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Preface

Gravitation is the only basic physical interaction that does not yet have a basis
in microphysics. Moreover, no relativistic quantum gravity phenomenon has been
experimentally identified up to now. It is indeed not clear at this time how to bring
Einstein’s macrophysical description of gravitation into harmony with the quantum
theory. Therefore, this book deals with Einstein’s classical theory of general relativity.

The theory of relativity is based on a postulate of locality. In this context,
locality means that the measured value of a physical quantity at an event in space-
time is directly influenced only by quantities in its immediate neighborhood. In fact,
in relativity theory, observables are spacetime scalars that result from the projection
of physical quantities onto the local (tetrad) frames of the observers. In this process,
locality is maintained if the result is not directly affected by variables from the past;
that is, relativistic physics becomes nonlocal if the past history of the observer has to
be taken into account. Nonlocality is thus associated with spacetime memory.

In relativity theory, locality is first invoked in the special theory of relativity when
Lorentz invariance is extended to accelerated observers. Lorentz invariance is a basic
symmetry of nature and Lorentz transformations relate the measurements of uniformly
moving ideal inertial observers. An inertial observer moves on a straight world line from
minus infinity to plus infinity with constant speed. Thus inertial observers have little to
do with actual observers that are all more or less accelerated. What does an accelerated
observer measure? According to special relativity theory, Lorentz transformations must
be applied event by event along the world line of the accelerated observer in order
to interpret its measurements. This makes physical sense, of course, if during the
measurement of a physical quantity the velocity of the accelerated observer can be
considered effectively constant; that is, the locality postulate is valid if the accelerated
observer can be considered locally inertial during an elementary act of measurement.

Classically, motion occurs via particles as well as electromagnetic waves. The
interaction of classical particles and rays of radiation, in the geometric optics limit,
can indeed be reduced to pointlike coincidences. Clearly, the pointwise application of
Lorentz transformations would make physical sense for classical point particles and
rays. However, electromagnetic waves are in general intrinsically nonlocal. Imagine,
for instance, the measurement of the properties of an incident electromagnetic wave
packet by an accelerated observer. To ascertain the frequency and wavelength content
of the wave packet, instantaneous Lorentz transformations must be employed over an
extended period of time, during which the classical state of the accelerated observer
necessarily undergoes various changes. Furthermore, Bohr and Rosenfeld pointed out
in 1933 that, as a matter of principle, classical electric and magnetic fields cannot
be measured instantaneously and only their spacetime averages have immediate phys-
ical significance. Thus in the process of field measurement, the past history of the
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observer must be taken into account. This issue acquires added urgency when one
recognizes that accelerated observers are endowed with intrinsic invariant length- and
timescales associated with their motions. The acceleration scales can be constructed
from the speed of light and the appropriate magnitudes of the observers’ translational
and rotational accelerations.

In 1993, I published a nonlocal theory of accelerated systems in Minkowski space-
time. In formulating a theory that depends upon the past history of an observer, a
kernel function must be introduced that can in general depend upon both the past
and the present. The acceleration kernel acts as a weight function for the averaging
process that takes the past history of the observer into account. To determine the
kernel, I used the phenomenon of spin–rotation coupling to formulate the physical
principle that no observer can stand completely still with respect to a fundamental
radiation field. Implementing this principle, I obtained an integral equation for the ker-
nel function that can have many possible solutions. Furthermore, to obtain a unique
solution, I chose a simplifying assumption regarding the functional form of the kernel
that is usually adopted in the dynamics of continuous media to describe memory-
dependent phenomena. Further work revealed that my simplifying choice for the kernel
could give unphysical results if the observer’s acceleration is not uniform. The correct
answer turned out to be a kernel function that only depends upon the past. The
complete resolution of the problem was achieved, thanks mainly to significant contri-
butions by Carmen Chicone, in two papers that Chicone and I published in 2002. The
path was now clear for the development of a nonlocal special relativity theory, which
was accomplished by 2008 in close collaboration with Carmen Chicone and Friedrich
W. Hehl. I devote the first three chapters of this book to the explanation of the main
tenets of this nonlocal extension of special relativity theory in Minkowski spacetime.

Once history dependence has been incorporated into the physics of accelerated
observers in Minkowski spacetime, it would seem natural to extend the theory to
the gravitational domain. The basis for such an extension is Einstein’s fundamental
insight that the principle of equivalence of inertial and gravitational masses implies
a deep connection between inertia and gravitation. The universality of free fall is a
crucial and observationally well-established property of gravitation within the classical
domain of physics. In the context of Newtonian gravity, this experimental result implies
the principle of equivalence of inertial and gravitational masses. Einstein interpreted
this principle to mean that there exists in nature a profound relationship between
acceleration and gravity. Einstein’s heuristic principle of equivalence, which is the
cornerstone of his general theory of relativity, establishes a definite local relationship
between an observer in a gravitational field and an accelerated observer in Minkowski
spacetime. The accelerated observer is locally (i.e. pointwise) inertial by the postulate
of locality; therefore, Einstein’s principle of equivalence renders observers pointwise
inertial in a gravitational field and opens the path toward a geometric interpretation
of gravitation as the Riemannian curvature of the spacetime manifold.

It is important to observe that Einstein’s principle of equivalence loses its basic
operational significance if one does not know a priori what accelerated observers in
Minkowski spacetime actually measure; that is, the locality postulate plays a crucial
role in Einstein’s extension of relativity theory to the gravitational domain. In nonlocal
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special relativity theory in Minkowski spacetime, an accelerated observer in general
carries the memory of its past acceleration. Invoking Einstein’s original insight in this
more general circumstance, one expects that gravity should be nonlocal as well and in
nonlocal gravity, the gravitational memory of past events must be taken into account. A
gravitational kernel is thus needed to incorporate history dependence into gravitation
theory. However, it is not possible to deduce the kernel of nonlocal gravity theory
from the kernel of accelerated observers in Minkowski spacetime; indeed, one cannot
invoke Einstein’s principle of equivalence in this case due to its inherent extreme
locality. To develop a nonlocal general relativity via a direct extension of nonlocal
special relativity, one must go beyond Einstein’s strictly local principle of equivalence.
For instance, suppose that we start with Einstein’s linear approximation to general
relativity theory as a classical spin-2 field in Minkowski spacetime. Nonlocal theory
of accelerated systems can then be applied in this case to generate a linear nonlocal
spin-2 field theory as determined by accelerated observers in Minkowski spacetime.
It is however not clear how to generalize in this case Einstein’s local identification of
an observer in a gravitational field with a certain accelerated observer in Minkowski
spacetime. Thus, as described in detail in Chapter 4, a direct attempt at a nonlocal
generalization of Einstein’s theory of gravitation appears to be futile. It seems that an
indirect approach may be necessary.

Einstein’s general relativity is a field theory of gravitation patterned after Maxwell’s
field theory of electromagnetism. It is interesting to recall that the electrodynamics
of media is inherently nonlocal ; that is, in general, nonlocal constitutive relations
naturally arise in the treatment of electrodynamics of bulk matter (Jackson 1999).
This circumstance directly leads to nonlocal Maxwell’s equations for the electro-
dynamics of continuous media. Nonlocal characterization of the properties of continua
has a long history (Poisson 1823; Liouville 1837; Hopkinson 1877); indeed, the corre-
sponding memory-dependent phenomena, such as hysteresis, have been the subject of
many investigations—see, for example, Bertotti (1998). Along this line of thought, one
wonders whether a similar constitutive approach can be adopted for gravitation. Can
general relativity be rendered nonlocal in analogy with the electrodynamics of media?

It is possible to arrive at general relativity (GR) from the standpoint of the gauge
theories of gravitation. Indeed, the gauge approach to gravity naturally leads to space-
time theories with curvature and torsion. There is a spectrum of such theories such that
at one end of the spectrum, one has GR based upon a pseudo-Riemannian spacetime
manifold with only curvature and no torsion, while at the other end of the spectrum
are spacetime theories with torsion and no curvature. Of the latter, there is a unique
one that is essentially equivalent to Einstein’s general relativity: this is the teleparallel
equivalent to general relativity (GR||), where gravity is described in terms of local
frames in Weitzenböck spacetime. Teleparallelism has a long history; its application to
gravitational physics has been considered by many authors starting with Einstein in
1928. GR|| is the gauge theory of the Abelian group of spacetime translations. As such,
it bears a certain formal resemblance to electrodynamics, which is the gauge theory
of the Abelian U(1) group. The analogy with electrodynamics led Friedrich W. Hehl
to suggest that one should attempt a nonlocal GR|| through a nonlocal constitutive
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relation as an indirect way of constructing a nonlocal generalization of GR. This fruit-
ful suggestion was then developed in two papers that Hehl and I published in 2009.
Within our formal framework for a nonlocal theory of gravity, the kernel must satisfy
certain requirements but is otherwise undetermined. It is possible that the kernel could
be derived from a more comprehensive future theory.

In nonlocal gravity, the gravitational field is local but satisfies partial integro-
differential field equations. Using simple assumptions regarding the constitutive kernel,
our preliminary studies revealed that gravity can be nonlocal even in the Newtonian
limit; that is, in the Newtonian regime, we find an integro-differential equation for
the gravitational potential. This equation can be expressed as the Poisson equation of
Newtonian gravitation, except that the source term now includes, in addition to matter
density, a term induced by nonlocality that is reminiscent of the density of dark mat-
ter. Surprised by this development, we sent a preliminary version of our paper to the
late Jacob Bekenstein for his comments. He kindly pointed out to us that our modified
Poisson equation had already been proposed by Jeffrey R. Kuhn in the 1980s. From
Bekenstein we learned of the Tohline–Kuhn modified gravity approach to the explana-
tion of the “flat” rotation curves of spiral galaxies. The nonlocally modified Newtonian
gravitation appears to provide a natural explanation for the dark matter problem; that
is, nonlocality appears to mimic dark matter. In the absence of a deeper understanding
of the gravitational interaction, we therefore adopt the view that the kernel of nonlocal
gravity must be determined from observational data regarding dark matter. In other
words, there is no dark matter in nonlocal gravity; therefore, what appears as dark
matter in astrophysics and cosmology must be the nonlocal aspect of the gravitational
interaction.

Among the basic interactions in nature, gravitation has the unique feature of
universality. We assume that it is also history-dependent. That is, the gravitational
interaction has an additional feature of nonlocality in the sense of an influence
(“memory”) from the past that endures. Is there any compelling evidence that
Einstein’s theory of gravitation should be modified? The theory is in good agreement
with observational data from submillimeter scales to the scale of the Solar System and
binary star systems. However, on galactic scales and beyond the theory fails unless
one invokes the existence of the hypothetical dark matter. Indeed, on such large scales,
gravity is dominated by the attraction of dark matter.

Can nonlocal gravity explain away what appears as dark matter in astronomy?
It is important to note that the persistent negative result of experiments that have
searched for the particles of dark matter naturally leads to the possibility that what
appears as dark matter in astrophysics and cosmology is in fact an aspect of the
gravitational interaction. The nonlocal character of gravity, however, cannot yet re-
place dark matter on all physical scales. Indeed, dark matter is currently needed for
explaining: (i) gravitational dynamics of galaxies and clusters of galaxies, (ii) grav-
itational lensing observations in general and the Bullet Cluster in particular and
(iii) the formation of structure in cosmology and the large-scale structure of the
universe. We emphasize that nonlocal gravity theory is so far in the early stages of
development and only some of its implications have been confronted with observation,
thanks to the work of Sohrab Rahvar on the rotation curves of a sample of spiral
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galaxies as well as on the internal dynamics of a sample of Chandra X-ray clusters of
galaxies. Indeed, the establishment of nonlocal gravity theory on both theoretical and
experimental fronts is certainly work in progress and much remains to be done.

Nonlocal gravity is presented in this book within an extended general relativistic
framework that includes the Weitzenböck connection. This framework is described in
Chapter 5 and the field equation of the nonlocal generalization of Einstein’s
theory of gravitation is developed in Chapter 6. I assume throughout that the reader
is familiar with the basic tenets of general relativity; in fact, the required background
material can be found in standard introductory textbooks such as Ryder (2009),
Misner, Thorne and Wheeler (1973), Weinberg (1972) and Landau and Lifshitz (1971).
No exact solution of the field equation of nonlocal gravity beyond Minkowski space-
time is known. The absence of any exact nontrivial solution of the theory implies that
the nonlinear regime of the theory has yet to be studied. Thus exact cosmological
models or issues involving the formation and evolution of black holes are beyond the
scope of the present work. Therefore, Chapters 7, 8 and 9 are essentially concerned
with the implications of the general linear approximation of nonlocal gravity. Chapter
10 deals with the difficult question of whether nonlocal gravity can potentially solve
the problem of structure formation in cosmology without invoking any dark matter.
The work reported in this book would not have been possible without decades of
invaluable collaboration with Carmen Chicone and Friedrich W. Hehl. More recently,
I have benefitted greatly from my collaborations with Donato Bini and Sohrab Rahvar
on the theoretical and observational aspects of nonlocal gravity, respectively.

The constitutive relations in the electrodynamics of media naturally depend upon
the medium under consideration. Similarly, there are many possible constitutive rela-
tions in the case of nonlocal gravity and they can lead to different theories of nonlocal
gravity. For instance, as discussed in Chapter 7, it is possible to choose the constitutive
relation such that nonlocality enters gravitation theory only in the nonlinear regime of
the theory, in which case nonlocality cannot provide an explanation for dark matter.
On the other hand, we have tentatively adopted a constitutive relation in this book
such that nonlocality survives even in the Newtonian regime and therefore has the
potential to do away with the hypothetical dark matter. The constitutive kernel in
the Newtonian regime is a universal function that depends upon three constant para-
meters. These should account for all of the astrophysical data regarding dark matter.
However, if the present approach to dark matter fails or the elusive particles of dark
matter are eventually discovered, nonlocal gravity theory could still survive with a
different constitutive relation.

In this book, I attempt to present a coherent account of the work that has been
done on a particular approach to the nonlocal generalization of Einstein’s theory of
gravitation. I am deeply grateful to the many colleagues, at the University of Missouri
and elsewhere, who have supported me in this endeavor. Most of the material covered
in this work is based on collaborative efforts, which I gratefully acknowledge. Particular
thanks are due to Donato Bini, Carmen Chicone, Friedrich W. Hehl, Lorenzo Iorio,
Jeffrey R. Kuhn, Roy Maartens, José W. Maluf, Yuri Obukhov, Sohrab Rahvar and
Haojing Yan for their generous help and advice. I am solely responsible for any errors
or deficiencies in this book.
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Finally, it is important to mention here that there are other approaches to nonlocal
gravitation theory; see, for instance, Soussa and Woodard (2003), Barvinsky (2003),
Biswas, Mazumdar and Siegel (2006), Biswas et al. (2012), Briscese et al. (2013),
Tsamis and Woodard (2014), Conroy et al. (2015) and the references cited therein.
The inspiration for such theories often has its origin in developments in quantum
field theory. The consideration of such theories is beyond the scope of the present
book, which is primarily based on a critical analysis of the fundamental assumption of
locality that underlies the standard theory of relativity. It is possible that Einstein’s
classical theory of gravitation needs modification on galactic scales along the lines
indicated in this book in order to explain observational phenomena associated with
what has come to be known in astronomy and cosmology as “dark matter”. I can only
hope that progress in astronomy will support the approach to nonlocal gravity theory
adopted in this book, thereby leading to a deeper understanding of the gravitational
interaction and possibly providing a clue towards its eventual quantization (Becker
and Reuter 2014).

Columbia, Missouri, 15 August 2016
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1

Introduction

A basic locality postulate permeates through the standard special and general theories
of relativity. The purpose of this initial chapter is to identify the locality assumption
and briefly study its physical origin as well as the significant role that it plays in
relativity theory.

1.1 Lorentz Invariance

The principle of relativity—namely, the assertion that the laws of microphysics are the
same in all inertial frames of reference—refers to the measurements of ideal inertial
observers. The transition from Galilean invariance of Newtonian physics to Lorentz
invariance marks the beginning of modern relativity theory. Lorentz invariance is the
invariance of the fundamental laws of microphysics under the group of passive inhomo-
geneous Lorentz transformations. Lorentz invariance has firm observational support;
therefore, we assume throughout that Lorentz invariance is a fundamental symmetry
of nature. The basic laws of microphysics have been formulated with respect to ideal
inertial observers, since these are conceived to be free of the various limitations asso-
ciated with actual observers. Each ideal inertial observer is forever at rest in a global
inertial frame of reference, namely, a Cartesian coordinate system that is homogeneous
and isotropic in space and time and in which Newton’s fundamental laws of motion
are valid.

The global inertial frames of reference are all related to each other by passive
inhomogeneous Lorentz transformations of the form

xµ = Λµν x
′ν + bµ, (1.1)

where an event is characterized by inertial coordinates xµ = (c t,x), (Λµν) is a Lorentz
matrix and bµ is a constant vector of spacetime translation. The set of all such events
constitutes flat Minkowski spacetime. In our convention, Greek indices run from 0 to
3, while Latin indices run from 1 to 3; moreover, the spacetime metric has signature
+2.

The inhomogeneous Lorentz transformations form the Poincaré group, which is the
ten-parameter group of isometries of Minkowski spacetime. That is, the Minkowski
spacetime interval ds given by

ds2 = ηαβ dx
α dxβ (1.2)

is preserved under the Poincaré group. Here, ηαβ is the Minkowski metric tensor given
by diag(−1, 1, 1, 1), in accordance with our convention regarding metric signature.

Nonlocal Gravity. Bahram Mashhoon. c© Bahram Mashhoon 2017. Published 2017

by Oxford University Press.



2 Introduction

The four-parameter Abelian group of spacetime translations and the six-parameter
Lorentz group, which consists of boosts and rotations, are subgroups of the Poincaré
group. It follows from eqns (1.1) and (1.2) that

ηαβ Λαµ Λβν = ηµν . (1.3)

For µ = ν = 0, eqn (1.3) can be expressed as

(Λ0
0)2 = 1 +

3∑
i=1

(Λi0)2. (1.4)

Moreover, taking the determinant of both sides of eqn (1.3), we find

det(Λαµ) = ±1. (1.5)

Henceforth, we work with the proper orthochronous Lorentz group (Streater and
Wightman 1964), whose elements satisfy det(Λαµ) = 1 as well as Λ0

0 ≥ 1. Clearly,
the Lorentz group contains the identity element Λαµ = δαµ .

The determination of temporal and spatial intervals constitutes the most basic
measurements of a physical observer. We assume that each inertial observer has access
to an ideal clock as well as infinitesimal measuring rods, and carries along its world
line an orthonormal tetrad frame (or vierbein), that is, a set of four unit axes that are
orthogonal to each other and characterize the observer’s local temporal and spatial
axes. For instance, the local axes of the class of fundamental observers at rest in a
global inertial frame are parallel to the corresponding global axes and are given by

λµ0̂ = (1, 0, 0, 0), λµ1̂ = (0, 1, 0, 0), (1.6)

λµ2̂ = (0, 0, 1, 0), λµ3̂ = (0, 0, 0, 1). (1.7)

The hatted tetrad indices at an event enumerate the tetrad axes in the tangent space
at that event. In particular, λµ0̂ is the temporal axis of the observer, while λµî, for
i = 1, 2, 3, constitutes the observer’s spatial frame. Each inertial observer in Minkowski
spacetime belongs to a class of fundamental observers.

For a tetrad frame λµα̂ carried by an arbitrary inertial observer in a global inertial
frame, the orthonormality condition takes the form

ηµν λ
µ
α̂ λ

ν
β̂ = ηα̂β̂ . (1.8)

The tetrads that we consider throughout are adapted to the observers under con-
sideration, which have future-directed timelike world lines and employ right-handed
spatial frames in conformity with the right-handed Cartesian coordinates of the back-
ground space. Therefore, we limit our considerations to tetrads for which det(λµα̂) = 1.
Spacetime indices are in general raised and lowered via the spacetime metric tensor
gµν , which is equal to ηµν in the present case, while the hatted tetrad indices—that
is, the local Lorentz indices—are raised and lowered via the Minkowski metric tensor
ηµ̂ν̂ .
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In connection with spacetime measurements, we imagine static inertial observers
in a global inertial frame and assume that their clocks are all synchronized; that is,
adjacent clocks can be synchronized. Moreover, the adiabatic transport of a clock to
another location can be so slow as to have negligible practical impact on synchroniza-
tion. In a similar way, lengths can be measured in general by placing infinitesimal rods
together. Furthermore, it is assumed in general that for physical measurements, iner-
tial observers have access to ideal measuring devices. These are free from the specific
practical limitations of laboratory devices that are usually due to the nature of their
construction and modes of operation. The measurements of moving inertial observers
are related to those at rest via Lorentz invariance, which preserves the causal sequence
of events.

An equivalent (“radar”) approach to spacetime measurements relies on the trans-
mission and reception of light signals. In this procedure, a static inertial observer O1

sends out a light signal at time t1 to static inertial observer O2. The signal is imme-
diately transponded without delay back to O1 and is received at time t2. If the clocks
at O1 and O2 are synchronized, they would both register time t = (t1 + t2)/2 at the
instant the signal is received at O2. Moreover, the distance between O1 and O2 is
D12 = c (t2 − t1)/2. Thus t2 − t = t− t1 = D12/c.

The inertial physics that is based on the ideal inertial observers and their tetrad
frames has played a significant role in the development of theoretical physics. Inertial
physics was originally established by Newton (Cohen 1960).

1.1.1 Inertial observers

Imagine a background global inertial frame in Minkowski spacetime. The ideal iner-
tial observers in this arena are either at rest with local spatial reference frames that
are related to the global axes by a constant rotation or move with constant speeds
on straight lines from minus infinity to plus infinity and carry constant local refer-
ence frames. The fundamental inertial observers are all at rest and carry orthonormal
tetrad frames with axes that coincide with the global Cartesian spacetime axes of the
background inertial frame of reference.

The translational motion of the observer in spacetime fixes its local temporal axis
as well as its spatial frame but only up to an element of the rotation group. Consider,
for illustration, a background inertial frame with coordinates (c t,x) in Minkowski
spacetime. An inertial observer moves with constant velocity v relative to the back-
ground frame. The Lorentz transformation to the rest frame of the moving observer
(c t′,x′) involving a pure boost with no rotation is given by

t = γ

(
t′ +

v · x′

c2

)
, (1.9)

x = x′ +
1

v2
(γ − 1)(x′ · v) v + γ v t′, (1.10)

where v = |v| and γ is the corresponding Lorentz factor, namely, γ = 1/
√

1− v2/c2. In
the (c t′,x′) frame, the tetrad of the fundamental inertial observers at rest is given by
h′µα̂ = δµα̂ . Transforming the local tetrad frame of the moving observer to the (c t,x)
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system via the Lorentz boost matrix that can be simply deduced from eqns (1.9)
and (1.10), we find

hµ0̂ = γ
(

1,
v

c

)
, (1.11)

hµî = δµi + vi

(
γ

c
,

(γ − 1)

v2
v

)
. (1.12)

Up to a constant rotation, this is the orthonormal tetrad frame of the boosted inertial
observer with respect to the background (c t,x) system. For the generalization of this
result to curved spacetimes, see Mashhoon and Obukhov (2014).

The temporal axis of the moving inertial observer’s tetrad, hµ0̂, is equal to the
unit timelike vector that is the 4-velocity of the observer, hµ0̂ = dxµ/dτ , where the
temporal parameter τ is simply related to the invariant spacetime interval along the
observer’s world line. That is, ds2 = −dτ2, where dτ = c dt/γ. We can clearly identify
τ with c t′, the proper time of the moving inertial observer. The observer’s spatial
frame consists, up to a constant rotation, of the three orthogonal unit spacelike axes
given by hµî for i = 1, 2, 3.

Ideal inertial observers all have straight world lines. Imagine, for instance, an
inertial observer O0 moving along the positive z axis with constant speed v. Let
us introduce the rapidity parameter Θ0 such that v/c = tanh Θ0; then, eqns (1.11)
and (1.12) imply that the orthonormal tetrad frame of O0 is given by

hµ0̂ = (cosh Θ0, 0, 0, sinh Θ0), hµ1̂ = (0, 1, 0, 0), (1.13)

hµ2̂ = (0, 0, 1, 0), hµ3̂ = (sinh Θ0, 0, 0, cosh Θ0). (1.14)

The path of the observer in spacetime is then rectilinear; that is, it follows from the
integration of the 4-velocity vector of O0, uµ = dxµ/dτ = hµ0̂, that

c t = τ cosh Θ0, x = y = 0, z = τ sinh Θ0, (1.15)

where the integration constants have been chosen such that at t = 0, τ = 0 and the
observer is at the origin of spatial coordinates.

1.1.2 Examples of uniformly accelerated observers

Realistic observers in a global inertial frame in Minkowski spacetime would all be
more or less accelerated. We consider here some examples of uniformly accelerated
observers.

Let us first imagine a noninertial observer Ô that has the same history as O0 for
τ < 0, but Ô is forced to accelerate uniformly along the positive z direction starting
at τ = 0, when Ô is at the origin of spacetime coordinates. For τ > 0, the observer’s
orthonormal tetrad frame is then λµα̂ such that

λµ0̂ = (cosh Θ, 0, 0, sinh Θ) (1.16)

and

λµ1̂ = (0, 1, 0, 0), λµ2̂ = (0, 0, 1, 0), λµ3̂ = (sinh Θ, 0, 0, cosh Θ). (1.17)
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Here,

Θ = Θ0 +
g0 τ

c2
(1.18)

and g0 is the constant invariant acceleration of Ô. The 4-acceleration aµ of Ô is

aµ =
dλµ0̂

dτ
=
g0

c2
λµ3̂. (1.19)

It follows in general from uµ u
µ = −1 that aµ u

µ = 0, so that the acceleration
4-vector is spacelike with aµ a

µ = g̃2, where g̃(τ) > 0 is the magnitude of the trans-
lational acceleration with dimensions of (length)−1. For constant linear acceleration,
for instance, g̃ = |g0|/c2.

In connection with the propagation of the tetrad frame along the world line of Ô,
let us briefly digress here and discuss a more general situation that involves an observer
following a timelike path in an inertial frame in Minkowski spacetime. The observer
has 4-velocity uµ = dxµ/dτ and 4-acceleration aµ = duµ/dτ and carries a vector
V µ along its path. One can decompose this vector into its parallel and perpendicular
components relative to the path, namely V µ = V µq +V µ⊥ , where the component parallel
to the curve is V µq = −(u · V )uµ and the corresponding perpendicular component is
V µ⊥ = (ηµν + uµ uν)Vν . Here, u · V = uµ V

µ and |u · V | is the length of the parallel
component of V . It follows that V · V = Vq · Vq + V⊥ · V⊥, which is reminiscent of the
Pythagorean theorem. Let us now suppose that V µ is so transported that it does not
rotate and its length remains constant; that is, along the path we have

d (u · V )

dτ
= 0,

(
d V µ⊥
dτ

)
⊥

= 0. (1.20)

These relations mean that while the magnitude of the parallel component of vector V µ

remains constant along the path, the perpendicular component cannot change in the
perpendicular direction; otherwise, vector V µ would rotate. That is, the net variation
of the perpendicular component along the path can only be in the direction parallel
to the path. In this way, we find from (1.20) that

d V µ

dτ
= (V · a)uµ − (V · u) aµ, (1.21)

which is the Fermi–Walker transport law. We note, in particular, that the 4-velocity
of the observer uµ satisfies eqn (1.21).

Returning to the case of observer Ô, it is straightforward to check that its tetrad
frame is Fermi–Walker transported along its world line. The path of the observer for
τ > 0 is given by

c t =
c2

g0
(sinh Θ− sinh Θ0), x = y = 0, z =

c2

g0
(cosh Θ− cosh Θ0), (1.22)

which is a hyperbola in the (c t, z) plane. That is, it follows from (1.22) that

(z +
c2

g0
cosh Θ0)2 − (c t+

c2

g0
sinh Θ0)2 =

c4

g2
0

, (1.23)

where c2/|g0| is the invariant acceleration length associated with Ô for τ > 0.
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We note that at any instant of time τ > 0, the tetrad frame (1.16)–(1.17) of

the hyperbolic observer Ô is of the general form of the frame (1.13)–(1.14) with an
instantaneous speed c tanh Θ such that | tanh Θ| → 1 for τ →∞. This corresponds to
the fact that the asymptotes of the hyperbola in (1.23) are null lines. Over the period
of proper time τ from 0 → ∞, an external source causing the constant acceleration
of Ô must provide an infinite amount of energy to sustain the complete hyperbolic
motion. To avoid such unphysical situations, we assume that in general the observer’s
acceleration is turned on only over time intervals such that the net amount of energy
transfer is always finite.

Observers in a laboratory fixed on the Earth in general rotate in space as the Earth
rotates about its axis. Moreover, such observers generally refer their measurements to
spatial axes that are rigidly attached to the Earth. Thus their spatial frames rotate
with the Earth as well. It is therefore interesting to study tetrad frames adapted to
such rotating observers.

To describe uniformly rotating observers in Minkowski spacetime, let us first imag-
ine observers Õ at rest in a global inertial frame with spacetime coordinates (c t, x, y, z).
However, these static observers are not inertial since instead of the (x, y, z) axes of the
background frame, they refer their measurements to axes (x′, y′, z′) that rotate with
angular speed Ω about the z axis. That is, they employ

x′ = x cosϕ+ y sinϕ, y′ = −x sinϕ+ y cosϕ (1.24)

and z′ = z, where ϕ = Ω t. Thus the orthonormal tetrad frame λ̃µα̂ of such static
noninertial observers is given in (c t, x, y, z) coordinates by

λ̃µ0̂ = (1, 0, 0, 0), (1.25)

λ̃µ1̂ = (0, cosϕ, sinϕ, 0), (1.26)

λ̃µ2̂ = (0, − sinϕ, cosϕ, 0), (1.27)

λ̃µ3̂ = (0, 0, 0, 1), (1.28)

so that at t = 0, λ̃µα̂ coincides with the tetrad frame of the fundamental static inertial
observers.

Let us next imagine an observer O moving uniformly for t < 0 on a plane parallel
to the (x, y) plane with x = r, y = v t and z = z0, where r and z0 are constant lengths
and v = rΩ. At t = 0, O is forced to rotate uniformly on a circle of radius r about
the z axis on the plane that is at fixed z = z0 and is parallel to the (x, y) plane as in
Fig. 1.1.

For any instant of time t ≥ 0, the natural orthonormal tetrad frame λµα̂ of O,
adapted to the rotating system, can be simply obtained from that of the corresponding
static observer Õ by a pure boost with speed v = rΩ along the tangential direction
to the circular trajectory (see Fig. 1.1); that is,
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Fig. 1.1 Schematic plot depicting the path of accelerated observer O that moves on the

plane z = z0 with uniform speed v = rΩ along a straight line parallel to the y axis for t < 0

but for t ≥ 0 undergoes uniform rotation with angular speed Ω about the z axis such that

ϕ = Ω t.

λµ0̂ = γ
[
λ̃µ0̂ + β λ̃µ2̂

]
, (1.29)

λµ1̂ = λ̃µ1̂, (1.30)

λµ2̂ = γ
[
λ̃µ2̂ + β λ̃µ0̂

]
, (1.31)

λµ3̂ = λ̃µ3̂, (1.32)

where β = v/c and γ = 1/
√

1− β2 is the corresponding Lorentz factor. Thus, with
respect to (c t, x, y, z) coordinates, λµα̂ is given by

λµ0̂ = γ (1, −β sinϕ, β cosϕ, 0), (1.33)

λµ1̂ = (0, cosϕ, sinϕ, 0), (1.34)

λµ2̂ = γ (β, − sinϕ, cosϕ, 0), (1.35)

λµ3̂ = (0, 0, 0, 1). (1.36)

This is the tetrad frame of the uniformly rotating observer O for t ≥ 0. At each instant
t ≥ 0 along its circular trajectory in the orbital plane that is parallel to the (x, y) plane,
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the spatial frame of O, λµî, for i = 1, 2, 3, consists of the radial, tangential and normal
directions, respectively, with respect to the orbital plane.

The uniform speed of observer O is given by rΩ < c and its proper time can be
written as τ = c t/γ if we assume that τ = 0 at t = 0; therefore, ϕ = γ Ω τ/c. Moreover,
the observer’s acceleration, which was turned on at t = τ = 0, can be turned off after
a finite period of time. Such observers exist for 0 < r < c/Ω, the boundary of this
open cylindrical region in Minkowski spacetime is the light cylinder of radius L = c/Ω.
The light cylinder is a timelike hypersurface; therefore, observers inside this cylinder
can in principle communicate with the outside world without any difficulty. In the
r = 0 limit, eqns (1.33)–(1.36) with β = 0 and γ = 1 reduce to the tetrad frame of the
noninertial observer Õ that is at rest along the axis of rotation at z = z0.

We have thus far discussed the measurements of inertial observers. We are also
interested in the measurements of accelerated observers. What do accelerated observers
measure? What are the laws of physics according to accelerated observers? What is
the generalization of Lorentz invariance that applies to accelerated observers? We now
turn to a discussion of these issues.

1.1.3 Nonexistence of ideal inertial observers

The special theory of relativity is about the standard relativistic physics of Minkowski
spacetime, where gravity has been turned off. Physical phenomena in each global iner-
tial frame of reference involve ideal inertial observers as well as accelerated observers.
Indeed, all actual observers are accelerated; that is, inertial observers, though of deep
theoretical significance, do not in fact exist. There is a basic dichotomy here involv-
ing theory and experiment that is noteworthy: The basic laws of non-gravitational
physics have all been formulated with respect to ideal inertial observers, yet the
experimental basis of these laws—namely, the foundation of physical science—has
been established via actual observers that are all accelerated. To set the foundation of
physical science on a firm basis, a connection must be established between inertial and
accelerated observers. Simply stated, the fundamental microphysical laws, such as the
principles of quantum mechanics, have been formulated for nonexistent ideal inertial
observers, while all actual observers are accelerated. The resolution of this dichotomy
requires an a priori axiom that relates inertial and accelerated observers. The obser-
vational consequences of such an axiom should then be compared with experimental
results.

Ideal inertial observers are supposed to move on straight lines with constant speeds
from minus infinity to plus infinity in a global inertial frame and carry constant local
reference frames. It is important to note that these theoretical assumptions regard-
ing ideal inertial observers cannot be directly verified by experiment. For instance,
distant past and future states of the universe are not directly accessible to experimen-
tation. Furthermore, repeated observational attempts to determine that an object is
indeed at rest or moves uniformly on a rectilinear path will produce disturbances that
cause deviations from the state of rest or uniform rectilinear motion. The ideal inertial
observers are thus hypothetical and have been introduced to embody the principle of
inertia perfectly. Real observers in this global inertial frame are all accelerated and
we need to determine what accelerated observers actually measure. In this treatment,
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observers can be sentient beings or measuring devices. In either case, observers are
classical macrophysical systems that are extended in space. Any real measuring device
is subject to various limitations; for example, it may not operate properly under certain
conditions. Moreover, an accelerated device is under the influence of various internal
inertial effects that could, over time, affect its constitution and mode of operation.
In practice, all such issues require careful consideration; however, for the purposes of
this theoretical discussion, we generally follow the standard practice in the theory of
relativity and represent an observer by a single timelike world line for the sake of sim-
plicity. This is not considered to be a fundamental limitation; rather, it helps simplify
the analysis. In fact, this notion of an elementary observer can then be extended to
a reference system by considering a congruence of elementary observers that occupy
a finite spacetime domain in a global inertial frame in Minkowski spacetime. That
this construction is indeed possible has been demonstrated in various ways by explicit
examples for simple accelerated systems (see Mashhoon 2008 and the references cited
therein). A general method based on fiber bundles for the construction of such ref-
erence systems involving nonintegrable anholonomic observers has been discussed by
Auchmann and Kurz (2014).

By employing pointlike observers in our theoretical treatment, we avoid the prob-
lem of determination of the integrated influence of inertial effects on measuring devices
that are employed during the measurement process. All observers under consideration
are thus essentially ideal pointlike systems subject to the laws of classical (i.e. non-
quantum) physics. We can therefore concentrate on the theoretical distinction between
pointlike inertial and accelerated observers.

Observational data, collected over time by actual observers that are all more or less
accelerated, have helped establish microphysical laws and have indicated that Lorentz
invariance is a fundamental symmetry of nature. Therefore, a connection must exist
between inertial and accelerated observers. What is this connection?

1.2 Hypothesis of Locality

To extend Lorentz invariance to accelerated observers in Minkowski spacetime it is
necessary to relate accelerated observers to inertial observers. The standard theory of
relativity is based on the postulate that an accelerated observer is pointwise equivalent
to an otherwise identical momentarily comoving inertial observer. The latter follows
the straight world line that is instantaneously tangent to the world line of the acceler-
ated observer. The locality postulate in effect replaces the world line of the accelerated
observer at each instant by its tangent line at that event. Geometrically, the tangent
line is the first Frenet approximation to the curve. The Frenet approach involves the
mathematics of turning and twisting of a curve in space (O’Neill 1966). A discussion
of the Frenet–Serret method of moving frames for world lines is contained in Synge
(1971). The world line of the accelerated observer is the envelope of the set of straight
tangent world lines; therefore, the accelerated observer may be replaced in effect by an
infinite sequence of hypothetical momentarily comoving inertial observers. Thus the
association between actual accelerated observers and ideal inertial observers is purely
local, since an accelerated observer is pointwise inertial according to the standard
theory of relativity.
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The hypothesis of locality originates from the Newtonian mechanics of point par-
ticles, where the state of a point particle is determined at each instant of time t
by its position x and velocity v. The arbitrary point particle and the corresponding
hypothetical momentarily comoving inertial particle of the same mass m share the
same state (x,v) and are thus physically equivalent. The motion of the point particle
of mass m under an external force f(t,x,v) in the background global inertial frame is
given by

dx

dt
= v,

dv

dt
=

1

m
f(t,x,v). (1.37)

The state of the particle (x,v) at time t uniquely determines the motion for all time.
Moreover, if f is turned off at any time t, the motion continues uniformly on a straight
line tangent to the path at t. The inertial tendency of the particle is thus continu-
ally interrupted by the presence of the external force, which changes the state of the
particle. This is the physical explanation for the fact that the accelerated path of the
particle under the external force is the envelope of the straight tangent lines. It follows
that the postulate of locality is automatically satisfied in the Newtonian mechanics
of point particles, as it is ingrained in the Newtonian laws of motion. Hence no new
physical assumption is needed to deal with accelerated systems in Newtonian physics.
The hypothesis of locality should hold equally well in the relativistic mechanics of
classical point particles (Minkowski 1952). Moreover, it is clear that the hypothesis of
locality would be exactly valid if all physical phenomena in Minkowski spacetime could
be reduced to pointlike coincidences of classical point particles and rays of radiation
(Einstein 1950). The hypothesis of locality is schematically illustrated in Fig. 1.2.

It is through the locality postulate that the consequences of Lorentz invariance
can be verified by experiment within the framework of the special theory of relativ-
ity. That is, it follows from the hypothesis of locality that in a global inertial frame
in Minkowski spacetime the measurements of an accelerated observer can be deter-
mined by applying Lorentz transformation point by point along its path. Consider,
for instance, the measurement of time by an ideal clock following an accelerated path.
At each instant of time t, the clock has velocity v(t) and is instantaneously inertial
by the locality hypothesis and hence at rest in an inertial frame with coordinates
x′µ = (c t′,x′). An instantaneous Lorentz transformation from the background inertial
frame to the momentary rest frame of the moving clock leads to the formula for time
dilation, namely,

dt′ =

(
1− v2

c2

)1/2

dt, (1.38)

which can also be obtained from the invariance of the Minkowski spacetime inter-
val (1.2) under Lorentz transformations. Here, v = |v| and only positive square roots
are considered throughout. The accelerated clock passes through an infinite sequence
of such momentarily inertial states; therefore, its local proper time τ/c is a sum of
infinitesimal time intervals each of the form of eqn (1.38). Hence, the proper time of
the clock is given by

τ

c
=

∫ t

0

[
1− v2(T ′)

c2

]1/2

dT ′, (1.39)

where τ = 0 at t = 0 by assumption.
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Fig. 1.2 Schematic illustration of the locality postulate that an accelerated observer is point-

wise inertial. The accelerated observer at each instant of time measures what an otherwise

identical hypothetical momentarily comoving inertial observer would measure at that instant.

They share the same state (x,v). The accelerated observer thus passes through a continuous

infinity of tangent inertial observers; indeed, its path is the envelope of the corresponding

family of straight lines.

We note that τ/c ≤ t in eqn (1.39). In this connection, imagine two identical
ideal clocks at rest at some point P in space in the background inertial frame and
synchronized to register time t = 0. One clock remains at rest at P , while the other
moves about and eventually returns to P at time t, the proper time of the clock at rest.
At t, the clock that was in motion registers proper time τ/c given by eqn (1.39), which
is shorter than t. For a discussion of clock experiments using the Global Positioning
System (GPS), see Ashby (2003).

The influence of acceleration on clock performance has been discussed by a number
of authors: see Mainwaring and Stedman (1993), Dahia and Felix da Silva (2015) and
the references cited therein. Possible deviations from locality tend to be rather small
and well below the level of accuracy (∼ 10−9) of the recent experimental verification
of time dilation by Botermann et al. (2014).

Consider next an example of the application of the locality postulate involving
length measurement. Imagine two small identical blocks A and B at rest and a distance
L apart along the x axis in a global inertial frame. At t = 0, A and B are accelerated
from rest and forced to move in exactly the same way along the positive x direction.
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The speeds of A and B are the same by assumption for all t ≥ 0; therefore, the
distance between A and B as measured in the inertial frame is always L. At time
t > 0, blocks A and B have the same speed v(t) and are momentarily inertial by
the locality postulate; hence, an instantaneous Lorentz transformation connects the
background inertial frame to the instantaneous inertial frame in which both A and B
are at rest. It follows from this Lorentz transformation that at time t

x′B − x′A = γ(t)(xB − xA), γ(t) =

[
1− v2(t)

c2

]−1/2

, (1.40)

so that the distance between the two blocks as measured in their momentary rest
frame is generally larger than L and is given by γ(t)L, where γ ≥ 1 is the Lorentz
factor corresponding to speed v(t). If, for instance, there is a taut string that is initially
attached to A and B and these are then forced to undergo hyperbolic motion in exactly
the same way, the distance between A and B will continue to increase monotonically in
their momentary rest frames and the string should eventually break (Dewan and Beran
1959; Bell 1987). It is assumed here that the string is always in tension but exerts neg-
ligible force on A and B. For a detailed analysis of the problem of length measurement
in accelerated systems, see Mashhoon (1990b) and Mashhoon and Muench (2002).

1.2.1 Physics of locality

The postulate of locality states that acceleration can be locally ignored. This means,
in terms of realistic measurements, that the integrated influence of inertial effects over
the length- and timescales characteristic of the measurement process can be neglected.
Hence, the observer’s tetrad frame should in effect remain constant during the process
of measurement.

In retrospect, the hypothesis of locality appears rather simple and natural. For
instance, Maxwell’s (1880) considerations regarding optical phenomena in moving
systems implicitly contained the hypothesis of locality. Its approximate validity was
later assumed by Lorentz (1952) in his theory of electrons in order to ensure that
an electron, conceived as a small ball of charge, would always be Lorentz contracted
along its direction of motion; see Section 183 of Lorentz’s book (1952). It was clearly
recognized by Lorentz that this is simply an approximation whose validity rests on
the supposition that the electron velocity would change over a timescale that is much
longer than the period of internal oscillations of the electron, see p. 216 of Section 183
of Lorentz (1952).

A similar assumption was simply adopted by Einstein for rods and clocks as a useful
approximation, see the footnote on p. 60 of Einstein (1950). In the early days of relativ-
ity theory, the locality assumption was discussed in terms of the “clock hypothesis”,
as it led to the so-called twin paradox; in this connection, Sommerfeld’s notes on
Minkowski’s 1908 paper are quite informative, see p. 94 of Minkowski (1952). Indeed,
the hypothesis of locality underlies Einstein’s development of the theory of relativ-
ity. For instance, the locality assumption fits perfectly together with Einstein’s local
principle of equivalence to ensure that every observer in a gravitational field is point-
wise inertial. In fact, to preserve the operational significance of Einstein’s heuristic
principle of equivalence—namely, the presumed local equivalence of an observer in
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a gravitational field with an accelerated observer in Minkowski spacetime—it must
be coupled with a statement regarding what accelerated observers actually measure.
When coupled with the hypothesis of locality, Einstein’s principle of equivalence pro-
vides a physical basis for a field theory of gravitation that is consistent with (local)
Lorentz invariance.

Following Einstein’s development of the general theory of relativity, Weyl discussed
the physical basis for the hypothesis of locality, see pp. 176–177 of Weyl (1952). In
particular, Weyl noted that the locality hypothesis was an adiabaticity assumption
analogous to the one for sufficiently slow processes in thermodynamics and would
therefore be expected to be a good approximation only up to some acceleration.

If the hypothesis of locality is an approximation, what is the exact result? For
instance, if the locality postulate is valid at sufficiently low accelerations, what hap-
pens at high accelerations? Can one devise an approximation scheme in which the
locality postulate would be the first approximation? It appears that following the
great success of general relativity, relativistic physics was generally considered to be
simply local (Robertson 1949). The investigation of the difference between actual
accelerated observers and the hypothetical inertial observers and the related prob-
lem of the domain of validity of the locality postulate received little or no attention
until about thirty years ago (Mashhoon 1986, 1988, 1990a, 1990b).

1.2.2 Standard measuring devices

Ideal measuring devices that are so robust as to be essentially unaffected by accelera-
tion are called “standard”. Thus a standard clock measures proper time along its world
line (“clock hypothesis”). From a modern perspective, all ideal measuring devices that
are pointwise inertial are standard. That is, an ideal measuring device is practically
standard if we can suppose that over the length- and timescales characteristic of typical
measurements, the net impact of the internal inertial effects over the operation of the
device can be neglected. Though cognizant of the possible limitations of these ideas,
we will adhere to the traditional approach to spacetime measurements in relativity
theory and assume that all measuring devices are standard. In this way, we will con-
centrate on the intrinsic nonlocality of the measurement of phenomena associated
with electromagnetic fields. That is, as explained in the next chapter, even when an
accelerated observer employs only ideal standard devices for measurement purposes,
there are intrinsically nonlocal measurements involving electromagnetic fields that
extend over the past world line of the observer and hence go beyond the postulate of
locality.

1.2.3 Acceleration tensor

Inertial observers are endowed with local reference frames; therefore, it follows from
the hypothesis of locality that an accelerated observer in Minkowski spacetime carries
an orthonormal tetrad frame λµα̂(τ) such that at each instant of proper time τ , this
frame coincides with the tetrad frame carried by the momentarily comoving inertial
observer. Here, λµ0̂ = dxµ/dτ is the observer’s 4-velocity vector uµ, which is the unit
timelike vector that is tangent to the path, and λµî, i = 1, 2, 3, are three unit spacelike
vectors that constitute the local spatial frame of the accelerated observer moving in
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a background inertial frame with inertial coordinates xµ = (c t,x). The operational
establishment of the local tetrad frame of the accelerated observer is ultimately based
on the standard rods and clocks that the accelerated observer may use for local
spacetime determinations. It follows from the method of moving frames that

dλµα̂
dτ

= Φα̂
β̂(τ)λµβ̂ , (1.41)

where Φα̂β̂ is the acceleration tensor of the observer. The orthonormality of the frame
field implies that Φα̂β̂ = −Φβ̂α̂. This invariant antisymmetric acceleration tensor can

be decomposed into spacetime scalars as Φα̂β̂ 7→ (−g̃, Ω̃) in close analogy with the

standard decomposition of the electromagnetic field tensor Fµν 7→ (E,B) into electric
(E) and magnetic (B) components, where F0i = −Ei, Fij = εijk B

k and ε123 = 1
in our convention. Thus the translational acceleration of the observer is given by the
“electric” part of the acceleration tensor, Φ0̂î = g̃î(τ), while the angular velocity of
the rotation of the observer’s spatial frame with respect to a locally non-rotating (i.e.
Fermi–Walker transported) frame is given by the “magnetic” part of the acceleration

tensor, namely, Φîĵ = εîĵk̂ Ω̃k̂(τ).

To clarify the interpretation of Ω̃, imagine that the accelerated observer carries a
non-rotating orthonormal frame nµα̂(τ) along its world line as well. That is, nµ0̂ =
λµ0̂ = uµ and the spatial frame is Fermi–Walker transported in accordance with
eqn (1.21), namely,

dnµî
dτ

= (nν î aν)nµ0̂. (1.42)

The spatial frame of the observer can be obtained from the non-rotating frame by a
time-dependent rotation,

λµî = Mîĵ n
µĵ , (1.43)

whereM(τ) is an orthogonal matrix. The instantaneous angular velocity of the rotation
is a pseudovector Ω̃(τ) with respect to the local frame of the observer given by

dMîĵ

dτ
= εîk̂l̂ Ω̃

l̂M k̂
ĵ , (1.44)

which is consistent with the orthogonality of M(τ). It follows from eqns (1.42)–(1.44)
that the rotational motion of the spatial frame is properly contained in the definition of
the acceleration tensor in eqn (1.41). That is, differentiating eqn (1.43) and evaluating
dλµî/dτ via eqns (1.42) and (1.44), we recover the same equation for the variation of
the spatial frame that is contained in eqn (1.41).

It is possible to define a spacelike 4-vector of angular velocity Ω̃µ that is orthogonal
to uµ via

Ω̃µ = λµk̂ Ω̃k̂ (1.45)

and then it is straightforward to show that the acceleration tensor Φµν ,

Φµν = λµα̂ λ
ν
β̂ Φα̂β̂ , (1.46)

can be expressed as
Φµν = aµ uν − aν uµ + εµνρσ uρ Ω̃σ, (1.47)

where ε0123 = 1 in our convention.
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In Newtonian mechanics, the state of a pointlike observer is given at any instant
of time by its position and velocity in space; however, the situation is clearly different
for a pointlike observer in relativity theory. The state of such an observer is given by
its spacetime position along a future-directed world line and its adapted orthonormal
tetrad frame. The four coordinates of the event together with the six independent
components of the frame (i.e. three boosts and three rotations or, stated otherwise,
sixteen tetrad components subject to ten orthonormality conditions) render the state
space of the elementary observer a ten-dimensional manifold. The tetrad frame moves
along the timelike world line in accordance with eqn (1.41). In this connection, it
is interesting to note that historically the Frenet–Serret method of moving frames
for curves in space was later extended to surfaces in space by Darboux; however,
the recognition of the full power of this method and its complete generalization was
accomplished by E. Cartan.

It seems intuitively clear that an accelerated observer in a global inertial frame of
reference may be considered practically inertial during an experiment if the observer’s
acceleration is such that its motion is in effect uniform and rectilinear and its spatial
frame is non-rotating for the duration of the physical process under study. Lorentz
invariance can then be employed to predict the result of the experiment. More gen-
erally, let λ/c be the intrinsic timescale for the process under consideration, and let
L/c be the relevant acceleration timescale over which the tetrad frame of the observer
changes appreciably; then, the condition for the validity of the hypothesis of locality
is

λ� L. (1.48)

The time and length scales over which the state of an accelerated observer changes
are given by invariants that can be constructed out of g̃(τ), Ω̃(τ) and the speed of
light c. For instance, an observer may have a translational acceleration length 1/|g̃|
and a rotational acceleration length 1/ ˜|Ω|. For observers at rest on the surface of the
Earth, c2/|g⊕| ≈ 1 light year and c/|Ω⊕| ≈ 28 astronomical units. These astronomical
lengths are very large compared to laboratory dimensions of interest on Earth; hence,
the hypothesis of locality is ordinarily a rather good approximation. For instance, in
an optics experiment in the laboratory involving λ ∼ 10−5 cm, we have λ/L . 10−20.
This means that for most physical situations the acceleration of the observer can be
neglected for the duration of the physical process under consideration, which explains
why locality is so effective in practice.

1.2.4 Local geodesic coordinates for accelerated observers

Imagine an accelerated observer in a global inertial frame in Minkowski spacetime. The
observer follows the reference world line x̄µ(τ), where τ is its proper time; moreover, it
carries along this path an orthonormal tetrad frame λµα̂(τ), where λµ0̂ = dx̄µ/dτ is its
unit temporal axis and λµî , i = 1, 2, 3, constitute its local spatial frame. The observer’s

acceleration tensor is given by Φα̂β̂ 7→ (−g̃, Ω̃), where g̃(τ) and Ω̃(τ) are respectively
the tetrad components of the reference observer’s translational acceleration of its world
line and the rotational angular velocity of its spatial frame with respect to the local
non-rotating (i.e. Fermi–Walker transported) frame. Let us now consider a geodesic
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Fig. 1.3 Schematic construction of a geodesic system of coordinates Xµ = (c T,X) about

an accelerated observer. The geodesic (Fermi) coordinates of an event xµ in the background

inertial frame are determined by the way in which xµ can be connected orthogonally to

the observer’s path via a geodesic (i.e. straight) line. If such a connection occurs at x̄µ(τ),

then c T = τ and xµ − x̄µ(τ) has components X along the axes of the spatial frame of the

observer at τ . A second possibility is indicated in the plot at τ ′; however, a coordinate system

must uniquely identify events. Therefore, to avoid such a possibility, the spatial extent of the

geodesic coordinate system is in general limited to a sufficiently narrow world tube along the

timelike world line of the observer.

system of coordinates X µ̂ = (c T,X î) established in a certain spacetime domain in the
neighborhood of the world line of the reference observer. Given any event τ along the
fiducial path x̄µ(τ), the straight spacelike geodesic lines orthogonal to the reference
observer’s world line at τ span a simultaneity hyperplane that is in fact the three-
dimensional Euclidean space. An event on this hyperplane with inertial coordinates
xµ in the background global frame will be assigned geodesic (“Fermi”) coordinates
X µ̂. The proper distance away from the reference world line is given by the length of
the unique spacelike geodesic on the simultaneity hyperplane connecting x̄µ(τ) with
xµ, see Fig. 1.3. The coordinate transformation x 7→ X is given by

τ = X 0̂, xµ = x̄µ(τ) +X îλµî(τ). (1.49)

It follows from eqns (1.41) and (1.49) that

dxµ = (Pλµ0̂ +Qĵλµĵ) dX
0̂ + λµî dX

î, (1.50)

where

P = 1 + g̃ ·X, Qî = (Ω̃×X)î. (1.51)

It is then simple to show that the Minkowski metric tensor ηµν dx
µ⊗dxν with respect
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to the new geodesic coordinate system can be written as gµ̂ν̂ dX
µ̂ ⊗ dX ν̂ , where

g0̂0̂ = −P2 +Q2, g0̂î = Qî, gîĵ = δîĵ . (1.52)

If the acceleration tensor of the observer vanishes, the geodesic coordinate system
reduces to a global inertial frame that covers Minkowski spacetime and gµ̂ν̂ = ηµ̂ν̂ .
The geodesic coordinates are thus quasi-inertial; therefore, for the sake of notational
consistency, the use of hatted indices has been extended here to the quasi-inertial
geodesic (Fermi) coordinate systems constructed on the basis of the tetrad frames of
the reference observers. It is important to note that the reference observer permanently
resides at the spatial origin of the geodesic coordinate system, namely, X = 0.

It is interesting to illustrate the construction of geodesic coordinate systems about
the world lines of uniformly accelerated observers of Section 1.1. Let us first consider
the fiducial world line x̄µ(τ) given by eqn (1.22). It follows from eqn (1.49) that
an event with coordinates (c t, x, y, z) in the background inertial frame has geodesic
(Fermi) coordinates (c T,X, Y, Z) such that

c t = (Z +
c2

g0
) sinh

(
Θ0 +

g0 T

c

)
− c2

g0
sinh Θ0, (1.53)

z = (Z +
c2

g0
) cosh

(
Θ0 +

g0 T

c

)
− c2

g0
cosh Θ0, (1.54)

x = X and y = Y . Here, the only nonzero components of the acceleration tensor are
given by Φ0̂3̂ = −Φ3̂0̂ = g̃3̂ = g0/c

2.

Let us next consider observers Õ that are all at rest in the background global
inertial frame, but refer their measurements to uniformly rotating axes. In this case,
we have c t = τ and

x̄µ(τ) = (τ, x0, y0, z0). (1.55)

Then, it follows from eqn (1.49) and eqns (1.25)–(1.28) that T = t,

X = (x− x0) cos Ωt+ (y − y0) sin Ωt, (1.56)

Y = −(x− x0) sin Ωt+ (y − y0) cos Ωt (1.57)

and Z = z − z0. For such a static observer, Φ1̂2̂ = −Φ2̂1̂ = Ω̃3̂ = Ω/c are the only
non-zero elements of the acceleration tensor. Let us note that the standard classical
rotating coordinate system (Landau and Lifshitz 1971) is thus the geodesic (Fermi)
system established in the neighborhood of a static noninertial observer Õ.

Finally, we consider the uniformly rotating observer O with β = rΩ/c,

x̄µ(τ) =

(
γ τ, r cos

(
γ Ω τ

c

)
, r sin

(
γ Ω τ

c

)
, z0

)
(1.58)

and tetrad frame λµα̂(τ) given by eqns (1.33)–(1.36). The corresponding coordinate
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transformation in this case is given by

t = γ (T +
1

c
β Y ), (1.59)

x = (X + r) cos(γ ΩT )− γ Y sin(γ ΩT ), (1.60)

y = (X + r) sin(γ ΩT ) + γ Y cos(γ ΩT ) (1.61)

and z = Z + z0. In this case, the only non-zero elements of the acceleration tensor
Φα̂β̂ 7→ (−g̃, Ω̃) are given by the centripetal acceleration g̃1̂ = −γ2β Ω /c and the

rotational angular velocity Ω̃3̂ = γ2 Ω /c, so that g̃ · Ω̃ = 0. We note that the spatial
frame of the uniformly rotating observer rotates with respect to a corresponding non-
rotating (i.e. Fermi–Walker transported) frame nµα̂ at a rate of γ Ω with respect to
time t of the static inertial observers. The tetrad frame λµα̂ rotates relative to static
inertial observers at a rate of Ω per unit time t; therefore, the non-rotating frame nµα̂
rotates with respect to the static inertial observers at a rate of (1− γ) Ω per unit time
t. This corresponds to the Thomas precession frequency, which can be interpreted
as being ultimately due to an overcompensation as a consequence of time dilation
involving proper time of static inertial observers and the proper time of the rotating
observer (Mashhoon and Obukhov 2014).

In general, the spacetime manifold can be covered by an overlapping set of admis-
sible coordinate charts. The admissibility of a system of coordinates xµ = (c t, xi) is
related to the possibility of making proper temporal and spatial measurements by the
static observers associated with the coordinate system, namely those that remain at
rest in space. Let the spacetime interval take the form ds2 = gµν dx

µ dxν in the sys-
tem of coordinates under consideration. Then, the 4-velocity of the observers at rest is
given by uµ = dxµ/dτ = (1/

√
−g00 ) δµ0 , since the proper time of the static observer is

given by ds2 = −dτ2 = g00 (c dt)2. Thus the temporal admissibility condition requires
that g00 < 0. Furthermore, consider the measurement of the length of an infinitesimal
measuring rod by the static observer. The local hypersurface of simultaneity in the
immediate neighborhood of the world line of a static observer is orthogonal to its world
line and is given by uµdx

µ = 0, so that c g00 dt+ g0i dx
i = 0. From the fact that

ds2 =
1

g00
(c g00 dt+ g0i dx

i)2 + γij dx
i dxj , (1.62)

where

γij = gij −
g0i g0j

g00
, (1.63)

we see that the measured length of the infinitesimal rod is given by d`2 = γij dx
i dxj ,

where (γij) is a symmetric matrix. The spatial admissibility condition is then the
requirement that (γij) be a positive-definite matrix. It turns out that the temporal
and spatial admissibility conditions imply that the principal minors of the metric
tensor (gµν) must all be negative in our (−,+,+,+) convention. That is, (gµν) must
be a negative-definite matrix. For further discussion and extension of these ideas, see
Bini, Chicone and Mashhoon (2012).
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Returning now to geodesic coordinates in Minkowski spacetime, it follows from
a detailed investigation (Bini, Chicone and Mashhoon 2012) that the new geodesic
coordinates are admissible in a spacetime neighborhood around x̄µ(τ) so long as g0̂0̂ <
0. Equation (1.52) implies that the boundary of the admissible region, g0̂0̂ = 0, is given
by P2 = Q2, which is a quadratic equation in the spatial coordinates and represents a
surface. Such surfaces have been classified under the Euclidean group into seventeen
standard forms called quadric surfaces (O’Neill 1966; Birkhoff and MacLane 1953). If
the reference observer is only translationally accelerated, the quadric boundary surface
degenerates to coincident planes, given in the case of the hyperbolic observer Ô by
Z = −c2/g0. Turning next to static noninertial observers Õ, the boundary hypersurface
of the admissible region is the circular light cylinder of radius c/Ω. Finally, for the
uniformly rotating observer O, we note that the quadric surface can be expressed as

(X + r)2 + γ2 Y 2 =
c2

Ω2
, (1.64)

which for all Z is an elliptic cylinder whose axis coincides with the Z axis. For any
constant Z, eqn (1.64) represents an ellipse with semimajor axis c/Ω, semiminor axis
c/(γ Ω) and eccentricity v/c. In fact, this ellipse appears as a circle of radius c/Ω that
is Lorentz–Fitzgerald contracted along the direction of motion of O. For Z = 0, the
center of the ellipse is at x = y = 0 and z = z0, and the reference observer is at one of
the foci of this ellipse; as v → c, r → c/Ω, the reference observer approaches the light
cylinder and the area of the ellipse tends to zero.

A general discussion of the boundary of admissible geodesic coordinates about the
world line of an arbitrary accelerated observer is contained in the next chapter. For
a detailed discussion of the properties of the boundary hypersurface, see Mashhoon
(2003a); moreover, a general discussion of the inertial effects in geodesic coordinates
and further references are contained in Chicone and Mashhoon (2005).

The quasi-inertial geodesic coordinate system is by no means the only possible way
to establish coordinates in order to identify events uniquely in the neighborhood of
an accelerated observer. Another useful method is furnished, for example, by radar
coordinates (Bini, Lusanna and Mashhoon 2005). It is indeed possible to show that
for observers whose world lines are infinitesimally close to each other, the results of
the radar approach are identical to those based on the geodesic coordinate system.
All such systems eventually break down, however, due to the existence of acceleration
lengths of the observer (Bini, Lusanna and Mashhoon 2005). On the other hand,
Minkowski spacetime can always be adequately covered by an overlapping set of such
local coordinate charts.

1.3 General Relativity and Locality

The hypothesis of locality provides the simplest possible way to extend relativity
theory to noninertial observers in Minkowski spacetime. The next fundamental step
involves the extension of relativity theory to observers in a gravitational field. This
is achieved via Einstein’s principle of equivalence. According to this heuristic prin-
ciple, an observer in a gravitational field is presumed to be locally equivalent to a
certain accelerated observer in Minkowski spacetime. The physical basis for this idea
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is the universality of the gravitational interaction in the framework of the Newtonian
laws of motion as well as Newtonian gravitation. The universality of gravity in turn
follows from the principle of equivalence of inertial and gravitational masses. The prin-
ciple of equivalence, which has firm observational support, originally provided Einstein
with the key to the relativistic theory of gravitation. That is, Einstein interpreted the
experimentally well-established principle of equivalence to mean that there is an
intimate connection between inertia and gravitation. This notion eventually led to
Einstein’s own extremely local principle of equivalence.

Einstein’s principle of equivalence and the hypothesis of locality, taken together,
imply that observers in a gravitational field are all locally inertial. That is, Einstein’s
principle of equivalence postulates a pointwise correspondence between measurements
of an observer in a gravitational field with an accelerated observer in Minkowski
spacetime, while the latter observer is pointwise equivalent to an inertial observer
by the hypothesis of locality; therefore, an observer in a gravitational field is pointwise
inertial. Thus, at all regular events in a gravitational field observers can define local
inertial frames that are then somehow connected with each other through the struc-
ture of spacetime. This circumstance suggests that the gravitational field must be
inherent in the spacetime structure. The flat Minkowski spacetime has no structure
capable of accommodating a gravitational field. The simplest possible way to connect
all such local inertial frames of reference for observers in the presence of gravitation is
through the pseudo-Riemannian (i.e. Lorentzian) geometry of curved spacetime, where
the gravitational field is then identified with the curvature of the spacetime manifold.
That is, a curved spacetime manifold is at each event locally (i.e. pointwise) flat. In this
general relativistic (GR) framework, free test particles and null rays follow geodesics
of the curved spacetime manifold. It remains to establish, within this framework, the
gravitational field equation and the correspondence of the resulting relativistic theory
with the Newtonian theory of gravitation.

In GR, the curved spacetime interval is given by

ds2 = gαβ dx
α dxβ , (1.65)

where the pseudo-Riemannian metric tensor gαβ of Lorentzian signature cannot be
transformed to the Minkowski metric tensor by a global change of coordinates
unless the Riemannian curvature tensor vanishes, which would indicate the absence
of a gravitational field. In the presence of spacetime curvature, the ten independent
components of gαβ correspond to the ten gravitational potentials in GR. The corre-
spondence with Newtonian gravitation can be established when we formally let c→∞.
In this way, there is a certain correspondence between the metric tensor and Newtonian
gravitational potential φN . Moreover, it follows from the correspondence between the
geodesic equation and Newton’s second law of motion of a test particle under gravita-
tion that the Levi-Civita connection (0Γσµν) is similar to the Newtonian gravitational
acceleration (∂i φN ). Finally, the Jacobi equation corresponds to the tidal equation of
Newtonian physics; hence, the Riemann curvature tensor (0Rµνρσ) is similar to the
Newtonian tidal matrix (∂i ∂j φN ). To complete the structure of a proper field theory
of gravitation, we need the analog of Poisson’s equation of Newtonian gravity, namely,

∇2φN = 4πGρ, (1.66)
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where G is Newton’s constant of gravitation and ρ is the density of matter. We note
that Poisson’s equation connects the matter content of space with the trace of the
Newtonian tidal matrix. The simplest generalization of eqn (1.66) in the context of
curved spacetime is Einstein’s gravitational field equation of GR, namely,

0Rµν −
1

2
gµν

0R =
8πG

c4
Tµν . (1.67)

Here Tµν is the energy–momentum tensor of matter, the Ricci tensor, 0Rµν = 0Rαµαν ,
is the trace of the Riemann tensor and 0R = 0Rαα is the scalar curvature. Thus
the mass–energy content of spacetime is connected via eqn (1.67) to the appropriate
trace of the Riemann tensor in the gravitational field equation of GR. In this way,
GR is a field theory of gravitation in close analogy with Maxwell’s field theory of
electromagnetism.

Einstein’s gravitational field equation describes how material sources (including
non-gravitational fields) produce spacetime curvature, just as Maxwell’s electro-
dynamics describes how the electromagnetic field is generated by electric charges
and their currents. That is, in a global inertial frame in Minkowski spacetime, the
electromagnetic field equations are given by

∂ [ρ Fµν] = 0, ∂ν F
µν =

4π

c
J̄µ, (1.68)

where J̄µ is the total current 4-vector associated with electric charges. The antisym-
metry of the electromagnetic field tensor, Fµν = −Fνµ, immediately implies that in
eqn (1.68) electric charge is conserved, namely, ∂µ J̄

µ = 0. Thus we would expect that
the conservation law for the source of the gravitational field, namely,

0∇ν Tµν = 0, (1.69)

where 0∇ denotes covariant differentiation, be an immediate consequence of the gravi-
tational field equation. This is indeed the case, since eqn (1.69) is a direct consequence
of the reduced Bianchi identity. Furthermore, it follows from the field character of the
gravitational interaction in Einstein’s theory that Tµν = 0 does not necessarily mean
that spacetime is flat; indeed, the Riemann curvature tensor could be non-zero in a
Ricci-flat spacetime due to the existence of gravitational waves.

The Poisson equation of Newtonian gravitation is a consequence of the inverse
square force law, which is ultimately based on astronomical observations in the Solar
System that originally led to Kepler’s laws of planetary motion. Einstein’s gravitational
field equation has generalized eqn (1.66) into a consistent relativistic framework that
is in good agreement with present Solar System as well as binary pulsar data (Shapiro
1980; Stairs 2003). Nevertheless, on small laboratory scales, for instance, questions
remain regarding the validity of the inverse square law of gravitation; at present, efforts
continue on resolving such experimental problems (Adelberger et al. 2003; Hoyle et al.
2004; Adelberger et al. 2007; Kapner et al. 2007; Little and Little 2014). It will turn
out later in this book that the nonlocal aspect of the gravitational interaction can lead
to possible deviations from the inverse square law on galactic scales. The resulting
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nonlocal extension of GR may then be used to resolve difficulties in astrophysics and
cosmology, such as the problem of the rotation curves of spiral galaxies.

It is in general rather difficult to solve the Einstein field equation, since it
contains a coupled system of second-order nonlinear partial differential equations for
the gravitational potentials gµν(x). Many classes of exact solutions of these equa-
tions are known in cases involving certain symmetries; however, the general solution is
unknown (Stephani et al. 2003).

The simplest generalization of the gravitational field equation of GR involves the
addition of a cosmological constant 0Λ, namely,

0Rµν −
1

2
gµν

0R+ 0Λ gµν =
8πG

c4
Tµν . (1.70)

However, many other generalizations of the field equation of GR are possible. The
main purpose of this book is to present a nonlocal generalization of GR, where the
gravitational field is local but satisfies a partial integro-differential field equation. In
this way, gravitation becomes history-dependent. It seems that in this extension of
GR, the nonlocal aspect of the gravitational interaction may simulate dark matter.
That is, according to nonlocal GR, what appears as dark matter in astrophysics and
cosmology may essentially be a manifestation of the nonlocality of the gravitational
interaction.

Finally, it is important to point out that the Einstein field equation can be derived
from an action principle. Indeed, eqn (1.70) follows from the variational principle of
stationary action SGR, namely, δ SGR = 0, where

SGR =

∫ (
Lg + Lm −

c3

8πG
0Λ
√
−g
)
d4x. (1.71)

Here,

Lg =
c3

16πG

√
−g 0R (1.72)

is the Lagrangian density of the gravitational field, Lm is the Lagrangian density of
matter and non-gravitational fields and g = det (gµν).

1.4 Fundamental Observers

In the transition from the flat Minkowski spacetime of special relativity to the curved
spacetime of general relativity, the global inertial frames are supplanted with local
inertial frames. Thus in GR, observers no longer have access to a global system of
parallel axes in the presence of gravitation.

It is a characteristic feature of the nonlocal generalization of GR developed in this
book that the gravitational degrees of freedom are carried by the sixteen components
of the tetrad frame field adapted to fundamental observers. These form a class of
observers throughout spacetime whose tetrad frame field is rendered globally parallel
by virtue of the introduction of the Weitzenböck connection in addition to the Levi-
Civita connection. Thus, in this extension of GR framework, two distant vectors in
spacetime are parallel if they have the same components relative to their respective
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local fundamental tetrad frames (“teleparallelism”). Moreover, to find a solution of the
nonlocal gravitational field equation is tantamount to the determination of the tetrad
frame field of the fundamental observers throughout spacetime.

In nonlocal GR, the complete absence of the gravitational field implies that the
fundamental observers reduce to those defined in Section 1.1, namely, inertial
observers that are all at rest in a global inertial frame in Minkowski spacetime with
local tetrad frames whose axes are aligned with the global Cartesian spacetime axes
of the background inertial frame of reference.



2

Acceleration-Induced Nonlocality

Modern classical relativity theory grew out of developments in electrodynamics. There-
fore, in addition to the relativistic mechanics of point particles, traditional relativistic
physics involves classical electromagnetic fields and radiation. In classical physics, the
value of a physical quantity Q(t) at time t is based on a certain measurement process
that in general started before time t. For pointwise coincidences involving classical
point particles and rays of radiation, the locality postulate holds exactly and Q(t)
depends only on events at time t. However, the question naturally arises whether the
locality postulate can be extended to fields. Measurements of electromagnetic fields
and their properties are intrinsically nonlocal; moreover, this nonlocality cannot be
ignored if the observer is accelerated, since there are basic acceleration scales asso-
ciated with the motion of the observer. The purpose of this chapter is to show that
field measurements of ideal accelerated observers cannot be performed instantaneously.
Therefore, the past history of the accelerated observer must be taken into account.
A history-dependent ansatz for what accelerated observers measure would eventually
lead to a nonlocal special relativity theory.

2.1 Accelerated Observers

All actual observers are to some extent accelerated; therefore, to compare the predic-
tions of the special theory of relativity with observational data, one needs to know how
to interpret the measurements of accelerated observers. What do accelerated observers
measure? The standard answer in special relativity is provided through the hypoth-
esis of locality, namely, the assumption that an accelerated observer along its world
line is at each instant physically equivalent to a hypothetical inertial observer that is
otherwise identical and instantaneously comoving with the accelerated observer. The
accelerated observer therefore measures at each instant what the corresponding iner-
tial observer would measure at that instant. It is important to reiterate here that the
special theory of relativity is based on Lorentz invariance as well as the hypothesis of
locality. To satisfy the locality postulate, physical measurements must be essentially
reduced to pointlike coincidences.

Observers are classical macrophysical entities—either sentient or measuring
devices. Therefore, as in Newtonian physics, one can imagine the observing system
as consisting of a collection of Newtonian point particles such that the behavior of the
system can be analyzed in terms of the motion of each individual point particle. We
emphasize that such a pointlike observer should still be considered a macrophysical
entity subject to the laws of classical (i.e. non-quantum) physics. Therefore, in the
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Newtonian picture, an elementary observer is considered a point particle following a
path in space. In the spacetime picture, such an observer is endowed with a local
tetrad frame as well. That is, the Newtonian description can be essentially generalized
by the addition of a local spatial frame of reference. Thus an elementary observer can
be described via a future directed timelike world line with a suitable tetrad frame
defined along the path. A laboratory would then correspond to a congruence of such
world lines and their associated tetrad frames. This minimal description of observers
goes beyond the traditional one that involves only a future directed timelike world line
(see e.g. Gödel 1949).

The theoretical association of a moving frame with an observer actually dates back
to the early days of general relativity theory; however, this connection is now no
longer a figment of imagination, but is in fact indispensable due to developments in
experimental physics. Indeed, modern measurements in spacetime generally involve the
determination of tensorial or spinorial entities and this necessitates the association of
a spatial frame to each elementary observer along its world line. Imagine, for example,
a gravity gradiometer on a space platform in orbit about the Earth (Paik 2008).
The gradiometer registers inertial and gravitational forces. To separate out the effects
of the translational acceleration as well as the rotation of the gradiometer from the
tidal gravitational effects of the Earth, the spatial frame of the gradiometer must be
controlled with sufficient accuracy (Mashhoon and Theiss 1982; Mashhoon, Paik and
Will 1989).

The observer together with its tetrad frame moves not just in spacetime, but in
the ten dimensional state space that is part of the frame bundle. That is, to describe
the state of an observer at each instant of its proper time τ , one needs an event
on its future directed world line as well as its spatial frame at that event. The four
coordinates of the event together with the six independent components of the frame
(i.e. sixteen tetrad elements subject to ten orthonormality conditions or, equivalently,
three boosts plus three rotations) renders the state space a ten-dimensional manifold
for a general observer.

In the standard approach, an accelerated observer is thus assumed to be instan-
taneously inertial and at rest in an inertial frame of reference that moves with its
instantaneous velocity with respect to the background global inertial frame. The
inhomogeneous Lorentz transformation (1.1) that connects the background frame
xµ = (c t,x) to the instantaneous frame x′µ = (c t′,x′) can be employed to deter-
mine what the accelerated observer would measure. This method is clearly reasonable
so long as the phenomena under consideration involve only pointlike coincidences in-
volving classical point particles and electromagnetic rays that have, by definition,
vanishing wavelengths.

Consider, for instance, the reception of electromagnetic radiation by an accelerated
observer. The incident wave packet consists, via Fourier analysis, of a spectrum of plane
monochromatic waves each with propagation vector kµ = (ω/c,k), as determined
by the static inertial observers in the background global inertial frame. The phase
differential d (phase) = kµ dx

µ associated with each component of the wave packet is
a Lorentz-invariant quantity; therefore, k′α = kµ Λµα. Thus the accelerated observer
measures an instantaneous spectrum with components k′µ = (ω′/c,k′) given by the
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standard formulas for the Doppler effect and aberration of light,

ω′ = γ(ω − v · k), (2.1)

k′ = k +
γ − 1

v2
(v · k)v − 1

c2
γ ω v, (2.2)

where v(t) is the instantaneous velocity of the observer and γ is the corresponding
Lorentz factor, cf. eqns (1.9) and (1.10). To measure wave properties, the observer
needs to register at least a few periods of the wave in order to make a reasonable
determination. The observer’s velocity v(t) in general changes from one instant to the
next; therefore, as discussed in detail in the following section, one must conclude that
phase invariance as well as eqns (2.1) and (2.2) can be valid only in the geometric
optics or eikonal limit of wave motion corresponding to rays of radiation.

2.2 Frequency Measurement

Consider the measurement of the frequency of an incident plane monochromatic wave
of frequency ω and wave vector k, ω = c |k|, by an accelerated observer in a global
inertial frame in Minkowski spacetime. If the observer moving with velocity v(t) could
be considered inertial, then the local inertial frame of the observer can be related to
the background global inertial frame by a Lorentz transformation. Subsequently, the
Doppler effect—which is a consequence of the invariance of the phase of the wave under
Lorentz transformations—may be employed to give ω′(t) = γ [ω − v(t) · k ]. Physically,
the observer must register at least a few oscillations of the incident wave before an
adequate determination of its frequency can be attempted; on the other hand, the
formula for the Doppler effect is valid if during this time v(t) changes very little. We
can express this condition from the standpoint of the fundamental observers—that
is, inertial observers at rest in the background global inertial frame with local tetrad
frames that are parallel to the corresponding Cartesian coordinate axes—as

n T̄

∣∣∣∣dv(t)

dt

∣∣∣∣� v(t). (2.3)

Here, T̄ = 2π/ω is the period of the incident wave, v(t) is the magnitude of v(t) and
n is the number of cycles of oscillation needed for a reasonable determination of the
frequency. Thus n > 1 is an integer. In general, the frequency can be determined more
accurately if more cycles are used; for very large n, however, one finds from eqn (2.3)
that the acceleration must then be very small.

Let us assume that the accelerated observer moves in a direction that is generally
parallel to the direction of wave propagation. If the observer has just a constant linear
acceleration, then using ω = 2πc/λ and v(t) < c, eqn (2.3) can be written as

λ� c2

g0
, (2.4)

where g0 is the constant magnitude of the acceleration of the observer. On the other
hand, if the observer is at the time rotating uniformly on a circular orbit with angular
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speed Ω, then it has centripetal acceleration of magnitude Ω v. It follows from eqn (2.3)
that n T̄ Ω� 1, so that with λ = c T̄ and n > 1, we find

λ� c

Ω
. (2.5)

Equations (2.4) and (2.5) illustrate the relation λ� L, which ensures that locality
in these specific instances is a good approximation. For sufficiently low accelerations,
the relevant acceleration scales can be large enough to ensure that L � λ, in which
case the standard local theory is quite adequate. Otherwise, the local theory breaks
down. To have a complete theory, it is necessary to go beyond the locality postulate,
since the standard local theory of relativity does not appear to be capable of dealing
with the measurement of electromagnetic wave phenomena involving λ & L.

2.3 Radiating Charged Particle

To illustrate a situation where λ ∼ L, consider the path of an accelerated charged
particle. On dimensional grounds, one would expect that an inertial charged particle
would not radiate, since v/c is dimensionless and the inertial particle’s acceleration
lengths are all infinite; hence, no finite length scale (that could result in a wavelength)
can be associated with its motion. On the other hand, the radiation emitted by an
accelerating charged particle has dominant wavelengths λ ∼ L; therefore, locality
is violated for the particle. This circumstance is reflected in its equation of motion.
That is, the accelerated charged particle’s measurements cannot be theoretically pre-
dicted by pointwise Lorentz transformations from the background inertial frame to the
momentarily comoving inertial frame at the position of the particle on its path.
Indeed, the particle radiates away its energy via electromagnetic waves and this loss
of energy must show up in its equation of motion through a radiation reaction force.
In the nonrelativistic approximation, the Abraham–Lorentz equation of motion of the
particle of mass m and charge q̄ is given by

dv

dt
− 2

3

q̄2

mc3
d2v

dt2
+ · · · = 1

m
f(t,x,v). (2.6)

The Newtonian postulate of locality no longer holds here as x(t) and v(t) are not
sufficient to specify the state of the particle at time t; for this purpose, at least the
acceleration of the charged particle is needed as well. This violation of locality is of
course due to the interaction of the accelerating charged particle with the electro-
magnetic field. Moreover, eqn (2.6) contains an intrinsic time scale of order q̄2/(mc3),
which is the time that light would take to cross the classical radius of the charged
particle. The presence of such an intrinsic time scale in the equation of motion is
naturally expected to be inconsistent with the hypothesis of locality.

2.4 Acceleration Scales

Huygens’ principle suggests that in general wave properties cannot be measured at one
event. Various thought experiments involving measurement of electromagnetic wave
phenomena by accelerated observers indicate that for wave phenomena the hypoth-
esis of locality is valid only in the ray limit, where λ/L is negligible. Here λ is the
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characteristic wavelength of the phenomenon under observation and L is the relevant
acceleration length. We therefore expect that in this case deviations from locality
would be proportional to λ/L (Mashhoon 2008). If this ratio is sufficiently small com-
pared to unity, λ/L � 1, then the hypothesis of locality in relativistic physics can be
a very good approximation. Moreover, if the physical processes of interest all involve
pointlike coincidences of point particles and rays of radiation such that in effect λ = 0,
then λ/L = 0 and the accelerated observer may be considered pointwise inertial. That
is, at each instant the observer’s measurements depend only upon its position and
velocity, but not upon its acceleration, which is indeed the locality postulate of the
standard theory of relativity.

In general, an observer in special relativity has a translational acceleration length
c2/g0 and a rotational acceleration length c/Ω. The acceleration lengths (c2/g0 and
c/Ω) are familiar concepts in standard relativistic physics, since they indicate the spa-
tial limitations associated with accelerated coordinate systems. However, these lengths
emerge from the basic heuristic considerations regarding locality in relativity theory
with a different fundamental significance: Lorentz invariance can be directly extended
to accelerated observers only when L � λ. The importance of this conceptual analysis
lies in the establishment of the notion that the standard theory of relativity is gener-
ally valid so long as intrinsic wave phenomena are considered in the eikonal (JWKB)
approximation.

2.4.1 Accelerated systems

Consider the coordinate-independent acceleration tensor Φα̂β̂ defined in eqn (1.41).

If Φα̂β̂(τ) = 0, the observer is inertial ; otherwise, the observer is accelerated. Thus
accelerated motion is in this sense absolute. To study accelerated systems in Minkowski
spacetime, let us first consider the case of an arbitrary accelerated observer following
a world line xµ(τ) in a global inertial frame with Cartesian coordinates (t, x, y, z),
where we have set c = 1 for the sake of simplicity. Henceforth, we use units such that
c = 1, unless specified otherwise. The observer carries its local orthonormal tetrad
frame λµα̂(τ) in accordance with eqn (1.41). The 4-velocity vector of the observer is
given in (t, x, y, z) coordinates by

uµ = λµ0̂(τ) =
dxµ

dτ
= (γ, γ v). (2.7)

It follows from u · u = −1 that the observer’s 4-acceleration vector aµ is such that
u · a = 0. Hence aµ(τ) is spacelike and a · a = g̃2 ≥ 0. Thus,

aµ =
duµ

dτ
= (γ

dγ

dt
, γ

dγ

dt
v + γ2 dv

dt
) (2.8)

and
dγ

dt
= γ3 v · dv

dt
. (2.9)

It follows that the magnitude of the proper acceleration g̃(τ) > 0 is given by

g̃2 = γ4

∣∣∣∣dvdt
∣∣∣∣2 + γ6

(
v · dv

dt

)2

. (2.10)
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Here, dv/dt is the observer’s Newtonian acceleration as measured by inertial observers
at rest in the global inertial frame. In terms of the local frame of the accelerated
observer, we have

aµ = aα̂(τ)λµα̂(τ), aα̂(τ) = (0, g̃), (2.11)

where g̃(τ) is the invariant translational acceleration of the observer and g̃ = |g̃|.
For accelerated motion that is linear, eqn (2.10) further simplifies to γ6 (dv/dt)2 =

g̃2; that is,
dv

dτ
= ±g̃(τ) (1− v2) . (2.12)

Let the motion be along the x direction, then we find that in (t, x, y, z) coordinates,
the 4-velocity of the observer is

uµ = λµ0̂(τ) = (cosh Θ, sinh Θ, 0, 0). (2.13)

Here,

Θ(τ) = Θ0 ±
∫ τ

τ0

g̃(τ ′)dτ ′, (2.14)

where tanh Θ0 = v0 is the observer’s initial velocity at τ0. If the observer’s natural
spatial frame is initially aligned with the coordinates axes of the global inertial frame
and is non-rotating; that is, it is Fermi–Walker transported along the world line, then

λµ1̂(τ) = (sinh Θ, cosh Θ, 0, 0), (2.15)

λµ2̂ = (0, 0, 1, 0), λµ3̂ = (0, 0, 0, 1). (2.16)

In this case, the acceleration tensor, given by eqn (1.41), simply reduces to translational
acceleration along the x axis, Φα̂β̂ 7→ (−g̃, 0), where g̃ = (± g̃, 0, 0), as expected.

Consider next an observer that revolves on a circle of radius r about the z axis with
speed v(t) = rΩ(t). The path of the observer is given by xµ(τ) = (t, r cosϕ, r sinϕ, z0),
where z0 is constant and ϕ is the azimuthal angle defined by

ϕ = ϕ0 +

∫ t

0

Ω(t′) dt′. (2.17)

The proper time of the rotating observer is

τ =

∫ t

0

[1− v2(t′)]1/2 dt′. (2.18)

Let γ = dt/dτ be the corresponding Lorentz factor; then, the natural tetrad frame
of the nonuniformly rotating observer, adapted to the rotating system, is given with
respect to the inertial (t, x, y, z) coordinates by (Mashhoon 2004a)

λµ0̂ = γ(1, −v sinϕ, v cosϕ, 0), (2.19)

λµ1̂ = (0, cosϕ, sinϕ, 0), (2.20)

λµ2̂ = γ(v, − sinϕ, cosϕ, 0), (2.21)

λµ3̂ = (0, 0, 0, 1). (2.22)
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Here, dϕ/dτ = γ Ω is the proper angular speed of the observer and it follows from
eqn (1.41) that the invariant translational and rotational accelerations of a typical
rotating observer are given by

g̃ = (−vγ2 Ω, γ2 dv

dτ
, 0), (2.23)

Ω̃ = (0, 0, γ2 Ω), (2.24)

where the components of these vectors are expressed here with respect to local spatial
axes of the observer’s frame λµî, i = 1, 2, 3, that indicate the radial, tangential and
z directions, respectively. As expected, the translational acceleration vector has only
centripetal (γ2 v2/r) and tangential (γ2 dv/dτ) components in this case.

Imagine now, for example, the special case of static noninertial observer on the
z axis with r = 0. Such a rotating observer is at rest in the background inertial
frame, but refers its measurements to rotating axes. The issue of whether the pointlike
observer itself rotates is immaterial and, in any case, irrelevant to the physics at hand.
Let us next imagine that the noninertial static observer in this example undergoes
accelerated motion up or down the z axis. The acceleration tensor in this case has the
simple form in which the translational and rotational acceleration vectors are parallel ;
that is, this situation illustrates the typical case where g̃ × Ω̃ = 0.

Relativistic kinematics of accelerated systems has been extensively studied for uni-
form rotation (Landau and Lifshitz 1971) and hyperbolic motion (Born 1909). The
latter is the direct relativistic generalization of one-dimensional motion in Newtonian
mechanics with constant acceleration. In these cases of uniformly accelerated motion,
the acceleration tensor Φα̂β̂ is constant. It is possible to extend the definition of uniform

acceleration to more general configurations (Friedman and Scarr 2013, 2015; Scarr and
Friedman 2016).

2.4.2 Proper acceleration scales

The spacetime invariants g̃(τ) and Ω̃(τ) of the acceleration tensor in general depend
upon the instantaneous speed of the observer as well as the orientation of its spa-
tial frame. Under a local Lorentz transformation of the observer’s tetrad frame, Φα̂β̂
transforms as a tensor. It is therefore natural to define the observer’s proper acceler-
ation scales (of length and time) using the local Lorentz invariants Ĩ and Ĩ∗ of the
acceleration tensor (Mashhoon 1990b)

Ĩ =
1

4
Φα̂β̂ Φα̂β̂ , Ĩ∗ =

1

4
Φ∗
α̂β̂

Φα̂β̂ . (2.25)

Here Φ∗
α̂β̂

is the dual acceleration tensor given by

Φ∗
α̂β̂

=
1

2
εα̂β̂γ̂δ̂ Φγ̂δ̂, (2.26)

where ε0123 = 1 in our convention. Thus we have

Ĩ =
1

2
(−g̃2 + Ω̃2), Ĩ∗ = −g̃ · Ω̃. (2.27)
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For instance, for the (nonuniformly) rotating observer, Ĩ∗ = 0. If the angular velocity
of rotation is so chosen that Ĩ = 0 as well, then we have the case of null acceler-
ated observers discussed in Mashhoon (2004a). Moreover, for the observer undergoing
hyperbolic motion, −2 Ĩ = g̃2 and Ĩ∗ = 0, so that the proper acceleration scale is 1/g̃,
while for the uniformly rotating observer, 2 Ĩ = (γ Ω)2 and Ĩ∗ = 0, so that the proper
acceleration scale is 1/(γ Ω) in this case. Let us note that γ Ω is the observer’s proper
angular speed, so that due account has been taken of time dilation in this case.

It is interesting to note that (Mashhoon 2013a)

Φα̂γ̂ Φβ̂
γ̂ = Ĩ ηα̂β̂ + 4π T̃α̂β̂ , (2.28)

Φ∗α̂γ̂ Φβ̂
γ̂ = Ĩ∗ ηα̂β̂ , (2.29)

where the symmetric and traceless tensor T̃α̂β̂ can be simply obtained from the electro-

magnetic energy–momentum tensor (Landau and Lifshitz 1971) by replacing E with
−g̃ and B with Ω̃. The general significance of such relations for the electromagnetic
field has been investigated in Hehl and Obukhov (2003).

It is possible to provide a detailed pointwise classification of the various standard
forms of the acceleration tensor Φα̂β̂ in complete analogy with electrodynamics (Synge

1965; Landau and Lifshitz 1971). Let us denote an eigenvector and the corresponding
eigenvalue of the acceleration tensor by Ψα̂ and χ̃, respectively. Then,

Φα̂β̂ Ψβ̂ = χ̃Ψα̂. (2.30)

If χ̃ 6= 0, the associated eigenvector is null; moreover, it follows from eqn (2.30) that

χ̃2
± = −Ĩ ± (Ĩ2 + Ĩ∗2)1/2. (2.31)

If the invariants Ĩ and Ĩ∗ both vanish, then χ̃ = 0 and Φα̂β̂ represents the accelera-

tion tensor of an observer with null acceleration (Mashhoon 2004a). If the observer’s
acceleration is not null, a local Lorentz boost can always render the translational and
rotational acceleration vectors parallel.

It is natural to extend these general considerations regarding the acceleration tensor
to the motion of an accelerated observer in a gravitational field via Einstein’s prin-
ciple of equivalence. In curved spacetime, or in curvilinear coordinates in Minkowski
spacetime, differentiation of the tetrad in eqn (1.41) should be replaced by covariant
differentiation. It is possible to construct non-rotating accelerated reference systems in
Minkowski spacetime, but this is in general impossible in a gravitational field, where
Fermi–Walker transport can be implemented only along a single observer’s world line.
The non-zero Riemannian curvature of spacetime in general prevents the extension of
the criterion for non-rotation to a congruence of observers (Mashhoon 1987).

2.4.3 Limitations of accelerated systems

The domain of applicability of an extended system of coordinates that is constructed in
the neighborhood of the world line of an accelerated observer is limited in general due
to the existence of invariant acceleration scales. This will be explicitly demonstrated
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here for the quasi-inertial geodesic coordinates of Chapter 1. In these coordinates, the
spacetime interval is ds2 = gµ̂ν̂ dX

µ̂ dX ν̂ , where from eqn (1.52) of Chapter 1, we have

g0̂0̂ = −P2 +Q2, g0̂î = Qî and gîĵ = δîĵ , with P = 1 + g̃ ·X and Qî = (Ω̃×X)î. One

can show that det (gµ̂ν̂) := g = −P2 and the inverse metric is given by

g0̂0̂ =
1

g
, g0̂î = −Q

î

g
, gîĵ = δîĵ +

1

g
QîQĵ . (2.32)

It is useful to note that Q2 = Ω̃2XîX
î − (Ω̃îX

î)2. The geodesic coordinate system is
admissible for g0̂0̂ < 0; therefore, the admissible region has a boundary surface given
by g0̂0̂ = −P2 +Q2 = 0. This boundary surface can be written as a quadratic equation
in the spatial coordinates, namely,

1 + 2g̃î (X 0̂)X î +Aîĵ (X 0̂)X îX ĵ = 0. (2.33)

It is possible to show in general that at any given time X 0̂, this quadric surface
is degenerate and has the form of a real quadric cone when matrix A is invertible
(Mashhoon 2003a). In eqn (2.33), (Aîĵ) is a symmetric matrix with components

Aîĵ = g̃î g̃ĵ + Ω̃î Ω̃ĵ − Ω̃2 δîĵ . (2.34)

The eigenvalues of this matrix are ν0 and ν± given by

ν0 = −Ω̃2, ν± = −Ĩ ± (Ĩ2 + Ĩ∗2)1/2. (2.35)

We note that ν+ = χ̃2
+ ≥ 0, ν0 ≤ 0 and ν− = χ̃2

− ≤ 0. Thus,

det (Aîĵ) = ν+ ν0 ν− = Ω̃2 (g̃ · Ω̃)2. (2.36)

By an orthogonal similarity transformation, matrix A can be rendered diagonal at any
instant of time X 0̂.

For the general case with det (Aîĵ) > 0, one can show that the inverse of matrix A
is given by

(A−1)îĵ = −
Ĩ∗ (g̃î Ω̃ĵ + g̃ĵ Ω̃î)− 2 Ĩ Ω̃î Ω̃ĵ + Ĩ∗2 δîĵ

det (Aîĵ)
. (2.37)

It follows from this relation that

(A−1)îĵ g̃
î g̃ĵ = 1. (2.38)

Let M̃ be the orthogonal matrix such that the similarity transformation M̃−1AM̃ = Ã
leads to Ã = diag(ν+, ν0, ν−). Then, with X̃ := M̃−1X and h̃ := M̃−1 g̃, consider the
translation to new spatial coordinates (ξ̃1̂, ξ̃2̂, ξ̃3̂) given by

ξ̃1̂ = X̃1̂ +
h̃1̂

ν+
, ξ̃2̂ = X̃2̂ +

h̃2̂

ν0
, ξ̃3̂ = X̃3̂ +

h̃3̂

ν−
. (2.39)
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Next, from A−1 = M̃ Ã−1 M̃−1 and eqn (2.38), we find (Ã−1)îĵ h̃
î h̃ĵ = 1 or

h̃2
1̂

ν+
+
h̃2

2̂

ν0
+
h̃2

3̂

ν−
= 1. (2.40)

It now follows from eqns (2.39) and (2.40) that the quadric surface (2.33) is of the
form

|ν+| ξ̃2
1̂
− |ν0| ξ̃2

2̂
− |ν−| ξ̃2

3̂
= 0, (2.41)

which represents an elliptic cone (O’Neill 1966). Therefore, the spatial extent of
validity of the geodesic coordinates is determined by the acceleration lengths that
characterize the eigenvalues given in eqn (2.35).

For a singular matrix A, either Ω̃ = 0, in which case the quadric boundary in
eqn (2.33) degenerates to coincident planes orthogonal to g̃, or Ω̃ 6= 0 and g̃ · Ω̃ = 0.
In the latter case, imagine a rotation of spatial axes in eqn (2.33) such that the new
axes are in g̃, Ω̃ and g̃× Ω̃ directions. Then, eqn (2.33) implies that for Ω̃2 < g̃2, the
boundary surface is a hyperbolic cylinder. It is a parabolic cylinder for Ω̃2 = g̃2 and
an elliptic cylinder for Ω̃2 > g̃2. For g̃ = 0, the boundary surface is a circular cylinder
of radius Ω̃−1 with its axis along Ω̃.

Let us observe that Earth-bound observers, though generally accelerated, expe-
rience no difficulty in receiving or sending signals to distant parts of the observable
universe. The boundary hypersurface P2 = Q2 could in general be timelike, spacelike
or null. Let Nµ̂ = ∂(−g0̂0̂)/∂X µ̂ be the normal to the boundary hypersurface and

consider Ñ = 1
4g
α̂β̂Nα̂Nβ̂ . Then, using eqns (2.32) and (2.33), we find that

Ñ = −W̃ 2 + 2 W̃ (g̃ × Ω̃) ·X + [Ω̃ + (g̃ · Ω̃) X]2, (2.42)

where

W̃ = ˙̃g ·X− ( ˙̃Ω×X) · (Ω̃×X)

1 + g̃ ·X
(2.43)

and an overdot indicates differentiation with respect to X 0̂.
For an arbitrary accelerated observer, Ñ could be negative, zero or positive at an

event X α̂ on the boundary hypersurface, indicating that the hypersurface is space-
like, null, or timelike at that event. If rotation is absent (Ω̃ = 0, ˙̃g 6= 0), then the
hypersurface is in general spacelike, except for ˙̃g = 0, in which case it becomes a
null hypersurface. But this last case is unphysical, since an infinite amount of energy
must be supplied by an external source to maintain complete hyperbolic motion (i.e.
uniform translational acceleration of the observer for all time). On the other hand,

if g̃ = 0, then Ñ = Ω̃2 for uniform rotation ( ˙̃Ω = 0), in which case the boundary
hypersurface is timelike.

2.5 Applications of Locality

In the practical calculation of measurable quantities, the application of the locality
postulate of the special relativity theory can be implemented in one of two equivalent
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ways. The first method, as already described in Section 2.1, involves making repeated
Lorentz transformations to the instantaneous inertial rest frame of the observer. In the
second method, one employs the local tetrad frame of the accelerated observer. That
is, instead of a continuous infinity of different inertial frames, a tetrad field is deduced
from the basis vectors of the corresponding inertial frames. In a fixed background
inertial frame, the physical quantities measured by the accelerated observer—such as
the electromagnetic field—are then the projections of various spacetime tensors on its
tetrad frame.

Consider first the determination of the propagation vector of a monochromatic
plane wave by an accelerated observer. As described in Section 2.1, the first method
results in k′α = kµ Λµα, where kµ is the propagation vector of the wave according
to the static inertial observers in the background global inertial frame and (Λµα) is
the Lorentz matrix corresponding to the Poincaré transformation (1.1) that connects
the background inertial frame to the instantaneous inertial frame of the accelerated
observer. The second way involves λµα̂(τ), which is the orthonormal tetrad frame
along the world line of the accelerated observer. Here τ is the proper time, λµ0̂ =
dxµ/dτ is the unit timelike vector tangent to the observer’s path and λµî, i = 1, 2, 3,
constitute the local spatial frame of the observer. According to the second method,
the propagation vector measured by the accelerated observer is the projection of the
propagation vector kµ on the tetrad frame of the accelerated observer, namely, kα̂ =
kµ λ

µ
α̂.

In the instantaneous inertial rest frame of the accelerated observer, the tetrad frame
of the corresponding fundamental observer is given by h′µα̂ = δµα, where the tetrad
index of the Kronecker delta is not distinguished from the coordinate index here as the
local frame of the fundamental observer agrees with the instantaneous global frame.
Hence, it follows from the hypothesis of locality that in the background inertial frame,
the tetrad frame of the accelerated observer at each instant τ is

λµα̂ = Λµν h
′ν
α̂ = Λµα. (2.44)

Therefore,
kα̂ = kµ λ

µ
α̂ = kµ Λµα = k′α, (2.45)

which illustrates the equivalence of the two methods in this case. Henceforward, the
second method will be employed throughout.

It is a direct consequence of the locality postulate that the projection of various
tensorial quantities on the orthonormal tetrad frame of the accelerated observer can
be physically interpreted as the measurement of these quantities by the observer. For
instance, given an electromagnetic field Fµν(x) in the background global inertial frame,

Fα̂β̂(τ) = Fµν λ
µ
α̂ λ

ν
β̂ (2.46)

is the field measured by the hypothetical momentarily comoving inertial observer at τ ,
which is also what the accelerated observer with orthonormal tetrad frame λµα̂ would
measure according to the standard local theory.

Extending eqn (2.46) to the world lines of a congruence of accelerated observers,
one can attempt to find the frequency and wave vector content of an electromagnetic
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radiation field via Fourier analysis (Mashhoon 1987; Hauck and Mashhoon 2003). The
Fourier content of the radiation field would then depend upon the extended spacetime
domain; therefore, this approach is in part nonlocal. In general, the result of the field
method will be different from the propagation vector given in eqn (2.45). We will
explore the implications of the local field method in Chapter 3.

The practical establishment of the local tetrad frame λµα̂ is ultimately based on
the standard clock and measuring rods that the accelerated observer may use for local
spacetime determinations. To treat the fundamental problem of field measurement, we
may tentatively assume the existence of ideal standard devices and return to a deeper
examination of this issue once the nonlocal theory has been properly formulated.

2.6 Bohr–Rosenfeld Principle

The thought experiment of Section 2.2 in connection with the measurement of the
frequency of an electromagnetic wave involves a process that is not instantaneous, so
that the accelerated observer along its world line needs to measure the radiation field
for some time before a determination of its frequency becomes possible. Therefore,
as a matter of principle, a certain integration of data over the past world line of the
observer is necessarily required in any measurement process involving electromagnetic
waves.

A further significant step in the analysis of the measurement process involving an
accelerated observer is the recognition that the electromagnetic field itself cannot be
measured instantaneously. This general assertion, which applies to any electromagnetic
field, is the content of the Bohr–Rosenfeld principle (Bohr and Rosenfeld 1933, 1950).

Consider Maxwell’s electrodynamics in an inertial frame of reference in Minkowski
spacetime. The electric and magnetic fields, E(t,x) and B(t,x), respectively, that
satisfy Maxwell’s equations are assumed to be fields measured instantaneously by the
fundamental inertial observers at rest in the background global inertial frame. In 1933,
Bohr and Rosenfeld pointed out that in fact only spacetime averages of these fields
have immediate physical significance. That is, E(t,x) and B(t,x) occur in Maxwell’s
equations as idealizations (Bohr and Rosenfeld 1933). To illustrate this point, Bohr
and Rosenfeld (1933) considered a simple situation involving the measurement of the
electric field using a macrophysical object of volume V and typical spatial dimension
L, V ∼ L3, with uniform volume electric charge density ρ̄e and total linear momentum
P. When placed in the external electric field E(t,x), the object moves with respect to
the fundamental inertial observers according to the Lorentz force law, namely,

dP

dt
= ρ̄e

∫
V

E(t,x) d3x. (2.47)

Suppose that the motion of the object is monitored over an interval of time T0 = t′′−t′
and the momentum P is measured to be P′ and P′′ at the initial and final instants, t′

and t′′, respectively, of the experiment. Then,

P′′ −P′ = ρ̄e

∫ t′′

t′

∫
V

E(t,x) dt d3x = ρ̄e 〈E〉T0 V, (2.48)

where the measured quantity is the spacetime average of the electric field, namely,
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〈E〉 =
1

∆

∫
∆

E(x) d4x (2.49)

with ∆ = T0 V and xµ = (t,x). It is assumed here that the time intervals needed by
the fundamental inertial observers for momentum measurements are � T0 and the
corresponding displacements caused by these measurements are � L.

The gist of the Bohr–Rosenfeld argument is that physical fields cannot be mea-
sured instantaneously. While this argument appears to be relatively innocuous for
classical field measurements via ideal inertial observers, it acquires the significance
of a physical principle when extended to accelerated observers as a direct conse-
quence of the existence of invariant acceleration scales. In the case of ideal inertial
observers, their acceleration scales are all infinite and though their field measurements
would involve an averaging process in accordance with the considerations of Bohr and
Rosenfeld (1933, 1950), such averaging is essentially harmless in classical field theory.
Acceleration-induced nonlocality is, however, essential due to the existence of the in-
trinsic acceleration scales. Approximating the world tube of the accelerated observer
by a world line, we conclude in accordance with causality that it is necessary to take
the past world line of the accelerated observer into account in any field determination.

2.7 Nonlocal Ansatz

It follows from the work of Bohr and Rosenfeld (1933, 1950) that the measurement of
the electromagnetic field by ideal inertial observers involves an averaging process over
a past spacetime domain. We expect that this is true as well for accelerated observers;
however, a direct extension of the Bohr–Rosenfeld treatment to ideal accelerated
observers appears to be a rather daunting task. Instead, we approach this basic prob-
lem indirectly as follows. Let us first note that for field measurements by actual (i.e.
accelerated) observers, their finite acceleration scales must be taken into account as
well. When extended to a pointlike noninertial observer, the Bohr–Rosenfeld principle
simply implies that the memory of the field along the past world line of the observer
cannot be ignored. In other words, the averaging process reduces to an integration over
the past world line of the accelerated observer. The observer has no spatial extension
by assumption and is thus represented only by its world line and the adapted frame.
Thus in searching for a physical link between a noninertial observer and the class of
hypothetical momentarily comoving inertial observers along its past world line, we
must go beyond the pointwise condition (2.46) and consider a nonlocal relationship
involving a certain average over the past world line of the observer. The averaging
process in the Bohr–Rosenfeld principle is linear in the field; hence, we look for a
general linear connection between the field as determined by the accelerated observer
at proper time τ , Fα̂β̂(τ), and the field determinations Fα̂β̂ of the infinite sequence
of momentarily comoving inertial observers that the accelerated observer has passed
through along its world line.The most general linear relation consistent with causality
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is of the form (Mashhoon 1993a)

Fα̂β̂(τ) = Fα̂β̂(τ) + u(τ − τ0)

∫ τ

τ0

K̃α̂β̂
γ̂δ̂(τ, τ ′)Fγ̂δ̂(τ

′) dτ ′, (2.50)

where kernel K̃, which is antisymmetric in its first and second pairs of indices, is
expected to be directly related to the acceleration tensor Φµ̂ν̂ . Here, τ0 is the instant of
proper time at which the observer’s acceleration is initially turned on and u(t) is the
unit step function such that u(t) = 0 for t < 0 and u(t) = 1 for t > 0.

The nonlocal ansatz (2.50) has the form of a Volterra integral equation of the second
kind. According to Volterra’s theorem, the relationship between Fα̂β̂(τ) and Fα̂β̂(τ) is

unique in the space of continuous functions (Volterra 1959). This physically significant
uniqueness result has been extended to the Hilbert space of square-integrable functions
by Tricomi (1957). Indeed, it is possible to show that for physical fields of interest

Fα̂β̂(τ) = Fα̂β̂(τ) + u(τ − τ0)

∫ τ

τ0

R̃α̂β̂
γ̂δ̂(τ, τ ′)Fγ̂δ̂(τ

′) dτ ′, (2.51)

where R̃ is the resolvent kernel (Tricomi 1957; Davis 1930; Lovitt 1950). A derivation of
the resolvent kernel via the method of successive substitutions is contained in Section
2.9.

To avoid unphysical situations—for instance, the expenditure of an infinite amount
of energy by an external source in the case of complete hyperbolic motion—we always
assume that the acceleration of the observer is turned on at some time τ0 and then
after a finite duration turned off at τf . For τ < τ0, the motion is free of acceleration and
Fα̂β̂(τ) = Fα̂β̂(τ) in conformity with standard practice in classical electrodynamics;
that is, we formally ignore Bohr–Rosenfeld averaging in the absence of acceleration.
Moreover, for τ > τf , when the motion is again free of acceleration and the observer’s
tetrad frame no longer varies with time, we expect that the nonlocal term∫ τ

τ0

K̃α̂β̂
γ̂δ̂(τ, τ ′)Fγ̂δ̂(τ

′)dτ ′, (2.52)

which contains the memory of the past acceleration of the observer, would now corre-
spond to a constant electromagnetic field. We recall that Maxwell’s field eqns (1.68)
are partial differential equations and are unchanged by the addition of a constant
field. Thus for τ > τf , when the motion is free of acceleration, the electromagnetic
field given by eqn (2.50) would again satisfy Maxwell’s field eqns (1.68). Moreover, in
a measuring device, the constant memory of past acceleration can be simply canceled
when the device is reset. To ensure that these physical requirements are indeed satis-
fied and the quantity in display (2.52) is in fact constant in time for τ > τf , we assume

that acceleration kernel K̃(τ, τ ′) is independent of τ ; that is, for τ > τ0

K̃α̂β̂
γ̂δ̂(τ, τ ′) = k̃α̂β̂

γ̂δ̂(τ ′), (2.53)

where kernel k̃ vanishes whenever (Φµ̂ν̂) = 0. In this way, we adopt a passive (or
kinetic) memory of past acceleration, as opposed to an active (or dynamic) memory
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(Chicone and Mashhoon 2002a). In the absence of compelling experimental evidence
in support of the latter alternative, it is prudent to choose the kinetic memory option
in the development of acceleration-induced nonlocality.

The nonlocal ansatz (2.50) expresses the sum of two terms that contribute to
the measured field: the local part required by the locality postulate together with an
“average” over the past world line of the accelerated observer. The nonlocal averaging
involves a weight function given by kernel k̃ that vanishes in the absence of acceleration.
For a radiation field Fµν in the eikonal approximation, we expect that the nonlocal
term in eqn (2.50) would be proportional to λ/L, so that locality is recovered in the
eikonal limit.

It is possible to think of eqn (2.50) as an expansion of the measured field in
powers of Fµν , where the terms beyond the linear order have been simply neglected.
The provisional character of our ansatz should thus be emphasized. Perhaps future
observational data will provide the necessary motivation to go beyond the present
linear theory.

2.8 Nonlocal Relativity

The approach to relativity theory in Minkowski spacetime outlined here leads to non-
local special relativity, which is treated in the next chapter, where we assume that
measuring devices are all standard in order that the explicit effects of acceleration
would only appear in the nonlocal kernels (Mashhoon 2011a). These originate from
the circumstance that the determination of physical fields is not instantaneous and
requires measurements along the past world line of the observer. Thus in a mea-
sured field, the acceleration of the world line is explicitly represented by a universal
kernel that acts as the weight function for the memory of past acceleration. The exis-
tence of the acceleration-induced nonlocal kernel for field measurements in Minkowski
spacetime must be regarded as a purely vacuum effect of accelerated motion, since
all measuring devices have been assumed to be standard. The basic extension of the
locality postulate in eqn (2.50) can be naturally expressed for any field. The main
task of nonlocal special relativity is then the determination of acceleration kernels for
various fields. We emphasize that ansatz (2.50) is envisioned to be in accordance with
measurements performed with standard devices; therefore, the nonlocal term in this
ansatz is expected to be independent of any measuring device employed and is thus
purely induced by the acceleration of the observer in Minkowski spacetime. The situ-
ation here is reminiscent of the correspondence between wave mechanics and classical
mechanics. The linear memory of past acceleration is then a vacuum effect. One may
contemplate further extension of these ideas; for instance, eqn (2.50) may have to be
further generalized in the presence of a medium.

Ansatz (2.50) introduces a new basic element into relativity theory, namely, the
acceleration-dependent kernel that weighs the significance of past events for the present
time. The general physical content of eqn (2.50) for a basic field may be expressed as
follows: for classical point particles and rays of radiation, the measurements of actual
(accelerated) observers are pointlike and the locality hypothesis is valid. However,
for field measurements, observers have memory (Mashhoon 1993a) and are in general
nonlocal. As the infinite sequence of momentarily comoving inertial observers along
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the path are fictitious, one can interpret eqn (2.50) as a formal expression for the field
as measured by the accelerated observer at τ given in terms of the projections of the
field Fµν(x) on the accelerated observer’s tetrad frame along its past world line. The
upshot of this interpretation is again that the locality postulate must be amended by
the memory of past acceleration. Imagine now a congruence of accelerated observers
and consider

Fα̂β̂(τ) = Fµν λµα̂ λν β̂ , (2.54)

where Fµν(x) is a local field that the accelerated observer measures at time τ by
projecting this field on its local tetrad frame. Now eqn (2.51) and the resolvent kernel
can be used for the congruence to express Fµν(x) in terms of Fµν(x) via an integral
equation. The electromagnetic field Fµν(x) satisfies Maxwell’s field equations; there-
fore, substituting this nonlocal relation into Maxwell’s equations would result in partial
integro-differential field equations for Fµν(x). This special character of the nonlocal
ansatz should be emphasized: nonlocal special relativity actually involves only local
fields that satisfy certain integro-differential field equations carrying the memory of
past acceleration. Such nonlocal field equations are Lorentz invariant, as they originate
from the manifestly Lorentz-invariant nonlocal ansatz.

The nonlocal ansatz (2.50) is reminiscent of the nonlocal characterization of certain
constitutive properties of continuous media that exhibit history-dependent phenom-
ena. The nonlocal treatment of the electrodynamics of media can be traced back to the
investigations of Poisson (1823), Liouville (1837) and Hopkinson (1877). We emphasize
that acceleration-induced nonlocality is associated with the vacuum state as perceived
by accelerated observers; nevertheless, nonlocal Maxwell’s equations for Fµν(x) are
reminiscent of the partial integro-differential field equations of the nonlocal electro-
dynamics of media.

Is it possible to determine the acceleration kernel k̃ by means of available observa-
tional data? In the design of electric machines, the electromagnetic field experienced
by a moving part is traditionally estimated by assuming that it is instantaneously
motionless (Van Bladel 1976, 1984). Thus in customary engineering applications, the
instantaneous velocity, acceleration, etc., at any given time t are all neglected, while
in the locality hypothesis of the standard theory of relativity only the instantaneous
velocity is taken into account. To obtain observational data that would pertain to an
examination of the foundations of electrodynamics of accelerated systems, one must
have access to experiments of rather high sensitivity. Unfortunately, however, further
progress is currently hampered by a serious lack of reliable observational data: see Hehl
and Obukhov (2003), Mashhoon (2008), Van Bladel (1984), Zhang (1997), Canovan
and Tucker (2010) and the references cited therein.

In the absence of significant experimental results to guide the development of
nonlocal special relativity, we must rely on certain general theoretical ideas that are
described in Chapter 3.
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2.9 Appendix: Resolvent Kernel

Consider the Volterra integral equation of the second kind given by

φ(x) + λ

∫ x

a

K̃(x, y)φ(y) dy = f(x), (2.55)

where λ and a are constants (Davis 1930; Lovitt 1950; Tricomi 1957). We work in
the space of continuous functions with a ≤ x ≤ b, where b is a constant, and assume
that kernel K̃(x, y) vanishes identically for y > x. To find φ(x), we use the method
of successive substitutions due originally to Liouville, Neumann and Volterra. In other
words, we first take the integral term to the right-hand side of eqn (2.55)

φ(x) = f(x)− λ
∫ x

a

K̃(x, y)φ(y) dy, (2.56)

and then replace φ in the integrand of eqn (2.56) by its value given by this same
equation, namely,

φ(x) = f(x)− λ
∫ x

a

K̃(x, y) f(y) dy

+λ2

∫ x

a

K̃(x, y)

[∫ y

a

K̃(y, z)φ(z) dz

]
dy. (2.57)

Repeating this process results in an infinite series. If this series is uniformly convergent
then we have a unique solution of the Volterra equation that can be written in the
form

f(x) + λ

∫ x

a

R̃(x, y) f(y) dy = φ(x), (2.58)

where R̃(x, y) is the resolvent kernel. The resolvent kernel here depends upon x, y and
λ; however, we express this kernel as R̃(x, y) for the sake of simplicity. To determine
R̃(x, y), let us first note that in the double integral in eqn (2.57), the integration is
over the triangular region depicted in Fig. 2.1 and the order of integration can be
interchanged. Therefore, instead of the order of double integration in eqn (2.57) that
corresponds to summing over vertical strips in Fig. 2.1a, we can just as well sum over
horizontal strips to get∫ x

a

K̃(x, y)

[∫ y

a

K̃(y, z)φ(z) dz

]
dy =

∫ x

a

[∫ x

z

K̃(x, y) K̃(y, z) dy

]
φ(z) dz. (2.59)

Thus eqn (2.57) can be written as

φ(x) = f(x) + λ

∫ x

a

K̃1(x, y) f(y) dy + λ2

∫ x

a

K̃2(x, y)φ(y) dy, (2.60)

where we have employed iterated kernels K̃1 and K̃2. In general, we define iterated
kernels K̃n, for n = 1, 2, 3, . . ., as

K̃1(x, y) = −K̃(x, y), K̃n+1(x, y) =

∫ x

y

K̃n(x, z) K̃1(z, y) dz. (2.61)
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Fig. 2.1 The triangular regions in (a) and (b) are the domains of double integrations in

eqns (2.59) and (2.68), respectively.

It is now possible to see that by continuing the substitution method in eqn (2.60) and
using the general idea contained in eqn (2.59), the infinite series for φ(x) will take the
form

φ(x) = f(x) +

∫ x

a

[ ∞∑
n=1

λn K̃n(x, y)

]
f(y) dy. (2.62)

Therefore, R̃ is given in terms of iterated kernels by

R̃(x, y) =

∞∑
n=1

λn−1 K̃n(x, y). (2.63)

The basic reciprocity between eqns (2.55) and (2.58) should be noted. It implies
that kernels K̃ and R̃ are reciprocal to each other. If, for instance, we interchange
f with φ in eqn (2.55), we obtain eqn (2.58), provided kernel K̃ is replaced by its
reciprocal, namely, kernel R̃. On the other hand, the substitution of eqn (2.55) into
eqn (2.58) and vice versa would lead to the basic reciprocity integral equations

K̃(x, y) + R̃(x, y) = −λ
∫ x

y

K̃(x, z) R̃(z, y) dz = −λ
∫ x

y

R̃(x, z) K̃(z, y) dz. (2.64)

It is possible to provide a simple and direct proof of these reciprocity equations by
means of the formula (2.63) for R̃ and the general relation

K̃n+m(x, y) =

∫ x

y

K̃n(x, z) K̃m(z, y) dz (2.65)

that holds for m = 1, 2, 3, . . .. To prove this last result we proceed by induction; indeed,
eqn (2.65) holds for m = 1 by the definition of iterated kernels in eqn (2.61). Assuming
the validity of eqn (2.65), we must show that
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K̃n+m+1(x, y) =

∫ x

y

K̃n(x, z) K̃m+1(z, y) dz. (2.66)

To this end, we note that by definition

K̃n+m+1(x, y) =

∫ x

y

K̃n+m(x, z) K̃1(z, y) dz. (2.67)

Next, we can write the integrand using eqn (2.65) as

K̃n+m+1(x, y) =

∫ x

y

[∫ x

z

K̃n(x,w) K̃m(w, z) dw

]
K̃1(z, y) dz. (2.68)

Interchanging the order of integration in the double integral as before, we find

K̃n+m+1(x, y) =

∫ x

y

K̃n(x,w)

[∫ w

y

K̃m(w, z) K̃1(z, y) dz

]
dw. (2.69)

The integration domain is depicted in Fig. 2.1b, where eqn (2.68) corresponds to
summation of horizontal strips, while eqn (2.69) corresponds to the summation of
vertical strips in Fig. 2.1b. By the definition of iterated kernels

K̃m+1(w, y) =

∫ w

y

K̃m(w, z) K̃1(z, y) dz, (2.70)

which, when substituted in eqn (2.69), leads to eqn (2.66) and this completes the proof.
If K̃(x, y) = k̃(y), the iterated kernels K̃n for n > 1 and consequently the resolvent

kernel are in general functions of both x and y. On the other hand, if K̃(x, y) = k̄(x−y),
so that the kernel is of the convolution (Faltung) type, the resolvent kernel turns out
to be of the convolution type as well. In fact, inspection of eqn (2.61) reveals that with
K̃n(x, y) = k̄n(x− y) and k̄1 = −k̄, we have

k̄n+1(t) =

∫ t

0

k̄n(t− u) k̄1(u) du, (2.71)

where x − y = t and z − y = u. Therefore, all of the iterated kernels are of the
convolution type and can be obtained by successive convolutions of k̄ with itself.
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Acceleration Kernel

To develop the tools necessary for the determination of the acceleration kernel we first
need to examine more closely the implications of the locality postulate in connection
with the measurement of the electromagnetic field. Consider the reception of electro-
magnetic waves by an accelerated observer in a background global inertial frame. To
measure the frequency of the incident wave the observer needs to register several oscil-
lations before an adequate determination of the frequency becomes even possible. Thus
an extended period of proper time τ is necessary for this purpose. On the other hand,
as described in Chapter 2, for an incident wave with propagation vector kα = (ω,k),
the hypothesis of locality implies that at each instant of proper time τ , the observer
measures ωD(τ) = −kα λα0̂ via the Doppler effect. Thus, from a physical standpoint,
such an instantaneous Doppler formula can be strictly valid only in the eikonal limit
of rays of radiation.

There is an alternative way to apply the locality hypothesis to this situation. One
can project the Faraday tensor of the wave on the local tetrad frame of the accelerated
observer at τ to determine, via the locality postulate, the electromagnetic field that is
presumably measured directly by the accelerated observer at τ . The Fourier analysis
of this measured field in terms of proper time would then result in the frequency ω′

measured by the accelerated observer. This approach, which we adopt in the following
section, is in fact nonlocal in time insofar as it relies on Fourier analysis, but the
field determination is still based on the locality assumption. However, we recall from
Chapter 2 that, as pointed out by Bohr and Rosenfeld (1933, 1950), it is not physically
possible to measure an electromagnetic field at one event; instead, a certain averaging
process is required. Indeed, ignoring this fact leads to a basic difficulty; that is, we will
find in Section 3.2 that by a mere rotation an observer can stand completely still with
respect to an incident radiation field. This is an aspect of the hypothesis of locality
that we need to abolish in the nonlocal theory. In this way, a physical principle can be
formulated in order to determine the acceleration kernel. The end result is a nonlocal
theory of special relativity.

To simplify matters, we will mainly work with the electromagnetic vector potential
Aµ instead of the Faraday tensor Fµν . It turns out that for the determination of the
frequency content of the field, both approaches give the same results. According to
the hypothesis of locality, the field as determined by an accelerated observer is given
by the projection of the incident field upon the tetrad frame of the observer, namely,

Aα̂ = Aµ λ
µ
α̂. (3.1)

Nonlocal Gravity. Bahram Mashhoon. c© Bahram Mashhoon 2017. Published 2017
by Oxford University Press.
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Fig. 3.1 Reception of incident electromagnetic radiation by rotating observer O.

The initial step in our approach involves the determination of the frequency content
of the incident radiation using eqn (3.1).

3.1 Local Field Determination

Let us first imagine the local determination of the electromagnetic vector potential of
an incident radiation field by an observer O that for t ≥ 0 is rotating uniformly in
the positive sense with constant frequency Ω about the z axis of a background global
inertial frame in Minkowski spacetime; see Fig. 3.1. The tetrad frame of observer O
has been derived in Section 1.1. The accelerated observer carries the tetrad frame λµα̂
given by eqns (1.33)–(1.36) and follows the world line xµ(τ) = (t, r cosϕ, r sinϕ, z0).
Here, t = γ τ , r and z0 are constants and ϕ = γ Ωτ is the azimuthal angle of the
observer. The observer’s path for τ ≥ 0 is a circle of radius r in a plane that is
orthogonal to the z axis at z0. Let A and Â represent the column vectors (Aµ) and
(Aµ̂) along the world line of the rotating observer, respectively. Then, eqn (3.1) can
be written as

Â =


γ −vγ sinϕ vγ cosϕ 0
0 cosϕ sinϕ 0
vγ −γ sinϕ γ cosϕ 0
0 0 0 1

 A, (3.2)

where v = rΩ and γ is the corresponding Lorentz factor.
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The incident radiation field in the background inertial frame can be characterized
by its gauge-dependent vector potential. We work in the radiation gauge, where Aµ =
(0,A) and ∇ ·A = 0 (Gottfried 1966). It then follows from eqn (3.2) that A0̂ = v A2̂,

A1̂ = cosϕA1 + sinϕA2, (3.3)

A2̂ = γ (− sinϕA1 + cosϕA2) (3.4)

and A3̂ = A3.

3.1.1 Normal incidence

Consider, for the sake of simplicity, a plane circularly polarized monochromatic
electromagnetic wave propagating along the z axis given by

A = Re
[
A(x̂± iŷ)e−i ω (t−z)

]
, (3.5)

where the upper (lower) sign represents positive (negative) helicity radiation and A is
a constant complex amplitude. It is then straightforward to find from eqn (3.2) that
along the world line of the observer,

A1̂ = Re (A e−i ω
′ τ+i ω z0), A2̂ = γ Re (±iA e−i ω

′ τ+i ω z0), (3.6)

A0̂ = v A2̂ and A3̂ = 0. Here, ω′ is the frequency of the wave as measured by the
rotating observer and is given by

ω′ = γ (ω ∓ Ω). (3.7)

It is important to note that this is the result of the Fourier analysis of the measured
field in terms of the proper time of the observer and is completely independent of r and
z0, so that eqn (3.7) is valid for the entire class of observers rotating uniformly in the
positive sense about the z axis with frequency Ω. In eqn (3.7), the upper (lower) sign
refers to positive (negative) helicity radiation. With E = ~ω, our classical result (3.7)
illustrates the phenomenon of spin–rotation coupling for spin-1 photons. It is important
to note here that for incident positive-helicity radiation with ω = Ω, ω′ = 0 and the
locally determined radiation field Aα̂ is constant in time but oscillatory in space as a
consequence of the hypothesis of locality.

It proves instructive to explore briefly the physical difference between ω′ and the
Doppler frequency ωD for the specific case of the uniformly rotating observer. Here,
ωD = γ ω by the transverse Doppler effect, which follows in general from the invariance
of the phase of the radiation under Lorentz transformation. In this case, the Lorentz
factor takes due account of time dilation. On the other hand, the Fourier analysis of
the field, pointwise “measured” by the observer via the hypothesis of locality, reveals
that

ω′ = ωD(1∓ Ω/ω). (3.8)

The new result reflects time dilation as well as the coupling of photon helicity with
the rotation of the observer. The nonlocal aspect of the helicity–rotation coupling is
evident in eqn (3.8), where Ω/ω is the ratio of the reduced wavelength of the wave
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(1/ω) to the acceleration length L of the observer (1/Ω). The deviation from locality
is thus proportional to λ/L, as expected. The transverse Doppler effect is recovered as
Ω/ω → 0 in the geometric optics (i.e. ray) limit. However, locality is expected to fail
for positive-helicity radiation with Ω/ω = 1 in eqn (3.8), where ω′ = 0.

Aside from the presence of the Lorentz factor that is due to time dilation, it is simple
to interpret the coupling of helicity with rotation in eqn (3.7) in terms of an “angular
Doppler shift”. In a positive (negative) helicity wave, the electromagnetic field rotates
in the positive (negative) sense with frequency ω about the direction of propagation of
the wave. The rotating observer therefore perceives incident positive (negative) helicity
radiation with the electromagnetic field rotating with relative frequency ω−Ω (ω+Ω)
about the direction of wave propagation.

The helicity-dependent contribution to the transverse Doppler effect in eqn (3.7)
has been verified for ω � Ω via the GPS, where it is responsible for the phenomenon of
phase wrap-up (Ashby 2003). For applications of eqn (3.7) in connection with magnetic
resonance and related phenomena see Tejada et al. (2010) and Lendinez, Chudnovsky
and Tejada (2010).

3.1.2 Oblique incidence

The calculation of the frequency of the incident radiation as locally determined by
observer O becomes considerably more complicated for the case of oblique incidence.
To simplify matters, we consider instead the class of static rotating observers Õ that
are all at rest at fixed spatial positions in the background inertial frame, but refer
their measurements to axes that rotate uniformly with angular speed Ω about the z
axis; see Section 1.1. Specifically, we consider the static rotating observer Õ that is at
rest at the origin of spatial coordinates.

The vector potential for an incident wave packet in the background frame is given
by

A(x) = Re
∑
k

ak e
−i (ω t−k·x), (3.9)

where ak is a complex amplitude, k is the wave vector and ω = k = |k|. Moreover,
k · ak = 0 by the transversality condition, which follows from ∇ ·A = 0. The vector
potential as determined by observer Õ can be obtained from eqn (3.2) with v = 0 and
γ = 1, and we find

Ãα̂ = Aµ λ̃
µ
α̂ = (0, Ã), (3.10)

where Ã(x′) must be evaluated at the location of observer Õ, which is the origin of
spatial coordinates. However, let us first note that Ã(x′) is obtained from A(x) via
the standard passive transformation, x 7→ x′, of the background inertial coordinate
system to the rotating system of coordinates, namely, t′ = t,

x′ = x cos Ωt+ y sin Ωt, y′ = −x sin Ωt+ y cos Ωt (3.11)

and z′ = z. This transformation, in terms of spherical polar coordinates (r, ϑ, ϕ) takes
the form (r, ϑ, ϕ) 7→ (r′, ϑ′, ϕ′), where r = r′, ϑ = ϑ′ and ϕ = ϕ′ + Ωt. Therefore, it
proves useful to express plane waves in eqn (3.9) in terms of spherical waves,
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eik·x = 4π
∑
lm

il jl(kr)Y
∗
lm(k̂)Ylm(x̂), (3.12)

where jl, l = 0, 1, 2, . . ., are spherical Bessel functions; moreover, for each l, m =
l, l − 1, . . . ,−l (Gottfried 1966; Jackson 1999). Here, the unit position vector x̂, for
instance, represents the angular coordinates (ϑ, ϕ), etc. The incident vector potential
can then be expressed in terms of vector spherical harmonics as

A(x) = 4πRe
∑
kJlM

il [Y∗JlM (k̂) · ak] jl(kr) YJlM (x̂) e−i ω t, (3.13)

where J and M are the total angular momentum parameters of the field. Indeed,
for a photon state of definite total angular momentum ~ J , with J = 1, 2, 3 . . ., the
orbital angular momentum ~ l is such that l = J + 1, l = J , or l = J − 1, and the
eigenvalues of the z component of the total angular momentum vector ~M are such
that M = J, J − 1, . . . ,−J . Under the rotation x 7→ x′, we have

YJlM (ϑ, ϕ) 7→ eiMΩt YJlM (ϑ′, ϕ′). (3.14)

Hence, the vector potential as locally determined by the static rotating observer Õ is
given by Ã(x′), where

Ã(x′) = 4πRe
∑
kJlM

il [Y∗JlM (k̂) · ak] jl(kr) YJlM (x̂′) e−i (ω−M Ω) t, (3.15)

which contains the spectrum of frequencies ω−M Ω, for M = 0,±1,±2, . . .. We must
now compute Ã(x′) at r = 0, which is the location of observer Õ. For ρ→ 0,

jl(ρ)→ ρl

(2l + 1)!!
, (3.16)

where (2l + 1)!! = (2l + 1)(2l − 1) · · · 3 · 1. Therefore, Ã(x′) at r = 0 contains only
l = 0, so that J = 1 and M = 0,±1 due to photon spin; as expected, the orbital
angular momentum of the radiation field vanishes for the rotating observer at rest at
the origin of spatial coordinates.

It follows from a more extensive calculation for the rotating observer O that moves
on a circular orbit with proper time τ = t/γ that the orbital angular momentum of the
radiation field is non-zero in general and time dilation should be taken into account
as well, so that the frequencies measured by the uniformly rotating observer are given
by the general formula

ω′ = γ (ω −M Ω), (3.17)

where ~M , M = 0,±1,±2, . . ., is the component of the total angular momentum of the
electromagnetic radiation field along the axis of rotation of the observer (Mashhoon
2009). Equation (3.17) reduces to eqn (3.7) for radiation propagating along the rotation
axis of the observer.

In the geometric optics (i.e. eikonal) approximation, eqn (3.17) may be written as

ω′ = γ(ω − J · Ω) with J = x × k + s ĥ, where ~J is the total angular momentum
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vector, s is the spin, and ĥ = ±k̂ is the helicity vector of the radiation. Thus eqn (3.17)
in the ray approximation reduces to the Doppler effect with v = Ω × x together
with the term −γs ĥ · Ω, which indicates helicity–rotation coupling; see eqn (3.19).
The helicity–rotation phenomenon has been investigated in detail due to its basic
significance (Mashhoon 1986, 1989; Mashhoon et al. 1998; Hauck and Mashhoon 2003).
It has extensive observational support; see Mashhoon (2009) and the references cited
therein. Moreover, its existence implies that the phase of the radiation is not in general
a Lorentz-invariant quantity.

Finally, it is interesting to note two unusual features of the general formula
ω′ = γ (ω −M Ω): The measured frequency can be zero or negative. Indeed, ω′ = 0
for ω = M Ω, a situation that is discussed in the next section, while ω′ can be neg-
ative for ω < M Ω. The latter circumstance does not pose any basic difficulty once
it is recognized that the notion of relativity of motion does not extend to accelerated
observers. Accelerated motion is absolute. For the rotating observer, the Hamiltonian
is not bounded from below due to the absolute character of rotational motion.

3.1.3 Modification of Doppler effect and aberration due to
helicity–rotation coupling

Consider first the reception of electromagnetic radiation with wave vector kµ = (ω,k)
by the class of static observers Õ that refer their measurements to axes that rotate
uniformly with frequency Ω. We work in the high-frequency approximation (ω � Ω)
and assume that to measure these quantities in the rotating frame the net duration
of measurement, which naturally extends over many periods of the incident radiation,
must be much shorter than Ω−1. In this case, observers Õ perceive k̃µ = (ω̃, k̃) given
by (Mashhoon 1989; Hauck and Mashhoon 2003)

ω̃ = ω − ĥ ·Ω, k̃ = k. (3.18)

It can be shown that k̃µ is the weighted average of the measured propagation
vector by analogy with the quasi-classical approximation in wave mechanics (Hauck
and Mashhoon 2003).

Next, we recall from Section 1.1 that the frame of the rotating observer O is
locally related to the corresponding static observer Õ by a pure boost. It follows that
the propagation vector of the incident radiation as perceived by the rotating observer
O, namely, k′µ = (ω′,k′) is related to k̃µ = (ω̃, k̃) by the same Lorentz boost in this
eikonal approximation. In this way, we find the modified expressions for the Doppler
effect and aberration,

ω′ = γ[(ω − s ĥ ·Ω)− v · k], (3.19)

k′ = k +
γ − 1

v2
(v · k)v − γ(ω − s ĥ ·Ω)v, (3.20)

where s = 1 for the photon (Mashhoon 1987) and s = 2 for the graviton (Ramos and
Mashhoon 2006). The consequences of these results for interferometry with polarized
radiation in rotating frames have been studied in Mashhoon (1989) and for Doppler
tracking of spacecraft in Mashhoon (2002). These references should be consulted for
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observational evidence in favor of helicity–rotation coupling in the radio, microwave
and optical domains.

To illustrate the new terms in eqns (3.19) and (3.20), let us first note that the
standard Doppler and aberration formulas are recovered for k ·Ω = 0. Hence, let us
consider a simple situation involving normal incidence with k = ω Ω̂, where Ω̂ is a
unit vector along the direction of rotation. Then,

ω′ = γ(ω ∓ sΩ), k′ − k = −γ(ω ∓ sΩ)v. (3.21)

The expression for frequency in eqn (3.21) happens to be exact in this case; for the
aberration part of eqn (3.21), we note that with respect to the direction of incidence of
the wave, k′q = k and k′⊥ = −γ(ω∓sΩ)v; hence the aberration angle tan−1(|k′⊥|/|k′q|)
is given in this case by tan−1[γv(1∓sΩ/ω)]. The deviations from the standard results
in eqn (3.21) are again proportional to Ω/ω, as expected.

Finally, we note that for (GPS) radio waves with frequency of order 1 GHz,
Ω⊕/ω ∼ 10−14 for the rotation of the Earth about its axis, while for a receiver rotating
at ∼ 10 cps we find Ω/ω ∼ 10−8.

3.1.4 Spin–rotation coupling

The helicity–rotation coupling that has been briefly described above is an instance of
the general phenomenon of the coupling of intrinsic spin with rotation that is due to
the inertia of intrinsic spin. Mass and spin characterize the irreducible unitary repre-
sentations of the Poincaré group (Wigner 1939). The state of a particle in spacetime is
thus described by its mass and spin, which determine its inertial properties. Therefore,
the inertial characteristics of a particle are determined by its inertial mass (Werner,
Staudenmann and Colella 1979; Moorhead and Opat 1996; Werner 2008; Rauch and
Werner 2015) as well as intrinsic spin (Mashhoon 1988; Mashhoon and Kaiser 2006). To
illustrate the latter, we note that in a macroscopic body rotating in the positive sense
with uniform angular velocity Ω, the spins of the constituent particles do not naturally
participate in the rotation; instead, they all tend to stay essentially fixed with respect
to the local inertial frame. Thus relative to the rotating body, the spins precess with
angular velocity −Ω. The Hamiltonian corresponding to this motion is −σ̂ ·Ω, where
σ̂ is the operator of intrinsic spin. For a proper relativistic treatment of this subject
and further developments see Hehl and Ni (1990), Mashhoon (1992), Damião Soares
and Tiomno (1996), Ryder (1998), Singh and Papini (2000), Papini (2002), Kiefer
and Weber (2005), Silenko and Teryaev (2007), Bini and Lusanna (2008), Obukhov,
Silenko and Teryaev (2009, 2011, 2013, 2014, 2016), Randono (2010) and Jentschura
and Noble (2014). A review of spin–rotation coupling and a more complete list of
references is contained in Mashhoon (2006).

In general, the energy of an incident particle as measured by the rotating observer
is given by

E′ = γ (E − ~MΩ), (3.22)

where E is the energy of the incident particle in the inertial frame and M is the total
(orbital plus spin) “magnetic” quantum number along the axis of rotation. In fact,
M = 0,±1,±2, . . ., for a scalar or a vector particle, while M ∓ 1

2 = 0,±1,±2, . . ., for
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a Dirac particle. Moreover, in the JWKB approximation, E′ = γ (E − Ω · J), where
J = x×P +σ is the total angular momentum of the particle and P is its momentum;
hence, E′ = γ (E − v ·P)− γ σ ·Ω, where v = Ω× x is the velocity of the uniformly
rotating observer with respect to the background inertial frame and γ is the Lorentz
factor of the observer. The energy corresponding to spin–rotation coupling is naturally
augmented by time dilation.

It is important to remark here that the spin–rotation coupling is completely
independent of the inertial mass of the particle. Moreover, the associated spin–gravity
coupling is an interaction of the intrinsic spin with the gravitomagnetic field of the
rotating source that is also independent of the mass of the test particle (Mashhoon
1999, 2000; Konno and Takahashi 2012). For instance, free neutral Dirac particles
with their spins up and down (i.e. parallel and antiparallel to the vertical direc-
tion, respectively) in general fall differently in the gravitational field of the rotating
Earth (Mashhoon 1995). Similar phenomena are expected for massless particles as a
consequence of helicity–gravity coupling (Mashhoon 1974, 1993b; Ramos and Mash-
hoon 2006; Frolov and Shoom 2011, 2012).

A general consequence of spin–rotation coupling involves the energy shift that
would be induced when polarized radiation passes through a rotating spin flipper.
Imagine, for instance, positive-helicity electromagnetic radiation of frequency ω that
is normally incident on a half-wave plate that is uniformly rotating with frequency
Ω� ω. Within the half-wave plate, the measured frequency of the radiation is ω−Ω,
where we neglect time dilation for the sake of simplicity. The spacetime in a uniformly
rotating system is stationary; therefore, the frequency of the radiation throughout the
half-wave plate remains constant and equal to ω − Ω. The radiation that emerges
has negative helicity and hence its frequency is given by ω − 2 Ω in accordance with
eqn (3.7). In passing through the half-wave plate, the photon energy is thus down-
shifted by −2 ~Ω. The frequency-shift phenomenon was first discovered experimentally
in the microwave regime (Allen 1966). Further discussion of optical phenomena asso-
ciated with spin–rotation coupling is contained in Garetz and Arnold (1979), Garetz
(1981), Bliokh et al. (2008), Bliokh (2009) and Bliokh and Aiello (2013). Furthermore,
it is important to remark that nonlocality brings about a corresponding amplitude
shift as well (Mashhoon 2012).

The spin–rotation coupling has recently been measured for neutrons via neutron
polarimetry (Demirel, Sponar and Hasegawa 2015). Moreover, this general coupling has
now been incorporated into the condensed-matter physics of spin mechanics and spin
currents (Shen and He 2003; Matsuo et al. 2011a, 2011b; Matsuo et al. 2013; Chowd-
hury and Basu 2013; Matsuo, Ieda and Maekawa 2013; Ieda, Matsuo and Maekawa
2014; Lima and Moraes 2015; Hamada, Yokoyama and Murakami 2015). The effect
of rotation on spin current is also expected to play a role in the emerging field of
spintronics (Papini 2013).

There is now ample experimental evidence in support of the spin–rotation coupling
for E � ~MΩ. On the other hand, it is theoretically possible to have E′ = 0 or
E′ < 0, though these situations do not appear to be easily accessible observationally.
The possibility that the measured energy in eqn (3.22) can be zero is a serious difficulty
and its circumvention in the nonlocal theory is important for the determination of the
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acceleration kernel, as described in the following sections. The situation is different
for E′ < 0 due to the absolute character of accelerated motion. A thought experiment
involving conservation of energy as well as total angular momentum along the rotation
axis of the observer is useful here to show that a negative E′ is consistent with the
observer-independence of the temporal order of events. Imagine a quantum system
that, according to inertial observers at rest in a global background inertial frame, makes
a transition from a stationary state (E1, J1,M1) to a lower energy state (E2, J2,M2)
by emitting a photon of energy E1−E2 = ~ω. The photon is detected by the rotating
observer O and is found to have energy E′ = ~ω′ and frequency ω′ = γ (ω −M Ω).
From the viewpoint of the rotating observer, the states of the quantum system have
energies E′i = γ (Ei−~Mi Ω) for i = 1, 2, and E′1−E′2 = E′ = ~ω′ with M1−M2 = M .
If E′ < 0, the rotating observer might claim that the photon was actually emitted by
its detector and later absorbed by the state of energy E′1 causing a transition to a state
of higher energy E′2; however, the causal sequence of events would then be opposite to
that perceived by the inertial observers. To maintain the same causal order of events
for all observers, the possibility of negative energy states for accelerated observers
must be admitted.

3.2 Can Light Stand Completely Still?

The exact formula ω′ = γ (ω − Ω) for normally incident positive-helicity electro-
magnetic radiation has a remarkable consequence that is not easily accessible to
experimental physics: The incident wave stands completely still relative to observers
that rotate uniformly with frequency Ω = ω about the direction of propagation of
the wave; however, the locality postulate is expected to fail for Ω/ω ∼ 1. That is, the
hypothesis of locality has the consequence that a rotating observer can in principle be
comoving with an electromagnetic wave; in fact, the wave appears to be oscillatory
in space but stands completely still with respect to the rotating observer. The fun-
damental difficulty under consideration here is quite general, as it occurs for oblique
incidence as well; that is, ω′ = γ(ω −MΩ) vanishes for ω = MΩ with M 6= 0, so that
by a uniform rotation of frequency Ω = ω/M , M > 0, the rotating observer can stand
completely still with respect to the incident radiation.

An important consequence of the Lorentz invariance of Maxwell’s equations is
that the propagation of electromagnetic radiation is independent of the motion of
inertial observers. It is natural to expect that this circumstance would extend to all
observers, but one encounters a difficulty due to the hypothesis of locality of the
standard framework of special relativity theory. By a mere rotation, an observer can
in principle stay completely at rest with respect to an electromagnetic wave. This
circumstance is rather analogous to the difficulty with the pre-relativistic Doppler
formula, where an inertial observer moving with speed c along a light beam would
see a wave that is oscillatory in space but is otherwise independent of time and hence
completely at rest. This issue, as is well known, played a part in Einstein’s path to
relativity, as mentioned in his autobiographical notes; see Einstein (1949, p. 53). The
difficulty in that case was eventually removed by Lorentz invariance; however, in the
present case, the problem has to do with the local way in which Lorentz invariance
is extended to accelerated observers in Minkowski spacetime. In the special theory



52 Acceleration Kernel

of relativity, Lorentz invariance is extended to accelerated systems via the hypothesis
of locality, namely, the assumption that an accelerated observer is pointwise inertial.
It is therefore important to formulate the theory of accelerated observers in such a
way that an accelerated observer cannot stay completely at rest with respect to an
electromagnetic wave. This can be implemented within the context of the nonlocal
theory of accelerated observers and it plays an important role in the determination of
the acceleration kernel.

To go beyond the locality postulate of special relativity theory, the past history of
the observer must be taken into account. Thus the locality postulate must be supple-
mented by a certain average over the past world line of the observer. In this way, the
observer retains the memory of its past acceleration. This averaging procedure involves
a kernel (or weight function) that must be determined. To this end, we introduce the
fundamental assumption that a basic radiation field can never stand completely still
with respect to any observer. On this basis a nonlocal theory of accelerated observers
can be developed (Mashhoon 1993a). Indeed, this is the main postulate that is used
in nonlocal special relativity for the determination of the acceleration kernel; that is,
the kernel is so chosen as to correct a perceived defect in the standard local special
relativity theory. As discussed in Section 3.5, the nonlocal approach turns out to be
in better correspondence with quantum theory than the standard treatment based on
the hypothesis of locality (Mashhoon 2005).

3.3 Determination of the Kernel

Consider a basic radiation field ψ(x) in a background global inertial frame in Minkowski
spacetime and an accelerated observer that measures this field. The events along the
world line of the observer are characterized by its proper time τ . The observer passes
through an infinite sequence of hypothetical momentarily comoving inertial observers.
Let ψ̂(τ) be the field measured by these inertial observers. This local field definition
is the result of the projection of the background radiation field onto the local frame of
the observer. It follows from the hypothesis of locality that ψ̂(τ) = Λ(τ)ψ(τ) along the
world line of the accelerated observer, where Λ belongs to a matrix representation of
the Lorentz group. For instance, Λ is unity for a scalar field. Equation (3.2) provides
a nontrivial example of such a matrix relationship in the case of the electromagnetic
vector potential.

The fundamental laws of microphysics have been formulated with respect to inertial
observers. On the other hand, physical measurements are performed by observers that
are, in general, accelerated. To interpret observation via theory, a connection must
be established between the field Ψ̂(τ) that is actually measured by the accelerated

observer and ψ̂(τ). The standard theory of relativity postulates that the accelerated

observer is pointwise inertial and hence Ψ̂(τ) = ψ̂(τ). This is, of course, the simplest
possibility and has been quite successful as a first approximation. It is consistent with
the physical principles of superposition and causality. It is important, however, to go
beyond this relation in view of the limitations of the hypothesis of locality. As already
emphasized in Chapter 2, the most general relationship between Ψ̂(τ) and ψ̂(τ) that
preserves linearity and causality for τ ≥ τ0 is
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Ψ̂(τ) = ψ̂(τ) +

∫ τ

τ0

K̂(τ, τ ′) ψ̂(τ ′) dτ ′, (3.23)

where τ0 is the instant at which the observer’s acceleration is turned on and kernel K̂
vanishes in the absence of acceleration. The matrix form of our nonlocal ansatz goes
beyond the locality assumption by virtue of an integral over the past world line of the
observer. Nonlinear generalizations of eqn (3.23) may be contemplated, of course, but
these appear unnecessary at the present stage of development. Equation (3.23) is a
Volterra integral equation of the second kind and the existence of a unique relationship
between Ψ̂ and ψ̂ in cases of physical interest is ensured by the Volterra–Tricomi
theorem. For the physical fields under consideration here, we assume that ψ̂ is indeed
uniquely determined by Ψ̂; that is,

ψ̂(τ) = Ψ̂(τ) +

∫ τ

τ0

R̂(τ, τ ′) Ψ̂(τ ′) dτ ′, (3.24)

where R̂ is the resolvent kernel; see Chapter 2.
Equation (3.23) is reminiscent of the nonlocal characterization of certain consti-

tutive properties of continuous media that exhibit memory-dependent phenomena
(“after-effects”). However, it is important to remark that the nonlocality considered
here is in the absence of any medium; rather, it is associated with the vacuum state
as perceived by accelerated observers (Mashhoon 1993a).

How should kernel K̂ be determined? A detailed examination of field determination
by a uniformly rotating observer via the locality postulate in Section 3.1 has led to the
conclusion that by a mere rotation the observer can in principle stay completely at rest
with respect to an incident electromagnetic wave. We, therefore, raise a consequence
of Lorentz invariance, that an inertial observer cannot stay at rest with respect to a
fundamental radiation field, to the level of a postulate that must hold for all observers.
Thus we assume that a basic radiation field cannot stand completely still with respect
to an accelerated observer. To implement this requirement in the nonlocal theory, let
us first recall an aspect of the Doppler formula in electrodynamics for an inertial
observer moving with uniform velocity v; namely, the inertial observer measures ω′ =
γ(ω−v·k), where ω = |k|. We note that ω′ = 0 here only when ω = 0, since v < 1; that
is, if the moving observer encounters a constant wave field, then the field must already
be constant for the inertial observers at rest. The generalization of this circumstance
to accelerated observers would imply that if Ψ̂ in eqn (3.23) turns out to be constant,
then ψ must have been a constant field in the first place. It would then follow from
the Volterra–Tricomi uniqueness theorem that for a realistic variable field ψ(x), the
measured field Ψ̂(τ) would never be a constant. In this way, a basic radiation field can
never stand completely still with respect to any observer (Mashhoon 1993a).

Our physical postulate leads to an integral equation for kernel K̂ by means of the
nonlocal ansatz (3.23). Writing ψ̂(τ) = Λ(τ)ψ(τ) in (3.23), we find for τ ≥ τ0 the
matrix relation

Ψ̂(τ) = Λ(τ)ψ(τ) +

∫ τ

τ0

K̂(τ, τ ′) Λ(τ ′)ψ(τ ′) dτ ′, (3.25)
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where at τ = τ0, Ψ̂(τ0) = Λ(τ0)ψ(τ0). If for τ ≥ τ0, Ψ̂ is a constant, i.e. Ψ̂(τ) = Ψ̂(τ0),
then ψ must be a constant as well by our basic physical assumption, i.e. ψ(τ) = ψ(τ0);
therefore, eqn (3.25) reduces to

Λ(τ0) = Λ(τ) +

∫ τ

τ0

K̂(τ, τ ′) Λ(τ ′) dτ ′. (3.26)

Given Λ(τ), this integral relation is not sufficient to determine the kernel uniquely.
To proceed, a simplifying assumption would be appropriate. Two possibilities appear
natural: (i) K̂(τ, τ ′) is only a function of τ − τ ′ or (ii) K̂(τ, τ ′) is only a function of τ ′.
These lead to the same constant kernel for uniform acceleration. The convolution kernel
in case (i) was initially adopted by analogy with nonlocal theories of continuous media
(Mashhoon 1993a), but was later found to lead to divergences in cases of nonuniform
acceleration (Chicone and Mashhoon 2002a). A detailed investigation (Chicone and
Mashhoon 2002b) reveals that case (ii) provides the only physically acceptable solution
of eqn (3.26), so that

K̂(τ, τ ′) = k̂(τ ′). (3.27)

In this case, differentiation of eqn (3.26) results in

k̂(τ) = −dΛ(τ)

dτ
Λ−1(τ). (3.28)

This kernel is directly proportional to the acceleration of the observer. Hence, it follows
that once the acceleration is turned off at τf , then for τ > τf , though the motion of
the observer is uniform, there is a constant nonlocal contribution to the measured field
in eqn (3.23) that contains the memory of past acceleration. This constant memory is
measurable in principle but it is simply canceled in a measuring device whenever the
device is reset.

With the kernel as in eqn (3.27), the nonlocal part of our main ansatz (3.23) takes
the form of a weighted average over the past world line of the accelerated observer such
that the weighting function is directly proportional to the acceleration of the observer.
This circumstance is consistent with the Bohr–Rosenfeld viewpoint regarding field
determination. Moreover, this general approach to acceleration-induced nonlocality
appears to be consistent with quantum theory (Buchholz, Mund and Summers 2002).

Substitution of eqns (3.27) and (3.28) in eqn (3.23) results in

Ψ̂(τ) = ψ̂(τ0) +

∫ τ

τ0

Λ(τ ′)
dψ(τ ′)

dτ ′
dτ ′. (3.29)

It follows from this relation that if the field ψ(x) evaluated along the world line of the
accelerated observer turns out to be a constant over a certain interval (τ0, τ1), then
the variable nonlocal part of eqn (3.29) vanishes in this interval and the measured field
turns out to be a constant as well for τ0 < τ < τ1. This result plays an important role
in the development of nonlocal field theory of electrodynamics in Section 3.6. That is,
we have thus far considered radiation fields; however, in Section 3.6 we need to deal
with limiting situations such as electrostatics and magnetostatics as well.
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The discussion of spin–rotation coupling in the previous section leads to the con-
clusion that for a basic scalar (or pseudoscalar) field of frequency ω in the background
inertial frame, an observer rotating uniformly with frequency Ω measures ω′ = γ(ω −
MΩ), where M = 0,±1,±2, . . .. Thus ω′ = 0 for ω = MΩ with M > 0, so that the
scalar (or pseudoscalar) radiation field is oscillatory in space but stands completely
still with respect to the rotating observer. This possibility is ruled out by our fun-
damental assumption that no observer can stay completely at rest with respect to a
basic radiation field. However, for a scalar field Λ = 1 and it follows from eqn (3.28)

that k̂ = 0, so that a basic scalar radiation field is purely local. Our main physical
postulate therefore implies that a pure scalar (or pseudoscalar) radiation field does
not exist. Nevertheless, scalar or pseudoscalar fields can be composites formed from
other basic fields. In 2012, a scalar Higgs boson with a mass of about 125 GeV/c2 was
discovered by means of the Large Hadron Collider (LHC) at CERN (ATLAS Collabo-
ration 2012; CMS Collaboration 2012). The Higgs boson is classified as an elementary
particle, unless it can be shown that it has internal structure. At the time of writing it
is not known whether the Higgs boson has any internal structure. Except for the Higgs
boson, there is no trace of any other fundamental scalar (or pseudoscalar) field in the
present experimental data. Our basic assumptions leading to eqn (3.28) would be con-
sistent with a composite Higgs boson. Hence, it remains to be seen if this important
implication of nonlocal theory is consistent with observation.

3.4 Nonlocal Field Determination

To illustrate the nonlocal theory of accelerated observers that results from our choice
of kernel in eqn (3.28), let us consider the nonlocal generalization of eqn (3.1) involving
the determination of the electromagnetic vector potential by an accelerated observer.
We now assume that what the accelerated observer actually determines is Aα̂(τ),
which is given for τ ≥ τ0, in accordance with our nonlocal ansatz, by

Aα̂(τ) = Aα̂(τ) +

∫ τ

τ0

k̃α̂
β̂(τ ′)Aβ̂(τ ′) dτ ′, (3.30)

or in matrix notation

Â(τ) = Â(τ) +

∫ τ

τ0

k̂(τ ′) Â(τ ′) dτ ′, (3.31)

where k̂ is given by eqn (3.28). Writing eqn (3.28) as

dΛ

dτ
= −k̂(τ) Λ, (3.32)

we recall that Â = ΛA and Λ is the matrix that follows from the application of the
hypothesis of locality; for instance, in the case of a uniformly rotating observer, Λ is
given in eqn (3.2). In component form, we have Aα̂ = Aµ λ

µ
α̂, as in eqn (3.1), so that

Λ here is a 4× 4 matrix with a typical element Λα̂µ that therefore corresponds to the
tetrad component λµα̂. Thus writing eqn (3.32) in terms of its matrix elements and
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then changing over to tetrad components via Λα̂µ → λµα̂, we find that eqn (3.32) can
be expressed as

dλµα̂
dτ

= −k̃α̂β̂(τ)λµβ̂ . (3.33)

The comparison of eqn (3.33) with the definition of the acceleration tensor in eqn (1.41)
results in the general relation

k̃α̂β̂ = −Φα̂β̂ . (3.34)

The remainder of this section is devoted to the determination of Aα̂(τ) for the
rotating observerO of Section 3.1 in the case of normal incidence of circularly polarized
radiation with vector potential (3.5). A general treatment including the case of oblique
incidence is contained in Mashhoon (2009).

We assume that observer O moves uniformly for −∞ < t < 0 on a straight world
line xµ(τ) = (t, r, v t, z0) with τ = t/γ, but for t ≥ 0 it is forced to move on a circular
path of radius r about the z axis in the z = z0 plane. We find from eqns (1.33)–(1.36)
and eqn (1.41) that the only non-zero components of the acceleration tensor are given
by

Φ0̂1̂ = −Φ1̂0̂ = −v γ2 Ω, (3.35)

Φ1̂2̂ = −Φ2̂1̂ = γ2 Ω. (3.36)

Therefore, eqn (3.30) can now be written out in component form and, with the help
of A0̂ = v A2̂, it is straightforward to show that we have A0̂ = vA2̂,

A1̂ = A1̂ − Ω

∫ τ

0

A2̂(τ ′) dτ ′, (3.37)

A2̂ = A2̂ + γ2 Ω

∫ τ

0

A1̂(τ ′) dτ ′ (3.38)

and A3̂ = A3̂. These relations must be combined with eqns (3.3) and (3.4) for Aα̂ that
are based on the hypothesis of locality. Moreover, we find from∫ τ

0

e−i ω
′ τ ′+i ω z0 dτ ′ =

i

ω′
(e−i ω

′ τ+i ω z0 − ei ω z0) (3.39)

that along the world line of the observer,

A1̂ = Re (A 1f± e
−i ω′τ+i ω z0), A2̂ = γ Re (±iA 1f± e

−i ω′τ+i ω z0), (3.40)

A0̂ = vA2̂ and A3̂ = 0, where 1f± is the s = 1 instance of the general factor

sf± =
ω ∓ sΩ ei ω

′τ

ω ∓ sΩ
. (3.41)

The nonlocal results presented in display (3.40) must be compared and contrasted
with the local results presented in display (3.6).
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The Fourier analysis of the nonlocally determined field implies that the measured
frequency is still ω′ = γ (ω ∓ Ω), unless ω′ = 0. Indeed, as ω → Ω,

1f+ → 1− i γ Ω τ, (3.42)

while
1f− → ei γ Ω τ cos (γ Ω τ). (3.43)

Thus for ω = Ω, the field is not static in the positive-helicity case; instead, it varies
linearly with time, just as would be expected in a resonance situation. In fact, in this
case the incident electromagnetic field rotates about the direction of propagation in
the same sense as the rotation of the observer and with the same frequency; moreover,
the constant amplitude of the incident plane wave is maintained over time. Hence, the
measured field grows indefinitely with proper time. Such a divergence would be absent
for any incident realistic wave packet.

Another consequence of the nonlocal theory is that the average of the measured
field Aα̂ over time is non-zero and proportional to Ω/ω′ for ω′ 6= 0, while the incident
Aµ and Aα̂ both have vanishing temporal averages.

Finally, it follows from the inspection of formula (3.41) for 1f± that the measured
amplitude of positive-helicity radiation with ω > Ω is enhanced by a factor of(

1− Ω

ω

)−1

, (3.44)

while the measured amplitude of negative-helicity radiation is diminished by a factor
of (

1 +
Ω

ω

)−1

. (3.45)

In other words, the nonlocal theory predicts that the field strength, as measured by
the uniformly rotating observer, will be higher (lower) when the electromagnetic field
rotates in the same (opposite) sense as the rotation of the observer. In practice, this
effect is very small; for example, for GHz radio waves incident on a system rotating at,
say, 103 rounds per second, Ω/ω would be about 10−6. It is important to verify these
purely nonlocal effects experimentally. The nonlocal effects are rather small in practice;
moreover, the task here is further complicated by the fact that the behavior of rotating
measuring devices must be known. We therefore turn to a different approach based on
the correspondence principle in non-relativistic quantum mechanics. The study of the
orbital motion of electrons within the framework of quantum theory could shed light
on the question of the correct classical theory of accelerated systems.

3.5 Confrontation with Experiment

The consequences of acceleration-induced nonlocality for spin–rotation coupling in
electrodynamics should be tested experimentally. To this end, the behavior of rotat-
ing measuring devices must be known beforehand; that is, disentangling the effect
under consideration from the response of the measuring devices under rotation could
be rather complicated. Such issues of principle have received attention in connection
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with the emission of radiation by a rotating atomic system (Bialynicki-Birula and
Bialynicka-Birula 1997). Moreover, as mentioned earlier, the available experimental
results in support of the electrodynamics of accelerated systems are rather meager.

To proceed, one can contemplate indirect confirmation of the nonlocal theory of
accelerated systems via the “accelerated” motion of electrons in the correspondence
limit of quantum mechanics. For instance, electrons undergoing “circular” motion
in the limit of large quantum numbers are expected to behave much like rotating
observers. Therefore, we adopt an approach based on Bohr’s correspondence principle
and consider electrons in the correspondence regime to be qualitatively the same as
classical accelerated observers. In other words, instead of a direct confrontation of the
nonlocal theory of rotating systems with observation, which is in any case not feasible
at present due to the absence of relevant experimental data, we study the behavior of
orbiting electrons in quantum theory to see which classical theory is closer to quantum
mechanics in the correspondence limit (Mashhoon 2005).

Let us first consider the possibility that by a mere rotation of frequency ω, an
observer could stand completely still with respect to an incident positive-helicity wave
of frequency ω in accordance with the hypothesis of locality. However, the nonlocal
theory of accelerated systems predicts that in this case the field diverges linearly
with time as in the case of resonance. To test this prediction, we imagine an electron
with electric charge −ē and mass me in a circular cyclotron “orbit” about a uniform
magnetic field B that is along the z direction. Classically, the angular speed of the
circular orbit is the cyclotron frequency Ωc = ēB/(mec). We are interested in the
transition of the stationary state of the electron to a state of higher energy as a result
of the resonant absorption of a photon of frequency ω = Ωc that propagates along
the z direction and is normally incident on the initial orbital plane of the electron.
In this cylindrical configuration, there is translational symmetry along the direction
of the magnetic field. The incident photon carries momentum P = ~Ωc/c along the
z axis; after absorption, the electron has an additional kinetic energy P 2/(2me), which
vanishes in the non-relativistic limit. To simplify our discussion, we henceforth ignore
the motion of the electron along the z direction. Moreover, we neglect electron spin
and work in the non-relativistic approximation, where ē ~B � m2

ec
3. The electron

has energy eigenvalues ~Ωc (N + 1
2 ), where ~Ωc � mec

2, and N = 0, 1, 2, . . . is the
principal quantum number in this case. The classical cyclotron motion of the electron
is recovered in the correspondence regime, namely, N ∼ M � 1, where ~M is the
eigenvalue of the z-component of the electron’s orbital angular momentum. We then
study the transition of the electron from a given stationary state to the next one as
a consequence of absorption of a photon of frequency Ωc and definite helicity that is
incident along the direction of the uniform magnetic field, as this situation mimics the
classical problem that is of interest here. It turns out that electric dipole transitions
are possible for (N,M) → (N + 1,M + 1) due to incident positive-helicity photons,
while (N,M)→ (N+1,M−1) due to incident negative-helicity photons are forbidden
(Mashhoon 2005). Thus resonance occurs only for a photon of positive helicity and
that in the correspondence regime P+ ∝ t2, while P− = 0, where P+ (P−) is the
probability of transition for an incident positive (negative) helicity photon based on
first-order time-dependent perturbation theory for the ideal case of resonant absorption
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(Landau and Lifshitz 1977). This result is in qualitative agreement with the nonlocal
theory; that is, at resonance the field amplitude 1f+ diverges linearly with time t such
that |1f+|2 = 1 + Ω2 t2, while |1f−|2 = cos2 Ωt is always less than, or equal to, unity,
cf. eqns (3.42) and (3.43).

Next, we consider the reception of electromagnetic waves of frequency ω > Ω
by the rotating observer. The nonlocal theory predicts that, as determined by the
rotating observer, the amplitude of the positive-helicity incident radiation with an
electromagnetic field that rotates along the direction of propagation in the same sense
as the observer is enhanced, while the amplitude of the corresponding negative-helicity
incident wave is diminished. To imitate this situation, we study the helicity dependence
of the photoeffect in the simple case of the hydrogen atom. The relative strength
of the field amplitudes measured by the rotating observer for ω > Ω, namely, the
enhancement factor of (1 − Ω/ω)−1 in the positive-helicity case versus the reduction
factor of (1 + Ω/ω)−1 in the negative-helicity case, can be mimicked by considering
the photoionization of the hydrogen atom when the electron is in a circular state with
respect to the incident radiation.

The circular states of atomic hydrogen are stationary states with n > 1, l = n− 1
and m = ±l, corresponding to classical circular orbits in the (x, y) plane. Here, n
is the principal quantum number and (l,m) denote the angular momentum quan-
tum numbers. We assume for the sake of simplicity that the proton is in effect fixed
at the origin of spatial coordinates and we neglect electron spin. Imagine an initial
counterclockwise circular state of energy En = −meē

4/(2 ~2n2) and l = m = n − 1.
A photon of energy ~ω, ~ω > −En, is normally incident on the circular state and
we are interested in the total cross section for the ionization of the hydrogen atom.
It is interesting to digress briefly at this point and mention the impulse approxima-
tion, which was originally introduced by Fermi (1936) for treating certain problems in
quantum scattering theory (Newton 1982; Goldberger and Watson 1964). It turns out
that the impulse approximation is the quantum analog of the hypothesis of locality
in this case. In the hypothesis of locality, the accelerated observer is replaced at each
instant by an otherwise identical force-free comoving inertial observer; similarly, the
impulse approximation replaces the corresponding bound electron in this case by a free
electron of definite momentum (Gottfried 1966). In the impulse approximation, the
cross section for photoionization is independent of the helicity of the incident radia-
tion, in complete correspondence with the standard classical theory of relativity based
on the hypothesis of locality. Indeed, the impulse approximation is valid when the
energy of the incident photon is much larger than the binding energy of the electron,
which corresponds, in the case of the locality postulate, to a negligibly small Ω/ω in
comparison to unity.

The helicity dependence of the photoeffect appears when the Coulomb interac-
tion is properly taken into account in the final state. Let $n := Ωn/ω, where Ωn =
−2En/(~n) is the Bohr frequency of the electron in the circular state. In the dipole
approximation, ω rn � c, where rn = −ē2/(2En), so that rn = ~2n2/(meē

2) and r1

is the Bohr radius; therefore, $n � (137n)−1. On the other hand, ~ω > −En implies
that $n < 2/n. In the non-relativistic approximation with ~ω � mec

2, a detailed
investigation (Mashhoon 2005) using the dipole approximation reveals that
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σ+

σ−
=

2n[2(n− 1)2 + n(2n− 1)$n]

3(n− 1) + 2n$n
, (3.46)

where σ+ (σ−) is the total photoionization cross section when the electron moves
about the direction of the incident photon in the same (opposite) sense as the photon
helicity. For n = 1, the ground state of the hydrogen atom is spherically symmetric
and hence σ+ = σ−, in agreement with eqn (3.46). However, for n ≥ 2, it follows from
eqn (3.46) that σ+ > σ−. This agrees qualitatively with the prediction of the nonlocal
theory of accelerated observers.

3.6 Nonlocal Electrodynamics

The acceleration kernel for the electromagnetic vector potential has been determined

in Section 3.4; therefore, it remains to determine the corresponding kernel kα̂β̂
γ̂δ̂(τ) for

the electromagnetic field tensor, where the field measured by an accelerated observer
for τ ≥ τ0 is given by

Fα̂β̂(τ) = Fα̂β̂(τ) +

∫ τ

τ0

k̃α̂β̂
γ̂δ̂(τ ′)Fγ̂δ̂(τ

′) dτ ′. (3.47)

How should the kernel be determined in this case? Consider an electromagnetic field
Fµν(x) and the corresponding gauge potential Aµ(x), Fµν = ∂µAν − ∂νAµ, in the
background global inertial frame in Minkowski spacetime. For the vector potential,

we have chosen the kernel in accordance with eqn (3.28), namely, k̃α̂
β̂(τ) = −Φα̂

β̂(τ).
The general property of such a kernel is that a constant Aµ(x) will be determined
to be constant by all accelerated observers. This circumstance poses no difficulty as
the electromagnetic field vanishes for all observers in this case. However, the situation
is quite different if the kernel in eqn (3.47) is chosen in accordance with eqn (3.28);
then, constant electromagnetic fields in the laboratory, such as in electrostatics and
magnetostatics, will always be measured to be constant by any accelerated observer.
This conclusion contradicts the results of Kennard’s experiment; see Kennard (1917),
Pegram (1917), Swann (1920) and the references therein. In this experiment, a coaxial
cylindrical capacitor is inserted into a region of constant magnetic field B0. The
direction of the magnetic field is parallel to the axis of the capacitor. In the static
situation, no potential difference is measured between the inner cylinder of radius ρa
and the outer cylinder of radius ρb. However, when the capacitor is set into rotation
and a maximum rotation rate of Ωmax is achieved, the potential difference (emf) in the
rotating frame between the plates is found to be non-zero and in qualitative agreement
with ΩmaxB0(ρb

2 − ρa2)/2, which is based on the hypothesis of locality. This result
is consistent with the fact that observers at rest in the rotating frame experience the
presence of a radial electric field (in cylindrical coordinates). According to the hypoth-
esis of locality, the radial electric field should have a magnitude of γvB0 between the
cylinders, where v = Ωρ and Ω starts from zero and reaches Ωmax. Here v � 1; hence,
v2 effects can be neglected. Thus an accelerated observer in a constant magnetic field
can in principle measure a variable electric field. It follows that the field kernel in
eqn (3.47) cannot be the one obtained from eqn (3.28), since, according to the results
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of Kennard’s experiment, a nonuniformly rotating observer in a constant magnetic
field should measure a variable electric field. Thus the next step in the determination
of the kernel would involve the consideration of all possible local combinations of the
acceleration tensor, the Minkowski metric tensor and the Levi-Civita tensor that could
generate kernels of the form needed in eqn (3.47).

Let us first note that in this case the kernel obtained via the general formula (3.28)
is given by

κα̂β̂
γ̂δ̂ = −1

2
(Φα̂

γ̂ δδ̂
β̂

+ Φβ̂
δ̂ δγ̂α̂ − Φβ̂

γ̂ δδ̂α̂ − Φα̂
δ̂ δγ̂
β̂
). (3.48)

To simplify matters, we assume that kernel k̃α̂β̂
γ̂δ̂ in eqn (3.47) is linearly dependent

upon the acceleration of the observer; then, a detailed investigation reveals that this

kernel must be a linear combination of κα̂β̂
γ̂δ̂ given in eqn (3.48) and its dual given by

κ∗
α̂β̂

γ̂δ̂ = −1

2
(Φ∗α̂

γ̂ δδ̂
β̂

+ Φ∗
β̂
δ̂ δγ̂α̂ − Φ∗

β̂
γ̂ δδ̂α̂ − Φ∗α̂

δ̂ δγ̂
β̂
), (3.49)

where Φ∗
α̂β̂

is the dual acceleration tensor. We can therefore write

k̃α̂β̂
γ̂δ̂ = pκα̂β̂

γ̂δ̂ + qκ∗
α̂β̂

γ̂δ̂. (3.50)

Finally, to simplify matters even further, we assume that p and q are constant dimen-
sionless coefficients. Various properties of such a kernel and the implications of the
resulting nonlocal electrodynamics have been discussed in Mashhoon (2007c, 2008,
2012, 2013a); clearly, the combination p = 1 and q = 0 is excluded, but we expect
p ≥ 0 and 0 < |q| � 1, since the presence of q indicates possible violations of invariance
under time reversal and parity in an accelerated system.

The aim of this section has been the construction of the simplest tenable theory
of nonlocal electromagnetic field; however, there is a lack of definitive experimental
results that could guide such a development. We must therefore bear in mind the
possibility that future experimental data may require a revision of the nonlocal theory
presented in this section.

3.7 Nonlocal Special Relativity

The special theory of relativity is based on Lorentz invariance as well as the hypothesis
of locality. The locality postulate is a good approximation whenever the intrinsic scale
of the phenomenon under consideration is negligible in comparison with the relevant
acceleration scales (λ/L � 1); otherwise, the local theory breaks down. The situation
is rectified in nonlocal special relativity, where the locality postulate is replaced with
the nonlocal ansatz and an appropriate acceleration kernel is chosen. Thus far we
have dealt with the electromagnetic field as well as its gauge potential; however, our
nonlocal treatment can be naturally extended to the Dirac field (Mashhoon 2007b).
The acceleration kernel in this case is again based on eqn (3.28). The spin–rotation
coupling for a Dirac field leads to E′ = γ (E ∓ s ~Ω) for s = 1

2 when observer O
rotates in the positive sense about the direction of incidence of a positive-energy plane
wave solution of the free Dirac equation. As before, the incident wave does not stand



62 Acceleration Kernel

still with respect to O for E = ~Ω/2; instead the spinor diverges linearly with time.
Moreover, the amplitude of a positive-helicity spinor of energy E > s ~Ω is enhanced
by a factor of 1/(1 − s ~Ω/E), while the amplitude of the corresponding negative-
helicity spinor is diminished by a factor of 1/(1 + s ~Ω/E).

The essential formal elements of nonlocal special relativity have been presented in
Mashhoon (2008). For electrodynamics, the purely nonlocal predictions of the theory
in the case of helicity–rotation coupling have been compared with the non-relativistic
orbital motion of the electrons in the correspondence regime. According to Bohr’s
correspondence principle, quantum mechanics in the limit of large quantum num-
bers can teach us about the physics of classical accelerated systems. Following this
approach, a detailed investigation has revealed that the predictions of the nonlocal
theory have closely related counterparts in quantum mechanics; therefore, non-
local special relativity is in better qualitative agreement with quantum theory than the
standard theory of special relativity (Mashhoon 2005). These encouraging
results notwithstanding, it is important to subject nonlocal special relativity to direct
experimental tests.

Various predictions of the nonlocal theory have been worked out in detail; however,
the observational aspects of the results are not encouraging. For instance, the non-
local electrodynamics of linearly accelerated systems has been studied in connection
with accelerated plasmas generated by an incident femtosecond laser pulse (Mash-
hoon 2004b). Nonlocal effects may become directly detectable with the help of laser
pulses that can induce linear electron accelerations of order 1024 cm s−2 using the
chirped pulse amplification technique; see the review by Umstadter (2001) and the
references cited therein. Moreover, Sauerbrey (1996) has employed such high-intensity
femtosecond lasers to impart linear accelerations of order 1021 cm s−2 to small grains.
A grain with a macroscopic mass of ∼ 10−12 g approximates a classical accelerated
observer in such experiments. Unfortunately, the estimated nonlocal contribution turns
out to be negligibly small for the experiments reported in Sauerbrey (1996). A second
example involving the nonlocal electrodynamics of linearly accelerated systems has to
do with the recent calculation of possible nonlocal contributions to the measurements
of an observer that is uniformly accelerated with respect to the rest frame of a homo-
geneous and isotropic black body radiation field. The nonlocal effects in this case have
been found to decay rapidly and are thus essentially transient (Bremm and Falciano
2015).

Observational consequences of acceleration-induced nonlocality involve effects that
are expected to be very small under normal laboratory conditions and hence rather
difficult to detect. At present, one can only hope that future experiments will directly
verify the main tenets of nonlocal special relativity.

3.8 Nonlocal Field Equation

Imagine a congruence of accelerated observers in Minkowski spacetime. The purpose of
this section is to extend the treatment of Section 3.3 to all of the accelerated observers
in the congruence. In this generalization of our nonlocal ansatz from a single world
line to the whole congruence, it becomes possible to develop nonlocal field equations in
Minkowski spacetime. To see in detail how this comes about, let us return to our general
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statement of the nonlocal ansatz in Section 3.3 and choose the acceleration kernel in
the special form (3.27). Suppose that Ψ̂(τ) is the field that is actually measured by

the accelerated observer at τ . The hypothesis of locality postulates that Ψ̂(τ) = ψ̂(τ),

where ψ̂(τ), ψ̂(τ) = Λ(τ)ψ(τ), is the field measured by the instantaneously comoving
inertial observer and Λ is a matrix representation of the Lorentz group. To construct
a nonlocal theory, we note that the most general relation between Ψ̂(τ) and ψ̂(τ) that
is consistent with causality and the superposition principle is given for τ > τ0 by

Ψ̂(τ) = ψ̂(τ) +

∫ τ

τ0

k̂(τ ′) ψ̂(τ ′) dτ ′, (3.51)

where τ0 denotes the instant of proper time at which the observer’s acceleration is
turned on.

To avoid possible unphysical situations, we generally assume that the observer is
accelerated only for a finite interval of proper time. Equation (3.51) involves spacetime
scalars; thus, it is manifestly invariant under Poincaré transformations of the back-
ground spacetime. The kernel k̂ is obtained from the acceleration of the observer. It
vanishes for an inertial observer and the nonlocal part of eqn (3.51) vanishes in the
JWKB limit.

In view of the results of Volterra (1959) and Tricomi (1957), we expect that under

mild mathematical assumptions the relation between Ψ̂ and ψ̂ is unique; moreover,
this uniqueness property would seem to be demanded on physical grounds. Indeed, for
τ > τ0,

ψ̂(τ) = Ψ̂(τ) +

∫ τ

τ0

r̂(τ, τ ′) Ψ̂(τ ′) dτ ′, (3.52)

where r̂(τ, τ ′) is the resolvent kernel; see Section 2.9.
We now introduce a new function into this scheme; that is, we assume that a field

Ψ exists such that for the accelerated observer under consideration here

Ψ̂(τ) = Λ(τ) Ψ(τ), (3.53)

which means that what is actually measured by the accelerated observer is the
projection of the new field Ψ on its local tetrad frame. Substituting this relation
into eqn (3.52), we find

ψ(τ) = Ψ(τ) +

∫ τ

τ0

r(τ, τ ′) Ψ(τ ′) dτ ′, (3.54)

where r is related to the resolvent kernel r̂ via

r(τ, τ ′) = Λ−1(τ) r̂(τ, τ ′) Λ(τ ′). (3.55)

Let us next consider a general congruence of accelerated observers and assume that
eqn (3.54) is extended to the whole congruence so that ψ is related to a field Ψ by a
nonlocal relation involving a suitable kernel R via the integral equation

ψ(x) = Ψ(x) +

∫
R(x, x′) Ψ(x′) d4x′. (3.56)

Suppose that the local field ψ satisfies a field equation; then, substituting eqn (3.56) for
ψ in this field equation we obtain the corresponding field equation for the local field Ψ.
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Thus if ψ satisfies a partial differential equation, then the local field Ψ satisfies the
corresponding partial integro-differential equation. The general nonlocal ansatz is
manifestly invariant under Poincaré transformations of the background spacetime;
therefore, the resulting nonlocal field equation for Ψ has the same symmetry. Explicit
nonlocal field equations have been obtained in some simple cases; in fact, nonlocal
Maxwell’s equations have been discussed in Mashhoon (2003b) and the nonlocal Dirac
equation has been treated in Mashhoon (2007b, 2008). Moreover, it is in general pos-
sible to transform the nonlocal field equations to any other coordinate system; for
instance, for the electromagnetic vector potential and the Faraday tensor, we can
use the coordinate invariance of the 1-form Aµ dxµ and the 2-form Fµν dxµ ∧ dxν ,
respectively, to express the corresponding nonlocal field equations in arbitrary admis-
sible coordinate systems in Minkowski spacetime. An important feature of the fields
that satisfy these nonlocal field equations must be noted: nonlocality survives—in the
form of the memory of past acceleration—even after the acceleration has been turned
off.

Under physically reasonable conditions, kernel R, which is determined by the
acceleration of our congruence of observers, is such that Ψ is uniquely determined
by ψ. This postulate plays a fundamental role in the formulation of a variational
principle for the nonlocal field Ψ. In fact, the nonlocal equation of motion for Ψ
can be derived from a variational principle of stationary action involving a nonlocal
Lagrangian that is simply obtained by composing the local inertial Lagrangian for ψ
with the nonlocal transformation of the field to the accelerated system. The
implications of this approach for the electromagnetic and Dirac fields have been
briefly discussed in Chicone and Mashhoon (2007) and Mashhoon (2008).

3.8.1 Uniform acceleration

It is useful to illustrate eqn (3.56) for the simple case of uniformly accelerated observers,
namely, those for which the acceleration tensor Φα̂β̂ in eqn (1.41) is constant. To this

end, we first turn to the acceleration-induced kernel r in eqn (3.55).

Let us start with the primary kernel k̂(τ) introduced in (3.51); moreover, we assume
that this kernel is given by eqn (3.28). As is well known, a simple result of Lorentz
invariance for inertial observers is that a basic radiation field can never stand com-
pletely still with respect to an inertial observer; this physical postulate—generalized
to arbitrary accelerated observers—has been used to determine the primary kernel in
eqn (3.28). We note that for the electromagnetic potential and the Dirac field, we have

assumed that k̂ is given by (3.28), while for the Faraday tensor the situation is more
complicated; see Section 3.6.

It follows from eqn (3.28) that

dΛ(τ)

dτ
= −k̂(τ) Λ(τ). (3.57)

It turns out that for uniformly accelerated observers, k̂ is a constant matrix and thus
eqn (3.57) has the solution

Λ(τ) = e−(τ−τ0) k̂ Λ(τ0). (3.58)
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The next step is the determination of the resolvent kernel r̂(τ, τ ′). We use the
method of successive substitutions described in Section 2.9. The resolvent kernel is
the sum of iterated kernels k̂n(τ, τ ′), namely,

r̂(τ, τ ′) =

∞∑
n=1

k̂n(τ, τ ′), (3.59)

in accordance with eqn (2.63). The iterated kernels can be easily computed in this
case using eqn (2.61) and we find

k̂n(τ, τ ′) = (−1)n
(τ − τ ′)n−1

(n− 1)!
k̂n. (3.60)

It follows from eqns (3.59) and (3.60) that for a constant k̂, the resolvent kernel r̂ is
given in general by a convolution-type kernel

r̂(τ, τ ′) = −k̂ e−(τ−τ ′) k̂. (3.61)

Using eqns (3.58) and (3.61), it is now straightforward to calculate r(τ, τ ′) given by
eqn (3.55). We find that r(τ, τ ′) is in fact a constant matrix and can be expressed as

r = −Λ−1(τ0) k̂Λ(τ0). (3.62)

Translational acceleration. To provide simple examples of congruences of uniformly
accelerated observers, imagine the class of static observers at rest in a finite
spatial region of the background global inertial frame. Each observer occupies an event
xµ = (t,x) and carries an orthonormal frame whose axes coincide with those of the
background inertial frame. At t = 0, the whole class is accelerated from rest along the
z axis with constant translational acceleration g0; in this connection, see the discussion
in Section 1.1 regarding observer Ô that undergoes uniform translational acceleration.
The acceleration is turned off at t = tf and for t > tf , the congruence moves uniformly
with constant speed vf along the z direction. We are interested in the relation between
the fields ψ and Ψ for t ∈ (0, tf ). At any time t, 0 < t < tf , in the congruence, an
event (t, x, y, z) is occupied by an accelerated observer in hyperbolic motion that at
t = 0 occupied the event (0, x, y, z0) such that

z0 = z +
1

g0
− ζ̄(t), ζ̄(t) := (t2 +

1

g2
0

)1/2. (3.63)

The congruence is accelerated from rest and the proper time along each world line in
the congruence is τ given by sinh g0τ = g0t, so that τ0 = 0; therefore, Λ(τ0) is the

identity matrix, r = −k̂ is proportional to g0 and

ψ(t, x, y, z) = Ψ(t, x, y, z)− k̂
∫ τ

0

Ψ(t′, x, y, z′) dτ ′. (3.64)

Moreover, g0 dτ = dt/ζ̄(t) and eqn (4.13) implies that z′ = z− ζ̄(t) + ζ̄(t′), so that we
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finally have

ψ(t, x, y, z) = Ψ(t, x, y, z)− 1

g0
k̂

∫ t

0

Ψ(t′, x, y, z − ζ̄ + ζ̄ ′)
dt′

ζ̄ ′
, (3.65)

where ζ̄ and ζ̄ ′ stand for ζ̄(t) and ζ̄(t′), respectively. A discussion of the field equation
for t > tf , when the congruence moves uniformly with vf = tf/ζ̄(tf ) is contained in
Mashhoon (2003b).

Rotation. Next, consider observers Õ that occupy a finite region of space and are
always at rest in the background inertial frame. Thus τ = t for these observers and for
−∞ < t < 0, they refer their measurements to standard inertial axes of the background
frame. However, for 0 ≤ t < tf , these noninertial observers refer their measurements
to axes that rotate uniformly with frequency Ω about the z axis. The observers in this
congruence are identical except for the fact that each occupies a different fixed position
in space. The tetrad frame of these observers for t ∈ (0, tf ) is given by eqns (1.25)–
(1.28) with ϕ = Ω t, or equivalently by eqns (1.33)–(1.36) with β = 0 and γ = 1. Thus
the acceleration tensor vanishes except for t ∈ (0, tf ). For t > tf , the observers refer
their measurements to inertial axes that are rotated about the z axis by a fixed angle
Ω tf , as expected. We are interested in these observers for t ∈ (0, tf ), where τ0 = 0,

Λ(τ0) is the identity matrix, r = −k̂ is proportional to Ω and

ψ(t,x) = Ψ(t,x)− k̂
∫ t

0

Ψ(t′,x) dt′. (3.66)

The consequences of acceleration-induced nonlocality for spin–rotation coupling
that have been considered in this chapter appear to be closer to reality—as provision-
ally defined by quantum mechanics—than the standard theory of accelerated systems.
This circumstance provides the incentive to extend the nonlocal theory of acceler-
ated systems to linearized gravitational waves as measured by accelerated observers in
Minkowski spacetime. We have thus far discussed the acceleration-induced nonlocal-
ity of the electromagnetic and Dirac fields. Can nonlocal special relativity theory be
extended to a nonlocal general theory of relativity? As a first step in this direction,
it would be interesting to extend the nonlocal ansatz and the ideas developed in this
section to linearized gravitational waves on Minkowski spacetime and explore some of
the consequences of the resulting theory. This is done in the next chapter.



4

Toward Nonlocal Gravitation

Is gravitation history-dependent? Einstein’s development of the general theory of
relativity has indeed revealed a profound connection between inertia and gravitation.
Following Einstein’s basic insight, we would expect that gravitation would be nonlocal
in much the same way that accelerated systems in Minkowski spacetime are nonlocal in
the sense described in the last three chapters. What would be a natural way to develop
a nonlocal theory of general relativity? Einstein’s local principle of equivalence is the
cornerstone of general relativity. Is it possible to formulate a natural nonlocal extension
of Einstein’s principle of equivalence?

The purpose of this chapter is to describe a tentative attempt at a direct non-
local generalization of general relativity. The considerations of Chapter 3 appear to be
provisionally applicable to linearized gravitational radiation in Minkowski spacetime.
In this chapter, we extend acceleration-induced nonlocality to linearized gravitational
waves. According to general relativity (GR), gravitational radiation linearized about
flat spacetime behaves as a massless spin-2 field on Minkowski spacetime and it is
interesting to extend the nonlocal ansatz to this field as well; that is, assuming that
gravitation involves a basic radiation field, as predicted by GR, the nonlocal theory of
accelerated observers can be extended to include linearized gravitational waves (Mash-
hoon 2007a). This approach and its implications are briefly discussed in this chapter.
In particular, the nonlocal modifications of helicity–rotation coupling for linearized
gravitational radiation are pointed out and a nonlocal wave equation is presented for
a special class of uniformly rotating observers.

The acceleration-induced nonlocality of gravitational waves raises the question of
whether the gravitational field is intrinsically nonlocal, since an observer in a gravita-
tional field is equivalent, by Einstein’s heuristic principle of equivalence, to a certain
accelerated observer in Minkowski spacetime. Einstein’s principle of equivalence is
incorporated into general relativity theory in a strictly local manner. Nevertheless,
the intrinsic nonlocality of the gravitational interaction is a distinct possibility, since
gravitation is a universal interaction that is qualitatively different from the other local
interactions. As a first step toward a nonlocal theory of the gravitational field, we
study in this chapter the acceleration-induced nonlocal wave equation for linearized
gravitational radiation in Minkowski spacetime.

The existence of gravitational radiation is a significant prediction of GR. There
is indirect evidence for the existence of gravitational waves via the orbital decay of
binary pulsars (Blanchet 2014); for instance, the rate of orbital decay of the Hulse–
Taylor binary pulsar is consistent with the prediction of GR regarding the emission of
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gravitational waves by the binary system. Recently, the first direct detection of grav-
itational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO)
has been reported (Abbott et al. 2016a): On 14 September 2015, the two detectors
of LIGO simultaneously observed a transient gravitational-wave signal containing a
range of frequencies from about 35 Hz to about 250 Hz and a peak amplitude of
about 10−21. The signal, GW150914, was interpreted to originate from the coalescence
of two black holes. Furthermore, on 26 December 2015, the twin detectors of LIGO
observed a second coincident signal, GW151226, that contained frequencies that ranged
from about 35 Hz to about 450 Hz and a peak amplitude of about 3.4 × 10−22. This
second signal has also been interpreted as originating from the merger of two black
holes (Abbott et al. 2016b).

4.1 Linearized Gravitational Radiation in GR

In the linear approximation, general relativity (GR) can be treated on a background
global Minkowski spacetime; that is, the corresponding Lorentzian spacetime may
be regarded as a slightly perturbed Minkowski spacetime. The spacetime metric can
therefore be expressed as gµν = ηµν + hµν(xα), where (ηµν) = diag(−1, 1, 1, 1) is the
Minkowski metric tensor and (hµν) is a sufficiently small symmetric perturbation. In
other words, we assume that the absolute magnitudes of the non-zero components of
the gravitational potentials hµν are so small in comparison to unity that the linear
weak-field approximation is valid. In terms of the gravitational potentials, the Riemann
curvature tensor, which represents the gravitational field in GR is given by

0Rµνρσ =
1

2
(hµσ,νρ + hνρ,µσ − hνσ,µρ − hµρ,νσ). (4.1)

It proves useful to introduce the trace-reversed potentials h̄µν ,

h̄µν = hµν −
1

2
ηµν h, (4.2)

where h = ηµν hµν and h̄ = ηµν h̄µν = −h. In terms of h̄µν the Einstein tensor,
0Gµν := 0Rµν − 1

2 gµν
0R, is then given in the linear approximation by

0Gµν = −1

2
2 h̄µν + h̄ρ(µ,ν)ρ −

1

2
ηµν h̄

ρσ
,ρσ, (4.3)

where 2 := ηαβ∂α∂β . The source-free Einstein’s field equation is 0Gµν = 0; therefore,
the wave equation for free gravitational waves in the linear approximation is given by

2 h̄µν − 2 h̄ρ(µ,ν)ρ + ηµν h̄
ρσ
,ρσ = 0. (4.4)

Under an infinitesimal transformation of inertial coordinates given by xµ 7→ x′µ =
xµ−εµ(x), the gravitational potentials are subject to the gauge transformation hµν 7→
h′µν , where

h′µν = hµν + εµ,ν + εν,µ. (4.5)

However, the curvature tensor and the gravitational field equation remain invariant
under this gauge transformation. The gauge freedom of the gravitational potentials
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may be used to impose the transverse gauge condition h̄µν,ν = 0; then, the source-free
gravitational field equation reduces to the wave equation 2 h̄µν = 0. The remaining
gauge freedom is usually restricted by introducing the transverse–traceless (TT) gauge
in which the conditions h = 0 and h0µ = 0 are further imposed on the gravitational
potentials; see Section 9.2 for a detailed discussion of the TT gauge in GR.

It is well known that the treatment of gravitational waves outlined earlier, namely,
the linear approximation of general relativity for source-free gravitational fields on
a Minkowski spacetime background, admits of an alternative interpretation: It can
be regarded as a Lorentz-invariant theory of a free linear massless spin-2 field in
special relativity. This latter approach—to which the nonlocal theory of accelerated
systems is directly applicable—is adopted in the rest of this chapter. Therefore, we
will henceforth regard hµν(x) and 0Rµνρσ(x) as fields defined in a global inertial frame
in Minkowski spacetime. This circumstance is the spin-2 analog of the massless spin-1
field in special relativity that involves the gauge potential Aµ(x) and the corresponding
electromagnetic field Fµν(x).

It is important to recognize that the nonlocal ansatz can be applied either to the
gravitational field (0Rµνρσ) or the gravitational wave potential (hµν or h̄µν) resulting in
two distinct but closely related approaches. The situation here is completely analogous
to the electromagnetic case discussed in Chapter 3. For the sake of simplicity, we choose
hµν in what follows. According to the hypothesis of locality, the potential as measured
by an arbitrary accelerated observer in Minkowski spacetime is given by the projection
of the potential on the orthonormal tetrad frame of the observer, namely,

hα̂β̂ = hµν λ
µ
α̂ λ

ν
β̂ . (4.6)

Our nonlocal ansatz (3.51) for the gauge potential hµν then takes the Lorentz-invariant
form

Hα̂β̂(τ) = hα̂β̂(τ) +

∫ τ

τ0

Kα̂β̂
γ̂δ̂(τ ′)hγ̂δ̂(τ

′) dτ ′, (4.7)

where Hα̂β̂ is the symmetric gravitational wave amplitude as measured by the accel-
erated observer and the acceleration kernel Kα̂β̂γ̂δ̂ is a tensor that is symmetric in its
first and second pairs of indices.

In general, the symmetric tensor hµν has ten independent components. We arrange

these in a column vector ψ such that eqn (4.6) can be written as ψ̂(τ) = Λ(τ)ψ(τ),

where Λ is a 10 × 10 matrix. Specifically, ψ̂A = ΛA
B ψB , where the indices A and B

belong to the set {00, 01, 02, 03, 11, 12, 13, 22, 23, 33}.
It is worthwhile to work out explicitly the nonlocal theory of linearized gravitational

waves for a congruence of accelerated observers. We focus in this chapter on uniformly
rotating observers. The results are approximately applicable to Earth-based gravita-
tional wave antennas that rotate with the Earth. Current efforts to detect gravitational
waves in Earth-bound laboratories involve incident radiation of frequency & 1 Hz. By
comparison, the corresponding rotation frequency of the Earth is nearly uniform and
about 10−5 Hz, so that ω � Ω for the current laboratory experiments (Ramos and
Mashhoon 2006).
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4.2 Uniformly Rotating Observer

Consider observer O that for t < 0 moves uniformly along the y axis such that its
position is given by x = r, y = rΩ t and z = z0 in an inertial system of coordinates,
where r > 0, Ω > 0 and z0 are constants. At t = 0, observer O is forced to move on a
circle of radius r with constant angular speed Ω about the z axis such that its position
for t ≥ 0 is given by x = r cosϕ, y = r sinϕ and z = z0. Here ϕ = Ω t = γ Ω τ , where
γ = t/τ is the observer’s Lorentz factor that corresponds to β = rΩ. For τ ≥ 0, the
observer’s orthonormal tetrad frame is given by eqns (1.33)–(1.36); see Section 1.1.
We are interested in the reception of gravitational radiation by the uniformly rotating
observer for t ≥ 0.

It follows from the postulate of locality that the field measured by the uniformly
rotating observer is given by eqn (4.6), which may be written out in component form
using eqns (1.33)–(1.36). We find

h0̂0̂ = γ2[h00 − β(sinϕ h01 − cosϕ h02)]

+γ2β2(sin2 ϕ h11 − sin 2ϕ h12 + cos2 ϕ h22), (4.8)

h0̂1̂ = γ(cosϕ h01 + sinϕ h02)

+
1

2
γβ(− sin 2ϕ h11 + 2 cos 2ϕ h12 + sin 2ϕ h22), (4.9)

h0̂2̂ = γ2[β h00 + (1 + β2)(− sinϕ h01 + cosϕ h02)]

+γ2β(sin2 ϕ h11 − sin 2ϕ h12 + cos2 ϕ h22), (4.10)

h0̂3̂ = γ[h03 + β(− sinϕ h13 + cosϕ h23)], (4.11)

h1̂1̂ = cos2 ϕ h11 + sin 2ϕ h12 + sin2 ϕ h22, (4.12)

h1̂2̂ = γβ(cosϕ h01 + sinϕ h02)

+
1

2
γ(− sin 2ϕ h11 + 2 cos 2ϕ h12 + sin 2ϕ h22), (4.13)

h1̂3̂ = cosϕ h13 + sinϕ h23, (4.14)

h2̂2̂ = γ2[β2h00 − 2β(sinϕ h01 − cosϕ h02)]

+γ2(sin2 ϕ h11 − sin 2ϕ h12 + cos2 ϕ h22), (4.15)

h2̂3̂ = γ(βh03 − sinϕ h13 + cosϕ h23), (4.16)

h3̂3̂ = h33. (4.17)

These results can be used to construct the 10× 10 matrix Λ, which is needed for the
determination of kernel k̂.

Imagine next the reception of a normally incident plane monochromatic gravita-
tional wave by observer O. The incident radiation of frequency ω and definite helicity
propagates along the z axis. In the TT gauge, the incident wave amplitude hµν is such
that h0µ = 0 and (hij) is a symmetric and traceless 3×3 matrix given by the real part
of

Agw (e⊕ ± ie⊗)e−i ω(t−z). (4.18)

Here Agw is a constant complex amplitude of the gravitational wave, the upper (lower)
sign corresponds to positive (negative) helicity radiation and the two independent
linear polarization states are given by
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e⊕ =

1 0 0
0 −1 0
0 0 0

 , e⊗ =

0 1 0
1 0 0
0 0 0

 . (4.19)

For the wave functions that we consider in this section, the complex representation
will be employed throughout as all operations involving gravitational waves are linear.
Thus only the real parts of the fields are of physical interest.

It follows from eqns (4.8)–(4.17) that the incident radiation field (4.18), as measured
by the rotating observer, is given by

(hα̂β̂) = Agw


−β2γ2 ±iβγ −βγ2 0
±iβγ 1 ±iγ 0
−βγ2 ±iγ −γ2 0

0 0 0 0

 e−i ω′τ+i ω z0 , (4.20)

where ω′ is given by
ω′ = γ (ω ∓ 2 Ω). (4.21)

Equation (4.20) should be compared and contrasted with the measured components
of the Riemann tensor given in this case by Ramos and Mashhoon (2006), who worked
out the spin–rotation–gravity coupling in detail for linearized gravitational waves with
ω � Ω. In particular, it can be demonstrated by means of the curvature tensor that
a plane monochromatic gravitational wave of frequency ω propagating in Minkowski
spacetime has indeed frequency ω′ as measured by an observer rotating uniformly
with frequency Ω about the direction of propagation of the incident radiation. More
generally,

ω′ = γ (ω −M Ω), (4.22)

whereM = 0,±1,±2, . . . , is the total (orbital plus spin) angular momentum parameter
in the case of oblique incidence (Ramos and Mashhoon 2006).

Equations (4.21) and (4.22) are the spin-2 analogs of similar results for electro-
magnetic radiation that have been discussed in detail in Chapter 3. In eqn (4.22),
ω′ can be zero or negative. A negative ω′ cannot be excluded due to the absolute
character of the observer’s rotation. However, in the case of ω′ = 0, there is no
experimental evidence to suggest that a basic radiation field could ever stand com-
pletely still with respect to any observer. In the derivation of eqns (4.21) and (4.22),
the standard theory of relativity based upon the hypothesis of locality has been used. A
consequence of this assumption is that the gravitational wave could stand completely
still for ω = MΩ, M > 0, in eqn (4.22). For instance, by a mere rotation of frequency
ω/2 in the positive sense about the direction of propagation of a normally incident
positive-helicity gravitational wave, the field becomes completely static in accordance
with eqn (4.21). According to linearized GR, however, a gravitational radiation field
can never stand completely still with respect to any inertial observer. Generalizing
this circumstance to all observers, the nonlocal theory of accelerated systems can be
extended to linearized gravitational radiation and the acceleration kernel may then be
tentatively chosen in accordance with eqn (3.28). We are therefore able to proceed to
the calculation of Hα̂β̂ for uniformly rotating observers.
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4.2.1 Static observer with rotating frame

To simplify matters, the general case will not be treated here; instead, we concen-
trate on observer Õ that is at rest on the z axis at z = z0 and for t ≥ 0 refers its
measurements to uniformly rotating axes, that is, r = 0 and ϕ = Ω t, so that β = 0
and γ = 1 in eqns (1.33) and (1.35) of the corresponding tetrad frame. To work out
the measured field Hα̂β̂ according to observer Õ using eqn (3.51), we first need to find

the components of the acceleration kernel Kα̂β̂
γ̂δ̂ defined in eqn (4.7). We represent

this kernel in matrix form by the 10×10 matrix k̂ and assume that, just as in the case
of the electromagnetic gauge potential, k̂ is given via eqn (3.28). In this case Λ has a
block diagonal form, Λ = diag(1, R, 1, S, 1), where R is the 2× 2 rotation matrix

R(ϕ) =

[
cosϕ sinϕ
− sinϕ cosϕ

]
(4.23)

and S is the 5× 5 matrix

S(ϕ) =


cos2 ϕ sin 2ϕ 0 sin2 ϕ 0
− 1

2 sin 2ϕ cos 2ϕ 0 1
2 sin 2ϕ 0

0 0 cosϕ 0 sinϕ
sin2 ϕ − sin 2ϕ 0 cos2 ϕ 0

0 0 − sinϕ 0 cosϕ

 . (4.24)

We note that detR = detS = 1 and

R−1(ϕ) = R(−ϕ), S−1(ϕ) = S(−ϕ). (4.25)

The acceleration kernel k̂ can now be easily determined in this case via eqn (3.28),

since Λ−1 = diag(1, R(−ϕ), 1, S(−ϕ), 1). As expected, k̂ turns out to be a constant

matrix proportional to Ω. We represent the elements of the 10× 10 matrix k̂ by k̂AB ,
with A,B = 1, . . . , 10. The non-zero elements of matrix k̂ are given by

k̂23 = k̂68 = k̂79 = −Ω, (4.26)

k̂32 = k̂65 = k̂97 = Ω, (4.27)

−k̂56 = k̂86 = 2 Ω. (4.28)

Using these results, the general nonlocal relationship, reflected in the ansatz (4.7),
between the components Hα̂β̂ of the gravitational potential measured by Õ and the
components hα̂β̂ that are obtained from the hypothesis of locality can be expressed as

H0̂0̂ = h0̂0̂, H0̂3̂ = h0̂3̂, H3̂3̂ = h3̂3̂, (4.29)

H0̂1̂ = h0̂1̂ − Ω

∫ t

0

h0̂2̂ dt
′, (4.30)

H0̂2̂ = h0̂2̂ + Ω

∫ t

0

h0̂1̂ dt
′, (4.31)
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H1̂1̂ + H2̂2̂ = h1̂1̂ + h2̂2̂, (4.32)

H1̂2̂ = h1̂2̂ + Ω

∫ t

0

(h1̂1̂ − h2̂2̂) dt′, (4.33)

H1̂1̂ −H2̂2̂ = h1̂1̂ − h2̂2̂ − 4 Ω

∫ t

0

h1̂2̂ dt
′, (4.34)

H1̂3̂ = h1̂3̂ − Ω

∫ t

0

h2̂3̂ dt
′, (4.35)

H2̂3̂ = h2̂3̂ + Ω

∫ t

0

h1̂3̂ dt
′. (4.36)

These results can be employed to determine the nonlocal modifications of helicity–
rotation coupling for gravitational waves incident on the special rotating observer Õ
that is at rest on the z axis.

4.2.2 Helicity–rotation coupling for gravitational waves

For the incident radiation field (4.18), hα̂β̂ for observer Õ can be determined from

eqn (4.20) with β = 0 and γ = 1. The result is

hα̂β̂ = e±2iΩ t hαβ . (4.37)

That is, hα̂β̂ can be formally obtained from hαβ at the position of observer Õ by simply

replacing ω with ω′. Moreover, eqns (4.29)–(4.36) imply that in this case

Hα̂β̂ = 2f±(t)hα̂β̂ , (4.38)

where

2f±(t) =
ω ∓ 2 Ω eiω

′t

ω ∓ 2 Ω
, (4.39)

with ω′ = ω ∓ 2 Ω and t = τ , is simply the spin-2 instance of the function sf±(τ),
defined in eqn (3.41), that has been discussed in detail in connection with nonlocal elec-
trodynamics in Chapter 3. Specifically, for the case of resonance involving an incident
positive-helicity wave of frequency ω → 2 Ω, we find that as ω′ → 0, 2f+ → 1− 2 iΩ t;
as before, this linear divergence with time can be avoided with a finite incident wave
packet. On the other hand, for an incident negative-helicity wave of ω = 2 Ω, ω′ = 4 Ω
and 2f− = exp(2iΩt) cos(2Ωt). Another direct consequence of nonlocality, evident in
the factor 2f±, is that the amplitude of an incident positive-helicity gravitational wave
of frequency ω > 2 Ω as measured by the rotating observer is enhanced by a factor
of ω/(ω − 2 Ω), while that of a negative-helicity wave is diminished by a factor of
ω/(ω + 2 Ω).

The results that have been obtained thus far for the static rotating observer Õ fixed
on the z axis may be simply extended to a whole class of such static observers that
are fixed in space and differ from each other only through their spatial positions. It is
clearly simpler to deal with this class of uniformly rotating observers than the class of
observers O whose tetrads are given by eqns (1.33)–(1.36) of Section 1.1. Therefore,
in the following section, we present the nonlocal gravitational wave equation for the
class of spatially fixed noninertial observers Õ.
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4.3 Nonlocal Gravitational Wave Equation

Imagine observers Õ that are always at rest in a global inertial frame and refer their
measurements to the standard inertial axes for −∞ < t < 0; however, for t ≥ 0 they
employ axes that rotate uniformly about the z axis with constant frequency Ω. Thus for
t ≥ 0, each such observer carries a tetrad frame given by eqns (1.33)–(1.36) with β = 0
and γ = 1. The purpose of this section is to develop the Lorentz-invariant nonlocal
gravitational wave equation for this special congruence of noninertial observers.

It is a general consequence of eqn (4.7) that for τ > τ0,

hαβ(τ) = Hαβ(τ) +

∫ τ

τ0

rαβ
γδ(τ, τ ′)Hγδ(τ ′) dτ ′, (4.40)

where r is a variant of the resolvent kernel defined in eqn (3.55). It has been shown in

Section 3.8 that if k̂ is a constant kernel, then r is constant as well and in matrix form
is given by r = −Λ−1(τ0) k̂Λ(τ0); see eqn (3.62).

For the special class of rotating observers Õ under consideration here, τ = t,
τ0 = 0, k̂ is a constant matrix and its non-zero elements are given in eqns (4.26)–
(4.28). Moreover, it is clear from eqns (4.23)–(4.24) that Λ(0) is the identity matrix;

hence, it follows that in this case r = −k̂. Thus the explicit form of the ten independent
equations contained in eqn (4.40) may be obtained from eqns (4.29)–(4.36) by making
the formal replacement (Hα̂β̂ , hα̂β̂ ,Ω) 7→ (hαβ ,Hαβ ,−Ω). It is interesting to note that

the form of eqns (4.29)–(4.36) remains the same if the field indices are raised; the same
is true for the explicit form of eqn (4.40) in the case under consideration here.

To express eqn (4.40) for the special class of rotating observers Õ, it proves
convenient to write

hαβ(t,x) = Hαβ(t,x) + rαβγδ

∫ t

0

Hγδ(t′,x) dt′ (4.41)

for t > 0, since the observers are fixed in space. Here the components of r = −k̂ are
all constants proportional to Ω, cf. eqns (4.26)–(4.28). The substitution of hαβ(t,x) in
the equations that it satisfies would then result, via eqn (4.41), in the corresponding
equations for the nonlocal wave amplitude Hαβ(t,x).

The wave function hαβ(t,x) is subject to the gauge condition(
hαβ − 1

2
ηαβh

)
,β

= 0 (4.42)

and satisfies the wave equation
2hαβ = 0, (4.43)

which follows from 2 h̄αβ = 0. Thus for t > 0, Hαβ is subject to the gauge condition(
Hαβ + rαβγδ

∫ t

0

Hγδ(t′,x) dt′
)
,β

=
1

2
ηαβH,β , (4.44)

where H = ηαβHαβ and it turns out that H = h in this case. Moreover, for t > 0, Hαβ
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satisfies the nonlocal wave equation

2Hαβ = rαβγδ

(
∂

∂t
Hγδ −∇2

∫ t

0

Hγδ(t′,x) dt′
)
, (4.45)

where ∇2 is the Laplacian operator.
The approach developed here for the special congruence of rotating observers can

be extended to arbitrary accelerated systems.

4.4 Acceleration-Induced Nonlocality and Gravitation

Following the approach presented in Chapter 3 for electrodynamics, it is in principle
possible to develop nonlocal field equations for linear gravitational waves in Minkowski
spacetime. This has been done in the present chapter for a rather simple class of
uniformly rotating observers. Invoking Einstein’s principle of equivalence, the results of
this chapter may be considered to be a first step in the direction of a nonlocal classical
theory of gravitation. In other words, Einstein’s heuristic principle of equivalence may
be employed to argue intuitively that acceleration-induced nonlocality should extend
to purely gravitational situations as well. As incorporated into GR, however, Einstein’s
principle of equivalence is extremely local and its sphere of validity certainly does not
extend to acceleration-induced nonlocality. Nevertheless, following Einstein’s funda-
mental insight that the principle of equivalence of inertial and gravitational masses
implies a deep connection between inertia and gravitation, acceleration-induced non-
locality provides the incentive to look for a nonlocal generalization of Einstein’s theory
of gravitation.

What would be the next step that could lead to a nonlocal extension of general
relativity resulting in nonlocal as well as nonlinear gravitational field equations? A
direct physically motivated approach might well involve a nonlocal generalization of
Einstein’s principle of equivalence. However, it is not clear how to implement this idea
in a natural manner.

Frustrated with finding a direct innate path toward the nonlocal extension of
GR, we turn to an indirect approach based on a certain subtle analogy with electro-
dynamics.

4.5 Nonlocal Gravity: Analogy with Electrodynamics

General relativity is a field theory of gravitation that has been modeled after Maxwell’s
field theory of electrodynamics. The latter, in the presence of a material medium, is
the only nonlocal field theory that has firm observational support. In other words,
Maxwell’s equations in a medium in an inertial frame can be expressed in terms of the
antisymmetric field tensors Fµν 7→ (E,B) and Hµν 7→ (D,H) as

∂ [ρ Fµν] = 0, ∂ν H
µν =

4π

c
j̄µ, (4.46)

where j̄µ is the current 4-vector associated with free electric charges. To complete
the theory, a constitutive relation between Fµν and Hµν is required. If we impose the
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local relation Hµν = Fµν , we recover Maxwell’s equations in vacuum. However, in a
medium, the constitutive relation is in general nonlocal (Landau and Lifshitz 1960;
Jackson 1999); for instance, the relation between D and E (or H and B) could be of
the general form,

Di(x) =

∫
εij(x

′)Ej(x− x′) d4x′, (4.47)

thus leading to the nonlocal electrodynamics of media; see Jackson (1999, p. 14). An
example involving a temporally nonlocal relationship is

D(t) = E(t) +

∫ ∞
0

f(t′) E(t− t′) dt′, (4.48)

where the scalar permeability f is a function of time as well as the properties of the
medium—see Landau and Lifshitz (1960, p. 249). This relation can be expressed, by
a simple change of variable, as the Volterra integral equation

D(t) = E(t) +

∫ t

−∞
f(t− τ) E(τ) dτ. (4.49)

Is it possible to develop a nonlocal generalization of GR in analogy with the non-
local electrodynamics of media? To do so, one would first need to represent the Einstein
field equation in a form that more closely resembles Maxwell’s original field equations.
In this connection, it turns out that GR has an equivalent tetrad formulation, GR||,
within the framework of teleparallelism; that is, GR|| is the teleparallel equivalent of
GR (Blagojević and Hehl 2013; Aldrovandi and Pereira 2013; Maluf 2013). Teleparal-
lelism has a long history; its application to gravitational physics has been considered
by many authors starting with Einstein in 1928; see, for example, Hayashi and Shirafuji
(1979) and the references cited therein. GR|| is the gauge theory of the Abelian group
of spacetime translations (Cho 1976; Hehl, Nitsch and Von der Heyde 1980); therefore,
its field equations can be expressed in a form that closely resembles Maxwell’s original
field equations (4.46); see Hehl, Nitsch and Von der Heyde (1980). This circumstance
led F.W. Hehl to suggest that one should attempt to formulate a nonlocal GR|| theory
in close analogy with nonlocal electrodynamics of media in order to arrive indirectly
at a nonlocal generalization of GR. This fruitful suggestion has led to the approach
to nonlocal gravity developed in this book. It is possible to present such a nonlocal
gravity theory within the framework of gauge theories of gravitation (Hehl and Mash-
hoon 2009a, 2009b). There is, however, a complementary approach that emphasizes
an extended GR framework. We find it convenient to work within the latter approach
in this book. The conceptual basis for the extension of GR that we need for nonlocal
gravity is presented in Chapter 5.



5

Extension of General Relativity

The aim of this chapter is to present an extension of general relativity that is based
on the fundamental observers, namely, a preferred set of global observers whose ortho-
normal tetrads are parallel and carry the gravitational degrees of freedom. In general
relativity (GR), the metric tensor gµν carries the ten degrees of freedom of the grav-
itational field. However, in the extended GR framework, the fundamental observers’
orthonormal tetrad frames eµα̂(x) carry the sixteen gravitational degrees of freedom.
Given any smooth orthonormal tetrad field λµ

α̂(x) on spacetime, the spacetime metric
is then defined by

gµν = λµ
α̂λν

β̂ ηα̂β̂ , (5.1)

which is the orthonormality relation for the tetrad field. Of the sixteen degrees of
freedom of the orthonormal tetrad field, ten are thus fixed by the metric and the other
six specify the tetrad field with respect to a fiducial orthonormal frame field. In other
words, at each event x, the different orthonormal tetrad fields at x are related to each
other by an element of the local Lorentz group that can be characterized by three
boost speeds and three rotation angles which would in general depend upon x.

To determine the ten components of the metric tensor in GR, we employ ten
nonlinear partial differential equations that are contained in the gravitational field
equation. Similarly, to determine the sixteen components of the fundamental tetrad
field in nonlocal gravity, we have sixteen nonlinear partial integro-differential equations
that are contained in the field equation of nonlocal gravity discussed in Chapter 6.
Thus in nonlocal gravity, the gravitational field equation is expected to determine a
congruence of fundamental observers in spacetime with a globally parallel frame field
that is unique up to transformations under the global Lorentz group.

The universality of the gravitational interaction is the unique feature of this force
and leads to its geometric description. In GR, the gravitational field is described by
the Riemannian curvature of spacetime. An observer in GR follows a future-directed
timelike world line and carries an orthonormal tetrad frame. Any physics experiment is
subject to the gravitational influence of the total mass–energy content of the observable
universe. In particular, in a gravitational experiment, all instruments employed by
observers in the measurement process are subject to the influence of the gravitational
field as well. As a consequence of this circumstance it is in general necessary to specify
how an observable, which is a scalar invariant in GR, is actually measured in practice.
It therefore appears reasonable to suppose that the orthonormal tetrad frame field
of a hypothetical set of observers throughout spacetime could carry the gravitational
degrees of freedom due to the ubiquity of gravitation.
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Einstein’s theory of gravitation is fully capable of dealing with the measurement of
tensorial and spinorial quantities and it therefore appears at first sight that the notion
of economy of thought would lead one to reject our intended extension of general
relativity based on observer dynamics. On the other hand, it was first pointed out by
Møller that such an extension can solve the problem of gravitational energy in GR;
see Møller (1961), Pellegrini and Plebanski (1963), Hayashi and Shirafuji (1979) and
the references cited therein. As is well known, the notion of gravitational energy and
its distribution, defined in GR via an algebraic function of gµν and its derivatives,
is not physically satisfactory and a gravitational analog of Poynting’s theorem does
not in general exist. The main aim of the present chapter is to describe an extension
of the general relativistic formalism in which a global tetrad field plays an essential
dynamic role. The tetrad approach is then used in Chapter 6 to formulate a nonlocal
generalization of GR.

In the standard geometric formulation of Einstein’s theory of gravitation, the global
inertial frames of Minkowski spacetime are replaced by the local inertial frames of
curved spacetime manifold. In this way, the local distinction between inertial and
accelerated systems is retained. The tensor fields on local tangent spaces are con-
nected via the Levi-Civita connection. In the extended GR framework, we have a
pseudo-Riemannian metric with two metric-compatible connections. In other words,
it is possible to extend the pseudo-Riemannian (i.e. Lorentzian) structure of GR in
a natural way by adding a non-symmetric connection due to Weitzenböck (1923).
The Weitzenböck connection is related to congruent frames adapted to fundamental
observers. The standard Levi-Civita connection (0Γµαβ) is symmetric and hence torsion-
free but gives rise to the Riemannian curvature of spacetime that characterizes the
gravitational field in GR. On the other hand, the Weitzenböck connection (Γµαβ) is
curvature-free, but has torsion. Thus at each event in spacetime, the curvature and
torsion tensors both characterize the gravitational field. In fact, the curvature of the
Levi-Civita connection and the torsion of the Weitzenböck connection are complemen-
tary representations of the gravitational field in extended GR. To see how this comes
about, we first consider the fundamental observers in Minkowski spacetime.

5.1 Fundamental Observers in Minkowski Spacetime

Imagine a global inertial frame of reference with standard inertial Cartesian
coordinates X α̂ and the corresponding fundamental observers, namely, the ideal iner-
tial observers that are all at rest in this frame and each has a future-directed timelike
world line and an associated orthonormal tetrad frame Ēµ̂α̂ = δµ̂α̂ with unit axes that
coincide with the global Cartesian axes of the background frame. In the special case
of the fundamental observers, their local frames can be identified with the correspond-
ing global inertial rest frame; therefore, hatted indices have been employed here for
the global frame as well. The fundamental laws of nongravitational physics have been
formulated with respect to the hypothetical fundamental observers.

The ideal inertial observers are free to choose any admissible system of coordinates
xµ = (t, xi); indeed, the implementation of this possibility requires the use of tensor
calculus, but no new physical assumption is involved. In the new coordinate system,
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the spacetime metric tensor is gµν instead of ηµ̂ν̂ ; in fact,

ds2 = ηα̂β̂dX
α̂dX β̂ = gµνdx

µdxν . (5.2)

The law of inertia—namely, the equation of motion for a free test particle, d2X α̂/ds2 =
0—takes the form of the geodesic equation in the new coordinate system

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0, (5.3)

where the Christoffel symbols are given by

Γµαβ =
∂2X ρ̂

∂xα∂xβ
∂xµ

∂X ρ̂
. (5.4)

In this global inertial frame, the motion of a free test particle is such that its
4-velocity is parallel transported along its path; hence, we recognize that in eqn (5.3),
the Christoffel symbols constitute the symmetric (Levi-Civita) connection for parallel
transport in arbitrary coordinates. Thus we define the covariant differential of a vector
Aµ as DAµ = (∇αAµ) dxα, where

∇αAµ = ∂αA
µ + ΓµαρA

ρ. (5.5)

Following the standard rules of tensor analysis, one can simply check that the Levi-
Civita connection is compatible with the metric, namely, ∇α gµν = 0, so that one
finds

Γµαβ =
1

2
gµν(gνα,β + gνβ,α − gαβ,ν), (5.6)

where a comma denotes partial differentiation.
Under an arbitrary change of local spacetime coordinates from X to x, the tetrad

frames Ēµ̂α̂ of the fundamental observers transform to eµα̂, namely,

eµα̂ =
∂xµ

∂X ν̂
Ēν̂ α̂ =

∂xµ

∂X α̂
(5.7)

and similarly

eµ
α̂ =

∂X ν̂

∂xµ
Ēν̂

α̂ =
∂X α̂

∂xµ
. (5.8)

These maintain a global network of four Cartesian axes such that each global axis is
specified by a parallel sequence of the corresponding unit axes; that is, one can easily
check using eqn (5.5) that

∇ν eµα̂ = 0. (5.9)

In fact, the symmetric Christoffel symbols given by eqn (5.4) can be expressed in terms
of the fundamental tetrads as

Γµαβ = eµρ̂ ∂α eβ
ρ̂. (5.10)

It is important to note that in arbitrary admissible coordinates in Minkowski spacetime,
the connection has two equivalent expressions: eqn (5.6) in terms of the metric and
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eqn (5.10) in terms of the tetrads of the fundamental observers. The fundamental frame
field is orthonormal,

gµν e
µ
α̂ e

ν
β̂ = ηα̂β̂ , (5.11)

which by eqn (5.7) is equivalent to the invariance of the spacetime interval given by
eqn (5.2).

An arbitrary accelerated observer can employ at any event in Minkowski spacetime
an arbitrary orthonormal tetrad frame λµα̂ subject to gµν λ

µ
α̂ λ

ν
β̂ = ηα̂β̂ . The essential

coordinate-independent physical property of Minkowski spacetime under scrutiny here
is the global existence of an ensemble of parallel orthonormal tetrad frame fields eµα̂
associated with fundamental observers; moreover, one can go from one such global
ensemble of parallel tetrad fields to another via a constant six-parameter element of
the global Lorentz group. Under such a transformation of the fundamental frames, for
instance, the Christoffel symbols (5.10) remain invariant.

The basic laws of microphysics have been formulated for the fundamental observers
and the corresponding standard (quantum) measurement theory determines what the
fundamental observers measure. For instance, observables are generally obtained from
the projection of a physical quantity on the tetrad frame of the observer. Consider,
for example, the measurement of the energy–momentum tensor by the fundamental
observers; in this case, we have,

T α̂β̂ = Tµν eµ
α̂ eν

β̂ , (5.12)

which is equivalent, via eqn (5.8), to the rule for transforming tensors under a change
of coordinates.

The fundamental frame field eµα̂ provides the Minkowski spacetime manifold with
a useful scaffolding. To illustrate the physical significance of this scaffolding, let us
imagine a distribution of mass–energy characterized in Minkowski spacetime by the

total energy–momentum tensor T α̂β̂(X), as expressed in standard inertial Cartesian
coordinates X µ̂. Gravity is turned off. The net amount of energy–momentum contained
in a closed spatial volume V at time t can be written as

P α̂ =

∫
V

T α̂0̂ d3X. (5.13)

Now imagine expressing such a nonlocal quantity, which transforms as a vector under
the global Lorentz group, in arbitrary local spacetime coordinates xµ. In arbitrary
admissible coordinates,

T α̂β̂ =
∂Xα̂

∂xµ
∂X β̂

∂xν
Tµν (5.14)

and the energy–momentum conservation law takes the form ∇ν Tµν = 0. Employing
standard notation for hypersurface elements, we note that the quantity integrated in
eqn (5.13) can be represented in tensorial form as

T α̂β̂d3Σβ̂ =
(∂X α̂

∂xµ
∂X β̂

∂xν
Tµν

)( ∂xρ
∂X β̂

d3σρ

)
. (5.15)
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The right-hand side of eqn (5.15) can be written as a spacetime scalar, namely,

eµ
α̂ Tµν d3σν , (5.16)

due to the existence of the fundamental frame field. Therefore, the appropriate
generalization of eqn (5.13) in arbitrary coordinates is

P α̂ =

∫
D
eµ
α̂ Tµν d3σν , (5.17)

where D is the hypersurface domain corresponding to the original volume V at time
t. Equation (5.17) reduces to eqn (5.13) when standard inertial Cartesian coordinates
are employed. This circumstance illustrates the crucial significance of our fundamental
observers and their tetrads: the global existence of four parallel vector fields throughout
domain D has made it possible to find a proper geometric expression for our nonlocal
eqn (5.13).

In general, the differential form of the energy–momentum conservation law,

∂ T α̂β̂/∂X β̂ = 0, becomes ∇ν Tµν = 0 in arbitrary coordinates. Furthermore, it follows
from this relation and eqn (5.9) that

∇ν
(
eµ
α̂ Tµν

)
= 0. (5.18)

This is a current conservation law and can be written as

∂

∂xν

(√
−g eµα̂ Tµν

)
= 0. (5.19)

In this way, it is straightforward to obtain the integral conservation law for energy–
momentum using Gauss’s theorem, namely,∮

∂V
eµ
α̂ Tµν d3σν = 0, (5.20)

where ∂ V is the closed boundary of V, which can be any compact and oriented region
of the spacetime manifold.

The approach to the physics of flat spacetime, briefly illustrated in this section,
can be extended to the curved spacetime of GR.

5.2 Fundamental Observers in Curved Spacetime

The symmetric Christoffel symbols of arbitrary coordinate systems in flat spacetime
could be expressed either in terms of the metric or the tetrad frame of the funda-
mental observers. These equivalent expressions in flat spacetime become inequivalent
in curved spacetime; that is, the degeneracy is removed by the Riemannian curva-
ture of spacetime. We then have in extended general relativity one pseudo-Riemannian
metric with two metric-compatible connections corresponding to the Levi-Civita and
Weitzenböck connections.
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In the curved spacetime of general relativity (GR), spacetime is a smooth four-
dimensional manifold with a Lorentzian metric such that the invariant spacetime
interval ds is given by

ds2 = gµν dx
µ dxν . (5.21)

The path of a test particle of constant inertial mass m is obtained as usual from

δ

∫
−mds = 0, (5.22)

which results in the geodesic equation of motion for the test particle

d2xµ

ds2
+ 0Γµαβ

dxα

ds

dxβ

ds
= 0. (5.23)

Similarly, rays of radiation follow null geodesics of the spacetime manifold. The
4-velocity vector of a test particle, uµ = dxµ/ds, is parallel transported along a geodesic
via the Levi-Civita connection that is given by the Christoffel symbols

0Γµαβ =
1

2
gµν(gνα,β + gνβ,α − gαβ,ν). (5.24)

In curved spacetime, we use a left superscript “0” to denote geometric quantities
related to the Levi-Civita connection. This symmetric connection is torsion-free but
has Riemannian curvature

0Rαµβν = ∂β
0Γανµ − ∂ν 0Γαβµ + 0Γαβσ

0Γσνµ − 0Γανσ
0Γσβµ. (5.25)

The gravitational field equation in GR is given by 0Gµν = κTµν , where κ := 8πG/c4

is a constant, Tµν is the symmetric energy–momentum tensor of matter and

0Gµν = 0Rµν −
1

2
gµν

0R (5.26)

is the Einstein tensor.
Each observer in spacetime carries an orthonormal tetrad frame λµα̂(x), where

λµ0̂ is the observer’s unit temporal direction and λµî , i = 1, 2, 3, constitute its local
spatial frame. The projection of tensor fields on an observer’s tetrad frame indicates the
local measurement of the corresponding physical quantities by the observer. Spacetime
indices are raised and lowered via the metric tensor gµν , while the hatted tetrad
indices—that is, the local Lorentz indices—are raised and lowered via the Minkowski
metric tensor ηµ̂ν̂ given by diag(−1, 1, 1, 1) in our convention. The orthonormality
condition for the tetrad frame λµα̂(x) can be expressed as

gµν(x) = ηα̂β̂ λµ
α̂(x)λν

β̂(x), (5.27)

so that we can write eqn (5.21) as

ds2 = ηα̂β̂ κ
α̂ κβ̂ , (5.28)

where κα̂ = λµ
α̂ dxµ. Thus the tetrad provides the local connection between spacetime

quantities and local Lorentz quantities for the observer.
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For each α̂ = 0̂, 1̂, 2̂, 3̂, the differential form κα̂ = λµ
α̂ dxµ is in general not

exact, since an exact form would imply that it is integrable, namely, that there exists
a function X α̂(x) such that κα̂ = dX α̂ and hence λµ

α̂ = ∂X α̂/∂xµ, cf. eqn (5.8) of
the previous section. If there are four such exact 1-forms, then it would follow from
eqn (5.27) that we are in flat Minkowski spacetime with 0Rµνρσ = 0 and the four func-
tions represent the inertial Cartesian spacetime coordinates of a global inertial frame.
Indeed, the family of observers with such a frame field would be the corresponding
fundamental observers, namely, static inertial observers with tetrad frames that are
all parallel and point along the Cartesian coordinate axes of the global inertial frame
with coordinates X α̂. If 0Rµνρσ 6= 0, then the 1-forms κα̂ for α̂ = 0̂, 1̂, 2̂, 3̂ are not all
integrable and, at each event, such 1-forms will constitute a noncoordinate or anholo-
nomic Lorentz basis. Therefore, to change a holonomic spacetime index of a tensor into
an anholonomic local Lorentz index or vice versa, one can simply project the tensor
onto the corresponding local tetrad frame.

In GR, the gravitational field is identified with spacetime curvature; moreover, one
traditionally works with admissible coordinate systems (Bini, Chicone and Mashhoon
2012). Coordinate bases are holonomic, while noncoordinate bases are anholonomic.
In differential geometry, one can work with either holonomic or anholonomic bases.
We find it convenient to work primarily with holonomic bases in this book.

In flat spacetime, the fundamental observers carry globally parallel frames. As
explained in the previous section, flat spacetime contains an equivalence class of such
parallel frame fields that are related to each other by constant elements of the six-
parameter global Lorentz group. This useful parallelism disappears in curved spacetime
of GR. In other words, given any smooth orthonormal tetrad field λµα̂(x) adapted to
an observer family in curved spacetime, it is not possible to render the frame field
parallel in any spacetime domain due to the presence of the Riemannian curvature
of the Levi-Civita connection. In order to have access to a global system of parallel
axes in the presence of gravitation, GR can be extended by the introduction of a
second (Weitzenböck) connection, which is so defined as to render a smooth ortho-
normal frame field parallel in extended GR. Therefore, of all possible smooth frame
fields on the pseudo-Riemannian spacetime, one system can be chosen in order to define
a global system of fundamental parallel axes that are, however, specified up to global
Lorentz transformations. In extended GR, the chosen parallel frame field is adapted
to a fundamental family of observers. Henceforth, a fundamental observer family in
extended GR is one for which the frame field is globally parallel via the Weitzenböck
connection. The fundamental observer family in curved spacetime is then unique up
to elements of the global Lorentz group. This circumstance is reminiscent of the fun-
damental observers in flat spacetime. More precisely, in a patchwork of admissible
coordinate charts in curved spacetime, consider a smooth orthonormal tetrad frame
field eµα̂(x) corresponding to a fundamental set of observers. We use this fundamental
tetrad system to define a new linear Weitzenböck connection (Weitzenböck 1923)

Γµαβ := eµρ̂ ∂α eβ
ρ̂. (5.29)

It is interesting to compare and contrast this definition with eqn (5.10) of the previous
section.
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In the absence of Riemannian curvature, the Weitzenböck connection coincides with
the symmetric Levi-Civita connection; however, when 0Rµνρσ 6= 0, the Weitzenböck
connection is not symmetric. Let us first briefly digress here and explain our conven-
tions regarding the use of a non-symmetric connection.

5.2.1 Non-symmetric connections

In our convention, the covariant derivative associated with a general non-symmetric
connection Γµαβ is defined for vector fields Aµ and Bµ as

∇αAµ = ∂αA
µ + Γµαβ A

β , ∇αBµ = ∂αBµ − ΓβαµBβ . (5.30)

Under an arbitrary transformation of coordinates xµ 7→ x′µ, a general linear connection
transforms as

Γ′µαβ =
∂x′µ

∂xν
∂xγ

∂x′α
∂xδ

∂x′β
Γνγδ +

∂x′µ

∂xν
∂2xν

∂x′α∂x′β
. (5.31)

Therefore, the difference between two linear connections on the same spacetime
manifold is a tensor. In this way, we have the torsion tensor

Cαβ
µ = Γµαβ − Γµβα (5.32)

and the contorsion tensor

Kαβ
µ = 0Γµαβ − Γµαβ . (5.33)

Thus for any covariant vector field Aµ we have in general

∇µAν −∇ν Aµ = ∂µAν − ∂ν Aµ − CµναAα. (5.34)

In particular, for a scalar field S, ∇α S = ∂α S and we find

(∇α∇β −∇β ∇α)S = Cαβ
µ ∂µ S. (5.35)

Moreover, the Ricci identity takes the form

(∇α∇β −∇β ∇α)Aµ = RγµαβAγ + Cαβ
ν ∇ν Aµ. (5.36)

Here,

Rγµαβ = −Rγµβα (5.37)

is the general curvature tensor given by

Rαµβν = ∂β Γανµ − ∂ν Γαβµ + Γαβσ Γσνµ − Γανσ Γσβµ. (5.38)

As is well known, in the curved spacetime of GR, at an event with coordinates x̄µ

one can introduce locally geodesic coordinates in the neighborhood of x̄µ such that in
the new coordinates the Christoffel symbols all vanish at x̄µ and geodesic world lines
that pass through x̄µ are rendered locally straight. This circumstance is due to the
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Fig. 5.1 Schematic representation of an infinitesimal parallelogram. Here

(BD)µ = Aµ − Γµαβ(P )BαAβ , while (AC)µ = Bµ − Γµαβ(P )AαBβ . Hence

(CD)µ = (Γµαβ − Γµβα)AαBβ . Reprinted with permission from Bini, D. and Mashhoon, B.,

2015, Phys. Rev. D 91, 084026. DOI: 10.1103/PhysRevD.91.084026

fact that the Levi-Civita connection is symmetric and hence torsion-free. In a similar
way, consider the coordinate transformation xµ 7→ x′µ in extended GR,

x′µ = xµ − x̄µ +
1

2

(
Γµαβ

)
x̄

(xα − x̄α)(xβ − x̄β) + · · · , (5.39)

which can clearly involve only the symmetric part of the connection. Thus in the
new local coordinate system only the symmetric part of the general linear connection
vanishes at x̄µ and Γµ[αβ] = 1

2Cαβ
µ in general remains non-zero. In this case, the

corresponding autoparallels passing through x̄µ are rendered locally straight. Thus at
each event in our extended GR framework, the curvature and torsion tensors both
characterize the gravitational field. In fact, the symbiotic relationship between the
Riemann curvature and the Weitzenböck torsion of the spacetime manifold turns out
to be crucial for the nonlocal generalization of GR.

Torsion, like curvature, is a basic tensor associated with a linear connection. In the
presence of torsion, infinitesimal parallelograms do not close. To illustrate this point,
consider two infinitesimal vectors Aµ and Bµ at an event P in spacetime. Suppose
that Aµ is parallel transported along Bµ via a general connection Γ and Bµ is in turn
parallel transported along Aµ as in Fig. 5.1. The resulting infinitesimal parallelogram
in general suffers from a lack of closure if the connection is not symmetric; in fact, as
illustrated in Fig. 5.1, (CD)µ = Cαβ

µ(P )AαBβ .
It is possible to introduce a coordinate system in the neighborhood of event P such

that the symmetric part of the connection vanishes; see eqn (5.39). That is, in the new
system of coordinates Γµ(αβ)(P ) = 0. However, the antisymmetric part of the connection

corresponds to the torsion tensor. If the torsion tensor does not vanish at P , then this
fact is independent of any coordinate system and infinitesimal parallelograms based at
P do not close. The situation is different, however, for non-infinitesimal parallelograms,
whose closure, or lack thereof, would crucially depend on the detailed circumstances
at hand and the nature of the spacetime under consideration.
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Let us now return to the specific case of Weitzenböck’s connection, which is the
new element in the extension of general relativistic framework.

5.2.2 Weitzenböck’s torsion

It follows from the definition of Weitzenböck’s connection in eqn (5.29) that

∇ν eµα̂ = 0, (5.40)

where ∇ν here denotes covariant differentiation with respect to the Weitzenböck con-
nection. In other words, the Weitzenböck connection is so constructed as to render the
fundamental frame field parallel. Moreover, it can be checked directly by substituting
eqn (5.29) in eqn (5.38) that Weitzenböck’s non-symmetric connection is curvature-
free. That is, Rµνρσ = 0; see Section 6.1. This circumstance leads to teleparallelism;
that is, distant vectors can be considered parallel if they have the same components
with respect to their local fundamental frames. The Levi-Civita and Weitzenböck con-
nections are both compatible with the spacetime metric tensor; indeed, the latter is
a consequence of ∇ν gαβ = 0, which follows from eqn (5.40) and the orthonormality

relation gµν = eµ
α̂ eν

β̂ ηα̂β̂ .
The Weitzenböck torsion tensor is given by

Cαβ
µ = eµρ̂

(
∂αeβ

ρ̂ − ∂βeαρ̂
)
. (5.41)

From the compatibility of the Weitzenböck connection with the metric, namely,
∇γ gαβ = 0, we find

gαβ,γ = Γµγα gµβ + Γµγβ gµα, (5.42)

which can be substituted in the Christoffel symbols (5.24) to show that the contorsion
tensor (5.33) is linearly related to the torsion tensor via

Kαβγ =
1

2
(Cαγβ + Cβγα − Cαβγ). (5.43)

The torsion tensor is antisymmetric in its first two indices, while the contorsion tensor
is antisymmetric in its last two indices.

Let us now express the torsion tensor in the form

Cµν
α̂ = eρ

α̂Cµν
ρ = ∂µeν

α̂ − ∂νeµα̂ (5.44)

and note that for each α̂ = 0̂, 1̂, 2̂, 3̂ in eqn (5.44) we have a quantity much like the
electromagnetic field tensor defined in terms of vector potential eµ

α̂. As in electro-
dynamics, the field variables all vanish if eµ

α̂ is only characterized by a pure gauge,
namely, if there exist four functions X α̂ such that eµ

α̂ = ∂µX
α̂, which by the orthonor-

mality relation gµν = eµ
α̂ eν

β̂ ηα̂β̂ means that we are back in flat Minkowski spacetime.

As is well known, Riemann showed that this circumstance is equivalent to 0Rµνρσ = 0.
Therefore, so long as the Riemannian curvature tensor 0Rµνρσ associated with 0Γµαβ
and gµν is non-zero, the torsion tensor (5.44) does not vanish. Henceforth, we identify
the gravitational potentials with the sixteen components of the parallel frame field eµα̂
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and the gravitational field with the torsion tensor Cµν
α, provided 0Rµνρσ is non-zero.

Thus in teleparallelism, gravitation is still identified with the Riemannian curvature
of spacetime and, as discussed in the next section, the link between the gravitational
field Cµνρ and the curvature 0Rµνρσ can be exploited to find an operational way to
measure, albeit indirectly, the torsion tensor. However, if 0Rµνρσ = 0, then gravitation
is turned off and we revert back to the considerations of the previous section; in partic-
ular, we note that for the tetrad frame field of an arbitrary set of accelerated observers
in Minkowski spacetime the corresponding torsion tensor is in general non-zero.

It is important to emphasize here the subtle correlation between the curvature of
the Levi-Civita connection and the torsion of the Weitzenböck connection. To illustrate
this point, let us first imagine that Cαβγ = 0. This is mathematically equivalent,
via eqn (5.41), to the requirement that d (eµ

α̂ dxµ) = 0. On a smoothly contractible
spacetime domain, every closed form is exact in accordance with the Poincaré lemma.
In this case, there are thus four functions X α̂(x) such that eµ

α̂ dxµ = dX α̂ or eµ
α̂ =

∂Xα̂/∂xµ. As before, it follows from the orthonormality condition that we are back in
Minkowski spacetime where our fundamental observers are the static inertial observers
of a global inertial frame with coordinates X α̂ such that the tetrad axes are all parallel
with the corresponding Cartesian coordinate axes. Therefore, Cαβγ = 0 implies that
0Rµνρσ = 0, so that there is no gravitational field. In the presence of gravitation,
however, 0Rµνρσ 6= 0 and this implies that Cαβγ 6= 0. It thus appears that in curved
spacetime, one can characterize the gravitational field via the torsion tensor as well.

In extended GR, the parallel frame field defined by the Weitzenböck connection is
the natural generalization of the fundamental frame field of special relativity to the
curved spacetime of general relativity. Let us recall that in the standard GR framework,
a parallel (or non-rotating) frame field may be defined via parallel (or Fermi–Walker)
transport using the Levi-Civita connection along a timelike world line; however, it
cannot in general be extended to a finite region, as this is obstructed by the Rieman-
nian curvature of spacetime (Mashhoon 1987). The introduction of the Weitzenböck
connection remedies this situation. The Levi-Civita connection has curvature but
not torsion, while the Weitzenböck connection has torsion but not curvature; in the
extended GR framework, the curvature of the Levi-Civita connection and the torsion of
the Weitzenböck connection are complementary aspects of the gravitational field. For
other approaches to extending GR via the Weitzenböck connection see, for example,
Bel (2008, 2016) and the references cited therein.

The Riemann curvature tensor can be expressed in terms of the Christoffel symbols
and their derivatives; therefore, eqn (5.33) can be used to write the Riemann curvature
tensor in terms of the torsion tensor. After detailed but straightforward calculations, it
is then possible, for instance, to write the Einstein field equation in terms of the torsion
tensor. The nature of the gravitational field equation in the context of extended GR
framework is the subject of Chapter 6. In the rest of this section, we present a number
of important formulas regarding the Weitzenböck torsion and contorsion tensors.

5.2.3 Torsion and contorsion

We recall from the definition of the determinant that for M = det(Mαβ), we have
δM = µαβ δMαβ , where µαβ is the minor associated with Mαβ . Let (Mαβ) be



88 Extension of General Relativity

the corresponding inverse matrix; then, Mαβ = µβα/M. Hence, in general, δM =
MMβα δMαβ . Using this result for the symmetric metric tensor gµν and the definition
of the Christoffel symbols (5.24), we find

0Γαβα =
1√
−g

∂

∂xβ
(
√
−g ), gµν 0Γαµν = − 1√

−g
∂

∂xβ

(√
−ggαβ

)
. (5.45)

It then follows from the symmetries of Weitzenböck’s torsion and contorsion tensors
that

Γααβ = Γαβα + Cβ , Γαβα = 0Γαβα =
1√
−g

∂

∂xβ
(
√
−g ), (5.46)

where the torsion vector Cα is the trace of the torsion tensor, namely,

Cα := Cβα
β = −Cαββ . (5.47)

Moreover, it is possible to introduce a torsion pseudovector Čα via the totally anti-
symmetric part of the torsion tensor C[αβγ]. Indeed, this axial vector is given by the
dual of C[αβγ], namely,

Čα = −1

6
Eαβγδ C

[βγδ], C[αβγ] = −Eαβγδ Čδ, (5.48)

where Eαβγδ =
√
−g εαβγδ is the Levi-Civita tensor and εαβγδ is the alternating symbol

with ε0123 = 1 in our convention.
The torsion tensor, defined in eqn (5.41) in terms of the fundamental frame field

eµα̂(x) has twenty-four independent components. It is therefore possible to introduce
a reduced torsion tensor Tαβγ = −Tβαγ with sixteen independent components by
subtracting out from Cαβγ , in an appropriate fashion, its vector and pseudovector
parts. In fact, the torsion tensor can be decomposed as

Cαβγ = −1

3
(Cα gβγ − Cβ gαγ) + C[αβγ] + Tαβγ . (5.49)

It is straightforward to check from this definition of the reduced torsion tensor that
Tαβγ is totally traceless and T[αβγ] = 0.

It proves useful to introduce an auxiliary torsion tensor

Cαβγ := Kγαβ + Cα gγβ − Cβ gγα. (5.50)

Then, employing the definition of the Weitzenböck contorsion tensor (5.43), we find

K[αβγ] = C[αβγ] = −1

2
C[αβγ]. (5.51)

Furthermore, we define the auxiliary torsion vector via

gµνCσµν := −Cσ (5.52)

and note that

−1

2
Cσ = gµνKµν

σ = Cσ. (5.53)
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Using the decomposition of the torsion tensor, we can find the corresponding decom-
positions for the contorsion tensor

Kαβγ = −1

3
(Cβ gαγ − Cγ gαβ) +K[αβγ] +

1

2
(Tαγβ + Tβγα − Tαβγ) (5.54)

and the auxiliary torsion tensor

Cαβγ =
2

3
(Cα gβγ − Cβ gαγ) + C[αβγ] +

1

2
(Tαβγ + Tαγβ − Tβγα). (5.55)

Let us recall from the definition of the Weitzenböck connection that

∂α eβ
γ̂ = Γµαβ eµ

γ̂ . (5.56)

Multiplying both sides of this equation by gαβ , we get

∂α

(
gαβ eβ

γ̂
)
−
(
∂α g

αβ
)
eβ
γ̂ = gαβ Γµαβ eµ

γ̂ . (5.57)

Next, we find from the definition of the contorsion tensor that

gµν Γαµν = −Cα − 1√
−g

∂

∂xβ

(√
−ggαβ

)
. (5.58)

Using this result in eqn (5.57), we have the interesting relation

1√
−g

∂

∂xµ

(√
−g eµα̂

)
= −Cα̂. (5.59)

Finally, it s straightforward to show using 2Kµνβ + Cµνβ = Cµβν + Cνβµ that

Kα
µνKµνβ = −1

2
Kα

µνCµνβ = −Kα
µν Γγµν gγβ . (5.60)

Weitzenböck invariants. Out of the torsion tensor, one can form three independent
algebraic Weitzenböck invariants

I1 = CαβγC
αβγ , I2 = CαβγC

γβα, I3 = CαC
α, (5.61)

such that

CαβγC
αβγ =

1

2
I1 + I2 − 2I3 (5.62)

and

−KαβγC
γβα = 2KαβγK

βαγ =
1

2
I1 + I2. (5.63)
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5.3 Measurement of Weitzenböck’s Torsion

Torsion and curvature are the two fundamental differential geometric notions
associated with a linear connection, or the corresponding covariant differentiation,
on a manifold. Torsion has to do with the lack of symmetry of the connection and
curvature is related to the lack of commutativity of covariant differentiation (Beem,
Ehrlich and Easley 1996). The Gaussian curvature of a surface is its most significant
property and is easy to visualize (O’Neill 1966; Harrison 2000). In general, spacetime
curvature can be operationally defined, for instance, via geodesic deviation (the Jacobi
equation and its generalizations) or via parallel vector fields (holonomy). Torsion, on
the other hand, can be visualized as the failure of an infinitesimal parallelogram to
close, a concept related to the presence of dislocations in continuous media (Hehl and
Obukhov 2003; Maluf, Ulhoa and Faria 2009). However, in contrast to the case of
curvature, there is no general operational definition for the torsion of spacetime. In
particular, the torsion tensor apparently has no relation with the torsion of a curve in
space (Hicks 1965).

It appears that the measurement of spacetime torsion depends upon the physical
theory in which torsion plays a significant role. In the Poincaré gauge theory of gravi-
tation, for instance, Cartan’s torsion couples to intrinsic spin and its measurement has
been discussed in that context; see Hehl (1971), Lämmerzahl (1997), Hehl, Obukhov
and Puetzfeld (2013) and the references cited therein. Moreover, another approach
involves the motion of extended bodies in the context of nonminimal theories, where
torsion couplings can be important (Puetzfeld and Obukhov 2014). On the other hand,
physical aspects of Weitzenböck’s torsion have been previously studied in the context
of teleparallelism; see Maluf, Ulhoa and Faria (2009) and the references cited therein.

Within the framework of teleparallelism, the metric is connected to the fundamental
parallel frame field (“scaffolding”) via orthonormality; furthermore, the Weitzenböck
torsion is naturally related to the Riemannian curvature of spacetime. The elements
necessary for the establishment of metric geometry, namely, infinitesimal rods, clocks,
light signals, etc., may then be employed to provide an indirect operational definition
of Weitzenböck’s torsion. This is illustrated in this section via a specific example
involving a frame field in an arbitrary geodesic (Fermi) coordinate system (Mashhoon
2015; Bini and Mashhoon 2015).

5.3.1 Structure functions

Let us consider the frame components of the Weitzenböck torsion with respect to the
fundamental orthonormal frame eα̂ = eµα̂ ∂µ with dual ωα̂ such that ωα̂(eβ̂) = δα̂

β̂
;

that is,
Cα̂β̂

γ̂ = eµα̂ e
ν
β̂

(
∂µ eν

γ̂ − ∂ν eµγ̂
)
. (5.64)

These are measurable in principle and are essentially the structure functions of the
fundamental frame eα̂ = eµα̂ ∂µ; that is,

[eα̂ , eβ̂ ] = −Cα̂β̂
γ̂ eγ̂ . (5.65)

Equivalently, these components can be obtained by evaluating the exterior derivative
of the frame 1-forms ωγ̂ = eµ

γ̂ dxµ according to the relation
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dωγ̂ =
1

2
Cα̂β̂

γ̂ ωα̂ ∧ ωβ̂ , (5.66)

or the Lie derivative of the frame vectors along each other

£eα̂ eβ̂ = [eα̂ , eβ̂ ] = −Cα̂β̂
γ̂ eγ̂ (5.67)

and its “dual” relation
£eα̂ ω

β̂ = Cα̂γ̂
β̂ωγ̂ . (5.68)

At any event in spacetime, two orthonormal frames are related to each other by an
element of the local Lorentz group; therefore, Cα̂β̂

γ̂ transforms as a third-rank tensor
under local Lorentz transformations. Moreover, these structure functions satisfy the
Jacobi identity,

[eα̂ , [eβ̂ , eγ̂ ] ] + [eβ̂ , [eγ̂ , eα̂] ] + [eγ̂ , [eα̂ , eβ̂ ] ] = 0, (5.69)

which is equivalent to d2ωα̂ = 0. It follows from the Jacobi identity that

∂ [ α̂ Cβ̂γ̂]
µ̂ + Cσ̂[α̂

µ̂ Cβ̂γ̂]
σ̂ = 0, (5.70)

where ∂α̂ := eα̂ is the Pfaffian derivative associated with eα̂.
The main purpose of this section is to calculate the structure functions Cα̂β̂

γ̂

in a general and physically transparent setting and study their physical properties.
Therefore, we consider next the structure functions in the physically meaningful Fermi
coordinates in a general gravitational field.

5.3.2 Weitzenböck’s torsion in Fermi coordinates

To gain physical insight into the structure of Weitzenböck’s torsion, we consider
an arbitrary gravitational field in extended GR and establish a geodesic (Fermi)
coordinate system in a cylindrical spacetime region along the world line of an arbitrary
accelerated observer. This coordinate system reduces, in the absence of gravitation, to
the local geodesic coordinate system for accelerated observers in Minkowski spacetime
discussed in Section 1.2. Fermi coordinates are invariantly defined and constitute the
natural general-relativistic generalization of inertial Cartesian coordinates. We then
define the frame field of static observers in the Fermi coordinate system and calculate
explicitly their measured torsion tensor Cα̂β̂

γ̂ .

Imagine an accelerated observer following the reference world line x̄µ(τ), where
xµ = (t, xi) is an admissible system of spacetime coordinates and τ is the proper time
along the reference observer’s trajectory. The observer carries an orthonormal tetrad
frame λµα̂(τ) along its path in accordance with

0Dλµα̂
dτ

= 0Φα̂
β̂(τ)λµβ̂ . (5.71)

Here, 0Φα̂β̂ = −0Φβ̂α̂ is the acceleration tensor of the fiducial observer. In apt analogy
with the Faraday tensor, we can decompose the acceleration tensor into its “elec-
tric” and “magnetic” components, namely, 0Φα̂β̂ 7→ (−a,Ω); that is, the translational
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acceleration vector a is given by the frame components of the 4-acceleration vector
associated with the 4-velocity vector λµ0̂ = dx̄µ/dτ of the observer and Ω is the
angular velocity of the rotation of the observer’s local spatial triad λµî , i = 1, 2, 3,
with respect to the locally non-rotating (i.e. Fermi–Walker transported) triad.

Let us next establish an extended Fermi normal coordinate system in a world
tube along x̄µ(τ). The Fermi coordinates are scalar invariants by construction and
are indispensable for the interpretation of measurements in GR; see Synge (1971),
Mashhoon (1977), Ni and Zimmermann (1978), Chicone and Mashhoon (2002c, 2006)
and the references cited therein. Consider the class of spacelike geodesics that are
orthogonal to the world line of the fiducial accelerated observer at each event τ along
x̄µ(τ). These form a local hypersurface. For an event with coordinates xµ on this
hypersurface, let there be a unique spacelike geodesic of proper length σ that connects

xµ to x̄µ(τ). Then, xµ is assigned Fermi coordinates X µ̂ = (T,X î), where

T = τ, X î = σ ξµ λµ
î(τ). (5.72)

Here, ξµ is the unit vector at x̄µ(τ) that is tangent to the spacelike geodesic segment
from x̄µ(τ) to xµ. Thus the reference observer is always at the spatial origin of the
Fermi coordinate system.

The construction of such coordinates in Minkowski spacetime is depicted in
Fig. 1.3, where at each instant of proper time τ of the fiducial observer, x̄µ(τ) and xµ

can always be connected by a straight line in the simultaneity hyperplane. In curved
spacetime, however, xµ and x̄µ(τ) must be sufficiently close to each other such that
the geodesic connecting x̄µ(τ) to xµ, which lies on the local hypersurface, is always
unique.

In curved spacetime, the coordinate transformation xµ 7→ (X 0̂ = T,X â) can only
be specified implicitly in general; hence, it is useful to express the spacetime metric in
Fermi coordinates as a Taylor expansion in powers of the spatial distance σ away from
the reference world line. For our present purposes, we can write the metric in Fermi
coordinates as

g0̂0̂ = −P2 +Q2 −R0̂î0̂ĵX
îX ĵ +O(|X|3),

= −P2 +Q2 − 2 FΦ +O(|X|3),

g0̂î = Qî −
2

3
R0̂ĵîk̂X

ĵX k̂ +O(|X|3),

= Qî − 2 FAî +O(|X|3),

gîĵ = δîĵ −
1

3
Rîk̂ĵl̂X

k̂X l̂ +O(|X|3),

= δîĵ − 2 Σîĵ +O(|X|3). (5.73)

Here, we have introduced

P = 1 + U, U = a ·X, Q = Ω×X (5.74)

and we have used the notation
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FΦ =
1

2
R0̂î0̂ĵX

îX ĵ , FAî =
1

3
R0̂ĵîk̂X

ĵX k̂, Σîĵ =
1

6
Rîk̂ĵl̂X

k̂X l̂. (5.75)

Moreover, Rα̂β̂γ̂δ̂(T ) is the projection of the Riemann curvature tensor on the
orthonormal tetrad frame of the reference observer and evaluated along the reference
world line; that is,

Rα̂β̂γ̂δ̂(T ) := 0Rµνρσ λ
µ
α̂ λ

ν
β̂ λ

ρ
γ̂ λ

σ
δ̂. (5.76)

Henceforward, we will only keep terms up to second order in the metric perturbation
and note that Fermi coordinates are admissible in a finite cylindrical region about
the world line of the reference observer with |X| � rc, where rc(T ) is the infimum of
acceleration lengths (|a(T )|−1, |Ω(T )|−1) as well as spacetime curvature lengths such
as |Rα̂β̂γ̂δ̂(T )|−1/2.

Let us now consider the class of observers that are all at rest in this gravitational
field and carry orthonormal tetrads that have essentially the same orientation as the
Fermi coordinate system. This class includes of course our reference observer at the
origin of spatial Fermi coordinates. The orthonormal tetrad frame of these fundamental

observers can be expressed in (T,X î) coordinates as

eµ0̂ = (1− Φ̃, 0, 0, 0), (5.77)

eµ1̂ = (−2 Ã1̂, 1 + Σ̃1̂1̂, 0, 0), (5.78)

eµ2̂ = (−2 Ã2̂, 2 Σ̃2̂1̂, 1 + Σ̃2̂2̂, 0), (5.79)

eµ3̂ = (−2 Ã3̂, 2 Σ̃3̂1̂, 2 Σ̃3̂2̂, 1 + Σ̃3̂3̂). (5.80)

Here, we have defined

Φ̃ := FΦ +U −U2− 1

2
Q2, Ãî := FAî− (

1

2
−U)Qî, Σ̃îĵ := Σîĵ −

1

2
QîQĵ . (5.81)

As expected, eµα̂ reduces to δµα̂ along the reference world line, where X = 0. It follows
from eµα̂ = gµν e

ν
α̂ that

eµ 0̂ = (−1− U2 − Φ̃, −2 Ã1̂ + UQ1̂, −2 Ã2̂ + UQ2̂, −2 Ã3̂ + UQ3̂), (5.82)

eµ 1̂ = (0, 1− Σ̃1̂1̂, −2 Σ̃1̂2̂, −2 Σ̃1̂3̂), (5.83)

eµ 2̂ = (0, 0, 1− Σ̃2̂2̂, −2 Σ̃2̂3̂), (5.84)

eµ 3̂ = (0, 0, 0, 1− Σ̃3̂3̂). (5.85)

Explicitly, we therefore have
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e0̂ =

(
1− U + U2 +

1

2
Q2 − FΦ

)
∂T ,

e1̂ =
[
−2 FA1̂ +Q1̂(1− 2U)

]
∂T +

(
1− 1

2
Q2

1̂
+ Σ1̂1̂

)
∂X 1̂ ,

e2̂ =
[
−2 FA2̂ +Q2̂(1− 2U)

]
∂T + (2 Σ2̂1̂ −Q2̂Q1̂) ∂X 1̂ +

(
1− 1

2
Q2

2̂
+ Σ2̂2̂

)
∂X 2̂ ,

e3̂ =
[
−2 FA3̂ +Q3̂(1− 2U)

]
∂T + (2 Σ3̂1̂ −Q3̂Q1̂) ∂X 1̂ + (2 Σ3̂2̂ −Q3̂Q2̂) ∂X 2̂

+

(
1− 1

2
Q2

3̂
+ Σ3̂3̂

)
∂X 3̂ (5.86)

with dual frame

ω0̂ =

(
1 + U − 1

2
Q2 + FΦ

)
dT + [2 FAâ −Qâ(1− U)] dX â,

ω1̂ =

(
1 +

1

2
Q2

1̂
− Σ1̂1̂

)
dX 1̂ + (Q1̂Q2̂ − 2 Σ1̂2̂) dX 2̂ + (Q1̂Q3̂ − 2 Σ1̂3̂) dX 3̂,

ω2̂ =

(
1 +

1

2
Q2

2̂
− Σ2̂2̂

)
dX 2̂ + (Q2̂Q3̂ − 2 Σ2̂3̂) dX 3̂,

ω3̂ =

(
1 +

1

2
Q2

3̂
− Σ3̂3̂

)
dX 3̂. (5.87)

We can now proceed to the evaluation of the associated structure functions.
In Cα̂β̂

γ̂ , for each γ̂ = 0̂, 1̂, 2̂, 3̂, we have an antisymmetric tensor that has “electric”

and “magnetic” components in analogy with the Faraday tensor. Indeed, for γ̂ = 0̂,
we have

C0̂î
0̂ = −

[
E + (1− U) a + Ω×Q + Q̇

]
î
, (5.88)

Cîĵ
0̂ = 2 εîĵk̂ [B − (1− U) Ω + a×Q]

k̂
, (5.89)

where

Q̇ =

(
dΩ

dT

)
×X, a×Q = UΩ− (a ·Ω)X. (5.90)

Furthermore, the gravitoelectric field, E = ∇ FΦ, and the gravitomagnetic field,
B = ∇× FA , are given by

Eî(T,X) = R0̂î0̂ĵ(T )X ĵ , Bî(T,X) = −1

2
εîĵk̂ R

ĵk̂
0̂l̂(T )X l̂. (5.91)

Let us note here that the gravitoelectric field is directly proportional to the “electric”
components of the of the Riemann curvature tensor and similarly the gravitomagnetic
field is directly proportional to the “magnetic” components of the Riemann curvature
tensor. It is interesting that we can couch our torsion results in the familiar language of
gravitoelectromagnetism (GEM); see Matte (1953), Jantzen, Carini and Bini (1992),
Mashhoon (2007d) and the references cited therein. Moreover, the spatial part of the
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metric perturbation away from Minkowski spacetime, Σij = Σji, is likewise propor-
tional to the spatial components of the curvature. Next, for γ̂ = 1̂, 2̂, 3̂, the electric
parts only involve terms of higher order and can be ignored, so that

C0̂î
ĵ = 0. (5.92)

However, the corresponding magnetic parts depend upon the spatial components of
the curvature and we find that for γ̂ = 1̂,

C2̂3̂
1̂ = 3 Ω1̂Q1̂ +R2̂3̂1̂âX

â, C3̂1̂
1̂ = 2 Ω2̂Q1̂ +

2

3
R3̂1̂1̂âX

â,

C1̂2̂
1̂ = 2 Ω3̂Q1̂ +

2

3
R1̂2̂1̂âX

â. (5.93)

Similarly, for γ̂ = 2̂,

C2̂3̂
2̂ = 2 Ω1̂Q2̂ +

2

3
R2̂3̂2̂âX

â, C3̂1̂
2̂ = Ω2̂Q2̂ − Ω3̂Q3̂ +

1

3
(R3̂1̂2̂â −R1̂2̂3̂â)X â,

C1̂2̂
2̂ = Ω3̂Q2̂ +

1

3
R1̂2̂2̂âX

â (5.94)

and for γ̂ = 3̂,

C2̂3̂
3̂ = Ω1̂Q3̂ +

1

3
R2̂3̂3̂âX

â, C3̂1̂
3̂ = Ω2̂Q3̂ +

1

3
R3̂1̂3̂âX

â, C1̂2̂
3̂ = 0. (5.95)

It is important to note that all of the components of Cα̂β̂
γ̂ can be obtained from

eqns (5.88)–(5.95) by using the antisymmetry of Cα̂β̂
γ̂ in its first two indices. Further-

more, all of the components of the curvature tensor are involved in our calculation
of the torsion tensor. The spatial components of the curvature tensor in eqns (5.93)–
(5.95) essentially reduce to the gravitoelectric components in a Ricci-flat region of
spacetime.

The torsion vector Cα, Cα := −Cαββ , can be calculated for the static Fermi
observers and turns out to be completely spatial; that is, Cα̂ = (0,Θî), where Θ
is related to the gravitoelectric field as well as the spatial part of the torsion tensor.
Indeed,

Θî = −
[
E + (1− U)a + Ω×Q + Q̇

]
î
− Cîĵ

ĵ . (5.96)

On the other hand, the torsion pseudovector Čα, Čα̂ := −(1/6)εα̂β̂γ̂δ̂ C
β̂γ̂δ̂ is given by

(Č0̂,Γî), where Č0̂ = −(1/3)(C2̂3̂
1̂ + C3̂1̂

2̂) and Γ is related to the gravitomagnetic
field,

Γ =
2

3
[B − (1− U) Ω + a×Q] . (5.97)

We note that in our convention ε0123 = 1.
The torsion tensor vanishes along the reference world line (X = 0) if 0Φα̂β̂ = 0. It

follows that along the reference geodesic, the contorsion tensor and the Weitzenböck
connection both vanish. Thus, by a proper choice of coordinates and fundamental
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frame field, the Levi-Civita connection as well as the Weitzenböck connection can be
made to vanish along a timelike geodesic. This provides a natural generalization of
Fermi’s original result (Levi-Civita 1926) in the context of extended GR.

The results presented here for Weitzenböck’s torsion in Fermi coordinates are in
qualitative agreement with the results of similar calculations that have been carried
out in the standard Schwarzschild-like coordinates for the structure functions of the
natural tetrad frames of the static observers in the exterior Kerr spacetime (Bini and
Mashhoon 2015).

Acceleration tensor of the fundamental observers. It is interesting to compute the
acceleration tensor for a congruence of fundamental observers. To this end, we have

0Deµα̂
ds̄

= Υα̂
β̂ eµβ̂ , (5.98)

where s̄ is the proper time along a fundamental observer’s world line. Using eqn (5.56)
and the fact that eµ0̂ = dxµ/ds̄, eqn (5.98) can be expressed as

eρ0̂ eσα̂ (Γσρµ − 0Γσρµ) = Υα̂β̂ eµ
β̂ . (5.99)

Next, the definition of the contorsion tensor in eqn (5.33) then implies

Υα̂β̂ = K0̂α̂β̂ , (5.100)

since the contorsion tensor is antisymmetric in its last two indices. We should
mention that the connection between eqns (5.98) and (5.100) is completely general
and is independent of the particular coordinate system or our choice of the funda-
mental observers. In the particular case of Fermi coordinates and the corresponding
fundamental static observers under consideration in this section, however, it follows
from the decomposition of Υα̂β̂ into its “electric” and “magnetic” components and

eqn (5.43) that −C0̂î
0̂ and − 1

2 Cîĵ
0̂ are responsible for the proper acceleration and

rotation of our fundamental observer family, respectively. This circumstance accounts
for the nature of the terms that appear in eqns (5.88) and (5.89), such as, for instance,
the centripetal and transverse (Euler) acceleration terms in the electric components.

In summary, of all possible smooth tetrad systems on the curved spacetime of GR,
a particular frame field can be chosen that is so constructed from one event to the next
via an additional Weitzenböck connection as to generate a global system of parallel
axes (“teleparallelism”) reminiscent of a global inertial frame in Minkowski spacetime.
Indeed, there is an equivalence class of such frames that are related to each other
by constant elements of the six-parameter global Lorentz group. The curvature of the
Weitzenböck connection vanishes, but its torsion is in general non-zero. It is in principle
possible to measure the Weitzenböck torsion tensor in a given gravitational field. For
orthonormal frames that are naturally adapted to static observers in a gravitational
field within the extended GR framework, the Weitzenböck torsion tensor has certain
similarities with the frame components of the curvature tensor. In particular, the
Weitzenböck torsion behaves like tidal acceleration and has dimensions of (length)−1,
while curvature has dimensions of (length)−2. For the measured components of the
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torsion tensor, Cα̂β̂
γ̂ , we find that C0̂î

0̂ represents what is essentially the gravitoelectric

field, while Cîĵ
0̂ represents what is essentially the gravitomagnetic field. Moreover,

C0̂î
ĵ is related to the nonstationary character of the gravitational field and Cîĵ

k̂ has
in general mixed properties involving both the gravitoelectric and gravitomagnetic
aspects. In extended GR, it is possible to introduce Fermi coordinates and tetrad
frames in the neighborhood of an arbitrary timelike geodesic path such that the Levi-
Civita and Weitzenböck connections both vanish along the geodesic world line. On
the other hand, in flat spacetime, where 0Rµνρσ = 0, Weitzenböck’s torsion tensor
loses its gravitational significance. In arbitrary systems of admissible coordinates in
Minkowski spacetime, the torsion tensor vanishes only for the family of fundamental
inertial observers that are all at rest in a global inertial frame and have orthonormal
tetrad axes that are all parallel to the standard Cartesian coordinate axes of the
global inertial frame; otherwise, the torsion tensor is non-zero. Thus a congruence
of accelerated observers is endowed with torsion; similarly, torsion is non-zero for a
family of inertial observers that are all static in a global inertial frame but have fixed
spatial frames that vary in space (Hayashi and Shirafuji 1979). To illustrate the latter
possibility, consider, for instance, a global inertial frame and static inertial observers
with orthonormal tetrads such that their spatial frames are all along the spherical
polar coordinate axes; in this case, the torsion tensor has spatial components that do
not vanish.



6

Field Equation of Nonlocal Gravity

Nonlocal gravity (NLG) is a tetrad theory established upon the frame field of a
fundamental family of observers in spacetime. The main purpose of this chapter is to
present the field equation of nonlocal gravity and discuss some of its main features.
The gravitational field is in this case characterized by torsion, which is most directly
related to the tetrad frame field of the fundamental observers. We recall that the
torsion tensor is given by

Cµν
α̂ = ∂µeν

α̂ − ∂νeµα̂, (6.1)

which, for each α̂ = 0̂, 1̂, 2̂, 3̂, is reminiscent of the electromagnetic field tensor

Fµν = ∂µAν − ∂νAµ (6.2)

expressed in terms of the vector potential Aµ. In nonlocal gravity eµ
α̂ is the analogous

gravitational potential. Thus, using the extended GR framework, we first express the
Riemannian curvature of spacetime in terms of the torsion field. Writing Einstein’s field
equation within this scheme leads to the teleparallel equivalent of GR, namely, GR||. It
turns out that GR|| is the gauge theory of the Abelian group of spacetime translations
(Blagojević and Hehl 2013; Aldrovandi and Pereira 2013; Maluf 2013). As such, the
structure of GR|| bears certain similarities with electrodynamics. We emphasize this
analogy by writing the GR|| field equations in terms of torsion in a form that is similar
to Maxwell’s equations. Maxwell’s equations in a medium in an inertial frame can be
expressed in terms of the field tensors Fµν 7→ (E,B) and Hµν 7→ (D,H) as

F [µν,ρ] = 0, ∂ν H
µν =

4π

c
j̄µ, (6.3)

where j̄µ is the total current 4-vector associated with free electric charges. To complete
the theory, a constitutive relation between Fµν and Hµν is required. If we impose the
local relation Hµν = Fµν , we recover Maxwell’s equations in vacuum. However, in a
medium, the constitutive relation is in general nonlocal (Jackson 1999; Landau and
Lifshitz 1960), thus leading to the nonlocal electrodynamics of media. Finally, the
nonlocal version of GR|| is presented in complete analogy with Maxwell’s equations
coupled with nonlocal constitutive equations. From nonlocal GR||, we then derive the
nonlocal generalization of Einstein’s field equation in this extended framework. The
form of the field equation of nonlocal gravity raises the possibility that nonlocal gravity
may simulate dark matter.

Nonlocal Gravity. Bahram Mashhoon. c© Bahram Mashhoon 2017. Published 2017
by Oxford University Press.
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6.1 Riemannian Curvature of Spacetime

In this section, the curvature of the Levi-Civita connection is expressed in terms of the
torsion of the Weitzenböck connection. The corresponding Ricci and scalar curvatures
are then evaluated in order to express the Einstein tensor in terms of torsion.

6.1.1 Weitzenböck’s connection is curvature-free

From the definition of the Weitzenböck connection (Weitzenböck 1923)

Γανµ = eαρ̂ (∂ν eµ
ρ̂), (6.4)

we see that the derivative of this connection can be written as

∂β Γανµ = (∂β e
α
ρ̂) (∂ν eµ

ρ̂) + eαρ̂ (∂β ∂ν eµ
ρ̂). (6.5)

The symmetry of the second partial derivatives then implies

∂β Γανµ − ∂ν Γαβµ = (∂β e
α
ρ̂) (∂ν eµ

ρ̂)− (∂ν e
α
ρ̂) (∂β eµ

ρ̂). (6.6)

Next, we recall from the orthonormality of the fundamental tetrads that eαρ̂ eγ
ρ̂ = δαγ ;

hence,
Γαβγ = eαρ̂ (∂β eγ

ρ̂) = −(∂β e
α
ρ̂) eγ

ρ̂. (6.7)

Therefore, we can write

Γαβγ Γγνµ = [−(∂β e
α
ρ̂) eγ

ρ̂] [eγ δ̂ (∂ν eµ
δ̂)], (6.8)

where we have used the new result in eqn (6.7) for the first part and the standard
expression (6.4) for the second part. From the orthonormality of fundamental tetrads,

eγ
ρ̂ eγ δ̂ = δρ̂

δ̂
, we find

Γαβγ Γγνµ = −(∂β e
α
ρ̂) (∂ν eµ

ρ̂). (6.9)

Combining this result with eqn (6.6), we see that the curvature tensor vanishes
identically for the Weitzenböck connection

Rαµβν = ∂β Γανµ − ∂ν Γαβµ + Γαβγ Γγνµ − Γανγ Γγβµ = 0. (6.10)

6.1.2 Curvature of the Levi-Civita connection

Let us now calculate the Riemann curvature tensor for our spacetime manifold, namely,

0Rαµβν = ∂β
0Γανµ − ∂ν 0Γαβµ + 0Γαβγ

0Γγνµ − 0Γανγ
0Γγβµ, (6.11)

where
0Γαµν = Γαµν +Kµν

α. (6.12)

Substituting this expression in eqn (6.11) and noting that the curvature tensor vanishes
for the Weitzenböck connection, we find

0Rαµβν = ∂βKνµ
α − ∂ν Kβµ

α + Γαβγ Kνµ
γ + ΓγνµKβγ

α +Kβγ
αKνµ

γ

−Γανγ Kβµ
γ − ΓγβµKνγ

α −Kνγ
αKβµ

γ . (6.13)
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We are interested in the Einstein tensor

0Gµν = 0Rνµ −
1

2
gµν

0R, (6.14)

where the indices on the symmetric Ricci tensor have been switched for the sake of
simplicity in order to get 0Rνµ = 0Rαναµ in a useful form as follows: using the relations

Kαβ
α = −Cβ (6.15)

and

Γααβ = Cβ +
1√
−g

∂

∂xβ
(
√
−g ), (6.16)

where Cµ is the torsion vector and g := det(gµν),
√
−g = det(eµ

α̂), we find from
eqn (6.13) after some algebra that

0Rνµ =
1√
−g

∂

∂xα

(√
−g Kµν

α
)

+
∂Cν
∂xµ

− CαΓαµν

−(Γαµβ +Kµβ
α)Kαν

β − ΓαβνKµα
β . (6.17)

Let us next compute the scalar curvature 0R = gµν 0Rνµ. To this end, we note that
Cα = gµν Kµν

α, so that

1√
−g

∂

∂xα

(√
−g Cα

)
= gµν

1√
−g

∂

∂xα

(√
−g Kµν

α
)

+Kµν
α ∂α g

µν . (6.18)

Using the metric compatibility of the Weitzenböck connection, ∇α gµν = 0, that is,

∂α g
µν = −Γµαβ g

βν − Γναβ g
βµ (6.19)

and the definition of the torsion tensor, we find

Kµν
α ∂α g

µν = −Kα
µβ Γαµβ −Kµ

α
β Γαβµ +Kα

βµ Cβµ
α. (6.20)

Moreover, from Γαµν = 0Γαµν −Kµν
α, we have

gµν Γαµν = − 1√
−g

∂

∂xβ

(√
−g gαβ

)
− Cα, (6.21)

so that

gµν
(∂Cν
∂xµ

− Cα Γαµν

)
= Cα C

α +
1√
−g

∂

∂xα

(√
−g Cα

)
. (6.22)

Putting these results together, we find

0R =
2√
−g

∂

∂xδ

(√
−g Cδ

)
+ Cα C

α −Kαβγ K
βγα −Kαβγ C

βγα. (6.23)

Finally, from the identities
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Kαβγ K
βγα = −1

2
Kαβγ C

βγα = −1

2
(
1

2
I1 + I2), (6.24)

where
I1 = CαβγC

αβγ , I2 = CαβγC
γβα, I3 = CαC

α (6.25)

are the three independent algebraic (Weitzenböck) invariants of the torsion tensor, we
find

0R =
2√
−g

∂

∂xδ

(√
−g Cδ

)
− 1

2
(
1

2
I1 + I2 − 2 I3). (6.26)

Let us note that

CαβγC
αβγ =

1

2
I1 + I2 − 2 I3, (6.27)

where Cαβγ is the auxiliary torsion tensor that is also antisymmetric in its first two
indices and is given by

Cαβγ =
1

2
(Cγβα + Cαβγ − Cγαβ) + Cα gβγ − Cβ gαγ . (6.28)

Thus eqn (6.26) takes the form

0R = −1

2
CαβγC

αβγ +
2√
−g

∂

∂xδ

(√
−g Cδ

)
. (6.29)

It is important to note here that just as Cµν
α̂ is reminiscent of Fµν in electrodynamics,

Cµνα̂ turns out to be reminiscent of Hµν . The auxiliary torsion tensor Cαβγ(x) is a
linear combination of the components of the torsion tensor Cµνρ(x); indeed, this local
linear connection is in effect a constitutive relation, as will be discussed in more detail
below.

The last step in the computation of the Einstein tensor (6.14) involves a proper
combination of our expressions for the Ricci and scalar curvatures in eqns (6.17)
and (6.29), respectively. It is useful to introduce an auxiliary field strength Hµνρ =
−Hνµρ defined by

Hµνρ :=

√
−g
κ

Cµνρ, (6.30)

where κ = 8πG/c4. Next, we define the “Maxwellian” tensors

mµν =
κ√
−g

eµ
γ̂ gνα

∂

∂xβ
Hαβγ̂ (6.31)

and

tµν = Cµ
ρσ Cνρσ −

1

4
gµν C

αβγ Cαβγ . (6.32)

We wish to show that the Einstein tensor in this extended GR framework has the
Maxwellian form

0Gµν = mµν − tµν . (6.33)

To this end, let us write eqn (6.31) as
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mµν =
κ√
−g

∂

∂xβ
(eµ

γ̂ gναHαβγ̂)− Cαβγ̂
∂

∂xβ
(eµ

γ̂ gνα) (6.34)

or

mµν =
1√
−g

∂

∂xα
(
√
−g Cναµ)− Cαβµ ∂β gνα − Cν

β
α Γαβµ. (6.35)

Next, in eqn (6.35) we write the auxiliary torsion tensors in terms of the corresponding
contorsion tensors; for instance,

Cν
α
µ = Kµν

α + Cν δ
α
µ − Cα gµν . (6.36)

Furthermore, we use ∇β gνα = 0, or more explicitly,

∂β gνα = Γρβν gρα + Γρβα gρν (6.37)

in eqn (6.35) in order to get an expression for mµν that somewhat resembles 0Rνµ
in eqn (6.17). Let us now use the latest expression for mµν and eqns (6.17), (6.29)
and (6.32) to form the quantity Zµν ,

Zµν = 0Rνµ −
1

2
gµν

0R− (mµν − tµν). (6.38)

This tensor vanishes identically when we use in the resulting expression for Zµν the
following identities

Cµ Cν + Cα Cµαν + Cµ
ρσ Cνρσ = (Γαµβ − Γαβµ)Kαν

β (6.39)

and
Kµβ

αKαν
β = Kµ

αβ Γρβα gρν . (6.40)

Therefore, the Einstein tensor in terms of the torsion field can indeed be written as in
eqn (6.33).

6.2 GR||: Teleparallel Equivalent of GR

It is interesting to express GR in terms of the torsion field. The result is the teleparallel
equivalent of GR, namely, GR||.

The Einstein tensor 0Gµν can be written in terms of torsion in the form of eqn (6.33),

0Gµν = −κEµν +
κ√
−g

eµ
γ̂ gνα

∂

∂xβ
Hαβγ̂ , (6.41)

where Eµν ,
Eµν := κ−1 tµν , (6.42)

turns out to be the traceless and non-symmetric energy–momentum tensor of the
gravitational field in the new scheme. It resembles Minkowski’s energy–momentum
tensor for the electromagnetic field in a medium (Hehl 2008)

(M)Tµν =
1

4π
(FµρHν

ρ − 1

4
gµν Fαβ H

αβ) (6.43)
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that is also traceless, but not symmetric. Thus, using eqn (6.30), we can write

√
−g Eµν = CµρσHνρσ −

1

4
gµν Cαβγ Hαβγ . (6.44)

Moreover, we note that

0Gµν =
κ√
−g

[
gνα eµ

γ̂ ∂

∂xβ
Hαβγ̂ −

(
HνρσCµρσ −

1

4
gνµHαβγCαβγ

)]
. (6.45)

Einstein’s gravitational field equation,

0Gµν + 0Λ gµν = κTµν , (6.46)

now takes the Maxwellian form

∂

∂xν
Hµνα̂ +

√
−g
κ

0Λ eµα̂ =
√
−g (Tα̂

µ + Eα̂
µ). (6.47)

Let us recall here that Maxwell’s original equations in a medium in terms of Fµν 7→
(E,B) and Hµν 7→ (D,H) can be written in arbitrary coordinates as

F [µν,ρ] = 0, ∂ν (
√
−g Hµν) =

4π

c

√
−g j̄µ, (6.48)

where j̄µ is the total current of free electric charges. We mention that the first field
equation in eqn (6.48) is already satisfied by eqn (6.2), and the torsion field naturally
satisfies a similar equation due to its definition in eqn (6.1) in terms of the gravitational
potentials. Moreover, eqn (6.47) is similar to the second field equation in eqn (6.48).
There is therefore a close analogy between GR|| and Maxwell’s electrodynamics of
media. In a medium, a constitutive relation between Hµν and Fµν is usually required;
in the context of GR||, the corresponding constitutive relation, eqn (6.30), is essentially
the linear pointwise connection between the auxiliary torsion tensor Cµνρ and the
torsion tensor Cµνρ.

The universality of the gravitational interaction implies that all forms of mass–
energy gravitate. This is reflected in the GR|| field equation (6.47), since the net
energy–momentum tensor includes the contribution of the gravitational field itself.

To obtain the conservation laws in the framework of GR||, let us write eqn (6.47)
in the form

∂

∂xβ
Hαβγ̂ =

√
−g eµγ̂ gαν

(
Tµν + Eµν −

0Λ

κ
gµν

)
. (6.49)

It follows from Eq. (6.49) and the antisymmetry of Hαβγ̂ in its first two indices that

∂

∂xµ

[√
−g (Tα̂

µ + Eα̂
µ −

0Λ

κ
eµα̂)

]
= 0 (6.50)

or
∂

∂xν

[√
−g eµα̂ (Tµν + Eµν −

0Λ

κ
gµν)

]
= 0. (6.51)

This is the general law of conservation of total energy–momentum tensor that consists
of contributions due to matter, the gravitational field and the cosmological constant.
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Equation (6.51) is of the general form of the current conservation law discussed in
Section 5.1.

In summary, within the context of GR, we have chosen a fundamental frame field
which together with the corresponding Weitzenböck connection has generated a GR||
framework that is the teleparallel equivalent of GR. We emphasize that any smooth
orthonormal frame field can be chosen to act as the fundamental frame field; the field
equation of GR|| must then determine this frame field. In GR, the ten gravitational field
equations can be used in principle to determine the ten components of the spacetime
metric tensor. A tetrad frame field has, however, sixteen components, which are subject
to ten orthonormality relations that, in effect, determine the metric in terms of the
tetrad frame. The field equation of GR||, the teleparallel equivalent of GR, can only
determine the metric tensor. This circumstance points to the fundamental sixfold
degeneracy of GR||. In fact, the extra six degrees of freedom are elements of the local
Lorentz group; that is, the boosts and rotations that locally characterize one system
of observers with respect to a fiducial system. This basic degeneracy of GR|| will be
removed in the nonlocal generalization of this theory later in this chapter.

We recall from Chapter 1 that Lg = (2κ)−1√−g 0R is the Lagrangian density of
the gravitational field in GR. In terms of the torsion field, we have from eqn (6.29)
that

Lg = − 1

4κ

√
−g CαβγCαβγ +

1

κ
∂µ

(√
−g Cµ

)
. (6.52)

Neglecting the total divergence in the Lagrangian density (6.52), we find that the
Lagrangian density for GR|| is given by

Lg|| = −1

4
HαβγCαβγ , (6.53)

which is quadratic in the gravitational field strength in analogy with the similar
situation in electrodynamics. This Lagrangian density is proportional to a particu-
lar combination of the three Weitzenböck invariants, cf. eqn (6.27); more generally,
one can generate a three-parameter class of such teleparallel theories of gravity. It is
interesting to note that

Hµνα̂ = −2
∂ Lg||

∂ Cµνα̂
, (6.54)

which explains the original motivation for the introduction of the auxiliary field strength
in eqn (6.30). For further discussions of GR|| along these lines, see Hehl and Mashhoon
(2009b) and Maluf (2013).

The tetrad formulation of GR goes back to Einstein’s attempt at a classical unified
field theory of gravitation and electromagnetism (Einstein 1930). Later, in a purely
gravitational context, Møller pointed out that the fundamental problem of gravita-
tional energy in GR can be solved in the tetrad framework (Møller 1961; Pellegrini
and Plebanski 1963; Hayashi and Shirafuji 1979). It turns out that general telepar-
allel theories of gravitation can be constructed on the basis of the dynamics of a
fundamental parallel tetrad frame field; see, for instance, Blagojević and Hehl (2013),
Aldrovandi and Pereira (2013), Maluf (2013) and the references cited therein. If in
such a framework the resulting gravitational field equation reduces to that of GR,
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then we have the teleparallel equivalent of GR, namely, GR||. Let gµν(x) be a solution

of GR field equation; then, in this gravitational field any smooth frame field λµ
α̂(x)

that is orthonormal, namely,

gµν(x) = λµ
α̂λν

β̂ ηα̂β̂ , (6.55)

is a solution of the GR|| field equation. Equation (6.55) is invariant under the local
Lorentz group. The Weitzenböck connection is simply auxiliary in GR|| and helps in
the resolution of the energy problem in GR. On the other hand, the extra structure
can also allow the introduction of nonlocality into the theory, but then the correspond-
ing fundamental frame field acquires basic significance; that is, given a solution gµν
of Einstein’s gravitational field equation, any smooth orthonormal tetrad field turns
out to be a possible fundamental frame field in GR||. However, this degeneracy is
removed by nonlocality. Thus in nonlocal gravity, there is a unique distribution of
gravitational energy in spacetime up to invariance under the global Lorentz group. A
detailed treatment of the approach to GR|| adopted here can be found in the review
by Maluf (2013). This concludes our brief presentation of the salient features of GR||,
the teleparallel equivalent of GR.

In nonlocal gravity, the gravitational field is directly dependent upon the past
history of the torsion field. To render general relativity history-dependent, we envision
a nonlocal extension of the constitutive relation of GR||, eqn (6.30), involving an
average of torsion field with a weight function given, for simplicity, by a certain scalar
constitutive kernel K(x, x′). This kernel is assumed to be causal, so that event x
is in the future of event x′. Indeed, we assume that x can be connected to x′ by
a unique timelike or null geodesic. To perform the integration over the past state
of the gravitational field, here represented by the torsion field, we need the world
function Ω(x, x′), which provides the causal connection between the past and the
present via bitensors Ωµµ′(x, x

′). We therefore turn to a discussion of the world function
(Hadamard 1952; Ruse 1931; Synge 1931, 1971).

6.3 World Function

Consider a geodesic path xµ(ζ) in spacetime. The geodesic equation of motion can be
derived from the variational principle δ

∫
Lg dζ = 0, where (Bini and Mashhoon 2016)

Lg = −1

2

(
ds

dζ

)2

= −1

2
gαβ

dxα

dζ

dxβ

dζ
. (6.56)

The momentum corresponding to the 4-velocity vector dxα/dζ is given by

pα =
∂ Lg

∂ (dxα/dζ)
= −gαβ

dxβ

dζ
. (6.57)

It is straightforward to show that the Euler–Lagrange equation in this case leads to

d2xµ

dζ2
+ 0Γµαβ

dxα

dζ

dxβ

dζ
= 0. (6.58)

Moreover, the Hamiltonian, −Lg+pα dx
α/dζ, in this case amounts to − 1

2 p
α pα, which

is conserved, since the dynamical system does not explicitly depend upon ζ. The



106 Field Equation of Nonlocal Gravity

magnitude of the Hamiltonian is the same as that of the Lagrangian along the path;
therefore, ds/dζ is a constant of the motion. This constant vanishes for a null geodesic
path; otherwise, the proper spacetime distance along the path is linearly related to ζ.
The path is a timelike (spacelike) geodesic if the Hamiltonian is positive (negative).
The geodesic equation (6.58) is independent of a constant linear rescaling of parameter
ζ; hence, ζ is an affine parameter along the geodesic path.

Imagine now that a unique geodesic path connects event P ′ : x′ = ξ(ζ0) to event
P : x = ξ(ζ1) along the geodesic path xµ = ξµ(ζ); see Fig. 6.1a. It proves useful to
employ the world function Ω, which denotes half the square of the proper distance
from P ′ to P ; that is, we define (Synge 1971)

Ω(x, x′) =
1

2
(ζ1 − ζ0)

∫ ζ1

ζ0

gαβ
dξα

dζ

dξβ

dζ
dζ. (6.59)

It turns out that Ω is independent of the affine parameter ζ; that is, Ω is invariant
under a linear rescaling of ζ. Moreover, the integrand in eqn (6.59) is constant by
virtue of the geodesic equation; therefore, Ω = 0 for a null geodesic, Ω = − 1

2 τ
2 for

a timelike geodesic of length τ and Ω = 1
2 σ

2 for a spacelike geodesic of length σ. To
proceed, indices µ′, ν′, ρ′, ... refer to event x′, while indices µ, ν, ρ, ... refer to event x;
moreover, we use indices α, β, ... to refer to an arbitrary event on the geodesic between
P ′ and P .

To illustrate the main properties of Ω(x, x′), we consider a variation of eqn (6.59)
that changes the endpoints; that is, in eqn (6.59) we replace ξ by ξ+ δ ξ , where δ ξ is
non-zero only at the endpoints. Then,

δΩ(x, x′) = (ζ1 − ζ0)

[
gαβ

dξβ

dζ
δξα
]ζ1
ζ0

. (6.60)

On the other hand,

δΩ =
∂ Ω

∂xµ
δxµ +

∂ Ω

∂x′µ′
δx′µ

′
, (6.61)

so that

∂ Ω

∂xµ
= (ζ1 − ζ0)gµν(x)

dxν

dζ
,

∂ Ω

∂x′µ′
= −(ζ1 − ζ0)gµ′ν′(x

′)
dx′ν

′

dζ
. (6.62)

Thus from the viewpoint of an observer at P , −gµν ∂ Ω/∂ xν := −Ωµ is the natural
generalization of the position vector of P ′ with respect to P , while from the viewpoint
of an observer at P ′, −gµ′ν′ ∂ Ω/∂ xν

′
:= −Ωµ

′
is the natural generalization of the

position vector of P with respect to P ′; see Fig. 6.1b.
It is possible to see from the geodesic equation that the integrand in eqn (6.59) is

indeed constant; therefore,

Ω(x, x′) =
1

2
(ζ1 − ζ0)2gµν(x)

dxµ

dζ

dxν

dζ

=
1

2
(ζ1 − ζ0)2gµ′ν′(x

′)
dx′µ

′

dζ

dx′ν
′

dζ
. (6.63)
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(a) (b)

Fig. 6.1 (a) A timelike geodesic segment with proper time τ that starts at point P ′ and ends

at point P . (b) The derivatives of the world function Ωµ′ and Ωµ are tangents to the path

at P ′ and P , respectively, and have the same length τ as the geodesic segment. Republished

from Bini, D. and Mashhoon, B., 2016, “Nonlocal Gravity: Conformally Flat Spacetimes”,

Int. J. Geom. Methods Mod. Phys. 13, 1650081 (17 pages), with the permission of World

Scientific Publishing Co., Inc.; permission conveyed through Copyright Clearance Center, Inc.

DOI: 10.1142/S021988781650081X

We define

Ωµ(x, x′) :=
∂ Ω

∂xµ
, Ωµ′(x, x

′) :=
∂ Ω

∂x′µ′
. (6.64)

Then, it follows from eqns (6.62)–(6.63) that

2 Ω = gµνΩµΩν = gµ
′ν′Ωµ′Ων′ , (6.65)

which are the fundamental partial differential equations for Ω(x, x′). They have the
interpretation that the proper length of each tangent vector at P and P ′ is equal to
the proper length of the geodesic from P ′ to P ; see Fig. 6.1b.

It can be shown that covariant derivatives at x and x′ commute for any bitensor
(Synge 1971). Thus Ωµµ′(x, x

′) = Ωµ′µ(x, x′) is a smooth dimensionless bitensor. From
the basic equation 2 Ω = Ωµ Ωµ we obtain, via differentiation,

Ωµ′ = Ωµµ′ Ω
µ. (6.66)

It follows from this result that as x′ → x, we have

lim
x′→x

Ωµµ′(x, x
′) = −gµµ′(x), (6.67)

cf. Fig. 6.1b.
Let kα be a Killing vector field; then, kα dx

α/dτ is a constant along a geodesic
path. It follows from this fact and Fig. 6.1b that

kµ(x) Ωµ(x, x′) + kµ
′
(x′) Ωµ′(x, x

′) = 0. (6.68)
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In the case of Minkowski spacetime, Ω→ MΩ, where

MΩ =
1

2
ηαβ (xα − x′α) (xβ − x′β). (6.69)

According to our convention, ηαβ is given by diag(−1, 1, 1, 1); hence,

MΩ(x, x′) = −1

2

[
(t′ − t)2 − |x′ − x|2

]
. (6.70)

It is straightforward to see that

MΩµµ′ =
∂2 MΩ(x, x′)

∂xµ∂x′µ′
= −ηµµ′ , (6.71)

while
MΩµν =

∂2 MΩ

∂xµ∂xν
= ηµν ,

MΩµ′ν′ =
∂2 MΩ

∂x′µ′∂x′ν′
= ηµ′ν′ . (6.72)

Beyond Minkowski spacetime, it is in general not possible to obtain an explicit expres-
sion for the world function, except perhaps in the framework of certain approximation
schemes (Poisson, Pound and Vega 2011). To illustrate the problem, we consider here
the world function in certain simple conformally flat spacetimes (Bini and Mashhoon
2016).

6.3.1 Conformally flat spacetimes

Consider the metric of a conformally flat spacetime of the form

ds2 = e2U ηµν dx
µ dxν , (6.73)

where U(x) is a scalar under general coordinate transformations. To simplify matters
even further, we will assume that U = U(t), where t ≥ 0 in our convention. As is well
known, the geodesics of this spacetime can be obtained from the Lagrangian

Lg = −1

2

(
ds

dτ

)2

, (6.74)

where τ is initially just an affine parameter but will turn out to be the proper time
along a timelike geodesic, once we set Lg = 1/2 along the geodesic,

d2xµ

dτ2
+ 0Γµαβ

dxα

dτ

dxβ

dτ
= 0. (6.75)

Thus

Lg =
1

2
e2U (ṫ2 − δij ẋi ẋj), (6.76)

where an overdot indicates differentiation with respect to τ . Hence,

p0 =
∂Lg

∂ṫ
= e2Uṫ, pi =

∂Lg
∂ẋi

= −e2U δij ẋ
j (6.77)

and the Euler–Lagrange equations are
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d

dτ
(e2Uṫ) = U,t e2U(ṫ2 − δij ẋi ẋj), (6.78)

d

dτ
(e2U δij ẋ

j) = 0. (6.79)

Equations (6.78) and (6.79) can be written as

ẗ+ U,t (ṫ2 + δij ẋ
i ẋj) = 0, (6.80)

δij ẍ
j + 2U,t ṫ δij ẋj = 0. (6.81)

Introducing the Euclidean spatial interval d`, d`2 = δij dx
i dxj , we have from the

integration of these equations for a timelike geodesic that

e2U

[
ṫ2 −

(
d`

dτ

)2
]

= 1, (6.82)

d`

dτ
= η e−2U, (6.83)

where η is a constant of integration.
Assuming that the timelike geodesic starts at P ′ and moves forward to P as in

Fig. 6.1a, we have η ≥ 0 and

τ =

∫ t

t′

e2U(θ)√
η2 + e2U(θ)

dθ, (6.84)

|x− x′| = η

∫ t

t′

1√
η2 + e2U(θ)

dθ. (6.85)

Moreover, it follows from these results that

τ + η |x− x′| =
∫ t

t′

√
η2 + e2U(θ) dθ. (6.86)

The parameter η : 0 → ∞ must be eliminated between eqns (6.84) and (6.85) to
give us the world function Ω(x, x′) = −τ2/2. We note that η = 0 for no movement
in space at all, while η = ∞ corresponds to null motion. Null geodesics are invariant
under a conformal transformation; therefore, we see that for η = ∞, |x− x′| = t− t′
and τ = 0, as expected.

In many interesting situations, such as the curved spacetimes examined below, it
turns out that exp [U(θ)] = C̄ θ ν for ν > 0 and constant C̄ > 0. In this case, eqns (6.84)
and (6.85) become

τ =
η

ων
[Xν (ωνt)− Xν (ωνt

′)] (6.87)

and

|x− x′| = 1

ων
[Yν (ωνt)− Yν (ωνt

′)] , (6.88)
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where

ων(η) :=

(
C̄

η

)1/ν

(6.89)

and

Xν(x) =

∫ x

0

ψ2ν√
1 + ψ2ν

dψ, Yν(x) =

∫ x

0

1√
1 + ψ2ν

dψ. (6.90)

Formally, we have for ν 6= −1,

Xν(x) =
1

ν + 1

[
x
√

1 + x2ν − Yν(x)
]
. (6.91)

The ν = −1 case, excluded here, corresponds in fact to the metric of de Sitter spacetime
discussed later in this chapter. From the integral representation of the hypergeometric
function (Abramowitz and Stegun 1964)

F (a, b; c̄; ζ) =
Γ(c̄)

Γ(b) Γ(c̄− b)

∫ 1

0

tb−1 (1− t)c̄−b−1 (1− t ζ)−a dt, (6.92)

valid for Re(c̄) >Re(b) > 0, with t1/(2ν) x = ψ, we find

Yν(x) = xF

(
1

2
,

1

2ν
; 1 +

1

2ν
;−x2ν

)
. (6.93)

It is not in general possible to eliminate η between eqns (6.84) and (6.85), or in their
new forms (6.87) and (6.88), to obtain an explicit expression for the world function.
To illustrate this situation, we consider some special cases.

Minkowski spacetime. Let U = 0, as in Minkowski spacetime. Then,

τ =
t− t′√
η2 + 1

, |x− x′| = η (t− t′)√
η2 + 1

. (6.94)

Here η = v/
√

1− v2, where v is the speed of uniform motion along the straight line
from P ′ to P . Thus, eliminating η, we find, as expected, eqn (6.70) for MΩ of the
Minkowski spacetime.

de Sitter spacetime. Let expU = 1/(λ̄ t), where λ̄ :=
√

0Λ/3 and t ≥ 0, as in the de
Sitter spacetime (Ruse 1930). Then, eqns (6.84) and (6.85) imply that for ū := η λ̄ t
and ū′ := η λ̄ t′,

eλ̄ τ =
ū

ū′
1 +
√

1 + ū′2

1 +
√

1 + ū2
, (6.95)

η λ̄ |x− x′| =
√

1 + ū2 −
√

1 + ū′2. (6.96)

Eliminating η in this case leads to Ω(x, x′) = −τ2/2, where

Q = cosh (λ̄ τ), Q =
t2 + t′2 − |x− x′|2

2t t′
. (6.97)
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Here, Q satisfies

gµν Q,µQ,ν = λ̄2 (1−Q2). (6.98)

More specifically, we have Q ≥ 1,

λ̄ τ = ln(Q +
√

Q2 − 1) (6.99)

and

Ω = −(2 λ̄2)−1 ln2(Q +
√

Q2 − 1). (6.100)

Using relations (6.97) and (6.99), it is straightforward to check that over an
infinitesimal interval with t− t′ = dt > 0 and |x− x′| = |dx|, we have, as expected,

dτ = (λ̄ t)−1
√
dt2 − dx2 (6.101)

for the de Sitter spacetime.

FLRW spacetime with stiff equation of state. Next, we consider the case of a spatially
flat Friedmann–Lemâıtre–Robertson–Walker (FLRW) universe with a stiff equation of
state (Roberts 1993). Here, expU =

√
β0 t, where β0 > 0 is a constant parameter.

The density (ρ) and pressure (p) are equal in this universe model and are given by
ρ = p = 3/(32πGβ0t

3). From eqn (6.85), we find

β0 |x− x′| = 2η (Z− Z′), (6.102)

where Z :=
√
η2 + β0 t. Squaring relation (6.102) twice and defining

τ2
M := (t− t′)2 − |x− x′|2, (6.103)

we find, after some algebra, that

η2 =
β0

4 τ2
M

|x− x′|2
(
t+ t′ +

√
4 t t′ + |x− x′|2

)
, (6.104)

which properly diverges for null motion (τM = 0). Next, eqn (6.84) implies that

3

2
τ + η |x− x′| = tZ− t′ Z′. (6.105)

Substituting for η in this equation, we eventually find the world function in this case
(Roberts 1993).

Einstein–de Sitter universe. Finally, we consider the case of a spatially flat FLRW
universe with p = 0 and ρ = 3/(2πG b40 t

6), where b0 = 1/(3 t̄0) and 3 t̄0 is the age
of the universe in this model. Thus the present energy density of matter ρ0 is given
by 6πGρ0 t̄

2
0 = 1. In this case, expU = b20 t

2 and only an implicit form of the world
function is possible.
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6.4 Nonlocal Gravity (NLG)

In his fruitful approach to GR, Einstein interpreted the experimentally well-established
principle of equivalence of inertial and gravitational masses to mean that there is
an intimate connection between inertia and gravitation (Einstein 1950). This notion
eventually led to Einstein’s extremely local principle of equivalence and GR. Following
Einstein, we wish to employ the general connection between inertia and gravitation as
a guiding principle to render GR (or, equivalently, GR||) nonlocal in just the same way
that accelerated observers in Minkowski spacetime are nonlocal. In field measurements
of accelerated observers, the memory of past acceleration appears as an integral over
the past that is linear in the field. To implement the same idea in the theory of
gravitation, we note that Einstein’s field equation, represented by eqn (6.49) in our
tetrad framework, has the same general form as in electromagnetism, and eqn (6.30)
is a local constitutive relation, where the auxiliary torsion tensor Cµνρ is linearly
related to the torsion tensor Cµνρ, cf. eqn (6.28). In the electrodynamics of media,
the constitutive relation between Hµν 7→ (D,H) and Fµν 7→ (E,B) could be nonlocal
(Jackson 1999; Landau and Lifshitz 1960). Therefore, in the nonlocal electrodynamics
of media, Maxwell’s original equations remain unchanged, but the constitutive relation
now involves the past history of the electromagnetic field. We wish to construct here a
nonlocal theory of gravitation in analogy with the nonlocal electrodynamics of media.
To render observers nonlocal in a gravitational field in the same sense as in nonlocal
special relativity, we simply change eqn (6.30) to

NLGHµνρ :=

√
−g
κ

(Cµνρ +Nµνρ), (6.106)

where Nµνρ = −Nνµρ is a tensor involving the past history of the gravitational field.
We emphasize that in order to preserve the invariance of the theory under arbitrary
coordinate transformations, Nµνρ and hence the resulting nonlocal auxiliary field
strength NLGHµνρ should be antisymmetric in their first two indices. The simplest
expression for the nonlocality tensor Nµνρ would involve a scalar kernel; that is,

Nµνρ = −
∫

Ωµµ′Ωνν′Ωρρ′ K(x, x′)Xµ′ν′ρ′(x′)
√
−g(x′) d4x′, (6.107)

where K is the scalar causal kernel of the nonlocal theory (Hehl and Mashhoon 2009a,
2009b) and Xµνρ(x) is a tensor that is antisymmetric in its first two indices and
involves a linear combination of the components of the torsion tensor. We note that
there is no physical connection between kernel K and the nonlocal kernel of accelerated
observers in Minkowski spacetime due to the extreme locality of Einstein’s principle
of equivalence. In eqn (6.107), Ω(x, x′) is Synge’s world function (Synge 1971), which
involves a unique future directed timelike or null geodesic of gµν that connects event
x′ to event x and the square of its proper length is 2 Ω. It is important to emphasize
that in eqn (6.107) the integrand as a function of x′ is a scalar invariant, which can
therefore be integrated over the curved spacetime manifold, while the result is properly
a tensor in x. Event x′ is in the past of event x; otherwise, K = 0. In other words,
eqn (6.107) represents a certain average over the past history of the gravitational field.
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Let us observe here that the constitutive ansatz (6.106) involves a linear nonlocal
relation between the two field strengths involving NLGHµνρ and Cµνρ via Cµνρ; how-
ever, as in electrodynamics, such a nonlocal relation could well become nonlinear when
the field strengths are sufficiently high. We will not have occasion here to discuss such
nonlinearities since at this early stage in the development of nonlocal gravity (NLG)
the relation between Xµνρ and torsion is assumed to be linear for the sake of simplicity.

In electrodynamics, the local constitutive relation betweenHµν and Fµν , considered
as 6-vectors, can be described via a 6× 6 matrix. One can similarly envision the local
linear relationship between Xµνρ = −Xνµρ and Cµνρ in eqn (6.107) in a rather general
context, namely,

Xµνρ = χµνρ
αβγ Cαβγ . (6.108)

This relation is reminiscent of the local constitutive relation between Hµν and Fµν in
electrodynamics (Hehl and Obukhov 2003). Various forms of eqn (6.108) have been
explored in Mashhoon (2014) and the relation that has been adopted for NLG is

Xµνρ = Cµνρ + p̌ (Čµ gνρ − Čν gµρ). (6.109)

Here, p̌ 6= 0 is a constant dimensionless parameter and Čµ is the torsion pseudovector
given by

Čµ =
1

3!
Cαβγ Eαβγµ, Čα =

1

3
Eαβγδ C

βγδ, (6.110)

where Eαβγδ is the Levi-Civita tensor.
The constitutive kernel K(x, x′) could in general depend upon scalars at x and x′

that can be formed from the gravitational potentials, the world function Ω(x, x′) and
their derivatives. For instance, we can tentatively assume that K(x, x′) is simply a
function of spacetime scalars such as

Ωµ(x, x′) eµα̂(x), Ωµ′(x, x
′) eµ

′

α̂(x′), (6.111)

where the Lorentz freedom in the choice of the fundamental frame has been fixed
relative to the rest frame of the gravitational source, as discussed in detail in the
following chapter, where the consequences of this form for K(x, x′) are worked out in
detail within the framework of the linearized theory of nonlocal gravity.

It is not known at present whether the field equation of nonlocal gravity can be
derived from an action principle. There are in general problems with action principles
for nonlocal theories if the kernel is not symmetric—and causal kernels cannot be
symmetric in time; in fact, this issue has been discussed in detail in Hehl and Mash-
hoon (2009b). For instance, nonlocality can arise from integrating out certain physical
degrees of freedom (Galley 2013). Other than the implicit connection between iner-
tia and gravitation, elucidated by Einstein, that has led us from acceleration-induced
nonlocality in Minkowski spacetime to a nonlocal generalization of GR, the explicit
physical origin of nonlocality in the case of the gravitational field is thus far unknown.
Therefore, the theory is incomplete without a thorough examination of the physical
origin of the nonlocal kernel K and constant parameter p̌. The constitutive kernel in
the classical nonlocal electrodynamics of media is ultimately obtained from the under-
lying atomic and molecular physics of the material medium involved (Jackson 1999).
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The corresponding underlying physics of the constitutive kernel K and parameter p̌ for
gravity is not known at present; therefore, as discussed in detail in the next chapter,
we take the view that K and p̌ can be determined instead from the comparison of
nonlocal gravity with experiment. Perhaps someday K and p̌ will be ascertained from
a more complete future theory.

6.5 Nonlocal GR||

The field equation of nonlocal gravity is obtained from eqns (6.49) and (6.44) by
substituting NLGHµνρ for Hµνρ. In close analogy with the nonlocal electrodynamics
of media, the main field equation of the teleparallel equivalent of general relativity is
maintained, that is,

∂

∂xβ
NLGHαβγ̂ =

√
−g eµγ̂ gαν

(
Tµν + NLGEµν −

0Λ

κ
gµν

)
, (6.112)

where NLGEµν is given by

√
−g NLGEµν = Cµρσ

NLGHνρσ −
1

4
gµν Cαβγ

NLGHαβγ , (6.113)

except that the constitutive relation is now NLGHµνρ := (
√
−g/κ) (Cµνρ + Nµνρ),

where Nµνρ represents the past history of the gravitational field, namely,

NLGHµνρ =

√
−g
κ

[
Cµνρ

−
∫

Ωµµ′Ωνν′Ωρρ′ K(x, x′)Xµ′ν′ρ′(x′)
√
−g(x′) d4x′

]
. (6.114)

Here,
Xµνρ = Cµνρ + p̌ (Čµ gνρ − Čν gµρ) (6.115)

and p̌ is a non-zero constant; see eqns (6.107) and (6.109).
Let us define

Eµν := NLGEµν ; (6.116)

then, the field equation of nonlocal gravity can be expressed as

∂

∂xβ

[√−g
κ

(Cαβγ̂ +Nαβ
γ̂)
]

=
√
−g eµγ̂ gαν

(
Tµν + Eµν −

0Λ

κ
gµν

)
, (6.117)

where

κ Eµν = Cµρσ(Cν
ρσ +Nν

ρσ)− 1

4
gµν Cαβγ(Cαβγ +Nαβγ). (6.118)

The main new element here is of course the nonlocality tensor Nµνρ, which is an
average over the past history of the gravitational field. As mentioned before, the law
of conservation of total energy–momentum tensor takes the form

∂

∂xµ

[√
−g (Tα̂

µ + Eα̂µ −
0Λ

κ
eµα̂)

]
= 0. (6.119)
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6.6 Nonlocal GR

It is possible to express the nonlocal gravitational field equation as modified Einstein’s
equation. To this end, we separate out in eqn (6.117) the partial derivative term
involving (

√
−g/κ)Cµνα̂ and insert it into the expression (6.45) for the Einstein tensor

0Gµν to get the nonlocal generalization of Einstein’s field equation, namely,

0Gµν +Nµν = κTµν − 0Λ gµν +Qµν . (6.120)

Here, Nµν , defined by

Nµν := gνα eµ
γ̂ 1√
−g

∂

∂xβ

(√
−g Nαβ

γ̂

)
, (6.121)

is indeed a proper tensor, since Nαβγ = −Nβαγ by assumption; moreover, the quantity
Qµν := κ (Eµν − Eµν) is a traceless tensor given by

Qµν := CµρσNν
ρσ − 1

4
gµν CδρσN

δρσ. (6.122)

It is clear that Einstein’s gravitational field equation is recovered when the nonlocal
kernel vanishes, K = 0, and hence Nµνρ = 0. In GR, the ten components of the
metric tensor gµν can be determined, in principle, from the ten gravitational field
equations. Here, however, the sixteen components of the fundamental observers’ frame
field eµα̂ can be obtained, in principle, from the sixteen gravitational field eqns (6.120)–
(6.122) of nonlocal general relativity. In other words, nonlocality removes the essential
degeneracy of GR||; moreover, as expected, nonlocal gravity is invariant under the
global Lorentz group. The integro-differential field equations of nonlocal gravity in
general contain Fredholm integral relations that turn into Volterra integral relations
whenever causal kernels are involved (Lovitt 1950; Tricomi 1957).

To compare and contrast further the field equation of nonlocal gravity with the
Einstein field equation of GR, one can separate out eqn (6.120) into its symmetric and
antisymmetric components. In this way, we get the ten nonlocally modified Einstein
equations given by

0Gµν +N(µν) = κTµν − 0Λ gµν +Q(µν) (6.123)

as well as the six integral constraint equations involving the nonlocality tensor Nµνρ,
namely,

N[µν] = Q[µν] =
1

2

(
CµρσNν

ρσ − CνρσNµρσ
)
, (6.124)

that are dominated by averaging over past events and vanish for K = 0. The energy–
momentum tensor is symmetric; therefore, there is no contribution from T[µν] = 0 to
eqn (6.124). Let us recall here that these sixteen field equations are required to deter-
mine the sixteen components of eµα̂(x), of which ten are fixed by the spacetime metric
gµν via orthonormality and the other six are Lorentz degrees of freedom (i.e. boosts
and rotations). This division is reflected in eqns (6.123) and (6.124), respectively. The
general mathematical investigation of the existence and uniqueness of the solutions of
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the partial integro-differential eqn (6.123) with integral constraints (6.124) is beyond
the scope of the present book.

Nonlocality—in the sense of an influence (“memory”) from the past that endures—
could be a natural feature of the universal gravitational interaction. Some of the
consequences of our nonlocal gravity model in the linear weak-field regime are consid-
ered in the rest of this book. This involves detailed studies of the nonlocal modifications
of Newtonian gravity and linearized gravitational waves. As explained in the following
chapter, the notion that nonlocal gravity (NLG) can simulate dark matter is completely
consistent with causality; moreover, the theoretical results appear to be consistent with
experiment at the linear level. The nonlinear regime of NLG has not yet been studied;
therefore, exact cosmological models or issues involving the influence of nonlocality
on the formation and evolution of black holes are beyond the scope of our present
considerations. Indeed, the investigation of the nonlinear regime of NLG remains a
task for the future.

6.7 Effective Dark Matter

Let us now return to eqn (6.120) and define Tµν in terms of the nonlocal parts of the
field equation of NLG, namely,

Tµν = κ−1 (Qµν −Nµν), (6.125)

so that eqn (6.120) can now be written as

0Gµν + 0Λ gµν = κ (Tµν + Tµν). (6.126)

Here T(µν) has the interpretation of the symmetric energy–momentum tensor of the
effective dark matter, while

T[µν] = 0 (6.127)

are the six constraint equations that are necessary in order to determine the sixteen
components of the tetrad frame field of the fundamental observers; that is, the field
equation of NLG consists of the ten nonlocally modified Einstein equations

0Gµν + 0Λ gµν = κ [Tµν + T(µν)] (6.128)

together with the six constraint equations (6.127). Furthermore, it follows from the
reduced Bianchi identity, 0∇ν 0Gµν = 0, that the total matter energy–momentum
tensor is conserved, namely,

0∇ν
[
Tµν + T(µν)

]
= 0. (6.129)

Could the effective dark matter of nonlocal gravity correspond to dark matter? Is
it possible that what appears in astrophysics and cosmology as dark matter may in
fact turn out to be the nonlocal aspect of the gravitational interaction? This important
issue will be discussed at length in the remaining chapters of this book.

It is interesting to investigate gravitational systems that may consist entirely of
effective dark matter with (Tµν = 0). Such systems would be expected to lack proper



Effective Dark Matter 117

Newtonian limits and hence could exist only in highly relativistic situations. Further-
more, there could be systems for which the nonlocal contribution to the gravitational
field equation vanishes. In other words, the fundamental observers’ tetrad frames in
eqn (6.126) could be such that the corresponding metric tensor gµν satisfies this equa-
tion with Tµν = 0. In this case, Nµν = Qµν . An immediate consequence of this equality
is that Nµν must be traceless, since Qµν is traceless. It follows from eqn (6.121) and
gµν Nµν = 0 that

eα
γ̂ ∂

∂xβ

(√
−g Nαβ

γ̂

)
= 0. (6.130)

These special gravitational systems require further investigation.
To find a solution of NLG, we must ultimately determine the sixteen compo-

nents of the tetrad frame field eµα̂ of the fundamental observers. Of these spacetime
functions, ten would then specify the metric tensor in accordance with the ortho-
normality condition. Let us note that with eµα̂ = δµα̂, gµν = ηµν , 0Λ = 0 and
Tµν = 0, we find that the tetrad frame field of the fundamental inertial observers
in Minkowski spacetime is an exact solution of NLG. No other exact solution of NLG
is known, because of the complicated structure of nonlocal gravity theory. Thus far, the
main observational consequences of the NLG theory linearized about the fundamental
inertial observers in Minkowski spacetime have been investigated; see Chapter 7. In
these studies, it is sufficient to employ the world function of Minkowski spacetime,
which enormously simplifies the task of finding solutions of the theory. Otherwise, the
world function for the timelike geodesics of curved spacetime would be required in the
nonlocal ansatz (6.107). At the present stage of the development of NLG, the causal
scalar kernel K(x, x′) should in any case be ultimately determined from the comparison
of the theory with observation.
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Linearized Nonlocal Gravity

The fundamental observers’ frame field in source-free Minkowski spacetime is the only
known exact solution of the field equation of nonlocal gravity (NLG) at present. In
the absence of an exact solution involving a non-zero gravitational field, we look for
an approximate solution of NLG that is a first-order perturbation about Minkowski
spacetime. The purpose of this chapter is to develop and study the general linear weak-
field approximation of NLG beyond Minkowski spacetime (Mashhoon 2014; Chicone
and Mashhoon 2016a).

7.1 Linear Approximation of Nonlocal Gravity

Imagine a finite source of mass–energy in a compact region of space. We suppose
that the gravitational field is everywhere weak and falls off to zero far away from
the source. We also set the cosmological constant equal to zero, 0Λ = 0, and assume
that in the absence of gravity, we are in the “rest” frame of the source in Minkowski
spacetime with the fundamental tetrad frame eµα̂ = δµα. In the presence of gravity, the
fundamental frame field of nonlocal gravity is then assumed to be

eµ
α̂ = δαµ + ψαµ, eµα̂ = δµα − ψµα, (7.1)

where ψµν is treated to linear order in perturbation away from Minkowski spacetime
and hence the distinction between spacetime and tetrad indices disappears at this level
of approximation. Let us note that in eqn (7.1), the invariance of the theory under
global Lorentz transformations has been broken, since the unperturbed fundamental
frame field coincides with the “rest” frame of the gravitational source. It is useful to
decompose ψµν into its symmetric and antisymmetric components; that is, we define,

hµν := 2ψ(µν), φµν := 2ψ[µν]. (7.2)

It then follows from orthonormality, gµν(x) = eµ
α̂ eν

β̂ ηα̂β̂ , that

gµν = ηµν + hµν . (7.3)

Moreover, it is convenient to employ the trace-reversed potentials

h̄µν = hµν −
1

2
ηµνh, h := ηµνh

µν , (7.4)

just as in GR. Here h̄ = −h and we have
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ψµν =
1

2
h̄µν +

1

2
φµν −

1

4
ηµν h̄. (7.5)

It is now straightforward to work out the field components in terms of ψµν . The
torsion tensor is then,

Cµνσ = ∂µψσν − ∂νψσµ (7.6)

and the auxiliary torsion tensor is given by

Cµσν = −h̄ν[µ,σ] − ην[µh̄σ]ρ,
ρ +

1

2
φµσ,ν + ην[µφσ]ρ,

ρ, (7.7)

in terms of which the Einstein tensor can be expressed as

0Gµν = ∂σCµ
σ
ν = −1

2
2 h̄µν + h̄ρ(µ,ν)ρ −

1

2
ηµν h̄

ρσ
,ρσ, (7.8)

where 2 := ηαβ∂α∂β . Moreover, the torsion vector and pseudovector are given by

Cµ =
1

4
∂µh̄+

1

2
∂ν(h̄νµ + φνµ), Čµ =

1

6
εµνρσ φνρ,σ. (7.9)

In the linear regime, eqn (6.107) reduces to

Nµ
σ
ν =

∫
K(x, y)Xµ

σ
ν(y) d4y. (7.10)

Moreover, in the nonlocal generalization of Einstein’s field equation in eqn (6.120),
Qµν is of second order in torsion and can therefore be neglected; see eqn (6.122). Thus
the linearized forms of the field eqns (6.123) and (6.124) of nonlocal gravity are given
by

0Gµν +
1

2
∂σ (Nµ

σ
ν +Nν

σ
µ) = κTµν (7.11)

and
∂σ Nµ

σ
ν = ∂σ Nν

σ
µ, (7.12)

respectively. It follows immediately from the antisymmetry of the auxiliary torsion
tensor in its first two indices in eqn (7.8) and the symmetry of Einstein’s tensor that
∂ν

0Gµν = 0, as expected. Furthermore, eqns (7.11)–(7.12) imply that

∂νT
µν = 0, (7.13)

since Nµσν = −Nσµν . We thus recover the energy–momentum conservation law for
mass–energy, just as in linearized GR.

Let us next discuss the gauge freedom of the gravitational potentials. An infinites-
imal coordinate transformation, xµ 7→ x′µ = xµ − εµ(x), leads to ψµν 7→ ψ′µν =
ψµν + εµ,ν that is valid to linear order in εµ. Thus under a gauge transformation,

h̄′µν = h̄µν + εµ,ν + εν,µ − ηµνεα,α, φ′µν = φµν + εµ,ν − εν,µ (7.14)

and h̄′ = h̄ − 2εα,α; however, as expected, the gravitational field tensors Cµνσ and
Cµσν are left unchanged. It follows that the linearized gravitational field equation of
NLG is gauge-invariant.
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To proceed further, we must discuss the nature of the nonlocal kernel in the
linearized theory. The kernel that appears in eqn (7.10) is the nonlocal kernel in the
Minkowski spacetime limit. In Minkowski spacetime, the world function is given by

MΩ(x, x′) =
1

2
ηαβ(xα − x′α)(xβ − x′β); (7.15)

see eqn (6.69). Hence, to lowest order in the perturbation, we find

MΩµ(x, x′) eµα̂(x) = −MΩµ′(x, x
′) eµ

′

α̂(x′) = ηαβ(xβ − x′β). (7.16)

It follows from this result and our brief discussion of the kernel in the previous chapter,
cf. eqn (6.111), that we have a convolution kernel in the linearized theory; that is, we
can tentatively assume that the nonlocal kernel K(x, y) is a universal function of
xα − yα, so that

K(x, y) := K(x− y). (7.17)

Moreover, to ensure causality, we assume that the convolution kernel K is non-zero
only when xα−yα is a future-directed timelike or null vector in Minkowski spacetime,
which means that event y must be within or on the past light cone of event x, or
equivalently, that event x must be within or on the future light cone of event y. In
other words, x0 ≥ y0 and

ηαβ(xα − yα)(xβ − yβ) ≤ 0. (7.18)

It follows that causality is ensured whenever

x0 − y0 ≥ |x− y|. (7.19)

Hence, K(x−y) must be proportional to u(x0−y0−|x−y|), where u(t) is the Heaviside
unit step function such that u(t) = 0 for t < 0 and u(t) = 1 for t ≥ 0; that is,

K(x− y) ∝ u(x0 − y0 − |x− y|). (7.20)

Returning to field eqns (7.11) and (7.12), let us now write them more explicitly as
follows

0Gµν(x) + ∂σ

∫
K(x− y)X(µ

σ
ν)(y) d4y = κTµν(x) (7.21)

and

∂σ

∫
K(x− y)X[µ

σ
ν](y) d4y = 0. (7.22)

The consequences of these equations for various choices of Xµσν are briefly discussed
in Appendix A. As in Chapter 6, we choose eqn (6.109), namely, Xµσν = Cµσν +
p̌ (Čµ gσν − Čσ gµν) with p̌ 6= 0. Then, in the linear regime we have

X(µ
σ
ν) = C(µ

σ
ν) + p̌

[
Č(µδ

σ
ν) − Č

σηµν
]
, X[µ

σ
ν] = C[µ

σ
ν] + p̌ Č[µδ

σ
ν]. (7.23)

Let us recall here the fact that the torsion pseudovector Čσ is the dual of C[µνρ],
which in the linear approximation is given by C[µνρ] = −φ[µν,ρ]. Moreover, in the linear
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approximation, Čσ,σ = 0. Thus the part of the constitutive relation proportional to p̌
is given exclusively by the derivatives of the antisymmetric tetrad potentials φµν and
vanishes for φµν = 0.

We are interested in the general case of time-dependent gravitational fields. The
implications of the gravitational field equation for steady-state configurations are con-
sidered in Section 7.6. The present section is devoted to time-varying situations. In
the calculation of the nonlocal terms in eqns (7.21) and (7.22), ∂K/∂xσ = −∂K/∂yσ
and

Xµ
σ
ν = Cµ

σ
ν + p̌ (Čµ δ

σ
ν − Čσ ηµν). (7.24)

It then follows via integration by parts that

∂σ

∫
K(x− y)Cµ

σ
ν(y) d4y = −Sµν +

∫
K(x− y) 0Gµν(y) d4y, (7.25)

where we have used eqn (7.8) and Sµν is given by

Sµν :=

∫
∂

∂yσ

[
K(x− y)Cµ

σ
ν(y)

]
d4y. (7.26)

Gauss’s theorem then implies that

Sµν =

∮
K(x− y)Cµ

α
ν(y) d3Σα(y), (7.27)

where the only contribution to the integral comes from the boundary hypersurface at
the light cone given by y0 = x0 − |x− y|. Therefore,

Sµν(x) =

∫
K(|x− y|,x− y)Cµ

0
ν(x0 − |x− y|,y) d3y, (7.28)

where Cµ
0
ν = C(µ

0
ν) + C[µ

0
ν] is given by eqn (7.7), namely,

C(µ
0
ν) =

1

2

(
h̄µν,0− h̄0(µ,ν) + ηµν h̄0ρ,

ρ− η0(µ h̄ν)ρ,
ρ +φ0(µ,ν)− ηµν φ0ρ,

ρ + η0(µ φν)ρ,
ρ
)

(7.29)
and

C[µ
0
ν] =

1

2

(
h̄0[µ,ν] + φ0[µ,ν] + η0[µ h̄ν]ρ,

ρ − η0[µ φν]ρ,
ρ
)
. (7.30)

In a similar way, we find that

Uµν := ∂σ

∫
K(x− y)

(
Čµ δ

σ
ν − Čσ ηµν

)
(y) d4y (7.31)

can be written as

Uµν = −
∫
K(|x− y|,x− y)

(
Čµ δ

0
ν − Č0 ηµν

)
(x0 − |x− y|,y) d3y

+

∫
K(x− y)Čµ,ν(y) d4y. (7.32)

We recall here that Uµν depends only upon the derivatives of φµν and vanishes for
φµν = 0.



122 Linearized Nonlocal Gravity

It follows from these results that in the linear regime with 0Λ = 0, eqn (6.120),
which is the nonlocal extension of Einstein’s field equation, can be written as

0Gµν(x) +

∫
K(x− y) 0Gµν(y) d4y = κTµν(x) + Sµν(x)− p̌ Uµν(x). (7.33)

This is the main field equation of linearized nonlocal gravity and can be split into its
symmetric and antisymmetric components, namely,

0Gµν(x) +

∫
K(x− y) 0Gµν(y) d4y = κTµν(x) + S(µν)(x)− p̌ U(µν)(x) (7.34)

and
S[µν](x) = p̌ U[µν](x). (7.35)

Let us first note here that S0ν(x) = 0 due to the antisymmetry of Cµσν in its first two
indices. Moreover, it proves useful to define the quantity

Wi := −h̄00,i + h̄ij,
j − φij,j (7.36)

and introduce the light-cone kernel Kc(x− y), that is,

Kc(x− y) := K(x− y) δ(x0 − y0 − |x− y|). (7.37)

Then, the purely nonlocal source-free integral constraints (7.35) consist of six equations
given by ∫

Kc(x− y)Wi(y) d4y = 4 p̌ U[i 0](x) (7.38)

and ∫
Kc(x− y)

(
h̄0i,j + φ0i,j − h̄0j,i − φ0j,i

)
(y) d4y = 4 p̌ U[i j](x). (7.39)

Furthermore, from S0ν = 0 and eqn (7.33), we have that

0G0ν(x) +

∫
K(x− y) 0G0ν(y) d4y = κT0ν(x)− p̌ U0ν(x), (7.40)

where U0ν can be determined from eqn (7.32), namely,

U0ν(x) =

∫
K(x− y)Č0,ν(y) d4y. (7.41)

In Appendix A, we show that Č0 can be determined in principle in terms of T00; see
eqn (7.226). Finally, the source term for the field equation involving 0Gij contains S(ij)

and U(ij), where

S(ij)(x) =
1

2

∫
Kc(x− y)

[
h̄ij,0 − h̄0(i,j) + φ0(i,j) + δij (h̄0ρ,

ρ − φ0k,
k)
]
(y) d4y (7.42)

and U(ij) can be simply determined from eqn (7.32).
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It is clear from these results that in our decomposition of the linear gravitational
potentials ψµν in eqn (7.2), the symmetric metric part h̄µν that satisfies eqn (7.34) has
primary dynamical content, while the antisymmetric tetrad part φµν plays a secondary
role and is constrained via eqn (7.35). In general, h̄µν and φµν are inextricably connected
in both sets of equations and cannot be simply disentangled. In the case of Xµνρ =
Cµνρ + p̌ (Čµ gνρ− Čν gµρ) under consideration here, certain simplifications occur that
are discussed in Section 7.3.

Before discussing the solution of the linearized field equations, we must digress here
and point out a significant consequence of gravitational dynamics given by eqn (7.33).
Working in the space of continuous functions on spacetime that are absolutely inte-
grable (L1) as well as square integrable (L2), it is possible to write eqn (7.33) in the
form

0Gµν = κTµν + Sµν − p̌ Uµν +

∫
R(x− y) [κTµν + Sµν − p̌ Uµν ](y) d4y, (7.43)

where R(x−y) is a kernel that is reciprocal to K(x−y); see Appendix B. The reciprocal
kernel is of the convolution type and is causal as well. Aside from nonlocal terms
involving Sµν and Uµν , eqn (7.43) exhibits an important feature that must be stressed.
That the linearized gravitational field equation can be expressed as in eqn (7.43) is a
crucial result, since it means that nonlocal gravity in the linear regime is essentially
equivalent to general relativity, except that in addition to the usual gravitational
source, there is an additional effective “dark” source that is given by the convolution
of the usual source with the causal reciprocal kernel. Most of the matter in the universe
is currently thought to be in the form of certain elusive particles that have not been
directly detected (Aprile et al. 2012; Agnese et al. 2014; Akerib et al. 2014; Baudis
2016); indeed, the existence and properties of this dark matter have thus far been
deduced only through its gravity. Could the additional source in nonlocal gravity be
identified as the main component of what appears as dark matter in astrophysics?
Would observational data support the notion that the effective dark matter of NLG
corresponds to astrophysical dark matter? It is necessary to investigate the interesting
possibility that nonlocality could simulate dark matter in this linearized theory, since
the “dark” source is simply the manifestation of the nonlocal aspect of the gravitational
interaction.

Nonlocality has been introduced into the theory of gravitation via the constitutive
kernel K. In effect, nonlocal gravity can be expressed as GR with an additional “dark”
source term. This effective dark matter source is the convolution of the standard source
with the reciprocal kernel R. To investigate the nature of the effective dark matter in
nonlocal gravity, we must first study the reciprocal kernel R.

7.2 Causal Reciprocal Kernel

Due to the importance of eqn (7.43) for the physical interpretation of NLG, this section
is devoted to a brief description of the mathematical steps that lead to this result.
Appendix B contains important background information regarding the transition from
eqn (7.33) to eqn (7.43). It turns out that the convolution property of the kernels under
consideration is independent of their crucial causality properties. Therefore, we first
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Fig. 7.1 Schematic plot indicating the finite shaded domain D(x, y) in spacetime. It is the

region common to the light cone that has its vertex at event x and the light cone that has

its vertex at event y. Reprinted with permission from Chicone, C. and Mashhoon, B., 2013,

Phys. Rev. D 87, 064015. DOI: 10.1103/PhysRevD.87.064015

consider a kernel K(x, y) that is causal, so that K(x, y) vanishes unless eqn (7.19) is
satisfied in this case.

A Volterra kernel is defined to be a causal kernel functionK(x, y) that is continuous
over causally ordered sets in Minkowski spacetime. The product of two Volterra kernels
K and K ′ is defined to be

V̄ (x, y) =

∫
D(x,y)

K(x, z)K ′(z, y) d4z, (7.44)

which is a Volterra kernel, since the above integrand is non-zero only when z is simul-
taneously in the past light cone of x and in the future light cone of y, so that y is
in the past light cone of x. Thus the integration domain D(x, y) in eqn (7.44) is the
finite region in Minkowski spacetime bounded by the past light cone of event x and
the future light cone of event y, as depicted schematically in Fig. 7.1. Alternatively,
consider the causality conditions for K and K ′, namely,

x0 − z0 ≥ |x− z|, z0 − y0 ≥ |z− y|, (7.45)

respectively. These imply, via addition, that V̄ is causal, since

x0 − y0 ≥ |x− z|+ |z− y| ≥ |x− y|, (7.46)

by the triangle inequality. Volterra kernels thus form an algebra over the causally
ordered events in Minkowski spacetime.

Consider next the generalized Volterra integral equation of the second kind given
by

B(x, y) +

∫
D(x,y)

K(x, z)B(z, y) d4z = A(x, y), (7.47)
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where A(x, y) and K(x, y) are given Volterra kernels and we wish to find a Volterra
kernel B(x, y) that satisfies this equation. According to a general theorem due to
M. Riesz, there is a unique solution given by (Riesz 1949; Faraut and Viano 1986)

A(x, y) +

∫
D(x,y)

R(x, z)A(z, y) d4z = B(x, y), (7.48)

where the reciprocal Volterra kernel R(x, y) can be expressed as

R(x, y) =

∞∑
n=1

Kn(x, y). (7.49)

Here the iterated Volterra kernels Kn(x, y) for n = 1, 2, 3, ... are defined such that
K1(x, y) := −K(x, y) and

Kn+1(x, y) :=

∫
D(x,y)

Kn(x, z)K1(z, y) d4z. (7.50)

The Neumann series (7.49) converges uniformly on bounded domains and the reciprocal
kernel R is indeed a Volterra kernel. This is proved in the paper of Faraut and Viano
(1986) using generalized Riemann–Liouville kernels. The work of M. Riesz (1949)
employed a wider context; here, we have followed the treatment of Faraut and Viano
(1986).

It is simple to demonstrate that this significant mathematical result holds just as
well if Volterra kernels are all of the convolution type; that is, we can replace K(x, y) by
K(x− y), etc. For instance, a simple change of variable in the corresponding integral
in eqn (7.44) is enough to show that V̄ , the product of Volterra kernels K and K ′

of convolution type, is also of convolution type and that, furthermore, V̄ is also the
product of K ′ and K. Therefore, convolution Volterra kernels form a commutative
subalgebra of the Volterra algebra.

Henceforth, we limit our considerations to Volterra convolution kernels that are L1

and L2 functions on spacetime. We wish to reduce the generalized Volterra integral
eqns (7.47) and (7.48) to the following Volterra integral equations:

G(x) +

∫
K(x− y)G(y) d4y = F(x) (7.51)

and

F(x) +

∫
R(x− y)F(y) d4y = G(x). (7.52)

To this end, consider any continuous L1 function f(x) over spacetime and define

F(x) :=

∫
A(x− y)f(y) d4y, G(x) :=

∫
B(x− y)f(y) d4y, (7.53)

where A and B are closely related to the Volterra kernels defined in eqns (7.47)
and (7.48). In other words, replacing the kernels in eqns (7.47) and (7.48) by L1 and
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L2 convolution kernels, multiplying the resulting equations by f(y) and integrating
over spacetime, we obtain eqns (7.51) and (7.52).

Let us now express the operation of folding (“Faltung”) in eqn (7.53) as F = A ∗ f
and G = B ∗ f , and suppose that ‖ ḡ ‖n is the norm of the function ḡ in Ln for n ≥ 1.
It is possible to show that if f̄ ∈ L1 and ḡ ∈ Ln, then ḡ ∗ f̄ is Lebesgue measurable
and

‖ ḡ ∗ f̄ ‖n ≤ ‖ ḡ ‖n ‖ f̄ ‖1 . (7.54)

This inequality can be proved using either Minkowski’s integral inequality or Young’s
inequality for convolutions (Bogachev 2007; Hardy, Littlewood and Pólya 1988; Rudin
1966). We need inequality (7.54) here for n = 1, 2. It follows that if f is L1 and A
is Ln, then their convolution F is Ln. Similarly, if f is L1 and B is Ln, then their
convolution G is Ln. Therefore, F(x) and G(x) are L1 and L2 functions over spacetime
as well.

The substitution of eqn (7.51) into eqn (7.52), or vice versa, results in the basic
reciprocity integral equation

K(x− y) +R(x− y) +

∫
K(x− z)R(z − y) d4z = 0. (7.55)

By changing the integration variable in eqn (7.55) from z to z′, where z′ := x+ y− z,
it is simple to see that the convolution Volterra kernels K and R can be interchanged
in this reciprocity relation.

Writing G for 0Gµν and F for κTµν+Sµν−p̌ Uµν in eqn (7.33), we recover eqn (7.51),
which means that eqn (7.52) is then equivalent to eqn (7.43); in particular, we have
the remarkable result that in the space of continuous and absolutely integrable as well
as square integrable functions on spacetime, the reciprocal kernel exists and is causal,
so that

R(x− y) ∝ u(x0 − y0 − |x− y|). (7.56)

Furthermore, it is possible to express eqns (7.51) and (7.52) in the Fourier domain.
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Thus, let

f̂(ξ) =

∫
f(x)e−iξ·x d4x (7.57)

be the spacetime Fourier transform of f , where ξ · x := ηαβξ
αxβ . Then,

f(x) =
1

(2π)4

∫
f̂(ξ)eiξ·x d4ξ. (7.58)

It follows from the convolution theorem for Fourier transforms that in the Fourier
domain one can write eqns (7.51) and (7.52) as F̂ = Ĝ(1 + K̂) and Ĝ = F̂(1 + R̂),
respectively. Therefore,

(1 + K̂)(1 + R̂) = 1, (7.59)

which can also be obtained directly via Fourier transformation from eqn (7.55) and is
an expression of the complete reciprocity between K and R. The reciprocity between
the nonlocal kernels K and R implies that it is in principle sufficient to determine
only one of them. It turns out that the reciprocal kernel is more directly connected
to observational data. Therefore, suppose that R(x − y) can be estimated from the
comparison of the nonlocal theory with experiment, then the kernel of nonlocal gravity
K(x− y) can be determined from the Fourier transform of

K̂(ξ) = − R̂(ξ)

1 + R̂(ξ)
, (7.60)

provided 1 + R̂(ξ) 6= 0.

7.3 Linearized Field Equation with h̄µν,ν = 0

Let us now return to eqns (7.33)–(7.43) that characterize linearized nonlocal gravity
and discuss the general structure and the formal solution of the nonlocal field equation
for the gravitational field of an isolated source. For K = R = 0 in these equations,
nonlocality disappears and the field equation reduces to the familiar second-order
partial differential equation of linearized GR. We assume, for the present discussion,
that kernels K and R are known; in fact, their determination is the subject of the next
section.

In connection with eqn (7.43), it is useful to define the total matter energy–
momentum tensor Tµν ,

Tµν := Tµν + TDµν , (7.61)

where TDµν , the convolution of Tµν and R, is the “dark” counterpart of the matter
energy–momentum tensor Tµν . That is,

TDµν(x) =

∫
R(x− y)Tµν(y) d4y. (7.62)

Similarly, we define

Sµν(x) := Sµν(x) +

∫
R(x− y)Sµν(y) d4y (7.63)
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and

Uµν(x) := Uµν(x) +

∫
R(x− y)Uµν(y) d4y. (7.64)

It is possible to write these equations as

Sµν(x) =

∫
W (x− y)Cµ

0
ν(y) d4y, (7.65)

where Cµ
0
ν is given by eqns (7.29)–(7.30), and

Uµν(x) = −
∫
W (x− y)

(
Čµ δ

0
ν − Č0 ηµν

)
(y) d4y −

∫
R(x− y) Čµ,ν(y) d4y. (7.66)

Here, we have introduced a new convolution kernel W,

W (x− y) := Kc(x− y) +

∫
R(x− z)Kc(z − y) d4z, (7.67)

where in the integrand R and Kc can be interchanged. Moreover, in deriving eqn (7.66),
we have used the reciprocity relation (7.55).

As in GR, the gauge freedom of the gravitational potentials may be used to impose
the transverse gauge condition

h̄µν,ν = 0. (7.68)

The remaining gauge degrees of freedom involve four functions εµ(x) such that 2εµ =
0. With the imposition of the transverse gauge condition, we find from eqn (7.8) that

0Gµν = −1

2
2h̄µν . (7.69)

Hence, our main dynamical result, eqn (7.43), can be expressed as

2h̄µν + 2Sµν = −2κ Tµν + 2 p̌Uµν . (7.70)

In other words,

2h̄0µ = −2κ T0µ − 2 p̌

∫
R(x− y) Č0,µ(y) d4y, (7.71)

since S0µ = 0 and hence S0µ = 0 as well. Furthermore,

2h̄ij+

∫
W (x−y)

[
h̄ij,0−h̄0(i,j)+φ0(i,j)−δij φ0k,

k
]
(y) d4y = −2κ Tij+2 p̌U(ij), (7.72)

where

U(ij)(x) = −δij
∫
W (x− y) Č0(y) d4y −

∫
R(x− y) Č(i,j)(y) d4y. (7.73)

We must solve these dynamic field equations subject to the six integral constraints
given by eqns (7.38) and (7.39). Once the ten components of h̄µν have been determined,
one can find the metric perturbation

hµν = h̄µν −
1

2
ηµν h̄. (7.74)

On the other hand, the constraints appear to be dominated by φµν = −φνµ. Let us
recall that the gravitational potentials of linearized nonlocal gravity, ψµν = ψ(µν) +
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ψ[µν], consist of ten metric variables ψ(µν) = 1
2 hµν and six tetrad variables ψ[µν] =

1
2 φµν . These variables are all intertwined in the linearized field equations of NLG.

It is shown in Appendix A that the field equation for h̄00 can be combined with
constraint (7.38) to derive eqn (7.226) for Č0 = O(c−2). Assuming that Č0 can be
determined in terms of T00 from eqn (7.226), we can then calculate U0µ via

U0µ = −
∫
R(x− y)Č0,µ(y) d4y. (7.75)

The general solution of eqn (7.71) involves the superposition of a particular solution of
the inhomogeneous equation plus a general solution of the wave equation. Assuming
the absence of incoming gravitational waves, we are interested in the special retarded
solution

h̄0µ(x0,x) =
κ

2π

∫ [
T0µ − (p̌/κ)U0µ

]
(x0 − |x− y|,y)

|x− y|
d3y. (7.76)

In general, the other variables cannot be simply decoupled.
In connection with the propagation of gravitational waves, let us note an aspect

of eqn (7.72) that leads to a nonlocal damping feature discussed in Chapter 9. Think-
ing about eqn (7.72) in terms of a simple analogy with the mechanics of a linear
damped oscillator, we note that the term ∂h̄ij/∂t in eqn (7.72) is reminiscent of the
“velocity” of the corresponding oscillator. It is interesting that such a nonlocal damp-
ing is completely absent in eqn (7.71), which for h̄00 is the physical basis for the
modified Poisson equation in the Newtonian regime of nonlocal gravity.

The general solution of the linearized field equation of NLG is not known at present;
however, some special cases of particular physical interest are treated later in this
chapter after we have a more explicit knowledge of kernels K and R. The first step
in this direction involves the Newtonian limit of nonlocal gravity, which can be used
to determine R in the Newtonian regime from the gravitational physics of the Solar
System and the comparison of the theory with observational data regarding spiral
galaxies as well as clusters of galaxies.

7.4 Newtonian Limit

The Newtonian regime is marked by instantaneous action at a distance; that is, we
formally let c → ∞. Therefore, it is natural to assume that as c → ∞, gravitational
memory becomes purely spatial and all retardation effects vanish. It follows that in
the Newtonian limit

K(x− y) = δ(x0 − y0)χ(x− y), (7.77)

then reciprocity requires that

R(x− y) = δ(x0 − y0) q(x− y). (7.78)

The spatial kernels χ and q are universal functions that must be determined from
observation. To arrive at the Newtonian limit of nonlocal gravity, we insert eqns (7.77)
and (7.78) for the Newtonian kernels in our basic relations (7.51) and (7.52), respec-
tively, where G stands for 0Gµν and F stands for κTµν + Sµν − p̌ Uµν . Moreover, as
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c→∞, the dominant contribution to G is due to 0G00 = −(2h̄00)/2, using eqn (7.69),
where h̄00 = −4Φ/c2 and Φ is the gravitational potential in the Newtonian limit of
nonlocal gravity. It follows that in this case hµν = −(2Φ/c2) diag(1, 1, 1, 1). Similarly,
the dominant term in the matter energy–momentum tensor is given by T00 = ρ c2,
where ρ is the density of matter. Furthermore, eqn (7.28) implies that S00 = 0, while
eqn (7.41) implies that U00 = O(c−3), since it follows from eqn (7.226) of Appendix A
that Č0 = O(c−2). In this way, we find that in the Newtonian limit, the basic equations
of nonlocal gravity reduce to

∇2Φ(x) +

∫
χ(x− y)∇2Φ(y) d3y = 4πGρ(x), (7.79)

and

∇2Φ = 4πG (ρ+ ρD) , ρD(x) =

∫
q(x− y)ρ(y) d3y, (7.80)

where ρD is the density of effective dark matter and we have suppressed the dependence
of Φ, ρ and ρD upon time t for the sake of simplicity. The nonlocal aspect of gravity
appears in eqn (7.80) as an extra “dark” matter source whose density is the convolution
of the reciprocal kernel q with the density of matter ρ. In this sense, nonlocality appears
to simulate dark matter. Moreover, no such effective dark matter exists in the complete
absence of matter; that is, ρD = 0 if ρ = 0.

The nonlocal memory reduces in the Newtonian limit to an instantaneous
average over space, since retardation effects vanish as c → ∞. Equation (7.79) is a
Fredholm integral equation of the second kind that can be solved in principle using the
Fourier transform method described below or via the Liouville–Neumann method of
successive substitutions described in Appendix B. In the latter approach, for instance,
if the Neumann series converges uniformly, we obtain a unique solution involving the
reciprocal kernel. The unique solution of the Fredholm equation can then be expressed
as eqn (7.80). The Fourier transform method is described in detail in Chicone and
Mashhoon (2012).

It is possible to derive eqn (7.80) from a variational principle if we assume that
χ(x − y) is only a function of |x − y| and therefore symmetric. Indeed, it turns out
that χ is invariant under the exchange of x and y for all nonlocal Newtonian kernels
of interest in this book. In this case, the variation of action SP ,

SP =

∫
LP d

3x (7.81)

with

LP =
1

8πG

[
(∇x Φ)2 +

∫
χ(x− y)(∇x Φ) · (∇y Φ) d3y

]
+ ρΦ (7.82)

results in eqn (7.79).

7.4.1 Fourier transform method

Equation (7.80) represents the nonlocal generalization of Poisson’s equation of
Newtonian gravity. The reciprocal kernel q can be determined in principle from the
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comparison of eqn (7.80) with experiment. To find χ, the kernel of nonlocal gravity in
the Newtonian regime, we use the Fourier transform method (Chicone and Mashhoon
2012). To this end, we work in the space of functions that are absolutely integrable
(L1) as well as square integrable (L2) over all space.

It follows from combining eqns (7.79) and (7.80) that the spatial kernels χ and q
are indeed reciprocal to each other; that is, two reciprocity relations can in general be
deduced in this way that for convolution kernels reduce to

χ(x− y) + q(x− y) +

∫
χ(x− z) q(z− y) d3z = 0. (7.83)

Indeed, in the integrand of eqn (7.83), the change of variable z to z′, via z − y =
x− z′, leads to the result that eqn (7.83) is completely symmetric with respect to the
interchange of χ and q.

Let ŝ(ξ) be the Fourier integral transform of a function s(x) that is both L1 and
L2; then,

ŝ(ξ) =

∫
s(x) e−i ξ·x d3x, s(x) =

1

(2π)3

∫
ŝ(ξ) ei ξ·x d3ξ. (7.84)

It follows from the convolution theorem for Fourier integral transforms and eqn (7.83)
that

(1 + χ̂)(1 + q̂) = 1. (7.85)

The spatial kernels χ and q turn out to be symmetric in the sense that χ(x − y) is
only a function of |x− y|, etc. Thus in the Fourier domain, we have

χ̂(|ξ|) + q̂(|ξ|) + χ̂(|ξ|) q̂(|ξ|) = 0. (7.86)

It follows that if q(x) is given by experimental data and subsequently q̂(|ξ|) is calcu-
lated from the Fourier integral transform of q(x), then the kernel of nonlocal gravity
χ(x) can be determined from the Fourier transform of χ̂(|ξ|) that is given by eqn (7.86),
namely,

χ̂(|ξ|) = − q̂(|ξ|)
1 + q̂(|ξ|)

, (7.87)

provided
1 + q̂(|ξ|) 6= 0. (7.88)

Thus an acceptable reciprocal kernel q(x) should be a smooth function that is L1, L2

and satisfies requirement (7.88). We now proceed to the determination of q(x).

7.4.2 Kuhn kernel qK

The nonlocal Poisson eqn (7.80) is in a form that can be compared with observa-
tional data regarding, for instance, the rotation curves of spiral galaxies. Imagine, for
instance, the circular motion of stars (or gas clouds) in the disk of a spiral galaxy about
the galactic bulge. According to the Newtonian laws of motion, such a star (or gas
cloud) has a centripetal acceleration of v2

c/r, where vc is its constant speed; moreover,
this centripetal acceleration must be equal to the gravitational acceleration of the star.
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Observational data indicate that vc is nearly the same for all stars (and gas clouds)
in the galactic disk, thus leading to the nearly flat rotation curves of spiral galaxies
(Rubin and Ford 1970; Roberts and Whitehurst 1975; Sofue and Rubin 2001).

If we adopt the standard Newtonian theory of gravitation, we find that v2
c/r =

GMgc/r
2, where Mgc is the effective mass of the galactic core from the viewpoint

of the star (or gas cloud). As vc is essentially independent of radial distance r, Mgc

must increase linearly with r, that is, Mgc = v2
cr/G. Assuming spherical symmetry, we

conclude that there must exist dark matter of density v2
c/(4πGr

2) in the spiral galaxy
beyond the galactic bulge.

Suppose, however, that there is no such dark matter, but the gravitational inter-
action is described instead by nonlocal gravity. This means that the nonlocal force of
gravity varies essentially as 1/r beyond the galactic bulge. Attributing this circum-
stance to an effective density of dark matter and assuming spherical symmetry, we
find from

∇ · [D(r) r̂] =
1

r2

d

dr
[r2D(r)] (7.89)

that for D = 1/r, we get from the nonlocal generalization of Poisson’s equation that
the corresponding effective density of dark matter ρD must be v2

c/(4πGr
2), which is

the same as the density of actual dark matter in the standard treatment. Thus in this
case, the nonlocal aspect of the gravitational interaction simulates dark matter. Using
eqn (7.80) with ρ(x) = Mgc δ(x), where Mgc is now the constant effective mass of the
galactic bulge, we find for kernel q,

qK(x− y) =
1

4πλTK

1

|x− y|2
, (7.90)

where λTK = GMgc/v
2
c is a constant galactic length of the order of 1 kpc.

It is remarkable that a modified Poisson equation of the form (7.80) with
kernel (7.90) was suggested by Kuhn about 30 years ago; in fact, it is interesting
to digress briefly here and mention the phenomenological Tohline–Kuhn modified
gravity approach to the problem of dark matter (Tohline 1983, 1984; Kuhn, Burns
and Schorr 1986; Kuhn and Kruglyak 1987). According to this scheme, the “flat”
rotation curves of spiral galaxies lead to a Tohline–Kuhn extension of the Newtonian
inverse square law of gravity for point masses m1 and m2, namely,

FTK(r) =
Gm1m2

r2
+
Gm1m2

λTK r
, (7.91)

where the relative deviation from Newton’s law due to the long-range (“galactic”)
contribution is given by r/λTK . In 1983, Tohline showed that this modification leads
to the stability of the galactic disk (Tohline 1983). The gravitational potential for a
point mass M corresponding to this modified force law can be written as (Tohline
1983)

ΦT (x) = −GM
|x|

+
GM

λTK
ln

(
|x|
λTK

)
. (7.92)

This Tohline potential satisfies eqn (7.80) with Kuhn kernel (7.90) when ρ(x) =
M δ(x).
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The work of Kuhn and his collaborators contained a significant generalization
of Tohline’s original suggestion (Kuhn, Burns and Schorr 1986; Kuhn and Kruglyak
1987); the Tohline–Kuhn scheme has been admirably reviewed by Bekenstein (1988).

7.4.3 Derivation of reciprocal kernel q

The reciprocal kernel q(r) of nonlocal gravity must satisfy the mathematical require-
ments discussed before; namely, it must be a smooth function that is L1, L2 and
satisfies condition (7.88). Moreover, it should reduce to the Kuhn kernel in appropri-
ate limits in order to recover the observational data related to the nearly flat rotation
curves of spiral galaxies. However, these conditions are not sufficient to specify a unique
functional form for q.

Our physical considerations thus far involved the motion of stars and gas clouds in
circular orbits around the galactic core. The radii of such orbits extend from the core
radius to the outer reaches of the spiral galaxy. The resulting Kuhn kernel qK captures
important physical aspects of the problem, but it is not mathematically suitable as it
is not L1 and L2. In fact, qK integrated over all space leads to an infinite amount of
effective dark matter for any point mass. From the standpoint of nonlocal gravity, the
Tohline–Kuhn approach reflects the appropriate generalization of Newtonian gravity
in the intermediate galactic regime from the bulge to the outer limits of a spiral galaxy;
however, the r → 0 and r → ∞ regimes are not taken into account. It follows from
these considerations that q must be constructed out of qK by moderating its short and
long distance behaviors (Chicone and Mashhoon 2016a).

To proceed, let us start from the Kuhn kernel (7.90) and recall that it leads to flat
rotation curves in the intermediate distance regime extending from the core radius to
the outer limits of a spiral galaxy. The r → ∞ behavior of q is related to the fading
of spatial memory with distance. If the decay rate of a quantity is proportional to
itself, then the quantity dies out exponentially. We therefore adopt the simple rule
that q behaves as exp (−µ0 r) for r → ∞, where µ−1

0 is a new length parameter that
characterizes the rate of spatial decay of gravitational memory. For r � µ−1

0 , where
we expect to recover the nearly flat rotation curve of a spiral galaxy, the modified
Kuhn kernel becomes

1

4πλTK

1

r2
e−µ0 r =

1

4πλTK

1

r2
(1− µ0 r +

1

2
µ2

0 r
2 − · · · ), (7.93)

where the dominant correction is of linear order in µ0 r � 1. To cancel the linear
correction in eqn (7.93) and hence provide a better approximation to the Kuhn kernel
for µ0 r � 1, we consider instead

1

4πλTK

1

r2
(1 + µ0 r) e

−µ0 r =
1

4πλTK

1

r2

[
1− 1

2
(µ0 r)

2 +
1

3
(µ0 r)

3 − · · ·
]
. (7.94)

Kernel (7.94) is integrable over all space, but it is not square integrable. We must
therefore modify the r → 0 behavior of kernel (7.94) to make it square integrable by
essentially replacing r with a0 + r, where a0 > 0 is a new constant length parameter.
We note that two simple square-integrable possibilities exist
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1

4πλTK

1 + µ0(a0 + r)

r (a0 + r)
e−µ0 (a0+r) (7.95)

and
1

4πλTK

1 + µ0(a0 + r)

(a0 + r)2
e−µ0 (a0+r). (7.96)

Moreover, we can define
1

λ0
:=

1

λTK
e−µ0 a0 , (7.97)

so that the Tohline–Kuhn parameter λTK is modified and is henceforth replaced by λ0.
In this way, we find from eqns (7.95) and (7.96) two possible solutions for q, namely,
q1 and q2 given by (Chicone and Mashhoon 2012)

q1 =
1

4πλ0

1 + µ0(a0 + r)

r (a0 + r)
e−µ0r (7.98)

and

q2 =
1

4πλ0

1 + µ0(a0 + r)

(a0 + r)2
e−µ0r, (7.99)

where r = |x−y| and q1 and q2 are symmetric functions of x and y. Here, λ0, a0 and
µ0 are three positive constant parameters that must be determined via observational
data. The fundamental length scale of nonlocal gravity is λ0, which is expected to be
of the order of 1 kpc and is reminiscent of the parameter λTK of the Kuhn kernel. We
note that for i = 1, 2, qi → 0 and nonlocality disappears as λ0 → ∞. Furthermore,
a0 moderates the r → 0 behavior of the reciprocal kernel, while the kernel decays
exponentially for r � µ−1

0 , as the spatial gravitational memory fades. Henceforth, we
will refer to a0 and µ0 as the short-distance and the large-distance parameters of the
reciprocal kernel, respectively.

In agreement with the requirements of the Fourier transform method, kernels q1

and q2 are continuous positive functions that are integrable as well as square integrable
over all space. The Fourier transform of q1 is always real and positive and hence satisfies
eqn (7.88) regardless of the value of a0/λ0. On the other hand, the Fourier transform
of q2 is such that eqn (7.88) is satisfied if a0 < λ0; see Appendix C. In any case, it is
natural to expect on physical grounds that a0 < λ0 < µ−1

0 ; that is, the (intermediate)
nonlocality parameter is expected to be smaller than the large-distance parameter and
larger than the short-distance parameter. It then follows from the Fourier transform
method that the corresponding kernels χ1 and χ2 exist, are symmetric and have other
desirable physical properties; see Appendix C.

It is important to emphasize that q1 and q2 are by no means unique. More com-
plicated expressions that include more parameters are certainly possible. Kernels q1

and q2 appear to be the simplest functions that satisfy the requirements of nonlocal
gravity theory (Chicone and Mashhoon 2012).

The reciprocal kernels q1 and q2 thus depend upon three parameters: the nonlocal-
ity parameter λ0, the large-distance parameter µ0 and the short-distance parameter
a0. We expect that these three parameters will be determined via observational data,
which will, in addition, point to a unique function (i.e. either q1 or q2) for q.
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It is interesting to note that for a0 = 0, q1 and q2 both reduce to q0,

q0 =
1

4πλ0

(1 + µ0r)

r2
e−µ0r, (7.100)

where for any finite r : 0→∞, we have for i = 1, 2,

q0(r) > qi(r). (7.101)

Moreover, q0 is not square integrable over all space and the behavior of q0 for r → 0
is precisely the same as that of the Kuhn kernel; for instance, in the Solar System,
we recover the Tohline–Kuhn force (7.91). For observational data related to the rota-
tion curves of spiral galaxies as well as the internal gravitational physics of clusters
of galaxies, we expect that the short-distance behavior of the kernel would be unim-
portant and hence q0 may be employed to fit the data. This has indeed been done in
Rahvar and Mashhoon (2014) and parameters λ0 and µ0 have thus been determined;
see Chapter 8. In this connection, it is useful to introduce the dimensionless parameter
α0,

α0 :=

∫
q0(|x|) d3x, α0 =

2

λ0µ0
. (7.102)

Then, it follows from observational data that (Rahvar and Mashhoon 2014)

α0 = 10.94± 2.56, µ0 = 0.059± 0.028 kpc−1. (7.103)

Hence, λ0 = 2/(α0 µ0) turns out to be λ0 ≈ 3 ± 2 kpc. Regarding the short-distance
parameter a0, it is useful to introduce a new dimensionless parameter ς,

ς := µ0 a0, (7.104)

and provisionally assume, on the basis of a0 < λ0 and eqn (7.103), that

0 < ς <
1

5
(7.105)

for the sake of simplicity. Preliminary lower limits can be placed on a0 on the basis
of current data regarding planetary orbits in the Solar System; see Chapter 9. For
instance, using the data for the orbit of Saturn, a preliminary lower limit of a0 &
2 × 1015 cm can be established if we use q1, while a0 & 5.5 × 1014 cm if we use q2

(Chicone and Mashhoon 2016a).
It is abundantly clear from our considerations here that the choice of the kernel

is not unique. In the absence of a physical principle that could uniquely lead to the
appropriate kernel, we must adopt simple functional forms that satisfy the mathe-
matical requirements discussed earlier and are based on agreement with observation.
Let us recall that the relativistic framework of Einstein’s field theory of gravita-
tion has properly generalized Newton’s inverse square force law, which is ultimately
based on Solar System observations that originally led to Kepler’s laws of planetary
motion. That is, an acceptable theory of gravitation must agree with Newton’s theory
in some form. How did Newton come up with the inverse square law? As explained
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in his Principia, he explored various functional forms such as r and r−3 in addition
to r−2 and concluded that only r−2 agreed with Kepler’s empirical laws of planetary
motion (Cohen 1960). In short, the inverse square force law was not derived from a
physical principle; rather, it was chosen to agree with observation. Moreover, observa-
tional data never have infinite accuracy; therefore, to Newton’s r−2, for example, one
can add other functional forms with sufficiently small coefficients such that agreement
with experimental results can be maintained. The same is true, of course, in Einstein’s
general theory of relativity.

7.4.4 Modified force law

We next proceed to the determination of the short-distance behaviors of the modified
force laws associated with q1 and q2 (Chicone and Mashhoon 2016a).

The gravitational force acting on a point particle of mass m in a gravitational field
with potential Φ is F = −m∇Φ and the geodesic equation reduces in the Newtonian
limit to Newton’s equation of motion

d2r

dt2
= −∇Φ(r). (7.106)

Let us now imagine that potential Φ is due to a point mass M at the origin of spatial
coordinates with mass density ρ(r) = M δ(r). Thus we find from eqn (7.80) that

∇2Φi(r) = 4πGM [δ(r) + qi(r)], (7.107)

where i = 1, 2, depending upon which reciprocal kernel is employed, since experiment
must ultimately decide between q1 and q2. Assuming that the force on a point mass m
at r due to M is radial, namely, F = −m (dΦ/dr) r̂, where r̂ is the radial unit vector,
we have

dΦ

dr
= GM f(r), (7.108)

so that the gravitational force between the two point masses is F = −GmM f(r) r̂.
The solution of eqn (7.107) is the sum of the Newtonian potential plus zi(r), which

is the contribution from the reciprocal kernel; that is,

Φi(r) = GM

[
−1

r
+ zi(r)

]
. (7.109)

It follows from

∇2

(
1

r

)
= −4πδ(r) (7.110)

that

∇2zi = 4π qi. (7.111)

It then proves useful to write

fi(r) =
1

r2
+Ni(r), (7.112)
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where Ni(r) := dzi/dr and we have again separated the Newtonian contribution from
the nonlocal contribution. Thus we find from eqns (7.89) and (7.111) that

1

r2

d

dr
[r2Ni(r)] = 4π qi(r). (7.113)

The solution of this equation can be expressed as

Ni(r) =
4π

r2

∫ r

0

s2 qi(s) ds, (7.114)

where we have assumed that as r → 0, r2Ni(r)→ 0, so that in the limit of r → 0, the
force on m due to M is given by the Newtonian inverse square law. This important
assumption is based on the results of experiments that have verified the gravitational
inverse square force law down to a radius of r ≈ 50µm (Adelberger, Heckel and Nelson
2003; Hoyle et al. 2004; Adelberger et al. 2007; Kapner et al. 2007). Furthermore, no
significant deviation from Newton’s law of gravitation has been detected thus far in
laboratory experiments (Meyer et al. 2012; Little and Little 2014).

It proves interesting to define

N0(r) :=
4π

r2

∫ r

0

s2 q0(s) ds =
α0

r2

[
1− (1 +

1

2
µ0 r) e

−µ0 r

]
, (7.115)

where q0 is given by eqn (7.100), so that we can write

Ni(r) = − 1

r2
Ei(r) +N0(r). (7.116)

Here, we have defined

Ei(r) := 4π

∫ r

0

s2 [q0(s)− qi(s)] ds, (7.117)

such that Ei(r) = 0 for a0 = 0 and Ei(r) > 0 for r > 0. It follows from eqn (7.114) and
the fact that q1 and q2 are positive functions that Ni(r) ≥ 0; therefore, fi(r) > 0 by
eqn (7.112). Putting eqns (7.112), (7.115) and (7.116) together, we find

fi(r) =
1

r2
[1− Ei(r) + α0] − α0

r2
(1 +

1

2
µ0 r) e

−µ0 r. (7.118)

Thus, we finally have the force of gravity on point mass m due to point mass M ,
namely,

Fi(r) = −GmM r̂

r2

{
[1− Ei(r) + α0]− α0 (1 +

1

2
µ0 r) e

−µ0 r

}
, (7.119)

which, except for the Ei(r) term, is due to kernel q0. This force is conservative, satis-
fies Newton’s third law of motion and is always attractive. The gravitational force of
attraction in eqn (7.119) consists of two parts: an enhanced attractive “Newtonian”
part involving α0 ≈ 11 and a repulsive “Yukawa” part with an exponential decay
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length of µ−1
0 ≈ 17 kpc. The exponential decay in the Yukawa term originates from

the fading of spatial memory.
Imagine a uniform thin spherical shell of matter and a point mass m inside the

hollow shell. As is well known, Newton’s inverse square law of gravity implies that
there is no net force on m, regardless of the location of m within the shell. However,
Newton’s shell theorem does not hold in nonlocal gravity, so that m would in general be
subject to a gravitational force that is along the diameter that connects m to the center
of the shell and can be calculated by suitably integrating Fi(r) +GmM (1 +α0) r−2 r̂
over the shell, where Fi(r) is given by eqn (7.119).

The short-distance parameter a0 appears only in Ei(r); therefore, we now turn to
the study of Ei(r). To this end, let us first define the exponential integral function
(Abramowitz and Stegun 1964)

E1(x) :=

∫ ∞
x

e−t

t
dt. (7.120)

For x : 0→∞, E1(x) is a positive function that monotonically decreases from infinity
to zero. Indeed, E1(x) behaves like − lnx near x = 0 and vanishes exponentially as
x→∞. Moreover,

E1(x) = −C − lnx−
∞∑
n=1

(−x)n

n n!
, (7.121)

where C = 0.577 . . . is Euler’s constant. It is useful to note that

e−x

x+ 1
< E1(x) ≤ e−x

x
; (7.122)

see formula 5.1.19 in Abramowitz and Stegun (1964).
From eqn (7.117), we find by straightforward integration that

E1(r) =
a0

λ0
eς
[
E1(ς)− E1(ς + µ0r)

]
(7.123)

and

E2(r) =
a0

λ0

{
− r

r + a0
e−µ0r + 2eς

[
E1(ς)− E1(ς + µ0r)

]}
, (7.124)

where ς has been defined in eqns (7.104) and (7.105). Furthermore, it follows from
eqn (7.117) that

dEi
dr

= 4π r2 [q0(r)− qi(r)], (7.125)

where the right-hand side is positive by eqn (7.101). More explicitly,

dE1
dr

=
a0

λ0

1

a0 + r
e−µ0 r (7.126)

and
dE2
dr

=
a0

λ0

[
µ0 +

2− ς
a0 + r

− a0

(a0 + r)2

]
e−µ0 r. (7.127)
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Thus E1(r) and E2(r) are positive, monotonically increasing functions of r that start
from zero at r = 0 and asymptotically approach, for r → ∞, E1(∞) = E∞ and
E2(∞) = 2 E∞, respectively. Here,

E∞ =
1

2
α0 ς e

ςE1(ς). (7.128)

It then follows from eqn (7.122) that

E∞ <
α0

2
, (7.129)

so that in formula (7.119) for the gravitational force,

α0 − Ei(r) > 0. (7.130)

Thus for r � µ−1
0 , the Yukawa part of eqn (7.119) can be neglected and

Fi(r) ≈ −GmM [1 + α0 − Ei(∞)]

r2
r̂, (7.131)

so that M [α0−Ei(∞)] has the interpretation of the total effective dark mass associated
with M .

For a0 = 0, the net effective dark mass associated with point mass M is simply
α0M , where α0 ≈ 11. On the other hand, for a0 6= 0, the corresponding result is
α0 εi(ς)M , where

ε1(ς) = 1− 1

2
ς eς E1(ς), ε2(ς) = 1− ς eς E1(ς). (7.132)

These functions are plotted in Fig. 7.2 for ς : 0→ 0.2 in accordance with eqn (7.105).
Finally, let us note that the solution of eqn (7.108) for the gravitational potential

Φi due to a point mass M at r = 0 is given by

Φi(r) = GM

∫ r

∞
fi(r

′)dr′, (7.133)

where, as expected, we have assumed that Φi(r)→ 0, when r →∞. It follows from a
detailed but straightforward calculation that for i = 1, 2, corresponding to q1 and q2,
respectively,

Φ1(r) = −GM
r

(
1 + α0 − E∞ − α0 e

−µ0 r
)
− GM

λ0
(1 +

a0

r
) eς E1(ς + µ0 r) (7.134)

and

Φ2(r) = −GM
r

(
1 + α0 − 2 E∞ − α0 e

−µ0 r
)
− GM

λ0
(1 + 2

a0

r
) eς E1(ς+µ0 r). (7.135)

In these expressions, we can use the Taylor expansion of E1(ς + µ0 r) about ς = µ0 a0

to write



140 Linearized Nonlocal Gravity

Fig. 7.2 The figure depicts the graph of the function ε1(ς) that lies above the graph of ε2(ς)

for 0 < ς < 1/5. Reproduced from Chicone, C. and Mashhoon, B., 2016, “Nonlocal Gravity

in the Solar System”, Class. Quantum Grav. 33, 075005 (21 pages), with the permission of

IOP Publishing. DOI: 10.1088/0264-9381/33/7/075005

eς E1(ς + µ0 r) =
λ0

a0
E∞ −

r

a0
+

1

2
(1 + ς)

r2

a2
0

− · · · . (7.136)

In this way, we see that Φi(r) → −GM/r for r → 0. It follows from eqns (7.134)
and (7.135) that in the limiting case where a0 = 0, we have Φ1 = Φ2 = Φ0,

Φ0(r) = −GM
r

(
1 + α0 − α0 e

−µ0 r
)
− GM

λ0
E1(µ0 r), (7.137)

which is the gravitational potential corresponding to kernel q0.
The implications of these results for various astronomical systems are considered

in Chapter 8.

7.5 Beyond the Newtonian Limit

Memory generally dies out; therefore, we expect nonlocal kernels K and R to decay
exponentially in space and time. The exponential decay term in q already indicates
that the lengthscale associated with spatial gravitational memory is µ−1

0 ≈ 17 kpc. We
should therefore expect a similar temporal behavior in K and R; moreover, causality
requires that these kernels be proportional to the Heaviside unit step function as
in eqns (7.20) and (7.56). Thus the Dirac delta function δ(x0 − y0) that appears
in eqns (7.77) and (7.78) should be suitably generalized for finite c to satisfy these
requirements.

Consider the set of functions δn(s) for n = 1, 2, 3, . . . given by

δn(s) := ν n e−ν n (s− r
n ) u

(
s− r

n

)
, (7.138)
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where ν > 0 and r ≥ 0 are constants. These functions are normalized,∫ ∞
−∞

δn(s) ds = 1, (7.139)

and form a Dirac sequence, since it can be shown that for any smooth function f(s),

lim
n→∞

∫ ∞
−∞

δn(s) f(s) ds = f(0+). (7.140)

Therefore, the Dirac delta function δ(s) may be regarded as a certain distributional
limit of the sequence of normalized functions δn(s) as n→∞. Moreover, we note that
the singularity of this Dirac delta function occurs at 0+, the positive side of the origin.

In eqn (7.138), let us now formally replace s by tx − ty, r by |x− y| and n by the
speed of light c; then, it is straightforward to check that in the limit as c → ∞, we
have

ν c e−ν c
(
tx−ty− |x−y|

c

)
u
(
tx − ty −

|x− y|
c

)
→ δ(tx − ty) (7.141)

in the distributional sense of eqn (7.140). It follows from these considerations that
when the finite magnitude of the speed of light is taken into account, δ(x0 − y0) in
eqn (7.78) can be replaced by

ν e−ν (x0−y0−|x−y|) u
(
x0 − y0 − |x− y|

)
, (7.142)

where we recall that x0 = c tx, y0 = c ty and δ(tx − ty) = c δ(x0 − y0). Here, ν−1 is
a constant length that should ultimately be determined on the basis of observational
data. We speculate that ν−1 > µ−1

0 is a galactic length that is comparable with µ−1
0 .

Henceforward, we assume that

R(x− y) = ν e−ν (x0−y0−|x−y|) u
(
x0 − y0 − |x− y|

)
q(x− y). (7.143)

This reciprocal kernel R is consistent with our physical requirements and depends only
upon x0− y0 and |x−y|. An important consequence of the normalization property of
eqn (7.142), namely,∫ ∞

−∞
ν e−ν (x0−y0−|x−y|) u

(
x0 − y0 − |x− y|

)
dy0 = 1, (7.144)

is that ∫
R(x− y)Z(y) d4y =

∫
q(x− y)Z(y) d3y (7.145)

for any smooth purely spatial function Z(x). In the Fourier domain, this relation
amounts to

R̂(0, ξ) = q̂(|ξ|), (7.146)

which implies, via eqn (7.59) for ξ0 = 0 and eqn (7.86), that

K̂(0, ξ) = χ̂(|ξ|), (7.147)
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or, in the spacetime domain,∫
K(x− y)Z(y) d4y =

∫
χ(x− y)Z(y) d3y. (7.148)

A detailed discussion of the functions q̂ and χ is contained in Appendix C.
Finally, it is interesting to note that for Z = 1 in eqn (7.145), the integral of the

reciprocal kernel R over the whole spacetime is given by∫
R(x) d4x =

∫
q(x) d3x = q̂(0), (7.149)

which can be easily computed using eqn (7.117) for qi, i = 1, 2. The result is

q̂i(0) = α0 − Ei(∞) = α0 εi(ς); (7.150)

see Fig. 7.2. Similarly, it follows from eqn (7.148) that∫
K(x) d4x =

∫
χ(x) d3x = χ̂(0), (7.151)

where χ̂(0) is related to q̂(0) via eqn (7.87).

7.5.1 Kernel K of linearized NLG

The procedure followed above for the determination of kernel R cannot be simply
repeated for kernelK, since it turns out that the fundamental reciprocity relation (7.55)
cannot be satisfied in this way. It is therefore necessary to determine K via the
Fourier transform method, cf. eqn (7.60). Let us note that our basic expression for
R in eqn (7.143) implies that

R̂(ξ) =
ν

ν − i ξ0

∫
ei ξ

0 |x| q(x) e−iξ·x d3x. (7.152)

Substituting for q in this expression either q1 given by eqn (7.98) or q2 given by

eqn (7.99), we can calculate R̂(ξ) explicitly in terms of the exponential integral

function. Then, K̂(ξ) is given by eqn (7.60) and K(x) can, in principle, be determined
by inverse Fourier transformation.

For a more tractable result, we can employ an approximation scheme that involves
neglecting certain retardation effects in eqn (7.143). This means in practice that we
replace x0 − y0 − |x− y| in eqn (7.143) by x0 − y0; that is, instead of eqn (7.143), we
consider

R(x− y) ≈ ν e−ν(x0−y0) u(x0 − y0) q(x− y). (7.153)

The Fourier transform of this approximate kernel is

R̂(ξ) ≈ ν

ν − iξ0
q̂(|ξ|). (7.154)

If we use for q the simplified kernel q0 defined by eqn (7.100), we get

q̂0(|ξ|) =
µ0

λ0(µ2
0 + |ξ|2)

+
1

λ0|ξ|
arctan

( |ξ|
µ0

)
; (7.155)

see eqn (7.261) of Appendix C. We note that relation (7.146) is satisfied by both
eqns (7.152) and (7.154).



Gravitational Field of a Stationary Source 143

In eqn (7.154), 1 + R̂ 6= 0; hence, K(x) can be obtained from

K̂(ξ) ≈ − ν q̂(|ξ|)
ν [1 + q̂(|ξ|)]− iξ0

. (7.156)

Let us note that in this case, eqn (7.147) is satisfied. It can be shown, by means of
contour integration and Jordan’s lemma, that

K(x) ≈ − ν

(2π)3
u(x0)

∫
q̂(|ξ|)eiξ·xe−ν(1+q̂)x0

d3ξ. (7.157)

Moreover, it is straightforward to verify, by integrating this expression for K(x) over
all spacetime, that eqn (7.151) is satisfied in this case. Our approximation method
has thus led to a manageable expression for kernel K; the nature and limitations of
this simplification have been studied in Chicone and Mashhoon (2013) and Mashhoon
(2013b).

Following the determination of the reciprocal kernel R in eqn (7.143) and the
approximate determination of kernel K, it is now possible to treat more explicitly the
gravitational field of an isolated source in the linear post-Newtonian approximation
of nonlocal gravity. We begin with the treatment of the time-independent field of a
stationary source in the next section, which amounts to a nonlocal extension of steady-
state gravitoelectromagnetism (GEM) of GR. A dynamic nonlocal generalization of
the standard GEM appears to be intractable.

7.6 Gravitational Field of a Stationary Source

The purpose of this section is to study the implications of the linearized nonlocal
field equation in the transverse gauge (h̄µν,ν = 0) for the weak time-independent
gravitational field of an isolated stationary source. To this end, let us note that in the
field eqns (7.71)–(7.72),

Tµν(x) = Tµν(x) +

∫
q(x− y)Tµν(y) d3y, (7.158)

as a result of eqn (7.145). In a similar way, we can show that Sµν = 0, since Sµν = 0 in
this case. To see this, let us consider eqn (7.25) that defines Sµν ; for a time-independent
torsion field, eqn (7.25) takes the form

∂i

∫
χ(x− y)Cµ

i
ν(y) d3y = −Sµν +

∫
χ(x− y) 0Gµν(y) d3y, (7.159)

as a consequence of eqn (7.148). Following essentially the same steps as in our discus-
sion of eqn (7.25), we find that Sµν = 0, since the boundary surface in this case is at
spatial infinity. Here, the seeming disappearance of the light cone is consistent with
the complete temporal independence of the gravitational field. It follows from Sµν = 0
and eqn (7.35) that the integral constraints in the stationary case reduce to U[µν] = 0,
which contain only φµν and the constraints vanish for φµν = 0. We can therefore set
φµν = 0 in the gravitational potentials of a stationary source. In the transverse gauge,
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the linearized field equation (7.70) of nonlocal gravity thus reduces in the stationary
case to the ten field equations

∇2 h̄µν(x) = −2κ [Tµν(x) +

∫
q(x− y)Tµν(y) d3y]. (7.160)

The spatial reciprocal kernel q is independent of the speed of light; therefore, the
standard static GEM approach can be adopted in this nonlocal case. Let us write the
energy–momentum tensor for a slowly rotating source with |v| � c as T 00 = ρ c2 and
T 0i = c ji, where j = ρv is the matter current; moreover, the matter stresses are
assumed to be independent of c and of the form Tij ∼ ρ vivj + p δij , where p is the
pressure. Then, with h̄00 = −4Φ/c2, we have a static gravitoelectric potential Φ(x) that
satisfies eqn (7.80) of the Newtonian limit of nonlocal gravity. Next, h̄0i = −2 gAi/c

2,
where gA(x) is the static gravitomagnetic vector potential that satisfies

∇2 gA(x) = −8πG

c
[ j(x) +

∫
q(x− y) j(y) d3y]. (7.161)

It is interesting to note here the contribution of the “dark” current, jD(x), which
is the convolution of the regular current with the reciprocal spatial kernel q, to the
gravitomagnetic vector potential. The solution of eqn (7.161) is thus given by

1

2
gA(x) =

G

c

∫
j(y) + jD(y)

|x− y|
d3y. (7.162)

Finally, eqn (7.160) implies that h̄ij = O(c−4) and is therefore neglected. Indeed, all
terms of O(c−4) are neglected in the standard linear GEM analysis (Mashhoon 2007d).

It is simple to check that the energy–momentum conservation law, eqn (7.13),
reduces in our nonlocal steady-state GEM treatment to ∇ · j = 0, which leads to
∇ · jD = 0 as well, and is consistent with the transverse gauge condition ∇ · gA = 0.
With these conditions, one can develop a nonlocal version of the steady-state GEM
for any suitable stationary source (Teyssandier 1977, 1978). In fact, with Eg = ∇Φ
and Bg = ∇× gA, we have GEM fields with dimensions of acceleration such that

∇ ·Eg = 4πG ( ρ+ ρD), ∇×Eg = 0, (7.163)

∇ · (1

2
Bg) = 0, ∇× (

1

2
Bg) =

4πG

c
( j + jD). (7.164)

These are the steady-state field equations of nonlocal GEM.
The GEM spacetime metric in this nonlocal case has the usual form

ds2 = −c2
(

1 + 2
Φ

c2

)
dt2 − 4

c
(gA · dx)dt+

(
1− 2

Φ

c2

)
δij dx

idxj . (7.165)

Here, Φ(x) is the gravitoelectric potential of nonlocal gravity in the Newtonian regime
given by eqn (7.80) and gA(x) = O(c−1) is the gravitomagnetic vector potential given
by eqn (7.162). It is now possible to discuss the motion of test particles and null
rays that follow geodesics associated with this metric. For instance, for the motion of
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test particles, we recover the gravitational analog of the Lorentz force law (Mashhoon
2007d).

In view of possible astrophysical applications, it is convenient, for the sake of
simplicity, to assume that the reciprocal kernel is q0 given by eqn (7.100); then, Φ
and gA are given by

Φ(x) = −G
∫ [

1 + α0(1− e−µ0r) +
r

λ0
E1(µ0r)

] ρ(y)

|x− y|
d3y (7.166)

and

1

2
gA(x) =

G

c

∫ [
1 + α0(1− e−µ0r) +

r

λ0
E1(µ0r)

] j(y)

|x− y|
d3y, (7.167)

where r = |x − y| and E1 is the exponential integral function defined in eqn (7.120).
Moreover, we note that (Abramowitz and Stegun 1964)

α0

2

µ0r

µ0r + 1
e−µ0r <

r

λ0
E1(µ0r) ≤

α0

2
e−µ0r. (7.168)

These potentials can be explicitly calculated in any given situation involving an
isolated material source using general methods familiar from classical electrodynamics
(Jackson 1999). We are particularly interested in the propagation of light rays in this
gravitational field. This is necessary in order to explain astrophysical phenomena asso-
ciated with gravitational lensing without invoking dark matter. In linearized nonlocal
gravity, just as in linearized GR, the effects due to gravitoelectric and gravitomagnetic
fields could be treated separately and then linearly superposed. Thus, as is well known,
the bending of light rays due to the gravitoelectric potential Φ is given by twice the
Newtonian expectation; see Chapter 8. The influence of the gravitomagnetic field on
the propagation of light in GR has been discussed in Mashhoon (1993b); according to
GR, the gravitomagnetic bending of light rays passing near a slowly rotating source
is generally smaller in magnitude than the gravitoelectric deflection by a factor of the
order of |v|/c � 1. It is therefore usually ignored in the discussion of gravitational
lensing (Schneider, Ehlers and Falco 1999; Petters, Levine and Wambsganss 2001;
Perlick 2004). The situation regarding the gravitomagnetic deflection of light in non-
local gravity is, however, somewhat more complicated. For instance, if the integration
in eqns (7.166) and (7.167) extends over a structure such as a cluster of galaxies for
which µ0r � 1, then the quantity in square brackets in these equations essentially
reduces to 1 +α0. Therefore, we are in effect working in the domain of linearized GR,
but with enhanced gravity, namely, with G→ G(1 + α0).

Imagine the propagation of light in the gravitational field of an isolated static
source that moves uniformly with speed c β, −1 < β < 1 in the background Minkowski
spacetime. This case is of interest in connection with the Bullet Cluster (Clowe et al.
2006; Clowe, Randall and Markevitch 2007) and is treated in the next section; however,
the general case of a time-dependent source requires a more extensive investigation.

7.7 Light Deflection due to a Uniformly Moving Mass

Consider the stationary case treated in Section 7.6 with no matter current. In the rest
frame of such a static gravitational source, it is convenient to think of this body in
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terms of a collection of fixed mass elements mj , j = 0, 1, 2, . . . , N . Then in eqn (7.166),
we can write

ρ(x) =
∑
j

mj δ(x− xj), Φ(x) =
∑
j

mj φ(|x− xj |), (7.169)

where,

φ(r) = −G
r

[
1 + α0(1− e−µ0r) +

r

λ0
E1(µ0r)

]
. (7.170)

The spacetime metric in the rest frame of the source is given by eqn (7.165) with
gA = 0. Let us remark here that for µ0r � 1, φ(r) ≈ −(1 + α0)G/r in NLG, which is
1 + α0 times the Newtonian gravitational potential per unit mass. To return to GR,
we can formally set λ0 =∞ and α0 = 0 in NLG.

In the background global inertial frame with coordinates xµ = (t, x, y, z), the grav-
itational source under consideration here moves uniformly with speed β, |β| < 1, along
the x axis. The moving source acts as a gravitational lens in deflecting a ray of light
that, in its unperturbed state, is parallel to the z axis, pierces the (x, y) plane at the
point (a, b) and passes over the body. We assume that the lens is relatively thin and
its matter is mostly distributed in and near the (x, y) plane. We are interested in the
deflection of the ray by the lens when the point (a, b) and the lens are in a definite
geometric configuration as recorded by the static inertial observers at spatial infinity.
It will turn out that the end result is independent of such a configuration. Let us
assume that the desired configuration—that is, the observationally preferred position
of the source relative to the unperturbed ray of light—occurs at time t = t0, when,
for instance, mass element mj of the lens is at xj . The source is then completely at
rest in a comoving frame with coordinates x′µ = (t′, x′, y′, z′). To write the Lorentz
transformation that connects the two frames, let us choose mass point m0 to be the
origin of the comoving system; then,

t′ = γ[(t− t0)− β(x− x0)],

x′ = γ[(x− x0)− β(t− t0)], y′ = y − y0 , z′ = z − z0. (7.171)

Here, γ is the Lorentz factor corresponding to β. Thus m0 with coordinates xµ0 =
(t0, x0, y0, z0) is at the origin of coordinates in the rest frame of the source, namely,
x′µ0 = (0, 0, 0, 0). As the whole static source is at rest in the comoving frame at t0,
eqn (7.171) can be written with respect to any other mass point mj as

t′ − t′j = γ[(t− t0)− β(x− xj)],
x′ − x′j = γ[(x− xj)− β(t− t0)], y′ − y′j = y − yj ,
z′ − z′j = z − zj , (7.172)

where t′j = −γβ(xj − x0), etc. The result of the Lorentz transformation is that the
invariant spacetime interval (7.165) can be written in the observers’ rest frame as

ds2 = (ηµν + hµν) dxµ dxν , (7.173)

where the non-zero components of hµν are given by
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h00 = h11 = −2γ2(1 + β2) Φ, (7.174)

h01 = h10 = 4βγ2 Φ, h22 = h33 = −2 Φ. (7.175)

Here, Φ depends upon time and is given by

Φ =
∑
j

mj φ(uj), (7.176)

where uj := |x′ − x′j | is the positive square root of

u2
j = γ2 [(x− xj)− β(t− t0)]2 + (y − yj)2 + (z − zj)2, (7.177)

in accordance with eqn (7.172). In practice, |β| � 1; nevertheless, we perform the
calculations in this section for arbitrary β, but then we set |β| � 1 in the end result.
To preserve our linear weak-field approximation scheme, however, β2 cannot be too
close to unity. Moreover, as in Section 7.6, the antisymmetric tetrad potentials vanish
(i.e. φµν = 0) and the transverse gauge condition is satisfied, as these are maintained
under Lorentz transformation.

In the geometric optics approximation, a light ray propagates along a null geodesic

dkµ

dκ
+ 0Γµαβ k

αkβ = 0, (7.178)

where the spacetime propagation vector kµ = dxµ/dκ is tangent to the corresponding
world line and κ is an affine parameter along the path. Let k̃µ = dxµ/dκ̃ represent
the unperturbed light ray whose trajectory is given by

x(t) = a, y(t) = b, z(t) = z + t− t0, (7.179)

where a, b and z are constants. To simplify matters in this case, we can choose κ̃ = t−t0,
so that k̃µ = (1, 0, 0, 1).

A comment is in order here regarding the physical significance of z. In the regime
of geometric optics, eqn (7.178) with kµ = dxµ/dκ represents the equation of motion
of the light particle (“photon”) along the null ray. At t = t0, z indicates the position
of the unperturbed photon along the z axis away from the (x, y) plane.

To calculate the deflection of light from eqn (7.178), we consider the net deviation
∆kµ,

∆kµ = kµ(+∞)− kµ(−∞) = −
∫ ∞
−∞

0Γµαβ k
αkβ dκ, (7.180)

where kµ(−∞) = k̃µ. The integrand here is computed along the null geodesic. To
linear order, however, the calculation can be performed along the unperturbed light
ray, namely,

∆kµ = −
∫ ∞
−∞

Lµ(t0 + κ̃, a, b, z + κ̃) dκ̃, (7.181)

where κ̃ = t− t0 and
Lµ(x) := 0Γµαβ(x) k̃αk̃β . (7.182)
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Here, the Christoffel symbols,

0Γµαβ =
1

2
ηµν(hνα,β + hνβ,α − hαβ,ν), (7.183)

are determined from eqns (7.174)–(7.177). It follows from a detailed calculation that
Lµ(t0 + κ̃, a, b, z + κ̃) can be represented as

L0 = 2γ2
∑
j

mj
1

uj

dφ(uj)

duj
[γ2κ̃ − β3γ2(a− xj) + (1 + β2)(z− zj)], (7.184)

L1 = 2γ2
∑
j

mj
1

uj

dφ(uj)

duj
[βγ2κ̃ + (1− β2γ2)(a− xj) + 2β(z− zj)], (7.185)

L2 = 2γ2
∑
j

mj
1

uj

dφ(uj)

duj
(b− yj), (7.186)

L3 = 2βγ2
∑
j

mj
1

uj

dφ(uj)

duj
[(a− xj) + β (z− zj)]. (7.187)

In principle, the integration in eqn (7.181) can now be carried through to determine
the net deviation of the ray due to the gravitational attraction of the moving source;
however, this calculation would involve

1

r

dφ

dr
=
G

r3

[
1 + α0 − α0(1 +

1

2
µ0r)e

−µ0r
]
. (7.188)

We address the problem of calculating the relevant integrals in Appendix D. Using the
results of Appendix D, we find that for β 6= 0,

∆k0 = β∆k1 = ∆k3 = −4βγ G
∑
j

mjXj
Xj2 + Yj2

[
1 + α0 − α0 I

(
µ0

√
Xj2 + Yj2

)]
,

(7.189)

∆k2 = −4γ G
∑
j

mjYj
Xj2 + Yj2

[
1 + α0 − α0 I

(
µ0

√
Xj2 + Yj2

)]
, (7.190)

where

Xj := (a− xj) + β(z− zj), Yj := b− yj . (7.191)

Moreover, I(x) := J2(x) + (x/2)J1(x), where J1 and J2 are discussed in Appendix
D; indeed,

I(x) =

∫ ∞
0

(1 + 1
2x cosh υ) e−x cosh υ

cosh2 υ
dυ, (7.192)

so that I(0) = 1 and I(∞) = 0. For α0 = 0, formulas (7.189)–(7.191) extend the
results of previous work on light deflection in GR; see Wucknitz and Sperhake (2004)
and the references cited therein.
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With z as the line-of-sight coordinate, the overall effect of the deflection of the
light ray in the plane of the sky can be expressed via the angles α̌ = −(∆k1,∆k2),
where

α̌ = 4γ G
∑
j

mj
(Xj ,Yj)
Xj2 + Yj2

[
1 + α0 − α0 I

(
µ0

√
Xj2 + Yj2

)]
. (7.193)

Other than an overall factor of γ, the effect of the motion of the gravitational source
appears here in β(z− zj) contained in Xj .

The end result for the deflection angle α̌, and hence Xj and Yj , is independent of t0
and any specific configuration of the lens and the photon. To illustrate this important
point, we note that the photon crosses the (x, y) plane at time t̄0 = t0 − z, when the
point mass mj , say, is at (x̄j , ȳj , z̄j); then, repeating our calculation in this case would
yield Xj = (a− x̄j)− βz̄j and Yj = b− ȳj . These are the same quantities as given in
eqn (7.191), since the lens has moved during the time interval z; that is, xj = x̄j + βz,
yj = ȳj and zj = z̄j .

Let us now suppose that the gravitational lens is thin; that is, the extent of the
deflecting mass in the z direction is small (Schneider, Ehlers and Falco 1999). There-
fore, we may neglect βzj = βz̄j in Xj , since in practice |β| � 1. Then, at the instant
that the unperturbed photon crosses the lens plane, it is possible to express eqn (7.193)
for a moving extended lens in a form that can be incorporated into the standard lens
equation, namely,

α̌(θ) =
4G

c2

∫
θ − θ̄
|θ − θ̄|2

[
1 + α0 − α0 I

(
µ0|θ − θ̄|

)]
Σ̄(θ̄) d2θ̄, (7.194)

where Σ̄(θ̄) is the surface mass density of the deflecting source (“thin lens”) and the
integration is carried over the lens plane, which essentially coincides with the (x, y)
plane. Thus, in eqn (7.194),

θ = (a, b), θ̄ = (x̄, ȳ), (7.195)

where θ is the unperturbed position of the photon as it crosses the lens plane and θ̄
indicates the position of a point of the extended lens at that instant. Furthermore, it
is possible to write α̌ = ∇Ψ̌, where the lensing potential Ψ̌ is given by

Ψ̌(θ) =
4G

c2

∫ [
ln |θ − θ̄|+ α0 N(µ0|θ − θ̄|)

]
Σ̄(θ̄) d2θ̄. (7.196)

Here, the first term in the integrand is the GR result, which follows from ∇ ln |x| =
x/|x|2, while the nonlocal contribution to the lensing potential involves N, which is
related to I via dN/dx = [1− I(x)]/x.

It follows from these results that in the theoretical interpretation of gravitational
lensing data in accordance with nonlocal gravity, due account must be taken of the
existence of the repulsive “Yukawa” part of the gravitational potential as well. This
may lead to the resolution of problems associated with light deflection by colliding
clusters of galaxies. However, the confrontation of the nonlocal gravity theory with
lensing data would require a separate detailed investigation.
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7.8 Gravitation and Nonlocality

We have introduced nonlocality into gravitational theory via a constitutive ansatz. The
manner in which this has been done can lead to different nonlocal theories. In par-
ticular, our ansatz consists of two distinct parts: a nonlocal connection between Nµνρ
and Xµνρ involving a scalar kernel as well as a local connection between Xµνρ and the
torsion tensor. As described in detail in Appendix A, the physical interpretation of the
theory can depend on the nature of the local connection between Xµνρ and Cµνρ. For
instance, choosing Xµνρ = C[µνρ] implies that linearized nonlocal gravity is essentially
equivalent to linearized GR, so that the effects of nonlocality are expected to appear
in the nonlinear regime of the theory; see Appendix A. However, gravitation is the
weakest force in nature; therefore, the linear approximation of nonlocal gravity con-
tains many of the possible physical applications of the theory including the Newtonian
regime of nonlocal gravity as well as linearized gravitational radiation.

In retrospect, the local connection adopted in this work in eqn (6.109), namely,
Xµνρ = Cµνρ + p̌ (Čµ gνρ − Čν gµρ) with p̌ a non-zero constant, makes it possible to
have nonlocality in the linear regime. It follows from Section 7.6 that p̌ does not affect
the gravitational field of a stationary source in linearized nonlocal gravity; therefore, p̌
is expected to be significant for the gravitational field of time-varying sources in their
near zones. Furthermore, eqn (6.109) makes it possible to recover the Tohline–Kuhn
modified gravity approach to the problem of the “flat” rotation curves of the spiral
galaxies and to place this scheme within the fully relativistic framework of nonlocal
gravity. In this way the effective dark matter of nonlocal gravity has been identified
with the hypothetical dark matter invoked in astrophysics. Henceforward, we take the
view that what appears as dark matter in astrophysics and cosmology is in fact the
nonlocal aspect of the gravitational interaction. This is indeed a possibility due to the
persistent negative result of experiments that have searched for the particles of dark
matter.

Dark matter is currently indispensable for explaining: (i) gravitational dynamics
of galaxies and clusters of galaxies (Zwicky 1933, 1937; Rubin and Ford 1970; Roberts
and Whitehurst 1975; Sofue and Rubin 2001; Seigar 2015; Harvey et al. 2015), (ii)
gravitational lensing observations in general and the Bullet Cluster (Clowe et al. 2006;
Clowe, Randall and Markevitch 2007) in particular and (iii) the formation of structure
in cosmology and the large scale structure of the universe. The nonlocal character of
gravity, however, cannot yet replace dark matter on all physical scales. We emphasize
that nonlocal gravity theory is so far in the early stages of development and only
some of its implications have been confronted with observation; see Chapter 8. More-
over, a beginning has recently been made in the development of nonlocal Newtonian
cosmology; see Chapter 10.

7.9 Appendix A: Constitutive Relation of NLG

This appendix is devoted to a discussion of the constitutive relation of nonlocal gravity.
More precisely, we wish to examine the local connection between Xµνρ and the torsion
tensor in eqn (6.109) and its implications for linearized NLG. Ultimately, of course,
the confrontation of the theory with observation can determine the right relation.
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Imagine, for instance, the possibility of choosing Xµνρ = C[µνρ]. Returning to the
general form of the linearized field eqns (7.21)–(7.22), we have in this case

X(µ
σ
ν) = 0, X[µ

σ
ν] =

1

2
ησρ φ[µρ,ν], (7.197)

since in the linear approximation C[µρν] = 1
2 φ[µρ ,ν]. Thus eqn (7.21) is the same here

as in the linearized Einstein equation of GR and eqn (7.22) takes the form

ησρ ∂σ

∫
K(x− y)φ[µρ,ν](y) d4y = 0. (7.198)

In this case, we have a complete separation of the 10 dynamic metric variables h̄µν
from the 6 tetrad variables φµν . The integral constraints (7.198) can be satisfied with

φµν = 0. (7.199)

Thus at the linear level, this theory of nonlocal gravity is essentially equivalent to local
GR; therefore, the connection between nonlocal gravity and dark matter disappears
in this case.

In connection with the separation of the metric variables from the tetrad variables,
let us consider the possibility that

Xµνρ = Cµνρ +
1

2
Cρµν . (7.200)

It is useful to note that we now have in eqns (7.21)–(7.22),

X(µ
σ
ν) = C(µ

σ
ν), X[µ

σ
ν] =

3

4
ησρ φ[µρ,ν]. (7.201)

The constraint equations in this case contain the secondary tetrad variables φµν
exclusively. Thus to simplify matters, one can again assume that φµν = 0; then, the
constraint equations are satisfied and the ten dynamic nonlocal field equations depend
solely upon h̄µν . However, we note that in this case Xµνρ 6= −Xνµρ, so that Nµν in
eqn (6.121) does not in general transform as a tensor under arbitrary coordinate trans-
formations. Thus this case violates the basic geometric structure of nonlocal gravity
theory.

Clearly, one can concoct other combinations and study their consequences; however,
the rest of this appendix is devoted to a detailed discussion of the difficulty associated
with the simplest possibility, namely, Xµνρ = Cµνρ, adopted, along with the possibility
that Tµν 6= Tνµ, in Hehl and Mashhoon (2009a, 2009b) and Mashhoon (2011b). In
nonlocal gravity (NLG), Tµν = Tνµ as in GR; however, Xµνρ = Cµνρ then leads, in a
manner that is independent of any gauge condition, to a contradiction. In other words,
the field equations in this case can be obtained from eqns (7.23)–(7.43) for p̌ = 0, and
we recall here that S0µ = 0. Let us take

0G00 = κ T00 (7.202)

from the set of field equations for the metric variables and write it using eqn (7.8) as
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h̄00,i
i − h̄ij,ij = −2κ T00, (7.203)

where T00 is the total energy density of the source defined by eqn (7.61). Next, we
take eqn (7.38) from the set of integral constraint equations, namely,∫

K(x− y) δ(x0 − y0 − |x− y|)Wi(y) d4y = 0, (7.204)

where, in agreement with eqn (7.36), Wi is given by

Wi = −φij,j −
(
h̄00,i − h̄ij,j

)
. (7.205)

Integrating over the temporal coordinate in eqn (7.204), we find∫
K(|x− y|,x− y)Wi(x

0 − |x− y|,y) d3y = 0. (7.206)

We note that
δikWi,k = −h̄00,i

i + h̄ij,
ij , (7.207)

since φij = −φji. Hence, we find from eqn (7.203) the interesting result that

δijWi,j = 2κ T00. (7.208)

To demonstrate that eqn (7.208) is in general incompatible with eqn (7.206), we
apply the partial derivative operator ∂/∂xj to eqn (7.206). To simplify the calculation,
let us define auxiliary functions η̄ and F̄ by

η̄ := x0 − |x− y|, F̄ (x− y) := K(|x− y|,x− y). (7.209)

Then, we have that
∂η̄

∂xj
= − ∂η̄

∂yj
,

∂F̄

∂xj
= − ∂F̄

∂yj
. (7.210)

Hence, taking the derivative of eqn (7.206) results in

∂j

∫
F̄ Wi d

3y =

∫ [
− ∂F̄

∂yj
Wi(η̄,y) + F̄

∂η̄

∂xj
Wi,0(η̄,y)

]
d3y = 0. (7.211)

Using integration by parts, we find that∫
∂

∂yj
(F̄Wi) d

3y =

∫
F̄
[ ∂

∂yj
Wi(η̄,y) +

∂η̄

∂xj
Wi,0(η̄,y)

]
d3y. (7.212)

From
∂

∂yj
Wi(η̄,y) =

∂η̄

∂yj
Wi,0(η̄,y) +Wi,j(η̄,y) (7.213)

and eqn (7.210), we see that in eqn (7.212) terms involvingWi,0 cancel; thus, eqn (7.212)
can be written as ∫

∂

∂yj
(F̄Wi) d

3y =

∫
F̄ Wi,j d

3y. (7.214)
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Taking the trace of this equation and using Gauss’s theorem, we finally get from
eqn (7.208) that∫

F̄
(
δijWi,j

)
d3y = 2κ

∫
K(|x− y|,x− y) T00(η̄,y) d3y = 0. (7.215)

This important result can also be expressed as∫
W (x− y)T00(y) d4y = 0, (7.216)

where kernel W is given by eqn (7.67).
The source of the gravitational field has been assumed to be finite and isolated in

space, but is otherwise arbitrary. It is conceivable that eqn (7.216) could be satisfied for
rather special source configurations. In general, however, eqn (7.216) is not satisfied for
an arbitrary source, which indicates that a solution of the field equation does not exist.
We have thus shown, without using any gauge condition, that the symmetric metric
part of the field equation of NLG is in general incompatible with the antisymmetric
tetrad part for Xµνρ = Cµνρ. The incompatibility proof can be directly extended
to constitutive relations of the forms Xµνρ = Cµνρ + p′ C[µνρ] and Xµνρ = Cµνρ +
p′′Eµνρσ C

σ, where p′ 6= 0 and p′′ 6= 0 are constant parameters.
Let us now consider the constitutive relation adopted in the present paper. Then,

instead of eqn (7.202), we have

0G00 = κ T00 − p̌U00, (7.217)

where

U00 =

∫
K(x− y)Č0,0(y) d4y, U00 = −

∫
R(x− y)Č0,0(y) d4y (7.218)

and we have used here the reciprocity relation (7.55). It follows from eqns (7.8)
and (7.207) that

δijWi,j = 2κ T00 + 2 p̌

∫
R(x− y)Č0,0(y) d4y. (7.219)

Next, the relevant integral constraint is in this case S[i 0] = p̌ U[i 0], or∫
K(|x− y|,x− y)Wi(x

0 − |x− y|,y) d3y = 4 p̌ U[i 0]. (7.220)

Hence, using the approach adopted above for the p̌ = 0 case, we have∫
K(|x− y|,x− y)

(
δijWi,j

)
(x0 − |x− y|,y) d3y = 4 p̌ δij∂j U[i 0]. (7.221)

It follows from eqn (7.219) that

κ

∫
Kc(x− y) T00(y) d4y + p̌

∫ ∫
Kc(x− z)R(z − y)Č0,0(y) d4y d4z = 2 p̌ δij∂j U[i 0],

(7.222)
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whereKc is the light-cone kernel defined by eqn (7.37). Calculating U[i 0] from eqn (7.32)

and using Čσ,σ = 0, we find

δij∂j

∫
K(|x− y|,x− y) Či(η̄,y) d3y =

∫
Kc(x− y)Č0,0(y) d4y. (7.223)

Moreover,

δij∂j

∫
K(x− y) Č[i,0](y) d4y =

1

2
∂σ

∫
K(x− y)(Čσ,0 − Č0,

σ)(y) d4y, (7.224)

which, after using Gauss’s theorem and Čσ,σ = 0, results in

δij∂j

∫
K(x− y) Č[i,0](y) d4y = −1

2

∫
K(x− y)(2 Č0)(y) d4y. (7.225)

Putting all these results together and using the definition of kernel W in eqn (7.67),
we finally arrive at a nonlocal integral constraint for Č0,

κ

∫
W (x− y)T00(y) d4y = −p̌

∫
[W (x− y) Č0,0(y) +K(x− y)2 Č0(y) ] d4y. (7.226)

In principle, this equation for Č0 can be solved—for example, via Fourier analysis—in
terms of T00, the energy density of the gravitational source. In this way, for p̌ 6= 0, we
avoid the contradiction that we encountered in eqn (7.216).

7.10 Appendix B: Liouville–Neumann Method

Consider a linear integral equation of the second kind given by

φ(x) + λ

∫ b

a

K(x, y)φ(y) dy = f(x), (7.227)

where a, b and λ are constants. We work in the space of continuous functions on
the interval [a, b]. If kernel K(x, y) identically vanishes for y > x, then the integral
equation reduces to a Volterra equation discussed in Section 2.9. In the general case
under consideration here, we have a Fredholm equation and we seek a solution of
this Fredholm equation by the Liouville–Neumann method of successive substitutions.
That is, we first take the integral term to the right-hand side of eqn (7.227) and
replace φ in the integrand by its value given by this equation. Repeating this process
eventually leads to an infinite Liouville–Neumann series, namely,

φ(x) = f(x)− λ
∫ b

a

K(x, y)f(y)dy

+λ2

∫ b

a

∫ b

a

K(x, z)K(z, y)f(y)dy dz + · · · . (7.228)

If this series is uniformly convergent for sufficiently small |λ|, we have a solution of the
integral eqn (7.227). This solution is unique in the space of real continuous functions
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on the interval [a, b]; a generalization of this result to the space of square-integrable
functions is contained in Tricomi (1957).

We can express the unique solution of eqn (7.227) in the form

f(x) + λ

∫ b

a

R(x, y) f(y) dy = φ(x), (7.229)

where R(x, y) is the kernel reciprocal to K(x, y). To get a formula for R, let us define
the iterated kernels Kn, n = 1, 2, . . . , by

K1(x, y) = −K(x, y),

Kn+1(x, y) =

∫ b

a

Kn(x, z)K1(z, y)dz. (7.230)

These functions occur in the infinite series of eqn (7.228). In fact, we can write
eqn (7.228) as

φ(x) = f(x) +

∫ b

a

[ ∞∑
n=1

λnKn(x, y)

]
f(y) dy, (7.231)

so that the reciprocal kernel R(x, y) is given by

R(x, y) =

∞∑
n=1

λn−1Kn(x, y). (7.232)

This infinite series of the iterated kernels is essentially the Neumann series; we have
suppressed here the dependence of the reciprocal kernel on λ for the sake of simplicity.

The reciprocity between eqns (7.227) and (7.229) leads to

K(x, y) +R(x, y) = −λ
∫ b

a

K(x, z)R(z, y)dz

= −λ
∫ b

a

R(x, z)K(z, y)dz. (7.233)

A more direct demonstration of these equations can be obtained from eqn (7.232) and

Kn+p(x, y) =

∫ b

a

Kn(x, z)Kp(z, y)dz, (7.234)

where p = 1, 2, . . .. To prove this latter relation, we proceed by induction and note
that this equation is true for p = 1 by definition of iterated kernels in eqn (7.230).
Assuming that eqn (7.234) is valid for p, we must then prove that it also holds for
p+ 1, that is,

Kn+p+1(x, y) =

∫ b

a

Kn(x, z)Kp+1(z, y)dz. (7.235)

To show this, we start from the definition of iterated kernels, namely,
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Kn+p+1(x, y) =

∫ b

a

Kn+p(x, z)K1(z, y)dz, (7.236)

and we express the integrand using eqn (7.234) as

Kn+p+1(x, y) =

∫ b

a

[∫ b

a

Kn(x,w)Kp(w, z) dw

]
K1(z, y) dz. (7.237)

Interchanging the order of integration in the double integral, we find

Kn+p+1(x, y) =

∫ b

a

Kn(x,w)

[∫ b

a

Kp(w, z)K1(z, y) dz

]
dw. (7.238)

By the definition of iterated kernels, we have

Kp+1(w, y) =

∫ b

a

Kp(w, z)K1(z, y) dz, (7.239)

which, when substituted in eqn (7.238), leads to eqn (7.235) and this completes the
proof of eqn (7.234).

Finally, let us note that ifK(x, y) is a convolution kernel, that is,K(x, y) = k̄(x−y),
or symmetric, that is, K(x, y) = K(y, x), then all iterated kernels as well as R(x, y)
would be likewise of the convolution type or symmetric, respectively.

7.11 Appendix C: Calculation of q̂(|ξ|)

Reciprocal kernels q1 and q2, given by eqns (7.98) and (7.99), respectively, are both
L1 and L2 and their Fourier transforms (q̂1 and q̂2) are dimensionless functions that
can be explicitly calculated in terms of the exponential integral function E1, as will be
demonstrated in the last part of this section (Mashhoon 2013b). However, to ensure
that they also satisfy the requirement that 1 + q̂(|ξ|) 6= 0 given in eqn (7.88), we first
follow a different approach here (Chicone and Mashhoon 2012). To this end, we note
that if in the calculation of the spatial Fourier transform q(x) is only a function of the
radial variable r = |x|, then we can introduce spherical polar coordinates (r, ϑ, ϕ) and
imagine that the coordinate system is so oriented that ξ points along the polar axis.
The angular integrations can now be simply carried out using the fact that∫ π

0

e−iξr cosϑ sinϑ dϑ = 2
sin(ξr)

ξr
. (7.240)

The result is then

q̂(ξ) =
4π

ξ

∫ ∞
0

rq(r) sin(ξr) dr, (7.241)

where ξ : 0→∞ is the magnitude of ξ.
In general, the Fourier transform q̂(ξ) of a square-integrable function q(x) is square

integrable. We wish to use the Fourier transform method of Section 7.4 to calculate
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kernel χ(r). In case 1 + q̂ 6= 0 and χ̂(|ξ|) is an L2 function, the Fourier transform
method becomes applicable here and we have

χ(r) = − 1

2π2r

∫ ∞
0

ξq̂(ξ)

1 + q̂(ξ)
sin(ξr) dξ. (7.242)

Let us first consider q1 and note that eqns (7.98) and (7.241) imply

q̂1(ξ) =
1

λ0 ξ

∫ ∞
0

(µ0 +
1

a0 + r
) e−µ0 r sin(ξr)dr. (7.243)

It follows from formula 3.893 on page 477 of Gradshteyn and Ryzhik (1980) that∫ ∞
0

e−µ0 r sin(ξr) dr =
ξ

µ2
0 + ξ2

; (7.244)

hence,

q̂1(ξ) =
1

λ0

µ0

µ2
0 + ξ2

+
1

λ0 ξ

∫ ∞
0

e−µ0 r

a0 + r
sin(ξr) dr. (7.245)

At this point, it proves useful to digress briefly here and discuss a lemma regarding
the Fourier sine transform. Consider the integral

g(ξ) =

∫ ∞
0

h(x, ξ) sin(ξx) dx. (7.246)

For each ξ ∈ (0,∞), let h(x, ξ) be a smooth positive integrable function that mono-
tonically decreases over the interval of integration; then, g(ξ) > 0. To prove this
result for each ξ > 0, we divide the integration interval in eqn (7.246) into segments
(2πξ−1n, 2πξ−1n+ 2πξ−1) for n = 0, 1, 2, . . .. In each such segment, the corresponding
sine function, sin(ξx), goes through a complete cycle and is positive in the first half and
negative in the second half. On the other hand, the monotonically decreasing function
h(x, ξ) > 0 is consistently larger in the first half of the cycle than in the second half;
therefore, the result of the integration over each full cycle is positive and consequently
g(ξ) > 0. For ξ → 0, sin(ξx)→ 0 and hence g(0) = 0, while for ξ →∞, the integration
segments shrink to zero and g tends to 0 in the limit as ξ →∞, if the corresponding
limit of h(x, ξ) is finite everywhere over the integration domain. This latter conclusion
is, of course, a variation on the Riemann–Lebesgue lemma.

Returning now to eqn (7.245), we note that exp(−µ0 r)/(a0+r) is a smooth positive
integrable function that decreases monotonically for r : 0→∞. Thus the above lemma
can be used to conclude that for 0 ≤ ξ <∞, q̂1(ξ) > 0, while q̂1(ξ)→ 0 as ξ →∞ by
the Riemann–Lebesgue lemma. It follows that |χ̂1(ξ)| ≤ |q̂1(ξ)|, so that χ̂1 is in L2 as
well and the nonlocal kernel χ1 can, in principle, be determined via eqn (7.242). To
illustrate this point, we consider an example involving a particular choice of param-
eters, namely, µ0 λ0 = 0.1 and a0/λ0 = 0.001, so that α0 := 2/(µ0 λ0) = 20 in this
case. In Fig. 7.3a, we plot q̂1(ξ) versus λ0 ξ and in Fig. 7.3b, −λ3

0 χ(r) is plotted versus
r/λ0.
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Fig. 7.3 (a) Plot of q̂1 versus λ0 ξ for the reciprocal kernel q1 given in eqn (7.98). The

parameter values are µ0 λ0 = 0.1 and a0/λ0 = 0.001. As noted in this appendix, q̂1 is always

greater than q̂2, but this is hardly noticeable for the parameter values under consideration in

this case. For instance, at λ0ξ = 2, q̂1 ≈ 0.779 here, while q̂2 ≈ 0.773 in Fig. 7.4a. (b) Plot of

the corresponding dimensionless kernel −λ3
0χ1 versus r/λ0. The function −λ3

0χ1 starts from

∞ at r = 0 and drops off to nearly zero very fast; in fact, for r/λ0 ≥ 2.5 it is essentially zero

at the level of accuracy of this plot. Reproduced from Chicone, C. and Mashhoon, B., 2012,

“Nonlocal Gravity: Modified Poisson’s Equation”, J. Math. Phys. 53, 042501 (17 pages), with

the permission of AIP Publishing. DOI: 10.1063/1.3702449

Next, we consider kernel q2 and note that it can be expressed as

q2(r) =
1

4πλ0

d

dr

[
− exp(−µ0 r)

a0 + r

]
. (7.247)

Reciprocal kernel q2(r) is smooth and positive everywhere and rapidly decreases to
zero at infinity; indeed, q2(r) is integrable as well as square integrable. It is possible
to show that for any ξ ≥ 0, q̂2(ξ) > −a0/λ0.

Substituting eqn (7.247) in eqn (7.241) and integrating by parts, we find

q̂2(ξ) =
1

λ0 ξ

∫ ∞
0

e−µ0r

a0 + r

d

dr
[r sin(ξr)] dr. (7.248)

Next, we differentiate r sin(ξr) and note that

sin(ξr) + ξr cos(ξr) = [sin(ξr)− a0ξ cos(ξr)] + (a0 + r) ξ cos(ξr). (7.249)

Therefore, eqn (7.248) can be written as

q̂2(ξ) = U +
1

λ0

∫ ∞
0

e−µ0r cos(ξr) dr. (7.250)

Here, ∫ ∞
0

e−µ0r cos(ξr) dr =
µ0

µ2
0 + ξ2

(7.251)
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follows from formula 3.893 on page 477 of Gradshteyn and Ryzhik (1980) and

U =
1

λ0 ξ

∫ ∞
0

e−µ0r

a0 + r
[sin(ξr)− a0ξ cos(ξr)] dr. (7.252)

Let us now introduce an angle γ̄ connected with a0 ξ such that

a0 ξ := tan γ̄, (7.253)

and note that as ξ : 0 → ∞, we have γ̄ : 0 → π/2 and γ̄/ξ : a0 → 0. It is useful to
introduce a new variable X in eqn (7.252), r = X + γ̄/ξ, since

sin(ξr)− a0 ξ cos(ξr) =
1

cos γ̄
sin(ξr − γ̄). (7.254)

As ξ : 0→∞, cos γ̄ decreases from 1 to 0, so that for any finite value of ξ, cos γ̄ > 0.
Then, eqn (7.252) can be written as

U =
e−µ0γ̄/ξ

λ0 ξ cos γ̄

∫ ∞
−γ̄/ξ

e−µ0X

a0 +X + γ̄/ξ
sin(ξX) dX. (7.255)

In this expression, the integration from X = −γ̄/ξ to ∞ can be expressed as a sum of
two terms, one from 0 to ∞ and the other from X = −γ̄/ξ to 0. That is, U = U1 +U2,
where

U1 =
e−µ0γ̄/ξ

λ0 ξ cos γ̄

∫ ∞
0

e−µ0X

a0 +X + γ̄/ξ
sin(ξX) dX (7.256)

is positive by the Fourier sine lemma, since exp(−µ0X)/(a0 + X + γ̄/ξ) is a smooth
positive integrable function that monotonically decreases for X : 0→∞. Moreover,

U2 =
e−µ0γ̄/ξ

λ0 ξ cos γ̄

∫ 0

−γ̄/ξ

e−µ0X

a0 +X + γ̄/ξ
sin(ξX) dX (7.257)

turns out to be negative. To show this, let us introduce a new variable ξX = −Y into
eqn (7.257); then, we have

−λ0 ξ cos γ̄ U2(ξ) =

∫ γ̄

0

e−
µ0
ξ (γ̄−Y )

(γ̄ − Y ) + a0 ξ
sinY dY. (7.258)

The right-hand side of this equation involves an integrand that increases monotonically
from 0 to sin γ̄/(a0 ξ) as Y : 0 → γ̄. Thus the right-hand side of eqn (7.258) is less
than γ̄ sin γ̄/(a0 ξ), which is equal to γ̄ cos γ̄ by eqn (7.253); consequently, U2(ξ) >
−γ̄/(λ0 ξ). As 0 ≤ γ̄/ξ ≤ a0, we find that U2(ξ) > −a0/λ0. We thus conclude that
q̂2 > −a0/λ0 and

1 + q̂2(ξ) > 1− a0/λ0. (7.259)

Hence the Fourier transform method is applicable to kernel q2 if a0 < λ0. It then
follows from eqn (7.87) that |χ̂2| < |q̂2|/(1−a0/λ0), so that χ̂2(ξ) is in L2 as well, and
we can find the nonlocal kernel χ2 from eqn (7.242). This is illustrated in Fig.7.4 via
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Fig. 7.4 (a) Plot of q̂2 versus λ0 ξ for the reciprocal kernel q2 given in eqn (7.99). The

parameter values are µ0 λ0 = 0.1 and a0/λ0 = 0.001, just as in Fig. 7.3. The function

q̂2 starts from q̂2(0) ≈ 20 and rapidly falls off initially, but then slowly decreases to zero

as λ0ξ → ∞. (b) Plot of the corresponding dimensionless kernel −λ3
0χ2 versus r/λ0. The

function −λ3
0χ2 starts from ≈ 80101 at r = 0 and drops off to nearly zero very fast; in fact,

for r/λ0 ≥ 2.5 it is essentially zero at the level of accuracy of this plot. Though this figure

appears to be indistinguishable from Fig. 7.3b in the plotted range, their numerical values are

indeed different. Reproduced from Chicone, C. and Mashhoon, B., 2012, “Nonlocal Gravity:

Modified Poisson’s Equation”, J. Math. Phys. 53, 042501 (17 pages), with the permission of

AIP Publishing. DOI: 10.1063/1.3702449

an example with the same choice of parameters as in Fig. 7.3. We plot q̂2 versus λ0 ξ
in Fig. 7.4a and −λ3

0 χ2(r) versus r/λ0 in Fig. 7.4b. We note that with this choice of
parameters, q̂2 is a positive function; in fact, we expect that this would be the case if
a0/λ0 is sufficiently small compared to unity.

Kernel q0(r) can be obtained from either q1 or q2 by setting a0 = 0. Moreover, q̂0

can be obtained from eqn (7.245) with a0 = 0, namely,

q̂0(ξ) =
1

λ0

µ0

µ2
0 + ξ2

+
1

λ0 ξ

∫ ∞
0

e−µ0 r

r
sin(ξr) dr, (7.260)

so that

q̂0 =
µ0

λ0(µ2
0 + ξ2)

+
1

λ0 ξ
arctan

( ξ
µ0

)
. (7.261)

Here we have used the fact that for real values of the constants p1 and p2,∫ ∞
0

e−p1x sin (p2x)
dx

x
= arctan (

p2

p1
), p1 ≥ 0; (7.262)

see formula 3.941 on page 489 of Gradshteyn and Ryzhik (1980). Thus q̂0 > 0 and
q̂0(0) = 2/(µ0 λ0) := α0, while for λ0 ξ � 1, q̂0 ∼ π/(2λ0 ξ). This asymptotic behavior
is similar to the Fourier transform of the Kuhn kernel

q̂K =
π

2λTK ξ
, (7.263)
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since q0 and qK have much the same behavior for r → 0.
Consider next the smooth positive monotonically decreasing functions given by

r [q0(r)− q1(r)] =
a0

4πλ0

1

r (a0 + r)
e−µ0r (7.264)

and

r [q1(r)− q2(r)] =
a0

4πλ0

1 + µ0(a0 + r)

(a0 + r)2
e−µ0r. (7.265)

The Fourier sine lemma is immediately applicable to these functions and we find from
eqn (7.241) that

q̂0(ξ) > q̂1(ξ) > q̂2(ξ), (7.266)

and they all vanish as ξ → ∞ in accordance with the Riemann–Lebesgue lemma.
Furthermore, for i = 1, 2, we have

q̂i(0) = α0 − Ei(∞) = α0 εi(ς). (7.267)

Returning now to eqns (7.240) and (7.241), we note that the reciprocal kernel q(r)
can be expressed in terms of its Fourier transform q̂(ξ) as

q(r) =
1

2π2r

∫ ∞
0

ξq̂(ξ) sin(ξr) dξ, (7.268)

q(0) =
1

2π2

∫ ∞
0

ξ2q̂(ξ) dξ. (7.269)

Moreover, it follows from eqn (7.242) that

χ(0) = − 1

2π2

∫ ∞
0

ξ2q̂(ξ)

1 + q̂(ξ)
dξ. (7.270)

Equations (7.269) and (7.270) then imply

χ(0) + q(0) =
1

2π2

∫ ∞
0

ξ2q̂2(ξ)

1 + q̂(ξ)
dξ. (7.271)

We recall that q̂(ξ) is square integrable over the whole ξ space; hence, ξ2q̂2(ξ) is
integrable over the radial coordinate ξ : 0→∞ and the right-hand side of eqn (7.271)
is finite. It then follows from eqn (7.271) that −χ1(0) = ∞, since q1(0) = ∞, while
χ2(0) is finite due to the finiteness of q2(0), in agreement with the numerical results
of Fig. 7.3b and Fig. 7.4b.

Finally, let us write eqn (7.245) as

q̂1(ξ) =
1

λ0

µ0

µ2
0 + ξ2

− 1

λ0 ξ
Im

∫ ∞
0

e−(µ0+i ξ) r

a0 + r
dr. (7.272)

Introducing here a new variable t, a0 + r := a0 t, such that t : 1 → ∞ as r : 0 → ∞,
we can write eqn (7.272) as



162 Linearized Nonlocal Gravity

q̂1(ξ) =
1

λ0

µ0

µ2
0 + ξ2

− 1

λ0 ξ
Im
[
eZ0E1(Z0)

]
, (7.273)

where

Z0 = a0 (µ0 + i ξ) = ς + i a0 ξ (7.274)

and E1(z) is the exponential integral function defined for a complex number z with
positive real part, Re(z) > 0, by (Abramowitz and Stegun 1964)

E1(z) =

∫ ∞
1

e−z t

t
dt. (7.275)

For explicit computations, one may use the expansion (Abramowitz and Stegun 1964)

E1(z) = −C − ln z −
∞∑
n=1

(−1)nzn

n n!
, (7.276)

where C = 0.577 . . . is Euler’s constant. Next, to calculate q̂2(ξ), we write eqn (7.248)
as

q̂2(ξ) =
1

λ0 ξ

∫ ∞
0

e−µ0r

a0 + r
[sin(ξr) + ξr cos(ξr)] dr. (7.277)

Using eqns (7.245) and (7.251), eqn (7.277) can be expressed as

q̂2(ξ) = q̂1(ξ)− a0

λ0

∫ ∞
0

e−µ0r

a0 + r
cos(ξr) dr. (7.278)

Following the same procedure as in the case of eqn (7.245), we find

q̂2(ξ) = q̂1(ξ)− a0

λ0
Re
[
eZ0E1(Z0)

]
. (7.279)

7.12 Appendix D: Light Deflection Integrals

In eqns (7.184)–(7.187) of Section 7.7, consider

1

r

dφ

dr
=
G(1 + α0)

r3
− α0G

(
1 +

1

2
µ0r
) e−µ0r

r3
, (7.280)

where the first part on the right-hand side is simply due to Newtonian attraction
augmented by 1 + α0, while the second repulsive “Yukawa” part is due to the fading
of spatial memory in nonlocal gravity. To compute the net deflection of light, the
integrals due to the first part of eqn (7.280) are simpler and we therefore treat them
first.

Let w(X) > 0 be given by

w(X) = A+ 2BX + CX2, (7.281)

where ∆̃ := AC − B2 6= 0. It is then straightforward to verify that
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dX

w3/2
=
B + CX
∆̃w1/2

,

∫
X dX

w3/2
= −A+ BX

∆̃w1/2
, (7.282)

where only positive square roots are considered throughout. Let us now assume that
C > 0 and ∆̃ > 0, so that

C w(X) = (CX + B)2 + ∆̃. (7.283)

Hence, w > 0 for X : −∞→ +∞. In this case, we have

I1 =

∫ ∞
−∞

dX

w3/2
=

2 C1/2

∆̃
, I2 =

∫ ∞
−∞

X dX

w3/2
= − 2B

∆̃ C1/2
. (7.284)

For the problem of light deflection discussed in Section 7.7, we have X = t − t0
and w(t − t0) = u2

j , where uj is given by eqn (7.177); that is, along the unperturbed
ray,

u2
j = Aj + 2Bj (t− t0) + Cj (t− t0)2, (7.285)

where

Aj = γ2(a− xj)2 + (b− yj)2 + (ζ − zj)2, Bj = −βγ2(a− xj) + (ζ − zj) (7.286)

and Cj = γ2. Moreover, we find that ∆̃j = Aj Cj − Bj2 = γ2(Xj2 + Yj2), where

Xj and Yj are defined in eqn (7.191) and ∆̃j , by assumption, never vanishes. Thus
the conditions for the applicability of eqn (7.284) are satisfied. We thus find that the
integrals for the first part of eqn (7.280) are given by

I1 =

∫ ∞
−∞

dX

u3
j

=
2 γ−1

Xj2 + Yj2
, I2 =

∫ ∞
−∞

X dX

u3
j

=
2 γ−1[β Xj − (ζ − zj)]

Xj2 + Yj2
,

(7.287)
which, together with the results given below for the second part of eqn (7.280),
eventually lead to eqns (7.189)–(7.190) of Section 7.7.

To treat the integration of the second (“Yukawa”) part of eqn (7.280), let us first
note that

uj =
(
û2
j + ∆̂2

j

)1/2
, (7.288)

where
ûj = γX + γ−1 Bj , ∆̂j = (Xj2 + Yj2)1/2 (7.289)

and, as before, X = t−t0. As X : −∞→ +∞, ûj also goes from −∞ to +∞; therefore,
it proves useful to introduce a new variable υ : −∞→ +∞ such that

ûj = ∆̂j sinh υ, uj = ∆̂j cosh υ. (7.290)

The calculation of the integrals for the second part then ultimately reduces to the
determination of J1(ϑj) and J2(ϑj), where

ϑj := µ0 ∆̂j > 0 (7.291)

and

Jn(ϑ) :=

∫ ∞
0

e−ϑ cosh υ

coshn υ
dυ (7.292)

for n = 1, 2, 3, . . .. It is interesting to observe that Jn(0) = (
√
π/2)Γ(n2 )/Γ(n+1

2 ) and
Jn(∞) = 0.
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It is useful to express Jn(x) for x ≥ 0 as

Jn(x) =

∫ π
2

0

cosn−1 ϕe−x secϕ dϕ, (7.293)

where, in eqn (7.292), we have employed cosh υ = secϕ, sinh υ = tanϕ, dυ = dϕ/ cosϕ
and ϕ : 0→ π/2 as υ : 0→∞.

We note that J1(x), which is a special case of Sievert’s integral (Abramowitz and
Stegun 1964), is not analytic about x = 0. Moreover

J ′′1 − J1 =

∫ π
2

0

tan2 ϕe−x secϕ dϕ, (7.294)

where J ′1(x) = dJ1/dx, etc. The right-hand side of eqn (7.294) can be evaluated using
integration by parts; that is,∫ π

2

0

sinϕe−x secϕ d

dϕ

(
1

cosϕ

)
dϕ = −J1 + x (J ′1 − J ′′′1 ). (7.295)

It follows that J ′1(x) satisfies the modified Bessel differential equation of order zero,
namely,

x b′′(x) + b′(x)− x b(x) = 0. (7.296)

The solutions of this equation are I0(x) and K0(x), which are the modified Bessel
functions of order zero; see Abramowitz and Stegun (1964). In fact, I0(x),

I0(x) =

∞∑
k=0

x2k

(2k k!)2
, (7.297)

is regular at x = 0 and valid everywhere. Furthermore,

K0(x) = −(ln
x

2
+ C) I0(x) +

∞∑
k=1

βk
x2k

(2k k!)2
, (7.298)

where C = 0.577 . . . is Euler’s constant and

βk =

k∑
n=1

1

n
. (7.299)

For x : 0 → ∞, K0(x) behaves as − lnx for x → 0, but then rapidly decreases
monotonically with increasing x and vanishes exponentially as x→∞. In fact,

K0(x) ∼
√

π

2x
e−x (7.300)

for x→∞ (Abramowitz and Stegun 1964).
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To determine J1 and J2 in terms of Bessel functions, let us first note that J1(0) =
π/2 and J2(0) = 1. Moreover, for 0 < |ε| � 1, we find from eqn (7.292) that for ϑ > 0,

J1(ϑ+ ε) = J1(ϑ)− εK0(ϑ) + · · · , (7.301)

J2(ϑ+ ε) = J2(ϑ)− εJ1(ϑ) +
1

2
ε2K0(ϑ) + · · · , (7.302)

where K0(ϑ) is given by (Abramowitz and Stegun 1964)

K0(ϑ) =

∫ ∞
0

e−ϑ cosh υ dυ. (7.303)

It follows from eqns (7.301)–(7.302) that

dJ1

dϑ
= −K0(ϑ),

dJ2

dϑ
= −J1(ϑ). (7.304)

Therefore, we have

J1(ϑ) =
π

2
−
∫ ϑ

0

K0(x) dx (7.305)

and

J2(ϑ) = 1−
∫ ϑ

0

J1(x) dx. (7.306)

Let us now define a new function B(x),

B(x) := −x+

∫ x

0

I0(t) dt, (7.307)

so that we have

B(x) =
∞∑
k=1

x2k+1

(2k + 1) (2k k!)2
. (7.308)

It is then possible to use I0(x) = 1 + dB/dx in eqn (7.298) and subsequently express
eqn (7.305) as

J1(x) =
π

2
−x+x (ln

x

2
+C)+

∫ x

0

(ln
t

2
+C)

dB

dt
dt−

∞∑
k=1

βk
x2k+1

(2k + 1) (2k k!)2
. (7.309)

Finally, we find via integration by parts that

J1(x) =
π

2
− x+ (ln

x

2
+ C)[x+ B(x)]

−
∞∑
k=1

(
βk +

1

2k + 1

)
x2k+1

(2k + 1) (2k k!)2
(7.310)

and J2(x) can be explicitly determined from eqn (7.306).
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Nonlocal Gravity and Dark Matter

The main purpose of this chapter is to compare nonlocal gravity theory with observa-
tion. In this way, we try to determine the parameters λ0, a0 and µ0 of the reciprocal
kernel q in the Newtonian regime of nonlocal gravity. Our starting point is the modi-
fied inverse square force law. We recall from Chapter 7 that in the Newtonian regime
of nonlocal gravity, the force of gravity on point mass m due to point mass m′ is given
by

F(r) = −Gmm′ r̂

r2

{
[1− E(r) + α0]− α0 (1 +

1

2
µ0 r) e

−µ0 r

}
, (8.1)

where r = xm−xm′ , r = |r| and r̂ = r/r. This force is always attractive and conserva-
tive. It consists of two parts: an enhanced Newtonian part and a repulsive “Yukawa”
part. The latter is due to the fact that spatial gravitational memory fades exponentially
with distance.

As described in detail in Chapter 7, to recover the Tohline–Kuhn phenomenological
scheme and thereby explain the “flat” rotation curves of spiral galaxies in a manner
that would be consistent with nonlocal gravity theory, we find two simple possible
functional forms for the reciprocal kernel of the nonlocal Poisson equation in the
Newtonian regime, namely, q1 and q2 given in eqns (7.98) and (7.99), respectively. If
we employ q1, then E in eqn (8.1) is given by

E1(r) =
a0

λ0
eς
[
E1(ς)− E1(ς + µ0r)

]
. (8.2)

On the other hand, if we employ q2, then E in the force law is given by

E2(r) =
a0

λ0

{
− r

r + a0
e−µ0r + 2 eς

[
E1(ς)− E1(ς + µ0r)

]}
. (8.3)

Here, ς := µ0 a0, λ0 = 2/(α0 µ0) and E1(x) is the exponential integral function
(Abramowitz and Stegun 1964).

We note that E1(r) and E2(r) start from zero at r = 0 and monotonically increase as
r → ∞; furthermore, they asymptotically approach E1(∞) = E∞ and E2(∞) = 2 E∞,
respectively, where 2 E∞ = α0 ς E1(ς) exp ς. It follows that as µ0 r →∞ such that the
Yukawa part of the gravitational force can be neglected, we simply have the Newtonian
inverse square force law augmented by the constant factor 1 +α0 εi(ς), where i = 1, 2,

α0 εi(ς) = α0 − Ei(∞) > 0 (8.4)

and ε1(ς) and ε2(ς) are plotted in Fig. 7.2.

Nonlocal Gravity. Bahram Mashhoon. c© Bahram Mashhoon 2017. Published 2017
by Oxford University Press.
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Let us briefly digress here and mention that if a0 = 0, q1 = q2 = q0, where q0 is
given by eqn (7.100), and E(r) in eqn (8.1) vanishes. Then, the gravitational force can
be expressed as

F(r) = −Gmm′ r̂
[

1

r2
+

1

λ0 r
Ū(µ0r)

]
, (8.5)

where Ū(x) is given by

Ū(x) =
2e−x

x

(
ex − 1− 1

2
x
)
. (8.6)

For x : 0→∞, Ū(x) is a positive function that starts from Ū = 1 at x = 0 and then
decreases monotonically as x increases and tends to zero as x → ∞. For 0 < x � 1,
we can write

Ū(x) = 1− 1

6
x2 +

1

12
x3 − 1

40
x4 +O(x5), (8.7)

so that neglecting terms of order (µ0r)
2 and higher in the expansion of Ū(µ0r), we find

that eqn (8.5) essentially reduces to the Tohline–Kuhn force (7.91). The implications
of the Tohline–Kuhn force for gravitational two-body systems have been the subject
of a number of recent investigations (Fabris and Pereira Campos 2009; Blome et al.
2010; Rahvar and Mashhoon 2014; Lu et al. 2014). However, it appears that the
extension of the 1/r part of the Tohline–Kuhn force (7.91) within the Solar System can
likely be ruled out by current observational data regarding the perihelion precession of
planetary orbits (Iorio 2015; Deng and Xie 2015). On the other hand, nonlocal gravity
is characterized by the short-distance parameter a0 6= 0 and the following section is
devoted to a discussion of the short-distance behavior of nonlocal gravity in the Solar
System.

It follows from the connection between the Newtonian regime of nonlocal gravity
and the Tohline–Kuhn approach that the basic nonlocality parameter λ0 is expected
to be a galactic length of order 1 kpc. Moreover, the quantities E1(r) and E2(r) are
proportional to a0/λ0, where the short-distance parameter a0 is such that a0 < λ0 <
µ−1

0 . In this chapter, we wish to explore the consequences of the new force law for
gravitational systems and attempt to determine the reciprocal kernel q.

8.1 Solar System

It is interesting to work out the implications of nonlocal gravity for the gravitational
physics of the Solar System. To this end, it appears that E1(r) and E2(r) are crucial for
the discussion of the short-distance behavior of the gravitational force. To investigate
this point, let us first find their Taylor expansions about r = 0. From eqns (8.2)
and (8.3), it is straightforward to show by repeated differentiation that

E1(r) =
r

λ0

[
1− 1

2
W1(ς)

(
r

a0

)
+

1

3
W2(ς)

(
r

a0

)2

− · · ·

]
(8.8)

and

E2(r) =
r

λ0

[
1− 1

3
W2(ς)

(
r

a0

)2

+ · · ·

]
, (8.9)
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where

W1(ς) = 1 + ς, W2(ς) = 1 + ς +
1

2
ς2. (8.10)

Thus, we find from eqn (8.1) that for r < a0, we have the following expansions in
powers of r/a0,

F1(r) = −Gmm′ r̂

r2

[
1 +

1

2
(1 + ς)

r2

λ0 a0
− 1

3
(1 + ς + ς2)

r3

λ0 a2
0

+ · · ·
]

(8.11)

and

F2(r) = −Gmm′ r̂

r2

[
1 +

1

3
(1 + ς)

r3

λ0 a2
0

+ · · ·
]
. (8.12)

It is remarkable that in the square brackets in eqns (8.11) and (8.12), the linear
r/λ0 term, which is the leading term in both E1(r) and E2(r), is absent; in fact, this
term is simply canceled by the corresponding Tohline–Kuhn term. In other words, the
presence of the short-range parameter a0 6= 0 in effect shields the near-field region
from the influence of the 1/r part of the Tohline–Kuhn force.

Let us now apply these results to the relative motion of a gravitational binary
system with a major axis that is small in comparison with a0. In this case, the main
deviation from the Newtonian inverse square force law in the two-body system, δF,
can be expressed as an expansion in powers of r/a0. The result could be either of the
form

δF1(r) = −1

2

Gmm′

λ0 a0
(1 + ς) r̂ +

1

3

Gmm′

λ0 a0
(1 + ς + ς2)

r

a0
r̂ + · · · (8.13)

if kernel q1 is employed, or

δF2(r) = −1

3

Gmm′

λ0 a0
(1 + ς)

r

a0
r̂ + · · · (8.14)

if kernel q2 is employed. Here, a0 < λ0 < µ−1
0 ; indeed, let us note that with λ0 ≈ 3

kpc and µ−1
0 ≈ 17 kpc, we expect that ς = µ0 a0, 0 < ς < 1/5, would be rather small

in comparison with unity.

8.1.1 Kepler system

Imagine a Keplerian two-body system of point particles with a radial perturbing
acceleration Ag = δF/m̄,

d2r

dt2
+
GMr

r3
= Ag, (8.15)

where M = m + m′ is the total mass and m̄ is the reduced mass of the system. The
orbital angular momentum of the system is then conserved and the orbit remains
planar. Consider first the case where the radial acceleration is of the form Ag = ηg r,
where ηg is a constant. It can be shown using the Lagrange planetary equations, when
averaged over the fast Keplerian motion with orbital frequency ωK , ω2

K = GM/Ā3,
that the orbit keeps its shape but slowly precesses; that is, the semimajor axis of the
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orbit Ā and the orbital eccentricity e remain constant on the average, but there is a
slow pericenter precession whose frequency is given by Ωg ˆ̀, where (Kerr, Hauck and
Mashhoon 2003)

Ωg =
3

2

ηg
ωK

√
1− e2 (8.16)

and ˆ̀ is the unit orbital angular momentum vector.
This case is reminiscent of the orbital perturbation due to the presence of a cos-

mological constant. Moreover, eqn (8.16) can also be obtained from the study of the
average precession of the Runge–Lenz vector due to the presence of the perturbing
acceleration (Kerr, Hauck and Mashhoon 2003).

Similarly, if the perturbing acceleration is radial and constant, namely, Ag = η′g r̂,
then, as before, the shape of the orbit remains constant on the average, but there is a
slow pericenter precession of frequency Ω′g

ˆ̀, where

Ω′g =
η′g

ωK Ā

√
1− e2. (8.17)

This result has been noted before in connection with the studies of the Pioneer anomaly
(Iorio and Giudice 2006; Sanders 2006; Sereno and Jetzer 2006).

It follows from the results of the previous section that in nonlocal gravity the orbit
on average remains planar and keeps its shape, but slowly precesses. If the reciprocal
kernel of nonlocal gravity in the Newtonian regime is q1, then δF1(r) = m̄ (η′+η1 r) r̂,
where

η′ = −1

2

GM

λ0 a0
(1 + ς) , η1 =

1

3

GM

λ0 a2
0

(1 + ς + ς2). (8.18)

Thus, superposing small perturbations, we get for the pericenter advance in this case
that

Ω1 = −1

2
ωK

Ā2

λ0 a0

[
1 + ς − Ā

a0
(1 + ς + ς2)

] √
1− e2. (8.19)

On the other hand, if the reciprocal kernel turns out to be q2, then δF2(r) = m̄ η2 r,
where

η2 = −1

3

GM

λ0 a2
0

(1 + ς) (8.20)

and hence the pericenter advance is given by

Ω2 = −1

2
ωK

Ā3

λ0 a2
0

(1 + ς)
√

1− e2. (8.21)

Thus, in either case, the rate of advance of the pericenter turns out to be negative.
It is interesting to explore the implications of these results for the Solar System.

8.1.2 Perihelion precession

Thus far we have dealt with the force between point particles. To apply our results
to realistic systems, such as the core of galaxies, binary pulsars or the Solar System,
we need to investigate the influence of the finite size of an astronomical body on



170 Nonlocal Gravity and Dark Matter

the attractive gravitational force that it can generate. To simplify matters, imagine
a point mass m outside a spherically symmetric body of radius R̄0 that has uniform
mass density. Let R̄ be the distance between m and the center of the sphere so that
R̄ > R̄0. If the force of gravity is radial, we expect by symmetry that the net force
on m would be along the line joining the center of the sphere to m. Under what
conditions would the spherical body act on m as though its mass were concentrated
at its center? It turns out that, in addition to Newton’s law of gravity, any radial
force that is proportional to distance would work just as well, so that in general the
desired two-body force can be any linear superposition of these forces such as in the
case of kernel q2 and eqn (8.12). On the other hand, in connection with kernel q1 and
eqn (8.11), we find, after a detailed but straightforward calculation, that for a constant
radial force the same is true, except that the strength of the constant force is thereby
reduced by a factor of

1− 1

5

(
R̄0

R̄

)2

. (8.22)

This factor is nearly unity in most applications of interest here and we therefore assume
that we can treat uniform spherical bodies like point particles for the sake of simplicity.
This means that we can approximately apply the results of the previous section to the
influence of the Sun on the motion of a planet in the Solar System.

The recent advances in the study of precession of perihelia of planetary orbits have
been reviewed by Iorio (2015). In absolute magnitude, for instance, the extra perihelion
shift of Mercury and Saturn due to nonlocal gravity would be expected to be less
than about 10 and 2 milliarcseconds per century, respectively; otherwise, the effect of
nonlocality would have already shown up in high-precision ephemerides (Fienga et al.
2015; Pitjeva and Pitjev 2013), barring certain exceptional circumstances. Thus if the
kernel of nonlocal gravity is q1, the nonlocal contribution to the perihelion precession
Ω1 is expected to be such that its absolute magnitude for Mercury and Saturn would
be less than about 10−2 and 2 × 10−3 seconds of arc per century, respectively. In
general, the inequality involving |Ωi| under consideration here for qi, i = 1, 2, gives
a lower limit on a0 that increases with Ā as Ā1/2 or Ā3/4 depending on whether we
choose q1 or q2, respectively. Thus the lower limit on a0 can become more significant
the farther the planetary orbit is from the Sun.

For the orbit of Mercury, Ā ≈ 6×1012 cm and e ≈ 0.2; moreover, the orbital period
is ≈ 0.24 yr. If the reciprocal kernel is q1, it follows from eqn (8.19) and λ0 ≈ 3 kpc
that in this case, a0 & 7×1013 cm. Similarly, if the kernel is q2, we find from eqn (8.21)
that in this case, a0 & 2× 1013 cm.

For the orbit of Saturn, the orbital period is about 29.5 yr, Ā ≈ 1.4× 1014 cm and
e ≈ 0.056. In a similar way, we find that if the reciprocal kernel is q1, a0 & 2×1015 cm.
However, if the reciprocal kernel is q2, then a0 & 5.5 × 1014 cm. These preliminary
lower limits can be significantly strengthened if, in the analysis of planetary data,
Newton’s law of gravity is replaced by either F1, given in eqn (8.11), or F2, given in
eqn (8.12), depending upon whether the reciprocal kernel of nonlocal gravity is chosen
to be q1 or q2, respectively.
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8.1.3 Search for modifications of gravity

We note that the radius of a star or a planet is generally much smaller than the length
scales a0, λ0 and µ−1

0 that appear in the nonlocal contribution to the gravitational
force. It is therefore reasonable to approximate the exterior gravitational force due
to a star or a planet by assuming that its mass is concentrated at its center. Hence,
one can employ eqn (8.1) in astronomical systems such as binary pulsars and the
Solar System, where possible nonlocal deviations from general relativity may become
measurable in the future. In fact, nonlocal gravity in the Solar System could be tested
experimentally via ESA’s Gaia mission, launched in 2013, or other possible missions
dedicated to measuring deviations from general relativity in the Solar System (Hees
et al. 2015; Buscaino et al. 2015). In this connection, we note that in eqns (8.13)
and (8.14),

1

2

GM�
λ0 a0

(1 + ς) ≈
(1018 cm

a0

)
10−14 cm s−2, (8.23)

which, combined with the lower limits on a0 mentioned above, is at least three orders
of magnitude smaller than the acceleration involved in the Pioneer anomaly (∼ 10−7

cm s−2). It follows that even with dedicated missions it would still be very difficult
to measure directly the nonlocal modification to the gravitational acceleration in the
Solar System.

8.1.4 Gravitational deflection of light

Light rays follow null geodesics in nonlocal gravity. Consider the propagation of a light
ray with impact parameter %̄ in the gravitational field generated by a point mass M̄
that is essentially fixed at r = 0. It is well known that in the linear post-Newtonian
approximation, the total deflection angle of the light ray is twice the Newtonian
expectation. Therefore, if ∆̄ is the net deflection angle, we have for i = 1, 2,

∆̄i =
4GM̄ %̄

c2

∫ π
2

0

fi

( %̄

sinϑ

) dϑ

sinϑ
, (8.24)

where fi(r) is given by

fi(r) =
1

r2
[1− Ei(r) + α0] − α0

r2
(1 +

1

2
µ0 r) e

−µ0 r, (8.25)

see eqn (7.118). Here, %̄ = r sinϑ is the fixed impact parameter and ϑ : 0 → π is the
corresponding scattering angle.

For a0 = 0, the reciprocal kernel is then q0 and the net deflection angle ∆̄0 has
been studied in some detail (Blome et al. 2010; Rahvar and Mashhoon 2014). For our
present purposes, ∆̄0 can be expressed as

∆̄0 =
4GM̄

c2 %̄
[1 + α0 − α0 I(%)], (8.26)

where % is the dimensionless impact parameter,

% := µ0 %̄. (8.27)
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Fig. 8.1 The figure depicts the graphs of the functions I0(%), I1(%, ς) and I2(%, ς) for ς = 0.1

and % : 0→∞. The graph of I1(%, ς) lies above the graph of I2(%, ς), which in turn lies above

the graph of I0(%). Reproduced from Chicone, C. and Mashhoon, B., 2016, “Nonlocal Gravity

in the Solar System”, Class. Quantum Grav. 33, 075005 (21 pages), with the permission of

IOP Publishing. DOI: 10.1088/0264-9381/33/7/075005

In eqn (8.26), I is the integral defined in eqn (7.192) and can be expressed as

I(x) =

∫ π
2

0

(cosϕ+
1

2
x) e−x secϕ dϕ, (8.28)

where ϕ here is related to ϑ in eqn (8.24) via ϑ+ ϕ = π/2.
It proves useful to define I0 and the Einstein deflection angle ∆̄E by

I0 := 1− I, ∆̄E :=
4GM̄

c2 %̄
. (8.29)

For dimensionless impact parameter % : 0 → ∞, we note that I0(%) : 0 → 1; that
is, I0(%) monotonically increases from zero and asymptotically approaches unity as
% → ∞. For 0 < % � 1, I0(%) ≈ π%/4 and hence ∆̄0 differs from the Einstein
deflection angle ∆̄E by a constant angle that is proportional to the mass of the source
and coincides with the result derived from the Tohline–Kuhn force law (Blome et al.
2010; Rahvar and Mashhoon 2014). It is indeed smaller than the Einstein deflection
angle by a factor of ∼ 10−11 for light rays passing near the rim of the Sun.

In nonlocal gravity, a0 > 0 and we find from eqns (8.24)–(8.26) that ∆̄i is given by

∆̄i = ∆̄0 − ∆̄E

∫ π
2

0

cosϕ Ei
( %̄

cosϕ

)
dϕ. (8.30)

We can therefore write

∆̄i = ∆̄E [1 + α0 I0(%)− Ei(∞) Ii(%, ς)], (8.31)
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where

Ii(%, ς) :=
1

Ei(∞)

∫ π
2

0

cosϕ Ei
( %̄

cosϕ

)
dϕ. (8.32)

The functions E1(r) and E2(r) are given in eqns (8.2) and (8.3), respectively. It turns
out that for r/a0 � 1, Ei(r) ≈ r/λ0 by eqns (8.8) and (8.9); hence, for 0 < % � 1,
Ei(∞) Ii(%, ς) ≈ α0(π%/4). As expected, this term cancels the other (Tohline–Kuhn)
term, α0 I0(%) ≈ α0(π%/4), in eqn (8.31). Moreover, for % : 0 → ∞, we note that
Ii(%, ς) : 0 → 1; that is, Ii(%, ς) monotonically increases from zero at % = 0 and
asymptotically approaches unity as %→∞. Thus for %� 1, i.e. large impact param-
eters %̄� µ−1

0 , ∆̄i → ∆̄E [1 + α0 − Ei(∞)], where α0 − Ei(∞) = α0 εi(ς) in accordance
with eqn (8.4); that is, the extra deflection angle takes due account of the net effective
dark matter associated with M̄ .

The new integral, Ii(%, ς), can be expressed in terms of dEi/dr. Using integration
by parts, eqn (8.32) can be written as

Ii(%, ς) = 1− %̄

Ei(∞)

∫ π
2

0

tan2 ϕ
dEi
dr

( %̄

cosϕ

)
dϕ, (8.33)

where dE1/dr and dE2/dr are given by eqns (7.126) and (7.127), respectively. More
explicitly, we have

I1(%, ς) = 1− %

eς E1(ς)

∫ π
2

0

sin2 ϕ

(%+ ς cosϕ) cosϕ
e−% secϕ dϕ (8.34)

and

I2(%, ς) = I1(%, ς)− 1

2

%

eς E1(ς)

∫ π
2

0

cosϕ

%+ ς cosϕ
e−% secϕ dϕ. (8.35)

We plot I0(%), I1(%, ς) and I2(%, ς) for ς = 0.1 and % : 0→∞ in Fig. 8.1.
It is possible to express the net deflection angle as

∆̄i = ∆̄E [1 + α0 Di(%, ς)], (8.36)

where D1 and D2 are given by

D1(%, ς) = I0(%)− 1

2
ς eς E1(ς) I1(%, ς) (8.37)

and
D2(%, ς) = I0(%)− ς eς E1(ς) I2(%, ς), (8.38)

respectively.
It now remains to discuss the influence of a0 > 0 on the gravitational deflection of

starlight by the Sun (M̄ = M�). If the reciprocal kernel is qi, i = 1, 2, then the net
deflection angle due to nonlocality is α0 Di(%, ς) times the Einstein deflection angle
∆̄E , in accordance with eqn (8.36). For light rays passing near the rim of the Sun,
the dimensionless impact parameter is very small (% ∼ 10−12). Moreover, using the
lower limits placed on a0 in the previous section, we note that ς :∼ 4× 10−8 → 0.2 in
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(a) (b)

Fig. 8.2 (a) The figure depicts the graph of the function ς 7→ D1(10−8, ς). We note that

for ς ≈ 4 × 10−8, D1 ≈ 1.6 × 10−9 in this case. (b) The figure depicts the graph of the

function ς 7→ D2(10−7, ς). We note that for ς ≈ 10−8, D2 ≈ 5.6 × 10−8 in this case. Repro-

duced from Chicone, C. and Mashhoon, B., 2016, “Nonlocal Gravity in the Solar System”,

Class. Quantum Grav. 33, 075005 (21 pages), with the permission of IOP Publishing. DOI:

10.1088/0264-9381/33/7/075005

D1, while ς :∼ 10−8 → 0.2 in D2. Our numerical results indicate that |D1| and |D2|
are negligibly small compared to unity. For instance, for % = 10−12 we find both D1

and D2 to be ≈ −10−15. To illustrate the situation, we plot D1 and D2 in Fig. 8.2. It
appears from these results that the nonlocal contribution to the gravitational bending
of light in the Solar System is utterly negligible at the present time.

It is important to point out that I0(%) and Ii(%, ς) are not analytic about % = 0,
so that they cannot be expanded in a Taylor series about % = 0. The behavior of these
functions for % → 0 can in principle be determined using asymptotic approximation
methods (Bleistein and Handelsman 1986). A simple case is illustrated in Section 7.12.

8.1.5 Gravitational time delay

The general expressions for the gravitational potentials due to a point mass M̄ at r = 0
corresponding to the reciprocal kernels q1 and q2 are given in eqns (7.134) and (7.135),
respectively. Within the Solar System, µ0 r � 1 and we can therefore use expansions
in powers of this small quantity as in eqn (7.136). Neglecting terms of order (r/a0)2

and higher, we find

Φ1(r) ≈ −GM̄
r
− GM̄

λ0
[1 + eς E1(ς)] +

1

2

GM̄

λ0
(1 + ς)

r

a0
(8.39)

and

Φ2(r) ≈ −GM̄
r
− GM̄

λ0
eς E1(ς) . (8.40)

The nonlocal contribution to the gravitational potential is extremely small within
the Solar System. To illustrate this point consider, for instance, the gravitational
shift of the frequency of light, which involves the difference in the potential at two
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spatially separated events. In the approximation scheme under consideration here, the
contribution to the shift in the potential due to nonlocality is non-zero only in the
case of Φ1 and is given by

1

2

GM̄

λ0
(1 + ς)

r2 − r1

a0
, (8.41)

where r1 and r2 are the radial positions of the events under consideration. This is
rather small in absolute magnitude when compared with the corresponding shift of
the Newtonian potential; that is, at a distance of ten astronomical units, say, we have
(10 AU)2/(λ0 a0) . 10−9 based on the lower limit on a0 already established using the
perihelion precession of Saturn. Therefore, we conclude that the relative contribution
of nonlocality to the gravitational shift of the frequency of light is very small within
the Solar System.

Consider next the gravitational time delay D̄ of a light signal that travels from
event P1 : (ct1, r1) to event P2 : (ct2, r2). Then, D̄ = t2 − t1 − |r2 − r1|/c is given by

D̄i = − 2

c3

∫ P2

P1

Φi dσ, (8.42)

where σ : 0 → |r2 − r1| is the distance along a straight line from P1 to P2. It is
in general straightforward to compute D̄i for nonlocal gravity in the Solar System.
However, to simplify matters, we consider only the time delay due to Φ2, which is

D̄2 =
2GM̄

c3

[
ln
r2 + n̂ · r2

r1 + n̂ · r1
+ eς E1(ς)

|r2 − r1|
λ0

]
, (8.43)

where n̂ = (r2 − r1)/|r2 − r1|. The result is simply the sum of the Shapiro time delay
and the nonlocal contribution to signal retardation. We recall that ς :∼ 10−8 → 0.2 in
this case; moreover, it follows from eqn (7.121) that for 0 < ς � 1, E1(ς) ≈ −C−ln ς. If
|r2−r1| is about an astronomical unit, then |r2−r1|/λ0 ∼ 10−9; therefore, the nonlocal
effect is rather small and probably difficult to measure, since there are uncertainties
due to clock stability as well as the existence of the interplanetary medium (Shapiro
1980).

Before leaving our discussion of the gravitational physics of the Solar System on
the basis of the linear regime of nonlocal gravity, we need to emphasize that nonlocal
gravity is consistent with the observational data regarding the Solar System. Indeed,
we have placed preliminary lower limits on the short-range parameter a0 on the basis
of current data regarding the perihelion precession of planetary orbits in the Solar
System. For instance, for Saturn, a preliminary lower limit of a0 & 2× 1015 cm can be
established for reciprocal kernel q1, while a0 & 5.5× 1014 cm for reciprocal kernel q2.
Each such kernel contains three parameters that all have dimensions of length: λ0, µ−1

0

and a0. Furthermore, we have a0 < λ0 < µ−1
0 . We now proceed to the determination of

long-range parameters λ0 and µ−1
0 . The aim of this approach is to determine a unique

universal reciprocal kernel with three parameters that would be valid for the present
epoch.
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8.2 Spiral Galaxies

To model the rotation curves of nearby spiral galaxies in accordance with nonlocal
gravity theory, we can use eqn (8.1) instead of the gravitational inverse square force
law and assume that there is no actual dark matter. In other words, a spiral galaxy
essentially consists of baryonic matter in the form of stars and interstellar gas. We
ignore dust in our analysis, as the mass of the dust is at most a few percent of the
mass of the interstellar matter. To simplify matters further, we neglect the short-range
parameter a0 in our model (Rahvar and Mashhoon 2014).

What is actually measured via astronomical observation is the surface density of
the luminosity of a galaxy, which decreases from the center towards the edge of the
galaxy. From the galactic luminosity, we can obtain the total mass of stars in the galaxy
using the stellar mass-to-light ratio Υ?. Moreover, the mass of the gaseous component
of the galaxy can be obtained from the total mass of the hydrogen gas, MH, via
Mgas = 4

3MH, due to the hydrogen to helium abundance in Big Bang nucleosynthesis,
while MH can be determined from the 21 cm radiation of the atomic hydrogen.

We choose a sample of twelve spiral galaxies from The HI Nearby Galaxy Sur-
vey (THINGS) catalog. The available observational data for these galaxies include
their rotation curves, which have been measured by the Doppler effect using 21 cm
radiation of neutral hydrogen gas. Moreover, for our sample of galaxies we use the
stellar luminosity distributions given in the Spitzer Infrared Nearby Galaxies Survey
(SINGS) catalog. We then employ the gravitational force law (8.1) to fit the obser-
vational data for the twelve spiral galaxies of our sample of THINGS catalog. In this
way, the best-fitting values for the parameters α0 and µ0 of the reciprocal kernel q0 of
nonlocal gravity theory are determined from the combination of observational data for
the twelve spiral galaxies of our sample and the end results are (Rahvar and Mashhoon
2014)

α0 = 10.94± 2.56, µ0 = 0.059± 0.028 kpc−1, λ0 ≈ 3± 2 kpc, (8.44)

where λ0 has been evaluated using λ0 = 2/(α0 µ0).
To ensure that the nonlocal model is consistent with the astrophysics of star forma-

tion as well as the Tully–Fisher relation (Tully and Fisher 1977), we first fix the force
law (8.1) (with a0 = 0) by adopting the best values of α0 and µ0 given in eqn (8.44),
namely, α0 ≈ 11 and µ−1

0 ≈ 17 kpc. We use the resulting nonlocal gravity theory to fit
the observed rotation curves of twenty-seven spiral galaxies from the Ursa Major clus-
ter. In this study, we let the stellar mass-to-light ratio Υ? be the only free parameter.
The Ursa Major Cluster of Galaxies is a spiral-rich member of the Virgo Supercluster
and is located at a distance of about 18.6 Mpc. The best-fitting stellar mass-to-light
ratio Υ? turns out to be in good agreement with astrophysical models; moreover, our
results are consistent with the Tully–Fisher relation, which is essentially an empirically
established linear proportionality between the intrinsic infrared luminosity of a spiral
galaxy and v4

c , where vc is the corresponding asymptotic rotation speed. The results
of this analysis are presented in detail in Rahvar and Mashhoon (2014).

The kernel of nonlocal gravity χ as well as the corresponding reciprocal kernel q are
universal functions that must be applicable to all gravitational systems at the present
epoch. To test the approximate validity of the tentative values of the parameters α0
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and µ0 given in eqn (8.44), we next turn to the internal dynamics of rich clusters of
galaxies.

8.3 Chandra X-Ray Clusters of Galaxies

Clusters of galaxies are filled with hot ionized gas that is luminous in X rays. The low-
density gas contains ∼ 10−3 atoms/cm3 and has a temperature of order 108 K. Most
of the electrons originate from hydrogen and helium atoms that are fully ionized. We
assume, as usual, that in the plasma the mass density of protons is nearly 3

4ρg and the
mass density of helium ions is nearly 1

4ρg, where ρg is the mass density of the cluster
gas. The gas contains most of the baryonic mass of rich clusters and is roughly at the
virial temperature Tv that is related to the radial (i.e. line-of-sight) velocity dispersion
σr of the galaxies in the cluster, namely, kB Tv ≈ µpmpσ

2
r , where µp is the mean atomic

mass of the plasma (electrons and ions) in amu, µp ≈ 0.6, and mp is the proton mass.
To simplify matters, we can imagine the cluster gas to be spherically symmetric and
in equilibrium. It is then possible to employ the gas density profile ρg(r) and the cor-
responding temperature profile Tv(r), obtained from the observational data provided
by the Chandra X-ray telescope, to find the magnitude of the Newtonian gravita-
tional acceleration gc(r) inside the cluster. In equilibrium, the gas pressure gradient is
balanced by the gravitational attraction, so that dpg/dr = −ρg gc(r), where the gas
pressure pg is given by pg/(kB Tv) = ρg/(µpmp) in accordance with the ideal gas law
(Sarazin 1988). It follows from these equations that for a spherically symmetric system
in hydrostatic equilibrium, the magnitude of Newtonian gravitational acceleration is
related to the observable parameters by (Sarazin 1988)

gc(r) = −kBTv(r)
µpmp r

(
d ln ρg(r)

d ln r
+
d lnTv(r)

d ln r

)
. (8.45)

In order to have correct dynamics with only baryonic matter and no actual dark
matter, the right-hand side of this equation should be proportional to the right-hand
side of eqn (8.1) of our nonlocal gravity model. To simplify matters, we neglect, as in
the previous section, the short-range parameter a0 in eqn (8.1). Then, for µ0r � 1,
the force between two point particles reduces to the Newtonian inverse square force
law augmented by the constant factor of 1 + α0. Thus in this case, a homogeneous
spherical shell of matter exerts no force on a test particle in its interior but attracts an
exterior test particle as though the mass of the shell were concentrated at its center.
The radius of a cluster is of the order of 1000 kpc; therefore, in the outer parts of the
cluster and away from the central region that has the highest mass density, consider
the determination of the Newtonian acceleration of gravity on a point mass at fixed
radius r. Except for the total mass interior to a sphere of radius ∼ µ−1

0 ≈ 17 kpc
about our fixed position, we can safely neglect the repulsive Yukawa force in eqn (8.1)
in comparison with the attractive Newtonian force. As the mass within the sphere of
radius ∼ µ−1

0 ≈ 17 kpc is very small compared to the mass of the cluster, we can simply
estimate gc(r) using the Newtonian inverse square force law augmented by 1 + α0. It
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follows that at a radial distance r well beyond the central regions of a cluster, we have
the approximate expression

gc(r) ≈ G (1 + α0)
Mc(r)

r2
, (8.46)

where α0 ≈ 11 and Mc(r) is the actual mass of the cluster within a sphere of radius r.
From eqns (8.45) and (8.46), it is possible to determine Mc(r) once the gas density and
temperature profiles are known. The mass of the cluster is dominated by its baryonic
content; therefore, let Mb(r) be the total mass of the gas and stars within a sphere
of radius r. The mass of the gas is obtained by integrating ρg over the volume of a
sphere of radius r. We would expect that Mc(r) ≈ Mb(r) if the gravitational force
that balances gas pressure within the cluster were correctly represented by nonlocal
gravity (Rahvar and Mashhoon 2014).

To compare Mc(r) of a cluster with its baryonic counterpart Mb(r), we choose a
sample of ten rich nearby clusters of galaxies from the Chandra catalog. We compute
Mc(r) for each cluster from eqns (8.45) and (8.46) using its gas density and temperature
profiles and then compare the resulting mass to the corresponding baryonic mass of
the cluster. The details of the calculations are contained in Rahvar and Mashhoon
(2014). For each cluster, we find that the actual mass of the cluster obtained from
nonlocal gravity is consistent with the measured baryonic mass.

If the (reciprocal) kernel of nonlocal gravity in the Newtonian regime is truly uni-
versal, we should be able to apply the theory to all nearby gravitational many-body
systems and make predictions about their structures. In this endeavor, gravitational
systems at cosmological distances are excluded, since kernels χ and q are purely spa-
tial and do not reflect the fading of gravitational memory with time that should be
an important characteristic feature of nonlocal gravity during the expansion of the
universe. To make predictions about nearby systems, we first need to extend the virial
theorem to nonlocal gravity.

In general, the virial theorem of Newtonian physics establishes a simple linear
proportionality between the time averages of the kinetic and potential energies of an
isolated material system for which the potential energy is a homogeneous function of
spatial coordinates. For an isolated gravitational N-body system, the significance of
the virial theorem has to do with the circumstance that the kinetic energy is a sum
of terms each proportional to the mass of a body in the system, while the potential
energy is a sum of terms each proportional to the product of two masses in the system.
Thus, under favorable conditions, the virial theorem can be used to connect the total
dynamic mass of an isolated relaxed gravitational system with its average internal
motion.

8.4 Virial Theorem

Consider an idealized isolated system of N Newtonian point particles with fixed masses
mi, i = 1, 2, . . . , N . We assume that the particles occupy a finite region of space and
interact with each other only gravitationally such that the center of mass of the isolated
system is at rest in a global inertial frame and the isolated system permanently occupies
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a compact region of space. The equation of motion of the particle with mass mi and
state (xi,vi) is then

mi
dvi
dt

= −
∑
j

′ Gmimj (xi − xj)

|xi − xj |3
[1 + N(|xi − xj |)] (8.47)

for j = 1, 2, . . . , N , but the case j = i is excluded in the sum by convention. In fact,
a prime over the summation sign indicates that in the sum j 6= i. Here 1 + N(r) is a
universal function that is inside the curly brackets in eqn (8.1) and the contribution
of nonlocality, N(r), is given by

N(r) := α0

[
1− (1 +

1

2
µ0 r) e

−µ0 r

]
− E(r). (8.48)

Consider next the quantities

I =
1

2

∑
i

mi x
2
i ,

d I
dt

=
∑
i

mi xi · vi, (8.49)

where xi = |xi| and
d2 I
dt2

=
∑
i

mi v
2
i +

∑
i

mi xi ·
dvi
dt

. (8.50)

It follows from eqn (8.47) that∑
i

mi xi ·
dvi
dt

= −
∑
i,j

′ Gmimj (xi − xj) · xi
|xi − xj |3

[1 + N(|xi − xj |)]. (8.51)

Exchanging i and j in the expression on the right-hand side of eqn (8.51), we get∑
i

mi xi ·
dvi
dt

=
∑
i,j

′ Gmimj (xi − xj) · xj
|xi − xj |3

[1 + N(|xi − xj |)]. (8.52)

Adding eqns (8.51) and (8.52) results in∑
i

mi xi ·
dvi
dt

= −1

2

∑
i,j

′ Gmimj

|xi − xj |
[1 + N(|xi − xj |)]. (8.53)

Using this result, eqn (8.50) takes the form

d2 I
dt2

=
∑
i

mi v
2
i −

1

2

∑
i,j

′ Gmimj

|xi − xj |
[1 + N(|xi − xj |)]. (8.54)

Let us recall here that N is defined by eqn (8.48); moreover, the net kinetic energy
and the Newtonian gravitational potential energy of the system are given by

T =
1

2

∑
i

mi v
2
i , WN = −1

2

∑
i,j

′ Gmimj

|xi − xj |
. (8.55)
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Hence,
d2 I
dt2

= 2T + WN + D, (8.56)

where

D = −1

2

∑
i,j

′ Gmimj

|xi − xj |
N(|xi − xj |). (8.57)

Finally, we are interested in the average of eqn (8.56) over time. Let < f > denote
the time average of f , where

< f > = lim
τ→∞

1

τ

∫ τ

0

f(t) dt. (8.58)

Then, it follows from averaging eqn (8.56) over time that

2 < T > = − <WN > − < D >, (8.59)

since d I/dt, which is the sum of mx · v over all particles in the system, is a bounded
function of time and hence the time average of d2 I/dt2 vanishes. This is clearly based
on the assumption that the spatial coordinates and velocities of all particles indeed
remain finite for all time. Equation (8.59) expresses the virial theorem in nonlocal
Newtonian gravity.

It is important to digress here and re-examine some of the assumptions involved in
our derivation of the virial theorem. In general, any consequence of the gravitational
interaction involves the whole mass–energy content of the observable universe due
to the universality of the gravitational interaction; therefore, an astronomical system
may be considered isolated only to the extent that the tidal influence of the rest
of the observable universe on the internal dynamics of the system can be neglected.
Moreover, the parameters of the force law (8.1) refer to the present epoch and hence
the virial theorem (8.59) ignores cosmological evolution. Thus the temporal average
over an infinite period of time in eqn (8.59) must be reinterpreted here to mean that
the relatively isolated system under consideration has evolved under its own gravity
such that it is at the present epoch in a steady equilibrium state. In other words, the
system is currently in virial equilibrium. Finally, we recall that a point particle of mass
m in eqn (8.59) could reasonably represent a star of mass m as well, where the mass
of the star is assumed to be concentrated at its center.

The deviation of the virial theorem (8.59) from the Newtonian result is contained
in < D >, where D is given by eqn (8.57). More explicitly, we have

D = −1

2

∑
i,j

′ Gmimj

|xi − xj |

[
α0−α0 (1+

1

2
µ0 |xi−xj |) e−µ0 |xi−xj |−E(|xi−xj |)

]
. (8.60)

It proves useful at this point to study some of the properties of the function N, which
is the contribution of nonlocality that is inside the square brackets in eqn (8.60). The
argument of this function is |xi − xj | > 0 for i 6= j; therefore, |xi − xj | varies over the
interval (0,D0], where D0 is the largest possible distance between any two baryonic
point masses in the system. Thus N(r), in the context of the virial theorem, is defined
for the interval 0 < r ≤ D0, where D0 is the diameter of the smallest sphere that
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completely encloses the baryonic system for all time. In general, however, N(0) = 0
and N(∞) = α0 − E(∞) > 0, where E(∞) = E∞ or 2 E∞, depending on whether we
use reciprocal kernel q1 or q2, respectively. Moreover, dN(r)/dr is given by

d

dr
N1(r) =

1

2
α0 µ0

r [1 + µ0 (a0 + r)]

a0 + r
e−µ0 r, (8.61)

if we use q1 or
d

dr
N2(r) =

1

2
α0 µ0

r2 [1 + µ0 (a0 + r)]

(a0 + r)2
e−µ0 r, (8.62)

if we use q2. Writing exp (µ0 r) = 1 + µ0 r+R, where R > 0 represents the remainder
of the power series, it is straightforward to see that for r ≥ 0 and n = 1, 2, . . .,

eµ0 r (a0 + r)n > rn [1 + µ0 (a0 + r)]. (8.63)

This result, for n = 1 and n = 2, implies that the right-hand sides of eqns (8.61)
and (8.62), respectively, are less than α0 µ0/2. Therefore, it follows that in general

d

dr
N(r) <

1

2
α0 µ0. (8.64)

Moreover, for r > 0, eqn (8.64) implies

N(r) =

∫ r

0

dN(x)

dx
dx <

1

2
α0 µ0 r. (8.65)

We conclude that N is a monotonically increasing function of r that is zero at r = 0
with a slope that vanishes at r = 0. For r � µ−1

0 , N(r) asymptotically approaches a
constant α0 ε(ς) := α0−E(∞). Here ε(ς) is either ε1(ς) or ε2(ς) depending on whether
we use q1 or q2, respectively, see eqn (8.4). The functions ε1(ς) and ε2(ς) are plotted
in Fig. 7.2.

8.5 Dark Matter

Most of the matter in the universe is currently thought to be in the form of certain
elusive particles that have not been directly detected (Aprile et al. 2012; Akerib et
al. 2014; Agnese et al. 2014; Baudis 2015). The existence and properties of this dark
matter have thus far been deduced only through its gravity. We are interested here in
dark matter only as it pertains to nearby stellar systems such as galaxies and clusters
of galaxies (Zwicky 1933, 1937; Rubin and Ford 1970; Roberts and Whitehurst 1975;
Sofue and Rubin 2001; Seigar 2015; Harvey et al. 2015). We mention that dark matter
is also essential in the explanation of gravitational lensing observations (Clowe et al.
2006; Clowe, Randall and Markevitch 2007), see Section 7.7, and in the solution of the
problem of structure formation in cosmology, see Chapter 10.

Actual (mainly baryonic) mass is observationally estimated for astronomical sys-
tems using the mass-to-light ratio. However, it turns out that the dynamic mass of the
system is usually larger and this observational fact is normally attributed to the possi-
ble existence of non-baryonic dark matter. Let Mb be the baryonic mass and MDM be
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the mass of the non-baryonic dark matter needed to explain the gravitational dynamics
of the system. Then,

fDM :=
MDM

Mb
(8.66)

is the dark matter fraction and Mb + MDM = Mb (1 + fDM ) is the dynamic mass of
the system.

In observational astrophysics, the virial theorem of Newtonian gravity is inter-
preted to be a relationship between the dynamic (virial) mass of the entire system
and its average internal motion deduced from the rotation curve or velocity dispersion
of the bound collection of masses in virial equilibrium. Therefore, regardless of how
the net amount of dark matter in galaxies and clusters of galaxies is operationally
estimated and the corresponding fDM is thereby determined, for sufficiently isolated
self-gravitating astronomical systems in virial equilibrium, we must have

2 < T >= −(1 + fDM ) <WN > . (8.67)

In other words, virial theorem (8.67) is employed in astronomy to infer in some way
the total dynamic mass of the system. Indeed, Zwicky first noted the need for dark
matter in his application of the standard virial theorem of Newtonian gravity to the
Coma Cluster of Galaxies (Zwicky 1933, 1937).

8.6 Effective Dark Matter

A significant physical consequence of nonlocal gravity theory is that it appears to
simulate dark matter. In particular, in the Newtonian regime of nonlocal gravity, the
Poisson equation is modified such that the density of ordinary matter ρ is accompanied
by a term ρD that is obtained from the folding (convolution) of ρ with the reciprocal
kernel of nonlocal gravity. Thus ρD has the interpretation of the density of effective
dark matter and ρ+ ρD is the density of the effective dynamic mass; see Section 7.4.

The virial theorem makes it possible to elucidate in a simple way the manner in
which nonlocality can simulate dark matter. It follows from a comparison of eqns (8.59)
and (8.67) that nonlocal gravity can account for this “excess mass” if

< D >= fDM <WN > . (8.68)

It is interesting to apply the virial theorem of nonlocal gravity to sufficiently iso-
lated astronomical N-body systems. The configurations that we briefly consider below
consist of clusters of galaxies with diameters D0 � µ−1

0 ≈ 17 kpc, galaxies with
D0 ∼ µ−1

0 and globular star clusters with D0 � µ−1
0 . The results presented in this

section follow from certain general properties of the function N(r) and are completely
independent of how the baryonic matter is distributed within the astronomical system
under consideration.
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8.6.1 Clusters of galaxies: fDM ≈ α0 ε(ς)

Consider, for example, a cluster of galaxies, where nearly all of the relevant distances
are much larger than µ−1

0 ≈ 17 kpc. In this case, µ0 r � 1 and hence N approaches its
asymptotic value, namely,

N ≈ α0 ε(ς), (8.69)

where ε(ς) = ε1(ς) or ε2(ς), defined in eqn (8.4), depending on whether we use q1 or
q2, respectively. Hence, eqn (8.57) can be written as

< D >≈ α0 ε(ς) <WN > . (8.70)

It then follows from eqn (8.68) that for galaxy clusters

fDM ≈ α0 ε(ς) (8.71)

in nonlocal gravity. We recall that ε(ς) is only weakly sensitive to the magnitude
of a0. It follows from α0 ≈ 11 and Fig. 7.2 that fDM for galaxy clusters is about
10, in general agreement with observational data (Rahvar and Mashhoon 2014). This
theoretical result is essentially equivalent to the work on galaxy clusters contained in
(Rahvar and Mashhoon 2014), except that eqn (8.71) takes into account the existence
of the short-range parameter a0. In connection with the effective dark matter fraction
fDM , nonlocal gravity thus predicts a universal result given by eqn (8.71) for all nearby
clusters of galaxies that are sufficiently isolated and in virial equilibrium.

8.6.2 Galaxies: D0

fDM
> λ0

Consider next a sufficiently isolated galaxy of diameter D0 in virial equilibrium. In
this case, we recall that N(r) is a monotonically increasing function of r, so that for
0 < r ≤ D0, eqn (8.65) implies

N(r) ≤ N(D0) <
1

2
α0 µ0D0. (8.72)

Therefore, it follows from eqn (8.57) that in this case

D > (
1

2
α0 µ0D0)WN . (8.73)

The virial theorem for nonlocal gravity in the case of an isolated galaxy is then

2 < T > + <WN > < − (
1

2
α0 µ0D0) <WN >, (8.74)

which means, when compared with eqn (8.67), that

fDM <
1

2
α0 µ0D0. (8.75)

Let us note that
1

2
α0 µ0 =

1

λ0
, (8.76)

where λ0 is the basic nonlocality length scale. Its exact value is not known; however,
from the results of Rahvar and Mashhoon (2014), we have, tentatively, λ0 ≈ 3±2 kpc.
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If we formally let λ0 →∞, then eqn (8.75), namely, fDM < D0/λ0, implies that in this
case nonlocality and the effective dark matter both disappear, as expected. Therefore,
for a sufficiently isolated galaxy in virial equilibrium, the ratio of its baryonic diameter
to dark matter fraction fDM must always be above a fixed length λ0 of about 3 ± 2
kpc; that is,

D0

fDM
> λ0. (8.77)

To illustrate relation (8.77), consider, for instance, the Andromeda Galaxy (M31)
with a diameter D0 of about 67 kpc. In this case, we have fDM ≈ 12.7 (Barmby et al.
2006, 2007), so that for this spiral galaxy

D0

fDM
(Andromeda Galaxy) ≈ 5.3 kpc. (8.78)

More recently, the distribution of dark matter in M31 has been the subject of further
study (Tamm et al. 2012). Similarly, for the Triangulum Galaxy (M33), we have D0 ≈
34 kpc and fDM ≈ 5 (Corbelli 2003), so that

D0

fDM
(Triangulum Galaxy) ≈ 6.8 kpc. (8.79)

Turning next to an elliptical galaxy, namely, the massive E0 galaxy NGC 1407, we
have D0 ≈ 160 kpc and fDM ≈ 31 (Pota et al. 2015), so that

D0

fDM
(NGC 1407) ≈ 5.2 kpc. (8.80)

Moreover, for the intermediate-luminosity elliptical galaxy NGC 4494, which has a
half-light radius of Re ≈ 3.77 kpc, the dark matter fraction has been found to be
fDM = 0.6 ± 0.1 (Morganti et al. 2013). Assuming that the baryonic system has a
radius of 2Re, we have D0 = 4Re ≈ 15 kpc and fDM ≈ 0.6; hence,

D0

fDM
(NGC 4494) ≈ 25 kpc. (8.81)

We emphasize that the results presented here are valid for the present epoch in the
expansion of the universe. Observations indicate, however, that the diameters of mas-
sive galaxies can increase with decreasing redshift z (Peralta de Arriba et al. 2014).
For a discussion of such massive compact early-type galaxies, see Section 10.6.

Finally, it is interesting to consider fDM at the other extreme, namely, for the case
of globular star clusters. The diameter of a globular star cluster is about 40 pc. We
can therefore conclude from eqn (8.77) with λ0 ≈ 3 kpc that for globular star clusters

fDM (globular star cluster) . 10−2. (8.82)

Thus according to the virial theorem of nonlocal gravity, less than about one per cent
of the mass of a globular star cluster must appear as effective dark matter if the system
is sufficiently isolated and is in virial equilibrium. It is not clear to what extent such
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systems can be considered isolated. It is usually assumed that observational data are
consistent with the existence of almost no dark matter in globular star clusters. How-
ever, a recent investigation of six Galactic globular clusters has led to the conclusion
that fDM ≈ 0.4 (Sollima, Bellazzini and Lee 2012). The resolution of this discrepancy
is beyond the scope of the present book.

Isolated dwarf galaxies with diameters D0 � µ−1
0 would similarly be expected to

contain a relatively small percentage of effective dark matter. One encounters a signifi-
cant discrepancy here as well, see Oh et al. (2015). In connection with dwarf spheroidal
galaxies, we note that such systems are seldom isolated and the tidal influence of a
much larger neighboring galaxy on the dynamics of the dwarf spheroidal galaxy cannot
be ignored (Kuhn and Miller 1989; Fleck and Kuhn 2003; Muñoz et al. 2005).

To ascertain whether nonlocal gravity is capable of resolving the difficulties associ-
ated with globular star clusters and isolated dwarf galaxies, it is necessary to employ
eqn (8.1) with nonzero short-range parameter a0 in order to analyze the internal grav-
itational dynamics of these systems. Perhaps in this way the magnitude of a0 and a
unique reciprocal kernel q can be determined.

8.7 Galaxies and Nonlocal Gravity

Nonlocal gravity theory predicts that the amount of effective dark matter in a suf-
ficiently isolated nearby galaxy in virial equilibrium is such that fDM has an upper
bound, D0/λ0, that is completely independent of the distribution of baryonic matter
in the galaxy. However, it is possible to derive an improved upper bound for fDM ,
which does depend on how baryons are distributed within the galaxy. To this end, we
note that eqn (8.57) for D and N(r) < r/λ0 imply

D > −1

2

∑
i,j

′ Gmimj

λ0
. (8.83)

This inequality holds for < D > as well; therefore, if follows from this result together
with eqn (8.68) that

<WN > fDM > −1

2

∑
i,j

′ Gmimj

λ0
. (8.84)

Let us define a characteristic length, Rav, for the average extent of the distribution of
baryons in the galaxy via

Rav <WN > := −1

2

∑
i,j

′ Gmimj . (8.85)

Then, it follows from eqns (8.84) and (8.85) that

fDM <
Rav
λ0

. (8.86)

Clearly, Rav depends upon the density of baryons in the galaxy. In the Newtonian
gravitational potential energy in eqn (8.85), 0 < |xi − xj | ≤ D0; therefore, in general,
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Rav ≤ D0 and hence we recover from the new inequality, namely, fDM < Rav/λ0, our
previous less tight but more general result fDM < D0/λ0.

Dark matter is currently required in astrophysics for explaining the gravitational
dynamics of galaxies as well as clusters of galaxies, gravitational lensing observations
and structure formation in cosmology. It s important to emphasize here that only
some of the implications of nonlocal gravity theory have thus far been confronted with
observation (Rahvar and Mashhoon 2014; Chicone and Mashhoon 2016a).



9

Linearized Gravitational Waves
in Nonlocal Gravity

The main field equation of nonlocal gravity in its linearized form has been pre-
sented in Chapter 7. In a similar way as in general relativity (GR), the general linear
approximation of nonlocal gravity can be used to study nonlocal post-Newtonian grav-
ity as well as gravitational radiation. The nonlocal modification of Poisson’s equation
of Newtonian gravitation theory as well as certain post-Newtonian effects have been
studied in detail in the last two chapters. Therefore, the present chapter is devoted to
the treatment of linearized gravitational waves in nonlocal general relativity. As the
treatment of linearized gravitational waves in GR is well known, we concentrate here
on an examination of the nonlocal deviations of the theory from the standard general
relativistic analysis.

Loss of orbital energy due to the emission of gravitational radiation can explain the
steady orbital decay rate of the Hulse–Taylor binary pulsar as well as similar relativistic
binary systems (Blanchet 2014); indeed, this circumstance provides indirect evidence
for radiative reaction and the existence of gravitational waves within the context of
GR. The same result can be obtained within the framework of GR||, the teleparallel
equivalent of GR (Schweizer and Straumann 1979; Schweizer, Straumann and Wipf
1980; Muench, Gronwald and Hehl 1998). Moreover, nonlocal gravity involves a basic
galactic length scale λ0 ≈ 3 kpc that is very much larger than the orbital size of
a relativistic binary pulsar, so that nonlocal effects are likely to be negligibly small.
Indeed, as explained in detail in Chapter 8, the relative influence of nonlocality on
a binary star system is expected to be of order 2Ā/λ0, where 2Ā is the major axis
of the binary system. For the Hulse–Taylor relativistic binary pulsar PSR B1913+16,
Ā ≈ 2× 1011 cm and 2Ā/λ0 ≈ 3× 10−11, which is extremely small compared to unity.
Therefore, we expect that the compatibility of the gravitational radiation damping
with GR|| (Schweizer and Straumann 1979; Schweizer, Straumann and Wipf 1980;
Muench, Gronwald and Hehl 1998) would simply extend to the nonlocal generalization
of GR||. Hence, nonlocal gravity is consistent with observational data regarding the
orbital decay of relativistic binary systems.

Current approaches for the direct detection of gravitational waves have been
reviewed by Riles (2013). The galactic scale associated with nonlocality, λ0 ≈ 3
kpc, corresponds to a characteristic frequency of c/λ0 ≈ 3 × 10−12 Hz. However,
present laboratory efforts involving interferometers are directed at detecting gravita-
tional waves of dominant frequency & 1 Hz and corresponding dominant wavelength λ,
where λ/λ0 . 3× 10−12. Moreover, future space-based interferometers may be able to
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detect low-frequency (∼ 10−4 Hz) gravitational waves from astrophysical sources. On
the other hand, pulsar timing residuals from an ensemble of highly stable pulsars can
be used to search for a stochastic background of very low frequency (∼ several nHz)
gravitational waves (Riles 2013). Thus current observational possibilities all involve
gravitational radiation of wavelengths that are rather short in comparison with λ0;
indeed, in all cases of interest,

λ

λ0
. 10−3. (9.1)

The first direct detection of gravitational radiation by the Earth-based LIGO
detectors has been recently reported (Abbott et al. 2016a). The signal, GW150914,
detected on 14 September 2015, had an amplitude of about 10−21 and frequencies
that ranged from about 35 Hz to about 250 Hz. The analysis of observational data
indicates that the radiation originated from a binary black hole merger (Abbott et al.
2016a). Moreover, the two detectors of LIGO simultaneously observed a second event
on 26 December 2015 (Abbott et al. 2016b). The second signal, GW151226, had a
peak amplitude of about 3.4 × 10−22 and frequencies that ranged from about 35 Hz
to about 450 Hz. The observational data indicate that the second gravitational wave
signal also originated from the merger of two black holes (Abbott et al. 2016b).

The main purpose of this chapter is to discuss linearized gravitational waves—
namely, their generation, propagation and detection—within the framework of nonlocal
gravity. We expect that in nonlocal gravity, the treatment of extremely low-frequency
(∼ 10−12 Hz) gravitational waves with wavelengths of order λ0 would be quite different
than in general relativity. In fact, for radiation of frequency & 10−8 Hz, which is the
frequency range that is the focus of current observational searches, the corresponding
wavelengths are very small compared to λ0. We find that in this frequency regime the
nonlocal deviations from GR essentially average out and can be safely neglected in
practice. On the other hand, nonlocality is expected to play a significant role in the
treatment of gravitational waves of frequency . c/λ0 ∼ 10−12 Hz.

9.1 Nonlocal Wave Equation

In GR, the source-free field equation in the linear approximation reduces to the wave
equation for the trace-reversed potentials h̄µν , 2h̄µν = 0, once the transverse gauge
condition, h̄µν,ν = 0, has been imposed. The linearized field equation of nonlocal
gravity with h̄µν,ν = 0 has been treated in detail in Section 7.3. To describe the
propagation of free gravitational waves in linearized nonlocal gravity, we begin with
the linearized field equation.

The gravitational potentials in linearized nonlocal gravity in the transverse gauge
consist of ten symmetric perturbations hµν of the Minkowski metric tensor, or, equiv-
alently, their trace-reversed counterparts h̄µν , and six tetrad variables given by the
antisymmetric tensor φµν . The field equation then reduces to ten dynamic equations
involving the metric variables, namely,

2h̄µν + 2Sµν = −2κ Tµν + 2 p̌Uµν (9.2)

and six source-free integral constraint equations given by
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Kc(x− y)

(
− h̄00,i + h̄ij,

j − φij,j
)
(y) d4y = 4 p̌ U[i 0](x), (9.3)

∫
Kc(x− y)

(
h̄0i,j + φ0i,j − h̄0j,i − φ0j,i

)
(y) d4y = 4 p̌ U[i j](x). (9.4)

In these equations, which correspond, respectively, to eqns (7.70), (7.38) and (7.39) of
Chapter 7, the source of the gravitational field is Tµν = Tµν + TDµν , where Tµν is the

conserved energy–momentum tensor of matter, ∂νT
µν = 0, and TDµν is its dark coun-

terpart given by the convolution of Tµν and the reciprocal kernel R. Similarly, Uµν is
the sum of Uµν and its convolution with R; moreover, Uµν and Uµν are integral expres-
sions involving torsion pseudovector Čα and its derivatives. The torsion pseudovector
is the dual of C[µνρ] = −φ[µν,ρ]. Thus Uµν and Uµν are nonlocal expressions involving
only the derivatives of φµν . Finally, Sµν is the sum of Sµν , given by eqn (7.28), and
its convolution with R. In fact, S0µ = 0 and the dynamic eqn (9.2) can be written in
components as

2h̄0µ = −2κ T0µ − 2 p̌

∫
R(x− y) Č0,µ(y) d4y, (9.5)

2h̄ij+

∫
W (x−y)

[
h̄ij,0−h̄0(i,j)+φ0(i,j)−δij φ0k,

k
]
(y) d4y = −2κ Tij+2 p̌U(ij). (9.6)

We recall that Kc(x− y) is the restriction of the kernel of nonlocal gravity K(x− y)
to the light cone; that is, the light-cone kernel Kc is given by

Kc(x− y) = K(x− y) δ(x0 − y0 − |x− y|). (9.7)

Moreover, we have

W (x− y) = Kc(x− y) +

∫
R(x− z)Kc(z − y) d4z. (9.8)

9.1.1 Source-free field equation

In the absence of any gravitational source, Tµν = 0 and hence Tµν = 0. Then, inspec-
tion of the field eqns (9.3)–(9.6) reveals that when Tµν = 0, these equations are all
satisfied provided

h̄0µ = 0, φµν = 0 (9.9)

and the nonlocal gravitational wave equation

2h̄ij +

∫
W (x− y) h̄ij,0(y) d4y = 0 (9.10)

holds.
To satisfy the field equation of nonlocal gravity in this way, the field quantities

in display (9.9) only need to be constants. Let us recall in this connection that in
Chapter 7 we assumed that, in the absence of the gravitational interaction, the tetrad
frame field of the fundamental observers would coincide with the preferred global
inertial frame associated with the source. In the complete absence of any sources,
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this restriction is no longer applicable. It is then possible to redefine the background
coordinate system and tetrad frame such that in effect the constant field quantities all
vanish as in display (9.9).

To understand the physical import of eqn (9.10), a mechanical analogy turns out
to be quite useful: imagine expressing the wave amplitude in eqn (9.10) as a Fourier
sum in space; then the wave equation is reminiscent of the equation of motion of a
linear harmonic oscillator with a dissipation term that is proportional to the velocity
of the oscillator. Here, ∂h̄ij/∂t is suggestive of the “velocity” of the oscillator. With the
appropriate sign for the coefficient of the dissipation term, one has a damped oscillator.
In a similar way, with the proper functional forms for the nonlocal kernels, eqn (9.10)
indicates free propagation of gravitational waves with damping. The nonlocality of the
theory originates from a certain average over past events in spacetime; this memory of
the past thus appears to act as a drag that dampens the free propagation of linearized
gravitational waves. In nonlocal gravity, memory fades exponentially for events that are
distant in space and time. This exponential decay is reflected in the kernels R and K
of linearized nonlocal gravity; see Section 7.5. Similarly, the amplitude of gravitational
radiation decays exponentially with time as exp (−t/tg), where the damping time tg
of the wave amplitude is related to the nonlocal kernel.

In general, as the gravitational waves propagate freely through Minkowski vacuum,
the wave amplitude may grow or decay in time due to nonlocality. We expect that with
the correct nonlocal kernel, the solutions of our linear nonlocal homogeneous wave
equation are well behaved and decay in time leading to the stability of Minkowski
spacetime under small perturbations. This issue has been treated in detail in Chicone
and Mashhoon (2013) and Mashhoon (2013b). As discussed later, the main result
can be demonstrated when a certain approximation is employed; that is, there is
no instability and the waves indeed decay in time when retardation is neglected in
the kernel. However, the general mathematical problem involving retardation remains
unsolved.

The nonlocal wave eqn (9.10) is linear and (h̄ij) are real amplitudes of the free
gravitational radiation field. For the purposes of the present discussion, we can there-
fore treat (h̄ij) as complex amplitudes with the proviso that only their real parts have
physical significance. Thus let Ψg(x) be an element of the matrix (h̄ij) and assume
that

Ψg(x) = e−i ω x
0

ψg(x), (9.11)

where ω = ωR − i ωI is the wave frequency that is in general complex. The nonlocal
wave equation can now be expressed as

(∇2 + ω2)ψg(x)− i ω
∫
W (x− y) ei ω (x0−y0)ψg(y) d4y = 0. (9.12)

Writing eqn (9.11) in terms of real and imaginary parts of ω, we find

Ψg(x) = e−i ωR x
0

ψg(x) e−ωI x
0

. (9.13)

We expect that ωI > 0 and the wave amplitude will exponentially decay in time;
otherwise, the perturbation will blow up as x0 → ∞, which is physically unaccept-
able, as it would indicate an intrinsic instability of Minkowski spacetime within the
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framework of nonlocal gravity. Using eqns (9.7)–(9.8) and the general expression for
the reciprocal kernel R given by eqn (7.143), namely,

R(x) = ν e−ν(x0−|x|) u(x0 − |x|) q(x), (9.14)

it is in principle possible to determine kernel W . One can show that

(∇2 + ω2)ψg(x) + i ω

∫
Wω(x− y)ψg(y) d3y = 0, (9.15)

where Wω is given by

Wω(z) = −ei ω |z|K(|z|, z)

− ν

ν − i ω

∫
ei ω (|u|+|z−u|) q(z− u)K(|u|,u) d3u. (9.16)

Let

ψ̂g(k) =

∫
ψg(x)e−ik·x d3x (9.17)

be the spatial Fourier transform of the gravitational wave amplitude ψg, where k is
the wave vector. Then,

ψg(x) =
1

(2π)3

∫
ψ̂g(k)eik·x d3k. (9.18)

Using the convolution theorem for Fourier transforms, eqn (9.15) can be written as

ω2 − |k|2 + i ω Ŵω(k) = 0 (9.19)

provided ψ̂g(k) 6= 0. The solution of the nonlocal wave equation thus reduces to the
solution of eqn (9.19). In the absence of nonlocal kernel K, W = 0 and ω is real and
is given by ω2 = |k|2, which represents free propagation of gravitational waves at the
speed of light. A complete analysis of the solutions of the dispersion relation (9.19) is
beyond the scope of this treatment. We turn instead to an approximation procedure,
introduced at the end of Section 7.5, in order to show that free gravitational waves
are indeed damped (i.e. ωI > 0) as they propagate in vacuum.

9.1.2 Damping

Let us recall from the discussion in Section 7.5 that with our general result for the
reciprocal kernel (9.14), it is not possible to obtain an explicit formula for kernel K.
To proceed, an approximation scheme was employed in Section 7.5 based on neglect-
ing certain retardation effects. This means, for instance, that in eqns (9.7)–(9.8) we
approximate Kc(x − y) by K(x − y)δ(x0 − y0), since |x − y| is due to retardation.
Similarly, we approximate R by

R(x) ≈ ν e−ν x
0

u(x0) q(x), (9.20)

as in eqn (7.153). Using these expressions inW and computing the integral in eqn (9.12),
we find an approximate expression for Wω, namely,
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Wω(z) ≈ −K(0+, z)− ν

ν − i ω

∫
q(z− u)K(0+,u) d3u. (9.21)

Next, in this approximation scheme K(x) can be computed from the reciprocity
relation using eqn (9.20) for R and the result is

K(x) ≈ − ν

(2π)3
e−ν x

0

u(x0)

∫
q̂(k)eik·x e−ν q̂ x

0

d3k; (9.22)

see eqn (7.157). Hence,
−K(0+, z) ≈ ν q(z). (9.23)

Substituting eqn (9.23) in eqn (9.21), we find in this way that

Wω(z) ≈ ν q(z) +
ν2

ν − i ω

∫
q(z− u) q(u) d3u (9.24)

and

Ŵω(k) ≈ ν q̂(k)
[
1 +

ν q̂(k)

ν − i ω

]
(9.25)

by the convolution theorem for Fourier transforms.
The Fourier transforms of q1 and q2 were considered in detail in Section 7.11.

It was shown there that q̂1(k) > 0 and q̂2(k) > −a0/λ0. Indeed, q̂2(k) is positive
when a0/λ0 is sufficiently small compared to unity. Though, as discussed in detail in
Chapter 8, we have only lower limits on a0 at the present time, we will henceforth
assume that a0/λ0 is such that q̂2(k) > 0. Thus in eqn (9.25), q̂(k) > 0 by assumption
and ν−1, ν−1 > µ−1

0 , is a constant galactic length that is expected to be comparable
with µ−1

0 ≈ 17 kpc.
It is in principle possible to determine ωR and ωI from eqns (9.19) and (9.25),

namely,

ω2 − |k|2 + i ω ν q̂(k)
[
1 +

ν q̂(k)

ν − i ω

]
≈ 0, (9.26)

though in practice the algebra is prohibitive. Therefore, let us first consider the pos-
sibility that ω = ωR − i ωI is such that ωR = 0; then, we find that eqn (9.26) reduces
to the following cubic equation for ωI ,

ω3
I − ν (1 + q̂)ω2

I + ν2 q̂ (1 + q̂)ωI − ν |k|2 ≈ 0. (9.27)

We know that such a cubic equation must have at least one real root. Moreover,
according to Descartes’ rule of signs, there should be either three positive roots or
one positive root. It follows that in any case ωI > 0. Next, we assume that ωR 6= 0
in eqn (9.26); then, we find after some algebra that the imaginary part of eqn (9.26)
implies

ωI ≈
1

2
ν q̂(k)

[
1 +

ν2 q̂(k)

ω2
R + (ν − ωI)2

]
, (9.28)

so that ωI > 0. Thus, within the framework of our approximation scheme, the ampli-
tude of free gravitational radiation decays in time as a consequence of memory drag.
The extent to which this result may depend upon neglecting retardation has been
studied in Chicone and Mashhoon (2013) and Mashhoon (2013b). Equation (9.28) can
be used to estimate the damping time tg := 1/ωI .
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9.1.3 Damping time tg = 1/ωI

The basic scale associated with nonlocality, λ0 ≈ 3 kpc, corresponds to a characteristic
frequency of about c/λ0 ≈ 3 × 10−12 Hz. Moreover, ν−1 is such that ν−1 > µ−1

0 . We
expect that ν−1 and µ−1

0 ≈ 17 kpc are comparable in magnitude and thus correspond
to a frequency of c µ0 ≈ 5×10−13 Hz. It is intuitively clear that in eqn (9.19), significant
deviations from the standard local dispersion relation for gravitational waves can be
expected only for such low-frequency waves. According to eqn (9.1), for the current
observational possibilities, the wavelengths of interest are very short compared to λ0

and it turns out that for such wavelengths the contribution of nonlocality to the
dispersion relation (9.26) is negligibly small, so that in practice ω2 ≈ |k|2.

Using the explicit expressions for q1(r) and q2(r), it is possible to express q̂(k) as
a function of |k| in terms of the exponential integral function E1; see Section 7.11.
In fact, q̂1 and q̂2 have rather similar functional forms: they both start from finite
positive values at |k| = 0 and monotonically decrease to zero as |k| → ∞. The damping
time can be computed straightforwardly from eqn (9.28); however, the result is rather
complicated and depends upon a0 |k|. Nevertheless, it is possible to provide a simple
expression for our main result regarding tg. To this end, we note that for a0 = 0, q1(r)
and q2(r) both simplify to q0(r); in this case, as shown in Section 7.11, q̂0 > q̂1 > q̂2 and
the explicit functional form for q̂0 has been worked out in Section 7.11. In particular,
for λ0 |k| � 1, we find that asymptotically, q̂0 ∼ π/(2λ0 |k|). Therefore, q̂ < q̂0 and
eqn (9.28) implies that for λ� λ0,

tg ≈
2

ν q̂(k)
&

8

ν

(λ0

λ

)
. (9.29)

Using this simple result, we find that for current observational possibilities

tg & 4× 105
(λ0

λ

)
yr. (9.30)

It is interesting that tg is proportional to the frequency of gravitational waves. In fact,
nonlocality-induced damping could become significant for cosmological gravitational
waves with very low frequencies; however, the damping effect is negligible for current
experimental efforts involving interferometers. In other words, inspection of eqn (9.30)
reveals that tg is much longer than the age of the universe for gravitational waves
that might be detectable with laser interferometers in the foreseeable future. We recall
that for such devices, the waves should have dominant frequency & 1 Hz for Earth-
based and & 10−4 Hz for space-based antennas. However, detection of gravitational
waves with dominant frequency of several nHz may be possible with pulsar timing
arrays (Riles 2013). In connection with waves of low frequency . 10−7 Hz, a detailed
investigation (Mashhoon 2013b) reveals that tg can be shorter than, or comparable
with, the current estimate for the age of the universe. Linearized gravitational waves
with very low frequencies . 10−12 Hz would be highly damped in nonlocal gravity.
For a more detailed treatment of the damping time see Mashhoon (2013b).
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9.2 Propagation of Gravitational Waves with λ� λ0

In the presence of time-varying sources, the dynamic variables h̄µν and the tetrad
variables φµν cannot be disentangled. This is clearly seen in eqn (7.226), which is
a nonlocal relation relating T00 and Č0. In fact, eqn (7.226) implies that if T00 6=
0, then Č0, which is related to the spatial derivatives of φij , must in general vary
in spacetime. The general time-dependent problem involving field eqns (9.3)–(9.6) is
intractable. To proceed, we turn to configurations that involve gravitational waves with
short wavelengths λ� λ0. This regime includes current observational possibilities; see
eqn (9.1). It proves interesting to estimate in this case the significance of nonlocal terms
in the field equations. To this end, we turn to the familiar case of eqn (9.10), where the
relative importance of the nonlocal term for waves of wavelength λ = 2π/|k| can be
simply estimated by dividing the nonlocal term in the dispersion relation (9.19) by |k|2.
In this way, we get |ω Ŵω(k)|/|k|2, which for wavelengths λ � λ0 can be estimated
using eqn (9.25) and the fact that q̂ < q̂0 ∼ π/(2λ0 |k|). The result turns out to be
. ν λ2/(8π λ0), which implies that the relative significance of the nonlocal terms in
the field equations is . 10−2 (λ/λ0)2. For example, for waves of frequency 35 Hz, as in
GW150914, 10−2 (λ/λ0)2 ≈ 10−28, which is negligibly small in comparison with unity.
This means that for such short waves the nonlocal terms in the field equations can be
simply neglected. Hence, in this approximation, the nonlocal constraints disappear and
the dynamic field eqn (9.2) basically reduces to

2h̄µν ≈ −2κ Tµν . (9.31)

Assuming that the source Tµν is isolated, the corresponding dark source is also
then expected to be in effect isolated due to the rapid spatial decay of the reciprocal
kernel. Far from the source and its dark counterpart, the gravitational potentials in
the wave zone satisfy the wave equation 2h̄µν ≈ 0. Far in the wave zone, a fixed
detector perceives the emitted gravitational radiation potentials h̄µν to be essentially
plane gravitational waves. Therefore, we can follow here essentially the same analysis
as in standard GR and choose the remaining gauge degrees of freedom to set h̄0ν = 0
and h̄ = 0. Thus with a suitable choice of gauge—namely, the TT gauge—hµν is
purely spatial and traceless with hij ,j = 0. To see how this comes about, let us first
recall that in nonlocal gravity a gauge transformation involves both the dynamic as
well as the tetrad variables; see eqn (7.14). In fact, under an infinitesimal coordinate
transformation x′µ = xµ − εµ(x), we have

h̄′µν = h̄µν + εµ,ν + εν,µ − ηµνεα,α, (9.32)

φ′µν = φµν + εµ,ν − εν,µ (9.33)

and
h̄′ = h̄− 2εα,α, h̄′µν,ν = h̄µν,ν + 2εµ. (9.34)

The tetrad variables enter the linearized field equations of nonlocal gravity only in
the integrands of the nonlocal terms that we neglect in our treatment of waves with
λ � λ0; therefore, only the gauge freedom of dynamic variables has significance in
this analysis.
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When we first impose the transverse gauge condition, we must find gauge functions
εµ for which h̄′µν,ν = 0. It follows from eqn (9.34) that we must solve

2εµ = −h̄µν,ν . (9.35)

Appropriate solutions of this standard inhomogeneous wave equation with suitable
boundary conditions can be found to ensure that the transverse gauge condition is
indeed satisfied. Next, we start from such trace-reversed potentials h̄µν that satisfy
h̄µν,ν = 0, but then note from eqn (9.34) that such potentials are not unique. A
further gauge transformation maintains the transverse gauge condition provided the
four gauge functions fµ(x) satisfy the wave equation

2fµ(x) = 0. (9.36)

We wish to show that the remaining four gauge functions fµ can now be so chosen
as to set h̄′0µ = 0 and h̄′ = 0 as well. To this end, let us choose the spatial inertial
coordinate system (x1, x2, x3) such that the direction of propagation of the waves from
the source to the detector coincides, for instance, with the positive x3 direction. This
simplifies the analysis without any loss in generality. Therefore, near the detector, the
spherical gravitational wave front can be locally approximated by a plane wave such
that h̄0µ = h̄0µ(ζ), where ζ := x3 − x0. Setting h̄′0µ = 0 in eqn (9.32), h̄′ = 0 in
eqn (9.34) and replacing εµ in these equations by fµ(ζ), we find

df1

dζ
= h̄01,

df2

dζ
= h̄02, (9.37)

d(f0 − f3)

dζ
= −h̄03 = h̄00,

d(f0 + f3)

dζ
=

1

2
h̄. (9.38)

Let us note that h̄00 + h̄03 = 0 in eqn (9.38) is consistent with the transverse gauge
condition h̄0ν

,ν = 0, which implies that d(h̄00 + h̄03)/dζ = 0. This relation can be
integrated and the integration constant set to zero, as the presence of a non-zero
constant here would be inconsistent with the fact that these potentials originate from
the distant source of gravitational waves. It is thus evident that fµ can be so chosen
as to render h′µν purely spatial and traceless as well. Moreover, we note that in this

procedure h̄11 − h̄22 and h̄12 remain invariant; that is, h̄′11 − h̄′22 = h̄11 − h̄22 and
h̄′12 = h̄12. The last step in the establishment of the TT gauge involves the spatial
components of the dynamic field variables hij . Again, near the receiver in the wave
zone, the spherical gravitational waves associated with these potentials locally behave
as plane waves and, as before, we can assume that hij = hij(ζ). Then, the transverse
gauge condition, hij ,j = 0, implies that dhi3/dζ = 0 and hence hi3(ζ) = 0. In this way,
we recover the TT gauge of GR, where the two independent states of gravitational
radiation are given by h11 = −h22 and h12 = h21.

We now turn to the influence of the dark matter source upon the amplitude of
emitted gravitational radiation.
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9.3 Dark Source

It follows from eqn (9.2) that the dark source contributes to the emission of gravi-
tational radiation. To estimate this contribution for λ � λ0, we turn to eqn (9.31),
where T µν = Tµν +TµνD with ∂νT

µν = 0 and ∂νT
µν
D ≈ 0. In other words, the symmet-

ric matter and dark matter energy–momentum tensors are independently conserved
in the approximation scheme under consideration here. We will treat the source and
its dark counterpart as isolated astronomical systems.

The special retarded solution of the linearized field equation is given by

h̄µν(x0,x) ≈ κ

2π

∫
T µν(x0 − |x− y|,y)

|x− y|
d3y. (9.39)

Far away from the source, we can introduce in eqn (9.39) the approximation that
|x− y| ≈ |x|; that is,

h̄µν(x0,x) ≈ κ

2π|x|

∫
T µν(x0 − |x|,y) d3y, (9.40)

so that the solution takes the form of a spherical wave approaching the detector.
Furthermore, let n denote the unit vector that represents the direction of propagation
from the source to the receiver. Far in the wave zone, the spherical wave front can
be locally approximated by a plane wave front with wave vector k = ωn. The wave
amplitude in the TT gauge can be extracted from eqn (9.40) by means of the projection
operator P ij = δij − ninj , namely,

hijTT = (P i`P
j
m −

1

2
P ijP`m)h̄`m. (9.41)

For instance, if the spatial frame is oriented such that n points in the positive x3

direction, the only non-zero components of hijTT are h11
TT = −h22

TT = (h̄11− h̄22)/2 and
h12
TT = h21

TT = h̄12.
Next, we recall that the total conserved symmetric energy–momentum tensor T µν

of an isolated system satisfies Laue’s theorem, namely,∫
T ij(c t,x) d3x =

1

2c2
d2

dt2

∫
T 00(c t,x)xixj d3x. (9.42)

It follows from eqns (9.40)–(9.42) that, among other things, hijTT will depend upon
the second temporal derivative of the total quadrupole moment of the system. We
note here for the sake of completeness that the temporal coordinate of the quadrupole
moment is in fact the “retarded” time c t = x0 − |x|, where |x| can be treated as a
constant for the purposes of the present discussion. Moreover, the quadrupole moment
could just as well be replaced by the reduced (i.e. traceless) quadrupole moment in
the expression for hijTT .

We are particularly interested here in the contribution of the dark quadrupole
moment

QijD(x0) :=

∫
T 00
D (x0,x)xixj d3x (9.43)
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to the total quadrupole moment of the system. It follows from the definition of dark
energy density, namely,

T 00
D (x) =

∫
R(x− y)T 00(y) d4y, (9.44)

that

QijD(x0) =

∫
d4y T 00(y)

∫
R(x0 − y0,x− y)xixj d3x. (9.45)

To get a manageable expression for the dark quadrupole moment, we use in eqn (9.45)
the approximate formula for R given by eqn (9.20), in which retardation has been
neglected. Introducing a new variable z = x − y in eqn (9.45) and recalling that q is
spherically symmetric and of the general form of either q1 given by eqn (7.98) or q2

given by eqn (7.99), we find

QijD(x0) ≈ ΣijD(x0)

∫
q(z) d3z +M

∫
q(z)zizj d3z, (9.46)

where

ΣijD(x0) = ν

∫
u(x0 − y0) e−ν(x0−y0)Qij(y0) dy0 (9.47)

and

M =

∫
T 00(x) d3x, Qij(x0) =

∫
T 00(x0,x)xixj d3x. (9.48)

Here, M is the mass–energy of the isolated radiating system and is conserved at the
linear order, since ∂νT

µν = 0. Therefore, the temporal variation of the dark quadrupole
moment in eqn (9.46) is given by the term that is proportional to q̂(0),

q̂(0) =

∫
q(z) d3z. (9.49)

This quantity has been evaluated in Chapter 7 and has a magnitude of about 10; see
eqn (7.267).

Suppose we are interested in the gravitational radiation emitted by an astronomical
system whose quadrupole moment QijS varies with time with a dominant frequency of
ΩS that can be detected on Earth via a gravitational wave detector within a reasonable
span of time; therefore, we expect that ΩS � c ν, where c ν < cµ0 ≈ 5 × 10−13 Hz.
To get an order of magnitude estimate of the significance of the dark quadrupole
moment relative to the quadrupole moment of the system in eqn (9.42), we must
evaluate ΣijD. Expressing a Fourier component ofQijS (y0) as a constant amplitude times
cos (ΩS y

0 + ϕS), where ϕS is a constant phase, it follows from eqn (9.47), namely,

ν

∫
u(x0 − y0) e−ν(x0−y0) cos (ΩS y

0 + ϕS) dy0 =
ν

ν2 + Ω2
S

[ν cos (ΩS x
0 + ϕS)

+ ΩS sin (ΩS x
0 + ϕS)] (9.50)

that the relative contribution of the time-dependent part of the dark quadrupole
moment will be reduced at least by a factor of c ν/ΩS � 1. For instance, in the
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case of incident gravitational radiation of frequency about 35 Hz, as in GW150914,
c ν/ΩS ∼ 10−14, which is very small in comparison with unity. We therefore conclude
that the contribution of the dark source to hijTT is essentially negligible for all systems
that are currently under consideration as possible sources of gravitational radiation
that could be detectable in the near future.

9.4 Gravitational Radiation Flux

Finally, we must compute the flux of gravitational radiation energy at the detector.
The energy–stress content of the gravitational field in nonlocal gravity is described by
the traceless tensor Eµν ,

Eµν = κ−1
[
Cµρσ(Cν

ρσ +Nν
ρσ)− 1

4
gµν Cαβγ(Cαβγ +Nαβγ)

]
, (9.51)

which is indeed the energy–momentum tensor of the gravitational field ; see Section
6.5. In eqn (9.51), Cµνρ is the torsion tensor, Cµνρ is the auxiliary torsion tensor
and Nµνρ = −Nνµρ is a nonlocal tensor field that involves the past history of the
gravitational field; see eqn (6.107). The purpose of this section is to calculate Eµν
within the context of linearized nonlocal gravity for gravitational waves with λ� λ0.

In linearized nonlocal gravity,

Nµνρ(x) =

∫
K(x− y)Xµνρ(y) d4y (9.52)

and
Xµνρ = Cµνρ + p̌ (Čµ ηνρ − Čν ηµρ), (9.53)

where p̌ 6= 0 is a constant dimensionless parameter; see eqn (6.109). Next, we assume
as before that φµν = 0; moreover, of the other gauge conditions leading to the TT
gauge, at this point only h̄µν,ν = 0 and h̄ = 0 are explicitly imposed here for the sake
of simplicity. Hence, we find that

Cµνσ = Cµνσ =
1

2
(hσν,µ − hσµ,ν) (9.54)

and in linearized nonlocal gravity Eµν is given by

κ Eµν = −1

4
ηµν C

αβγ(x)
[
Cαβγ(x) +

∫
K(x− y)Cαβγ(y) d4y

]
+Cµ

αβ(x)
[
Cναβ(x) +

∫
K(x− y)Cναβ(y) d4y

]
. (9.55)

Let us note that Eµν is in general traceless and that in the absence of nonlocality
(i.e. K = 0), it becomes symmetric as well, and its form is then reminiscent of the
electromagnetic energy–momentum tensor, as would be expected from the linearized
GR|| theory; see Section 6.2.

To estimate the nonlocal contribution to Eµν for gravitational waves with λ� λ0,
we work in the Fourier domain and use the convolution theorem for Fourier transforms
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as well as eqns (7.154) and (7.156) for R̂ and K̂, respectively. As before, we find that
the absolute magnitude of the ratio of the nonlocal term to the corresponding local
term in Eµν is . ν λ2/(8π λ0). Therefore,

|K̂| ∼ |R̂| . 10−2
(λ0

λ

)2

, (9.56)

which in view of eqn (9.1) is completely negligible in comparison to unity for radiation
of dominant frequency & 10−8 Hz. We therefore conclude that the nonlocal contri-
bution to the energy–momentum tensor of gravitational radiation can be ignored for
gravitational waves that may be detectable in the foreseeable future.

For gravitational waves with λ � λ0, we can therefore ignore nonlocal effects

and determine the energy flux by comparing the local (K = 0) result E(0)
µν to the

corresponding Landau–Lifshitz energy–momentum pseudotensor (Landau and Lifshitz
1971) of gravitational waves in the linear approximation of GR. Under the same explicit
gauge conditions for the deviation of the metric tensor from the Minkowski metric
tensor, namely, h = 0 and hµν,ν = 0, the corresponding Landau–Lifshitz tensor tLLµν ,
which is in general symmetric, but not traceless, is given by

κ tLLµν =
1

2
hµα,βhν

α
,
β +

1

4

(
hαβ,µh

αβ
,ν −

1

2
ηµν hαβ,γh

αβ
,
γ
)

−1

2

(
hµα,βh

αβ
,ν + hνα,βh

αβ
,µ −

1

2
ηµν hαβ,γh

γα
,
β
)

; (9.57)

see the Appendix of Mashhoon (1978). It is straightforward to show from eqn (9.55)

that E(0)
µν , which is defined to be Eµν for K = 0, is symmetric and traceless, and can

be expressed as

κ E(0)
µν =

1

4
hµα,βhν

α
,
β +

1

4

(
hαβ,µh

αβ
,ν −

1

2
ηµν hαβ,γh

αβ
,
γ
)

−1

4

(
hµα,βh

αβ
,ν + hνα,βh

αβ
,µ −

1

2
ηµν hαβ,γh

γα
,
β
)
. (9.58)

Each of the expressions in eqns (9.57) and (9.58) consists of the same three parts, but
they differ in the overall numerical factors in front of the first and last parts: these are
both 1

2 in eqn (9.57), but 1
4 in eqn (9.58).

For the calculation of the energy flux, we impose the additional gauge condition
that h0µ = 0. It then follows from eqns (9.57) and (9.58) that

E(0)
0k − t

LL
0k =

1

4κ
hki,jh

ij
,0, (9.59)

which vanishes in the TT gauge due to the transverse nature of the radiation. For
instance, if the spatial axes are so oriented that locally plane waves propagate to the
receiver along the x3 axis, then k = 3 in eqn (9.59) and h3i = 0 in the TT gauge.
We therefore conclude that in the absence of nonlocality, the flux of gravitational
radiation energy will be the same as in standard GR, in agreement with previous
results (Schweizer, Straumann and Wipf 1980).
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Nonlocal Newtonian Cosmology

It is interesting to explore the cosmological implications of nonlocal gravity. Cosmology
deals with the structure and history of the universe as a whole. To produce possible
models of the universe, exact cosmological solutions of the field equation of nonlocal
gravity are indispensable. However, nonlocal gravity is in the early stages of develop-
ment at present and besides the Minkowski spacetime, no exact solution of the theory
is known. On the other hand, the general linear approximation of nonlocal gravity
beyond Minkowski spacetime has been investigated in detail in Chapters 7, 8 and 9.
In particular, preliminary investigations have shown that the implications of the theory
in the Newtonian regime appear to be consistent with the gravitational dynamics of the
Solar System, spiral galaxies and clusters of galaxies; see Chapter 8. In these studies,
a significant feature of nonlocal gravity is that the nonlocal aspect of gravity appears
to simulate astrophysical dark matter. On the other hand, dark matter is considered
absolutely necessary as well for structure formation in standard models of cosmology.
It is therefore of basic importance to investigate whether the nonlocal character of
gravity can effectively replace dark matter in cosmological structure formation. To
make a beginning in this direction is the main motivation for this chapter.

The remarkable isotropy of the cosmic microwave background radiation indicates
a small amplitude (δ ≈ 10−5) for the inhomogeneities that must have existed at the
epoch of decoupling (z ≈ 103). The tremendous growth of such inhomogeneities from
the recombination era to the present time is due to the intrinsic gravitational instability
of a nearly homogeneous distribution of matter. The exact manner in which galaxies,
clusters of galaxies and eventually the cosmic web have come about is not known;
however, it is generally believed that dark matter has played a crucial role in this
development (Peebles 1993; Zel’dovich and Novikov 1983; Mukhanov 2005; Gurbatov,
Saichev and Shandarin 2012).

As is well known, under the assumptions of spatial homogeneity and isotropy, New-
tonian cosmology is an excellent approximation to the standard Friedmann–Lemâıtre–
Robertson–Walker (FLRW) cosmological models of general relativity so long as the
net pressure, as a source of gravity, can be neglected in comparison with the energy
density of the matter content of the universe. More generally, it turns out that after
recombination, Newtonian gravitation can be applied in the study of nonrelativistic
motion of matter on subhorizon scales (Peebles 1993; Zel’dovich and Novikov 1983;
Mukhanov 2005; Gurbatov, Saichev and Shandarin 2012).

Can nonlocal gravity solve the problem of structure formation in cosmology without
recourse to dark matter? This issue can be properly addressed within the framework of
an exact cosmological model of nonlocal gravity theory. No exact cosmological solution
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of nonlocal gravity theory is known; therefore, an adequate treatment of this subject
remains a task for the future. Nevertheless, it is important to investigate whether
nonlocal gravity is even capable of solving the problem of large-scale cosmological
structure formation. In this chapter, we take the very first step in the study of this
difficult problem by extending the weak-field Newtonian regime of nonlocal gravity
to the cosmological domain along the same lines as in general relativity. That is,
following the familiar approach of Newtonian cosmology, we consider the dynamics of
a large gas cloud in accordance with the Newtonian regime of nonlocal gravity. We
study the resulting homogeneous cosmological background and the nonlinear growth of
inhomogeneities in such a background as a useful toy model for the present large-scale
structure of the universe (Chicone and Mashhoon 2016b).

We now turn to our toy model of nonlocal Newtonian cosmology, which will turn
out to be rather similar to that of the standard Milne–McCrea Newtonian cosmology.

10.1 Nonlocal Newtonian Cosmological Model

Nonlocal gravity, which is the nonlocal extension of general relativity, has only been
studied in the linear weak-field approximation; see Chapters 7–9. Nothing is known
about strong-field situations, such as black holes; in particular, no cosmological solu-
tion of nonlocal gravity is known. On the other hand, in certain situations, Newtonian
cosmology provides a good approximation to the homogeneous and isotropic FLRW
models of relativistic cosmology. Indeed, Milne and McCrea showed in 1934 that the
dynamics of the universe given by Newtonian cosmology is the same as in the standard
general relativistic FLRW cosmological models so long as pressure can be neglected
(Milne 1934; McCrea and Milne 1934).

To proceed, we may tentatively assume that an extension of Newtonian regime of
nonlocal gravity to the cosmological domain could be useful. To this end, we imag-
ine the Newtonian dynamics of a large expanding baryonic gas cloud. Let ρ be the
(baryonic) gas density; then, it follows from the continuity equation that

∂t ρ+∇ · (ρv) = 0, (10.1)

where ρv is the gas current. Euler’s equation of motion for the gas particles can be
written as

∂t v + (v · ∇) v = −∇Φ− 1

ρ
∇p, (10.2)

where Φ is the gravitational potential and p is the gas pressure. In the Newtonian
regime of nonlocal gravity, Φ satisfies the nonlocal Poisson equation

∇2Φ(t,x) +

∫
χ(t,x− y)∇2Φ(t,y) d3y = 4πGρ(t,x), (10.3)

where χ is the convolution kernel of nonlocal gravity in the Newtonian regime; see
Section 7.4. Poisson’s equation of Newtonian gravity has been modified here by the
addition of a certain spatial average over the gravitational field involving kernel χ. This
kernel represents the spatial memory of the gravitational field. In general, memory dies
out in space and time, features that must be reflected in the functional form of the
kernel.
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As discussed in detail in Chapter 7, under reasonable mathematical conditions, it
is possible to write eqn (10.3) as

∇2Φ = 4πG (ρ+ ρD), (10.4)

where the nonlocal aspect of the gravitational interaction simulates dark matter with
an effective density ρD given by

ρD(t,x) =

∫
q(t,x− y) ρ(t,y) d3y. (10.5)

In other words, the density of the effective dark matter in this theory is given by the
convolution of the matter density with the reciprocal kernel q of nonlocal gravity in
the Newtonian regime. It remains to determine the reciprocal kernel q.

10.1.1 Reciprocal kernel q at the present epoch

At the present epoch in cosmic evolution, t = t0 and the functional form of q(t0,x) has
been discussed in detail in Chapter 7. In fact, q is spherically symmetric in space and
is of the general form of either q1(r) given by eqn (7.98) or q2(r) given by eqn (7.99),
where r = |x|. Each of these kernels contains three length scales a0, λ0 and µ−1

0 such
that a0 < λ0 < µ−1

0 . The basic scale of nonlocality at the present epoch is a galactic
length λ0 of order 1 kpc, while a0 is a short-range parameter that controls the behavior
of q as r → 0. At the other extreme, r → ∞, q decays exponentially as exp(−µ0 r),
indicating the fading of spatial memory with distance. The short-range parameter a0

is necessary in dealing with the gravitational physics of the Solar System, globular star
clusters and isolated dwarf galaxies; however, it may be neglected in dealing with larger
systems such as clusters of galaxies. Cosmology deals with the large-scale structure of
the universe; therefore, the short-range parameter a0 may be deemed irrelevant in the
cosmological context. With a0 = 0, q1 and q2 both reduce to q0,

q0(t0, r) =
1

4πλ0

(1 + µ0 r)

r2
e−µ0 r. (10.6)

As in Section 7.4, it proves useful to introduce the dimensionless parameter α0,

α0 =

∫
q0(t0, r) d

3x =
2

λ0µ0
, (10.7)

so that instead of λ0 and µ0, kernel q0 can be characterized by the dimensionless
parameter α0 and the spatial memory (“Yukawa”) parameter µ0. In terms of α0 and
µ0, we have

q0(t0, r) =
α0 µ0

8π

(1 + µ0 r)

r2
e−µ0 r. (10.8)

Thus nonlocality disappears if λ0 →∞ or, equivalently, α0 → 0. As explained in detail
in Chapter 8, astrophysical data tentatively indicate that

λ0 ≈ 3 kpc,
1

µ0
≈ 17 kpc, α0 ≈ 11. (10.9)

We must now discuss the reciprocal kernel in the context of the expansion of the
universe.
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10.1.2 Reciprocal kernel q in cosmology

An appropriate reciprocal kernel should properly incorporate the expansion of the
universe. That is, the kernel must reflect the gravitational memory of the past history
of the universe, satisfy the mathematical requirements of nonlocal gravity discussed
in Chapter 7 and reduce to the currently accepted kernel at the present epoch t = t0.
Memory dies out in time and space. The fading of memory over time implies that
in nonlocal gravity the strength of the gravitational interaction must decrease with
cosmic time. We have encountered a similar feature of memory in the context of lin-
earized nonlocal gravity in Section 7.5; in fact, in eqn (7.143), the reciprocal kernel R
decays exponentially in time. Equation (7.143) is invariant under translation in time, in
accordance with the corresponding symmetry of the background Minkowski spacetime.
The situation is different, however, when we deal with Big Bang cosmology. These
considerations, within the framework of Newtonian cosmology, lead to the simple sup-
position that we should only change the overall temporal dependence of kernel (10.8)
in the cosmological context and leave its spatial dependence unchanged. Therefore,
we will henceforth assume that kernel q(t,x− y) of nonlocal Newtonian cosmology in
eqn (10.5) is given by

q(t,x− y) =
α(t)

α0
q0(t0, |x− y|), (10.10)

where α(t) is a monotonically decreasing function of cosmic time such that α(0) =∞
at the Big Bang singularity (t = 0) and, at the present epoch, α(t0) = α0.

It is interesting to consider the ratio of the density of effective dark matter to
baryonic matter, ρD/ρ, for a spatially homogeneous model of matter density ρ(t),
which is naturally assumed throughout to be mainly baryonic. We find from eqn (10.5)
that

ρD
ρ

=

∫
R3

q(t,x) d3x = α(t), (10.11)

which means that in such a uniform density model the effective dark matter fraction,
fDM = α(t), decreases with cosmic time. We recall that in an astrophysical system, the
dark matter fraction fDM denotes the ratio of the total mass of dark matter to the total
mass of the baryonic matter in the system. Indeed, it is natural to assume that relative
to baryonic matter, the effective amount of dark matter was more plentiful in the past,
since nonlocality is connected with the memory of the past state of the gravitational
field and memory fades with time. It remains to specify the exact temporal dependence
of α(t).

It is important to compare the memory dependence of our toy model with the
currently accepted model of standard cosmology, where fDM for the universe is about
5 and independent of cosmic time. Does fDM actually evolve with cosmic time, or
equivalently, with the cosmological redshift z? It appears that this empirical question
has not yet been tackled by observational cosmologists as such an issue does not even
arise in the current paradigm of dark matter. On the other hand, the assumption
that fDM is a decreasing function of cosmic time would imply that the strength of
the universal gravitational attraction decreases as the universe expands. This feature
of nonlocal gravity may provide a natural explanation for the observed swelling of
massive quiescent early-type galaxies discussed in Section 10.6.
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10.2 Cosmological Background

To obtain the nonlocal analog of the standard models of Newtonian cosmology, we
assume an infinite spatially homogeneous and isotropic perfect fluid medium with
ρ = ρ̄(t) and p = p(ρ̄) that is expanding uniformly. This expansion of the universe
can be expressed via x = A(t) ξ, where A(t) is the scale factor, x denotes the spatial
position of the fluid particle at time t and ξ denotes the spatial position of the particle
at some fiducial time t0 such that A(t0) = 1. We take t0 to be the present epoch.
Thus, v̄ = dx/dt = H(t) x, where H(t) = Ȧ/A is the Hubble parameter and an overdot
denotes differentiation with respect to time. Moreover, it follows from eqn (10.11) that
for an infinite homogeneous matter distribution ρD = α(t)ρ. The explicit solution of
the system (10.1)–(10.5) is thus given by

ρ̄ = A−3ρ0, v̄ = ȦA−1x, Φ̄ = −1

2
ÄA−1r2, (10.12)

where ρ0 is the density of (baryonic) matter at the present epoch, Φ̄ is determined
up to an integration constant and the scale factor A is a solution of the differential
equation

A−1Ä = −4πGρ0

3
A−3(1 + α). (10.13)

For the initial data
A(t0) = 1, Ȧ(t0) = H0 (10.14)

prescribed at the present epoch t0 using the Hubble constant H0, we obtain the Hub-
ble flow for this model provided α(t) is known. A remark is in order here regarding
the necessity of a spatially infinite cosmological solution. For a spherically symmetric
matter distribution of finite radius, a uniformly expanding homogeneous distribution
is possible only if the standard Poisson equation of Newtonian gravity is valid, that
is, Newton’s inverse square law of gravitation is maintained.

To go forward, we must assume a functional form for α(t); for instance, α(t)/α0

could be 1/A(t) raised to any positive power. For an expanding universe where the
amount of effective dark matter decreases relative to baryonic matter as the universe
expands, perhaps the simplest model—the one that we will discuss—is derived from
the assumption

α(t) =
α0

A
, (10.15)

where α0 ≈ 11 is the proportionality constant at the present age (t0) of the universe.
With α as in eqn (10.15), eqn (10.13) then takes the form

A−1Ä = −4πGρ0

3
A−3

(
1 +

α0

A

)
. (10.16)

Equation (10.16) can be integrated once to obtain

1

2
Ȧ2 =

4πGρ0

3

(
1

A
+

α0

2A2

)
+ Ē, (10.17)

where the total energy parameter Ē is the constant of integration. For the sake of
simplicity, we set Ē = 0, just as in the critical case in standard Newtonian cosmology,
which corresponds to the spatially flat FLRW universe.
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For this analog of the flat FLRW universe, a second integration yields the equation

1

3
(2A+ α0)3/2 − α0 (2A+ α0)1/2 = 2

(
4πGρ0

3

)1/2

t+ C̄ (10.18)

for a new integration constant C̄. Only positive square roots are considered throughout.
Assuming that the scale factor vanishes at the Big Bang, t = 0, C̄ can be evaluated
from A(0) = 0 and the formula for A thus reduces to

1

3
(2A+ α0)3/2 − α0 (2A+ α0)1/2 = 2

(
4πGρ0

3

)1/2

t− 2

3
α0
√
α0. (10.19)

The unknown A(t) can be obtained by solving for the positive real root of the corre-
sponding cubic equation for

√
2A+ α0.

The age of the universe t0, determined by A(t0) = 1 in our model, is

t0 =
α0
√
α0 − (α0 − 1)

√
α0 + 2√

12πGρ0
. (10.20)

It is interesting to note that the numerator of this expression for t0 is a positive
and monotonically decreasing function of α0; in fact, it starts from

√
2 at α0 = 0

and vanishes asymptotically as α0 → ∞. Moreover, the present value of the Hubble
parameter is given by eqn (10.17) in this model with Ē = 0, namely,

H2
0 =

4πGρ0

3
(α0 + 2), (10.21)

so that
3H0 t0 = α0

√
α0 (α0 + 2)− (α0 − 1) (α0 + 2). (10.22)

For t/t0 → ∞, it follows from eqn (10.19) that asymptotically A3 ∼ 6πGρ0 t
2, so

that this model approaches the Newtonian analog of the Einstein–de Sitter model as
t/t0 →∞.

The uniformly expanding model of nonlocal Newtonian cosmology under consid-
eration here reduces to the Newtonian version of the spatially flat Einstein–de Sitter
model if we formally let α0 → 0. Indeed, with α0 = 0, A(t) = (t/t0)2/3 and the
work throughout this chapter reduces to the standard local treatment of gravitational
instability in Newtonian cosmology (Mukhanov 2005).

With a Hubble constant of H0 ≈ 70 km s−1 Mpc−1, we find that, according to
the nonlocal model with α0 ≈ 11, the present density of baryons in the universe is
ρ0 ≈ 1.4× 10−30 g cm−3 and the age of the universe is t0 ≈ 7.21× 109 yr. Thus our
model gives a value for the age of the universe that is about half of the age of the
currently accepted model; moreover, the currently accepted density of baryons is about
0.3 ρ0 (Gurbatov, Saichev and Shandarin 2012). These cosmological parameters are
somewhat reminiscent of the corresponding parameters for the spatially flat Einstein–
de Sitter model of standard cosmology.

We emphasize that we are dealing here with a simplified toy model of nonlocal
Newtonian cosmology, which we employ to explore the possibility that large-scale
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structure formation in cosmology may be possible without invoking actual dark matter.
The next section contains an analysis of the linear stability of our model. We then
discuss the nonlinear instability of the model using the Zel’dovich approach.

It is important to note that, due to the nature of the subject matter, the notation
employed in the following sections is partly independent of the previous chapters of
this book.

10.3 Jeans Instability

The instability of self-gravitating static configurations was first studied by Jeans within
the framework of Newtonian theory of gravitation (Jeans 1902, 1929). Bonnor (1957)
extended the study of Newtonian gravitational instability to expanding homogeneous
media. In the context of modern cosmology, gravitational instability has been treated
extensively by a number of authors (Peebles 1993; Zel’dovich and Novikov 1983;
Mukhanov 2005). To investigate Jeans instability in our nonlocal model, this sec-
tion is devoted to a linear adiabatic perturbation analysis of our toy model away from
the homogeneous and isotropic solution given in eqn (10.12). The perturbed solution
has a baryonic density given by ρ̄ + δρ, where ρ̄ = ρ0/A

3 is the background baryonic
density and δρ/ρ̄ can be expressed as a sum of Fourier modes each with wave vector
k,

δρ

ρ̄
= ε0

∑
k

Dk(t) eik·x/A(t), (10.23)

where ε0, 0 < ε0 � 1, is a constant perturbation parameter and we have used the fact
that the spatial scale of the perturbation expands with the universe. The perturbed
flow velocity is given by v̄ + δv, where v̄ = (Ȧ/A) x and

δv = ε0

∑
k

Vk(t) eik·x/A(t). (10.24)

For the fluid pressure, p = p(ρ), we find that the net perturbed pressure is

p(ρ̄+ δρ) = p(ρ̄) +
dp

dρ

∣∣∣∣
ρ= ρ̄

δρ (10.25)

by Taylor expansion. We recall that the speed of sound in the medium is given by

cs(ρ) =

√
dp

dρ
. (10.26)

We are interested here in the linear adiabatic perturbation of our perfect fluid
model; therefore, in the substitution of perturbed values of the fluid parameters in the
model eqns (10.1)–(10.5), we keep terms only up to first order in ε0. As a direct result
of this linearity, it is possible to use complex perturbation amplitudes for the sake of
simplicity, with the proviso that only the real parts of the perturbed equations have
physical significance.
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Fig. 10.1 Graph of 1
2
[Θ−1 arctan Θ + (1 + Θ2)−1] versus Θ. Reproduced from Chicone, C.

and Mashhoon, B., 2016, “Nonlocal Newtonian Cosmology”, J. Math. Phys. 57, 072501 (27

pages), with the permission of AIP Publishing. DOI: 10.1063/1.4958902

It follows from the perturbed continuity equation that

AḊk + ik ·Vk = 0. (10.27)

Moreover, the perturbed Euler equation can be written as

−∇Φ =
Ä

A
x + ε0

∑
k

(
V̇k +

Ȧ

A
Vk + i

c̄ 2
s

A
kDk

)
eik·x/A(t), (10.28)

where c̄s := cs(ρ̄). The divergence of eqn (10.28) is given by

−∇2Φ = 3
Ä

A
+ ε0

∑
k

[ 1

A
(ik · V̇k) +

Ȧ

A2
(ik ·Vk)− c̄ 2

s

A2
k2Dk

]
eik·x/A(t), (10.29)

where k = |k|. To simplify matters, let us note that eqn (10.27) implies, upon
differentiation with respect to time, that

Ȧ Ḋk +AD̈k + ik · V̇k = 0. (10.30)

Thus substituting for ik ·Vk and ik · V̇k from eqns (10.27) and (10.30), respectively,
in eqn (10.29), we find

∇2Φ = −3
Ä

A
+ ε0

∑
k

(
D̈k + 2

Ȧ

A
Ḋk +

c̄ 2
s

A2
k2Dk

)
eik·x/A(t). (10.31)

Finally, inserting this expression in the modified Poisson eqn (10.4) and utilizing
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eqn (10.13), we obtain

d2Dk

dt2
+ 2

Ȧ

A

dDk

dt
+ J Dk = 0, (10.32)

where J is given by

J =
k2 c̄ 2

s

A2
− 4πGρ̄ [1 +Qk(t)]. (10.33)

Here Qk is essentially the spatial Fourier integral transform of q(t,x), namely,

Qk(t) :=

∫
q(t,x) e−ik·x/A(t) d3x, (10.34)

where the reciprocal kernel is

q(t,x) =
α0 µ0

8π A(t)

1 + µ0 |x|
|x|2

e−µ0 |x|. (10.35)

Indeed, it is possible to show that

Qk(t) :=
α0

2A(t)

[
1

Θ
arctan Θ +

1

1 + Θ2

]
, (10.36)

where

Θ :=
k

µ0A(t)
. (10.37)

Thus Qk(t) depends only on the wave number k and cosmic time t. As k/µ0 → 0, we
find Q0(t) = α0/A(t) = α(t), while for k/µ0 →∞, we have Q∞ = 0; see Fig. 10.1.

Our linear perturbation analysis makes it possible to consider δρ and δv as super-
positions of different Fourier modes characterized by the wave vector k. Suppose, for
instance, that for a mode k, J is non-zero and the corresponding peculiar velocity is
orthogonal to k; that is, k ·Vk = 0. Then, it follows from the perturbation equations
that there is no change in density for this vector mode, since Dk = 0. On the other
hand, suppose that Vk is parallel to k, then Dk is in general non-zero and is given by
eqn (10.32).

The solutions of eqn (10.32) are oscillatory sound waves for J > 0, while for J < 0,
we have a linear combination of growing and decaying modes. The transition between
the two regimes is characterized by J = 0, which can be solved for wave number k.
The result, kJ , can be written as

kJ =
2π A(t)

λJ
, (10.38)

which defines the Jeans length λJ given by

λJ
c̄s

=
[ π

Gρ̄(1 +Qk)

]1/2
. (10.39)

The determination of kJ via J = 0 is illustrated in Fig. 10.2.
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Fig. 10.2 Schematic plot that illustrates the determination of the Jeans length,

λJ = 2π A(t)/kJ , in our model. Here k, k : 0 → ∞, is the wave number. Reproduced from

Chicone, C. and Mashhoon, B., 2016, “Nonlocal Newtonian Cosmology”, J. Math. Phys. 57,

072501 (27 pages), with the permission of AIP Publishing. DOI: 10.1063/1.4958902

The attraction of gravity tends to produce clumps; however, pressure forces work
against this tendency. In eqn (10.39), which expresses the Jeans criterion, these forces
balance each other such that λJ/c̄s, which is the time that it would take for a pressure
wave to move across a Jeans length, is comparable to the gravitational response time
of a self-gravitating fluid of density ρ̄. For λ � λJ , or k � kJ , the density contrast
oscillates as a sound wave, while for λ � λJ , or k � kJ , the pressure term can be
neglected and gravitational instability takes over. This is due to the fact that the
gravitational response time is very short in comparison with the period of the pressure
wave.

We are interested in the study of nonlinear gravitational instability in our model.
Henceforth, we neglect the pressure term in the Euler eqn (10.2). Thus the structures
of interest in the post-recombination era have extensions that are much larger than the
corresponding Jeans length. At the recombination era, corresponding to a cosmological
redshift of z ≈ 103, when structures are expected to start forming, it is possible to
estimate λJ and the corresponding Jeans mass MJ := ρ̄ λ3

J . To get a rough idea of
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the orders of magnitude involved here, we recall that if we formally set α0 = 0 in our
nonlocal scheme, we recover the Newtonian analog of the Einstein–de Sitter model.
For the standard Einstein–de Sitter model, the result is λJ ∼ 20 pc and MJ ∼ 105M�,
comparable to the parameters of a globular star cluster (Peebles 1993; Zel’dovich and
Novikov 1983).

10.4 Nonlocal Analog of the Zel’dovich Solution

To study nonlinear gravitational instability in the context of Newtonian cosmology,
Zel’dovich introduced a method that is based on Lagrangian coordinates (Mukhanov
2005). To follow the Zel’dovich approach in the treatment of the growing mode of
gravitational instability, we need to neglect pressure and transform eqns (10.1), (10.2)
and (10.4) of our nonlocal fluid model to Lagrangian coordinates.

Before introducing Lagrangian coordinates, let us digress here briefly and note that
the continuity eqn (10.1) can be written as

[∂t + (v · ∇)] ρ+ ρ∇ · v = 0. (10.40)

Moreover, we can combine eqns (10.2) and (10.4) by taking the divergence of both
sides of eqn (10.2). The result is

∇ · [∂t v + (v · ∇) v] = −4πG (ρ+ ρD), (10.41)

where pressure has been neglected in accordance with our discussion in the previous
section. Henceforth, our nonlocal fluid model will consist of eqns (10.40) and (10.41).

This system can be converted to Lagrangian coordinates ξ by assuming that the
position of a fluid particle at a time t is uniquely identified via (t, ξ); that is, x = x(t, ξ),
where ξ is a time-independent vector field that is constant along the path of each fluid
particle. For instance, ξ could specify the spatial positions of fluid particles, x(tin) = ξ,
at some unspecified initial epoch tin > 0 after the Big Bang. The Lagrangian coordi-
nates of a fluid particle in spacetime are constants along its path and uniquely identify
the particle. For time-dependent velocity fields, these spatial variables are defined only
up to the first time when two trajectories with different Lagrangian markers meet in
space. At such a time, the Lagrangian coordinate system breaks down and singularities
called caustics are formed.

In Lagrangian variables, the fluid velocity can be expressed as

v =
dx

dt
=
∂x

∂t
(t, ξ)

∣∣∣∣
ξ

(10.42)

and, more generally, we have

∂

∂t

∣∣∣∣
x

+ v · ∇x =
∂

∂t

∣∣∣∣
ξ

. (10.43)

Let us first consider the transformation of the continuity eqn (10.40) to Lagrangian
variables. We note that
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∇j vi =
∂ξk

∂xj
∂vi(t, ξ)

∂ξk
=
∂ξk

∂xj
∂

∂t

(
∂xi(t, ξ)

∂ξk

)
. (10.44)

Hence, it is useful to introduce a matrix Ξ and its inverse Ξ−1 with components

Ξij :=
∂xi

∂ξj
, (Ξ−1)ij :=

∂ξi

∂xj
, (10.45)

so that the continuity eqn (10.40) can be written in Lagrangian coordinates as

∂%(t, ξ)

∂t
+ % tr

(
∂Ξ

∂t
Ξ−1

)
= 0, (10.46)

where % is the density of baryons in Lagrangian coordinates

ρ(t,x(t, ξ)) := %(t, ξ). (10.47)

Let us now define
J := det Ξ, (10.48)

and recall that
δJ = J (δΞ)ij (Ξ−1)ji, (10.49)

cf. Section 5.2. Therefore,
∂J
∂t

= J tr

(
∂Ξ

∂t
Ξ−1

)
(10.50)

and the continuity eqn (10.46) finally takes the form

∂(% J)

∂t
= 0. (10.51)

Let us next consider eqn (10.41) and write the left-hand side of this equation as

∇ · [∂t v + (v · ∇) v] =

(
∂

∂t
+ v · ∇

)
∇ · v + (∇i vj)(∇j vi). (10.52)

We recall from eqns (10.44), (10.45) and (10.50) that the divergence of the fluid velocity
in Lagrangian variables is ∂ ln J/∂t . This fact together with eqns (10.43) and (10.44)
can be used in eqn (10.52) to transform eqn (10.41) to Lagrangian coordinates. The
result is

∂2

∂t2
ln J + tr

[(
∂Ξ

∂t
Ξ−1

)2
]

= −4πG(%+ %D), (10.53)

where %D is the density of the effective dark matter in Lagrangian coordinates. Hence-
forth, we consider the problem of solving the Lagrangian system of eqns (10.51)
and (10.53) instead of the Eulerian system of eqns (10.40) and (10.41).

To illustrate this approach, let us consider the solution of the spatially homogeneous
and isotropic case (10.12) in terms of Lagrangian coordinates. The Hubble flow in this
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case is in effect a simple scaling with a time-dependent scale factor; therefore, we seek
a Lagrangian fluid flow of the form

x(t, ξ) = a(t) ξ, (10.54)

where a(tin) = 1. In this case, Ξ = a(t) diag(1, 1, 1) and J = a3(t). It follows from
eqn (10.51) that % J = %(tin, ξ). Moreover, eqn (10.53) can be expressed as
3 ä/a = −4πG(1 + %D/%) %. In the homogeneous case, % is independent of ξ, %D/% =
α0/A(t) and %(t) = %(tin)/a3(t). We thus recover eqns (10.12) and (10.16) with
a(t) = A(t)/A(tin), % = ρ̄ and ρ0 = %(tin)A3(tin).

10.4.1 Zel’dovich ansatz

To find a spatially inhomogeneous solution of eqns (10.51) and (10.53), we follow
Zel’dovich and assume a Lagrangian fluid flow of the form

x(t, ξ) = A(t) [ξ − F(t, ξ)], (10.55)

where the general Lagrangian position vector ξ = (ξ1, ξ2, ξ3) is constant along the
path of a fluid particle and

F(t, ξ) := (F 1(t, ξ1), 0, 0). (10.56)

It follows from eqns (10.55) and (10.56) that

Ξ = A(t) diag(1−Ψ, 1, 1), J = A3 (1−Ψ), Ψ :=
∂F 1

∂ξ1
. (10.57)

The Lagrangian conservation of mass eqn (10.51) implies that % J is constant in
time; therefore,

% =
%0(ξ)

J
, (10.58)

where %0(ξ) > 0 is simply a function of the Lagrangian coordinates. Moreover, the
substitution of the Zel’dovich ansatz into the Lagrangian form of the conservation of
momentum eqn (10.53) yields, after some algebra,

− 3
Ä
A

+ 2
Ȧ
A

Ψt

1−Ψ
+

Ψtt

1−Ψ
= 4πG

( %0(ξ)

A3(1−Ψ)
+ %D

)
. (10.59)

We now assume, in conformity with the original Zel’dovich solution (Mukhanov 2005),
that

A = A, %0(ξ) = ρ0, (10.60)

where A(t), given by eqn (10.16), is the scale factor of the spatially homogeneous and
isotropic background and ρ0 is the uniform background baryonic density at the present
epoch. Thus, using eqns (10.16) and (10.60), eqn (10.59) can be written as

Ψtt

1−Ψ
+ 2

Ȧ

A

Ψt

1−Ψ
+

4πGρ0

A3
(1 +

α0

A
) = 4πG

( ρ0

A3(1−Ψ)
+ %D

)
. (10.61)
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The quantity Ψ/(1−Ψ) in this context is related to the density contrast,

Ψ

1−Ψ
=
%− ρ̄(t)

ρ̄(t)
, (10.62)

of baryonic matter given as a solution in the Lagrangian formulation of the toy model
relative to the background density ρ̄(t) = ρ0/A

3 of the exact homogeneous solu-
tion (10.12). Here % is the density of baryonic matter, % = ρ0/[A

3 (1 − Ψ)], in our
model. We assume that Ψ is a positive function that is less than unity and the back-
ground density is bounded. The matter density in Lagrangian coordinates approaches
infinity as Ψ approaches unity. This would indicate the breakdown of the Lagrangian
coordinate system. On the physical side, this circumstance can be interpreted to mean
that the presence of effective dark matter %D in the model produces cosmic structure
as time approaches this epoch.

Let us now write eqn (10.61) in the form

Ψtt + 2
Ȧ

A
Ψt −

4πGρ0

A3
(1 +

α0

A
) Ψ = N , (10.63)

where N is defined by

N :=
4πGρ0 α0

A4

[ A4

ρ0 α0
(1−Ψ) %D − 1

]
. (10.64)

The nonlinear part of this second-order equation for Ψ is contained in N . It is inter-
esting to note that this nonlinear term vanishes for %D = (α0/A) %. In this case, Ψ
can be determined from the linear and homogeneous form of eqn (10.63) with N = 0,
which coincides with the k → 0 limit of the linear perturbation eqn (10.32) for the
density contrast Dk(t). This limiting case is quite significant and will be discussed in
detail later in this section.

The nonlocal Zel’dovich model under consideration here therefore deals with the
nonlinear perturbation Ψ in the baryonic density of the spatially homogeneous and
isotropic background model of nonlocal Newtonian cosmology. The background
expands with scale factor A(t) and Ψ satisfies eqn (10.63), where N , the nonlinear
part of eqn (10.63), is given by eqn (10.64).

The density of the effective dark matter in the Lagrangian formulation is

%D(t, ξ) = ρD(t,x(t, ξ)) =

∫
R3

q(t,x(t, ξ)− y) ρ(t,y) d3y, (10.65)

where the reciprocal kernel q is given by eqn (10.35). It is natural to complete the
transformation of this relation to Lagrangian variables. To this end, we let

y = y(t, ζ) (10.66)

and note that

ρ(t,y(t, ζ)) := %(t, ζ) =
ρ0

J(t, ζ)
. (10.67)
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Moreover, d3y = J(t, ζ) d3ζ, since J is the Jacobian of the transformation from the
Eulerian to Lagrangian coordinates. Therefore, the change of variables y = y(t, ζ)
yields the more useful form of %D,

%D(t, ξ) = ρ0

∫
R3

q(t,x(t, ξ)− y(t, ζ)) d3ζ. (10.68)

The Lagrangian flow map is here given by the Zel’dovich ansatz, namely,

x(t, ξ) = A(t)
(
ξ1 − F 1(t, ξ1) , ξ2 , ξ3

)
. (10.69)

Using eqn (10.35), the Lagrangian formula for the effective density of dark matter can
be written as

%D =
ρ0 α0 µ

3
0

8π A(t)

∫
R3

1 + χ

χ2
e−χ d3ζ, (10.70)

where
χ := µ0 |x(t, ξ)− y(t, ζ)|. (10.71)

From the Zel’dovich ansatz for the Lagrangian fluid flow, we have

y(t, ζ)− x(t, ξ) = A(t)
(
ζ1 − ξ1 + F 1(t, ξ1)− F 1(t, ζ1) , ζ2 − ξ2 , ζ3 − ξ3

)
. (10.72)

It is therefore useful to define a new integration variable σ in eqn (10.70), namely,

ζ − ξ :=
σ

µ0A(t)
. (10.73)

Then,
µ0 [y(t, ζ)− x(t, ξ)] = (S , σ2 , σ3), (10.74)

where

S := σ1 + µ0A(t)
[
F 1(t, ξ1)− F 1(t, ξ1 +

σ1

µ0A(t)
)
]
. (10.75)

To work with dimensionless quantities, we define

γ := µ0 ξ
1, Σ̃(t, γ) := µ0 F

1(t,
γ

µ0
), (10.76)

so that

S = σ1 +A(t)
[
Σ̃(t, γ)− Σ̃(t, γ +

σ1

A(t)
)
]
. (10.77)

In this way, we find

%D =
ρ0 α0

8π A4(t)

∫
R3

1 + χ

χ2
e−χ d3σ, (10.78)

where
χ =

√
S2 + (σ2)2 + (σ3)2 (10.79)

and S is given by eqn (10.77).
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It is convenient at this point to introduce spherical polar coordinates

σ1 = ` cosϑ, σ2 = ` sinϑ cosϕ, σ3 = ` sinϑ sinϕ (10.80)

with corresponding element of volume `2 sinϑ d` dϑ dϕ. In these coordinates, χ given
in eqn (10.79) does not depend on ϕ, since (σ2)2 + (σ3)2 = `2 sin2 ϑ. Using this fact,
integration over ϕ results in multiplication of the remaining two-dimensional integral
over ` and ϑ by 2π. With

η := cosϑ, (10.81)

we have that

%D =
ρ0 α0

A4(t)
I, I =

1

4

∫ ∞
0

∫ 1

−1

1 + χ

χ2
e−χ `2 d`dη. (10.82)

Here,
χ =

√
S2 + `2 (1− η2) (10.83)

and

S = ` η +A(t)
[
Σ̃(t, γ)− Σ̃(t, γ +

` η

A(t)
)
]
. (10.84)

In terms of the new dimensionless quantities defined in eqn (10.76),

Ψ =
∂ Σ̃(t, γ)

∂ γ
:= Σ̃γ(t, γ) (10.85)

and the integro-differential eqn (10.63) of our model now takes the form

Σ̃γtt + 2
Ȧ

A
Σ̃γt −

4πGρ0

A3
(1 +

α0

A
) Σ̃γ = N , (10.86)

where the nonlinear part is given by

N =
4πGρ0α0

A4

[
(1− Σ̃γ)I − 1

]
. (10.87)

Finally, it proves convenient to use s = A(t) as the new temporal variable instead
of the cosmic time t; that is, we define

Σ(s, γ) := Σ̃(A−1(s), γ), (10.88)

so that

Σ̃γt(A
−1(s), γ) = Ȧ(A−1(s))Σγs(s, γ),

Σ̃γtt(A
−1(s), γ) = Ȧ2(A−1(s))Σγss(s, γ) + Ä(A−1(s))Σγs(s, γ). (10.89)

We now use eqns (10.16)–(10.17), with Ē = 0, to transform the integro-differential
eqn (10.86) to

s2(2s+ α0)Σγss + s(3s+ α0)Σγs − 3(s+ α0)Σγ = 3α0

[
(1− Σγ)I(Σ)− 1

]
, (10.90)
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where α0 = 2/(λ0 µ0) ≈ 11, I is the integral defined in display (10.82) with χ given
by eqn (10.83) and

S = ` η + s
[
Σ(s, γ)− Σ(s, γ +

` η

s
)
]
. (10.91)

Let us note that the dependence of I on Σ, through S, is such that I(Σ) is unchanged
if Σ is replaced by Σ + g(s), where g(s) is an arbitrary function of s. Moreover, if Σ is
a solution of the integro-differential eqn (10.90), then so is Σ + g(s). In particular, it
is simple to show that for Σ = g(s)

I(g) = 1, (10.92)

so that
Σ(s, γ) = g(s) (10.93)

with Σγ = 0 is an exact solution of eqn (10.90).
An important feature of this nonlocal Zel’dovich model is that the original work

of Zel’dovich within the framework of standard Newtonian cosmology can be simply
recovered if we formally set α0 = 0.

10.4.2 Zel’dovich solution

The Zel’dovich solution (Mukhanov 2005) regarding the nonlinear behavior of density
perturbation in one spatial dimension can be obtained with α0 = 0 in eqn (10.90). For
s > 0, eqn (10.90) then reduces to

2 s2 Σγss + 3 sΣγs − 3 Σγ = 0. (10.94)

The solution of this differential equation for Σγ is a linear combination of s and s−3/2

with coefficients that are arbitrary functions of the spatial variable γ.
We recall that Ψ = Σγ is such that Ψ/(1 − Ψ) is the density contrast in the

nonlinear regime. On the other hand, in the linear regime, the perturbation equation
for the density contrast is given by eqn (10.32) with α0 = 0 and λ� λJ , namely,

d2Dk

dt2
+ 2

Ȧ

A

dDk

dt
− 4πGρ0

A3
Dk = 0, (10.95)

where A(t) = (t/t0)2/3 in this case, Qk = 0 and the pressure term has been neglected
for wavelengths much longer than the Jeans length λJ . Equation (10.95) has solu-
tions for Dk that are linear combinations of t2/3 and t−1. It follows that eqns (10.94)
and (10.95) have identical solutions for density perturbations. Thus, so long as the
spatial scale of the perturbation is much longer than the Jeans length, the validity
of the linear perturbation scheme extends into the nonlinear regime of the Zel’dovich
solution.

Let us now consider the growing mode, where Σγ ∝ s = (1+z)−1. This mode grows
by a factor of about 103 from the epoch of decoupling (z ≈ 103) to the present epoch
(z ≈ 0). Thus baryonic inhomogeneities of amplitude δ ≈ 10−5 at the decoupling
epoch will only grow to δ ≈ 10−2 at the present epoch, far below what is needed
to explain the observed large-scale structure of the universe. This simple calculation
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indicates the necessity of invoking the existence of dark matter in the standard models
of cosmology.

The rest of this chapter is about the nature of solutions of the nonlocal Zel’dovich
model.

10.4.3 N ≈ 0

In our nonlocal Zel’dovich model, the density of baryons is given by ρ0/[s
3(1 − Σγ)],

where s = A(t) is the scale factor and Σ is a solution of our integro-differential
eqn (10.90). To illustrate certain properties of our nonlocal model, it proves useful
at this point to define a limiting form of the model that is in some sense the analog of
the original Zel’dovich solution in the present context. The Zel’dovich ansatz for our
nonlocal toy model has led to eqn (10.90), where, in contrast to the original Zel’dovich
solution, the nonlinear term that appears on the right-hand side of this equation does
not in general vanish. However, this nonlinear part of the main differential equation
vanishes for a certain limiting form of our toy model if we assume that

ρD(t,x) =
α0

A
ρ(t,x), (10.96)

where the scale factor A(t) is given by eqn (10.19) and ρ(t,x) is the density of baryonic
matter in the universe. In eqn (10.90), the temporal variable s is in fact A(t), so that
s = 0 at the Big Bang and s = 1 at the present epoch. The Zel’dovich ansatz in this
limiting case (N = 0) leads to the linear and homogeneous differential equation

s2(2s+ α0)Σγss + s(3s+ α0)Σγs − 3(s+ α0)Σγ = 0, (10.97)

which is essentially the same as the linear perturbation eqn (10.32) for the density
contrast Dk(t) in the limit where k → 0.

With the change of variable s = −α0 ν/2 and some rearrangement, this differential
equation for Σγ(s, γ) := ∆(ν, γ) becomes

ν2(1− ν)∆νν + ν(1− 3

2
ν)∆ν − 3(1− 1

2
ν)∆ = 0. (10.98)

The solution of this equation is the product of an arbitrary function of the spatial
variable γ and a function of ν, which can be expressed in terms of the hypergeometric
function (Abramowitz and Stegun 1964). This latter function, expressed in terms of
s = −α0 ν/2, can be written as

Sp(s) = spF (p+
3

2
, p− 1; 2p+ 1;− 2s

α0
). (10.99)

Here, p = ±
√

3, F is the hypergeometric function (Abramowitz and Stegun 1964),
ν = −2s/α0 and |ν| < 1. We note that S√3 and S−

√
3 form a fundamental set of

solutions of the linear second-order differential eqn (10.98). The general solution of
eqn (10.98) is qualitatively similar to the classical Zel’dovich solution; in particular,
the given fundamental set of solutions consists of one growing and one decaying mode.

Under what conditions would ρD(t,x), given by eqn (10.5), reduce to eqn (10.96)?
That is, we wish to determine the conditions under which the limiting form of the
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Fig. 10.3 Plot of s 7→ 10−5S√3(s)/S√3(10−3). Reproduced from Chicone, C. and Mashhoon,

B., 2016, “Nonlocal Newtonian Cosmology”, J. Math. Phys. 57, 072501 (27 pages), with the

permission of AIP Publishing. DOI: 10.1063/1.4958902

model under consideration here approximates our basic nonlocal model. Let us note
in this connection that kernel q in eqn (10.35) is radial and decays exponentially for
|x| � µ−1

0 . It follows that if ρ(t,x) always varies in space only over scales much larger
than 1/µ0, then its spatial Fourier integral transform ρ̂ (t,k),

ρ̂ (t,k) =

∫
ρ(t,x) e−ik·x/A(t) d3x, (10.100)

is essentially confined to a region in Fourier space such that k � µ0A(t). For instance,
if we imagine that ρ(t,x) always has the form of a Gaussian distribution centered
around x = 0 with a root-mean-square deviation from the mean of σ0 � µ−1

0 , then
in the Fourier domain, this corresponds to a Gaussian distribution centered around
k = 0 with a root-mean-square deviation from the mean of σ̂0 � µ0A(t). We can use
this fact in conjunction with the convolution theorem for Fourier transforms to show
that the solution of the nonlocal model approaches the exact solution of the N = 0
model for large-scale deviations from spatial homogeneity. That is, eqn (10.5) can be
written in the Fourier domain, in the sense defined in Section 10.3, as

ρ̂D(t,k) = Qk(t) ρ̂ (t,k), (10.101)

where ρ̂D(t,k) is the Fourier integral transform of ρD and Qk(t) is given by eqn (10.34).
It is clear from Fig. 10.1 that if k � µ0A(t), then Qk(t) ≈ α(t), where α(t) = α0/A(t),
so that

ρ̂D(t,k) ≈ α(t) ρ̂ (t,k). (10.102)

The inverse spatial Fourier integral transform of this relation amounts essentially to
eqn (10.96). Therefore, on large scales that persist over time, the solution of the non-
local model corresponding to the growing mode should approach S√3(s). In Fig. 10.3,
we plot

10−5
S√3(s)

S√3(10−3)
, (10.103)
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where it is assumed that at the epoch of recombination corresponding to cosmological
redshift z ≈ 103 and s = 1/(1 + z), the density contrast is ∼ 10−5. It is demonstrated
in Fig. 10.3 that Σγ for the growing mode approaches unity well before the present
era s = 1.

Let us recall here that as Σγ → 1, the density of baryons ρ0/[A
3 (1 − Σγ)]

approaches infinity. At some stage in this process, the density contrast is so large
that the perturbation separates from the background and collapses under its own
gravitational attraction, thus leading to the formation of structure in the universe
(Peebles 1993; Zel’dovich and Novikov 1983; Mukhanov 2005; Gurbatov, Saichev and
Shandarin 2012). The result presented in Fig. 10.3 indicates that the nonlocal model
under consideration here is such that for sufficiently large-scale perturbations after
recombination, structure formation is theoretically possible in this toy model.

10.4.4 N 6= 0

Chicone has reformulated the nonlocal Zel’dovich model in terms of a nonlinear nonau-
tonomous first-order system of ordinary differential equations in some function space
(of functions of γ). The analysis of the resulting system seems to be beyond current
understanding of infinite-dimensional ordinary differential equations (Chicone 2006).
Therefore, a numerical algorithm has been developed by Chicone for dealing with this
system. He has verified numerically that the solution of the full nonlocal nonlinear
model indeed approaches that of the linear homogeneous N = 0 model as the spatial
scale of the perturbation increases; see Chicone and Mashhoon (2016b) for a detailed
treatment.

The positive result of our nonlocal Zel’dovich model indicates that the nonlocal
gravity approach to the problem of structure formation in cosmology without invoking
the existence of dark matter deserves further investigation.

10.5 An Exact Solution

It is possible to find an exact nontrivial solution of our nonlocal model. To this end,
let

Σ(s, γ) = g(s) + β(s) γ, (10.104)

where g and β are only functions of the temporal variable s. It proves interesting to
start by computing I(Σ)(s, γ) given in eqn (10.82). We find that S = ` η (1− β) and
χ = ` χ0, where χ0 is independent of ` and is given by

χ0 := [ η2 (1− β)2 + 1− η2 ]1/2. (10.105)

The integration in I over ` : 0→∞ can be carried out first using the relation∫ ∞
0

`n e−` χ0 d` =
n!

χn+1
0

(10.106)

for n = 0, 1, 2, . . .. For the integration over η : −1→ 1, we note that∫
x2n

(1 + c x2)n+3/2
dx =

1

2n+ 1

x2n+1

(1 + c x2)n+1/2
. (10.107)
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Therefore, for c > −1,∫ 1

−1

η2n

(1 + c η2)n+3/2
dη =

2

2n+ 1

1

(1 + c)n+1/2
, (10.108)

for n = 0, 1, 2, . . .. For n = 0, we find that

I(Σ) =

∫ 1

0

dη

{1 + [(1− β)2 − 1] η2}3/2
=

1

|1− β|
. (10.109)

It follows from this result that for β < 1, the right-hand side of eqn (10.90) vanishes,
so that Σγ = β(s) must satisfy

s2(2s+ α0)βss + s(3s+ α0)βs − 3(s+ α0)β = 0. (10.110)

Thus β can be written as

β(s) = C+ S√3(s) + C− S−
√

3(s), (10.111)

where S±
√

3(s) are given in eqn (10.99) and C± are constants such that β(s) < 1.

Let B̃(t) := β(A(t)), then the exact solution under consideration corresponds to
the Zel’dovich ansatz (10.55) such that

x1 = A(t) [1− B̃(t)] ξ1, x2 = A(t) ξ2, x3 = A(t) ξ3, (10.112)

which represents an expanding homogeneous but anisotropic cosmological model. It is
straightforward to check that with the spatially uniform matter density ρ0/[A

3 (1−B̃)],
our original model eqns (10.40)–(10.41) are satisfied in this case.

If in eqn (10.111), C+ > 0, then in time β will increase monotonically and even-
tually approach unity, in which case the oblate spheroidal model universe collapses to
form an expanding circular disk of matter.

It was argued in Section 10.4 that the solution of the nonlocal model should
approach the solution of the N = 0 model if the density ρ(t,x) always varies in space
over distances that are much larger than µ−1

0 . The limiting situation, where ρ(t,x) loses
all dependence upon space and depends only upon time corresponds to Σγ(s, γ) = β(s),
from which the exact solution under consideration would necessarily follow. These
remarks then provide the physical interpretation for the exact solution of the non-
local Zel’dovich model. Furthermore, this exact solution turns out to be unstable, as
demonstrated via a linear perturbation method in Section 10.7.

10.6 Appendix A: Distention of Massive Early-Type Galaxies with
Decreasing z

The nonlocal model of Newtonian cosmology employed in this chapter has been based
on the assumption that memory fades over time and hence the strength of the gravi-
tational interaction as well as the dark matter fraction monotonically decreases with
cosmic time. As before, this temporal dependence can be expressed, for instance, as
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1/A$, where A is the scale factor and $ > 0. For the nonlocal Zel’dovich model devel-
oped in this chapter, we have set $ = 1 for the sake of simplicity. Writing A−1 = 1+z,
we note that the cosmological memory drag can be incorporated in the attractive grav-
itational force. That is, eqn (8.1), which expresses the force of gravity on a point mass
m due to a point mass m′ in the Newtonian regime of nonlocal gravity, takes the form

Fz(r) = −Gmm′ r̂

r2

{
1 + (1 + z)$ [α0 − α0 (1 +

1

2
µ0 r) e

−µ0 r − E(r)]

}
(10.113)

in the cosmological context under consideration here. Equation (10.113) consists of two
parts: a standard Newtonian part and a dominant effective dark matter part whose
strength monotonically decreases with decreasing cosmological redshift z.

Let us now imagine that, as a consequence of gravitational instability, inhomo-
geneities grow after recombination to produce the observed large-scale structure of
the universe. That is, after recombination, clumps of matter form that separate from
the expanding background and collapse under their own gravitational attraction. Sub-
sequent interaction and merger of such clumps eventually leads to the formation of
galaxies. It follows from eqn (10.113) that the process of galaxy formation slows down
with decreasing z. Moreover, the evolution of the internal gravitational dynamics of
galaxies, from the time of formation to the present era (z = 0), would be governed
by eqn (10.113). For an isolated galaxy, if the strength of the internal gravitational
attraction slowly decreases with time, the size of the self-gravitating system slowly
increases. The precise manner in which this distention comes about depends upon the
nature of the attractive force. For the Newtonian inverse square law of attraction, for
instance, the adiabatic invariants of the Keplerian two-body system indicate that if the
strength of the force slowly decreases, the eccentricity of the orbit remains unchanged,
while its dimensions increase in inverse proportion to the strength of the force (Landau
and Lifshitz 1988). For the nonlocal gravity force (10.113), let us tentatively assume
that the distention factor is more generally of the form (1 + z)$

′
with $′ > 0.

It is possible that the distention mechanism we have described here is at work in
the significant size evolution of high-mass quiescent (i.e. with no recent star formation)
early-type galaxies. This swelling has been observationally established from z ≈ 2–3
to z ≈ 0; see for example van Dokkum et al. (2008, 2010), Damjanov et al. (2009) and
the references therein. To illustrate this point, let us adopt the measurements of nine
massive quiescent early-type galaxies at average z ≈ 2.3 contained in van Dokkum et
al. (2008). The average effective radius—re, following the usual de Vaucouleurs light
profile for early-type galaxies—of these galaxies at z ≈ 2.3 is 0.9 kpc, while galaxies
with similar masses in the nearby universe have sizes of ≈ 5 kpc (van Dokkum et al.
2008). According to van Dokkum et al. (2008), several known astrophysical mechanisms
(such as mergers) might be able to account for a distention factor of only ≈ 1.5–2,
unless some of these known mechanisms are all at work here at the same time. While
this is not impossible, it is worth noting that the nonlocal gravity model actually offers
an alternative explanation, because the distention in size would occur naturally in this
model. For simplicity, let us attribute the observed size distention solely to nonlocal
gravity. This implies 5.5 ≈ (1+z)$

′
, and hence $′ ≈ 1.4. Further consideration of the
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distention mechanism due to cosmological memory drag is beyond the scope of this
work.

10.7 Appendix B: Instability of the Exact Solution

Consider the linear operator

L := s2(2s+ α0)
∂2

∂s2
+ s(3s+ α0)

∂

∂s
− 3(s+ α0); (10.114)

then, our integro-differential eqn (10.90) can be written as

LΣγ = 3α0

[
(1− Σγ)I − 1

]
. (10.115)

As discussed in Section 10.5, eqn (10.115) has an exact solution

Σ0(s, γ) = g(s) + β(s) γ, (10.116)

where g(s) is arbitrary and β(s) < 1 is a solution of the homogeneous linear equation
Lβ(s) = 0.

10.7.1 Linear perturbation of the exact solution

We would now like to look for a solution of eqn (10.115) of the form

Σ = Σ0 + εΠ(s, γ), (10.117)

where Π is the perturbing function and ε, 0 < ε � 1, is the perturbation parameter
such that only terms linear in ε will be considered. To compute I(Σ)(s, γ) in this case,
we note that

S = ` η (1− β)− ε T , (10.118)

where

T := s

[
Π(s, γ +

` η

s
)−Π(s, γ)

]
. (10.119)

Hence,
χ = ` χ0 − ε η (1− β)χ−1

o T (10.120)

and

1 + χ

χ2
e−χ =

1 + ` χ0

`2 χ2
0

e−` χ0 + ε η (1− β) T 2 + 2 ` χ0 + `2 χ2
0

`3 χ4
0

e−` χ0 . (10.121)

To proceed, we assume that perturbation Π is analytic in the spatial variable so
that T is represented by its Taylor series,

T :=

∞∑
m=1

1

m!
Π(m)(s, γ)

`m ηm

sm−1
, (10.122)

where Π(m) := ∂m Π/∂γm. Moreover, we can write
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I(Σ) = I(Σ0) + εK, (10.123)

where for β < 1, we have from eqn (10.109) that

I(Σ0) =
1

1− β
. (10.124)

In evaluating K, the integration over ` is straightforward using eqn (10.106) and we
find ∫ ∞

0

`m−1 [`2 χ2
0 + 2 ` χ0 + 2] e−` χ0 d` =

(m+ 1)(m+ 2)(m− 1)!

χm0
. (10.125)

The subsequent integration over η vanishes by symmetry unless the integrand is even
in η, which means that m must be odd, namely, m = 2n + 1, where n = 0, 1, 2, . . ..
Then, using eqn (10.108), we find

K =

∞∑
n=0

n+ 1

2n+ 1

Π(2n+1)(s, γ)

s2n (1− β)2n+2
. (10.126)

It follows from eqn (10.115) that to first order in ε, we have the equation for the linear
perturbation of the exact solution, namely,

LΠγ(s, γ) = 3α0

[
(1− β)K − Πγ

1− β

]
. (10.127)

Combining eqns (10.126) and (10.127), we finally get

LΠγ(s, γ) = 3α0

∞∑
n=1

n+ 1

2n+ 1

Π(2n+1)(s, γ)

s2n (1− β)2n+1
. (10.128)

10.7.2 Solutions of the perturbation equation

Inspection of eqn (10.128) for the linear perturbation Π reveals that

Π =
1

2
θ(s) γ2, L θ(s) = 0 (10.129)

is a solution, since the right-hand side of eqn (10.128) vanishes identically in this case.
Another possibility involves a solution of eqn (10.128) of the form

Π = eb γ E(s), (10.130)

where b is a constant. Substituting eqn (10.130) into eqn (10.128) results in

LE(s) =
3α0

b
s E(s)

∞∑
n=1

n+ 1

2n+ 1
B2n+1, (10.131)

where

B(s) :=
b

s (1− β)
. (10.132)
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We recall that s is the scale factor and for an expanding universe model, s : 0 → ∞.
Moreover, β(s) < 1. If we assume that the constant | b | is such that |B(s)| < 1, then
the series in eqn (10.131) converges uniformly and we have

∞∑
n=1

n+ 1

2n+ 1
B2n+1 =

1

2

[ B3

1− B2
− B− 1

2
ln

(
1− B
1 + B

)]
:= B(s). (10.133)

The function E(s) can now be determined from the linear differential equation

LE(s) =
3α0

b
sB(s) E(s). (10.134)

These possible solutions of the linear perturbation equation indicate that the exact
solution of our nonlocal model is unstable. A complete analysis of the solutions of
eqn (10.128) is beyond the scope of this work.

10.7.3 Σ0 = g(s)

Finally, it is important to point out a seemingly trivial special case, namely, when
β(s) = 0. In this case, Σ0

γ = 0 and we start with a small density perturbation of εΠγ .
The linear perturbation away from this exact zero solution can be unstable due to
solution (10.129) leading to Πγ = θ(s) γ as well as solution (10.130), which diverges
exponentially in the spatial variable γ, where b, | b | < s, can be positive or negative.
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admissible coordinate system, 18
Andromeda Galaxy (M31), 184
auxiliary field strength, 101–103

nonlocal, 112–114
binary pulsars, 67
black holes, 68, 116, 188
Bohr’s correspondence principle, 58, 62
Bohr–Rosenfeld principle, 35, 36, 54
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Cartan, E., 15
Cartan’s torsion, 90
caustics, 210
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Christoffel symbols, 79, 148
circular states of atomic hydrogen, 59
clock hypothesis, 12, 13
clusters of galaxies, 135, 150, 182, 183

Chandra X-ray, 177, 178
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cosmological constant, 22, 103, 114–116, 118,

169
cosmological memory drag, 221
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current conservation law, 21, 81, 103
curvature tensor, 20, 84
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gravity, 188–192
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Doppler effect, 26, 43, 48, 49, 51, 53
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modification due to helicity–rotation

coupling, 45, 46, 48, 49
dwarf spheroidal galaxies, 185
dynamic mass, 178, 181, 182
effective dark matter of NLG, 116, 117
eikonal approximation, 28
Einstein deflection angle, 172–174
Einstein’s gravitational field equation, 21, 22,

68, 82, 105
nonlocal generalization of, 115, 116

Einstein’s principle of equivalence, 12, 13, 19,
20, 31, 67, 75, 112

Einstein tensor, 82, 100–103
Einstein–de Sitter model, 111, 205
electromagnetic field equations, 21
elliptic cone, 33
elliptic cylinder, 19
energy–momentum tensor, 21, 80–82

of the gravitational field, 102, 103, 114
energy–momentum conservation law, 21, 80,

81, 103, 114, 116
ephemerides, 170
epoch of decoupling, 200
evolution of dark matter fraction with z, 203,

220–222
exponential integral function, 138, 156, 162,

166
extended general relativity, 81–97
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fading spacetime memory, 133, 138, 140, 162,
166, 178, 190, 202–204, 220–222

Faraday tensor, 43, 64
Fermi coordinates, 15–19
Fermi–Walker transport, 5
fiber bundles, 9
FLRW model, 111, 200, 201
Fourier sine lemma, 157, 159, 161
Fourier transforms, 127, 131, 156–162

convolution theorem for, 127
Fourier transform method, 130, 131
frame bundle, 25
Fredholm integral equation, 115, 130,

154–156
Frenet approximation, 9
Frenet–Serret method of moving frames, 9,

15
frequency measurement, 26, 27
fundamental observers, 2, 22, 23, 77, 98

in Minkowski spacetime, 78–81
in curved spacetime, 81–97
fundamental frame field, 77, 78, 117
acceleration tensor of, 96

Gaia mission, 171
gauge theories of gravitation, 76, 90
gauge transformation, 68, 119
general relativity (GR), 19–22

nonlocal, 114–116
geodesic coordinates, see Fermi coordinates
geodesic equation, 79, 82, 105, 106, 108
globular star clusters, 182, 184, 185
GR||, 98, 102–105, 187

nonlocal, 114, 187
gravitational instability, 200

nonlocal Zel’dovich model of, 210–219
exact solution of, 219, 220, 222–224

gravitational analog of Poynting’s theorem,
78

gravitational deflection of light, 171–174
gravitational energy, 78
gravitational memory, 116, 203

spatial, 133, 166, 202
drag, 190–192

gravitational radiation flux, 198, 199
gravitational radiation reaction, 187
gravitational shift of frequency, 174, 175
gravitational time delay, 174, 175
gravitational lensing, 145–149, 181, 186
gravitoelectromagnetism (GEM), 94, 143–145
gravitoelectric field, 94, 95
gravitomagnetic field, 94, 95
gravity gradiometer, 25
GW150914 and GW151226, 68, 188
helicity–rotation coupling, 45–49

for gravitational waves, 67, 73
Higgs boson, 55
Hulse–Taylor binary pulsar, 67, 187
Huygens’ principle, 27
hypothesis of locality, 9–13, 51, 52, 59
impulse approximation, 59

inertia of intrinsic spin, 49
infinitesimal parallelograms, 85
isolated dwarf galaxies, 185
Jacobi identity, 91
Jeans instability, 206–210
Jeans length, 208–210
Jeans mass, 209, 210
Jordan’s lemma, 143
Kennard’s experiment, 60, 61
Kepler system, 168, 169, 221
kernel, 37

resolvent, 37, 40–42, 65
iterated, 40, 65, 155, 156
convolution, 42, 54, 65, 120, 123, 156
reciprocal, 123, 155
symmetric, 130, 156

Kuhn kernel, 131–135, 160
Lagrange planetary equations, 168
Lagrangian coordinates, 210–212
Lagrangian density for GR, 22
Lagrangian density for GR||, 104
Landau–Lifshitz pseudotensor, 199
Laser Interferometer Gravitational-Wave

Observatory (LIGO), 68, 188
length measurement, 11, 12
lensing potential, 149
Levi-Civita connection, 20, 22, 78, 81–87, 96,

97, 99
Levi-Civita tensor, 61, 88
light-cone kernel, 122, 154
light cylinder, 8, 19
light deflection integrals, 148, 162–165
light standing still, 51, 52
linearized gravitational radiation in GR,

68–75
Liouville–Neumann method, 130, 154–156
Liouville–Neumann series, 154
Lorentz invariance, 1, 51
Lorentz group, 2, 52, 63, 77, 96, 104, 105
Lorentz transformation, 1, 3, 10, 12, 146
Lorentz–Fitzgerald contraction, 19
Maxwell’s equations, 21

in a medium, 75, 76, 98, 103
memory drag, 190–192
method of successive substitutions, 37, 40,

130, 154
Minkowski’s energy–momentum tensor, 102
Minkowski spacetime, 1, 60, 64, 66–69,

78–81, 91, 92, 97, 108, 110, 112,
113, 117, 118, 120

metric tensor of, 1, 61
modified Bessel functions, 164
Neumann series, 125, 130, 155
Newton’s inverse square force law, 132, 135,

137, 138, 168, 204
Newton’s Principia, 136
Newton’s shell theorem, 138
Newtonian cosmology, 200, 201
NGC 1407, 184
NGC 4494, 184



Index 237

nonlocal ansatz, 36
nonlocal constitutive relation in

electrodynamics, 75, 76, 98, 112,
113

nonlocal damping of gravitational waves,
129, 190–193

nonlocal electrodynamics of media, 76
nonlocal gravitation, 67

analogy with electrodynamics, 75, 76
nonlocal gravity (NLG), 98, 112–117

constitutive relation of, 150–154
energy–momentum conservation law,

114–116
field equation of, 114–116
linearized, 118–123,

constitutive relation of, 120, 121
field of isolated stationary source in,

143–145
gravitational force in, 136–139, 221
gravitational potential in, 139, 140
gravitational waves in, 187–199
convolution kernel of, 120, 142, 143
Newtonian regime of, 129–140, 166–186,

201
causal reciprocal kernel of, 123–127,

140–142
scalar constitutive kernel of, 105

nonlocal gravity in the Solar System, 167–175
deflection of light due to, 171–174
time delay due to, 174, 175
perihelion precession due to, 169, 170

nonlocal gravitational wave equation in
linearized NLG, 187–192

nonlocal Newtonian cosmology, 150, 200–206
nonlocal special relativity, 24, 38, 52, 61, 62

confrontation with experiment, 57–60
nonlocal Zel’dovich model, 213–216

solution of, 219, 220
non-symmetric connections, 84–86
null acceleration, 31
null geodesic, 106, 147
observers, 1, 8, 9

inertial, 1–4
accelerated, 4–8, 24–30

observers’ memory of past acceleration, 37,
38, 54

pericenter precession, 169
perihelion precession, 169, 170
phase wrap-up, 46
photoeffect in hydrogen, 59

helicity-dependence of, 59, 60
photoionization cross section, 60
Pioneer anomaly, 169, 171
Poisson’s equation, 20, 21, 201, 204

nonlocal modification of, 129–132, 166, 201
Poincaré gauge theory of gravitation, 90
Poincaré group, 1

irreducible unitary representations of, 49
Poincaré lemma, 87
Poincaré transformation, 34, 63, 64

polarization states of gravitational waves, 70,
71

principle of equivalence, 20, 111
proper time, 10, 11
PSR B1913+16, 187
pure boost, 3, 4, 6, 48
radar coordinates, 19
radiating charged particle, 27
reciprocal kernel in cosmology, 203
reciprocity integral equation, 41, 126, 131,

153, 155
recombination era, 200
reduced Bianchi identity, 21, 116
relativistic binary pulsar, 187
Ricci curvature tensor, 21, 99, 100
Ricci identity, 84
Riemannian curvature, 20, 81, 82, 99
Riemann–Lebesgue lemma, 157, 161
Runge–Lenz vector, 169
scalar curvature, 21, 22, 99–101, 104
Shapiro time delay, 175
Sievert’s integral, 164
SINGS catalog, 176
spherical Bessel functions, 47
spin–gravity coupling, 50
spin–rotation coupling, 45–51

energy shift due to, 50
amplitude shift due to, 50
measurement via neutron polarimetry, 50

spiral galaxies, 131-133, 176, 177
rotation curves of, 22, 132, 133, 135, 150,

166
stochastic background of gravitational waves,

188
structure formation in cosmology, 150, 181,

186, 200, 201, 219
structure functions, 90, 91
teleparallel equivalent of GR, see GR||
teleparallelism, 23, 76, 86
THINGS catalog, 176
Thomas precession, 18
time dilation, 10, 11, 50
Tohline potential, 132
Tohline–Kuhn force, 132, 135, 167, 168, 172
Tohline–Kuhn modified gravity scheme, 132,

133, 150, 166
Tohline–Kuhn parameter, 134, 160
torsion tensor, 84

reduced, 88
auxiliary, 88, 101–103
measurement of, 90–97

torsion vector, 88, 100–102, 119
auxiliary, 88

torsion pseudovector, 88, 119
trace-reversed potentials, 68, 118
transverse gauge condition, 128, 143
transverse–traceless (TT) gauge, 69, 70,

194–196, 198, 199
Triangulum Galaxy (M33), 184
Tully–Fisher relation, 176
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unit step function, 37, 120
Ursa Major Cluster of Galaxies, 176
vector spherical harmonics, 47
velocity dispersion, 177
Virgo Supercluster, 176
virial temperature of ionized gas, 177, 178
virial theorem, 178–186
Volterra integral equation, 37, 40–42, 53,

115, 154
generalized, 124

Volterra algebra, 124
commutative subalgebra of, 125

Volterra kernel, 124–126
iterated, 125

reciprocal, 125
convolution, 125

Volterra–Tricomi uniqueness theorem, 37, 53
Weitzenböck connection, 22, 78, 83–87, 89,

97, 99, 100
Weitzenböck invariants, 89, 101, 104
Weitzenböck’s torsion, 86–97

in Fermi coordinates, 91–96
world function, 105–108, 112, 113, 117

of conformally flat spacetimes, 108–111
of Minkowski spacetime, 108, 110, 117, 120

Zel’dovich ansatz, 212
Zel’dovich solution, 216

nonlocal analog of, 210–220
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