

Discrete-Event
Modeling
and
Simulation
A Practitioner’s Approach

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

Computational Analysis, Synthesis,
and Design of Dynamic Models Series

, e

53361.indb 2 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Discrete-Event
Modeling
and
Simulation

Gabriel A. Wainer

A Practitioner’s Approach

53361.indb 3 3/11/09 10:44:37 AM

© 2009 by Taylor & Francis Group, LLC

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-5336-4 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Wainer, Gabriel A.
Discrete-event modeling and simulation : a practitioner’s approach / Gabriel A. Wainer.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4200-5336-4 (hardcover : alk. paper)
1. Computer simulation. 2. Discrete-time systems. I. Title. II. Series.

QA76.9.C65W35 2009
003’.3--dc22 2008039739

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

53361.indb 4 3/11/09 10:44:37 AM

© 2009 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

v

Contents
Foreword ...xi
Preface.. xiii
The Author ...xvii
Acknowledgments...xix

1SECTION Concepts

1Chapter Modeling and Simulation Concepts ...3

1.1 Introduction ...3
1.2 Modeling Discrete-Event Dynamic Systems...8
1.3 Classifications of Modeling Techniques.. 12
1.4 Discrete-Event Modeling and Simulation Methodologies 17
1.5 Some Definitions ...24
1.6 Phases in a Simulation Study ..27
1.7 Verification and Validation (V&V)..28
1.8 Summary ... 31
References .. 31

2Chapter Introduction to the DEVS Modeling and Simulation Formalism 35

2.1 Introduction ... 35
2.2 The DEVS Formalism...36
2.3 A DEVS Model Example ..40
2.4 DEVS with Simultaneous Events (Parallel DEVS)...44
2.5 Dynamic Structure DEVS... 45
2.6 Quantized DEVS ...48
2.7 Generalized DEVS (GDEVS)..50
2.8 Summary ... 52
References .. 53

3Chapter The Cell-DEVS Formalism.. 55

3.1 Introduction ... 55
3.2 Cellular Automata ... 56
3.3 Cell-DEVS Atomic Models ... 58
3.4 Cell-DEVS Coupled Models ... 61
3.5 An Application Example ...64
3.6 Summary ...68
References ..69

53361.indb 5 3/11/09 10:44:37 AM

© 2009 by Taylor & Francis Group, LLC

vi Contents

2SECTION Building Simulation Models: The CD++ Toolkit

4Chapter Introduction to the CD++ Toolkit .. 73

4.1 Introduction ... 73
4.2 Defining Atomic Models in CD++.. 74
4.3 An Example: Queue Model ...77
4.4 Coupled Model Definition ... 81
4.5 Defining Cell-DEVS Models... 83
4.6 Defining Atomic Models Using DEVS-Graphs .. 89
4.7 Summary ... 101
References .. 101

5Chapter Modeling Simple DEVS and Cell-DEVS Models in CD++..................................... 103

5.1 Introduction ... 103
5.2 Basic Cell-DEVS Models .. 103
5.3 A Model of a Microwave Oven ... 106
5.4 Market Dynamics .. 111
5.5 A Predator–Prey Model... 114
5.6 Heat Diffusion ... 116
5.7 GSM Cellular Network Authentication Simulator .. 118
5.8 Summary ... 122
References .. 123

6Chapter Discrete-Event Applications with DEVS ... 125

6.1 Introduction ... 125
6.2 A Model of an ATM.. 125
6.3 A Water Reservoir Controller for a City.. 129
6.4 Radar-Based Traffic Light ... 132
6.5 Summary ... 140
References .. 140

7Chapter Defining Varied Modeling Techniques Using DEVS .. 141

7.1 Introduction ... 141
7.2 Finite State Machines .. 141
7.3 Modeling Petri Nets... 145
7.4 Layered Queuing Networks... 154
7.5 VHDL-AMS.. 162
7.6 Bond Graphs.. 171
7.7 Modelica .. 177

7.7.1 Modelica Parser.. 180
7.7.2 Mapping Electrical Circuits to BG... 182
7.7.3 BG Compiler for CD++.. 182
7.7.4 Simulation Examples.. 183

7.8 Summary ... 186
References .. 186

53361.indb 6 3/11/09 10:44:37 AM

© 2009 by Taylor & Francis Group, LLC

Contents vii

3SECTION Applications

8Chapter Applications in Biology.. 191

8.1 Introduction ... 191
8.2 Synapsin and Vesicle Interaction in a Nerve Cell Using Cell-DEVS............ 191
8.3 A Model of the Human Liver .. 196
8.4 Spreading of Marine Bacteria ... 201
8.5 Virus Spreading in a Population..202
8.6 Modeling the Heart Tissue ..207
8.7 Energy Pathways in Mitochondria .. 213
8.8 Summary ... 219
References ..220
Appendix .. 221

9Chapter Models in Defense and Emergency Planning .. 223

9.1 Introduction ...223
9.2 A Simple Model of an Unmanned Vehicle.. 223
9.3 Radar Transmitter–Receiver..223
9.4 A Target-Seeking Device ..230
9.5 Land Battlefield ...234
9.6 Evacuation Processes... 241
9.7 Summary ... 247
References .. 247

1Chapter 0 Models in Architecture and Construction..249

10.1 Introduction ...249
10.2 A Sand Pile Model...249
10.3 Simulating the Redecking of the Jacques Cartier Bridge.............................. 253
10.4 Analysis of Evacuation in Emergencies: Case of the SAT Building256
10.5 Summary ... 262
References .. 263

1Chapter 1 Models in Environmental Sciences..265

11.1 Introduction ...265
11.2 Viability of Population on a Field..265
11.3 Ant Foraging Models... 267
11.4 Watershed Formation .. 271
11.5 Pollution Models.. 272
11.6 Simulating Vegetation Dynamics.. 278
11.7 Forest Fires ..280

11.7.1 Modeling Fire as a Percolation Process ...280
11.7.2 Fire Spreading Using Rothermel’s Rules ...285
11.7.3 Fire Suppression Definition..287
11.7.4 A Semiempirical Model ... 289
11.7.5 Quantizing the Fire Spread Cell-DEVS Model................................292

11.8 Summary ...294
References ..294

53361.indb 7 3/11/09 10:44:38 AM

© 2009 by Taylor & Francis Group, LLC

viii Contents

1Chapter 2 Models in Physics and Chemistry ..297

12.1 Introduction ...297
12.2 Reaction–Diffusion Systems ...297

12.2.1 Diffusion-Limited Aggregation ...297
12.2.2 A Three-Dimensional Reaction–Diffusion Model299
12.2.3 Driven Diffusion ..300
12.2.4 Snowflake Formation ...303
12.2.5 Binary Solidification ..305

12.3 A Model of Wave Propagation ..308
12.4 Flow Injection Analysis (FIA)... 310
12.5 Numerical Approximation of Heat Spreading... 313

12.5.1 QDEVS for Heat Spreading ... 313
12.5.2 Heat Approximation Using Discrete-Event Finite Elements 315

12.5.2.1 One-Dimensional Heat Transfer: Mapping FEM into
Cell-DEVS .. 316

12.5.2.2 Two-Dimensional Heat Transfer with Cell-DEVS 320
12.5.3 Lattice Gas Models .. 323

12.6 A Three-Dimensional Model of Virtual Clay ... 326
12.7 Summary ... 330
References .. 331

1Chapter 3 Models of Artificial Systems, Networking, and Communications 333

13.1 Introduction ... 333
13.2 A Load-Balancing System... 333
13.3 The Alpha-1 Simulated Processor ... 337
13.4 Robot Path Planning.. 343

13.4.1 Fixed-Route Paths .. 343
13.4.2 Route Planning Models .. 345
13.4.3 Shortest Path Selection... 347
13.4.4 Self-Reconfiguring Robots ... 349

13.5 Discrete-Event Control of a Time-Varying Plant .. 352
13.6 Networking Protocols for Local Area Networks... 358

13.6.1 Hub ... 359
13.6.2 Alternating Bit Protocol (APB) .. 361
13.6.3 A Cellular Model for Cryptography...364
13.6.4 Host ..366

13.6.4.1 The Application Layer ..366
13.6.4.2 The Transport Layer ... 368
13.6.4.3 The Network Layer ... 372
13.6.4.4 The Data Link Layer (DLL) ... 373
13.6.4.5 Simulation Results .. 374

13.6.5 Router ... 376
13.7 Modeling Mobile Ad Hoc Networks (MANets).. 383
13.8 Summary ... 388
References .. 388

1Chapter 4 Models of Urban Traffic... 391

14.1 Introduction ... 391
14.2 A Model for a Bridge Crossing.. 391

53361.indb 8 3/11/09 10:44:38 AM

© 2009 by Taylor & Francis Group, LLC

Contents ix

14.3 Highway Toll Station Management ... 395
14.4 Highway Junction ..400
14.5 Traffic Light Controller ...402
14.6 A Model of a City Section ... 411
14.7 The ATLAS Language .. 414
14.8 Summary ... 419
References .. 420

4SECTION Simulation and Visualization

1Chapter 5 Building DEVS Simulators .. 423

15.1 Introduction ... 423
15.2 The Stand-Alone Simulator... 423
15.3 Implementing Simulation Algorithms in CD++ ... 428

15.3.1 Messaging... 432
15.3.2 Model and Processor Administration... 433

15.4 Introduction to Parallel and Distributed Simulation Concepts 435
15.5 CD++ Parallel Simulation Algorithms.. 436
15.6 Flat Coordinators... 441
15.7 Implementation of Distributed DEVS Simulation Algorithms in CD++......444
15.8 CD++ Real-Time Simulator ..446
15.9 Dynamic Structure DEVS...448
15.10 Distributed Simulation with Web Services ... 452
15.11 Interfacing DEVS Simulators: CD++ and DEVS C#.................................... 456
15.12 Summary ...460
References ..460

1Chapter 6 Mechanisms for Three-Dimensional Visualization ...463

16.1 Introduction ...463
16.2 Three-Dimensional Animation Using CD++/VRML...................................463

16.2.1 Integrating CD++ and VRML for Interactive Three-
Dimensional Visualization ...464

16.2.2 Graphical Modeling and Visualization of Urban Traffic
with MAPS... 467

16.3 Advanced Techniques for Visualization of DEVS and Cell-DEVS
Models in CD++..468
16.3.1 CD++/Maya—High-Performance Three-Dimensional

Visualization Engine for CD++ ...469
16.4 DEVSView—OpenGL-Based Tool for Visualization of DEVS and

Cell-DEVS Models .. 474
16.5 CD++/Blender ... 479
16.6 Summary ... 482
References .. 483

53361.indb 9 3/11/09 10:44:39 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

xi

Foreword
Modeling and simulation (M&S) is finally coming into its own as a discipline, a technology, and an
industry. The need is now evident for a textbook that can serve as an introduction to the field that is
in the process of “becoming.” Such a text has to lay out the foundations of M&S in a clear and con-
cise manner without having to provide the rigor that was needed in the theory as it was developed
because this theory is accessible to readers in the original works. Further, the text should offer a
wide variety of applications that suggest the unique power of M&S to tackle the kinds of complex,
multidisciplinary problems that are increasingly demanding global attention.

The book that you have before you admirably satisfies the preceding criteria. It is divided into
sections on introductory background, applications, and technical exposition. The background sec-
tion first introduces the key concepts in M&S from the point of view of the classic text Theory of
Modeling and Simulation, as well as other foundational texts. It then goes on to present the basic
concepts of discrete event system specification (DEVS) and CD++, the author’s implementation of a
cellular space DEVS simulation environment. The application section is notable for its wide variety
of examples covering physical and life sciences, business, and engineering domains—all developed
within the CD++ framework. The technical exposition covers areas such as simulator construction
and execution, visualization of simulation output, and the like.

As a teacher, you will be well supported by this book. I suggest that you start with the intro-
ductory chapters and then select one application area upon which to base a detailed exposition of
the concepts in a form that students can more easily grasp. The area chosen should depend on the
backgrounds that students bring with them from their academic degrees. After setting this founda-
tion, you can discuss or have students read other examples from the panoply available in the book. I
would be sure to have them start on projects to apply the methodology to areas of interest to them.
Finally, I suggest going on to cover some of the more technical issues to a depth that corresponds to
the students’ interests and backgrounds.

Although the book is primarily intended for graduate students, it can also be used in upper-level
undergraduate courses. The availability of the CD++ software, with its graphical and visualiza-
tion support, is a major advantage enabling students to graduate with the necessary skills to make
creative and productive contributions to the exciting emergence of the modeling and simulation
discipline, technology, and industry.

Bernard P. Zeigler
Tucson, Arizona

53361.indb 11 3/11/09 10:44:39 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

xiii

Preface
Scientists, engineers, and practitioners of many professions have long relied on the creation of mod-
els to understand the phenomena they study. Traditional mathematical methods (i.e., differential
equations) have been used for centuries as the main tool for analysis, comprehension, design, and
prediction for complex systems in varied areas. However, these methods appeared unsuitable for
studying the complex human-made systems developed during the twentieth century. In the same
vein, the many models applied to the study of natural systems have brought about scientific knowl-
edge that, in turn, has posed new, complicated questions that could not be answered by analytical
methods.

The emergence of digital computers provided alternative methods of analysis for both natural and
artificial systems. Since the early days of computing, users translated their analytical models into
computer-based simulations (i.e., the execution of those models with particular sets of data using a
computing device). This approach allowed solving problems with a level of complexity unknown in
earlier stages of scientific development. Computer-simulated models also have additional benefits:
they can be executed safely, and experiments can be easily repeated in a cost-effective, risk-free
environment and are thus well suited for training purposes.

Computational methods based on differential equations could not be easily applied in studying
human-made dynamic systems (e.g., traffic controllers, robotic arms, automated factories, produc-
tion plants, computer networks, VLSI circuits). These systems are usually referred to as discrete-
event systems because their states do not change continuously but, rather, because of the occurrence
of events. This makes them asynchronous, inherently concurrent, and highly nonlinear, rendering
their modeling and simulation different from that used in traditional approaches.

In order to improve the model definition for this class of systems, a number of techniques were
introduced, including Petri Nets, Finite State Machines, min-max algebra, Timed Automata, etc. The
classic bibliography of this field (which includes, for instance, references 1–3) and other advanced
literature (for instance, references 4–6) have thoroughly discussed these and related techniques in
detail.

In this book we will mainly focus on one of the existing theories of modeling and simulation
called DEVS (discrete-event system specification) [7,8]. Defined by B. Zeigler in the 1970s, the
DEVS formalism allows the modular description of discrete-event models that can be integrated
using a hierarchical approach.

Although the classic literature on discrete-event systems thoroughly covers theory and methods,
there is a need to bridge theory and practice, allowing practitioners in different domains to create
discrete-event models and simulations easily. Although many domain experts (and newcomers to
the field of modeling and simulation) might know the basics about modeling and simulation theory
(including discrete-event methodologies), they usually lack the skills and expertise to create the
advanced models needed to study interesting problems. Thus, the focus of this book is to bridge this
gap between theory and practice for discrete-event systems.

In order to achieve our goals, we rely on the use of the CD++ modeling and simulation environ-
ment [9], an open-source framework that enables simulation of discrete-event models (with special-
ized support for cellular models). Although we introduce the generics of the underlying theory, we
focus on the creation of a variety of models in different areas of interest while giving details on
how to create advanced simulation engines to execute these models. We also show how to build
independent graphical user interfaces that have been built as open-source (and using varied three-
dimensional rendering technologies). Experts in modeling and simulation can use this book as a

53361.indb 13 3/11/09 10:44:39 AM

© 2009 by Taylor & Francis Group, LLC

xiv Preface

companion to the theoretical literature in the field, and the practitioners can focus on the practical
aspects and the example applications.

The book is organized in four different parts. The “Concepts” part gives a general perspective
on discrete-event modeling and simulation and a brief description of the DEVS and Cell-DEVS
formalisms. Part II, “Building Simulation Models: the CD++ Toolkit,” introduces the definition of
DEVS models using CD++. This part starts by introducing the features of CD++, showing how to
create basic models with the tool. It then concentrates on models of generic discrete-event systems,
followed by a description of how to map different modeling techniques to DEVS (i.e., Petri Nets,
Finite State Machines, Bond Graphs, Modelica, Layered Queuing Networks, and VHDL). We show
several examples of the definition of such techniques in DEVS and discuss how to implement them
in a discrete-event simulator such as CD++. Part III, “Applications,” starts with a chapter on biology
and medicine and then moves to defense and emergency planning, after which it discusses architec-
ture and construction, environmental sciences, physics and chemistry, artificial systems, and urban
traffic. The last part of the book, “Simulation and Visualization,” elaborates on the creation of
simulation software for DEVS models and analyzes the creation of three-dimensional visualization
environments associated with these tools.

A variety of resources has been made available online to be used by the reader. Basic informa-
tion on CD++ can be found at http://cell-devs.sce.carleton.ca, where the reader will find a complete
user manual, installation tools, and the software application. It also includes links to an open-source
version of the software (interested developers are encouraged to participate in the development
of this project). All the examples discussed in the book can be found in a repository of models avail-
able for general use, and we encourage the reader to use such models for learning. Examples in the
book are simplified versions of the actual versions found online. The examples focus on the main
ideas and skip some of the details in order to make them more understandable by the reader; each
model in the repository includes the complete software implementation and extended documenta-
tion for the reader.

We intend for the materials introduced to provide the reader with a wide variety of practical
experiences, ranging from the creation of models, simulators, visualization tools, and theoretical
analysis up to a large number of models for experimentation and open-source tools ready to use
and modify. In order to show the feasibility of this approach, we include many examples developed
by nonexperts. This allows readers to become familiar with the experience of others with a similar
level of expertise, while providing the opportunity to improve and adapt other people’s work to their
own needs and interests.

This book is the result of years of collaboration with many students and colleagues. The list is so
extensive that a separate section of acknowledgments has been included. Nevertheless, I would like
in particular to thank Bernie Zeigler, Norbert Giambiasi, and Claudia Frydman (for their constant
support) and Pieter Mosterman (for giving the initial stimulus). I owe everything to the love of my
family. Carlos and Jacobo Wainer taught me the immense value of books from a very early age.
Noemi and Maria Luisa taught me how to read them even earlier. Diana and Ian (who suffered the
consequences of those teachings) gave me the most incredible lesson about love and patience every
day I spent writing this book.

Gabriel A. Wainer
Ottawa, Canada

53361.indb 14 3/11/09 10:44:39 AM

© 2009 by Taylor & Francis Group, LLC

http://cell-devs.sce.carleton.ca

Preface xv

REFERENCES

1. Cassandras, C. G. 1993. Discrete event systems: Modeling and performance analysis. Homewood, IL:
Aksen: Irwin.

2. Banks, J., J. S. Carson, B. L. Nelson, and D. Nicol. 2005. Discrete-event system simulation, 4th ed. Upper
Saddle River, NJ: Prentice Hall.

3. Law, A. M., and W. D. Kelton. 2000. Simulation modeling and analysis, 3rd ed. Boston: McGraw–Hill.
4. Fishwick, P. A. 1995. Simulation model design and execution: Building digital worlds. Englewood Cliffs,

NJ: Prentice Hall.
5. Cellier, F. E., and E. Kofman. 2006. Continuous system simulation. New York: Springer Science+

Business Media.
6. Toffoli, T., and N. Margolus. 1987. Cellular automata machines: A new environment for modeling.

Cambridge, MA: MIT Press.
7. Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of modeling and simulation, 2nd ed. New York:

Academic Press.
8. Zeigler, B. P. 1976. Theory of modeling and simulation. New York: Wiley-Interscience.
9. Wainer, G. 2002. CD++: A toolkit to develop DEVS models. Software Practice and Experience 32:1261.

53361.indb 15 3/11/09 10:44:39 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

xvii

The Author
Gabriel Wainer received the MSc (1993) and PhD degrees (1998, with highest honors) from the
University of Buenos Aires (Argentina) and Université Paul Cézanne (Aix-Marseille III, France).
In July 2000, he joined the Department of Systems and Computer Engineering, Carleton University
(Ottawa, Ontario, Canada), where he is now an associate professor. He has held positions at the
Computer Science Department of the University of Buenos Aires and visiting scholar positions in
numerous places, including the University of Arizona, Ecole Polytechnique de Marseille, CNRS,
University of Nice, and INRIA Sophia-Antipolis (France). He is the author of a book on real-time
systems and another on discrete-event simulation and of more than 190 research articles. He has
collaborated in the organizing of numerous conferences in the area.

Dr. Wainer has been principal investigator of different research projects (funded by the National
Science and Engineering Research Council of Canada, Precarn, Usenix, the Canadian Foundation
of Innovation, CANARIE, and private companies, including Hewlett-Packard, IBM, Intel, and
MDA Corporation). He has been the recipient of various awards (including the Carleton University
Research Achievement Award, IBM Eclipse Innovation Award, and the Leadership Award by
the Society for Modeling and Simulation International—SCS, and CICC, Japan). Dr. Wainer is
a member of the real-time and distributed systems lab at Carleton University and the head of the
Advanced Real-time Simulation lab within Carleton University Center for Advanced Visualization
and Simulation (V-Sim).

He is Special Issues editor of Simulation Transactions of the SCS and associate editor of the
International Journal of Simulation and Process Modeling. He has been a member of the board of
directors of the SCS and a chairman of the DEVS standardization study group (SISO). He is direc-
tor of the Ottawa Center of The McLeod Institute of Simulation Sciences and chair of the Ottawa
M&SNet.

Dr. Wainer’s current research interests are related to modeling methodologies and tools, parallel/
distributed simulation, and real-time systems.

53361.indb 17 3/11/09 10:44:40 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

xix

Acknowledgments
The work presented in this book has been the result of the efforts of numerous students and collabo-
rators. Although they have been acknowledged in the references and the authors of the models can
be found on each model file, here we include the list of individuals who participated in the creation
of the different tools and models.

Qi Liu, Amin Hammad, Hui Shang, Ezequiel Glinsky, Rami Madhoun, Dorin Petriu, Shaylesh
Mehta, and Hesham Saadawi co-authored different sections.

Different collaborators have participated in the discussions that led to the creation of some of
the work presented here, including some the applications: James Cheetham, C. Anthony Hunt,
Michael Jemtrud, Ernesto Kofman, Tofy Mussivand, and Trevor W. Pearce. Other colleagues whose
thoughts and discussions were of influence include Rod Bain, Olivier Dalle, Chris Herdman, Tag
Gon Kim, Gabriela Nicolescu, James Nutaro, Tuncer Ören, Glen Ropella, Mamadou K. Traoré,
Hans Vangheluwe, and Yuhong Yan.

Many students were fundamental in the creation of the software tools, in particular, Javier
Ameghino, Amir Barylko, Jorge Beyoglonian, Shannon Borho, Wenhong Chen, Gastón Christen,
Juan Cidre, Mariana D’Abreu, Alejandra Davidson, Alejandra Díaz, Alejandro Dobniewski,
Ezequiel Glinsky, Marcelo Gutiérrez-Alcaraz, Christian Jacques, Kiril Kidisyuk, Qi Liu, Mariana
Lo Tártaro, Alejandro López, Rami Madhoun, Alexandre Muzy, Jan Pittner, Daniel Rodriguez,
Hui Shang, César Torres, Alejandro Troccoli, Verónica Vázquez, Wilson Venhola, and Yinfeng
Yu. Students in our lab who collaborated in the applications include Khaldoon Al-Zoubi, Rodrigo
Castro, Rachid Chreyh, Bo Feng, Rhys Goldstein, Shafagh Jafer, Leandro de San Miguel, Ayesha
Khan, Mohammad Moallemi, Emil Poliakov, and Hesham Saadawi.

Finally, a large number of students created the models presented in the book and found in the
model’s repository. A noncomprehensive list includes T. Adams, A. Adidharma, M. Ahmed, B.
Al-Aubiydy, D. Altman, B. Balya, A. Baranek, P. Barletta, J. Barrionuevo, A. Bender, P. Bendersky,
X. Bing, Y. Boiko, M. Braunstein, D. Brignardello, M. Brunstein, A. Calvo, A. Campbell, J. Cao,
S. Chao, J. Chazal, L. Checiu, A. Corvetto, P. Cremona, S. Daicz, F. Dellasoppa, L. De Simoni,
C. Delannoy, P. Demidoff, A. Dias, W. Ding, C. Diuk, R. Djafarzadeh, M. El-Salam, A. Elshafei,
S. Enrique, L. Fal, U. Farooq, E. Fernandez Rojo, J. Galaski, C. Gnanapragasam, A. Gonzalez, D.
Grinberg, J. Hayes, M. Hussein, F. Iñón, R. Kirkner, R. Klett, K. Lam, S. Leon, L. Li, C. Lim, S.
Lombardi, J. Long, M. MacLeod, P. MacSween, V. Mahendran, M. Mansour, S. Mehta, C. Miracola,
A. Monadi, O. Muhi Kanwar, M. Núñez Cortes, J. Ogasawara, R. Ortiz, H. Pang, T. Pendergast,
F. Petronio, D. Petriu, J. Pittner, M. Polimeni, L. Quinet, N. Rehman, M. Ricillo, D. Rubinstein, S.
Sim, P. Sor, W. Sun, G. Thezier, S. Thurairasa, K. W. Tsui, G. Vasconcelos, D. Wassermann, P. Wu,
X. Wu, P. Yeon, K. Yonis, R. Youssef, Y. Zhang, C. Zhang, X. Zhao, T. Zheng, and S. Zlotnik.

53361.indb 19 3/11/09 10:44:40 AM

© 2009 by Taylor & Francis Group, LLC

1Section

Concepts

53361.indb 1 3/11/09 10:44:40 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

3

1 Modeling and
Simulation Concepts

1.1 INTRODUCTION

Human beings are resourceful and curious. The need to explore, analyze our surroundings, and
solve problems is in our nature (even from a very young age). There are many different reasons why
we do these things, including improvement of our quality of life (e.g., by creating devices to reduce
efforts or improve our safety), thirst for knowledge (e.g., in learning how plants grow), or even just
for fun.

The first technique humans use to learn about (and maybe change) their environment is experi-
mentation (for instance, if we want to learn how much clay and water must be mixed to do pottery,
we conduct different trials until the desired consistency is obtained). Experimentation was the only
way humans had to learn about their environment for thousands of years, and it is still one of the
principal methods employed in problem solving (and a crucial part of child development). Figure 1.1
shows a basic scheme for experimentation.

There are two objects under consideration: the entity under study and the experimental frame
(EF), which defines the conditions for experimentation. The EF defines not only how we experiment
on the entity but also how we obtain the experimental results. In our pottery example, the entity
is the mix of water and clay (that we can mold and then solidify in an oven), and the EF is the set
of experiments done. Each experiment would be a different trial to mix clay and water (including
different percentages of each material, varied temperatures of the mix, duration of the experiment,
etc.). The experiments’ results would include the consistency and texture expected and obtained for
each different clay mix.

EXAMPLE 1.1

Let us suppose that we want to study the best possible allocation of desks in a classroom, in order
to reduce energy costs. We need to decide where to put the desks and the heating/air condition-
ing sources. An experimentation-based solution would take different groups of students in differ-
ent positions and would use a sensor (i.e., a thermometer) to measure the temperature in different
areas in the classroom. In this example, the entity is a classroom and its temperature under dif-
ferent desk configurations. The EF is defined by the multiple student configurations (experiments)
and the kinds of results expected at the end of each experiment (in this case, temperature of a
room between –20 and +45°C). The results are provided by the thermometers used to measure the
temperature. As we can see, the EF allows us to consider what the objectives of the experiment are
(measure temperature in the room; the number of students or their weight is not of interest) and
any assumptions we have about the experiment (do we use a digital thermometer or an analog
one? One or many? Are we interested in fractions of a degree?).

Unfortunately, the problems we need to tackle are usually much more complex than learning how
to mix the materials for making pottery or measuring the number of students and the temperatures
in a classroom. In many cases, experimentation is not a feasible solution due to ethics, risks (e.g.,
we cannot study spread of an epidemic or fire evacuation in the classroom), or cost (we cannot study
every possible configuration in the classroom because scheduling a study with a large number of

53361.indb 3 3/11/09 10:44:40 AM

© 2009 by Taylor & Francis Group, LLC

4 Discrete-Event Modeling and Simulation

individuals for a long time can be costly). In other cases, experimentation is simply not possible (for
instance, we cannot manipulate a star to understand its gravitational field; we cannot experiment
on our classroom if the building still does not exist). However, in many cases, this kind of analysis
is what we need.

Humans have found different ways of dealing with these issues. One of them is to abstract from
the problem itself and then reason about it using a model of the problem. You might have started
using this technique while thinking about Example 1.1, creating a mind picture of the room, stu-
dents, sensing and heating devices, etc. You might even have started thinking about different student
distributions and mechanisms to improve the heating according to their location, window positions,
and building orientation. You might have sketched your ideas on paper, even using a scale model.
Humans are well prepared (and trained from childhood) to create these models in a very natural
way; they help us to think better about the problem we want to study.

Although different modeling techniques have been proposed, during the last 300 years, the dif-
ferential equation formalism proposed by Newton and Leibniz has been the tool of choice for
modeling and problem solving [1]. Differential equations provide a formal mathematical method
(sometimes also called an analytical method) for studying the entity of interest. For instance, in
Example 1.1, we could try to use Fourier’s law [2] to study the temperature on the classroom’s floor.
These equations define the conduction of heat in a one-dimensional steady state isotropic as

q k
T
x

x

Here,
qx = the heat flux;
k = the thermal conductivity of the material under study (W/m°C);
T = the temperature field in the medium; and
∂T/∂x = the temperature gradient (the minus sign indicates that the direction of heat flux is

opposite the direction of increasing temperature).

When we try to solve problems through formal modeling (using, for instance, differential equa-
tions), the scheme previously presented in Figure 1.1 must be extended as shown in Figure 1.2. In
this case, we can still do experimentation to obtain data about the entity under study, and we use
such data to create a model of the entity (using differential equations or other analytical techniques).
We use the model’s experimental frame to put a context on the model’s creation, indicating the kinds

Equations
Results

Experiment
Experimental

Frame
Entity

Results

Query
Model’s Exp.

Frame
Model

FIGURE 1.2 Problem solving through analytical modeling.

Results

Experiment
Experimental

Frame
Entity

FIGURE 1.1 Problem solving through experimentation.

53361.indb 4 3/11/09 10:44:41 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 5

of questions we can ask and the assumptions we have made. For instance, in Example 1.1, we cannot
find the average weight of the students (as we have decided to apply Fourier’s equations), and we
have assumed the use of a one-dimensional equation to approximate the temperature in the room.
The model’s EF also tries to mimic the experiments carried out on the original entity to obtain the
desired results. For instance, in Example 1.1, we want to sense temperatures (we are not interested
in social interactions between class students) and the effect of the number of students and their
distribution in the room’s temperatures. The results observed can be used, in turn, to modify the
original entity (in this case, the classroom under study). Using this approach, we might even skip the
initial experimentation step, just theorizing about the system’s behavior through a pure model (even
without any experimental data). In these cases, as soon as experimental data are available, they can
be used to validate or reject the proposed theories.

These problem-solving techniques are analytical in the sense that they are symbolic and based
on reasoning, and they try to provide general solutions to the problems to be solved. The idea is that
we abstract what we learned about the entity into a model that represents the entity under study. This
abstraction implies a loss of information, but it allows us to describe the behavior of the entities,
analyze it, and prove properties of the proposed model (for instance, controllability and stability in
the control system used to keep the room’s temperature). The idea is that, if we are able to solve the
equations, we will know the results of every possible experiment to be carried out on the entity. The
solution is built using inference rules (which should be correct in the paradigm chosen to describe
the model). If we need to obtain particular solutions, we just replace the symbolic values with their
corresponding numerical counterparts. In Example 1.1, the Fourier equation allows us to find the
solution to the problem for every value of x; if we are able to solve the equation, we will know the
exact temperature in every single point (with infinitesimal scale).

Figure 1.2 also introduces an important concept: the behavior of the analytical model should
match the one observed in the original entity. In this case, we say that the results given by the
model are valid. To ensure this, a validation phase is required to check that the results given by
the model match what we see in the original entity. (If no data are available, validation can be
done by trying to match other existing theories or models or by using similar entities in a different
context.)

In many cases, we need to do several simplifications in order to define and solve the equations.
For instance, in Example 1.1:

We used a single-dimensional model, although we have a three-dimensional classroom.
Adding a second equation to solve the problem in two dimensions results in extra complex-
ity. In this case, we need to add a new equation, qy = –k ∂T/∂y, and modify the temperature
field in the medium T = T(x, y) to be a function of both x and y. Solving this equation is
more complex, and this is still a simplification of the three-dimensional problem.
These equations do not consider transient behavior: what happens if students move? What
happens if a window is opened or if we turn the heat on? How is the position of the heating
device going to affect the equation definition?
The equations do not consider combinations of the different possible transients, the mate-
rials being used in the room’s walls and floors, influence of air flowing in the room, and
many other simplifications.
We need to be able to solve the equations of interest, which can be infeasible or complex
(moreover, in many cases just finding the equations to describe the entity under study in
detail is impossible).

If we are interested in solving a simple problem like the one in Example 1.1, most of the details in
reality can probably be ignored. Nevertheless, if we wanted to use Fourier’s equations to study the

53361.indb 5 3/11/09 10:44:42 AM

© 2009 by Taylor & Francis Group, LLC

6 Discrete-Event Modeling and Simulation

heat conductivity of a new material that we want to use for manufacturing, some of the details cannot
be ignored (otherwise, the model will lose precision, and the results of the study will be incorrect).

In order to deal with models with a higher complexity, difference equations and other numeri-
cal methods were introduced [3,4]. The idea of these methods is to approximate the equation by
discretizing their behavior (which, instead of being continuous and thus computable at every point
in time, is now calculated at predefined time steps). The result is not analytical but, rather, numeri-
cal, and it will have less precision than the formal model (we cannot obtain solutions for every pos-
sible combination of the model’s variables). Nevertheless, such methods provide approximate values
that are close enough for the problem under study. For instance, in the case of Fourier’s equations,
we could divide the surface of interest into small elements (assuming a linear temperature distribu-
tion along its unit length and a unit area perpendicular to heat flow direction) and obtain the follow-
ing approximation to the Fourier equation:

T
hT

K
L

T

h
K
L

o

1

1

1

1

1

(1.1)

Here,
K1 = the thermal conductivity;
L1 = the length of the element;
T∞ = the fluid temperature;
T0 = the temperature inside the material on a node;
h = the heat transfer coefficient; and
T1 = the computed surface temperature, which will replace T0 in the next computation step [2].

The problem-solving activities using these methods can now be described as in Figure 1.3.
The cycle also starts by obtaining experimental data from the entity and then creating equations

to model the observed behavior (within the corresponding experimental frames). Nevertheless, as
in this case, we cannot find a solution for the equations, so we use a numerical approximation. The
computation is based on a recursive method (that will calculate the values of the state variables at
a given time and convert the value as the basis for the next computation). In the past, this task, in
general, was carried out by a human expert. The computation EF in this case is derived from the
model’s EF; within the same frame, the computation model should be able to answer the same que-
ries (with a loss of precision due to the approximation). In Figure 1.3 a new step is introduced, which
means that we need to carry out an extra check in order to verify the correctness of the results. In
this case, we will say that we need to do verification of the results obtained by numerical approxi-
mation. The idea is that the values we compute need to be checked against the experimental data,
while trying to mimic the model’s description as accurately as possible.

This approach for problem solving (which was the main technique employed in the last few centu-
ries) made possible a tremendous advance of science and technology. A consequence of such success
was the evolution of the associated mathematical techniques, which resulted in the ability to attack new
and more complex problems, and new questions to answer (which might require new problem-solving
techniques).

Besides the evolution in our learning about nature, the twentieth century witnessed the cre-
ation of very elaborate human-made devices (e.g., control systems, intelligent manufacturing, traf-
fic monitoring) that made it difficult (or impossible) to continue using “pencil-and-paper” analysis
methods. When we consider such problems (with a few exceptions), they are analytically intractable
and numerically impossible to evaluate (unless we simplify the model, which, in most cases, results
in solutions that are far from reality).

The advent of computers in the 1940s provided scientists and engineers with alternative methods
of analysis. Computers are well suited to deal with approximation techniques, reducing human

53361.indb 6 3/11/09 10:44:42 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 7

computation errors and being able to solve the problems at much higher speed. Thus, since the early
days of computing, traditional numerical models were converted into computer-based solutions (and,
in many cases, they were called computer simulations). The cycle for creating computer simulation
(or simply simulation) studies can be also represented as in Figure 1.3, with the difference that now
the computation model is executed by specialized devices (in the beginning of simulation history,
analog computers were used for numerical approximation [5]; today, we use digital computers). The
computation EF is now a program that generates test cases for the computational approximation
of the model. In this case, the verification activities also need to check the accuracy of the results,
while adding an extra step (as limited precision in computers can create erroneous results that can
diverge from the expected solutions).

Computer simulation enabled scientists and engineers to experiment easily with “virtual”
environments, elevating the analysis of natural and artificial applications to a new level of detail
unknown in earlier stages of scientific development and providing great help in the design and
analysis of complex applications. Simulated models also can be used for training because they
provide cost-effective and risk-free solutions when compared to experimentation. In simulation-
based techniques, we find individual solutions for particular problems (as opposed to the general
solutions found by analytical methods) using a device (in general, a digital computer) for controlled
experimentation and time compression. The constant reduction of the cost of computers (in hand
with graphical interfaces, advanced libraries, languages, and other facilities) allowed simulation
to become an easy-to-use and flexible technique. Nowadays, modeling and simulation provide a
well-developed, well-proven approach to problem solving that advances steadily as more computing
power becomes available at less cost.

The advantages of simulation are multiple:

Decisions can be checked artificially.
The same model can be reused multiple times.
Simulations are easier to create and use than many analytical techniques, and they need
fewer simplifications.
The rules used to define the model’s behavior can be modified easily.
During execution of a simulation, we can experiment with varied special cases.
The user can interact with the simulator, allowing analysis of such interactions.
Simulation results in shorter design-cycle times and reduced requirements for initial
resource investment.
Simulation provides economic benefits: Research and Development cycles can be
improved.
The original entity is not affected by the study, and it can continue to be used.

Approximation

Results

Experiment
Experimental

Frame
Entity

Query
Model’s Exp.

Frame
Model

Approximate
Results

Computed
Query

Computation
Exp. Frame

 Compute

FIGURE 1.3 Problem solving through computation.

53361.indb 7 3/11/09 10:44:43 AM

© 2009 by Taylor & Francis Group, LLC

8 Discrete-Event Modeling and Simulation

In the rest of this chapter, we will discuss some basic ideas about modeling and simulation we
introduce in this book. We will present basic concepts of discrete-event dynamic systems, introduce
and classify different techniques for modeling such systems, and show how a simulation study is
carried out.

1.2 MODELING DISCRETE-EVENT DYNAMIC SYSTEMS

As mentioned in the previous section, computer simulations began by implementing numerical
approximations of the differential equations under study with the goal of solving the computation of
more complex models in a fast and precise way. Unfortunately, these methods could not be adapted to
most of the artificial applications developed during the twentieth century. The Industrial Revolution
brought the need to model the behavior of complex apparatuses built by humans (i.e., telephone
lines, avionics controllers, automated elevators, etc.), which cannot be adequately described by dif-
ferential equations or their numerical approximations.

EXAMPLE 1.2

Figure 1.4 shows the observed behavior of a traffic light. Initially, the light is green for 45 s. Then,
it switches to yellow for 10 s and finally switches to red for 55 s (after which the cycle is repeated).
As we can see, modeling this application with a differential equation is not natural (and it is infea-
sible to solve in the case of complex combinations including hundreds of traffic lights in a city).

Exercise 1.1

Write a model of the behavior of the traffic light in Figure 1.4 using ordinary differential equations
[1, 3].

In order to deal with this kind of problem in a better way, new mathematical theories (in particu-
lar, those based on automata theory) were applied in the analysis of these automated devices with
discrete components [6,7]. For instance, we can model the behavior of the traffic light in Figure 1.4
with a simple untimed automaton like the one presented in Figure 1.5(a). Such a model can be used
to think about correctness of the traffic light behavior (in our example, the cycle from green to yel-
low to red; if we see a different order when inspecting the model, we will know the model is wrong).
We could also build a more complex version like the one in Figure 1.5(b), which uses a timed ver-
sion of automaton, in which we include the delays for each of the lights. Using this model, we can
also think about correctness of the timing properties (and, for instance, detect a wrong duration for
a given cycle).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Yellow

Green

Red

Green

FIGURE 1.4 Observed behavior of a traffic light.

53361.indb 8 3/11/09 10:44:43 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 9

If we now use this model to create a simulator (for instance, an implementation of the timed
automata in Figure 1.5(b) using a C-like programming language), we obtain a program in the style
of the one introduced in Figure 1.6.

As we can see, we start at time 0 with a green light. The simulator evolves by checking the cur-
rent state and time and acting according to their values. For instance, after being 45 s in green, the
state changes to yellow; after 10 more units, it changes to red and then finally goes back to green.
Time is incremented on each cycle using time steps of 5 s (which is the greatest common divisor—
g.c.d.—of the three light periods—that is, the minimum value providing enough precision accord-
ing to the data collected in Figure 1.4).

Exercise 1.2

Build a simulator based on the one in Figure 1.6 and the model in Figure 1.5(b) using a high-level pro-
gramming language (like Java or C++).

Exercise 1.3

Define a composite automaton describing the behavior of two traffic lights interacting, based on the
model in Figure 1.5(a) (in such a way that when one of the automata has a green light, the other is red
and vice versa).

Exercise 1.4

Define the behavior of the model introduced in Exercise 1.3 using ordinary differential equations.

Exercise 1.5

Build a simulator to execute the models defined in Exercise 1.3 using a high-level programming lan-
guage (like Java or C++).

Automata models were defined using discrete values to represent time and the set of states, which
works well in many applications but not in others. In order to discuss some of the difficulties, let us
consider now a case where the traffic light model introduced in Example 1.2 uses external sensory

G Y R G:
45s

Y:
10s

R:
55s

 (a) (b)

FIGURE 1.5 Simple untimed and timed automata describing the behavior of the traffic light in Figure 1.4.

time = 0; State = Green;

Repeat Forever {

if (State == Green AND (time mod 110) == 45) State = Yellow;

if (State == Yellow AND (time mod 110) == 55) State = Red;

if (State == Red AND (time mod 110) ==110) State = Green,

time = time + 5;

}

FIGURE 1.6 An implementation of the traffic light model based on the timed automaton of Figure 1.5.

53361.indb 9 3/11/09 10:44:44 AM

© 2009 by Taylor & Francis Group, LLC

10 Discrete-Event Modeling and Simulation

information to determine the length of the traffic cycle. We also want to model a button for pedes-
trians crossing. Figure 1.7 shows an example of the experimental data for such a traffic light.

Here, during the green cycle (which is 45 s long), a pedestrian arrives and presses the pedestrian
crossing button, causing a change in the cycle. Such a simple action introduces several problems:

How do we model the external sensory information in the automaton of Figure 1.5? We
want to have cycles that adjust dynamically, so the resulting automaton is much more com-
plex, and it has a larger number of states (if Exercise 1.4 was solved, try now to build the
extended automaton for this new adaptation). If we now want to integrate this model for a
complex crossing, the number of states might grow exponentially.
If we need to combine this traffic light with others, how is the variable-timing behavior
going to affect the combined automaton?
When we create a simulator for this model, which would be the right time step to be used?
Because neither the arrival time of pedestrians nor traffic flow can be predicted, we cannot
find the g.c.d. of every possible cycle (which can be potentially very small or very large).
If our requirement is to identify traffic flow changes with high precision, we might use, for
instance, a timescale of 0.1 s. Nevertheless, in this case, for every simulation (including
those with few or no pedestrians and those with steady traffic), our simple simulator will
execute 1,200 cycles (instead of the 22 we used in Figure 1.4). If, instead, we choose a time
step of 5 s as before (i.e., to improve the execution performance of the simulator), we can-
not accurately model the arrival of vehicles (and in Figure 1.7, we would miss representing
the pedestrian button pressed at 37.32722).
Although this problem does not exist in differential equations (where time is continuous),
they are not adequate to represent these kinds of problems (as you could experience if you
tried to solve the trivial examples introduced in Exercises 1.1 and 1.3). Instead, automata
are easier to understand and better represent these kinds of phenomena.

As we can see, we need different methods to model these human-made applications, in which
entities change due to the occurrence of particular events and the model’s evolution depends on the
interactions of such events and their arrival times. For instance, in a computer network, the arrival
of a packet is an event of interest, and its arrival time or duration can be of any variable length,
depending on the current state of the system and the kind of packet. These kinds of entities, which
can be represented with discrete variables and continuous time, are called discrete-event dynamic
systems (DEDS). In DEDS, the states are described by piecewise constant trajectories (such as the
ones in Figure 1.7). DEDS are naturally concurrent and highly nonlinear; because no transformation

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Yellow

Green

Pedestrian
button
pressed at
37.32722

Red

Green

FIGURE 1.7 Observed behavior of a traffic light with a pedestrian button.

53361.indb 10 3/11/09 10:44:45 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 11

method is available, it is also difficult to find general analytical solutions [8]. The different methods
for modeling and simulation (M&S) of DEDS are called discrete event modeling and simulation.

Discrete-event M&S assumes that, although time is continuous, only a finite number of events
can occur in a given period. Therefore, a discrete-event simulator can be very efficient because we
only need to represent the state changes upon occurrence of events. For instance, in order to simu-
late the traffic light model presented in Figure 1.7, we would only need to execute four cycles (one
per color change and one for the button pressed, compared to the 22 or 1,200 previously discussed),
while obtaining the maximum precision available to model this traffic light adequately.

Many of the techniques for modeling DEDS only focus on the arrival order of the events, ignor-
ing their timing. They are called logical DEDS models and they are used to solve problems as the
untimed automata presented in Figure 1.5. Conversely, if timing is a factor, we need timed DEDS
models.

In order to convert the simulator presented in Figure 1.6 into a discrete-event one, we first need
a discrete set of state variables and a clock indicating the current simulation time. Then we use a
scheduler to keep a chronological list of events (in general, stored as messages) that represent the
state changes. The time in which this will happen, ti R, is a continuous variable. At every time,
the simulator will pick the first event in the list, process it, change the value of the state variables,
and cycle to the next event. As we can see, the complexity of the simulation algorithm is higher, and
the management of the event list is very important.

In the 1960s, techniques for discrete-event simulation (based on the ideas just discussed) became
very popular. In many cases, this resulted in the definition of advanced simulation languages like
SLAM, Arena, Simula, or SimScript [9–11]. Although simulation languages can address complex
problems, their use lacks the formality of previously existing modeling methods. Using a simulation
language helps with problem solving and experimentation, but in most cases their foundation is not
rigorous, making the resulting simulation software difficult to test, maintain, and verify. Likewise,
changes in the language can produce serious effects in existing models because their semantics are
usually not formally defined. Simulation languages do not provide a method abstract enough to think
about the problems to solve or to prove properties of the entities under study, which could improve
the final quality of the analysis while reducing end costs. Another problem faced by simulation lan-
guage–based solutions is more subtle and complex to address. The source of many of these problems
can be experienced by solving Exercise 1.2 or 1.5, and it is summarized in Figure 1.8: as most simula-
tion languages were not derived from a formal modeling framework, the modeling phase, actually
skipped. We start by collecting data from experiments, and we build a piece of software (the simula-
tor), trying to mimic the problem under study (skipping the intermediate modeling phase). Although
this method is still useful in many cases, the result is a single-use program approach, which can have
several problems (we will use Example 1.2 to discuss some of these problems):

What happens if we need to reuse the simulation in a different context (e.g., we want to
reuse the traffic light controller simulation for a railway controller simulation)?
How can we reuse the experiments done to test the original model on a different one?

Program
Results

Experiment
Experimental

Frame
Entity

Results
Simulator

FIGURE 1.8 Building a simulator using a simulation language.

53361.indb 11 3/11/09 10:44:45 AM

© 2009 by Taylor & Francis Group, LLC

12 Discrete-Event Modeling and Simulation

How do we deal with changes? If we decide to add a blinking green light for left turns (or a blink-
ing red light for a failing controller), we need to modify the software application completely.
Where is the abstract model we can use to organize our ideas? How do we organize the
creation of a new version of the simulator in which we need to study the intersection of six
streets with two-way traffic?
How do we validate the results? What do we do if we find errors in the simulation?

It is difficult to address these issues using the same simulation languages because the model is
usually mixed with the experiment and the simulation software. For instance, in Example 1.2, the
traffic light controller would be mixed with the generation of pedestrians arriving at the corner and
the simulation routines that make time advance and decide what to do next. Even with a simple
example like this one, reuse is complex—how can we reuse the control algorithm for the traffic
light? Any changes would result in going through the code for the simulation and the experiment
because there is no model to use in the verification process. Building a program from the experi-
mental data, as in Figure 1.8, would result in having the original software discarded and a new
simulator built from scratch for the next simulation project.

Instead, using a model to organize our ideas can help to create a better product at a reduced cost.
Although nonformal models (sometimes called conceptual models) can be of help in this task, a
formal model like the automata in Figure 1.5 provides much better facilities for verification, reuse,
modification and testing. It also provides the basis to define a process that would allow repetition
of successful previous experiences, enable reuse, and introduce well-known software engineering
practices in the creation of the simulation software.

With these goals in mind, different groups investigated the creation of formal discrete-event
modeling techniques. Such formalisms provide a communication convention written in a mathemat-
ical language, which we can use as a guide to provide a nonambiguous specification of the system’s
semantics [12,13]. Formalisms can be used to represent the entities under study formally, creating an
abstract model and providing means for manipulating such abstraction, while being able to translate
them into executable models. A formal model (i.e., one built using a formalism) provides a sound
mechanism to specify the entity under study that can be formally verified. This improves error
detection and reduces the development and verification time of the simulation software, enhancing
the security and reducing the development costs of the simulation. Going back to Figure 1.3, if we
can prove properties of the model before creating its computational version, we can improve the
final product at a lower final cost. Simultaneously, a formal mechanism can disambiguate commu-
nication, enhancing teamwork by providing a sound notation for the model being constructed.

The rest of this book is focused on one of these discrete-event M&S formalisms, called DEVS
(discrete event system specification), a sound M&S theory that has evolved in the last 30 years
[12,14–20]. In order to understand the basics of this methodology, we will first discuss some general
ideas and we will provide a few general definitions.

1.3 CLASSIFICATIONS OF MODELING TECHNIQUES

Defining taxonomies and classifying methods can help us to have a better understanding of a field
under study. Fishwick [13] proposed the following classification, which is based on the types of
techniques used (we will use Example 1.1 to show the differences of each of the techniques):

1. Conceptual modeling: this technique is based on the creation of an informal conceptual
model that communicates the basic nature of the process. It provides a vocabulary for the
application (which can be ambiguous) and a general description of the entity to be mod-
eled. Example 1.3 shows a simple version of a conceptual model for Example 1.1.

53361.indb 12 3/11/09 10:44:45 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 13

EXAMPLE 1.3: CONCEPTUAL MODEL FOR EXAMPLE 1.1

We are interested in studying temperatures in a classroom throughout the day. The orientation of
the building is north (N)/south (S), and there are large glass windows to the east (E). The classroom
is 15 × 20 × 3 m. There is a total of 72 movable desks in the room, which are set up (by default)
in eight rows of nine desks each. There is also one desk in the front and 15 extra chairs available
(without a desk). The classroom has one projector, a whiteboard on the front (which is heading to
the S), and a blackboard on the west (W) wall.

There are three teaching seasons (no lectures in summer). Once every hour, an alarm will
sound to indicate the end of the lectures. Once every minute, the room’s temperature is sensed,
and the heating/air conditioning (AC) is activated as needed. In fall and winter, if the temperature
goes below 22°C, the heating is turned on, and if gets above 25°C, it is turned off. In spring, if the
temperature goes above 24°C, the AC is turned on, and it is turned off when the temperature gets
to 23°C (Figure 1.9).

The influence of the temperature outside and in the rest of the building will be neglected.
There is a heating/AC source in the middle of the room (on the ceiling) and a door at the back.
After extensive experimentation, we know that every time a person arrives in the classroom, the
temperature increases 0.05°C after 5 min. Likewise, 5 min after someone leaves, the temperature
decreases 0.05°C.

Parameters are room size (15 × 20 × 3 m), desks (72), chairs (87), and board positions (W, S).
State variables are number of students, activity (lecture/no lecture), desk positions (default,

circle, semicircle), heating temperature, air conditioning temperature, and season (summer, fall,
winter).

Exercise 1.6

Find ambiguities and missing information in this conceptual model. Which of these problems are
derived from the expression in natural language? How would you solve these problems?

2. Declarative modeling: these techniques are focused on the evolution of the model repre-
sented as states (which describe the behavior of the entities under study) and the transitions
between them. According to the particular focus of the technique, we can have state-based
or event-based declarative models. State-based declarative models, for instance, can be
represented as a graph where the vertices represent the entities and the arcs represent the
state changes (transitions).

Desks: 72

Extra Chairs: 15

W
in

do
w

Door

Heat

AC

N

FIGURE 1.9 Classroom organization.

53361.indb 13 3/11/09 10:44:46 AM

© 2009 by Taylor & Francis Group, LLC

14 Discrete-Event Modeling and Simulation

EXAMPLE 1.4

Figure 1.10 shows a state-based declarative model representing a portion of the system’s
specification, in which students arrive at or leave the classroom. At a certain point, we have
27 students in the lecture room and a temperature of 25°C. If a new student arrives, we will
have a total of 28 students and 25.05°C (this is an untimed model, so timing information is
not included). If a student leaves, we return to the previous state; if another student arrives,
we have 29 students and temperature will go up (25.1°C). We also show a state represent-
ing that the heating has been turned off, which will reduce temperature in the classroom
accordingly.

In event-based declarative models, we use a graph-based notation with nodes representing events
(i.e., the state changes that occur when there is a particular kind of event detected) and links repre-
senting the relations between those events. The state changes are associated with each event, and the
links can have logical relations associated (defining the relations between events).

EXAMPLE 1.5

Figure 1.11 shows an event-based declarative model for the classroom that represents the
same phenomena analyzed in Figure 1.10. If we schedule the arrival of a new student,
we will have one more student in the room and temperature will increase. The model
can receive more students while there is room available (q ≤ 85). At any moment, we can
schedule a student to leave (in this case, we will decrease temperature and the number of

FIGURE 1.10 State-based declarative model of the classroom example.

FIGURE 1.11 Event-based declarative model of the classroom example.

53361.indb 14 3/11/09 10:44:47 AM

© 2009 by Taylor & Francis Group, LLC

Arrive Leave

Heat Off

t = t + 0.05
q = q + 1

t = t – 0.05
q = q – 1

t = t – 3

t > 25

(q< = 85)

(q> = 1)
…

…

Modeling and Simulation Concepts 15

students in the room). We need at least one student to schedule a student departure (q ≥ 1).
If we schedule the heat off event, temperature goes down 3°C.

3. Functional modeling: in this case, the model is defined as a “black box” and the input is a
signal defined over time. The output depends on an internal function, and the model can
use discrete or continuous functions.

EXAMPLE 1.6

Figure 1.12 shows a black box representing the same portion of the system’s specification
presented in the previous two examples. The function f will receive information about stu-
dents arriving or leaving the classroom. According to the current number of students and
level of AC/heat, it will generate the room’s temperature (temp).

4. Spatial modeling: in these techniques, space notions are included (i.e., the relationship
between time and space is included in the model).

EXAMPLE 1.7

Figure 1.13 shows a spatial model for the classroom system. At time t, the students were
distributed in the classroom as in the left part of the figure; at time t + 1, we see that a new
student has arrived and is now seated in the back row. The number of students will influ-
ence the temperature in the classroom.

A different categorization classifies the different modeling techniques according how we repre-
sent the state variables and time in the model. Figure 1.14 shows such classification, organizing the
various techniques mentioned earlier in this chapter according to their time base and state variables’
representations.

As we can see, two criteria are used for the classification:

(a) According to the time base, there are continuous time paradigms, where time evolves
continuously (time is represented a real number), and discrete time techniques, where time
evolves by advancing in discrete portions (time is an integer number).

(b) According to the values of the state variables, there are continuous models, where the
variables take their values from a continuous set represented as a real number, and discrete

f (Heat, AC,
Students)

Heat

TempArrive/leave

AC

FIGURE 1.12 Functional model of the classroom example.

FIGURE 1.13 Spatial model of the classroom example.

53361.indb 15 3/11/09 10:44:48 AM

© 2009 by Taylor & Francis Group, LLC

(front) (front)

Heat/
AC

Heat/
AC

S
S

S
S S

SS

S
S

S
S S

S

S

SS

SSS

SS
S S

S

t t + 1

SS

SSS

16 Discrete-Event Modeling and Simulation

models, where the variables are discrete and can be represented as a finite set of integer
numbers.

Figure 1.15 classifies some of the existing modeling techniques according to these criteria.
According to Zeigler, Praehofer, and Kim [17], entities with a behavior like the one depicted

in part {1} of Figure 1.14 (which are usually called continuous variable dynamic systems) can be
defined as differential equation systems specifications (DESS). If we consider the room’s tempera-
ture in Example 1.1, we can represent it as a DESS (i.e., temperature in the room can be described
as in Figure 1.14{1}). We could use continuous modeling techniques like Bond Graphs, Modelica,
and other techniques in Figure 1.15{1} to represent this kind of entity.

Behavior like the one in Figure 1.14{2} (usually called discrete-time dynamic systems) can be
defined using a discrete time system specification (DTSS). For instance, the temperature sensor used
in Example 1.1 (which measures temperatures at fixed periods) can be represented by difference
equations (and other techniques in Figure 1.15{2}).

Figure 1.14{3} shows the behavior of discrete-event dynamic systems, which can be described
using any of the discrete event systems specification (DEVS) techniques in Figure 1.15{3} (e.g., the
arrival and departure of students in the classroom). Example 1.1 can be modeled with timed FSM,
event graphs, etc. as discussed earlier.

Finally, Figure 1.14{4} represents the so-called discrete dynamic systems, which can be repre-
sented as a specialization of DEVS models in which the events occur at a fixed time. In our class-
room, the hourly alarm can be modeled with FSMs, Petri nets (PNs), and other techniques included
in Figure 1.15{3}.

FIGURE 1.15 Classification of modeling techniques according the representation of time bases/state variables.

FIGURE 1.14 Classification according the representation of time bases/state variables.

53361.indb 16 3/11/09 10:44:49 AM

© 2009 by Taylor & Francis Group, LLC

Vars./Time
Continuous

Continuous Discrete
{2} Discrete-Time Dynamic Systems

Discrete {4} Discrete Dynamic Systems

{1} Continuous Variable Dynamic Systems

{3} Discrete-Event Dynamic Systems

Continuous
Vars./Time Continuous

{1} DESS
Partial Differential Equations
Ordinary Differential Equations
Bond Graphs
Modelica
Electrical Circuit Diagrams

{2} DTSS
Difference Equations
Finite Element Method
Finite Differences
Numerical Methods (Runge-Kutta, Euler, DASSL, and
others)

Discrete

Discrete

{3} DEVS
DEVS Formalism
Timed Petri Nets
Timed Finite State Machines
Event Graphs

{4} Automata
Finite State Machines
Finite State Automata
Petri Nets
Boolean Logic
Markov Chains

Modeling and Simulation Concepts 17

1.4 DISCRETE-EVENT MODELING AND SIMULATION METHODOLOGIES

Modeling techniques for DEDS are relatively recent (especially if we compare them with those used
for modeling CVDS). In this section, we present a noncomprehensive list of some of the formal
modeling techniques created for modeling DEDS (readers interested should consult the references
included here).

An automaton is defined as a graph representing system states and the transitions between them.
The automaton receives a string of symbols as input, and it recognizes/rejects the inputs by advanc-
ing through the transitions. The input is read one symbol at a time; depending on the ending state,
the automaton will accept or reject the input [6,7].

The automation in Figure 1.16 has an initial state 1 (represented by the arrow) and an ending
state 2 (represented by the double circle). If the input a is received, the automaton transitions from
state 1 to state 2. Once in state 2, it can remain there while receiving the input b, it can return to
state 1 if it receives input c, or it can terminate. Thus, this automaton recognizes the strings {a, ab,
abb, abbb, abbbbb, …, aca, acab, acabb, acabbb, …, abca, abbca, abbbca…}. This can be repre-
sented as a{b*{cab*}*}*, where * means 0 or more repetitions and {} are used to group strings.

Automata can be deterministic (like the automaton in Figure 1.16), but there are several exten-
sions to the original method, including the nondeterministic automata (in which the transitions can
be probabilistic), input/output (in which the automaton can trigger a transition when an input is
received and can generate outputs, automata noted on the state), etc.

Timed automata, in particular, use clocks to describe the model’s timing behavior [21]. The
automaton is defined as a graph of states associated with clocks that determine the passage of time
since the occurrence of an event. Every link is associated with a timing constraint that will define
when the transition can be triggered. Whenever a transition executes, the associated clocks are reset.
Timing constraints can also be associated with the model states, defining the duration of each of
the states.

Figure 1.17 shows the definition of the traffic light model using a timed automaton. The initial
state of the model is green, and it will be kept for 45 s. When this time arrives, it changes to yellow,
producing an output (the {yellow} light). If, before 43 s have passed, a pedestrian presses the cross-
ing button, we switch to yellow (this change will take 2 s). The transitions to red and to green also
follow our previous definitions.

Finite state machines (FSMs) can be represented as a graph in which the system’s behavior is
defined as a finite set of nodes (the model’s states) and links between them (transitions between
states). A given state reflects the evolution of the model, and transitions are associated with a given
logical condition to enable the execution of the transition. When entering a state, an entry action can
be executed (and an exit action can be executed when leaving it). Likewise, an input action can be
triggered based on the current state and an input [6,7]. An FSM is formally defined as

FSM = S, X, Y, f, g (1.2)

where
X = finite input set
Y = finite output set
S = finite state set

a

c

b1 2

FIGURE 1.16 A simple automaton: a{b*{cab*}*}*.

53361.indb 17 3/11/09 10:44:49 AM

© 2009 by Taylor & Francis Group, LLC

18 Discrete-Event Modeling and Simulation

δ = next state function
δ = X * S S
λ = output function

λ: S Y : Moore machine
λ: X * S Y: Mealy machine

Every FSM is supposed to have an initial state, a next-state function that defines how to obtain
the next state in the system, and an output function that uses current state and inputs to generate out-
puts. According to the relationship between the input sets and output functions, two kinds of FSMs
can be defined: Moore machines, in which outputs are independent from the inputs, and Mealy
machines, in which, besides the current state variables, the current inputs are analyzed to decide the
current output value. These two types are depicted in Figure 1.18.

Timed versions of FSMs associate time with the places or the transitions. Further details about
untimed and timed FSMs can be found in Cassandras [6] and Papadimitriou [22].

A Markov chain [23] is a discrete-time stochastic model
described using a graph (Figure 1.19). Models’ states are
defined as nodes in the graph, and transitions between states
are represented by links. One important property of Markov
chains is that they are memoryless; thus, no state has a
cause–effect relationship with the previous state. Therefore,
knowledge of previous states is irrelevant for predicting the
probability of the future states.

S λ

X

Y
S

δ δ

λ

X

Y

 (a) (b)

FIGURE 1.18 (a) Moore machine; (b) Mealy machine.

P1,0

P1,1P0,1

0 1

FIGURE 1.19 A simple Markov chain.

53361.indb 18 3/11/09 10:44:50 AM

© 2009 by Taylor & Francis Group, LLC

R Y

G

t < 55

t < 45

t < 10

t < 2

t = 10, {red}

t = 55, {green}

t <= 2, {yellow}

t = 45, {yellow}

b_pressed, t < 43

Button
pressed

Figure 1.17  A timed automaton for traffic light.

Modeling and Simulation Concepts 19

In Figure 1.19, we have a binary Markov chain, in which the probability to go from 0 to 1 is
P0,1, the probability to go back from 1 to 0 is P1,0, and the probability of remaining in state 1 is P1,1.
Markov chains can use discrete time or continuous time, and states can take a discrete value (i.e.,
values from a finite or a countable infinite set). On a discrete-time chain, we compute the probabil-
ity to change from one state to the next, and this will happen in discrete time. In continuous-time
chains, transitions can occur at any time; thus the transition probabilities must be defined for every
instant.

A Generalized Semi-Markovian Process (GSMP) is a stochastic process (i.e., a collection of ran-
dom variables over a probability space indexed by time). A GSMP is based on the notion of a state
that makes a transition when an event associated with the current state occurs, and the state space
is generated by a stochastic timed automaton [24]. Several possible events can compete to trigger
the next transition, and each of these events has its own probabilistic distribution for determining
the next state.

The GSMP is defined as a set of locations, a finite set of events, a function that assigns a set
of active events to each of the locations, a firing time distribution associated with each event, and
a transition function, which takes an active event for a given source locations and returns a set of
events and a probability measure. At each transition, new events may be scheduled.

For each event, we set a clock indicating the time when the event is scheduled. It is assumed that
the set of scheduled events is uniquely determined by the current state and that there is a unique
triggering event for each state transition. A run of a
GSMP is a sequence of alternating timed and dis-
crete transitions. The run starts at the initial configu-
ration s0 = (q0, e0), where q0 is the initial location
for the GSMP and e0 is the initial valuation of the
events scheduled according to the corresponding fir-
ing time distributions (Figure 1.20).

Petri nets [25] define the structure of concurrent systems using a bipartite graph. One type of the
graph’s nodes, the places, represents the system states, and the second kind, the transitions, repre-
sents the net evolution. The PN example in Figure 1.21 represents a producer/consumer system (the
producer is on the left and the consumer on the right of the figure). Here, L1–L5 are the PN places
and t1–t4 the PN transitions. L1 represents the producer ready, L2 a producer that has generated an
element to be consumed, L3 a buffer between the producer and the consumer, L4 a consumer that
is ready, and L5 a consumer active.

Because a PN is a digraph (i.e., only connections between places to transitions or vice versa are
legal), the PN defines a static view of the system’s structure (as we can see in Figure 1.21). If we are
interested in studying the dynamics of the system, the PN needs to execute. This is done by placing
a special mark (called a token) on the places (in this case, we have one token on each of places L1

t*(s0) t*(s1) t*(s2)µ0 µ1 µ2

. . . s0 s1ś 0 ś 1 ś 2s2

FIGURE 1.20 Execution of a GSMP.

53361.indb 19 3/11/09 10:44:51 AM

© 2009 by Taylor & Francis Group, LLC

t1

t2

t4

t3

L2

L3

L4

L5
L1

Figure 1.21  A producer/consumer Petri net.

20 Discrete-Event Modeling and Simulation

and L4, representing that the producer and consumer are ready to start). The number of tokens per
place is unlimited, and the number of tokens in the whole net defines the net’s marking. The PN
evolves by executing the transitions, which is done by taking one token per input place (i.e., those
with a link from a place to the executing transition—for instance, L1 t1) and placing one token
on every output place (i.e., those with a link from the executing transition, i.e., t1 L2, L3). Each
execution of a transition is called firing the transition. We can only fire a transition that is enabled
(i.e., one having at least one token on each input place). The execution of a transition is atomic, and
if more than one transition is enabled, they execute in nondeterministic fashion.

Figure 1.22 shows the execution of the PN in Figure 1.21, using a reachability tree, which con-
tains one node per marking and one link per firing. For instance, the initial marking in Figure 1.21
can be represented as the configuration: (1,0,0,1,0). With this marking, only t1 is enabled (it is the
only transition with a sufficient number of tokens in the input places). If we fire t1, we obtain the
marking (0,1,1,1,0), which enables t2 and t3. Any of them can be fired (and which one is fired is
decided in nondeterministic fashion). For instance, if we fire t2, we obtain (1,0,1,1,0), which is a
similar marking to the root of the tree but with an extra token in L3. At this point, if we repeat the
firing sequence t1 t2, we will obtain the same marking, with one extra token in L3. Thus, instead
of expanding this branch of the tree indefinitely, we put an asterisk in the corresponding position
for L3 (meaning that the number of tokens in this place can grow indefinitely) and stop expanding
this branch of the tree.

If, instead, we fire t3, we obtain (0,1,0,0,1). At this point, we can fire t2 or t4, etc. When we cannot
fire further transitions or we obtain a marking repeated in the tree, we stop expanding the tree. For
instance, after firing t1 we obtain (0,1,0,0,1), which is repeated in the tree; thus, we stop expanding
this branch.

By studying the tree, we can study concurrency problems, deadlocks (i.e., a PN that does not
evolve and have resources in a cycle), unbounded buffering problems, starvation (transitions that
can never execute), etc.

Exercise 1.7

Study the reachability tree in Figure 1.22 and discuss the meaning of each of the states.

Exercise 1.8

Add two extra tokens in L1 and rebuild the reachability tree.

Exercise 1.9

Using the reachability tree in Figure 1.22, carefully check whether the occurrence of concurrent states
is correct. Find cases of deadlock, starvation, or any other problems (if there are any). Repeat the exer-
cise for the tree obtained in Exercise 1.8.

(1, 0, *, 1, 0)

(1, 0, 0, 1, 0)

(0, 1, 1, 1, 0)

(0, 1, 0, 0, 1)

(1, 0, 0, 0, 1)
t1

t1

t4

t4

t2

t2

t2 t3

(0, 1, 0, 1, 0)

(0, 1, 0, 0, 1) (1, 0, 0, 1, 0)

FIGURE 1.22 Reachability tree for Figure 1.21.

53361.indb 20 3/11/09 10:44:52 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 21

Exercise 1.10

Delete the token in L4, move it to L3, and repeat Exercises 1.8 and 1.9.

Queuing networks are based on a customer–server paradigm, in which customers make ser-
vice requests to the servers and these requests are queued at the server until they can be serviced.
The arrival time for customers and the service time at a server are described as stochastic models.
By defining the number of servers and the buffering capacity on each of them, we can determine
performance metrics (including the number of customers in line, throughput—number of custom-
ers serviced per time unit, turnaround times, etc.). Different policies can be used (priorities; pre-
emption; first in, first out [FIFO]; etc.). Traditional queuing networks model only a single layer of
customer–server relationships. Layered queuing networks (LQNs) allow for an arbitrary number
of client–server levels [26,27]. LQNs can model intermediate software servers, and they can be
used to detect software deadlocks and software as well as hardware performance bottlenecks. The
layered aspect of LQNs makes them very suitable for evaluating the performance of distributed
systems [28].

The formal language of calculus of communicating systems (CCS) provides primitives for con-
currency and parallelism, based on synchronous communications between exactly two components.
The language expressions are interpreted as a labeled transition system, and bisimulation can be
used to prove equivalence of models [29].

Temporal logic is a system of rules and symbols used for representing propositions that can
include the timing properties of the system [30]. It consists of a logic set of propositions that view
time as a sequence of states and that can be true or false according to their state and their time of
occurrence. Temporal logic has been used to verify formally timed automata. The idea is to check
predictability of certain conditions according to the time that they occur, conditions that might
eventually arise, or others that are guaranteed not to occur.

Communicating sequential processes (CSP) is a formal language based on process algebra that
has been widely used to model concurrent systems [31]. Models are described using independent
processes that interact with each other through message-passing representing the occurrence of
events. The processes’ primitive elements include:

Prefixing () connects an event with a process. For instance, if we write x P, that means
that the process P will wait for the event x, after which P will execute.
Inputs (?) represent the reception of inputs for the process. For instance, when we write
?x:X P(x), this represents a process P that, upon reception of x (which belongs to the set
of inputs X), executes P(x).
Choice: the external choice permits us to select one of several actions. For instance, P =
x P1 y P2 can execute either of the two processes, depending on the event received
(x will trigger P1 and y will trigger P2; if both occur, the choice is nondeterministic). The
internal choice picks one of them in a nondeterministic fashion. For instance, P = x
P1 * y P2 can choose either of the two processes, independently from their inputs. Other
operators include a choice with conditionals, Boolean operators, etc.
Recursion is defined by having the identifier of the process at both ends of the equation—for
instance, Clock = tick tack Clock, which will repeat the events {tick, tack} forever.
Parallel: if we have P1 X Y P2, P1 and P2 execute in parallel and they synchronize using
the intersection of X and Y.

State transition diagrams usually suffer from a “state explosion,” in which the number of states
and transitions becomes unmanageable. State charts [32] introduce hierarchy into the model, allow-
ing definition of varied behavior at different levels, as seen in Figure 1.23. A state is represented as
a rectangle with round corners, which can be subdivided into a list of internal transitions (which are
performed while the element is in the state). The start state is represented as a circle and the final

53361.indb 21 3/11/09 10:44:52 AM

© 2009 by Taylor & Francis Group, LLC

22 Discrete-Event Modeling and Simulation

state as a double circle. The transitions between elements are represented with arrows. Numerous
other constructors are available (concurrent separators, complex transitions, event messages, etc.).

In Figure 1.23, we have two states: a lecture and an end of lecture (where students leave the
room). As we can see, we can hierarchically subdivide the lecture state into substates that will rep-
resent the start of the lecture, arrival and departure of students, and the end of the lecture.

State charts are also used in the UML dynamic model to show the behavior of a single class [33].
State charts introduce the concept of modeling of concurrent machines and superstates (i.e., a state
that contains other states), thus making it possible to have two or more concurrent states (as opposed
to classic state machines, which can only be in one state at a time). States and superstates can be
nested, each with its own initial and final states.

Specification and Description Language (SDL) was created to specify in a nonambiguous way
the behavior of real-time applications. It was originally focused on communication systems, by
providing a graphical and textual representation with equivalent semantics. A system is defined as
a set of extended FSMs that can be interconnected [34].

Event graphs are oriented graphs that represent the organization of the events of a discrete event
system [35]. As seen earlier in Figure 1.11, events constitute nodes of the graph; that is, the vertices
represent the state transition functions, and the links between nodes capture the scheduling of such
events. Each link starts at the node performing the scheduling operation (which represents an event),
and it ends at the node representing the event to be scheduled. Each scheduling relationship has
an associated delay and condition (a Boolean function of the state), and an event is scheduled only
when the condition is true.

Systems-theoretical approaches derive from systems theory [36]. Systems theory represents
every entity under study using the concept of system, which is seen as a collection of objects and
their interactions. In systems theory, the system’s global behavior is seen as a composition of the
individual behavior of the components, and we can find emergent behavior that is not explicitly
defined in the parts of the system. Systems theory is based on the idea that every phenomenon can
be viewed as a mathematical relationship among a set of entities in the system. The theory is generic
and tries to find common behavior and properties in different fields of study (for instance, hydraulics,
economy, biology, or social sciences), thus providing a unified view of science and engineering.

Systems theory distinguishes the structure (internal constitution) of a system and its behavior
(external manifestation). Each component is seen as having inputs, outputs, and internal structure
that dictates how inputs and states are transformed into outputs. If the model only allows observ-
ing the external manifestation, we call it a black box (or behavioral) model; when we analyze it,
we only consider the input/output trajectories observed. These models contain a representation of
observable and unobservable variables, and the system’s behavior is described as a set of input/

Lecture

Clasroom
Open

Lights On

1 Less
Student

1 More
Student

Student arrives
[no_students <= 85]

Student Leaves
[no_students > 0]

Student Leaves
[no_students <= 1]

Student Leaves
[no_students = 0]

End of
Lecture

Fire Alarm Sounds

Students
Leaving
Room

FIGURE 1.23 State chart example.

53361.indb 22 3/11/09 10:44:53 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 23

output data that we can observe about the system of interest. When the model represents the internal
constitution of the system, we call it a white box (or structural) model. Structural models introduce
concepts of decomposition and coupling, and they refer to the component elements in the model
(as opposed to the behavior they generate). Decomposition focuses on how to divide a system into
components, and coupling focuses on how to combine the components to reconstruct it. Using these
concepts, we must explicitly define the components of the real system, using decomposition and
coupling concepts (Figure 1.24).

In the case of Example 1.1, we can build a behavioral model of the temperature of the whole room
by defining a transition function that will be activated every time a student arrives/leaves, updating
the temperature and number of students in the room (states). On the other hand, a structural model
would consider the different heat/cold sources, the student’s seating area, and the connection to the
rest of the building. In this case, we are not interested in the behavior but, rather, in the decomposi-
tion of the model into subcomponents and their interrelation.

Systems theory also focuses on different views of the same system. For a given system, we can
have many models, which will be valid with respect to the objective for which it was created (that
is, it is going to be able to answer to queries according to the objective and the experimental frame
under which it was created). The bottom line is that a complete model never exists because there
is an indefinite number of models that can be created for the same system. Simultaneously, every
model can have many different implementations (simulations), and a variety of experiments can be
carried out. In Example 1.1, we can use the source system and create an experimental frame to study
the temperature (as described in the different examples we have discussed). The same source system
could also be used for studying weight of the student population, its gender, distribution of students
in classrooms, scheduling of lectures, construction of the building based on occupancy, evacuation
under emergency, etc.

Discrete-Event Systems Specifications (DESS) formalism [12,15–17,18] is a mathematical mod-
eling technique derived from systems theorythat allows the construction of hierarchical and modu-
lar models, providing a well-defined coupling of components. Given its hierarchical nature, DEVS
allows the coupling of existing models modularly, allowing us to build complex systems from sim-
ple ones. DEVS theory provides a rigorous methodology for representing models, and it presents an
abstract way of thinking about the world independently of the simulation mechanisms.

The formalism is based on general system theory, and it allows us to represent all the systems
whose input/output behavior can be described by sequences of events. The generality of DEVS is
derived from the fact that it permits the modeling of systems with a set of infinite possible states
where the new state after an event arrival may depend on the (continuous) time elapsed in the previ-
ous state.

Exercise 1.11

Classify each of the previous techniques according to Fishwick’s taxonomy.

Inputs Outputs
A5.A4

A3.A4

A3.A2

A2.A1
A2.A4

A4.A5

A2.A5

A5.A3

A5.A3

A5

A3

A2

A4States
Function

 (a) (b)

FIGURE 1.24 (a) Behavioral model; (b) structural model.

53361.indb 23 3/11/09 10:44:53 AM

© 2009 by Taylor & Francis Group, LLC

24 Discrete-Event Modeling and Simulation

1.5 SOME DEFINITIONS

Having discussed the basic ideas we will cover in the rest of the book, we are now ready to introduce
some definitions.

According to systems theory, a system is a natural or artificial entity, real or abstract, that is a part
of a given reality constrained by an environment. It can be seen as an ordered set of related objects
that evolve through different activities, interacting to achieve a goal. It is also called the real system
(or the system of interest), and it is seen as a source of observational data, which is viewed through
an experimental frame (EF) of interest to the modeler [17]. The system’s observational data are used
to define the model’s behavior, which is defined as a specific form of data observable in a system
over time within an experimental frame.

A model is an understandable representation (abstract and consistent) of a given system that we
use to understand it better. Models can be built in a variety of ways, and they have different mean-
ings according to the individual doing the modeling. For architects, a model can be the drawing of
a floor map or a maquette; for a biochemist, a model can be a three-dimensional representation of
a molecule; etc. In this book, we are not interested in such static models. Instead, we are interested
in models that have dynamic behavior (i.e., models that exhibit time-varying changes), we want to
study how the model organizes itself over time in response to imposed conditions and stimuli. The
objective is to predict how the system will react to external inputs or structural changes. The model’s
behavior is generated using specific rules, equations, or a modeling formalism with the goal of
generating behavior that should be indistinguishable from the one of the system within one or more
models’ EFs. The EF defines the conditions under which a system or a model is observed or experi-
mented with; thus, problem solving is related to the EF within which the model is analyzed [17].

The process of thinking and reasoning about a system in order to abstract the description of the
model from reality is called systems modeling. We will use the term paradigm to refer to the con-
cepts, laws, and mechanisms that are used to define a set of models. It is important to keep a clear
separation between the systems of interest and the models that we use to think about them. (A model
is an abstract representation of the system rather than the system itself, although it is easy to confuse
them because we are used to thinking about models for reasoning about real systems.)

Discrete-event modeling is based on the notion of event, which is defined as a change in the
state of the model. An event occurs at a given instant (called the event time) and causes the model
to activate in order to produce a state change (e.g., at least one attribute in the model will change).
Finally, a model’s state is the set of values of all the attributes of the model at a given instant. The
model’s attributes are usually stored in variables; state variables are those that will influence the
evolution of the model’s behavior [37].

A model is an abstract representation of the system of interest because the model is an aggre-
gated elaboration of the information provided by the system (with a format based on rules, equa-
tions, and relations between components). In modeling, we define abstraction as the basic process
used to extract a set of entities and relations from a complex reality [17]. During this abstraction pro-
cess, information is lost; however, a higher level of abstraction allows us to better define the model’s
behavior and to prove properties of the system by manipulating the abstract model definition while
addressing the problem at the right level of complexity. Figure 1.25 shows an example of a variety
of abstraction levels in a real system.

In Figure 1.25, we start with a continuous signal in the plant that is read by sensors. In order to
model the behavior at this level of abstraction, we need to use a continuous system methodology
(for instance, bond graphs). If we want to feed information from the plant to a digital computer,
we sample the input data (and in order to model this sampled data we need to use a discrete time
technique). The sampled data information from the plant is stored in an image of the plant, and we
use intelligent agents within a supervisory control system to process the inputs and react accord-
ingly (for instance, to activate alarms under emergency). The intelligent agents need to identify

53361.indb 24 3/11/09 10:44:54 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 25

meaningful events to react to; thus, a discrete-event model, detecting important events to be pro-
cessed by the supervisory system, would be the best choice. As is clear in this process, we lose
information at each step, but we are able to make decisions that are more precise at each level by
using the right level of abstraction. Current systems of interest usually include components defined
with multiple techniques (also referred to as multimodeling). Likewise, each of these models might
have different levels of resolution according to the needs. (For instance, under emergency, we might
downgrade the sampling rate to better utilize the computer resources in dealing with the emergency,
thus reducing the quality of the input data while the emergency lasts.) These multiresolution models
are needed more and more frequently as they provide multiple versions of a model that can be easily
adapted and reused.

We can now define simulation as the reproduction of the dynamic behavior of a system of interest
with the goal of obtaining conclusions that can be applied to the system.

A simulation study refers to a set of simulation-based experiments. Typically, the model associ-
ated with a simulation study is implemented as a computer program (also called a simulation model
or a simulator). The simulation experimental frame contains information about the experimental
conditions, parameter values, and behavior generation mechanisms. A simulator may interface with
real-world entities (e.g., a moving platform for a driving simulator) or with humans (e.g., a driver in
the simulator). We call the first a simulator with hardware in the loop and the second a simulator
with human in the loop.

In order to be able to create a model and a simulator that represent the system with precision, we
need to carry out verification and validation (V&V) activities. We use the term validation to refer to
the relationship of the model, the system of interest, and the EF. A model’s validation answers the
question of whether it is impossible to distinguish the behavior of the model and the system within
the EF. Verification is the process of verifying that a simulator of a model correctly generates the
desired behavior [17].

Supervisory

Control

Internal

Plant Image
Output ImageInput Image

A/D Conversion

(Sampling)
D/A Conversion

Actuators

(Continuous Output)

Plant (Continous)

External
Devices

Interface

Internal Devices

Sensors

(Continous Input)

FIGURE 1.25 Different abstraction levels in a plant model.

53361.indb 25 3/11/09 10:44:54 AM

© 2009 by Taylor & Francis Group, LLC

26 Discrete-Event Modeling and Simulation

EXAMPLE 1.8

Let us use Example 1.1 to explain some of the definitions just presented. The experimental frame
consists of different classroom configurations for the study (students entering/leaving and varied
heating/cooling levels). We created different models: a spatial one in Figure 1.13 and a declarative
one (finite state machine) in Figure 1.10. A student arriving in the classroom is an event of inter-
est for this model. Two state variables will change upon occurrence of such event: the number of
students in the room and the room’s temperature (the composite change of these two attributes
is the room’s state change). This event will occur at the instant when the student enters the room
(represented by a real number). The FSM and the spatial models introduced in previous figures are
abstract representations of the actual system (for instance, the FSM in Figure 1.10 does not contain
any information about the student’s age or gender, which are attributes of the real system that we
are not interested in modeling within our EF). A simulator for this model would implement the FSM
in software, and a simulator’s EF would generate a variety of independent tests to run the program.
A different simulator would implement a software version of the spatial model in Figure 1.13. In
order to verify the simulator, we need to check that the trajectories generated in runtime coincide
with those defined by the model (for instance, if a new student arrival is simulated, we see the
number of students increasing, and the temperature increasing, as described in the model). Finally,
validation activities should ensure that what we see in the model and in the simulation results coin-
cides with reality. (For instance, if we see temperatures decreasing when a new student arrives, we
know that this simulated behavior is not valid; we have first to check the model and, if its specifica-
tion is erroneous, we need to fix it. Otherwise, we need to modify the model’s simulator.)

Once the study has been finished and the results are obtained, we might need to use them on the
original system of interest. According to the objectives for the study and the decisions to be taken on
the system of interest once it has finished, we can consider the following kinds of simulation models:

Exploration models are models that are used to understand the operation of the system
better.
Prediction models are models that are used to predict the future behavior of the system.
Improvement models are models that are used to optimize the performance of the system
through the analysis of different alternatives.
Conception models are models that are used when the system does not exist yet, and the
model is used to test different options prior to construction.
Engineering design models are models that are used to design devices in engineering
applications (ranging from bridges to electron devices). Simulation permits exploring dif-
ferent design options and helps to choose the best.
Rapid prototyping models are models that permit obtaining quickly a working model that
can be used to test ideas and get early feedback from stakeholders.
Planning models are models that provide a risk-free mechanism for thinking about the
future in different fields of application (ranging from manufacturing to governance).
Acquisition models are models that involve choosing proper equipment. Very large pieces
of equipment (e.g., helicopters, airplanes, submarines) are extremely expensive. M&S can
help us to decide during the purchasing process, enabling the customer to explore different
alternatives without the need of constructing the equipment prior to taking the decision.
Proof of concept models are models that can be used to test ideas and put them to work
before creating the actual application.
Training can be used to provide controlled experiments to enhance decision-making abili-
ties and teach fundamental concepts for defense applications (also called constructive sim-
ulation). Other training examples include business gaming and virtual simulators (which
are usually human-in-the-loop simulators to learn and enhance motor skills when operat-
ing complex vehicles).

53361.indb 26 3/11/09 10:44:55 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 27

Education models are models that can be used in different sciences to provide insight into
the nature of dynamic phenomena as well as the underlying mechanisms.
Entertainment models are models that involve games and animation, the two most popular
applications of simulation.

1.6 PHASES IN A SIMULATION STUDY

There have been different kinds of life cycles proposed for studies in modeling and simulation
[17,38–41]. In this section, we summarize the basic steps that should be considered in doing a simu-
lation study. The life cycle does not have to be interpreted as strictly sequential; it is iterative by
nature, and sometimes transitions in opposite directions can appear. Likewise, some of the steps can
be skipped, according to the complexity of the application. It is highly recommended to use a spiral
cycle with incremental development for steps 2–8, which can cause a revision to earlier phases. Each
phase in the spiral cycle should end with a working prototype including more functionality than the
previous cycle:

1. Problem formulation: the simulation process begins with a practical problem that requires
solving or understanding. It might be the case of a cargo company trying to develop a
new strategy for truck dispatching or an astronomer trying to understand how a nebula is
formed. At this stage, we must understand the behavior of the system of interest (which
can be a natural or artificial system, existing or not), organizing the system’s operation as
objects and activities within the experimental framework of interest. Then we need to ana-
lyze different alternatives of solutions by investigating other previously existing results for
similar problems. The most acceptable solution should be chosen (omitting this stage could
cause the selection of an expensive or wrong solution). We also must identify the input/
output variables and classify them into decision variables (controllable) or parameters
(noncontrollable). If the problem involves performance analysis, this is the point at which
we can also define performance metrics (based on the output variables) and an objective
function (i.e., a combination of some of the metrics). At this stage, we can also do risk
analysis and decide whether to follow or discard the project.

2. The conceptual model must be defined. This step consists of building a high-level descrip-
tion of the structure and behavior of the system and identifying all the objects with their
attributes and interfaces. We also must define what the state variables are, how they are
related, and which ones are important for the study. In this step, key aspects of the require-
ments are expressed (if possible, using a formalism, which introduces a higher degree of
precision). During the definition of the conceptual model, we need to reveal features that
are of critical significance (e.g., possibility of instability, deadlock, or starvation). We must
also document nonfunctional information—for instance, possible future changes, non-
intuitive (or nonformal) behavior, and the relation with the environment.

3. In the collection and analysis of input/output data phase, we must study the system to
obtain input/output data. To do so, we must observe and collect the attributes chosen in
the previous phase. When the system entities are studied, we try to associate them with a
timing value. Another important issue during this phase is the selection of a sample size
that is statistically valid and a data format that can be processed with a computer. Finally,
we must decide which attributes are stochastic and which are deterministic. In some cases,
there are no data sources to collect (for instance, for nonexisting systems). In those cases,
we need to try to obtain data sets from similar systems (if available). Another option is to
use a stochastic approach to provide the data needed through random number generation.

4. In the modeling phase, we must build a detailed representation of the system based on
the conceptual model and the I/O data collected. The model is built by defining objects,
attributes, and methods using a chosen paradigm. At this point, a specification model is

53361.indb 27 3/11/09 10:44:55 AM

© 2009 by Taylor & Francis Group, LLC

28 Discrete-Event Modeling and Simulation

created, including the set of equations defining its behavior and structure. After finishing
this definition, we must try to build a preliminary structure of the model (possibly relating
the system variables and performance metrics), carefully describing any assumptions and
simplifications and collecting them into the model’s EF.

5. During the simulation stage, we must choose a mechanism to implement the model (in
most cases using a computer and adequate programming languages and tools), and a simu-
lation model is constructed. During this step, it might be necessary to define simulation
algorithms and to translate them into a computer program. In this phase, we also must
build a model of the EF for the simulation.

6. V&V: During the previous steps, three different models are built: the conceptual model
(specification), the system’s model (design), and the simulation model (executable pro-
gram). We need to verify and validate these models. Verification is related to the internal
consistency among the three models (is the model correctly implemented?). Validation is
focused on the correspondence between model and reality: are the simulation results con-
sistent with the system being analyzed? Did we build the right model? Based on the results
obtained during this phase, the model and its implementation might need refinement. As
we will discuss in the next section, the V&V process does not constitute a particular phase
of the life cycle, but it is an integral part of it. This process must be formal and must be
documented correctly because later versions of the model will require another round of
V&V, which is, in fact, one of the most expensive phases in the cycle.

7. Experimentation: We must execute the simulation model, following the goals stated in
the conceptual model. During this phase, we must evaluate the outputs of the simulator,
using statistical correlation to determine a precision level for the performance metrics.
This phase starts with the design of the experiments, using different techniques. Some of
these techniques include sensitivity analysis, optimization, variance reduction (to optimize
the results from a statistical point of view), and ranking and selection (comparison with
alternative systems).

8. In the output analysis phase, the simulation outputs are analyzed in order to understand
the system behavior. These outputs are used to obtain responses about the behavior of the
original system. At this stage, visualization tools can be used to help with the process. The
goal of visualization is to provide a deeper understanding of the real systems being investi-
gated and to help in exploring the large set of numerical data produced by the simulation.

The rest of this book will concentrate mostly on phases 4, 5, and 6, using the DEVS formalism
as the chosen paradigm. We will explain how to do advanced visualization for phase 8, and we will
show how to conduct some experiments (phase 8). The focus here is on the practitioner’s point of
view, and those interested in understanding the details of the underlying theories should consult
references 12, 17, 38, 39, and 41. Input/output analysis is exhaustively covered in references 6, 39,
42–44, and others. Likewise, we will not cover random number generation because it is covered
in the previous references. We will focus on how to create an advanced simulation toolkit based
on DEVS modeling and simulation methodology, concentrating on how to reduce the development
costs of a simulation (by merging phases 2 and 4 and reducing phase 5) while providing good facili-
ties for incremental development, V&V, experimentation, and maintenance.

1.7 VERIFICATION AND VALIDATION (V&V)

The credibility of the results of the simulation depends not only on the correctness of the model,
but also on how accurate the formulation of the problem is expected to be [45]. Thus, we must use
various V&V techniques throughout the life cycle of the simulation study. As discussed earlier, we
call validation the process of determining that a model is a correct representation of the real world
and that its behavior corresponds to the requirements of the model (i.e., validation is related to the

53361.indb 28 3/11/09 10:44:55 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 29

correct formulation of the model). We say a model is valid when it is impossible to distinguish sys-
tem and model within the experimental frame. We can recognize different types of validity [17]:

Replicative validity: For every possible experiment within the experimental frame, trajec-
tories of model and system agree within acceptable tolerance.
Predictive validity: Within an experimental frame, it is possible to initialize the model
to a state such that, for the same input trajectory, model output trajectory predicts system
output trajectory within acceptable tolerance.
Structural validity: The model is able to replicate the data observed from the system but
also mimics step by step and component by component the way in which the system does
its transitions.

Verification, on the other hand, is the process of checking that a simulator of a model correctly
generates its behavior according to the model’s specification. A correct simulation faithfully gener-
ates model behavior in every simulation run.

In large organizations (mostly related to M&S in the defense industry), an accreditation phase
can be required. This is the official process of gaining approval for model use, which certifies that
the model satisfies the specifications. Specific accreditation includes the model and its environment
(input data, aptitude of the personnel, performance of the simulator, etc.).

The result of the activities of V&V must not be considered in absolute form (e.g., right/wrong). A
simulation model is constructed with certain objectives described in the conceptual model and the
experimental frame. As in any software project, it is recommended that V&V should be executed
by an independent team to prevent biased decisions [45]. Likewise, the software cannot be tested
completely, and standard testing techniques should be used, trying to cover the largest percentage
of cases within the domain [46]. The objective is to increase confidence in the model, based on the
study of the objectives. Likewise, the satisfactory test of each submodel (unit test) does not imply
the correctness of the whole (integration test).

Following the life cycle described in Figure 1.26, we need to carry out the following activities:

1. Verification of the conceptual model and of the problem under analysis: We must determine
that the problem we are solving corresponds to the real system. It is essential to understand
the requirements of the system of interest, justifying all the assumptions made during the
definition of the conceptual model. We have to check that such assumptions are appropriate
and that the conceptual model represents the real system based on the proposed objectives.

2. Verification of the design: The purpose of design verification is to ensure that the specifica-
tions reflect the conceptual model accurately.

3. Validation of the system’s model: We must verify that the model corresponds to the system
of interest within the EF. We must also verify that the model is represented with a sufficient
degree of accuracy. As part of this process, we must ensure the quality of the data used in
the different phases of the model.

4. Verification of the simulator: We must ensure that the software implementation of the
model reflects its specification. The model’s behavior must be tested to cover the maximum
percentage of cases possible.

5. Validation of the experimental results: The credibility of the model is the result of hav-
ing completed each of the different activities of V&V mentioned earlier satisfactorily
and ensuring that the results given by the simulator are compatible with those of the real
system.

A variety of V&V techniques can be employed (discussed in detail in references 40, 43, and
45–47), which can be categorized as the following:

53361.indb 29 3/11/09 10:44:55 AM

© 2009 by Taylor & Francis Group, LLC

30 Discrete-Event Modeling and Simulation

Informal techniques lack mathematical foundations and are based mainly on human rea-
soning. These are the most common techniques, including inspections, Turing test (i.e.,
making an expert interact with the simulator, trying to make sure the expert cannot recog-
nize the differences between the simulator and the real system), and animation (in which
the behavior of the model can be represented using animated graphics). Other informal
techniques are the comparison with other models (i.e., the experimental results are com-
pared with the results from other existing models) or the opinions of experts.
Static techniques are used to validate the design of the model and the source code (they do
not execute the model). These techniques include the analysis of data flow, analysis based
on graphics, and syntactic and semantic analyses.
Dynamic techniques require the execution of the model and validation of its behavior.
Some of the techniques include the symbolic execution of the model, cause–effect graphs,
regression tests, and stress testing. Other techniques include reachability analysis, degen-
erative testing (inaccurate or limited input data are used to test the model), and sensitiv-
ity analysis (which consists of changing the values of the input as well as those of some

Cancel
Problem

Formulation

Strategies

Strategies

Conceptual
ModelConceptual

Modeling

Data
Collection

System’s Model

Simulation Model

Experimentaion

Simulation Results

Output
Analysis

Maintenance

Modeling

Validation

Verification

Simulation

FIGURE 1.26 Steps in M&S studies.

53361.indb 30 3/11/09 10:44:56 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 31

internal parameters in order to observe the reaction of the model to these variations). Varied
statistical techniques (including histograms, confidence intervals, or hypothesis tests) are
commonly used.
Formal techniques try to prove the correctness of the model using mathematical tech-
niques. They present a high degree of difficulty and serve as a base for other techniques of
V&V. This can include induction techniques, inference models, deduction logic, predictive
calculus, correction proofs, bisimulation, and model checking.

1.8 SUMMARY

In this chapter, we have given basic ideas and concepts on modeling and simulation. We have pre-
sented a brief historical perspective in the field, showing different techniques used for problem
solving. We clearly showed the concepts of a system (a formalization of entities under study), the
separation between them, and the models we use to reason about the system itself. We briefly intro-
duced different methods to define simulators that will drive the execution of the models (in algorith-
mic fashion or using specialized devices, including digital computers).

We introduced the concept of the experimental framework, which gives an environment for
defining the model, conducting experiments, collecting data, and executing the simulation analysis.
The clear separation between the system of interest, the model that represents it, the simulator that
executes it, and the experimental frames to conduct tests will make the creation, modification, and
use of the simulation tools much easier.

Finally, we introduced varied discrete-event modeling techniques and discussed different classi-
fications, focusing on discrete-event modeling and simulation methodologies (the main focus of this
book). We then introduced some term definitions, presented a life cycle proposal for M&S studies,
and gave a brief introduction to ideas on verification and validation activities.

REFERENCES

1. Taylor, M. 1996. Partial differential equations: Basic theory. New York: Springer–Verlag.
2. Bacon, D. H. 1989. BASIC heat transfer. London: Butterworth & Co. Ltd.
3. Lapidus, L., and G. F. Pinder. 1982. Numerical solution of partial differential equations in science and

engineering. New York: Wiley.
4. Brenan, K. E., S. L. Campbell, and L. R. Petzold. 1989. Numerical solution of initial-value problems in

differential algebraic equations. New York: Elsevier.
5. Coward, D. Analog computer museum and history center. http://dcoward.best.vwh.net/analog/. Accessed:

September 1, 2007.
6. Cassandras, C. G. 1993. Discrete event systems: Modeling and performance analysis. Homewood, IL:

Aksen: Irwin.
7. Hopcroft, J. E., R. Motwani, and J. D. Ullman. 2007. Introduction to automata theory, languages, and

computation, 3rd ed. Boston: Pearson/Addison–Wesley.
8. Ho, Y. C. 1989. Introduction to special issue on dynamics of discrete event systems. Proceedings of the

IEEE, 77:3–6.
9. Birtwistle, G. M. 1979. A system for discrete event modeling on SIMULA. London: Macmillan.

10. IFIP Technical Committee 2—Programming. 1968. Simulation programming languages. Proceedings of
the IFIP Working Conference on Simulation Programming Languages, Oslo, Norway.

11. Pritsker, A. B., and C. D. Pegden. 1979. Introduction to simulation and SLAM. New York: Wiley (distrib-
uted by Halsted Press).

12. Zeigler, B. P. 1976. Theory of modeling and simulation. New York: Wiley-Interscience.
13. Fishwick, P. A. 1995. Simulation model design and execution: Building digital worlds. Englewood Cliffs,

NJ: Prentice Hall.
14. Zeigler, B. 1984. Multifaceted modeling and discrete event simulation. New York: Academic Press.
15. Zeigler, B. P. 1990. Object-oriented simulation with hierarchical, modular models: Intelligent agents and

endomorphic systems. Boston: Academic Press.

53361.indb 31 3/11/09 10:44:56 AM

© 2009 by Taylor & Francis Group, LLC

http://dcoward.best.vwh.net

32 Discrete-Event Modeling and Simulation

16. Zeigler, B. P. 1998. DEVS theory of quantization. Technical report, DARPA contract N6133997K-0007,
ECE Department, the University of Arizona, Tucson.

17. Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of modeling and simulation, 2nd. ed. New York:
Academic Press.

18. Zeigler, B. P. 2005. Continuity and change (activity) are fundamentally related in DEVS simulation
of continuous systems. Proceedings of AIS 2004, Artificial Intelligence, Simulation and Planning, Jeju
Island, Korea, 1–17.

19. Kofman, E. 2004. Discrete event simulation of hybrid systems. SIAM Journal of Scientific and Statistical
Computing 25:1771–1797.

20. Cellier, F. E., and E. Kofman. 2006. Continuous system simulation. New York: Springer Science+
Business Media.

21. Alur, R., and D. L. Dill. 1994. A theory of timed automata. Theoretical Computer Science 126:183–235.
22. Papadimitriou, C. H. 1994. Computational complexity. Reading, MA: Addison–Wesley.
23. Cao, X. R., and Y. C. Ho. 1990. Models of discrete event dynamic systems. IEEE Control Systems

Magazine 10:69.
24. Glynn, P. W. 1989. A GSMP formalism for discrete event systems. Proceedings of the IEEE 77:14–23.
25. Peterson, J. L. 1981. Petri net theory and the modeling of systems. Englewood Cliffs, NJ: Prentice Hall.
26. Woodside, C. M. 1988. Throughput calculation for basic stochastic rendezvous networks. Performance

Evaluation 9:143–160.
27. Rolia, J., and K. C. Sevkik. 1995. The method of layers. IEEE Transactions on Software Engineering

21:682–688.
28. Woodside, C. M., S. Majumdar, J. E. Neilson, D. C. Petriu, J. Rolia, A. Hubbard, and G. Franks. 1995.

A guide to performance modeling of distributed client–server software systems with layered queuing
networks. Technical report, Department of Systems and Computer Engineering, Carleton University,
Ottawa, ON, Canada.

29. Milner, R. 1982. A calculus of communicating systems. New York: Springer–Verlag.
30. Manna, Z., and A. Pnueli. 1992. The temporal logic of reactive and concurrent systems. New York:

Springer–Verlag.
31. Hoare, C. A. R. 1985. Communicating sequential processes. Englewood Cliffs, NJ: Prentice Hall

International.
32. Harel, D., and M. Politi. 1998. Modeling reactive systems with statecharts. New York: McGraw–Hill.
33. Rumbaugh, J., I. Jacobson, and G. Booch. 1999. The unified modeling language reference manual. Essex,

UK: Addison-Wesley Longman Ltd..
34. Belina, F., and D. Hogrefe. 1989. The CCITT-specification and description language SDL. Computer

Networks ISDN Systems 16:311–341.
35. Schruben, L. W., T. M. Roeder, W. K. Chan, P. Hyden, and M. Freimer. 2003. Advanced event schedul-

ing methodology. Proceedings of WSC ’03: Proceedings of the 35th Winter Simulation Conference, New
Orleans, 159–165.

36. von Bertalanffy, L. 1969. General system theory: Foundations, development, applications. New York: G.
Braziller.

37. Nance, R. E. 1981. The time and state relationships in simulation modeling. Communications of the ACM
24:173–179.

38. Sargent, R. G. 2005. Verification and validation of simulation models. Proceedings of WSC ’05: Pro-
ceedings of the 37th Winter Simulation Conference, 130–143, Orlando.

39. Law, A. M., and W. D. Kelton. 2000. Simulation modeling and analysis, 3rd ed. Boston: McGraw–Hill.
40. Balci, O. 1994. Validation, verification, and testing techniques throughout the life cycle of a simulation study.

Proceedings of WSC ’94: Proceedings of the 26th Winter Simulation Conference, 215–220, Orlando.
41. Lutz, R. 1999. FEDEP V1.4: An update to the HLA process model. Proceedings of WSC ’99: Proceedings

of the 31st Winter Simulation Conference, Phoenix, AZ, 1044–1049.
42. Banks, J., J. S. Carson, B. L. Nelson, and D. Nicol. 2005. Discrete-event system simulation, 4th ed. Upper

Saddle River, NJ: Prentice Hall.
43. Kleijnen, J. P. C. 2005. Forty years of statistical design and analysis of simulation experiments (DASE).

Proceedings of WSC ’05: Proceedings of the 37th Winter Simulation Conference, Orlando, 1–17.
44. Leemis, L. M., and S. K. Park. 2005. Discrete-event simulation: A first course. Upper Saddle River, NJ:

Prentice Hall.
45. Pace, D. K. 1993. Naval modeling and simulation verification, validation, and accreditation. Proceedings

of WSC ’93: Proceedings of the 25th Winter Simulation Conference, Los Angeles, 1077–1080.

53361.indb 32 3/11/09 10:44:56 AM

© 2009 by Taylor & Francis Group, LLC

Modeling and Simulation Concepts 33

46. Beizer, B. 1990. Software testing techniques, 2nd. ed. New York: Van Nostrand Reinhold Co.
47. Sargent, R. G., P. A. Glasow, J. P. C. Kleijnen, A. M. Law, I. McGregor, and S. Youngblood. 2000.

Strategic directions in verification, validation, and accreditation research. Proceedings of WSC ’00: Pro-
ceedings of the 32nd Winter Simulation Conference, Orlando, 909–916.

53361.indb 33 3/11/09 10:44:57 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

35

2 Introduction to the
DEVS Modeling and
Simulation Formalism

2.1 INTRODUCTION

As discussed in our previous chapter, the theory of differential equations has a long history, while
modeling techniques for discrete-event systems have only appeared recently. Discrete-event simu-
lation techniques were developed hand in hand with the creation of the computer. Consequently,
the first discrete-event modeling and simulation (M&S) approaches were tightly coupled to the
computer hardware and languages, while formal modeling techniques with a solid mathematical
background are more recent. Discrete-event systems specification (DEVS) M&S theory is one of
such techniques that were based on systems theory concepts [1–3]. Although in this chapter we
will briefly introduce some of the basic ideas behind this theory of modeling and simulation, the
reader should refer to Zeigler [1]; Zeigler, Praehofer, and Kim [4]; and Zeigler [5] to understand the
details behind the mathematical background of this technique. Our goal here is to provide the basis
to discuss the application examples introduced in the following chapters. As we will briefly discuss
here, DEVS also provides a formal background for a common methodology for modeling both dis-
crete and continuous worlds (the interested reader should consult Zeigler et al. [4] and Cellier and
Kofman [6].

According to DEVS theory, the system of interest is seen as a source of behavioral data for the
study within a given experimental frame (EF). The EF is a restricted set of the elements observed
in the system and the conditions under which they are observed. These data are used to create an
abstract representation of such a system (a model). Using a set of instructions, rules, or mathematical
equations, the model tries to replicate the behavior of the system of interest under the experimental
conditions. Figure 2.1 shows these basic entities in M&S and their relationships [4].

This separation of concerns and the use of a formal mechanism to describe each of the com-
ponents allowed DEVS methodology to improve the creation of models and the execution of sim-
ulations. The formal specifications provide means for mathematical manipulation and it permit
independence of the language chosen to implement the models.

The model represents a simplified version of reality and its structure. The model is built con-
sidering the conditions of experimentation of the system of interest, including the work conditions
of the real system and its application domain. Thus, the model is restricted to the experimental
framework under which it was developed (which influences its construction, experimentation tasks,
and validation).

The model is subsequently used to build a simulator (i.e., a device capable of executing the mod-
el’s instructions) generating the model’s behavior. When we implement the model, there is an extra
reduction in the precision. If the model is implemented in a computer, the programming languages
and the computer used are limited, including the duration of the simulation, memory availability,
precision of the variables involved, etc.

Figure 2.1 also shows the two fundamental relationships discussed in Chapter 1: verification
and validation. Validation links the model with the real system within the experimental frame (i.e.,

53361.indb 35 3/11/09 10:44:57 AM

© 2009 by Taylor & Francis Group, LLC

36 Discrete-Event Modeling and Simulation

how well the model’s behavior agrees with the system’s behavior under the conditions specified in
the experimental frame). Verification links a simulator and its model, dealing with the accuracy
of the simulator to execute the instructions of the model (this can be related to the precision of the
computer, the simulation algorithms, etc.).

DEVS was created for modeling and simulating discrete-event dynamic systems (DEDS); thus, it
defines a way to specify systems whose states change either upon the reception of an input event or
due to the expiration of a time delay. In order to attack the complexity of the system under study, the
model is organized hierarchically (i.e., it is organized in a way such that every element is higher than
its precedent), and higher-level components of the system are decomposed into simpler elements.
The second tool used to attack complexity is information hiding, through the provision of a modular
interface for each of the models.

The separation between model and simulator and the hierarchical and modular nature of the
formalism have enabled carrying out of formal proofs on the different entities under study. One of
them is the proof of composability of the subcomponents (including legitimacy and equivalence
between multicomponent models). The second is the ability to conduct proofs of correctness of the
simulation algorithms, which results in simulators rigorously verified. The proofs are based on for-
mal transformations (morphisms) between each of the representations, trying to prove the equiva-
lence between the entities under study at different levels of abstraction [4,7–9]. For instance, we
can prove that the mathematical entity simulator is able to execute correctly the behavior described
by the mathematical entity model, which represents the system under the experimental framework
(which can also be represented formally).

Different mechanisms are used to prove this, including the mathematical manipulation of the
abstraction hierarchy, observation of the I/O trajectories (in order to ensure that different levels
of specification correctly describe the system’s structure), and decomposition concepts (DEVS is
closed under composition, which means that a composite model integrated by multiple components
is equivalent to an atomic component).

2.2 THE DEVS FORMALISM

A real system modeled using DEVS can be described as a composition of atomic and coupled com-
ponents [1,4]. Here, we will use the definition of DEVS with ports [4] (instead of classic DEVS [1]).
An atomic model is specified as

M = <X, Y, S, δint, δext, λ, ta> (2.1)

Experimental Frame

Source
System Behavior

Database

Model

Simulator

Modeling
Relation Simulation

Relation

FIGURE 2.1 Basic entities in M&S and their relationships. (From Zeigler, B. P. et al. 2000. Theory of model-
ing and simulation, 2nd. ed. New York: Academic Press.)

53361.indb 36 3/11/09 10:44:57 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the DEVS Modeling and Simulation Formalism 37

where
X = {(p,v) p IPorts, v Xp} is the set of input events, where IPorts represents the set of input

ports and Xp represents the set of values for the input ports;
Y = {(p,v) p OPorts, v Yp} is the set of output events, where OPorts represents the set of output

ports and Yp represents the set of values for the output ports;
S is the set of sequential states;
δext: Q × X S is the external state transition function, with Q = {(s,e)/s S, e [0, ta(s)]} and

e is the elapsed time since the last state transition;
δint: S S is the internal state transition function;
λ: S Y is the output function; and
ta: S R0

+ ∞ is the time advance function.

Figure 2.2 shows an informal depiction of DEVS atomic models.
At any given moment, a DEVS model is in a state s S. In the absence of external events, it

remains in that state for a lifetime defined by ta(s). When ta(s) expires, the model outputs the value
λ(s) through a port y , and it then changes to a new state given by δint(s). A transition that occurs
due to the consumption of time indicated by ta(s) is called an internal transition. On the other hand,
an external transition occurs due to the reception of an external event. In this case, the external
transition function determines the new state, given by δext(s, e, x), where s is the current state, e is the
time elapsed since the last transition, and x X is the external event that has been received.

The time advance function can take any real value between 0 and ∞. A state for which ta(s) =
0 is called a transient state (which will trigger an instantaneous internal transition). In contrast, if
ta(s) = ∞, then s is said to be a passive state, in which the system will remain perpetually unless an
external event is received (can be used as a termination condition).

A DEVS coupled model is composed of several atomic or coupled submodels. It is formally
defined by

CM = <X, Y, D, {Md d D}, EIC, EOC, IC, select> (2.2)

where
X = {(p,v) p IPorts, v Xp} is the set of input events, where IPorts represents the set of input

ports and Xp represents the set of values for the input ports;
Y = {(p,v)|p OPorts, v Yp} is the set of output events, where OPorts represents the set of input

ports and Yp represents the set of values for the output ports;
D is the set of the component names and for each d D;
Md is a DEVS basic (i.e., atomic or coupled) model;

FIGURE 2.2 DEVS atomic model semantics.

53361.indb 37 3/11/09 10:44:58 AM

© 2009 by Taylor & Francis Group, LLC

38 Discrete-Event Modeling and Simulation

EIC is the set of external input couplings, EIC { ((Self, inSelf), (j, inj)) inSelf IPorts, j D,
inj Iportsj};

EOC is the set of external output couplings, EOC { ((i,outi), (Self,outSelf)) outSelf OPorts,
i D, outi OPortsi};

IC is the set of internal couplings, IC { ((i,outi), (j,inj)) i,j D, outi OPortsi, inj IPortsj };
and

select is the tiebreaker function, where select D D, such that, for any nonempty subset E,
select (E) E.

Figure 2.3 shows an example of a DEVS coupled model with three subcomponents, A1–A3.
These basic models are interconnected through the corresponding I/O ports presented in the figure.
The models are connected to the external coupled model through the EIC and EOC connectors.
Keep in mind that A1–A3 are basic models (i.e., they can be atomic or coupled components).

The model depicted in Figure 2.3 can be formally defined as

C = <X, Y, D, {Md d D}, EIC, EOC, IC, select> (2.3)

where
X = {(in, v) in IPorts, v R};
Y = {(out, v) out IPorts, v R };
D = {A1, A2, A3};
Md = { MA1, MA2, MA3 };
EIC { ((Self, in), (A1, in)) }; (or EIC { ((C, in), (A1, in)) });
EOC { ((A3, out), (Self, out)) }; (or EOC { ((A3, out), (C, out)) });
IC { ((A1, out), (A2, in)); ((A2, out), (A3, in)) };
select = {A3, A1, A2}.

The coupled model definition presented shows the specification of the three components A1–A3
and their internal/external couplings. Coupled models group several DEVS into a composite model
that can be regarded, due to the closure property, as a new DEVS model. The closure property
guarantees that the coupling of several class instances results in a model of the same class, allowing
hierarchical construction [4].

Because multiple subcomponents can be scheduled for an internal transition at the same time,
ambiguity could arise. In our example, if A1 executes its output/internal transition first, producing
an output that maps into an external event for A2 (which is also scheduled for an internal transition
at the same time), then it is not clear which transition this second component should execute first.
There are two alternatives for this:

(a) to execute the external transition first and then the internal transition, with e = ta(s); or
(b) to execute the internal transition first, followed by the external transition, with e = 0.

C

in

in in

A1
A2

A3

EIC
IC EOC

out out out outin

FIGURE 2.3 A coupled model.

53361.indb 38 3/11/09 10:44:59 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the DEVS Modeling and Simulation Formalism 39

The select function provides a simple way to solve this ambiguity. The function defines an order-
ing over all the components of the coupled model so that only the first model to execute in the case
of simultaneous internal events can be chosen. In our example, A1 is executed before A2; thus, we
execute the external transition first.

A different definition of coupled models (that we will be using later in this and other chapters)
is

CM = < X, Y, D, {Mi}, {Ii}, {Zij}, select > (2.4)

where
X is the set of input events;
Y is the set of output events;
D is an index for the components of the coupled model;

i D, Mi is a basic DEVS model;
Ii is the set of influencees of model i and j Ii;
Zij is the i to j translation function, where Zij: Yi Xj

Figure 2.4 shows an example of the execution of a DEVS atomic model (which, due to the closure
under coupling property, could also be representing the I/O trajectories of a DEVS coupled model).

Initially, the model is in state s0, and an internal transition is scheduled for ta(s0). Time advances
(i.e., the elapsed time variable e moves forward in continuous time) and, at time t0 (before the
scheduled time is consumed), the model receives the internal input X0. Consequently, the external

X
X0 X1

t0 t2

Y
Y0 Y1

t1 t3

S
s0

s1

s2

s3

t0 t1 t2 t3

e

ta(s0)

ta(s1)
ta(s2)

ta(s3)

t0 t1 t2 t3

FIGURE 2.4 Sample I/O trajectories.

53361.indb 39 3/11/09 10:45:00 AM

© 2009 by Taylor & Francis Group, LLC

40 Discrete-Event Modeling and Simulation

transition function is triggered, and the model changes to s1, which has an associated time advance
of ta(s1) (at this point, the elapsed time e is reset to 0). In this case, no inputs are received before the
internal event, and when time t1 = ta(s1) arrives, we activate the output function (which generates
the output Y0). We then execute the internal transition function (which will make the model change
to the state s2 and schedule the next internal transition at ta(s2) = t2). At time t2, we simultaneously
receive the external input X1 (in order for this to happen, the select function at the parent coupled
model must have triggered an influencer, which executed its output function before our atomic
model). Thus, we consume the input event X1, triggering the external transition function (which
makes the model change to s3 with ta(s3) = t3). At this time, we trigger both the output function
(which generates the output Y1) and the internal transition function. This cycle is repeated until the
end of the simulation.

2.3 A DEVS MODEL EXAMPLE

The Generator, Processor, Transducer (GPT) model presented in this section has been widely used
as a “Hello, world!” example for DEVS modeling and simulation [4]. The structure of the model is
introduced in Figure 2.5.

The top-level model GPT is a simple coupled model that is composed of two basic components:
generator and QPT. Generator is an atomic model that creates jobs to be processed (at random
times) and sends them through the out output port. QPT is a coupled model consisting of two main
atomic components: a processor that consumes the jobs received (and informs that they are ready
through the out output port) and a transducer in charge of calculating statistics. When a new job
arrives through the arrived input port, the transducer computes the arrival time; when the job
finishes, its end time arrives through the solved port, and we can use this information to compute
metrics. In this case, we have also included a queue model, which is used as a buffer for the arriv-
ing jobs before they are processed. Based on Figure 2.5, we can define the coupled model for this
example as

MGPT = <X, Y, D, {Md d D}, EIC, EOC, IC, select> (2.5)

where
X = ;
Y = {(cpuUsage, R0

+); (Throughput, R0
+) };

D = { Generator, QPT };
Md = { MGenerator, MQPT } (where MGenerator is an atomic model and MQPT a coupled one);
EIC = ;
EOC { ((QPT, cpuUsage), (Self, cpuUsage)) ; ((QPT, Throughput), (Self, Throughput)) };

FIGURE 2.5 The GPT model and its internal and external connections.

53361.indb 40 3/11/09 10:45:00 AM

© 2009 by Taylor & Francis Group, LLC

GPT

Generator
Out

Arrived

Queue

Transducer

Solved

Processor

Out

QPT
cpuUsage

Throughput

Done
In

Introduction to the DEVS Modeling and Simulation Formalism 41

IC { ((Generator, out), (QPT, in)); ((Generator, out), (QPT, arrived)) }; and
select = {QPT, Generator }.

The QPT coupled model can be defined as

MQPT = <X, Y, D, {Md d D}, EIC, EOC, IC, select> (2.6)

where
X = {(in, N); (arrived, N) };
Y = {(cpuUsage, R0

+); (Throughput, R0
+) };

D = { Queue, Processor, Transducer};
Md = { MQueue, MProcessor, MTransducer };
EIC = { ((Self, in), (Queue, in)) ; ((Self, arrived), (Transducer, arrived)) };
EOC { ((Transducer, cpuUsage), (Self, cpuUsage)); ((Transducer, Throughput), (Self,

Throughput)) };
IC { ((Queue, out), (Processor, in)); ((Processor, out), (Queue, done)); ((Processor, out),

(Transducer, solved)) };
select = {Processor, Queue, Transducer }.

The coupled model definitions show the structure of the whole model, but then we need to define
the behavior for each atomic model, which should use the following descriptions:

Generator generates new tasks transmitted through an output port. The output value rep-
resents a task identifier (a positive integer uniquely used during the simulation process).
The period used to create a new process is generated at random (with probability distribu-
tions chosen during the configuration of the experiment).
Processor simulates the tasks’ execution delays. A new task ID (a positive integer number)
is received through an input port, and the processor remains busy until the processing is
finished. Then it sends the process identifier through an output port. The processing time
is generated using random numbers with exponential distribution.
Queue is a buffer that stores task IDs (positive integer numbers). When an ID is received
through the done input port, the buffer must transmit a stored job (if available). The queue
uses a nonpreemptive first in, first out (FIFO) policy. A stop input port is used to deacti-
vate/reactivate the queue, allowing control flow by higher-level models (this port has not
been used in the example introduced in Figure 2.5).
Transducer records metrics and computes statistics. Two measures are considered:
throughput (tasks executed per time unit) and CPU usage (average time of tasks waiting
in the ready queue). The transducer accepts job IDs on the arrived input port and records
the time for arrival of the job. Jobs processed must be forwarded to the transducer’s solved
input port so that the transducer can record the time when the job was finished and calcu-
late the elapsed time. This value is subsequently used for calculating throughput and CPU
usage.

The functionality of each of these models must be described using the formal specification for
DEVS. For instance, the queue model can be formally described as

Queue = < X, S, Y, δint, δext, λ, ta > (2.7)

X = {(in, N); (stop, N); (done, N) };
S = { state {active, passive}, preparationTime, timeLeft R0+, queue {jobid N}* };
Y = {(out, N); };

53361.indb 41 3/11/09 10:45:01 AM

© 2009 by Taylor & Francis Group, LLC

42 Discrete-Event Modeling and Simulation

δext (s, e, x) {
 if (x.port == in) { // A new job has arrived
 add (x.value, s.queue); // Add it to the queue
 if (sizeOf (s.queue) == 1) // The queue was empty
 state = active; ta(state) = preparationTime ; // The arrived job must be executed.
 }
 if(x.port == done) { // A job has finished
 delete_first (s.queue); // Delete it from the queue
 if(!empty(s.queue)) // Take the next element in the queue
 state = active; ta(state) = preparationTime ; // This job must be executed
 }
 if(x.port == stop) // Stop the transmision: buffer overflow
 if(state == active && x.value != 0) { // The queue was active
 timeLeft = preparationTime – e ; // Record the time left to execute
 state = passive; ta(state) = infinity; // Deactivate the queue: passivate.
 }
 else // Reactivate the queue
 if(state == passive && x.value == 0)
 state = active; ta(state) = timeLeft ; // Use the time left before being stopped
 }

δ (s) {
 sendOutput(time, out, first (queue));
}

δint (s) {
 passivate();
}

The transducer model collects timing information of the jobs arriving in the system and their
departure times. Using these events, it computes the number of jobs processed per time unit (through-
put) and the level of utilization of the CPU (cpuUsage). The model can be formally defined as

Transducer = < X, S, Y, δint, δext, λ, ta > (2.8)

X = {(arrived, N); (solved, N); (done, N) };
S = state {active, passive}, procCount N, cpuLoad, frequence R0+, unsolvedQ

{jobid N}* };
Y = {(throughput, R0+); (cpuUsage, R0+); };

δext (s, e, x) {
 cpuLoad += (time – lastChange) * size_of(unsolvedQ) ; // Average load
 if(x.port == arrived) unsolvedQ[x.value] = time; // Store information about task
 if(x.port == solved) { // Task ended: erase
 which = find(x.value, unsolved) ;
 procCount ++ ;
 erase(which) ;
 }
}

53361.indb 42 3/11/09 10:45:01 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the DEVS Modeling and Simulation Formalism 43

λ (s) {
 sendOutput(time, throughput, procCount/time);
 sendOutput(time, cpuUsage, cpuLoad/time);
}

δint (s) {
 passivate();
}

This model will be used later for varied examples throughout the book.

Exercise 2.1

Modify the queue model to implement a LIFO strategy.

Exercise 2.2

Modify the queue model to implement a priority-based strategy. Job numbers also represent the prior-
ity of the job; thus, every arriving job should be located in the right position in the queue (using the ID
number).

Exercise 2.3

Write the model specification for the processor model. Include two different versions: one without pre-
emption and one with preemption (i.e., a newly arriving job will stop the execution of the current job
and will start the new one).

Exercise 2.4

Compute the input/output trajectories for the queue model for the following three jobs: (1, 0.3 s),
(2, 5.1 s), (3, 10.6 s), where the first number is the job ID and the second the arrival time.

Exercise 2.5

Compute the input/output trajectories for each atomic model and the whole coupled model using the
same input trace used in Exercise 2.4.

Exercise 2.6

Use the internal transition function in the queue model to represent a faulty buffer. Every time the size
of the queue is a multiple of 13, one element in the queue is deleted.

Exercise 2.7

Modify the mechanism for computing the CPU load in the transducer. In this case, use an accumulator
to keep track of the total use of the CPU (i.e., add all the time between arrival/departure of jobs) instead
of the average used in the original version.

Exercise 2.8

Add a new model, ControlFlow, which will stop or reactivate the queue model according to its internal
state. A random number is used to decide when the queue should be stopped. The internal transition
function will generate a random number using a normal distribution with average 5 and standard devia-
tion 3. If the number generated is larger than 9, then the output function will generate a “stop” signal for
the queue. Then, if the number generated is smaller than 8, the queue will be reactivated. Write a formal
specification for this model and modify the corresponding coupled model.

53361.indb 43 3/11/09 10:45:01 AM

© 2009 by Taylor & Francis Group, LLC

44 Discrete-Event Modeling and Simulation

2.4 DEVS WITH SIMULTANEOUS EVENTS (PARALLEL DEVS)

As seen in the previous section, whenever two models are scheduled for state transitions at the same
time, a DEVS coupled model will pick the one specified by the select function to execute first. This
tie-breaking strategy is rigid. Let us suppose that model A2 in Figure 2.3 represents vehicles going
into an intersection, and A3 represents vehicles inside the crossing area. According to the select
function definition, A3 has the highest priority (which tries to free traffic in the crossing area before
allowing new vehicles in the intersection). If now we want to be able to represent collisions, we would
need to give priority to A2; however, this is not possible in the current specification, which will free
space in the crossing first (making it more difficult to represent the collision situation). In addition,
select introduces serialization in the execution of components when many interconnected atomic
models are imminent (which could be executed in parallel in a multiprocessor environment).

Parallel DEVS (or PDEVS) is an extension to DEVS that provides a more flexible way of deal-
ing with these ambiguities [10]. Atomic models provide an additional confluent function to specify
collision behavior for events that might be scheduled simultaneously and a mechanism for receiving
multiple external events at the same time and processing them together. An atomic PDEVS model
is defined as

M = <X, Y, S, δext,δint,δcon, λ, ta> (2.9)

where
X = {(p,v) p IPorts, v Xp} is the set of input events, where IPorts represents the set of input

ports and Xp represents the set of values for the input ports;
Y = {(p,v) p OPorts, v Yp} is the set of output events, where OPorts represents the set of

input ports and Yp represents the set of values for the output
ports;

S is the set of sequential states;
δext: Q × Xb S is the external state transition function;
δint: S S is the internal state transition function;
δcon: Q × Xb S is the confluent transition function;
λ: S Yb is the output function;
ta: S R0

+ ∞ is the time advance function, with Q = {(s, e) s S, 0 ≤ e ≤ ta(s)}
the set of total states.

PDEVS models use bags (multisets) of events for receiving inputs and collecting outputs (Xb, Yb)
instead of a single event. This allows multiple events to be processed simultaneously. Because exter-
nal input events received by the component are added to the bag, external transition functions can
combine the functionality of a number of external transitions into a single one, and simultaneous
events (like the departure of a vehicle and a collision in the intersection) can be treated simultane-
ously. Also, PDEVS allows a better way to deal with collisions: the model specification includes
a confluent transition function (δcon). When a collision between the internal and external functions
occurs, the confluent function determines the new state of the model.

The semantics of PDEVS for internal/external transition functions is similar to DEVS. If one or
more external events Xb = {x1 … xn/xi X} occur before ta(s) expires (i.e., while the system is in total
state (s, e) with e < ta(s)), the new state will be given by the model’s external transition function,
δext(s,e,Xb). If the external events Xb are received when e = ta(s), the new state of the model will be
given by the confluent function (δcon). If multiple components in a coupled model are imminent, all
their outputs are first collected and mapped to their influences in parallel. Then the corresponding
transition function is executed for every model.

In PDEVS, coupled models are defined as in DEVS, without the need for a select function.
Formally, a coupled model is defined as

53361.indb 44 3/11/09 10:45:01 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the DEVS Modeling and Simulation Formalism 45

CM = <X, Y, D, {Md d D}, EIC, EOC, IC> (2.10)

where definitions for the set of input and output events (X and Y), components (D and Md), and
couplings (EIC, EOC, and IC) follow the specifications of DEVS coupled models presented earlier
in this chapter.

2.5 DYNAMIC STRUCTURE DEVS

The definitions of DEVS presented in the previous sections consider a model with a static structure
(i.e., invariant in time). Nevertheless, in many cases it is useful to allow modeling of the dynamic
adaptation to dynamic changes in the environment. The only way of doing this with DEVS is by
having multiple models defined and a selector model to activate the right one at any time. Dynamic
structure systems instead focus on the possibility of changing the system structure dynamically
according to the system’s real requirements. Dynamic structure DEVS allows addressing some of
these issues and supports structural changes on three levels:

1. System level: the structural change happens between coupled models (i.e., a new link
between two coupled models is added).

2. Component level: the structural change happens within a coupled model but including two
or more atomic models (i.e., a new link is added between two atomic models).

3. Subcomponent level: the structural change only happens within a single atomic model (i.e.,
the external transition function changes).

There are two popular dynamic structure DEVS definitions, namely, dynamic structure discrete
event (DSDE) [11–13] and dynDEVS [14,15]. DSDE divides the models into two groups: basic and
network models. The basic models are atomic structure units (cannot be split); network models
are coupled components composed of multiple basic interconnected structure models (which can
include structural changes). A network executive is a modified basic model that is used to conduct
the changes in network models by storing all possible states for structural changes and their cor-
responding component sets. The two parts are associated together through an index function in the
network executive. A DSDE network is defined as

DSDENN = (XN, YN, χ, Mχ) (2.11)

where
XN is the network input value set;
YN is the network output value set;

is the name of the network executive; and
M is the model of the network executive , which is a modified basic model and is defined by

Mχ = (Xχ, s0,χ, Sχ, Yχ, γ, Σ*, δextχ, λχ, δintχ) (2.12)

Here,
Xχ, Sχ, Yχ, δextχ, λχ, and δintχ are defined as in DEVS;
γ: Sχ Σ* is the structure function; and
Σ* is the set of network structures.

If sα Sχ is a partial state of the network executive, then γ(sα) = = (D, {Mi}, {Ii}, {Zi}) is a net-
work structure (equivalent to a coupled model), where D is the set of component names associated
with the executive partial state sα for all i D; Mi is the model of the component i for all i D { ,
N}; Ii is the set of influencees of i for all i D { }; and Zi is the input function of the component i
and ZN is the network output function.

53361.indb 45 3/11/09 10:45:02 AM

© 2009 by Taylor & Francis Group, LLC

46 Discrete-Event Modeling and Simulation

As we can see, the structure function provides a mapping between a partial state of the network and
a new network structure, permitting us to carry out structural changes.

The dynDEVS formalism does not introduce an extra component to conduct dynamic struc-
tural changes. Instead, two kinds of dynamic DEVS models are included: dynDEVS (atomic) and
dynNDEVS (coupled). The dynDEVS models atomic components are defined as

dynDEVS = df <X, Y, minit, M(minit)> (2.13)

where
X, Y are the input/output sets;
minit M(minit) is the initial model; and
M(minit) is the least set having structure { <S, sinit, δext, δint, , λ, ta> }.

A dynDEVS model can be interpreted as a set of DEVS models with the same interface plus
a transition function that determines which DEVS model succeeds the previous one. It includes
an initial state and a dynamic reconfiguration function (), which will be in charge of structural
changes. A model’s state space, internal and external transition, output, time advance, and model
transition functions are subject to change during simulation.

dynNDEVS models are coupled structural components defined as

dynNDEVS = df <X, Y, ninit, N(ninit)> (2.14)

where
X, Y are the input/output sets;
ninit N(ninit) is the start configuration; and
N(ninit) is the least set having the structure {<D, N, {dynDEVSi}, {Ii}, {Zij}, Select>}.

The dynNDEVS model is similar to a coupled model, but it now includes the dynamic configuration
function N.

Both of the preceding formalisms introduce new structure transition functions to conduct struc-
tural changes. In DSDE, the structural changes are carried out by (the network executive) and
the structure function (which maps the network structure state set S and the network struc-
ture models’ set *). The centralized network executives make sure that the structure transition is
executed sequentially without any conflicts between structural change functions of the models. In
dynDEVS, agents associated with the models conduct structural changes. and N are structure
transition functions in dynDEVS and dynNDEVS models, respectively, which execute structural
changes concurrently and independently.

We will show how to apply these concepts to a model of an automated manufacturing system
(AMS) consisting of a flow shop for manufacturing cars. The system consists of dedicated stations
that perform tasks on products being assembled and conveyors that transport the products to or from
those workstations. The structure of the model is presented in Figure 2.6. As we can see, the flow
shop consists of five parts:

1. Conveyor belts are used to transport products between the different stations (a conveyor is
composed of an engine and sensors).

2. The control unit is in charge of controlling the movement of the conveyors according to the
production cycle provided by a scheduler.

3. The scheduler (SCH) is in charge of the production cycle organization, and it programs the
control unit to execute the production cycle on both conveyors.

4. The display controller displays the current status of the whole AMS system (a SCADA
system).

53361.indb 46 3/11/09 10:45:02 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the DEVS Modeling and Simulation Formalism 47

5. Each workstation is in charge of a different task and its quality control. Vehicles being
manufactured are delivered to each workstation (in order to be served step by step) by the
conveyors. The Engine Station (ES) is in charge of assembling engine parts, the Painting
Station (PS) undertakes the painting and special painting tasks, the Baking Station (BS)
is in charge of baking (which takes place after painting), QC serves as a Quality Center to
evaluate the quality of the vehicles for the whole plant, and the Storage Station (SS) distrib-
utes the vehicles to their corresponding warehouses.

During system execution, the structure of the AMS could be affected in order to adapt to the
changes of external environment. Two kinds of system adjustments are considered:

Workstation duty shifts: workstations have different working capacity during day and
night.
Workload in the PS workstation: this station is in charge of color or chrome painting.
Vehicles might need color painting or both color and chrome painting. Painting selection
is determined by the “control” model residing in the PS workstation.

Figure 2.7 shows the case of dynamic reconfiguration in the ES workstation due to duty shifts.
ES and ES represent the engine workstation during day and night, respectively, and they can be
considered as two structural states of the basic model . Zes,0 and Zes,1 represent the input functions
of ES and ES ; Z ,0 and Z ,1 represent the output functions of the structural model . is the network
executive described in DSDE.

Control
Unit ES BS QC SS

Color

Chrome
PS

C
ontrol

Painter

Display

Controller

Sensor B

Engine B

Engine A

Sensor A

SCH

FIGURE 2.6 An automated manufacturing system model.

FIGURE 2.7 ES structure layout during daytime and nighttime.

53361.indb 47 3/11/09 10:45:03 AM

© 2009 by Taylor & Francis Group, LLC

48 Discrete-Event Modeling and Simulation

The PS workstation is a coupled model including four atomic models: controller, color, chrome,
and painter. The atomic model “chrome” is an optional component. Painting selection is determined
by the “Controller.” Figure 2.8 shows the two structural states of the network model . Zi, (i = con-
troller, color, chrome, and painting; = 0,1) is the input function of the atomic models and Z , is
the output function of the network model . Z is the input function of the network executive .

Generally, the autos on the conveyor are painted with specific colors. Therefore, only the atomic
model “color” is needed in the PS. Assume that the current bulk of autos on the conveyor needs to be
painted both color and chrome. The atomic model “chrome” should be added into PS automatically.

Exercise 2.9

Write the dynDEVS specification for the previous example, based on [14,15].

Exercise 2.10

Write a static DEVS specification for all the previous examples.

2.6 QUANTIZED DEVS

As mentioned in Chapter 1, the first existing modeling techniques focused on modeling the continu-
ous behavior of the dynamic systems, using various kinds of differential equation formalisms. The
evolution of state variables for dynamic systems is described via state equations modeled using dif-
ferential equations. Ordinary differential equations (ODEs) are described as

x f x t(,) (2.15)

with no algebraic constraints for the vector of differential variables. The simplest state-space mod-
els are represented by ODEs:

x f x u t(, ,) (2.16)

where x represents the state variables vector and u represents the inputs vector.
Differential algebraic equations (DAEs) are constructed as a set of differential equations with

additional algebraic constraints in the form

f x x u t(, , ,) 0 (2.17)

FIGURE 2.8 Painting mode I in PS workstation and painting mode II in PS workstation.

53361.indb 48 3/11/09 10:45:05 AM

© 2009 by Taylor & Francis Group, LLC

ΘχZχ

Controller

Color

Painter ZΘ,0ZPa,0

Zcc,0

Zcon,0

ΘχZχ

Controller

Color

Painter

Chrome

ZΘ,1

ZPa,1

Zcc,1

Zch,1

Zcon,1

Introduction to the DEVS Modeling and Simulation Formalism 49

where
x Rn is a vector of differential variables;
u Rm is a vector of algebraic variables;
t R is an independent variable; and
f R2n+m+1 Rn+m is the set of DAEs.

As discussed in Chapter 1, continuous systems simulation is mainly solved by approximating the
set of differential equations describing the system and finding consistent initial conditions. There
is a wide variety of ODE solvers—for example, forward Euler (explicit method), backward Euler
(implicit method), and Runge–Kutta [6]. For DAEs, if the equations can be transformed to a set
of ODEs, a simulator can numerically approximate the equations using any ODE solver. If the
transformation is not possible, a DAE solver can be used (e.g., DASSL and implicit Runge–Kutta).
In DAEs, the simulator might have to differentiate the equations a very large number of times in
order to get an ODE in all the state variables (because the ODE’s index is equal to zero). Constraints
(dependencies among variables that cannot be chosen freely) are usually hidden in these high-index
DAEs. Several algorithms for index reduction and finding hidden constraints can be found in the
literature, including Gear and Petzold, Bachmann, and Pantelides algorithms for index reduction,
etc. [16–18].

Most of the techniques just mentioned have traditionally been simulated by discretizing the time
domain and solving the equations over each discrete time interval. However, a few years ago a new
approach for continuous systems simulation based on the discrete event paradigm was introduced.
Discrete event methods in general and DEVS in particular present several advantages in contrast to
the classical discrete time techniques:

Computational times reduction: for a given accuracy the number of calculations can
be decreased.
Complex model definition in a hierarchical modular fashion: DEVS allows specification of
complex systems in a hierarchical way.
Hybrid systems modeling and simulation: DEVS provides a theory to develop a uniform
approach to model and simulate systems with continuous and discrete components.

These techniques are based on a theory of quantized DEVS (QDEVS) [19]. The basic idea is
shown in Figure 2.9(a). We discretize the space of the state variables using a fixed value called the
quantum size. Thus, a state change will be informed only if it crosses the threshold defined by the
quantum. As we can see, a continuous curve is now represented by the crossings of an equally spaced
set of boundaries, separated by the quantum size, converting the continuous signal into a discrete-
event version (in which the signal is piecewise constant). This operation reduces substantially the
frequency of message updates while potentially incurring error (like any other numerical method).

The QSS (quantized state systems) formalism developed by Kofman [20] allows continuous sys-
tems simulation based on a combination of QDEVS and hysteresis. This approach constitutes the

q

(a) (b)

t

f(t) f(t)

Q(f(t))

q

tQSS(f(t))

2q

FIGURE 2.9 (a) Signal quantization; (b) quantization function with hysteresis.

53361.indb 49 3/11/09 10:45:05 AM

© 2009 by Taylor & Francis Group, LLC

50 Discrete-Event Modeling and Simulation

first general method for ODE integration using discrete event theory, and it has been proved that
ODE systems can be approximated by a legitimate DEVS model. The main difference with QDEVS
is that the quantization function is combined with hysteresis (e.g., the quantum size is changed to
its double when there are direction changes on the values, as seen Figure 2.9(b)). This means that
if a value changes its direction with respect to the last threshold value, the next value will have to
change two regions to be transmitted. This eliminates the problem of possibly infinite numbers of
transitions performed by a model in a finite interval (a legitimacy problem in DEVS models).

In Kofman [20] it was proven that the original system and the resulting QSS have similar trajec-
tories. Some properties of the original system, like equilibrium points and stability, are preserved
on the simulation model. It was also shown that the solution of the simulation model converges to
the solution of the original system when the discretization goes to zero, allowing the method to be
implemented with an arbitrary small error [6].

Exercise 2.11

Let y = 3ex + 1. Define a simulation algorithm that will “plot” this function starting with x0 = –10 and
will use a time step of h = 0.5. Run a desk test of the simulation, plotting the results (use any program-
ming language, spreadsheet, or pen-and-pencil solution). Repeat the exercise with h = 1.

Exercise 2.12

Invert the function in Exercise 2.11 so that now we can obtain x as a function of y. Define a simulation
algorithm that will “plot” this function starting with y0 = 2.00013 and a quantum size of q = 1. Run a
desk test of the simulator, plotting the results (use any programming language, spreadsheet, or pen-and-
pencil solution). Repeat the exercise with q = 20.

Exercise 2.13

Write an algorithm for a function that, given the last two values computed, will determine if there was
a difference of more than five units between the two values.

Exercise 2.14

Combine the function in Exercise 2.13 with the algorithm introduced in Exercise 2.11 in order to find
differences larger than five units.

Exercise 2.15

Define the models of Exercises 2.12 and 2.13 as DEVS atomic models. Combine them as coupled
models.

As we can see from these exercises, quantization requires a fundamental shift in thinking about
the system as a whole. Instead of determining what value a dependent variable will have (its state) at
a given time, we must determine at what time a dependent variable will enter a given state—namely,
the state above or below its current state.

2.7 GENERALIZED DEVS (GDEVS)

Another approach recently applied to deal with continuous systems modeling based on discrete-
event specifications is the GDEVS (Generalized Discrete Event Specification) formalism [21].
GDEVS uses polynomials of arbitrary degree to represent the piecewise input–output trajectories
of a discrete event model.

GDEVS uses a new definition for the concept of event. The target real-world system is modeled
through piecewise polynomial segments translated into piecewise constant trajectories. A coefficient

53361.indb 50 3/11/09 10:45:06 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the DEVS Modeling and Simulation Formalism 51

event is thus considered as an instantaneous change of at least one of the values of the coefficients
defining the piecewise polynomial trajectory of the variable under study. An event is a list of coef-
ficient values defining the polynomial that describes the trajectory of the variable.

A piecewise continuous polynomial segment is one that is defined over a continuous time base
 < t0, tn > A, as follows [21]:

There is a finite number of elements {t1, …, tn–1}, i [1, n – 1], and ti is associated with
a constant valued n-tuple (a0i, …, ani). t <tk, tl>, where tk, tl {tl , …, tn–1}; we define

(t) = a0i + a1i t + … + ani tn.

<t0,tn> = <t0,t1> / <t1, t2> /…/ <t–1, tn>, where / represents the left concatenation operator over
segments.

For an individual segment <ti, tj>
of order n, its coefficient value is defined by (a0, …, an), where

a0 is the value of the segment at time tI (named the “intercept”), and every ai is the i-gradient.
Figure 2.10 shows the continuous function f(x) = sin (2πx) + cos (ex), a polynomial approximation

of order 1 (i.e., the function is approximated by a1x + a2), and by a events of order one (a1) (i.e., by
a piecewise constant function, as in DEVS).

For a given piecewise polynomial segment, a coefficient event is defined by an instantaneous
change in at least one of the values of the coefficients of the polynomial. For the piecewise poly-
nomial segment w<t0, tn>, there exists an event at time ti if the values of the coefficients (a0k,…,ank)
over <tk, ti and those of the coefficients (a0i…,ani) over ti, tj> satisfy the condition that there exists
an l such that alk ≠ ali.

(a)

(b)

–2.5
–2

–1.5
–1

–0.5

0
0.5
1

1.5

2

–2.5
–2

–1.5
–1

–0.5
0

0.5
1

1.5

2

3 3.5 4 4.5 5 5.5

3 3.5 4 4.5 5 5.5

FIGURE 2.10 GDEVS approximation of a continuous signal: (a) continuous segment; (b) linear segment;
(c) piecewise segment.

53361.indb 51 3/11/09 10:45:06 AM

© 2009 by Taylor & Francis Group, LLC

52 Discrete-Event Modeling and Simulation

This approach is solution based and requires knowing the continuous system response to par-
ticular input trajectories and this represents a disadvantage, considering that this information might
be available [20].

Exercise 2.16

(a) Write a GDEVS model for the function in Figure 2.10. (b) Write a QDEVS approximation for the
same function. (c) Write a QSS approximation for the same function. (d) Simulate the execution of
the three previous models.

Exercise 2.17

Repeat Exercises 2.11–2.15 for the function in Figure 2.10.

2.8 SUMMARY

In this chapter, we have introduced the DEVS formalism and different variations. DEVS formal
definitions are useful to improve the security and to reduce the development costs of a simulation;
a formal conceptual model can be validated, improving the error detection process and reducing
testing time. DEVS models are closed under coupling; therefore, a coupled model is equivalent to
an atomic one, allowing reuse of previously defined models. Each model can be associated with an
experimental framework, allowing the individual testing of components and making integration
testing easier. Likewise, the simulation engines are independent from the modeling framework,
which allows having a layered view of modeling and simulation (Figure 2.11).

Applications

Models

Simulators (single/multi CPU/RT)

Middleware (parallel/distributed)

Hardware (workstations/clusters/boards…)

FIGURE 2.11 A layered view of DEVS M&S.

FIGURE 2.10 (continued)

53361.indb 52 3/11/09 10:45:07 AM

© 2009 by Taylor & Francis Group, LLC

(c)

3 3.5 4 4.5 5 5.5

–1.5

–1

–0.5

0

0.5

1

1.5

Introduction to the DEVS Modeling and Simulation Formalism 53

DEVS, as a discrete event paradigm, uses a continuous time base, which allows accurate timing
representation. The hierarchical and modular organization allows describing of multiple layers of a
given application. This organization makes the definition of submodels easier, which in turn makes
the definition of different levels of abstraction easy. The existence of an internal transition function
eases the definition of certain properties. Internal state changes can be captured, describing com-
plex internal interactions in a simple and natural way.

Recently, a theory of DEVS quantized models was developed, and it has been verified when
applied to predictive quantization of arbitrary ordinary differential equation models. Quantized
models reduce substantially the frequency of message updates. As the information interchange is
reduced, the models potentially incur error. In this way, DEVS can be used to express hybrid digi-
tal/analog systems. GDEVS also enables the definition of hybrid models, which are expressed in
a combined discrete event/differential equation formalism approximated by DEVS. In GDEVS,
the accuracy of an analog subsystem is preserved using piecewise polynomial segments. The error
introduced in this approximation can be controlled by increasing the order of the polynomials that
represent analog signals between successive digital events.

REFERENCES

1. Zeigler, B. P. 1976. Theory of modeling and simulation. New York: Wiley-Interscience.
2. Klir, G. J. 1972. Trends in general systems theory. New York: Wiley-Interscience.
3. Zadeh, L. A., and C. A. Desoer. 1963. Linear system theory: The state space approach. New York:

McGraw–Hill.
4. Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of modeling and simulation, 2nd. ed. New York:

Academic Press.
5. Zeigler, B. 1984. Multifaceted modeling and discrete event simulation. New York: Academic Press.
6. Cellier, F. E., and E. Kofman. 2006. Continuous system simulation. New York: Springer Science+

Business Media.
7. Nutaro, J. 2003. Parallel discrete event simulation with application to continuous systems. PhD thesis,

University of Arizona, Tucson.
8. Nutaro, J., and H. Sarjoughian. 2004. Design of distributed simulation environments: A unified system-

theoretic and logical processes approach. Simulation 80:577–589.
9. Kim, T. G., S. M. Cho, and W. B. Lee. 2000. DEVS framework for systems development: Unified specifi-

cation for logical analysis, performance evaluation and implementation. In Discrete event modeling & sim-
ulation: Enabling future technologies, ed. H. S. Sarjoughian and F. Cellier. New York: Springer–Verlag.

10. Chow, A. C., and B. Zeigler. 1994. Parallel DEVS: A parallel, hierarchical, modular modeling formalism.
Proceedings of Winter Simulation Conference, Orlando, FL.

11. Barros, F. J. 1997. Modeling formalisms for dynamic structure systems. ACM Transactions on Modeling
and Computer Simulation 7:501–515.

12. Barros, F. 1998. Abstract simulators for the DSDE formalism. Proceedings of Winter Simulation
Conference, Washington, D.C., 407–412.

13. Barros, F. J. 1995. Dynamic structure discrete event system specifications: A new formalism for dynamic
structure modeling and simulation. Proceedings of Winter Simulation Conference, Arlington, VA,
781–785.

14. Uhrmacher, A. M. 2001. Dynamic structure in modeling and simulation: A reflective approach. ACM
Transactions on Modeling and Computer Simulation 11:206–232.

15. Uhrmacher, A. M., and J. Himmeelspach. 2004. Processing dynamic PDEVS models. Proceedings
of 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04), Volenlam, the Netherlands.

16. Pantelides, C. C. 1988. The consistent initialization of differential-algebraic systems. SIAM Journal of
Scientific and Statistical Computing 9:213–231.

17. Fábián, G. D., D. A. van Beek, and J. E. Rooda. 2000. Substitute equations for index reduction and discon-
tinuity handling. Proceedings of Third IMACS Symposium on Mathematical Modelling, Vienna, Austria.

18. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1986. Numerical recipes. Cambridge:
Cambridge University Press.

53361.indb 53 3/11/09 10:45:07 AM

© 2009 by Taylor & Francis Group, LLC

54 Discrete-Event Modeling and Simulation

19. Zeigler, B. P., DEVS theory of quantization. 1998. Technical report, DARPA contract N6133997K-0007,
ECE Dept., University of Arizona, Tucson.

20. Kofman, E. 2003. Quantized-state control. A method for discrete event control of continuous systems.
Latin American Applied Research Journal 33:339–406.

21. Giambiasi, N., B. Escude, and S. Ghosh. 2000. GDEVS: A generalized discrete event specification for
accurate modeling of dynamic systems. Transactions of the SCS 17:120–134.

53361.indb 54 3/11/09 10:45:07 AM

© 2009 by Taylor & Francis Group, LLC

55

3 The Cell-DEVS Formalism

3.1 INTRODUCTION

Different formalisms have been used to capture the behavior of systems that can be represented as
cell spaces (e.g., spatial models in which the space under study is organized as a grid of cells geo-
metrically distributed). Examples of such systems can be found in many fields, from chemistry to
engineering and from physics to social sciences [1,2]. “Cellular automata” (CA) is a well-known
formalism that describes these types of systems [3–5]. A CA is an infinite regular n-dimensional lat-
tice in which each of the cells can take a finite value. States in the lattice are updated according to a
local rule in a simultaneous, synchronous way, and cell states change in discrete time steps (i.e., they
are discrete-time, discrete-variable models). The automaton evolves by triggering a local transition
function on each cell, which uses the current state of the cell and a finite set of nearby cells (called
the neighborhood of the cell). Figure 3.1 shows an example of such a model. In this example the cell
space is organized as a two-dimensional grid in which the cells contain a value or are empty, and
each cell computes its future state based on this value and the values of the neighborhood (in this
example, the 3 × 3 adjacent cells).

Cellular automata were originally introduced by von Neumann [6] to study self-reproducing
systems [3], and they permit us to find emergent behavior of the systems through the definition of
simple rules at the micro level [3]. Different parameters define the behavior of the CA: the alphabet
chosen to represent the phenomenon, the individual behavior of local computing functions, and the
shape of the neighborhood. This set can be uniform (i.e., all of the cells in the space use the same
local neighbors to evaluate the next state) or nonuniform (in which each cell can potentially use
different neighborhoods).

Neighbor cells can be in the local immediacy or they can include remote cells. Figure 3.2 shows
some of the most widely used neighborhoods. Moore’s neighborhood includes the origin and its
eight adjacent cells; von Neumann’s uses the ones to the up, down, left, right of center (the extended
von Neumann uses a rhombus of 5 × 5 on the center cell). Hexagonal neighborhoods are very
popular because they provide higher isotropy (i.e., the capacity to represent equivalent behavior
in every possible direction), which results in more natural model rules. Triangular meshes can
cover areas of more varied topology while having a reduced number of neighbors to compute.
Nevertheless, square topologies are one of the most popular due to the ease of mapping and visual-
ization implementation.

A special kind of neighborhood that is useful for varied applications was defined by Margolus
[5]. It is useful for reversible models (i.e., those models in which we can go forward or backward in
time). The idea is to use a partitioned cell space in which the grid is divided in a finite, disjoint, and
uniform set of blocks. While executing, the cellular model applies the rules to a block of cells (using
the values included in those particular cells). The blocks are not overlapping, so there is no informa-
tion interchange between adjacent blocks. Then the grid’s partition is changed to a different set.

Figure 3.3 shows the basic idea behind Margolus’s neighborhood. In this case, the 2 × 2 blocks of
the even/odd grids are represented with thick or fine lines. As we can see, the grid changes in each
step. First, the cell marked in black will use the neighbors within the even grid; in the following step,
it will use the neighborhood in the odd grid.

The following sections will give an introduction to formal specifications for CA and an introduction
to the Cell-DEVS formalism, which allows us to define cell spaces based on DEVS and CA models.

53361.indb 55 3/11/09 10:45:07 AM

© 2009 by Taylor & Francis Group, LLC

56 Discrete-Event Modeling and Simulation

3.2 CELLULAR AUTOMATA

In this section, we introduce a formal definition of CA considering synchronous and asynchronous
approaches presented in [7]. From now on, we will use the following notation for our specifications:

–Cc S defines the status for the cell c; and
–c Zn, c = (i1,…,in) is the cell’s position within an n-dimensional cell space. Here, k

[1,n], ik Z is the position of the cell in the kth dimension (if we consider conceptual
CA, k [1,n], ik [–∞,∞]).

Using this notation, a CA can be defined as

CA = < S, n, C, N, T, τ, q.Z0
+ > (3.1)

FIGURE 3.3 2 × 2 Margolus neighborhood.

[1]
[1]

[1][2] [2]

[2][5] [4]

[6] [3]

[3]
[3]

[0]
[0]

[0]

 (a) (b) (c) (d) (e)

FIGURE 3.2 Widely used neighborhoods: (a) Moore; (b) von Neumann; (c) extended von Neumann; (d) hex-
agonal topology; (e) triangular topology.

FIGURE 3.1 Sketch of a two-dimensional cellular automaton.

53361.indb 56 3/11/09 10:45:09 AM

© 2009 by Taylor & Francis Group, LLC

Cell neighborhood

The Cell-DEVS Formalism 57

where
S Z #S < ∞ is the alphabet used to represent the state for each cell;
n N is the dimension for the cell space;
C = { Cc /c Zn Cc S } is the state set for the cell space;
N is the neighborhood set; if the neighborhood is homogeneous, N = { (vk,1,…,vk,n)/ (k N,

k [1,]) (i N, i [1,n]), vk,i Z } (i.e., the neighborhood is an n-dimensional list of
elements of the size of the neighborhood). The value represents the neighborhood’s size,
and in this case, N = #N. N is usually defined as a set of adjacent cells; that is,
each vk,i [–1,1]. However, for nonhomogeneous neighborhoods, N = {Nc /c Zn}, with Nc =
{ (vk,1,…,vk,n)c / (k N, k [1, c]) (i N, i [1,n]), vk,i Z }. Here, c N c = #Nc

(i.e., a different neighborhood shape is defined in every cell);
T: C × q.Z0

+ C is the global transition function;
τ: Cc × N × q.Z0

+ Cc is the local computation function. If the neighborhood is homogeneous,
Cc[t + q] = (Cc+v1[t],…,Cc+v [t]), where t q.Z0

+; k [1,], vk N c + vk = (i1 + vk,1,…,
in + vk,n). For nonhomogeneous CA:

τ: Cc × Nc × q.Z0
+ Cc. Here, Cc[t + c] = (Cc+v1[t],...,Cc+v c[t]), where t q.Z0

+ k [1, c],
vk Nc c + vk = (i1 + vk,1,…,in + vk,n); and

q.Z0
+ = { i/i N, i = q.j j N } = { 0, q, 2q, 3q,…} is the (discrete) time base for the CA.

It can be seen that a model is built as an n-dimensional cell space (C). This state space progresses
in discrete time steps: the time base is defined by q.Z0

+ (a set of integer values separated by a time
constant). The state for each cell in the space can take a value from a finite alphabet (S).

The cell’s neighborhood is defined as a list of n-dimensional neighbors. In the homogeneous
case, the neighbors are defined as an n-tuple of positions relative to the origin cell. This definition
uses an index (k) that allows us to identify the neighbor number, and a second index (i) indicating
the dimension for each neighbor’s position. The nonhomogeneous neighborhoods are defined with
an array of neighborhood lists. In this case, each cell will have a neighbor’s list composed by c ele-
ments, which are constituted by tuples of indexes relative to the origin cell.

The state space of the automata evolves by executing a global transition function (T) that changes
the state of the cell space. The behavior of this function responds to the execution results of local
transition functions () that execute locally in the neighborhood for the cell (N). Conceptually, the
computation for these local functions is done synchronously and in parallel for every cell in the
space. The semantics of this behavior can be defined by the following rule:

C C

C T C wit
c

nc t q

t q t

Z Z, .

[] ([]),
0

hh C N C n
c c ct q t c t t q[] (, []) ; Z

(3.2)

This definition considers that as a precondition (rules above the line) the global transition func-
tion analyzes all the cell space at the instant t, and then it produces a change in the cell space for
the next step (post-condition defined after the line). The period for this step is of q time units. This
change can be seen as the individual computation of the local transition function for each cell in
the space.

The previous case considered that the index for the cell space can include an infinite number of
cells. Because the interest is focused on models that can run in a computer, an executable synchro-
nous cellular automaton can be defined as

ECA = < S, n, {t1,…,tn}, C, N, B, T, τ, q.Z0
+ > (3.3)

where all the elements represent the sets in CA, and the following were added:

53361.indb 57 3/11/09 10:45:10 AM

© 2009 by Taylor & Francis Group, LLC

58 Discrete-Event Modeling and Simulation

{t1,…,tn} is the number of cells on each of the dimensions.
B is the set of border cells B = { } if the cell space is “wrapped” (that is, the cells in each
border are connected with the cells in the opposite one), or B = {Cb/Cb C}. In this case,
B has the restriction that b ≠ c = (Cc B Cb B).
: Cc × Nc × q.Z0

+ Cc, where Cc[t + c] = (Cc/v1[t],…,Cc/v [t]), with t q.Z0
+ k [1, c],

vk Nc c/vk = (i1 + vk1 mod(t1),…, in + vkn mod(tn)) in the case that B = { }, and Cb[t +
c] = b(Cb[t]), b B, with t q.Z0

+. In this case, ≠ c = Cc B, and for these, Cc is
computed as in (3.2). If the cell space is homogeneous, then c = Nc = N.

This definition for executable cellular automata differs in certain aspects from that of conceptual
CA. The first difference is that the cell space is bounded in each of the dimensions (t1,…,tn). The
number of dimensions is also finite, and the cell’s indexes are bounded to finite natural numbers.
Another constraint is due to the loss of homogeneity in the cell space. This is due to the existence of
a finite number of cells. Therefore, it is necessary to include a set of border cells (B) with behavior
different from that of the others in the cell space. All the cells in the border have different behavior
from those in the rest of the automaton.

The use of discrete time poses constraints in the precision and execution performance of these
complex models. To achieve the desired accuracy, smaller time slots must be used, thus producing
higher needs of processing time. To avoid these problems, asynchronous solutions can be used.
Asynchronous CA can be defined as

ACA = < S, n, {t1,…,tn}, C, N, B, Cn, T, , R0
+ > (3.3)

where all the sets are defined as in the previous cases, except for the time base (that in this case is
continuous) and a sorting of cells according to their imminent times (Cn). These sets are defined by

Cn = { (c, t)/c C t R0
+}, where c is the position of a cell in the space, and t is the time

of the next event.
: Cc × Nc × R0

+ Cc, where Cc[tp] = (Cc/v1[t],…,Cc/v c[t]), with t R0
+ k [1,],

vk Nc c/vk = (i1 + vk1 mod(t1),…,in + vkn mod(tn)) when B ={ }, and Cb[tp] = b(Cb[t]),
 b B, with t R0

+. In this case, ≠ (c =) Cc B. Here, tp = min{ti}
n
i=1, with i,

p N/ti R0
+, and b = cp c = cp, with (ti, ci) Cn. If the cell space is homogeneous, then

c= Nc = N.

It can be seen that most of the sets and functions defined are similar to that for the synchronous
case. The changes are due to the existence of a continuous time base (that is, the time variables
t R0

+). To allow the asynchronous definition, the imminent cells list (Cn) is included to keep the
information related with the next events expected on each of the cells. In this case, the semantics of
the global transition function is different from that for the previous case. Here, this function means
to execute only a group of nonquiescent cells called the imminent. The execution of this function is
performed simultaneously in all the imminent cells for a given time.

3.3 CELL-DEVS ATOMIC MODELS

In Wainer and Giambiasi [7] and Wainer [8], the Cell-DEVS formalism was presented. Cell-DEVS
a combination of DEVS and CA with explicit timing delays. In Cell-DEVS, each cell is defined as
an atomic model, and a procedure to couple cells is defined.

Figure 3.4 depicts informally the basic contents of atomic cells. Upon the occurrence of an
external event, the local computing function is executed, consuming the inputs in N. In order to
improve computing time, we activate the influenced cells only when the influencing cell changes,
as discussed in Zeigler [9]. Therefore, the result of the local computing function will be transmitted

53361.indb 58 3/11/09 10:45:10 AM

© 2009 by Taylor & Francis Group, LLC

The Cell-DEVS Formalism 59

only when the state changes (i.e., if s ≠ s). In this case, the state change is transmitted after a delay
of d time units. This model can be formally described as

TDC = < X, Y, S, N, type, d, τ, δint, δext, λ, D > (3.4)

where
X is the set of input external events;
Y is the set of output external events;
S is the state set;
N X is the set of input values;
d R0

+ is the delay for the cell;
type is the kind of delay (transport/inertial/other);
τ: N S is the local computing function;
δint: S S is the internal transition function;
δext: Q × X S is the external transition function;
λ: S Y is the output function; and
ta: S R0

+ ∞ is the state’s lifetime function.

The N set represents the input values received (in general, from the neighbor’s cells, although it
can receive values from external DEVS or Cell-DEVS models as well). It is represented as a k-tuple
(n1,…,nk), which is used to activate the function and compute the next state when a new event is
received. If the cell state changes, this result is transmitted after a given delay. The lifetime function
ta(s) is used to keep track of the elapsed time for a cell state. Finally, δint, δext, and λ are used to
define the cell’s basic behavior as follows.

A cell will be active while external events are received or internal events are scheduled.
A cell passivates when there are no further scheduled events to be transmitted.
When an event arrives (e.g., because a neighbor has changed), the external transition func-
tion δext is executed, and the function is activated.
If the cell’s state does not change, the cell passivates and it remains in a quiescent state. If
there is a change, the external transition function schedules an internal transition after a
delay.

Delays are implemented in a different way according to the kind of delay needed. For trans-
port delays:

 (a) (b)

FIGURE 3.4 Informal description of an atomic cell: (a) transport delays; (b) inertial delays.

53361.indb 59 3/11/09 10:45:11 AM

© 2009 by Taylor & Francis Group, LLC

60 Discrete-Event Modeling and Simulation

State changes must be informed in the future; therefore, their values and scheduled times
are stored in a local queue.
If the cell is in passive state, it must be activated.
If the cell is active, the event times stored in the future events queue must be updated to
reflect the elapsed time e.
When the delay expires, the value is transmitted by the output function, and the internal
transition function removes the first member of the queue.

Let us consider a binary cell defined by using a transport delay of 17 time units. In this case,
we have:

X = Y = {0,1};
d = 17 (transport delay); and
and (N) = s.

The cell’s behavior for these trajectories is analyzed in Table 3.1. This table shows each transi-
tion, its activation time, and the cell’s state values. The “a” superscript in the table identifies the
execution of internal transition functions, while the remaining lines represent the execution of exter-
nal transitions.

The present and future states are included in the columns tagged s and s ,ʹ respectively. The fields con-
taining two values separated by a slash represent the variable values before and after execution. The out-
put values will be the state of the s variable in the lines corresponding to internal transition functions.

Initially, the cell is in passive state. At time 30, an input is received with value 1. When we
compute (1) = 1, the state has changed, so we reflect the change (s changes from 0 to 1), and we
schedule an output in 17 time units (thus, we enqueue the value 1 to be transmitted in 17 time units,
according to the transport delay). At time 40, we receive another input with value 0, and the cycle
is repeated. This time we need to update the elements in the queue to reflect that 10 time units have
been elapsed (thus, the next internal event is scheduled 7 time units from now). At this point, we
schedule an internal transition (marked with “a”). The output function takes the first element in the
queue and transmits it, and the internal transition function deletes the first element in the queue and
updates the time on the rest (in order to reflect the elapsed time of 7 time units).

In the case of inertial delays (which represents a delay function with preemptive semantic), the
behavior is different: an input must be discarded if its value is not kept for a certain period. If the
input flow is steady during that time (called the inertial delay for the cell), the state must change. The

TABLE 3.1
Execution Sequence of a Transport Delay
Cellular Model

t s sʹ Phase ta(s) e σ Queue

… 0 0 Passive

30 0/1 1 Active 17 0 (1,17)

40 1/0 0 Active 7 10 (1,7),(0,17)

47a 0 0 Active 0/10 17/0 (0,10)

55 0/1 1 Active 2 8 (0,2), (1,17)

57a 1 1 Active 0/15 10/0 (1,15)

60 1/0 1/0 Active 12 3 (1,12), (0,17)

72a 0 0 Active 0/5 15 (0,5)

77a 0 0 Passive ∞ 5
a Execution of internal transition functions.

53361.indb 60 3/11/09 10:45:11 AM

© 2009 by Taylor & Francis Group, LLC

The Cell-DEVS Formalism 61

main change for cells with inertial delays is a different semantic for the delay: if the input value for
the cell is kept during the inertial delay, the future state will be s ; otherwise, it is preempted.

The behavior for atomic cells with inertial delays can be studied in the following example. The
input and output trajectories presented use an inertial delay of 5 time units. In Table 3.2, we can see
the execution flow of the transition functions. The last arrived future event can be preempted if there
is a new input before the consumption of the inertial delay. This happens only if the new external
value is different from the one previously stored. If both values are the same, the new external event
that has occurred has the same value as the previous one.

In this case, the cell is initially passive. At time 5, it receives an input producing a state change.
Therefore, the feasible future f is 1. If this input value is maintained for the next five units, this will
be the value of the cell. This time is consumed, and at time 10 an internal transition is executed. The
output function transmits the cell’s value (1), and it passivates, waiting for the next external event.
This will happen at time 15, when the cell schedules an output in five time units (e.g., it should gen-
erate an output of 1 at 20). Nevertheless, at time 19, we receive another input, and the local comput-
ing function makes the cell to change to 0. Therefore, we preempt the previous state change (which
will not be transmitted).

3.4 CELL-DEVS COUPLED MODELS

Once we define the behavior of a single cell, we need to form a cell space. Because most of the
examples in the rest of the book will use two-dimensional models, we include the definition of
two-dimensional Cell-DEVS coupled models with adjacent neighbors. Further information about
formal definitions for n-dimensional models with generic neighborhoods can be found in Wainer
and Giambiasi [7] and Wainer [8]. A Cell-DEVS coupled model can be represented as

GCTD = < X, Y, Xlist, Ylist, η, N, {m, n}, C, B, Z, select > (3.5)

where
X is the set of input external events;
Y is the set of output external events;
Ylist = { (k,l)/k [0,m], l [0,n]} is the list of output coupling;
Xlist = { (k,l)/k [0,m], l [0,n]} is the list of input coupling;
select = { (k,l)/(k,l) N } is the tie-breaking selector function;
η N is the neighborhood size;

TABLE 3.2
Execution Sequence with Inertial Delays

t s sʹ Phase ta(s) e x f

… 0 0 Passive ∞

5 0/1 1 Active 5 0 1 1

10a 1 1 Passive 0/∞ 5

15 1/0 0 Active 5 0 0 0

19b 0/1 1 Active 1/5 4/0 1 0/1

24a 1 1 Passive 0/∞

39 1/0 0 Active 5 0 0 1/0

44a 0 0 Passive 0/∞

45 0 0 Active 5 0 1 0/1

50a 1 1 Passive 0/∞
a Execution of internal transition functions.
b Behavior of the model under preemptions.

53361.indb 61 3/11/09 10:45:12 AM

© 2009 by Taylor & Francis Group, LLC

62 Discrete-Event Modeling and Simulation

N is the neighborhood set, defined as
N = { (ip,jp)/ p N, p [1,] ip, jp Z ip, jp [–1, 1] };
{m, n} N is the size of the cell space;
C is the cell space set, defined as C = {Cij/i [1,m], j [1,n]}, where

Cij = < Iij, Xij, Yij, Sij, Nij, dij, δintij, δextij, τij, λij, taij >

is a Cell-DEVS atomic component;
B is the border cells set, where

B = { } if the cell space is wrapped; or
B = {Cij/ (i = 1 i = m j = 1 j = n) Cij C}, where

Cij = < Iij, Xij, Yij, Sij, Nij, dij, δintij, δextij, τij, λij, taij>

is a Cell-DEVS atomic model (i.e., border cells have behavior different from the rest);

Z is the translation function, defined by

Z: Pij
Yq Pkl

Xq, where Pij
Yq Iij, Pkl

Xq Ikl, q [0,] and (f,g) N, k = (i + f) mod m; l =
(j + g) mod n; and
Pkl

Yq Pij
Xq, where Pkl

Yq Ikl, Pij
Xq Iij, q [0,] and (f,g) N, k = (i – f) mod m; l =

(j – g) mod n; and

select is the tie-breaking selector function, with the restriction that select mxn mxn/
E ≠ { }, select(E) E.

First, as in any coupled DEVS model admitting inputs and outputs, sets X and Y are included.
Here, the cell space C is a coupled model defined as a fixed size (m × n) array of atomic cell models.
Each cell has a set of neighbor cells, defined by the neighborhood set (N). The set is represented as
a list of pairs defining the relative position between the neighbor and the origin cell. The B set defines
the cell’s space border, and it can be defined in two ways. If B = { }, every cell in the space has the
same behavior. Cells in one border are connected with those in the opposite one using the neighbor-
hood relationship. Otherwise, the border cells will have behavior different from that of the rest of the
model. They can, for instance, self-generate their state or consume the state of their neighbors.

Finally, the Z function allows defining the coupling between cells in the model. This function
translates the outputs of the mth output port in cell Cij into values for the mth input port of cell Ckl.
Each output port will correspond to one neighbor and each input port will be associated with one
cell in the inverse neighborhood, as discussed in Zeigler [9].

The ports’ names are generated using the following notation: Pij
Xq refers to the qth input port of

cell Cij, and Pij
Yq to the qth output port. These ports correspond with the port names denoted as Xq

or Yq for each cell. The number of the cell to be coupled to will be generated by adding the numbers
in the neighbor’s list to the present cell number. The first output port of a cell will be connected to
the first input port of the neighbor, according to the order of the list.

A sketch of this procedure can be seen in Figure 3.5. Figure 3.5(a) shows the neighborhood of
cell (i,j) and its representation using the neighbor’s list. Figure 3.5(b) shows how the first output port
of cell (i,j) is connected with the first input port of the first neighbor in the list, the second port with
the second neighbor, etc. On the other hand, for the input ports, the connection is done through the
inverse neighborhood list. For each pair (i,j) in the neighborhood, the pair (–i, –j) must be included
in this list.

53361.indb 62 3/11/09 10:45:12 AM

© 2009 by Taylor & Francis Group, LLC

The Cell-DEVS Formalism 63

Finally, two extra sets are needed. Xlist is a list of cells’ positions where the model’s external
events are received. Ylist is a list of cells’ positions whose outputs will be collected to be sent to
other models in the hierarchy. The values of these cells will be considered the inputs and outputs of
the complete cell space.

The select function is defined as a list of positions in the neighborhood. The list is ordered
according to the selection criteria to be used when more than one cell is active simultaneously.

The definition for DEVS coupled models was changed to allow the definition of cell spaces. If
the model considered is a cell space, the coupling uses the internal and external definition of input
and output cells. Therefore, DEVS coupled models can be defined as

CM = < X, Y, D, {Mi}, {Ii}, {Zij}, select > (3.6)

where
X, Y, D, {Mi} and Ii are defined as in Chapter 2, and
Zij is the i to j translation function, where

Zij: Yi Xj if none of the models involved are Cell-DEVS, or
Zij: Y(f,g)i X(k,l)j, with (f,g) Ylisti and (k,l) Xlistj if either of the models is a Cell-

DEVS.

The Zij function translates the outputs into inputs between one cell and the models external to the
cell space by using the two previously defined lists. To exemplify the external coupling definition,
let us consider the models seen in Figure 3.6. The coupling will be done following the Zij function
definition defined in Figure 3.6(c), which was built using the contents of Xlist and Ylist, as can be
seen in Figure 3.6(b). The names of the input and output ports are defined by using the contents of
the Xlist and Ylist. The port names will be automatically generated by using an identifier (X for
input, Y for output) and a cell position.

As we can see, the present definition for coupled models only allows binary states. The definition
can be extended by considering X and Y (and the corresponding I/O ports) as sets in Z or R. The
transition functions should compute their results in any of these domains.

Exercise 3.1

Write the formal specification for the coupled model in Figure 3.7, that considering it uses an extended
von Neumann’s neighborhood.

Neighborhood list:
{ (0,–1), (0,0), (0,1), (–1,0) }

Note: –1: left, up;
1: right, down

(a)

Cell i,j

Pij Y1

(b)

Inverse Neighborhood list:
{ (0,1), (0,0), (0,–1), (1,0) }

(c)

Pi,j–1 X1 (1)

Pij Y3 Pi,j+1 X3 (3)
Pij Y4 Pi–1,j X4 (4)

Pij Y2 Pij X2 (2)
Pij X1 Pi,j+1 Y1 (1)

Pij X3 Pi,j–1 Y3 (3)
Pij X4 Pi+1,j Y4 (4)

Pij X2 Pij Y2 (2)

(4)

(3)(1) (3) (1)

(2)

(4)(2)

FIGURE 3.5 (a) A cell, its neighborhood, and the neighbor’s list; (b) connection of the output ports of cell
i,j (using the neighborhood list); (c) connection of the input ports of cell i,j (using the inverse neighborhood
list).

53361.indb 63 3/11/09 10:45:13 AM

© 2009 by Taylor & Francis Group, LLC

64 Discrete-Event Modeling and Simulation

3.5 AN APPLICATION EXAMPLE

In this section, we provide a detailed example for application of the formalisms previously pre-
sented. Figure 3.8 shows the structure of the model we will introduce here, which has the goal of
simulating traffic in a section of urban population.

Model A in Figure 3.8 is a Cell-DEVS model of pollution in the residential neighborhood.
The model represents the spreading of particles of smoke on the air, influenced by traffic—in
this case, the highway (model C)—and smoke of trucks and CO emissions—in this case, from
the factory (model D, a DEVS model). The local computing function models the influence
of the wind on the smog: if a particle stays in a cell for some time, it is diffused to the neigh-
bors. If not, the wind removes it (i.e., we can use an inertial delay to model spreading of the
particles). The structure of this model can be seen in Figure 3.9.

Model B, whose structure is introduced in Figure 3.9(b), represents the traffic movement in a
commercial neighborhood. The streets are one way, and no traffic lights are modeled. Vehicles
move forward and do not pass each other (because the streets are one lane). Transport delays are
used to model the vehicle’s speed.

The Cell-DEVS model C represents a one-way highway that passes between regions A and B.
Traffic flow in the highway will be represented using a cellular model of the traffic flow in one-way
routes. The model serves to study the traffic flow on the highway and its influence on the rest of the
city. Atomic model D represents a factory, with trucks arriving from the highway and other trucks
moving onto the highway. The simulation results could be used to schedule the input and output of
trucks to the factory, thus improving the flow of products.

FIGURE 3.6 Example of connection using Zij function for Cell-DEVS spaces: (a) basic models; (b) Xi and Yi

lists for each model; (c) Zij coupling.

M1

M3

M3

M5

M4

FIGURE 3.7 A model with DEVS and Cell-DEVS components.

53361.indb 64 3/11/09 10:45:14 AM

© 2009 by Taylor & Francis Group, LLC

Xlist1 = { (3,1) }
Ylist1 = { (1,2), (2,2), (3,2) }
Xlist2 = { (1,1), (2,1), (3,1) }
Ylist2 = {Ø}
Xlist3 = {(1,1)}
Ylist3 = {(2,2)}

Y(1,2)1 X(1,1)2

(a)
4

3

2
1

(b) (c)

Y(2,2)1 X(3,1)2
Y(3,2)1 X(1,1)3

Y(2,2)3 X(2,1)2

Y(3,1)1 X4
Y4 X(3,1)1

The Cell-DEVS Formalism 65

Finally, atomic model E (Figure 3.9) represents the entrance to a ferryboat connecting the city
with an island. This model could be used to study the traffic flow to the ferryboats (to determine the
optimal number of boats to be used, depending on the hour).

The behavior for model C (the highway model) is described as follows:

C = < X, Y, S, N, type, d, τ, δint, δext, λ, ta > (3.7)

X = Y = S = {0, 1}; (0: empty cell; 1: vehicle in the cell);
N = { (0,0), (1, 0), (–1,0), (0,1), (0, –1), (1, 1), (–1, 1), (1, –1), (–1, –1) };
type = transport;
d = random (average speed = 2); and
δint, δext, λ, and ta are defined using Cell-DEVS specifications.

The movement of a car is not explicitly registered in only one rule; rather, the state change takes
two movements. The first rule represents the arrival of a new car to the cell (using forward move-
ment or passing stopped vehicles, as seen in Figure 3.11), or a car that cannot move due to a bottle-
neck situation. Each subexpression represents either of the movements depicted in Figure 3.11.

The corresponding cell is activated when a new input value is received. Then movement rules
are computed. If the state changes from 1 to 0, the influencees are activated and the local function
computed, leading to new car movement.

The second rule reflects the vehicle abandoning the cell, as shown in Figure 3.12.

53361.indb 65 3/11/09 10:45:15 AM

© 2009 by Taylor & Francis Group, LLC

A
Residential

Neighborhood

(Cell-DEVS)

(Cell-DEVS)

Ferry
Boat

Factory

H
ig

hw
ay

Commercial Neighborhood
(Cell-DEVS)

C

B

D

E

Figure 3.8  Coupling of Cell-DEVS and other DEVS models.

Cell’s
Neighbors

From the
highway

From/to the
highway

From the Factory
From/to the
Ferry Boat

Figure 3.9  Structures of model A (pollution in residential neighborhood) and model B (traffic in com-
mercial neighborhood).

66 Discrete-Event Modeling and Simulation

The transport delays allow modeling the acceleration delay of the cars. The car movement is
delayed prior to the next movement to the following cell, allowing us to model different speeds. The
delay could be represented as a random number to model the different speeds of each car.

Figure 3.13 shows the structure of the Cell-DEVS coupled model for this example.
The formal definition for the cell space is

C = < XC, YC, XlistC, YlistC, ηC, NC, {t1C, t2C}, CC, BC, ZC, selectC> (3.8)

where
XC = YC ={0, 1};
XlistC = { (4,14), (4,5), (3, 4) };
YlistC = { (1,10), (4,4), (4,15), (4,1) }.

FIGURE 3.10 Specification for model C.

FIGURE 3.11 Valid movements for rule 1 (different expressions).

FIGURE 3.12 Valid movements for rule 2 (different expressions).

FIGURE 3.13 Cell space C: input/output cells of the model.

53361.indb 66 3/11/09 10:45:16 AM

© 2009 by Taylor & Francis Group, LLC

τ(N) N
1 ((0,0) = 0 AND (0,–1) = 1) OR // Normal flow

 ((0,0) = 0 AND (0,–1) = 0 AND (1,–1) = 1 AND (1,0) = 1) OR // Passing on the left
 ((0,0) = 0 AND (0,–1) = 0 AND (–1,–1) = 1 AND (–1,0) = 1)) OR // Pass on the right
 ((0,0) = 1 AND Colum n3 = 1) /* Bottleneck */

0 ((0,0) = 1 AND (0,1) = 0) OR // Normal flow
 ((0,0) = 1 AND (0,1) = 1 AND (–1,1) = 0 AND (–1,0) = 0) OR // Passing on the left
 ((0,0) = 1 AND (0,1) = 1 AND (1,1) = 0 AND (–1,1) = 1 AND (1,0) = 0) // On the right
OR ((0,0) = 0) // Empty cell not considered in rule 1

? ? ?

? ?

? ? ?

To the residential neighborhood

To/From the
commercial neighborhood

From/to the
factory

From/to the
Ferry Boat

The Cell-DEVS Formalism 67

ηC = 9;
NC = { (–1, –1), (–1,0), (–-1,1), (0, –1), (0,0), (0,1), (1, –1), (1, 0), (1, 1) };
t1C = 4; t2C = 15;
BC = { };
CC is the cell space set, defined as in the previous example.
ZC is defined using the coupled model’s formal specification as follows:

Pij
Y1 Pi,j–1

X1 Pi,j+1
Y1 Pij

X1

Pij
Y2 Pii+1,j

X2 Pi–1,j
Y2 Pij

X2

Pij
Y3 Pi,j+1

X3 Pi,j–1
Y3 Pij

X3

Pij
Y4 Pi–1,j

X4 Pi+1,j
Y4 Pij

X4

Pij
Y5 Pij

X5 Pij
Y5 Pij

X5

Pij
Y6 Pi–1,j–1

X6 Pi–1,j–1
Y6 Pij

X6

Pij
Y7 Pi–1,j+1

X7 Pi–1,j+1
Y7 Pij

X7

Pij
Y8 Pi+1,j–1

X8 Pi+1,j–1
Y8 Pij

X8

Pij
Y9 Pi+1,j+1

X9 Pi+1,j+1
Y9 Pij

X9

selectC = { (0,1), (–1,1), (1, 1), (0,0), (–1,0), (1, 0), (–1, –1), (0, –1), (1,–1) }.

Finally, let us consider the formal specification for the complete model, presented in Figure 3.14.
This model can be formally defined as

M = < X, Y, D, {Mi}, {Ii}, {Zij}, select > (3.9)

where
X = Y = { };
D = { A, B, C, D, E }, and i D, Mi is one of the basic DEVS models previously defined;
Ii is the set of influencees of model i. In this case,

IA = { };
IB = { C, E };
IC = { A, B, D, E };
ID = { A, C }; and
IE = { B, C }.

Ferry Boat

B

ba

b
c Factory

C

c

A

a

FIGURE 3.14 Model M’s structural definition.

53361.indb 67 3/11/09 10:45:17 AM

© 2009 by Taylor & Francis Group, LLC

68 Discrete-Event Modeling and Simulation

The Zij function is defined as

ZBC: Y(1,3)B X(4,5)C

ZBE: Y(1,9)B INf

ZCA: Y(1,10)C X(2,10)A

ZCB: Y(4,4)C X(1,2)B

ZCD: Y(4,15)C INf

ZCE: Y(4,1)C INb

ZDA: OUTf X(1,10)A

ZDC: OUTf X(4,14)C

ZEB: OUTb X(1,7)B

ZEC: OUTb X(3,4)C

Finally, select = { C, A, B, D, E}.

Exercise 3.2

Write a formal specification of model A using the previous description. Build a definition for the atomic
cell and for the coupled model.

Exercise 3.3

Repeat the previous exercise for model B.

Exercise 3.4

Define model D as a DEVS model representing the flow of trucks at the factory and model E, which
shows the flow of vehicles to the ferryboat. In both cases, the models are constructed as queuing serv-
ers simulating the arrival and departure of cars. The values could be generated, for instance, by using
random numbers based on a Poisson distribution.

3.6 SUMMARY

The Cell-DEVS formalism allows defining cellular models based on the discrete-event system
specification. Cell-DEVS allows defining asynchronous cell spaces with explicit timing definition.
This approach is still based on the formal specifications of DEVS, but it allows the user to focus on
the problem to be solved by using simple rules for modeling (like with CA). Explicit timing delay
constructions can be used to define precise timing in each cell.

This approach allows enhancing the modeling experience in different aspects. In terms of per-
formance, only active cells execute their local computing function, and the execution results are
spread out after a predefined delay (only if a state change has occurred). The delay function provides
a natural mechanism for defining timing information.

The modeling technique permits keeping the ability of CA to describe complex systems using
very simple rules, while also permitting us to bridge the gap between a discrete time and a discrete
event description like DEVS. The use of DEVS as the basic formal specification mechanism enables
us to define interactions with models defined in other formalisms. Individual cells can provide data
to those models; integration between them could enable defining of complex hybrid systems and
multimodels developed with different techniques and integrated through a DEVS interface. This
approach provides “evolvability” of the models through a technique that is easy to understand and to
map into other existing techniques, while having the potential of evolving into complex models.

53361.indb 68 3/11/09 10:45:17 AM

© 2009 by Taylor & Francis Group, LLC

The Cell-DEVS Formalism 69

REFERENCES

1. Chandrupatla, T., and A. Belegundu. 1997. Introduction to finite elements in engineering. Upper Saddle
River, NJ: Prentice Hall.

2. Wolfram, S. 1986. Theory and applications of cellular automata, vol. 1. Singapore: World Scientific.
3. Wolfram, S. 2002. A new kind of science. Champaign, IL: Wolfram Media.
4. Gutowitz, H. 1995. Cellular automata and the sciences of complexity. Parts I–II. Complexity 1:16–22.
5. Toffoli, T., and N. Margolus. 1987. Cellular automata machines: A new environment for modeling.

Cambridge, MA: MIT Press.
6. von Neumann, J. 1966. Theory of self-reproducing cellular automata. Urbana: University of Illinois Press.
7. Wainer, G., and N. Giambiasi. 2002. N-dimensional cell-DEVS. Discrete Events Systems: Theory and

Applications 12:135–157.
8. Wainer, G. 1998. Discrete-event cellular models with explicit delays. PhD thesis, Université d’Aix-

Marseille III, France.
9. Zeigler, B. P. 1976. Theory of modeling and simulation. New York: Wiley-Interscience.

53361.indb 69 3/11/09 10:45:18 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

2Section

Building Simulation Models:
The CD++ Toolkit

53361.indb 71 3/11/09 10:45:18 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

73

4 Introduction to the
CD++ Toolkit

4.1 INTRODUCTION

In this chapter, we introduce the basic features of the CD++ toolkit. CD++ is one of several tools
that have been implemented based on DEVS theory and its extensions. The level of interest from
the community can be seen in the folowing list, which includes a list of some of the existing DEVS
modeling and simulation (M&S) toolkits (this is noncomprehensive because new efforts are ongo-
ing worldwide):

ADEVS [1] provides a C++ library based on DEVS, which developers can use to build
their own models, and supports integration with other simulation environments.
DEVS-Ada/Tw was the first attempt to combine DEVS and the Time Warp parallel simula-
tion algorithm over a multiprocessor environment. DOHS, the distributed optimistic hierar-
chical simulation scheme, combines DEVS and Time Warp, implemented in D-DEVSim++.
This alternative presents a more general approach for distributed optimistic execution of
DEVS models, while addressing some restrictions introduced in DEVS-Ada/TW [2].
DEVS-C++ [3] is a DEVS-based modeling and simulation environment written in C++,
which implements parallel execution and supports large-scale systems.
DEVS-Scheme [4,5] is a knowledge-based environment for modeling and simulation based
on the Scheme functional language (a variation of Lisp).
DEVS/HLA [6,7] is based on the high-level architecture (HLA) [8]. It was used to dem-
onstrate how an HLA-compliant DEVS environment could improve the performance of
large-scale distributed modeling and simulation.
DEVSJAVA [9] is a DEVS-based modeling and simulation environment written in Java. It
provides classes for the users to implement their own DEVS models.
DEVSim++ [10] is an object-oriented DEVS simulator implemented in C++. The tool
defines basic classes that can be extended by users to define their own atomic and coupled
DEVS components.
GALATEA [11] is a simulation platform that offers a language to model multi-agent sys-
tems using an object-oriented architecture.
JAMES [12] implements DEVS theory to model and simulate agent systems. The toolkit
supports software-in-the-loop simulation to test agents in virtual environments.
JDEVS [13] is a DEVS modeling and simulation environment written in Java. It allows
general-purpose, component-based, object-oriented, visual simulation of models.
PyDEVS [14] uses the ATOM3 tool [15] to construct DEVS models and to create the code
to be executed. Models are represented as a state graph used to generate Python code and
then interpreted by PyDEVS.
SimBeams [16] is a component-based software architecture based on Java and JavaBeans.
The idea is to provide a set of layered components that can be used in model creation, result
output analysis, and visualization using DEVS.

As we can see, the majority of the existing toolkits support stand-alone simulation, but some (such
as DEVS-C++, DEVS/HLA, DEVSCluster, D-DEVSim++, and DEVSJAVA) allow distributed/

53361.indb 73 3/11/09 10:45:18 AM

© 2009 by Taylor & Francis Group, LLC

74 Discrete-Event Modeling and Simulation

parallel execution of DEVS models. The middleware technology used varies from tool to tool, and
it includes:

CORBA (Common Object Request Broker Architecture), an open standard promulgated
by the Object Management Group (OMG) [17];
HLA, a standard specifically designed for distributed simulations [8];
MPI [18], a message passing interface standard designed for high-performance communi-
cation on parallel and distributed environments; and
Globus (http://www.globus.org), a standard version of grid protocols, created to provide
data management, information services, security, and resource management.

Exercise 4.1

Search further information on DEVS simulators and write a comparative study. Include simulation
tools not included in this list.

The CD++ tool [19] has been developed following the specifications of DEVS and Cell-DEVS.
CD++ information can be found in the tool’s Wiki at http://cell-devs.sce.carleton.ca, where the
reader will find a complete user manual, installation tools, and the required software application.
An open source version of the project can be found at http://sourceforge.net/projects/cdpptoolkit
(interested developers are encouraged to participate in the development of the open source version
of the simulation tool). Likewise, a repository of models is available for general use. All the software
and examples discussed in this book can be found at these two sites, and we encourage the reader to
use and modify them for practice. The examples can be found at http://www.sce.carleton.ca/faculty/
wainer/wbgraf/samples/. From now on, all the examples will refer to the files found in this folder.

The simulation engine tool of CD++ is built as a class hierarchy. Atomic models can be pro-
grammed in C++ and incorporated onto a basic class hierarchy. Coupled and Cell-DEVS models are
created using a language built in the engine. The following sections will cover the general aspects
of the simulation tool, and we will show how to create models using the tools. (As discussed in
the preface to this book, the models presented usually are pruned version of the ones found online
in order to focus attention on the important aspects, leaving some of the details for the reader
interested in using the originals for practice.) Detailed usage instructions can be found in the user
manual for the toolkit.

4.2 DEFINING ATOMIC MODELS IN CD++

Figure 4.1 shows an excerpt of the Atomic class in CD++ class hierarchy. When implementing a new
atomic model, we must define a class derived from Atomic, overloading the methods needed. Atomic
is an abstract class that declares an Application Program Interface (API) to create models, and it
defines some service functions the user can use by redefining the base classes. The derived classes
can overload the initialization, internal transition, external transition, and output methods. The ser-
vice functions allow the model to set the current state and its duration. In order to allow parameter
configuration at runtime, some of the arguments used by the atomic models can be defined exter-
nally (in a coupled model definition file, to be introduced later in this chapter). Then, to define a new
atomic model, the user must:

1. Write a class derived from Atomic overloading the methods:
initFunction is used to define initial values for the model (the default value for the
time advance value is infinite and for the state is passive).
externalFunction implements the external transition function. It is called when an
external event arrives in one of the model’s input ports.

53361.indb 74 3/11/09 10:45:18 AM

© 2009 by Taylor & Francis Group, LLC

http://www.globus.org
http://cell-devs.sce.carleton.ca
http://sourceforge.net
http://www.sce.carleton.ca
http://www.sce.carleton.ca

Introduction to the CD++ Toolkit 75

internalFunction allows defining of the internal transition function. This method is
activated when the simulation time is equal to the one scheduled by the time advance
function.
outputFunction generates outputs; it is called before the internal transition function.
className is the class name.

2. Modify the register.cpp file, adding to the method MainSimulator::registerNew-
Atomics() the new atomic model using the registerAtomic method. For instance,

SingleModelAdm::Instance().registerAtomic(NewAtomicFunction
<Queue>(),“myQ”);

 registers a new model named Queue. Here, Queue is the name of the class, and myQ is the
name that will be used to identify the Queue model in other files (including the coupled
model file that will be explained later). In this way, users can give meaningful names to
their models, even if they are used for other purposes. For instance, if this queue is used in
the context of a computer network, we could name it “buffer”; if it is needed for a super-
market simulation, we could call it “CustomerLine,” making the model easier to read.

3. Recompile the simulator, which will be ready to execute using the new model.

The Atomic Model class is provided with a few primitives to interact with the simulator in order
to accomplish common operations, including:

FIGURE 4.1 Excerpt of the definition of the Atomic class.

53361.indb 75 3/11/09 10:45:19 AM

© 2009 by Taylor & Francis Group, LLC

76 Discrete-Event Modeling and Simulation

holdIn(state, time) is an implementation of the time advance function. The model
changes its state (i.e., active, passive) into a new state, and it schedules an internal transi-
tion to be executed after time units.
passivate() allows the model state to change to passive with time advance ∞ (this is
a macro for holdIn(passive, Inf)).
sendOutput(time, port, value) is used to send outputs in the output function.
nextChange() informs the time remaining before the next scheduled state change.
lastChange() records the time of the last change of state.
state() returns the model’s state.

Other components of the tool provide some extended service functions. For instance,
the method getParameter(modelName, parameterName), which is defined within
MainSimulator::Instance(), is used to explore the coupled model definition file in order
to obtain the parameterName value associated with the model modelName. For instance,
MainSimulator::Instance().getParameter(description(), “max”)) will search a param-
eter called max in the model file. This parameter should be associated with the model whose name
is defined by description(). The method existsParameter is used to check if the parameter has
been defined (with error-checking purposes). For instance, in the previous case, MainSimulator::
Instance().existsParameter(description(),“max”)) will check if the parameter max is
defined in the coupled model file.

The getParameter method returns a string, so we must be careful to convert the value to the
desired type. For instance,

max = str2Int(MainSimulator::Instance().getParameter
(description(),“max”));

will convert the value of the parameter read into an integer.
The input/output ports carry messages of the type message, which are handled by two methods:

port() and value(). In order to ensure correct assignment of the values, static casts should be used in
handling message values. For instance,

int no = static_cast <int> (msg.value());

will convert the message value into an integer number.
Another set of support methods is included in the distri.h file, which contains a variety

of random number generators with different probability distributions. The following methods are
available:

Distribution is the base class used by every type of distribution. The method
*create(const string &distributionName) is used to define the name of the
distribution to be used, and the methods set() and get() are used to set up the parameters
needed to generate the random numbers. Because the Distribution method has been built
to be generic (and open to include other distributions in the tool), we might need to define
how many arguments are needed for a given probabilistic distribution. To do so, we use
the method setVar. When we invoke dist->setVar(i, str2float(parameter)),
the method will set the number of arguments needed. If we need to configure the selection
of the probability distribution to be chosen externally (by defining it in the coupled model
file), we could execute:

dist = Distribution::create(MainSimulator::Instance().
getParameter(description(),“distribution”));

53361.indb 76 3/11/09 10:45:19 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 77

 which searches for the distribution keyword in the coupled model file, and it creates an
object called dist that we can use to generate random numbers with the chosen distribution.
For every available distribution, the method get(unsigned int) returns the random
number generated. The following methods are derived from Distribution:

ChiDistribution is used to generate random numbers using a Chi Square (2)
probabilistic distribution. The method &set() is used to define the degrees of free-
dom (a positive real number).
NormalDistribution generates random numbers according to the normal distri-
bution. Here, &set() is used to define the mean and standard deviation.
PoissonDistribution generates random numbers according to the Poisson dis-
tribution. Here, &set() is used to set the expected number of occurrences during a
given interval (a positive real number).
ExponentialDistribution generates random numbers according to the
Exponential distribution. Here, &set() is used to define the rate parameter.

The file mathincl.h includes a series of mathematical methods and constants. The
time.h file includes a number of methods to handle simulated time according to the for-
mat used in CD++, as follows:

Time(Hours h = 0, Minutes m = 0, Seconds s = 0, MSeconds
ms = 0): hour(h), min(m), sec(s), msec(ms) is used to set a variable of
type Time. For instance, timeout = Time (0, 1, 0, 0); initializes the timeout
variable to 1 min.
Time(const string &t) { makeFrom(t); } converts variable with Time
format into text.
Methods &hours(const Hours &), &minutes(const Minutes &
), &seconds(const Seconds &), &mseconds(const MSeconds
&) are used to set each of the corresponding time values. Methods const Hours
&hours(), const Minutes &minutes(), const Seconds &seconds(),
and const MSeconds &mseconds() are used to query each of the values.
+, -, =, ==, -=, +=, < can be used to manipulate time variables (with the obvious
meaning).
asMsecs() converts the time into milliseconds.
Zero and Inf are two predefined constants used to define time 0 and ∞. For instance,
if we want to generate a time value at random, we can execute

Time t(fabs(this->distribution().get())) ;

which will get a random number according to the desired distribution (selected in the
model file), take the absolute value of it (milliseconds), and save it into a Time object
named t.

4.3 AN EXAMPLE: QUEUE MODEL

As mentioned in Chapter 2, the GPT model is usually employed as a “Hello, World!” application
for DEVS simulators. This model is included in every distribution of CD++. (For instance, if we
download the Linux version from Sourceforge or from the CD++ Web site, we will find the files
cpu.cpp, generat.cpp, transduc.cpp, and queue.cpp. If we install CD++Builder, we will find them
in eclipse\plugins\CD++Builder_1.1.0\internal.)

Our model of a queue will hold any type of user-defined values. The model is based on the one
introduced in Chapter 2: it uses three input ports and one output port. Task identifiers are stored
in the queue as they are received through the input port in. When the queue receives an input in
the input port done, we know the receiver is ready to receive more work, and the first element in

53361.indb 77 3/11/09 10:45:19 AM

© 2009 by Taylor & Francis Group, LLC

78 Discrete-Event Modeling and Simulation

the queue is transmitted through the port out. The input port stop serves to regulate the flow: if we
receive a message on the input port stop, we temporarily disable the queue (i.e., it only responds to
new events received through the input port in). Any input received will be stored, but no output will
be sent until the queue is enabled again (by sending another message to the port stop). The param-
eter preparationTime is used to model the delay of the queuing device.

To create this model in CD++, we first need to define a class to store the state of the queue.
Figure 4.2 lists the queue state class declaration and definition. The example shows the definitions
needed to implement the queue model (according to the specifications in Chapter 2), including I/O
ports and state variables. The list of values that holds the input data (ElementList) is defined using
the standard template library (STL [20]), and timeLeft is used to store the time remaining if the
model is interrupted by a control flow signal.

The constructor, presented in Figure 4.3, creates the input and output ports of the model and sets
the default value of the variable preparationTime in 10 s.

The addInputPort and addOutputPort definitions physically create the I/O ports, and they give
names to be used in the model’s coupled model file (these names are case sensitive). As discussed
earlier, getParameter queries the coupled model file (described in the following section) and searches
for the parameter identified with the preparation keyword. The value of the parameter (a string) is
converted into the initial preparation time (overriding the default value if needed). The initialization
function generates an empty queue (Figure 4.4).

As we can see, the queue is managed using the STL [20], whose services can be used throughout
the different models. The default ta time is ∞, so the following state change will take place only
when an external event arrives (which is why the time advance function is not programmed; if an
internal transition is needed prior to the arrival of an external event, the holdIn method should
be used to schedule one). Figure 4.5 shows the activation of the external transition function upon
arrival of messages in the input ports.

class Queue : public Atomic {

public:

 Queue(); // Default constructor

protected:

 Model &initFunction();

 Model &externalFunction(const ExternalMessage &);

 Model &internalFunction(const InternalMessage &);

 Model &outputFunction(const InternalMessage &);

private:

 const Port &in, &stop, &done;

 Port &out;

 Time preparationTime;

 typedef list<Value> ElementList ;

 ElementList elements ;

 Time timeLeft;

}; // class Queue

FIGURE 4.2 Queue.h: model definition.

53361.indb 78 3/11/09 10:45:20 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 79

FIGURE 4.3

FIGURE 4.4

FIGURE 4.5

53361.indb 79 3/11/09 10:45:21 AM

© 2009 by Taylor & Francis Group, LLC

80 Discrete-Event Modeling and Simulation

An event that arrives in the in port represents a new input value, which has to be queued. If it is
the only element in the queue, it has to be retransmitted immediately. Hence, we schedule our inter-
nal event after preparationTime (which represents the delay of the queuing device). An event that
arrives in the port done indicates that the last element sent has been processed, and therefore it has
to be erased from the queue. If there are more elements to be transmitted, the first value in the queue
should be prepared. An event that arrives in the port stop indicates that the flow should be stopped
or restarted. If the queue was in active state and the message value is not zero, the queue will pause.
Here, the time remaining to process the next state change is calculated (end of preparation time)
and then the queue changes its state to passive by calling the passivate method. If the queue was
in passive state and the message value is zero, then the queue restarts, and the next state change is
scheduled after the remaining processing time.

When the preparation time interval expires, the outputFunction shown in Figure 4.6 is invoked,
and the first value in the queue is transmitted through the output port out. After calling the output
function, the internal transition function shown in Figure 4.7 is invoked. Here, there is nothing to do
except to wait for the acknowledgment at the done port. Thus, we passivate the model.

Exercise 4.2

Modify the Queue model to implement preemption. Every 5 min of simulated time, the queue must
be completely emptied (this depends only on the internal state, so the preemption procedure should be
implemented in the internal transition function).

Once the new atomic model is created, we need to link it to the CD++ simulator. To do so,
we register the model using MainSimulator::registerNewAtomics, as explained earlier.
Figure 4.8 shows how to modify the register.cpp file.

FIGURE 4.6

FIGURE 4.7 Queue.cpp: model definition.

FIGURE 4.8 Contents of register.cpp.

53361.indb 80 3/11/09 10:45:22 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 81

Exercise 4.3

“Reverse engineer” the source code for the models Queue, Generator, CPU, and Transducer found
in CD++, and write a DEVS formal specification for each of them. Compare with the specifications
introduced in Chapter 2 and discuss the differences and similarities between the different models’
versions.

4.4 COUPLED MODEL DEFINITION

Coupled models in CD++ are defined using a specification language specially defined for this
purpose. The language was built following DEVS formal definitions if it is defined in a model
configuration file. Optionally, configuration values for the atomic models can be defined in the
same configuration files as the coupled model, and these values will be queried by the function
getParameter(modelName, parameterName), as discussed in the previous section.

The coupled model at the top level is always defined using the [top] clause. As shown in the
formal specifications presented in Chapter 2, we must define components, input/output ports, and
links between models. The following syntax is used:

components:

components: model_name1[@atomicClass1] model_name2[@atomic-
Class2]…

 This construction lists the components of the coupled model (this clause is mandatory).
A coupled model might have atomic models or other coupled models as components. For
atomic components, an instance name and a class name must be specified (this allows
a coupled model to use more than one instance of the same atomic class). For coupled
models, only the model name must be given. This model name must be defined as another
group in the same model configuration file.

out:

out : portname1 portname2 ...

 This construction enumerates the model’s output ports. This clause is optional.

in:

in : portname1 portname2 ...

 This clause, which is also optional, enumerates the input ports.

link:

link : source_port[@model] destination_port[@model]

 This clause defines the links between components (internal couplings, i.e., IC), and between
components and the coupled model itself (External input/output couplings—EIC/EOC) in
DEVS formal specification). If the name of the model is omitted, it is assumed that the port
belongs to the coupled model being defined (representing an external coupling; this was
represented as Self for the EIC/EOC connections in Chapter 2).

Figure 4.9 shows a description of the GPT model (which is a variation of the same model intro-
duced in Chapter 2).

53361.indb 81 3/11/09 10:45:23 AM

© 2009 by Taylor & Francis Group, LLC

82 Discrete-Event Modeling and Simulation

The top model includes three components: two atomic (transducer and generator) and a coupled
model (Consumer, which is composed of queue and processor). The model has one output port
(out), and the Link clauses show how outputs on one model are connected to inputs in the other. For
instance, outputs in the out port of the generator are sent to the input port in of the Consumer and
the arrived port of the transducer. In the consumer model, the outputs at port out of the processor
are converted as outputs of the coupled model (through the out port).

Exercise 4.4

Based on the definition of Figure 4.9, draw a graphical representation of the structure of the coupled
model.

Exercise 4.5

Based on the drawing done in Exercise 4.4, write a formal specification of the coupled model. Compare
with the one introduced in Chapter 2. Show differences and discuss similarities.

Exercise 4.6

Suppose that we need to create an experimental frame for
testing the model. In order to do so, we will create a coupled
model as in Figure 4.10, and we will feed input data to each
of the input ports to test the model’s behavior. Run a simula-
tion given the following input events:

00:00:10:00 in 1.5;
00:00:18:00 done 1.5;
00:00:30:00 in 3;
00:00:45:00 done 3;
00:00:50:00 in –7;
00:00:52:00 done –7.

Discuss the simulation results (details on event files and compilation and simulation logs can be found
in CD++ user manuals).

In addition to the coupled model definitions, the model file might include user-defined param-
eters. In this case, the parameters are specified in a group with the model’s name, which is the name
used in the components clause (and not one used to define the atomic class name). This identifier

Queue

InOut

Stop

Done

FIGURE 4.10 Testing the queue model.

[top]
components : transducer@Transducer generator@Generator Consumer
Out : out
Link : out@generator arrived@transducer
Link : out@generator in@Consumer
Link : out@Consumer solved@transducer
Link : out@transducer out

[Consumer]
components : queue@Queue processor@Processor
in : in
out : out
Link : in in@queue
Link : out@queue in@processor
Link : out@processor done@queue
Link : out@processor out

FIGURE 4.9 Example for the definition of a DEVS coupled model.

53361.indb 82 3/11/09 10:45:23 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 83

is the one used by the getParameter method introduced in
the previous section. Figure 4.11 shows the syntax for the
user-defined values (spaces are mandatory).

Figure 4.12 shows the definition of a model with two
instances of the atomic class processor using different val-
ues for the user-defined parameters. In this case, we have
one instance of the processor using exponential random
numbers with a mean of 10 and another instance using a
Poisson distribution with a mean of 50.

Exercise 4.7

Modify the GPT initial parameters and rerun the simulation. The model can be found in ./transd.zip
at the URL http://www.sce.carleton.ca/faculty/wainer/wbgraf/samples/ (this model is precompiled in
CD++; in order to change the parameters, the model configuration file must be changed).

Exercise 4.8

Modify the GPT model and include two processors and two queues in tandem. Execute a simulation and
analyze the results obtained in the output and log files.

Exercise 4.9

Modify the GPT model to execute three processors and their queues in pipeline mode (the output of one
should be connected to the inputs of the other). Simulate the model and analyze the results obtained in
the output and log files.

4.5 DEFINING CELL-DEVS MODELS

CD++ also includes a specification language to describe Cell-DEVS models. These definitions
are based on the formal specifications defined earlier and can be completed by considering a few
parameters: size, influences, neighborhood, and borders. These are used to generate the complete
cell space. The behavior of the local computing function is defined using a set of rules with the form:
POSTCONDITION DELAY {PRECONDITION}. When the PRECONDITION is satisfied, the state
of the cell changes to the designated POSTCONDITION, and the state change will be transmitted
after the DELAY. If the PRECONDITION is false, the next rule in the list is evaluated until a rule
is satisfied or there are no more rules. In the latter case, an error is raised, indicating that the model
specification is incomplete. The existence of two or more rules with same PRECONDITION but with
different state values or delays can also be detected, avoiding the creation of ambiguous models.

FIGURE 4.11 User-defined values for
atomic models.

[top]
components : Queue@queue Processor1@processor Processor2@processor
...

[processor]
distribution : exponential
mean : 10

[processor2]
distribution : poisson
mean : 50

[queue]
preparation : 0:0:0:0

FIGURE 4.12 Example of setting parameters to DEVS atomic models.

53361.indb 83 3/11/09 10:45:24 AM

© 2009 by Taylor & Francis Group, LLC

[model_name]
var_name1 : value1
...
var_namen : valuen

http://www.sce.carleton.ca

84 Discrete-Event Modeling and Simulation

In CD++, Cell-DEVS models are a special case of coupled models. Then, when defining a cel-
lular model, all the coupled model parameters are available and, in addition, some extra parameters
are needed to define the dimensions of the cell space, the delay type, the default initial values, and
the local transition rules. The main parameters to be used in the rest of the book are presented in the
following list (a comprehensive list can be found in the user manual):

type : [CELL] indicates the cell keyword that must be specified for Cell-DEVS models.
width : an integer value that defines the width of the cell space.
height : an integer value that defines the height of the cellular space model.
dim : (x0,…,xn) height and width are provided for backward compatibility with older ver-
sions of the tool, and they are used for two-dimensional cellular spaces only. Instead, dim
can be used for any n-dimensional cell space. All the xi values must be integers. The vector
that defines the dimension of the cellular model must have two or more elements; thus, for
one-dimensional cellular models, we must use the form: (x0, 1). When referencing a cell,
all references must satisfy:

(y0,…, yn), 0 ≤ yi < xi, i = 0,…, n, with yi an integer value

In : defines the input ports for the cellular model.
Out : defines the output ports for the cellular model.
Link : defines the components’ external coupling (Xlist and Ylist in the formal speci-
fications of Cell-DEVS). For a coupled Cell-DEVS model, each component is an indi-
vidual cell reference for receiving or transmitting data. A cell reference is of the form
cellName(x1,…,xn). Valid link definitions are of the form:

Link : outputPort inputPort@cellName(x1,...,xn)
Link : outputPort@cellName(x1,…,xn) inputPort
Link : outputPort@cellName(x1,…,xn) inputPort@cellName(x1,...,xn)

Border : [WRAPPED | NOWRAPPED] defines the type of border used (the default is
NOWRAPPED). For nonwrapped borders, a reference to a cell outside the cellular space
will return the undefined value. (The symbol ? represents the undefined value.)
Neighbors : cellName (x1,1,…,xn,1) … cellName (x1,m,…,xn,m) defines the neighborhood for all
the cells of the model. Each cell (x1,i,…,xn,i) represents an offset from the origin cell (0,…, 0).
It is possible to use more than one Neighbors sentence to define the neighborhood.
Initialvalue : [Real ?] defines the default initial value for each cell in the cell space.
There are several ways of defining the initial values for each cell. The parameter initial-
value has the least precedence (i.e., if another parameter defines a new value for the cell,
then that value will be used).
InitialCellsValue : filename defines the name of a file containing a list of initial values for
cells in the model. InitialCellsValue can be used with any size of cellular model, and it has
higher precedence than InitialRowValue.
InitialMapValue : filename defines the filename for the file that contains a map of values
that will be used as the initial state for a cellular model.
Initialrowvalue : integer [Real | ?]* defines the values for the row whose number is first
defined.
Delay : [TRANSPORT | INERTIAL] specifies the delay type used for the cells.
DefaultDelayTime : an integer value that defines the default delay (in milliseconds) for
those inputs received from external DEVS models and for cells returning undefined values.
In these cases, we need a default value for the delay function. In the case of using rules with
three-valued logic (true/false/undefined) or random functions, we can obtain undefined

53361.indb 84 3/11/09 10:45:25 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 85

states, and we need to define the delays for those cases. If a portInTransition is specified,
then this parameter will be ignored for that cell.
LocalTransition transitionFunctionName defines the name of a group that contains the
rules for the default local computing function.
PortInTransition portName@cellName (x1,…,xn) TransitionFunctionName defines an
alternate local transition function to be executed when an external event is transmitted to
an individual through a specific port. By default, if this parameter is not used, when an
external event is received by a cell, its value will be the future value of the cell with a delay
as set by the DefaultDelayTime clause.
Zone transitionFunctionName { range1[..rangen] } defines a region of the cellular space
that will use a different local computing function. A zone is defined by giving a set of
single cells or cell ranges. A single cell is defined as (x1,…,xn) and a range as (x1,…,xn)..
(y1,…,yn). All cells and cell ranges must be separated by a blank space. As an example,
zone : pothole { (10,10)..(13, 13) (1, 3) } tells CD++ that the local transi-
tion rule pothole will be used for the cells in the range (10,10)..(13,13) and the single cell
(1,3). The zone clause will override the transition defined by the LocalTransition clause,
and it will use the rules defined within the pothole section.

Figure 4.13 illustrates the coupled model file definition for the popular life game [21]. In this
model, each cell can be occupied by a living entity (value = 1), or it can be empty (a dead cell
becomes empty, e.g., value = 0). A living cell remains alive only if it has three or four living neigh-
bors. Otherwise, it dies. A cell becomes alive when there are exactly three living neighbors of an
empty cell.

The Cell-DEVS coupled model in the figure is defined by its size (width = 20, height = 20), its
border (wrapped, meaning that the cells in one border communicate its results to neighbors in the
opposite border), the shape of the neighborhood (Moore’s neighborhood), and the type of delay
(transport). The rules defined by life-rule represent the behavior of each cell in the model. In
this case, an active cell ((0,0) = 1) remains active when the number of active neighbors is three

[top]
components : life

[life]
type : cell
width : 20
height : 20
delay : transport
defaultDelayTime : 100
border : wrapped
neighbors : life(-1,-1) life(-1,0) life(-1,1)
neighbors : life(0,-1) life(0,0) life(0,1)
neighbors : life(1-1) life(1,0) life(1,1)
initialvalue : 0
initialvalue : 5 00000001110000000000
initialvalue : 7 00000100100100000000
initialvalue : 8 00000101110100000000
initialvalue : 9 00000100100100000000
initialvalue : 11 00000001110000000000
localtransition : life-rule

[life-rule]
rule : 1 100 { (0,0) = 1 and trueCount = 5 }
rule : 1 100 { (0,0) = 0 and trueCount = 3 }
rule : 0 100 { t }

FIGURE 4.13 Example for the definition of a Cell-DEVS life model.

53361.indb 85 3/11/09 10:45:25 AM

© 2009 by Taylor & Francis Group, LLC

86 Discrete-Event Modeling and Simulation

or four (truecount indicates the number of active neighbors) using a transport delay of 100 ms. If the
cell is inactive ((0,0) = 0) and the neighborhood has three active cells, the cell becomes active.
In every other case, the cell remains inactive (t indicates that whenever the rule is evaluated, a true
value is returned).

Exercise 4.10

Run the Life model defined here (the original model can be found in ./life.zip at the URL http://www.
sce.carleton.ca/faculty/wainer/wbgraf/samples/). Change: (a) the initial values; (b) the size of the model;
(c) the neighborhood shape (use a von Neumann neighborhood and a modified Moore’s neighborhood);
and (d) the rules of reproduction. Create a model, simulate it, and analyze the results obtained.

The complete language that defines the cell’s behavior can be found in the CD++ user’s manual,
and we will give varied examples of its use throughout the book. It includes the basic logic opera-
tions (AND, OR, NOT, XOR, IMP, and EQV), comparison of real numbers (=, !=, <, >, <=, and
>=), and the basic arithmetic operations applicable on them (+, –, *, and /). Different functions are
available for real numbers (e.g., trigonometric, roots, power, rounding and truncation, modules,
logarithms, absolute values).

Some functions return the number of cells in the neighborhood whose state has a given value. For
example, truecount returns the quantity of cells whose state value is 1. Also available are the func-
tions falsecount, undefcount, and statecount(n). The last is the most generic and allows specifying
the value (n) of the state to count. The remainder of the functions of this type could be defined as
being based on statecount.

The language provides the use of predefined constants as (pi) and e, together with certain con-
stants of frequent use in the domains of physics and the chemistry (gravitational constant, accelera-
tion, light speed, Planck’s constant). The constant INF represents the infinite value. This constant
is returned automatically when the evaluation of a numeric expression produces a numeric over-
flow. The Time function permits obtaining the global time of simulation expressed in milliseconds.
Likewise, there are functions for unit conversion. The functions RadToDeg and DegToRad are used
for the conversion of angles expressed in radians to degrees and vice versa, respectively. There
are functions for the conversion of polar and rectangular coordinates and temperatures in Celsius,
Fahrenheit, or Kelvin degrees.

Different functions are provided to generate pseudorandom numbers using different probability
distributions, including uniform, 2, , exponential, F, gamma, normal, binomial, and Poisson. The
introduction of random results in the definition of the condition of a rule introduces other problems.
For example, in the rule:

10 100 { random >= 0.4 }

the condition is evaluated to true in about 60% of the cases and to false on the rest. Therefore, the
model could return all the rules evaluated to false. In these cases, CD++ assigns the undefined
value to the cell and uses the default delay time informing this situation and continuing with the
simulation. CD++ uses three-valued logic, and expression and function can use the undefined value
(represented as “?”).

Other functions allow obtaining values depending on the evaluation of a certain condition.
IFU(c, t, f, u) evaluates the c condition, and, if it is true, it returns the t value. If it is false, it returns f,
and u in the case that is undefined. On the other hand, the function IF(c, t, f) returns t if c evaluates
to true, and f otherwise. Other functions allow checking if a number is an integer, if it is even or odd,
if it is a prime number, or if it is undefined.

Most existing real systems are studied using models in two or three dimensions. Nevertheless, sev-
eral theoretical problems can be defined as cellular models with higher dimensions. CD++ supports

53361.indb 86 3/11/09 10:45:26 AM

© 2009 by Taylor & Francis Group, LLC

http://www.sce.carleton.ca
http://www.sce.carleton.ca

Introduction to the CD++ Toolkit 87

defining n-dimensional cell spaces. It also
supports two boundary conditions for each
cell space: they can be wrapped (opposite
borders are connected) or nonwrapped (a
fixed boundary is defined).

Different zones can be defined for the
cell space. Each zone is defined by a cell
range {(x1, x2,…,xn)..(y1, y2,…,yn)}. Each zone is associated with a set of rules different from those
in the rest of the cell space. This allows having different zones in the same cellular model, with a
special behavior for each. Hence, a zone defined by a range of cells is defined by the set of cells (t1,
t2,…,tn) of the cell space, such that ti [min(xi, yi),max(xi, yi)] i [1, n] (Figure 4.14).

When a cell is created, two ports are automatically associated: NeighborChange and Out.
NeighborChange defines the input values arriving from the neighbors; Out connects the cell with
the neighbors and other DEVS models. When an external
message arrives at the cell through the in port, its value is
queued, and it will be used to compute the new cell state.
Input ports in are created only for those cells connected
with external DEVS models. On the other hand, the local
computing function uses all the inputs, including the
values sent by the neighboring cells and the external
messages that have arrived through the other input ports
(Figure 4.15).

The out port connects each cell with the neighbors and with other DEVS models. The out port
can also be used to connect a cell with other DEVS models that will receive a new message each
time the cell changes its internal state. The rest of the output ports are created dynamically only for
the cells that will send state values for other DEVS models, and their names can be defined by the
modeler (this will be discussed in later chapters).

As discussed earlier in this chapter, in many cases, rectangular topologies are not enough for
defining the behavior of advanced cell spaces. Triangular meshes allow covering of areas with
more varied topology, while permitting every cell to have a limited number of nearby neighbors.
Hexagonal geometries have higher isotropy—that is, the capacity to represent equivalent behavior
in every possible direction (which is not the case for square meshes). This is more natural for build-
ing the model’s rules. CD++ provides a lattice translator (Ltrans) to define the cells’ behavior based
on these topologies; this translates hexagonal or triangular rules to square CD++ compatible rules.
Ltrans translates hexagonal or triangular rules to square CD++ compatible rules. Ltrans receives a
set of rules based on a hexagonal or triangular geometry and translates it into rules based on square
geometry to be included in a model to be simulated with CD++. This idea was proposed at http://
www.tu-bs.de/institute/WiR/weimar/Zascrptnew/geometry.html, and it is based on using a function
that shifts alternate rows in opposite directions, as shown in Figure 4.16. The function maintains the
boundary conditions in the square lattice.

Let (x,y) be the position of a cell, where x represents the row and y represents the column (remem-
ber that the function can be applied only in two-dimensional spaces). The neighborhood relation

Cell(3,3) Cell(5,7)

FIGURE 4.14 A zone defined by cell range { (3,3)..(5,7) }

Neighbor
Change

Atomic
Cell

Out

Out n

Out2
Out1

In n

In2
In1

FIGURE 4.15 Structure of an atomic cell.

FIGURE 4.16 Shift mapping of the hexagonal lattice to the square lattice.

53361.indb 87 3/11/09 10:45:27 AM

© 2009 by Taylor & Francis Group, LLC

http://www.tu-bs.de
http://www.tu-bs.de

88 Discrete-Event Modeling and Simulation

is transformed differently, depending on whether the row index x is even or odd, as shown in
Figure 4.17.

The mapping of the triangular lattice to the square lattice is similar to the shift mapping for the
hexagonal lattice. In the triangular case, every second cell has a different orientation. The mapping
function is shown in Figure 4.18. Each row of triangles is mapped to one row of squares, depending
on the parity of x + y. The nearest neighborhood mapping is shown in Figure 4.19.

The language used to model a cell’s behavior in a hexagonal or triangular geometry is the same
as that used in CD++; the only difference is the way in which a neighbor is referenced. In CD++,
a cell (belonging to a two-dimensional space) is referenced using a pair (x,y), where x (row) and
y (col) are the relative positions of the cell. Ltrans only supports nearest neighbors, so it was neces-
sary to define nearest neighbors for hexagonal and triangular geometry. For both geometries, each
nearest neighbor is referenced using [n], where n is the number assigned to each nearest neighbor
(Figure 4.20).

This translated file consists of the set of rules that can be simulated with CD++. Before simulat-
ing the model, it must be completed with the other parameters that define a Cell-DEVS model (space
dimension, type of border, default delay, etc.). Besides the nearest neighbor translation (done as in
Figures 4.17 and 4.19), we need to consider the functions that evaluate the values incoming from the

FIGURE 4.18 Visualization mapping of the triangular lattice to the square lattice.

A Z

C

BA
Z

C

B

C Z

A

B

A

Z
C B

y + x even

y + x odd

FIGURE 4.19 Nearest neighbors in the triangular mapping.

FIGURE 4.17 Neighborhood relation in hexagonal to square mapping function.

53361.indb 88 3/11/09 10:45:28 AM

© 2009 by Taylor & Francis Group, LLC

Even x

odd x

A
C

B

D E
F Z

A B
C
D E

F

A B
C

D E
F Z

Z

Introduction to the CD++ Toolkit 89

neighbors. For instance, Figure 4.21 shows the translation of different rules in a hexagonal lattice to
the corresponding square notation.

As we can see, when we translate the truecount function, we have to delete the extra cells in
the new topology. A square lattice includes nine immediate neighbors, but the hexagonal version
includes only seven; thus, we delete the values of the corresponding two missing cells according to
the translation proposed in Figure 4.17. We need to add two rules: one for the case of an even row
and another for the case of odd rows. The translation is similar for triangular meshes, as we can
see in Figure 4.22. In this case, we have to consider the position of both rows and columns, and we
delete the ones that do not need to be included in the count (in this case, we use only five of the nine
near neighbors).

4.6 DEFINING ATOMIC MODELS USING DEVS-GRAPHS

Defining models in C++ allows most users to have great flexibility in defining the model’s behav-
ior. Nevertheless, nonexperienced programmers can have difficulties in defining models using this
approach. Using a graphical specification enhances the interaction with stakeholders during system
specification because graphical notations have the advantage of allowing the modeler to think about
the problem in a more abstract way. Therefore, we have used an extended graphical notation [22,23]
that allows defining of the behavior of atomic models based on DEVS-graphs [24]. Each DEVS-
graph defines the state changes according to internal and external transition functions, and each is
translated into an analytical definition.

FIGURE 4.20 (a) Nearest neighbors used for hexagonal geometry; (b) nearest neighbors used for square
geometry; (c) and (d) nearest neighbors used for triangular geometry.

rule : 1 100 { [0] = 1 and truecount = 5 }

(a)

rule : 1 100 {even(cellpos(0)) and (0,0) = 1 and (truecount-(-1,1)-(1,1)) = 5}
rule : 1 100 {odd(cellpos(0) and (0,0) = 1 and (truecount-(-1,-1)-(1,-1)) = 5)}

(b)

FIGURE 4.21 Translating hexagonal rules: (a) hexagonal lattice rules; (b) square lattice rules.

rule : 1 100 { [2] = 0 and truecount = 3 }

(a)

rule : 1 100 { (0,-1) = 0 and odd(cellpos(0)+cellpos(1)) and
 (truecount-(-1,-1)-(-1,1)- (1,-1)-(1,0)-(1,1)) = 3}

(b)

FIGURE 4.22 Translating triangular rules: (a) triangular lattice rules; (b) square lattice rules.

53361.indb 89 3/11/09 10:45:29 AM

© 2009 by Taylor & Francis Group, LLC

0

[3]

[1]

[2] [3]
[0]

(–1,1)(–1,–1) (–1,0)

(0,–1) (0,0) (0,1)

(1,–1) (1,1) (1,0)

[1]

[3]

[2]

[4][5]

[6] [0]

(a) (b) (c) (d)

90 Discrete-Event Modeling and Simulation

DEVS-graphs can be formally defined as

DEVS-graph = < XM, S, YM, δint, δext, λ, D > (4.1)

where
XM = {(p,v)| p IPorts, v Xp } is a set of input ports;
YM = {(p,v)| p OPorts, v Yp } is a set of output ports;
S = B × P(V) are states of the model;
B = { b | b Bubbles } is a set of model states;
V = { (v,n) | v Variables, n R0 } are intermediate state variables of the model and their val-

ues; and
δint, δext, λ, and D have the same meaning as in traditional DEVS models.

Each DEVS model has a unique identifier that will be used subsequently and the model uses a graph-
based specification representing state changes for an atomic model. These states are represented by
bubbles, including an identifier and the state lifetime. This specification allows defining of the pair
(state, duration) associated with internal transition functions. When the lifetime is consumed the
model will change its state by executing an internal transition function. For instance, Figure 4.23
shows a state called start, whose duration is 15 time units.

DEVS-graphs need an equivalent textual specification that can be used for computation [22]. The
models are identified as

[modelname]

which defines the name of the atomic or coupled model name, which will be used subsequently.
States have identifiers and they are associated with a time advance value, as follows:

state : stateId …
stateId : lifetime
initial: statename

The state construction declares all the state identifiers that will be used for an atomic model,
and the lifetime of each of the state IDs is then assigned to the corresponding identifier in a separate
statement. One of the states must be declared as the initial state of the model.

Internal transition functions are represented by dashed arrows connecting a source and a destina-
tion state. Each of them can be associated with pairs of ports with values (q, v) corresponding to the
output function. The syntax for the output function values is q!v. For instance, Figure 4.23 repre-
sents an internal transition that will make the model change from state src to state dest. Before
that, the output function will send the value 8 through the port q1 and 12 through the port q2.

ID = Start
LT = 15

ID = src
LT = 15

ID = dest
LT = 10

ID = src
LT = 15

ID = dest
LT = 10

ext : src dest exp ([p ? v] *) { (action ;) * } [ti. .tf]int : src dest [q ! v] * { (action ;) * }

(c) External transition(b) Internal transition

state : stateId …
stateId : lifetime

(a) State

q1 ! 8
q2 ! 12

p1 ? 8
p2 ? 12

FIGURE 4.23 DEVS-graph notation.

53361.indb 90 3/11/09 10:45:30 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 91

The textual representation for internal transitions uses the following syntax:

int : source destination [q!v]* ({ (action;)* })

Here, the keyword int is used to define the internal transition; we indicate the origin and desti-
nation states and a port list with the corresponding values. The output event is denoted as q!v (i.e.,
sending value v through port q), and there may be multiple outputs sent before each internal transi-
tion. For instance, the model on Figure 4.23 can be defined as

int : src dest q1!8 q2!12

Here, the source and destination represent the initial and final states associated with the execution
of the transition function. Because the output function should also execute before the internal transi-
tion, an output value can be associated with the internal transition.

External transition functions are represented graphically by a full arrow connecting two states.
The notation used to represent input ports and the values expected through them, (p,v), is p?v
[ti..tf]. Here, ti..tf represent the initial and final expected simulated times for the external
transitions. If the triggering external events arrive at a time outside the designated range, an excep-
tion will be raised during the simulation, bringing the error to the user’s attention. This built-in
self-checking mechanism allows users to specify temporal constraints within the model definition,
thus improving the safety of the model and facilitating the verification process.

The textual notation for external transitions is as follows:

ext : source destination EXPRESSION([p?v]*) { (action;)* } [ti..tf]

It describes the origin and destination states, an input port, and a time range counted since the
instant of arriving at the start state. The external transition happens only if the required triggering
condition is “held,” which is specified using a logical expression that involves predefined functions
and the input events. In this case, the model will change from state source to state destination, while
also executing one or more actions.

DEVS atomic models interact with others through input and output ports. In DEVS-graphs we
represent them as arrowheads attached to a model definition, as we can see in Figure 4.24. In the
textual specification, ports are described by including their name and a type, based on the formal
specification for DEVS models. They are defined as

in : portId:type portId:type …
out : portId:type portId:type …

p1

p2 : float

in : p1, p2 : float;
out : q1, q2 : float;

q1

q2 : float

FIGURE 4.24 Graphical and textual notation of input and output ports.

53361.indb 91 3/11/09 10:45:30 AM

© 2009 by Taylor & Francis Group, LLC

92 Discrete-Event Modeling and Simulation

In our example, port p2 only accepts input data of type float. The default data type of a port is an
integer (e.g., both input port p1 and output port q1 have an integer data type).

Our textual representation also permits defining of temporary variables, which are declared as

var : var1 var2 var3 …

and they can be optionally initialized as

var1 : value1
var2 : value2

Each internal and external transition may optionally have a list of actions to manipulate these
temporary variables. Actions can be specified as simple mathematical expressions, or they can be
implemented in user-defined C++ functions, providing a flexible mechanism for defining complex
model behavior. The following table lists some basic arithmetic and Boolean functions provided for
defining the actions:

Function Description

Add(n1, n2) Sum of n1 and n2
And(n1, n2) Return true if both n1 and n2 are true
Any(port) Return true if the port has a valid value
Between(n1, n2, n3) Return true if n1 ≤ n2 ≤ n3
Compare(n1, n2, n3, n4, n5) Return n3, n4, or n5 if n1 is greater than, equal to, or less than n2
Divide(n1, n2) n1/n2
Equal(n1, n2) Return true if n1 = n2; otherwise, return false
Greater(n1, n2) Return true if n1 > n2; otherwise, return false
Less(n1, n2) Return true if n1 < n2; otherwise, return false
Minus(n1, n2) n1 – n2
Multiply(n1, n2) n1 * n2
Not(n) Return the negation of n
NotEqual(n1, n2) Return true if n1 != n2
Or(n1, n2) Return true if n1 or n2 is true
Pow(n1, n2) Return n1 power n2
Rand(n1, n2) Generate a random value between n1 and n2
Value(n) Return the value of n

All these constructions can be combined to define the behavior of atomic models. For instance,
Figure 4.25 represents a simple model using all the constructions. In this case, the model will
remain in the start state for four time units. If we receive an input before that (in particular, between
time [1..3]) and the input has a value of 4, the state changes to process (for 10 time units). When
this time is consumed, the model executes the output function (transmitting the value 1 through
port out) and changes to the finish state for 7 time units. Here, two things can happen: If the time
is consumed, the model issues an output (value 6 through the out port); if an input of 2 is received
on port in (between times [2..5]), we return to the process state. This model is equivalent to the fol-
lowing specification:

Simple_Proc = < X, S, Y, δint, δext, λ, D > (4.2)

where
X = { (in, Z) };
Y = { (out, Z) };
S = { start, process, finish };

53361.indb 92 3/11/09 10:45:31 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 93

δext(s,e,x):
case port (in) {

4: if (e < 1 or e > 3) error();
if (state == start)
state == process;
ta(state) = 10;

2: if (e < 2 or e > 5) error();
 if (state == finish)
 state = process;
 ta(state) = 10; }

λ(s):
case (state) {

finish: send(out, 6);
process: send(out, 1); }

δint(s):
case (state):

finish: passivate();
process: state = finish; ta(state) = 7;

CD++Modeler [25] is a graphical user interface included with the tool that allows the user to
define DEVS models using this graphical notation. There are two versions available: one that is
Java based (i.e., platform independent) and the GGAD interface (a simpler version running on MS
Windows-based environments). The tools are in prototype version, and they can be downloaded for
further modifications and enhancements at http://sourceforge.net/projects/cdplusplus/.

CD++Modeler provides a graphical user interface (GUI) that allows users to construct DEVS
atomic and coupled models graphically in a simple drag-and-drop fashion. The basic functionality
of the two interfaces is similar: atomic and coupled models can be generated graphically (using the
notation described in this section for atomic models), input/output ports can be defined, and other
services are included—for instance, two-dimensional visualization that presents an intuitive ani-
mation of the simulation results to the user. Figure 4.26 shows the general view of both interfaces
(detailed use of the interfaces can be found in the user manual).

The main components are a model editor, in which the user can define atomic/coupled models,
and a text-based editor that can be used to update the names of the ports, define initial variable val-
ues, and activate specialized functions. The GUI has two major panels. On the left-hand side is the
model component panel that shows a tree of units defined in the current model (i.e., the states, ports,
variables, and transitions of an atomic model or the ingredient components of a coupled model) for
quick navigation and access. Once a unit is selected, its attributes are displayed in the information

start
LT = 4

finish
LT = 7

process
LT = 10

out!6

Atomic

in:integer
out:integer

out!1

in?2[2..5]

in?4[1..3]

FIGURE 4.25 Definition of an atomic model.

53361.indb 93 3/11/09 10:45:31 AM

© 2009 by Taylor & Francis Group, LLC

http://sourceforge.net

94 Discrete-Event Modeling and Simulation

space underneath. On the right-hand side is the model editor panel that provides the workspace
where users can choose to build an atomic or a coupled model by selecting the corresponding tabs.

CD++Modeler provides a graphical model editor for defining each type of model (atomic or cou-
pled) using the DEVS-graph notation. The graphical specifications of atomic and coupled models
can be later imported as templates (or classes) in construction of other coupled models. In addition,
many instances with different properties can be created from an existing model template. A user can

Main menu Toolbar

Model
editor
panel

Model
component

panel

Information
space

Status bar
(a)

(b)

FIGURE 4.26 (a) CD++Modeler; (b) DEVS-graph graphical editor. (From Christen, G. et al. 2004.
Proceedings of MGA, Advanced Simulation Technologies Conference 2004, Arlington, VA.)

53361.indb 94 3/11/09 10:45:32 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 95

then define the top most coupled model, adding new atomic or coupled components as needed. The
GUI allows users to open a component in the corresponding editor to define or modify the model.

Figure 4.26(b) shows a simple atomic model using the notation defined in this section and
CD++Modeler. The model includes three states: A, B, and C. In this case, if the model is in state A
and it receives an external event through the rep input port (shown in the left panel), the function
any is evaluated. If the result of this evaluation is 1, the model changes to the state B. While in state
B, the model waits the time defined by the time advance function to be consumed. It then executes
the output function, which will send the value of the intermediate state variable counter through the
output port ok. After that, the internal transition function executes, and the model changes to the
state C. (As we can see on the left part of the figure, the time advance function for state C is 1 min,
and there is no output associated with the internal transition.)

Figure 4.27 shows a more complex model, representing a simple controller for an elevator. As we
can see, we have a graphical pane on the right and a text-based definition for the graph (including
states, links, and ports) on the left. The left pane also includes information about intermediate vari-
ables, and when we choose any of the elements in the graph, extra information is shown at the bottom
of the pane. (In this case, we can see that the stop port is an input port, and it receives integer values.)

Figure 4.28 defines the model’s specification in the text format that CD++ is able to execute. On
the textual specification, we identify six states: stopping, stdbyStop, moving, Stopped,
stdbyMov, and aux1. The initial state is stdbyStop. We use three auxiliary variables (not part
of the state): floor (represents the floor where the elevator must move to), cur _ floor (stores
the current floor), and direction (representing whether the elevator must go up, go down, or stay
in the same floor).

If an external event is received while in the stdbyStop state (which represents the elevator
on standby stopped state), we evaluate the function Equal(button, cur _ floor) ? 0
{floor = button; direction = compare(cur _ floor,floor,2,0,1); }, which
represents the behavior under a button being pressed. In this particular example, we compare the
floor of the button just pressed (button) with the current floor in which the elevator is on standby

FIGURE 4.27 Definition of an elevator controller in CD++Modeler.

53361.indb 95 3/11/09 10:45:33 AM

© 2009 by Taylor & Francis Group, LLC

96 Discrete-Event Modeling and Simulation

(cur _ floor). If they are equal (i.e., the result of the comparison is 0), then the current floor is set
to button (i.e., the destination floor is the one in which the button has been pressed). If not, this
means the button was pressed on a higher or lower floor. In order to determine which, we compare
the current floor with the destination floor, and we make the direction up, down, or none accord-
ing to the comparison result. This value is set to the variable direction. Finally, we change to
the state moving. As we can see, this state is associated with an instantaneous internal transition
(ta(s) = 0), which will generate an output informing the current direction through the move output
port and will change the state to stdbyMov.

From this state, there are two options. If an external input is received (from the sensors on
each floor while the elevator moves), we compare the sensor with the destination floor position. If
they are not equal, we change to an auxiliary state that represents that we are still moving. This
state will trigger an instantaneous internal transition, which will make the model go again to the
stdbyMov state. This cycle is repeated on every sensor, until the moment when we arrive at the
destination floor. In each of these steps, cur _ floor = sensor in order to represent storing
the information about the floor sensor sensed. When we arrive at the floor, the external transition
function makes the model go to the stopped state. At this point, we issue an instantaneous inter-
nal transition that will transmit a value of 0 through the move output port (which means the eleva-
tor motor has stopped), and we switch to the stopping state, which is used to represent the delay
taken because the motor stops until the elevator actually stops. We will only return to the initial
state stopping after receiving a signal through the stop input port (which will indicate when the
elevator has fully stopped).

Exercise 4.11

Modify the elevator model found in ./elevatorModeler.zip, and change (a) the duration of the different
transitions and (b) the output functions. Generate a new textual model and analyze the results.

Once the user defines atomic models, they can be integrated into a coupled model using a graphical
notation, as described in Figure 4.29. We can see the two versions of the graphical interfaces available.

[controller]
state: stopping stdbyStop moving Stopped stdbyMov aux1
initial : stdbyStop
in: button stop sensor
out: move
var: floor cur_floor direction
ext: stdbyStop moving Equal(button,cur_floor)?0 {floor = button;direction =
compare(cur_floor,floor,2,0,1);}
ext: stdbyMov aux1 Equal(sensor,floor)?0 {cur_floor = sensor;}
ext: stdbyMov Stopped Equal(sensor,floor)?1 {cur_floor = sensor;}
ext: stopping stdbyStop Value(stop)?1
int: moving stdbyMov move!direction
int: aux1 stdbyMov
int: Stopped stopping move!0

stopping:00:00:00:00
stdbyStop:00:00:1000:00
moving:00:00:00:00
Stopped:00:00:00:00
stdbyMov:00:00:1000:00
aux1:00:00:00:00

floor:0
cur_floor:0
direction:0

FIGURE 4.28 Text specification of the elevator controller in CD++Modeler.

53361.indb 96 3/11/09 10:45:33 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 97

Figure 4.30 defines the coupled model’s specification in the text format that CD++ is able to exe-
cute. As we can see, we have two components (atomic models defined using the DEVS-graph notation
used earlier) connected through the ports stop and move on each of them. Simultaneously, we can

(a)

(b)

FIGURE 4.29 Coupled models: (a) photographic radar; (b) elevator.

53361.indb 97 3/11/09 10:45:34 AM

© 2009 by Taylor & Francis Group, LLC

98 Discrete-Event Modeling and Simulation

receive external inputs through the button port (to simulate buttons being pressed) or sensor (to simu-
late the motor moving through different floors and a sensor checking the arrival at a given floor).

CD++Modeler can be used to visualize the simulation results of DEVS and Cell-DEVS models
by parsing the simulation log generated during the simulation. DEVS models can be visualized with
the atomic animation option, which involves plotting the input and output trajectories of a model
component (atomic or coupled). Figure 4.31 shows such a facility.

Figure 4.31 illustrates the animation of an example DEVS coupled model. Users can adjust the
horizontal and vertical scaling of the trajectories, change the time format, and focus on specific
inputs and outputs by selecting the checkboxes on the control panel. If the model definition file con-
tains multiple components, users can quickly switch the animation between them. This oscillogram-
like animation allows users to investigate model behavior at the I/O functional level and establishes
a straightforward causal relationship between the inputs and outputs, facilitating the model valida-
tion process.

[top]
components : elevator@GGAD controller@GGAD
in : button sensor
Link : move@controller move@elevator
Link : stop@elevator stop@controller
Link : button button@controller
Link : sensor sensor@controller

[elevator]
source : elevator.CDD

[controller]
source : controller.cdd

FIGURE 4.30 Structure of the photographic radar model.

FIGURE 4.31 Animation of the input and output trajectories of a DEVS model in CD++Modeler.

53361.indb 98 3/11/09 10:45:35 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 99

The coupled animation facility shows the interactions between the ingredient components of
a DEVS coupled model, shown in Figure 4.32. The animation is overlaid on top of the DEVS
graph specification of a coupled model, displaying messages passing along the coupling links with
two-dimensional text effects. For example, the animation in Figure 4.32 shows that a message car-
rying the value of variable material is sent from the Transportation component to the Manufacturer
component at simulated time 43:30:00:000. This animation gives a high-level view of the inte-
rior behavior of a coupled model, helping users interpret and reconstruct what is happening in the
simulation.

CD++Modeler also provides a GUI to animate cell spaces based on customized coloring schemes.
Figure 4.33 illustrates the animation of a two-dimensional Cell-DEVS model that simulates the
propagation of forest wildfires. The control panel provides the means to load multiple Cell-DEVS
models, change the frame duration, run or pause the animation, and single-step (forward or back-
ward) through the animation sequence.

Although square geometries are widely used to define cell spaces (each cell is represented as
a square object), we have discussed that triangular- or hexagonal-shaped cells, may enable more
appropriate and natural model definitions. CD++Modeler provides a lattice translator that is able
to perform automated mapping between different geometries in visualizing Cell-DEVS models.
Figure 4.34 shows the animation of the fire propagation model using triangular- and hexagonal-
shaped cells.

FIGURE 4.32 Animation of the interactions between components of a DEVS coupled model in
CD++Modeler.

53361.indb 99 3/11/09 10:45:35 AM

© 2009 by Taylor & Francis Group, LLC

100 Discrete-Event Modeling and Simulation

FIGURE 4.33 Animation of two-dimensional Cell-DEVS model using user-specified color palette.

FIGURE 4.34 Animation of two-dimensional Cell-DEVS model using different geometries.

53361.indb 100 3/11/09 10:45:36 AM

© 2009 by Taylor & Francis Group, LLC

Introduction to the CD++ Toolkit 101

CD++Modeler visualizes high-dimensional cell spaces as a series of individual planes.
Figure 4.35 shows the animation of a three-dimensional heat diffusion model (10 × 10 × 3) as three
planes (advanced three-dimensional visualization techniques will be discussed in Chapter 16).

4.7 SUMMARY

In this chapter, we have introduced the basic aspects of the CD++ modeling and simulation toolkit.
CD++ follows DEVS and Cell-DEVS specifications. DEVS atomic models can be written using
C++ or a state-based notation associated with a graphical user interface.

DEVS coupled models can be defined using a built-in specification language that follows DEVS formal
specifications for coupled models. Cell-DEVS models are also defined using a specialized language in
which the user can define individual rules for the model and the specific coupled model specifications.

Finally, we showed the basic aspects of CD++ graphical user interfaces.

REFERENCES

1. Nutaro, J. ADEVS. URL: http://www.ornl.gov/~1qn/adevs/index.html. Accessed: June 1, 2007.
2. Kim, K. H., Y. R. Seong, T. G. Kim, and K. H. Park. 1996. Distributed simulation of hierarchical

DEVS models: Hierarchical scheduling locally and time warp globally. Transactions of the SCS 13 (3):
135–154.

3. Zeigler, B., Y. Moon, D. Kim, and D. Kim. 1996. DEVS-C++: A high performance modeling and simula-
tion environment. Proceedings of 29th Hawaii International Conference on System Sciences, Honolulu.

4. Zeigler, B. P. 1990. Object-oriented simulation with hierarchical, modular models: Intelligent agents and
endomorphic systems. Boston: Academic Press.

5. Zeigler, B., and D. Kim. 1995. Extending the DEVS-scheme knowledge-based simulation environment
for real-time event-based control. Technical report, Department of Electrical and Computer Engineering,
University of Arizona.

6. Sarjoughian, H. S., and B. P. Zeigler. 2000. DEVS and HLA: Complementary paradigms for M&S?
Transactions of the SCS 17:187–197.

7. Zeigler, B. P. 1999. Implementation of the DEVS formalism over the HLA/RTI: Problems and solutions.
Simulation Interoperability Workshop, Orlando, FL.

8. IEEE Std 1516.1-2000. 2001. IEEE standard for modeling and simulation. High level architecture
(HLA)—Federate interface specification. IEEE Std 1516.1-2000: i–467.

9. Sarjoughian, H. S., and B. P. Zeigler. 1998. DEVSJAVA: Basis for a DEVS-based collaborative M&S
environment. Proceedings of SCS International Conference on Web-Based Modeling and Simulation,
San Diego, CA.

10. Kim, T. G. 1994. DEVSIM++ user’s manual. CORE Lab, EE Dept, KAIST, Taejon, Korea.

Plane 0 Plane 1 Plane 2

FIGURE 4.35 Animation of three-dimensional Cell-DEVS models as individual planes.

53361.indb 101 3/11/09 10:45:37 AM

© 2009 by Taylor & Francis Group, LLC

http://www.ornl.gov

102 Discrete-Event Modeling and Simulation

11. Dávila, J., and M. Uzcágegui. 2000. GALATEA: A multi-agent, simulation platform. Proceedings of
International Conference on Modeling, Simulation and Neural Networks, Mérida, Venezuela.

12. Himmelspach, J., and A. Uhrmacher. 2004. A component-based simulation layer for JAMES. Proceedings
of 18th Workshop on Parallel and Distributed Simulation (PADS), Kufstein, Austria, 115–122.

13. Filippi, J. B., and P. Bisgambiglia. 2004. JDEVS: An implementation of a DEVS based formal frame-
work. Environmental Modeling and Software 19:261–274.

14. Bolduc, J. S., and H. Vangheluwe. 2001. The modeling and simulation package PythonDEVS for classi-
cal hierarchical DEVS. Technical report MSDL-TR-2001-01, McGill University.

15. de Lara, J., and H. Vangheluwe. 2002. AToM3: A tool for multi-formalism and meta-modeling.
Proceedings of Fundamental Approaches to Software Engineering, 5th International; Lecture Notes in
Computer Science, 174–188.

16. Praehofer, H., and G. Reisinger. 1995. Object-oriented realization of a parallel discrete event simulator.
Technical report, Johannes Kepler University, Department of System Theory and Information Engineering.

17. Henning, M., and S. Vinoski. 1999. Advanced CORBA programming with C++. Reading, MA:
Addison–Wesley.

18. Dongarra, J. J. 1995. High performance computing: Technology, methods and applications.
Amsterdam: Elsevier.

19. Wainer, G. 2002. CD++: A toolkit to develop DEVS models. Software Practice and Experience 32:261.
20. Plauger, P. J., A. Stepanov, M. Lee, and D. Musser. 2000. The C++ standard template library. Upper

Saddle River, NJ: Prentice Hall.
21. Gardner, M. 1970. The fantastic combinations of John Conway’s new solitaire game “Life.” Scientific

American 23:120–123.
22. Christen, G., A. Dobniewski, and G. Wainer. 2004. Modeling state-based DEVS models CD++.

Proceedings of MGA, Advanced Simulation Technologies Conference 2004, Arlington, VA.
23. Christen, G., A. Dobniewski, and G. Wainer. 2001. Defining DEVS models with the CD++ toolkit.

Proceedings of European Simulation Symposium, Marseilles, France.
24. Praehofer, H., and D. Pree. 1993. Visual modeling of DEVS-based multiformalism systems based on

higraphs. Proceedings of WSC ’93, the 25th Winter Simulation Conference, Los Angeles, CA, 595–603.
25. Kidisyuk, K., and G. Wainer. 2007. CD++Modeler: A graphical viewer for DEVS models. Technical

report SCE-017, Ottawa, ON, Canada.

53361.indb 102 3/11/09 10:45:37 AM

© 2009 by Taylor & Francis Group, LLC

103

5 Modeling Simple DEVS and
Cell-DEVS Models in CD++

5.1 INTRODUCTION

In this chapter, we introduce some basic examples of DEVS and Cell-DEVS models and their
implementation in CD++, which will provide a basis for better understanding of the varied models
introduced in the following chapters. All the examples are simplified versions (for better under-
standing) of the ones located in the central model repository (http://www.sce.carleton.ca/faculty/
wainer/wbgraf/samples/), which are ready to be used in CD++.

5.2 BASIC CELL-DEVS MODELS

Our first model is a maze-solving algorithm defined in Nayfeh [1]. The maze is represented as a
two-dimensional Cell-DEVS model using value 1 to represent walls and value 0 to define hallways
(free cells), using von Neumann’s neighborhood. The maze is solved using the following rules for
updating the cell’s states:

Wall cells remain unchanged.
Free cells become wall cells if their neighborhood includes three or more wall cells.
Free cells remain free if their neighborhood includes fewer than three wall cells.

When this set of rules is processed, the algorithm effectively blocks off every dead-end path in
the maze. Every free cell that is accessible from only one direction (i.e., three wall cells around it)
must be a dead end and therefore cannot be part of the solution. These cells become new wall cells,
and this procedure is repeated until we obtain a steady state, in which the remaining free cells rep-
resent the solution(s) to the maze.

The following is the specification for the maze-solving model in Cell-DEVS:

Maze = < X, Y, S, N, d, δint, δext, , λ, D > (5.1)

where
X = Y = ;
S = { 0, 1 };
N = { (–1, 0), (0, –1), (0, 1), (1, 0), (0,0) };
d = 100 ms (transport); and
: N S is defined by the rules just described—that is:

S = 1 if cell (0,0) = 1;
S = 1 if cell (0,0) = 0 and number of wall neighbors ≥ 3; and
S = 0 if cell (0,0) = 0 and number of wall neighbors < 3.

This specification can be implemented in CD++, as shown in Figure 5.1.

53361.indb 103 3/11/09 10:45:37 AM

© 2009 by Taylor & Francis Group, LLC

http://www.sce.carleton.ca
http://www.sce.carleton.ca

104 Discrete-Event Modeling and Simulation

The model, originally presented in Lam and Wainer [2] and found in ./maze.zip, is a 20 × 20 Cell-
DEVS with transport delays, nonwrapped (for simplicity, we do not show the implementation of
border cells), and with von Neumann’s neighborhood. The maze-rule section defines the rules used
for the local computing function. The first rule checks if the cell is empty (free cell); in this case,
we count the number of cells with value 1 (truecount counts the number of inputs with a value = 1,
considering that the total size of the neighborhood is 5). If there are three or four wall cells, we con-
vert the cell into a wall. After 100 ms, this new value will be transmitted to the neighbors. The
second rule checks the cases of free cells that remain free. In every other case (t means “true,” and
this precondition is always valid), the cell value becomes 1. Figure 5.2 shows an example of a maze
and its solution.

If a maze has no solution, the model will generate a result without any cell in the final path—
that is, a solid block of wall cells. Likewise, if the maze has different solutions, the cell space will
stop evolving when all the solution paths are revealed. In those cases, further processing would be
required for a single solution to be made available.

(a) (b)

FIGURE 5.2 (a) The original maze and (b) the maze after processing in Cell-DEVS.

[maze]
type : cell
dim : (20, 20)
delay : transport
border : nowrapped
neighbors : maze(-1,0)
neighbors : maze(0,-1) maze(0,0) maze(0,1)
neighbors : maze(1,0)
localtransition : maze-rule

[maze-rule]
rule : 1 100 { (0,0) = 0 and (truecount = 3 or truecount = 4) }
rule : 0 100 { (0,0) = 0 and truecount < 3 }
rule : 1 100 { t }

FIGURE 5.1 Defining the Cell-DEVS specification in CD++. (From Lam, K., and G. Wainer. 2003.
Proceedings of 2003 SCS Summer Computer Simulation Conference, Montreal, Quebec, Canada.)

53361.indb 104 3/11/09 10:45:38 AM

© 2009 by Taylor & Francis Group, LLC

Modeling Simple DEVS and Cell-DEVS Models in CD++ 105

Exercise 5.1

Define all the possible preconditions and postconditions for each cell in the maze model explicitly.

Exercise 5.2

Define all the possible preconditions and postconditions for each cell explicitly in the case of Moore’s
neighborhood. Modify the model to use Moore’s neighborhood and analyze the results.

Exercise 5.3

Modify the size of the cell space and the initial values, and run the simulation again. Analyze the results
obtained.

Exercise 5.4

Define an algorithm to find the shortest path between a group of solutions obtained as a result of the
maze-solving algorithm.

We now show a simple model of excitable media [3], a phenomenon appearing in several real
systems (e.g., the nervous tissue of the heart muscle, magnetic fields, forest fires). Figure 5.3 shows a
Cell-DEVS representation of such phenomena in CD++ (which can be found in ./Exmedia.zip).

We first define the Cell-DEVS coupled model and its parameters: size, neighborhood shape, kind
of delay, and borders. The Ex-rules section represents the local computing function for the model.
We use three different state values. For instance, for the heart tissue, these states could represent a
cell that is resting, excited, or recovering; in a forest fire, the states could represent a cell without
fire, burning, or burned. Here, the first rule defines the case when the cell and its neighbors are
not excited (value 0); in this case, the cell must remain resting. The second rule is used when the cell
is resting and there are excited neighbors (value 2); in this case, the cell becomes excited. The third
and fourth rules make the cell change from the excited to a refractory period and, finally, change to
the resting state again. In any other case, the cell does not change (it keeps the original value).

Figure 5.4 shows the results obtained when executing this model. It shows the evolution of the
excitable medium using different neighborhoods. Figure 5.4(a) uses all the adjacent neighbors, as
defined in Figure 5.3 (Moore’s neighborhood). Figure 5.4(b) uses von Neumann’s neighborhood.

Exercise 5.5

Increase the size of the cell space and put different initial excited cells. Use different neighborhood
shapes and simulate the model. Analyze the results.

[ExMedia]
type : cell
dim : (9,9)
delay : transport
border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) (1,-1) (1,0) (1,1) (0,0)
localtransition : Ex-rules

[Ex-rules]
rule : 0 100 {(0,0)=0 and statecount(2)=0 }
rule : 2 100 {(0,0)=0 and statecount(2)>0 }
rule : 1 100 { (0,0) = 2 }
rule : 0 100 { (0,0) = 1 }
rule : { (0,0) } 100 { t }

FIGURE 5.3 Definition of an excitable media model.

53361.indb 105 3/11/09 10:45:39 AM

© 2009 by Taylor & Francis Group, LLC

106 Discrete-Event Modeling and Simulation

Exercise 5.6

Change the rules to provide different delays for each of the rules.

The example in Figure 5.5 represents a surface tension model that employs a majority vote mech-
anism [4]. The rules simply compute the majority of the cell’s values, which are binary, as seen in
the figure (this model can be found in ./Tension.zip).

The Cell-DEVS coupled model parameters include a grid of 40 × 40, Moore’s neighborhood,
transport delays, and wrapped borders. We have two states: the presence (value 1) or absence
(value 0) of particles. In each step, the new state depends on a majority vote between the neighbors.
A particle remains in the cell if at most four of the nine cells are occupied; otherwise, it becomes
empty. Figure 5.6 shows how particles concentrate in the areas with higher tension. The resulting
behavior of the surface is a representation of the majority vote rules defined earlier.

5.3 A MODEL OF A MICROWAVE OVEN

In this section, we show how to create a model of a programmable microwave oven system using
DEVS. The microwave oven described here uses a keypad to set the heating time and power level,

[Tension]
type : cell
dim : (40,40)
delay : transport
border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (1,-1) (1,0) (1,1) (0,0) (0,1)
localtransition : Ten-rules

[Ten-rules]
rule : 0 100 { statecount(0) >= 5 }
rule : 1 100 { t }

FIGURE 5.5 Surface tension model specification.

FIGURE 5.6 Execution results of the surface tension model.

(b)

(a)

FIGURE 5.4 Results of ExMedia with different neighborhoods: (a) Moore’s; (b) von Neumann’s.

53361.indb 106 3/11/09 10:45:40 AM

© 2009 by Taylor & Francis Group, LLC

Modeling Simple DEVS and Cell-DEVS Models in CD++ 107

adjust the time of the day, etc. The heating cycle is started by pushing the START button, and it
can be stopped by pushing STOP or CLEAR (in which case the time duration and the power level
set for the heating cycle will be reset). The duration of the heating cycle is set by pressing the
PHASE_SET button, followed by minutes and seconds input. The number of minutes is set by
pressing the MINUTES/SECONDS buttons, which increase one unit every time they are pressed.
A display shows the time of the day or the remaining time of a heating cycle. The model, found in
./microwaveoven.zip, has the structure shown in Figure 5.7.

The model is organized in four levels. The top level uses the following inputs (corresponding to
the buttons on the control panel of the oven):

TIME_SET is used to set or adjust the current time displayed.
PHASE_SET is used to set the program.
POWER_LEVEL is used to set the power level (high, medium, or low).
HOURS is used to set the hour to adjust to the time of day.
MINUTES is used to set both the number of minutes of the heating cycle and the minutes
for the time of day.
SECONDS is used to set the number of seconds of the heating cycle.
START starts the cycle.
STOP stops the cycle.
CLEAR erases the current set values (heating time, power level, and phase).

The outputs of the model are

CURRENT_TIME, which represents the current time being displayed;
REMAINING_TIME, which represents the remaining time for the current heating cycle;
HEAT, which represents the power level for the current heating cycle (high, medium, or
low); and
BEEP, which represents the sound that the oven makes when it finishes a heating cycle.

Display

TIME_SET

MINUTES

SECONDS

PhaseRegister

POWER_LEVEL

START

Minute-
Register

Second-
Register

STOP

CLEAR

REMAINING_TIME

CURRENT_TIME

Timer

TimeRegister

Time
Counter

PowerDriver

PowerLevel

HEAT

BEEP

Beeper

HOURS

PHASE_SET

FIGURE 5.7 Structure of a model of a programmable microwave oven.

53361.indb 107 3/11/09 10:45:41 AM

© 2009 by Taylor & Francis Group, LLC

108 Discrete-Event Modeling and Simulation

The top model is decomposed into the following components:

PhaseRegister is a coupled model used to record the information associated with the cur-
rent heating cycle, including its duration and power level.
PowerDriver takes the power level information from PhaseRegister and controls the heat-
ing power level (low, medium, or high).
TimeCounter keeps the remaining time until the end of the cycle.
Beeper controls whether the system needs to make a beeping sound. A beeping sound is
made for about 3 s after a heating cycle is finished.
TimeRegister records the current time of day.
Display shows the remaining time of a heating cycle or the current time of day.
PhaseRegister is decomposed into Timer, which records the information of the duration of
a cycle, and PowerLevel, which records the heating level for the cycle.

Figure 5.8 shows the formal specification of the model TimeRegister and its implementation
in CD++. As previously discussed, this model keeps the current time of the day displayed on the
panel when the microwave oven is not heating. It uses three inputs: time_set, used to adjust the
current time; hours, used to adjust the hour of the day (which takes effect only when time_set is
pressed, increasing the hour by 1 per time pressed); and minutes, which is used to adjust the current
minute. The model outputs cur_time, the current time generated from the model (hours * 100 +
minutes; i.e., 10:23 a.m. will be sent as 1023).

As we can see, the external transition function is in charge of reacting to the different buttons
pressed. If we press the hours button (represented by the corresponding input port), we increase the
hours counter (resetting it to 0 after 24 h). If the minutes button is pressed, the minute counter is
increased. In these two cases, we schedule an instantaneous internal transition. However, if we press
the time_set button, we have two different behaviors. When the button is pressed, it means the user
wants to synchronize the seconds to the beginning of the next minute (i.e., the user must release the
button to synchronize the seconds to the minute). Thus, we passivate the model waiting for the next
external event (which should be the button being released). When the button is finally released, we
need to start counting time (the clock has a precision of 1 min, so we schedule an internal transition
function in 1 min).

The output function will get the current time and will send it through the output port cur_time,
and the internal transition will increment the current time in 1 min (“wrapping” the minutes to
hours and hours to days), after which we schedule the next internal transition in 1 min.

Figure 5.9 shows the specifications and implementation of the cooking timer model.
The model (and its CD++ implementation) defines the components of the timer and their inter-

relationship. We have two registers (one for minutes and one for seconds) interconnected within
this coupled model. The model can receive inputs from the seconds/minutes buttons or from the
Time_set button. The result is the time in seconds and minutes. We have two registers (atomic
models) to store information for seconds/minutes. In order to set a new value for these registers,
the time_set button must be pressed. Thus, this input is linked to the input ports for each of the two
registers. Likewise, when we press the seconds/minute buttons, an input must be sent to the cor-
responding registers; thus, we have a link between them. The two registers are independent (each of
them is a register keeping the value for the corresponding time unit), so they are not interconnected
(thus, the IC set is empty). Finally, the select function will pick the seconds updates first. Figure 5.10
shows an execution example for this model. Initially, we change the time of the day to 1:02 by press-
ing the minute/hour/time_set buttons. When the button is released, the time is updated. We then
program a cycle, starting with 1 s, 1 min, and a power level of 1. At 45:102, we program a new cycle
of 4:04 min, and we start the cooking cycle. We can see how the remaining time starts to decrease.
At 56:003, we press stop (thus, we stop cooking) and then clear is pressed (resetting the oven).

53361.indb 108 3/11/09 10:45:41 AM

© 2009 by Taylor & Francis Group, LLC

Modeling Simple DEVS and Cell-DEVS Models in CD++ 109

Exercise 5.7

Add a new component, called program. It uses three inputs: reheat (1 min), boil (power level = 3, 2 min),
and cook (power level = 2, 12 min). When the user presses each of these buttons, the rest of the compo-
nents must be automatically programmed accordingly. Define the DEVS model for Program, code it in
CD++, integrate it into the microwave coupled model, and run different test scenarios to verify that the
desired behavior is obtained.

FIGURE 5.8 Atomic model definition: TimerRegister model.

53361.indb 109 3/11/09 10:45:42 AM

© 2009 by Taylor & Francis Group, LLC

110 Discrete-Event Modeling and Simulation

FIGURE 5.10 Microwave oven execution.

Timer = < X, Y, { MinuteRegister, SecondRegister }, EIC, EOC, IC, SELECT > (5.2)

where
X = { Minutes_in , Seconds_in, Time_set};
Y = {Time_Minutes, Time_Seconds };
EIC = { (Time_set.Self, Time_set.SecondRegister); (Time_set.Self, Time_set.MinuteRegister);

(Seconds_in, Seconds.SecondRegister); (Minutes_in, Minute.MinuteRegister)};
EOC = { (Time_Minute.MinuteRegister, Time_Minute.Self), (Time_Second.MinuteRegister, Time_

Second.Self)};
IC = ;
SELECT = { SecondRegister, MinuteRegister};

components : seccook@SecCookReg mincook@MinCookReg
in : c_time_set c_seconds c_minutes
out : c_time_seconds c_time_minutes
Link : c_time_set time_set@seccook
Link : c_time_set time_set@mincook
Link : c_seconds seconds@seccook
Link : c_minutes minutes@mincook
Link : time_seconds@seccook c_time_seconds
Link : time_minutes@mincook c_time_minutes

FIGURE 5.9 Coupled model definition: TimerRegister model: (a) formal definition; (b) CD++.

53361.indb 110 3/11/09 10:45:43 AM

© 2009 by Taylor & Francis Group, LLC

Modeling Simple DEVS and Cell-DEVS Models in CD++ 111

5.4 MARKET DYNAMICS

The model presented in this section (found in ./market.zip and presented in Liu and Wainer [5]) can
be used to study the dynamics of dual markets where consumers choose between two competing
products based on their preferences and the influence of other customers. In this example, each cell
represents a consumer who periodically renews the license with one of two operating system (OS)
providers.

The model is built as a Cell-DEVS with S = {0,1,2} (i = 0: nonuser; i = 1, 2: user of OSi) and
Moore’s neighborhood. In order to define :N S, we use the definitions presented in Oda et al.
[6]. The binary variable X(cij, n, t) (with n = 1 or 2) will be 1 if the cell cij has a user of OSn at time
t. X(cij, n, t) will be 0 if the cell cij does not have a user. We assume that X(cij, n, t) and X(cij, 3 – n, t)
cannot be 1 at the same time for each cell; that is, no consumer can sign contracts with both provid-
ers simultaneously. The model represents three factors that influence the user’s behavior, and the
values of the contributing factors are defined by the following functions:

1. U(cij, n, t), the utility that consumer cij can obtain by using OSn in time t.
2. E(cij, n, t), the network externality (i.e., the influence of other consumers):

E(cij, n, t) = (1 –) (Umax – Umin) N(cij, n, t – 1) (5.3)

 where N(cij, n, t – 1) = neighborhood X(cneighborhood, n, t – 1)/ (is the neighborhood size).
The network externality effect for OSn is based on the number of neighbors using OSn at
the previous time step. (1 –) (Umax – Umin) is the absolute weight for the effect of network
externality.

3. P(cij, tns), the price that consumer cij must pay for the licenses:

P(cij, n, t) = (X(cij, n, t) + X(cij, 3 – n, t)) POSn (cij, n, t), n = 1 or 2 (5.4)

 where POSn(cij, n, t) stands for the price for the corresponding operating system, which is
defined as POSn (cij, n, t) = Q(n, t) + R(m, n, t). (Q is a constant representing the global price
for an OS, and R is a variable representing the fluctuation of the local price for this OS.)

In order to maintain a balance between profits and market share, a provider may reduce local
price to attract more consumers when it loses market share to its rivals and raise the local price to
gain more profits when it has a bigger market share than its competitors. The fluctuating local price
is defined as R(m, n, t) = Rnmin+ µ(Rnmax – Rnmin) (N(cij, n, t – 1) – N(cij, 3 – n, t – 1)), where Rnmax and
Rnmin are the maximum and minimum local price for the OS, and µ is a given constant representing
the fluctuation coefficient. The value of (N(cij, n, t – 1) – N(cij, 3 – n, t – 1)) reflects the influence of
market share on the local price. When the provider of OSn owns a bigger share of the local market,
this item has a positive value, which means the local price will rise. When the local market share
goes down, the local price will fall accordingly.

At each time step, a cell calculates V(cij, n, t) = U(cij, n, t) + E(cij, n, t) – P(cij, n, t) for all the three
possible states and chooses the state that maximizes V(cij, n, t) as its next state.

In our example, we did some simplifications. The skill accumulation function L(cij, n, t) is calcu-
lated based only on a cell’s previous state. In consequence, the local computing rules are defined by

Result: 1 Rule: V(cij, 1, t) > V(cij, 2, t) AND V(cij, 1, t) > 0

Result: 2 Rule: V(cij, 2, t) > V(cij, 1, t) AND V(cij, 2, t) > 0

Result: 0 Rule: 0 > V(cij, 1, t) AND 0 > V(cij, 2, t)

53361.indb 111 3/11/09 10:45:43 AM

© 2009 by Taylor & Francis Group, LLC

112 Discrete-Event Modeling and Simulation

Figure 5.11 shows the local computing rules for the new market and fluctuating price case. The
first rule shows the case where the current state is 0, and we depreciate the price in each time step.
The second rule shows the case where the state is 1; therefore, the price is incremented before depre-
ciation. Finally, the rule shows a second case of increment before depreciation.

We show the results of a set of experiments with six different settings. The tests are categorized
in two groups: mature and new markets. The former group uses an initial cell space where the three
possible states for each cell are uniformly distributed (as in a mature market); the latter group starts
with only a few cells representing new users. Three pricing strategies are defined: products with the
same price, products with different prices, and products with fluctuating prices. The local comput-
ing rules are instantiated using the parameter values shown in Figure 5.12.

Figures 5.13–5.18 show the simulation results for these cases. White cells represent nonusers,
light gray cells represent OS1, and dark cells represent OS2. The results in Figure 5.13 were obtained
using the parameters in the first column of Figure 5.12, where the market is mature and both OSs
have the same price. The figure shows that nonusers begin to use one of the two products with
approximately equal probability and users using the same products tend to aggregate together to
form their own society, which in turn enhances network externality.

In Figure 5.14, we also represent a mature market but with different prices (OS1 is cheaper than
OS2, while all other parameters remain unchanged). Consequently, most of the nonusers choose to
use OS1. Network externality again results in the aggregation of users.

Figure 5.15 shows a case for a mature market where the company providing OS2 has higher pric-
ing flexibility (µ2 = 1), and OS1 offers more rigid prices (µ1 = 0.2). As a result, OS2 gains bigger

[consumerschoice]
type : cell
dim : (30, 30)
delay : transport
border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1)
localtransition : choose_rule

[choose_rule]
rule : {if(stateCount(1)>(stateCount(2) - 2.25), 1,
 if(stateCount(2)>(stateCount(1) + 2.25), 2 , 0))} 100 {(0,0)=0}
rule : {if(stateCount(2)>(stateCount(1) + 6.75), 2 , 1)} 100 {(0,0)=1}
rule : {if(stateCount(1)>(stateCount(2) + 2.25), 1 , 2)} 100 {(0,0)=2}

FIGURE 5.11 Definition of local computing rules in CD++: mature market and same-price scenario.

FIGURE 5.12 Parameter values for experimental frames.

FIGURE 5.13 Mature market and same-price scenario.

53361.indb 112 3/11/09 10:45:44 AM

© 2009 by Taylor & Francis Group, LLC

New MarketMature MarketSettings = Price = Price ≠ Price ≠ PriceFluctuating Price Fluctuating Price

Parameters

Umax=.8
Umin=.4
θ =λ=.5
POS1=.25
POS2=.25

Umax=.8
Umin=.4
θ =λ=.5
POS1=.25
POS2=.3

Umax=.8
Umin=.4
θ =λ=.5
POS1=.25
POS2=.25

Umax=.8
Umin=.4
θ =λ=.5
POS1=.25
POS2=.3

Umax=.8,Umin=.4
θ=λ=.5 Q1=Q2=.1
R1max=R2max=.15
R1min=R2min=.05
μ1=.2, μ2=1

Umax=.8,Umin=.4
θ=λ=.5 Q1=Q2=.0
R1max=R2max=.3
R1min=R2min=0
μ1=.2, μ2=1

Modeling Simple DEVS and Cell-DEVS Models in CD++ 113

market share. If the local market shares for both products are equal, the price fluctuation disappears
and network externality becomes the sole force in determining consumers’ decisions.

Figure 5.16 shows the development of a new market with two OSs at the same price. The market
starts around a few initial users where the network externality takes effect. The number of users of
both products rapidly grows at almost the same rate until the market is saturated. The initial users
have been the pivots of a new market.

Figure 5.17 shows a new market in which OS1 rapidly monopolizes the whole market by virtue
of its lower prices (sensitivity of price is high in a new market).

Finally, Figure 5.18 shows that two types of new users ripple out from the initial ones into alter-
nating cycles. The development of the market exhibits a pattern that cannot be explained by any
single factor of the value function.

Exercise 5.8

Modify the parameters in Figure 5.12 and re-run the experiments. Analyze the simulation results.

FIGURE 5.14 Mature market and different-price scenario.

FIGURE 5.15 Mature market and fluctuating-price scenario.

FIGURE 5.16 New market and same-price scenario.

FIGURE 5.17 New market and different-price scenario.

FIGURE 5.18 New market and fluctuating-price scenario.

53361.indb 113 3/11/09 10:45:45 AM

© 2009 by Taylor & Francis Group, LLC

114 Discrete-Event Modeling and Simulation

5.5 A PREDATOR–PREY MODEL

In this model, a predator seeks prey trying to escape [7]. Predators are always on the search; thus,
prey must constantly avoid attacks. A predator detects prey by smell because the prey leaves its odor
when moving. The predator moves faster than the prey, and when prey is nearby, the predator senses
the smell and moves toward it. Each cell in the space represents an area of land (with vegetation,
trees, etc.). Dense vegetation does not allow animals to advance, and both prey and predators are
trying to abandon the area under study. When a prey is in a cell, it leaves a track of smell, which can
be detected for a specific period. The cell’s states are summarized in Figure 5.19.

In this model a cell’s value finished in 1 represents toward north (N), finished in 2 represents
toward east (E), finished in 3 represents toward south (S), and finished in 4 represents toward west
(W) (and they are combined with values 200, 210, 300, and 310 to represent different states for
predator and prey).

The prey follows the areas without vegetation, trying to abandon the area (211-4). If there is no
vegetation around, it searches for it (201-4). For example, the cell value 214 represents prey follow-
ing vegetation to find the exit in an eastern direction. The prey takes 1 s for each movement and 0.5 s
to turn. The odor left while moving lasts 4 s, and it vanishes slowly (reducing intensity every 1 s;
it is represented by the values 104-1. The prey tries to follow the vegetation; it cannot run over the
thick vegetation, a predator, or strong smell (the two highest values). The predator is faster (taking
0.8 s to move and 0.3 s to turn). We use an inertial delay to represent the fact that prey ready to move
might be caught by a faster predator. Both move in directions N/S/E/W (although we use Moore’s
neighborhood in order to avoid collisions).

Figure 5.20 shows the specification of the model using CD++ (found in ./prey.zip). The cell’s
value equal to 400 represents thick vegetation, where the prey and predator cannot move. Hence,
the first rule in Figure 5.20 tells us that a cell should be evaluated only if the cell’s value is equal to
400. This rule has a very long delay (because we do not need to re-evaluate it again after initializa-
tion). The second set of rules defines the behavior of a predator following the smell left by prey. A
cell with a value of 30i/31i represents a predator moving to the N/S/E/W.

The next set of rules governs the predator movement when attacking a prey found to the N. These
rules work in pairs: one rule is used to move the animal to the new position, and the other is used
to update the cell where the animal was. In the movement rules, we use an 800-ms delay (predator
speed). As we can see, we first check if the cell has a predator moving N. Then we check to see if the
cell to the N has prey (i.e., it has a number between 200 and 250) or traces of smell (i.e., a number
larger than 100). In this case, the predator moves N and takes the cell.

The following rules are used by the prey while searching for vegetation. The prey moves in the
opposite direction to the smell, leaving a trace of strong smell (104-rules A). When encountering
vegetation (rules B), the prey turns (which takes 500 ms) and starts following the path formed by
the vegetation.

The last rules represent the smell trace left by prey. Four values represent different dispersion
phases. The first line in the smell rules governs the smell attenuation by subtracting 1 from the
actual cell’s value every second. The last rule changes the actual cell’s value to zero (no smell in

FIGURE 5.19 Cell state codification.

53361.indb 114 3/11/09 10:45:45 AM

© 2009 by Taylor & Francis Group, LLC

Description Cell Value
1..4 An animal moving toward N (1), W (2), S (3), or E (4).
200 Prey looking for vegetation.
210 Prey following the vegetation to leave the area.
300 Predator looking for vegetation.
310 Predator following the forest to find the exit.
400 Thick vegetation (does not allow animal movement).
0 Thin vegetation (allows animal movement).
101..104 Smell.

Modeling Simple DEVS and Cell-DEVS Models in CD++ 115

the cell). Because we use inertial delays, any changes in the computation will preempt the previous
state change. As we can see, we use different delays for each group of cells, in order to better quan-
tify the timing information for each of the behaviors.

Figure 5.21 shows the execution results of the model. The prey is trying to escape from the preda-
tor until it is captured.

Exercise 5.9

Move the expression ((0,0) = 311 or (0,0) = 301) to the front of the rule and study the differ-
ence in time of the execution results (a rule with a false condition in an AND stops being evaluated).

Exercise 5.10

Give different numbers of predators and prey and repeat this exercise.

[pred-prey]
type : cell dim : (20,20) delay : inertial
neighbors: (-1,-1)(-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1)
border : nowrapped localtransition : movement

[movement]
rule : { (0,0) } 100000 { (0,0)=400}

%Predator following smell

%Predator eating prey found towards N
rule: 0 800 {(-1,0)>100 and (-1,0)<250 and ((0,0)=311 or (0,0)=301)}
rule: 311 800 {(0,0)>100 and (0,0)<250 and ((1,0)=311 or (1,0)=301)}

% prey searching for vegetation (A)

...

%Rules from smell path
rule: {(0,0)-1} 1000 {(0,0)>101 and (0,0)<105}
rule: 0 1000 {(0,0)<=101}
rule: {(0,0)} 100 {t}

FIGURE 5.20 Specification of prey–predator model.

FIGURE 5.21 Execution result of prey–predator model. (From Ameghino, J., and G. Wainer. 2004.
Proceedings of Artificial Intelligence, Simulation and Planning, Jeju Island, Korea.)

53361.indb 115 3/11/09 10:45:46 AM

© 2009 by Taylor & Francis Group, LLC

116 Discrete-Event Modeling and Simulation

Exercise 5.11

Change the first movement rule to the end of the model, and study the difference in execution time.
(Rules are evaluated in order of appearance; if one is found to be true, the rest are not evaluated.)
Propose other changes in the order for rule definitions to improve performance of the simulation.

5.6 HEAT DIFFUSION

In this section, we introduce a multimodel that includes three
components: a three-dimensional space reproducing the behav-
ior of a room and two generators (one source of heat and one
source of cold). The model, which can be found in ./3d_heat-
Diffusion.zip, was introduced in Wainer and Giambiasi [8].
Each cell in the space contains a temperature value in the area
corresponding to the cell. The temperature is calculated as the
average of the one in the cell and in its near neighbors, depicted
in Figure 5.22.

A heating device gives high temperatures to cells (2,2,1) and (3,3,0). The heater simulator gen-
erates a flow of temperatures between 24 and 80°C with uniform distribution. On the other hand,
a source of cold air (e.g., an air conditioner in the summer or an open window in winter) is con-
nected to the cells (1,3,3) and (3,3,2). The corresponding model is used to create values in the range
[–10, 15], also with uniform distribution. Both generators create values after x s, where x follows
an exponential distribution with mean of 40 s. The coupling scheme of the models is shown in
Figure 5.23, and Figure 5.24 shows the complete model definition.

The first lines define the top model and its components. Then we define the coupling scheme
between the models: we connect the heat gen-
erator to the inputheat port in the cell space, and
then we connect this port to specific cells (and
we use a similar scheme for the cold generator).
Then we include the definition of the cellular
model (surface) that represents the room to be
studied, including the grid size, kind of delay,
and border. It is composed of 10 × 10 × 4 cells,
and the local computing function calculates the
present value as an average of the inputs (coming
from the neighbors or the external generators).

Because we need specialized behavior on the
cells receiving inputs on these new ports, we define different functions to do this (setHeat, setCold).
The setHeat rules define a function that generates a temperature value in the range [24, 80], using a
uniform probabilistic distribution. These values are received through the in port of the cells (2,2,1)
and (3,3,0). Likewise, line setCold defines the function that generates temperatures in the range
[–45, 10] with uniform distribution. These values will be received through the in port of the cells
(1,3,3) and (3,3,2). The remaining lines in the file define arguments for the heat and cold generators
(which send temperature values with a frequency chosen using a random number generator with
exponential distribution, with an average value of 40 s).

Figure 5.25 shows some of the results generated when the model is executed.
In simulated time 00:00:01:000, the heater/cold sources produce changes in the cells where

they are connected. Consequently, the state of the neighbors of these cells will change in time
00:00:02:000. In the following stages, the rest of the cells will also change, following the rules
of the model. Finally, at 00:00:15:245, the cold source will produce a change in the cells (1,3,3)
and (3,3,2), with temperatures of –12.9 and –4.2°C. These values will affect the neighboring cells.

FIGURE 5.22 Neighborhood shape
for the heat diffusion model.

Heat Cold

FIGURE 5.23 Coupling scheme of the heat diffu-
sion model.

53361.indb 116 3/11/09 10:45:47 AM

© 2009 by Taylor & Francis Group, LLC

Modeling Simple DEVS and Cell-DEVS Models in CD++ 117

Figure 5.26 shows a graphical representation of the model’s execution (this graph shows only one of
the planes in the model). In Figure 5.26, we can observe the heat diffusion using different shades.
We can see the influence of the heat/cold generators, although the cold generators are not activated
as often as the heaters because the used distribution has a different mean, thus implying that the
event with cold information appears in during longer periods.

Exercise 5.12

Change the initial conditions for the model and the values for the temperatures generated. Run the
simulation and analyze the results.

FIGURE 5.24 Model of heat diffusion.

53361.indb 117 3/11/09 10:45:47 AM

© 2009 by Taylor & Francis Group, LLC

118 Discrete-Event Modeling and Simulation

Exercise 5.13

Change the size of the room and repeat the simulation.

Exercise 5.14

Modify the neighborhood shape and use a 3 × 3 × 3 cube. Repeat the simulation and analyze the results
with this change.

5.7 GSM CELLULAR NETWORK AUTHENTICATION SIMULATOR

GSM (Global System for Mobile communications) is a radio-based cellular network used for cell
phones, PDAs, and similar devices. It is the most popular standard for these applications because

Line : 593 - Time: 00:00:02:000
 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
 +--------------------+ +--------------------+ +--------------------+ +--------------------+
 0| 25.9 24.0 25.9 23.2| 0| 24.0 24.0 28.0 24.9| 0| 23.0 24.0 23.0 20.3| 0| 21.3 24.0 21.3 22.3|
 1| 21.3 24.0 23.3 25.2| 1| 24.0 26.0 26.0 20.6| 1| 21.3 24.0 23.3 19.3| 1| 21.3 18.6 21.3 21.3|
 2| 25.9 26.0 27.9 25.3| 2| 28.0 26.0 26.0 27.0| 2| 23.0 26.0 25.0 22.3| 2| 21.3 24.0 25.3 22.3|
 3| 25.9 27.9 27.9 24.0| 3| 24.9 26.0 27.0 27.0| 3| 23.0 22.0 25.0 26.9| 3| 24.9 24.0 24.9 19.6|
 +--------------------+ +--------------------+ +--------------------+ +--------------------+
Line : 741 - Time: 00:00:02:640
 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
 +--------------------+ +--------------------+ +--------------------+ +--------------------+
 0| 25.9 24.0 25.9 23.2| 0| 24.0 24.0 28.0 24.9| 0| 23.0 24.0 23.0 20.3| 0| 21.3 24.0 21.3 22.3|
 1| 21.3 24.0 23.3 25.2| 1| 24.0 26.0 26.0 20.6| 1| 21.3 24.0 23.3 19.3| 1| 21.3 18.6 21.3 21.3|
 2| 25.9 26.0 27.9 25.3| 2| 28.0 26.0 41.8 27.0| 2| 23.0 26.0 25.0 22.3| 2| 21.3 24.0 25.3 22.3|
 3| 25.9 27.9 27.9 38.5| 3| 24.9 26.0 27.0 27.0| 3| 23.0 22.0 25.0 26.9| 3| 24.9 24.0 24.9 19.6|
 +--------------------+ +--------------------+ +--------------------+ +--------------------+

Line : 8860 - Time: 00:00:15:245
 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
 +--------------------+ +--------------------+ +--------------------+ +--------------------+
 0| 24.1 24.1 24.1 24.1| 0| 24.1 24.1 24.1 24.1| 0| 24.1 24.1 24.1 24.1| 0| 24.1 24.1 24.1 24.1|
 1| 24.1 24.1 24.1 24.1| 1| 24.1 24.1 24.1 24.1| 1| 24.1 24.1 24.1 24.1| 1| 24.1 24.1 24.1-12.9|
 2| 24.1 24.1 24.1 24.1| 2| 24.1 24.1 24.1 24.1| 2| 24.1 24.1 24.1 24.1| 2| 24.1 24.1 24.1 24.1|
 3| 24.1 24.1 24.1 24.1| 3| 24.1 24.1 24.1 24.1| 3| 24.1 24.1 24.1 -4.2| 3| 24.1 24.1 24.1 24.1|
 +--------------------+ +--------------------+ +--------------------+ +--------------------+

Line : 9184 - Time: 00:00:15:640
 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
 +--------------------+ +--------------------+ +--------------------+ +--------------------+
 0| 24.6 24.6 24.6 24.6| 0| 24.6 24.6 24.6 24.6| 0| 24.6 24.6 24.6 24.6| 0| 24.6 24.6 24.6 24.6|
 1| 24.6 24.6 24.6 24.6| 1| 24.6 24.6 24.6 24.6| 1| 24.6 24.6 24.6 24.6| 1| 24.6 24.6 24.6 24.6|
 2| 24.6 24.6 24.6 24.6| 2| 24.6 24.6 24.6 24.6| 2| 24.6 24.6 24.6 24.6| 2| 24.6 24.6 24.6 24.6|
 3| 24.6 24.6 24.6 24.6| 3| 24.6 24.6 24.6 24.6| 3| 24.6 24.6 24.6 24.6| 3| 24.6 24.6 24.6 24.6|
 +--------------------+ +--------------------+ +--------------------+ +--------------------+

FIGURE 5.25 Simulation results of the heat diffusion model.

FIGURE 5.26 Execution results of the heat diffusion model.

53361.indb 118 3/11/09 10:45:48 AM

© 2009 by Taylor & Francis Group, LLC

Modeling Simple DEVS and Cell-DEVS Models in CD++ 119

it permits roaming in different countries. These networks include a variety of security services
implemented between the network and the handsets, including authentication to any given handset.
This functionality is performed in a SIM (Subscriber Identity Module) card, which is contained in
the handset (hence, from here on we will refer to the SIM card and handset interchangeably). The
main function of the SIM is to identify a customer, because the card can be interchanged between
phones if the user decides to change devices. Each card is assigned an identifier and a subscriber
authentication key (Ki), which is known only to the SIM card and the network (it is never transmit-
ted over the air).

The authentication method modeled here is a challenge response method: the handset contacts the
network claiming a certain identity (Id). To verify the SIM card’s identity without giving away the Ki,
the network generates a random 128-bit number that is broadcast to all the phones in the area. Both
the handset and the network use the A3 algorithm (found at http://www.gsmworld.com), which takes
this number and the Ki and generates a 32-bit signed response (SRES). The handset then transmits
the SRES back to the network, which verifies that it is the expected SRES (if not, authentication is
rejected).

The GSM authentication model, depicted in Figure 5.27, has two components: the SIM card
(SIM) and the mobile network, which is further decomposed into the access control (AC) and the
mobile switching center (MSC) models. The GSM authentication model uses two inputs and one
output. MaxValidId is used to specify the value of the maximum Id recognized by network, and on
is an integer specifying the Id of the mobile phone that is requesting authentication (to simulate the
event of a mobile phone being turned on somewhere in the network). The output Ok takes a value
of 1 for a successful authentication and 0 otherwise. The mobile network is assumed to be very fast
compared to the SIM card, and its operation time is assumed negligible (and modeled as an instan-
taneous event). Meanwhile, the SIM card takes 3 s to send the Id to the network after receiving an
on input and another 3 s to calculate the value of SRES_2.

The DEVS specifications and CD++ implementation of the SIM model are shown in
Figure 5.28.

The on input of the SIM model is an integer representing the Id of the SIM card. When an input
is received at this port, its value is sent out the Id output port after a preparation time. Immediately
after an input is received at the on input port, the SIM model is in a state of waiting for a RAND
input; therefore, if during this time another on input is received, it will be discarded. However, when
the RAND input is received, its value is added to the value of Id and, after a delay (preparation-
Time), the result of this addition is sent out the SRES_2 output port. Any input received during this
preparation time is ignored.

Id

SIMRAND

SRES_2

Mobile Network

AC

MSC

GSM Authentication

SRE

OK

MaxValidId

On

FIGURE 5.27 Structure of GSM authentication model.

53361.indb 119 3/11/09 10:45:49 AM

© 2009 by Taylor & Francis Group, LLC

http://www.gsmworld.com

120 Discrete-Event Modeling and Simulation

The model can be found in ./GSM_Authentication_Sim.zip, and the coupled model (Figure 5.29)
for the whole system is defined.

Figure 5.30 shows the simulation results for the SIM model for the given inputs.

FIGURE 5.28 Defining the SIM model.

53361.indb 120 3/11/09 10:45:50 AM

© 2009 by Taylor & Francis Group, LLC

Modeling Simple DEVS and Cell-DEVS Models in CD++ 121

For each on input (except for the ones in bold), we obtain an output with an Id output with the
same value (delayed 3). The others are discarded. Likewise, for each Rand input (except for the ones
in bold), the output contains an SRES_2 value with the sum of the Rand input and the previous
(nondiscarded) on value. Again, the SRES_2 outputs appear 3 s later than the Rand input (Rand
inputs in bold are discarded).

The GSM authentication simulator coupled model is made up of the combination of the SIM
atomic model and the mobile network coupled model. The GSM authentication simulator has two
inputs: on and MaxValidId. The behavior of the inputs is as described in the earlier sections—
namely, receiving an on input causes the SIM to start the authentication process by sending its Id
(the value received at the on input port) to the mobile network. Receiving a MaxValidId input sets
the maximum Id value that will be considered an authentic Id by the mobile network. The only
output of the GSM authentication simulator is the Ok output, which indicates, for each received on
input, whether that particular mobile phone was successfully authenticated or not. The Ok output
should appear 6 s after the time the on input was received due to the preparationTime delays in the
SIM atomic model. For each on input with a value less than or equal to the last MaxValidId input,
the output file should contain an Ok output of 1. Otherwise, it should contain an Ok output of 0. The
outputs are 6 s after the inputs. This global behavior can be seen in the simulation results for the
coupled model shown in Figure 5.31.

GSM=<X,Y,{Mobile_Network,SIM},EIC,EOC,IC,SELECT>
X = {MaxValidId, On}
Y = {Ok}
EIC = { (MaxValidId.Self, MaxValidId.Mobile_Network),
 (On.Self, On.SIM); }
EOC = { (OK.Mobile_Network, OK.Self) }
IC = { (Id.SIM, ID.Mobile_Network);
 (SRES_2. SIM, SRES_2.Mobile_Network);
 (RAND.Mobile_Network, RAND.SIM); }
SELECT: ({Mobile_Network, SIM}) = SIM;

[top]
components : SIMCard@SIMCard
MobileNetwork
in : MaxValidId
in : On
out : Ok
Link : MaxValidId
MaxValidId@MobileNetwork
Link : On On@SIMCard

Link : Ok@MobileNetwork Ok
Link : Id@SIMCard Id@MobileNetwork
Link : SRES_2@SIMCard
SRES_2@MobileNetwork
Link : RAND@MobileNetwork
RAND@SIMCard

[SIMCard]
preparation : 00:00:03:00
distribution : normal
mean : 50
deviation : 25

FIGURE 5.29 Defining the network coupled model.

FIGURE 5.30 Simulation results for the SIM model.

53361.indb 121 3/11/09 10:45:51 AM

© 2009 by Taylor & Francis Group, LLC

122 Discrete-Event Modeling and Simulation

The test in Figure 5.32 was designed to reproduce the one in Figure 5.31, with the addition of a
continuous input (every second for 7 s) at the on port at the end. The goal is to examine the behavior
of the simulator when new inputs are received while it is busy with a previous input.

As expected, the last consecutive inputs resulted in only one output corresponding to the last
input (all other inputs from time 46 to 51 are ignored). The reason for this is that, in our model, the
SIM card takes 3 s to prepare to send out the Id output to the network and 3 s to prepare to send out
the SRES_2 output to the network (the network time itself is negligible). During these 6 s, the SIM
card ignores any inputs and only the input received after 7 s is not discarded.

Figure 5.33 shows the changes in each of the relevant state variables for the preceding inputs
using a CD++ modeler graphical interface.

The first event received is on MaxValidId (a value of 27 at time 10). This value is kept until
time 40, where it becomes 5 (as in the specified input). Also following the inputs, the on state vari-
able gets the appropriate values at the appropriate times. In response to the on inputs, an output is
seen at the Id state variable 3 s after the on input is received. At the same time (3 s after input on), a
random number is generated and put in state variable Rand. Notice that, for the consecutive inputs
at the end, no Id or Rand values are generated because those inputs are ignored. Now, another 3 s
after each of the Rand values, an SRES_2 value is generated. This value is sent to the MSC, which
immediately produces an output, and it can be seen in the graph of Ok.

5.8 SUMMARY

In this chapter, we have introduced the use of CD++ to model a few simple applications. Initially, we
presented a few Cell-DEVS models based on traditional cellular automata applications and showed
how to define them using the toolkit. We also presented a basic model to represent a microwave
oven as a DEVS model, trying to mimic the behavior of the oven controller and display. We also
introduced a model of a duopolistic market represented as a cellular model, in which we can analyze
the behavior of such a market under varied conditions. We presented a model of prey running away
from a predator and a three-dimensional heat diffusion model. Finally, we introduced a simple net-
working application based on authentication for GSM cellular phones. These multiple applications
show the basic ideas on how to create DEVS and Cell-DEVS models in CD++. In the following
chapters, we will focus on more advanced models in different fields of application.

00:00:10:00 MaxValidId 27
00:00:15:00 On 25
00:00:25:00 On 45
00:00:35:00 On 15
00:00:40:00 MaxValidId 5
00:00:45:00 On 10

00:00:21:000 ok 1
00:00:31:000 ok 0
00:00:41:000 ok 1
00:00:51:000 ok 0

FIGURE 5.31 Simulation results for the coupled model.

FIGURE 5.32 Simulation results: multiple consecutive inputs.

53361.indb 122 3/11/09 10:45:51 AM

© 2009 by Taylor & Francis Group, LLC

Modeling Simple DEVS and Cell-DEVS Models in CD++ 123

REFERENCES

1. Nayfeh, B. 1993. Cellular automata for solving mazes. Doctor Dobb’s Journal, February 1993.
2. Lam, K., and G. Wainer. 2003. Modeling of maze-solving problems using cell-DEVS. Proceedings of

2003 SCS Summer Computer Simulation Conference, Montreal, QC, Canada.
3. Toffoli, T. 1994. Occam, Turing, von Neumann, Jaynes: How much can you get for how little? (A concep-

tual introduction to cellular automata). Proceedings of International Conference on Cellular Automata
for Research and Industry, Rende, Italy.

4. Toffoli, T., and N. Margolus. 1987. Cellular automata machines: A new environment for modeling.
Cambridge, MA: MIT Press.

5. Liu, Q., and G. Wainer. 2005. Simulating market dynamics with CD++. Proceedings of International
Conference on Computational Science, Atlanta, GA, 368–372.

6. Oda, S. H., K. Iyori, M. Ken, and K. Ueda. 1999. The application of cellular automata to the consum-
er’s problem. Proceedings of Second Asia-Pacific Conference on Simulated Evolution and Learning,
SEAL’98, Canberra, Australia, 454–461.

7. Ameghino, J., and G. Wainer. 2004. Application of the cell-DEVS formalism for modeling cell spaces.
Proceedings of Artificial Intelligence, Simulation and Planning, Jeju Island, Korea.

8. Wainer, G., and N. Giambiasi. 2001. Timed cell-DEVS: Modelling and simulation of cell spaces. In
Discrete event modeling & simulation: Enabling future technologies, ed. H. S. Sarjoughian and F. E.
Cellier. New York: Springer–Verlag.

on
49.5

0.9
135.:

17.1

1.1

0.0

29.7 27.0

10
5.0
40

4.5

113.:

3.6

49.5

0.9

25.0

18 28 38 48 55
1.010.015.0

45.0

98.0

18 28 38 48 55

18.0

103.0

4.0
20.0

25.0
45.0

15.0 10.0
1.0.0.0.0.0.0.0

15 25
123.0

55.0

19.0

113.0

19.0
58
1.0

51413121

5851413121

1.0

0.0

1.0

0.0

35 4546474849506152

sres_2

ok

rand

maxvalidid

FIGURE 5.33 Graphical display from the model.

53361.indb 123 3/11/09 10:45:52 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

125

6 Discrete-Event
Applications with DEVS

6.1 INTRODUCTION

In this chapter we introduce a few generic applications of discrete-event systems using DEVS mod-
els, focusing on their implementation using the CD++ toolkit. We include a model of a simple auto-
mated teller machine (ATM), a model of a water reservoir for a city, and a traffic light model with
radar to detect vehicles moving at high speed.

6.2 A MODEL OF AN ATM

We want to model the behavior of a simple machine that is a simplified version of a fully featured
ATM (the machine we model here is only capable of dispensing money). The operations of entering
a PIN and withdrawing available funds are generated at random (assuming that 90% of the time a
PIN entered is correct and that 80% of the time the amount requested is available to the customer).
The goal of such a model is to study an estimate for the duration of a whole withdrawal operation.
The model has the structure shown in Figure 6.1.

As we can see, the machine is composed of three submodels:

Card reader is responsible for accepting a card into the machine and reading the customer’s
information stored on it. It also returns the card at the end or after a failed transaction.
Cash dispenser is in charge of providing the required (and approved) funds to a customer.
Authorization is a coupled model that receives a PIN number, validates it, gets the amount
requested, checks the available funds, and gives the approved funds to the customer. It is
composed of the following:

User interface acts as the interface between the customer and the ATM, permitting
the customer to enter the PIN and amount of money to withdraw.
PIN verifier verifies the PIN entered by the customer (which is simulated as a random
function in which we use a uniform probabilistic distribution to decide if the PIN
entered is correct or not). If valid, it returns OK (so if the PIN verifier gets connected
to the user interface, this model will know about this fact and it can then request the
amount to be withdrawn). If the PIN is not valid, the model informs about this fact (so,
for instance, the user interface model can ask the user to re-enter the PIN).
Balance verifier checks to see if the customer has enough funds to cover the required
amount (which is also simulated as a random function in which we use a uniform
probabilistic distribution to decide if the customer has enough funds or not). If not, it
returns a request for a new amount.

We first need to define each of the atomic models in the hierarchy. As an example, we will show
the details of the PIN verifier model (the remaining atomic models, which are built using similar
ideas, can be found in ./atm.zip). As previously discussed, the PIN verification will be simulated by
generating a random number with uniform distribution; in 90% of cases it would be considered to
match the PIN stored, as seen in Figure 6.2.

53361.indb 125 3/11/09 10:45:53 AM

© 2009 by Taylor & Francis Group, LLC

126 Discrete-Event Modeling and Simulation

Initially, we define the model’s interface (one input port to receive a PIN and three output ports:
one to request the card to be ejected, one to request a new PIN to be entered, and another to inform
that the PIN is correct and now the amount to be withdrawn needs to be requested). The external
transition function stores the PIN number and then generates a random number with uniform dis-
tribution; 90% of the time the PIN is considered to be OK (in this case, we reset the number of
attempts). Otherwise, we reject it and increase the number of trials. We then wait a random time
period (representing the delay of the operation), after which an internal transition function is trig-
gered. If the PIN was correct, the output function will issue a request through the get_amnt port,
asking for the amount to be withdrawn. If the PIN was incorrect, we request the user to try again,
but after three attempts the card is rejected. We finally execute the internal transition function,
which passivates the model after resetting the counters (if needed).

Once all the atomic models have been defined, we can create a coupled model of the whole sys-
tem (based on Figure 6.1). The following is a formal specification for such a model:

ATM = <X, Y, D, EIC, EOC, IC, SELECT> (6.1)

X = {Card}; Y = {Card_out, Cash_out}
D = {Card_reader, Cash_Dispenser, Authorization}
EIC = {(Self.in, Card_Reader.Card_in)}
EOC = {(Card_Reader.Card_out,Self.Card_out), (Cash_Dispenser.out,Self.Cash_out)}
IC = { (Card_Reader.CardNo_out, Authorization.in), (Authorization.Amnt_out, Cash_

Dispenser.in), (Authorization.Eject,Card_Reader.Eject) }
SELECT :{Card_Reader, Cash_Dispenser} = Cash_Dispenser;
 { Authorization, Cash_Dispenser} = Cash_Dispenser

Using CD++ we can represent this formal specification in the graphical notation shown
in Figure 6.3. When we export this graphical model, we obtain the text specification shown in
Figure 6.4, which will be the one we can use to execute the model.

Figure 6.1, Figure 6.3, and Figure 6.4 represent different ways of representing the coupled model
(and they are equivalent, as all of them were built based on DEVS formal specifications for coupled
models, i.e., the ATM coupled model defined earlier). The following figure shows the simulation

Card

Card in
Card Reader

Eject

Cash
Dispenser

Amnt

Amnt
Amnt

Amnt?

PIN

PIN
Verifier

Eject

Cash out

Balance
Verifier

ATM
Card out

Card#

PIN?

User
Interface

Authorization

FIGURE 6.1 Structure of the ATM model.

53361.indb 126 3/11/09 10:45:53 AM

© 2009 by Taylor & Francis Group, LLC

Discrete-Event Applications with DEVS 127

results for this model, in which we consider a user arriving at time 10:000. Figure 6.4 shows a
detailed log with the activities at the top level. When the simulation starts, we receive an input (X)
through the in port in the top model, which is routed to the card_in port of the cardreader model
(following the coupled model specification in Figure 6.4). The cardreader then schedules an inter-
nal transition in 01:987 (D), which is triggered at 11:987 (*). At this time, we execute the output
function (Y), which will return a card number (697 in port cardno_out) and the internal transition
function that will passivate the model (“…” represents infinity). The top model will then get the
card number and, according to the coupling scheme, it will forward it to in@auth. Following the
hierarchical coupling scheme, this message will be converted into an input to the userface model.
This model will verify the card and will generate an output/internal transition at 13:579, when a
PIN will be generated (549). This information is then sent to the authorization submodel through
pin _ in@pinver. With this information, we activate the pin verification submodel (defined in

FIGURE 6.2 Definition of the pin verification atomic model.

53361.indb 127 3/11/09 10:45:59 AM

© 2009 by Taylor & Francis Group, LLC

128 Discrete-Event Modeling and Simulation

FIGURE 6.3 Structure of the ATM model in CD++. (From Kidisyuk, K., and G. Wainer. 2007. Proceedings
of DEVS Symposium 2007, Norfolk, VA, and Cidre, J. I. 2006. A Web-based interface for the CD++Modeler
toolkit. MCS thesis, Universidad de Buenos Aires, Argentina.)

[top]
components : cardreader@CardReader cashdispenser@Cashdispenser auth
out : cash_out card_out
in : in
Link : in card_in@cardreader
Link : cardno_out@cardreader in@auth
Link : amnt_out@auth in@cashdispenser
Link : amnt_out@auth eject@cardreader
Link : eject@auth eject@cardreader
Link : out@cashdispenser cash_out
Link : card_out@cardreader card_out

[auth]
components : balancver@Balanceverifier userface@UserInterface pinver@PINverifier
out : amnt_out eject
in : in
Link : in cardno@userface
Link : get_pin@pinver get_pin@userface
Link : pin_out@userface pin_in@pinver
Link : get_amnt@pinver get_amnt@userface
Link : amnt_out@userface amnt_in@balancver
Link : get_amnt_out@balancver get_amnt@userface
Link : amnt_out@balancver amnt_out

FIGURE 6.4 Structure of the ATM model in CD++ (text definition).

53361.indb 128 3/11/09 10:45:59 AM

© 2009 by Taylor & Francis Group, LLC

Discrete-Event Applications with DEVS 129

Figure 6.2). If we follow the code for this atomic model, we see that the number 549 received
through the pin_in port is saved in the pin variable. Then we decide if it is accepted or rejected
at random, and we generate an internal transition after 01:915 s. At this point, we activate the
model’s output function (which transmits the number 1 through the port get_amt, as we can see in
the model’s definition), and the internal transition passivates the model.

Exercise 6.1

Explain in detail the rest of the execution of the ATM simulation presented in Figure 6.6.

Exercise 6.2

Modify the PIN verification mechanism. In this case, instead of doing it at random, define a database of
PINs (in a file or in an array in memory) and use it to check if the PIN is correct.

Exercise 6.3

Modify the model in Exercise 6.2 to change the mechanism for balance verification. Create a database
(in a file or in an array) where each account is associated with the available balance. Modify the cash
dispenser model to update the database according to the amount of money given back to the customer.

Exercise 6.4

Modify the coupled model to be flat (i.e., all the models are at the same level).

Exercise 6.5

Modify the model in Exercise 6.3 to include two new submodels: one to check and display the current
balance of the account and another to allow customers to deposit funds.

Figure 6.6 shows the simulation results of the model using CD++Modeler. The first figure shows
a detailed execution of the authorization coupled model. As we can see, the input/output trajectories
follow those presented earlier in Figure 6.5.

The model shows only the input/output ports of the authorization submodel. Initially, we receive
a card number (697) and a PIN (549), as explained earlier. Because the PIN is OK, the get_amnt port
returns True (1), and we request the amount to be withdrawn (981), which is delivered through the
amnt_out port shortly thereafter. We see that a new card/PIN is entered afterwards (at 00:32/00:37),
and the user requests different sums that are rejected, until at 1:11 the user’s request is granted.

6.3 A WATER RESERVOIR CONTROLLER FOR A CITY

In this model we intend to model the control system in charge of a reservoir of water for a small city.
The structure of the model is presented in Figure 6.7.

The system consists of two separate entities: the water wells and the pump station. This station
consists of a number of electrical pumps (two or more) connected to the water reservoir (basically,
a large water tank holding a reserve of water for the city). The water comes from the wells into the
reservoir and then is pumped into the city water system. An operator can start/stop one or several
of the electrical pumps, trying to keep the flow on the outgoing pipe at a certain rate, according to
water consumption in the city at that moment and the water available in the reservoir and the wells.
Likewise, the pumps’ overflow is returned to the wells.

Figure 6.8 shows the definition of the water pump model in CD++, which can be found in
./city_water.zip. Initially, we define the model I/O ports and initialize a few variables (level, power,
start/stop, etc.). We query the nominal flow and the alarm information from the model’s definition
file. The external transition function reacts to different inputs:

53361.indb 129 3/11/09 10:46:00 AM

© 2009 by Taylor & Francis Group, LLC

130 Discrete-Event Modeling and Simulation

Power can be turned on and off.
The current level of the reservoir is received and stored.
If a low-level value is available, the pumps are stopped (and the model passivates).
The inputs arriving at the start_in port are used to restart a stopped pump. We use the
start command, and, if the current level is higher than the alarm level, we record the state
change and change the flow based on the nominal flow rate.
When we receive a stop_in input, we decrease the flow according to the nominal flow
defined by the user. When the internal transition function is triggered, we output the cur-
rent flow/state, and we schedule a new internal transition function after active_time.

Figure 6.9 shows the definition of the atomic model using CD++Modeler. The model has four
states: Idle, vol_supp, vol_pump, and level_comp. Initially, the model is idle and in a passive state
(99:99:99:999 represents infinity). At this point, we can receive a water supply from the wells (q_in
input port) or excess from the pump (qp_in input port) and change state accordingly. Ten seconds

X / 10:000 / Root / in / 1 to top
X / 10:000 / top / card_in / 1 to cardreader
D / 10:000 / cardreader / 01:987 to top
* / 11:987 / top to cardreader
Y / 11:987 / cardreader / cardno_out / 697 to top
D / 11:987 / cardreader / ... to top
X / 11:987 / top / in / 697 to auth
X / 11:987 / auth / cardno / 697 to userface
D / 11:987 / userface / 01:592 to auth
D / 11:987 / auth / 01:592 to top
* / 13:579 / top to auth
* / 13:579 / auth to userface
Y / 13:579 / userface / pin_out / 549 to auth
D / 13:579 / userface / ... to auth
X / 13:579 / auth / pin_in / 549 to pinver
D / 13:579 / pinver / 01:915 to auth
* / 15:494 / auth to pinver
Y / 15:494 / pinver / get_amnt / 1 to auth
D / 15:494 / pinver / ... to auth
X / 15:494 / auth / get_amnt / 1 to userface
D / 15:494 / userface / 04:070 to auth
* / 19:564 / auth to userface
Y / 19:564 / userface / amnt_out / 981 to auth
D / 19:564 / userface / ... to auth
X / 19:564 / auth / amnt_in / 981 to balancver
Y / 21:929 / balancver / amnt_out / 981 to auth
D / 21:929 / balancver / ... to auth
Y / 21:929 / auth / amnt_out / 981 to top
D / 21:929 / auth / ... to top
X / 21:929 / top / eject / 981 to cardreader
X / 21:929 / top / in / 981 to cashdispenser(07)
D / 21:929 / cardreader / 02:160 to top
D / 21:929 / cashdispenser(07) / 02:849 to top
* / 24:089 / top to cardreader
Y / 24:089 / cardreader / card_out / 1 to top
D / 24:089 / cardreader / ... to top
Y / 24:089 / top / card_out / 1 to Root
D / 24:089 / top / 00:689 to Root
* / 24:778 / Root to top
* / 24:778 / top to cashdispenser(07)
Y / 24:778 / cashdispenser(07) / out / 981 to top
D / 24:778 / cashdispenser(07) / ... to top
Y / 24:778 / top / cash_out / 981 to Root
D / 24:778 / top / ... to Root

FIGURE 6.5 ATM simulation results.

53361.indb 130 3/11/09 10:46:00 AM

© 2009 by Taylor & Francis Group, LLC

Discrete-Event Applications with DEVS 131

after any of these events, we trigger an internal transition function. In both cases, we change to the
level_comp state, but two different computations are executed by the output functions: if we get an
overflow from the pump, we compute the overflow. Otherwise, we need to consider both pump’s and
well’s inputs in the computation.

Figure 6.10 shows the execution of the model. The external events turn on the pump submodel
and then initiate the wells. At this point, we start seeing activity. At 00:02:33:001, the wells generate
a flow of 475 L/s (the maximum is 500 L/s). At the same time, we can see the second pump work-
ing. After that, we can see the level of the reservoir going up and the second pump being activated.
At 00:04:03:001, we can see that when flow_out is below the limit, the pump is switched off, and
the level of the reservoir reduces (but is refilled by the output from pump1). Figure 6.11 shows the
execution of such a model using CD++Modeler.

We can see that the initial level of the reservoir goes down slowly, until we turn on the pumps. At
this point, the level goes up and down according to the flow level and the status of the controller.

Exercise 6.6

Change the model to include three pumps and analyze the simulation results.

1079.

0.0

1.1 1.0 1.0 1.0 1.0 1.0

00:41 00:49 00:54 01:0700:15

get_amnt

cardno

amnt_out

pin_in

0.0

954.8
697.0

868.0

00:32

981.0

527.0

01:1400:21

00:110.0

1079.

0.0

675.4 549.0 614.0

00:13 00:370.0

00:19

981.0

460.0

00:44

487.0

00:49

912.0

01:00

527.0

01:11

amnt_in

FIGURE 6.6 ATM simulation results: authorization coupled model

53361.indb 131 3/11/09 10:46:01 AM

© 2009 by Taylor & Francis Group, LLC

132 Discrete-Event Modeling and Simulation

Exercise 6.7

Change the external parameters to increase the flow of water and the limits to detect alarms and execute
the simulation again. Analyze the results.

6.4 RADAR-BASED TRAFFIC LIGHT

The model presented in this section (found in ./RadarModeler.zip and presented in references 4
and 5) defines the behavior of a traffic light with radar and a digital camera that takes pictures
of vehicles speeding or crossing the intersection when the light is red. We presented the coupled
model structure for this application in Figure 4.29(a) in Chapter 4. The model is organized in four
components. Control is an atomic model that controls the activities of the system; according to the
current value of the traffic light, it will trigger an output directed to the Camera atomic model to
take a photo. The TrafficLight cycles among red, yellow, and green lights, while the IO model is in
charge of communication tasks.

The top-level coupled model uses the following I/O ports:

Lane (in) detects the presence of a car over the pedestrian zone at the corner of the street.
Radar (in) represents a sensor detecting a car over the maximum speed. This sensor will
be activated by the traffic light atomic model when the lane sensor detects a car in the
pedestrian zone and the traffic light is red.

State2

State2

State1

State1

P1

P2
Start

StartStart1

Start2

StopStop2

Stop
Stop1

Power

PowerPower

Pumps

Wells

Flow out

Flow out

Flow out

Flow out

Flow out

Flow out

wStart1

wStop1

wStop2
w

w

wStart2

Flow from
wells

Low Level

Res
Level

Level

FIGURE 6.7 A water reservoir for a city.

53361.indb 132 3/11/09 10:46:02 AM

© 2009 by Taylor & Francis Group, LLC

Discrete-Event Applications with DEVS 133

FIGURE 6.8 Definition of water pump model in CD++.

53361.indb 133 3/11/09 10:46:02 AM

© 2009 by Taylor & Francis Group, LLC

134 Discrete-Event Modeling and Simulation

Ext (in) issues output commands (defined to be transmitted to the camera and traffic light).
Count (in) gives information about the available memory (in number of pictures left).
Central (out) alerts Central when there is not enough memory left.

Based on the graphical model introduced in Figure 4.29(a) of Chapter 4, CD++Modeler generates
the text specification of the coupled model depicted in Figure 6.12. This specification represents the
coupled model as in the original figure, and the atomic models are created as cdd files. Each of these
files contains the description of the atomic model using DEVS-graphs (presented in Chapter 2). For
instance, Figure 6.13 represents the model’s behavior for the control atomic model using such notation.

This atomic model starts in the active state. If the radar port receives a message with high speed
(or we detect over the lane when the traffic light is red), then the model switches to the speed state.
In this state, we schedule an internal transition function instructing the camera to take a picture
(photo!1); this changes the model to the click state (which could result in taking a picture and
becoming active again. In this state, we first check to see if there is memory available; if not, we
switch to the void state and the traffic light detector becomes inactive (in this state, we lose any
infractions). In this process, the number of remaining shots is zero, so we send a message through
the empty port and wait for the memory to be emptied on the port full. When we receive more

[reservoir]
in: q_in qp_in
out: level low_level
state: Idle vol_supp vol_pump level_comp
initial : Idle
var: vol surface level alarm_level level
ext: Idle vol_supp q_in?250
ext: Idle vol_pump qp_in?200
int: vol_supp level_comp level!q_in +
 qp_in level!1 {compute;}
int: vol_pump level_comp {compute_pump;}
int: level_comp Idle
Idle:99:99:99:999
vol_supp:00:00:10:00
vol_pump:00:00:10:00
level_comp:00:00:00:00
vol:1000
surface:1000
alarm_level:0.5
level:1.0

FIGURE 6.9 A model of the reservoir: graphical representation.

FIGURE 6.10 Executing the model of the reservoir.

53361.indb 134 3/11/09 10:46:03 AM

© 2009 by Taylor & Francis Group, LLC

00:00:00:50 power_in 1
00:00:02:00 wstart_in1 1
00:00:30:00 start_in1 1
00:01:00:00 start_in2 1
00:02:02:00 wstart_in2 1
00:04:00:00 stop_in2 1

00:02:33:001 flow_out 475
00:02:33:001 state_out2 1
00:02:34:001 level 0.9771
00:02:43:001 level 0.98085
00:02:53:001 flow_out 475
00:02:53:001 state_out1 1
. . .
00:04:03:001 level 0.97285
00:04:13:001 flow_out 250
00:04:13:001 state_out1 1
00:04:13:001 flow_out 250
00:04:13:001 state_out2 0
00:04:14:001 level 0.9716
00:04:23:001 level 0.97535
00:04:33:001 flow_out 250
...

Discrete-Event Applications with DEVS 135

memory (Any(full)?1), the control model becomes active and restarts the cycle. A second condition
to take a picture is when we detect a vehicle in the lane with a red traffic light (And(Equal(Lane,
1), Equal(light, 0))). In this case, we switch to the redlight state and give the order to take a picture
(changing to the click state). Every time the traffic light cycles, the model updates the value of the
variable light. The textual representation is the equivalent of the graphical model (Figure 6.14).

1.104

0.0

1.1

0.0
522.5

0.0

1.1

0.0

1.1

0.0

0.0

250.0 250.0

475.0 475.0 475.0 475.0 475.0

00:13 00:33 00:53 01:13 01:33 01:53 02:13 02:33

0.0 0.0 0.0

1.0 1.0 1.0 1.0 1.0

00:13

0.0
00:13

00:33 00:53 01:13 01:33 01:53 02:13 02:33
1.0 1.0 1.0 1.0 1.0 1.0

00:53 01:13 01:33 01:53 02:13 02:33

level

qp_in

state_out2

state_out1

start_in

1.00035 1.00211.00385 1.00061.002350.9991 0.99311.00085 0.99485 0.98710.988850.9811 0.98285 0.9751 0.97685 0.96910.9708

00:03
1.0 1.0 1.0

00:02 00:30 01:00

00:14 00:23 00:34 00:43 00:54 01:1401:03 01:23 01:34 01:43 01:54 02:03 02:14 02:23 02:34 02:43

FIGURE 6.11 Executing the model of the reservoir (graphical).

[top]
components : trafficlight@GGad control@GGad camera@GGad IO@GGad
out : central
in : lane radar ext count
Link : lane lane@control
Link : radar radar@control
Link : light@trafficlight trafficlight@control
Link : photo@control take@camera
Link : ready@camera ready@control
Link : count count@IO
Link : empty@control empty@IO
Link : restart@IO full@control
Link : ext extern@IO
Link : central@IO central

[TrafficLight] source : trafficlight.cdd
[control] source : control.cdd
[camera] source : camera.cdd
[IO] source : IO.cdd

FIGURE 6.12 Text specification of the radar coupled model.

53361.indb 135 3/11/09 10:46:04 AM

© 2009 by Taylor & Francis Group, LLC

136 Discrete-Event Modeling and Simulation

Exercise 6.8

Change the control model so that now it also detects vehicles running through a yellow or red light.

The remaining submodels were also defined using this notation (for a detailed description, see
references 4–6):

Camera is in StdBy state until it receives the shot instruction to take a value on the port
take. The time spent storing the picture is represented by the time advance function associ-
ated with the state prepare. When the picture is stored, a message is emitted in the port
ready.
Traffic light is a simple timed cycle between each of the three states of the traffic lights.
Each change of lights is announced on the port light. There are no input ports.
IO takes the responsibility of communicating with the traffic central, in order to inform the
lack of memory available for new pictures and downloading them. If a signal is received
on port empty, it sends the information through the port central to communicate the lack
of memory available for new pictures.

After defining each submodel, we can execute the simulation in order to analyze the behavior of
this system. We log the following information:

FIGURE 6.13 DEVS graph for the control model. (From Christen, G., A. Dobniewski, and G. Wainer. 2004.
Proceedings of MGA, Advanced Simulation Technologies Conference 2004, Arlington, VA.)

53361.indb 136 3/11/09 10:46:05 AM

© 2009 by Taylor & Francis Group, LLC

Discrete-Event Applications with DEVS 137

Input Message (type : ?) is recorded every time a message is received on an input port:
{port receiving the message, value received}
Output Message (type : O) is recorded each time the output function is executed: {output
port, value}
Internal Transition Function (type : I): {init, final, {(var-before,val),(var-after, val) ,...} }.
External Transition Function (type : E): init state, final state, {(var1, value), (var2, value), ... }

The following shows the simulation results of this model:

Time Port Value
00:00:02:00 lane 1
00:00:04:00 radar 1
00:00:12:00 lane 1
00:00:15:00 lane 1
00:00:19:00 lane 1
00:00:24:00 radar 1
00:00:26:00 ext 1
00:00:26:00 count 10
. . .

[control]
in: lane radar TrafficLight ready full
out: photo empty
var: light quantity_of_pictures
state: active speed void inactive redlight update click update2 aux ignore ignore2
initial: active
int: speed click photo!1 {quantity_of_pictures = minus(quantity_of_pictures,1);}
int: redlight click photo!1 {quantity_of_pictures = minus(quantity_of_pictures,1);}
int: update2 click
int: void inactive empty!1
int: aux inactive
int: update active
int: ignore active
int: ignore2 inactive
ext: active speed Value(radar)?1
ext: click active and(equal(ready,1),notequal(quantity_of_pictures,0))?1
ext: active redlight And(Equal(lane,1),equal(light,0))?1
ext: click update2 Any(TrafficLight)?1 {light = TrafficLight;}
ext: active update Any(TrafficLight)?1 {light = TrafficLight;}
ext: inactive aux Any(TrafficLight)?1 {light = TrafficLight;}
ext: inactive active Any(full)?1 {quantity_of_pictures = full;}
ext: active ignore And(equal(lane,1),notEqual(light,0))?1
ext: inactive ignore2 or(any(lane),any(radar))?1
ext: click void and(equal(ready,1),equal(quantity_of_pictures,0))?1
active:infinite
speed:00:00:00:00
void:00:00:00:00
inactive:infinite
redlight:00:00:00:00
update:00:00:00:00
click:infinite
update2:00:00:00:00
aux:00:00:00:00
ignore:00:00:00:00
ignore2:00:00:00:00
light:0
quantity_of_pictures:2

FIGURE 6.14 Text specification of the control atomic model.

53361.indb 137 3/11/09 10:46:05 AM

© 2009 by Taylor & Francis Group, LLC

138 Discrete-Event Modeling and Simulation

The following log files show the execution of the four atomic models that compose the coupled
system. By analyzing these log files, we can study the models’ behaviors and their interactions.

Control

C 00:00:00:000 : active , (quantity_of_pictures=2) (light=0)
? 00:00:02:000 : lane , 1
E 00:00:02:000 : active ,redl(quantity_of_pictures=2) (light=0)
O 00:00:02:000 : photo , 1
I 00:00:02:000 : redl,click (quantity_of_pictures=1),(light=0)
? 00:00:04:000 : radar , 1
? 00:00:04:000 : ready , 1
E 00:00:04:000 : click, active(quantity_of_pictures=1),(light=0)
? 00:00:05:000 : trafficl, 2
E 00:00:05:000 : active,update(quantity_of_pictures=1),(light=2)
I 00:00:05:000 : update,active(quantity_of_pictures=1),(light=2)
? 00:00:06:000 : trafficl , 0
E 00:00:06:000 : active, update(quantity_of_pictures=1)(light=0)
I 00:00:06:000 : update,active(quantity_of_pictures=1),(light=0)
...
? 00:00:19:000 : lane , 1
E 00:00:19:000 : active,redl(quantity_of_pictures=1),(light=0)
O 00:00:19:000 : photo , 1
I 00:00:19:000 : redl , click (quantity_of_pictures=0),(light=0)
? 00:00:21:000 : ready , 1
E 00:00:21:000 : click , void (quantity_of_pictures=0),(light=0)
O 00:00:21:000 : empty , 1
I 00:00:21:000 : void,inact(quantity_of_pictures=0),(light=0)
? 00:00:22:000 : trafficl , 1
E 00:00:22:000 : inact,aux(quantity_of_pictures=0),(light=1)
I 00:00:22:000 : aux,inact(quantity_of_pictures=0),(light=1)
? 00:00:24:000 : radar , 1
E 00:00:24:000 : inact,ignore2(quantity_of_pictures=0) (light=1)
I 00:00:24:000 : ignore2,inact(quantity_of_pictures=0) (light=1)
? 00:00:26:000 : full , 10
E 00:00:26:000 : inact,active(quantity_of_pictures=10) (light=1)
...

Camera

C 00:00:00:000 : stdby ,
? 00:00:02:000 : take , 1
E 00:00:02:000 : stdby , run
I 00:00:02:000 : run , prepare
O 00:00:04:000 : ready , 1
I 00:00:04:000 : prepare , stdby
? 00:00:19:000 : take , 1
E 00:00:19:000 : stdby , run
I 00:00:19:000 : run , prepare
O 00:00:21:000 : ready , 1

53361.indb 138 3/11/09 10:46:05 AM

© 2009 by Taylor & Francis Group, LLC

Discrete-Event Applications with DEVS 139

I 00:00:21:000 : prepare , stdby
...

IO

C 00:00:00:000 : receive , (quantity_of_pictures=0)
? 00:00:21:000 : empty , 1
E 00:00:21:000 : receive , send (quantity_of_pictures=0)
O 00:00:21:000 : central , 1
I 00:00:21:000 : send , receive (quantity_of_pictures=0)
? 00:00:26:000 : count , 10
? 00:00:26:000 : extern , 1
E 00:00:26:000 : receive , resume (quantity_of_pictures=10)
...

TrafficLight

C 00:00:00:000 : green ,
O 00:00:05:000 : light , 2
I 00:00:05:000 : green , yellow
O 00:00:06:000 : light , 0
I 00:00:06:000 : yellow , red
O 00:00:11:000 : light , 1
I 00:00:11:000 : red , green
O 00:00:16:000 : light , 2
I 00:00:16:000 : green , yellow
O 00:00:17:000 : light , 0
I 00:00:17:000 : yellow , red
O 00:00:22:000 : light , 1
I 00:00:22:000 : red , green
...

The control model starts in state active. There are two photos left (quantity_of_pictures = 2),
and the traffic light is red (light = 0; the light is encoded as red = 0, green = 1, and yellow = 2). The
camera starts in state stdby, which means it is ready to take a shot.

A message is received after 2 s on input port lane, with value 1. This event fires the external
transition function. A suitable transition is found by the simulator from state active to state redlight.
This state represents the fact that a car has crossed the lane when the light was red. An instanta-
neous (i.e., ta = 0) internal transition is fired to request the camera to take a photo. The message
is generated by the output function through the port photo. This port is connected at the coupled
model level with the atomic model of the camera. When it receives a message on port take (from
the control model), it simulates the process of taking the photo and also of advancing to the next
memory position to store a new photo. After evaluating the output function, an internal transition is
fired from state redlight to click, decreasing the count of remaining photos. A while later a message
from the radar gives an alert of a car exceeding the speed limit at the same time that the camera ends
the previous request. Because the camera was not ready, the car must be ignored. After that, the
control returns to active, so it can process new infractions. The traffic light sends its first message
to indicate a light change. The control updates its internal variable TrafficLight to match the status
received. At 00:00:19:000 we have a real infraction: a car over the lane while the light is red. The

53361.indb 139 3/11/09 10:46:06 AM

© 2009 by Taylor & Francis Group, LLC

140 Discrete-Event Modeling and Simulation

control model commands the camera model to get a shot of the car. Then the model goes to state
click to wait for the camera to complete the take.

At 00:00:21:000 the camera sends its ready message, and the controller decreases the count of
photos and discovers that no more are available. The controller changes to the void state, sending a
message on the port empty. This request is received by the model IO, which on time 00:00:26 warns
on port full that the pictures have been stored and there is enough capacity to store 10 new photos. In
that period, the controller was inactive, processing only messages incoming from the traffic lights.

The TrafficLight model just cycles over the three lights. Note that the yellow light has a 1-s time
advance, while the other two have a 5-s time advance.

The IO model is activated when the control model wants to request memory from the central.
The output port central is connected at the top coupled model level to the exterior of the system. IO
receives a message from count with space for 10 new photos, so it passes this information control
model through output port restart, which is connected to input port full.

Exercise 6.9

Create a new model that will generate speeding and lane cars at random and connect it to the top-level
coupled model. Execute the simulation and analyze the results.

Exercise 6.10

Change the frequency of the traffic light and repeat the previous exercises.

6.5 SUMMARY

In this chapter we have given detailed explanations on how to use CD++ to build DEVS models.
We first explained the definition of a model of an ATM machine, focusing on the definition of the
atomic models in C++ and showing the definition of the coupled model using both text and graphi-
cal interfaces. We showed how models execute, showing both graphical and text logs. We then
presented a model of a reservoir for a city, including a state-based model for the reservoir, and the
definition of the pumps in C++. Finally, we introduced a complete model based on DEVS-graphs
notation, representing a controller for a traffic light with control for speeding.

These examples show the basic ideas needed to build a DEVS model, and they will be used in
later chapters to analyze more advanced models with applications in varied fields.

REFERENCES

1. Kidisyuk, K., and G. Wainer. 2007. CD++Builder: A toolkit to develop DEVS models. Proceedings of
DEVS Symposium 2007, Norfolk, VA.

2. Cidre, J. I. 2006. A Web-based interface for the CD++Modeler toolkit. MCS thesis, Universidad de
Buenos Aires, Argentina.

3. Kidisyuk, K., and G. Wainer. 2007. CD++Modeler: A graphical viewer for DEVS models. Technical report
SCE-017, Ottawa, Carleton University, Canada, 2007 (in Poster Sessions, SpringSim 2008, Ottawa, Canada).

4. Christen, G., A. Dobniewski, and G. Wainer. 2001. Defining DEVS models with the CD++ toolkit.
Proceedings of European Simulation Symposium, Marseilles, France.

5. Christen, G., A. Dobniewski, and G. Wainer. 2004. Modeling state-based DEVS models CD++.
Proceedings of MGA, Advanced Simulation Technologies Conference 2004, Arlington, VA.

6. Christen, G., and A. Dobniewski. 2003. Extending the CD++ toolkit to define DEVS graphs. MSc thesis,
Computer Science Dept., Universidad de Buenos Aires, Argentina.

53361.indb 140 3/11/09 10:46:06 AM

© 2009 by Taylor & Francis Group, LLC

141

7 Defining Varied Modeling
Techniques Using DEVS

7.1 INTRODUCTION

DEVS has been shown to be a general formalism such that several other existing ones can be
expressed as DEVS models. As discussed in numerous references (for instance, Vangheluwe [1]),
varied formalisms—like FSM, cellular automata, Petri nets, Bond Graphs, event scheduling, and
state charts (among others)—have been transformed into DEVS models. As discussed in Chapter 1,
DEVS allows representation of all the systems whose input/output behavior can be described by
sequences of events. The generality of DEVS is derived from the fact that it permits modeling sys-
tems with a set of infinite possible states and where the new state after an event arrival may depend
on the (continuous) time elapsed in the previous state. Consequently, a modeler can express differ-
ent properties in the formalism of choice and use DEVS hierarchical coupling as the integration
mechanism. In this chapter we will introduce the implementation of different modeling techniques
as DEVS using CD++ to show how this can be implemented.

7.2 FINITE STATE MACHINES

Finite state machines (FSMs), introduced in Chapter 1, are popular for modeling systems in a vari-
ety of areas such as software design and digital logic design. In this section we describe an imple-
mentation of FSM Moore machines using CD++ (thus, FSM means a Moore FSM from here on).
The construction of a library of atomic models to represent FSM has been straightforward since it
was shown in Zeigler [2] and Zeigler and Vahie [3] that FSMs can be embedded in DEVS because
any discrete event behavior can be expressed as a DEVS model.

Every FSM consists of a finite number of states linked through the FSM transition functions. In
order to define this behavior, we created a generic state atomic model; then the FSM is defined as a
coupled model connecting those state atomic models. This model, found in ./fsm2.zip and presented
in Zheng and Wainer [4], is called MooreState, and it is defined as shown in Figure 7.1.

The State model is a unique global stateCode (assigned to each state in an FSM) and a given
stateValue (an optional parameter whose value is transmitted through the stateOut port). The eventIn
port receives numbers encoded that represent external events. The transitionOut port informs the
next transition to be executed.

Every time a state receives an event, we first check to see if it is a legal event (i.e., if it is listed in
the events array). If we receive the event transitionIn, we save the code of the event. In both cases,
we schedule an instantaneous internal transition. The output function will determine if the input
was an event, and it uses the stateOut port to transmit the current stateValue or the transitionOut
port to send out the next transition (represented by the tempNextState signal), which will transmit
to all the transitionIn ports in the FSM (announcing which state is active in the next step). A state
becomes active if the encoded number received from the transitionIn port is the same as its state-
Code. Therefore, only one state is active at a time in one FSM.

FSM models could be easily created as coupled DEVS models by connecting a number of
instances of MooreState. There are a few basic rules in creating an FSM by connecting the states:

53361.indb 141 3/11/09 10:46:06 AM

© 2009 by Taylor & Francis Group, LLC

142 Discrete-Event Modeling and Simulation

FIGURE 7.1 Moore’s machine state.

53361.indb 142 3/11/09 10:46:07 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 143

All the transitionOut and transitionIn ports should be connected together inside the FSM.
That is, in the view of an FSM, these ports do not communicate with the external environ-
ment, and they are not visible to the outside world.
All the eventIn ports of states should be connected to an input port of an FSM.
All the errorOut ports of states are connected together as an output port of an FSM.
Each stateOut port of state could either be connected to an individual output port of an
FSM or connected together as one output port of an FSM.
All the states in an FSM are encoded as integer numbers (stateCode) during simulation.
The state with the stateCode 0 is the initial state in the FSM.
All the legal events for this FSM are also encoded as integer numbers during simulation.

Exercise 7.1

Create a new atomic model. In this case, the model can be in one of two states: active or passive. Each
state uses a unique identifier. When a model passivates an input, it becomes active. After a fixed delay, it
generates an output (indicating the current identifier). The FSM is created by linking different instances
of the State model and giving initial identifiers to each of the states.

Exercise 7.2

Use CD++Modeler and create a coupled model with a graphical representation to visualize states/tran-
sitions for the exercises in this chapter. In this graphical model, each state transition will be observed
as an animation in the coupled model definition.

Figure 7.2 shows a simple Moore machine that sends an output of 1 whenever its input string
has at least two 1s in sequence. Otherwise, value 0 is sent out. Three states are defined in this FSM.
The state machine should send out 0 at state 0 or 1 and 1 at state 2. Figure 7.2(b) shows a sketch
of the definition of this FSM as a DEVS coupled model. Each of the states is represented using the
MooreState atomic model. S0, S1, and S2 represent the three states in the state machine. The in
port receives the external events, and ports s1, s2, and s3 generate outputs. The port error is used to
check whether there are illegal events received.

Using this information, we can define this FSM as shown in Figure 7.3. We can see the defini-
tion of the three states (each of them including initialization parameters). The StateCode defines
the unique ID for the state. For instance, s0 has a state code of 0 and a StateValue of 0 (which is the

transitionIn
in

0

0

0

1 1

1

1
[1]

1
[0]

0
[0]

transitionIn

transitionOut

transitionOut
stateOut

stateOut
eventIn

transitionIn
eventIn

eventIn

errorOut

transitionOut
stateOut

errorOut

errorOut
error

s2

s1

s0

S1

S2

S0

 (a) (b)

FIGURE 7.2 (a) A simple FSM; (b) coupled model definition of the FSM.

53361.indb 143 3/11/09 10:46:08 AM

© 2009 by Taylor & Francis Group, LLC

144 Discrete-Event Modeling and Simulation

value to be sent as an output). The NumberOfTransitions indicates the number of legal transitions
in the current state. The number of TransitionXX items depends on the NumberOfTransitions. For
instance, for s0, if the event 0 is received, the state with StateCode 0 is active next (the self-transition
in Figure 7.2). If event 1 is received, the next active state is the one with StateCode 1. Figure 7.4
shows the execution of this model when we trigger the following events.

Initially, the model receives a 0 and remains in state s0 (generating 0 as output). We then receive
a 1 that produces a change to s1 (and an output of 0), another 1 that produces a change to s2, and a 0
producing a state change to s0. We then show the results of the sequence 010110, which triggers the
execution of states s0, s1, s0, s1, s2, and s0. The input events with bold fonts in Figure 7.4
cause the FSM to generate 1 as the output, and the output with bold fonts have the expected results.

FIGURE 7.3 Coupled model definition of the FSM in Figure 7.2 in CD++.

00:00:00:10 in 0
00:00:00:20 in 1
00:00:00:30 in 1
00:00:00:40 in 1
00:00:00:50 in 0
...
00:00:00:100 in 0
00:00:00:110 in 1
00:00:00:120 in 0
00:00:00:130 in 1
00:00:00:140 in 1
00:00:00:150 in 0

00:00:00:010 s0 0
00:00:00:020 s1 0
00:00:00:030 s2 1
00:00:00:040 s2 1
00:00:00:050 s0 0
..
00:00:00:100 s0 0
00:00:00:110 s1 0
00:00:00:120 s0 0
00:00:00:130 s1 0
00:00:00:140 s2 1
00:00:00:150 s0 0

FIGURE 7.4 Executing the FSM in Figure 7.2 in CD++.

53361.indb 144 3/11/09 10:46:09 AM

© 2009 by Taylor & Francis Group, LLC

components : s0@moorestate s1@moorestate s2@moorestate
out : s0 s1 s2
in : in
Link : in eventIn@s0
Link : in eventIn@s1
Link : in eventIn@s2
Link : transitionOut@s0 transitionIn@s0
Link : transitionOut@s0 transitionIn@s1
Link : transitionOut@s1 transitionIn@s0
Link : transitionOut@s1 transitionIn@s2
Link : transitionOut@s2 transitionIn@s2
Link : transitionOut@s2 transitionIn@s0
Link : stateOut@s0 s0
Link : stateOut@s1 s1
Link : stateOut@s2 s2

[s0]
StateCode : 0
StateValue : 0
NumberOfTransitions : 2
Transition01 : 0->0
Transition02 : 1->1

[s1]
StateCode : 1
StateValue : 0
NumberOfTransitions : 2
Transition01 : 0->0
Transition02 : 1->2

[s2]
StateCode : 2
StateValue : 1
NumberOfTransitions : 2
Transition01 : 0->0
Transition02 : 1->2

Defining Varied Modeling Techniques Using DEVS 145

Exercise 7.3

Define the FSM introduced for the traffic light model in Chapter 1 and simulate it.

Figure 7.5 shows an FSM of a vending machine [4]. The machine accepts 5¢ and 10¢ coins and
sells candy bars worth 15¢ or 20¢. The simplified coupled model definition (the connections among
the transitionIns and transitionsOuts are omitted) is shown in Figure 7.5.

The states Zero, Five, Ten, Fifteen, and Twenty indicate the amount of the coins that has been
inserted before selling a candy bar. The in port receives the external events from the environment.
The ports zero, five, ten, fifteen, and twenty generate the output from the respective states. The FSM
of this vending machine model is defined in Figure 7.6.

The scenarios for buying one 15¢ candy and two 20¢ candies are simulated in Figure 7.7.

Exercise 7.4

Run the ATM and the Plain Ordinary Telephony Service models included in the FSM library files found
in ./fsm2.zip. Propose improvements and execute the improved FSMs for these examples.

7.3 MODELING PETRI NETS

As discussed in Chapter 1, Petri nets (PNs) are a modeling formalism originally developed by C. A.
Petri [5]. They are especially well suited to model concurrent systems using a formal and well-
defined graphical representation (Figure 7.8) [6].

Petri nets have the following constraints:

A place may have zero or more inputs. For example, P1, P4, and P2 have zero, one, and
two inputs, respectively.
A place may have zero or more outputs. P4, P5, and P3 have zero, one, and two out-
puts, respectively.
A transition may have zero or more inputs. A transition with no inputs is called a source (t4).
A transition may have zero or more outputs. A transition with no outputs is called a sink (t5).

zero stateOut

twentystateOut

fifteenstateOut

fivestateOut

ten stateOut

error

eventIn

eventIn

eventIn

eventIn

eventIn

in

Zero

Five

Ten

Fifteen

Twenty

FIGURE 7.5 Vending machine model.

53361.indb 145 3/11/09 10:46:09 AM

© 2009 by Taylor & Francis Group, LLC

146 Discrete-Event Modeling and Simulation

FIGURE 7.6 Coupled model definition of the vending machine model.

00:00:00:10 in 0
00:00:00:20 in 0
00:00:00:30 in 0
00:00:00:40 in 2
00:00:00:50 in 0
00:00:00:60 in 0
00:00:00:70 in 1
00:00:00:80 in 3
00:00:00:90 in 1
00:00:00:110 in 1
00:00:00:130 in 3

00:00:00:010 five 5
00:00:00:020 ten 10
00:00:00:030 fifteen 15
00:00:00:040 zero 0
00:00:00:050 five 5
00:00:00:060 ten 10
00:00:00:070 twenty 20
00:00:00:080 zero 0
00:00:00:090 ten 10
00:00:00:110 twenty 20
00:00:00:130 zero 0

FIGURE 7.7 Executing the vending machine model in Figure 7.6 in CD++.

53361.indb 146 3/11/09 10:46:10 AM

© 2009 by Taylor & Francis Group, LLC

components : zero@moorestate five@moorestate ten@moorestate fifteen@moorestate twenty@moorestate
out : zero five ten fifteen twenty
in : in

Link : in eventIn@zero
Link : in eventIn@five
Link : in eventIn@ten
Link : in eventIn@fifteen
Link : in eventIn@twenty

Link : transitionOut@zero transitionIn@five
Link : transitionOut@zero transitionIn@ten
Link : transitionOut@five transitionIn@ten
Link : transitionOut@five transitionIn@fifteen
Link : transitionOut@ten transitionIn@fifteen
Link : transitionOut@ten transitionIn@twenty
Link : transitionOut@fifteen transitionIn@twenty
Link : transitionOut@fifteen transitionIn@zero
Link : transitionOut@twenty transitionIn@zero

Link : stateOut@zero zero
Link : stateOut@five five
Link : stateOut@ten ten
Link : stateOut@fifteen fifteen
Link : stateOut@twenty twenty

[zero]
StateCode : 0
StateValue : 0
NumberOfTransitions : 2
Transition01 : 0->1
Transition02 : 1->2

[five]
StateCode : 1
StateValue : 5
NumberOfTransitions : 2
Transition01 : 0->2
Transition02 : 1->3

[ten]
StateCode : 2
StateValue : 10
NumberOfTransitions : 2
Transition01 : 0->3
Transition02 : 1->4

[fifteen]
StateCode : 3
StateValue : 15
NumberOfTransitions : 3
Transition01 : 0->4
Transition02 : 1->4
Transition03 : 2->0

[twenty]
StateCode : 4
StateValue : 20
NumberOfTransitions : 1
Transition01 : 3->0

Defining Varied Modeling Techniques Using DEVS 147

Tokens (black dots in Figure 7.8) are used to model dynamic behavior: places represent the state of
the system, and tokens inside the places define how many entities or resources are available. The move-
ment of tokens from place to place represents the behavior of entities or resources in the system.

A place may contain zero or more tokens.
A transition is either enabled or disabled. It is enabled if all of its input places contain at
least one token (in Figure 7.8, t1 and t4). A source transition (i.e., t4) is always enabled;
hence, it can be used as a token generator. A sink transition (i.e., t5) always consumes the
tokens from the input places; thus, it can be used as a consumer of tokens.
A PN is executed by firing enabled transitions, one at a time, for as long as there is at least
one enabled transition.
When more than one transition is enabled, the one that is fired is selected in a nondeter-
ministic fashion.
When a transition fires, a token is removed from each one of its input places and a token is
deposited in each one of the output places.
Transition firing is instantaneous, meaning that tokens are removed from input places and
deposited in the output places at exactly the same time.

Over the years, extensions to PNs have been introduced to increase their modeling capabilities
[5]. Two of these extensions include the definitions of inhibitor and multiple arcs. An inhibitor arc
goes from a place to a transition, and it enables the transition only if the place is empty as opposed
to containing at least one token. A multiple arc indicates that the number of tokens being transferred
is more than one, as shown in Figure 7.9.

We built a library of atomic models that represent PN transitions and places. Creating the DEVS
equivalent of PNs requires the PN characteristics explained previously. Thus, we created two
DEVS atomic models: one to represent a place and one to represent a transition. Then any PN can
be constructed by coupling the two types of DEVS atomic models in a similar manner to how places
and transitions are coupled in a PN.

Figure 7.10 illustrates a conceptual description for the DEVS model of a PN place. The model
uses one input port and one output port. The input in is used to receive tokens (from one or more

P1 P2

P5

P3 P4t1

t4

t2 t3

t5

FIGURE 7.8 A sample Petri net.

P2

P1

P3
t1

P2

P1

P3
t1

 (a) (b)

FIGURE 7.9 (a) Inhibitor arc; (b) multiple arcs.

53361.indb 147 3/11/09 10:46:11 AM

© 2009 by Taylor & Francis Group, LLC

148 Discrete-Event Modeling and Simulation

transitions). It is also used to tell the place to lose tokens when a
transition fires. The encoding of the messages received from this port
contains information regarding the number of tokens and the opera-
tion to be performed (subtraction or addition). In this way, the model
supports PN with multiple arcs. The output port out is used by the
place to advertise the number of tokens it contains, so transitions

that are connected to it can determine if they are enabled. This process is executed every time the
number of tokens in the place is modified and when the model is initialized at the beginning of
simulation. Figure 7.11 shows the implementation of the model in CD++, which can be found in
./Petri.zip.

The external transition function receives external events coming from the input port in. The
value of the messages coming into the in port is the number of tokens to subtract or the number of
tokens received by the place. Messages carry the number of tokens to subtract and the ID of the des-
tination place (the format is “XYYY,” where X is the model ID of the place and YYY is the number
of tokens; i.e., 5003 means that the place with ID 5 must subtract three tokens). When a transition
wants to deposit new tokens, the destination will be 0; in those cases, we increase the number of
tokens in the place.

The internal transition function passivates the model after activating the output function; then
the place waits forever for a transition to deposit or remove new tokens (when all models are pas-
sive, the simulation ends). The output function transmits the number of tokens contained in the place
on the output port out. The maximum number of tokens a place can advertise is 999. However, the
proper number of tokens is kept internally.

The transition model uses five input ports and five output ports, described in Figure 7.12. Port in1
is used to obtain the number of tokens contained in the places that have their out ports connected to
it (this port is used for single connecting arcs; if the transition fires, only one token will be removed

Place OutIn

FIGURE 7.10 Place model.

FIGURE 7.11 Place model definition in CD++.

53361.indb 148 3/11/09 10:46:12 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 149

from the corresponding input place). Ports in2, in3, and
in4 serve the same function for double, triple, and qua-
druple connecting arcs. Finally, port in0 is an inhibitor
arc (i.e., the input place connected to it must contain
zero tokens for the transition to be enabled, and when it
fires, no token is removed from the place).

The output port out1 is used to feed a token to all the
places that have their in port connected to it. The ID of
the messages sent on this port is always zero (which
causes all places receiving it to update the number of tokens they hold). Ports out2, out3, and out4
serve the same purpose with two, three, and four tokens. Finally, the fired port is used to request to
remove tokens from the input places, which must have their in port connected to this output port.

The external transition function shown in Figure 7.13 receives external events with the format
“XYYY” discussed earlier. The ID is used to keep track of all the places that feed tokens to this
transition. We search this ID in the places array pInArray and determine if the transition is now
enabled due to this message. If this place is not in the array yet, we add it and decide if the transition
is now enabled.

Note that there is a case where transEnabled is set to true but should not be: the first time a mes-
sage is received from placeId and all other input places in the array have enough tokens to make the
transition enabled. If there was no match for placeId, it is because this is the first message received
from that place. Therefore, we store placeId in the array along with the arc width and determine
if the transition is potentially enabled from that place. In that case, we schedule an internal event
to fire the transition in the future. Because this transition schedules its firing independently of the
others, it may fire at the same time as others. However, because of the select function, the firings
would not be processed simultaneously (although the log and output files would show more than
one firing at the same time).

The output function is activated when the transition fires. The function deposits tokens in the
places that have their in port connected to the outi ports. The number of tokens deposited in the out-
put places depends on the port to which they are connected. The messages sent out contain the num-
ber of tokens to be deposited (we use only one of the output ports when coupled to the corresponding
place). The routine also indicates that it fired by sending a message to all of its inputs’ places that are
connected through the fired port. The transition keeps track of the inputs’ places using their IDs.

When the internal transition function is activated, if the transition has input places, the model
passivates, waiting for those places to re-advertise the number of tokens they contain. In the case of
a source transition (always enabled), the next firing is scheduled. The function randNumGet returns
a random number to schedule firings.

Figure 7.14(a) illustrates how transition/place models are coupled (two fired ports were used to
make the figure clearer, but the model actually uses only one). The figure shows a transition that is
enabled when P1 has no token, P2 has at least two tokens, and P3 receives three tokens when the
transition fires. Additionally, P2 loses two tokens because the fired port of the transition is con-
nected to its in port. Even though the fired port of t1 is connected to the in port of P1, the latter does
not lose tokens when t1 fires because it is connected via an inhibitor arc.

Figure 7.14(b) shows the CD++ coupled model file that is equivalent to the coupled model illus-
trated in Figure 7.14(a). Places use the pnPlace atomic model and transitions use pnTrans. By default,
a place is created with zero tokens (unless we declare it otherwise). The inputplaces parameter asso-
ciated with the transitions indicates the maximum number of input places that can be connected (in
order to limit the amount of memory the transition model allocates to keep information about input
places), and the tokens parameter defines the initial number of tokens for each of the places.

The model package also includes a Tcl/tk script to assist modelers in analyzing test results.
Because we are interested in the marking of the PN and the firing of the transitions, the script
returns this information in a clear and concise manner, as can be seen in Figure 7.15 (the tool parses

T
RA

N
SI

T
IO

NIN0
IN1
IN2
IN3
IN4

OUT1
OUT2
OUT3
OUT4
FIRED

FIGURE 7.12 Transition conceptual model.

53361.indb 149 3/11/09 10:46:13 AM

© 2009 by Taylor & Francis Group, LLC

150 Discrete-Event Modeling and Simulation

FIGURE 7.13 Petri Net implementation.

53361.indb 150 3/11/09 10:46:13 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 151

the coupled model file to determine the names of the places and transitions used in the model
and the log files resulting from a simulation).

The first two lines in Figure 7.15 list the names of the places and transitions of the PN. Then we
show the initial marking; in this case, p1 = 5, p2 = 3, and p3 = 0. Then t1 is fired, which results in

FIGURE 7.13 (continued).

[top]
components : P1@pnPlace P2@pnPlace P3@pnPlace
t1@pnTrans

Link : out@P1 in0@t1
Link : out@P2 in2@t1
Link : out3@t1 in@P3
Link : fired@t1 in@P1
Link : fired@t1 in@P2

[P2]
tokens : 3

[t1]
inputplaces : 2

P1

P3

P2

IN

IN

IN

OUT

OUT

OUT

FIRED

FIRED

IN0 OUT1
IN1 OUT2
IN2 OUT3
IN3
IN4

OUT4

t1

 (a) (b)

FIGURE 7.14 (a) Coupling places and transition; (b) model definition file.

Petri Net places: p1 p2 p3
Petri Net transitions: t1

 (5,3,0)„ t1->(2,1,4)

FIGURE 7.15 Output of the Petri net marking tool.

53361.indb 151 3/11/09 10:46:15 AM

© 2009 by Taylor & Francis Group, LLC

152 Discrete-Event Modeling and Simulation

the marking (2,1,4). In this example, p1 and p2 are input places to t1 and p3 is an output place of t1.
Furthermore, p1 has a triple arc to t1 (it lost three tokens due to the firing), p2 has a double arc, and
p3 has a quadruple arc.

We also integrated our models with the HPSIM© modeling environment for PN (which includes
a graphical editor). HPSIM, which can be found at http://www.winpesim.de/, is a graphical interface
to define PN models. Figure 7.16 shows the three main components in this environment: PN models
in CD++, the .hpx files generated by HPSIM (representing the PN graphical notation), and the TCL
script to generate results (stored in .pn files).

The first step of the cycle is to create a PN using HPSIM. Then we export the file and translate it
into a CD++ model file (.ma) using the hpx2ma.tcl script (which allows an HPSIM model definition
file to be converted to a model definition file for CD++). The model is then executed using CD++,
and pnmark.tcl translates the simulation log file into a PN marking file (.pn).

Figure 7.17 illustrates the use of a PN to model a classical mutual exclusion problem [5]. The idea
is that two processes must execute critical sections (places P3 and P4) but are not allowed to do it at
the same time (i.e., P3 and P4 must be mutually exclusive). To enforce this rule, the processes use a

.hpx

.log

.ma

.pn

PETRI

pnmark.tcl

hpx2ma.tcl

pn
awarenessDEVS

simulator
CD++ toolkit

FIGURE 7.16 Architecture of the PN modeling and simulation environment.

components : P1@pnPlace P2@pnPlace P3@pnPlace
P4@pnPlace P5@pnPlace T1@pnTrans T2@pnTrans
T3@pnTrans T4@pnTrans

Link : out@P1 in1@T1
Link : out1@T1 in@P3
Link : out@P3 in1@T3
Link : out1@T3 in@P1
Link : out@P2 in1@T2
Link : out1@T2 in@P4
Link : out@P4 in1@T4
Link : out1@T4 in@P2
Link : out@P5 in1@T1
Link : out@P5 in1@T2
Link : out1@T3 in@P5
Link : out1@T4 in@P5

Link : fired@T1 in@P1
Link : fired@T1 in@P5
Link : fired@T2 in@P2
Link : fired@T2 in@P5
Link : fired@T3 in@P3
Link : fired@T4 in@P4

t3

t1

t4

t2

P4

P5

P3

P1 P2
PROCESSES IN NON-
CRITICAL SECTION

SEMAPHORE
AVAILABLE

FIGURE 7.17 Mutual exclusion scenario.

53361.indb 152 3/11/09 10:46:16 AM

© 2009 by Taylor & Francis Group, LLC

http://www.winpesim.de

Defining Varied Modeling Techniques Using DEVS 153

semaphore (P5) that is locked before entering the critical section (t1 or t2) and released after exiting
the critical section (t3 or t4).

We implement the PN using atomic models pnPlace and pnTrans, as before, and configuration
parameters inputplaces and tokens (Figure 7.18). We start with one token on each of the
processes (in the noncritical section), and the semaphore is unlocked. Then t1 is fired, resulting in
marking (0, 1, 1, 0, 0); that is, the first process is in the critical section (and the other cannot execute
it). Following this, t3 fired to bring the Petri net back to its initial marking. This is followed by the
firing of t2, resulting in marking (1, 0, 0, 1, 0). Then t4 is fired, bringing the net back to its initial
marking. The rest of the markings are simply a repetition of the preceding, except for the order in
which the processes lock the semaphore. Sometimes a process gets the semaphore just after releas-
ing it. This is also expected because transitions t1 and t2 are always enabled at the same time and
the decision to fire one or the other is made in a nondeterministic manner (permitting study of cases
of starvation).

Exercise 7.5

Modify the initial conditions of the model, including two tokens in the semaphore. Study the simulation
results.

Figure 7.19 illustrates a simple model of an elevator’s door controller. This PN (which is faulty)
was created to show a model representing a real system with problems (or the problems we face
when creating a wrong PN specification). We show how to use the PN to find such problems and
fix them.

The PN represents the behavior of the elevator’s door (P1 = closed, P4 = open) and of people
using the elevator (P2 = people arriving, P3 = person pressing a button, P5 = person entering the
elevator, and P6 = person inside the elevator). The simulation starts with the door closed and a pool

FIGURE 7.18 Mutual exclusion scenario.

DOOR
CLOSED

PERSON
ARRIVING

BUTTON
PRESSED

PERSON
ENTERING

DOOR
OPEN

PERSON
IN P6

t4t2

t1
t3

P2P1

P5

P3

P4

FIGURE 7.19 Elevator system.

53361.indb 153 3/11/09 10:46:17 AM

© 2009 by Taylor & Francis Group, LLC

154 Discrete-Event Modeling and Simulation

of 10 people arriving and waiting to use the elevator (1, 10, 0, 0, 0, 0). When we fire t3, the button is
pressed, and then the door is opened (t3). A new person presses the button (t3); we then fire t4, and
there is one person in the elevator.

If we study the set of markings generated, we can find the following problems:

The door can close (t2 fires) even if the button is pressed (P3 not empty). Typically, the door
of an elevator stays open as long as the button is pressed.
The door can be closed (P1 = 1) while someone is entering the elevator (P5 not empty).
The button pressed state records how many times the button was pressed (P3 can be >1).
Although it is physically possible for the button to be pressed many times, in reality an
elevator button does not count how many times it is pressed. That is, if it is pressed and then
someone presses it again, it stays pressed—nothing more. Thus, its state is really Boolean.
Every time someone presses the button, a person disappears.

Exercise 7.6

Add a sink transition to eliminate the persons leaving the elevator and a source transition to bring new
people to the area.

Exercise 7.7

Use CD++Modeler to define graphical icons for transitions and places. Use these icons to create a
coupled model with PN structure for all the models in this section. Use the animation facilities to visu-
alize the simulation results.

Exercise 7.8

Fix the aforementioned problems in the elevator PN. Run the simulation again until the model repro-
duces the normal behavior of an elevator’s door. Use the graphical interface created in Exercise 7.7 to
visualize the results.

Exercise 7.9

Create a PN that models an elevator moving up and down in a three-floor building. The PN should only
model the behavior of the elevator’s motor (ignore opening and closing doors), and the elevator should
stop on each of the floors according to the users’ requests.

Exercise 7.10

Combine the elevator model created in Exercise 7.9 with the button controller created in Exercise 7.8.
Study the PN simulation results and modify your models until obtaining the proper behavior for the
whole elevator system.

Exercise 7.11

Define and simulate the producer/consumer PN introduced in Chapter 1.

7.4 LAYERED QUEUING NETWORKS

As discussed in Chapter 2, queuing networks are based on a customer–server paradigm: customers
request service to servers, which queue the requests until they can be serviced. Traditional queuing
networks model only a single layer of customer–server relationships. Layered queuing networks
(LQNs), however, allow for an arbitrary number of client–server levels. LQNs can model intermedi-
ate software servers and can be used to detect software deadlocks as well as hardware and software
performance bottlenecks [7]. The layered aspect of LQNs makes them suitable for evaluating the
performance of distributed systems [8,9].

53361.indb 154 3/11/09 10:46:17 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 155

LQNs model both software and hardware resources.
The basic software resource is a task, which represents
any software object with a thread of execution. Tasks have
entries that act as interface units. The basic hardware
resource is a device. Typical devices are CPUs and disks.

Figure 7.20 shows the graphical notation for LQN
tasks. Tasks receive service requests at designated entries
(corresponding to the service access points for a task; we
use a different entry for every kind of service a task pro-
vides). An entry may be defined to be atomic (including its
own hardware service demands and calls to other tasks),
or it may be defined by blocks of smaller computational
blocks called activities. Service calls can be made from
entries in one task to entries in other tasks. In that case,

entries can be atomic or they can be subdivided into phases (dividing the workload into a first phase
executed before sending a reply and a second phase executed after sending the reply).

As shown in Figure 7.21, the LQN notation supports three types of service calls: asynchronous,
synchronous, and forwarded calls (the graphical notation for service calls uses arrows for messag-
ing activities). Figure 7.22 shows the timing semantics for these different types of calls.

Asynchronous calls do not involve any blocking of the sending task, which continues execut-
ing concurrently. A synchronous call must send a reply after the request has been completed. The
replies are implicit at the end of the first phase for atomic entries but must be explicitly specified for
entries defined by activities. Entries receiving a synchronous service request may also forward it
to entries in other tasks, which then become responsible for sending the reply to the original caller.
In a forwarding call, the sending client task makes a synchronous call and blocks waiting for a reply;
the intermediate receiving server task then partially processes the call and forwards it to another

entry

task

CPU d isk

FIGURE 7.20 LQN task, entry, CPU, and
disk devices.

ea1
taskA

ea1
taskA

ea1
taskA

eb1
taskB

eb1
taskB

eb1 eb2
taskB

ec1
taskC

ea1

Asynchronous call Synchronous call

Synchronous call
with forwarding

Sequence of synchronous calls

eb1
taskB

ec1
taskC

taskA

FIGURE 7.21 LQN messaging.

53361.indb 155 3/11/09 10:46:18 AM

© 2009 by Taylor & Francis Group, LLC

156 Discrete-Event Modeling and Simulation

server, which becomes responsible for sending a reply to the blocked client. The intermediate server
can continue operating after forwarding the call (there can be any number of forwarding levels).

A DEVS library for LQNs was introduced in Petriu and Wainer [10], and the complete set of
models can be found in ./DevsLQN_code.zip. The library includes models for processors, tasks, and
entries with phases. Additionally, the library can represent disks and activities. The library provides
simulation results for:

average entry service time, throughput, and utilization;
average phase service time;
processor throughput and utilization; and
average queue waiting time and average queue length.

LQN elements use queues; thus, first in, first out (FIFO) queues were explicitly incorporated.
Because queues behave the same way for software or hardware elements, we implemented a univer-
sal queue as a separate atomic model to be coupled with the processor or entry atomic models. LQN
calls are made using entry names to identify the call target. Therefore, we implemented a DEVS
version of a multiplexer and demultiplexer to gather calls into a given queue (either for an entry or a
processor) or to distribute calls from an entry to other entries. DEVS atomic models were built for
each of these elements. Figure 7.23 describes the behavior of the queue atomic model.

The initial state (ready_to_process) represents a queue ready to receive a request. When an
external transition is executed and an external event arrives through the in port, the element is added
to the end of the queue. If all the fields have been received, we calculate the average queue size. We
use different queues: one to record the arrival time of the input, another to record the source of the
message, and a third to save the input value. We also record the current time (which will be used in
the next input to compute the average queue size). At this point, if the processing entity is ready, we
change the state to inform that a call is ready to be processed, and we activate the internal transition
function immediately. If a reply message is received, we record the fact that a reply is pending and
activate the internal transition function.

t = x

t = x

t = x

t = y

t = z

t = z

Asynchronous call

Synchronous call

Synchronous call

Server2

Server1

Client

Server

Client

Server

Client

Forwarding call

Reply

Reply

t

t

t

t

t

t

t

FIGURE 7.22 Timing semantics of LQN calls. (From Petriu, D., and G. Wainer. 2004. Proceedings of
Mediterranean Multiconference on Modeling and Simulation, Bergeggi, Italy.)

53361.indb 156 3/11/09 10:46:19 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 157

FIGURE 7.23 DEVS queue atomic model.

53361.indb 157 3/11/09 10:46:19 AM

© 2009 by Taylor & Francis Group, LLC

158 Discrete-Event Modeling and Simulation

Finally, when a ready event arrives, we check the queue to see if there are more elements. If
not, we change state to ready_to_process, waiting for a new element arriving through the in port.
Otherwise, we change the state to record the fact that there is a call pending and activate an internal
transition function.

The output function reacts in different ways according to the last event received. If a reply is
pending, we send it and inform that the reply is no longer pending. If there is a call to be processed,
we increase the number of elements that have been in the queue, sum the waiting time, and compute
the average queue size. These values are transmitted through the corresponding output ports, using
the call’s source as the reply destination. We also eliminate the elements from the queue and update
the change time. Then we go to the state wait for response, in which we wait for a response event
(which generates a response in the reply output port) or a new element, which is added at the end of
the queue.

The internal function passivates the model, waiting for the next input message.

Exercise 7.12

Construct a testing frame for the LQN queue model just presented. Analyze the simulation results.

Figure 7.24 shows the structure of the DEVS coupled models used to model LQN entries and
processors. Both of them are coupled models that incorporate LQN queues and message routing
multiplexers/demultiplexers. The in ports of the processor and entry atomic models are connected

FIGURE 7.23 (continued).

53361.indb 158 3/11/09 10:46:20 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 159

to the out ports of their dedicated queue atomic models. The in port of the queue is connected to the
output port of the gather multiplexer model.

The gather model collects the different inputs and routes them to the LQN queue, which will
store the messages, respond with the average size and wait times, and reply when the message has
been processed. When a complete entry is ready, it is transmitted to the entry model, which will
also compute throughput and utilization. The distribute model acts as a demultiplexer, returning the
corresponding responses through the output ports associated with the entry. For entries, the servcall
output port is connected to the in port of the distribute demultiplexer, which sends it on the appro-
priate resp port for the intended call target. The same sorts of connections are repeated for the reply
ports but with the reply messages going in the opposite direction. The processor model is simpler
because it does not need to forward the input messages: it receives a call and executes, and the entry
can forward the input call.

Table 7.1 lists the different DEVS models for LQN elements included in the library.
LQN messages can be thought of as having a source field denoting the entity making the call,

a destination or target field denoting the entry for which the call is destined, and a demand field
denoting the workload associated with the call (Table 7.2).

Figure 7.25 describes a model in which each component is defined as an LQN element represent-
ing a client–server system. In this case, the client ref calls entry1 in server e1 and entry2 in server
e2. The entry1 has a mean processor demand of 1,100 ms, and entry2 has a mean processor demand
of 2,100 ms. All three tasks run on the same processor, P1.

in0..9

in0..9

out

reply0..9

reply0..9

replyin

reply

reply

ready

ENTRY

servcall

DISTRIBUTE

resp0..0

resp0..0

out0..9

out0..9

in

in

averagesize

averagewait

averagesize

averagesize

throughput

utilization

throughput

utilization

response

out response ready

GATHER

QUEUE

in0..9

in0..9

out

reply0..9

reply0..9

in

out

reply

in reply ready

PROCESSOR

readyresponse

QUEUE

response

GATHER

initproc initserv

initproc

proccall

proccall

initserv

procrtn

procrtn

 (a) (b)

FIGURE 7.24 (a) Entry coupled model structure; (b) DEVS processor coupled model structure.

53361.indb 159 3/11/09 10:46:21 AM

© 2009 by Taylor & Francis Group, LLC

160 Discrete-Event Modeling and Simulation

We will analyze the execution results of this model of the input events presented in Figure 7.25.
We first set up the client ref by making phase 1 of entry ent in task ref to be initialized to make one
call to entry entry1 in task e1 and one call to entry entry2 in task e2 (a call initialization is assembled
from three messages: one for the phase making the call, one for the number of calls, and one for the
call target). Then we see that phase 1 of entry entry1 in task e1 is initialized with a mean workload
of 1,100 ms and phase 1 of entry entry2 in task e2 is initialized with a mean workload of 2,200 ms
(a processor demand initialization is assembled from two messages: one for the phase and one for
processing workload). Finally, 10 calls are made to entry ent in task ref at 1-s intervals. Figure 7.27
shows the execution results of this model.

Initially, we can see entries being initialized with their call and workload parameters. At 01:000,
we see the execution of the first call made to entry ent in task ref and subsequent calls to entries
entry1 in task e1, which generates an actual processor workload of 1,087 ms, and to entry2 in task
e2, which generates an actual processor workload of 2,081 ms. Then we see the execution of the
second call made to entry ent in task ref and the subsequent calls to entries entry1 in task e1 (which
generates an actual processor workload of 880 ms) and to entry2 in task e2 (which generates a
workload of 278 ms). Finally, we see the execution of the ninth call made to entry ent in task ref and
subsequent calls to entry1 in e1, which generates an actual processor workload of 2,256 ms, and to
entry2 in e2, which generates an actual processor workload of 4,947 ms. The last call made to ent in

TABLE 7.1
DEVS Models for the LQN Simulation Library

LQN
Aspect–Element

Atomic
Model

Coupled
Model Functionality

Processor Processor Receives call, executes it for the specified time

Replies when done

Calculates utilization and throughput

Processor Combines gather, queue, and atomic processor for LQN processor
functionality

Entry with phases Entry Receives call, executes associated workloads (phase 1/2 processing),
makes calls, and replies when done

Processor demands for phase 1/2 must first be initialized through
initproc port

Server calls for phase 1/2 must first be initialized through the initserv
port

Entry Combines gather, queue, atomic entry, and distribute (LQN entry
functionality)

Implied queue Queue Adds call to queue

Sends first element in queue to attached idle processor or entry

Passes reply backup to the call source

Aggregating calls
(multiple sources)

Gather Aggregates calls from multiple input ports and sends them out to a single
output port

Adds a message with the input port index

Passes reply from port output end through to appropriate response port
input end

Distributing calls
(different entries)

Distribute Receives calls on single input port and distributes them to the
appropriate output port

Sends reply from the reply port at the output end to the single response
port at the input end

Task Task Coupled model composed of multiple entries

Disk Processor Reuses the functionality of a processor

Activity N/A N/A Further subdivides the workload of an entry (currently not implemented)

53361.indb 160 3/11/09 10:46:21 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 161

TABLE 7.2
DEVS LQN Simulation Library Messages

Sender (Port) Receiver (Port)
LQN

Equiv. Msg.
DEVS

Messages Interpretation

Processor
(reply)

Queue
(response)

Done Reply Notify source entry that processing is done;
message value represents actual processing time
(milliseconds)

Processor
(ready)

Queue (ready) Done Ready Ready for another job; the message value is
irrelevant

Processor
(throughput)

Throughput Throughput Message value represents the processor throughput
in number of jobs per millisecond

Processor
(utilization)

Utilization Utilization Message value represents the fraction/percentage of
time that the processor has been busy

Entry
(proccall)

Distribute
(in[0..9])

Processor
call

Processor
svc demand

Message value represents processor demand in
milliseconds

Entry
(servcall)

Gather (in) Service call Service call Message value represents index of the target server

Entry
(avservtime)

Avg entry
svc time

Avg entry
svc time

Message value represents avg entry svc time in
milliseconds

Entry
(avph1time)

Avg phase1
time

Avg phase 1
svc time

Message value represents avg phase1 svc time in
milliseconds

Entry
(avph2time)

Avg phase2
time

Avg phase 2
svc time

Message value represents avg phase2 svc time in
milliseconds

Entry
(throughput)

Throughput Throughput Message value represents entry throughput in jobs/
millisecond

Entry
(utilization)

Utilization Utilization Message value: percentage of busy time for entry

Queue (out) Processor (in) Processor
call

Proc. service
demand

Message value represents the service demand in
milliseconds

Queue (out) Entry (in) Service call Service call Service call, the message value is irrelevant

Queue (reply) Gather (resp.) Reply Reply Message value: index of source to be replied to

Queue
(avgsize)

Avg queue
size

Message value: avg number of elements in the
queue at the time the message was sent

Queue
(avgwait)

Avg queuing
wait

Message value: avg number of milliseconds a
message has spent in the queue at the time the
message was sent

Gather (out) Queue (in) Service call Source of
service call
demand

Message value: index of the call source; if attached
to a processor, represents processor svc demand in
milliseconds

Gather
(reply[])

Distrib.(resp[]) Reply Reply Reply; the message value is irrelevant

Distribute
(out[0..9])

Gather
(in[0...9])

Service call Service call If attached to a processor, message value represents
processor service demand in milliseconds

Distribute
(reply)

Entry (response) Reply Reply Message value: index of call target returning the
reply

Entry (initproc) Phase no. Message value: phase number to initialize

Processor
demand

Message value: processor demand in milliseconds

Entry (initserv) Phase no. Message value: phase number to initialize

Calls Number of calls to make to target server

Call target Index of the target server

53361.indb 161 3/11/09 10:46:22 AM

© 2009 by Taylor & Francis Group, LLC

162 Discrete-Event Modeling and Simulation

ref generates an actual processor workload of 1,727 ms and to entry2 in task e2 generates an actual
processor workload of 874 ms.

7.5 VHDL-AMS

VHDL is a hardware description language that has become very popular in the field of design of
digital circuits and was standardized by the IEEE. The standard VHDL-AMS (IEEE Standard
1076.1) included extensions to model mixed-signal circuits [11]. The basic component is the design
entity declaration, which describes the interface to a VHDL-AMS design unit:

entity entity_name is { port ([signal | terminal | quantity]
identifier{, identifier}: [mode | signal_type | electrical]; }+

end [entity] [entity_name] ;

e2
P1

e1

ref

ent

entry1
[1100ms]

entry2
[2100ms]

FIGURE 7.25 A simple queuing model using LQNs.

00:00:00:000 refinits 1
00:00:00:001 refinits 1
00:00:00:002 refinits 0
00:00:00:003 refinits 1
00:00:00:004 refinits 1
00:00:00:005 refinits 1
00:00:00:006 e1initp 1
00:00:00:007 e1initp 1100
00:00:00:010 e2initp 1
00:00:00:011 e2initp 2100
00:00:01:000 refin 1
00:00:02:000 refin 1
00:00:03:000 refin 1
00:00:04:000 refin 1
00:00:05:000 refin 1
00:00:06:000 refin 1
00:00:07:000 refin 1
00:00:08:000 refin 1
00:00:09:000 refin 1
00:00:10:000 refin 1

FIGURE 7.26 Input events for the model.

53361.indb 162 3/11/09 10:46:22 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 163

The entity declaration contains a list of ports, each of which is assigned a type and an optional
mode. Ports of type std_logic or std_logic_vector (a standardized type for digital logic) are used for
digital signals, and ports of type electrical are used for analog signals. In the case of digital signals,
ports will have mode in, out, inout, or buffer. Analog ports do not require a mode.

Figure 7.28 shows the entity declaration of the input/output ports of a digital flip-flop and an ana-
log circuit (low-pass filter). In the flip-flop declaration, d and clk are input ports of type std_logic,
and q is an output port of type std_logic. In addition to the basic std_logic type, vectors of std_logic
signals may be declared using the std_logic_vector type. This allows digital signals to be operated
on by referencing only one signal name. In the declaration for the analog low-pass filter, tout, tin,
and tgnd are electrical ports.

A design architecture describes the functionality of a design unit (it may be a structural, data-
flow, or behavioral description). A single architecture is associated with exactly one entity, whose
syntax is

[00:00:00:002] entry: init phase1 call stmt 1 = 1 calls to server 0
[00:00:00:005] entry: init phase1 call stmt 2 = 1 calls to server 1
[00:00:00:007] entry: init phase1 proc demand mean = 1100 ms
[00:00:00:011] entry: init phase1 proc demand mean = 2100 ms
[00:00:01:000] entry: start; entry: phase1 server call <server 0>
[00:00:01:000] entry: start; entry: phase1 proc call <mean 1100 ms, actual 1086.79 ms>; processor:
<demand 1086.79 ms, rounded to 1087 ms>

[00:00:02:087] entry: reply; entry: done <phase1 1087 ms, phase2 0 ms>; entry: phase1 server call
<server 1>; entry: start
[00:00:02:087] entry: phase1 proc call <mean 2100 ms, actual 2080.5 ms>
[00:00:02:087] processor: <demand 2080.5 ms, rounded to 2081 ms>
[00:00:04:168] entry: reply; entry: done <phase1 2081 ms, phase2 0 ms>
[00:00:04:168] entry: reply; entry: done <phase1 3168 ms, phase2 0 ms>

[00:00:04:168] entry: start; entry: phase1 server call <server 0>
[00:00:04:168] entry: start; entry: phase1 proc call <mean 1100 ms, actual 879.851 ms>; processor:
<demand 879.851 ms, rounded to 880 ms>

[00:00:05:048] entry: reply; entry: done <phase1 880 ms, phase2 0 ms>
[00:00:05:048] entry: phase1 server call <server 1>; entry: start

[00:00:05:048] entry: phase1 proc call <mean 2100 ms, actual 278.087 ms>
[00:00:05:048] processor: <demand 278.087 ms, rounded to 278 ms>
[00:00:05:326] entry: reply; entry: done <phase1 278 ms, phase2 0 ms>
[00:00:05:326] entry: reply; entry: done <phase1 1158 ms, phase2 0 ms>
[00:00:05:326] entry: start; entry: phase1 server call <server 0>
[00:00:05:326] entry: start; entry: phase1 proc call <mean 1100 ms, actual 705.584 ms>; processor:
<demand 705.584 ms, rounded to 706 ms>
...
[00:00:30:284] entry: reply; entry: done <phase1 2375 ms, phase2 0 ms>
[00:00:30:284] entry: reply; entry: done <phase1 2920 ms, phase2 0 ms>
[00:00:30:284] entry: start; entry: phase1 server call <server 0>; entry: start; entry: phase1 proc
call <mean 1100 ms, actual 2256.45 ms>; processor: <demand 2256.45 ms, rounded to 2256 ms>
[00:00:32:540] entry: reply; entry: done <phase1 2256 ms, phase2 0 ms>; entry: phase1 server call
<server 1>; entry: start

[00:00:32:540] entry: phase1 proc call <mean 2100 ms, actual 4946.97 ms>
[00:00:32:540] processor: <demand 4946.97 ms, rounded to 4947 ms>
[00:00:37:487] entry: reply; entry: done <phase1 4947 ms, phase2 0 ms>
[00:00:37:487] entry: reply; entry: done <phase1 7203 ms, phase2 0 ms>

[00:00:37:487] entry: start; entry: phase1 server call <server 0>
[00:00:37:487] entry: start; entry: phase1 proc call <mean 1100 ms, actual 1726.73 ms>; processor:
<demand 1726.73 ms, rounded to 1727 ms>
[00:00:39:214] entry: reply; entry: done <phase1 1727 ms, phase2 0 ms>
[00:00:39:214] entry: phase1 server call <server 1>; entry: start

[00:00:39:214] entry: phase1 proc call <mean 2100 ms, actual 874.252 ms>
[00:00:39:214] processor: <demand 874.252 ms, rounded to 874 ms>
[00:00:40:088] entry: reply; entry: done <phase1 874 ms, phase2 0 ms>
[00:00:40:088] entry: reply; entry: done <phase1 2601 ms, phase2 0 ms>

FIGURE 7.27 Output events generated during model execution and their interpretation.

53361.indb 163 3/11/09 10:46:23 AM

© 2009 by Taylor & Francis Group, LLC

164 Discrete-Event Modeling and Simulation

architecture architecture_name of entity_n is signal_declaration
 | constant_declaration | component_declaration
begin
 {process_statement | concurrent_signal_assignment_statement
 | component_instantiation_statement | simultaneous_statement}
end [architecture] [architecture_name] ;

The body of an architecture is made up of statements that may be categorized as concurrent,
sequential, or simultaneous. These statements operate on signals/quantities declared within the scope
of the architecture and ports that are declared in the entity with which the architecture is associated.

Signals and quantities are declared in the declarative region of an architecture. They belong
to the scope of the architecture in which they are declared and may be referenced only within that
architecture. Signals and quantities have types (similar to ports in the entities). Types std_logic and
std_logic_vector are used for digital logic. Signals and quantities are defined as follows:

signal signal_name : std_logic_vector
(upper_bound downto lower_bound) | std_logic ;
quantity identifier: REAL | Voltage | Current | Charge ;

Quantities can also be declared as relative to terminals in an entity, defined as across or through
quantities. Across quantities represent the voltage at the free terminal relative to the reference termi-
nal. Through quantities represent the current from the free terminal into the reference terminal:

quantity identifier {, identifier} across identifier
{, identifier} through free_terminal to reference_terminal ;

Concurrent statements within an architecture body execute concurrently. They include state-
ments for process, simultaneous, concurrent assignment, and conditional concurrent assignments.
The conditional concurrent assignment assigns a target signal using a condition. The unconditional
concurrent assignment always assigns the value of the source signal to the target signal:

target_signal <= expression1 when condition
else expression2; // conditional

target_signal <= source_signal; //unconditional

A process executes the statements between begin and end process when an event occurs on a
signal in its sensitivity list. All signals modified by the process are updated only when the process
body is completed. The statements between begin and end (sequential statements) are executed in
sequence:

touttin

tgnd

(a) (b)

R

C

vin

vout

FIGURE 7.28 (a) Low-pass filter. (b) VHDL flip-flop and low-pass filter definitions.

53361.indb 164 3/11/09 10:46:24 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 165

[process_name:]
process (sensitivity_list) { type_declaration }
begin
 {signal_assignment_statement | if_statement | case_statement
end process [process_name] ;

The if-then-else statement has the same semantic found in most programming languages.

[if_name:] if condition then sequence_of_statements
 {elsif condition2 then sequence_of_statements }
 [else sequence_of_statements]
end if [if_name] ;

The case-when statement runs the sequence of statements listed under the when clause whose
expression matches that of the expression in the case statement:

[case_name:] case expression is
 {when identifier | expression | discrete_range | others =>
 sequence_of_statements}+

end case [case_name] ;

The sequential assignment assigns the value of the driver signal to the target signal. When
executed from within a process, the target will not get the value of the driver until the end of the
process:

[label:] target <= driver ;

Simultaneous statements are used for describing differential algebraic equations and may
consist of quantities or signals, including a minimum of one quantity per simultaneous statement.
Simultaneous statements may appear anywhere a concurrent statement may appear, and they have
no order.

Components facilitate hierarchical design. A component instance is a copy of the named entity
and its associated architecture that interacts with the architecture it is instantiated within. The port
map clause specifies which ports of the entity are connected to which signals in the enclosing archi-
tecture body:

Instantiation_label : entity entity_name
port map ({port_name => signal_name | expression | variable_name
| open }+);

In [12] we defined a library based on VHDL-AMS that is targeted toward register transfer
level modeling of digital circuits (with limited behavioral modeling and analog constructs). The
library (found in ./VHDL.zip) is called sAMS-VHDL and integrates many of the features of VHDL-
AMS [11]. Each of the sAMS-VHDL constructions was converted into a DEVS model and made

53361.indb 165 3/11/09 10:46:24 AM

© 2009 by Taylor & Francis Group, LLC

166 Discrete-Event Modeling and Simulation

it available for execution in CD++. Process models are translated into CD++ by converting its
sequential statements to C++ code and instantiating ports for every signal that is read or driven from
within the process and for every signal in the process’s sensitivity list. Figure 7.29 illustrates the
structure of a DEVS model generated from a flip-flop process.

The process body is implemented within the external transition function. The values received
from external events generated on the input ports (representing read and sensitivity list signals) are
buffered within the model. If the process body contains a reference to rising_edge(signal_name) or
falling_edge(signal_name) operations, the values received from the external events are stored on a
buffer of length two within the model (keeping the previous and current values of the signal).

The sequential statements in the process body are converted to C++ and inserted into the exter-
nal transition, as is the case with if, case, and assignment statements.

The Boolean expression that refers to read and sensitivity list signals in a VHDL if statement is
replaced with an equivalent Boolean expression that refers to port buffers for those signals. If the
condition within an if statement contains a sensitivity list signal, then we instruct the process model
to change to the active state in 0-time (causing an instantaneous output and internal transition). The
output event will update all driven signals (by sending the value of each output port buffer), and the
internal transition will cause the model to return to the active state.

Figure 7.30 shows parts of the sAMS VHDL code for a process used in a 4-bit counter and its
translation into CD++. This process has one sensitivity list signal (clk), four read signals (d1…
d4), and four driven signals (q1…q4). The process body contains an if sequential statement with a
Boolean expression that contains the rising_edge operation acting on signal clk, and four sequential
assignment operations.

We show a fragment of the C++ code generated in which o_clk, n_clk, _d1, _d2, _d3, and _d4
are input port buffers; _q1, _q2, _q3, and _q4 are output port buffers; and _1164and, _1164not, and
_1164xor are functions that implement and, not, and xor operators in C++.

Signals are used to determine how to interconnect the ports on the many process model instances
for each component. This information is then used during model file generation to create links
between the models. DEVS links provide instantaneous communication between the components,
so a signal model is created to implement transport delays on messages sent between process model
ports. The signal model receives and buffers data on its input port, enters the active state for the
time specified by the assignment statement transport delay, and then outputs the buffered data on its
output port, as shown in Figure 7.31.

Simultaneous statements allow the definition of ordinary differential equation systems with ini-
tial conditions. In this library, the problem of simulating an nth-order differential equation is solved
by reducing the equation into a set of first-order differential equations. For example,

FIGURE 7.29 VHDL process model for flip flop DEVS definition.

53361.indb 166 3/11/09 10:46:25 AM

© 2009 by Taylor & Francis Group, LLC

flipflop: process (clk)
begin
 if(
rising_edge(clk))
 q<=d;
 end if;
end process my_proc;

d buffer
d port d

q

clk port
clk

clk buffer

rising_edge(clk)

comparitor

controlled
switch

controlled
switch

q buffer λ(active)

δext
δint

active

passive

q port

Defining Varied Modeling Techniques Using DEVS 167

d y

dx
p x

dy
dx

q x
2

2
() ()

can be written as two first-order differential equations:

dy
dx

z x
dz
dx

q x p x z x(), () () () .

In general, an nth-order ordinary differential equation of form

F t y y y y n(, , , ,...,)() 0 (7.1)

may be decomposed into a set of first-order differential equations:

dy t
dt

f t y y i Ni
i N

()
(, ,...,), ,...,1 1 (7.2)

where each fi(t, y1…yN) is known. A solution for each yi(t) is obtained for some t > 0 and yi(0) set
by integrating each dyi(t)/dt. We have used both Euler’s and fourth-order Runge–Kutta (which is
more accurate and stable) methods for the numerical integration [13] combined with quantized
DEVS. The Runge–Kutta method not only relies on the derivative at the beginning of the interval
but also uses the derivative at two trial midpoints and the derivative at a trial end point, as seen in
Figure 7.32.

53361.indb 167 3/11/09 10:46:27 AM

© 2009 by Taylor & Francis Group, LLC

fIguRe 7.30 Translating process models.

signal my_signal, x, y, z: std_logic;
…
my_signal<=x after 5ns;

in buffer
d

in port

λ(active)

δext
δint(5)

active

passive

out
port

fIguRe 7.31 Signal model and DEVS definition.

168 Discrete-Event Modeling and Simulation

The idea is to compute a weighted sum of k1, k2, k3, and k4 that is added to yn to determine yn+1:

k hf t y k hf t
h

y
k

kn n n n1 2
1

32 2
(,), , , hf t

h
y

k

k hf t h y k

n n

n n

2 2
2

4 3

, ,

(,), yy y
k k k k

n n1
1 2 3 4

6 3 3 6

(7.3)

In order to use the fourth-order Runge–Kutta method in a quantized state system, this equation must
be modified to determine h when yn+1 – yn = Q/2 (Q is the quantum size). Then substitute k1 = Q/2,
k2 = Q/2, k3 = Q/2, and k4 = Q/2, in (7.3) to get

h

Q

f t yn n
1

2
(,)

h

Q

f t
h

y sign h
Q

h

Q

f t
h

n n

n

2
1

1

3
2

2

2 4

2

, ()

22 42

4

3 3

, ()

, (

y sign h
Q

h
Q

f t h y sign h

n

n n))
Q
2

(7.4)

If we rearrange the sum in the original equation, and substitute for k1, k2, k3 and k4 we obtain:

h

tn

yn

y

tn+1 t

yn + k4

yn + k3

yn + k2

yn + k1

Actual solution

FIGURE 7.32 Runge–Kutta integration.

53361.indb 168 3/11/09 10:46:28 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 169

y y
k k k k

y y
k k k

n n n n1
1 2 3 4

1
1 2 3

6 3 3 6 6 3 3
kk

y y

Q
h

Q

h

Q

h

Q

h

Q

h

n n
4

1

1 2 3 4

6

2
2
6

2
3

2
3

2
6

h
h h h h
1
6

1
3

1
3

1
61 2 3 4

1 (7.5)

This equation determines at what time (relative to the present time) the integral of the first order
differential equation will cross a threshold (i.e., it will enter the quantized state above or below its
current quantized state).

The conversion process must first determine which quantities and signals are exogenous and
endogenous to the ODE system. Endogenous quantities are those on the left-hand side of the simul-
taneous statement as well as all quantities on the right-hand side of the simultaneous statement
with the same quantity name as the left-hand side quantity. All other quantities or signals will be
exogenous. For example, the following simultaneous statement describes a first-order low-pass filter
with input voltage vin and output voltage vout:

vout’dot = (1/(R*C))*(vin-vout);

In this statement, vin is an exogenous quantity, and vout and vout dot are endogenous. In the
previous example, the dot notation denotes the derivative with respect to time of the quantity. For
example, signaldot is the first derivative with respect to the time of the signal, and signaldot dot is
the second derivative. Once all endogenous and exogenous quantities and signals have been identi-
fied, the ODE specified in the simultaneous statement must be decomposed into a set of first-order
differential equations as outlined in Equation (7.2). Each of these equations is then converted into
a fourth-order Runge–Kutta quantized integrator. Each integrator must have an input port for each
exogenous and endogenous quantity or signal on the right-hand side of its first-order differential
equation and an output port for the integral of the left-hand side of its first-order differential equa-
tion. For example, the preceding low-pass filter requires only a single integrator with input ports for
vin and vout, as well as an output port for vout.

If the model is passive and it receives an input, the integrator’s external transition function is
triggered, and the function computes Runge–Kutta integration for a quantized state system. The
right-hand side of the first-order differential equation is converted to C++, substituting the signal
buffer name for the signal name and multiplying this buffer by the quantum size.

The following is the fourth-order Runge–Kutta method code for the low-pass filter pre-
sented previously:

53361.indb 169 3/11/09 10:46:29 AM

© 2009 by Taylor & Francis Group, LLC

170 Discrete-Event Modeling and Simulation

The model then transitions to the active state for a time determined by h, which is calculated as
in (7.4) and (7.5). The output function simply outputs the current state of the output buffer plus or
minus one: plus one if the slope over the interval was positive and minus one if the slope over the
interval was negative. The internal transition function similarly increases/decreases the state of the
output buffer, depending on the slope over the interval, and then sends the model into the passive
state.

Following compilation, the VHDL models’ hierarchies are converted to CD++ coupled models.
The components that constitute the design hierarchy must first be differentiated based on whether
they are a basic or an aggregate component. Basic components do not contain subcomponent
instances in their architectures; aggregate components may have one or more. Figure 7.33 contains
the complete architecture defnition and the CD++ coupled model for the sAMS-VHDL design of
Figure 7.28; note that the order of component declaration begins with the top-level model and is fol-
lowed by models that approach the leaves in the dependency tree. As we can see, there are two basic
components: a digital clock (a component built as the clock defined in Figure 7.30) and an integrator,
built as in Figure 7.32.

sAMS-VHDL subcomponent instances are connected to the architecture in which they are
instantiated as defined by the port map clause in their component instantiation statement. This
clause will connect either a signal within the architecture or a port on the architecture’s entity defi-
nition to each of the ports on the component instance. In the case of a signal, the linking is termed
structural; in the case of another port, the linking is termed hierarchical. In both cases the mode of
the subcomponent port specified in the port map clause must be determined prior to generating link
statements in the coupled model definition. In structural links, if the ports mode is out, it is linked
to the input port on the signal model specified in the clause; if the ports mode is in, the output port
on the specified signal model is linked to it. In hierarchical links, if the subcomponents port mode is
out, it is linked to the component port; if the subcomponents port mode is in, the component port is
linked to it. Figure 7.33 illustrates all four of these cases.

FIGURE 7.33 Hierarchical sAMS-VHDL model and translation to CD++.

53361.indb 170 3/11/09 10:46:30 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 171

Once the complete model is defined and has been translated, it can be simulated in CD++.
Figure 7.34 shows the execution results for the filter using different input parameters.

7.6 BOND GRAPHS

As discussed in Chapter 2, the continuous behavior of dynamic systems is usually described in
terms of differential algebraic equations (DAEs), ordinary differential equations (ODEs), and par-
tial differential equations (PDEs). Simulation based on these formalisms is done numerically by
solving the set of equations describing the system and finding consistent initial conditions [14,15]. In
recent years, new techniques have focused on how to apply concepts of system decomposition (i.e.,
to divide the system into a number of smaller subsystems interfaced by distinct connections).

One of them, the Bond Graph (BG), provides a modeling formalism and a graphical notation that
allows domain-independent description of the dynamic behavior of continuous systems (i.e., a BG
can be used to specify systems within the electrical, mechanical, thermodynamic, and hydraulic
domains, etc.). BG allows hierarchical description of the system of interest, using BG submodels
connected via ports through their interfaces [16].

A BG represents a system as a set of elements interacting with each other by an ideal exchange of
energy, and this exchange determines the dynamics of the system. Power (the derivative of energy
over time) is the product of effort and flow. For example, in electrical systems, power is the product
of voltage and current, and in hydraulics, power is the product of pressure and volume flow rate. We
can define generalized flow and effort variables whose product gives the power exchanged by the
components for any system.

BG modeling concepts are based on two assumptions for dynamic systems representation using
network-like descriptions: the Energy Conservation law and the use of a lumped approach. This
allows the system properties to be separated from each other and then integrated using ideal con-
nections that represent energy flow; (guarantee continuity and ensuring that no energy is generated
or dissipated).

The physical processes are represented as vertices in a directed graph whose edges represent the
ideal exchange of energy. The energy flow is represented via bonds with direction, and the elements
exchange effort and flow through them. The exchange of power is assumed to occur through abstract
entities called energy ports. One-port elements are components with one energy port (represented
with a bond). Two-port elements have two energy ports (represented with two bonds). Interactions
between components are also restricted, and the connectors implement constrained exchanges
between elements (Figure 7.35).

BG models are noncausal. Nevertheless, in order to compute the exchange of power between
elements, we need causality (we cannot compute the values of the two power variables—effort and
flow—at the same time). Causal analysis is essential to describe a BG model in computational terms

Y: C = 1E–5 R = 1000

0
0 1 2 3 4 5 6 7 8 9 10 11 12

20

40

60

80

100

Time*1000

0 1 2 3 4 5 6 7 8 9 10 11 12

Time*1000

V
ou

t

Y: C = 1E–8 R = 1000

0
20
40
60
80

100
120

V
ou

t

FIGURE 7.34 Simulation results: low-pass filter.

53361.indb 171 3/11/09 10:46:30 AM

© 2009 by Taylor & Francis Group, LLC

172 Discrete-Event Modeling and Simulation

and to derive the set of equations that represent the system, as seen in Figure 7.35. Therefore, given
a pair of elements connected through a bond, a causal bond determines which of the components
causes the flow and which causes the effort.

Bond graphs can represent a varied set of standard components, including capacitors (c),
inductors (i), resistors (r), effort sources (se), flow sources (sf), transformers (tf), gyrators (gy),
1-junctions, and 0-junctions. We will briefly present some of these components (further details can
be found in references 17–19):

Resistor (R element) is a component with two terminals that resists flow (current in the
electrical domain), producing effort to be reduced between the input and output terminals
(voltage in the electrical domain) while dissipating energy. R elements can be used to
model phenomena in varied domains (i.e., resistors in the electrical domain, dampers in
the mechanical context, etc.). The constitutive equation is defined by an algebraic equation
relating flow and effort: e = R(f) (Figure 7.37). The electrical resistor is mostly linear and
the corresponding equation is µ = R.i, where R is the resistance’s constant.
Gyrator is a two-port element and, like a transformer, it is power continuous (no power is
stored or dissipated). The gyrator converts flow to effort and vice versa (e.g., an electrical
motor). The gyrator establishes the relation between the effort on one side to the flow on
the other and vice versa, indicated by e2 = µ ƒ1; e1 = µ ƒ2. In a gyrator, a vertical force
produces motion in a horizontal direction (i.e., in a DC motor where the output torque is
proportional to the input current, as defined by the equations in Figure 7.38).
Junctions represent the constrained interactions between elements. Junctions couple com-
ponents in a power-continuous way (with no energy dissipation or storage). Because there
are only two ways in which components can exchange power, only two types of junctions
are needed:

The 0-junction (parallel) represents a node where all the efforts of the connecting
bonds are equal (e.g., the parallel connections in electrical circuits). Power direction
on a bond determines its flow sign (inward-pointing bonds: positive flow; outward-
pointing bonds: negative flow). If we sum all the flows and consider the power direc-
tion, we obtain zero (corresponding to Kirchhoff’s current law in electrical networks
[16]) (Figure 7.39).
The 1-junction (serial) represents a node where all the flows of the connecting
bonds are equal—for instance, serial connections in electrical circuits (Figure 7.40).
Due to power continuity, all the efforts sum to zero (considering the power direction
associated with the bond). This summation is Kirchhoff’s voltage law for electrical

Ei Ej
Bond

Ports

FIGURE 7.35 BG representation of energy flow from Ei to Ej .

FIGURE 7.36 (a) Causal bond; (b) equivalent graph; (c) associated equations.

53361.indb 172 3/11/09 10:46:31 AM

© 2009 by Taylor & Francis Group, LLC

f

e Ei · e = Ej · e
Ej · f = Ei · f

Ei Ej Ei Ej

 (a) b)

Defining Varied Modeling Techniques Using DEVS 173

networks [20]: the sum of the voltages’ differences on a closed loop (mesh) is zero
(in the mechanical domain, for instance, 1-junctions represent the force balance, also
known as the D’Alembert principle).

As we can see, every primitive BG element defines one or more equations that involve the flow
or effort variable values received by the bonds connected to it. Bonds are two-signal connections
(effort and flow) that have opposite directions. Passive elements like capacitors, resistances, and
inductors have a power direction pointing inward; on the other hand, active components like sources
have the power pointing outward. This signal direction determines the bond causality.

e1
e1e2

e2

e2 = µ . f1
e1 = µ . f2

f2 = .e1

f1 GY : µ

(a) (c)(b)

(e)(d) (f)

f2 f2f1
µ

µ

e1 e2

f1 GY : µ f2

e1 1 e2

f2f1

µ
1
µ

f1 = .e21
µ 1

µ

FIGURE 7.38 Gyrator element, related equations, and block diagram for the two causality types.

e1
f1

e2
f2

f2
1

e1

f1 = f2 = f3

e1= e2 + e3e3

f2
f3

+

+

FIGURE 7.40 1-junction in causality, equations, and block diagram representation.

R : R e = R . f

f = eR : R

e
f

e
f

f
R

f

e

e
1
R

1
R

FIGURE 7.37 R element in causality, equations, and block diagram representation: flow; effort.

e1
f1

e2

e3

f2

f3

e2

e2

e10

f1

e1 = e2 = e3
f1 = f2 + f3 +

+

FIGURE 7.39 0-junction in causality, equations, and block diagram representation.

53361.indb 173 3/11/09 10:46:33 AM

© 2009 by Taylor & Francis Group, LLC

174 Discrete-Event Modeling and Simulation

We used CD++ to build a library of BG primitive elements based on these concepts, using
QDEVS and GDEVS models with polynomial functions of degree one. The components of the
library are the following:

BG is an abstract model used as a base for all the primitive Bond Graph elements. It intro-
duces the basic functionality that permits adding new bonds to the components.
Bond: Although this is not a Bond Graph primitive element, it was included to provide
functionality beyond component connections. Different element types (one port, two port,
or junction) can have one or more bonds associated. Every bond element has one input and
one output port; these transport effort and flow variables between components. Attributes
of the bond model specify power direction and causality restrictions.
Resistance calculates an effort value according to the resistance equation (effort = R.flow,
with R the resistance constant), computed when the flow value is received in an input port.
The time instants of new input arrivals (t1,…, tn) are associated with the pair (ai,bi), which
define the coefficients used to approximate the effort curve by the polynomial function:
effort(t) = ai t + bi t <ti,tj>. The model’s internal transition implements the polynomial
approximation of the continuous effort curve (this behavior is common to every GDEVS
model in the library in which the curve approximation is done using a polynomial function
of order one).
Capacitor models the static relation between effort and displacement. Storage elements as
capacitors impose a preferred causality.
EffortSource and FlowSource generate signal values according to an emission frequency.
EffortSource sends the effort through an output port, while FlowSource sends the flow
value. Several signals were implemented in order to provide functions to be used in differ-
ent contexts: Constant, Step, Ramp, Sine, ExpSine, Exponential, and Pulse.
Inductor defines the static relation between flow and momentum. The model transition
functions are similar to those used for the capacitor, but in this case, the inductor load
(flow) is calculated as the integral of effort value.
Transformer conserves power and transmits the power factors with the proper scaling
defined by the transformer modulus. The modulus equation defines the following rela-
tions: fj = r fi and ej = (1/r) ei , where r is the transformer modulus and (ei,fi) and (ej,fj) are
the (effort,flow) values transported by bondi and bondj attached to the component. This
element has two bonds connected to it, so both output effort and flow values must be cal-
culated by the model.
Gyrator establishes the relationship between flow to effort and effort to flow, keeping the
power unchanged.
Junctions: The 0-junction (1-junction) model processes the arrival of new effort (flow) data
in the model’s external transition function, sending the value received to all the output
effort (flow) ports. On the other hand, the arrival of new flow (effort) by one of the bonds
generates the recalculation of the equation. Once the value is recalculated, the flow (effort)
is sent by the output port.

The complete hierarchy of Bond Graph models integrating the library was presented in D’Abreu
and Wainer [17], and the library can be found in ./Hybrid.zip. We will show how the capacitor model
has been implemented (and the remaining components here described were defined following a
similar approach). The QBGCapacitor is defined as in Kofman [21]:

QBGCapacitor = < X, S, Y, δint , δext , λ, ta > (7.6)

where
X = ;
Y = × N;

53361.indb 174 3/11/09 10:46:34 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 175

S = 2 × Z × +;
δint(c, dc, j,) = (c + dc, dc, j + sign(dc), 1);
δext((c, dc, j,), e, xv) = (c + e dc, xv, j, 2);
λ(c, dc, j,) = (Qj+sign(dc),1); and
ta(c, dc, j,) =

1

2
0

1

Q c d

d
if d

c d Q

d

j c

c
c

c j

c

()

() ()
iif d

if d

c

c

0

0

 2

1
0

Q c e d
x

if x

c e d Q

x
if

i c

v
v

c j

v

()

() ()
xx

if x

v

v

0

0

This model evolves based on the detection of effort value changes considering the input flow and
the output effort as piecewise constant (and the displacement trajectory as piecewise linear). The
model’s state variables include the current capacitance and the previously computed value (two real
numbers), a quantized state (an integer number), and the time when the next threshold change is
scheduled to happen. Input flow changes are associated with external events. In case of input flow
variations, the time to the next effort change must be recalculated. When the capacitor receives an
input (x), it stores the input value, and it computes the new capacitance value as the current capaci-
tance added to the product of the last input and the elapsed time. The current displacement is then
computed according to the elapsed time and the previous flow value and then used as the new initial
value. Then it schedules the next internal transition according to the formulas defined in 2. That
is, if the input is positive, we compute the difference between the current capacitance value and the
next threshold (Q represents the quantized signal). If the input is negative (i.e., there was a change
of sign in the input), we check to see if the state change is larger than the hysteresis value . If the
input is 0, we passivate the model.

When delay time is consumed, it means we have crossed a threshold, and we trigger the output
function (which transmits the current threshold, depending on the sign of dc). Then the internal
transition function updates the capacitance value according to the time advance, and it schedules the
next internal transition according to the update value and the sign of the update.

Figure 7.41 shows the implementation of this model in CD++. As we can see, when flow arrives
at the component, an external transition function is activated and the flow is integrated in order to
calculate the effort value, which is sent to the rest of the system through the effort port. The external
transition function calculates the effort value as the integral of the input flow data, generating the
capacitor’s load. If the flow input arrives during an active state, the value is computed according
to the elapsed time since the last internal transition function. An internal transition is immediately
scheduled and will be in charge of computing the next state. Before executing the internal transi-
tion function, the output function transmits the previously computed value. The quantizer model
provides the representation of output trajectories as piecewise constant functions through the quan-
tization function.

The libraries were used to execute some examples of application [17]. For instance, the electrical
circuit in Figure 7.42 is built as components connected in serial and parallel, and it can be used to
measure current [22]. In order to simulate the circuit within CD++, the components in the diagram
had to be replaced by the corresponding BG atomic models in the library. All the components were
connected using input/output (effort/flow) ports, according to the causality defined by every ele-
ment, generating a coupled model. The structure of the coupled model associated with the circuit
just presented is shown in Figure 7.43.

53361.indb 175 3/11/09 10:46:34 AM

© 2009 by Taylor & Francis Group, LLC

176 Discrete-Event Modeling and Simulation

FIGURE 7.41 Implementation of capacitor element in CD++.

53361.indb 176 3/11/09 10:46:35 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 177

Figure 7.44 shows the simulation results for this example, using a period of 1 ms; resistance, R1 =
1; inductors, L1 = 48, L2 = 48; capacitance, C = 65; conductance, R2 = 0.001; EffortSource, emitting a
pulse with a period of 2,500 ms and duration of 2 ms; and pulse amplitude = 220 V.

7.7 MODELICA

Many of the concepts introduced by Bond Graphs were adopted and applied to the design of vari-
ous modeling and simulation tools for continuous systems modeling, and they were extended to
include concepts of object-oriented modeling (OOM). OOM permits decreasing the abstraction gap
between the real system and the representation model, which enables specifying the models in a

FIGURE 7.41 (continued).

R1 L2

L1 R2

R:R1

SE:E 1
1 10 03

2 4 6 8

5 7 9 R:R2

I:L1 I:L1 C:C

CE

FIGURE 7.42 Circuit diagram and Bond Graph.

53361.indb 177 3/11/09 10:46:36 AM

© 2009 by Taylor & Francis Group, LLC

178 Discrete-Event Modeling and Simulation

more natural way while improving reusability of models in a hierarchical construction process. One
such language is Modelica [23].

A model in Modelica is a noncausal construct defined by mathematical equations and OOM
organization (using classes that can be developed hierarchically, allowing component reuse, library
development, and model exchange). Modelica includes libraries of standard components in varied
application domains including ODEs, block diagrams, electrical, hydraulics, mechanics, etc. The
semantics of the models is specified by a set of rules used to translate the model to its corresponding
flat hybrid DAE. An example of an electrical circuit specified using the electrical library provided
by Modelica is presented in Figure 7.45.

The circuit model uses a pulse voltage generator (with a voltage of 200 V, a period of 1 Hz, and
an amplitude of 10% of the frequency), a capacitor (with capacitance of 200 F), a resistor (with

() 1-

1-

(2)

e f

f

f

f
f

f

f

e

e

e

e e

e

e

e

f

0- (1)

 (2)

 ()

Out

0-

(1)

FIGURE 7.43 DEVS coupled model associated with the circuit.

FIGURE 7.44 Circuit current.

53361.indb 178 3/11/09 10:46:37 AM

© 2009 by Taylor & Francis Group, LLC

–0.003

–0.002

–0.001

0

0.001

0.002

0.003

10005000 1500 2000 2500 3000 3500

Defining Varied Modeling Techniques Using DEVS 179

resistance of 1.5), and one inductor (with inductance of 40 H). The circuit is connected to ground.
The connect constructions permit defining the structure of the circuit. As we can see, we can have
serial (V.p, R.p) or parallel connections (R.n, I.p; R.n, C.p).

D’Abreu and Wainer [24] presented the design and implementation of M/CD++, a tool to con-
struct continuous systems based on Modelica, using DEVS as the underlying formalism and CD++
as the support tool. M/CD++ permits simulating electrical circuit models like the one in Figure 7.45
by implementing a subset of Modelica language specification. In particular, M/CD++ provides lan-
guage support for a subset of Modelica v2.1, including the components needed to allow electrical
circuit construction provided by the Modelica electrical library. These components are described
according to Modelica specifications [23].

Figure 7.46 shows one of these components (a complete description of the grammar supported
can be found in [24] and [25]). In this example, the sine voltage construction defines the amplitude,
phase, and frequency (in hertz) of the sine wave (defaults: 1, 0, 1) and generates a voltage using those
values (which vary over time).

M/CD++ is composed of a set of components to parse, compile, verify, and execute the model.
The process starts with an electrical circuit model specified using Modelica and finishes with a

model SineVoltage "Sine voltage source"
 parameter SI.Voltage V=1 "Amplitude";
 parameter SI.Angle phase=0 "Phase ";
 parameter SI.Frequency freqHz=1"Frequency ";
extends Interfaces.VoltageSource(redeclare Modelica.Blocks.Sources.Sine
 signalSource(amplitude={V}, freqHz={freqHz}, phase={phase}));
end SineVoltage;

FIGURE 7.46 Definitions: Modelica.Electrical.Analog.Sources.SineVoltage.

CC = 200 V = 200

R = 1.5

R

L = 40 I

Gnd

FIGURE 7.45 Modelica specification of a circuit.

53361.indb 179 3/11/09 10:46:38 AM

© 2009 by Taylor & Francis Group, LLC

180 Discrete-Event Modeling and Simulation

CD++ log file including the simulation results. We also generate an intermediate BG to check for
algebraic loops and singularities (elements that have discontinuities—e.g., diodes). Then we gener-
ate an optimized BG corresponding to the electrical circuit, which, in turn, is used to generate a
DEVS simulation using the library introduced in Section 7.6. The following sections will give a
brief introduction of the compiler, which is included in the internal folder in CD++Builder (and can
be downloaded in ./mcd++.zip). We will introduce the general ideas of each component (interested
readers should consult [25]).

7.7.1 MODELICA PARSER

This component checks and parses the input file, building and validating the electrical circuit
model. We used a general-purpose parser generator that takes an LALR context-free grammar and
describes the actions that accompany the syntactic rules. These actions are used to build a syntax
tree corresponding to the model’s input file, which is in turn used to perform semantic validation
and electrical circuit construction. In this stage we check:

specification of valid and supported packages (i.e., those in the electrical library);
specification of valid and supported types and classes;
undeclared symbols; and
specification of valid component attributes.

If the complete syntax tree is successfully validated, we build an electrical circuit. Several verifica-
tions are considered in order to be able to preserve the model properties.

The definitions of pin (positive and negative), port, one-port element, two-port element, electri-
cal component (resistance, capacitor, source, etc.), and circuit generate the model associated with
these components. Every electrical component on a circuit is represented as a graph using n nodes
(where n corresponds to the number of pins of the element). One-port elements are represented by
two nodes: element.port1.p (positive pin) and element.port1.n (negative pin). Two-port elements are
represented by four nodes: element.port1.p, element.port1.n, element.port2.p and element.port2.n.
Generalizing, k-port elements will be represented by 2.k nodes as: element.port1.p, element.port1.n,
…, element.portk.p, and element.portk.n, as seen in Figure 7.47. There are two types of connections
between nodes: physical and logical. The former corresponds to the physical coupling between ele-
ments of the circuit (solid lines). Logical connections correspond to the associations between pins
and ports of an element; the pins of a given port connector are linked by dashed lines and port con-
nectors of a given component are linked by dotted lines.

Figure 7.48 shows the electrical circuit objects constructed by the parser given the correspond-
ing Modelica specification file presented in Figure 7.46. The electrical circuit object, EC (E Circuit),
is modeled as the composition of R (an instance of Resistance, which is a one-port element), V (an
instance of VoltageSource with signal s, a one-port element), C (a Capacitor component, a one-port
element), I (an Inductor, a one-port element), and Gnd (an instance of Ground, an element with one
positive pin).

e.port1.p

e.port1.n

e.port1.p

e.port1.n

e.port1.p

e.port1.n

e.port2.p

e.port2.n

e.port2.p

e.port2.n

e.portn.p

e.portn.n

 (a) (b) (c)

FIGURE 7.47 Node representation of port elements: (a) one-port; (b) two-port; (c) k-port elements.

53361.indb 180 3/11/09 10:46:39 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 181

The electrical circuit is modeled using the internal graph introduced (Figure 7.49(a)). This data
structure and the model representation can help in the following phase, when we define a BG gen-
eration algorithm.

After the BG is constructed and simplified, we apply different error detection techniques to the
resulting BG. Causalization is the process where the signal direction of the bonds is determined.
Once this process is applied to the graph, each bond can be interpreted as a bidirectional signal flow.
A port element can impose four different causal constraints on its connected bonds:

Fixed causality appears when the equations allow only one of the two port variables to be
the outgoing variable—that is, source effort (Se) and source flow (Sf) components.
Constrained causality appears when relations between causalities of the different ports
within the component define causal constraints. For instance, at 0-junctions (where all
efforts are equal), exactly one bond has flow causality (flow-out causality). The causal
constraint at a 1-junction is the dual form of the 0-junction. At a Transformer element, one
bond has effort causality (effort-out causality) and the other flow causality. At Gyrators,
both bonds have either effort causality or flow causality.

EC : ECircuit

C : Capacitor I : Inductor

R : Resistance

Gnd : Ground

«usos»

«usos»

«usos»

«usos»

«usos»

V : VoltageSource

C.p

C.n

R.nR.p

I.p

I.n

Gnd.p

V.p

V.n

 (a) (b)

FIGURE 7.48 (a) Electrical circuit graph representation; (b) objects model generated by the M/CD++
parser.

R:R1

SE:E 1
1 10 03

2 4 6 8

5 7 9 R:R2

I:L1 I:L1 C:C

CL = 500 C = 10L1

R1 L2

R2E = 10

R = 0…. R = 0….

R
=
1…

Gnd

FIGURE 7.49 (a) Modelica specification of a circuit; (b) circuit; (c) generated BG.

53361.indb 181 3/11/09 10:46:40 AM

© 2009 by Taylor & Francis Group, LLC

182 Discrete-Event Modeling and Simulation

In preferred causality, the causality on storage elements determines whether integration or
differentiation with respect to time will be used. Integration has preference above differen-
tiation, representing the preferred causality. Then, at C elements, the preferred causality is
effort causality and, at I elements, flow causality.
Arbitrary causality is used when no causal constraints exist (i.e., at R elements).

7.7.2 MAPPING ELECTRICAL CIRCUITS TO BG

Our BG generation algorithm is based on Karnopp’s circuit construction method [26]. We have
applied the Sequential Causality Assignment Procedure (SCAP) to assign causality to the bonds of a
given BG. The method starts by choosing a fixed causality element (source) and then propagates the
assignment through the structural components (Junctions, Transformer, and Gyrator), according to
causality restrictions. Once all sources have been processed, a storage element (C or I) is selected
and the preferred causality applied, restarting the propagation step. That is repeated until all stor-
ages have their causalities assigned. Last, if the graph is not completely causalized, the iteration
is repeated beginning with a resistor (R). If the last step is reached, the model contains algebraic
loops.

The idea is to construct a BG that resembles the circuit structurally, simplifying the BG based on
selected circuit properties. The construction method is as follows:

For each node in the circuit with a distinct potential, write a 0-junction.
Insert each one-port circuit element by adjoining it to a 1-junction and inserting the 1-junc-
tion between the appropriate 0-junctions (C, I, R, Se, and Sf elements).
Assign power directions to all bonds.
If the circuit has an explicit ground potential, delete those 0-junctions and their bonds from
the graph. If no explicit ground potential is shown, choose any 0-junction and delete it.
Simplify the resulting BG.

Once this process is applied to the graph, each bond can be interpreted as a bidirectional signal
flow. Structural singularities and algebraic loops in the model are detected. Figure 7.49 shows a
graphical representation of an electrical circuit and its transformation to a BG.

7.7.3 BG COMPILER FOR CD++

Once the BG model has been generated and causalized, it is transformed into a DEVS model. The
first step of the BG compilation is the transformation to its equivalent quantized BG (QBG); that is,
it is converted to a BG where all the storages and sources are quantized BG elements. To do so, the
compiler follows these steps:

For each component u of the QBG, add u to the declaration section within the CD++
coupled model file.
Select a valid implementation class for the component.
For each bond, b = (u,v), of the QBG, generate the coupling information between u and v
of the links section within the CD++ coupled model.
For each component u of the QBG, generate the component’s configuration information
within the parameterization section of the CD++ coupled model file.

Figure 7.50 shows the translation of the model presented in Figure 7.49 into CD++.

53361.indb 182 3/11/09 10:46:41 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 183

7.7.4 SIMULATION EXAMPLES

In this section, we present the various simulation results of different electrical circuits using M/
CD++. We first present the results of the circuit introduced in Figure 7.49, using a simulation run of
1 min, a quantum = 0.0002, and an hysteresis window size = 0.01 applied to all of the quantizable
components within the circuit (I1, I2, C1).

Figure 7.51 shows the simulation results for the model executed. For the given pulse voltage
source, we obtained the desired voltage on capacitor C and the expected current on the inductor Ii.
In order to check the results obtained by M/CD++, we compared them with simulations executed
using Dymola [27], a commercial toolkit with full support for Modelica (Dymola, version 5.1b,
whose simulator, Dymosim, provides a number of different integration methods for the simulation
of dynamic systems). We used a fixed-step algorithm (Euler, a first-order algorithm) and a variable
step-size algorithm (DASSL with variable order 1–5) used to integrate DAE and ODE systems [28].

When we simulated the previous example using the DASSL integration method on Dymola (10
s of simulation time, intervals of 500 time units, and tolerance of 0.0001) and compared the results
with those obtained by M/CD++ (using a quantum size q = 0.0001 and a hysteresis window of q/2),
we obtained the information shown in Figure 7.52.

Figure 7.53 shows a different example that we simulated using the DASSL integration method on
Dymola for 60 s of simulated time, with 500 intervals and a tolerance of 0.0001. We compared the
results obtained with a QSS DEVS model implemented by M/CD++.

components : $PJ2@QBGParallelJunction $PJ3@QBGParallelJunction C@QBGCapacitorFlowIn
$SJ2@QBGSerialJunction $SJ3@QBGSerialJunction ...

link : e2n@$PJ2 e2p@$SJ2
link : f2p@$SJ2 f2n@$PJ2
...
link : e1n@V e3p@$SJ3
link : e3n@$PJ2 e1p@I1

[C] C : 10.000 initialLoad : 0.000 quantum : 0.0002 hystWindow : 0.01
[L1] I : 500.000 initialLoad : 0.000 quantum : 0.0002 hystWindow : 0.01
[L2] I : 2000.00 initialLoad : 0.000 quantum : 0.0002 hystWindow : 0.01
[R1] R : 0.001
[R2] R : 1000.000
[V] signal : Pulse offset : 000 startTime : 000 amplitude : 010 period : 2.5 width :
050
quantum : 0.0002 hystWindow : 0.01

FIGURE 7.50 Coupled DEVS model representation and CD++ notation.

 (a) (b) (c)

FIGURE 7.51 (a) Pulse voltage source; (b) Current on inductor I1; (c) voltage on capacitor C.

53361.indb 183 3/11/09 10:46:42 AM

© 2009 by Taylor & Francis Group, LLC

184 Discrete-Event Modeling and Simulation

Figure 7.54 shows the error for the capacitor (C1) and the state trajectories for the inductor (I1)
on M/CD++ and Dymola. Figure 7.54(a) shows the relative error curve for voltage on capacitor C1

and Figure 7.54(b) shows the trajectories for the current on inductor I1. It can be seen that M/CD++
approximates the model trajectories well and that the relative error is constrained (below 0.5%).
Larger relative errors are obtained for points near zero, given the fixed quantum size used through
the entire simulation.

We also defined the electrical circuit in Figure 7.55. We show two test cases executed for this
model, varying the integration method used in the simulation with Dymola. Initially, we simu-
lated this sample circuit using the DASSL integration method on Dymola. The simulation time
was 30 s, and we used 500 intervals at a precision of 0.0001. We also repeated the studies using the

Capacitor.v Curves Comparison

0.00E + 00
2.00E – 03
4.00E – 03
6.00E – 03
8.00E – 03
1.00E – 02
1.20E – 02
1.40E – 02
1.60E – 02

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (sec)

C
ap

ac
ito

r.v

MCD++ Interpolated by Dymola MCD++

Inductor1.i Curves Comparison

0.00E + 00

2.00E – 02

4.00E – 02

6.00E – 02

8.00E – 02

1.00E – 01

1.20E – 01

0.00 2.00 4.00 6.00 8.00 10.00

Time (sec)

In
du

ct
or
1.

i

MCD++ Interpolated by Dymola MCD++

FIGURE 7.52 Comparison for voltage on capacitor C and current on inductor I1.

Inductor2

Ground1

Inductor3

L = 1L = 1

In
du

ct
or
4

L
=
80

C
 =

 4
0

C
 =

 3
0

L
=
40

R
=
1

C
on

st
an

t…

In
du

ct
or
1

Re
sis

to
r1

C
ap

ac
ito

r3

C
ap

ac
ito

r2

C
ap

ac
ito

r1

C
 =

 3
0

FIGURE 7.53 Model of an electrical circuit.

Relative Error Between Interpolated C1.v on

MCD++ and C1.v on Dymola (case 3.1)

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%

0.00 20.00 40.00 60.00 80.00
Time (sec)

Re
la

tiv
e
Er

ro
r (

%
)

Inductor1.i Curves Comparison (case3.1)

–0.2
0

0.2
0.4
0.6
0.8
1

1.2

Time (sec)

In
du

ct
or
1.

i

806040200

MCD++ Interpolated by Dymola MCD++

 (a) (b)

FIGURE 7.54 (a) Relative error for v. on C1; (b) current on I1.

53361.indb 184 3/11/09 10:46:43 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 185

Euler integration method on Dymola, using an integration step of 0.005 and a tolerance of 0.0001.
Figure 7.55 shows the error between M/CD++ and Dymola for the current trajectories on the ideal
transformer (input and output flow). A similar error to the one produced in the previous case is given
using the Euler integration method on Dymola, with a step size equal to 0.005.

Finally, we present the results of the sample circuit in Figure 7.57. Two test cases were executed
for this model, varying the quantization parameters used for state trajectories on M/CD++. We
simulated this sample circuit using the DASSL integration method on Dymola for 15 s. Again, we
used 500 intervals with a precision of 0.0001. Figure 7.58 shows the error, for the state trajectories
on capacitor (C1) and inductor (I1), between M/CD++ and Dymola. This test case was simulated

FIGURE 7.55 Electrical circuit.

Ideal Transformer1.i1 Curves Comparison

–0.15
–0.1

–0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

1050 15 20 25 30 35

Time (sec)

Id
ea

l T
ra

ns
fo

rm
er
1.

i1

MCD++ Interpolated by Dymola MCD++

Ideal Transformer1.i1 Curves Comparison

–0.15
–0.10
–0.05

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

0.00 5.00 10.00 15.00 20.00 30.0025.00 35.00

Time (sec)

Id
ea

l T
ra

ns
fo

rm
er
1.

i1

MCD++ Interpolated by Dymola MCD++

 (a) (b)

FIGURE 7.56 Current on the ideal transformer using (a) DASSL and (b) Euler.

FIGURE 7.57 Electrical circuit.

53361.indb 185 3/11/09 10:46:45 AM

© 2009 by Taylor & Francis Group, LLC

R = 0.004 L = 2

C = 0.2 C = 0.2 C = 0.2Capacitor2

Ground1

Capacitor1

Co
ns

ta
nt

…

Ca
pa

ci
to

r3

Resistor1 Inductor1 Resistor2 Inductor2 Resistor3 Inductor3

R = 0.004 L = 2 R = 0.004 L = 2

Ground1 Ground2

Co
ns

ta
nt

… R = 1

R = 1

L = 5
n = 1

Ideal
Tran…C = 10

C = 5

L = 3

Inductor1

Resistor1

Resistor2

Capacitor1

Ca
pa

ci
to

r2

Inductor2

186 Discrete-Event Modeling and Simulation

using the DASSL method on Dymola and decreasing the quantum and hysteresis window size on
M/CD++ simulation.

Exercise 7.13

Repeat the previous examples, changing the quantum size and the hysteresis window. Analyze the new
simulation results.

7.8 SUMMARY

In this chapter we introduced varied modeling techniques and their mapping to DEVS. We first
showed how to define models of finite state machines and discussed some basic examples. We then
introduced Petri Nets and Layered Queuing Networks, including a number of models to simulate
them in CD++. We also introduced a variety of models of continuous systems based on GDEVS and
QSS approximations, including a simplified version of VHDL-AMS, Bond Graphs, and Modelica.
Our BG library allows users to create advanced models of continuous systems in different fields of
applications and to integrate them with discrete-event models (like the PN and DEVS models intro-
duced in previous sections) within the context of a coupled model definition.

This library was used as the starting point to create a Modelica compiler that enables the user to
create models in Modelica and to execute them using CD++. We also showed the use of DEVS to
facilitate simulation of mixed-signal HDL models using VHDL. In order to permit the execution
of these models within a DEVS simulator, generic DEVS models and conversion procedures were
required. Hierarchical models written in sAMS-VHDL that utilize processes, signals, and simul-
taneous statements may be simulated in CD++ by elaborating the model and converting the model
hierarchy into an equivalent CD++ model.

Although they were not discussed in this section, other libraries have been built for different
modeling techniques, including timed Petri nets (found in ./Petri-Timed.zip), queuing networks
(./queuingmodels.zip), Mealy finite state machines (./fsm.zip), a cellular automata-based Turing
machine model (./TuringMachine.zip), and quantum dot cells (./BrainMachine.zip). The nature of
DEVS permitted the creation of these multiple methods, seamless integration between models’
components, and integration with continuous signal models into a hierarchical model definition.

REFERENCES

1. Vangheluwe, H. L. M. 2000. DEVS as a common denominator for multiformalism hybrid systems mod-
eling. Proceedings of Computer-Aided Control System Design, 2000, IEEE International Symposium on
CACSD 2000, Anchorage, AK, 129–134.

2. Zeigler, B. P. 1976. Theory of modeling and simulation. New York: Wiley-Interscience.

Capacitor1.v Curves Comparison

0.00E + 00
5.00E + 01
1.00E + 02
1.50E + 02
2.00E + 02
2.50E + 02
3.00E + 02
3.50E + 02
4.00E + 02
4.50E + 02
5.00E + 02

0.00 5.00 10.00 15.00 20.00
Time (sec)

C
ap

ac
ito

r1
.v

MCD++ Interpolated by Dymola MCD++

Inductor1.i Curves Comparison

–150

–100

–50

0

50

100

150

0.00 5.00 10.00 15.00 20.00

In
du

ct
or
1.

i

Time (sec)

MCD++ Interpolated by Dymola MCD++

 (a) (b)

FIGURE 7.58 (a) Voltage curve on C1; (b) current curve on I1.

53361.indb 186 3/11/09 10:46:45 AM

© 2009 by Taylor & Francis Group, LLC

Defining Varied Modeling Techniques Using DEVS 187

3. Zeigler, B. P., and S. Vahie. 1993. DEVS formalism and methodology: Unity of conception/diversity
of application. Proceedings of WSC ’93: Proceedings of the 25th Winter Simulation Conference, Los
Angeles, CA, 573–579.

4. Zheng, T., and G. Wainer. 2003. Implementing finite state machines using the CD++ toolkit. Proceedings
of the 2003 SCS Summer Computer Simulation Conference, Montreal, Quebec, Canada.

5. Peterson, J. L. 1981. Petri net theory and the modeling of systems. Englewood Cliffs, NJ: Prentice Hall.
6. Jacques, C., and G. Wainer. 2002. Using the CD++ DEVS toolkit to develop Petri nets. Proceedings of

Summer Computer Simulation Conference, San Diego, CA.
7. Neilson, J. E., C. M. Woodside, D. C. Petriu, and S. Majumdar. 1995. Software bottlenecking in cli-

ent–server systems and rendez-vous networks. IEEE Transactions on Software Engineering 21 (9):
776–782.

8. Woodside, C. M., J. E. Neilson, D. C. Petriu, and S. Majumdar. 1995. The stochastic rendezvous network
model for performance of synchronous client–server-like distributed software. IEEE Transactions on
Computers 44 (1): 20–34.

9. Woodside, C. M., S. Majumdar, J. E. Neilson, D. C. Petriu, J. Rolia, A. Hubbard, and G. Franks. 1995.
A guide to performance modeling of distributed client-server software systems with layered queuing
networks. Technical report, Department of Systems and Computer Engineering, Carleton University,
Ottawa, Ontario, Canada.

10. Petriu, D., and G. Wainer. 2004. A library of layered queuing networks using the DEVS formalism.
Proceedings of Mediterranean Multiconference on Modeling and Simulation, Bergeggi, Italy.

11. Christen, E., K. Bakalar, A. Dewey, and E. Moser. 1999. DAC’99 VHDL-AMS tutorial. Proceedings of
36th Design Automation Conference, New Orleans, LA.

12. Mehta, S., and G. Wainer. 2005. sAMS-VHDL: A tool for modeling hybrid hardware description lan-
guages. Proceedings of the 2005 DEVS Integrative M&S Symposium, Spring Simulation Conference, San
Diego, CA.

13. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1986. Numerical recipes. Cambridge:
Cambridge University Press.

14. Taylor, M. 1996. Partial differential equations: Basic theory. New York: Springer–Verlag.
15. Brenan, K. E., S. L. Campbell, and L. R. Petzold. 1989. Numerical solution of initial-value problems in

differential algebraic equations. New York: Elsevier.
16. Åström, K. J., H. Elmqvist, and S. E. Mattsson. 1998. Evolution of continuous-time modeling and simu-

lation. 12th European Simulation Multiconference, ESM’98, Manchester, UK.
17. D’Abreu, M., and G. Wainer. 2003. Defining hybrid system models using DEVS quantization techniques.

Proceedings of the Winter Simulation Conference, New Orleans, LA.
18. Cellier, F. E., and E. Kofman. 2006. Continuous system simulation. New York: Springer Science+

Business Media.
19. Samantaray, A. 2007. About bond graph—The system modeling world. URL: http://www.bondgraph.

info/about.html
20. Paul, C. R. 2001. Fundamentals of electric circuit analysis. New York: John Wiley & Sons.
21. Kofman, E. 2003. Discrete event based simulation and control of continuous systems. PhD thesis,

Universidad Nacional de Rosario, Argentina.
22. Banerjee, S. 2003. Dynamics of physical systems—The language of bond graphs. URL: http://www.

Ee.Iitkgp.Ernet.In/~soumitro/dops/chap4.Pdf
23. Banerjee, S. 2005. Dynamics for Engineers. New York: Wiley.
24. D’Abreu, M., and G. Wainer. 2005. M/CD++: Modeling continuous systems using Modelica and DEVS.

Proceedings of MASCOTS 2005, Atlanta, GA.
25. D’Abreu, M. 2004. Defining a compiler for discrete-event simulation of continuous systems. MSc thesis,

Computer Science Dept., Universidad de Buenos Aires, Argentina.
26. Karnopp, D., D. Margolis, and R. Rosenber. 1990. System dynamics: A unified approach. New York:

Wiley-Interscience.
27. Dynasim Laboratories. 2004. Dymola. Available online via: http://www.Dynasim.com/dymola.htm
28. Petzold, L. R. 1993. A description of DASSL: A differential/algebraic system solver. IMACS Transactions

Scientific Computing 1:65–68.
29. Mehta, S., and G. Wainer. 2005. SAMS-VHDL: A tool for modeling hybrid hardware description lan-

guages. Proceedings of the 2005 DEVS Integrative M&S Symposium, Spring Simulation Conference. San
Diego, CA.

53361.indb 187 3/11/09 10:46:46 AM

© 2009 by Taylor & Francis Group, LLC

http://www.bondgraph.info
http://www.bondgraph.info
http://www.ee.iitkgp.ernet.in
http://www.ee.iitkgp.ernet.in
http://www.Dynasim.com

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

3Section

Applications

53361.indb 189 3/11/09 10:46:46 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

191

8 Applications in Biology

8.1 INTRODUCTION

This chapter will focus on different applications in the field of biology (and medicine), one of the
most popular areas for the use of simulation. The complexity of biological processes makes com-
puter simulation an adequate tool to study them under particular experimental conditions. Likewise,
DEVS (a discrete-event hierarchical and modular formalism) is ideal for describing these systems,
which are hierarchical and asynchronous in nature. DEVS also uses explicit timing information;
hence, we can adequately represent timing of the reactions occurring in the organisms.

We will introduce different models at the organelle level. We will begin by presenting a model
of the interaction between synapsin and vesicles in nerve cells. We will then discuss a model that
defines various reactions in the liver, whose design demonstrates the process of substance transfor-
mations occurring within the liver’s lobule. We then introduce a model of bacteria in food and the
spreading of viruses in mobile populations. After that, we introduce a detailed model of the heart
tissue, and we conclude with a model of the biological pathways in mitochondria. The models pre-
sented show how to use our simulation environment for biological models, and the results show the
potential for creating more advanced applications in this area.

8.2 SYNAPSIN AND VESICLE INTERACTION IN A NERVE CELL
USING CELL-DEVS

Synapsin is a neuron-specific phosphoprotein that binds to small synaptic vesicles and actin filaments
in a phosphorylation-dependent pattern [1]. Microscopic models have demonstrated that synapsin
inhibits neurotransmitter release either by forming a cage around synaptic vesicles (cage model) or
by anchoring them to the F-actin cytoskeleton of the nerve terminal (cross-linking model) [2].

The model presented here (previously introduced in Bain et al. [2] and Wainer et al. [3] and found
at ./nerveCell.zip) describes the behavior of the reserve pool of synaptic vesicles in a presynaptic
nerve terminal. It can be used to predict the number of synaptic vesicles released from the reserve
pool as a function of time under the influence of action potentials at different frequencies [2,3]. The
actual biochemistry of the terminal incorporates five key components: vesicles, synapsin (a protein
that regulates neurotransmitter release), kinase (an enzyme that transfers phosphate from high-
energy to lower-energy molecules), phosphatase (an enzyme that removes phosphate), and actin (a
protein), which interact to produce exocytosis and endocytosis. Endocytosis, shown in Figure 8.1(a),
is a process where cells absorb molecules (i.e., proteins) from the outside. Exocytosis is the oppo-
site process: an intracellular vesicle moves to plasma, as seen in Figure 8.1(b), permitting a cell to
release large molecules (for instance, to eliminate waste and in signaling).

Our model focuses on the molecular interaction of synapsin (S) with vesicles (V) that occur
inside a nerve cell, and it describes the behavior of synapsin movements until reaching a vesicle and
binding to it [2]. Once a binding has occurred, they can separate again and break their bindings. Two
values, the onrate and offrate, describe how often bindings occur or break. The following formula
describes the nature of the reaction:

S + V SV

53361.indb 191 3/11/09 10:46:46 AM

© 2009 by Taylor & Francis Group, LLC

192 Discrete-Event Modeling and Simulation

The left-hand side of the equation defines the binding scenario where synapsin and vesicles
perform a bind (at a rate specified by onrate); the right-hand side of the equation illustrates the
bind–break scenario (where the synapsin–vesicle binding breaks apart at an offrate—which is
always smaller than the onrate—releasing synapsin and vesicles). Synapsin and vesicles can then
continue binding and breaking. This equation shows an ongoing process of binding and breaking
that depends on the offrate/onrate. The larger the offrate is, the more bindings are broken apart.
Similarly, the larger the onrate is, the more V–S binds are produced.

Three different scenarios are considered: (1) V is stationary (with a fixed position on the cell
space) and S is mobile; (2) V is mobile and S is stationary; and (3) V and S are both mobile (leading
to the maximum number of total movements/bindings). Binding patterns are in such a way that each
S can bind to more than one V, and V can bind to more than one S. An example of such binding
would be

S-V-S-V
| |

V-S-V-S-V-S-V

Each cell space in our Cell-DEVS model is used to represent one S or V. The neighboring pattern
of V and S is such that they can be adjacent cells or diagonal cells, as shown in Figure 8.2 (gray
cell = S, black cell = V).

The coupled Cell-DEVS model for this application can be formally described as

Neuron = <I,X,Y,Xlist,Ylist, , N,{m,n}, C, B, Z, select> (8.1)

where
Xlist = Ylist = ; = 9; I = <PX, PY>, with PX = PY = { };
N = { (–1,–1), (–1,0), (–1,1), (0, –1), (0,0), (0,1), (1, –1), (1,0), (1,1) };
X = {0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44};

(a) (b)

FIGURE 8.2 Neighborhood definition: (a) diagonal neighbors; (b) adjacent neighbors.

FIGURE 8.1 (a) Endocytosis; (b) exocytosis.

53361.indb 192 3/11/09 10:46:47 AM

© 2009 by Taylor & Francis Group, LLC

Cell Membrane

External Substances

 
            (a)                    (b)

Applications in Biology 193

Y = {0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44};
m = 26; n = 22; B = { }; C = {Cij/i [1,26], j [1,22]};
select = { (–1,-1), (–1,0), (–1,1), (0, –1), (0,0), (0,1), (1, –1), (1,0), (1,1) }; and
Z is defined as in Cell-DEVS specifications.

The Cell-DEVS atomic model can be defined as

Synapsin = < X, Y, S, N, delay, d, δint, δext, , λ, D > (8.2)

where
X = Y = {0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44};
S = {0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44, 91,92,93,94};
delay = transport;
d and are defined by the rules presented in Figure 8.3; and
δint, δext, λ, and D are defined as in the formal specification of Cell-DEVS.

Here, we considered an initial value of 1 to represent V and a value of 2 to represent S. The num-
ber 0 represents an empty cell that a mobile S can occupy. To give direction to V or S (although our
example assumes fixed V), a two-digit number was used. For example:

11 up-moving V 21 up-moving S

12 right-moving V 22 right-moving S

13 down-moving V 23 down-moving S

14 left-moving V 24 left-moving S

Initially, S and V can move. Once bindings occur, cells change their values; 11–14 are replaced
with 31–34, and 21–24 are replaced with 41–44. Also for synapsins, four intermediate values, 91–94,
are used to represent a moving cell that has not yet settled down. Once it settles down, its value
changes back to 21–24 (depending on its direction of movement) and gets ready to bind to a vesicle
in its neighborhood.

In Figure 8.3, we show an extract of the model definition in CD++. The model uses 100 V and
100 S molecules in a 26 × 22 cell space. Mobile S or V changes position to up, down, left, and right
at random. The first group of rules assigns a direction to each V and S at random. Once V and S are
adjacent or diagonal, they bind at an onrate = 0.10 (random > 0.1 represents the onrate).

Then we define rules for molecule movement. First, we check whether there is a moving synapsin
(values 21, 22, 23, or 24) and a vesicle in its neighborhood; then the synapsin will move toward this
vesicle and a binding will occur soon. The value of the synapsin is changed to 31, 32, 33, or 34 to
represent a synapsin that is bound to a vesicle.

Similarly, the following rule checks whether there is a moving vesicle (value 11, 12, 13, or 14)
and a synapsin in its neighborhood that could be an adjacent cell or a diagonal cell. Because the
synapsin will come toward this vesicle and binding will occur soon, the value gets changed to 41,
42, 43, or 44.

The next rules represent the movement of synapsin (each movement is performed in three steps):

Step 1: Check to see if there is an empty cell so that the synapsin can move into it. For
example, if the synapsin direction is upward (value = 21), then at first we need to check
whether an empty cell is right above it (91 is used as an intermediate value to occupy the
empty cell).
Step 2: Once an empty cell is found, it is occupied by the synapsin (i.e., the cell’s value
changes from 0 to a random number 21–24).
Step 3: The previous position of the synapsin that just moved to an empty cell is cleared
by setting the value of the cell to 0.

53361.indb 193 3/11/09 10:46:48 AM

© 2009 by Taylor & Francis Group, LLC

194 Discrete-Event Modeling and Simulation

The last rule is used to break the S–V bindings using an offrate = 0.10. According to this rule,
10% of the bindings get broken and, as a result, synapsins are released and will be given another
direction. They will move around until they find a vesicle and bind to it. Once the binding has
occurred, depending on the offrate, V and S can break their binding and S can move around and
find another V to bind to it. This is defined by releasing the V, assigning it a new direction, and let-
ting it move away if there is an empty cell around it. Because the offrate is too small compared to
onrate, choosing a different offrate results in having the same S–V bound patterns.

The simulation results can be seen in Figure 8.4. In this example, the onrate was set to 0.9 and
the offrate to 0.1. Therefore, more bindings occur compared to breaking the bind. The offrate can

[chemCell]
type : cell dim : (26,22) delay : transport border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1)
localtransition : chemCell-rules

[chemCell-rules]
rule : {round(uniform(11,14))} 100 { (0,0) = 1 }
rule : {round(uniform(21,24))} 100 { (0,0) = 2 }

%movement of Synapsin
rule : {round(uniform(31,34))} 100 {((0,0)=21 or (0,0)=22 or (0,0)=23 or (0,0)=24) and
(((-1,0)- 10 = 1 or (-1,0)- 10 = 2 or (-1,0)- 10 = 3 or (-1,0)- 10 =4) or
 ((1,0)- 10 = 1 or (1,0)- 10 = 2 or (1,0)- 10 = 3 or (1,0)- 10 = 4) or
 ((0,-1)- 10 = 1 or (0,-1)- 10 = 2 or (0,-1)- 10 = 3 or (0,-1)- 10 = 4) or
 ((0,1)- 10 = 1 or (0,1)- 10 = 2 or (0,1)- 10 = 3 or (0,1)- 10 = 4) or
 ((-1,1)- 10 = 1 or (-1,1)- 10 = 2 or (-1,1)- 10 = 3 or (-1,1)- 10 = 4) or
 ((1,-1)- 10 = 1 or (1,-1)- 10 = 2 or (1,-1)- 10 = 3 or (1,-1)- 10 = 4) or
 ((1,1)- 10 = 1 or (1,1)- 10 = 2 or (1,1)- 10 = 3 or (1,1)- 10 = 4) or
 ((-1,-1)-10=1 or (-1,-1)-10=2 or (-1,-1)-10=3 or (-1,-1)-10 = 4)) and random > 0.10}

%movement of Vesicles
rule : {round(uniform(41,44))} 100 {((0,0)=11 or (0,0)=12 or (0,0)=13 or (0,0)=14) and
(((-1,0)- 30 = 1 or (-1,0)- 30 = 2 or (-1,0)- 30 = 3 or (-1,0)- 30 = 4) or
((1,0)- 30 = 1 or (1,0)- 30 = 2 or (1,0)- 30 = 3 or (1,0)- 30 = 4) or
((0,-1)- 30 = 1 or (0,-1)- 30 = 2 or (0,-1)- 30 = 3 or (0,-1)- 30 = 4) or
((0,1)- 30 = 1 or (0,1)- 30 = 2 or (0,1)- 30 = 3 or (0,1)- 30 = 4) or
((-1,1)- 30 = 1 or (-1,1)- 30 = 2 or (-1,1)- 30 = 3 or (-1,1)- 30 = 4) or
((1,-1)- 30 = 1 or (1,-1)- 30 = 2 or (1,-1)- 30 = 3 or (1,-1)- 30 = 4) or
((1,1)- 30 = 1 or (1,1)- 30 = 2 or (1,1)- 30 = 3 or (1,1)- 30 = 4) or
((-1,-1)-30 = 1 or (-1,-1)-30 = 2 or (-1,-1)-30 = 3 or (-1,-1)-30 = 4)) and random >
0.10}

%moving up
rule : 91 100 {(0,0)=21 and (-1,0)=0 }
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (1,0)=91 }
rule : 0 0 {(0,0)=91}

%moving right
rule : 92 100 {(0,0)=22 and (0,1)=0}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (0,-1)=92}
rule : 0 0 {(0,0)=92}

%moving down
rule : 93 100 {(0,0)=23 and (1,0)=0 }
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (-1,0)=93 }
rule : 0 0 {(0,0)=93}

%moving left
rule : 94 100 {(0,0)=24 and (0,-1)=0 }
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (0,1)=94 }
rule : 0 0 {(0,0)=94}

%release 0.1 of the S (the offrate is 0.1)
rule : {round(uniform(21,24))} 100 {((0,0)=33 or (0,0)=32 or (0,0)=31 or (0,0)=34) and
random < 0.10}

FIGURE 8.3 Excerpt of the synapsin model definition in CD++.

53361.indb 194 3/11/09 10:46:48 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 195

be modified, so the larger it is, the more mobile S will be observed. However, the onrate is kept con-
stant, which therefore results in having the same number of bindings at the end of any execution.

The bold boxes illustrated in Figure 8.4 show bindings between synapsin (31–34) and vesicle
(41–44). Figure 8.4(a) represents the initial scenario where synapsins (21–24) and vesicles (11–14)
are free and have not yet performed bindings. Once synapsins move toward vesicles, the values of
the corresponding cells change to 31–34 (bound synapsins) and 41–44 (bound vesicles). Vesicles

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 +--+
 0| 13 24 14 24 23 23 11 13 21 22 12 |
 1| 12 23 13 22 14 12 22 12 23 13 |
 2| |
 3| 12 12 11 23 14 13 21 22 23 22 23 11 |
 4| 23 11 14 11 22 22 23 13 14 14 23 |
 5| |
 6| 12 22 12 23 23 13 22 23 13 13 11 22 |
 7| 13 21 24 23 12 12 22 14 24 13 22 |
 8| 12 22 13 22 23 23 11 13 14 22 13 24 |
 9| |
 10| 12 13 12 13 23 23 11 23 24 11 |
 11| 12 22 24 22 12 13 13 22 24 22 13 |
 12| 13 22 13 24 12 14 24 24 12 22 12 |
 13| 24 13 24 12 13 22 12 24 12 21 14 |
 14| |
 15| 13 22 21 22 12 14 12 13 24 23 13 |
 16| 12 23 11 23 21 22 13 21 14 21 12 13 |
 17| 12 13 12 12 22 21 12 21 22 12 |
 18| |
 19| 14 22 13 22 14 11 23 13 24 13 |
 20| |
 21| 14 23 23 24 11 23 22 23 13 12 13 |
 22| 21 12 24 |
 23| 22 13 |
 24| 12 24 13 22 21 21 12 14 12 22 12 23 |
 25| 12 21 22 23 12 14 12 21 22 23 14 |
 +--+

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 +--+
 0| 13 32 41 22 32 34 31 44 42 34 31 12 |
 1| 12 32 44 21 42 12 23 42 32 13 |
 2| |
 3| 41 42 41 32 14 42 32 22 33 33 44 |
 4| 32 43 14 41 34 23 13 43 14 32 |
 5| 33 |
 6| 42 33 44 32 31 43 32 21 44 42 42 34 |
 7| 42 31 34 32 41 42 23 42 32 44 31 |
 8| 12 31 41 24 34 33 41 13 43 34 42 31 |
 9| |
 10| 42 44 42 41 23 31 43 32 33 11 |
 11| 41 32 32 33 44 44 13 33 33 33 43 |
 12| 42 31 41 32 42 43 33 32 12 22 12 |
 13| 22 41 32 42 13 34 42 32 44 31 14 |
 14| |
 15| 41 34 32 33 44 42 42 42 34 32 13 |
 16| 44 31 42 31 31 31 42 31 44 33 41 13 |
 17| 12 43 43 42 32 31 44 33 12 |
 18| 24 |
 19| 14 22 13 32 14 42 31 13 33 13 |
 20| |
 21| 43 33 22 44 31 22 13 44 13 |
 22| 23 32 42 32 33 |
 23| 33 41 |
 24| 12 33 43 31 33 33 42 14 42 23 44 34 |
 25| 42 32 34 41 42 42 31 34 21 14 |
 +--+

(a)

(b)

FIGURE 8.4 V and S (a) before binding at time: 00:00:00:100; (b) after binding at time: 00:00:00:300 (rep-
resent examples of binding structures).

53361.indb 195 3/11/09 10:46:49 AM

© 2009 by Taylor & Francis Group, LLC

196 Discrete-Event Modeling and Simulation

can be surrounded by more than one synapsin, but each synapsin can bind to only one vesicle at any
time. From the preceding figure, we can see the following possible binding scenarios:

Corresponds to the V – S Binding Pattern

Corresponds to the S – V Binding Pattern

S

12

21
12

21
31

42

31

22 42 33

Exercise 8.1

Use the ToVal command to generate different initial values for this model (the source code of ToVal can
be adapted to this application in particular) and run different simulation scenarios.

Exercise 8.2

Write a program (or script) to count the number of S/V particles at the end of the simulation.

Exercise 8.3

Extend the synapsin model to include the movement of both synapsin (S) and vesicles (V) as well as
defining different off and on rates. Aside from V–S reactions, the model can also include actins, which
bind to synapsins. Actins can be represented as a string of cells fixed at their cell space position.

The final execution results in Figure 8.5 present a stable image of synapsin–vesicle bindings
where single, double, and multiple bindings occurred within the neuron.

8.3 A MODEL OF THE HUMAN LIVER

The liver is considered the largest gland in the body, and it is responsible for many functions,
including regulating blood amino acids, sugar, and lipids; forming bile (for the digestion of lipids);
storing blood; removing hormones, toxins, and hemoglobin molecules; producing heat; forming
cholesterol; making heparin (a substance that prevents the blood from clotting); storing vitamins;
and forming plasma proteins.

In terms of its basic anatomy, the liver consists of two wedge-shaped lobes. Two blood ves-
sels enter the liver: the portal vein and the hepatic artery. The portal vein carries dissolved food

FIGURE 8.5 Model execution results: initial values; final execution.

53361.indb 196 3/11/09 10:46:51 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 197

substances from the small intestine, and the hepatic artery
carries oxygenated blood from the lungs. Each lobe is further
divided into many small lobules; each is about the size of a
pinhead and consists of many liver cells, with bile and blood
channels between them.

Lobules make up the main functional and structural com-
ponent of the liver, which comprises thousands of them. The
lobule can be seen as a tube in which blood flows from the
outside to the inside. The outside of the lobule is surrounded
by the portal vein (PV), which brings blood into the liver.
The inner vein is the central vein (CV), and it carries blood
out of the lobule and eventually out of the liver (as shown in Figure 8.6). When blood flows through
the lobule, it undergoes several chemical reactions in multiple stages. These transformations occur
when substances travel through various zones inside the lobule. Because lobules are the building
blocks of the liver, it is important to simulate them and to build a realistic structure of the human
liver by connecting thousands of them.

Hunt and colleagues [4] show how to model the inner workings of a lobule in a simulation model.
They model the lobule as a hexagonal cylinder, using three stages (zones), each containing multiple
interconnected nodes placed inside the lobule. The number of nodes in each zone is proportional
to the approximated lobule volume of that particular zone. Each node is responsible for receiving
a substance and transforming it, and each node works interdependently with the others [4]. This
organization is introduced in Figure 8.7.

Based on these assumptions, we built a DEVS model that represents the chemical composition
of blood entering the liver lobule [3]. A substance enters the PV, and it is then fed to all the nodes in
zone I. After the nodes of zone I finish transforming the substance, their output is fed to the nodes
of zone II and then zone III. After this, the output is supplied to the CV. Each node has its own set
of parameters to determine the output when given a certain input. Each node is given a delay to
represent the time it takes for a substance’s reaction to reach completion. In Figure 8.8, we present
code excerpts showing the definition of the model for NodeF in CD++ (whose full version is found
in ./Liver.zip).

PV

CV

FIGURE 8.6 Structure of the lobule.

Portal Vein

x

xx

x

y

y

y

z

Zone II

Zone III

Central Vein

Zone INode NodeA NodeB NodeC

NodeENodeD

NodeF

FIGURE 8.7 Zones and nodes. (Adapted from Hunt, C. A. et al. 2005. Proceedings of Computational
Methods in Systems Biology 2004; Lecture Notes in Bioinformatics 3082, 35–43.)

53361.indb 197 3/11/09 10:46:52 AM

© 2009 by Taylor & Francis Group, LLC

198 Discrete-Event Modeling and Simulation

As we can see in Figure 8.8, we initially define the model’s I/O ports and state variables. Then
we define the external transition function, which, in this case, takes a message received on the port
WinFX and assigns it to the variable ValueX. When the livernode F (which has three input ports)
receives values from each of the ports, it can compute the reaction, which takes reactionTime units.
After this time has elapsed, the output function is called. This function, based on the values of
ValueX, ValueY, and ValueZ, will output a value representing the chemical reaction on the variable
Value.

Exercise 8.4

Using the detailed information provided in Hunt et al. [4] (and any other related references needed),
define an extension to the model in Figure 8.8 using the chemical reactions occurring at each of the
nodes.

All the nodes were put together in a coupled model to form an entire lobule, as shown in Figure 8.9.
We first define all the nodes included in the lobule. Then we define the model’s coupling (e.g., the
output port of node A to the Y input port of node D, etc.). The in port represents the portal vein and
the out port represents the central vein. The coupled model here is based on the model presented in
Figure 8.6 [4].

Exercise 8.5

Use the models created in Exercise 8.4 and create a lobule coupled model based on the new atomic
component.

Private:
const Port &WinFX, &WinFY, &WinFZ; // output ports
Port &WoutF; // input ports
Time reactionTime, time_zero;
int Value, ValueX, ValueY, ValueZ;

Model &livernodeF::externalFunction (const ExternalMessage &msg) {
if (msg.port == WinFX) ValueX = msg.value();
if (msg.port == WinFY) ValueY = msg.value();
if (msg.port == WinFZ) ValueZ = msg.value();

if (valueX != 0 && ValueY != 0 && ValueZ != 0)
holdIn(active, reactionTime);

return *this;
}

Model &livernodeF::outputFunction (const InternalMessage &msg) {
if (ValueX==1 & ValueY ==1)

switch (ValueZ) {
case 1: Value = 7; break;
case 2: Value = 5; break;
case 3: Value = 3; break;
case 4: Value = 1; break;
case 5: Value = 2;

}
sendOutput(msg.time(), WoutF, Value);

return *this;
}

Model &livernodeF::internalFunction (const InternalMessage &msg) {
passivate();

}

FIGURE 8.8 CD++ definition of a node.

53361.indb 198 3/11/09 10:46:52 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 199

One of the functions of the liver is to keep a steady concentration of glucose in the blood. This is
done through three types of reactions: glyconeogenesis, glycogen synthesis, and degradation. Most
substance reactions in the liver need energy and the sources for this energy are ATP and ADP. In
most cases, ATP is broken down into ADP and energy is released. Oxaloacetate is used in the mito-
chondria, and it cannot cross the mitochondrial membrane until it is converted to malate. Once
malate passes through the membrane, it can then be converted back to oxaloacetate. Oxaloacetate
is produced by pyruvate carboxylase and is then converted to malate. These reactions were tested,
and we show the results in Figure 8.10.

We also considered the formation of UDP-glucose, which can be attached to glucose chains that
can be acted upon by glycogen synthesis. Glucose enters the cells by facilitated diffusion, and then
the cell modifies glucose by phosphorylation, as shown in Figure 8.11. Glucose-6-phosphate is used
in the synthesis of glycogen: glucose-6-phosphate is first isomerized to glucose-1-phosphate by the
enzyme phosphoglucomutase, as seen in Figure 8.12. UDP-glucose has the ability to attach its glu-
cose part to glucose chains. This new chain can be acted upon during glycogen synthesis, as seen in
Figure 8.13. Figure 8.14 shows this process in our CD++ simulation.

The model file includes other simulation examples, including glycogen degradation and glyco-
neogenesis (the synthesis of glucose from other organic compounds, which is catalyzed by pyruvate
kinase), glycolysis, etc.

components: noder@livernode nodeA@liverNodeA nodeB@liverNodeB nodeF@liverNodeF
in : in
out : out
Link : in win@node Link : in winA@nodeA
Link : in winBY@nodeB Link : in winC@nodeC
Link : wout@node winDX@nodeD Link : woutA@nodeA windDY@nodeD
Link : woutA@nodeA windBX@nodeB Link : woutC@nodeC windBZ@nodeB
Link : woutC@nodeC windEY@nodeE Link : woutB@nodeB windEX@nodeE
Link : woutA@nodeA windFY@nodeF Link : woutE@nodeE windFZ@nodeF
Link : woutD@nodeD windFX@nodeF

FIGURE 8.9 Structure of the lobule coupled model.

(1) LiverNode received (NADH + H+)
(2) LiverNodeA received Pyruvate
(3) LiverNodeB received CO2 on node Y
(4) LiverNodeC received ATP
(5) LiverNode produced (NADH + H+)
(6) LiverNodeD received (NADH + H+) on port X
(7) LiverNodeA produced Pyruvate
(8) LiverNodeB received Pyruvate on port X
(9) LiverNodeD received substance on port Y, ignore
(10) LiverNodeF received substance on port Y, ignore
(11) LiverNodeC produced ATP
(12) LiverNodeB received ATP on port Z
(13) LiverNodeE received substance on port Y, ignore
(14) LiverNodeB produced Oxaloacetate
(15) LiverNodeE received Oxaloacetate on port X
(16) LiverNodeD produced (NADH + H+)
(17) LiverNodeF received (NADH + H+) on port X
(18) LiverNodeE produced Oxaloacetate
(19) LiverNodeF received Oxaloacetate on port Z
(20) LiverNodeF produced Glucose-1-P

Starting simulation. Stop at time: 00:05:00:000
00:00:10:000/in/1,00000
LiverNode Received: 1 at time 00:00:10:000
LiverNodeA Received: 1 at time 00:00:10:000
LiverNodeB Received on port Y: 1 at time 00:00:10:000
LiverNodeC Received: 1 at time 00:00:10:000
LiverNode Produced: 1 at time 00:00:13:000
LiverNodeD Received on port X: 1 at time 00:00:13:000
LiverNodeA Produced: 12 at time 00:00:13:000
LiverNodeB Received on port X: 12 at time 00:00:13:000
LiverNodeD Received on port Y: 12 at time 00:00:13:000
LiverNodeF Received on port Y: 12 at time 00:00:13:000
LiverNodeC Produced: 6 at time 00:00:13:000
LiverNodeB Received on port Z: 6 at time 00:00:13:000
LiverNodeE Received on port Y: 6 at time 00:00:13:000
LiverNodeB Produced: 7 at time 00:00:16:000
LiverNodeE Received on port X: 7 at time 00:00:16:000
LiverNodeD Produced: 1 at time 00:00:16:000
LiverNodeF Received on port X: 1 at time 00:00:16:000
LiverNodeE Produced: 7 at time 00:00:19:000
LiverNodeF Received on port Z: 7 at time 00:00:19:000
LiverNodeF Produced: 5 at time 00:00:22:000
Simulation ended!

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

FIGURE 8.10 Forming glucose-1-P.

53361.indb 199 3/11/09 10:46:54 AM

© 2009 by Taylor & Francis Group, LLC

200 Discrete-Event Modeling and Simulation

Exercise 8.6

Based on the liver model presented in this section, construct a Cell-DEVS definition consisting of
200 × 30 cells. Each cell should follow the definition found in this section, and they should be executed
together as a cell space.

FIGURE 8.11 Diagram for phosphorylation.

FIGURE 8.12 Isomerization.

FIGURE 8.13 Forming of UDP-glucose.

53361.indb 200 3/11/09 10:46:55 AM

© 2009 by Taylor & Francis Group, LLC

O
OH

OH OH

Glucose

OH

OH

H

H

H

H
ATP ADP

H O
O

O
Glucose-6-P

O–O– P

OH HH

H

H

OH

OH

OHH

O

OH H

Glucose-6-P

H

H

H

OH

OH

OHH O O

O

Glucose-1-P

O–

O–
P

OH HH

H

H

OH

OH

OH

H

O

O

O–O– P

O H

H

O

O O

O uridina

uridina

O
O

P
P

P

H
H

H O O

O–O–

O–

O– O–

O–
O–O–

P

OH

OH

OH

OH

O H

H

H
H

H O

P P

UDP-GlucoseUTP

O
O

O
OOH

OH

OH

OH

Applications in Biology 201

8.4 SPREADING OF MARINE BACTERIA

Vibrio parahaemolyticus is a marine bacterium living in sediment and plankton found along coasts
and in estuaries. In order to survive, these bacteria need a minimal percent of salt and a pH between
7.5 and 8.5. They grow in an environment with temperatures ranging from 15 to 43°C (37°C is the
optimal value) and reproduce at 15°C in the scales or the intestines of fish. They need between
20 and 30 min to reproduce; however, they cannot reproduce at temperatures below 8°C. Bacteria
are destroyed when exposed to temperatures higher than 60°C for a period of 10 min or to high-acid
(pH) environments.

The model presented in Ameghino, Glinsky, and Wainer [5] and found in ./Bacteria.zip focuses
on the bacteria concentration while the temperature varies (the rest of the variables that may affect
the experiment are assumed to be appropriate for the normal growth of the bacteria). The evolution
of the bacteria over the surface of a fish is modeled using a Cell-DEVS component. We couple a
DEVS generator to introduce temperature changes between –10 and 0°C, representing a source of
cold (e.g., from a refrigerator). We use a three-dimensional model with two surfaces, the first rep-
resenting the concentration of bacteria and the second showing the variation of temperature. The
temperature in a cell is calculated as the average of its neighbors, and the diffusion time is 1 s. The
second plane governs the reproduction of bacteria using the following rules:

1. If the cell temperature is below 8°C for a period of 10 s, the bacterium does not grow.
2. If the cell temperature is between 8 and 60°C for a period of 30 s, then the bacterium

grows.
3. If the cell temperature is above 60°C for a period of 10 s, then the bacterium dies.

We use inertial delays and define that a cell reaching the concentration of 100 germs begins
infecting the neighboring cells. Figure 8.15 shows the specification of such a model using CD++.
We first declare the top model’s components, Coldgenerator and contamination, and their coupling
scheme. Then we define external arguments for Coldgenerator, a DEVS model that generates cold
temperatures using an exponential distribution function with the specified parameters. The Cell-
DEVS model contamination includes the connections with Coldgenerator and the rules for the

(1) LiverNode received UDP
(2) LiverNodeA received ATP
(3) LiverNodeB received glucose on node Y
(4) LiverNodeC received substance, ignore
(5) LiverNode produced UDP
(6) LiverNodeD received UDP on port X
(7) LiverNodeA produced ATP
(8) LiverNodeB received ATP port X
(9) LiverNodeD received substance on port Y, ignore
(10) LiverNodeF received (Pi + Glucose) on port Y
(11) LiverNodeC produced nothing
(12) LiverNodeB received nothing on port Z
(13) LiverNodeE received nothing on port Y
(14) LiverNodeB produced Glucose-6-P
(15) LiverNodeE received Glucose-6-P on port X
(16) LiverNodeD produced UDP
(17) LiverNodeF received UDP on port X
(18) LiverNodeE produced Glucose-1-P
(19) LiverNodeF received Glucose-1-P on port Z
(20) LiverNodeF produced UDP-glucose

Starting simulation. Stop at time: 00:05:00:000
00:00:10:000/in/2.00000
LiverNode Received: 2 at time 00:00:10:000
LiverNodeA Received: 2 at time 00:00:10:000
LiverNodeB Received on port Y: 2 at time 00:00:10:000
LiverNodeC Received: 2 at time 00:00:10:000
LiverNode Produced: 2 at time 00:00:13:000
LiverNodeD Received on port X: 2 at time 00:00:13:000
LiverNodeA Produced: 6 at time 00:00:13:000
LiverNodeB Received on port X: 6 at time 00:00:13:000
LiverNodeD Received on port Y: 6 at time 00:00:13:000
LiverNodeF Received on port Y: 6 at time 00:00:13:000
LiverNodeC Produced: 0 at time 00:00:13:000
LiverNodeB Received on port Z: 0 at time 00:00:13:000
LiverNodeE Received on port Y: 0 at time 00:00:13:000
LiverNodeB Produced: 8 at time 00:00:16:000
LiverNodeE Received on port X: 8 at time 00:00:16:000
LiverNodeD Produced: 2 at time 00:00:16:000
LiverNodeF Received on port X: 2 at time 00:00:16:000
LiverNodeE Produced: 5 at time 00:00:19:000
LiverNodeF Received on port Z: 5 at time 00:00:19:000
LiverNodeF Produced: 3 at time 00:00:22:000
Simulation ended!

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

FIGURE 8.14 Forming of UDP-glucose: CD++ simulation.

53361.indb 201 3/11/09 10:46:56 AM

© 2009 by Taylor & Francis Group, LLC

202 Discrete-Event Modeling and Simulation

Cell-DEVS component. For each rule, the value, the delay, and the condition are specified. The
temperature section represents the local computing function for the temperature plane. A single rule
defines the temperature as the average of the temperature of the neighboring cells. The evolution
rules describe the bacterium’s behavior on the second plane. The setCold section states the range of
temperatures generated by the DEVS component.

Figure 8.16 illustrates the results obtained when this model is executed, showing the evolution of
the bacteria over the surface of fish after 4 h. The left side represents the bacteria concentration (in
grayscale). The white areas represent regions where bacteria are not present as a result of the extremely
low temperature; darker shades represent higher concentrations of bacteria. The right side represents
the different temperatures of the surface, where darker shades represent colder temperatures.

Exercise 8.7

Modify the rate to generate different temperatures and the range, and execute different simulations.
Then generate different experiments showing what would happen if the resilience of bacteria to tem-
perature changed and analyze the results.

8.5 VIRUS SPREADING IN A POPULATION

The following model shows a Cell-DEVS representation of the competition between population and
viruses. The model (presented in Shang and Wainer [6] and found in ./virusSurvival.zip) is based on
the work presented in Dzwinel [7]. It shows the evolution of a colony consisting of individuals on a
two-dimensional lattice. The model represents three phases of life: youth, maturity (during which
individuals procreate), and old age, whose duration can be variable. The environment is affected by
periodic plagues that attack the colony.

The model includes rules for evolution of the population and the interaction between individuals
and virus, using a 20 × 20 mesh. Each individual residing in a node is described by a number from

FIGURE 8.15 Specification of the bacteria mode.

53361.indb 202 3/11/09 10:46:57 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 203

0 to 9, representing a virus (values 8 and 9) or individuals (1 represents youth, 2–5 represent adults,
and 6 represents the elderly).

The rules focus on the competition between the population and the plague. Both categories fol-
low their own active rules, sharing the same lattice. Viruses can attack the population, and the
plague is initially scattered. Viruses in the active state reproduce and kill individuals; inactive
viruses die after a delay.

The rules in Figure 8.17 show the model definition in the parallel version of CD++ (the model in
the repository also includes a simpler version of the model, which runs on the stand-alone version).
As we can see in the figure, each cell is using two I/O ports. One of them (pa) represents the age of
individuals and virus. The other (pd) represents the directions of moving individuals. These ports
are used to define movement, reproduction, and interaction between individuals and a virus. The
age port (pa) is the dominant port according to which each cell is distinguished.

(a)

(b)

(c)

FIGURE 8.16 Results of bacteria propagation: (a) initial concentration; (b) after 1.5 h; (c) after 4 h.

53361.indb 203 3/11/09 10:46:57 AM

© 2009 by Taylor & Francis Group, LLC

204 Discrete-Event Modeling and Simulation

The rules in the figure describe in detail the model’s behavior:

Growth: periodically, each cell will be increased by 1 to indicate that all individuals age.
After reaching the maximum age (6), the cell will be reset to indicate that the individual
has died.
Reproduction: for each unoccupied cell with at least two adult neighbors (von Neumann’s
neighborhood), the cell is set to 1.
Virus reproduction: when an unoccupied cell is surrounded by at least one active virus,
the empty cell will be occupied by an active virus.
Virus state change: active viruses become inactive after a delay. After another delay, the
inactive virus will die.

Because individuals and viruses share the same living space, they compete for the living space
as follows:

Viruses killing individuals: if a cell occupied by individuals is surrounded by at least two
viruses and their distribution is vertical or horizontal, individuals die.
Individuals killing viruses: if a cell occupied by active viruses is surrounded by at least
two individuals arranged vertically or horizontally and the viruses have no capacity to
kill the individuals (i.e., the number of virus neighbors is less than two or they are not

FIGURE 8.17 Definition of the Cell-DEVS model.

53361.indb 204 3/11/09 10:46:58 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 205

arranged vertically or horizontally), the virus dies. If an individual is killed by a virus, the
corresponding virus dies, too.
Conflict: if the current cell is unoccupied and surrounded by two or more mature individu-
als, the reproduction rule determines that a new individual will be born. However, if the
cell is also surrounded by at least one virus, it must be occupied by a virus (according to
the virus reproduction rule). In these cases, individuals have higher priority than viruses
to reproduce.

In addition to these basic rules, we modeled displacement of individuals. Movement rules are
described as follows:

Only mature individuals can move. At every step, a random direction will be produced for
all mature individuals.
Movement brings new conflicts. For each empty cell, the cell may be occupied by other
mature individuals (due to movement), by a newborn, or by a new virus. The movement of
individuals has the highest priority, reproduction of individuals has the next priority, and
virus reproduction has the lowest priority.
If individuals move, they might become out of the range of the virus. In this case, the move-
ment has higher priority (thus, the current neighbor viruses cannot kill moving individuals).
Reproduction and movement can happen simultaneously. If the given empty cell satisfies
the conditions for a new birth, the cell will be occupied by the newborn, and the parents
will move to other places.

Figures 8.18–8.20 discuss different execution results for various scenarios, showing the values
for the pa port. Figure 8.18 considers a partially clustered population, with viruses scattered within
the population; no increment rules are applied. The figure shows an execution of this scenario (gray
cells change from light to dark to indicate different ages; darker cells present active and inactive
viruses). After some time, the virus dominates the population, reflecting the fact that the individuals
have stricter reproduction rules than viruses. The conflict rules give higher priority to population
over viruses, so the population that aggregates survives; therefore, there is a tendency for individu-
als to group.

Our second scenario presents a packed population with scattered viruses. As we can see in Figure
8.19, population clustering prevents the individuals from being killed; however, it also restricts
reproduction. Because viruses scatter inside the population, their reproduction is also restricted.
The population size grows while viruses disappear.

The last scenario presented here shows sparse individuals and viruses, including movement rules.
In Figure 8.20, because the individuals are separated, there is more space to reproduce. However,

(a) (b)

FIGURE 8.18 Virus spread scenario: (a) initial population; (b) population and viruses after 100 steps.

53361.indb 205 3/11/09 10:46:59 AM

© 2009 by Taylor & Francis Group, LLC

206 Discrete-Event Modeling and Simulation

the number of individuals decreases due to the development of viruses, which can reproduce more
easily when individuals are scattered.

The addition of movement rules reduces the number of individuals who survive when compared
to the previous scenarios. This is attributed to several causes:

Population tends to cluster, and reproduction rules lead to clustering (which is helpful for
survival). However, the introduction of movement has the opposite effect because it allows
for more opportunities for individuals to detach, and movement gives more chances to get
close to a virus, therefore increasing the chance of infection.
The movement rules have higher priority than reproduction, so the possibilities to repro-
duce are smaller.
In the previous examples, the initial distribution contained more young individuals. Here,
the age is uniformly distributed, and older individuals die earlier.

(a) (b)

FIGURE 8.19 Concentrated population scenario: (a) initial population; (b) population and viruses after
100 steps.

FIGURE 8.20 Movement scenario.

53361.indb 206 3/11/09 10:47:00 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 207

8.6 MODELING THE HEART TISSUE

This section discusses a model of the heart tissue behavior presented in Giambiasi and Wainer [8],
which uses different kinds of Cell-DEVS models to build a discrete variable model of the heart tis-
sue conduction.

The heart (Figure 8.21) is a muscle responsible for pumping blood into the circulatory system.
Behavior of the phenomena occurring in the heart muscle and tissue has been extensively studied
and reported in a wide variety of medical treatises (see, for instance, [9] and [10]).

Heart activity is usually analyzed according to three kinds of activities: mechanical, electrical,
and cellular. In terms of mechanical behavior, blood returns to the heart through the superior and
inferior vena cava and flows to the right atrium. The blood then flows to the right ventricle, where it
is pumped through the pulmonary veins to the lungs to return oxygenated to the left atria through
the pulmonary artery. Then it flows to the left ventricle, which returns the oxygenated blood to the
body through the aorta.

This mechanical activity is triggered by the electrical impulses of the cells in the heart tissue.
The heart muscle is excitable, and the cells in its tissue respond to external stimuli by contracting
the muscular cells. If the stimulus is too weak, the muscle does not respond; if the voltage received
is high enough, the cells contract at maximum capacity. Cells in the heart tissue are excited when
adjacent cells are charged positively. In that case, an upstroke of its action potential is provoked, and
it spreads to nearby cells. The electrical conduction system of the heart is responsible for the control
of its regular pumping. This activity is originated in the sinoatrial (SA) node (also known as the
pacemaker), and it spreads through the atria muscle at a speed of 1 m/s (for human beings, 80 ms
are needed to activate the atria). This is an electrically active region of the heart that self-activates.
All excitable tissue, once activated, exhibits a refractory period before returning to rest. During this
period, the muscle does not respond to external stimuli. Before a new contraction is started, the previ-
ous one should have finished. After that, the electrical activity is spread to the atrioventricular node,
where it propagates slowly (0.1 m/s); then the excitation travels at 2 m/s through the Purkinje fiber.

Aorta

Pulmonary
Artery

Pulmonary
Veins

Left Atrium

Left Ventricle

Purkinje Fibers

Inferior Vena
Cava

Right
Ventricle

Right
Atrium

AV Node

SA Node

Superior Vena
Cava

FIGURE 8.21 Basic anatomy of the heart.

53361.indb 207 3/11/09 10:47:00 AM

© 2009 by Taylor & Francis Group, LLC

208 Discrete-Event Modeling and Simulation

This electrical activity is originated by the chemical reactions occurring at the cellular level,
which consist of the interchange of ions of potassium and sodium in the walls of the cells. This
chemical reaction produces potential differences of millivolts, which trigger the electrical activity.
This behavior of cell membrane activity was originally characterized by [11], a foundational article
that presented the detailed behavior of the intermembrane action’s potential function. They recog-
nized different phases in this function:

The heart tissue is relaxed, and the interior of the membrane is electrically negative with
relation to the surface, with a difference of potential of 50 mV.
The surface membrane is repolarized, creating two zones with a potential difference.
Electrical activity starts and the external surface becomes negative, with a potential differ-
ence of 30 mV. This phase is called excitation (or depolarization).
Negative voltage in the surface trespasses on the membrane, and the original status is
recovered. This phase is called repolarization.

The Hodgkin–Huxley model showed that virtually all membrane current models could be defined
by writing the total membrane current, which is a sum of the individual currents carried by different
ions through specific channels in the cell’s membrane. The calculation is based on sodium ion flow,
potassium ion flow, and the leakage ion flow. This behavior can be defined as

I = m3 h GNa (E – ENa) + n4 GK (E – EK) + GL (E – EL) (8.3)

where
I = the total ionic current across the membrane;
m = the probability that one particle contributed to activate the sodium gate;
h = the probability that one inactivation particle has not caused the sodium gate to close;
GNa = the maximum sodium conductance;
E = the total membrane potential;
ENa = the sodium membrane potential;
n = the probability that one of four particles influenced the potassium gate;
GK = the maximum possible potassium conductance;
EK = the potassium membrane potential;
GL = the maximum leakage conductance; and
EL = the leakage membrane potential.

Hodgkin and Huxley computed empirical formulas for the sodium gate activation (m), sodium
particle activation probability (h), and potassium gate activation probability (n). By applying the
Hodgkin–Huxley equations, we can obtain the action potential function for the cells in different
regions of the heart tissue, which depends on the variation in conductivity, length of the fibers, etc.
For instance, Figure 8.22 shows the results obtained when using the Hodgkin–Huxley equations
using parameters corresponding to cells of the atria [8].

The Hodgkin–Huxley model has been extensively used in different studies because it has been
shown that it reproduces the electrical properties in the myocardium cells with fidelity. Nevertheless,
the use of this model in a realistic reproduction of the heart tissue (probably consisting of millions of
cells) can be computationally expensive. Consequently, different authors have tried to simplify the
complexity of the equations, and various studies have attempted to solve this problem using cellular
automata (CA) (see, for instance, [8], [12], and [13]). Most of these models are based on simple CA
for excitable media, which discretize the Hodgkin–Huxley results. Figure 8.23 shows a complete
specification of this model.

This Cell-DEVS coupled model uses 5 × 5 cells, Moore’s neighborhood transport delays, and
nonwrapped borders (special rules were defined for the borders). The heart-rules section represents
the local computing function; the first rule represents the initiation of electrical activity in a resting

53361.indb 208 3/11/09 10:47:01 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 209

cell (with value 0). In that case, we check to see if any of the neighbors is excited (value 2) and, in
such a case, the cell becomes excited. The second and third rules define the cells changing to the
recovering and resting states. Figure 8.24 shows the results obtained when this model executes. It
shows the evolution of this considering an SA cell in (0,0).

This model represents three different delays at different scales, and each rule is triggered by an
event that is executed asynchronously in each of the cells at randomly chosen instants. Representing
this problem using these simple rules poses a problem in a model’s precision. We have discretized
the continuous function shown in Figure 8.22 with only three different discrete states. If a partial
differential equation (PDE) is included on each cell, it will be able to react to each possible modifi-
cation of the parameters adequately.

Figure 8.25 shows how to implement this model as Cell-DEVS running the Hodgkin–Huxley
model in each of the cells. We implemented a model of the Action Potential (AP) function for the
cells in the heart atria [8]. This Cell-DEVS model simulates the electrical behavior of the cells fol-
lowing the Hodgkin–Huxley model, as described in Section 8.4, discretizing time in each of the

FIGURE 8.24 Heart tissue model execution.

40

20

0
0 20 40 60

Time (ms)

80 100 120
–20

–40

–60

–80

–100

Vo
lta

ge
 (i

m
V

)

FIGURE 8.22 Action potential in the atria cells using Hodgkin–Huxley equations. (From Giambiasi, N.,
and G. Wainer. 2005. Simulation: Transactions of the Society for Modeling and Simulation International
81:137–151.)

[Heart]
type : cell
dim : (5,5)
delay : transport
border : nowrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (0,1) (1,-1) (1,0) (1,1) (0,0)
localtransition : Heart-rules

[Heart-rules]
rule : 2 0.48 {(0,0)=0 and statecount(2)>0 }
rule : 1 1.48 { (0,0) = 2 }
rule : 0 17.5 { (0,0) = 1 }
rule : { (0,0) } 0 { t }

FIGURE 8.23 Cell-DEVS definition of a simple heart tissue model.

53361.indb 209 3/11/09 10:47:02 AM

© 2009 by Taylor & Francis Group, LLC

210 Discrete-Event Modeling and Simulation

cells under execution. Figure 8.25 shows the model definition using CD++, which can be found in ./
APAfun.zip.

In this case, we use a three-dimensional model (5 × 5 × 2 cells) with transport delays. The neigh-
borhood uses the adjacent cells in plane 0 and the cell above, which will be used to decide if the cur-
rent cell should be computed. The local computing function, heart-rule-AP, is defined by two rules.
The first one will be evaluated only by the cells in the first plane in the model (cellpos(2) = 0) and
only if the cell is resting and a positive voltage is detected in the cell’s neighborhood. This rule will
trigger the update of the cell state using the Hodgkin–Huxley equation (Equation 8.3) (AP function).
The second rule will be used in the subsequent activations. The third rule is evaluated only by the
second plane (cellpos(2) = 1), and it is used to trigger time-based actions for the first plane. This
plane changes its state in each time step, triggering the execution of the rules of the action potential
function because Cell-DEVS considers only activation of a cell under asynchronous events. If no
event occurs, the cells will become quiescent and the simulation ends.

The AP function in this model receives the coordinates of the current cell and its current state.
Using these values, it recovers the previous state of the current cell and computes the next volt-
age using Equation (8.3). Figure 8.26 shows the execution results of this model. As we can see,
the results obtained are the same as we obtained earlier by solving the Hodgkin–Huxley equation
(in fact, most of the source code originally developed to build the AP function was reused in this
Cell-DEVS model).

[heart]
type : cell
dim : (5,5,2)
delay : transport
border : nowrapped
neighbors : (-1,-1,0) (-1,0,0) (-1,1,0)
neighbors : (0,-1,0) (0,0,0) (0,1,0)
neighbors : (1,-1,0) (1,0,0) (1,1,0) (0,0,1)
localtransition : heart-rule-AP

[heart-rule-AP]
rule : { AP(cellpos(0) } 1 { cellpos(2)=0 and (

 (-1,0,0) > 0 or (0,-1,0) > 0 or (-1,-1,0)>0) and (0,0,0) = -83.0) }

rule : { AP(cellpos(0) } 1 { cellpos(2)=0 }

rule : { if((0,0,0) = 1.0 or (0,0,0) = -83.0, 0.0, 1.0) } 1 { cellpos(2)=1 }

FIGURE 8.25 Cell-DEVS definition of the action potential function for a heart tissue model. (From
Giambiasi, N., and G. Wainer. 2005. Simulation: Transactions of the Society for Modeling and Simulation
International 81:137–151.)

 (a) (b)

FIGURE 8.26 Model execution using Hodgkin–Huxley equations: (a) individual cell; (b) cell space.

53361.indb 210 3/11/09 10:47:03 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 211

This model can also be defined using Cell-DEVS/GDEVS and QDEVS, as shown in [14]. The
first step in such a study is to find a polynomial approximation to the original PDE defining the
cell’s behavior. The simplest way of doing so is to approximate the initial equation’s experimental
data using eight polynomials of degree one [15] (a higher level of accuracy can be obtained using
GDEVS of a higher level with the same number of states and events). The identification of the
parameters in each of the polynomials was obtained minimizing a quadratic criterion using mini-
mum squares. The polynomials are defined by

Pi (t) = ai t + bi i [1, 8] (8.4)

using the coefficients in Table 8.1.
Figure 8.27 shows the result of this approximation func-

tion. Between 0 and 2 ms, we approximate the action poten-
tial using four different polynomials (because, when the cell
is triggered, the signal generated by the Hodgkin–Huxley
model is highly nonlinear). We also need a polynomial end-
ing in the first positive value, which will trigger activity in
the neighboring cells in this example (polynomial P2 is in
charge of this).

The coefficients in the polynomials are then converted
into discrete event signals. Each cell uses polynomial coef-
ficients to compute the current state and to inform the neigh-
bors of the cell’s state. As seen in Figure 8.28, the local
computing function included in each of the cells receives
the current coefficient ((N)ai and (N)bi) from the neighbor-
ing cells. The cell’s outputs are the current cell states specified as polynomial coefficients (ai(i,j)
and bi(i,j)). Timing of activation for each polynomial can be easily defined using the model delay
functions.

Figure 8.29 shows the model implementation in CD++, as found in ./heartGDEVS.zip. The cell
is inactive until it receives external stimuli from a neighboring cell. In that case, the cell is activated
and produces internal state changes (represented by the coefficient in the polynomials, which are

0

–100

GDEVS PDE

–80

–60

–40

–20

0

20

40

0.5 1 1.5 2 2.5 3

FIGURE 8.27 Linear approximation of the action potential function. (From Giambiasi, N., and G. Wainer.
2005. Simulation: Transactions of the Society for Modeling and Simulation International 81:137–151.)

TABLE 8.1
Polynomial Coefficients for the
Action Potential Model

I Ai bi Time (ms)

1 1.0250 –83.1478 [0, 0.35)

2 6.4555 –275.5886 [0.35, 0.43)

3 –0.2765 37.4703 [0.48, 1.48)

4 –0.0661 8.7840 [1.48, 2.48)

5 –0.0073 –8.6492 [2.48, 9.98)

6 –0.0022 –12.1344 [9.98, 17.48)

7 –0.0143 10.6898 [17.48, 60)

8 –0.0016 –64.0617 [60, +)

53361.indb 211 3/11/09 10:47:04 AM

© 2009 by Taylor & Francis Group, LLC

212 Discrete-Event Modeling and Simulation

transmitted to the neighboring cells after the delay). The model flows through eight different states
represented by each of the polynomials, plus an extra state to put the model into resting state.

We use a 6 × 6 cell space, transport delays, a nonwrapped model, and Moore’s neighborhood.
Then we define the local computing function, heart-rule-GDEVS. If a stimulus is received when
the cell is inactive ((0,0) = –83), it will check the voltage received from the cells in the neighborhood
(which is received through ports ai and bi and computed by the voltage function), reacting to posi-
tive voltage in any of them. It will change to the corresponding state (Si, to the left of the specifica-
tion) and will send the current ai, bi coefficients to the neighboring cells after the consumption of
the delay. Each of the rules represents a cell’s state change and the spread of the coefficients to the
neighbors. Each of the cells will repeat the behavior defined here while storing the voltage value for
display, which is shown in Figure 8.30.

As we can see, we obtained an output trajectory more precise than the one obtained with CA.
This gain of precision involved a low extra cost in terms of computing time. Likewise, the complexity
added to the cellular model developed in Cell-DEVS is reduced when compared with the solution using
PDEs (which required implementing the Hodgkin–Huxley equations). As reported in Giambiasi and
Wainer [8] and Wainer [14], this results in performance gains (at the cost of limited error).

i

i

i

i

FIGURE 8.28 GDEVS cell. (From Giambiasi, N., and G. Wainer. 2005. Simulation: Transactions of the
Society for Modeling and Simulation International 81:137–151.)

[heart-GDEVS]
type : cell
dim : (6,6)
delay : transport
border : nowrapped
neighbors : (0,-1) (0,0) (-1,0) (-1,-1)
neighbors : (0,1) (1,0) (-1,1) (1,1) (1,-1)
localtransition : heart-rule-GDEVS

[heart-rule-GDEVS]
rule : { S0 } 0 {(0,0)=-83 and voltage(0,-1) > 0 or voltage(-1,-1) > 0 or voltage(-

1,0)>0 }

rule : { S1, send(1.0250,-83.1478) } 0.35 { (0,0) = S0 }
rule : { S2, send(6.4555,275.5886) } 0.08 { (0,0) = S1 }
rule : { S3, send(-0.2765,37.47) } 0.05 { (0,0) = S2 }
rule : { S4, send(-0.0661,8.784) } 1 { (0,0) = S3 }
rule : { S5, send(-0.0073,-8.6492) } 1 { (0,0) = S4 }
rule : { S6, send(-0.0022,-12.1344) } 7.50 { (0,0) = S5 }
rule : { S7, send(-0.0143,10.6898) } 7.50 { (0,0) = S6 }
rule : { S8, send(-0.0016,-64.0617) } 4.25 { (0,0) = S7 }
rule : { S0, send(-0.0016,-64.0617) } 4.15 { (0,0) = S8 }
rule : { (0,0) } 0 { t }

[voltage-function]
voltage(cellpos) = cell.ai * time + cell.bi

FIGURE 8.29 Cell-DEVS/GDEVS implementation of the heart tissue model.

53361.indb 212 3/11/09 10:47:05 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 213

Exercise 8.8

Study the error of the GDEVS approximation versus the original AP data.

Exercise 8.9

Study the performance of the implementation of the model using Cell-DEVS, comparing the results
with GDEVS and QDEVS.

8.7 ENERGY PATHWAYS IN MITOCHONDRIA

We will now present a model introduced in Djafarzadeh, Mussivand, and Wainer [16] and found in
./glyco10.zip, which is focused on the detailed analysis of the behavior of the mitochondrion, which
fulfills different important roles in cellular metabolism [17,18]. The model in this section includes
two biological pathways, putting emphasis on cellular metabolism and energy production aspects.

Mitochondria are small double-membrane organelles found in the cytoplasm of eukaryotic cells.
Mitochondria are responsible for converting nutrients into the energy-yielding molecule adenosine
triphosphate (ATP) to fuel the cells’ activities [19]. Mitochondria can be divided into four compo-
nents: outer membrane, intermembrane space, inner membrane, and the matrix (see Figure 8.31).

The chief function of the mitochondria is to create energy for cellular activity by the process of
aerobic respiration. In this process, glucose is broken down in the cell’s cytoplasm, via the glyco-
lysis process, to form pyruvic acid. In a series of reactions, part of which is called the Krebs cycle,
the pyruvic acid reacts with water to produce carbon dioxide and hydrogen. Energy is released as
the electrons flow from the coenzymes down the electron transport chain to the oxygen atoms. The
enzyme ATPase, which is embedded in the inner membrane, adds a phosphate group to adenos-
ine diphosphate (ADP) in the matrix to form ATP. Aerobic respiration is an ongoing process, and

Line : 83 - Time: 00:00:00:000
 0 1 2 3 4 5
 +--+
 0| 1.97000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 1| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 2| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 3| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 4| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 5| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 +--+
Line : 115 - Time: 00:00:00:043
 0 1 2 3 4 5
 +--+
 0| 1.97000 1.99791 -83.00000 -83.00000 -83.00000 -83.00000|
 1| 1.99791 1.99791 -83.00000 -83.00000 -83.00000 -83.00000|
 2| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 3| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 4| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 5| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 +--+
Line : 199 - Time: 00:00:00:086
 0 1 2 3 4 5
 +--+
 0| 24.19800 24.19800 1.99791 -83.00000 -83.00000 -83.00000|
 1| 24.19800 24.19800 1.99791 -83.00000 -83.00000 -83.00000|
 2| 1.99791 1.99791 1.99791 -83.00000 -83.00000 -83.00000|
 3| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 4| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 5| -83.00000 -83.00000 -83.00000 -83.00000 -83.00000 -83.00000|
 +--+

FIGURE 8.30 Cell-DEVS/GDEVS execution of the heart tissue model. (From Giambiasi, N., and G. Wainer.
2005. Simulation: Transactions of the Society for Modeling and Simulation International 81:137–151.)

53361.indb 213 3/11/09 10:47:05 AM

© 2009 by Taylor & Francis Group, LLC

214 Discrete-Event Modeling and Simulation

mitochondria can produce hundreds of thousands of ATP molecules per minute. ATP is transported
to the cytoplasm, where it is used for virtually all energy-requiring reactions. As ATP is used, it is
converted into ADP, which is returned by the cell to the mitochondrion and is used to build more
ATP [19]. Specific enzymes control each of the different reactions, as shown in Figure 8.32.

FIGURE 8.31 Scheme of the mitochondrion.

Glucose

Glucose-6-phosphate

Fructose-6-phosphate

Fructose-1,6-bisphosphate

Dihydroxyacetone phosphate
(DHP)

Glyceraldehyde-3-phosphate
(GDP) (PGAL) NAD+

NADH

ADP

ADP

ATP

ATP

ADP

ATP

ATP
Step 1

Step 6

Step 7

Step 10

X 2

Step 9

Step 8

Step 4to5

Step 5
Step 4

Step 3

Step 2

ADP

Pyruvate

Phosphoenolpyruvate
(PEP)

2-Phosphoglycerate
(2-PGA)

3-Phosphoglycerate
(3-PGA)

1,3-Diphosphoglycerate
(DPGA)

FIGURE 8.32 Glycolysis pathway. (From Curtis, H., and N. Barnes. 1989. Biology, 5th ed. New York: W. H.
Freeman.)

53361.indb 214 3/11/09 10:47:08 AM

© 2009 by Taylor & Francis Group, LLC

MatrixOuter Membrane

Inner
Membrane

Intermembrane
Space

Ribosome

Enzymes

mDNA

Cristae

text

Applications in Biology 215

The glycolysis pathway was defined as a DEVS coupled model and it was implemented using
CD++. For example, Step 1 (in which glucose is phosphorylated by ATP to form glucose 6-phosphate
and ADP [17]) can be defined as the atomic model

Step1 = < S, X, Y, δint, δext, ta, λ > (8.5)

where
S = {atpc, glucosec, ifhex, counter, phase, sigma};
X = {glucose, ATPi, hexokinase};
Y = {glucose_6_phosphate, ADP, H}; and

δint, δext, ta, and λ are presented in Figures 8.33–8.35 (using CD++ implementation).

The external transition function presented in Figure 8.33 is invoked every time glucose, ATPi,
or hexokinase is received by the model; as a result, the model simulates the reactions previously
described in Figure 8.32. As we can see in the figure, whenever a substance is present, its value is
added to a counter representing the number of molecules available (glucosec, atpc). In the case of
the hexokinase (which is an enzyme), only presence is considered (whenever the enzyme is present,
a value is set to true). The internal transition function schedules an internal event after a preparation
time describing the timing for the transfer. If glucose, ATPi, and hexokinase are in the system, then
the reaction will take place. When the time interval expires, the output function is invoked and the
first value in Step1 is sent through the corresponding output port.

In Figure 8.34, the output function is activated when all the conditions of the external function
have been satisfied; that is, all three input events are in and the reaction can happen. As a result,
ADP, glycose_6_phosphate, and H will be sent out through the corresponding output ports.

FIGURE 8.33 External transition function (δext) for Step1.

FIGURE 8.34 Output function (λ) for Step1.

53361.indb 215 3/11/09 10:47:09 AM

© 2009 by Taylor & Francis Group, LLC

216 Discrete-Event Modeling and Simulation

After calling the output function, the internal transition function (shown in Figure 8.35) is
invoked. This function will produce an internal state change according to the substances available
in the mitochondria. The function updates the number of substances available according to the reac-
tion, and it then passivates.

The remaining steps explained in Figure 8.32 (steps 2–10) were developed using a similar
approach [16]. Following the description for the glycolysis, we built a DEVS coupled model includ-
ing all the steps previously defined as atomic models, as seen in Figure 8.36.

When we execute this model in CD++, we can study the model’s behavior by analyzing its out-
puts. One simulation scenario we created validating the glycolysis model is presented in Table 8.2.

These simulation results accurately describe the reactions that occurred during glycolysis [10],
following the ideas shown in Figure 8.32. Tables 8.2 and 8.3 show the input/output trajectories for
the model and Step1, respectively. As we can see in Table 8.3, by time 30:00, we have the three
inputs required to produce a reaction. At time 30:00, two glucoses and six ATPi enter the system,
generating two ADP, two glucose_6_phosphate, and two H molecules.

Exercise 8.10

Introduce a nonexpected behavior (erroneous transition functions, different substances present, differ-
ent reactions on each step) in the glycolysis model. Analyze the results obtained.

FIGURE 8.36 Glycolysis coupled model.

FIGURE 8.35 Internal transition function (δint) for Step1.

53361.indb 216 3/11/09 10:47:10 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 217

Figure 8.37 shows the execution results for Step1 using CD++ Modeler. We see that at time
40:00, four glucose molecules enter the system generating four more outputs of each of the ADP,
glucose_6_phosphate, and H molecules. We used CD++/Maya [20] to create three-dimensional
graphics and animation for the glycolysis model (CD++/Maya will be described in detail in
Chapter 16). Figure 8.38 shows a snapshot of this animation.

The Krebs cycle, also called the tri-carboxylic acid (TCA) cycle and the citric acid cycle (CAC),
oxidizes pyruvate formed during the glycolysis pathway into CO2 and H2O. This cycle is a series of
chemical reactions of central importance in all living cells that utilize oxygen. The citric acid cycle
takes place within the mitochondria in eukaryotes and within the cytoplasm in prokaryotes. For
each turn of the cycle, 12 ATP molecules are produced—one directly from the cycle and 11 from
the oxidation of the three NADH and one FADH2 molecules produced by the cycle by oxidative
phosphorylation [10]. Glucose is converted by glycolysis into pyruvate. Pyruvate enters the mito-
chondria, linking glycolysis to the Krebs cycle. This step (step A) is also called the bridging step.

TABLE 8.2
Inputs/Outputs for Glycolysis Model

Inputs Outputs

10:00 glucose 2 50:000 h 2
18:00 ATPi 3 72:000 nadh 2
50:00 hexokinase 1 72:000 h 2
51:00 phosphGlucoiSom 1 72:000 atpo 2
52:00 PFK 2 72:000 h2o 2
53:00 isomerase 1 72:000 atpo 2
55:00 aldolase 1 72:000 pyruvate 2
62:00 G3PD 1
63:00 PGK 1
64:00 PGM 1
65:00 enolase 1
67:00 pyruvKinase 1
70:00 NAD 3
72:00 P 2

TABLE 8.3
Inputs and Outputs for Step 1

Inputs Outputs

15:00 hexokinase 1 30:000 adp 2
30:00 glucose 2 30:000 glucose_6_phosph 2
30:00 ATPi 6 30:000 h 2
40:00 glucose 4 40:000 adp 4
40:00 ATPi 1 40:000 glucose_6_phosph 4
55:00 glucose 1 40:000 h 4
55:00 ATPi 1 55:000 adp 1
65:00 glucose 1 55:000 glucose_6_phosph 1

55:000 h 1

65:000 adp 1
65:000 glucose_6_phosph 1
65:000 h 1

53361.indb 217 3/11/09 10:47:10 AM

© 2009 by Taylor & Francis Group, LLC

218 Discrete-Event Modeling and Simulation

Pyruvate dehydrogenase—a complex of three enzymes and five coenzymes—oxidizes pyruvate
using NAD+ to form acetyl CoA, NADH, and CO2.

We defined a model of the Krebs cycle (depicted in Figure 8.39 using identical principles to the
ones used for the glycolysis model). In StepA of Figure 8.39, pyruvate is degraded and combined
with coenzyme A to form acetyl coenzyme A. NADH and CO2 are released during this process (in
fact, StepA is the link between glycolysis and the Krebs cycle). Figure 8.40 shows the definition of
these coupled models using CD++Modeler.

Figure 8.41 shows snapshots of reactions in the Krebs cycle animation done in CD++/Maya.
Figure 8.41(a) shows the beginning of the reaction, in which one pyruvate and four NAD+

appear. Figure 8.41(b) shows the formation of acetyl CoA and the production of carbon dioxide and
NADH as by-products.

Enzymes Hexokinase Phosphoglucoisomerase Phosphofrucokinase

Isomerase Aldoiase Glyceraldehyde-3-phosphate dehydroganase

Phosphoglyceratekinase Phosphoglyceratemutase Enolase Pyruvatekinase

Input

Output

FIGURE 8.38 Visualization of the glycolysis execution in CD++/Maya: step 6.

FIGURE 8.37 Atomic animation of step 1 of glycolysis.

53361.indb 218 3/11/09 10:47:12 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 219

8.8 SUMMARY

In the last few decades, computer simulation has become an integral part in the basic and applied fields
of biological research. In this chapter, we showed how to model these kinds of systems using DEVS.

We focused on different examples. Initially, we presented a cellular model showing how syn-
apsin and vesicles interact in nerve cells. This model allows us to study molecular interaction at the

FIGURE 8.40 Defining the Krebs coupled model using CD++ Modeler.

FIGURE 8.39 Krebs cycle reactions.

53361.indb 219 3/11/09 10:47:14 AM

© 2009 by Taylor & Francis Group, LLC

220 Discrete-Event Modeling and Simulation

level of the intramembrane of the cell. We then defined a model of the lobules in the human liver
and showed their interaction. The model of spreading bacteria can be used to analyze their spread,
which causes varied sicknesses. A cellular model presented allows us to analyze how a plague can
spread within a population. The Hodgkin–Huxley model we included describes electrical behavior
of the heart tissue. We compared the results obtained against those originally built with PDEs and
cellular automata. We showed that we could provide adequate levels of precision at a fraction of the
computing cost of differential equations. Finally, we included a detailed model of energy pathways
in mitochondria (namely, glycolysis and Krebs cycle), which allows analyzing the molecular inter-
actions at the level of the organelle. Other models in the field can be found in the central repository,
including models on the formation of cancer (found in ./cancer.zip) and on the relation between
tumors and the immune system (found in ./Tumor-Immune_System.zip). We also included other
models on the spreading of disease (found in ./HIV.zip and ./Epidemics.zip), on enzyme kinetics
(./EnzymeKinetics.zip), on the cell’s membrane behavior in neurons (./Nerve_Cell_Membrane.pdf),
and on the behavior of spiking neurons (./SpikingNeuronTerminal.zip).

We have shown that these models can be built and validated incrementally by using simple
subcomponents. The approach also enables reuse of simulation components and allows seamless
integration of these components into more complex simulation models.

The hierarchical and discrete-event capabilities of DEVS make it a good choice for modeling
biological events. As illustrated here, CD++ can be used to model and simulate biological models
using a systematic method with models that consist of sets of lower-level interactions.

REFERENCES

1. Benfenati, F., F. Valtorta, and P. Greengard. 1991. Computer modeling of synapsin I binding to synaptic
vesicles and F-actin: Implications for regulation of neurotransmitter release. Proceedings of the National
Academy of Sciences USA 88:575–579.

2. Bain, R., S. Jafer, M. Dumontier, G. Wainer, and J. Cheetham. 2006. Vesicle, synapsin and actin concen-
tration time series modelling at the presynaptic nerve terminal (poster). Proceedings of Symposium on
Progress in Systems Biology 2006, Ottawa, ON, Canada.

3. Wainer, G., B. Al-aubidy, A. Dias, R. Bain, S. Jafer, M. Dumontier, and J. Cheetham. 2007. Advanced
DEVS models with applications to biomedicine. Proceedings of AIS’2007 Artificial Intelligence,
Simulation and Planning, Buenos Aires, Argentina.

Input Enzymes: Input Enzymes: Pyruvate dehydoegenase,

 (a) (b)

FIGURE 8.41 (a) The Krebs cycle begins; (b) acetyl CoA is formed.

53361.indb 220 3/11/09 10:47:15 AM

© 2009 by Taylor & Francis Group, LLC

Applications in Biology 221

4. Hunt, C. A., G. Ropella, M. Roberts, and L. Yan. 2005. Biomimetic in silico devices. Proceedings of
Computational Methods in Systems Biology 2004; Lecture Notes in Bioinformatics 3082, 35–43.

5. Ameghino, J., E. Glinsky, and G. Wainer. 2003. Applying cell-DEVS models of complex systems.
Proceedings of Summer Computer Simulation Conference, Montreal, QC, Canada.

6. Shang, H., and G. Wainer. 2005. A model of virus spreading in CD++. Proceedings of the International
Conference on Computational Science, Atlanta, GA.

7. Dzwinel, W. 2004. A cellular automata model of population infected by periodic plague. Proceedings of
ACRI 2004, LNCS 3305, 464–473.

8. Giambiasi, N., and G. Wainer. 2005. Using G-DEVS and cell-DEVS to model complex continuous sys-
tems. Simulation: Transactions of the Society for Modeling and Simulation International 81:137–151.

9. Goldschlager, N., and M. Goldman. 1989. Principles of clinical electrocardiography. Norwalk, CT:
Appleton and Lange.

10. Alberts, B., D. Bray, L. Lewis, M. Raff, K. Roberts, and D. Watson. 1983. Molecular biology of the cell,
1st ed. New York: Garland Publishing, Inc.

11. Hodgkin, A., and A. Huxley. 1952. A quantitative description of membrane current and its application to
conduction and excitation in nerve. Journal of Physiology 117:500–544.

12. Saxberg, B., and R. Cohen. 1991. Cellular automata models of cardiac conduction. In Theory of heart,
edited by L. Glass, P. Hunter, and A. McCulloch. New York: Springer–Verlag.

13. Fenton, F. 2000. Numerical simulations of cardiac dynamics. What can we learn from simple and com-
plex models? IEEE Computers in Cardiology 27:251–254.

14. Wainer, G. 2004. Performance analysis of continuous cell-DEVS models. Proceedings of High
Performance Computing & Simulation (HPC&S) Conference, 18th European Simulation Multiconference,
Magdeburg, Germany.

15. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1986. Numerical recipes. Cambridge:
Cambridge University Press.

16. Djafarzadeh, R., T. Mussivand, and G. Wainer. 2005. Modeling energy pathways in cells. Proceedings of
2005 DEVS Integrative M&S Symposium, Spring Simulation Conference, San Diego, CA.

17. Krauss, S. 2001. Mitochondria: Structure and role in respiration. In Nature encyclopedia of life sciences.
New York: Nature Publishing Group.

18. Poulton, J., and L. Bindoff. 2000. Mitochondrial respiratory chain disorders. In Nature encyclopedia of
life sciences. New York: Nature Publishing Group.

19. Curtis, H., and N. Barnes. 1989. Biology, 5th ed. New York: W. H. Freeman.
20. Khan, A., G. Wainer, W. Venhola, and M. Jemtrud. 2005. On the use of CD++/Maya for visualization

of discrete-event models. Proceedings of IMACS World Congress on Scientific Computation, Applied
Mathematics and Simulation, Paris.

APPENDIX

In order to program the AP function introduced in Figure 8.25 (and other similar functions to be
incorporated in the model execution), the user must:

1. Write the function in C++.
2. Copy the function into the real functions source file (realfunc.cpp in the internal folder).

Replace the type of the arguments with the CD++ types. For example, double must be
replaced by Real. For instance,

#include <math.h>
#include <stdio.h>
Real MyFunc(const Real &r1, const Real &r2) {
 double var;
 var=r1.value()*r2.value() – 450.5;
 return Real(var);
 }

3. Add the prototype of the function in the real functions header file (realfunc.h).

53361.indb 221 3/11/09 10:47:15 AM

© 2009 by Taylor & Francis Group, LLC

222 Discrete-Event Modeling and Simulation

4. Overload the operator() of the Z class for the structure of the function with the correct
kind (unary, binary, etc.) on the same header file (realfunc.h). For instance,

template <class T, class Z>
 struct r_MyFunc : public binary_function< T, T, Z> {
 Z operator()(const T& t1, const T& t2) const {

if (EvalDebug().Active())EvalDebug().Stream() << “ (myfunc) ”;
return MyFunc(t1,t2);

 }
 string type(){ return “MYFUNC”;}
 };

5. Create the type of the function (for instance, r_MyFunc) on the same header file (realfunc.h):

typedef r_MyFunc< Real, Real > REAL_MYFUNC;

6. Define the respective operator for the class to manage the type value for the new function
on the synnode.h header file. For instance,

typedef BinaryOpNode< REAL_MYFUNC, RealType, RealType > FuncMyFunc ;

7. Add the name and type of the new function on the dictionary of parser method (parser.cpp
source file):

dict[“myfunc”] = ValuePair(BINARY_FUNC, new FuncMyFunc()) ;

After recompiling CD++, the new function is available to use from the model. It is activated
as follows:

rule : { Myfunc(cellpos(0)*1000+cellpos(1)*10+ if((-1,0) > 0, 1.0,
0.0) } 5 {t}

53361.indb 222 3/11/09 10:47:15 AM

© 2009 by Taylor & Francis Group, LLC

223

9 Models in Defense and
Emergency Planning

9.1 INTRODUCTION

In recent years, a wide range of novel modeling and simulation (M&S) techniques have become
popular in the fields of defense and emergency planning (and some of these techniques have also
been applied in computer games). As discussed in Palmore [1], there are obvious reasons for using
simulation in this area: although warfare and emergencies are common, we cannot generate con-
flicts or catastrophic situations to study the results of different strategies, equipment, or advanced
technologies. In addition, in these scenarios, obtaining real data and making accurate observations
are complex, and making deliberate changes (e.g., in the face of combat) is extremely difficult.

In this chapter we will focus on how to create DEVS models with application in this area. We will
first introduce a simple collision detection model using Cell-DEVS. Then we present a DEVS model
for the synchronization of radar transmitters and receivers. We then introduce a Cell-DEVS model of
the behavior of a target seeker and a model of land battlefields. Finally, we show a basic model on
evacuation of buildings and how to describe flocking behavior of people being evacuated.

9.2 A SIMPLE MODEL OF AN UNMANNED VEHICLE

The first model to be introduced considers a simple unmanned aerial vehicle (UAV) using Cell-
DEVS (presented in Madhoun and Wainer [2] and found in ./Collision_AvoidanceUAV.zip). The
UAV traverses a specific area searching for a target and avoiding static and moving obstacles in
its way. The model deals with multiple UAVs moving and avoiding multiple obstacles. In order to
model this behavior, each entity is assigned a state value, as shown in Figure 9.1.

The model in CD++ specification language is shown in Figure 9.2. The first portion of the cou-
pled model defines the cell-space geometry, size, and neighborhood shape. Then we define the rules
that govern model execution. As shown in the figure, the cell space is composed of 20 × 20 cells
with transport delays. We show part of the rule definition of the static obstacles, UAVs, and moving
obstacles. The uav-rule implements the UAV movement avoiding the static and moving obstacles,
and the move target rule implements a moving obstacle from south to north.

Figure 9.3 shows a snapshot of the execution of this model with the allocations of UAV and
obstacles. The UAVs (shown in dark gray) try to move from north to south facing static obstacles
(shown in black) as well as moving obstacles (shown in light gray).

9.3 RADAR TRANSMITTER–RECEIVER

We will show how to integrate components of a radar system, as discussed in MacSween and
Wainer [3]. The model examines the synchronization effects between radar receivers and transmit-
ters. Radar transmitters use a particular frequency, with a given pulse rate, azimuth (i.e., the hori-
zontal direction angle from north toward east), and beam width. Radar scanning receivers work on
a tuned frequency (for a specified duration), with a particular azimuth and beam width, and have a
tuning time associated with the change from one listening frequency to another.

53361.indb 223 3/11/09 10:47:15 AM

© 2009 by Taylor & Francis Group, LLC

224 Discrete-Event Modeling and Simulation

FIGURE 9.3 Initial allocations of UAVs and obstacles.

Empty Cell

None None

Static
Obstacle

Moving
Obstacle

0State

Movement

Color

UAV

1 5 9

FIGURE 9.1 UAV state values.

[top]
type : cell
width : 20
height : 20
delay : transport
border : nowrapped
neighbors : (-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2) (-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1)
neighbors : (-2,0) (-1,0) (0,0) (1,0) (2,0) (-2,1) (-1,1) (0,1) (1,1) (2,1)
neighbors : (-2,2) (-1,2) (0,2) (1,2) (2,2) (3,-2) (3,-1) (3,0) (3,1) (3,2)

localtransition : uav-rule

[uav-rule]
...
%up
rule : 1 100 { (0,0)=0 and (1,0)=1 and (2,1)=5 and (1,-1)!=0 and (2,0)!=0 }
rule : 0 100 { (0,0)=1 and (-1,0) =1 }
...
%**
%moving target rule
rule : 5 100 { (1,0) = 5 }
rule : 0 100 { (-1,0) = 5 }

FIGURE 9.2 UAV coupled model specification. (From Madhoun, R., and G. Wainer. 2005. Journal of
Defense Modeling and Simulation 2:121–143.)

53361.indb 224 3/11/09 10:47:17 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 225

The interception of radar signals by a radar scanning receiver can be severely limited if the scan
rate becomes synchronized with the one on its own transmitter. This synchronization effect occurs
when a transmitter sends out radar pulses periodically but the receiver is scheduled to scan with
a period such that the receiver is never listening to the transmitter. Therefore the transmitter can
never be detected by the receiver, even though it may be transmitting. Every effort must be made to
generate a receiver scan pattern that limits this effect because it seriously degrades the probability
of intercept for the receiver. Our model generates simulation data to study this effect.

The scenario can be even more complex when we consider that multiple receivers can be avail-
able and communicate with each other (with each receiver notifying the others about radar transmit-
ters that have been detected). Each receiver is connected to a bus, and it maintains a tracking table
with information about the currently known transmitters. Figure 9.4 shows the structure of a DEVS
model that we used to analyze the behavior of this system.

The scanning receiver atomic model (Figure 9.4) can be defined as follows:

Scanning receiver = < X, Y, S, δext, δint, ta, λ > (9.1)

where
X = { ext_signal }
Y = { notify, detected_signal_properties }
S = {Scan, Signal_Detected, Process_Signal, Notify}
δext = { δext(Scan, ext_signal) = Signal_Detected }
δint = { δint(Signal_Detected) = Process_Signal,

δint(Process_Signal) = Notify
δint(Notify) = Scan

}
ta = { ta(Signal_Detected) = DETECTION_TIME
 ta(Process_Signal) = PROCESS_TIME
 ta(Notify) = NOTIFY_TIME
 ta(Scan) = INFINITY
}
λ (S) = { λ (Signal_Detected) = notify,

λ (Process_Signal) = detected_signal_properties
}

Simulation

...

Radar
Transmitter

1

Radar
Transmitter

n

Radar
Transmitter

2

Transmitter Parameters
Receiver Parameters
Signal Path Parameters
Location Parameters

Receiver Output
Signal Path

Management

R
e

ce
iv

e
r

C
o

m
m

u
n

ic
a

ti
o

n
 B

u
s

Scanning
Receiver 1
Tracking

Table

Bu
s M

an
ag

er

Scanning
Receiver n
Tracking

Table

Bu
s M

an
ag

er

Scanning
Receiver 2
Tracking

Table

Bu
s M

an
ag

er

FIGURE 9.4 Structure of the radar transmitter/receiver model.

53361.indb 225 3/11/09 10:47:17 AM

© 2009 by Taylor & Francis Group, LLC

226 Discrete-Event Modeling and Simulation

The model’s states (S) represent a receiver that is scanning for a new signal, has detected one,
is processing it, or is notifying the reception of the signal through the bus, respectively. As seen in
the external transition funciton definition, the scanning receiver (scan state) is waiting to receive
a new external signal (through the ext_signal input port). When this occurs, the model changes to
the Signal_Detected state, which (according to the definition of the function ta) will be maintained
during DETECTION_TIME units—the time the circuit takes to react to a signal detected. When
DETECTION_TIME is consumed, the output function is executed, and the notify output port is
used to inform about the state change. Then the internal transition function executes, changing the
state to Process_Signal, which represents the fact that the new signal must be processed. This state
lasts PROCESS_TIME units. When this time is consumed, the second line of the output function
is executed, which informs that the signal property has been detected (by sending a signal through
the detected_signal_properties output port). We need to model the time that the circuit takes for
notification. Therefore, we change to the notify state, which lasts NOTIFY_TIME units. This state
change does not generate outputs, but when the time is consumed, the model will be in scan state
again (awaiting a new input forever).

This model was subsequently built in CD++ (and it can be found in ./RadarFreq.zip). We used
both C++ and DEVS graphs to model the radar’s behavior (whose specification is presented in
Figure 9.5).

As discussed in Chapter 5, CD++Modeler shows two views of the state machine: the left panel
contains a sorted tree diagram and the right side contains a visual representation of the model.
The four states of the scanning receiver are immediately apparent. When this model is exported to
CD++ textual notation, the specification seen in Figure 9.6 is created.

As we can see in Figure 9.6, the text specification in CD++ is a direct mapping from the formal
specification previously presented. A few syntactic variations can be found (mostly, the definition

FIGURE 9.5 Graphical definition of the scanning receiver.

53361.indb 226 3/11/09 10:47:18 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 227

of an initial state for the state machine defined by the DEVS graph, and the inclusion of the output
functions on the lines corresponding to the state changes, which makes writing the model easier).

Each of the models presented in Figure 9.4 was defined in a similar way to the scanning receiver
[3]. Once this stage was completed, a coupled model was built, integrating all of the systems’ com-
ponents. Three Transmitter atomic models are defined, combined with two network receivers, as in
Figure 9.4, and is formally defined as:

Net_Of Network_Receivers = < X, Y, {Mi}, {Ii}, {Zij}, select > (9.2)

where
X = { }
Y = { notify1, notify2, notify3 }
Mi = { Transmitter1, Transmitter2, Transmitter3, Network_Receiver1,
 Network_Receiver2 }
Ii = { I(Transmitter1) = Network_Receiver1, I(Transmitter1) = Network_Receiver2,
 I(Transmitter2) = Network_Receiver1, I(Transmitter2) = Network_Receiver2,
 I(Transmitter3) = Network_Receiver1, I(Transmitter3) = Network_Receiver2 }
Zij = { (Transmitter1.pulse_out, Network_Receiver1.ext_signal),
 (Transmitter1.pulse_out, Network_Receiver2.ext_signal),
 (Transmitter2.pulse_out, Network_Receiver1.ext_signal),
 (Transmitter2.pulse_out, Network_Receiver2.ext_signal),
 (Transmitter3.pulse_out, Network_Receiver1.ext_signal),
 (Transmitter3.pulse_out, Network_Receiver2.ext_signal) }
select= { (Transmitteri, Network_Receiverj) = Network_Receiverj i [1, 3], j [1, 2]}

The network receiver is a coupled model composed of a scanning receiver and tracking table,
as follows:

Network_Receiver = < X, Y, {Mi}, {Ii}, {Zij}, select > (9.3)

where
X = { test_signal, bus_receive_freq, bus_receive_id }
Y = { notify, bus_send_id, bus_send_freq }
Mi = { Tracking_Table, Scanning_Receiver }
Ii = { I(Tracking_Table) = Scanning_Receiver, I(Scanning_Receiver) = Tracking_Table }
Zij = { (Scanning_Receiver.detected_signal_properties, Tracking_Table.signal_props),
 (Tracking_Table.new_freq, Scanning_Receiver.ext_signal) }
select = { (Tracking_Table, Scanning_Receiver) = Scanning_Receiver }

This coupled model can be defined using CD++Modeler graphical notation as shown in Figure 9.7.

[Scanning_receiver]
in: ext_signal
out: notify detected_signal_properties
var: detected_freq
state: Scan Signal_Detected Process_Signal Notify
initial : Scan
ext: Scan?ext_signal Signal_Detected
int: Signal_Detected Process_Signal notify!1
int: Process_Signal Notify detected_signal_properties!value()
int: Notify Scan notify!0 detected_signal_properties!0
Scan:00:00:00:00
Signal_Detected:00:00:00:01
Process_Signal:00:00:00:10
Notify:00:00:00:30
detected_freq:0

FIGURE 9.6 Text specification of the scanning receiver model.

53361.indb 227 3/11/09 10:47:19 AM

© 2009 by Taylor & Francis Group, LLC

228 Discrete-Event Modeling and Simulation

When we export the top-level coupled model to CD++ textual notation, the specification shown
in Figure 9.8 is generated. As we can see, there are three transmitter atomic models (tr1, tr2, and
tr3), each configured with different frequencies and pulse characteristics. The two network receiv-
ers (netrx1, netrx2) are also configured to listening to different frequency bands. For each of the
coupled models, we have defined the internal and external couplings, including initial values for
each of the atomic components. Based on this simulation model, we carried out a variety of tests
using different scenarios, including the following:

Transmitter: pulse is sent at 22 kHz; pulse width = 3 ms; pulse interval = 30 ms.
Scanning receiver is set to listen for pulses between 18 and 25 kHz.
The tracking table tests that a signal is recorded and a bus message is sent and then tests
that bus messages are received correctly.
The network receiver tests the reaction to a signal and to bus messages.
Different initial configurations for the Net_Of_Network_Receivers using:

Transmitters sending on frequencies not being scanned.
Transmitters sending on frequencies scanned by network receiver #1 only.
Transmitters sending on frequencies scanned by network receiver #2 only.
Transmitters sending on frequencies scanned by both.

Table 9.1 shows the results of testing the scanning receiver (when the model is set to listen
for pulses between 18 and 25 kHz). As we can see in the table, the receiver initially gets a pulse
(ext_signal = 10,000); however, it is not processed, as it is not within the specified range. The same
occurs in the second test case (the test signal is 11 kHz). When we receive the external signal on

FIGURE 9.7 Network receiver coupled model: graphical representation.

53361.indb 228 3/11/09 10:47:20 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 229

the third line (22 kHz), the model changes to the Signal_Detected state and waits 1 ms (the delay
associated with the state, as shown in the specification in Figure 9.6), and then the output func-
tion is activated (which sends the value 1 through the notify output port). Then the internal transi-
tion function puts the model in Process_Signal state for 10 ms. When this time is consumed, the

FIGURE 9.8 Coupled model definition: radar Tx/Rx.

TABLE 9.1
Testing the Scanning Receiver

Event File Output File

00:00:10:000 ext_signal 10000
00:00:30:000 ext_signal 11000
00:01:00:000 ext_signal 22000 00:01:00:001 notify 1

00:01:00:011 detected_signal_properties
22000
00:01:00:041 notify 0
00:01:00:041 detected_signal_properties 0

00:02:20:000 ext_signal 23000 00:02:20:001 notify 1
00:02:20:011 detected_signal_properties
23000
00:02:20:041 notify 0
00:02:20:041 detected_signal_properties 0

53361.indb 229 3/11/09 10:47:21 AM

© 2009 by Taylor & Francis Group, LLC

230 Discrete-Event Modeling and Simulation

detected_signal_properties outputs the frequency. We can see a similar scenario in the next test
case, where the right frequency is output. Finally, we can see how the outputs are reset when the
model goes back to the scan mode.

Exercise 9.1

Take the previous model and change the frequency of pulse, width, and interval and then repeat the test
cases, trying to detect different synchronization problems.

Exercise 9.2

Change the structure of the model and include a new receiver. Repeat all the test cases previously
discussed.

9.4 A TARGET-SEEKING DEVICE

We present a Cell-DEVS model describing the behavior of a simple, target-seeking device intro-
duced in MacSween and Wainer [3] and based on the original model presented in Reynolds [4]. As
shown in Figure 9.9, the seeker acts to steer a device toward a specified position in global space.
This behavior adjusts the device so that its velocity is radially aligned toward the target, as dis-
cussed in Reynolds [4].

As we can see in Figure 9.9, the model acts to steer the seeking device toward a given position.
The seeker must adjust the current direction and speed in order to make its velocity align toward
the target. Reynolds [4] suggested defining an Action Selection for the seeker, which is specified
by dictating the destination location. In order to model this seeking behavior using Cell-DEVS,
it was necessary to create discrete states to represent the current state of the simple device. The
state defines a device with no velocity or motion in one of nine directions: moving northwest (NW;
value = 1), north (N; value = 2), northeast (NE; value = 3), west (W; value = 4), stationary (value =
5), east (E; value = 6), southwest (SW; value = 7), south (S; value = 8), and southeast (SE; value = 9).
The model uses two planes (one for collision detection and the second for the steering behavior),
using the following neighborhood on each plane:

N = { (–2,–2) (–2, –1) (–2, 0) (–2,1) (–2,2) (–1, –2) (–1, –1) (–1,0) (–1,1) (–1,2) (0,–2) (0,–1) (0,0) (0,1)
(0,2) (1,–2) (1,–1) (1,0) (1,1) (1,2) (2,–2) (2,–1) (2,0) (2,1) (2,2) }

The specification describes the discrete motion that was implemented to simulate the effect of
a desired velocity on a device. To do so, we used the following attributes to define the movement

Desired Speed

Steering

Target

Corrected Trajectory

Current
Speed

FIGURE 9.9 Informal behavior of the seek model. (From Reynolds, C. W. 1999. Proceedings of Game
Developers Conference, San Jose, CA.)

53361.indb 230 3/11/09 10:47:22 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 231

of the device: {mass, position vector, velocity vector, max_force, max_speed, orientation, N basis
vectors}, where N = 2. The motion of this device is defined by the following:

steering_force = truncate (steering_direction, max_force)
acceleration = steering_force/mass
velocity = truncate (velocity + acceleration, max_speed)
position = position + velocity
and the new basis vectors are defined by:
new_forward = normalize (velocity)
approximate_up = normalize (approximate_up) // if needed
new_side = cross (new_forward, approximate_up)
new_up = cross (new_forward, new_side)

The seek behavior motion is defined by the following:

desired_velocity = normalize (position-target)*max_speed
steering = desired_velocity – velocity

This basic behavior can be summarized in Figure 9.10.
The multiple combinations of actual and desired velocity could result in the same destination

cell for a device. In order to avoid collisions, a simple priority scheme is used when multiple cells
want to move into the same cell: stationary devices have the highest priority, cells to the NW have
the lowest, and those in the SE have the second highest. Figure 9.11 shows a collision scenario. In
Figure 9.11(a), the cells to the N and W yield to those in the S and E (in this case, the cell in gray is
the one moving). In Figure 9.11(b), the cell to the S has higher priority than those to the N, so the
gray cell to the W is the one to move.

Figure 9.12 shows an excerpt of the model definition in CD++. The model rules, found in ./Target-
seeker.zip, define the discrete motion implemented to simulate the effect of a desired velocity on
a device. The first set of rules is in charge of detecting collisions (as shown in Figure 9.11), and
the second set of rules shows the model’s steering behavior. An input was provided to each cell to
specify the desired velocity of the device.

FIGURE 9.10 Definition of update rules.

(a) (b)

FIGURE 9.11 Collision avoidance examples. (a) cells to N and W yield to those in S and E; (b) cells to the
S has higher priority.

53361.indb 231 3/11/09 10:47:23 AM

© 2009 by Taylor & Francis Group, LLC

Current Velocity

=+

 Desired Velocity Future Velocity

232 Discrete-Event Modeling and Simulation

Figure 9.13 displays the two state variables employed in the definition of the Cell-DEVS model
(displayed side by side). The left-hand plane shows the current location and velocity of three devices.
The right-hand plane describes the “desired velocity vector field” of the devices. The “desired loca-
tion” for all three devices is the center of the plane, and the “desired velocity vectors” steer them to
that point.

The three devices enter from the top-right corner, and they stop at the desired location. The
devices enter (at times 0, 500, and 900 ms) with a velocity different from the desired velocity, and
each acts in accordance with the state transitions to turn to the desired velocity. At 1.2 s, the first
device enters a region with a different desired velocity. The first device reaches the target cell at 1.5 s
and stops. The other devices follow the same path.

[seek]
% Layer 0 - Current Position and Direction
% Layer 1 - Desired Velocity
type : cell
dim : (20,30,2)
delay : transport
defaultDelayTime : 100
border : wrapped

neighbors : (-2,-2,0) (-2,-1,0) (-2,0,0) (-2,1,0) (-2,2,0) (-1,-2,0) (-1,-1,0) (-1,0,0)
(-1,1,0) (-1,2,0) (0,-2,0) (0,-1,0) (0,0,0) (0,1,0) (0,2,0) (1,-2,0) (1,-1,0) (1,0,0)
(1,1,0) (1,2,0) (2,-2,0) (2,-1,0) (2,0,0) (2,1,0) (2,2,0) (-2,-2,1) (-2,-1,1) (-2,0,1)
(-2,1,1) (-2,2,1) (-1,-2,1) (-1,-1,1) (-1,0,1) (-1,1,1) (-1,2,1) (0,-2,1) (0,-1,1)
(0,0,1) (0,1,1) (0,2,1) (1,-2,1) (1,-1,1) (1,0,1) (1,1,1) (1,2,1) (2,-2,1) (2,-1,1)
(2,0,1) (2,1,1) (2,2,1)
% Desired Velocity layer stays the same
zone : constant { (0,0,1)..(19,29,1) }
localtransition : move-rule

[move-rule]
% Current Position and Direction Layer (0,*,*)

% Collision when moving up and left
rule : 5 100 {
 % We are actually moving up and left (11,51,21,24,27,41,42,43 combos):
 ((((0,0,0)=1) and ((0,0,1)=1)) or (((0,0,0)=5) and ((0,0,1)=1)) or

(((0,0,0)=2) and ((0,0,1)=1)) or (((0,0,0)=2) and ((0,0,1)=4)) or
(((0,0,0)=2) and ((0,0,1)=7)) or (((0,0,0)=4) and ((0,0,1)=1)) or
(((0,0,0)=4) and ((0,0,1)=2)) or (((0,0,0)=4) and ((0,0,1)=3))

) and
 % There is someone else who wants the same cell
 ((((-2,-2,0)=9) and ((-2,-2,1)=9)) or (((-2,-2,0)=5) and ((-2,-2,1)=9)) or
 (((-2,-2,0)=8) and ((-2,-2,1)=9)) or (((-2,-2,0)=8) and ((-2,-2,1)=6)) or
 (((-2,-2,0)=8) and ((-2,-2,1)=3)) or (((-2,-2,0)=6) and ((-2,-2,1)=9)) or
 (((-2,-2,0)=6) and ((-2,-2,1)=8)) or (((-2,-2,0)=6) and ((-2,-2,1)=7)) or
...
 (((0,-1,0)=2) and ((0,-1,1)=2)) or (((0,-1,0)=5) and ((0,-1,1)=2)) or
 (((0,-1,0)=1) and ((0,-1,1)=2)) or (((0,-1,0)=1) and ((0,-1,1)=3)) or
 (((0,-1,0)=1) and ((0,-1,1)=6)) or (((0,-1,0)=3) and ((0,-1,1)=2)) or
 (((0,-1,0)=3) and ((0,-1,1)=1)) or (((0,-1,0)=3) and ((0,-1,1)=4))

)
}

% Up and Left movement
rule : 1 100 { % Collisions accounted for previously
 % We are actually moving up and left (11,51,21,24,27,41,42,43 combos):
 ((((1,1,0)=1) and ((1,1,1)=1)) or (((1,1,0)=5) and ((1,1,1)=1)) or

(((1,1,0)=2) and ((1,1,1)=1)) or (((1,1,0)=2) and ((1,1,1)=4)) or
(((1,1,0)=2) and ((1,1,1)=7)) or (((1,1,0)=4) and ((1,1,1)=1)) or
(((1,1,0)=4) and ((1,1,1)=2)) or (((1,1,0)=4) and ((1,1,1)=3)))

}

FIGURE 9.12 Model definition in CD++.

53361.indb 232 3/11/09 10:47:23 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 233

Figure 9.14 displays a snapshot of a test where devices enter the plane from various locations and
with different velocities (each must respond to the desired velocity in accordance with each current
velocity). Initially (Figure 9.14(a)), the devices move toward the center. Then a second set of devices
(with different initial velocity) enters the plane. The final step represents the congestion of devices
toward the desired location.

Exercise 9.3

The radar transmitter/receiver model presented in Section 9.3 can be integrated with the seeker model
we just introduced. Build a new model (called radar) that will scan a region of the cell space at a given
frequency, as seen in Figure 9.15. The information given by the radar transmitter/receiver model must

Line : 4719 - Time: 00:00:01:000
 012345678901234567890123456789 012345678901234567890123456789
 +------------------------------+ +------------------------------+
 0| 4 | 0|999999999999999877777777777777|
 1| | 1|999999999999999877777777777777|
 2| | 2|999999999999999877777777777777|
 3| | 3|999999999999999877777777777777|
 4| 7 | 4|999999999999999877777777777777|
 5| | 5|999999999999999877777777777777|
 6| | 6|999999999999999877777777777777|
 7| | 7|999999999999999877777777777777|
 8| | 8|999999999999999877777777777777|
 9| 7 | 9|999999999999999877777777777777|
 10| | 10|666666666666666544444444444444|
 11| | 11|333333333333333211111111111111|
 12| | 12|333333333333333211111111111111|
 13| | 13|333333333333333211111111111111|
 14| | 14|333333333333333211111111111111|
 15| | 15|333333333333333211111111111111|
 16| | 16|333333333333333211111111111111|
 17| | 17|333333333333333211111111111111|
 18| | 18|333333333333333211111111111111|
 19| | 19|333333333333333211111111111111|
 +------------------------------+ +------------------------------+

Line : 6970 - Time: 00:00:01:600 Line : 7689 - Time: 00:00:01:900
 012345678901234567890123456789 012345678901234567890123456789
 +------------------------------+ +------------------------------+
 0| | 0| |
 1| | 1| |
 2| | 2| |
 3| | 3| |
 4| | 4| |
 5| | 5| |
 6| 7 | 6| |
 7| | 7| |
 8| | 8| |
 9| | 9| 7 |
 10| 5 7 | 10| 55 |
 11| | 11| |
 12| | 12| |
 13| | 13| |
 14| | 14| |
 15| | 15| |
 16| | 16| |
 17| | 17| |
 18| | 18| |
 19| | 19| |
 +------------------------------+ +------------------------------+

FIGURE 9.13 Three devices seeking the desired location.

53361.indb 233 3/11/09 10:47:24 AM

© 2009 by Taylor & Francis Group, LLC

234 Discrete-Event Modeling and Simulation

be used to start the radar model scanning activity. Upon activation, the radar will scan the field defined
by the seek Cell-DEVS model and will generate two outputs: a reception signal for the transmitter/
receiver and a number of operator messages, according to the values received in the field. Write the
radar atomic model and the coupled model integrating the three components.

Exercise 9.4

Integrate the UAV model presented in Section 9.2 with the coupled model defined in Exercise 9.3.
Replace the seeker model by the UAV model and repeat the tests.

9.5 LAND BATTLEFIELD

We present a land battlefield model using Cell-DEVS
(introduced in Madhoun and Wainer [2] and found in
./Battlefield.zip), in which two armies engage in battle.
Each army is composed of a number of soldiers defend-
ing a flag. The goal of each army is to capture the enemy’s
flag or to defend its own, as depicted in Figure 9.16.

(a) (b)

FIGURE 9.14 Seekers with collision avoidance. (a) Sashing target; (b) Target found.

Seek Model

Seek Out

Radar
Model

Scan

Transmitter/Receiver

Receive

Op-msg

Radar
Transmitter

1

Scanning
Receiver 1

Scanning
Receiver 2

Tracking
Table

Tracking
Table

Radar
Transmitter

2

Radar
Transmitter

3

FIGURE 9.15 Integrating seek and transmitter models.

FIGURE 9.16 Possible troop allocations.

53361.indb 234 3/11/09 10:47:25 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 235

Different authors have used cellular automata to model these systems (for instance, references
5–8). The model represented here is based on some of them, and the main characteristics can be
summarized as follows:

The battlefield is two-dimensional (no airplanes or missiles).
Each soldier can be in one of three states: alive, injured, or dead.
The situation awareness of the soldier is limited to the neighborhood (no telecommunica-
tion equipment is used).
If an alive soldier is attacked, the state changes to injured.
If an injured soldier is attacked by an enemy soldier, he becomes dead.
The soldier’s ability to fight is dependent on a randomly assigned factor: fighting ability
(FA). In addition, an injured soldier will have a lower FA than the one who is alive.
Injured soldiers recover to the alive state if they are not surrounded by the enemy.
Unless engaged in a fight, a soldier moves toward the enemy’s flag.
If a soldier is surrounded by the enemy, she engages in a fight. The outcome of this fight
depends on the FA of the soldiers fighting.
The flag is acquired once an enemy soldier moves to its neighborhood.

The status of the soldier is represented by a signed integer
to distinguish between the two armies. One of the armies has
positive values (army A) and the other has negative values
(army B). Table 9.2 describes this representation.

The FA of each soldier is represented by a random real
number ranging from 0 to 1. Zero represents no FA at all
(used for the flag and for dead soldiers), while 1 represents a
very high FA. In addition, the soldier will have an effect on
the enemy only if the FA is greater than 0.5. The assignment
is done using a random function with uniform distribution,
and it is executed at two points: at the beginning of the battle
and after engaging in a fight with an enemy soldier. Table 9.3
describes the FA factor.

When two or more soldiers engage in a fight, the outcome depends on the difference between
their FAs, as seen in Figure 9.17. In this case, two soldiers in army A (light gray) engage with two in
army B (dark gray). Initially, the four soldiers are alive. When they engage in a fight, the B soldier
in the middle dies, the FA of the surrounding soldiers is reduced, and the middle soldier in army A
is injured.

Because each soldier aims to acquire the enemy’s flag, he needs to know about the flag position.
This information is represented as a real number having the integer part representing the flag row
number and the fractional part representing the flag column number; that is, row + column/100

TABLE 9.2
Battlefield Model State Values

Status Description

2 Fighter of army A alive

1 Fighter of army A injured

0 Fighter is dead and cell is empty

–1 Fighter of army B injured

–2 Fighter of army B alive

5 Flag of army A

–5 Flag of army B

TABLE 9.3
Fighting Ability States

Status Fighting Ability

2 Uniformly distributed number in the range [0.45, 1]

1 Uniformly distributed number in the range [0,0.55]

0 Fighter is dead and cell is empty 0.0

–1 Uniformly distributed number in the range [0,0.55]

–2 Uniformly distributed number in the range [0.45,1]

5 Does not engage in fights 0.0

–5 Does not engage in fights 0.0

53361.indb 235 3/11/09 10:47:26 AM

© 2009 by Taylor & Francis Group, LLC

236 Discrete-Event Modeling and Simulation

(e.g., row = 2, column = 4 2.04). If a soldier is not surrounded by the enemy, she tends to move
toward the enemy’s flag. To do so, the soldier needs to calculate the direction of the next step in
order to move closer to the target. This is done by comparing the current cell position of the soldier
with the enemy’s flag position.

The free-cell move-in factor is an integer number that is calculated for every free cell to resolve
any conflict if two or more soldiers want to move to the same free cell. This factor is evaluated as
the maximum FA of the soldiers surrounding the free cell. Figure 9.18 illustrates this point: the two
soldiers want to move to the same cell, but the one with higher FA is the one moving.

A different implementation of the model (found in ./BattleField2.zip) computes the free-cell
move-in factor as the maximum FA of the soldiers in the neighborhood who intend to move to the
cell. Only the one with the maximum FA will be allowed to move to the free cell. In this scenario,
the free-cell move-in factor will be the direction of the soldier with maximum FA, with an opposite
sign to indicate that the cell will be occupied by the soldier coming from that direction. Figure 9.19
illustrates this point.

In CD++, each of these behaviors was included on a different layer of a three-dimensional cell
space (Figure 9.20). The layers used to implement the model are as follows:

FA =
0.82

FA =
0.23

FA =
0.74

Alive

Alive

Injured

Dead
FA =
0.94

FA =
0.6

FA =
0.54
FA =
0.84

FIGURE 9.17 The effect of different fighting abilities.

FA =
0.65

FA =
0.95

FA =
0.65

FA =
0.95

0.95

FIGURE 9.18 Free-cell move-in factor evaluation.

–30

FA FA>D =
30

D =
20

FAFA >

FIGURE 9.19 Free-cell move-in factor with intention.

53361.indb 236 3/11/09 10:47:27 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 237

layer 0: soldier’s status and allocation in the battlefield;
layer 1: FA factor;
layer 2: flag position of army B;
layer 3: flag position of army A;
layer 4: movement directions of each soldier; and
layer 5: move-in factor associated with each free cell.

The model was executed with different test sce-
narios. The first one we present here is devoted to
analyzing only the movement rules of the fighters
toward the enemy’s flag. Figure 9.21 shows the ini-
tial and final configurations of the army (one fighter
of each army was killed in the battle; both armies
eventually reached the flags).

The battlefield model was extended using the
facilities available in parallel CD++. As shown in
Chapter 8 and introduced in López and Wainer [9],
this includes the ability to define multiple I/O ports
for each cell in the cell space or multiple state vari-
ables per cell. Because the ports connect each cell with all of its neighbors, they can be used to rep-
resent information to be transferred between cells. Instead, state variables are local to the cell and
can be used to represent internal data that cannot be referenced from outside the cell. Both features
were used to implement the battlefield model, dispensing with the need to define extra layers of cells
to represent each piece of information. Instead, the following input/output ports were used:

fs represents the soldier status (i.e., alive, injured, dead).
fa represents the FA of the soldier.
enemy_flag is location of the enemy flag, using the same format explained earlier.
direction represents the direction of the next move of the soldier.

Different rules were defined to mimic the behavior of soldiers in a battlefield, including:

fighting rules: behavior of soldiers engaged in a fight;
flags-under-attack rules: behavior of the flag when attacked by an enemy soldier;
flags-not-attacked rules: behavior of the flag when not attacked;
movement-direction rules: direction of the next step for each soldier to come closer to the
enemy flag; and
movement: behavior of the soldiers when moving in the battlefield.

Free-cell Move-in Factor
Moving Directions (A & B)

Army A Flag Position
Army B Flag Position

Fighting Ability (FA)
Soldier Status (FS)

FIGURE 9.20 Cell space layers.

FIGURE 9.21 Testing movement rules.

53361.indb 237 3/11/09 10:47:28 AM

© 2009 by Taylor & Francis Group, LLC

238 Discrete-Event Modeling and Simulation

As an example of these rules, we show the implementation of the fighting rules. The macro
fight_rule_1 in Figure 9.22 checks whether the soldier (from army A) is in the neighborhood of an
enemy soldier (from army B). Then it checks whether the soldier has a higher FA and, in that case,
adds (–1) to the overall value of the macro for each such soldier.

The number generated by fight_rule_1 is used in the main body of the rule (presented in
Figure 9.23) to evaluate the following conditions:

If a soldier in army A is injured (fs = 1) and is surrounded by enemy soldiers whose FAs
are lower than hers, the soldier’s FA factor is reduced.
If a soldier in army A is injured (fs = 1) and is surrounded by enemy soldiers whose FAs
are higher than hers, the soldier dies (FA = 0).
If a soldier in army A is alive (FS = 2) and is surrounded by enemy soldiers whose FAs are
lower, she remains alive and is assigned a new FA factor.
If a soldier in army A is alive (FS = 2) and is surrounded by enemy soldiers, but only one
of them has a higher FA, the soldier is injured and assigned a new FA factor.
If a soldier in army A is alive (FS = 2) and surrounded by enemy soldiers and more than
one of them have a higher FA, the soldier dies (FA = 0).

The same rules are used for B soldiers when surrounded by army A soldiers. Figures 9.24, 9.25,
and 9.26 show different scenarios. In Figure 9.24, only the movement rules are analyzed, and we
can see how the soldiers of army A move toward and acquire the B flag. In Figure 9.25, we show
a scenario where the fighting rules are used when soldiers of both armies engage in a fight. In
Figure 9.26, all the rules are activated to test the overall behavior of the model, obtaining a similar
result to the one presented in Figure 9.21.

Some extra features were added to the model to improve its behavior using parallel CD++, including:

#BeginMacro(fight_rule_1) (
if(((-1,0)~fs=-1 or (-1,0)~fs=-2) and (-1,0)~fa>0.5 and ((-1,0)~fa>(0,0)~fa) , -1, 0) +
if(((0,-1)~fs=-1 or (0,-1)~fs=-2) and (0,-1)~fa>0.5 and ((0,-1)~fa>(0,0)~fa), -1, 0) +
if(((0,1)~fs=-1 or (0,1)~fs=-2) and (0,1)~fa>0.5 and ((0,1)~fa>(0,0)~fa), -1, 0) +
if(((1,0)~fs=-1 or (1,0)~fs=-2) and (1,0)~fa>0.5 and ((1,0)~fa>(0,0)~fa) , -1, 0)
)
#EndMacro

FIGURE 9.22 Fighting rules macros.

FIGURE 9.23 Fighting rules.

53361.indb 238 3/11/09 10:47:29 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 239

Extending the situation awareness of the soldier (neighborhood) to include the eight sur-
rounding cells; hence, the soldier is able to attack and move diagonally as well as horizon-
tally or vertically (Figure 9.27);
Obstacle avoidance: the soldiers are able to avoid obstacles (FS = 50) while moving toward
the enemy’s flag, as seen in Figure 9.28;

Time: 00:00:00:000
0 1 2 3 4 5 6 7 8 9

+–––––––––––––––––––––+

+–––––––––––––––––––––+

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

2

2

2
–5

Time: 00:00:00:100
0 1 2 3 4 5 6 7 8 9

+–––––––––––––––––––––+

+–––––––––––––––––––––+

2
22

FIGURE 9.24 Testing movement rules.

+–––––––––––––––––––––+

+–––––––––––––––––––––+

–2
2–2 –2 –2

–2

–2
–2

–2

+–––––––––––––––––––––+

+–––––––––––––––––––––+

Time: 00:00:00:000
0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

Time: 00:00:00:200
0 1 2 3 4 5 6 7 8 9

FIGURE 9.25 Testing fighting rules.

+–––––––––––––––––––––+

+–––––––––––––––––––––+

5 2
2 2

–2

2
22

–2–2
–2–5

+–––––––––––––––––––––+

+–––––––––––––––––––––+

Time: 00:00:00:000
0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

Time: 00:00:00:700
0 1 2 3 4 5 6 7 8 9

FIGURE 9.26 Overall test of the model.

53361.indb 239 3/11/09 10:47:30 AM

© 2009 by Taylor & Francis Group, LLC

240 Discrete-Event Modeling and Simulation

Courage factor (CF): this factor is used to simulate that not all the soldiers on a battlefield
will have the same courage to fight the enemy. Hence, this factor will determine if the sol-
dier is going to attack the enemy or retreat toward his own base/flag (Figure 9.29).

The results of these tests are shown in Figures 9.30 and 9.31.

53361.indb 240 3/11/09 10:47:32 AM

© 2009 by Taylor & Francis Group, LLC

(–1,–1) (–1,0) (–1,1)

(0,–1) (0,0) (0,1) 40

45
10

15

20

25
30

35
(1,–1) (1,0) (1,1)

Figure 9.27  Extending the soldier’s neighborhood to Moore’s neighborhood.

Figure 9.28  Obstacle avoidance example.

CF <
0.5

CF >
0.5

Figure 9.29  Effect of the courage factor fighting ability on the soldier’s behavior.

+–––––––––––––––––––––+

+–––––––––––––––––––––+

50 50

2

2–5

+–––––––––––––––––––––+

+–––––––––––––––––––––+

Time: 00:00:00:000
0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

Time: 00:00:00:700
0 1 2 3 4 5 6 7 8 9

Figure 9.30  Testing the obstacle avoidance feature.

Models in Defense and Emergency Planning 241

9.6 EVACUATION PROCESSES

The simulation of evacuation processes was originally applied to buildings or the aviation industry
and ship evacuation [10]. The model presented here (originally introduced in Ameghino and Wainer
[11] and found in ./shipevacuation_2.zip) represents people moving along a ship’s deck, trying to
get out through an exit door. The goal is to understand where the bottlenecks can occur and which
solutions are effective in preventing congestion.

The basic idea was to simulate the behavior and movement of every single person involved in the
evacuation process. A Cell-DEVS model was chosen with a minimum set of rules to characterize a
person’s behavior:

People try to move toward the closest exit.
People move at different speeds.
If the way is blocked, people can decide to move away and look for another way.

Table 9.4 describes the encoding of the cell state, in which each position of the state is repre-
sented by a natural number in which each digit represents a different state. We used two planes: one
to represent the floor plan and people moving, and the other to include information on orientation
to the closest emergency exit. We assigned a potential distance to an exit to every cell of this layer.
The persons move in the room, trying to minimize the potential of the cell in which they are (see
Figure 9.32).

Figure 9.33 shows the main rules of an evacuation model. We have two different planes to sepa-
rate the rules that govern the people moving among walls or aisles from the orientation guide to an
exit. The rules in Figure 9.33 define what path a person should follow using the orientation plane.
The basic idea is to take the direction decreasing the potential of a cell, building a path following

TABLE 9.4
Encoding of States for the Evacuation Model

Digit Meaning

6 Next movement direction. 1: W; 2: SW; 3: S; 4: SE; 5: E; 6: NE; 7: N; 8: NW

5 Speed (cells per second: one to five)

4 Last movement direction can vary from 1 to 8 (as digit #6)

3 Emotional state: the higher this value is, the lower is the probability that a person panics

2 Number of movement that increases the potential of a cell

1 Panic level represents the number of cells that a person will move, increasing the cell potential

+–––––––––––––––––––––+

+–––––––––––––––––––––+

50 50 50

5

50

50 5050 50

5 2
2 2

–2
–2–2

–5–2

+–––––––––––––––––––––+

+–––––––––––––––––––––+

Time: 00:00:00:000
0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

Time: 00:00:00:700
0 1 2 3 4 5 6 7 8 9

FIGURE 9.31 Testing the overall behavior of the model.

53361.indb 241 3/11/09 10:47:32 AM

© 2009 by Taylor & Francis Group, LLC

242 Discrete-Event Modeling and Simulation

those whose neighbor value is lower, as shown in Figure 9.32. We use eight rules to control the
people’s movement (one per direction). In all cases, the rule analyzes the eight near neighbors to
understand what direction the person should take; if all the eight near neighbors have the same
value, we resolve it using a value at random. A person moves to decrease the movement potential by
decreasing the distance to the exit. If there is no available move decreasing the potential, a person
will try to move to a neighboring cell that has the same potential. In the worst-case scenario, the
person will move further away in an attempt to find another route, as seen in Figure 9.32.

Initial
Position

Blocked
Exit

New Path
Found

Alternate
Exit Path

FIGURE 9.32 Orientation layer: potential value (people using this try to use a path decreasing the potential)
[12]; see also [13].

FIGURE 9.33 Specification of evacuation model.

53361.indb 242 3/11/09 10:47:34 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 243

Figure 9.34 shows the simulation results for this model. The gray cells represent people who want
to escape using the exit doors. The black cells represent walls. Note that the leftmost part in the
figure shows people waiting in the exit doorway, due to congestion.

The next example describes the movement of people in a metro station. When a train arrives
at the station, it is often the case that a person in the car wants to get out but finds individuals on
the platform. In this example we focus on the problems derived from this situation. The model is
restricted to only two groups of individuals and only one car with two doors. People can either get
into or out of the train. We use a Cell-DEVS model to represent the station and the people moving on
the platform and a DEVS generator to model people arriving at the station. We defined three classes
of individuals: those who want to get out of the train and go to the platform exit, those who want to
get into the train using door A, and those who want to get into the train using door B.

Figure 9.35 shows the implementation of the model (found in ./metro.zip) using CD++ [12].
The cell space (arriving) and the DEVS component that generates individuals (PeopleGenerator)
are defined at the beginning of the model. The generator uses an exponential distribution function.
The rules of the Cell-DEVS model represent the movement of the people using a combination of the
direction (second digit; 1: S; 2: E; 3: N; 4: W) and the door to be reached (first digit; 1: A; 2: B). The
rules determine the behavior of each person considering these two values and the presence of indi-
viduals in the neighboring cells. Hence, a person moves toward an adjacent cell based on the group
to which he or she belongs, its current location, direction, and state of the nearby cells.

We use an extended von Neumann neighborhood (a 5 × 5 rhombus centered on the origin cell).
The arriving Cell-DEVS model has three input ports: inputPeople represents individuals arriving,
and they are generated by the peopleGenerator model (which uses an exponential distribution of
mean of 4 and initial value of 1, which represents the arrival of a new person). People arriving will
be directed to the cell (15,9). Door A is in (9,0) and door B is in (19,0). The model’s rules define how
people move in different directions (including collision detection). The createPeople rule is executed
every time a new input is created by the PeopleGenerator model; the initial direction is created at
random, and the person arrives in cell (15, 9) in the model. The DoorHandler rules are activated
when people arrive at the doors (the value 77 is used to define an open door and 99 defines closed
doors).

Figure 9.36 shows in detail the conflicts between different individuals trying to get into the train.
People are represented by dark gray cells. In this figure, the black cells represent individuals leaving
the train (with high priority). The light gray cell on the left is the train’s door (A), and the remaining
gray cells represent people trying to get into the train. We can see the interactions between persons
leaving and entering the car.

(a) (b)

FIGURE 9.34 (a) People seeking an exit; (b) after 15 s, people found the exit.

53361.indb 243 3/11/09 10:47:34 AM

© 2009 by Taylor & Francis Group, LLC

244 Discrete-Event Modeling and Simulation

Figure 9.37 shows individuals arriving at the station and waiting for the train. Two light gray
cells located on the right side of each slide represent the platform entrance. The gray cells represent
people who want to get into the train using door A, placed in the upper part of the grid. The dark
gray cells represent people who want to get into the train using door B, placed in the lower part of
the grid. The rightmost slide in the figure shows two groups of individuals standing along the border
of the platform waiting for the train doors to open.

FIGURE 9.35 Specification of the metro station.

FIGURE 9.36 Execution results of people getting in and out using door A.

53361.indb 244 3/11/09 10:47:35 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 245

The last model presented in this section, originally introduced in Reynolds [4], is based on the
flocking behavior of birds during migration. The term flocking has been used in the field of evacu-
ation studies because it also permits describing the behavior of people who move together under
emergency situations, thus allowing description of the behavior of individuals following a leader
and related individuals moving together. As discussed in Reynolds [4], the motion of a flock seems
fluid because of the interaction between individuals. To do so, we focus on the behavior of an indi-
vidual (or at least that portion of the individual’s behavior that allows it to participate in the flock),
based on the following behavior rules defined in Reynolds [4]:

Collision Avoidance: avoids collisions with nearby flock mates.
Velocity Matching: attempt to match velocity with nearby flock mates.
Flock Centering: attempt to stay close to nearby flock mates.
Individuals fly in certain direction at a certain speed.
The field of vision of the individual is 300°, but only they have good sight forward (in a
zone from 10° to 15°)

We defined a Cell-DEVS version of this model in Ameghino and Wainer [11] in which we
changed the original simulation parameters. Each cell now represents a space of 4 m2, which can
fit a medium-size individual (~18–23 cm.). A second of simulation time represents a second of real
time (hence, an individual who moves in the simulation with a speed of seven cells per second rep-
resents an individual flying at 50 km/h). The cell state encoding uses a natural number to represent
both the direction of the individual (1: NW; 2: N; 3: NE; 4: W; 6: E; 7: SW; 8: S; 9: SE) and the
speed. Individuals are represented using numbers greater than 100,000; the field of vision is rep-
resented using numbers below 10,000. For example, the cell value 100014 represents an individual
moving in direction W (unit value equal to 4). The speed is computed by taking the second digit
in this representation (in this case, 1), multiplying by 10, and adding 90 to the total (in this case,
100 ms); this value is used in the cell’s delay. The first digit shows the original direction, the second
shows whether the cell is used (1) or not (0), and the last two digits in this group are used to count
the number of individuals in the neighborhood (e.g., if a vision cell is used by a neighboring bird
to the left, the value will be 4100). In order to avoid collision, when two or more individuals want
to move to the same place, they change direction using a random variable. Figure 9.38 describes the
model specification as found in ./boids.zip.

The fly rule implements the conditions previously explained:

There must be an individual on the cell ((0,0) > 100,000).
We check whether the vision cell is in the right direction (e.g., the vision cell to the S must
have that direction ((–1,0) = 8100).
In that case, we compute the delay for the cell.
The cell state will change according to the current direction of the flock.

FIGURE 9.37 Execution results of metro station model.

53361.indb 245 3/11/09 10:47:35 AM

© 2009 by Taylor & Francis Group, LLC

246 Discrete-Event Modeling and Simulation

In addition to the fly rule, the following conditions are checked in the model:

If the cell is taken,
if there is a neighboring individual or taken cell, invert the current direction;
if there is an individual with distance 1, modify the speed and direction to follow it;
if there is a potential collision with a taken cell, invert the current direction; and
if there are no individuals in the neighborhood, keep direction and speed.

If the cell is not taken:
if an individual is coming, take the cell and record the direction of the individual;
otherwise, free the cell.

Figure 9.39 shows some execution results for this model. The rules introduced represent the basic
flying behavior of birds. Individuals fly freely, but when an individual detects others, it tries to fol-
low them. To do so, the individual changes direction and speed to avoid collision or losing the flock.
Different time conditions can be used to simulate the change of an individual’s velocity. The exam-
ple presented in Figure 9.39 shows the individuals flying and how individuals find each other.

FIGURE 9.38 Specification of the flocking model.

(a) (b)

FIGURE 9.39 Flocking behavior: (a) four individuals flying isolated; (b) individuals flying together.

53361.indb 246 3/11/09 10:47:36 AM

© 2009 by Taylor & Francis Group, LLC

Models in Defense and Emergency Planning 247

9.7 SUMMARY

Defense simulations are some of the most advanced applications in simulation. We can see cur-
rent advances in this field in the numerous annual worldwide conferences in the field. Likewise,
diverse journals deal with this complex topic (including the SCS Journal of Defense Modeling and
Simulation, the Training and Simulation Journal, the C4ISR Journal, and numerous others), which
shows the importance of simulation tools and methodologies in this field.

In this chapter we have introduced some examples in using DEVS and Cell-DEVS in the field of
defense and emergency planning. We first presented a simple collision detection model using Cell-
DEVS. Then we introduced a DEVS model for the synchronization of radar transmitters and receiv-
ers. We then presented a Cell-DEVS model of the behavior of a target seeker and a model of land
battlefields. Finally, we showed basic evacuation models, including crowding in a metro, evacuation
of a ship, and flocking behavior that can be used for people being evacuated. Various other examples
can be found in our model repository, including a Cell-DEVS model of radar (./radar.zip), a model
on the load monitoring system for a CC-130 aircraft (./Hercules.zip), and a model of a flight deck
simulation (./HelicopterFlightDeckSimulation.zip) to study the operations on deck.

REFERENCES

1. Palmore, J. 1997. Mini-symposium/workshop report. Warfare analysis and complexity. Military
Operations Research Society. September 15–17, 1997. http://www.mors.org, JHU/APL. Laurel, MD.

2. Madhoun, R., and G. Wainer. 2005. Developing defense applications using DEVS/cell-DEVS. Journal of
Defense Modeling and Simulation 2:121–143.

3. MacSween, P., and G. Wainer. 2005. On the construction of complex models using reusable components.
2004 Spring Simulation Interoperability Workshop, Arlington, VA.

4. Reynolds, C. W. 1999. Steering behaviors for autonomous characters. Proceedings of Game Developers
Conference, San Jose, CA.

5. Woodcock, A. E. R., L. Cobb, and J. Dockery. 1988. CA: A new method for battlefield simulation. Signal
42:41–50.

6. Gore, J. 1996. Chaos, complexity and the military. Technical report 96-E-61, National Defense University,
National War College. Military Strategy and Operation Seminar D.

7. Ilachinski, A. 2004. Artificial war: Multiagent-based simulation of combat. Singapore: World Sci-
entific Press.

8. Ilachinski, A. 2000. Irreducible semi-autonomous adaptive combat (ISAAC)—An artificial life approach
to land combat. Military Operation Research 5:29–46.

9. López, A., and G. Wainer. 2004. Improved cell-DEVS model definition in CD++. In ACRI 2004, LNCS
3305, ed. P. M. A. Sloot, B. Chopard, and A. G. Hoekstra. New York: Springer–Verlag.

10. Kim, H., D. Lee, J. H. Park, J. G. Lee, B. J. Park, and S. H. Lee. 2001. Establishing the methodologies
for human evacuation simulation in marine accidents. Proceedings of 29th Conference on Computers and
Industrial Engineering, Montréal, QC, Canada.

11. Ameghino, J., and G. Wainer. 2004. Application of the cell-DEVS formalism for modeling cell spaces. In
Proceedings of Artificial Intelligence, Simulation and Planning, Jeju Island, Korea, LNCS 3397.

12. Ameghino, J., E. Glinsky, and G. Wainer. 2003. Applying cell-DEVS models of complex systems. In
Proceedings of Summer Computer Simulation Conference, Montreal, QC, Canada.

13. Brunstein, M., and J. Ameghino. 2003. Modeling evacuation processes using Cell-DEVS. Internal Report.
Universidad de Buenos Aires, Computer Science Department.

53361.indb 247 3/11/09 10:47:37 AM

© 2009 by Taylor & Francis Group, LLC

http://www.mors.org

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

249

10 Models in Architecture
and Construction

10.1 INTRODUCTION

Simulation has been used for different kinds of applications in architecture and construction. One
of the main uses is planning and resource allocation during the construction process because work-
space conflicts can delay construction activities, reduce productivity, or cause accidents. Many
existing tools are available to help construction managers— for instance, MicroCYCLONE [1],
VitaScope [2], and Simphony [3]. Other applications include the management of heritage building,
training of craftsmen, and better use of heating/air conditioning to reduce CO2 emissions.

In this chapter we will show how to use DEVS and Cell-DEVS to create basic models with appli-
cation to this area. Our first example is focused on analyzing a sand pile model. We then show a
model of the redecking of the Cartier Bridge in Montreal, in which we analyze spatial issues in the
construction site. Finally, we show a model of evacuation in buildings that can be applied to analyze
better location for emergency exits in new buildings.

10.2 A SAND PILE MODEL

Malamud and Turcotte [4] presented a cellular model that can be applied for modeling landslides.
This kind of sand pile model was originally created to analyze major earthquake phenomena because
they often cause landslides [5]. But this kind of sand pile model can be also used for varied appli-
cations in construction (where different materials need to accumulate), as shown in Pla-Castells,
García, and Martínez [6].

Saadawi and Wainer [7] introduced a Cell-DEVS model which represents a pile of sand on a
table area organized as a grid. The model is initially loaded with a random number of particles, and
sand particles are added to the pile continuously at the middle cell (as done in construction sites).
Whenever it contains four or more sand particles, each cell redistributes its content to the four non-
diagonally neighboring cells. In the case of four particles, the cell would be emptied after redistri-
bution. For any number above four particles, the cell would distribute only four sand particles to its
neighbors and keep the rest. When a cell reaches capacity, the redistribution operation starts. This
operation can trigger more distributions among neighboring cells, which in turn can do the same
for their neighbors. In the model, this would represent avalanches, whose severity can be measured
either by the number of cells participating in a redistribution operation or by the number of particles
lost from border cells [4].

Figure 10.1 shows the definition of this model (found in ./sandpile.zip). We use a grid of 10 ×
10 cells, with a von Neumann neighborhood. A non-negative value represents the number of sand
particles in the cell. We use inertial delays because some rules that accumulate sand particles into
a cell (for instance, rules 2 and 3) need to be executed only once on each redistribution (executing
these rules more than once would increase a cell’s value unnecessarily). The use of an inertial delay
solves this problem: if a cell is notified several times in one time step due to changing neighbors, its
value is evaluated and increased only once for all notifications because they all fall in the same time
step. If, instead, we use transport delays, the evaluation of a cell’s value would happen sequentially
without preempting the previous value, thus accumulating a wrong value.

53361.indb 249 3/11/09 10:47:37 AM

© 2009 by Taylor & Francis Group, LLC

250 Discrete-Event Modeling and Simulation

The preceding Cell-DEVS model only notifies neighbors at some predefined threshold states
(all intermediate states that are not important to neighboring cells are not notified, e.g., when a cell
changes its value from 0 to 1, 2, or 3). When changes do not involve redistribution to other cells, we
do not notify neighbors about the change. This also enhances execution speed.

The first rule shown in Figure 10.1 states that a cell with exactly four particles takes a new value,
which is the sum of those neighboring cells that are distributing (i.e., the neighbors with four or
more particles) minus one (because the cell itself is being counted by the statecount(4) statement).
We have only four neighbors, so the new value assigned will be between zero (in case no neighbor-
ing cell is giving any particles) and four (in case the cell has distributed its particles to neighbors
and taken one particle from each neighbor with four or more particles). This scenario is shown in
Figure 10.2(a), where the cell distributes to four neighboring cells with zero particles.

The second rule in the model states that if the cell has less than four particles, it will not redis-
tribute to its neighbors. The cell will receive only one particle from each overflowing neighbor that
has four or more particles and will add the particles received to its current value. The following rule
states that if the cell contains more than four particles, then it will redistribute only four particles

(a) (b)

FIGURE 10.2 (a) (0,0): rule 1; (b) (0,0) and (1,0): rule 1; (0,1): rule 2; (–1,0) and (0,–1): rule 3.

FIGURE 10.1 CD++ tool model definition file.

53361.indb 250 3/11/09 10:47:38 AM

© 2009 by Taylor & Francis Group, LLC

Models in Architecture and Construction 251

to the neighbors and will retain the rest. We then add any particles received from neighbors with
overflow. We subtract four to count for four particles distributed to neighbors.

Figure 10.2(b) shows the case of a cell distributing to neighbors; three of them have four or more
particles. Hence, it will get one particle from each overflowing cell (with four or more particles in it).

The NewParticle rule in the model is used for new sand particles generated by the DEVS genera-
tor model. When the particleGenerator model creates a new particle, it is transmitted to the sand-
pile Cell-DEVS model (through the in input port). The particle is transmitted to the cell (5,5), which
will activate the NewParticle rule upon reception of a new particle. When this happens, the rules
check whether the cell’s contents are fewer than four particles; in this case, the cell increases its
contents by one particle, adding to this any particles coming from overflowing neighbors. Likewise,
if the cell’s contents are four or more particles, the cell will add one to its contents, plus any particles
from overflowing neighbors. We subtract one from the final result to count for the self state.

Figures 10.3–10.6 show the simulation results for this model. The first test shows that the model
handles distribution while conserving the number of sand particles. In the example presented in
Figure 10.3, we initialized some cells with four or five sand particles, keeping the others empty,
while keeping the sand generator disabled. We can see that all cells with an initial value of four
distributed their contents to the neighboring cells (rule 1) and now contain zero particles. Only
the cells that initially contained four or more particles and a neighbor with four or more particles
(distributing cells) get a particle from each distributing neighbor (for instance, cells (1,2) and (1,3)).
Cells like (2,6) get a particle from each distributing neighbor (in this example, two). In addition, all
cells with fewer than four particles (rule 2) obtained one particle from each distributing neighbor.
The total number of sand particles on the grid remained unchanged before and after redistributions
(21 particles).

In Figure 10.4, we show the results of a test in which the generator is also disabled because we
want to test rule 1 (for cells containing four particles) and rule 3 (for cells containing more than four
particles). In this test, cell (1,3) takes the value of five particles along with other cells containing
some other values. We see that all cells with four or more particles are distributing. Cell (1,3) has
distributed four particles and kept one, plus four particles from distributing neighbors (rule 3). In the
next time step, cell (1,3) redistributes all its four particles and stays empty (rule 1). The model starts
with 42 particles and ends with the same number.

Figure 10.5 presents 11 cells filled with four or more particles. The cells distribute their content
to neighbors until a steady state is reached. In this figure, the first three time steps are shown along
with the final step in model execution. We begin and finish the test with 56 particles on the grid.

Finally, the example presented in Figure 10.6 shows the execution of the complete model, which
uses the generator of sand particles in discrete time intervals and delivers them to the SandPile
Cell-DEVS model. These time intervals for arriving sand particles are simulated by an exponential

Line : 244 - Time:
00:00:00:000
 0123456789
 +----------+
 0| |
 1| 45 |
 2| 4 4 |
 3| |
 4| 4 |
 5| |
 6| |
 7| |
 8| |
 9| |
 +----------+

Line : 2124 - Time:
00:00:00:100
 0123456789
 +----------+
 0| 11 |
 1| 11211 1 |
 2| 111 2 1 |
 3| 1 1 1 |
 4| 1 1 |
 5| 1 |
 6| |
 7| |
 8| |
 9| |
 +----------+

FIGURE 10.3 Distribution of cells with four particles.

53361.indb 251 3/11/09 10:47:39 AM

© 2009 by Taylor & Francis Group, LLC

252 Discrete-Event Modeling and Simulation

distribution. Whenever a particle arrives from the generator, it appears in the middle cell (5,5) after
a delay of two time units, after a delay of two time units and changes in their neighbors after 100
time units (as specified in our model). In each interval, one new sand particle is put into the center
cell (5,5), which starts accumulating sand particles to the overflowing limit of four and then starts
redistributing its contents to neighbors, producing avalanches.

1 2 3 4 5 6 7 8 9 10
S1

S3
S5

S7
S9

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10
S1

S4
S7

S10

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10
S1

S3
S5

S7
S9

0

1

2

3

4

5

6

7

FIGURE 10.4 Distribution of cells with four or more particles.

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

FIGURE 10.5 Eleven internal cells with four or more particles.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

...

Time: 00:01:685 Time: 09:59:947 Time: 00:10:659

FIGURE 10.6 Executing the SandPile model.

53361.indb 252 3/11/09 10:47:41 AM

© 2009 by Taylor & Francis Group, LLC

Models in Architecture and Construction 253

Exercise 10.1

Create a mechanism to analyze the simulation results of this model. In order to do so, it is necessary to
build a DEVS model based on the transducer example presented in Chapter 4. The transducer model
should be connected to a few selected cells, in order to count whether the cells are distributing and,
hence, an avalanche has started. This component will count all cells participating in an avalanche to
estimate its severity.

Exercise 10.2

Create an alternate mechanism to analyze severity. In this case, it is necessary to build a zone in the
border, with independent rules. The rules in these border cells must count sand particles escaping
the board as a measure of avalanche severity.

10.3 SIMULATING THE REDECKING OF THE JACQUES CARTIER BRIDGE

The Jacques Cartier Bridge crosses the Saint Lawrence River in Montreal (Quebec, Canada), join-
ing Montreal Island and the south shore of the river (information about the bridge can be found
at http://www.pjcci.ca/English/jacques-cartier/PONT.HTM#bridge). In recent years, the bridge has
been redecked. During the construction of these kinds of structures, space is a scarce resource
that may cause crucial problems—particularly in bridges like this one, which is used by more than
100,000 vehicles a day. In this section, we show a method presented in Zhang et al. [8], where we
represent space resources using Cell-DEVS, allowing the engineer to represent the spatial relation-
ships between different activities.

In Figure 10.7, we identify the space resources represented in the construction, using abstract
symbols for each of them. Two spaces are explicitly represented in this model: one for crews and
one for trucks. Other spaces, like the moving path of the truck and waiting areas, are considered as
available all the time and not explicitly represented. Conflict detection can be simplified by check-
ing the state of each cell and avoiding an occupied cell being used by other objects. Based on this
idea, a cell-based model was built using the site layout shown in Figure 10.7.

The model consists of multiple submodels interacting, as seen in Figure 10.8. The bridge is a
three-dimensional Cell-DEVS model in which each layer represents occupancy, control (for mobil-
ity conditions), and IDs of the objects occupying the cells, respectively, as seen in Figure 10.9.
The occupancy layer is used to define the type of equipment occupying a cell. The control layer is
used to decide the moving state and direction, to detect conflicts, and to set the priority for mov-
ing, depending on the types of objects in the occupancy layer. The ID layer contains identification
numbers for each piece of equipment. The combined information in the three layers gives a triplet
of attributes for that location: <occupancy, mobility, ID>. Different rules are applied for simulating
moving trucks, conflict detection, truck generation, direction changes, etc. The rules governing the
interactions between layers guarantee the coupling of the attribute triplets.

Figure 10.10 shows a few examples of these rules. The first rule in the figure represents an empty
truck moving to the west to an old section. The occupancy layer is used to make the truck move

Old Section

Empty Truck Truck with New Panel

Old Section

Crew-1

Crew-2

FIGURE 10.7 Worksite layout of the bridge. (Adapted from Zhang, C. 2005. Proceedings of the 37th
Conference on Winter Simulation, 1541–1548.)

53361.indb 253 3/11/09 10:47:42 AM

© 2009 by Taylor & Francis Group, LLC

http://www.pjcci.ca

254 Discrete-Event Modeling and Simulation

if it is not facing an old section. The control layer is used to decide that the truck is heading west
(if a truck is moving in a certain direction, it will continue moving in the same direction). The
timing delay for this action is calculated as the average speed of the truck. The second rule in the
figure represents a truck arriving at the location of an old section. The occupancy layer is used to

53361.indb 254 3/11/09 10:47:43 AM

© 2009 by Taylor & Francis Group, LLC

Part of the Length of the Bridge

Bridge
Width

Input from
the Queues

ID Layer

Control Layer

Output

Output

Telescopic Cranes

2
3
3
3

2

2

2
2
2

Old Section

Occupancy Layer

(a)                           (b)

Figure 10.9  (a) The three layers for the bridge model; (b) cell representation of the occupancy layer.
(Adapted from Zhang, C. 2005. Proceedings of the 37th Conference on Winter Simulation, 1541–1548.)

Rule 1 Rule 2 Rule 3

Move West
Control
Layer

Conditions

Occupancy
Layer

Control
Layer

Occupancy
Layer

Time Delay Time to Move One Cell Time to Move One Cell Triangle Distribution,
(12,15, 20) min.

Actions

4

Truck

Not Old
Section Empty Cell

1 0

Move West 4
5 5 5 Static Objects

Move West

Move North

4
5 5 5

5

Static Objects

1
2
2

Crane

1
5
5

Static Objects

Cranes Old Section

1
3 2 2

1
2
2

Move West 4

Truck Continues
Moving West 1

Stop Moving 5
5 5 5

Truck Loads
Old Section

Space Becomes Empty

4
2 5 2

Figure 10.10  Bridge model rules. (Adapted from Zhang, C. 2005. Proceedings of the 37th Conference on
Winter Simulation, 1541–1548.)

Bridge

Waiting

Counter

Plant
Dumping

Figure 10.8  Interaction between models.

Models in Architecture and Construction 255

determine that the truck should stop to load the old section. After the time delay needed for this
task, the truck will change its occupancy state to four, which means the truck is now carrying the old
section. In the control layer, the mobility state is changed to represent that the object is now static
(5), while the truck is loading the old section. After the loading is done, the mobility state changes
to (4) and the truck will move west again (assuming that this is the direction toward the dump area).
The third rule deals with conflict detection: the cells representing static objects (such as old sections
and cranes) are avoided by moving objects (e.g., trucks) as previously defined in Figure 10.8.

Figure 10.11 shows the four main areas in the model: the bridge, plant, dumping area, and wait-
ing area for trucks transporting old sections, which are represented as separate cell models. To
calculate productivity, a counter is also created in cells. Arrows show the input and output signals
between different cell models. Each model is divided into cells, which can be occupied by different
equipment and materials over time. Different numbers are used to represent different equipment
states and the occupation of spaces. The cell dimensions are supposed to be 3 3 m. The total length
of the main span is about 600 m, and the width of the bridge is about 20 m; therefore, the main
span of the bridge can be represented as 200 6 cells.

The example presented in Figure 10.12 shows the bridge model with two cranes working around
one old panel that needs to be replaced. An empty truck arrives for loading the old panel on the right-
hand side. The truck moves to the west, and when it reaches the position of the panel, it load the old
panel. At the same time, the panel changes to represent that the space is empty. The truck continues

Waiting Area Model
1: Empty Truck for Old Sections
2: Empty Truck Waiting

Plant Model
6: Small Crane
8: Truck Loaded with New Panel
9: Empty Truck for New Panel

Part of Bridge

Dumping Area Model
1: Empty Truck for Old Sections
4: Truck Loaded with Old Section
7: Forklift

Moving Truck

Panel

Two Cranes

Dumping Area

Waiting Area

Plant

Counters
Small Crane

Forklift

Bridge Model
1: Empty Truck for Old Sections
2: Cranes
3: Old Section
4: Truck Loaded with Old Section
5: Old Section Cut, Empty Space
6: New Panel Installed
8: Truck Loaded with New Panel
9: Empty Truck for New Panel

FIGURE 10.11 Graphical display of the Cell-DEVS model.

FIGURE 10.12 Part of bridge model showing the states of each cell.

53361.indb 255 3/11/09 10:47:45 AM

© 2009 by Taylor & Francis Group, LLC

256 Discrete-Event Modeling and Simulation

to move to the left end of the bridge. The plant model uses a signal to inform that the old panel has
already been cut. At this point, the plant model generates a truck for a new panel, which moves to the
location of the small crane, where it changes to show that the truck has been loaded with a new panel.
It then goes to the bridge and stops at the location of the empty space; the panel is installed and, after
that, the crane moves to the left and the next old panel appears in the corresponding position. At the
same time, the truck state is changed to “empty” and a signal is sent to the waiting area model. If
there is a waiting truck, it is activated and it continuously moves to the bridge and begins a new cycle.
In the dumping area model, the truck continuously moves to the forklift and unloads the old panel,
and then it moves to the waiting area. When the waiting area model receives an external signal, it
means that a truck has unloaded the old panel and is ready to go to the bridge for loading another old
panel. The counter model counts the number of old and new panels.

10.4 ANALYSIS OF EVACUATION IN EMERGENCIES: CASE
OF THE SAT BUILDING

Sophisticated evacuation models have been developed to assist rescue and emergency response
crews with proper situation analysis and prompt reaction procedures. The ability to simulate and
represent such situations increases training efficiency and creates the opportunity for better under-
standing of conditions. In Chapter 9, we presented a simple model used for evacuation processes on
ships, based on references 9–11. In this section, we show an extended version of such a model, which
can be used to study evacuation processes in buildings. This is a useful tool for civil engineers and
building planners and can be used to study bottlenecks during emergency evacuations (e.g., fire or
earthquakes), permitting them to analyze which solutions are effective to prevent congestion.

The model introduced in Chapter 9 was extended; in this case, we expand the basic architecture
of the model and include advanced rules to define a person’s behavior (e.g., a person in panic moves
in the opposite direction of the exit, trying to find a different way to abandon the building, not pay-
ing attention to the flow of the rest of the evacuees). The example presented here has been applied
to a three-dimensional floor plan of the Society for Arts and Technology (SAT), a building located
on the Boulevard St. Laurent in downtown Montreal (a center devoted to the creation, development,
and conservation of digital culture). This version of the model, presented in Poliakov, Wainer, and
Jemtrud [12] and found in ./SatEvacuation.zip, also uses two layers: one used to represent the build-
ing’s architecture and the people moving within the building, and the other used for orientation
purposes. The orientation layer contains information that serves to guide persons toward emergency
exits, with a potential distance, as discussed in Chapter 9.

Figure 10.13 shows the initial configuration for these two layers for the SAT building. The figure
on the left represents the walls, exits, and initial positions of the people. Walls are colored in black
and exits in light gray. In the picture on the right, we can notice the second layer, which holds the
distances to the exits. These are free cells where people can walk, and they contain information
about the shortest path to the closest exit.

The cells containing people are set using the following notation [13] (Figure 10.14):

dn represents the direction of movement of the people: 1: west (W); 2: southwest (SW);
3: south (S); 4: southeast (SE); 5: east (E); 6: northeast (NE); 7: north (N); 8: northwest (NW).
v is the speed of the individual. This allows us to implement different people speeds, which
makes for a more realistic evacuation (expressed in cells per second: one to five)
dp is the last movement direction (from one to eight, as in dn).
p represents the emotional state of the person: The higher this value is, the lower is the
probability that a person becomes panicked.
m represents a person’s moving potential. As explained in Chapter 9, a person moves to
decrease this potential by reducing the distance to the exit. If there is no available move in

53361.indb 256 3/11/09 10:47:45 AM

© 2009 by Taylor & Francis Group, LLC

Models in Architecture and Construction 257

this direction, a person will try to move to a neighboring cell that has the same potential.
Otherwise, the person will move further away in an attempt to find another route.
np defines the panic level (represents the number of cells that a person will move, increas-
ing the cell potential). A situation where p is low and np is high will represent a high panic
situation in which the person will very likely choose a wrong move.

FIGURE 10.13 Initial definition for the SAT building layers.

0 2 5 2 3 0

dni – Direction of Next Movement

vi – Speed

npi – Panic Level

pi – “Patience”

dpi – Direction of Previous Movement

mi – Movements Increasing Potential

FIGURE 10.14 Representation of state variables on the SAT building cells.

53361.indb 257 3/11/09 10:47:47 AM

© 2009 by Taylor & Francis Group, LLC

258 Discrete-Event Modeling and Simulation

The rules as defined in the CD++ model files, shown in Figure 10.15, are responsible for record-
ing and using each separate digit from the definition as specified previously. There are eight sets of
rules like these, which determine the movement of the individual in each direction (in this case, this
rule determines the movement from the cell to the west to the origin cell). These rules are applied on
plane 0—that is, the plane with information about the individuals (cellpos(2) = 0). To determine if
we can move, we need an individual in the cell ((0,0,0) > 0). This model does not allow collisions, so
every time that a person moves, the destination to the west must be empty ((0,-1,0) = 0 OR (0,-1,0) =
-2, which represents the exits). These rules govern panic behavior, so we need to check the panic
digit (e.g., if the first digit in Figure 10.14 is not 0); a person in panic will take a wrong path or will
not follow the orientation path. In this case, the direction will be calculated taking a path where the
cell’s potential is increased. For instance, the cell to the west must have a higher distance value on
plane 1 than the rest of the neighbors. In this case, we change the direction of the individual to go
to the west (trunc((0,0,0)/10) 10 + 1), and we delay the movement according to the desired speed
(1000/remainder(trunc((0,0,0)/10),10)).

Figures 10.16–10.21 show the results for different simulations of this model. They all use dif-
ferent cell values for human behavior—speed, panic, etc. Our first example considers eight people
without panic, initially placed at random inside the building. The simulation results for this example
can be found in Figure 10.16. As we can see, the building is evacuated without any complications in
13:015 s. Because the level of complexity is small, people follow the shortest path to exit the build-
ing. The building is almost empty (which is a normal condition for the SAT building); however,
there are people in each sector of the floor. This evacuation is designed to give us a general idea of
the exit directions people will follow. For instance, the cell (13,0) on the first plane takes the initial
value 005040, which, considering that the definition in Figure 10.14 has no panic, the movement
potential is zero and the level of patience is five (which results in a low probability for panic because
the patience level is high). The two zero digits in the second and fourth positions represent the
fact that the person has not moved yet. The digit 4 represents the initial speed.

The test depicted in Figure 10.17 includes more people close to specific exits to try to identify the
bottlenecks in the building. The figure represents the placement of eight persons located in the lower
left-hand corner of the plan (which is a café area). The panic level is still zero to follow an organized
simulation and show us how people would evacuate under normal conditions. In this case, we can
see a bottleneck situation, and we can visualize a pile-up around one specific exit. Although the

[SAT]
dim : (18,18,2) delay : inertial border : wrapped
localtransition : EvaRule
neighbors : (-1,-1,0) (-1,0,0) (-1,1,0) (0,-1,0) (0,0,0) (0,1,0)
(1,-1,0) (1,0,0) (1,1,0) (-1,-1,1) (-1,0,1) (-1,1,1) (0,-1,1) ...

[EvaRule]
% Rules to govern people movement: as on FIG xx, CHAPTER YY
...

% Rules to control panic behavior
rule : {trunc((0,0,0)/10)*10+1} {1000/remainder(trunc((0,0,0)/10),10) }
{ (
 cellPos(2)=0 AND (0,0,0)>0 AND ((0,-1,0)=0 OR (0,-1,0)=-2) AND

 remainder(trunc((0,0,0)/1),10)=0 AND remainder(trunc((0,0,0)/100000),10)>0
)
AND
 (
 ((0,-1,1) >= (1,-1,1) OR (1,-1,0)>0 OR (1,-1,0)= -1) AND
 ((0,-1,1) >= (1,0,1) OR (1,0,0) >0 OR (1,0,0) = -1) AND
 ((0,-1,1) >= (1,1,1) OR (1,1,0) >0 OR (1,1,0) = -1) AND
 ((0,-1,1) >= (0,1,1) OR (0,1,0) >0 OR (0,1,0) = -1) AND
 ((0,-1,1) >= (-1,1,1) OR (-1,1,0)>0 OR (-1,1,0)= -1) AND
 ((0,-1,1) >= (-1,0,1) OR (-1,0,0)>0 OR (-1,0,0)= -1) AND
 ((0,-1,1) >= (-1,-1,1)OR (-1,-1,0)>0 OR (-1,-1,0)=-1))}

FIGURE 10.15 Specification of evacuation model.

53361.indb 258 3/11/09 10:47:48 AM

© 2009 by Taylor & Francis Group, LLC

Models in Architecture and Construction 259

(a) (b)

FIGURE 10.16 (a) SAT at time 00:000—initial placement of people; (b) time 13:015—last person to leave
the building.

FIGURE 10.17 Time 00:000—initial placement of people; time 00:500—first movements of the individuals;
time 01:005—people move toward the exit at the set speeds; time 04:005—last person to leave the building.

53361.indb 259 3/11/09 10:47:50 AM

© 2009 by Taylor & Francis Group, LLC

260 Discrete-Event Modeling and Simulation

total evacuation time is 04:005 s, this occurs because of the proximity of the individuals to the exit.
As we can see, the building is also evacuated in an orderly fashion.

We then used the same model and included a panic effect in one of the persons. In order to
observe the effect of panic on the simulation time, we used the exact same number of people and
their positions as specified earlier. If we analyze the execution results in Figure 10.18, we notice
that a person moves away from the exit due to a blocked exit, while the rest of the people leave the
building normally. The total evacuation time is 05:004 s because the person in panic takes longer
to abandon the building.

Figure 10.19 illustrates the case where the initial values are the same as specified before, but
introducing panic for every person. We notice an increase in evacuation time up to three times
larger than that observed in the previous example (which shows the influence of panic level).

We then increased the number of people and added more people to the other two exits on the
right (Figure 10.20), which offers an interesting evacuation situation: two totally separate exits in
great proximity to each other. This would allow us to follow people’s behavior and proper choice
of closest exit. In the case of no panic, the people would follow the second layer and decide where
the closest exit is. However, if panic is introduced, the chaotic movements result in longer traveling
times.

Figure 10.21 introduces a panic factor into all the individuals. Although the starting positions are
maintained and the only difference between the two models is the panic level, we notice a difference

FIGURE 10.18 Evacuation with panic (one person): 05:004 s.

FIGURE 10.19 Evacuation with panic: 15:519 s.

53361.indb 260 3/11/09 10:47:51 AM

© 2009 by Taylor & Francis Group, LLC

Models in Architecture and Construction 261

of about 40% extra execution time between them: the second evacuation is slower due to the panic,
which causes confusion and chaotic movements. This occurs because the exits get blocked, and
people start moving in directions increasing their movement potential.

FIGURE 10.20 Low level of panic: 15:605 s.

FIGURE 10.21 High level of panic: total evacuation time: 25:029 s.

53361.indb 261 3/11/09 10:47:53 AM

© 2009 by Taylor & Francis Group, LLC

262 Discrete-Event Modeling and Simulation

Figure 10.22 shows a three-dimensional version of this simulation, which is executed using
CD++/Maya (whose details will be introduced in Chapter 16). The figure contains images rendered
of separate frames that demonstrate the progressive motion of the human figures toward the dedi-
cated building exits, using the SAT simulation results just introduced.

10.5 SUMMARY

This chapter introduced varied models with application in construction and architecture. We first
introduced a Cell-DEVS model to simulate landslides. Using this simple model, we showed how to
model systems that involve material accumulation and flow. Material flow and accumulation need
special modeling consideration with Cell-DEVS to preserve mass conservation laws. In modeling
such systems, not only updating model rules but also choosing the model characteristics would be
important for correct behavior, because type of delay would affect that behavior.

We showed how to use spatial models to analyze issues on construction sites using simulation.
Different simulation models were built to investigate space representations and conflicts during
construction. Dividing space into cells can be used as a general way to represent workspaces and
facilitate a simple method to analyze workspace conflicts.

Finally, we showed a model of building evacuation using specialized rules considering panic,
shortest distance to the exits, collision detection, and different speeds of the individuals. A three-
dimensional visualization graphical user interface enables sophisticated visualization to better
understand the results, as will be discussed in Chapter 16.

FIGURE 10.22 Three-dimensional visualization of the SAT evacuation model.

53361.indb 262 3/11/09 10:47:54 AM

© 2009 by Taylor & Francis Group, LLC

Models in Architecture and Construction 263

REFERENCES

1. Halpin, D. W., and L. S. Riggs. 1992. Planning and analysis of construction operations. New York:
Wiley Interscience.

2. Kamat, V. R. 2001. Visualizing simulated construction operations in 3D. Journal of Computing in Civil
Engineering 15(4):329–337.

3. Hajjar, D., and S. AbouRizk. 1999. Simphony: An environment for building special purpose construction
simulation tools. Proceedings of 1999 Winter Simulation Conference, Phoenix, AZ.

4. Malamud, B., and D. Turcotte. 2000. Cellular-automata models applied to natural hazards. Earth System
Science May/June: 42–51.

5. Christensen, K. 1991. Dynamical and spatial aspects of sandpile cellular automata. Journal of Statistical
Physics 63:653.

6. Pla-Castells, M., I. García, and R. J. Martínez. 2004. Granular system models for real-time simulation.
Industrial Simulation Conference, Malaga, Spain, 88–93.

7. Saadawi, H., and G. Wainer. 2003. Modeling a sand pile application using cell-DEVS. Proceedings of
2003 SCS Summer Computer Simulation Conference, Montreal, QC, Canada.

8. Zhang, C., T. M. Zayed, A. Hammad, and G. Wainer. 2005. Representation and analysis of spatial
resources in construction simulation. Proceedings of WSC ’05: Proceedings of the 37th Conference on
Winter Simulation, Orlando, FL, 1541–1548.

9. Klüpfel, H., T. Meyer-König, J. Wahle, and M. Schreckenberg. 2000. Microscopic simulation of evacu-
ation processes on passenger ships. Proceedings of the Fourth International Conference on Cellular
Automata for Research and Industry, Karlsruhe, Germany, 63–71.

10. Kim, H., D. Lee, J. H. Park, J. G. Lee, B. J. Park, and S. H. Lee. 2001. Establishing the methodologies
for human evacuation simulation in marine accidents. Proceedings of 29th Conference on Computers and
Industrial Engineering, Montreal, QC, Canada.

11. Ameghino, J., and G. Wainer. 2004. Application of the cell-DEVS formalism for modeling cell spaces.
Proceedings of Artificial Intelligence, Simulation and Planning, Jeju Island, Korea, LNCS 3397.

12. Poliakov, E., G. Wainer, and M. Jemtrud. 2007. A busy day at the SAT building. Proceedings of AIS 2007,
Artificial Intelligence, Simulation and Planning, Buenos Aires, Argentina.

13. Meyer-König, T., H. Klüpfel, and M. Schreckenberg. 2001. A microscopic model for simulating mus-
tering and evacuation processes onboard passenger ships. Proceedings of TIEMS, the International
Emergency Management Society’s Eighth Annual Conference, Oslo, Norway.

53361.indb 263 3/11/09 10:47:54 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

265

11 Models in Environmental
Sciences

11.1 INTRODUCTION

Modeling and simulation have been widely used for studying behavior in the environmental sci-
ences. In recent years, some of the studies have been based on the use of cellular models. We will
show how CD++ simplifies the construction of such cellular models by allowing an intuitive rule-
based model specification. We will present the definition of different models, including pollution
in a basin, vegetation growth, watershed formation, and fire spreading, and will focus on how to
define such rule-based applications using the Cell-DEVS methodology and how to implement the
model in CD++.

11.2 VIABILITY OF POPULATION ON A FIELD

The first model we will present in this chapter permits modeling the viability of population on a
field, based on the work presented in Darwen and Green [1]. The population can include vegetal or
animal life, and the goal is to study the connection between the area occupied initially by the popu-
lation and its chances of survival. The population is not limited to an area, and the members can
roam freely. In order to study viability of the population, different parameters are used; this could
result in indefinite expansion (viability), growth to a steady state, or extinction. The model considers
two types of dynamics: the local, governed by parameters of fertility and maximum population per
cell, and migration, which considers that the population of a cell can increase by immigration from
neighboring cells. As discussed in Darwen and Green [1], each cell on the field contains a part of
the population, and the dynamics on each cell are defined by

N t r N t
N t
K

() ()
()

1 1 (11.1)

where
N represents the size of the population on a cell;
t represents the current time;
t + 1 represents the next time unit;
r ≥ 0 represents the reproduction rate; and
K represents the maximum local population on each cell.

The reproduction rate considers the fertility and the population mortality, as follows:

N t r N t
r

K
N t N t N t r() () () () ()1 12 N t N t

r
K

N t

N t N t r

() () ()

() ()

2

1 1 N t
r

K
N t() ()2

(11.2)

53361.indb 265 3/11/09 10:47:55 AM

© 2009 by Taylor & Francis Group, LLC

266 Discrete-Event Modeling and Simulation

Let = (r – 1) be the fertility rate and = (–r/K) be the mortality rate.
The model also considers migration among the four adjacent cells—north (N), south (S), east

(E), and west (W)—as follows:

2
1 1 1 1 4N N N N N Nx y x y x y x y x y x y, , , , , , (11.3)

Consequently, if we add this term to Equation (11.2), we can obtain the behavior of the cell (x,y) at
time t:

N t N t N t N tx y x y x y x y, , , ,() () () ()1 2 2NN tx y, () (11.4)

where < 1 is the proportion of the population on a cell that is ready to migrate.
Finally, considering that population is never negative and Equation (11.4) can violate this condi-

tion for some parameters, we use the heavyside operator H(z), which satisfies H(z) = z z > 0 and
H(z) = 0 otherwise. The result is

N t H N t N t N tx y x y x y x y, , , ,() () () ()1 2 22N tx y, () (11.5)

If the population expands up to the borders of the field of study, the population is viable. The
population is not affected by external factors, including external immigration. If the population
reaches the value

N
r

r
Keq

1
,

the system is in steady state, and the population does not change in successive generations. A Cell-
DEVS implementation of the model presented in Wainer [2] and found in ./viability.zip is shown in
Figure 11.1.

As we can see, the model uses a 40 × 40 cell space using the N, S, E, and W neighbors. The viabil-
ity rules define the local computing and delay functions using Equation (11.5). In this case, we use r =
0.18, K = 200 (maximum population of the cell), and = 0.22. The simulation results for some basic
cases are presented in Figure 11.2; three basic behaviors can be established for different parameters
using the same initial conditions. Figure 11.2(a) shows the results for viable populations that expand
to the borders of the grid in 200 transitions, as a consequence of using a large (fertility rate) and

FIGURE 11.1 Cell-DEVS specification of a portion of the model using CD++. (From Wainer, G. 2006.
Simulation: Transactions of the Society for Modeling and Simulation International 82:635–660.)

53361.indb 266 3/11/09 10:47:56 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 267

a small (mortality). Figure 11.2(b) shows a population that becomes steady after some expansion.
This is due to the use of an intermediate-size combined with a small . In the last example, we can
see that the population expands up to a certain point and then diminishes until extinction.

Figure 11.3 shows the execution results for a more complex scenario, found in ./population.zip. In
the first example in the figure, we can see that the population initially expands but later disappears,
due to a small rate of fertility combined with low mobility. In the second case, we see population
expanding and a viable case due to a higher fertility rate (while keeping the mobility rate). In the last
example, population expands further than in the first case, but it does not cover the whole region.
Although mobility has increased, the low reproduction rate makes growth slow while producing a
steady-state condition in which population stops growing.

Exercise 11.1

Build a program that allows the user to analyze the viability of the population in time. To do so, count
the number of cells’ values at every time step (searching in the draw files and plotting the results in
a timeline). The program should graph the average value and standard deviation at every time step.
Test the software using different initial scenarios (using the scenario generation tool included in the
./population.zip model).

11.3 ANT FORAGING MODELS

In this section, we present two different mechanisms for modeling ants moving on the ground while
searching for food. In the first version, which is based on the Vants model by Langton [3], the ants
move freely and, when they find vegetation, they follow a two-step process: they first cut the leaves
and then the root. When ants find vegetation, they eat the leaves and rotate 90° to the right. When

(a)

(b)

(c)

FIGURE 11.2 Viability rules—basic behavior: (a) K = 200; r = 1.2; = 0.2; = –0.006; = 0.18; and N =
166. (b) K = 200; r = 1.1; = 0.1; = –0.0055; = 0.18; and N = 166. (c) r = 1.05; = 0.05; = –0.00525; =
0.18; and N = 190.

53361.indb 267 3/11/09 10:47:57 AM

© 2009 by Taylor & Francis Group, LLC

268 Discrete-Event Modeling and Simulation

the leaves have been eaten, the ants get the root and rotate 90° to the left. If there is no vegetation,
the ants move forward. Figure 11.4 shows CD++ implementation of the model, which was presented
in Ameghino and Wainer [4] and can be found in ./Vants.zip.

As can be seen, we used a three-dimensional model. The first layer represents the field, and the
second layer is used for collision detection by determining different steps to evaluate the movement
of the ants. We use four states to represent the present direction, combined with the field’s state
(1 when there is vegetation in the cell, 2 when the leaves have been eaten, and 3 or 4 for empty
cells). For instance, a value of 24 means that the leaves have been eaten (2) and the ant is moving
west (1: S; 2: E; 3: N; 4: W). In order to avoid collisions, we define auxiliary ant directions (5: S;
6: E; 7: N; 8: W).

In the first rule presented here, if an ant is moving south and it finds vegetation, it will potentially
rotate to the east and eat the leaves. In this rule (0,0,1) = 1 defines the potential movement
for the ant. When a cell in the second layer is 2, we must analyze only rules to compute the next
position of the ants, thus avoiding collisions. For instance, the second rule shown in the figure takes
an ant moving to the east (cellpos(2) = 0 and (0,0,1) = 2 and ((0,0,0) = 26 or
(0,0,0) = 36 or (0,0,0) = 46) and checks whether it is facing an ant moving to the west
((fractional((0,1,0)/10) * 10) = 8). In that case, it changes according to the current
cell’s state. If the cell is empty (46), the current ant changes direction (34 = moving to the west and
empty). Otherwise (i.e., the cell’s value = 26 or 36), we add 4 to the direction (auxiliary direction)
to avoid collisions. We also analyze the seven possibilities for collision for an ant, making those
in conflict stop while only one moves. We then check whether the ant has the space to move. The
term (fractional((–1,1,0)/10) * 10) = 7 or (fractional((1,1,0)/10) * 10) = 5
or (fractional((0,1,0)/10) * 10)! = 0)) in the third rule used to check whether the ant
conflicts with the one at the northeast or the southeast. In that case, we move the ant and eliminate it
from the origin cell, as seen in the following two rules. Then, show the rules used for the growth of

FIGURE 11.3 Viability analysis scenarios.

53361.indb 268 3/11/09 10:47:58 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 269

the vegetation. We finally show the rules used for incrementing a counter in the second layer (trig-
gering each phase that allows the corresponding rules to execute).

Figure 11.5 shows the execution of the model using CD++. The dark cells contain vegetation,
and an ant moving in the lower rows is eating the leaves. The ant behaves using the rules recently
explained. We also can see the growth of the vegetation, represented as a change of state for the
lighter cells, where a long delay is used.

Exercise 11.2

Modify the cellular model and change the amount of vegetation available and the number of ants in
the field.

The next example is an ecological model based on work by Nishidate, Baba, and Gaylord [5], in
which ants follow a path from an anthill to a source of food. When an ant finds food, it returns to the
anthill, leaving a hormone (pheromone) in its path. The other ants use this as a signal that leads to
the source of food. The model was implemented in CD++ and presented in Ameghino, Glinsky, and
Wainer [6] (the source for the model can be found in ./ants2.zip). Each cell in the Cell-DEVS space

FIGURE 11.4 Specification of the Vants model.

FIGURE 11.5 Execution results of an ant foraging model.

53361.indb 269 3/11/09 10:47:59 AM

© 2009 by Taylor & Francis Group, LLC

270 Discrete-Event Modeling and Simulation

represents a section of the field. The cell can contain
vegetation or pheromone, an ant seeking food, an ant
following pheromone, soil, or an ant following phero-
mone and returning to the anthill with food [2,5].

To avoid collisions, two or more ants in conflict
change direction at random until one ant can actually
move. When an ant takes food from the ground, it
changes its course to the opposite direction and fol-
lows the pheromone path to return to the anthill. In
a case in which there is no pheromone, the ant moves
at random, seeking the anthill or another pheromone
path but leaving its own pheromone trace. Table 11.1
describes the cell state coding.

Figure 11.6 describes the model specification. We
define the dimensions of the cell space, neighborhood, initial values, and, finally, the rules that
define the behavior of an ant. We used different macro definitions to avoid large statements in the
specification of rules. In this case, macros provide an easy mechanism for frequent statements, such
as checking the existence of an ant, food, or pheromone in the neighboring cells. Hence, the rules
specify the behavior of an ant based on its direction, current location, and the value of the adjacent
cells. For instance, the first rule checks whether an ant is on the origin cell. In this case, it checks
to see whether the direction is N (0) and detects collisions. It then checks the cell to the northeast,
northwest, or further to the north in order to see whether the two ants intend to take the same cell.
In this case, the ant rotates to the south.

Figure 11.7 shows the execution of the model. The black cells represent two ants seeking food
and the gray cells in the upper left area of the graph represent two ants carrying food and their

TABLE 11.1
Cell State Encoding of the Ants Model

0 0 F F D

1 0 0 C C

2 Q 0 0 D

3 0 0 0 0

Notes: F: Pheromone concentration; can vary from
1 to 99. D: Ant direction: 0, north; 1, east; 2,
south; 3, west. C: Quantity of food; can vary
from 1 to 99. Q: Flag indicating if an ant is
carrying food; 1: carrying food, 0: seeks
food.

: t r a n s p o r t b o r d e r : n o n w r a p p e d
) (1 , - 1) (- 2 , 0)

1)

o(isAnt99) and #Macro(dir99) = 1) or (#Macro(isAnt08) and #Macro(dir08) = 2))}

[ant]
type : cell dim : (20,20)
d e l a y
n e i g h b o r s : (0 , - 2) (- 1 , - 1) (0 , - 1
n e i g h b o r s : (- 1 , 0) (0 , 0) (1 , 0) (2 , 0) (- 1 ,
neighbors : (0,1) (1,1) (0,2)
…
[rules]

e : { (0 , 0) + 2 } 1000 { #Macro(isAnt00) and #Macro(dir00) = 0 and ((#Macro(isAnt19) and #Macro(dir19) = 3) r u l
or (#Macr

rule : { (0,0) + 2 } 1000 { #Macro(isAnt00) and #Macro(dir00) = 1 and ((#Macro(isAnt19) and #Macro(dir19) = 2)
or (#Macro(isAnt20) and #Macro(dir20) = 3) or (#Macro(isAnt11) and #Macro(dir11) = 0)) }

…
rule : { 21003 } 1000 { # M a c r o (i s A n t B 0 0) a n d # M a c r o (d i r 0 0) = 2 a n d # M a c r o (i s A n t B 9 1) a n d # M a c r o (d i r 9 1) = 1 }

e : { 0 } 1000 { #Macro(isAntB00) and #Macro(dir00) = 2 and #Macro(isNothingAnt01) } r u l
…
rule : {(0,0)} 10 {t}

FIGURE 11.6 Specification of the ants model.

(a) (b) (c) (d)

FIGURE 11.7 Ants moving on the ground: (a) two ants returning to the anthill and two ants seeking food;
(b) two ants have found pheromone; (c) both ants have found the source of food using the pheromone path;
(d) ants returning to the anthill following the pheromone path.

53361.indb 270 3/11/09 10:48:01 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 271

pheromone paths. The source of food is located in the lower right section of the graph, and different
gray colors represent the concentration of pheromone showing the way to the food.

Exercise 11.3

Modify the cellular model and change the amount of food available and the number of ants in the
field.

Exercise 11.4

Analyze the ants model found in ./ants.zip and compare with the previous two models.

11.4 WATERSHED FORMATION

In this section we will present a watershed formation model, based on the one previously introduced
in Moon et al. [7]. A watershed is a natural region that acts as the water-receiving area of a drainage
basin. The water that accumulates has different origins: rain, rivers, and snow melting. The water-
shed is represented as a hydrology system built as a cell space.

The watershed is considered as a cellular model organized in several vertical layers: air, vegeta-
tion, surface waters, soil, ground water, and bedrock. The rainfall input is partially retained by
vegetation, and the rest infiltrates. The model in Moon et al. [7] represented the water flow and
accumulations based on the characteristics of the different layers, as shown in Figure 11.8.

The model considers that the height of accumulated water depends on the rainwater that reaches
the ground, the water received from neighbor cells, the water that overflows to neighbor cells (which
depends on the topology of the terrain), and the water that the ground absorbed. Based on the equa-
tions for this model, the CD++ model shown in Figure 11.9 was developed to simulate the accumula-
tion of water under the presence of constant rain (7.62 mm/h), as shown in Ameghino and Wainer
[4] (found in ./watershed.zip).

The rules represent the accumulation of water. It first takes the amount of water present in the
cell, and the rainfall up to the present moment (which is stored on layer 1). Then we consider how
much water must be passed to the neighbors by comparing the level in the current cell and in the
neighborhood and how much water is received from the inverse neighborhood.

We can see the execution results of this model in Figure 11.10. In the first figure we show an
initial state, representing the slope of the terrain before raining (darker cells represent the bottom of
the area; there is no water at the beginning of the simulation). Each cell occupies 1 × 1 m. The on
the upper right figure shows the execution results after intense rain (0.0022 mm/s) after 10 min of
simulated time. We can see how the rain accumulates in the lower levels of the terrain, the level of
water rises, and a watershed is formed.

FIGURE 11.8 Hydrology model. (Adapted from Moon, Y. et al. 1996. IEEE Transactions on Systems, Man
and Cybernetics 288–296.)

53361.indb 271 3/11/09 10:48:02 AM

© 2009 by Taylor & Francis Group, LLC

Ground Filtration f(t)

Accumulated Water
Ac(t)

Effective Water
Ie(t)

Surface Vegetation

Rain Water I(t)
Water Overflow

to Neighbor Areas
Ivs(t)

Water Received
from Neighboor

Areas Ive(t)

272 Discrete-Event Modeling and Simulation

Exercise 11.5

Modify the shape of the terrain and the rate of rain per hour; execute the simulation. Analyze the results
obtained.

The original model in Ameghino and Wainer [4] assumed the soil in the whole watershed area
was of the same type. A new model originally presented in Ameghino, Troccoli, and Wainer [8] and
found in ./watershed2.zip defines areas with different soil types: one area has vegetation and the
other has a rocky soil (Figure 11.11).

The value for a surface 0 cell represents the height of accumulated water and the one for a
surface 1 cell represents the ground elevation. These values for ground elevation do not change
throughout the simulation, and they are used to calculate the water overflow to neighbor cells. The
figure shows that the model includes two zones, each representing the cells that will model vegeta-
tion and rock areas. For each zone, different sets of rules apply. Each rule calculates the new water
height by applying the hydrology model equation. These rules represent the water accumulation
changing the surface vegetation and ground filtration parameters shown in Figure 11.9. Figure 11.12
shows the execution results for this model.

Despite the shape of the original topology, water accumulates in the left part of the terrain faster than
in the right part. This is due to the rocky soil defined in the rightmost area, which rejects most of the
water. The center part of the figure has the higher filtration of the area due to the lack of vegetation.

Exercise 11.6

Modify the shape of the terrain, the rate of rain per hour, and the areas with vegetation and rocky soil;
execute the simulation. Analyze the results obtained.

11.5 POLLUTION MODELS

Bianchini, Indovina, and Rinaldi [9] presented a model on the contamination of the Venetian lagoon
produced by substances like nitrogen and phosphorus. The goal is to learn about these properties
in order to be able to control these substances in an ecosystem formed by various lakes because of
industry influence. This permits study of how fauna and flora are affected by these substances; several
species do not resist pollution, and they tend to disappear, producing a change in the ecosystem.

We reproduced this model using Cell-DEVS [2], as we will show in this section. The concep-
tual idea is to define the diffusion of the polluting substance because of the water flow, which is

[Watershed]
type : cell dim : (30,30,2)
delay : transport border : nowrapped
neighbors : (-1,0,0) (0,-1,0) (0,0,0) (0,1,0)
neighbors : (1,0,0) (-1,0,1) (0,-1,1) (0,0,1)
neighbors : (1,0,1) (0,1,1)
localtransition : Hydrology

[Hydrology]

rule : {0.0022 + (0,0,0) – if (((0,0,1)+(0,0,0) > ((-1,0,1) + (-1,0,0)), ((0,0,0)+(0,0,1)-(-
1,0,0)-(-1,0,1))/1000)* (0,0,0))/1000),0)- if(((0,0,1)+(0,0,0))> ((1,0,1) + (1,0,0)),((0,0,0) +
(0,0,1) - (1,0,0) - (1,0,1))/1000)*(0,0,0))/1000),0) - if((((0,0,1)+(0,0,0)) > ((0,-1,1)+(0,-
1,0)) ,((0,0,0) + (0,0,1)-(0,-1,0)-(0,-1,1))/1000) *(0,0,0))/1000),0) – if(((0,0,1) + (0,0,0)) >
((0,1,1) + (0,1,0)),(((0,0,0) + (0,0,1) - (0,1,0) - (0,1,1))/1000) * (0,0,0))/1000),0) + if(((-
1,0,1) + (-1,0,0)) > ((0,0,1) + (0,0,0)),((-1,0,0) + (-1,0,1) - (0,0,0)-(0,0,1))*(-
1,0,0))/1000),0) + if(((1,0,1) + (1,0,0)) > ((0,0,1) + (0,0,0)),((1,0,0) + (1,0,1) - (0,0,0) -
(0,0,1)) * (1,0,0))/1000),0) + if((0,-1,1) + (0,-1,0)) >((0,0,1) + (0,0,0)), ((0,-1,0) + (0,-1,1)
- (0,0,0) - (0,0,1)) * (0,-1,0))/1000),0) + if((((0,1,1) + (0,1,0)) > (0,0,1) + (0,0,0)),((0,1,0)
+ (0,1,1) - (0,0,0) - (0,0,1)) * (0,1,0))/1000),0) } 1000 { cellpos(2)=0 }
rule : { (0,0,0) } 1000 { t }

FIGURE 11.9 Watershed model specification. (From Ameghino, J., and G. Wainer. 2000. Proceedings of the
32nd SCS Summer Computer Simulation Conference, Vancouver, Canada.)

53361.indb 272 3/11/09 10:48:02 AM

© 2009 by Taylor & Francis Group, LLC

M
o

d
els in

 En
viro

n
m

en
tal Scien

ces
273

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

1 2 3 4 5 6 7 8 9 101112 13 1415161718192021222324252627282930
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

1 2 3 4 5 6 7 8 9 10 1112 13 1415 161718
1920212223 24252627282930

1 2 3 4 5 6 7 8 9 10 111213 14 1516 1718
19 20212223242526272829 30

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105

1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 171819 20212223 24252627282930
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

FIGURE 11.10 Initial height values for a watershed; height values after rain.

53361.indb 273
3/11/09 10:48:08 A

M

© 2009 by Taylor & Francis Group, LLC

274 Discrete-Event Modeling and Simulation

determined by a velocity field. Each cell contains the speed of the water flowing in the cell (and its
direction) and the level of contamination of the cell. Pollution is produced when the lake receives
nitrogen from the exterior. The rules in the model represent how the contamination spreads.

To do so, the model uses multiple layers:

Layer 0 is the level of pollution, and it contains information about the subsurface vegeta-
tion in the lagoon.
Layer 1 contains information about the rules to be applied: if it contains the value 1, con-
vection; if it is 10, diffusion; if it is 20, absorption rules should be executed.
Layer 2 contains hydrological information of the lagoon (the flow can go to 1: N; 2: E; 3: S;
and 4: W, or be nonmoving: 0).
Layer 3 contains the translation density of the substance (a value between 0 and 1 repre-
senting the water speed).

When contamination is detected, convection rules are triggered. After this, the diffusion and
absorption rules are activated, and then the convection rules can be triggered again. Each cell in
the model represents 1 m2, and 300 ms represent 1 h of simulation (the examples we executed are
equivalent to 4 days of simulated time). Each contamination unit is 1 L of pollutant. There are two
contamination intakes: the first receives 560 L of pollutant throughout the model’s execution, and
the second represents an accident in which 40 L of pollutant are received. The model, found in
./pollution.zip, can be defined as seen in Figure 11.13.

[Watershed]
type : cell dim : (30,30,2)
delay : inertial border : nowrapped
neighbors : (-1,0,0) (0,-1,0) (0,0,0) (0,1,0) (1,0,0)(-1,0,1) (0,-1,1) (0,0,1)(0,1,1)
(1,0,1)
zone : vegetation { (0,0,0)..(29,10,0) }
zone : stones { (0,20,0)..(29,29,0) }
localtransition : Hydrology
[vegetation]
rule : {0.07 + (0,0,0) - if(((((0,0,1) + (0,0,0))>((-1,0,1) + (-1,0,0)))),(((((0,0,0) +
(0,0,1) - (-1,0,0) - (-1,0,1))/1000) * (0,0,0))/1000),0) - if(((((0,0,1) +
(0,0,0))>((1,0,1) + (1,0,0)))),(((((0,0,0) + (0,0,1) - (1,0,0) - (1,0,1))/1000) *
(0,0,0))/1000),0) - if(((((0,0,1) + (0,0,0))>((0,-1,1)+(0,-1,0)))),(((((0,0,0) + (0,0,1)
- (0,-1,0) - (0,-1,1))/1000) * (0,0,0))/1000),0) - if(((((0,0,1) + (0,0,0))>((0,1,1) +
(0,1,0)))),(((((0,0,0) + (0,0,1) - (0,1,0) - (0,1,1))/1000) * (0,0,0))/1000),0) +
if(((((-1,0,1) + (-1,0,0))>((0,0,1) + (0,0,0)))),((((-1,0,0) + (-1,0,1) - (0,0,0) -
(0,0,1)) * (-1,0,0))/1000),0) + if(((((1,0,1) + (1,0,0))>((0,0,1) + (0,0,0)))),((((1,0,0)
+ (1,0,1) - (0,0,0) - (0,0,1)) * (1,0,0))/1000),0) + if(((((0,-1,1) + (0,-1,0))>((0,0,1)
+ (0,0,0)))),((((0,-1,0) + (0,-1,1) - (0,0,0) - (0,0,1)) * (0,-1,0))/1000),0) +
if(((((0,1,1) + (0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0) + (0,1,1) - (0,0,0) - (0,0,1))
* (0,1,0))/1000),0) } 1000 { cellpos(2)=0 }
rule : { (0,0,0) } 1000 { t }

[stones]
rule : {0.09 + (0,0,0) - if(((((0,0,1) + (0,0,0))>((-1,0,1) + (-1,0,0)))),(((((0,0,0) +
(0,0,1) - (-1,0,0) - (-1,0,1))/1000) * (0,0,0))/1000),0) - if(((((0,0,1) +
(0,0,0))>((1,0,1) + (1,0,0)))),(((((0,0,0) + (0,0,1) - (1,0,0) - (1,0,1))/1000) *
(0,0,0))/1000),0) - if(((((0,0,1) + (0,0,0))>((0,-1,1)+(0,-1,0)))),(((((0,0,0) + (0,0,1)
- (0,-1,0) - (0,-1,1))/1000) * (0,0,0))/1000),0) - if(((((0,0,1) + (0,0,0))>((0,1,1) +
(0,1,0)))),(((((0,0,0) + (0,0,1) - (0,1,0) - (0,1,1))/1000) * (0,0,0))/1000),0) +
if(((((-1,0,1) + (-1,0,0))>((0,0,1) + (0,0,0)))),((((-1,0,0) + (-1,0,1) - (0,0,0) -
(0,0,1)) * (-1,0,0))/1000),0) + if(((((1,0,1) + (1,0,0))>((0,0,1) + (0,0,0)))),((((1,0,0)
+ (1,0,1) - (0,0,0) - (0,0,1)) * (1,0,0))/1000),0) + if(((((0,-1,1) + (0,-1,0))>((0,0,1)
+ (0,0,0)))),((((0,-1,0) + (0,-1,1) - (0,0,0) - (0,0,1)) * (0,-1,0))/1000),0) +
if(((((0,1,1) + (0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0) + (0,1,1) - (0,0,0) - (0,0,1))
* (0,1,0))/1000),0) } 1000 { cellpos(2)=0 }
rule : { (0,0,0) } 1000 { t }

FIGURE 11.11 Specification of a watershed model.

53361.indb 274 3/11/09 10:48:09 AM

© 2009 by Taylor & Francis Group, LLC

M
o

d
els in

 En
viro

n
m

en
tal Scien

ces
275

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
5
10
15
20
25
30
35
40
45
50
55
60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70

(a) (b)

FIGURE 11.12 (a) Original topology; (b) the watershed after rainwater has accumulated.

53361.indb 275
3/11/09 10:48:12 A

M

© 2009 by Taylor & Francis Group, LLC

276 Discrete-Event Modeling and Simulation

As we can see, the following rules are applied [9]:

1. The value of the current cell is computed as (0,0) + ∑ [((20 – (0,0))/20) Si Wi], in which
the addition is carried out in all of the cells influencing the cell (0,0). In this case, Si rep-
resents the concentration of the pollutant in the cell i, Wi the speed of the cell, and Si Wi

FIGURE 11.13 Pollution model definition.

53361.indb 276 3/11/09 10:48:13 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 277

the contribution of a neighboring cell in the direction to cell (0,0). Finally, (20 – (0,0))/20
represents the reception capacity of the current cell.

2. After evaluating rule 1 and after consuming a delay representing the pollution rate, the
new value of contamination of the cell is computed as (0,0) – [(20 – Si / 20) (0,0) WC],
where WC is the velocity on the central cell, Si represents the concentration of the pollutant
in cell i (the cell receiving pollution), and (20 – SC(t))/20 is the capacity of reception of the
receiving cell.

3. After evaluating rules 1 and 2, the cell waits for the delay time. Then we consider the cases in
which one or more velocity vectors in the surrounding cells point in the direction of the cell,
and speed in the origin cell is zero. This is computed as (0,0) + ∑ [((20 – (0,0))/20) Si Wi] –
[(20 – Si/20) (0,0) WC].

4. If rules 1–3 are not executed (i.e., there is no neighboring cell pointing to the origin, and
the speed of water in the cell is not affecting the origin cell), the current pollution value is
maintained.

In Figures 11.14–11.16, we distinguish water (black cells) and pollution (represented in light gray;
darker cells are contaminated). In the first example presented in Figure 11.14, the model receives
pollution from two different sources. The simulation results in a continuous focus on pollution
during several hours (the factories discharge 560 L/h of pollutant). We can see how the pollutant
concentrates in the places where it is being discharged. The velocity field and the presence of the
subsurface vegetation allow stationary behavior, so diffusion is slow. As we can see, the differences
between the second and third graphic (which represent 24 h of simulated time) are not large.

Exercise 11.7

Modify the cellular model and increase the level of pollution generated.

Figure 11.15 shows the results obtained when vegetation in the model is eliminated. As we can
see, the pollution concentrates and expands more on the leftmost part of the model than in the

FIGURE 11.14 Two sources of constant pollution (vegetation in marked area).

FIGURE 11.15 Two sources of constant pollution and no subsurface vegetation.

53361.indb 277 3/11/09 10:48:13 AM

© 2009 by Taylor & Francis Group, LLC

278 Discrete-Event Modeling and Simulation

previous case. This is a consequence of the lack of vegetation (because the presence of plants favors
the reduction of pollution in the area). The northeast side of the figure is the same as in the previous
case. Figure 11.16 presents a single input of pollution at the beginning of the simulation (representing
an accident in the plant and showing how the toxic elements will spread in the case of accidents).

Because vegetation is in the lake, when the source of pollutant stops, the contamination is slowly
absorbed by natural factors, which degrade the contamination up to disappearing in most of the
lake. We can see that even the vegetation collaborates in eliminating the pollution, due to the hydro-
logical characteristics of the lake; there is a contamination region on the northwest area that does
not disappear or is absorbed by vegetation.

11.6 SIMULATING VEGETATION DYNAMICS

We now discuss the definition of dynamics of vegetation population, based on the work defined by
Bandini and Pavesi [10]. In this case, sunlight, water, and fertilizers are factors that influence the
growth of vegetation, whose competitive nature in acquiring resources for survival is depicted in the
model. Each cell represents a given portion of the yard and contains multiple resources. If condi-
tions are favorable, the cell can host a tree; otherwise, it will be empty. The tree may grow, survive,
reproduce, or die, depending on the conditions. Trees growing closer to each other may have the
disadvantage of losing nutrients to their competitors. Environmental factors that may affect the
growth, such as rain and fauna, are also accounted for.

At each update, the tree in the cell takes the nutrients needed and uses them to grow and produce
seeds. If more nutrients are available, the tree stores them. Conversely, if not enough nutrients are
present, then the tree uses the stored nutrients. A tree dies if it has no stored nutrients and none are
available. There can be only one tree on each cell. Trees can produce seeds that scatter in the cell or
its neighbors. Each cell produces nutrients but cannot exceed the maximum value. The flow of the
nutrient goes from the richer cells to poorer cells, so bigger trees in a particular cell may make use
of the nutrient in neighboring cells.

The model, presented in Wainer [2] and found in ./Vegetable.zip, uses three-dimensional cells to
store different information, and each plane uses a hydrological model to determine the diffusion of
water and nutrients. Each three-dimensional cell is subdivided into six different planes (Figure 11.17)
to represent the attributes of the cell (water, nitrogen, potassium, and other relevant resources).

There are three types of trees: locust, pine, and oak. Thus, a cell with the values {2, 100, 2.4, 1.1,
17, 2.3} has a pine tree, 100 mL of water, 2.4 g of nitrogen, and 1.1 g of potassium available, and it
receives 17 J of sunlight. The current tree height is 2.3 m.

We use Moore’s neighborhood on every plane except for the height of the tree plane, in which we
also access the upper planes (water, nitrogen, potassium, and sunlight), which are used to compute
the tree’s height. The Cell-DEVS atomic model [2] is defined as

Vegetation = < X, Y, S, delay, δint, δext, τ, λ, D> (11.6)

FIGURE 11.16 Behavior in a pollution accident.

53361.indb 278 3/11/09 10:48:14 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 279

where
X R is the set of external input events;
Y R is the set of external output events;
S = {R, M, P, T, ZT, UG

T, US
T, RT, MT, GT, S}, with R = {water, sunlight, nitrogen, potas-

sium}; M = maximum amount of each resource in the cell; P = amount of each resource
produced by the cell at each update; T = {0—No, 1—locust, 2—pine, 3—oak}; ZT =
size of the trunk in consideration; UG

T = vector defining the amount of each resource
needed at each update step by the tree to grow; US

T = vector defining the minimum
amount of each resource the tree needs at each update step to survive; RT = amount of
resources stored by the tree; MT = maximum amount of each resource contained by the
cell; and S is a vector defining the number of seeds present in the cell for each of the l
species growing in the territory;

delay = {transport; 1000 ms}; and
τ = the rules of this model change the vegetation population, using these rules in each

zone.

The coupled model is defined as

Update-nitrogen: The nitrogen available in the cell and the presence of a tree are evalu-
ated. Then, the amount required for the growth is subtracted from the available amount,
and the nitrogen available in adjacent and current cells is added and equally distributed
between neighbors. The concentration changes with the amount of dying vegetation and
other external factors. There is a maximum amount of nitrogen for each cell, which is
checked during each update.
Update-potassium, update-water, and update-sun are similar to the update-nitrogen rule.
Reproduction: A seed is dropped in a cell with no tree present. Conditionally, trees in
adjacent cells must have reached reproduction age, which is different for different types of
trees. The seed survivability is higher for the seeds dropped later in time. Only the seeds
dropped later in time survive, regardless of the number of seeds dropped.
Update height: A cell with a tree (or a seed) with enough resources to grow (or sprout)
would do so. If there are not enough resources, then the tree dies. The amount of resources
required and the growth/death rates are different for different types of trees.

VegetationCM = <X,Y,Xlist,Ylist,N,{t1,t2, t3},C,B,Z> (11.7)

where
X T is the set of external input events (T = {water, nitrogen, potassium, sunlight});
Y T is the set of external output events (T = {growth});

Cell @ coordinate
(m, n, o)

Tree Existence
Water

Nitrogen
Potassium

Sunlight
Tree Height

Plane 1
Plane 2

Plane 3
Plane 4

Plane 5

Plane 0

FIGURE 11.17 Cell representation with six planes.

53361.indb 279 3/11/09 10:48:14 AM

© 2009 by Taylor & Francis Group, LLC

280 Discrete-Event Modeling and Simulation

Ylist = { (i, j, k)/i [0,t1], j [0,t2], k [0,t3]} is the list of output coupling, where i, j, k represent
the index values of the cells (that couple with its neighbors), which are bound by t1, t2, and
t3 dimensions;

Xlist = { (i, j, k)/i [0,t1], j [0,t2], k [0,t3]} is the list of input coupling, where i, j, k represent
the index values of the cells (that couple with its neighbors), which are bound by t1, t2, and
t3 dimensions; and

N = {(–1,–1,0), (0,–1,0), (1,–1,0), (–1,0,0), (0,0,0), (1,0,0), (–1,1,0), (0,1,0), (1,1,0), (0,0,–1),
(0,0,–2), (0,0,–3), (0,0,–4), (0,0,–5), (0,0,1), (0,0,2), (0,0,3), (0,0,4), (0,0,5), (–1,–1,5),
(0,–1,5), (1,–1,5), (–1,0,5), (0,0,5), (1,0,5), (–1, 1,5), (0,1,5), (1,1,5)}.

Figure 11.18 shows the model’s definition. The first rule presented in the figure checks the amount
of nutrients on each layer; if enough nutrients are available, we distribute water by averaging the
neighbors (we subtract three units for locust, four for pine, and five for oak). The adjust rule adds
extra resources at random. The rules for nitrogen and potassium are similar. The reproduction rule
says that if we have a mature tree of a given species (e.g., (–1,1,0) = 1 is locust and (–1,1,5) >
50 is the reproduction age), and the cell is empty, a seed is put into the cell (similar rules exist for
pine and oak trees). If there are enough nutrients, the tree grows, as seen in the growing rule. If there
are not enough nutrients, the tree dies. Figure 11.19 shows the simulation results for this model.

Initially, we have a distribution of nutrients and some seeds on the ground. As we can see in the
figure, the concentration of resources changes according to the rules defined for the model, and the
trees grow in height as they consume the resources. The resources available change in accordance
with the type of the tree in the cell; the tree height and the concentration change accordingly. The
cells are gradually updated with the change in concentration of the resources, and the trees grow
while resources are consumed. The fourth slice in Figure 11.19 shows trees that have matured to the
stage of reproduction. Two of the trees put forth seeds and, in the next stage, they will grow if there
are enough resources. The seeds contribute to the growth of new trees in the last slice.

11.7 FOREST FIRES

The spread of fire is a complex phenomenon that many have tried to study over the years. As one can
imagine, forest fires depend on many different variables, including the type of fuel, the geography
of the area, and the weather. Finding analytical solutions for models of fire spread is almost impos-
sible, so various attempts have been made to use simulation as an alternative. Simulations have
been found that accurately represent the way in which fire spreads, and they are now generally the
preferred solution for predicting the behavior of wildfires.

In this section, we introduce different methods based on Cell-DEVS that can be used for model-
ing fire spreading. The models presented use a simple set of equations to determine the temperature
of each cell at regular time intervals.

11.7.1 MODELING FIRE AS A PERCOLATION PROCESS

Percolation theory studies the process of filtration in heterogeneous media, as originally proposed
by Broadbent and Hammersley [11], who discovered this phenomenon while studying the reasons
for obstruction in the air intake for a gas mask. The main issue was to find out the concentration of
waste material needed to produce the obstruction. Originally, it was thought that the relationship
between the proportion of blocked holes in the mask and the difficulties for breathing was linear
(i.e., the higher the number of blocked holes was, the higher was the lack of air). Nevertheless, they
found that, although one could breathe without any problems below a given threshold, if at least
40% of the holes were blocked, the airflow was cut abruptly.

53361.indb 280 3/11/09 10:48:15 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 281

FIGURE 11.18 Cell representation with six planes.

53361.indb 281 3/11/09 10:48:15 AM

© 2009 by Taylor & Francis Group, LLC

282 Discrete-Event Modeling and Simulation

The theory of percolation has been used for studying other phenomena (e.g., plague expansion,
epidemics, oil accumulation in rocks), modeling the system as a filtration process in heterogeneous
media in which there is an element opposed to filtration (e.g., impurities, absence of plants or people).
Formally, percolation studies consist of analyzing the different paths available in a two-dimensional
grid; if there is a path from one point of the grid to another, percolation can occur. Therefore, the
probability for percolation depends on the number of open spaces and blocking elements.

Fire spreading can be modeled as a percolation process. By considering trees as agents able
to propagate fire and a piece of soil (or a burned tree) as a blocking agent within the forest, we can
apply percolation theory to these problems. In order to permit fire propagation, the trees must be
close enough to each other. As we will see in the following examples, the threshold level for this
model depends on the kind of neighborhood used (about 60% for von Neumann’s and 43% for
Moore’s neighborhoods). The forest is represented by a grid (100 × 100 cells in our example), where
each cell represents a tree or a portion of land. The model, found in ./percol.zip, is defined as found
in Figure 11.20.

The model uses the value 1 for unburned trees, 2 for trees catching fire, 3–7 for a tree burning,
and 8 for a burned tree. The first rule in the model makes a burned cell equivalent to an empty
one (because it cannot spread fire anymore). Rules 2–7 change the state of the tree. Rule number
8 is in charge of starting the burning process, based on the current state of the cell and the inputs

Type of Tree

Height

Seeds

Water Nitrogen Potassium Sun Trees

FIGURE 11.19 Vegetation model execution.

53361.indb 282 3/11/09 10:48:18 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 283

received from the neighbors: if a tree is not burning and no neighbors are burning, the tree remains
unchanged.

The examples in Figures 11.21–11.26 show different simulation results for the forest fire model
based on percolation. Our first case has a forest with a density of 40%; according to the generic theo-
retical results, percolation should not occur. As we can see in Figure 11.21, the fire (whose source is
on the right) burns part of the area on the right, but percolation behavior does not occur and the fire
has not spread to the rest of the forest.

As we can see in Figure 11.22, by changing the density only 1%, we can observe percolation
behavior. Although percolation occurs, about 50% of the trees still survive. Again, by increasing the
density only 1%, percolation occurs, and fire burns the forest almost completely (showing the thresh-
old behavior previously discussed; Figure 11.23). Figure 11.24 shows that, independently of the
place where the fire originated, the same behavior is observed. Initially, we have a density of 43%,

FIGURE 11.20 Percolation model.

FIGURE 11.21 40% density.

FIGURE 11.22 41% density.

53361.indb 283 3/11/09 10:48:20 AM

© 2009 by Taylor & Francis Group, LLC

284 Discrete-Event Modeling and Simulation

but in this case, we change the fire source to the left cells and also a few cells to the right and the
middle of the forest. The figure shows the center case.

In Figures 11.25 and 11.26, we changed the neighborhood definition and used von Neumann’s
neighborhood. As discussed earlier, the threshold is now 60% (±2%). In our initial case, where the den-
sity is 57%, percolation does not occur. When we change the density to 59%, percolation happens.

FIGURE 11.23 42% density.

FIGURE 11.24 Fire source in the center, left and right.

FIGURE 11.25 von Neumann’s neighborhood, 57% density.

FIGURE 11.26 von Neumann’s neighborhood, 59% density.

53361.indb 284 3/11/09 10:48:22 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 285

11.7.2 FIRE SPREADING USING ROTHERMEL’S RULES

A well-known model for fire propagation in forests is due to Rothermel [12]. Based on environmen-
tal and vegetation conditions, it computes the ratio of spread and intensity of fire. Three parameter
groups determine the fire spread ratio: (1) the vegetation type (caloric content, mineral content, and
density), (2) the fuel properties (the vegetation is classified according to its size), and (3) environ-
mental parameters (wind speed, fuel humidity, and field slope). For the model in this section, we
used the NFFL (Northern Forest Fire Laboratory), which classifies vegetation in 13 groups, repre-
senting the majority of existing forest types in the region.

When Rothermel’s rules are applied to a given fuel model and environmental parameters,
the spread ratio (i.e., the distance and direction the fire moves in a minute) can be determined.
The first step is to use the fuel model, the speed and direction of the wind, the terrain topology,
and the dimensions of the cellular space to obtain the spread ratio in every direction. These values
are used to write a specific model for the given parameters using CD++. For instance, Figure 11.27
shows the values obtained for a fuel model group number 9, a southeast wind of 24.135 km/h, and
a cell size of 15.24 × 15.24 m.

These parameters were used to write a specific Cell-DEVS model using CD++, which can
be found in ./fire.zip. The specification in Figure 11.28 shows a 20 × 20 Cell-DEVS representing the
terrain and vegetation. The state variables of the cells use a 0 value to indicate the absence of fire,
and a value different from 0 indicates the time the fire has started on that cell.

Wind direction = 45.000000 (bearing)
Wind speed = 8.045000 [kph] NFFL model = 1
Cell Width = 15.240000 [m] (E-W)
Cell Height = 15.240000 [m] (N-S)
Max. Spread = 17.967136 [mpm]
0° Spread = 5.106976 [mpm] Distance = 15.2400 [m]
45° Spread = 17.967136 Distance = 21.552615
90° Spread = 5.106976 Distance = 15.240000
135° Spread = 1.872060 Distance = 21.552615
180° Spread = 1.146091 Distance = 15.240000
225° Spread = 0.987474 Distance = 21.552615
270° Spread = 1.146091 Distance = 15.240000
315° Spread = 1.872060 Distance = 21.552615

FIGURE 11.27 Parameter definition computed using the Rothermel model.

FIGURE 11.28 Definition of a fire forest model.

53361.indb 285 3/11/09 10:48:23 AM

© 2009 by Taylor & Francis Group, LLC

286 Discrete-Event Modeling and Simulation

The rules defining the local computing function are devoted to detecting the presence of fire
in the eight neighboring cells. If there is fire in one of them, then the current cell will burn. For
instance, the first rule checks whether the current cell is not burning ((0,0) = 0) and the south-
west neighbor has started to burn (0<(1,–1)). If this condition holds, the value will be (1,–1) +
(21.552615/17.967136), which is the time the fire will take to traverse the cell in this direction.
Because the spread ratio is 17.967136 mpm and a cell has a diagonal of 21.552615 m, it will take
21.552615/17.967136 min for the fire to reach a cell once it has started in its southwest neigh-
bor. Therefore, we use a delay of (21.552615/17.967136)*60000 ms, after which the present
cell state will spread to the neighbors. The results of running this model are shown in Figure 11.29;
the behavior is similar to that discussed previously by Vasconcelos [13] and Vasconcelos, Pereira,
and Zeigler [14].

As we can see, the burning time of a cell depends on the spread ratio in the direction of the burn-
ing cell. This value is used as the delay component for the rules. It is important to notice that the cells
are updated at different times, as set by a rule’s delay component (a nonburning cell in the direction of
the fire spread will be updated in a shorter period than a nonburning cell in the opposite direction).

Exercise 11.8

Using the FireLib library application found at http://www.fire.org/, find the parameters for different fuel
(NFFL) models using the same initial parameters of Figure 11.27. Change the implementation of the
model according to the new computed arguments.

Exercise 11.9

Repeat Exercise 11.8 by changing the wind speed and direction.

Exercise 11.10

Incorporate the FireLib equations in each cell of the model, using the mechanism shown in the appen-
dix in Chapter 8, and execute the model directly.

As discussed in Chapter 4, hexagonal Cell-DEVS models can be built in CD++ and then trans-
lated using the lattice translator. Figure 11.30 shows the implementation of the rules for this model
using a hexagonal mesh. In this case, the first rule checks if the current cell is not burning ([0] = 0)
and if the southwest neighbor has started to burn ([5] > 0). If this condition holds, the new value of
the cell will be [5]+(15.24/13.680). This is used in all the remaining rules (because, in this case,
fire spreading in every direction is symmetric; in the hexagonal lattice, the distance between two
neighbor cells is the same in every direction, so we use a distance of 15.24 m for all of the rules). As

FIGURE 11.29 Fire propagation results in a 2-h period (each zone represents 20 min).

[FireBehavior]
rule: {[5]+(15.24/13.680)} {(15.24/13.680) * 60000} {[0]=0 and [5]!=? and [5]>0}
rule: {[6]+(15.24/5.10)} {(15.24 /5.106) * 60000} {[0]=0 and [6]!=? and [6]>0}
rule: {[4]+(15.24/2.950)} {(15.24/2.950) * 60000} {[0]=0 and [4]!=? and [4]>0}
rule: {[1]+(15.24/1.630)} {(15.24/ 1.630) * 60000} {[0]=0 and [1]!=? and [1]>0}
rule: {[3]+(15.24/1.146)} {(15.24 / 1.146) * 60000} {[0]=0 and [3]!=? and [3]>0}
rule: {[2]+(15.24/1.040)} {(15.24/ 1.040) * 60000} {[0]=0 and [2]!=? and [2]>0}

FIGURE 11.30 Rothermel’s forest fire model using a hexagonal mesh.

53361.indb 286 3/11/09 10:48:24 AM

© 2009 by Taylor & Francis Group, LLC

http://www.fire.org

Models in Environmental Sciences 287

discussed in Chapter 4, we use a different notation to represent each of the six neighbors ([1]…[6]
in a counterclockwise direction starting at 0°). We can also create the triangular models whose
implementation is shown in Figure 11.31.

In this case, there are six rules because we need rules for even and odd triangles. For both trian-
gular and hexagonal models, the rules are translated into a square grid, as shown earlier in Chapter 4.
The simulation results of these models are shown in Figure 11.32. The burning time of a cell depends
on the spread ratio in the direction of the burning cell. Changes in the propagation here are related to
the changes produced by the adjacency properties derived from using different topologies.

11.7.3 FIRE SUPPRESSION DEFINITION

Ameghino and Wainer [4] discussed simple mechanisms for fire suppression. Ntaimo et al. [15] dis-
cussed different techniques for suppression in forest fire models. Here, we present different mecha-
nisms for fire suppression [4] that show basic techniques to eliminate fire in the models presented in
the previous section. In the first case, we define a rainstorm moving to the southeast, extinguishing
the fire on burning cells. To allow this behavior, the rules shown in Figure 11.33 were added to the
previous model.

We use negative values to represent the effects of rain. A cell whose value is –1 is a wet cell
where no fire was presented previously. A value of –2 or –3 indicates the cell was previously on
fire and is now cooling down, and a value of –4 means the fire on that cell has been extinguished.
The first rule in the previous figure defines rain spreading to the southwest. The second defines
the cooling process on a burning cell, and the third and fourth rules represent advance in the cool-
ing process. The model assumes that the fire on a cell will take 16 min to extinguish (in stages of
different length). The simulation results of this model, found in ./fireandrain.zip, can be seen in

[FireBehavior]
rule: {[3]+(4.40/5.106)} {(4.40/5.106) * 60000} {[0]=0 and [3]!=? and [3]>0 and

odd(cellpos(0)+cellpos(1))}
rule: {[1]+(4.40/2.950)} {(4.40/2.950) * 60000} {[0]=0 and [1]!=? and [1]>0 and

odd(cellpos(0)+cellpos(1))}
rule: {[2]+(4.40/1.040)} {(4.40/1.040) * 60000} {[0]=0 and [2]!=? and [2]>0 and

odd(cellpos(0)+cellpos(1))}
rule: {[3]+(4.40/8.573)} {(4.40/ 8.573) * 60000} {[0]=0 and [3]!=? and [3]>0 and

even(cellpos(0)+cellpos(1)}
rule: {[2]+(4.40/1.630)} {(4.40/1.630) * 60000} {[0]=0 and [2]!=? and [2]>0 and

even(cellpos(0)+cellpos(1)}
rule: {[1]+(4.40/1.146)} {(4.40/1.146) * 60000} {[0]=0 and [1]!=? and [1]>0 and

even(cellpos(0)+cellpos(1)}

FIGURE 11.31 Rules using triangular topology.

(a) (b)

FIGURE 11.32 Fire propagation results (2-h period): (a) hexagonal lattice; (b) triangular lattice.

rule : -1 {60000*3} {(0,0)=0 and ((-1,0)=-1 or (0,1)=-1 or (-1,0)=-2 or (0,1)=-2)}
rule : -2 {60000*3.5} {(0,0)>0 and ((-1,0)=-1 or (0,1)=-1 or (-1,0)=-2 or (0,1)=-2)
rule : -3 {60000*4.5} {(0,0)=-2}
rule : -4 {60000*5} {(0,0)=-3}

FIGURE 11.33 Rules defining rain.

53361.indb 287 3/11/09 10:48:25 AM

© 2009 by Taylor & Francis Group, LLC

288 Discrete-Event Modeling and Simulation

Figure 11.34. The basic model is the same as that presented in Figure 11.29, including the influence
of rain (in dark gray). We can see rain cooling the fire areas (in gray), and after a while the rain has
extinguished fire in some areas (in light gray). Figure 11.34(f–i) shows the execution of the same
model when we use a hexagonal topology, as defined in Figure 11.31.

It is important to notice that if any of the cells are scheduled to start burning and get wet before
the fire starts, they will not burn. This was easily defined by an inertial delay, which preempts any
scheduled event if a new event from a neighbor cell arrives before the scheduled time and the pres-
ent cell gets a different value.

Exercise 11.11

Modify the model to change the direction of rain.

Exercise 11.12

Modify the model defined in Exercise 11.8 to include rain influence.

A second suppression technique allows us to analyze the influence of firefighters. A negative
value is still used for wet or cooling cells and a positive value is used for burning cells, but the
way in which the water is spread has been changed, as seen in Figure 11.35, which is defined in
./fireandf.zip. In this case, firefighters move from north to south spreading water to nonburning veg-
etation. Once they reach a burning cell, they will hold their positions until the fire is extinguished,
and then they will move toward the southwest, as shown in Figure 11.36. The figure shows how
firefighters spread coolant from north to south and how, while fire is still spreading, in the zones
where firefighters are working (light gray), fire is extinguished.

Exercise 11.13

Analyze the fire suppression techniques presented in Ntaimo et al. [15] and define such a fire suppres-
sion model using Cell-DEVS and CD++.

(a)

(f) (g) (h) (i)

(b) (c) (d) (e)

FIGURE 11.34 Fire evolution with rain: (a) start; (b) fire advance and rain; (c, d) rain cooling fire areas;
(e) rain extinguished fire areas; (f–i) rain coming from the NE-SE in a hexagonal model.

rule : -1 60000 {(0,0)=0 and (-1,0)=-1}
rule : -2 {60000*7} {(0,0)>0 and ((-1,1)=-1 or (-1,1)=-4) }
rule : -3 {60000*9} {(0,0)=-2}
rule : -4 {60000*9} {(0,0)=-3}

FIGURE 11.35 Rules defining firefighter behavior.

53361.indb 288 3/11/09 10:48:27 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 289

11.7.4 A SEMIEMPIRICAL MODEL

In this section, we present a model based on the research introduced in references 16–18. In order
to understand how to model fire at large scale, the authors modeled fire spread across a 1-m2 experi-
mentation bed with pine needles fuel (without considering the influence of wind slope) [18]. The
original study used elementary cells composed of earth and plant matter, and the energy transferred
from the cell to the surrounding air was considered proportional to the difference between the
temperature of a cell and the ambient temperature. In order to model the combustion reaction, the
authors assumed that combustion occurs above a threshold temperature Tig. Above this threshold,
the fuel mass decreases exponentially, and the quantity of heat generated by the combustion reaction
per unit fuel mass is constant. This can be represented by the following equations:

T
t

k T T K T Q
t

a
v() in the domain (11.8a)

v

t
0 for an inert cell (11.8b)

v
v

t
 for a burning cell (11.8c)

T(x,y,t) = Ta at the boundary (11.8d)

T(x,y,0) = Ta for the nonburning cells at t = 0 (11.8e)

T(x,y,0) = Tig for the burning cells at t = 0 (11.8f)

In Figure 11.37, we show the temperature curve of a cell in the domain and its associated phases,
based on the previous equations.

Muzy and colleagues [17] presented two numerical methods that can be used to discretize the
model based on finite elements and finite difference methods. The discretized version uses the fol-
lowing algebraic equation:

(a)

(f) (g) (h) (i)

(b) (c) (d) (e)

FIGURE 11.36 Fire evolution and firefighters: (a) start; (b) fire suppression from north to south; (c) fire
spreading, firefighter zones cooled down (light gray); (d, e) areas of fire extinguished; (f–i) same model with
hexagonal cells.

53361.indb 289 3/11/09 10:48:28 AM

© 2009 by Taylor & Francis Group, LLC

290 Discrete-Event Modeling and Simulation

T aT aT bT bTi j
k

i j
k

i j
k

i j
k

i j
k

, , , , ,
1

1 1 1 1 cQ
t

dTv

k

i j
k

i j,
,

1

(11.9)

where Tij is the temperature of a grid node. The coefficients a, b, c, and d depend on the considered
time step and mesh size.

We used CD++ to create a Cell-DEVS version of this model, which can be found in ./fireCorse.
zip. The model, presented in Muzy et al. [16], can be described as seen in Figure 11.38. Each cell
evolves through four phases: inactive, unburned, burning, and burned. We consider that, above a
threshold temperature Ti, there is combustion; when temperature is below Tf, the combustion fin-
ishes (we voluntarily neglect the end of the real curve to save simulation time). We use two planes
to model fire spreading: plane 0 stores the cell temperatures, and plane 1 stores the ignition time for
each of the cells.

Temperature Curve Sampled From a Single Cell

Time (Seconds)

Te
m

pe
ra

tu
re

 (K
el
vi

n)

10
300

400

500

600

700

800

900

1000

20 30 40 50 60 70

FIGURE 11.37 Temperature curve of a cell of the domain.

[ForestFire]
dim : (100,100,2) border : nowrapped
neighbors : (-1,0,0) (0,-1,0) (1,0,0) (0,1,0)(0,0,0)(0,0,-1)(0,0,1)
zone : ti { (0,0,1)..(99,99,1) }
localTransition : FireBehavior

[ti]
rule:{ time/100 } 1 { cellpos(2)=1 AND (0,0,-1)>=573 AND (0,0,0) = 1.0 }

[FireBehavior]
rule: {#unburned} 1 {(0,0,0)<300 AND (0,0,0)!=26 AND (#unburned>(0,0,0) OR time<=20)} %Unburned
rule: {#burning} 1 {cellpos(2)=0 AND (((0,0,0) > #burning AND (0,0,0)>333) OR (#burning> (0,0,0)
 AND (0,0,0)>=573)) AND (0,0,0)!=209 } %Burning
rule: {26} 1 { (0,0,0)<=60 AND (0,0,0)!=26 AND (0,0,0)>#burning } %Burned
rule : { (0,0,0) } 1 { t } %Stay Burned or constant

#BeginMacro(unburned)
(0.98689 * (0,0,0) + 0.0031 * ((0,-1,0) + (0,1,0) + (1,0,0) + (-1,0,0)) + 0.213)
#EndMacro

#BeginMacro(burning)
(0.98689*(0,0,0)+.0031*((0,-1,0)+(0,1,0)+(1,0,0)+ (-1,0,0))+2.74*exp(-.19*((time+1)*.01-

(0,0,1)))+.213)
#EndMacro

FIGURE 11.38 Fire spread model specification and model macros.

53361.indb 290 3/11/09 10:48:30 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 291

The ti rules show how to store ignition times: if a cell in plane 0 burns, we record the current sim-
ulation time in plane 1 (computed as the simulation time multiplied by the time step). Temperature
is computed in plane 0; different rules are used for the temperature calculus if cells can be inactive,
unburned, burning, and burned (using Equations 11.8a–11.8f); and macros are used to make the
definition more compact.

The first rules in the figure correspond to the phase unburned, whose cell’s temperature is lower
than 573°C. If the cell belongs to the plane 0 and its temperature at the next time step is greater than
the current one, the cell will take the value given by the macro unburned (we ignore the transient
period below 20 time units, burning and burned cells). A cell starts burning at 573°C, and its tem-
perature increases as the fuel mass is consumed; then it starts decreasing. When the temperature
goes below 333°C, the cell enters the burned phase (signaled by a constant temperature of 209°C).
The first rule in Figure 11.38 applies to unburned cells, whose temperature in the next step will be
higher than its current one. The second rule applies to burning cells. The third rule sets the burned
flag (temperature = 209°C) if a burning cell goes below 333°C, and the fourth rule keeps the
burned cells constant.

Figure 11.39 shows the simulation results for a laboratory experiment using a combustion table of
30 × 60 cm, a homogenous fuel bed of pine needles, no wind, and linear ignition. The prediction of
spread rate (2.96 mm/s) and the propagation are in agreement with the experimental data. The darker
cells represent the position of the experimental isothermal line of 300°C (ignition interface).

A different implementation of this model was defined in Parallel CD++ [2,19]. In this case, the
temperature is stored as the cell’s value and the ignition time ti is stored in a state variable (the cell’s
values are automatically transmitted to the neighbor cells, while the ti value is used internally). The
first step was to add a state variable ti, to remove the higher layer of cells, and to replace all the
references to this layer with references to the state variable. The original burning and ti rules were
replaced as shown in Figure 11.40.

This version of the model can be optimized because CD++ is capable of using shortcut evalua-
tion (in the same style as the C programming language). When the left expression of an AND opera-
tion evaluates to false, the whole operation will evaluate to false. Similarly, when the left expression
of an OR operation evaluates to true, the whole operation will evaluate to true. Thus, by sorting the
operations as shown in Figure 11.41, we can save execution time. This problem can also be solved

FIGURE 11.39 Simulated temperatures field representation of a line ignition.

stateVariables: ti stateValues: 0

[FireBehavior]
rule : { #unburned } 1 { (0,0)!=209 AND (0,0)<573 AND (time<=20 OR #unburned>(0,0)) }
rule : { #burning } 1 { (0,0)>333 AND ((0,0)<573 OR $ti != 1.0) AND (0,0)>#burning }
rule : { #burning }{ $ti := if($ti = 1.0, time / 100, $ti); } 1
 { (0,0) >= 573 AND #burning >= (0,0) }
rule : { #burning } { $ti := time/100; } 1 { $ti = 1.0 AND (0,0) >= 573 AND #burning < (0,0) }
rule : { 209 } 100 { (0,0) != 209 AND (0,0)<=333 AND (0,0) > #burning }

FIGURE 11.40 Fire spread model specification.

53361.indb 291 3/11/09 10:48:31 AM

© 2009 by Taylor & Francis Group, LLC

292 Discrete-Event Modeling and Simulation

using multiple ports to replace the extra plane. When we use multiple ports, we do not need to store
the values internally but, rather, to transmit them through the ports (Figure 11.42).

In this case, two ports are declared: temp and ti. Port temp exports the cell’s temperature, and
port ti exports the ignition time. When we use multiple ports, we do not need to store the values
internally; instead, we transmit them through the ports. Therefore, we do not need to set values but,
rather, just to send them out though the corresponding port. Because the initial value for both ports
is the same and this model needs different values, it can be solved by assigning negative initial val-
ues that will never appear during the simulation and adding two rules that generate the real initial
state when the cell has these special values.

11.7.5 QUANTIZING THE FIRE SPREAD CELL-DEVS MODEL

In order to increase the speed of the simulation, we used quantization to reduce the number of mes-
sages exchanged among the cells [20]. First, if we were able to keep the unburned cells completely
in the passive state until they reached the ignition temperature, we would reduce the number of cells
that sent out messages to their neighbors.

As discussed in Chapter 2, using QDEVS, the cells will send output to their neighbors only if
the temperature has exceeded the next quantum threshold. The quantizer acts as the detector that
decides when a threshold has been crossed, and it sends out the output only in that case. By imple-
menting quantization as described here, the number of messages exchanged between cells will be
reduced, thus increasing the speed of the simulation. However, the accuracy of the simulation will
also be reduced. The key is to select a quantum size that gives a good performance increase for a
small reduction in accuracy.

In order to create a quantized version of this model, we need to calculate time based on tem-
perature, rather than temperature as a function of time. The first task was to find the inverse of the
temperature curve for a typical cell. Given such a function f (T), we can calculate the amount of time

%Unburned
rule : { #macro(unburned) } 1{ (0,0) != 209 AND (0,0) < 573 AND
 (time <= 20 OR #macro(unburned) > (0,0)) }
%Burning and ti
rule : { #macro(burning) } 1 { (0,0) > 333 AND ((0,0) < 573 OR $ti != 1.0)
 AND (0,0) > #macro(burning) }
rule : { #macro(burning) } { $ti := if($ti = 1.0, time / 100, $ti); } 1
 { (0,0) >= 573 AND #macro(burning) >= (0,0) }
rule : { #macro(burning) } { $ti := time / 100; } 1 { $ti = 1.0 AND (0,0) >= 573 AND
 #macro(burning) < (0,0) }
%Burned
rule : { 209 } 100 { (0,0) != 209 AND (0,0) <= 333 AND (0,0) > #macro(burning) }
%Stay Burned or constant
rule : { (0,0) } 1 { t }

FIGURE 11.41 Fire spread model optimization.

%Unburned
rule : { ~temp := #unburned; } 1 { (0,0)~temp!=209 AND (0,0)~temp<573 AND
 (time<=20 OR #unburned>(0,0)~temp) }
%Burning and ti
rule : { ~temp := #burning; } 1 { (0,0)~temp>333 AND ((0,0)~temp<573 OR (0,0)~ti!=1.0) AND
 (0,0)~temp > #burning }
rule : { #burning } 1 { (0,0)> 333 AND ((0,0)< 573 OR $ti != 1.0) AND (0,0)>#burning }
rule : { #burning }
 { $ti := if($ti = 1.0, time/100, $ti); } 1 { (0,0)>=573 AND #burning>=(0,0) }
rule : { #burning } { $ti := time / 100; } 1 { $ti=1.0 AND (0,0)>=573 AND #burning<(0,0) }
%Burned
rule : { ~temp := 209; } 100
 { (0,0)~temp > #macro(burning) AND (0,0)~temp <= 333 AND (0,0)~temp != 209 }
%Stay Burned or constant
rule : { } 1 { t }

FIGURE 11.42 Fire spread model with I/O ports on each cell.

53361.indb 292 3/11/09 10:48:32 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 293

it will take to reach the next quantum level as a simple difference f (T2) – f (T1). By doing this, cells
can be kept quiescent until they reach the next quantum threshold. After this time has passed, they
will activate, calculate the next time at which they will cross a threshold, and return to the quiescent
state. This saves unnecessary calculations because cells will become active only when a significant
change in temperature occurs.

To obtain the required function f, we started with a typical temperature curve of a cell in the burn-
ing phase. This function fails the horizontal line test and thus is not directly invertible. Therefore, it
must be divided into increasing and decreasing components, giving us two invertible functions. A
state variable can then be used to choose between them during execution. We found two functions
that approximate the two curves. The fit for the increasing temperature portion can be defined as a
sum of two exponential functions:

f T e eT T()11 56 784 70 0005187 0 01423 (11.10)

where T is the temperature in degrees Kelvin. Similarly, burning down is fit with the linear function:

f T T() .0 052 (11.11)

Collecting data for this version of the model would also be more efficient because, instead of
sampling every cell of the real model every millisecond, samples would have to be recorded only at
threshold crossings (Figure 11.43). These functions were used to develop the time advance portion
of the model rules, which are implemented in Cell-DEVS delay functions, as seen in Figure 11.44.

Curve Fit for Increasing Temperature

Data Points
Exponential Fit

300

0

5

10

15

20

400 500 600 700
Temperature (Kelvin)

Ti
m

e
(S

ec
on

ds
)

800 900

Linear Fit for Decreasing Temperature

Data Points
Linear Fit

300
20

25

30

35

40

45

50

55

60

400 500 600 700
Temperature (Kelvin)

Ti
m

e
(S

ec
on

ds
)

800 900 1000

FIGURE 11.43 Inverted temperature function: (a) increasing; (b) decreasing. (Adapted from MacLeod, M.
et al. 2006. Proceedings of ACRI 2006.)

[FireBehavior]
%Unburned
rule : { #macro(unburned) + #macro(q) }
{ round (((11.56*exp(0.0005187*((0,0,0)+#macro(q))) – 784.7*exp(0.01423*((0,0,0)+#macro(q))))
 - (11.56*exp(0.0005187*(0,0,0)) - 784.7 * exp(-0.01423 * (0,0,0)))) * 100)}
{ cellpos(2)=0 and (#macro(unburned)>(0,0,0) OR time<=20) AND (0,0,0)<573 AND (0,0,0) != 209 }

%Burning
rule : { #macro(burning) + #macro(q) }
{round (((11.56*exp(0.0005187*((0,0,0)+#macro(q))) - 784.7*exp(-0.01423*((0,0,0)+#macro(q))))
 - (11.56*exp(0.0005187*(0,0,0)) - 784.7 * exp(-0.01423 * (0,0,0)))) * 100)}
{ cellpos(2)=0 AND (((0,0,0)>#macro(burning) AND (0,0,0)>333) OR
 (#macro(burning) > (0,0,0) AND (0,0,0) >= 573))AND (0,0,0) != 209 }

FIGURE 11.44 Inverted temperature function rules.

53361.indb 293 3/11/09 10:48:34 AM

© 2009 by Taylor & Francis Group, LLC

294 Discrete-Event Modeling and Simulation

11.8 SUMMARY

In this chapter, we have introduced the use of DEVS and Cell-DEVS in environmental sciences. We
started discussing a model on the viability of population spread in a field and different ant foraging mod-
els. We then discussed a model on the formation of watersheds, a pollution diffusion model, and a model
on vegetation dynamics. We have focused on how these techniques can facilitate the task of the environ-
mental modeler, showing how to deal with these problems using a discrete-event-based approach.

In the case of a quantized continuous model, this requires a fundamental shift in the mechanisms
to collect experimental data and to define model equations. For these models, instead of determin-
ing what value a dependent variable will have at a given time, we must determine at what time a
dependent variable will enter a given state (therefore, the data collection must focus on the time for
the state changes). The Cell-DEVS delay function provides a natural mechanism for implementing
the quantization function.

Other models in this area can be found in the model repository, including a model of percolation of
pesticides in the soil (./Pesticide_Percolation.zip) and theoretical examples like the Daisy World model
(./Daisyworld.zip) and a quantized version of the semiempirical model (./FireCorseQuantum.zip).

REFERENCES

1. Darwen, P. J., and D. G. Green. 1996. Viability of populations in a landscape. Ecological Modeling 85:165.
2. Wainer, G. 2006. Applying cell-DEVS methodology for modeling the environment. Simulation: Trans-

actions of the Society for Modeling and Simulation International 82:635–660.
3. Langton, C. 1986. Studying artificial life with cellular automata. Physica 22D:120–149.
4. Ameghino, J., and G. Wainer. 2000. Application of the cell-DEVS paradigm using N-CD++. Proceedings

of the 32nd SCS Summer Computer Simulation Conference, Vancouver, Canada.
5. Nishidate, K., M. Baba, and R. Gaylord. 1996. Cellular automaton model for random walkers. Physical

Review Letters 77:1675–1678.
6. Ameghino, J., E. Glinsky, and G. Wainer. 2003. Applying cell-DEVS models of complex systems.

Proceedings of 35th Summer Computer Simulation Conference, Montreal, QC, Canada.
7. DEVS Representation of Spatially Distributed Systems: Validity, Complexity Reduction. 1996. Proceed-

ings 6th AI, Simulation and Planning in High Autonomy Systems, San Diego, CA.
8. Ameghino, J., A. Troccoli, and G. Wainer. 2001. Modeling and simulation of complex physical systems

using cell-DEVS. Proceedings of 34th IEEE/SCS Annual Simulation Symposium, Seattle, WA.
9. Bianchini, A., F. Indovina, and E. Rinaldi. 1999. Cellular automata for the study of the diffusion of pol-

lutants within the basins of the lagoon: The case of the Venetian lagoon. Proceedings of 6th International
Conference on Computers in Urban Planning and Urban Management, Venice, Italy.

10. Bandini, S., and G. Pavesi. 2002. Simulation of vegetable population dynamics based on cellular auto-
mata. Proceedings of 5th International Conference on Cellular Automata for Research and Industry.
Geneva, Switzerland, LNCS 2493.

11. Broadbent, S. R., and J. M. Hammersley. 1957. Percolation processes. I. Crystals and mazes. Proceedings
of the Cambridge Philosophical Society 53:629–641.

12. Rothermel, R. 1972. A mathematical model for predicting fire spread in wildland fuels. Research paper
INT-115. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range
Experiment Station. 40 pp.

13. Vasconcelos, M. 1988. Simulation of fire behavior with a geographical information system. MSc thesis,
University of Arizona.

14. Vasconcelos, M., J. Pereira, and B. Zeigler. 1995. Simulation of fire growth using discrete event hierar-
chical modular models. EARSeL. Advances in Remote Sensing 3:54–62.

15. Ntaimo, L., B. Khargharia, B. Zeigler, and M. Vasconcelos. 2004. Forest fire spread and suppression in
DEVS. Simulation: Transactions of the Society for Modeling and Simulation International 80:479–500.

16. Muzy, A., E. Innocenti, A. Aiello, J. Santucci, and G. Wainer. 2005. Discrete-event modeling and simu-
lation of fire spreading across a fuel bed. Simulation: Transactions of the Society for Modeling and
Simulation International 81:103–117.

53361.indb 294 3/11/09 10:48:34 AM

© 2009 by Taylor & Francis Group, LLC

Models in Environmental Sciences 295

17. Muzy, A., T. Marcelli, A. Aiello, P. A. Santoni, J. F. Santucci, and J. H. Balbi. 2001. An object-oriented
environment applied to a semiphysical model of fire spread across a fuel bed. Proceedings of European
Simulation Symposium 2001—DEVS Workshop, Marseille, France.

18. Balbi, J. H., P. A. Santoni, and J. L. Dupuy. 1999. Dynamic modeling of fire spread across a fuel bed.
International Journal of Wildland Fire 9:275–284.

19. López, A., and G. Wainer. 2004. Improved cell-DEVS model definition in CD++. In ACRI 2004, LNCS
3305, ed. P. M. A. Sloot, B. Chopard, and A. G. Hoekstra. New York: Springer–Verlag.

20. MacLeod, M., R. Chreyh, and G. Wainer. 2006. Improved cell-DEVS models for fire spreading analysis.
Proceedings of ACRI 2006, LNCS Vol. 4173, Perpignan, France.

53361.indb 295 3/11/09 10:48:34 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

297

12 Models in Physics
and Chemistry

12.1 INTRODUCTION

As discussed in Chapter 1, complex problems in the domain of physics and chemistry are usu-
ally modeled with differential equations and solved using numerical approximation methods. In
Chapter 5, we introduced some basic models with application in physics and chemistry based on
DEVS and Cell-DEVS. This chapter focuses on more advanced models in these fields. We first
introduce different examples on reaction–diffusion systems, including snowflake formation and
binary solidification. We also present a model of wave propagation, in which wave interference and
bouncing are represented using Cell-DEVS. We present a model used for flow-injection analysis,
which shows how to model automated analysis of liquid samples in a reactor. We then present
various heat transfer models, using adapted versions of the finite-element method. Finally, we pres-
ent an advanced lattice gas model that represents the movement of particles in a field and three-
dimensional representation of particles that can be deformed in a three-dimensional virtual clay
environment.

12.2 REACTION–DIFFUSION SYSTEMS

Reaction–diffusion processes are characterized by two or more chemicals that diffuse over a sur-
face and react with one another to produce stable patterns. Reaction–diffusion processes can pro-
duce a variety of spot and stripe patterns and are some of the most popular cellular models available.
A number of these applications can be found in references 1–3. In this section, we describe different
reaction–diffusion models implemented as Cell-DEVS models using CD++ [4].

12.2.1 DIFFUSION-LIMITED AGGREGATION

Diffusion-limited aggregation (DLA) is a phenomenon that occurs when diffusing particles stick to
and progressively enlarge an initial seed represented by a fixed object. The seed typically grows in
an irregular shape resembling frost on a window. Some examples of DLA can be found in Toffoli
and Margolus [3] and Halsey [5]. In these models, diffusion is represented as a random motion with
respect to the direction. There are two kinds of particles in the grid: fixed (seeds) and mobile. A
mobile particle has the same probability of walking in each direction. When a mobile particle finds
a seed, it sticks to the fixed particle and becomes fixed, forming aggregates.

In ./DiffusionLimitedAgregation.zip we introduce a DLA model implemented as a two-dimen-
sional Cell-DEVS [4]. Initially, a certain percentage of the cells is occupied by mobile particles, and
there are one or more seeds. The system evolves with the following rules:

A particle can move in four directions (north, N; south, S; east, E; west, W).
A particle becomes fixed if an adjacent cell contains fixed particles.
An empty cell will be occupied if there is at least one mobile particle trying to move in, and
there is no seed adjacent to the mobile particle.

53361.indb 297 3/11/09 10:48:34 AM

© 2009 by Taylor & Francis Group, LLC

298 Discrete-Event Modeling and Simulation

If there are more than one particle moving toward the same empty cell, the moving direc-
tion is used as priority.
A mobile particle that cannot move will select a new direction at random.
A mobile particle disappears if it strays too far from the center.

In our implementation, a cell with a value of 0 is empty, values 1–4 represent a mobile particle
and its moving direction, and 5 indicates a seed. When a cell is empty, it checks to see if there are
any mobile particles wanting to move to that cell. Such a mobile particle can move only if it does
not have any adjacent seeds, as follows:

rule : { round(uniform(1,4)) } 100 { (0,0)=0 and (
 ((0,-1)=2 and (-1, -1) !=5 and (1,-1) !=5 and (0,-2) !=5) or
 ((-1,0)=3 and (-1,-1) !=5 and (-2,0) !=5 and (-1,1) !=5) or
 ((0,1) =4 and (1,1) !=5 and (0,2) !=5 and (1,1) !=5) or
 ((1,0) =1 and (1,1) !=5 and (2,0) !=5 and (1,-1) !=5)) }

The first condition in this rule checks for empty cells. We then verify the cell to the N, in order to
see if the particle wants to move S (while checking that it is not adjacent to a seed). The remaining
conditions check the cells to the S, E, and W in a similar way. If any of these conditions hold, the
next step is chosen at random.

The following rules illustrate how to resolve conflicts for a particle that is attempting to move a
cell up. A mobile particle with moving direction 1 (up) can move to an empty cell above if there is
no other mobile particle that attempts to move in:

% direction=1 (up): change direction when nowhere to move
rule : {round(uniform(1,4))} 100 { (0,0)=1 and (-1,0)!=0}
rule : {round(uniform(1,4))} 100 { (0,0)=1 and (-1,0)=0 and (
 ((-2,0) =3 and (-2,-1)!=5 and (-3,0) !=5 and (-2,1)!=5) or
 ((-1,-1)=2 and (-1,-2)!=5 and (-2,-1)!=5 and (0,-1)!=5) or
 ((-1,1) =4 and (-2,1) !=5 and (-1,2) !=5 and (0,1) !=5))}

The first rule checks whether the cell is moving N and whether the N cell is occupied. In this case,
the direction is chosen at random. The second rule checks whether the N cell is empty. In this
case, we first check to see whether the second cell to the N wants to move to the same cell (if the cell
is not surrounded by seeds). Similar checks are done on the cells to the S, E, and W.

Whenever a mobile particle is in a cell with any fixed particle adjacent to it, it becomes fixed,
as follows:

% particle becomes fixed if adjacent cell contains a seed
rule : 5 100 { (0,0)> 0 and (0,0)<5 and ((-1,0)=5 or (0,-1)=5 or
(0, 1)=5 or (1,0)=5) }

Several scenarios were executed with different numbers of seeds and percentages of concentra-
tion. Figure 12.1 presents a version with a concentration of 30% (grid size: 71 × 71).

Exercise 12.1

Change the initial conditions of the model (including varied concentrations and number of seeds) and
study the resulting deposition patterns for each of the initial conditions.

53361.indb 298 3/11/09 10:48:34 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 299

12.2.2 A THREE-DIMENSIONAL REACTION–DIFFUSION MODEL

We created a three-dimensional reaction–diffusion model based on the one presented in Weimar [6].

Reaction–diffusion systems can be described by a set of partial differential equations as follows:

xi = Di
2xi + fi(x1,x2,…xn), i = 1, … n (12.1)

where the first term represents the diffusion equation and the second term is the reaction equation

(fi are always nonlinear; xi = dxi /dt). To simulate reaction–diffusion systems, we apply the diffusion

rule first and then the reaction rules. In this case, diffusion was implemented as a Cell-DEVS using

the following formula:

x̂
cardN

xi

x Ni

1
(12.2)

that is, an average of the neighbors. Then we apply the reaction rules on this new value. The reaction

equation is defined as

x t x t t
t

f x
() ()

() (12.3)

We use a three-dimensional von Neumann neighborhood as we need to know the previous

state of the cell, we use a second three-dimensional hyperplane as memory of the previous state

(i.e., so we use four dimensions). The model, presented in Checiu and Wainer [7] and found in

./ReactionDiffusion.zip, is defined as shown in Figure 12.2.

The memory rule is in charge of saving the value from the cell below; in the rd-rule, we calculate

first the diffusion as follows, computed as in Equation (12.3):

FIGURE 12.1 Initial/final execution results (two seeds and 30% concentration).

53361.indb 299 3/11/09 10:48:36 AM

© 2009 by Taylor & Francis Group, LLC

300 Discrete-Event Modeling and Simulation

Then we subtract the previous value of the cell stored in the cell above. The rd-rule is applied in the
reaction diffusion zone { (0,0,0,0)..(4,4,4,0) }, while the memory-rule, which saves the previous state
of all cells from the reaction diffusion zone, is saved in { (0,0,0,1)..(4,4,4,1) }.

Figure 12.3 represents the different reaction of two substances. Each row in the figure represents
a simulation step and it represents the two cubes as two groups of five squares (each square consist-
ing of 5 × 5 cells). The first group represents the model’s state (each of the five planes in the three-
dimensional model), and the second group is the memory. For instance, the first five groups in the
first row in Figure 12.3 represent the initial state of the model. The next group from the same row
represents the initial state of the memory hyperplane.

The second row in Figure 12.3 represents the second step in our simulation: the first five squares
represent the actual state of the system and the next five squares store the results of the previous step
for computing the next one. The third row is the state of the system in the 20th simulation step. The
fourth row is the 34th simulation step, where the system has reached equilibrium (the fifth row shows
that the current state is the same as that of the previous state, represented by the memory layer).

12.2.3 DRIVEN DIFFUSION

Driven diffusion models describe the random motion of two types of particles in a system under the
influence of an external field. The field may drive one species of particles to move along the field
direction, while the other species moves against that direction. This kind of model can simulate the
behavior for certain kinds of materials, such as superionic conductors, fast ion conductors, and solid
electrolytes [8]. These two species of particles are differentiated by their positive or negative charge.

FIGURE 12.3 Three-dimensional reaction–diffusion results.

FIGURE 12.2 Three-dimensional reaction–diffusion model.

53361.indb 300 3/11/09 10:48:37 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 301

The particle space contains approximately the same amount of positive and negative particles so
that the total charge of the system is zero. We created a Cell-DEVS model to simulate the system
and to study how the density of the particle space affects the behavior of the system [4].

Initially, the space is occupied by a number of particles A and B, which are randomly distributed.
Each particle has a randomly chosen direction to face (N/E/S/W). Let us assume that the field points
to the NE. If an external electrical field appears, the preferable moving direction of particle A is N
or E, and the preferable moving direction of particle B is S or W. The probability of A and B moving
along that preferable direction is a, while the probability of moving against the direction is (1 – a).

The rules for a particle of either type to move are as follows:

1. The cells move only toward the direction that they are facing (the neighboring cell in that
direction is called the adjacent cell).

2. If the adjacent cell is occupied, then the particle remains in its current place and chooses a
new direction at random.

3. If the adjacent cell is empty but faced by one or more particles, the particle remains in its
current place and randomly chooses a new direction.

4. If the adjacent cell is empty and faced by no other particles, then the particle moves to the
adjacent cell and chooses a new direction randomly.

The rules for updating cells are as follows:

1. If the cell is empty and faced by no particles, then it remains empty.
2. If the cell is empty and faced by exactly one particle, then the cell will be occupied.
3. If the cell is empty and faced by two or more particles, then it remains empty.
4. If the cell is occupied and the inside particle faces an empty cell that is not faced by other

particles, then it will be vacated.

These rules, which can be found in ./DrivenDiffusion.zip, are presented in Figure 12.4.
The rules used by particles A or B to choose a direction to face at random are as follows:

A. The probabilities of choosing N, E, S, or W to face are (a/2), (a/2), (1 – a)/2, and (1 – a)/2,
respectively (defined in macro RandA); a [0,1].

B. The probabilities of choosing N, E, S, or W to face are (1 – a)/2, (1 – a)/2, (a/2), and (a/2),
respectively (defined in macro RandB); a [0,1].

We use the first digit in the cell state to identify the kind of particle (1 = A, 2 = B) and the sec-
ond digit to identify its direction. In the first rule in the model (rule 2), the preconditions test that
particle A moves to N or E and that particle B moves to S or W. In this case, we move the particle
at random (using the random probability function for each of the two particles, as defined by the
RandA and RandB macros). We then define preceding rule 3: if the adjacent cell is empty, but faced
by one or more particles, we choose a direction at random while keeping that cell (the postcondition
of the rule activates macros RandA or RandB according to the first digit in the cell’s value, accord-
ingly). To check this precondition, we first check whether the current cell is heading N (21 or 11)
and the N cell is empty. We then verify that the cells around the N cell are not pointing to it (the rest
of the rule repeats the test in every other direction). Then we implement rule 4: we check whether
the cell is empty; in such a case, we verify whether any of the neighboring cells are facing it. We
want to receive a particle from the N, and thus we check to see whether the cells to the E, S, or W
are facing it; there are symmetric rules for receiving a particle from the S, E, or W. The following
rule is in charge of implementing the cell updating process. In this case, if the origin cell is moving
toward N, the N cell is empty, and the cells surrounding the N cell are not going to occupy it, we
empty the current cell.

53361.indb 301 3/11/09 10:48:37 AM

© 2009 by Taylor & Francis Group, LLC

302 Discrete-Event Modeling and Simulation

We show various test cases considering different density values, space size, and initial states,
which have particles initially distributed at random in the space according to the given density value.
In Figure 12.5, about 20% of the cell space is occupied by the randomly distributed particles.

After 100 time steps, the particles are still randomly distributed. The cell space remains disor-
dered over the simulated time steps, while the distributions of particles A and B are homogeneous
(high current in the system). Similar results were obtained with a density of 10%. Then we tested a
case in which density of the whole space is higher (50%). The simulation results are illustrated in
Figure 12.6.

From the results at time step 100 as shown in Figure 12.6, we can see that the distribution of the
two particles exhibits a striped structure. Within each strip, there are two substrips with approxi-
mately the same number of particles. This indicates the nonhomogeneities of the distribution of two
particles and thus results in reduced current in the system. Similar results were obtained when we
used densities between 40 and 70%.

Exercise 12.2

Investigate different scenarios using varied initial conditions and densities.

FIGURE 12.4 Driven diffusion definition in CD++.

53361.indb 302 3/11/09 10:48:38 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 303

12.2.4 SNOWFLAKE FORMATION

We built a model of snowflake growth based on the local cellular model for snow crystal growth
described by Reiter [9]. The dendrite growth of snowflake is very complex and influenced by many
factors in its natural environment. The shape of snow crystals depends upon the saturation and tem-
perature during growth. The forms observed include dendrites, needles, spatial columns, scrolls,
etc. Wolfram [1] introduced a simplified Boolean model for snowflake growth in which, at each time
step, each cell either contained a particle of ice or not. In the subsequent step, cells that contain ice
remain solid; cells that without ice become solid if exactly one of the neighboring cells is.

We defined such a model using a two-dimensional Cell-DEVS [4] which can be found in ./Snow.
zip. The model presented is more realistic, but the transition rules are similar to the ones presented
in Wolfram [1]. Each cell contains a real value, representing the relative humidity in the cell. Values
of one or higher represent ice; lower values represent humidity (which can spread to neighboring
cells). Each cell is classified as either receptive or nonreceptive. The first stage is to determine the
receptive sites: those that are ice or have an immediate ice neighbor. In the next stage, the values of
the receptive cells are computed as a constant plus a diffusion term. The diffusion term is a local
average of a modified cellular field obtained by setting the receptive sites to zero and computed as

Vu = 0.5 Vo + 0.5 ∑ Vn/8 (12.4)

(a) (b)

FIGURE 12.5 Low density of 20%: (a) initial state; (b) after 100 time steps.

(a) (b)

FIGURE 12.6 Density of 50%: (a) initial cell space; (b) 100 time steps.

53361.indb 303 3/11/09 10:48:38 AM

© 2009 by Taylor & Francis Group, LLC

304 Discrete-Event Modeling and Simulation

where Vu is the update value of the cell, Vo is the original value of the cell, and Vn is the value of the
neighbors. Therefore, the center cell has a weight of 50%, and each of the eight remaining cells has a
weight of 1/16. Receptive cells are seen as permanent (storing any mass arriving at them); nonrecep-
tive sites are free to move. The constant added to receptive sites informally captures the idea that
some humidity may be available from outside the plane of growth. The second parameter used is the
background level . We begin with a single cell of value 1 (an ice seed) in a constant field.

The model uses three types of cells and three rules addressing each cell group independently:

Cells with ice: every ice cell will absorb more and more water in the air continuously.
Receptive cells are not solid and have no ice neighbors.
Nonreceptive cells are not solid, but they have ice neighbors.

In Figure 12.7, we present the rules used for receptive cells (i.e., those computed based on
Equation 12.4.) The original value of the center cell has 50% of the weight of the final updated
value of the cell ((0,0) 0.5). The remaining 50% is contributed by eight groups of nested ifs, each
of them representing the value of one adjacent neighbor. In each nested if, the rule also estimates the
values of the neighbor’s neighbor to determine the contribution value. For instance, if the values of
the immediate neighbors of cell (–1,1) are all zero, this means they are all non-ice cells. In this case,
we will leave the contribution value of (–1,1) to the center cell unchanged; otherwise, this value will
be zero. After the predefined elapsed time, the value of the center cell will be updated by the new
value that we computed using this rule.

In order to investigate different results from the model by using different variables, we set three
different group variable vectors (,) and size of the cell space to 30 × 30. This model was tested
using different models for the three vectors, as shown in Figure 12.8.

FIGURE 12.7 CD++ model specification for snowflake growth.

53361.indb 304 3/11/09 10:48:39 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 305

Exercise 12.3

Investigate different simulation results using varied initial conditions and values of and .

Exercise 12.4

Implement the model in Wolfram [1] as a Cell-DEVS model. Investigate how variable delays can
improve the definition of the original cellular model.

12.2.5 BINARY SOLIDIFICATION

In this section, we present a model defining a binary solidification process based on the work pre-
sented in Kremeyer [10]. The model represents the solidification of particles of ammonium chloride
(NH4Cl) in water solution (H2O); it can be used to analyze the crystal structure, the speed of genera-
tion of the crystals, and the patterns generated. The model considers the state (solid or liquid) and
the quantity of solute (i.e., the volume of H2O) on each particle. The values in each cell oscillate
between zero and one, depending on the quantity of solute in each of them. Solid cells have a solute
concentration of zero. The model executes the following steps:

1. Identify all the liquid particles.
2. Analyze each particle and, based on the solute concentration of each of them, decide

whether the particle solidifies.
3. Every solidifying particle must expel all the available solute to the liquid neighbors because

solute cannot deposit in solid particles. If there are no liquid neighbors, the particle cannot
solidify because the system equilibrium must be kept (maintaining the number of particles
of H2O).

4. Once the whole surface has been analyzed, a solute diffusion model must be applied to the
liquid particles in order to keep the solute equilibrium in the system.

In order to define the first step, we have to pick the cells whose values are different from one
(solid). In the second step, we need to know when a liquid cell becomes solid. To do so, we need to
determine different physical aspects in the cell (surface tension, interface curvature, and crystalline
anisotropy), which play a role in the process. We first compute the concentration equilibrium, using
the first and second near neighbors (i.e., those neighbors within a radius of two cells). We consider
only the solid neighbors, defined as

(a) (b) (c)

FIGURE 12.8 Snowflake formation after 10,000 iterations: (a) = 0.3, = 0.001; (b) = 0.4, = 0.01; (c) =
0.05, = 0.0035.

53361.indb 305 3/11/09 10:48:40 AM

© 2009 by Taylor & Francis Group, LLC

306 Discrete-Event Modeling and Simulation

C C flateq l k k

k neighbors
k neighbor

()
()1

ss()2

(12.5)

where
Ceq = the concentration equilibrium;
Cl = the concentration equilibrium on a flat surface;

= the surface tension;

k = the state of neighbor k (solid or liquid); and

k = the distance to the neighbor k.

Here, flat is half of the addition of all the distances between the neighbors (in this case, 20, because
we have 8 neighbors with a distance of 1 and 16 with a distance of 2). Once Ceq is computed, if the
cell being analyzed is under solute equilibrium, it will solidify, expelling the remaining solute to
the neighbors.

The following step is in charge of diffusing the solute expelled by the cells. Whenever a number
of neighbors in liquid state can absorb the expelled molecules, they do; otherwise, the cell cannot
freeze. The following equation defines such behavior:

C Cnew old k

k neighbors

()
()

1 8
1

(12.6)

where
Cnew represents the quantity of solute that the cell will have after receiving the quantity expelled

by the solidified neighbors;
Cold is the current quantity of solute;
λ is the diffusion constant (which depends on the distance between the cells and the delay of the

diffusion algorithm); and

k is the status of the neighbor k.

This process is executed a few times to improve the uniformity of diffusion.
Figure 12.9 shows the specification of this model in CD++, which can be found in ./BinSol.zip.

This is a 30 × 30 model using two layers. In the first layer, we have the state value (solid or liquid)
for every particle, and the second layer is used to know what the current phase in the process is. We
use the integer part of the cell’s value to store the current state (solid or liquid) and the floating point
part to store the percentage of solute contained in the cell.

The first rule is evaluated if the cell is in plane 1. This rule computes the concentration equilib-
rium (Ceq), using the following parameters: Cl = 0.8 (i.e., 80% of solute) and = 0.01. Once the cell is
in equilibrium, it is “masked” by putting a value of two in the integer part of the cell. The following
rule is used to analyze whether the cells marked as potential cells for solidification have any neigh-
bors in liquid state. If this is not the case, the cell cannot freeze because it cannot expel the particles
in excess. The next step is used to determine how many neighbors are liquid (in order to expel solute
in isotropic fashion, i.e., each neighbor receives an equal and proportional number of particles).

The following rule is used to verify that the quantity of solute received in each cell is below 100%
of the volume. If this is not the case, the cells that were ready to solidify should abort the execution
of this rule because they have no room to deposit the solute they need to expel (we mark these cells
using the value 99). In the following rule, the cells detected in the previous step (i.e., those that
were able to freeze and have a marked neighbor) are converted into liquid again. The following rule

53361.indb 306 3/11/09 10:48:40 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 307

FIGURE 12.9 Definition of the binary solidification model.

53361.indb 307 3/11/09 10:48:41 AM

© 2009 by Taylor & Francis Group, LLC

308 Discrete-Event Modeling and Simulation

solidifies all the cells meeting the previous conditions. The next rule deletes all existing marks, and
then we generate the diffusion process (which is repeated 15 times). The last rule is used to update
the current step number as a reference to know which following rule to analyze.

Figure 12.10 shows the simulation results. We initially freeze the four central cells, and the rules
expand to form the crystal.

12.3 A MODEL OF WAVE PROPAGATION

In this section we will present a model of waves propagating in water, previously defined in
Ameghino and Wainer [11] and found in ./Wave.zip. Nutaro [12] presents a DEVS implementation
of two different simulation schemes, called finite difference time domain and digital wave net-
work. He introduces the application of discrete-event techniques for propagation in one- and two-
dimensional fields. In our case, we will present a model of this phenomenon using Cell-DEVS. Our
model addresses the analysis of two kinds of phenomena: wave interference and medium changes.

The state of a wave on a liquid medium can be represented as sinusoidal functions, and it is char-
acterized by the phase, intensity, direction, and frequency of such functions. When we combine two
or more waves with the same amplitude and frequency propagating on the same media, there is an

FIGURE 12.9 (continued).

FIGURE 12.10 Structure of the growing crystals.

53361.indb 308 3/11/09 10:48:42 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 309

interference pattern caused by their superposition. This interference can be either constructive or
destructive. Constructive interference is produced when two waves of equal amplitude, frequency,
and phase interfere with each other. The resulting wave is equivalent to the addition of both waves.
Destructive interference is produced by two waves of equal amplitude and frequency crossing, but
with different phase. The resulting wave is the sum of both; however, after superposition, the wave
will be canceled in those zones where there is overlap. The amount of interference depends of the
phase difference at the point of interference.

When a wave encounters a change in the medium, some of or all the changes can propagate into
the new medium (or the wave can be reflected from it). The part that enters the new medium is called
the transmitted portion, and the rest is called the reflected portion. The reflected portion depends
on the characteristic of the incident medium; if this has a lower index of refraction, the reflected
wave has a 180° phase shift upon reflection. Conversely, if the incident medium has a larger index
of refraction, the reflected wave has no phase shift.

In order to simulate the interference between waves and the propagation in CD++, we defined a
three-dimensional model with five overlapping planes, each plane defining the wave movement in
each direction (only four directions for this example). The main plane, which is a composition of the
direction planes, contains the value or intensity of the wave corresponding to this position. Every
cell in the cell space represents the minimal possible portion of the medium in which the wave
propagates. Each cell has two values: phase and intensity. An integer value between zero and eight
represents phase and a fractional value between zero and one represents its intensity.

Figure 12.11 shows the rules used in CD++ to specify the wave propagation behavior. The first
rule governs the attenuation of the wave. If the wave intensity is below 0.0001, the wave propagation
stops. The second rule contemplates the spread of the wave toward its neighbors, which preserves
the phase of the wave but attenuates its intensity (because of propagation). The third rule contem-
plates the spread of the wave in the current cell. In this case, the cell intensity value does not change
(only the phase).

Figure 12.12 shows the integration rule, which describes the combination of the values in the direc-
tion planes used in order to obtain the wave value in the medium in which it is traveling (the value
corresponds to the discretization in eight phases of a sine wave). As we can see, if any of the four
direction planes is not zero, the rule takes the data stored on each of the planes and computes a sine
function that depends on the current phase (trunc(0,0,i)) and its amplitude (functional(0,0,i)).

Figure 12.13 shows the simulation results of the wave model. Only the integration plane is shown
(direction and intensity). It is possible to appreciate that the wave propagation produces attenuation
(the intensity of the wave is reduced while the signal travels).

Exercise 12.5

Modify the wave model and create waves in different directions. Study constructive interference,
destructive interference, and propagation in different media.

53361.indb 309 3/11/09 10:48:43 AM

© 2009 by Taylor & Francis Group, LLC

rule: {0} 100 {trunc(0,0,0)=#maxFase or (fractional(0,0,0)<.0001 and fractional((0,0,0))>0)}
rule: {trunc(1,0,0)+fractional(1,0,0)*#attenuation} 100 {(1,0,0)!=0}
rule: {trunc(0,0,0)+1+fractional(0,0,0)} 100 { (0,0,0)!=0}

fIguRe 12.11 Rules for wave propagation.

rule: {((sin(PI/4*trunc((0,0,1))) * fractional((0,0,1)) + sin(PI/4 * trunc((0,0,2))) *
fractional((0,0,2)) + sin(PI/4 * trunc((0,0,3))) * fractional((0,0,3)) +
sin(PI/4*trunc((0,0,4))) * fractional((0,0,4)))) * 10 } 100 {(0,0,1)!=0 or (0,0,2)!=0 or
(0,0,3)!=0 or (0,0,4)!=0}

fIguRe 12.12 Integration rule.

310 Discrete-Event Modeling and Simulation

12.4 FLOW INJECTION ANALYSIS (FIA)

Flow injection analysis (FIA) is used for the automated study of liquid samples. In a flow injec-
tion analyzer, a small, fixed volume of a liquid sample is injected into a liquid carrier, which flows
through a narrow tube. As a result of convection at the beginning, and later of axial and radial diffu-
sion, this sample is progressively mixed into the carrier as it is transported along the tube. The addi-
tion of reagents at different confluence points (which mix with the sample due to radial dispersion)
produces reactive or detectable species, which can be sensed by flow-through sensors. Figure 12.14
presents a simple FIA apparatus. This device (called an FIA manifold) consists of a pump (P) that
adds carrier solution (nitric acid—HNO3) into a valve that connects to a tube-shaped reactor (L). At
the end of the tube, a sensor (B) detects specific properties of the flowing solution. The valve can
be turned to allow the flow of the sample (water) into the reactor. The sample is held in a loop (l)
and when the valve is rotated, its content flows into the reactor. As a result of the chemical activity
between the sample and the carrier solution, a change will be observed in the sensor (B), making it
possible to compare the results with those obtained by known samples [13].

In FIA systems, convective transport yields a parabolic velocity profile with molecules at the
tube walls having speed zero and those at the center having twice the average velocity. At the same
time, the presence of concentration gradients develops axial and radial diffusion of sample mol-
ecules. In FIA systems of practical interest, axial molecular diffusion has almost no influence in the
overall dispersion, and radial diffusion is the main contributor [13]. For a pump providing a net flow
of q mL/min in a coil of radius a, the average flow velocity is given by

V
q

a
a

60 2()
(12.7)

 (a) (b) (c)

FIGURE 12.13 Result of wave propagation: (a) a wave traveling from left to right; (b) the wave reflects with
the right border; (c) the wave before reflecting with the left border.

FIGURE 12.14 FIA manifold: P = pump; l = loop; L = reactor; W = waste; A, B = detection points. (From
Andrade, F. J. et al. 1998. Analytica Chimica Acta 19211.)

53361.indb 310 3/11/09 10:48:44 AM

© 2009 by Taylor & Francis Group, LLC

P A
L

B

Wℓ

DDW

0.8 M
HNO3

Models in Physics and Chemistry 311

At a point at distance r from the center, the flow velocity is described by

v r V
r

a
a() 2 1

2

2
(12.8)

As convective transport and the diffusion gradient force the water sample to be released from the
walls inside the reactor L, a reduction of the blocking area is produced. This allows electric current
to flow, enabling measuring conductivity values different from zero.

Troccoli and colleagues [14] presented a Cell-DEVS model describing the integrated conductiv-
ity flow-injection system (ICM) in detail. For this system, a cell space of 25 rows and 200 columns
was defined, each cell representing 0.001 × 0.1 cm of a half-tube section. Row 0 represents the
center of the tube and row 24 represents the section of the tube touching its walls; the value of each
cell will represent the nitric acid concentration. To deal with convective transport and radial diffu-
sion at the same time, the model reacts in two phases: transport and diffusion. The local computing
function simulates the transport phase, and all cells are connected to an external generator sending
an event, which triggers the diffusion phase. The model is built as a coupled DEVS model with two
components: a Cell-DEVS (named fia) representing the tube and a DEVS atomic model (a DEVS
generator model). The model, found at ./fia.zip, is shown in Figure 12.15. As we can see, we use
inertial delays (in order to permit transport rules to be preempted by diffusion, if needed). The basic
behavior of each cell is defined by the transport rules.

The convective transport has been arbitrarily defined in the direction of increasing column val-
ues (in visual representations, the carrier will be seen flowing from left to right). The local transition
rule for the transport phase should set a cell’s value to the current value of its (0,–1) neighbor cell
at a rate depending on the velocity of the flow at the cell (maximum at the center of the tube and
decreasing toward the walls.

The delay is calculated using Equations (12.7) and (12.8). For a pump with a constant flow
of 1.33 mL/min, the average speed is 11.29 cm/s (substituting this value in Equation 12.8, we
obtain 22.57878). We also need to know the distance to the center of the tube. Consequently,
cellPos(0)*0.001+0.0005 is the distance of the center of the cell to the center of the tube and,
therefore, 22.57878*(1-power(cellPos(0)*0.001+0.0005,2)/0.000625) is the solu-
tion to Equation (12.8) (a = 0.025 cm). Having the velocity of flow v(r), the delay will be the time

components : fia generator@ConstGenerator
link : out@generator diffuse@fia

[fia]
in : diffuse
width : 200
height : 25
delay : inertial
border : nowrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1)
localtransition : transport
link : diffuse diffuse@fia(x,y)
PortInTransition : diffuse@fia(x,y) diffusion
...

[transport]
rule : {(0,-1)} { 0.1/(22.57878* (1 - power(cellPos(0)*0.001+0.0005 , 2) / 0.000625)) * 1000 }

{ cellPos(1) != 0 }
rule : {0.8} { 0.1 / (22.57878 * (1 - power(cellPos(0)*0.001+0.0005 , 2) / 0.000625)) * 1000 }

{ cellPos(1) = 0 }

[diffusion]
rule : { ((-1,0) + (0,0) + (1,0)) / 3 } 1 { cellPos(0) != 0 AND cellPos(0) != 24 }
rule : { ((-1,0) + (0,0)) / 2 } 1 { cellPos(0) != 0 AND cellPos(0) = 24 }
rule : { ((0,0) + (1,0)) / 2 } 1 { cellPos(0) = 0 AND cellPos(0) != 24 }

FIGURE 12.15 Definition of the FIA model.

53361.indb 311 3/11/09 10:48:45 AM

© 2009 by Taylor & Francis Group, LLC

312 Discrete-Event Modeling and Simulation

in milliseconds for a particle moving at speed v(r) cm/s to travel across a 0.1-cm cell, given by
0.1/v(r)*1000.

The second rule is used for the left border cells (because cells in column 0 do not have a valid
(0,–1) neighbor). For these cells, the new value should be 0.8, which corresponds to the concentra-
tion of the carrier solution being pumped into the tube.

When the simulation starts, all cells will evaluate their local transition functions and schedule
their next change. A cell in row 2, for instance, will schedule an internal transition at time t = 4 ms
and a cell in row 3 at t = 5 ms. Thus, at t = 4 ms, all cells in row 2 will send an output event to their
neighbors. Cells in row 3 will receive this event and evaluate the local transition function, which
says they should take the value of their left neighbor. However, their left neighbor has not changed
yet, so the new value will be the same as the previous future value. Therefore, they will keep their
scheduled internal transition for t = 5 ms. At this time, all cells in row 2 with a scheduled internal
transition will send their new value to their neighbors. A cell in row 2 receiving an input from its left
neighbor will again evaluate its local transition function. In this case, the delay has already expired
and there is no future value scheduled, so the result of this evaluation will be scheduled as the future
value for time t = 10 ms.

The diffusion rules are in charge of modeling radial diffusion, and they are activated when the
generator sends a new value to the diffuse input port. For a cell with valid top and bottom neighbors,
the diffusion rule states that the new cell value will be the average of the three cells. The following
rules cover the special case of top and border cells.

Figure 12.16 shows five different stages in the model’s execution after 10 s (only half of the
tube is shown because it is assumed that the other half is symmetrical). The upper cells represent
the center of the tube, and the lower cells represent the part of the solution touching the walls of
the tube. The experiment starts at time 0, where the sample (white) is injected. At this moment, half
of the tube contains the carrier solution (dark gray). In the following stages, the convective transport
makes the sample disperse faster at the middle of the tube than near the walls. The experiment fin-
ishes when the whole tube contains carrier solution.

Exercise 12.6

The simulation results can be used to obtain the conductivity curve for the system. To do so, we must
divide the cell space in axial segments, calculate the resistance of each segment, and compute the whole
resistance as the result of combining all segments. If we consider that each segment is a column of cells,
resistance can be computed as

(0.0–0.1) (0.1–0.6) (0.6–0.8)

5

4

3

2

1

FIGURE 12.16 Different execution stages of the FIA model [14].

53361.indb 312 3/11/09 10:48:46 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 313

R
R

total
cell row colrowcolum

1

0

24

(,)nn 0

199
1

(12.9)

in which R is the cell’s resistance, computed as

G
R

G G
Area

Length
cell

cell
HNO H O

cell

cell

1
3 2 HHNO HNO

3 3[] (12.10)

As we can see, resistance of a cell can be obtained by calculating the inverse of the conductivity. In
this case, we use the sizes of the cells and the concentration of nitric acid on each of them. Using
the simulation results obtained after running the FIA model and the previous equations, reconstruct
the conductivity curve.

12.5 NUMERICAL APPROXIMATION OF HEAT SPREADING

In Chapter 5, we presented two- and three-dimensional models of heat diffusion. In this section, we
will introduce different advanced versions of numerical approximations for heat spreading models.
Our first example is focused on the application of QDEVS; we then present extensions to the finite
elements and finite differences methods and their adaptation using Cell-DEVS.

12.5.1 QDEVS FOR HEAT SPREADING

In this section, we discuss the application of QDEVS to the heat spreading model introduced in
Chapter 5. The idea is to reduce the level of activity in the simulation model by quantizing the cells
in the model. The models were originally presented in Wainer and Zeigler [15] and include different
test cases:

(a) a two-dimensional model (10 × 10 cells) with only one “hot” cell;
(b) a similar model, but using 87% of active cells;
(c) a three-dimensional extension of the previous model; and
(d) a dynamic heat seeker—a model consisting of two adjacent planes. One of the surfaces

executes the two-dimensional heat diffusion model. The other includes a set of heat-seek-
ing devices that follows the heat cells toward a local maximum (found in ./seekers.zip).

The number of messages involved in the execution for Cell-DEVS spaces can be expressed
as follows:

m ni j

j

i

1

 (12.11)

where
mi = the number of messages distributed up to the ith simulation step;
nj = the number of active cells in the jth simulation step; and
µ = neighborhood size.

The results presented in Figure 12.17 show a reduction according to bx–a (with x (0,1]) in
the number of messages involved for the test cases (a) and (b) just discussed. Analyzing Equation
(12.11), we can see that nj is reduced in each time step. In addition, the use of a quantized version
provides fewer steps to be executed, reducing the i value in the equation [15].

53361.indb 313 3/11/09 10:48:47 AM

© 2009 by Taylor & Francis Group, LLC

314 Discrete-Event Modeling and Simulation

These results approximate the theoretical optimum results presented in Zeigler [16]. Message
reductions for model (b) were slightly less than for model (a) case because the number of active ini-
tial cells is higher. Therefore, in the first simulation steps, nj is greater than the previous case. The
total execution time can be expressed as:

t n x ni j j j j

j

i

() ()
1

(12.12)

where
ti = the total execution time up to the ith simulation step;
nj = the number of active cells in the jth simulation step;
xj = the transmission time for each message;
µ = the neighborhood size; and

j = the execution time for the local computing function.

The curve shapes for all the executed examples are similar to those in Figure 12.17, as discussed
in Wainer and Zeigler [15]. The results obtained in models (a) and (b) are proportional to those
obtained analyzing the number of messages involved. In this case, the execution and transmission
times for each cell are equivalent. The results obtained with larger quantum have increased propor-
tionally to the number of messages involved. The error behavior of these models can be expressed
as

e C i N Nc cj c cj c q
j

i

(,) () ()
1

(12.13)

Here, e(Cc, i) is the accumulated error up to the ith simulation step in cell Cc (c is an n-dimensional
index of the cell). Nc are the inputs of the cell c, cj is the execution result of jth step of the local
computing function of cell c, and []q represents the quantized value of the last change. The error
obtained is thus a function of the local computing function, the number of simulation steps, and
the quantum. The use of a higher quantum reduces the number of steps, but each of them will have
higher error rates. The experimental results validate this behavior, as seen in Figure 12.18. It can
be seen that the error grows as f(x) = axb. This error can be linear when there is no influence between
cells. In the figure we can see that in the (a) case, the error hardly increases, while the messages go
down by approximately 1/10. Nevertheless, the error can lead to undesired behavior.

0
5000

10000
15000
20000
25000
30000

0 0.001 0.01 0.1 0.5 1
0

5

10

15

20

0 0.001 0.01 0.1 0.5 1

Quantized Non Q.Quantized Non Q.

(a) f (x) = 441x–0.58 (b) f (x) = 0.61x–0.45

FIGURE 12.17 (a) Number of messages involved; (b) execution time.

53361.indb 314 3/11/09 10:48:48 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 315

12.5.2 HEAT APPROXIMATION USING DISCRETE-EVENT FINITE ELEMENTS

Finite element analysis [17,18] is a numerical approximation method to solve differential equations
that has been used successfully to analyze complex engineering and physical systems. Typical areas
of applications include structural analysis, thermal analysis for heat transfer, electromagnetic analy-
sis, fluid analysis, etc. The Finite Elements Method (FEM) defines a solution that satisfies the partial
differential equation on average over only a finite portion of the field under analysis. Every portion
(or element) is connected to neighboring elements, and the field under study is analyzed by propa-
gating the current values from one element to another through connection points. FEM provides
piecewise approximation of a partial differential equation over a continuum, and a finite element is
a discrete piece of that continuum. By assuming a simple function over the finite element, we can
approximate the solution of the partial differential equation over that element.

We usually find two major components that can be identified within each element: field and
potential. The field is a quantity that varies with its position within the structure analyzed. The
fields are related to the potentials as their derivatives with respect to position. The potential can
be thought of as the driving force for the spread of the field in the material. For example, tempera-
ture difference in a material would cause a heat flux to be transferred from one point to another in
that material. The heat flux direction and quantity are related to the difference in temperature in that
material (temperature gradient). Elements in the structure are considered to be connected together
through the vertices on boundaries of each of the elements, which are called nodes.

In order to solve the problem:

1. We must divide the structure under study into a large number of elements, each of them
with a simple geometry.

2. An interpolation function is assumed over the element, representing the shape of the spatial
solution in the element.

3. The differential equations can be solved for this particular element by assuming the shape of
the change of potential function in the element. This gives an approximate solution for a single
element: simple algebraic equations are obtained for the element, represented in a matrix.

4. Because all the elements in the structure are connected together through nodes located at
their edges, we obtain a system of equations represented in N × N matrices. We only know
the values at certain points in the structure (usually at its boundaries). These values are
used to get the unknown potential inside the structure.

5. The global equations are solved, and the solution gives the distribution of the potential over
the structure, represented by the values obtained at the nodes of each element. The preci-
sion can be enhanced by dividing the structure into more elements or by assuming a more
precise distribution of the potential inside the element itself.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0 0.001 0.01 0.1 1 10
0

0.5

1

1.5

0 0.001 0.01 0.1 0.5 1

(a) f (x) = 0.1x0.63 (c) f (x) = 1.58x0.77

FIGURE 12.18 Accumulated error behavior.

53361.indb 315 3/11/09 10:48:49 AM

© 2009 by Taylor & Francis Group, LLC

316 Discrete-Event Modeling and Simulation

FEM models resemble, to a large extent, Cell-DEVS models, in which changes of a cell value
would trigger neighboring cells to change themselves, as though a field is propagating through all of
them. The following sections will be devoted to showing how Cell-DEVS can be used to describe
FEM models. The idea is to describe the model in terms of cell behavior, discrete event interac-
tion, and timing delays. We will show how to use Cell-DEVS to model and solve problems usually
tackled by FEM, having FEM precision for defining the problem, and the simplicity of a cellular
approach to facilitate model definition.

12.5.2.1 One-Dimensional Heat Transfer: Mapping FEM into Cell-DEVS
In this section, we show how FEM models can be mapped into Cell-DEVS using a traditional exam-
ple found in Chandrupatla and Belegundu [17] and presented in Saadawi and Wainer [19,20]. This
model represents steady-state heat transfer with convection from a fluid into a composite wall of
different materials (i.e., the heat flux is fixed with regard to time, as opposed to non-steady-state heat
transfer, where temperature distributions change over time). This resembles the heat flow through a
wall of a heated furnace to ambient air.

Heat transfer occurs when there is a temperature difference within a body or between a body and
its surrounding medium. This temperature difference constitutes the potential driving the heat flux
through the material. The temperature difference over an infinitely small piece of material would
give us the temperature gradient over this element. Heat flows from hot spots toward cooler ones.
Heat conduction in a two-dimensional, steady-state isotropic medium is given by Fourier’s law:

q k
T
x

x , q k
T
y

y (12.14)

where
q = the heat flux (W/m2);
qx = the heat flux component in the x direction;
qy = the heat flux component in the y direction;
k = the thermal conductivity of the material (W/m°C);
T = T(x,y) is the temperature field in the medium and is a function in x and y;
∂T/∂x and ∂T/∂y are the temperature gradients over x and y, respectively; and
the minus sign indicates that the direction of heat flux is opposite to the direction of increasing

temperature [17].

In convection heat transfer, heat flux is given by

q Ah T Ts() (12.15)

where
h (W/m2°C) is the film (a property of the fluid around the surface);
T∞ and Ts are fluid and surface temperature, respectively; and
A is the surface area exposed to the flow.

For a small element assuming a linear temperature distribution along its unit length and a unit
area perpendicular to heat flow direction, the heat flux conduction would be

q k
dT
dx

k
T T

k T Th l
h l

()
()

1
(12.16)

53361.indb 316 3/11/09 10:48:50 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 317

where Tl is the high and low temperature of its ends [17].
In order to get the updating rules for a cell in Cell-DEVS, we first show a subset of the complete

problem. Figure 12.19 shows two layers of the wall connected together through the surface in the
middle. Each layer i has different physical properties: Ki is the thermal conductivity, Li is the length,
and Qi is the heat flux through that wall. Temperature distribution on each surface on the walls is
denoted as T2, T1, and T0, as shown in Figure 12.19(a) [19].

Each layer can be represented by one finite element. Elements 1 and 2 contain two nodes, one
at each end; the elements are connected through their nodes, and the middle one is shared between
them. Every node represents a surface of a wall and the corresponding node value represents its
surface temperature. From Equation (12.16), by assuming a linear temperature distribution along
the elements, we get

Q1 = K1/L1. (T2 – T1) (12.17)

Q2 = K2/L2. (T1 – T0) (12.18)

Due to the conservation of energy equation over a control volume containing both elements 1 and
2 (input heat flux equals output heat flux), we have Q1 = Q2 and we obtain

T

K
L

T
K
L

T

K
L

K
L

o

1

1

1

2

2
2

1

1

2

2

 for heat conduction (12.19)

Similarly, when we study two elements in which one is convective and the other is conductive,
we get

T
hT

K
L

T

h
K
L

o

1

1

1

1

1

 for heat convection (12.20)

T2 T1

T0

K2
K1

Q1 Q2

L1

T2

1 2

(b)

(a)

T1 T0

L2

FIGURE 12.19 (a) Two elements physically connected; (b) elements represented as finite elements/nodes.

53361.indb 317 3/11/09 10:48:51 AM

© 2009 by Taylor & Francis Group, LLC

318 Discrete-Event Modeling and Simulation

Equations (12.19) and (12.20) can be used as the updating rules for a Cell-DEVS model. Equation
(12.19) describes the heat conduction rule inside the material, specifying the middle node T1 tem-
perature as a function of its two adjacent nodes and constant material properties. Equation (12.20)
describes the middle node temperature as a function of adjacent nodes of fluid temperature T∞ and
inner node temperature T0 inside the material. This represents the case as at a convective boundary,
and T1 is the surface temperature. Every cell value would thus be a function of its right cell value,
its stored physical properties, its left cell value, and its left cell physical properties. Note that in the
case of having identical elements (same K and L), the updating rule for a cell’s temperature would
be a simple arithmetic mean of its two neighboring cell temperatures, as in the model discussed in
Chapter 5, section 5.5.).

Figure 12.20 shows an extended version of the example presented in Chandrupatla and Belegundu
[17]. Figure 12.20(a) represents a composite wall of three materials. The outer temperature is T0 =
20°C, and convection heat transfer takes place on the inner surface of the wall with temperature
T4 = 800°C and film coefficient h = 25 W/m2°C. We need to determine the temperature distribution
in the wall (i.e., on the surface of each layer). Composite layer lengths are L1 = 0.3 m and L2 = L3 =
0.15 m. Conductivities are K1 = 50 W/m°C, K2 = 25 W/m°C, and K3 = 20 W/m°C for layers numbered
1, 2, and 3, respectively.

We defined the complete Cell-DEVS model in CD++, which can be found in ./heatFEM.zip.
Figure 12.21 presents the model’s rule definition. The model represents each point of the tempera-
ture measure as in Figure 12.20, and the computing cells are those in the bottom row. Thus, cell
(0,0) represents fluid temperature T4 (T3 = (0,1), T2 = (0,2), T1 = (0,3), and T0 = (0,4)). Cells in row 1
store the physical properties corresponding to wall layers, and they are constant: cell (1,0) contains
h, (1,1) contains K3/L3, (1,2) contains K2/L2, (1,3) contains K1/L1, and (1,4) is not used. Cells (0,0) and
(0,4) contain constant temperature (boundary conditions). The model is initially loaded with values
representing material properties on row 0, boundary values in cells (1,0) and (1,4), and arbitrary
values in other cells.

The conduction-rule implements Equations (12.19) and (12.20). It also works for convection, as
it uses the film coefficient value instead of thermal conductivity at cells adjacent to fluid cells. The
constants define the updating rule for cells in row zero, while boundary defines the updating rule
for boundary cells.

In order to test the model, we execute the model until the cell values become stable, converging
to a solution for our problem. The resulting values would represent temperature distribution over the

T3

T2

T4 T3 T2 T1 T0

T1

T0
20°C

20°C

800°C

800°C

Row 1

Row 0

h K3/L3 K2/L2 K1/L1

0 1 2 3 4

3

(a)

(b)

2 1

T4, h

FIGURE 12.20 (a) Steady-state heat transfer through a composite wall; (b) the problem as a Cell-DEVS
space [20].

53361.indb 318 3/11/09 10:48:52 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 319

structure. The example presented in Figure 12.22 uses a temperature of 20°C inside the wall as the
initial value. The final step shows T3 = 304.75°C, T2 = 119.03°C, and T1 = 57.14°C, corresponding to
nodes’ temperatures.

Exercise 12.7

Initialize T3, T2, and T1 with temperatures of 3000°C. Analyze whether the results converge into the
final correct answer. Compare with the number of steps in Figure 12.22.

Exercise 12.8

Considered what happens when the hot fluid temperature T4 is 850°C.

Exercise 12.9

Initialize the cells with arbitrary values and repeat the experiments. Analyze the results.

FIGURE 12.21 CD++ rules for the heat transfer model.

Line : 29 - Time: 00:00:00:000
0 1 2 3 4

 +---+
0| 25.00000000 66.66666412 200.00000000 333.33334351 1.00000000|
1| 800.00000000 20.00000000 20.00000000 20.00000000 20.00000000|
 +---+

Line : 44 - Time: 00:00:00:001
0 1 2 3 4

 +---+
0| 25.00000000 66.66666412 200.00000000 333.33334351 1.00000000|
1| 800.00000000 232.72727966 20.00000000 20.00000000 20.00000000|
 +---+
...
Line : 473 - Time: 00:00:00:023

0 1 2 3 4
 +---+
0| 25.00000000 66.66666412 200.00000000 333.33334351 1.00000000|
1| 800.00000000 304.74679565 119.02681732 57.13505936 20.00000000|
 +---+

FIGURE 12.22 Simulation results for initial temperature = 20°C.

53361.indb 319 3/11/09 10:48:53 AM

© 2009 by Taylor & Francis Group, LLC

320 Discrete-Event Modeling and Simulation

12.5.2.2 Two-Dimensional Heat Transfer with Cell-DEVS
In this section, we will show how to expand the heat transfer model presented in the previous section
into a two-dimensional model [20]. In order to do so, we need to describe every cell’s local transi-
tion function as explained in the previous section. Let us consider the heat transfer model originally
presented in Chandrupatla and Belegundu [17]. This example represents a steady-state, two-dimen-
sional heat transfer in a bar of rectangular cross-section with thermal conductivity coefficient k =
1.5 W/m2°C. Two opposite sides are kept at constant temperature of 180°C; one side is insulated and
the other is exposed to a fluid with temperature of 25°C and convection heat transfer coefficient h =
50 W/m2°C. A graphical representation of the problem is depicted in Figure 12.23 [20,21].

A steady heat transfer without heat generation in the body in two dimensions is represented by
equations in the previous section and the following diffusion equation [17]:

k
T

x

T

y

2

2

2

2
0 (12.21)

To solve the preceding equation, we need to get the second derivative of the temperature gradi-
ent. To do so, we study a steady-state heat transfer in a long rod, as represented in Figure 12.24. In
this figure, we study a very small section of a one-dimensional rod. Points A, B, and C along the rod
have corresponding temperatures of T1, T2, and T3, respectively. Distances between points in the sec-
tion are as indicated in the figure. To get the temperature gradient along a small section, we assume
a linear temperature change in the x direction over the very small finite space ∆x:

T
x

T T
x

1 2 (12.22)

is the temperature gradient at point A and

T
x

T T
x

2 3 (12.23)

is the temperature gradient at point B. Thus, the temperature gradient at point C is

K = 1.5 W/m2°C

T = 25°C
h = 50 W/m2°C

T = 180°C

T = 180°C

0.6 m

0.4 m

Insulated
side

FIGURE 12.23 Steady-state heat transfer in a long bar [20].

53361.indb 320 3/11/09 10:48:54 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 321

2

2

1 2 2 3

T

x

T T
x

T T
x

x
TT T T

x
1 3 2

2

2
(12.24)

By applying the previous result in a two-dimensional space, we can approximate the solution of
the previous PDE as

k
T T T

a

T T T

a
1 3 0

2
2 4 0

2

2 2
00 (12.25)

From this we obtain

T1 + T2 + T3 + T4 – 4T0 = 0 (12.26)

This equation relates node temperatures of the grid, giving us the updating rule for an internal
node as

T
T T T T

0
1 2 3 4

4
(12.27)

We still need the updating rules for a point on the insulated surface and on the convective side of
the rod. Using a similar procedure, we can obtain

T
T T T

0
1 3 22

4
(12.28)

T
T T T Tf h a k

h a k
0

1 3 22 2
2

/ / /
/

(12.29)

We can apply a similar method to deduce Cell-DEVS model updating rules from finite elements.
The idea is to apply the equations of steady state heat transfer to a two-dimensional triangular finite
element. To do so, we used a linear change function of the field under study over the triangular ele-
ment. We used the triangular element depicted in Figure 12.25 (called constant strain triangular),
which was used historically to analyze body strain problems.

The element in Figure 12.25 has three nodes, each at a vertex of the triangle (containing tem-
perature values). Any internal point in the element as P is evaluated as a function of the values
of the three nodes. We use a linear function over the element for the field under study; that is,

x

x
x

FIGURE 12.24 Heat transfer in one dimension [20].

53361.indb 321 3/11/09 10:48:56 AM

© 2009 by Taylor & Francis Group, LLC

322 Discrete-Event Modeling and Simulation

Tp = N1T1 + N2T2 + N3T3, where N1, N2, and N3 are linear functions. In order to get the updating
rules for the Cell-DEVS model, we construct a mesh of elements to represent a recurring pattern
inside the structure under study, as in Figure 12.26.

The middle node 0 is shared among all the elements; thus, its value would be a function in
all other elements. By studying this structure, we would be able to deduce the updating rules for
node 0, which would then repeat for all similar internal nodes. Using similar techniques to the ones
explained in this and previous sections, we were able to find the equations corresponding to the
local rules of our Cell-DEVS model, which resembles the result obtained using the finite differences
method for an internal node:

T
T T T T

0
4

5 1 2 4 (12.30)

Figure 12.27 shows how to apply these equations to the model introduced in Figure 12.23. As
shown in Figure 12.27, we divide the bar into a grid of 6 × 4 (i.e., 7 × 5 nodes located at every
intersection in the grid). The updating rules we presented previously are used to model each node
on the grid.

Figure 12.28 represents the model definition in CD++, found in ./2dheatconduction.zip, consid-
ering that cells on constant temperature boundaries are initialized with a value of 180°C.

The conduction-rule uses Figure 12.27, defined previously. Likewise, Insulated-
Boundary uses Figure 12.28, and Convective uses Figure 12.29. When we executed this
model, we obtained the results shown in Figure 12.29. We can see that at the start of the simulation,
cells (0,0) to (0,4) and (6,0) to (6,4) all had a value of 180, and the rest of the cells had a value of 20.
At the end, cell values did not change. At this step, cell values would represent the solution of the
problem—namely, the temperature distribution though the bar.

X

Y

(x3, y3)

(x1, y1)

(x2, y2)

p

FIGURE 12.25 Triangular element.

53361.indb 322 3/11/09 10:48:57 AM

© 2009 by Taylor & Francis Group, LLC

X

Y

1
E3

E2
E1

E6
E5

E4

6

0

23

4

a

a

5

Figure 12.26  Internal mesh of triangular elements [20].

Models in Physics and Chemistry 323

12.5.3 LATTICE GAS MODELS

Hardy, de Pazzis, and Pomeau [22] introduced the HPP lattice gas automata model interaction
potential between particles in order to mimic molecular dynamics. Different lattice gas models
have been used in applications in chemistry (fluid phase separation, miscible fluids, viscosity) and
physics (colloids, optics, porous media analysis, hydrodynamics) [23], although other models have
been used in biology and medicine applications [1]. The idea is that a number of particles are placed
into a grid, with a fixed speed and mass. Particles interact through local instantaneous collisions,
conserving mass and momentum, as shown in Figure 12.30.

In each step, particles move to their nearest neighbors following their current direction. If there
is a chance of collision, particles change direction. As we can see in Figure 12.30, when particles

(6,0)

(5,0)

(1,0)

(0,0)
(0,4)

(1,4)

Insulated
Boundary

(6,4)

0.1 m0.1 m

(5,4)

h = 50 W/m2°C
Tr = 25°C

Constant
Temperature

of 180°C

Constant
Temperature

of 180°C

FIGURE 12.27 7 × 5 node grid of finite differences [20].

[heatcond]
type : cell dim : (7,5)
delay : transport border : nowrapped
neighbors : (-1,0) (0,0) (0,1) (1,0) (0,-1)
localtransition : conduction-rule
zone : Insulated-Boundary { (1,0)..(5,0) }
zone : Constant-Temp { (0,0)..(0,4) }
zone : Constant-Temp { (6,0)..(6,4) }
zone : Convective { (1,4)..(5,4) }

[conduction-rule]
rule : { ((0,1)+(-1,0)+(0,-1)+(1,0)) / 4 } 1 { t }

[Insulated-Boundary]
rule : {((-1,0)+(1,0)+2*(0,1)) / 4} 1 {t}

[Constant-Temp]
rule : {(0,0)} 1 {t}

[Convective] % Fluid temperature: 25, and h.a/k is (10/3)
rule : {(((1,0)/2)+((-1,0)/2)+(0,-1)+ (25 * (10/3)))/(2 + (10/3)) } 1 {t}

FIGURE 12.28 Model definition in CD++ for 7 × 5 node grid.

53361.indb 323 3/11/09 10:48:58 AM

© 2009 by Taylor & Francis Group, LLC

324 Discrete-Event Modeling and Simulation

are isolated, they keep their current direction, and whenever they collide, they change direction to
the opposite diagonal.

Lattice gas models are usually implemented using a Margolus neighborhood, which was intro-
duced in Chapter 3 (we use one block of cells in each simulation step, and we switch to a different
block in the next). The lattice gas model defines a mechanism for the uniform movement of the par-
ticles. These particles are identical and move at the same speed. Energy must be conserved; thus, the
number of particles in the model should be constant. Figure 12.31 shows a description of the rules
we used for the lattice gas model we defined.

The first and last rules define nonchanging cells’ behavior. The remaining ones define diag-
onal movement and collision detection. In order to build a Cell-DEVS model with a Margolus

FIGURE 12.29 Results for 7 × 5 node grid of finite differences.

FIGURE 12.30 HPP lattice gas particle behavior.

FIGURE 12.31 Rules for the HPP gas model.

53361.indb 324 3/11/09 10:48:59 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 325

neighborhood, we used a three-dimensional model, in which plane 0 was used to model the desired
behavior and plane 1 was used to determine which neighbors are used on each step (i.e., those in
the even/odd grid). We used Moore’s neighborhood in the two planes. Figure 12.32 represents the
implementation of this model in CD++, found in ./HPP.zip.

As we can see, the model is a three-dimensional lattice of 40 × 40 × 2 cells. The cells take the
value of their opposite neighbor in a diagonal direction, as dfined in Figure 12.30. The following
rules in the figure define, for each of the four cells, which value to take and when.

The model’s rules show that we evaluate the rules in two different ways, according to the current
position of the cell and the simulation step. In one case, we check whether the cell is on an even
row and column; in this case, we evaluate the neighbors in line with the even grid. In the second
case, the cell is on an odd row or column, and we analyze the neighbors in line with the odd grid. In
either of the two cases, the cell takes the value of the neighbor (1,1,0), as we can see in Figure 12.33.
Using the even and odd functions allows us to determine the parity of a given value combined with
the cellpos function, which allows us to determine the position of a cell in any plane. For instance,
the first rule checks whether we are on an even row or column and whether the cell on top of it is
empty (which means we are using the even grid). If that is not the case, we see whether we are on
an odd row or column and using the odd grid ((0,0,1) = 1). In either of these cases, the cell will tack
the value of the cell to the SE. The rules in Figure 12.33 are symmetric for movement from the NW.
The last two rules deal with collisions.

The next rules use the same idea, but a different cell is evaluated. The last rules in the model
switch the values of the lower plane, which is used to determine which grid we are using (if the

FIGURE 12.32 Implementing the HPP gas model.

Even grid

Odd grid

2 1

2
1

Value of the neighbor
in position (1,1,0)

(opposed diagonal)

2 1

2
1

3

33

3

 (a) (b)

FIGURE 12.33 (a) Cell in a position with even row and column position, in line with the even grid; (b) cell
in a position with odd row or column, in line with the odd grid.

53361.indb 325 3/11/09 10:49:01 AM

© 2009 by Taylor & Francis Group, LLC

326 Discrete-Event Modeling and Simulation

value is zero, we consider the cells aligned with the even cell; if the value is one, we use the cells
aligned with the odd cell).

12.6 A THREE-DIMENSIONAL MODEL OF VIRTUAL CLAY

Representation of solid three-dimensional objects usually requires using restrictive geometrical
operations, and they are usually based on strict physical models, such as finite element methods,
methods based on elasticity theory, and applications of particle systems. All these methods and
applications need considerable time for computing deformations according to the laws, and human
interactions are not permitted, especially for complex shapes.

Instead, it has been proposed to represent three-dimensional objects as clay that can be freely
deformed, in order to understand problems on three-dimensional objects [24–26]. Some of the ongo-
ing efforts considering volume sculpting in a three-dimensional virtual space use a discretization
of the space in two- or three-dimensional cells. Arata and colleagues [25] used three-dimensional
cellular automata (CA) to simulate plastic deformations of clay, and each cell is allocated a finite
state automaton, which is given the simple distribution rules of the virtual clay instead of compli-
cated physical laws. An extension presented in Druon, Crosnier, and Brigandat [26] includes new
repartition algorithms. We will show how to model such a three-dimensional free-form object using
Cell-DEVS based on the state transition rules presented in Arata et al. [25]. This model, originally
presented in Wu, Wu, and Wainer [27] and found in ./plastic.zip, describes effectively the behavior
of a free-form object: compression (from outside) and deformation (from inside).

In virtual clay models, three-dimensional object deformation is considered as a physical process
that equally distributes the virtual clay to the adjacent areas. A threshold is associated with the
deformation of the object; when the density is under the threshold, the object keeps its shape. If
a portion receives an external force, its density changes; if the density is above the threshold, the
object is deformed and clay is transported from high-density to low-density portions. However,
the total mass of the clay should be conserved.

Arata and colleagues [25] define the model using a Margolus neighborhood and the following
rules for each block:

[Step A] For each cell i whose state is 1,
dmi = mi ; and
mi = mi – dmi.

[Step B] For each cell j whose state is 0,
mj = mj + ((dm1 + dm2 +…+ dmt)/n)

where is a constant rate for distribution (0 < < 1), t is the number of cells over threshold and n
is the number of cells under threshold. Here, we denote the state of a cell as one if its virtual clay is
over the threshold. Otherwise, the state is zero. The value dmi represents the excess of clay in cell i,
which will be distributed to the neighboring cells. From these two steps, we can see that the total
mass of virtual clay within a block is conserved during the state transitions. Figure 12.34 illustrates
the transition rules in two dimensions.

The deformation of a virtual clay object is based on a push operation. The clay is transported
from a cell into the adjacent ones along the direction of pushing. The surface of a virtual clay object
can be pushed at most one cell in depth per step, as seen in Figure 12.35.

We used Cell-DEVS to simulate the behavior of a three-dimensional free-form object built as an
extension to the rules in two dimensions. Figure 12.36 illustrates the three-dimensional Margolus
neighborhood we used, in which the nearest eight cells make one block. The values in each cell
represent the mass of that cell. A cell with a value of zero means this cell is out of the object, and
a positive value means the cell is within the object. The final state contains the free-form object in
stable state after deformation. The transition procedure is done in two stages:

53361.indb 326 3/11/09 10:49:01 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 327

Deformation: If there are cells with density over the threshold, the deformation transition
rules are applied.
Compression: We assume that there is a moving plate and the virtual clay next to the plate
is transferred from a cell into the adjacent cell along the direction of pushing. In the model,
this plate is handled as a dummy plate with each cell having a value of zero, staying right
on top of the object.

During the transition procedure, each cell uses its different neighbors at odd and even steps. The
neighborhood of each cell is identified according to its location in the block. Meanwhile, each cell
has different transition policies for the deformation and compression stages. Therefore, we used a
four-dimensional Cell-DEVS model, in which each three-dimensional hyperplane of (x, y, z) repre-
sents a set of state variables and the fourth dimension is a control variable, as follows:

Cube 0 (x, y, z, 0) represents the free-form object.
Cube 1 (x, y, z, 1) defines the odd or even step so that each cell in cube 0 can identify its
Margolus neighborhood.
Cube 2 (x, y, z, 2) is used for control. Compression will be performed if (x, y, z, 2) = 1 and
deformation if cell (x, y, z, 2) = 0.

53361.indb 327 3/11/09 10:49:02 AM

© 2009 by Taylor & Francis Group, LLC

Cell over threshold Cell under threshold

Figure 12.34  Two-dimensional block patterns.

Moving plate
A push operation

(a) Initial state (b) After one step

Cell over threshold

Cell under threshold

Figure 12.35  Push operation by a moving plate.

Objective cell

Neighborhood (odd step)

Neighborhood (even step)

Figure 12.36  Three-dimensional Margolus neighborhood.

328 Discrete-Event Modeling and Simulation

The definition of this Cell-DEVS coupled model using CD++ is illustrated in Figure 12.37 and
found in ./3dFreeForm.zip. This model uses three cubes of 10 9 12 each. The cell’s deformation
phase uses the following rules:

1. Perform deformation if cell (0, 0, 0, 2) = 0 and this cell is on cube 0.
2. Perform compression if cell (0,0,0,2) = 1 and this cell is on cube 0.
3. Even/odd step alternates if cell (0, 0, 0,1) = 0 and this cell is on cube 1.
4. Deformation/compression control alternates if this cell is on cube 2.

The deformation stage involves activating different rules at odd and even steps, in which we
decide the different neighbors from which the objective cell receives clay or to which it distributes
clay. Only cube 0 (x, y, z, 0) performs the deformation transition; cube 1 (x, y, z, 1) helps to judge
whether the cell in cube 0 changes in the odd or in the even step. Cube 2 (x, y, z, 2) identifies the
deformation stage. In Figure 12.38 we show the mechanism to select the Margolus block. The origin
cell is colored in gray and its neighbors are defined according to the coordinates shown in the figure.
We repeat the procedure for other cells in the same Margolus block to obtain the neighbors of each
objective cell in the same hyperplane.

[plastic]
dim : (10,9,12,3) delay : transport
border : nowrapped
neighbors:(-1,-1,-1,0)(-1,0,-1,0)(-1,1,-1,0)(0,-1,-1,0)(0,0,-1,0)(0,1,-1,0)

(1,–1,–1,0)(1,0,-1,0)(1,1,-1,0)(-1,-1,0,0)(-1,0,0,0)(-1,1,0,0)
localtransition : deformation-rule

[deformation-rule]
...

[compression-rule]
%plate moving. step 1: add the first row to the second row
rule : {(0,0,0,0)+(0,0,1,0)} 100 {(0,0,0,2)=1 and cellpos(3)=0 and cellpos(0)>0 and

cellpos(0)<9 and cellpos(1)>0 and cellpos(1)<8 and cellpos(2) <10 and
((-1,-1,2,0)+(-1,0,2,0)+(-1,1,2,0)+(0,-1,2,0)+(0,0,2,0) +(0,1,2,0)+(1,-1,2,0)+(1,0,2,0)
+(1,,1,2,0))=0 and ((-1,-1,1,0)+(-1,0,1,0)+(-1,1,1,0)+(0,-1,1,0)+(0,0,1,0)+(0,1,1,0)
+(1,-1,1,0)+(1,0,1,0)+(1,1,1,0))>0 }

%step2 :change the first row to 0, the plate has moved one step further
rule : 0 100 {(0,0,0,2) = 1 and cellpos(3)=0 and cellpos(0)>0 and cellpos(0)<9 and

cellpos(1)>0 and cellpos(1)<8 and cellpos(0) < 11 and ((-1,-1,1,0)+ (-1,0,1,0)+(-
1,1,1,0)+(0,-1,1,0)+(0,0,1,0) +(0,1,1,0)+(1,-1,1,0) +(1,0,1,0)+(1,1,1,0))=0 and ((-1,-
1,0,0)+(-1,0,0,0)+(-1,1,0,0)+(0,-1,0,0) +(0,0,0,0)+(0,1,0,0)+(1,-1,0,0)
+(1,0,0,0)+(1,1,0,0))>0}

%plate moving
rule : 1 100 {(0,0,0,1)=0 and cellpos(3)=1 and (0,0,0,0)=0 }
rule : 0 100 {(0,0,0,1) = 0 and cellpos(3)=1 and (0,0,0,0)=1} %alternate Margolus neighborhood
rule : 1 3000 { cellpos(3)=2 and (0,0,0,0)=0 }
rule : 0 100 {cellpos(3)=2 and (0,0,0,0)=1}

FIGURE 12.37 Cell-DEVS coupled model specification in CD++.

X

Y

Z
(0,0,0,0) (1,0,0,0)
(0,1,0,0) (1,1,0,0)

(0,0,–1,0) (1,0,–1,0)
(0,1,–1,0) (1,1,–1,0)

(0,0,0,1)

(0,0,0,2)

Neighbor in Plane 1

Neighbor in Plane 2Margolus Neighborhood in Plane 0

FIGURE 12.38 A cell and its neighborhood definition at the deformation stage.

53361.indb 328 3/11/09 10:49:03 AM

© 2009 by Taylor & Francis Group, LLC

Models in Physics and Chemistry 329

The pair < (x,y,z,0), (x,y,z,1) > defines the step (odd or even). The neighbor on cube 0 is described
in the figure, and its value, together with the values of all the neighbors in the same Margolus block,
can be used to decide which transition rule should be applied. The deformation rules can be general-
ized as follows:

Cells gain clay from neighbors on hyperplane (x,y,z,0) if (0,0,0,2) = 0, (0,0,0,0) is below the
threshold and at least one neighbor is above the threshold.
Cells distribute clay to neighbors on hyperplane (x,y,z,0) if (0,0,0,2) = 0, (0,0,0,0) is above
the threshold and at least one neighbor is under the threshold.

Similar to deformation, compression only takes place on cube 0. Cube 2 controls when compres-
sion occurs: only when cell (x, y, z, 2) = 1. During compression, the clay in the cells right under the
moving plate is transferred into the adjacent cells along the direction of pushing. The moving plate
is represented by a set of cells with values of zero sitting on the top of the object. We assume the
plate moves down along the z-axis as shown in Figure 12.39. For each cell (x, y, z, 0), if all neigh-
boring cells (–1,–1,2,0), (–1,0,2,0), (–1,1,2,0), (0,–1,2,0), (0,0,2,0), (0,1,2,0), (1,–1,2,0), (1,0,2,0), and
(1,1,2,0) are zero and at least one of the neighbor cells (–1,–1,1,0), (–1,0,1,0), (–1,1,1,0), (0,–1,1,0),
(0,0,1,0), (0,1,1,0), (1,–1,1,0), (1,0,1,0), and (1,1,1,0) is greater than zero, the cell should gain all clay
in its neighbor (0,0,1,0).

Cube 2 controls the deformation and compression stages. The value of each cell cube 2 switches
between 0 (deformation) and 1 (compression). We assume that the transport delay of performing a
compression step is 3,000 ms (30 times longer than a deformation). The transition rule for the con-
trol cube is as follows:

S 1 if cell (0,0,0,1) = 0 and cell (0,0,0,0) = 0 and the cell itself is on cube 1.
S 0 if cell (0,0,0,1) = 0 and cell (0,0,0,0) = 1 and the cell itself is on cube 1.
S 1 if cell (0,0,0,0) = 0 and the cell itself is on cube 2.
S 0 if cell (0,0,0,0) = 1 and the cell itself is on cube 2.

Figure 12.40 shows some of the results obtained. We studied each cell at different time steps
(compression or deformation), as well as the total mass of the object. We found that the total mass
(represented by cells in cube 0) was conserved for every transition. Figure 12.40 shows several
steps during the transition process, which includes the initial state, first three compression steps,
and some related deformation steps. Part (b) shows the immediate result after the first compression.
Parts (c) and (d) show the object deformation. In part (d), a stable state is reached. Parts (e) to (i)
show the repartition of clay after the second and third compression steps.

X

Y

Z

(0,0,0,2)

Neighbor in Plane 2Pushing direction

(0,0,2,0) (1,0,2,0)
(0,1,2,0) (1,1,2,0)

Neighbors in Plane 0

(0,–1,2,0) (1,–1,2,0)

(–1,0,2,0)
(–1,1,2,0)

(–1,–1,2,0)

(0,0,0,0)

(0,0,1,0) (1,0,1,0)

(0,1,1,0) (1,1,1,0)

(0,–1,1,0) (1,–1,1,0)

(–1,0,1,0)

(–1,1,1,0)

(–1,–1,1,0)

FIGURE 12.39 A cell and its neighbor definition at the compression stage.

53361.indb 329 3/11/09 10:49:04 AM

© 2009 by Taylor & Francis Group, LLC

330 Discrete-Event Modeling and Simulation

12.7 SUMMARY

In this chapter, we have presented different models in chemistry and physics using Cell-DEVS. An
advantage of this approach is that these real systems are often composed of continuous and dis-
crete components interacting together. This dictates the need to integrate both models and simulate
their global behavior. DEVS provides means for modeling discrete event systems, and Cell-DEVS
enables modeling of different spatial systems. We described varied models on diffusion and reac-
tion. We then introduced a model on snowflake formation and another one on binary solidification.
We discussed how to model wave interference and a model of an FIA manifold. We also introduced
a method for mapping problems modeled by partial differential equations and solved by finite differ-
ences, or FEM, into a Cell-DEVS specification. Finally, we introduced some models using Margolus
neighborhoods: an HPP lattice gas model and a three-dimensional model of virtual clay.

Numerous other models can be found in the repository, including heat-spreading models
(./2dheat_diffusion.zip), a model of power dissipation in circuits (./powerdissipation.zip), a model of
the linear response of a truss system (./Truss.zip), a cellular model of a mass–spring–damper system
(./mks.zip), and a quantum dot majority vote device (./3inDelayedMajorityVoteGate.zip).

FIGURE 12.40 The deformation of the free-form object using Cell-DEVS.

53361.indb 330 3/11/09 10:49:05 AM

© 2009 by Taylor & Francis Group, LLC

(a) Initial state (b) Compression (c) Deformation

(d) Deformation, stable (e) Second compression (f) Deformation, stable

(g) Third compression (h) Deformation (i) Deformation, stable

Models in Physics and Chemistry 331

REFERENCES

1. Wolfram, S. 2002. A new kind of science. Champaign, IL: Wolfram Media.
2. Wolfram, S. 1986. Theory and applications of cellular automata, vol. 1. Singapore: World Scientific.
3. Toffoli, T., and N. Margolus. 1987. Cellular automata machines: A new environment for modeling.

Cambridge, MA: MIT Press.
4. Ding, W., X. Wu, L. Checiu, C. Lin, and G. Wainer. 2005. Definition of cell-DEVS models for complex

diffusion systems. Proceedings of Summer Computer Simulation Conference, Philadelphia, PA.
5. Halsey, T. C. 2001. Diffusion-limited aggregation: A model for pattern formation. Physics Today 54.
6. Weimar, J. 2002. Three-dimensional cellular automata for reaction diffusion systems. Fundamenta

Informaticae 52:275–282.
7. Checiu, L., and G. Wainer. 2005. Experimental results on the use of M/CD++. Proceedings of Summer

Computer Simulation Conference, Philadelphia, PA.
8. Gaylord, R. J., and K. Nishidate. 1996. Modeling nature. New York: Springer–Verlag.
9. Reiter, C. 2005. A local cellular model for snow crystal growth. Chaos, Solitons & Fractals

23:1111–1119.
10. Kremeyer, K. 1997. Experimental and computational investigations of binary solidification. PhD thesis,

Department of Physics, University of Arizona, Tucson, AZ.
11. Ameghino, J., and G. Wainer. 2004. Application of the cell-DEVS formalism for modeling cell spaces.

Proceedings of Artificial Intelligence, Simulation and Planning 2004, LNCS 3397, Jeju Island, Korea.
12. Nutaro, J. 2006. A discrete event method for wave simulation. ACM Transactions Model Computer

Simulation 16:174–195.
13. Andrade, F. J., F. A. Iñón, M. B. Tudino, and O. E. Troccoli. 1999. Integrated conductimetric detection:

Mass distribution in a dynamic sample zone inside a flow injection manifold. Analytica Chimica Acta
379:99–106.

14. Troccoli, A., J. Ameghino, F. Iñón, and G. Wainer. 2002. A flow injection model using cell-DEVS.
Proceedings of 35th IEEE/SCS Annual Simulation Symposium, San Diego, CA.

15. Wainer, G., and B. P. Zeigler. 2000. Experimental results of timed cell-DEVS quantization, AI and simu-
lation. AIS 2000, Tucson, AZ, 203–208.

16. Zeigler, B. P. 1998. DEVS theory of quantization. Technical report, DARPA Contract N6133997K-0007,
ECE Dept., the University of Arizona, Tucson, AZ.

17. Chandrupatla, T., and A. Belegundu. 1997. Introduction to finite elements in engineering. Upper Saddle
River, NJ: Prentice Hall.

18. Brauer, J. 1988. What every engineer should know about finite element analysis. New York: Marcel
Dekker, Inc.

19. Saadawi, H., and G. Wainer. 2003. Improving the finite element method using cell-DEVS. Proceedings
of 2003 SCS Summer Computer Simulation Conference, Montreal, QC, Canada.

20. Saadawi, H., and G. Wainer. 2007. Defining models of complex 2D physical systems using cell-DEVS.
Simulation Modeling Practice and Theory 15:1268–1291.

21. Saadawi, H., and G. Wainer. 2004. Modeling complex physical systems using 2D finite element cell-DEVS.
Proceedings of MGA, Advanced Simulation Technologies Conference 2004 (ASTC’04), Arlington, VA.

22. Hardy, J., O. de Pazzis, and Y. Pomeau. 1976. Molecular dynamics of a classical lattice gas: Transport
properties and time correlation functions. Physical Review A 13:1949–1961.

23. Rothman, D. A., and S. Zaleski. 2004. Lattice-gas cellular automata: Simple models of complex hydro-
dynamics (Collection Alea-Saclay: Monographs and texts in statistical physics). Cambridge: Cambridge
University Press.

24. Kameyama, K. 1997. Virtual clay modeling system. Proceedings of VRST ’97: Proceedings of the ACM
Symposium on Virtual Reality Software and Technology, Lausanne, Switzerland, 197–200.

25. Arata, H., Y. Takai, N. K. Takai, and T. Yamamoto. 1999. Free-form shape modeling by 3D cellular
automata. Proceedings of SMI. International Conference on Shape Modeling and Applications, Aizu,
Japan, 242–247.

26. Druon, S., A. Crosnier, and L. Brigandat. 2003. Efficient cellular automata for 2D/3D free-form model-
ing. Proceedings of WSCG. 11th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision 2003, Plzen-Bory, Czech Republic.

27. Wu, P., X. Wu, and G. A. Wainer. 2004. Applying cell-DEVS in 3D free-form shape modeling. Proceedings
of Cellular Automata, 6th International Conference on Cellular Automata. ACRI 2004; Lecture Notes in
Computer Science, Amsterdam, 81–90.

53361.indb 331 3/11/09 10:49:05 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

333

13 Models of Artificial
Systems, Networking,
and Communications

13.1 INTRODUCTION

Discrete-event simulation methodologies were originally created to model artificial systems like the
ones we will introduce in this chapter. As shown in Chapter 2, many existing artificial systems can
be modeled as having I/O trajectories that are piecewise constant. Here, we will show a number of
examples in this area. We first show a load-balancing system model. Then we introduce Alpha-1, a
simulated digital computer based on the architecture of the SPARC processor. We then define mod-
els on robot path planning and a digital controller for a time-varying plant. We include a specialized
library for modeling and simulation of networking and communications, including data generators,
internetworking devices, and wireless ad hoc networks.

13.2 A LOAD-BALANCING SYSTEM

Our first example presents a simplified model of a database system in which the system distrib-
utes the workload among three servers accessing a common database. The load balancer receives
jobs from clients and dispatches them to the servers for processing using a round-robin selection
algorithm; they are dispatched using a fixed time for each incoming job. Each server processes a
job from the balancer for a period (using an exponential distribution) and then sends the job to the
database server for processing. The database takes a fixed time for processing each job and returns
the response to the originating server. If the balancer, the servers, or the database server are busy,
the job is queued. A job will also be queued if the server is waiting for a response from the database
server.

The model in Figure 13.1 shows how to reuse predefined models in CD++. The generator model
is the one introduced in Chapter 4, and the server model is based on the queue model presented in
Chapter 4. The dbserver is also a modified version that queues job requests and, according to the
input source, transmits the output to the corresponding output port. Figure 13.2 shows the imple-
mentation of the balancer model in CD++, found in ./loadbalancer.zip.

The model in Figure 13.2 uses one input and three output ports. Initially, we clear the queue
of jobs, and we obtain the dispatchTime for the component (which must be included by the user
in the coupled model file definition) using the getParameter method. When a new job is received
in the external transition function, we obtain its job ID and add it to the job queue. We then check
to see if this is the only job in the queue. In such a case, we dispatch it immediately, taking it from
the front of the queue and scheduling an internal event after the dispatch time. When that time is
consumed, we first generate an output representing the chosen server by taking the ID of the first job
in the queue and transmitting it through the corresponding output port (1–3). The internal transition
checks whether more jobs are waiting and, in such a case, dispatches the new job. Otherwise, the
model passivates, waiting for new jobs to arrive.

53361.indb 333 3/11/09 10:49:05 AM

© 2009 by Taylor & Francis Group, LLC

334 Discrete-Event Modeling and Simulation

Exercise 13.1

Change the dispatch policy. Use a priority queue (ports with higher numbers have higher priority) and a
Last In, First Out policy. Compare the simulation results obtained in the three cases.

Exercise 13.2

Add a new input port carrying information about priority for each job. Transmit the job ID with a prior-
ity ID. Modify the models to allow this modification and run the simulation again, comparing with the
results obtained in Exercise 13.1.

After each atomic model has been created, we define a coupled model using the description in
Figure 13.1. The model can be formally defined as

LBS = < X, Y, {balancer, server1, server2, server3, dbserver}, EIC, EOC, IC, select > (13.1)

where
X = { in }
Y = { out }
EIC = { (in, balancer.in) }
EOC = { (server1.out, LBS.out), (server2.out, LBS.out), (server3.out, LBS.out) }
IC = { (balancer.out1, server1.in), (balancer.out2, server2.in), (balancer.out3, server3.in),

(server1.db, dbserver.in), (server2.db, dbserver.in), (server3.db, dbserver.in), (dbserver.
out1, server1.done), (dbserver.out2, server2.done), (dbserver.out3, server3.done) }

select: ({balancer, server1, dbserver}) = dbserver; ({balancer, server2, dbserver}) = dbserver
({balancer, server3, dbserver}) = dbserver; ({balancer, server1}) = server1
({balancer, server2}) = server2; ({balancer, server3}) = server3

Figure 13.3 shows a graphical representation for the top-level coupled model using CD++Modeler.
When this model is executed, the results in Figure 13.4 are obtained. When job 1 is received at time
1:000, it is immediately dispatched. After four time units, it is transmitted to Server2, which pro-
cesses it and transmits it to the database server. Five time units after that, the job is sent back to
Server2, and it finishes. The second job arrives at 20:000, and it is transmitted to Server3. One time
unit after that, a new job arrives (job 3). The balancer dispatches job 2 after receiving and queuing

Out3

In

Out2

Out1

db

Done

db

Done

db

OutBalancer

Server3

Server2

Server1

Generator
Out In

dbserver

Done

InOut2

In1Out1

InOut3

Out

Out

LBS

TOP

Out

FIGURE 13.1 Structure of the load-balancing system.

53361.indb 334 3/11/09 10:49:06 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 335

job 3 (at 24:000). Running the load balancer simulation with different arguments produces the
results shown in the following table:

Mean (s) No. Jobs Generated No. Jobs Finished Throughput (job/second)

2 9031 1841 0.102

5 3645 1824 0.101

10 1870 1755 0.098

15 1157 1157 0.064

20 811 811 0.045

The table shows different results for various values of the mean interarrival time for the generator
(which is exponentially distributed; that is, the lower the mean is, the faster the generator generates
jobs). In this test, the dispatching time for the balancer is fixed at 4 s, and the processing time for the

Balancer::Balancer(const string &name): Atomic(name),
in(addInputPort("in")), out1(addOutputPort("out1")), out2(addOutputPort(

"out2")),
out3(addOutputPort("out3")), dispatchTime(0, 0, 0, 010) {

string time(MainSimulator::Instance().getParameter(description(), "dispatch")) ;
if(time != "") dispatchTime = time ;

}

Model &Balancer::initFunction() {
job_queue.erase(job_queue.begin(), job_queue.end()) ;
return *this ;

}

Model &Balancer::externalFunction(const ExternalMessage &msg) {
int new_pid = (int) msg.value();
job_queue.push_back(msg.value()) ;

if(job_queue.size() == 1) { // if this is the only job in the queue, start
dispatching

int pid = (int) job_queue.front();
holdIn(active, dispatchTime);

}
}

Model &Balancer::internalFunction(const InternalMessage &msg) {
 // if there is any job in the queue, start dispatching
 if (job_queue.size() > 0) {
 int pid = (int) job_queue.front();
 holdIn(active, dispatchTime);
 }
 else
 passivate();
 return *this ;

}

Model &Balancer::outputFunction(const InternalMessage &msg) {
int pid = (int) job_queue.front();

if (pid % 3 == 0) // round-robin dispatching
sendOutput(msg.time(), out1, pid) ;

 else if (pid % 3 == 1)
 sendOutput(msg.time(), out2, pid) ;
 else

 sendOutput(msg.time(), out3, pid) ;

job_queue.pop_front() ;

FIGURE 13.2 Load balancer atomic model.

53361.indb 335 3/11/09 10:49:07 AM

© 2009 by Taylor & Francis Group, LLC

336 Discrete-Event Modeling and Simulation

database server is fixed at 5 s. The processing time for each server is exponentially distributed with
a mean of 20 s, and the simulation time is 5 h. The testing results indicate that the system throughput
increases as the job arrival rates increase (for the means of 20, 15, and 10 s). However, as the rate
increases further (for the means of 5 and 2 s), the system throughput remains almost stable, because

FIGURE 13.3 Load-balancing system top model.

00:00:01:000 / in / 1.00000
00:00:20:000 / in / 2.00000
00:00:21:000 / in / 3.00000
00:00:01:000 Balancer receives job# 1
00:00:01:000 Balancer starts dispatching job# 1
00:00:05:000 Balancer sends job# 1 to server 2
00:00:05:000 Server 2 receives job# 1
00:00:05:000 Server 2 starts processing job# 1
00:00:05:820 Server 2 sends job# 1 to database server.
00:00:05:820 DBServer receives a job from server 2
00:00:05:820 DBServer starts processing job from server 2
00:00:10:820 DBServer sends job back to server 2
00:00:10:820 Number of jobs done = 1 *******
00:00:10:820 Server 2 finishes job# 1
00:00:20:000 Balancer receives job# 2
00:00:20:000 Balancer starts dispatching job# 2
00:00:21:000 Balancer receives job# 3
00:00:24:000 Balancer sends job# 2 to server 3
00:00:24:000 Balancer starts dispatching job# 3
00:00:24:000 Server 3 receives job# 2
00:00:24:000 Server 3 starts processing job# 2
00:00:25:000 Balancer receives job# 4

FIGURE 13.4 Load-balancing system simulation results.

53361.indb 336 3/11/09 10:49:07 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 337

the servers become performance bottlenecks when the rate reaches a certain value. Such results are
consistent with that of the real load-balancing system.

Exercise 13.3

Repeat the global test for the policies introduced in Exercises 13.1 and 13.2. Compare the simulation
results obtained in the three cases.

13.3 THE ALPHA-1 SIMULATED PROCESSOR

This model was originally created as an educational tool to support the theoretical studies of com-
puter architecture and organization. Although most of the bibliographies for these courses focus on
the behavior of the logical subsystems of a computer (e.g., references 1–3), there is a lack of practice
opportunities due to the complexity of the subsystems and their interactions. In order to support the
learning experience, we defined a simulated computer with educational purposes [4–6]. To show the
feasibility of the approach, the project was fully developed by a team of more than 20 undergraduate
students as a part of their coursework. The model’s architecture is mainly based in the specification
of the integer unit (IU) of the SPARC processor by Sun Microsystems, with a few simplifications in
the instruction set and the memory management unit (Figure 13.5).

The simulated memory is flat, and multiprogramming is not supported. Memory addressing
uses two registers: base and size, which define the memory space for one program. The REGFILE
component contains 520 general-use (integer) registers organized as a ring. They are divided into

INTEGER UNIT
Data Path

REGFILE

ALU

MUXMUX

M
U

X
4

ALIGNS

LATCH

LATCH

DATAout DATAin

SP REGS

nPC

PC

ADD

MUX4

INC4

ADDRESS

IR

ADDRESSout

MUX

PC

ALIGNL

FIGURE 13.5 Sketch of the simulated integer unit.

53361.indb 337 3/11/09 10:49:09 AM

© 2009 by Taylor & Francis Group, LLC

338 Discrete-Event Modeling and Simulation

three classes: 8 global (shared by all the procedures) and 512 organized in 64 windows of 24 input,
output, and local registers for each procedure. When a procedure is started, 16 new registers are
reserved (8 local and 8 output), and the 8 output records of the calling procedure are used as input
registers, as seen in Figure 13.6.

A specialized 5-bit register, called the CWP (circular window pointer), marks the active win-
dow into the register array. The 32-bit WIM register (window invalid mask) is used to avoid the
superposition with a register window already used by a procedure. When the CWP is decreased,

53361.indb 338 3/11/09 10:49:09 AM

© 2009 by Taylor & Francis Group, LLC

Global
Registers

Callee Caller

%g7 (%r7) CWP = 7 %o0 (%r8)
%g6 (%r6) %o1 (%r9)
%g5 (%r5) %o2 (%r10)
%g4 (%r4) %o3 (%r11)
%g3 (%r3) %o4 (%r12)
%g2 (%r2) Callee’s %o5 (%r13)
%g1 (%r1) %o6 (%r14) %sp
%g0 (%r0) Window %o7 (%r15)

%l0 (%r16)
%l1 (%r17)
%l2 (%r18)
%l3 (%r19)
%l4 (%r20)
%l5 (%r21)
%l6 (%r22)
%l7 (%r23)

CWP = 8 %i0 (%r24) %o0 (%r8)
%i1 (%r25) %o1 (%r9)
%i2 (%r26) %o2 (%r10)
%i3 (%r27) %o3(%r11)
%i4 (%r28) %o4 (%r12)
%i5 (%r29) %o5 (%r13)
%i6 (%r30) %fp %o6 (%r14) %sp
%i7 (%r31) %o7 (%r15)

%l0 (%r16)
%l1 (%r17)
%l2 (%r18)
%l3 (%r19)

Caller’s %l4 (%r20)
%l5 (%r21)

Window %l6 (%r22)
%l7 (%r23)
%i0 (%r24)
%i1 (%r25)
%i2 (%r26)
%i3 (%r27)
%i4 (%r28)
%i5 (%r29)
%i6 (%r30) % fp

%i7 (%r31)

 Overlap

fIguRe 13.6 Register windows.

Models of Artificial Systems, Networking, and Communications 339

the hardware verifies whether the WIM of the new window is on. In this case, an interrupt is raised.
Usually, the WIM has all the bits off, except for a bit in 1 that signals the oldest window.

Other registers include:

Y: used by the product and division operations;
TBR (trap base register): points to the memory address where the trap routine starts;
BASE and SIZE: BASE points to the lower address that the program can access, while
SIZE stores the length;
PSR (processor status register): stores the present status for the program;
PC (program counter): contains the address of the next instruction; and
nPC (next program counter): stores the address for the following PC (nPC = PC + 4).

Each of the components of the integer unit architecture was defined as a DEVS model, and the
complete IU was modeled as a coupled model. Two levels of abstraction were defined: the func-
tional behavior using the atomic model transition functions, and the digital logic level (in some of
the submodels) by developing the basic Boolean gates as atomic models and coupling them using
digital logic concepts. For instance, the WIMCHECK model in Figure 13.7 is in charge of checking
window overflow (underflow) on save (restore) operations in the register window.

WIMCHECK (presented in Wainer et al. [6] and found in ./alfa1.zip) uses a five-line input
decoder and a latch to keep the last result (as the present state should not be transmitted if it has not
changed). We store the values received through the WIM and CWP ports (WIM0-WIM31; CWP0-
CWP4).

The external transition function is in charge of setting/clearing the corresponding bit of the WIM
and CWP registers according to the messages received through the model’s input ports (Figure 13.8).
The timing information for the circuit (i.e., the time needed to save a stable value on the registers)
is used to schedule the next internal transition function. When this time is consumed, the output
function calls the wimResult method, which returns the value of the CWPth position of the WIM
register. wimResult uses a decoder over CWP, returning a 32-bit string with all the bits in zero,
except for the CWPth bit. These bits are ANDed with the WIM register, obtaining all the bits in
zero, if the CWPth was zero, or if the CWPth bit was one. The wimResult will be obtained by mak-
ing an OR of these bits, which is subsequently used to compare with the previous output value of the
model (stored in the dlLastRES latch). If they differ, the new result is transmitted through the RES
port and the clock signal of the latch is set.

Figure 13.9 shows the results of two different tests. The first column shows a test in which we set
the bits 0, 2, and 4 of the WIM. We then query bit 1 by setting the first bit of the CWP (bit 4). After
the stabilization time, we check bit 2, and we obtain a value of 1 on port Res. On our second test, we

…
…

…

…
…

C
W

P

D
EC

O
W

IM

31

31
cwp4

wim0

wim31

cwp0

0

0

res

FIGURE 13.7 WIMCHECK model: basic sketch.

53361.indb 339 3/11/09 10:49:10 AM

© 2009 by Taylor & Francis Group, LLC

340 Discrete-Event Modeling and Simulation

check bits 0 and 31 without modifying the WIM register values. We then set bit 0 of the WIM and
query the register. Finally, we clear the bit and repeat the query. As a result, we first obtain 1 and
then 0, showing that when we change the state of a bit, the circuit changes accordingly.

Every circuit in the integer unit was modeled and tested using a similar approach. We then rede-
fined a number of the models at a lower level of abstraction (using digital logic), providing a mul-
tiresolution model. These models were built as a set of basic components representing the Boolean
gates AND, OR, NOT, and XOR, as shown in Figure 13.10(a). These gates were incorporated as
coupled models representing the structure of the circuit. For instance, Figure 13.10(b) shows a 3-bit
comparator.

Figure 13.11 shows the definition of the comparator coupled model (CMP), which is a part of the
Address Unit [6]. The Address Unit uses an adder (to update the PC) and CMP to check whether

FIGURE 13.8 WIMCHECK model: transition functions.

INPUTS
00:00:00:001 / wim0 / 1.000
00:00:00:003 / wim2 / 1.000
00:00:00:005 / wim4 / 1.000
00:00:00:006 / cwp4 / 1.000
00:02:00:000 / cwp3 / 1.000
00:02:00:000 / cwp4 / 0.000

OUTPUTS
00:02:00:040 res 1

INPUTS
00:00:00:010 / cwp0 / 0.000
00:01:10:000 / cwp0 / 1.000
00:01:10:001 / cwp1 / 1.000
00:01:10:002 / cwp2 / 1.000
00:01:10:003 / cwp3 / 1.000
00:01:10:004 / cwp4 / 1.000
00:02:00:001 / wim0 / 1.000
00:02:10:000 / cwp0 / 0.000
00:02:10:001 / cwp1 / 0.000
00:02:10:002 / cwp2 / 0.000
00:02:10:003 / cwp3 / 0.000
00:02:10:004 / cwp4 / 0.000
00:03:00:001 / wim0 / 0.000
OUTPUTS
00:02:10:044 res 1
00:03:00:041 res 0

FIGURE 13.9 WIMCHECK simulation results.

53361.indb 340 3/11/09 10:49:11 AM

© 2009 by Taylor & Francis Group, LLC

Model &WIMCHECK::externalFunction(const ExternalMessage &msg) {

 int iPortNumber = getNumberFromString(msg.port().name(), 4); //Get port number

 if(isWimPort(msg.port())) //If port WIMxx
 setBitInReg (rWIM, iPortNumber, (msg.value()==1 ? '1': '0'));
 else //If port CWPxx
 setBitInReg (rCWP, iPortNumber, (msg.value()==1 ? '1': '0'));

 m_tStabilizationTime = time ;

 holdIn(active, m_tStabilizationTime);
}

Model &WIMCHECK::internalFunction(const InternalMessage &) {
 this -> passivate();
}

Model &WIMCHECK::outputFunction(const InternalMessage &msg) {

 char cCurrent = wimResult();

 if (dlLastRES.output() != cCurrent) {
 dlLastRES.activate(cCurrent, CLOCK);
 sendOutput(msg.time(), RES, (cCurrent == '1' ? 1 : 0));
 }
}

Models of Artificial Systems, Networking, and Communications 341

the address is outside the limits. The CMP was built as a 32-bit extension of the 3-bit comparator
presented in Figure 13.10. The model receives two inputs (through latches OPA and OPB), and it
returns the signal EQ if both values are equal or LW if A is lower than B.

Exercise 13.4

Design and implement a main memory unit (MMU) for Alpha-1. This MMU must implement dif-
ferent memory access techniques, including: (1) segmentation, (2) paging, (3) segmented paging, and
(4) paged segmentation.

Exercise 13.5

Design and implement a translation lookaside buffer model, which should mimic the translation of vir-
tual addresses into real addresses. (This exercise can be done independently of the rest of the simulated
computer.)

The simulated computer can be used to run SPARC executable code. To do so, the user must
first write an assembly language program. Figure 13.12 shows one of the test examples found in
./alfa1-test.zip, which adds two registers with carry (addcc) and moves the results into memory. The
contents of the register and the register numbers used are chosen at random.

We need to create a memory map from the assembler source by assembling the source code.
Then we need to save the object file into the memory.map file, which contains the memory image.
We should also configure the memory size of the machine (in this case, 256 bytes) and choose where
the results are going to be saved (memory.dmp). This file will have the size in bytes that we had
used at [mem] definitions (Figure 13.13).

ina
inb

ina
inb

ina
inb XOR

OR out

B2

A2

B1

EQ

LW
A1

B0

A0

outout

(a) (b)

out

AND

NOT
in

FIGURE 13.10 Modeling a comparator using Digital Logic.

[top]
components : NOT_n_1@NOT NOT_n_2@NOT XOR_n@XOR AND_n_1@AND AND_n_2@AND
in : OPAn OPBn
out : LW EQ

Link : OPAn in@NOT_n_1
Link : OPBn ina@XOR_n
Link : OPAn inb@XOR_n
Link : OPBn inb@AND_n_1
Link : out@NOT_n_1 ina@AND_n_1
Link : out@XOR_n in@NOT_n_2
Link : out@AND_n_2 EQ
Link : out@NOT_n_2 LW

FIGURE 13.11 CMP coupled model. (From Wainer, G. et al. 2001. ACM Journal on Educational Resources
in Computing 1:111–151.)

53361.indb 341 3/11/09 10:49:13 AM

© 2009 by Taylor & Francis Group, LLC

342 Discrete-Event Modeling and Simulation

Figure 13.14 shows the initial memory map for the execution of this program. We can see that
the first instruction is on address 2B (73 13 00h = 7541504d, which is the data used by the
instruction as seen in Figure 13.12). The map can be used to run the simulation, and the memory
contents will change accordingly during execution. The result of the simulation is stored in the file
memory.dmp with the state from the memory when concluding the execution.

Detailed examples of execution can be found in Daicz, Troccoli, and Wainer [4] and Wainer
et al. [6]. For instance, when we check the contents of the memory.dmp file for this example, we
will find VALUE:int32,9403992, which is the right result for the addition of the two values in
the program.

If we study the simulation log, we can see the detailed execution behavior of the simulated
computer, including all the subcomponents activated to carry out the execution of the program, the
values of the registers, and the memory changes.

Exercise 13.6

Execute other existing tests and analyze the simulation results obtained.

53361.indb 342 3/11/09 10:49:14 AM

© 2009 by Taylor & Francis Group, LLC

…
[mem]
preparation: 0:0:0:50
memsize: 256
memfile: memory.map
dumpfile: memory.dmp
…

fIguRe 13.13 Editing the memory source.

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
00000000:81 03 01 0d 0a 00 00 20 00 00 00 20 00 00 00 00
00000010:00 00 00 00 90 00 00 00 20 00 00 00 00 00 00 00
00000020:00 11 00 17 08 90 12 20 5e 33 00 06 d0 73 13 00 ^3..Ðs..
00000030:58 1c 6b 58 08 d4 20 20 42 00 00 00 00 56 41 4c X.kX.Ô B....VAL
00000040:55 45 77 62 e2 00 00 00 00 00 00 00 34 00 00 00 UEwbâ.......4...
00000050:0d 0a 00 00 00 22 00 00 00 42 00 00 00 82 00 00 "...B...‚..
00000060:00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00
00000070:00 00 00 00 00 00 ff ff ff ff 00 00 00 00 00 ÿÿÿÿ.....

fIguRe 13.14 An initial memory map.

set 7541504, %r30 !7541504 to register 30
set 1862488, %r14 !1862488 to register 14

addcc %r14, %r30, %r11 !Add, result to register 11
st %r11, [dest] !Save the result in memory

unimp

.align 4
value: .ascii "VALUE:"
dest: .word FFFFFFFF !result of the Test 1

fIguRe 13.12 Simple example to run on the simulated computer.

Models of Artificial Systems, Networking, and Communications 343

13.4 ROBOT PATH PLANNING

Path planning for robotic applications is used to determine how a robot can reach a destination,
avoiding obstacles on the way. In this section, we will present different mechanisms to do this,
including a variety of sample models. Most complex cases include multiple robots in cooperative
environments (in which mobile agents interact, trying to achieve a common goal).

In order to follow the movement of robots in an area, we need a spatial planner, which must find
a path free of obstacles to follow a predefined trajectory. Depending on the obstacle information
available, this planning can be static or dynamic. In general, this consists of two phases:

Route planning: A route is defined as a sequence of subgoals that the robots must reach
before the final goal.
Path generation: Once the plan has been created, different heuristics (for instance, the
shortest path) could be used to reach the predefined goal.

13.4.1 FIXED-ROUTE PATHS

The model found in ./robots.zip presents the movement of robots in an industrial plant using fixed
paths (i.e., tags are distributed throughout the plant, and the robots have detectors for finding their
path using these tags). Robots carry a load from the source point, where it is produced, to a destina-
tion point, where it is consumed. Routes are one way; once the load is delivered, robots are taken off
the floor back to their starting point. The robots move at different speeds, and there may be more
than one robot on each route [7].

Figure 13.15 shows a sample floor plant represented by a 20 × 20 Cell-DEVS. This cellular model
is linked to four different DEVS models, each devoted to generating a load at the source points
(12,19), (0,10), (9,0), and (19,6), as seen in Figure 13.16. The coupled model uses five components
(Floor—a Cell-DEVS—and Source1–Source4, load generator models built as DEVS). Then we link
all the models (generators output ports are connected to floor input ports) and we define the Cell-
DEVS floor coupled model parameters. In this case, the input ports in1 to in4 will be coupled to
the cell space: events arriving on port in1 should be sent to the in port of the cell at position (12,19).

Source4
(9,0)

Source2
(0,10)

Source3
(12,19)

Source1
(12,19)1

3

4 2

FIGURE 13.15 Floor plan with robot routes.

53361.indb 343 3/11/09 10:49:14 AM

© 2009 by Taylor & Francis Group, LLC

344 Discrete-Event Modeling and Simulation

We also show an excerpt of the Cell-DEVS model. We use a value of zero for an empty cell. A cell
containing a route 2 robot uses values 3, 30, or 31 if the robot is moving horizontally, and 4, 40,
or 41 if the robot is moving vertically (the same applies for cells containing robots in other routes;
valid values for a cell containing a route 1 robot are 1, 10, 11; 2, 20, 21; for cells containing a route 3
robot, they are 5, 50, 51; 6, 60, 61; and for cells containing a route 4 robot, they are 7, 70, 71; 8, 80,
81). The cellpos() function is used to see if the robot is on the predefined path.

Robot movement is done in three steps, as seen in Figure 13.17. For example, a route 1 robot at
the source is indicated by a 1 in cell (12,19), which indicates the robot is ready to move horizontally.
After a delay of 1000 ms, the next cell on the route will receive a neighbor change event indicating
that cell (12,19) has just changed to 1, producing a change to 10 (or 11) and indicating the cell is

[top]
components : Floor Source1@Generator Source2@Generator Source3@Generator
Source4@Generator
link : out@Source1 in1@Floor
link : out@Source2 in2@Floor
link : out@Source3 in3@Floor
link : out@Source4 in4@Floor

[Floor]
type : cell dim : (20,20)
delay : inertial border : nowrapped
neighbors : (-1,0) (0,-1) (0,0) (0,1) (1,0)
in : in1 in2 in3 in4
link : in1 in@Floor(12,19)
link : in2 in@Floor(0,10)
link : in3 in@Floor(9,0)
link : in4 in@Floor(19,6)
localtransition : RobotsMov

[RobotsMov]
...
% ------ Robot 2 ------------------------------------
rule : 30 1000 {(0,1)=3 and (0,0)=0 and cellpos(1)!=4}
rule : 31 1000 {(0,1)=3 and (0,0)=0 and cellpos(1)=4}
rule : 0 0 {(0,-1)=30 and (0,0)=3}
rule : 0 0 {(0,-1)=31 and (0,0)=3}
rule : 4 0 {(0,0)=31}
rule : 3 0 {(0,0)=30}

rule : 40 2000 {(-1,0)=4 and (0,0)=0 and cellpos(0)!=17}
rule : 41 2000 {(-1,0)=4 and (0,0)=0 and cellpos(0)=17}
rule : 0 0 {(1,0)=40 and (0,0)=4}
rule : 0 0 {(1,0)=41 and (0,0)=4}
rule : 4 0 { (0,0)=40 }
rule : 3 0 { (0,0)=41 }

% ------ Robot 3 --------------------------------
...

FIGURE 13.16 Model definition for robot routes.

0 0

0 0 1 0 10 1 0 10 0 0 1 0 11 1 0 11 0 0 2 0 0 2 0 0 0 0 0 0 0 0

0 20 0 0 20 0 0 2 0 0

t = 0 t = 1000 t = 1000 t = 1000 t = 2000 t =2000 t = 2000 t = 3000 t = 3000 t = 3000
.

FIGURE 13.17 Route 1 movements.

53361.indb 344 3/11/09 10:49:15 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 345

prepared to receive the robot (10 is used if the robot continues horizontally and 11 if the robot must
turn). Then the origin cell changes to 0 (the robot is no longer present). Finally, the value 10 (or 11)
will change to 1 or 2, respectively (1 indicates the presence of a robot that is about to move horizon-
tally and 2 a robot that is about to move vertically). Collisions are avoided by allowing the first step
to take place only if the destination cell is empty.

Figure 13.18 shows a simulation scenario for this example. The robots follow the paths defined
in Figure 13.15. New robots arrive at the floor through route 3 (from the top of the graph), and a
robot in path 2 can be seen in the NE of the figure. Likewise, we can follow those arriving at route
1 from the E.

Robots run at different speeds (according with their delays), and collision is avoided between a
robot in route 2 and another in route 4 (marked in the middle of the figure). The robot in route 2
advances, while the one in route 4 waits until there is a safe distance to continue.

Exercise 13.7

Change the rate of generation of robots and repeat the tests.

Exercise 13.8

Modify the path used and the robot speed in the Cell-DEVS model definition.

13.4.2 ROUTE PLANNING MODELS

We present a Cell-DEVS model for route planning, which,
based on the obstacles, finds the different paths available and
creates a Voronoi diagram (Figure 13.19). Voronoi diagrams
use the idea of proximity to a finite set of points in the plane
P = {p1…pn} (n ≥ 2). The diagram associates every point pj

to its closest points pi (i ≠ j). The resulting sets define a tes-
sellation of the plane into regions (exhaustive because every
point belongs to a set and they are mutually exclusive), and
points equidistant to two elements in P define the border of the
regions. Voronoi diagrams can be used to describe the paths
surrounding the obstacles for a robot of a given size and to
indicate the distance to them. These indicators allow a robot to
determine whether the path is feasible to pass through [8,9].

The path-planning model presented here is based on Behring et al. [8], where a cellular model was
used to process a top-down bitmap including a robot of arbitrary shape and a number of obstacles.
Because cellular models only use local rules, any proposed algorithm can be applied to objects of
arbitrary size or shape without computing distances or intersections or explicitly modeling objects.

2

2
4

3

3

1

FIGURE 13.18 Executing the robot model (showing two robots reaching an intersection point).

FIGURE 13.19 Voronoi diagram.

53361.indb 345 3/11/09 10:49:17 AM

© 2009 by Taylor & Francis Group, LLC

346 Discrete-Event Modeling and Simulation

The algorithm produces a Voronoi diagram that can be used to determine a path equidistant from
obstacles in the space. Paths are calculated by marking the intersections of expanding wavefronts
propagated from given starting points. The model executes in two stages:

1. Object boundary detection: Each cell is examined and compared to a set of 12 edge codes.
Each cell matching a configuration in this template uses the corresponding code (1–12)
for the second stage. For instance, in Figure 13.20(a), we will use different codes for the
top/bottom of the obstacles, the different corner areas, empty spaces, and the center of the
obstacles.

2. Cells with edge codes are expanded in the space, and the cells in the intersections are con-
sidered as a part of the final Voronoi diagram.

The cellular model stores the original encoding for obstacles (0 or 1), the calculated edge code
(1–12), a flag used during wavefront expansion, and the Voronoi diagram. We use a three-dimen-
sional Cell-DEVS, in which each plane contains each of these values. The model definition, found
in ./PathPlanning2.zip, is as shown in Figure 13.21.

The model defines a 10 × 10 × 4 Cell-DEVS with four sets of rules (one for each plane). The
model is effectively divided into four two-dimensional sections by using separate zones consisting
of four plane regions:

Nothing rule is used by the original data plane to keep the values from being changed.
Bound rule encodes the edge directions in the data plane using 12 templates.

[Path-Finding]
dim : (10, 10, 4) delay : transport localtransition : nothing-rule
neighbors:(-1,0,0)(0,-1,0)(0,0,0)(0,1,0)(1,0,0)(0,-1,-1) ... (0,1,-1)
zones : bound-rule { (0,0,1)..(9,9,1) } plane2-rule { (0,0,2)..(9,9,2) }

 plane3-rule { (0,0,3)..(9,9,3) }
[nothing-rule]
rule: { (0,0,0) } 10 { t }
[bound-rule]
rule: 1 10 { (0,0,-1)=1 and (0,-1,-1)=1 and (-1,0,-1)=1 and (0,1,-1)=1 and (1,0,-1)=1 }
...
rule: 12 10 { (0,0,-1)=1 and (0,-1,-1)=1 and (-1,0,-1)=0 and (0,1,-1)=0 and (1,0,-1)=1 }
[plane2-rule]
rule: {(0,0,-1)+0.1} 10 { (0,0,-1) >4 and (0,0,-1)<13 }
...
rule: {(0,1,0)} 10 { fr((0,1,0))=0.1 and isint((0,-1,0)) and isint((-1,0,0)) and
isint((1,0,0)) }
[plane3-rule]
rule: {(time)} 10 { (0,0,0)=0 and %check and (-1,0,-1)!=(0,1,-1) }
...
rule: {(time)} 10 { (0,0,0)=0 and %check and (0,-1,-1)!=(0,1,-1) }

FIGURE 13.21 Cell-DEVS model definition in CD++.

1
0
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
0
0
0
0
0
0
0
0
1

1
0
0
0
0
0
0
0
0
1

1
0
0
0
0
1
1
0
0
1

1
0
1
1
0
1
1
0
0
1

1
0
1
1
0
0
1
0
0
1

1
0
1
1
0
0
0
0
0
1

1
0
1
1
0
0
0
0
0
1

1
0
0
0

(–1,0,–1)

(0,0,–1)

(1,0,–1)

(0,1,–1)(0,–1,–1) (0,–1,0)

(–1,0,0)

(0,0,0)

(1,0,0)

(0,1,0)

Current Plane (z)Plane Below (z–1)

0
0
0
0
0
1

 (a) (b)

FIGURE 13.20 (a) Input bitmap; (b) three-dimensional neighborhood.

53361.indb 346 3/11/09 10:49:18 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 347

Plane2 rule discards cells with edge codes 1–4 (they do not belong to an edge). Cells with
edge codes 5–12 are given a flag value for propagation. The rules in this section carry over
the values from the second plane that satisfy the criteria.
Plane3 rule creates the Voronoi diagram. In the previous plane, cells receive data values
from their immediate neighbors and propagate the data out from the starting point (i.e.,
points where these data wavefronts collide are those farthest away and equidistant from
the starting obstacles; these are the points of interest when plotting a path for a robot). The
Voronoi diagram stores the iteration number at which the cell was added to the diagram.

Figure 13.22 shows the execution of the model using a partial boundary and one obstacle. The
initial values for the cell space contain a boundary on the upper and lower horizontal edges, as well
as one small obstacle. The input values in the first plane remain unchanged, and, after one cycle, the
edge codes in the second plane are generated. The third plane is initially populated with edge codes
> 4, and these values are successively propagated across their neighborhoods (note the holes where
cells were out of reach of their neighbors). Propagation stops when cells have no more nonflagged
neighbors. The final plane contains the Voronoi diagram. Values in this diagram are derived from
the simulation time divided by 10. The first values that appear in this plane are twos, just under 30
ms into the simulation. Because the first values on the diagram are twos, one should add that offset
to find the desired values. In this case, for a robot of diagonal size 2, the points on the graph of value
four or five represent viable travel paths, which can be used by the robot of 2 to travel, avoiding the
obstacles.

13.4.3 SHORTEST PATH SELECTION

The Voronoi diagram provides a number of possible paths; we need to find the shortest one. To do
so, we built a Cell-DEVS model based on a flooding technique described in Tzionas, Thanailakis,
and Tsalides [9]. In this model, a valid cell is one considered part of a valid path if its value is larger
than or equal to the robot size. A cell with more than two valid neighbors is called a node. An output

 +----------+ +----------+ +----------+ +----------+
 0|1111111111| 0| | 0| | 0| |
 1|111 | 1| 57 | 1| | 1| |
 2| | 2| 222222 | 2| | 2| |
 3| | 3| 22222222 | 3| | 3| |
 4| | 4| 222 22 | 4| | 4| |
 5| 111 | 5| 22 192 2 | 5| | 5| |
 6| 111 | 6| 22 857 2 | 6| | 6| |
 7| | 7| 222 22 | 7| | 7| |
 8| | 8| | 8| | 8| |
 9|1111111111| 9| | 9| | 9| |
 +----------+ +----------+ +----------+ +----------+
...
 +----------+ +----------+ +----------+ +----------+
 0|1111111111| 0| | 0| | 0| |
 1|111 | 1| 57 | 1| 57777 | 1| 33 55 |
 2| | 2| 222222 | 2| 57 92 | 2| 33 455 |
 3| | 3| 22222222 | 3| 57 1922 | 3| 444444 |
 4| | 4| 222 22 | 4| 5 192 2 | 4| 54 333 |
 5| 111 | 5| 22 192 2 | 5| 11119222 | 5| 54322234 |
 6| 111 | 6| 22 857 2 | 6| 88885777 | 6| 54322234 |
 7| | 7| 222 22 | 7| 8 857 7 | 7| 333 |
 8| | 8| | 8| 88577 | 8| 444 |
 9|1111111111| 9| | 9| | 9| |
 +----------+ +----------+ +----------+ +----------+

FIGURE 13.22 Partial boundary and one obstacle.

53361.indb 347 3/11/09 10:49:19 AM

© 2009 by Taylor & Francis Group, LLC

348 Discrete-Event Modeling and Simulation

node is a cell where the robot is located before moving, and an end node is the destination. The
shortest path to the end node is based on the Manhattan distance.

The algorithm consists of two phases: flooding and selection. The flooding algorithm explores
all possible paths starting on the output node, choosing only valid cells in parallel. When a node
is found, the path is divided. If, during the exploration, two paths are crossed, only the one with
the best value continues. Selection starts when we get to the end node: we backtrack, looking for
the minimum cost according to the chosen criteria.

The Cell-DEVS implementation presented in Wainer [10] and found in ./PathPlanning.zip uses
a two-dimensional Cell-DEVS model, in which we initially include the Voronoi diagram encoded
as the distances to the objects, as in Figure 13.22. The algorithm is based on the one presented in
Tzionas et al. [9] (Figure 13.23).

Each cell encodes the information using the integer part for some states and the fractional for
others, as follows:

0—obstacle;
1–10—distance to obstacles;
100–5000—distance covered (100 is the minimum distance, i.e., 0);
5001—final path;
.0—no flooding agent;
.1—search agent; and
.2—marking within the minimum path.

FIGURE 13.23 Minimum path search.

53361.indb 348 3/11/09 10:49:19 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 349

We start by putting the value 100.1 in the output node; that is, we locate a search agent on the
cell with the minimum distance to the destination. The flooding algorithm modifies each cell with
the distance to the output node. The exploration rules check for an exploration agent in the neigh-
borhood (0.1). They then check to ensure the cell is on exploration mode (i.e., it is occupied, and a
distance is stored). In this case, the agent is moved to the cell, and one more is added to the distance
covered. We then decide in which direction the nodes should continue the flooding. The backtrack-
ing rules check for nodes within the minimum distance path. The idea is to see if the neighbors
belong to the shortest path and, in such a case, incorporate the cells to the minimum distance path
(marking them with the value 5001). We can find a minimal path, as seen in Figure 13.24.

Our implementation encodes the distance to the objects at the beginning of the process (in the
Voronoi diagram). Figure 13.25 shows two examples in which we change the original Voronoi
diagram by adding an extra connection in the bottom-left part of the diagram (which affects the
shortest path found).

Exercise 13.9

Modify the initial Voronoi diagram and repeat the tests. Discuss the results obtained.

13.4.4 SELF-RECONFIGURING ROBOTS

Self-reconfiguring robots are versatile in both their structure and the tasks they perform [11]. They
are usually composed of a number of modules that can reshape according to the task to be carried
out. Each robot is independent of the rest, and the robots act in parallel. This ability of reconfigura-
tion leads to flow-based locomotion algorithms (allowing the robots to adapt to the terrain on which
they have to travel).

In this section, we will show a model presented in Wainer [10] and found in ./reconfig.zip that
is based on Butler et al. [11], in which we study robotic locomotion in a two-dimensional plane.
The model follows a flow-like locomotion pattern and is capable of (1) linear motion on the plane
where modules move, (2) convex transitions into a different plane, and (3) concave transitions into

 (a) (b) (c) (d)

FIGURE 13.24 (a) Initial Voronoi diagram; (b and c) flooding; (d) selection.

 (a) (b)

FIGURE 13.25 (a) Shortest path; (b) shortest path with modified Voronoi diagram.

53361.indb 349 3/11/09 10:49:20 AM

© 2009 by Taylor & Francis Group, LLC

350 Discrete-Event Modeling and Simulation

a different plane. The control algorithm uses local rules and is constructed as a cellular model. We
will show the behavior of a self-reconfiguring robot, avoiding obstacles in a nonstructured space.

The cells use 11 different states: empty (0), occupied by a nonmoving module (1), occupied by an
obstacle (2), or occupied by a robot moving in north (N), south (S), east (E), and west (W) directions
(3–10). We use a modified Moore’s neighborhood and 27 rules controlling the full behavior of a cell.
Locomotion is produced in two phases. The first phase determines if the cell has to change its state
and the new state it will reach; in the second phase, depending on the state of each neighbor, a cell
might decide to cancel its decision or to go ahead as planned. The rules shown in Figure 13.26 define
the different steps needed to execute the first configuration in Figure 13.27(b). We start with three
moving modules (black cells), and the one in the bottom left decides to move up. In the next step, it
moves and the third rule deletes the original one, obtaining the final configuration. Figure 13.27(b)
shows the different movement rules available.

Figure 13.28 shows some of the execution results obtained when using a square topology.
Particularly noteworthy is the fact that the robot climbs obstacles with a relative height of three
units, and when it climbs down, it follows the shape of the terrain. The model was extended to a
hexagonal topology, resulting in the same two-phase mechanism but fewer rules (21) and states (8).
Figure 13.29 shows a graphical representation of the model, showing the local rules.

[reconfig]
type : cell dim : (15,45) delay : transport border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-2) (1,-1) (1,0)(1,1)
localtransition : reconfig

%%% LEGEND
%%% _: any cell value
%%% a: robot not moving or obstacle
%%% b: any cell moving
%%% c: empty cell or obstacle

[reconfig]
% 001 001
% 011 => 031
rule : 3 0 {(-1,-1)=0 and (-1,0)=0 and (-1,1)=1 and (0,-1)=0 and (0,0)=1 and (0,1)=1}
% ___ ___
% 001 => 011
% 031 031
rule : 1 100 {(0,-1)=0 and (0,0)=0 and (0,1)=1 and (1,-1)=0 and (1,0)=3 and (1,1)=1}
% 001 => 001
% 031 001
% ___ ___
rule : 0 100 {(-1,-1)=0 and (-1,0)=0 and (-1,1)=1 and (0,-1)=0 and (0,0)=3 and (0,1)=1}
...

FIGURE 13.26 Reconfigurable robots definition.

LEGEND

Anything
Empty

Cell
Cell or Obstacle

Empty or Obstacle

 (a) (b)

FIGURE 13.27 (a) Neighborhood shape; (b) model’s rules.

53361.indb 350 3/11/09 10:49:21 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 351

Figure 13.30 shows the model representation using hexagonal Cell-DEVS in CD++. The first rule
checks whether a mobile robot on position [4] can move to the origin (with direction 1). To do so,
we first check for possible collisions with other cells (first rule in Figure 13.30). Considering that
the robot moves to the right, we first check whether cell [5] or cell [6] cannot move. In that case,
we can move to the N. The next rules are used to empty the cell in that case. Figure 13.31 shows
the model’s execution. The results obtained are similar to those presented in Figure 13.28 but using
the hexagonal topology. Using a square topology required 18.2 s to travel across all obstacles, while
using the hexagonal topology required only 15.8 s.

Time 00:00:00:000 Time 00:00:03:200

Time 00:00:13:500 Time 00:00:18:200

FIGURE 13.28 Model execution.

FIGURE 13.29 (a) Hexagonal neighborhood definition; (b) model’s rules.

[reconfig-robot-hexa]
dim : (15,45) delay : transport border : wrapped
neighbors : (-1,-1)(-1,0)(-1,1)(0,-1)(0,0)(0,1) (1,-2) (1,-1) (1,0) (1,1)

[reconfig]
rule: 1 100 {[0]=0 and [4]=1 and [5]=3 and ([6]=0 or [6]=2)}
rule: 1 100 {[0]=3}
rule: 4 0 {[0]=1 and [1]=0 and [2]=0 and [3]=0 and [4]=1}
rule: 0 100 {[0]=4 and [1]=0 and [2]=0 and [3]=0 and [4]=1}
rule: 1 100 {[0]=0 and [1]=0 and [5]=1 and [6]=4}
rule: 1 100 {[0]=4}
rule: 5 0 {[0]=1 and [1]=0 and [2]=0 and [3]=0 and [4]=0 and [5]=1}
rule: 0 100 {[0]=5 and [1]=0 and [2]=0 and [3]=0 and [4]=0 and [5]=1}
rule: 1 100 {[0]=0 and [1]=5 and [2]=0 and [6]=1}
rule: 1 100 {[0]=5}
...

FIGURE 13.30 Hexagonal model’s rules.

53361.indb 351 3/11/09 10:49:23 AM

© 2009 by Taylor & Francis Group, LLC

LEGEND

Empty

Cell

Empty or obstacle[0][6]

[1] [2]

[5] [4]

[3]

Anything

         (a)                  (b)

352 Discrete-Event Modeling and Simulation

Exercise 13.10

Modify the terrain topology for both models and repeat the tests.

13.5 DISCRETE-EVENT CONTROL OF A TIME-VARYING PLANT

Conventional adaptive control of unknown time-varying plants can be defined as in Figure 13.32.
The goal of the controller we present here is to have the plant’s output match the reference signal
y* , with zero control error.

The plant output y(k) and the reference signal y* are fed into a controller Ci. The control signal
u(k) is generated by the controller. The adaptive controller uses a plant model Mi, which tries to iden-
tify the plant behavior. The output y(k) is compared to the estimated yi, and the identification error
ei is obtained. Using a single identification model is efficient when the initial parameter estimation
error is small and plant parameters are slowly varying over time. Nevertheless, when either of these
conditions is not satisfied (i.e., for subsystem failures or changes in the operating environment), the
use of multiple models is more appropriate. As seen in Figure 13.32, a finite number of models is
evaluated by an index of performance, and the most suitable controller is applied to the plant. This
approach is beneficial for maintaining control of a plant when there are parameter jumps [12].

Multiple model control demands a union of high-level decision making with mathematically com-
plex algorithms. In this section, we present an implementation of such algorithms using QDEVS,

 (a) (b)

FIGURE 13.31 Hexagonal neighborhood execution.

FIGURE 13.32 Multiple fixed models for control of an unknown plant. (Adapted from Narendra, K. S. et al.
2003. International Journal of Adaptive Control and Signal Processing 17:87–102.)

53361.indb 352 3/11/09 10:49:24 AM

© 2009 by Taylor & Francis Group, LLC

…

Controller CN

Controller C2

Controller C1

Fixed M1

Fixed M2
ŷ2

ŷN

ŷ1

e2

eN

e1

Fixed MN

Disturbance

Control
Error ec

Desired
Output y*

Identification
Error

Plant

Switch
u(k) y(k)

+ +

+

+

–

–

–

+

…

…
 +

–

Models of Artificial Systems, Networking, and Communications 353

based on the work presented in Kofman [13,14]. Using this approach, the reference signal y(k) (a
continuous analog signal) is discretized using quantized DEVS with hysteresis. The discrete event
solution permitted us to integrate discrete event and continuous components seamlessly in the plant,
avoiding the common problems of controller wind-up (a saturation condition of the controller that
avoids the error to get close to zero) and bursting during the parameter estimation process.

The first step was to create DEVS atomic models of both the adaptive controller (which uses
three models) and the plant. The plant atomic model is defined by a second-order difference equa-
tion in discrete time:

y k p s y k p s y k p s u kp p p c1 2 31 2 1() () () (13.2)

where a piecewise constant parameter vector is defined as

s p s p s p s1 2 3() () () (13.3)

Here, the plant state input s = {1, 2, 3} determines what set of parameters the plant should operate
on. This model also requires using its most recent outputs as inputs (a new plant output is made
when the trigger is enabled).

The next step is to define the three plant identification models, Mi. Each Mi creates outputs as

y k q y k q y k q u ki i p i p i c, , ,1 2 31 2 1 (13.4)

where the model’s parameter vector is defined as

i i i iq p p, , ,1 2 3 (13.5)

A second output is the modeling error, defined as

e k y k y ki i p

2
(13.6)

This error is used by the controller to determine which plant-identifying model’s parameters are
best for controlling the system (i.e., 1

T, 2
T, or 3

T).
We also defined a unit delay model, which is in charge of delaying the signal’s propagation for

one time unit in order to ensure that the plant-identifying models will be updated after a plant output
is generated.

Finally, we built a model of the controller, whose goal is to have the plant’s output match the
reference signal yr with zero error. This controller must analyze the available modeling errors (from
the different plant-identifying models) and decide which is the most suitable. The parameters asso-
ciated with the best-fit model are used to generate a control signal for the system. The certainty
equivalence principle [15] is used with the chosen plant’s parameters to calculate the control signal
as follows:

u k
y k k

q
k y kc

r i

i
p

1
, where y kp 1 0 (13.7)

53361.indb 353 3/11/09 10:49:26 AM

© 2009 by Taylor & Francis Group, LLC

354 Discrete-Event Modeling and Simulation

The following shows the DEVS definition of one of the models (in this case, GenControl, which
represents a generic controller for the plant; a detailed specification for each of the models can be
found in Campbell and Wainer [16]):

GenControl
X = {Yrin Ypin Ypdin Em1in Em2in Em3in} Y = {Uout, modelSelect}
S = {haveYr haveYp haveYpd}

δint(s) { passivate }

δext(s, x, e) {
switch (port) {

 case Yrin:
 if (haveYr == 0) haveYr = 1;
 Yr = Yrin.value;
 case Ypin:
 if (haveYp == 0) haveYp = 1;
 Yp = Ypin.value;
 case Ypdin:
 if (haveYpd == 0) haveYpd = 1;
 Ypd = Ypdin.value;
 case Em1in: em1 = Em1in.value;
 case Em2in: em2 = Em2in.value;
 case Em3in: em3 = Em3in.value;

holdIn(active, Time(0.001)) ;
}

λ (s) {
if (haveYr == 1 && haveYp == 1 && haveYpd==1) {

 haveYr = haveYp =haveYpd = 0;
 bestModel = 2; // initial guess
 U = (Yr-q21*Yp-q22*Ypd)/q23; // calc U as if Model 2 was best
 if (em1<em2 && em1<em3) { // Model 1 is best
 bestModel = 1;
 U = (Yr-q11*Yp-q12*Ypd)/q13;
 if (em3<em2 && em3<em1) { // Model 3 is best
 bestModel = 3;
 U = (Yr-q31*Yp-q32*Ypd)/q33; }
 send output U to Port Uout

send output bestModel to Port modelSelect
}

The variables haveYxx are used to ensure that we have all the arguments needed before comput-
ing the control value using Equation (13.7). The ports Emxx are used to determine which estimation
model to use. The output function computes the next state, based on Equation (13.7).

Figure 13.33 shows the implementation of the plant model in CD++, as found in ./DEController.
zip. In this case, the plant model also waits for all the inputs needed (U, Ypdin, etc.), and it then com-
putes the current value, according to the plant state model chosen. Figure 13.34 shows the structure
of a coupled model integrating the previously presented models, based on the generic idea presented
in Figure 13.32.

53361.indb 354 3/11/09 10:49:26 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 355

In order to study the plant behavior, we introduced a quantized version of each of the models. The
following example used a reference signal defined as

y k k kref () sin sin2 20 2 10 2 (13.8)

Using this signal as an input, we applied quantized DEVS with hysteresis (Q = 0.1, n = 2). Given
that the signal being quantized is (0, 2), the normalized quantum size can be considered Q = 0.05.
The resulting quantized signal is a discrete time signal that contains discrete event changes. To
remove the discrete time component, we use a list that contains the signal’s event changes and their
associated event times. Figure 13.35 shows the quantized signal.

Figure 13.36 shows the results obtained when we used single model adaptive control with time-
invariant parameter pT = [0.6 0.2 0.1]. A discrete event controller was implemented using RLS and
certainty equivalence control [15]. The adaptive model uses initial parameter estimates defined as

T
init = [1.1 –0.3 –0.4].

The control error remains roughly the same, despite the difference in quantum size for discreti-
zation of the reference signal. The RLS adaptive algorithm was able to converge more quickly when
the quantum size was smaller. This is inherent because increased excitation increases performance
of adaptive algorithms. It is worth noting that this discrete event implementation of adaptive control
overcomes the issue of controller wind-up. Controller wind-up, or the parameter burst phenomenon,
occurs in discrete time when long periods pass without excitation while adaptation continues. Using
the discrete event notation, adaptation does not occur unless there are event changes.

Our next example uses multiple model control with plant states pT
1 = [0.6 0.2 2.0],

pT
2 = [0.1 0.8 2.5], and pT

3 = [0.2 0.5 1.0]. The controller uses parameter estimates T
1 =

[0.6 0.2 2.0], T
2 = [0.1 0.8 2.5], and T

3 = [0.2 0.5 1.0]. The simulation results presented
in Figure 13.37 show a multiple model controller forced to always use the first plant identification

Model &Plant::externalFunction(const ExternalMessage &msg) {
if (msg.port() == Uin) U = (double)msg.value();
if (msg.port() == Ypdin) Ypd = (double)msg.value();
if (msg.port() == Ypddin) Ypdd = (double)msg.value();

if (msg.port() == Trigger) {
if (createOutput == 0) {

createOutput = 1;
scrap = (double)msg.value();

}
}
if (msg.port() == plantState) pState = (int)msg.value();

holdIn(active, Time(static_cast< float >(.1))) ;
}

Model &Plant::internalFunction(const InternalMessage &) {
passivate();

}

Model &Plant::outputFunction(const InternalMessage &msg) {
if (createOutput == 1) {

createOutput = 0;
if (pState == 1) Yp = p11*Ypd+p12*Ypdd+p13*U;
if (pState == 2) Yp = p21*Ypd+p22*Ypdd+p23*U;
if (pState == 3) Yp = p31*Ypd+p32*Ypdd+p33*U;
sendOutput(msg.time(), Ypout, Yp) ;

}
}

FIGURE 13.33 Plant model definition in CD++.

53361.indb 355 3/11/09 10:49:27 AM

© 2009 by Taylor & Francis Group, LLC

356 Discrete-Event Modeling and Simulation

eventX xd

eventT

interpLast2

Event
Arrival
Time

(for Ysef)

Plant State
Changes
(forced)

Quantized
Yref

Arrival

modelSelect

modelSelcet

genControl

plant

unitDelay
in out

plantState

trigger

Ypdd

Ypd

Uc

Ypdd
model1

Yp
Ypd

Uc
Ym

em

Ypdd

Yp
Ypd

Uc
Ym

em

model2

model3
Ypdd

Yp
Ypd

Uc
Ym

em

interpLast1

xdd eventT

xd eventX

em3
em2
em1

Ypdd
Ypd
Yref

Uc

EVENT FILE:

OUTPUT FILE:

xdd

ypyp

ym3

ym2

ym1

uc

FIGURE 13.34 Conceptual coupled model of multiple model controller.

0
0

1

2

3

4

5

6

50 100 150 200 250
Discrete Time

Discrete time
Q-DEVS w/hystersis

Si
gn

al
 A

m
pl

itu
de

Quantizing the Reference Signal

300 350 400 450 500

FIGURE 13.35 Discretization of reference signal (n = 2, Q = 0.10).

53361.indb 356 3/11/09 10:49:29 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 357

Discrete Event Adaptive Control of Time Invariant System

0
0

2

A
m

pl
itu

de 4

6

50 100 150 200 250 300 350 400 450 500

Discrete Event Adaptive Control of Time Invariant System

0
0

2

A
m

pl
itu

de 4
6

50 100 150 200 250 300 350 400 450 500

0
–1

0

C
on

tr
ol

 S
ig

na
l

1

2

50 100 150 200 250 300 350 400 450 500

0
0C

on
tr

ol
 E

rr
or

0.5

1

50 100 150 200 250
Time

300 350 400 450 500

0
–1

0

C
on

tr
ol

 S
ig

na
l

1

2

50 100 150 200 250 300 350 400 450 500

0
0

0.5

C
on

tr
ol

 E
rr

or

1

50 100 150 200 250
Time

300 350 400 450 500

 (a) (b)

FIGURE 13.36 Adaptive control using: (a) Q = 0.02; (b) Q = 0.2.

FIGURE 13.37 CD++ simulation with parameter jumps, using only one plant-identifying model.

53361.indb 357 3/11/09 10:49:31 AM

© 2009 by Taylor & Francis Group, LLC

Event File: Discrete Event Quantized Signal (Q = 0.1)

Event File: Force New Plant States
0

0

2

4

50 100 150 200 250 300 350 400 450

00

2

4

50 100 150 200 250 300 350 400 450
Output: Model and Controller Selection Performed Online

0
0

2

4

50 100 150 200 250 300 350 400 450
Output: Plant Output

00

2

4

50 100 150 200 250 300 350 400 450
Output: Control Error

Time
0–20

0

20

50 100 150 200 250 300 350 400 450

358 Discrete-Event Modeling and Simulation

model 1
T. Using the fixed parameter controller, stable control was achievable for plant states P1 and

P3. At plant state P3, the closed loop system becomes unstable, eventually yielding unbounded plant
outputs.

In Figure 13.38, the multiple model controller is allowed to operate as designed, switching among
its plant-identifying models. The simulation displays the advantages of multiple model control.
Because a matching identification model was designed a priori, the controller was able to find it and
use its parameters. For this deterministic scenario, control error existed only at the time coinciding
with each jump in plant parameters. During the simulation initialization, the instantaneous error
of each model was zero. This required modeling of several reference signal events and their corre-
sponding triggered plant outputs in order to identify which controller was the most suitable. During
operation, only at time 355 did a false model switch occur. The source of the false switch was due
to two models’ having almost zero modeling error.

13.6 NETWORKING PROTOCOLS FOR LOCAL AREA NETWORKS

One of the main areas of application of discrete-event modeling and simulation is the analysis of
networking protocols. The current scale of these networks and their high level of heterogeneity
make it very difficult to face the design of new protocols [17]. Various discrete-event simulators
are readily available (both academic and commercial, such as NS-2 [18] and its successor NS-3,
GloMoSim [19], OPNET [20], and OMNeT++ [21]).

Event File: Discrete Event Quantized Signal (Q = 0.1)

Event File: Force New Plant States
0

0

2

4

50 100 150 200 250 300 350 400 450

00

2

4

50 100 150 200 250 300 350 400 450
Output: Model and Controller Selection Performed Online

0
0

2

4

50 100 150 200 250 300 350 400 450
Output: Plant Output

00

2

4

50 100 150 200 250 300 350 400 450
Output: Control Error

Time
0–4

0

4
2

–2

50 100 150 200 250 300 350 400 450

FIGURE 13.38 CD++ simulation containing parameter jumps, using a fixed controller.

53361.indb 358 3/11/09 10:49:32 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 359

In this section, we introduce different models for simulating user-defined topologies to assess
network functionality; modular design allows the addition of new models easily, while the models
themselves are flexible to permit future enhancements. The use of a DEVS-based network simu-
lator provides facilities to carry out formal tests, model sharing between different DEVS-based
toolkits, the ability to execute the models on varied middleware and hardware, and the possibility
to define models using different techniques interacting within the same environment. This could
allow including non-network entities that affect network operation (like those introduced in previ-
ous chapters in this book), providing results that are more realistic. Most models introduced in this
section can be found at ./NetworkIP.zip.

13.6.1 HUB

Hubs are simple layer 1 devices that regenerate received data to all connected devices. The hub
model presented in this section allows us to show how to define a very simple model for networking
applications while permitting interconnecting of other models and creating complex topologies with
which to experiment. The model architecture is as shown in Figure 13.39.

The hub atomic model specification can be defined as

Hub = < X, S, Y, δint, δext, λ, D> (13.9)

X = { In: receives data from interconnected devices; Set: sets hub-specific information };
S = {Sigma, X, Preparation Time}
Y = { Out1..n: 1st…nth connected device };
δint (e, s): {

case phase:
 active: passivate
}

δext(s, x, e): {
case port:

In: set localvalue to msg.value
Set: set local data field (hub identifier) to msg.value

}

λ (s): {
Output data to all output ports

}

Connected
Device

Connected
Device

Data Coming from
Previous Hub

Data Going
to Next Hub

In Out

FIGURE 13.39 Hub structure.

53361.indb 359 3/11/09 10:49:33 AM

© 2009 by Taylor & Francis Group, LLC

360 Discrete-Event Modeling and Simulation

Figure 13.40 shows the model implementation in CD++ following the model’s specification. The
model includes two input ports (in, which receives input data, and set, to set configuration informa-
tion for the hub) and nine output ports. When an input is received on the in port, its value is stored.
If the value arrives through the set port, the MAC variable is set. A delay representing the circuit
latency is programmed. When consumed, the output function retransmits the current value. The
internal transition function then passivates the model.

Any connected device can send data onto the hub to be broadcast to all other devices. The model
proved successful in linking multiple hosts together, providing simple local networks, and proved
useful in creating subnets.

Exercise 13.11

Test the hub model with varied input data.

FIGURE 13.40 Hub model definition.

53361.indb 360 3/11/09 10:49:34 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 361

13.6.2 ALTERNATING BIT PROTOCOL (APB)

This communication protocol provides a simple mechanism to ensure reliable transmission through
an unreliable network. The general behavior of the protocol is as follows [22]:

The sender sends a packet and waits for an acknowledgment.
If the acknowledgment does not arrive within a predefined time, the packet is re-sent.
When the expected acknowledgment is received, the next packet is sent.
In order to distinguish two consecutive packets, the sender adds an additional bit on each
packet (called an alternating bit because the sender uses zero and one alternatively).

The ABP model we created, found in ./alternatebitprot.zip, consists of three components: a
sender, the network, and a receiver. The network is decomposed further to two subnets correspond-
ing to a sending and receiving channel, respectively, as seen in Figure 13.41.

The receiver accepts data and sends back an acknowledgment extracted from the received data
after some time. The subnets forward the data received after a delay. However, in order to simulate
the unreliability of the network, only 95% of the data is passed on to each subnet (i.e., 5% of the
data is lost).

Receiver = <S, X, Y, δint, δext, λ, ta> (13.10)

S = {passive, active}; X = {in}; Y = {out}
δint(active) = passive
δext(in, passive) = active
δext(in, active) = active
λ(active) { send in % 10 to port out } //extract the alternating bit and send back
ta(passive) = INFINITY
ta(active) = receiving_time

The receiver and subnets have two phases: passive and active. Whenever they receive an input,
they will become active and send out an output with a probability of 95% after a delay representing
the latency of the network. The state will then be changed back to passive. The receiving_time of
the receiver is a constant; the delay value in subnets is a nondeterministic value (expressed by a nor-
mal distribution with a given mean and standard deviation) chosen by the user. Figure 13.42 shows
the implementation of the sender.

receiver

dataOut in1

outin2ackIn out2

inout1

Network

subnet1

subnet2

controlIn

packetSent

ackReceived sender

ABP

FIGURE 13.41 Structure of the ABP model.

53361.indb 361 3/11/09 10:49:34 AM

© 2009 by Taylor & Francis Group, LLC

362 Discrete-Event Modeling and Simulation

A packet sent out by the sender is just the packet sequence number and an alternating bit (e.g., 11
for the first packet, 100 for the 10th packet). The packet sequence number is sent to the packetSent
port, and the packet sequence number plus the alternating bit (e.g., 11 for the first packet, 100 for the
tenth packet) are sent to the dataOut port. The controlIn signal is a positive integer indicating how
many packets should be sent in a session. When a controlIn signal is received, the sender changes

FIGURE 13.42 ABP sender atomic model.

53361.indb 362 3/11/09 10:49:35 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 363

from the initial phase passive to active. It then switches to the sending mode, transmitting a packet
plus an alternating bit. When the sending_time is consumed, the packet is assumed to be sent
out, and the sender starts waiting for an acknowledgment during a timeout delay. If it expires, the
sender will re-send the previous packet [with the alternating bit]. If the expected acknowledgment
is received before the timeout, the sender will send the next packet. It will change back to passive
phase when all packets have been sent out successfully. An output will be generated when a packet
is sent out (packetSent, dataOut) or an expected acknowledgment is received (ackReceived).

The coupled model network and ABP models are defined as in Figure 13.41. Figures 13.43 and
13.44 show the simulation results of the receiver, the subnet, the sender, and the whole network. In
Figure 13.43(a), the input of the receiver represents the packet number, and the last digit is zero or
one (alternating bit). The output of the receiver (acknowledgment) is the alternating bit extracted
from the input (receiving_time = 10 s). If a new packet arrives while the receiver is already process-
ing one, the older packet should be discarded. For instance, if packet 1 arrives at 45 s and again at
52 s, the first one is discarded. If the duration between two consecutive inputs is less than or equal
to the receiving_time, the first input is discarded. The output of the subnet should be exactly as
the input with some packets lost (with a probability of 95% according to a random function). The
latency is given by a normal distribution (with mean of 3 s and standard deviation of 1 s). The out-
put is not deterministic due to the random function in the subnet model (and several inputs will not
generate outputs). The example in Figure 13.43(b) shows an output in which the event with value
140 is lost in the subnet.

As discussed earlier, the sender has two inputs: controlIn and ackIn. controlIn (a positive integer)
indicates how many packets should be sent in a session. ackIn is the acknowledgment received from
the receiver (zero or one). When the sender receives an acknowledgment from ackIn, it compares
the acknowledgment with its current alternating bit. If they are equal, it generates an output to the
ackReceived port and sends the next packet. If an expected acknowledgment is not received and
the timeout expires, the previous packet is re-sent. Figure 13.44 shows the execution of this model,

(a) (b)

FIGURE 13.43 ABP execution: (a) receiver execution; (b) subnet execution.

(a) (b)

FIGURE 13.44 APB execution: (a) sender and (b) network.

53361.indb 363 3/11/09 10:49:36 AM

© 2009 by Taylor & Francis Group, LLC

364 Discrete-Event Modeling and Simulation

including the behavior of the model upon reception of ille-
gal events.

The first three events in the first column are ignored.
When the sender receives the order of transmitting five
packets, it starts doing so (00:00:25:000 dataout
11). We then receive an ACK (00:00:30:00 ackIn 1),
and we start transmitting packet 2. The next event
(00:01:30:00 ackIn 0) simulates a lost packet. We
retransmit the packet (00:01:10:000 dataout 20),
which is acknowledged (00:01:30:00 ackIn 0).
The event 00:02:20:00 ackIn 1 simulates a wrong
acknowledgment. In this case, the packet is retransmit-
ted. The network coupled model execution can be seen

in columns 3 and 4. Each packet is transmitted after the transmission delay. The event at 40:000 is
lost during the test.

The coupled model for the ABP integrates the previous components. The input of the top model
is just controlIn, a positive integer indicating the number of packets that needs sending in a session.
The outputs indicate when a packet is sent out (packetSent) and when an expected acknowledgment
is received (ackReceived). Figure 13.45 is an example of the outputs, which are nondeterministic
due to the randomness in the network. In this test, packet 5 is sent twice due to the packet loss.

In the top model, if the second controlIn input comes before the first controlIn finishes, the sec-
ond input will be discarded as shown in the sender atomic model. If another controlIn input comes
after the first controlIn finishes its session, it will be executed normally. The ABP model generates
the expected results according to the specifications. This is a good example showing how to define
multiresolution models in CD++. We can see how the outputs at the level of the sender and receiver
are hidden when we simulate the whole network (which is only considering the execution at the top
level).

Exercise 13.12

Reproduce the tests presented in this section. Repeat the simulations with new input data.

Exercise 13.13

Modify the model and simulate the transmission of real data. To do so, create a text file with a text to
be transmitted and use the characters in the file as the data transmitted. Check the correctness of the
data transmitted and the simulation results (considering the possibility of data lost). Ensure that the text
transmitted is received completely.

13.6.3 A CELLULAR MODEL FOR CRYPTOGRAPHY

Cryptography applications are widely used in different contexts, ranging from hiding passwords
in computers to advanced mechanisms for transmitting information that cannot be detected by
external users. Gutowitz [23] considered the use of one-dimensional cellular automata (CA) as a
possible cipher mechanism. Wolfram [24] discusses a variety of models in the application of CA for
cryptography. If the CA are nonreversible, they are simple to encrypt but very difficult to decrypt
(making them candidates for public keys).

In one-dimensional CA, there are 256 different rules that can be implemented, based on the
neighborhood pattern. The following table shows a binary representation of the rules to be applied.
The first row shows the precondition for triggering the rule (i.e., the values of the neighborhood pat-
tern). The second row shows the cell postcondition after triggering the rule. The table shows rule 30,
which is proposed in Gutowitz [23] as a candidate for use in cryptography applications. If we take

00:00:20:000 packetsent 1
00:00:34:783 ackreceived 1
00:00:44:783 packetsent 2
00:00:59:775 ackreceived 0
00:01:09:775 packetsent 3
00:01:25:117 ackreceived 1
00:01:35:117 packetsent 4
00:01:52:621 ackreceived 0
00:02:02:621 packetsent 5
00:02:32:621 packetsent 5
00:02:47:851 ackreceived 1
00:02:57:851 packetsent 6

FIGURE 13.45 APB execution: top level.

53361.indb 364 3/11/09 10:49:37 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 365

the bottom row bits (00011110) and consider the binary value represented, we obtain the number 30
(thus, it is called “rule 30”).

Neighbor pattern 111 110 101 100 011 010 001 000*

State 0 0 0 1 1 1 1 0

We have defined a modified version of this rule using a two-dimensional Cell-DEVS to encrypt
binary messages and another one for decrypting. We used a cell space of 20 × 20 cells and a neigh-
borhood defined as in Figure 13.46(a). A cell can use the following values:

0—a bit to be encoded;
1—a bit to be encoded;
2—a cell ready to take the binary value that results from encrypting its neighbors; and
3—a cell that must not be encrypted but, rather, become a zero because the encrypted mes-

sage needs to be padded in zeros.

The implementation of these rules in CD++ can be seen in Figure 13.47.
Figure 13.48 shows the encryption of the message 101100111000111101. The second line is used

as a scratchpad for computing the value of the next row, and computation ends after 20 cycles. The
result is that, after 20 iterations, the value becomes 101101010010010000.

The decryption model also uses a 20 × 20 space, the neighborhood shape in Figure 13.46(b), and
the rules in Figure 13.49.

Exercise 13.14

Use new input data to encrypt and obtain the encrypted version of the message.

Figures 13.50 and 13.51 show a decryption test that uses the model to decrypt the encoded message
that resulted from the preceding encryption process (101100111000111101 101101010010010000)
in 20 iterations, as we can see in Figure 13.50.

The final version in Figure 13.51 shows the message after 171 iterations.

Exercise 13.15

Execute the decryption model to ensure the original message presented in Exercise 13.14 can be
decrypted.

(0,0) (0,0)

(a) (b)

FIGURE 13.46 Encryption/decryption neighborhoods.

rule : 1 100 { (0,0) = 1 }
rule : 0 100 { (0,0) = 3 }
rule : 2 100 { (-1,-1) = 2 or (-1,1) = 2 }
rule : 1 100 { (0,0) = 2 and (-1,-1) = 1 and (-1,1) = 1 }
rule : 1 100 { (0, 0) = 2 and (-1,-1) = 0 and (-1, 1) = 0}

FIGURE 13.47 Encryption rules.

53361.indb 365 3/11/09 10:49:38 AM

© 2009 by Taylor & Francis Group, LLC

366 Discrete-Event Modeling and Simulation

13.6.4 HOST

We defined a model simulating a computer host, which includes the different layers of the TCP/IP
protocol stack: application, transport, network, data link, and physical. The structure of the coupled
host model is shown in Figure 13.52. A version of this model was introduced in Ahmed et al. [25].

13.6.4.1 The Application Layer
The front end of the host model is the application layer according to the TCP/IP protocol stack, illus-
trated in Figure 13.53. In our host, it is designed as a simple atomic model. The layer manipulates
the data received from the user in a way to identify the application type sending the data. This step
is done to facilitate creating a connection manager. We defined a DEVS model in CD++ using the
following specification:

AL = < X, S, Y, δint, δext, λ, D> (13.11)

X = {HTTP_In N , FTP_In N, TelNet_In N, SMTP_In N,
SNMP_In N, TransportLayer_In N };

S = {Sigma, X, Preparation Time}
Y = { ApplicationOut, parsedApplicationLayer N };

 +--------------------+
 0|01011001110001111010|
 1|32222222222222222223|
 2|00000000000000000000|
 3|00000000000000000000|
 4|00000000000000000000|
 5|00000000000000000000|
 6|00000000000000000000|
 7|00000000000000000000|
 8|00000000000000000000|
 9|00000000000000000000|
 10|00000000000000000000|
 11|00000000000000000000|
 12|00000000000000000000|
 13|00000000000000000000|
 14|00000000000000000000|
 15|00000000000000000000|
 16|00000000000000000000|
 17|00000000000000000000|
 18|00000000000000000000|
 19|00000000000000000000|
 +--------------------+

 +--------------------+
 0|01011001110001111010|
 1|01100000100100110110|
 2|22222222222222222222|
 3|00000000000000000000|
 4|00000000000000000000|
 5|00000000000000000000|
 6|00000000000000000000|
 7|00000000000000000000|
 8|00000000000000000000|
 9|00000000000000000000|
 10|00000000000000000000|
 11|00000000000000000000|
 12|00000000000000000000|
 13|00000000000000000000|
 14|00000000000000000000|
 15|00000000000000000000|
 16|00000000000000000000|
 17|00000000000000000000|
 18|00000000000000000000|
 19|00000000000000000000|
 +--------------------+

 +--------------------+
 0|01011001110001111010|
 1|01100000100100110110|
 2|00001110100100001000|
 3|01100101100101101010|
 4|00000110000110011110|
 5|01110000110000001100|
 6|00100110000111100000|
 7|00100000110011001110|
 8|00101110000000000100|
 9|00110100111111110100|
 10|00001100011111101100|
 11|01100001001111010000|
 12|00001101000110110110|
 13|01100011010001001000|
 14|00001000110101001010|
 15|01101010001111001110|
 16|00011110100110000100|
 17|01001101100000110100|
 18|01000010001110001100|
 19|01011010100100100000|
 +--------------------+

FIGURE 13.48 Encryption simulation.

rule : 1 100 { (0,0) = 1 }
rule : 0 100 { (0,0) = 0 }
rule : 1 100 { (0,0) = 2 and (-1,-1) = 0 and (0,-2) = 0 }
rule : 0 100 { (0,0) = 2 and (-1,-1) = 0 and (0,-2) = 1 }
rule : 0 100 { (0,0) = 2 and (-1,-1) = 1 and (0,-2) = 0 }
rule : 1 100 { (0,0) = 2 and (-1,-1) = 1 and (0,-2) = 1 }
rule : 1 100 { (0,0) = 2 and (-1,1) = 0 and (0,2) = 0 }
rule : 0 100 { (0,0) = 2 and (-1,1) = 0 and (0,2) = 1 }
rule : 0 100 { (0,0) = 2 and (-1,1) = 1 and (0,2) = 0 }
rule : 1 100 { (0,0) = 2 and (-1,1) = 1 and (0,2) = 1 }

FIGURE 13.49 Decryption rules.

53361.indb 366 3/11/09 10:49:39 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 367

δext(s,e,x) {
if (passive)
Case msg.port

HTTP_In:
FTP_In:
SMTP_In:
SNMP_In:

 TelNet_In:
 Identify protocol port and save data, signal output function to send to transport
 In: signal output function to output to user

Else
continue

}

δint(s,e) {
 Case phase
 active: passivate
 Default: continue
}

λ(s) {
 Send application value to application out
}

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

0.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

FIGURE 13.50 Initial state of the decryption model.

53361.indb 367 3/11/09 10:49:41 AM

© 2009 by Taylor & Francis Group, LLC

368 Discrete-Event Modeling and Simulation

The layer model parses the input data, uses the port value, and forwards the newly created value
to the transport layer. This layer models a host generating and receiving data routed from vari-
ous internetworking devices and different services and protocols. Figure 13.54 shows a simulation
execution for the application layer model when it receives data.

According to the specification, the model adds the application port variable, and then it outputs
the information to the transport layer. The simulation starts with two HTTP requests, which are
serviced in 500 ms (port 80 is added to the packet). A similar result is obtained when we activate
the SMTP service in port 25.

13.6.4.2 The Transport Layer
This layer is responsible for reliable, end-to-end data transfer throughout the network. There are
many protocols functioning in this layer; however, as a starting point, TCP was chosen. Figure 13.52
(as well as Figure 13.55, which shows a subset of the original figure) shows how the transport model
was broken in two (full-duplex communications). The transmitter model is responsible for receiving
data from the application layer model, parsing it, and adding sequence and acknowledgment num-
bers, a window size, and a checksum to the original data received (fields required for service level
agreement simulations). The data received are transformed to the format shown in Figure 13.56,
according to the protocol requirements [26].

FIGURE 13.51 Final state of the decryption model.

53361.indb 368 3/11/09 10:49:42 AM

© 2009 by Taylor & Francis Group, LLC

After one iteration of the decoding process, we obtain:

and after 9 iterations of the process, we get

The final version shows the message after 171 iterations.

Solved cellSolved cell

Solved entire
row

Same message

Models of Artificial Systems, Networking, and Communications 369

Data from
user (EV)

Data from
user (EV)

Output to User
(Console/out file)

Input from Application
Layer

Signal if TCP Packet has been
received or lost Output to Network

Layer
Source IP

Receiver

Network
Transmitter

Network Layer

Output to
Data Link
Layer

Data Link

Layer

SignalDataSensing

Type
Signal

Physical

Layer

Output to
Next Device

Input from Network
Layer

Checksum
Verifier

Output to Application
Layer Datagram

(TCP Packet)
Stripper

Receiver

Transmitter

Tr
an

sp
or

t L
ay

er

Data

D
es

tin
at

io
n

IP

Incoming
from Data
Link Layer

Output to
Transport
Layer

Datagram
(TCP Packet)

Creator

Checksum
Creator

SM
T

P
SN

M
P

Te
ln

et
FT

P
H

T
T

P

FIGURE 13.52 Host coupled model [25].

HTTP

SMTP

TelNet

SNMP

FTP

Data Port

DataUser Input

User Input

User Input

User Input

D
at

a
fro

m
 th

e
Ev

en
t F

ile

User Input

Output to user
(Output file)

FIGURE 13.53 Application layer architecture.

53361.indb 369 3/11/09 10:49:44 AM

© 2009 by Taylor & Francis Group, LLC

370 Discrete-Event Modeling and Simulation

The creation of such packets is split between two atomic models: datagramCreator and
checksumCreator. The data received (from the application layer) is routed to the datagramCreator,
which will create an initial packet and forward it to the checksumCreator to compute a check-
sum. Then the completed packet will be forwarded to the datagramCreator and sent to the next
layer in the protocol stack (through the IP_Out port). Before the packet is sent, a copy is saved to

FIGURE 13.54 Application input/output.

A Connection between
the two models to

signal Acks on
Transmitter Receiver

TransportLayer

checksumCreator checksum
Verifier

datagramCreator
datagram
Stripper

(IP_Out)

(IP_In)

(APP_Out)

(APP_In)

FIGURE 13.55 TCP coupled model structure.

2 digits 2 digits

Data
Window #

Checksum #
Sequence #

Acknowledge #Port #

4 digits 4 digits

FIGURE 13.56 TCP packet format.

53361.indb 370 3/11/09 10:49:46 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 371

accommodate the connection manager, which will resend packets in case they are not received. For
instance, the model checksumCreator is defined as shown in Figure 13.57.

As we can see, when we receive a packet, and the checksum method adds redundancy check
information. We first isolate the different packet components. After all of them are isolated, we
use the cyclic redundancy check (CRC) algorithm to compute the checksum. On the receiver side,
we use two atomic models: a datagramStripper and a checksumValidator. The datagramStripper
receives the data from the network layer. The checksumValidator checks the checksum field of the
packet. If it is valid, then the datagramStripper is notified that the packet is not corrupted. Then
datagramStripper checks the packet type to see if it is data or an acknowledgment. In the case of
data, the packet headers are stripped, and the data is forwarded to the application layer. The data-
gramStripper also requests the datagramCreator to send an ACK to the packet source. On the other
hand, if it is an ACK (data field is zero), the datagram stripper forwards the message to the data-
gramCreator to check whether the ACK is expected in order to delete the saved packet or resend it.
If the checksum is incorrect, the packet is simply discarded.

Figure 13.58 shows the execution log of the transport layer model, in which we present the data
being manipulated by its various models. Data output from the application layer are received by the

FIGURE 13.57 checksumCreator model.

53361.indb 371 3/11/09 10:49:47 AM

© 2009 by Taylor & Francis Group, LLC

372 Discrete-Event Modeling and Simulation

transport layer, using the input: 00:00:10:00 infromApplication 1280, which was gener-
ated in Figure 13.54.

The first event (X/00:00:10:000) is an input carrying the value 12 through the HTTP port 80.
This is transmitted to datagramCreator, which executes the external transition function (adding the
window size, acknowledgment, and sequence number to the data; for testing purposes, these values
are zero). Then it schedules an internal transition (D) in 5 ms (reflecting the delay of the circuit).
When this time is consumed, an internal transition (*) is fired. The first step involves executing
the output function (Y), which transmits the packet through the gocheck port. The model then pas-
sivates (as discussed earlier “…” represents time = ∞). This event is converted into an input (X) for
checksumCreator, which receives the application data and computes the checksum (also taking
5 ms). The checksum-Creator responds at time 00:00:10:010 with the same packet sent to it, with
the addition of the checksum values (highlighted). Once the checksum is computed, the data are
returned back to the datagramCreator through the checkin port (highlighted), where they are sent
to the network layer through the datagramCreatorOut port at 00:00:10:015.

13.6.4.3 The Network Layer
The third layer in the TCP/IP stack is the network layer, which is responsible for end-to-end commu-
nication through the network. The network layer is usually where most of the delay and stochastic
operation occur. The layer adds source and destination IP fields to the packet to enable routing and
creating subnets, local networks, and many network artifacts, as shown in Figure 13.59.

The headers for the Internet protocol are based on RFC (Request For Comments) no. 791 [26].
They contain the full addressing information (source and destination IP) as well as other quality-of-
service parameters such as Time To Live (TTL), identification, and a checksum. The traffic packets
are made of the source address, the destination address, and the TCP field. The options in each field
are chosen from the IPV4 packet format. As seen in Figure 13.52, the network model consists of
a transmitter and a receiver, which add or extract the corresponding information using the header
format just discussed. Figure 13.60 shows an input example for this model.

The network layer is divided into two coupled models: a receiver and a transmitter (Figure 13.61).
The transmitter receives data from the transport layer, and it is converted to the format illustrated in
Figure 13.59. The transmitter also saves the destination IP in case of a resend request. The receiver
is a coupled model that receives data from the data link layer, removes all IP headers associated with
the packet, and forwards it to the transport layer.

The information sent to the network layer is used to create a checksum value, which is used
to verify the data sent over the network. The model outputs the required four fields, as shown in
Figure 13.62.

X / 00:00:10:000 / Root / infromapplication / 1280 to top
X / 00:00:10:000 / top / in / 1280 to datagramcreator1
D / 00:00:10:000 / datagramcreator1 / 00:00:00:005 to top
* / 00:00:10:005 / top to datagramcreator1
Y / 00:00:10:005 / datagramcreator1 / gocheck / 1200000000080 to top
D / 00:00:10:005 / datagramcreator1 / ... to top
X / 00:00:10:005 / top / in / 1200000000080 to checksumcreator1
D / 00:00:10:005 / checksumcreator1 / 00:00:00:005 to top
* / 00:00:10:010 / top to checksumcreator1
Y / 00:00:10:010 / checksumcreator1/checksumcreatorout/1200000009280 to top
D / 00:00:10:010 / checksumcreator1 / ... to top
X / 00:00:10:010 / top / checkin / 1200000009280 to datagramcreator1
D / 00:00:10:010 / datagramcreator1 / 00:00:00:005 to top
* / 00:00:10:015 / top to datagramcreator1
Y / 00:00:10:015 / datagramcreator1/datagramcreatorout/1200000009280 to top

FIGURE 13.58 Transport layer log file.

53361.indb 372 3/11/09 10:49:47 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 373

13.6.4.4 The Data Link Layer (DLL)
Modeling the data link requires dividing it into two parts. The first is to code the CRC operations
of the logical link control (LLC) sublayer, which is the upper layer of the DLL (in charge of multi-
plexing and demultiplexing, flow control, etc.). The second is to model the carrier sense multiple
access with collision detection (CSMA/CD) algorithm in the media access control (MAC) sublayer.
The MAC layer is an interface between the LLC and the physical layer that provides channel access
control (allowing multiple nodes to communicate in a multipoint network). All of these parts are
combined into one atomic model called dataLink.

Receiver

Network
Transmitter

Destination
IP

Data

Output
to Data

Link Layer

Output to
Transport
Layer

Network Layer

Source
IP

FIGURE 13.61 IP coupled model structure.

Options Field

TCP Field
Source Port
Destination

Port

Sequence #
Acknowledg-

ment #

Window Size
Checksum

Destination IP, Classless
Addressing Scheme IPV4

Source IP, Classless
Addressing Scheme IPV4

Identification Time To Live
(TTL)

Version
1 : RIP1 2 : RIP2

Metric For
RIP max = 16

Command
1 : Request
2 : Response

Header
Checksum

Data

Update Field

FIGURE 13.59 Header format.

00:00:00:010 infromTransport 1122334455580 // data to send
00:00:00:020 DestinationIP 192168111223 // destination IP value

FIGURE 13.60 IP test values.

53361.indb 373 3/11/09 10:49:49 AM

© 2009 by Taylor & Francis Group, LLC

374 Discrete-Event Modeling and Simulation

The CRC operations involve calculating the frame check sequence before sending a frame and
detecting for errors when a frame is received. These operations are implemented similarly to the
representation of the CRC-16, as shown earlier in Figure 13.57. The format of the frame sent and
received over the physical layer is shown in Figure 13.63.

When a packet is received from a higher-level protocol (such as the networkTransmitter in the
host), the CRC function appends a Frame Correction Sum (FCS) field into the packet in order to
create a frame, and those ready to be sent are pushed into a queue. Before transmitting a frame, the
dataLink senses the carrier by sending a senseCarrier port message to the physical layer and waits
for a response. Figure 13.64 shows the model definition for this layer.

Eventually, the physical layer sends its status, which could be idle, busy, jammed, or collision.
If the carrier is busy, dataLink sends another senseCarrier message and waits for another response
(repeating it until the carrier is idle) and then outputs the frames in the queue. However, after every
frame sent, the dataLink sends a senseCarrier message to the physical layer to ensure that there is no
collision. If there was a collision, the dataLink sends a jamming signal to the physical layer via the
senseCarrier port and waits for a response from the carrier. The carrier responds by sending a jam-
ming signal to all connected devices. Upon receiving this response, the device that had its frames
lost will resend the frame that was stored in the queue after a random delay of 0–10 ms. In contrast,
if there was no collision after the frame was sent, the frame stored in the queue is deleted.

Figure 13.65 shows the execution of this model. The inputs presented show the reaction of the
dataLink model when we send a frame with no errors and an IP packet. The output file displays
the packet that was part of the frame received. The output file also displays the frame created
when the packet was received at 20 s.

13.6.4.5 Simulation Results
In this section, we show the execution results of an example integrating all the components in the
library. In Figure 13.66, data are received through the same set of layers in the reverse direction,
with each layer stripping the extra variables added by its counterpart. Figures 13.66–13.68 show
the results of one of the examples for a host whose source IP address is 111222333. The test in
Figure 13.66 shows the transmission of FTP data from the host to another end on the network
(simple data values were chosen in order to ease the reviewing of the results). Figure 13.67 shows
the host’s reaction to these events.

Figure 13.68 shows the data link execution upon reception of two events: the first represents
the host sending the data received throughout the network (after adding the appropriate headers),
forwarding it to the data link layer. We can also see that the data link layer has actually stored the
data until it checks the physical layer. As the response arrives from the physical layer, data are sent
to the other host.

Y / 00:00:13:020 / networktransmitter1 / out / 485000015500 to top
Y / 00:00:13:020 / networktransmitter1 / out / 192168116224 to top
Y / 00:00:13:020 / networktransmitter1 / out / 192168116224 to top
Y / 00:00:13:020 / networktransmitter1 / out / 12223334318080 to top

FIGURE 13.62 Network layer log file.

OPTIONS SOURCE DESTINATION DATA FCS

FIGURE 13.63 Frame message format.

53361.indb 374 3/11/09 10:49:50 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 375

FIGURE 13.64 DLL model.

53361.indb 375 3/11/09 10:49:51 AM

© 2009 by Taylor & Francis Group, LLC

376 Discrete-Event Modeling and Simulation

13.6.5 ROUTER

A router is a device used to interconnect networking devices. In general, routers contain buffers to
store packets to be transmitted and a routing table to decide where to route them upon reception.
Routing is a function of layer 3, and it is in charge of distributing packets across an internetwork.
The model presented here, introduced in Ahmed et al. [25], uses an abstract look in the routing

FIGURE 13.64 (continued).

00:00:10:00 getFrame 101
00:00:10:00 getFrame 102
00:00:10:00 getFrame 103
00:00:10:00 getFrame 104
00:00:10:00 getFrame 410
00:00:20:00 packetIn 201
00:00:20:00 packetIn 202
00:00:20:00 packetIn 203
00:00:20:00 packetIn 204

00:00:10:000 sendPacket 101
00:00:10:000 sendPacket 102
00:00:10:000 sendPacket 103
00:00:10:000 sendPacket 104
00:00:20:000 sendFrame 201
00:00:20:000 sendFrame 202
00:00:20:000 sendFrame 203
00:00:20:000 sendFrame 204
00:00:20:000 sendFrame 810

FIGURE 13.65 Data link layer inputs/outputs.

53361.indb 376 3/11/09 10:49:52 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 377

process, considering three main functionalities: receiving/forwarding traffic, processing IP packets,
and maintaining a routing table, as seen in Figure 13.69.

In order to simulate these functions, two models were created: the RouterInterface and the
RouterProcessor, which, in turn, are composed of the ProcessingUnit and a ripTable. Every
router has a number of interfacing cards to receive or forward traffic from or to the network. The
RouterInterface model receives and sends packets with the format discussed in Figure 13.59.
After packets are received by the RouterInterface, they are processed to see if they are messages
to the router (requests or updates) or just data packets to be forwarded to their destinations. The
ProcessingUnit is responsible for reading in the packets from the interfaces, processing them, and
making routing decisions regarding their destinations. Upon receiving a packet, it looks at the pack-
et’s header, extracts from it the TTL value, and checks whether it is valid. In this case, it will read
the packet’s type, and it will react according to the type.

Three types of packets are accepted: request, respond, and data. Request packets carry the des-
tination address of the requesting router that wants the update, following the routing information
protocol [27]. This address value is extracted from the packet’s header, and it is sent along with the
requesting router reply information to the ripTable model (so proper reply information can be pre-
pared and sent to the requesting router). The respond packets carry a network address and a metric

FIGURE 13.66 Simulation execution test.

FIGURE 13.67 Host log file section.

FIGURE 13.68 Data link interaction.

53361.indb 377 3/11/09 10:49:54 AM

© 2009 by Taylor & Francis Group, LLC

00:10:00 FTP_In 11
00:10:00 Destination 192168111
00:10:01 statusCarrier 1
00:40:02 FTP_In 1001214
00:40:02 Destination 192168001
00:40:03 statusCarrier 1
00:80:04 FTP_In 1001215
00:80:04 Destination 192168001
00:80:06 statusCarrier 1
01:90:07 Telnet_In 1001216
01:90:07 Destination 192168001
01:90:11 statusCarrier 1

Y / 00:00:49:010 / networktransmitter1 / out / 2000000000 to top
Y / 00:00:49:010 / networktransmitter1 / out / 111222333 to top
Y / 00:00:49:010 / networktransmitter1 / out / 0 to top
Y / 00:00:49:010 / networktransmitter1 / out / 0 to top
D / 00:00:49:010 / networktransmitter1 / ... to top
Y / 00:00:49:010 / top / outtodatalink / 2000000000 to Root(00)
Y / 00:00:49:010 / top / outtodatalink / 111222333 to Root(00)
Y / 00:00:49:010 / top / outtodatalink / 0 to Root(00)
Y / 00:00:49:010 / top / outtodatalink / 0 to Root(00)

Y / 00:00:06:000 / internet / outtodatalink / 20000 to top
Y / 00:00:06:000 / internet / outtodatalink / 192168116224 to top
Y / 00:00:06:000 / internet / outtodatalink / 0 to top
Y / 00:00:06:000 / internet / outtodatalink / 0 to top
D / 00:00:06:000 / internet / ... to top
X / 00:00:06:000 / top / getpacket / 20000 to datalink
X / 00:00:06:000 / top / getpacket / 192168116224 to datalink
X / 00:00:06:000 / top / getpacket / 0 to datalink
X / 00:00:06:000 / top / getpacket / 0 to datalink

378 Discrete-Event Modeling and Simulation

value (cost) associated with that route. These packets are used to update other routers or to respond
to other routers’ requests for updates. The router extracts both the address and the metric, and it
forwards this information, along with the sending router’s data, to the ripTable model. When a data
packet is received, the processingUnit extracts its destination address and forwards it to the ripTable
(which maintains the routing information for forwarding packets). Once the ripTable returns the
value of the output interface chosen, the RouterProcessor will forward the data packet through it. If
the destination address is not found in the routing table, the value 0 is returned (and a request packet
is issued through all interfaces, except the one that the packet was received through, requesting an
update on that destination). Figure 13.70 shows the definition of the ripTable atomic model.

The ripTable model is in charge of maintaining the routing information for the router. The entries
in the table have the format <Address, Metric, Interface>, where Address is a destination for the
packet, Metric represents the cost of getting to that destination, and the output Interface is the one
through which the router must forward the packet to be at least one hop closer to the destination.
The ripTable can receive different events: update request and request for forwarding information
(Address). In the case of updates, the model will be receiving the address that the update is about,
together with a new metric value. The address is searched in the RIP table. If the address does not
exist, the information will be added. Otherwise, the metric in the table is compared with the newly
received one, and if the new value is smaller than the one in the table, the output interface number
is replaced by the new update. For request events, the model prepares the required information (the
whole table) and redirects it as it responds. Finally, for the Address request, the model will search
its table for the destination address and send the output interface that should be used to forward the
packet. Figure 13.71 shows different testing scenarios for the model subcomponents.

The events injected represent update, request, and destination values. We first send four updates,
simulating the values that will be passed from the RouterProcessor to the ripTable (and the table
did, in fact, receive the messages and stored them). For instance, the first message will activate the
external transition function, and the value 1.1 will be stored on hostemp.address. When the second
message arrives, it will be stored in hostemp.metric and the third message on hostemp.gatewayIP
(that is, a value of five). At this point, the host’s table is empty. Therefore, we initialize the hosts[0]
entry with the temporary data just stored, and hostsize is now 1. The senddone flag is set. Thus, at
this time, a done message is generated. The same occurs with the next messages. At 100, we request
an interface for address 1.3, and we can see that the model did output the right interface number
associated with that address. When the address message arrives, we look for the value 1.3 on each
entry. It is found, the sendPort flag is set, and the output function sends the temp value found on the

in

in

in

in

inin

RouterProcessor

Router

RouterInterface

RouterInterface

RouterInterface

dist

interface

update

request

tableData

out

in

out

out

out

outout

in

out

in

out

in

out

in

out

out

pr
oc

es
sin

gU
ni

t

rip
Ta

bl
e

FIGURE 13.69 Router coupled module.

53361.indb 378 3/11/09 10:49:54 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 379

FIGURE 13.70 RipTable atomic model.

53361.indb 379 3/11/09 10:49:55 AM

© 2009 by Taylor & Francis Group, LLC

380 Discrete-Event Modeling and Simulation

destination field (in this case, seven) through the out_interface port. We then request the address
1.5, which does not exist in the table; therefore, the model sends a value of zero for the output inter-
face. We then send a request with the address value zero. The model responds with all of the table
entries to that interface port, followed by a done signal to the router processor. Finally, the model
accepts updates for an existing address in its table, replacing the output interface associated with
that address.

FIGURE 13.70 (continued).

INPUTS
00:00:00:010 update 1.1 //sending update data
00:00:00:010 update 1 //metric 1
00:00:00:010 update 5 //interface 5
00:00:00:011 update 1.2 //sending update data
00:00:00:011 update 2 //metric 2
00:00:00:011 update 6 //interface 6
00:00:00:012 update 1.3 //sending update data
00:00:00:012 update 3 //metric 3
00:00:00:012 update 7 //interface 7
00:00:00:013 update 1.4 //sending update data
00:00:00:013 update 4 //metric 4
00:00:00:013 update 8 //interface 8
00:00:00:100 address 1.3 //requesting interface for address 1.3
00:00:00:110 address 1.5 //requesting interface for address 1.5
00:00:00:120 request 1 // request data, address 0 (all table)
00:00:00:120 request 0
00:00:01:010 update 1.3 //update data (address 1.3)
00:00:01:010 update 1 //metric 1
00:00:01:010 update 3 //interface 3

OUTPUTS
00:00:00:101 out_interface 7 //out interface 7
00:00:00:111 out_interface 0 //out interface 0 (unknown)
00:00:00:121 out 222255202002 //start of response messages. 1st entry (option)
00:00:00:121 out 1.1 //(address)
00:00:00:121 out 0
00:00:00:121 out 0
00:00:00:121 out 1 // (interface to respond through)
00:00:00:121 out 222255202002 // 2nd table entry (option filed)
00:00:00:121 out 1.2 //(address)
00:00:00:121 out 0
00:00:00:121 out 0
00:00:00:121 out 1
00:00:00:121 out 222255202002
00:00:00:121 out 1.3
00:00:00:121 out 0
00:00:00:121 out 0
00:00:00:121 out 1
00:00:00:121 out 222255202002
00:00:00:121 out 1.4
00:00:00:121 out 0
00:00:00:121 out 0
00:00:00:121 out 1
00:00:00:121 done 0 //responding completed

FIGURE 13.71 RipTable simulation.

53361.indb 380 3/11/09 10:49:56 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 381

Figure 13.72 shows a complete simulation for the router model. The first packet is an update. The
router passes the related values to its table and the table is updated. The message arrived at the router
from interface 1, and a corresponding update message was created and sent through interface 2
(out2). For every update packet, an update to the neighbor nodes is sent through the other router
interface. Then we show a packet representing data injected into the router. The packet option field
shows a TTL value of 10. The router knew the address because it received an update on it before. The
router forwards the packet using the right output interface. Afterward, another update with a smaller
metric for an address that the router has in its table is sent through interface 1. We can see that the
router did update its table with the better metric value and sent an update through interface 2.

No output was sent in response to the last two packets. The reason is that the first one was an
update with a metric higher than the existing one in the routing table. The second was a data packet
with a TTL value of zero (expired). In both cases, the router discarded the packets (Figure 13.73).

In Figure 13.74, we show the behavior of the model when we simulate a signal coming from the
RouterProcessor queue, considering packets sent from the different interfaces. Packets with differ-
ent types were fed to PacketProcessor, and the outputs were analyzed, as shown in Figure 13.74.

INPUTS
00:00:010 in1 2000001 // update with metric 1
00:00:010 in1 111101101 // address
...
00:00:100 in1 3010012 // data, ttl=10, CRC=12
00:00:100 in1 121117001 // source address
00:00:100 in1 133303303 // destination address
00:00:100 in1 15
00:01:010 in1 2000000 // update metric 0
00:01:010 in1 133303303
...
00:02:000 in1 3008011 // data,ttl=8, CRC = 11
00:02:000 in1 114124201
00:02:000 in1 123456789 // unknown destination 00:02:010 in2 2000007 // update metric 7
00:02:010 in2 122202202
00:02:010 in1 3000007 // data, TTL = 0
00:02:010 in1 122202202

OUTPUTS
00:00:018 out2 2000001 // update
00:00:018 out2 111101101 // address
...
00:00:109 out2 3010012 // data forward
00:00:109 out2 121117001
00:00:109 out2 133303303
00:00:109 out2 15
00:01:018 out2 2000000 // update
00:01:018 out2 133303303
...
00:02:009 out2 1000000// request
00:02:009 out2 123456789

FIGURE 13.72 Router input/output events.

destination
getPacket

RPU

packet
in

outInterface

out

next

cont

updatetable

FIGURE 13.73 RPU input/output ports.

53361.indb 381 3/11/09 10:49:57 AM

© 2009 by Taylor & Francis Group, LLC

382 Discrete-Event Modeling and Simulation

The messages in the figure show the process of sending flag signals from the queue to Packet-
Processor and then responding to the processor’s requests for packets. The model requested the
output interface every time it received a data packet—as in the first two packets sent. The model
used the interface ID to forward the packet and issued a request to be updated when the interface
value received was zero. Using the event file, we also simulated an update packet (the third packet)
and a request packet (the fourth packet); for both types, the processor output the right messages to
the ripTable model.

FIGURE 13.74 PacketProcessor model execution.

53361.indb 382 3/11/09 10:49:59 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 383

13.7 MODELING MOBILE AD HOC NETWORKS (MANETS)

Wireless networks use radio or electromagnetic waves as the physical layer within a networked
environment. Modeling mobile ad hoc networks (MANets) are self-configuring networks (i.e.,
every node in the system can become a router) with varying topology. In this section, we will show
how to use CD++ to build models to test routing algorithms for MANets, as discussed in Farooq,
Wainer, and Balya [28]. We will present a model, found in ./AD-HOCRouting.zip, that implements
the ad hoc on-demand distance vector (AODV) algorithm [29]. This on-demand algorithm was one
of the first ad hoc routing algorithms chosen by the Internet Engineering Task Force as an experi-
mental RFC standard. AODV has low processing and memory overhead and offers quick adaptation
to dynamic link conditions.

AODV assumes bidirectional links and creates routes on demand. Our model considers a net-
work plane in which nodes are spread at random. Data movement between two cells represents one
hop, as routing takes into account the shortest hop count. Each node can communicate with the
nodes to the N, S, E, and W. However, if each neighbor is not a node, we have a dead cell (represent-
ing physical obstacles or simply the absence of a link). Two nodes with a dead cell between them
cannot communicate directly.

If we assume that the communication cost between
any two nodes is the same, modeling AODV using Cell-
DEVS involves finding the shortest path between two
nodes. To do so, we used a variant of the classical Lee’s
algorithm [30]. Figure 13.75 shows a simple example of
a network plane. Here, S represents a sender node and
D a destination node; black cells represent dead cells.
In order to find a route from S to D, the node S broad-
casts an RREQ message to all its neighbors (called the
wave nodes). The wave nodes rebroadcast the mes-
sage to their neighbors and set up a reverse path to the
sender. These nodes further rebroadcast this message
and set up a reverse path to the nodes from which they received the message.

This process continues until the message reaches the destination node D. Because there is more
than one path, D may receive multiple RREQ messages for the same sender. However, the first route
through which D receives the RREQ message is the shortest path between sender and destination.
The destination thus ignores all RREQ messages except for the first one, and it replies by sending
an RREP message using the reverse path. All the wave nodes on this route become path nodes
(represented with circles containing arrows in the figure). All other wave nodes move to a clear
state (not shown in the figure). Using these ideas, we built a model in CD++, which is presented in
Figure 13.76.

The model uses the following values to represent the cell’s states:

S = 0: dead (dead cell);
1: init (initial state of the nodes);
2: initD (initial state of the destination node);
3: DR (destination ready; state of the destination node after it has received a send request from

the sender);
4: InitS (initial state of the sender node);
5: WaveU (wave up);
6: WaveD (wave down);
7: WaveR (wave right);
8: WaveL (wave left);
9: PathU (path up);

S

D

FIGURE 13.75 AODV routing in Cell-DEVS.

53361.indb 383 3/11/09 10:49:59 AM

© 2009 by Taylor & Francis Group, LLC

384 Discrete-Event Modeling and Simulation

10: PathD (path down);
11: PathR (path right);
12: PathL (path left);
13: Clear (final state of the nodes that received a wave message but are not going to become

a path node); and
14: Found (destination found; final state of the sender).

Each cell evolves through different states. The first rules are used to define when the destination
is ready (i.e., the destination node has received an RREQ). In order to check this, we verify whether
any of the four neighbors is a path. In that case, the search has finished and we have found the desti-
nation. The next set of rules is used to determine when a cell should become a wave cell (i.e., a cell
neighboring the RREQ). To be converted into a wave, the cell should be in an init state, and one of
its neighbors should be a wave (i.e., it should have a value between four and eight). According to the
current value of the neighboring cell, the origin cell should become a wave pointing to the N, S, E,
or W. The next step is to determine when a wave cell will become part of the path. This will happen
if the cell is a wave and a neighbor in the right direction is in the path. For instance, the first rule in

FIGURE 13.76 Implementing AODV routing in CD++.

53361.indb 384 3/11/09 10:50:00 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 385

Figure 13.76 says that if the current cell is a wave with direction N and the cell to the W is a path
cell with direction E, then the current cell should become a path cell with direction N. The following
rules determine how to change into a path cell with the right direction.

After the path has been set, we need to clear the unused cells. There are several conditions for
clearing a cell:

1. The cell is in the init state and there are neighbors that have been cleared.
2. The cell is a wave and there is a neighbor that has been cleared that is the destination node,

or that is in the found state (i.e., a source that has found the path to the destination).
3. The cell is a wave and there is a path node in the neighborhood, but not in the right direc-

tion (e.g., this is a wave to the W, and we have a path neighbor with direction to the N).

Finally, we define how to transform the source node into a found node. To do so, the cell should
be in an initial state for a sender, and at least one of the neighbors should be a path node.

A number of tests were conducted on the model. For instance, Figure 13.77 shows a case with
20 × 28 cells (dead cells are in black and cells that have not received any message are white).
Initially, the sender (shown in gray in the SW) broadcasts an RREQ message to the destination
(shown in the top-right part of the figure). After 50 steps, we see the light gray nodes representing
those nodes that have received an RREQ. The dark gray node (close to the source) carries an RREP
(in accordance with the rules for defining path cells).

After 100 steps, a route has been established. Clear cells are represented in light gray. The final
state after 106 steps shows the shortest route between the sender and the receiver, and all wave
nodes end up in clear state.

Exercise 13.16

Modify the source and destination position and repeat the global test.

Exercise 13.17

Modify the number and position of dead cells and repeat the tests. Discuss the results obtained.

We extended the preceding model to three dimensions (Figure 13.78), which can be used to
model the transmission of messages in a three-dimensional ad hoc network; it can also be used, for
example, to represent interworking. That is, if one of the planes represents a wireless ad hoc network
and the other a wired network, it would make sense to transmit the data in the ad hoc plane to the
wired plane through the nearest gateway because the cost in a wired network is generally less than
in a wireless one.

 (a) (b) (c)

FIGURE 13.77 AODV simulation: (a) initial distribution; (b) state after 50 steps; (c) state after 100 steps.

53361.indb 385 3/11/09 10:50:01 AM

© 2009 by Taylor & Francis Group, LLC

386 Discrete-Event Modeling and Simulation

The model also includes a few other extensions:

Multicasting in AODV: The construction of multicast trees on ad hoc networks is complex,
and Hochberger and Hoffmann [31] have shown that as the number of receiver or sender
nodes increases, the number of states for each cell goes beyond practical limits, particu-
larly if we consider optimality (i.e., the tree should duplicate data as little as possible).
We proposed an algorithm based on this model, which constructs optimal multicast trees
[28]. The nodes can join to broadcast by finding the shortest optimal route and construct-
ing a multicast tree. The final state of the model after 217 steps of execution is shown in
Figure 13.79(c): Three new nodes have been successfully added to a multicast tree.
We have also defined models for routing among multiple pairs of senders and receivers.
Lee’s algorithm fails for multiple pairs of senders and receivers; it generates deadlocks and
may prevent the generation of a routing path between pairs of nodes that can communicate
[31]. To overcome this problem, we have exploited the inherent parallelism in Cell-DEVS
and have found a solution to the problem: each pair of senders/receivers is allocated a plane
in a three-dimensional Cell-DEVS. On each plane, we run a variant of Lee’s algorithm
that permits routing multiple pairs of senders and receivers without having to define more
states. Because each pair is routed separately in each plane, routing messages for each pair
do not interfere with each other. By avoiding this interference, we can successfully prevent
the generation of deadlocks. Moreover, the approach exploits the inherent parallelism in
Cell-DEVS as multiple pairs are routed simultaneously.
Mobility behavior of the ad hoc nodes (nodes move diagonally and bounce back when they
reach the edges of the plane; collision avoidance is also implemented): The model, found
in ./MobileNode.zip, contains both static and mobile nodes and one or more gateways. The
coupled model presented in Figure 13.80 has 20 × 20 cells, and the surrounding 25 cells
will form the neighborhood. The mobilenode model implements all the desired behavior:

(a) (b)

FIGURE 13.78 Three-dimensional AODV simulation: (a) initial state; (b) final state.

 (a) (b) (c)

FIGURE 13.79 AODV multicast modeling: (a) 93 steps; (b) 125 steps; (c) final state after 217 steps.

53361.indb 386 3/11/09 10:50:01 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 387

mobility, routing, and coverage. Numerical values are used to represent the model’s state
variables as follows: S = 0 (empty), S = 1 (moves to SE), S = 2 (moves to NE), S = 3 (moves
to SW), S = 4 (moves to NW), S = 5 (static node), S = 6 (gateway), S = 10 (1 hop), S = 20
(2 hops), S = 30 (3 hops), S = 40 (4 hops), S = 50 (5 hops), S = 60 (cannot reach the gateway),
and S = 7 (within coverage).

Nine different collision scenarios are created. Four of them are between static and mobile nodes,
three are between two mobile nodes, and two are between a mobile node and a gateway. All mobile
nodes change their directions at the next time unit in order to avoid collision. We also incorporate a
hop-count submodel in which every node determines the next neighbor that can reach the gateway
with the smallest number of hops.

Figure 13.81 shows the coverage values for the hop-count values. It can be seen that two areas
are totally out of coverage. As service demand increases in these areas, network engineers should
install more gateways in these regions.

FIGURE 13.80 Implementing mobility model in CD++.

FIGURE 13.81 Mobility, hop count, and coverage.

53361.indb 387 3/11/09 10:50:02 AM

© 2009 by Taylor & Francis Group, LLC

388 Discrete-Event Modeling and Simulation

13.8 SUMMARY

This chapter introduced multiple models of artificial systems, one of the main applications of dis-
crete event modeling and simulation. We presented various simple models in varied areas (ranging
from a load-balancing model for a database server to varied models for networking, including rout-
ing in MANets). We also introduced the application of these techniques to the field of robotic path
planning and control systems. We showed how to build a complete set of tools used to simulate a
simple computer. The tools can be used in computer organization courses to analyze and understand
the basic behavior of the different levels of a computer system.

The benefit of using discrete-event modeling for these applications was demonstrated thoroughly.
The discretization provides a drastic reduction in data volume, while having the benefit of mixing
continuous and discrete time models.

The model repository includes a variety of other models in this field. The ./AdHocNetwork.
zip model contains the definition of a controller for an ad hoc networking device integrated to
a two-dimensional interface. ./BluetoothZimulator.zip includes analysis of the registration in a
Bluetooth network, and the ./WSN.zip model includes the description of a wireless sensor network.
./cruisecontrolsystem.zip contains a detailed model of a controller for a cruise control system. The
./RoutingIP.zip model presents a small network with IP routing.

Other simple applications include a model of an automated garage door (./AutoDoor.zip), a control-
ler for a ticketing machine for a bus (./BusVending.zip), an automated coffee machine and other vend-
ing machines (./CoffeeMachine.zip, ./Vending.zip), a model of a home alarm system (./IntruderSystem.
zip), a model of an online system for a bank (./OnlineBankingSystem.zip), networking models
(./WirelessModemSimulator.zip, ./WebClient.zip), models of telephones and switches (./telephone-
switch.zip, ./telephone.zip), and various clock models (./clock.zip, ./clock_2.zip, ./Pendulum_clock.
zip).

REFERENCES

1. Stallings, W. 1996. Computer organization and architecture, 4th ed. New York: Macmillan.
2. Tanenbaum, A. 1990. Structured computer organization, 3rd ed. Upper Saddle River, NJ: Prentice Hall.
3. Hennessy, J., and D. Patterson. 1994. Computer architecture: A quantitative approach. Upper Saddle

River, NJ: Prentice Hall International.
4. Daicz, S., A. Troccoli, and G. Wainer. 2001. Experiences in modeling and simulation of computer architec-

tures using DEVS. Transactions of the Society for Modeling and Simulation International 18:179–202.
5. Daicz, S., A. Troccoli, G. Wainer, and S. Zlotnik. 2000. Using the DEVS paradigm to implement a simu-

lated processor. Proceedings of 33rd IEEE/SCS Annual Simulation Symposium, Washington, D.C.
6. Wainer, G., S. S. Daicz, L. De Simoni, and D. Wasserman. 2001. Using the ALFA-1 simulated processor

for educational purposes. ACM Journal on Educational Resources in Computing 1:111–151.
7. Ameghino, J., and G. Wainer. 2000. Application of the cell-DEVS paradigm using N-CD++. Proceedings

of 32nd Summer Computer Simulation Conference, Vancouver, Canada.
8. Behring, C., M. Bracho, M. Castro, and J. A. Moreno. 2000. An algorithm for robot path planning with

cellular automata. Proceedings of ACRI 2000, Karlsruhe, Germany.
9. Tzionas, P., A. Thanailakis, and P. Tsalides. 1997. Collision-free path planning for a diamond-shaped robot

using two-dimensional cellular automata. IEEE Transactions on Robotics and Automation 13:237–246.
10. Wainer, G. 2006. Modeling robot path planning with CD++. Proceedings of ACRI 2006, LNCS 4173,

Perpignan, France.
11. Butler, Z., K. Kotay, D. Rus, and K. Tomita. 2002. Generic decentralized control for a class of self-

reconfigurable robots. Proceedings of 2002 IEEE International Conference on Robotics and Automation,
ICRA 2002, Washington, D.C.

12. Narendra, K. S., O. A. Driollet, M. Feiler, and K. George. 2003. Adaptive control using multiple models,
switching and tuning. International Journal of Adaptive Control and Signal Processing 17:87–102.

13. Kofman, E. 2003. Quantized-state control. A method for discrete event control of continuous systems.
Latin American Applied Research Journal 33:339–406.

53361.indb 388 3/11/09 10:50:03 AM

© 2009 by Taylor & Francis Group, LLC

Models of Artificial Systems, Networking, and Communications 389

14. Kofman, E. 2003. Discrete event control of time-varying plants. Technical report LSD0303, Universidad
Nacional de Rosario, Argentina.

15. Campbell, A. 2005. Improvements to stochastic multiple model control: Hypothesis test switching and a
modified model arrangement. MASc thesis, Carleton University, Ottawa, ON, Canada.

16. Campbell, A., and G. Wainer. 2006. Applying DEVS modeling for discrete event multiple model control
of a time varying plant. Proceedings of Winter Simulation Conference, Monterey, CA.

17. Hedrick, C. 1988. Routing Information Protocol. Network Working Group, Request for Comments 1058.
18. Altman, E., and T. Jiménez. 2003. NS simulator for beginners. Technical report, INRIA Sophia-

Antipolis. http://www-sop.inria.fr/mistral/personnel/Eitan.Altman/COURS-NS/n3.pdf
19. Bajaj, L., M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla. 1999. GloMoSim: A scalable network

simulation environment. Technical report 990027, UCLA Computer Science Department.
20. Chang, X. 1999. Network Simulations with OPNET. Proceedings of the 31st Winter Simulation Confer-

ence, Phoenix, AZ.
21. Varga, A. 2001. The OMNeT++ discrete event simulation system. Proceedings of the European Simulation

Multiconference, Prague, Czech Republic.
22. Tanenbaum, A. S. 2003. Computer networks. Upper Saddle River, NJ: Prentice Hall.
23. Gutowitz, H. 1995. Cellular automata and the sciences of complexity. Parts I–II. Complexity 1:16–22.
24. Wolfram, S. 2002. A new kind of science. Champaign, IL: Wolfram Media.
25. Ahmed, M. A. E., K. Yonis, A. Elsahfei, and G. Wainer. 2005. Design and implementation of a library of net-

work protocols in CD++. Proceedings of ANSS ’05: 38th Annual Simulation Symposium, Washington, D.C.
26. RFC-editor. 2003. Official Internet protocol standards. RFC 791. ftp://ftp.rfc-editor.org/in-notes/rfc791.txt
27. Malkin, G. 1998. RIP version 2. RFC 2453. Network Working Group, request for comments.
28. Farooq, U., G. A. Wainer, and B. Balya. 2007. DEVS modeling of mobile wireless ad hoc networks.

Simulation Modeling Practice and Theory 15:285–314.
29. Perkins, C., E. Belding-Royer, and S. Das. 2003. Ad hoc on-demand distance vector (AODV) routing.

IETF Network Working Group, RFC 3561.
30. Lee, C. Y. 1961. An algorithm for path connections and its applications. IRE Transactions on Electronic

Computers EC-10, 2:345–365.
31. Hochberger, C., and R. Hoffmann. 1996. Solving routing problems with cellular automata. Proceedings

of the Second Conference on Cellular Automata for Research and Industry, Milan, Italy.

53361.indb 389 3/11/09 10:50:03 AM

© 2009 by Taylor & Francis Group, LLC

http://www-sop.inria.fr

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

391

14 Models of Urban Traffic

14.1 INTRODUCTION

The use of modeling and simulation technology for urban traffic control has a long history that can
be traced back to the 1950s. It has become an indispensable tool for traffic managers and operators
to study the potential impact of different design and control strategies. Over the years, a variety of
traffic modeling and analysis tools has been developed based on different methodologies, including
multiagent-based systems [1,2], queuing networks [3], cellular automata [4–9], DEVS [10], state
charts [11], and Petri nets [12,13]. Likewise, different commercial tools are available (for instance,
see references 14–18).

In this chapter, we present the use of DEVS and Cell-DEVS to model these applications. We
will initially present a model of a bridge crossing. After that, we present a model of a toll area on a
highway and a junction between a highway and a route. Then we introduce a model of a traffic light
controller. We combine the traffic light controller with a model of the streets in the area, which are
modeled using Cell-DEVS. We then present a multimodel of an urban city area. Finally, we describe
the ATLAS traffic modeling language.

14.2 A MODEL FOR A BRIDGE CROSSING

The traffic model presented here represents a crossing on a bridge under construction. One way is
blocked, allowing only one vehicle in each direction. In order to avoid conflicts, a traffic light is put
at each end of the bridge, regulating traffic in one or the other way. A model like this one could be
used to evaluate the most efficient way to allow traffic on the bridge and to optimize the waiting
time of the drivers.

The model follows the structure of the bridge described in Figure 14.1. The vehicles arriving at
the bridge line up in the north (N) and south (S) ends of the bridge. A control unit (CU) decides
when each end gets the right to cross the bridge. The lane model represents the delay taken by a
vehicle to cross the bridge, counting the number of vehicles on it. The DEVS model uses the struc-
ture shown in Figure 14.2 for the coupled model definition. Figure 14.3 shows the definition of the
CU model in CD++, found in ./bridge.zip.

The CU is in charge of synchronizing transit in both senses and is also in charge of schedul-
ing the car’s passage according to externally configurable parameters (maximum number of cars
allowed on the bridge and maximum time in each direction). These values are used to control the
traffic flow in each direction. The CU uses two output ports (to open the N/S gates) and two input
ports (to receive cars coming to and leaving the bridge). When a new vehicle is detected through
the in port, we increase the total number of cars and those in transit, and we verify whether the car
can advance onto the bridge. To do so, we check whether the total number of vehicles in the cur-
rent direction is below the maximum allowed. If we reach the maximum, we close the gate of that
side and schedule an instantaneous internal transition (we have symmetric rules for the N/S gates).
Otherwise, the car advances onto the bridge. In that case, we set the timeout (if no further vehicles
arrive before it, we have to switch directions).

When a vehicle leaves the bridge, we decrease the number of cars in transit. If the bridge is empty
and all the vehicles have passed, we switch directions. The output function informs which side is
open or closed. Finally, the internal transition function checks the current phase. If it is NONE, this

53361.indb 391 3/11/09 10:50:03 AM

© 2009 by Taylor & Francis Group, LLC

392 Discrete-Event Modeling and Simulation

means that we have just received a timeout, so we have to change directions and set the timeout.
Otherwise, we have just opened or closed the bridge; thus, we need to schedule the next timeout.
The following table shows a simulation scenario for the model:

Inputs Outputs

Event Time Port Value Event Time Port Value

00:00:00:000 OPENN 1
00:00:10:000 in 1
00:00:20:000 in 2
00:00:30:000 in 3 00:00:30:000 OPENN 0
00:00:40:000 out 1
00:00:50:000 out 2
00:01:00:000 out 3 00:01:00:000 OPENS 1
00:01:10:000 in 4
00:01:20:000 in 5
00:01:30:000 in 6 00:01:30:000 OPENS 0
00:01:40:000 out 4
00:01:50:000 out 5
00:02:00:000 out 6 00:02:00:000 OPENS 1

North Side

South Side
One-Way Lane

FIGURE 14.1 Schematic structure of the bridge.

BRIDGE

OPENS

INS

LANE OPENN

INN

OPENS OPENN

OUT OUT

OUT OUT

OUTS OUTN

IN INN

OUTN

START

SOUTH_QUEUE NORTH_QUEUE

START

IN

CONTROL UNIT

ININS

OUTS

FIGURE 14.2 Bridge DEVS coupled model structure.

53361.indb 392 3/11/09 10:50:05 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 393

FIGURE 14.3 Definition of the bridge control unit model.

53361.indb 393 3/11/09 10:50:06 AM

© 2009 by Taylor & Francis Group, LLC

394 Discrete-Event Modeling and Simulation

Initially, the N entrance is open. Then, at 10:000, the first car arrives from the N. This will trigger
the external transition, which will make total=in_transit=1. At this point, we schedule a transition
in 1 min (default timeout) and make phase=NONE. Ten seconds later, a new car arrives, and we
repeat the procedure again at 30:000. In this case, because there are three vehicles, which is the
maximum, we close the N entrance (thus, the phase is CLOSE_NORTH, and we schedule an instan-
taneous transition). The output function will then generate a value of 0 in the OPENN port, meaning
that the N entrance is now closed. When the internal transition executes, we change our phase to
NONE and schedule a timeout in 1 min. Then, at 40 s, a car leaves. We decrease the counter, and
when the third car leaves (at 1:00:000), we change direction (OPEN_SOUTH) and schedule an
internal transition. The output function will then open the S gate. Then three vehicles come from the
S. When the three vehicles are on the bridge, the S entrance is closed. Finally, three more vehicles
arrive from the N, and when they leave, the S entrance is left open.

We built two different versions of the CU model: one of them controls the number of cars on each
side (like the example just presented), and the second allows cars to pass from each side during a
given amount of time. Figure 14.4 shows the coupled model for the case where we use a CU count-
ing vehicles and an experimental frame that generates vehicles and counts them. The following
table shows the simulation results for this model:

Inputs Outputs

Event Time Port Value Event Time Port Value (ms)

00:30:00:000 STOP 1 00:30:15:000 QTY2 60
00:30:15:000 AVG2 42,900
00:31:05:000 QTY1 60
00:31:05:000 AVG1 100,600

components : ef1 ef2 bridge
in : stop
out : qty1 qty2 avg1 avg2
Link : stop stop@ef1
Link : stop stop@ef2
Link : qty@ef1 qty1
Link : avg@ef1 avg1
Link : qty@ef2 qty2
Link : avg@ef2 avg2
Link : out@ef1 ins@bridge
Link : out@ef2 inn@bridge
Link : outn@bridge in@ef1
Link : outs@bridge in@ef2

[ef1]
components : traffic1@Traffic analizer1@Analizer
in : in stop
out : out avg qty
Link : in solved@analizer1
Link : stop stop@traffic1
Link : stop stop@analizer1
Link : out@traffic1
arrived@analizer1
Link : out@traffic1 out
Link : average@analizer1 avg
Link : quantity@analizer1 qty

[traffic1]
distribution : poisson
mean : 30
...

TOP

STOP STOP
STOP

IN EF-1 EF-2

QTY

AVG
OUT

QTY

QTY–1 QTY–2AVG–1AVG–2

AVG
OUT

OUTN OUTS

INS

IN

INN

BRIDGE

FIGURE 14.4 Definition of the bridge top model.

53361.indb 394 3/11/09 10:50:07 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 395

The simulation ran for 30 min, after which we collected the results of the vehicles passing
through the bridge. We can see that, on average, every car took 42.9 s in the N–S direction and
approximately 1:40:600 min in direction S–N.

The test was repeated, changing the car-based CU by the time-based CU. In order to do so, we have
to include the timed CU atomic model and change the following lines in the coupled model definition:

components : south_queue@Queue north_queue@Queue cu@
TimeControlUnit lane

[cu]
max_north : 00:00:30:000
max_south : 00:00:30:000

The following table shows the input/output events for this case:

Inputs Outputs

Event Time Port Value Event Time Port Value

00:07:00:000 STOP 1 00:07:34:000 QTY1 14
00:07:34:000 AVG1 55,357
00:08:04:000 QTY2 15
00:08:04:000 AVG2 53,000

In these 7 min of simulation, there are 14 cars in the direction S–N and 15 cars in direction N–S.
When the simulation finishes, we obtain an average of 55.357 s in direction S–N and 53 s in direc-
tion N–S. When we compare the results, the average wait for the cars is better in both directions
when we use the time-based CU; when we count vehicles, there might be cars waiting at a closed
gate, while no cars arrive at the other end.

Exercise 14.1

Modify the CU model and include a sensor model to count vehicles arriving. If there are no vehicles on
the opposite side, the timeout is extended once, allowing an extended period on the busy side.

Exercise 14.2

Run different tests, varying the maximum number of vehicles in each direction. Analyze the simulation
results.

14.3 HIGHWAY TOLL STATION MANAGEMENT

In this section, we show how to apply DEVS and Cell-DEVS to model a simplified version of a
junction between two highways, close to the highway toll stations, found in ./highwayDellepiane.zip
(Figure 14.5). Vehicles enter the area through areas A and B. After passing the tollbooth, vehicles
converge on highway AU1 and exit through area C. The idea is to study how changes in the structure
of the highway (number of lanes and their length) and the number of tollbooths can influence the
throughput. In order to do so, the model must represent:

lane length, which allows computing of the time taken by a vehicle to cross the area accord-
ing to the number of lanes;
maximum speed, which allows computing of the time taken to move from one end to the
other in a lane;
number of lanes;
number of cars in each lane—allowing measurement of congestion in the lane; and
number of open tollbooths.

53361.indb 395 3/11/09 10:50:07 AM

© 2009 by Taylor & Francis Group, LLC

396 Discrete-Event Modeling and Simulation

We model the junction as a coupled model with the structure shown in Figure 14.6.
The coupled model has four levels (here we only show the top model, which consists of three

submodels representing toll stations, sensors connected to the junction, and sensors connected to the
toll stations to measure the number of passing cars). Both toll stations are modeled separately. The
AU6In port represents the incoming vehicles to highway AU6 through entry point A. Every time a
new car arrives, an external event is generated into this port, carrying the number of vehicles arriv-
ing. AU1In represents a similar input port for the AU1 highway and entry point B. The sensor output
ports collect information about cars leaving the area.

53361.indb 396 3/11/09 10:50:09 AM

© 2009 by Taylor & Francis Group, LLC

100m 600m

4 Lanes

4 Lanes

40
0m

4 Lanes

AU6

A

Toll: 15 lanes max

Toll: 8 lanes max

3 Lanes

3 Lanes

C

AU1

10
0m

3 Lanes

Toll AU6 Exit Section
AU6 Toll Queuing

Section

Toll AU6 Exit Section
(2nd Area)

Exit AU1
Section

AU1
Queue
Section

B

Figure 14.5  Highway and toll stations (different sections to analyze).

[TOP]

Free

TOLL_AU6

TOLL_AU1AU1In

Stop

Stop

Free

Out

Out InAU1

StopAU1

StopAU6 Sensor1
Sensor2

SensorAU1

Sensor1
Sensor2

SensorAU1

AU1Out AU1OutInAU6

FreeAU6

FreeAU1

JUNCTION
Sensor

Sensor

In

In

AU6In

SensorAU6

SensorAU1

Figure 14.6  Junction coupled model.

Models of Urban Traffic 397

Both toll models have the same structure: an input queue, receiving vehicles waiting for the toll-
booth to be free, and the tollbooth, which provides service to the vehicles (both are instances of the
same model, with different parameters, including queue capacity, and average service time for the
tollbooth.). The in ports represent vehicles arriving at the toll station; the stop port is used to receive
information by the junction (if there is congestion ahead, the booth delays vehicles). The out port
is used to represent the cars leaving the tollbooth. Finally, the free port is used to indicate that the
congestion situation has finished and that new cars can move to the junction.

The junction model represents the area between the two toll exits and the exit of highway AU1.
InAU1 and InAU6 represent the car intake for the area. The stop ports are used to inform when there
is congestion in the area (so that the toll stations stop the cars). The free ports are used to inform that
a congestion situation has finished and room is available to receive more cars (so that the toll stations
will allow new vehicles to get into the area). The sensor ports give information about the number of
cars in different sections in the area.

Figure 14.7 shows the implementation of the intersection model (a subcomponent of junction)
in CD++. The model has two input ports (carA/B) to report the arrival of new cars at the inter-
section. Ports free and stop are used to control the flow of vehicles. The lanes variable stores the
number of lanes in the highway. When a new car arrives, we compute the number of cars rejected
(arrived+no_to_dispatch - lanes); that is, the section can only accept as many vehicles
as space is available (no_to_dispatch contains the vehicles at the intersection and not yet dis-
patched). We then compute the number of vehicles to dispatch (minimum between the number of
lanes and the cars in the section). The variables sl indicate that a vehicle has been rejected. We then
compute the current state:

If the model is passive and we have vehicles to reject, we change to rejecting state. In this
way, we inform the number of cars rejected to the originator (a tollbooth), which will stop
sending more vehicles and add them to its queue of vehicles (to be re-sent when congestion
ends). If no vehicles are rejected, the model is active. We use two different times for each
event: dispatchTime to represent the time it takes the vehicles to leave the area and restart-
Time to represent the time taken to reject vehicles. In the case of rejection, we schedule an
internal transition after restartTime and save the difference between the dispatchTime and
the restartTime. (The intersection continues dispatching existing vehicles; thus, we need
to record the difference between the two events.)
If the model is active, we first check for rejection cases. If there are rejections and the
next scheduled internal event is after the restartTime, we change to the rejecting state.
Otherwise, we remain active until the next internal event. We consider the difference
between the next scheduled event and the time taken to reject the overflow vehicles. (The
cars are already being dispatched, and we still need to consume the dispatch time.)

When a new vehicle arrives while the model is active, we check for rejections and, if needed,
reschedule the next internal transition. If the model is passive and there are rejections, we move to
the rejection state. Otherwise, the model becomes active.

When the internal transition executes, we output the number of vehicles (or rejections). If we
are in the restart state, we inform that more room is available, and the internal transition function
produces a state change. If the model is active, the number of vehicles is reset. If there was a rejec-
tion, we have to inform the sender that room is available; thus, we change to restart and schedule an
internal transition. If the model was reinitializing or rejecting, we reset all the counters.

This model shows the use of model timing information as part of the external transition function.
If we compute the restart time and it is larger than a previously scheduled event, the first event takes
priority and the state does not change. Otherwise, the state is changed.

53361.indb 397 3/11/09 10:50:09 AM

© 2009 by Taylor & Francis Group, LLC

398 Discrete-Event Modeling and Simulation

FIGURE 14.7 Intersection atomic model.

53361.indb 398 3/11/09 10:50:10 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 399

We run this model using different scenarios. The case we show here represents the case of peak
time (7:45 to 8:30 a.m.), and it uses the distribution presented in Figure 14.8 to generate the inputs
to the area (a similar distribution was used for both highways).

In order to study the simulation results in detail, we registered the information provided by
the sensor ports in the model, and we computed the number of vehicles through those sensors
in time. The sensors periodically report the number of vehicles on each of the sections depicted in
Figure 14.5. SensorAU1 collects information about the exit of the highway AU1; Sensor1 collects
information on tollbooth AU6 and Sensor2 on the second area of AU6.

The diagrams in Figure 14.9 show the traffic status in each sector. The timescale in every fig-
ure starts at 7:45 a.m. and ends at 9:00 a.m. (the last vehicle enters the area at 8:32 a.m.). On AU6,
although the number of vehicles reduces with time, there is congestion at the exit of the toll area.
The opposite occurs on AU1: traffic is congested quickly, but transit in the direction of AU1 is fluid
(eight cars constantly). When we execute a similar test in which AU1 receives an average flow of
six cars/min, we can observe that, although traffic is heavy on AU6, it is fluid and there is no con-
gestion. A different test uses a similar distribution for AU1, while AU6 receives six cars/min. The
result is congestion in the entrance of AU1 (due to the small capacity) and fluid traffic in the rest of
the system.

Vehicles/minute

0

5

10

15

20

25

30

35

07:30 07:40 07:50 08:00 08:10 08:20 08:30

FIGURE 14.8 Input vehicle distribution.

0
50
100
150
200
250
300
350

0
1
2
3
4
5
6
7
8
9

Toll AU6 Queue Section
Toll AU6 - Second Section

AU1 Queue Section AU1 Toll Exit

0
50
100
150
200
250
300

0
50
100
150
200
250
300
350
400
450
500

350
400
450

FIGURE 14.9 Traffic status in different sections.

53361.indb 399 3/11/09 10:50:12 AM

© 2009 by Taylor & Francis Group, LLC

400 Discrete-Event Modeling and Simulation

Exercise 14.3

Modify the number of lanes in the Toll AU6 second section and study the results of the simulation.

Exercise 14.4

Change the car distribution input and repeat the study.

Exercise 14.5

Make AU1 have five lanes in total and analyze the results.

Exercise 14.6

Create a test in which the delay taken for the tollbooths is reduced or extended and analyze the simula-
tion results for the area.

14.4 HIGHWAY JUNCTION

In this section, we present a model of the intersection of two routes converging onto a highway. Both
routes have three lanes, and the highway is five lanes wide, as seen in Figure 14.10.

A model of this section would allow the modeler to analyze the behavior emerging from reduc-
ing from six to five lanes in total and to study congestion problems. The model was built as three
Cell-DEVS models coupled to each other; two represented the routes and the third represented the
highway. We used DEVS models to generate and consume traffic in the area.

The cellular models consider the driving behavior, including three basic movements: forward
movement, passing slower cars using the left lane, and, if the left lane is occupied, passing slower
cars using the right lane. Figure 14.11 shows the general structure of route R9.

This model can be defined as

R9 = < X, Y, Xlist, Ylist, µ, N, {m,n}, C, B, Z, select> (14.1)

where
Xlist = {(0,0);(1,0);(2,0);(0,9);(1,9);(2,9)}
Ylist = {(0,9);(1,9);(2,9)}

R9

R8 H1

FIGURE 14.10 Scheme of the route junction.

FIGURE 14.11 Scheme of the route junction.

53361.indb 400 3/11/09 10:50:13 AM

© 2009 by Taylor & Francis Group, LLC

Query to exit (Q)

Vehicle Exit

Q
phase
R
Q

R
phase

Reply (R)

Models of Urban Traffic 401

I = <Px, Py>, where
Px = { <X(0,0),binary>, <X(0,1),binary>, <X(0,2),binary>, <X(0,9),binary>, <X(1,9),binary>,

<X(2,9),binary> };
Py = { <Y(0,9)1,binary>, <Y(0,9)2,binary>,<Y(1,9)1,binary>, Y(1,9)2,binary>,<Y(2,9)1,binary

>, <Y(2,9)2,binary>}; where
1 and 2 represent each of the output ports for the cells (which connect with another route or
highway). One of the ports is used to query whether there is room in the next route and the
other one to obtain a response from it

µ = 11; N = { (–2,–1), (–2,0), (–1,–1), (–1,0), (–1,1), (0,–1), (0,0), (0,1), (1,–1), (1,0), (1,1) }
X = Y = {0,1}; m = 3; n = 10; B = nowrapped
Z is defined as in Cell-DEVS specification
select = {(–1,–1), (–1,0), (–1,1), (0,–1), (0,0), (0,1), (1,–1), (1,0), (1,1), (–2,–1), (–2,0) }

Each cell in the cell space is defined by

Cij = <I, X, S, Y, N, δint, δext, d, τ, λ, D> (14.2)

where
I = < , Px, Py >, where µ = 11
Px = { <X1,binary>,..,<X11,binary> }, Py = { <Y1,binary>,..,<Y11,binary> }
X = Y = {0,1}

S
1, if there is a car in the cell

0, otherwwise

N = {(–2,–1), (–2,0), (–1,–1), (–1,0), (–1,1), (0,–1), (0,0), (0,1), (1,–1), (1,0), (1,1)}
d = speedA (a function of the speed of the vehicles)

We use an extended Moore’s neighborhood. We need to include two extra cells to the N in
order to permit the vehicles to pass on the right without colliding. If a car decides to pass a vehicle
using the right lane, that is because it tried to pass on the left first and could not make it, as seen in
Figure 14.12.

In order to define the behavior of the cell to which the arrow is pointing, we need to check the
value of the cell to the N, the second cell to the N (in order to see if it is blocked, as in the figure),
and the second cell to the NW (cell (–2,–1)). If there is a vehicle moving forward in that cell, the
vehicle cannot pass on the left, either; this is used to model a shoulder check action.

The rules defined in the model include different kinds of behaviors. The following rules are used
to model forward movement (Figure 14.13(a)):

0 d {(0,0)=1 and (0,1)=0}
1 d {(0,0)=0 and (0,-1)=1}

The following rules describe the behavior of Figure 14.13(b) (i.e., a vehicle passing on the left):

0 d {(0,0)=1 and (0,1)=1 and (-1,1)=0 and (-1,0)=0}
1 d {(0,0)=0 and (1,0)=1 and (1,-1)=1 and (0,-1)=0}

FIGURE 14.12 Passing on the right.

53361.indb 401 3/11/09 10:50:14 AM

© 2009 by Taylor & Francis Group, LLC

402 Discrete-Event Modeling and Simulation

We check whether the cell (–1,0) is empty, because we will first move to this cell, and then we
move forward. To pass on the right, we do as in Figure 14.12. In this case, we need the cell (1,0) to be
empty because we will first move to this cell and then we move forward. In any of the cases shown
in Figure 14.14, the vehicle cannot move forward.

Figure 14.15 shows a definition of the model, found in ./highwayint.zip, using CD++. Forward
movement rules are like those previously defined in Figure 14.13 (we use state values 40 and 41 to
distinguish vehicles on the highway from those in R8 and R9). The model for route 8 is identical to
the one used for route 9. The HW1 model is similar to the route 9 model, changing the size of the
cell space (m = 5; n = 10). We also use a DEVS generator, which generates traffic using a normal
distribution with mean value of 100 and standard deviation of 0. We have specialized behavior for
the cells joining R9 with HW1: the first rules represent a vehicle leaving R9 to the highway (whose
cells are marked with the value 40). Vehicles try to pass on the left; if blocked, they try on the right
(Figure 14.16).

The last two cells of R8 are connected to the same cell in HW1 (4,0). The idea is to model the fact
that these two cells are joined into one before entering HW1. We need different behavior in each of
the last two cells in R8 in order to deal with conflicts if both cells are occupied at the same time (in
this case, lane 2 has higher priority). The other cells in R8 and R9 are directly connected to HW1 in
the corresponding lanes (Figure 14.17).

14.5 TRAFFIC LIGHT CONTROLLER

In this section, we present a simple local traffic control model (depicted in Figure 14.18), which
reproduces the behavior of the traffic lights in a crossing and can be used to identify the factors that
can affect traffic throughput. We model only one intersection composed of four traffic lights, each
of them controlling traffic in one direction. The following assumptions serve as the boundary condi-
tions of the system (which conform to the experimental frame of the model):

Only traffic in four directions is considered; right and left turn traffic is not studied.
The traffic in each direction has at least one lane.
The length of each lane is unlimited (i.e., each lane is capable of accommodating an unlim-
ited number of vehicles).
The capacity of the intersection is limited (the maximum number of vehicles it accom-
modates is constant).

FIGURE 14.14 Stopped vehicles.

(a) (b)

FIGURE 14.13 (a) Forward movement; (b) passing on the left.

53361.indb 402 3/11/09 10:50:14 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 403

We consider red light overlapping for any two intersecting directions; when the light in one
direction becomes red, the lights in the other intersecting directions must be red before
turning into green.
Vehicles do not change lanes.
Vehicles moving in a given direction never enter the intersection if the traffic light for that
direction is red.

components : traffic genLane1-R9@generator genLane2-R9@generator genLane3-R9@generator
components : genLane1-R8@generator genLane2-R8@generator genLane3-R8@generator

link : out@genLane1-R9 inLane1-R9@traffic
link : out@genLane2-R9 inLane2-R9@traffic
link : out@genLane3-R9 inLane3-R9@traffic

link : out@genLane1-R8 inLane1-R8@traffic
link : out@genLane2-R8 inLane2-R8@traffic
link : out@genLane3-R8 inLane3-R8@traffic

[traffic]
type : cell dim : (8,20) delay : transport border : nowrapped
neighbors : (-2,-1) (-2,0) (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1) (1,-1) (1,0) (1,1)
localtransition : rules
in : inLane1-R9 inLane2-R9 inLane3-R9
in : inLane1-R8 inLane2-R8 inLane3-R8
link : inLane1-R9 inLane1-R9@traffic(1,0)
link : inLane2-R9 inLane2-R9@traffic(2,0)
link : inLane3-R9 inLane3-R9@traffic(3,0)

[rules]
...

%---------- Forward movement, R9 ------------------------
rule : 0 100 {(0,0)=1 and (0,1)=0}
rule : 0 100 {(0,0)=1 and (0,1)=1 and (-1,1)=0 and (-1,0)=0}
rule : 0 100 {(0,0)=1 and (0,1)=1 and (1,0)=0 and (1,1)=0 and ((-1,1)=1 or (-1,0)=1) }

...
%---------- Forward movement, HW1 ------------------------
% passing through the right when we are on the first lane
rule : 40 100 {(0,0)=41 and (0,1)=41 and (1,1)=40 and (1,0)=40}
rule : 41 100 {(0,0)=40 and (0,-1)=40 and (-1,-1)=41 and (-1,0)=41}

%---------- Joining R9 and HW1 ------------------------
rule : 0 100 {(0,0)=1 and (0,1)=40} ; moving forward
rule : 0 100 {(0,0)=1 and (0,1)=41 and (-1,1)=40 and (-1,0)=0} ; passing on the left
rule : 0 100 {(0,0)=1 and (0,1)=41 and (1,0)=0 and (1,1)=40 and ((-1,1)=41 or (-1,0)=1)} ; right

rule : 41 100 {(0,0)=40 and (0,-1)=1} ; moving forward
rule : 41 100 {(0,0)=40 and (1,0)=41 and (1,-1)=1 and (0,-1)=0} ; passing on the left
rule : 41 100 {(0,0)=40 and (-1,0)=41 and (-1,-1)=1 and (0,-1)=0 and ((-2,0)=41 or (-2,-1)=1))}
...

[newVehicle-rule]
%a new vehicle arrives. (0,0)=0 in R9, and 20 in R8. 1 and 21: the cells are occupied
rule : {(0,0)+1} 100 {portvalue(ThisPort)> 0 and ((0,0)=0 or (0,0)=20)}

FIGURE 14.15 Cell-DEVS definition of the model.

HW1R9IN

32

1

R8

FIGURE 14.16 Coupling scheme of the cell spaces.

53361.indb 403 3/11/09 10:50:16 AM

© 2009 by Taylor & Francis Group, LLC

404 Discrete-Event Modeling and Simulation

A vehicle in a given direction enters the intersection only if the traffic light is not red
or yellow.
No vehicle stops in the intersection area at any given time.
Each vehicle in traffic uses the same amount of time to pass through the intersection.
No pedestrian control devices are considered.

Figure 14.19 shows the general structure of the intersection model we created, which can be found
in ./trafficlight.zip.

The following components can be identified:

light_group (two instances: ab–cd) is a controller responsible for managing a group of
lights (one per direction). The controller communicates with other group controllers to
synchronize the crossing lights, and it outputs the same signals to the two lights belonging
to the group.
traffic_light (four instances: a–d) components represent each light for unidirectional
traffic.
light_controller receives signals from a group controller, and it turns on only one of its
three lights according to the signal. It then outputs an enable or a disable signal to all lane
models controlled by this light (to permit or avoid vehicles in the intersection).
lane represents one lane and its connection with the area of the intersection.
lane_queue queues vehicles in the specified lane waiting to pass through the intersection.

FIGURE 14.18 Simple local traffic control system (one intersection).

FIGURE 14.17 Simulation results.

53361.indb 404 3/11/09 10:50:17 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 405

intersection is a coupled component that represents the intersection area.
intersection_queue queues the cars passing through the intersection. It has a limited capac-
ity (one to two vehicles, depending on the real length of the intersection).
intersection_controller is responsible for controlling each car passing through the
intersection.

A detailed formal specification of each of the models can be found in ./trafficlightsys.zip. In the
following, we show the specification for the light_group atomic model:

lights_group = <S, X, Y, δint, δext, λ, ta> (14.3)

where
X = {standby_in}, which is used to represent red overlapping
Y = {standby_out, lights { GREEN, YELLOW, RED } }
S = {light_state {GREEN, YELLOW, STANDBY, RED} }

δint(light_state) {
switch(light_state)

 case GREEN: set light_state as YELLOW;
 case YELLOW: set light_state as RED;
 case STANDBY: set light_state as GREEN;
 case RED: cannot happen; throw an exception;
}

stop_in

block

inout out
next done

stop_out

outin
next

block
in

done

stop_out busy out

stop_in

car_out
left

entered

throughput

signal

stop
curQueue
Length

aveQueue
Length

in
block

intersection

_queue_a

intersection_

controller_a

lane_

queue_a

gen_a

collector_a

next

lane_a

ave_length_a

intersection_a

light_

controller_a

in

out

light

traffic_light_a

throughput_a

cur_length_a

light

light_

group_ab
light_

group_cd

signal

standby_out

standby_in
standby_out

standby_in

standby_in

traffic_light_b

traffic_light_c

traffic_light_d

signal (to traffic_light_b)

signal (to
traffic_light_c)

signal (to
traffic_light_d)

lightslights

top

light_a

car_in

FIGURE 14.19 Traffic light system structure.

53361.indb 405 3/11/09 10:50:18 AM

© 2009 by Taylor & Francis Group, LLC

406 Discrete-Event Modeling and Simulation

δext(light_state,e, x) {
if(light_state is not RED) // states of two sets of lights are not synchronized correctly.

 Throw an exception;
light_state = STANDBY;

}

λ(light_state) {
switch(light_state)

 case GREEN: output YELLOW at port lights;
 case YELLOW: output RED at port lights;
 output RED at port standby_out;
 case STANDBY: output GREEN at port lights;
 case RED: throw an exception;
}

ta(light_state) {
switch(light_state)

 case GREEN: ta(s)= green_time;
 case YELLOW: ta(s)= yellow_time;
 case STANDBY: ta(s)= standby_time;
 case RED: ta(s)=infinity;
}

The internal transition function is in charge of switching the states of the traffic lights in the
group. According to the current color, if the light was green, the output function transmits the
YELLOW color on the lights port. When the light is yellow, a RED value is sent to the lights and the
standby_out ports (to create overlapping red signals; a green signal can only happen after a standby).
We guarantee the occurrence of a standby state (in which the two traffic lights are red) before
changing to green. After transmitting the current state, the internal transition function changes the
state of the traffic light. We only change to green after a standby period, which is controlled by the
external transition function (and will be activated only when a standby signal is received from the
opposite light). A model with a red light becomes passive waiting for this signal.

Figure 14.20 shows the implementation of the intersection controller model using CD++. The
controller controls each car in the intersection. The intersection controller can be passive or busy, or
outputting a signal. If the external transition activates during the passive state, the model changes
to busy during the time taken to process this input. If the input arrives during a nonpassive state,
the previous internal transition time is rescheduled at the original time (i.e., we have to finish the
previous request by scheduling a transition at the original time, computed as the difference between
the originally scheduled time and the current time). If the model is passive, we schedule an inter-
nal transition according to the response time of the controller. When the time is consumed, the
current state is transmitted. Then we activate the internal transition function, which changes the
current state to the next phase.

Figures 14.21 and 14.22 show the simulation of the whole system case for a given period. In our
first example, a regular traffic control scheme was used and the duration of each color was

in A–B direction, G: 30 s, Y: 3 s, R_overlap(standby): 2 s; and
in C–D direction: G: 45 s, Y: 3 s, R_overlap(standby): 2 s.

Figure 14.21 shows the simulation results by checking the green, yellow, and standby time
for AB and CD, respectively, and the throughput at red light time and green light time. At time

53361.indb 406 3/11/09 10:50:18 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 407

00:00:02:010, both light_a and light_b are green
(value = 2). At 00:00:32:010, the lights turn yellow
(value = 3) because GAB = 30 s; at 00:00:35:010,
light_a and light_b turn into red (value = 1) because
YAB = 3 s. At the same time, light_c and light_d
start the standby period. At 00:00:37:010, light_c
and light_d turn green because STANDBYCD = 2 s.
We can also notice that when lights C and D are red
(from 00:00:02:010 to 00:00:37:010), the through-
put in the CD direction is 0; after lights C and D
become green, the throughput in C and D becomes
20. We can also see the throughput of the system
and the size of the queues.

Our next example shows how the traffic light
time schedule for one direction is affecting its aver-
age queue length. If we consider GAB = 30, YAB =
3, and STANDBYAB = 2 and GCD = 45, YCD = 3,
and STANDBYCD = 2, then we can guess that in the
direction CD, the average length is likely shorter

Model &IntersectionController::externalFunction(const ExternalMessage &msg) {
if(state()==passive) {

action |= BUSY;
holdIn(active, responseTime);
serviceTime = msg.value()>0 ? Time(0,0,0,int(msg.value() * 1000)) : responseTime;

}
else {

printf("%s@%s: discarded input[%f] when busy\n", description().data(),
className().data(), msg.value());

holdIn(active, nextChange-msg.time());
}

}

Model &IntersectionController::internalFunction(const InternalMessage &) {
if(action & BUSY) {

action &= ~BUSY;
action |= OUTPUT;
holdIn(active, serviceTime - responseTime);

}
else if(action & OUTPUT) {

action = 0;
passivate();

}
else {

printf("%s@%s: error state in output function %d\n",
description().data(), className().data(), action);

action = 0;
passivate();

}
}

Model& IntersectionController::outputFunction(const InternalMessage &msg) {
if(action & BUSY) {

sendOutput(msg.time(), busy, 1);
}
else if(action & OUTPUT) {

sendOutput(msg.time(), out, 1);
}
else {

printf("%s@%s: error state in output function %d\n",
description().data(), className().data(), action);

}
}

FIGURE 14.20 Definition of the intersection.

00:00:02:010 light_a 2
00:00:02:010 light_b 2
00:00:30:000 throughput_a 16
00:00:30:000 curlen_a 1
00:00:30:000 avelen_a 1
00:00:30:000 throughput_b 20
00:00:30:000 curlen_b 1
00:00:30:000 avelen_b 1
00:00:30:000 throughput_c 0
00:00:30:000 curlen_c 10
00:00:30:000 avelen_c 10
00:00:30:000 throughput_d 0
00:00:30:000 curlen_d 9
00:00:30:000 avelen_d 9
00:00:32:010 light_a 3
00:00:32:010 light_b 3
00:00:35:010 light_a 1
00:00:35:010 light_b 1
00:00:37:010 light_c 2
00:00:37:010 light_d 2
00:01:00:000 throughput_a 6
00:01:00:000 curlen_a 7
00:01:00:000 avelen_a 4

FIGURE 14.21 Intersection simulation results.

53361.indb 407 3/11/09 10:50:19 AM

© 2009 by Taylor & Francis Group, LLC

408 Discrete-Event Modeling and Simulation

than in the direction AB over a certain period. We can
verify this by analyzing the output data in Figure 14.22.
We observe that the average length of the traffic queue in
the AB direction is always longer than in the CD direc-
tion. More interestingly, the lengths of all of the queues
are increasing with time. This means that there are too
many vehicles for the observed intersection or that the
traffic capacity of the intersection needs improvement.

Exercise 14.7

Modify the Intersection_Controller model in order to
allow left and right turns. To do so, the component must
check the status of the other controller components before
allowing a car to cross the intersection.

Exercise 14.8

Extend the previous model to support pedestrians crossing the intersection. Construct a pedestrian
crossing controller and connect it to the coupled model previously defined.

We extended this model and put two traffic controllers together, using a Cell-DEVS connecting
them and reproducing the traffic behavior between two crossings (as shown in Figure 14.23). We
used the following assumptions for the model:

There is only one lane per direction.
Vehicles use four different speeds: stopped, low, middle, and high, which are used to decide
how long it takes to move from one cell to the next.
Lanes are composed of a limited number of cells, and each cell can be occupied by only
one vehicle at a time. When all cells are occupied, no more vehicles are allowed to move
into the lane. If a lane is full, no vehicles are allowed in the previous intersection, either.
A vehicle can only travel from one cell to its adjacent cell ahead, with speed variation not
exceeding one level.
Each vehicle is responsible for keeping a safe space behind the vehicle in front of it. The
safety space size is in proportion to its speed: three spaces ahead for a high-speed car, two
for middle speed, and one for low speed.
Within the intersection area, a vehicle can change its speed to a lower or a higher level, and
the total intersection passing time is determined by the vehicle speed.
When the traffic light is yellow, if a vehicle can stop safely, it must stop; otherwise, it
should pass through the intersection.

As shown in Figures 14.23 and 14.24, the models we used are similar to the one presented earlier,
combined with a coupled Cell-DEVS that defines the behavior of the vehicles between the intersec-
tions. We have three new basic models—namely, the light controller, the segment, and the crossing.

Each coupled model defines the behavior of each lane, intersection, and traffic light. The light
controller model has the functionality of the group controller of Figure 14.19. The segment model
represents a lane queue, and the intersection contains a queue for crossing vehicles going to the
crossing model. We considered only the case of the interconnection between two intersections and
traffic in horizontal direction. The segment model is defined as in Figure 14.25.

The segment is a 4 × 20 Cell-DEVS with inertial delays for each lane in each direction (as shown
in Figure 14.25). A segment begins from the point where a car enters and ends at the point where a
car leaves and enters a crossing. The first row is used to keep the position of a car in the segment and
to record the current state of the car. The second row is employed for timing the state change; the

00:14:30:000 avelen_a 62.6552
00:14:30:000 avelen_b 56.7931
00:14:30:000 avelen_c 31.1724
00:14:30:000 avelen_d 27
...
00:48:30:000 avelen_a 202.454
00:48:30:000 avelen_b 183.773
00:48:30:000 avelen_c 91.3608
00:48:30:000 avelen_d 75.3814
...

FIGURE 14.22 Average size of the queues.

53361.indb 408 3/11/09 10:50:20 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 409

third row conducts generic control (including the decision of increasing or decreasing the current
speed), and the fourth gets the light signal (input) for cells that are close to the intersection.

The car state is encoded with the format s.nodd, with s the current speed, n the next speed, o the
output value (only used for the cell with car_out port; no output is generated when output is 0), and
dd is the timing delay. For example, 4.0306 represents a high speed (4), the next is null (0), the out-
put is middle speed (3), and the time that the current car will be leaving the current cell to the next
(delay) is 06 × 100 = 600 ms.

Figure 14.26 shows the CD++ definitions for the model. The model defines a cell space with the
structure presented in Figure 14.25. We use a special rule for the border cells because these should
receive and transmit vehicles. The crossing model is also defined as a Cell-DEVS using the same
rules for segments but reduced size for the cell space. Likewise, we use a subset of the transition
functions (i.e., local transition, in-port transition, and zone transition functions) of the segment.

The light controller was also defined as a Cell-DEVS model as follows:

Light = <I, X, Y, Xlist, Ylist, η, N, {m,n}, C, B, select> (14.4)

FIGURE 14.23 Two intersections.

FIGURE 14.24 Two-intersection coupled model definition.

53361.indb 409 3/11/09 10:50:21 AM

© 2009 by Taylor & Francis Group, LLC

410 Discrete-Event Modeling and Simulation

where
Xlist = { }; Ylist = {(0,0);(0,1)}; = 2;
I = <Px, Py>, with Px = {<X(0,0),light>, <X(0,1),light>}; Py = { };
N = {(0,0), (0,1)} ; X ={ } ; Y = {5,6,7,8} for lights;
m =1; n = 2; B = { } ; C = {Cij / i [0], j [0, 1]};
Z is defined as Cell-DEVS formal specification; and
select = { (0,0), (0,1)}

The state of each cell is S = {5,6,7,8}, where 5 = green, 6 = yellow, 7 = red, and 8 = standby, and
the location transition function is defined as

(0,0) (0,2)

(3,0) (3,2)
in_space

car_out

out_space

car_out

out_space

(0,0) (0,19)

(3,0) (3,19)

car_incar_in

in_space

in_space

car_out car_in

out_space

light

light

FIGURE 14.25 Segment model.

[segment]
type : cell height : 4 width : 20 delay : inertial
border : nowrapped
neighbors : (-3,0) (-2,0) (-1,0) (0,-1) (0,0) (0,1) (0,2) (0,3) (1,0) (2,0) (3,0)
localTransition : traffic_rule
zone : time_rule { (1,0)..(1,19) }
zone : general_update_rule { (2,0)..(2,19) (3,0)..(3,19) }
zone : lane_beginning_rule { (0,0) }
zone : lane_end_rule1 { (0,19) }
zone : lane_end_rule2 { (0,18) }
zone : lane_end_rule3 { (0,17) }
in : light car_in out_space
out : in_space car_out
link : light light@segment1a(3,19)
link : in_space@segment1a(0,0) in_space
link : car_out@segment1a(0,19) car_out
link : car_in car_in@segment1a(0,0)
link : out_space out_space@segment1a(2,19)

[traffic_rule]
rule : {0.10+#macro(stop_delay)} 10 { (0,-1)=1 and (0,0)=0 and trunc(#macro(rcell_1))!=0 } %101
rule : {0.20+#macro(stop_delay)} 10 { (0,-1)=1 and (0,0)=0 and trunc(#macro(rcell_1))=0 } % 100
rule : {0.10+#macro(low_delay)} 10 { (0,-1)=2 and (0,0)=0 and trunc(#macro(rcell_1))!=0} % 201
rule : {0.20+#macro(low_delay)} 10 { (0,-1)=2 and (0,0)=0 and trunc(#macro(rcell_2))!=0 } % 2001
rule : {0.30+#macro(low_delay)} 10 { (0,-1)=2 and (0,0)=0 and trunc(#macro(rcell_2))=0 } % 2000
...
rule : {0.30+#macro(high_delay)} 10 { (0,-1)=4 and (0,0)=0 and trunc(#macro(rcell_3))!=0 } %40001
rule : {0.40+#macro(high_delay)} 10 { (0,-1)=4 and (0,0)=0 and trunc(#macro(rcell_3))=0 } %40000

[time_rule]
rule : 9 { #macro(delay) - 10} { fractional((-1,0))!=0 }

[general_update_rule]
rule : { (0,0) } 0 { isUndefined((0,1)) }
rule : { (0,1) } 0 { t }
...

FIGURE 14.26 Segment model definition in CD++.

53361.indb 410 3/11/09 10:50:22 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 411

rule : {5} 1000 { (0,0)=7 and (0,1)=8} ; change to green
rule : {6} 45000 { (0,0)=5 and (0,1)=7 } ; green cycle
rule : {8} 3000 { (0,0)=6 and (0,1)=7 } ; yellow cycle
rule : {7} 1000 { (0,0)=8 and time > 0 } ; standby

The cell changes to green when it is red and the next one is on standby (it takes 1 s to change).
Then the green cycle takes 45 s, after which the lights change to yellow, and, 3 s after that, to
standby (which will ensure there is no overlapping). The intersection coupled model uses two seg-
ments and a traffic light controller, following the description in Figure 14.24.

Figure 14.27 shows how the model (found in ./trafficCrossing.zip) can be defined in CD++. We
use two generators to feed the model with traffic in directions A and B (in the directions of C and D
only a small amount of traffic is circulated).

Figure 14.28 shows the simulation results for the segment model. At the beginning of the simula-
tion, there are different vehicles at different speeds and the traffic light is in standby (7 on the fourth
row). One second after, the light turns green and the traffic starts moving. At this point, the only
vehicle moving is the one with maximum speed. Then, the same car (at cell no. 10) changes its speed
level to mid (2), and it is supposed to move to the next cell on the next step. Because only one cell
is between this car and the car in front of it (and this is not safe because we need at least two empty
cells between them), the car slows down (from 2 to 1). Then the car moves to cell no. 11. In the next
figure, we can see a car with a speed of 2 in cell no. 17; from the third row, we know that there is
one free space in the intersection or the next lane, plus two more spaces in front of this car. Based
on our assumption, we know it is time for this car to speed up.

Figure 14.29 shows the results of the light control model. The fourth row receives the control
signals from the light controller, so we can also observe this information on the segment. We can see
how vehicles advance with a yellow light, but they stop before the crossing when it becomes red.

14.6 A MODEL OF A CITY SECTION

In this section, we present the definition of a model introduced in Wainer [19] and described in
Chapter 3 which is used to study traffic in a section of urban population. This shows an example of

Intersection1

in_a

out_a

out_space_a

in_space_a

in_b

out_b

out_space_b

in_space_b

in_c

out_c

out_space_c

in_space_c

in_d

out_d

out_space_d

in_space_d

Intersection2
in_a

out_a

out_space_a
in_space_a

in_b

out_b

out_space_b

in_space_b

in_c

out_c

out_space_c

in_space_c

in_d

out_d

out_space_d

in_space_d

gen1

in_space

out_1a out_2b

outin_1a

gen2
in_2bout

FIGURE 14.27 Two crossings: coupled model definition.

53361.indb 411 3/11/09 10:50:23 AM

© 2009 by Taylor & Francis Group, LLC

412 Discrete-Event Modeling and Simulation

a multimodel, with different behavior on each of the components, using different methods on each
submodel. The model, depicted in Figure 3.14 in Chapter 3, can be found in ./commercial.zip.

The full specification of the models can be found in Wainer [19]; here we show the definition of
the residential neighborhood, which represents smog diffusion (Figure 14.30). An inertial delay has

FIGURE 14.28 Two crossings execution.

FIGURE 14.29 Two crossings: light control.

53361.indb 412 3/11/09 10:50:23 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 413

been used to model the pollution diffusion so that if the wind removes the smog before the delay,
pollution does not spread to the neighbors. The model receives inputs on cells (0,9) and (1,9). When
a particle arrives through those cells, the got-exhaust-air rule is executed. This rule takes the input
value arriving through the corresponding input port and makes it the value of the cell. For every other
cell, we check whether a smog particle is in a neighboring cell. If the particle remains there during
the delay, the particle then moves to the present cell. Otherwise, the cell remains unchanged.

Figure 14.31 shows some of the rules used to model traffic in model B. The first set of valid
movements shows the case in which no vehicle is in the cell and a car is coming from the S. The
second one shows the case where the cell is empty and a vehicle is coming from the west (W).
The third case is when a vehicle is in the cell and it is blocked from moving in direction N or E. In
any of these cases, the next state for the cell is that there will be a vehicle in it.

The second set of rules considers preconditions for a vehicle to become empty (i.e., a vehicle
abandons the cell or a cell remains empty). The first case is when a vehicle is in the cell and the N
cell is empty. The second case represents a vehicle that cannot move to the N and the E cell is empty.

components : residential
in : in_factory in_highway
link : in_factory in_factory@residential
link : in_highway in_highway@residential

[residential]
type : cell dim : (9, 10) delay : inertial border : nowrapped
neighbors : (-1,1) (-1,0) (0,1) (-1,-1) (0,0) (1,1) (0,-1) (1,0) (1,-1)
in : in_factory in_highway
link : in_factory in_factory@residential(0,9)
link : in_highway in_highway@residential(1,9)
portInTransition : in_factory@residential(0,9) got-exhaust-air
portInTransition : in_highway@residential(1,9) got-exhaust-air
localtransition : diffussing

[got-exhaust-air]
rule : { portValue(thisPort) } 500 {t}
% following rules are same as [diffussing]
...
[diffussing]
rule : 1 500 { ((0,0)=0 and (0,1) = 1) or ((0,0)=0 and (0,1)=0 and (-1,1)=1 and (-1,0)=1) }
rule : 0 500 { (truecount = 1) or ((0,0) = 1 and (0,-1) = 0) or

((0,0) = 1 and (0,-1) = 1 and (1,-1) = 0 and (1,0) = 0) }

FIGURE 14.30 Smog in the residential neighborhood.

0

0 0

0 0

00

(0,0) = 0 and
(1,0) = 1

(0,0) = 1 and (–1,0) = 0 (0,0) = 1 and (0,1) = 0 and
(–1,0) = 1 and (1,1) = 0

(0,0) = 0 and (1,0) = 0
and (0,–1) = 0

(0,0) = 0 and (0,–1) = 1 and
(1,0) = 0 and (–1,–1) = 1

Valid Movements for Rule 1

(0,0) = 1 and (0,1) = 1
and (–1,0) = 1

Valid Movements for Rule 2

FIGURE 14.31 Valid rules for the commercial neighborhood.

53361.indb 413 3/11/09 10:50:24 AM

© 2009 by Taylor & Francis Group, LLC

414 Discrete-Event Modeling and Simulation

Finally, we show an empty cell without vehicles to the W or S (thus, no new vehicles will arrive in
the cell).

The highway model is similar to the model in the previous section, and the ferry and factory act
as queuing servers (as with the many different models discussed earlier), as shown in Figure 14.32.
The model uses two input ports and one output port to receive and transmit vehicles, which are
queued waiting for service from the ferry. Initially, the queue is empty. When we receive a new
request (in port), we then queue it. If it is the only element in the queue, we start processing it and
schedule a transition. When this time is consumed, the first element in the queue is transmitted. If
we receive an event through the done port, it means that we can send one more vehicle, and we do
it by taking it from the queue.

14.7 THE ATLAS LANGUAGE

Based on the Cell-DEVS formalisms, we defined a traffic specification language known as ATLAS
(Advanced Traffic Language Specifications). ATLAS enables users to specify the topology and
detailed constructions of a city section in high-level descriptions and to carry out microscopic traffic
simulation using automatically generated executable models [20–22].

A city section is composed of a set of different constructions representing all kinds of standard
elements that can be found in a city landscape. The built-in constructions defined in ATLAS include
street segments, parking lanes, crossings (or intersections), traffic lights, traffic signs, railways, and
road worksites. The syntax and implementation of these constructions will not be elaborated here;
interested readers can refer to [20–22] for an in-depth discussion of the language and compiler.

There are several inherent advantages associated with this technique. Users can concentrate
on the traffic problem to be solved, rather than focus on the details of low-level programming. By
decoupling the ATLAS language from the underlying simulation environment, users can reduce the
learning curve. The language description has been extensively reported in references 20–24.

The general architecture of the language and components is described in Figure 14.33. ATLAS
specification language (1) focuses on the detailed specification of traffic behavior from the user’s

Model &Ferry::initFunction() {
ferryQueue.erase(ferryQueue.begin(), ferryQueue.end()) ;

}

Model &Ferry::externalFunction(const ExternalMessage &msg) {
if(msg.port() == in) {

ferryQueue.push_back(1) ;
if(ferryQueue.size() == 1)

Load_time = Time::Time(0, ignpoi(15), 0, 0);
}
if(msg.port() == done) {

ferryQueue.pop_front() ;
if(!ferryQueue.empty())

Load_time = Time::Time(0, ignpoi(15), 0, 0);
}
holdIn(active, Load_time);

}

Model &Ferry::internalFunction(const InternalMessage &) {
passivate();

}

Model &Ferry::outputFunction(const InternalMessage &msg) {
sendOutput(msg.time(), out, ferryQueue.front()) ;

}

FIGURE 14.32 Definition of the ferryboat model.

53361.indb 414 3/11/09 10:50:25 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 415

point of view according to the shape of a city section and its transit attributes [20]. A static view
of the city section can be easily described, including definitions for traffic signs, traffic lights, etc.
The language constructions are formally described using DEVS and Cell-DEVS (2). Based on these
specifications, we built a compiler [24], called the ATLAS traffic simulator compiler (TSC). TSC
(3) generates code by using a set of templates that can be redefined by the user, easily adapting
the generation of behavior to different modeling and simulation techniques. TSC runs on CD++,
allowing the users to execute in stand-alone, real-time, or parallel mode (5). TSC is a text-based tool
and the system outputs generate text-based log files. The front-end application MAPS converts the
constructions defined using the graphical notation into TSC text (6). This allows the user to draw a
city section with roads, crossings, and decorations and then parse the drawing to create a valid TSC
file (7). Likewise, the output is viewed with three-dimensional graphics [25].

In ATLAS, the structure of a city section is represented by a set of streets connected by crossings
[20]. Some of the language components include:

Segments: They represent sections between two intersections. Every lane in a given seg-
ment has the same direction (one-way segments) and a maximum speed. They are speci-
fied as: segments = { (p1, p2, n, a, dir, max) / p1, p2 City n, max N a, dir {0,1} },
where p1 and p2 represent the boundaries of each segment, n is the number of lanes, and
dir represents the vehicle direction. The parameter a defines the shape of the segment, and
max is the maximum speed allowed.
Crossings: They represent the places where the streets (represented as sets of segments)
are gathered. Each crossing can connect any number of segments. They can be defined as
crossings = { c / t, t segments t = (p1, p2, n, a, dir, max) t = (p1 , p2 , n , a , dir , max)

 t ≠ t (p1 = c p2 = c) (p1 = c p2 = c) }.
Traffic lights: Crossings with traffic lights are defined as TLCrossings = { c / c crossings }.
Every c TLCrossings is a set of models representing the traffic lights in an intersection
and the corresponding controller. Each of these models is associated with a crossing input.
It sends a color value related with the traffic light to the corresponding segment in the
intersection.
Railways: They are built as a sequence of level crossings overlapped with the city seg-
ments. The railway network is defined by RailNet = { (station, rail) / station is a model,
rail RailTrack }, where RailTrack = { (s, δ, seq) / s segments δ N seq N }.
RailNet represents a set of stations connected to railways, thus defining a part of the rail-
way network. RailTrack associates a level crossing with other existing constructions in the
city section. Each element identifies the segment that is crossed (s) and the distance to the
railway from the beginning of the section (δ). Finally, a sequence number (seq) is assigned
to each level crossing, defining its position in the RailTrack.

ATLAS

Cell-DEVS

ATLAS
TSC(1)

(2)
(3) (6)

(4) (7)

(5)

CD++

Centralized
Parallel/

Distributed Real-Time

MAPS

FIGURE 14.33 ATLAS software architecture.

53361.indb 415 3/11/09 10:50:26 AM

© 2009 by Taylor & Francis Group, LLC

416 Discrete-Event Modeling and Simulation

Men at work: They are specified as jobsite = { (s, ni, δ, #n) / s segments s = (c1, c2, n,
a, dir, max) ni [0, n – 1] δ N #n [1, n + 1 – ni] #n 1 mod 2 }. Here, each
(s, ni, δ, #n) jobsite is related to a segment where the construction work is being done. It
includes the first lane affected (ni), the distance between the center of the jobsite and the
beginning of the segment (δ), and the number of lanes occupied by the work (#n). These
values are used to define a rhombus where the cars cannot advance.
Traffic signs: They are defined by control = { (s, t, δ) / s segments δ N t {bump,
depression, school, pedestrian crossing, stop, others} }. Each tuple here identifies the seg-
ment where the traffic sign is used, the kind of signal, and the distance up to it from the
beginning of the segment.

Using these constructions, ATLAS allows the definition of a city section with detail. The seg-
ments are connected by crossings and they define a static view of the model (representing a city
map, as seen in Figure 14.34), with implicit dynamic behavior associated. Different decorations can
be added, including railways, traffic signs, parking sections, traffic lights, etc.

Once the user creates a model, it can be exported it to TSC format, which can be seen in
Figure 14.35. In this case, we have three segments (t1, t2, t6) connected through crossing c1.

begin segments
 t1 = (1,5),(1,1),2,straight,go,21,1100,parkNone
 t2 = (1,1),(5,1),2,straight,go,22,1200,parkRight
 t6 = (10,8),(10,1),2,straight,back,26,1600,parkLeft
end segments

begin crossings
 c1 = (1,1),11, withoutTL, withHole, 221, 111
end crossings

begin railnets
 rn1 = (t1,1),(t2,1),(t6,2),331
end railnets

FIGURE 14.35 Segments/crossings of Figure 14.34 in ATLAS.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIGURE 14.34 Defining segments/crossings and decorations in ATLAS.

53361.indb 416 3/11/09 10:50:27 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 417

Segments t1 and t2 are one-way, and each has two lanes. One cannot park on t1, and t2 has parking
on the right. The two segments are crossed by a railway (rn1).

Based on these specifications, we construct DEVS and Cell-DEVS models that represent the
model’s streets and the vehicle behavior. For instance, for segments with two lanes, we translate
the segment s = (p1, p2, 2, a, dir, max) into a two-dimensional Cell-DEVS with the structure shown
in Figure 14.36. Each row of this space acts as a border of the model. Vehicles in the first row can
change to the right, and those in the second row can move to the left. Therefore, each row must be
specified separately. The atomic cells in the first row will be defined using a one-lane model like
the one presented in Section 14.5. The function for these cells also includes the following rules to
model lane changes:

(N) N

1 (0,0) = 0 and (0,–1) = 0 and (–1,–1) = 1 and (–1,0) = 1

0 (0,0) = 1 and (–1,1) = 0 and (–1,0) = 0

These rules of lane change consider that a vehicle tries first to move straight and that it has prior-
ity to use the position in front of it. The first rule here represents a vehicle arriving in diagonal. To
define the priority access, the diagonal movement checks whether a car is waiting to arrive from the
cell in diagonal. If that is not the case, it can advance. The function for cells in lane 1 is symmetric
to this one.

The coupled model corresponding to the segment is defined by

TC2(k, max) = < Xlist, Ylist, I, X, Y, n, {t1,…,tn}, , N, C, B, Z > (14.5)

Ylist = Xlist = { (0,0), (1,0), (0,k – 1), (1,k – 1) };
I = <Px, Py>, where Px = {<X +1(0,0), binary>, <X +1(1,0), binary>, <X +1(0,k – 1), binary>,

<X +1(1,k – 1), binary>};
Py = {<Y +1(0,0), binary>, <Y +1(1,0), binary>, <Y +1(0,k – 1), binary>, <Y +1(1,k – 1),

binary>};
X = Y = { 0, 1 }; n = 2; t1 = 2; t2 = k; = 6; N = { (0,0), (0,1), (1,0), (1,1), (0,–1), (1,–1) };
B = { (0,k – 1), (1,k – 1), (0,0), (1,0) }; and
Z is built using the definition given in the Cell-DEVS formalism.

The interface of this model is composed of the cells of the first and last columns, used to inter-
change information with each of the crossings. The external ports and the rules for the crossings are
extensions of those defined in Figure 14.25.

Based on this specification, we generate CD++ models as in the examples presented in Sections
14.3, 14.4, 14.5, and 14.6. The CD++ specification generated for our example, found in ./citySection.
zip, is as shown in Figure 14.37. When this model executes, we obtain the results found in Figure 14.38.
Initially (13), the t1gen model generates a vehicle through port y_t_car0. The next vehicle will
be generated 3 s after that (14). The output message X is translated into an input to t1 (14), which
goes into cell (0,0) in the space (15). After that point, we schedule a car movement in 200 ms. We
also add one vehicle to the bigcounter model.

(0,2)

(1,2)

(0,k–1)

(1,k–1)

(0,1)

(1,1)

(0,0)

(1,0)

...

...

FIGURE 14.36 A two-lane segment.

53361.indb 417 3/11/09 10:50:27 AM

© 2009 by Taylor & Francis Group, LLC

418 Discrete-Event Modeling and Simulation

We then show a vehicle arriving at the crossing c1 (23) through port x_t_can_cross.
Because there is no room available (y_t_room_available/0), the crossing passivates.
Eventually, after there is room available, the car leaves the crossing at 1:200 and leaves into t2

components : rn11@RailNet t2Cons@Consumer t2 rn10@RailNet t1Gen@Generator t1 rn12@RailNet
components : t6Gen@Generator t6Cons@Consumer t6 c1 rn1@SynchroRailNet
link : y-t-train0bt@rn11 x-vt-train01@t2
link : y-t-train1bt@rn11 x-vt-train11@t2
link : y-t-train0at@rn11 x-vt-train02@t2

...

[t2]
type : cell width : 4 height : 2 delay : transport border : nowrapped
neighbors : (1,-1) (1,0) (1,1) (0,-1) (0,0) (0,1) (-1,-1) (-1,0) (-1,1)
in : x-vt-train01 x-vt-train11 x-vt-train02 x-vt-train12 x-c-hayauto00 x-c-hayauto10
out: y-c-room00 y-c-room10 y-co-hayauto03 y-co-hayauto13
link : x-vt-train01 x-vt-train@t2(0,1)
localtransition : t2-segment2-lane0-rule
...
zone : t2-segment2-lane1-rule {(1,1)..(1,3-1)}

[t2-segment2-lane1-rule]
rule : 1 22 { (0,0)=0 and (0,-1)=1 } ; Coming from the back
rule : 1 22 { (0,0)=0 and (1,-1)=1 and (1,0)=1 and (0,-1)=0 } ; Coming from left with priority
rule : 0 22 { (0,0)=1 and (0,1)=0 } ; Moving forward
rule : 0 22 { (0,0)=1 and (1,0)=0 and (1,1)=0 }; Forward to left lane

FIGURE 14.37 Translating Figure 14.35 to CD++.

Message * / 00:00:00:000 / top(01) to t1gen(13)
Message Y / 00:00:00:000 / t1gen(13) / y_t_car0 / 1 to top(01)
Message D / 00:00:00:000 / t1gen(13) / 00:00:03:000 to top(01)
Message X / 00:00:00:000 / top(01) / x_ge_car00 / 1 to t1(14)
Message X / 00:00:00:000 / t1(14) / x_ge_car / 1 to t1(0,0)(15)
Message Y / 00:00:00:000 / t1(0,0)(15) / y_t_car_arriving / 0 to t1(14)
Message D / 00:00:00:000 / t1(0,0)(15) / 00:00:00:200 to t1(14)
Message Y / 00:00:00:000 / t1(14) / y_t_car_arriving00 / 0 to top(01)
Message D / 00:00:00:000 / t1(14) / 00:00:00:200 to top(01)
Message X / 00:00:00:000 / top(01) / arrived / 0 to bigcounter(02)
...
Message X / 00:00:00:800 / top(01) / x_t_can_cross2 / 0 to c1(23)
Message X / 00:00:00:800 / c1(23) / x_t_can_cross / 0 to c1(0,2)(26)
Message Y / 00:00:00:800 / c1(0,2)(26) / y_t_room_available / 0 to c1(23)
Message D / 00:00:00:800 / c1(0,2)(26) / ... to c1(23)
Message Y / 00:00:00:800 / c1(23) / y_t_room_available2 / 0 to top(01)
Message D / 00:00:00:800 / c1(23) / ... to top(01)
...
Message Y / 00:00:01:200 / c1(23) / y_t_can_leave0 / 0 to top(01)
Message D / 00:00:01:200 / c1(23) / 00:00:00:000 to top(01)
Message X / 00:00:01:200 / top(01) / x_c_can_cross00 / 0 to t2(04)
Message X / 00:00:01:200 / t2(04) / x_c_can_cross / 0 to t2(0,0)(05)
Message Y / 00:00:01:200 / t2(0,0)(05) / y_c_room_available / 0 to t2(04)
Message D / 00:00:01:200 / t2(0,0)(05) / ... to t2(04)
Message Y / 00:00:01:200 / t2(04) / y_c_room_available00 / 0 to top(01)
Message D / 00:00:01:200 / t2(04) / ... to top(01)
...
Message X / 00:00:04:400 / t2(04) / neighborchange / 0 to t2(0,0)(05)
Message X / 00:00:04:400 / t2(04) / neighborchange / 0 to t2(0,1)(06)
Message X / 00:00:04:400 / t2(04) / neighborchange / 1 to t2(0,2)(07)
Message D / 00:00:04:400 / t2(0,0)(05) / ... to t2(04)
Message D / 00:00:04:400 / t2(0,1)(06) / 00:00:00:200 to t2(04)
Message D / 00:00:04:400 / t2(0,2)(07) / 00:00:00:200 to t2(04)
Message D / 00:00:04:400 / t2(04) / 00:00:00:200 to top(01)

FIGURE 14.38 Model execution.

53361.indb 418 3/11/09 10:50:29 AM

© 2009 by Taylor & Francis Group, LLC

Models of Urban Traffic 419

through the port x_c_can_cross. The corresponding cell (0,2) then passivates waiting for the
following vehicle. 200 ms after that, the vehicle abandons the crossing toward segment t2, where
the vehicle advances (X messages at 4:400), scheduling a delay related to the vehicle speed.

Figure 14.39 shows the simulation results of this model using an ATLAS three-dimensional visu-
alization applet, which can be executed at http://www.sce.carleton.ca/faculty/wainer/atlas. The model
represents traffic at Carleton University, and the corresponding model can be found in ./ATLASCarl.
zip.

14.8 SUMMARY

An urban traffic system consists of a network of roads and intersections on which various types of
vehicles go through the system following the rules that reflect specific traffic policies. Although
microscopic models require significant input data and computation time to perform the simulation,
they can generate very detailed and realistic results and constitute a powerful and versatile tool for
traffic analysis.

In this chapter, we introduced the use of DEVS and Cell-DEVS to model problems in traffic,
one of the most popular applications of modeling and simulation. We presented a simple model of a
traffic controller for a bridge under repair, a toll station for a highway, the intersection of two routes
into a highway, and various traffic light controllers. Finally, we introduced the ATLAS modeling
language, a high-level language mapped to DEVS and Cell-DEVS that permits defining traffic with
generic constructions focusing on the topology of a city section.

The model repository contains numerous other models in this area, including different traf-
fic light models (./trafficlight.zip) and toll station models (./tollStation.zip). The ./ferry.zip model
introduces a simple model to analyze the congestion of traffic on a ferryboat. The repository also
includes models on routing vehicles using origin/destination (O/D) matrixes (./routingOD.zip).
The./CityRouting.zip model defines routing on a city section using an O/D matrix, and ./congest.zip
defines a model that reroutes traffic (using O/D matrix information) in the case of congestion.

FIGURE 14.39 Three-dimensional visualization: 2 two-way/four-lane segments and crossing with traffic
light.

53361.indb 419 3/11/09 10:50:29 AM

© 2009 by Taylor & Francis Group, LLC

http://www.sce.carleton.ca

420 Discrete-Event Modeling and Simulation

REFERENCES

1. France, J., and A. A. Ghorbani. 2003. A multiagent system for optimizing urban traffic. Proceedings
of IAT ’03: Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology,
Halifax, Canada.

2. Dresner, K., and P. Stone. 2005. Multiagent traffic management: An improved intersection control
mechanism. Proceedings of AAMAS ’05: Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, Utrecth University, the Netherlands, 471–477.

3. Schmidt, M., R. Schäferr, and K. Nökel. 1998. SIMTRAP: Simulation of traffic-induced air pollution.
Transactions of the Society for Computer Simulation International 15:122–132.

4. Treiber, M., A. Hennecke, and D. Helbing. 2000. Congested traffic states in empirical observations and
microscopic simulations. Physical Review E 62:1805.

5. Wagner, P., K. Nagel, and D. Wolf. 1997. Realistic multi-line traffic rules for cellular automaton. Physica
A 234:687.

6. Maniezzo, V. 2004. CA and roundabout traffic simulation. Proceedings of Sixth International Conference
on Cellular Automata for Research and Industry, Amsterdam, the Netherlands, LNCS, vol. 3305.

7. Esser, J., and M. Schreckenberg. 1997. Microscopic simulation of urban traffic based on cellular autom-
ata. International Journal of Modern Physics C 8:1025.

8. Marinosson, S. 2002. Simulation of the Autobahn traffic in North Rhine-Westphalia. Proceedings of 5th
International Conference on Cellular Automata for Research and Industry, Geneva, Switzerland, LNCS,
vol. 2493.

9. Rickert, M., K. Nagel, M. Schreckenberg, and A. Latour. 1996. Two lane traffic simulations using cellular
automata. Physica A 231:44, 534–550.

10. Chi, S., J. Lee, and Y. Kim. 1997. Using the SES/MB framework to analyze traffic flow. Transactions of
the SCS 14 (4): 211–221.

11. Chou, H., W. Huang, and J. A. Reggia. 2002. The trend cellular automata programming environment.
Simulation 78:59–75.

12. Tolba, C., D. Lefebvre, P. Thomas, and A. El Moudni. 2005. Continuous and timed Petri nets for the mac-
roscopic and microscopic traffic flow modeling. Simulation Modeling Practice and Theory 13:407–436.

13. Basile, F., C. Carbone, P. Chiacchio, R. K. Boel, and C. C. Avram. 2004. A hybrid model for urban
traffic control. Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics,
1795–1800.

14. Kosonen, I., and M. Pursula. 2007. HUTSIM. URL:http://www.tkk.fi/Units/Transportation/HUTSIM/
Accessed: 5/3/2007.

15. Owen, L. E., Y. Zhang, L. Rao, and G. McHale. 2000. Street and traffic simulation: Traffic flow sim-
ulation using CORSIM. Proceedings of WSC ’00, 32nd Winter Simulation Conference, Orlando, FL,
1143–1147.

16. Chopard, B., P. A. Queloz, and P. Luthi. 1996. Cellular automata model of car traffic in two-dimensional
street networks. Journal of Physics A 29:2325–2336.

17. Barceló, J., E. Codina, J. Casas, J. L. Ferrer, and D. García. 2005. Microscopic traffic simulation: A tool
for the design, analysis and evaluation of intelligent transport systems. Journal of Intelligent and Robotic
Systems 41:173–203, 01/01.

18. Cameron. 1996. PARAMICS—Parallel microscopic simulation of road traffic. Journal of Super-
computing 10:25.

19. Wainer, G. 1998. Discrete-event cellular models with explicit delays. PhD thesis, Université d’Aix-Mar-
seille III, France.

20. Wainer, G. 2006. ATLAS: A language to specify traffic models using cell-DEVS. Simulation Modeling
Practice and Theory 14:313–337.

21. Wainer, G. 2007. Defining a traffic modeling language using cellular discrete-event abstractions. Journal
of Cellular Automata 2:291–343.

22. Wainer, G. 2007. Developing a software toolkit for urban traffic modeling. Software Practice and
Experiment 37:1377–1404.

23. Diaz, A., V. Vazquez, and G. Wainer. 2001. Application of the ATLAS language in models of urban traf-
fic. Proceedings of the 34th Annual Simulation Symposium, Seattle, WA.

24. Tartaro, M., C. Torres, and G. Wainer. 2001. Defining models of urban traffic using the TSC tool.
Proceedings of Winter Simulation Conference, Washington, D.C.

25. Wainer, G., S. Borho, and J. Pittner. 2001. Defining and visualizing models of urban traffic. Proceedings
of 1st Mediterranean Multiconference on Modeling and Simulation, Genoa, Italy.

53361.indb 420 3/11/09 10:50:29 AM

© 2009 by Taylor & Francis Group, LLC

http://www.tkk.fi
http://www.tkk.fi

4Section

Simulation and Visualization

53361.indb 421 3/11/09 10:50:30 AM

© 2009 by Taylor & Francis Group, LLC

53361.indb 1 3/11/09 10:44:36 AM

© 2009 by Taylor & Francis Group, LLC

423

15 Building DEVS Simulators

15.1 INTRODUCTION

In previous chapters, we have focused on how discrete-event models are specified using DEVS and
Cell-DEVS and introduced their implementation using the CD++ toolkit. Until now, we have not
discussed details about the simulation engines that drive the execution of these models. We were
able to do so, thanks to the separation of concerns in DEVS: the modeler needs to focus only on the
models being created, avoiding the details about the simulation engine that drives them.

In this chapter, we present a detailed explanation about the simulation algorithms for DEVS
and their implementation in the CD++ simulation engine. The goal is to permit developers inter-
ested in the simulation engine to create advanced algorithms (using the open source version of
CD++ available at http://sourceforge.net/projects/cdpptoolkit/). The discussion also permits a better
understanding of the detailed behavior of the simulation, which can be useful when validating the
models.

DEVS simulators are based on the abstract simulation techniques presented in Zeigler, Praehofer,
and Kim [1]. These simulation algorithms are guaranteed to execute the hierarchical DEVS speci-
fications correctly. It has been proven that these algorithms are correct to simulate DEVS models.
This includes cases of hierarchical composition, individual atomic model execution, and detection
of termination conditions (when all the models in the simulation are passive, the simulation can
end). In this chapter, we show how different simulation engines can be created based on these
algorithms, including a stand-alone version (which is available as an open source project), a parallel
simulation algorithm, a distributed simulator, and a real-time engine. Finally, we show how to use
wrappers on DEVS simulators to permit operability between different existing DEVS tools.

15.2 THE STAND-ALONE SIMULATOR

The main idea of DEVS abstract simulation algorithms is to create a hierarchy of execution engines
based on the modeling hierarchy created by the user (i.e., the hierarchical models presented in previ-
ous chapters). We call these entities Processors. Atomic/Coupled Models define the structure and
behavior of the system of interest, while their corresponding Processors implement the simulation
dynamics (using an abstract mechanism hidden from the models), as sketched in Figure 15.1. This
figure shows the different kinds of Processors: Simulators are associated with atomic models and
Coordinators with coupled models. The Root Coordinator drives the global aspects of the simula-
tion; it maintains the global time, starts/finishes the simulation (when a termination condition is
detected), and is related to the Coordinator of the top-level coupled model (collecting the outputs
from it and feeding it with external input events).

Simulation is driven by passing messages among the Processors; each represents an event to
process. The messages include information about the event origin/destination, the time of the event
the message represents, and its content. Four kinds of messages are used:

* messages signal the occurrence of internal events.
X messages carry information about external input events.
Y messages transmit the model’s output events.
done messages carry scheduling information for future events, indicating that a model has
finished with its current task.

53361.indb 423 3/11/09 10:50:30 AM

© 2009 by Taylor & Francis Group, LLC

http://sourceforge.net

424 Discrete-Event Modeling and Simulation

The simulation algorithm we will present uses two variables with scheduling purposes:
TimeLast (which records the time of the last event) and TimeNext (time of the next scheduled
event). Coordinators are responsible for routing messages among their children and their parent
Coordinators. In addition, they evaluate the minimum TimeNext for their children, and they report
these values to their parent Coordinators.

The simulator with the smallest TimeNext value in the hierarchy is called imminent (if there is
more than one, the select function in the coupled models are used to choose one). The * message must
be sent to the imminent Simulator, starting at root and passing through the middle-level Coordinators.
Therefore, Coordinators maintain a list including the imminent times for each of their children pro-
cessors. Each simulation cycle starts when the Root Coordinator analyzes the list of external events
(i.e., those that must be sent to the top coupled model) and the time for the imminent simulator (i.e.,
the time for the next scheduled internal transition, also called an imminent time). The one with the
smallest time is chosen; accordingly, a message X or * is sent to the top-level Coordinator.

If a * message is generated, the top-level Coordinator chooses its imminent child and forwards
the message. This procedure is repeated by all the intermediate Coordinators until the imminent
Simulator is reached. The Simulator first executes the corresponding model’s output function ,
which can generate an output event y Y (represented as a Y message). Each output message is sent
to the parent Coordinator, which queries the Zij translation function of its corresponding coupled
model to find the model’s coupling and (if needed) translates the outputs (Y messages) into inputs
(X messages) to the corresponding models. After this, the Simulator activates the internal transition
function δint, producing a state change. Finally, ta(s) is activated, which schedules the next internal
transition. This information is carried in a done message. The Coordinator receives done messages
from all its imminent children, and it picks the one with the earliest future time. A done message
is then created and transmitted to the upper-level Coordinator, carrying this information, which is
used to schedule the next internal event for the corresponding coupled model. When this message
arrives at the Root Coordinator, the time for the next event is updated, and the cycle starts again.

When an external event x X is generated by the Root Coordinator, it is rerouted by the Coordina-
tors using the corresponding coupled model definitions until it reaches the corresponding Simulator.
When the message arrives at the Simulator, it activates the corresponding atomic model, triggering the
external transition function δext . After executing ta(s), the Simulator generates a done message (carry-
ing the value of ta(s)) for the Coordinator using the scheduling mechanism explained before.

The algorithmic description in Figure 15.2 defines detailed the behavior of the Simulator and
Coordinator upon reception of each of the four messages. The Simulator first checks the validity of

Root

Coordinator

Simulator

Coupled

Atomic

Mo dels

Pr ocessors

X

X

Y

Y

Done

Do ne

*

*

FIGURE 15.1 Relationship between models and processors.

53361.indb 424 3/11/09 10:50:31 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 425

FIGURE 15.2 Coordinator/simulator simulation algorithms.

53361.indb 425 3/11/09 10:50:32 AM

© 2009 by Taylor & Francis Group, LLC

426 Discrete-Event Modeling and Simulation

the timing information of the message received, and it computes the elapsed time. If an X message
is received, the external transition function is triggered. If a * message is received, we first verify
that the model is imminent (i.e., the time of the next scheduled event is the current message time).
In this case, we execute the output and internal transition functions, as explained earlier. Finally, we
send a done message and update the time for the last and next events.

The Coordinator first checks that the timing of the message is within the expected scope. If the
message is an input (X), we query the coupled model definition to find the model’s influencees and
reroute the message. If a * message is received, we query the coupled model and pick the imminent
model (using the select function if needed) and reroute the message. If we receive an upwards Y
message, we query the coupling scheme and, if needed, convert the message into an X message for
the destination. If the message should be transmitted to the parent model, we just reroute it upward.
We then wait for done messages from all the newly activated models and save their time in an immi-
nent time list. Finally, when done messages are received, we save them in the imminent list. If we
received messages from all of them, we pick the one with the smallest time and transmit it upward.
We then update TimeNext and TimeLast. The root Coordinator checks for the termination condition
and external messages and starts a new simulation cycle.

We will give an example of execution of the simulation algorithm using the APB model presented
in Chapter 13 (Figure 15.3). As discussed in Chapter 13, the model consists of three components: a
sender, the network, and a receiver (see Figure 13.41 in Chapter 13). The sender transmits packets
with random delays, which are transmitted to the network together with an alternating bit. The
network is decomposed further into two subnets corresponding to sending and receiving channels,
respectively. The sending and receiving subnets model the transmission latency in each direction.
Finally, the receiver consumes the packets and transmits acknowledgment messages. Figure 15.4
shows an excerpt of the simulation log for this model when we use the external event 00:00:10:00
controlIn 20, which represents a request to transmit 20 messages.

After executing their initialization functions at 00:00:00:000, all the models become passive
(“…” represents infinity). Consequently, done messages (1–6) are sent to the top-level Coordinator
(which creates the imminent list with infinite time for each of the children Processors, meaning
that all the components are passive). At this point, because every single model is passive, the simu-
lation could be terminated. Nevertheless, the Root Coordinator checks the external event list and
finds the external event mentioned earlier. Therefore, an X message is transmitted to the top-level
Coordinator (7). This model checks the coupling scheme in the top model definition, and it finds
out that inputs in controlin at the top model should be redirected to the controlin port in the sender
model. Thus, it reroutes the X message (8).

The sender simulator now activates the model’s external transition function, which programs
the transmission of 20 packets. It then schedules an internal transition in 10 s; thus, the simulator
creates a done message (D) with this value, which is transmitted to the parent (9). At this point the
imminent list for the top-level Coordinator contains no other active models in the simulation (all
the remaining models are passive), and the next imminent event will occur in 10 s (in the sender
model). A done message with this value is created by the top-level Coordinator and transmitted to
Root (10).

Root Coordinator

C: top

S: sender C: Network S: receiver

S: subnet1 S: subnet2

FIGURE 15.3 Alternating bit protocol simulation hierarchy.

53361.indb 426 3/11/09 10:50:33 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 427

Then Root advances the global time in 10 s, and it creates an imminent message (*) with the
imminent event time, which is transmitted to the top Coordinator (11). The top Coordinator knows
that the sender should be activated at 20:000 (according to the values of the imminent list).
At this moment, if two or more models were active simultaneously, select would be used to break
the tie. All the remaining submodels (network and receiver) are passive, so it forwards the * mes-
sage to the sender (12).

FIGURE 15.4 Processor’s reaction to different messages.

53361.indb 427 3/11/09 10:50:34 AM

© 2009 by Taylor & Francis Group, LLC

428 Discrete-Event Modeling and Simulation

When the * message is received by the sender, it executes the output function. According to the
model’s definition, we generate two outputs: 11 through dataout and 1 through packetsent. We also
schedule the next internal transition in 20 s (13–15). These three messages are transmitted to the par-
ent Coordinator (top), which saves 20 + 20 = 40 in the imminent list entry for the sender simulator.

Then the top Coordinator queries the coupled model definition, and it finds out that any output
messages transmitted through dataout should be translated into inputs for in1 at network. Thus,
it converts the output message Y into an input X (16). When this packet is routed to the network
Coordinator, the translation function is queried to find out that the event should be rerouted to the
in1 port in the subnet1 model. Thus, we reroute the X message (17).

The subnet1 atomic model then executes the external transition function, and it responds by pro-
gramming the time advance function to schedule an internal transition in 02:987 s (18). This is the
imminent time for the network coupled model (i.e., the one with the smallest time in the imminent
list). Thus, we retransmit the message to the parent Coordinator (top), which will also determine
this is the imminent event (because the sender is scheduled at 40 s and the rest are passive). The top
Coordinator also queries the coupled model definition to find out that packetsent is coupled to the
external model (21) and thus reroutes to Root (which will save this value in the output file, as shown
in Figure 13.43 in Chapter 13).

Root updates the global time, advancing 2:987 s, and then it creates a * message for the top-level
Coordinator (22–24), which will route it to the network (the sender imminent time is at 40 s and
the receiver is passive), which, in place, will reroute it to the subnet1 (subnet2 is still passive). The
output function of subnet1 is executed (25), which will transmit the packet through the out port and
it will be forwarded to the top level through port out1 of network (27). The subnet1 also executes the
time advance function and passivates (26). The subnet1 and subnet2 subcomponents are passive, so
the coupled model network becomes passive, too (28), and a D message with time infinity is sent to
the top-level Coordinator to passivate the whole coupled model. The top model will now query the
coupling scheme to decide what to do with the message received through out1; it will determine this
message should be transmitted to the receiver through the in port, and it does so (29). The receiver
executes its external transition function and schedules an internal transition in 10 s (30–31).

Exercise 15.1

Explain the rest of the simulation results seen in Figure 15.4. Relate the results with those introduced
in Figure 13.43 of Chapter 13.

Exercise 15.2

Analyze any of the simulation log files found in the models presented in previous chapters. Analyze the
simulation results according to the algorithms just discussed.

Exercise 15.3

Using the model definition for the generator–processor–transducer (GPT) model presented in Chapter
2, apply the algorithm presented in Figure 15.2 and show how the simulation advances.

15.3 IMPLEMENTING SIMULATION ALGORITHMS IN CD++

CD++ was built as a class hierarchy in C++. As seen in previous chapters, atomic models should
be programmed and incorporated to the model class hierarchy, and CD++ specification language
allows defining the model coupling, Cell-DEVS rules, initial values, and external events. Figure 15.5
shows the main classes in the model hierarchy [2,3].

The two base classes, Models and Processors, provide the basic constructors for DEVS models.
The abstract class Model is the root of this subtree. Model cannot be used to instantiate objects; other
models are derived from this basic class. It is responsible for managing all the input and output ports

53361.indb 428 3/11/09 10:50:34 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 429

(through the methods addInputPorts, inputPorts, outputPorts), knowing when the next event is
scheduled (using the instance variables lastChange and nextChange), and knowing its identifier and
its parent model (using the instance variables ID, processor, parent, inportList, and outportList).

The Atomic class is an abstract specialization of Model that represents the interface of Atomic
models that we used in previous chapters. As we have seen, in addition to all the functions inherited
from Model, it provides interfaces for the initialization function, the internal and external transi-
tion functions (internalFunction, externalFunction), and the output function (outputFunction). It
also provides methods to query and change the model’s state (state). These methods should be
overloaded to include new models. The class also provides support and activates the time advance
function (holdIn, passivate) (Figure 15.6).

Coupled is a specialization of Model that creates a composite Model (Figure 15.7). To do so, it
uses a list of basic models, and it provides the means to manage that list. It is responsible for adding
and managing models (AddModel, ModelList) and recording the dependencies between them (add-
Influence). A coupled model is defined by its components (children) and the coupling relationship
(specified by the instance variables receivers and influences).

AtomicCell is an abstract class derived from atomic to define Cell-DEVS models. It activates the
local computing function using the cell’s inputs (arriving from the cell’s neighborhood and external
models). When an instance of AtomicCell is created, the class notifies the neighbor cells about the
initial value. The neighborChange input and out output ports are created. (The remaining I/O ports
are created dynamically as needed, and they are stored in two lists named in and output.) The local
computing function is associated with each input port in order to allow the cell to have a differ-
ent behavior when a value arrives through a port. TransportDelayCell and InertialDelayCell are
nonabstract subclasses of AtomicCell used for cells with transport or inertial delays. They overload

Atomic

AtomicCell

TransportDelayCellInertialDelayCell

CoupledCell

FlatCoupledCell

Coupled

Processor Model 1..*

+child

Port

0..*

FIGURE 15.5 Basic classes defined by the tool.

53361.indb 429 3/11/09 10:50:35 AM

© 2009 by Taylor & Francis Group, LLC

430 Discrete-Event Modeling and Simulation

the internal transition, external transition, and output functions following the ideas introduced in
Chapter 3.

CoupledCell is a specialization of Coupled, and it represents Cell-DEVS coupled models. It
defines the cell space’s dimension and size, the type of delay and border, the initial value for each
cell, the local computing function, and zones with alternate behavior. It is also responsible for the
creation of the lattice and for linking cells with each other using the neighborhood relationship.

The Processor’s subtree shown in Figure 15.8 implements the abstract simulation mechanisms
presented in Section 15.2. Processor is the basic abstract class, and it is responsible for receiving

TransptDelayCell

TransportDelayCell()
firstQueuedTime()
firstQueuedValue()
insertByTime()
internalFunction()
externalFunction()
outputFunction()

AtomicCell

localFunction()
outPort neighborPort
neighborhood value
initFunction
delay

InertialDelayCell

InertialDelayCell()
internalFunction()
externalFunction()

CoupledCell

Coupled

height width
CreateCells()
SetCellValue()
SetLocalTransition()
cellName
border wrapped
inertialDelay
initalCellValue
defaultDelay
localTransition

Atomic

FIGURE 15.7 Atomic/coupled specializations. (From Rodriguez, D., and G. Wainer. 1999. Proceedings of 31st
SCS Summer Computer Simulation Conference, Chicago, IL, and Barylko, A. et al. 1998. Proceedings of
Applied Modeling and Simulation, Honolulu, HI.)

Processor port parent
ident parentId
InputList OutputList
addInputPort inputPorts
addOutputPorts outPorts
nextsChange lastChange

Model

Simulator
InitFunction()
InternalFunction()
outputFunction()
externalFunction()

Phase

Atomic
children
addModel() modelList
type influences
addInfluence()

receivers

Coupled

receive(InitMessage)
receive(InternalMessage)
receive(ExternalMessage)
ident

Simulator
receive(InitMessage)
receive(InternalMessage)
receive(ExternalMessage)
receive(OutputMessage)
iden doneCount
recalcImmChild()

receive(InitMessage)
receive(InternalMessage)
receive(ExternalMessage)
receive(OutputMessage)
Model ident
nextChange lastChange
receive(DoneMessage)
sendOutput parent

Coordinator
child top simulate()
stop() addExtEvents()
receive(outputMessage)
receive(doneMessage)
External Events
stopTime

Root Coordinator

Processor

FIGURE 15.6 Basic classes.

53361.indb 430 3/11/09 10:50:37 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 431

messages (receive), knowing the associated model and its parent Processor, and sending output
messages to its parent Processor (using the processor, model, and parent instance variables). In
addition to the receive method, Processor implements three methods:

lastChange() reports the time of the last state change.
nextChange() reports the time of the next scheduled state change.
absoluteNext() reports the absolute time of the next change (lastChange() + nextChange()).

Simulator is a specialization of the Processor capable of executing atomic models. It manages
the simulation mechanism for atomic models, receiving messages and activating the associated
functions using the algorithms presented in Section 15.2.

Coordinator is also a specialization of Processor, and it implements the simulation mecha-
nism for coupled models discussed earlier. The Coordinator derives the external messages
(receive(ExternalMessage), imminentChild, Model.influences) by sending external X messages to
the children Processors. In addition, it redirects the output messages considering the ports’ influ-
ences and the coupling scheme (recalcImmChild). Finally, it forwards the internal messages to the
imminent Processor and the initialization messages to all its children Processors.

RootCoordinator is also a specialization of Processor (only one instance can exist). It is the only
Processor with no associated model, and it is used to start and finish the simulation and to keep a list
of ExternalEvents and the global time (clock). This processor is related to the top level Coordinator
(child, top). It must generate the model’s output (sendOutput) and initialize the models by loading
the next and last event times. It also should reset the external events list and send an initialization
message to the highest-level coupled model (simulate).

CellCoordinator is a specialization of Coordinator for Cell-DEVS models. It is in charge of
selecting the imminent model and managing the output messages to avoid duplicated messages
being sent to the cells. The message-passing mechanism is different for Cell-DEVS models. The
CellCoupled class is in charge of managing all the cells as children models. Therefore, when the
cells are created, the specified behavior is assigned to them and they are linked with the mod-
els defined using the neighborhood relationship and the external coupling lists, as explained in
Chapter 3. The CellCoordinator class is in charge of receiving internal and external events for these
models. When an internal event is received, it will send as many InternalMessages as imminent
children. Figure 15.9 shows a sequence diagram for the execution scenario for Cell-DEVS models.

Simulator Coordinator

CellCoordinator

FlatCellCoordinator

Model Processor

FIGURE 15.8 Processor hierarchy.

53361.indb 431 3/11/09 10:50:37 AM

© 2009 by Taylor & Francis Group, LLC

432 Discrete-Event Modeling and Simulation

The CellCoordinator generates imminent messages for all the imminent cells in the coupled
Cell-DEVS based on the imminent list queried by the method getImminents(). Each of the immi-
nent simulators receives the internal message, and the corresponding atomic model runs the output
function of the cell. Output messages are transmitted to the CellCoordinator, together with a done
message defining the next internal transition function. The cell also executes the internal transition.
The Coordinator then queries the list of influencees and, if needed, converts the output message
into an input for other cell(s), triggering their external transition functions (which execute the local
computing function on each cell). Finally, it generates a done message for the top-level Coordinator,
using the minimum time for all the cells.

15.3.1 MESSAGING

As discussed in Section 15.2, the simulation advances through message passing. Each message
includes information of the source (or destination), the event simulated time, and the content (con-
sisting of a port and a value). Because the message-passing mechanism is encapsulated, the message
distribution policy can be changed without affecting the rest of the modules. Message is a base class
defining the possible messages that can be defined, as can be seen in Figure 15.10.

The Message base class defines the data about the model that generated the message and its event
time. This is the root abstract class for all messages. InitMessage is a subclass that represents the
message that the Processors receive when the simulation begins. InternalMessage corresponds to

 : CellCoordinator :CoupledCell : Simulator : AtomicCell:Coordinator

sendOutput ()

internalFunction ()

receive (OutputMessage)

getInfluences (Port)

[influenced += getinfluenced()]

receive (DoneMessage)

LocalTransition ()

[*influenced]

getImminents ()

receive (InternalMessage)
outputFunction ()

externalFunction ()

receive (InternalMessage)

receive (DoneMessage)

[DoneCount := influenced.size]

[DoneCount = 0]

receive (DoneMessage)

receive (ExternalMessage)

FIGURE 15.9 Interaction between Cell-DEVS messages.

53361.indb 432 3/11/09 10:50:38 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 433

the * message in the algorithms presented earlier, and it indicates the imminent time to the imminent
Processor that the time for an internal event has arrived. ExternalMessage represents the arrival of
an external event (X). This message includes the input port and its value. DoneMessage is received
by a Processor from one of its children Processors indicating the time for the child’s next state
change. OutputMessage represents the output events (Y), and it includes the output port and the
value of the event.

As discussed earlier, Processor includes the receive method, which is responsible for receiving
and processing the different simulation messages. The messages are sent among Processors through
the MsgAdmin class, which is devoted to managing the interprocessor message passing, receiving
module’s invocations, and providing communication between them. This class provides a unique
method to send and receive messages, providing a centralized solution that allows encapsulating
of the message-passing policy. The sending Processor will send the message to the MsgAdmin
using the send method, which will cause the message to be queued until it is sent. Sending a mes-
sage is done by executing the receive method on the receiving Processor.

15.3.2 MODEL AND PROCESSOR ADMINISTRATION

Models and Processors used during the simulation are created when the model description file is read
and destroyed when the simulation finishes. For Models and Processors to be able to reference others,
there must be a mechanism capable of getting a reference out of their name. This is the function of
the administrators, which are depicted in Figure 15.11. The main functions of ModelAdm include:

Creation of new models: creates a model’s instance and assigns it a unique identifier. This
is the only class that can create new models, and there are different methods to define dif-
ferent kinds of models.
Association of model’s identifiers with existing models: all the existing models are con-
tained in a list maintained by the model’s manager and created by the registerNewAtomic()
method. The manager is in charge of referencing a model by using a unique key.

The ProcessorAdmin class manages all the Processors participating in the simulation. Because
only one instance of this class exists, it must know of all the components of the simulation. This sin-
gle instance is named SingleProcessorAdmin. It is responsible for the creation of all the Processors
and is capable of retrieving a Processor from its identification.

InitMessage

type()

InternalMessage

type()

ExternalMessage

type()
value
type()

Message
ProcId
type()
time
sendTo()

DoneMessage

nextChange
type()

OutputMessage

port
value
type()

FIGURE 15.10 Message class hierarchy.

53361.indb 433 3/11/09 10:50:39 AM

© 2009 by Taylor & Francis Group, LLC

434 Discrete-Event Modeling and Simulation

To start the simulation, the model’s specification, the external input events, the time for the end of
simulation, and input/output files must be defined. This information is used by the SimLoader class,
which provides an interface to load the simulator configuration. There are two possible procedures
to start the simulation. The first one is by using the class StandAloneLoader, which is responsible
for loading the parameters by using the shell’s command line. The NetworkLoader class is respon-
sible for getting the same parameters by using TCP/IP services. In this way, the simulator can be
executed as a simulation server, and the parameters can be loaded remotely. The simulator waits on
a TCP port if when the model simulation specification is received, it executes the model, and returns
the results remotely.

The SimLoader class (shown in Figure 15.12) is responsible for loading the model definition and
execution option when the simulator is started. SimLoader is in charge of parsing the model specifi-
cation, loading external events stream, and setting the simulation log and output as output streams.
The SimLoader is used by the MainSimulator class during the initialization phase of the simulation.
The main method in the MainSimulator class is the run method, which organizes the activities han-
dled by MainSimulator. These include loading the model hierarchy in memory, the initial values of
the cells, and the external events, and creating the simulators to execute the model. MainSimulator
is responsible for the creation of the model tree and for establishing the links between ports using
the specification. Once the hierarchy of the model is built, the simulation can begin. To do so, the
external events are added, an event list is created, and the stop time is initialized.

FIGURE 15.12 The MainSimulator and SimLeader classes.

Processor

Singleton<ProcessorAdmin>

ProcessorAdmin

generateSimulator()
generateCoordinator()
generateRoot()
generateCellCoordinator()
processor()

0..*

Singleton<ModelAdmin>

ModelAdmin

registerAtomic()
newAtomic()
newAtomicCell()
newCoupled()
newCoupledCell()

AtomicType

0..*

FIGURE 15.11 Class hierarchy for ModelAdm.

53361.indb 434 3/11/09 10:50:40 AM

© 2009 by Taylor & Francis Group, LLC

loader
createProcessors()
Instance()
loadCells()
loadComponents()
loadExternalEvents()
loadInitialCellsValues()
loadLinks()
loadMachines()
loadModel()
loadModels()
loadPorts()
logStream()
outputStream()
run()

events
log
models
output
eventsStream()
logStream()
modelStream()
outputStream()
stopTime()

MainSimulator SimLoader

Building DEVS Simulators 435

15.4 INTRODUCTION TO PARALLEL AND DISTRIBUTED
SIMULATION CONCEPTS

As simulated systems become increasingly sophisticated, the simulation software becomes larger
and more complex. In these cases, the resources provided by a single-processor machine often
become insufficient to execute these systems. Parallel And Distributed Simulation (PADS) deals
with these issues by executing simulations over multiple processors. Parallel Discrete Event
Simulation (PDES) studies the execution of discrete event models in parallel or distributed comput-
ers [4–7]. Parallel and distributed simulation can provide four major advantages [4,5]:

1. Enabling execution of simulations that otherwise could not be performed. By executing a
large model after subdividing it into simpler, smaller parts, we can improve performance.
Distributed environments allow the execution of simulations whose memory requirements
exceed the resources available in a single computer.

2. Geographical distribution. It is possible to distribute the execution at different physical
locations, which is particularly interesting for some applications where data or users are
not in the same area.

3. Integrating simulators based on different platforms. Simulations can be carried out using
different computers, operating systems, and simulation engines.

4. Fault tolerance. It is possible to increase the tolerance to failures; if a node fails, a surviv-
ing node may take over and continue the execution of the simulator.

According to Fujimoto [4], three major communities are involved in the field of parallel and
distributed simulation. The first group is the high-performance computing community, whose
main concern is to reduce execution time of applications by using multiple processors. Several syn-
chronization algorithms have been developed by this community. The second group is the defense
community, which is mainly interested in integrating separate training simulations to facilitate
interoperability and software reuse. The third group is the gaming and Internet community. Its
efforts are mostly focused on developing realistic scenarios in distributed environments. We will
now give a general description about some topics of interest for the two first communities, with
some basic references for the interested reader. Some of these ideas will be used in later sections.

Synchronization is a key issue when executing applications in parallel and distributed environ-
ments. Most algorithms organize the simulation components as a group of logical processes (LPs).
LPs receive and generate time-stamped events or messages to communicate with other LPs, which
might execute locally or remotely. The synchronization mechanisms ensure that each LP complies
with the local causality constraint, which requires that events should be processed in their time-
stamp order [4,5]. This guarantees the execution of events in causal order (i.e., guaranteeing that the
future does not influence the past).

Two main classes of algorithms for synchronization, such as Chandy–Misra–Bryant [8–10] and
Time Warp [11,12], introduced fundamental ideas that are still being applied. Conservative algo-
rithms avoid violating causality constraints at all times during the execution of a simulation by
processing events in strict time-stamped order. Conservative schemes must arrange for the potential
causality errors. This can be done through the provision of lookahead, in which each model pro-
vides a time in the immediate future up to which it promises not to send input events. The minimum
of such blackout times at any model or component, called the lower bound time stamp (LBTS), is
the time up to which it can safely process its time-stamped inputs. Thus, simulation proceeds incre-
mentally governed by the lookahead, which is the interval that a model or component adds to its
current LBTS to obtain the blackout time sent to other models or components

Optimistic algorithms, on the other hand, allow some violations to happen but provide a mecha-
nism to detect and recover from these situations. To do so, optimistic algorithms permit temporary
time-stamped order violation that must be repaired before the final simulation output is presented.

53361.indb 435 3/11/09 10:50:41 AM

© 2009 by Taylor & Francis Group, LLC

436 Discrete-Event Modeling and Simulation

The simulation can advance as quickly as possible, which can produce the reception of out-of-order
messages. To rectify this situation, queues of already processed inputs and their outputs are main-
tained so that the situation can be restored to what it was just before the arrival of the old time-
stamped message. Optimistic algorithms have two main advantages over conservative approaches:
(1) they enable greater degrees of parallelism, and (2) they do not rely on application-specific data
to determine events that are safe to process, which is usually the case in conservative approaches.
Nevertheless, a higher level of overhead is involved.

Varied middleware has been used for parallel and distributed simulation efforts, including
CORBA (common object request broker architecture) [13], peer-to-peer networks, TCP/IP sockets,
MPI [14] and PVM [15] (message-passing interfaces designed for high-performance communica-
tion in parallel and distributed environments), Microsoft.Net, and Web Services technologies [16].

The field of defense distributed simulations has been influenced by different efforts; DIS
(Distributed Interactive Simulation) [17] and the High-Level Architecture (HLA) [18] are two of the
most widely used middleware applications [17]. DIS was created with the goals of being able to use
a large number of computers remotely located and sharing data and compute power for advanced
simulation exercises in training. The HLA is a standard specifically designed with the goal of reus-
ing legacy simulation systems in distributed environments.

The HLA is a standard for simulation interoperability that provides a set of services that allow
federates (individual simulations) to join into a cooperative federation (system of simulations). The
simulations can share data (attributes) and events (interactions), and they are time driven [18].
The implementation of the HLA is done using the runtime infrastructure (RTI), a middleware
whose interface is standard. Each federate has a local ambassador to handle access to the RTI,
which must be programmed to permit the RTI to notify the federate of specific events of interest.
The baseline of the HLA includes:

HLA rules, which define the responsibilities and relationships among the components of a
federation.
Interface specification, which specifies the functional interface between federates and the
RTI. It defines RTI services and identifies callback functions for each federate.
The object model template (OMT), which provides a common presentation format for sim-
ulation object models and federation object models.

As discussed in Chapter 4, numerous DEVS simulation tools have been implemented using
the middleware discussed in this section—for instance, DEVS/CORBA [19], DEVS/HLA [20],
DEVSCluster [21], DEVS/Grid [22], and DEVS/P2P [23].The following sections will discuss some
of the versions implemented for CD++.

15.5 CD++ PARALLEL SIMULATION ALGORITHMS

As discussed in Chapter 2, the modularity of DEVS makes it possible to separate the model from the
simulation mechanism. In this section, we will show how the original abstract simulator mechanism
presented in Section 15.2 was revised to run parallel DEVS (PDEVS) models in a parallel/distributed
environment. PDEVS [24] was introduced to solve serialization problems with the simultaneous
events in classic DEVS (also discussed in Chapter 2). The main difference is that PDEVS processes
input bags and generates output bags for the model, and the confluent transition function (δcon) is
activated when internal and external events occur simultaneously.

As with the original definition of the abstract simulator, PDEVS processors are specialized
into two different engines, Simulator and Coordinator. Five kinds of messages are used and can
be categorized into synchronization messages (@, *, and done) and content messages (y and q)
(Figure 15.13):

53361.indb 436 3/11/09 10:50:41 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 437

Synchronization messages are sent from a parent Processor to its imminent children. All
imminent models’ output functions must be executed before any transition function.
All outputs are collected and only after they have been sorted the transition functions can
be activated. Message @ is used to request all imminent children to execute their output
functions and to route the outputs to the corresponding inputs according to the coupling
scheme. Message * tells the children to invoke their transition functions (whether it is an
external, internal, or confluent transition).
Data messages are sent from parent/children Processors. All outputs produced by a model
are translated to y messages between a child Processor and its parent. External messages
are sent as q messages.

When a simulation is running in distributed/parallel fashion, each CPU will host one or more
DEVS Processors. Under these assumptions, Coordinator’s children need not be executing on the
same CPU. Because the correspondence between models and DEVS Processors is one to one, every
coupled model is associated with only one Coordinator. Therefore, every message sent to children
Processors running on a different CPU will require interprocess communication. Figure 15.14(a)
illustrates this case. A Coordinator sends a message to its eight children distributed on two CPUs
(four interprocesses messages are required for the four children running on CPU 1). If the number
of children Processors is high, the number of messages sent across the network will be signifi-
cant. This can be avoided if every coupled model has more than one Coordinator. Figure 15.14(b)

DEVS PROCESSOR

(y, t)(q, t)

(@, t)
(*, t)

(done, t)

Synchronization msgs

Content messages

FIGURE 15.13 Messages that a DEVS processor receives and sends.

FIGURE 15.14 (a) A single coordinator sending a message to all its children Processors. Dashed lines =
interprocessor messages. (b) A head/proxy pair sending messages to all children Processors.

53361.indb 437 3/11/09 10:50:42 AM

© 2009 by Taylor & Francis Group, LLC

1 2

4 3

Head
Coordinator

CPU 0 CPU 1

1 2

4 3

Coordinator

CPU 0

5

6

7

8

5 8

7 6

Proxy
Coordinator

CPU 1

(a) (b)

438 Discrete-Event Modeling and Simulation

illustrates this case. For the same coupled model, there are two Coordinators—one in CPU 0 and
another in CPU 1. In this case, only one message is sent over the network.

Therefore, to reduce interprocessor messages, coupled models use a Coordinator on each CPU
where a child Processor is running. Children processors send messages to a local Coordinator,
which will decide how to handle the received messages. Only one of the Coordinators will receive
messages from (or route messages to) the parent’s model Coordinator. This specialized Coordinator
is known as the head Coordinator and all other model Coordinators are proxy Coordinators.

The simulation algorithm we present here (Figure 15.15) is based on the one presented in Chow,
Kim, and Zeigler [25] to simulate parallel DEVS models. We will now proceed to describe the
abstract simulator mechanism for the Simulator, head Coordinator, proxy Coordinator, and Root
Coordinator. The Simulator is responsible for invoking the atomic model’s functions λ, δext, δint, and
δconf , as discussed in Chow et al. [25].

When a simulator receives the message @, it executes the atomic model’s λ function and sends
the output generated by this function to the parent Coordinator. We also check the message time and
send a done message to record the current value of ta(s) for the model. Messages q are simply added
to the model’s input bag for further processing. This will happen when the * message is received;
this indicates that a model’s transition function must be executed. Which function to execute will
depend on the message time and the contents of the input bag. If m.time < timeNext, then it is not
the time for an internal transition, and it must be the case that the bag is not empty and δext should
be executed. After executing, we empty the bag. If m.time = timeNext, it is the time for an internal
transition. If no external messages have been received, then δint is executed; however, if there are
external messages in the bag, then δconf should be called. After executing, the scheduling informa-
tion is updated and a done message is transmitted.

When the Head Coordinator receives the message @ from its parent, the imminent child must
be synchronized (in order to activate output functions to collect the results of the current simula-
tion cycle before advancing). We retransmit the message @ and put the imminent children in the
synchronize set, which will be used later to collect the results of the output functions and reroute
those results to the corresponding inputs (as discussed in Chow and Zeigler [24]). We wait for all
the children to return done messages, and the one with the smallest timestamp is transmitted to the
parent Coordinator, representing the imminent time for the coupled model. When an input message
q is received, it is added to the input bag for the model.

If we receive a transition message * from the parent Coordinator, we first reroute all the input
messages. To do so, we take the messages in the input bag and route them using the list of influen-
cees. If it is local, we just reroute the q message to the corresponding processor and cache it in the
synchronize set (which keeps track of the active components). Otherwise, we find the correspond-
ing remote Coordinator and send the message. The proxy-sync set is used to avoid forwarding an
output message twice to a proxy Coordinator. This is done to reduce the number of messages sent
across the network, because a proxy Coordinator might be the parent Coordinator for more than
one of the influencees of i. If q messages are to be forwarded, then there will be one q message for
each influencee of i. Finally, we send a * message to all the members of the synchronize set (in order
to trigger their transition functions) and wait for their done messages. We pick the done message
with the smallest timestamp and send it to the parent Coordinator.

Finally, when the Coordinator receives an output message y, we need to distinguish two cases:

1. The output message y is received from a child i that is not a proxy Coordinator. In this
case, we use the translation function Zij to find all the influencees j of child i in order
to determine how these outputs should be translated into inputs. If the child i is local,
we use the translation function and convert the message into an input message q. If the
destination is not local, we need to find the remote Coordinator where j is located (using
the FindRemoteCoordinator method). Note that instead of forwarding a q message to a
proxy Coordinator, a different message (y, i) is sent. This is done to reduce the number of

53361.indb 438 3/11/09 10:50:42 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 439

FIGURE 15.15 Abstract simulation algorithms for parallel DEVS models.

53361.indb 439 3/11/09 10:50:44 AM

© 2009 by Taylor & Francis Group, LLC

440 Discrete-Event Modeling and Simulation

messages sent across the network. A proxy Coordinator might be the parent Coordinator
for more than one of the influencees of i. If q messages are to be forwarded, then there will
be one q message for each influencee of i. Instead, just one (y, i) message is sent across the
network and it will be the responsibility of the proxy Coordinator to generate the appropri-
ate q messages.

2. If the output message (y, i) is forwarded from a proxy Coordinator that received y from
a local child i, we cache s in the proxy-sync set and proceed as if a y message had been
received from child i. When the output events are routed down to children Processors, if
the message is to be forwarded to a proxy Coordinator, the Z translation will not be applied.
Instead, the original q message will be sent. Therefore, care must be taken not to forward a
message twice to a proxy Coordinator. Here again, the proxy-sync is used for that purpose.

FIGURE 15.15 (continued).

53361.indb 440 3/11/09 10:50:45 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 441

The Proxy Coordinator, introduced next, differs from the Head Coordinator in only one way:
When a message needs to be sent to a processor that is not local, it will be sent to the Head Coordi-
nator (in Figure 15.15, we only show the differences between the Head and Proxy Coordinators).
There is no difference in how both Head and Proxy Coordinators handle a message @. However,
for a proxy Coordinator, the set of children Processors is made by the set of local child Simulators
and the set of local child head Coordinators only.

When an output event is received from a child i, the proxy Coordinator sorts the message to the
influencees of i. If any influencee is local, a q message is sent. If there are nonlocal influencees, then
the output event is sent to the head Coordinator, which will then sort the message to other proxy
Coordinators if necessary. Only one y message should be forwarded to the head Coordinator. When
the proxy Coordinator receives an output event that has been forwarded by the head Coordinator on
behalf of child i, it will handle the event as if i had been local, but no y messages will be sent back
to the head Coordinator if there is a nonlocal influencee. This is to avoid infinite loops of messages
being sent back and forth.

The Root Coordinator is responsible for advancing the virtual simulation time and handling
external events, which are stored in a sorted queue of events.

Exercise 15.4

Suppose we want to execute the GPT example in three different CPUs. Follow the simulation algorithm
presented in Figure 15.15 and analyze the execution of the model using the head–proxy Coordinators.

15.6 FLAT COORDINATORS

As discussed in Kim et al. [26], the hierarchical structure of the simulator (which creates a one-
to-one correspondence between model components and simulation objects) can increase the com-
munication costs of message passing. Figure 15.16 shows a sample model with a few components.
If the Root Coordinator has to schedule an event to lowermost simulators (#4 and #5); the overhead
incurred by message passing can be considerable. The same phenomenon is produced if #5 sends an
output to #3. The number of intermediate Coordinators can be arbitrarily high, so this overhead can
be high. A flat simulator simplifies the underlying structure while keeping the same model defini-
tion and preserving the separation between model and simulator [27]. Studies have shown that flat
simulators can outperform hierarchical mechanisms [28–31].

We introduced a flat Coordinator for CD++ in which there is only one Processor in the hierarchy
to replace the hierarchical Coordinators and Simulators. The flat Coordinator is in charge of all
the tasks for simulating the atomic components, including scheduling and port mapping among its
children. The structure of the model is shown in Figure 15.16 using the flat coordinator: the resulting
hierarchy is simplified as shown in Figure 15.17.

In order to execute the simulation properly, the flat Coordinator stores information for the
atomic models handled. This includes I/O ports, links, time of next event, and time of the last event

Coupled Model # 1 (TOP)

Atomic
Model # 1

Atomic
Model # 2

Atomic
Model # 3

Coupled Model # 2

Atomic
Model # 4

Atomic
Model # 5

Coordinator # 1

Coordinator # 2 Simulator # 1 Simulator # 2 Simulator # 3

Simulator # 4 Simulator # 5

Root Coordinator

FIGURE 15.16 A sample model and hierarchical structure of the simulator.

53361.indb 441 3/11/09 10:50:45 AM

© 2009 by Taylor & Francis Group, LLC

442 Discrete-Event Modeling and Simulation

processed, as well as a queue of pending events. Implementation details about this technique for
parallel CD++ can be found in Glinsky and Wainer [28,29].

Wainer and Giambiasi [32] and Wainer [33] introduced a flat simulation algorithm for Cell-
DEVS models that reduces the number of interactions carried out in the cell space. We will show
the behavior of such algorithms using the example presented in Figure 3.8 in Chapter 3. We first
show the hierarchical version. Let us suppose first that in simulated time 10, the model’s state is as
in Figure 15.18. There is only one active cell in the model: cell [1,9] of model C. At present there is
only one message waiting to be processed in the event-list of the Root Coordinator, and the contents
of the data structures of the simulators and Coordinators are as shown in Figure 15.19. (The figure
does not include the information about each cell’s simulator in order to make it easier to read.) The
simulation begins when the Root Coordinator creates the following message:

< *, Root, 10 >

This message is sent to the M Coordinator, which queries its list of imminent children. There, the
Coordinator selects model C (the first of its imminent list) and sends the message <*, M, 10> to
its Coordinator. Coordinator C receives this message and selects its imminent child (in this case,
cell [1,9]) by consulting its imminent children list. It also verifies that the time of the next event is
equal to the simulated time included in the message.

Message <*, C, 10> is sent and arrives at the simulator C19, which will execute the internal transi-
tion function. As a first step, the time of next event tn is verified. Because it is the same as that of
the * message, the arrived message is correct and the output function is executed. If we analyze the
model’s rules in Chapters 3 and 14, the result of the local computing function is s = 0. Because s = 1,
the cell’s state has changed and its present value should be output. Thus, a Y message is generated
with the values < Y, C(1,9), 10, 0 >, and it is transmitted to the parent Coordinator C. After this, the
event times corresponding to the Coordinator are updated:

tl = tn = 10; and
tn = tl + D(s) = 10 + ∞ = ∞.

FLAT
COORDINATOR

Root CoordinatorAtomic # 1

Atomic # 2

Atomic # 3

Atomic # 4

Atomic # 5

FIGURE 15.17 Flat processors’ hierarchy.

A

C

C

FIGURE 15.18 Model M’s initial state.

53361.indb 442 3/11/09 10:50:46 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 443

The Y message is received by the Coordinator C, which queries its coupling scheme. Because
this message is local to the C model, it should be translated into an X message and sent to the follow-
ing cells: (1,10), (1,8), (2,8), (2,9), (2,10), (4,8), (4,9), and (4,10). The <X, C(1,9), 10 > is sent to each of
these cell simulators, and the cell numbers are added into the Coordinator’s waiting list.

In each simulator, the message time is checked to see whether it is between the last event and next
event times. This is correct, so the elapsed time and the event times are updated:

e = t – tl = 10 – 0 = 10, where t is the present time;
 = tn – e = 10 – 10 = 0;

tl = tn = 10; and
tn = tl + D(s) = 10 + 2 = 12.

Then each simulator executes the local computing function and creates a message < done, C(i,j),
12 > (because the transport delay is of two time units in all of them). When these messages are
received, the Coordinator eliminates the children from the wait-list and adds the message in its
imminent list. In this case, all the messages have the same time, and the select function is used to
choose the imminent children (messages are queued by using this criterion):

Imminent children: { (1,10), (1,8), (2,8), (2,9), (2,10), (4,8), (4,9), (4,10) }

When the waiting list is empty, all the influencees have finished with the execution of the exter-
nal transition function. Therefore, the smallest imminent child is ready for execution. The first
element of the imminent children list is chosen and the message < done, C(1,10), 12 > is sent to the
Coordinator M. In this way, if more than one imminent model exist in the hierarchy, one of them is
chosen. These procedures are repeated for each of the imminent children of Coordinator C.

When we execute the output function on cell (1,10), we generate a message < Y, C(1,10), 12, 1 >
sent to the Coordinator C. This message is transmitted to the neighboring cells, and it influences the
links that are external to the C model. Therefore, it should be retransmitted to the parent Coordinator
M to execute the Zij function, which will send the change to the other models. When the message
is received by the M Coordinator, it queries the external coupling function and determines that the

Root Coordinator:
Clock= 10;
Associated coordinator: Coordinator M.

Coordinator M
Parent: Root Coordinator
Children: { A, B, C, D, E }
Associated coupled model: {M}
Waiting list: { }
Imminent child: { C }
tn: 10; tl: 0.

Coordinator A
Parent: Coordinator M
Children: { A11, A12, ... }
Associated coupled model: {A}
Waiting list: { }
Imminent child: { }
tn: ∞; tl: 0.

Coordinator B
Parent: Coordinator M
Children: { B11, B12, ... }
Associated coupled model: {B}
Waiting list: { }
Imminent child: { }
 tn: ∞; tl: 0.

Coordinator C
Parent: Coordinator M
Children: { C11, C12, ... }
Associated coupled model: {C}
Waiting list: { }
Imminent child: { [1,9] }
 tn: ∞; tl: 0.

Coordinators D,E
Parent: Coordinator M
Children: { }
Associated coupled model: {D} ({E })
Waiting list: { }
Imminent child: {}
tn: ∞; tl: 0.

FIGURE 15.19 Initial contents of simulators’ and coordinators’ data structures.

53361.indb 443 3/11/09 10:50:48 AM

© 2009 by Taylor & Francis Group, LLC

444 Discrete-Event Modeling and Simulation

coupling Y(1,10)C X(2,10)A should be used. Therefore, it generates the following message: < X,
A(2,10), 12, 1 >. The simulation process continues.

If we use a flat simulator, we use a Next-Events list to record the next scheduled events and a
New-state list to record the cells that have changed (in order to keep the cell space updated). In our
previous example, all the Next-Events lists for the Coordinators are empty, except for model C:

Next-Events = {(1,9), 10}.

When the Coordinator executes, it takes the first event of the list and updates the simulation time:
tl = tn = 10 and e = 0. In this case, when the local computing function is executed, the result obtained
is New-state = 0. Because Cells[1,9].state = 1, the new state should be stored in the New-states list.
Therefore, New-states = { (1,9), 0 }. After this, because the cell is not in the Ylist and inertial delays
are not used, we make the next event time = 10 + 2 and

 Next-Events = { <(1,10), 12>, <(1,10), 12>, <(1,8), 12>, <(2,8), 12>, <(2,9), 12>, <(2,10), 12>,
<(4,8), 12>, <(4,9), 12>, <(4,10), 12> }.

After this, the Next-Events list does not include any other events with time 10. Therefore, we can
update the cell space with the New-states list information by making C[1,9] = 0; New-states = {}.

When the next events have been updated, a message < done, 10, C > is sent to the upper-level
Coordinator. The Coordinator detects that C is the imminent child; therefore, after the root Coordinator
updates the global clock, a * message is sent to the C Coordinator that continues with the simulation.

The simulator cycles, and it makes tn = 12, tl = 10, and e = 0. Cell (1,10) is chosen from the
Next-Events list. In this case, New-state = 1, and Cells[1,9].state = 0; therefore, New-states =
{ <(1,10), 1> }.

The cell is in the Ylist for the model; therefore, a Y message is created and sent to the Coordinator
M. The Coordinator will react in the same way explained for the hierarchical models. When message
< Y, C(1,10), 1, 12 > arrives at the M Coordinator, it is translated into the message < X, A(2,10), 12, 1 >
that will be transmitted to the flat Coordinator A. This Coordinator will insert it into the Next-
Events queue.

15.7 IMPLEMENTATION OF DISTRIBUTED DEVS SIMULATION
ALGORITHMS IN CD++

The algorithms presented in the previous section were implemented on a Beowulf cluster [27,34]
and in a distributed environment using Web Services [35]. This section introduces the implemen-
tation of the algorithms for DEVS Processors presented in the previous section for simulation in
parallel and distributed environments. Figure 15.20 shows the class hierarchy implemented.

In order to implement the PDEVS algorithms, the Coordinator receives synchronization and con-
tent messages and reacts accordingly using the Coordinator algorithms described in Section 15.5.
The message bag associated with the Coordinator is processed through the method sortExternal-
Messages, which is invoked at the time of receiving an internal message (*). This causes the mes-
sages in the bag to be forwarded to their destinations. The method sortOutputMessages is invoked
whenever a child sends an output message to its parent Coordinator. This results either in the message
being translated into external message(s) sent to the local destination(s) or an output message being
forwarded upward in the class hierarchy. The calculateImminentChild is responsible for evaluating
the imminent children Processors by examining the minimum time of the next state change.

Figure 15.21 shows the definition of the head and proxy Coordinators, which are implemented
by extending the Coordinator class and integrating them into the Processor class hierarchy. Both
override the receive method used to process the different messages received by the Processors.

53361.indb 444 3/11/09 10:50:48 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 445

FIGURE 15.21 Head and proxy Coordinator classes.

53361.indb 445 3/11/09 10:50:50 AM

© 2009 by Taylor & Francis Group, LLC

addPortToList ()
addZonePartition ()
initializeMessageQueues ()
insertExternalEvent ()
getCurrentSimulationTime ()
getMachineID ()
getSessionID ()
machineForProcId ()
machineForModel ()
receiveRemoteMessage ()
sendRemoteMessage ()
setSessionID ()
startMessageMonitor ()
stop ()

allPorts
cdppPath
machineId
messageMonitorStarted
messageMonitor�read
procMachineIds
receive_queue_id
send_queue_id
sessionID
zonePartitions

CPPWrapper

absoluteNext ()
description ()
id ()
lastChange ()
model ()
nextChange()
receive ()

model
next
last
procId

Processor

receive ()

Simulator

calculateImminentChild ()
receive ()
sortExternalMessages ()
sortOutputMessages ()

dependents
doneCount
synchronizeList

Coordinator

addExternalEvent ()
initialize ()
receive ()
sendMsgType ()
simulate ()
stop ()

lastChange
timeStop
externalEvents
nextMsgType

Root

receive ()

FlatCellCoordinator

begin ()
end ()
iterator ()
msgsOnPort ()
portHasMsgs ()
()

MessageBag

asString ()
sendTo ()
type ()

procId
time

Message

InitMessage InternalMessageDoneMessage ExternalMessageOutputMessage

run ()
send ()
stop ()

running
unprocessedMsgs
unprocessedQueue

MsgAdmin

Figure 15.20  The simulation class hierarchy.

Head Coordinator Coordinator Proxy Coordinator

calculateNextChange()
receive()
sortExternalMessages()
sortOutputMessages()

dependents
doneCount
synchronizeList

calculateNextChanges()
receive()
sortExternalMessage()
sortOutputMessages()

proxies

calculateimminentChild()
receive()
sortExternalMessages()
sortOutputMessages()

446 Discrete-Event Modeling and Simulation

In addition, they implement the sortExternalMessages and sortOutputMessages. The sortOut-
put Messages method is triggered when receiving an output message from a child Processor. The
sortExternalMessages method is triggered when the Coordinator receives an internal message from
its parent Coordinator. It causes the Coordinator to process all the messages in its bag by forward-
ing them to their destinations either locally or remotely. The calculateNextChange method is used
to evaluate the imminent children Processors, and its behavior is different for each Coordinator.
In the case of the head Coordinator, it considers the local children Processors in addition to the
remote proxy Coordinators; in the case of the proxy Coordinator, it only considers the local children
Processors.

15.8 CD++ REAL-TIME SIMULATOR

Hard Real-Time Systems are highly reactive artificial systems that deliver data from and to devices
interacting with the surrounding environment (another artificial/natural system) within tight dead-
lines (usually ranging in millisecond scales). Because the decisions taken by these applications
can lead to catastrophic consequences for assets or lives, correctness and timeliness are critical.
Real-time systems’ correctness depends not only on the logical results of computation but also on
the time at which the results are produced. If a system delivers the correct answer after a certain
deadline, it could be regarded as an unsuccessful response. Simulation and real-time systems are
related in different ways, mainly:

Simulation has been used for testing Real-Time systems models; that is, simulations of
Real-Time systems are useful for validation and verification of these systems.
Advanced simulation systems have Real-Time constraints. Simulations with hardware in
the loop (for instance, flight or driving simulators embedded in moving platforms, and
Live–Virtual–Constructive simulation environments) usually have Real-Time requirements
(because the simulator must interact with humans and hardware components within speci-
fied deadlines). Such Real-Time simulators are complex Real-Time applications that must
handle events in a timely fashion, where timing constraints must be stated and validated.

DEVS simulators (and other simulation tools) have been widely used for validation and veri-
fication of Real-Time applications [36]. Recently, DEVS has been used as a framework for Real-
Time System construction and validation [19,31,37,38]. Real-Time DEVS [37] helps to expand each
model of the system for executing in a real-time environment. CD++ simulation engines have also
been modified in order to provide real-time responses [39,40]. These new features allow interaction
between the simulator and the surrounding environment, receiving inputs from specialized devices
(such as sensors and timers), and providing outputs through ports connected to devices such as
motors, transducers, and valves.

In this case, the Root Coordinator manages the advance of time along the simulation. This
Coordinator must wait until the physical time reaches the next event time to initiate the new cycle.
In order to be able to study timeliness of the models, we provide extended facilities. Typically, a
model has to react to an external event within a given time to produce an output in order to solve a
given problem. For this reason, a way to indicate a deadline time for an external event is provided
in the real-time extension of the toolkit. When a model is executed, the simulator is able to check
whether the deadlines are met [39,41].

The Real-Time engine of CD++ uses the real-time clock to trigger the processing of discrete events
in the system. Figure 15.22 outlines the simulator’s architecture. The Root Coordinator manages the
interaction with external events (in this case, an experimental frame in charge of testing the model)
and returns outputs. The simulator also keeps track of the number of missed deadlines and the worst-
case response time throughout the execution, for further analysis. The number of missed deadlines

53361.indb 446 3/11/09 10:50:50 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 447

represents the number of deadlines that have been missed along the entire execution of a model. On
the other hand, the worst-case response time represents the maximum time between the arrival of an
event and the output that the model produces in response, in the entire simulation process.

Figure 15.23 shows an example of a simple alarm clock presented in Jacques and Wainer [42]
and found in ./alarm_clockRT.zip. The ALARM CLOCK coupled model has six input signals

Experimental Frame
(event/log files)

Root Coordinator
RT-CD++
Simulator

External events
(inButton, inBreak, etc.)

Outputs
(throttle)

Wall-
Clock

Event list
(deadline

information)

ProcModule:
coordinator

ButtonInputModule:
simulator

messagesmessages

...

...

messages

FIGURE 15.22 Real-time simulation in CD++.

FIGURE 15.23 Alarm clock conceptual model. (From Jacques, C., and G. Wainer. 2002. Proceedings of
Summer Computer Simulation Conference, San Diego, CA.)

53361.indb 447 3/11/09 10:50:52 AM

© 2009 by Taylor & Francis Group, LLC

ALARM CLOCK

Σ
TIME_OF_DAY DISPLAY

DRIVER

TIME_MATCHTIME
COMPARATOR

BUZZER
DRIVER

BUZZER

BUZZER

DISPLAYED_TIME

ALARM
TIME

REGISTER ALARM_TIME

ALARM CONTROLLER

TIME REGISTER

HOURS
REGISTER

MINUTES
REGISTERW

RA
P_

A
RO

U
N

D

TIME_SET

ALARM_SET

HOURS

MINUTES

ALARM_ON

SNOOZE

448 Discrete-Event Modeling and Simulation

representing the push buttons and switch positions that exist in the real system. TIME_SET is used
in combination with HOURS and MINUTES to set the time of day. ALARM_SET is used in conjunc-
tion with HOURS and MINUTES to set the desired alarm time. The buzzer will sound if ALARM_
ON is set at that time. SNOOZE stops the buzzer for a period of 10 min, after which the buzzer will
automatically sound again if ALARM_ON is set. The model also has two outputs: DISPLAY_TIME
represents the four-digit display while BUZZER_ON represents the output of the buzzer speaker.
Figure 15.24 is an excerpt from the output file produced by the simulation of this model.

As time passes, the actual time is obtained through the DISPLAY_TIME port. Furthermore, the
buzzer is turned on at 00:30 and this is notified through the BUZZER_ON port. It is important to
point out that actual output times are equal to their corresponding message times.

In references 29 and 43–45, the reader can find advanced results for the RT-DEVS simula-
tion engine.

15.9 DYNAMIC STRUCTURE DEVS

In many cases, it is useful to allow the models to adapt to changes in the environment dynamically.
As discussed in Chapter 2, dynamic structure DEVS (DSDE) [46–49] allows addressing some of
these issues. DSDE divides models into two groups: Basic and Network models. Basic models are
atomic structure units that cannot be split. Network models are coupled components composed of
multiple basic structure models and interconnections that involve structural changes. A Network
Executive is a modified Basic model in charge of conducting structural changes in the network. The
Network Executive stores all possible states of structural changes and their corresponding compo-
nent sets in each structural state [46].

The dynDEVS formalism [48] uses two kinds of dynamic DEVS models: dynDEVS (atomic)
and dynNDEVS (coupled). A dynDEVS model can be interpreted as a set of DEVS models with
the same interface plus a function (called , the model transition function) that determines which
DEVS model succeeds the previous one. Agents associated with dynDEVS or dynNDEVS models
hold the worldview knowledge of their corresponding models and environments, and the agents are
responsible for launching structural changes and conducting the changing process.

Shang and Wainer [50] introduced a simulation algorithm that integrates the dynamic DEVS
simulation into CD++. Detailed information about CD++ dynamic DEVS models and their imple-
mentation can be found in references [50–52].

Our proposal stems from both DSDE and dynDEVS algorithms. We apply the DSDE formal
specifications and parts of the dynDEVS simulation algorithm. In DSDE, a Network Executive con-
ducts the dynamic structural changes. We follow the same idea to provide ground for user-defined
model design and simulation (state transition functions, structural transition functions, and output
functions). However, we do not attach a Network Executive to a network model. A different mecha-
nism is devised to launch dynamic structural changes and to link regular state transitions of models
and structural transitions.

Real time Message time Port Value
01:00:000 01:00:000 DISPLAY_TIME 00:01
02:00:000 02:00:000 DISPLAY_TIME 00:02
03:00:000 03:00:000 DISPLAY_TIME 00:03
...
30:00:000 30:00:000 DISPLAY_TIME 00:30
30:00:000 30:00:000 BUZZER_ON 1
31:00:000 31:00:000 DISPLAY_TIME 00:31
32:00:000 32:00:000 DISPLAY_TIME 00:32

FIGURE 15.24 Excerpt from the output file of the alarm clock.

53361.indb 448 3/11/09 10:50:52 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 449

The simulation algorithm uses new message types:

sc*: a message to request a structural change from a Simulator to its supervised Coordina-
tor or from a Coordinator to its parent Coordinator (any Simulator or Coordinator can issue
this message);
sc: a structural change message sent from a Coordinator to its children, who sent out a
request for structural changes, indicating that the children can carry out the structural
changes; and
start: an initializing message sent by a Root Coordinator after a structural change; after
receiving the done messages from the models experiencing structural changes, the Root
Coordinator sends the start message to start a new simulation phase. This message is used
to initialize newly added models and to get the next imminent event time for all the new
models.

Figure 15.25 describes the simulation algorithms used in this case.
The Root Coordinator, Coordinator, and Simulator described previously contain extended ver-

sions of the regular DEVS simulation engine. The Root Coordinator is able to process the structural
change requests and to issue structural change commands. We incorporated the function of the
network executive mentioned in DSDE into the two abstract simulators: Coordinator and Simulator.
In this way, the dynamic structure algorithm can be integrated into the regular simulation processes.
The Coordinator must know all possible states of structural changes and migrations between those
states. The structure transition function in the Coordinator is applied to execute those migrations.
The structure transition function in the simulator executes structural changes within the associated
atomic model. There are three steps in the structural change process:

Requests for structural change: These requests always rise in an internal * message. When
receiving a * message, a Simulator evaluates its states or its simulation time. If they are
imminent, the Simulator will send a request message sc* to its parent Coordinator for a
structural change. Structural change is a chain of activities, and these activities may span a
period. Some changes can be initiated by Simulator but others cannot, such as adding a new
atomic model, deleting an existing model, or adding a new link between two of them. For
these cases, the corresponding Coordinator (and not the Simulator) launches the structural
change.
Structural change processing: Both Simulator and Coordinator perform structural change
processes employing structural transition functions, which are introduced especially for
dynamic structure simulations. In the Simulator, the structural transition function δst(s,
time, e, bag) is used to calculate the next structural state of an atomic model. A new
state is determined by the current model state (imminent state), the elapsed time since the
immediately preceding state, the input bag, and global simulation time. In the Coordinator,
the structural change message done from the initial model triggers the structure transi-
tion function. When a simulation involves multiple levels, the structural change should be
executed from the bottom to the top.
Structural change end: At this stage, the simulation returns to the regular DEVS simula-
tion process without losing any unprocessed information. It is under the control of the Root
Coordinator. After receiving all done messages in response to their corresponding start
messages, the Root Coordinator knows the time for the next imminent event. Then global
time is advanced and simulations are stepped to a new stage.

In Figure 2.7 in Chapter 2, we showed the case of dynamic reconfiguration in an automated
manufacturing system. We showed the reconfiguration of the ES workstation due to duty shifts. ES

53361.indb 449 3/11/09 10:50:53 AM

© 2009 by Taylor & Francis Group, LLC

450 Discrete-Event Modeling and Simulation

FIGURE 15.25 Simulation algorithm.

53361.indb 450 3/11/09 10:50:54 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 451

and ES represent the workstation (daytime and nighttime shifts) considered as two structural states
of the basic model . is the network executive. Assume that the working time is 30 min at daytime
and 40 min at night. Daytime duty is from 8:00 a.m. to 5:00 p.m. every day. The structural change
is implemented as follows:

1. When ES reaches the critical time points tc = {t| t [8:00am, 5:00pm], 5:00pm – t <=
30mins} or {t| t [5:00pm, 8:00am], 8:00am – t <= 40mins}, it calculates tn for the coming
structural change, and it sends a (sc*, t) message to the Top Coordinator.

2. If tn is the minimum, the Top Coordinator sends the message (sc*, t) to the Root
Coordinator.

3. The Root Coordinator advances the current simulation time to tn and issues an (sc, t) message.
4. The Top Coordinator receives (sc, t) and sends it to the basic model .
5. The Simulator associated with the basic model calculates the new structural state using

the structural transition function δst, and a (done, t) message is sent back.
6. The Root Coordinator sends a (start, t) message to initialize the new simulation stage.

When (done, t) messages are received, a new regular simulation stage begins.

Figure 2.8 in Chapter 2 showed the workstation PS coupled model, which includes the atomic
models Controller, Color, Chrome, and Painter. The atomic model chrome is optional, and paint-
ing selection is determined by the controller model. Cars on the conveyor are painted with specific
colors; if the current batch of cars on the conveyor needs both color and chrome to be painted, the
atomic model Chrome should be added into PS automatically. Thus, there are the two structural
states of the network model . When the simulator associated with the atomic model “Controller”
detects this change, the following structural change happens:

1. The Simulator associated with the basic model Controller sends the (sc*, tn) message to
its parent Coordinator, which is associated with the network model . (Here, tn can be the
current time, which means the structural change will happen immediately.)

2. The Coordinator retrieves the model-changing list according to the message value in
(sc*, t) from the Simulator Controller. The model-changing list should be: (Controller, tn1),
(Chrome, tn2), (Painting, tn3). The Coordinator then sends the (sc*, t) message upward.

3. At time tn1, when the Coordinator receives the (sc, t) message from its parent, it for-
wards the message to its corresponding Simulator under its supervision (and also to the
Simulators associated with the Controller, Chrome, and Painter because tn1 = tn2 = tn3).

4. When the Simulators receive the (sc, t) message, the corresponding structural changes are
executed and (done, t) messages are sent back to the Coordinator.

5. When all structural changes in the Simulators supervised by the Coordinator finish, the
Coordinator begins to execute structural changes on its own level. In this case, new links
are created among Controller, Chrome, and Painter. A (done, t) message is returned to the
upper level Coordinator.

FIGURE 15.25 (continued).

53361.indb 451 3/11/09 10:50:55 AM

© 2009 by Taylor & Francis Group, LLC

452 Discrete-Event Modeling and Simulation

6. A message (start, t) is issued by the Root Coordinator once the structural changes finish.
After computing the next imminent time tn, the simulation time advances to tn. Then the
Root Coordinator issues a (@, t) message and a new simulation phase begins.

15.10 DISTRIBUTED SIMULATION WITH WEB SERVICES

Madhoun, Feng, and Wainer [35] introduced a Web Services–based implementation of CD++, which
exposes the functionality of the tool as a Web Service and allows for executing simulations through
Web Service technologies. Web Services are group of standards and languages aiming to facilitate
developing, publishing, and discovering Web-enabled applications. A Web Service is a software
system designed to support interoperable machine-to-machine interaction over a network, using
an interface described in a machine-understandable format (specifically Web Service Description
Language, WSDL [53]). Client systems interact with the Web Service in a manner prescribed by its
description using SOAP messages [54], which are typically implemented using HTTP with an XML
serialization in conjunction with other Web-related standards [16].

In order to integrate the Web Service technologies with CD++, a Web Service wrapper was
developed to make its functionality accessible by Web Service clients. The Web Service interface
performs the following activities:

receiving the required files, including C++ and header files (in the case of DEVS models),
a model definition file, and an external input file, to define the model and execute the
simulation;
executing the simulation, providing the client with the ability to monitor the progress; and
sending the simulation results to the client, including external output files, simulation logs,
and debug information.

The simulation service was split into the Web Service components (which handle the Web Service
activities) and the simulation components (which interact with CD++ by accessing and manipulat-
ing its internal objects and data structures). Both parts interact with each other though message
queues (through the WrapperProxy), as described in Figure 15.26.

The Web Service components of the simulation service are compiled into Java archive files and
deployed in an Axis server. When the server is started, it loads the JavaWrapper (the backbone of

Axis engine

Web Service
components

(Java)
JNI

Wrapper
Proxy
(C++)

Message Queues
(Linux Kernel)

CD++

Simulation
Components (C++)

CD++

Simulation
Components (C++)

CD++

Simulation
Components (C++)

FIGURE 15.26 Implementing the simulation service using JNI and message queues.

53361.indb 452 3/11/09 10:50:56 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 453

the Web Service components presented in Figure 15.27), the server-side stubs, and the client-side
stubs. In addition, when the JavaWrapper class is loaded, it loads the WrapperProxy.

Some of the operations performed by the JavaWrapper class include:

User authentication (method authenticate)
Session initialization: createNewSession creates a working space for new sessions, includ-
ing a JavaWrapper instance to handle the newly created session.
Setting the model definition: The methods setMAFile, setEventFile, setDEVSModel, and
setSupportFile are used for defining the model. The setMAFile is used to submit the cou-
pled model definition, setEventFile to submit the external events file, and setDEVSModel
to submit the source and implementation files for DEVS atomic models; setSupportFile
sets the initial values file for Cell-DEVS models.

Parser

SAXParser

SAXParserFactory

MyContentHandler

DefaultHandler

startDocument()
startElement()
endDocument()
endElement()

ContentHandler

JavaWrapper

authenticate()
setMAFile()
setDEVSModel()
setEventFile()
setSupportFile()
setExecutionTime()
enableParsingInfo()
startSimulationService()
getCurrentSimulationTime()
insertExternalEvent()
isSimRunning()
killSimulation()
retrieveLogFile()
retrieveOutputFile()
retrieveParsingInfoFile()
retrieveSessionLogFile()
setGridConfigFile()
createSlaveSession()
receiveRemoteMessage()
stopSimulation()
logOff()

CDppPortType

CDppPortTypeSoapBindingStubCDppPortTypeSoapBindingImpl

org.apache.axis.client.Stub

Runnable

getCDppPortTypeService()

CDppPortTypeService

CDppPortTypeServiceLocator

org.apache.axis.client.Service

java.rmi.Remote

FIGURE 15.27 Web Service components’ UML diagram.

53361.indb 453 3/11/09 10:50:58 AM

© 2009 by Taylor & Francis Group, LLC

454 Discrete-Event Modeling and Simulation

Setting the configuration information for distributed sessions: setGridConfigFile is used to
send the grid configuration file; once the method is executed, it parses the file and save the
information contained in it in the JavaWrapper instance created for the session.
Starting the simulation: startSimulationService is used to start the simulator. This includes
initialization, such as compiling the submitted DEVS models (if any) with the source
code of the simulator, sending the model definition to proxy CPUs, and starting the proxy
sessions.
Checking the status of the simulation: The method isSimRunning is used to check the
status of the simulation process. In addition, killSimulation is used to end the simulation
process (if needed).
Retrieving the results of the simulation: retrieveLogFileName and retrieveOutputFile-
Name are used for retrieving the log and output files, respectively. In the case of running
distributed simulations, JavaWrapper will utilize the services running on the proxy CPUs
in order to retrieve and archive all the log files into one file that can be sent to the user.
Logging off: The method logoff is used to log the current user off and invalidate the ses-
sion. This method will cause the JavaWrapper class to reclaim the resources used by the
session and to send messages to the proxy sessions to do the same.

Some of the methods defined in JavaWrapper are native methods implemented in C++ that con-
stitute the WrapperProxy component of the service (see Figure 15.18) and are implemented as pro-
cedures written in C/C++ in order to access Linux message queues. These methods are interfaced
to the JavaWrapper class using the Java native interface (JNI):

initializeNewSession creates two message queues for each session to act as a communica-
tion channel between the Web Service and simulation components of the service.
getCurrentSimulationTime is used to query the simulator for the current execution time.
insertExternalEvent inserts external events in the simulation while the simulation is running.
startMessageMonitor starts the message monitor that keeps checking for messages from
the simulator.
getMachineID gets the ID of the CPU running the simulation.
machineForModel returns the ID of the CPU running a particular session of a distrib-
uted simulation.
sendRemoteMessage sends remote messages between CPUs in distributed simulation sessions.
It takes a message and passes it to the Web Service components to be sent as a SOAP message.
receiveRemoteMessageByProxy receives remote messages when running distributed simu-
lations. It gets SOAP message content from the Web Service components and passes it to
the simulator.
stopSimulationSession ends the simulation.
addZonePartition defines Cell-DEVS model partitions.

The client- and server-side stubs are required for the deployment and utilization of the simulation
service. The CDppPortTypeSoapBindingImpl represents the server-side stub; when the Axis server
receives a request from the client in the form of a SOAP message, it does some processing on the
message and extracts the attributes necessary to execute the service. Then, it invokes a method in the
JavaWrapper class corresponding to the operation requested by the client. CDppPortTypeService and
CDppPortTypeServiceLocator are used to locate the Web Service using its Unified Resource Locator
(URL). The former is an interface implemented by the latter, and it is usually used at the beginning
of any invocation process of the Web Service. CDppPortTypeSoapBindingStub is a client-side stub
that can be used by the program accessing the simulation service. It is used to access and set up proxy
sessions while running distributed simulations.

53361.indb 454 3/11/09 10:50:58 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 455

In order to “consume” the simulation service, we need access to the service interface. This is
defined as a WSDL document. WSDL documents usually contain a type element to define nonstan-
dard parameter types of the messages exchanged between the Web Service and the client. The mes-
sage element defines the request and response SOAP messages. For instance, Figure 15.28 shows
the request and response messages for the setDEVSModel operation.

setDEVSModel takes four arguments (through the message setDEVSModelRequest): in0, the
name of the header file defining the DEVS model class; in1, a DataHandler object representing the
file (sent as a SOAP attachment); in2, the name of the C++ file containing the class implementation;
and in3, a DataHandler object representing the C++ file. DataHandler provides a consistent inter-
face to data available in many different formats; in our case, it represents a file that is serialized by
the client into a SOAP attachment and is deserialized to a file on the server side. The setDEVSMod-
elResponse message represents the return type for setDEVSModel, which is a string stating whether
the operation was successful or not.

The portType defines a collection of operations, each having an input and output. In this case, the
input is the setDEVSModelRequest message and the output is the setDEVSModelResponse message
(Figure 15.29).

The binding element defines the binding of the Web Service SOAP messages to an actual proto-
col (HTTP or SMTP). In addition, it defines the encoding style (RPC/message) and encoding type
(encoded/literal). Figure 15.26 shows a partial definition of the binding of the simulation service
to HTTP (http://schemas.xmlsoap.org/soap/http). The binding element lists the operations imple-
mented in the service with the input and output messages for each one.

The service element groups a number of ports together. Each port links a binding definition of
a specific portType to URL to be used to access the service (Figure 15.30). In Figure 15.27, the
simulation service binding SimulationServiceSoapBinding is linked to the SimulationService port,

<wsdl:message name=“setDEVSModelRequest”>

<wsdl:message name=“isSimRunningResquest”/>
<wsdl:message name=“killSimulationRequest”/>

<wsdl:message name=“setDEVSModelResponse”>
</wsdl:message>

</wsdl:message>

<wsdl:part name=“in0” type=“soapenc:string”/>
<wsdl:part name=“in1” type=“apachesoap:DataHandler”/>
<wsdl:part name=“in2” type=“soapenc:string”/>
<wsdl:part name=“in3” type=“apachesoap:DataHandler”/>

<wsdl:part name=“setDEVSModelReturn” type=“soapenc:string”/>

FIGURE 15.28 A message definition for SetDEVSModel.

<wsdl:portType name=“CDppPortType”>
<wsdl:operation name=“setDEVSModel” parameterOrder=“in0 in1 in2 in3”>

<wsdl:input message=“impl:setDEVSModelRequest”
name=“setDEVSModelRequest”/>

name=“setDEVSModelResponse”/>
<wsdl:output message=“impl:setDEVSModelResponse”

</wsdl:operation>

FIGURE 15.29 The portType definition of the simulation Web Service.

53361.indb 455 3/11/09 10:51:00 AM

© 2009 by Taylor & Francis Group, LLC

http://schemas.xmlsoap.org

456 Discrete-Event Modeling and Simulation

which in turn is assigned the URL http://localhost:8080/axis/Service/SimulationService, used by
the clients to access the simulation service.

Further details about the Web-services version can be found in references 35, 55, and 56.

15.11 INTERFACING DEVS SIMULATORS: CD++ AND DEVS C#

DEVS C# is a DEVS engine created in the University of Arizona’s ACIMS laboratory and pro-
grammed in C# .NET [57]. In DEVS C#, models are written as C# classes that extend the atomic
class. A DEVS C# model consists of input and output ports, a constructor, an initialization function,
internal and external transition functions, and an output function. Similarly, the DEVS C# atomic
class provides to CD++ a set of services to all models extending the class. The hold(time) func-
tion programs the time advance function. TimeNext and TimeLast get and set the time of the
next event and the time of the previous event, respectively. The TimeCurrent property gets and
sets the current time. Figure 15.31 is the code for a simple model representing a timer.

The preceding C# class extends the base type Atomic. For this simple case, the constructor
is empty. For more complex models, member variables may be set and helper functions can be
invoked. In the init function, hold(time) is called, specifying when the first internal transition will
occur (in 3.3 s). The external transition function is empty in this case (in this model, state change
only occurs due to timer expiration). The internal transition function calls the hold(time) function,
setting the time until the next internal transition. The output function displays the time of the alarm,
utilizing TimeCurrent to get the current time.

A split simulation is a source system whose components have been broken into two or more
groups prior to execution. These groups of components (component groups hereafter) will run under
separate simulators that may or may not be implemented using the same simulation engine (CD++
or DEVS C#, specifically). Different mechanisms have been used for making these simulators inter-
act. One way is to split the execution of the Coordinators/simulators among multiple Processors
within a single simulation engine. This is the approach taken by DEVS/HLA, DEVS/CORBA, or
parallel CD++. In this section, we show the use of a model wrapper to make two different simulation
tools interact at a high level. The wrapper hides the component and provides a means of communi-
cation with components modeled in the other environment [57].

FIGURE 15.31 The timer model.

<wsdl:service name=“CDppPortTypeService”>

</wsdl:service>

<wsdl:port binding=“impl:CDppServiceSoapBinding” name=“SimulationService”>

</wsdl:port>
<wsdlsoap:address location=“http://localhost:8080/axis/Service/CDppPortType”/>

FIGURE 15.30 The service definition of the simulation Web Service.

53361.indb 456 3/11/09 10:51:01 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 457

After receiving a message from another component’s wrapper, the receiving wrapper must pass
the message to its component so that the simulation can progress. CD++ wrappers and DEVS C#
wrappers have different means of passing a received message to their encapsulated component (in
this experiment, we used TCP/IP sockets). The diagram in Figure 15.32 represents a simple split
simulation comprising two component groups. The component group on the left is modeled in
CD++, and it contains three atomic models. The component atomic model 3 is encapsulated in a
CD++ wrapper. Atomic model 3 can send messages to and receive messages from components con-
nected to this wrapper. The component group on the right is modeled in DEVS C#, and it contains
a DEVS C# coupled model. Both components in this group are encapsulated in DEVS C# wrappers
in order to communicate with the CD++ group.

CD++ and DEVS C# send messages between simulations in a similar manner. In each atomic
model’s output function, the message is passed to the component’s wrapper, which will forward it
to another wrapper. This creates an explicit, loose coupling between the component groups. The
code fragment from a component in DEVS C# in Figure 15.33 shows how this coupling is achieved.
First, the bag of port values (here called y) passed by reference to the function is appended to include
a message from the generator’s portOut port containing a value (m _ count.ToString()). The
DEVS C# simulator will use the coupling defined to deliver this message to all of its intended recipi-
ents. Next, we have a message being sent from the wrapped component to a component in another
component group. This is done by invoking the wrapper’s send function. When a component mod-
eled in CD++ needs to send a message to another component group, a similar call is made from the
component’s output function to its wrapper.

Received messages are handled differently in CD++ wrappers than they are in DEVS C# wrap-
pers. In CD++ wrappers, all messages are routed from the wrapper directly to the atomic model.
The wrapper calls the atomic model’s external function, passing the received message as the argu-
ment. The following is a fragment of the CD++ wrapper’s receive function, showing how received
messages are handled:

m_model.externalFunction(receivedMessage);

CD++ Simulation

Coupled Model

Atomic Model 1 Atomic Model 2

Atomic Model 3

Atomic Model 2

Atomic Model 1

Coupled Model

DEVS C# Simulation

Message
+Dest.Port
+Source Port
+Dest.Model
+Source Model
–Value

Wrapper

Wrapper

Wrapper

FIGURE 15.32 Connection between a CD++ simulation and a DEVS C# model using wrappers.

public override void output_func(Bag<PortValue> y){ // Output function
 y.Add(new PortValue(portOut, m_count.ToString()));
 m_wrapper.send(portOut.Name, “transducer”, “arriv”, m_count.ToString());

}

FIGURE 15.33 DEVS C# output function.

53361.indb 457 3/11/09 10:51:02 AM

© 2009 by Taylor & Francis Group, LLC

458 Discrete-Event Modeling and Simulation

The variable m_model is the component encapsulated by the wrapper. The variable receivedMes-
sage is the message received from the other wrapper.

In contrast, DEVS C# wrappers have a reference to their component’s simulator. This means
messages can be injected directly into the simulation by the wrapper. This results in the receipt of
the message by its intended recipient models. The following is a fragment from the DEVS C# wrap-
per’s listen function, which listens for and handles messages as they arrive:

PortValue pv = new PortValue(port, value);
m_wrappedSim.inject(pv);

The first line shows the creation of a PortValue, using the port and value received from the other wrapper.
The second line shows the injection of the PortValue into the simulator, here named m_wrappedSim.

Prior to initiating the split simulation, each of the DEVS C# wrappers must know the IP address
of the CD++ wrapper to which it will connect. Upon execution of the DEVS C# simulation, each
wrapper will try to connect to the CD++ wrapper specified. When a connection can be made, two
sockets are created, providing asynchronous communication between the two models (i.e., both
models can be sending a message at the same time). Upon execution of a CD++ wrapper, two listen-
ing sockets are created and the wrapper waits for a connection from a DEVS C# wrapper. After a
connection has been established and both sockets are ready for communication, the simulation is
initiated and started. Messages are passed between the wrappers until the simulation is completed.
At this time, the model where completion has been decided or detected sends out a termination mes-
sage and all wrapper connections are closed.

The generator, processor, transducer (GPT) model presented in Chapter 2 was built using this
method. The generator/processor component group was defined in CD++, and the transducer was
created in DEVS C#. Both were interconnected using the model’s wrapper, as seen in Figure 15.34.
The generator creates a job (in this case, it is an integer starting at 0 and increasing by 1 with each
job created). The job is sent from the generator to the processor via the CD++ coupling and to the
transducer via the wrapper. Upon receiving a job, the transducer adds a timestamp, which will be
used for calculation when completed job messages arrive (Figure 15.35).

Generator/Processor Component Group (Modeled in CD++)

Transducer Component Group (Modeled in DEVS C#)

DEVS C# Wrapper

Arrived
Solved

Result

CD++ Wrapper CD++ Wrapper

Generator Processor

Transducer

Out OutIn

FIGURE 15.34 The split GPT model.

53361.indb 458 3/11/09 10:51:03 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 459

Upon arrival at the processor, the processor waits for the amount of processing time set dur-
ing initialization. Upon completion of processing, the processor forwards the job message to the
transducer via the wrapper. Upon arrival at the transducer, an elapsed time for the job is calculated.
Figures 15.36 and 15.37 show output from the two environments for a short period of simulation of
the split GPT model.

Figure 15.36 shows the output generated by CD++ representing the message flow of the genera-
tor/processor component group or the first 20 s of simulation. Figure 15.37 shows the DEVS C#
output for the transducer component group over the same 20-s period. Information for each message

Job From Generator to Transducer

CD++ Wrapper

Generator

CD++ Message
(to processor)

out

DEVS C# Wrapper

Trans-
ducer

arrived

Wrapper
Message

Wrapper
Message

(1) A job is generated.

(2) Generated job is sent
to processor via CD++
coupling and to the
wrapper as arguments of
the send function.
(3) The generator’s
wrapper transmits the
job to the transducer’s
wrapper.
(4) The transducer’s
wrapper (a DEVS C#
wrapper) injects the
received job into the
simulator.
(5) The simulator passes
the job to the transducer
on the arrived port.

Processed Job to Transducer

CD++ Wrapper

Processor

DEVS C# Wrapper

Trans-
ducer

solved

(1) The job is processed.

(2) The processed job is
sent to the processor’s
wrapper as arguments of
the send function.
(3) The processor’s
wrapper transmits the
job to the transducer’s
wrapper.
(4) The transducer’s
wrapper injects the
processed job into the
simulator.
(5) The simulator passes
the processed job to the
transducer on the solved
port.

out

FIGURE 15.35 (a) Path that a job takes from the generator to the transducer through the wrappers; (b) path
that a processed job takes from the processor to the transducer.

Message */00:00:00:000/Root(00) to top(01)
Message */00:00:00:000/top(01) to generator(02)
Message Y/00:00:00:000/generator(02) / out / 0 to top(01)
Message D/00:00:00:000/generator(02) / 00:00:10:000 to top(01)
Message X/00:00:00:000/top(01) / in / 0 to processor(03)
Message D/00:00:00:000/processor(03) / 00:00:10:000 to top(01)
Message D/00:00:00:000/top(01) / 00:00:10:000 to Root(00)
Message */00:00:10:000/Root(00) to top(01)
Message */00:00:10:000/top(01) to generator(02)
Message Y/00:00:10:000/generator(02) / out / 1 to top(01)
Message D/00:00:10:000/generator(02) / 00:00:10:000 to top(01)
Message X/00:00:10:000/top(01) / in / 1 to processor(03)
Message D/00:00:10:000/processor(03) / 00:00:10:000 to top(01)
Message D/00:00:10:000/top(01) / 00:00:10:000 to Root(00)
Message */00:00:20:000/Root(00) to top(01)
Message */00:00:20:000/top(01) to generator(02)
Message Y/00:00:20:000/generator(02) / out / 2 to top(01)
Message D/00:00:20:000/generator(02) / 00:00:10:000 to top(01)
Message X/00:00:20:000/top(01) / in / 2 to processor(03)
Message D/00:00:20:000/processor(03) / 00:00:10:000 to top(01)
Message D/00:00:20:000/top(01)/00:00:10:000 to Root(00)

FIGURE 15.36 CD++ results of a short split simulation.

53361.indb 459 3/11/09 10:51:05 AM

© 2009 by Taylor & Francis Group, LLC

460 Discrete-Event Modeling and Simulation

is formatted to take two lines. The first line shows the time of the event, the name of the model, and
the function triggered (internal, external, or confluent). The second line shows the previous state, the
port name and value on the port and the new state. For this example, the states are blank because
the transducer has only one non-passive state and it is unnamed. Following termination, the trans-
ducer displays its results, showing the end time of the simulation, the number of arrived and solved
jobs, the total and average time advance, and the processor’s throughput.

15.12 SUMMARY

This chapter has introduced the different existing simulators available for CD++. We first intro-
duced the basic simulation algorithms for single-processor DEVS models. We explained in detail
how these simulation algorithms are implemented in the stand-alone version of CD++ (which can
be downloaded and modified by users interested in changing or adapting the simulation engine),
including the definition of DEVS and Cell-DEVS models.

This independence between the simulation and modeling software components allowed us to
create varied simulation engines. We briefly presented the main ideas on the implementation of

a CD++ parallel simulator, which executes DEVS models in parallel in distributed mem-
ory architectures;
flat Coordinator algorithms (to accelerate simulation time);
a real-time simulator (to provide interaction with external devices in real time);
a dynamic structure DEVS simulator (to allow dynamic reconfiguration of the models);
a distributed simulation engine built on Web Services technology; and
a mechanism for interfacing two different DEVS simulators (C++ and DEVS/C#).

Having separate entities for the models and their simulators offers the advantage of isolating the
simulator architecture from the model structure so that changing the simulator internals does not
affect the model’s definition. In addition, it facilitates the use because the modeler needs only to define
the model without any knowledge of the simulator (as we demonstrated in previous chapters).

REFERENCES

1. Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of modeling and simulation, 2nd. ed. New York:
Academic Press.

2. Rodriguez, D., and G. Wainer. 1999. New extensions to the CD++ tool. Proceedings of 31st SCS Summer
Computer Simulation Conference, Chicago, IL.

3. Barylko, A., J. Beyoglonián, and G. Wainer. 1998. GAD: A general application DEVS environment.
Proceedings of Applied Modeling and Simulation, Honolulu, HI.

4. Fujimoto, R. M. 1999. Parallel and distribution simulation systems. New York: John Wiley & Sons.
5. Fujimoto, R. 1990. Parallel simulation of discrete events. Communications of the ACM 33 (10): 30–53.

0 transducer's ext: -- {portAriv:0} -->
10 transducer's ext: -- {portSolv:0} -->
10 transducer's ext: -- {portAriv:1} -->
20 transducer's ext: -- {portSolv:1} -->
20 transducer's ext: -- {portAriv:2} -->

End Time : 20
Jobs Arrived : 3
Jobs Solved : 2
Total TA : 20
Average TA : 10
Throughput : 0.1

FIGURE 15.37 DEVS C# results for the split simulation.

53361.indb 460 3/11/09 10:51:05 AM

© 2009 by Taylor & Francis Group, LLC

Building DEVS Simulators 461

6. Nicol, D., and R. Fujimoto. 1994. Parallel simulation today. Annals of Operations Research 53:249–285.
7. Banks, J., J. S. Carson, B. L. Nelson, and D. Nicol. 2005. Discrete-event system simulation, 4th ed. Upper

Saddle River, NJ: Prentice Hall.
8. Chandy, K., and J. Misra. 1981. Asynchronous distributed simulation via a sequence of parallel computa-

tions. Communications of the ACM 24:198–206.
9. Chandy, K., and J. Misra. 1979. Distributed simulation: A case study in design and verification of distrib-

uted programs. IEEE Transactions on Software Engineering SE-5:440–452.
10. Bryant, R. E. 1977. Simulation of packet communication architecture computer systems. Technical

report, UMI order number: TR-188. Massachusetts Institute of Technology.
11. Jefferson, D. 1987. Distributed simulation and the time warp operating system. Proceedings of 11th

Symposium on Operating Systems Principles, Austin, TX.
12. Jefferson, D. 1985. Virtual time. ACM Transactions on Programming Languages and Systems 7:404–425.
13. Henning, M., and S. Vinoski. 1999. Advanced CORBA programming with C++. Reading, MA:

Addison–Wesley.
14. Dongarra, J. J. 1995. High-performance computing: Technology, methods and applications.

Amsterdam: Elsevier.
15. Sunderam, V., A. Geist, J. Dongarra, and R. Manchek. 1994. The PVM concurrent computing system:

Evolution, experience and trends. Parallel Computing 20:531–545.
16. Alonso, G. 2003. Web Services: Concepts, architectures and applications. New York: Springer–Verlag.
17. IEEE Std 1278. 1995. IEEE standard for modeling and simulation. Distributed interactive simulation (DIS).
18. IEEE Std 1516.1-2000. 2001. IEEE standard for modeling and simulation. High-level architecture

(HLA)—Federate interface specification, i–467.
19. Cho, Y. W., X. Hu, and B. Zeigler. 2003. The RTDEVS/CORBA environment for simulation-based design

of distributed real-time systems. Simulation 79 (4): 197–210.
20. Sarjoughian, H. S., and B. P. Zeigler. 2000. DEVS and HLA: Complementary paradigms for M&S?

Transactions of the SCS 17:187–197.
21. Kim, K., and W. Kang. 2004. CORBA-based, multithreaded distributed simulation of hierarchical

DEVS models: Transforming model structure into a nonhierarchical one. Proceedings of ICCSA 2004,
International Conference, Assisi, Italy, 167–176.

22. Seo, C., S. Park, B. Kim, S. Cheon, and B. P. Zeigler. 2004. Implementation of distributed high-per-
formance DEVS simulation framework in the grid computing environment. Proceedings of High
Performance Computing Symposium, Advanced Simulation Technology Conference, Arlington, VA.

23. Cheon, S., C. Seo, S. Park, and B. P. Zeigler. 2004. Design and implementation of distributed DEVS
simulation in a peer-to-peer network system. Proceedings of DASD, Advanced Simulation Technology
Conference, Arlington, VA.

24. Chow, A. C., and B. Zeigler. 1994. Parallel DEVS: A parallel, hierarchical, modular modeling formalism.
Proceedings of Winter Simulation Conference, Orlando, FL.

25. Chow, A. C., D. H. Kim, and B. P. Zeigler. 1994. Abstract simulator for the P-DEVS formalism.
Proceedings of AI, Simulation, and Planning in High Autonomy Systems, Gainesville, FL.

26. Kim, K. H., Y. R. Seong, T. G. Kim, and K. H. Park. 1996. Distributed simulation of hierarchical
DEVS models: Hierarchical scheduling locally and time warp globally. Transactions of the SCS 13 (3):
135–154.

27. Glinsky, E., and G. Wainer. 2006. New parallel simulation techniques of DEVS and cell-DEVS in CD++.
Proceedings of Annual Simulation Symposium, Huntsville, AL, 244–251.

28. Glinsky, E., and G. Wainer. 2002. Performance analysis of real-time DEVS models. Proceedings of
Winter Simulation Conference, San Diego, CA.

29. Glinsky, E., and G. Wainer. 2002. Performance analysis of DEVS environments. Proceedings of Artificial
Intelligence, Simulation and Planning. Lisbon, Portugal.

30. Kim, K., W. Kang, B. Sagong, and H. Seo. 2000. Efficient distributed simulation of hierarchical DEVS
models: Transforming model structure into a nonhierarchical one. Proceedings of 33rd Annual Simulation
Symposium, Washington, D.C.

31. Cho, S., and T. G. Kim. 2001. Real-time simulation framework for RT-DEVS models. Transactions of the
Society for Computer Simulation International 18:203–215.

32. Wainer, G., and N. Giambiasi. 2001. Application of the cell-DEVS paradigm for cell spaces modeling
and simulation. Simulation 76 (1): 22–39.

33. Wainer, G. 1998. Discrete-event cellular models with explicit delays. PhD thesis, Université d’Aix-
Marseille III, France.

53361.indb 461 3/11/09 10:51:06 AM

© 2009 by Taylor & Francis Group, LLC

462 Discrete-Event Modeling and Simulation

34. Troccoli, A., and G. Wainer. 2003. Implementing parallel cell-DEVS. Proceedings of 36th IEEE/SCS
Annual Simulation Symposium, Orlando, FL.

35. Madhoun, R., B. Feng, and G. Wainer. 2007. Web-service-based distributed CD++. Proceedings of AIS
2007, Artificial Intelligence, Simulation and Planning, Buenos Aires, Argentina.

36. Schulz, S., J. W. Rozenblit, M. Mrva, and K. Buchenriede. 1998. Model-based codesign. Computer
31:60–67.

37. Hong, J., H. Song, T. G. Kim, and K. H. Park. 1997. A real-time discrete event system specification
formalism for seamless real-time software development. Discrete Event Dynamic Systems: Theory and
Applications 7:355–375.

38. Kim, T. G., S. M. Cho, and W. B. Lee. 2000. DEVS framework for systems development: Unified specifi-
cation for logical analysis, performance evaluation and implementation. In Discrete event modeling & sim-
ulation: Enabling future technologies, ed. H. S. Sarjoughian and F. Cellier. New York: Springer–Verlag.

39. Glinsky, E., and G. Wainer. 2002. Definition of RT simulation in the CD++ toolkit. Proceedings of
Summer Computer Simulation Conference, San Diego, CA.

40. Li, L., T. Pearce, and G. Wainer. 2002. An experience in hardware–software codesign using the DEVS
formalism. Proceedings of EuroSim Industrial Simulation Symposium 2003, Valencia, Spain.

41. Glinsky, E., and G. Wainer. 2004. Modeling and simulation of systems with hardware-in-the-loop.
Proceedings of Winter Simulation Conference, Washington, D.C.

42. Jacques, C., and G. Wainer. 2002. Using the CD++ DEVS toolkit to develop Petri nets. Proceedings of
Summer Computer Simulation Conference, San Diego, CA.

43. Glinsky E., and G. Wainer. 2004. Model-based development of embedded systems with RT-CD++.
Proceedings of the WIP Session, IEEE Real-Time and Embedded Technology and Applications
Symposium, Toronto, ON, Canada.

44. Wainer, G., E. Glinsky, and P. MacSween, 2005. Model-driven architecture of real-time systems. In
Model-driven software development—Research and practice in software engineering, vol. II, ed. S.
Beydeda and V. Gruhn. New York: Springer–Verlag.

45. Yu, H., and G. Wainer. 2007. E-CD++: An environment for developing embedded DEVS applications.
Carleton University, Dept. of Systems and Computer Engineering.

46. Barros, F. J. 1995. Dynamic structure discrete event system specifications: A new formalism for dynamic
structure modeling and simulation. Proceedings of Winter Simulation Conference, Arlington, VA,
781–785.

47. Barros, F. 1998. Abstract simulators for the DSDE formalism. Proceedings of Winter Simulation
Conference, Washington, D.C., 407–412.

48. Uhrmacher, A. M. 2001. Dynamic structure in modeling and simulation: A reflective approach. ACM
Transactions on Modeling and Computer Simulation 11:206–232.

49. Uhrmacher, A. M., and J. Himmeelspach. 2004. Processing dynamic PDEVS models. Proceedings
of 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04), Volenlam, the Netherlands.

50. Shang, H., and G. Wainer. 2006. A simulation algorithm for dynamic structure DEVS modeling.
Proceedings of Winter Simulation Conference, Monterey, CA.

51. Shang, H., and G. Wainer. 2008. Dynamic structure DEVS: Improving the real-time embedded systems
simulation and design. Proceedings of 40th IEEE/SCS Annual Simulation Symposium, Ottawa, Canada.

52. Kgwadi, M., H. Shang, and G. Wainer. 2008. Definition of dynamic DEVS models—Dynamic structure
CD++. Proceedings of Poster Papers Workshop, SpringSim 2008, Ottawa, Canada.

53. Christensen, E., F. Curbera, G. Meredith, and S. Weerawarana. 2006. Web Service description language
(WSDL) 1.1. URL: http://www.w3.org/TR/wsdl

54. Gudgin, M., M. Hadley, N. Mendelsohn, J. Moreau, and H. Nielsen. 2006. SOAP version 1.2 part 1:
Messaging framework. URL: http://www.w3.org/TR/soap12-part1/

55. Madhoun, R., and G. Wainer. 2007. Performance analysis of Web-based CD++. Presented at DEVS
Symposium 2007, Norfolk, VA,

56. Wainer, G., Q. Liu, J. Landais, L. Quinet, and M. K. Traoré. 2008. Performance analysis of Web-based
distributed simulation in DCD++: A case study across the Atlantic Ocean. Presented at SCS High
Performance Computing and Simulation Symposium (HPCS 2008), Ottawa, Canada.

57. Lombardi, S., G. Wainer, and B. P. Zeigler. 2006. Interoperation of DEVS models in DEVS/C# and
CD++. Proceedings of SISO Fall Interoperability Workshop, Huntsville, AL.

53361.indb 462 3/11/09 10:51:06 AM

© 2009 by Taylor & Francis Group, LLC

http://www.w3.org
http://www.w3.org

463

16 Mechanisms for Three-
Dimensional Visualization

16.1 INTRODUCTION

Current simulation practices rely on close cooperation between application domain specialists
(sometimes with limited experience in software development) and software specialists (with limited
expertise in the domain of application). This cross-domain communication often leads to a fair
amount of difficulties in model specification, validation, and verification. Recent development of
advanced computer graphics has provided a unique opportunity to address these problems, enabling
the adoption of modeling and simulation (M&S) technology among many organizations. The avail-
ability of adequate visualization mechanisms (generic and flexible to show different results in an
intuitive and user-friendly manner) can ease the analysis of complex system behavior while enabling
advanced training facilities, including simulations with hardware-in-the-loop and live-constructive-
virtual simulation for defense training [1].

This chapter introduces different visualization mechanisms and tools that have been integrated
into the CD++ environment in an attempt to help with these goals. Although CD++Modeler pro-
vides a basic Graphical User Interface (GUI) that supports two-dimensional visualization, in order
to be able to show complex behavior intuitively, we developed mechanisms to interface CD++ with
a variety of three-dimensional visualization and rendering tools. This includes VRML (Virtual
Reality Modeling Language) [2], Autodesk Maya [3], OpenGL (Open Graphics Library) [4], and
Blender [5]. Many of these tools are open source, and they provide a platform for investigating
three-dimensional visualization and its relation with discrete-event simulation environments. The
result is an integrated simulation and visualization environment that is able to meet the diverse
needs of different users, to ease the validation and verification of continuously evolving models.

16.2 THREE-DIMENSIONAL ANIMATION USING CD++/VRML

VRML is a Web-based graphics language for describing interactive three-dimensional objects and
virtual worlds created using a scene-graph structure [2]. It defines a universal interchange file for-
mat, and it allows users to interact with a scene through viewpoints, movement, and rotations.
Although VRML has now been superseded by extensible 3D (X3D)—an open ISO standard for
real-time three-dimensional computer graphics [6]—the technique still enjoys widespread use in
education and research communities. The Java programming language has been integrated with
VRML to enhance the animation and interactivity of three-dimensional visual models and scenes,
resulting in the Java/VRML connection in the VRML specification 2.0. The external authoring
interface (EAI) provides a Java Application Program Interface (API) that enables a Java applet to
update and control the contents of a three-dimensional VRML scene [7].

A VRML scene graph consists of an ordered collection of nodes hierarchically grouped that
represent objects and their properties. The scene graph also generates events in response to environ-
mental changes and user interaction and participates in event routing mechanisms through which
the effect changes are propagated to other nodes.

53361.indb 463 3/11/09 10:51:06 AM

© 2009 by Taylor & Francis Group, LLC

464 Discrete-Event Modeling and Simulation

The node is the basic VRML structure, which represents a visual object with certain properties
(shape, color, light, position and orientation, viewpoints, subscenes, and sensors for user inputs). A
VRML scene consists of a group of nodes of different types organized hierarchically [7]. Grouping
nodes combine several other nodes into a common entity. Each grouping node defines a coordinate
space for its children and provides events (or methods) to add or remove nodes from it. A transform
node is a grouping node that defines a coordinate system for its children that is relative to the coor-
dinate systems of its ancestors. It is used to move, rotate, and scale a visual entity. An inline node is
another type of grouping node that reads the data of its children from a given location specified by a
URL. Different sensor nodes (e.g., CylinderSensor, PlaneSensor, ProximitySensor,
TimeSensor) are used to generate events in response to user actions or expiration of a timer.
A shape node represents a visual object using two fields: an appearance node that specifies the
material and texture attributes of the object and a geometry node that is rendered using the speci-
fied appearance characteristics. Each shape node can be manipulated by modifying its parameters
(radius of a sphere, height and width of a box, etc.).

Wainer and Chen [8] introduced a visualization facility (referred to as CD++/VRML), which enables
visualization of Cell-DEVS models in a VRML virtual world. Users can navigate and interact with the
nodes in the scene using an external Java Applet. The tool can be found at http://www.sce.carleton.ca/
faculty/wainer/vrmlGUI/index.html. The tool’s source code is also available for use and modification.

16.2.1 INTEGRATING CD++ AND VRML FOR INTERACTIVE THREE-DIMENSIONAL VISUALIZATION

CD++/VRML is based on predefined VRML constructions. The visualization starts with an empty
VRML root file embedded in an HTML Web page, representing an empty scene to which the simu-
lation data can be added as child nodes. These nodes can then be manipulated by an external Java
applet according to the simulated model behavior recorded in a CD++ log file. The applet then acts
as the interface between CD++ and the VRML virtual world, providing a set of functions for the
user to control the scene. Major functionalities of the applet are as follows [8]:

adding or removing a node from the VRML scene;
modifying the shape and color of individual nodes and controlling their visibility;
defining the coloring scheme for different value ranges of the nodes;
changing the scale of the nodes as well as the intervals between them;
navigating in the VRML scene;
editing the scene and individual nodes;
loading and rendering a simulation result stream; and
using a set of viewpoints that permit users to switch to different viewing areas in the scene.

As illustrated in Figure 16.1, these functionalities are arranged into several categories, each of
which is implemented in a separate panel. The link between the CD++ environment and a VRML
scene is implemented in the class ReadDrwFile, which takes care of retrieving simulation data
from the log input stream. The data retrieval is activated by the NavigatePanel whenever the
user moves to the next result, which can be the data with the next (forward) or previous (backward)
simulated virtual time in the result streams or the data with a user-specified virtual time. When
the applet starts, the InfoPanel is presented, allowing the user to choose the result stream to be
visualized and to define a coloring scheme for the nodes.
NavigatePanel (the main class of the toolkit) keeps track of the data currently displayed

in the scene, a history of recently navigated nodes, and the name of every node displayed. This
information changes whenever the VRML scene is updated during the navigation. For Cell-DEVS
models, NavigatePanel initiates the scene as an array of nodes corresponding to the size of the
cell space. Users can modify the attributes of individual nodes and examine data from different

53361.indb 464 3/11/09 10:51:06 AM

© 2009 by Taylor & Francis Group, LLC

http://www.sce.carleton.ca
http://www.sce.carleton.ca

Mechanisms for Three-Dimensional Visualization 465

viewpoints. Users can also specify a node as the current node and add/remove layers in the scene.
Figure 16.2 shows the GUI of the NavigatePanel.

By using the methods defined in the EntityPanel, users can edit the attributes (e.g., shape,
color, and size) of currently selected nodes. Nodes can also be added or removed from the scene.
ResultPanel provides different methods for controlling the navigation. When these methods
are invoked, the corresponding functions in the NavigatePanel are activated to change the scene
accordingly. The main methods include:

SelectorPanel

StatusPanel

EntityPanel

ResultPanel

NavigatePanel

InfoPanel

ColorDialog

1 Association

1 Association

SimuUserClient

ReadDrwFile

1
Association

FIGURE 16.1 Applet panels for visualizing simulation data in a VRML scene. (From Wainer, G., and
W. Chen. 2003. Simulation 79:626–647.)

FIGURE 16.2 Graphical user interface of the NavigatePanel.

53361.indb 465 3/11/09 10:51:07 AM

© 2009 by Taylor & Francis Group, LLC

466 Discrete-Event Modeling and Simulation

start, to initiate the execution;
resume, to continue execution if it has been stopped;
next/back, to step forward/backward in the animation sequence;
stop, to halt the animation at a given stop time;
display, for continuous animation until the end of the result stream; and
goto, to allow the user to jump to any given simulated time.

Figures 16.3 and 16.4 demonstrate some of the major capabilities of CD++/VRML using the
three-dimensional heat diffusion model that was introduced in Chapter 5. As mentioned earlier,
users can choose to represent visual objects using different geometries such as boxes, spheres,
cones, or cylinders, as we can see in Figure 16.3.

A user can edit the attributes of individual nodes in order to highlight a particular node or group
of nodes of interest for further examination. For complex models, users can also delete nodes from
the scene to focus on the remaining data. Figure 16.4(a) shows the effect of editing a single node
in the scene, and Figure 16.4(b) illustrates the removal of a layer of cells from the scene. Finally,
users can create multiple instances of the VRML scene derived from the same set of simulation data
so that different viewing areas can be examined using different graphical metaphors at the same
time.

Exercise 16.1

Using the VRML GUI interface, visualize the simulation results of the following examples: (1) three-
dimensional heat, (2) a bouncing ball, (3) fire, and (4) a maze.

FIGURE 16.3 Three-dimensional cell space visualization using different geometries and coloring schemes.

(a) (b)

FIGURE 16.4 Node editing and scaling in the scene.

53361.indb 466 3/11/09 10:51:08 AM

© 2009 by Taylor & Francis Group, LLC

Mechanisms for Three-Dimensional Visualization 467

Exercise 16.2

For each of the models in Exercise 16.1, create different palettes for color visualization. Navigate the
model, changing the geometries used and the size of the elements in the simulation.

16.2.2 GRAPHICAL MODELING AND VISUALIZATION OF URBAN TRAFFIC WITH MAPS

In Chapter 14, we introduced the ATLAS language for modeling traffic. A simulation project in
traffic using ATLAS is carried out as a sequence of the procedures shown in Figure 16.5.

Initially, a graphical model should be defined with the MAPS tool [9], which allows users to draw
city sections directly through a GUI and automatically translates the imagery into valid ATLAS
models (text based). These models are, in turn, compiled into Cell-DEVS models for simulation in
CD++ using the traffic simulation compiler (TSC). This graphical environment eliminates the need
for learning the ATLAS language and reduces the model development time. The simulation results
of CD++ are then presented with a customized three-dimensional visualization facility that presents
the traffic network and moving vehicles in a user-friendly manner [9].

The MAPS subsystem was built on top of JHotDraw [10], an open source, two-dimensional Java
GUI framework for developing structured drawing editors. The parser is responsible for translating
the graphical version of a city section into a valid ATLAS specification. It first removes and stores the
crossings of the traffic network and the city-level decorations (e.g., railways) and then loops through
the roads to identify the intersections. New intersections are automatically created as needed and the
roads are cut into appropriate segments, each having its parameters set based on the road configura-
tion (e.g., whether parking is allowed or not, the position at which the road segment crosses a railway
line). The process continues until all the roads and lanes in the imagery are parsed.

The VRML-based output module included in MAPS is used to reconstruct the specified city
section in VRML virtual worlds and to animate traffic flows in realistic three-dimensional graphics
according to the simulation results. The output module, found at http://www.sce.carleton.ca/faculty/
wainer/vrmlGUI/index.html, uses the generated ATLAS file to reconstruct a static scene of the city
section in a VRML virtual world. It then determines the location and direction of each vehicle at
a particular point in time, based on a CD++ log file. A three-dimensional car shape is displayed
on the screen at the appropriate cell of a road segment for the time duration, as indicated in the log
file. When that time expires, the car is moved to the next cell per the simulation results. In this way,
the animation shows a microscopic view of the traffic flow on the road network. Users can navigate
through the virtual city section using the VRML navigation panel that we have introduced in the
previous section.

The three-dimensional visualization environment translates ATLAS constructions and simu-
lated vehicles into VRML objects or nodes. Different shapes are used to represent the vehicles and
various constructions such as the cells of a road segment, crossings, and traffic signs. Figure 16.6
depicts some of the VRML objects used to represent these entities. Note that a one-to-one corre-
spondence is established among the Cell-DEVS model components, the ATLAS constructions, and
the VRML visual objects.

In order to visualize the ATLAS file properly, the output module needs to calculate the length
and rotation angle for each road segment and then place it at the appropriate position in the VRML

MAPS GUI for
Graphical
modeling

Valid ATLAS
Files TSC Cell-DEVS

Models
CD++

Simulation

MAPS VRML
Module for 3D
Visualization

FIGURE 16.5 Procedure and techniques for urban traffic modeling and simulation.

53361.indb 467 3/11/09 10:51:09 AM

© 2009 by Taylor & Francis Group, LLC

http://www.sce.carleton.ca
http://www.sce.carleton.ca

468 Discrete-Event Modeling and Simulation

scene. If a segment is parallel to a coordinate axis, the angle does not need to be calculated, and the
length is computed as

length P P P Px x y y() ()1 2

2

1 2

2 (16.1)

where (P1x,P1y) and (P2x,P2y) are the two end points of the segment.
On the other hand, if a segment does not run parallel to a coordinate axis, then the corresponding

VRML object must be rotated by an angle that is obtained as follows:

angle
P P

P P
y y

x x

tan 1 2 1

2 1

(16.2)

Once the length and angle are determined, the output module maps the segment to a visual object
that is stretched from the given start point and scaled and rotated according to the calculated values.

Exercise 16.3

Compute the length of segment A = (0,0), (10,10), 1, straight, go, 40, 300,
parkNone.

Exercise 16.4

Compute the length of every segment in the example introduced in Figure 14.34, Chapter 14.

The output module parses the log file generated by the CD++ simulator to animate the traffic
flows in a VRML virtual world. The entering of a car in a particular cell is detected by an output
message (Y) with a value of 1 from the out port of the cell; the departure of a car from a cell is
indicated by a Y message with value 0. In the former case, the output module creates a VRML car
shape and rotates it by the same amount as the cell to which the car belongs. In the latter case, the
car shape is removed from the current cell and the output module looks ahead in the log file to find
an entering event scheduled at the destination cell. The car shape will be put at the new location
after the delay time given in the Y message, as seen in Figure 14.39 in Chapter 14.

16.3 ADVANCED TECHNIQUES FOR VISUALIZATION OF DEVS
AND CELL-DEVS MODELS IN CD++

Although CD++/VRML provides a three-dimensional visual M&S environment, VRML is a stan-
dard that is no longer widely supported. We have developed mechanisms to integrate the CD++

FIGURE 16.6 VRML visual objects for vehicles and crossings. (From Wainer, G. 2007. Software Practice
and Experience 37:1377–1404.)

53361.indb 468 3/11/09 10:51:10 AM

© 2009 by Taylor & Francis Group, LLC

Mechanisms for Three-Dimensional Visualization 469

environment with a variety of both commercial and open source visualization and rendering tech-
niques, including Autodesk Maya, OpenGL, and Blender. In this section, we will elaborate on these
advanced techniques and demonstrate their capabilities.

16.3.1 CD++/MAYA—HIGH-PERFORMANCE THREE-DIMENSIONAL VISUALIZATION

ENGINE FOR CD++

Autodesk Maya [3] is one of the leading commercial software packages for three-dimensional mod-
eling, animation, and visual effects. The Maya software interface is fully customizable and allows
users to extend their functionality from within Maya by providing access to the Maya embedded
language (MEL). With MEL, users can tailor the GUI to fulfill their specific needs and to develop
in-house tools. We have used MEL to create CD++/Maya, a three-dimensional visualization engine
[12] that enables interoperability between DEVS-based M&S tools and advanced generic visualiza-
tion environments. Users can create static scenes (providing the necessary background for three-
dimensional animation of the simulation results) and use DEVS and Cell-DEVS to generate a log
stream to record the events during a simulation. The CD++/Maya engine then loads and initializes
the predefined scene file based on the model definition and overlays three-dimensional animation
on top of the static scene according to the log data. Figure 16.7 shows the major modules defined in
the visualization engine [12].

The logFileAnimation module serves as an interface between CD++ and Maya. Two modes
are available for analyzing the simulation data: direct analysis and animation. The former allows
advanced users to take a close look at the content of the log file for debugging and model verification
purposes, and the latter presents an intuitive three-dimensional animation for the selected model.
The readFile module displays the content of log files in a script editor window, as shown in
Figure 16.8. The animator module reads the log file, creates Maya objects based on the log data,
and runs the animation in three dimensions. The translateTime module is in charge of match-
ing the animation time line with the simulated virtual time as presented in the log file. Finally, the
maFileReader module is used internally by the visualization engine to retrieve the initial cell
values of Cell-DEVS models.

We will now show the visualization of different models introduced in previous chapters in order
to exemplify the features of the tool. All the examples in this section have been included for visual-
ization at http://www.sce.carleton.ca/faculty/wainer/vrmlGUI/maya.html. For instance, Figure 16.9
shows a snapshot of the animation maze-solving algorithm introduced in Chapter 5. As we can see,
the advanced three-dimensional rendering and visual effects open up new possibilities for increas-
ing the representational validity of the model’s behavior.

readFile()

animator()

autoAnimation()

logFileAnimation()

mazeAnimation()

glycolysisAnimation()

shipEvacuation
Animation()

maFileReader() translateTime()

FIGURE 16.7 Major modules defined in the CD++/Maya visualization engine [12].

53361.indb 469 3/11/09 10:51:11 AM

© 2009 by Taylor & Francis Group, LLC

http://www.sce.carleton.ca

470 Discrete-Event Modeling and Simulation

We introduced a model representing a manufacturing plant for vehicles that is trying to maintain
a suitable production level by coordinating the operation of its various assembly lines (the model can
be found in ./auto.zip). The structure of this model is depicted in Figure 16.10. The automobile parts
are produced by four assembly lines (i.e., chassis, body, transmission case, and engine, respectively).

FIGURE 16.8 The script editor window displays the contents of the log file [12].

FIGURE 16.9 CD++/Maya animation from different perspectives [12].

53361.indb 470 3/11/09 10:51:12 AM

© 2009 by Taylor & Francis Group, LLC

Mechanisms for Three-Dimensional Visualization 471

A car is then assembled using one component from each of these assembly lines. Further, an engine
comprises four pistons and one engine body.

Figure 16.11 is generated when the model is executed by the CD++ simulator. The input and
output trajectories of the DEVS model can be animated in two dimensions using CD++Modeler

Auto Factory Model

Chassis Subfactory

Body Subfactory

Transmission Case
Subfactory

Piston Line

Engine Body Line
done

in_chassis
in_body

Final
Assembly

Subfactory
Auto-

mobiles

in_trans

in_engine

in_engineBody

in_piston

Engine
Assembly Line

done

Production
Plan

e.g. number
of needed

automobiles

out

out

out out

out
out

out

done

done

done

done

done

in

in

in

in

in

in

Engine Subfactory

FIGURE 16.10 A car manufacturing coupled model [12].

FIGURE 16.11 Car manufacturing model-generated log file [12].

53361.indb 471 3/11/09 10:51:14 AM

© 2009 by Taylor & Francis Group, LLC

472 Discrete-Event Modeling and Simulation

as we have discussed in Section 3.4 in Chapter 3. Although this allows a detailed analysis of the
simulation data, it is still rather abstract and elusive for general users to have an intuitive and global
comprehension of the simulated phenomenon.

Figure 16.12 illustrates two snapshots of the animation of the car manufacturing model in CD++/
Maya at different virtual times, found at http://www.sce.carleton.ca/faculty/wainer/vrmlGUI/maya.
html. In the log file, the availability of a part is represented as a Y message sent from the corre-
sponding assembly line to the final assembling warehouse. Such an activity is shown in the anima-
tion as a three-dimensional icon that stands for the specific automobile part moving between the
entities in the virtual world. For example, the animation in Figure 16.12(a) shows that three auto
parts are made available at virtual time 02:000, and Figure 16.12(b) shows a finished car moving out
of the assembling warehouse at virtual time 04:000.

The glycolysis model introduced in Chapter 8 was used to create molecular visualizations (which
play a central role in chemistry and biology research due to their effectiveness in revealing informa-
tion on complex molecular structure and dynamics). Figure 16.13 illustrates the animation of step 6,
which begins at the presence of three molecules of nicotinamide adenine dinucleotide (NAD+).

Finally, we show the application of CD++/Maya to the emergency evacuation model introduced
in Chapter 10. Figure 16.14 illustrates the Maya scene file created specifically for the evacuation
model. This static scene constitutes a realistic visual framework of the building under study and
provides the background for the three-dimensional animation.

Figure 16.15 shows the animation for the emergency evacuation at different virtual times and
from different viewpoints. Each human figure is represented by a three-dimensional icon. The
engine retrieves the log data and relocates human icons based on the coordinates and values of the
cells. The resulting frame-based motion of human figures allows tracing each individual throughout
the building and gaining deeper insight into the evacuation process as a whole. The three-dimen-
sional rendering also gives more details about the building than the symbolic two-dimensional
animation.

Figure 16.16 shows an extended version of the evacuation model applied to the streets of down-
town Montreal (where the SAT building is located). The figure shows the Cell-DEVS simulation of
the pedestrians in the area and the three-dimensional visual results with CD++/Maya.

(a) (b)

FIGURE 16.12 Animation of the car manufacturing model in CD++/Maya [12].

53361.indb 472 3/11/09 10:51:15 AM

© 2009 by Taylor & Francis Group, LLC

http://www.sce.carleton.ca
http://www.sce.carleton.ca

Mechanisms for Three-Dimensional Visualization 473

FIGURE 16.13 Animation of the glycolysis process in CD++/Maya. (From Djafarzadeh, R. et al. 2005.
Proceedings of 2005 DEVS Integrative M&S Symposium, Spring Simulation Conference, San Diego, CA.)

FIGURE 16.14 Background for the evacuation model using CD++/Maya.

53361.indb 473 3/11/09 10:51:16 AM

© 2009 by Taylor & Francis Group, LLC

474 Discrete-Event Modeling and Simulation

16.4 DEVSVIEW—OPENGL-BASED TOOL FOR VISUALIZATION OF DEVS
AND CELL-DEVS MODELS

Although CD++/Maya is a powerful visualization engine for creating advanced three-dimensional
animation of both DEVS and Cell-DEVS models, its cost can be very high (in terms of software

FIGURE 16.15 Animation of the emergency evacuation model using CD++Modeler and CD++/Maya.

FIGURE 16.16 Animation of the crowd model using CD++Modeler and CD++/Maya.

53361.indb 474 3/11/09 10:51:18 AM

© 2009 by Taylor & Francis Group, LLC

Mechanisms for Three-Dimensional Visualization 475

installation size, advanced hardware requirements, and licensing issues). This makes it ideal for
large projects where high performance and visualization quality are the major concerns. In order
to provide an alternative low-cost visualization method for academic purposes, we developed an
open source toolkit, referred to as DEVSView [14], for visualizing CD++ simulation results based
on OpenGL [4]. OpenGL is a standard specification for developing cross-platform and language-
neutral applications that has been widely used in a broad range of applications (computer-aided
design, virtual reality, flight simulation, etc.). We used GLUT (OpenGL utility toolkit), a cross-
platform windows-based library for writing portable OpenGL programs [15].

Visualization in DEVSView consists of visual models that are directly translated from the atomic
and coupled components, creating a one-to-one relationship between visual models and the corre-
sponding simulated components. Each visual model uses a state transition system and an event
animation system that can be manipulated to match the external and output messages in CD++ log
files. DEVSView provides:

controls to define and play back three-dimensional animations;
customizable visualization of DEVS and Cell-DEVS models, which is done by associating
each visual model with a state transition system (including user-defined visual states and
transition rules); and
customizable animation of events, defined by an event animation system for each visual
model (creating user-specified visual effects upon the arrival of events).

At the beginning of the visualization, DEVSView parses the CD++ log file to create a visual
model for each component. The visual models are then customized to follow a visual state transition
system or to produce animations. Animations evolve through events transmitted to visual models
involved in the message exchanges (event messages contain information about the source/destina-
tion visual models, the input/output ports through which the event is sent, simulated virtual time of
the event, and its value). Based on this information, state transition rules determine how arriving
events affect the visual model, and event animation rules decide the kind of animation produced
for the event. Figure 16.17 shows a visual model called pinver (pin verifier) for the animation of
the ATM model presented in Chapter 6. The visual model is currently in its idle state and hence
displayed as a three-dimensional box (which is specified in the state transition rules). Users can edit
the properties of a visual model (e.g., visual state, shape, color, label) by using the state editing panel
on the left-hand side.

FIGURE 16.17 A visual model and the state editing panel. (From Wenhola, W., and G. Wainer. 2006.
Proceedings of DEVS Symposium, Spring Simulation Conference, Huntsville, AL.)

53361.indb 475 3/11/09 10:51:18 AM

© 2009 by Taylor & Francis Group, LLC

476 Discrete-Event Modeling and Simulation

Formally, a visual model is defined by

its name;
a list of input/output ports to exchange events with other visual models;
its location in the three-dimensional coordinate system, orientation, and size;
a list of visual states (one of them marked as current, defining the visual appearance of
the model);
a visual state transition system (defined as a state machine with visual states and the transi-
tions between them), as determined by a list of state transition rules; and
an event animation system that generates visual effects based on a list of user-specified
event animation rules.

For Cell-DEVS models, all the cells share the list of visual states, transition rules, and event ani-
mation rules. This information sharing reduces file size and memory consumption, facilitates visual
model definition, and improves animation performance.

The visual state transition system and event animation system process the events received by a
visual model to generate the desired animation based on user-defined rules. The granularity or detail
of the animation is controlled by a value rule mechanism that filters incoming events; an event is
passed to the state transition and event animation rules only if it satisfies certain criteria. By control-
ling the value rules, users can focus on the animation of only those events of interest, while remov-
ing the events of less importance from the scene. Three types of value rules are supported [14]:

All values: No filter is applied.
Equal value: An event passes only if its value is equal to a user-specified constant.
Range of values: An event passes if its value is within a given range.

Complex three-dimensional scenes containing many different visual objects may require a sig-
nificant time to render. Determining which objects need to be refreshed in a frame is important for
the efficiency and performance of the animation. View culling is the process of calculating which
objects are currently in view and therefore require rendering. We used an efficient culling algorithm
based on octtrees [16], a tree data structure that represents a three-dimensional space by recursively
subdividing it into eight subspaces. The visual objects in a three-dimensional scene are assigned to
the smallest (fittest) regions that can contain them completely, and each region is implemented as a
node in the octtree. The initial space and the division of its immediate subspaces are illustrated in
Figure 16.18.

The proposed culling algorithm can accurately match a graphical object to its fittest region,
improving rendering performance. To do so, the octtree data structure is traversed to check whether

Main region
One subdivision

FIGURE 16.18 Partition of three-dimensional space in octtree. (From Wenhola, W., and G. Wainer. 2006.
Proceedings of DEVS Symposium, Spring Simulation Conference, Huntsville, AL.)

53361.indb 476 3/11/09 10:51:19 AM

© 2009 by Taylor & Francis Group, LLC

Mechanisms for Three-Dimensional Visualization 477

a node is in the current view or not. If a node is out of view, the entire subtree rooted at that node
is pruned. On the other hand, if a node is completely in view, then the subtree extending from that
node is visible and no further visibility check will be performed for its descendants. Consider, for
instance, a small object located at the center of the root region, as shown in Figure 16.19(a). Because
the object is associated with the root region, it can be culled only when the root node is pruned,
despite the fact that it may rarely be in view. If the small object can be added to the eight fittest
regions that contain it completely, as illustrated in Figure 16.19(b), then the scene will be culled
much more efficiently in the octtree.

DEVSView includes three main components (Figure 16.20):

a log parser in charge of extracting the atomic and coupled model components and the
events from CD++ log files;
a GUI that provides the animation control mechanisms and allows users to specify the
graphical representation of the visual models; and
a scene database that can efficiently organize visual models in the three-dimensional space.

DEVSViewerDisplay is responsible for converting user inputs into commands that can be
processed by ViewerControl. DEVSViewerDisplay also controls the rendering of all three-
dimensional objects, using the services provided by ViewerDisplay for event-driven function-
alities. SimulationLink serves as the linkage between DEVSView and CD++. It parses the
CD++ log file and notifies ViewerControl of new events and visual models. ViewerControl
processes the requests from both DEVSViewerDisplay and SimulationLink. It translates
the requests into a sequence of interactions with the SimulationDatabase, which stores the
events, visual models, and related information for the visualization.

Field of view Field of view

(a) (b)

FIGURE 16.19 Illustration of the view culling algorithm in DEVSView. (From Wenhola, W., and G. Wainer.
2006. Proceedings of DEVS Symposium, Spring Simulation Conference, Huntsville, AL.)

FIGURE 16.20 Package diagram for the DEVSView toolkit. (From Wenhola, W., and G. Wainer. 2006.
Proceedings of DEVS Symposium, Spring Simulation Conference, Huntsville, AL.)

53361.indb 477 3/11/09 10:51:20 AM

© 2009 by Taylor & Francis Group, LLC

ViewerDisplay

DEVSViewerDisplay ViewerControl SimulationLink

SimulationDatabase

Package Diagram

478 Discrete-Event Modeling and Simulation

Further details of the design and implementation of these can be found in Khan and Wainer [14],
and the tool and its source code can be found at http://www.sce.carleton.ca/faculty/wainer/students/
View/index.html.

Figure 16.21 shows a three-dimensional visualization of the ATM model discussed earlier.
Figure 16.21(a) shows the animation when a customer inserts a debit card into the ATM machine.
The event animation is shown as a three-dimensional text effect “card inserted” just beside the
CardReader visual model. Accordingly, the CardReader model transitions to the “card in”

(a)

(b)

FIGURE 16.21 DEVSView animation of the ATM model. (From Wenhola, W., and G. Wainer. 2006.
Proceedings of DEVS Symposium, Spring Simulation Conference, Huntsville, AL.)

53361.indb 478 3/11/09 10:51:22 AM

© 2009 by Taylor & Francis Group, LLC

http://www.sce.carleton.ca
http://www.sce.carleton.ca

Mechanisms for Three-Dimensional Visualization 479

state and the top model changes to the “customer in system” state, while all other models are idle.
The octtree regions allocated to the visual models are outlined in Figure 16.21(b).

Exercise 16.5

Modify the event animation for the ATM model. Change the colors used and the signs associated with
each of the events.

Exercise 16.6

Create three-dimensional versions of the following models using DEVSView: (1) a multitask server, (2)
a processor-buffer-transducer, (3) vending, and (4) an elevator.

Figure 16.22 shows the three-dimensional animation of a Cell-DEVS model that represents the
design of Persian tapestry, found in ./PersianTapestry.zip. This visualization shows the multiple lay-
ers used by the three-dimensional model in creating the shapes in the tapestry and the final design
obtained.

Exercise 16.7

Modify the color scheme of the Persian tapestry model.

Exercise 16.8

Modify the color scheme and event animation for the bouncing ball simulation visualization found on
the DEVSView Web page.

Exercise 16.9

Create a three-dimensional version of the same models discussed in Exercise 16.1 using DEVSView.

16.5 CD++/BLENDER

Blender [5] is an OpenGL-based, freely available three-dimensional modeling and animation soft-
ware package being actively developed and widely used in a broad array of applications. It has
a mature and robust feature set similar in scope and depth to other high-end three-dimensional
applications such as 3ds Max [3] and Maya. Using the Blender software suite, we developed an
extension for visualization of DEVS models, known as CD++/Blender, in an attempt to combine
the advantages of CD++/Maya and DEVSView (i.e., software availability and visualization qual-
ity) in an integrated environment. CD++/Blender has a relatively small installation footprint, and it
can be used to create advanced animations of complex models. A Python script parses CD++ log
files and generates customizable visualization based on the same design as DEVSView. The design
and implementation of the toolkit will not be reiterated in this section. Instead, we demonstrate the
capabilities of CD++/Blender with different examples.

Figure 16.23 shows a screenshot of the CD++/Blender GUI. As usual, users can specify the
model definition file and CD++ log file to be used during the visualization (animation is shown in
the main window, based on a predefined three-dimensional scene file as well as the events recorded
in the log file). Users can customize the animation, navigate the three-dimensional scene, and gener-
ate videos. One of Blender’s strengths is that the GUI is entirely drawn in OpenGL and the content
of every window can be panned, zoomed, and moved around just like other visual objects so that the
screen can be organized to the user’s taste for each specialized task. In addition, users can modify
the GUI.

53361.indb 479 3/11/09 10:51:22 AM

© 2009 by Taylor & Francis Group, LLC

480 Discrete-Event Modeling and Simulation

Figure 16.24 shows how to create a three-dimensional scene file in CD++/Blender. For each
scene, users can create props, and dress and paint them with different materials and textures using
predefined layouts. It is also possible to define multiple scenes within a single Blender file, allowing
them to share and reuse common visual objects to reduce the resulting file size.

Users can add various visual objects, ranging from simple shapes to three-dimensional human
avatars. Users can run the animation forward or backward and examine the simulation results from

FIGURE 16.22 Animation of the Persian tapestry Cell-DEVS model.

53361.indb 480 3/11/09 10:51:24 AM

© 2009 by Taylor & Francis Group, LLC

Mechanisms for Three-Dimensional Visualization 481

FIGURE 16.23 The CD++/Blender graphical user interface.

FIGURE 16.24 Creating plan file in CD++/Blender.

53361.indb 481 3/11/09 10:51:26 AM

© 2009 by Taylor & Francis Group, LLC

482 Discrete-Event Modeling and Simulation

different viewpoints by navigation in the three-dimensional virtual world. For large models, three-
dimensional scenes may become exceptionally confusing due to the increased complexity. This
problem is solved in CD++/Blender by virtue of Blender’s native support of layers. Each layer in
the scene groups the related visual objects of interest so that only the selected layers (or groups of
visual objects) are rendered at any one time. This technique provides a better overview of the ani-
mation and allows the user to examine the simulation data with varying granularities. Figure 16.25
illustrates a frame of the car manufacturing model animation discussed earlier.

Exercise 16.10

Build three-dimensional visualizations using CD++/Blender for Exercises 16.1 and 16.9.

16.6 SUMMARY

This chapter introduced a detailed discussion of varied visualization facilities currently available
for CD++. These facilities provide users with a variety of mechanisms to facilitate the M&S pro-
cess, thereby promoting the adoption of cutting-edge M&S technologies by a wider community
of practitioners and researchers. Although CD++Modeler provides some basic facilities (allowing
application specialists to construct models and analyze simulation data), the two-dimensional facili-
ties might not be adequate for complex applications, training, analysis, and live simulations with
man and hardware in the loop.

CD++/VRML enables basic animations of Cell-DEVS models in a three-dimensional virtual
world, and it can be expanded to provide more advanced visual results and tailored for special-pur-
pose application domains (as we did for the urban traffic control case). In order to fulfill the needs
of different user communities, we also integrated the CD++ environment with both commercial
and open source software packages and developed a set of advanced toolkits for high-performance

FIGURE 16.25 Animation in CD++/Blender from different viewpoints and layers.

53361.indb 482 3/11/09 10:51:27 AM

© 2009 by Taylor & Francis Group, LLC

Mechanisms for Three-Dimensional Visualization 483

animation of complex DEVS and Cell-DEVS models, including CD++/Maya, DEVSView, and
CD++/Blender. Following the DEVS modular approach, the resulting architecture can be easily
extended and adapted, facilitating the validation and verification of continuously evolving models
and making them suitable for efficient online decision-making.

REFERENCES

1. Choi, W. 2008. Study on L-V-C (live-virtual-constructive) interoperation for the national defense M&S
(modeling & simulation). ICISS International Conference on Information Science and Security, Seoul,
Korea, 128–133.

2. Ames, A., D. Nadeau, and J. Moreland. 1997. VRML 2.0 source, 2nd ed. New York: John Wiley & Sons, Inc.
3. Pardew, L., and M. Tidwell. 2006. Autodesk Maya and Autodesk 3ds Max side-by-side. Boston: Course

Technology Press.
4. Segal, M., and K. Akeley. 2006. The OpenGL graphics system: A specification. Silicon Graphics, Inc.
5. Roosendaal, T., and S. Selleri. 2004. The official Blender 2.3 guide: Free 3D creation suite for modeling,

animation, and rendering. San Francisco, CA: No Starch Press.
6. Behr, J., P. Dähne, and M. Roth. 2004. Utilizing X3D for immersive environments. Proceedings of

Web3D ’04, Ninth International Conference on 3D Web Technology, Monterey, CA, 71–78.
7. Roehl, B., and J. Couch. 1997. Late night VRML 2.0 with Java. Hightstown, NJ: Ziff–Davis Publishing Co.
8. Wainer, G., and W. Chen. 2003. A framework for remote execution and visualization of cell-DEVS mod-

els. Simulation 79:626–647.
9. Wainer, G., S. Borho, and J. Pittner. 2001. Defining and visualizing models of urban traffic. Proceedings

of 1st Mediterranean Multiconference on Modeling and Simulation, Genoa, Italy.
10. Sourceforge. 2007. JHotDraw Open-Source Project. URL: http://sourceforge.net/projects/jhotdraw
11. Wainer, G. 2007. Developing a software toolkit for urban traffic modeling. Software Practice and

Experience 37:1377–1404.
12. Khan, A., and G. Wainer. 2005. Advanced visualization of DEVS and cell-DEVS models in Maya.

Proceedings of the SISO Spring Interoperability Workshop, San Diego, CA.
13. Djafarzadeh, R., T. Mussivand, and G. Wainer. 2005. Modeling energy pathways in cells. Proceedings of

2005 DEVS Integrative M&S Symposium, Spring Simulation Conference, San Diego, CA.
14. Wenhola, W., and G. Wainer. 2006. DEVSView: A tool for visualizing CD++ simulation models.

Proceedings of DEVS Symposium, Spring Simulation Conference, Huntsville, AL.
15. Kilgard, M. J. 1996. The OpenGL utility toolkit (GLUT) programming interface: API Version 3.

Available: http://www.Opengl.org/resources/libraries/glut/glut-3.spec.pdf
16. Jackins, C. L., and S. L. Tanimoto. 1980. Oct-trees and their use in representing three-dimensional

objects. Computer Graphics & Image Processing 14:249–270.

53361.indb 483 3/11/09 10:51:27 AM

© 2009 by Taylor & Francis Group, LLC

http://sourceforge.net
http://www.Opengl.org

	cover_new.jpg
	Discrete-Event Modeling and Simulation: A Practitioner’s Approach
	Contents
	Foreword
	Preface
	REFERENCES

	The Author
	Acknowledgments

	Section 1: Concepts
	Chapter 1: Modeling and Simulation Concepts
	1.1 INTRODUCTION
	1.2 MODELING DISCRETE-EVENT DYNAMIC SYSTEMS
	1.3 CLASSIFICATIONS OF MODELING TECHNIQUES
	1.4 DISCRETE-EVENT MODELING AND SIMULATION METHODOLOGIES
	1.5 SOME DEFINITIONS
	1.6 PHASES IN A SIMULATION STUDY
	1.7 VERIFICATION AND VALIDATION (V&V)
	1.8 SUMMARY
	REFERENCES

	Chapter 2: Introduction to the DEVS Modeling and Simulation Formalism
	2.1 INTRODUCTION
	2.2 THE DEVS FORMALISM
	2.3 A DEVS MODEL EXAMPLE
	2.4 DEVS WITH SIMULTANEOUS EVENTS (PARALLEL DEVS)
	2.5 DYNAMIC STRUCTURE DEVS
	2.6 QUANTIZED DEVS
	2.7 GENERALIZED DEVS (GDEVS)
	2.8 SUMMARY
	REFERENCES

	Chapter 3: The Cell-DEVS Formalism
	3.1 INTRODUCTION
	3.2 CELLULAR AUTOMATA
	3.3 CELL-DEVS ATOMIC MODELS
	3.4 CELL-DEVS COUPLED MODELS
	3.5 AN APPLICATION EXAMPLE
	3.6 SUMMARY
	REFERENCES

	Section 2: Building Simulation Models: The CD++ Toolkit
	Chapter 4: Introduction to the CD++ Toolkit
	4.1 INTRODUCTION
	4.2 DEFINING ATOMIC MODELS IN CD++
	4.3 AN EXAMPLE: QUEUE MODEL
	4.4 COUPLED MODEL DEFINITION
	4.5 DEFINING CELL-DEVS MODELS
	4.6 DEFINING ATOMIC MODELS USING DEVS-GRAPHS
	4.7 SUMMARY
	REFERENCES

	Chapter 5: Modeling Simple DEVS and Cell-DEVS Models in CD++
	5.1 INTRODUCTION
	5.2 BASIC CELL-DEVS MODELS
	5.3 A MODEL OF A MICROWAVE OVEN
	5.4 MARKET DYNAMICS
	5.5 A PREDATOR–PREY MODEL
	5.6 HEAT DIFFUSION
	5.7 GSM CELLULAR NETWORK AUTHENTICATION SIMULATOR
	5.8 SUMMARY
	REFERENCES

	Chapter 6: Discrete-Event Applications with DEVS
	6.1 INTRODUCTION
	6.2 A MODEL OF AN ATM
	6.3 A WATER RESERVOIR CONTROLLER FOR A CITY
	6.4 RADAR-BASED TRAFFIC LIGHT
	6.5 SUMMARY
	REFERENCES

	Chapter 7: Defining Varied Modeling Techniques Using DEVS
	7.1 INTRODUCTION
	7.2 FINITE STATE MACHINES
	7.3 MODELING PETRI NETS
	7.4 LAYERED QUEUING NETWORKS
	7.5 VHDL-AMS
	7.6 BOND GRAPHS
	7.7 MODELICA
	7.7.1 MODELICA PARSER
	7.7.2 MAPPING ELECTRICAL CIRCUITS TO BG
	7.7.3 BG COMPILER FOR CD++
	7.7.4 SIMULATION EXAMPLES

	7.8 SUMMARY
	REFERENCES

	Section 3: Applications
	Chapter 8: Applications in Biology
	8.1 INTRODUCTION
	8.2 SYNAPSIN AND VESICLE INTERACTION IN A NERVE CELL USING CELL-DEVS
	8.3 A MODEL OF THE HUMAN LIVER
	8.4 SPREADING OF MARINE BACTERIA
	8.5 VIRUS SPREADING IN A POPULATION
	8.6 MODELING THE HEART TISSUE
	8.7 ENERGY PATHWAYS IN MITOCHONDRIA
	8.8 SUMMARY
	REFERENCES
	APPENDIX

	Chapter 9: Models in Defense and Emergency Planning
	9.1 INTRODUCTION
	9.2 A SIMPLE MODEL OF AN UNMANNED VEHICLE
	9.3 RADAR TRANSMITTER–RECEIVER
	9.4 A TARGET-SEEKING DEVICE
	9.5 LAND BATTLEFIELD
	9.6 EVACUATION PROCESSES
	9.7 SUMMARY
	REFERENCES

	Chapter 10: Models in Architecture and Construction
	10.1 INTRODUCTION
	10.2 A SAND PILE MODEL
	10.3 SIMULATING THE REDECKING OF THE JACQUES CARTIER BRIDGE
	10.4 ANALYSIS OF EVACUATION IN EMERGENCIES: CASE OF THE SAT BUILDING
	10.5 SUMMARY
	REFERENCES

	Chapter 11: Models in Environmental Sciences
	11.1 INTRODUCTION
	11.2 VIABILITY OF POPULATION ON A FIELD
	11.3 ANT FORAGING MODELS
	11.4 WATERSHED FORMATION
	11.5 POLLUTION MODELS
	11.6 SIMULATING VEGETATION DYNAMICS
	11.7 FOREST FIRES
	11.7.1 MODELING FIRE AS A PERCOLATION PROCESS
	11.7.2 FIRE SPREADING USING ROTHERMEL’S RULES
	11.7.3 FIRE SUPPRESSION DEFINITION
	11.7.4 A SEMIEMPIRICAL MODEL
	11.7.5 QUANTIZING THE FIRE SPREAD CELL-DEVS MODEL

	11.8 SUMMARY
	REFERENCES

	Chapter 12: Models in Physics and Chemistry
	12.1 INTRODUCTION
	12.2 REACTION–DIFFUSION SYSTEMS
	12.2.1 DIFFUSION-LIMITED AGGREGATION
	12.2.2 A THREE-DIMENSIONAL REACTION–DIFFUSION MODEL
	12.2.3 DRIVEN DIFFUSION
	12.2.4 SNOWFLAKE FORMATION
	12.2.5 BINARY SOLIDIFICATION

	12.3 A MODEL OF WAVE PROPAGATION
	12.4 FLOW INJECTION ANALYSIS (FIA)
	12.5 NUMERICAL APPROXIMATION OF HEAT SPREADING
	12.5.1 QDEVS FOR HEAT SPREADING
	12.5.2 HEAT APPROXIMATION USING DISCRETE-EVENT FINITE ELEMENTS
	12.5.2.1 One-Dimensional Heat Transfer: Mapping FEM into Cell-DEVS
	12.5.2.2 Two-Dimensional Heat Transfer with Cell-DEVS

	12.5.3 LATTICE GAS MODELS

	12.6 A THREE-DIMENSIONAL MODEL OF VIRTUAL CLAY
	12.7 SUMMARY
	REFERENCES

	Chapter 13: Models of Artificial Systems, Networking, and Communications
	13.1 INTRODUCTION
	13.2 A LOAD-BALANCING SYSTEM
	13.3 THE ALPHA-1 SIMULATED PROCESSOR
	13.4 ROBOT PATH PLANNING
	13.4.1 FIXED-ROUTE PATHS
	13.4.2 ROUTE PLANNING MODELS
	13.4.3 SHORTEST PATH SELECTION
	13.4.4 SELF-RECONFIGURING ROBOTS

	13.5 DISCRETE-EVENT CONTROL OF A TIME-VARYING PLANT
	13.6 NETWORKING PROTOCOLS FOR LOCAL AREA NETWORKS
	13.6.1 HUB
	13.6.2 ALTERNATING BIT PROTOCOL (APB)
	13.6.3 A CELLULAR MODEL FOR CRYPTOGRAPHY
	13.6.4 HOST
	13.6.4.1 The Application Layer
	13.6.4.2 The Transport Layer
	13.6.4.3 The Network Layer
	13.6.4.4 The Data Link Layer (DLL)
	13.6.4.5 Simulation Results

	13.6.5 ROUTER

	13.7 MODELING MOBILE AD HOC NETWORKS (MANETS)
	13.8 SUMMARY
	REFERENCES

	Chapter 14: Models of Urban Traffic
	14.1 INTRODUCTION
	14.2 A MODEL FOR A BRIDGE CROSSING
	14.3 HIGHWAY TOLL STATION MANAGEMENT
	14.4 HIGHWAY JUNCTION
	14.5 TRAFFIC LIGHT CONTROLLER
	14.6 A MODEL OF A CITY SECTION
	14.7 THE ATLAS LANGUAGE
	14.8 SUMMARY
	REFERENCES

	Section 4: Simulation and Visualization
	Chapter 15: Building DEVS Simulators
	15.1 INTRODUCTION
	15.2 THE STAND-ALONE SIMULATOR
	15.3 IMPLEMENTING SIMULATION ALGORITHMS IN CD++
	15.3.1 MESSAGING
	15.3.2 MODEL AND PROCESSOR ADMINISTRATION

	15.4 INTRODUCTION TO PARALLEL AND DISTRIBUTED SIMULATION CONCEPTS
	15.5 CD++ PARALLEL SIMULATION ALGORITHMS
	15.6 FLAT COORDINATORS
	15.7 IMPLEMENTATION OF DISTRIBUTED DEVS SIMULATION ALGORITHMS IN CD++
	15.8 CD++ REAL-TIME SIMULATOR
	15.9 DYNAMIC STRUCTURE DEVS
	15.10 DISTRIBUTED SIMULATION WITH WEB SERVICES
	15.11 INTERFACING DEVS SIMULATORS: CD++ AND DEVS C#
	15.12 SUMMARY
	REFERENCES

	Chapter 16: Mechanisms for Three-Dimensional Visualization
	16.1 INTRODUCTION
	16.2 THREE-DIMENSIONAL ANIMATION USING CD++/VRML
	16.2.1 INTEGRATING CD++ AND VRML FOR INTERACTIVE THREE-DIMENSIONAL VISUALIZATION
	16.2.2 GRAPHICAL MODELING AND VISUALIZATION OF URBAN TRAFFIC WITH MAPS

	16.3 ADVANCED TECHNIQUES FOR VISUALIZATION OF DEVS AND CELL-DEVS MODELS IN CD++
	16.3.1 CD++/MAYA—HIGH-PERFORMANCE THREE-DIMENSIONAL VISUALIZATION ENGINE FOR CD++

	16.4 DEVSVIEW—OPENGL-BASED TOOL FOR VISUALIZATION OF DEVS AND CELL-DEVS MODELS
	16.5 CD++/BLENDER
	16.6 SUMMARY
	REFERENCES

