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FOREWORD 

This book contains contributions from various authors on different important topics 
related with probabilistic methods used for the design of structures. 

Initially several of the papers were prepared for advanced courses on structural 
reliability or on probabilistic methods for structural design. These courses have been 
held in different countries and have been given by different groups of lecturers. They 
were aimed at engineers and researchers who already had some exposure to structural 
reliability methods and thus they presented overviews of the work in the various 
topics. 

The book includes a selection of those contributions, which can be of support for 
future courses or for engineers and researchers that want to have an update on specific 
topics. It is considered a complement to the existing textbooks on structural reliability, 
which normally ensure the coverage of the basic topics but then are not extensive 
enough to cover some more specialised aspects. 

In addition to the contributions drawn from those lectures there are several papers that 
have been prepared specifically for this book, aiming at complementing the others in 
providing an overall account of the recent advances in the field. 

It is with sadness that in the meanwhile we have seen the disappearance of two of the 
contributors to the book and, in fact two of the early contributors to this field. 

Prof Ferry Borges, who had his career at the National Civil Engineering Laboratory, 
in Lisbon and later became also Professor at the Technical University of Lisbon, passed 
away as a consequence of a continued illness. However, he has been active with 
lectures and conference participation until the later moments of his life. Ferry Borges 
was co-author of one of the earliest textbooks in structural reliability and he has been 
very active in the field of civil engineering codes in Europe, participating in many 
international bodies in that area. 

Prof Tiago de Oliveira, very much known by his contributions on the statistical 
theories of extremes has always shown an interest on how those models and methods 
that could be used in engineering and in particular in structural reliability analysis. One 
can find this association for example in the first ICOSSAR Conference organised by 
Freudenthal in 1972. Tiago de O!iveira, who started his academic career at the 
University of Lisbon, moved later to the New University of Lisbon and he was very 
committed to the Academy of Sciences in Lisbon, when he passed away from a heart 
attack. 

These two gentlemen had an important impact on their generations in their specific 
field of activity and they have been the inspiration of several important contributors 
who came later. Therefore I am very pleased to dedicate this book to their memory. 
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The book starts with the basic aspects of structural design, which set the stage to later 
contributions and detine the boundaries in which reliability based methods, can be used 
as a tool for design. With the continued improvement of the computational techniques, 
the emphasis in real problem solving has shifted towards the modelling and in this 
connection the quantitication of model uncertainties is very important. Response 
surfaces are being used more widely for situations in which the limit state functions 
require relatively heavy computational schemes. 

The limit state conditions are a result of different modes of collapse. An important one 
results from fatigue, which is dependent on many random factors and thus can be 
described by different probabilistic formulations. Another important mode of collapse 
is the buckling collapse, which can occur, in ditTerent types of components. The case 
of columns and plates is dealt with here. Finally, reference is also made to more 
complicated collapse modes that are represented by implicit formulations, which 
require special techniques to handle. 

Having considered the reliability of components, it is necessary to analyse the case of 
structural systems. To deal with structures it is necessary to model also the loads, in 
particular their extreme values and their combined values, and these are the topics of 
the next two contributions. 

A recent and rapidly expanding field of activity is the application of stochastic 
processes to model the variability of loading and material properties, as well as the 
assessment of reliability. Stochastic finite elements are able to cope with the variability 
of these properties and they are being applied to different types of problems. 

Having covered various tools for reliability analysis of structures, design and 
maintenance are the next type of subjects of interest. Reliability methods are very 
u'seful to design and calibrate design codes, and an overview is provided of several 
developments in the field. Also, the specific aspects of seismic design are presented as 
well as reliability based maintenance. 

Several topics are covered in this book, including modelling of uncertainty, prediction 
of the strength of components, load modelling and combination, assessment of 
structural systems, stochastic finite elements and design considerations. It is hoped that 
such a series of contributions will be found useful for practitioners as well as for 
researchers. 

Carlos Glfedes Soares 
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BASIC CONCEPTS OF STRUCTURAL DESIGN 

J. FERRY BORGES 
Laboratorio Nacional de Engenharia Civil 
Lisboa, Portugal 

1. Introduction 

In the last 15 years several international documents have been published dealing with 
the basic concepts of structural design. 

The Joint Committee on Structural Safety, JCSS, approved in November 1976 the 
Common Unified Rules for Different Types of Construction and Materia which were 
published in 1978 as volume 1 of the International System of Unified Standard Codes of 
Practice for Structures . (Bulletins d' Information n° 124/125 of the Euro-International 
Committee for Concrete, CEB). According to a recommendation of the Economic 
Commission for Europe of the United Nations Economic and Social Council, the JCSS 
prepared the General Principles on Reliability for Structural Design which were used 
by ISO in the revision of ISO 2394. These General Principles were published with the 
General Principles on Quality Assurancefor Structures in Volume 35 of the Reports of 
the International Association for Bridge and Structural Engineering, IABSE, in 1981. 

The Commission of the European Communities in a ftrst draft of the Eurocode n° 1 
( EUR 8847, 1984), followed these general principles, which were further used in the 
drafting of Eurocodes 2 to 8. 

In 1988 the JCSS, recognizing the need to update the existing documents, prepared 
a Commentary on ISO 2394 published by CEB in Bulletin d'Information n° 191, July 
1988. The CEB-FIP Model Code 1990 (CEB Bulletin d'Information n° 203, July 1991) 
adopted the new concepts without deviating from the design operational rules of the 
previous Recommendations. 

In the framework of the Construction Products Council Directive 8911 061EEC, 
Interpretative Documents on the essential requirements adopted in this Directive have 
been prepared. The Interpretative Document ID 1 concerns Mechanical Resistance and 
Stability. Intended to be a guideline to the preparation of CEN Standards, ID 1 
expresses basic concepts directly related to structural design. 

The main steps of the evolution of the methods adopted in the design of buildings 
and other civil engineering works correspond to the introduction of the following 
general concepts: 

- ultimate and serviceability limit states 
- probabilistic formulation of structural safety 
- essential requirements and performance criteria 

C. Guedes Soares (ed.), Probabilistic Metlwdsfor Structural Design, 1-15. 
© 1997 Kluwer Academic Publishers. 
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- quality assurance and quality management 
- hazard scenarios and risk analysis 
- risk management and technical insurance 
- basic variables. Types of knowledge. 

The concepts of limit state and of probabilistic safety were ftrst presented in a thesis 
by Max Mayer published in 1926 entitled Safety in Constructional Works and its 
Design According to Limit States Instead of Permissible Stresses (1). Although the 
fundamental ideas were well expressed in this thesis, the concept of limit state was 
introduced in codes only in the middle forties, (in the Soviet Union). Pioneer work on 
probabilistic safety in structural engineering is due to Freudenthal (2) and Torroja (3) in 
the late forties. The design method based on partial factors, suggested by Torroja, was 
ftrst implemented in the CEB recommendations of 1963 (4). 

The fundamentals of the probabilistc methods for structural design are not 
presented in this lecture, which covers concepts of a more general character. However 
the concepts which are presented form a convenient introduction to the probabilistic 
approach. 

2. Requirements and Performance Criteria 

The notions of requirement, performance criteria and limit state are intimately related. 
Requirements are general conditions imposed on the behaviour of the construction by 
the owner, the user or the authorities. In order to derive methods of evaluation 
(analytical or experimental) to be used in design, requirements have to be transformed 
into performance criteria. Requirements indicate the needs in general terms; 
performance criteria are technical conditions which express the requirements. Limit 
states derme the borders between acceptable and unacceptable performance. 

As in many other technical activities, the guidance to building engineers is usually 
given by means of standards. They are usually expressed in a prescriptive way, 
indicating how things should be done, and not justifying the reasons for doing so, and 
not stating the aims to be attained. The drawbacks of this presentation were ftrst 
recognized in the aviation industry which in 1943 recommended that codes should be 
stated in terms of objectives rather than speciftcations. That is, the code should spell out 
what is to be achieved and leave the designer to choose how this will be achieved (5). 

Lists of human requirements in housing have been presented by Blachere in 1966 
(6). In 1970, the CIB set up the Working Commission W60 - Performance Concept in 
Building; in 1982 they published a comprehensive state-of-the-art review of the 
performance approach in building practice. 

One of the ftrst wide applications of the performance concepts to housing was 
carried out in the Operation Breakthrough by the National Bureau of Standards in 1970 
(7). This operation, sponsored by the Department of Housing and Urban Development, 
was based on two main concepts: 
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The adoption of performance criteria for evaluation of prototype innovative and 
technologically advanced housing systems, and the use of quality assurance provisions 
that establish general requirements and guidelines for the quality of production units. 

The Committee on Housing Building and Planning of the Economic Commission 
for Europe of the United Nations, under the project aimed at international 
harmonization of standards and control rules for building and building products, has 
further developed the performance concept. Since 1978 this Committe has been 
concerned about defming human requirements. In 1981 they published (8) a list of 20 
requirements related to the housing user, and 5 requirements for the limitation of 
harmful effects or nuisances produced by the building and affecting its surroundings. 
The Compendium of Model Provisions for Building Regulations details these 
requirements (9). 

In the field of structural behaviour, ISO 2394 indicates three fundamental 
requirements: safety, serviceability and durability. 

In the commentary to this document, the Joint Committee on Structural Safety 
enlarged the list of requirements by considering, in parallel to the safety requirement, 
the structural insensitivy requirement (limited damage due to expected and unexpected 
hazards) and further requirements on economy, adaptability, esthetics, etc. 

3. Quality Assurance 

According to the ISO Standards, series 9000, quality assurance is a set of planned 
activities which lead to the guarantee that a product or a service satisfies established 
requirements. 

In the planning of quality assurance, four levels are usually identified: 
Level 1 - Activity limited to the quality control of the fmal product. 
Level 2 - Includes the control of the production process. 
Level 3 - Extends the control to the production management, including production 

programming, defmition of responsibilities, documentation and auditing. 
Level 4 - Conducts the whole management process, including flow of information, 

motivation, professional upgrading, etc. 
The choice of the quality assurance level should depend on the importance of the 

risks to be avoided. 
The activities to be carried out in any quality assurance program are: 
- plan the activity (written specification) 
- follow the established plan (respect the planning) 
- record all steps (written control) 
The implementation of quality systems in an organization is influenced by many 

factors such as the objectives of the organization, the product or service under 
consideration and the specific experience of the organization. The international 
standards of the series 9000 aim to clarify the relationship among the principal quality 
concepts and to provide guidelines that can be used for internal quality management 
purposes (ISO 9001/3). These ISO standards are adopted as national standards by 
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several countries. That is the case for Portugal, with the Normas Portuguesas NP-
3000/0/1/2/3, published in 1986, and for the U.K. with the British Standards BS 5750, 
Prts 0, 1,2, and 3, published in 1987. The following comments refer to the British 
Standards. 

BS 5750 Part 0 concerns principal concepts and applications. It is divided into 
Section 0.1 - Guide to selection and use and Section 0.2 - Guide to quality management 
and quality system elements. 

A vocabulary on quality terms is given in ISO 8402. However in BS 5750 it was 
deemed convenient to redefme some terms considered of particular importance such as: 
quality policy: the overall quality as formally expressed by the management; quality 
management: the aspect of the whole management function that determines and 
implements the quality policy; quality sytem: the organizational structure, 
responsibilities, procedures, processes and resources for implementing techniques and 
activities that are used to fulfil requirements for quality. 

As is shown by these defmitions, there is an intimate relationship between quality 
assurance and management. Quality systems may be used in two different situations; 
contractual and non-contractual. In the first case, it is contractually required that certain 
quality system elements be part of the suppliers' quality system. In the second case, 
quality assurance is applied by the initiative of the producer as an adequate 
management policy. 

Although quality assurance is extensively implemented in many different 
industries, its use in building and particularly in structural engineering is limited 

As indicated, an early document in this field was published by the Joint Committee 
on Structural Safety in 1981. This document considered that the basic concepts of 
quality assurance are: the functional requirements, the use and hazard scenarios, the 
structural concept, the responsibility and the control. 

4. Hazard Scenarios and Risk Analysis 

Rational structural design should be based on adequate idealization of the structural 
system and of its behaviour. Risk analysis is a very useful tool on which to base 
economic and engineering decisions. 

It is particularly adequate for dealing with catastrophic low probability high
consequence events, as presented in nuclear, chemical and oil industries (10). The 
methods of risk analysis are permeating every branch of construction. 

To carry out risk analysis it is necessary to identify the assumed hazards, to 
estimate their probability of occurrence during a reference interval of time, and to 
estimate the probability of the loss, or amount of damage which corresponds to the 
occurrence of each hazard. The different amounts of loss are obtained by combining 
these probabilities. These probabilities, including information derived form other 
sources, mainly concerning human behaviour, should guide economic and technical 
decisions. In several cases, not only the central values of the risk function, but also the 
extreme values corresponding to small and high fractiles are paramount for guiding the 
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decisions. This is particularly so when distinction is made between the interests of 
individuals and society. 

In risk analysis the following five phases may be defmed: 
I. identification of the hazard 
II. analysis of the hazard 
III. risk estimation 
IV. assessment of consequences 
V. risk evaluation and control 
Thus, it is necessary first to identify the hazard scenarios, to search for cause and 

effect relationships, what may be done within disaster planning activities. Historic 
information, possibly obtained by consultation of data bases, or by interviews with 
people involved, may be useful. 

In generic risk analysis, accident logic trees are usually adopted. Giannini, Pinto 
and Rackwitz exemplify how to deal with them into structural problems (11). 

Logic trees are formed by two parts, the first one describing alternative hypotheses 
concerning combination of actions, types of hazards, mechanical models, etc., and the 
second part describing the physical states of the sub-systems in which the structure is 
divided. 

The tree should contain all the possible sequences through which the structure may 
pass, and the quantitative probabilistic assessment of each sequence. The last column 
identifies the different damage states (limit states) and indicates the fmal probabilities of 
these being exceeded. 

The probabilistic assessment should be obtained by a combination of frequentist 
and subjective approaches. The human intervention in the process should be considered 
by including strategic decisions and procedures, as well as human errors, (due to 
omission and commission). 

The probability distribution function which defmes the risk should be obtained by 
combining the probability of occurrence of the hazard with the probabilities of the 
consequent damages. 

Finally, risk evaluation and control may be based on the comparison of risk in other 
systems, identification of attitudes to safety and risk, impact of risk (at different social 
levels), and benefit studies, particularly those concerning investing in increased safety. 

5. Risk Management and Technical Insurance 

For a specific activity, the aim of risk management usually consists in increasing the 
benefit and in reducing the loss and/or in reducing the corresponding risk. To achieve 
these aims potential strategies may be followed (12): 

I. eliminating or avoiding the possible occurrence of the hazards at the origin. 
II. avoiding the hazard acting in the system, e.g. by modifying the project concept, 
III. controlling or reducing the losses, e.g. by adopting safety measures, 
IV. adopting a design which corresponds to a sufficiently small risk, 
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V. accepting the possibility of occurrence of the loss and preparing to reduce its 
consequences. 

These strategies may be combined. 
These rules are of a general character. For structural design, their implementation 

may be exemplified: for a hazard consist the of the impact of a car against the column 
of a building possible strategies are: 

I. prevent cars from approaching the building, 
II. install a protection for the column that would prevent the impact, 
III. create a bracing system to avoid the collapse of the building if the column fails, 
IV.design a sufficiently robust column, with a small probability of failure by 

impact, 
V. assume that the column may fail, but avoid installing services on it, to reduce 

the cost of a possible failure. 
Risk evaluation should be based on overall costs. Overall costs should be obtained 

by adding the usual production costs and the non-quality costs including: prevention, 
assessment, controlling, testing, observation of the behaviour, commissioning, 
professional liability insurance, all risk and other insurances, and other administrative 
charges. 

Life-cycle cost is the total cost of a system over its life time. To obtain the values 
over the life time, annual values should be discounted and integrated (13). Discounting 
involves converting cash-flows that occur over time to equivalent amounts at a common 
date. This common point is usually the starting point of the life-cycle cost analysis. 
When estimating benefits and costs in monetary terms it is necessary to consider 
inflation. Distinction should be made between current money (which is adjusted by 
taking inflation into account) and constant money (which is not adjusted by the effects 
of inflation or deflation). 

6. Basic Variables. Types of Knowledge 

As an introduction to probabilistic methods for structural design particular attention is 
due to the concept of probability. In probabilistic reliability, it is assumed that the basic 
variables which represent the actions, the mechanical properties of the materials and the 
geometry of the structural elements are probability distribution functions, or in more 
general terms, stochastic processes. If their randomness may be neglected, variables 
may be assumed to be deterministic. Furthermore it is generally accepted that 
probabilities are not only a counterpart of frequency but also a subjective measure of 
degree of confidance. By the adoption of the Bayesean approach, a priori information 
can be ....... the theory of probabilities is a powerful tool to base decisions (14). 

The theory of fuzzy sets is an alternative way to idealize the dispersion of variables. 
Criated in 1965 by Zadeh, it gives mathematical expression to the imprecision of 
knowledge usually expressed by language. The interest in fuzzy sets, fuzzy control and 
fuzzy systems is rapidly growing (15) and rmding application on many multiple 
scientific and technical branches (16): cognitive engineering (17) and architecture (18). 
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From a conceptual point of view, fuzziness and randomness are completely distinct, 
one belonging to set theory and logic, and the other to measure theory. Fuzziness 
concerns the modelling of inexactnesses due to human perception processes, and 
randomness concerns statistical inexactness due to the occurrence of random events. 
However approaches for combining the two concepts have been established, leading to 
the theory of fuzzy random variables (15). 

The theory of games, in the field of decision theory, is due to von Neumann and 
Morgenstern (19). The simplest and most typical problem of the theory of games is the 
two person game. Consider two players A and B, each one having the possibility of 
making a fmite number of choices. The payments of player B to player A are defmed 
by a matrix aij' The game consists in player A choosing a and player B choosing a 

column of the matrix. Each player tries to minimize his losses and maximize his 
winnings. 

Both players know the matrix, but each one ignores his adversary's choice. The 
hypothesis that the adversary will try to minimize his losses and maximize his winnings 
may be adopted as a convenient base for decisions. 

Let us analyse each player's choices and their consequences. When A chooses row 

i, he is sure to receive at least min(aij) j; trying to receive as much as possible, this 

player will be interested in choosing that row i for which the min( aij ) j is maximum. 

Thus will aim at max( min(aij) j ); . Likerwise, when B chooses column j, he is sure to 

pay no more than max(aij); Thus will aim at max(min(aij)j);' 

The decision rules that consists in choosing these maxima or minima are called max 
min and min max respectively. 

Ifmatrix aij is such that 

(1) 

the game is called strictly determined and has the value v. In this case it can be proved 
that the indicated stategies are the most convenient for both players. 

In general max(aij); is differennt from min(aij);' In this case it is no longer 

possible to define a deterministic choice (pure strategy) for which the game has the 
same value for the both players. However this aim can be secured by using a more 
involved strategy. 

Let us consider for instance a very simple game defmed by the following matrix 

(2) 
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In this case. Suppose that A decides, in a random way, to choose row I with probability 
p and row 2 with probability I-p. If then B chooses column I, the expected value of A's 
income will be 

(3) 

If, however, B chooses column 2, the expected value of A's income will be 

(4) 

Thus, A can choose a strategy for which the expected value of his income is 
independent of the decisions of B. In the present case he has to take 

VI = v2 = p= I - p = 112. (5) 

B could think the same and make his payments independent of A's decisions. It is 
obvious that the expected value of A's income equals to the expected value of B's 
payments. 

A strategy including a random choice is called a mixed strategy. 
A strategy is optimal for A when he obtains an expected v that cannot be reduced 

by the choices of B. For non-strictly determined games it can be proved that optimal 
strategies are mixed strategies. The main object of the Theory 0/ Games is to fmd 
optimal strategies. 

Note that the decision rules derived from the Theory o/Games are entirely different 
from those corresponding to a probabilistic idealization. If, for example, in the above 
instance of the game, A is convinced according to probabilities that he can estimate 
that B is making choices in a random way, A will no longer consider the minimax rule 
as convenient and may prefer to use Bayes's theorem. 

The theory of games is based in strategic choices of the values of the variables and 
these are different from the probabilistic concepts that are the basic tools of structural 
safety assessmente. 

Thus, four types of knowledge have been identified: deterministic, probabilistic, 
fuzzy and strategic. They correspond to different theoretical formulations. 

7. Rational Decisions and the Concept of Utility 

The design of structures on a purely economic basis corresponds to the decision rule: 
minimize the expected value of the overall cost. This simple economic criterion may be 
improved by introducing the concept of utility. The first defmition of utility was 
presented by Daniel Bernoulli in the sentence: the utility of an additional profit is 
inversely proportional to the existing wealth this implies that the concept of utility is 
dependent on the status of the person that perceives it. 



BASIC CONCEPTS OF STRUCTURAL DESIGN 9 

The following defmition of utility is due to von Neumann (19). Consider a set of 
outcomes, 9 1 ••• 9 n • The correspondence between these outcomes and a set of real 

numbers 1l1 ••. ll n , utilities, is established in the following way. 

It is assumed that an order of preferences can be established to the outcomes 9;. 
Thus the outcomes can be ordered in the following way: 

(6) 

Where the sign < means that if it is possible to choose between outcomes 9; and 

9 ;+1' the second one is chosen. The concept of utility allows one to quantify these 
preferences. This quantification assumes a personal rational behaviour; the scale of 
utilities is arbitrary and only measures the relative value of the preferences. 

Given the outcomes 91 and 9 2 , the utility 112 expressed as a function of utility Jl, 
is given by 

1- P 
III (9 1)

p 
(7) 

Here p is a probability in a game which consists in obtaining the outcome 9 I with 

probability p and outcome 92 with probability I-p. The value of p is chosen by the 
person who is defining the scale of utilities which reflects his preferences. 

The type of outcome 9; is not specified. For economic problems outcomes are 
usually amounts of money. In this case the indicated defmition allows one to relate a 
scale of monetary values to a scale of utilities. In general this relation is non linear. 

The shape of the curve reflects the utility for a given person of a given amount of 
money, Fig. 1. This utility depends in a large measure on the fortune owned. The scale 
of amounts of money should be expressed in national or regional currencies, such as 
dollar or European units. 

UTILITY CURVE 1 

L_--- curve 2 

AMOUNT OF MONEY ($) 
(FORTUNE OWNED) 

Figure I. Relationship between utility and amount of money (fortune owned). 
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We may illustrate the relationship between utility and money shown in Fig. 1 by 
considering the behaviour of people agreeing or refusing to participate in a probabilistic 
game. One player may decide to gamble, even if he knows that the expected value of 
the winnings is smaller than the cost of participating in the game (such gambler 
considers the utility of large amounts of money more than proportional to the utility of 
small amounts (curve 1). On the other hand a player may decide not to gamble even 
knowing that the expected value of the winnings is larger than the cost of participating 
in the game (considers the utility of large amounts of money less than proportional to 
the utility of small amounts (curve 2). 

The usefulness of the concept of utlity implies that those who have a decision to 
take are able to assign utilities to the various possible consequences of their choices. In 
many areas of human activities this may not be possible. However the concept of utility 
is a step toward the quantification of decision rules as compared with simple monetary 
terms. The theory is particularly useful in formulating trade-offs in problems which 
deal with engineering compromises. 

Sometimes, utility and monetary gain are equivalent: expected utility equals 
expected gain, and optimizing the gain coincides with optimizing utility. After a 
number of cases, the average gain per case will approach the expected gain. The 
decision rule is rational. In the long run any other rule will give a smaller gain. 

On the other hand, the decision maker may be in a situation where only once or a 
few times in a life time, has he to deal with a case of personal importance for him. A 
prudent decision maker will prefer the safe to the unsafe, while the daring decision 
maker will prefer the opposite if there is a greater gain to be made by this choice. The 
choice of the prudent will tend to move to a smaller gain than the expected one, but 
with a smaller probability of the expected value being exceeded. The choice of the 
daring one will do the opposite. 

These types of choices may be expressed by non-linear relationships between utility 
and gain, such as shown in figure 1. 

8. Implementation of Basic Concepts 

The vast Eurocodes programme and the great amount of work involved in it, gives it a 
special role in the guidance of other structural codes. 

A first example of this assertion is the draft: DOl European Greenhouse Standard 
prepared by the International Society of Horticultural Science, dated June 1991 (20). 
This document is based on the draft of Eurocode 1, June 1990 and on the drafts of the 
other Eurocodes available to this date. 
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TABLE I. Document D 01 introduces three classes of greenhouses according to Table I: 

Design Classification 

Class Minimum Design Life, R (years) 

Gl 15 

G2 10 

G3 5 

TABLE 2 

Factors 

Adjustment 
Factor Classification 

Wind Snow Factor 

0.906 0.710 0.925 

0.873 0.612 0.900 

0.815 0.445 0.850 

For these classes Table 2 shows the adjustment factors on the 50 year recurrence of 
interval wind velocities and snow loads. The transfonnation of wind velocities to 
different recurrence intervals is carried out according to Eurocode 1. The characteristic 
actions thus obtained are multiplied by a classification factor, also indicated in the table 
2. 

According to 001, after applying these factors, the designer should follow the usual 
Eurocode rules. 

It is possible to compute the theoretical probabilities of failure which correspond to 
each class by adopting the methods and tables presented in (21 and 22). This 
computation leads to the following values (Table 3): 

TABLE 3 

Class Min. design life, Yearly probability Probability of failure 
R, Years of failure in R years 

GI 15 5x104 75x104 

G2 10 10x10-4 100xl04 

G3 5 43x104 215x10-4 
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Glasshouses G2 have the probability of failure in 10 years of 10-2 which would 
correspond to a theoretical mean life time of the order of magnitude of 1000 years and 
not 10 years as suggested by their label. The situation is similar in the other cases. The 
reference to life time is meaningless. 

The aim of introducing safety classes should be to optimize the overall cost. This 
optimization should not be based on probabilistic reliability alone, and should include 
quality assurance and economic considerations. The reference to design life is 
misleading. Designing for useful life is usual for electric components and similar 
products (23), and involves the concept of durability. Present knowledge in civil 
engineering is insufficient to quantify this criterion. 

A further comment on DOl concerns the numerical values of the adjustment 
factors. It is excessive to defme these factors by three significative figures. It is 
considered that the drawbacks and omissions of DOlI mainly follow from omissions 
of Eurocode 1. Recently the decision was taken to prepare a first section on Basic 
Principles to be included in EC 1. This section should deal with risk analysis, quality 
assurance and safety differentiation. 

A second example of draft of standard which is based on the Eurocodes is the 
document CENITC 152 N30 - Fairground and Amusement Park Machinery and 
Structures - Safety dated June 1991 (24). This draft covers a broad variety of structures 
and machinery. In contrast to the standard on greenhouses, this standard is concerned 
mainly with the safety of persons, public, passengers and personal, and not with an 
economic optimization at the expense of reduced safety. The document produced by TC 
152 is based on past experience and risk analysis. The list of references includes the set 
of Eurocodes, a large number of European norms and ISO Standards. However it 
excludes the ISO basic standards on Quality Assurance, series 9000. As the principles 
of quality assurance are in fact followed, the reason for this omission is not understood. 

The draft deals with hazard identification, risk assessment and risk reduction in 
general terms. Risk reduction is detailed for the different types of machinery and 
structures. Static structural design follows the general principles of the Eurocodes. 
Design actions are subject to adaptations due to the special nature of the devices. 
Aspects such as location, duration and period of installation, supervision by an operator 
and possibilities of protecting and strengthing are duly considered. The document 
covers design, manufacture and supply, operation and installation, and approval, 
examination and test procedures. The style concerning design is prescriptive. 

The publication of these drafts was the main reason for the approval by CEN TC 
250, in the London September 1991 meeting, of Resolution nO 32 requiring Structural 
Eurocodes design rules to be dealt with in TC 250 only. 

They two examples mentioned call the attention for the need for defming a policy 
concerning the coordination of the Eurocodes, not only between them, but also with 
other documents to which they are related. 
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9. Conclusions 

Probabilistic methods of structural design have a firm theoretical supprot, and may be 
implemented at different levels compatible with the importance of the problems to be 
solved. However they should be considered as one of several means of promoting 
safety. Risk management and quality assurance, associated with probabilistic 
reliability, lead to improved solutions and permit the adequate treatment of problems, 
such as design optimization and safety differentiation. The strict formulation within 
probabilistic reliability of these two problems is in general unsatisfactory, from both 
technical and economic points of view. 

Eurocode 1 should include the presentation of the most important basic concepts 
according to a current formulation. In the future it would then be easy to improve the 
specific drafts of the various standards in this field. There is no practical difficulty in 
introducing these concepts, as the present method of partial factors of safety is 
compatible with the broad formulation indicated. 

Cranston, in his paper Reflections on Limit State Design (25) summarizes the 
controversy concerning the use of states design and probabilistic methods which has 
been taking place in the UK during the last 25 years. This paper shows how difficult it 
is to introduce new concepts in engineering practice, even if these are simple, logic al 
and clear. It is recognized that most of critical comments were pertinent when first 
presented. However they are presently superseded, not by the return to the allowable 
stress design method, but by the new basic concepts which have been described here. 

At the TC 250 London meeting, a resolution was adopted expressing the need for 
all CEN/TC's to be made aware of the Agreement clauses requiring Structural 
Eurocodes design rules to be dealt with in- TC 250 only. The aim of this resolution is to 
stop work on structural design rules outside TC 250, in particular the work concerning 
greenhouses. 

However, from our point of view, the main reason for the unsatisfactory orientation 
of the draft concerning greenhouses is due to the omission in the Eurocodes of guidance 
on how to deal with safety differentiation problems which are basically economic. 

At the London meeting. Breitschaft presented a list of arguments expressing the 
importance of the Structural Eurocodes for the European Community and for CEN. In 
this list it is indicated that approximately 35 TC's are concerned with questions of 
structural design. To give guidance to these various problems, and to deal with the 
numerous mandates received from the Communities, it is imperative to draft the new 
Basic Principles less strictly than in the past, making use of the most important 
concepts dealt with here. Franco Levi (26), expresses the point of view that civil 
engineering codes should not serve merely as a basis for day-to-day design and 
execution" but they should also work as an objective record of the significant progress 
made by research everywhere, and as a carefully compiled compendium of what has 
been done to meet social needs in the field of building". 

However we should not forget the convenience of preparing, in parallel to design 
standards, guidelines on design, execution and use which may include information from 
different sources, outside the strict field of standardization. Design standards should be 
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concise, open and covering the fundamentals, to the guidelines: design aids, details 
and general infonnation. Recent progress in infonnation technology allows an 
efficient storage and retrieval of large volumes of infonnation: multilingual texts, 
drawings, photographs, and videos; this material can be supported by advanced expert 
systems. The hardware and the software needed to progress along these lines is avail
able. The problem is to share this task in the most efficient way. 
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QUANTIFICATION OF MODEL UNCERTAINTY IN 

STRUCTURAL RELIABILITY 

C. GUEDES SOARES 
lnstituto Superior Tecnico 
Universidade Tecnica de Lisboa 
1096 Lisboa, Portugal 

ABSTRACT The different types of uncertainties are considered and their differences 
are identified. Various methods of statistical analysis of data are reviewed and their 
usefulness and domain of applicability are identified. The common methods of 
representing model uncertainties are indicated and several examples of assessment of 
model uncertainties indicate how the principles described can be applied. 

Introduction 

The formulation of reliability based structural design implies the recognition that the 
physical variables considered in engineering are subjected to some variability and thus 
should be treated as random variables. The earlier treatments of reliability dealt with the 
uncertainty due to the randomness of the physical variables i.e., with their fundamental 
or inherent variability. 

Soon after it was realised that the description of the random variables was made 
through parameters that had to be estimated from the analysis of samples of data. 
However the statistical methods for estimating parameters from samples also yield 
confidence intervals to the estimated values i.e., the parameters can also be considered 
as uncertain quantities and the uncertainty of the estimates depends on the size of the 
sample that is used. The scope of reliability analysis was expanded then, including both 
the fundamental uncertainty of the variables as well as the statistical uncertainty of the 
parameters that describe those variables. In this context the use of Bayesian 
formulations was particularly useful (Cornell, 1972). 

A source of differences in the calculated values of the reliability index of a given 
problem are the different methods of making the relevant engineering predictions. For 
any engineering problem there are often several methods available of different degree 
of sophistication and accuracy, ranging from the simple ones based on analytical 
formulations to the complicated ones based on numerical methods. Although the 
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physical problem is the same, the predictions made with the different engineering 
theories will be different. This has been recognised as an additional source of 
uncertainty, which has been called model uncertainty and has been incorporated in 
reliability formulations. 

While the inherent or fundamental variability of a physical phenomenon cannot be 
changed, the model uncertainty of a mathematical model can be reduced by improving 
the model i.e. by making more realistic assumptions and by including more physical 
effects in the model. 

While in earlier formulations (Ang and Cornell, 1975), this uncertainty was called 
subjective and was generally estimated by engineering judgement, more recently 
quantitative methods have been adopted and it has became clear that this source of 
uncertainty needs to be represented systematically when developing reliability 
formulations, together with the models of fundamental uncertainty. 

This work will address the topic of model uncertainty dealing with methods to 
quantify it and to incorporate it in a structural reliability analysis. The assessment of 
model uncertainty is very much dependent on the problem at hand so that various 
examples will be included from load modelling, response analysis and strength 
modelling, to illustrate possible ways of handling its assessments. 

Uncertainty Classification 

While physical laws describe the regularity of phenomena, relating the expected values 
of the different quantities of interest, the uncertainty analysis describes the fluctuations 
that can be superposed on that regularity. In developing and applying physical laws it is 
always important to assess their limits of applicability and to compare them with 
experimental evidence. In doing so it is vital to be able to distinguish between the 
systematic mismatches that result from inapplicability of the theories and those that are 
simply a result of natural variability. 

A better knowledge of the effect of some variables in the physical processes and a 
detailed analysis of the measuring methods led to a more widespread treatment of 
different types of uncertainties. Three basic types have been considered, namely the 
fundamental or intrinsic variability of physical phenomena, the uncertainty associated 
with the models used in the analysis and the statistical uncertainty associated with the 
estimation of the values of the parameters of probabilistic distributions as described by 
several authors in relation with structural reliability (Benjamin and Cornell, 1970; Ferry 
Borges and Castanheta, 1971; Ang and Tang, 1975, 1984; Thoft-Christensen and Baker, 
1982; Augusti, Baratta and Casciati, 1984; Madsen, Krenk and Lind, 1986 ; Melchers, 
1987). 

The fundamental uncertainty concerns the random nature of some physical 
phenomena, which is described by representing the physical quantities as random 
variables or as random processes, depending on whether it is important or not to 
account for time variation. 
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Model uncertainty describes the limitations of the theoretical models used in the 
analysis. They are the mathematical models of the physics of load, load effect or of 
structural capacity assessment, whose uncertainty is often related with the level of detail 
used in describing the phenomenon studied. 

Finally, statistical uncertainty results from the estimation of the parameters of the 
probabilistic models from limited samples of data. It can be quantified with the methods 
of classical statistics, although the inclusion of statistical uncertainty in parameter 
estimation is the subject of Bayesian statistics (Cornell, 1972). 

Often the values of the parameters that govern probability distributions are 
estimated from samples of data. Different assertions can be made about a population 
assuming that it is described by a given probabilistic model with the estimated values of 
the parameters. Bayesian statistics recognise that the parameter values are themselves 
random and include the effect of that uncertainty on the uncertainty of the predictions. 
Bayesian analysis also provide the framework to incorporate model uncertainty in the 
analysis. 

Statistical uncertainty and Bayesian formulations can also cover the uncertainty of 
the probabilistic model adopted instead of only its parameters. Increased amount of data 
will generally decrease this type of uncertainty and clarify which probabilistic model 
better describes a set of data. 

The method of assessing uncertainty depends on the type under consideration and in 
the case of model uncertainty it depends very much on the type of problem under study. 
Generally speaking fundamental and statistical uncertainty can be assessed by applying 
classical statistical methods to the analysis of data. However model uncertainties, 
although using also classical statistical methods, have to apply them to different types 
of situations. Of particular interest are the cases in which model uncertainties cannot be 
quantified objectively but are assessed on the basis of expert opinion (Cooke, 1991). 

Formulations of Model Uncertainties 

An important part of the work on model uncertainty is concerned with the mathematical 
models adopted to describe loads, load effects or strength capacity. These problems are 
more important in the design situation than in the analysis case because the former 
methods are of a more simplified nature. Furthermore, since at the design stage often 
many parameters that are the result of fabrication procedures are not known, the design 
formulations represent explicitly only a limited number of variables, becoming less 
accurate when the unrepresented variables exhibit values out of their normal range. The 
differences between the formulations in these situations have been explored in a 
specific example dealing with analysis and design of a plate subjected to collapse by 
compressive loading in Guedes Soares, (l988a). 

To assess the model uncertainty of the mathematical models of physical phenomena 
it is necessary to compare the results of the method under consideration with the 
predictions of a more sophisticated one or with experimental results. In the later case it 
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must be ensured that the experimental variability is quantified and deducted from the 
total uncertainty. 

The first formal treatment of this type of uncertainties is due to Ang and Cornell 
(1975), who represented it by a random variable B which operates on the model 

prediction X to yield an improved estimate of the variable X: 

X=B.X 

The variable B represents the model error, so that its mean value and standard 
deviation quantifies the bias and the uncertainty of the model. Ang and Cornell used to 
call these the subjective uncertainties because most often they were based on 
engineering judgement. 

More recently DitIevsen (1982) dealt with the incorporation of model uncertainty in 
advanced first order second moment calculations and showed that a representation 
invariant to mathematical transformations of the limit state function is of the form: 

X=aX+b 

where a and b are normally distributed random quantities. Comparison with the 
previous equation shows that it is basically a generalisation that adds a constant term. 

Lind, (1976) dealt with model uncertainty in strength calculations emphasising that 
the choice between two calculation methods of different degree of sophistication should 
be made on the basis of economic considerations. This means that the model 
uncertainty of an approximate calculation method should be weighted against the extra 
benefits and costs of a more refined model. Lind determined the model uncertainty by 
comparing the predictions of two calculation methods of different degree of 
sophistication. 

However, in most cases the model uncertainty has been derived from comparisons 
between model predictions and experimental results as for example with beam columns 
(Bjordhovde, Galambos and Ravindra, 1978); with the collapse of stiffened cylinders 
(Das, Frieze and Faulkner, 1982); with the fatigue capacity of welded joints (Engesvik 
and Moan, 1983); with the compressive strength of stiffened plates (Guedes Soares and 
Soreide, 1983); with the compressive strength of plate elements (Guedes Soares, 
1988b); or with the collapse strength of different types of structural components 
(Faulkner, Guedes Soares and Warwick, 1987 and Smith, Csenki and Ellinas, 1987). 

Most of the initial treatments of model uncertainty dealt with strength formulations. 
However applications to load effect predictions have also been presented. In Guedes 
Soares and Moan, (1983) the model uncertainty in the theories of wave kinematics were 
derived from comparisons with measurements. The uncertainty in wave spectra was 
examined by Haver and Moan, (1983) and its effect on the responses was studied by 
Guedes Soares, (1991). The uncertainty in long term formulations of wave heights and 
wave induced responses was considered by Guedes Soares, (1986) and Guedes Soares 
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and Moan, (1991) respectively. The uncertainty in the calculation of transfer functions 
for motions and loads was studied in the case of ships by Guedes Soares, (1991) of TLP 
platforms by Eatock Taylor and Jefferys, (1986) and of semi submersible platforms by 
Incecik, Wu and Soylemez, (1987). 

Very often the design methods involve several parameters so that the model 
uncertainty can only be adequately represented in its whole range of variation by 
multiple regressions. Bjordhovde, Galambos and Ravindra, (1978) described the bias of 
a design equation for axially compressed tubular columns as a function of column 
slenderness. Guedes Soares, (1991) modelled the bias of the transfer functions of wave 
induced loads in ships as a regression of ship heading, block coefficient and speed. 
Therefore the basic formulations of the model uncertainty indicated in the two previous 
equations have very often to be extended to the multivariable case using a problem 
dependent formulations. 

In these cases the observed variability is a result of both the model uncertainty and 
of the measurement uncertainty of the experimental method. The model uncertainty can 
only be isolated if the measurement uncertainty is identified and quantified. 

Measurement Uncertainty 

The problem of experimental errors has been considered for a long time and methods 
are available to quantify it (Mandel, 1964). Generally one wants to measure a material 
property that has an inherent variability with a measurement equipment which is in fact 
an engineering system that responds to some external effect. As such, even if the 
external effect would be absolutely identical, in repetitive trials one would expect that 
some variability of measurements would be apparent. This is the measurement 
uncertainty which cannot be eliminated but which can be reduced by repetitive 
measurements of the same physical quantity which is known to be constant. 

Using this procedure, one is able to quantify the uncertainty of a given measurement 
method and when applying it to a series of measurements in a sample of specimens with 
physical variability, one can often separate the uncertainty of the measurement method 
from the variability of the measured physical property. 

Many of the variables used in engineering models are evaluated trough 
measurements. However, measurements may be subjected to random and to systematic 
errors which need to be quantified. Measurements can be described by their accuracy 
and precision which can only be assessed in repeatable and reproducible measurements. 

The repeatability of measurements is determined from the closeness of the 
agreement between the results of successive measurements of the same quantity 
subjected to the same conditions as regards the method of measurement, the observer, 
the measuring instrument, the location, the conditions of use, and in addition the 
measurement must be made over a short period of time. The reproducibility of 
measurements is defined as the closeness of the agreement between the measurements 
of the same parameter, when they are carried out under changing conditions, as regards 
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the factors mentioned previously. Both concepts can be quantified by the dispersion of 
the results. 

The precision of a measurement is the closeness of the agreement between the 
results of applying the experimental procedure several times under the same prescribed 
conditions. The accuracy is the closeness of the agreement between the results and the 
true value of the measured parameter. Thus, while imprecision is quantified by the 
dispersion of the results about the sample mean, inaccuracy is reflected by the shift of 
the sample mean from the true mean. The quantification of the bias and uncertainty of a 
measuring process is a prerequisite to the correct derivation of the natural variability of 
the quantities that are being measured. 

Measurement uncertainties can be represented by an uncertain factor B that 

multiples the correct value of the variable X to yield the measured value X: 

X=BX 

If the measurement error and the measured variable are statistically independent, the 
mean and the uncertainty of the variables are given by: 

where mr is the true mean of X, X is the mean of the measurements, V: is the 

coefficient of variation of the measured values, VB and Vx are the coefficient of 
variation of the measurement error and of the variable itself. If the mean of the variable 
is known, we can defme the bias of the measurements from the expected value of the 
variable Le.: 

In this case the variance of B is given by: 

where the variance of the mean is the variance of the variable divided by the number of 
observations N. This expression shows clearly that the measurement uncertainty will 
decrease with increasing number of observations. 

An interesting situation that happens often is the indirect observation in which case 

the value of X is estimated from measuring Y: 
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X=a+bY+& 
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where a and b are regression coefficients and & is a normally distributed random 
variable with zero mean and standard deviation cr E' which quantifies the dispersion 

relative to the regression line. Considering a and b and cr E as constants, the statistical 

moments of X are given by: 

Guedes Soares (1990b) discusses of this problem, while Guedes Soares, (1988a) 
provides an example of an analysis of experimental results in which the measurement 
uncertainty is separated from the randomness of the parameters. 

Statistical Analysis of Data 

The various examples referred here indicate clearly that in most cases it is not necessary 
to assess model uncertainty based only on engineering judgement and that in most cases 
a quantitative approach can be adopted. Therefore, model uncertainties are objective 
uncertainties that are associated with physical models and which can be quantified 
based on the results of experimental or numerical studies. Model uncertainty can in fact 
be quantified by traditional methods of statistical analysis of data, as briefly 
highlighted hereafter. 

Statistical analysis of data is the basic approach of characterising the fundamental 
uncertainty of physical variables. Often model uncertainty is assessed from comparisons 
between theoretical predictions and measurements. These comparisons produce a set of 
data which can be analysed by various methods of statistical analysis that are covered in 
textbooks on statistics. 

A brief overview is provided here of the main techniques so that can be used to 
quantify model uncertainty, referring where appropriate examples of aplication in the 
assessment of model uncertainty. 

Sets of data can be appropriately characterised by descriptive statistics, which are 
ways of summarising data. Common ones are the mean, median, variance, range and 
the histogram. However, if the sets are random samples from a certain population, the 
descriptive statistics can also be used to draw inferences about the population. The two 
main problems in statistical analysis are the estimation of the parameters and the testing 
of hypothesis. An important inference is the specification of the probabilistic model of a 
population, which is a function of parameters to be estimated from samples of observed 
data. 

The inferences that can be extracted from data are point estimates, interval estimates 
or tests of hypothesis. An estimate may yield different values for different samples, 
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according to a sampling distribution. One is generally interested in estimators that are 
consistent, unbiased and have minimum variance. They should also extract the 
maximum information from the data available as do maximum likelihood estimators. 

The classical statistical inference is based on assumptions concerning the form of 
the population distribution, providing methods to quantify the population parameters. 
Generally the assumption of normal distribution is underlying the statistical tests but in 
some cases the previous experience may be too limited or the sample size may be too 
small to justify the choice of the distribution type. 

Another useful field of statistics is concerned with distribution free inferences both 
for testing and for estimating (Siegel, 1956; Gibbons, 1971; Conover, 1978). These 
methods are based on functions of the sample observations which do not depend on the 
specific distribution function of the population from which the sample was drawn. 
Inferences that do not depend on the value of parameters are called non-parametric, 
although this name is also used to denote all distribution-free inferences to distinguish 
them from the parametric inferences of classical statistics. 

The main requirements for non-parametric tests are only that the population be 
continuous and that the sample is random. The choice between the different methods 
must be based on the their power, that is on their sensitivity to changes in the factors 
tested and on their robustness or sensitivity to reasonable changes of magnitude of 
extraneous factors. In general parametric tests are more precise and non-parametric 
ones are more robust, which is particulary important for small samples. 

A fundamental assumption in statistical analysis is that the data analysed results 
from random sampling the population. Thus in analysing a new type of data it may be 
worthwhile to conduct a preliminary analysis to check the randomness and the 
independence of the samples of data. For this purpose there are different non-parametric 
tests based on runs. The data must be transformed in a succession of dichotomous 
symbols which can even be + and -, depending on whether the observation is larger or 
smaller than the preceding one. A run is defined as a succession of one or more 
identical symbols which are followed and proceeded by a different one. There are tests 
based on the total number of runs or on the length of the longest run. Whenever these 
are too small or too large the hypothesis of randomness must be rejected although due 
to different types oflack of randomness. 

Another hypothesis in which statistical analysis is often based is that the data results 
from independent observations. This assumption can also be tested with non-parametric 
tests based on rank order statistics. These are defmed as sets of numbers which result 
when each original observation is replaced by the value of an order preserving function. 
Still an important problem is to ensure that all samples that are used in a study are 
drawn from the same popUlation. In classical statistics use can be made of the F test to 
check that all samples are from a normal distribution having the same variance but 
different means. An application of several non-parametric tests to analyse load effect 
data can be found for example in Guedes Soares and Moan, (1982). 

To check the adequacy of a probabilistic model it may be necessary to estimate the 
location, scale and shape parameters. The estimation of parameters can be made by the 
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method of moments of regression or of maximum likelihood. The latter is generally 
more efficient but also more complicated to apply. In Guedes Soares and Henriques 
(1994) a case was presented in which the estimation of the parameters of the Weibull 
distribution describing wave data by the method of moments was providing clear 
differences from the results of the other methods. Non-parametric tests can also be used 
to check for the symmetry of a distribution, as well as for the goodness of fit. 

The Chi-square and the Kolmogorov-Smirnov tests, which are commonly applied, 
are also non-parametric tests. While the first one deals with histograms the latter is 
based on cumulative distribution functions. Although the Chi-square test is used more 
often, the Kolmogorov-Smirnov test is often preferable, specially for small samples. 
The Chi-square test groups the data, loosing thus some information. In fact the choice 
of the number of intervals can change the result of the test. Furthermore it is limited to 
sample sizes that give an adequate number of observations in each Interval. 

Interest is often not limited to the analysis of only one variable but is directed to 
several variables or to the effect that they can have on the outcome of a given process. 
In these cases regression analysis provides a framework to determine the relationship 
between random variables (Draper and Smith, 1966; Morrison, 1969). The regression 
equation indicates the expected value of the dependent variable conditional on the value 
of the regressed or independent variable. A measure of the uncertainty is provided by 
the standard deviation of the residuals or the standard error. 

Most common are the linear regressions which can be simple or multiple if applied 
to one or to several variables respectively. However, non-linear regressions can also be 
used whenever applicable. Examples of applications of simple regressions are found in 
Guedes Soares, (1986) and in lastrzebski and Kmiecik, (1986) while the results of 
multiple regressions can be found in Antoniou, Lavidas and Karvounis, (1984) and in 
Guedes Soares and Moan, (1988). 

Regression methods are frequently used to analyse data from unplanned 
experiments such as might arise from observation of uncontrolled phenomena or from 
historical records, examples of which can be found in Guedes Soares, (1986); 
lastrzebski and Kmiecik, (1986); Antoniou, Lavidas and Karvounis, (1984) and on 
Guedes Soares and Moan, (1988). 

Statistical design of experiments refers to the process of planning the most efficient 
way of data collection for a given problem so that the statistical analysis may lead to the 
maximum amount of relevant information (Winer, 1970; Montgomery, 1984). It 
involves the three basic principles of replication, randomisation and blocking. 

Replication means the repetition of one basic experiment or process outcome, which 
allows one to identify the error due to that effect. This is important to allow conclusions 
about whether the observed differences in the data are really statistically different. In 
addition it allows an improved estimate of the effect under study because the sample 
mean has a smaller variance. 

Randomisation is the cornerstone underlying the use of statistical methods, requiring 
that the allocation of the collected data and the sequence in which it is done be random. 
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Blocking intends to increase the precIsIOn of the experiment by selecting the 
portions of the data that are more homogeneous than the whole set. Blocking involves 
making comparisons among the conditions of interest of the effects within each block. 

Statistical design of experiments has been used recently with the planning of fatigue 
tests (Sorensen et ai, 1992, Engelund et ai, 1993). 

Examples of Applications 

The assessment of model uncertainty is made with procedures that are developed on a 
case by case basis. Depending on the problem at hand, on the information available and 
in the uncertainties to deal with, different formulation are advisable. Therefore, in this 
section reference is made to some applications in order to illustrate a spread of 
possibilities. 

MODEL UNCERTAINTY IN SPECTRAL FORMULATIONS 

There are different types of structures that are subjected to dynamic excitation and 
response. Since the environmental excitation is normally of random nature, such as in 
the case of wind load, earthquakes or ocean waves, a common approach to the solution 
of this kind of problem has been to adopt a spectral formulation. The excitation is 
modelled as a Gaussian process and as a such is liable of being represented by a 
spectrum. The linear response to this excitation is a response spectrum that is obtained 
as the product of the input spectrum and the transfer function which represents the 
systems characteristics. 

These are different models of theoretical spectra adopted to describe the wind 
velocity (F orristal, 1988). The case of ocean waves, will be considered in detail having 
however in mind that this illustrates a methodology that could also be applied to other 
excitations and other structures. 

Short term sea states are usually modelled as ergodig random processes which 
become fully described by a variance spectra. These spectra, which are estimated from 
records of wave surface elevation, have a shape that depend on the characteristics of the 
sea state. 

Developing sea states are described by a Jonswap spectrum (Hasselman, et aI., 
1973) and fully developed sea states by a Pierson-Moskowitz model (Pierson and 
Moskowitz, 1964). Whenever in an ocean area there coexists two wave systems the 
spectrum often exhibits two peaks in which case one can adopt the 6 parameter 
formulation of Ochi and Hubble, (1976), or the 4 parameter proposal of Guedes Soares, 
(1984). 

When performing predictions for design, which is a main interest in engineering, 
one does not know which type of sea state will occur and thus, which type of wave 
spectrum is applicable. By choosing one of them, the prediction may be affected by a 
model error. 
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In addition to the type spectrum one can also account for the variability of the 
spectral ordinates around the mean spectrum which is described by the theoretical 
models. Haver and Moan (1983) have studied the uncertainty of the spectral 
formulations of single peaked sea states and analysed the variability of the spectral 
ordinates showing that they were generally independent of the frequency. 

This variability can be represented by a unit mean random variable i that multiplies 

the mean spectral ordinate at the frequency S( Wi) : 

This formulation, which was adopted by Guedes Soares, (1991) for the case of 
ocean spectra, can be generalised for any other spectral formulations of structural 
response, and thus it is described hereafter for illustration purposes. 

Wave spectra are of interest to calculate the response of a marine structure to a 
given sea state. Thus, often the quantity of interest is the variance of the response R 

which is given by the area under the response spectrum S R (w ) : 

where H(w) is the response amplitude operator. 

That value of variance is obtained for a specific type of spectrum that is denoted by 
<I> 8. It can be considered as an uncertain quantity because the exact shape of the 
spectrum depends on the random variable R and in addition it depends on the model 
uncertainty about which type of spectrum is the correct one. The model uncertainty can 
be separated from the fundamental uncertainty of R by conditioning. Thus the marginal 

distribution of response variance fR(r) is given by: 

where the conditional distribution is assumed to be Gaussian with a mean value of flRI9 

and a variance of: 

where the estimates of the spectral ordinates are assumed to be independent and 
identically distributed with a variance cr E • 

The variance of the marginal distribution of R, is given by: 
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where the first tenn is the variance conditional on the type of spectrum and the second 
tenn represents the contribution of model uncertainty. The mean of the conditional 

distribution is ~e and the mean of the marginal one is: 

If one decides to use one model of spectrum for the whole analysis, this implies 

adopting the expected value of ~ instead of il. Thus, the model error in that 

fonnulation can be described by an uncertain quantity: 

which has a model uncertainty of cr ~ . 

In some situations of assessing the wave loading in offshore structures, it is not 
enough to have a description of the sea surface elevation process as described by a 
wave spectrum. In fact in the estimation of the hydrodynamic loads on offshore 
structures it is necessary to use a wave theory to predict the distribution of velocity and 
acceleration of the wave particles at different water depth. The wave particle movement 
is then transfonned into the forces that are being induced in infinitesimal elements of 
the structure, through the Morison equation. 

There are various wave theories available, from the Airy theory, which is a linear 
one valid for small amplitudes to the Stokes fifth order or the Stream function, which 
are applicable to large wave amplitudes. Outside the two extreme situations of small 
and large amplitudes there is a range of wave heights and water depths in which various 
theories could be applicable with different degrees of error. The model uncertainty of a 
specific theory could be established from comparison with measurements when they are 
available, as was done for example in (Guedes Soares and Moan, 1983). 

Although this problem was originally fonnulated for the response of marine 
structures to wave spectra, the general framework is applicable to other cases such as 
for example the response of tall buildings or bridges to wind gust loading the response 
of structures to earthquake excitation. 

MODEL UNCERTAINTY IN TRANSFER FUNCTIONS 

The prediction of the properties of the response parameters require the knowledge of 

the transfer function H( m) as indicated in the previous section. The engineering 
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models adopted to calculate H( (0) will have different degrees of accuracy and 

uncertainty. 
In general the model uncertainty of a theory can be assessed by comparing its 

predictions with experimental results. Defining the model error q" as a function of 

frequency 00 , one has: 

iI(oo) = q,(oo )H(oo) + &(00) 

where iI( (0) is the measured value, H( (0) is the theoretical prediction and & represents 

an experimental error of zero mean value. 
Often the model error can have a general form of: 

n 

q,(oo) = Ia; 00 II 

;:::0 

where a;, are regression coefficients to be determined from the analysis of data. The 
regression equation will indicate the mean of the model error. The standard deviation of 
the regression residuals will indicate the model uncertainty. 

In the application of this formulation to the responses of ships to wave excitation, it 
was found that the constant model error q, = ao would be adequate for practical 
purposes (Guedes Soares, 1991). However, the transfer functions depend on the relative 
wave direction and the adequacy of the transfer function theories depend on ship speed 
and geometry. Thus a global description of the dependence of q, on those variables was 
obtained by a regression analysis. 

The uncertainty in the calculation of transfer functions for motions and loads ofTLP 
platforms was studied by Eatock Taylor and Jefferys, (1986) and of semi submersible 
platforms by Incecik, Wu and Soylemez, (1987), although the uncertainty of the 
predicted transfer functions was not modelled explicitly. 

Winterstein et ai, (1993) and Sorensen et al (1993) have adopted models similar to 
those to model the uncertainty of transfer functions of offshore structure. 

MODEL UNCERTAINTY IN LONG-TERM DISTRIBUTIONS 

In the design of marine structures, either of ships or of ocean or offshore platforms 
one often requires the distribution of load effects for time spans of the order of the 
structure's lifetime, i.e. the long-term distribution. 

To obtain them one starts from shorter periods of stationary that correspond to sea 
states. The probability of exceeding the amplitude x in any of them is given by the 
Rayleigh distribution (Longuet-Higgings, 1952, 1983): 
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which is conditional on the value of the response variance R. 
The probability of exceedance in the long-term is obtained as a marginal 

distribution: 

where w(r) is a weighting factor that depends on the mean period of the response in 

each sea state, and fR{r) is the probability density function of the response variance. 

This long-term probability distribution is constructed from the evaluation of the 
integral at several levels x. However very often a theoretical distribution is fitted to the 
calculated points to make easier the future analysis. Common distributions are the 
Weibull and the log-normal which yield different extreme value predictions. Thus the 
choice of one of them will involve a model uncertainty. 

The problem of the statistical uncertainty in the fitting of a Weibull distribution to 
wave data has been discussed by Guedes Soares and Henriques, (1994). 

One can use a Bayesian approach to deal with both model and statistical uncertainty 
as adopted for example by Edwards, (1984) who studied the structural reliability of a 
simple system subjected to a loading that could be described by either a normal, a log
normal or a Weibull distribution. The probability of each of the probabilistic models 
was assessed from the data in the classical Bayesian way, and the posterior distribution 
was obtained including and nor including the effect of statistical uncertainties. 

A similar problem was tackled by Guedes Soares (1989) dealing now with 
predictions of extreme values of significant wave height as predicted from long-term 
distributions or by other methods. Since in extreme predictions there is often not 
enough data to allow the reliable use of the classical Bayesian methods to assess the 
conditional probabilities of the models, it was proposed there that expert opinions could 
be used to assess those probabilities and to predict an estimate that accounted for the 
model uncertainty as assessed by experts. 

MODEL UNCERTAINTY IN COMPRESSIVE PLATE STRENGTH 

In addition to various sophisticated numerical methods available for the analysis of the 
compressive strength of plates, there are several design methods available also as 
reviewed in (Guedes Soares, 1988b). In the formulation of a design method one must 
ensure that a reasonable degree of accuracy is maintained without unnecessarily 
complicating the calculation procedures. This objective can be achieved if the design 
equations only include the most important physical variables. 

The number of variables included in the design equation must be such that the 
strength predictions are always within a narrow scatter band independently of the value 
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of the variables not represented in the equation. The single most important parameter 
that governs plate strength is the reduced slenderness: 

where b and t are the plate breadth and thickness cr 0 and E are the material yield stress 

and Young modulus. 
After having analysed the sensitivity of plate strength to each of the variables, it was 

concluded that the simplest design method should include only the plate slenderness p, 
because the plate strength can change by as much as 60% over the useful range of 
slenderness. If any improvement of accuracy is desired, explicit account must be given 
to the variables that can produce changes of 20% in the plate strength. Thus 
consideration should be given to residual stresses, initial distortions and boundary 
conditions (Guedes Soares, 1988b). 

The model uncertainty Bb of one specific method <Pb that depends explicitly only of 
plate slenderness has been assessed from comparisons with experimental results. This 
approach was also adopted to asses the effect of residual stresses and initial 
imperfections. The strength of a plate without defects is given by <PbBb and the 

degrading effect of the residual stresses and of the initial distortions are given by R,. 
and Ro respectively. 

The formulation adopted to predict the compressive plate strength is given by: 

where cr u is the ultimate stress, B, and Bra are modelling errors which affect the 
reduction factors for the effect of weld induced residual stresses and initial distortions 
respectively. The exact form of each expression is given in (Guedes Soares, 1988b) but 
for the present purposes it is enough to indicate how the modelling factors were 
determined. While Bb and B, turned out to be constants, Bra resulted in a linear 
multiple regression on plate slenderness, intensity of residual stresses and amplitude of 
initial distortions. 

For code purposes simpler design equations are wanted and in that case the three 
model errors can be combined in one only as indicated in (Guedes Soares, 1988b). 

To obtain a design equation that depends only on plate slenderness, it is necessary 
that the effect of the other parameters is taken at their expected values. Expressing the 
design equation: 
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one aims at determining the bias factor B which will depend on the distributions of the 
governing parameters. Its mean value and variance is given by weighting the model 
error B by its probability of occurrence: 

B = J J Js(~'l1'Oo).f(~,l1,Oo)d~ df1 dOo 

cr~ = J J Hs(~'l1,Oo)-Br f(~,l1,Oo)~ df1 dOo 

where f(~,l1,oo) is the joint probability density function of the variables ~,11,00. This 

function represents the probability that for a given ship the typical plates of the midship 
section have a specified value of ~,11 and 00 • It is assumed that these effects are 
independent so that: 

Furthermore, when applying these equations to plates of aspect ratio slightly 
smaller than unity a further model uncertainty is introduced (Guedes Soares, and 
Faulkner, 1987). 

MODEL UNCERTAINTY IN THE COMPRESSIVE STRENGTH OF STIFFENED 
CYLINDERS 

As occurs with plates, there are also several simple expressions for the design of 
stiffened cylinders under different load combinations. The model error of any method 
can be expressed as the ratio of the experimental result to the predicted value. 

In (Faulkner, Guedes Soares, and Warwick, 1987) there is a summary of the model 
uncertainty of various code design methods. It was found that the modelling error in 
that case can have a mean value ranging from 0.80 to 1.70 and the coefficient of 
variation would range from 0.13 to 0.43. However, a good design method should have 
an uncertainty around 10 to 15% at most. 

Das, Faulkner and Zimmer, (1992) have reviewed various codified ultimate strength 
formulations for orthogonally stiffened cylindrical strength shell components by 
comparison with available experimental results in order to establish model uncertainty 
factors associated with these formulations. 

They used experimental results produced in the mid 1960s in an aerospace research 
programme and obtained in the 1970s and early 1980s in the scope of offshore 
structures research. The aerospace tests were mainly conducted in the elastic range and 
the majority of them used high strength aluminium allow models. The stringers in the 
models were large in number and closely spaced. They were machine finished leading 



QUANTIFICATION OF MODEL UNCERTAINTY IN STRUCTURAL RELIABILITY 33 

to minimal residual stresses and initial imperfections. The offshore models were of 
steel, and had considerable initial imperfections due to the fabrication procedure. 

The model uncertainty of four design methods were determined from comparisons 
with this data. They were the methods in the ABS Model Code for Tension Leg 
Platforms, the API Bulletin ZU, the DnV Classification Note 30.1 and the European 
Convention of Constructional Steelwork recommendation. Stiffened shells have several 
collapse modes which makes a detailed account of their model uncertainty too long to 
be included here. However it was shown that the bias and uncertainty of the different 
methods was significantly different, and an interesting conclusion of the study was that 
for some methods there was a clear dependency between the modelling error and the 
collapse load, which resulted from an incorrect modelling of the slenderness effect. This 
is a feature that should be avoided in developing design methods that are cali~rated 
probabilistically. 

Concluding Remarks 

There are presently available several good algorithms for calculating the reliability 
index for different kinds of problems in an efficient manner. The widespread 
application of the existing technology to practical problems requires that work be 
developed in probabilistic modelling of the different problems. 

Of particular importance is the consideration of the model uncertainty of the 
different engineering theories that are used in analysis and in design. 

Although the assessment of model uncertainty is very much problem dependent, this 
work has discussed the main problems encountered, the basic tools that are used and 
several examples have been described from different engineering disciplines. 

References 

Ang, A. H-S. and Cornell, C.A. (1975): "Reliability Bases of Structural Safety and 
Design", J. Structural Division, ASCE, Vol. 100, pp. 1755-1769. 

Ang, A.H-S. and Tang, W.H. (1975, 1984): Probability Concepts in Engineering 
Planning and Design, John Wiley & Sons, New York, Vol. I and Vol. II. 

Antoniou, A.C., Lavidas, M. and Karvounis, G. (1984): "On the Shape of Post-Welding 
Deformations of Plate Panels in Newly Built Ships", Journal of Ship Research, Vol. 
28, pp. 1-10. 

Augusti, G., Baratta, A. and Casciati, F. (1984): Probabilistic Methods in Structural 
Engineering, Chapman & Hall, London. 

Benjamin, J.B. and Cornell C.A. (1970): Probability, Statistics and Decision for Civil 
Engineers, McGraw-Hill Book Co., New York. 

Bjordhovde, R., Galambos, T.V. and Ravindra, M.K. (1978): "LFRD Criteria for Steel 
Beam Columns",J. Structural Division, ASCE, Vol. 104, No. ST9, pp. 1371-1388. 



34 C. GUEDES SOARES 

Conover, W.J. (1978): Practical Nonparametric Statistics, J. Wiley & Sons, New York, 
2nd Ed. 

Cooke, R.M. (1991): Experts in Uncertainty, Oxford University Press, Niew York 
Cornell, C. (1972): "A.Bayesian Statistical Decision Theory and Reliability-Based 

Design ", Proc. International Con! on Structural Safety and Reliability, A.M. 
Freudenthal (Ed.), Pergamon Press, pp. 47-68 

Das P.K., Faulkner, D. and Zimmer, R.A. (1992), "Selection of Robust Strength Models 
for Efficient Design of Ring and Stringer Stiffened Cylinder under Combined 
loads ", Proceedings of 1 (Jh Offshore Mechanics and Artic Engineering Conference, 
ASME, Vol II, pp 417-428. 

Das, P.K., Frieze, P.A. and Faulkner, D. (1982): "Reliability of Stiffened Steel 
Cylinders to Resist Extreme Loads", Proc. 3rd Int. Con! on Behaviour of Offshore 
Structures, (BOSS'82), MIT, pp. 769-783. 

Ditlevsen, o. (1982): "Model Uncertainty in Structural Reliability", Structural Safety, 
Vol. 1, pp. 73-86. 

Draper, N.R. and Smith, H. (1966): Applied Regression Analysis, John Wiley & Sons, 
New York. 

Eatock Taylor, R. and Jefferys, E.R. (1986): "Variability of Hydrodynamic Load 
Predictions for a Tension Leg Platform", Ocean Engineering, Vol. 13, No.5, pp. 
449-490. 

Edwards, G. (1984): "A Bayesian Procedure for Drawing Inferences from Random 
Data", Reliability Engineering, Vol. 9, pp. 1-17. 

Engelund, S., Bouyssy, V. and Rackwitz, R. (1993): Optimal Bayesian Designs for 
Fatigue Tests, Reliability and Optimization of Structural Systems, V, Thoft
Christensen, P. and Ishikawa, H. Ed.), North-Holland, pp. 55-63 

Engesvik, K. and Moan, T. (1983): "Probabilistic Analysis of the Uncertainty in the 
Fatigue Capacity of Welded Joints", Engineering Fracture Mechanics, Vol. 18, pp. 
743-762. 

Faulkner, D., Guedes Soares, C. and Warwick, D.M. (1987): "Modelling Requirements 
for Structural Design and Assessment", Integrity of Offshore Structures-3, D. 
Faulkner, M.J. Cowling and A. Incecik, (Eds.), Elsevier Applied Science Publishers, 
pp.25-54. 

Ferry Borges, J. and Castanheta, M. (1971): Structural Safety, Laboratorio Nacional de 
Engenharia Civil, Lisboa. 

Forristal, G.Z., (1988): "Wind Spectra and Gust Factors over Water", Proceedings 
Offshore Technology Conference, Vol. 2, OTC 5735, pp. 449-460. 

Gibbons, J.D. (1971): Non Parametric Statistical Inference, McGraw-Hill Book Co., 
New York. 

Guedes Soares, C. (1984): "Representation of Double-Peaked Sea Wave Spectra", 
Ocean Engineering, Vol. 11, pp. 185-207. 

Guedes Soares, C. (1986): "Assessment of the Uncertainty of Visual Observations of 
Wave Height", Ocean Engineering, Vol. 13, pp. 37-56. 



QUANTIFICATION OF MODEL UNCERTAINTY IN STRUCTURAL RELIABILITY 35 

Guedes Soares, C. (1988a): "Uncertainty Modelling in Plate Buckling", Structural 
Safety, Vol. 5, pp. 17-34. 

Guedes Soares, C. (I 988b ): "Design Equation for the Compressive Strength of 
Un stiffened Plate Elements with Initial Imperfections", J. Constructional Steel 
Research, Vol. 9, pp. 287-310. 

Guedes Soares, C. (l988c): "A Code Requirement for the Strength of Plate Elements", 
Marine Structures, Vol. I, No.1, pp. 71-80. 

Guedes Soares, C. (1989), "Bayesian Prediction of Design Wave Heights", Reliability 
and Optimization of Structural Systems '88, P. Thoft-Christensen (Ed.), Springer
Verlag" pp. 311-323. 

Guedes Soares, C. {I 990a): "Effect of Spectral Shape Uncertainty in the Short Term 
Wave-Induced Ship Responses", Applied Ocean Research, Vol 12, N 02, pp. 54-69. 

Guedes Soares, C. (1990b): "Uncertainty Modelling in Systems Reliability 
Analysis",Systems Reliability Assessment, A.G.Colombo and A. Saiz de Bustamente 
(Eds.), Kluwer Acad. Pub., Dordrech, pp. 285 - 303. 

Guedes Soares, C. (1991): "Effect of Transfer Function Uncertainty on Short Term Ship 
Responses", Ocean Engineering, Vol. 18, N° 4, pp. 329-362. 

Guedes Soares, C. and Faulkner, D. (1987): "Probabilistic Modelling of the Effect of 
Initial Imperfections on the Compressive Strength of Rectangular Plates", Proc. 
Third International Symposium on Practical Design of Ships and Mobile Units 
(PRADS), Trondheim, Vol. 2, pp. 783-795. 

Guedes Soares, C. and Henriques, A.C. (1994), "On The Statistical Uncertainty in 
Long Term Predictions of Significant Wave Height" Proceedings of the 12th 
Offshore Mechanics and Artic Engineering Conference (OMAE), New York, Vol. 
II, pp.65-75. 

Guedes Soares, C. and Moan, T. (1982): "Statistical Analysis of Still-Water Bending 
Moments and Shear Forces on Tankers, Ore and Bulk Carriers", Norwegian 
Maritime Research, Vol. 10, pp.33-47. 

Guedes Soares, C. and Moan, T. (1983): "On the Uncertainties Related to the 
Hydrodynamic Loading of a Cylindrical Pile", Reliability Theory and its 
Applications to Structural and Soil Mechanics, P. Thoft-Christensen (Ed.), Martinus 
NijhoffPub., The Hague, pp. 351-364. 

Guedes Soares, C. and Moan, T. (1988): "Statistical Analysis of Still-Water Load 
Effects in Ship Structures", Transactions Society of Naval Architects and Marine 
Engineers, New York, Vol. 96, pp.129-156. 

Guedes Soares, C., Moan, T. (1991): "Model Uncertainty in the Long Term 
Distribution of Wave Induced Bending Moments for Fatigue Design of Ship 
Structures", Marine Structures, Vol. 4, pp. 295-315. 

Guedes Soares, C. and Soreide, T.H. (1983): "Behaviour and Design of Stiffened Plates 
under Predominantly Compressive Loads", International Shipbuilding Progress, 
Vol. 30, No. 341, pp. 13-27. 



36 c. GUEDES SOARES 

Guedes Soares, C. and Viana, P.C. (1988): "Sensitivity of the Response of Marine 
Structures to Wave Climatology", Computer Modelling in Ocean Engineering, B.A. 
Schrefler and O.C. Zienkiewicz (Eds.), A.A. Balkema Pub., pp. 487-492. 

Hasselman, K., et al. (1973), "Measurements of Wind-Wave Growth and Swell Decay 
During the Joint North Sea Wave Project (JON SWAP)", Deutschen 
Hydrographischen Zeitschright, Reihe A(8), No. 12. 

Haver, S. and Moan, T. (1983): "On Some Uncertainties Related to the Short Term 
Stochastic Modelling of Ocean Waves", Applied Ocean Research, Vol. 5, pp. 93-
108. 

Incecik, A., Wu, S-K. and Soylemez, M. (1987): "Effect of Different Mathematical 
Models in Calculating Motion and Structural Response of Offshore Platforms", 
Integrity ofOffihore Structures-3, D. Faulkner, MJ. Cowling and A. Incecik, (Eds.), 
Elsevier Applied Science, pp. 115-144. 

Jastrzebski, T. and Kmiecik, M. (1986): "Statistical Investigations of the Deformations 
of Ship Plates", (in French), Bulletin Association Technique Maritime et 
Aeronautique, Vol. 86, pp. 325-346. 

Lind, N.C. (1976): "Approximate Analysis and Economics of Structures", J Structural 
Division, ASCE, Vol. 102, pp. 1177-1196. 

Madsen, H.O., Krenk, S. and Lind, N.C. (1986): Methods of Structural Safety, Prentice
Hall, New Jersey. 

Mandel, J. (1964): The Statistical Analysis of Experimental Data, Dover Publications, 
New York. 

Melchers, R.E., (1987): Structural Reliability: Analysis and Prediction, Ellis Holwood, 
Chichester 

Montgomery, D.C. (1984): Design and Analysis of Experiments, J. Wiley & Sons, New 
York. 

Morrison, D.F. (1969): Multivariate Statistical Methods, McGraw-Hill Book Co., New 
York. 

Ochi, M.K. and Hubble, E.N. (1976): "On Six-Parameter Wave Spectra", Proc. 15th 
Coastal Engineers Con!, Amer. Soc. Civil Engineers (ASCE), pp. 321-328. 

Pierson, WJ. and Moskowitz, L. (1964): "A Proposed Spectral Form for Fully 
Developed Wind Seas Based on the Similarity Theory of S.A. Kitaigorodskii", J 
GeophySical Research, Vol. 69, pp. 5181-5190. 

Siegel, S. (1956): Non Parametric Statistics, McGraw-Hill Book Co., New York. 
Smith, D., Csenki, A. and Ellinas, C.P. (1987): "Ultimate Limit State Analysis of 

Unstiffened and Stiffened Structural Components", Integrity of Offihore Structures-
3, D. Faulkner, MJ. Cowling and A. Incecik, (Eds.), Elsevier Applied Science 
Publishers, pp. 145-168. 

Serensen, J.D., Faber, M.H. and Kroon, I.B. (1992): "Risk Based Optimal Fatigue 
Testing, n. Probabilistic Mechanics and Structural and Geotechnical Reliability, 
ASCE. 

Thoft-Christensen, P. and Baker, MJ. (1982): Structural Reliability Theory and its 
Applications, Springer-Verlag, Berlin. 



QUANTIFICATION OF MODEL UNCERTAINTY IN STRUCTURAL RELIABILITY 37 

Winer, BJ. (1970): Statistical Principles in Experimental Design, McGraw-Hill Book 
Co., New York. 

Winterstein, S.R. , Kroon, I.B., and Ude, T.C. (1993): Fatigue of Floating Offshore 
Structures: Modelling Uncertainty in Hydrodynamics and Fatigue Properties. 
Proceedings of ASCE Structures Congress, Irvine, California. 



RESPONSE SURFACE METHODOLOGY IN 
STRUCTURAL RELIABILITY 

JACQUES LABEYRIE 
Ifremer 
BP 7029280 P[ouzane - France 

1. Brief Review 

We fIrst propose to trace some streams of thought which have contributed directly to 
what we now call Response Surface Methodology (abbreviated to RSM). A 
mathematical description of RSM is given in section 2. 

During the period 1930-1950 and in various practical studies such as growth rates in 
nutrition of pigs, probit analysis or crop yield to fertilizer levels, some revealing 
requirements for RSM were mentioned, [1] - [3]. The main purpose was to gain an 
insight into the observed behavior of the process under investigation and to obtain the 
determining setting of the variables involved. 

The pioneering works of Box [4] - [7], produced a set of statistical procedures in 
two main areas dealing with the design of experiments and regression analysis. The 
most successful applications were obtained in the fIelds of chemistry and chemical 
engineering. The dominant assumption was clearly that the response can be 
approximated by polynomial functions. One reason for the popularity of polynomial 
models lay in their conceptual and computational tractability. 

During the period 1950 - 1970 the major topics of research on RSM were marked by 
signifIcant probabilistic guidelines ; 

Robbins and Monro [8] introduced the stochastic approximation for fInding an 
optimum in the presence of outliers ; they also included multi-dimensional 
aspects. 

- The comparative analyses of growth curves in Biometrics performed by Rao, [9] 
adopted a multivariate approach. The response function arose from the projection 
onto a family of orthogonal polynomials. The coefficients of these expansions 
served for subsequent analyses and prediction purposes. 
Keefer and Wolfowitz [10] laid the theoretical foundation for a concept of 
optimal design based almost exclusively on linear models and with an optimality 
criterion which used the generalized variance among parameters. 

During the last decade, Response Surface Methodology has gained robustness for 
modelling in various technical applications such as material design, electronic error 
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detection and structural integrity. In particular, the introduction of non-linear models, 
and the increasing numerical potential of electronic computers have affected the 
evolution of techniques. The concept of Response Surface arose from a system 
description of the physical process (INPUT ---> TRANSFER FUNCTION 
---> OUTPUT). The main objective was to provide flexible analytical formulations as 
surrogates for the original models in order to perform subsequent uncertainty and 
sensitivity studies. The user friendly nature of this approach was partly explained by its 
reliance on geometrical concepts. Moreover, for safety assessment of mechanical 
systems, the suggested formal modelling turned out to be effective when implementing 
reliability indices from FORMISORM methods. 

At the present time there are probabilistic mechanics packages such as ; RPEJ 
(Evaluation of Jackets from a Probabilistic Redundant Analysis), and RASOS 
(Reliability Analysis Systems for Offshore Structures), which contain extensive 
implementations ofRSM (environmental loadings, limit state functions, ... ). 

2. Definitions and Basic Concepts 

The Response Surface Methodology (RSM) is a formal representation based on 
geometrical ideas. It leads to the investigation of the properties of a physical process. 
That means the required response Y (random variable, vector or process) is considered 
as the output of a system, which varies in response to the changing levels of several 
input variables. 

INPUT 

X,0 

TRANSFER 

f, 11 ... 11 

A response (hyper-) surface is selected: 

RESPONSE 

Y 

- X = {X 1, X2, ... Xn} is a finite representative set of stimuli random variables or 

processes. 
e = {e], e2,'''' e p} is the available statistical information on X (free or 

parametric distribution functions, fourier series, normalized moments, ... ), 
f is an explicit analytical function of X given e ; note f(Xle), serves as an 
approximation for Y. 
II ... II is a metric in a functional space containing Y and f(Xle) which gives some 
measure of the goodness of fit of the approximation. 

Note that it is mathematically more correct to use the terminology of response 
hyper- surface when n>2. As long as there is no ambiguity, we will use the usual term 
response surface whatever the dimension of the space of the basic variables. 



RESPONSE SURFACE METHODOLOGY IN STRUCTURAL RELIABILITY 41 

2.1 CRITERIA FOR BUILDING RESPONSE SURFACES. 

2.1.1 Physical Meanings 

The selection of the set of stimuli must be based as far as possible on some 
understanding of the underlying mechanism. 

As an example, the usual Morison equation for computing loads for marine 
structures can be viewed as a response surface, 

(1) 

Here ft is the force per unit span separated into drag and inertial components, p is 

the water density, D is the cylinder diameter, and Ut is the instantaneous flow velocity. 

This equation generally predicts the main trends in measured data quite well, once 
an appropriate joint distribution function of the drag and inertia coefficients can be 
provided depending of the sea-state parameters. Nevertheless, some interesting 
characteristics of the flow are not represented with enough accuracy (e.g. high 
frequency content, gross vortex shedding effects, ... ). So when applying the response 
surface ft , unfortunately we miss some sources of response problems for an offshore 
platform. That confIrms the need to validate extensions by using the NARMAX 
modelling techniques (Non linear Auto-Regressive Moving Average with eXogenous 
inputs) ; this is especially important for non linear effects [13]. 

The concept of limit state for structural systems also needs to be formally introduced 
with its physical interpretation. It is a mathematical way of separating the relevant 
determining variables for the system into desirable and undesirable domains of the 
variations ; that is a way of constructing a boundary of a failure domain. Here a failure 
event is defmed to be structural damage which has socio-economic consequences. The 
problem is to estimate the failure costs, its impact on the target risk, and the risk levels 
which society is willing to tolerate. Discussions of these issues must often take place 
among professionals with various backgrounds and feelings. 

The detailed discussion reported in [14], illustrates the respective codifIed reliability 
meanings for the design of reinforced concrete structures based on "elastic" or 
alternatively "plastic" ultimate limit states. 

2.1.2 Distribution Effects 

Another essential criterion is given under the term distribution effects [15]. The output 
distributions change, depending on the different assumptions selected to describe the 
statistical properties of X and to fIt the function f. The selection should reflect how the 
statistics are well transferred through the response surface. 

When predicting the stochastic response of offshore platforms under Morison type 
non linear random wave loading, many researchers suggest approximating the drag 
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component of the Morison equation ft by polynomial functions of the instantaneous 

flow velocity. 
Let X be a random variable with probability density Ix. Let us consider Y = g (X), 

where g is differentiable and bijective. Then the density Iy exists and has the form, 

I I-I IY(y) = Ix (g- (y)) (~)(g (y)) (2) 
g 

A consistent approximation of ft with respect of the density output must also be a 

good approximation to its derivative with respect to ut • If the approximations are linear, 
quadratic or cubic, then their derivatives will be constant, linear or quadratic, 
respectively. The discrepancy between these three last functions is generally high on the 
edges of their definition interval. Consequently, their effects in changing the upper and 
lower tails of the velocity density wiII be quite different. In particular the skewness and 
kurtosis coefficients may not be well estimated. The choice of a polynomial of low 
order, so tractable for the computational procedure, although apparently appropriate for 
an approximation of the response surface itself, can lead to an erroneous probability 
density output. 

In support of this warning we summarize the conclusions of an extensive numerical 
analysis [16] : 

a linear approximation of the drag loading failed to predict response moments in 
quasi-static cases. 
a cubic expansion yielded good estimates of the response variance for any kind of 
excitation, but could not accurately predict fourth order moments of the response, 
in drag-dominated quasi-static cases. 
it was claimed that a fifth order approximation is needed in order to assess 
accurately the first four response moments for any kind of excitation. 

This example shows that the distribution effects significantly influence the 
construction of response surfaces as input criteria. 

For problems with several variables, one must ensure that the Jacobian, 

(~~~) is properly modelled, in order to prevent the main distribution effects. As 

is well known, the input and output p.d.f are related according to, 

( -1 ) ID(X)I Py (y) = Px f (y). D(Y) 
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2.1.3 Goodness of Fit Measure 

The first concern is the selection of the basic variables and especially their ranking. The 
usual metrics called sensitivity and uncertainty importance measures are based on 
second order statistics. They are useful for obtaining the main contributors to the 
response by evaluating their corresponding contributions to the output variance [17], 
[18]. Their sensitivity to the presence of outliers of input distributions make them 
questionable as absolute measures of uncertainty importance. To overcome this 
problem we may use measures based on the shifts in the quantiles of the output 
distribution [19], or on information theoretical entropy [20]. 

Uncertainty modelling leads to the regression techniques. Let us consider the 
regression model, 

Y = f(x/E» + E 

where E is a random vector or process error. The function f is a prescribed function of 
which the parameters are to be estimated. Usually it is assumed that the random vector 
E is distributed according to the Gaussian distribution with zero mean and diagonal 
covariance matrix. Under this assumption, the maximum likelihood and the least 
squares estimate are identical. As a consequence, the metric L2 is shown to be the most 
efficient. However the L I metric, e.g. the integral of the absolute values of the 
residuals, provides most likely estimates when errors are doubly exponentially 
distributed [21]. 

In the previous subsection some requirements were given in order to prevent the 
main distribution effects from the additional fitting of the partial derivatives off with 
respect to Xi. The metric of the Sobolev space [22], 

OU U 
HI ={u I E L2 (square integrable) whatevera=O,1 andi=I, ... n} 

oX?" 
1 

in the form, 

is appropriate as it allows the least squares error on the partial derivatives to be 
introduced too. 



44 1. LABEYRIE 

2.1.4 Complexity Reduction and Computational Tractability 

Engineers prefer models that are simple and easy to compute; for such one may use the 
new techniques of probabilistic mechanics, and the new and powerful computers and 
algorithms. The RSM integrates these objectives as criteria. 

An increase of the complexity level in stochastic modelling has to be viewed with 
care. It is always a time consuming option when computing, and one which does not 
necessarily ensure more realistic results. As an example, in North Sea conditions and 
among the Stokes model family, the simple Airy wave model is shown to contain the 
essential random structure of the inputs to be considered for structural reliability of 
jacket platforms under quasi-static loads [23]. 

Another way to simplify the problem is to consider a subset D which envelops the 
hyper-surface defined by f and which is easier to compute. For example convex 
polytopes, ellipsoids, cylinders, ... , are possible candidates for describing the safety 
region. As a consequence this leads to a conservative approach in structural safety, 
provided (see 2.1.1) the physical interpretation of the new domain D remains consistent 
with what is called a failure domain. 

2.2 SELECTION OF THE BASIC VARIABLES 

For a time invariant system which survives only for realizations of a random vector X, 
interior to a subset Dx of a probability space, its probability of failure has the form, 

(3) 

where Fx is the probability distribution function of X. The topology of the 

complementary failure domain D ~ can arise from the use of RSM (e.g. limit state 
functions, ... ). 

Practically there is a choice to be made on the representative stimuli. Usually we 
know only a part of the underlying distribution Fx ; we call this the 0- set throughout 

this presentation. So the main objective for providing a safety measure is to evaluate, 

P upper = Sup {p (D~) , P verifies the 0- set} (4) 

This question is closely related to the so-called General Moment Problem in its 
mathematics (geometrical approach, convex analysis) [24], [25]. A basic technique for 
finding various properties of Pupper is to use Chebychev's inequalities, and the possible 
extensions of them. 

In particular the proposed bounds are attained by distributions consisting of discrete 
point - masses. These forms can be translated as the strongest assertion possible in the 
absence of any further information on the initial distribution. For example the 
conventional Chebychev inequality leads to the statement: 
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Let Dx = [-~,~] and the e - set have E(X) = 0, E(X2) = I, then we have Pupper = 
1 

~ 
2 • 

The selection of the basic variable X is now presented to illustrate the key factors 
which act upon the safety measure. They are introduced by means of examples which 
are intentionally academic and simple. These exercises are significant because they give 
concrete expression to different concepts at a preliminary stage. 

2.2.1 Dimension Space 

An increase in dimension makes the system dependent on supplementary variables and 
consequently more unsafe. 

This can be illustrated as follows. Let us consider a safety domain in the form of an 
open hypercube, 

':='n,1l = {xERn / Ixil < ~,i=I, ... ,n}, ~~I 

given the set e of statistical properties E(Xi) = ° and E(X;)= 1 whatever i. The 

complementary :::~,Il is called the failure domain. We are concerned with evaluating, 

P upper = Sup { P (:::~,Il) , P given e } 

From the Chebyshev and Boole inequalities this becomes, 

P(:::~,~) S; it P (IX d ~ ~) S; min (1, ~~) 

Moreover there exists a probability measure of fmite support, satisfying e, and 
which attains the upper bound; 

n 
- If -2 S; I, we consider P concentrated on the origin and the 2n centers of the 

~ 
1 

hypercube faces. Each center point has an identical mass equal to --2 . Then P 
2~ 

satisfies the e-set. As only the origin is in the safety domain, we have 
-c 1 n 

P (':='n,~) = 2n 2~2 = j32' 
n 

If -2 > I, it is sufficient to take P with equal distribution of the total mass 
~ 

concentrated on points which are the images of the 2n centers of the hypercube 
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faces by the similarity transformation with center 0 and ratio ~ . The 0_ set 

properties are satisfied. All the mass points are in the failure area and 

then, P(~,p)= I. 
Finally the safety measure is given by, 

n 
Pupper = min (l'-2 ) p 

(5) 

This shows that the probability of failure increases quickly with the dimension n 
(e.g. with the number of selected basic variables). 

It is thus important to fmd the minimum set or parameters which allow the system 
response to be controlled. We recommend a preliminary ranking of the importance of 
the various input parameters by measuring their effect on the safety measure. 

2.2.2 Correlation Effects 

The statistical properties of X are to be addressed with care. We emphasize correlation 
effects. Let us now consider the hypercube 8 0 ,/3 and the set 0 (see 2.2.1), given the 

additional statistical information on the covariance matrix Y = (E(XiXj)) ij. 

Let M+ be the set of definite positive matrices with diagonal terms equal to I. The 

trace function Tr M-I Y defined on M+ is convex and thus reaches its minimum on a 
- --I --I 

unique matrix M interior to M+, such that the product M YM is a diagonal 
matrix. 

A result due to Whittle [26] ensures that, 

. 1 --I 
Pupper = mm (1, 2 Tr M Y) 

P 
(6) 

Without loss of generality an equicorrelation (O$; p$; l) is assumed for illustration. 
The covariance is a combinatorial matrix of the form, 

Y = (l-p)Id+pA 

where aij = 1 whatever ij. As N = nA, the matrix Viz is a linear combination of the 

two matrices Id and A. We obtain, 

.jl+(n-I)p-.jl-p 
ylh= JGP Id + A 

n 
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_ y1I2 
Considering the diagonal tenn d of Vh ,the matrix M = -d-' is defmite positive 

with diagonal tenns equal to 1 ; it verifies M-1 YM- l = d2 Id. 
- 1 2 Thus Tr M- Y =nd and from eq.(6) we have, 

. n d 2 . [(n-l)F-!l + Jl+(n-l)pf 
Pupper =mm(1'-2-) = mm(1, 2 ) 

~ n~ 

(7) 

The probability of failure is a decreasing function of p(o$p$l), and varies from 
n 1 

min (1, -2 ) to min (1, -2 ) . 
~ ~ 

It follows that the more the control variables are correlated, the safer is the system. 
Compared with the previous one, this new case contains additional statistical 
infonnation which reduces the probability of failure. The statistical properties of the E>
set must be provided meaningfully. It is important to avoid an arbitrary increase in 
safety index by specifying the whole distribution without justification. The subject is 
clearly relevant to the Bayesian approach, e.g. a priori knowledge and measure of its 
effects. 

2.2.3 Independence Assumption 

Another feature is to assume the variables Xi to be independent. We discuss the 
effect of this assumption on the safety measure. Let P be a probability measure which 
satisfies the new E>_ set. From the independence property and Chebyshev inequality we 
have, 

P (30 •13 ) = ;~I p(IX; I < ~) 
1 

~ (1--2 )0 
~ 

Moreover the lower bound is reached by considering the following probability of a 
vector with independent components. Each component Xi with support on the 

respective i-axis of Rn takes the values -~, 0, ~ with the associated masses 
1 1 1 

--2 ,1- -2 '--2 . As a direct consequence it follows that, 
2~ ~ 2~ 

1 0 

Pupper = 1-(1-132) (8) 
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1 n 
Since 1-(1- -2 ) n :=; -2 ,independence of the basic variables makes the system 

/3 /3 
safer than under zero-correlation. Equation (8) shows that Pupper depends on (1- 11/32) 

raised to the power n, not n//32 as in (6). 

2.2.4 Typology of Distributions 

Let X be a random variable with zero mean and standard deviation equal to I. The 
safety domain is taken in the form of an interval (-ex:, /3[. 

We consider the three typical classes of distributions : normal (standard case), 
double exponential (asymptotic extreme model or Fisher Tippett I), exponential (tail 
behavior). 

1 
The associated one sided Chebychev inequality gives Pupper = --2 . 

1 + /3 
An upper bound under the additional assumption of continuous unimodal 

4 
distribution, takes the form P upper = 2; it is derived from Gauss inequality 

9(1 + /3 ) 
[27]. 

Table 1 shows that different assumptions lead to significantly. different safety 
measures. This simple but significant example leads to the following requirement: there 
is a need to specify distribution functions for the basic variables. This can be a difficult 
task in practice, but it is necessary for finding the class in which the system lies. 

TABLE 1. A comparison of distribution assumptions on the safety measure 

Pupper p 
2 3 4 

Normal 0,0228 0,0014 0,00003 
Double exponential 0,0422 0,012 0,0033 

Exponential 0,0498 0,QI8 0,0067 
Gauss inequality 0,089 0,044 0,026 

One sided Chebychev 0,2 0,1 0,059 
inequality 

In particular the Pearson and Johnson distribution types cover a large area. They 
allow us to take into account smoothness conditions by considering continuous and 

bounded nth derivatives. This question is related to the so-called extremal distributions 
investigated in the past by statisticians trying to find generalizations of Chebychev's 
inequalities. 

2.3 CHOICE OF AN APPROXIMATION FUNCTION 

The most popular assumption is classically that the response can be modelled by a 
polynomial expression. Mathematically, assuming that f is a continuous function and 
the set X varies in a finite range, the Weierstrass approximation theorem ensures that 
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one can approximate f by a polynomial function to any desired accuracy. This result is 
an asymptotic one. It means that generally the corresponding polynomial order will be 
very large. Polynomials of low order can be used as local approximations, and they can 
then be pieced together as splines. 

2.3.1 Algebraic Forms of Response Functions 

A safety domain is a subset of RD. Its boundary is defmed by the response surface. 
Table 2 presents the main approximation functions for such representations. 

The exact form of f is generally unknown , it must be chosen to meet several 
conflicting requirements: 

- the function should describe the data with reduction in storage, 
- the function is required to be meaningful, in the sense that it is based as far as 

possible on some understanding of the underlying mechanism, 
- the function is to be used for inference purposes, 
- the function can be fitted simply and accurately, 

TABLE 2. Families of response hyper-surfaces 

I. Polynomials 

- hyperplane 

- quadratic 
(by convention Xo= I) 

2. Exponentials [28] 

3. Spline Interpolations [29] 

4. $ (f(X)) or f($(X I ), ... ,$(X n )) 

II In 
Ia l I XI ",Xn I, ... , n 

I 
o~j~n 

I a·· X· X· 
o~j,j~n I,) 1 ) 

n 
.I Pj(X) exp«uj,X» 
1=1 

ai frequencies, Pi (X) polynomial 

<6,X>=6)X) + ... +6n Xn 

(piecewise polynomial) 

finterior to 1.,2. or 3. 
IP scale function (logarithmic, inverse, ... ) 

A problem is said to be well posed in the sense defined by Hadamard [30] when its 
solution 

i. exists, 
ii. is unique, 
iii. depends continuously on the initial data and with respect to small perturbations. 
For the problem of fmding a response surface, physical and/or practical arguments 

are used to postulate that a solution must exist. The two other conditions (ii) and (iii) are 
undoubtedly very questionable. The uniqueness is more the consequence of the choice 
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of a mathematical model. In particular, various inference models can give quite 
different responses. The condition (iii) is very often critical. Many situations fail to 
satisfy the required criteria. This is due to the sensitivity of a solution and, in particular, 
on the high order statistics, to uncertainties in the data. 

Part of the ill-posedness of RSM problems may be overcome by introducing a 
priori information, and by using a Bayesian approach. 

2.3.2 A specific example 

Consider an offshore structure buffeted by waves. The safety margin on a failure mode 
is determined by a response surface ; the set of basic variables includes the strengths of 
the structural elements and the loads acting on the structure. To set up a computational 
model, the loads exerted by the waves must be replaced by equivalent concentrated 
forces applied at the nodes of the model. 

Schematically, these forces are found by following the path 

Wave variables: 
heigh H, period ~ 

T, direction e 

kinematic 
field 

Morison 
forces 

Concentrated 
nodal forces 

The kinematic field corresponding to the waves can be represented through a 
random linear combination of deterministic vectors. From these we calculate the 
Morison forces, and from these we compute the concentrated nodal forces by using 
energy considerations in a fmite element model [31]. 

The total external force FN at a a node N is obtained as a linear combination of the 
form, 

~ r A. F(i) n::::: 10 
i=) 1 N 

Here Ai are random multipliers which depend on the basic variables (e.g.: Al = 

9~g CM H2 IT where 9mg marine growth screen effect, CM inertia coefficient, H 
~(i) 

extreme wave height, T associated wave period), and F N are deterministic vectors 
which depend mainly on the structure topology and on the wave location on the 
structure. 

This example illustrates a procedure for constructing response surfaces which 
combines the stochastic modelling of the basic variables with a deterministic approach 
in which the successive transfer functions are derived from physical considerations. 
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3. Applications 

3.1 STOKES MODELS IN WAVE MODELLING 

Stochastic process modelling has proved to be efficient for introducing different time 
scales for wind generated waves [32]. The latter are normally the dominant loads for an 
offshore structure. There are single wave models for the mechanical push over analysis, 
sea-state descriptions relevant for the resonant response due to second order sum-or 
difference- frequency wave loads or for the fatigue behavior. The so-called sea-states 
are well identified as stationary components of a piecewise second order stationary 
ergodic and regular enough random process [33]. 

One way of describing a stochastic process is to specify its n-dimensional joint 
probability laws, for all values ofn=I,2,3, .... The basic role which the Gaussian process 
plays in stochastic modelling arises from the fact that: 

- many physical systems can be approximated by Gaussian processes, 
- many questions can be answered in a closed form for Gaussian processes more 

easily than for other processes. 
Alternatively, one may give an explicit formula for the value of the process at each 

index point in terms of a family of random variables whose probability law is known. 
There exist several mathematical models (ex: Stokes, Boussinesq, Miche, ... ) for 

predicting the time evolution of the wave propagation. Physical reasoning and data 
observations allow a classification based on deterministic criteria. But these theoretical 
models have to be introduced in a reliability analysis, and must be regarded as 
stochastic models due to their sensitivity to random or uncertain parameters. This has 
significant effect on the safety domain topology and its probability measurement. The 
following formal geometrical representation of the wave kinematics leads to a new 
approach. 

Take axes O(U,Z,V), where the origin 0 is taken at the mean sea level, the axis OZ 
~ ~ ~ 

is vertical and upwards, and OU is the wave directional axis. Let OU , OZ , OV be 
unit vectors along the three axes. 

Suppose t=time, and x, z are the dimensionless variables, 

x = UII, Z =1+ Z/d 

where I is the width of the structure (diameter of a cylinder containing the platform), 
and d is water depth. 

The small amplitude plane harmonic progressive waves known as Airy waves are 
derived from a velocity potential, 

H g cosh(kdz) . ( ) 
cp(x, z, t} = "2 -; cosh(kd) SID klx - cot + cp 

(9) 
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where H is the wave height, k is the wave number, ro is the pulsation and <p is the phase 
angle. The variables k and ro are linked together by the one to one dispersive relation 

ro 2 = gk tanh(kd). 
The associated velocity vector for Airy Waves is in the wave plane ; it can be 

~ ~ 

written in the fonn A (cos a OU + sin a OZ)· Denote by H( 0, A) the similarity with 
..... 

center 0 and ratio ...t, and by R(OV,a) the rotation about the OV -axis through the 

angle a. 

A fonnal geometrical expression of the velocity vector follows, 

~ ~ 

Vairy = H(O,A) ° R(OV ,a) OU 

tan a = tanh(kdz) tan{klx - rot +<p) 

H ro cosh(kdz) 
A= -2 -co-sh-"(-kd"""')-

sin 2 (klx -rot + <p) 

1- cosh2 (kdz) 

(10) 

The similarity ratio A and the rotation angle a are random functions indexed by 
(x,z,t). Their stochastic fluctuations depend on the couple of random variables (H,k). 

The range and statistics of k are well adapted to approximate the vector 
~ -)0 ~ --+ 
W = R(OV ,a) OU by its nonnalized first order Taylor expansion W (I) around the 

mean wave number k. We obtain after some algebraic operations and differentiations, 

.......... cS ..... 
W(k) = W{k} + (k-k) cSk W{k} + o(k) 

-rl) 1 I ..... 1t] ..... ..... 
W = H(O, r,-2)olId+H(0,y)oR(OV'2) ° R(OV,g) OU (II) 

V1+y 

where, 

a = a( k), y = (k - k) :: (k) 

The goodness of fit of the approximation can be measured by the inner product of 
the two vectors. It is given by considering in the wave plane, the distance between the 
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point on the unit circle with angle ex - g, , and the straight line of equation 

[U +y Z = 0). 
--> (1) --> 

Introducing into eq.(10) the approximation W instead of W, we see that the 
velocity field corresponding to the Airy model has the following response surface, 

\fairy = J.lA + vB 

where A and B are deterministic orthonormal vectors defmed by, 

............ ----+ -+ ----+1t-+ 
A = R(OV,g,) OU, andB=R(OV'"2) A 

and the coefficients J.l and v are random functions. 

4. Remarks: 

J.l = 1.2"' v=yJ.l 
,,1+y-

(12) 

- Due to the statistics of k, the random variable y has zero mean and narrow 

range. It follows that v is small compared to J.l. Consequently A represents the 

main axis for the velocity vector. The component following B leads to 

fluctuations of the velocity vector inside a narrow sector around A. 
- The scalar velocity intensity A. contains the factor, 

a(x,z, t} = 
sin 2(klx - rot + q» 

I - ----:-----
cosh2 (kdz) 

It is a function of the random variable k, which varies weakly at points interior to 

the support of k. There it may be concentrated at its value for k = k. Equation (10) 
shows that there is a deterministic linear relationship between A. and the random 

Hro cosh (kdz) 
function 2 cosh (kd) which depends only on z. This means that the coefficient of 

variation and the normalized moments of the intensity vector vary with the profile index 
z only, and not at all with the indices x and t. 

Note that the non linear term V IIVII in the drag component of the force per unit 

span given by the Morison equation has the form /... J.l (A + y B) ; it is a 

random linear combination of deterministic vectors. 
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The corresponding velocity field for nth order Stokes waves can be expressed as a 
combination of the different orders, 

~ n~ n ~ ~ 

V nth =.L Vi = .L H(O,Ai) 0 R(OV ,exi) OU 
1=1 1=1 

~ 

For each component Vi, we may apply the same formal geometrical representation 
as defined for the Airy kinematic field. The issue of an extension of the Airy model can 

be addressed by considering the projection of each component on the two vectors A 

and B. It can be shown that [23], 

- - -
V nth = !lIn) A + v(n) B 

(13) 

where we have Ai = ~ - g (",,(i - 1) ex). 

Then wave velocity models can be presented with their associated response curves. 
They are basic inputs, due to causality considerations, for the reliability analysis of 
offshore structures. The proposed formal geometrical approach allows us to specify the 
stochastic properties following space/time indices to be considered. It also gives us the 
opportunity to introduce complexity in wave modelling only when necessary. 

4.1 NON LINEAR MECHANICAL BEHAVIOUR 

There are softwares which will perform a structural analysis under the assumptions of 
non linear elastoplastic behaviour and large displacements. The approach is essentially 
deterministic. The connection with reliability analysis is not direct. A safety measure 
needs explicit limit state functions and their derivatives in the space of the basic random 
variables. 

The pseudo-random sampling approach and typically the Monte Carlo analysis, can 
be used with efficiency in such a case, but the computer time increases quickly with the 
problem dimension [34]. 

An alternative procedure uses quadratic response surfaces [35]. Quadratic 
polynomial approximations for response surfaces are simple to apply in finite element 
methods, and lead to numerical stable computation. Let f{X) be a limit state function 
and X = (X 1, ... ,Xn) be the vector of stimuli. An iterative least square method combined 
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with an adaptive mesh of the safety domain uses at each step (k) a quadratic 
approximation off(x) of the form, 

One example of this formulation concerns the codified design reliability of the 
buckling curves of a steel tubular cross section under compressive load [36]. It is used 
to compare different codes such as API RP2A-LRFD and EUROCODE3. 

4.2 STOCHASTIC DESIGN OF FIBROUS COMPOSITE LAMINATES 

The reliability of unidirectional composite laminated materials considered by TsailWu 
[37], is based on a simplified fibre failure mode under tensile or compressive load. The 
limit state functions are represented by quadratic polynomials. Safety indices can be 
computed from the well known FORMISORM methods. A numerical analysis of 
graphite epoxy material has been performed [38]. It is shown how the nominal safety 
factors are very sensitive to the design problem which arises from the lack of 
dimensional invariance in defming safety margins. This concerns the different types of 
safety factors such as ultimate strength (I), in plane - load (II), dimensional factor (III). 
This question is important when the safety measure is highly sensitive to the parameters 
of the basic variables. 

A more complete criterion introduced by Hashin [39], considers in addition, the 
failure of the matrix material between the fibres due to transverse or shear stresses. This 
interfibre failure mode can cause large scale collapse. Their analysis illustrates how to 
modify a preliminary response surface in order to extend its physical meaning. Friction 
due to compression on the crack surface increases the shear strength. Thus the quadratic 
polynomial limit state is modified by introducing some friction coefficients [40]. 
The latter are determined by fitting experimental data of a test specimen under 
transverse compression. They show that the use of too classical criteria can lead to 
incompletely designed structures. 

5. Combination of Sensitivity Analysis Techniques 

The extensive review [41] on sensitivity analysis techniques, states in particular the 
respective limits for use in radioactive waste disposal. We make some suggestions 
based on lessons drawn from structural reliability analyses of marine structures. 

The Fourier Amplitude Sensitivity Test (FAST) [42], is basically a second order 
uncertainty and sensitivity technique. The Fourier series representation allows us to 
obtain the ratios of the contributions of the individual input variables to the variance of 
the model response. It gives a second order measure of importance for ranking the 
variables. 
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Perturbation techniques usually use Taylor's series to approximate models. It is a 
local approach which gives valuable results when the input variables have small ranges, 
and the relationship between the input and output variables is relatively smooth. The 
computation of derivatives needs specialized techniques, such that Green's functions or 
kernel non-parametric methods [43]. 

Monte Carlo analysis starts from a pseudo-random sampling approach to represent 
the system inputs. The well known Latin Hypercube Sampling provides a full coverage 
of the range of each input variable, but it remains questionable how far the selected 
samples are representative of the whole underlying distribution. Otherwise the Monte 
Carlo techniques are particularly appropriate for analysing problems in which large 
uncertainties occur and where the transfer functions are non linear. 

The Response Surface Methodology has been detailed in the previous sections. As a 
consequence the use of such techniques in structural reliability analysis needs to extend 
the conventional form which is too concentrated on polynomial approximations. Often, 
we can combine different techniques : Taylor's expansions around the mean wave 
number; responses curves based on a geometrical visualisation of the vector kinematic 
field ; Monte Carlo simulations ; all these items can be combined to make the total 
investigation more meaningful. 
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1. Introduction 

In many metallic structures, flaws are inherent due to, e.g., notches, welding 
defects and voids. Macro cracks can originate from these flaws, and under 
time varying loading grow to a critical size causing catastrophic failure. 
The conditions governing the fatigue crack growth are the geometry of the 
structure and crack initiation site, the material characteristics, the envi
ronmental conditions and the loading. In general, these conditions are of 
random nature. The appropriate analysis and design methodologies should 
therefore be based on probabilistic methods. 

In recent years, considerable research efforts have been reported on prob
abilistic modeling of fatigue crack growth based on a fracture mechanics 
approach, see, e.g., (Arone, 1983; ASCE Committee, 1982; Bolotin, 1981; 
Ditlevesen, 1986; Madsen, 1983; Kozin and Bogdanoff, 1981; Lin and Yang, 
1983; Ortiz and Kiremidjian, 1986). In particular, stable crack growth has 
been studied. This Chapter presents a stochastic model for the stable crack 
growth phase for which linear elastic fracture mechanics is applicable. A 
common model is formulated for constant and variable amplitude load
ing. The model is developed for a semi-elliptical surface crack and for a 
through-the-thickness crack. Uncertainties in the loading conditions, ih the 
computation of the stress intensity factor, in the initial crack geometry, and 
in the material properties are included. 

The probability that the crack size exceeds a critical size during some 
time period is of interest. It is demonstrated how this event can be formu
lated in terms of a limit state function with a corresponding safety margin, 
and how the probability of failure can be calculated by a first- or second-
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order reliability method (FORM or SORM). The critical crack size may 
refer to growth through the thickness or to a size wher€ a brittle fracture 
or plastic collapse occur. The critical crack size can be modeled as a deter
ministic or as a random quantity. 

Inspections are frequently made for structures in service. Some inspec
tions result in the detection of a crack, while others give no detection. The 
size of a detected crack is measured either directly or indirectly through 
a non destructive inspection method, where the measured signal is inter
preted as a crack size. Neither the measurement nor the interpretation are 
possible in an exact way, and the resulting inspection result is consequently 
of random nature. When the inspection does not reveal a crack, this does 
not necessarily mean that no crack is present. A detectable crack is only 
detected by a certain probability depending on the size of the crack and on 
the inspection method. Whether or not a crack is detected, the inspection 
provides additional information which can be used to update the reliability 
and/or the distribution of the basic variables. This can lead to, e.g., modi
fications of inspection plans, change in inspection method, or a decision on 
repair or replacement. This Chapter describes inspection results in terms of 
event margins and formulates the updating in terms of such event margins 
and the safety margin. The use of first-order reliability methods to perform 
the calculations is demonstrated. A similar formulation and calculation is 
introduced to evaluate the reliability after a repair. 

Reliability against fatigue damage caused by fatigue crack growth is 
obtained through a combination of design requirements, inspections and 
repair or replacement strategies. Each of these efforts introduce cost, and 
it is of considerable interest to select the solution leading to the smallest 
expected life time cost including the expected cost of failure. This problem 
can be formulated as an optimization problem, where the optimization 
variables for a given strategy are the design parameters, the inspection 
times and the inspection intervals. The optimal solution can be updated as 
information about inspection results and repair becomes available. 

2. Fatigue crack growth model 

In a linear elastic fracture mechanics approach, the increment in crack 
size, ~a, during a load cycle is related to the range of the stress intensity 
factor, ~[(, for the load cycle. A simple relation which is sufficient for most 
purposes was proposed by Paris and Erdogan, (Paris and Erdogan, 1963) 

(1) 

The crack growth equation is formulated without a positive lower threshold 
on ~[( below which no crack growth occurs. The equation was based on 
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experimental results, but is also the result of various mechanical and energy 
based models, see, e.g., (Irving and McCartney, 1977; Paris and Erdogan, 
1963). C and m are material constants. A possible dependence of C on the 
average stress in one load cycle is not included here. 

The crack increment in one cycle is generally very small compared to 
the crack size, and Eq. (1) is consequently written in a "kinetic" form as 

(2) 

where N is the number of stress cycles. The stress intensity factor 1< IS 

computed by linear elastic fracture mechanics and is expressed as 

1< = oY(a)yI7ra (3) 

w here a is the far-field stress and Y (a) is the geometry function. The ge
ometry function depends on the overall geometry, including the geometry 
of the crack and the geometry of a possible weld. To explicitly account 
for uncertainties in the calculation of 1<, the geometry function is written 
as Y(a) = Y(a, Y), where Y is a vector of random parameters. Insert
ing Eq. (3) in Eq. (2) and separating the variables leads to the differential 
equation 

(4) 

where ao is the initial crack size. The equation is applied both for constant 
and for variable amplitude loading, thus ignoring possible sequence effects. 

Eqs. (1) to (4) describe the crack size as a scalar a, which for a through
the-thickness crack is the crack length. For a surface crack, a description of 
the crack depth, crack length and crack shape is necessary. It is common 
practice to assume a semi-elliptical initial shape, and to assume that the 
shape remains semi-elliptical during the crack growth. In that case the crack 
depth a and the length 2c describe the crack. The differential equation 
Eq. (2) is replaced by a pair of coupled equations, (Shang-Xian, 1985) 

(5) 

(6) 

where Ya and Yc are the geometry functions for the deepest point and for the 
end point of the crack at the surface, respectively. The material constants 
C a and Cc may differ due to variation in stress field tri-axiality. The failure 
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35.00 

Figure 1. Experimental results. 

criterion can refer to a critical value of either a or C individually, or to a 
function of a and c. The equations are conveniently rewritten as 

dc = Cc (Yc(a, c, Y)y'C) m 

da C a Ya(a, c, Y)yIa 
(7) 

(8) 

which are solved simultaneously. The first equation gives c as a function of a 
and the initial values ao and Co, but independent of the loading and number 
of stress cycles. The solution for c may be inserted in Eq. (8) which is then 
of the same form as Eq. (2). For reasons of simplicity in the presentation, 
the following is limited to a through-the-thickness crack of size a. 

Numerous experimental results exist for crack growth under constant 
amplitude loading. Fig. 1 from (Kozin and Bogdanoff, 1981) shows ex
perimental results reported in (Virkler et al., 1979) for 64 center cracked 
specimens made of 2024-T3 aluminum. The experiments were highly con
trolled and performed by the same laboratory using the same equipment 
and the same personnel. 

To capture the essential stochastic behaviour demonstrated by the ex
perimental results we introduce the material parameter C as a random vari
able. To also capture the irregularity and intermingling of the sample curves 
in Fig. 1 we modell C as a spatial random process, see e.g. (Ditlevesen, 1986; 
Ortiz and Kiremidjian, 1986). 
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A damage function W(a) is introduced from Eq. (4) as 

W(a) = ra dx 
Jao Y(x, y)m(Fx)m 

(9) 

The stress ranges are denoted Si = ~ai, and solution of Eq. (4) gives 

W (a) = c r sm dN = N 

N { CSmN, constant amplitude loading 

Jo c t; Sf, variable amplitude loading 
(10) 

The crack growth equation Eq. (1) has here been directly extrapolated to 
variable amplitude loading where the appropriate value of S is inserted for 
each stress cycle. It must be emphasized that this is an extrapolation be
yond experimental experience, and possible sequence effects are neglected. 
It is observed that the only difference between the two cases of constant and 
variable amplitude loading concerns the loading statistics. The crack length 
after N stress cycles, aN, is obtained by solving Eq. (10) with respect to a. 

It follows from Eq. (10) that if failure is defined by crack growth beyond 
a critical size ac, the following equation is valid at failure under constant 
amplitude loading 

NSm = W(ac) = J( 
C 

(11) 

where J( is a constant independent of the loading. This relation is in agree
ment with the S-N curves generally applied in fatigue calculations. 

One way to define a damage index D in terms of the crack size is 

D = W(a) 
W(ac) 

(12) 

From this definition and Eq. (10) it follows that damage increases linearly 
from zero to one with the number of stress cycles. It can further be shown 
that the damage increment in one stress cycle of range Si is l/N(Si)' where 
N(Si) is the number of cycles to failure under constant amplitude loading. 
Damage accumulation is thus in agreement with Miner's rule, and the S-N 
approach and fracture mechanics approach are very similar. 

Let the failure criterion be taken as exceedence of a critical crack size 
ac in a time period with N stress cycles, 

(13) 

W (a) is monotonically increasing and the failure criterion can be written as 

rae dx 
W(ac) - W(aN) = Jao Y(x, y)m(Fx)m - CSmN S; 0 (14) 
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for constant amplitude loading. The safety margin M is defined as 

M = rae dx _ C sm N 
Jao Y(x, y)m(Fx)m 

(15) 

and failure takes place when M < o. 
For variable amplitude loading, the safety margin becomes similarly 

(16) 

where the sum of the m'th power of the stress ranges has been replaced by 
its expected value. This is a good approximation in most practical applica
tions. 

The stress range distribution is often chosen as Wei bull for long or short 
term stress response to environmental loading. For a Weibull distribution 
of stress ranges, the distribution function is 

(17) 

and the safety margin becomes 

M= l:e 
Y(x,Y):(Fx)m -CNAmr(l+ ;) (18) 

where r ( .) denotes the Gamma function. For B = 2 the stress range distri
bution becomes of Rayleigh type, which is generally used for stress response 
modelled as a fairly narrow-band Gaussian process. 

3. Failure criteria and basic variables 

The previous section has shown an important case where a limit state for
mulation can be applied for reliability analysis against fatigue crack growth 
beyond a critical size. In this section some generalizations are presented. 
Two separate types of failure criteria are envisaged, (ASCE Committee, 
1982) 

ac - aN ::; 0 

J(/C - J((aN) ::; 0 

(19) 

(20) 

In the first case, a critical crack size ac is selected perhaps based on service
ability considerations. In the second case, failure occurs when the stress in
tensity factor J( exceeds the fracture toughness J(/C; then the crack growth 
becomes unstable and rapid failure occurs. Four cases are considered, cor
responding to the two failure criteria and constant or variable amplitude 
loading. 
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Case 1: 

Case 2: 

Case 3: 

Case 4: 

Crack growth beyond critical size under con
stant amplitude loading 

Brittle fracture under constant amplitude load
ing 

Crack growth beyond critical size under variable 
amplitude loading 

Brittle fracture under variable amplitude load-
ing 

The safety margin for case 1 was given in Eq. (14) as 
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M = lac dx _ CSmN , case 1 (21) 
ao Y(x, y)m(JITX)m 

For case 2, the safety margin is 

M = I<IC - Y(aN, Y)(O'm + ~h/1raN , case 2 (22) 

where O'm is there average far-field stress including possible residual stresses. 
For case 3, the safety margin was given in Eq. (16) as 

lac dx 
M = ao Y(x, y)m(JITX)m - CNE[Si] , case 3 (23) 

For case 4, failure occurs if 

I<IC 
0' > , case 4 

Y(a)y7r(i 
(24) 

where 0' = O'(t) is the far-field stress. This is illustrated in Fig. 2. Failure 
does not occur in the time period [0, T] if the stress process O'(t) is below 
the time varying threshold ~(t) = I<IC/{Y(a(t))J1l'a(t)} in [0, T]. This 
probability is approximated by, see e.g. (Madsen et ai., 1986) 

( I<IC ) [ J:! vd (~(t) )dt 1 
FTf (T) ~ FO'(o) Y(ao)J1l' ao exp - F (K ) (25) 

0'(0) Y(aoj~ 

Tj is the random life time and Vd(~(t)) is the mean upcrossing rate of 
the level ~(t) by the process O'(t) at time t. This mean upcrossing rate is 
computed by Rice's formula, (Rice, 1954) 

V:(~(t)) = ~= (& - ~)fO',ir(~(t), &)d& (26) 
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K Ht) = Ie 
Y (a (t) ) v'1TQ(t) 

Figure 2. Illustration of failure event for brittle fracture under variable amplitude 
loading. 

where a "dot" denotes a time derivative. In this application, the time deriva
tive ~ can be neglected; Eq. (26) therefore reduces to 

(27) 

For a life time T, the failure criterion can be stated as 

(28) 

The distribution function for TJ is given in Eq. (25) as a function of mate
rial, loading and crack size parameters. 

4. Parameter estimation for material properties 

The value of m in the crack growth equation Eq. (1) is predicted from 
theoretical models as m = 2 or m = 4. Statistical estimation of m from ex
perimental results generally results in other values and m should be treated 
as a random variable in addition to C. 

Several studies, e.g. (Gurney, 1978), report a high negative correlation 
between m and In C. This is also demonstrated in the study (Tanaka et 
at., 1981) where crack propagation data for 25 identical specimens under 
identical loading conditions have been collected. The least square estimates 
in and C for m and C have been computed for each specimen, and a joint 
distribution for m and C has been estimated. The 25 tests are for plane 
bending of a 0.04% Carbon steel and the following sample statistics are 
obtained 

m = 2.85 Sm = 0.284 Vm = 0.100 (29) 

In C = -20.164 SInG = 1.067 rm,lnG = -0.971 (30) 
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An "over bar" denotes a sample mean, s denotes a sample standard 
deviation, V denotes a sample coefficient of variation and r denotes a sample 
correlation coefficient. A standard test does not reject an assumption of bi
normality for (m, In C). Based on these results, m and In C are expressed 
in terms of two independent and standardized normal random variables Ul 

and U2 as 

m = in + 0.100inUl (31) 

In C = 1;G + 1.067( -0.971Ul + 0.239U2 ) (32) 

thus giving a coefficient of variation of 10% for m, a standard deviation of 
1.067 for In C and a correlation coefficient of -0.971 between m and In C. 
The statistical uncertainty in the estimates in Eqs. (29) and (30) is thus 
ignored. In (Madsen, 1984) a fatigue reliability analysis which includes this 
statistical uncertainty, is reported. 

The negative correlation between m and In C is not a physical property 
but follows form the mathematical form of the crack growth equation. An 
alternative form is 

~ = C (f::.K)m 
dN 0 Ko 

(33) 

where Ko is a fixed reference value of the same dimension as K. Co then 
has the same dimension as dajdN. The constant C in Eq. (1) is 

C = CoKom; In C = In Co - mIn Ko (34) 

It follows that if the scatter in Co is negligible, then In C and m are linearly 
related. Otherwise In C and m are expected to be negatively correlated. 
m and In Co can be made uncorrelated by a suitable choice for Ko. A 
choice of Ko = 38.4 MPa together with the results in Eqs. (29) and (30) 
imply that m and In Co are uncorrelated, and the variance of In Co is 0.065, 
corresponding to a standard deviation of 0.26. In (Ditlevsen and Olesen, 
1986) a similar analysis was performed for the data shown in Fig. 1. The 
coefficient of variation of m was found as 6% and the same value was found 
for the standard deviation of In Co. Both uncertainties in m and in Care 
thus important and roughly of the same magnitude. 

5. Reliability updating based on inspection results 

Structures in service are often inspected to detect cracks before they be
come critical. Let a crack be detected after nj stress cycles and its length 
measured as 

(35) 
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Figure 3. Inspection reliability for MPI. 

Aj is generally random due to measurement error and/or due to uncertain
ties in the interpretation of a measured signal as a crack length. Measure
ments of the type Eq. (35) can be envisaged for several times corresponding 
to different values of nj. 

For each measurement Eq. (35), an event margin can be defined as 

rAJ+x da 
Hj(x) = CSr;nj - lao Y(a, y)m(Fa)m' j = 1,2, ... ,8 (36) 

These event margins are zero for x = 0 due to Eq. (35). 
A second type of inspection result is that no crack is detected. For an 

inspection at a time corresponding to ni stress cycles, this implies 

(37) 

expressing that the crack length is smaller than the smallest detectable 
crack length Adi. Adi is generally random since a detectable crack is only 
detected with a certain probability, depending on the crack length and 
on the inspection method. The distribution of Adi is the distribution of 
the length of undetected cracks. This distribution is provided through the 
probability of detection curves (pod curves) for which experimental results 
exist for various inspection methods. Fig. 3 shows experimental data and a 
pod curve for magnetic particle inspection (MPI). Information of the type 
Eq. (37) can also be envisaged for several times. If Adi is deterministic, 
however, and the same for all inspections, the information in the latest 
observation contains all the information of the previous ones. For each 
measurement Eq. (37) an event margin Mi can be defined as, (Madsen, 
1985a; Madsen, 1985b) 

Hi = CSmni _l:di Y(a, Y):(Fa)m ::; 0, i = 1,2, ... , r (38) 
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These event margins are negative due to Eq. (37). 
With one inspection result of the type Eq. (37), the updated failure 

probability is 

P [M < 0 I H < 0] = P [M ::; 0 n H ::; 0] (39) 
- - P[H::;O] 

Evaluation of the reliability of a parallel system (numerator) and a com
ponent (denominator) are thus required. A FORM or SORM analysis can 
be directly applied, (Madsen, 1987). With one inspection result of the type 
Eq. (35), the updated failure probability is 

..£.P[M < on H(x) < 0] 
P [M < 0 I H(O) = 0] = ax - - (40) 

- txP [H(x) ::; 0] 

where the derivatives are computed for x = O. An evaluation of the sensiti
vity factor for a parallel system (numerator) and a component (denomi
nator) are thus required, and a FORM or SORM analysis can be directly 
applied. The analysis is easily generalized to simultaneous consideration of 
several inspection results (Madsen, 1987). 

The interest is now on updating after repair, and it is assumed that 
a repair takes place after nrep stress cycles when a crack length arep is 
observed. An event margin Hrep is defined as 

( 41) 

which equals zero for x = o. The crack length present after repair and a 
possible inspection is a random variable anew, and the material properties 
after repair are m new and Cnew . The safety margin after repair is Mnew 

l ac da 
Mnew = Y (Y) ( Fx) - CnewSmnew (n - nrep) 

anew a, mnew 7rX mnew 
(42) 

and the updated failure probability is 

..£. P [M < 0 n H (x) < 0] 
P [M < 0 I H (0) = 0] = ax new - rep - (43) 

new - rep tx P [H rep (x) ::; 0)] 

where the derivatives are computed for x = o. 
Example: Center cracked panel. 
Consider a panel with a center crack as in the experiments of (Virkler et 

al., 1979), see Fig. 4. The loading is a constant amplitude loading, leading 
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Figure 5. FORM and SORM reliability 
index design calculation. 

to a far-field stress range S. The geometry function is modeled as 

The geometry function takes the value one for a = o. Lengths are measured 
in mm, and stresses in N/mm2 • The distribution of the basic variables is 
rather arbitrarily taken as 

S E N(60, 102 ) 

Y1 E LN(l, 0.22) 

Y2 E LN (2,0.12) 

ao E EX(l) 

ac E N(50, 102 ) 

(In C, m) E N2 ( -33.00,0.472,3.5,0.32; -0.9) 

N (J.l, ( 2) denotes a normal distribution with mean value J.l and variance a 2. 
Similarly LN(J.l, ( 2) denotes a log-normal distribution with mean value J.l 
and variance a2. N2(J.ll, ai, J.l2, d;p) denotes a bi-normal distribution with 
mean values J.ll and J.l2, variances ai and a~ and correlation coefficient 
p. EX(J.l) denotes an exponential distribution with mean value J.l. The 
example has seven basic variables which are transformed into standardized 
and independent normal variables. 
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TABLE 1. Sensitivity Fac-
tors. N = 1.5.106 , t3 = 1.817 

Variable O'i 0'2 , 

S 0.3577 13% 
Yl 0.0085 0% 
Y2 -0.0060 0% 

00 0.5514 30% 

Oc -0.0001 0% 

m -0.6141 38% 

Gllm 0.4362 19% 

The FORM and SORM approximations to the reliability index are 
shown in Fig. 5 for various life times expressed in terms of the number of 
stress cycles N. The two approximations are close, implying that the curva
tures of the limit state surface are moderate at the design point. Statistics 
for the distribution of life time T can be directly approximated from the 
results of Fig. 6. For the mean life times, the approximation is 

E[T] = 10=(1 - P(T S; t))dt ~ 10= IP(f3(t))dt 

For N = 1.5.106 stress cycles, the reliability index is f3 = 1.817 and the 
a's are shown in Table 1. 

aT is interpreted as the fraction of the total uncertainty due to uncer
tainty arising from the ith basic variable. The major contribution to the 
overall uncertainty arises from the uncertainty in the material parameters. 
The critical crack size uncertainty is of little relative importance in this 
case, and the same is concluded in almost all cases where the critical crack 
size is significantly larger than the initial crack size. The uncertainty in the 
geometry function contributes very little to the total uncertainty in this 
case. This is because the value for a = 0 is completely known. When this 
initial value is not known, the uncertainty is comparable to the uncertainty 
in the loading. The uncertainty contribution from the uncertainty in the 
change in the geometry function from the initial value is generally found to 
be low. For tubular joints, where the geometry function is approximately 
proportional to a- 1/ 2 for large values of a, this statement may not always 
be true. 

Reliability updating based on inspection results is concidered. First, 
the situation where a crack is found in the first inspection is considered. 
It is envisaged that the inspection is carried out after Nl = 105 stress 
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Figure 6. Updated first-order reliability 
index after first inspection with measure
ment 3.9 mm. 
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Figure 7. Updated first-order reliability 
index after second inspection with crack 
measurements 3.9 mm and 4.0 mm. 

cycles, and a crack length of 3.9 mm is measured. The measurement error 
is assumed to be normally distributed with standard deviation 0" A. Fig. 6 
shows the updated reliability index as a function of O"A. The result is almost 
independent of 0" A in this example, as the uncertainty in the initial crack 
size dominates the uncertainty in AI. 

When the crack is detected, a decision has to be made, and two options 
are present. It may be decided to repair the crack immediately, or to leave 
the crack as it is, and base a decision on repair on more inspection results. 
With just one inspection, it is not possible to determine if the crack was 
initially large but is growing slowly enough that repair is not needed, or the 
crack was initially fairly small, but is growing fast and must be repaired. 
If a requirement on the reliability index in a period without inspections is 
formulated, e.g., f3 2: 2, the latest time of the next inspection is determined 
from Fig. 6. 

Assume that the crack is not repaired, but a second inspection at 
N = 2 . 105 stress cycles is required. Let the inspection method be the 
same as in the first inspection, and let the measured crack size be 4.0 mm. 
The measurement error is again assumed to be normally distributed with 
standard deviation 0" A, and the two measurement errors are assumed to 
be statistically independent. Fig. 7 shows the updated reliability index af
ter this second inspection. Different inspection qualities now lead to very 
different results. With 0" A = 0, the negative slope of the reliability index 
curve becomes very large, demonstrating that the crack growth behaviour 
is basically determined by two combinations of the basic variables. With 
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Figure 8. Updated first-order reliability index after second inspection with crack mea
surements 3.9 mm and 5.0 mm. 

a large measurement uncertainty, there is an immediate and large increase 
in reliability, but after some time the curve becomes almost identical to 
the curve resulting after the first inspection. Due to large uncertainty in 
both inspections, only little information is gained on the crack growth rate. 
If the inspection quality is very high, it may be possible to state that the 
crack does not grow to a critical size within the design life time. Repair and 
further inspections are then unnecessary. For a poorer inspection quality, a 
time period until the next inspection can be determined, and the decision 
on repair be further delayed. 

Fig. 8 presents results similar to those in Fig. 7, but for the case where 
a crack size of 5 mm is reported in the second inspection. Together, the 
two inspection results now indicate that a large and fast growing crack is 
present. Repair is therefore necessary within a short period. 

Consider now different situations where the inspections show no cracks. 
An attempt is made to illustrate possible means to achieve a required re
liability. Let the reliability requirement be f3 ~ 3.0, and let the design life 
time correspond to 1.5· 106 stress cycles. Fig. 9 shows the reliability index 
as a function of number of stress cycles, for two plate thicknesses. With a 
plate thickness t, the reliability requirement is fulfilled for the design life 
time, and no inspections are needed. With a plate thickness of only 60% 
of t, the reliability requirement is fulfilled for the period until N = 2 . 105 

stress cycles, where an inspection is needed. The quality of the inspection 
is reflected in the distribution of the smallest detectable crack size. An ex
ponential distribution is assumed, with a mean value A. Cracks initially 
present are cracks which have passed the inspection at the production site, 
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Figure 9. First order reliability index for Figure 10. Updated first-order reliability 
two plate thicknesses. index after first inspection with no crack 

detection. 

either because they were not detected or because they were below the ac
ceptance level. If no cracks were accepted in fabrication, the fabrication 
inspection therefore corresponds to A = l. 

Fig. 10 shows the initial reliability index and updated reliability indices 
for three inspection qualities. The best inspection quality A = 0.3 is better 
than the fabrication inspection quality, and if no crack is found with this 
method, the increase in reliability is sufficient to make further inspections 
unnecessary. For the two other inspection qualities, periods are determined 
until the next inspection. 

Fig. 11 shows the total inspection requirement for A = 1 when no crack 
is detected in any inspection. For this case, two inspections are needed. 
Finally, Fig. 12 shows the total inspection requirement for A = 3 when no 
crack is detected in any inspection; for this case five inspections are needed. 
It is thus demonstrated that different strategies on design and inspection 
planning can be used to achieve a required reliability. Based on costs of 
each strategy, including expected failure costs, a cost optimal solution can 
be determined. 

The results of a reliability analysis following a repair of a detected crack 
is illustrated in Fig. 13. It is assumed that a crack of size arep = 8mm is 
repaired after N rep = 2 . 105 stress cycles. The distribution of the initial 
crack size after repair anew is taken as an exponential distribution, with a 
mean value of 1 mm, i.e., as the same initial distribution as after fabrica
tion. Two situations are considered, with either identical or independent 
material properties before and after repair. When independent properties 
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Figure 11. Updated first-order reliability 
index after inspections with no crack de
tection. mean size of non-detected cracks 1 
mm. 

Figure 12. Updated first-order reliability 
index after inspections with no crack de
tection, mean size of non-detected cracks 3 
mm. 
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Figure 13. Updated first-order reliability index after repair of an 8 mm crack at 
N = 2 . 105 stress cycles. 

are assumed, the same distribution is used for the properties before and af
ter repair. It follows from the results that there is an immediate increase in 
reliability after repair, but the reliability quickly drops to a level below the 
level obtained for the calculations before repair. This reflects the possibility 
that the cause for the large repaired crack size is a larger than anticipated 
loading of the crack tip, which is also acting after the repair. 
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6. Probability based optimization of design, inspection, and main
tenance 

Reliability against fatigue crack growth is achieved through efforts in de
sign, inspection, and repair or replacement. These efforts all introduce cost, 
and the minimum total expected cost solution is of interest. An optimiza
tion problem can be formulated which can further include a constraint on 
the smallest allowable reliability, e.g. as specified by a regulatory body. 
Contributions to the formulation and solution of this optimization problem 
can be found in e.g. (Skjong, 1985; Thoft-Christensen and S0rensen, 1987; 
Madsen et al., 1989; Fujita, Schall and Rackwitz, 1989). 

Following (Madsen et ai., 1989) this section presents a consistent formu
lation of cost optimal fatigue design, inspection and repair. Reliability and 
sensitivity calculations are performed by a first-order reliability method, 
and the optimization is carried out by a general non-linear optimization 
algorithm. 

A one-dimensional description of the crack size a is employed. A Weibull 
distribution with random distribution parameters A and B is used for the 
distri bu tion of the stress ranges S. This is a relevant choice for the long 
term distribution for offshore jacket structures. The stress ranges depend 
on the structural optimization parameters. The number of stress cycles per 
unit time is v, and the safety margin M for failure - defined as crack 
growth to a critical size ac - before time t is, see Eq. (16) 

(44) 

The first inspection at time Tl leads to a crack detection or no crack 
detection. An event margin H is defined as 

(45) 

The event margin is negative when a crack is detected, and is otherwise 
positive. Values for the smallest detectable crack size ad for different inspec
tions are assumed to be mutually independent. When a crack is detected 
and repaired at time T1 , the safety margin after repair is 

1 rae dx m ( m) 
M (t) = JaR Y(X)m(y'iX)m - CV(t - Tt}A r 1 + B ; t > Tl (46) 

The geometry function is identical before and after repair. The material 
parameter C, before and after repair, is either assumed fully dependent or 
completely independent. Crack sizes after repair aR are assumed mutually 
independent. A notation is introduced to describe the sequence of repair/no 
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Figure 14. Repair realizations. 0 denotes no repair, while 1 denotes repair. 
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repair events. For example, with repair at times TI and T2 and no repair 
at T3, the safety margin for T3 :::; T4 is 

110 rae dx m ( m) 
M (t) = JaR Y(X)m(J7rX)m - CV(t - T2)A r 1 + B ; T3 < t :::; T4 

(47) 
and the event margin for crack detection at time T4 is similarly 

110 rad4 dx m ( m) 
H (t) = JaR Y(X)m(J7rX)m - CV(T4 - T2)A r 1 + B (48) 

The crack growth formulation and subsequent optimization has in (Mad
sen, 1988) been extended to include a possible positive threshold value for 
the stress intensity factor range in Eq. (2), a constant corrosion rate, and 
a crack initiation period. 

The following strategy for repair is selected: 

All detected cracks are repaired 

In (Madsen, 1988) also other repair and replacement strategies are in-
cluded. These are 

Detected cracks smaller than a threshold value are repaired by grind
ing, while larger detected cracks are repaired by welding 
Only detected cracks larger than a reference size are repaired (by weld
ing) 
All detected cracks are "repaired" by replacement of the element. 

With n inspections performed at times T I , ... , Tn, the total number of 
different repair courses is 2n , see Fig. 14. 

The failure probability before time t is PF(t). The corresponding relia
bility index is 

(49) 
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In terms of the safety and event margins, failure before time t is as an 
example 

PF(t) = P [M(Tt} ::; 0] + P [M(Tl) > 0 n H > 0 n MO(t) ::; 0] 

+P [M(Tt} > OnH::; OnMl(t)::; 0]; Tl < t::; T2 
(50) 

and similarly for other inspection time intervals and the life time T. With 
n inspections between 0 and T, 2n +1 - 1 parallel systems are analysed to 
compute the failure probabilities. 

The expected number of repairs E [Ri] at time Ti is identical to the 
probability of repair at time Ti. It is at time T2 

E [R2] = P [M(Tl) > 0 n H > 0 n MO(T2) < 0 n HO ::; 0] 

+P [M(Tt} > OnH::; OnMl(T2) > onHl::; 0] 
(51 ) 

and similarly for other inspection times. With n inspections between 0 and 
T, 2n - 1 parallel systems are analysed to compute the repair probabilities. 

The inspection quality is defined by the pod (probability of detection) 
curve p(a) for which an exponential form may be chosen for illustration. 

p(a) = Fad(a) = 1- exp [-xJ; a> 0 (52) 

The pod curve is identical to the distribution function of the smallest de
tectable crack size ad. The inspection quality is thus characterized by the 
parameter A, which can take values between 0 and 00. In the optimization, 
an auxiliary measure of inspection quality q is introduced. 

1 
q= -

A 
(53) 

q can take values in the interval [0; 00[. q = 0 corresponds to no inspection 
while q -+ 00 corresponds to a perfect inspection where infinitely small 
cracks are found. 

The number of inspections n during the life time T is selected before
hand. This is done to avoid an optimization with a mixture of integer and 
real valued optimization variables. The analysis is repeated for several val
ues of n and the resulting optimal costs are compared. The n-value with 
the smallest total expected cost is the optimal value. Inspection times and 
qualities are optimization variables together with the structural design pa
rameter vector z. 

The following cost items are included: initial cost, GI = GI(Z), inspec
tion cost, GIN = GIN(q), cost ofrepair, GR, and cost offailure, GF = GF(t). 
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Inspection and repair costs are assumed to increase with the rate of infla
tion. The difference between the desired rate of return and the rate of 
inflation is assumed to be constant, r. The cost of failure may be a function 
of time. 

The optimization is formulated as a minimization of the total expected 
cost, with a constraint on the reliability index for the life time, and simple 
constraints on the optimization parameters: 

min 
t,q,z 

s.t 

n 1 
CI + ~ {CIN(qi)(l - PF(Ti)) + CRE [Ri]} (1 + rV' 

i=1,2 ... ,n 
n 

trnin ~ T - L ti ~ trnax 

i=l 

qrnin ~ qi ~ qrnax, i = 1, 2 ... , n 

z!llin < z· < z!llax i 12k , -' -, , =, , ... , 

(54) 

The possibility of predetermining one or more of the inspection times and 
qualities as well as elements in z is available. 

The optimization problem is solved for each n using the NLPQL algo
rithms (Schittkowski, 1986). The value of the objective function and of the 
constraints are computed in a separate routine. This routine calls upon the 
reliability analysis program PRO BAN (Tvedt, 1986) for analysis of 2n +1 -1 
parallel systems for calculation of failure probabilities and 2n - 1 parallel 
systems for calculation of expected repair cost. PROBAN provides a reli
ability index calculated by a first-order reliability method (Madsen, 1992) 
for each parallel system, together with exact partial derivatives of the reli
ability index with respect to Ai, Ti and Zj. From these partial derivatives, 
the partial derivatives with respect to qi, Ti, and Zj are easily derived. 
Possibilities are included to perform the optimization with only the most 
important branches in the event tree in Fig. 14 included. 

A more general formulation than presented in Fig. 14 has different in
spection times and qualities in different branches. The number of optimiza
tion variables is thereby increased drastically. To overcome this problem, 
a procedure is here chosen in which the inspection plan is first optimized 
at the design stage. When the result of the first inspection is known, a 
new optimal inspection plan is determined by applying this information 
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Figure 15. Cost functions at optimal solution; reliability index with time. 

in addition to the information available at the design stage. The various 
failure probabilities and probabilities of repair are then conditional prob
abilities, conditioned upon the result of the first inspection. Actual crack 
measurement results can be considered at this stage. As each inspection 
result becomes available, the tree of possibilities in Fig. 14 is reduced to 
one half of its size as the actual branch at the inspection time is known. 
With inspection results available at times T1 , ••• , Tj-l, the optimization 
problem is formulated as 

min 
t,q 

s.t (55) 

t min < t· = T- - T· 1 < t max 2 = J .. ... , n _ t t t- _ , 

n 

t min ::; T - L ti ::; tmax 

i=1 

where failure and repair probabilities are computed conditioned upon the 
results of the first j - 1 inspections. 

Example: Design and Maintenance Optimization for Tubular 
Joint. 
An analysis of a tubular joint in an offshore jacket structure is considered. 
The selected input data are described in detail in (Madsen, 1988). Fig. 15 
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Figure 16. Reliability index with time in optimization after inspections. 

shows the different cost items as a function of the number of inspections, 
and it shows the change in reliability index with time for the case of n = 4 
inspections. If the inspection at time Tl does not result in a crack detection, 
a new optimization is performed as described in the previous section. Fig. 16 
shows the change in reliability index with time for the new optimal solution 
and for the optimal solution determined with no crack detection in the first 
two inspections. 

7. Conclusions 

The following conclusions can be stated: 

1. A stochastic model for fatigue crack growth has been formulated which 
accounts for uncertainties in loading, initial defects, critical crack size, 
material parameters, and in the computation of the stress intensity 
factor. Both constant and variable amplitude loading is considered. 

2. Different failure criteria are considered, and limit state functions and 
corresponding safety margins are formulated. Basic uncertain variables 
are described, and statistics for the material parameters and the load
ing are analyzed. 

3. Two types of inspection results have been considered, and the inspec
tion uncertainty has been modeled. Event margins have been defined 
for both types of inspection results. Updated reliabilities have been 
expressed in terms of the safety margin and the inspection event mar
gins. Updated reliabilities after repair have been described in a similar 
manner. 

4. Reliability calculations and reliability updating are conveniently and 
accurately done by first-and second-order reliability methods (FORM 
and SORM). These methods in addition provide a set of useful impor-
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tance and sensitivity factors. 
5. The analysis has been presented for an example panel with a center 

crack. The reliability index has been based on information at the design 
stage and has been updated based on inspection results both resulting 
in crack detecting and in no detection. Different inspection qualities 
have been considered, resulting in different effects on the updated re
liability index. 

6. Optimal allocation of resources in design and for inspection and repair 
to achieve a minimum total life cycle cost is described as an optimiza
tion problem and a solution method is presented. 
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Abstract 

Navil K Shetty 
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Epsom, Surrey KTl8 5BW 
U.K. 

A methodology for probabilistic fatigue assessment of welded joints using the S-N and 
fracture mechanics approaches is proposed. A fatigue crack propagation model is 
presented for a semi-elliptical crack in a welded plate which accounts for the effects of 
weld geometry, residual stresses, stress ratio, fatigue threshold and variable amplitude 
loading. A simple lognormal format and a rigorous FORMISORM approach is used for 
evaluating the reliability of a joint against failure by fatigue. The model accounts for 
the uncertainties in fatigue loading, stress analysis, stress intensity factors, initial defect 
size and crack growth material properties. Examples involving reliability analysis of 
tubular joints of offshore structures are presented. 

1. Introduction 

Conventional design against fatigue has been based on the S-N approach, in which all 
parameters are taken at their expected values except for a conservative choice of fatigue 
strength (S-N curve). The computed fatigue life of a joint is thus a single valued 
quantity arrived at in a deterministic manner. However, many of the parameters 
affecting the fatigue life of a joint, such as weld defect size, magnitude of stress range, 
and resistance of the material against crack propagation, are random in nature, and 
should be treated probabilistically. Modem methods of structural reliability analysis 
provide a rational basis for the probabilistic fatigue assessment of welded joints. 

In this chapter, a brief review of the S-N and fracture mechanics methods for fatigue 
life estimation of welded joints is presented. A number of uncertainties associated with 
fatigue analysis, for example in the load modelling, structural modelling, stress analysis 
and fatigue damage modelling are discussed. The use of First Order (FORM) and 
Second Order (SORM) reliability methods for computing the probability of joint failure 
under fatigue are explained with practical examples. 
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2. Factors Influencing Fatigue of Welded Joints 

In welded joints, fatigue cracks develop from weld defects because of their stress raising 
effect. Since defects of significant size are invariably present, the crack initiation phase 
is relatively short for welded joints, and much of the fatigue life is characterised by 
crack propagation. Fatigue damage in welded joints of metallic structures is influenced 
by many factors which may be grouped as below. 

(a) Loading: Fatigue is a cumulative, time-dependent phenomenon. Each cycle of load 
will cause some fatigue and thus the magnitudes of all load cycles over the service 
life of the structure characterize the fatigue loading. 

(b) Joint Geometry: Since fatigue crack advance depends on the cyclic stress range at 
the very tip of the crack, the stress analysis of joints should account for the stress 
raising effects of the overall geometry of the joint, and the local geometry of the 
weld at the crack site. 

(c) Weld Defects: Fatigue cracks in welded joints originate from weld defects such as 
inclusions, undercuts, lack of fusion etc. which are to some extent unavoidable. 
Though there may be many defects in the joint, only those defects which are present 
in regions of high stress concentration develop into fatigue cracks. 

(d) Material Property: Crack propagation depends on the cyclic elasto-plastic response 
of the material near the crack tip. Material properties describing crack growth 
behaviour are obtained from experiments, and generally a large scatter in test results 
is observed. 

(e) Others: The presence of residual stresses, mean stress due to static loads, and the 
sequence of load cycles in a variable amplitude loading are observed to have some 
influence on fatigue life. 

3. Fatigue Analysis Using S-N Approach 

In this method, the fatigue strength of a component is characterized in terms of an S-N 
curve which is a plot of stress range (as ordinate) versus number of stress cycles to 
failure (as abscissa), both plotted on a logarithmic scale. Most design codes specify S-N 
curves for the fatigue design of various types of welded joints which are derived from 
fatigue tests on a large number of real scale joints. 

3.1 THE S-N CURVE 

The basic S-N curves for various joint types are often established for a reference plate 
thickness and for air conditions. Additional corrections to the basic curve are applied 
to account for the effect of other factors. A log-linear S-N curve can be expressed in 
the form of 

10g(N) = 10g(K) - m 10g(S B) (I) 

where N is the number of stress cycles to failure at a constant amplitude stress range SB' 
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K and m are the intercept and inverse slope of the S-N curve. 
The mean values of m and 10g(K) are obtained from regression of test data. The 

design S-N curve is then derived by shifting the mean curve downwards by typically two 
standard deviations of 10g(N) of the data-set. However, for the purposes of reliability 
analysis, only the mean value S-N curve is relevant. 

The effects of weld geometry, residual stresses and through-thickness stress variation 
are implicitly included in the S-N curve. The effect of other factors such as, plate 
thickness, sea water environment, weld toe grinding and post-weld heat treatment, etc. 
are accounted through appropriate corrections to the basic S-N curve. 

3.2 COMPUTATION OF FATIGUE DAMAGE 

In an S-N approach, fatigue damage is quantified in terms of Miner's damage 
summation. Miner's rule assumes that every stress cycle causes some fatigue damage, 
and that the damages caused by various stress cycles are linearly additive. Miner's rule 
neglects all stress-cycle interaction effects, and thus damage due to n(S) cycles of 
constant amplitude loading of stress-range S can be expressed as 

D = n(S) 
n N(S) 

(2) 

where N(S) is the total number of stress cycles to failure at the same stress-range Sand 
D is the damage indicator. Eqn. (2) shows that D should be equal to unity for failure. 
An S-N curve of constant slope m can be expressed as 

(3) 

Combining the two equations, we can express the damage indicator as 

(4) 

In the above, it is assumed that all the corrections for plate thickness, environment, weld 
improvement etc. have been incorporated through an appropriate value of K. If D Jy is 
the damage computed for all stress cycles in one year, then IIDJy gives the fatigue life 
or the number of years to failure of the joint. 

3.3 COMMENTS ON THE USE OF S-N APPROACH 

The S-N method of fatigue analysis is very simple to apply and is widely used for 
design purposes. Since an S-N curve is developed from a direct observation of fatigue 
lives of a set of joints, it incorporates the effect of all known and unknown factors on 
fatigue life which were present in the test data. Consequently, when used with joint 
types and loading conditions which are similar to those from which the S-N curve was 
developed, a high degree of confidence can be assigned to the predicted fatigue lives. 
However, in practical applications, extrapolations outside the original data-sets have to 
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be made and, in general, the method suffers from the following disadvantages: 

(a) Fatigue tests on welded joints required for developing S-N curves are very 
expensive, and every additional factor, such as thickness effect, weld toe grinding 
etc., that is to be accounted necessitates new tests. 

(b) S-N curves cannot be easily extended to cases other than those covered by the 
original data-base used for developing the curves. Thus a change of material, or 
major changes in joint configuration and sizes requires new S-N curves to be 
developed. 

(c) To develop S-N curves, joints of different types, different weld geometries and 
different loading modes are normally combined into one data-set, and consequently 
large scatter in fatigue lives is observed over the data-set. The design S-N curve can 
thus be over conservative for some joint types. 

(d) If during in-service inspection a crack of significant size is found in a joint, the S-N 
method cannot be used to estimate the remaining life of the joint. 

For these reasons the emphasis of research in recent years has turned towards the 
development of fracture mechanics methods for the fatigue analysis of welded joints, and 
this is discussed in the next section. 

4. Fatigue Analysis Using Fracture Mechanics Approach 

For welded joints, the crack initiation phase is short and most of the fatigue life is 
consumed in crack propagation from small weld defects. Because of this, fracture 
mechanics principles can be used advantageously for the fatigue assessment of welded 
joints. Fracture mechanics provides an accurate description of the stress-strain field 
around the crack, and its propensity to extend. It explicitly accounts for the influence 
of weld geometry, residual stresses, stress ratio, fatigue threshold, etc. It is observed 
that, because the fatigue process involves typically low stress levels, the crack tip plastic 
zone is usually small compared to the crack dimensions, and hence linear elastic fracture 
mechanics is applicable. The main elements involved in a fracture mechanics fatigue 
assessment procedure are discussed below. 

4.1 BASIC CRACK GROWTH LAW 

Analogous to the S-N approach, the fracture mechanics approach uses the stress intensity 
factor range M to correlate the crack propagation rate da/dn. A crack propagation 
model typically gives a functional relation of the form 

da = f(M) 
dn 

(5) 
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A number of attempts have been made to describe the form of the function f, either in 
a deterministic or probabilistic manner, and accordingly the various crack propagation 
models can be broadly grouped into deterministic and probabilistic models, see Shetty 
(1992) for a detailed review. In this chapter, only the deterministic models are 
discussed, while the stochastic models are described in the next chapter by Madsen. The 
simplest and the most widely used model is the one given by Paris and Erdogan (1963), 
commonly known as the Paris law, which can be written as 

for ilK>O (6) 

where C and m are material constants which can be determined from experiments on 
simple specimens. A typical plot of da/dn versus ilK on a logarithmic scale obtained 
from experimental data is shown in Fig.I. The crack propagation rate curve exhibits a 
sigmoidal behaviour which can be considered to fall in three regimes based on the value 
of ilK as shown in the figure. It can be seen that the Paris law correlates well with the 
observed crack propagation behaviour in regime II where Iog(da/dn) is more or less 
linearly related to 10g(M). In practical applications the crack propagation behaviour is 
often idealized as shown by the dotted lines in the figure, and the Paris law is assumed 
to be valid even in regimes I and III. 

t 
= -c -o 
-c 

REGIME 1 RE91ME II 

Lag (LlK)~ 

Figure 1: Typical variation of crack propagation rate with stress intensity factor range 
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Figure 2: Through-thickness stress distribution at a welded joint 

4.2 STRESS DISTRffiUTION AROUND TIlE CRACK 

In order to calculate the stress intensity factor range !lK for use in the crack growth law, 
a detailed description of the stress system in the vicinity of the crack (but of an 
uncracked section) is required. For welded joints, in addition to the stresses due to the 
applied loading, there are residual stresses, often reaching yield stress in magnitude. The 
stress distribution due to the applied loading is influenced by the overall geometry of the 
joint and the local geometry of the weld. The total stress system causing the 
propagation of a crack through the thickness of a plate can be represented typically as 
in Fig.2. The stress distribution at the joint due to the applied loading can be determined 
by finite element analysis. The distribution of residual stresses is usually obtained from 
experimental measurements on typical joint and weld details. 

The through-thickness distribution of geometric stress is often assumed to be linear, 
consisting of membrane and bending components as shown in Fig.2, and is characterised 
in terms of the ratio of the bending stress to the total geometric stress, called 
degree-oJ-bending. 

The geometric stress is amplified very close to the weld toe due to the effect of weld 
notch. The notch stress distribution is highly non-linear, as shown in Fig.2. 

4.3 STRESS INTENSITY FACTORS 

The stress distribution of an un-cracked body is further modified when a crack is 
introduced into it. The stress field close to the crack can be described by the 
linear-elastic stress intensity factor (SIP) K given as 

(7) 

where a is the crack size, Sathe applied stress and Y is called the stress intensity 
geometry correction factor or compliance function. The Y-factor depends on the 
geometry of the joint, the nature of stress distribution and the crack size. Solutions for 
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Y -factor are available for a number of standard stress distributions and joint/crack 
geometries, see for example Tada et al (1973) and Rooke and Cartwright (1976). 

For welded joints, it is observed that micro-cracks initiate from surface-breaking 
defects at the toe of the weld. These micro-cracks coalesce to form a single, dominant 
fatigue crack of roughly semi-elliptical shape. Semi-elliptical cracks in plated structures 
are of interest in many practical applications, and the SIF solutions for this case are 
presented below. 

Stress Intensity Factors for a Semi-Elliptical Crack: 
Empirical stress intensity factor solutions for a semi-elliptical surface crack in a plate 
subjected to membrane and bending stresses through the thickness of the plate have been 
developed by Newman and Raju (1981) based on results from 3-D finite element 
analyses. For a semi-elliptical crack of depth a and semi-length c, the stress intensity 
factor K can be expressed in the form 

(8) 

where Sg is the geometric stress at the crack site, p is the degree-of-bending factor for 
the stress distribution through the plate thickness and q is the elliptical integral of the 
second kind. The factors Hand Yg are functions of the relative crack depth aIT, crack 
aspect ratio alc, relative crack length clW and angle c!> to the point on the crack front, 
for which expressions have been given in the above reference. In the above T is the 
plate thickness and W is the plate width. Using this equation, we can determine the stress 
intensity factor at any point on the crack front, but the interest is normally on the 
deepest point of the crack in the thickness direction (c!>=900) and the surface tips 
(c!>=0'. 

Effect of Weld Geometry: 
The presence of a weld at the plate surface gives rise to a non-linear notch stress 
distribution as shown in Fig.2. To account for this notch stress a weld toe correction 
factor is used. The calculation of stress intensity factors for a semi-elliptical crack under 
a varying stress field is generally very difficult. For practical applications, simplified 
parametric expressions have been developed which have the general form 

(9) 

where lw is the weld leg length, C!>W is the weld toe angle and Pw is the weld toe radius. 
Empirical expressions for function Y j as a function of relative crack depth and relative 
weld leg length for c!>w=45° and Pw=O are given in BS PD6493 (1991) separately for 
membrane and bending components of the through thickness geometric stress 
distribution. Similar expressions for functions Y2 and Y3 can be obtained from Dijkstra 
et al (1990). However, it is to be noted that these expressions are developed from 
parametric studies using 2-D finite element analysis on edge cracks in weldments, and 
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can be conservative for semi-elliptical cracks, Dijkstra et al (1990). Solutions are not 
available for semi-elliptical cracks at present. 

Effect of Stress Gradient: 
The stress intensity factors calculated from Newman- Raju solutions are valid for a plate 
subjected to unifonn stress across the width of the plate. An additional correction is 
required to account for stress gradient. Mattheck et al (1983) give a method for 
calculating stress intensity factors for semi-elliptical cracks in plates subjected to a 
varying stress field using the weight function technique. This can be used if the stress 
distribution around the intersection is known accurately. Alternatively, the effect of 
stress gradient can be modelled approximately by an average stress factor defined as 

average stress over the crack length 
Y s = --~---:--:----------geometric hot-spot stress 

(10) 

This stress gradient correction is applied for the crack growth at the surface tips only, 
and can be conservatively neglected for the growth at the deepest point of the crack. 

4.4 EFFECT OF STRESS RATIO 

For each loading cycle, two stress ratios can be defined by 

Rn 
smin 

smax 
(11) 

R 
Kmin 

Kmax 

where Rn is called a nominal stress ratio which is calculated from the minimum and 
maximum values of the applied cyclic stress alone, while R is a stress intensity factor 
ratio (simply called stress ratio) which is based on the total stress which includes 
applied cyclic stress, applied static stress, residual stress etc. The influence of the stress 
ratio can be seen from Fig.l which shows that crack propagation rate increases as 
positive R ratio becomes larger. However, the influence of R is more pronounced in 
regimes I and III, and is highly dependent on the microstructural properties of the 
material. The effect of stress ratio in these regimes can be accounted through the 
modifications suggested by Klesnil and Lucas (1972) and Fonnan (1964). In structural 
steels, the crack propagation in regime II is found to be almost independent of stress 
ratio. In addition to this influence on crack propagation rate, the stress ratio also 
influences threshold stress intensity factor range and effective stress range as discussed 
in the following. 
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4.5 EFFECT OF RESIDUAL STRESSES 

The effect of tensile residual stresses is to alter the stress ratio and stress intensity factor 
range experienced at the crack tip during load cycling, and these are calculated as 

Kmin = Kapp.min +Kres 

Kmax = Kapp.max+Kres 

IlK = Kmax-Kmin 

= Kapp.max - Kapp.min for Kmin> 0 (12) 

IlK = Kapp.max+Kres for Kmin~O 

R = KminlKmax for Kmin> 0 

R =0 for Kmin~O 

where Kapp is the stress intensity factor due to the applied loading and Kres is the stress 
intensity factor due to residual stress. The suffixes min and max refer to the minimum 
and maximum values within a stress cycle. Here it is implicitly assumed that for Kmin~O 
(i.e. under net compressive stress), the crack will be closed and cannot propagate. Only 
that part of the loading cycle for which the crack remains open is considered to be 
effective in crack propagation. Equations (12) show that residual stresses do not have 
any influence on IlK as long as Kmin>O. For Kmin~O, i.e. when the applied stress cycle 
has a very high compressive component, residual stresses will have a significant 
influence. However, the stress ratio is altered in both cases, which in tum has an 
influence on crack propagation, as mentioned above. The presence of other stresses, 
such as those due to static loading, which contribute to the mean stress, will have a 
similar influence, and should be considered in calculating IlK. 

The calculation of K res should be based on the through-thickness distribution of 
residual stresses which is idealized as a combination of bending and membrane 
components as in Fig.2. The residual stresses are believed to dissipate as the crack 
propagates through the thickness, the exact nature of this is however not known. This 
dissipation can be approximated as 

Sreia) = Sb reia) +Sm res 

= [Pr~(a)+I -pr]Sres.O (13) 

~(a) = 1-(;) 
where Sres.O is the initial value of residual stress at the surface, Sb res is the bending 
component and Sm res is the membrane component of the residual stress, P r is the degree 
of bending factor for residual stress and ~(a) is a residual stress relaxation factor. This 
relaxation is assumed to be effective for the deepest point of the crack only and no 
relaxation is used at the surface tips. 

The effect of residual stresses and stress ratio R can be conveniently introduced into 
the crack growth law through an effective stress intensity factor ratio U defined as 
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u = AKe!! (14) 
AK 

where AKejJ is the effective stress intensity factor range, and Kop is the crack opening 
stress intensity factor which is regarded as a material property to be determined from 
experiments. This reduces the crack growth law to a Paris type with AK in Eq.6 now 
replaced by U AK. Combining Eqs. (12) and (14), we can express U in terms of R as 

U = 1 
=1/(I-R) 

for R~O 

for R<O 

4.6 EFFECT OF FATIGUE THRESHOLD 

(15) 

Fig.2 shows that for values of applied stress intensity factor range AK less than a 
threshold value, called the threshold stress intensity factor range AKth' the crack does 
not propagate. The exact mechanism of fatigue threshold is not completely understood, 
but it is regarded as a material property which can be determined from experiments. 
The threshold value is seen to be significantly influenced by stress ratio and can be 
explicitly modelled as suggested in BS PD6493 (1991) using 

AKth = fR AKthO 
(16) 

fR = (190-144R)1190 = 1-0.757R 

where AKthO is the threshold value determined from experiments at R=O. 

4.7 COMPUTATION OF FATIGUE DAMAGE 

Based on the crack propagation model and the stress intensity factor solution presented 
above, a procedure for the computation of fatigue damage is summarized here. For the 
sake of simplicity the following derivation assumes constant amplitude fatigue. The 
extension of the procedure to variable amplitude loading is discussed in Section 5. 
Fatigue damage at any instant, after an exposure period of time t, or an average number 
of stress cycles net), can be characterised in terms of the crack dimensions aft) and e(t). 
Corresponding to the two principal directions of crack growth of a semi-elliptical crack 

da m 
dn = C AKejJ.aG(a) 

(17) 

where G(a) and G(e) are threshold correction factors which are discussed in Section 5. 
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The effective stress intensity factor ranges are 

M effa = Ua S Ya [1t alq] 1/2 

Meffe = UeSYe [1talq]1I2 

95 

(18) 

where S is the stress range and Ua and Ue are the effective stress intensity factor ratios, 
which incorporate the effects of residual stresses and stress ratio, to be detennined based 
on Eq.15. The geometry correction factors Ya and Ye are detennined from the stress 
intensity factor solutions discussed in Section 4.3 as 

Ya = Ywa(Hp + I-p) Yga 

Ye = Ywe(Hp +1-p)Yge ys 
(19) 

where Ys is the average stress factor obtained from Eq .11. The coefficients H and Yg 
are functions of relative crack depth alt and crack aspect ratio alc and are obtained from 
the stress intensity factor solutions for a semi-elliptical crack given by Newman and Raju 
(1981), Y w is the weld geometry correction factor obtained as a function of weld 
geometry from BS PD6493 and Dijkstra et al (1990). The correction factor Ywe is 
calculated corresponding to a constant crack depth of a=1.5mm. The crack propagation 
equations in the two directions are coupled, as the stress intensity factors at the deepest 
point and at the surface tip are functions of the parameters alt and alc. 

Integration of Eq.17 in the thickness direction from an initial defect size ao to a 
crack size a(t) after time t, and average number of stress cycles n(t), gives 

aU) J dx = n(t)S m 
ao CG(x) Uam Yam [1txlq]mI2 

(20) 

Equation 20 needs to be integrated numerically using a computer program. From an 
initial crack depth ao and initial semi-crack length co' crack depth is incremented in steps 
of, typically, 10-20% of its current value until the final crack length is reached. Within 
each increment, the fatigue damage is calculated using an 8-point Gauss quadrature 
integration. For each increment of crack depth /In, the increment of crack length dc, 
and the crack aspect ratio alc for the lh increment, are 

dc = G(c) [ U,Y, r 8a 
G(a) UaYa (21) 

(: 1 aj _1 +/In 

Cj _1 +dc 

Alternatively, when the fatigue life of a joint is required, Eq.20 is integrated from the 
initial defect size ao to a final crack size equal to the plate thickness, and the 
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corresponding time t for failure is determined. 
The effect of crack coalescence and short crack effect can also be incorporated, as 

discussed in Shetty and Baker (1990b). 

5. Fatigue Under Variable Amplitude Loading 

In Sections 3 and 4, the fatigue analysis method using S-N and fracture mechanics 
approaches have been developed assuming constant amplitude fatigue stress cycles. 
However, in many practical applications, the fatigue loading is of variable amplitude 
type. Since each load cycle causes some fatigue damage, in principle a knowledge of 
all stress cycles expected at a joint over the life-time of a structure is required. This is 
often developed in the form of a probability distribution of fatigue stress cycles. The 
main elements involved in a variable amplitude fatigue analysis are summarized below. 

5.1 PROBABILITY DISTRIBUTION OF STRESS RANGES 

The stress process under variable amplitude loading can be characterised in a time 
domain as a stochastic process S(t), or equivalently in a frequency domain using a 
spectral density function Gsloo). The nth moment of a spectrum is computed as 

(22) 

where 00 is the angular frequency. Usually the zeroth, fIrst, second, and fourth moments, 
corresponding to n=O, 1, 2 and 4 are of interest in developing a probability distribution 
of stress cycles, as discussed next. 

From the moments of the spectrum of the stress response, the following statistical 
properties of the stress process can be obtained 

(23) 

where E[.] is the Expectation operator, a2 is the variance, Jl is mean, To mean time 
between successive upcrossings of the mean level, Tp the mean time between successive 
peaks, Uo and up are the average frequency of zero-crossings and average frequency of 
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peaks of the stress response process. The ratio a is called the spectral irregularity 
factor and e as the spectral bandwidth parameter. When e~O the spectrum is called 
narrow-banded and for e~ I it is called broad-banded. 

If the stress spectrum is Gaussian and narrow-banded it can be shown that the peaks 
of the stress process, and hence the stress ranges, follow a Rayleigh distribution. When 
the stress process is broad-banded, the stress cycles cannot be easily distinguished, and 
a convention is required for defining them. One of the approaches is to simulate the 
time history of the stress process and use one of the peak, range or rainflow counting 
schemes to count the stress cycles, see Dowling (1972). The rainflow counting method 
is seen to give the best correlation with experimental results of fatigue tests under 
variable amplitude loading. However, this approach is computationally very expensive 
for practical applications. 

In recent years, a number of attempts have been made to obtain analytical 
distributions for stress ranges of a wide-banded stress process, see Shetty and Baker 
(1990a) for a detailed review. These methods either attempt to fit empirical distributions 
to the results obtained from rainflow simulations, or modify one of the standard 
distributions to derive a density function for stress ranges. In Shetty and Baker (1990a) 
a distribution for stress ranges is derived based on Rice's distribution for peaks of a 
broad-banded process. Zhao and Baker (1990) gives the following empirical 5-parameter 
mixed Weibull distribution which is seen to give very good comparison with the 
rainflow counting method. 

fy(Y) = y ~ (2:.)b-1 exp[-(2:.l ] 
a a a 

+ (1-y) d (!.)d-I exp[-(!.)d] 
c c c 

a = (8 -7a)-l/b 

b = 1.1 for as;0.9 (24) 

= 1.1 +9(a -0.9) for a>0.9 

c = 12 
d=2 

Y = (l-a)/[I-y'271tan~ +1)] 

where y=s/2(J is the normalised stress range and (J is the root mean squared (rms) value 
of the process. 

5.2 COMPUTATION OF FATIGUE DAMAGE 

The fatigue damage procedures using the S-N and fracture mechanics methods developed 
earlier can be extended to variable amplitude loading by summing the fatigue damage 
caused by each stress cycle. Since the stress cycles under variable amplitude loading 
are described using a probability density function, the cumulative loading sum can be 
replaced by its expected value. The Eq.4 for S-N approach and Eq.20 for the fracture 
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mechanics approach can be generalised to variable amplitude loading as below. 

S-N Approach: 

(25) 

Fracture Mechanics Approach: 

(26) 

where '¥ L(t) is sometimes referred to as the fatigue loading function. 
The mth expected value of stress range E[Sm] can be calculated from the probability 

density function of stress ranges. Often a partial expectation considering stress ranges 
above a threshold level is also required. For the stress range density function given in 
Eq.25, the following expressions can be derived. 

E[ym]"" = 
Y,h 

where re.;.) is the incomplete Gamma function. When the expectation is over all stress 
cycles, this can be replaced by the complete Gamma function in the above expressions. 

6. Quantification of Uncertainties 

In the fatigue analysis procedure described in the previous sections, considerable 
uncertainties are involved which influence the fatigue life estimates. These uncertainties 
can be broadly grouped as (i) uncertainties in fatigue load estimation, (ii) uncertainties 
in stress calculations (iii) uncertainties in strength models, and (iv) uncertainties due to 
the natural randomness of fatigue material properties. In a probabilistic analysis these 
sources of uncertainty should be identified, quantified and accounted for. The first two 
categories of uncertainties depend on the type of the component considered and the type 
of loading to which it is subjected, and cannot be discussed independently of the type 
of structure being considered. In this chapter attention is focused on the modelling of 
uncertainties in fatigue material properties and strength models. 
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6.1 MINER'S SUM 

Miner's hypothesis of linear damage accumulation, used in S-N fatigue analysis, states 
that the component will fail by fatigue when the accumulated damage D equals unity. 
However, a number of tests under variable amplitude loading indicate a scatter in the 
value of the accumulated damage at failure. This could be attributed as a model 
uncertainty in Miner's hypothesis. This uncertainty can be modelled by treating Miner's 
damage sum at failure (d) as a random variable. Wirsching (1984) suggest that d be 
modelled as a lognormal variable with a mean of 1.0 and coefficient of variation of 0.3. 

6.2 FATIGUE CRACK PROPAGATION MODEL 

The fatigue crack propagation model presented in Section 4 involves a number of 
parameters which are subject to considerable uncertainty. These uncertainties arise from 
the use of simplified empirical formulations for stress intensity factors, unknown 
distribution of residual stresses, modelling of weld geometry effect, crack coalescence 
and relaxation of residual stresses. It is difficult to quantify the uncertainty for each of 
these sources separately due to scarcity of data. It is convenient to express all the above 
sources of uncertainty through a single basic variable B sif which gives the ratio of stress 
intensity geometry correction factor obtained by experiment, Yexp' to that computed using 
the proposed model Y mod. The statistics for this variable can be developed by 
comparison with experimental compliance function curves. The factor Bsif can be 
modelled as a lognormal variable with a mean of unity and coefficient of variation 
typically in the range of 0.15-0.25. Lower variability may be used if the stress intensity 
factors are computed using finite element models such as line-spring and weight function 
models. 

6.3 S-N CURVE PARAMETERS 

S-N curves are developed from fatigue tests on welded joints, and generally large scatter 
is observed in the number of cycles to failure. The uncertainty in the S-N curve can be 
expressed through the parameters m and K. Because of the mathematical form of the 
equation, the parameters m and K are expected to be highly correlated, and it is common 
to consider only one of the parameters as random and the other as fixed. Considering 
K as random, the statistic for this variable can be obtained from the test data on number 
of cycles to failure. The variable is often modelled as lognormal, see for example 
Wirsching (1984) with coefficient of variation in the range of 0.4-0.6. 

6.4 CRACK GROWTH PARAMETERS 

Crack propagation rate data are usually obtained from tests on simple specimens, and 
exhibit considerable scatter. The uncertainty modelling for crack growth depends on the 
crack propagation model used. A number of probabilistic crack propagation models 
attempt to describe the scatter in test results by treating crack propagation as a stochastic 
process, for example as a lognormal process or a Markov process (see next chapter by 
Madsen). However, when a simple Paris type crack propagation model is used, as 
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presented in Section 4, a random variable description is usually adequate. In this 
approach, the crack growth parameters, C and m, in the Paris law can be used to 
describe the scatter in crack propagation data. 

The crack growth parameters C and m usually exhibit a high negative correlation, 
and it is therefore common to use a fixed value of m, and express all the uncertainty 
through C. The variable C is well described by a lognormal model with coefficient of 
variation typically in the range of 0.3-0.4. 

6.5 INITIAL DEFECT SIZE 

The weld defects, which act as crack initiation points, are of several types and defect 
size, and occurrence rates are found to be highly random and are influenced by such 
factors as fabrication yard, welding procedure, welding position, type of joint etc, 
Baker et al (1988). Some of the reported studies on plated joints have been reviewed 
by Kirkemo (1988). Statistical analysis of a large amount of weld defect data obtained 
from the Conoco Hutton TLP structure has been carried out by Kountouris and 
Baker (1989). For use in a reliability analysis, the distribution of defect sizes should be 
based on defects existing in a structure entering into service, considered acceptable 
according to quality control standards, as well as those remaining undetected during 
fabrication. Thus defect occurrence rate, and the amount and quality of NDE used, 
should be taken into account in developing a distribution for weld defect size. From the 
limited data available, the mean value and standard deviation of weld defect depth ao 
can be estimated to be O.l5mm and O.lOmm for "sound" quality welds. Lognormal, 
exponential and Weibull distributions have been used by researchers to fit weld defect 
data. Similarly, initial defect aspect ratio, defined as the ratio of initial defect depth to 
defect semi-length (ar/co) may also be modelled as a lognormal variable with a mean 
of 0.62 and coefficient of variation of 0.4, Kountouris and Baker (1989). 

7. Probabilistic Fatigue Assessment 

In a deterministic approach for design against fatigue, all the loading parameters are 
taken at their expected values, while the resistance parameters are taken at values 
corresponding typically to mean minus two standard deviations. Additional safety is 
ensured by keeping the computed fatigue lives by a factor of 2-10 times higher than the 
planned service life of the structure. However, in view of the considerably large sources 
of uncertainty, both in the loading and fatigue resistance parameters, a fully probabilistic 
approach to fatigue design is considered appropriate. In this section reliability analysis 
methodology for the fatigue limit-state is presented, using both an S-N approach and a 
fracture mechanics approach. Two types of reliability analysis methods, namely, (i) the 
Lognormal formulation and (ii) the FORMISORM approach are described. The 
sensitivity of the probability of failure to uncertainties in various parameters is studied 
using numerical examples. 
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7.1 RELIABILITY ANALYSIS USING LOGNORMAL FORMULATION 

This fonnulation has been extensively used in code calibration studies based on a 
reliability approach, see for example Wirsching (1984). The method is often used with 
the S-N approach, in which only A K, Bgifand Bscfare treated as random variables, and 
all of which are assumed to follow a lognonnal distribution. The variables B gif and B scf 
are introduced to account for the uncertainty in the global stress analysis of the structure 
and local stress analysis of the welded component, respectively. 

Using the expression for fatigue damage, Eq.25, from Section 5, we can compute 
the damage due to nt cycles of loading in a service life of t as 

(28) 

where (0 is the average frequency of stress cycles and the mth expected value of 
stress-range can be computed as in Eq.27, using the stress range density function given 
in Eq.24. 

In addition, considering the value of Miner's damage sum at failure A as a random 
variable, the probability of failure due to fatigue can be expressed as 

(29) 

Using the Lognonnal fonnat, we can write the reliability index ~ as 

~ "" In(.iil J5J 
(JlnM (30) 

where V denotes the coefficient of variation, and the tilde denotes the median value of 
a variable. The median fatigue damage can be calculated from Eq.28 using median 
values for the random variables K, Bgtf' and Bsc;t The probability of failure can be 
obtained from the reliability index using P.F<P(-I1), where <P(.) is the standard nonnal 
distribution. 

The main advantage of this approach is that an exact closed fonn expression of the 
reliability index can be obtained which makes reliability analysis simple and efficient. 
However, the main disadvantage is that all the variables have to be assumed to follow 
a lognonnal distribution. Moreover, the method cannot be used if an explicit expression 
for damage in tenns of all the basic variables is not available. The Lognonnal 
fonnulation cannot be easily used with a fracture mechanics approach, as this method 
does not provide a closed fonn expression for fatigue damage. 

The sensitivity of ~ with respect to the COY of each of the variables can be derived 
as 
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d~ = -~ V~ 
-2----2 
a lnM 1 +Vd 

-~ VK 

(31) 

7.2 RELIABILITY ANALYSIS USING FORMISORM 

The first step in a reliability analysis using FORMISORM is to identify a set of basic 
random variables which influence the failure mode or the limit-state under consideration. 
Let X = (Xl' X2 •.....• Xn) represent a vector of n basic variables. 

Next, a limit-state function or a safety margin equation is formulated in terms of the 
n basic variables, Thoft-Christensen and Baker (1982), 

-
M = g(X) = g(X),X2, •.• ,Xn) 

in such a way that g(.) satisfies the following: 

g(x) > 0 

g(x) ::; 0 

when x e 01 
when x e Of 

(32) 

(33) 

(34) 

Eq.34 defines an (n-J) dimensional surface in the space of n basic variables. This 
surface is called a failure sUrface or a limit-state surface and divides the basic variable 
space into a safe region (Os and an unsafe region rot Note that the limit-state function 
g(.) is entirely deterministic, and any of the existing deterministic models for strength 
prediction could be used. The random variable M is called a safety margin. 

The reliability or the probability that the limit-state will not be reached is then 
expressed as 

R = I-Pf = I-P[M::;O) = 1-Yi(x)dx (35) 

where f~ ') is the joint probability density function of the n basic variables and Pf 
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denotes probability of failure. The n-dimensional integral is defined over the failure 
region rot 

In practical applications, the reliability cannot be evaluated in the exact manner as 
given by Eq.35. This is so, first, because enough statistical data is usually not available 
to develop the n-dimensional joint density function of the basic variables. Secondly, 
even when the joint density function is available, analytical or numerical integration is 
possible only for a few simple cases. The FORMISORM methods provide a way of 
evaluating the reliability efficiently with reasonably good accuracy which is adequate for 
practical applications. 

In a FQRMlSORM reliability method, see M...!ldsen et al (1986), the set of basic 
variables X is first transformed to a new set, U=(U1,U2, •.. ,Un) using a one-to-one 
transformation 

- -
T: X = (X1,X2, ••• ,Xn ) ~U = (Ul'U2, .•• ,Un ) (36) 

such that the new set of variables are independent, standardized and normally distributed. 
A number of transformation methods are available depending on the initial distribution 
of basic variables. The equation for the limit-state surface in u-space becomes 

(37) 

In the transformed space, a point on the failure surface closest from the origin, ;;* is 
determined by a minimization solution with one constraint such that 

u*: min I u I; with guCu) = 0 (38) 

The point ;;* is called a design point or a most likely failure point as it represents a 
point of highest probability density in u-space on the failure surface. At the design point 
the unit normal vector or the direction cosines to the failure surface with respect to each 
of the variables are 

VguCu *) 
(39) 

I VguCu*)1 

These direction cosines are often referred to as sensitivity factors in reliability literature, 
see Thoft-Christensen and Baker (1982). 

In a First Order Reliability Method (FORM) the failure surface at the design point 
is approximated by a tangent hyperplane defined by 

(40) 

and the shortest distance to this hyperplane from the origin is determined by 
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(41) 

Then the first order approximation to the failure probability is computed as 

(42) 

and P is termed as a first order reliability index. In principle any optimization 
algorithm can be used to search for the design point in u-space, and a number of 
computer programs are now available for this purpose. In the RASOS (Reliability 
Analysis System for Offshore Structures) software, the NLPQL algorithm given by 
Schittkowski (1986) is used. 

A number of studies examining the accuracy of the first order reliability method 
have been reported in literature, see for example Dolinski (1983). In most cases of 
practical applications, FORM is seen to give a reasonably accurate estimate of the 
probability of failure. The accuracy of the FORM method derives from the rotational 
symmetry property of the standard normal space, and from the fact that the probability 
density function of the variables decreases very quickly, namely as exp(-ll2), with the 
distance r from the origin. The area of integration giving maximum contribution to the 
failure probability is therefore located in the region of the design point, and the failure 
surface is well approximated by a tangent hyperplane around this point. However, when 
the principal curvatures of the failure surface at the design point are large (i.e. highly 
curved failure surface) a tangent hyperplane approximation is not satisfactory. For 
convex failure surfaces (with respect to the origin) FORM overpredicts the probability 
of failure while for concave failure surfaces it underpredicts Pp Unfortunately FORM 
procedure does not provide a means for estimating the level of error involved. 

The accuracy of the result can be improved by approximating the failure surface by 
a quadratic surface, with the same principal curvatures as the true failure surface at the 
design point. This method is called a Second Order Reliability Method (SORM). 
Unfortunately, results for the calculation of the probability content of the failure region 
bounded by a general quadratic surface are not available. Good results are available for 
hyperparabolic failure boundaries, Madsen et al (1986). For a general failure surface 
Breitung (1984) gives the following asymptotic result for the probability of failure 

(43) 

where P is the first order reliability index and Ki are the principal curvatures of the 
failure surface at the design point. The result is asymptotic in the sense P ~ 00 with PKi 
fixed. This second order correction to the first order result gives a very good estimate 
of the probability of failure for large values of p. 

The computational effort required for FORMISORM methods is very small 
compared to numerical integration or simulation methods. 
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7.2.1 FORMISORM Reliability Analysis Using SoN Approach: 
Using a FORMISORM approach and the SoN method for fatigue damage, we can write 
an expression for safety margin in a more general form as 

M '" !:J.-DL 

• d- ~(!. r\;f[r a m r(l+: )+(I-r)c mr(l +~)l (44) 

where ~ is the thickness correction exponent on stress, Tp is the thickness of the plate 
and TB is the reference plate thickness. In this approach !:J., K, ~, Bsc! and the five 
Weibull model parameters y, a, b, c, and d, describing the fatigue loading, can be 
modelled as random variables using appropriate probability distributions. 

Example 1: Fatigue Reliability of a Tubular Joint Using SoN Approach 

This reliability analysis approach is demonstrated with an example. The tubular joint 
considered here is part of a 6-legged jacket structure in 60m water depth. A bi-linear 
SoN curve is used and the loading uncertainties are modelled through the 5 parameters 
of the mixed Weibull model. The correlations used for the Weibull parameters are: 
Pab=Pcd=-0.6, Pac=Pbd=O.4, and Pad=Pcb=-O.3, while y was modelled as independent 
of others. In addition, the thickness correction exponent ~ and the stress level So at 
which a change in slope of the SoN curve occurs are modelled as random. The slope 
m2 is taken as 5, and K2 is calculated as K2=KjSOm2-ml. The results are given in 
Table 1. 

A deterministic assessment of the joint, including thickness correction, gives a mean 
fatigue life of 270 years, and a nominal life of 80 years based on the D.En. 'T' curve. 
The reliability analysis, relating again to a service life of 20 years, incorporates a more 
realistic representation of uncertainties in fatigue assessments, and the reliability index 
of 1.847 is typical of joints with estimated lives of 80 years based on a design SoN 
curve. A study of the sensitivity factors show that the uncertainty in fatigue loading and 
calculation of stress concentration factors are the dominant variables. The high 
sensitivity of reliability index to uncertainties in Weibull parameters a and b in 
comparison with c and d, derives from the fact that the weighting factor is 0.63, and 
therefore the first part of the mixed-Weibull density function contributes most to the 
stress-range density function. However, when the stress spectra are bi-modal, as in most 
deep-water jacket platforms, the contribution of the second part of the density function 
will be significant, and in such cases the uncertainty in parameters c and d will also be 
important. The reliability index is seen to be less sensitive to the uncertainty in total 
number of stress cycles, thickness correction and stress level So in comparison with other 
resistance variables. 
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Table 1: 

I 
Variable 

Ll 

K 

~ 

So 

Bscf 

A 

B 

C 

D 

W 

Bcyc 

* bias 
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Results of reliability analysis for the limit-state of fatigue using an S-N 
approach and FORMISORM formulation. 

Reliability index ~ 
Probability of failure Pr 

I 
Distribution 

I 
lognonnal 

Mean 

1.00 

lognonnal 1.012E+13 

nonnal 0.30 

nonnal 90.0 

lognonnal 1.0 

lognonnal 1.0· 

lognonnal 1.0* 

lognonnal 1.0* 

lognonnal 1.0* 

lognonnal 0.63 

lognonnal 1.0 

I 

= 1.847 
= 3.24E-02 

COV 

I 
a 

I 
0.30 0.228 

0.58 0.366 

0.15 -0.147 

0.30 -0.001 

0.25 -0.502 

0.20 -0.644 

0.15 0.354 

0.20 -0.042 

0.15 0.009 

0.15 -0.074 

0.10 -0.068 

(Units in N, mm) 

7.2.2 FORMISORM Reliability Analysis Using a Fracture Mechanics Approach 

The fracture mechanics approach gives a safety margin equation for the limit-state of 
fatigue, see also Shelly and Baker (1 990c ) 

(45) 

where ac is the limiting crack depth (for example plate thickness) and art) is the crack 
depth after a service exposure of time t. Starting from an initial crack depth of ao' we 
can calculate the crack depth a( t) after time t using the fracture mechanics crack 
propagation model presented in Section 4. In this case, art) is a function of the random 
variables such as initial defect size, fatigue material properties, uncertainties in service 
loading, etc. Alternatively, in terms of a fatigue resistance function and a fatigue 
loading function, the safety margin for fatigue failure can also be expressed as 
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(46) 

where Ga, fa and Va are all functions of the instantaneous crack depth as defined earlier. 
In the above fonnulation for safety margin, the parameters a{» C, BSif Bscf and Bgtf 

can be modelled as random variables to account for the uncertainties in initial defect 
size, fatigue material properties, stress intensity factor model, stress concentration factors 
and the response analysis under fatigue loading, respectively. In addition, the 
uncertainty in threshold stress intensity factor range !::J(th can be introduced through G a 

and the uncertainty in residual stresses through Va. The safety margin is thus implicitly 
defined in tenns of the basic variables and a simple lognonnal fonnat cannot be used 
for reliability analysis of this limit-state. However, the FORM iterative method can be 
used efficiently, as demonstrated in the following example. 

Example 2: Fatigue Reliability Analysis Vsing a Fracture Mechanics Approach. 

The tubular joint considered in Example 1 is re-analyzed here using a fracture mechanics 
approach. Maintaining the same service load history and using the crack propagation 
model developed in Section 4 gives a mean fatigue life of 287 years, which is very close 
to that obtained using the S-N approach. Properties have been slightly adjusted for this 
joint to obtain nearly equal mean lives from the two approaches. A reliability analysis 
is carried out by considering the plate thickness as the limiting crack depth, and the 
results are given in Table 2. 

All the variables in this example are considered as statistically independent of each 
other, except for the Wei bull parameters a and b which are assigned a correlation of 
p ab=-O.6. The other parameters c, d and y are not treated as random variables as they 
are not important for the joint considered, see Table 2. 

The reliability index for the joint is obtained as 1.747, which is significantly lower 
than that obtained using the S-N approach, although the mean lives obtained by the two 
approaches are nearly equal. This can be attributed to the additional uncertainty 
involved in the calculation of degree-of-bending factors and stress intensity factors 
required in a fracture mechanics approach, and the fact that the reliability index is highly 
sensitive to these variables. If the variability in Bdob and Bsifis ignored (or reduced to 
zero!) the reliability index can be increased to 2.536. This value is slightly higher than 
that obtained using the S-N approach, as the variability in material parameter C is 
smaller than that of the S-N parameter K, other variabilities being the same. 

From the direction cosine sensitivity factors given in Table 2, it can be seen that the 
reliability index is highly sensitive to the model uncertainty in the response calculations, 
and to the SCFs, SIPs and DoBs, and less sensitive to the variability in material 
parameter C. The uncertainties in initial defect size, threshold factor and residual 
stresses do not have a significant influence on the probability of joint failure by fatigue. 
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I 

Table 2: 

Variable 

I 
Weib-A 

Weib-B 

Bscf 

Bsif 

Bdob 

Paris-C 

ao 
(a/c)o 

~K.h 

Sres 
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Results of the reliability analysis for the limit-state of fatigue using a 
fracture mechanics approach. 

Reliability index 
Probability of failure 

Distribution 

I 
lognormal 

lognormal 

lognormal 

lognormal 

lognormal 

lognormal 

lognormal 

lognormal 

normal 

lognormal 

= 1.747 
= 4.03E-02 

Mean 

I 
1.0 

1.0 

1.00 

1.00 

1.00 

1.0E-11 

0.15 

0.62 

7.60 

300 

COV 

I 

(X 

I 
0.20 -0.640 

0.15 +0.364 

0.25 -0.474 

0.20 -0.379 

0.15 0.298 

0.40 -0.247 

0.66 -0.088 

0.66 -0.006 

0.20 -0.001 

0.20 -0.000 

Table 3: Improvement in reliability with reduced variability. 

Reliability index = 1.954 (2.128) [2.318] 

Variable COV (X2 X 100 

Bgtf 0.30 (0.30) [0.25] 55 (64) [55] 

Bscf 0.15 (0.15) [0.15] 14 (17) [20] 

Bsif 0.20 (0.15) [0.15] 18 (12) [15] 

Bdob 0.10 (0.00) [0.00] 6 ( 0) [ 0] 

C 0.40 (0.40) [0.40] 7 ( 7) [10] 
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The statistics used in Table 2 correspond to a simplified design situation, where 
parametric equations are used for the calculation of stress concentration factors, degree 
of bending factors and stress intensity factors. Next, we study the improvement in 
reliability that can be obtained by successively refining the analysis techniques and 
thereby reducing the variability in model uncertainty parameters. First, the variability 
in B set and B dob is reduced to correspond to a situation where the stress analysis of the 
intact joint is carried out using finite element methods, while the stress intensity factors 
are calculated using parametric equations. This increases the reliability index to 1.954 
and the order of importance of variables changes, as shown in Table 3. In the next step, 
the variability in Bsij is also reduced to correspond to a situation where the stress 
intensity factors are calculated using finite element methods, such as line springs or 3-D 
f.e.m, in which case degree of bending factors are not used. This gives a further increase 
in ~ to 2.128, and the sensitivity factors for this case are shown in braces in Table 3. 
Finally, if a more accurate environmental description is used and a rigorous stochastic 
response analysis is carried out, the variability in Bgtfis slightly reduced. This, however, 
gives a significant improvement in reliability (~=2.318) as Bgtfhappens to be the most 
important variable. The results for this case are enclosed in square brackets. 

In conclusion, it can be said that when a fracture mechanics analysis is used for 
fatigue assessment, it is important to have a reasonably good estimate of the stress 
distribution of the intact joint. This can be obtained by a marginal increase in 
computational effort, but it will give a significant increase in the computed reliability. 

The uncertainties in the calculation of response transfer functions to determine 
nominal member stresses, are of paramount importance in fatigue assessment, and effort 
should be made to reduce these uncertainties by improving the quality of analysis. 

In addition to the value of the reliability index for a joint, which can be used to 
assess the adequacy of the design, what is of more interest is to generate information 
about the variation of reliability through the service life of the structure. This can be 
used for judiciously planning the inspection times for various joints. 

The variation of reliability index with service exposure for the joint is shown in 
Fig.3. The reliability index is as high as 3.50 at the end of 2 years of service exposure, 
but drops to a value of 1.747 at the end of 20 years, considered to be the design life of 
the structure. On this plot, possible target level for inspection is indicated, which more 
appropriately should be recommended by regulatory authorities. From this plot, the time 
for first inspection can be obtained as 8 years. After the inspection, and depending on 
whether a crack is detected or not the reliability of the joint can be updated using 
Bayesian updating methods which are discussed in the chapter by Madsen. 

8. Summary and Conclusions 

Fatigue is a dominant mode of failure for many metallic structures. Fatigue in welded 
joints is characterised by crack growth. In recent years, the emphasis of research has 
been on the application of fracture mechanics methods for the fatigue assessment of 
welded joints. 
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Figure 3: Variation of reliability index with service exposure 

In this chapter, S-N and fracture mechanics methods of fatigue assessment of welded 
joints are discussed. A simplified model for predicting the propagation of semi-elliptical 
cracks in plated joints has been presented. The model predicts growth of the crack in 
both the thickness and the longitudinal directions of the joint, and explicitly accounts for 
factors such as weld geometry, fatigue threshold, residual stresses, etc. 

A methodology for probabilistic assessment of welded joints has been presented 
which accounts for the uncertainties involved in the modelling of the fatigue loading, 
stress analysis, stress intensity factors, fatigue material properties, initial defect size and 
residual stresses. 

Examples have been presented of reliability analysis of tubular joints of offshore 
structures which show that the probability of joint failure by fatigue is highly sensitive 
to the uncertainty in crack growth parameter C, initial defect depth ao' model uncertainty 
in SCF calculation Bsc! model uncertainty in DoB calculation Bdob' model uncertainty 
in SIF calculation BSif and the uncertainty in the calculation of stress response Bgtf 
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PROBABILISTIC MODELLING OF THE STRENGTH OF FLAT 
COMPRESSION MEMBERS 

C. GUEDES SOARES 
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Universidade Tecnica de Lisboa 
/096 Lisboa, Portugal 

1. Introduction 

The structural components that are subjected to compressive forces are often critical 
elements in many structures. This is even more important if one has in mind that 
compressive failure is followed by a decrease in load carrying capacity which will 
overload adjacent structural components, being bound to precipitate an overall failure 
of the structure. 

Another important feature of compression member behaviour is their sensitivity to 
the shape and amplitude of initial imperfections, which in real structures are of a 
random nature. Thus only probabilistic treatments are appropriate to describe the initial 
status ofthe imperfect structural components as well as their collapse strength. 

This work deals with flat compression members, that is, with columns and plates, 
leaving aside the strength of shells. A description is provided of the methods for 
predicting the strength of these components, describing afterwards the probabilistic 
approaches that have been used up to now. These range from stochastic descriptions of 
the spatial variability of initial distortions to a simple statistical analysis of experiments 
relating to component strength. 

2. Probabilistic Modelling of Column Strength 

Columns are very imperfection sensitive structural elements, a property that probably 
explains the early interest in representing their strength probabilistically. Various 
approaches have been used, ranging from stochastic descriptions of the initial 
imperfections, to a statistical analysis of experimental strength data, irrespective of 
initial imperfections. This work provides a review of the main types of approaches 
used, fITst introducing the basic concepts about column strength. 
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2.1 PREDICTION OF COLUMN STRENGTH 

In the classical theory, the elastic buckling of an initially straight elastic slender column 
is an eigenvalue problem. For compressive loads smaller than the Euler critical load, the 
column remains straight, but when the load reaches the critical value, there is a 
bifurcation i.e. the column can either remain straight or it will achieve an indeterminate 
sideway bowing. The Euler critical stress is (J E given by: 

where E is the modulus of elasticity, L is the column length, r is the radius of gyration 
of the cross-section, and A=(Llr) is the slenderness ratio. This approach is valid while 
(J E remains below the elastic limit, which often occurs with slender columns. 

For stocky columns, the elastic limit is exceeded before inception of buckling and 
the structural modulus becomes a function of the stress level i.e., the deformation 
becomes controlled by the tangent modulus of elasticity. Engesser proposed 
determining the critical stress by substituting the tangent modulus for the modulus of 
elasticity in Euler's expression. However, Cosidere realized that since buckling would 
take place at constant load some material of the column would unload when deflection 
began. Thus he proposed using a reduced or double modulus of elasticity which lies 
between the tangent and the Young's modulus of elasticity. 

Although the reduced modulus theory was for a long time considered to be the exact 
theory for the buckling of perfect columns in the inelastic range, the tangent modulus 
has been widely used by engineers because of its simplicity, since it is independent of 
the cross-section shape, and because of its safety, since it predicts a lower value of 
strength. Furthermore, experimental results seem to lie closer to the tangent modulus 
results. The reduced modulus load is an upper bound which in practice cannot be 
attained, while the tangent modulus load is a lower bound, thus being the basis for 
several design codes. Its principal shortcoming lies in the assumption that the member 
is initially perfectly straight, although it can account for residual stresses, and for non
linear stress-strain relationships. Thus, the tangent modulus load is a fair representation 
of the strength of a column, as long as the imperfections are small. 

Considering the load-deflection behaviour of the columm, one is led to the 
maximum strength theory. The maximum strength of a column will depend on the 
stress-strain relation and on the yield stress of the material, on the method of 
fabrication, on the size of the column, on its cross section and bending axis as well as 
on the initial out-of-straightness. Only the maximum strength theory can account for the 
last aspect. In addition to the out-of-straightness, the residual stresses produced by 
cooling after rolling, by cold-straightening or by welding, constitute the single most 
important factor for column strength. 

The maximum strength theory is based upon the equilibrium equations: 

P = P.n, 
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P.'& = Mint 

where the sUbscript int stands for internal force P and moment M, while '& is the out of 
straigthtness. The total stress in any element i of the column at any stage of the loading 
may be expressed non-dimensionally as: 

where cr ; is the residual strain of element i, C p is the axial strain due to the applied 

load P, e is the curvature of the coluqm due to the deflection '& caused by the force P, 
and ~; is the distance from the centroid of element i to the bending axis considered. 

If the initial and subsequent deflected shapes of the column may be described by a 
half sine wave, the curvature e at the column midheight is given by: 

where '& is the lateral deflection of the column. In order to avoid this simplified 
approach, one may iteratively determine the actual deflected shape of the column at 
each load increment. This is achieved by incrementing the deflection '&, and finding the 
corresponding equilibrium load P for every value of the deflection. 

The Euler elastic load, the tangent modulus load and the maximum strength load are 
the three main theories (fig. 1) that have been used in connection with probabilistic 
modelling of column strength, as will be described in next section. 

t ,/ Upper Bound for Column Strength 

Pr r- _ J~ _ (~~~~~u~s-=~~ __ 
I ptmax 

LOAD 
P 

Pmax 

"-"-Initially Perfectly Straight Columns 
"", ( Tanqent MODulus Theor y) 

''"',,-- '",-- Colurms with Small Ir •• liol Crookednesse 
" (Maximum Strenglh Tt,eory) 

'. 
'-Columns Wll~ Lorge In'"ol Crookedness e 

(Maximum Strength Theory) 

TOTAL MIDHEIGHT DEFLECTION, 8 

Figure 1 - Predictions of three theories of column strength 
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2.2 APPROACHES BASED ON STOCHASTIC FORMULATIONS 

One of the initial probabilistic treatments of column buckling was based on describing 
the initial imperfections as random processes. Then, making use of methods of 
stochastic differential equations, one obtaines the relationship between the critical load 
and the initial imperfection. Imposing the assumption that the random process is 
ergodic leads to a deterministic critical load which, in the asymptotic case, depends only 
on the spectral density of the imperfection shape. This type of study dealt only with 
elastic buckling. 

Boyce (1961) derived the relation between the axial load and the mean and variance 
of the transverse displacement of a simply supported Bernoulli-Euler column, when one 
component of curvature is initially a stationary random function of the spatial variable. 
The linear differential equation of equilibrium is: 

and adopting the boundary conditions Y(O) = Y(I)=O, where e = PL / E1 and W(x) is 
the initial displacement of the centerline, assumed to be a random process, it has the 
solution in terms of Green's functions: 

G(x,l;) = sin kx.s~n(l-I;) 0 < x < I; 
k.smk 

G(x,l;) = sink(l-.x) sinkl; I; < x <1 
k.smk 

The mean value of displacement becomes: 

I 

E[Y(x)] = k 2 fG(x,l;) E[W(I;)] til; 
o 

in terms of the mean value of the initial imperfection displacement. 
If W(x) is a stationary function, the covariance is independent of x and the 

autocorrelation p depends only of the difference between I; and ll. Thus, the variance of 
the deflection is: 

I I 

v[ Y(x)] = k\r 2 f f G(x, 1;) G(x, ll) p(1; -ll) til; drJ 
o 0 
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With some assumptions concerning the form of p(~-TJ), the integral can be solved, 
giving the variance as a function of the critical load. The result that the critical load is 
deterministic is somewhat surprising, since one would expect a random imperfection to 
yield a random critical load. However, this is a result of the ergodicity assumption, 
which makes the spatial averages of initial imperfections equivalent to their statistical 
moments. 

Bernard and Bogdanoff (1971) generalized Boyce's approach, dealing with a simply 
supported column that is both randomly bent and twisted. It is described by a set of 
three non-linear differential equations with nonhomogeneous terms that are random. 
Instead of following Boyce, who assumed an explicit form for the covariance of the 
initial displacement, Bernard and Bogdanoff gave the functions describing the initial 
components of curvature and twist as sums of ordinary functions with a set of random 
constants. 

If the customary linear analysis is applied to the equilibrium equations governing 
the column behaviour, the reduction of the equations reduces to a trivial form in which 
the equations governing the transverse displacement components are independent of the 
twist. In a modified linear analysis, the equations governing the displacements remain 
coupled by the rate of change of the angle of twist. Describing the initial curvature 
components and the twist by random functions with known statistical properties, 
Bernard and Bogdanoff developed a method whereby the mean values, variances and 
other moments of the displacement components may be found. Specific expressions are 
worked out for the means, variances, and covariances when the initial curvature 
components and the twist are taken to be Fourier-series functions in which the 
coefficients are random variables. 

Bernard and Bogdanoff (1971) concluded that the variances of the transverse 
displacement at the midspan increases as the load increases, becoming very large near 
the Euler load for bars that are twisted very little, and increasing more and more rapidly 
as the amount of twist increases. This indicates that the load at which displacements of 
the type associated with the Euler load may occur, decreases as the amount of twist 
increases. As additional wave components are added to the twist and bending functions, 
the variance of the midspan deflection increases, the increase being larger in the case of 
addition to the twist. The higher the frequencies that are added, the less the increase in 
the variance. 

Fraser and Budiansky (1969) used Boyce's idea of representing the initial deflection 
by a Gaussian stationary random function of known autocorrelation, to study the 
buckling of an infinite column resting on non linear elastic foundations. They used an 
exponential cosine autocorrelation, and concluded that the buckling load depends only 
on the autocorrelation of the initial deflection functions. 

StilI in the same line, Jacquot (1972) extended the theory to examine the mean 
square deflection of a column subjected to an initial deflection which is a non stationary 
process. 
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2.3 APPROACHES BASED ON FULL PROBABILISTIC DESCRIPTION OF THE 
VARIABLES 

Another line of early work on elastic buckling of columns, by Bolotin (1965), 
Thompson (1967) and Roorda (1969), is based on a deterministic transfer function 
between initial imperfections and critical load. Given a probabilistic description of 
initial imperfections, they obtain a probabilistic description of critical load. However, 
the initial imperfections must be of a specified shape with random amplitude or they are 
represented by the sum of a series of shapes with random amplitudes. The same type of 
approach was also adopted by Brown and Evans (1972) in the study of the elastic 
instability of beam-columns. 

Augusti and Baratta (1971) followed the same general approach, but they developed 
a probabilistic theory for the strength of imperfect columns made of elastic-perfectly 
plastic material, initially bent in a shape of a sinusoidal half-wave with maximum 
amplitude o. The mean compressive strength at collapse (critical stress) cr c is given by: 

where y=o/r is the imperfection parameter. The critical stress is maximum for an ideally 
perfect structure, and decreases with increasing imperfection, at first rapidly and later 
more and more slowly. This critical stress is limited by the yield stress in the plastic 
region and by the Euler stress in the elastic region. 

They considered y, cr 0 and the slenderness A as normally distributed random 

variables, calculating numerically F(cr J, the cumulative probability distribution 

function of cr c' for realistic values of the three governing random variables. The 
calculated distribution functions were very close to Gaussian distributions, although 
showing some positive skewness. 

Augusti and Baratta (1975) extended their analysis by calculating the probability of 
failure of a column accounting for the random variability of the applied cr a. Defining 

the probability densitY functions of the applied compressive load by g( cr a)' the 
probability of failure becomes: 

00 

Pj = fg(cra) F(cra)dcra 
o 

They performed several calculations, assuming the distribution of the load to be 
Gaussian. Their results indicated that Pj was very sensitive to the relative value of the 

dispersion of the various random variables, but insensitive to the type of the probability 

distribution of the applied load. For probabilities of failure on the order of 10-5 and 
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smaller, a simplified integration was shown to yield acceptable results. It was based on 
substituting the exact distribution F(cr J by an exponential approximation that 

coincides with F( cr c) and its derivative in the neighbourhood of the average stress cra . 

They concluded that due to the sensitivity of Pj on the design load, the approximate 

integrations are preferable to the full numerical calculations. 
Another aplication of classical methods, is due to Chung and Lee (1971), who have 

used the tangent modulus approach to determine the weak axis compressive strength of 
H shaped columns with residual stresses. The critical stress was given by: 

cr c =cr E =1t2EI(Llr)2 cra <cro -crr 

cr c = [1t I (L I r)] E(acr of3/2(cr 0 -cr r) cr 0 -cr r < cr a < cr o 

where a is the ratio of maximum residual stress to yield stress. Expressing the critical 
stress as a function of the random variables E and cr 0 gives the probability of failure as: 

where the Is are the normal density functions of E and cr 0 ' and R is the domain defined 
in the previous equation. This expression is valid for the elastic and the tangent 
modulus of elasticity, i.e., it accounts for both elastic and elasto-plastic collapse. 

The probability of failure is the probability that the critical stress is less then a 
specified value. Thus the density function of the critical stress is the derivative of Pj : 

The mean and variance of cr c are determined from: 

'" 
crc = fcr c f(crc)dcr c 

Bjorhovde (1972) developed a different approach, based on the improved 
formulation of the maximum column strength, according to which Pmax is given by: 
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where b, t, d and W, are geometric dimensions of the column crossection and 80 is the 
amplitude of the initial out-of-straightness. This equation represents a multidimensional 
probability density function or a response surface since all the parameters involved can 
be treated as random variables. The modulus of elasticity E and the column length L are 
treated as constants, the column is subjected to a deterministic load p which remains as 
such from the onset of loading until the maximum capacity is reached. The cross 
sectional properties of wide flange and box-shaped columns, as well as the residual 
stresses, are assumed to be normally distributed. The yield stress and the initial out-of
straightness were considered to be Type I asymptotic extreme distributions. 

For each value of the parameters, one load-deflection curve can be determined. 
Performing the calculations for several input values, will lead to a probabilistic 
distribution of load-deflection curves. Thus: 

where the variables were defined in section 2.1 and C) indicates that the variable is 
random. 

The results of this study were presented as confidence intervals on the strength 
curves of the column (fig.2). It was found that the variability of yield stress, of cross
sectional properties and of variations of residual stresses is relatively small (3% to 7%). 
The overriding factor contributing to the spreading in strength is the initial out-of
flatness. 
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Figure 2 - Confidence intervals of the strength curve for columns (8jorhorde, 1972). 
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2.4 FIRST ORDER SECOND MOMENT ANALYSIS 

The methods based on stochastic descriptions of the imperfections mainly have an 
academic interest since the design information that they provide is limited, and because 
they are based on a detailed description of the initial deformations which in general 
cannot be supported by data. 

The approaches based on a full probabilistic description of the variables can be 
applied in design and analysis, although they are not practical when the number of 
variables is large. 

For design work, simplified methods based on First Order Second Moment (FOSM) 
information of the design variables have been commonly adopted (Ang and Cornell, 
1974). These methods operate with mean values and variances of the different random 
variables, and in advanced formulations of first order reliability methods (FORM) 
(Hasofer and Lind, 1974, Rackwitz and Fiessler, 1978, Ditlevsen, 1979) they are even 
able to include information about the type of probability distribution functions of the 
variables. An important application in which first order methods have been particularly 
useful, is in codified design, that is, in formulating design codes and in determining the 
values of the safety factors. 

In general, for a performance function Z ofn variables: 

the FOSM approach predicts the mean and the variance of the function by: 

where O"i and 0" j are the standard deviation of Xi and X j respectively, and Pij is the 

correlation coefficient between Xi and X j' which is equal to unity when i=j. In the 

initial version of FOSM methods, the partial derivatives of the performance function are 
evaluated at the mean value of the variables, while in FORM they are evaluated at the 
most likely failure point, which is found by an iterative procedure. 

First order reliability methods often produce results that are sufficiently accurate for 
design purposes; thus it may be interesting to compare their results with a full 
probabilistic analysis. Applying the FORM approach to the full probabilistic analysis of 
Augusti and Baratta (1971), we fmd the mean critical stress crc is: 
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The variance of cr e is obtained from 

2 _ (acre)2 2 (acre)2 2 (acre) 2 
cr" - cr A. + cry + cr " 

c al-.. fJy acr 0 0 

where the derivatives are calculated at the mean value of the variables, and are 
mUltiplied by the variance of 1-.., y and cr o. For very small imperfections, this shows 
close agreement with the curve obtained by Augusti and Baratta for zero mean 
imperfections. 

Another interesting comparison is with the results of Chung and Lee (1971) for H 
shaped columns with residual stresses. The results are very similar, the differences 
being acceptable in design situations. Further examples of application of first order 
methods for studying the strength of columns, can be found in Frangopol and Hung 
(1977) and in Djalaly (1977). 

An interesting feature of the application of first order methods to codified design, is 
that they allow the modelling not only of the intrinsic variability of the design variables, 
but also of the uncertainty in the design models. Codified design must be accomplished 
with simple expressions which cannot be accurately predicted for all combinations of 
variables. Thus, a certain degree of error is accepted in each design equation, and it can 
be represented by a model uncertainty. 

Frequently, a multiplicative idealisation is used; this represents the real value of a 

variable X by the product of the design prediction X and a model error Bx ' as 
suggested by Ang and Cornell (1974): 

The mean value of Bx gives the bias or systematic error of the model, and its 
coefficient of variation (cov) indicates the model uncertainty. Normally, this 
information is derived from comparisons of predictions with test results or with 
predictions of more accurate theories. Once the bias is assessed, it can be incorporated 
in the design equation which becomes then unbiased. However, there is still a model 
uncertainty associated with it. 

An application of this concept is due to Lenz et al (1973) who, based on a first order 
approach, developed safety factors for use in design codes of columns. In the American 
Institute of Steel Construction (AISC) specification, the required cross sectional area A 
of a column is, 
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A = P /1.7 (Ja 

where (J a is the allowable stress given by: 

and 

Lenz et al (1973) used the interesting concept of model error Ex, which was 

determined from comparisons of the equation predictions with test results. The mean 

value and the coefficient of variation of Ex were respectively 1.03 and 0.13 in that 

case; these represented the bias and the uncertainty of the model. 
In addition to calibrating a design rule with a set of measurements, one must also 

calibrate it for the whole family of possible designs that a code can govern. This can be 
accomplished by using second moment methods to calculate the reliability index over 
the full range of the design variables. One may be interested in achieving a constant 
reliability over the full range of a variable, or a reliability that is a function of the 
variable value. This type of study has been performed by Hawranek and Rackwitz 
(1976), by Bjorhovde (1978) and by Galambos (1983), among others. 

First order methods have also been used to study the strength of beam-columns. 
Rojiani and Woeste (1982) used FORM method accounting for three possible modes of 
failure, while Ellingwood and Reinhod (1980) compared a FOSM analysis with an 
advanced FOSM method, obtaining results that were close enough for design purposes. 
Kotoguchi, Leonard and Shiomi (1985) determined the model uncertainty of Japanese 
and American code specifications on the basis of experimental data. Finally, Bjorhovde, 
Galambos and Ravindra (1978) used FOSM methods to calibrate a design specification 
in the probabilistically based code of the the AISC. 

2.5 APPROACHES BASED ON STATISTICAL ANALYSIS OF DATA 

Recognizing that column strength depends on many variables that are random in nature, 
some authors considered that a convenient approach to predict column strength could 
be based on a statistical analysis of experimental data of column strength. This data 
could be obtained directly from experiments or from Monte Carlo simulations which 
extrapolated experimental or numerical analysis. 
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The European Convention for Constructional Steelwork (ECCS) has carried out an 
extensive experimental program on buckling of concentrically loaded hinged columns 
with imperfections (Beer and Schuls 1970, Sfmtesco, 1970). The test series has been 
statistically designed so that a buckling failure with a certain probability of occurrence 
could be derived from a statistical analysis of the data. 

A similar approach was taken by Perry and Chilver (1976), who conducted 
experiments on model columns instead of the full-size members of the ECCS study. 
They found that variation of maximum strength depends on the slenderness ratio, with 
the greater scatter of maximum strength occurring in the region of the slenderness ratio 
where there is a transition from elastic to plastic buckling. This is because the variations 
of E are not important for plastic buckling, and the variations of yield stress are not 
important for elastic buckling. At the transitional slenderness ratio (Llr=60-1 00) there is 
not only a dependence on both Young's modulus and on yield stress, but also a 
maximum sensitivity to geometrical imperfections. 

More recently, Fukumoto and Itoh (1983) conducted another statistical analysis of 
data which they have compiled in a data bank from experiments conducted by several 
authors. As in the previous cases, design curves were produced for different probability 
levels. 

Based on the same principles, Stating and Vos (1973) used Monte Carlo simulations 
to reproduce the scatter of buckling strength. Starting from a probabilistic description of 
each of the governing parameters from which samples were drawn, and using a 
deterministic model of column strength, they collected results on the column strength; 
these were analysed statistically, leading to a probabilistic description of column 
strength. 

3. Probabilistic Modelling of Plate Strength 

In comparison with the theory of stability of columns, the problem of stability of plates 
is complicated by the fact that the critical buckling load may be different from the 
ultimate load which the plate can carry. While the buckling load is for practical 
purposes the largest load any column can carry, plates may be able to sustain in the 
buckled state ultimate loads far exceeding the buckling load. This is specially important 
for very thin plates and for materials with low modulus of elasticity like aluminium 
alloys. 

There is significantly less work reported on the probabilistic modelling of plate 
strength than is available for columns. Most of the work referred to here is based on 
FOSM formulations and on statistical analysis of experimental data, with a particular 
emphasis on the development of design methods. 

3.1 STATISTICAL ANALYSIS OF DATA ON PLATE CHARACTERISTICS 

One of the major factors contributing to the uncertainty in plate strength, is the 
randomness of the initial imperfections. Thus, it is appropriate to refer to some studies 
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that collected data on plate initial distortions. Much less data is available on 
measurements of weld induced residual stresses. 

Faulkner (1975) and Antoniou (1980) reported surveys of plate deflections, 
although measuring only the maximum central deflection. Kmiecik (1971) concluded 
that the shape of the imperfections is important, and that the elastic buckling strength is 
governed mainly by the amplitude of the buckling mode component, as determined 
from a Fourier analysis. Thus the available statistical analysis of plate imperfections has 
concentrated on these components (Antoniou, Lavidas and Karvounis, 1984 and 
lastrzebski and Kmiecik, 1986). More recently Kmiecik, lastrzebski and Kuzniar 
(1995) have analysed the data further by fitting a Weibull distribution to the amplitudes 
of the buckling components that describe the imperfect surface, and by providing 
additional regression equations. These studies provided the basic statistical data in terms 
of the statistical moments, which were used in different studies of plate strength. 

A different type of statistical analysis was conducted by Itoh and Fukumoto (1987); 
they directly analysed the results of tests of plate collapse which had been collected in 
their data base. They conducted a statistical analysis of the test results and derived 
design curves. This is a different use of test data than was given by Guedes Soares 
(1988b), who used it to isolate the effect of the various parameters that govern plate 
strength, namely, slenderness, residual stresses and initial deflections. A related 
approach was adopted by Veda and Yao (1985), who derived design formulas from a 
regression equation on results calculated by fmite-element analysis. 

3.2 PREDICTION OF PLATE STRENGTH 

The buckling strength of rectangular plate elements can be predicted with various 
methods of different degrees of sophistication and accuracy. The elastic methods can be 
linear and non-linear, including large deflections and the effect of initial imperfections; 
they can be analytical or numerical. Numerical methods allow the inclusion of the 
effects of plastic deformation as well as of residual stresses and initial distortions that 
are present in welded plates. 

Several systematic studies have been conducted, both of experimental and of 
numerical nature, which have given good information about the compressive strength of 
plates and of the effect of parameters such as aspect ratio, residual stresses, initial 
distortions, boundary conditions and different types of loading. A summary of their 
influence as well as of their contribution to the compressive strength of plates can be 
found for example in Guedes Soares (1988b). These results served as the basis for the 
calibration of simple design formulas which had been proposed in the past. Much of the 
work on probabilistic analysis of plate strength has been associated with calibration of 
those formulas. 

A plate with simply supported edges will buckle at a stress: 
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where n is the number of half waves in which the plate buckles, alb is the plate aspect 
ratio, "[ is the ratio of the tangent to the elastic modulus of elasticity, and v is Poisson's 
ratio. 

In the elastic domain, "[= I, and in long plates the length of the half waves 
approaches b (i.e. k=4), yielding: 

n2 (t)2 (t)2 cr = - k = 362 -
E 12(l-v 2 ) b . b 

where k is the effect of aspect ratio. 
The plate starts to buckle when the critical load is reached, but as the load increases 

the rate of increase of the deflections decreases. When the applied load exceeds the 
critical load, the supported edges parallel to the acting load supply the plate with an 
additional element of strength which comes into play when the middle part buckles. The 
redistribution of stresses that take place together with the stabilising membrane stresses, 
enables the plate to regain stability in the distorted shape. Finally, with increasing load 
the largest stresses of the plate will approach yield and the plate will reach the ultimate 
collapse load. The margin between buckling and ultimate strength increases with 
decreasing critical stress, and approaches zero near the yield stress. 

The most important parameter governing plate strength is the reduced slenderness: 

In bridges, A. can be in the range 1 to 3, in ships 1 to 5 and in airplanes in 3 to 7. 
Several design methods that predict the plate's ultimate strength are based on A.. 

A method due to Faulkner (1975) has been widely used for strength assessments and 
also for probabilistic modelling, as we now describe. The strength of a simply 
supported rectangular plate with residual stresses is given by: 

where cr" is the ultimate stress and d<i>b is the reduction of strength due to the residual 
stresses: 

and 
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is the strength of a plate without residual stresses but with average initial distortions. 
The constants a l and a2 account for the boundary conditions: 

a l = 2.0 and a2 = 1.0 for simple supports 

a l = 256 and a2 = 156 for clamped supports 

The residual stresses (J r are assumed to be uniformly distributed across the central zone 
of the plate, being equilibrated by two strips of tensile yield stresses at the edges, each 
with a breadth of 111 . The magnitude of (J r is: 

211 for 1 < A. < 25 
(b/I)-211 

and the tangent modulus of elasticity can be approximated by (Guedes Soares and 
Faulkner, 1987): 

E, A.-1 
- = -- for 1 < A. < 25 
E IS 

E 
-' = 1.0 for A. > 25 
E 

This method does not account explicitly for the magnitude of the initial 
imperfections. The effect of the initial imperfections on plate strength was examined in 
Guedes Soares (l988b), where Faulkner's expression was generalised to account 
explicitly for that effect. In that work the model error of the expressions for cjlb and 

~cjlb was included and assessed from comparisons with experiments. The final form of 
the design equation proposed was: 
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Rs = [1- (0.625-.121"-) 8; ] 

R.,s = [.665+.00611 +36 8; +.14"-] 

where the tenn 1.08<i>b predicts the strength of perfect plates, R., is the reduction factor 

due to residual stresses, Ro is the reduction factor due to initial defections and the four 
tenns should be used for plates that have both initial defections and residual stresses i.e. 
R.,o accounts for the interaction between initial deflection and residual stresses. It 

should be noted that the value of 1.08 in the ftrst square tenn is a bias tenn, as is the 
tenn (1 +0.007811) which affects the component due to the residual stresses. The 
uncertainty associated with the whole equation is 0.07, which is the standard deviation 
of the residuals obtained from the regression. 

Guedes Soares (1 988c ) proposed another equation which depends only on plate 
slenderness and has inbuilt the influence of the average levels of initial distortions and 
of residual stresses existing in merchant ships: 

1.6 0.8 
<i>GS = -::;- - -2 for simple supports 

m /I. "-

2.0 125 
<i>GS = -:;- - -2 for clamped supports 

m /I. "-

or in warships: 

'" 15 0.75 fi . I 'l'GS = - - -2- or SImp e supports . "- "-

This series of equations which are speciftc for one kind of ship were derived from a 
probabilistic description of the plate geometry in tenns of alb and bit ratios in those 
ship types. Since the strength equations are conditional on those distributions, the mean 
strength was detennined by unconditioning on the initial imperfections of II and 8 

which are functions of alb and bit. 
This procedure allowed the calculation of the mean bias that arises from the 

combined effect of the three reduction factors R., Ro R.,o, taking into account the 

probability distribution of the plate geometry that governs those factors. 
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The same type of approach was later applied to different types of merchant ships 
and it was concluded that, despite different geometrical characteristics of the plates in 
these ships, the resulting design equations were similar (Guedes Soares, 1992). 

Thus, while Faulkner proposed a method that accounts explicitly for the levels of 
residual stresses and implicitly for the degree of initial imperfection, the method of 
Guedes Soares (1988b) deals explicitly with all parameters that have the same level of 
contribution to the assessment of plate strength. Based on a probabilistic description of 
the geometry in specific ship types, Guedes Soares (1988c, 1992) derived simplified 
design formulations which depend implicitly both on residual stresses and initial 
distortions, but which reflect appropriately their probability of occurrence. 

This systematic approach and the explicit incorporation of the probability of 
occurrence of initial distortions in different types of structures has not been yet 
generally adopted. 

Ivanov and Rousev (1979) took no account of residual stresses, but considered 
initial distortions explicitly; they took 

where 00 = wolt and Wo is the maximum amplitude of initial distortions. 
The method proposed by Carlsen (1977) accounts explicitly for both types of initial 
defects: 

The coefficients for ~b in this case are a1 = 2.1, a2 = 0.9 for simple supports. 
In addition to these equations, a few others have been proposed for marine 

structures. Veda and Yao (1985) have made a regression study and proposed for simply 
supported plates the following: 

'" _ 1.33805 + 4.38000 + 2.647 
'flU -

A + 6.13000 + 0.720 
027100 - 0.088 

Soreide and Czujko (1983) studied plates under biaxial loading, but also proposed an 
equation for almost perfect plates uniaxially loaded: 
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To account for initial distortions and residual stresses, the previous equation 

IPso should be modified to become: 

{ ( 00 )°.113(12071.4670.59)) 
IPs = 1.52IPSo 1-2.528 bit -A,--};?+}:} 
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Figure 3 - Non dimensional strength (.p) of plates with initial distortions under uniaxial load, 
as predicted by different methods. 

Figure 3 shows a comparison of the prediction of the different methods for an average 
level of intial distortions, while Fig. 4 shows the predictions of the few methods that 
also account for residual stresses. 
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Figure 4 - Non dimensional strength (.p) of plates with initial distortions and residual stresses, 
under uniaxial load, as predicted by different methods. 
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It can be observed in the figures that the range of the spreading in the model 
predictions is 10 to 15% in the low slenderness range, but becomes closer to 30% for 
slenderness around 3. 

While each author may claim that the design equation he proposed best fits the data 
he had available, a designer may want to interpret the differences between the various 
methods, as shown in figures 3 and 4, as measures of model uncertainty. 

3.3 FIRST ORDER RELIABILITY ANALYSIS 

The plate slenderness, which governs plate strength, is in reality an uncertain 
quantity that depends on geometric variables b and t, and on material properties, E and 
cr 0 , as was pointed out by Ivanov and Rousev (1979). A FOSM analysis indicates that 
the uncertainty of A. of varies between 0.06 and 0.07, most of it being due to the 
contribution of the yield stress (Guedes Soares 1988a). 

Guedes Soares (1988a) adopted Faulkner's method as a basis for a first order-second 
moment analysis of the compression strength of rectangular plates and distinguished 
between the laboratory test, the analysis calculations and the design decisions, which 
can be based on the same equations but involve different uncertainty levels for the basic 
variables. In a laboratory test, the plate geometry is known, as well as the residual 
stresses and the initial deflections which will be close to zero unless artificially created. 
The support conditions involve small uncertainty, and the load distribution and intensity 
ar~ carefully controlled, thus with small uncertainty also. 

Introducing the fundamental uncertainty of A. in the design equation, one is able to 
calculate the fundamental uncertainty of <jib. Comparing the predictions of <jib with 
experimental results, one assesses the total uncertainty which, by comparing with the 
calculated fundamental uncertainty, allows one to derive the model uncertainty of the 
method. While the fundamental uncertainty was about 0.06, the model uncertainty was 
found to be 0.08 for the examples in Guedes Soares (1988a). 

In the analysis situation, the plate is considered to have weld induced residual 
stresses, the boundary conditions are not completely known, and the plate may be 
subjected to complicated load patterns. The model uncertainty in this case is around 
0.10 to 0.12 in the mid slenderness range, Le. for elasto-plastic collapse. It decreases to 
0.08 for elastic buckling and for plastic collapse. In the design situation, corrosion is 
present, bringing an additional uncertainty to the plate thickness; this increases the 
uncertainty of the predictions from 0.10 to 0.15, although the mean value is almost 

unchanged. Figure 5 shows the mean plate strength in the analysis (<jIa) and design 

(<jI d) situations almost coinciding but their uncertainty, as reflected in the coefficients of 

variation of the model uncertainty (Va' Vd ), have a fairly constant difference of 5% 

along the plate slenderness range (Guedes Soares 1988a). 
Guedes Soares and Faulkner (1987) used a probabilistic approach to extend 

Faulkner's equation to assess the strength of plates with aspect ratio smaller than unity. 
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The new equation was used to predict the strength of long rectangular plates that 
collapse in a mode higher than the fundamental elastic buckling mode. 
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Figure 5 - Mean plate strength in the analysis (cIIQ) and design (cIId) situation, and its uncertainty as reflected in 
the coefficient of variation of the model uncertainty (VQ,Vd) (Guedes Soares, 1988a) 

Akita (1988) used a FORM approach to predict the strength of square panels. He 
used an implicit formula to predict plate strength 0' u which took explicit account only 
of plate slenderness and amplitude of initial distortions: 

where 

9(1-0':) 
~=( )1/2 16-15cr; 

Akita obtained the probability distribution of 0' u from the distribution of 

imperfections 00 which was assumed to be exponential. This is a simplified model in 
that only the imperfections were considered to be a random variable and the above 
expression is an explicit relationship between 00 and 0' u' 

Guedes Soares and Silva (1991) assessed the reliability of rectangular plate elements 
whose strength was predicted by some of the expressions discussed here. Figure 6 
compares the reliability indeces calculated by FOSM and FORM, applied to Faulkner's 
strength equation. It is apparent that both give almost the same results. The figure also 
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shows the prediction of the strength equation. It is apparent that as the slenderness 
increases the reliability indices decrease quicker than the strength predictions. 
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Figure 6 - Reliability index (13) for uniaxially loaded plate element as predicted by FOSM and FORM 
methods, as a function of plate slenderness (A). Also indicated is the mean plate strength (cjI) (Guedes Soares 

and Silva, 1991) . 
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Figure 7 - Reliability index as function of plate slenderness for simply supported plates with initial 
distortions and residual stresses, with strength predicted by different methods (Guedes Soares and Silva, 

1991). 

Figure 7 shows the values of the reliability index calculated for different design 
methods in which the loading was assumed to consist of two components: one Weibull 
distributed, representing the wave induced stresses; and the other normally distributed, 
idealising the still-water loads in ships. There is some spread in the results, as one could 
expect. The figures show that, even though the strength formulations are very similar, 
as was shown in figure 2, the reliability indices for the different formulations differ by 
one or two units. The methods of Guedes Soares, and of Carlsen yield reliability indices 
with the same type of dependence on A,; Faulkner's method leads to a steeper decrease 



134 C. GUEDES SOARES 

of 13 with A; and the one of Soreide and Czujko predicts a small variation of 13 in the 
whole range of A. 

The sensitivity analysis showed that the yield stress and the two loading variables 
were the most important ones contributing to the probability offailure. 

Bonello et al. (1991, 1993a) used the concept of system reliability to access the 
reliability of one plate element; they assumed that, for collapse, the plate must 
simultaneously have reached the collapse load, and the strain at the edges of the plate 
must be sufficiently large in the post-collapse region. This is sometimes what happens 
in large panels: one plate element is in the post-collapse region, but the rest of the 
structure does not allow it to develop excessive strain. 

Guedes Soares and Silva (1991) also studied the system reliability effect; they 
considered a panel composed of several plates as a parallel system. Each plate could fail 
individually, and after failure it would continue supporting its post-collapse load (which 
was considered to be half of the collapse load) while the rest of the load was equally 
distributed by the intact plates. For two plates the probability of system failure was 3 
times smaller than the probability of fIrst plate failure. For a system of 5 plates, it 
increased to about 10. In this latter case, considering the plates independent and without 
load redistribution would yield a probability of failure 12 orders of magnitude smaller, 
which is clearly incorrect. 

Guedes Soares and Silva (1991) showed that different design fonnula, although 
equally appropriate for predicting the expected design strength, would however lead to 
different values of the reliability index because of its different relation with the various 
design parameters. As an alternative to this type of analysis, Guedes Soares and 
Kmiecik (1993) assessed the variability of the compressive strength of plate elements 
from the results of a Monte-Carlo simulation of the shape of initial distortions. The 
strength of each panel with the sampled initial distortions was calculated by a non-linear 
fmite-element code which would yield the "correct" strength for each plate defIned by a 
set of material and geometrical variables as well as by initial imperfections. The 
method was able to account for the variability of the shape of initial imperfections and 
of material properties. It led to larger values of the coefficient of variation than the 
approach of Guedes Soares (1988a), which however did not deal with the effect of the 
shape of imperfections. However, the dependence of the coefficient of variation on the 
slenderness was the same, with larger values near a slenderness of 2 where the collapse 
is elasto-plastic and decreasing towards the stocky and the slender ends. 

Although this approach is interesting, in that a more accurate mechanical model of 
plate collapse is used, it is very time consuming in that one calculation of plate collapse 
can take several hours of computing time. Kmiecik and Guedes Soares (1994) proposed 
an alternative fonnulation: the use of a response surface approach to represent the limit 
state function describing the effect of different parameters. The situation analysed in 
that paper involved only four random variables, three of which described the shape of 
the imperfections and the fourth one was the plate slenderness. In this case only nine 
computations of plate strength were necessary to defme the response surface. A linear 
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response surface was fitted to the results, and the probability distribution of plate 
strength was constructed using FORM. 

4. Probabilistic Modelling of the Strength of Stiffened Plates 

Stiffened plates are important structural components in many structures; their structural 
strengths are predicted by combining the contributions from plates and columns. The 
usual approach is to associate an effective width of plate with each stiffener; the 
effective width is less than the original width of the plate, which is meant to account for 
the strength degradation due to the plate element buckling. The design methods predict 
reviewed in sections the contribution of the plate to the plate-stiffener assembly, which 
thus becomes a beam column to be treated by the methods discussed in section 2 of this 
work. 

Design methods for stiffened plates that are common in marine structures are due to 
Faulkner et al (1973) and to Carlsen (1977); for civil engineering structures, reference 
can be made to Dwight and Little (1976) or to Home and Narayanan (1977) for 
example. The methods proposed by Faulkner et al (1973) and by Carlsen (1977) have 
been compared against experimental data by Guedes Soares and Soreide (1983); they 
found that the first one had a bias of 1.04 and an uncertainty of 0.12, while the second 
had a bias of 0.90 and an uncertainty of 0.11. 

Note that Faulkner's method is intended to predict the mean value of the strength, 
while Carlsen's proposal is a lower bound design method which is intended to provide 
enough strength for all but 2.5% of the cases. In fact, in the analysis of Guedes Soares 
and Soreide (1983) the strength predicted by Faulkner's model exceeded the 
experimental results in 58% of the 74 cases while Carlsen's predictions exceeded it in 
12% of the cases. A discussion on the relative merits of both types of approaches can be 
found in Faulkner, Guedes Soares and Warwick (1987). 

Hart, Rutherford and Wickham (1986) used a FORM method to assess the reliability 
of stiffened plates in ship structures which were subjected to combinations of time 
varying loads representative of ship structures. The stiffened plates were idealised as a 
single-stiffener together with an effective width of plating. The strength of the plate 
element was predicted by the method of Chatterjee and Dowling (1977). The strength of 
the stiffening elements was determined from a Perry-Robertson type of expression: 

cr; -cr s(cr 0 +cr E +0 cr E )+cr ocr E == 0 

in which cr E is the Euler critical strength of the stiffener, cr s is the strength of the 
stiffener and 0 is a parameter that represents the imperfections. Two modes of failure 
were examined: plate induced, and stiffener induced failure. The reliability formulation 
was used to quantify the effect of corrosion on the reliability of the stiffened plates. The 
formulation adopted was similar to the approaches already described except that now 
the limit state equation was that for a stiffened plate, instead of for a plate element. 
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Recently Pu, Das and Faulkner (1996) have proposed a new approach to predict the 
strength of stiffened plates. They incorporated the plate strength model of Guedes 
Soares (l988b) in the stiffened plate formulation of Faulkner et al (1973). They 
compared the results of these two methods with experimental data and they concluded 
that the proposed method shows, on the average, better predictions than the original 
method of Faulkner et al if only experimental data are included in the calibration. If 
both experimental and numerical data are included, the proposed method has more or 
less the same accuracy as Faulkner's original method, although with a smaller 
variability. 

They have conducted a reliability analysis using FORM and SORM, and for both 
cases they obtained differences in the relative error smaller than 3%. 

5. Concluding Remarks 

A discussion has been provided of the main probabilistic methods that have been used 
in the study of the compressive strength of flat structural components such as columns 
and plates. The approaches ranged from the sophisticated stochastic formulation of the 
initial imperfections, to the simpler second order methods. In general, the sophisticated 
probabilistic formulations have only been applied to idealized cases of little practical 
significance, like the elastic buckling of a column. The second order methods were 
shown to have a much greater usefulness, in that they are able to cope with realistic 
cases involving elasto-plastic collapse, and the influence of initial distortions and 
residual weld induced stresses. 

6. References 

Akita, Y (1988): "Reliability and Damage of Ship Structures", Marine Structures, Vol. 
1, W 2, pp. 89-114. 

Ang, AH-S; Cornell, C.A. (1974): "Reliability Bases of Structural Safety and Design", 
J. Struct. Div., ASCE, Vol.lOO, pp. 1955-1969. 

Antoniou, A.C. (1980): "On the Maximum Deflection of Plating in Newly Built Ships", 
J. Ship Research, Vol. 24, pp. 31-39. 

Antoniou, A.C., Lavidas, M; Karvounis, G (1984): "On the Shape of Post-Welding 
Deformations of Plate Panels in Newly Built Ships", J. of Ship Research, Vol. 28, 
pp.I-IO. 

Augusti, G; Baratta, A (1971): "Probabilistic Theory of Slender Column Strength" (in 
French), Construction Metallique, Vol. 8, No.2, pp. 5-20. 

Augusti, G; Baratta, A (1975): "Reliability of Slender Columns: Comparison of 
Different Approximations", Proceedings of the IUTAM Symposium, pp. 183-198. 

Beer, H; Schulz, G (1970): "Bases Theoriques de Courbes Europeennes de 
Flambement", Construction Metallique, Vol. 22, No.6, Nov-Dec., pp. 436-452. 



PROBABILISTIC MODELLING OF THE STRENGTH OF FLAT COMPRESSION MEMBERS 137 

Bernard, MC; Bogdanof, JL (1971): "Buckling of Columns with Random Initial 
Displacements",.! Eng. Mech.. Div., ASCE, Vol. 97, pp. 755-771. 

Bjorhovde, R (1978): "The Safety of Steel Columns", J. Struct. Div., ASCE, Vol. 109, 
pp.463-478. 

Bjorhovde, R; Galambos, TV; Ravindra, MK (1978): "LRFD Criteria for Steel Beam
Columns", J. Struct. Div., ASCE, Vol. 104, pp. 1371. 

Bolotin, VV (1965): "Statitiscal Aspects in the Theory of Structural Stability", Proc. 
Con! on Dynamic Stability of Structures, Inst. of Civil Engineers, London, pp. 67-
81. 

Bonelo, M.A., Chryssanthopoulos, M.K. and Dow ling, P J. (1991): "Probabilistic 
Strength Modelling of Un stiffened Plates under Axial Compression" Proceedings of 
the J(lh International Conference on Offshore Mechanics and Arctic Engineering 
(OMAE), ASME, Vol. II, pp. 255-264 

Bonelo, M.A. and Chryssanthopoulos, M.K. (1993a): "Buckling Analysis of Plated 
Structures Using System Reliability Concepts". Proceedings of the I 2'h 
International Conference on Offshore Mechanics and Arctic Engineering (OMAE). 
ASME, Vol. II, pp. 313-321. 

Bonelo, M.A., Chryssanthopoulos, M.K. and Dowling, PJ. (1993b): "Ultimate Strength 
Design of Stiffened Plates under Axial Compression and Bending", Marine 
Structures, Vol. 6, N° 5-6, pp. 533-552. 

Boyce, WE (1961): "Buckling of a Column with Random Initial Displacements", J. of 
the Aerospace Sciences, pp. 308-320. 

Brown, CB; Evans, RJ. (1972): "Safety of an Elastic Beam-Column", J. of the Struct. 
Div., ASCE, Vol. 98, pp. 805-811. 

Carlsen, CA (1977): "Simplified Collapse Analysis of Stiffened Plates" Norwegian 
Maritime Research, vol. 7, No.4, pp. 2-0-36. 

Chaterjee, S. and Dowling, PJ.: "The Design of Box Girder Compression Flanges", 
Steel Plated Structures, P.J. Dowling et. al. (Eds), Crosby Lockwood Staples, 
London, 1977 pp. 

Chung, BT; Lee, GC (1971): "Buckling Strength of Columns Based on Random 
Parameters", J. Struct. Div., ASCE, Vol. 97, No. ST7, July, pp. 1927-1945. 

DitIevsen, 0 (1979): " Generalized Second Moment Reliability Index", J. Struct. Div. 
Mech., Vol. 7, pp. 435-451. 

Djalaly, H (1977): "Reliability Strength of Compression Members", Stability of Steel 
Structures. Prelim. Rep. IABSE, pp. 107-112. 

Dwight, JB; Little, G.H. (1976): "Stiffened Steel Compression Flanges-a Simpler 
Approach", The Structural Engineer, Vol. 54A, pp. 501-509. 

Ellingwood, B; Reinhold, T.A. (1989): "Reliability Analysis of Steel Beam-Columns", 
J. Struct. Div., ASCE, Vol. 106, pp. 2560-2566. 

Faulkner, D. (1975): " A Review of Effective Plating for Use in the Analysis of 
Stiffened Plating in Bending and Compression", J. of Ship Research, Vol. 19, pp. 1-
17. 



138 C. GUEDES SOARES 

Faulkner, D.; Adamchak, J.C.; Snyder, GJ; Vetter, MF (1973): "Synthesis of Welded 
Grillages to Withstand Compression and Normal Loads", Computers and Structures, 
Vol. 3, pp. 212-246. 

Faulkner, D.; Guedes Soares, C.; Warwick, DM (1987): "Modelling Requirements for 
Structural Design and Strength Assessment", Integrity of Offihores Structure-3, 
Faulkner, D., Cowling, M.1. and Incecik, A. (Eds) Elsevier Applied Science, pp. 25-
54. 

Frangopol, D; Hung, N.D. (1977): "A Probabilistic Approach for Checking Safety of 
Centrally Loaded Steel Columns", Stability of Steel Structures, Prelim. Rep. IABSE, 
pp. 112-117. 

Fraser, W.B.; Budiansky, B.(l969): "The Buckling of a Column with Random initial 
Deflections", J. Appl. Mech., Vol. 36, pp. 233-240. 

Fukumoto, Y.; Itoh, Y. (1983): "Evaluation of Multiple Column Curves Using the 
Experimental Data-Base Approach", J. of Constructional Steel Research, Vol. 3, 
No.3, pp. 1-19. 

Galambos, T.V. (1983): "Reliability of Axially Loaded Columns", Eng. Struct., Vol. 5, 
pp.73-78. 

Gordo, J. M. and Guedes Soares, C. (1993) "Approximate Load Shortening Curves for 
Stiffened Plates Under Uniaxial Compression", Integrity of Offihore Structures-5, 
D. Faulkner, M.1. Cowling, A. Incecik, P.K. Das (Eds.) EMAS, pp. 189-211. 

Guedes Soares, C. (1981): "Survey of Methods of Prediction of the Compressive 
Strength of Stiffened Plates", Report MKiR 57, Division of Marine Structures, 
Norwegian Institute of Technology. 

Guedes Soares, C. (1 988a): "Uncertainty Modelling in Plate Buckling", Structural 
Safety, Vol. 5, pp. 17-34. 

Guedes Soares, C. (I 988b ): "Design Equation for the Compressive Strength of 
Unstiffened Plate Elements with Initial Imperfections", J. Constructional Steel 
Research, Vol. 9, pp. 287-310. 

Guedes Soares, C., (1 988c)"A Code Requirement for the Compressive Strength of Plate 
Elements", Marine Structures, Vol. I, pp. 71-80. 

Guedes Soares, C., (1992) "Design Equation for Ship Plate Elements Under Uniaxial 
Compression", J. Constructional Steel Research, Vol. 22, pp. 99-114. 

Guedes Soares, C and Faulkner, D. (1987): "Probabilistic Modelling of the Effect of 
Initial Imperfections on the Compressive Strength of Rectangular Plates", Proc. 3rd 
Int. Symp. on Practical Design of Ships and Mobile Units, (PRADS' 87), 
Trondheim, June, Vol. II, pp. 783-795. 

Guedes Soares, C. and Gordo, J. M. (l996a) "Compressive Strength of Rectangular 
Plates Under Transverse Loading.", Journal of Constructional Steel Research, Vol. 
36, N° 3, pp. 215-234. 

Guedes Soares, C. and Gordo, J. M. (l996b) "Compressive Strength of Rectangular 
Plates Under Biaxial Load and the Lateral Pressure.", Thin-Walled Structures, Vol. 
24, pp. 231-259. 



PROBABILISTIC MODELLING OF THE STRENGTH OF FLAT COMPRESSION MEMBERS 139 

Guedes Soares, C and Kmiecik, M. (1993) "Simulation of the Ultimate Compressive 
Strength of Unstiffened Rectangular Plates", Marine Structures, Vol. 6, pp. 553-
569. 

Guedes Soares, C. and Silva, A. G. (1991) "Reliability of Unstiffened Plate Elements 
Under In-Plane Combined Loading", Proceedings of the 10th Offihore Mechanics 
and Artic Engineering Conference (OMAE) ASME, VoI.II, pp. 265-276. 

Guedes Soares, C; Soreide, T.H. (1983): "Behaviour and Design of Stiffened Plates 
under Predominantly Compressive Loads", International Shipbuilding Progress, 
vol. 30, pp. 13-27. 

Harding, J.E (1985): "The Interaction of Direct and Shear Stresses on Plate Panels", 
Plated Structures, R. Narayanan (Ed.), Applied Science Pub., pp. 221-255. 

Hart, D.K; Rutherford, S.E.; Wickham, A.H.S. (1986): "Structural Reliability Analysis 
of Stiffened Panels", Trans. Royal Institution of Naval Architects, Vol. 128, pp. 293-
310. 

Hasofer, A.M; Lind, N.C (1974): "An Exact and Invariant First-Order Reliability 
Format", J. Engng. Mech. Div., ASCE, Vol. 100, pp. 111-121. 

Hawranek, R.; Rackwitz, P. (1976): "Reliability Calibration for Steel Columns", 
Bulletin d'lnformation No. 112, Comite Europeen du Beton, pp. 125-157. 

Home, M.R; Narayanan, R (1977): "Design of Axially Loaded Stiffened Plates", J. 
Struct. Div., ASCE, Vol. 103, pp. 2243-2257. 

ltoh, Y.; Fukumoto, Y, (1987): "Stochastic Evaluation of Compressive Strength of 
Unstiffened Plate Components", 4th Int. Colloquium on Stability of Plate and Shell 
Structures, Belgium, April. 

Ivanov, L.D; Rousev, SH (1979): "Statistical Estimation of Reduction Coefficient of 
Ship's Hull Plates with Initial Deflections", The Naval Architect, No. 98, pp. 1182. 

Jacquot, R.G. (1972) "Nonstationary Random Column Buckling Problem", J. Eng. 
Mech. Div., ASCE, Vol. 98, 1972, pp. 1182. 

Jastrzebski, T.; Kmiecik, M.: (1986) "Statistical Investigations of the Deformations of 
Ship Plates", (in French), Bulletin Association Technique Maritime et Aeronautique, 
Vol. 86, pp. 325-345. 

Kmiecik, M. (1971): "Behaviour of Axially Loaded Simply Supported Long 
Rectangular Plates Having Initial Deformations", Report No. R84, Ship Research 
Institute, Trondheim, 1971. 

Kmiecik, M., Guedes Soares, C. (1994): "Response Surface Approach to the Probability 
Distribution of the Collapse Strength of Plates", Report 2.2R-07(l), SHIPREL 
Project BRITElEURAM 4554, 1ST, Lisbon. 

Kmiecik, M., Jastrzebski, T. and Kuzniar, J. (1995): "Statistics of Ship Plating 
Distortions", Marine Strutures, Vo1.8, N° 2, pp. 119-132 

Kotoguchi, H., Leonard, JW; Shiomi, H (1985): "Statistical Evaluation of Steel Beam
Column Resistance", Engng. Struct., Vol. 3, pp. 573-588. 

Lenz, J., Ravindra, M.K., Galambos, T.V. (1973): "Reliability Based Design Rules for 
Column Buckling". Computers & Structures, Vol. 3, 1973, pp. 573-588. 



140 c. GUEDES SOARES 

Perry, S.H; Chilver, AH (1976): "The Statistical Variation of The Buckling Strength of 
Columns", Proc. Instn. Civ. Engrs., Part 2, Vol. 61, pp. 109-125. 

Pu, Y., Das, P.K., Faulkner, D., (1996) "Ultimate Compression Strength and 
Probabilistic Analysis of Stiffened Plates", Proceedings I5th Offshore Mechanics 
and Artic Engineering Conference, Vol. II, ASME, pp. 151-157. 

Rackwtiz, R., Fiessler, B. (1978): "Structural Reliability under Combined Random Load 
Sequences", Computers Structures, Vol. 9, pp. 489-949. 

Rojiani, K.B.; Woeste, F.E. (1982): "A Probabilistic Analysis of Steel Beam-Columns", 
Eng. Struct., Vol. 4, pp. 233-241. 

Roorda, 1. (1969): "Some Statistical Aspects of the Buckling of Imperfect Structures", 
J. Mech. Phys. Solids, Vol. 17, pp. 111-123. 

Sfintesco, D. (1970): "Fondement Experimental des Coubres Europeenes de 
Flambement", Construction Metallique, Vol. 22, No.6, Nov-Dec., pp. 409-415. 

Smith, C.S. (1981): "Imperfection Effects and Design Tolerances in Ships and Offshore 
Structures", Trans. Inst. Engineers and Shipbuilders in Scotland, vol. 124, pp. 39-
46. 

Soreide, T.H. and Czujko, J. (1983): "Load-carrying Capacity of Plates Under 
Combined Lateral Load and AxiallBiaxial Compression", Proceedings of the 2nd Int. 
Symposium on Practical Design in Shipbuilding (PRADS'93), Tokyo, 1983. 

Strating, J., Vos, HJ (1973): "Computer Simulation of the ECCS Buckling Curve using 
a Monte-Carlo Method", Report Stevin Laboratory, Delft University of Technology. 

Thompsom, 1.M.T. (1967): "Toward a General Statistical Theory of Imperfection
Sensitivity in Elastic Post-Buckling",J. Mech. Phys. Solids, Vol. 15, pp. 413-417. 

Ueda, Y., Yao, T. (1985): "The Influence of Complex Initial Deflection Modes on the 
Behaviour and Ultimate Strength of Rectangular Plates in Compression", J. 
Constructional Steel Research, Vol. 5, pp. 265-302. 



RELIABILITY ANALYSIS WITH IMPLICIT FORMULATIONS 

J.P.MUZEAU 
LERMES, CUST 
Blaise Pascal University, Clermont-Ferrand, France 

M.LEMAIRE 
LaRAMA, Blaise Pascal University 
Institut Franfais de Mecanique Avancee, Clermont-Ferrand, France 

1. Introduction 

Methods of evaluating the reliability index are now well known, and more and more 
software is available for its calculation in the classical cases. Nevertheless, most require 
an explicit limit state function. As failures generally appear during severe and extreme 
loading conditions, they are often associated with strongly non-linear mechanical 
behaviour. Then, it is unrealistic to calculate a large number of realizations, because the 
existing mechanical models are generally too time consuming. 

The aim of this chapter is to describe a method designed to decrease the number of 
calculations when the limit state function is implicit. It is called the SRQ method. In the 
first part, the bases of the method are described. In the second part, some test examples, 
solved to illustrate the process of calculations, are shown. Then, the method is applied 
to the evaluation of the reliability index in non-linear mechanical behaviour. 

2. Statement of the problem 

The formulation of algorithms necessary to calculate the Hasofer and Lind reliability 
index J3 supposes that the limit state function of the structural elements, G( X) = 0, and 

its gradients, aG, are available in an explicit analytical form in the space of the ax 
random variables Xi . 

Generally, this condition is satisfied only for some linear mechanical problems or if 
approximations are used. The first case includes the study of tension, compression 
without buckling or elastic bending without lateral buckling. The second corresponds to 
the use of simplified mechanical models such as plastic analysis by linear sequences 
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(collapse mechanisms by plastic hinges [1]) which can be extended to the case of 
geometrically non-linear behaviour [2]. 

In the other cases, such as buckling, elastoplastic non-linear problems or structures 
with semi-rigid connections, the analytical relationships describing the limit state 
function are not available as functions of the basic random variables Xi' Then, it is 
possible to obtain the safety margin only in an implicit numerical form. 

When a structure is subjected to buckling, for example, the effect of the geometrical 
non-linearity does not allow the explicit calculation of the value of the bending moment 
M due to the axial load N . The use of a non-linear mechanical model is the only way 
to obtain the exact relationship describing the behaviour of the structure, and this 
relationship is necessarily implicit. 

There are various ways to solve this kind of problem: simulation techniques or 
importance sampling for instance. Direct simulation technique [3] allows the generation 
of a large number of random events. Then, under some hypothesis, it is possible to 
calculate the Cornell reliability index (but this index is not fully satisfactory). This 
method can also be used to count the frequency of failure events. Its main defect that it 
requires heavy computational costs and that, generally, it does not lead to a good 
estimation of the probability of failure Pj . 

Importance sampling is another possibility. It provides an efficient way of 
significantly reducing the computational time, but it requires starting from the most 
probable failure point (which is unknown at the beginning of the calculation) and its use 
remains too expensive if the limit state function is implicit. Nevertheless, it can be used 
to compare a result provided by another method (or to increase its accuracy). 

Thus, it is necessary to develop an appropriate method of calculating the structural 
reliability in order to estimate the Hasofer and Lind reliability index ~ HI associated 
with many kinds of limit state functions. This method must be applicable for all kinds 
of mechanical models describing the real behaviour of a structure, and it must lead to a 
reasonable computation time [4], [5]. 

The most simple idea is to use the software FORM or SORM [6] in an implicit way 
(called Implicit FORM) by linking it to a mechanical model of calculation and by using 
numerical derivations. However, on the one hand, because of the rather large number of 
calls of the mechanical model, the computation time necessary for this iterative method 
is significant (it is function of the number of random variables) and, on the other hand, 
the numerical derivations can lead to an appreciable error. 

Here, another method, called the explicitation method (1) is presented. It is based on 
the idea that, to limit the number of calls of the mechanical model, the best solution is to 
use Rackwitz's algorithm with an explicit function representative of the implicit limit 
state. It is then necessary to transform the implicit limit state function to an analytically 
explicit one by using an interpolation method. This explicitation method leads to a 

(1) Method to approximate the implicit limit state/unction into an explicit one. 
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number of calls of the mechanical model generally smaller than the one required when 
using Implicit FORM. Nevertheless, Implicit FORM will be used as a validation test. 

3. Presentation of the exp!icitation method 

3.1 PRINCIPLE OF THE METHOD 

The method is based on replacing the implicit limit state function by an explicit one 
constructed from numerical values obtained from some efficient mechanical model. 
This allows the use of the classical algorithm for calculating the reliability index 13 HL 

which requires an explicit limit state function. 
The explicitation method relies on a local approximation of the limit state function 

near a critical point by a well-known mathematical function. This function must satisfy 
the following criteria: 

• it has, obviously, an explicit form; 
• it is simple; 
• it takes into account the different kinds of limit states which can be found in the 

field of structural mechanics, and depends on the distribution of the basic random 
variables of the problem. 

There are several ways of constructing an approximation Q( X) of the limit state 
function G( X) but, generally, they require a large number of calculations. For instance, 
if p is the number of Lagrange interpolations and n is the number of random 

variables, then Lagrange interpolation method requires pn caIIs of the mechanical 
model. 

To limit the computation time, a complete quadratic function Q( XI) is adopted as a 

base of approximation. So, in the space of n random variables X j , an approximation 

(k) of the limit state function G( XI) possesses the following general form: 

where c, aj and bij are unknown constant coefficients. Sometimes, the terms 

bij Xj X j do not exist. 

To build the limit state function, the two following techniques can be used: 
• construction by an intersection technique called the SRQ method, 
• construction by directional interpolations. 
In [4], it was shown that the SRQ method is more efficient than directional 

interpolations. So, only the SRQ method will be described here. 
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3.2 THE SRQ METHOD 

3.2.1 General form 

The approximate function Q( k) (Xl), defined in equation (1), is taken as an 

interpolation function on the hypersurface of the limit state G( Xl) in a space of n 

random variables. It is defmed by a minimum number Rmin of independent 

realizations: 

R . = L = (n+ 1)(n+2) 
mm 2 (2) 

A number of points R larger than L, associated with the least squares method, 
stabilise the solution of the calculation of the coefficients of the expression of 

Q(k) (Xl). So, this method consists in the minimization of the quantity: 

(3) 

In this expression, Q( k) ( Xr ) is the value of the realization r of the approximate 

function Q( Xi) at the point Xr , and G( Xl ) is the value of the realization r of the 

implicit function G( X) at the same point Xr . 

The minimization of the equation (3) leads to the solution of the following system of 
L equations with L unknowns: 

[P]{C}={H} (4) 

in which [P] is a matrix function of the variables Xr, {C} is the vector of the L 

unknown coefficients ai' bi} and c and [H) is a vector function of the realizations 

G( Xr ) of the limit state. 

The solution of the equation (4) leads to the coefficients of the function Q(X). The 
approximate Cartesian equation of the limit state function is obtained by the intersection 
of the hypersurface Q( Xl) with the hyperplane of the variables Xi' or, in other 

words: Q( Xl) = 0 is the sought approximate explicit function (fig. 1). 

The explicit form of Q( X) can be used in the classical algorithm to calculate ~ HL , 

and then X;r k) , an approximation (k) of the most probable failure point. 
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G(X;) A Q(X;) 

Q(/) ( 

X /(I) -X 
2 - 2 

Safety Domain 

G(X»0 

Figure 1. Second degree surface defined by several points (n=2, L=6, R=7) 
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To improve the approximation in the neighbourhood of the point X;( k) , iterations 

are necessary. The iteration (k + 1) starts with a new set of points X?k+l) chosen 

carefully closer to the failure surface calculated during the previous iteration (k), but 
trying to stay in the safety domain G( XI) > 0 (2). Repetition of this procedure allows 
the solution of the reliability problem to be approached. 

3.2.2 Construction of the linear system 

Let {C} be the transposed vector of the unknown coefficients: 

(C) = (c, ad; = 1, ... , n), bii{i = 1, ... , n), ... , bij{i = 1, ... , n -1; j =; + 1, ... , n)) (5) 

and (X r ) the transposed vector of combinations of degree d:::; 2 of the realizations of 

random variables: 

(Xr) = (1, Xj{i = 1, ... , n), xl (1 = 1, ... ,n), ... , xi x/; = 1, ... , n-1; j =; +1, ... , n)) (6) 

(2) Because the mechanical model may have problems to calculate a state of equilibrium of the 

structure in the failure domain. Depending on this mechanical model, it is generally possible 
to calculate a valuable solution in case of a geometrically non-linear behaviour but it can be 
much more difficult in the case of an elasto-plastic behaviour. 
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Equation (1) becomes: 

(7) 

The relationship to be minimised relatively to {C} (equation (3)), is: 

The condition for minimisation is: 

(8) 

This can be rewritten as the equation: 

(9) 

The identification of each term leads to: 

(10) 

and to: 

(11) 

3.2.3 Selection of a set of calculation points 

The domain of localization of the points xF must be chosen carefully in order to lead to 

a fast convergence. 

First of all, a starting point x/(k) is to be chosen as the origin (r = 1) of the mesh 

at the iteration (k).It can be taken as the one corresponding to Xi , the mean value of 
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Xj, which is the only point known a priori and located not far from the failure surface, 

but in the safe region. 

Then, the set of points x;( k) is calculated from increments carried out at the point 

x/(k) according to several directions. The signs of these increments are chosen in such 

a way that the points get closer to the failure surface. They are chosen such that the 
failure region is approached when the values of the resistance variables R are 
decreasing and those ofload effect variables S are increasing. 

The different points are obtained by the following relationship (with r = 2, ... , R): 

Xr(k) = A d(k) llx(k) + xl(k) 
I • Y } I 

(12) 

where A is an integer and dij k) is a diagonal matrix defming the direction of the steps 

llxjk) . Its values are such as: 

• if i * j : djj = 0 

• if ag(Xj) >0: d·· =-1 or 0 (3) 
,:).... II 
U..I.j 

• if ag(Xj) <0: d jj =+1 orO (3) 
aXj 

Physical and realistic considerations about the nature of the random variable Xj 

often allow the sign of the gradient to be known a priori. 

• A is an integer linked to the number R of points: 1 ~ A ~ 10 . 
• at one iteration k > 1, the starting point is chosen close to the most probable 

failure point calculated at the previous iteration: 

(13) 

• llxj is the increment, chosen equal to v x/(l) when k = 1 ,with 0 < v < 1 and, 

generally, v = 0.1. 
At the following iterations, it becomes: 

(14) 

Figure 2 shows the region where the points x; are located in the simple case n=2. 

(3) The choice between -1 or 0 and + 1 or 0 corresponds to the fact that the R points must 

represent a mesh of the safety domain (jig. 2). 
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3.2.4 Flowchart of the SRQ method 

New mesh: 

x{(k+l) = (J-IJ.)x/(k) + IJ.xt(k) 

t.x[,,+I) = V(xt(k) _ x/(k+l}) 

(0 < v </) 
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.~ 

n random variables X; 
L = (n + l)(n+2) 12 coefficients 

R realizations <:: L 

First mesh (k=l) - Origin: x/(l) =Xi 

Step: !lx/I) = v xl (1) 

A multiplier function of R 

Defmition of the directions 4f'J of the steps !lx[") 

Mesh (r = 2, ... , R) 

x[(k) = x/(k) + A dff) !lxf"} 

Evaluation ( r = 2, ... , R) 

Gr =G(X;rk) 

Calculation of the coefficients Cj (j=I, .,., L) 
R 2 

Minr. (Q'"(Cj)-Gr) =>[PJ{C} ={H} 
Cj r=1 

Analytical approximation ofG(Xi) = 0 => Q(k) (xJ=O 

FORM Calculation: => j3(k); xt(k) 

No 

Yes 

Approximation ofPr (FORM or SORM) 
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4. Test example 

• 
.. 6x(k) 

I 

• 

• 

• - , 
6x(k) 

2 g(X) >0 

• - , 
Safety 

Domain 

------~ 

XJ{k) xI 

Figure 2. Position of calculation points (n=2, L=6, R=7) 
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In order to show the results of the method, a test example is given for which the exact 
theoretical result has been calculated by Shinozuka [7]. 

This example concerns a member loaded with an axial tension load F. The member 
has a circular cross-section with a random diameter X J and its yield strength, X 2, is 
random too. These two random variables are assumed to be Gaussian and statistically 
independent. 

The elastic limit state of the member is defined by the following relationship: 

(15) 

The axial load is assumed to be deterministic and equal to 50 kN. The random 
variables are defined in table I. 

TABLE 1. Characteristics of the random variables 

Variable Mean value Standard deviation 
Diameter /0 29 mm 3 mm 

Yield /y 170 MPa 25 MPa 
strength 
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With these data, the reliability index is equal to 2.879. It is denoted by Pre!' and 

will be compared with the values calculated with the SRQ method. 

x} (MPa) 

160 

140 

TABLE 2. Number of calls of the mechanical model 

1.1 Nc = R x realisations 

0.10 R x 15 
0.20 Rx9 
0.30 Rx 6 
0.40 R x 5 
0.50 Rx4 
0.60 Rx4 
0.70 Rx4 
0.80 Rx 3 
0.90 Rx3 

x 6 realisations - 1 st iteration 

• 6 realisations - 2nd iteration 

... 5 realisations - 3rd iteration 

~ 5 realisations - 4th i~atjon _ 

x 

x 
• • • ... • • ... ... • LlO 1------

G(Xj )<0 

100 

80 

18 }O 22 24 

Figure 3. Example of approximation ( R = 6 , 1.1 = 0.5, Nc = 22 ) 

(j1)(Xj ) = 0 

G(X,) = 0 
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A first calculation is carried out with v = 0.1 at the first iteration. Then, v is chosen 
to equal 0.5 but, in this example, its value is not significant. First, the number is taken to 
be the minimum points, R = 6; then, other values are considered. Table 2 shows the 
minimum number of calls of the mechanical model, as a function of !l , to obtain the 

value of 13 with an accuracy of 10-4 . 

Final Figure 3 shows different approximations of the surface G( X I) = 0 and the 

corresponding calculation points related to !l = 0.5 . Note that after the second iteration, 
the approximation of the exact surface is reasonably precise and much closer to the 

most probable failure point xt. The total number of calculation points is equal to 

6 x 4 - 2 = 22, because two points are the same in the two last iterations. 
ly, to show the differences between various methods, table 3 shows the results of 

calculations with a Monte-Carlo numerical integration (MCI), the first order method 
(FORM), the second order method (SORM) with numerical calculation of gradients, the 
importance sampling methods (IS) and the SRQ method (SRQ) related to !l = O.B 

(Nc =Rx3=lB). 

TABLE 3. Comparison of the number of calls of the mechanical model 

Method Probability of failure ~ Nc 

MCI 2.32.10.3 2.831 1000 

FORM 1.9967.10.3 2.879 24 

SORM 2.4900.10.3 2.808 29 

IS 2.4910.10-3 2.808 74 

SRQ 1.9967.10-3 2.879 18 

This table shows that the SRQ method is the one requiring the smaller number of calls 
of the mechanical model (18) in comparison with FORM (24), SORM (29) and the IS 
method (74). It is difficult to compare the results related to the MCI method, its 
precision depending on the number of simulations. 

5. Examples of application 

5_1 APPLICA nON TO A SIMPLE STRUCTURE 

We take a structure which members that may buckle, and calculate the failure 
probabilities using various methods. 

The mechanical model which is used is very precise [5]. It takes into account the 
effect of large displacements in elastic behaviour. 
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The structure is a truss composed of three hinged members subjected to a vertical 
load P. All the members are identical and composed of circular pipes whose outer 
diameter 0 is equal to 660.6 mm and where thickness t is 10.31 mm (fig. 4). They are 
made with X52 steel grade with yield stress fy = 358 MPa, and Young's modulus 

E = 2 J.J0 4 MPa. The length I (fig. 4) is 27.59 m and the angles e 1, e 2 and e 3 are 

respectively 1t / 2 , 1t / 3 and 1t / 4 . 

-:l-

I 

, - CD 
M 

I 

Figure 4. Three members truss 

5.1.1 Deterministic study 

To predict the physical behaviour of this structure, a study in a detenninistic context 
when large displacements can occur is carried out. The slenderness of the member CD is 
equal to 120. An initial defect of straightness is introduced in this member to start the 
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phenomenon of buckling. It is a sinusoidal defect whose maximum amplitude Uo is 

equal to 0.2 % of its length I. 
Figure 5 shows two displacement stages of the structure while figure 6 shows the 

vertical displacements of the mid-point M of the member CD as a function of the load P. 
It should be noted that the member ® is in tension at the beginning of loading (A) 

and changes to compression after buckling of the member CD (B). Member @ remains in 
tension throughout the loading. 

• • M 

Figure 5. Displacements stages 

5.1.2 Study in random context. 

Initial 
A 
B 

The considered limit state is the attainment of yield under the combined action of 
bending M and axial load N. For tubular cross-sections, it is possible to write the limit 
state function in the form: 

(
1t N) M 

E = cos "2 N p ± M p ~ 0 (16) 
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where N p and M p are respectively the plastic axial force and the fully plastic 

bending moment. 
The three random variables are considered to be independent; they are shown in 

table 4. 

~ ~ Load P (MN) 
12 

8 

-
V 

"..., 

./ 

/ 
/ I Vertical displacement I 

of point M 

~ ....... 
""" 

JO 

6 

4 

2 " ... 
-4 -2 0 2 4 

~ 

Vertical displacement (cm) 

Figure 6. Detenninistic behaviour of the structure 

TABLE 4. Random variables 

Variable Law Mean value c.o.v. 

Yield stress fy Gaussian 308MPa 13% 

Load P Gaussian P(A} 

Diameter 0 Gaussian 660.6mm 0.5% 

The mean value of the load P, P, is obtained from the maximum design value of the 
member CD with respect to Eurocode 3: 

p = _A_f,,-y _X 
Y 1.192 

(17) 

where A is the mean value of the cross sectional area, fy the yield stress, X the 

reduction factor due to buckling and is a function of A. (here A. = 120, so: X = 0.342) 
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and y is the safety factor chosen to be 1.283. N is the axial load in the member CD; it is 
equal to 1.192 P in a linear calculation. 

5.1.3 Results 

The comparisons are conducted with a method of simulations [5] which gives the 

Cornell reliability index f3c, with Implicit FORM. and with the explicitation method 

which gives the Hasofer and Lind reliability index f3 HL . To show the difference arising 

from the choice of mechanical behaviour, the reliability indices obtained relative to 
each member ® are given with the precise non-linear elastoplastic model (table 5) but 
also with a linear one (table 6). The number of calls of the mechanical model (N c) are 

included in these results. The value N = 1.192 P is used in the non-linear calculation as 
data for the example. 

Table 5 shows that the results are very similar in the three methods, but with the 
number of calls N c slightly smaller with the SRQ method than with Implicit FORM 

(24 compared with 34). With the classical simulation technique, this number is 
obviously larger. 

TABLE 5. Pi obtained with a linear mechanical model 

Member CD Member ® Member ® 

Simulations Pc 5.391 6.560 5.727 

Nc 1000 1000 1000 

Implicit Form PHL 5.488 6.791 5.787 

Nc 34 34 34 

SRQMethod PHL 5.489 6.792 5.786 

Nc 24 24 24 

Table 6 confirms the lower level of the reliability index when a geometrically non
linear model is taken into account, so that the effects of buckling are really considered. 
For member CD, the value of f3 HL is now in the region of 2.4 compared to the previous 
value of 5.4. This shows that the reliability index is clearly affected by the phenomenon 

of instability. The values of N c are smaller with the explicitation method than with 
Implicit FORM (for example, 135 compared to 36, for member ®). The explicitation 
method attains the goal of decreasing the computational costs. Note that when buckling 
is considered, the number of calls of the mechanical model is larger than in the linear 
case because the domain of failure becomes more complex. 
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TABLE 6. l3i obtained with a non-linear mechanical model 

Member CD Member® Member@ 

Simulations I3c 3.712 7.228 5.531 

Nc 10000 1000 1000 

Implicit Form I3HL 2.393 6.893 5.235 

Nc 35 135 84 

SRQ Method I3HL 2.357 6.607 5.328 

Nc 36 36 36 

The reliability indices for members ® and ® are practically unaffected by the nature 
of the mechanical model, because they are subjected to tension before buckling of 
member CD. 

Finally, a computation of the number of events in the failure domain with the 

simulation technique leads to a probability of failure equal to 0.92 x 10-2 for the 
member CD; this is very close to the values of <1>(-13) obtained with Implicit FORM: 

0.84 x 10-2 and with the SRQ method: 0.92 x 10-2 . 

5.2 COMBINATION OF ULTIMATE AND SERVICEABILITY LIMIT STATES 

For the combination of two limit states (ultimate and serviceability), it is possible to 
obtain curves describing the evolution of the reliability of a simple compressed 
member, while taking account of the effect of non-linear displacements (very important 
for large values of slenderness) [8]. The SRQ method allows the values of the reliability 
index 13 to be obtained when a member may buckle, and the results can be compared 
together. 

For example, we consider the calculation for a pin-ended IPE column axially loaded 
(fig. 7). Eccentricity of the axial load (ecc ) and defect of straightness (uo) are taken 

into account. 
The member is assumed to be made from S235 steel grade (yield stress 

i y = 235 MPa) with an effective length equal to I. Table 7 shows the random 

variables taken into account. 

If A is the reduced slenderness parameter and Ag the gross area of the member, the 

LRFD Specifications (AISC 1986) give the maximum factored compressive load Pn 

as: 
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Figure 7. Pin-ended compression member 

TABLE 7. Random variables 

Random variables Distribution Mean value COY 

Cross-sectional dimensions 

M.6.b Uniform Omm 

6.1 Uniform Omm 

Out-of-straightness Uo Gaussian Omm 0.1 % I 

Eccentricity e cc Gaussian Omm 0.175% 

Yield stress !y Log-normal 263.2 MPa 6% 

Young Modulus E Log-normal 2l.10· MPa 6% 

Axial load F Log-normal F 10% 
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(I 8) 

F 

~o 

Tolerance 

±0.2mm 

±O.I mm 

± 0.3 % I 

± 0.35 % I 
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Fer takes buckling into account; it is obtained from the following relationships: 

,...1 
Fer = 0.658 C fy if Ae::;' 1.5 (l9.a) 

F = 0.877 f ·f A 15 er 2 y 1 e > . 
Ae 

(l9.b) 

Then, the mean value F is obtained from: 

(20) 

where y is the safety factor chosen here equal to 1.5 (F is the unfactored axial load). 
With IPE shapes, the ultimate limit state (ULS) function has the form: 

(21) 

if N and M are respectively the axial load and the bending moment calculated with the 
non-linear mechanical model (and including implicitly the buckling behaviour), and 
N p and M p are the plastic resistances (a = 1.22 with this shape). 

The serviceability limit state (SLS) function is: 

(22) 

if 0 is the computed deflection due to buckling and 0300 is the allowable deflection 

chosen here equal to f. / 300. 
The evolution of the reliability indexes as a function of the slenderness is shown in 

figure 8. 
Before interpreting these results, the difference between the two limit states must be 

emphasised. Reaching an ultimate limit state has much more severe consequences than 
reaching a serviceability limit state, and the probability of failure attached to each of 
them must be different. In the ECCS recommendations [9] for example, the considered 

values are PI (VLS)::;' 10-5 and PI (SLS)::;' 5 x 10-2 . 

Coming back to figure 8, it can be checked that, in the range of the small values of 
slenderness, the ultimate limit state is the most severe. Buckling does not really affect 
the behaviour of the column. 
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In the range of large slenderness ( A > 1 ) or, in other words, when buckling creates a 
significant effect, if PULS is relatively stable (2.6::; PULS ::; 2.9), PSLS decreases very 

rapidly (P SLS "" 0.8 when A > 1.5) and a serviceability limit state may have to be 
considered. 

Generally, standard codes do not require to check such a limit state under axial 
loading but, considering that steel makers are trying to produce columns with higher 
yield stress, it may become necessary to be careful in the range of large slenderness. An 
increasing of resistance will decrease Pj (ULS) but will not affect Pj (SLS ) and the 

serviceability limit state may become dominant. 
The SRQ method allowing to take into account the second order effect due to 

buckling, it is possible to determine PSLS as well as PULS and to define new limits of 
acceptability for compressed columns, from the point of view of strength but also from 
the one of displacement. 

4 ~----------~-----r----~------

3 ~~--~~~+-----~--------~ 

2 ~----~---1------~----~----~ 

o 2 
Figure 8. AISC-LRFD: Curves P = f(A) obtained with two kinds of limit states 

6. Conclusion 

This paper presents a reliability method of calculation which allows the solution of the 
problem of implicit limit states met in the case of non-linear behaviour. 
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It is applied to an example where a comparison is carried out with Implicit FORM 
and simulation methods. The SRQ method provides a better approach to real structural 
reliability: it can account for possible defects in a non-linear context (buckling for 
example) and uses less computation time than other methods: simulation, Implicit 
FORM ... 

Being not carried out in the space of the standard Gaussian variables but in the one 
of the original random variables, the limit state functions are not much distorted and can 
be easily mathematically treated. 

The problem which can be found with such a method is that there are complex limit 
state functions which cannot be approximated by a quadratic form without introducing 
too many errors but it is very rare in the field of structural mechanics. 

Having a strong effect on the convergence of the method, the choice of the 
calculation points is particularly important and they must be carefully chosen. 
Nevertheless, further works must be carried out to improve their choice. 
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MET.HODS OF SYSTEM RELIABILITY 

IN MULTIDIMENSIONAL SPACES 
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Arcisstr. 21, 80290 Munich, Germany 

1. Introduction - Notions and Definitions 

In general, a system is understood as a technical arrangement of clearly identifi
able (system-) components whose functioning depends on the proper functioning 
of all or a subset of its components. For a reliability analysis, a number of 
idealizations are convenient if not necessary. It is assumed that the components 
can attain only two states, i.e. one functioning (safe, working, active, ... ) and one 
failure (unsafe, defect, inactive, ... ) state. This is a simplification which is not 
always appropriate but we will maintain it throughout the text. If there is a 
natural multi-state description of a component or a system we shall assume that 
this is reduced to a two-state description in a suitable manner. In practice, this 
step of modeling might be not an easy task. It is, nevertheless, mandatory in 
practical system reliability analyses. Several attempts have been made to establish 
concepts for analyzing systems with multi-state components (see, for example, 
Caldarola, 1980; Fardis and Cornell, 1981). It should be clear that systems then 
have also multiple states and the definition of safe or failure states requires great 
care. Such relatively recent extensions of the classical concepts cannot be dealt 
with herein. 

A representation of component performance by only two states is called a 
Boolean representation, but we shall avoid the explicit use of Boolean algebra as 
far as possible. As a consequence of the Boolean component representation, 
systems can be only in either the functioning or in the failure state. We shall only 
deal with so-called coherent systems, i.e. systems which remain intact if an 
additional functioning component is added. 

One can distinguish two basic types of systems, the series and the parallel 
system. Later, we shall add other related types whose separate definition is useful 
for classification and calculation purposes. A series system consisting of n 
components is said to fail if any of its components fail. Classical examples are the 
chain whose failure is a consequence of the failure of any of its links, or a 
four-wheel car where any flat tire prohibits further use of the car (usually). A 
parallel system of n components is said to fail if all components fail. As an 
example, assume that a town is supplied by several electrical lines and each one is 
capable of delivering the required power. Or, in aircraft control, two computers 
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are installed in ideal stand-by redundancy. If the first fails the second takes over 
and can fulfill all demands. The control system fails if the second computer fails, 
too. Remember, however, that in most technical systems such as structures, failure 
of some components causes higher loads on the remaining components. This prob
lem will require some thought. A system is called redundant if it can remain intact 
in spite of the failures of some of its components. 

In general, systems are built up by many components in a complex logical 
arrangement of series and parallel subsystems. Let Fi = {X E Vi} be the failure 
event of the i-th system component, and Vi the failure domain. Denote by F the 
system failure event. Clearly, for a series system ("or"--connection) we have F as 
the union ofthe individual failure events (see figure 1.1) 

Fig. 1.1: Series system 

Fig. 1.3: Parallel systems 
in series 

Fig. 1.2: Parallel system 

Fig. 1.4: Series systems 
in parallel 

(1.1) 

while for the parallel system ("and"--connection) F is the intersection of the Fi'S 
(figure 1.2) 

(1.2) 
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Fig. 1.5: Series system 

Fig. 1. 7: Parallel systems 
in series 

Fig. 1. 6: Parallel system 

Fig. 1.8: Series systems 
in parallel 
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Correspondingly, for parallel systems in series (unions of intersections) we have 
(figure 1.3) 

F = U n Fij (1.3) 

whereas series systems in parallel (intersections of unions) are described by (figure 
1.4) 

F= n u Fij (1.4) 

For convenience, the same systems are also presented in figures 1.5 to 1.8 when the 
Fi'S are given by certain domains in the space of uncertain variables X = (Xt,X2). 

Of utmost importance in reliability theory is the fact that any system can be 
reduced to either of the last two forms in making extensive use of the distributive 
laws of set algebra 
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Fi n (Fj U Fk) = (Fi n Fj) U (Fi n Fk) 

Fi U (Fj n Fk) = (Fi U Fj) n (Fi U Fk) 

R. RACKWITZ 

(1.5) 

(1.6) 

Furthermore, essential reductions are usually possible by applying the s~alled 
absorption rules, i.e. for F i ~ Fj there is 

Fi U Fj = Fj and Fi n Fj = Fi 

or for Fi C Fj and Fk C Fj there is 

(Fi U Fk) C Fj and (Fi n Fk) C Fj 

(1.7a) 

(1. 7b) 

It follows that the union or intersection of an event with itself is the event. The 
absorption rules are important when making certain sets minimal. If, in particular, 
eq. (1.3) is a minimal set it is denoted by a minimal cut set. Cut sets are minimal 
if they contain no other cut set as a genuine subset. Analogously, representation 
(1.4) is called a tie set. Such sets are minimal if no tie set contains another tie set 
as a genuine subset. 

The analysis has four steps: 
1) investigate the logical structure of the interaction of the components of the 

system 

4
23j reduce the system to a minimal one 

evaluate probabilities 
determine sensitivity and importance measures of parameters, components 
and subsystems. 

The first step involves classical engineering evaluations and, probably, is the most 
difficult task. It requires much care and experience to model components and the 
system realistically and, in a reliability sense, completely. This modeling phase 
must be done with due consideration of the various consecutive steps. The second 
step will be highly formalized; a few hints will be given later, and the reader is 
referred to the vast literature in this area for additional information. The third 
step will be the main subject of this review. The fourth step, although important 
and informative, will not be considered. 

2. Formal Logical Analysis of Systems 

The logical structure of simple system can usually be assessed directly and we shall 
illustrate this by a simple example. Complex systems require more formal tools 
when assessing and reducing the logical structure because a direct analysis can be 
prone to error, and lengthy. 

illustration 2.1: Water supply system 

We consider a simple supply system as shown in figure 1. Two sources 51 and 52 
supply two consumers (town areas) Al and A2. The arrows indicate the possible 
direction of flow. The system is said to fail if one of the consumers is no longer 
supplied. Failure could be brought on by some extraordinary event such as a flood, 
earthquake or fire. Here, it is easy to write down all possible connections leading to 
system failure. 
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Figure 2.1: 

F = {[Fl n (F2 U F3) n (F3 U F4 U F5)] u 

U [(Fl U F 5) n (F3 U F4) n (F2 U F3 U F 5)]} 

S2 

System failure is when Al or A2 are not supplied 

System representation by block diagrams 

165 

(1) 
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The system can be represented in terms of a block diagram in which one can easily 
recognize the logical structure. As in eq. (1) one considers the supply of Al and A2 
separately. For example, Al is not supplied if line 1 and (line 2 or 3) and (line 3 or 
line 4 or line 5) are broken. 

This system of events in eq. (1) is not ;:et a cut set system and not yet minimal. 
One may now apply the laws (1.5) and (1.6) and obtain for the supply of Al 

F,u = {(Fl n F2 n F3) U (Fl n F2 n F4) U (Fl n F2 n Fs) U 

U (Fl n F3 n Fa) n (Fl n Fa n F4) U (Fl n F3 n Fs)} (2) 

(Carry out all cnts in the upper half of the block diagram which make the system 
fail). Next the absorption laws are applied. First all multiple events in a cut set 
are deleted, except one. Next, multiple cut sets are deleted except one. Finally, all 
cut sets which are subsets of other cut sets are deleted. In doing so one arrives at 

F = {(Fl n Fa) U (F3 n Fs) U (F4 n Fs) U 

U (Fl n Fa n F4) U (Fl n Fa n Fs)} (3) 

Quite analogously, one can Rrod.1lce tie sets. W ~ reglember that according to de 
Morgan's law, it is A n B = A U B and A U B = A n_B. Therefore, for the repre§en
tations (1.3) and (1.4) we have U n Fij = O\(n U Fr) and n U Fij = O\(U n Fij). 
Hence, having found the minimal cut set for the faifure events yields by passing 
over to the complementary events (by reversing the set operators) we find the 
minimal tie set of safe events and vice versa. We recommend this as an exercise. 
The result is 

# 

F = {(Fl U Fs) n (Fl U Fa U F4) n (F2 U F3 U F4) n 

n (F2 U Fa U Fs) n (Fa U F 4 U Fs)} (4) 

The general case requires more systematic tools. A first possibility is a complete 
analysis of all possible sequences of events. This type of analysis is called event 
tree analysis. For larger systems this can become quite cumbersome but it will be 
seen later that in a number of applications this is the only and natural way to 
arrive at a suitable representation of the situation. Another famous approach is 
called fault tree analysis. The two types of analysis are complementary. The first 
starts the analysis from the intact system, the second from the failed system. They 
will be illustrated at examples. 

illustration 2.2 (cont.): Water supply system (failure and fault trees) 

In our artificial water supply system the time-sequence of failures of components 
is irrelevant for the final system states (but not necessarily for the corresponding 
probabilities). Here, we develop sequences of events starting from component No.1 
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(compare figure 1). The reader may verify that the same result is obtained by 
starting at another component. One observes that at the end of each branch one 
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arrives at four t~pes of events: Survival (S), Failure of supply of Al (F I), Failure 
of supply of A2 lF2), Failure of supply of Al and A2 (FI n F2). 

The complete assembly of survival and failure events constitutes an exhaustive, 
disjoint system of events. In applications one might wish to differentiate between 
the different failure types because they are associated with different consequences. 
Usually only the failure branches of the event tree are of interest. In this case the 
event tree may be called the failure tree, and it is sufficient to investigate only 
those branches which lead to failure (failure branches, failure paths). 

Another possibility of system analysis is by s~alled fault trees which is a back
wards analysis technique of the failure branches of an event tree. System failure is 
the top event. Then, a next level of subsystem and its logical connection is defined 
by or or and gates. In this manner one pursues all possibilities until one arrives at 
the componental basic events. The designation of and or or gates is not 
standardized. Here, we use a + for the or gate and a • for the and gate. 

Neither the result of the event tree nor of the fault tree has been reduced to a 
minimal form. Many formal algorithms exist for these reductions but they re
semble each other to a large degree. Their differences can frequently only be recog
nized for very large systems. An account of several methods and some special tasks 
is given in Yen (1975) (see also Barlow and Proschan (1975)). 

Figure 2.3: Fault tree for water supply system 

# 
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3. Elementary Probabilistic Evaluation of SysteIDB 

In this section we compute the failure probability of systems as analyzed before, 
under the more or less restrictive assumption that the componental failure events 
are either independent or fully dependent. 

For a series system (or-connection) made up of independent events, we may use 
the complementary events Fi to give 

Pr,s = P(U Fi) = I-p(n Fi) 
i i 

= 1 - II P( F i) = 1 - II(1 - P(Fi)) 
i i 

and, analogously, for the parallel system 

Pf,P = p(n Fi) = II P(Fi) 
i 

In the fully dependent case we have 

Pr,s = P(u Fi) = max {P(Fi)} 
i i 

Pf,P = p(n Fi) = min {P(Fi)} 
i i 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Systems with more complex structure are more difficult to handle. If we assume 
that the cut sets are disjoint, then, the third Kolmogorovian theorem of 
probability theory applies directly. Remember, that disjoint cut sets usually 
consist offailure and survival events which here are denoted by Fi*. 

. * * Pr = P(u n Fij) =}; p(n F ij) 
i j 

(3.5) 

u stands for a disjoint union. In general, disjoint sets are larger than minimal cut 
sets. Also, the presence of failure and survival events in the same cut set can make 
their evaluation difficult. Therefore, they are seldom used. 

If the cut sets are not disjoint, one may use the well-known expansion formula 
for the probability of unions of events, i.e.: 

P(UFi) = }; P(Fi) - }; };P(Fi n Fj) 
iii <j 

+};}; };P(Fi nFj nFk)-... (-I)n+lp(Fln ... Fn) 
i<j<k 

(3.6) 

Several cut sets in a cut system representation can share the same components. 
Therefore, cut set failures are no longer mutually exclusive, and a more detailed 
analysis is required as before. The use of the sum of componental failure probabili
ties (the first term m (3.6)) always provides an upper bound Pu, as is easily 
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verified. It may be shown that the first two terms in (3.6) always give a lower 
bound, PL, to the probability. Thus ° ~ PL ~ P(u Fi) ~ Pu ~ 1. Unfortunately, 
these bounds are unsatisfactorily wide for large systems. Consideration of higher 
order terms in eq. (3.6) is rather laborious, and it is not obvious where to truncate 
the expansion. The terms first tend to increase, so that the bounds established by 
considering partial sums increase also; only later do the terms decrease so that the 
sum converges to the exact result. 

Figure 9.1: Derivation of Ditlevsen's bounds 

It is possible, however, to derive simple bounds of increasing order and increas
ing narrowness. The idea can be deduced from figure 3.1. For the first two events 
we have 

For the third event in a union, an upper bound is obtained if the intersection with 
the larger probability is subtracted, i. e. P(F t n F3) or P(F2 n F3), from the addi
tional term P(Fs). A lower bound is to subtract the sum of these joint probabilities 
provided that they are not larger than P(F3)' Repeated application of this scheme 
for more than three events yields: 

n 

{ ~ P(F t ) + E {P(Fi) - max {P (Fi n Fj)} 
P(~ F')= i=2 j<i 

. 1 n n 
1=1 ~ P(F t ) + E max {O,P(F i) - E P(Fi n Fj)} 

i=2 i =2 

(3.7) 

This elementary result has been derived repeatedly, in one form or another, e.g. by 
Konias (1966), Hunter (1976,1977), Ditlevsen (1979). The narrowness of these 
bounds depends on the ordering of the events. A different ordering may be necess
ary for the upper and the lower bound. An algorithm for a best ordering is given 
by Dawson and Sankoff (1967). Hohenbichler (1980) (see also Hohenbichler and 
Rackwitz (1983)) generalized these bounds to include more than two-dimensional 
intersections (but not all higher dimensional intersections). It was found by numer
ical studies that little is gained by those extensions except for small (!) systems. 
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The (two-dimensional) bounds are exact for fully dependent events, are very close 
to the exact result for independent events, become less satisfactory with increasing 
number of events, but are generally of high quality for small probability events. 

Irrespective of the dependence structure of the events, we have, as mentioned 
shortly after eq. (3.6), the so-called trivial bounds 

n n n 
max {P(Fi)} $ P( U Fi) $ E P(Fi) $ 1 
i =1 i=1 i=1 

(3.8) 

for the series system and 

n n 
0$ P( n Fi) $ min {P(Fi)} (3.9) 

i=1 i =1 

for the parallel system; these are direct consequences of the elementary probability 
theorem. The bounds (3.8) become obsolete for larger systems and/or larger 
individual event probabilities. The bound (3.9) generally is of little use. Slightly 
better is the following obvious relationship 

n n 
o $ P( n Fi) $ mi n {P(Fi n Fj)} 

i=1 j<i=1 
(3.10) 

which is of the same nature as eq. (3.7) since it involves the probability of the 
intersection of any two events. As tor eq. (3.7), higher order intersection terms 
could be included in bounds of the type of eq. (3.10) but with moderate improve
ment of the upper bound and, without further information about the dependence 
structure of the componental failure events, no possibility of sharpening the lower 
limit. This is the reason why we shall not further investigate tie sets of failure 
events. In addition, if the events Fi and Fj in eq. (3.10) correspond to unions we 
have, for example, Fi n Fj = ( Ur Fir) n ( Us Fjs) whose probability in turn is only 
easily computed if first a (minimal) cut set representation is found and one of the 
formula (3.5) to (3.7) are applicable. 

4. First-Order Reliability Methods for System Analysis (FORM) 

4.1 COMPONENTS 

Let U = {U " ... ,Un)T be an independent standard normal vector and the failure 
domain be given as V = {g(U) ~ O} = {aTU + {3 ~ O} with g{O) > a and II all = 1. 
Then, the exact failure probability is 

Pf = P{F) = P{U E V) = Cf.>{-(3) (4.1.1) 

u* = - {3 a the ,8-point, a its vector of direction cosines and {3 the geometrical 
safety index /3 = + II u* II. 



172 R.RACKWTIZ 

The standard normal integral q,( c) may be determined by one of the expansions 
given in the literature. Note that in eq. (4.1.1) we distinguished the failure event F 
and the failure domain V. This is formally correct, but at the moment not really 
necessary. Therefore, we shall use P(V) instead of P(U E V) for P(F) in the sequel. 

Next, we generalize this result for non-linear, differentiable failure surfaces 
g(u) = 0 by expanding it to first-order in the so-called ,B-point which, for the 
moment, is defined as the minimal distance of points u on g(u) = 0 to the 
coordinate origin. For [3 we use the convention 

* 
{ 

+ Ilu II for g(O) > 0 

[3= 
* - Ilu II for g(O) ~ 0 

( 4.1.2) 

while 

II u* II = min {Ilull} for {u: g(u) ~ o} ( 4.1.3) 

Finding u* is a problem of optimization (minimizing II ull) under an inequality 
constraint. The inequality condition is written here onlI as a reminder that the 
failure surface g(u) = 0 resp. the failure domain V = {gtU) ~ o} is assumed to be 
non-degenerate, i.e. that the failure set in a sufficiently small neighborhood of u* 
is non-empty and has non-zero probability. Practically, the equality condition is 
sufficient. The search for u* will be discussed later. Here, it is further assumed that 
g( u*) possesses all first-order derivatives so that a tangent linear approximation of 
the failure surface is uniquely defined; this expansion is possible because the 
multi-normal density drops off with exp[- 1/2 Ilu11 2J. At the ,B-point Ilull is a 
minimum and u* = max {r,o(u)}. As a consequence, u is also denoted as the most 
likely failure point. In the non-linear case, 

Pf ~ q,(- [3) (4.1.4) 

This approximation is widely accepted, even though there is an unquantified error. 
Again, u* = -[3 a, where a = g(u*)/llg(u*)II is the normalized I!;radient of g(u*) = 0 
at u* and the linear approximation to g(u) = 0 is h(u) = a'1'(u - u*) = aTu + [3 
= o. 
4.2 UNIONS AND INTERSECTIONS 

The failure event (domain) can also be given as a union of intersections of 
individual (componental) failure domains. Let 

m 
V= n Vi 

i=l 

with Vi = Hi = {aiTU + [3i ~ o} = {Zi ~ -[3i}. If the individual failure domains Vi 
are originally bounded by non-linear failure surfaces, we understand that these 
failure domains have been replaced by linearly bounded half-spaces Hi as 



METHODS OF SYSTEM RELIABll..ITY IN MULTIDIMENSIONAL SPACES 173 

described in section 4.1. The covariance matrix for the vector Z is given by 
Ez = faiT aj ; i,j = 1, ... ,m}. This is equal to the correlation coefficient matrix R, 
because Z is a zero mean, unit variance vector. The failure probability becomes 
(Hohenbichler and Rackwitz, 1983): 

m 
Pf = P( n {Zi $ -Pi}) = <Pm(- P; R) 

i=l 

<Pm is the multinormal integral. Similarly, for a union of events 

we have 

m 
V = U Vi 

i=l 

m m 
Pf = P( U {Z i $ - Pi}) = 1 - P( n {Zi > - Pi}) 

i=l i =1 
m 

= 1 - P( n {Zi $ Pi}) = 1 - <P m (,8 ; R) 
i=l 

(4.2.1) 

4.2.2) 

The numerical evaluation of the standard multinormal integral <Pm( C ; R) is 
essential for eqs. (4.2.1) and (4.2.2) to be of any practical use. Unfortunately, thue 
are no simple general and exact results. 

4.3 CUT SET SYSTEMS 

As outlined in section 2, more general failure domains (systems) must be given 
either in terms of a disjoint or a (minimal) cut set representation. In the first case 
the cuts can also contain safe events, and there will be no additional difficulties. 
The system failure probability. is limply the sum of all cut probabilities. If, for ex
ample, a cut set is given by tVi,Vj} where Vi = {gi(U) $ O} and V) = {~i(U > O} 
it is clear that by multiplying 6/U) by (-1) one obtains Vj = t- gj(U $ O} as 
required for formulae (4.1) and ~4.2). In contrast to our general assumption, Vj 
now is a large probability event but its intersection with small probability events 
V i may still yield small joint probabilities. In a first-order context the multiplicat
ions of gj(U) by (-1) leads to a sign~hange ofthe original correlation coefficient. 

If the system is represented by minimal cut sets, one straightforward calculation 
method is to use the Ditlevsen bounds as derived in section 3 in eq. (3.7). They 
require the evaluation of the intersection of any two intersections of failure 
domains, i.e. the probabilities 
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with fJi+j = (fJh ... ,fJm.,fJm.+h ... ,fJm.+m.)T and 
1 1 1 J 

(4.3.1) 

Alternatively, a formally exact result is also obtained by applying the expansion 
theorem (3.6), but the numerical effort may become great for large systems. The 
same is true for the calculation of disjoint cut set probabilities, so that, in practice, 
one prefers the bounds (3.7). These, in turn, may be weakened in that, after 
arranging the cut sets according to their (descending) probabilities, the 
intersection probabilities of any two cut sets are only computed for the k first few 
dominating sets, while the rest of the cut sets are taken into account by either 
their upper bound or their lower bound. 

illustration 4.3.1 (cont.): Water supply system 

We are ready to apply the above results to the water supply system discussed 
previously. Assume that the componental failure events are now given by 
Vi = {Xi - Y ~ O} where the Xi represent some resistance variables which are 
assumed to be independent and normally distributed with mean mi = m and 
standard deviation O'i = 0'. Y is a normal loading variable with mean # and 
standard deviation r. Therefore, the componental failure probabilities are 

(1) 

It follows that fJ = fJi = (m - #)(0'2 + r2t1f2 and P = Pij = COV[Zi,Zj] = 
r2( 0'2 + r2tl. Let the parameters be chosen such that fJ = 3 and P = 0.5. The state 
variables are represented by 

(2) 

By conditioning first on the variable U = u, one recognizes that the variables Zi 
are conditionally independent and the results of section 3 apply. In particular, it 
can easily be verified that 

+00 

P(F) = f [3 p2(U) - 4 p4(U) + 2 p5(U)] ~u) du (3) 
-00 
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with p(u) = ~((-{3 - /pu)/(l - p)1/2). The term in square brackets would be the 
exact system failure probability if the components were independent. cp( c) is the 
standard normal density. Numerical integration yields P(F) = 2.31.10-4 with 
component probability P(Fi) = 1.35.10-3• Note that P(F) = 5.47.10- 6 would have 
been obtained if the Fi'S had been independent. This emphasizes the significance of 
stochastic dependencies among componental failures. 

The same system is used to illustrate the material in this section. One determines 
Pr,ik = P(Fi n Fk) = 8.19.10-5 and Pr,ijk = P(Fi n Fj n Fk) = 1.51·10-5. The 
trivial bounds for the system failure probability eq. (3.8) become 

5 

max {Pr,k} = 8.19 10-5 ~ Pr ~ 2.76 10-4 = ~ Pr,k (4) 
k=l 

Ditlevsen's bounds require the probabilities of the intersections of any two cut sets 
in the system. These probabilities are collected in the following matrix 
P = {Pif i,j = 1, ... ,5}: 

[ 

1.51·10-5 

P = 

4.65.10-6 

1.51.10-5 

syrom. 

4.65.10-6 

4.65.10- 6 

8.19.10-5 

1.90.10-6 

4.65.10-6 

1.51.10-5 
8.19.10-5 

For example, the element P12 is computed from 
P12 = P((F1 n F2 n F4) n (Fl n F2 n F5)) = P(F1 n F2 n F4 n F5) 
= ~4({-3}j{0.5}) = 4.65.10-6• The sharper bounds eq. (3.7) give 

2.26 10-4 ~ Pr ~ 2.42 10-4 

4.65.10- 6 ] 
4.65.10- 6 

4.65.10- 6 

1.51.10-5 
8.19.10-5 

with essentially the same numerical values, whatever sequence of the five cut sets 
is considered. These bounds are appreciably narrower than the trivial bounds and, 
of course, contain the exact result. 

# 
This chapter describes the first-{)rder reliability method. Beginning with the 

fundamental work of Breitung (1984) and Hohenbichler et al. (1987), asymptotic 
concepts have been applied, leading to an improvement and justification of the 
first-{)rder theory. It is outlined in appendix A. 

4.4 PROBABILITY DISTRIBUTION TRANSFORMATIONS 

The foregoing results are very special as they apply only to independent standard 
normal variates. However, if the distribution of the original basic variables is 
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continuous, it is always possible to find a probability distribution transformation 

X=T(U) (4.4.1 ) 

such that 

Pf = P(h(X) ~ 0) = P(h(T(U)) ~ 0) = P(g(U) ~ 0) (4.4.2) 

where we used the abbreviation h(T(U)) = g(U). Such transformations are well 
known from simulation. Remember that if a random number generator is available 
for producing uniformly distributed variables Gi in [0,1], then, we use the identity 
P(Gi ~ g) = FG(g) = Fx{x) = P(Xi ~ x) to produce random numbers for the 
variable X. By solving for Xi we obtain Xi = FX- 1[Gil as random numbers distri
buted according to Fx. A similar concept is applied to eq. (4.4.1). Let X be an 
independent vector with marginal distribution functions Xi N Fi(X). It follows that 
the identity 

Fi(Xi) = q,(Ui) 

holds and, therefore (Rackwitz/Fiessler,1978),: 

or 

( 4.4.3) 

(4.4.4a) 

(4.4.4b) 

The multidimensional dependent case is more involved. If X has distribution 
function Fx{x) = P(X ~ x) = P (ni~l {Xi ~ Xi}), then it is always possible to 
represent this distribution function as a product of conditional distribution 
functions, i.e. 

where 

and 
+w 

fj{xb ... ,Xj) = f· .. f fx(xb .. ·,Xj,Sj +b ... ,Sn) dSj +l· .. dsn 
-w 

This elementary result is used to construct a transformation which has been 
proposed by Hohenbichler and Rackwitz (1981) following an idea by Rosenblatt 
(1952). It will be denoted by the Rosenblatt-transformation in the sequel. We' 
transform sequentially using the identities 
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Hence, 

or 

Xl = Fil[~(U 1)] 

~(Ul) = Fl(Xl) 

~(U2) = F2(xl!X2) 

X2 = F21[~2) I Fi 1 [~(U d II 
~3 = F31[~(U3) IF21[~(U2)IFil[~(Ul)]],Fil[~(Ul)]] 

and the inverse transformation 

Ul = ~-l[Fl(Xl)] 

U2 = ~-1[F2(X2IXl)] 

U3 = ~-1[F3(X3IXhX2)] 

177 

( 4.4.5a) 

(4.4.5b) 

(4.4.5c) 
c 

( 4.4.6) 

(4.4.6a) 

(4.4.6b) 

(4.4.6c) 

(4.4.7) 

(4.4.7a) 

(4.4. 7b) 

(4.4.7c) 

In words: In the first step, the first variable is transformed. In the second step, all 
variables conditioned on the first are transformed, and so forth. 

illustration 4.4.1: Correlated normal variables 

Let X", Nn(mjE). We first standardize X by applying Yi = (Xi - mi)/ O"ii so that 
Y", Nn(OjR) with Pij = O"ij/(O"jiCTjj) 1/2. We now transform according to 

Y=AU (1) 

where A = {aij j 1 S i,j S n} and aji = 0 fo! j > i. The aij's are determined from 

Var[Y·] = t a2k = 1 and Cov[Y· y.] = t a·ka·k = p ... Clearly a - P - 1 1 k = ill' J k = i 1 J 1J , 11 - 11 - . 

One finds with Pii = 1. 

ail = Pi 1 j 2 SiS n 
i - 1 

aii = (Pii - E a~k) d 2 j 2 SiS n 
k=l 
j - 1 

aij = (p ij - E a j k) / a jj j 1 < j < i S n 
k = 1 

(2a) 

(2b) 

(2c) 
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The Rosenblatt-transformation precisely corresponds to Cholesky's triangulariza
tion procedure for symmetric, positive definite matrices. If Y is only centralized 
beforehand, the Pij'S must be replaced by the aij's, in which case we denote the 
transformation matrix by C. Hence, the complete transformation is 

X=CU+m (3) 

If lognormal variables are correlated, an (original) matrix of (numerical) 
covariances has to be transferred into a matrix of covariances of the logarithms of 
the variables. For Xi and Xj being both lognormal it is: 

(4) 

For Xi being normal and Xj being lognormal it is: 

(5) 

Note that if the matrix of covariances in the original space is positive definite, 
these formulae do not ensure that the covariance matrix in the log space is positive 
definite. However, if the covariance matrix is directly evaluated from the 
logarithms of the variables it is always positive definite. 

# 
More recently, a number of alternative and somewhat less general probability 

distribution models and the corresponding transformations have been proposed 
(Der Kiureghian and Liu, 1986). Following Nataf (1962), a joint distribution is 
assigned to any two variables XI and X2 such that two transformed variables 
ZI = 1jI-I[FdXI)] and Z2 = ljI-l[Fx2(X2)] are jointly normal, i.e. according to the 

rules of probability calculus 

(4.4.8) 

where 'P2(Zt,Z2iP0,12) is the bivariate normal density, and the correlation coefficient 
is obtained from the integral equation 

+1Il 
fX (XI) fX (X2) 

= f f [XI -ml] [X2 - m2] 
P12 al a2 

'P2(Zt,Z2iP0,12) I 2 dxl dx2 
-Ill 

IjI ( Z I) IjI (z 2) 

+1Il 

= f J [XI - ml] 
al 

[X2 -m2] 
a2 

'P2(Zt,Z2iP0,12) dZ l dZ2 (4.4.9) 

-Ill 
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and where P12 is the correlation coefficient between Xl and X2• This model is valid 
for strictly increasing and continuous marginal distribution functions Fxlxi), and 

for - 1 ~ Po, 12 ~ + 1. In the multivariate case the matrix of correlation coefficients 
Ro must be positive definite. In general, PO,12 differs only slightly from P12. The 
final transformation is 

X = T(Z(U)) = T(A U) (4.4.10) 

or 

Xl = Fx:(a llU1) 

X2 = Fi;(a 21 U1 + a22U2) 

X3 = Fi!(a 31 U1 + a32U2 + a33U3) 

. -1 n 
X = FX ( ~ a . U.) 

n n i=l m 1 

with triangular matrix A determined from the equivalent correlation matrix Ro. 

4.5 COMPUTATION OF THE MULTINORMAL INTEGRAL 

In the general case, one has to evaluate the multi-normal integral. Unfortunately 
there are only a few analytical solutions. It is, however, possible to derive very 
good approximations and an asymptotic formula. In view of its many applications 
the properties of a multi-normal vector are discussed first. The density of the 
multi-normal vector Y = (Y 1, ••• ,Y n)T is 

tpn(y) = (27r det(E))-1/2 exp[- ~ [(y-m)TE-l(y-m)]] (4.5.1) 

and after standardization by Xi = (Yi - J.l.N (Ji such that E = DTRD with 
D = diag{ (Jil the diagonal matrix of the standard deviations and R the matrix of 
the correlation coefficients: 

tpn(x) = (27r)-n/2(det(R))-1/2 exp[- ~ [(xTR- 1x)] (4.5.2) 

If R = I (I = unit matrix), the vector Z is uncorrelated: 

tpn(z) = (27r)-n/2 exp[- ~ zTz] (4.5.3) 

This also implies independence of the components of the vector. Let now 
Y = AZ + m. The covariances (Jij are 
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n 
O'ij = Cov[Yj,Yj] = E aij aik E[X~ - mj mk 

i=l 

R. RACKWITZ 

Consequently A = R. The multi-normal distribution function can now be written 
as: 

x 

q,n(x;R) = f !pn(t;R) dt (4.5.4) 

The normal density is symmetric in the sense that: 

!pn(x;R) = !pn(- x;R) (4.5.5) 

No such simple symmetry relation can be established for the distribution 
function. An important property is that for {Pij} ~ {Kij} (Slepian, 1962; Sidak, 
1964) 

q,n(x;R) ~ q,n(x;K) ( 4.5.6) 

Unfortunately only the two and three dimensional cases have simple solutions 
(Owen, 1956). If the variables can be represented by 

(4.5.7) 

where Yo,Y t,oo.,Y n are independent standard normal variables and, therefore, 
Pij = KiKj, it is (Dunnet and Sobel, 1955): 

(4.5.8) 

For the special case of equicorrelation we have ";P = )\i = Aj ~ O. On the basis of 
eq. (4.5.8) bounds can be constructed which, however, are not always sufficiently 
narrow. 

The two dimensional case is needed more frequently. It can be computed as a 
special case of eq. (4.5.8) or by numerical integration according to 

with 

P 
q,2(X,y;P) = q,(x) q,(y) + L !P2(X,y;t) dt 

o 

. _ 1 1 x2 - 2pxy + y2 
!P2(X,y,P) - 271' (1 _ p2)112 exp[-2 1 _ p2 ] 

(4.5.9) 

For the general case the following scheme has been proposed (Hohenbichler and 
Rackwitz, 1985): 
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n n 
<l>m(c;R) = P( n {Zi ~ cd) = P(ZI ~ CI) P( n {Zi ~ ci}I{ZI ~ CI}) 

i=l i=2 

The Zi'S have the Rosenblatt-transformation 

n 
Zi = b aij Uj 

i=l 

(4.5.10) 

(4.5.11) 

with all = 1 and ail = Pil. The condition in the second term of eq. (4.5.11) can be 
removed by observing that it affects only the fj.rst varig,ble. The distribution 
function of a new conditional (truncated) variable U I is, for U I ~ CI 

F- (-)-P(U <-IU <c)_P({UI < iitln{UI~cI})_:fiilj 
UdcI Ul - LUI L 1- P(UI~cd - CI 

( 4.5.12) 

Using F U- I (iii) = <I>(UI) with U I a new auxiliary standard normal variable 
I CI 

in eq. (4.5.11), one obtains: 

m m i 

( 4.5.13) 

P( n {Zi ~ CiIZI ~ cd 
i=2 

= P( n {ail 0 I + b aij Uj ~ Ci}) 
i =2 j=2 

m i 
= P( n {ail <I>-I[<I>(U 1) <I>(c dJ + b aij Uj ~ Ci}) 

i =2 j=2 
m m (4.5.14) 

= P( n {gi(U) ~ O} P (n { a i (2 ) TU ~ C i (2) } ) 

i=2 i=2 

= <l>m- l(c(2);R(2») 

so that eq. (4.5.10) can be written as 

<l>m(c;R) = <I>(Cl) <l>m_l(C(2);R(2») (4.5.15) 

Hence the dimension of the multinormal integral has been diminished by one. In 
line 2 of eq. (4.5.14) one recognizes that only the first variable enters non-linearly. 
The functions gi(U) in the third line can be linearized around their respective 
,B-points. Repeated application of this scheme leads to the approximation 

( 4.5.16) 
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Several improvements are possible which cannot be discussed herej their effect 
in general is only small. The probability content of {gi(U) ~ O} can be computed 
exactly in terms of the bivariate normal integral, from which 

( 4.5.17) 

is the distance to the origin of an equivalent hyperplane having the same probabili
ty content. For <P2 formula (3.2.6.9) can be used. More accurate results can be 
obtained (Gollwitzer and Rackwitz, 1988), with the asymptotic theory outlined in 
appendix A. The accuracy of the computation scheme (4.5.15) using asymptotic 
concepts has been tested up to dimension m = 200 with excellent results under 
asymptotic conditions. For non-asymptotic conditions, the equivalent hyperplane 
concept (Gollwitzer and Rackwitz, 1983) with eq. (4.5.19) yields results that are 
only slightly less satisfactory. 

One special asymptotic result due to Ruben (1964) is given for its simplicity. If all 
Ci'S are negative and the solution of 

7= R-1c 

leads to a vector 7 with positive elements then, for Ilcll ... m, 

n 
<p(- cjR) N !p(cjR) (det(R))1/2 ( II 'Yit1 

i=1 

(4.5.18) 

(4.5.19) 

The condition of negative Ci'S but positive 'Yi'S restricts the domain of application 
to a certain extent. 

4.6 SEARCH ALGORlTHMS 

The mathematical basis for the search for the .8-point given only one failure 
domain (restriction), or a cut set of failure domains (several restrictions), is the 
existence of an optimum point in the admissible domain. In the first order context, 
discussed before, the optimum point corresponds to the maximum density of the 
standard normal vector in the failure domain. Due to the rotational symmetry of 
the standard space, the point is also the point inn or on the boundary of V that is 
closest to the origin. The existence of such a point is defined by Lagrange's 
theorem. The Lagrangian function is defined as: 

m 

L(u) = f(u) + L >'j giu) 
j = 1 

and the necessary conditions for an optimal point u* are 
m 

VL(u*) = Vf(u*) + L >.j Vgj{u*) = 0 
j = 1 

gj{u*) = 0 for j = 1,2 .... m 

(4.6.1) 

(4.6.2) 

(4.6.3) 
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m is the number of restrictions and the >'j are the so called Lagrangian multipliers. 
If n is the dimension of the vector u, then eqs. (4.6.2) and (4.6.3) form a 
non-linear system of equations with n + m unknowns (the point u* and m 
>'*-values). For inequality restrictions in the form giu) ~ 0 the first-order 
conditions are called the Kuhn-Tucker conditions: 

t 

VL(u*) = Vf(u*) + L >.j Vgiu*) = 0 
j = 1 

gj(u*) = 0 j = 1,2 .... t 

>'j~O j=1,2 .... t 

gk(U*) ~ 0 k = t+1, ... m 

( 4.6.4a) 

(4.6.4b) 

(4.6.4c) 

(4.6.4d) 

t is the number of active restrictions at the point u*. The index k runs over all 
inactive restrictions. If the Hessian of the Lagrangian function is positive definite 
and the point u* fulfills the Kuhn-Tucker conditions then u* is a local optimum 
point. 

This analysis forms the basis for fast algorithms which are globally convergent 
when started from an arbitrary initial point (see Gill et al., 1981; Hock and 
Schittkowski, 1983 and Arora, 1989). In the following we can only outline the main 
features of a suitable algorithm. 

The following function has to be minimized 

u* = min{f(u)} = min{1I u 112} 

given the constraints: 

gj(u) ~ 0 fur j=1,2 ........ m 

The Lagrangian function with linearized constraints becomes: 
m 

(4.6.5) 

(4.6.6) 

L(u,A) = lIuoll 2 + 2 uoT ~u + ~uT ~u+ L >'j {giuo) + Vg~T ~u} 
j = 1 

and the Kuhn-Tucker conditions are: 
t 

VL(u,A) = 2 Uo + 2 ~u + L>'j Vgj = 0 
j = 1 

gj(U) = gj(U'J) + VgjT ~u = 0 j=1,2, .. t 

(4.6.7) 

(4.6.8a) 

(4.6.8b) 
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Let G be the matrix of the gradients of the (active) constraints and r a vector 
with the values of the constraint functions 

G = [Vg~, ... Vg~ ....... Vg~lnxt (4.6.9) 

The system of equations can be written in matrix form as 

(4.6.10) 

Solution of this system yields the following iteration scheme: 

(4.6.11) 

The matrices G are given by: 

(4.6.12) 

with 

Ak = [a~, ... af, ...... afl (4.6.13) 

af = nvhrr Vgf (4.6.14) 

and Nk = diagonal matrix with the norms of IIVgfli. With this notation, the 

algorithm can be written as 

(4.6.15) 

with Ek = AI Ak the covariance matrix of the linearized (active) constraint 
functions in the point uk. 

Specialization of this scheme to only one constraint yields the algorithm already 
given by Hasofer and Lind (1974) and Rackwitz and FieBler (1978). Those algo
rithms are not yet surely convergent. They can be made convergent by introducing 
either a deceleration scheme or a suitable step length procedure (see, for example, 
Abdo and Rackwitz, 1990). The convergence rate can be made especially high if at 
least approximate information about the curvature properties of the La&rangian 
function are used for the step length procedure (Schittkowski, 1983). This, 
however, is suitable only if the problem dimension is not too high. 

5. Applications 

We present several representative applications to demonstrate the theory. 
Emphasis is on methodological aspects. The mechanical models are somewhat 
simplified. The first few examples concern structural systems. The last few 
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examples deal with various cases in which conditional probabilities have to be 
computed. 

illustration 5.1: Chain with n links (Ditlevsen, 1982) 

Consider a chain with n links whose resistances Xi are independently normally 
distributed with mean m = mi and standard deviation (J = (Ji and which is loaded 
by a normally distributed load Y with mean p, and standard deviation 7. Failure is 
for 

n n 
F = U {Zi ~ O} = U {Xi - Y ~ O} (1) 

i=l i=l 

One determines /3 = (m - p,)/((J2 + 7 2)1/2 and P = Pij = Corr[Zi,Zj] = 
(J2/( (J2 + 72). Therefore, using the simple correlation structure of the Zi'S and the 
exact formula for the multinormal integral with equicorrelation one determines 

(2) 

with A = +.;P and Vi = (Zi - (m - p,))/((J2 + 72)1/2. 

Alternatively, eq.(3.7) can be used. It receives the form 

n i-I 

cI>(- /31 +!: max{O, cI>(- /3i) -!: cI>(- /3i , - /3j ; Pij} ~ Pr 
i=2 j=1 

n i-I 

~ cI>( - /31) + !: cI>( - /3i) - max{ cI>( - /3i , - /3j ; Pij)} (3) 
i=2 j = 1 

where cI>2 is the two-dimensional normal integral. Ditlevsen (1982) gave the 
following bounds to cI>2. For Pij ~ 0 

max{ cI>(- /3i) cI>(-,Bj - Pij/3i ) , cI>(- /3j) cI>(-,Bj - Pii/3i )} 
';1 - Pij 2 ';1 - Pij 2 

(4) 

is a lower bound, and the sum of the two terms in brackets an upper bound. For 
Pij .< 0 the max operation has to be changed into :min to produce an upper bound 
while the lower bound is zero in this case. For P = Pij ~ 0 and /3 = /3i we have 
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~(- {l) ~(- {l -lEi) $ ~(- {l,- {liP) $ 2 ~(- {l) ~(- {l../1 p) 
../l+p ../l+p 

(5) 

Application to eq. (3) produces 

n 

~(- {3) max {i[l - (i - 1 )~( - {l ../1 P )]} $ P f $ ~(- {l) 
i=2 ../l+p 

[(n - (n -1)~(- {l../1 p)] (6) 
../1 + P 

The lower bound becomes largest for: 

# 

i = int{(l/~(- f3 -lEi) + 1)/2} 
Jf+P 

illustration 5.2: Ideal series and parallel systems 

Figure 5.2.1 shows the influence of the number of components and their correlation 
in series and parallel systems. The componental safety index is {l = 4.26. The 
components are assumed to be equicorrelated; this is a special case, but it can 
illustrate the general behavior. The figure was calculated by formula (4.5.8) and by 
(4.5.16); there were only minor numerical differences. The upper part of the figure 
presents the results for parallel systems and the lower part for series systems. One 
recognizes that for series systems neither the number of components in the system 
nor their correlation is very important unless the system becomes very large. This 
justifies the use of Ditlevsen's bounds or even the first order bounds. The contrary 
is the case for parallel systems. Their failure probability decreases dramatically 
with the number of components, especially for small correlation coefficients. We 
conclude that the study of parallel systems requires a rigorous evaluation of the 
multi normal integral; correlations between components must be properly taken 
into account. Note that if the system components have non-linear limit state 
functions, equivalent linearization techniques are sufficient for series systems, but 
exact location of the {J--point and hence a correct determination of their 
dependence structure is important. This aspect will be demonstrated later in more 
detail in illustration 5.4. 
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Figure 5.2.1: Failure probability (equivalent reliability index) versus 
number of components and componental correlation 
coefficients in series and parallel systems 

# 

illustration 5.3: Rigid-plastic portal frame (Madsen et al. 1987) 

Figure 3.1 shows that a portal frame can fail in three modes. 

Xn,X7 
6_ 2 3 4 

1 5 
- '" -. ~: .. ~~ 

Figure 5.3.1: Failure mechanisms of a portal frame 
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By the principle of virtual work one obtains the three state functions 

Ml = Xl + X2 + X4 + Xs - X6 h 

M2 = Xl + 2 X 3 + 2 X 4 + X 5 - X6 h - X7 h 

M3 = X2 + 2 X 3 + X 4 - X7 h 

R. RACKWI1Z 

The uncertain variables are assumed to be independent and log-normally 
distributed 

Variable Distr. E[XiJ D[XiJ 

Xt, ... Xs LN 134.9 rmJ 13.49 [kNmJ 
X6 LN 50 kNj 15 kNj 
X7 LN 40 kN 12 kN 

The height is taken to be 5 [mJ. Transformation, and iterative determination of the 
,B-point yields 

Mode f3 Cl!l Cl!2 Cl!3 Cl!4 Cl!5 Cl!6 Cl!7 

1 2.71 .084 .084 - .084 .084 -.986 -
2 2.88 .077 - .150 .150 .077 -.827 -.509 
3 3.44 - .084 .164 -.084 - - -.979 

Due to the probability transformation, the limit state surfaces are slightly curved. 
The correlation coefficient matrix of the safety margins Mi is computed to be 

[
1.00 .841 .014] 

R = .8411.00 .536 
.014 .5361.00 

The matrix of cut set probabilities is 

[
3.4,10- 3 

p= 9.2.10- 4 

1.14.10-6 

The first-order bounds are 

1.99.10-3 

4.25.10- 5 

symm. ] 

2. 9 1 .10-4 

3.36 .10-3 ~ P f ~ 5.64.10-3 

and the bounds of second order 

4.67 .10- 3 ~ P f ~ 4.67.10-3 
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Of course the bounds are not strict bounds because the mode probabilities them
selves are approximated to first order. A slight improvement could be achieved if 
the second order corrections were considered for each mode. The cut set probabili
ties are also calculated to first order. Investigations by Madsen (1985), however, 
have shown that a second order refinement for the joint probabilities in Ditlevsen's 
formula is unnecessary. 

# 

illustration 5.4: Small Daniels-system (Hohenbichler and Rackwitz, 1983, 
and Hohenbichler et al., 1987)) 

The figure below shows a so-called Daniels-system. At loading, all fibers exper
ience the same strain. The weakest fiber fails first, then the second weakest, etc. 
At failure of a fiber, the load is equally distributed to the remaining intact fibers. 
The failure load of the system is reached when the remaining fibers can no longer 
sustain the load carried by the fiber which just failed 

I 
I I~ 

Figure 5.4.1: Daniels system 

The fibers h'!tve ipdependept, identically distributed strengths Xi. If ordered 
according to (Xl ~ X2 ~ ... ~ Xn), the system strength can be given as 

R = ~~x{(n - k + 1) Xk} 
1 =1 

(1) 

Hence, there is 
n 

Pts) = P [n {(n - k + 1) Xk - S ~ O}] (2) 

i=l 
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which is a parallel system. The distribution function of XI is 

(3) 

The distribution functions of the Xi are the distribution functions of the original 
variables truncated at Xi = XI. 

P(X ' < xl X~ . - X ) - Fx(x) - Fx(xI) ror x > X l' 2 n 
1_ 1-1- I- Fx{xtJ l' 1,=, ... , 

Accordingly, the distribution function of X21 X I = X I is 

(4) 

and generally 

for Xi > Xi-I> ... > XI 

(5) 

This allows us to perform the Rosenblatt-transformation and to compute the 
reliability indices f3 = - 4?-l(Pf) for systems of different size. 

Reliability indices for Daniels-system (elastic-brittle components) 

n I ~u*1I lIa lIb IIc Exact 
(1) (2) 3) (4) (5) (6) (7) 

1 2.00 2.00 2.00 2.00 2.00 2.00 
3 1.50 1.50 1.82 1.82 1.82 1.82 
5 1.58 1.34 1.76 1.76 1.83 1.87 
10 1.59 1.19 1.72 1.72 1.84 2.03 
15 - 1.16 1.64 1.64 2.05 2.19 
20 - 1.16 1.60 1.61 2.20 2.32 

For the numerical calculations, the load is assumed to be s = n (mx + a ox) with 
a = 2. The fiber strength is normally distributed according to N(mxiOX) with 
coefficient of variation Vx = ox/mx = 0.2. Column (2) lists the results obtained by 
an individual linearization (without second order correction) and subsequent 
evaluation of the multinormal integral. Comparison with the exact result in the 
last column obtained from the following recursion formula 4ue to Daniels (1945) 

(6) 
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shows that in this case a simple first-order theory with individual linearization is 
insufficient. Column (3) contains the distances of the joint ,B-points from the 
origin (geometrical reliability indices). Note that they decrease with n down to a 
value of 1.16 for which asymptotic conditions are hardly valid. Column (4) 
contains the reliability indices if the active constraints are linearized at the joint 
,B-point, and no second order correction is performed. Interestingly, those values 
differ only slightly from the values in column (5) where the second order correction 
is included. Apparently the limit state surfaces are only slightly curved. Only 
column (6), where additionally all inactive constraints have been considered in 
their linearized form, yields acceptable results for larger n. If the geometric 
reliabilitl indices are increased beyond 2, say, for all n the strategies followed for 
column l4) or (5) already yield very accurate results. The contribution of inactive 
constraints becomes insignificant. For geometrical reliability indices larger than 3, 
the exact results are reproduced. 

Although this example is used to discuss methodological aspects, it should be 
observed that the overall reliability of a Daniels system with brittle components 
strongly depends on the number of components. The indices first decrease, and 
increase only for larger numbers of components. Daniels systems with a small 
number of components are therefore less safe than an appropriately designed single 
component. Only systems with a large number of components show a pronounced 
effect ofredundancy. 

Similar computations can be performed for perfectly elastic-plastic material 

Reliability indices for Daniels-system (elastic-plastic components) 

n I ~u*1I lIa lIb lIc Exact 
(1) (2) 3) (4) (5) (6) (7) 

1 2.00 2.00 2.00 2.00 2.00 2.00 
3 3.21 3.21 3.21 3.45 3.50 3.46 
5 4.01 4.01 4.01 4.45 4.48 4.47 
10 5.47 5.47 5.47 6.28 6.33 6.33 
15 6.59 6.59 6.59 7.69 7.73 7.75 
20 7.54 7.54 7.54 8.87 8.90 8.94 

In this case the geometric reliability index (column (3)) is already relatively 
close to the exact results whose probabilities are computed from 

PIs) = ~ [- sin !x mx] (7) 

The reliability indices increase monotonically with n, indicating the significant 
difference of ductile and brittle componental behavior. Asymptotic conditions are 
met for all n. Individual linearization is moderately successful (column 2) as is 
linearization at the joint ,B-point (column 4), which for linear constraints must 
yield the same results. However, the strategy followed in column (5) or (6) 
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produces very accurate results. In fact, it can be shown that the curvatures of the 
limit state surfaces are relatively large in this case. In column (6) all formally 
inactive components are considered, too. For the plastic case one has to include 
always the full set of components. Therefore, the differences between column (5) 
and (6) also indicate the achievable level of accuracy. The remaining differences 
must be attributed to numerical noise. Note that a reliability index of 8.9 
corresponds to a failure probability of about 3.10-19. 

It should be mentioned that the small Daniels system is one of the few 
mechanical redundant systems which have an exact solution. For very large 
Daniels systems there are a number of asymptotic results, the first of which is also 
due to Daniels (1945). 

# 

illustration 5.5: Failure trees of structures (Moses, 1990) 

The vast majority of researchers use the so called failure tree approach for the 
analysis of general redundant structural systems starting with the work of Murotsu 
(1981). This approach has been derived from well known approaches in classical 
reliability. It rests on the identification and analysis of the sequence of component
al state changes (failures) from the initial intact state of the structure to at least 
the dominating failure modes of the system (see figure 5.5.1 for an illustration of 
the method). The method requires discretization of the structure into a finite 
number of components (members, cross sections, joints). Those components can 
change their state either from elastic behavior to plastic behavior or can fail in a 
brittle manner, possibly after having experienced some plasticity. Componental 
failures are viewed as state changes. In particular, if in a certain failure branch i 
failures (state changes) have already taken place, the mechanics for the i+1-th 
failure have to take account of the i previous componental state changes. The 
i+1-th failure event can be written as 

Fi+1 = F1 n F211 n F31tn2 n ... n Filtn2n ... m-1 n Fi+1Itn2n ... m (1) 

Note that in failure events on the right hand side of this equation the changes in 
the mechanical behavior of the system introduced by the failures left to the 
considered have to be taken into account appropriately. This is indicated by 
notations of the kind Filtn2n ... ni-1. 

The probabilities in eq. (1) can be computed by FORM/SORM. Mechanically, 
provisions must be taken that the sequence of state changes is a valid sequence 
which could occur along the possible load paths. Murotsu (1981) introduced the 
concept of branch and bound. The basic idea is to concentrate on the analysis of 
failure branches with largest failure probability. The book by Thoft-Christensen 
and Murotsu (1986) contains many details about the approach. Guenard (1984) 
and Gollwitzer (1986) improved the scheme, in that they not only computed the 
full intersection along a failure path by FORM/SORM, but continued the 
algorithm at a branching point in any of the already investigated failure branches 
with momentarily largest intersection probability. System failure is defined by 
singularity of the stiffness matrix, or equivalently, by formation of a mechanism. 
For example, in figure 5.5.1 the branches starting with (6-), (2+) and (5-) are not 
continued beyond failure of the first component. The path (1+ )n{6-)n{7+) 
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Figure 5.5.1: Failure Tree for Truss Structure (after Moses, 1990) 
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is also not completed, while all other paths are completed. For a given monotonic
ally increasing load path it is important to observe the condition that along a 
failure path the load must increase. This algorithm leads to a number of completed 
failure paths which should include the most dangerous failure path and a generally 
much larger number of uncompleted failure paths (see fig. 5.5.1). The probability 
of the union of all completed failure paths is a lower bound to the system failure 
probability, and the union of all completed and uncompleted failure paths provides 
an upper bound to the failure probability. If the analysis is terminated before a 
complete failure path is found, the probability of the union of all investigated 
uncompleted failure paths is an upper bound to the system failure probability 
which in general is much smaller than the first-order series system bound. Quite 
frequently it suffices to investigate only rather short incomplete failure branches in 
practical applications. 

illustration 5.6: Upda.ting by observations of a structural component 
damaged by cracks (after Schall et al. 1991) 

Cracks frequently develop in the hatch corners of container ships. Crack growth 
can be described by the Paris/Erdogan relationship 

~ = C Y(a) (~s(n) "f(7r a(n))m (1) 

where a(n) is the crack length, C and m material parameters, and ~s(n) the far 
field stress range. Y(a) is a geometry factor, which for edge cracks in steel plates 
can be set equal to Y(a) = 1.12. Integration of eq. (1) for m > 2 leads to 

2-m 2 
a(n) = {ao- 2- + 22m C 7rm/ 2 n E[(1.12 ~S)ml}2-m (2) 

where s(n) is introduced as a random load process, and the time integral on the 
right hand side of eq. (1) is replaced by the ensemble mean according to the 
ergodic theorem for random processes. ao is the initial crack length. Failure is the 
exceedance of a critical crack length acr. 

V(n) = {acr - a(n) ~ O} (3) 

ao and C are considered as random variables. At time tl the hatch corner is 
inspected. There is a certain probability that a crack remains undetected. The 
probability of detection is usually given in the form P(D) = P(a ~ an) = 
1 - exp[- An (an - an,o)] and the detection event is 

D(n) = {a(n) ~ an} (4) 

If the crack is detected, its length can be measured. This event is described by 

B(n) = {a(n) -a 0= O} (5) 
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where a is the observation and 0 a measurement error. Let the inspection time be 
nt. Then, the a priori failure probability (before inspection) is 

(6) 

Formally, the a posteriori failure probability (after inspection) is 

pJn IB(n) n R(n)) - P(V(nt~ n B(nt~ n R~nt)) 
f\ t t t - P( (nt) n (nt) (7) 

It is now of interest to determine the failure probability until the next inspection 
at time n2 in order to decide whether to do repairs already at time nt or possibly at 
time n2. Now we also include the event, that there has been no failure until nt. 

For numerical evaluation of eq. (8) or (9) a theory for computation of conditional 
probabilities is needed. Numerator and denominator are computed separately. 
Conditions occurring in any cut set in the denominator must occur in all cut sets 
in the numerator. If the denominator and thus also the numerator contains equal
ity constraints, one may use the additional theory based on asymptotic concepts 
given in appendix B. Note that denominator and the numerator then must not be 
interpreted as probabilities, but the quotient is a conditional probability. 

Variable Distribution Mean Coefficient 
function of variation 

ao Rayleigh 1 [mm] 0.5 

C Lognormal 10-14 [-] 0.4 

m Constant 3.0 -

0 Lognormal 1 [-] 0.2 

aD Exponential 4 [mm] 0.75 

E[Lls] Constant 150 [Mpa] -

For a numerical example, the following assumptions are made. The critical crack 
length is taken as 50 [mm]. The service time in terms· of number of cycles is 
nservice = 11 tservice = 0.2· 5 108 = 108 with 11 = 0.2 the cycle frequency. At 
inspection, a crack length of 2.5 [mm] is observed. The upper part of figure 5.6.1 
shows the a priori failure probability versus service time. It is seen that it is 
unacceptable for times larger than about 108. In the lower part of figure 5.6.1 the 
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Figure 5.6.1: Reliability indices versus service time/observation time 

observation time is varied. It is seen that early observations of a crack of length 
2.5 [mml make the system less reliable. This is, of course, due to the fact that 2.5 
[mm] is arger than the expected crack size at those times. It reaches this value at 
about 1.2.108 cycles. Only at inspection times well above 1.2.108 cycles does the 
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a posteriori conditional failure probability become smaller than its a priori value, 
due to the fact that the observation then is smaller than expected. 

If the crack were always detected the updating would become a little more efficient 
(dashed line). If, instead, a small crack is observed but cannot be measured, i.e. 
the observation event in eq. (6) is replaced by 

B(n) = {a(n) - ath {; ~ O} (9) 

with ath = 1 [mm], some reliability improvement is obtained for earlier 
observations. 

# 

illustration 5.7: Failure probability of existing structures with load and 
strength observations (Rackwitz and Schrupp, 1985) 

The state function of an important component of an existing building, which is to 
be used for higher loads is 

V(t) = {R - (D + 1(t)) ~ O} (1) 

R is the componental resistance, D the dead load effect and 1( t) the time-variant 
live load effect. At time tl it is known that the component has not failed and that 
the highest live load was smaller or equal to t. In addition, a non-destructive test 
for the resistance yielded the result p. The future load 1 2( t) can be modeled by a 
random sequence. Hence it is 

V(tl) = {R - (D + max{11(tl)}) > O} 

Bl = {max{1t(t} ~ l} 

Bp={R=p+f} 

with f a measurement error. For the future with future load we have 12(t) 

V(t) = {R - (D + max{12(t)}) ~ O} 

Then the failure probability in [tl,t] is 

pjV(t)IBlnBpnV(tl))=P(V(MB~ Bl n Bp nV~tl)) 
f\ n Bp n V( t 1 ) 

(2) 

(3) 

(4) 

(5) 

(6) 

Note that the various events are highly dependent. Also, the knowledge that the 
structure has survived under max{11(t} ~ t is only important if this load level is 
rather high. 

# 
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illustration 5.8: Optimization of proof-load level (Gollwitzer et al., 1990) 

The boosters for a space craft can be modeled as cylindrical containers under high 
inner pressure. In order to save weight, one uses high-strength flow-turned steels. 
Even the most careful manufacturing and subsequent quality control cannot 
exclude the possibility that a small crack will occur. In particular, very small 
cracks (about 1 mm) can hardly be detected by non-destructive test methods. 
Therefore, proof-load tests must performed for each segment. However, this test is 
problematic in various respects. A test under low pressure will not give much 
information about the presence of a crack. High pressure close to and above the 
operating pressure will potentially indicate whether cracks are present. Then, a 
certain proportion of sections of the booster will fail already during proof loading. 
But even if potential cracks do not become unstable they may grow and will 
diminish the reliability under operating conditions. The level of proof pressure 
must therefore be such that cracks are detected, but do not grow too much, and 
the proportion of segments failing under proof pressure remains small. 

For a inner circular crack with radius a the following instability criterion can be 
assumed 

where 

Kr = Kt/K 1c = u.j( 11"3.) Y(a) 
K 1c = fracture toughness 
a = crack length 
Y(a) :::! 1.0 = geometrical factor 
Lr = pi/PO 
Pi = inner pressure 
Po:::! [t/r (Ry + Rm)/2] 1.07 [1 - 1I"3.2/(4t(a + t))] 
Ry = yield stress of steel 
Rm = rupture strength of steel 
t = wall thickness 
r = radius of cylinder 

During proof-load testing the crack grows according to 

4 
K 1 ,g 

(1) 

(2) 

with KI q = Uq (11"3.)1/2 the stress intensity factor at pressure q and stress 
Uq = q r/t. For failure during proof loading eq. (1) holds with Pi replaced by q and 
a by a + D.a. For survival of proof loading there is 

D = {l8J-1l.21n(sec(~rLrl2))]1/2 - Kr > 0IPi = q,a = a + D.a} (3) 



METHODS OF SYSTEM RELIABILITY IN MULTIDIMENSIONAL SPACES 

Consequently, the conditional failure probability is 

P(VID) - P(V n D) 
- P(D) 

For the numerical calculations the following assumptions are made. 

Variable Distribution Mean Coefficient 
function of variation 

Pi Normal 125 [bar] 0.08 

Ry Normal 1450 [MPa] 0.05 

Rm Normal 1700 [MPa] 0.05 

KIC Normal 105 [MPaJrn] 0.15 

a Rayleigh 1 [mm] 0.52 

t Normal 8.50 [mm] 0.02 

199 

(4) 

Further, it is assumed that at least one crack is present in each test piece. A more 
rigorous treatment would possibly assume a Poissonian distribution of cracks, and 
concentrate on the largest of those cracks. Some typical results are given in the 
following figure. The required reliability level was f3 = 4.26 (Pf = 10-5) (dashed 
line). It is recognized that this reliability cannot be reached for moderate proof 
pressures and for the conservative assumptions made. 
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Figure 5.8.1: Reliability indices for proof load test 
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Only if the proof pressure is about the maximum expected operating pressure 
(MEOP = 155 bar) can the required reliability be achieved. The probability of 
failure during proof loading is also shown. This means that, at a proof pressure of 
150 bar, about 1 % of the test pieces will fail. 

# 

6. Summary and Discussion 

The purpose of this review was to develop some of the basic notions and mathe
matics for the analysis of systems and elaborate on methodological aspects. The 
notion system is used in a general sense, i.e. a system problem is present as soon as 
the failure event is a union or an intersection or a combination of these. It was 
shown that complex systems can be reduced to a minimal cut set representation. 
Probability evaluations are straightforward only for either independent or fully 
dependent componental failure events. Otherwise serious computational difficulties 
arise. The easiest way to handle dependent failure events in complex systems is by 
use of certain concepts of first-order reliability (FORM). Those concepts require a 
probability distribution transformation, an algorithm to find the most likely failure 
point (,8-point) in the so called standard space, and some non-trivial evaluations 
of the multinormal integral. For a first approximation, one can linearize all 
components individually. Better results are obtained if the joint ,8-point is found. 
These results have been im1?roved in two ways. On the one hand a second order 
reliability method (SORM) has been developed which can be shown to be 
asymptotically (Pf'" 0 or Pf'" 1) exact (see Breitung, 1974; Hohenbichler et al., 
1987; Breitung and Hohenbichler, 1989; Breitung, 1994). A summary of the 
relevant results is given in appendix A. Very recently it has been proposed to 
appl:y those asymptotic concepts directly in the so called original space (Brei tung, 
1994); this has some advantages but also disadvantages. Numerical studies have 
shown that the corrections to FORM by SORM are usually insignificant in 
practical applications, so that the additional effort for SORM is not always 
required. On the other hand, there has been considerable development to combine 
FORM/SORM concepts with importance sampling. Unfortunately, while good 
schemes are available for simple components and unions of components, very little 
has been done for intersections (Gollwitzer and Rackwitz, 1987). From the limited 
experience it is concluded that importance sampling is inefficient for parallel 
systems. 

The computational tools developed so far rest on efficient search algorithms, 
and this is the key point for successful analyses. Those available in various 
programs require smooth differentiable failure surfaces and continuous distribution 
functions. Usually, the analyses are then successful. Yet, especially when 
conditional probabilities have to be determined and equality constraints are 
present, those algorithms can fail under extreme parameter combinations. 
However, individual linearization will work almost always, but only crude 
probability estimates can be expected. 

Several examples illustrate typical applications of the theory. 
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Appendix A: 
Asymptotic Approximations to Probability Integrals - A Summary of Results 

INTRODUCTORY SCALAR CASE 

In 1820 the French mathematician P.S. de Laplace proposed to approximate the 
following integral 

b 
I(A) = f hex) exp[- A f(x)] dx 

a 
(A.l) 

where f(x) and h(x) > 0 are certain sufficiently smooth functions. A is a parameter. 
Assume that f(x) is a monotonically increasing function in the interval [a,b] and 
has a minimum in a, at which rea) > O. For increasing A, the integral will be 
dominated by values of the integrand in the vicinity of x = a. According to the 
mean value theorem, the function hex) can be approximated by the term h(a) 
which is put in front of the integral, and f(x) is developed into a Taylor series 
truncated after the first non-vanishing term. Then 

b 
I(A) = f hex) exp[- A f(x)] dx 

a 
b 

::J h(a) f exp[- A (f(a) + rea) (x - a) + ... ) ] dx 
a 

b 
::J h(a) exp[- A (f(a) - rea) a)] f exp[- A (r(a) x + ... ) ] dx 

a 

::J h(a) exp[- A(f(a)-r(a)a)] (- Ar(a))-1 {exp[- Ar(a)b]- exp[- Ar(a)a]} 

(A.2) 

For a = 0 and b < 00 a A it is always possible to choose such that 

I(A) ::J h(O) exp[- A f(O)] I A £1(0) I -1 (A.3) 

In the second case it is assumed that f(x) has a minimum in [a,b] at x*. Without 
loss of generality we assume that x* = 0 and h(O) > o. Again f(x) is developed into 
a Taylor series truncated after the first non-vanishing term. With £1(0) = 0 and 
{'teO) > 0 as well as a = - 1:1 and b = f2 we find 

b +f2 1 
= f hex) exp[- A f(x)] dx = h(O) f exp[- A (f(O) + "2 f"(O) x 2 + ... )] dx 

a -I: 1 

I(A) 

+1:2 1 
::J h(O) exp[- A f(O)] f exp[, A {'teO) x2] dx (A.4) 

-f1 
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With the substitution 

~ = J(~ f"(O)) x 

one obtains 
+J(Af"(0)<2/2) 

I(A) ::: h(O) exp[- A f(O)] J(2/(A f"(O))) f exp[- ~2] d~ 
-J(Af" (0) < 1/2) 
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Even if <1 and <2 are small it is always possible to choose a A such that the 
integration limits can be set at :!: 00 without too much error 

+w 
I(A) ::: h(O) exp[- Af(O)] J(2/(Af"{0))) f exp[- ~2] d~ 

-w 
::: h(O) exp[- Af(O)] J((27r)/(A f"(O))) (A.5) 

These approximations can be shown to be asymptotically exact, i.e. for A -I W 

(Copson, 1965). 

GENERAL CASE 

Recently, these results have been generalized to multivariate integrals of various 
forms (Bleistein, 1975). A fairly general result for the integral 

I(A) = f h(y) exp[- A f(y)] dy (A.6) 
D 

for A .... 00 where y = (y\, Y2, ... ,yn)T, and D a simply connected domain containing 
the origin has been given in (Breitung and Hohenbichler, 1989). Herein f(y) is at 
least twice differentiable and has a minimum at y = y* 4= o. h(y) is a slowly 
varying function and h(O) 4= o. D is given by D = ni~l Di with Di = {y: gi{Y) ~ OJ 
and k E {1,2, ... ,n}. f(y) as well as the functions gi(y) are at least twice 
differentiable at T and the function h(y) is continuous at rand h(t) 4= o. At y*, 
gi{Y*) = 0 for i=1,2, ... ,k. The gradients &i = Vgi(r) (i=1,2, ... ,k) are linearly 
independent. This implies that aij = 0 for i=1,2, ... ,k and j=k+1, ... ,n which always 
can be achieved by a suitable orthogonal transformation. It also means that 
8f.(Y*)/&Yi = 0 for i=k+1, ... ,n and the gradient can be represented as 

k 
Vf{y*) = E I: a.. 

i=l 1 1 

with Ii < 0 for i=1,2, ... ,k. Then, it has been proved that 
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I(A) = f hey) exp[- A fey)] dy 
D 

n-k _n+k k 
N her) exp[- Af(y*)] (211')2 A -r l det(A) 1-1 (II 171-1) 1 det(D) 1-1/ 2 

i=1 
(A.7) 

for A ... 00 with A = {aijj i,j=I,2, ... ,k} and D = {dijj i,j=k+l, ... ,n} with elements 

~2f II k ~2 II d.= - E 'Y S 
IJ i j s=1 s i j 

and det(D) = 1 for k = n. 

APPLICATION TO PROBABILITY INTEGRALS 

Probability integrals can always be written in the following form 

P(V) = f 'I/Jx(x) dx = f exp[lntp{x)] dx = f exp[l(x)] dx (A.8) 
v V V 

where l(x) = lntp{x) is the likelihood function of the probability density 1P{x). The 
inte,gration domain is given by V = ni~JVi and gi(O) > 0 for at least one 
i E {1, ... ,n}. The critical point is the point for which the log-likelihood function is 
maximal in V. The essential idea for applying the above results to probability 
integrations is a central scaling by a factor b, as shown in fig. Al (Breitung, 1984). 
We define 

{3= (-max{l(x)})! = (-l(xI))! for {XE V} (A.9) 

and 

f(x) = (T2 lex) (A.I0) 

At xl, f(xI) = 1. Also we assume l(xI) < O. We consider the integral 

PCb) = f exp[- b2 f(x)] dx 
V 

and apply eq. (A.7) with hex) = 1 and A = b2 

(A. H) 

n~ k 
P(b) N (211')2 b-n- k exp[_b2] Idet(A) 1-1 (II 17. 1- 1) Idet(D)I-1/ 2 

i=l 1 

(A.12) 
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By noting that 

and 

Vf(r) = (J2 Vl(r) 

VVf(r) = (J2 VVl(r) 

k 
Vf(r) = E 'Y' a. 

i=l I I 

k 
Vl(r) = E O. a. 

i=l I I 

with OJ = {3-2 'Yi we find 

1 det(D) 1 = (J2(n-k) 1 det(L) 1 

where 

{ ~l(a:) k 82gs(X*). . } L = . . - E 'Ys ~; I,J = k+l, ... , n 
1 J s=l 1 J 

Hence 

and with b = {3 ({3 is already large) 

n-k k 
P(V) ~ (27r)2 exp[-flldet(A)I-1 (II I 'Y' 1-1) Idet(L)I-1/ 2 

i=l I 

In particular, for k = 1 we have 

n-l 
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(A.14) 

P(V) ~ (27r)2 exp[-fll'Yll-1 Idet(L)I-1/ 2 (A.I5) 
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with 'Yl = IIVl(r)II/IIVgl(r)II. For k = n we have 

(A.16) 

Figure A1: Scaling of the integration domain 

The special case of multinormal integrals yields nicely compact results. Let Y 
be a standard normal vector with probability density l{J(y) = 
(27r)-n/2 exp[-lIuIl 2/2]. The scaling of the integral 

P(V) = f l{J(y) dy (A.17) 
v 

yields upon substitution with u = y b- 1 

P(bV) = f l{J(y) dy = bn f I{J(bu) du = (27r)-n/2 bn f exp[- b2I1uIl 2/2] du 
bV V v 

(A.18) 

where h(u) = 1, f(u) = Ilu11 2/2 and>' = b2. The critical point u* has distance 
/3 = II u* II from the origin. 

Application of e~ (A. 7) is again strai~htforward. Let the integration domain be 
given by V = {ni:l Vi} with Vi = {glu) ~ a}. At the critical poilht u*, 
gi(U) = aiT (u - u*) = 0 for i = 1,2, ... ,n. u* can be represented as u* = ~i:l 'Yi ai 
with ai = Vgi(U*). Then 

/ n rp (u.*) 
P(V) ~ (det(R))-1 2 II :. 1 

i=1 ( 'Yi) 
(A.19) 

This formula is a asymptotic approximation for the multi normal integral; note 
that /3i = - aiTu* and R = {aiTaj} and therefore P(V) N <l>n( - /3; R) (Ruben, 
1964). For k = 1 with gl(O) ~ 0 and VI = {gl(U ~ O} one obtains (Breitung, 1984) 
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P(V) ~ Ilu*II-1 Idet(D) 1-1/ 2 CP1(U*) ~ q,(-f3) Idet(D)I-1/ 2 
(A.20) 

with 

D = {6ij - IIV!(:~)II ~~1~r)j i,j = 2, ... ,n} 
1 J 

In the second equation, use was made of q,(-x) '" cp(x)/x and f3 = Ilu*ll. If suitable 
orthogonal transformations are performed, the correction term can also be given in 
terms of the main curvatures Ki, i.e. 

n-1 1/2 
D = II (1 - f3 Ki)-

i=l 

Further, if gi(O) > 0 for at least one i E {I, 2, ... ,m}, gi(U*) = 0 for i = 1, 2, ... ,k 
(k ~ m), and gi(U*) > 0 for i = k+1, ... ,m, then (Hohenbichler et al., 1987) 

with 

k 
P(V)~ Idet(D)I-1/ 2 p( n V.) 

i=l 1 

D - {£ ~ 8~s(U*) .. ·-k 1 } - u .. - ~ 'Y. au.' I,J- + , ... ,n 
IJ s=l s 1 J 

(A.21) 

For the cut set probability the result for the multi-normal integral in eq. (A.19) 
with n = k or other suitable computation schemes for the normal integral 
(Gollwitzer and Rackwitz, 1988) can be used. 

The terms with det(D) or det(L) are second order corrections which, in general, 
are small compared to the leading remaining first order term. The two types of 
results are mathematically equivalent. They reduce probability integration to a 
problem of nonlinear programming (the search for the critical point) and some 
simple algebra. 

Appendix B: Computation of conditional probabilities 

Conditional probabilities 

PJF I A n B n C ) - P(F nAn B n C n ... ) 
f\ ... - P{A n B n G n ... ) (B.1) 

can be evaluated by separate computations of the numerator and the denominator. 
Conditioning events can, for example, be observations on some state of the system. 
It is possible that this must be formulated as an equality constraint. In this case 
surface integrals need to be computed. The typical integral is 
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I(D) = f 'Pn(X) ds(x) 

D 

R. RACKWITZ 

(B.2) 

with 
£ m £ m 

D = E n F = n {EJ n n {Fj} = n {ei(X) = O} n n {gj(X) s O} 
i=l j= £+1 i=l j= £ +1 

x = (Xt, ... ,Xn)T is the n-dimensional random vector with given distribution 
function. ds(x) means surface integration. Ei denotes equality constraints. We 
perform all calculations in the standard space and assume £ < n . We consider first 
the case 

or 

I(E) = f lfJn(u) du 
!RnnE 

I(E) = f lfJn(u) ds(u) 

E 

(B.3a) 

(B.3b) 

Assume that there exist a maximum point (.B-point) of lfJn(u) u* = min{llull} on 
E for E = {u: e(u) = O} with f3 = lIu*lI. By a orthogonal transformation, the 
.B-point can be shifted to the negative Un-axis, i.e. u* = (O,O, ... ,-lIu*II)T. Further 
we assume that e(u) = 0 is at least twice differentiable in u*, and the mixed 
derivatives of e(u*) vanish; this can be achieved by an appropriate orthogonal 
transformation. The curvatures of e(u) at u* are then 

1 a2e~u*) . 
Ki = - ---;r for 1 = 1,2, ... ,n-1 

~ au i 
n 

(B.4) 

Then, asymptotically the following parameterization of Un around u* can be chosen 

(B.5) 

The surface integral can be expressed by the following volume integral 

_ n-1 8'lb( u*) 2 1/2 n-1 . 
I(E) - f 'Pn(Ut, .. ,un-t,1P(ut, .. ,Un-l)) (1 +. ~ (~)) . II dU1 (B.6) 

!Rn- 1 1=1 1 1=1 
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Scaling with a factor b > 1 and transformation with Vi = Ui/'O yields 

n-l 87/J(bv*) / n-l 
I(bE) = bn- 1 f 'Pn(bv,'l/J(bv)) (1 +. t (-~-DV~-~i)1 2 . IT dVi 

IRn - l 1=1 1 1=1 

In the expression 

the second term is developed as 

Then, the last term equals unity. 

Hence, there is asymptotically for large (3 (b = 1) 

We consider the more general case 

I(E n F) = f !pn(u) du 
IRnnEnF 

211 

(B.7) 

(B.8) 

(B.9) 

(B.I0) 

with E = {el(u) = O} and F = n~=2 Fi with Fi = {gi(U) ~ O} and gi(O) > 0 for at 
least one i. With u~ = a?u* one obtains on similar lines 

T * 1 I(E n F) ~ !p(alu ) <Pk_t(CjR) 1 (B.ll) 
(det(I -. D))2 

with 
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T T T 
R = {as ~ - (as a1) (at a1); s,t = 2, ... ,k} 

k 2 * 
D - {~ 8:..gs ( u ) ... - k 1 } 

- l.J 'Ys au.au. ' 1,J - + , ... ,n 
s=1 1 J 

1= {8ij ; i,j = k+1, ... ,n} 

ar (r = 1, ... ,k) is the normalized gradient of condition r in u* and the 'Ys < 0 are 

the solutions of the equations 

* k 
u = ~ 'Ys ~ for s = 1,2, ... ,k 

s=1 

k is the number of in inequality condition. Generalization to multiple equality 
constraints is straightforward. The result is invariant under orthogonal transform
ations. Therefore, recursive application for the case of more than one equality 
constraint yields the general result. One can condition on all equality constraints 
simultaneously so that the result obtains the form 

i m 1 
I( n (ei=O)n n (gj~O)):::'Pi(Ci;Ell)<Pq(Cqli;Eqli) .1 

i=l j=i+l (det(I-DW 
(B.12) 

with 

q=m-i; i~k~m 

T 
E - R R R-l R q Ii- qq - qi II iq 

D as in eq. (A.21) and 

'Pi (ci ; Ell) = (27r)i/2 (det(Ell))-1/2 exp[- ~ (zT E~ z)] 

the i-dimensional standard normal density. 
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1. Introduction 

Classical Statistical Extremes Theory describes the random behaviour of the largest or 
smallest values of independent and identically distributed (i.i.d.) samples: the theory 
may be extended to random interdependent sequences and thus it can be used in 
concrete decision or design problems where the crossing of some bounds can give rise 
to breakdown or disaster. Large waves, gusts of wind, floods, large insurance claims 
etc., are examples or maxima; droughts, fatigue, rupture, failures of nuclear reactors, 
etc., may be connected with minima; disaster can occur if some bounds are exceeded or 
not attained. The design of a breakwater, of a plane, of a high antenna or of a high 
tower, etc., must, take in to account the risks of (random) failure andior disaster. 

The study of these concrete problems should be dealt with, in a complete form, 
through the analysis of the extremes of a stochastic process. 

The asymptotic behaviour of extremes of i.i.d. samples is a first and very important 
step, because, in general, the underlying distribution of the observed variables is 
completely unknown and, if known, still depends on unknown parameters. The analysis 
can be extended to dependent samples and also to time-series with correlations 
decaying with time; the asymptotic distributions possess some of the same properties as 
those for i.i.d. samples. 

After presenting the i.i.d., asymptotic behaviour of extremes, we will refer to 
statistical decision for small samples of extremes. 

The basic reference is Gumbel (J 958). In this paper we will concentrate on the 
Gumbel distribution for maxima, the pivot distribution, and the Weibull distribution for 
minima. The last distribution without location parameter, can be made equivalent to the 
Gumbel distribution for maxima by an exponential transformation allowing thus 
statistical decisions to be made for design. A review paper by Muir and El-Sharawi 
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(1986) explains why Weibull distributions are used. The short comments in Gumbel 
(1958), section 6.3.4 and 6.3.8, are also of interest. Some remarks related to Structural 
Engineering applications can be found in Tiago de Oliveira (1979). 

2. Asymptotic distribution of extremes 

For an i.i.d. sample (X"X2 , ••• X,,) with distribution function F(x) = Prob {X::; x} 

the distribution function of the k-th order statistic X k (Le., the (n - k + 1) th maximum 

or k-th minimum) is 

Prob. {Xk ::; x} = {k or more X; ::; x} = f(") F(x)j [1- F(x)t j = 
J=k } 

= 1- f(") F(x)j [1- F(x)t j 
]=0 } 

so that the distribution function of the maximum X" is F" (x), and that of the 

minimum Xl is 1-[F(x))". 
For maxima, it can be shown that, for a large family of distribution functions, there 

exist coefficients A" and 8,,(> 0) (not uniquely defined) such that, for n ~ 00, 

F"(A" +8"z) ~ L(z) 

where the asymptotic distribution function L(z) must be of one of the (reduced) forms: 

A(z) = exp( _e-Z ), - 00 < z < +00, 

'I'(z) o if z < 0 

exp(-z-U) if z ~ 0, a> 0, 

exp(-(-zt) if z < 0 

1 if z ~ 0, a > 0, 

Gumbel distribution; 

Frechet distribution; 

Weibull distribution. 

In applications, a location and a dispersion or scale parameter are introduced in 
these standardised forms by a transformation of the variable z. 

The derivation of those asymptotic forms can be sketched as follows: 

From 
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F"(A" +o"z)~ L(z) 

we get 

or 

and by Khintchine' s theorem on the convergence of types (Gnedenko 1943) we know 
that 

if L(z) is proper and non-degenerate. Thus L(z) must satisfy the functional equation: 

for some am and ~m(> 0), with m a positive integer. This functional equation is easily 
extended to m positive rational and, subsequently, to m positive real. The solutions of 
the functional equation are the three already given above. 

The relation 

F"(A" +o"z) ~ L(z), (0 < z < 1) is equivalent to the relation 

n[ 1- F( A" + 0 "z)] ~ -log L( z ), wich sometimes is easier to 

manipuiate. 

The convergence is uniform, because the distribution functions L(z) are 

continuous. By the stability relation t1m(z) = L(am + ~mz), and for large n we have 

F"(A"+O,,z)=L(z). So we can approximate F"(x) by L[(X-A)/O], with 
convenient location (A) and dispersion (0) parameters: Evidently, in the two last forms 
we have a shape parameter a. The graphs of the densities of the reduced random 

variables A'(z),<l>'" (z) and ~'" (z)are given in fig. in 1,2 and 3. 
If the distribution function of the maximum is L(z), the asymptotic distribution of 

the k-th maximum i.e., the (n-k+ 1 )-th order statistics from an Li.d. sample is given by 

Lk(Z)=,~~ i/ j (A"+O"Z)[I-F(A,,+O,,Z)r j = 
lI-k+1 
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k-I 

= lim L(II:~+I)F"-j+I(A" +ollz)[1- F(A" +OIlZ)] j -1 = 
11-+00 0 

= L(z)~ [-logL(z)]j 
L.. ., 

o J. 

Note that L, (z) = L(z). 

For practical purposes, the approximation, of the distribution function for the k-th 

maximum is, Lk[(x - A) / 0]. Note that L(z) must be of one of the three forms listed 

earlier. 
Because min (X;) = -max(-X;) , we see that the asymptotic distribution functions 

for minima are I-L(-x), and for the k-th minima. They are 1- LII _ k+1 (x). Note that if both 
the maximum and the minimum have asymptotic distributions (which does not always 
happen), they are not necessarily of the same types. For the exponential distribution, the 
asymptotic distribution of the maxima is of Gumbel type, but the asymptotic 
distribution for minima is exactly the exponential distribution itself 1- \jf I ( -z) . 

We note, that if All and 0Il are associated with the sample size n then under very 
general conditions" the coefficients for the sample size N, satisfy the asymptotic 
relations 

AN = All +olllog(N / n), ON =011 in the case of Gumbel distribution 

in the case of Fnkhet distribution and 

in the case of Wei bull distribution 

Here Xo denotes the right-end point, i.e., Xo is such that F(xo) = 1, but F(x) < 1 

if x < xo' This result is very important for pooling samples of different sizes. For details 
related to this section see Tiago de Oliveira (1972) and (1977). 

These asymptotic distributions were obtained for i.i.d. samples. Similar results can 
be obtained under meaker conditions. For example, see Watson (1954), Newell (1964) 
and Loynes (1965) for details. From a practical point of view, we can then use one of 
the asymptotic distributions L(z), with adequate location and dispersion parameters, as 
approximate distributions of maxima in large samples evcn when the random 
observations are dependent (but not strongly) and the marginal distributions are not 
identical. 

In fact we may use the limit 

lim(I_~)a = e-z 
a---)ox a 
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to show that, with a linear change of variable depending on a, both <l>a (z) and 'fa (z) 

converge to the Gumbel distribution A(z) for large a(a ;::: 6). 
From the relation between asymptotics of maxima and minima we see that the 

Weibull distribution for minima, is 

Consider then the Weibull distribution Wp (x~) with a dispersion parameter P 
and zero (or known) location parameter. If X has the distribution Wp (x~), the new 

random variable Y= -logXhas the distribution function 

Prob{Y:S; y} = Prob{X;::: e-Y } = exp{_e-P(Y+log8)} = A[Y - (-lOge)] 
liP 

which is a Gumbel distribution with location parameter A= - log e and dispersion 
parameter 8 = p-I . 

We are in general interested in the distribution of the largest or the smallest value 
of a sample; in case we could be interested in the 2nd, 3rd, ... largest or smallest value 
the asymptotic theory of k-th maxima or minima would then be in order. 

3. Statistical decision for the Gumbel distribution 

Some details about statistical decision for all asymptotic distributions of univariate 
maxima (estimation and testing) can be found in Tiago de Oliveira (1975). 

For the Gumbel distribution, sometimes called the extreme distribution, with 
location and dispersion parameters, its density is: 

1 (X-A) 1 (X-A) [ (X-A)] 8".A' -8- =8".exp- -8- ·exp -exp- -8-

The log-likelihood for an i.i.d. sample (xp x 2 ••• x,,) is then 

1 (" A) (" A) -" ·exp -I ~ ·exp - Iexp- x;-
8 ;=1 8 ;=1 8 

so that the maximum likelihood equations lead to 
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The second equation is easily solved, by computer, using the Newton-Raphson 
A A 

method, with few interations; once 0 is known, A is immediately computed. The seed 
for the solution comes, in general, from the method of moments. 

As the mean value and the variance of the reduced Gumbel random variable are y 
(=.57722, ... , the Euler constant) and 1t z /6, and, in the general case, the mean value 

and the variance are A + yo and 1tz /6· OZ , we can use the method of moments to obtain 

estimators (1..*,0 *) given by 

1..* +yo* = X 

1t Z / (6 . 0 *Z ) = SZ • 

In fact, only the second one will be used (0* as a seed to obtain 0). So the first 

equation (i +y8 = x) can be expected to be satisfied approximately, and an intuitive 

test of the values (1..,0) is the verification that (x - A) /0 "" Y . It can be shown that it is 

asymptotically normal with mean values (1..,0), variances (1 + 6(1- y)z / 1t Z ). 0 Z / nand 

6/( 1t Z ·0 Z) / n , covariance 6(1 - Y ) / (1t Z • 0 Z ) / n, the asymptotic correlation coefficient 

being p = (1 + 1t z /6(1- y)z r llz = 313. For more details see Tiago de Oliveira (1972 

and 1983). 
The most important quantities to be estimated in Engineering are the larger or 

smaller values of a variable and the probability of crossing a level or a threshold. 

As the I-quantile (0 < p < I) is the unique solution of the equation 

A((x - A) / 0) = p, the I-quantile has probability I of not being exceeded and (1-1) of 

being exceeded. In practice, if we are dealing with execesses we choose I close to 1, and 
if we are dealing with lower bounds we choose I close to O. 

The quantiles for Gumbel distribution are x p = A - log( -log p). 0 and so their 
A A 

natural estimators are x p = A -Iog( -log p). O. But (1..,0) being asymptotically 

binormal, we see that Xp is also asymptotically normal with mean value xp and 

variance [1+ 6 (1- Y -Iog( -log p ))z / 1tz] . 
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Those results allow for the formation of confidence regions for (A, 8) and 
confidence intervals for A, 8 and x p ; for the latter it is natural to form a one-sided 

confidence interval. 
The computation of the mean square error MSE (x p)' of the bias 

b( x p ) = M {x p} - x p and the variance V (x p) - (const. In) of the estimator x p are easy 

to evaluate approximately; recall that MSE (x p )=b2(x p )+V(xp )' The estimators 

given minimize the MSE either directly or approximately. 
Lowering and Nash (1970) compare different methods of estimating (A, 8), and 

conclude by favouring the maximum likelihood method. 
To predict the average maximum in the next I observations one can take 

p = exp (-e -y 1m) in the formulae for quantiles. 

The probability of exceeding a level I, P = 1- A[( C - A) 18], is estimated by 

P = 1 - A[ (c - A I 8)]. The behaviour of this estimated probability is also asymptotically 
normal, as can be seen by the use of the 8-method (see Tiago de Oliveira, 1982). 

Connected with this probability is the notion of return period. The return period for 
exceeding the level I is the mean value of the time interval between successive 
crossings of the level I in a sequence of independent experiments. It is given by 

T={I-A(x-A)/8r'and is approximated by T=-lllogA[(X-A)/8] 

= exp[(x - A) 18], the approximation being on the safe side (underevaluation). It is 

estimated, if needed, by the usual substitution of (A, 8) for (A, 8). 
Let us consider then the question of long-range design, for the underlying Gumbel 

distribution. The probability that in the next I time units (e.g., years) the design level I 
will not be exceeded is: 

Ifwe want a design with probability (I-E) of being correct we should take: 

r(a-A) A -8- :2:1-E 
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or Cr(E) = A +o[ -log -IOgil - E)] < A +0 10g( :) 

The last expression is generally a good approximation. So to take 
ar(E) = A + 0 10g(T IE) is a good and safe evaluation of the design level. For some e, 
satistying 0 < e < I , the design probability is e -E = 1- E + e . E 2 /2 > I-E. 

4. Statistical decision for the Weibull distribution 

The most usual coefficients for the Weibull distribution (for minima) Wp (x~) are: 

mean value er(l+lIp) 

mode ( fP e P; I ,(P > 1) 

median e (log 2)IIP 

I-quantile e[ -log(l- p)]lIp 

The i.i.d. sample will be denoted by (x"x 2 ••• x,,). 

We have noted that the transformation Y=-log X converte the Weibull distribution 
into the pivotal Gumbel distribution. The search of essential quantities (quantile 
estimator, point predictors, crossing probabilities, estimators, etc.), can either be done 

directly, or transforming the sample to (Y"Y2"'Y")' where Yi =-Iogxp and then 
using the methods and results given for the Gumbel distribution. 

For example, to test a value a = Po of the shape parameter is equivalent to testing 

I 'It 0-0 
the value 0 = 1/ P = 00 = I / Po of the transformed data. As v n r;: __ 0 or 

v6 0 

equivalently (see the o-method) .r;; ~ P - Po are asymptotically standard normally 
v6 Po 

distributed an easy and asymptotically optimal test of P = Po, which leads to the 

acceptance of a 0 is to test if I P - Po l :s; 1.96 ~ at the asymptotic significance level 
Po 'ltv n 

5% (confidence coefficient 95%). 
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For the Weibull distribution Wp (x~) the test of 13=2 (Rayleigh distribution) or of 13 

=1 (exponential distribution) can be dealt with this Way. 
Dealing with the i.i.d. sample (xP x2 ••• xn ) we find that the maximum likelihood 

estimators are given by: 

n • 

'"' Plop, 
Ir L...x; 

!;. - L log x· - n-,-I --- = 0 
13 I I Ix/i 

1 II . 
9=-Lx/ 

n 1 

which correspond to those for the transfonned parameters of the Gumbel distribution 
given above. 

Once more the first equation can be solved by the Newton-Raphson m<:thod, using 

as a seed the corresponding seed for the Gumbel distribution (recall that 8 =!.. for the 
13 

Xi = e-Y'). Alternatively since X. 75 / X. 25 = 21/P than initial estimator is 

• log2 
13 =. . 

log X 0.75 - log X025 

where x; denotes the usual estimator of Xpi.e., x;=X[IIP)+I' is the [np] +1 order 

statistics, where [np] denotes the integer part of np. 
A A 

Also the random pair (8,13) has a binonnal asymptotic behaviour with mean 

values (8,13), variances [1+ 1[62 (l_yl]e2/ n f3 2 and 6f32/nn2, covariance 

6(1- y) 8 / nn 2 , and correlation coefficient 

p= 1+ 1[2 =.3l3. [ )

-1/2 

6(I-AY 
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As before, by the 8-method, we see that Fn Xp - Xp is asymptotically equivalent to 
Xp 

,r,;[ 8 ; e - ~ ;, ~ log[ -Iog(l- p) I] and so we see that the (rnndom) ,e/ative erro, 

(~: -IJ is asymptotically nonnal, with zero mean value, and variance 

Similarly, the design level I such that, for I (time) units the probability that it will 
be not be reached, with probability smaller or equal to E, is given by 

or 

where erC E) = -8 log(l- E) > 8E . 
T T 

The last approximation (8 EIT) is a good one in general, the design probability 

being then 1- e-& , smaller than E. 

5. The check of modelling; test of fit 

The crucial problem is, thus, the continnation of the assumed model Wp (x~) . 

A graphical way is to plot 1'; = -logX; in Gumbel probability paper if we suppose 
that the distribution is of Weibull type (for minima); see Gringorten (1963) and 
Cunnane (1978). By inspecting the linearity of the plots of the ordered -logx; against 

the plotting positions we can check graphically whether the model is WeibulL It should 
i-a 

be noted that the usual plotting positions are of the fonn p; = (0 s a < I); we 
n+ 1-2a 

have, in an immediate notation: 

1 () ( ')1 lo'-alln+I-211 Io'-al I p. a -po a = <--<--
I I ( n + I - 2a )( n + I - 20') - n - I - n - I 

and so, for reasonable values of n(>30), the choices a=O, a=1/2, a=3/8, a=.44, for the 
platting positions. are irrelevant. 
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Analytically we can search for the best model by estimating the location and 

dispersion parameters for the r;, computing the Kolmogorov-Smimov statistic 

KSII = supISJxlx;),-W(x 1 El)I = m~x{m~xli..- W(x; 1 8)I,m~xl i-I - W,;(x; 18)1} 
P I In Pin P 

where x; is the order statistics of the sample (x p x 2 ••• x ll ). We accept the Weibull model 

if KSII ~ 1.361.r,; (at significance level 5%) or KSII ~ 1.631 .r,; (at significance level 

1 %); otherwere we reject it. If P ~ 6 the estimate means that we may construct a good 

approximation using for Xi a Gumbel distribution for minima, or for -Xi a Gumbel 

distribution for maxima with convenient location and dispersion parameters. 
Recall that we have intuitively extended, but without solid theoretical foundation, 

the use of the Kolmogorov-Smimov test as it is usually (and irregularly) done. There 
are other tests of fit, due to Cramer-von Mises, Stephens, Anderson-Darling, etc. 
which could also be used. 
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STOCHASTIC MODELING OF LOAD COMBINATIONS 
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1. Introduction 

When only one time-varying load acts on a structure, and failure is defined 
ai the load process crossing some level, then the extreme value distribu
tion of the load contains information which is sufficient for decisions about 
reliability. The theory of stochastic load combinations is applied in situ
ations where a structure is subjected to two or more time-varying scalar 
loads acting simultaneously. The scalar loads can be components of the 
same load process or be components of different load processes. To evalu
ate the reliability of the structure, each load cannot be characterized by its 
extreme-value distribution alone; a more detailed characterization of the 
stochastic process is necessary. The reason is that the loads in general do 
not attain their extreme values at the same time. 

We consider a structure subjected to loads defining a vector-valued load 
process Q (t). Failure of the structure is assumed to occur at the time of the 
first exceedence of the deterministic function ~(t) by the random function 
b(Q(t)). Here ~(t) represents a strength threshold. The b-function trans
forms the load processes to the load effect process corresponding to the 
strength ~(t). A linear load combination is said to exist when the b-function 
is linear. Otherwise, the load combination is nonlinear. The failure event 
is illustrated geometrically in Fig. 1 for a combination of two loads and a 
constant threshold ~(t). The figure shows that failure can be thought of 
as either the first upcrossing of ~(t) by the process b(Q(t)) or as the first 
outcrossing of the set B(t) = {q I b(q) :::; ~(t)} by the vector process Q(t). 
In both cases this is true under the condition that failure does not occur 
at time zero. 
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b(Q(t) ) 

Figure 1. Geometrical illustration of the failure event from combined loading. 

2. Bounds on the extreme value distribution 

A simple upper bound on the probability of failure PF in the time interval 
[0, T] is derived. Let Ne(T) denote the number of upcrossings in [0, T] of 
~(t) by b(Q(t)) or, equivalently, the number of outcrossings in [0, T] of the 
set B(t) by Q(t). The failure probability is expressed as 

PF = P(failure at t = 0) + P(NdT) ~ 1) 

-P(failure at t = 0 and Ne(T) ~ 1) 
(1) 

The negative term (last term), in the above equation, is numerically smaller 
than the smallest of the two positive terms in the equation. An upper bound 
on PF is therefore 

(2) 

where PFO = P(failure at t = 0). This upper bound is a good approxima
tion to PF, at least if one of the terms on the right-hand side is much larger 
than the other term. The upper bound is further developed as 

00 

PF:::; PFO+ LP(NdT) = n):::; 
n=l 

(3) 

PFO + L nP(Ne(T) = n) = PFO + E [Ne(T)] 
n=l 
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The right-hand side is a good approximation to PF if Eq. (2) is a good 
approximation and if, further, 

00 

P(N«T) = 1) ~ L nP(NdT) = n) (4) 
n=2 

Eq. (4) will often be valid in practical situations with highly reliable struc
tures when clustering of crossings can be neglected. The failure probability 
can be approximated by 

[ E [N«T)]] PF ~ 1 - (1 - PFO) exp - P 
1- FO 

(5) 

When the probability distribution of Q(O) is known, the probability 
of failure at t = 0 can be calculated by first- and second-order reliability 
methods described in (Madsen et al., 1986). The second term in Eq. (3) is 
written as 

(6) 

Here 1I(~, t) is the mean-upcrossing rate of ~(t) or mean outcrossing rate of 
B(t) at time t. In both situations 1I(~, t) can be calculated by Rice's formula 
(Rice, 1944a; Rice, 1944b) or a generalization of it. If 1I(~, t) is interpreted 
as the mean-upcrossing rate of ~(t), it follows directly from Rice's formula 
that 

(7) 

Here a dot denotes a time derivative and the stochastic process b(Q(t)) 
is denoted by S(t). If 1I(~, t) is thought of as the mean-outcrossing rate of 
B(t), it follows from a generalization of the arguments leading to Rice's 
formula that 

(8) 

It is here assumed that the set B(t) is constant in time. ON denotes the 
projection of Q(t) on the outward normal to B at a point on the boundary 
aB. The inner integral in Eq. (8) can be viewed as a local outcrossing 
rate. A generalization of Eq. (8) to a time-varying set B(t) is conceptually 
straightforward. 

Very few closed-form results for 1I(~, t) exist for general processes and 
general safe regions. Among these results can be mentioned results for 
Gaussian processes and different safe regions described in (Fuller, 1982; 
Veneziano et ai., 1977; Ditlevsen, 1983a), and results for combinations of 
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rectangular filtered Poisson processes described in (Breitung and Rackwitz, 
1982; Waugh, 1977). Asymptotic results for Gaussian processes have been 
evaluated and are summarized in (Breitung, 1994). 

Instead of using Rice's formula as in Eq. (7), it is proposed in (Madsen, 
1992; Hagen and Tvedt, 1991) to calculate the mean up-crossing rate as a 
parallel system sensitivity measure available for time independent reliability 
analysis. l/(~, t) may be written as 

l/(~, t) lim P[S(t) < ~(t) n S(t + .6.t) > ~(t + .6.t)] 
llt-+O+ 

lim P[S(t) < ~(t) n S(t) + S(t).6.t > ~(t) + ~(t).6.t] 
llt-+O+ 

lim {P[S(t) - ~(t) > 0 n S(t) + (S(t) - ~(t)).6.t > ~(t)] 
llt-+O+ 

- P[S(t) - ~(t) > 0 n S(t) > ~(t)]} (9) 

leading to 
d 

l/(~,t) = deP[M1(t) < OnM2(t,e) < 0] (10) 

where the safety margins Ml and M2 are 

Ml (t) = ~(t) - S(t) 

M2(t) = ~(t) - S(t) + (~(t) - S(t))O 
(11) 

Eq. (10) expresses l/(~, t) as a parametric sensitivity measure of the proba
bility of an associated parallel system unsafe domain. Such sensitivity mea
sures can be calculated by first-order reliability methods (Madsen, 1992) 
provided the joint distribution of [Q(t), Q(t)] is known and that the map
ping of this vector into a set of independent standard Gaussain variables is 
possible at each time t in [0, T]. This is not a very restrictive condition. 

With the notation l/(~, t) = ieP(t, e) in Eq. (10), Eq. (6) can be written 
as 

rT d E [Ne(T)] = 10 deP(t, e)dt 

d rT 1 
T de 10 P(t, e) T dt (12) 

where the integeration and differentiation have been interchanged because 
the integrand is a continuous function of e and t. Replacing the time t in 
Eq. (12) by the auxiliary random variable V uniformly distributed with 
probability density function fv (v) on the interval [0, T], yields 

d rT 
E [NdT )] = T de 10 P(v, e)fv(v)dv = Tv (13) 
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where the time averaged mean crossing rate IJ can be calculated by first 
order reliability methods applicable for calculation of 1/, with one extra 
variable included (Hagen and Tvedt, 1991). 

3. Linear load combination 

In a general study for code purposes the case of stationary and mutually 
independent processes combined linearly is very important. The sum of two 
processes is first considered, so let 

(14) 

The expected rate of u pcrossings of the constant level ~, I/Q (~), is calculated 
by Rice's formula: 

(15) 

The joint probability density function f QQ h .) is expressed in terms of the 
density functions fQ,Q, (.,.) and f Q2Q2 ("') by the convolution integral 

Inserting this result in Eq. (15) and substituting q = qI + q2 gives 

I/Q(~) = ~~_= i:-= i:-q, qIiQ,Q, (q,il1) X 

fQ2Q2 (~- q, iI2)dq2diII dq 

+ {= ~= ~=. qziQ,Q, (q, iId x 
Jq=-= Jql=-= Jq2=-ql 

The two triple integrals can be evaluated analytically only in special cases. 
Simple upper and lower bounds on the mean-upcrossing rate can, however, 
be found by changing the area of integration in the (iII, iI2)-plane for the two 
integrals in Eq. (17). Fig. 2a shows the common area of integration of the 
integrals. The vertical and horizontal hatching illustrate the integrations 
with the integrand of the first and second integral, respectively. Fig. 2b 
correspondingly illustrates the integrations in an upper bound and Fig. 2c 
the integrations in a lower bound. 

The upper bound is 
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Figure 2. Areas of integration. 

+ i~-= i:-= i:o q2fQ1Q1 (q, ql)fQ2Q2 (~- q, q2)dq2dql dq 

i~-= I/QJ (q)fQ2 (~ - q)dq + i~-= I/Q2 (q)fQJ (~ - q)dq 

(18) 

where * means convolution. The terms in the upper bound are generally 
called the point crossing terms (Larrabee and Cornell, 1981). 

The lower bound is similarly 

lIQ(~) > i:-= I/QJ (q)fQ2(~ - q)(l- FQ2IQ2(0,~ - q))dq 

+ i~-= I/Q2 (~- q)fQI (q)(l- FQJIQI (0, q))dq (19) 

Here I/QJ (.) is the mean-upcrossing rate function for Qdt) and fQJ (.) is the 
marginal or arbitrary-point-in-time probability density function for Qdt). 
The factor 1 - FQdQI (0, q) gives the probability of a positive derivative 

Qdt) given that Qdt) = q. For a Gaussian process, this probability is 0.5, 
independent of q. For the sum of two Gaussian processes, the lower bound 
Eq. (19) is thus half the value of the upper bound Eq. (18). 

The bounds are easily generalized to cover situations with nonstationary 
load processes or nonconstant thresholds (Madsen, 1982) and to situations 
where more than two time-varying loads are acting simultaneously. For the 
sum of three stationary and independent processes, Ql(t), Q2(t), and Q3(t), 
the upper bound on I/Q (~) is 

I/Q(~) < I: I/QI (q)fQ2+Q3(~ - q)dq 

+ 1:I/Q2(q)fQI+Q3(~-q)dq 
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(20) 

where, e.g., 

The upper bound can thus be written as 

VQ(~) :::; VQl * fQ2 * fQ3 + VQ2 * fQl * fQ3 + VQ3 * fQl * fQ2 (22) 

The upper bound on vQ (~) is thereby expressed solely in terms of con
volution integrals of the mean-upcrossing rate function and the marginal 
probability density function for each process. In Table 1, these two func
tions are given for various Poisson pulse processes commonly used as load 
models. Additional results are given in (Madsen, 1979). 

A more general treatment of the point-crossing-term idea for nonlinear 
load combinations and nonstationary processes is given in (Ditlevsen and 
Madsen, 1981; Ditlevsen, 1983b). The fact that the results of the point 
crossing method are in terms of convolution integrals makes a combination 
of the results with a first-order reliability methods very simple. 

If the upper bound Eq. (18) on v(~) is used in Eq. (3), a strict upper 
bound on the failure probability is maintained. This upper bound can still 
provide a very good approximation to the exact value if the upper bound 
on v(~) is close to the exact value. Table 2 presents some exact results 
taken from (Larrabee and Cornell, 1981; Madsen, 1979; Madsen et al., 1979) 
compared to the upper bound. The ratio of the exact result to the upper 
bound is in all cases close to unity, indicating that the upper bound is 
indeed a good approximation. 

The analysis of linear load combinations of stationary and indepen
dent load processes can be summarized. It follows that if the extreme-value 
distribution of the combined load is well approximated in terms of the 
mean-upcrossing rate function, sufficiently accurate approximations to the 
extreme-value distribution can be computed from the mean-upcrossing rate 
function vQ(~) and the marginal probability density function fQ(q) for each 
process. It can thus be stated that the pair of functions (vQ' fQ) provides 
sufficient information about each load process in a linear load combination. 
Several extensions of the bounding technique explained above to linear com
binations of dependent processes are demonstrated in (Winterstein, 1980). 
An analysis of the clustering effect on failure rates of combined loads is 
presented in (Winterstein and Cornell, 1984). 

The method using the point crossing terms in approximation of the 
failure probability is called the point crossing method. Another method de
veloped by Y.K.Wen which is equally well developed is the load coincidence 
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TABLE 1. Mean-Upcrossing Rate Functions and Marginal Probability Den
sity Functions for Poisson Pulse Processes (Intensity v) 

Process 

Spike process 

I 
s 

Square-wave process 

I 
I 

Triangular pulse process 

I 
s 

Parabolic pulse process 

\I 
s 

VQ(q) 

v{l - Fs(q)) 

vFs(q)(l- Fs(q)) 

v(l- Fs(q)) 

v(1- Fs(q)) 

fQ(q) 

J(q) 

fs(q) 

f oo 1 

'=q -;dFs(s) 

100 1 1 
~-dFs(s) 

s=q 2y 1- ; s 

method see (Wen, 1977; Wen, 1981; Wen and Pearce, 1981; Wen and Pearce, 
1983). This method is based on identification of load coincidences leading 
to a level crossing by the combined load. The mean rates of various types 
of load coincidences are computed together with the probability of a level 
crossing given that a load coincidence occurs. 

4. Load combinations in codified structural design 

An essential feature of structural design procedures is a set of requirements 
for load combination. Such formats provide a list of the combinations to be 
considered and a set of appropriate load factors to be applied to specified or 
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TABLE 2. Bounds on the Mean-Upcrossing Rate for Sums of Two Stationary Pro-

cesses. A = l~_oo VQl (q)!Q2(e - q)dq + l~-oo VQ2(q)!Ql (e - q)dq 

Processes combined 

Gaussian + Gaussian 
Gaussian + unimodal renewal pulse process 
Renewal spike process + arbitrary process 
Renewal rectangular pulse process + arbitrary process 
Unimodal Poisson pulse process + same 
Filtered renewal rectangular pulse process + arbitrary process 

Bounds 

A/v'2 ::; v(e) ::; A 
O.5A ::; v(e) ::; A 

v(e) = A 
v(e) = A 

O.75A ::; v(e) ::; A 

v(e) = A 

characteristic values of the individual loads. To provide for the many design 
situations that can arise, most codes have found it useful to categorize loads 
as either permanent (e.g., self-weight and prestressing forces) or variable. 
Variable loads can be further decomposed into long term (e.g., furniture 
loads, snow loads in some regions) and short term (e.g., wind and earth
quake). For each type ofload, codes specify characteristic or representative 
values, normally defined to have a specified probability of being exceeded 
in some specified period. As an example, the characteristic 50-year wind 
speed is the wind speed that is exceeded with a probability of 2% in one 
year. 

To describe the basic design formats, permanent loads are denoted D 
and variable loads L, further decomposed into long-term components LL 
and short-term components LS. With this basic notation, a first subscript k 
is used to denote a characteristic value, and a second subscript, j = 1,2, ... , 
to denote a particular load type, such as wind or earthquake. 

The format proposed by the (CEB, 1976; JCSS, 1978) is a family of 
total loads of the general form 

'"'(DDk + 'iLki + L ,j'l/JijLkj 
ji:i 

(23) 

for the ultimate state, in which ,-values are load factors. The products 
,j'l/JijLkj may be called companion values of the loads. The format involves 
the factored or design value of one load plus factored companion values of 
the others. There are at least as many such equations as there are load 
types. This combination method is called the companion action format. 

Another basic design format in use by the National Building Code of 
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Canada is of the form 

(24) 

in which <P is a probability factor to account for the fact that extreme 
values of different loads are unlikely to occur together. When only one load 
acts, <p = 1. The American Concrete Institute uses a similar format. This 
combination format is called the combination factor format. 

Russia has adopted a slightly different ultimate state format, which can 
be written 

1vDk + 1LLLLk +.p ( ~ 1;L8k;) (25) 

The long-term loads are considered at their full design values, and short
term actions are considered at reduced companion values by means of a 
common probability factor. Another closely related format is that in the 
proposed load and resistance factor design for steel structures, see e.g. (Ra
vaindra and Galambos, 1978). 

The essential difference between the basic code formats is whether they 
multiply design loads 'YiLki by combination factors after summation or be
fore. In all cases, serviceability loads are obtained directly from the char
acteristic values. 

Within a geographic region and a specific class of intended use, the phys
ical effects of loads vary from structure to structure and between elements 
in a structure. The total variable load effect S(t) in a linear or quasi-linear 
analysis can be written in the form 

(26) 

in which Li(t) are the random time-dependent variable loads, Ci are deter
ministic influence coefficients, and 'Yi are deterministic load factors. Within 
a single structure, Ci may be zero for one load type at one element and domi
nant at another element. The relative magnitudes of the random loads Li(t) 
depend on geography and intended use. 

The fact that any load Li(t) in a combination can appear alone if 
Cj = 0, j =J. i suggests the following statement of the design load combina
tion problem: Establish a set of companion action factors 'l/Jij in Eq. (23) or 
design probability factors <p in Eq. (24) such that the probability of exceed
ing design loads is approximately constant for all situations involving one 
or more loads, the spectrum of influence coefficients Ci, all geographic areas 
and intended structural uses, and all materials and types of structural form 
covered by a code. Given the scope of the problem definition and practical 
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limitations on the number of factors permissible in any design procedure, 
it is evident that great precision cannot be expected. 

Before proceeding to the determination of the load combination factors, 
it is of some interest to view the various load combination formats in the 
light of the results obtained for linear load combinations. In this context 
Turkstra's rule (Turkstra, 1970) plays a central role. The rule states that 
the maximum value of the sum of two independent random processes occurs 
when one of the processes has its maximum value. The rule is an approxi
mation and corresponds to the assumption that the distribution functions 
of the two random variables 

and 

are the same. 

{
max Q1 (t) + Q2(t) 

O<t<T 
Z2 = max --

Q1 (t) + max Q2(t) 
09~T 

(27) 

(28) 

For Z2, the complementary cumulative distribution function is 

P(Z2 > () P( max Q1 (t) + Q2(t) > 0 + P(Q1 (t) + max Q2(t) > () 
09~T 09~T 

P( max Q1 (t) + Q2(t) > (n Q1 + max Q2(t) > () (29) 
O~t~T 09~T 

Neglect of the negative term and use of the bound Eq. (3) without PFO 

leads to 

P(Z2 > () S; T ~~-oo /JQJ (q)fQ2(( - q)dq + T ~:-oo /JQ2 (q)fQJ (( - q)dq 

(30) 
Use of the bound Eq. (3) without PFO, together with the bound Eq. (18), 
leads to the same upper bound for P(Z1 > (). Based on these results, it can 
be concluded that when the upper bound Eq. (29) is a good approximation 
for both P(Z1 > () and P(Z2 > (), Turkstra's rule is also a good approxi
mation. The conditions for the applicability of the upper bound given here 
are, however, not necessary conditions for good accuracy of Turkstra's rule. 

Turkstra's rule indicates that a natural code format for a combination 
of two loads is 

(31) 

where the '¢'-factors express the ratio between fractiles in the extreme
value distributions and the marginal distributions. There is thus a logic 
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rationale for the format in Eq. (23) and studies such as those of (Turkstra 
and Madsen, 1980) also show that this format is superi0r to the others. 

A comprehensive study aimed at determining the load combination fac
tors'lf;ij in Eq. (23) has been presented in (Turkstra and Madsen, 1980). 
The analysis is restricted to cases where loads do not act in opposite senses, 
leading to stress reversal. The load combination factors are aimed at be
ing the same for all materials and the criteria of probability levels of 0.01, 
0.001, and 0.0001 for individual design loads and combinations are therefore 
adopted as objective. A linear combination as in Eq. (26) is used with the 
complete range of influence factors being covered. The major conclusions 
of the study are as follows: 

The uncertainty in load models is of major importance in the study 
of individual loads. However, results for the combination of loads are 
relatively insensitive to the load models used. 
Design combination rules depend on the probability level at which 
comparisons are made. In general, the more likely the exceedence of the 
design values of individual loads, the less important the combination 
problem. 
Simple addition of design loads can lead to very conservative results. 
Ignoring load superposition can lead to extremely non conservative re
sults. 
No combinations of transient live, earthquake, and wind loads need be 
made at the fractile levels used in conventional structural design. 
The combination factor format leads to significant errors in a number 
of cases. 
The companion action format, coupled with a simple model for the 'If;
factors, leads to design values almost always within 10% and normally 
within 5% of theoretical values. 

5. Load combination with random failure surface 

In the previous sections, the level ~(t) or the safe set B(t) was assumed to 
be deterministic. In general a reliability problem contains random variables 
in addition to the random processes. The random variables may describe 
uncertainty in ~ or B, or may describe uncertainty in the statistical parame
ters of the random load processes. This section therefore describes a general 
and efficient method for computing failure probabilities in design situations 
where uncertainties are represented by a vector of random variables and a 
vector of random processes. A formulation as a first-passage problem for 
a vector process outcrossing a safe set is first applied for a fixed value of 
the random variable vector. This gives a conditional failure probability, 
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and a fast integration technique based on a first- or second-order reliability 
method is then applied to compute the unconditional failure probability. 

The combination of Gaussian processes with random parameter uncer
tainty is very relevant for practical problems, where the response process 
is often assumed to be Gaussian or a function of a Gaussian process, e.g. 
a translation process (Grigoriu, 1984) or a Hermite transformation of a 
Gaussian process (Winterstein, 1988). Most response analyses within ma
rine engineering, wind engineering and earthquake engineering make such 
an assumption. 

The reliability of a structural element is generally analyzed with respect 
to one or more failure criteria. For one criterion the performance is described 
through the limit state function G (.) 

{ 
< 0 

G(z) = 0 
>0 

for z in failure set 
for z on limit state surface 
for z in safe set 

(32) 

where z is a vector of basic variables including loading variables, material 
properties, geometrical variables, statistical estimates and model uncer
tainty parameters. Since some of the basic variables can be functions of 
time, the limit state function is written in the form 

G(Z) = minG(Zl' Z2(t)) 
[O,T] 

(33) 

where [0, T] is the considered time interval. Z 1 is modeled as a vector of ran
dom variables, with a continuous but otherwise arbitrary joint probability 
density. Z2(t) is modeled as a stationary vector process. The vector process 
is completely characterized by a set of parameters, some of which may be 
uncertain and included in Z 1. In the following it is therefore assumed that 
Z2(t) for a fixed value of Zl is a stationary and ergodic process. 

The probability of failure, PF, in a time period [0, T] is 

where the conditional failure probability PF(Zl) is defined as 

(35) 

The conditional failure probability is the probability that the vector process 
Z2(t) is in the failure set at the beginning or during the time interval [0, T]. 
The conditional failure probability is by Eq. (3) bounded in terms of the 
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probability of failure at time t = 0, PFo(zd, and the expected number of 
outcrossings into the failure set, E [N(T, zd] 

where V(Zl) is the mean outcrossing rate for the stationary process. Alter
natively, the conditional failure probability can be approximated by, Eq. (5) 

[ v(zdT ] PF(Zl) ~ 1 - (1 - PFO(Zl)) exp - P ( ) 
1 - Fo Zl 

(37) 

The term PFO can be calculated by a method for time independent reliabil
ity analysis. The mean outcrossing rate is given by Rice's formula expressed 
as 

V(Zt} 

where 8S(zd is the boundary of the safe set, and Z2N is the component 
of the time derivative Z2 in the direction of the outward normal vector to 
the boundary. Alternatively v(zt} may be calculated as in Eq. (10). 

To compute the unconditional failure probability, an auxiliary limit 
state function h may be defined as, (Wen and Chen, 1987) 

(39) 

where <I> is the standard normal distribution function, and Un+l is a stan
dard normal variable. A FORM or SORM analysis for time independent 
reliability problems can be applied directly to this limit state function. The 
computational difficulty lies in evaluation of the conditional failure proba
bility and its derivative with respect to elements in Zl. Efficient methods 
for calculation of these quantities when Z2(t) is a Gaussian process are 
described in (Madsen and Tvedt, 1990) and implemented in the computer 
program (PROBAN4, 1995). 

As shown in section 4, Turkstra's rule often provides a good approxi
mation for linear combination of independent processes. According to this 
rule, only the points in time where one of the processes is at its maximum 
value are considered. The extreme value distribution for the single load can 
often be determined or approximated, and the distribution of each of the 
companion load values is simply their marginal distribution. The failure 
probability is underestimated by Turkstra's rule, but the reliability analy
sis has been reduced to a time-independent analysis, and the error turns 
out to be small in most practical cases. 
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The principle behind Turkstra's rule can be easily extended to the time 
dependent problem which involves a non-linear combination of dependent 
Gaussian processes. With n2 components in Z2, n2 time independent relia
bility analysis are defined, each combining the extreme value for one element 
in Z2 with the companion values of the other elements. The distribution 
for the companion values is a joint Gaussian distribution. 

6. Conclusions 

The following conclusions can be stated: 

1. A close upper bound to the extreme value distribution for a combina
tion of time varying load processes is expressed in terms of the mean 
upcrossing rate of the combined process. The mean upcrossing rate is 
expressed as an extension of Rice's formula for scalar processes, or, 
alternatively is calculated as a parametric sensitivity factor of an as
sociated parallel system unsafe domain. 

2. For a linear combination, a close upper bound on the mean upcrossing 
rate for the combined process is expressed as a convolution integral of 
the mean upcrossing rates for one process and the random-point-in
time distributions for the other processes. 

3. Various code format for load combinations have been reviewed and the 
companion factor format as used in Europe has been found to be most 
appropriate. This format is based on Turkstra's rule which is justified 
from results for linear combinations of independent load processes. 

4. A general method for time dependent reliability analysis has been pre
sented. The method extends the first-and second-order reliability meth
ods for time independent reliability analysis. Uncertainty is described 
in terms of a vector of random variables with continuous but otherwise 
arbitrary joint distribution function and a stationary Gaussian vector 
process. 

5. Turkstra's rule is considered for the nonlinear combination of depen
dent stationary Gaussian processes. Limited experience indicates that 
Turkstra's rule works well also in this case when the dependencies are 
properly accounted for. This reduces the reliability analysis to a time 
independent reliability analysis of a series system of component failure 
modes, corresponding to failure when one of the time varying param
eters takes its extreme value. 

References 

K.W. Breitung and R. Rackwitz. Nonlinear combination of load processes. Journal of 
Structural Mechanics, 10(2):145-166, 1982. 



242 H.O. MADSEN 

K.W. Breitung. Asymptotic approximations for probability integrals. In Lecture Notes 
in Mathematics. Springer Verlag, 1994. 

CEB (Comite Europeen du Beton). First order concepts for design codes. Technical re
port, Joint Committee on Structural Safety CEB-CECM-FIP-IABSE-IASS-RILEM, 
1976. CEB Bulletin No. 112. 

O. Ditlevsen. Gaussian out crossing from safe convex polyhedrons. Journal of Engineering 
Mechanics, ASCE, 109:237-148, 1983. 

O. Ditlevsen. Level crossings of random processes. In P. Thoft-Christensen, editor, 
Reliability Theory and Its Applications in Structural and Soil Mechanics, pages 57-
83. Martinus Nijhoff, The Hague, 1983. NATO ASI Series E. 

O. Ditlevsen and H.O. Madsen. Probabilistic modeling of man-made load processes 
and their individual and combined effects. In T. Moan and M. Shinouzuka, editors, 
Structural Safety and Reliability, pages 103-134, Trondheim, Norway, June 1981. 
Proceedings ICOSSAR '8l. 

J.R. Fuller. Boundary excursions for combined random loads. AIAA Journal, 20:130-
1305, 1982. 

M. Grigoriu. Crossing of non-gaussian translation processes. Journal of Engineering 
Mechanics, ASCE, 110(4):610-620, 1984. 

0. Hagen and L. Tvedt. Vector process out-crossing as parallel system sensitivity mea
sure. Journal of Engineering Mechanics, ASCE, 117(10):2201-2220, 1991. 

H.O. Madsen, R. Kilcup and C.A. Cornell. Mean upcrossing rate for sums of pulse-type 
stochastic load processes. In Proceedings of Specialty Conference on Probabilistic 
Mechanics and Structural Reliability, pages 54-58, 1979. ASCE, Tucson, Arix. 

JCSS (Joint Committee on Structural Safety). General principles of safety and service
ability regulations for structural design. Technical report, Lund Institute of Technol
ogy, Lund, Sweden, 1978. ed. L. Ostlund. 

R.D. Larrabee and C.A. Cornell. Combination of various load processes. Journal of the 
Structural Division, ASCE, 197:223-239, 1981. 

H.O. Madsen. Load models and load combinations. Technical Report Report No. Rl13, 
Department of Structural Engineering, Technical University of Denmark, February 
1979. 

H.O. Madsen. Reliability under combination of non stationary load processes. In DIA
LOG 1-82, pages 45-58. Danish Engineering Academy, Lyngby, Denmark, 1982. 

H.O. Madsen, S. Krenk and N.C. Lind. Methods of Structural Safety. Prentice-Hall, 
Englewood Cliffs, N.J., 1986. 

H.O. Madsen. Sensitivity factors for parallel systems. In G. Mohr, editor, Miscellaneous 
Papers in Civil Engineering. Danish Engineering Academy, Lyngby, Denmark, 1992. 
DIA 35'th Aniversary '92. 

H.O. Madsen and L. Tvedt. Methods for time dependent reliability and sensitivity anal
ysis. Journal of Engineering Mechanics, ASCE, 116(10):2118-2135, 1990. 

PROBAN Version 4. Theoretical manual. Technical report, Det Norske Veritas Reseach, 
1995. 

M.K. Ravaindra and T.V. Galambos. Load and resistance factor design for steel. Journal 
of the Structural Division, ASCE, 104:1337-1353, 1978. 

S.O. Rice. Mathematical analysis of random noise. Bell System Technological Journal, 
23:282-332, 1944. 

S.O. Rice. Mathematical analysis of random noise. Bell System Technological Journal, 
24:46-156, 1944. 

C.J. Turkstra. Theory of structural safety. Technical report, Solid Mechanics Division, 
University of Waterloo, Ontario, Canada, 1970. SM Study No.2. 

C.J. Turkstra and H.O. Madsen. Load combinations in codified structural design. Journal 
of the Structural Division, ASCE, 106:2527-2543, 1980. 

D. Veneziano, M. Grigoriu and C.A. Cornell. Vector-process models for system reliability. 
Journal of Engineering Mechanics, ASCE, 103:441-460, 1977. 

C.B. Waugh. Approximate models for stochastic load combinations. Technical Report 



STOCHASTIC MODELLING OF LOAD COMBlNA TIONS 243 

Report R77-1, Department of Civil Engineering, Massachusetts Institute of Technol
ogy, Cambridge, Mass., 1977. 

Y.K. Wen. Statistical combination of extreme loads. Journal of the Structural Division, 
ASCE, 103:1079-1093, 1977. 

Y.K. Wen. A clustering model for correlated load processes. Journal of the Structural 
Division, ASCE, 107:965-983, 1981. 

Y.K. Wen and H.C. Chen. On fast integration for time variant structural reliability. 
Probabilistic Engineering Mechanics, 2(3):156-162, 1987. 

Y.K. Wen and H.T. Pearce. Stochastic models for dependent load processes. Technical 
report, Civil Engineering Studies, University of Illinois, Urbana, Ill., 1981. Structural 
Research Series No. 489, UILU-ENG-81-2002. 

Y.K. Wen and H.T. Pearce. Combined dynamic effects of correlated load processes. 
Nuclear Engineering and Design, 1983. 

S.R. Winterstein. Combined dynamic response extreme and fatigue damage. Technical 
report, Department of Civil Eng., Massachusetts Institute of Technology, Cambridge, 
Mass., 1980. Report R80-46. 

S.R. Winterstein. Non-linear vibration models for extremes and fatigue. Journal of 
Engineering Mechanics, ASCE, 114:1772-1790, 1988. 

S.R. Winterstein and C.A. Cornell. Load combinations and clustering effects. Journal of 
the Structural Division, ASCE, 110:2690-2708, 1984. 



TIME-V AmANT RELIABILITY FOR NON-8TATIONARY PROCESSES 

BY THE OUTCROSSING APPROACH 

R. RACKWITZ 
Technical University Munich 
Arcisstr. 21, 80290 Munich, Germany 

L Introduction 

Whereas theory and concepts for the computation of time-invariant reliability are 
now well-known and can be performed efficiently and reliably by various methods, 
much less theory is available for methods which are capable of handling time 
variant reliability problems. Time variant problems are usually present with 
time-variant environmental loading and possibly time-variant (deteriorating) 
structural properties. One needs to compute not primarily the probability that a 
structural system is in an adverse state at any given time. It is rather the 
probability that such an adverse state is reached for the first time in a given 
reference period. There are two important cases in which computation of so-called 
first passage probabilities is still possible with time-invariant methods. This is 
when the failure criterion is related to strictly increasing cumulative damage 
phenomena, for example in structural fatigue. Then, the probability of survival is 
equal to the probability that damage has not reached a critical value at a given 
time. The other case is when all variables are time-invariant except one which 
then can be replaced by its extreme value, but only in the stationary case. 

In all other cases, virtually no closed form solution of sufficient generality and 
direct practical interest is known. In the following we will primarily discuss results 
which can be called exact in some sense and/or have found a practical, sufficiently 
general numerical solution. One of the first computationally efficient algorithms 
was designed for the special case of a combination of stationary random sequences 
with different change frequencies (see Ferry Borges and Castanheta, 1971, 
Rackwitz and FieBler, 1978). This scheme was restricted to the stationary case. 
Another well-known case is the Gaussian process and linear combinations thereof. 
In the first case, the so-called maximum approach has been employed, i.e. the 
vectorial problem is first reduced to a scalar problem for which the results for the 
maximum distribution of scalar random processes then become applicable. This 
approach is extremely difficult to generalize to other than random rectangular 
wave sequences. In the second case the so-called out crossing approach is used, and 
this is the approach to be discussed below in more detail. Even for stationary 
Gaussian scalar processes exact results for the first passage times are extremely 
rare. But a well-known asymptotic result for the stationary case is due to Rice 
(1945) which is generalized to the non-stationary case in Cramer and Leadbetter 
(1967). 
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Computationally feasible approaches to such reliability problems at present are 
mostly of an asymptotic nature and, therefore, only furnish approximate solutions 
for either high or low reliability problems. They rest on the construction of a 
Poisson process for the exits of the structural state function into the failure 
domain. The intensity parameter of this Poisson process is determined via the 
out crossing rates of the load effect processes through the possibly time variant 
limit state function. Given the out crOSSing rates, the mean number of exits into 
the failure domain has to be determined by time integration. Whereas the 
calculation of the out crossing rates in the general case is a non-trivial task, a 
second difficulty usually arises when assuring the Poisson nature (lack of memory) 
of the outcrossings under the presence of time invariant or at least non-ergodic 
basic variables. 

Although various aspects have been recognized and formulated earlier mainly in 
the context of scalar Gaussian process theory (see Cramer and Leadbetter, 1967, 
Bolotin, 1981 and Leadbetter, et al., 1983), serious attempts to establish a sound 
theoretical basis and to design efficient numerical methods date back only a few 
years. First important steps for a practical solution of the problem have, among 
others, been made by Veneziano et al. (1977), Ditlevsen (1983) and Breitung 
(1988) who derived partly closed form solutions for the outcrossing rates of 
stationary Gaussian vector processes out of arbitrary domains. Breitung and 
Rackwitz (1982) derived a solution for stationary rectangular renewal wave 
processes (see also Brei.tung, 1994). Rackwitz (1993) extended this work to the 
non-stationary case. Breitung and Rackwitz (1979) published a solution for the 
superposition of filtered Poisson processes with rectangular marks. Important 
contributions to the combination of intermittent processes are due to Wen (1977, 
1981, 1990), Shinozuka (1981), Winterstein (1981) and Schrupp and Rackwitz 
(1988). Further on the basis of asymptotic concepts in Brei.tung (1988), Plantec 
and Rackwitz 11989) and Faber and Rackwitz (1990) derived solutions for the 
mean number of outcrossings of Gaussian (vector) processes under non-stationary 
conditions, by approximating the time integrals over the crossing rates by 
asymptotiC analysis. In using the results for stationary Gaussian processes, Fujita 
et al. (1987) designed an algorithm to handle the time invariant and non-ergodic 
variables consistently. The approach will be discussed in more detail later. Schall 
et al. (1990), following Naess (1984), studied simple examples of the problem of 
the presence of time-invariant basic varia.bles together with ergodic sequences 
which, for example, are used to model the sea states in marine engineering. It was 
found that an accurate treatment of those variables is, in fact, very important. In 
the following we will discuss more recent results which are primarily suitable for 
the non-stationary case and include ergodic sequences for the parameters of the 
processes as well as non-ergodic quantities. 

2. General Concepts for Time-variant Reliability 

Consider the general task of estimating the probability Pf(t) that a realization z( r) 
of a random state vector Z( r) representative for a given problem, enters the failure 
domain V = {z(r)lg(z(r),r) ~ 0, 0 ~ r ~ t}. g(.) is the limit state function. Z(r) 
may conveniently be separated into three components as 

Z(r)T = (RT,Q(r)T,S(r)T) (2.1) 
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where R is a vector of random variables independent of time t, Q( 1") is a slowly 
varying random vector sequence and S( 1") is a vector of not necessarily stationary, 
but sufficiently mixing random process variables having fast fluctuations as 
compared to Q( 1"). Typically, Q( 1") characterizes slow variations of the parameters 
of the process S( 1"). 

Consider first the case where only S( 1") is present. IT it can be assumed that the 
stream of crossings of the vector S( 1") into the failure domain V is Poissonian, it is 
well known that the failure probability Pf(t) can be estimated from (Cramer and 
Leadbetter, 1967) 

Pf(t) ~ 1 - exp(- E[Ng(t)]) ~ E[Ng(t)] (2.2) 

for high reliability problems. E[N s( t)] is the expected number of crossings of S( 1") 
into the failure domain V in the considered time interval. It is assumed that there 
is negligible probability of failure at T = 0 or 1" = t. The upper bound is a strict 
upper bound and close to the exact result for small Pf(t). The approximation in 
eq. (2.2) has found many applications in the past, not only because of its relative 
simplicity but also because there is no real practical alternative except in some 
special cases. The Poissonian character of exits into the failure domain will, in 
fact, be lost if, loosely speaking, the exits into the failure domain are'neither rare 
nor independent. One possible route of investigation is along the following 
expansion given by Lange (1991) and Engelund et al. (1995) 

with certain Gram-Charlier-coefficients, which depend on the factorial moments 
m(k) = E[(Ns+-1) ... (Ns+- k+1)]. For simplicity, reference to the time interval is 
omitted. The Gram-Charlier-coefficients are given by 

k-1 . i k . 
qk = i!1 (_1)1 /N-i)! (m(k-i) -m1-l) fUr k > 0 (2.4) 

with qo = 1. Another similar but less suitable "inclusion-exclusion" expansion has 
already been given by Rice (1945). The difficulty in using such improvements is 
the enormous effort reqired to compute the higher order factorial moments. There
fore, a different strategy must be followed to maintain as far as possible the 
Poissonian nature of the excursions. 

For example, when both process variables S( 1") and time invariant random variab
les R are present, the Poissonian nature of out crossings is lost. Eq. (2.2) can 
furnish only conditional probabilities. The total failure probability must be 
obtained by integrating over the probabilities of all possible realizations of R. 
Then the equivalent to eq. (2.2) is 
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(2.5) 

In the general case, where all the different tyPes of random variables R, Q( 7) and 
S( 7) are present, the failure probability Pf(t) not only must be integrated over the 
time in-variant variables R, but an expectation operation must also be performed 
over the slowly varying variables Q( 7). In Schall et al. (1990) the following 
formula has been established, by making use of the ergodicity theorem 

Eq. (2.6) is a rather good approximation for the stationary case but must be 
considered only as a first approximation whenever S( 7) is non-stationary or the 
limit state function exhibits strong dependence on 7. The bounds given in 
eqs. (2.5) and (2.6) again are strict but close to the exact result only for small 
failure probabilities. 

3. Integration with Respect to Time-invariant Variables R 

If there are time-invariant random vectors R present, several possibilities exist, 
the most straightforward being numerical integration using the upper bound 
solution. However, even for small dimensions of R, the computational effort can be 
considerable. The computational problem can be reformulated as (Fujita et al. 
1987) 

Pf(t) = !P(T(R) - t ~ 0) = !P(g(R,UT) ~ 0) (3.1) 

where T(R) is a random life time with realizations t(r) given by the solution to the 
equation 

E[NS(t(r)lr)] + In(- <P(UT)) = 0 (3.2) 

and UT a realization of an auxiliary standard normal variable. Eq. (3.1) is 
appropriate for classical volume integration, for example by FORM/SORM, 
provided that the quantity E[Ns+(t(r) I r)] can be calculated. This formulation is 
always exact to the order of computation level (FORM or SORM). However for 
time varying limit state functions and/or non-stationary processes, the numerical 
solution of eq. (3.2), which must be performed at least twice in each iteration, 
becomes rather involved because ofrepeated calculations of E[Ns+(t(r) I r)], and the 
convergence of the algorithm may become slow if not unreliable. 

Alternatively and to an arbitrary accuracy, the expectation operation in eq. (2.4) 
can be performed either by crude Monte Carlo integration or with importance 
sampling. Provided the important region for integration is known by r it is 
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where ha(r) is the sampling density. Then, 

(3.4) 

The sampling density (standard space) can conveniently be chosen as the standard 
normal density with mean r determined from the upper bound solution and with 
covariance matrix I. A crude, usually conservative estimate is already obtained for 
ri = r. 

4. Relation between Mean Number of Crossing and Mean Number of Outcrossings 

Frequently, the quantity E[Ns+(t)Lr,qJ cannot be determined directly. Instead, the 
expected number of crossings EIN s( t) I r,q] is determined first arid then the 
expected number of outcrossings is obtained from the expected number of crossings 
by using the relation (see Cramer and Leadbetter,1967, and Plantec and Rackwitz, 
1989): 

2 E[N+(t)] ~ E[N(t)]+IP(g(S;t) S 0) -1P(g(S;O) S 0) (4.1) 

This formula is derived as follows. In noting the obvious algebraic identity 
a = (a + b)/2 + (a - b)/2 one can also write 

E[N+(t)] = 1/2 E[N(t)] + 1/2 (E[N+(t)]- E[N-(t)]) 

The number of out- and incrossings can differ at most by one. If the process starts 
and finishes in the safe domain the number of out- and incrossings are equal. The 
same is true if the process starts and finishes in the failure domain. Therefore, the 
difference N +( t) - N -( t) must be zero. The difference is + 1 if the process starts in 
the safe domain and finishes in the failure domain andjs -1 in the opposite case. 
The probability of the first event (start in V and finish in V) is 
1P[{g(S;O) > O} n {~(S;t) SO}] whereas for the second event (start in V and finish 
in VJ it is 1P[{g(S;O) S O} n {g(S;t) > O}]. Therefore: 

E[N+(t)]- E[N-(t)] 

= 1P[{g(S;O) > O} n {g(S;t) S O}]-IP[{g(S;O) S O} n {g(S;t) > O}] (4.2) 

According to the assumption of a sufficiently mixing process, the two events at 
time 0 and at time t, respectively, may be assumed independent for large t, and 
eq. (4.1) follows. 
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Eq. (4.2) can be simplified further with some loss of accuracy. Three cases with 
respect to the density of crossings in time must be distinguished. The stream of 
crossings is most dense either at r = 0, at r = t or at some point in 0 ~ r ~ t, 
respectively. Then 

for r - 0: 

2 E[N+(t)] :::J E[N(t)]-IP(g(S;O) ~ 0) (4.3a) 

for r = t: 
2 E[N+(t)] ::: E[N(t)] + lP(g(S;t) ~ 0) (4.3b) 

for 0 < r < t: 

2 E[N+(t)] ::: E[N(t)] (4.3c) 

5. Gaussian Processes 

For convenience of notation, reference to the vectors r and q is now temporarily 
omitted. We first derive a general outcrossing formula. Let V = {g(s;r} ~ OJ be the 
failure domain in the standard space with boundary av varying in time. The latter 
is assumed to be at least locally twice differentiable in x and r: 

av = av(s;r) = {s,r; g(s;r) = O} (5.1) 

Following Belyaev (1972) and Bolotin (1981) the out crossing rate of the process 
S( r) through the hypersurface av during a time interval Ar can be defined as: 

v+(av;r) = Ii mhlP(N(Ar) = 1) = Ii mhlPl(av;Ar) (5.2) 
Ar~O r Ar~O r 

As usual, regularity of the point process of crossings is assumed, i.e. there is 
IP(N(Ar) > 1) = o(Ar). IPl(av;Ar) is_the probability of a crossing of av by the 
process S( r) from the safe domain V( r) = {g(s,r) > O} into the failure domain 
V = {g(s,r) ~ O} during Ar. IPl(av;Ar) can then be given by 

pl(av;Ar) = 1P({S(t) E A(av)} n {Sn(t) > a\t(x;t)}) (5.3) 

for r ~ t ~ r+Ar and where Sn(t) =: nT(s) Set) is the projection of Set) on the 
normal nT(x) of av at the point s, 8V(s;t) is the time-variation of the surface av 
at s and l1(av) is a thin layer envelQping avo Introducing the joint probability 
density function 'Pn+l(S,Sn;r) of S and Sn allows one to express IPl by the following 
integral: 

P l( ave r); Ar) = f f 'Pn+l(S,Sn;r) ds dSn 
A(fJv) Sn>a\t(Sjr) 

(5.4) 
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The integral over ~(av) can be transformed into a surface integral over avo The 
layer ~(lJV) is understood as the sum of infinitely small cylinders with height 
(Sn(r)-av(s;r)) ~r and base ds(s). ds(s) is a surface neighborhood of the crossing 
point. Hence, integrating over s yields: 

Pl(av;~r)= f. 1: . (sn - 8\I(s;r)) ~+l(S,Sn;r) ~r dSn ds(s) 
BY Sn>av(s;r) 

(5.5) 

Introducing the density function of Sn conditional on S = s, proceeding to the limit 
according to eq. (5.2) and taking the integral over rin [O,tJ as required in eq. (2.2) 
we find an integral for the mean number of outcrossings: 

t 
E[N+(av;t)J = f f f (Sn -oV(s;r)) 'Pl(snIS(r)=s) ~(x) dSn ds(s) dr 

o BY Sn>oV(s;r) 
(5.6) 

Analogously, the expected number of incrossings can be determined. By combining 
the two contributions, we obtain the expected number of crOSSing: 

t 
E[N(av;t)J = f f. i ISn-oV(x;r)I 'Pl(snIS(r)=s) ~(s) dSn dS(s) dr 

o BY IR . 
(5.7) 

By considering the fact that ~he above is achieved by fixing the time r, we note 
that the time-variation av(s;r) of the surface av corresponds to the 
time-variation of the function g(s;r) and does IJ.ot involve the time variation of its 
gradients. The conditional density (unction of Sn can be given explicitly by using 
the well known formulae for the conditional mean and variance of a Gaussian 
variable: 

E[Sn( r) I S( r) = sJ = nT(s;r) RT s = m(s;r) = m 

. - •. 2 
Var[Sn( r) I S( 1')= s]= nT(s;r) [R - RTRJ n(s;r) =(1 0 

Note that m depends explicitly on s. The complete formulation reads 

(5.8a) 

(5.8b) 

as outlined in section 2. The mean number of crossings also involving the slowly 
varying sequence Q( 1') is then 

EQ[E[N(t I q,r)]] = 

t 
= ~nqf avfsn>oVIa (Sn-oV) fSnl S=s(sn)fs(s)fQ(q) dr dSn ds(s) dq (5.9) 
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with fJV = ((q,s,r): g(r,q,s,r) = O} and {Ji; = -mls' If the upper bound solution is 

used in eq. (2.6), the vector R can be included in the vector Q. This is the general 
formula for the mean number of crossings. 

Scalar processes, which are by far the most important, can be dealt with easily in 
this framework. In particular, eq. (5.9) reduces to 

t 
EQ[E[N(tlq,r)]] = r iris - b,(r,q)I fS(s) fS(x) fQ(q) dr dS dq 

JlRnq IR Jo 
(5.10) 

where by introducing z = sl Us into eq. (5.10) we find 

EQ[E[N+(tlq,r)]] = f 1 Ik(e)1 exP(--21 f(e)) de 
(2 ) 1+nq/2 

IRxlRnqx[O,t] 7r 

(5.11) 

with e = (z,q,r)T (5.12a) 

k( e) = Us z - b,( r,q) (5.12b) 

f( e) = z2 + qTq + b2( r,q) (5.12c) 

S(r) = Y(r) - y(r) 
u(r) (5.12d) 

b( r r q) = a( r,r '~) - y( r) , , u r) (5.12e) 

g( r,r,q,Y) = b( r,r,q) - S( r) (5.12f) 

a( r,q,r) the original threshold function and b,( r,q) the time derivative of the 
normalized threshold. It is seen that the original process Y( r) with mean value 
function J.L( r) and standard deviation function u( r) is standardized as well as the 
threshold. g( r,r,q, Y) is the usual state function. It is necessary to first locate the 
point (!' = (z*,q*,r)T which minimizes f(e) in [O,t]. Then expansions for functions f 
and k are used in the neighborhood of (!'. 

H r is an interior POint of [Q,t], these expansions are 

*2 * * 1 f( e) = (b +q Tq ) + "2 et H e 
k(e) = cT e 

(5.13a) 

(5.13b) 
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1 ... 0 ... 0 

where: H = 2 0 b * b :"1 
(5.13c) 

b *b~"I 

(5.13d) 

* and Bq denotes the Hessian matrix of b in the q-space at e, 
* 82b * 82b 

bi"! = 8qi87"1 e and b"l"l = Orrl f: 

Vqb* is the gradient ofb in the q-space. Using the usual asymptotic arguments, 
one obtains by extending the integration over 7" to the entire 7"-axis, the expression 

IT r is a boundary POint of [O,t] , the expansions are 

*2 * * * * 
f( e) = (b +q T q ) + 2b b"l 7" + 1/T K 1/ 

* k( e) = b"l + cT 'IJ 

with 

I~::~·Bq+ Vqb (Vqb )T] 
* * cT= (O"S' - bl"T, ... ,- bnq"l) 

and 1/T = (z,q). One determines 

(5.14) 

(5.15a) 

(5.15b) 

(5.15c) 

(5.15d) 

*2 * * [ ] 1/2 1 exp(- ~ b + Tq )) cTK- iC 
EQ[E[N(tlq,r)]]::: -~ 2~b*b*T Idet(K)1 (2rp(a)-a+2a~(a)) 

(27r) 2 7" 
(5.16) 

where: 

(5.17) 

For the stationary case the integration over time is trivial and the foregoing 
formulae can be reduced substantially. 
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Extensive numerical studies have shown that substantial improvements above the 
asymptotic solution can be achieved by treating the integration over time 
separately. In doing so, the second order interaction terms between q-variables 
and time l' are neglected, but integration over time of the first or second order ex
pansion of b( 1') can be performed exactly (see also Hagen, 1992, for another route 
of improvement). 

The formulae for the interior point of [Ott] are 

E [E[N(tlqr)]] N 2 u.l{3 ) [w~ + CTH-lc] 1/2 [~(J(h-r-r)(t2-rH~(J(h'T'T)(tl-r)] 
Q ,N '1'\ qs Idet(B) I J(h-r-r) 

(5.18) 
now with c as in eq. (5.15d) except the last term, H as in eq. (5.15c) with the last 
column and row deleted, h-r-r = b( 7*) b-r-r( 7*) and {3qs = (b*2 + q*Tq*)1/2. Further 
there is 

2 82 
wo( 1') = ~ Ps(tbh) 11'1:1'2:1' (5.19) 

The stationary solution is readily obtained as 

[ 1 ] 1/2 
EQ[E[N+(t I q,r)]l :::J(2~) vi..{3qs) I det(B) I I t2 - tIl (5.20) 

For the boundary POint of [Ott] 

2 T 1/2 * * 
E [E[N+(tlqr)]l N vi...8 ) [wo + c K-lc] [1 - exp[- b Ib-r I (tr-t l)l] 

Q ,N qs Idet(K) I b*lb:1 

x (2 vi..a) - a + 2a ~(a)) (5.21) 

with c, K and a as in eqs. (5.15d), (5.15c) and (5.17), respectively, is obtained. 
Note that ~(- x) ::: vi..x)/x for large x. First order results with respect to the 
q-variables can be recovered by setting the terms involving the matrices Hand K 
equal to unity. However, this is not recommended in view of the normally small 
dimension of the vector q. A first order result with respect to time integration can 
also be established; it is rather inaccurate. 

6. Gaussia.n Vector Processes 

The general vectorial case is not much more difficult as seen from eqs. (5.9). 
However, the dimension of S( 1') can be very large whereas the dimension of the 
sequence Q usually remains small. One may think of a vessel structure under 
Gaussian pressure loading and where the pressure field is reduced appropriately by 
local averaging to a vector process the components of which act at the nodal points 
of the structural finite element model. Therefore, due to the numerical effort for 
the determination of the Hessian in the q-s-space, a rigorous second order solution 
may require large numerical effort. But a first order approximation with respect to 
the vector S( 1') may be used while the integration with respect q is kept "exact" to 
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second order. Thus, laborious evaluations of second order derivatives of the limit 
state function are avoided. However, certain errors may be expected, and no direct 
error quantification can be provided. At most, the potential error with respect to 
the s-integration can be crudely estimated theoretically by comparing the well 
known first order solution with the asymptotic solution for the stationary case 
given by Breitung (1989). 

The conditional problem (the condition being the vector r) is first formulated in 
the full, standard q-s-r-space as usual, and the critical point is found. Then, the 
vector S( r) is replaced by a new standardized scalar process W( 7) according to 

g(s, q, r, 7) 

_ g(s*, g, r, r*) - aIs* + iiI II s _ g(s*, g, r, 7*) + aIs* () 
- nasll as - II as II + w 6.1 

where now W( 7) has correlation coefficient function 

(6.2) 

and, thus, for 7 = r 

(6.3) 

Hence, the solution for the scalar case can be used with modified limit state funct
ion. 

7. Renewal Rectangular Wave Processes 

If the sequence of amplitudes 51> 52, 53, ... is an independent sequence (also inde
pendent of the jump times, of course) with distribution function Fs(s;q,r}, then the 
mean number of exits into the failure domain V = {5 ~ a} is 

(7.1) 

Here, q is an ergodic sequence for the parameters of the distribution function of 5 
and r is a possibly random, non-ergodic vector. For a n-dimensional renewal 
process with renewal rates Ak and marks Sk with distribution function Fsk(x;q,r), 
it can be shown that (Breitung and Rackwitz,1982) 

n 
E[N+(tbt2;q,r)] = (t2-tl).E Ai 1P({SiE V;q,r} n {Sf E V;q,r}) (7.2) 

1=1 

where iJ and V are the safe and failure domain, respectively. Si+ is the total load 
vector when the i-th component of the renewal process had a renewal. Si- denotes 
the total load vector just before the renewal. Therefore, Si- and Si+ differ by the 
vectors Si which are to be introduced as independent vectors in the first and the 
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second set. Applying asymptotic concepts we can show, that (Breitung, 1995) 

(7.3) 

with IP({S E V(Q)jr}) computed as a volume integral in the usual manner. This 
formula can be slightly improved for not small probabilities IP( {S E V(Q)jr}) by 
replacing the term IP( {S E V(Q)jr}) by IP( {S E V(Q)jr}) -
1P({Si- E V(Q) n {Si+ E V(Q)jrJ). In numerous studies it was found that this 
correction remains usually insignificant. Note that integration with respect to Q is 
performed simultaneously with the integration with respect to S. 

The non-stationary case is not substantially more difficult. The renewal rates are 
assumed to vary slowly in time; they are denoted by Ak( r), k = 1,2, ... ,n. Also, the 
distribution function of S may now contain distribution parameters r( r), and the 
failure domain can be a function of time, i.e. V = {g(s,q,r,r) ~ OJ. Then, eq. (7.3) 
needs to be modified as 

h n 
E[N+(tl,t2jr)] N i E A.(r) IP({S E V(Q,r)jr}) dr 

t 1 i=1 1 

(7.4) 

The time-volume integral can be approximated in two steps. The probability 
IP({S E V(Q,r)jr}) can be computed in the usual way for every time r. At first, the 
critical point on the failure surface is located in the s-q-r-space. At the critical 
point (s:l(,q*,r*) the probability IP({S E V(Q,r)jr}) is estimated by 

IP({S E V(Q,r)jr}) = Cl>(-,8(r*)) >C C(s*,q:l:,r*) (7.5) 

with C(s*,q*,r*) the curvature correction term (in the s-q-space). Then, one can 
write 

f t2 n 
E[N+(tl,t2jr)] N E A.(r) Cl>(-,8(r)) >c C(s:l:,q*,r) dr 

t 1 i=1 1 

n ft2 
~ C(s*,q*,r*) E A.(r*) Cl>(-,8(r)) dr 

i=1 1 t 1 

n Jt2 = C(s*,q*,r*) E A.(r*) exp[ln[Cl>(-,8(r))]] dr 
i=1 1 t 1 

n Jt2 = C(s*,q*,r*). E \(r*) exp[f(r)] dr 
1=1 t 1 

(7.6) 

where f( r) = In[ Cl>( - ,8( r))] with derivatives 
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f'( r) = - ~f= ~f;H a~}r) ~ - f1( r) a~}r) (7.7a) 

£11(r) = ~f= ~;B [[¥)2 [f1(r) + ~f= ~f;B] + f1(r)~] 

~ [[a~}r)]2 2f12(r) + f1(r) a2~}r)] (7.7b) 

While af1/ ar is directly obtained as a parametric sensitivity, the second derivative 
a2f1( r)/ ar2 is be determined numerically by a simple forward difference scheme for 
the first order derivatives. As seen, the correction factor C(s*,q*,r) is assumed to 
vary only slowly in time and therefore is replaced by C(s*,q*,r). As for normal 
processes, we have separated integration over r from the integration over s and q. 
Application of the method of asymptotic integral approximations then yields 

r = t1 or a~}r) > 0: 

E[N+(tbt2;r)] ~ C(s*,q*,tl). E \(tl) ~(-f1(tl)) {=e =....>...:....l+r.7~=t=,4-T+'~ 
1=1 

7* = t2 or a~}r) < 0: 

t1 < r < t2 or a~}r) = 0 and a2~}r) > 0: 

E[N+(tl,t2;r)] ~ C(s*,q*,r\!1 ,\( r) ~(- f1( r)) [I r*( 7"*) I] 1/2 

x{ ~(I £11( r) 11/2 (t2 - r) - ~(I £11( r) 1112 (tl - 7*)} (7.10) 

As a generalization, the jumps can also be associated with vectors. In this case the 
summation over the terms in eqs. (7.8) to (7.10) extends only over all jump 
vectors. 

8. Intermittent Processes 

An important case is when the contributing processes are intermittent. Below we 
just refer to some results in the literature for easy reference. According to 
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Wen (1977), Winterstein (1980), Shinozuka (1981) the stationary out crossing rate 
can be given by 

n n n n n n 
v+(a) = .1: 1P1(i) v(i) + .1: 1 .1:1P2(i,j) v(iJ') + .1: 1 .1: 1 k1: 1P3(i,j,k) Vl'i,J',k) 

1= 1= J= '1= J= = 
i/=j i/=j/=k 

+ ... + P V(12 ) n " ... ,n (8.1) 

where the probabilities Pm (M) are the conditional probabilities of occurrence of 
exactly m members of the set M of actions which assumed non-zero values, and 
VIm) are the upcrossing rates if exactly the set M of load is "onl!. The possible 
occurrence and thus also exceedence events are subdivided into a exhaustive 
system of disjoint subevents. A multivariate Poisson renewal process for the 
occurrence events of the different actions is reasonable, which implies exponential 
distributions with parameters Ai for the times between renewals. If it is further 
assumed that the durations of the action pulses are independently exponentially 
distributed with parameters p,i, but truncated at the next renewal one can derive 
the occurrence probabilities by making use of a result in queuing theory. Note that 
duration will be truncated at new renewals. With Pi = Ail P,i the stationary 
probability that no pulse is present is (Shinozuka, 1981) 

n 
Po = 1/ II (1 + Pm) 

m=l 

and that there are just one, two, three, .... pulses on 

n 
p (i) = p. / II (1 + P ) 

1 1 m=l m 
n 

p(i,j)=p.p./ II (l+p )'i/=j 
2 1 J m=l m' 

n 
P~ i,j,k) = PjPJ'Pk/ II (1 + Pm); i/=j,i/=k,j/=k 

m=l 

n n 
Pn = II Prj II (1 + Pm) 

r=l m=l 

(8.2a) 

(8.2b) 

(8.2C) 

(8.2d) 

(8.2e) 

In eq. (8.1) the rates of threshold crossings for combined actions can be significant
ly larger than if only one action is present. On the other hand, the occurrence 
probabilities that more than one action is active simultaneously is rapidly 
decreasing with the number of such short-term actions. Combination of 
short-term. actions with long-term action is just a limiting case (Ai/P,i -11). For 
the case of Erlang-distributed durations with Pi = Ai/(kiJ.ti) and Poissonian arrival 
times, a similar result has been given by Shinozuka (1981). It can be shown that 
~ ~ 
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more sophisticated model only little extra can be achieved, so that the classical 
Poissonian model should suffice in most practical cases. The mean duration of each 

load combination is simply t Prit M) with t the reference period considered. 

Slightly different and somewhat simplified models for load coincidences have been 
given by Winterstein (1980) and Wen (1978). They are especially useful for sparse 
load pulses. The above results can be generalized in various ways. For example, 
one may introduce certain dependencies between the various occurrence events. 
Clustering of events can be considered. This is modeled by a parent Poisson 
renewal process which generates, with some random delay, children processes with 
independent marks and independent durations. This increases the probability of 

overlap in time and thus the probabilities Pm{M) in eq. (8.1) (see Wen, 1990, and 
Schrupp and Rackwitz, 1988). It is important to note that the sequences of arrivals 
as well as of durations must be stationary. Within a load coincidence, the processes 
may, however, be non-stationary and thus may also have non-stationary crossing 
rates. The load coincidence method is no longer suitable if arrivals and durations 
form non-stationary sequences. 

9. Summary 

The theory of stationary crossings into failure domain is well established for a 
number of important stationary processes. This is not so for the non-stationary 
case. Two important cases, the scalar non-stationary Gaussian process and 
non-stationary rectangular renewal processes are discussed in more detail. A 
device is given to approximately reduce Gaussian vector processes to scalar 
processes. In both cases use is made of asymptotic concepts. From numerical 
studies it is found that some simplifying modifications are necessary. In particular, 
integrations over time need to be performed in a non-asymptotic sense. 
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SIMULATION OF STOCHASTIC PROCESSES AND FIELDS 
TO MODEL LOADING AND MATERIAL UNCERTAINTIES 

G. DEODATIS 
Department of Civil Engineering and Operations Research 
Princeton University, Princeton, NJ 08544, USA 

1. Introduction 

Several methods are currently available to solve a large number of problems in 
mechanics involving uncertain quantities described by stochastic processes, fields 
or waves. At this time, however, Monte Carlo simulation appears to be the 
only universal method that can provide accurate solutions for certain problems in 
stochastic mechanics involving nonlinearity, system stochasticity, stochastic sta
bility, parametric excitations, large variations of uncertain parameters, etc., and 
that can assess the accuracy of other approximate methods such as perturbation, 
statistical linearization, closure techniques, stochastic averaging, etc. The major 
advantage of Monte Carlo simulation is that accurate solutions can be obtained 
for any problem whose deterministic solution (either analytical or numerical) is 
known. The only disadvantage of Monte Carlo simulation is that it is usually 
time-consuming. It is the author's belief, however, that in the years to come, 
the continued evolution of digital computers will further enhance the usefulness 
of Monte Carlo simulation techniques in the area of engineering mechanics and 
structural engineering. 

One of the most important parts of the Monte Carlo simulation methodology 
is the generation of sample functions of the stochastic processes, fields or waves in
volved in the problem. The generated sample functions must accurately describe 
the probabilistic characteristics of the corresponding stochastic processes, fields 
or waves that may be either stationary or non-stationary, homogeneous or non
homogeneous, one-dimensional or multi-dimensional, uni-variate or multi-variate, 
Gaussian or non-Gaussian. From the rich bibliography related to the various meth
ods currently ~vailable for generating such sample functions, the following repre
sentative publications are mentioned here: Shinozuka and Jan 1972 (introduction 
of the spectral representation method), Gersch and Yonemoto 1977 (multi-variate 
ARMA model), Elishakoff 1979 (covariance decomposition method to simulate 
imperfections), Polhemus and Cakmak 1981 (ARMA model with frequency and 
amplitude modulation to account for non-stationarity in ground motion), Spanos 
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and Hansen 1981 (sea wave simulation by passing white noise through a recur
sive digital filter), Spanos 1983 (ARMA model for ocean waves), Elishakoff 1983 
(book with chapter on simulation), Samaras et al. 1985 (multi-variate ARMA 
model), Mignolet and Spanos 1987a, 1987b (stability and invertibility aspects of 
AR to ARM A procedures for multi-variate random processes), Kozin 1988 (re
view paper on ARMA models), Elishakoff 1988 (covariance decomposition method 
for two-dimensional non-homogeneous fields), Hasofer 1989 (time- and frequency
domain hybrid simulation method), Yamazaki and Shinozuka 1990 (covariance 
decomposition method with statistical preconditioning), Fenton and Vanmarcke 
1990 (simulation of stochastic fields by local average subdivision), Winterstein 
1990 (simulation of stochastic processes using Fast Hartley Transform), Kareem 
and Li 1991 (simulation of non-stationary vector processes using an FFT-based ap
proach), Li and Kareem 1993a (simulation of multi-variate processes using a hybrid 
discrete Fourier transform and digital filtering approach), Li and Kareem 1993b 
(ARMA, discrete convolution, discrete differentiation and discrete interpolation 
models for ocean wave processes), Soong and Grigoriu 1993 (book with chapter 
on simulation), Grigoriu 1993b (simulation of non-stationary processes by random 
trigonometric polynomials), Grigoriu and Balopoulou 1993 (simulation method 
based on sampling theorem), Ramadan and Novak 1993, 1994 (asymptotic and 
approximate spectral techniques to simulate multi-dimensional, multi-variate and 
anisotropic processes and fields), Gurley and Kareem 1995 (simulation of random 
processes using higher order spectra and wavelet transforms), Spanos and Zeldin 
1995 (simulation of random fields using wavelet bases), Grigoriu 1995 (book with 
chapter on simulation of Gaussian and non-Gaussian processes). 

Among the various methods mentioned above to generate sample functions of 
stochastic processes, fields and waves, the spectral representation method is one of 
the most widely used today. Although the concept of the method existed for some 
time (Rice 1954), it was Shinozuka (Shinozuka and Jan 1972, Shinozuka 1972) who 
first applied it for simulation purposes including multi-dimensional, multi-variate 
and non-stationary cases. Yang (1972, 1973) showed that the Fast Fourier Trans
form (FFT) technique can be used to dramatically improve the computational 
efficiency of the spectral representation algorithm, and proposed a formula to sim
ulate random envelope processes. Shinozuka (1974) extended the application of 
the FFT technique to multi-dimensional cases. Recently, Deodatis and Shinozuka 
(1989) further extended the spectral representation method to simulate stochas
tic waves, Yamazaki and Shinozuka (1988) developed an iterative procedure to 
simulate non-Gaussian stochastic fields, and Grigoriu (1993a) compared two dif
ferent spectral representation models. Three recent review papers on the subject 
of simulation using the spectral representation method were written by Shinozuka 
(1987) and Shinozuka and Deodatis (1988 and 1991). 

In this paper, spectral representation algorithms are provided to simulate: 
(1) one-dimensional, uni-variate (1D-1 V) stationary stochastic processes, (2) 
multi-dimensional, uni-variate (nD-1 V) homogeneous stochastic fields, (3) one-
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dimensional, multi-variate (lD-mV) stationary stochastic processes, and (4) one
dimensional, multi-variate (lD-mV) non-stationary stochastic processes. Numeri
cal examples are provided for three ofthe above four cases. Specifically, an example 
involving material properties (e.g. strength, elastic modulus, density, etc.) is pro
vided for the second case, an example involving wind velocity at several locations 
is provided for the third case and an example involving non-stationary ground 
motion at several locations on the ground surface is provided for the fourth case. 

2. Simulation of ID-l V Stationary Stochastic Processes 

Let fo(t) be a ID-IV stationary stochastic process with mean value equal to zero, 
autocorrelation function RJoJo(r) and two-sided power spectral density function 
SJoJo(w). Then, the following relations hold: 

e[Jo(t)] = 0 

e[fo(t + r)fo(t)] = RJoJo(r) 

SJoJo(w) = ~ Joo RJoJo(r)e-iw7" dr 
27r -00 

RJoJo(r) = i: SJoJo(w)eiw
7" dw 

(1) 

(2) 

(3) 

(4) 

where the last two equations constitute the well-known Wiener-Khintchine trans
form pair. 

In the following, distinction will be made between the stochastic process fo(t) 
and its simulation f(t). The stochastic process fo(t) can be simulated by the 
following series (Shinozuka and Deodatis 1991) as N -+ 00; 

where: 

and: 

N-l 

f(t) = .j2 I: An· cos(wnt + 4?n) 

Wn = nb.w 

Ao =0 

n=O 

n= 0,1,2, ... ,N - 1 

n = 0, 1,2, ... ,N-l 

b.w = Wu 
N 

or 

(5) 

(6) 

(7) 

(8) 

(9) 

In Eq. (8), Wu represents an upper cut-off frequency beyond which the power spec
tral density function SJoJo(w) may be assumed to be zero for either mathematical 
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or physical reasons. As such, Wu is a fixed value and hence llw -+ 0 as N -+ 00 so 
that N llw = Wu. The following criterion is usually used to estimate the value of 

l W

'" SJoJo(w)dw = (1- E) 100 
SJoJo(w)dw 

where E « 1 (e.g. E = 0.01, 0.001). 

(10) 

The <Po, <Pl, <P2, ..• , <PN-l appearing in Eq. (5) are independent random phase 
angles distributed uniformly over the interval [0,271"]. 

The condition set in Eq. (9) is necessary (and must be forced if SJoJo(O) #- 0) 
to guarantee that the temporal average and the temporal autocorrelation function 
of any sample function are identical to the corresponding targets, &(fo(t)] = 0 and 
RJoJo(r), respectively (Shinozuka and Deodatis 1991). However, in order to avoid 
having to impose the condition shown in Eq. (9), the alternative of using the 
frequency shifting theorem (e.g. Papoulis 1962) was proposed by Zerva (1992), 
but with the side effect of doubling the period of the simulated field. 

Under the condition ofEq. (9), it is easy to show that the simulated stochastic 
process J(t) given by Eq. (5) is periodic with period To: 

,..,., _ 271" 
.Lo- -

llw 
(11) 

Equation (11) indicates that the smaller llw, or equivalently the larger N under a 
specified upper cut-off frequency value W u , the longer the period of the simulated 
stochastic process. 

Another very important point is that the simulated stochastic process J(t) 
is asymptotically Gaussian as N -+ 00 because of the multi-variate central limit 
theorem (Shinozuka and Deodatis 1991). 

At this point it should be noted that when generating sample functions of the 
simulated stochastic process according to Eq. (5), the time step llt separating the 
generated values in the time domain has to obey the condition: 

(12) 

The condition set on llt in Eq. (12) is necessary in order to avoid aliasing according 
to the sampling theorem (e.g. Bracewell 1986). 

It can be shown (Shinozuka and Deodatis 1991) that the ensemble expected 
value &[J(t)] and the ensemble autocorrelation function RJJ(r) of the simulated 
stochastic process J(t) are identical to the corresponding targets, &[Jo(t)] = 0 and 
RJoJo(r), respectively. 

Another very important property of the simulated stochastic process is the 
following: each and every sample function generated using Eq. (5) is ergodic in 
the mean value and in correlation. It can be shown (Shinozuka and Deodatis 
1991) that the temporal average and the temporal autocorrelation function of 
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any sample function are identical to the corresponding targets, e[Jo(t)] = 0 and 
RioJo (r), respectively. In addition, it can be shown that these two identities are 
valid only when the length of the sample function is either equal to the period To 
or when it approaches infinity. 

Finally, it should be mentioned that the cost of digitally generating sample 
functions of the simulated stochastic process using Eq. (5) can be drastically 
reduced by using theFFT technique (Shinozuka and Deodatis 1991). 

3. Simulation of nD-l V Homogeneous Stochastic Fields 

In this section, the theory and the simulation algorithm for multi-dimensional 
stochastic fields are presented for the special case of two-dimensional fields. This 
is done for the sake of simplicity in the notation and because of space limitations. 
For the (straightforward) extensions to three-dimensional and multi-dimensional 
fields, the reader is referred to Shinozuka and Deodatis (1995). 

Consider a 2D-IV homogeneous stochastic field fO(:nl, :n2) with mean value 
equal to zero, autocorrelation function RJoJo(el,6) and power spectral density 
function SJoJo(/'i,l, /'i,2)' 

For every 2D-IV homogeneous stochastic field, the following relations con
cerning the symmetry of RJoJo (6,6) and SJoJo (/'i,l, /'i,2) are valid: 

RJoJo(6,6) = RJoJo(-eb -6) 

SJoJo(K.b/'i,2) = SJoJo(-/'i,l,-/'i,2) 

(13) 

(14) 

For the special case of a "quadrant" 2D-l V homogeneous stochastic field (Van
marcke 1983), the following relations concerning the symmetry of R Joio (6, 6) and 
SJoJo(/'i,l, /'i,2) are valid: 

RioJo (6,e2) = R JoJo (el,-6) = Rioio(-6,6) = RJoJo(-el,-6) (15) 

SJoJo(K.b/'i,2) = SJoJo(/'i,l,-/'i,2) = SioJo(-/'i,l,/'i,2) = SJoJo(-/'i,l,-/'i,2) (16) 

In the following, distinction will be made between the stochastic field fO(:nl, :n2) 
and its simulation f(:nl, :n2)' 

It can be shown (Shinozuka and Deodatis 1995) that a stochastic field 
fO(:nl, :n2), with RJoJo(el,6) and SJoJo(/'i,l' /'i,2) following the symmetries described 
in Eqs. (13) and (14), can be simulated by the following series as Nb N2 -+ 00 

simultaneously: 

(17) 
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where: 

and: 

A n1n2 = V251010(K1nll K2n2).6.K1.6.K2 

A n1n2 = V251010(K1nll-K2n2).6.K1.6.K2 

G. DEODATIS 

(18) 

(19) 

(20) 

(21) 

AOn2=Anl0=0 for n1=0,1, ... ,N1-1 and n2=0,1, ... ,N2 -1 (22) 

AOn2 = A n10 = 0 for n1 = 0, 1, ... , N1 - 1 and n2 = 0, 1, ... , N2 - 1 (23) 

Equations (22) and (23) are equivalent to: 

5 1010 (0, K2) = 51010(Kl, 0) = 0 for - 00 < K1 < 00 and - 00 < K2 < 00 

(24) 
In Eq. (21), K1u and K2u are the upper cut-off wave numbers corresponding to the 
:1:1 and :1:2 axes in the space domain, respectively (refer also to Section 2 about 
a similar discussion for ID-IV processes). This implies that the power spectral 
density function 51010(K1, K2) is assumed to be zero, for either mathematical or 
physical reasons, outside the region defined by: 

and (25) 

The <I>~1,)n2 and <I>!:!n2 j n1 = 0, 1, ... , N1 - 1 j n2 = 0, 1, ... , N2 - 1 appearing 
in Eq. (17) are independent random phase angles distributed uniformly over the 
interval [0,271"]. 

The conditions set in Eqs. (22) and (23) are necessary (and must be enforced 
if 51010(0, K2) = 51010(K1, 0) =I 0) to guarantee that the spatial average and the 
spatial autocorrelation function of any sample function are identical to the cor
responding targets, £[/0(:1:1, :1:2)] = 0 and R101o(~1' 6), respectively (Shinozuka 
and Deodatis 1995). However, in order to avoid having to impose the conditions 
shown in Eqs. (22) and (23), the alternative of using the frequency shifting theo
rem (e.g. Papoulis 1962) was proposed by Zerva (1992), but with the side effect 
of quadrupling the two-dimensional period of the simulated field. 

It is straightforward to show that the simulated stochastic field 1(:1:1, :1:2) given 
by Eq. (17) is periodic along the :1:1 and :1:2 axes with periods: 

along the :1:1 axis (26) 

along the :1:2 axis (27) 
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Equation (26) indicates that the smaller ~1I:1' or equivalently the larger N1 under 
a specified upper cut-off wave number value 1I:1u, the longer the period of the 
simulated stochastic field along the :1:1 axis. A similar conclusion can be drawn 
from Eq. (27) concerning the period of the simulated stochastic field along the :1:2 

axlS. 

Another very important point is that the simulated stochastic field 1(:1:1, :1:2) 

is asymptotically Gaussian as N 1 , N2 -... 00 simultaneously, because of the central 
limit theorem (Shinozuka and Deodatis 1991). 

At this point it should be noted that when generating sample functions of the 
simulated stochastic field according to Eq. (17), the space increments ~:l:1 and 
~X2 along the Xl and X2 axes respectively, separating the generated values in the 
two-dimensional space domain, have to obey the conditions: 

(28) 

The conditions set on ~X1 and ~X2 in Eq. (28) are necessary in order to avoid 
aliasing according to the sampling theorem (e.g. Bracewell 1986). 

It can be shown (Shinozuka and Deodatis 1995) that the ensemble expected 
value £[I(X1, X2)] and the ensemble autocorrelation function RJJ(6,6) of the 
simulated stochastic field l(x1, X2) are identical to the corresponding targets, 
£[JO(X1, X2)] = 0 and Rfofo(~1, 6), respectively. 

Another very important property ofthe simulated stochastic field is the follow
ing: each and every sample function generated by Eq. (17) is ergodic in the mean 
value and in correlation. It can be shown (Shinozuka and Deodatis 1995) that the 
spatial average and the spatial autocorrelation function of any sample function are 
identical to the corresponding targets, £[j0(X1,X2)] = 0 and Rfofo(~1'~2)' respec
tively, only when the rectangular area L1:1 X L1:. over which the sample function 
is simulated is either equal to the period (L1:1 = L1:10 and L1:. = L1:.o) or when it 
approaches infinity (L1:1 -... 00 and L1:. -... (0). 

Finally, it should be mentioned that the cost of digitally generating sample 
functions ofthe simulated stochastic field using Eq. (17) can be drastically reduced 
by using the FFT technique (Shinozuka and Deodatis 1995). 

3.1 SPECIAL CASE - QUADRANT FIELDS 

Consider a quadrant, 2D-l V homogeneous stochastic field 10(X1' X2) with mean 
value equal to zero and autocorrelation and power spectral density functions pos
sessing the symmetries described in Eqs. (15) and (16), respectively. Such a 
quadrant field can be simulated by the following series as N 1 , N2 -... 00 simultane
ously: 

N 1 -1N.-1 

I(X1,X2) = v'2 L L An1n2 [cos (1I:1n1X1 + 1I:2n.X2 + <I?~1)n.) 
n1=0 n.=O 



268 G. DEODATIS 

+cos ( 1I:1n1:1:1 - 1I:2n,:l:2 + <I?!;l)n 2 ) ] (29) 

Note that the simulation formula for quadrant fields (Eq. (29)) is slightly simpler 
than the corresponding formula for the general case (Eq. (17)), taking advantage 
of the symmetry of Slolo{1I:1I 11:2) described in Eq. (16). All parameters appearing 
in Eq. (29) have already been defined with reference to Eq. (17). 

3.2 NUMERICAL EXAMPLES 

Consider a two-dimensional homogeneous stochastic field fO{:l:1' :1:2) with mean 
value equal to zero, autocorrelation function RIolo (6, 6) given by: 

2 [(~1)2 (6)2] R lolo (!1I6) = (J" exp - b1 - b2 ' -00 < !1 < 00 and - 00 < 6 < 00 

(30) 
and corresponding power spectral density function Slolo(1I:1, 11:2) given by: 

2 b1b2 [(b111:1)2 (b2 11:2 ) 2] Slolo(1I:1, 11:2) = (J" 471" exp - -2- - -2- , 

- 00 < 11:1 < 00 and - 00 < 11:2 < 00 (31) 

In Eqs. (30) and (31), parameter (J" is the standard deviation of stochastic field 
fO(:l:1' :1:2), while parameters b1 and b2 are proportional to the correlation distance 
of the stochastic field along the :1:1 and :1:2 axes, respectively. 

At this juncture it should be mentioned that the expression for the power 
spectral density function shown in Eq. (31) has been used by Shinozuka and 
Lenoe (1976) to model the spatial variation ofthe (random) fluctuations of material 
strength around a constant mean value. 

The following three cases are now selected for demonstration purposes: 

Case 1 : (J" = 1, b1 = 1 m, b2 = 1 m, 11:11.1 = 5 rad/m, 11:21.1 = 5 rad/m (32a) 

Case 2: (J"= 1, b1 = 4 m, b2 = 4 m, 11:11.1 = 1.25 rad/m, 11:21.1 = 1.25 rad/m (32b) 

Case 3: (J"= 1, b1 = 1 m, b2 = 4 m, 11:1 .. = 5 rad/m, 11:21.1 = 1.25 rad/m (32c) 

with the upper cut-off wave numbers 11:1 .. and 11:21.1 having been defined in Eq. (25). 
If parameters N1 and N2 appearing in Eq. (21) are set equal to: 

(33) 

then ~1I:1' ~1I:2 and L"10, L"20 are computed from Eqs. (21), (26) and (27), 
respectively, as: 

Case 1: ~1I:1 = ~1I:2 = 0.3125 rad/m, L"10 = L"20 = 20.1 m (34a) 

Case 2: ~1I:1 = ~1I:2 = 0.0781 rad/m, L"10 = L"20 = 8004 m (34b) 

Case 3: ~1I:1 = 0.3125 rad/m, ~1I:2 = 0.0781 rad/m, L"10 = 20.1 m, 

L"20 = 8004 m (34c) 
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One sample function of stochastic field 10(':1:1> ':1:2) is generated for each one of the 
above three cases by applying the FFT technique (Shinozuka and Deodatis 1995) 
on Eq. (29). The generation is performed over an area equal to one period as 
specified in Eqs. (26), (27) and (34). The space increments ~':1:l and ~':1:2 are set 
equal to: 

Cases 1, 2 and 3 : ~':1:l = 7fjl0 m, ~':1:2 = 7fjl0 m (35) 

in order to satisfy the conditions shown in Eq. (28). 
Figure 1 shows one sample function of stochastic field 10(':1:1, ':1:2) for each one 

of the three cases defined in Eq. (32). Although each sample function is generated 
over a different area that is equal to the corresponding period (see Eq. (34)), 
they are all plotted over the same area of 20.1 m x 20.1 m in Fig. 1. This is 
done in order to demonstrate the effect of parameters bl and b2 on the correlation 
structure of the stochastic field. Such a demonstration can only be achieved if 
each one of the three sample functions is plotted over the same area. Note that 
this 20.1 m x 20.1 m area is equal to one period for Case 1 (see Eq. (34a)), but it 
is less than one period for Cases 2 and 3 (see Eqs. (34b) and (34c), respectively). 
Note also that all three plots in Fig. 1 are using the same grid of 64 x 64 points. 

4. Simulation of ID-m V Stationary Stochastic Processes 

In this section, the theory and the simulation algorithm for multi-variate stochastic 
processes are presented for the special case of a tri-variate vector process. This is 
done for the sake of simplicity in the notation and because of space limitations. 
The proposed algorithm can be extended in a straightforward fashion to any other 
dimension of the vector process. 

Consider a ID-3V (one-dimensional, tri-variate) stationary stochastic vector 
process with components if(t), n(t) and I~(t), having mean value equal to zero: 

e[IJ(t)] = 0 

cross-correlation matrix given by: 

[
R~l(r) 

RO(r) = Rgl(r) 

Rgl(r) 

and cross-spectral density matrix given by: 

[
S~l(W) 

SO(w) = ~l(W) 

Sgl(W) 

j = 1,2,3 

R~3(r) 1 
Rg3(r) 

Rg3 ( r) 

S~3(W)l 
~3(w) 

Sg3(W) 

(36) 

(37) 

(38) 
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In Eq. (37), RJj(r); j = 1,2,3 are the auto-correlation functions ofthe three com
ponents jJ(t); j = 1,2,3 of the process and RJ1c(r); j = 1,2,3; k = 1,2,3; j ::j:. k 
are the corresponding cross-correlation functions. Due to the stationarity hypoth
esis, the following relations are valid: 

j = 1,2,3 

j = 1,2,3; k = 1,2,3; j::j:. k 

(39) 

(40) 

The elements of the cross-correlation matrix are related to the corresponding ele
ments of the cross-spectral density matrix through the Wiener-Khintchine trans
formation (r is the time lag and w is the frequency): 

j,k = 1,2,3 (41) 

j,k = 1,2,3 (42) 

In Eq. (38), Sfj(w); j = 1,2,3 are the power spectral density functions of the 
three components of the process and S71c(W); j = 1,2,3; k = 1,2,3; j::j:. k are the 
corresponding cross-spectral density functions. It is noted that while the power 
spectral density function is a real and non-negative function of w, the cross-spectral 
density function is a generally complex function of w. Because of Eqs. (39)-(42), 
the following relations are valid: 

Sf1c(W) = SfZ( -w) 

SJ1c(W) = s1;(w) 

j = 1,2,3 

j = 1,2,3; k = 1,2,3; j ::j:. k 

j = 1,2,3; k = 1,2,3; j ::j:. k 

(43) 

(44) 

(45) 

where the asterisk denotes the complex conjugate. Equation (45) indicates that the 
cross-spectral density matrix SO(w) is Hermitian. It can also be shown (Shinozuka 
1987) that matrix SO(w) is non-negative definite. 

In the following, distinction will be made between the stochastic vector process 
jJ(t); j = 1,2,3 and its simulation !;(t); j = 1,2,3. 

In order to simulate the 1D-3V stationary stochastic process jJ(t); j = 1,2,3, 
its cross-spectral density matrix SO( w) must be first decomposed into the following 
product: 

(46) 

where superscript T denotes the transpose of a matrix. This decomposition can 
be performed using Cholesky's method, in which case H(w) is a lower triangular 
matrix: 

[

Hll(W) 0 

H(w) = H21(W) H22 (W) 

H 31 (W) H 32 (W) 

(47) 
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whose diagonal elements are real and non-negative functions of wand whose off
diagonal elements are generally complex functions of w. The following relations 
are valid for the elements of matrix H (w): 

Hjj(w) = Hjj(-w) j = 1,2,3 

Hjle(w) = Hile( -w) j = 2,3; k = 1,2; j > k 

If the off-diagonal elements Hjle(w) are written in polar form as: 

j = 2,3; k = 1,2; j > k 

where: 
() . ( ) _ -1 (Im[Hj le(w)]) 

J le W - tan [H ( )] Re jle W 

(48) 

(49) 

(50) 

(51) 

with 1m and Re denoting the imaginary and the real part of a complex number, 
respectively, then Eq. (49) is written equivalently as: 

IHjle(w)1 = IHjle(-w)1 

()jle(w) = -()jle(-w) 

j = 2,3; k = 1,2; j > k 

j = 2,3; k = 1,2; j > k 

(52) 

(53) 

Once matrix SO(w) is decomposed according to Eqs. (46)-(47), the stochastic 
process fl(t); j = 1,2,3 can be simulated by the following series (Oeodatis 1995a) 
asN-+oo 

3 N 

f;(t) = 2 L L IHjm(wml)l~ COS[Wml t - ()jm(Wml) + <pmd 
m=ll=l 

where: 

2 
Wli = ll:!..w - 3l:!..w 

1 
W21 = ll:!..w - 3l:!..w 

W31 = ll:!..w 

1= 1,2, ... , N 

1= 1,2, ... ,N 

1= 1,2, ... ,N 

j = 1,2,3 

(54) 

(55a) 

(55b) 

(55e) 

(56) 

(57) 

In Eq. (56), Wu represents an upper cut-off frequency beyond which the elements 
of the cross-spectral density matrix (Eq. (38)) may be assumed to be zero for 
either mathematical or physical reasons (refer also to section 2 about a similar 
discussion for 10-1 V processes). 
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The <Pl/, <P2" <P31j 1= 1,2, ... , N appearing in Eq. (54) are three sequences of 
independent random phase angles distributed uniformly over the interval [0,211"]. 

It is a straightforward task to show that the following three summations: 

N N N 

L Al/ cos[Wl/ t + Pll] 
1=1 

L A21 COS[W21 t + P21] 

1=1 
L A31 COS[W31 t + P3z] 

1=1 
(58) 

where the A's and the p's denote amplitudes and phase angles respectively, are 
periodic with respective periods: 

211" 
3-

l!..w 

211" 
3-

l!..w 

Following Eqs. (58)-(59), the simulated stochastic process !;(t)j i 
periodic with period To given by: 

To=3~ 
l!..w 

(59) 

1,2,3 is 

(60) 

Another very important point is that the simulated stochastic process fj (t)j i = 
1,2,3 is asymptotically Gaussian as N -+ 00 because of the central limit theorem 
(Shinozuka and Deodatis 1991). 

At this point it should be noted that when generating sample functions of the 
simulated stochastic process according to Eq. (54), the time step l!..t separating 
the generated values in the time domain has to obey the condition: 

211" 
l!..t <

- 2wu 
(61) 

The condition set on l!..t in Eq. (61) is necessary in order to avoid aliasing according 
to the sampling theorem (e.g. Bracewell 1986). 

It can be shown (Deodatis 1995a) that the ensemble expected value 
e[!;(t)]; i 1,2,3 and the ensemble auto-/cross-correlation function 
Rjlc(r)j i,k = 1,2,3 of the simulated stochastic vector process fj(t) are identical 
to the corresponding targets, e[fJ(t)] = OJ i = 1,2,3 and RJIc(r)j i,k = 1,2,3, 
respectively. 

Another very important property of the simulated stochastic vector process 
is the following: each and every sample function generated by Eq. (54) is ergodic 
in the mean value and in correlation. It can be shown (Deodatis 1995a) that the 
temporal average and the temporal auto-/cross-correlation function of any sample 
function are identical to the corresponding targets, e[fJ(t)] = OJ i = 1,2,3 and 
RJ,,(r)j i, k = 1,2,3, respectively. In addition, it can be shown that these two 
identities are valid only when the length of the sample function is equal to the 
period To given by Eq. (60). At this juncture it should be pointed out that 
although an algorithm based on the spectral representation method was available 
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from the early seventies to simulate multi-variate stochastic processes (Shinozuka 
and Jan 1972), this algorithm was generating sample functions that were not 
ergodic. Several attempts have been made to modify the Shinozuka and Jan 
(1972) algorithm in order to achieve ergodicity. In one of the latest of these 
attempts, Shinozuka et al. (1989) introduced the concept of double-indexing the 
frequencies as indicated in Eq. (55), but the formula suggested in that paper was 
still generating sample functions that were not ergodic. It was Deodatis (1995a) 
that further modified the Shinozuka et al. (1989) simulation formula to generate 
ergodic sample functions of a multi-variate stochastic vector process for the first 
time. 

Finally, it should be mentioned that the cost of digitally generating sample 
functions of the simulated stochastic vector process using Eq. (54) can be drasti
cally reduced by using the FFT technique (Deodatis 1995a). 

4.1 NUMERICAL EXAMPLES 

Consider a tri-variate stationary stochastic process with components ff(t), f~(t) 
and n(t), having mean value equal to zero and elements of the cross-spectral 
density matrix (Eq. (38)) defined as: 

sf! (w _ 38.3 . 
11 ) - (1 + 6.19w)5/3 ' 

SO (w) _ 43.3 
22 - (1 + 6.98w)5/3 

SO (w) _ 135 
33 - (1 + 21.8w)5/3 

(62) 

j, k = 1,2,3 j j -::j:. k (63) 

with: 

'Y12(W) = e-0.1757w j 'Y13(W) = e-3.47Sw j 'Y23(W) = e-3.292w (64) 

According to Simiu and Scanlan (1986), the three components ofthe vector process 
defined in Eqs. (62)-(64) describe the longitudinal wind velocity fluctuations at 
heights z = 35 m (component 1), z = 40 m (component 2) and z = 140 m 
(component 3), assuming that the mean wind speed at z = 35 m is U(35) = 45 
m/sec and that the surface roughness length is Zo = 0.001266 m (corresponding 
shear velocity of the flow u. = 1.76 m/sec). The mean wind speeds at z = 40 m 
and z = 140 m are computed using the logarithmic law as U(40) = 45.6 m/sec 
and U(140) = 51.1 m/sec. The expressions for the spectra shown in Eq. (62) 
were proposed by Kaimal et al. (1972), while the expressions for the coherence 
functions shown in Eq. (64) were proposed by Davenport (1968). 

If the upper cut-off frequency Wu and parameter N appearing in Eq. (56) are 
set equal to: 

Wu = 4.0 rad/sec and N = 128 (65) 

then fj"w and To are computed from Eqs. (56) and (60), respectively, as: 

fj"w = 0.03125 rad/sec and To = 603.2 sec (66) 
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One sample function of the tri-variate stochastic process is now generated by 
applying the FFT technique (Deodatis 1995a) on Eq. (54). The generation is 
performed over one period as specified in Eqs. (60) and (66). The time step l:l.t is 
set equal to: 

l:l.t = 0.1963 sec (67) 

in order to satisfy the condition shown in Eq. (61). 
Figure 2 shows one sample function of the tri-variate vector process with 

components ff(t), f~(t) and fg(t). The relatively stronger coherence between 
components if(t) and n(t), compared to the weaker coherence between compo
nents ff(t) and n(t) is obvious in Fig. 2. Note that the time histories of the 
longitudinal wind velocity fluctuations shown in Fig. 2 consist of 3,072 points. 

5. Simulation of ID-mV Non-Stationary Stochastic Processes 

Again as in Section 4, the theory and the simulation algorithm for multi-variate, 
non-stationary stochastic processes are presented for the special case of a tri-variate 
vector process. This is done for the sake of simplicity in the notation and because 
of space limitations. The proposed algorithm can be extended in a straightforward 
fashion to any other dimension of the vector process. 

Consider a 1D-3V (one-dimensional, tri-variate) non-stationary stochastic 
vector process with components if(t), f~(t) and fg(t), having mean value equal 
to zero: 

E[!J(t)] = 0 j = 1,2,3 

cross-correlation matrix given by: 

[
R~l(t' t + r) 

RO(t, t + r) = Rg1(t, t + r) 

Rg1(t, t + r) 

and cross-spectral density matrix given by: 

[
S~l(W' t) S~2(W, t) 

SO(w, t) = S~l(W, t) S~2(W, t) 

Sgl(W, t) Sg2(W, t) 

R~3(t, t + r)] 
Rg3 (t, t + r) 

Rg3 (t, t + r) 

~3(W't)] 
S~3(W, t) 

Sg3(W, t) 

(68) 

(69) 

(70) 

Note that because of the non-stationarity of the vector process, the cross
correlation matrix is a function of two time instants: t and t + r (t = time and r = 
time lag), while the cross-spectral density matrix is a function of both frequency 
wand time t. 
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Adopting the theory of evolutionary power spectra for non-stationary stochas
tic processes (Priestley 1965 and 1988), the elements of the cross-spectral density 
matrix are defined as: 

j=I,2,3 (71) SJj(w, t) = IAj(w, t)12 Sj(W) 

SJk(W,t) = Aj(w,t)Ak(W,t) VSj(W)Sk(W) rjk(W) j,k = 1,2,3; j # k (72) 

where Aj(w, t); j = 1,2,3 are the modulating functions of ff(t), n(t) and n(t), 
respectively, Sj (w); j = 1,2,3 are the (stationary) power spectral density functions 
of ff(t), n(t) and n(t), respectively, and rjk(W); j, k = 1,2,3; j # k are the 
complex coherence functions between fj(t) and ff(t). 

It should be pointed out that Eqs. (71) and (72) imply that the modulat
ing function Aj (w, t) represents the change in the evolutionary power spectrum, 
relative to the (stationary) power spectral density function Sj (w). 

Consequently, for any time instant t, the diagonal elements of the cross
spectral density matrix are real and non-negative functions of w satisfying: 

j = 1,2,3 and for every t (73) 

while the off-diagonal elements are generally complex functions of w satisfying: 

SJk(W, t) = SJZ(-w, t) 

SJk(W, t) = sZ; (w, t) 

j,k = 1,2,3; j # k and for every t 

j,k = 1,2,3; j # k and for every t 

(74) 

(75) 

where the asterisk denotes the complex conjugate. Equation (75) indicates that 
the cross-spectral density matrix SO(w, t) is Hermitian for any value of t. 

The elements of the cross-correlation matrix are related to the corresponding 
elements of the cross-spectral density matrix through the following transforma
tions: 

RJj(t,t+r) = i: Aj(w,t)Aj(w,t+r) eiWT Sj(w) dw j = 1,2,3 

RJk(t,t+r) = i: Aj(w,t)Ak(w,t+r) eiWT VSj(W)Sk(W) rjk(W) dw 

j, k = I, 2, 3 ; j # k 

(76) 

(77) 

For the special case of a uniformly modulated non-stationary stochastic vector 
process, the modulating functions Aj(w, t); j = 1,2,3 are independent of the 
frequency w: 

Aj(w, t) = Aj(t) j = 1,2,3 (78) 
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and Eqs. (76) and (77) reduce to: 

j = 1,2,3 

RJIc(t,t+r) = Aj(t)AIc(t+r) i: VSj (W)SIc (w) rjlc(w) eiw7' dw 

j, k = 1,2,3 j j i= k 

(79) 

(80) 

In such a case, the three components ofthe non-stationary stochastic vector process 
are expressed as: 

j = 1,2,3 (81) 

where gJ(t)j j = 1,2,3 are the three components of a stationary stochastic vector 
process, having mean value equal to zero: 

£[gJ(t)] = 0 j j = 1,2,3 (82) 

and cross-spectral density matrix given by: 

[ 

Sl(W) .jSl(W)S2(W)r12 (W) .jSl(W)S3(W)r13(W) 

SO(w) = .jS2(W)Sl(W)r21 (W) S2(W) .jS2(W)S3(W)r23(W) 

.jS3(W)Sl(W)r31 (W) .jS3(W)S2(W)r32 (W) S3(W) 1 
(83) 

Note that the elements of matrix SO(w) shown in Eq. (83) consist of terms that 
have been defined in Eqs. (71) and (72). 

In the following, distinction will be made between the non-stationary stochas
tic vector process /J(t)j j = 1,2,3 and its simulation f; (t)j j = 1,2,3. 

In order to simulate the ID-3V non-stationary stochastic process /J(t)j j = 
1,2,3, its cross-spectral density matrix SO(w, t) must be decomposed at every time 
instant t under consideration, into the following product: 

for every t under consideration (84) 

where superscript T denotes the transpose of a matrix. This decomposition can 
be performed using Cholesky's method, in which case H(w, t) is a lower triangular 
matrix: 

o 
[

Hll(W,t) 

H(w, t) = H21(w, t) H22 (W, t) 

H 31 (W, t) H 32 (W, t) 

(85) 
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whose diagonal elements are real and non-negative functions of wand whose off
diagonal elements are generally complex functions of w. 

The following relation is satisfied by the diagonal elements of H(w, t): 

Hjj(w, t) = Hjj( -w, t) j = 1,2,3 and for every t (86) 

If the off-diagonal elements Hjle(w, t) are written in polar form as: 

j = 2,3; k = 1,2; j > k (87) 

where: 

() -1 (Im[Hjle(w, t)]) 
Bjle w, t = tan Re[Hjle(w, t)] (88) 

with 1m and Re denoting the imaginary and the real part of a complex number, 
respectively, then the following relations are satisfied: 

j = 2,3; k = 1,2; j > k and for every t (89) 

j = 2,3; k = 1,2; j> k and for every t (90) 

Once matrix SO(w, t) is decomposed according to Eqs. (84)-(85), the non
stationary stochastic vector process fJ(t); j = 1,2,3 can be simulated by the 
following series (Oeodatis 1995b) as N -+ 00 

3 N 

f;(t) = 2 L L IHjm(WI, t)lv' ~w COS[WI t - Bjm(WI, t) + <pmzl 
m=11=1 

where: 

wI=I~w 1= 1,2, ... ,N 

~w= Wu 
N 

B. ( t) - t -1 (Im[Hjm(wz, t)]) 
3 m WI, - an 

Re[Hjm(wI, t)] 

j = 1,2,3 

(91) 

(92) 

(93) 

(94) 

In Eq. (93), Wu represents an upper cut-off frequency beyond which the elements 
of the cross-spectral density matrix (Eq. (70)) may be assumed to be zero for 
any time instant t (refer also to section 2 about a similar discussion for 10-1 V 
processes) . 

The <Pl/, <P2Z, <P31; 1= 1,2, ... , N appearing in Eq. (91) are three sequences of 
independent random phase angles distributed uniformly over the interval [0,271"]. 

It should be noted that the simulated non-stationary stochastic vector process 
f; (t); j = 1,2,3 is asymptotically Gaussian as N -+ 00 because ofthe central limit 
theorem (Shinozuka and Oeodatis 1991). 
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It can be shown (Deodatis 1995b) that the ensemble expected value 
£(fj(t)]j j = 1,2,3 and the ensemble auto-/cross-correlation function RjJc(t, t + 
r)j j, k = 1,2,3 of the simulated non-stationary stochastic vector process 
!; (t) are identical to the corresponding targets, £ [.tJ(t)] = OJ j = 1,2,3 and 
RJJc(t, t + r); j, k = 1,2,3, respectively. 

For the special case of a uniformly modulated non-stationary stochastic vector 
process, simulation can be performed on the basis of Eq. (81), instead of using 
Eq. (91). The simulation formula corresponding to Eq. (81) is: 

fj(t) = Ai(t) 9i(t) j = 1,2,3 (95) 

where 9i(t) is the simulation of the stationary stochastic vector process gJ(t) hav
ing mean value equal to zero and cross-spectral density matrix shown in Eq. (83). 
It should be mentioned that the simulation of stationary stochastic vector pro
cesses can be performed with great computational efficiency using the Fast Fourier 
Transform (FFT) technique, as described in Section 4. 

At this juncture, it should be pointed out that it is not possible to take 
advantage of the FFT technique when using the (non-stationary) simulation for
mula shown in Eq. (91), in contrast to the corresponding formula for simulation 
of stationary stochastic vector processes (see Section 4). This is due to the fact 
that the coefficients IHim(w/, t)l~ in the double summationofEq. (91) are now 
functions of both frequency and time. However, this shouldn't be of any great con
cern computationally, since in most cases of practical interest the non-stationary 
stochastic vector process fJ(t)j j = 1,2,3 is limited to relatively short durations 
by the modulating functions Ai(w, t)j j = 1,2,3 (e.g. ground motion acceleration 
time histories). The only case of non-stationary stochastic vector processes where 
the FFT technique can be used in the simulation formula is that of uniformly 
modulated processes (Eq. (95)). 

5.1 NUMERICAL EXAMPLES 

Consider that the acceleration time histories at three points on the ground surface 
(denoted by fl(t), n(t) and ra(t), respectively) along the line of main wave 
propagation (see Fig. 3) are represented by a tri-variate, non-stationary stochastic 
vector process. The elements of the non-stationary cross-spectral density matrix 
with evolutionary power (see Eq. (70)) are defined now in the following way: 

SJi(W, t) = IAj(w, t)12 Sj(w) j = 1,2,3 (96) 

SJJc(W, t) = Aj(w, t)AJc(w, t) .J Sj(w)SJc(w) 'YjJc(w) exp [_iW !jJc] 
j, k = 1,2,3 j j i- k (97) 
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where "Yjl:(w) are the (stationary) coherence functions between !jet) and net) and 
exp[-iw {jl:/v] is the wave propagation term with {jl: being the distance between 
points j and k and v being the velocity of wave propagation. 

It is pointed out that the expressions shown in Eqs. (96) and (97) de
scribe earthquake ground motion that is non-homogeneous in space (since SleW) f 
S2(W) f S3(W)) and non-stationary in time. 

The Clough-Penzien acceleration spectrum (Clough and Penzien 1975) is se
lected to model the (stationary) power spectral density functions Sj(w)j j = 1,2,3: 

1 + 4(;j [w'!i r 1 [ [ w;; r 1 
[W:irr +4(;j [w:J 2 

{1- [W~irr +4C}j [w~J2 
(98) 

where SOj is a constant determining the intensity of acceleration at point j, Wgj 
and (gj can be thought of as some characteristic frequency and damping ratio of 
the ground at point j, and wJj and (Jj are filtering parameters for point j. 

The Harichandran-Vanmarcke model (Harichandran and Vanmarcke 1986) is 
chosen to describe the (stationary) coherence functions "Yjl:(w)j j, k = 1,2, 3j j f k: 

[ 2(1: ] [ 2{ 'I: ] "Yjl:(w) = A exp - a (;lew) (1- A + aA) + (1- A) exp - (;I(~) (1- A + aA) 

(99) 
where (;I(w) is the frequency-dependent correlation distance: 

[ bj-l/2 
(;I(w) = k 1 + (:J (100) 

and A, a, k, Wo and b are model parameters. 
The Bogdanoff-Goldberg-Bernard model (Bogdanoff, Goldberg and Bernard 

1961) is used for the modulating functions Aj(w, t)j j = 1,2,3: 

Aj(w,t) = Aj(t) =al (t- {~l) .exp [-a2 (t- {~l)] {'l 
fort>-'-· j=1,2,3 

v ' 
(101) 

where al and a2 are model parameters depending on such factors as earthquake 
magnitude and epicentral distance. 

It should be pointed out that the models used for Sj (w), "Yjl:(w) and Aj(w, t) in 
Eqs. (98)-(101), were selected for demonstration purposes only. There are several 
other models in the literature that can be used for Sj(w), "Yjl:(w) and Aj(w, t). 

The next step is to select numerical values for the parameters appearing in 
Eqs. (98)-(101). For Wgj and (gj in Eq. (98), the values suggested by Ellingwood 
and Batts (1982) for three different soil conditions are used in this study: 
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Point 1: Rock or stiff soil conditions: Wgl = 811" rad/sec, (gl = 0.60 (102a) 
Point 2: Deep cohesionless soils: Wg2 = 511" rad/sec, (g2 = 0.60 (102b) 
Point 3: Soft to medium clays and sands: Wg3 = 2.411" rad/sec, (g3 = 0.85 (102c) 

The filtering parameter wi; in Eq. (98) is set equal to 10% of the corresponding 
Wgi value, while the other filtering parameter (Ii is set equal to the corresponding 
(gi value, following the recommendation by Hindy and Novak (1980): 

Point 1: Rock or stiff soil conditions: W/l = 0.811" rad/sec, (/1 = 0.60 (103a) 
Point 2: Deep cohesionless soils: W 12 = 0.511" rad/sec, (/2 = 0.60 (103b) 
Point 3: Soft to medium clays and sands: WI3 = 0.2411" rad/sec, (/3 = 0.85(103c) 

The last parameter appearing in Eq. (98), SOi' is computed so that the stan
dard deviation of the Kanai-Tajimi part of the (stationary) power spectral density 
function is equal to 100 cm/sec2 for all three points I, 2 and 3: 

S03 = 184.5 cm2/sec3 (104) 

For the various parameters appearing in Eqs. (99) and (100), the values suggested 
by Harichandran and Wang (1990) are used in this study: 

A = 0.626, a = 0.022, k = 19,700 m, Wo = 12.692 rad/sec, b = 3.47 
(105) 

Finally, parameters al and a2 appearing in the expressions for the modulating 
functions (Eq. (101)) and the velocity of wave propagation v are set equal to: 

al = 0.906 v = 1,000 m/sec (106) 

The simulation is performed at 3,072 time instants, with a time step Ilt 6.14· 
10-3 sec, over a length equal to 3,072 . 6.14· 10-3 = 18.85 sec. One generated 
sample function for the acceleration at points I, 2 and 3, denoted by fl(t), h(t) and 
fa(t), respectively, is displayed in Fig. 4. The non-stationarity and the different 
frequency contents of fl(t), h(t) and fa(t) (specifically the frequency content of 
h(t) is higher than that of h(t) which is then higher than that of fa(t)) can be 
easily identified in Fig. 4. Then, a segment of the acceleration time histories shown 
in Fig. 4 is magnified and displayed in Fig. 5. In this figure, the wave propagation 
effect and the loss of coherence are easily detected by following, for example, the 
movement and changing shape of peak A. 

It is therefore obvious from Figs. 4 and 5 that the proposed algorithm is 
able to simulate non-stationary ground motion time histories that are spatially 
correlated according to a given coherence function, include the wave propagation 
effect and are non-homogeneous in space. 
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Figure 1a Sample Function of Stochastic Field fO(~I' ~2) 
for Case 1 (b i = b2 = 1.0 m). 

20.1 m 

Figure 1b Sample Function of Stochastic Field fO(~I' ~2) 
for Case 2 (b i = b2 = 4.0 m). 
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A SPECTRAL FORMULATION OF STOCHASTIC FINITE 
ELEMENTS 

R.G. GHANEM 
The Johns Hopkins University 
Baltimore, MD 21218. 

AND 

P.D. SPANOS 
Rice University 
Houston, TX 77251. 

1. Introduction 

Until recently, stochastic structural mechanics has addressed the issue of 
deterministic structures subjected to random loading. With the availabil
ity of more accurate analysis and design tools, however, quantifying the 
sensitivity of model predictions to uncertainty in the mechanical proper
ties of structures has become possible. It has been observed, with the help 
of these tools, that this type of uncertainty can be more significant to 
the overall predictions of a particular structural model than the more tra
ditional fluctuations attributed to external loads. In view of that, recent 
procedures have been developed for representing uncertainties in the pa
rameters of a structural model, as well as, for propagating this uncertainty 
to obtain the associated uncertainty in the predicted response. The stochas
tic finite element method is a procedure for performing such an analysis, 
whereby the spatial extent of the structure has been represented within 
the context of the finite element method. This chapter describes a recent 
implementation of the stochastic finite element method that combines the
oretical rigor with generality and efficiency of implementation. Specifically, 
the Spectral Stochastic Finite Element Method (SSFEM) presented in this 
chapter addresses the situation where the uncertain material properties 
are realizations of a spatially fluctuating random field. The formulation re
lies on discretizing the random processes using spectral expansions, thus 
eliminating the correlation between the requisite mesh size to meet energy
based convergence criteria, and the scales of fluctuation of the random 
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material properties involved. Moreover, reliability indicators obtained by 
various stochastic mechanics procedures have traditionally consisted of in
dices of reliability and second order moments. These descriptors feature 
condensed information about the uncertainty in the response process. The 
usefulness of these indicators are usually restricted by the levels of uncer
tainty in the structural parameters, as well as, by the level of complexity 
and nonlinearity of the structural model used. In the SSFEM presented 
herein, the outcome of the analysis is a complete probabilistic description 
of the response process that successfully eliminates the above restrictions, 
and therefore yields such quantities as the probability of failure of a struc
tural system. In view of the computational implementation of the SSFEM, 
the outcome of the analysis can be adaptively refined, in a convergent fash
ion, as deemed necessary by the decision making context. This is analogous 
to mesh refinement in deterministic finite element procedures. 

In the next section, a coherent mathematical framework is presented 
which is a natural setting for the analysis of systems with random parame
ters. Next, the theory of representation of stochastic processes is expanded 
with special emphasis on two spectral expansions, namely the Karhunen
Loeve and the Polynomial Chaos expansions. These are then used in the 
following section to develop the spectral stochastic finite element method. 

2. The Mathematical Model 

The class of problems dealt with in this study is not of the conventional 
engineering kind in that it involves concepts of a rather abstract and math
ematical nature. It is both necessary and instructive to introduce at this 
point the mathematical concepts which are used in the sequel. 

The Hilbert space of functions (Oden, 1979) defined over a domain D, 
with values on the real line R, is denoted by H. Let (0, W, P) denote a 
probability space. By that is meant that 0 is a space of elementary events, 
W is the a-field generated by 0, or loosely speaking, the space consisting 
of the various combinations of the elements of 0, and finally, P is the 
probability measure defined on W. Let x be an element of D and e be an 
element of O. Then, the space of functions mapping 0 onto the real line is 
denoted by E>. Each map 0 -+ R defines a random variable. 

The inner products over H and over E> are defined using the Lebesgue 
measure and the probability measure, respectively. That is, for any two 
elements hi(X) and hj(x) in H, their inner product ( hi(X) , hj(x) ) is 
defined as 

(1) 

The domain D represents the physical space over which the problem is 
defined. Similarly, given any two elements a( 0) and f3( 0) in E>, their inner 
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product is defined as 

(a(O),j3(O)) = 10 a(O)j3(O)dP (2) 

where dP is a probability measure. Under very general conditions, the in
tegral in equation (2) is equivalent to the average of the integrand with 
respect to the probability measure dP, so that 

(a(O),j3(O)) = <a(O)j3(O» (3) 

where <.> denotes the operation of mathematical expectation. Any two 
elements of the Hilbert spaces defined above are said to be orthogonal if 
their inner product vanishes. A random process may then be described as a 
function defined on the product space D X n. Viewed from this perspective 
a random process can be treated as a curve in either of H or e. 

The physical model under consideration involves a medium whose prop
erties exhibit random spatial fluctuations and which is subjected to a ran
dom external excitation. The mathematical representation of this problem 
involves an operator equation 

A(x, O)[u(x, 0)] = f(x,O) (4) 

where A(x, 0)[.] is some operator defined on H x e. In other words, A is a 
differential operator with coefficients exhibiting random fluctuations with 
respect to one or more of the independent variables. The aim then is to solve 
for the response u( x, 0) as a function of both its arguments. With no loss of 
generality, A is assumed to be a differential operator whose random coeffi
cients are restricted to being second order random processes. This is not a 
severe restriction for practical problems, since most physically measurable 
processes are of the second order type. Then, each one of these coefficients 
ak(x,O) can be decomposed into a purely deterministic component and a 
purely random component in the form 

(5) 

where ak(x) is equal to the mathematical expectation ofthe process ak(x, 0), 
and ak(x,O) is a zero-mean random process, having the same covariance 
function as the process ak( x, 0). Equation (4) can then be written as 

(L(x) + II(x, O))[u(x, 0)] = f(x, 0) , (6) 

where L(x)[.] is a deterministic differential operator and II(x,O)[.] is a 
differential operator whose coefficients are zero-mean random processes. 
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Before a solution to equation (6) is sought, it is essential to clarify what is 
meant by such a solution. 

It will prove instructive to start with the deterministic finite element 
method and see how the related concepts can be generalized. A finite ele
ment solution to a deterministic problem governed by a certain differential 
equation consists basically of computing the value of the dependent vari
ables on a discrete mesh induced in the space spanned by the independent 
variables. This is probably the most widespread interpretation of a finite 
element solution; it has been crucial in disseminating the method as a 
powerful analysis and design tool into engineering practice. An alternative 
viewpoint which will prove to be more amenable to the required generaliza
tions, is that a solution to a finite element problem consists in evaluating 
the value of the coefficients in the expansion of the solution along a certain 
basis in an appropriate functional space. The finite element procedure will 
consist in choosing a suitable basis and then computing optimal values of 
the coefficients with respect to this basis. From this perspective, the fi
nite element mesh is naturally induced with specific choices of these bases. 
With other choices, however, the expansion coefficients do not necessar
ily carry an obvious physical interpretation. In the stochastic case, one of 
the independent variables spans the space of elementary events, which can 
only be discretized with respect to a probability measure, the result lacking 
any intuitive appeal. In this case, the appeal of the second interpretation 
of a finite element solution is obvious. The problem then becomes one of 
identifying a suitable basis in the space H x E> over which the solution is de
fined, and of determining a meaningful optimality criterion for computing 
the coefficients in the associated expansion. Obviously, the basis functions 
in this case will be random. By simulating realizations of these functions, 
corresponding realizations of the solution process can be obtained. Alter
natively, by defining a suitable inner product over the space of random 
variables, various statistics or, equivalently, norms of the solution process 
may be evaluated. 

3. Representation of Stochastic Processes 

Similarly to the case of the deterministic finite element method, whereby 
functions are represented by a denumerable set of parameters consisting 
of the values of the function and its derivatives at the nodal points, the 
problem encountered in the stochastic case is that of representing a random 
process by a denumerable set of random variables, thereby discretizing the 
process. 

In the deterministic case discretization of the domain has a physical ap
peal. The domain in the stochastic case does not, however, have a physical 
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meaning that permits a sensible discretization. In this context the func
tional analysis foundation of the finite element method becomes useful as 
it can be extended to deal with random functions. Two of the most use
ful expansions for random processes are the Karhunen-Loeve expansion, 
and the Polynomial Chaos expansion. The first requires knowledge of the 
covariance structure of the process under consideration, while the second 
one is more general. The difference between these two expansions can be 
loosely compared to that between a modal expansion and a Fourier-type 
expansion of a system response. Although the former has better conver
gence properties, the latter is more general and does not require knowledge 
of the properties of the system. These two expansions are discussed next. 

3.1. KARHUNEN-LOEVE EXPANSION 

The major conceptual difficulty from the viewpoint of the class of problems 
considered herein, involves the treatment of functions defined on these ab
stract spaces, namely random variables defined on the a-field of random 
events. The most widely used method, the Monte Carlo simulation, consists 
of sampling these functions at randomly chosen elements of this a-field, in a 
random, collocation-like, scheme. Obviously, a quite large number of points 
must be sampled if a good approximation is to be achieved. Alternatively, 
these functions could be expanded in a Fourier-type series as 

00 

w(x,O) = L \I'I:~n(O) fn(x) , (7) 
n=l 

where {~n (O)} is a set of random variables to be determined, An is some 
constant, and {fn (x)} is an orthonormal set of deterministic functions. This 
is exactly what the Karhunen-Loeve expansion achieves. The expansion 
was derived independently by a number of investigators (Karhunen, 1947; 
Loeve, 1948; Kac and Siegert, 1947). 

Let w(x,O) be a random process, function of the position vector x de
fined over the domain D, with 0 belonging to the space of random events n. 
Let w(x) denote the expected value of w(x, 0) over all possible realizations 
of the process, and C(x}, X2) denote its covariance function. By definition 
of the covariance function, it is bounded, symmetric and positive definite. 
Thus, it has the spectral decomposition (Courant and Hilbert, 1953) 

00 

C(x}, X2) = L An fn(Xl) fn(X2) (8) 
n=l 

where An and fn(x) are the eigenvalue and the normalized eigenvector of 
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the covariance kernel, respectively. That is, they are the solution to the 
integral equation 

(9) 

Due to the symmetry and the positive definiteness of the covariance kernel 
(Loeve, 1977), its eigenfunctions are orthogonal and form a complete set. 
They have further been normalized so that the following equation holds, 

(10) 

where onm is the Kronecker delta. Clearly, w(x,8) can be written as 

w(x,8) = w(x) + a(x, 8) , (11) 

where a(x, 8) is a process with zero mean and covariance function C(Xll X2). 
The process a(x, 8) can be expanded in terms of the eigenfunctions fn(x) 
as 

00 

a(x,8) = L ~n(8) v1Xn fn(x) . (12) 
n=l 

Second order properties of the random variables ~n can be determined by 
multiplying both sides of equation (12) by a(x2 , 8) and taking the expec
tation on both sides. Specifically, it is found that 

(13) 
00 00 

L L <~n(8) ~m(8) > JAn Am fn(Xl) fm(X2) . 
n=l m=l 

Then, multiplying both sides of equation (14) by fk(X2), integrating over 
the domain D, and making use of the orthogonality of the eigenfunctions, 
yields 

in C(Xll X2) ik(X2) dX2 = Ak fk(Xl) (14) 

00 

L <~n(8) ~k(8) > JAnAk fn(xJ) . 
n=l 

Multiplying once more by fl(Xl) and integrating over D, gives 
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Then, using equation (10) leads to 

(16) 

Equation (16) can be rearranged to give 

(17) 

Thus, the random process w(x,O) can be written as 

00 

w(x,O) = w(x) + l: ~n(O) A fn(x) . (18) 
n=l 

where, 
(19) 

and An, fn(x) are solution to equation (9). Truncating the series in equation 
(18) at the Mth term, gives 

M 

w(x,O) = w(x) + l: ~n(O) v>'n fn(x) . (20) 
n=O 

An explicit expression for ~n(O) can be obtained by multiplying equation 
(12) by fn(x) and integrating over the domain D. That is, 

~n(O) = A1n in a(x, 0) fn(x) dx . (21) 

It is well known from functional analysis that the steeper a bilinear form 
decays to zero as a function of one of its arguments, the more terms are 
needed in its spectral representation in order to reach a preset accuracy. 
Noting that the Fourier transform operator is a spectral representation, 
it may be concluded that the faster the autocorrelation function tends to 
zero, the broader is the corresponding spectral density, and the greater the 
number of requisite terms to represent the underlying random process by 
the Karhunen-Loeve expansion. 

For the special case of a random process possessing a rational spectrum, 
the integral eigenvalue problem can be replaced by an equivalent differential 
equation that is easier to solve (Van Trees, 1968). In the same context, it 
is reminded that a necessary and sufficient condition for a process to have 
a finite dimensional Markov realization is that its spectrum be rational 
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(Kree and Soize, 1986). Further, note that analytical solutions for the in
tegral equation (10) are obtainable for some quite important and practical 
forms of the kernel C(Xt,X2) (Juncosa, 1945; Slepian and Pollak, 1961; Van 
Trees, 1968). In the general case, however, the integral equation must be 
solved numerically. Various techniques are available to this end (Ghanem 
and Spanos, 1991). 

3.2. HOMOGENEOUS CHAOS 

It is clear from the preceding discussion that the implementation of the 
Karhunen-Loeve expansion requires knowledge of the covariance function 
of the process being expanded. As far as the system under consideration 
is concerned, this implies that the expansion can be used for the random 
coefficients in the operator equation. However, it cannot be implemented 
for the solution process, since its covariance function and therefore the 
corresponding eigenfunctions are not known. An alternative expansion is 
clearly needed which circumvents this problem. Such an expansion could 
involve a basis of known random functions with deterministic coefficients 
to be found by minimizing some norm of the error resulting from a finite 
representation. This should be construed as similar to the Fourier series so
lution of deterministic differential equations, whereby the series coefficients 
are determined so as to satisfy some optimality criterion. To clarify this 
important idea further, a general functional form of the solution process is 
written as 

u (22) 

where h[.] is a nonlinear functional of its arguments. In equation (22), the 
random processes involved have all been replaced by their corresponding 
Karhunen-Loeve representations. It is clear now that what is required is a 
nonlinear expansion of h[.] in terms of the set of random variables ~i( 0). 
If the processes defining the operator are Gaussian, this set is a sampled 
derivative of the Wiener process (Doob, 1953). In this case, equation (22) 
involves functionals of the Brownian motion. This is exactly what the con
cept of Homogeneous Chaos provides. This concept was first introduced 
by Wiener (1938) and consists of an extension of Volterra's work on the 
generalization of Taylor series to functionals ( Volterra, 1913 ). Wiener's 
contributions were the result of his investigations of nonlinear functionals 
of the Brownian motion. Based on Wiener's ideas, Cameron and Martin 
(1947) constructed an orthogonal basis for nonlinear functionals in terms 
of Fourier-Hermite functionals. 
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3.2.1. Definitions and Properties 
Let {~i( O)} ~l be a set of orthonormal Gaussian random variables. Consider 
the space :f p of all polynomials in {~i( O)} ~l of degree not exceeding p. Let 
f p represent the set of all polynomials in :f p orthogonal to :f p-l. Finally, 
let l' p be the space spanned by f p. Then, the subspace l' p of 9 is called the 
pth Homogeneous Chaos, and f p is called the Polynomial Chaos of order p. 

Based on the above definitions, the Polynomial Chaoses of any order p 
consist of all orthogonal polynomials of order p involving any combination 
of the random variables {~i( O)} ~l. It is clear, then, that the number of 
Polynomial Chaoses of order p, which involve a specific random variable out 
of the set {~i( O)} ~l increases with p. This fact plays an important role in 
connection with the finite dimensional Polynomial Chaoses to be introduced 
in the sequel. Furthermore, since random variables are themselves functions, 
it becomes clear that Polynomial Chaoses are functions of functions and 
are therefore functionals. 

The set of Polynomial Chaoses is a linear subspace of the space of 
square-integrable random variables 9, and is a ring with respect to the 
functional multiplication fpf/(w) = fp(w)f/(w). In this context, square in
tegrability must be construed to be with respect to the probability measure 
defining the random variables. Denoting the Hilbert space spanned by the 
set {~i(O)} by 9(0, the resulting ring is denoted by ~e(e), and is called 
the ring of functions generated by 9( ~). Then, it can be shown that under 
some general conditions, the ring ~e(e) is dense in the space 9 (Kakutani, 
1961). This means that any square-integrable random function (Q -+ R) 
can be approximated as closely as desired by elements from ~e(e). Thus, 
any element Jl( 0) from the space 9 admits the following representation, 

Jl(O) = L (23) 

where f p(.) is the Polynomial Chaos of order p. The superscript ni refers to 
the number of occurrences of ~Pi(O) in the argument list for f p (.). Also, the 
double subscript provides for the possibility of repeated arguments in the 
argument list of the Polynomial Chaoses, thus preserving the generality of 
the representation given by equation (23). Briefly stated, the Polynomial 
Chaos appearing in equation (23) involves r distinct random variables out 
of the set {~i( O)}~l' with the kth random variable ~k( 0) having multiplicity 
nk, and such that the total number of random variables involved is equal 
to the order p of the Polynomial Chaos. The Polynomial Chaoses of any 
order will be assumed to be symmetric with respect to their arguments. 
Such a symmetrization is always possible. Indeed, a symmetric polynomial 
can be obtained from a non-symmetric one by taking the average of the 



298 R.G. GHANEM AND P.O. SPANOS 

polynomial over all permutations of its arguments. The form of the coef
ficients appearing in equation (23) can then be simplified, resulting in the 
following expanded expression for the representation of random variables, 

00 

/-L(e) = aO fo + L ailf1(~il(e)) (24) 

00 i 1 

+ L L aili2f2(~il (e), ~i2(e)) 

00 i 1 i2 
+ L L L aili2i3f3(~il(e)'~i2(e)'~i3(e)) 

00 i 1 i2 i3 

+ L L L L aili2i3i4r4(~il(e)'~i2(e),~i3(e)'~i4(e)) + ... , 
i 1 =1 i2=1 i3=1 i4=1 

where r p(.) are successive Polynomial Chaoses of their arguments, the ex
pansion being convergent in the mean-square sense. The upper limits on 
the summations in equation (24) reflect the symmetry of the Polynomial 
Chaoses with respect to their arguments, as discussed above. The Poly
nomial Chaoses of order greater than one have mean zero. Polynomials of 
different order are orthogonal to each other; so are same order polynomials 
with different argument list. At times in the ensuing developments, it will 
prove notationally expedient to rewrite equation (24) in the form 

00 

/-L(e) = L aj \[1j[e(e)], (25) 
j=O 

where there is a one-to-one correspondence between the functionals \[1[.] and 
r[.], and also between the coefficients aj and ai1 ... i r appearing in equation 
(24). Implicit in equation (24) is the assumption that the expansion (24) 
is carried out in the order indicated by that equation. In other words, the 
contribution of polynomials of lower order is accounted for first. 

Throughout the previous theoretical development, the symbol e has 
been used to emphasize the random character of the quantities involved. It 
will be deleted in the ensuing development whenever the random nature of 
a certain quantity is obvious from the context. 

As defined above, each Polynomial Chaos is a function of the infinite 
set {~d, and is therefore an infinite dimensional polynomial. In a compu
tational setting, however, this infinite set has to be replaced by a finite 
one. In view of that, it seems logical to introduce the concept of a finite 
dimensional Polynomial Chaos. Specifically, the n-dimensional Polynomial 
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Chaos of order p is the subset of the Polynomial Chaos of order p, as defined 
above, which is a function of only n of the uncorrelated random variables 
~i. As n ---.. 00, the Polynomial Chaos as defined previously is recovered. 
Obviously, the convergence properties of a representation based on the n

dimensional Polynomial Chaoses depend on n as well as on the choice of 
the subset {6.J~l out of the infinite set. In the ensuing analysis, this 
choice will be based on the Karhunen-Loeve expansion of an appropriate 
random process. Since the finite dimensional Polynomial Chaos is a subset 
of the (infinite-dimensional) Polynomial Chaos, the same symbol will be 
used for both, with the dimension being specified. Note that for this case, 
the infinite upper limit on the summations in equation (24) is replaced by 
a number equal to the dimension of the Polynomials involved. For clarity, 
the two-dimensional counterpart of equation (24) is rewritten, in a fully 
expanded form, as 

f.t(0) = ao ro + al r 1(6) + a2 r 1(6) (26) 

+ an r 2(6,6) + aI2r 2(6,6) + a22r2(6,6) 

+ anI r 3(6,6,6) + a211 r3(6'~1,~d + a221 r 3(6,6,6) 
+ a222 r 3(6,6,6) .... 

In view of this last equation, it becomes clear that, except for a different in
dexing convention, the functionals W[.] and r[.] are identical. In this regard, 
equation (26) can be recast in terms of Wj[.] as follows 

f.t(0) = tloWo + tl2 W2 + tl3W3 + tl4W4 + tl5 W5 

+ tl6W6 + tl7W7 + tl8W8 + tlgWg + ... , (27) 

from which the correspondence between W[.] and r[.] is evident. For exam
ple, the term a2nr3(6, 6, 6) of equation (26) is identified with the term 
a7W7 of equation (27). 

3.2.2. Construction of the Polynomial Chaos 
A direct approach to construct the successive Polynomial Chaoses is to start 
with the set of homogeneous polynomials in {~i( O)} and to proceed, through 
a sequence of orthogonalization procedures. The zeroth order polynomial 
is a constant and it can be chosen to be 1. That is 

ro = 1. (28) 

The first order polynomial has to be chosen so that it is orthogonal to all 
zeroth order polynomials. In this context, orthogonality is understood to 
be with respect to the inner-product defined by equation (2). Since the set 
{~d consists of zero-mean elements, the orthogonality condition implies 

(29) 
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The second order Polynomial Chaos consists of second order polynomials 
in {~i} that are orthogonal to both constants and first order polynomials. 
Formally, a second order polynomial can be written as 

where the constants are so chosen as to satisfy the orthogonality conditions. 
The second of these requires that 

o. (31) 

This leads to the following equation 

(32) 

Allowing i3 to be equal to i l and iz successively, permits the evaluation of 
the coefficients ail and aiz as 

o. (33) 

The first orthogonality condition yields 

(34) 

Equation (34) can be normalized by requiring that 

(35) 

This leads to 
(36) 

Thus, the second Polynomial Chaos can be expressed as 

(37) 

In a similar manner, the third order Polynomial Chaos has the general form 

r3(~iIl~iz'~iJ =ao + ail~il + aiz~iz + ai3~i3 + aili2~il~i2 
+aili3~il~i3 + aizi3~i2~i3 + ailizi3~il~iz~i3' (38) 

with conditions of being orthogonal to all constants, first order polynomials, 
and second order polynomials. The first of these conditions implies that 

(39) 
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That is, 
o. ( 40) 

The second condition implies that 

o , (41) 

which leads to 

The last orthogonality condition is equivalent to 

(43) 

which gives 

ao 8i4 is ail i2 <~il ~i2 ~i4 ~is > + ail i3 <~il ~i3 ~i4 ~is > 
+ ai2i3<~i2~i3~i4~is> = o. (44) 

The above equations can be normalized by requiring that 

( 45) 

Then equation (42) becomes 

Due to the Gaussian property of the set {~d, the following equation holds 

Substituting for the expectations in equations (46) and (44) yields 

ail 8il i4 + ai28i2i4 + ai38i3i4 

+ 8il i2 8i3 i4 + 8il i3 8i2i4 + 8il i4 8i2i3 o , ( 48) 

and 

ao 8i4iS + ail i2 [ 8 il i2 8i4 is + 8il i4 8i2iS + 8il is 8i2i4 1 
+ ail i3 [ 8 il i3 8i4 is + 8il i4 8i3 is + 8il is 8i3 i4 1 
+ ai2i3 [ 8i2i3 8i4 is + 8i2i4 8i3is + 8i2is8i3i4 1 o. (49) 
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Substituting for ao from equation (40), equation (49) can be rewritten as 

(50) 

From equation (50), the coefficients ail iz , ail i3' and aiz i3 can be evaluated 
as 

ail iz 0 

ail i3 0 (51) 

aiz i 3 O. 

U sing equation (49) again, it is found that 

ao = O. (52) 

Equation (48) can be rewritten as 

0, (53) 

from which the coefficients ail' aiz , and ai3 are found to be, 

ail -6iZi3 

aiz -6il i3 (54) 

ai3 -6il iz 

The third order Polynomial Chaos can then be written as 

After laborious algebraic manipulations, the fourth order Polynomial Chaos 
can be expressed as 

~il ~iz 6i3i4 - ~il ~i3 6izi4 - ~il ~i4 6izi3 

~iz ~i3 6il i4 - ~iz ~i4 6il i3 - ~i3 ~i4 6il iz 

+ 6iliz6i3i4 + 6ili36izi4 + 6ili46izi3 . 

(56) 

It is readily seen that, in general, the nth order Polynomial Chaos can be 
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written as 

0 r n 

L (-lY L II ~ik < II ~it> 
r=n 11'(i l , ... ,in ) k=l l=r+l r even 

n even 

(57) 

0 r n 

L ( _ly-1 L II ~ik < II ~it> 
r=n 11'( i l , ..• ,in ) k=l l=r+l r even 

n odd 

where 11"(.) denotes a permutation of its arguments, and the summation is 
over all such permutations such that the sets {~ill ... , ~iJ is modified by the 
permutation. 

Note that the Polynomial Chaoses as obtained in equations (28), (29), 
(37), (55) and (56) are orthogonal with respect to the Gaussian probability 
measure, which makes them identical with the corresponding multidimen
sional Hermite polynomials (Grad, 1949). These polynomials have been 
used extensively in relation to problems in turbulence theory (Imamura 
et.al, 1965a-b). This equivalence is implied by the orthogonality of the Poly
nomial Chaoses with respect to the inner product defined by equation (2) 

where dP is the Gaussian measure e-t('! d!, where! denotes the vector of 
n random variables {~ik H=l. This measure is exactly the weighing function 
with respect to which the Hermite polynomials are orthogonal in the L2 
sense (Oden, 1979). This fact suggests another method for constructing the 
Polynomial Chaoses, namely from the generating function of the Hermite 
polynomials. Specifically, the Polynomial Chaos of order n can be obtained 
as 

(58) 

The first two terms in equation (25) represent the Gaussian component 
of the function 11(0). Therefore, for a Gaussian process, this expansion re
duces to a single summation, the coefficients ail being the coefficients in 
the Karhunen-Loeve expansion of the process. Note that equation (25) is a 
convergent series representation for the functional operator h[.] appearing 
in equation (23). For a given non-Gaussian process defined by its proba
bility distribution function, a representation in the form given by equation 
(25) can be obtained by projecting the process on the successive Homoge
neous Chaoses. This can be achieved by using the inner product defined by 
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equation (2) to determine the requisite coefficients. This concept has been 
successfully applied in devising efficient variance reduction techniques to 
be coupled with the Monte Carlo simulation method (Chorin, 1971; Maltz 
and Hitzl, 1979). 

4. Projection on the Homogeneous Chaos 

In this section the Karhunen-Loeve expansion and the Polynomial Chaos 
expansion presented earlier are implemented into a stochastic finite element 
method which features a number of similarities with the deterministic fi
nite element method. Specifically, the geometric interpretation of the finite 
element method as a projection in function space is preserved. 

Equation (6) constitute the starting point. Assuming that 

II(x,w)[.] = a(x,B) R(x)[.] , (59) 

and expanding a(x, B) in a Karhunen-Loeve series gives 

( L(x) + E ~n an(x) R(x) ) [u(x, B)] = f(x, B) . (60) 

Assuming, without loss of generality, that u(x, B) is a second order process, 
it lends itself to a Karhunen-Loeve expansion of the form 

L 

u(x, B) = L ej Xj(B) bj(x) , (61) 
j=l 

where 

(62) 

and 

(63) 

Obviously, the covariance function Cuu ( xl, X2) of the response process is 
not known at this stage. Thus, ej and bj(x) are also not known. Further, 
u(x, B), not being a Gaussian process, the set Xj( B) is not a Gaussian vec
tor. Therefore, equation (61) is of little use in its present form. Relying 
on the discussion concerning the Homogeneous Chaos, the second order 
random variables Xj( B) can be represented by the mean-square convergent 
expansion 

00 
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00 i 1 00 i 1 i2 

+ L L a~:~i2 r2{~il'~i2) + L L L a~:Li3 r3(~il'~i2'~i3) 
i 1 =1 i2=1 il=1 i2=1 i3=1 

00 i 1 i2 i3 

+ L L L L a~n2i3i4r4(~il'~i2'~i3'~i4) + ... , (64) 
i 1 =1 i2=1 i3=1 i4=1 

where a~:~ ... ip are deterministic constants independent of 0 and r p{ ~il , .•. , ~ip ) 
is the pth order Homogeneous Chaos. Equation (64) is truncated after the 
pth polynomial and is rewritten for convenience, as discussed in equation 
(27), in the following form, 

(65) 

where x~j) and \II d {~r}] are identical to aW .. ip and r p( ~il' ... ~ip), respec
tively. In equation (65), p denotes the total number of Polynomial Chaoses 
used in the expansion, excluding the zeroth order term. Given the num
ber M of terms used in the Karhunen-Loeve expansion, and the order p of 
Homogeneous Chaos used, P may be determined by the equation 

p 1 8-1 

P = 1 + L I II (M + r). 
8=1 S. r=O 

Substituting equation (65) for Xj(O), equation (61) becomes 

L P 
u(x,O) = L L x~j) \Ili[{~r}] Cj(X) , 

j=1 i=O 

where 

Changing the order of summation in equation (67) gives 

P L 
u(X,O) L \Ili[{~r}] L x~j) Cj(x) 

i=O j=1 
P 

L \lIi[{~r}] di{X) , 
i=O 

where, 
L 

L xF) Cj(x) . 
k=1 

(66) 

(67) 

(68) 

(69) 

(70) 
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Substituting equation (69) for u(x, B), equation (60) becomes 

( L(x) + E ~n an(x) R(X)) [t, q,;[{~,}l d;(X)] = f(x), (71) 

where reference to the parameter B was eliminated for notational simplicity. 
The response u(x, B) can be completely determined once the functions di(X) 
are known. In terms of the eigenfunctions bj(x) of the covariance function 
of u(x, B), di(x) can be expressed as 

L 

di(X) L xU) e· b ·(x) 
t J J 

j=l 
L 

L y;j) bj(x) . 
j=l 

Equation (71) may be written in an alternative form 

PPM 

(72) 

L Wj[{~j}] L(x) [dj(x)] + L L ~i Wj[{~r}] R(x) [dj(x)] = f(x). 
j=O j=O i=l 

(73) 

This form of the equation shows that dj(x) belongs to the intersection of 
the domains of R(x)[.] and L(x)[.]. Then, following the standard deter
ministic finite element method, the function dj(x) may be expanded in an 
appropriate function space as 

Then, equation (73) becomes 

P N 

N 

L dkj gk(X) . 
k=l 

L L dkj q,j[{~r}] L(x) [gk(X)] 
j=O k=l 

P M N 

+ L L ~i(B) Wj[{~r}] L dkj R(x) [gk(X)] 
j=O i=l k=l 

Equation (75) may be rearranged to give 

P M 

L L dkj [ q,j[{~r}] L(x) [gk(X)] 
j=O k=l 

(74) 

(75) 

f(x) . 
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Multiplying both sides of equation (76) by gl(X) and integrating throughout 
yields 

P M 

L L dkj [ Wj[{~r}] in L(x) [9k(X)] gl(X) dx 
j=O k=l 

+ ~ ~i Wj[{~r}] in R(x) [gk(X)] 91(X) dx 1 
= in f(x) 9l(x) dx , 1 = 1, ... , N . (77) 

Setting 

(78) 

(79) 

fl = in f(x) gl(X) dx , (80) 

equation (77) becomes 

P N 

LL 
j=O k=1 

= fl' l = 1, ... , N . (81) 

Note that the index j spans the number of Polynomial Chaoses used, while 
the index k spans the number of basis vectors used in em. Multiplying 
equation (81) by Wm[{~r}]' averaging throughout and noting that 

one can derive 

N P N M 

L <W~[{~r }]>Lkldkm + L L dkj L <~i(O)Wj[{~r }]Wm[{~r }]>Rikl 
k=1 j=O k=1 i=1 

= < f/ W m [{ ~ r }] >, 1 = 1, ... , N , m = 1, ... , P . (83) 
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Introducing 
(84) 

and assuming, without loss of generality, that the Polynomial Chaoses have 
been normalized, equation (83) becomes 

P N M 

+ L L dkj L Rikl Cijm = <fl 'l1m[{~r }]> , 
j=O k=l i=l 

I = 1, ... , N , m = 1, ... , P . (85) 

For a large number of index combinations the coefficients Cijm are identi
cally zero. Equation (84) was implemented using the symbolic manipulation 
program MACSYMA (1986). Forming equation (83) for all P values of m, 
produces a set of N x P algebraic equations of the form 

[G+R]d=h, (86) 

where G and R are block matrices of dimension N X P. Their mph blocks 
are N-dimensional square matrices given by the equations 

and 
M 

Rmj = L Cijm Ri . 
i=l 

(87) 

(88) 

In equations (87) and (88), Land Ri denote N-dimensional square matrices 
whose kith element is given by equations (78) and (79), respectively. In 
equation (86), h signifies the N x M vector whose mth block is given by 
the equation 

(89) 

The N-dimensional vectors d m can be obtained as the subvectors of the 
solution to the deterministic algebraic problem given by equation (86). Once 
these coefficients are obtained, back substituting into equation (69) yields 
an expression of the response process in terms of the Polynomial Chaoses 
of the form 

P 

U = L d j 'l1j[{~r}] . (90) 
j=O 

Based on equation (90), realizations of the random response vector can be 
computed from realizations of the random variables {~r}' Also, statistical 
moments of the random response vector can be evaluated using the inner 
product defined in equation (2). 
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Figure 1. Plate with Random Rigidity; Exponential Covariance Model. 

5. Numerical Examples 

309 

The preceding development of the stochastic finite element method was ap
plied to a number of problems from engineering mechanics. The first step 
in the solution of any of these problems was the solution of the eigenvalue 
problem associated with the Karhunen-Loeve expansion. Following that, 
the coefficients in the Polynomial Chaos expansion for the solution process 
were computed. Finally, various statistics, as well as the probability distri
bution of the solution process were numerically evaluated. Figure (1) shows 
a thin plate whose modulus of elasticity is assumed to be a two-dimensional 
random process. The plate is analyzed using the stochastic finite element 
formulation described above. Figure (2) compares some of the coefficients 
in equation (90) for various levels of approximation; note the excellent con
vergence. Figure (3) shows the variation of the standard deviation of the 
response against the standard deviation of the material property again for 
various levels of approximation. Finally, figure (4) shows the probability 
distribution of the response variable at the free corner of the plate. 

6. Conclusions 

A method for the solution of differential equations with random processes 
as coefficients was discussed. The method relies on viewing the random 
aspect of the problem as an added dimension, and on treating random 
variables and processes as functions defined over that dimension. In this 
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manner, a formulation for the stochastic finite element method was de
rived which could be construed as a natural extension of the deterministic 
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finite element method. Finite element representation along the random di
mension was achieved via two spectral expansions. One of them was used 
to represent the coefficients of the differential equation which model the 
random material properties, the other was used to represent the random 
solution process. The new concepts were implemented using a number of 
computational models for simple engineering systems. The convergence of 
the discussed approximations was demonstrated numerically. Probability 
distribution functions of the response variables were obtained. 

The present formulation can be viewed as a definite step towards a 
unification of various finite element techniques. Indeed it consists of gener
alizing the concepts of finite element approximation to abstract spaces, of 
which the usual euclidian space is a special case. The deterministic case can 
then be regarded as a digression of this formalism to the particular instance 
when the space of elementary events consists of a single element, and where 
the probability density function induced on the associated a-algebra is the 
uniform distribution. 
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STOCHASTIC FINITE ELEMENTS VIA RESPONSE SURFACE: 

FATIGUE CRACK GROWTH PROBLEMS 
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Piazza L. Da Vinci 32, 120133, Milan (Italy) 

AND 

L. FARAVELLI 
Department of Structural Mechanics, University of Pavia 
Via Abbiategrasso 211, 127100, Pavia (Italy) 

Abstract. A stochastic finite element method based on an extended re
sponse surface technique is coupled with fracture mechanics concepts to 
evaluate the lifetime of a cracked structural component subjected to cyclic 
loading. For a complex structure the relationship between the fracture me
chanics parameters and the crack depth can only be obtained by numer
ical approaches based on the discretization of the continuum into finite 
elements. As a consequence, any random field describing the stochastic na
ture of the input parameters has to be discretized into stochastic finite 
elements. An extended response surface approach is used to characterize in 
closed form the numerical input-output stochastic relationship. This infor
mation is used to define a fatigue crack growth model for the evaluation of 
the lifetime probability distribution function. 

1. Introduction 

Fracture mechanics [3] [8] [9] [28] [1] [4] [37] is a central topic in modern en
gineering and technology. Due to the randomness of micro defects, material 
properties and external loads, deterministic approaches are not effective in 
modelling the problem. Probabilistic fracture mechanics [36] [5] [6] [30] [31] 
[44] [29], which combines fracture mechanics and stochastic models [17] [32], 
provides a useful tool of analysis [21]. In the specific scheme adopted in this 
study, the randomness of the geometric input quantities is propagated by a 
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response surface technique, in order to give a stochastic characterization of 
the relation between the crack length and some fracture mechanics param
eters. This relation is the basis for any subsequent evaluation of the fatigue 
lifetime. A significant scatter is in fact observed due to the sensitiveness of 
the fatigue crack growth to the values of parameters which cannot be ac
curately determined. Moreover crack trajectories for multiple experiments 
under identical loading conditions are not identical. This is due to the ex
istence of random microdefects, such as voids, inclusions and microcracks 
in a heterogenous materials. The change of mechanical and geometrical pa
rameters due to microdefect leads to a substantial difference in both the 
crack path and the fatigue life. In this chapter the stochastic relation be
tween the crack length and the classical fracture mechanics parameters is 
first evaluated. This relation is then used in a fatigue crack growth model 
to evaluate the lifetime probability distribution function. A brief outline of 
the response surface approach to stochastic finite element problems is also 
provided. 

2. Response Surface as Probabilistic Finite Element Method 

The stochastic finite element approach adopted in this chapter is based on 
the evaluation of a response surface. This is done by regression analysis 
on the output of numerical experiments, appropriately planned [17] [23] 
[24] [26] [7]. The surface describes the output of a mechanical system as 
a function of the input variables modelled as random variables, stochastic 
processes or random fields. The reader is referred to [17] for details on the 
procedure which is just summarized in this section. The number of exper
iments to be performed becomes rather high when several input random 
variables are considered. The input random variables are therefore grouped 
into two classes as the result of a preliminary sensitivity analysis: primary 
random variables and secondary random variables. The primary random 
variables are the random variables whose randomness strongly influences 
the randomness of the structural response. The secondary random vari
ables are the remaining ones. Let 2£ be the vector of the principal random 
variables and y the structural response of interest. Suitable transforma
tions Y of y and Xj of Xj are introduced in order to make the model more 
flexible. The relation between Y and Xj is described using a second order 
polynomial [17]. In matrix notation one has: 

(1) 

The coefficients ao, 01 and 02 are evaluated by a regression analy
sis over the results of the numerical experiments [17]. The term € on the 
hand-side takes into account the model error and the effect of the sec-
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ondary random variables as well as that of random vectors and stochastic 
processes. Let Yl and Y2 be two response variables, and Y1, Y2 their ap
propriate transformations. When this stochastic finite element analysis is 
solved, the marginal probability distribution functions of both Y1 and Y2 
are known. The variables Y1 and Y2 are generally correlated and, hence the 
model given in Eq. (1) for Y1 can be updated in the form: 

(2) 

where Qo, o~, 02 and C1 are the coefficients of the new regression problem. 
Classical statistical theory [25] provides the way to evaluate the correlation 
coefficient PY1,Y2 between Y1 and Y2. If more information is necessary, one 
also estimates the joint probability distribution of Y1 and Y2 • In terms of 
probability distribution function, it is given by : 

(3) 

The cumulative distribution function PY2 ((2) is obtained applying level-
2 reliability methods to Eq. (1) [17]. Moreover the conditional cumulative 
distribution function PY1IY2 ((11(2) is found by starting from the model given 
in Eq. (2) with Y2 = (2. 

3. Probabilistic Definition of the Fracture Mechanics Parameters 

When a crack is present in a structural component, its analysis requires the 
knowledge of the stress intensity factor at the tip of that crack. The fracture 
mechanics parameters (the stress intensity factor KI and the J integral) 
depend on the stress distribution in the region of the crack, on the geometry 
of the crack and on the stiffness of the structure. For simple geometries and 
loading systems, solutions are available in standard handbooks, but they 
do not cover complicated structural situations. 

3.1. METHODS FOR ESTIMATING THE FRACTURE MECHANICS 
PARAMETERS 

Different methods are available in the literature for the estimation of the 
fracture mechanics parameters [1]: 

1. direct methods; 
2. energy based methods; 
3. line-spring methods. 

In the direct method [1] [8] [28], a straightforward finite element analysis 
is performed with mesh refinement confined to an area at and around the 
crack-tip. The stress intensity factor is determined by manipulating the 
calculated displacements and stresses at the crack-tip. Special techniques 
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are often required to reproduce the 1/ Vr crack tip singularity of the stress 
and strain field. If the stress C7yy is known along a radial line ahead of the 
crack tip, the mode I stress intensity factor K[ is then evaluated as follows: 

(4) 

where x is the distance from the crack tip. The value of K[ can be obtained 
from a plot as x approaches zero. The same procedure can be repeated us
ing displacements instead of stresses. 

The evaluation of the fracture mechanics parameters is obtained by 
energy methods [1] [8] directly from the definition of the energy release 
rate G: 

G = dU = lim U (a + ~a) - U (a) 
da Aa-?O ~a 

(5) 

where U is the strain energy per unit volume due to the loading. Once the 
value of the energy release rate is known, one evaluates the stress intensity 
factor K[ as: 

K [ =.,fE"7J (plane stress) 

K[ - J 1!v2 . G (plane strain) 
(6) 

The J integral was introduced [34] as an alternative parameter for frac
ture mechanics problems. It is defined as: 

i au 
J = [Udy - r· -ds] 

c dx 
(7) 

where C is the path of the integral which encloses the crack, r is the 
outward traction acting on the contour around the crack, u is the displace
ment vector, ds is the increment along the contour path. For linear elastic 
problems J = G, and the stress intensity factor can be evaluated by Eq. (6). 

For a thin shell with a surface crack, a simplifed analysis can be con
ducted by the line-spring method [35] [33]. Let t the local thickness of the 
shell, a the local depth of the crack and 21 the length of the crack. The 
part-through surface crack is idealized as a through-wall crack of length 21 
with a series of one-dimensional springs across the crack faces. Because of 
the uncracked ligament of size t - a in the surface crack problem there are 
a non zero membrane force N and bending moment M transmitted across 
the crack face. Let 6 and () represent respectively the relative displacement 
and rotation of the plate mid-surface across the crack faces. The line-spring 
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method relates the local N and M to 0 and (J at each point in the following 
manner: 

{ ~ } = [CIs]· { ~ } (8) 

The evaluation of the local compliance matrix CIs is the central point of 
the method. Its entries are obtained by modelling the springs as plane strain 
single-edged crack plate specimen of width t and crack depth a, subjected 
to axial force N and bending moment M. The local compliance of the 
single-edged crack plate specimen is set equal to CIs (see Eq. (8)). The 
finite element analysis of the structural component provides the relative 
displacements of the two sides of the crack and hence, using the matrix 
[C1st 1, the forces in the truss elements. As these forces are evaluated, the 
stress intensity factors KJ is obtained as shown in [33] [34] [35]. The J 
integral can be eventually evaluated by Eq. (6). 

3.2. THE NOZZLE-SAFE-END EXAMPLE 

The structural system of Fig. 1, a nozzle to safe-end connection is studied 
as a reference example [16] [21]. 

T 

Figure 1. Nozzle to safe-end connection of the 1:5 scale PWR vessel (A circunferential 
section; B longitudinal section). 

The safe end is modelled with 76 isoparametric, 8-nodes shell elements, 
and the nozzle with 160 isoparametric, 20-nodes brick elements. The mesh 
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plot (841 nodes) is given in Fig. 2. Fig. 3 shows a detail of the mesh around 
the crack tip. 

Figure 2. The finite element mesh used for the structural analysis. 

A semielliptical surface crack is supposed to be present in the welded 
connection between nozzle and safe-end. Line-spring elements are used to 
discretize the crack. The external loads consist of an internal pressure of 3 
MPa and a distributed vertical load for a total of 78 KN at the end of the 
safe-end. This latter excitation represents the effect of an external cyclic 
excitation. Horizontal loads are also present at the end of the safe-end in 
order to reproduce the continuity conditions. The values of the fracture 
mechanics parameters were assessed by the finite element code ABAQUS 
[27] which includes the option of an elasto-plastic behaviour for the line
spring elements. The crack is modelled using 15 line-spring elements of 
different length. In this way the crack front is described with good accuracy 
for all the situations its probabilistic definition makes possible. In order to 
change the length of the crack, a mesh refinement in the region around the 
crack front is required. The vessel and the safe-end are built of two different 
materials: SA 508 (the nozzle and the weld between the nozzle and the safe
end) and AISI 304 (the safe-end). An elastoplastic material behaviour with 
isotropic hardening has been assumed for the finite-element analyses and a 
bilateral approximation is introduced for the stress-strain relationship. The 
value of the after yielding strain hardening coefficient is 3000 MPa for the 
SA 508, and 2800 MPa for the AISI 347. The other materials parameters 
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Figure 3. Detail of the finite element mesh around the crack tip. 

(the Young's modulus E, Poisson's ratio 1/, and the yielding stress O"y) are 
listed in Table 1. 

TABLE 1. Mechanical properties of the 
materials (SA 508 and AISI 304) used in 
the structural analysis of the nozzle to 
safe-end connection. 

Material E (GPa) 1/ U y (MPa) 

SA 508 209 0.3 345 
AISI 195 0.3 206 

Since the objective of the analysis is the estimation of the probabilistic 
characteristics of the J integral for different values of the crack size a, the 
variables whose randomness influences the result are : E, O"y, t and the 
major semi-axis b of the semielliptical crack. Their probabilistic definition 
is summarized in Table 2. 

Only the major semi-axis b of the crack and the thickness t of the safe
end are considered as primary random variables. The other two random 
variables listed in Table 2, the Young's modulus E and the yielding stress 
O"y of the safe-end, present in fact a very low randomness, and their influence 
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TABLE 2. Probabilistic definition of the input quantities assumed as 
random variables in the analysis of the nozzle to safe-end connection. 

Physical quantity Distribution Mean Value Standard deviation 

Thickness t Gaussian 17= 0.7mm 
Major semi-axis b Gaussian 21.125 = 3.25 mm 
Young modulus E Gaussian 195 GPa 3.90 GPa 
Yielding stress u y Gaussian 207 MPa 7MPa 

on the response surface is taken into account in the error term as described 
in [17]: they are regarded as secondary random variables. According to Fig. 
2, the crack length b cannot be regarded as a continuous variable. Six levels 
of line-spring elements were considered in the analysis, the size of each 
class being 1.625 mm. Therefore the following discrete values of b can be 
retained: 16.25 mm, 17.875 mm, 19.5 mm, 21.125 mm, 22.75 mm, 24.375 
mm and 26 mm. Different transformed variables JI are considered by the 
response surface code [17], and the one which optimizes the model accuracy 
is identified. The response surface model of JI can be written for a given 
crack depth: 

where the star characterizes the standardized value of the variables. The 
coefficients of the model are evaluated by regression analysis over the results 
of numerical experiments conducted by changing the data file of the finite 
element code which performs the analysis of the structural system in Fig. 
1. The modifications are introduced following a central composite design 
of experiments [17]. A polynomial interpolation of the J integral obtained 
using the nominal values of the input random variables listed in Table 2 is 
given in Fig. 4. The probabilistic equivalent of Fig. 4 is eventually given in 
Fig.5. 

In particular the probability distributions of the J integral for a= 3 
and 10 mm, respectively, were computed by coupling Eq. (9) with a special 
form of the so-called level-2 reliability method [17]. 

3.3. THE CRACKED-PIPE EXAMPLE 

As a second numerical example, consider an infinite long pipe with a surface 
crack in the axial direction [15] [18] [19]. The radius R and the thickness 
t of the pipe are 268 mm and 10 mm, respectively. The crack is assumed 
to be semielliptic: the nominal value of the major semiaxis b is 28.93 mm. 
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Figure 4. Interpolation curve for the J integral calculated from the nominal value of 
the input variables listed in Table 2. 

Three different values of the depth a of the crack are considered. They cor
respond to the following values of the ratio aft: 0.2 (shallow crack deep), 
0.46 (moderate deep crack) and 0.7 (deep crack). 
Due to the symmetry of the problem, only one half of the pipe was dis
cretized into finite elements by the finite element code ABAQUS [27]. The 
mesh is given in Fig. 6, and was realized for a length equal to 15 times 
the semiaxis b of the crack. It was assumed that this length is sufficient to 
realize the condition of an infinite long pipeline. The special value of the 
ratio radius/thickness allows a discretization by shell elements. This makes 
possible to use line-spring elements for the computation of the J integral: 12 
line-spring elements were used for the crack discretization. The line-spring 
elements have different lengths, as shown in Fig. 7. 

The material behaviour is assumed to be elasto-plastic with isotropic 
hardening. The material characteristics are given in Table 3. 

The external loads consist of an internal pressure of 12 MPa. Concen
trated loads are present at the end of the part of the pipe considered in the 
analysis in order to reproduce the continuity condition. All these external 
actions are considered as deterministic quantities. 

The input variables assumed as random in the analysis are : the elastic 
modulus E, the yield stress CTy , the radius R, the thickness t and the semi
axis b of the crack. Their probabilistic definition is given in Table 4. Only 
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Figu.re 5. Probability distribution function of the J integral for the crack depth a equal 
to 3 and 10 mm, respectively. 

TABLE 3. Mechanical prop
erties of the material used in 
the analysis of the pipe. 

E (GPa) v u y (MPa) 

206.8 0.3 482.5 

the semiaxis b , the thickness t and the radius R of the pipe are regarded as 

TABLE 4. Probabilistic definition of the input quantities assumed as 
random variables in the analysis of the pipe. 

Physical quantity Distribution Mean Value Standard deviation 

Thickness t Gaussian lOmm 0.67 mm 
Radius R Lognormal 268 mm 2.68 mm 

Major semi-axis b Lognormal 28.93 mm 2.97 mm 
Young modulus E Gaussian 206.8 GPa 6.67 GPa 
Yielding stress 0" y Gaussian 482.5 MPa 14.2 MPa 
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Figure 6. The finite element mesh used for the structural analysis of the pipe. 

pr:imary random variables. The mechanical properties of the material (the 
Young modulus E and the yielding stress G y ) are regarded as secondary 
random variables, since it is assumed that the material is well controlled so 
that the randomness on the material parameters is small. Again the major 
semiaxis b of the crack can assume only discrete values. Eight classes were 
used in the analysis to describe the variability of this parameter. 
First the cumulative distribution function of the J integral is evaluated for 
three different values of the crack depth (aft equal to 0.2,0.46 and 0.7, re
spectively) following the procedure illustrated in the previous example. The 
number of required numerical experiments is 20 for each of the considered 
crack depths. The results are shown in Fig. 8. 

In order to characterize the stochastic relationship between the J inte
gral and the crack depth, the J integral was computed using the following 
values for the crack depth a: 2 mm - 3 mm - 4 mm - 4.3 mm - 4.6 mm -
4.8 mm - 5 mm - 6 mm - 6.5 mm and 7 mm. In the structural analysis, the 
random input parameters listed in Table 4 were considered equal to their 
mean values. The numerical results (Fig. 9) were interpolated by a fourth 
order polynomial using the least square approach: 

J(a) = -25.843 + 31.549a - 11.979a2 + 2.135a3 - 0.128a4 (10) 

Due to the randomness of the input parameters (see Table 4), the coef-
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Figure 7. Detail of the finite element mesh around the crack tip for the analysis of the 
pipe. 

ficients of the polynomial approximation of the J integral given in Eq. (10) 
are random [19]. Eq. (10) is then rewritten as: 

(11) 

where the coefficients ~h~b~'~ e ~ are random, but correlated variables. 
Each ofthe J integral curves given by Eq. (11) is regarded as isoprobability 
curve. 

The points with the same probability in Fig. 9 are interpolated by a 
fourth order polynomial (the first derivative of the polynomials at the ex
treme value of the crack depth range is kept constant). 

4. Fatigue Crack Growth 

The response surface stochastic finite element method can now be used 
to evaluate the lifetime distribution of a structural component subject to 
cyclic loads. The idea is to couple the probabilistic finite element method 
with a fatigue crack growth model [20] [12] [11] [21]. 
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Figure 8. Cumulative distribution function of the J integral for three different values 
of the ratio aft: a/t=O.2 (solid line), a/t=0.46 (dashed line) and a/t=O.7 (dashdot line). 

4.1. FATIGUE LIFETIME DISTRlBUTION 

The stochastic differential equation governing the crack growth is [14] [13]: 

dg(N) = C· (AKeq)m[J.t~ + P . cos1!..(N)]dN 
d1!..(N) = a· dw(N) 

(12) 

with 4>(0) = 0 and g(O) = ao. In Eq. (12) w(t) is a Wiener process, p and a 
are model parameters and /-Lx is the mean value of the process ~(N). The 
lifetime distribution for a given N is evaluated [14] [13] [12] by a technique 
based on Hermite moments [38] [39]. The equivalent stress intensity factor 
range AKeq(a) is calculated for several cracks sizes, and the results fitted 
by a suitable polynomial interpolation: 

(13) 

Note that in this case a second order polynomial is sufficient to model 
the relation between AKeq(a) and a. In the cracked-pipe example of the 
previous section, a fourth order polynomials was necessary. Of course the 
actual nature of the coefficients co, Cl and C2 is random due to the random
ness of the input quantities of the finite element model. An accurate analysis 
requires the estimation of the randomness of these coefficients. This could 
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Figure g. Polynomial approximation of the J integral for several probability levels. The 
dotted line is obtained using the mean values of the input random quantities listed in 
Table 4. 

be done by a response surface scheme. In summary the proposed method 
for fatigue crack growth analysis consists of the following steps [11]: 

1. the stress intensity factor is estimated for some values of the crack size 
by a suitable finite element code. The random geometrical variables 
which form the input for that code are introduced by their mean values; 

2. the results are used to fit a suitable polynomial interpolation to the 
relationship between the root-mean-square of the stress intensity factor 
range and the crack size; 

3. the coefficients co, Cl and C2 of the polynomial interpolation and of the 
initial crack length ao are regarded as random variables; 

4. a set of experiments is planned, according to experiment design theory, 
in the space of the independent random variables into which the poly
nomial coefficients co, Cl and C2 and the initial crack length ao have 
been mapped; 

5. the lifetime probability is evaluated, for given crack length a f and given 
number of duty cycles, by the method based on Hermite moments; 

6. the resulting lifetime probability is modelled by an appropriate re
sponse surface; 

7. the cumulative distribution function of the lifetime probability is esti
mated by a level-2 reliability method. 
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4.2. NUMERICAL EXAMPLE 

Consider again the welded connection between the nozzle' and the safe-end 
of the PWR vessel introduced in the previous section (see Fig. 1). A crucial 
point is the identification of the position and the initial size of the crack. 
Two types of cracks can be considered: 

1. fabrication cracks; 
2. cracks nucleated during service. 

The present work deals with the first category. The crack under inves
tigation is planar, and its shape is semielliptical. The crack grows initially 
along the thickness. Once it has reached the leak point, it propagates along 
the surface until the critical dimension is achieved and catastrophic failure 
takes place [12]. Attention is focussed on the first stage, i.e. crack propa
gation occurs along the thickness. The dimension b of the larger radius is 
34 rom, and is kept constant in this analysis. The following values for the 
dimension a of the other radius are considered for the calculation of the 
fracture mechanics parameters: 1 mm - 3 mm - 7 mm - 10 mm. Indeed the 
initial value of the crack size ao is assumed to be 3 mm. 

The vertical force at the end of the safe-end is modelled as a narrow 
band Gaussian process with zero mean and standard deviation us of 13.42 
KN. The equivalent stress intensity factor range b.Keq (see E<}' (12)) is 
obtained using the equivalent loading range b.Seq in the structural analysis. 
For narrow band Gaussian process it is given by: 

(14) 

With the value of u§.. listed above, an equivalent loading range equal 
to 42 KN is obtained. The crack front was modelled in the finite element 
mesh using 6 line-spring elements in order to describe accurately the shape 
of the crack front. The equivalent stress intensity factor range b.Keq was 
calculated for the crack depth listed above. The result is interpolated by a 
second order polynomial (see Fig. 10): 

b.Keq(a) = -0.15· a2 + 3.86 . a - 1.308 (15) 

The fatigue crack growth for SA 508 can be described by the stochastic 
version of the Paris law given in Eq. (12). 

The fatigue crack growth parameters C and m, and the filter param
eters /-Lx, P and u, are determined from experimental results on compact 
tension-specimens. Experimental results are reported in Fig. 11: log(tN), 
the logarithm of the crack growth rate, versus log(b.K), the logarithm of 
the stress intensity factor range [22]. 
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Figure 11. Regression analysis and 95 % tolerance bands for the pressure vessel steels. 

Experimental results are interpolated by a straight line, given in Fig. 
11, by the least mean square approach. The slope of the best fit straight 
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line represents the exponent m of the Paris law, while the intercept with 
the x-axis is the C coefficient. The relevant numerical values are: 

C = 3.67.10-12 (MPa units) 
m = 3.071 

(16) 

A regression analysis gave a residual standard deviation of 0.27. Clas
sical normal-to-Iognormal transformation formulae yielded the following 
model parameters: 

m:£ 

p 
(J 

-
-
= 

1.21 
1.17 
4.5 

(17) 

It is assumed that the interpolation coefficient ~ is a Gaussian variable 
with mean value equal to -1.308 and coefficient of variation -0.3, while 
the second coefficient ~1 is modelled as a lognormal random variable with 
median 3.86 and coefficient of variation 0.2. Let !lv be the value of the crack 
length at which the first derivative of the function sK(a) is equal to zero. 
One has: 

-~1 
a =-
-v 2· f2 

(18) 

It is assumed that the random variable !lv has a mean value equal to 
12.86 and a dispersion around the mean value given by a Gaussian random 
factor n with mean value one and standard deviation .1. Then the third 
coefficient f2 is given by: 

~2 = 2 . 12.86 . n (19) 

Realization of the interpolation coefficient and of the initial crack length 
was selected according to experimental design theory. The initial crack 
length is idealized to be a Gaussian random variable with mean value equal 
to 3 mm and standard deviation 1 mm. 

Experimental design theory was used to obtain 20 experimental points 
in the space of the random variables ~, ~1' f!o; n was regarded as a sec
ondary variable, due to its narrow variability. For each of the planned ex
periments, Eq. (13) is written. The relevant plots are given in Fig. 12. In 
this figure the solid line is the plot of Eq. (15). 

The lifetime probability was computed for the planned experiments and 
for a value of the limit crack length a f equal to 8 mm. The probability 
distribution of the lifetime probability was evaluated by a level-2 reliability 
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Figure 12. Equivalent stress intensity factor range vs. crack size for the values of the 
interpolation coefficients obtained from experimental design theory (the solid line shows 
the polynomial form obtained for the mean values of the interpolation coefficients). 

method. The corresponding probability density is then derived. Plots of the 
probability density of the lifetime probability after 360000, 380000, 400000, 
420000 and 440000 duty cycles are given in Fig. 13. 

5. Response Surface vs. AMVFO 

5.1. ADVANCED MEAN VALUE FIRST ORDER (AMVFO) 

The advanced mean value first order concept (AMVFO) [40] [41] [42] [43] 
has been used in the literature to estimated the cumulative distribution 
function (CDF) of the number of cycles to failure Nf for a structural com
ponent under fatigue. Let X be the vector of random variables in the ex
pression for Nf. With the advanced mean value concept, the CDF of Nf(X) 
(Nf being an implicit function of X), is evaluated by introducing a first
order Taylor series expansion of Nf about the mean value J.LX of X. This 
requires solutions at J.LX and at small perturbations about J.LX in order to 
evaluate the parameters of the linear function. The function Nf{X) is then 
replaced by a linear function N' f{X): 

k 

N' f{X) = CO + I: Ci{Xi - J.LXi) (20) 
i=l 
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Figure 13. Probability density function of the lifetime probability for a, = 8 mm and 
some values of N, namely N equal to 360000, 380000, 400000, 420000 and 440000 duty 
cycles. 

where: 

(21) 

The partial derivatives are computed using the perturbed data. The 
CDF is approximated at discrete points Nfi. The number of points is arbi
trary, but it was shown that three or four points on both side of the mean 
are adequate to define the CDF, when the probability offailure is expected 
to be a smooth function. A first estimate of the CDF is made from the 
linear form. The limit state function at each Nfi is: 



332 P. COLOMBI AND L. FARA YELL! 

9i(X) = N'f(X) - Nfi (22) 

The probability of failure is then computed by: 

(23) 

where f3i is the reliability index [2] associated with each 9i; Pf{Nfi) is the 
probability of failure after Nfi duty cycles, and ~(.) the standard normal 
CDF. This is the mean value first order (MVFO) method: it leads one to 
estimate the design point X* i for the linear approximation of Eq. (20). To 
improve the estimate of the CDF, the actual lifetime Nf(X\) is evaluated 
at each design point of the sample space identified. These values are asso
ciated with the probability of failure Pf(Nfi ) obtained from Eq. (23): the 
corresponding plot is regarded as an improved form of the sought CDF. This 
improvement gives rise to the advanced mean value first order (AMVFO) 
method. The total number of function evaluations is given by: 

J=nv+np+I (24) 

where nv is the total number of random variables and np is the number of 
points used to define the CDF. The estimate of Pf(Nf) could be improved 
by introducing a new linear approximation for Nf at each design point X* i. 
The reliability analysis is then performed for each of the linear functions; as 
a result the probability estimate at each value of Nf i is more accurate. Still 
another improvement could be made by evaluating the real function at each 
design point. This process can be repeated, but experience suggests that 
the CnF obtained by the first function evaluation (AMVFO) is generally 
very close to the exact solution. 
The following basic differences from the previously discussed response sur
face stochastic finite element method can be listed [21] [10]: 

1. Eq. (20) is linear while Eq. (1) is quadratic; 
2. Eq. (20) is written in the original space of the variables X while Eq. 

(1) is written in a transformed space (generally the standardized one); 
3. A deterministic error term 1] was not written explicitly in Eq. (20); 

however for a given vector X\, the probability Pf{Nfi) is associated 
with Nf{X\) instead of N' f(X· i) where: 

(25) 

Therefore, Eq. (20) assumes that 1] can be computed, while the er
ror term € in Eq. (1) is a random variable, the variance of which is 
estimated through statistical analysis. This makes it possible to incor
porate in it the effect of all the uncertainties which affect Nf. 
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5.2. NUMERICAL EXAMPLE 

A numerical example [10] is studied in order to emphasize the difference be
tween the response surface finite element method and the AMVFO method. 
Upon integration of the Paris law, the number of cycles to failure is given 
by: 

1 laf da 
Nf=-

C ao (So(a))m. (Y(a))m . (7ra)m/2 
(26) 

where So(a) is the equivalent stress range. It is a function of the crack depth 
because a threshold level flKth is introduced for the stress intensity factor 
range flK. Below this level the crack will not propagate. The following 
espression is retained for the geometry factor Y(a) in Eq. (26): 

Y(a) = ('IjJ - 1) . e-'Y'av + 1 (27) 

where'IjJ is the theoretical stress concentration factor and 'Y and II are some 
constants. Moreover assume that the long term stress range is Weibull 
distributed with shape parameter ~ and scale parameter 8 given by: 

(28) 

where Nt is the total number of cycles and 80 is the design stress range 
defined by P(S > 80) = Jt • The numerical data of the terms in Eq. (26) 
are given in Table 5. 

TABLE 5. Numerical data for the deterministic and random parameters 
in the fatigue crack growth equation. 

Variable Distribution Mean Value Standard deviation 
(MPa units) (MPa units) 

£, Type I extreme value 172.05 13.764 

AKth Normal 121.394 12.1394 
C Weibull 1.2723E-13 1.2723E-14 

f!o Lognormal 25.4E-02 1.27E-02 

~ Constant 1. 
Nt Constant 1.0E+8 
m Constant 3. 

{!f Normal 25.4 2.54E-0l 

t/J Constant 3.3 

1 Constant 4.42 
v Constant 0.44 
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Fig. 14 shows the CDF of the number of cycles to failure computed by 
the AMVFO method. The Monte Carlo solution is super~mposed in order 
to check the accuracy of the computed CDF. 
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Figure 14. Comparison between the response surface solution (solid line), the AMVFO 
solution (dashed line) and the Monte Carlo solution. 

Fig. 14 shows also the CDF of the number of cycles to failure computed 
by the response surface stochastic finite element method. In this case also, 
the comparison is excellent. Since for reliability purposes it is the low tail of 
the CDF which is of practical interest, the response surface can be shifted in 
order to give a good approximation of the low value of the number of cycles 
to failure. The results are given in Fig. 15, where the CDF is compared with 
the original response surface solution and the Monte Carlo plot. The match 
of this second solution with the simulation result is very good. 
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Figure 15. Comparison in logarithmic scale between the shifted response surface solution 
(dashed line), the original response surface solution (solid line) and the Monte Carlo 
solution. 

6. Conclusions 

In this contribution, the stochastic response surface method is applied to 
fracture mechanics problems. In the first part of the chapter, the method is 
used to characterize the stochastic relation between the fracture mechanics 
parameters (the stress intensity factor and the J integral) and the crack 
depth. For complex structures this relationship is modelled by a suitable 
polynomial with random coefficients. In this case a numerical scheme (finite 
element or boundary element method) must be used to evaluate the frac
ture mechanics parameters. The finite element code ABAQUS was used for 
this purpose. This relation defines the fatigue crack growth rate in any of 
the available fatigue crack propagation equations. In the second part of the 
chapter, this relation is used to evaluate the distribution of the number of 
cycles to failure. The randomness of the fatigue strength capacity is mod
elled by a Markov process, and a filter technique is adopted. The lifetime 
probability is evaluated by a method which makes use of Hermite moments 
and Ito calculus. The response surface approach is finally compared with 
the AMVFO method. The AMVFO method is shown to be a special form 
of the response surface scheme in which the error term is regarded as a de
terministic function and, hence, estimable on the basis of specific numerical 
experiments. 
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PROBABILITY BASED STRUCTURAL CODES: 
PAST AND FUTURE 

J. FERRY BORGES 
Laborat6rio Nacional de Engenharia Civil 
Lisbon 

1. Introduction 

The evolution of structural codes during the present century is outlined. The description 
is centered on the design of buildings and public works of structural concrete and 
mainly reflects experience in Western Europe. Particular attention is paid to the 
introduction and generalised use of probabilistic concepts. Although most of the 
specific considerations refer to structural concrete, the fundamental concepts apply to 
other materials used in civil engineering: steel, masonry, timber, etc. 

During the last decades international associations in civil engineering have made 
significant contributions to the practical implementation of research results. The 
guidance documents they have produced: recommendations, state of the art reports, 
manuals, codes of practice, etc., have been directly applied in practice, and have much 
contributed to the improvement of national and international standards. 

However the most important step towards the harmonization and improvement of 
structural codes in the civil engineering field arose from the initiative of the 
Commission of the European Communities of preparing the set of Eurocodes. 

In this paper, after a brief historical review of the probabilistic formulation of 
structural safety, the evolution of probability based guidance documents is discussed. 
The comments are mainly centered in the evolution of the CEB - FIP Model Codes. 
Finally the need to carry out reliability studies based on probabilistic data and to 
perform the logic analysis of code provisions is emphasized. 

2. Probalilistic formulation of structural safety 

In 1926 Max Mayer published the thesis "The Safety of Structures and their Design 
According to Ultimate Forces Instead of Allowable Stresses" (Mayer 1926). This thesis 
presents two main proposals aiming at rationalizing design: to consider pertinent limit 
states, particularly failure, and to idealize the variability of the different quantities such 
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as mechanical properties, loads and dimensions according to probabilistic 
concepts. These proposals were far ahead of their time. Only in the forties did these 
problems start to be thoroughly discussed. However, even then probabilistic concepts 
were introduced mainly in qualitative terms. 

A brief historical review of the evolution of probabilistic structural safety up to 
1980 is presented in the third edition of the book "Structural Safety" Ferry Borges and 
Castanheta. Table 1 lists the papers published in this period, in chronological order. 

In 1969 the International Association for Bridge and Structural Engineering, 
IABSE, organized a Symposium in London on Concepts of Safety of Structures and 
Methods of Design. The ICOSSAR conferences took place in Washington, 1969; 
Munich, 1977; Trondheim, 1981; Tokyo, 1985; San Francisco, 1989 and Innsbruck 
1993. More than 450 papers were presented at the last two conferences. 

Conferences on reliability which concentrate in soil mechanics have been held in 
Hong Kong, 1971; Aachen, 1975; Sidney, 1979; Florence, 1983 Vancouver, 1987 
Mexico 1991 and Paris 1995. These conferences are organized by a permanent 
international commitee under the title "International Conferences on Applications of 
Statistics and Probability in Soil and Structural Engineering". 

State of the art reviews on structural safety were published by the American Society 
of Civil Engineers (1972), Mathieu, (1980) and Bosshard, (1979). The International 
journal "Structural Safety" starts in 1982 (Vanmarcke, 1982). 

Text books on structural reliability have been published by Leporati, (1979), Thoft
Christensen and Baker (1982), Thoft-Christensen and Murotsu (1986), Augusti. Baratta 
and Casciatti (1984). 

In 1971 the Liaison Commitee, which coordinates the activity of seven 
international associations in civil engineering: CEB, CECM, CIB; FIP, IABSE, lASS 
and RILEM, decided to create the "Joint Committe on Structural Safety", JCSS, with 
the aims of improving the general knowledge in structural safety and providing sound 
bases for formulation of structural design recommendations. The JCSS has prepared 
several documents of general character such as: 

- Common Unified Rules for Different Types of Construction and Materials, which 
constitutes Volume 1 of the International System of Unified Standard of Practice 
for Structures, 

- General Principles on Reliability for Structural Design (JCSS, 1981a) 
- General Principles on Quality Assurance for Structures (JCSS, 1981 b) 
- General Principles on Reliability for Structures. A Commentary on IS 2394 

(JCSS, 1988). 
During the last 20 years a large number of papers on structural reliability have been 

discussed at JCSS meetings, published in scientific journals and presented to national 
and international conferences. It is difficult to make a selection for a brief review. 
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PROBABILITY BASED CODES 

TABLE 1. Chronological order of publication of papers on structural safety from 1926 to 1980 

Mayer (I) 

1930-

Prot (3) 

Wierzbicki (4) 
1940- Kjellman (S) 

Wlistiund (6) 

19S0-

Freudenthal (7) 

Vasco Costa (8) 
Torroja and Paez (9) 

Pugsley (10) 
Prot and Levi (11) 
10nhnson (12) 
Ferry Borges (13) 
Home (14) 

1960- Thomas (IS) 
Cornell (16) 

1970-

1980-

Ferry Borges and Castanheta, M. (17) 
Benjamim (18) 
Ang and Amin (19) 
Bolotin (20) 

Rusch and Rackwitz (21) 
Rosenblueth and Esteva (22) 
Ditlevsen (23) 
Hasofer and Lind (24) 
Veneziano (2S) 

Bosshard (26) 
Ingles (27) 
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Recently, under the auspices of the Commission of the European Communities, 
there was created the European Safety and Reliability Association (38). This 
Association is intended to cover all branches of engineering with a very wide spectrum 
of activities: assistance to industry and consultants, organisation of courses and 
seminars, establishment of an information network between industrial, academic and 
professional organizations, advice on industrial, environmental and transport risks, etc. 

All over the world, active research is going on in the field of structural safety 
reliability, and the domains covered are becoming larger and larger. This is well 
expressed by the list of themes dealt with in the last ICOSSAR conference: wind 
engineering, fuzzy logic for damage and safety assessment, seismic hazard estimation, 
fatigue fracture and damage analysis, structural systems reliability analysis, 
probabilistic analysis, bridges and buildings, error analysis and expert systems, 
engineering modelling of seismic ground motion, reliability based design materials, 
seismic damage estimation, structural reliability using expert opinions, industrial 
facilities, damage method and analysis, design codes and related issues, stochastic 
computational methods and stochastic dynamics, reliability-based design-methods, 
applied probabilistic analysis, nuclear structures, seismic structural damage, life 
systems, water delivery systems, loads and load combination, system identification and 
control of structures, aerospace structures, structural risk, systems identification, 
reliability based optimisation, inspection, quality control and quality assurance, space 
station freedom, offshore and marine structures, methods for systems reliability and 
random vibration. 

However in an overall judgement of the situation, it is recognized that only a very 
small part of the results obtained in recent research is included in current guidance 
documents. 

3. Evolution of probability based guidance documents 

3.1. TYPES OF DOCUMENTS AND THEIR CONTENT 

In 1985, the Economic Commission for Europe (Geneva) published a second report on 
Building Regulations in ECE Countries (ECE, 1985). This report describes the systems 
of building regulations in 25 countries. It indicates the legislative framework of 
construction, means of control and procedures for approval of buildings and building 
products, research and development work, and international cooperation in the field. It 
shows that the systems of building regulations in various countries are quite different. 

The following brief description of the evolution of guidance documents in civil 
engineering concentrates on the domain of reinforced and prestressed concrete; this is a 
paradigm in the field. 

At the beginning of the century the knowledge on structural concrete was mainly to 
be foun in treatises, of which those by Morsch (1902) and by Saliger (1905) are good 
examples. The first codes dealing with the design and execution of concrete structures 
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were published in Gennany 1904 (42) and in France 1906 (43) respectively. Within a 
few years almost every European country had published its code. These codes were 
based on similar fundamental concepts (elastic design and allowable stresses they 
differed mainly in the amount of infonnation included and in conditions their use 
(whether compulsory or not). Some were published by the national standardisation 
bodies, as nonns, other were enforced as laws. 

In Europe the international cooperation aiming at producing recommendations to 
designers and builders started in the fifties with the creation of the Comite Europeen du 
Beton. The Bulletins d'Infonnation of this Comite include the studies produced within 
the CEB, since 1957. 

The first edition of the "Recommendations Pratiques a L'Usage des Constructeurs" 
was published in 1963 and applied to reinforced concrete only. 

The second edition of the Recommendations, prepared in cooperation with the 
Federation Internationale de la Precontrainte, was published in 1970; it covered both 
reinforced and prestressed concrete. Although the Recommendations included extensive 
commentaries, it was recognised that there was a need to prepare manuals which justify 
the rules in the Recommendations and include aids for their practical application. 

To improve of the technological solution of different types of problems and types 
of construction, FIP published a set of "Codes of Good Practice". The third edition of 
the CEB-FIP Recommendations was published in 1978 under the general title 
"International System of Unified Standard of Practice for Structures". As mentioned, 
Volume I of this System was prepared by the JCSS in order to harmonize different 
structural codes by the use of a common background. 

CEB, in cooperation with FIP, are actively preparing the next edition of the 
recommendations to be published with the title "CEB-FIP Model Code". 

The basic content of these recommendations is about the same as that of previous 
editions. However there has been a continuous increase of the number of words in 
sucessive editions, as indicated in Table 2. The total number of words in the 1978 
edition is more than the double that of the 1963 edition. 

TABLE 2. Number of words in CEB-FIP Model Code editions approximate 

Recommendation Recommendation Model Code 
s s 1978 

1963 1970 

Text 14500 31000 29500 
Comments 10500 13000 23000 
Total 25000 44000 52500 

The drafting committee of the Model Code is confronted with a dilemma: include 
all pertinent infonnation, and consequently publish a very extensive document; or select 
the contents and exclude the secundary issues, to obtain a shorter document. 
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It is often indicated that a structural building code should be. concerned only with 
the protection of public health, safety and general welfare, and that the corresponding 
clauses should be mandatory. 

For the situation in U.S.A. and particularly the ACI Code, MacGregor presents a set 
of strategies for future code improvements (44). 

Structural codes produced and published by international associations are by their 
nature, non compulsory. The legal status of the documents produced at national level 
differs markedly from country to country even within the European Communities. 

A problem which deserves particular attention is to fmd the most convenient way to 
distribute guidance information to the participants in the building process. This problem 
is directly connected to the way this information should be organized. There is a 
consensus that structural codes should include requirements, performance criteria and 
prescriptive rules. Furthermore, general statements and defmitions are needed to clarify 
the text. 

The first predraft of the CEB-FIP Model Code 1990 follows this organisation. The 
chapters on the verification of the ultimate limit states and of the serviceability limit 
states, open the indication that for the structure as a whole and for its component parts 
its hall be demonstrated that the probability of limit states being reached is acceptably 
small. The following chapters indicate the design criteria to be used in the verification 
of these two types of limit states. 

The method of partial coefficients is adopted. Numerical values are given to the 
partial coefficients and it is indicated how they should be introduced in the calculations. 
There is no indication about the way the partial coefficients are derived. 

The draft under consideration includes in "Part I: Design Input Data", not only the 
idealization of material properties, but also the description of 11 generalised behaviour 
models on which the structural analysis and dimensioning are based. These models 
cover: bond stress-slip relationships, tension stiffening effects, pullout, anchorage, 
design stress-strain diagram reinforced concrete subjected to compression and 
transverse tension, data for confined concrete, moment curvature relationships, rotation 
capacity, concrete to concrete friction, and dowel action. Each of these models would 
correspond to a set of y values to be derived e.g by means of a level 2 method, from the 
mean values and standard deviations of the basic variables included in the model and 
the aimed reliability index. However no mention of this derivation is presented. 

Design procedures are dealt with in Part II, which includes 6 chapters: structural 
analysis, verification of ultimate limit states, verification of serviceability limit states, 
durability aspects, detailing and minimun measures. 

The chapter on verification of ultimate limit states with the sentence: "It shall be 
demonstrated that for the structure as a whole, and for its components parts, the 
probability of the ultimate state being reached is acceptably small". This sentence is 
followed by the indication of the conditions under which ultimate limit states may be 
reached, making use of the generalised behaviour models presented in Part I. 

The design of buildings and civil engineering works in structural concrete is 
covered by Eurocode 2. This Eurocode is complemented by Eurocode 8, which 
concerns the design of structures in seismic regions. Part 1 of Eurocode 2 gives the 
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general basis for design and detailed rules, which are mainly applicable to ordinary 
buildings. In this Eurocode distinction is made between principles and application rules. 
The advantage of this classification is not clear. 

Eurocode 2 was partly inspired by the 1978 CEB - FIP Model Code. 
The Commission of the European Communities has decided to commit the drafting 

of Eurocodes to the European Committee for Standardisation, CEN. 
The most comprehensive set of documents on concrete technology, and particularly 

on structural concrete, is produced by the American Concrete Institute, ACl. Due to its 
large international membership, ACI should be considered as a international 
association. 

Another important problem concerns the liability for errors or omissions by the 
bodies who publish the guidance documents. All CEB documents include the sentence: 
"Although the CEB has done its best to ensure that any information given is accurate, 
no liability or responsibility of any kind (including liability for negligence) is accepted 
in this respect by the Comite, its members or its agents". The legal value of this 
statement should be clarified. 

3.2. EVOLUTION OF PROBABILITY BASED CODES 

Table 3 summarizes the recent evolution of probability based structural codes. The table 
is divided in to three columns, decribing the situation in the past (before the 
introduction of probabilistic concepts), in the present and in the future. The statements 
concerning the future express the points of view of the Author about the desirable 
evolution of codes. However it is recognized that in several cases the indicated 
statements are idealistic and not fully attainable. 

The different structural codes are not uniform in their treatment of the various types 
of construction and material. However due to the activity of the JCSS, of the ISO and of 
the different international associations that have prepared model codes and other pre
standardisation documents, there is similarity among the fundamental concepts and the 
basic design rules. The enormous amount of the work carried out in the framework of 
the European Communities to draft the Eurocodes has greatly contributed to the 
improvement of this type of document, and to their compatibility. 

Even so, some statement included in Table 3, concerning the present, are too 
optimistic. Codes often indicate that they follow the probabilistic approach; in fact they 
simply use the partial factors method without any effort to relate the numerical values 
of the partial factors to theoretical values of the probability of failure. 

Consequently it is recommended that careful calibration studies based in sound 
probabilistic principles be carried out to justify the defined y values. 
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TABLE 3. Evolution of probability based structural codes 

Past Present (1989) Future 

The deterministic approach did The probabilistic approach is The probabilistic approach will 
not provide rational basis for extensively used in the be combined with fuzzy theory 
the concept of safety formulation of structural safety and strategic idealisation, 

problems. according to the problems. 

The fundamental decision rule The fundamental decision rule Decisions will be based on the 
consisted in I imiting the stress consists in limiting the socio-economic formulation of 
to allowable values. Allowable probability of failure or the the problem, paying special 
stresses were based on past reliability index. attention to the comparison of 
experience. generalised cost and benefit. 

The mechanical properties of The mechanical properties are The probability distributi-ons of 
materials were defined by defined by characteristic values mechanical properties will be 
minimal values. The meaning with a clear probabilistic completely defined by 
of these values was not clear. meaning. The same values are combining all information 

used as rejection limits in available. The quality of 
quality control rules. production controL 

Internal forces and the resisting The characteristic values of the The probability distribution of 
capacity of the structure were resisting capacity of the resisting capacity is derived 
computed by deterministic structure are derived from taking into account the 
theories. characteristic values of the randomness of all basic 

mechanical properties of the variables and of the models 
materials by deterministic used in it determination. 
theories. Conversion factors are 
introduced. 

There was a dilemma between Computers can solve any There will be a clear 
the choice of elastic or plastic structural problem, whether understanding of the field of 
design methods. with linear, plastic or non-linear application of different 

behaviour. structural theories.Randomness 
of structural behaviour will be 
duly considered. 

Values of the actions to be Actions are modelled by Strategic definition of some 
used in design were fixed by occurrence and descriptive actions will be adopted, after 
simple global judgement. schemes.Numericai values are users have been conveniently 

fixed in a regional scale. informed. 

The rules for the combination Numerical values of the Algorithms for safety and 
of actions were empiricaL combination factors are fixed serviceability checking will 

according to a sound theoretical have a sound probabilistic base. 
approach. 

4. Logic analysis of code provisions 

The quality of codes depends both on their scientific and technical contents and on 
the way these contents are expressed (45). 

The correct expression of the codes is important for their implementation. The 
following conditions should be satisfied: 
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- The text should be expressed in natural language that is clear, complete and 
without ambiguities. 

- The logic al analysis of the text should be carried out through decision tables 
and/or decision trees in order to judge its consistency. 

Furthermore the logical analysis should he regarded as a preliminary step to the 
programming of automated design (CAD) and of expert systems. 

The logical analysis of structural codes has often been performed in the U.S.A (see 
e.g. Analysis of Tentative Seismic Design Provisions for Building). 

The logical analysis of shear provisions in the drafts of Eurocodes 2 and 8 was 
recently carried out by Mary Mun and Ferry Borges (46). 

A state of the art discussion of the use of expert systems in Civil Engineering has 
been presented by Fenves (47). It is to be expected that expert systems will be largely 
used in the future. 

5. Conclusions 

Results from research activity carried out all over the World should be transformed into 
guidance to the participants in the building process. This guidance may take different 
forms. The designation "standard" is often used as comprehending documents such as: 
codes, guides of good practice, recommendations, norms, specifications, agreements, 
etc. On the other hand standard has an official meaning; the result of the activity of 
national, regional or international standardisation organisations. 

What we wish to emphasise is that international scientific and technical associations 
are in a particularly favourable position to draft documents at pre-standardisation level. 
These documents may be directly used as information to the practice and may constitute 
the background to the drafting on national and international standards. 

As in other branches of human activity, digital computers play an increasing role in 
the information process in the construction sector. Thus when drafting guidance 
documents it should be remembered that they may be included in data bases and expert 
systems. It is to be expected that knowledge-based expert systems will integrate a very 
wide spectrum of information in a form easily accessible to users. 

In most cases, the probabilistic approach will be the convenient concept to support 
models and to interpret data. However, in some cases, strategic decision theories and 
fuzzy set concepts may be particularly convenient also. 

In general, international associations claim no liability in relation to the documents 
they produce. The legal value of these claims should be clarified. 

At least, it is imperative that the documents produced by the international 
associations and the standardisation organisations be of high quality, not only from the 
scientific and technical points of view, but also in what concerns the clarity of the 
writting. The redaction should be checked by logic analysis, using decision tables or 
decision trees. 

Some documents state that they are based on probabilistic concepts, when in fact 
they are based only on partial factors methods. In a true probabilistic method, the 
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randomness of the basic variables should be defmed and combined in order to obtain 
the numerical values of the partial factors. 

As indicated in Table 3, it is expected that in the future more and more probabilistic 
data will be collected, not only to improve the defmition of the basic variables, but also 
to improve the quantification of the models that relate them. 
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1. Summary 

After a brief overview of the so-called stochastic linearization methods for 
approaching structural dynamics problems, attention is focused on a special 
procedure for seismic fragility analysis which makes use of response surface 
techniques and level-2 reliability methods. The local amplification is con
sidered through a boundary element idealization. The numerical examples 
investigate the goodness of the experiment plans adopted and, especially, 
the accuracy of the level-2 reliability idealization. 

2. Introduction 

In several practical cases, the engineer does not have a certain knowledge of 
the system under investigation. Moreover the actions on the system cannot 
always be specified in a deterministic way. Mainly when they result from 
environmental situations, these actions, like the seismic ground motion, are 
correctly idealized only by stochastic processes. System parameters and 
actions (input) provide the coefficients and the given terms, respectively, 
of the equations which govern the analytical idealization of the system be
haviour. Their solution represent the response variables (output) of interest. 

Modern engineering often deals with complex systems whose analytical 
model leads to equations of such complexity that their solution can be 
pursued only numerically. This situation can be summarized by saying that 
one is dealing with a "numerical input-output stochastic relationship" . 

In structural analysis, the classical numerical approach is to adopt a 
finite-element discretization of the structure. This led several researchers 
to speak of "stochastic finite elements" (SFEM), when one discretizes the 
domain of the structure, or "stochastic boundary elements" (SBEM) when 
one discretizes the boundary. 

351 

C. Guedes Soares (ed.), Probabilistic Methods for Structural Design, 351-375. 
© 1997 Kluwer Academic Publishers. 



352 F. CASCIA TI AND A. CALLERIO 

An early state of the art report (Vanmarcke et al., 1986), emphasized 
that these terms are used in the literature to identify at least three different 
problems: 

- an explicit treatment of uncertainty in any quantity entering the struc
tural analysis procedure. For instance, for a cantilever of random height 
h, "stochastic finite element" techniques aim at the evaluation of the 
uncertainty in the eigenfrequencies; 

- a classical analysis of uncertainty associated within a discrete-element 
algorithm. The characteristic here is that the input for the discrete 
algorithm is a vector of random variables. One can distinguish linear 
and non-linear systems and, for both, either deterministic or random 
systems. 

- the discretization of the parameter space of a random field of material 
properties and/or loads. With reference to a simple cantilever of length 
l, for instance, using SFEM techniques one discretizes into beam ele
ments of length fl.l. The stochastic process which describes the flexural 
stiffness is a random vector whose i-th entry is a moving average pro
cess in the range ((i - 1)fl.l, ifl.l). The stochastic description of this 
random vector can be pursued by introducing "variance function" and 
"scale of fluctuation" (Vanmarcke, 1983). 

This chapter studies the characterization of the probabilistic properties of 
the response, given that the input-output relationship is of a numerical 
type. The general solution in this case can be pursued by the so-called 
Monte Carlo methods (Augusti et al., 1984) (Der Kiureghian, 1983). By 
appropriate algorithms, the analyst simulates a realization of the input 
vector and in this way defines in a deterministic structural problem. Its 
numerical solution provides the corresponding values of the response vari
ables of interest. The whole procedure is repeated till a satisfactory sample 
is obtained. The probabilistic properties are eventually inferred from the 
joint sample. The main disadvantages of such an approach are: 

1. the accuracy depends on the sample size; for complicated systems, each 
deterministic computer run can require a large computational effort; 

2. a minor modification of the input properties requires a new simulation; 
3. anomalous behaviours may remain undetected. 

The previous remarks suggest that one should develop analytical approaches 
to the problem. Of course, they can either interact with the numerical al
gorithm or regard this numerical algorithm as a black box. The selection 
between these two ways depends mainly on the degree of complication of 
the problem. The next section illustrates the "interacting" techniques for 
the cases where they can be proposed, while Section 4 is devoted to a more 
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general procedure. Some operative features are discussed in the numerical 
example in Section 5. 

3. Input-Output Numerical Relationships 

3.1. NON-LINEAR SYSTEMS WITH RANDOM ACTIONS (FEM 
APPROACH) 

3.1.1. Governing Relations: Deterministic Systems 
Non-linearity can be introduced either by the presence of large displace
ments and deformations, or by non-linearities in the material constitutive 
law. In the latter case, for a structure discretized into finite elements, one 
expresses the generalized displacement u(x) in the i-th element in terms of 
the nodal displacements Ui by a matrix of shape functions Ai(x): 

(1) 

The compatibility relation then provides the deformation vector e(X) (with 
B the compatibility matrix) 

(2) 

and the constitutive law has the incremental form (D = elastic matrix) 

(3) 

where €p denotes the vector of the inelastic deformations which act as 
distortions in the determination ofthe stress vector u(x). The general form 
of the equilibrium equation is then: 

~ (~ B[DiBidV) (dUi + cdud + (~ AiA[ pdV ) dii i + 

- (~B[DideiPdV) - (~A[ dgdV) - (~A[ dfdA) = 0 (4) 

where p is the density, g is the body force and f is the surface force. The 
damping coefficient of the velocity dUi is assumed to be proportional to the 
stiffness by a factor c in Eq. (4). In a more compact form, one writes. 

(5) 

The term introducing the non-linearity is dWf; it is linearly related to deip 
at the Gauss integration points. At any time instant it is a function of 
the previous time history, since the material constitutive law is no longer 
reversible. 
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When W is a vector of stochastic processes, Eq. (5) is well tackled by 
stochastic equivalent linearization techniques (Casciati et al., 1991). At the 
k-th Gauss point, an univariate endochronic constitutive law Zk = f(ik, Zk}, 
where Z is an auxiliary variable, is linearized in the form 

(6) 

where C1 and C2 are linearization coefficients depending on the response 
statistics. They are constant in the stationary case and time dependent 
for nonstationary W or degrading systems. For the case of a multivariate 
constitutive law see (Casciati et ai., 1991). 

The terms Kidui and dWf can then be expressed as linear functions 
of E,i and z. Elimination of z allows one to write Eqs. (5) and (6) in finite 
form as a linear system of first order differential equations (Casciati et ai., 
1991) 

d+Ld=w (n 
with dT = {u, u, e}. In Eq. (7), some elements of L depends on the a priori 
unknown linearization coefficients C1 and C2 . The covariance matrix of d 
is the solution of the matrix equation 

dE/dt+LE + ELT = n (8) 

where n = E[wd]+E[dw], and can be easily computed when the system is 
excited by a single white noise (e.g. the ground acceleration due to a seismic 
excitation). For the problems considered in this subsection, the task of the 
analyst is two fold: 

1. to express the structural matrices which form L by finite element dis
cretization and subsequent algebra; 

2. to solve Eq. (8) by numerical integration, updating the linearization 
coefficients C1 and C2 in L at each step. 

3.1.2. Stochastic System 
Randomness in system parameters still leads one to write Eq. (5) but its 
coefficients become random. In numerical simulation, realizations of the 
random variables make it deterministic, and the solution is obtained by 
conducting, in parallel with the equilibrium force-displacement relation 
(Newton-Raphson schemes), the integration of the constitutive law by ei
ther forward (Euler) or backward (Nakagiri, 1985) difference schemes. An 
interesting alternative approach was provided by Liu and his coworkers (Liu 
et ai., 1986). 

A response surface technique can also be adopted to approach the prob
lem. Let X be a vector of random design variables Xi of the mechanical 
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system under investigation, and Y any response variable. The vector X can 
be decomposed as two random vectors, Xv and Xs: 

(9) 

where Xv only contains random variables, i.e. the variability which is inde
pendent of time and space, and Xs the spatial and temporal fluctuations. 
Any component of the vector X s , say X si , expressing the spatial variability 
of the design variable Xi, can be written in one of the two alternative forms: 

Xsi(t, x, y, z) = Xsvi + Xssi(t, x, y, z) 
Xsi(t, x, y, z) = Xsvi . Xssi(t, x, y, z) 

(10) 
(11) 

where X svi is any random central value of XSi, and Xssi denotes the devi
ations of X si from the central value Xsvi. Discretization of the structural 
system leads one to evaluate X ssi as a random vector rather than a random 
field. 

Appropriate transformations Y of Y and Xi of Xi can be found for which 
a low order polynomial relationship Y(Xi) holds. The transformation Y of 
Y is selected in order to achieve the greater accuracy in the response surface 
modeling. The polynomial model of the dependence of Y on {X} is written 
in matrix notation as: 

(12) 

where FROis a polynomial with coefficients 8, and the random term € 

takes into account the error due to the lack of fit and the randomness of 
the variables Xss which do not appear explicitly in equation (12). 

The coefficients 8 are found by regression analysis of results obtained 
from numerical structural analyses whose input parameters are selected in 
accordance with experiment design theory. The error can be studied by 
one-way ANOVA as shown in (Faravelli, 1989). It can also be decomposed 
by multi-way ANOVA. 

The variables Xv and Xsv in particular can be mapped in the stan
dardized space {Z} where all the variables are uncorrelated, and have zero 
mean and unit variance, in order to achieve an uniformity in the experi
ment design. This can be done by any transformation of classical reliability 
theory. It follows that the response surface model in the space Z can be 
given through the parametrized form: 

(13) 

The calculations are greatly simplified when € is assumed to be nearly 
constant with Xss. The design of the experiments necessary for developing 
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the regression analysis and the one-way ANOVA is discussed in detail in 
(Faravelli, 1989), where the validation of the model is also· discussed. 

3.2. BEM THEORY FOR LINEAR MEDIA 

3.2.1. Governing Relations: Deterministic Systems 
For a finite domain n of boundary r, the local dynamic equilibrium can be 
represented by the equation: 

(J"kj,j + pbk - pUk = 0 (14) 

where (J"kj is the kj-th element of the stress tensor, p the mass density, 
pbk the k-th component of the body force, and Uk the k-th component 
of the acceleration vector. An auxiliary elastostatic state defined over n, 
with displacement function u*, must be introduced, following the boundary 
element theory. As shown in (Brebbia et at., 1989), with a weighted residuals 
formulation, it is possible to write: 

In (J"kj,ju"kdn + In pbkU"kdn - In pUku"kdn = 0 (15) 

The relation (J"kjc"kj = (J"kjCkj, and the equilibrium equation of the new 
elastostatic state 

(J"k' . + pb"k = 0 ),) 

allow an integration by parts to be performed; the result is the following 
reciprocity equation with respect to the original elastodynamic state: 

where Pk and P"k are respectively the tractions on r for the elastodynamic 
and the auxiliary elastostatic problem. 

The auxiliary elastostatic state u* can be seen as the solution of a unit 
impulse, on the boundary point ~, on a infinite domain and along the l
direction: 

pb"k = 8(x - e)8lk 

Displacements and tractions can be defined as: 

u"k = ulk(x - e)nl 

P"k = Plk(x - e)nl 

(17) 

If the body forces bk are zero, Eq. (16) can be rewritten in the form: 

Clk(e)Uk(e) + hplkukdf = h ulkPkdf -In ulkpUkdn (18) 
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where the last integral is the only domain integral and represents the inertial 
term. Note that ctk(e) = 8lk if e E n, ctk(e) = (1/2)8Ik if e E r, Clk(~) = 0 
if e~ n (smooth boundary). 

To calculate the integral representing the inertial term, a set of unknown 
coefficients, a/:\ and a set of functions, fm(x), are introduced, giving: 

N 

Uk(X, t) = L ak'(t)fm(x) (19) 
m=l 

A third elastostatic state over the infinite domain caused by body forces 
pbk' = - f m8kn , applied in the n-th given direction, now needs to be intro
duced. Displacements and tractions relevant to this third stress state can 
be written as: 

where nn is the unit vector along the direction of the load. Therefore Eq. 
(18) can be rewritten as a sum of boundary integrals only: 

Cik(e)Uk(e) + hplkukdf' = h ulkPkdf' 

M 

+p L ii~{Clk(~)1Prn(~) - { 1JrnUlkdf' + { Plk1Prndf'} (20) 
m=l Jr Jr 

Since the BEM is a discrete method, the boundary r has to be discretized 
into elements; then Eq. (20) is reduced to a system of linear differential 
equations. Displacements and tractions will be expressed as functions of 
nodal quantities, by an interpolation matrix, say 4>, of dimension 2 x 2Q, Q 
being the number of nodes for each element (2 for linear and 3 for quadratic 
elements): 

p = 4>pi 

The discretization procedure leads, from Eq. (20), to the system of differ
ential equations (Dominguez et at., 1993) mentioned before: 

N N M N 

L Hijuj = L Gijpi + P L L(Hi j1/J j m - Gij.,fm)iim (21) 
j=l j=l m=l j=l 

where Hij and Gij are 2 x 2 matrices which correlate the i-th node with 
the j-th boundary node. Eq. (19) can be rewritten as: 

u=Fa (22) 
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in which F includes the independent functions fm(x), with m chosen equal 
to N, i.e. to the number of the boundary nodes. Once Eq. (22) has been 
inverted and substituted in (21), one has: 

Hu = Gp + p(H'I/J - G17)F- 1ii (23) 

If one puts M = P(G17 - H'I/J)F-1, one can rewrite Equation (23) in the 
form: 

Mii+Hu= Gp (24) 

which represents the dynamic equilbrium relation of the entire discretized 
structure (Dominguez et ai., 1993) (Cen et ai., 1989). Eventually, Equation 
(24) becomes 

M'ii' + H'u' = 0 (25) 

for a body with a free boundary described by the degrees of freedom in u'. 

3.2.2. Stochastic System 
For a random field description of the physical and mechanical properties 
of the medium, one could couple boundary element theory with the re
sponse surface technique mentioned before. The two-dimensional or three
dimensional domain of the structure could be discretized in cells ni in which 
the stochastic fields of the physical and mechanical properties are assumed 
to be constant. Then the problem will be reduced to the assemblage of dif
ferent problems defined on the homogeneus domains ni, with boundaries r i 
discretized by boundary elements (Brebbia et ai., 1989) (Cen et ai., 1989). 
In this way the resulting structure not only has elements defined on the real 
boundary, but also elements on the contact surfaces between different cells. 
The drawback is that, with the introduction of these cells, the main advan
tage of boundary elements over finite elements techniques, i.e no domain 
discretization, is lost. 

The method proposed in (Burczynski, 1993) is an alternative approach 
to the elastostatic problem. The new approach proposed here was inspired 
by (Burczynski, 1993), but it is characterized by the following differences 
and extensions: 

1. it can solve elastodynamics as well as elastostatics problems; 

2. a direct computation of the cell contributions avoid any sort of numer
ical iteration; 

3. the coupling with the response surface scheme gives the probabilistic 
description of the response in terms of probability distribution func
tion. 
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Let there be two random fields Xi(X): the Young's modulus C(x) = Co + 
C(x) and the soil density p(x) = po + p(x). For a constitutive relationship: 

(26) 

the internal stresses becomes a stochastic field over the domain S1. Fol
lowing the BEM theory explained before, one can introduce an auxiliary 
elastostatic problem. It is then possible to rewrite the boundary Eq. (20) 
for Co and pO, with two additional domain integrals for the terms C(x) and 
p(x): 

M 

+p 2:= a~{Czk(e)7/Jkn(e) - r 1JknUlkdf + r Plk7/Jkndf} 
m=l ir ir 

M 

- 2:= ak 1 UlkP(x,,)fmdS1 -1 c*(e,x)o-(x)dS1(x) (27) 
m=l n n 

The second of the two domain integrals was calculated in (Burczynski, 
1993) to solve the problem in terms of stresses at internal points, but the 
method proposed there requires an iterative solution. 

An alternative direct method of computing the two domain integrals is 
proposed here. It makes use of the expansion for displacements and acceler
ations, with the same coefficients am and the same shape functions fm(x). 
From this expression and from the knowledge of u*, it is easy to compute 
c* and c, and hence 0-, at internal points by the compatibility relation: 

1 
C" - -(u' . + u··) ~J - 2 ~,J J,~ (28) 

and the constitutive relation: 

(29) 

Note that the previous equation just requires derivatives of fm(x) for 0-, 
since the am are independent of the spatial coordinates. 

To evaluate the integral numerically, one or more points inside the sin
gle cell can be introduced, and then a sum over the cells performed. The 
number of points within a single cell should be selected on the basis of 
the significance of the fluctuation with respect with the actual value of the 
variable. For modest fluctuations, a single point will provide sufficient ac
curacy, as shown in the example. Putting the domain integrals which form 
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the coefficients of the vectors 0: and a into two matrices Ie and Ip, one 
finds that the classical governing relation (24) becomes: 

(30) 

3.3. ASSESSMENT OF THE PROBABILITY DISTRIBUTION 

Once the regression coefficients are known and the variance s~ of the zero
mean variable E has been calculated, a level-2 reliability method can be 
applied to (13) in order to derive the cumulative distribution function 
(CDF) of Y and hence its mean and variance. In the space of the vari
ables (== ({Z},E), the points 

(31) 

define a surface, say n. In standardized coordinates the distance from the 
origin c5{( E n) to any point of n (Le. satisfying (31) ) can be written: 

(32) 

( is assumed to be distributed like a joint normal probability distribution 
with mean vector /-L(i and covariance matrix E( . The minimum of this 
distance 

(33) 

decreases from infinity as yO increases from minus infinity. 
According to the theory of level-2 reliability methods the cumulative dis
tribution function of Y can be estimated as CP( -(3), cp being the standard 
Gaussian distribution. 

For the numerical calculation of (3(yO), one can use any nonlinear opti
mization algorithm (Schittkowsi, 1985). An approach for determining the 
joint distribution of several response parameters has been proposed as an 
extension of the present procedure (Faravelli, 1988). 

4. SFEM vs SBEM Example 

The evaluation of the behaviour of soils under seismic loads leads one to 
study the way seismic load is transferred from the soil to buildings. Due 
to different constitutive properties of the soil, or presence of topographic 
irregularities, the subsequent seismic wave amplification is often dominant 
for structural reliability assessment. 

In particular the scatter of physical and mechanical properties of a soil 
can be very large within one site. The modelling of those properties strongly 
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depends on the way the appropriate tests are planned and carried out 
(Corsanego et al., 1990). In general, each quantity relating to each variable 
of the problem must be modelled as a random field over the soil domain. 
The aim of this example is to evaluate the dynamic behaviour of a linear 
soil (Fig. 1) in terms of its eigenvalue and eigenvector properties, using a 
SBEM technique, and to compare the results with those achieved by SFEM. 

Attention is focused on the propagation of the uncertainty regarding the 
physical and mechanical properties to the probability distribution of the 
system modal frequencies. The two techniques give comparable results, but 
the SBEM procedure requires a lower modelling and a reduced computation 
effort when compared with SFEM. 

In Fig. 2 both SBEM and SFEM meshes are shown; it is clear that 
the former does not require any element in the domain, leading to a clear 
reduction in the dimension of the problem. 

The soil lens shown in Fig. 1 was studied earlier in a deterministic con
text (Casciati et al., 1993); the dimensions specified are in meters. The 
medium is linked with the rigid bedrock by bilateral supports. Moreover, 
the soil on each side of the lens does not offer resistance to horizontal 
displacements. Geometric and boundary conditions are supposed to be de
terministic. 

The mass density, p, and Young's modulus, C, are defined as random 
fields on the medium domain O. The probabilistic model, specified in Table 
1, shows a higher value for the variance of the mass density than for the 
Young modulus of the soil, in order to take in account the larger uncertainty 
in evaluating that quantity. Nine cells are introduced over the domain, as 
sketched in Fig. 2a; within every cell of the structure the properties are 
assumed to be constant. 

Table 2 provides the results, in terms of eigenvalues, of the 13 numerical 
experiments required by a response surface technique, given by the SBEM 
procedure. For comparison Table 2 shows the results of BEM and FEM 
analyses for a domain in which the mass density and the Young's modulus 
assume their mean values. The probability distribution of the eigenfrequen
cies is given in figure 3. 

Figure 4 shows the variability of the transfer function with the simulated 
random fields, while Fig. 5 shows the sensitivity of the same function to the 
central value of the density. Fig. 6 shows the variability along two factorial 
points of the experiments design. 
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Figure 1. SBEM Example: soil lens. 

TABLE 1. SBEM Example: probabilistic Model 

Property 

Young Modulus C 
Mass Density p 

Distribution 

Normal 
Normal 

Mean 

25 MFa 
2000 Kgjm3 

Coeff. of 
Variation 

0.05 
0.10 

18 

5. A Fragility Analysis Example via SFEM 

Seismic fragility has been studied in (Casciati et al., 1985) and (Casciati et 
al., 1991) with reference to a four storey three-span frame, shown in figure 
7, which is also the object of the example presented here. All reinforced 
concrete columns and girders have the same cross section, 30.48x45.72 cm. 
by 30.48x50.80 cm., and are assumed to have equal bending stiffnesses in 
both loading directions. The geometric and boundary characteristics lead to 
a first natural period of 0.86 sec., with a damping ratio of 3.5%. For these 
values, the damping matrix C is 0.0097 x Km, where Km is the global 
stiffness matrix. The reader is referred to (Casciati et al., 1991) for a more 
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Figure 2. SBEM Example: a) BEM mesh, with the discretization in cells of the domain 
required by the SBEM procedure here proposed b) FEM mesh. 
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TABLE 2. SBEM Example: results of the dynamic analyses in terms of modal 
frequencies. 

Realiz. Modal Frequencies (rad/sec) 

n. WI W2 W3 W4 Ws W6 W7 

1 26.965 40.419 46.141 47.757 59.047 65.879 70.967 
2 24.991 37.469 42.778 44.255 54.728 61.076 65.754 

3 28.805 43.168 49.276 51.020 63.072 70.354 75.821 
4 27.006 40.343 45.594 48.140 58.841 65.789 71.515 
5 28.022 41.861 47.313 49.938 61.008 68.224 74.185 
6 26.094 38.980 44.045 46.523 56.890 63.598 69.114 
7 26.805 40.277 45.176 48.624 58.133 66.982 71.389 
8 26.086 39.199 43.957 47.362 56.522 65.252 69.487 
9 27.439 41.227 46.253 49.736 59.558 68.505 73.066 
10 26.561 39.506 44.566 48.050 59.893 66.952 70.768 
11 24.601 36.573 41.247 44.480 55.434 61.967 65.514 
12 28.569 42.505 47.959 51.710 64.469 72.074 76.147 
13 26.626 40.285 45.068 48.970 57.343 66.596 71.936 

FEM om. 25.139 35.035 40.438 42.246 50.406 55.765 63.443 

BEM om. 26.840 40.237 45.544 48.020 59.185 66.179 71.207 

complete description of the geometrical and mechanical properties, such as 
the yield moment capacities and the dimensionless neutral axis position in 
the ultimate states. 

Note that mass, stiffness, hardening and damping are vectors of strictly 
correlated quantities: each of them is thus described by a single random 
variable. By contrast, yielding moments and low-cycle fatigue resistance 
in the potential plastic hinges form two random vectors whose elements 
are assumed to be equicorrelated. They are the central values and the 
corresponding vector of deviations. Finally, the ground acceleration is a 
segment of white-noise appropriately filtered and modulated. The filtered 
white-noise gives rise to a Kanai-Tajimi type power spectral density func
tion whose parameters are assumed to be random. The pseudo-stationary 
duration of the accelerograms is also assumed to be random. 

The seismic intensity which causes the failure of the frame is the re
sponse variable of interest: its probability distribution is the so-called fra-
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Figure 3. SBEM Example: CDF of the first seven modal frequencies, normalized to the 
omogeneus result 

gility curve. However, accelerograms with the same intensity can have dif
ferent features due to their stochastic nature and to the randomness which 
affects some of the model parameters. 

In particular, the topographic irregularities can lead to a change in the 
frequency contents and to an amplification of the characteristics of the 
ground motion under the structure. 

The seismic wave amplification, which occurs along the path from the 
bedrock to the foundation, is often dominant for a structural reliability 
assessment. Thus the scatter of the soil filtering properties should be inves
tigated by the SBEM approach of the previous example. 

In summary, six random variables (mass, stiffness, hardening, damp
ing and the central values of yielding and resistance) and three deviation 
terms (yielding, resistance and accelerogram) are considered in the fragility 
analysis. The results of the computations in (Casciati et al., 1991) are sum
marized in Fig. 8, which presents the fragility curves obtained in the two 
cases of deterministic and random coefficients by a standard experiment 
design. They are checked by simulation of a sample of size 20. 

The polynomial form between the response variable and the logarithm of 
the six random variables is stated by regression analysis. It makes use of the 
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Figure 4. SBEM Example: variability of the transfer function for five simulated couples 
of random fields p and C 

results of numerical experiments conducted according to two replications of 
a one-half factorial plane (32 by 2) in addition to three experiments (low, 
central and high level) along each axis in the variable space (6 by 3). A 
total of 82 experiments has therefore been carried out. 

The curves of Figure 8 were obtained by the level-2 ((3) reliabilityap
proach summarized in Eq. (33). This makes it possible to have estimates of 
the tails, i.e. to achieve results which would require an unbearable compu
tational effort if pursued by simulation. Nevertheless, a large simulation (a 
sample of size 1000) was conducted in order to check the accuracy of the 
approximate approach, at least in the central part of the fragility curve. The 
results are presented in Fig. 9. It is worth noting the important role that 
the deviations play in this problem. When the error term is neglected {line 
a) the fragility curve is almost vertical in its central part, showing a low 
variability of the response. But, more significant uncertainty is indicated 
by the quite different behaviour of the result of the simulation including 
the error term (line b). The latter line is fitted well from the (3-approach 
(line c) making use of a deterministic description of the coefficients of the 
polynomial form. By contrast, when these coefficients are regarded as ran
dom {line d) a greater content of uncertainty is found in the fragility curve. 
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Figure 5. SBEM Example: variability of the transfer function as the mean density 
value scan its definition range in the experiment design (l=central value; 2=lowest value; 
3=higest value). 

Note that the global slope of this curve was already overestimated in line 
c. 

Another point of the procedure to be clarified is the dependence of the 
result on the selection of the realizations of the deviations in the numerical 
experiments. For each experiment of the composite plan introduced in view 
of performing regression analysis, in fact, one needs to specify the entire 
accelerogram and the whole of the random vectors of yielding moments and 
resistances. In the analysis, 16 different sets of deviations were simulated. 
Each of the two factorial designs was partitioned into 8 blocks and a set of 
deviations was associated with each block. Moreover, the first 6 sets were 
associated with the six axes in the random variable space for conducting 
the three experiments corresponding to each axis. The question is: does the 
way in which the 6 sets of deviations are selected affect the final result? The 
fragility analysis of the frame under investigation is sensitive especially to 
two random variables: the yielding moment and the resistance. The set of 
deviation number 4 was originally associated with the first variable. Figures 
10a and b shows the perfect agreement with this original result (solid line) 
of the fragility curve obtained with the sets number 10 and 14, still associ-
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span between two opposite fractional points (7=central value; 8=negative conbination; 
9=positive combination) 

ated with the yielding moment axis. By contrast, some minor discrepancy 
can be detected in Figs. lla and b, where the resistence axis, originally 
associated with the set number 6 is associated with the sets numbered 13 
and 16 respectively. These discrepancies, however, are quite unsignificant 
in the lower tail which is the area of practical interest. The sets 4, 10 and 
14 contribute differently to the error term of the regression. However, they 
were selected in such a way to have a consistent average effect. Similarly, 
the sets 13 and 16 were associated with the set number 6. A further im
provement could be based on the following idea. At the beginning, all the 
variables are supposed to have comparable significances, and experiment 
design theory provides plans of experiments which have optimal proper
ties in this situation. But, when the analysis is accomplished, one knows 
the variables to which the result is more sensitive, in the present case, the 
yielding moment and the resistance. Therefore, accuracy could be increased 
by conducting a supplementary set of experiments, for instance, by dou
bling or tripling the analyses along the corresponding axes. This has been 
done here by associating the sets 10 and 14 with the yielding moment axis, 
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Figure 7. SF EM Example: geometric layout and boundary condition of the four-stories 
frame under investigation. 

and the sets 13 and 16 with the resistance axis. The results are summarized 
in Fig. 12. No consequence is obtained by further investigation along the 
yielding moment axis. By contrast, a shift on the left is found by adding to 
the original 82 experiments two sets of three experiments along the resis
tance axis: the first for the set of deviation number 13 and the second for 
the number 16. The same result is found by including all the additional 12 
experiments along yielding moment and resistance axes. Since the effect of 
the single additional analysis (see Fig. 11) is not so significant, the authors 
came to the conclusion that the policy of adding additional experiments to 
the original plan can only lead to distortion, because it indirectly amplifies 
the typical effect of the single variable. 
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frame. Composite experiment plan with 82 experiments; ,B-approach for assessing the 
probability distribution. Deterministic (solid line) and random (dashed line) coefficients 
of the polynomial form. The points are obtained by simulation. 

6. Conclusions 

This chapter emphasizes the reasons that prevent one applying standard 
probabilistic methods of system theory to complex linear and non-linear 
structural systems. For non-linear structures, in particular, the input-output 
relationship is generally so complex that the solution can be pursued only 
in a numerical way, especially for dynamic analysis. 

Response surface techniques can be usefully employed to provide an 
approximate simple input-output relationship for a probabilistic analysis 
of the response variables. For this purpose, level-2 reliability methods give 
good accuracy on the central values, and allow the analyst to estimate the 
tails of the probabilistic distributions. The latter task would require an 
unbearable computation effort if approached by a raw simulation. 

The numerical examples produced results testing the accuracy of the 
level-2 approach, for both finite element and boundary element methods. 
Moreover, the direct applicability of experiment plans from the theory of 
experiment design has been checked by detailed analyses. 
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Figure 9. SFEM Example: check of the accuracy of the ,a-approach: a) simulation of 
1000 values from the polinomial form obtained by regression analysis, in which the error 
term is neglected; b)as a) including the error term; c) solid line of figure 8; d) dashed line 
of figure 8. 
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1. Introduction 

Risk management has become increasingly important to industry and society during the 
last decades. This is largely due to an urge for increased efficiency and competitiveness by 
industry itself, and to increasing standards regarding personnel safety and environmental 
preservation, imposed by society. 

Due to their economic significance and potential safety hazards, buildings and industrial 
structures should be designed, maintained and demolished according to life cycle risk 
evaluations. In this way, risk optimal decisions regarding the design, maintenance and 
demolition of structures may be based on an overall evaluation of the economic conse
quences, personnel safety hazards and the likelihood of environmental damages, evaluated 
over the design service life of the structure. 

These remarks apply not only to unique and large structures such as large strait crossings, 
offshore production installations and nuclear power installations, which are associated 
with significant risk, but also with the more common types of structures such as highway 
bridges, dams and break waters, which are insignificant by themselves, but due their large 
numbers are associated with significant risk. 

In recent years, a substantial effort has been devoted to economic risk based decision 
making in structural maintenance planning. There are theoretical developments contained 
in e.g. Vrijling [1], Madsen et al. [2], Fujita et al. [3], S0Tensen et al. [4] and S0l"ensen & 
Thoft-Christensen [5]; and practicable decision support software tools as reported in e.g. 
S0l"ensen et al. [6] and Faber et al. [7]). 

The following sections, which are based on the work of Faber et al. [8], address the basic 
theoretical framework for risk based maintenance planning for structures, and illustrate its 
application to real life engineering problems by an example. 

2. General Problem Framework 

The basic problem in risk management for structures is to make decisions regarding design 
and maintenance of the structures, such that the overall life cycle costs of the operation of 
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the structures are minimized, and such that the personnel safety hazard is kept within the 
limits specified by legislation or society. As the available information regarding e.g. load
ing, material properties and deterioration processes in general is incomplete or uncertain, 
the decision problem is a decision problem subject to uncertain information. 

Two risk management situations are normally distinguished for practical reasons: 
designing new structures and maintaining or demolishing existing structures. 

In design of new structures, the design parameters, such as member dimensions, are 
chosen by evaluating their influence on the design costs and future maintenance costs. 
Optimal design parameters may hence be identified as the design parameters which mini
mize the overall costs, including design costs, expected costs of failure and expected costs 
of future maintenance. 

For existing structures the optimal inspection, repair and reinforcing actions are based on 
evaluations of their influence on the immediate repair or reinforcing costs, the expected 
failure costs and the expected maintenance costs. 

Thus there are no major differences between designing a new structure, and maintaining 
an existing structure, as the design parameters and the repair or reinforcing parameters 
may be treated in the same manner - simply as decision variables influencing the life cycle 
failure and maintenance costs. For this reason only maintenance of existing structures is 
addressed directly in the following. 

Structural maintenance planning usually involves one or more (re-)assessment analyses 
and actions followed by decisions on requalification, rehabilitation or demolition of the 
structure. Due to the interrelation between the use of the structure, the present and the 
future state of the structure and the safety of the structure, decisions regarding 
requalification and rehabilitation cannot be made without at the same time specifying a 
corresponding strategy for the future maintenance of the structure. 

Reassessment may be seen as an adaptive process ofrefming the state of knowledge about 
the present and the future state of the structure. Typically a structural reassessment may 
thus involve a review of project documentation, inspection of the structure, testing of 
materials, testing of structural performance, refined numerical analysis and planning of 
future inspections. The adaptivity in the refmement of the state of knowledge is introduced 
as the decision on whether or not to collect more information is at all times based on all 
the existing information (prior information) and the (pre-posterior) expected life cycle 
costs reductions (including expected maintenance and failure costs) achieved by the 
planned but not yet actually collected information. Depending on the actually achieved 
knowledge it mayor may not tum out to be feasible to gather more information. 

The maintenance plan i.e. the plan prescribing the future inspections and repair actions, is 
highly influenced by the costs associated with the engineering structure. Therefore it is 
important to identify the optimal inspection and repair plan, i.e. the plan minimizing the 
total expected life cycle costs associated with inspection, repair and failure of the structure 
with respect to inspection methods, inspection times and repair actions, and at the same 
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time continue to fulfil all requirements on reliability. 

Having identified the optimal inspection and maintenance plan one must investigate how 
this plan and its associated total expected costs are influenced if the assumed parameters 
for the inspection and maintenance planning are perturbed. Such investigations will indi
cate which parameters are the more significant to the inspection and maintenance plan, 
and may lead to rejection of a particular optimal inspection and maintenance plan as being 
too sensitive to certain parameters. 

3. Formulation of the Maintenance Decision Problem 

In practical decision problems such as reassessment and maintenance planning for 
structures the number of alternative actions can be extremely large, and it is expedient to 
have a framework for the systematic analysis of the corresponding consequences. 

Bayesian life cycle risk (decision) analysis, as described by Raiffa & Schlaifer [9] and 
Benjamin & Cornell [10] forms such a fremework. They discuss structural systems subject 
to uncertain and subjective information about loading, material properties, damage condi
tions, damage accumulation laws and structural behaviour. Within this framework, main
tenance strategies minimizing the overall life cycle costs of the operation of the structure 
may be identified. 

Decision problems are conveniently represented by decision trees as illustrated in Figure 1. 

'J-~---- U(i,s,d(s),6) 

E s A e 

Figure 1 Decision tree used in Bayesian decision analysis 

Generally speaking, the decision making problem is to choose an experiment (inspection 
method, inspection time etc.) e from the space of possible experiments E yielding a 
random outcome s (e.g. observed damage state) of possible experiment outcomes S which 
can be used by the decision maker to take an action a (e.g. repair, no repair) out of the 
possible available actions A. When the decision maker has taken an action this will lead to 
a random outcome of the event Q (e.g. failure, no failure) out of the possible states of the 
nature q. The performed experiment and the chosen action, together with the outcome of 
the experiment and the event determines the corresponding utility. The part of the decision 
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tree starting with choosing an action a based on the experiment outcome s is also called a 
tenninal analysis or posterior analysis because the statistics of the utility can be estimated 
by using known statistics about the nature, whereas the complete analysis is called a pre
posterior analysis, because the experiment outcomes are still unknown. 

In order to perfonn a decision analysis, the following infonnation and operations must be 
included: infonnation concerning the alternative experiments E and actions A; assignment 
of a utility function u(e,s,a,q) on the space E x S x A x Q; 
assignment of the probability P Q.s( q,sJe) on the space Q x S. This joint probability measure 
detennines the four probabilities of importance : 

a The marginal probability measure pI Q(Q) on the state of the nature. This is nonnally 
referred to as a prior probability, in the sense that the decision maker assigns the prob
ability measure to Q prior to knowing the outcome s of the experiment e. 

b The conditional probability measure P s(sJQ, e) on the outcome of the nature, referred 
to as the sample likelihood representing the new infonnation obtained by the experi
ment. 

c New infonnation can be combined with prior probabilities of the state of the nature by 
applying Bayes' rule 

p"a(els) 
ps(sle,e) p'a(e) 

(I) 
La ps(sle,e) p'a(e) 

The conditional probability measure on the state of the nature is called the posterior 
probability, posterior in the sense that the probability measure is assigned to q after 
(posterior) to knowing the outcome s of the experiment e. 

d The marginal probability measure P~(sle) on the outcome of the nature of a given 
experiment e. 

The decision problem can then be stated as ; Given E,S,A, 0, u and P q,S(Q, sle) how must 
one choose an experiment e yielding an outcome s based on which action a is taken, in 
such a way that the utility u is maximized. 

There are two equivalent ways to fonnulate the analysis leading to the maximum utility, 
namely the so-called extensive and the nonnal fonn of the analysis. 

Kroon [11] discusses the advantages of the two different fonnulations. The nonnal fom is 
the the more computational convenient for practical applications, and it is this that will 
now be described. 

In the nonnal fonn, a decision rule d is specified which prescribes the action that must be 
taken for all possible outcomes of the experiment e. For every experiment e, the optimal 
decision rule d can be selected. By doing this for all possible experiments e, the optimal 
experiment can be selected. The decision rule for a specific experiment e, is a mapping 
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carrying sinS into drs) in A. For a selected experiment e the expected utility is 

u{e,d) = Ee,Sle[u{e,s,d,(s),e)] 

= E'e [Es1e.e ][u(e,s,d(s),e)] 
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(2) 

the optimal experiment e and the optimal decision rule can now be identified by solving 

mc:m:r E'e [ESje.e [u(e, s,d)(s),e]] (3) 

The complete analysis is called pre-posterior because a number of posterior analysis are 
performed, conditionally upon the experiment and the outcome of the experiment. 

If the utility function is related to the life cycle total costs equation (3) can equivalently be 
formulated as an optimization problem on which the total expected life cycle costs is 
minimized: 

min min Ee.s:i [CroTAL(i,s,d(s),e)] 
i d 

(4) 

where CroT AL(.i,s,d(s),e) is the total cost, equal to minus the utility function. The 
experiment e is now described by the inspection vector i = N,!l.t, q where N is the total 
number of inspections, !l.t = ( !l.t 1 ' !l.t 2 ' ... !l.t N) are the time intervals between inspec
tions, and q = (q 1 ' .... q N ) are the inspection qualities. 

If the total expected life cycle costs are divided into inspection, repair and failure costs, 
and a constraint related to a minimum of reliability is added, then the optimization 
problem is 

(5) 

s.t. I3(TL ,i,d) ~ I3 min (6) 

C(z,i,d) is the total expected life cycle cost evaluated over the lifetime 
(T N + 1 = T L) C IN is the expected inspection cost, C R is the expected cost of repair 
and C F is the expected failure cost. 
I3ro is the generalized reliability index defined by: 
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(7) 

where <l> is the standardized nonnal distribution function and P F(T) is the probability of 
failure in the time interval [0, TJ 

The constraint on the minimum reliability (6) is included to take account to reliability 
requirements from legislation and society, even though the consequences of structural 
failure may be included in the costs of failure. 

mspection quality q 

time 

T ) 

Figure 2 Typical inspection plan for bridge structures. 

inspection quality q 

I I I time 

Figure 3 Typical inspection plan for offshore jacket structures. 
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Other constraints, e.g. on the maximwn of the individual costs or direct bounds on the 
optimization variables, can be included in the problem, if necessary. 

In inspection and maintenance planning for bridges, the inspection scheme will typically 
be as shown in figure 2. Two or three different types of inspection with qualities q 1 and 
q 2 are performed with fIXed time intervals. For offshore steel jacket platforms, a typical 
inspection plan is shown in figure 3. The inspections are performed at non-uniform time 
intervals and a nwnber of different inspection techniques may be used. 

4. Modelling of Costs 

In (4) the expected inspection, repair and failure costs must be modelled as functions of 
the decision variables. Modelling of the expected inspection, repair and failure costs 
depends on the structural modelling, and whether the maintenance plan is performed for 
the structural components individually or jointly. The total capitalized expected inspection 
costs are modelled by 

(8) 

The i'th term represents the capitalized inspection costs at the i'th inspection when failure 
has not occurred earlier. Here it is asswned that if failure occurs, then the component 
cannot be repaired. CIN/q) is the inspection cost of the i'th inspection, PF(Tj) is the 
probability of failure in the time interval [0, T;] and r is the real rate of interest. 
(1 - P F (Ti)) is usually close to one. 

(9) 

is the total capitalized expected repair costs. The i'th term represents the capitalized 
expected repair costs at the i'th inspection. C R; is the cost of a repair at the i'th inspection 
and P R; is the probability of performing a repair after the i'th inspection when failure has 
not occurred earlier. The total capitalized expected costs due to failure are determined 
from. 

J 
CF(z,i,d) = PSo J~L CF(r)! r(T) (J+r)" dr 

N+l J J 
::::: I CF(Ti)PF(T;) -)r> -CF(T;-I)PF(T;_I) 

;=1 (l+r ' (l+r )r;_J 

~l J 
:::; I CF(T;)(PF(Tj )-PF(1i-J )) -)r> 

;=1 (l+r ' 

(10) 

C F (T) is the cost of failure at the time T. f r( 't) is the probability density function of 
the time to the frrst failure of the component, conditional on the event that the component 
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is in a safe state at the time T = O. The first line in (10) gives the integrated capitalized 
costs due to failure, which in the second line is approximated using the trapezoidal rule. If 
C F (or) is a non-increasing function of time then the upper limit in the last line is 
obtained. The approximation is assumed to be good if N is large. 

5. Assessment of Failure and Repair Probabilities 

From the expression of the total expected life cycle costs (equation (10», it is seen that the 
expected costs may be evaluated as a summation of the products of the marginal costs and 
the marginal probabilities associated with the events of inspection, repair and failure. 

Whereas the marginal costs are readily assessed, more consideration is necessary in order 
to estimate the marginal probabilities. 

Normally it is adequate and sufficiently precise to represent the uncertainties in the 
decision problem by stochastic variables. The events may then be modelled by limit state 
functions and the marginal probabilities for the events of inspection repair and failure in 
equation (10) may be appropriately expressed in terms of intersections of the events of 
inspection, repair and failure. All branches of the repair event tree at the n inspection times 
of the chosen maintenance strategy must in principle be included when calculating the 
probabilities. In time-invariant reliability problems the probabilities can be estimated by 
FORMISORM techniques as described in e.g. Madsen et al. [12]. 

If repair is assumed to be performed when a defect is detected and has a measured size a 
larger than a critical level ar , then the total number of repair realization (branches) is 3N , 

see figure 4. This is shown in figure 4, where 0 signifies that no defect has been detected 
(no repair); 1, that a defect has been detected but is too small to be repaired; and 2, that a 
defect has been repaired. 

The probability offailure in the time interval [0, T;] is for ° s T s T J : 

where M F (l') is the event margin modelling failure at the time T. 
For 11 < T ~ T2 : 

P F(T) = P F(T J) + P( M F(O) > 0 fl BO fl M'f.(T) ~ 0) 

+ P( M F(O) > 0 fl B J fl M'f.(T) ~ 0) + P( M F(O) > 0 fl B2 fl Mj;.(T) ~ 0) 

(11) 

(12) 

where BO, Bi and B2 are the events corresponding respectively to no detection, detec
tion and no repair, and detection and repair at the first inspection. 



RISK BASED STRUCTURAL MAINTENANCE PLANNING 

branch 

2 1 

1 2 

0 
2 • 

• 
• 

1 • • • 
0 
2 

1 

0 3N 

I I I 
0 T1 T2 T3 

Figure 4 Repair realizations. 

BO = (MF(T/) > 0 n MD(T/) > OJ 

B/ (MF(T/) > 0 n MD(T/) ~ 0 n MR(T/) > OJ 

B2 = (MF(Tj) > On MD(T/) ~ On MR(T/)~ OJ 
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... T 

(13) 

M D (T /) is the safety margin modelling detection of a defect, and M R (T /) is the safety 
margin modelling repair. MI} (1) and M);. (1) are safety margins with respect to failure 
at the time T > TI corresponding to no repair, and repair at the first inspection. Similar 
expressions are obtained for T> T2 . 
The probability of repair at the time Ti is determined in a similar manner, e.g. 

(14) 

and 

P R2 = P( M F(O) > 0 n BO n MlJ>(T2) ~ 0 n M~(T2) ~ 0) 

+ P( M F(O) > 0 n B/ n MlJ>(T2) ~ 0 n M~(T2) ~ 0) (15) 

+ P( M F(O) > 0 n B2 n Mb(T2) ~ 0 n M~(T2) ~ 0) 

Similar expression are obtained for T; > T2. 
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Only inspection and repair of components are treated above, but similar considerations can 
be made for systems. In this case estimations of costs and probabilities are modified such 
that the events leading to systems failure are incorporated. The problem has been treated in 
Faber et al. [13] where a detailed description can be found. 

Updating of Inspection Plans 
When new information from measurements and inspections is obtained, the reliability 
estimates of the structure can be updated using Bayesian techniques see e.g. Lindley [14] 
and Madsen [IS]. During the lifetime of the structure, two types of information are likely 
to be collected. The frrst type is information about the functional relationship between 
uncertain variables. For off-shore structures, for example, this functional relationship can 
be for crack depths. The second type of information is observations of one or more of the 
stochastic variables, e.g. for offshore structures, measurements of the significant wave 
height, the wave period, the thickness of marine growth etc. This type of information 
consists of actual samples of the uncertain basic variables. 

Both types of information are taken into account by the use of Bayes' theorem see e.g. 
Lindley [14]. 

The information gathered during an inspection can be expressed in terms of event margins, 
and updating with respect to this information can be regarded as general event updating. 
The general information is assumed to be modelled by inequality and equality events. 
Updating of the probability of failure can be performed using Bayesian methods, as shown 
in Madsen [14] and Rackwitz & Schrupp [16]. 

The safety margin modelling failure of a single component is denoted by M. Let a single 
inequality event I be modelled by the event margin H, i.e. I = (H ::0 OJ. The probability 
offailure of the component can then be updated by 

U = P(M::oOIH::oO) = P(M::oO n H::oO) 
Pj P(H::oO) 

(16) 

If more than one inequality event are available, the updating can be performed in a similar 
way. Let I J = {H J ::0 OJ, ... , IN = (H N ::0 OJ model N inequality events. The 
updated probability of failure is 

Py = P(M::o 01 H J ::0 0 n ... n H N ::0 0) 

P(M ::0 0 n H J ::0 0 n ... n H N ::0 0) (17) 

P( H J ::; 0 n. .. n H n ::; 0) 

An equality event E is modelled by the event (safety) margin H, i.e. E = (H = OJ. The 
probability of failure of a single element can then be updated by 

P(M::;O n H=O) 
Py = P(M::;OIH=O) = 

P(H=O) 
(18) 
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Schall et al. [17] show how (18) can be evaluated. If more than one equality event are 
available, the updating can be performed in a similar way. 

Next, updating of stochastic variables is considered. An uncertain quantity modelled by a 
stochastic variable X is considered. A density function f x (x, P) for X is established on 
prior information, where P is a vector of parameters defining the distribution for X. 

If one (or more) of the parameters P is treated as an uncertain parameter (Stochastic 
variable), then f x (x, P) is actually a conditional density function: f x (xl P). in the 
following P is for simplicio/ assumed to consist of only one parameter P. The prior density 
function ofP is denoted f p(P) . 

Assume that an experiment or inspection is performed. n realizations of the stochastic 
variable X are obtained and are denoted by X = (Xl' X2"'" Xn),. The measurements are 
assumed to be independent. The posterior density function f p (PI x) of the uncertain 
parameter P, taking into account the realizations, is defined by 

f n(xlp) f~(P) 
J f n(xlp) f~(P)dp 

(19) 

The Updated density function of the stochastic variable X, taking into account the 
realization c is denoted the predictive density function, and is obtained by 

f x(xlx) = J f x(xlp)f~(Plx) dp (20) 

If the prior distributions are chosen such that both the prior and the posterior distribution 
belong to the same family of distributions, then they are called conjugated. E.g. Raiffa & 
Schlaifer [9] derive conjugated prior, posterior and predictive distribution functions for a 
number of distributions. 

Based on the updated probabilities and the predictive density functions, updated optimal 
inspection plans can be determined. If the inspection plan is updated after each inspection 
it is really only the next inspection time and quality which are important. In this way an 
adaptive inspection procedure is obtained. 

Simplified Inspection Planning 
The numerical effort in determining an optimal inspection plan can be significantly 
decreased in a number of ways: 
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Only branches in the repair events corresponding to no repair are used to detennine the 
probabilities, see figure 5. This is a reasonable approximation if the reliability level is 
high and only very few repairs are expected. This approximation must be checked for 
each practical application. 

Only the next time, quality of inspection and repair criteria for the next inspection are 
treated as optimization variables. The number of optimization variables and the 
complexity of the probabilities are significantly reduced. This approach is sometimes 
referred to as the adaptive approach, see e.g. Fujita et aI. [3]. 

The inspection planning can be based on reliability requirements only, i.e. cost 
considerations are neglected. The approximation is illustrated in figure 6. A minimum 
reliability level is chosen, for example based on code requirements. This level is 
represented by Bmin in figure 6. The generalized reliability index B(t) is detennined as a 
function of time for the component. When B(t) decreases to Bmin an inspection has to 
be perfonned. The next inspection time is detennined by assuming that no defects are 
found by the inspection. Based on this assumption, and taking into account the 
inspection uncertainty, the next inspection time is found as the time T2 where the 
Updated reliability index decreases to Bmin. In this way the total inspection plan is 
detennined. Inspection planning based on this approach has been perfonned for some 
platfonns in the Danish part of the North Sea see e.g. Pedersen et aI. [18] 

In (5)-(6) the optimization variables are assumed to be continuous and the optimization 
problem has to be solved by a mathematical optimization algorithm. If the possible 
inspection times and qualities and repair actions are discretized into a small number of 
possibilities, the numerical effort to solve (5)-(6) is reduced significantly, because the 
objective function and the constraint have to be calculated only a small number of 
times. This approach is used in the example in section 7. 

6. Assessment of Sensitivities 

The model of costs and uncertainties on which the optimal maintenance plan is based, is 
generally incomplete and influenced by subjective judgement. Furthennore the model may 
contain assumptions which depend on purely political considerations and therefore could 
change with time. Therefore it is important for the decision maker to be able to estimate 
how uncertain the estimated expenditures are, i.e. the probability that the budget for future 
maintenance will be exceeded by a certain percentage. It is also of considerable interest to 
be able to assess the sensitivity of the expenditures with respect to model assumptions 
which the decision maker does not control, and the uncertain parameters not modelled by 
the stochastic variables. Infonnation of these influences may lead to a maintenance plan 
which does not yield the lowest expected costs, but is rather a more dependable plan. 

Typical uncertainties not included in the models are: those associated with the costs of 
inspection, repair and failure: uncertainties associated with the parameters of the distribu
tions in the applied stochastic models; or neglected physical and model uncertainties. 

The uncertain quantities can be divided into the following groups: 
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a) quantities used to estimate the probabilities of failure, PF(F). 

b) quantities used to estimate the costs, e.g. the real rate of interest r and the coefficients 

C/N,CR,CF· 

The uncertainty related to these quantities can be taken into account by 

1) modelling the quantities by stochastic variables (or stochastic processes). This is 
typically done for the quantities in group a) and the uncertainty is then taken into 
account in the reliability calculations using e.g. FORMISORM, 

2) performing sensitivity analyses. This is typically done for quantities which are not 
known very well and which are not modelled by stochastic variables. Examples are the 
cost coefficients in group b) and the statistical parameters used to model the stochastic 
variables. The result of a sensitivity analysis with respect to a parameter p is 
conveniently measured by the elasticity 

dC p 
e =--

dpC 
(21) 

where C can be 

- the probability offailure within the time interval [0, 11 

- the total expected costs or e.g. the expected costs of inspections. 

- an optimization (decision) variable, e.g. the next inspection time. 

In the following we assume that C is the total expected life cycle cost. With reference to 
section 3 the total expected cost considering an optimal inspection and maintenance 
strategy, can be written in the following form 

min C(x,p,q) = Co(x,p) + "LCj(x,p) P j (x, q) 
x j (22) 

s.t. P f(x,q)~PI 

where x are decision variables, p are quantities defining the cost and q are quantities 
defming the stochastic model. P jl denotes a probability (failure or repair), P f denotes a 
probability of failure and PI is the maximum accepted probability of failure, related to 
~min in equation (6) and (7). The summation in equation (23) is made over the number of 

terms constituting equations (8)-(10). We are primarily interested in evaluating the 
derivatives of C with respect to the elements in p and q, but depending on the purpose we 
might also want to evaluate the derivatives of the decision variables x with respect to p 
and q. The evaluation of these is, however, more involved. The sensitivity of the total 
expected costs C with respect to the elements in p and q is obtained from Haftka et al. [19] 
and Enevoldsen [20] 
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dC 

dqi 
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(23) 

(24) 

where r is the Lagrangian multiplier associated with the constraint in equation (22). The 
partial derivatives of the probabilities P j and P f can be determined semi-analytically, 
as shown in Madsen [21]. The partial derivatives of the cost coefficients Co and Cj can 
effectively be determined analytically or numerically. 

The sensitivity of the decision vector x is measured by the partial derivatives of the 
elements in the decision vector x with respect to Pi and qi. These can be calculated 
using the formulas given below which are obtained by use of the Kuhn Tucker conditions 
for the optimization problem defined in equation (22). 

are obtained from 

The elements in the matrix A and the vectors B and C are 

Ars 

Br 

are obtained from 

OP.OCO) + __ J __ J 

oXr 0 Pi 

(25) 

(26) 

(27) 

(28) 
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(29) 

where the elements in the vector D and in E are 

(30) 

E = OPj 
oqj 

(31) 

It is seen that the sensitivity of the objective function (the total expected life cycle cost) 
with respect to some parameters can be determined on the basis of the first order 
sensitivity coefficients of the probabilities and of the cost functions, see (23)-(24). 
However, calculation of the sensitivities of the decision parameters with respect to some 
parameters is much more complicated because it involves estimation of both the second 
order sensitivity coefficients of the probabilities (which are the most complicated to 
estimate see e.g. Enevoldsen [20)), and the cost functions. 

7. Example 

To illustrate the practical aspects of the application of cost optimal inspection and 
maintenance planning and especially the use of sensitivity measures as decision tools an 
example from the offshore industry is presented in the following. The example is 
concerned with an offshore structure of the jacket type with tubular structural steel 
members connected by welded joints. As part of the inspection and maintenance planning 
for the entire structural system, the inspection and maintenance planning with respect to 
fatigue crack growth of a single joint is considered. It is assumed that a spectral stress 
analysis has been performed and that the results of this analysis are given in terms of a 
Weighted Average fatigue Stress Range (WASR) see e.g. FACTS [22], and a 
corresponding expected number of fatigue load cycles. In order to describe the events of 
failure, repair and inspection observations, it is necessary to model the crack growth. For 
this purpose the software module FACTS [22] is used. The probabilistic model of the vari
ables used in the following maintenance planning is shown in table 1. 

Three inspection techniques are considered. In table 1 the variable POD; refers to the 
stochastic variable modelling the probability of detection for inspection technique no i, i = 

1, 2, 3, and &; refers to the stochastic variable modelling the measuring uncertainty 
connected with the different inspection techniques. All stochastic variables in table I are 
assumed to be independent. The inspection techniques are defined in table 2. 

Two repair strategies are considered. If the observed crack depth at an inspection is 
smaller than a certain fraction r of the chord thickness, grinding will be used. Otherwise 
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Variable Distribution m s 

Initial chord thickness tc Weibull 0.04 0.005 

Initial crack depth Normal 0.8'10.3 1.0.104 

Initial crack length Normal 8.0'10.3 8.00 104 

Chord thickness after grinding Weibull 0.04 0.005 

Crack depth after grinding Normal 0.8'10.3 1.0'104 

Crack length after grinding Normal 8.0'10-3 8.0'104 

Chord thickness after welding Weibull 0.04 0.005 

Crack depth after welding Normal 0.0'10.3 1.0'104 

Crack length after welding Normal 8.0'10.3 8.0'104 

Initial Paris C Log-Normal 0.45'10-11 0.31'10-11 

Initial Paris m Deterministic 3.1 

Paris C after welding Log-Normal 0.45'10-11 0.31'10-11 

Paris m after welding Deterministic 3.1 

Weigh. Aver. Str. Range Log-Normal 30.0 4.0 
(WASR) 

POD] Exponential 0.0013 0.0013 

POD2 Exponential 0.002 0.002 

POD3 Exponential 0.013 0.013 

e] Normal 0.0 0.5'10-3 

e2 Normal 0.0 1.5'10-3 

~ Normal 0.0 2.5'10-3 

Design lifetime TL Deterministic 35 years 

Stress cycles per year Deterministic 6106 

Real rate of interest r Deterministic 0.02 

Table 1. Statistical models for crack growth parameters (all dimensions in m and 
MPa). m: expected value and s: standard deviation. 

the crack will be repaired by welding. The fractions used in this example are r = 1.25 
and 0.50. 

The simplified approach for inspection and maintenance planning explained in section 5 is 
used: only the next inspection time, method and repair strategy are optimized. It is 
assumed that inspections can be performed in one weather window 'each year. The 
following discretized inspection times (in years from the inspection planning time) are 
considered: T] = 2, 4, 6, 8, ... , 32, 34. 
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The decision variables are thus the inspection time T1, the inspection technique / = 1,2,3 
and the repair criterion R = 1, 2. The possible inspection methods and repair strategies are 
summarized in table 2. 

The following cost models are used, see (8)-(10): 

where P RGR/ND and P RWELD are the probabilities that repair is performed by grinding and 
welding, respectively, To is the time where the inspection planning is performed. The cost 
coefficients are shown in table 3. 

Strategy Inspection Repair Strategy 
Method 

1 1= 1: method A R = 1: weld if crack 3 25% ofle 

2 1= 2: method B R = 1: weld if crack 3 25% ofle 

3 / = 3: method C R = 1: weld if crack 3 25% of le 

4 /= 1: method A R = 2: weld if crack 3 50% of le 

5 / = 2: method B R = 2: weld if crack 350% ofle 

6 /= 3: method C R = 2: weld if crack 3 50% ofle 

Table 2. Inspection and repair options. 

The optimal inspection and maintenance plan for the considered joint is selected as the 
inspection and repair option from table 2 and the time instant between 2 and 34 years, 
which leads to the smallest expected total costs. The expected total life cycle costs are 
evaluated by the software module PREDICT [23]. The expected costs corresponding to 
the individual inspection and maintenance options are plotted as functions of the inspec
tion time in figures 7 - 12. The total expected costs and the optimal iilspection times 
corresponding to the different maintenance strategies are shown in table 4 and figure 13, 
where the total expected costs from figures 7 - 12 are plotted. 
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Figure 7 Expected costs corresponding to /= 1 and R= 1. 
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Strategy T. Expected total costs 
(BCU) 

/= 1 R= 1 34 1.885-106 

/=2R= I 22 1.404-106 

/=3R=1 18 0.591-106 

1= 1 R=2 32 2.002-106 

/=2R=2 22 1.511-106 

/=3R=2 18 0.651 0 106 

Table 4. Expected total costs of the individual maintenance strategies. 

From figure 13 and table 4 it is seen that the strategy with / = 3 and R = 1 gives the lowest 
total expected costs. 

In order to investigate the sensitivities of the total expected costs as described in section 3, 
a number of sensitivity studies has been performed with respect to the costs of inspection, 
repair and failure. The result of this study is given in table 5, where the' elasticities ep 
defined as 
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ep = 
dE{CTJ p 

dp E{CTJ 

are given corresponding to the individual inspection strategies as defined in table 3. 
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Figure 13 Total expected costs Co"espontiing to the 6 strategies. 

Strategy TJ ecFo eCRGRIND eCR JfUD eclNo 

1=IR=1 34 0.33 0.01 0.53 0.14 

1=2R=1 22 0.16 0.01 0.72 0.12 

/=3R=1 18 0.42 0.01 0.46 0.12 

/=IR=2 32 0.28 0.002 0.59 0.13 

/=2R=2 22 0.15 0.002 0.74 0.11 

/=3R=2 18 0.38 0.002 0.51 0.11 

Table 5. Elasticities of costs of inspection, repair and failure. 

For the optimal maintenance strategy (J = 3 R = 1) a study of the elasticities with respect to 
some of the variables from table 2 has been performed. The results are given in table 6. 



400 M.H. FABER 

Variablep 
= 

dEICTI p 
ep 

dp EICTi 

TL: Design lifetime 1.33 

mWASR: Weighted average stress range 4.55 

r: Real rate of interest -0.42 

g: Grind / Weld criteria 4.37 

Expected value of initial crack depth and length 0.27 

Table 6. Elasticities of expected total costs with respect to variables from table 2. 

It should be noted that the results from the example have been produced on the 
assumptions associated with the simplified inspection and maintenance strategy as 
explained in section 5. Experience from other examples see e.g. Madsen and Sm-ensen 
[21] show that when several inspections are planned simultaneously, the frrst inspection 
time is earlier in comparison to the case where only one inspection (the case in the 
example) is planned. From figures 7-12 it is seen that the expected inspection costs are 
decreasing as functions of the time to the next inspection. This is due to the influence of 
the real rate of interest r. The same trend is seen for the repair costs whereas the failure 
costs are seen to have a significant minimum. The sensitivity study shows that for the 
optimal inspection strategy (l = 3 & R = 1), the elasticities with respect to failure and the 
weld repair costs are dominating. Regarding the elasticities of the remaining parameters it 

is seen that the mean value of the weighted average stress range (pw ASR) and the criteria 

for weld repair (r) are the most significant, but also the design lifetime (T L) is 
important. 

8. Conclusions 

Risk based maintenance planning has by now reached a state where it is not only a 
theoretical possibility, rather a practical tool. The methodology is based on a unification of 
modem reliability methods with the well developed Bayesian decision theory, which 
previously has found the most applications in economics. 

Based on the methodology, it is possible to evaluate the economic consequences 
associated with a particular maintenance strategy, and even to identify the maintenance 
strategy which minimizes the total expected life cycle costs of the structure, including 
costs of inspections, costs of repairs and costs of failure. The maintenance strategy may be 
so selected that specific safety requirements, which are not included in the costs of failure, 
may be fulfilled. 
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As a valuable additional decision tool the optimal maintenance strategy may be evaluated 
by sensitivity analysis in order to assess how sensitive the optimal strategy is with respect 
to the uncertainty modelling and the estimates of marginal costs. Thereby decisions may 
be made regarding how the modelling is best refined such that the optimal strategy 
becomes more dependable or even to identify strategies which may not yield the lowest 
life cycle costs but which are less sensitive to the model assumptions. 
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