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Preface

Plasma is a unique state of matter, different from solids, liquids, and vapors. It is a

gas where an important fraction of the atoms is ionized, so that the electrons and

ions are separate, free, and consists of approximately equal numbers of positively

charged ions and negatively charged electrons. The characteristics of plasmas are

significantly different from those of ordinary neutral gases so that plasmas are

considered a distinct “fourth state of matter.” For example, because plasmas are

made up of electrically charged particles, they are strongly influenced by electric

and magnetic fields, while neutral gases are not. An example of such influence is the

trapping of energetic charged particles along geomagnetic field lines to form the

Van Allen radiation belts.

Plasma physics is the study of charged particles and fluids interacting with self-

consistent electric and magnetic fields. It is a basic research discipline that has

many different areas of application—space and astrophysics, controlled fusion,

accelerator physics, and beam storage, to name a few.

In addition to externally imposed fields, such as the Earth’s magnetic field or the

interplanetary magnetic field, plasma is acted upon by electric and magnetic fields

created within the plasma itself through localized charge concentrations and elec-

tric currents that result from the differential motion of the ions and electrons. The

forces exerted by these fields on the charged particles that make up the plasma act

over long distances and impart to the particles’ behavior a coherent, collective

quality that neutral gases do not display. Despite the existence of localized charge

concentrations and electric potentials, plasma is electrically “quasi-neutral,”

because, in aggregate, there are approximately equal numbers of positively and

negatively charged particles distributed so that their charges cancel.

Plasma science has, in turn, spawned new avenues of basic science. Most

notably, plasma physicists were among the first to open up and develop the new

and profound science of chaos and nonlinear dynamics. Plasma physicists have also

contributed greatly to studies of turbulence, which is important for safe air travel.

Basic plasma science continues to be a vibrant research area. Recent new discov-

eries have occurred in understanding extremely cold plasmas, which condense to
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crystalline states, the study of high-intensity laser interactions, new highly efficient

lighting systems, and plasma-surface interactions important for computer

manufacturing.

Understanding the complex behavior of confined plasmas has led researchers to

formulate the fundamental equations of plasma physics. This foundational work

and understanding of plasmas have led to important advances in fields as diverse as

computers, lighting, waste handling, space physics, switches and relays, and lasers.

Because plasmas are conductive, respond to electric and magnetic fields, and can be

efficient sources of radiation, they are used in a large number of applications where

such control is needed or when special sources of energy or radiation are required.

The book is intended only as an introduction to plasma physics course and

includes what I take to be the critical concepts needed for a foundation for further

study. A solid undergraduate background in classical physics and electromagnetic

theory including Maxwell’s equations and mathematical familiarity with partial

differential equations and complex analysis are prerequisites.

In summary, it is clear that this book is not intended to transform its users into

experts on plasma physics. Rather, it is intended to provide a simple, coherent,

introduction to workers with diverse backgrounds in physics and related sciences.

Albuquerque, NM Bahman Zohuri
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Chapter 1

Foundation of Electromagnetic Theory

In order to study plasma physics and its behavior for a source of driving fusion for a

controlled thermonuclear reaction for the purpose of generating energy, under-

standing of the fundamental knowledge of electromagnetic theory is essential. In

this chapter, we introduce Maxwell’s equations and the Coulomb barrier or tunnel

effects for better understanding of plasma behavior for confinement purpose of

controlled thermonuclear reaction and for generating clean energy that is confined

magnetically in particular. We are mainly concern with confinement of plasmas at

terrestrial temperature, e.g., very hot plasmas, where primarily of interest is in the

application to controlled fusion research in magnetic confinement reactors such as

tokomak.

1.1 Introduction

Although Maxwell’s equation was formulated by him over 100 decades ago, the

subject of electromagnetism was never stagnated. The production of the so-called

clean energy is driven by magnetic confinement of hot plasma via controlled

thermonuclear reaction between two isotopes of hydrogen, namely, deuterium

(D) and tritium (T), resulting in some behavior in plasma that is known as magne-

tohydrodynamics abbreviated as MHD. The study of such phenomena requires

knowledge and understanding of the fundamental of electromagnetisms and fluid

dynamics combined where fluid dynamics equation and Maxwell’s equation are
coupled.

However, in the study of electricity and magnetism, as part of understanding the

physics of plasma, we need to have some knowledge of notation that may be

accomplished by using the notation of vector analysis. To provide the valuable

and shorthanded electromagnetic and electrodynamics, vector analysis also brings

to the forefront the physical ideas involved in these equations; therefore, we will

© Springer International Publishing AG 2016
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briefly formulate some of these vector analysis concepts and present some of their

identity in this chapter.

1.2 Vector Analysis

In the study of fundamental science of physics, several kinds of quantities are

encountered; in particular, we need to distinguish vectors and scalars. For our

purposes, it is sufficient to define a scalar as follows:

1. Scalar: A scalar is a quantity that is completely characterized by its magnitude.

Examples of scalars are mass, volume, etc. A simple extension of the idea of a

scalar is a scalar field—a function of position that is completely specified by its

magnitude at all points in space.

2. Vector: A vector is a quantity that is completely characterized by its magnitude

and direction. Examples of vectors are that we consider position from a fixed

origin, velocity, acceleration, force, etc. The generalization to a vector field
gives a function of position that is completely specified by its magnitude and

direction at all points in space.

The detailed analysis of vector analysis is beyond the scope of this book; thus,

we will briefly formulate the fundamental layout of vector analysis here for the

purpose of vector analysis operation and operator developing essential electromag-

netic and electrodynamics that are the foundation for understanding of plasma

physics.

1.2.1 Vector Algebra

We are familiar with scalar algebra from our basic algebra courses and some

algebra can be applied to develop vector algebra as well. For the time being, we

use the Cartesian coordinate system to develop the three-dimensional analysis of

vector algebra. The Cartesian system allows to represent a vector by its three

components and denote them by x, y, and z, or when it is more convenient, we

use notation of x1, x2, and x3. With respect to the Cartesian coordinate system, a

vector is specified by its x ‐, y ‐, and z ‐components. Thus, a vector ~V (note that the

vector quantities are denoted by symbol of vector ! on top) is specified by its

components, Vx, Vy, and Vz, where Vx ¼
��~V�� cos α1, Vy ¼

��~V�� cos α2, and

Vz ¼
��~V�� cos α3, the αs being the angles between vector ~V and the appropriate

coordinate axes of the Cartesian system. The scalar
��~V�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2
x þ V2

y þ V2
z

q
is the

magnitude of the vector or its length. Utilizing Fig. 1.1, in the case of vector fields,

each of the components is to be regarded as a function of x, y, and z. It should be
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emphasized that for the simplicity of analysis, we are using the Cartesian coordinate

system, yet the similarity of these analyses applies to the other coordinates such as

cylindrical and spherical coordinates, respectively, as well.

1.2.1.1 Sum of Two Vectors

The sum of two vectors~A and~B is defined as the vector ~Cwhose components are the

sum of corresponding components of the original vectors. Thus, we can write:

~C ¼ ~Aþ ~B ð1:1Þ

and

Cx ¼ Ax þ Bx

Cy ¼ Ay þ By

Cz ¼ Az þ Bz

ð1:2Þ

This definition of the vector sum is completely equivalent to the familiar parallel-

ogram rule for vector addition.

1.2.1.2 Subtraction of Two Vectors

Vector subtraction is defined in terms of the negative of a vector, which is the vector

whose components are the negative of the corresponding components of the

original vector. Thus, if ~A is a vector, �~A is defined by:

Vz a3

a2

a1

VyVx

V

y

z

x

Fig. 1.1 Presentation of

vector along with its

components in the Cartesian

coordinate system

1.2 Vector Analysis 3



�Að Þx ¼ �Ax

�Að Þy ¼ �Ay

�Að Þz ¼ �Az

ð1:3Þ

The operation of subtraction is then defined as the addition of the negative and is

written as:

~A� ~B ¼ ~Aþ �~B
� � ð1:4Þ

Since the addition of real numbers is associative and commutative, it follows that

vector addition and subtraction are also associative and commutative. In vector

form notation, this appears as:

~Aþ ~Bþ ~C
� �

¼ ~Aþ ~B
� �

þ ~C

¼ ~Aþ ~C
� �

þ ~B

¼ ~Aþ ~Bþ ~C

ð1:5Þ

In other words, the parentheses are not needed as indicated by the last form.

1.2.1.3 Multiplication of Two Vectors

Now, we proceed to multiplication of two vectors and their process. We note that

the simplest product is a scalar times a vector. This operation results in a vector,

each component of which is the scalar times the corresponding component of the

original vector. If c is a scalar and ~A is a vector and the product c~A is a vector, then

~B ¼ c~A is defined by:

Bx ¼ cAx

By ¼ cAy

Bz ¼ cAz

ð1:6Þ

It is clear that if ~A is a vector field and c is a scalar field, then ~B is a new vector field

that is not necessary a constant multiple of the origin field.

If we like to multiply two vectors together, there are two possibilities and they

are known as the vector and scalar product or sometimes they are called cross or
dot products, respectively.
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Scalar Product of Two Vectors

First considering the scalar or dot product of two vectors ~A and ~B, we note that

sometimes the scalar product called inner product is derived from the scalar nature

of the product. The definition of the scalar product is written as:

~A � ~B ¼ AxBx þ AyBy þ AzBz ð1:7Þ

This definition is equivalent to another, and perhaps more familiar, definition—that

is, as the product of the magnitudes of the original vectors times the cosine of the

angle between these vectors. If they are perpendicular to each other:

~A � ~B ¼ 0 ð1:8Þ

Note that the scalar product is commutative. The length of ~A is then:

��~A�� ¼ ffiffiffiffiffiffiffiffiffiffiffi
~A � ~A

p
ð1:9Þ

Vector Product of Two Vectors

The vector product of two vectors is a vector, which accounts for the name and

alternative names outer product and cross product. The vector product is written as
~A� ~B. If ~C is the vector product of ~A and ~B, then:

~C ¼ ~A� ~B ð1:10Þ

or in terms of their components can be written as:

Cx ¼ AyBz � AzBy

Cy ¼ AzBx � AxBz

Cz ¼ AxBy � AyBx

ð1:11Þ

It is important to note that the cross product depends on the order of the factors;

interchanging the order of the cross product introduces a minus sign as:

~B� ~A ¼ �~A� ~B ð1:12Þ

Consequently:

~A� ~A ¼ 0 ð1:13Þ

1.2 Vector Analysis 5



This definition is equivalent to the following: the vector product is the product of

the magnitudes times the sine of the angle between the original vectors, with the

direction given by the right-hand screw rule (see Fig. 1.2 here).

Note that if we let~Abe rotated into~B through the smallest possible angle, a right-

hand screw rotated in this manner will advance in a direction perpendicular to both
~A and ~B; this direction is the direction of ~A� ~B.

The vector product may be easily expressed in terms of a determinant via

definition of unit vectors as ı̂, ĵ, and k̂ , which are vectors of unit magnitude in the

x ‐, y ‐, and z ‐directions, respectively; then we can write:

~A� ~B ¼
î ĵ k̂
Ax Ay Az

Bx By Bz

������
������ ð1:14Þ

If this determinant is evaluated by the usual rules, the result is precisely our

definition of the cross product of two vectors.

The determinant in Equation 1.14 may be combined in many ways and most of

the results that are obtained are obvious; however, there are two triple products of

sufficient importance that need to be mentioned. The triple scar product D ¼ ~A � ~B
�~C is easily found to be given by the determinant as:

D ¼ ~A � ~B� ~C ¼
Ax Ay Az

Bx By Bz

Cx Cy Cz

������
������ ¼ �~B � ~A� ~C ð1:15Þ

Fig. 1.2 Right-hand

screw rule
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This product in Equation 1.15 is unchanged by an exchange of dot and cross or by a

cyclic permutation of the three vectors. Note that parentheses are not needed, since

the cross product of a scalar and a vector is undefined.

The other interesting triple product is the triple vector product

~D ¼ ~A� ~B� ~C
� �

. By a repeated application of the definition of the cross product,

Equations 1.10 and 1.11, we find that:

~D ¼ ~A� ~B� ~C
� �

¼ ~B ~A � ~C
� �

� ~C ~A � ~B
� �

ð1:16Þ

which is frequently known as the back cab rule. We should bear in mind that in the

cross product, the parentheses are vital as part of the operation and without them the

product is not well defined.

1.2.1.4 Division of Two Vectors

At this point one might be interested as to the possibility of vector division.

Division of a vector by scalar can, of course, be defined as multiplication by the

reciprocal of the scalar. Division of a vector by another vector, however, is possible

only if the two vectors are parallel. On the other hand, it is possible to write general

solution to vector equations and so accomplish so meting closely akin to division.

Consider the equation below as:

c ¼ ~A � ~X ð1:17Þ

where c is a known scalar. ~A is a known vector, and ~X is an unknown vector. A

general solution to the Equation 1.17 is given as follows:

~X ¼ c~A

~A � ~Aþ ~B ð1:18Þ

where ~B is an arbitrary vector that is perpendicular to ~A and that is ~A � ~B ¼ 0. What

we have done is very nearly to divide c by vector ~A; more correctly, we have found

the general form of the vector ~X that satisfies Equation 1.17. There is no unique

solution, and this fact accounts for the vector ~B. In the same fashion, we may

consider the vector equation as:

~C ¼ ~A� ~X ð1:19Þ

In Equation 1.19, both vectors ~A and ~C are known vectors and ~X is an unknown

vector. The general solution of this equation is then given by:

1.2 Vector Analysis 7



~X ¼
~C� ~A

~A � ~A þ k~A ð1:20Þ

where k is an arbitrary scalar. Thus, ~X as defined by Equation 1.20 is very nearly the

quotient of ~Cby~A; the scalar k takes account of the nonuniqueness of the process. If
~X is required to satisfy both Equations 1.17 and 1.19, then the result is unique, if it

exists and is given by:

~X ¼
~C� ~A

~A � ~A þ c~A

~A � ~A ð1:21Þ

1.2.2 Vector Gradient

Now that we have covered basic vector algebra, we pay our attention to vector

calculus, which extends to vector gradient, integration, vector curl, and differenti-

ation of vectors. The simplest of these is the relation of a particular vector field to

the derivative of a scalar field.

For that matter, it is convenient to introduce the idea of directional derivative of
a function of several variables, which we leave it to the reader to find these analyses

in any vector calculus book to find the details of such derivative that is beyond the

intended scope of this book, and we just jump to the definition of vector gradient.

The gradient of a scalar function φ is a vector whose magnitude is the maximum

directional derivative at the point is being considered and whose direction is the

direction of the maximum directional derivative at the point. Using the geometry of

Fig. 1.3, we put this definition into some perspective, and it is evident that the

gradient has the direction to the level surface of φ through the point as we said is

being coinsured.

Fig. 1.3 Parts of two level

surfaces of the function

φ(x, y, z)
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The most common mathematical symbol for gradient is ~∇ or in text form is

grad. In terms of the gradient, the directional derivative is given by:

dφ

ds
¼ grd~φj j cos θ ð1:22Þ

where θ is the angle between the direction of d~s and the direction of the gradient.

This result is immediately evident from Fig. 1.3. If we write d~s for the vector

displacement of magnitude ds, then Equation 1.22 can be written as:

dφ

ds
¼ grd ~φ:

d~s

ds
ð1:23Þ

Equation 1.23 enables us to seek for the explicit form of the gradient and find that in

any coordinate system in which we know the form of d~s. In the Cartesian or

rectangular coordinate system, we know that d~s ¼ î dxþ ĵ dyþ k̂ dz. We also

know from differential calculus that:

dφ ¼ ∂φ
∂x

dxþ ∂φ
∂y

dyþ ∂φ
∂z

dz ð1:24Þ

From Equation 1.22, it results that:

dφ ¼ ∂φ
∂x

dxþ ∂φ
∂y

dyþ ∂φ
∂z

dz

¼ grdφð Þxdxþ grdφð Þydyþ grdφð Þzdz
ð1:25Þ

Equating coefficient of independent variables on both sides of the equation in

rectangular coordinate, it gives:

grd~φ ¼ î
∂φ
∂x

þ ĵ
∂φ
∂y

þ k̂
∂φ
∂z

ð1:26Þ

In a more complicated case, the procedure is very similar as well. In spherical polar

coordinates with utilization of Fig. 1.4 with denotation of r, θ, and ϕ, we can write

Equation 1.24 in the following form as:

dφ ¼ ∂φ
∂r

dr þ ∂φ
∂θ

dθ þ ∂φ
∂ϕ

dϕ ð1:27Þ

and

d~s ¼ â rdr þ â θrdθ þ â ϕr sin θdϕ ð1:28Þ
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where âr, âθ, and âϕ are unit vectors in the r, θ, and ϕ directions, respectively.

Applying Equation 1.23 and equating coefficients of independent variables yield:

grd~φ ¼ â r
∂φ
∂r

þ â θ
1

r

∂φ
∂θ

þ â ϕ
1

r sin θ

∂φ
∂z

ð1:29Þ

Equation 1.29 is established in spherical coordinate system.

1.2.3 Vector Integration

Although there are other aspects of vector differentiation first, we need to discuss

the vector integration, and details of such analyses are left to the reader to look them

up in any vector calculus book and just briefly formulate them here. For purposes of

vector integration, we will consider three kinds of integrals, according to the nature

of the differential appearing in integral, and they are:

1. Line integral

2. Surface integral

3. Volume integral

In either case, the integrand may be either a vector or a scalar field; however,

certain combinations of integrands and differentials give rise to uninteresting

integrals. Those of most interest here are the scalar line integral of a vector, the

scalar surface integral of a vector, and finally the volume integral of both vectors

and scalars.

If ~F is a vector field, a line integral of ~F is written as:

ð b
a Cð Þ

~F ~rð Þ � d~l ð1:30Þ

z

rq

O y

x

PPolar
axis

f

Fig. 1.4 Definition of the

polar coordinates
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where C is the curve along which the integration is performed, a and b are the initial

and final points on the curve, and d~l is an infinitesimal vector displacement along

the curve C.

It is obvious since the result of dot product of~F ~rð Þ � d~l is scalar, then the result of
linear integral in Equation 1.30 is scalar. The definition of line integral follows

closely the Riemann definition of the definite integral; thus, the integral can be

written as segment of curve C between the lower and upper bound of a and b,

respectively, that can be divided into a large number of small increments Δ~l; for
increment an interior point is chosen and the value of ~F ~rð Þ at that point is found.

In other words, Equation 1.30 can form the following form of equation as:

ð b
a Cð Þ

~F ~rð Þ � d~l ¼ lim
N!1

XN
i¼1

~Fi ~rð Þ � Δ~l ð1:31Þ

It is important to emphasize that the line integral usually depends not only on the

endpoint a and b but also on the curve C along which the integration is to be done,

since the magnitude and direction of ~F ~rð Þ and the direction of d~l depend on curve

C and its tangent, respectively. The line integral around a closed curve is of

sufficient importance that a special notation is used for it, namely:þ
C

~F � d~l ð1:32Þ

Note that the integral around a closed curve is usually not zero. The class of vectors

for which the line integral around any closed curve is zero is of considerable

importance. Thus, we normally write line integrals around undesignated closed

paths as: þ
~F � d~l ð1:33Þ

The form of integral in Equation 1.33 around closed curve C is for those cases

where the integral is independent of the contour C within rather wide limits.

Now paying our attention to the second kind of integral, namely, surface

integral, we can again define ~F as a vector; a surface integral of ~F is written as:ð
S

~F � n̂ da ð1:34Þ

where S is the surface over which the integral is taken, da is an infinitesimal area on

surface S, and n̂ is the unit vector normal to da.
There are two degrees of ambiguity in the choice of unit vector n̂ as far as

outward or downward direction normal to surface S is concerned, if this surface is a
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closed one. If S is not closed and is finite, then it has a boundary, and the sense of the
normal is important only with respect to the arbitrary positive sense of traversing

the boundary. The positive sense of the normal is the direction in which a right-hand

screw would advance if rotated in the direction of the positive sense on the

bounding curve, as it is illustrated in Fig. 1.5. The surface integral of ~F over a

closed surface S is sometimes denoted by:þ
S

~F � n̂ da ð1:35Þ

Comments exactly parallel to those made for the line integral can be made for the

surface integral. This surface integral is clearly a scalar and it usually depends on

the surface S, and cases where it does not are particularly important.

Now, we can pay our attention to the third type of vector integral, namely,

volume integral, and again we start with vector~F. Therefore, if~F is a vector and φ is

a scalar, then the two volume integrals in which we are interested are written as:

J ¼
ð
V

φdυ ~K ¼
ð
V

~Fdυ ð1:36Þ

Clearly J is a scalar and ~K is a vector. The definitions of these integrals reduce

quickly to just the Riemann integral in three dimension except that in ~K one must

note that there is one integral for each component of ~F. However, we are very

familiar with these integrals and require no further investigation nor any comments.

1.2.4 Vector Divergence

Another important vector operator, which is playing an essential role in establishing

electromagnetism equations, is vector divergence operation, which is a derivative

form. The divergence of vector ~F, written as div~F, is defined as follows.

Boundary

nFig. 1.5 Relation of normal

unit vector to the surface

and the direction of

traversal of the boundary
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The divergence of a vector is the limit of its surface integral per unit volume as

the volume enclosed by the surface goes to zero. This statement mathematically can

be presented as follows:

div~F ¼ lim
V!0

1

V

þ
S

F � n̂ da ð1:37Þ

The divergence is clearly a scalar point function and its result of operation ends up

with scalar field, and it is defined at the limit point of the surface of integration. A

detail of proof of this concept is beyond the scope of the book and it is left to the

reader to refer to any vector calculus book. However, the limit is easily can be

taken, and the divergence in rectangular coordinates is found to be:

div~F ¼ ∂Fx

∂x
þ ∂Fy

∂y
þ ∂Fz

∂z
ð1:38Þ

Equation 1.38 for vector divergence operation designated for the Cartesian coordi-

nate and in spherical coordinate is written in the following form:

div~F ¼ 1

r2
∂
∂r

r2Fr

� �þ 1

r sin θ

∂
∂θ

sin θFθð Þ þ 1

r sin θ

∂Fϕ

∂ϕ
ð1:39Þ

and in cylindrical coordinate is presented by:

div~F ¼ 1

r

∂
∂r

rFrð Þ þ 1

r

∂
∂θ

Fθð Þ þ ∂
∂z

Fzð Þ ð1:40Þ

The method of finding the explicit of the divergence is applicable to any coordinate

system, provided that the forms of the volume and surface elements or, alterna-

tively, the elements of the length are known.

Now that we have the idea behind the vector divergence operator and its

operation, we can then establish the divergence theorem. The integral of the

divergence of a vector over a volume V is equal to the surface integral of the

normal component of the vector over the surface bounding V, that is:ð
V

div~Fdυ ¼
þ
S

~F � n̂ da ð1:41Þ

and we leave it as that, and again for proof one can refer to any vector

calculus book.
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1.2.5 Vector Curl

Another interesting vector differential operator is the vector curl. The curl of a

vector, written as curl~F, is defined as follows.

The curl of a vector is the limit of the ratio of the integral of its cross product

with the outward drawn normal, over a closed surface, to the volume enclosed by

the surface as the volume goes to zero, that is:

curl~F ¼ lim
V!0

1

V

þ
S

n̂ � ~Fda ð1:42Þ

Again the details of proof are left to the reader to find them out in a vector calculus

book, and we just write the final result of curl operator as follows in at least

rectangular coordinate:

curl~F ¼

î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

����������

����������
ð1:43Þ

Finding the form of the curl in other coordinate system is only slightly more

complicated and it is left to the reader for practice.

Now that we have understanding of the vector curl operator, we can now state

Stock’s theorem as follows.

The line integral of a vector around a closed curve is equal to the integral of the

normal component of its curl over any surface bounded by the curve, that is:þ
C

~F � d~l ¼
ð
S

curl~F � n̂ da ð1:44Þ

where C is a closed curve that bounds the surface S.

1.2.6 Vector Differential Operator

We now introduce an alternative notation for the types of vector differentiation that

have been discussed—namely, gradient, divergence, and curl. This notation uses

the vector differential operator del and it is identified as symbol of ~∇ and

mathematically written as:
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~∇ ¼ î
∂
∂x

þ ĵ
∂
∂y

þ k̂
∂
∂z

ð1:45Þ

Del is a differential operator in that it is used only in front of a function of (x, y, z),
which it differentiates; it is a vector in that it obeys the laws of vector algebra.

It is also a vector in terms of its transformation properties and in terms of del

Equations 1.46, 1.47, and 1.48 are expressed as follows:

Grad ¼ ~∇:

~∇φ ¼ î
∂φ
∂x

þ ĵ
∂φ
∂y

þ k̂
∂φ
∂z

ð1:46Þ

Div ¼ ~∇�:

~∇ � ~F ¼ ∂Fx

∂x
þ ∂Fy

∂y
þ ∂Fz

∂z
ð1:47Þ

Curl ¼ ~∇�:

~∇ � ~F ¼

î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

����������

����������
ð1:48Þ

The operations expressed with del are themselves independent of any special choice

of coordinate system. Moreover, any identities that can be proved using the

Cartesian representation hold independently of the coordinate system.

1.3 Further Developments

The first of these is the Laplacian operator, which is defined as the divergence of

the gradient of a scalar field and which is usually written as ∇2:

~∇ � ~∇ ¼ ∇2 ð1:49Þ

In rectangular coordinates:
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∇2φ ¼ ∂2φ

∂x2
þ ∂2φ

∂y2
þ ∂2φ

∂z2
ð1:50Þ

This operator is of great importance in electrostatics and will be considered in the

following sections and chapters.

The curl of gradient of any scalar field is zero. This statement is most easily

verified by writing it out in rectangular coordinates. If the scalar field is φ, then we

can write:

~∇ � ~∇φ ¼

î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

∂φ
∂x

∂φ
∂y

∂φ
∂z

������������

������������
¼ î

∂2φ

∂y∂z
� ∂2φ

∂z∂y

 !
þ � � � ¼ 0 ð1:51Þ

This verifies the original statement. In operator notation:

~∇ � ~∇ ¼ 0 ð1:52Þ

The divergence of any curl is also zero. This result is verified in rectangular

coordinates by writing:

~∇ � ~∇ � ~FÞ ¼ ∂
∂x

∂Fx

∂y
� ∂Fy

∂z

� 	
þ ∂
∂y

∂Fx

∂z
� ∂Fz

∂x

� 	
þ � � � ¼ 0

�
ð1:53Þ

The two other possible second-order operations are taking the curl of the curl or the

gradient of the divergence of a vector field. It is left as an exercise to show that in

rectangular coordinates, the following is true as well:

~∇ � ~∇ � ~FÞ ¼ ~∇ ~∇ � ~FÞ �∇2~F
��

ð1:54Þ

Equation 1.54 indicates that the Laplacian of a vector is the vector whose rectan-

gular components are the Laplacian of the rectangular components of the original

vector. In any coordinate system other than rectangular, the Laplacian of a vector is

defined by Equation 1.54.

The six possible combinations of differential operators and product are tabulated

in Table 1.1, and they all can be verified easily in rectangular coordinate system.

A derivative of a product of more than two functions, or a higher than second-

order derivative of a function, can be calculated by repeated applications of the

identities in Table 1.1, which is therefore exhaustive. The formula can be easily

remembered from the rules of vector algebra and ordinary differentiation.
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Some particular types of function come up often enough in electromagnetic

theory that it is worth mentioning their various derivatives now.

For the function ~F ¼ ~r, we can write the following relationship as:

~∇ �~r ¼ 3~∇ �~r ¼ 0 ~G � ~∇Þ~r ¼ ~G∇2~r ¼ 0
�

ð1:55Þ

For a function that depends only on the distance r ¼ ��~r�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, we

can write:

φ rð Þ or ~F rð Þ : ~∇ ¼ ~r

r

d

dr
ð1:56Þ

For a function that depends on the scalar argument ~A �~r, where ~A is a constant

vector:

φ ~A �~r
� �

or~F ~A �~r
� �

: ~∇ ¼ ~A
d

d ~A �~r
� � ð1:57Þ

For a function that depends on the argument ~R ¼ ~r �~r0, where ~r0 is treated as

constant:

~∇R ¼ î
∂
∂X

þ ĵ
∂
∂Y

þ k̂
∂
∂Z

ð1:58Þ

where ~R ¼ Xî þ Yĵ þ Zk̂ . If ~r is treated as constant instead:

Table 1.1 Differential vector identities

~∇ � ~∇φ ¼ ∇2φ

~∇ � ~∇ � ~FÞ ¼ 0
�

~∇ � ~∇φÞ ¼ 0
�

~∇ � ~∇ � ~FÞ ¼ ~∇ ~∇ � ~FÞ �∇2~F
��

~∇ φψð Þ ¼ ~∇φÞψ þ φ~∇ψ
�

~∇ ~F � ~G
� �

¼ ~F � ~∇Þ~Gþ ~F� ~∇ � ~GÞ þ ~G � ~∇Þ~Fþ ~G� ~∇ � ~FÞ
����

~∇ � φ~F
� � ¼ ~∇φÞ � ~Fþ φ~∇ � ~F

�
~∇ � ~F� ~G

� �
¼ ~∇ � ~FÞ � ~G� ~∇ � ~GÞ � ~F

��
~∇ � φ~F

� � ¼ ~∇φÞ � ~Fþ φ~∇ � ~F
�

~∇ � ~F� ~G
� �

¼ ~∇ � ~GÞ~F� ~∇ � ~FÞ~Gþ ~G � ~∇Þ~F� ~F � ~∇Þ~G
����
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~∇ ¼ �~∇0 ð1:59Þ

where

~∇0 ¼ î
∂
∂x0

þ ĵ
∂
∂y0

þ k̂
∂
∂z0

ð1:60Þ

There are several possibilities for the extension of the divergence theorem and of

Stokes’s theorem. The most interesting of these is Green’s theorem, which is:ð
V

ψ∇2φ� φ∇2ψ
� �

dυ ¼
þ
S

ψ ~∇φ� φ~∇ψÞ � n̂ da
�

ð1:61Þ

This theorem follows from the application of the divergence theorem to the vector:

~F ¼ ψ ~∇φ� φ~∇ψ ð1:62Þ

Using this vector ~F in the divergence theorem, we obtain:ð
V

~∇ � ψ∇φ� φ∇ψð Þdυ ¼
þ
S

ψ ~∇φ� φ~∇ψÞ � n̂ da
�

ð1:63Þ

Using the identity from Table 1.1 for the divergence of scalar times a vector gives:

~∇ � ψ∇φð Þ � ~∇ � φ∇ψð Þ ¼ ψ∇2φ� φ∇2ψ ð1:64Þ

Combining Equations 1.63 and 1.64 yields Green’s theorem. Some other integral

theorems are listed in Table 1.2.

This section is conclusion of our short course on vector analysis. Proof of many

results is left to the reader as an exercise or extra study, and the approach just has

been utilitarian; therefore, what we need to understand from the viewpoint of vector

analysis have been developed to give us enough tools to go on with the rest of

this book.

Table 1.2 Vector integral

theorem

ð
S

n̂ � ~∇φda ¼
þ
C

φd~lð
V

~∇φdυ ¼
þ
S

φn̂ dað
V

~∇ � ~Fdv ¼
þ
S

n̂ � ~Fdað
V

~∇ � ~Gþ ~G � ~∇Þ~Fdυ ¼
þ
S

~F ~G � n̂
� �

da

�
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1.4 Electrostatics

The subject of electricity is briefly touched upon for the rest of this chapter to

provide us the fundamental of magnetism that we need in order to understand the

science of plasma physics to go forward. We deal with the empirical concepts of

charge and the force law between charges known as Coulomb’s law. However, we

use the mathematical tools of the previous section to express this law in other or

more powerful formulations and then extended to the basic of plasma physics

concept. The electric potential formulation and Gauss’s law are very important to

the subsequent development of the subject. Electric charge is a fundamental and

characteristic property of the microscopic particles that makes up matter. In fact, all

atoms are composed of photons, neutrons, and electrons, and two of these particles

bear charges. However, even charge particles, the powerful electrical forces asso-

ciated with these particles, are fairly well hidden in a macroscopic observation. The

reason behind such statement exists because of the nature of existence of the two

kinds of charges, namely, positive and negative charges, and an ordinary piece of

matter contains approximately equal amounts of each kind.

It is understood from an experimental observation that charge can neither be

created nor destroyed. The total charge of a closed system cannot change. From the

macroscopic point of view, charges may be regrouped and combined in different

ways; nevertheless, we may state that net charge is conserved in a closed
system [1].

1.4.1 Coulomb’s Law

To establish Coulomb’s law, the three following statements can be summarized:

1. There are two and only two kinds of electric charge, now known as positive or

negative.

2. Two point charges exert on each other forces that act along the line joining them

and are inversely proportional to the square of the distance between them.

3. These forces are also proportional to the product of the charges, are repulsive for

like charges, and are attractive for unlike charges.

The last two statements, with the first as preamble, all together, are known as

Coulomb’s law and for point charges may be concisely formulated in the vector

notation as:

~F1 ¼ Cu
q1q2
r212

~r12
r12

~r12 ¼ ~r1 �~r2

ð1:65aÞ
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where ~F1 is the force on charge q1,~r12 is the vector to charge q1 from charge q2, r12
is the magnitude of vector~r12, and Cu is a constant of proportionality about which is

defined as to be equal to 1 in adoption with Gaussian system of units. Figure 1.6 will

describe the vector ~r12 with respect to an arbitrary origin O.
In Fig. 1.6 vector~r12 is extending from the point at the tip of vector~r2 to the point

at the tip of the vector~r1 and clearly~r12 ¼ �~r21. Note that Coulomb’s law applies

to point charges, and in macroscopic sense, a “point charge” is one whose spatial

dimensions are very small compared with any other length pertinent to the problem

under consideration and that is why we use the term “point charge” in this sense.

In the MKS system, Coulomb’s law for the force between two point charges can

thus be written as:

~F1 ¼ 1

4πε0

q1q2
r212

~r12
r12

ð1:65bÞ

If more than two point charges are present, the mutual forces are determined by the

repeated application of Equations 1.65a and 1.65b. In particular, if a system of

N charges is considered, the force on the ith charge is given by:

~Fi ¼ qi
XN
i 6¼j

qj
4πε0

~rij
r3ij

~rij ¼ ~ri �~rj

ð1:66Þ

where the summation on the right-hand side of Equation 1.66 is extended over all of

the charges except the ith. Equation 1.66 is the superposition principle for forces,

which says that the total force acting on a body is the vector sum of the individual

forces that act on it. Note that in MKS unit, the value of Coulomb constant is:

C ¼ 9� 109Nm2=C2.

There are cases such as fully ionized plasma that we may need to describe a

charge distribution in terms of a charge density function; thus, it is defined as the

limit of charge per unit volume as the volume becomes infinitesimal. However, care

r2 O

r12
r1

Fig. 1.6 Vector ~r12,
extending between two

points
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must be taken in applying this kind of description to atomic problems, since in such

cases only small numbers of electrons are involved, and the process of taking the

limit is meaningless. Nevertheless, aside from atomic case, we may proceed as

though a segment of charges might be subdivided indefinitely; thus, we describe the

charge distribution by means of point functions.

A volume charge density is defined by:

ρ ¼ lim
ΔV!0

Δq
ΔV

ð1:67Þ

and a surface charge density is defined by:

σ ¼ lim
ΔS!0

Δq
ΔS

ð1:68Þ

From the above statements and what has been said about point charge q, it is evident
that ρ and σ are net charge, or excess charge, densities. It is worth to mention that in

typical solid materials, even a very large charge density ρ will involve a change in

the local electron density of only about one part 109.

Now that we have some concept of point charge and established Equations 1.65a,

1.65b, and 1.66, we extend our knowledge to a more general case. In this case, if the

charge is distributed through a volume V with density ρ, and on the surface S that

bounds the volume V with a surface density σ, then the force exerted by this charge
distribution on a point charge q located at ~r is obtained from Equation 1.66 by

replacing qj with ρjdυ
0
j or with σjda

0
j and processing to the limit as:

~Fq ¼ q

4πε0

ð
V

~r �~r0

~r �~r0
�� ��3 ρ ~r0

� �
dυ0

þ q

4πε0

ð
S

~r �~r0

~r �~r0
�� ��3 σ ~r0

� �
da0

ð1:69Þ

The variable ~r0 is used to locate a point within the charge distribution—that is,

playing the role of the source point ~rj in Equation 1.66 [1].

Equations 1.66 and 1.69 provide a ready means for obtaining an expression for

the electric field due to a given distribution of charge as it is presented in Fig. 1.7

here, and electric field is discussed in the next section.

It may appear that the first integral in Equation 1.69 will diverge if point~r should
fall inside the charge distribution, but that is not the case at all.

In Fig. 1.7, the vector ~r defines the observation point (i.e., field point), and ~r0

ranges over the entire charge distribution, including point charges.
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1.4.2 The Electric Field

Our first attempt to seek the electric field is for point charge for the sake of

simplicity. The electric field at a point is defined operationally as the limit of the

force on a test charge placed at the point to the charge of the test charge, and the

limit being taken as the magnitude of the test charge goes to zero. The customary

symbol for electric field in electromagnetic subject is ~E and no to be mistaken for

energy presentation, which is the case by default. Thus, we can write:

~E ¼ lim
q!0

~Fq

q
ð1:70Þ

The limiting process is included in the definition of electric field to ensure that the

test charge does not affect the charge distribution that produces ~E.
Using Fig. 1.7, we let the charge distribution consist of N point q1, q2, � � �, qN

located at the points ~r1, ~r2, � � �, ~rN , respectively, and a volume distribution of

charge specified by the charge density ρ ~r0
� �

in the volume V and a surface

distribution characterized by the surface charge density σ ~r0
� �

on the surface S. If

a test charge q is located at the point~r, it experiences force~Fgiven by the following

equation due to the given charge distribution:

V

O

q1

q2 q3

qN

r

r

r

rdu '

'

'

Fig. 1.7 Geometry of ~r, ~r0,
and ~r �~r0

22 1 Foundation of Electromagnetic Theory



~F ¼ q

4πε0

XN
i¼1

qi
~r �~ri

~r �~rij j3

þ q

4πε0

ð
V

~r �~r0

~r �~r0
�� ��3ρ ~r0

� �
dυ0

þ q

4πε0

ð
S

~r �~r0

~r �~r0
�� ��3σ ~r0

� �
da0

ð1:71Þ

In case of Equation 1.71, the electric field at the point~r is then the limit of the ratio

of this force to the test charge q. Since the ratio is independent of q, the electric field
at ~r is just:

~E ~rð Þ ¼ 1

4πε0

XN
i¼1

qi
~r �~ri

~r �~rij j3

þ 1

4πε0

ð
V

~r �~r0

~r �~r0
�� ��3ρ ~r0

� �
dυ0

þ 1

4πε0

ð
S

~r �~r0

~r �~r0
�� ��3σ ~r0

� �
da0

ð1:72Þ

Equation 1.72 is very general and in most cases, one or more of the terms will not be

needed.

In order to complete the electromagnetic foundation circle, we also quickly note

the general form of the potential energy associated with an arbitrary conservative

force ~F ~r0
� �

as the following form:

U ~rð Þ ¼ �
ð
ref:~r

~F ~r0
� � � d~r0 ð1:73Þ

where U ~rð Þ is the potential energy at ~r relative to the reference point at which the

potential energy is arbitrary taken to be zero. Proof is left to the reader by referring

to the book of Reitz et al. [1].

1.4.3 Gauss’s Law

One of the important relationships that exists between the integral of the normal

component of the electric field over a closed surface and the total charge distribu-

tion enclosed by the surface is Gauss’s law. To investigate that briefly here, we look
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at the electric field~E ~rð Þ; for a point charge~r q located at the origin, we can write the
following relation as before:

~E ~rð Þ ¼ q

4πε0

~r

r3
ð1:74Þ

Consider the surface integral of the normal component of this electric field over a

closed surface such that shown in Fig. 1.8 here that encloses the origin and

consequently the charge q; then we can write:

þ
S

~E � n̂ da ¼ q

4πε0

þ
S

~r � n̂
r3

da ð1:75Þ

The quantity ~r=rð Þ � n̂ da is the projection of da on a plane perpendicular to~r. This
projected area divided by r2 is the solid angle subtended by da, which is written in

dΩ. It is clear from Fig. 1.9 that the solid angle subtended by the da is the same as

the solid angle subtended by da0, an element of the surface area of the sphere S0

whose center is at the origin and whose radius is r0. It is then possible to write:

þ
S

~r � n̂
r3

da ¼
þ
S0

~r0 � n̂
r03

da0 ¼ 4π ð1:76Þ

which shows the following equation in the spherical case described above:þ
S

~E � n̂ da ¼ q

4πε0
4πð Þ ¼ q

ε0
ð1:77Þ

Figure 1.9 is illustrating the construction of the spherical surface S0 as an aid to

evaluation of the solid angle subtended by da. If q lies outside of S, it is clear from
Fig. 1.10 that S can be divided into two areas, S1 and S2, each of which subtends the
same solid angle at the charge q. For S2, however, the direction of the normal is

toward q, while for S1 it is away from q.

O

S

da

EnFig. 1.8 An imaginary

closed surface S including

point charge at the origin
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More details can be found in the reference by Reitz et al. [1], where readers need

to go to; however, in case several point charges q1, q2, � � �, qN are enclosed by the

surface S, then the total electric field is given by the first term of Equation 1.72.

Each charge subtends a full solid angle (4π); hence, Equation 1.77 becomes:

þ
S

~E � n̂ da ¼ 1

ε0

XN
i¼1

qi ð1:78Þ

Fig. 1.9 Construction of

the spherical surface S0

Fig. 1.10 Right-hand rule review
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The result in Equation 1.78 can be readily generalized to the case of a continuous

distribution of charge characterized by a charge density [1].

1.5 Solution of Electrostatic Problems

Briefly we mention and write equations for the solution to an electrostatic problem

which is straightforward for the case in which the charge distribution is everywhere

specified, for then, as we have illustrated so far. The potential and electric fields are

given as integral form over this charge distribution as:

φ ~rð Þ ¼ 1

4πε0

ð
dq0

~r �~r0
�� �� ð1:79Þ

~E ~rð Þ ¼ 1

4πε0

ð
~r �~r0
� �

dq0

~r �~r0
�� ��3 ð1:80Þ

However, many of the problems that we encountered in real practice are not of this

kind. If the charge distribution is not specified in advance, it may be necessary to

determine the electric field first, before the charge distribution can be calculated.

1.5.1 Poisson’s Equation

The only basic relationships we need here so far are developed in the preceding

sections; thus, for that matter, we first write the differential form of Gauss’s law as:

~∇ � ~E ¼ 1

ε0
ρ ð1:81Þ

Equation 1.81 in a purely electrostatic field ~E may be expressed as minus the

gradient of the potential φ:

~E ¼ �~∇φ ð1:82Þ

Combining Equations 1.81 and 1.82, we obtain the following relation as:

~∇ � ~∇φ ¼ � ρ

ε0
ð1:83aÞ

Using vector identity as single differential operator as ~∇ � ~∇ or∇2, which is called

the Laplacian, then we can express that the Laplacian is a scalar differential
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operator, and Equation 1.83a is a differential equation that is known as Poisson’s
equation and written as:

∇2φ ¼ � ρ

ε0
ð1:83bÞ

The Laplace operator for Poisson’s equation in rectangular, cylindrical, and spher-

ical coordinate is presented here as well.

Rectangular or Cartesian coordinate:

∇2φ�∂2φ

∂x2
þ ∂2φ

∂y2
þ ∂2φ

∂z2
¼ � ρ

ε0
ð1:84Þ

Cylindrical coordinate:

∇2φ�1

r

∂
∂r

r
∂φ
∂r

� 	
þ 1

r

∂2φ

∂θ
þ ∂2φ

∂z2
¼ � ρ

ε0
ð1:85Þ

Spherical coordinate:

∇2φ� 1

r2
∂
∂r

r2
∂φ
∂r

� 	
þ 1

r2 sin θ

∂
∂θ

sin θ
∂φ
∂θ

� 	
þ 1

r2 sin 2θ

∂2φ

∂ϕ2
¼ � ρ

ε0
ð1:86Þ

For the form of the Laplacian in other more complicated coordinated system, the

reader is referred to the reference such as any vector analysis or advanced calculus

books.

1.5.2 Laplace’s Equation

Electrostatic problems are involving conductors; all the charges are either found on

the surface of the conductors or in the form of fixed point charges. In these cases,

charge density ρ is zero at most points in space, and in the absence of charge

density, Poisson’s equation reduces to the simpler form as follows:

∇2φ ¼ 0 ð1:87Þ

Equation 1.87 is known as Laplace’s equation.
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1.6 Electrostatic Energy

From then on without further detail discussion and proof of different aspects of

electrostatic equation, we just write them down as a basic knowledge, and we leave

details to the readers to refer themselves to various subject books out in the open

market.

Therefore, to go on with the subject in hand, we express that, under static

condition, the entire energy of the charge system exists as potential energy, and

in this section we are particularly concerned with the potential energy that arises

from electrical interaction of the charges, the so-called electrostatic energy U.
We presented that the electrostatic energy U of a point charge is closely related

to the electrostatic potential φ at the position of the point charge ~r as per

Equation 1.73. In fact, if q is the magnitude of a particular point charge, then the

work done by the force on the charge when it moves from position A to position B is

given as:

Work ¼
ð B
A

~F � d~l ¼ q

ð B
A

~E � d~l

¼ �q

ð B
A

~∇φ � d~l ¼ �q φB � φAð Þ
ð1:88Þ

Here~Fhas been assumed to be only the electric forceq~Eat each point along the path
or the total work is finalized to:

W ¼ �q φB � φAð Þ ð1:89Þ

1.6.1 Potential Energy of a Group of Point Charges

The equation for potential energy of a group of point charges can be expressed as:

U ¼
Xm
j¼1

Wj ¼
Xm
j¼1

Xj�1

k¼1

qjqk
4πε0rjk

 !
ð1:90Þ

or in summary Equation 1.90 can be reduced to:

U ¼ 1

2

Xm
j¼1

Xm
k¼1

qjqk
4πε0rjk

ð1:91Þ

Note that on the second term of summation in Equation 1.91, where the prime is, the

term k ¼ j specifically needs to be excluded, and Equation 1.91 may be written in a

28 1 Foundation of Electromagnetic Theory



somewhat different way by noting that the final value of the potential φ at the jth
point charge due to the other charges of the system is:

φj ¼
Xm
k¼1

qk
4πε0rjk

ð1:92Þ

Thus, the electrostatic energy of the system is given as:

U ¼ 1

2

Xm
j¼1

qjφj ð1:93Þ

Proof of all the above equations is left to the readers.

1.6.2 Electrostatic Energy of a Charge Distribution

The electrostatic energy of an arbitrary charge distribution with volume density φ
and surface density can be expressed based on assembled charge distribution by

bringing in charge increments δq from a reference potential φA ¼ 0. If the charge

distribution is partly assembled and the potential at a particular point in the system

is φ0(x, y, z), then, from Equation 1.89, the work required to place δq at this point is

written as:

δW ¼ φ0 x, y, zð Þδq ð1:94Þ

In this equation the charge increment δqmay be added to a volume element located

at (x, y, z), so that δq ¼ δρΔυ, or may be added to a surface element at the point in

question, in which case δq ¼ δρΔa. The total electrostatic energy of the assembled

charge distribution is obtained by summing contributions of Equation 1.94.

Let us assume at any stage of the charging process, all charge densities will be at

the same fraction of their final values and represented by the symbol α, and if the

final values of the charge densities are given by the function φ(x, y, z) and σ(x, y,
z), then the charge densities at an arbitrary stage are αφ(x, y, z) and ασ(x, y, z).
Furthermore, if the increments in these densities are δρ ¼ φ x, y, zð Þdα and

δσ ¼ σ x, y, zð Þdα, then the total electrostatic energy, which is obtained by sum-

ming Equation 1.94, is given by:

U ¼
ð1
0

δd

ð
V

φ x, y, zð Þφ0 x, y, zð Þdυ

þ
ð1
0

δd

ð
S

σ x, y, zð Þφ0 x, y, zð Þda
ð1:95Þ

However, since all charges are at the same fraction, α is readily done and yields as:
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U ¼ 1

2

ð
V

ρ ~rð Þφ ~rð Þdυþ 1

2

ð
s

σ ~rð Þφ ~rð Þda ð1:96Þ

This equation provides the desired result for the energy of a charge distribution. If

all space is filled with a single dielectric medium except for certain conductors, the

potential is then given by:

φ ~rð Þ ¼ 1

4πε

ð
V

φ ~r0
� �

dυ0

~r �~r0
�� �� þ 1

4πε

ð
V

σ ~r0
� �

da0

~r �~r0
�� �� ð1:97Þ

Equations 1.96 and 1.97 are the generalization of Equations 1.92 and 1.93 for point

charges. The latter can be recovered as a special case letting the following relation-

ships as:

ρ ~rð Þ ¼
Xm
j¼1

qjδ ~r �~rj
� �

ρ ~r0
� � ¼Xm

k¼1

0
qkδ ~r �~rkð Þ

ð1:98Þ

where again, the prime on the second summation in Equation 1.98 is an indication

of the term k ¼ j which is excluded when the double sum is constructed. Note that

when ρ is a continuous distribution, the vanishing of the denominator in Equa-

tion 1.97 does not cause the integral to diverge, and it is unnecessary to exclude the

point ~r0 ¼ ~r.
The last integral involves, in part, integration over the surface of the conductor

of interest; however, since a conductor is an equipotential region, each of these

integrations may be done as:

1

2

ð
conductor j

σφda ¼ 1

2
Qjφj ð1:99Þ

where Qj is the charge on the jth conductor.

Equation 1.96 for electrostatic energy of a charge distribution, which includes a
conductor, then becomes:

U ¼ 1

2

ð
V

ρφdυþ 1

2

ð
S0
σφdaþ 1

2

X
j

Qjφj ð1:100Þ

where in Equation 1.100, the last summation is over all conductors and the surface

integral is restricted to nonconducting surfaces.

Furthermore, in many practical problems of interest, all of the charges reside on

the surfaces of the conductor. In these circumstances Equation 1.100 reduces to the

following form as:
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U ¼ 1

2

X
j

Qjφj ð1:101Þ

Equation 1.101 is derived based on starting with uncharged macroscopic conduc-

tors that were gradually charged by bringing in charge increments. Thus, the energy

is described by Equation 1.101 including both interaction energy between different

conductors and the self-energies of the charge on each individual conductor.

1.6.3 Forces and Torques

Thus far, we have developed to some extent a number of alternative procedures for

calculating the electrostatic energy of a charge system. We now take an attempt to

establish the force on one of the objects in the charge system which may be

calculated from knowledge of this electrostatic energy.

If we dealing with an isolated system composed of conductors, point charges,

and dielectrics and we all one of these items to make a small displacement d~r under

the influence of the electrical force ~F acting upon it. The work performed by the

electrical force on the system in these circumstances is:

dW ¼ ~F � d~r ¼ Fxdxþ Fydyþ Fzdz ð1:102Þ

Since we assume the system is isolated, this work is done at the expense of the

electrostatic energy U. In other words, according to Equation 1.88, we can write:

dW ¼ �dU ð1:103Þ

Combining Equations 1.102 and 1.103, the result is:

�dU ¼ Fxdxþ Fydyþ Fzdz ð1:104Þ

and

Fx ¼ �∂U
∂x

Fy ¼ �∂U
∂y

Fz ¼ �∂U
∂z

ð1:105Þ

Therefore, sets of Equation 1.105 indicate that ~F is a conservative force and

~F ¼ �~∇U. If the object under consideration is constrained to move in such a
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way that it rotates about an axis, then Equation 1.102 may be replaced by the

following equation as:

dW ¼ ~τ � d~θ ð1:106Þ

where ~τ is the electrical torque and d~θ is the differential angular displacement.

Writing ~τ and d~θ in terms of their components, (τ1, τ2, τ2) and (dθ1, dθ2, dθ3), and
combining Equations 1.103 and 1.106, we obtain the following relationships:

τ1 ¼ � ∂U
∂θ1

τ2 ¼ � ∂U
∂θ2

τ3 ¼ � ∂U
∂θ3

ð1:107Þ

This proves that our goal has been achieved and we can write:

Fx ¼ � ∂U
∂x

� �
Q

τ1 ¼ � ∂U
∂θ1

� �
Q

8<
: ð1:108aÞ

Fy ¼ � ∂U
∂y

� �
Q

τ2 ¼ � ∂U
∂θ2

� �
Q

8><
>: ð1:108bÞ

Fz ¼ � ∂U
∂x

� �
Q

τ3 ¼ � ∂U
∂θ3

� �
Q

8<
: ð1:108cÞ

where the subscript Q has been added to denote that the system is isolated, and

hence its total charge remains constant during the displacement d~r or d~θ.
Now, we are at the stage that we need to talk electromagnetic force that is known

as Lorentz force here.

The electromagnetic field exerts the following force (often called the Lorentz

force) on charged particles:

~F ¼ q~Eþ q~v� ~B ð1:109Þ

where vector~F is the force that a particle with charge q experiences,~E is the electric

field at the location of the particle, v is the velocity of the particle, and ~B is the

magnetic field at the location of the particle.

The above equation illustrates that the Lorentz force is the sum of two vectors.

One is the cross product of the velocity and magnetic field vectors. Based on the
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properties of the cross product, this produces a vector that is perpendicular to both

the velocity and magnetic field vectors. The other vector is in the same direction as

the electric field. The sum of these two vectors is the Lorentz force.

Therefore, in the absence of a magnetic field, the force is in the direction of the

electric field, and the magnitude of the force is dependent on the value of the charge

and the intensity of the electric field. In the absence of an electric field, the force is

perpendicular to the velocity of the particle and the direction of the magnetic field.

If both electric and magnetic fields are present, the Lorentz force is the sum of both

of these vectors.

Therefore, in summary we can express that the classical theory of electrody-

namics is built upon Maxwell’s equations and the concepts of electromagnetic field,

force, energy, and momentum, which are intimately tied together by Poynting’s

theorem and the Lorentz force law. Whereas Maxwell’s macroscopic equations

relate the electric and magnetic fields to their material sources (i.e., charge, current,

polarization, and magnetization), Poynting’s theorem governs the flow of electro-

magnetic energy and its exchange between fields and material media, while the

Lorentz law regulates the back-and-forth transfer of momentum between the media

and the fields. As it turns out, an alternative force law, first proposed in 1908 by

Einstein and Laub, exists that is consistent with Maxwell’s macroscopic equations

and complies with the conservation laws as well as with the requirements of special

relativity. While the Lorentz law requires the introduction of hidden energy and

hidden momentum in situations where an electric field acts on a magnetic material,

the Einstein-Laub formulation of electromagnetic force and torque does not invoke

hidden entities under such circumstances. Moreover, the total force and the total

torque exerted by electromagnetic fields on any given object turn out to be inde-

pendent of whether force and torque densities are evaluated using the Lorentz law

or in accordance with the Einstein-Laub formulas. Hidden entities aside, the two

formulations differ only in their predicted force and torque distributions throughout

the material media. Such differences in distribution are occasionally measurable

and could serve as a guide in deciding which formulation, if either, corresponds to

physical reality.

Furthermore, to have some general idea about Poynting’s theorem, we can say

that, in electrodynamics, Poynting’s theorem is a statement of conservation of

energy for the electromagnetic field. Moreover, it is in the form of a partial

differential equation, due to the British physicist John Henry Poynting. Poynting’s

theorem is analogous to the work-energy theorem in classical mechanics, and

mathematically similar to the continuity equation, because it relates the energy

stored in the electromagnetic field to the work done on a charge distribution (i.e., an

electrically charged object), through energy flux. A detail of deriving this theorem

is beyond the scope of this book and we leave to the readers to refer to some other

classical electrodynamics books.

However, in general we can say that this theorem is an energy balance and the

following statement does apply:
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The rate of energy transfer (per unit volume) from a region of space equals the rate of
work done on a charge distribution plus the energy flux leaving that region.

A second statement can also explain the theorem—“The decrease in the elec-

tromagnetic energy per unit time in a certain volume is equal to the sum of work

done by the field forces and the net outward flux per unit time.”

Mathematically, the above statement can be expressed and is summarized in

differential form as below:

�∂u
∂t

¼ ~∇ � ~Sþ ~J � ~E ð1:110Þ

where ~∇ � ~S is the divergence of the Poynting vector or energy flow and~J � ~E is the

rate at which the fields do work on a charged object, (~Jf is the free current density

corresponding to the motion of charge, and ~E is the electric field and • is the dot

product). The energy density u is given by:

u ¼ 1

2
~E � ~Dþ ~B � ~H� � ð1:111Þ

In this equation ~D is the electric displacement field, ~B is the magnetic flux density,

and ~H is the magnetic field strength. Since only some of the charges are free to

move, and ~D and ~H fields exclude the “bound” charges and currents in the charge

distribution (by their definition), one obtains the free current density ~Jf in

Poynting’s theorem, rather than the total current density ~J.
The integral form of Poynting’s theorem can be established via utilization of

divergence theorem expressed before as:

� ∂
∂t

ð
V

udV ¼ ∯∂V
~S � d~Aþ

ð
V

~J � ~EdV ð1:112Þ

where ∂V is the boundary of volume V and the shape of the volume is arbitrary, but

fixed for the calculation.

In summary of all past couple section in this chapter we can in perspectives that

are presented by Fig. 1.10, below

1.7 Maxwell’s Equations

In order to understand the physics of plasma and associated subject such as

magnetohydrodynamic equations that are known as MHD in particular encounter-

ing confinement of plasma as a way of driving fusion energy, we need to have some

understanding of the sets of equations that are known as Maxwell’s equations.
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We are at the point and ready to introduce the keynote of Maxwell’s electro-

magnetic theory as a brief course and what is so-called displacement current. We

shall now write all classical, i.e., non-quantum, electromagnetic phenomena that are

governed by Maxwell’s equations, which take the form as follows:

~∇ � ~E ¼ ρ

ε0
Also known as Coulomb0s Law ð1:113Þ

~∇ � ~B ¼ 0 Also known as Gauss0s Law ð1:114Þ

~∇ � ~E ¼ �∂~B
∂t

Also known as Faraday0s Law ð1:115Þ

~∇ � ~B ¼ μ0~J þ μ0ε0
∂~E
∂t

Also known as Ampere0s Law ð1:116Þ

All the quantities in the above equations are defined as before. Here,~E ~r; tð Þ,~B ~r; tð Þ,
ρ ~r; tð Þ, and ~J ~r; tð Þ represent the electric field strength, magnetic field strength,

electric charge density, and electric current density, respectively. Moreover, ε0
¼ 8:8542� 10�2 C2N�1 m�2 is the electric permittivity of free space, whereas μ0
¼ 4π � 10�7 NA�2 is the magnetic permeability of free space. As is well known,
Equation 1.113 is equivalent to Coulomb’s law for the electric fields generated by

point charges. Equation 1.114 is equivalent to the statement that magnetic mono-

poles do not exist, which implies that magnetic field lines can never begin or end.

Equation 1.115 is equivalent to Faraday’s law of electromagnetic induction.
Finally, Equation 1.116 is equivalent to Biot-Savart’s law for the magnetic fields

generated by line currents and augmented by the induction of magnetic fields by

changing electric fields.

Maxwell’s equations are linear in nature. In other words, if ρ ! αρ and~J ! α~J,
where α is an arbitrary spatial and temporal constant, then it is clear from Equa-

tions 1.113 to 1.116 that ~E ! α~E and ~B ! α~B. The linearity of Maxwell’s

equations account for the well-known fact that the electric fields generated by

point charges as well as the magnetic fields generated by line currents are

superposable.

Taking the divergence of Equation 1.113, and combining the resulting expres-

sion with Equation 1.113, we obtain:

∂ρ
∂t

þ ~∇ � ~J ¼ 0 ð1:117Þ

In integral form, making use of the divergence theorem, this equation becomes:

d

dt

ð
V

ρdV þ
ð
S

~J � d~S ¼ 0 ð1:118Þ
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where V is a fixed volume bounded by a surface S. The volume integral represents

the net electric charge contained within the volume, whereas the surface integral

represents the outward flux of charge across the bounding surface. The previous

equation, which states that the net rate of change of the charge contained within the

volume V is equal to minus the net flux of charge across the bounding surface S, is
clearly a statement of the conservation of electric charge. Thus, Equation 1.117 is

the differential form of this conservation equation.

As is well known, a point electric qmoving with velocity~v in the presence of an

electric field ~E and a magnetic field ~B experiences a force that is known as Lorentz

force and was expressed by Equation 1.109 as before. Likewise, distribution of

charge density ρ and current density ~J experiences a force density that is given as:

~f ¼ ρ~Eþ ~J � ~B ð1:119Þ

This is the extent of our presentation for Maxwell’s equations within this book;

further deviation of these equations can be found in any classical electrodynamics

books out there [1].

1.8 Debye Length

Debye length is an important aspect of plasma physics, and it is a quantity which is

a measure of the shielding distance or thickness of the charged particle cloud also

called sheath in plasma. One of the most significant properties of plasma is its

tendency to maintain electrically neutral—that is, its tendency to balance positive

(ion) and negative (electron) space charge in each macroscopic volume element. A

slight imbalance in the space charge densities gives rise to strong electrostatic

forces that act, wherever possible, in the direction of restoring neutrality. On the

other hand, if plasma is deliberately subjected to an external electric field, the space

charge densities will adjust themselves so that the major part of the plasma is

shielded from the field.

To carry out this subject further, we can pay our attention to Poisson’s equation

and seek a solution for that equation in case of a point chargeþQ that is introduced

into a plasma and thereby subjecting the plasma to an electric field for simplicity of

analyses. Under these conditions, negative electrons existing in plasma find it

energetically tendency to move closer to this positive charge favorably, whereas

positive ions tend to move away from it. Under equilibrium conditions, the prob-

ability of finding a charged particle in a particular region of potential energy U is

proportional to the Boltzmann factor as exp �U=kTð Þ. Thus, the electron density ne
is given by the following equation as:
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ne ¼ n0exp e
φ� φ0ð Þ
kT

� 	
ð1:120Þ

For Equation 1.120, the following quantities are in order and they are:

φ¼ the local potential

φ0¼ the reference potential or in our case plasma potential

T¼ the absolute temperature of the plasma

k¼ the Boltzmann constant

n0¼ the electron density in regions where φ ¼ φ0

If n0 is also the positive ion density in regions of potential φ0, then positive ion

density ni is also given by the similar relation as Equation 1.120 and that is:

ni ¼ n0exp �e
φ� φ0ð Þ
kT

� 	
ð1:121Þ

Now that we have set up the initial conditions, first we attempt to derive Debye

length by means of Poisson’s equation and then show its use in plasma physics and

as criteria to identify a definition that plasmas fall into it.

A particular solution of Poisson’s equation for potential φ is carried out here,

from one-dimensional spherical symmetry around the radius coordinate of r, and
we start with the following differential equation as:

1

r2
d

dr
r2
dφ

dr

� 	
¼ � 1

ε0
nie� neeð Þ ¼ 2n0e

ε0
sinh e

φ� φ0ð Þ
kT

� 	
ð1:122Þ

The differential Equation 1.122 is nonlinear and hence must be integrated numer-

ically. On the other hand, an approximate solution to Equation 1.122, which is

rigorous at high-temperature plasma, is adequate for these purposes here. If

kT > eφ, then sinh eφ=kTð Þ ¼ eφ=kT, and the differential Equation 1.122 reduces

to the following and simple form as:

1

r2
d

dr
r2
dφ

dr

� 	
¼ 2n0e

2

ε0kT
φ� φ0ð Þ ð1:123Þ

The solution to this equation is found to be (readers can carry out the solution; as

hint use Taylor series expansion for eφ=kTj j � 1 to drop the second order and

higher terms off in expansion of eφ=kT þ 1
2
eφ=kTð Þ2 þ � � �):

φ ¼ φ0 þ
Q

4πε0r
exp �r

h

� �
ð1:124Þ

where r is the distance from the point charge þQ and λD, the Debye shielding

distance or Debye length, is given by:
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λD ¼ ε0kT

2n0e2

� 	
ð1:125Þ

Thus, the redistribution of electrons and ions in the gas is such as to screen outþQ
completely in a distance of a few λD.

The quantity λD as we have said before is called the Debye length and is the

measure of the shielding or thickness of the charge cloud, which is also known as

sheath. Note that as the density increases, λD decreases, as one would expect, since

each layer of plasma contains more electrons. In addition, λD increases with

increasing kT. Without thermal agitation, the charge cloud would collapse to an

infinitely thin layer. Last but not least, it is the electron temperature which is used in

the definition of λD and that is T ¼ Te, because the electrons are being more mobile

than their counterpart ions. In general shielding do the moving so as to create a

surplus or deficit of negative charge. Only in special situations is this not true. The

following are set of useful forms of Equation 1.125 and they are as follows:

λD ¼ 69 Te=nð Þ1=2m Te in 0K ð1:126aÞ
λD ¼ 7430 Te=nð Þ1=2m kTe in eV ð1:126bÞ

1.9 Physics of Plasmas

An ionized gas is called a plasma if the Debye length, λD, is small compared with

other physical dimensions of interest. This restriction is not severe so long as

ionization of the gas is appreciable. Other conditions that will make an ionized

gas fall in the category of plasma can be described in the following statements.

One criterion for an ionized gas to be called plasma is that it needs to be dense

enough that λD is much smaller than the dimension L of a system, and if this

dimension is much larger than λD, in other words λD � L, then local concentrations
of charge arise or external potentials are introduced into the system. The system

could be a magnetron or klystron.

The phenomenon of Debye shielding also occurs—in modified form—in single-

species systems, such as the electron streams in klystrons and magnetrons or the

proton beams in a cyclotron. Under these situations, any local bunching of particles

causes a large unshielded electric field unless the density is extremely low, which is

more often is the case.

The Debye shielding picture that we have painted above is valid only if there are

enough particles in charge cloud or sheath. Thus, it is clear that if there is only one

or two particles in the sheath region, Debye shielding would not be a statistically

valid concept from the viewpoint of electromagnetic physics. Using Equation 1.120

in a general form, we can compute the number of ND particles in a Debye sphere as:
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ND ¼ n
4

3
πλ3D ¼ 1:38� 106T3=2=n1=2 T in K ð1:127Þ

In addition to λD � L, “collective behavior” requires [2]:

ND � 1 ð1:128Þ

Furthermore, to qualify an ionized gas as plasma, we can define more criteria. The

two conditions above were given that an ionized gas must satisfy to be a plasma. A

third condition has to do with collisions. The ionized gas in an airplane’s jet

exhaust, for example, does not qualify as a plasma because the charged particles

collide so frequently with neutral atoms that their motion is controlled by ordinary

hydrodynamic forces rather than by electromagnetic forces [2].

If ω is the frequency of typical plasma oscillations and τ is the mean time

between collisions with neutral atoms, we require ωτ > 1 for the gas to behave

like plasma rather than a neutral gas. Therefore, the three conditions a plasma must

satisfy are therefore:

1.
λD � L

2.
ND � 1

3.
ωτ > 1

As you can see, the above three conditions are necessary for an ionized gas to be

called plasma

1.10 Fluid Description of Plasma

Before paying our attention and departing for the actual derivation of the magne-

tohydrodynamics (MHD) equation, which is the topic of our next section in this

chapter, it is helpful to discuss briefly some general concepts of fluid dynamics.

Fluid equations are probably the most widely used equations for the description

of inhomogeneous plasmas. While the phase fluid, which is governed by the

Boltzmann equation, represents the first example, many applications do not require

the precise velocity distribution at any point in space.

Ordinary fluid equations for gases and plasmas can be obtained from the

Boltzmann equation or can be derived using properties like the conservation of

mass, momentum, and energy of the fluid. For the following chapter, we will derive

a single set of ordinary fluid equations for a plasma and examine properties such an

equilibrium and waves for these equations.
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To further investigate the fluid aspect of plasma, we look at the equations of

kinetic theory and taking a fundamental equation such as f ~r; ~v; tð Þ under consider-
ation, which satisfies the Boltzmann equation as follows:

∂f ~r; ~v; tð Þ
∂t

þ ~v � ~∇f ~r; ~v; tð Þ þ
~F

m
� ∂f ~r; ~v; tð Þ

∂~v
¼ ∂f ~r; ~v; tð Þ

∂t

� 	
c

ð1:129Þ

In Equation 1.129, ~F is the force acting on the particles, and ∂f ~r; ~v; tð Þ=∂tð Þc is the
time rate of change of f ~r; ~v; tð Þ due to collisions. The symbol ~∇, as usual, is for the

gradient in (x, y, z) space. The symbol ∂=∂~v or ~∇~v stands for the gradient in

velocity space and it is written as:

∂
∂~v

¼ x̂
∂
∂vx

þ ŷ
∂
∂vy

þ ẑ
∂
∂vz

ð1:130Þ

The Boltzmann equation becomes more meaningful if one should remember that

function f ~r; ~v; tð Þ is a function of seven independent variables, which include three

for space (x, y, z), three for components of velocity (vx, vy, vz), and the seventh one

that accounts for time t; therefore, we can expand Equation 1.129 to all its seven

variables and write down:

df

dt
¼ ∂f

∂t
þ ∂f
∂x

dx

dt
þ ∂f
∂y

dy

dt
þ ∂f

∂z
dz

dt
þ ∂f
∂vx

dvx

dt
þ ∂f
∂vy

dvy

dt
þ ∂f
∂vz

dvz

dt
ð1:131Þ

Here, ∂f=∂t is the explicit dependence on time. The next three terms are just

~v � ~∇f ~r; ~v; tð Þ. With the help of Newton’s third law, we can write:

m
d~v

dt
¼ ~F ð1:132Þ

As it can be seen from Equation 1.132, the last three terms are recognized as
~F=m
� � � ∂f=∂~vð Þ.

Additionally, the total derivative term presented by df/dt can be interpreted as the
rate of change as seen in a frame moving with the particles. However, here we need

to be concerned with particles to be moving in six-dimensional space ~r; ~vð Þ, i.e.,
three in (x, y, z) direction and the associate three components of velocity (vx, vy, vz)

in their corresponding directions as well.

df/dt is the convective derivative in phase space and the Boltzmann equation

simply says that df/dt is zero, unless there are collisions. This should be true and can
be seen from the one-dimensional example shown in Fig. 1.11 here. Figure 1.11

illustrates a group of points in phase space, representing the position and velocity

coordinates of a group of particles, and retains the same phase-space density as it

moves with time.
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Taking Fig. 1.11 under consideration and assuming the group of particles in an

infinitesimal element dx dvx at point A that all have velocity vx and position x, then
the density of particles in this phase space is just f(x, vx). As the time passes, these

particles will move to a different position in x because of their velocity vx and will

change their velocity due to the result of the force acting on them.

Since the forces depend on x and vx only, all the particles at A will be accelerated

in the same amount. After a time t, all the particles that will arrive at B will be the

same as at A. If there exist any collusions, then the particles can be scattered and

f ~r; ~v; tð Þ can be changed by the term ∂f ~r; ~v; tð Þ=∂tð Þc. In sufficiently hot plasma,

collision can be neglected, and furthermore, if the force ~F is entirely electromag-

netic, Equation 1.129 takes the speed form:

∂f
∂t

þ ~v � ~∇f þ q

m
~Eþ ~v� ~B
� � � ∂f

∂~v
¼ 0 ð1:133Þ

Equation 1.133 is representing the Vlasov equation, and because of its comparative

simplicity, this is the equation that is most commonly studied in kinetic theory. If

there exist collisions with neutral atoms, then the collision term in Equation 1.129

can be approximated to:

∂f ~r; ~v; tð Þ
∂t

� 	
c

¼ f n ~r; ~v; tð Þ � f ~r; ~v; tð Þ
τ

ð1:134Þ

where f n ~r; ~v; tð Þ is the distribution function of the neutral atoms, and τ is a constant
collision time. This equation is called Krook collision term.

The fluid equation of motion including collisions for any species is given by the

following relation:

Fig. 1.11 Illustration of

group points in phase space
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mn
d~v

dt
¼ mn

∂~v
∂t

þ ~v � ~∇Þ~v
� i

¼ �en~E�∇ρ� mnv~v



ð1:135Þ

where the sign� is indication of the sign of the charge and v is generally called the
collision frequency of plasma particles and is written as v ¼ nnσv, with σ being the

cross-sectional area and v is the particle velocity in a Maxwellian distribution and

nn is number neutral atoms per m3 in slab of area A and thickness dx as illustrated in
Fig. 1.12 here.

It is the kinetic generalization of the collision term in Equation 1.135. When

there are Coulomb collisions, Equation 1.129 can be approximated by:

df

dt
¼ � ∂

∂~v
� f ∇~vh ið Þ1

2

∂2

∂~v∂~v
: f ∇~v∇~vh ið Þ ð1:136Þ

Equation 1.136 is called the Fokker-Plank equation and it takes into account binary

Coulomb collisions only [1].

1.11 MHD

Magnetohydrodynamics (MHD) describes the “slow” evolution of an electrically

conducting fluid—most often a plasma consisting of electrons and protons (perhaps

seasoned sparingly with other positive ions). In MHD, “slow” means evolution on

time scales longer than those on which individual particles are important or on

which the electrons and ions might evolve independently of one another. Briefly we

can say that MHD falls in the following descriptions as:

• MHD stands for magnetohydrodynamics.

• MHD is a simple, self-consistent fluid description of a fusion plasma.

• Its main application involves the macroscopic equilibrium and stability of a

plasma.

Basically MHD can be described as coupling of fluid dynamics equations with

Maxwell’s equations which results in MHD equations, and together these sets of

equation are often used to describe the equilibrium state of the plasma. MHD can

Fig. 1.12 Illustration of the

definition of cross section
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also be used to derive plasma waves, but it is considerably less accurate than the

two-fluid equations we are familiar with and have used in our fluid mechanics

knowledge.

Moreover, to define the plasma equilibrium and stability, we can categorize the

definition into the following format as well and they are:

• Why separate the macroscopic behavior into two pieces?

• Even though MHD is simple, it still involves nonlinear 3D þ time equations.

• This is tough to solve.

• Separation simplifies the problem.

• Equilibrium requires 2D nonlinear time independent.

• Stability requires 3D þ time, but is linear.

• This enormously simplifies the analysis.

We need to understand the idea behind the plasma equilibrium, so it allows in

case of Magnetic Confinement Fusion (MCF) to design a magnet system such as the

p in steady-state force balance. So far tokamak machines are the best design to

demonstrate such equilibrium in plasma that we are looking for the purpose of

MCF. However, the spherical torus is another option and yet the stellarator is

another best option, and each can provide force balance for a reasonably high

plasma pressure.

Stability in plasma can be depicted if Fig. 1.13 and in general a plasma

equilibrium may be stable or unstable. Naturally from both words of expression,

we can tell that stability is good and instability is bad in plasma confinement.

However, effects of an MHD instability can be summarized as follows:

• Usually disastrous.

• Plasma moves and crashes into the wall.

• No more fusion.

• No more wall (in a reactor).

• This is known as a major disruption.

Fig. 1.13 Examples of

stability
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The job of MHD is to find magnetic geometries that stably confine high-pressure

plasmas; large amount of theoretical and computational work has been done and

well tested in experiments. The claim is that some say there is nothing left to do in

fusion MHD based on the fact that the theory is essentially complete and compu-

tational tools are readily available and used routinely in experiments.

Although there is some truth in this view, however, still there are major unsolved

MHD problems that need attention.

Historically, the MHD equations have been used extensively by astrophysicists

working in cosmic electrodynamics, by hydrodynamicists working on MHD energy

conversion, and by fusion scientist and theorists working with complicated mag-

netic geometries.
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Chapter 2

Principles of Plasma Physics

Physics of plasmas are a special class of gases made up of large number of electrons

and ionized atoms and molecules, in addition to neutral atoms and molecules as are

present in a non-ionized or so-called normal gas. Although by far most of the

universe is ionized and is therefore in a plasma state, on our planet plasmas have to

be generated by special processes and under special conditions. Since human got to

know fire and thunderstorm caused lightning in the sky and the aurora borealis, we

have been living in a bubble of essentially non-ionized gas in the midst of an

otherwise ionized environment. The physics of plasma is a field in which knowl-

edge is expanding rapidly, in particular a means of producing what is so known as

source generating clean energy via either magnetic confinement or inertial confine-

ment. The growing science of plasmas excites lively interest in many people with

various levels of training.

2.1 Introduction

Given the complexity of plasma behavior, the field of plasma physics is best

described as a web of overlapping models, each based on a set of assumptions

and approximations that make a limited range of behavior analytically and compu-

tationally tractable.

A conceptual view of the hierarchy of plasma models/approaches to plasma

behavior that will be covered in this text is shown in Fig. 2.1 here. We will begin

with the determination of individual particle trajectories in the presence of electric

and magnetic fields.

Subsequently, it will be shown that the large number of charged particles in

plasma facilitates the use of statistical techniques such as plasma kinetic theory,

where the plasma is described by a velocity-space distribution function. Quite

often, the kinetic theory approach retains more information than we really want
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about a plasma, and a fluid approach is better suited, in which only macroscopic

variables (e.g., density, temperature, and pressure) are kept.

The combination of fluid theory with Maxwell’s equations forms the basis of the

field of magnetohydrodynamics (MHD), which is often used to describe the bulk

properties and collective behavior of plasmas. The remainder of this chapter

reviews important physical concepts and introduces basic properties of plasmas.

We have all learned from our high school science that matter appears in three

states, namely:

1. Solid

2. Liquid

3. Gaseous

However, in recent years, in particular after explosion of the thermonuclear

weapon, scientists have paid more and more attention to the energy release control

from such weapon as a new source of energy for our day-to-day use. Thus, their

quest for new source of energy in a clean way (i.e., different than nuclear fission or

coaled power plants) has taken them into different directions. This new direction

has been toward controlled thermonuclear reactors, where deuterium (D) and

tritium (T) fuse together to produce heavier nuclei such as helium and to liberate

energy that can be found in our galaxy at the surface of the terrestrial universe.

Therefore, for that reason they have looked into properties of matter at fourth and

unique state, which is called plasma.
The higher the temperature, the more freedom the constituent particles of

material experience.

In solid state of matter, the atoms and molecules are subject to strict solid and

continuum mechanics discipline and are constructed to rigid order. In liquid form,

matter can move, but their freedom is limited. However, at the stage of gaseous,

they can move freely, and from the viewpoint of quantum mechanics laws, inside

the atoms, the electrons perform a harmonic motion over their orbits.

However, matter in plasma stage is highly ionized and the electrons are liberated

from atoms and acquire complete freedom of motion. Although plasma is often

considered to be the fourth state of matter, it has many properties in common with

the gaseous state. Meanwhile, the plasma is a fully ionized gas in which the long

Plasma phenomena

Multiple fluids

Single-particle
motion

Distribution
function

Boltzmann
equation

Moments of Boltzmann
equation

Single fluid
(MHD)

Fig. 2.1 Hierarchy of

approach to plasma

phenomena
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range of Coulomb forces gives rise to collective interaction effects, resembling a

fluid with a density higher than that of a gas.

In its most general concept, plasma is any state of matter which contains

sufficient free, charged particles for its dynamical behavior to be dominated by

electromagnetic forces. Since atomic nuclei are positively charged, when two

nuclei are brought together as a preliminary to combination or fusion, there is an

increasing force of electrostatic repulsion of their positive charges, which is

described by Coulomb and defined as Coulomb force and results in some barrier

that is known as the Coulomb barrier.

In the fusion of light elements to form heavier ones, the nuclei (which carry

positive electrical charge) must be forced close enough together to cause them to

fuse into a single heavier nucleus. However, at a certain distance apart, the short-

range nuclear attractive forces just exceed the long-range forces of repulsion, so the

above fusion of the light elements becomes possible. The variation in the potential
energy V(r) of the system of two nuclei, with their distance r apart, is shown in

Fig. 2.2 here.

Analyses of Fig. 2.2 indicate that a negative slope of potential energy curve

presents net repulsion, whereas a positive slope implies net attraction. According to

classical electromagnetic theory, the energy which must be supplied to the nuclei to

surmount the Coulomb barrier, which is the amount of required energy to overcome

the electrostatic repulsion so that fusion reaction can take place, is given by:

V rð Þ ¼ Z1Z2e
2

R0

ð2:1Þ

where

Coulomb
Barrier

R
ep
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A
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0

V(r) = Z1Z2e
2/R0

R0
rDISTANCE BETWEEN NUCLEI

Coulomb barrier for charged-particle reactions

Fig. 2.2 Variation of the Coulomb potential energy with distance between nuclei
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V rð Þ ¼ Potential energy to surmount Coulomb barrier

Z1 ¼ Atomic number of nuclei element 1, carrying electric charge

Z2 ¼ Atomic number of nuclei element 2, carrying electric charge

e ¼ Unit charge or Proton charge

R0 ¼ Distance between the centers of element 1 and 2 at which the

attractiveforces become dominant

As it was stated in the previous text, Fig. 2.2 indicates that the force between nuclei

is repulsive until a very small distance separates them and then it rapidly becomes

very attractive. Therefore, in order to surmount the Coulomb barrier and bring the

nuclei close together where the strong attractive forces can be felt, the kinetic

energy of the particles must be as high as the top of the Coulomb barrier.

In reality, effects associated with quantummechanics help the situation. Because

of what is termed as the Heisenberg uncertainty principle, even if the particles do

not have enough energy to pass over the barrier, there is a very small probability

that the particles will pass through the barrier. This is called barrier penetration or

tunneling effect and is the means by which many such reactions take place in stars

or terrestrial universe. Nevertheless, because this process happens with very small

probability, the Coulomb barrier represents a strong hindrance to nuclear reactions

in stars. Further discussion for barrier penetration can be found in the next section.

The key to initiating a fusion reaction is for the nuclei that are to fuse to collide at

very high velocities, thus driving them close enough together for the strong (but

very short-ranged) nuclear forces to overcome the electrical repulsion between

them. In stars, the temperature and the density at the center of the star govern the

probability of this happening.

For light nuclei, which are of interest for controlled thermonuclear fusion

reactions, R0 may be taken as approximately equal to a nuclear diameter, i.e., 5� 1

0�13 em, and since e is 4:80� 10�10 esu (statcoulomb), it follows from Equation 2.1

that:

V rð Þ ¼ Z1Z2e
2

R0

¼ 4:80� 10�10
� �2

Z1Z2

5� 10�13

¼ 4:6� 10�7Z1Z2

¼ 0:28Z1Z2 MeV

ð2:2Þ

where 1 MeV (million electron volts) is equivalent to 1.60� 10�6 erg.

It is seen from Equation 2.2 that the energy within the nuclei must be acquired

before they can be combined, increasing with the atomic numbers Z1 and Z2, and
even for reactions among the isotopes of hydrogen, namely, deuterium (D) and
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tritium (H), for which Z1 ¼ Z2 ¼ 1, the minimum energy, according to classical

theory, is about 0.28 MeV. Even larger energies should be reactions involving

nuclei of higher atomic number because of the increased electrostatic repulsion.

Although energies of the order of magnitude indicated by Equation 2.2 must be

supplied to nuclei to cause them to combine fairly rapidly, experiments made with

accelerated nuclei have shown that nuclear reactions can take place at detectable

rates even when the energies are considerably below those corresponding to the top

of the Coulomb barrier.

In other words, we cannot determine the threshold energy, by the maximum

electrostatic repulsion of the interacting nuclei, below which the fusion reaction

will not occur. Such behavior, which cannot be explained by way of classical

mechanics, however, could be interpreted by means of wave mechanics [1].

2.2 Barrier Penetration

Classical physics reveals that a particle of energy E less than the heightU0 of barrier

could not penetrate because the region inside the barrier is classically forbidden.

However, the wave function associated with a free particle must be continuous at

the barrier and will show an exponential decay inside the barrier. The wave function

must also be continuous on the far side of the barrier, so there is a finite probability

that the particle will tunnel through the barrier (see Fig. 2.3).

A free particle wave function in classical quantum mechanics is described as

particle approaches the barrier. When it reaches the barrier, it must satisfy the

Schr€odinger equation in the form of a quantum harmonic oscillator as:

Fig. 2.3 Barrier

penetration depiction
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� h2

2m

∂2Ψ xð Þ
∂x2

¼ E� U0ð ÞΨ xð Þ ð2:3aÞ

or

∂2Ψ xð Þ
∂x2

þ 2m E� U0ð Þ
h2

Ψ xð Þ ¼ 0 ð2:3bÞ

Equation 2.3b is a one-dimensional ordinary differential equation that has the

following solution as:

Ψ xð Þ ¼ Ae�ax where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U0 � Eð Þ

h2

r
ð2:4Þ

where h ¼ h=2π and h is Planck’s constant.

Note that in addition to the mass and energy of the particle, there is a dependence

on the fundamental physical constant Planck’s constant h. Planck’s constant

appears in the Planck hypothesis where it scales the quantum energy of photons,

and it appears in atomic energy levels, which are calculated using the Schr€odinger
equation.

2.3 Calculation of Coulomb Barrier

The height of the Coulomb barrier can be calculated if the nuclear separation and

the charges of the particle are known. However, in order to accomplish nuclear

fusion, the particles that are involved in this type of thermonuclear reaction must

first overcome the electric repulsion Coulomb force to get close enough for the

attractive nuclear strong force to take over to fuse with each other.

This requires extremely high temperatures, if temperature alone is considered in

the process and one needs to calculate the temperature required to provide the given

energy as an average thermal energy for each particle. Hence, a gas in thermal

equilibrium has particles of all velocities, and the most probable distribution of

these velocities obeys Maxwellian distribution, where we can calculate this thermal

energy. In the case of the proton cycle in stars, this barrier is penetrated by

tunneling, allowing the process to proceed at lower temperatures than that which

would be required at pressures attainable in the laboratory.

Considering the barrier to be the electric potential energy of two point charges

(e.g., point), the energy required to reach a separation r is given by the following

relation as general form of Equation 2.1 and it is:
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U ¼ ke2

r
ð2:5Þ

where k is Coulomb’s constant and e is the proton charge. Given the radius r at
which the nuclear attractive force becomes dominant, the temperature necessary to

raise the average thermal energy to that point can be calculated.

The thermal energy is a physical notion of “temperature,” which is average
translation kinetic energy possessed by free particles given by equipartition of
energy, which is sometimes called the thermal energy per particle. It is useful in

making judgments about whether the internal energy possessed by a system of

particles will be sufficient to cause other phenomena. It is also useful for compar-

isons of other types of energy possessed by a particle to that which it possesses

simply as a result of its temperature. Additionally, from classical thermodynamics

point of view, internal energy is the energy associated with the random, disordered

motion of molecules. It is separated in scale from the macroscopic ordered energy

associated with moving objects; it refers to the invisible microscopic energy on the

atomic and molecular scale [2].

Note that the equipartition of energy theorem, states that molecules in thermal

equilibrium have the same average energy associated with each independent degree

of freedom of their motion and that the energy is:

1

2
kT per molecule k ¼ Boltzmann0s constant

3

2
kT

1

2
RT per mole R ¼ Gas constant

3

2
RT

For three translational degrees of freedom, such as in an ideal mono-atomic gas, the

above statements are true, and the equipartition result is then given by:

KEavg ¼ 3

2
kT ð2:6Þ

Equation 2.6 serves well in the definition of kinetic temperature since that involves

just the translational degrees of freedom, but it fails to predict the specific heats of

polyatomic gases because the increase in internal energy associated with heating

such gases adds energy to rotational and perhaps vibrational degrees of freedom.

Each vibrational mode will get kT/2 for kinetic energy and kT/2 for potential

energy—equality of kinetic and potential energy is addressed in the virial theorem.
Equipartition of energy also has implication for electromagnetic radiation when it is

in equilibrium with matter, each mode of radiation having kT of energy in the

Rayleigh-Jeans law.

To prove the result of equipartition theory that is given by Equation 2.6 and

follows the Boltzmann distribution, we do the following analyses. We easily derive
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this equation, by considering a gas in which the particles can move only in one

dimension for the purpose of simplicity of the calculation, and in addition, we

consider a strong magnetic field that can constrain electrons to move only the field

lines; thus, the one-dimensional Maxwellian distribution is given by the following

formula as:

f uð Þ ¼ Aexp �1

2
mu2=kT

� �
ð2:7Þ

where f(u)du is the number of particles per m3 with velocity between u and uþ du,
where mu2/2 is the kinetic energy and k is Boltzmann constant and its value is equal

to 1.38� 10�23 J/K. The constant A is related to particle density A, as it is shown
below:

A ¼ n
m

2πkT

� �1=2
ð2:8Þ

and this density is analyzed below.

Using Fig. 2.4, we can write the formula for particle density n, or the number of

particles per m3 is given by:

n ¼
ðþ1

�1
f uð Þdu ð2:9Þ

The width of the distribution in Fig. 2.4 is characterized by the constant T, which we
call the temperature. To have a concept of the exact meaning of temperature T, we
can compute the average kinetic energy of particles within this distribution:

0.5
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u
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Fig. 2.4 A Maxwellian velocity distribution

52 2 Principles of Plasma Physics



KEavg ¼

ðþ1

�1

1

2
mu2f uð Þduðþ1

�1
f uð Þdu

ð2:10Þ

Defining a new variable υth as below:

υth ¼ 2kT=mð Þ1=2 ð2:11Þ

Substitution of this new variable results in Equations 2.7 and 2.10 to become as:

f uð Þ ¼ Aexp
u2

υth

� �

KEavg ¼
1

2
mAυ3th

ðþ1

�1
exp �y2

� �	 

y2dy

Aυth

ðþ1

�1
exp �y2

� �	 

dy

ð2:12Þ

The integral in the numerator, in the second equation set of Equation 2.12, is

integrable by parts as:ðþ1

�1
y � exp �y2

� �	 

ydy ¼ �1

2
exp �y2ð Þ½ �y� �þ1

�1 �
ðþ1

�1

1

2
exp �y2

� �
dy

¼ 1

2

ðþ1

�1
xp �y2
� �

dy ¼ Avth

ð2:13Þ

Substituting Equation 2.13 into Equation 2.12 and canceling the common integrals

from denominator and numerator result in the following relation for average kinetic

energy as:

KEavg ¼ 1

2
mAυ3th �

1
2

Aυth
¼ 1

4
mυ2th ¼

1

2
kT ð2:14Þ

which is proof of equipartition scenario and indicates that the average kinetic

energy is 1
2
kT. By similar analyses, Equation 2.14 can be easily expanded to

three-dimensional form; therefore, the Maxwellian distribution for three-

dimensional Cartesian coordinate system becomes:

f u; v;wð Þ ¼ A3 exp
1

2
u2 þ v2 þ w2
� �

=kT


 �
ð2:15Þ

where constant A3 is given as:
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A3 ¼ n
m

2πkT

� �3=2

ð2:16Þ

In that case, the average kinetic energy KEavg is presented by:

KEavg ¼

ZZ ðþ1

�1
A3ð Þ1

2
m u2 þ v2 þ w2
� �

exp �1

2
u2 þ v2 þ w2
� �

=kT


 �
dudvdwZZ ðþ1

�1
A3exp �1

2
u2 þ v2 þ w2
� �

=kT


 �
dudvdw

ð2:17Þ

Equation 2.17 is symmetric in variables u, v, and w, since a Maxwellian distribution

is isotropic. As a result, each of the three terms in the numerator is the same as the

others; hence, all we need to do is to evaluate the first and multiply it by three and

get the following result as:

KEave ¼ 3A3

ð
1

2
mu2exp �1

2
mu2=kT

� �
du

ZZ
exp �1

2
m v2 þ w2
� �

=kT


 �
dvdw

A3

ð
exp �1

2
mu2=kT

� �
du

ZZ
exp �1

2
m v2 þ w2
� �

=kT


 �
dvdw

ð2:18Þ

Using our previous result, we have:

KEave ¼ 3

2
kT ð2:19Þ

Solution to Equation 2.19 and mathematical process for obtaining it prove Equa-

tion 2.6, and it is an indication that KEave in general equals to 1
2
kT per degree of

freedom.

Since temperature T and average kinetic energy KEave are so closely related, it is

customary in plasma physics to give temperatures in units of energy. To avoid

confusion on the number of dimensions involved, it is not KEave but the energy

corresponding to kT that is used to denote the temperature. For

kT ¼ 1eV ¼ 1:6� 10�19 J, we have:

T ¼ 1:6� 10�19

1:38� 10�23
¼ 11, 600 ð2:20Þ

Thus, the conversion factor is:

1eV ¼ 11, 600K
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2.4 Thermonuclear Fusion Reactions

As part of the thermonuclear fusion reaction system, we have to have some

understanding of energies related to the reacting nuclei that are following a Max-

wellian distribution and the problem in hand; this distribution can be presented by:

dn ¼ constant � E1=2

T13=2
exp � E

kT

� �
dE ð2:21Þ

where dn is the number of nuclei per unit volume whose energies, in the frame of

the system, lie in the range from E to Eþ dE, k is again Boltzmann constant and is

equal to 1:38� 10�16erg=K, and T is the kinetic temperature. The kinetic temper-

ature of a system of particles is defined as the temperature appropriate to Maxwel-

lian distribution assumed by the particles upon equipartition of energy with three

translational degrees of freedom. The mean particle energy is then 3kT/2 as it was

defined by Equation 2.19.

Incidentally, when a system is in blackbody radiation equilibrium, per descrip-

tion given by Glasstone and Lovberg [1], the radiation pressure is equal to αT4/c,
where c is the velocity of light. For a temperature of 10 KeV, i.e., 1.16� 108 K, this

would be the order of 1011 atm. In stars, such high pressures are balanced by

gravitational forces due to the enormous masses. Naturally, there exists no practical

controlled thermonuclear reactor that could withstand the pressure resulting from

equilibrium with radiation at extremely high temperature. Thus, the solution around

this problem is by utilization of the very low particle densities required by other

considerations. A system of this type is optically “thin” and transparent to essen-

tially all the Bremsstrahlung emission from a hot plasma; it is a poor absorber and

hence also a poor emitter of this radiation. The radiation field with which the

particles may be in equilibrium is then very much weaker than blackbody radiation.

In other words, the equivalent radiation temperature is much lower than kinetic

temperature, which is related to the energy distribution among the particles [1].

It is for this reason that the term kinetic temperature, rather than just temperature

without qualification, has been frequently used in the preceding text. Strictly

speaking, “temperature” implies thermodynamic equilibrium, which means both

kinetic and blackbody radiation equilibrium [2].

Theoretically it has been proven that the energy of the interacting particles

represented by the atomic numbers of Z1 and Z2, with individual mass m1 and m2,

is well below the top of the Coulomb barrier. In addition, the cross section for the

combination of two nuclei can be written down to a good approximation in the form

of Equation 2.22, as a function of the relative particle energy E, which represents

the total kinetic energy of the two nuclei in the center-of-mass system as:
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σ Eð Þ � Constant

E3=2
� exp � 23=2π2M1=2Z1Z2e

2

hE1=2


 �
ð2:22Þ

where h is the Planck’s constant and M is the reduced mass of two individual

particles interacting with each other and expressed as:

M ¼ m1m2

m1 þ m2

ð2:23Þ

Moreover, Equation 2.22 reveals that the fusion reaction has a finite cross section,

even when the relative energy of the nuclei is quite small; however, because the

exponential term in that equation is a dominating factor, the cross section increases

rapidly as the relative particle energy increases. It can be noted as well that for a

given value of the relative energy, the reaction cross section decreases with

increasing atomic number of the interacting nuclei [1].

The contribution to the overall reaction rate per unit energy interval made by

nuclei with relative energy in the range from E toEþ dE in a thermonuclear system,

at the kinetic temperature T, is proportional to the product of σ(E) and of dn/dE for

that particular temperature. This contribution may be expressed by R(E), so that

from Equations 2.21 and 2.22:

R Eð Þ � C

E3=2T3=2
exp � 23=2π2M1=2Z1Z2e

2

hE1=2
� E

kT


 �
ð2:24Þ

where C is a constant [1].

Figure 2.5 shows the significance of Equation 2.24 here, and the curve marked

dn/dE is a typical Maxwellian distribution of the relative particle energies for a

specified kinetic temperature.

Fig. 2.5 Effect of Maxwellian energy distribution on nuclear reaction rate
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The cross section variation for the nuclear fusion reaction with the relative

energy, as determined by Equation 2.22, is shown by curve σ(E). The dependence
of the contribution to the reaction rate made by particles of relative energy E,
obtained by multiplying the ordinates of the other two curves, is indicated by the

curve in the center of Fig. 2.5. It can be seen that this curve has a distinct maximum

corresponding to the relative energy Em, so that nuclei having this amount of

relative energy make the maximum contribution to the total fusion reaction rate [1].

The average energy of the nuclei is in the vicinity of the maximum of the dn/dE
curve; therefore, it is evident that Em is larger than the average energy for the given

kinetic temperature.

Hence, in order to determine the total reaction, we need to determine the total

area under the curve of σ(E)dn/dE in Fig. 2.5 by integrating over the function curve

σ(E)dn/dE, from energy point 1 to point 2. Consequently, it is obvious that most of

the considered thermonuclear reaction will be due to a relatively small fraction of

the nuclear collisions in which the relative energies are greatly in excess of the

average.

The preceding text explains why there is an advantage in performing a nuclear

fusion reaction, e.g., with uniformly accelerated particles, to permit the nuclei to

become “thermalized,” that is, to attain a Maxwellian distribution of energies, as a

result of collision.

Now, we can calculate the maximum relative energy Em by differentiating

Equation 2.24 with respect to energy E, providing that the kinetic temperature is

not too high. However, the variation R(E) with E is determined almost entirely by

the exponential factor in Equation 2.24; hence, a good approximation to the value of

Em in Fig. 2.5 can be obtained by calculating the energy for which this factor is a

maximum, and this value is found to be:

Em � 2Mð Þ1=2π2Z1Z2e
2kT

h

" #2=3

ð2:25Þ

The expression in Equation 2.25 gives the relative energy in nuclear collision

making the maximum contribution to the reaction rate at the not too high kinetic

temperature T. Dividing both sides of Equation 2.25 by kT, we obtain the following
result as:

Em

kT
� 2Mð Þ1=2π2Z1Z2e

2

h

" #2=3
1

kTð Þ1=3
ð2:26Þ

Note that it is a common practice in thermonuclear studies to express kinetic

temperature in terms of the corresponding energy kT in kilo-electron volts, i.e., in

KeV units. Since the Boltzmann constant k is 1:38� 10�16erg=K and 1 keV is

equivalent to 1:60� 10�9erg, it follows that [1]:
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k ¼ 8:6� 10�8 KeV=K

or

1 keV ¼ 1:16� 107 K

Thus a temperature of T keV is equivalent to 1:16� 107TK.

2.5 Rates of Thermonuclear Reactions

Among all the related text to this particular subject that I have personally seen, the

best book that describes the rates of thermonuclear reactions is given by Glasstone

and Lovberg [1]; consequently, I will use exactly what they have described for this

matter.

Consider a binary reaction in a system containing n1 nuclei/cm3 of one reacting

element and n2 of the other. To determine the rate at which the two nuclear elements

interact, it may be supposed that the nuclei of the first element kind form a

stationary lattice within the nuclei of the second kind which move at random with

a constant velocity υ cm/s equal to the relative velocity of the nuclei. The total cross

section for all the stationary nuclei in 1 cm3 is then n1σ nuclei/cm. This gives the

number of nuclei of the first kind with which each nucleus of the second kind will

react while traveling a distance of 1 cm. The total distance traversed in 1 s by all the

nuclei of the latter type present in 1 cm3 is equal to n2υ nuclei/(cm
2)(s). Hence, the

nuclear reaction rate R12 is equal to the product of n1σ and n2υ; thus,

R12 ¼ n1n2συ Interaction= cm2ð Þ sð Þ ð2:27Þ

If the reaction occurs between two nuclei of the same kind, e.g., two Deuterons, so

that n1 (n sub 1) and n2 (n sub 2) are equal, the expression for the nuclear reaction

rate, represented by R11, becomes:

R11 ¼ 1

2
n2συ Interaction= cm2ð Þ sð Þ ð2:28Þ

where n is the number of reactant nuclei/cm3 (see Fig. 2.6).

In order that each interaction between identical nuclei is not going to be counted

twice, the factor of 1/2 is introduced into Equation 2.28.

Going forward, the two established Equations 2.27 and 2.28 are applicable when

the relative velocity of the interacting nuclei is constant, as is true, approximately at

least, for high-energy particle from an accelerator. However, for thermonuclear

reaction, there would be a distribution of velocities and energies as well, over a

wide range.
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As it is depicted in Fig. 2.6 on the right-hand side, it shows that the reaction cross

section is dependent on the energy or velocity, and generally speaking it follows the

product συ in Equations 2.27 and 2.28 that needs to be replaced by a value such as

symbol of συ, which is averaged over the whole range of relative velocities. Thus,

Equation 2.27 is written as:

R12 ¼ n1n2συ Interaction= cm2ð Þ sð Þ ð2:29Þ

Accordingly, Equation 2.28 becomes:

R11 ¼ 1

2
n2συ ð2:30Þ

Using reduced mass M expressed by Equation 2.23, which is the result of the

interaction between two individual masses, two elements can be used to describe

the new form of Equation 2.21, providing that the velocity distribution is Maxwel-

lian and we know that the kinetic energy is E ¼ Mυ2=2. Thus, we can write:

dn ¼ n
M

2πkT

� �3=2

exp �Mυ2

2kT

� �
υ2dυ ð2:31Þ

where dn is the number of particles whose velocities relative to that of a given

particle lie in the range from υ to υþ dυ. Hence, it follows that:

συ ¼

ð1
0

συdnð1
0

dn

¼

ð1
0

συ exp �Mυ2

2kT

� �
υ2dυ


 �
ð1
0

exp �Mυ2

2kT

� �
υ2dυ

ð2:32Þ

Fig. 2.6 Depiction of all isotopes of hydrogen thermonuclear reactions
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The integral in the denominator of Equation 2.32 is equal to [(2kT/M )3/2](π1/2/4),
and so this equation becomes:

συ ¼ 4

π1=2
Mυ2

2kT

� �ð1
0

σexp �Mυ2

2kT

� �
υ2dυ ð2:33Þ

The integral term in Equation 2.33 can be evaluated by changing the variable. Since

nuclear cross sections are always determined and expressed as a function of the

energy of the bombarding particle, the bombarded particle being essentially at rest

in the target, the actual velocity of the bombarding nucleus is also its relative

velocity. Hence, if E is the actual energy, in the laboratory system, of the

bombarding nucleus of mass m, then E is written as:

E ¼ 1

2
mυ2 ð2:34aÞ

So that

υ ¼ 2E

m

� �1=2

ð2:34bÞ

And differentiating both sides of Equation 2.34b, we get:

υ2dυ ¼ 2E

m2
dE ð2:34cÞ

Substitution of Equation 2.34c into Equation 2.33 yields:

συ ¼ 4

π1=2
M

2kT

� �3=2
1

m2

ð1
0

σexp �ME

mkT

� �
EdE ð2:35Þ

where σ in the integrand is the cross section for a bombarding nucleus of mass

m and energy E.
If the temperature T in Equation 2.35 is expressed in kilo-electron volts and the

values of E are in the same units, it is convenient to rewrite Equation 2.35 in the new

form as:

συ ¼ 8

π1=2

� �1=2 M3=2

m2

ð1
0

σexp �ME

mT

� �
E

T
dE ð2:36Þ

where the quantity E/T is dimensionless. If σ, determined experimentally, can be

expressed as a relatively simple function of E, as is sometimes the case, the

integration in Equation 2.36 may be performed analytically. Alternatively, numer-

ical methods, for example, Simpson’s rule, may be employed.
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In any event, the values of συ for various kinetic temperatures can be derived

from Equation 2.36, based on Maxwellian distribution of energies or velocities, and

the results can be inserted in Equation 2.29 or 2.30 to give the rate of a thermonu-

clear reaction at a specified temperature.

2.6 Thermonuclear Fusion Reactions

In a thermonuclear fusion reactions, two light nuclei are forced together, and then

they will fuse with a yield of energy as it is depicted in Fig. 2.7. The reason behind

the energy yield is due to the fact that the mass of the combination of fusion reaction

will be less than the sum of the masses of the individual nuclei.

If the combined nuclear mass is less than that of iron at the peak of the binding

energy curve, then the nuclear particles will be more tightly bound than they were in

the lighter nuclei and that decrease in mass comes off in the form of energy

according to the Einstein relationship. However, elements heavier than iron fission

reaction will yield energy.

The Einstein relationship that is known as theory of relativity indicates that

relativistic energy is presented as:

E ¼ mc2 ð2:37Þ

where m is the effective relativistic mass of particle traveling at a very high of speed

c. Equation including both the kinetic energy and rest mass energy m0 for a particle

can be calculated from the following relation:

KE ¼ mc2 � m0c
2 ð2:38Þ

Further analysis of Einstein relativity theory allows us to blend into Equation 2.38,

the relativistic momentum p expression as:

Deuterium

Tritium Neutron

Energy

HeliumFig. 2.7 A thermonuclear

fusion reaction
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p ¼ m0vffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q ð2:39Þ

The combination of relativistic momentum p and particle speed c shows up often in
relativistic quantum mechanics and relativistic mechanics as multiplication of pc,
and it can be manipulated as follows, using conceptual illustration such as Fig. 2.8:

p2c2 ¼ m2
0v

2c2

1� v2

c2

¼ m2
0
v2

c2 c
4

1� v2

c2

ð2:40aÞ

and by adding and subtracting a term, it can be put in the form:

p2c2 ¼
m2

0c
4 v2

c2 � 1
h i

1� v2

c2

þ m2
0c

4

1� v2

c2

¼ �m2
0c

4 þ mc2
� �2 ð2:40bÞ

which may be rearranged to give the following expression for energy:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m0c2ð Þ2

q
ð2:40cÞ

Note that again m0 is the rest mass and m is the effective relativistic mass of particle

of interest at very high speed c.
Per Equation 2.40c, the relativistic energy of a particle can also be expressed in

terms of its momentum in the expression such as:

FUSION

fast
particles

deuterium

1 UNIT = energy
use of one U.S.

citizen in 1 year.

Conversion
to energy
per kg fuel

m after = 4.98

tritium

m=3

676 units

m=2

N

N
N

N
+

+

E = (.02)c2

N
N
+

+

Fig. 2.8 Deuterium-tritium

fusion reaction
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E ¼ mc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2

0c
4

q
ð2:41Þ

The relativistic energy expression is the tool used to calculate binding energies of

nuclei and energy yields of both nuclear fission and thermonuclear fusion reactions.

Bear in your mind that the nuclear binding energy is rising from the fact that

nuclei are made up of proton and neutron, but the mass of a nucleus is always less

than the sum of the individual masses of the protons and neutrons, which constitute

it. The difference is a measure of the nuclear binding energy, which holds the

nucleus together. This binding energy can be calculated from the Einstein

relationship:

Nuclear Binding Energy ¼ Δmv2 ð2:42Þ

Now that we have a better understanding of the physics of thermonuclear fusion

reaction and we explained what the Coulomb barriers and energy are all about, we

pay our attention to thermonuclear fusion reaction of hydrogen, which is the

fundamental chemical element of generating energy-driven controlled fusion.

According to Glasstone and Lovberg [1]:

“because of the increased height of the Coulomb energy barrier with increasing atomic

number, it is generally true that, at a given temperature, reactions involving the nuclei of

hydrogen isotopes take place more readily than do analogous reactions with heavier nuclei.

In view of the greater abundance of the lightest isotope of the hydrogen, with mass number

1, it is natural to see if thermonuclear fusion reactions involving this isotope could be used

for the release of energy” [1].

Unfortunately, the three possible reactions between hydrogen (H) nuclei alone

and with deuterium (D) or tritium (T) nuclei, i.e.:

1H
1þ 1H

1! 1D
2þ 1e

0

1H
1þ 1D

2 ! 1D
2þ γ

1H
1þ 1T

3 ! 2He4þ γ

are known to have cross sections that are too small to permit a net gain of energy at

temperature which may be regarded as attainable [1].

Consequently, recourse must be the next most abundant isotope, i.e. deuterium,

and here two reactions, which occur at approximately the same rate over a consid-

erable range of energies, are of interest; these are the D-D reactions as:

1D
2þ 1D

2! 2He3þ 1n
0þ 3:27 MeV

and

1D
2þ 1D

2 ! 2T
3þ 1H

0þ 4:03 MeV
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called the “neutron branch” and the “proton branch,” respectively. The tritium

produced in the proton branch or obtained in another way, as explained below,

can then react, at a considerably faster rate, with deuterium nuclei in the D-T

reaction as:

1D
2þ 1T

3! 2He4þ 1n
0þ 17:60 MeV

The He3 formed in the first D-D reaction can also react with deuterium; thus:

1D
2þ 1He3! 2He4þ 1H

0þ 18:30 MeV

This reaction is of interest because, as in the D-T reaction, there is a large energy

release; the D-He3 reaction is, however, slower than the other at low thermonuclear

temperatures, but its rate approached that of the D-D reactions at 100 KeV and

demonstrated in Fig. 2.9.

In the methods currently under consideration for production of thermonuclear

power, the fast neutrons produced in neutron branch of the D-D reactions and in the

D-T reactions would most probably escape from the immediate reaction environ-

ment. Thus, a suitable moderator that can be considered to slow down these

neutrons can be either water, lithium, or beryllium; with the liberation of their

kinetic energy in the form of heat, they can be utilized:

3Li
6þ 0n

1! 2He4þ 1T
3þ 4:6 MeV

The slow neutrons can then be captured in lithium-6, which constitutes 7.5 at.% of

natural lithium, by the reaction in the above, leading to the production of tritium.

The energy released can be used as heat, and the tritium can, in principle, be

transferred to the thermonuclear system to react with deuterium.

If we produce enough initial ignition temperature to the above four thermonu-

clear reactions, all four fusion processes will take place, and the two neutrons

produced would subsequently be captured by lithium-6.

By means of the quantum mechanics theory of the Coulomb barrier penetration,

it is much more convenient to make use of cross sections obtained experimentally

as it is plotted in Fig. 2.9 for reactions such as D-D, D-T, and D-He3, by bombarding

targets containing deuterium, tritium, or helium-3 with deuterons of known ener-

gies. Technically, for the purpose of marginal safety measurements of the cross

section, it is normally done with order-of-magnitude estimation, at least, of the rates

or cross section of thermonuclear reactions obtained experimentally.

It will be observed that the D-T curve demonstrates a maximum energy of

110 keV, which is an example of the resonance phenomenon, which often occurs

in nuclear reactions [1].

However, the appreciable cross sections for energies well below the top of the

Coulomb barriers for each of the reaction studies provide an experimental illustra-

tion of the reality of the barrier penetration effect.
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The data in Fig. 2.9, for particular deuteron energies, are applied to the deter-

mination of the average συ that is presented by Equations 2.35 and 2.36, assuming a

Maxwellian distribution of particle energies or velocities. Figure 2.10 here shows

the result of integration presented by Equation 2.36 and the curve that gives συ in

cm3/s as a function of the kinetic temperature of the reaction system in kilo-electron

volts. The values in the plot in Fig. 2.10 for a number of temperatures are also

marked in Table 2.1 here.

Figures 2.9 and 2.10 both illustrate the overall effect on the thermonuclear fusion

reaction rates that are taking into account the Maxwellian distribution.

Analytical expression for σ and συ for the D-D and D-T fusion reactions can be

obtained by utilizing Equation 2.24 in a somewhat modified form. The relative

kinetic energy E of the nuclei is given as:

E ¼ 1

2
Mυ2 ð2:43Þ

where υ is the relative velocity, and the deuteron energy ED, in terms of which the

cross section are expressed, ismDυ
2/2, wheremD is the mass of the deuteron. Hence,

(M/E)1/2 in Equation 2.24 may be replaced by (mD/ED)
1/2; since Z1 and Z2 are both

unity, the result then is:

σ EDð Þ ¼ C

ED

exp � 23=2π2mD
1=2e2

hED
1=2


 �

¼ C

ED

exp �44:24

E
1=2
D

" # ð2:44Þ

with ED expressed in kilo-electron volts. Note that the potential factor is the same

for both D-D and D-T thermonuclear fusion reactions, with the deuteron as the

projectile particle. The factor preceding the exponential will, however, be different

in the two cases [1].

Now if we are interested in mean free path reaction λ, in a system containing

n nuclei/cm3 of a particular reacting species, then λ is the average distance traveled
by a nucleus before it undergoes reaction and is equal to 1/nσ, where σ is the cross

section for the given reaction [1].

We replace σ with σ, if a Maxwellian distribution is considered, and in this case

the averaged cross section σ is taken over all energies from zero to infinity, at a

given kinetic temperature.

Figure 2.11 is an illustration of the mean free path values for a deuteron in

centimeter as a function of the deuteron particle density n, in nuclei/cm3, for the

D-D and D-T reactions at two kinetic temperatures, 10 and 100 KeV, in each case,

and temperatures of these orders of magnitude would be required in a controlled

thermonuclear fusion reactor.

The particle of interest for possible fusion reaction for controlled thermonuclear

process has a possible density of about 1015 deuterons/cm3; the mean free path at
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100 KeV for the D-D reaction, according to Fig. 2.11, is about 2� 1016 cm. This

statement translates to the fact that, at the specified temperature and particle

density, a deuteron would travel on the average distance of 120,000 miles before

reacting. For D-T reaction the mean free paths are shorter, because of the large cross

sections for deuterons of given energies, but they are still large in comparison with

the dimensions of normal equipment. All these results play a great deal of impo-

tency to the problem of confinement of the particles in a thermonuclear fusion

reacting system such as tokamak machine or any other means.

For the purpose of obtaining a power density PDD of thermonuclear fusion

reaction, such as D-D, we use either Equation 2.29 or 2.30 to calculate the rate of

thermonuclear energy production. If we assume an amount of average energy Q in

erg is produced per nuclear interaction, then using Equation 2.20, it follows that:

Rate of energy release ¼ 1

2
n2DσυQergs= cm3

� �
sð Þ ð2:45Þ

If the dimension of power density PDD is given in W/cm3, which is equal to 107

ergs/(cm3)(s), then we can write:

PDD ¼ 1

2
n2DσυQ� 10�7 ð2:46Þ

with nD in deuterons/cm3, συ in units of cm3/s, and average energy Q in erg.

For every two D-D interactions, an average of 8.3 MeV of energy is deposited

within the reacting system. The energy Q per interaction is thus, 1=2ð Þ � 8:3� 1:60

�10�6 ¼ 6:6� 10�6 erg, and upon substitution into Equation 2.46, it yields that:

PDD ¼ 3:3� 10�13n2DσυW=cm3 ð2:47Þ

As an example for utilization of 2.46, we look at a D-D reaction at 10 KeV, and

from Fig. 2.10 or Table 2.1, for a given kinetic temperature, we see that συ is equal
to 8.6� 10�19 cm3/s; therefore, the power density is:

Table 2.1 Values of συ at specified kinetic temperature

Temperature (KeV) D-D (cm3/s) D-T (cm3/s) D-He3 (cm3/s)

1.0 2� 10�22 7� 10�21 6� 10�28

2.0 5� 10�21 3� 10�19 2� 10�23

5.0 1.5� 10�19 1.4� 10�17 1� 10�20

10.0 8.6� 10�19 1.1� 10�16 2.4� 10�19

20.0 3.6� 10�18 4.3� 10�16 3.2� 10�19

60.0 1.6� 10�17 8.7� 10�16 7� 10�17

100.0 3.0� 10�17 8.1� 10�16 1.7� 10�18
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PDD 10KeVð Þ ¼ 2:8� 10�31n2DW=cm3 ð2:48Þ

and at 100 KeV, when συ is equal 3.0� 10�17 cm3/s, the power density will be:

PDD 100KeVð Þ ¼ 10�29n2DW=cm3 ð2:49Þ

Similar analysis can be performed for thermonuclear reaction fusion reaction of

D-T, knowing that the energy remaining in the system per interaction is 3.5 MeV,
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i.e., 3.5� 1.6� 10�6 erg, then the reaction rate is given by Equation 2.29, and

therefore, the thermonuclear reactor density power is:

PDT ¼ 1

2
nDnTσυQ� 10�7 ð2:50Þ

where in this case, the average energy Q is 5.6� 10�6 erg; hence,

PDT 10KeVð Þ ¼ 6:2� 10�13nDnTW=cm3 ð2:51Þ

and

PDT 100KeVð Þ ¼ 4:5� 10�28nDnTW=cm3 ð2:52Þ

There is no exact parallel correlation between the conditions of heat transfer and

operating pressures, which limit the power density of a fission reactor and those,

which might apply to a thermonuclear fusion reactor. Nevertheless, there must be

similar limitations upon power transfer in a continuously operating thermonuclear

reactor as in other electrical power systems.

A large steam-powered electrical generating plant has a power of about

500 MW, i.e., 5� 108 W. Figure 2.12 is illustrating that a 100 KeV in a D-D

reactor that has a power of 5� 108 W would provide a reacting volume of only

0.03 cm3 with deuteron particle densities equivalent to those at standard

temperature.

Meanwhile, the gas kinetic pressure exerted by the thermonuclear fuel would be

about 107 atm or 1.5� 108 psi. Since the mean reaction lifetime is only a few

milliseconds under the conditions specified, it is obvious that the situation would be

completely impractical [1].

From what have discussed so far, it seems that the particle density in a practical

thermonuclear reactor must be near 1015 nuclei/cm3. Other problems are associated

with the controlled thermonuclear fusion reaction for plasma confinement and that

is why the density cannot be much larger, and it can be explained via stability

requirements that are frequently restricted by dimensionless ratio β. This ratio is

defined as part of convenience in plasma confinement driven by magnetic field,

which is equal to the kinetic pressure of the particles in plasma in terms of its ratio

to the external magnetic pressure or energy density, which is defined by Equation

3.85 of this book.

Details of this dimensionless parameter will be defined toward the end of this

chapter as well.
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2.7 Critical Ignition Temperature for Fusion

The fusion temperature obtained by setting the average thermal energy equal to the

Coulomb barrier gives too high temperature because fusion can be initiated by those

particles which are out on the high-energy tail of the Maxwellian distribution of

particle energies. The critical ignition temperature is lowered further by the fact that

some particles, which have energies below the Coulomb barrier, can tunnel through

the barrier.

The presumed height of the Coulomb barrier is based upon the distance at which

the nuclear strong force could overcome the Coulomb repulsion. The required

temperature may be overestimated if the classical radii of the nuclei are used for

this distance, since the range of the strong interaction is significantly greater than a

Fig. 2.12 Power densities for D-T and D-D (total) thermonuclear reactions
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classical proton radius. With all these considerations, the critical temperatures for

the two most important cases are about:

Deuterium-Deuterium Fusion : 40� 107K

Deuterium-Tritium Fusion : 4:5� 107 K

The Tokamak Fusion Test Reactor (TFTR), for example, reached a temperature of

5:1� 108K, well above the critical ignition temperature for D-T fusion. TFTR was

the world’s first magnetic fusion device to perform extensive scientific experiments

with plasmas composed of 50/50 deuterium/tritium (D-T), the fuel mix required for

practical fusion power production, and also the first to produce more than ten

million watts of fusion power.

The Tokamak Fusion Test Reactor (TFTR) was an experimental tokamak built at

Princeton Plasma Physics Laboratory (in Princeton, New Jersey) circa 1980. Fol-

lowing on from the Poloidal Diverter Experiment (PDX), and Princeton Large

Torus (PLT) devices, it was hoped that TFTR would finally achieve fusion energy

break-even. Unfortunately, the TFTR never achieved this goal. However, it did

produce major advances in confinement time and energy density, which ultimately

contributed to the knowledge base necessary to build the International Thermonu-

clear Experimental Reactor (ITER). TFTR operated from 1982 to 1997 (see

Fig. 2.13).

ITER is an international nuclear fusion research and engineering megaproject,

which will be the world’s largest magnetic confinement plasma experiment. It is an

Fig. 2.13 Physical shape of TFTR in Princeton Plasma Physics Laboratory
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experimental tokamak nuclear fusion reactor, which is being built next to the

Cadarache facility in Saint-Paul-lès-Durance, south of France. Figure 2.14 is

depiction of the sectional view of ITER comparing to the man scale standing to

the lower right of the picture.

In summary, temperature for fusion that required to overcome the Coulomb

barrier for fusion to occur is so high as to require extraordinary means for their

achievement:

Deuterium-Deuterium Fusion : 40� 107K

Deuterium-Tritium Fusion : 4:5� 107 K

In the Sun, the proton-proton cycle of fusion is presumed to proceed at a much

lower temperature because of the extremely high density and high population of

particles:

Interior of the sun, proton cycle : 1:5� 107K

Fig. 2.14 Sectional view of

ITER’s tokamak
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2.8 Controlled Thermonuclear Ideal Ignition Temperature

The minimum operating temperature for a self-sustaining thermonuclear fusion

reactor of magnetic confinement type (MCF) is that at which the energy deposited

by nuclear fusion within the reacting system just exceeds that lost from the system

as a result of Bremsstrahlung emission which is thoroughly described in the next

two sections of this chapter here.

To determine its value, it is required to calculate the rates of thermonuclear

energy production at a number of temperatures, utilizing Equations 2.47 and 2.50

together with Fig. 2.10, for charged particle products only, and to compare the

results with the rates of energy loss as Bremsstrahlung derived from the following

equations as Equations 2.53 and 2.54:

PDD brð Þ ¼ 5:5� 10�31n2DT
1=2
e W=cm3 ð2:53Þ

and

PDT brð Þ ¼ 2:14� 10�30 nDnTT
1=2
e W=cm3 ð2:54Þ

Note that the above two equations are established with the assumption that, for a

plasma consisting only of hydrogen isotopes, Z ¼ 1, and ni and ne are equal, so that

the factor ne
X

niZ
2

� �
(this is described later in this chapter under Bremsstrahlung

emission rate) may be replaced by n2 where n is the particle density of either

electrons or nuclei.

Note that the factor ne
X

niZ
2

� �
is sometimes written in the form

n2e
X

neZ
2=
X

niZ
� �

, since ne is equal to
X

niZ.

The assumption that we have made here and utilizing both Equations 2.53 and

2.54 arise from the fact that, in the plasma, the kinetic ion (nuclear) temperature and

the electron temperature are the same.

To illustrate the ideal ignition temperature schematically, we take nD to be as 10
15 nuclei/cm3 for the D-D reactions, whereas nD and nT are each 0.5� 1015 nuclei/

cm3 for the D-T reaction. This makes Bremsstrahlung losses the same for the two

cases. The results of the calculations are shown in Fig. 2.15.

The energy rates are expressed in terms of the respective power densities, i.e.,

energy produced or lost per unit time per unit volume of reaching system. It seems

that the curve for the rate of energy is lost as Bremsstrahlung intersects the D-T and

D-D energy production curves at the temperatures of 4 and 36 KeV, i.e., 4.6� 107

and 4.1� 108 K, respectively. These are sometimes called the ideal ignition
temperature.

If we assume a Maxwellian distribution of electron velocities, then for rate of

Bremsstrahlung energy emission per unit volume, it provides an accurate treatment

and equation for total power radiation Pbr as:
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Pbr ¼ g
32π

3
ffiffiffi
3

p :
2πkTð Þ1=2e6
m

3=2
e c3h

ne
X

niZ
2 ð2:55Þ

This equation will be explained later on, in more details, and then the ideal ignition

temperature values defined above are the lowest possible operating temperatures for

a self-sustaining thermonuclear fusion reactor. For temperatures lower than the

Fig. 2.15 Characteristic of thermonuclear fusion reactions and the ideal ignition temperature [1]
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ideal ignition values, the Bremsstrahlung loss would exceed the rate of thermonu-

clear energy deposition by charged particles in the reacting system.

There exist two other factors, which require the actual plasma kinetic tempera-

ture to exceed the ideal ignition temperature values given above. These are in

addition to various losses besides just Bremsstrahlung radiation losses (Sect. 2.10)

that we possibly can be minimized, but not completely eliminate in a thermonuclear

fusion power plant reactor:

1. We have not yet considered the Bremsstrahlung emission as described later

(Sect. 2.11), arising from Coulomb interaction of electrons with the helium

nuclei produced in the thermonuclear fusion reactions as it is shown in

Fig. 2.20. Since they carry two unit charges, the loss of energy will be greater

than for the same concentration of hydrogen isotope ions.

2. At high temperatures present in a thermonuclear fusion reactions, the production

of Bremsstrahlung due to electron-electron interactions is very distinctive than

those resulting from the electron-ion interactions that are considered above. This

is a concern, providing that the relativistic effects do not play in the game, and

there should not be any electron-electron Bremsstrahlung, but at high electron

velocities, such is not the case and appreciable losses can occur from this form of

radiation.

In addition to power densities, Fig. 2.15 reveals the pressures at the various

temperature stages, based on the ideal gas equation p ¼ ni þ neð ÞkT, where

ni þ neð Þ is the total number of particles of nuclei and electron, respectively, per cm
3, and T is the presentation of kinetic temperature in Kelvin. Under the present

condition here, ni ¼ ne ¼ 1015 particles/cm3, so that ni þ neð Þ ¼ 2� 1015.

With k having dimension of erg/K, the values are found in dimension of dynes/

cm2, and the results have been converted to atmospheres assuming 1 atm ¼ 1:01

�106 dynes/cm2 and then plotted in Fig. 2.15. This figure also shows that the

thermonuclear power densities near the ideal ignition temperatures are in the

range of 100–1000 W/cm3, which would be reasonable for continuous reactor

operation of a thermonuclear fusion reaction and that is the reason behind choosing

the density values as 1015 nuclei/cm3 for the purpose of illustrating reacting

particles [1].

It should be noted that although the energy emitted as Bremsstrahlung may be

lost as far as maintaining the temperature of the thermonuclear reacting system is

concerned, it would not be a complete loss in the operating fusion reactor. Later on

in Sect. 2.11, we can demonstrate that the energy distribution of the electron

velocities is Maxwellian or approximately so and dependence of the Bremsstrah-

lung energy emission on the wavelength or photon energy and related equation can

be derived as well [1].
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2.9 Bremsstrahlung Radiation

Bremsstrahlung is a German term that means “braking rays.” It is an important

phenomenon in the generation of X-rays. In the Bremsstrahlung process, a high-

speed electron traveling in a material is slowed or completely stopped by the forces

of any atom it encounters. As a high-speed electron approaches an atom, it will

interact with the negative force from the electrons of the atom, and it may be slowed

or completely stopped. If the electron is slowed down, it will exit the material with

less energy. The law of conservation of energy tells us that this energy cannot be

lost and must be absorbed by the atom or converted to another form of energy. The

energy used to slow the electron is excessive to the atom and the energy will be

radiated as X-radiation of equal energy. In summary, according to German dictio-

nary “Bremsen” means to “break” and “Strahlung” means “radiation.”

If the electron is completely stopped by the strong positive force of the nucleus,

the radiated X-ray energy will have an energy equal to the total kinetic energy of the

electron. This type of action occurs with very large and heavy nuclei materials. The

new X-rays and liberated electrons will interact with matter in a similar fashion to

produce more radiation at lower energy levels until finally all that is left is a mass of

long wavelength electromagnetic wave forms that fall outside the X-ray spectrum.

Figure 2.16 here is showing Bremsstrahlung effect, produced by a high-energy

electron deflected in the electric field of an atomic nucleus.

Characteristic of X-rays is an indication that they are emitted from heavy

elements when their electrons make transition between the lower atomic energy

levels. The characteristic X-ray emission which is shown as two sharp peaks in the

illustration at the left occurs when vacancies are produced in the n ¼ 1 or K-shell of

the atom and electrons drop down from above to fill the gap. The X-rays produced

+

-

-

E1

v1

E2
e

e

v2

h.f=E1-E2

Fig. 2.16 Illustration of

Bremsstrahlung effect
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by transitions fromn ¼ 2 ton ¼ 1 levels are called K-alpha X-rays, and those for the

n ¼ 3 ! 1 transition are called K-beta X-rays (see Fig. 2.17).

Transitions to the n ¼ 2 or L-shell are designated as L X-rays, (n ¼ 3 ! 2 are

L-alpha, n ¼ 4 ! 2 are L-beta, etc. The continuous distribution of X-rays which

forms the base for the two sharp peaks at the left is called “Bremsstrahlung”

radiation.

X-ray production typically involves bombarding a metal target in an X-ray tube

with high-speed electrons which have been accelerated by tens to hundreds of

kilovolts of potential. The bombarding electrons can eject electrons from the

inner shells of the atoms of the metal target. Those vacancies will be quickly filled

by electrons dropping down from higher levels, emitting X-rays with sharply

defined frequencies associated with the difference between the atomic energy levels

of the target atoms.

The frequencies of the characteristic X-rays can be predicted from the Bohr

model. Moseley measured the frequencies of the characteristic X-rays from a large

fraction of the elements of the periodic table and produced a plot of them, which is

now called “Moseley’s plot,” and that plot is shown in Fig. 2.18 here for general

knowledge purpose.

When the square root of the frequencies of the characteristic X-rays from the

elements is plotted against the atomic number, a straight line is obtained. In his

early 20s, Moseley measured and plotted the X-ray frequencies for about 40 of the

elements of the periodic table. He showed that the K-alpha X-rays followed a

straight line when the atomic number Z versus the square root of frequency was

plotted. With the insights gained from the Bohr model, we can write his empirical

relationship as follows:

Fig. 2.17 X-ray

characteristic illustration
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hυKα ¼ 13:6eV Z � 1ð Þ2 1

12
� 1

22


 �
¼ 3

4
13:6 Z � 1ð Þ2eV ð2:56Þ

Characteristic X-rays are used for the investigation of crystal structure by X-ray

diffraction. Crystal lattice dimensions may be determined with the use of Bragg’s

law in a Bragg spectrometer.
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Fig. 2.18 Moseley’s plot. Adapted from Moseley’s original data (H. G. J. Moseley, Philos. Mag.

(6) 27:703, 1914)
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As it was stated above, “Bremsstrahlung” means “braking radiation” and is

retained from the original German to describe the radiation, which is emitted

when electrons are decelerated or “braked” when they are fired at a metal target.

Accelerated charges give off electromagnetic radiation, and when the energy of the

bombarding electrons is high enough, that radiation is in the X-ray region of the

electromagnetic spectrum. It is characterized by a continuous distribution of radi-

ation, which becomes more intense and shifts toward higher frequencies when the

energy of the bombarding electrons is increased. The curves in Fig. 2.19 are from

the 1918 data of Ulrey, who bombarded tungsten targets with electrons of four

different energies.

The bombarding electrons can also eject electrons from the inner shells of the

atoms of the metal target, and the quick filling of those vacancies by electrons

dropping down from higher levels gives rise to sharply defined characteristic

X-rays.

A charged particle accelerating in a vacuum radiates power, as described by the

Larmor formula and its relativistic generalizations. Although the term Bremsstrah-

lung is usually reserved for charged particles accelerating in matter, not vacuum,

the formulas are similar. In this respect, Bremsstrahlung differs from Cherenkov

radiation, another kind of braking radiation which occurs only in matter and not in a

vacuum.

The total radiation power in most established relativistic formula is given by:

X-ray Continuum Radiation
(Brehmsstrahlung)
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Fig. 2.19 Bremsstrahlung X-ray illustration
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P ¼ q2γ4

6πε0c
_β 2 þ

~β � _~β
� �2

1� β2

264
375 ð2:57Þ

where~β ¼ ~υ=cwhich is the ratio of the velocity of the particle divided by the speed

of light and γ ¼ 1ffiffiffiffiffiffiffiffi
1�β2

p is the Lorentz factor,
_~β: signifies a time derivation of ~β, and

q is the charge of the particle. This is commonly written in the mathematically

equivalent form using as:

~β � _~β
� �2

¼ ~β
2 � _~β

2 � ~β � _~β
� �2

P ¼ q2γ6

6πε0c
_β 2 � ~β � _~β

� �2
� �

ð2:58Þ

In the case where velocity of the particle is parallel to acceleration such as a linear

motion situation, Equation 2.58 reduces to:

P
a
����υ ¼ q2a2γ6

6πε0c3
ð2:59Þ

where a� _υ ¼ _β c is the acceleration. For the case of acceleration perpendicular to

the velocity ~β � _~β ¼ 0
� �

, which is a case that arises in circular particle acceleration

known as synchrotron, the total power radiated reduces to:

Pa⊥υ ¼ q2a2γ4

6πε0c3
ð2:60Þ

The total power radiation in the two limiting cases is proportional to γ4 a⊥υð Þ or

γ6 a
����υ� �

. Since E ¼ λmc2, we see that the total radiated power goes as m�4 or m�6,

which accounts for why electrons lose energy to Bremsstrahlung radiation much

more rapidly than heavier charged particles (e.g., muons, protons, alpha particles).

This is the reason a TeV energy electron-positron collider (such as the proposed

International Linear Collider) cannot use a circular tunnel (requiring constant

acceleration), while a proton-proton collider (such as the Large Hadron Collider)

can utilize a circular tunnel. The electrons lose energy due to Bremsstrahlung at a

rate mp=me

� �4 � 103 times higher than protons do.

As a general knowledge here, the nonrelativistic Bremsstrahlung formula for

accelerated charges at a rate is given by the Larmor formula. For the electrostatic

interaction of two charges, the radiation is most efficient, if one particle is an

electron and the other particle is an ion. Therefore, Bremsstrahlung for the nonrel-

ativistic case found the spectral radiation power per electron as:
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Pv ¼ 2πPω ¼ dE

dtdυ
¼ niZ

2e6

6π2ε30c
3m2

eυ
ln

bmax

bmin

� �
hv � meυ

2 ð2:61Þ

where bmax and bmin are the maximum and minimum projectile to travel a distance

of approximately b, respectively. This distance can be used for projectile impulse

duration τ as τ ¼ b=υ0, where υ0 is the incoming projectile velocity. Note that, on

average, the impulse is perpendicular to the projectile velocity.

2.10 Bremsstrahlung Plasma Radiation Losses

Now that we have some understanding of the physics of Bremsstrahlung radiation,

now we can pay our attention to Bremsstrahlung plasma radiation losses. So far our
discussion has been referred to the energy or power that might be produced in a

thermonuclear fusion reactor. This energy must be competed with inevitable losses,

and the role of the processes which result in such losses is very crucial in deter-

mining the operating temperature of a thermonuclear reactor. Some energy losses

can be minimized by a suitable choice of certain design parameters [1], but others

are included in the reacting system that can be briefly studied and considered here.

Certainly Bremsstrahlung radiation from electron-ion and electron-neutral col-

lisions can be expected. The radiation intensity outside the plasma region will be a

function of various factors inside the plasma region such as the electron “kinetic

temperature,” the velocity distribution, the plasma opacity, the “emissivity,” and

the geometry. For example, in case of opacity, if we consider a mass of deuterium

so large that it behaves as an optically thick or opaque body as far as Bremsstrah-

lung is concerned, and these radiations are essentially absorbed within the system.

Under that assumption, then the energy loss will be given by the blackbody

radiation corresponding to existing temperature. Note that even at ordinary tem-

peratures, some D-D reactions will occur, although at an extremely slow rate.

The opacity and emissivity in the microwave region are determined by electron

density and collision frequency, both measurable quantities. If strong magnetic field

is present, the effects of gyro-resonance must also be accounted for in obtaining

opacity [3].

Our understanding to date of the effects of non-Maxwellian velocity distribu-

tions on the radiation at microwave frequencies is not very complete. However,

apparently, if the collision frequency is of the order of the viewing frequency, the

actual velocity distribution is not very important because of the rapid randomiza-

tion. For other cases, however, which in general are the ones of interest in this

subject, there still remains much work to be done [3].

At kinetic temperatures in the region of 1 KeV or more, substances of low mass

number are not only wholly vaporized and dissociated into atoms, but the latter are

entirely stripped of their orbital electrons. In other words, matter is in a state of

complete ionization; it consists of a gas composed of positively charged nuclei and
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an equivalent number of negative electrons, with no neutral particles. With this

latter statement in hand, we can define the meaning of completely or fully ionized

gas, which is a characteristic of plasma as well.

An ionized gaseous system consisting of equivalent numbers of positive ions and

electrons, irrespective of whether neutral particles are present or not, is referred to

as plasma, in addition to what was said in Chap. 1 for definition of plasma. At

sufficiently high temperature, when there are no neutral particles and the ions

consist of bare nuclei only, with no orbital electron, the plasma may be said to be

completely or fully in ionized state.

We now turn our attention to plasma Bremsstrahlung radiation and to the

principal source of radiation from fully ionized plasmas, Bremsstrahlung, with

magnetic fields present, cyclotron or synchrotron radiation, as it was described in

the previous section. The spectral range of Bremsstrahlung is very wide and extends

from just above the plasma frequency into X-ray continuum for typical plasma

range. By contrast, the cyclotron spectrum is characterized by line emission at low

harmonics of the Larmor frequency. Similarly, synchrotron spectra from relativistic

electron display distinctive characteristic [4].

Moreover, whereas cyclotron and synchrotron radiation can be dealt with clas-

sically, the dynamics being treated, from a relativistic viewpoint in the case of

synchrotron radiation, Bremsstrahlung, from plasmas has to be interpreted from

quantum mechanics perspective, through not usually relativistic. Bremsstrahlung

radiation results from electrons undergoing transitions between two states of the

continuum in the field of an ion or atom.

If the ions in plasma are not completely stripped, emission of energy will take

place in the form of optical or excitation radiation. An electron attached to such an

ion can absorb energy, e.g., as the result of a collision with a free electron, and thus

be raised to an excited state. When the electron returns to a lower quantum level, the

excitation energy is emitted in the form of radiation. This represents a possible

source of energy loss from the plasma in a thermonuclear fusion reaction system

that is considered as fusion reactor. Hydrogen isotope atoms have only a single

electron and are completely stripped at a temperature of about 0.05 KeV, so that

there is no excitation radiation above this temperature. However, if impurities of

higher atomic number are present, energy losses in the form of excitation radiation

can become very significant, especially at the lower temperature, while the plasma

is being heated, and even at temperatures as high as 10 KeV [1].

If we ignore impurities in the plasma for the time being, we may state that the

plasma in a thermonuclear fusion reactor system will consist of completely stripped

nuclei of hydrogen isotope with an equal number of electrons at appropriate kinetic

temperature. From such plasma, energy will inevitably be lost in the form of

Bremsstrahlung radiation, that is, continuous radiation emitted by charge particle,

mainly electrons, as a result of deflection by Coulomb fields of other charged

particles. See Fig. 2.20, where in this figure b denotes the impact parameter and

angle θ the scattering angle.

While beam energies below the Coulomb barrier prevent nuclear contributions

to the excitation process, peripheral collisions have to select in the regime of
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intermediate-energy Coulomb excitation to ensure the dominance of the electro-

magnetic interaction. This can be accomplished by restricting the analysis to events

at extremely forward scattering angles, corresponding to large impact parameters.

Except possibly at temperature about 50 KeV, the Bremsstrahlung from a

plasma arises almost entirely from electron-ion interactions as it is shown in

Fig. 2.19. Since the electron is free before its encounter with an ion and remains

free, subsequently, the transitions are often described as “free-free” absorption

phenomena, which also can be seen both in Inertial Confinement Fusion (ICF)

and Magnetic Confinement Fusion (MCF) thermonuclear reactions as well as it is

considered in inverse Bremsstrahlung effects, which is the subject of the next

section here.

In theory, the losses due to Bremsstrahlung could be described if the dimensions

of the system were larger than the mean free path for absorption of the radiation

photons under the existing conditions as it was described before. What these

conditions are telling us is that the system or magnetic fusion reactor would be

tremendously and impossibly large. This may end up with dimensions as large as 10
6 cm or roughly 600 miles or more, even at very high plasma densities. In a system

of this impractical size, a thermonuclear fusion reaction involving deuterium

(D) could become self-sustaining without the application of energy from the outside

source. In other words, a sufficiently large mass of deuterium could attain a critical

size, by the propagation of a large thermal chain reaction, just as does a suitable

mass of fissionable material as the result of a neutron chain reaction [1].

2.11 Bremsstrahlung Emission Rate

Using a classical expression for the rate Pc at which energy is radiated by an

accelerated electron, we can then write:

Pc ¼ 2e2

3c3
a2 ð2:62Þ

Fig. 2.20 Coulomb

scattering between an

electron and ion
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where

e ¼ Is the electric charge

c ¼ Is the velocity of light

a ¼ Is the particle acceleration

Per expression presented in Equation 2.62, we can also make an expression for the

rate of electron-ion Bremsstrahlung energy emission of the correct but differing by

a small numerical factor that may be obtained by a procedure that is more rigorous.

If we suppose an electron that moves past a relatively stationary ion of charge Ze
with an impact parameter b as we saw in Fig. 2.20 and illustrated in Fig. 2.21 in

different depiction as well.

The significance of impact parameter b can be defined in the absence of any

electrostatic forces, which is the distance of closest approach between two particles.

This will appear as an approximate value of large-angle, single-collision cross

section for short-range interaction, or close encounter between charged particles

may be obtained by a simple, classical mechanics and electromagnetic treatment

based on Coulomb’s law.

The magnitude of this distance will determine the angle of deflection of one

particle by the other. Let, for a deflection of 90	, the impact parameter be b0 as

shown in Fig. 2.22 and by making a simplifying assumption that the mass of

scattered particle is less than that of scattering particle so that the latter remains

essentially stationary during this encounter, It is found from Coulomb’s law that,

for 90	 deflections, the particles are a distance 2b0 apart at the point of closest

approach.

From the viewpoint of classical electrodynamics, we see that the mutual poten-

tial Coulomb energy is equal to the center of mass or relative kinetic energy E of

interacting particles. In the case of a hydrogen isotope plasma, all the particles carry

the unit charge e, and the mutual potential energy at the point of closest approach is

e2/2b0, and by law of conservation of energy, we can write:

E ¼ e2

2b0
ð2:63aÞ

or

Fig. 2.21 Coulomb

interaction of electron with

a nucleus
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b0 ¼ e2

2E
ð2:63bÞ

Now if continue with beginning of this section and our concern about Bremsstrah-

lung emission rate, we go on to say that the Coulomb force between the charged

particles is then Ze2/b2. Now let me to be the electron rest mass; then it its

acceleration is Ze2/b2me, and the rate of energy loss are as radiation is given by

Equation 2.62 as:

Pe � 2e6Z2

3m2
ec

3b4
ð2:64Þ

If we designate the electron path length over which the Coulomb force is effective

with 2b0 as it is illustrated in Fig. 2.21, and if the velocity is υ, then the time during

which acceleration occurs is 2b/υ. However, if the acceleration is assumed to be

constant during this time, then the total energy Ee radiated as the electron moves

past an ion with an impact parameter is written as:

Fig. 2.22 Short-range Coulomb interaction for 90	 deflections
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Ee � 4e6Z2

3m2
cc

3b3υ
ð2:65Þ

Multiplying Equation 2.65 by ne and ni that are the numbers of electrons and ions,

respectively, per unit volume, and also by velocity υ, the result is the rate of energy
loss Pa per unit impact area for all ion-electron collisions occurring in unit volume

at an impact parameter b; then we can write:

Pa � 4e6neniZ
2

3m2
ec

3b3
ð2:66Þ

The total power Pbr radiated as Bremsstrahlung per unit volume is obtainable upon

multiplying Equation 2.66 by 2πbdb and integrating over all values of b from bmin,

the distance of closest approach of an electron to an ion, to infinity; thus, the result

would be as:

Pbr � 8πe6neniZ
2

3m2
ec

3bmin

ð b

bmin

db

b2

¼ 8πe6neniZ
2

3m2
ec

3bmin

ð2:67Þ

An estimate of the minimum value of the impact parameter can be made by utilizing

the Heisenberg uncertainty principle relationship, i.e.:

ΔxΔp � h

2π
ð2:68Þ

When Δx andΔp are the uncertainties in position and momentum, respectively, of a

particle and h is Planck’s constant, the uncertainty in the momentum may be set to

the momentum meυ of the electron, andΔxmay then be identified with bmin, so that:

bmin � h

2πmeυ
ð2:69Þ

Furthermore, we assume a Maxwellian distribution of velocity among the electrons;

it is possible to write:

1

2
meυ

2 ¼ 3

2
kTe ð2:70Þ

where Te is the kinetic temperature of the electrons; hence,
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bmin � h

2π 3kTemeð Þ1=2
ð2:71Þ

Substituting Equation 2.71 into Equation 2.67, the result would be as:

Pbr � 16π2

31=2
� kTeð Þ1=2e6
m

3=2
e c3h

neniZ
2 ð2:72Þ

Equation 2.72 refers to a system containing a single ionic species of charge Z. In the
case of a mixture of the ions or nuclei, it is obvious that the quantity niZ

2 should be

replaced by
X

niZ
2

� �
, where the summation is taken over all the ion present. Note

that the factor ne
X

niZ
2

� �
is sometime written in the form n3e

X
neZ

3=
X

niZ
� �

i
,

since ne is equal to
X

niZ. This was mentioned in Sect. 2.8 as well.

As we mentioned above and presented in Equation 2.55, as a more precise

treatment, assume Maxwellian distribution of electron velocities gives for the rate

of Bremsstrahlung energy emission per unit volume and write the same equation

again:

Pbr ¼ g
32π

3
ffiffiffi
3

p :
2πkTð Þ1=2e6
m

3=2
e c3h

ne
X

niZ
2 ð2:73Þ

where g is the Gaunt factor which corrects the classical expression for the require-

ments of quantum mechanics. At high temperatures, the correction factor

approaches a limiting value of 2� 31=2=π, and taking this result, together with

the known values of Boltzmann constant k in erg/K, e in statcoulombs, and me, c,
and h in cgs units, Equation 2.73 or exact equation that is written as Equation 2.55

becomes:

Pbr ¼ 1:57� 10�27ne
X

niZ
2

� �
T1=2
e ergs= cm3

� �
sð Þ ð2:74Þ

where Te is the electron temperature in K, or making use of the conversion factor

given as Te, KeV is equivalent to 1.16� 107 Te K, where 1 KeV ¼ 1:16� 107 K.

The classical expression for the rate of Bremsstrahlung emission per unit volume

frequency interval in the frequency range from v to vþ dv is given as:

dPv ¼ g
32π

33=2
2π

kT

� �1=2 e6

m
3=2
e

X
niZ

2
� �

exp �kv=kTð ÞdvW=cm3 angstromð Þ ð2:75Þ

If we integrate Equation 2.75 over all frequencies, this expression leads to either

Equation 2.55 or 2.73, and for our purpose, it is more convenient to express

Equation 2.75 in unit wave length in the interval from λ to λþ dλ and that is:
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dPλ ¼ 6:01� 10�30gne
X

niZ
2

� �
T�1=2
e λ�2exp �12:40=λTeð Þdλ ð2:76Þ

where the temperature is in kilo-electron volts (KeV) and the wavelengths are in

angstrom.

If we assume the Gaunt factor g to remain constant, as is not strictly correct, the

relative values of dPλ/dλ obtained from Equation 2.76, for arbitrary electron and ion

densities, have been plotted as a function of wavelength as it can be seen in

Fig. 2.23 for electron temperature of 1, 10, and 100 KeV. It can be observed that

each curve passes through a maximum at a wavelength which differentiation of

Equation 2.76 shows to be equal to 6.20/Te angstroms.

Note that to the left of the maximum, the energy emission as Bremsstrahlung is

dominated by the exponential term and decreases rapidly with decreasing wave-

length. To the right of the maximum, however, the variation approaches a depen-

dence upon 1/λ2, and the energy emission falls off more slowly with increasing

wavelength of the radiation [1].

2.12 Additional Radiation Losses

As we briefly described in Sect. 2.8, in addition to various losses apart from

Bremsstrahlung radiation loss, which can be minimized but not completely elimi-

nated or contained in a practical reactor, there were two other factors, which were

affecting such additional losses. To further enhance these concerns, and consider

them for prevention of energy losses, we look at the following sources of energy

losses.

According to Equation 2.73, the rate of energy loss as Bremsstrahlung increases

with the ionic charge Z is equal to the atomic number in a fully ionized gas

consisting only of nuclei and electrons. Consequently, the presence of impurities

of moderate and high atomic number in thermonuclear reactor system will increase

the energy loss, and as result the minimum kinetic temperature at which there is a

net production of energy will also be increased [1].

However, if we consider a fully ionized plasma mixture containing n1 nuclei/cm
3

of hydrogen isotopes (Z ¼ 1) and ne nuclei/cm
3 of an impurity of atomic number Z,

then the electron density ne is n1 þ neZ /cm
3. Thus, the factor ne

X
niZ

2
� �

in

Equation 2.67 needs to be equal to n1 þ nzZð Þ n1 þ nzZ
2

� �
. In the absence of the

impurity, thus, the corresponding factor would be n21. This follows that, from

Equation 2.75, we can write:
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Power Loss in Presence of Impurity

Power Loss in Presence of Impurity
¼ n1 þ zzZð Þ n1 þ zzZ

2
� �
n21

¼ 1þ f 2Z2 þ f Z Z þ 1ð Þ
ð2:77Þ

where f ¼ ne=n1, i.e., the fraction of impurity atoms.
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Fig. 2.23 Bremsstrahlung power distribution at kinetic temperature of 1, 10, and 100 KeV
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Glasstone and Lovberg [1] argue that if the impurity is oxygen with atomic

number Z ¼ 8, and that is present to the extent of 1 at.%, so that f ¼ 0:01, then in

that case, Equation 2.77 results in the following value as:

Power Loss in Presence of Impurity

Power Loss in Presence of Impurity
¼ 1:77 ð2:78Þ

In other words what Equation 2.78 is telling us is that the presence of only 1 at.% of

oxygen impurity will increase the rate of energy loss as Bremsstrahlung by 77%. In

the case of the D-D reaction system, Fig. 2.15 shows that this would raise the ideal

ignition temperature from 36 to 80 KeV, and for D-T reaction, the same tempera-

ture increases from 4 to 4.5 KeV.

To remind again that “ideal ignition temperature is the minimum operation

temperature for a self-sustaining thermonuclear reactor is that at which the energy

deposited by nuclear fusion within the reacting system just exceeds that lost from

the system as a result of bremsstrahlung emission” [1].

Per statement and example above, it is obvious for a thermonuclear reactor

system with impurity of higher atomic number that the increase on ideal ignition

temperature would be extremely high; thus, it appears to be an important require-

ment of a thermonuclear fusion reactor that even traces impurities, especially those

of moderate and high atomic number. Therefore, such impurities should be rigor-

ously excluded from the reacting plasma and there might be some possible excep-

tion to this rule [1].

To remind ourselves of an imperfect ionized impurity of plasma, we can also

claim the following statement as well.

Imperfectly ionized impurity atoms with medium to high atomic number incur

additional radiation losses in a plasma reactor. Electrons lose energy if these ions

are further ionized or excited. This energy is then radiated from the plasma when

later on an electron is captured; mainly recombination radiation or when ion returns

to its original state, then radiation loss is via line radiation, respectively. Energy

losses PLR
e from both sources can be written in general form of:

PLR
e ¼ �ne

X
σ

nσf σ Teð Þ ð2:79Þ

where fσ is a complicated function of Te. Both line and recombination losses may

exceed Bremsstrahlung losses by several orders of magnitude. As we talked about

cyclotron effect in magnetic confinement of plasma, radiation from gyrating elec-

trons also represents a loss source. Calculation of this one is very difficult in view of

the fact that this radiation is partly reabsorbed in the plasma and partly reflected by

the surrounding walls of the reactor. Fortunately, it is small compared with Brems-

strahlung losses under typical reactor conditions [5].

Note that recombination radiation is caused by free-bound transition. To elab-

orate further, we look at the final state of the electron that is a bound state of the

atom or ion, if the ion was initially multiplied or ionized. The kinetic energy of the
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electron together with the difference in energy between the final quantum state

n and the ionization energy of the atom or ion will appear as photon energy. This

event involving electron capture is known as radiative recombination and emission

as recombination radiation. In certain circumstances, recombination radiation may

dominate over Bremsstrahlung radiation.

Other losses arise from energy exchange between components having different

temperatures and from the interaction with the ever-present neutral gas background,

namely, ionization and charge exchange. The study of these terms beyond the scope

of this book and readers can refer to a textbook by Glasstone and Lovberg [1] as

well as Raeder et al. [5].

2.13 Inverse Bremsstrahlung in Controlled Thermonuclear
ICF and MCF

In case of laser-driven fusion, we have to be concerned by the dense plasma heating

by inverse Bremsstrahlung, and it is very crucial for the design and critical

evaluation of target for Inertial Confinement Fusion (ICF) to thoroughly understand

the interaction of the laser radiation with dense, strongly coupled plasmas.

To accommodate the symmetry conditions needed, the absorption of laser

energy must be carefully determined starting from the early stages [5, 6]. The

absorption data for dense plasmas are also required for fast ignition by ultra-intense

lasers due to creation of plasmas by the nanosecond pre-pulse [7]. Least understood

are laser-plasma interactions that involve strongly coupled Γ > 1 and partially

degenerate electrons. Such conditions also occur in warm dense matter experiments

[8, 9] and laser-cluster interactions [10, 11].

The dominant absorption mechanism for lasers with the parameters typical for

Inertial Confinement Fusion is inverse Bremsstrahlung. Dawson and Oberman [12]

first investigated this problem for weak fields. Decker et al. [13] later extended their

approach to arbitrary field strengths. However, due to the use of the classical kinetic

theory, their results were inapplicable for dense, strongly coupled plasmas. This

problem was addressed using a rigorous quantum kinetic description applying

Green’s function formalism [14, 15] or the quantum Vlasov approach [16]. How-

ever, these approaches are formulated in the high-frequency limit, which requires

the number of electron-ion collisions per laser cycle to be relatively small. In the

weak field limit, a linear response theory can be applied, and thus the strong

electron-ion collisions were also included into a quantum description [17, 18] in

this limit.

For dense strongly coupled plasmas, the approach for the evaluation of the laser

absorption in both the high- and low-frequency limits must be fundamentally

different. In the high-frequency limit, the electron-ion interaction has a collective

rather than a binary character, and the laser energy is coupled into the plasmas via

the induced polarization current. On the other hand, binary collisions dominate

laser absorption in the low-frequency limit resulting in a Drude-like formulation.
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At the intermediate frequencies, both strong binary collisions and collective phe-

nomena have to be considered simultaneously. Interestingly, such conditions occur

for moderate heating at the critical density of common Ny/Yag lasers.

Inverse Bremsstrahlung absorption in Inertial Confinement Fusion (ICF) or

laser-driven fusion is an essential and fundamental mechanism for coupling laser

energy to the plasma. Absorption of laser light at the ablation surface and critical

surface of the pellet of D-T as target takes place via inverse Bremsstrahlung

phenomenon in the following way:

• Laser intensity at the ablation surface causes the electrons to oscillate and

consequently induced an electric field. The created energy due to the above

oscillation of electrons will be converted into thermal energy via electron-ion

collisions, which is known as inverse Bremsstrahlung process.

Bremsstrahlung and its inverse phenomena are linked in the following way:

• If two charged particles undergo a Coulomb collision as it was discussed before,

they emit radiation, which is called again Bremsstrahlung radiation. Therefore,

inverse Bremsstrahlung radiation is the opposite process, where electron

scattered in the field of an ion absorbed a photon.

Note that b in Fig. 2.24 denotes the impact parameter that is defined as before

and θ is the scattering angle.

Using the notation as given in Fig. 2.24, the differential cross section dσei/dΩ for

such a Coulomb collision is described by the Rutherford formula as follows:

dσei
dΩ

¼ 1

4

Ze2

meυ2

� �2
1

sin 4 θ=2ð Þ ð2:80Þ

where

θ ¼ Is the scattering angle

Ω ¼ Is the differential solid angle

Fig. 2.24 Coulomb

scattering between an

electron and ion
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If we consider our analysis within spherical coordinate system, then the solid angle

Ω is presented as:

dΩ ¼ 2π sin θdθ ð2:81Þ

In same coordinate, the impact parameter b is related to the scattering angle θ via

the following formula as:

tan
θ

2

� �
¼ Ze2

meυ2b
ð2:82Þ

Substitution of Equations 2.81 and 2.82 along with utilization of Equation 2.80, we

can now find the total cross section σei for electron-ion collisions by integrating

over all possible scattering angles and that is given as:

σei ¼
ð
dσei
dΩ

dΩ ¼ π

2

Ze2

meυ2

� �2ð π

0

sin θ

sin 4 θ=2ð Þ dθ ð2:83Þ

The integral from θ ! 0 to θ ! π, which is equivalent to b ! 1 and b ! 0,

diverges. However in plasma, the condition allows for us to define a lower and

upper boundary limit bmin and bmax, respectively, and for that matter, the integration

in Equation 2.83 reduces to the following form as:

σei ¼ π

2

Ze2

meυ2

� �2ðbmax

bmin

sin θ

sin 4 θ=2ð Þ dθ ð2:84Þ

The upper limit of this integral arises from Debye shielding that is defined in

Chap. 1 of this book, which makes collision distance ineffective. Therefore, in a

plasma the bmax limit can be replaced by Debye length λD. However, the lower limit

bmin is often set to be equal to the Broglie wavelength, which Lifshitz and Pitaevskii

[19] have shown that this approach is not adequate, and they derived the lower limit

to be bmin ¼ Ze2=kBTe. Now that we have established the lower and upper bound

limit, Equation 2.84 reduces to the following form in order to show the total cross

section σei in a plasma by:

σei ¼ π

2

Ze2

meυ2

� �2ðλD
Ze2=kBTe

sin θ

sin 4 θ=2ð Þ dθ ð2:85Þ

Thus, having the knowledge of the cross section via Equation 2.85, one can

calculate the collision frequency vei in the plasma. However, the collision frequency

vei is defined as the number of collision and electron that undergoes with the

background ions in plasma per unit time, and it depends on the ion density ni, the
cross section σei, and the electron velocity υe:
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vei ¼ niσeiυe ð2:86Þ

In order to calculate the collision frequency vei, we need to take the velocity

distribution υe of the particles into account. In many cases it can be assumed that

the ions are at rest (Ti ¼ 0 ) and electrons are in local thermal equilibrium. A

Maxwellian electron velocity distribution, υe, in form of the following relation:

f υeð Þ ¼ 1

2πkBTe=mð Þ3=2
exp � meυ2e

2kBTe

� �
 �
ð2:87Þ

is isotropic and normalized in a way that:ð1
0

1

2πkBTe=mð Þ3=2
exp � meυ2e

2kBTe

� �
 �
¼ 1 ð2:88Þ

Using Equations 2.83 and 2.88 as well as performing the integrations, the electron-

ion collision frequency results in:

vei ¼ 2π

me

� �1=2
4Z2e4ni

3 kBTeð Þ3=2
lnΛ ð2:89Þ

where Λ ¼ bmax=bmin and the factor Λ is called the Coulomb logarithm, a slowly

varying term resulting from the integration over all scattering angles. In case of

low-density plasmas and moderate laser intensities, driving the fusion reaction its

value typically lies in the range of 10–20.

In order to derive Equation 2.89, the assumption was made on the fact that small-

angle scattering events dominated, which is a valid assumption if the plasma

density is not too high. For dense and cold plasma, Equation 2.89 is not applicable

due to large-angle deflections becoming increasingly likely, violating the small-

angle scattering assumption. If one uses the above stated method, the values of bmin

and bmax can become comparable, so that ln Λ eventually turns negative, which is

an obviously unphysical results.

In practical calculations a lower limit of ln Λ ¼ 2 is often assumed; however, for

dense plasmas a more complex treatment needs to be applied which is published by

Bornath et al. [20] and Pfalzner and Gibbon [21].

Note that we need to be cautious if the laser intensity is very high, as in this case

strong deviations from the Maxwell distribution can occur.

Readers can find more details in the book by Pfalzner [22].

Now that we have briefly analyzed the inverse Bremsstrahlung absorption for

Inertial Confinement Fusion (ICF) or laser-driven fusion, we now pay our attention

to this inverse event from physics of plasma point of view and consider the inverse

Bremsstrahlung under free-free absorption conditions.

Free-free absorption inverse Bremsstrahlung takes place when an electron in

continuum absorbs a photon. Its macroscopic equivalent is the collisional damping
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of electromagnetic waves. For a plasma in local thermal equilibrium, having found

the Bremsstrahlung emission, we may then refer to Kirchhoff’s law to find the free-

free absorption coefficient αω. As we have stated before, the Bremsstrahlung

emission coefficient is represented in terms of the Gaunt factor as an approximation

in the form of:

εω Teð Þ ¼ 8

3
ffiffiffi
3

p Z2neni
m2c3

e2

4πε0

� �3
m

2πkBTe

� �1=2

g ω; Teð Þe�hω=kBTe ð2:90Þ

where g ω; Teð Þ is defined as:

g ω; Teð Þ ¼
ffiffiffi
3

p

π
ln

2m

ζω

4πε0
Ze2

2kBTe

ζm

� �1=2
�����

����� ð2:91Þ

From Equation 2.90, we can see that the Gaunt factor is a relatively slowly varying

function of hω/kBTe over a wide range of parameters which means that the depen-

dence of Bremsstrahlung emission on frequency and temperature is largely

governed by the factor m=2πkBTeð Þ1=2exp �hω=kBTeð Þ in Equation 2.90. As it

was also stated for laboratory plasmas with electron temperatures in the KeV range,

the Bremsstrahlung spectrum extends into the X-ray region of the spectrum. Note

that the factor
ffiffiffi
3

p
=π in Equation 2.91 is to conform with the conventional definition

of the Gaunt in the quantum mechanical treatment.

In terms of the Rayleigh-Jeans limit, this gives a relationship for free-free

absorption coefficient as follows:

αω Teð Þ ¼ 64π4

3
ffiffiffi
3

p Z2neni
m2 cω2

e2

4πε0

� �
m

2πkBTe

� �1=2

g ω; Teð Þ ð2:92Þ

In Equation 2.91 ζ ¼ 0:577 is Euler’s constant, and the factor 2=ζð Þ ’ 1:12 in the

argument of the logarithm has been included to make g ω; Teð Þ in Equation 2.91 to

agree with the exact low-frequency limit determined from the plasma Bremsstrah-

lung spectrum. In classical picture of plasma Bremsstrahlung spectrum, an exact

classical treatment of an electron moving in the Coulomb field of an ion is a

standard problem in classical electrodynamics. Provided the energy radiated as

Bremsstrahlung is a negligibly small fraction of the electron energy where the ion is

treated as a stationary target, then the electron orbit is hyperbolic, and the power

spectrum dp(ω)/dω from a test electron colliding with plasma ions of density ni may

be written as:

dp ωð Þ
dω

¼ 16π

3
ffiffiffi
3

p Z2ni
m2c3

e2

4πε0

� �3
1

υ
G ωb0=υð Þ ð2:93Þ
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where b0 ¼ Ze2=4πε0mυ2 is the impact parameter for 90	 scattering, υ the incident
velocity of the electron, and G(ωb2/υ) is a dimensionless factor that is known as

Gaunt factor as it was defined before, which varies only weakly with plasma

frequency ω.
It can be shown that the dispersion relation for electromagnetic waves in an

isotropic plasma becomes:

c2k2

ω2
¼ 1� ω2

p

ω ω� iveið Þ ð2:94Þ

This is allowable phenomenologically for the effects of electron-ion collisions

through a collision frequency vei. Further on, it can be shown that electromagnetic

waves are damped as a result of electron-ion collisions, with damping coefficient

γ ¼ vei ω2
p=2ω

2
� �

.

If we take Equation 2.94 into consideration, which is expressing the collision

damping of electromagnetic waves and using this to obtain the absorption coeffi-

cient, we provided in Equation 2.90, with the Coulomb logarithm in place of the

Maxwell-averaged Gaunt factor, a difference that reflects the distinction between

these separate approaches. Whereas inverse Bremsstrahlung is identified with

incoherent absorption of photon by thermal electrons, the result in Equation 2.94

is macroscopic in that it derives from a transport coefficient, namely, the plasma

conductivity [23].

At the macroscopic level, electron momentum is driven by an electromagnetic

field before being dissipated by means of collisions with ions. However, absorption

of radiation by inverse Bremsstrahlung as expressed in Equation 2.92 is more

effective at high densities and low electron temperature and for low-frequency

plasmas. For the efficient absorption of laser light by plasma at the ablation surface

of target pellet of D-T, the mechanism of the process is very important. We

anticipate absorption to be strongest in the region of the critical density nc, since
this is the highest density to which incident light can penetrate. In the vicinity of the

critical density ZnenieN2
c ¼ mε0=e2ð Þ2ω4

L, where ωL is presenting the frequency of

the laser light, so that free-free absorption is sensitive to the wavelength of the

incident laser light [23].
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Chapter 3

Confinement Systems for Controlled
Thermonuclear Fusion

An increase on energy demands in our today’s life going forward to the future has

forced us to look into alternative production of energy in a clean way, along the

nuclear fission and fossil fuel way of producing energy. Scientist are suggesting

controlled thermonuclear fusion reaction as an alternative way of generating

energy, either via magnetic confinement or inertial confinement of plasma to

generate heat for producing steam and as result electricity to meet such increase

on energy demand. Each of these approaches has their own technical and scientific

challenges, which scientists need to overcome. This chapter talks about a way of

confining plasma and the systems of the confinement, which are able to impose a

controlled way of thermonuclear fusion reaction for this purpose.

3.1 Introduction

Fusion power is the generation of energy by nuclear fusion. Fusion reactions are

high-energy reactions in which two lighter atomic nuclei fuse to form a heavier

nucleus. This major area of plasma physics research is concerned with harnessing

this reaction as a source of large-scale sustainable energy. There is no question of

fusion’s scientific feasibility, since stellar nucleosynthesis is the process in which

stars transmute matter into energy emitted as radiation. Conversion of mass of

matter to energy is very well understood and demonstrated by Einstein’s theory of

relativity and his famous formula as below:

E ¼ MC2 ð3:1Þ

where E is the kinetic energy produced by M, which is the reduced mass of two

individual particles interacting with each other, and it was expressed by Equation

2.23 and multiplied by C that is the speed of light. Figure 3.1 is the presentation of
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such energy that is taking place at the surface of the Sun, in our solar system, which

is a natural fusion reactor.

For reduced mass M to exist and relationship in Equation 3.1 to take place, the

particles must come within range of the nuclear forces and surpass the Coulomb

barrier via driven kinetic energy available in the center of the mass system of the

colliding particles. As we observed in Chap. 2, it was realized that bombardment of

light element targets with high-energy particle beams could not sufficiently produce

enough power, unless the energy, necessarily imparted to outer shell electrons in the

collision process, was utilized.

What the preceding text implies is that the reacting particles must be confined at

high density for a time sufficiently long for energy transfer to the nuclei; this

process is called the “break-even” condition, also known as the Lawson criterion

[1] to take place.

The Lawson criterion is an important general measure of a system that defines

the conditions needed for a fusion reactor to reach what is known as ignition
temperature, which is the heating of plasma by the products of the fusion reactions

to be sufficient to maintain the temperature of the plasma against all losses with

external power input. As it was originally formulated in Chap. 2, the Lawson

criterion gives a minimum required value for the product of the particle plasma

density such as electron ne and the energy confinement time τE.
Figure 3.2 is showing a typical Lawson criterion, or minimum value of electron

density multiplied by energy confinement time required for self-heating, for their

fusion reactions. For D-T reaction, neτE minimizes near the temperature 25 KeV or

roughly 300 million Kelvin, as it can be seen in the figure.

Fig. 3.1 Sun is a natural fusion reactor
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Note that, although the above text was argued based on magnetic confinement

fusion (MCF) approach, similar reasoning would apply to inertial confinement

fusion (ICF) by multiplying the density of plasma particles with the radius of the

pellet containing the D-T for fusion reaction, which is shown further down in this

chapter.

To summarize what we have discussed so far, we can express the following

statement. At the temperature the reaction rate is taking place, it is proportional to

the square of the density; the time during which confinement can be secured turns

out to be limited to a small fraction of second, and therefore the density needed in

order to achieve a useful power output is very high. See Sect. 2.5 as well.

In addition, the temperature required for barrier penetration and the density

required (see Sect. 2.2) for a practical device will be determined from data

concerning reaction cross sections, and they are representing conditions of matter

known to exist in terrestrial galaxy surrounding us. The concept behind such

phenomena on the Earth was first produced in technology of thermonuclear

weapons which humankind realized, and similar conditions were used for triggering

the most devastating weapons that are known to a human being.

Although, the first release of man-made thermonuclear energy via H-bomb took

place in 1952, but the problem of how to control this sudden release in a controlled

way, for the purpose of generating electric power, is still with us today.

3.2 Magnetic Confinement

The major magnetic fusion concepts that are in consideration by folks that are in

quest of confining plasma for magnetic fusion concepts are:

1. The tokamak

2. The stellarator

3. The reversed-field pinch

Fig. 3.2 Depiction of the

Lawson criterion for three

fusion reactions
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4. The spheromak

5. The field-reversed configuration

6. The levitated dipole

All these magnetic fusion concepts except the stellarator are 2D axisymmetric

toroidal configurations. However, the stellarator is an inherently 3D configuration,

and we are just going to discuss here, in this section, the tokamak and stellarator

configurations later on. We will discuss these two concepts, primarily from the

point of view of macroscopic magnetohydrodynamics (MHD) equilibrium and

stability.

Magnetic confinement of plasma is an attempt to prevent particles of moderate

density around 1014–1015 cm�3 in plasma to escape the reaction volume by thermal

velocity for long periods (i.e., τ � 1second). The concept is based on the foundation

that charged the particle path generally forming a spiral along magnetic field lines,

which is created by the Lorentz force acting on plasma particle with charge q and

moving with velocity of~v in a magnetic field with induction of~B as it was explained

in Chap. 2.

The above approach is based on a single particle and its motion, depending on

the density of charged particles of plasma and their behavior; they present a fluid,

either with collective effects being dominant or as collective individual particles. In

dense plasmas, the electrical forces between particles couple them to each other and

to the electromagnetic fields, which affects their motions.

To have a better concept for single-particle approach and what does that mean,

we look at the rarefied plasmas. Under these circumstances, the charged particles do

not interact with one another, and their motions do not govern a large enough

current to significantly affect the electromagnetic fields. Therefore, under these

conditions, the motion of each particle, classically, can be treated independent of

any other, by solving the Lorentz force equation for prescribed electric and mag-

netic field. This procedure is known as a single-particle approach and is valid for

investigating high-energy particles in the Earth’s radiation belts (i.e., Van Allen

radiation belt), the solar corona, and in practical devices such as cathode ray tubes

or traveling-wave amplifiers, which are few examples that could be mentioned.

Figure 3.3 is an artistic concept of Van Allen belt cross section, which is an

imaginary belt of radiation layer of energetic charged particles that are held in

place around a magnetized plant, such as the Earth, by the planet’s magnetic field.

As it sounds, in magnetized plasmas under the influence of an external static

force or slowly varying magnetic field produced by the electric field, the single-

particle approach is the only applicable classical solution for studying the charged

particle motion utilizing the Lorentz force equation, which in general is defined as:

~F ¼ m~a ¼ m � d~v
dt

¼ q ~Eþ ~v� ~B
� � ð3:2Þ

Equation 3.2 for motion of the charged particle in magnetized plasmas holds, if the

external magnetic field is quite strong, compared to the magnetic field produced by
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the electric current arising from the charged particle motions, an event that is very

understandable by physics or theory of electromagnetism.

Note that here we are only concerned with nonrelativistic motion of charged

particles that are obeying Newtonian classical mechanics rules and the second law

of motion. Equation 3.2 is valid for the relativistic case, if we simply replace

particle mass m with the famous Einstein formula of relativity in terms of m ¼ m0

1� v2=C2
� ��1=2

where m0 is the rest mass of particle. More commonly, the

relativistic form of Equation 3.2 is written in terms of particle momentum ~P ¼ m
~v rather than velocity ~v.

CASE I: Uniform ~E and ~B Fields and ~E ¼ 0

As it was stated above for the simples cases of motion in uniform field, when a

particle is under the domination of a static electric filed, which is uniform in space,

the Lorentz force ~F is expressed in the following form with only a static and

uniform magnetic field present:

~F ¼ q~v� ~B ð3:3Þ

In this case, the particle moves with a constant acceleration along the direction of

the field and does not warrant further study.

From the classical mechanics point of view, Lorentz force also is equal to the

mass of the particle of interest multiplied by the mass of it, so we can write

~F ¼ m~a ¼ m � d~v
dt

ð3:4Þ

Combining the Equations 3.3 and 3.4, we can write the momentum balance

equation for this type of particle is as:

Fig. 3.3 Conceptual cross section of the Van Allen belt around the Earth
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m � d~v
dt

¼ q~v� ~B ð3:5Þ

For further analysis, we can decompose the particle velocity vector ~v into its two

components, namely, parallel ~v���� and ~v⊥ perpendicular, respectively, to the

magnetic field, i.e.,

~v ¼ ~v���� þ ~v⊥ ð3:6Þ

Lorentz force~F is proportional to the vector product~v� ~B, it is vertical to the plane

of vector velocity~vand magnetic~B, and~υ� ~B ¼ ~υ⊥ � ~B it is a function only of the

velocity component~v⊥which is vertical to~B. Note that~v⊥ is the vertical component

of vector velocity~v. As far as parallel component of velocity is concerned, it has no

effect, because ~v���� � ~B ¼ 0is the component ~υ���� of the particle velocity parallel to

~B and does not lead to any force influencing on the particle.

Using our knowledge of vector analyses and taking the dot product of Equa-

tion 3.5 with vector ~v, we have:

~v � m d~v

dt
¼ ~v � q ~v� ~B

� �
m
1

2

d ~v � ~vð Þ
dt

� �
¼ q ~v � ~v� ~B

� �� �
d

dt

mυ2

2

	 

¼ 0

ð3:7Þ

where υ ¼ ��~v�� is the speed of particle and as we have noted before, ~v� ~B
� �

is

perpendicular to ~v so the right-hand side is zero.

Obviously, from the above, we can see that the static magnetic field cannot

change the kinetic energy of the particle, since the force is always perpendicular to

the direction of motion, and this is true even for a spatially nonuniform field. This is

because the deviation above did not use the fact that the field is uniform in space.

Using Equation 3.6 and rewriting Equation 3.5, we have:

d~v����
dt

þ d~v⊥
dt

¼ q

m
~v⊥ � ~B
� � ð3:8Þ

However, as stated above, the term~v���� � ~B ¼ 0in Equation 3.8 can be split into two

equations in terms of ~v���� and ~v⊥, respectively; thus, we have:
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d~v����
dt

¼ 0 ! ~v���� ¼ constant

d~v⊥
dt

¼ q

m
~v⊥ � ~B
� � ð3:9Þ

Further investigation of Equation 3.9 reveals that the magnetic field ~B has no effect

on the motion of the particle in the direction along it and that it only affects the

particle velocity in the direction perpendicular to it.

We now consider a static magnetic field oriented along the z-axis in vector form

as ~B ¼ ẑ B in order to be able to examine the characteristic of the perpendicular

further on. We can then write Equation 3.5 in component form as:

m
dυx
dt

¼ qBυy ð3:10aÞ

m
dυy
dt

¼ �qBυx ð3:10bÞ

m
dυz
dt

¼ 0 ð3:10cÞ

The parallel component of particle velocity~v���� to magnetic field is usually denoted

as υz and is constant, since the Lorentz force q ~v� ~B
� �

is perpendicular to }\hat{z}{.

To determine the time variations of υx and υy, we refer to Equations 3.10a and 3.10b
by taking the second derivative of these equations in respect to time t to obtain the

following sets of equations:

d2υx
dt2

þ ω2
cυx ¼ 0 ð3:11aÞ

d2υy
dt2

þ ω2
cυy ¼ 0 ð3:11bÞ

whereωc ¼ �qB=m is the gyrofrequency or cyclotron frequency, and we show it as

the following equation:

Cyclotron Frequency ωc�� qB

m
ð3:12Þ

The dimension of ωc as an angular frequency is rad/m and can be a positive or

negative value which is driven by the sign of charge q.
Figure 3.4 is the presentation of cylindrical coordinate with the azimuthal angle

of ϕ with a right-hand sense of rotation along the positive direction from the x-axis,
and the same picture shows the motion of particle as well, where z-axis is an

indication of coming out of the page with the symbol of �.
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The solution to linear differential sets of Equations 3.11a and 3.11b in the form of

harmonic motion is provided as follows, assuming that~v⊥ ¼ υ⊥ and~v���� ¼ υz ¼ υ����:
υx ¼ υ⊥ cos ωc þ ψð Þ ¼ υ⊥e

iωct ¼ dx

dt
¼ _x: ð3:13aÞ

υy ¼ υ⊥ cos ωc þ ψð Þ ¼ m

qB
_υ x ¼ � 1

ωc

_υ x ¼ �iυ⊥e
iωct ¼ _y: ð3:13bÞ

υz ¼ υ���� ð3:13cÞ

where ψ is some arbitrary phase angle, which defines the orientation of the particle

velocity at t ¼ 0, and υ⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2x þ υ2y

q
is the constant speed in the plane perpendic-

ular to the magnetic field ~B.
Considering Fig. 3.4 and assuming a positive charge q in motion, at a different

point along its orbit, we can clearly see that the particle experiences a force of ~F

/ ~v� ~B directed inward at all times at any given points, which balances the

centrifugal force, driven by the circular motion of the particle. For a magnetic

field in the z-direction, in case of electron, the particle rotation follows the right-

hand thump rule in electromagnetism.

The right-hand rule for magnetic force, describing the interactions between the

current, the flow of electrons, and magnets, can be used to do useful work, like

power motors, and will continue to be important in the future because they can be

used for things like wireless energy transfer. This simple demonstration will show

how strongly and quickly they interact with each other (see Fig. 3.5).

A more complicated right-hand rule (RHR) is Fleming’s RHR, which describes

the motion or force in which something moves. It is useful for understanding the

direction of various players in electromagnetism, since they interact at right angles.

q

q

q

v

v × B

v × B

v × B

v

v

+

+

+

yz

x

f

Fig. 3.4 Motion of particle in a magnetic field
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The direction of the thumb is the direction of the force, the direction of the index

finger indicates the direction of the magnetic field, and the direction of the middle

finger is the direction of the electric current.

From what we have so far, we can easily find the radius of circular trajectory

which can be found by considering the fact that the ~v� ~B force is balanced by the

centripetal force; therefore, we have:

�mv2⊥
r

¼ q~v� ~B ¼ qυ⊥B ð3:14Þ

Using what we have for Equation 3.12 and substituting it into Equation 3.14, we get

the result for the final form of trajectory radius of gyroradius, which also known as

the Larmor radius and is written as:

rc ¼ �mυ⊥
qB

¼ υ⊥
ωc

ð3:15Þ

Note that the magnitude of the particle velocity remains constant, since the mag-

netic field force is at all times perpendicular to the motion as it can be seen in

Fig. 3.4. Additionally, by the convention, the gyroradius is written in rc and can take
negative value. This is a mathematical formulation that allows for writing the

expression for particle trajectory for either positive or negative charges in compact

form. The gyroradius should always be interpreted as a real physical distance [2].

Note that the magnetic field has no influence over changing the kinetic energy of

the particle; however, it does change the direction of its momentum. It is important

Fig. 3.5 The right-hand rule for magnetic force
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to note that the gyrofrequency ωc of the charged particle does not depend on its

velocity or kinetic energy and is only a function of intensity of the magnetic field.

Further analyses can be done to show the particle position as a function of time

by integration of Equations 3.13a and 3.13b sets to find the following information:

x ¼ rc sin ωctþ ψð Þ þ x0 � rc sinψð Þ ð3:16aÞ
y ¼ �rc cos ωctþ ψð Þ þ y0 � rc cosψð Þ ð3:16bÞ

z ¼ z0 þ υ����t ð3:16cÞ

where x0, y0, and z0 are the coordinates of the location of the particle at t ¼ 0, and ψ
is simply the phase with respect to a particular time of origin.

Plotting the trajectory function of sets of Equations 3.16a, 3.16b, and 3.16c

shows that the particle moves in a circular orbit perpendicular to the magnetic field
~B with an angular frequency ωc and radius rc about a guiding center

~rg ¼ x0x̂ þ y0ŷ þ z0 þ υ����t	 

ẑ .

If we are considering particle motion (i.e., electron) in inhomogeneous field,

then the concept of a guiding center makes it very useful, since the gyration is often

much more rapid than the motion of the guiding center. Now considering the sets of

Equations 3.13a, 3.13b, and 3.13c, in their present form, influences the guiding

center to simply move linearly along the z-axis at a uniform speed υ���� as it is

depicted in Fig. 3.6, although the particle motion itself is helical.

Fig. 3.6 The electron guiding center motion in a magnetic field ~B ¼ Bẑ (Courtesy of Inan and

Golkowski) [2]
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From Fig. 3.6, the pitch angle of the helix is defined as:

α ¼ tan �1 υ⊥
υ����

0@ 1A ð3:17Þ

Noticeably for both positive and negative charges such as proton or electron,

respectively, the particle gyration constitutes an electric current in the�ϕ direction

(i.e., opposite to the direction of the figures of the right hand when the thump points

in the direction of theþz axis). The conceptual direction using the right-hand rule is
depicted in Fig. 3.7 here, and in that case, magnetic moment μ associated with such

a current loop is given by current multiplied by area or mathematically presented as:

μ ¼ qωc

2π

��� ���� 

|fflfflfflffl{zfflfflfflffl}

current

πr2c
� �|fflffl{zfflffl}
area

¼ mυ2⊥
2B

ð3:18Þ

Similarly, if we are interested about the torque ~τ at this stage, it is defined to first

express the rate of change of angular momentum ~L, which is:

Fig. 3.7 Right-hand rule direction
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~τ ¼ d

dt

	 

~L ¼ ~rc � ~F ð3:19Þ

The angular momentum in terms of liner momentum ~p of the particle in motion is

expressed as:

~L ¼ ~rc � ~p ð3:20Þ

For more details of derivation, refer to Chap. 1 under same subject.

Note that, as well, the direction of the magnetic field generated by the gyration is

opposite to that of the external field. Thus, the plasma particles that freely are

mobile will respond to an external magnetic field with some tendency to reduce the

total magnetic field. In other words, plasma is a diamagnetic medium and has a

tendency to exclude magnetic fields.

As a summary of single-particle motions, so far we covered by applying the

general form of Lorenz force Equation 3.2 in uniform electric field ~E and magnetic

field ~B by reducing to the form of Equation 3.3 and managed to find the result for a

simple harmonic oscillator and consequently the cyclotron frequency as well. In

addition, we also found out what the Larmor radius as Equation 3.15 and finally the

trajectory of particle function as sets of Equations 3.16a, 3.16b, and 3.16c and

showed the concept of the guiding center.

Now we are going to be in quest of all possible forms of general Lorenz force

function that will reduce to different categories based on conditions of electric and

magnetic field as combined elements of the Lorenz formula.

The sets of Equations 3.16a, 3.16b, and 3.16c also can be written in the following

format as a complete set:

m _υ x ¼ qBυy m _υ y ¼ �qBυx m _υ z ¼ 0

€υx ¼ qB

m
_υ y ¼ � qB

m

	 
2

υx

€υy ¼ qB

m
_υ x ¼ � qB

m

	 
2

υy

ð3:21aÞ

The circular orbit around the guiding center (x0, y0) which is a fixed point can be

written as [3]:

x� x0 ¼ rL sinωct
y� y0 ¼ �rL cosωct

ð3:21bÞ

CASE II: Finite ~E
In this case, we allow an electric field to be present and the motion to be found as a

summation of the two motions, and the usual circular Larmor gyration plus a drift of
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the guiding center to take place. In this scenario, we take the electric field~E to lay in

the x� z plane; thus, Ex ¼ 0. However, the z component of velocity is unrelated to

the transverse components as in CASE I above and can be treated separately. Then,

the general Lorenz force equation function of motion applies as:

~F ¼ q ~Eþ ~v� ~B
� � ð3:22aÞ

and

m
d~v

dt
¼ q ~Eþ ~v� ~B
� � ð3:22bÞ

which has the z component velocity as:

dυz
dt

¼ q

m
Ez ð3:23aÞ

Integration of Equation 3.23a in respect to time t provides

υz ¼ qEz

m
tþ υ0 ð3:23bÞ

The above relationships reveal straightforward acceleration along magnetic field ~B,
and the transverse components of Equations 3.22a and 3.22b will be as:

dυx
dt

¼ q

m
Ex � ωcυy

dυy
dt

¼ 0	 ωcυx
ð3:24Þ

Differentiating, we have for constant ~E:

€υx ¼ �ω2
cυx

€υy ¼ 	ωc

q

m
Ex � ωcυy
� � ¼ �ω2

c

Ex

B
þ υy

	 
 ð3:25Þ

We can then write the following for this case:

d2

dt2
υy þ Ex

B

	 

¼ �ω2

c υy þ Ex

B

	 

ð3:26Þ

Comparing this equation with Equations 3.21a and 3.21b, we can easily see that

Equation 3.26 is a reduced version of Equations 3.21a and 3.21b as in CASE I if we

replace υy byυy þ Ex=Bð Þ. However, the Equations 3.13a and 3.13b therefore can be
replaced by:
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υx ¼ υ⊥eiωct

υy ¼ �iυ⊥eiωct � Ex

B

ð3:27Þ

We can find the general form of the Larmor motion as before with the help of

superimposition of a drift guiding center velocity~vgc in the�y direction forEx > 0,

which is illustrated in Fig. 3.8 here.

Thus, the general formula by eliminating the termmd~v=dt in Equation 3.22a and
doing algebraic homework by taking the vector cross product with the magnetic

field, we get:

~E� ~B ¼ ~B� ~v� ~B
� � ¼ vB2 � B ~v � ~B� � ð3:28Þ

The transverse components of this equation (i.e., Equation 3.22a) are:

v⊥gc ¼
~E� ~B

B2
�~vE ð3:29Þ

The magnitude of electric field drift vE of the guiding center is then given by the

following equation as:

vE ¼ E V=mð Þ
B Tð Þ

m

s
ð3:30Þ

More detailed information and discussion can be found in the book by Chen [3].

CASE III: Nonuniform ~B Field
The above two cases established the concept of the guiding center firmly, and now

we need to have some concept and understanding of the particle motion in an

inhomogeneous field of electric~E and magnetic~Bfields where they vary in space or

time. Nevertheless, we managed to establish the expression of the guiding center for

ELECTRONION

B

B

z E

E+ –

vgc

x

y

Fig. 3.8 Particle drifts in crossed electric and magnetic fields (Courtesy of Springer Publishing

Company) [3]
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uniform fields; however, the problem of the guiding center becomes too compli-

cated to deal with, and we should be able to find exact solution to the problem as

soon as we introduce an inhomogeneity condition to it.

An approximate answer can be found as customary approach to expand in the

small ratio rL/L, for orbit radius of rL, where L is the scale length of inhomogeneity.

Seeking for solution using this type of theory called orbital theory is extremely

complex and involved, but for the sake of argument, we can study only the simplest

cases as below, where only one inhomogeneity for either electric field or magnetic

one takes place at a time.

CASE III-1: ∇~B⊥~B, Gradient ~B Drift

In this case, the magnetic field lines are often called “lines of force,” and they are

not lines of force, but they are straight lines, and their density increases as an

example in y-direction as it is illustrated in Fig. 3.9 here.

The solution of this simple case is expressed by Chen [3], and readers should

refer to this book; however, for the sake of this discussion, we summarize the

related equations here, considering the illustration in Fig. 2.9. The gradient in ~B
�� ��

does cause the Larmor radius to be larger at the bottom of the orbit than at the top,

and this leads to a drift in opposite directions for ion and electron particles

perpendicular to both ~B and ∇~B. Under this situation, the drift velocity is

proportional to rL/L and to υ⊥.

For the purpose of this analysis, we consider the Lorentz force ~F ¼ q~v� ~B
averaged over a gyration, and clearly, since the particle spends more time moving

up and down; thus,Fx ¼ 0, as it is shown in Fig. 3.9. Component of Lorentz force in

y-direction, namely, can be calculated Fy in approximation method using the

undisturbed orbit of the particle using Equations 3.13a, 3.13b, and 3.13c to find

the average for a uniform magnetic field ~B.
Real part of the complex form of Equations 3.13a and 3.13b is given as:

Fy ¼ �qυxBz yð Þ ¼ �qυ⊥ cosωctð Þ B0 � rL cosωctð Þ∂B
∂y

� �
ð3:31Þ

Using Equation 3.31 along with utilization of Taylor series approximation of~Bfield

about the point x0 ¼ 0 and y0 ¼ 0, we have:

+

−

• • • • •

••••

• • •

••• •

B

B

B
x

y

z

Fig. 3.9 The drift of a gyrating particle in a nonuniform magnetic field (Courtesy of Springer

Publishing Company) [3]
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~B ¼ B0 þ ~r �∇ð Þ~Bþ � � �
Bz ¼ B0 þ y ∂Bz=∂yð Þ þ � � � ð3:32Þ

For this expansion, the required condition rL=Lð Þ 
 1 needs to hold, where L is the

scale length of ∂Bz=∂y. The first term of Equation 3.31 averages to zero in a

gyration, and the average of cos 2ωct ¼ 1=2 and then we have:

Fy ¼ 	qυ⊥rL ∂Bz=∂yð Þ=2 ð3:33Þ

The guiding center drift velocity then is:

~vgc ¼ 1

q

~F� ~B

B2
¼ 1

q

Fy

~B
�� �� x̂ ¼ 	 υ⊥rL

~B

	 

1

2

∂B
∂y

x̂

	 

ð3:34Þ

We have used the following equation in presences of gravitational force by

replacing q~E in the equation motion of Equation 3.22a by the forgoing result that

can be applied to the other forces:

~vf ¼ 1

q

~F� ~B

B2
ð3:35Þ

Therefore, we can write the following general form as:

~v∇~B ¼ �1

2
υ⊥rL

~B�∇~B

B2
ð3:36Þ

This equation has all the dependencies that was expected from the physical picture

minus the factor 1/2, which is arising from the average.

CASE III-2: Curved ~B, Curvature Drift
In this case, we assume the lines of force are curved with a constant radius of

curvature Rc and are constant (see Fig. 3.10), and the average square of the

component of random velocity υ2���� along with centrifugal force Fcf is given as:

Fcf ¼
mυ����
Rc

¼ mυ2����Rc

R2
c

ð3:37Þ

According to Equation 3.35, this gives rise to a drift:
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~vR ¼ 1

q

Fcf � ~B

B2
¼

mυ2����
qB2

~Rc � ~B
~Rc

R2
c

ð3:38Þ

The general form of total drift in a curved vacuum field:

~vR þ ~v∇~B ¼ m

q

~Rc � ~B

R2
cB

2
υ2���� þ 1

2
υ2⊥

	 

ð3:39Þ

By adding these drifts, which means that if one bends a magnetic field into a torus

for the purpose of confining a thermonuclear plasma, the particles will drift out of

the torus no matter how one juggles the temperatures and magnetic fields.

For more details and further analysis, readers should refer to Chen’s

textbook [3].

CASE III-3: ∇~B
����~B, Magnetic Mirrors

Now consider magnetic field~B is primarily laying in the z-direction whose magnetic

field varies in that direction and is axisymmetric with Bθ ¼ 0 and ∂=∂θ ¼ 0.

Figure 3.11 shows drift of a particle in a magnetic mirror field, where the lines of

force cover and diverge with a component of magnetic field Br in direction r of a
cylindrical coordinate. This scenario will give rise to a force, which is trapping a

particle in a magnetic field.

We are able to obtain the Br and∇ � ~B ¼ 0by the following calculations, using the

cylindrical coordinate systems with assumption of axisymmetric around angle θ:

Fcf

Rc

B

r̂

^q

Fig. 3.10 A curved

magnetic field (Courtesy of

Springer Publishing

Company) [3]
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1

r

∂
∂r

rBrð Þ þ ∂Bz

∂z
¼ 0 ð3:40Þ

If ∂Bz=∂z is given at r ¼ 0 and does not vary much with r, we have approximately

the following:

rBr ¼ �
ð r
0

r
∂Bz

∂z
dr ’ �1

2
r2

∂Bz

∂z

� �
r¼0

Br ¼ �1

2
r
∂Bz

∂z

� �
r¼0

ð3:41Þ

The variation of ~B
�� ��with r causes a gradient~Bdrift of guiding centers about the axis

of symmetry with no radial gradient of magnetic field ~B drift due to ∂Bθ=∂θ ¼ 0.

Therefore, the components of the Lorentz force are:

Fr ¼ q υθBz � υzBθð Þ
Fθ ¼ q �υrBz þ υzBrð Þ
Fz ¼ q υrBθ � υθBrð Þ

ð3:42Þ

Moreover, we are interested in the following term of Equation 3.42 as follows:

Fz ¼ 1

2
qυθr

∂Bz

∂z

	 

ð3:43Þ

Averaging out this equation over one gyration by considering a particle whose

guiding center lies on the axis, then υθ is a constant during a gyration; depending on
the sign of particle charge q, υθ is 	υ⊥. Since r ¼ rL, the average force is then:

Fz ¼ 	1

2
qυ⊥rL

∂Bz

∂z
¼ 	1

2
q
υ2⊥
ωc

∂Bz

∂z
¼ �1

2

mυ2⊥
B

∂Bz

∂z
ð3:44Þ

B

q
Ù

z
Ù

+

Fig. 3.11 Drift of a particle in amagneticmirrorfield (Courtesy ofSpringerPublishingCompany) [3]
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Defining the magnetic moment of the gyrating particle, which is the same as the

definition for the magnetic moment of a current loop with area A and current

I showing it as μ ¼ IA, thus we have:

μ�1

2

mυ2⊥
B

ð3:45Þ

so that

Fz ¼ �μ
∂Bz

∂z

	 

ð3:46Þ

Then, the general form of force on a diamagnetic particle is as follows:

F���� ¼ �μ
∂B
∂s

	 

¼ �μ∇����B ð3:47Þ

where ds is a line element along the magnetic field ~B.
In any case, from the definition for Equation 3.45 and single-particle charge such

as ion, e is generated by a charge e coming around ωc/2π times a second as

I ¼ eωc=2π, and the area A is calculated based on πr2L ¼ πυ2⊥=ω
2
c ; thus, we can

write:

μ ¼ πυ2⊥
ω2
c

eωc

2π
¼ 1

2

eυ2⊥
ωc

¼ 1

2

mυ2⊥
B

ð3:48Þ

The Larmor radius varies, as the particle goes through regions of stronger or weaker

magnetic field ~B; however, the magnetic moment μ does remain invariant, and the

proof can be seen in Chen’s textbook [3].

The invariance of magnetic moment μ is the foundation for one of the initial

schemes for plasma confinement approach by the magnetic device called magnetic
mirror.

Figure 3.12 here shows a simplistic and artistic illustration of such device, where

the nonuniform field of a simple pair of coils forms two magnetic mirrors between

where the plasma can be trapped as consequently to be confined. This effect works

on both ions and electrons, holding either positive or negative charge, respectively.

Conservation of energy requires that:

1

2

mυ2⊥0

B0

¼ 1

2

mυ0⊥2
B0 ð3:49Þ

where
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υ0⊥2 ¼ υ2⊥0 þ υ2����0 ð3:50Þ

Combining Equation 3.49 with Equation 3.50, we can write:

B0

B0 ¼
υ2⊥0

υ0⊥2
¼ υ2⊥0

υ20
� sin 2θ ð3:51Þ

where θ is the pitch angle of the orbit in the weak field region and with smaller value

of this angle; the particle will mirror in regions of higher magnetic field B; however,
if this angle is too small, B0 exceeds Bm, and the particle does not mirror at all. If we

replace B0 by Bm in Equation 3.51, we observe that the smallest pitch angle θ of a

confined particle is provided by:

sin 2θm ¼ B0

Bm

� 1

Rm

ð3:52Þ

where Rm is the mirror ratio.
Figure 3.13 is an illustration of a somewhat called loss cone, where Equation 3.52

defines the boundary of a region in velocity space in the shape of cone.

The magnetic mirror first was configured and proposed by Enrico Fermi as an

instrument/machine for the acceleration of cosmic rays. His configuration is

depicted in Fig. 3.14 here, where protons are bouncing between magnetic fields.

As we stated previously, a further example of the mirror effect confinement of

particles can be observed in the Van Allen belts as it was shown in Fig. 3.3.

CASE IV: Nonuniform ~E Field

Now, we assume that, in this case, the magnetic field is uniform and the electric

field is in nonuniform conditions, and for simplicity of the problem in hand, we

assume electric field ~E is in x-direction and varies in that direction sinusoidally as it
is shown in Fig. 3.15 and presented with the following equation:

~E ¼ E0 cos kxð Þx̂ ð3:53Þ

The associated field distribution has a wavelength λ ¼ 2π=k and is the result of a

sinusoidal distribution of charges, which we do not specify. Practically, such

x x

• •

Bo

Bm

Fig. 3.12 A plasma trapped

between magnetic mirrors

(Courtesy of Springer

Publishing Company) [3]
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distribution can arise in plasma during a wave motion. Therefore, the equation of

motion is:

m
d~v

dt

	 

¼ q ~E xð Þ þ ~v� ~B
� � ð3:54Þ

whose transverse components are:

vll

vy

vx

v⊥

v

qm

Fig. 3.13 The loss cone

(Courtesy of Springer

Publishing Company) [3]

B1

B2

vm
vm

Fig. 3.14 Cosmic ray

proton trap device

(Courtesy of Springer

Publishing Company) [3]

Fig. 3.15 Drift of a

gyrating particle in a

nonuniform electric field

(Courtesy of Springer

Publishing Company) [3]

3.2 Magnetic Confinement 119



_υ x ¼ qB

m
υy þ q

m
Ex xð Þ

_υ y ¼ � qB

m
υx

ð3:55Þ

and

€υx ¼ �ω2
cυx � ωc

_E x xð Þ
B

ð3:56Þ

€υy ¼ �ω2
cυy � ω2

c

_E x xð Þ
B

ð3:57Þ

The component of electric field Ex(x) in x-direction in the above equations is

presentation of the field at the position of the particle and can be evaluated if we

have the knowledge of the particle’s orbit, which we need to solve in the first place.

However, for a weak electric field, we use an approximation of undisturbed orbit to
assess Ex(x). The orbit in the absence of the electric field that is given by Equa-

tion 3.21b is written as:

x ¼ x0 þ rL sinωct ð3:58Þ

From Equations 3.57 and 3.53, we obtain:

€υy ¼ �ω2
cυy � ω2

c

_E x xð Þ
B

cos k x0 þ rL sinωctð Þ ð3:59Þ

Solution of Equation 3.59 can be found as follows [3]:

€υy ¼ 0 ¼ �ω2
cυy � ω2

c

E0

B
cos k x0 þ rL sinωctð Þ ð3:60Þ

Expanding the cosine, we have:

cos k x0 þ rL sinωctð Þ ¼ cos kx0ð Þ cos krL sinωctð Þ
� sin kx0ð Þ sin krL sinωctð Þ ð3:61Þ

It will suffice to treat the small Larmor radius case krL 
 1. The Taylor expansions

are:

cos ε ¼ 1� 1

2
ε2 þ � � �

sin ε ¼ εþ � � �
ð3:62Þ

which allows us to write:
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cos k x0 þ rL sinωctð Þ � cos kx0ð Þ 1� 1

2
k2r2L sin

2ωct

	 

� sin kx0ð ÞkrL sinωct

ð3:63Þ

Last term of Equation 3.63 vanishes upon averaging over time, and then Equa-

tion 3.60 reduces to the following form:

υy ¼ �E0

B
cos kx0ð Þ 1� 1

4
k2r2L

	 

¼ �Ex x0ð Þ

B
1� 1

4
k2r2L

	 

ð3:64Þ

Thus, the usual ~E� ~B drift is modified by the inhomogeneity to read:

~vE ¼
~E� ~B

B2
1� 1

4
k2r2L

	 

ð3:65Þ

Chen [3] argues about finding the finite-Larmor-radius effect, using the expansion

of Equation 3.65 as a following form, and readers should refer to that reference:

~vE ¼ 1� 1

4
r2L∇

2

	 

~E� ~B

B2
ð3:66Þ

CASE V: Time-Varying ~E Field

In this case, we just use the equation related to the case and leave all the details to

the reader to see the proof of the details in Chen [3] and other plasma-related books.

The condition that we consider this case calls for both electric and magnetic to be

uniform in space but varying in time.

~E ¼ E0e
iωtx̂ ð3:67Þ

Since _E x ¼ iωEx, we can write Equation 3.56 as:

€υx ¼ �ω2
c υx 	 iω

ωc

eEx

B

 !
ð3:68Þ

Let us write the rest of the equation related to this case just as they are without any

detailed explanations:
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eυp�� iω

ωc

eEx

B

eυE�eEx

B

ð3:69Þ

€υx ¼ �ω2
c υx � eυp� �

€υy ¼ �ω2
c υy � eυE� � ð3:70Þ

Solution of Equation 3.70 is:

υx ¼ υ⊥eiωct þ eυp
υy ¼ �iυ⊥eiωct þ eυE ð3:71Þ

Twice differentiation of Equation 3.71 in respect to time results in:

€υx ¼ �ω2
cυx þ ω2

c � ω2
� �eυp

€υy ¼ �ω2
cυy þ ω2

c � ω2
� �eυE ð3:72Þ

Polarization drift for x-component along the direction of ~E field is given as:

~vp ¼ � 1

ωc
~B

d~E

dt
ð3:73Þ

In addition, polarization current is:

~jp ¼ ne υip � υp
� � ¼ ne

eB2
M þ mð Þ d

~E

dt
¼ ρ

B2

d~E

dt
ð3:74Þ

where ρ is the mass density, while M and m are particle masses involved, and they

are defined as before.

If a field ~E is suddenly applied, the first thing the ion does is to move in the

direction of ~E. Only after picking up a velocity ~v does the ion feel a Lorentz force

e~v� ~B and begin to move downward, as it is illustrated in Fig. 3.16.

CASE VI: Time-Varying ~B Field

For this case, we let the magnetic field vary in time and due to the fact that the

Lorentz force is perpendicular to ~v, a magnetic field by itself does not have any

impact energy to a charged particle. However, associated with magnetic field ~B,

there exists an electric field ~E that is given as below that can accelerate the particle:

∇� ~E ¼ �~B

B2
ð3:75Þ
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Details this analysis has worked out by Ref. [3] and we briefly show all the related

equations, including the magnetic moment μ that is invariant or is slowly varying

magnetic fields and magnetic flux Φ through a Larmor orbit that is constant as:

δ
1

2
mυ2⊥

	 

¼ μδB

δμ ¼ 0

Φ ¼ Bπ
υ2⊥
ω2
c

¼ Bπ
υ2⊥
q2B2

¼ 2πm

q2

1

2
mυ2⊥

B
¼ 2πm

q2
μ ð3:76Þ

This property is used in a method of plasma heating known as adiabatic compres-

sion. Figure 3.17 shows a schematic of how this is done. A plasma is injected into

the region between the mirrors A and B. Coils A and B are then pulsed to increase B

and hence υ2⊥. The heated plasma can then be transferred to the region C-D by a

further pulse in A, increasing the mirror ratio there. The coils C and D are then

pulsed to further compress and heat the plasma. Early magnetic mirror fusion

devices employed this type of heating [3].

3.2.1 Summary of the Guiding Center Drift

General force~F : ~vf ¼ 1

q

~F� ~B

B2
ð3:77Þ

Electric field~E : ~vE ¼
~E� ~B

B2
ð3:78Þ

B

E

vp

Fig. 3.16 The polarization

drift (Courtesy of Springer

Publishing Company) [3]
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Gravitational field~vg : ~vg ¼ m

q

~g� ~B

B2
ð3:79Þ

Nonuniform ~E : ~vE ¼ 1þ 1

4
r2L∇

2

	 

~E� ~B

B2
ð3:80Þ

Nonuniform magnetic field ~B

Grad-~Bdrift : ~v∇~B
¼ �1

2
υ⊥rL

~B�∇~B

B2
ð3:81Þ

Curvature drift : ~vR ¼
mυ2����
q

~Rc � B

R2
cB

2
ð3:82Þ

Curved vacuum field : ~vRþ~v∇~B ¼ m

q
υ2���� þ 1

2
υ2⊥

	 

~Rc � B

R2
cB

2
ð3:83Þ

Polarization drift : ~vp ¼ � 1

ωc
~B

d~E

dt
ð3:84Þ

However, more details can be in a lot of standard plasma textbooks.

3.3 How the Tokamak Reactors Works

The tokamak was invented in the old Soviet Union by Andrei Sakharov and Igor

Tamm, and basically, the artistic configuration of it is shown here in Fig. 3.18.

As of 2008, the US Department of Energy (DOE) and other US federal agencies

have spent approximately 18 billion dollars on energy devices using the fusion

reaction between deuterium and tritium (D-T Fusion, below the left of Fig. 3.19). In

this reaction the hydrogen isotope deuterium (with one “extra” neutron) collides

with the hydrogen isotope tritium (with two “extra” neutrons) to form an alpha

particle (a helium nucleus) and a neutron. This is a nuclear reaction: between them,

the new alpha and the neutron possess 17.6 MeV (million electron volts) of energy.

Fig. 3.17 Two-stage

adiabatic compression of

plasma (Courtesy of

Springer Publishing

Company) [3]
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In the Fusion Reaction Cross-Sections graph (above the right in Fig. 3.19), the

red deuterium-tritium (D-T) curve peaks at about 40 KeV (40,000 eV). This means

that the optimum activation energy required for the D-T fusion reaction is only

about 40 KeV. The curves for the other reactions peak at much higher energies. The

energy required to make the D-T reaction happen is lower (in KeV) than the energy

required for any other nuclear fusion reaction. In addition, the height of the D-T

curve (cross section in millibarns) indicates that the deuterium and tritium isotopes

“see” each other as being relatively large, compared to the isotopes in the other

reactions shown. Thus, at the proper activation energy, this reaction is much more

likely to happen than any other fusion reaction. DOE and many other entities pursue

the D-T reaction because it requires less energy to initiate and because it is more

probable.

Unfortunately, there are several serious disadvantages to this reaction:

1. Tritium is both radioactive and expensive.

Fig. 3.18 Conceptual sketch of tokamak

Fig. 3.19 Depiction of all isotopes of hydrogen thermonuclear reactions
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2. The neutrons released can harm living things and damage any other materials

surrounding them.

3. The neutrons can make some materials radioactive.

At this time, the device preferred for making this reaction happen is the tokamak.

The DOE, the European Union, Japan, Russia, China, and India are all part of the

International Thermonuclear Experimental Reactor (ITER) program, which is

working on it. Their dream is that the tokamak will heat a plasma containing tritium

and deuterium nuclei. The hotter these nuclei get, the faster they will move. When

the plasma is hot enough, some of the nuclei will be moving fast enough to react

when they collide. The energy of the newly produced, highly energetic helium

nuclei (alphas) will be used to keep the plasma hot, and the energy of the new

neutrons will be released to a lithium metal blanket, which lines the tokamak. Water

lines will run through the lithium. The hot lithium will heat the water to steam, and

the steam will be used to spin turbines, which will spin generators to make

electricity.

There is a substantial gap between the above dream and its fulfillment. For at

least 50 years, the practical use of tokamaks and other D-T devices to make

electricity has been forecast to be “about 30 years in the future.” To be commer-

cially useful, a controlled fusion reaction must produce more energy than the

energy that was required to cause the reaction in the first place (i.e., the 40 KeV

activation energy is mentioned above). The point at which the energy produced

exceeds the energy required is called “net power” or “break-even.” Various orga-

nizations in different parts of the world have been working to produce “net power”

nuclear fusion for about 50 years. Many billions of rubles, dollars, yen, and euros

have been spent on this endeavor, but no one has been successful yet.

Many of the efforts have involved the idea of heating plasma of deuterium

(D) and tritium (T) gases until the nuclei fuse. When the heat of plasma increases,

the average energy (speed) of the particles increases, but there is an enormous

variation in the energies of the individual particles within the plasma. This set of all

the different energies of the particles in plasma or gas is called a Maxwellian

distribution. Unfortunately, in the typical Maxwellian distribution, only few of

the nuclei have the 40 KeV of energy required to react, and all the other particles

are just going along for the ride. If the temperature is increased to the point where an

adequate number of nuclei have enough energy, then other problems develop which

can compromise the integrity of the containment.

Both the tokamak and the stellarator use magnetic fields to manipulate the D-T

plasma. However, the distinguishing feature of the tokamak is its “step-down”

transformer. The transformer’s primary is the stack of beige coils in the center of

the tokamak’s torus (in the donut’s hole below, Fig. 3.20). The transformer’s

secondary is the ring of the plasma—the orange skinny donut. An increasing current

in the many-coiled primary induces a much larger current in the single-coiled

plasma “donut” secondary.

Two magnetic fields combine to produce the resultant magnetic field (labeled

left) that spirals helically around the tokamak’s torus (orange skinny donut). This
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resultant field contains and controls the plasma. The two magnetic fields that

combine vectorially to make the resultant field are (1) the toroidal field, generated

by the green toroidal coils, and (2) the poloidal field generated by the orange

plasma current in the torus. The vertical coils (the large rings around the outside of

the tokamak and above and below it) can create a vertical magnetic field for

controlling the position of the plasma inside the torus.

The transformer coils also cause “ohmic” (RI2) heating in the plasma, which

contributes to raising its temperature. However, since the electrical resistance of the

plasma decreases as its temperature increases, the upper limit on the “ohmic”

heating turns out to be about 20–30 million degrees Celsius, which is not high

enough for fusion.

Thus it is necessary to further increase the temperature by three additional

strategies: radio-frequency heating, magnetic compression, and neutral beam

injection.

The proposed ITER tokamak, to be built in France, is pictured in Fig. 3.21. To

get an idea of the scale that is involved, notice the tiny little lab tech in the blue coat

standing on the floor, near the machine.

A somewhat similar fusion effort is the stellarator, also known as the

Wendelstein 7-X in Germany (see Fig. 3.22).

Both the stellarator and the tokamak use a magnetic containment to control the

fuel. A distinguishing feature of the stellarator is the use of odd-shaped coils to

manipulate the shape of the plasma donut within the coils. To have a better concept

of how the stellarator works, we introduce the plasma beta β, which is the ratio of

plasma pressure to magnetic pressure and is defined as:

Transformator-
spulen

Vertikalfeld-
spulen

Toroldalfeld-
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Magnetfeldlinien
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Fig. 3.20 Tokamak donut

hole shape
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β ¼ PPlasma

pMagnetic

¼ nkBT

B2= 2μ0ð Þ ð3:85Þ

where

n ¼ Plasma Density

kB ¼ Boltzmann Constant

T ¼ Plasma Temperature

B ¼ Magnetic Field

μ0 ¼ Magnetic Moment
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Fig. 3.21 France ITER tokamak machine
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Given that the magnets are a dominant factor in magnetic fusion confinement

(MFC) reactor design and that density and temperature combine to produce pres-

sure, the ratio of the pressure of the plasma to the magnetic energy density naturally

becomes a useful figure of merit when comparing MCF designs. In effect, the ratio

illustrates how effectively a design confines its plasma.

β is normally measured in terms of the total magnetic field and the term is

commonly used in studies of the Sun and Earth’s magnetic field and in the field of

magnetic fusion power designs. However, in any real-world design, the strength of

the field varies over the volume of the plasma, so to be specific; the average beta is

sometimes referred to as the “beta toroidal.” In the tokamak design, the total field is

a combination of the external toroidal field and the current-induced poloidal one, so

the “beta poloidal” is sometimes used to compare the relative strengths of these

fields. In addition, as the external magnetic field is the driver of reactor cost, “beta

external” is used to consider just this contribution.

In the magnetic fusion power field, plasma is often confined using large

superconducting magnets that are very expensive. Since the temperature of the

fuel scales with pressure, reactors attempt to reach the highest pressures possible.

The costs of large magnets roughly scale like β½. Therefore beta can be thought of

as a ratio of money out to money in for a reactor, and beta can be thought of (very

approximately) as an economic indicator of reactor efficiency. To make an eco-

nomically useful reactor, betas better than 5% are needed.

Fig. 3.22 Stellarator, Wendelstein 7-X under construction in Germany
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The same term is also used when discussing the interactions of the solar wind

with various magnetic fields. For example, beta in the corona of the Sun is about

0.01.

Back to our original discussion, tokamaks have been studied the most and have

achieved the best overall performance for MCF purposes; however, the stellarator is

followed by the spherical tokamak (see Fig. 3.23), which is actually a very tight

aspect ratio tokamak.

Fig. 3.23 Illustration of spherical tokamak
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These configurations (i.e., tokamak and stellarator) all have relatively strong

toroidal magnetic fields and reasonable transport losses. Each is capable of MHD

stable operation at acceptable values of β, without the need for a conducting wall

close to the plasma.

The advantage of the stellarator is that only concept, which does not require

toroidal current device in a magnetic plasma fusion reactor but has a noticeably

more complicated magnetic configuration which increases complexity and cost.

3.4 Intertial Confinement

Inertial confinement fusion (ICF) in recent years has raised a lot of interest beyond

just the national laboratories in the USA and abroad. ICF’s aim is toward producing

clean energy, using high-energy laser beam or for that matter a particle beam (i.e.,

the particle beam may consist of heavy or light ion beam) to drive a pellet of two

isotopes of hydrogen to fuse and release energy. See the D-T Fusion process in

Equations 3.23a and 3.23b, where n is the neutron and α is the particle such as

helium (42He):

Dþ T ! n 14:06MeVð Þ þ α 3:52MeVð Þ ð3:86Þ

These two isotopes of hydrogen are known as deuterium (D¼2H) and tritium (T¼3H)

as part of raising the fuel to ignition temperature in order to satisfy the confinement

criteria of ρr � 1 g/cm2, where ρ and r are the compressed fuel density and radius

pellet, respectively. In order for the confinement criteria, also known as the Lawson

criterion, to be satisfied, it needs to take place before the occurrence of the Rayleigh-

Taylor hydrodynamics instability would happen for uniform illumination of the

target’s surface, namely, the pellet of deuterium and tritium.

In a direct laser-driven pellet approach, in order to overcome the Raleigh-Taylor

instability, we require a large number of laser beams (see Fig. 3.24).

Fig. 3.24 is the schematic of the stages of inertial confinement fusion using

lasers. The blue arrows represent radiation; orange is blowoff; purple is inwardly

transported thermal energy.

Fig. 3.24 Direct laser-driven compression of a fusion pellet
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1. Laser beams or laser-produced X-rays rapidly heat the surface of the fusion

target, forming a surrounding plasma envelope.

2. Fuel is compressed by the rocket-like blowoff of the hot surface of the material.

3. During the final part of the capsule implosion, the fuel core reaches 20 times the

density of lead and ignites at 100,000,000 �C.
4. Thermonuclear burn spreads rapidly through the compressed fuel, yielding many

times the input energy.

In case of indirect illuminating target approach, the laser light is converted into

soft X-ray, which is trapped inside a hohlraum chamber surrounding the fusion fuel

irradiating it uniformly. In this approach, in order to archive fusion inertial con-

finement, the energy source that drives the ablation and compression as it was stated

is soft X-ray ratio. This is produced by the conversion of a nonthermal, directed

energy source, such as lasers or ion beams, into thermal radiation inside a high-

opacity enclosure that is referred to as a hohlraum (see Fig. 3.25).

Fig. 3.26 is the schematic of the stages of inertial confinement fusion using lasers

to drive the pellet, the compression proceeds along several steps from left to right

as:

1. Laser illumination: Laser beam rapidly heats the inside surface of the hohlraum.

2. Indirect drive illumination: The walls of the hohlraum create an inverse rocket

effect from the blowoff of the fusion pellet surface, compressing the inner fuel

portion of the pellet.

3. Fuel pellet compression: During the final part of the implosion process, the fuel

core reaches a high density and temperature.

4. Fuel ignition and burn: The thermonuclear burn propagates through the com-

pressed fusion fuel amplifying the input energy in fusion fuel burnup.
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Fig. 3.25 Indirect soft X-ray hohlraum drive compression of fusion pellet

Fig. 3.26 Single-beam igniter concept for fusion pellets
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In addition to the above approaches, there is a third approach as it is depicted in

Fig. 3.26, and that is a single-beam direct approach, where a single beam is used for

the compression along the following steps:

1. Atmospheric formation: A laser or a particle beam rapidly heats up the surface of

the fusion pellet surrounding it with a plasma envelope.

2. Compression: The fuel is compressed by the inverse rocket blowoff of the pellet

surface imploding it inward.

3. Beam fuel ignition: At the instant of maximum compression, a short high-

intensity pulse ignites the compressed core. An intensity of 1019 [W/cm2] is

contemplated with a pulse duration of 1–10 μs.
4. Burn phase: The thermonuclear burn propagates through the compressed fusion

fuel yielding several times the driver input energy.

In either approaches above, the Lawson criterion for a simple case of physics of

inertial confinement fusion (ICF) can easily be calculated as follows.

The Lawson criterion applies to inertial confinement fusion (ICF) as well as to

magnetic confinement fusion (MCF) but is more usefully expressed in a different

form. A good approximation for the inertial confinement time τE is the time that it

takes an ion to travel over a distance r at its thermal speed vThermal.

vThermal ¼
ffiffiffiffiffiffiffiffi
kBT

mi

r
ð3:87Þ

where:

kB ¼ is Boltzmann constant

mi ¼ is Mean ionic mass

T ¼ is Temperature

Equation 3.87 is derived from kinetic energy theory and gas pressure relationship.

The inertial confinement time τE can thus be approximated as:

τE � r

vThermal

ð3:88Þ

Substituting Equation 3.87 into Equation 3.88 results in:
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τE � r

vThermal

¼ rffiffiffiffiffiffiffiffi
kBT

mi

r
¼ r �

ffiffiffiffiffiffiffiffi
mi

kBT

r
ð3:89Þ

However, the Lawson criterion requires that fusion heating fEch exceeds the power

losses Ploss as written below:

f Ech � Ploss ð3:90Þ

In this equation, the volume rate is f, which is the reactions per volume time of

fusion reaction and is written as:

f ¼ nDeuteriumnTritium < σv >¼ 1

4
n2 < σv > ð3:91Þ

Moreover, Ech is the energy of the charged fusion products, and in case of

deuterium-tritium, reaction is equal to 3.5 MeV.

In addition, power loss density Ploss is the rate of emery loss per unit volume and

is written as:

Ploss ¼ W

τE
ð3:92Þ

where W is the energy density or energy per unit volume and is given by:

W ¼ 3nkBT ð3:93Þ

In all above equations, the variables that are used are defined as below:

kB¼Boltzmann constant

n¼ Particle density

nDeuterium¼Deuterium particle density

nTritium¼Tritium particle density

τE¼Confinement time that measure the rate at which a system loses energy to its

sounding environment

σ¼ Fusin cross section

v¼Relative velocity

< σv >¼Average over the Maxwellian velocity distribution at temperature T
T¼Temperature

Now substituting for all the quantities in Equation 3.90, the result is written as:

134 3 Confinement Systems for Controlled Thermonuclear Fusion



nτE � 12

Ech

kBT

< σv >
�L ð3:94Þ

Equation 3.95 is known as Lawson criterion and for the deuterium and tritium

reaction is at leastnτE � 1:5� 1020s=m3, where the minimum of the product occurs

near T ¼ 25 keV. The quantity T= < σv > is a function of temperature with an

absolute minimum. Replacing the function with its minimum value provides an

absolute lower limit for the product nτE.
Substituting Equation 3.95 into Equation 3.89, we obtain:

nτE � n � r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi

kBT
� 12

Ech

kBT

< σv >

r
ð3:95Þ

or

n � r � 12

Ech

� kBTð Þ3=2
< σv > �m1=2

i

ð3:96Þ

Equation 3.97 could be, approximated to the following form as:

n � r � kBTð Þ3=2
< σv >

ð3:97Þ

This product must be greater than a value to the minimum of T3=2= < σv >. The

same requirement is traditionally expressed in terms of mass density ρ ¼< nmi >
as:

ρr � 1g=cm2 ð3:98Þ

Satisfaction of this criterion at the density of solid deuterium-tritium (0.2 g/cm3)

would require a laser pulse of implausibly large energy. Assuming the energy

required scales with the mass of the fusion plasma ( Elaser � ρr3 � ρ�2 ),

compressing the fuel to 103 or 104 times solid density would reduce the energy

required by a factor of 106 or 108, bringing it into a realistic range. With a

compression by 103, the compressed density will be 200 g/cm3, and the compressed

radius can be as small as 0.05 mm. The radius of the fuel before compression would

be 0.5 mm. The initial pellet will be perhaps twice as large, since most of the mass

will be ablated during the compression.

The fusion power density is a good figure of merit to determine the optimum

temperature for magnetic confinement, but for inertial confinement, the fractional

burnup of the fuel is probably more useful. The burnup should be proportional to the

specific reaction rate (n2 < σv >) times the confinement time (which scales asT�1=2)

divided by the particle density n:

3.4 Intertial Confinement 135



burn-upfraction ) / n2 < σv > T�1=2=n
/ nTð Þ < σv > =T3=2

�
ð3:99Þ

Thus the optimum temperature for inertial confinement fusion maximizes

< σv > =T3=2, which is slightly higher than the optimum temperature for magnetic

confinement.

Note that as part of key issues, for the laser to drive the pellet of micro-balloon

containing deuterium and tritium to achieve fusion is a symmetrical homogenous

compression, which means targeting for a perfectly spherical implosions and

explosions. However, in reality, this ideal situation never will take place to its

perfection and as a result has a number of physics, problem consequences and they

are:

• Instabilities and Mixing

– Rayleigh-Taylor unstable compression

– Break of symmetry destroys confinement.

• How to improve energy coupling into target (i.e., pellet of D-T), which requires

the conversion of kinetic energy from the implosion into internal energy of the

fuel that is not perfect. Additionally, we need to prevent the reduction of the

maximum compression.

• Severe perturbing of a spherical homogeneous and symmetric implosion can

result in small-scale turbulences and even to the breakup of the target shell.

• The hot-spot area at the ablation surface is increased or has a large surface due to

the perturbed structure, which leads to reduction of ignition temperature to

achieve fusion reaction in the corona of the pellet, and it causes the α-particle
created in Equation 3.86 to escape the hot-spot area. This also lowers the self-

heating (see Figs. 3.27 and 3.28 below)

• Finally, what is the best material for the first wall of the pellet of D-T as a target?

In summary, the Rayleigh-Taylor instabilities occur when a lower density fluid

such as oil underlies a higher density fluid such as water. In inertial confinement

where the implosion and explosion process takes place in a sequence, the higher

density fluid is the pellet surface, and the lower density fluid is the plasma

surrounding it and compressing the pellet through the inverse rocket action (i.e.,

inertial) of the implosion process.

In all approaches stated above, the inertial confinement via laser or particle

beams imploding and exploding the target pellet in a symmetrical and homoge-

neous mode is mainly influenced by Rayleigh-Taylor (RT) instabilities at the

ablation surface.

As we stated, the impact and effect of the Rayleigh-Taylor (RT) instabilities is

because they initially grow exponentially, so that even very small and insignificant

disturbances can grow to a size that has adverse effect on the entire compression in

a homogeneous and symmetrical mode, as it is observed in Fig. 3.29 illustration.
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In this illustration, the major instability is again because of heavy material pushed

on a low-density one.

This instability always occurs, since the laser or particle beam as the driver of the

deuterium-tritium pellet is never 100% homogeneous and symmetric; conse-

quently, the Rayleigh-Taylor instability always is growing.

The growth rate of the Rayleigh-Taylor instability can be measured in a wave-

length range not previously accessible, and it is very important factor that one needs
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Fig. 3.28 Striking similarities exist between hydrodynamic instabilities in: (a) inertial confine-
ment fusion capsule implosions and (b) core-collapse supernova explosions

3.4 Intertial Confinement 137



to pay attention to it during the implosion and explosion of the pellet. Moreover, it

is important for this purpose to deliver energy to the corona of the pellet as

symmetrically and homogenously as possible before the plasma frequency gener-

ated at the ablation surface reaches the beam wavelength frequency as the driver

(see Fig. 3.30).

Thus, in conclusion, the fusion targets can be illuminated with the energy of

different drivers. The primary efforts in inertial confinement exist in the USA,

France, and Japan.

The National Ignition Facility (NIF) is the world’s largest and most energetic

laser facility ever built. NIF is also the most precise and reproducible laser as well

as the largest optical instrument. The giant laser has nearly 40,000 optics, which

precisely guide, reflect, amplify, and focus 192 laser beams onto a fusion target

about the size of a pencil eraser. NIF became operational in March 2009. NIF is the

size of a sports stadium—three football fields could fit inside. In Fig. 3.31 is the

artistic top view of this facility at Lawrence Livermore National Laboratory

(LLNL) in California.

NIF is making important advances toward achieving fusion ignition in the

laboratory for the first time. NIF’s goal is to focus the intense energy of 192 giant

laser beams on a BB-sized target (see Fig. 3.32) filled with hydrogen fuel, fusing the
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Fig. 3.29 Growth of Rayleigh-Taylor instability illustration
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hydrogen atoms’ nuclei and releasing many times more energy than it took to

initiate the fusion reaction.

In addition to energy for the future, the NIF’s primary missions include national

security and understanding the universe. Moses noted that there are many benefits

to being able to create conditions to study fusion reactions in lieu of weapons

testing. The NIF target chamber will also allow the study of the cosmos, for

example.

BB-sized target is a hohlraum cylinder, which contains the NIF fusion fuel

capsule, which is just a few millimeters wide, about the size of a pencil eraser,

with beam entrance holes at either end. The fuel capsule is the size of a small pea.

Fig. 3.30 Growth of Rayleigh-Taylor instabilities during pellet implosion
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