + (X011+1 Jk

X1 X2
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exl/l‘.Fl,kﬂ'l/Z _ 011+1 k
iy iy +1 +1 +1,k+1/2
Y4 ((W [ty ey

T

n+1 |¢n+1 |) 9’1“'1 e+1 /2) n+1 + |¢n+1 |) . 9n+l,k+l
X2

+ (wnﬂ | nt1 |) en+1 k+1) (X9n+1 Lk + (Xen-H 1

X2

3.7.4 Results

The proposed method was used to solve the problem of natural convection
in the double connected domain under nonlocal temperature boundary
conditions. The calculation domain (Fig. 3.23) was covered with a grid of
31 X 31. Initially the program was tested for the convection problem in a
simply connected region. In Figs. 3.24 and 3.25 the isolines and isotherms
are plotted for I' = 2500 and Pr= 0, 2.

This was followed by obtaining the results of numerical calculations
of the problem in the double connected region at I'=300 — 3500,
Pr=0,2—1. Figs. 3.26 and 3.27 show the isolines of flow functions and
isotherms plotted for I' = 3500, Pr = 1.
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Figure 3.24 The isolines and isotherms are plotted for I = 2500 and Pr =0, 2.
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Figure 3.25 The isolines and isotherms are plotted for I' = 2500 and Pr =0, 2.
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Figure 3.26 The isolines of flow functions and isotherms plotted for I = 3500, Pr = 1.
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Figure 3.27 The isolines of flow functions and isotherms plotted for I" = 3500, Pr = 1.

The simulation in a simply connected region is in agreement with
previous results published in [127].

3.8 THE SPLITTING OF PHYSICAL PROCESSES
UNDER NON-ISOTHERMAL TWO-PHASE
FLUID FLOW IN A POROUS MEDIUM

In this section we discuss the MLT-model, which was initially described in
[15, 16]. It accounts for effect of the thermal processes on the flow of two-
phase fluid as a function of the temperature, viscosity coefficients and the
capillary properties of the two-phase fluid.

The peculiarity of the MLT-model is that all equations involved (but
the Darcy and Laplace laws) are derived from the laws of conservation
formulated for the mechanics of solids. In particular, the motion of the
interface between the two-phase fluid and fixed boundaries (Stefan type
problem) can be described in the framework of this model.
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The purpose of this section is to determine the relationship between
the degree of smoothness of the solution of the initial-boundary problem
for the MLT-model and the coefficients in the equations as well as at the
boundary conditions. Similar to [3, 6] the results obtained are then used
to prove the convergence of the iteration method for solving the MLT-
problem and finding the convergence rate.

3.8.1 Formulation of the MLT-problem

The mathematical model of nonisothermal flow includes the equation for
the equilibrium temperature € and the ML-model which uses the Darcy
laws linking the velocities of the phases ¥}, and Vpy, the Laplace law
po — p2 = pe(x,0,5) (here p, is the capillary pressure, po,p> are the phase
pressures) with the phase continuity laws.

Introducing the average pressure

'S

P=po— J bo(0, $)pecds
0

and making relevant transformations in the Muskat-Leverett equations we
obtain the following MLT-model [3, 15, 16]:

mytig + divie =0,k =1,2,3, — B, = AVup + B,VO — b + f . (3.186)

Here u; = 6(x, 1) is the equilibrium temperature of the fluids and porous
medium; us(x, £) = (s, — $9)(1—s) — 59 ~!and 5,(x, 1) designate the dynamic
and total saturation of the aqueous phase; s, = conste (0, 1), s5 +s5 <1 are
the average residual phase saturations; uz(x, f) = p is the average pressure of
the mixture; v, and V3 = ¥ are rates of phase flow and the mixture velocity;
my =my(x) is the effective porosity; my =1,m3 =b; = B, Zfl =0,
by = uy = 6, by = by(u1, us). The properties of tensors A, and B, those of
vectors fk, k=1,2,3, and functions m>(x) and by(uy, up) will be described
below.

Occasionally the function u} = myus is used instgid ot; 1. For this function
the coeflicients m, =1, A5 = mpA», By, — b and f, =f, + AzuZV(m2_1) in
equation (3.186)(k = 2) have the properties of the initial equation coefficients.

Let us assume that Q=QX[0,T],Q2Q<=R’® is a confined domain,
ol = U‘?Fk, Yk =T1%x [0, T7, I'' and T? model the locations of injection,
production and contact with a homogeneous immobile fluid. Here I'? is an
impermeable boundary.
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The initial-boundary problem for # = (uq, up, u3) may be represented
in the form

miu; = m,'u?, (x,t)€e OuXt = ,Blwo,
ANVOR = B(60° — 0), %t =0, (x, 1) e X°; (3.187)
(x,1)eX?;

Where
i=1,2,3; k=1,2; B, =—by, By=—by, B3=0; X' ={t=0,xeQ}. If

I'' =&, then the law of mass conservation in €2 leads to conditions:

J us(x, £)dx = J P (x, H)dx = 0, te[0, T]. (3.188)
Q Q

We will call the problem (3.186), (3.187) a MLT-problem.

3.8.2 The Regular MLT — Problem

Similar to paper [3] we will make use of the following designations for
norms

|”’q,ﬂ = ‘M‘Lq(ﬂ)’ M‘q,;’,Q = ‘”‘LW.(Q)’ Uiy — |M‘2,OO,Q + |vxu‘2,Q

and Banach spaces L,(€2), L,,(Q), 12(Q), qu (92), qu’o(Q). We will assume

(€))

] = [l 0= (1= 1D 0. 1), [ =

‘ " ‘ cH2(Q)

Introducing the vector of coefficients ®(x, uy, up) = (ma, 1, o, P3)
in the system (3.186); Pu(x, uy, uz) = (Ap, Bp, — bk,fk), k=1,2 is the
vector of coefficients of the elliptical operator (—divy), a
OO (x, t,u1,un) = (@, ¥°), (x, 1) €Q composes the vector of coefficients
that form part of the initial and boundary data satisfying the conditions
[3] and [15]:

. (0) _ — _
1. |®‘C SM),M() ! S(le,ﬁo, (Ak€= 6))SM() 1: =1

2

q
G=QX (0,0 X (0,1); A= Ap, k=1,3,4> = a '(n)A,

0 < aluz) = My, u€(0,1); (o, As, BZ:J?z)‘ =0,b,(0)=0;

ur,=0,1
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ii. " = (@,1") for (x, t)e Q has the following properties

0<8 =ily(x, ) =1—80;0 <0, =u(x,1)=<0" < c0;

0

0 0
(” Uips Uoy H 1,Q

900v ‘prQ,Q’

¢0||2,22) =M.

In order to draw a valid analogy with the classical principle to find the
maximum saturation us(x, t) let us assume that

0<6=u(x,)=1—68€(0,1),(x,0)e Q. (3.189)

The latter provides a uniform parabolic feature of equation (3.186)
when k=2

[In(A>&, €)| = Mo, (x, 11, 1) € G, (3.190)

Similar to [3] let the following conditions be met
- a =3 =
foiils = 0,@(172, Fy) =div,Fy =0, Vipd (6,1 — 6), (3.190%)

where ¥ =X1U¥?, Fy=B,V0 +f2, 6>0 is a small constant. In the
physical sense (3.190%) implies that when a single fluid flows
(ur =6,(1 — up) = ) the equilibrium temperature u; = 6 should be close
to that of the flowing fluid, and the porous medium saturated with this
fluid should be homogeneous.

Definition The vector i = (uq, up, u3) is called a regular solution of the MLT-
problem when for all points Q we have u;(x, t) € [0y, 0*], u>(x, t) €[6, 1 — 8],
conditions (3.190) are valid; (uy, uz)€ I5(Q), u3 € W;’()(Q) and (uy, ua, u3)
satisfy the standard integral identities, and X', X* in (3.187) satisfy the
assumptions [3, 15].

The authors of [15] prove the existence of a weak solution of the
MLT-problem (without condition (3.190)).

3.8.3 Proof of the Regular Solution Smoothness
Theorem 1 Let us assume that assumptions i), ii) are fulfilled, (3.190), provided

0|0 =M, [1=2,0=1—[1>0; B[ =e, (3.191)
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where € >0 is a small number. Then there is such oy that if oy >0, then

=N(Q), =[N+, Qc=Q. (3.192)
In this case Q' = Q, if in addition we have

‘ ﬁ‘ (lo>lo/2)

i o0eH B, || = =141
and if the conformity conditions are fulfilled up to the order of [I].

Proof Under conditions #ii) we can use a standard continuation into the
wider domain where Q" D€ is determined. Then the estimation (3.192)
is valid for Q" = Q. Consequently we can confine our case to Q' < Q.

Inequation (3.186) for uz(x, t) we substitute B3V, instead of the term
B;VO [0, is the Steklov averaging 0(x, t) = uq]. Select h>0,N >0 and
€ >0 so that

(05" + [l o =N). (3.193)

As before the solution found to the problem can be designated through
i = (u1, up, u3). Due to the restrictionfo = B; V6 we obtain from equation
(3.186)(k=23) we obtain u3€ C*(Y) N W;U(Q/), ap>0,q0=2. Using
the equation (3.186), (k= 1), we obtain u; € C* (theorem 8.1 [3]).

Thus, we have
ue| ) = N(Q), 00> 0,k=1,3. (3.194)

We can write (3.186) in the form

— MpUpt + diV(Akvuk) = hk, k= 1, 2, 3, (3.195)

where hy, = Z,’ﬂ;”ix“jx — 7,A0(y, = 0) is a smooth function with carrier
Q,, Qp| =p. When (3.194) is valid and if we consider the integral
identities corresponding to (3.195) using the multiple inequalities taken
from [3] for (uy, u;) we find

J=CY @6 0+ )| o+ alo), (3.196)
where J = 377 Jilue), () = ||”Iexx€2”§’Q + my | & H?/(Q),

17 = Ml + ]S pand 2= 0,01 = &5 = 1.
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Choosing p>0 and §>0 and splitting Q into a finite number of
domains Q,, we obtain from (3.196)

N 2
litalse+ >, Il ey = N@). (3.197)

Expression (3.197) yields that (3.194) is valid for k= 2. Now exam-
ining the equation (3.186), k=3, in which A;eC* Q') and
V()| =M, (]?0 = B; V0, +J?3), we obtain u3 €L, (Q) Vge(l, )
(theorem 4.2 [3]). Then, using (3.186), we find (uy,ur)e L (Q) for
k=1,k=2 (theorem 5.3 [3]) that is

i, o = N(g Q)Vqe(1, o). (3.198)

Further we differentiate the equations (3.195) for functions
(m , U3, u3) =i, us = mpuy having variable x;,i1=1,2,3, assuming that
[P =1 (omitting asterisk *). Then u, satisfies the same equations (3.195)
(my = my = 1) on the right hand side:

hiy = divGy, + F(), Gi = (HJ?O)i +A'V0, G :J?E)a

éiz = (b?fo +B, V0 +]?2)1’ Fi(v) = [diV(’YkB3V“3)]i§ Y = 0,7, = ba, 73 =0.
For the functional Ji(u}, ) in (3.196) we obtain

Jli) = | € HiQ +q(Q),

|1 = sup;|[ |- (3.199)

Introducing Ay, let us consider the function:

Ri(y) = [divnf o',y = m, by, 1.
We will assume that J? = f,9x, = g, then
Rr(ﬁ)/) = (7.](2),\96 + A/(B3xx9hx + 2B3x0hxx + BSthxx)-

In accordance with (3.193) we obtain (v£),,€L2(Q') and
(B30jxxx) € Lo (Q') on the basis of estimations (3.197), (3.198). Reasoning
along these lines we find for Ri(7) and hence for (7:&?)

|5 o = b [ ]S, + Q. ).
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Summing up estimations obtained in terms of k for chosen small 6 >0,
we have

- 2 /
il 320 Il =N@: Gaw

We obtain from (3.186) that u,e C*()),>0. Returning to
equations (3.186) in wuy,u3, and later in u,, we obtain (3.192), when
Iy =2+ ap, a9 > 0. This allows for a limiting transition of the averaging
parameter h. Further improvement in the degree of smoothness #([l] > 2)
is provided by the standard method of differentiating equations (3.186).
Thus, the theorem is proved.

3.8.4 Approximation of the MLT-problem (AMLT-problem)

1 g dmig ity b —
mpul, - = div(®, V'), k=1,2
{ “ ¢ (3.201)

—V 5 = din( A Vit + BiVE + F) =0

where functions #' ' satisfy the conditions (3.187)(X® = ). Here
@2, = (o, u, 1), D = (Ag, By — bk,fk), are the coefficients of the
elliptical operator (—divv). For u, we introduce the designation
Viu = (Vuy, VO,7,1). As a result we have v, = — &, V,u. In the AMLT-
problem the linear equations are solved in sequence: first for us, then
for u; and finally, for u,. A similar iteration technique is used to prove
theorem 1. Consequently, together with the proof of Theorem 1 the
validity of the following assertion is confirmed.

Theorem 2 Provisions of theorem 1 are valid for solutions of ' of the AMLIT-
problem (3.201).

3.8.5 Estimation of the Approximate Convergence Rate

Theorem 3 Let By = Oand[l] = 2under conditions of theorem 1 provided that
6Q=T"or 6Q=T2 Then when i— o0 functions ' converge to the classical
solution of ", g > 0 of the non-linear MLT-problem (3.187) In this case

£, (3.202)

H”3i+1,vu3i+1 H2,OO,Q + H“li+1> U2i+1 ‘ Q) =

Hﬁi+l m,QS€ﬁ’ﬂe(Oa 1), (3203)
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where iy ="' —il,e = c{(cT)i/i!}l/Z, and constant ¢ depends only on the
given data of the problem.

Proof Similar to (3.201) we have

a =9
mp, 5 Upi+1 — diV{‘I’kauiH + Fk}’ k= 1, 2, 3, (3204)

where I:"); = OV, Dy = D, i, ub) — Pplx, uy, o).
According to (3.191) we find that

| Pri| = Ms(Juy| + [

),
and further we obtain for F 13
1B |50 = a([mill o + [2i]l,,0) = a0

Multiplying (3.204), k=3 by uz+1 and integrating within ), we
finally obtain

|31, Vizier, i | 20 =ai0). (3.205)

Now consider 1:")1 and (B,VO;41 + ﬁ;) as given vectors. Using (3.205),
we have

t
Jisor 2= [ (s 00+ 1l Vi )
0

t
7=+ | Iratmk=t2n=0.b=1

Substituting expression f(; H Vit Hz od7 in the inequality obtained
and making k=1 for Vi making k =2 we obtain

t
H Upi+1 Hi = CJ (y,'-H(T) + y,'(’l'))d’l', k= 1, 2. (3206)
0
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Summing (3.206) fork =1 and (3.206) when k = 2 leads to inequality

t

Y =a L(YfH(T) (), i1 (0) = 0,

from which according to the Gronuoll inequality [3] we find

t

yir1() =¢ JO yd(r)dT, (c=ce®T). (3.207)

Applying the method of induction from (3.207) for
2 2
=i :OSSL:I; T(T) - ||”1iH2,oo,Q + HMZiHZ,oo,Q

we obtain the following estimate:

(cT)

< = 8(i)ZOa E(l) = l' s

Substituting it in (3.205), (3.206) results in (3.202). Using the interpo-
lation inequality

supo|u] = dB)Nlull 1) (ull o), Be(0, 1),

we obtain the estimate (3.203). This proves the theorem.

Let’s consider now (3.201) as a system of linear equations in which
vector ® composed of coefficients depending on the parameter i and,
in accordance with theorem 3, values ®' converge when i— 0. Let us
split the domain €2, = UQ‘V Q, Q,'| = M and interval [0, T] into smaller
parts having dimensions hy. Designate the relevant normalized space as
X = X(f2) describing its finite dimension analogue as X, = X(£2,),
h= (l/lo, hl)

Then

0
[l = lull = lulq: =2
Using the following assumption, similar to that used in [6].

Theorem 4 For solutions i), of the algebraic system of equations approx-
imating to the linear problems (3.201), (3.187) for @' ", the following

estimation is valid

[ =] = MO M)~ 0 at ] -0,
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where M(h) does not depend on i. Then there is such [ that /=2 in
(3.191), for which #) converges to solution ¥ of the initial nonlinear
problem (3.186), (3.187) having the following convergence rate:

< c&” + M(h);ve(0,1] (3.208)

- _ =
it =]

3.9 FLOW OF TWO IMMISCIBLE INHOMOGENEOUS
FLUIDS IN POROUS MEDIA

Now we prove the theorem of existence of general solutions in time for
initial-boundary problems using the mathematical model describing the
process of flow of two immiscible inhomogeneous fluids (for example,
water to steam or oil to gas). This approach was proposed by the authors
in [15, 17]. In these papers the conventional conditions of the density
taken from the theory of flow of a two-phase fluid [15] were replaced by
the immiscibility condition of these fluids that has proved reliable in the
models used in oceanological and hydrological studies [145].

The mathematical model corresponding to the above assumptions is
developed using the system of composite differential equations including
the uniformly parabolic equation for the temperature, degenerating
elliptical-parabolic system to describe for saturation in one of the fluids
and the average pressure as well as the hyperbolic system of equations for
the density transfer.

For the first time the model of flow of a single inhomogeneous fluid
was proposed in [91], to be followed by analysis of the validity of the
initial-boundary problems [91, 124]. Similar problems were examined
in [19] for the flow model of two inhomogeneous fluids. The validity of
the initial-boundary problems set for the models of nonisothermal flow
of two homogeneous fluids having constant density was investigated in
papers [15, 16]. In this section we focus on similar problems formulated
for the general field development model [15, 19, 91]. The results
obtained are reported in paper [18].

3.9.1 Equation of the Model

Let s;,i=1,2 be the phase saturations of the porous space, s; +s, =1, m
is the porosity, a; =ms;,i=1,2,a3=1—m are the volume concentra-
tions of fluids and that of the solid phase (or the porous space frame),
Pi» Pi» ;i are the density, pressure and velocity of fluid flow respectively,
vi = auu; = ms;u;, i = 1,2 are the rates of phase flowand v = vy + v, is the
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rate of flow of the mixture. It is assumed that rocks are nondeformable
and the thermal equilibrium is observed in each point of the porous
medium, i.e. the temperatures 6; coincide in phases — 6, =6,i=1,2, 3.

It is assumed that the phase motion obeys the laws of flow set forth in
the Muskat-Leverett model [2]:

oms;p;

+ divp,v; =0, (3.209)

i(s)

= — Ko(x) —~ 1(0)

(Vpi — p9), (3.210)

[STEN

pz—p1=v<e)cosa(9)<£f()))J@) pebs =5, (21)

Here Kj(x) is the permeability tensor in the absolute medium; o(s)
are the relative phase permeabilities; 01(sy) = 02(5%) =0, 54, 1 — 5* are the
residual phase saturations; f; are the phase viscosities; ¢ is the gravity con-
stant; -y is the surface tension coefficient; « is the wetting angle; J(s) is the
Leverett function for capillary pressure. Further, we designate

ki(s,0) = o) (0), k= ky + ks

Instead of the fluid state equations written at the bottom of (3.209),
(3.210), we will make use of the conditions of fluid immiscibility:

0
apt +u

They imply fixed fluid densities p; along the trajectory of motion.

Vp,=0,i=1,2, (3.212)

Taking into account only the convective heat transfer and the heat con-
ductivity the energy balance equation for the mixture can be written in
the form

% + div(vl — Ax, 0, 5)VO) = 0. (3.213)

Here A is the temperature conductivity of the mixture (two fluids and
porous frame). In [15] equation (3.213) was obtained from the general
equations of the balance of the energy of components when the mixture
is kept under thermal equilibrium [95] provided the density was the
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same for the phases and their specific heat was identical. It was also
assumed that

3
A= @ (3.214)

The equations (3.213), (3.214) derived in paper [15] remain valid for
a more general case of an inhomogeneous incompressible fluid under
the condition that the product of the phase densities multiplied by their
specific heat remains the same.

3.9.2 Transformation of Equations. Formulation
of the Problem

Differentiating (3.209) and using (3.212), we obtain
pi(ms;, + divv;)) + ms(p;, +u;Vp,) =0,

which leads to the equations in s;, having the same form as equations
derived for p; = const [2]:

ms;, + divv; = 0,i=1,2. (3.215)

Since s, =1 — s, then the above system is equivalent to the system
compiled for s, vy and v:

ms; + divv; = 0, divy = 0. [(3.216)

By analogy with [2] we will introduce the average pressure

- +Js*b3 (0. EdE b = N i=1.2
p=p2 S 185}%9@ 5 s Ui k:l 9 &

After making relevant transformations in equations (3.210), (3.211),
(3.216) we obtain the following system of equations for s, p, 0, p;, p,:

ms; = div[Ko(a1 Vs — aa VO + fi) — biv]l = — divwi (s, p, p;, 0),
0 =divKok(Vp + o + a3V0) = — divu(s, p, p;, 0),

Z_f + div(vh — M(x, 0, 5)VO) =0, (3.217)

oms;p;

+divpy; =0,i=1,2,
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where

F

* 0
a = ‘pa|d0, ay = pgao, dp = bika, az = — kipo — J %(blpa)df,

*
S

fi = al(py = pr)g = Vipd o = J boVipeds — g(b1py + bap,).

Let Q<R3 — be the confined domain Q3 =QX][0,T],00 =S,
I'=8SXJ[0,T],S=85uUS,,T,=8;X[0, T]. To determine the functions
we are looking for, let us consider the following initial-boundary
problem:

(57 0; P1> p2)|i=0 = (59 93 P1> pZ)O(x)a X€E Q’ (3218)

o0
1/,‘11|F =0, H‘Fl =0(x, 1), /\&

= B0, — 0). (3.219)
I

Here n is the unit vector of the outer normal to I'; B(s) is the heat-
transfer coefficient for a three-component mixture which for the previously
discussed cases of deriving equation (3.213) can be written as follows

5= abpe)

(;-is the heat-transfer coefficient of the i-th phase.

3.9.3 Assumptions. Determination of
the Generalized Solution

Let the following be met for the coefficients of the equation and the
initial-boundary conditions are as follows:
i. (Vo(ki,po),pbs)e C(G), G is a closed domain in space of the variables
(x,s,8), and

M_l = (m’ptsa (K()éa 5): Ba >‘) = M,
€1=1,

i. 0< (kl,/ez) <M,SE(O, 1),610

pr[H 00,2 =M.

« = ki(s) = ko(s*) = O,and

S84,

In(aya™"), In(aza ), biky ', fia ™' ok ' as| = My(M), a = kiko.
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eee

iii. the functions in (3.218), (3.219) have the properties

s =50(20, 1) = 57,0, = 0p(x, 1) = 0°,0 <m; = py(x) = M; < o0,

(H 00“ S0t || 1,042 ve(b VSO H 2’9,1‘) =M.

Designations of functional spaces and norms are taken from paper [83].

Definition We shall call a set of functions(3.213) the generalized solution of
the problem (3.217)—(3.219), if:
i 0<s,=s=¢<1,0<m=p,=M<00,i=1,21in Qr
ii. u(9) = [} /o dse W, (Qr)
iii. (p, Vp) GLg(Q), e Vz(QT) N Ly (QT)
iv. the boundary conditions in I'y are satisfied almost everywhere;
v. the following integral identities are fulfilled:

(ms, ;) — (a1 Vs — VO + fi, KoVD) + (byv, VD) = — (mso, D)y, ,
(3.220)

(0,10,) = (AVE = 08, Vip) = = (B(60 —6), ¥)p, — (00, ¢)q,, (3.221)
(Vp+a3sVO + £, Ky Vi) = 0, (3.222)

(pi» msiC + viVEQ) = = (msiopy, Oay, - (3.223)

Here (-,-)-is the scalar product in L(€27), and the test functions
in J,9,n,( satisfy the conditions @,%, e, (Qr),9=0 in
T, D=1=_=0for t=T,ne(0, T; W)(Q)).

3.9.4 Regularization of Problem (3.217)—(3.219)

We will introduce functions S(s), ©(0), Ri(p;) which extrapolate values
5,0, p; outside the intervals [s,s*], [0, 0°], [m;, M;] using the boundary
values. Further, instead of direct dependence of the coefficients in
equations (3.217) on s,0, p; we consider complex functions depending
on S,0,R;. Getting rid of the degeneration in s we substitute a; by
ay +6=as in (3.217). In order to ensure that the coefficients remain
smooth we will apply the averaging in terms of x and ¢ with steps of &
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and 7. Let € =(6,h,7) be the vector of the regularization parameters.
Then, from (3.222) having a3, VO, forr, Kon and according to results
obtained in [83] we have pEGCij""l,vue Ci,jo"l. From (3.221) having
Aits B> Bone - we  obtain 6. € C2rolte/2 = C2te Ve CIP(Qr). And
finally, from (3.220) having ag;r, azr VO, bijrv, fine, Ko, son we will have
e C2 It is worth mentioning that after truncating in p; and f,
the first three equations in the system (3.217) fully comply with the prop-
erties of coefficients in paper [15]. Therefore, we obtain the following
estimates for uniformity of the regularization parameters €:

HV@HZ’QT + HVPHZ,QT = C[HQOIHLQT + HVPOHZ,QT + H“3H2,QT] = N,

[VaVsl, g, = C[N+ [ Vs, + i, )
(3.224)

S =s=5.0,=0=0".

The last inequalities imply that (3.220)—(3.222) are valid for real
coefficients rather than for truncated ones because of S(s) and ©(0).
Due to the fact that coefficients are smooth we have inclusions
Vi€ cltol e CHO"l,V; = — vfeCHa’l. As s does not become zero,
then uf = v5/(ms7)e C'**!. It is not difficult to see that the functions
p; (x, 1) = pioy(y; (%, £, 0)), where

dy;
- “?(y: 7—)’ Y|7—:, =X,

dr

satisfy the equations (3.212) for uf [equations (4°)] and initial conditions
(3.218). Identities (3.220), (3.222) are equivalent to equations (3.215)
with 57 and v7 [equations (77)] for the smooth solutions of the regularized
problem. Multiplying (4°) by ms; and (7°) by p{ and adding, we obtain
the equations (1°) [(1) s, pf,v7], from which the identities (3.223) are
easily obtained for the regularized problem. Representing solution as p?
we readily obtain that p; €[m;, M;] and consequently, truncation in p; does
not perturb the coefficients of the problem (3.217)—(3.219).

3.9.5 Limiting Transition
Making use of (3.224) in the same way as was discussed in papers [2, 15] we

can obtain strong compactness s%,p%, 6" in L,(2r), Vp=1,v" in Ly(Qr)
from (3.220)—(3.222) and weak compactness v; in L,(€27).
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Multiply (4°) by msiq~! p?€_1 (for the time being we will omit the
index €), ¢ =1 being an integer and integrate the expression using £;:

0= (f’l’lS,‘, (p:l)t)Q/ + (Via V/O?)Q/
= — (p!, ms;+div vy)q, + J)m(slpﬂ[_l — s,»p?‘t:())dx.
¢
Due to (7°) we obtain
J ms;pldx = J mso P dx = const. (3.225)
02 ]
Let us consider z; = (ms,fg)]/qp,vs. It is obvious that z;; — z;, — 1s weak in

Lo, (Q27)when € =0, and due to (3.225) HziE
Zie HZ,Q - ||Z,‘()||2’Q, consequently Lie X 1s strong in

0= Hziqu’Q. In particular,

for ¢ =2 we have
L»(£2), which implies that Vp>2 in L, as well. As in this case s, strongly
converges in L,,p>2 and 0 <s, =s=s" <1, then p, = z;-(m, sie) " also
converges strongly in L,,p>2. Strong convergence of si, p,. provides a
limiting transition in identity (3.223). Limiting transitions in (3.220)—(3.222)
are conducted in the same manner [15].

Thus, the following assertion is proved.

Theorem Let the following assumptions be fulfilled i)—iii). Then the
problem (3.217)—(3.219) has, at least, one general solution (s, p, 0, p;, p,)
in QT: VT > 0.

3.10 NUMERICAL SOLUTION OF THE PROBLEM
OF TWO-DIMENSIONAL TWO-PHASE FLOW

3.10.1 Introduction

Various fluid dynamic problems modelling water flooded oil production
were considered taking into account the capillary forces [9, 41, 51, 72,
76, 80, 84, 110, 111, 139, 141, 142, etc.]. Nevertheless, water flood
calculations remain tedious even using the approximation techniques.
One of the reasons is that the system of non-linear differential equations
in the second order partial derivatives in pressure and saturation is used to
describe the two-phase flow of the oil—water mixture featuring capillary
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effects. Nonlinearity effects — both in pressure and saturation — are
extremely complicated to describe. In many papers the one-dimensional
problems were considered in more detail. The two-dimensional- and
especially three-dimensional problems are especially difficult to solve.

In this section we consider the method of numerical solution applied
to the two- dimensional problem of water oil drive taking into account
capillary forces. This is carried out using the Muskat-Leverett mathemati-
cal model with “reduced” pressure (see Chapter 1, Section 1.2).

The nonlinear elliptical equation for pressure contains, on the right
hand side, the terms describing the oil and water flow rates. A parabolic
equation to determine water saturation is convenient to obtain the
numerical solution using the variable orientation method. The initial
water saturation values are taken as known for the initial domain, whereas
the Newmann boundary conditions are fixed for the pressure.

To draw a comparison, the numerical calculations of the same problem
were conducted using the Duglis, Pichman and Rechford schemes [51].
Of course, the results obtained were sufficiently close but the principal
algorithm is closer to the scheme developed by Duglis, Pichman and
Rechford. Solvability of this problem and the issues of convergence were
studied in paper [2].

3.10.2 Formulation of the Problem

Let us consider the following initial-boundary problem for the system
of equations inside a cylinder Q ={D X (0<¢<T)} with boundary =,
describing the flow of the two-phase incompressible fluid:

( Os o
mo = div(Ko(x)a(x, s)Vs — b(s)v + F(x,s)) + g,
div(— Ko(x)k(s)Vp = () + f(x,5)) + q1 + g2 =0, (3.226)
7= — Ky(x)k(s)Vp — b(s)# + f(x, s)

S(Xl, X2, 0) = S()(X], x2)9 " = Oa_

Op Os
= =0. 22
0 ’ on|, 0 (3:227)

Numerical modelling is conducted using the assumption that the
medium is isotropic and homogeneous, hence Ky(x) = const. The relative
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phase permeabilities k(s), k2(s) were determined using the following
formulas:

ki(s) & 5%, ka(s) = (1—5)°, £, 6€(0, 1);

k(s €
K(s) = ki(s) + ka(s) = &€ + (1—5)°, b(s) = kl((s)) - — (51_5)5; (3.228)
a(x,s) = — p.(x) - J' (). ki ke (3.229)

k

Here p,(x) is expressed through the Laplace formula:

p(x) =0 - cost), /%, (3.230)

where o — is the interphase tension coefficient; m — is the porosity coeffi-
cient; Ky — is the flow coefficient; § — is the boundary; J(s) — is the
Leverett function; decreasing from 00 to 0 when s is changing from 0 to 1.
Usually it is assumed that J(s)=c-In 1/s or J'(s) = const/s", where
0 <a <1. Consequently,

£ —s)°
const - 55~ 55); (3.231)
£+ (1—y5)

a(x, s) = p.(x)

_ ki) - (py = p1) _ sS(py — po)E
ki(s) + ka(s) s£+(1 —s)(S .

F(x,s) = (3.232)
If p.(x) # const, then

ki (€)
k(&)

1
fU»=mwvwww@jf@ 4E + Ko ()l (5)] () V. (3)

+(py — 1),

- ki(s) - k
F = =K 20V ~ L (02— o
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S1—

0
. . S .
From here on s implies that s = 2 j;“ — the dynamic water satura-
1 2

tion; 5(1) is the residual water saturation; sg — 1s the residual oil saturation;
s1 1s the true water saturation.

We consider a two dimensional (in orthogonal plane ¢) problem of
an incompressible two-phase fluid flowing at p. = const. In this case
E(x,s)= (0, O),f(x, 5) =(0,0) and equations (3.226) take the form

0 ob
ma—S = div Ky(x)a(x, s)Vs — ﬁa— Vs+ 23
! s (3.233)

0 = div (Ko(x)K(s)Vp) + q1 + q2; i = — Ko(x)K(s) Vp.

To solve the problem (3.227), (3.233) numerically we will construct
the following difference scheme of variable directions to express water
saturation:

S(n+l/2) (n)

ij i (11+1 2) n
7417] - L= (d1+1/2] %1,if / )x1 + (dij+1/25(§z)’,"")x2 - (b“( ))§1,i+1/2j

- (b’/(”))xz,g,'ﬂ/z + qgﬂy),,

(n+1) (nt1/2)

S ij n+1/2
m J . (d1+1/2] 561 if / ))

(n+1)
- )

v T (1055, i e T (b“(”))El,iJrl/Zj

- (b’/(ﬂ))yz,g,'ﬂ /2 + qgg’

(3.234)

where dj = Ky - a(x;, sf-f)), xij = (%14, X2)).
The calculation of pressure is provided by solution of the elliptical
equation through the following method:

(v1+1/2) (n)

i d nt+1/2 " .
W - (d’+1/21p§q U/ ))x1 + (du+1/2Px2 P T (q( '+ ’),,, (3.235)
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(lf1+1) _ (.?1+1/2)

py if _ (n+1/2) 3 (n+1) (n) (n)
T = (di+1/2j19§1,g' )x1 + (dij+1/2p§2,{j )x2 +(q1 t4> )1]

The velocity distribution is determined using the Darcy law:
ntl _ _ 5 ntl nptl  _ _ F ntl
Uivijoj = T iy > Viir1 2 = T dibey s (3.230)

where 67,1 =Ky - le(s,(-f) ).
The calculation algorithm can be specified as follows: the method of

scalar fitting is used to find s"*'/?, ("D The iteration technique is used
(nt+1)

to calculate the corresponding p;;

3.10.3 Analysis of Numerical Results

The algorithm developed was used to formulate a model capable of simulat-
ing the dynamics of oil displacement using the measured water saturation.
Some examples, with results for various well locations, are given below.

For instance, the following nine-spot oil production pattern was
considered (Fig. 3.28).

Eight injection wells having the same injection rates ¢
(squares) are plotted on the uniform grid {(x;, y),x =ih,
yj =jh,1=0.30,j = 0.20}. The production well (circle) having oil flow
rate qq and water flow rate ¢, proportional to the mobilities of corre-
sponding phases is placed in the centre. If gy is the quantity of water

Figure 3.28 A nine-spot oil production pattern is considered.
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injected into the formation then the following values are given for the
production well:

13 q0 _ kz%

" _(/ﬁ + ky)’ T _(k1 + ky)’

Correspondingly for injection wells the values
G1=0, ¢q= %are known.

We will assume that at an initial point sy = const, the porosity is con-
stant through over the calculation domain m = 0,375, the permeability
k=1, and dynamic viscosities are p; = 0,00928, 11, = 0,00115.

During water injection the distribution of water saturation has the
following profile (Fig. 3.29). As can be seen the maximum values correspond
to the locations of the water injection wells. We stopped the calculation at
t =0,2792, when the time step was At = 0, 000358.

Table 3.1 contains the values in nodes (i,j), where, due to symmetry
i=0,..,Nx/2,j=0,...,Ny/2.

The corresponding total pressure profile is as shown in Fig. 3.30.

In Table 3.2 pressures are reported as dimensionless values.

To study the symmetry in a selected domain using the same parameters
as mentioned in the first example we took 8 producing wells having
identical flow rates q; and ¢, placing an injection well having the injection
rate of gy in the centre (Fig. 3.31).

Indeed, the water saturation pattern has a symmetry relative to the
centre (Fig. 3.32) as the formation was taken to be homogeneous, and the
water saturation at initial moment — constant (¢t = 0, 8234, At = 0, 00358).

Figure 3.29 The profile of distribution of water saturation during water injection.



Table 3.1 Values in nodes (i,j), where, due to symmetry i =0, .

LA j=0,..,Ny/2

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 021 021 021 021 021 021 021 021 021 023 034 040 043 041 037 0.30
1 021 021 021 021 021 021 021 021 021 023 034 040 043 041 037 0.30
2 021 021 021 021 021 021 021 021 021 029 037 043 048 045 040 0.37
3 021 021 021 021 021 021 021 021 025 033 040 047 056 050 044 0.41
4 021 021 021 021 021 021 022 029 033 035 040 046 053 049 046 043
5 021 021 021 021 021 022 031 037 040 040 040 044 049 048 046 044
6 021 021 021 021 021 029 037 043 047 046 044 043 046 047 045 0.45
7 021 021 021 021 023 032 040 047 056 052 048 045 045 045 043 041
8§ 021 021 021 021 021 029 038 044 051 050 048 046 044 041 031 0.24
9 021 021 021 021 021 023 033 039 044 046 046 045 043 031 021 021

10 021 021 021 021 021 021 026 036 041 043 044 045 038 023 021 021
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Figure 3.30 The corresponding total pressure profile.

In the next example the wells are located in four rows (Fig. 3.33).
Such a pattern can be used to describe domains elongated along the
Ox axis.

In this case the values of porosity m, permeability k viscosities fi;, i,
are the same as those given in the previous examples. The water flow rates
in the injection wells are assumed to be equal and for producing wells the
sum of flow rates of oil g and water ¢, is proportional to the mobilities
of the corresponding phases. For such location of wells the distribution of
water saturation has the following profile (Fig. 3.34).

Table 3.3 lists the numerical values of water saturation plotted in
Fig. 3.34 fori=1...Nx/2,j=1...Ny/2.

In this section we give a numerical solution of the two-dimensional
problem of the flow of an incompressible two-phase fluid.

Various examples were used to show that the model proposed allows
forecasting the formation of isolated immobile domains in a reservoir
that occur due to the nonhomogeneity of the formation or due to water
blocking access to the producing well.

By choosing the optimum location of injection and producing wells
and varying their operating regimes it is possible to increase the volume
of oil production.

Software called “Muskat” with a service interface was developed to
solve the two-dimensional ML equations. It is capable of calculating the
water saturation and pressure at any point in time for given locations of
wells and their production rates.

Module “Gr.bas” is responsible for plotting one- and two-dimensional
graphs (in colour) during the calculations.



Table 3.2 Pressures (reported as dimensionless values)

N0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 100 100 100 100 100 1,00 1,00 1,00 1,00 1,00 1,02 1,02 1,02 1,02 1,02 1,01
1 100 1,00 100 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,02 1,02 1,02 1,02 1,02 1,01
2 100 1,00 100 1,00 1,00 1,00 1,00 1,00 1,00 1,01 1,02 1,02 1,03 1,02 1,02 1,01
3 100 1,00 100 1,00 1,00 1,00 1,00 1,00 1,01 1,02 1,02 1,02 1,03 1,02 1,01 1,01
4 100 100 100 100 1,00 100 100 1,01 1,02 1,02 1,02 1,02 1,01 1,01 1,00 1,00
5 100 1,00 100 1,00 1,00 1,00 1,02 1,02 1,02 1,02 1,01 1,01 1,00 1,00 099 0,99
6 1,00 1,00 100 1,00 1,00 1,00 1,02 1,02 1,02 1,02 101 1,00 099 098 097 097
7 1,00 1,00 1,00 1,00 1,00 1,02 1,02 1,03 1,03 1,02 1,00 0,99 098 096 095 0,94
8§ 1,00 100 100 100 1,00 1,00 1,02 1,02 1,02 1,00 1,00 098 096 094 092 0,90
9 100 1,00 100 1,00 1,00 1,00 1,02 1,02 1,01 1,00 099 097 095 092 089 0,87

10 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,02 1,00 1,00 099 097 094 09 087 0,81
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Figure 3.31 8 producing wells having identical flow rates g, and g,, placing an injec-
tion well having the injection rate of go in the centre.
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Figure 3.32 The water saturation pattern has a symmetry relative to the centre.
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Figure 3.33 Wells are located in four rows.



Table 3.3 lists the numerical values of water saturation plotted in Fig. 3.34 for i = 1,...,%,i =1,...,Ny/2

N o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

021 021 021 022 021 021 021 021 021 021 021 021 021 021 021 0.22
021 021 o021 022 021 021 021 021 021 021 021 021 021 021 021 022
021 021 022 030 022 021 021 021 021 021 021 021 021 021 022 0.30
021 021 021 023 021 021 021 021 021 021 021 021 021 021 021 023
0.21 021 022 030 022 021 021 021 021 021 021 021 021 021 022 0.30
021 021 021 023 021 021 021 021 021 021 021 021 021 021 021 023
021 021 022 030 022 021 021 021 021 021 021 021 021 021 022 0.30
0.21 021 021 023 021 021 021 021 021 021 021 021 021 021 021 0.23
021 021 022 030 022 021 021 021 021 021 021 021 021 021 022 0.30
021 021 021 023 021 021 021 021 021 021 021 021 021 021 021 023
021 021 022 030 022 021 021 021 021 021 021 021 021 021 022 0.30
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Figure 3.34 Profile of the distribution of water saturation for such location of wells.

3.11 GEOLOGICAL AND MATHEMATICAL
MODELS OF THE RESERVOIR

3.11.1 Introduction

In this section we provide a comparative analysis of various mathematical
models of reservoirs, give the limits of their application and conduct the
fluid dynamic analysis of the results of numerical calculation. Also, we
consider the issues of applying the mathematical models and calculating
reservoir parameters.

Development of oil and gas fields is highly dependent on the develop-
ment of methods for mathematically modelling real reservoirs and describing
the complicated geological processes.

The characteristic parameter for the inflow of the heavy Kumkol oil is
the paraffin pour point [61] 6. At this temperature precipitating wax
sediments at the surface of the pores resulting in a dramatic decrease in
the oil production rate. To maintain the formation temperature hot water
is injected into the formation. The process of production of heavy oil
using steam flooding can be described using the model of two-phase flow.

The book [61] outlines the principles of developing various mathe-
matical models to describe reservoirs. It also explains how specific models
developed by the authors and their colleagues are applied in computer
simulation of oil field development.

The aim of this section is to solve the following problems of computer
simulation which had not been discussed in [61] or were only mentioned
briefly.
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1. identification of oil formation parameters (developing a geological
model);

2. adaptation of mathematical models through comparison of the field
data (in site experiments);

3. comparative analysis of the various mathematical models and defini-
tion of their applicability range;

4. numerical approximation of mathematical models and fluid dynamic
analysis of the results of numerical calculation.

3.11.2 The Main Mathematical Flow Models

3.11.2.1 Darcy, Navier-Stokes and Zhukovsky Models

Let m(x) and k(x) — are the coeflicients of porosity and permeability of the
porous medium (x€R?); p = const >0 and p =1 — are the homogeneous
fluid viscosity and density; py and ¥ are the pressure and the velocity vector
of the moving fluid particles; p = py + pgh and ¥ = mii are the fluid head
and the flow rate. Then the main models describing the flow of the homo-
geneous fluid in porous medium may be reduced to the following two-
parameter model:

€ <% - ,uAﬁ) +Vp+6dmi=0,V-ii=0. (3.237)

For e =1,0=0 the system of equations (3.237) becomes the Navier-
Stokes model (NS), for e=0,6=1 — we have the Darcy model (D),
and for € = § =1 — the Zhukovsky model (Zh). Here d/dt = /0t + (ii - V);
A=p/k is the Zhukovsky coefficient and correspondingly mAii is the
Zhukovsky force (see Chapter 1).

For some values of parameters of the porous medium and the flowing
fluid the Irmey hypothesis is wvalid. According to the hypothesis
Al = — i (7(x) > 0), which, in this case, indicates that the Darcy and
Navier-Stokes models are close (see Chapter 1).

3.11.2.2 Live Oil Model

Let py — be the saturation pressure of the live oil having reduced density
p =1 at p>py. The process of gas drive when p <ppy will be accounted
by a special equation of state for an oil and gas mixture (Chapter 1):

— 1’p2pHa
o= { {14 6(p — pr), p <pu(6 = const >0).
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Assuming that the fluid flow is one-dimensional and planar (orthogonal
to the gravity vector) we obtain the following equations:

opp) 0 ( Gp\_ . _  0p
L N (ple =0,v= kax. (3.238)

3.11.2.3 The Muskat-Leverett and the Buckley-Leverett Models
The equations comprising the main mathematical models of the flow of a
two-phase fluid may be presented as a single parameter family of models:

vi = —ki(Vpi + pg), msy + divi; = 0,p> — py = ep,, (3.239)

where v}, p;, and p; are the phase flow, pressure and density (i =1, 2); s, 1,
and ki(s) are the phase saturations, viscosities and permeabilities;
k; = kk;/ ., where k - is the average permeability.

For € =0 expression (3.239) becomes the simplest Buckley-Leverett
model not taking into account capillary forces, for € =1 the Muskat-
Leverett model (ML).

Model (3.239) is transformed into the following system of equations
in the dynamic saturation s(x, f) and the medium pressure p(x, t):

{ ms; — div(eaVs — bv +f0) =0, (3.240)

divv = —div(kyVp +J?1) =0,

where a(x,5)>0 for s€(0,1) and a(x,s)=0,s=0,1; ky(x,s) =0y >0
when s€[0, 1], (| b, bx| < ).

b

3.11.2.4 The Displacement Model

The previously described models were developed in such a manner that
they cannot describe the flow of a two-phase fluid under conditions
when a porous medium is undersaturated with a displacing phase (flow
into a “dry” formation). In this case we have to use the displacement
model (Chapter 1, Section 1.3), which provides the same system of equa-
tions of the type (3.240) with a potential for dynamic saturation s(x, f) to
take negative values.

3.11.2.5 The Boundary Layer Model

One of the disadvantages of the Muskat-Leverett model (the one that
accounts for capillary forces) deals with the “edge effect” or poor accuracy
in the boundary conditions set for the producing well. To make sure that
the boundary conditions of the producing well are generated in the course
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of the problem solution (as is the case with the Buckley-Leverett model)
simultaneously taking into account capillary forces, one can make use of the
boundary layer model (Chapter 1, Section 1.3). For the planar steady flows
of a two-phase fluid in a porous medium the boundary layer model simply
becomes an integration of the following saturation equation s(x, y):

012 = 2 (9% 4 ron®
10 (s)| pei <a(s) 5 + 5 Q(t) ay>’ (3.241)

where Q(f) is a given flow rate in the mixture.

3.11.3 Geological Model (GM) of Oil Formation

Among the mathematical flow models (Chapter 1) there are more than
30 describing various processes in reservoirs.

To conduct numerical calculations using any of these models to
forecast field development parameters it is necessary to know the underly-
ing parameters: m = m(x) is porosity; k = k(x) is permeability (in general
case k-tensor); E,'(s),,u,, p; are permeabilities, viscosities and densities of
the phases; p.(x,s) is capillary pressure. Besides, to estimate the para-
meters, i.e. the flow rates, pressures and saturations of the phases
Ui, pirsi(i =1,2) it is necessary to collect well data at reservoir boundaries
and under initial conditions.

The basis for developing a model is provided by inputting geological
and field data for the reservoir studied, namely:

* characteristics of the geological structure;

* the geological and physical characteristics;

* the fluid dynamic characteristics (production rates, pressures, etc.);

* the approved calculation parameters — oil in place and recoverable
reserves of oil, dissolved gas, free gas and condensate;

* the field history data, etc.

The information supporting the geological model consists of geologi-
cal field data, the values directly measured in the wells (geological struc-
ture, geological and physical characteristics, field data etc.), details of field
development and approved volume of recoverable reserves, cross section
information near the wells drilled in the same area of the field.

The techniques to improve the accuracy of geological field data are
highly location dependent. They give sufficiently reliable information on
the formation parameters close to the well. Obtaining the necessary
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information for the whole of reservoir requires application of various
methods of interpolation and statistical processing [61].

Obtaining the distribution of the geological and physical parameters
of reservoir areally and with depth, modifying these parameters, using
additional information on the field and processing the parameters using
the statistical, engineering and fluid dynamic methods (inverse problems)
results in the formulation of a geological model (GM) for the reservoir.
Often the formulation of the GM for the reservoir is referred to as the
identification of the reservoir’s geological and physical parameters.

The book [61] discusses the means to obtain, store and process geological
field data in sufficient detail.

Let us consider some specific problems of modelling geological field
data using a simulation approach to model various units in the reservoir.

3.11.3.1 Selection of Calculation Domains

Any mathematical model of an oil field is designed to simulate its perfor-
mance, to determine the causes of discrepancy between pre-development
and actual indices, and to suggest corrective measures to eliminate any
discrepancies. Geological differences in fields, their development history,
substantial differences in field parameters etc., requires the modelling of
each field individually.

Let us initially focus on the problems of planar (areal) flow of nonhomo-
geneous fluid in a formation. This case corresponds to the development of
a specific formation consisting of several layers having similar permeability
and located in a limited part of the field or covering the whole field. Let us
refer to this complex system of strata as the oil bearing formations.

The practical analysis and the development plan for large fields is done
using the zonal principle as described in [26, p. 20; 41; 86, p. 50; 197].

The reservoir to be studied (bed) is divided into calculation domains
influenced by the reservoir arrangement (influencing the choice of the
coordinate system), geological properties or the field development plan (they
control the choice of domain for application of the mathematical model),
and considerations of the symmetry or location of the section close to the
field boundaries (the latter require selecting the special types of boundary
conditions) (Fig. 3.35).

Fig. 3.35, a shows the split into the calculation domains A, B, C, corre-
sponding to a different choice of the coordinate system. Fig. 3.35, b outlines
the locations of the calculation domains for the various development
schemes: A — row, B — transient, C — five-spot. The specific features for
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Figure 3.35 The reservoir to be studied (bed) is divided into calculation domains
influenced by the reservoir arrangement.

division into calculation domains at the field boundaries are shown in
Fig. 3.35, .

Depending on the geometrical, geological and operational field
characteristics the number of injection and production wells varies signifi-
cantly in the calculation domain (from several to many hundreds of wells).
The calculation domains are especially important as they feature a regular
system of well spacing. They are referred to as the base symmetry elements.
It is assumed that a closed system having symmetrical conditions at the
boundaries can be considered as a base element. This element has the known
boundary conditions for the wells (the production rate, pressure or fluid
saturation) and homogeneous reservoir parameters within the boundaries of
the element. The first stage of assessing the field development plant involves
the calculation of development parameters within the base element followed
by calculation of the parameters for the complete reservoir. For example, for
the five-spot development scheme (Fig. 3.35, b, section C) the repeating
base symmetry element of water flooding is provided by a rectangle having
no flow boundaries to water with injection and production wells in the
corners (see Fig. 3.35, b, section D).

The symmetry of the above base element allows calculation of field
characteristics using one-dimensional mathematical models. However,
with time any field develops asymmetry in well spacing and production
rates which can be caused, for example, by drilling operations which
differ from those planned. This process can only be taken into account
with two-dimensional calculations using the base element and discarding
the assumption of symmetrical boundary conditions which makes such a
base element an integral calculation domain.
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The next crucial moment in selecting the calculation domains deals
with field parameters describing the oil production and the rate of water
encroachment in the field. First of all, it is necessary to locate the areas in
the field (if they exist) where production wells are water-free. For such
areas the practical mathematical models are provided by homogeneous
flow (not two-phase) models. These are the models proposed by Darcy,
Navier-Stokes, and Zhukovsky.

The models describing the flow of homogeneous fluid can also be applied
to domains featuring permanent water saturation (at least over a long period
of time). Indeed, let 5€(0, 1) be the constant water saturation in a domain,
k; = ki(3)p; " = const, by = b1(5) = ky(ky + ko)~ = const, k =&y + ky = const.
Then the equation of the ML- model (3.239) can be readily reduced to
the following Darcy model: ¥ = — kVp, divi = 0(p = p» — b1p,, p = p.(5)),
where ¥ =7 + 9. In the same manner we can obtain the Zhukovsky
model with A= £, =1, + ii,.

Now let us consider the case when process of water drive of oil takes
place in the domain €2 having two poroperm features. That is throughout
2 the permeability equals k;, and in the regions (inclusions)
Q,cQn=1,N—ky<k; [9, p 147; 23, p 92]. Then these areas are
bypassed by water and oil can be recovered from them only due to capil-
lary effects. If the domain 2, =€ is sufficiently large, then capillary flow
can be ignored and we consider only streamlined flow around barriers 2,
in  (Sections 3.4, 3.5 in this chapter).

When, according to the Irmey hypothesis (see Section 3.11.2.1), the
flow of fluid is described by the Navier-Stokes model we obtain the descrip-
tion of the viscous flow in connected regions (Section 3.3 in this chapter).

3.11.3.2 Vertical Cross Section of the Reservoir

In the case of controlled flow the effects of sublayers with different porosity,
permeability, and residual water saturation values can be accounted for
in the mathematical model through averaging of the above parameters.
To specify the flow scheme in a reservoir, depending on the geometrical
(thickness, curvature) and fluid dynamic (porosity, permeability) charac-
teristics of the sublayers, it is necessary to study flow in the vertical direc-
tion (in a cross section) of a reservoir. Therefore, depending on the nature
of the water drive, the flow of the two-phase fluid is studied from injector
to producer. Most often, the ML-model is used to describe this flow
(see Section 3.11.2.1). In the case when for the given stage of field
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development the flow is steady then equations of the ML-model can be
split to model the underlying physical processes:

k!

7 = = L v i T = 0i=1,2,n=1,2,... (3.242)
i

P ) =ph = pls ol =pi + pigh,gVh =¢. (3.243)

We will note that such splitting also takes place in the steady state case.
With a fixed value s = s"(x) equation (3.242) describes the homogeneous
flow of fluid in nonhomogeneous porous medium having the permeability
coefficient ki = ki(s") = k!'(x), and the distribution of saturation at the
(n+ 1) iteration step is unambiguously given by the Laplace law (3.243) as
L) £ 0atse(0,1).
The Darcy models obtained for each of the components (i = 1,2) may

0Os

be substituted by Navier-Stokes equations (when the Irmey hypothesis is
fulfilled) or by the Zhukovsky model.

In oil practice a field may feature multilayered connected beds [26, p. 167;
86, p. 106]. This leads to study of flow in several connected regions
(Fig. 3.36). In the steady-state case as was shown above, the several connected
regions may exhibit the types of flow described by the Navier-Stokes or
Zhukovsky models (see Sections 3.3, 3.5 in this chapter).

An interesting class of problems described in this book (Chapter 1,
1.6) 1s encountered in the wellbore when there are two inflows: one slow
rate and one fast (Fig. 3.37).

A ——
[
_—

Figure 3.36 Several connected regions.

T
— 1

Figure 3.37 A wellbore when there are two inflows: one slow rate and one fast.
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3.11.3.3 Combined Fluid Dynamic Characteristics

Combined fluid dynamic characteristics can be easily taken into account
in a calculation domain (areal scheme) having multiple beds (horizons).
In this case the total oil recovery and water flooding is obtained by
summing the corresponding formation parameters.

A far more complicated problem occurs when cross flow of a
two-phase fluid takes place through the common boundaries of various
domains [86, p. 165]. In this case, if the calculation domain consists only
of the base symmetry elements then the conditions given preclude fluid
cross flow between these elements. Therefore, the main fluid dynamic
characteristics of the domain are calculated as a sum of the characteristics
of the base elements. The issue of combined fluid dynamic characteristics
is solved in the same way as if it was possible to select the calculation
domains as fluid dynamically isolated or to consider the whole field as
one domain. Otherwise, the boundary conditions at the common bound-
aries must account for potential cross flow of the two- phase fluid. This
leads to the evaluation of a complex interaction between the calculation
domains (an example is provided by superposition of the volume and
channel flows in a well — see Chapter 1, Section 1.6).

3.11.4 The Mathematical Model of a Reservoir

Any mathematical model of a complicated reservoir (a section having
several wells or a section of a field containing several interlayers having
different permeabilities) is informative when the relevant geological field
data are processed to generate numerical values of the model parameters
(coefficients of differential equations and initial- boundary conditions).

The convenience of using the geological and mathematical models to
describe an oil formation depends on a degree of interaction between the
automated system and the analysis to develop these reservoirs; the potential
for direct access to geological field data and processing to derive the model
parameters; the correspondence between the forecasted parameters of the
formation developed and the additionally measured characteristics of flowing
wells. In brief, the usefulness of the models depends on comparison between
calculated and actual data and validity of the geological model.

The mathematical model of oil flow is a set of submodels developed for
each calculation domain complying with the initial and boundary condi-
tions as well as meeting the requirements for calculating the combined
effect of adjacent domains. Operation of this complex system together with
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the geological and field data (GFD) provides a reliable control on the
process of oil production. Solutions of these complex issues form the basis
of an automated system of field development. The mathematical models
and the geological field database are described in detail in paper [61].

3.11.4.1 Mathematical Models of Calculation Domains

Based on the above arguments we can make a short list of the mathemati-

cal models applied to various reservoir calculation domains.

a. The Muskat-Leverett model (see Section 3.11.2.1) is a universal instru-
ment to describe the two- phase flow under almost all conditions in
calculation domains including those featuring homogeneous fluid flow
on reaching residual saturations (s =0 or s =1) when it becomes the
Darcy model for a homogeneous fluid.

However, as was indicated in 1.4, if the water is flowing into a “dry”
g — 0B
1—0og—oy’
< 0, where [0 is the true water saturation, g, is the residual oil

formation, that is the dynamic saturation is negative, s=

saturations (o = H) and water (o = B)], then it is impossible to describe
them within terms of the Muskat-Leverett model.

b. The displacement model (see Section 3.11.2.4) is included into the
group of mathematical models of an automated system to analyse field
development (ASAFD) which is intended to describe the flow of two-
and one-phase fluid into a “dry” formation (at s <0 water flow, and at
s> 1 oil flow in the absence of residual water).

c. The Darcy, Navier-Stokes (provided the Irmey hypothesis applies) and
Zhukovsky models are mainly used to describe the flows of homogeneous
fluid. However, as the preceding overview shows (see Section 3.11.3.1),
they are also applicable in the following cases of flow of a two-phase fluid:
1. under conditions of constant water saturation;

2. under conditions of a steady two-phase flow;

3. under conditions of superposition of matrix and channel flows;

4. when the following iteration splitting two-phase flow into the
underlying physical processes is made:

—i = R(Vp !+ F), divi™ =0 (3.244)

asn+1

Ot

=2n

= div(kla"Vs" ' — b7+ F). (3.245)

m
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Here F= k_lf (]? is determined in [61, 8.0] and for any value of
(s, x) = (k, ko, a, Fo, F) it is assumed that ¢" = (5", x).

n —

For a given value 5" = §"(x, t) the system (3.244) is obviously a Darcy
model describing a flow of a homogeneous incompressible fluid in a
nonhomogeneous formation caused by force F,. Equation (3.245)
describes the diffusion of water saturation s"*!(x,f) in a given distri-
bution of flow velocity 7",
The convergence of this iteration scheme was proved in book [2] under
given conditions of regular flows in which the function to be found —
s(x, t) satisfies the inequalities 0 <s~ <s(x,t) <s* <1,s* = const. The
authors found sufficient conditions for the existence of such regular
flows.
We will note that when the ordinary conditions are met the Darcy
model (3.244) can be replaced by the Navier-Stokes or Zhukovsky
models.
d. The model of live oil flow (see Section 3.11.2.2) describes the flow of a
homogeneous fluid in an oil formation when the pressure in some areas

is below the saturation pressure (ppm < psar)-

3.11.4.2 Interaction of Numerical Algorithms with the Data Base

When the numerical mathematical model algorithms are included into

ASAFD it is necessary to ensure that they interact with the data bases. All

initial information on oil and gas fields is contained in three sections of

the data base: geological field, the operational and general field parameter

data [61].

The standard scheme of interaction should include:

* access and readout of the necessary data to operate a specific algorithm
from the general field parameter databank;

* access to the geological field databank and construction of a geological
model of the part of field developed;

* access and readout from the operational parameter databank of the nec-
essary data on injection and production wells, pressure, temperature
etc.;

* calculation of the field development parameters using the algorithm
for specific time intervals;

+ storage of the calculation results in relevant parts of the data base.

A similar scheme is used to arrange for interaction with the data base
to apply extrapolation and statistical analytical methods.
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It should be noted, however, that the interaction of numerical algorithms
with the data base is dependent on the specifics of the problem. With
ASAFD running analysis in the “process engineer — computer” mode, for
each specific case means that the interaction of the calculation algorithms
with the data base depends on expert decisions, the process engineer in our
case. This option is provided by ASAFD.

The option of interaction with the data base at various stages of
implementation is ensured for all numerical algorithms included into the
group of mathematical models to simulate oil reservoir.

3.11.4.3 Selecting, Applying and Matching the Mathematical Model

Let us consider the following example of applying the mathematical
model. Let us take the problem of numerical calculations of two-phase
fluid flow using the ML-model between the injection and production wells
in a vertical cross section of the reservoir (a horizon, or group of sublayers).

It is assumed that the geological and physical characteristics are given
for the wells and the method of determination (for example, the linear
interpolation) is fixed for all points in the bed. In addition, we know the
information on the wells: the flow rates for the phases (the fluid produc-
tion rate and the water cut) and the average pressure profile.

Let us make numerical calculations for flow of the mixture with
known production rates. We will determine the p,y (calculated pressures
0 and compare them with the pgs 9 field pressures). Then, we will solve
the opposite problem. Using the known distribution of pressure we calcu-
late Qﬁ‘;lc,
Q;‘geld, the actual phase production rates.

the phase production rates (k=1,2) and compare them with

Such a comparison of the calculated and actual characteristics enables
one to improve the accuracy of the geological and physical parameters of
the reservoir between wells applying the multivariant calculation tech-
nique. In this manner the formation geological model becomes more
accurate, or, in other words, the selected mathematical model gets
localised.

Let us provide another example of model localisation.

[t is necessary to specify the pressure at the inlet (p;,) and at the
outlet (Pouser) to make a sufficiently accurate calculation of the flow of
the two-phase liquid in a producing well. Whereas p,,q; can be easily
measured, this is not the case with pj,,. Without proof it is often assumed
that piwer = P (Pforn 15 the formation pressure). In this case the best
mathematical model to describe the formation not requiring the
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determination of pj,, is provided by the model of matched boundary
layers (MMBL) or porous insert model (PIM) in which the NS and ZH
models are matched (Chapter 1, Section 1.2).

For the last example we consider the situation when localisation of
the initial mathematical model requires an unjustifiably large correction
of the geological model. In this case one should consider new physical
factors not accounted for in the initial mathematical models. Such factors,
for example, may include fracturing of the porous medium which may
lead to selecting another mathematical model.

We will dwell on the problem of matching mathematical models in
various formations. This issue was studied in Section 3.10.2, where we
mentioned the requirement to account for the combination at the bound-
aries of the formation domains (multiplication scheme). Some examples of
matching various models have been considered for the vertical cross sections
of reservoir (MMBL and PIM).

We will mention one more straightforward example of superposition of
the flow without accounting for the capillary forces (BL-model) and in the
case when the capillary effects are taken into account (ML-model) (Section
3.10 in this chapter). Obviously, it is not possible to superimpose these
flows in the well and it is required to introduce a “transient” zone. This
zone is the area which is distorted by flow into the well in which the flow
is calculated using the radial flow scheme.

We note that ASAFD provides for variants of matching various
mathematical models.

3.11.5 Numerical Reservoir Modelling

We will carry out the fluid dynamic analysis of the numerical simulation
using various mathematical models developed for the reservoir as part of
ASAFD (Sections 3.2—3.7, 3.10 in this chapter).

3.11.5.1 The Zhukovsky Numerical Model

Paper [50] (compare with 3.4) gives the results of numerical calculation
of the mixed flow of viscous fluid in an L-shaped region having a porous
section arbitrarily located at the bottom. The numerical algorithm is
described and several fluid dynamic problems are solved for different
Reynolds numbers and various locations of the porous section in the
vertical flow (to model a well) as well as in case when there are no porous
section at all.
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Let us underline the main results of the fluid dynamic considerations
and numerical calculations.

1. The hypothesis that forms the basis of the Zhukovsky model does
not require of the unknown efficient viscosity fi,; 7 p applied by
other authors to describe the flow in porous media [43,114]. This
circumstance leads to the fact that for superposition of the volume and
channel flows considered in papers [50,59], the coefficients in front of
higher derivatives in the equations remain continuous (when we have
the same viscosity p in A# for the NS- and Zh-models). Therefore,
on one hand, there is no need to develop “theories” further to deter-
mine fi,;, and on the other, the stability of the difference approxima-
tions of equations is markedly improved.

2. The relations of the Kozeni type [72] are used to describe the drag coefti-
cient ), in flow models applied for porous media. Their experimental
confirmation was only obtained for very specific porous media. So for
the rest of physical parameters these relations have to be confirmed
experimentally. In the Zhukovsky model (3.239) the coefficient A = u/k
is linked only to the known geological parameters of the formation and
flowing fluid.

3. The numerical calculations were carried out in regions having complex
geometry (Sections 3.4—3.6 in this chapter), in which the flow of fluid
sharply alters its direction. In order to overcome this difficulty it was
required to introduce a special approximation of equations in the vicin-
ity of the flow turning point that allowed the retention of approxima-
tion in equations along the flow lines (Section 3.5 in this chapter).

The type of difference equation to determine the pressure of the
singularity point and its calculation algorithm are given in paper [50].
In addition we made calculations of controlled fluid flow in the porous
medium having L-shaped structure that models a section of the oil formation
(Section 3.4 in this chapter). Despite the complex geometry of the region
the results of these calculations allowed comparing the Zhukovsky model
and the Darcy model (see 2.1), proving that they are sufficiently close:

pli| =107\

,p| VY] =3 - 1072 )i

, | Aii| = 107"\

3.11.5.2 The Numerical Simulation of Formation Pressure

In paper [46] the pioneering results of numerical modelling of the flow of
a viscous fluid in the L-shaped region having a known pressure p = poyer
at the outlet and the zero tangent velocity vector component at the inlet
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and outlet (uniform flow) were obtained. The problem considered models
the formation pressure p = ppy, using the measured value p = poue at the
producing well head which is important from a practical point of view
(Section 3.6 in this Chapter).

The convergence of the difference approximation was proved for this
problem implying that it has a solution in time. The numerical solution
algorithm of a more complex problem was proposed and practically devel-
oped for computer calculation when instead of pressure py the full head

2 . ) } )
; in this case instead of the Navier-

is known, i.e. gouder =p T 1/2|Ei
Stokes model the Zhukovsky model is used (Section 3.6 in this chapter).

A simpler problem for the Navier-Stokes equations in a rectilinear
channel was studied theoretically by V.V. Ragulin [108], V.V. Ragulin and
Sh.S. Smagulov ef al. [109].

It should be noted that the problems involving the Zhukovsky model
are also applicable to describe the flows of conducting fluid in a magnetic
field. Numerical algorithms may be used to solve the applied problems in
magnetic fluid dynamics.

3.11.5.3 The Muskat-Leverett Numerical Model
In paper [64] the principal basis of the ASAFD-Muskat-Leverett model
system was developed numerically.

An example to calculate the problem of controlled two-phase flow
using the base element of the nine-spot pattern was used to demonstrate
the efficient and quick convergence of the proposed difference system.
The latter provide the necessary criteria for the numerical algorithm to
be used.

The solvability of the problem studied and convergence of method
of splitting into physical process compiled in the proposed difference
approximation were proven in book [61].

For the sake of comparison the numerical simulation of the same
problem was made applying the scheme of Duglas, Pichman and
Rechford [63] (see also [41]), in which the matrix of the steady elliptical
system of the two equations describing water saturation s and phase pres-
sure p has a non-diagonal character. It is natural that the calculation results
were pretty close but from the application point of view the second
scheme is not as good as the basic algorithm in which the matrix of the
elliptical steady system has diagonal character (this is achieved by a special
choice of the “average” pressure (Section 3.10 in this chapter).
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3.11.5.4 The Numerical Model of the Two-Phase Temperature
Flow in Analytical Variables

The theorem of existence and uniqueness of the analytical solutions
was proved for the thermal flow model in a two-phase fluid proposed by
O.B. Bocharov and V.N. Monakhov [16]. The smoothness of the solution
was studied, the finite rate of perturbation propagation was established,
and the algorithms to solve the boundary problems using numerical
algorithms were proposed and implemented as computer programs (see
Chapter 2, Section 2.2).

The comparative analysis of several difference schemes to develop
analytical solutions was conducted. The method of Roter was used to
solve the initial-boundary problems and the problems resulting in a one-
dimensional equation (Chapter 2, Section 2.7).

It was established numerically that heating up of the formation brings
about a dramatic improvement in flushing-out. The algorithms proposed to
develop analytical solutions allow the prompt evaluation of the efficiency
of the EOR methods to be applied to develop oil fields based on the
thermodynamic properties of the fluid components.

3.11.5.5 The Numerical Model of the Boundary Layer

First of all we will point out that for two-phase fluid the flow is described

by the Muskat-Leverett model. In this case the formation of the Prandtl

boundary layer is impossible in a viscous fluid because the assumed
averaging conditions at each point of the domain contain the porous
medium and two fluid components.

The model of a two-phase fluid boundary layer proposed in paper [75]
is a true mathematical approximation of the Muskat-Leverett equations in
a thin formation.

We use the model of a two-phase fluid boundary layer to solve the
“edge effect” problem [8; 142] in production wells (x = x,), as for x = x,
this model does not require stipulating the boundary condition for
saturation.

The algorithm to obtain the boundary conditions proposed in paper [52]
for x = x, consists of the following stages:

1. The solution of the boundary problem for the Muskat-Leverett model
in the interval x€[0,x,] (x=0 corresponds to injection well) for
fixed condition x = x, is used to determine water saturation value
s(x, y)|x:x() = so(y) for a known cross section x = xy < x,, in proximity
to the producing well.
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2. Solving the corresponding problem for the flow boundary layer in the
interval x€[xy,x,] having S|X:x“ =so(y) the value S‘x:x[ =s(y) 1is
restored.

3. The equations of the ML-model are solved for the new value of
S‘x:x, = s.(y). Then the cycle returns to stage 2 and so on.
Calculations made in paper [52] show a sufficiently quick convergence

of the iteration process proposed to generate the water saturation value

s(x,y) in producing well. Together with solution of the relevant problem

for the ML-model the value of s(x,y) is converging over the interval

[0, x.] between the injection and production wells.

3.11.5.6 Numerical Model of the Live Oil Flow
The physical aspects of the flow of the live oil are outlined in detail in
paper [56], where its reduction to the Stefan type problem is proved.

Numerical simulation was carried out in the case when the pressure p
of oil in interval x€[0, &,] was less than the saturation pressure py,(p < pear)
at the initial moment of time and p = p,,;when x =¢§,,.

Diagram 1 in paper [56] shows the distribution of the gas factor in a
one-dimensional problem depending on the quantity g = (ps — p)- It was
shown that the amount of gas released increases with an increase of g,
which agrees with the experimental data. Diagrams 2—4 in paper [56]
demonstrate the spatial scheme of propagation of gas front p = py,.

3.11.5.7 Numerical Modelling of Flows in Several Connected Regions
The numerical model bank ASAFD contains a number of algorithms to
solve problems of the flow of homogeneous fluid in porous several con-
nected media. These algorithms are based on a numerical approach proposed
by one of the authors of this book to compile the Navier-Stokes model in
several connected regions (Section 3.3 in this chapter).

The importance of studying the flow in vertical cross section for oil
beds characterised by two different porosities and in multilayered systems
was described above in detail.
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