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Statistical Methods and Challenges in Epidemiology
and Biomedical Research

Ross L. Prentice

Abstract

This chapter provides an introduction to the role, and use, of statistics in
epidemiology and in biomedical research. The presentation focuses on the
assessment and understanding of health-related associations in a study cohort.
The principal context considered is estimation of the risk of health events in
relation to individual study subject characteristics, exposures, or treatments,
generically referred to as ‘covariates’. Descriptive models that focus on relative
and absolute risks in relation to preceding covariate histories will be described,
along with potential sources of bias in estimation and testing. The role, design,
and conduct of randomized controlled trials will also be described in this
prevention research context, as well as in therapeutic research. Some aspects of
the sources and initial evaluation of ideas and concepts for preventive and
therapeutic interventions will be discussed. This leads naturally to a discussion
of the role and potential of biomarkers in biomedical research, for such pur-
poses as exposure assessment, early disease diagnosis, or for the evaluation of
preventive or therapeutic interventions. Recently available biomarkers, includ-
ing high-dimensional genomic and proteomic markers, have potential to add
much knowledge about disease processes and to add specificity to intervention
development and evaluation. These data sources are attended by many inter-
esting statistical design and analysis challenges. A brief discussion of ongoing
analytic and explanatory analyses in the Women’s Health Initiative concludes
the presentation.

1. Introduction

The topic of this chapter is too broad to allow an in-depth coverage of its many
important aspects. The goal, rather, will be to provide an introduction to some
specific topics, many of which will be covered in later chapters, while attempting
to provide a unifying framework to motivate statistical issues that arise in
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biomedical research, and to motivate some of the models and methods used to
address these issues.

Much of epidemiology, and biomedical research more generally, involves fol-
lowing a set of study ‘subjects’, often referred to as the study cohort. Much
valuable basic biological research involves the study of lower life forms. Such
studies are often attended by substantial homogeneity among study subjects, and
relatively short life spans. Here, instead, the presentation will focus on a cohort
of humans, in spite of the attendant greater heterogeneity and statistical chal-
lenges. For research purposes the individuals in a cohort are of interest through
their ability to yield health-related information pertinent to a larger population.
Such a larger population may, for example, include persons residing in the
geographic areas from which cohort members are drawn, who meet certain
eligibility and exclusionary criteria. The ability to infer health-related informa-
tion about the larger population involves assumptions about the representative-
ness of the cohort for the ‘target’ population. This typically requires a careful
characterization of the cohort so that the generalizability of study findings can be
defined. The target population is often somewhat conceptual, and is usually
taken to be practically infinite in size. The major long-term goal of biomedical
research is to decrease the burden of premature disease morbidity and mortality,
and to extend the period of time that members of target populations live without
major health-related restrictions.

The principal focus of epidemiologic research is understanding the determi-
nants of disease risk among healthy persons, with a particular interest in mod-
ifiable risk factors, such as dietary or physical activity patterns, or environmental
exposures. There is a long history of epidemiologic methods development, much
of which is highly statistical, whose aim is to enhance the likelihood that asso-
ciations between study subject characteristics or exposures and disease risk are
causal, thereby providing reliable concepts for disease prevention.

The availability of disease screening programs or services, and the health care-
seeking behavior of cohort members, have potential to affect the timing of disease
diagnosis. Early disease detectionmay allow the disease course to be interrupted or
altered in a manner that is beneficial to the individual. Disease screening research
has its own set of methodologic challenges, and is currently the target of intensive
efforts to discover and validate early detection ‘biomarkers’.

Much biomedical research is directed to the study of cohorts of person having
a defined disease diagnosis, with emphasis on the characterization of prognosis
and, especially, on the development of treatments that can eradicate the disease
or can facilitate disease management, while avoiding undue adverse effects.

The ultimate products of biomedical research are interventions, biomarkers,
or treatments that can be used to prevent, diagnose, or treat disease. Addition-
ally, the knowledge of the biology of various life forms and the methodologic
knowledge that underlies the requisite research agenda, constitutes important
and durable contributions from biomedical research. These developments are
necessarily highly interdisciplinary, and involve a wide spectrum of disciplines.
Participating scientists may include, for example, molecular geneticists studying
biological processes in yeast; technologists developing ways to assess a person’s
genome or proteome in a rapid and reliable fashion; population scientists

R. L. Prentice2



studying disease-occurrence patterns in large human cohorts; and expert panels
and government regulators synthesizing research developments and providing
recommendations and regulations for consumption by the general population.

Statisticians and other quantitative scientists have important roles to fulfill
throughout this research spectrum. Issues of study design, quality control, data
analysis, and reporting are important in each biomedical research sector, and
resolving methodologic challenges is crucial to progress in some areas. The
biomedical research enterprise includes natural tensions, for example, basic ver-
sus applied research; in-depth mechanistic research versus testing of current
concepts; and independent versus collaborative research. Statisticians can have a
unifying role across related cultural research norms, through the opportunity to
bring ideas and motivations from one component of this research community to
another in a non-threatening manner, while simultaneously applying critical
statistical thinking and methods to the research at hand.

2. Characterizing the study cohort

A general regression notation can be used to represent a set of exposures and
characteristics to be ascertained in a cohort under study. Let z(u)0 ¼ {z1(u),
z2(u),y} be a set of numerically coded variables that describe an individual’s
exposures and characteristics at ‘time’ u, where, to be specific, u can be defined as
time from selection into the cohort, and a prime (0) denotes vector transpose. Let
Z(t) ¼ {z(u), uot} denote the history of each covariate at times less than t. The
‘baseline’ covariate history Z(0) may include information that pertains to time
periods prior to selection into the cohort.

Denote by l{t, Z(t)} the occurrence rate for a health event of interest in the
targeted population at cohort follow-up time t, among persons having a pre-
ceding covariate history Z(t). A typical cohort study goal is to assess the rela-
tionship between aspects of Z(t) and the corresponding disease rate l{t; Z(t)}.
Doing so involves recording over time the pertinent covariate histories and health
event histories for cohort members, whether the cohort is comprised of healthy
individuals as in an epidemiologic cohort study or disease prevention trial, or
persons having a defined disease in a therapeutic context. The notation Z(t) is
intended to encompass evolving, time-varying covariates, but also to include
more restrictive specifications in which, for example, only baseline covariate
information is included.

A cohort available for study will typically have features that distinguish it
from the target population to which study results may be applied. For example,
an epidemiologic cohort study may enroll persons who are expected to continue
living in the same geographic area for some years, or who are expected to be able
and willing to participate in research project activities. A therapeutic cohort may
have characteristics that depend on institutional referral patterns and clinical
investigator experience and expertise. Hence, absolute health event (hereafter
‘disease’) occurrence rates may be less pertinent and transferable to the target
population, than are relative rates that contrast disease rates among persons
receiving different treatments or having different exposures.

Statistical methods and challenges 3



The hazard ratio regression model of Cox (1972) captures this relative risk
notion, without imposing further restrictions on corresponding absolute rates. It
can be written

lft;ZðtÞg ¼ l0ðtÞ exp fxðtÞ0bg, (1)

where x(t)0 ¼ {x1(t),y, xp(t)} is a modeled regression p-vector formed from Z(t)
and product (interaction) terms with t, b0 ¼ (b1,y, bp) is a corresponding hazard
ratio, or relative risk, parameter to be estimated, and l0( � ) is an unrestricted
‘baseline’ hazard function corresponding to x(t)� 0. For example, x(t)� x1 may
be an indicator variable for active versus placebo treatment in a prevention trial,
or an indicator for test versus the standard treatment in a therapeutic trial, in
which case eb1 is the ratio of hazard rates for the test versus the control group,
and there may be special interest in testing b1 ¼ 0 (eb1 ¼ 1). Such a constant
hazard ratio model can be relaxed, for example, to x(t) ¼ {x1, x1 log t} in which
case the ‘treatment’ hazard ratio function becomes eb1 tb2 ; which varies in a
smooth manner with ‘follow-up time’ t. Alternatively, one may define x(t) to
include a quantitative summary of a study subject’s prior exposure to an envi-
ronmental or lifestyle factor in an epidemiologic context.

Let T be the time to occurrence of a disease under study in a cohort. Typically
some, and perhaps most, of cohort members will not have experienced the disease
at the time of data analysis. Such a cohort member yields a ‘censored disease
event time’ that is known to exceed the follow-up time for the individual. Let Y be
a process that takes value Y(t) ¼ 1 if a subject is ‘at risk’ (i.e., without prior
censoring or disease occurrence) for a disease event at follow-up time t, and
Y(t) ¼ 0 otherwise. Then a basic independent censoring assumption requires

lft;ZðtÞ; YðuÞ ¼ 1; uotg ¼ lft;ZðtÞg,

so that the set of individuals under active follow-up is assumed to have a disease
rate that is representative for the cohort given Z(t), at each follow-up time t. The
hazard ratio parameter b in (1) is readily estimated by maximizing the so-called
partial likelihood function (Cox, 1975)

LðbÞ ¼
Yk
i¼1

expfxiðtiÞ0bgP
l�RðtiÞ

expfxlðtiÞ0bg

2
64

3
75, (2)

where t1,y, tk are the distinct disease occurrence times in the cohort and R(t)
denotes the set of cohort members at risk (having Y(t) ¼ 1) at follow-up time t.
Standard likelihood procedures apply to (2) for testing and estimation on b, and
convenient semiparametric estimators of the cumulative baseline hazard function
O0ðtÞ ¼

R t
0 l0ðuÞ du are also available (e.g., Andersen and Gill, 1982) thereby also

providing absolute disease rate estimators.
The score test @ logLðbÞ=@b for b ¼ 0 is referred to as the logrank test in the

special case in which x(t)� x is comprised of indicator variables for p of p+1
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groups, for which disease rates are to be compared. A simple, but practically
useful refinement of (1) replaces the baseline hazard rate l0(t) by l0s(t) thereby
allowing the baseline rates to differ arbitrarily among strata s ¼ 1, 2,y that may
be time-dependent. This refinement allows a more flexible modeling of disease
rates on stratification factors, formed from {Z(t), t}, than would conveniently be
possible through hazard ratio regression modeling. The partial likelihood func-
tion under a stratified Cox model is simply the product of terms (2) formed from
the stratum-specific disease occurrence and covariate data. Other modifications
are needed to accommodate tied disease occurrence times, and for more complex
disease occurrence time data as may arise with specialized censoring schemes or
with recurrent or correlated disease occurrence times. The Cox regression method
has been arguably the major statistical advance relative to epidemiology and
biomedical research of the past 50 years. Detailed accounts of its characteristics
and extensions have been given various places (e.g., Andersen et al., 1993;
Kalbfleisch and Prentice, 2002).

The Cox model provides a powerful and convenient descriptive tool for
assessing relative associations with disease incidence. There are other descriptive
models, such as accelerated failure time models

lft;ZðtÞg ¼ l0

Z t

0

exðuÞ
0bdu

� �
exðtÞ

0b,

for which the regression parameter may have a more useful interpretation in
some contexts. This model tends to be rather difficult to apply, however, though
workable implementations have been developed, with efficiency properties
dependent on the choice of model for l0( � ) that is used to generate estimating
functions (e.g., Jin et al., 2003).

In some settings mechanistic or biologically-based disease occurrence rate
models are available (e.g., Moolgavkar and Knudson, 1981). The parameters in
such models may characterize aspects of the disease process, or provide specific
targets for treatments or interventions that allow them to valuably complement
descriptive modeling approaches. Biologically based models with this type of
potential also tend to be more challenging to apply, but the payoff may some-
times justify the effort. Of course, it is useful to be able to examine a cohort
dataset from more than a single modeling framework, to assure robustness of
principal findings, and to garner maximal information.

The statistical issues in study design, conduct, and analysis differ somewhat
between the epidemiologic, early detection, and therapeutic contexts, according
to differences in disease outcome rates and outcome ascertainment issues, and
according to covariate definition and measurement issues. However, there are
also some important commonalities; for example, issues of multiple hypothesis
testing, especially in relation to high-dimensional covariate data and study mon-
itoring procedures, arise in each context. We will proceed by describing some of
the context-specific statistical issues first, and subsequently include a discussion
of shared statistical issues.

Statistical methods and challenges 5



3. Observational study methods and challenges

3.1. Epidemiologic risk factor identification

3.1.1. Sampling strategies
Cohort studies provide a mainstay epidemiologic approach to the identification
of disease risk factors. A single cohort study has potential to examine the
associations between multiple exposures, behaviors or characteristics and the risk
of various diseases, and has potential to examine both short- and long-term
associations. A distinguishing feature of the epidemiologic cohort study is the
typical low incidence rates for the diseases under study. Even such prominent
chronic diseases as coronary heart disease or lung cancer typically occur at a rate
of 1% or less per year among ostensibly healthy persons. It follows that epidemio-
logic cohorts may need to be quite large, often in the range of tens of thousands to
more than 100,000, depending on the age distribution and on the frequencies of
‘exposures’ of interest in the cohort, to provide precise estimates on association
parameters of interest in a practical time frame.Well-characterized cohorts tend to
be followed for substantial periods of time, as their value typically increases asmore
disease events accrue, and marginal costs for additional years of follow-up tend to
diminish.

The rare disease aspect of epidemiologic cohort studies opens the way to
various design and analysis simplifications. For example, the partial likelihood-
based estimating function for b from (2) can be written

@ logLðbÞ=@b0 ¼
Xk
i¼1

xiðtiÞ �

P
l�RðtiÞ

xlðtiÞWilðbÞ
P

l�RðtiÞ
WilðbÞ

8>><
>>:

9>>=
>>;
, (3)

where WilðbÞ ¼ expfxlðtiÞ0bg; which contrasts the modeled regression vector for
the individual developing disease at time ti (the case), to a suitably weighted
average of the regression vectors, xl(ti), for cohort members at risk at ti
(the controls). Most of the variance in this comparison derives from the ‘case’
regression vector, and the summations over the ‘risk set’ at ti can be replaced by a
summation over a few randomly selected controls from this risk set with little loss
of estimating efficiency. This ‘nested case–control’ (Liddell et al., 1977; Prentice
and Breslow, 1978) approach to estimation is attractive if the determination of
some components of x(t) is expensive. Often only one, or possibly two or three,
controls will be ‘time-matched’ to the corresponding case. Depending somewhat
on the covariate distribution and hazard ratio magnitude, the efficiency reduction
for a nested case–control versus a full-cohort analysis is typically modest if, say,
five or more controls are selected per case. With large cohorts, it is often possible
to additionally match on other factors (e.g., baseline, age, cohort enrollment
date, gender) to further standardize the case versus control comparison. Another
within-cohort sampling strategy selects a random subcohort, or a stratified ran-
dom subcohort, for use as the comparison group for the case at each ti, instead of
the entire risk set R(ti) in (3). If some care is taken to ensure that the subcohort
is well aligned with the case group, there will be little to choose between this
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case–cohort (e.g., Prentice, 1986) estimation approach and the nested case–
control approach, and there may be value in having covariate data determination
on a random subcohort. Within-cohort sampling strategies of this type are widely
used in epidemiology when the focus is on blood or urine biomarkers for which
determinations on the entire cohort may be prohibitively expensive, and has
application also to the analysis and extraction of information from stored
records, for example, nutrient consumption estimates from food records, or
occupational exposure estimates from employer records.

In a large cohort with only a small fraction experiencing disease one can, with
little concern about bias, select a distinct comparison group to replace R(ti) in (3)
for the case occurring at ti, for each i ¼ 1, 2,y . The estimating equation (3) is
then formally that for a conditional logistic regression of case versus control
status at ti on the corresponding regression vectors x(t). In fact, since most
association information for baseline risk factors derives from whether or not
disease occurs during cohort follow-up, rather than from the timing of case
occurrence, it is often convenient to pool the case and the control data and
analyze using unconditional logistic regression, perhaps including follow-up
duration and other matching characteristics as control variable in the regression
model. The estimates and interpretation of odds ratios from such a logistic
regression analysis will typically differ little from that for hazard ratios defined
above. Breslow and Day (1987) provide a detailed account of the design and
analysis of these types of case–control studies.

Note that the case–control analyses just described do not require a cohort
roster to be available. Rather, one needs to be able to ascertain representative
cases and controls from the underlying cohort, and ascertain their covariate
histories in a reliable fashion. In fact, the classic case–control study in the context
of a population-based disease register proceeds by randomly sampling cases
occurring during a defined accrual period along with suitably matched controls,
and subsequently ascertains their covariate histories. The challenges with this
study design include avoiding selection bias as may arise if the cases and controls
enrolled are not representative of cases and controls in the cohort, and especially,
avoiding ‘recall bias’, as persons who have recently experienced a disease may
recall exposures and other characteristics differently than do continuing healthy
persons. The classic case–control study may be the only practical study design for
rare diseases, but in recent years, as several large cohort studies have matured, this
design has been somewhat overtaken by cohort studies having a defined roster of
members and prospective assessment of covariate histories and health events.

3.1.2. Confounding
The identification of associations that are causal for the study disease represents
a major challenge for cohort studies and other observational study (OS) designs.
The association of a disease incidence rate at time t with a covariate history Z1(t)
may well depend on the histories Z2(t) of other factors. One can then model the
hazard rate l{t; Z(t)}, where Z(t) ¼ {Z1(t), Z2(t)} and examine the association
between l and Z1(t) in this model, that has now ‘controlled’ for factors Z2(t) that
may otherwise ‘confound’ the association. Unfortunately, there is no objective
means of knowing when the efforts to control confounding are sufficient, so that
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one can only argue toward causation in an OS context. An argument of causation
requires a substantial knowledge of the disease processes and disease determi-
nants. The choices of confounding factors to control through regression modeling
or through stratification can be far from straightforward. For example, factors
that are time-dependent may offer greater confounding control (e.g., Robins,
1987), but if such ‘factors are on a causal pathway’ between Z, and disease risk,
they may ‘overcontrol’. Some factors may both confound and mediate, and spe-
cialized modeling techniques have been proposed to address this complex issue
(e.g., Hernan et al., 2001). Randomized controlled trials provide the ability to
substantially address this confounding issue. However, randomized prevention
trials having disease outcomes tend to be very expensive and logistically difficult,
so that for many important prevention topics one must rely strongly on obser-
vational associations. OS findings that are consistent across multiple populations
may provide some reassurance concerning confounding, but it may be unclear
whether the same sources of confounding could be operative across populations
or whether other biases, such as may arise if common measurement instruments
are used across studies, are present.

3.1.3. Covariate measurement error
The issue of measurement error in covariate data is one of the most important
and least developed statistical topics in observational epidemiology. Suppose that
some elements of Z(t), and hence of the modeled regression vector x(t) in (2) are
not precisely measured. How might tests and estimation on b be affected? Some
of the statistical literature on covariate measurement error assumes that x(t) is
precisely measured in a subset of the cohort, a so-called validation subsample,
while some estimate, say w(t) of x(t) is available on the remainder of the cohort.
The hazard rate at time t induced from (1) in the non-validation part of the
cohort is then

l0ðtÞEfexpfxðtÞ0bgjwðtÞ; YðtÞ ¼ 1g. (4)

The expectation in (4) can be estimated using the validation sample data on
{x(t), w(t)} and consistent non-parametric estimates of b are available (Pepe and
Fleming, 1991; Carroll and Wand, 1991) with the measurement error simply
reducing estimating efficiency.

Frequently in epidemiologic contexts, however, the ‘true’ covariate history is
unascertainable for any study subjects, and only one or more estimates thereof
will be available. Important examples arise in nutritional and physical activity
epidemiology where Z(t) may include the history of consumption of certain
nutrients over preceding years, or aspects of lifetime physical activity patterns. A
classical measurement model, ubiquitous in the statistical measurement error
literature, assumes that available measurements w1(t), w2(t),y of x(t) are the
sum of x(t) plus error that is independent across replicates for an individual, and
that is independent of x(t) and of other study subject characteristics. A variety of
hazard ratio estimators are available from this type of reliability data including
regression calibration (Carroll et al., 1995), risk set regression calibration (Xie
et al., 2001), conditional score (Tsiatis and Davidian, 2001), and non-parametric
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corrected score procedures (Huang and Wang, 2000; Song and Huang, 2005).
These modeling assumptions and estimation procedures may be sufficient for
objectively assessed covariates (e.g., certain exposure biomarkers), but the clas-
sical measurement model may be inadequate for many self-reported exposures.
For example, the relationship between the consumption of fat, carbohydrate, and
total energy (calories) to the risk of chronic disease has been the subject of
continuing cohort and case–control study research for some decades. Almost all
of this work has involved asking cohort members to self-report their dietary
patterns, most often in the form of the frequency and portion size of consump-
tion of each element of a list of foods and drinks. For certain nutrients, including
short-term total energy and protein energy, there are objective consumption
markers that plausibly adhere to a classical measurement model. Though pub-
lished data on the relationship of such markers to corresponding self-reported
consumption remains fairly sparse, it is already evident, for example for total
energy, that the measurement error properties may depend on such individual
characteristics as body mass (e.g., Heitmann and Lissner, 1995), age, and certain
behavioral characteristics, and that replicate measurements have measurement
errors that tend to be positively correlated (e.g., Kipnis et al., 2003). This work
underscores the need for more flexible and realistic models (e.g., Carroll et al.,
1998; Prentice et al., 2002) for certain exposure assessments in epidemiologic
cohort settings, and for the development of additional objective (biomarker)
measures of exposure in nutritional and physical activity epidemiology. Typically,
it will not be practical to obtain such objective measures for the entire epidemio-
logic cohort, nor can some key biomarkers be obtained from stored specimens.
Hence, the practical way forward appears to be to use the biomarker data on a
random subsample to calibrate (correct) the self-report data for the entire cohort
prior to hazard ratio estimation or odds ratio estimation (e.g., Sugar et al., 2006).
This is a fertile area for further data gathering and methods development, and one
where statisticians have a central role to fulfill.

3.1.4. Outcome data ascertainment
A cohort study needs to include a system for regularly updating disease event
information. This may involve asking study subjects to periodically self-report
any of a list of diagnoses and to report all hospitalizations. Hospital discharge
summaries may then be examined for diagnoses of interest with confirmation by
other medical and laboratory records. Sometimes outcomes are actively ascer-
tained as a part of the study protocol; for example, electrocardiographic tracings
for coronary heart disease or mammograms for breast cancer. Diagnoses that
require considerable judgment may be adjudicated by a committee of experts,
toward standardizing the accuracy and timing of disease event diagnoses. Disease
incidence or mortality registers can sometimes provide efficient outcome ascer-
tainment, or can supplement other ascertainment approaches.

Unbiased ascertainment of the fact and timing of disease events relative to the
elements of Z(t) under study is needed for valid hazard ratio estimation. Valid
absolute risk estimation has the more stringent requirement of comprehensive
disease event ascertainment. For example, a recent NIH workshop assessed the
state-of-the science in the topic of multivitamin and multimineral (MVM)
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supplements and chronic disease risk. MVM users tend to have many charac-
teristics (e.g., highly educated, infrequent smoking, regular exercise, low-fat and
high-fruit and vegetable dietary habits) that could confound a disease associa-
tion, but also MVM user engage more frequently in such disease-screening
activities as mammography or prostate-specific antigen testing (e.g., White et al.,
2004). Hence, for example, a benefit of MVMs for breast or prostate cancer could
be masked by earlier or more complete outcome ascertainment among users.
Careful standardization for disease screening and diagnosis practices, at the
design or analysis stages, may be an important element of cohort study conduct.
Similarly, differential lags in the reporting or adjudication of disease events can
be a source of bias, particularly toward the upper end of the distribution of
follow-up time for the cohort.

3.2. Observational studies in treatment research

Observational approaches are not used commonly for the evaluation of a treat-
ment for a disease. Instead, the evaluation of treatments aimed at managing
disease, or reducing disease recurrence or death rates, rely primarily on ran-
domized controlled trials, typically comparing a new treatment or regimen to a
current standard of care. Because of the typical higher rate of the outcome events
under study, compared to studies of disease occurrence among healthy persons,
therapeutic studies can often be carried out with adequate precision with at most
a few hundred patients. Also, the process for deciding a treatment course for a
patient is frequently complex, often involving information and assumption
related to patient prognosis. Hence, the therapeutic context is one where it may
be difficult or impossible to adequately control for selection factors, confounding
and other biases using an OS design.

Observational studies do, however, fulfill other useful roles in disease-
treatment research. These include the use of data on cohorts of persons having a
defined diagnosis to classify patients into prognostic categories within which
tailored treatments may be appropriate, and supportive care measures may need
to be standardized. For example, classification and regression trees (e.g., LeBlanc
and Tibshirani, 1996), as well as other explanatory and graphical procedures, are
used by cooperative oncology and other research groups. Also, observational
studies in patient cohorts, often under the label ‘correlationals studies’ are fre-
quently used as a part of the treatment development enterprise. For example,
observational comparisons, between persons with or without recurrent disease, of
gene expression patterns in pre-treatment tissue specimens may provide impor-
tant insights into the ‘environment’ that allows a disease to progress, and may
suggest therapeutic targets to interrupt disease progression and improve prog-
nosis.

3.3. Observational studies in disease-screening research

Disease-screening research aims to identify sensitive and specific means of
diagnosing disease prior to its clinical surfacing. In conjunction with effective
means of disease treatment, such screening programs can reduce disease-related
mortality, and can reduce morbidity that accompanies advanced stage disease.
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For similar reasons to the therapeutic area, observational studies to evaluate
screening programs are most challenging, and randomized controlled trials offer
important advantages.

At present, substantial efforts are underway to discover biomarkers for the
early detection of various cancers. These research efforts can be expected to
identify a number of novel early detection markers in upcoming years. The cost
and duration of disease-screening trials encourage additional research to enhance
the reliability of observational evaluations in this setting, including the possibility
of joint analyses of observational and randomized trial data.

Observational studies play a crucial role in the identification of disease-
screening biomarkers and modalities. For example, a current concept in the early
detection of cancer is that, early in their disease course, malignant tumors may
shed minute amounts of novel proteins into the blood stream, whence the pres-
ence of, or an elevated concentration of, the protein could trigger biopsy or other
diagnostic work-up. For such a protein to yield a test of sufficient sensitivity and
specificity to be useful as a screening tool, corresponding hazard ratios need to be
considerably larger than is the case for typical epidemiologic risk factors. Hence,
stored blood specimens from rather modest numbers of cases and controls (e.g.,
100 of each) from an epidemiologic cohort may be sufficient to allow identifi-
cation of a biomarker that would satisfy demanding diagnostic test criteria.

In terms of the notation of Section 2, the principal covariate in the diagnostic
test setting is a binary variable that specifies whether or not the test is positive
(e.g., prostate-specific antigen concentration, or change in concentration, above a
certain value), so that the issue of converting a quantitative variable (e.g., PSA
concentration) to a binary variate is important in this context.

This leads to a focus on receiver-operator characteristic (ROC) curves from
case–control data, with test evaluation based in part on ‘area under’ the ROC
‘curve’ (AUC), or partial AUC if one chooses to focus on a range of acceptable
specificities. A focus on the predictiveness of a diagnostic marker, typically using
a logistic regression version of (3), is also important in this context and requires a
linkage of the case–control data to absolute risks in the target population. This
too is an active and important statistical research area. See Pepe (2003) and
Baker et al. (2006) for accounts of the key concepts and approaches in evaluating
diagnostic tests. Issues requiring further development include study design and
analysis methods with high-dimensional markers, and methods for the effective
combination of several screening tests (e.g., McIntosh and Pepe, 2002).

3.4. Family-based cohort studies in genetic epidemiology

There is a long history of using follow-up studies among family members to study
genetic aspects of disease risk. For example, one could compare the dependence
patterns among times to disease occurrence in a follow-up study of monozygotic
and dizygotic twins having shared environments to assess whether there is a
genetic component to disease risk. The so-called frailty models that allow family
members to share a random multiplicative hazard rate factor are often used for
this type of analysis (e.g., Hougaard, 2000). Such models have also been adapted
to case–control family studies in which one compares the disease-occurrence
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patterns of family members of persons affected by a disease under study to
corresponding patterns for unaffected persons (e.g., Hsu et al., 1999).

Often the ascertainment schemes in family-based studies are complex, as fam-
ilies having a strong history of the study disease are selected to increase the
probability of harboring putative disease genes. Linkage analysis has been a
major approach to the mapping of genes that may be related to disease risk. Such
analyses proceed by determining the genotype of family members for a panel of
genetic markers, and assessing whether one or more such markers co-segregate
with disease among family members. This approach makes use of the fact that
segments of the chromosome are inherited intact so that markers over some
distance on a chromosome from a disease gene can be expected to associate with
disease risk. There are many possible variations in ascertainment schemes and
analysis procedures that may differ in efficiency and robustness properties (e.g.,
Ott, 1991; Thomas, 2004). Following the identification of a linkage signal, some
form of finer mapping is needed to close in on disease-related loci.

Markers that are sufficiently close on the genome tend to be correlated,
depending somewhat on a person’s evolutionary history (e.g., Felsenstein, 1992).
Hence, if a dense set of genetic markers is available across the genome, linkage
analysis may give way to linkage-disequilibrium (LD) analyses. Genome-wide
association studies with several hundred thousand single-nucleotide polymorph-
ism (SNP) markers have only recently become possible due to efficient high-
throughput SNP genotyping. High-dimensional SNP panels can be applied in
family study contexts, or can be applied to unrelated cases and controls. There
are many interesting statistical questions that attend these study designs (Risch
and Merikangas, 1996; Schork et al., 2001), including the choice of SNPs for a
given study population, and the avoidance of the so-called population stratifi-
cation wherein correlations with disease may be confounded by ethnicity or other
aspects of evolutionary history. Some further aspects of high-dimensional SNP
studies will be discussed below.

4. Randomized controlled trials

4.1. General considerations

Compared to purely observational approaches, the randomized controlled trial
(RCT) has the crucial advantage of ensuring that the intervention or treatment
assignment is statistically independent of all pre-randomization confounding
factors, regardless of whether or not such factors can be accurately measured and
modeled, or are even recognized. The randomization assignment is also inde-
pendent of the pre-randomization disease-screening patterns of enrollees. Hence,
if outcomes of interest during trial follow-up are equally ascertained, tests to
compare outcome rates among randomized groups represent fair comparisons,
and a causal interpretation can be ascribed to observed differences. Such tests are
often referred to as ‘intention-to-treat (ITT)’ tests, since the comparisons is
among the entire randomized groups, without regard to the extent to which the
assigned intervention or treatment was adhered to by trial enrollees. Note that
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the validity of comparisons in RCTs depends on the equality of outcome
ascertainment (e.g., disease-occurrence times) between randomization groups.
This implies an important role for an outcome ascertainment process that is
blinded to randomization group, and implies the need for a protocol that stand-
ardizes all aspects of the outcome identification and adjudication. The RCT often
provides a clinical context, which makes such unbiased outcome data ascertain-
ment practical.

4.2. Prevention trials

For the reasons just noted, RCTs have some major advantages compared to
observational studies for the evaluation of preventive interventions. The major
limitations of the RCT design in this context are the typical large sample sizes,
challenging logistics, and very substantial costs. For example, a simple sample
size formula based on the approximate normality of the logarithm of the odds
ratio indicates that a trial cohort sample size must be at least

n ¼ fp2ð1� p2Þg�1ðlog lÞ�2Q, (5)

for a trial having active and control groups, assigned with probabilities g and
1� g that have corresponding outcome event probabilities of p1 and p2 over trial
follow-up. In this expression l ¼ p1ð1� p2Þ=fp2ð1� p1Þg is the active versus con-
trol group odds ratio, and

Q ¼ fgð1� gÞg�1½Wa=2 �W1�Zfgþ l�1ð1� p2 þ lp2Þ2ð1� gÞg1=2�2,

is a rather slowly varying function of l and p2 at specified test size (type I error
rate) a and power Z, while Wa/2 and W1�Z are the upper a/2 and 1�Z percentiles
of the standard normal distribution. The above formula also allows calculation
of study power at a specified trial sample size. For example, that a trial of size
10,000 study subjects with randomization fraction g ¼ 0.50, control group
incidence rate of 0.30% per year, and an odds ratio of 0.67, would have power of
about 61% over an average 6-year follow-up period, and of 79% over an average
9-year follow-up period. Although more sophisticated power and sample size
formulas are available (e.g., Self et al., 1992), the simple formula (5) illustrates the
sensitivity to the magnitude of the intervention effect, and secondarily to the
control group incidence rate. Primarily because of cost, it is common to design
prevention trials with power that is just adequate under design assumptions, for
the overall ITT comparison. It follows that trial power may be less than desirable
if the intervention effect is somewhat less than designed. Often there will not be
firm preliminary information on the magnitude, or especially the time course, of
intervention effects and less than designed adherence to the assigned interven-
tions or treatments can reduce the trial odds ratio. Less than expected control
group outcome rates (p2) also reduces trial power, as may occur if extensive
eligibility or exclusionary criteria are applied in trial recruitment, or because
volunteers for a prevention trial, that may be time consuming and of long
duration, have distinctive biobehavioral characteristics that are related to the
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outcome of interest. Also, there may be substantive questions of intervention
benefits and risks in relation to important subsets of trial enrollees, but power
may be marginal for such subset intervention comparisons and for related
interaction tests. In summary, sample size and power is an important topic for
RCTs in the prevention area, particularly since such full-scale trials typically
have little chance of being repeated. Additional statistical work on design pro-
cedures to ensure sufficient robustness of study power would be desirable.

On the topic of intervention effects within subsets, the typical low hazard rates
in prevention trials implies a role for ‘case–only’ analyses (e.g., Vittinghoff and
Bauer, 2006). Let s ¼ 1, 2,y denote strata formed by baseline characteristics in a
prevention trial, and let x(t) � x take values 1 and 0 in the active and control
groups. A simple calculation under a stratified Cox model

lsðt; xÞ ¼ l0sðtÞ expðxbsÞ
gives

pðx ¼ 1js;T ¼ tÞ ¼ exp bspðs; tÞ= 1� pðs; tÞ� �
1þ exp bspðs; tÞ= 1� pðs; tÞ� � , (6)

where p(s,t) ¼ p(x ¼ 1|s, TZt). If outcome and censoring rates are low during
trial follow-up, then p(s,t) is very close to g, the active group randomization
fraction, and (6) is approximately

fg=ð1� gÞgebs
1þ fg=ð1� gÞgebs .

Hence, logistic regression methods can be applied for estimation and testing on
b1, b2,y . This type of analysis evidently has efficiency very similar to a ‘full-
cohort’ analysis under this stratified Cox model, and hence may be more efficient
than case–control or case–cohort estimation for this specific purpose. The case–
only analyses may provide valuable cost saving if the baseline factors to be
examined in relation to the hazard ratio involve expensive extraction of infor-
mation from stored materials.

Ensuring adequate adherence to intervention goals can be a substantial chal-
lenge in prevention trials, as such trials are typically conducted in free living,
ostensibly healthy, persons who have many other priorities, and may have other
major life events occur during a possible lengthy trial intervention period. Var-
ious types of communications, incentives, and adherence initiatives may help
maintain adherence to intervention goals, for either pill taking or behavioral
interventions. If the adherence to intervention goals is less than desirable, there is
a natural desire to try to estimate the intervention effects that may have arisen
had there been full adherence to intervention goals. An interesting approach to
such estimation (Robins and Finkelstein, 2000) involves censoring the follow-up
times for study subjects when they are no longer adherent to their assigned
intervention and weighting the contributions of each individual in the risk set
R(t) by the inverse of the estimated adherence probability at time t. Following
the development of a model for time to non-adherence, perhaps using another

R. L. Prentice14



Cox model, these weights can be estimated, thereby allowing the continuing
adherent study subjects, in a sense, to ‘represent’ those with the same risk factors
for non-adherence in the overall trial cohort. This approach has considerable
appeal, but it is important to remember that the validity of the ‘full adherence’
comparison among randomization groups is dependent on the development of
an adequate adherence rate model, and that one never knows whether or not
residual confounding attends any such adherence model specification.

Most chronic disease-prevention trials to date have involved pill-taking inter-
ventions, with tamoxifen for breast cancer prevention (Fisher et al., 1998),
statins for heart disease prevention (Shepherd et al., 1995), and alendronate for
fracture prevention (Cummings et al., 1998) providing examples of important
advances. Behavioral and lifestyle interventions arguably provide the desirable
long-term targets for chronic prevention and for public health recommendation.
There have been fewer such trials, with the Diabetes Prevention Program trial of
a combination of a dietary pattern change and physical activity increase standing
out as providing impressive findings (Diabetes Prevention Program Research
Group, 2002). An analytic challenge in this type of ‘lifestyle’ trial is the estimation
of the contributions of the various components of a multi-faceted intervention to
the overall trial result. Usually, it will not be practical to blind study participants
to a behavioral intervention assignment, so that unintended, as well as intended,
differences in behaviors between intervention groups may need to be considered
in evaluating and interpreting trial results. These are complex modeling issues
where further statistical methodology research is needed.

4.3. Therapeutic trials

As noted above, RCTs provide the central research design for the evaluation and
comparison of treatment regimens for a defined population of patients. Com-
pared to prevention trials, therapeutic trials are typically smaller in size and of
shorter duration though, depending on the disease being treated and the inter-
ventions being compared may require a few hundred, or even a few thousand,
patients followed for some years.

For some diseases, such as coronary disease or osteoporosis, there is an under-
lying disease process that may be underway for some years or decades and
intervention concepts arising, for example, in risk factor epidemiology might
logically apply to either primary prevention or recurrence prevention. Because of
sample size and cost issues, it may often be reasonable to study the intervention
first in a therapeutic setting, perhaps using trial results to help decide whether a
subsequent primary prevention trial is justified. The above examples of tamoxi-
fen, statins, and alendronate each followed this pattern, as is also the case for
ongoing trials of estrogen deprivation agents (aromatase inhibitors) for breast
cancer treatment and prevention.

Therapeutic interventions may particularly target diseased tissue or organs.
Surgical interventions to remove cancerous or damaged tissue, or to arrest the
progression of an infectious disease, provide a classic example. Other therapeutic
interventions for cancer may, for example, restrict the blood supply to tumor
tissue (angiogenesis inhibitors), induce cancerous cells to self-destruct (apoptosis
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inducers), or interfere with signal transduction or other biological processes rel-
evant to tumor progression. Some such interventions have potential for adverse
effects during an early intensive treatment phase followed by longer-term benefit.
Statistical tools of the type already described are useful for trial evaluation.
Further developments would be useful in relation to hazard ratio models that
reflect time-dependent treatment effects, and in relation to summary measures
that can bring together such time-to-response outcomes as time to disease
response to treatment, disease-free survival time, and overall survival toward
a comparative summary of treatment benefits and risks. The development and
evaluation of a therapeutic intervention is typically a multiphase process, and
important statistical issues attend study design and analyses at each phase, in-
cluding methods for deciding which treatments move on for testing in subsequent
phases.

4.4. Disease-screening trials

There have been rather few RCTs of interventions for the early detection of
disease, with mortality outcomes. As an exception there have been several trials
of mammography, or of mammography in conjunction with other breast-
screening modalities, for the reduction in breast cancer mortality, including the
classic New York Health Insurance Plan breast-screening trial (Shapiro, 1977),
which is often credited with establishing the value of mammography screening
among older women, the Canadian National Breast Screening Study (Miller et
al., 1992a, 1992b), and several group randomized trials in Europe. The latter pose
some interesting analytic challenges as persons randomized in the same group to
active screening or control tend to have correlated mortality times that give rise
to inflation in the variance of test statistics, like the logrank test from (3), that
need to be acknowledged. Such acknowledgement can take place by allowing a
robust variance estimator (Wei et al., 1989) for the logrank test from (3), or by
adopting a permutation approach to testing with the randomized group as the
unit of analysis (Gail et al., 1996; Feng et al., 1999).

Another special feature of a screening trial with disease outcomes is the pres-
ence of a strong correlate of the primary outcome, disease-specific mortality.
Specifically one observes the occurrence of the targeted disease during the course
of the trial, and disease occurrence is a strong risk factor for the corresponding
mortality. A statistical challenge is to use the disease incidence data in a manner
that strengthens mortality comparisons relative to analyses based on the mor-
tality data alone. To do so without making additional modeling assumptions
requires a nonparametric estimator of the bivariate survivor function that can
improve upon the efficiency of the Kaplan–Meier estimator, for separate appli-
cation in each randomization group. Such estimation is known to be possible
asymptotically (Van der Laan, 1996), but estimation procedures that can make
practical improvements to the KM estimator with a moderate number (e.g., a few
hundred) of disease events have yet to be developed. This ‘auxiliary data’ prob-
lem is one of a range of statistical challenges related to the use of intermediate
outcomes and biomarkers.
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5. Intermediate, surrogate, and auxiliary outcomes

The cost and duration of RCTs in the treatment area, and especially in the
disease prevention and screening areas, naturally raises questions about whether
some more frequently occurring or proximate outcome can suffice for the eval-
uation of an intervention. Alternatively, there may be a battery of intermediate
outcomes that together convey most information concerning intervention ben-
efits and risks.

On the contrary, it is clear that there are often readily available intermediate
outcomes that are highly relevant to intervention effects. The effects of statin
family drugs on blood lipids and lipoproteins, is undoubtedly a major aspect of
the associated heart disease risk reduction, and the effects of the bone-preserving
agent alendronate on bone mass and bone mineral density is likely an important
determinant of fracture risk reduction. But one is typically not in a position to
know whether or not such intermediate outcomes are comprehensive in respect
to pathways relevant to the targeted disease, or are comprehensive in relation to
unrecognized adverse effects. Recent controversy surrounding the use of the
Cox-2 inhibitor VIOXX for colorectal adenoma recurrence prevention and an
unexpected increase in cardiovascular disease risk illustrate the latter point
(Bresalier et al., 2005). See Lagakos (2006) for a discussion of related interpre-
tational issues. On the data analysis side, we often lack indices that bring together
data on several pertinent intermediate outcomes for a meaningful projection of
benefits versus risks for a disease outcome of interest, so that intermediate outcome
trials typically play the roles of refinement and initial testing of an intervention,
rather than of definitive testing in relation to a subsequent ‘hard’ endpoint.

In some circumstances, however, one may ask whether there is an intermediate
outcome that so completely captures the effect of an intervention of interest on a
‘true’ outcome, that treatment decisions can be based on the intermediate out-
come alone – the so-called surrogate outcome problem. Unfortunately, such
circumstances are likely to be quite rare unless one defines a surrogate that is so
proximate as to be tantamount to the true outcome. Specifically, the conditions
for a test of the null hypothesis of no relationship between an intervention and
intermediate outcome to be a valid test for the null hypothesis concerning the
treatment and a true outcome require the surrogate to fully mediate the inter-
vention effect on the time outcome (Prentice, 1989). This assumption is very
restrictive, and one can never establish full mediation empirically. Nevertheless,
the lack of evidence against such mediation in sizeable data sets is sometimes
used to argue the practical surrogacy of certain intermediate outcomes, as in
recent analysis of prostate-specific antigen ‘velocity’ as a surrogate for prostate
cancer recurrence for the evaluation of certain types of treatments (D’Amico
et al., 2003).

A rather different ‘meta-analytic’ approach to this issue of replacing a true
outcome by a suitable intermediate outcome arises by modeling joint treatment
effect parameters for the intermediate and true outcome in trials of similar in-
terventions to that under study, and assuming some aspects of this joint distri-
bution to apply to a subsequent trial in which only the intermediate (‘surrogate’)
is observed (e.g., Burzykowski et al., 2005). It is not clear how often one would be
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in a position to have sufficient prior trial data available to apply this concept, and
the issues of how one decides which treatments or interventions are close enough
to the test treatment to support this type of approach also appears to be chal-
lenging.

The approaches described thus far in this section may not often allow a
definitive evaluation of a treatment effect on a clinical outcome, such as disease
incidence or mortality. The auxiliary data idea mentioned in Section 4.4 may have
potential to streamline a definitive intervention evaluation, without making
additional strong assumptions, if short-term and frequent outcomes exist that
correlate strongly with the clinical outcome of interest. Essentially, the short-term
outcome data provide dependent censorship information for the true clinical out-
come, which may be able to add precision to comparative analysis of the clinical
outcome data. High-dimensional short-term outcome data (e.g., changes in the
proteome following treatment initiation) may offer particular opportunities, but,
as noted previously, the requisite statistical methodology has yet to be developed.

In some circumstances, available data sources will have established an adverse
effect of an exposure on disease risk. Cigarette smoking in relation to lung cancer
or heart disease, occupational asbestos exposure and mesothelioma and lung
cancer, human papilloma virus exposure and cervical cancer, provide important
examples. RCTs in such contexts may be aimed at finding effective ways of
reducing the exposures in question, for example, through smoking cessation or
prevention educational approaches, through protective strategies in the work-
place, or through safe-sex practices. Related dissemination research projects ful-
fill an important role in the overall epidemiology and biomedical research
enterprise.

6. Multiple testing issues and high-dimensional biomarkers

6.1. Study monitoring and reporting

It is well recognized that Type I error rates may be inflated if trial data are
analyzed periodically with analytic results having potential to alter trial conduct
or to trigger trial reporting. Monitoring methods that preserve the size of tests to
compare randomized group disease rates (e.g., Jennison and Turnbull, 2000) are
widely used in RCT settings. These methods tend to depend strongly on pro-
portional hazards assumptions. Settings in which the intervention may plausibly
affect multiple clinical outcomes, either beneficially or adversely, present partic-
ipation challenges in trial monitoring. For example, Freedman et al. (1996) pro-
pose a global index that is defined as the time to the earliest of a set of outcomes
that may be affected by an intervention, and propose a monitoring process that
first examines designated primary outcomes for the trial, but also examines at the
global index to determine whether early trial stopping should be considered.
Special efforts are required to estimate treatment effect parameters in the pres-
ence of sequential monitoring (Jennison and Turnbull, 2000). Conditional power
calculations that make use of the data in hand in projecting study power also
have value for trial monitoring.
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It is interesting that most attention to the specification of testing procedures that
acknowledgemultiplicity of tests occurs in theRCT setting; where this is typically a
well-defined treatment or intervention, a specified primary outcome, a specified test
statistic for intervention group comparisons, and a trial monitoring plan. In con-
trast multiple testing issues are often not formally addressed in OS settings where
there may be multiple covariate and covariate modeling specifications, multiple
possible outcome definitions, multiple association test statistics, and where asso-
ciations may be repeatedly examined in an ad hoc fashion. See Ioannidis (2005) for
an assertion that ‘most published findings are false’, as a result of these types of
multiple testing issues, and other sources of bias. The development of testing
procedures that can avoid error rate inflation as a result of this array of multi-
plicities could add substantial strength to observational epidemiologic studies.

6.2. High-dimensional biomarker data

The development of high-dimensional biologic data of various types has greatly
stimulated the biomedical research enterprise in recent years. One example is the
identification of several million SNPs across the human genome (e.g., Hinds
et al., 2005) and the identification of tag SNP subsets that convey most genotype
information as a result of linkage disequilibrium among neighboring SNPs. Tag
SNP sets in the 100,000 to 500,000 range, developed in part using the publicly
funded HapMap project (The International HapMap Consortium, 2003), have
recently become commercially available for use in a sufficiently high-throughput
fashion that hundreds, or even thousands, of cases and controls can be tested in
a research project. The photolithographic assessment methods used for high-
dimensional SNP studies can also be used to generate comparative gene expression
(transcript) assessments for cases versus controls, or for treated versus untreated
study subjects, for thousands of genes simultaneously, also in a high-throughput
fashion. There are also intensive technology developments underway to assess the
concentrations of the several thousands of proteins that may be expressed in specific
tissues, or may be circulating in blood serum or plasma. The genomic and tran-
scriptomic methods rely on the chemical coupling of DNA or RNA in target tissue
with labeled probes having a specified sequence. This same approach is not avail-
able for studying the proteome, and current technologies mainly rely on separation
techniques followed by tandem mass spectrometry in subfractions for comparative
proteomic assessments (e.g., Wang et al., 2005a). Antibody arrays involving a sub-
stantial number of proteins are also beginning to emerge as a useful proteomic
platform (e.g., Wang et al., 2005b). Technologies for interrogating the metabolome
(small molecules) are also under intensive investigation (e.g., Shurubor et al., 2005).
High-dimensional data sources also include various other types of scans and images
that may be of interest as risk factors, as early detection markers, or as outcomes
(e.g., PET scans for neurologic disease progression) in RCTs.

High-dimensional genomic, transcriptomic, or proteomic data, or combina-
tions thereof, even on a modest number of persons, may provide valuable insights
into biological processes and networks, or intervention mechanisms that can lead
to the development of novel treatments or interventions. Evaluation of the
relationship of high-dimensional data to disease rates, however, can be expected
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to require large sample sizes to identify associations of moderate strength and
to control for various sources of heterogeneity and bias. In fact, these studies
may require sample sizes much larger than the corresponding low-dimensional
problems, or a multistage design, to eliminate most false positive findings. For
example, 1000 cases and 1000 controls from a study cohort may yield an asso-
ciation test of acceptable power for a 0.01 level test of association for a candidate
SNP. Testing at this significance level for 500,000 SNPs would be expected to
yield 5000 false positives under the global null hypothesis. A test at the 0.00001
(10 in a million) level would reduce this expected false positive number to 5, but
corresponding study power would be greatly reduced.

A multistage design in which only markers satisfying statistical criteria for
association with disease move on to a subsequent stage can yield important cost
savings, as less promising markers are eliminated early. In the case of SNP
association tests, pooled DNA provides the opportunity for much additional cost
saving, but there are important trade-offs to consider (Downes et al., 2004;
Prentice and Qi, 2006).

Proteomic markers in blood may have particular potential as early detection
biomarkers. Special efforts may be needed to ensure equivalent handling of serum
or plasma specimens between cases of the study disease and matched controls.
Specimens that are stored prior to diagnosis are much to be preferred in this
context, even for biomarker discovery. For cancer early detection markers, con-
trols having benign versions of the disease under study may be needed to identify
markers having acceptable specificity. Multistage designs again may be needed if
a large number of proteins are being investigated (e.g., Feng et al., 2004).

Proteomic approaches also provide an opportunity for more targeted preven-
tive intervention development, which heretofore has relied mainly on leads from
observational epidemiology, or from therapeutic trials. For example, there is
potential to examine the effects of an intervention on the plasma proteome, in
conjunction with knowledge of proteomic changes in relation to disease risk, as a
means for the development and initial testing of biobehavioral interventions.

Much additional research is needed to identify study designs that make good
use of these types of emerging high-dimensional data. The high-dimensionality
also opens the way to some novel empirical testing procedures (Efron, 2004), that
may provide valuable robustness compared to standard tests that assume a the-
oretical null distribution. Also, false discovery rate procedures (Benjamini and
Hochberg, 1995) provide a useful alternative to controlling experiment-wise
Type I error rates in these contexts. Additional statistical research is needed on
parameter estimation, and simultaneous confidence interval specification, in the
context of multistage designs in which the biomarkers of interest satisfy a series
of selection criteria (e.g., Benjamini and Yekutieli, 2005).

7. Further discussion and the Women’s Health Initiative example

The Women’s Health Initiative (WHI) clinical trial (CT) and OS in which the
author has been engaged since its inception in 1992, provides a context for
illustrating a number of the points raised above. The WHI is conducted among
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postmenopausal women, in the age range 50–79 when enrolled during 1993–1998
at one of 40 clinical centers in the United States. The CT is conducted among
68,132 such women and evaluates four interventions in a randomized, controlled
fashion in a partial factorial design (WHI Study Group, 1998). Two CT com-
ponents involve postmenopausal hormone therapy, either conjugated equine est-
rogen alone (E-alone) among women who were post-hysterectomy at enrollment,
or the same estrogen plus medroxyprogesterone acetate (E+P) among women
with a uterus. The E+P trial among 16,608 women ended early in 2002 (Writing
Group for the WHI, 2002) when an elevated risk of breast cancer was observed,
and the ‘global index’ was also elevated, in part because of an unexpected increase
in the designated primary outcome, coronary heart disease, as well as increases in
stroke and venous thromboembolism. The E-alone trial among 10,739 women
also ended early in 2004 (WHI Steering Committee, 2004) largely because of a
stroke elevation, along with little potential for showing a heart disease benefit by
the planned completion date in 2005.

The WHI OS includes 93,676 women recruited from the same populations,
over the same time period, with much common covariate data collection, and
with similar outcome ascertainment procedures. Comparison of study findings
between the CT and OS provides a particular opportunity to identify sources of
bias and to improve study design and analysis procedures. In the case of hormone
therapy and cardiovascular disease joint analyses of the two cohorts using Cox
models that stratify on cohort and baseline age reveal that careful control for
confounding and for time from hormone therapy initiation provide an explanation
for substantially different hazard ratio functions in the two cohorts (Prentice
et al., 2005a; Prentice et al., 2006b). Corresponding unpublished breast cancer
analyses draw attention to the need to carefully control for mammography pat-
terns in outcome ascertainment, and also raise thorny issues of assessment when
the intervention has potential to affect outcome ascertainment.

A series of case–control studies are underway using candidate biomarkers to
elucidate hormone therapy effects on cardiovascular disease, breast cancer, and
fractures. For example, the cardiovascular disease studies focus on blood-based
markers of inflammation, coagulation, lipids, and candidate gene polymorph-
isms. A genome-wide association study involving 360,000 tag SNPs is also
underway in collaboration with Perlegen Sciences to identify genetic risk factors
for coronary heart disease, stroke, and breast cancer, and to elucidate hormone
therapy effects in these three diseases (e.g., Prentice and Qi, 2006).

The WHI specimen repository also serves as a resource for a wide range of
biomarker studies by the scientific community. A novel ongoing example aims to
identify colon cancer early detection markers by studying prediagnostic stored
plasma from 100 colon cancer cases and matched controls. A total of 10 labs
across the United States are applying various proteomic platforms for shared
discovery analyses, under the auspices of the NCI’s Early Detection Research
Network and WHI.

The other two CT components involve a low-fat dietary pattern for cancer
prevention (48,835 women) and calcium and vitamin D supplementation for
fracture prevention (36,282 women). Initial reports from these trials have recently
been presented (Prentice et al., 2006a, 2006b; Beresford et al., 2006; Howard et al.,

Statistical methods and challenges 21



2006, for the low-fat trial; Jackson et al., 2006; Wactawski-Wende et al., 2006, for
the calcium and vitamin D trial), with much further analytic work, and explan-
atory analyses underway. Biomarker studies are underway in both the dietary
modification trial cohort and the OS to examine the measurement properties
of frequencies, records, and recalls for self-reporting both dietary consumption
and physical activity patterns. These same biomarkers will be used to calibrate
the self-report data for a variety of disease association studies in WHI cohorts.
See Prentice et al. (2005b) for a detailed discussion of statistical issues arising in
the WHI, and for commentary by several knowledgeable epidemiologists and
biostatisticians.

In summary, epidemiology and biomedical research settings are replete with
important statistical issues. The population science and prevention areas have
attracted the energies of relatively few statistically trained persons, even though
the public health implications are great, and methodologic topics often stand as
barriers to progress. These and other biomedical research areas can be recom-
mended as stimulating settings for statistical scientists at any career stage.
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Abstract

The analysis of biomarker data often requires the proper application of
statistical methods that are typically not covered in introductory statistics
textbooks. In this chapter, we use examples from the biomarker literature
to illustrate some of the challenges faced in handling data from biomarker
studies and describe methods for the appropriate analysis and interpretation
of these data.

1. Introduction

According to the Dictionary of Epidemiology, a biomarker is ‘‘a cellular or mo-
lecular indicator of exposure, health effects, or susceptibility’’ (Last, 1995, p. 17).
Our primary focus here will be on markers of exposure, although the techniques
we describe can be applied to any type of biomarker.

In this chapter, we provide descriptions and illustrations of many of the sta-
tistical methods that we have found useful in the analysis of biomarker data. It is
often the case that data collected in studies involving biomarkers require ‘‘non-
standard’’ analyses because of the presence of such characteristics as non-
normality, heterogeneity, dependence, censoring, etc. In addition, sample sizes in
biomarker studies can be rather small, so that large-sample approximations to
the null distributions of test statistics are no longer valid. For these reasons, we
have emphasized using exact methods whenever possible, and have recommended
distribution-free and robust methods in many situations. In some instances, we
have illustrated improper applications of ‘‘standard’’ statistical analyses by citing
articles from the biomarker literature. It is not our intention to be overly critical
of the authors of these articles, but rather to demonstrate that many of the
published accounts of biomarker data analyses have not made proper use of the
methods included in this chapter. It is often the case that the statistical analyses
that appear in print represent the best that could be done at the time of pub-
lication due to unavoidable limitations on time, personnel, or resources, and that
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more thorough analyses could have been performed under different circum-
stances. It is hoped, however, that those who read this chapter will be better able
to assess the quality of a biomarker and to conduct proper analyses of biomarker
data in their future research endeavors.

It should also be noted that our discussion of the statistical analysis of bio-
marker data is not intended to be comprehensive. We have attempted instead to
offer practical advice on the appropriate methods to use when analyzing bio-
marker data and we hope that our recommendations will be helpful to those who
perform statistical analyses of these data on a regular basis. To the greatest extent
possible, we have based our recommendations on the published advice of rec-
ognized authorities in the field. Our emphasis is on statistical methods and pro-
cedures that can be implemented using widely available statistical software, and
we have indicated how commonly used statistical packages (primarily StatXact
(Cytel Inc., Cambridge, MA) and SAS (SAS Institute Inc., Cary, NC)) can
be used to carry out the recommended analyses. However, since statistics is a
dynamic field, many of the recommendations contained in this chapter may
soon prove to be obsolete because of new developments in the discipline and/or
new advances in statistical software.

2. Statistical methods for assessing biomarkers

2.1. Validation of biomarkers

The proper statistical analysis of biomarker data cannot proceed unless it has
been established that the biomarker has been validated; i.e., that it is known to be
both valid and reliable. Reliability refers to ‘‘the degree to which the results
obtained by a measurement procedure can be replicated’’ (Last, 1995). The reli-
ability of a measurement process is most often described in terms of intra-rater
and inter-rater reliability. Intra-rater reliability refers to the agreement between
two different determinations made by the same individual and inter-rater reli-
ability refers to the agreement between the determinations made by two different
individuals. A reliable biomarker must exhibit adequate levels of both types of
reliability. The reliability of a biomarker must be established before validity can be
examined; if the biomarker cannot be assumed to provide an equivalent result
upon repeated determinations on the same biological material, it will not be
useful for practical application.

The validity of a biomarker is defined to be the extent to which it measures
what it is intended to measure. For example, Qiao et al. (1997) proposed that the
expression of a tumor-associated antigen by exfoliated sputum epithelial cells
could be used as a biomarker in the detection of preclinical, localized lung cancer.
For their biomarker to be valid, there must be close agreement between the
classification of a patient (cancer/no cancer) using the biomarker and the diag-
nosis of lung cancer using the gold standard (in this case, consensus diagnosis
using ‘‘best information’’). As another example, body-fluid levels of cotinine have
been proposed for use as biomarkers of environmental tobacco smoke exposure
(Benowitz, 1999). For cotinine level to be a valid biomarker of tobacco exposure,
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it must be the case that high levels of cotinine consistently correspond to high
levels of tobacco exposure and low levels of cotinine consistently correspond to
low levels of exposure.

The appropriate statistical methods for assessing the reliability and validity of
a biomarker are discussed in detail in Looney (2001) and therefore will not be
treated fully in this chapter. However, there are two types of statistical analyses
involving biomarker comparisons that are typically part of the validation process
for a biomarker that we feel are worthy of consideration here. These analyses are
discussed in Sections 2.2 and 2.3.

2.2. Comparing biomarkers with other diagnostic tests in terms of accuracy

It is often of interest to compare the accuracies of two or more biomarkers or to
compare the accuracy of a biomarker with those of other diagnostic tests. One
may wish to determine which of several newly proposed biomarkers is the most
accurate, or to compare one or more newly proposed biomarkers to an existing
measure of exposure or disease. For example, Qiao et al. (1997) used the ‘‘paired
w2 test’’ to compare the accuracy of a new biomarker they were proposing with
two ‘‘routine clinical detection methods’’ for lung cancer (sputum cytology and
chest X-ray). When analyzing paired data of this type, the appropriate method
for comparing two biomarkers in terms of accuracy is McNemar’s test (Conover,
1999, pp. 166–170). There is no statistical method that is commonly known as the
‘‘paired w2 test.’’ Although a w2 approximation is available for McNemar’s test,
it is preferable to use the exact version of the test (Siegel and Castellan, 1988,
pp. 78–79; Suissa and Shuster, 1991). When comparing the accuracies of three or
more biomarkers (as in the Qiao et al. study), the preferred method to use is the
Cochran Q test (Lehmann, 1975, pp. 267–270).

2.2.1. McNemar test
Qiao et al. (1997) did not present sufficient data in their article for us to be able to
perform the exact version of McNemar’s test. A hypothetical 2� 2 table for the
comparison of their biomarker with chest X-ray based on the assumption that
their biomarker agreed with the result of the chest X-ray on all true cases of the
disease is given in Table 1.

To perform McNemar’s test, let nij ¼ # of subjects in the (i,j) cell of Table 1.
Let pij ¼ true probability that a subject falls into cell (i,j) in Table 1. Then the

Table 1

Hypothetical 2� 2 table for comparison of accuracy of a new biomarker for lung cancer vs. chest

X-ray

Chest X-Ray

Biomarker Positive Negative Total

Positive 24 41 65

Negative 7 61 68

Total 31 102 133
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true probabilities of accurate lung cancer diagnoses by the two methods are given
by p1+ and p+1, respectively. When p1+ ¼ p+1, we say that marginal homoge-
neity is present. Since p1+–p+1 ¼ p12–p21, marginal homogeneity in a 2� 2 table
is equivalent to equality of the ‘‘off-diagonal’’ probabilities, i.e., p12 ¼ p21. Let
n* ¼ n12+n21 denote the total count in the two off-diagonal cells. Conditional on
the value of n*, the allocation of the n* observations to one of the two off-
diagonal cells is a binomial random variable (RV) with n* trials and probability
of ‘‘success’’ p. Under the null hypothesis H0: p12 ¼ p21, each of the n* obser-
vations has probability 1/2 of being in cell (1,2) and probability 1/2 of being in
cell (2,1). So, n12 and n21 are the number of ‘‘successes’’ and ‘‘failures’’ for a
binomial RV having n* trials and probability of success 1/2. Thus, a conditional
test of H0: p12 ¼ p21 can be performed using the binomial distribution to
calculate the exact p-value. First, consider the one-sided alternative hypothesis
Ha: p1+4p+1 or, equivalently, Ha: p124p21. From Table 1, n12 ¼ 41, n21 ¼ 7,
and n* ¼ 48. The reference distribution (conditional on the value of n*) is a
binomial with n* ¼ 48 and p ¼ 0.5. The p-value for the one-sided alternative
above is then Pr (n12X41|n* ¼ 48, p ¼ 0.5) ¼ 0.0000003. For the two-sided
alternative Ha: p1+=p+1, the two-tailed p-value would be twice the upper-tailed
p-value, or 0.0000006. Thus, there is very strong evidence of a difference in
diagnostic accuracy between the new biomarker and chest X-ray.

2.2.2. Cochran Q test
Let n denote the number of biological specimens under study, and let k denote
the number of biomarkers being compared. Let yij denote the determination
(usually ‘‘positive’’ or ‘‘negative’’) based on the jth biomarker for the ith specimen,
where yij ¼ 1 for ‘‘positive’’ and yij ¼ 0 for ‘‘negative,’’ and let

yi: ¼
Xk
j¼1

yij

denote the total number of positive findings for the ith specimen. Similarly, let

y:j ¼
Xn
i¼1

yij

denote the total number of specimens that are classified as positive by the jth
biomarker.

The test statistic for Cochran’s Q test is

Q ¼
kðk� 1ÞPk

j¼1
y:j � ðy::=kÞ
� �2

ky:: �
Pn
i¼1

y2i:

, (1)

where y:: denotes the total number of specimens that are classified as positive by
any biomarker. The test statistic Q is asymptotically distributed as w2k�1; so an
approximate two-sided p-value is given by p ¼ PrðQ � QcalÞ; where Qcal is the
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observed value of the test statistic given by (1) above. The exact two-sided p-value
for Cochran’s Q test can be obtained using the permutation approach, as
described by Mehta and Patel (2005, p. 227).

Qiao et al. (1997) did not present sufficient data in their article for us to perform
Cochran’s test. A hypothetical data set for the comparison of their biomarker with
sputum cytology and chest X-ray was generated based on the assumption that
their biomarker agreed with the sputum cytology and X-ray results on all true
cases of the disease. This hypothetical data set is given in Table 2.

The value of Cochran’s Q for the data in Table 2 is 122.43 and with df ¼ 2, the
w2 asymptotic p-value iso0.001. The exact p-value, approximated by StatXact
using simulation, is alsoo0.001. Thus, there is strong evidence to indicate that
there is a difference in the accuracies of the three classifiers.

2.3. Measuring agreement among biomarkers

2.3.1. Dichotomous biomarkers
Tockman et al. (1988) examined the use of murine monoclonal antibodies to a
glycolipid antigen of human lung cancer as a biomarker in the detection of early
lung cancer. As part of their assessment of the inter-rater reliability of scoring
stained specimens, they compared the results obtained on 123 slides read by both
a pathologist and a cytotechnologist (Table 3). The authors stated that they used
McNemar’s test to test for ‘‘significant agreement (P ¼ 1.000)’’ between the
readers. However, what they really did was to test for a significant difference in
classification accuracy between the two readers. While such a test is often
informative, one should also measure the degree of agreement between the read-
ers (Kraemer, 1980). The generally accepted method for assessing agreement
between two dichotomous biomarkers, neither of which can be assumed to be
the gold standard, is Cohen’s kappa, although alternative measures are also

Table 2

Data layout for hypothetical agreement among three diagnostic tests for lung cancer

Pattern of Agreementa Frequency

Cases

1 1 1 12

1 0 1 12

0 0 1 18

0 0 0 15

Controls

1 1 1 0

1 0 0 7

0 0 1 16

0 0 0 53

a The first value in each pattern indicates the result for sputum cytology, the second value indicates

the result for chest X-ray, and the third value indicates the result of the new biomarker. The pattern

1 0 1, for example, indicates that sputum cytology classified the specimen as positive, the chest X-

ray classified the specimen as negative, and the new biomarker classified the specimen as positive.
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available (see Section 2.3.1.1). When measuring agreement among three or more
dichotomous biomarkers, we recommend the method of Fleiss (1971), which is
described in Section 2.3.1.2.

2.3.1.1. Cohen’s kappa and alternatives (two dichotomous biomarkers). Consider
the general 2� 2 table showing agreement between two dichotomous variables
A and B given in Table 4. The two most commonly used measures of agreement
between two dichotomous variables are the Index of Crude Agreement, given by

p0 ¼
n11 þ n22

n
, (2)

and Cohen’s kappa, given by

k̂ ¼ p0 � p̂e
1� p̂e

,

where pe is the percentage agreement between the two variables that ‘‘can be
attributed to chance’’ (Cohen, 1960). This degree of agreement is estimated by

p̂e ¼ p1:p:1 þ p2:p:2,

where p1: ¼ n1:=n; p:1 ¼ n:1=n; p2: ¼ 1� p1:; and p:2 ¼ 1� p:1: The formula for
Cohen’s kappa now becomes

k̂ ¼ 2ðn11n22 � n12n21Þ
n2ðp1:p:2 þ p:1p2:Þ

. (3)

Table 3

2� 2 Table showing agreement between a pathologist and a cytotechnologist when scoring the same

stained specimen

Pathologist’s Reading Cytotechnologist’s Reading

Positive Negative

Positive 31 1

Negative 0 91

Source: Reprinted from Table 4 of Tockman et al. (1988) with permission from the American Society

of Clinical Oncology.

Table 4

2� 2 Table showing agreement between two dichotomous variables

Variable A Variable B

Positive Negative Total

Positive n11 n12 n1.
Negative n21 n22 n2.
Total n.1 n.2 n
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The approximate variance of k̂ is given by

dVarðk̂Þ ¼ 1

nð1� p̂eÞ2
�

X2
i¼1

pii 1� ðpi: þ p:iÞð1� k̂Þ� �2 

þ ð1� k̂Þ2
X
i=j

pijðpi: þ p:jÞ2 � k̂� p̂eð1� k̂Þ� �2!
, ð4Þ

where n is the number of subjects being rated by the two raters, and pij ¼
nij=n; i ¼ 1; 2; j ¼ 1; 2:

Approximate 100(1�a)% confidence limits for k are given by k̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðk̂Þ
q

:

For the data given in Table 3, we obtain k̂ ¼ 0.98 using Eq. (3) and dVarðk̂Þ ¼
0:0004494 using (4).

This yields an approximate 95% confidence interval (CI) for k of (0.94, 1.00).
These results indicate excellent inter-rater reliability for the biomarker proposed
by Tockman et al. (1988).

Cohen’s kappa is the generally accepted method for assessing agreement
between two dichotomous variables, neither of which can be assumed to be the
gold standard (Bartko, 1991), but several deficiencies have been noted (Feinstein
and Cicchetti, 1990, p. 545; Byrt et al., 1993, p. 425). These deficiencies include:
(i) If either method classifies no subjects into one of the two categories, k̂ ¼ 0:
(ii) If there are no agreements for one of the two categories, k̂o 0: (iii) The value
of k̂ is affected by the difference in the relative frequency of ‘‘disease’’ and ‘‘no
disease’’ in the sample. The higher the discrepancy, the larger the value of p̂e and
the smaller the value of k̂: (iv) The value of k̂ is affected by any discrepancy
between the relative frequency of ‘‘disease’’ for Method A and the relative fre-
quency of ‘‘disease’’ for Method B. The greater the discrepancy, the smaller the
expected agreement, and the larger the value of k̂:

To adjust for these deficiencies, Byrt et al. (1993) propose that, in addition to k̂;
one also reports the prevalence-adjusted and bias-adjusted kappa (PABAK),

PABAK ¼ ðn11 þ n22Þ � ðn12 þ n21Þ
n

¼ 2p0 � 1,

where p0 is the index of crude agreement given in Eq. (2). (Note that PABAK is
equivalent to the proportion of ‘‘agreements’’ between the variables minus the
proportion of ‘‘disagreements.’’) The approximate variance of PABAK is given
by dVarðPABAKÞ ¼ 4p0ð1� p0Þ=n and approximate 100(1�a)% confidence limits
for the true value of PABAK are given by

PABAK� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðPABAKÞ
q

.

As an illustration of some of the deficiencies of k̂; consider the hypothetical
data on the agreement between two dichotomous biomarkers given in Table 5.
Even though the two biomarkers agree on 80% of the specimens, the value of
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k̂ is –0.08, indicating poor agreement (Landis and Koch, 1977, p. 165). Two of
the previously mentioned deficiencies are at work here. First, since the two bio-
markers did not agree on any of the subjects who were classified as ‘‘negative,’’
k̂o0: Second, the value of k̂ is adversely affected by the difference in the relative
frequencies of ‘‘disease’’ (90%) and ‘‘no disease’’ (10%) in the sample. The
PABAK coefficient, which adjusts for both of these shortcomings, has the value
2p0–1 ¼ 2(0.80)–1 ¼ 0.60, with an approximate 95% CI for the true value of
PABAK of (0.44, 0.76). We contend that the PABAK coefficient is a much more
accurate measure than k̂ of the agreement between the two biomarkers suggested
by Table 5.
In addition to using k̂ and the PABAK coefficient to measure overall agree-

ment, it is also advisable to describe the agreement separately in terms of those
specimens that appear to be positive and those that appear to be negative. Using
measures of positive agreement and negative agreement in assessing reliability is
analogous to using sensitivity and specificity in assessing validity in the presence
of a gold standard. Such measures can be used to help diagnose the type(s) of
disagreement that may be present.
Cicchetti and Feinstein (1990) proposed indices of average positive agreement

(ppos) and average negative agreement (pneg) for this purpose:

ppos ¼
n11

ðn1: þ n:1Þ=2
and

pneg ¼
n22

ðn2: þ n:2Þ=2
Note that the denominators of ppos and pneg are the average number of subjects
which the two methods classify as positive and negative, respectively.
Following Graham and Bull (1998), let

f11 ¼ 2=ð2p11 þ p12 þ p21Þ � 4p11=ð2p11 þ p12 þ p21Þ2,

f12 ¼ f21 ¼ �2p11=ð2p11 þ p12 þ p21Þ2,
and

f22 ¼ 0.

Table 5

Hypothetical 2� 2 table showing agreement between two dichotomous biomarkers

Biomarker B

Biomarker A Positive Negative Total

Positive 80 15 95

Negative 5 0 5

Total 85 15 100
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Then the variance of ppos can be estimated using

dVarðpposÞ ¼ 1

n

X2
i¼1

X2
j¼1

f2
ijpij �

X2
i¼1

X2
j¼1

fijpij

 !2
0
@

1
A.

Similarly, let

g11 ¼ 0,

g12 ¼ g21 ¼ �2p22=ð2p22 þ p12 þ p21Þ2,
and

g22 ¼ 2=ð2p22 þ p12 þ p21Þ � 4p22=ð2p22 þ p12 þ p21Þ2.

Then the variance of pneg can be estimated using

dVarðpnegÞ ¼ 1

n

X2
i¼1

X2
j¼1

g2ijpij �
X2
i¼1

X2
j¼1

gijpij

 !2
0
@

1
A. (5)

Approximate 100(1�a)% confidence intervals (CIs) for the true values of ppos

and pneg are given by ppos � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðpposÞ
q

and pneg � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðpnegÞ
q

; respec-

tively. Simulation results due to Graham and Bull (1998) suggest that these
approximate CIs provide adequate coverage for n4200. For smaller n, they
recommend that a bootstrap or Bayesian procedure be used to construct the
CI. However, they do not provide software for implementing either of these
approaches, both of which require rather extensive computer programming.

For the data in Table 5, ppos ¼ 80= ð95þ 85Þ=2� � ¼ 88:9% and pneg ¼
0= ð5þ 15Þ=2� � ¼ 0:0%: Thus, there is moderate overall agreement between
the two observers (as measured by the PABAK coefficient of 0.60), ‘‘almost
perfect agreement’’ on specimens that appear to be positive, and no agreement
on specimens that appear to be negative. Hence, efforts to improve the bio-
marker determination process should be targeted toward those specimens that
are negative.

Using the formulas given above, we obtain an approximate 95% CI for the

true value of ppos of ppos � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðpposÞ
q

¼ ð84:0%; 94:7%Þ: Of course, this

interval may be inaccurate since no200 (Graham and Bull, 1998). In terms of a
CI for the true value of pneg, note that if p22 ¼ 0 as in Table 5, dVarðpnegÞ ¼ 0 using
Eq. (5). Therefore, the asymptotic approach does not yield a meaningful CI for
the true value of pneg in this case.

2.3.1.2. More than two dichotomous biomarkers. The method of Fleiss (1971) can
be used to calculate an overall measure of agreement among kX2 dichotomous
biomarkers. As described in Section 2.2.2, Cochran’s Q test could also be used to
test for significant disagreement among the biomarkers (what Shoukri (2004,
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pp. 49–51) refers to as ‘‘inter-rater bias’’). Let n denote the number of biological
specimens under study, and let k denote the number of biomarkers being com-
pared. Let yij denote the determination (usually ‘‘positive’’ or ‘‘negative’’) based
on the jth biomarker for the ith specimen, where yij ¼ 1 for ‘‘positive’’ and yij ¼ 0
for ‘‘negative,’’ and let

yi ¼
Xk
j¼1

yij

denote the number of positive ratings on the ith specimen. Fleiss (1971) gen-
eralized Cohen’s kappa to a new measure, k̂f as follows:

k̂f ¼
p0 � p̂e
1� p̂e

,

where

p0 ¼ 1� 2

n

Xn
i¼1

yiðk� yiÞ
kðk� 1Þ ,

p̂e ¼ 1� 2p̂ð1� p̂Þ,
and

p̂ ¼

Pn
i¼1

yi

nk
.

For the hypothetical data in Table 2, p̂ ¼ 0:2531; p̂e ¼ 0:6219; p0 ¼ 0.7343, and
k̂f ¼ 0:30; indicating ‘‘fair’’ agreement of the new biomarker with sputum cytol-
ogy and chest X-ray. Of course, Cohen’s kappa (or the PABAK coefficient) could
also be used to describe the agreement between the new biomarker and either
sputum cytology or chest X-ray.

2.3.2. Continuous biomarkers
Bartczak et al. (1994) compared a high-pressure liquid chromatography (HPLC)-
based assay and a gas chromatography (GC)-based assay for urinary muconic
acid, both of which have been used as biomarkers to assess exposure to benzene.
Their data, after omitting an outlier due to an unresolved chromatogram peak,
are given in Table 6. They used Pearson’s correlation coefficient r in their
assessment of the agreement between the two methods (p. 255). However, at
least as far back as 1973, it was recognized that r is not appropriate for assessing
agreement in what are typically called ‘‘method comparison studies,’’ i.e., studies
in which neither method of measurement can be considered to be the gold
standard (Westgard and Hunt, 1973). In fact, Westgard and Hunt go so far as to
state that ‘‘the correlation coefficienty is of no practical use in the statistical
analysis of comparison data’’ (1973, p. 53).
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Despite the general agreement among statisticians that r is not an acceptable
measure of agreement in method comparison studies, its use in this context is still
quite prevalent. Hagan and Looney (2004) found that r was used in 28% (53/189)
of the method comparison studies published in the clinical research literature in
2001. The prevalence of the use of r in method comparison studies involving
biomarkers was not examined separately in their study, but it is unlikely that it
differed substantially from that found in the clinical research literature as a
whole.

Acceptable alternatives to Pearson’s r that are recommended for assessing
agreement between continuous biomarkers include the coefficient of concordance
(Lin, 1989, 2000), the Bland–Altman method (Altman and Bland, 1983; Bland
and Altman, 1986), and Deming regression (Strike, 1996). Each of these is dis-
cussed in the sections that follow. It is interesting to note, however, that these
methods are rarely used even today in method comparison studies published in
the clinical research literature: Hagan and Looney (2004) found that Deming
regression was used in none of the 189 method comparison studies published in
2001 and Lin’s coefficient was used in only one. The Bland–Altman method was
used in only 25 of the published studies (13.2%). The most commonly used
method was the intra-class correlation coefficient (ICC), appearing in 118
(62.4%) of the published studies. However, the use of the ICC in method com-
parison studies has been criticized by several authors (e.g., Bartko, 1994; Bland
and Altman, 1990; Lin, 1989; Looney, 2001) and its general use for this purpose
is not recommended.

2.3.2.1. Lin’s coefficient of concordance. An alternative to r that is often useful
in evaluating agreement between continuous biomarkers is the coefficient of

Table 6

Data on comparison of determinations of muconic acid (ng/ml) in human urine by HPLC–diode array

and GC–MS analysis

Specimen Number HPLC (X1) GC–MS (X2) X1–X2 (X1+X2)/2

1 139 151 �12.00 145.00

2 120 93 27.00 106.50

3 143 145 �2.00 144.00

4 496 443 53.00 469.50

5 149 153 �4.00 151.00

6 52 58 �6.00 55.00

7 184 239 �55.00 211.50

8 190 256 �66.00 223.00

9 32 69 �37.00 50.50

10 312 321 �9.00 316.50

11 19 8 11.00 13.50

12 321 364 �43.00 342.50

Source: Copyright (1994) from ‘‘Evaluation of Assays for the Identification and Quantitation of

Muconic Acid, a Benzene Metabolite in Human Urine,’’ Journal of Toxicology and Environmental

Health, by A. Bartczak et al. Reproduced by permission of Taylor & Francis Group, LLC., http://

www.taylorandfrancis.com.
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concordance proposed by Lin (1989, 2000). In general, to calculate the agreement
between two continuous measurements X1 and X2, one calculates the sample
version of Lin’s coefficient, denoted by rc:

rc ¼
2s12

s21 þ s22 þ ð �x1 � �x2Þ2
, (6)

where s12 is the sample covariance of X1 and X2, �x1 the sample mean of X1, �x2 the
sample mean of X2, s

2
1 the sample variance of X1, and s22 the sample variance of X2.

It can be shown that rc ¼ 1 if there is perfect agreement between the sample values
of X1 and X2, rc ¼ �1 if there is perfect disagreement, and �1orco1 otherwise.
The approximate standard error (SE) of Lin’s coefficient is given by

bseðrcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 2

1� r2

r2
r2cð1� r2cÞ

� �
þ 2r3cð1� rcÞ

ð �x1 � �x2Þ2
s1s2r

� �
� r4c

ð �x1 � �x2Þ4
2s21s

2
2r

2

	 
s
,

(7)

where r is the Pearson correlation coefficient for X1 and X2 and n the number of
samples for which paired observations for X1 and X2 are obtained.
When nX30, an approximate 100(1�a)% CI for the population value of Lin’s

coefficient, denoted by rc, can be obtained using rc � za=2 bseðrcÞ: When no30, an
approximate CI based on a bootstrap approach is recommended. SAS code for
calculating the bootstrap CI and the interval based on bseðrcÞ can be found
at http://www.ucsf.edu/cando/resources/software/linscon.sas. See Cheng and
Gansky (2006) for more details.
For the data given in Table 6, n ¼ 12, �x1 ¼ 179:75; �x2 ¼ 191:67; s1 ¼ 137:87;

s2 ¼ 134:06; s12 ¼ 17; 906:5455; and r ¼ 0.969. Therefore, from Eqs (6) and (7),

rc ¼
2s12

s21 þ s22 þ ð �x1 � �x2Þ2
¼ 2ð17; 906:5455Þ
ð137:87Þ2 þ ð134:06Þ2 þ ð179:75� 191:67Þ2

¼ 0:965

and bseðrcÞ ¼ 0:022: An approximate 95% CI for rc based on 1,000 bootstrap
samples is given by (0.879, 0.985).

2.3.2.2. The Bland–Altman method. An alternative method for measuring agree-
ment between two biomarkers X1 and X2 in which both biomarker determina-
tions are in the same units is to apply the methodology proposed by Altman and
Bland (Altman and Bland, 1983; Bland and Altman, 1986). The steps involved in
this approach are as follows:

(1) Construct a scatterplot and superimpose the line X2 ¼ X1.
(2) Plot the difference between X1 and X2 (denoted by d ) vs. the mean of X1 and

X2 for each subject.
(3) Perform a visual check to make sure that the within-subject repeatability is

not associated with the size of the measurement, i.e., that the bias (as meas-
ured by (X1–X2)) does not increase (or decrease) systematically as (X1+X2)/2
increases.
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(4) Perform a formal test to confirm the visual check in Step (3) by testing the
hypothesis H0: r ¼ 0, where r is the true correlation between (X1–X2 ) and
(X1+X2)/2.

(5) If there is no association between the size of the measurement and the bias,
then proceed to Step (6) below. If there does appear to be significant asso-
ciation, then an attempt should be made to find a transformation of X1, X2,
or both, so that the transformed data do not exhibit any association. This can
be accomplished by repeating Steps (2)–(4) for the transformed data. The
logarithmic transformation has been found to be most useful for this pur-
pose. [If no transformation can be found, Altman and Bland (1983) recom-
mend describing the differences between the methods by regressing (X1–X2)
on (X1+X2)/2.]

(6) Calculate the ‘‘limits of agreement’’: �d� 2sd to �dþ 2sd; where �d is the mean
difference between X1 and X2 and sd the standard deviation of the differences.

(7) Approximately 95% of the differences should fall within the limits in Step (6)
(assuming a normal distribution). If the differences within these limits are not
clinically relevant, then the two methods can be used interchangeably. How-
ever, it is important to note that this method is applicable only if both meas-
urements are made in the same units.

Figure 1 shows the scatterplot of X2 vs. X1 with the line X2 ¼ X1 superimposed
for the data in Table 6. This plot indicates fairly good agreement except that 9 of
the 12 data points are below the line of agreement.

Figure 2 shows the plot of the difference (HPLC�GC) vs. the mean of HPLC
and GC for each subject. A visual inspection of Fig. 2 suggests that the within-
subject repeatability is not associated with the size of the measurement, i.e., that

0 100 200 300 400 500
ng/ml MA (HPLC Assay)

0

100

200

300

400

500

n
g

/m
l M

A
 (

G
C

 A
ss

ay
) X2 = X1 

Fig. 1. Scatterplot of data on agreement between (HPLC)-based and (GC)-based assays for urinary

muconic acid with the line of perfect agreement (X2 ¼ X1) superimposed.
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(HPLC�GC) does not increase (or decrease) systematically as (HPLC+GC)/2
increases. The sample correlation between (HPLC�GC) and (HPLC+GC)/2 is
r ¼ 0.113 and the p-value for the test of H0: r ¼ 0 is 0.728. Therefore, the
assumption of the independence between the difference and the average is not
contradicted by the data. The ‘‘limits of agreement’’ are �d� 2sd ¼ �11:9�
2ð34:2Þ ¼ �80:3 to �dþ 2sd ¼ �11:9þ 2ð34:2Þ ¼ 56:5 and these are represented
(along with �d) by dotted lines in Fig. 2. (Note that all of the differences fall within
the limits �d� 2sd to �dþ 2sd:) If differences as large as 80.3 are not clinically
relevant, then the two methods can be used interchangeably. Given the order of
magnitude of the measurements in Table 6, it appears that a difference of 80
would be clinically important, so there is an indication of inadequate agreement
between the two methods. This was not obvious from the plot in Fig. 1.

2.3.2.3. Deming regression. Strike (1996) describes an approach for determining
the type of disagreement that may be present when comparing two biomarkers.
These methods are most likely to be applicable when one of the methods
(Method X) is a reference method, perhaps a biomarker that is already in routine
use, and the other method (Method Y) is a test method, usually a new biomarker
that is being evaluated. Any systematic difference (or bias) between the two
biomarkers is relative in nature, since neither method can be thought of as rep-
resenting the true exposure.
As in the Bland–Altman method described in Section 2.3.2.2, the first step is to

construct a scatterplot of Y vs. X and superimpose the line Y ¼ X. Any system-
atic discrepancy between the two biomarkers will be represented on this plot by a
general shift in the location of the points away from the line Y ¼ X. Strike
assumes that systematic differences between the two biomarkers can be
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Fig. 2. Plot of difference vs. mean for data on agreement between (HPLC)-based and (GC)-based

assays for urinary muconic acid.
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attributed to either constant bias, proportional bias, or both, and assumes the
following models for each biomarker result:

Xi ¼ xi þ di; 1 � i � n, (8)

Yi ¼ Zi þ �i; 1 � i � n,

where Xi is the observed value for biomarker X, xi the true value of biomarker X,
di the random error for biomarker X, Yi the observed value for biomarker Y, Zi
the true value of biomarker Y, and ei the random error for biomarker Y.

Strike further assumes that the errors di and ei are stochastically independent of
each other and normally distributed with constant variance (s2d and s2� ; respec-
tively) throughout the range of biomarker determinations in the study sample.
[Strike points out that constant variance assumptions are usually unrealistic in
practice and recommends a computationally intensive method for accounting for
this lack of homogeneity. This method is incorporated into the MINISNAP
software provided with Strike (1996).]

Strike assumes that any systematic discrepancy between Methods X and Y can
be represented by

Zi ¼ b0 þ b1xi. (9)

In this model, constant bias is represented by deviations of b0 from 0 and
proportional bias by deviations of b1 from 1. [This is the same terminology used
by Westgard and Hunt (1973).] If we now incorporate Eq. (9) into the equation
for Yi in Eq. (8), we have

Yi ¼ b0 þ b1Xi þ ð�i � b1diÞ. (10)

Model (2.10) is sometimes called a functional errors-in-variables model and
assessing agreement between biomarkers X and Y requires the estimation of the
parameters b0 and b1. Strike proposes a method that requires an estimate of the
ratio of the error variances given by l ¼ s2� =s2d: This method is generally referred
to in the clinical laboratory literature as ‘‘Deming regression’’; however, this is
somewhat of a misnomer as Deming was concerned with generalizing the errors-in-
variables model to non-linear relationships. Strike points out that the method he
advocates for obtaining estimates of b0 and b1 is actually due to Kummel (1879).

The equations for estimating b0 and b1 are as follows:

b̂1 ¼
ðSyy � l̂SxxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSyy � l̂SxxÞ2 þ 4l̂S2

xy

q
2Sxy

, (11)

b̂0 ¼ �Y� b̂1 �X,

where

l̂ ¼ ŝ2�
ŝ2d

,

Syy ¼
Xn
i¼1
ðyi � �yÞ2; Sxx ¼

Xn
i¼1
ðxi � �xÞ2; Sxy ¼

Xn
i¼1
ðxi � �xÞðyi � �yÞ:
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The estimate l̂ can be obtained either from error variance estimates for each
biomarker provided by the laboratory or by estimating each error variance using

ŝ2 ¼

Pn
i¼1

d2
i

2n

where di is the difference between the two determinations of the biomarker (rep-
licates) for specimen i. (Note that the methodology proposed by Strike cannot
be applied without an estimate of the ratio of error variances of the two
biomarkers.)
To perform significance tests for b0 and b1; we need formulas for the standard

errors (SEs) of b̂0 and b̂1: The approximations that Strike recommends for rou-
tine use are given by

SEðb̂1Þ ¼
b̂
2

1 1� r2
� �

=r2
� �

n� 2

( )1=2

(12)

and

SEðb̂0Þ ¼
½SEðb̂1Þ�2

Pn
i¼i

x2i

n

8>><
>>:

9>>=
>>;

1=2

,

where

r2 ¼ Sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p
 !2

is the usual ‘‘R2’’ value for the regression of Y on X. Tests of H0 : b1 ¼ 1 and
H0 : b0 ¼ 0 can be performed by referring ðb̂1 � 1Þ=SEðb̂1Þ and b̂0=SEðb̂0Þ;
respectively, to the t(n � 2) distribution.
As mentioned earlier, the approach described above is based on the assump-

tion that the error variances s2d and s2� are constant throughout the range of
biomarker determinations in the study sample. However, as Strike points out,
this assumption is usually unrealistic in practice and recommends the ‘‘weighted
Deming regression’’ methods of Linnet (1990, 1993) for accounting for this lack
of homogeneity. These methods are incorporated into the MINISNAP software
provided with Strike (1996); however, replicate measurements are required for
each test specimen using both biomarkers in order to apply these methods.
As an example, consider the hypothetical data in Table 7. The scatterplot for

these data in Fig. 3 indicates substantial lack of agreement between X and Y and
this is borne out by Lin’s coefficient, which indicates substantial disagreement
(rc ¼ 0.102). (Note that r ¼ 0.989, indicating near-perfect linear association. This
illustrates one of the major deficiencies in using r as a measure of agreement.) We
apply Strike’s method to gain a better understanding of the lack of agreement
between X and Y.
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Applying Eqs (11) and (12), we obtain b̂1 ¼ 0:158; SEðb̂1Þ ¼ 0:007; b̂0 ¼
�1:342; and SEðb̂0Þ ¼ 0:614: For the test of H0 : b1 ¼ 1; this yields

tcal ¼
b̂1 � 1

SEðb̂1Þ
¼ 0:158� 1

0:007
¼ �129:54,

and using a t-distribution with n � 2 ¼ 9 degrees of freedom, we find po 0.0001.
Therefore, there is significant proportional bias (which in this case is negative
since b̂1 o 1:0). For the test of H0 : b0 ¼ 0; we have

Table 7

Hypothetical data on the agreement between biomarkers A and B

Specimen Number Biomarker A Biomarker B

1 31 206

2 4 28

3 17 112

4 14 98

5 16 104

6 7 47

7 11 73

8 4 43

9 14 93

10 7 57

11 10 87
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Fig. 3. Scatterplot of hypothetical data on agreement between biomarkers A and B with the line of

perfect agreement (Y ¼ X) superimposed.
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tcal ¼
b̂0

SEðb̂0Þ
¼ �1:342

0:614
¼ �2:19,

and, again using a t-distribution with 9 degrees of freedom, we have p ¼ 0.056.
Thus, the constant bias is not statistically significant, but just misses the usual
cutoff of 0.05.

3. Statistical methods for analyzing biomarker data

3.1. Testing distributional assumptions

It is well known that violating the distributional assumption(s) underlying a
statistical procedure can have serious adverse effects on the performance of the
procedure (Wilcox, 1987). Therefore, it is beneficial to attempt to verify such
assumptions prior to beginning data analysis. However, in many analyses of
biomarker data, the underlying distributional assumptions are typically ignored
and/or no attempt is made to check the distributional assumptions before pro-
ceeding with the analyses. Some authors may state something to the effect that
‘‘due to the skewed nature of the data, nonparametric statistical methods were
used,’’ but usually no formal test of the distributional assumption was ever per-
formed. For example, in their evaluation of hemoglobin adducts as biomarkers
of exposure to tobacco smoke, Atawodi et al. (1998) state that ‘‘because the
distribution of HPB-Hb adduct levels was not normal, we used the nonpara-
metric Kruskal–Wallis testy’’ (p. 819); however, they offer no justification for
why they concluded that the adduct levels were not normally distributed.

3.1.1. Graphical methods for assessing normality
Several graphical methods for verifying the assumption of normality have been
proposed (D’Agostino, 1986). One commonly used method is the probability plot
(Gerson, 1975), of which the quantile–quantile (Q–Q) plot is a special case. Another
graphical method that is not as widely used as the probability plot is the normal
density plot (Jones and Daly, 1995; Hazelton, 2003), which is easier to interpret than
a probability plot because it is based on a direct comparison of a certain plot of the
sample data vs. the familiar bell-shaped curve of the normal distribution.

While graphical examination of data can be extremely valuable in assessing a
distributional assumption, the interpretation of any plot or graph is inherently
subjective. Therefore, it is not sufficient to base the assessment of a distributional
assumption entirely on a graphical device. Bernstein et al. (1999) evaluated the
use of a bile acid-induced apoptosis assay as a measure of colon cancer risk. They
determined that their apoptotic index (AI) ‘‘had a Gaussian distribution, as
assessed by a box plot, quantile–quantile plot, and histogram’’ (p. 2354). How-
ever, each of these methods is a graphical technique, and different data analysts
could interpret the plots differently. One should always supplement the graphical
examination of a distributional assumption with a formal statistical test, which
may itself be based on the results of the graphical device that was used. For
example, correlation coefficient tests based on probability plots have been shown
to have good power for detecting departures from normality against a wide
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variety of non-normal distributions (Looney and Gulledge, 1985). Formal tests
of the distributional assumption can also be based on a normal density plot
(Jones and Daly, 1995; Hazelton, 2003).

3.1.2. The Shapiro–Wilk (S–W) test
Another formal test of the assumption of normality that we recommend for
general use is the Shapiro–Wilk (S–W) test (Shapiro and Wilk, 1965). Several
studies have demonstrated that the S–W test has good statistical power against a
wide variety of non-normal distributions (e.g., Shapiro et al., 1968). Even though
the S–W test is not based directly on a graphical method for assessing normality,
it is a valuable adjunct to such methods. The S–W test has been used in several
studies involving biomarker data (e.g., Buckley et al., 1995; Lagorio et al., 1998;
MacRae et al., 2003), although at least one author incorrectly treated the S–W
test as upper-tailed, rather than lower-tailed (Buckley et al., 1995).

To perform the S–W test for normality, assume that the sample is composed of
n independent and identically distributed observations ðx1; x2; . . . ; xnÞ from a
normal distribution with unspecified mean and variance. If x½1�;x½2�; . . . ; x½n�
represents the n observations arranged in ascending sequence, the test statistic is

W ¼

Pn
i¼1

aix½i�

	 
2

Pn
i¼1
ðxi � xÞ2

,

where the ai’s represent constants that are functions of n (see Royston, 1982). The
null hypothesis of normality is rejected for small values of W. Although not
normally distributed under the null hypothesis (even asymptotically), W can be
transformed to approximate normality when 7pnp2,000 (Royston, 1982, 1992).
For 3pnp6, the methods described by Wilk and Shapiro (1968) should be used
to find the lower-tailed p-value. It is especially important to account for the
presence of ties when applying the S–W test (Royston, 1989). The S–W test can
be performed using StatXact or the UNIVARIATE procedure within SAS.

3.1.3. Remedial measures for violation of a distributional assumption
If it has been determined that a violation of the distributional assumption un-
derlying a statistical procedure has occurred, and that this departure is important
enough to adversely affect the results of the proposed statistical analyses, at least
three approaches have been recommended: (a) attempt to find a transformation
of the data that will result in a new random variable that does appear to follow
the assumed underlying distribution (usually the normal), (b) attempt to find a
statistical procedure that is more robust to the distributional assumption, or (c)
use a distribution-free test that is not dependent on the assumption of an un-
derlying statistical distribution. Robust methods are beyond the scope of this
chapter and will not be treated here; for a general treatment of these techniques,
see Huber (1996). Distribution-free (also called non-parametric) alternatives to
normal-theory-based methods for measuring association and for comparing
groups are described in Sections 3.2.3.2 and 3.3, respectively. Methods for
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identifying an appropriate transformation for biomarker data that appear to
violate a distributional assumption are discussed in the following section.

3.1.4. Choosing a transformation
A transformation based on the logarithm (usually the ‘‘natural’’ logarithm, loge)
is commonly used in the analysis of biomarker data (e.g., Atawodi et al., 1998;
MacRae et al., 2003; Strachan et al., 1990). However, authors usually provide no
justification for such a transformation other than that it is commonly used in
analyzing the type of data collected in the study. At the very least, the log-
transformed data should be tested for normality as described in Sections 3.1.1
and 3.1.2 above. If one concludes that the log-transformed data are not normally
distributed, then there are many other possible transformations that one could
try. Several families of possible transformations have been proposed, including
the Box–Cox family (Box and Cox, 1964), the Tukey ‘‘ladder of powers’’ (Tukey,
1977, pp. 88–93), the Johnson Su family (Johnson, 1949), and the Pearson family
(Stuart and Ord, 1987, pp. 210–220). The Box–Cox approach is particularly
attractive, in that there is a formal statistical test for determining if the chosen
transformation is ‘‘statistically significant’’; however, selecting the appropriate
transformation can be computationally difficult (Atkinson, 1973). (A SAS mod-
ule for selecting the appropriate Box–Cox transformation parameter is available
from the first author.) The Tukey ‘‘ladder of powers’’ is also attractive in that it
requires that one consider only a small number of possible transformations.
Whatever method is used to select a transformation, the transformed data should
be tested for normality before proceeding to the next stage of the analysis, as was
done in MacRae et al. (2003).

3.2. Analyzing cross-classified categorical data

3.2.1. Comparing two independent groups in terms of a binomial proportion
It is often of interest in the analysis of biomarker data to compare two
independent groups in terms of a binomial proportion. (The comparison of
dependent proportions is treated in Section 2.2.1 of this chapter.) For example,
Pérez-Stable et al. (1995) compared smokers and non-smokers in terms of the
proportion diagnosed with depression using the Depression Interview Schedule
(DIS) (Table 8). As is commonly done with data of this type, they performed
the comparison using the w2 test. However, this test is known to have very poor
statistical properties, especially if the number of subjects in either group is small
(Mehrotra et al., 2003), and is not recommended for general use. A preferred
method is the ‘‘exact’’ version of Fisher’s exact test, as implemented in StatXact
or SAS. This test is described below.

Suppose that we wish to perform an exact test of the null hypothesis
H0: p1 ¼ p2. Following the argument in Mehta and Patel (2005), denote the
common probability of success for the two populations by p ¼ p1 ¼ p2. Under
the null hypothesis, the probability of observing the data in Table 8 is

f0ðx11; x12; x21; x22Þ ¼
n1

x11

 !
n2

x21

 !
px11þx21 ð1� pÞx12þx22 , (13)
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where xij denotes the count in cell (i,j) of the 2� 2 table, and n1 and n2 denote the
sample sizes in the two groups being compared. In order to calculate the exact
p-value for any test of H0, we will need to calculate the probability of obtaining
a 2� 2 table at least as extreme as the observed table given in Table 8. The
probability of any such table will involve the parameter p, as in Eq. (13). The
‘‘conditional’’ approach to exact inference for 2� 2 tables involves eliminating p
from the probability calculations by conditioning on its sufficient statistic (Cox
and Hinkley, 1974, Chapter 2). This is the approach implemented in many of the
exact statistical procedures in StatXact, and one that is recommended here. After
conditioning on the sufficient statistic for p, we find that the exact distribution of
x11 (the test statistic for Fisher’s exact test) is hypergeometric.

For the upper-tailed alternative Ha: p14p2, any 2� 2 table with the same
marginal row and column totals as the observed table that has a count in the (1,1)
cell that is greater than or equal to x11 in the observed table will be favorable
to Ha. The hypergeometric probability for each of these tables should then be
accumulated when calculating the upper-tailed p-value. The reference set under
the conditional approach is defined to be any 2� 2 table with the same marginal
row and column totals as the observed table.

In Table 8, the test statistic for Fisher’s exact test is x11 ¼ 27. Then, the exact
upper-tailed p-value for the test of H0 would be found by accumulating the
hypergeometric probabilities for all possible values in the (1,1) position that are
greater than 27, assuming that the row and column totals remain at the same
values as in Table 8. This yields an exact upper-tailed p-value of 0.0355, and a
two-tailed p-value of 0.0710.

Fisher’s exact test as formulated here is known to be conservative (Agresti,
1996, pp. 41–44). That is, the hypergeometric distribution used to calculate the
exact p-values is highly discrete, especially when n1 or n2 is small. This means that
there will be only a small number of possible values that x11 can assume, leading
to a small number of possible p-values, and hence a small number of possible
significance levels, none of which may be close to 0.05. By convention, we choose
the upper-tailed significance level that is closest to, but less than or equal to
0.025. For example, for the data in Table 8, examination of the exact conditional
null distribution of x11 based on the hypergeometric distribution indicates
that the upper-tailed significance level closest to, but less than, 0.025 is 0.013
(obtained using a critical value of x11 ¼ 28).

Table 8

Association between dichotomized cotinine level and diagnosis of depression using the Diagnostic

Interview Survey (DIS), female subjects only

DIS Diagnosis

Cotinine X15 Positive Negative Total

Yes 27 202 229

No 7 121 128

Total 34 323 357

Source: Adapted from Table 4 of Pérez-Stable et al. (1995) with permission from Elsevier.
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To help diminish the effect of the conservativeness of Fisher’s exact test, we
follow the recommendation of Agresti (2002, p. 94) that one use the mid-p-value,
which is equal to the appropriate exact p-value, minus half the exact point
probability of the observed value of the test statistic. For the data in Table 8, this
yields a one-tailed mid-p-value of 0:0355� ð1=2Þð0:0222Þ ¼ 0:0244: The two-
tailed mid-p-value is 2(0.0244) ¼ 0.0488.

3.2.2. Testing for trend in proportions
Tunstall-Pedoe et al. (1995) examined the association between passive smoking,
as measured by level of serum cotinine, and the presence or absence of several
adverse health outcomes (chronic cough, coronary heart disease, etc.). Serum
cotinine level was classified into four ordinal categories: ‘‘non-detectable,’’ and
0.01–1.05, 1.06–3.97, or 3.98–17.49 ng/ml. The authors calculated odds ratios for
the comparison of each serum cotinine category vs. ‘‘non-detectable’’ in terms of
the odds of each health outcome. However, an additional analysis that we rec-
ommend for data of this type is to perform a test for trend across the serum
cotinine categories in terms of the prevalence of the outcomes. Such an analysis
would be especially helpful in establishing dose–response relationships between
passive smoking and the adverse outcomes. Tunstall-Pedoe et al. (1995) speak in
terms of a ‘‘gradient’’ across exposure categories, but perform no statistical test
to determine if their data support the existence of such a gradient.

Recommended procedures for testing for trend include the permutation test
(Gibbons and Chakraborti, 2003, Chapter 8) and the Cochran–Armitage test
(Cochran, 1954; Armitage, 1955).

To perform the Cochran–Armitage (C–A) test, let k denote the number of
ordinal categories for the biomarker, and suppose that a score xi has been
assigned to the ith category (i ¼ 1, 2,y, k). Within the ith category, assume that
ri specimens out of a total of ni have been detected as ‘‘positive’’ using the
biomarker. Then the total sample size n ¼Pk

i¼1ni: Let r ¼Pk
i¼1ri denote the

total number of positive specimens in the sample of size n, and let

�x ¼

Pk
i¼1

nixi

n

denote the weighted average of the x-values. Then the test statistic for the C–A
test for trend is given by

X2
trend ¼

Pk
i¼1

rixi � r �x

� �2

pð1� pÞ Pk
i¼1

nix
2
i � n �x2

� � , (14)

where p ¼ r=n denotes the overall proportion of ‘‘positive’’ findings in the sam-
ple. To perform the asymptotic test for significant trend in proportions, the test
statistic given in Eq. (14) is compared with a w2 distribution with 1 degree of
freedom (upper-tailed test only). An exact test for trend based on the test statistic
in Eq. (14) can be performed by using the same conditioning argument as was
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used for the exact version of Fisher’s exact test in Section 3.2.1. The permutation
test (Gibbons and Chakraborti, 2003, Chapter 8) can also be used to perform
an exact test for trend in proportions across ordinal levels of a biomarker. Both
the permutation test and the exact version of the C–A test are available in
StatXact and the exact version of the C–A test is available in the FREQ
procedure in SAS.

For the Tunstall-Pedoe et al. study described above, scores corresponding to
the midpoint were assigned to each serum cotinine category (0.00, 0.53, 2.52, and
10.74 ng/ml) and then the C–A test was performed. The results indicate a highly
significant increasing trend in the prevalence of ‘‘diagnosed coronary heart dis-
ease’’ as serum cotinine level increases (po0.001), a finding that was not reported
by the authors.

One difficulty with the C–A test is that it requires preassigned fixed scores.
In some cases, there may be no reasonable way to select the scores. In addition,
the C–A test is more powerful when the scores and the observed binomial
proportions follow a similar observed trend (Neuhäuser and Hothorn, 1999).
Alternative methods that can be used without specifying scores that are robust
with respect to the dose–response shape have been proposed by Neuhäuser and
Hothorn (1999). However, these methods are not currently available in any
widely used statistical software package, so we are unable to recommend their
general use at this time.

3.2.3. Testing for linear-by-linear association
Cook et al. (1993) examined the association between the number of smokers to
whom children had been exposed and their salivary cotinine measured in ng/ml.
The ‘‘number of smokers’’ was categorized as 0, 1, 2, and X3, and salivary
cotinine was categorized as ‘‘non-detectable,’’ 0.1–0.2, 0.3–0.6, 0.7–1.7, 1.8–4.0,
4.1–14.7, and 414.7. The authors state that ‘‘salivary cotinine concentration was
strongly related to the number of smokers to whom the child was usually
exposed’’ (p. 16). However, they provide no numerical summary or statistical test
to justify this assertion. One method that could be used to test for significant
association between these two variables would be the linear-by-linear association
test (Agresti et al., 1990). An alternative method would be to use Spearman’s
correlation to produce a single numerical summary of this association, and to
perform a test of the null hypothesis that the population value of Spearman’s
correlation is different from zero.

3.2.3.1. Linear-by-linear association test. To perform the linear-by-linear associ-
ation test, assume that the rows and columns of the r� c contingency table can be
ordered according to some underlying variable. In the example from Cook et al.
(1993) described above, there is a natural ordering in both the rows (‘‘number of
smokers’’) and columns (salivary cotinine level). Following the notation of Mehta
and Patel (2005), let xij denote the count in the (i,j) position of the ‘‘ordered’’
contingency table and consider the test statistic

TðxÞ ¼
Xr
i¼1

Xc
j¼1

uivjxij, (15)
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where ui, i ¼ 1, 2,y, r, are row scores, and vj, j ¼ 1, 2,y, c, are column scores.
Let mi, i ¼ 1, 2,y, r, denote the row totals, and nj, j ¼ 1, 2,y, c, denote the
column totals. Under the null hypothesis of no association between the row and
column variables, the test statistic given in Eq. (15) has mean

E ½T� ¼

Pr
i¼1

uimi

Pc
j¼1

vjnj

n
,

and variance

Var½T� ¼

Pr
i¼1

u2i mi �
Pr
i¼1

uimi

� �2

n

2
664

3
775 Pc

j¼1
v2j nj �

Pc
j¼1

vjnj

� �2

n

2
664

3
775

n� 1

where

n ¼
Xc
j¼1

nj ¼
Xr
i¼1

mi

is the total sample size.
Since the test statistic given by

Z� ¼ T� EðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðTÞ

p (16)

has an asymptotically standard normal distribution under the null hypothesis,
one can compare the calculated value of Z* in Eq. (16) with the standard normal
tables to obtain an approximate p-value. Exact p-values can be obtained for
the linear-by-linear test by considering the conditional permutation distribution
of the test statistic T under the null hypothesis. Consistent with our earlier
discussion of exact distributions, the reference set is defined to be the set of all
r� c contingency tables with the same row and column totals as the observed
table.

3.2.3.2. Spearman’s correlation. There are many equivalent ways to define Spear-
man’s correlation coefficient. (We denote the population value by rs and the
sample value by rs.) One of the most useful definitions of rs is the Pearson
correlation coefficient calculated on the observations after both the x and y
values have been ordered from smallest to largest and replaced by their ranks. Let
u1, u2,y, un denote the ranks of the n observed values of X and let v1, v2,y, vn
denote the ranks of the n observed values of Y. Then Spearman’s sample co-
efficient is defined by

rs ¼
Suvffiffiffiffiffiffiffiffiffiffi
S2
uS

2
v

q , (17)
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where Suv is the sample covariance between the u’s and v’s, S2
u the sample variance

of the u’s, and S2
v the sample variance of the v’s. If ties are present in the data,

a modified version of Eq. (17) should be used (Gibbons and Chakraborti, 2003,
pp. 429–431), although this will typically have little effect on the calculated value
of rs unless there are a large number of ties. Fisher’s z transformation can be
applied to Spearman’s coefficient and then used to calculate approximate
p-values for hypothesis tests involving rs and to find approximate CIs for rs.
Fisher’s z transformation applied to rs is given by

zs ¼
1

2
ln

1þ rs
1� rs

� �
,

which is approximately normally distributed with mean 0 and SE ŝs ¼
1:03=

ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
: The exact distribution of rs can be derived using enumeration

(Gibbons and Chakraborti, 2003, pp. 424–428). Both the approximate and
exact inference results for rs are available in StatXact. Hypothesis tests and
CIs based on the Fisher’s z transformation for Spearman’s coefficient are avail-
able in SAS.

For the data presented in Table 1 of Cook et al. (1993), the linear-by-linear
association test indicates a strongly significant association between the ‘‘number
of smokers’’ and salivary cotinine (Z* ¼ 31.67, po0.001). Similar results were
obtained for Spearman’s correlation: rs ¼ 0.72, 95% CI 0.70–0.74, po0.001.

3.3. Comparison of mean levels of biomarkers across groups

It is widely assumed that the optimal methods for comparing the means of
normally distributed variables across groups are the t-test in the case of two
groups and the analysis of variance (ANOVA) in the case of three or more
groups. The proper application of both the t-test and ANOVA, as they are
usually formulated, is based on two assumptions: (a) that the data in all groups
being compared are normally distributed, and (b) that the population variances
in all groups being compared are equal (Sheskin, 1997). In this section, we discuss
the importance of these assumptions, and provide recommendations for alter-
native procedures to use when these assumptions appear to be violated.

3.3.1. Importance of distributional assumptions
The performance of both the t-test and ANOVA is generally robust against
violations of the normality assumption; however, the presence of certain types of
departures from normality can seriously affect their performance (Algina et al.,
1994). If the methods for testing the assumption of normality described in Sec-
tions 3.1.1 and 3.1.2 above indicate a significant departure from normality in any
of the groups being compared, we recommend that one consider applying dis-
tribution-free alternatives to the t-test and the ANOVA F-test.

For example, the Mann–Whitney–Wilcoxon (M–W–W) test has been used in
biomarker studies when comparing two groups in terms of a continuous variable
that appears to be non-normally distributed (e.g., Granella et al., 1996; Qiao
et al., 1997). Similarly, the Kruskal–Wallis (K–W) test has been used with
biomarker data when comparing more than two groups (e.g., Amorim and
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Alvarez-Leite, 1997; Atawodi et al., 1998). To perform either the M–W–W or K–
W tests, all of the observations are combined into one sample and ranked from
smallest (1) to largest (n), where n is the combined sample size. Tied observations
are assigned the midrank, i.e., the average rank of all observations having the
same value. The test statistic for the M–W–W test is

T ¼
Xn1
i¼1

wi1,

where the wi1’s represent the rank order of the observations in Group 1. The
mean of T is

mT ¼
n1ðnþ 1Þ

2
,

and the standard deviation of T is

sT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1ðnþ 1Þn2

12

r

if there are no ties. If ties are present, then

sT ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1ðnþ 1Þn2

12

r
,

where

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Pðt3 � tÞ
nðn2 � 1Þ

s
, (18)

and t denotes the multiplicity of a tie and the sum is calculated over all sets of t ties.
The exact null distribution for the M–W–W test can be obtained using enu-

meration (or by network algorithms when enumeration is not feasible) and is
available in StatXact and the NPAR1WAY procedure in SAS. Approximate
p-values for the M–W–W test can be obtained by standardizing the observed
value of T using mT and sT as defined above and then using the standard normal
to calculate the appropriate area under the curve. This normal approximation
has been found to be ‘‘reasonably accurate for equal group sizes as small as 6’’
(Gibbons and Chakraborti, 2003, p. 273).

To apply the K–W test (appropriate in situations in which kX3 groups are
being compared in terms of their biomarker determinations), let Ri denote the
sum of the ranks of the observations in Group i, i ¼ 1, 2,y, k. Then the test
statistic for the K–W test is

H ¼ 12

nðnþ 1Þ
Xk
i¼1

1

ni
Ri �

niðnþ 1Þ
2

	 
2

if there are no ties, and ð1=cÞH; where c is given by Eq. (18), if ties are present.
The exact distribution of H can be obtained using a permutation argument and is
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available in StatXact and the NPAR1WAY procedure in SAS. It can also be
shown thatH has an approximate w2(k�1) distribution under the null hypothesis.

One interesting feature of any distribution-free test based on ranks (of which
the M–W–W and K–W tests are examples) is that applying a monotonic trans-
formation (such as the logarithm) to the data does not affect the results of the
analysis. Atawodi et al. (1998) were apparently unaware of this fact when they
applied the K–W test to both the original and log-transformed data and obtained
‘‘virtually identical results’’ (p. 820).

It is recommended that exact p-values be used for all of the distribution-free
methods mentioned in this section whenever possible; many commonly used
statistical packages are able to produce only approximate p-values for distribu-
tion-free methods. This may explain the discrepancies found by Atawodi et al.
(1998) when they compared the results of the K–W test for the original and log-
transformed data.

A characteristic of both the M–W–W and K–W tests that is often overlooked
is that these tests are most effective in detecting ‘‘shift alternatives’’; i.e., the
assumption is made that the populations being compared have identical shapes
and the alternative hypothesis is that at least one of the populations is a ‘‘shifted’’
version of the others. If the ‘‘shift alternative’’ does not appear to be the
appropriate alternative hypothesis, another method that can be used to test the
null hypothesis that the parent populations are identical is the Kolmogorov–
Smirnov test (Conover, 1999, pp. 428–438; Gibbons and Chakraborti, 2003,
pp. 239–246). The exact version of the two-sample Kolmogorov–Smirnov test is
available in both StatXact and the NPAR1WAY procedure in SAS and the
exact version of the k-sample Kolmogorov–Smirnov test is available in the
NPAR1WAY procedure.

3.3.2. The importance of homogeneity of variances in the comparison of means
3.3.2.1. Two-group comparisons in the presence of heterogeneity. The perform-
ance of the ‘‘usual’’ t-test (sometimes called the ‘‘equal variance t-test’’) depends
very strongly on the underlying assumption of equal population variances
(sometimes called homogeneity) between the groups (Moser et al., 1989). One
approach would be to attempt to use the F-test for testing equality of population
variances or another method to verify the homogeneity assumption before
applying the equal variance t-test (Moser and Stevens, 1992). If the hypothesis of
equal variances is not rejected, then one would apply the ‘‘usual’’ t-test. If the
hypothesis of equal variances is rejected, then one would use an alternative
approach that does not depend on the homogeneity assumption. One such
alternative is the ‘‘unequal variance t-test’’ [sometimes referred to as the ‘‘Welch
test’’ or ‘‘Satterthwaite approximation’’ (Moser and Stevens, 1992)], which is
generally available in any statistical package that can perform the equal variance
t-test. However, Moser and Stevens demonstrate that the preliminary F-test of
equality of variances contributes nothing of value and that, in fact, the unequal
variance t-test can be used any time the means of two groups are being compared
since the test performs almost as well as the equal variance t-test when the
population variances in the two groups are equal, and outperforms the equal
variance t-test when the variances are unequal. Hence, we follow their advice and
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recommend that the unequal variance t-test be used routinely whenever the
means of two groups are being compared and the data appear to be normally
distributed in both the groups. If the data are not normally distributed in either
group, a distribution-free alternative to the t-test such as the M–W–W test
(Section 3.3.1) can be used instead.
The test statistic for the unequal variance t-test recommended here is given by

t� ¼ ð �x� �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2x=n1Þ þ ðs2y=n2Þ

q , (19)

where �x; s2x; and n1 denote the mean, variance, and sample size, respectively, for
the biomarker levels in Group 1, and �y; s2y; and n2 the mean, variance, and sample
size, respectively, for the biomarker levels in Group 2. To perform the test of the
null hypothesis that the mean biomarker level is the same in the two groups,
compare the observed value of t* in Eq. (19) with a Student’s t distribution with
the following degrees of freedom:

v ¼ ð1=n1Þ þ ðu=n2Þ
� �2

1=n21ðn1 � 1Þ� �þ u2=n22ðn2 � 1Þ� �

where u ¼ s2y=s
2
x:

Salmi et al. (2002) evaluated the potential usefulness of soluble vascular
adhesion protein-1 (sVAP-1) as a biomarker to monitor and predict the extent
of ongoing artherosclerotic processes. The investigators compared two groups:
diabetic study participants on insulin treatment only (n ¼ 7) vs. diabetic study
participants on other treatments (n ¼ 41). They used the ‘‘usual’’ (equal-
variance) t-test to compare the mean sVAP-1 levels of the two groups: mean 7 S.
D. 1487 114 vs. 1137 6; t ¼ 2.06, df ¼ 46, one-tailed p ¼ 0.023, a statistically
significant result. However, they ignored the fact that the variances in the two
groups they were comparing were quite different (12,996 vs. 36, F ¼ 361,
df ¼ (6,40), po0.001). If the unequal variance t-test is used, as recommended by
Moser and Stevens (1992), one obtains t* ¼ 0.81, v ¼ 6, one-tailed p ¼ 0.224, a
non-significant result. Given the extremely strong evidence that the two popu-
lation variances are unequal, the latter results provide a more valid comparison
of the two study groups.

3.3.2.2. Multiple comparisons in the presence of heterogeneity. It is often of in-
terest to compare three or more groups in terms of the mean level of a biomarker.
For example, Bernstein et al. (1999) compared the mean levels of AI across three
groups: (a) ‘‘normal’’ subjects; that is; those with no previous history of polyps or
cancer; (b) patients with a history of colorectal cancer; and (c) patients with colo-
rectal adenomas. They used the Tukey method to perform all possible pairwise
comparisons among the three groups. The Tukey method is the technique of choice
if the population variances of the three groups are equal (Dunnett, 1980a); how-
ever, if they are not equal, the methods known as Dunnett’s C and Dunnett’s T3
are preferable (Dunnett, 1980b). These two methods are very similar to the
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unequal variance t-test recommended in the previous section. The Tukey,
Dunnett’s C, and Dunnett’s T3 procedures are all available in SPSS (SPSS Inc.,
Chicago, IL).

Let mi and s2i denote the population mean and population variance, respec-
tively, in the ith group. Let �xi denote the sample mean and let s2i denote the
unbiased estimate of s2i based on vi degrees of freedom in the ith group. We wish
to find a set of 100(1�a)% joint CI estimates for the kðk� 1Þ=2 differences mi�mj,
1piojpk. Both Dunnett’s C and T3 methods involve constructing joint CI
estimates of the form

�yi � �yj � cij;a;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i
ni
þ s2j

nj

s
,

where cij;a;k is a ‘‘critical value’’ chosen so that the joint confidence coefficient is as
close as possible to 1� a.

For Dunnett’s C procedure,

cij;a;k ¼
SRa;k;v�

ijffiffiffi
2

p ,

where

SRa;k;v�
ij
¼

SRa;k;vi s
2
i =ni

� �þ SRa;k;vj s
2
j =nj

� �

s2i =ni
� �þ s2j =nj

� �

and SRa;k;v denotes the upper a-percentage point of the distribution of the Stu-
dentized range of k normal variates with an estimate of the variance based on
v degrees of freedom.

For Dunnett’s T3 procedure,

cij;a;k ¼ SMMa;k�;v̂ij ,

where SMMa;k�;v̂ij denotes the upper a-percentage point of the Studentized max-
imum modulus distribution of k* ¼ kðk� 1Þ=2 uncorrelated normal variates with
degrees of freedom v̂ij given by

v̂ij ¼
ðs2i =niÞ þ ðs2j =njÞ
� �2

s4i =n2i ðviÞ
� �þ s4j =n

2
j ðvjÞ

� � .

Tables of the percentage points of the SMM distribution are available in Stoline
and Ury (1979). As recommended by Dunnett (1980b), percentage points of the
SMM distribution for fractional degrees of freedom can be obtained by quadratic
interpolation on reciprocal degrees of freedom for percentage points in the pub-
lished tables.

3.4. Use of correlation coefficients in analyzing biomarker data

It is often of interest in studies involving biomarkers to examine the association
between two continuous variables, at least one of which is the numerical value of
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a particular biomarker. For example, Salmi et al. (2002) correlated observed
levels of sVAP-1 with risk factors for coronary heart disease, measures of liver
dysfunction, diabetic parameter levels, etc. If both variables are normally dis-
tributed, then the appropriate measure of association to use is the Pearson cor-
relation coefficient r. However, if the data for either variable are non-normally
distributed, then a non-parametric measure of association such as Spearman’s rs
should be used instead (Siegel and Castellan, 1988, pp. 224–225). In the study by
Buss et al. (2003), the authors correctly used Spearman correlation in their eval-
uation of 3-chlorotyrosine in tracheal aspirates from preterm infants as a bio-
marker for protein damage by myeloperoxidase; they stated that they used
Spearman’s rs ‘‘because the data were not normally distributed’’ (p. 5). The
calculation of rs was described in Section 3.2.3.2.

In the following sections, we consider three challenges frequently encountered
when correlation coefficients are used in the analysis of biomarker data: (a)
proper methods of analysis and interpretation of the results, (b) sample size
determination, and (c) comparison of related correlation coefficients.

3.4.1. Proper methods of analysis and interpretation of results
Salmi et al. (2002) determined the ‘‘significance’’ of their correlation coefficients
by testing the null hypothesis H0 : r ¼ 0; where r denotes the population cor-
relation coefficient. However, there are several problems with this approach, the
primary one being that correlations of no practical significance may be declared
to be ‘‘significant’’ simply because the p-value is less than 0.05 (Looney, 1996).
We have found the classification scheme presented by Morton et al. (1996) to be
useful in interpreting the magnitude of correlation coefficients in terms of their
practical significance. They classify correlations between 0.0 and 0.2 as ‘‘negli-
gible,’’ between 0.2 and 0.5 as ‘‘weak,’’ between 0.5 and 0.8 as ‘‘moderate,’’ and
between 0.8 and 1.0 as ‘‘strong.’’ In their sample of 411 Finnish men, Salmi et al.
(2002) found a ‘‘significant’’ correlation of 0.108 between sVAP-1 and carbo-
hydrate-deficient transferrin, a measure of liver dysfunction. While this corre-
lation is statistically significant (p ¼ 0.029), it would be considered ‘‘negligible’’
according to the Morton et al. criteria mentioned above, raising doubt about the
practical significance of the result.

In addition to testing H0 : r ¼ 0; one should also construct a CI for the pop-
ulation correlation in order to get a sense of the precision of the correlation
estimate, as well as a reasonable range of possible values for the population
correlation. In the example taken from Salmi et al. (2002) mentioned above, the
95% CI for r is (0.01–0.20). Thus, the entire CI falls within the ‘‘negligible’’ range
according to the Morton et al. criteria, casting further doubt on the practical
significance of the observed correlation.

As discussed in Looney (1996), another problem with declaring a correlation
to be significant simply because po0.05 is that smaller correlations may be
declared to be ‘‘significant’’ even when n is fairly small, resulting in CIs that are
too wide to be of any practical usefulness. In the study by Salmi et al. (2002)
mentioned above, the value of r for the correlation between sVAP-1 and ketone
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bodies in a sample of 38 observations taken from diabetic children and adoles-
cents was 0.34 (p ¼ 0.037), a statistically significant result. However, a 95% CI
for r is (0.02–0.60), which indicates that the population correlation could be
anywhere between ‘‘negligible’’ and ‘‘moderate,’’ according to the Morton et al.
criteria. A CI of such large width provides very little useful information about the
magnitude of the population correlation.

3.4.2. Sample size issues in the analysis of correlation coefficients
One way to avoid the difficulties described in the previous section is simply to
perform a sample size calculation prior to beginning the study. There is no
justification of the sample sizes used in the study by Salmi et al. (2002), so one
must assume that no such calculation was done. Looney (1996) describes several
approaches that typically yield sample sizes that provide more useful information
about the value of the population correlation coefficient and the practical sig-
nificance of the results than if one simply bases the sample size calculation on
achieving adequate power for the test that the population correlation is zero.
These include basing the sample size calculation on (a) the desired width of the CI
for the population correlation, or (b) tests of null hypotheses other than that the
population correlation is zero. (For example, one might test the null hypothesis
H0 : r � 0:2; rejecting this null hypothesis would indicate that the population
correlation is ‘‘non-negligible.’’)

To perform a sample size calculation for the test of H0 : r ¼ r0; where r0=0;
we recommend using Fisher’s z-transformation applied to r as a test statistic; in
other words,

zðrÞ ¼ 1

2
ln

1þ r

1� r

� �
.

The following formula could then be used to determine the minimum sample size
n required for achieving power of 100(1�b)% for detecting an alternative cor-
relation value of r14r0 using a one-tailed test of H0 at significance level a:

n ¼ 3þ ðza þ zbÞ
zðr1Þ � zðr0Þ

	 
2
,

where zg denotes the upper g-percentage point of the standard normal and z(r)
the Fisher z-transform of r. If one wished to base the sample size calculation on
the desired width of a CI for r, then one could use the approximate method
described in Looney (1996), or the more precise method recommended by Bonett
and Wright (2000).

3.4.3. Comparison of related correlation coefficients
In some studies involving biomarker data, it has been of interest to compare
‘‘related’’ correlation coefficients; that is, the correlation of variable X with Y vs.
the correlation of variable X with Z. For example, Salmi et al. (2002) found
‘‘significant’’ correlations of sVAP-1 with both glucose (r ¼ 0.57, po0.001) and
ketone bodies (r ¼ 0.34, p ¼ 0.037) in their sample of 38 observations taken from
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diabetic children and adolescents. They concluded that there was a ‘‘less-
marked’’ correlation of sVAP-1 with ketone bodies than with glucose. However,
they did not perform any statistical test to determine if, in fact, the corresponding
population correlation coefficients were different from each other. Had they
performed such a test, as described in Steiger (1980), they would have found no
significant difference between the two correlations (p ¼ 0.093). (SAS code for
performing comparisons of related correlation coefficients is available from the
first author.)

The null hypothesis for the test of dependent correlations can be stated as

H0 : ruv ¼ ruw, (20)

where ruv denotes the population correlation between the random variables U
and V and ruw the population correlation between the random variables U and
W. In the example taken from Salmi et al. described above, U ¼ sVAP-1,
V ¼ ketone bodies, and W ¼ glucose. Let ruv and ruw denote the sample cor-
relations between U and V and between U and W, respectively, and let �ruv;uw

denote the mean of ruv and ruw: Denote by zuv and zuw; the Fisher’s z-transforms
of ruv and ruw; respectively. Then the test statistic recommended by Steiger (1980)
for the null hypothesis in Eq. (20) is given by

Z� ¼ ðzuv � zuwÞ
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� �suv;uwÞ

p , (21)

where �suv;uw is an estimate of the covariance between zuv and zuw given by

�suv;uw ¼
ĉuv;uw

ð1� �r2uv;uwÞ2

where

ĉuv;uw ¼ rvwð1� 2�r2uv;uwÞ �
1

2
ð�r2uv;uwÞð1� 2�r2uv;uw � r2vwÞ.

The test of H0 in Eq. (20) is performed by comparing the sample value of Z* in
Eq. (21) with the standard normal distribution. For example, using the results
given in Salmi et al. (2002), ruv ¼ 0.57, ruw ¼ 0.34, rvw ¼ 0.55, n ¼ 38, and �sjk;jh ¼
0:4659; yielding Z* ¼ 1.68 and p ¼ 0.093, as mentioned previously.

3.5. Dealing with non-detectable values in the analysis of biomarker data

In analyzing biomarker data, there may be samples for which the concentration
of the biomarker is below the analytic limit of detection (LOD), i.e., left-censored
at the LOD. These observations are commonly referred to as non-detects, or
ND’s. For example, Amorim and Alvarez-Leite (1997) examined the correlation
between o-cresol and hippuric acid concentrations in urine samples of individuals
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exposed to toluene in shoe factories, painting sectors of metal industries, and
printing shops. Out of 54 samples in their study, o-cresol concentrations were
below its LOD (0.2 mg/ml) in 39. In 4 of these samples, the hippuric acid con-
centration was also below its LOD (0.1mg/ml). In another study, Atawodi et al.
(1998) compared 18 smokers with 52 ‘‘never smokers’’ in terms of their levels of
hemoglobin adducts, which were being evaluated as biomarkers of exposure to
tobacco smoke. In 7 of the 52 never smokers, adduct levels were below the LOD
(9 fmol HPB/g Hb).

Unfortunately, methods that are commonly used in the biomarker literature
for handling ND’s are flawed. Perhaps the most commonly used method is to
ignore the missing value(s) and analyze only those samples with complete data.
This was the method used by Lagorio et al. (1998) in their examination of the
correlations among the concentrations of trans,trans muconic acid (t,t-MA)
obtained from the urine of 10 Estonian shale oil workers using three different
preanalytical methods. Another commonly used method is to impute a value in
place of the missing data and then apply the ‘‘usual’’ statistical analyses. The
values commonly imputed include the LOD (Amorim and Alvarez-Leite, 1997;
Atawodi et al., 1998) and LOD/2 (Cook et al., 1993).

Other methods that have been proposed for handling ND’s include the ‘‘non-
parametric approach,’’ in which one treats all ND’s as if they were tied at the
LOD. Thus, if one wished to correlate two biomarkers, at least one of which was
undetectable in some samples, one would calculate Spearman’s rs using the ranks
of the entire data set, where all ND’s were assigned the smallest midrank. If one
wished to compare mean levels of a biomarker that was subject to ND’s across
two groups, one would apply the M–W–W test after computing the ranks of the
two combined samples in this way. This is the method used by Atawodi et al.
(1998) in their evaluation of hemoglobin adducts as biomarkers of exposure to
tobacco smoke.

Recent simulation results (Wang, 2006) suggest that none of the methods
described above for correlating two biomarkers that are both subject to left-
censoring are satisfactory, especially if the two biomarkers are strongly corre-
lated (rX0.5). Instead, we recommend the maximum likelihood (ML) approach
developed by Lyles et al. (2001) for estimating the correlation coefficient.
A similar approach developed by Taylor et al. (2001) can be adapted to group
comparisons of means and is also likely to be preferred to applying a non-
parametric test to the data after replacing the ND’s by the LOD. Other more
advanced methods, such as multiple imputation (Scheuren, 2005), could be
applied if the appropriate missing data mechanism is present. However, these
methods are beyond the scope of this chapter. In this section, we briefly describe
the estimation method proposed by Lyles et al. (2001).

Let X and Y denote the two biomarkers to be correlated, and denote the
two fixed detection limits as Lx and Ly. Assuming a bivariate normal distribu-
tion, Lyles et al. proposed that one estimates the population parameter vector
h ¼ ½mx;my;s2x;s2y;r�0 using ML estimation applied to a random sample (xi,yi);
i ¼ 1,y, n. In their derivation of the likelihood function, they noted that there
are four types of observed pairs of (x,y) values: (1) pairs with both x and y

Statistical methods for assessing biomarkers and analyzing biomarker data 59



observed, (2) pairs with x observed and yoLy, (3) pairs with y observed and
xoLx, and (4) pairs with xoLx and yoLy. Following the notation in Lyles
et al. (2001), the contribution of each pair of type 1 is given by

ti1 ¼ ð2psxsyjxÞ�1 exp �0:5
ðyi � myjxi Þ2

s2yjx
þ ðxi � mxÞ2

s2x

" #( )
,

where myjxi ¼ my þ rðsy=sxÞðxi � mxÞ and s2yjx ¼ s2yð1� r2Þ:
The contribution of each pair of type 2 is given by

ti2 ¼ ð2ps2xÞ�1=2 exp �0:5
ðxi � mxÞ2

s2x

	 

� F

Ly � myjxi
syjx

� �
,

where Fð	Þ denotes the standard normal distribution function. Similarly, the
contribution of each pair of type 3 is given by

ti3 ¼ ð2ps2yÞ�1=2 exp �0:5
ðyi � myÞ2

s2y

" #
� F

Lx � mxjyi
sxjy

� �
,

where mxjyi ¼ mx þ rðsx=syÞðyi � myÞ and s2xjy ¼ s2xð1� r2Þ:
Finally, each pair of type 4 contributes

t4 ¼
Z Ly

�1
F

Lx � mx þ ðrsxðy� myÞ=syÞ
 �

sx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
( )

� ð2ps2yÞ�1=2 exp �0:5
ðy� myÞ2

s2y

" #
dy.

Without loss of generality, suppose the data are ordered and indexed by i so that
pairs of type 1 come first, followed by pairs of types 2, 3, and 4. Further, assume
that there are nj terms of type j (j ¼ 1, 2, 3, 4) and define nk
 ¼

Pk
j¼1nj for

k ¼ 2, 3. Then, the total likelihood can be written as

Lðhjx; yÞ ¼
Yn1
i¼1

ti1

 ! Yn2

i¼n1þ1

ti2

 ! Yn3

i¼n2
þ1

ti3

 !
tn44 ,

where x is the vector of observed x-values and y the vector of observed y-values.
Once the ML estimates and the corresponding estimated SEs are obtained,

one can construct an approximate 100(1�a)% Wald-type CI for r by using
r̂ML � za=2

cSEðr̂MLÞ: Lyles et al. also considered profile likelihood CIs since Wald-
type CIs are known to be potentially suspect when the sample size is small and
they found that they generally performed better than the Wald-type intervals.
For the data given in the study by Amorim and Alvarez-Leite (1997), the method
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developed by Lyles et al. yields r̂ML ¼ 0:79 and an approximate 95% CI(r) of
(0.67, 0.91). Analyzing only the 15 cases with complete data yields r ¼ 0.76 with
an approximate 95% CI(r) of (0.40, 0.92).

4. Concluding remarks

In this chapter, we have not attempted to provide a comprehensive treatment of
statistical methods that could be used in analyzing biomarker data; certainly, this
entire volume could have been devoted to this task. Nor is this chapter intended
to be a primer on how to perform elementary statistical analyses of biomarker
data. Basic statistical methods, when properly applied, will usually suffice for this
purpose. [For a good treatment of basic statistical methods and their proper
application to environmental exposure data (for which biomarkers are frequently
used), see Griffith et al. (1993).] Rather, we have focused our discussion on what
we feel are some important analytic issues that we have encountered in our
examination of biomarker data, and on some statistical techniques that we have
found to be useful in dealing with those issues. It is hoped that the recommen-
dations provided here will prove to be useful to statisticians, biomarker
researchers, and other workers who are faced with the often challenging task
of analyzing biomarker data.

Because of space limitations, we were unable to say very much in this chapter
about power and sample size calculations. Fortunately, both StatXact and the
POWER procedure within SAS are capable of carrying out power and sample
size calculations for many of the procedures discussed in this chapter. Goldsmith
(2001) provides a good general discussion of power and sample size consider-
ations and provides an extensive list of references.
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Pérez-Stable, E.J., Benowitz, N.L., Marı́n, G. (1995). Is serum cotinine a better measure of cigarette

smoking than self-report. Preventive Medicine 24, 171–179.

Qiao, Y-L., Tockman, M.S., Li, L., Erozan, Y.S., Yao, S., Barrett, M.J., Zhou, W., Giffen, C.A.,

Luo, X., Taylor, P.R. (1997). A case-cohort study of an early biomarker of lung cancer in a

screening cohort of Yunnan tin miners in China. Cancer Epidemiology, Biomarkers & Prevention 6,

893–900.

Royston, J.P. (1982). An extension of Shapiro and Wilk’s W test for normality to large samples.

Applied Statistics – Journal of the Royal Statistical Society Series C 31, 115–124.

Royston, J.P. (1989). Correcting the Shapiro–Wilk W for ties. Journal of Statistical Computation and

Simulation 31, 237–249.

Royston, J.P. (1992). Approximating the Shapiro–Wilk’s W test for non-normality. Statistics and

Computing 2, 117–119.

Salmi, M., Stolen, C., Jousilahti, P., Yegutkin, G.G., Tapanainen, P., Janatuinen, T., Knip, M.,

Jalkanen, S., Salomaa, V. (2002). Insulin-regulated increase of soluble vascular adhesion protein-1

in diabetes. The American Journal of Pathology 161, 2255–2262.

Scheuren, F. (2005). Multiple imputation: How it began and continues. The American Statistician 59,

315–319.

Shapiro, S.S., Wilk, M.B. (1965). An analysis of variance test for normality (complete samples).

Biometrika 52, 591–611.

Shapiro, S.S., Wilk, M.B., Chen, H.J. (1968). A comparative study of various tests for normality.

Journal of the American Statistical Association 63, 1343–1372.

Sheskin, D.J. (1997). Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press,

Boca Raton, FL.

Shoukri, M.M. (2004). Measures of Interobserver Agreement. Chapman & Hall/CRC, Boca Raton,

FL.

Siegel, S., Castellan, N.J. (1988). Nonparametric Statistics for the Behavioral Sciences, 2nd ed.

McGraw-Hill, New York.

Steiger, J.H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin 87,

245–251.

Stoline, M.R., Ury, H.K. (1979). Tables of the studentized maximum modulus distribution and an

application to multiple comparisons among means. Technometrics 21, 87–93.

Strachan, D.P., Jarvis, M.J., Feyerabend, C. (1990). The relationship of salivary cotinine to respi-

ratory symptoms, spirometry, and exercise-induced bronchospasm in seven-year-old children. The

American Review of Respiratory Disease 142, 147–151.

Strike, P.W. (1996). Measurement in Laboratory Medicine: A Primer on Control and Interpretation.

Butterworth-Heinemann, Oxford, pp. 147–172.

Stuart, A., Ord, J.K. (1987). Kendall’s Advanced Theory of Statistics. Oxford University Press, New

York, pp. 210–220.

Suissa, S., Shuster, J. (1991). The 2� 2 matched-pairs trial: Exact unconditional design and analysis.

Biometrics 47, 361–372.

Taylor, D.J., Kupper, L.L., Rappaport, S.M., Lyles, R.H. (2001). A mixture model for occupational

exposure mean testing with a limit of detection. Biometrics 57, 681–688.

Tockman, M.S., Gupta, P.K., Myers, J.D., Frost, J.K., Baylin, S.B., Gold, E.B., Chase, A.M.,

Wilkinson, P.H., Mulshine, J.L. (1988). Sensitive and specific monoclonal antibody recognition of

human lung cancer antigen on preserved sputum cells: A new approach to early lung cancer

detection. Journal of Clinical Oncology 6, 1685–1693.

Tukey, J.W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, MA.

Tunstall-Pedoe, H., Brown, C.A., Woodward, M., Tavendale, R. (1995). Passive smoking by self-

report and serum cotinine and the prevalence of respiratory and coronary heart disease in the

Scottish heart health study. Journal of Epidemiology and Community Health 49, 139–143.

S. W. Looney and J. L. Hagan64



Wang, H. (2006). Correlation analysis for left-censored biomarker data with known detection limits.

Unpublished Masters thesis, Louisiana State University Health Sciences Center, Biostatistics

Program, School of Public Health.

Westgard, J.O., Hunt, M.R. (1973). Use and interpretation of common statistical tests in method-

comparison studies. Clinical Chemistry 19, 49–57.

Wilcox, R.R. (1987). New Statistical Procedures for the Social Sciences. Lawrence Erlbaum Asso-

ciates, Hillsdale, NJ.

Wilk, M.B., Shapiro, S.S. (1968). The joint assessment of normality of several independent samples.

Technometrics 10, 825–839.

Statistical methods for assessing biomarkers and analyzing biomarker data 65



Handbook of Statistics, Vol. 27

ISSN: 0169-7161

r 2007 Elsevier B.V. All rights reserved

DOI: 10.1016/S0169-7161(07)27005-1

3

Linear and Non-Linear Regression Methods
in Epidemiology and Biostatistics

Eric Vittinghoff, Charles E. McCulloch,
David V. Glidden and Stephen C. Shiboski

Abstract

This chapter describes a family of statistical techniques called linear and non-
linear regression that are commonly used in medical research. Regression is
typically used to relate an outcome (or dependent variable or response) to one
or more predictor variables (or independent variables or covariates). We
examine several ways in which the standard linear model can be extended to
accommodate non-linearity. These include non-linear transformation of pre-
dictors and outcomes within the standard linear model framework; generalized
linear models, in which the mean of the outcome is modeled as a non-linear
transformation of the standard linear function of regression parameters and
predictors; and fully non-linear models, in which the mean of the outcome is
modeled as a non-linear function of the regression parameters. We also briefly
discuss several special topics, including causal models, models with measure-
ment error in the predictors, and missing data problems.

1. Introduction

This chapter describes a family of statistical techniques called linear and non-
linear regression that are commonly used in medical research. Regression is typ-
ically used to relate an outcome (or dependent variable or response) to one or
more predictor variables (or independent variables or covariates). The goal might
be prediction, testing for a relationship with a single predictor (perhaps while
adjusting for other predictors), or in modeling the relationship between the out-
come and all the predictors. We begin with an example.

1.1. Example: Medical services utilization

The most acutely ill patients treated by a hospital system use a highly dispro-
portionate amount of resources – often in ways that can be prevented.
For example, persons without insurance may use the emergency room for
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non-emergency care. Sorenson et al. (2003) and Masson et al. (2004) described the
utilization of medical resources in 190 patients enrolled in a randomized trial of a
managed care intervention designed to improve access to healthcare. Measure-
ments were taken at baseline, as well as at 6, 12, and 18 months after random-
ization. Outcomes included cost of care, number of emergency room visits, and
death. Predictors included treatment group (managed care or not), gender, the Beck
depression inventory (BDI), andwhether the personwas homeless. A primary focus
was on the treatment effect, while adjusting for the effects of the other predictors.
A secondary goal was to assess the impact of all the predictors on the outcomes.

1.2. Linear and non-linear regression methods

The choice of an appropriate regression model depends on both the type of out-
come beingmodeled, which governs the random portion of themodel, and how the
parameters to be estimated enter the model, which governs whether it is a linear or
non-linear model. In our example, cost is likely to be highly skewed right, while the
logarithm of cost might be more approximately normally distributed. Death dur-
ing the 18months of follow-up is binary or could be analyzed as time to death. And
number of emergency room visits is a count variable, for which we might consider
a Poisson distribution appropriate. A further complication in our example is that
we have repeated measurements over time on the same patient (e.g., number of
emergency room visits during the preceding 6 months is collected at 6, 12, and 18
months), so that the data need to be treated as correlated.

Each of these different outcome types – continuous and skewed right, con-
tinuous and approximately normally distributed, binary, time-to-event, or
count – would typically need a different style of regression analysis. Treating
log(cost) at 6 months as approximately normally distributed might suggest using
the usual linear regression model

log costi ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i þ �i, (1)

where costi is the 6-month cost of medical care for patient i, x1i is 1 if the patient was
in the case management group and 0 otherwise, x2i is 1 if the patient is female and 0
otherwise, x3i is the patient’s BDI at baseline, x4i is 1 if the patient was homeless at
baseline and 0 otherwise, and ei is an error term. The parameters to be estimated
(the bs) enter Eq. (1) as a linear combination, hence the name linear regression.

Re-expressing Eq. (1) as a model for costi by exponentiating both sides of the
equation gives

costi ¼ eb0eb1x1ieb2x2ieb3x3ieb4x4ie�i

¼ g0g
x1i
1 gx2i2 gx3i3 gx4i4 di, ð2Þ

where gk ¼ ebk and di ¼ e�i :
This is somewhat different, as we elaborate in Section 3.1, from the non-linear

regression equation, below, which assumes (incorrectly) that costi is homoscedas-
tic and normally distributed:

costi ¼ a0a
x1i
1 ax2i2 ax3i3 ax4i4 þ vi with vi � i:i:d:Nð0; s2vÞ. (3)
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On the other hand, treating death during the 18-month follow-up period as a
binary outcome would usually be handled with a logistic regression model, in
which the probability of death is modeled in the form

PðDiÞ ¼
1

1þ expð�½b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i�Þ
, (4)

where Di is 1 if the ith patient died and 0 otherwise, and these are not the same bs
as in Eq. (1). Clearly the parameters to be estimated for this model (the bs) enter
in a non-linear fashion. There is no error term in this model, because the ran-
domness is captured by the Bernoulli distribution with the appropriate proba-
bility of death given by Eq. (4).

This is an example of a generalized linear model (GLM) because we can
transform the mean response (which is just the probability for a binary variable
like Di) to get a model that is linear in the parameters:

log
PðDiÞ

1� PðDiÞ
¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i. (5)

The left-hand side of Eq. (5) is the log of the ratio of the probability of death
compared to the probability of survival, or the log of the odds of death. Therefore
the logistic regression model is a linear model for the log odds and the parameters
have interpretations in terms of the difference in log odds of the outcome
associated with a one-unit change in the predictor (holding the other variables
‘‘constant’’).

The various regression models are clearly different but still share important
features. The accommodation of multiple predictors and continuous or categor-
ical predictors is similar. Techniques for adjustment by variables to control con-
founding and incorporate interactions, and methods for predictor selection are
similar. Finally, all regression analyses are used to answer the same broad classes
of practical questions involving multiple predictors.

1.3. Overview

This chapter provides a practical survey of linear and non-linear regression
analysis in biomedical studies and to provide pointers to the other, more detailed
chapters on special types of regression models elsewhere in this book. We start by
introducing the idea of linear regression, in which the model for the mean of the
outcome is a linear combination of the parameters, an example of which is
Eq. (1), when the outcome is log(cost). In this context we describe inference,
model checking, extensions to repeated measures data, and choice of predictors.
Next, we show how building a linear model for transformations of the outcome,
such as the model for log(cost), induces a non-linear model for the untrans-
formed outcome, e.g., cost itself. Non-linear models are then developed, with
identification of the important special case of generalized linear models, i.e., a
model in which a transformation of the mean is a linear combination of the
parameters. We also cover some models capable of handling censored data, as
well as models where no transformation of the mean is linear in the parameters.
Finally, we discuss recent developments such as the use of classification and
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regression trees (CART), generalized additive models (GAMs), and segmented
and asymptotic regression, as well as computing for regression analyses.

2. Linear models

In the multiple linear regression model, the expected value of the outcome for
observation i, given a set of predictors x0i ¼ ðx1i; x2i; . . . ;xpiÞ; is specified by a
linear combination of the parameters b0, b1,y, bp:

E Yijxi½ � ¼ b0 þ b1x1i þ b2x2i þ � � � þ bpxpi. (6)

In Eq. (6), the coefficient bj gives the change in E[Yi|xi] for an increase of one
unit in predictor xji, holding other factors in the model constant. The intercept b0
gives the value of E[Y|x] if all the predictors were equal to zero. Considering all
observations in the sample (i ¼ 1,y,N), we can write

E½YjX� ¼ Xb, (7)

where the outcomes are written as vector Y of order N; X is the model matrix
of order N by p+1 with ith row x0i; and b is the vector of p+1 regression
coefficients.

Random departures of the outcomes from their expectations may result
from measurement error as well as unmeasured determinants of the outcome.
Thus

Y ¼ Xbþ e, (8)

where the vector of random errors e has mean 0 and variance–covariance matrix
V. Note that given X, Y also has variance–covariance matrix V. In the basic form
of the multiple linear regression model we usually assume that e � N (0, s2I),
where I is the identity matrix of order N; that is, the random errors are normally
distributed with mean zero and constant variance s2, and are independent across
observations.

In contrast to the outcome, no distributional assumptions are made about the
predictors. However, we do formally assume that the predictors are measured
without error. This is often not very realistic, and the effects of violations are the
subject of ongoing statistical research. In Section 4.2, we briefly discuss the issue
of measurement error.

2.1. Maximum likelihood (ML) under normality

Under the assumption that Y has a multivariate normal distribution – that is,

Y � N ðXb; s2IÞ (9)

the likelihood function is

L ¼ Lðb;s2Þ ¼ exp � 1
2 ðY� XbÞ0ðI=s2ÞðY� XbÞ� �

ð2ps2ÞN=2
. (10)
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Thus the log-likelihood is

l ¼ log L ¼ �N

2
logð2pÞ �N

2
log s2 � 1

2
ðY� XbÞ0ðY� XbÞ=s2 (11)

Setting the vector of partial derivatives of the log-likelihood with respect to the
elements of b equal to 0 gives the score equation for b:

@l

@b
¼ X0Y� X0Xb

s2
¼ 0 (12)

with solution

b̂ ¼ ðX0XÞ�1X0Y (13)

if (X0X)�1 exists. See McCulloch and Searle (2000) for a full development
of important cases where X is not full rank and generalized inverses of X0X must
be used.

For s2 the score equation is

@l

@s2
¼ ðY� XbÞ0ðY� XbÞ

2s4
� N

2s2
¼ 0 (14)

with solution

ŝ2ml ¼ ðY� Xb̂Þ0ðY� Xb̂Þ=N (15)

In practice the unbiased restricted maximum likelihood (REML) estimate
(McCulloch and Searle, 2000) is more often used. In REML, b is removed from
the likelihood by considering the likelihood of

I� X X0Xð Þ�1X0
h i

Y, (16)

in this simple case giving

ŝ2 ¼ ðY� Xb̂Þ0ðY� Xb̂Þ
N� ðpþ 1Þ (17)

Finally, under regularity conditions, b̂ is a consistent estimator of b, with
asymptotic variance–covariance estimator ŝ2ðX0XÞ�1 based on the Hessian of the
log-likelihood – that is, the matrix of its second partial derivatives with respect
to b.

2.2. Ordinary least squares

Estimation of the regression parameters in the multiple linear regression model
can also be understood in terms of ordinary least squares (OLS), meaning that b̂ is
the value of b that minimizes the residual sum of squares under the proposed
linear model:

RSS ¼ ðY� XbÞ0ðY� XbÞ. (18)
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Setting the vector of partial derivatives of Eq. (18) with respect to b equal to 0
gives

b̂ ¼ ðX0XÞ�1X0Y. (19)

Thus the OLS criterion motivates the same estimator of b, without making distri-
butional assumptions, as does maximum likelihood in the case where Y is multi-
variate normal.

The variance of b̂ can be written as

S ¼ var½ðX0XÞ�1X0Y�
¼ ðX0XÞ�1X0 var½Y�XðX0XÞ�1

¼ ðX0XÞ�1X0VXðX0XÞ�1 ð20Þ
Clearly R simplifies to s2ðX0XÞ�1 when V ¼ s2I.

If E[Y|X] is of the form Xb and X is full rank, b̂ is unbiased:

E½b̂� ¼ E½ðX0XÞ�1X0Y�
¼ ðX0XÞ�1X0E½Y�
¼ ðX0XÞ�1X0Xb
¼ b ð21Þ

Under the assumptions of independence and constant variance – that is, V ¼ s2I –
the OLS estimates are minimally variable among linear unbiased estimators.
They are also well-behaved in large samples when the normality assumptions
concerning Y are not precisely met. A potentially important drawback of OLS is
sensitivity to influential data points.

2.3. Tests and confidence intervals

At least in large samples, the estimates of the regression parameters have a
multivariate normal distribution. This follows on theoretical grounds if the out-
come Y is multivariate normal as in Eq. (9), regardless of sample size. Otherwise,
the OLS estimators converge in distribution to multivariate normality as the
sample size increases under fairly mild assumptions. If the outcome is short-
tailed, then the tests and confidence intervals may be valid with as few as 30–50
observations. However, with long-tailed or skewed outcomes, samples of at least
100 may be required. Factors influencing the precision of the estimates are made
clear by writing the variance of a particular b̂j as:

Varðb̂jÞ ¼
s2

ðN� 1Þs2xj ð1� r2j Þ
. (22)

In Eq. (22), s2xj is the sample variance of xj, and rj is the multiple correlation of xj
with the other predictors; 1=ð1� r2j Þ is known as the variance inflation factor. In
brief, the parameter bj is more precisely estimated when the residual variance s2 is
small, the sample size N and sample variance of xj are large, and xj is minimally
correlated with the other predictors in the model.
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When Y is multivariate normal, the ratio of b̂j � bj to its standard error
(defined as the square root of the estimate of Eq. (22), using Eq. (17) for s2) has a
t-distribution with N � (p+1) degrees of freedom. This reference distribution is
used for Wald tests of H0: bj ¼ 0, and to compute confidence intervals for bj as

b̂j � ta=2;N�ðpþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vârðb̂jÞ

q
, (23)

where ta/2,N � (p+1) is the a/2 quantile of the reference t-distribution. By exten-
sion, the variance of a linear combination c ¼ a0b̂ of the parameter estimates is
a0Sa; providing analogous hypothesis tests and confidence intervals for c.

The F-test is used to test composite null hypotheses involving more than one
parameter, including tests for heterogeneity in the mean of the outcome across
levels of multilevel categorical predictors. Suppose the categorical predictor has
k 4 2 levels and is represented by k � 1 indicator variables x2i;x3i; . . . ;xki; with
xji ¼ 1 if observation i is in category j (j ¼ 2,y, k) and 0 otherwise. The corre-
sponding parameters are b2;b3; . . . ;bk; x1i and b1 correspond to the reference level
and are omitted. Then the F-statistic for the test of H0 : b2 ¼ b3 ¼ � � � ¼ bk ¼ 0 is

F ¼ ðRSSr �RSSfÞ=ðk� 1Þ
RSSf=ðN� ðpþ 1ÞÞ (24)

where RSSf is the residual sum of squares from the full model including the k � 1
indicator variables x2, x3,y, xk and RSSr is from the reduced model excluding
these covariates. The statistic is compared to the F-distribution with k � 1 and
N � (p+1) degrees of freedom. Within the maximum likelihood framework, the
F-statistic can be derived as a monotonic transformation of the likelihood-ratio
statistic (McCulloch and Searle, 2000).

These exact methods for inference when Y is multivariate normal do not apply
to non-linear models, nor to linear models used with unbalanced repeated meas-
ures data. For those cases, hypothesis testing with either maximum likelihood or
restricted maximum likelihood utilizes the large sample theory of maximum like-
lihood estimators. Typical are Wald tests, in which the estimators divided by their
standard errors are treated as approximately normal to form z-statistics. Likewise,
approximate confidence intervals are based on normality by calculating the esti-
mate 71.96 standard errors. Standard errors typically come from the Hessian of
the log-likelihood. Kenward and Roger (1997) have suggested adjustments to
improve the small sample performance of the Wald statistics in extensions of the
linear model for repeated measures (see Section 2.5). Alternatively, likelihood-
ratio tests and confidence regions based on the likelihood are also commonly used
to form test statistics and confidence regions for b. These are regarded as more
reliable than the Wald procedures and should be used in circumstances where the
two procedures give discrepant results (Cox and Hinkley, 1974).

2.4. Checking model assumptions and fit

In the multiple linear regression model (Eq. (8)), we start with assumptions that
E[Y|X] changes linearly with each continuous predictor and that the errors e
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are independently multivariate normal with mean zero and constant variance.
Violations of these assumptions have the potential to bias regression coefficient
estimates and undermine the validity of confidence intervals and p-values, and
thus may motivate the use of non-linear models. Residuals are central to
detecting violations of these assumptions and also assessing their severity. Model
assumptions rarely hold exactly, and small departures can be benign, especially in
large datasets. Nonetheless, careful attention to model assumptions can prevent
us from being seriously misled, and help us to decide when non-linear methods
need to be used.

Linearity. In single predictor models, checks for departures from linearity
could be carried out using a non-parametric smoother, such as LOWESS
(Cleveland, 1981) of the outcome on the single predictor, approximating the
regression line under the weaker assumption that it is smooth but not necessarily
linear. Substantial and systematic deviations of the non-parametric estimate from
the linear fit indicate departures from linearity. Smoothing the residuals rather
than the outcome may give a more sensitive assessment, and extends this strategy
to the multiple linear regression model, providing a check on linearity after the
effects of covariates have been taken into account. In this context, we smooth the
residuals against each continuous predictor (residual vs predictor plots) as well as
the fitted values (residual vs fitted plots). Related diagnostic plots include com-
ponent plus residual plots (Larsen and McCleary, 1972), in which the contribution
of the predictor of interest to each fitted value is added back into the corre-
sponding residual, which is then smoothed against the predictor. In all cases,
a well-behaved smoother with skillfully chosen smoothness is important for
detecting non-linearity.

Departures from linearity can often be corrected using transformations of the
continuous predictors causing problems. For strictly positive predictors, log
transformation is useful for modeling ‘‘diminishing returns,’’ in which the mean
of the outcome changes more and more slowly as the predictor increases. In
polynomial models, we may add quadratic, cubic, and even higher-order terms in
the predictor. For mild non-linearities, addition of a quadratic term in the pre-
dictor is often adequate. However, for highly non-linear response patterns,
polynomial models may not provide adequate flexibility, or provide it only at the
cost of poor performance in the extremes of the predictor range.

In contrast to polynomial models, splines provide more flexibility where the
predictor values are concentrated and better performance at the extremes, by
fitting local polynomial models under constraints that preserve continuity and
smoothness, often making the results more plausible. Simplest are linear splines,
which model the mean response to the predictor as continuous and piecewise
linear, changing slope at knots, or cutpoints in the range of the predictor, but
linear within the intervals between knots. In the simplest cases, the knots are
placed by the analyst at sample quantiles or at inflections in diagnostic smooths;
however, automatic, adaptive methods are also available. Cubic splines are local
third-order polynomials, constrained to have continuous first and second deriv-
atives at the knots; only the third derivative is allowed to jump. Natural cubic
splines are constrained to be linear beyond the outermost knots, for better
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behavior in the tails. These spline models are implemented using a linear com-
bination of basis functions defined for each value of the continuous predictor,
and thus remain linear in the parameters. Smoothing splines can be understood as
cubic splines with a knot at each unique value of the predictor, but incorporating
a penalty in the log-likelihood to prevent overfitting (Hastie et al., 2001). This
results in shrinkage of the parameter estimates corresponding to the basis func-
tions of the spline toward zero. The penalty parameter determining the degree of
smoothness is commonly chosen by cross-validation, discussed below.

Normality. Residuals are also central to the evaluation of normality and con-
stant variance. Quantile–quantile plots provide the most direct assessment of
normality of the residuals; also potentially useful are histograms and non-
parametric density plots. Long tails and skewness are more problematic for linear
models than short-tailed distributions, with reduced efficiency the most likely
result. However, both types of violation become less important with increasing
sample size. In addition to diagnostic plots, which can be difficult to interpret,
particularly in small samples, numerous statistical tests for non-normality are
available. A disadvantage of these tests is that they lack sensitivity in small
samples, where violations are relatively important, and may in contrast ‘‘detect’’
trivial violations in large samples.

Departures from normality can sometimes be corrected by transforming the
outcome. Log and fractional power (square and cube root) transformations
are commonly used for right-skewed outcome variables. Rank transformation,
resulting in a uniform distribution, can be used when both tails are too long,
though this incurs some loss of information. When no normalizing transforma-
tion can be found, the generalized linear models discussed in more detail below
are often used.

Constant variance. Reduced efficiency as well as mistaken inferences can result
from serious violations of this assumption, in particular when the mean of the
outcome is being compared across subgroups of unequal size with substantially
different residual variance. The OLS estimates remain unbiased but naive stand-
ard errors can be seriously misleading. In contrast to violations of the normality
assumption, the adverse effects of unequal variance are not mitigated by
increasing sample size.

The constant variance assumption can be checked by assessing patterns in the
spread of the residuals in the residual vs. predictor and residual vs. fitted plots
also used to assess linearity; similarly, the variance of the residuals within levels
of categorical predictors can be compared. As for normality, tests for hetero-
scedasticity are available (White, 1980), but have low power in small datasets and
are thus not recommended.

One often-used approach to rectifying non-constant variance is transforma-
tion of the outcome. In many situations, the variance grows approximately in
proportion to the mean. In that case, the log transformation is ideal in that it will
remove heteroscedasticity. Often, other model assumptions hold on the trans-
formed scale, although this is not guaranteed.

Alternatively, if the variance matrix of the errors is known, inference can
proceed by weighted least squares, which will produce unbiased and efficient
point estimates of b̂: However, the required variance matrix is usually

E. Vittinghoff et al.74



unknown. For that case, a variety of asymptotic estimators, variants of the
robust or ‘‘sandwich’’ variance estimator (Huber, 1967) explained in more
detail below, are consistent in the presence of heteroscedasticity. In this case V
in Eq. (20) is a diagonal matrix with element vii estimated by some function of
ei ¼ ðYi � x0ib̂Þ; the residual for observation i. While the various estimators are
asymptotically equivalent, their behavior in small sample sizes can vary con-
siderably. In extensive simulations, Long and Ervin (2000) show that the basic
robust HC0 estimator, with v̂ii � e2i ; performs poorly in samples as large as
250 observations. They find that the more conservative HC3 estimator devel-
oped by MacKinnon and White (1985) has the best properties and should be
used when subject-matter knowledge or exploratory data analysis suggests
heteroscedasticity. In the HC3 estimator, v̂ii ¼ ðei=ð1� hiiÞÞ2; where hii is the
ith diagonal element of the hat or projection matrix H ¼ X(X0X)�1X0.

Influential points. We would mistrust regression results – which purport to
summarize the information in the entire dataset – if they change substantively
when one or a few observations are omitted from the analysis. This can happen
when high-leverage observations with extreme values of one or more of the pre-
dictors, or an anomalous combination of predictor values, also have large
residuals. Especially in small datasets, the OLS coefficient estimates may unduly
reflect minimization of the contribution of these observations to RSS. In linear
models it is easy to compute the exact changes in each of the regression coefficient
estimates, called DFBETAs, when each of the N observations is omitted; in
logistic regression and other GLMs easily computed approximations are avail-
able. Boxplots of these DFBETA statistics for each predictor can then be used to
identify influential points. Statistics that summarize the influence of each obser-
vation on all coefficient estimates include DFITS (Welsch and Kuh, 1977),
Cook’s distance (Cook, 1977), and Welsch distance (Welsch, 1982). Identifying
influential sets of observations that are influential in combination but not nec-
essarily individually remains a difficult computational problem.

2.5. Repeated measures

It is not unusual to collect repeated measurements on the same individuals, at the
same centers, or from the same doctors. For example, in the medical services
utilization example, measurements were taken on the same person at baseline,
6, 12, and 18 months after randomization. Outcomes measured on the same
person, center, or doctor (sometimes called a cluster) are almost certain to be
correlated and this needs to be accommodated in the analysis. Another feature of
such data is that predictors can be measured at the observation level (e.g., length
of time post-randomization or whether the person was homeless a majority of the
preceding 6 months) or at the cluster level (gender, treatment group).

Consider an elaboration of the introductory model to accommodate the
repeated measures:

Yit ¼ log costit ¼ b0 þ b1x1i þ b2x2i þ b3x3it þ b4x4it þ dit, (25)

where costit is the cost of medical care during the previous 6 months for t ¼ 6, 12,
or 18, x1i is 1 if the patient was in the case management group and 0 otherwise,
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x2i is 1 if the patient is female and 0 otherwise, x3it is the patient’s BDI at time t,
x4it is 1 if the patient was homeless a majority of the past six months and
0 otherwise, and dit is an error term.

So far there is nothing in the model to incorporate the potential correlation
among measurements within a subject. One method is to directly assume a cor-
relation among the error terms:

var

di6
di12
di18

0
B@

1
CA ¼ Sd ¼

sd;6;6 sd;6;12 sd;6;18

sd;12;6 sd;12;12 sd;12;18

sd;18;6 sd;18;6 sd;18;18

0
B@

1
CA. (26)

Another common strategy is to induce a variance–covariance structure by
hypothesizing the existence of random effects. Essentially we decompose the
error term, dit into two pieces, a subject-specific term, b, and an observation-
specific term, e:

dit ¼ bi þ �it, (27)

with bi � i:i:d:Nð0;s2bÞ independent of �it � i:i:d:N ð0; s2� Þ: The bi are called
random effects since we have assigned them a distribution. In this case, (25)
would be called a mixed model, since it would include random effects as well as
the usual fixed effects x1, y, x4.

From this model is it easy to calculate the covariance between two observa-
tions on the same subject: covðYit;YisÞ ¼ covðdit; disÞ ¼ s2b: Note that this result
holds without needing the assumption of normality of bi or �it: In a similar
manner it is straightforward to calculate the variance of Yit or Yis as s2b þ s2e and
the correlation between them as s2b=ðs2b þ s2eÞ:

So Eq. (27) corresponds to a special case of Eq. (26) with

Sd ¼ Is2� þ Js2b ¼
s2� þ s2b s2b s2b

s2b s2� þ s2b s2b
s2b s2b s2� þ s2b

0
B@

1
CA, (28)

where J is a matrix of all ones.

2.5.1. Estimation
Whether we formulate the model as Eq. (26) or the special case of Eq. (27), how
should we fit the model and conduct statistical inference? OLS does not accom-
modate the correlated data. If the variance–covariance matrix, V, were known,
then weighted least squares could be used, weighting by the inverse of the
variance–covariance matrix. This would yield:

b̂V ¼ ðX0V�1XÞ�1X0V�1Y. (29)

Or with a full parametric specification (i.e., that the data are multivariate normal)
a logical method is maximum likelihood or a variant mentioned earlier, restricted
maximum likelihood.
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Consider a general model for the situation with correlated data and a linear
model for the mean:

Y � N ðXb;VÞ. (30)

For the medical utilization example, if each of the N subjects had exactly three
observations that followed model (26), and if the data vector Y were ordered by
subject, then V ¼ IN � Sd; with � denoting a Kronecker product, i.e., A�B is a
partitioned matrix with entries aijB. In particular V ¼ IN � Sd implies that V is
block diagonal with Rd on the diagonal.

It is easy to show that the OLS estimator is unbiased, even in the presence of
correlated data: Eq. (21) remains valid in this case. It is also straightforward to
show that its variance is given by Eq. (20); in this case, of course, V does not
simplify to s2I. Similar calculations show that the weighted least squares esti-
mator, Eq. (29), which is optimal under normality, is also unbiased and has
variance equal to (X0V�1X)�1. Interestingly the OLS estimator often retains
nearly full efficiency compared to the weighted least squares estimator (Diggle
et al., 2002).

In practical situations the variance–covariance matrix of the data is never
known and must be estimated. Typically V is a function of parameters h, and as
long as the parameters h are not functionally related to b, the ML equations for b
take the form:

b̂V̂ ¼ ðX0V̂
�1
XÞ�1X0V̂�1Y, (31)

where V̂ is the ML estimator of V, i.e., V with the ML estimator of h substituted
for h (McCulloch and Searle, 2000).

The ML equations for h are considerably more complicated and depend on the
specific parametric form of V so we will not elaborate here, but refer the reader
to McCulloch and Searle (2000) or Searle et al. (1992). Often the REML log-
likelihood based on Eq. (16), and introduced in Section 2.1, is maximized to find
an estimate of h, which is then used in Eq. (31). Again, see Searle et al. (1992) for
details.

2.5.2. Prediction
One of the advantages of the random effects approach, Eq. (27), is the ability to
generate predicted values for each of the random effects, bi, which we do not get
to observe directly. Mixed models are used, for example, in rating the perform-
ance of hospitals or doctors (Normand et al., 1997; Hofer et al., 1999). In such a
situation the outcome is a performance measure for the hospital, e.g., average log
cost, and the random effects would represent, after adjustment for the fixed
factors in the model, how a particular hospital or doctor deviated from the
average.

Predicted values from random effects models are so-called shrinkage estima-
tors because they are typically closer to a common value than estimates based on
raw or adjusted averages. The shrinkage factor depends on the random effects
variance and the sample size per cluster. When there is little variation from
cluster to cluster and/or when the sample sizes are small, the shrinkage is greatest,
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reflecting the facts that clusters with extreme outcome values are likely to be due
to chance in those circumstances. On the other hand, with sufficient data per
cluster or evidence that clusters are quite different, the predicted values exhibit
little shrinkage and are closer to raw or adjusted averages. So with varying
sample sizes per cluster, estimates based on smaller sample sizes will show more
shrinkage. Shrinkage predictions can be shown theoretically (Searle et al., 1992)
to give more accurate predictions than those derived from the raw data. This
occurs, especially with small cluster sizes, because information from other clus-
ters is used to improve the prediction; this is sometimes called ‘‘borrowing
strength’’ from the other clusters.

2.5.3. Robust and sandwich variance estimators
The fact that the OLS estimator is unbiased and often fairly efficient suggests that
it could be used in practice. The problem with using the usual OLS regression
packages is that they get the standard errors and hence tests and confidence
intervals wrong by assuming all the data are independent.

In the case of longitudinal data, where we have independent data on M
different subjects, a direct estimator of the true variance of the OLS estimator,
Eq. (20) can be formed. Let Yi denote the ni outcomes for the ith subject, so that
the number of observations N ¼PM

i¼1ni: Then the model for the ith subject, using
a corresponding model matrix Xi; is

Yi ¼ Xibþ �i i ¼ 1; . . . ;M

var½�i� ¼ Vi. ð32Þ

In this case the OLS estimator b̂ ¼ ðX0XÞ�1ðX0YÞ can be written as

X
i

X0iXi

 !�1 X
i

X0iYi

 !
(33)

with variance

X
i

X0iXi

 !�1 X
i

X0iViXi

 ! X
i

X0iXi

 !�1
. (34)

A crude estimator of Vi can be formed as V̂i ¼ ðYi � Xib̂ÞðYi � Xib̂Þ0 giving

vâr½b̂� ¼
X
i

X0iXi

 !�1 X
i

X0iV̂iXi

 ! X
i

X0iXi

 !�1
(35)

Even though V̂i is a crude estimator, Eq. (35) is often a good estimator of the
variance of b̂ due to the averaging over the M subjects and the ‘‘averaging’’ that
takes place when pre- and post-multiplying by Xi: This is called the ‘‘sandwich’’
estimator due to the sandwiching of the X0V�1X piece between (X0X)�1 terms and
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is a robust estimator in the sense that it is asymptotically (as M-N) valid
without making assumptions about the variance–covariance structure. As such, it
is quite useful for sensitivity checks against model assumptions. When M is not
large, inferences based on the robust variance estimator may be liberal. This is
consistent with the results cited in Section 2.4 for the HC0 estimator, to which
Eq. (35) reduces when there is only one outcome per subject (see Kauermann and
Carroll, 2001).

2.5.4. Repeated measures ANOVA
Correlated data analyses can sometimes be handled by repeated measures anal-
ysis of variance (ANOVA). When the data are balanced and appropriate for
ANOVA, statistics with exact null hypothesis distributions (as opposed to
asymptotic, likelihood based) are available for testing. However, the variance–
covariance structure is typically estimated by the method of moments, which may
be less efficient than maximum likelihood. For unbalanced data, tests are
approximate, and, even though approximations have been developed (e.g., the
Geisser–Greenhouse correction; Greenhouse and Geisser, 1959), may not achieve
nominal significance levels. Also, in the specification of approximate F-statistics,
it is not always straightforward to specify a denominator mean square (i.e., what
is the ‘‘right’’ error term?).

Maximum likelihood estimation generates test statistics relatively automati-
cally and gives better predictions of the random effects. Maximum likelihood
methods also generalize naturally to non-normally distributed outcomes (see,
e.g., McCulloch and Searle, 2000), unlike repeated measures ANOVA. See
McCulloch (2005) for further discussion.

2.6. Model selection

Many more potential predictor variables are commonly measured than can rea-
sonably be included in a multivariable regression model. In the introductory
example, many factors in addition to gender, the BDI, and homelessness are
likely to influence medical services utilization, including having health insurance
and the range of health conditions driving the need for such services. The difficult
problem of how to select predictors can be resolved to serve three distinct uses of
regression. First, prediction: Can we identify which types of patients will use the
most medical resources? Regression is a powerful and general tool for using
multiple measured predictors to make useful predictions for future observations.
Second, isolating the effect of a single predictor: What is the effect of the case
management treatment on use of the emergency room, after adjusting for
whether the patients in the two treatment groups (although randomized) differ
with regard to gender, depression, or homeless status? Regression is a method to
isolate the effect of one predictor (treatment) while adjusting for other differ-
ences. And third, understanding multiple predictors: Are the homeless at an
increased risk of mortality and does the case management especially help the
homeless? Regression is a method for understanding the joint and combined
associations of all the predictors with the outcome.
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2.6.1. Prediction
Here the primary issue is minimizing prediction error rather than causal inter-
pretation of the predictors in the model. Prediction error (PE) measures how well
the model is able to predict the outcome for a new, randomly selected obser-
vation that was not used in estimating the parameters of the prediction model.
In this context, inclusive models that minimize confounding may not work as
well as models with smaller numbers of predictors. This can be understood in
terms of the bias-variance trade-off. Bias is often reduced when more variables are
included, but as less important covariates are added, precision may suffer with-
out commensurate decreases in bias. The larger models may be overfitted to the
data, reflecting random error to such an extent that they are less able to predict
new observations than models with fewer predictors that give slightly biased
estimates but are less reflective of randomness in the current data.

Because R2, the proportion of variance explained, increases with each addi-
tional covariate, even if it adds minimal information about the outcome, a model
that maximizes R2 is unlikely to minimize PE. Alternative measures include
adjusted R2, which works by penalizing R2 for the number of predictors in the
model. Thus when a variable is added, adjusted R2 increases only if the increment
in R2 outweighs the added penalty. Mallow’s Cp, the Akaike information cri-
terion (AIC), and the Bayesian information criterion (BIC) are analogs which
impose respectively stiffer penalties for each additional variable, and thus lead
to selection of smaller models. Measures of concordance of the observed and
predicted outcomes for the logistic and Cox models include the c-statistic
and Somer’s D (Harrell et al., 1996), as well as adaptations of the Brier score
(Graf et al., 1999).

More direct estimates of PE are based on cross-validation (CV), a class of
methods that work by using distinct sets of observations to estimate the model
and to evaluate PE. The most straightforward example is the learning set/test set
(LS/TS) approach, in which the parameter estimates are obtained from the
learning set and then used to evaluate PE in the test set. In linear regression,
computing PE is straightforward, using b̂ from the learning set to compute the
predicted value ŷ and corresponding residual for each observation in the test set.
The learning and test sets are sometimes obtained by splitting a single dataset,
often with two-thirds of the observations randomly assigned to the learning set.
However, using an independent sample as the test set may give more general-
izable estimates of PE, since the test set is generally not sampled from exactly the
same population as the learning set.

An alternative to LS/TS is leave-one-out or jackknifemethods, in which all but
one observation are used to estimate the model, and then PE is evaluated for the
omitted observation; this is done in turn for each observation. In linear regres-
sion models, the resulting predicted residual sum of squares (PRESS) can be
computed for the entire dataset with minimal extra computation. In logistic and
Cox models, fast one-step approximations are available.

Midway between LS/TS and the jackknife is h-fold cross-validation (hCV). The
dataset is divided into h mutually exclusive subsets and a measure of PE is
evaluated in each subset, using parameter estimates obtained from the remaining
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observations. A global estimate of PE is then found by averaging over the h
subset estimates. Typically values of h from 5 to 10 are used.

Bootstrap methods provide a potentially more efficient alternative to cross-
validation for estimating prediction error (Efron, 1986; Harrell et al., 1996).
Prediction models are developed using the methods employed with the original
data but applied to bootstrap samples, and then evaluated using both the boot-
strap and original data. The estimated prediction error of the rule both developed
and evaluated using the original data is then corrected by the average difference
between the two prediction error estimates for the bootstrap datasets.

Modern computing power makes it possible to use CV or the bootstrap not
just to validate a prediction model using independent data but to guide iterative
predictor selection procedures. Among them, Breiman (2001) describes modern
methods that do not follow the paradigm motivated by the bias-variance trade-
off that smaller models are better for prediction. The newer methods tend to keep
all the predictors in play, while using various methods to avoid overfitting and
control variance; cross-validation plays a central role throughout.

The so-called shrinkage procedures also play an important role in prediction,
especially those made on the basis of small datasets. In this approach over-fitting
is avoided and prediction improved by shrinking the estimated regression
coefficients toward zero, rather than eliminating weak predictors from the
model. Variants of shrinkage include the non-negative garrote (Breiman, 1995)
and the LASSO method, short for least absolute shrinkage and selection operator
(Tibshirani, 1997). An alternative to direct shrinkage implements penalties in the
fitting procedure against coefficient estimates which violate some measure of
smoothness. This achieves something like shrinkage of the estimates and thus
better predictions; see Le Cessie and Van Houwelingen (1992) and Verweij and
Van Houwelingen (1994) for applications to logistic and Cox regression. These
methods derive from ridge regression (Hoerl and Kennard, 1970), a method for
obtaining slightly biased but stabler estimates in linear models with highly cor-
related predictors.

Finally, Altman and Royston (2000) give an excellent discussion of vali-
dating prediction models from a broader perspective, focusing on the ways in
which these models may or may not be useful in clinical and other practical
applications.

2.6.2. Isolating the effect of a single predictor
In observational data, the main problem in evaluating a predictor of primary
interest is to rule out non-causal explanations of an association between this
predictor and the outcome as persuasively as possible – that is, confounding of the
association by the true causal factors, or correlates of such factors. Confounders
are associated with the predictor of interest and independently associated with
the outcome, and thus may explain all or part of the unadjusted association of
the primary predictor and the outcome. As a result, addition of the confounder to
the model typically affects the estimate for the primary predictor; in most cases,
the adjusted estimate is smaller. Potential confounders to be considered include
factors identified in previous studies or hypothesized to matter on substantive
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grounds, as well as variables that behave like confounders by the statistical
measures. Two classes of covariates would not be considered for inclusion in the
model: covariates which are essentially alternative measures of either the out-
come or the predictor of interest, and those hypothesized to mediate its effect –
that is, to lie on a causal pathway between the predictor of interest and the
outcome.

To rule out confounding more effectively, a liberal criterion of p o 0.2 for
inclusion of covariates in the model makes sense (Maldonado and Greenland,
1993). A comparably effective alternative is to retain variables if removing them
changes the coefficient for the predictor of interest by more than 10% or 15%
(Greenland, 1989; Mickey and Greenland, 1989). These inclusive rules are par-
ticularly important in small datasets, where even important confounders may not
meet the usual criterion for statistical significance. Among the common proce-
dures that could be used to select covariates, backward selection (that is, starting
with the full model and sequentially eliminating the least important remaining
variable) has the advantage that negatively confounded variables are less likely to
be omitted from the final model (Sun et al., 1999). Negatively confounded var-
iables appear more important when they are included in the model together, in
contrast to the more common case in which addition of a confounder to the
model attenuates the estimate for the predictor of interest.

Randomized experiments including clinical trials represent a special case
where the predictor of primary interest is the intervention; confounding is not
usually an issue, but covariates are sometimes included in the model for other
reasons. These include design variables in stratified experiments, including clin-
ical center in multicenter randomized trials, necessary for obtaining valid stand-
ard errors, p-values, and confidence intervals. In linear models inclusion of
important prognostic variables can also substantially reduce residual error and
thus increase power; Hauck et al. (1998) emphasize, however, that the adjusted
model should be pre-specified in the study protocol. Furthermore, adjustment in
experiments with binary or failure time outcomes can avoid attenuation of
treatment effect estimates in logistic (Neuhaus and Jewell, 1993; Neuhaus, 1998)
and Cox models (Gail et al., 1984; Schmoor and Schumacher, 1997; Henderson
and Oman, 1999). Hypothesis tests remain valid when there is no treatment effect
(Gail et al., 1988), but power is lost in proportion to the importance of the
omitted covariates (Lagakos and Schoenfeld, 1984; Begg and Lagakos, 1993).
Note, however, that adjustment for imbalanced covariates can potentially
increase as well as decrease the treatment effect estimate, and can erode both
precision and power. Finally, adjusted or de-attenuated treatment effect esti-
mates are more nearly interpretable as subject-specific – in contrast to population-
averaged (Hauck et al., 1998).

2.6.3. Understanding multiple predictors
This is the most difficult case, and one in which both causal interpretation and
statistical inference are most problematic. When the focus is on isolating the
effect of a single predictor, covariates are included in order to obtain a minimally
confounded estimate. However, broadening the focus to multiple important
predictors of an outcome can make selecting a single best model considerably
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more difficult. For example, inferences about most or all of the predictors
retained in the model are now of primary interest, so overfitting and false-positive
results are more of an issue, particularly for novel and seemingly implausible
associations. Interaction – that is, the dependence of the effect of one predictor
on the value of another – will usually be of interest, but systematically assessing
the large number of possible interactions can easily lead to false-positive findings,
some at least not easily rejected as implausible. It may also be difficult to choose
between alternative models that each include one variable from a collinear pair or
set. Mediation is also more difficult to handle, to the extent that both the overall
effect of a predictor as well as its direct and indirect effects may be of interest. In
this case, models which both exclude and include the mediator may be required
to give a full picture. Especially in the earlier stages of research, modeling these
complex relationships is difficult, prone to error, and likely to require consid-
erable re-analysis in response to input from subject-matter experts.

2.6.4. Number of predictors
The rationale for inclusive predictor selection rules, whether we are isolating the
effect of single predictor or trying to understand multiple predictors, is to obtain
minimally confounded estimates. However, this can make regression coefficient
estimates less precise, especially for highly correlated predictors. At the extreme,
model performance can be severely degraded by the inclusion of too many pre-
dictors. Rules of thumb have been suggested for number of predictors that can be
safely included as a function of sample size or number of events. A commonly
used guideline prescribes ten observations for each predictor; with binary or
survival outcomes the analogous guideline specifies ten events per predictor
(Peduzzi et al., 1995, 1996; Concato et al., 1995). The rationale is to obtain
adequately precise estimates, and in the case of the logistic and Cox models, to
ensure that the models behave properly.

However, such guidelines are too simple. Their primary limitation is that the
precision of coefficient estimates depends on other factors as well as the number
of observations or events per predictor. In particular, the variance of a coefficient
estimate in a linear model (Eq. (22)) depends on the residual variance of the
outcome, which is generally reduced by the inclusion of important covariates.
Precision also depends on the multiple correlation between a predictor of interest
and other variables in the model, which figures in the denominator of Eq. (22).
Thus addition of covariates that are at most weakly correlated with the primary
predictor but explain substantial outcome variance can actually improve the
precision of the estimate for the predictor of interest. In contrast, addition of just
one collinear predictor can degrade its precision unacceptably. In addition, the
allowable number of predictors depends on effect size, with larger effects being
more robust to multiple adjustments than smaller ones.

In many contexts where these guidelines might be violated, power is low, in
which case misleading inferences can usually be avoided if confidence intervals
are used to interpret negative findings (Hoenig and Heisey, 2001). However,
when statistically significant associations are found despite the inclusion of more
predictors than this rule allows – with 5 or more events per variable – only a
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modest degree of extra caution appears to be warranted (Vittinghoff and
McCulloch, 2007).

2.6.5. Model selection complicates inference
Underlying the confidence intervals and p-values which play a central role in
interpreting regression results is the assumption that the predictors to be included
in the model were specified a priori without reference to the data. In confirmatory
analyses in well-developed areas of research, including phase-III clinical trials,
prior determination of the model is feasible and important. In contrast, at earlier
stages of research, data-driven predictor selection and checking are reasonable,
even obligatory, and certainly widely used. However, some of the issues raised for
inference include the following:

	 The chance of at least one type-I error can greatly exceed the nominal level
used to test each term.

	 In small datasets precision and power are often poor, so important predictors
may be omitted from the model, especially if a restrictive inclusion criterion is
used.

	 Parameter estimates can be biased away from the null, owing to selection of
estimates that are large by chance (Steyerberg et al., 1999).

	 Choices between predictors can be poorly motivated, especially between col-
linear variables, and are potentially sensitive to addition or deletion of a few
observations. Altman and Andersen (1989) propose bootstrap methods for
assessing this sensitivity.

Breiman (2001) is skeptical of modeling causal pathways using such procedures,
and argues that computer-intensive methods validated strictly in terms of pre-
diction error not only give better predictions but may also be more reliable guides
to ‘‘variable importance’’ – another term for understanding multiple predictors,
and with implications for assessing isolating the effect of a single predictor.

Finally, we note that these issues in predictor selection apply broadly, to non-
linear as well as linear models.

3. Non-linear models

3.1. Introduction: A salary analysis

One of us recently completed an analysis of salary data for the compensation
plan at our university to check for inequities in pay between males and females.
Not surprising, the salary data is highly skewed right with a few extreme salaries
(mostly MDs who generate large amounts of clinical income). The traditional
method of handling such data is to consider a log transformation of the outcome,
which made the data approximately normally distributed. Here is an overly
simplistic version of the analysis to illustrate the basic points, adjusting only for
faculty rank before looking for a gender effect. The model uses a reference group
of assistant professor and is given by

logðsalaryiÞ ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ �i, (36)
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where salaryi is the monthly salary of the ith faculty member, and x1i, x2i, and x3i
are the indicator functions for the faculty member being an associate professor,
being a full professor, and being male, respectively.

The gender effect, b3, was estimated to be 0.185 with a 95% confidence
interval of (0.116, 0.254). How do we interpret this result? It is unsatisfying to
interpret log(dollars) so the inclination is to back transform both sides of Eq. (36)
giving

salaryi ¼ expfb0 þ b1x1i þ b2x2i þ b3x3i þ �ig
¼ eb0eb1x1ieb2x2ieb3x3ie�i

¼ g0g
x1i
1 gx2i2 gx3i3 di, ð37Þ

here gj ¼ ebj and di ¼ e�i: Ignoring the error term, d, for the moment, and taking
the ratio of the model equation, Eq. (37), for males and females of the same rank
gives

g3 ¼
g0g

x1
1 gx22 g13

g0g
x1
1 gx22 g03

(38)

In words, males make, on average, e0.185 ¼ 1.203 or about 20% more with a
confidence interval of (1.123, 1.289).

Being more careful, in Eq. (38), we have taken the ratio of values of exp{E[log
(salary)]}, which is not the same as E[salary]. However, if the log transformation
makes the errors, ei, normally distributed (or, more generally symmetrically dis-
tributed) as it did in this example, then the mean and the median are the same. So
we can also interpret the model as a model for median log(salary). Since

expfmedian½logðsalaryÞ�g ¼ expflogðmedian½salary�Þg ¼ median½salary�
(39)

we can interpret g3 in terms of median salaries. In particular, males have a
median salary that is, on average, about 20% higher than females.

This is a very reasonable interpretation and is, in many cases, preferred to a
model for mean salary, which is sensitive to the few extreme salaries. Further-
more, the ratio interpretation (20% more for males) is a common way of thinking
about salaries as opposed to an additive one (e.g., $1,800 more per month) since,
for example, raises are often decided on a percentage basis.

However, what about the medical center administrator in charge of making
sure the compensation plan generates enough revenue to pay all the faculty?
Clearly, she is concerned with mean salary since the total revenue has to exceed
the mean salary times the number of faculty. What models are available if we
require a model for mean salary?

The ratio form of the model, but for the mean salary, could be retained by
fitting a model of the form

salaryi ¼ g
0g

x1i
1 g
x2i2 g
x3i3 þ �
i , (40)

Non-linear least squares could be used and would give consistent estimates even
though we would not feel comfortable assuming that the �
i were homoscedastic
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and normally distributed. So confidence intervals or tests for g3 based on nor-
mality assumptions would be suspect but inferences could still be achieved, e.g.,
through bootstrapping. Fitting model (40) to the salary data gave ĝ
3 ¼ 1:165 with
a bootstrap confidence interval of (1.086, 1.244).

But it might be more satisfying to make mild, but reasonable assumptions
about the form of the distribution, for example that the salaries had a gamma
distribution with mean mi given by a multiplicative model and constant coefficient
of variation:

salaryi � GammaðmiÞ
logðmiÞ ¼ b

0 þ b

1 x1i þ b

2 x2i þ b

3 x3i:

(41)

Fitting this model gives an estimate expfb̂

3 g ¼ 1:223 with a model based con-
fidence interval of (1.138, 1.314) and a bootstrap confidence interval of (1.142,
1.310).

Models (40) and (41) differ from (36) in that they model the mean salary rather
than the median salary and by the fact that they are non-linear in the parameters.
Model (41) differs from (40) in that it is a generalized linear model: a known
transformation of the mean is linear in the parameters (log(mi) is linear in the b

j
whereas the log of the mean of model (40) is not linear in the g
j ). In the next
section, we present a model for survival times which is analogous to model (41)
but can also be written as a linear model with a log-transformed outcome and
non-normal errors.

3.2. The accelerated failure time model

Consider examining the effect of the managed care intervention on survival
among homeless patients. Survival times typically have a right-skewed distribu-
tion; hence we might use a model similar to the last model (41) proposed for
faculty salaries:

survivali � exponentialðmiÞ
logðmiÞ ¼ b0 þ bx1i þ b2x2i þ b3x3i

(42)

In Eq. (42), x1i is the intervention indicator, x2i is the BDI, and x3i indicates if
the subject is homeless. The exponential distribution is an important special case
for survival data because the so-called hazard function is constant under this
model.

However, an important difference between the salary and survival time out-
come variables is that many subjects either drop out prior to or survive past the
end of the study, so we only know that their actual survival times are greater than
their observed follow-up time Yi. In the salary example, this would amount to
knowing only that some of the faculty were earning more than, say, $500,000 per
year. These survival times are said to be right-censored.

The accelerated failure time (AFT) model can be written in terms of the so-
called survival function, Si(t) ¼ P(survivali 4 t). Under the AFT,

Pðsurvivali4tjxiÞ ¼ SiðtÞ ¼ S0 t expðx0ibÞ
� �

(43)
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where S0(t) ¼ P(survivali 4 t|xi ¼ 0) is the baseline survival function. The base-
line survival function plays the role of the intercept b0 in other regression models,
and represents the survival function for a subject with all covariate values equal
to 0; this can be made interpretable by centering covariate values. The effect of
the covariates in the model is to multiply t by expðx0ibÞ; in some sense speeding up
or slowing down time, depending on the sign of x0ib: The interpretation is similar
to the equivalence of 1 dog and 7 human years – for the dog, time is accelerated.

The AFT model can also be written as a linear model with log-transformed
outcome:

logðsurvivaliÞ ¼ �x0ibþ �i (44)

where ei follows some distribution. In particular, if survivali follows an expo-
nential distribution, then ei follows the extreme-value distribution. When the
distribution of e (or, equivalently S0ð�Þ) is parametrically specified, maximum
likelihood estimation of b is straightforward. The likelihood of the possibly cen-
sored follow-up time Yi has the form

fiðYiÞDiSiðYiÞð1�DiÞ (45)

where fi(t) ¼ �qSi(t)/qt is the density function, and Di is 0 if subject i is censored
and 1 otherwise. Intuitively, the likelihood contribution for a censored obser-
vation is just P(survivali 4 ti).

For example, under the exponential AFT model, with baseline survival func-
tion S0(t) ¼ exp(�lt), the log-likelihood based on Eq. (45) is

XN
i¼1

Diflog lþ x0ib� lYi expðx0ibÞg þ ð1� DiÞf�lYiexpðx0ibÞg. (46)

This simplifies to

XN
i¼1

Diðlog lþ x0ibÞ � lYi expðx0ibÞ (47)

and is straightforward to maximize numerically.
In general, AFT models have proved useful in industrial applications and have

been advocated for biomedical research (Wei, 1992). However, when the distri-
bution of e is unspecified, estimation becomes a complex problem. Considerable
interest has centered on rank-based estimation in the semi-parametric case where
e follows an unspecified distribution. Estimation there has proven difficult due to
non-monotone, non-differentiable estimation functions (Lin and Geyer, 1992).
Recently, more computationally feasible approaches have been developed
(Jin et al., 2003).

3.3. Generalized linear models

We return to the example of Section 1.1 on utilization of health resources. Recall
that interest focused on an intervention to reduce health care costs, number of
emergency room visits, and death. How should we model the outcome of number
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of emergency room visits as a function of the predictors: intervention group,
gender, baseline depression score, and homeless status?

This outcome is a count variable and skewed to the right. Furthermore, in
subsets of the data in which the mean value is higher (e.g., among homeless
persons) the variability is higher. Both of these features make a linear regression
model assuming normality and homoscedasticity of the outcome an unattractive
strategy.

We might consider a transformation of the outcome to try to make it more
approximately normally distributed and to achieve variance homogeneity. This
strategy will not work in cases where a large percentage of observations are zero,
as they were for this dataset. The most a transformation will do is move the large
percentage of data exactly equal to zero to a different value. For example the
square root transformation, a common transformation for count data, would
leave the same large percentage of zeros at zero.

The typical linear regression model for the mean is also unattractive for this
example. The mean number of emergency room visits for any particular con-
figuration of the predictors must be positive, but a linear regression model will
not be so constrained.

3.3.1. Modeling a transformation of the mean
A solution is to separately define the distribution of the data and then model
some function of the mean instead of the mean itself. For simplicity we will
consider just the first measurement (at 6 months) and accordingly define Yi as the
number of emergency room visits for patient i between the baseline and 6-month
visits.

Since the data are counts, we might consider a Poisson distribution as a first
step. With a small mean value, this may accurately model the large percentage of
zeroes. A common and useful function of the mean to model is the logarithm,
which we will justify later. That leads us to

Yi � indep: PoissonðE½Yi�Þ
logE½Yi� ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i:

(48)

where x1i, x2i, and x3i are the indicators for being in the case management group,
female, and homeless, respectively, and x4i is the patient’s BDI at baseline.

Back transforming the mean in Eq. (48) gives the following non-linear regres-
sion equation relating the mean rate in 6 months to the predictors:

E½Yi� ¼ expfb0 þ b1x1i þ b2x2i þ b3x3i þ b4x4ig
¼ eb0eb1x1ieb2x2ieb3x3ieb4x4i

� g0g
x1i
1 gx2i2 gx3i3 gx4i4 , ð49Þ

with gk � ebk :
Although many of the data points are zero (and hence not acceptable to log

transform) the mean value will not be exactly zero, allowing the use of the log
function. Also, the exponential in Eq. (49) keeps the mean value positive,
allowing flexible linear models for log E[Yi].
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Model (49) is clearly a multiplicative model in the parameters and the coeffi-
cients have a ratio interpretation. As an example we calculate the ratio of the
means, holding intervention group, gender, and homeless status as fixed and
evaluating the BDI at the values x*+1 and x*:

E½Yjx4 ¼ x
 þ 1�
E½Yjx4 ¼ x
� ¼ expfb0 þ b1x1 þ b2x2 þ b3x3 þ b4ðx
 þ 1Þg

expfb0 þ b1x1 þ b2x2 þ b3x3 þ b4x
g
¼ expfb4g ð50Þ
¼ g4.

So g4 has the interpretation as the relative rate of emergency room visits (per
6 months) when BDI is increased by 1. The other coefficients are interpreted
similarly, for example, g3 is the relative rate for homeless compared to non-
homeless. So we see that modeling the log transformation of the mean, called
using a log link, has two attractive features: it keeps the mean values positive and
provides a relative rate interpretation.

It has a different, more subtle advantage. This is a model for the number of
emergency room visits per half year. What if the subject is followed for only
2 months before dying? Let ti be the amount of time that subject i is followed.
Then we would like to build a model for the rate of emergency room visits
per unit time, namely, E[Yi]/ti. When using the log link the model then can be
rearranged to

log E Yi½ �=ti
� � ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i,

logE½Yi� ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i þ log ti. ð51Þ
Notably, we can still model the mean of a Poisson variate (Yi/ti is not Poisson
distributed since it can take non-integer values) as long as we include a term,
log ti, on the right-hand side of the equation. This is not quite a predictor or
covariate because it has no coefficient multiplying it and so it is called an offset.
Statistical analysis programs that fit such models usually allow the specification
of an offset so the program does not estimate an associated coefficient.

3.3.2. A log link binary data model
We now consider a similar model, but for binary data. Recall that in Section 1.1
we posited a logistic regression model for the binary outcome of death. This
model had multiplicative interpretations in terms of odds so that exponentiating
a coefficient gave the odds ratio of death associated with increasing the predictor
by 1. But some analysts find odds ratios hard to interpret and instead prefer
relative risks, namely the ratio of the risk of death under two different scenarios.
We now investigate the consequences of using a log link for binary outcome data:

Yi ¼ 1 if subject i dies in the first 6 months and 0 otherwise

Yi � indep: BernoulliðE½Yi�Þ
log E½Yi� ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i:

(52)

Using arguments the same as in Eq. (50) we see that g3 ¼ eb3 gives the relative
risk of death for homeless compared to non-homeless.
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The log link is not as attractive in this scenario as it is for the Poisson model.
While the log link keeps the model for the mean (which is the probability of the
outcome for a binary data model) positive, as is required, it does not constrain
the probabilities to be less than 1 (which the logistic model does). So Eq. (52) is
mainly useful when the outcome is rare and probabilities near or above 1 will not
be estimated in a reasonable range of the model; otherwise the model can be
unstable to fit.

3.3.3. A general approach
Models like the one developed in this section are called generalized linear models
because a model that is linear in the parameters is assumed to hold for a known
function of the mean of the outcome. Besides the generality gained by using a
different function of the mean, this approach has the advantage of separating the
decision as to the distribution of the outcome and what sort of model to create
for the mean. In particular, we illustrated two possible models for the Bernoulli
distribution, using either a logit or log link.

The key to use of a generalized linear model program is the specification of
the relationship of the variance to the mean. As examples, the Poisson distri-
bution assumes the mean (m) and variance (s2) are equal; the Bernoulli assumes
s2 ¼ m(1 � m); and the Gamma assumes s p m. Most programs use this infor-
mation as input to an iteratively re-weighted least squares algorithm and base
inferences on a quasi-likelihood (which does not require specification of a full
probabilistic model). The variance-to-mean relationship may be implied by the
distribution (as with a binary outcome), inferred from past experience (e.g., if
lipid measures are known to have standard deviation proportional to the mean),
or assessed using the data, for example by plotting subgroup standard deviations
against their means.

Generalized linear models have been extended to accommodate correlated data
using two main approaches. The first is by including random effects along with
likelihood estimation (e.g., McCulloch and Searle, 2000). The second approach
is the use of the robust variance estimate (as in Section 2.5.3) using so-called
generalized estimating equations (Diggle et al., 2002).

3.4. Transformations of predictors resulting in non-linear models

In the generalized linear models just described, a function of E[Yi|xi] is specified by
a linear combination of the regression parameters, and thus is similar to a linear
model. And in a previous section we described spline models which, despite using
elaborate transformations of continuous predictors, nonetheless retain this prop-
erty. However, some methods of transforming predictors induce models which are
intrinsically non-linear, in that no transformation of the mean of the outcome can
be represented as a linear function of the regression parameters. These include
segmented regression models, GAMs, CART, and other non-linear models.

Segmented regression models. With segmented regression models, we postulate
that the mean of the outcome is a series of connected line segments (much like
linear regression splines). However, in segmented regression the general form is
specified, but with knots as well as slopes unknown. Segmented regression is thus
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useful in problems where inference on the placement of the knots is of interest.
The technique has been used to examine if there were trends in cancer diagnosis
over time and, if so, which were the years of the change points (Hankey et al.,
1999). Such problems are not linear because the mean cannot be represented as a
linear function of the knots.

Generalized additive models (GAMs). An interesting class of models, termed
GAMs (Hastie and Tibshirani, 1990) relax the assumptions of the classic gen-
eralized linear model. These models take the form

gðE½yjx�Þ ¼ f0 þ f1ðx1Þ þ � � � þ fpðxpÞ (53)

where g( � ) is known but the fj( � ) are unspecified but smooth functions. These
models make it possible to examine the response as a non-linear function of the
predictors. The approach is useful for simultaneous non-parametric exploration
of the effects of predictors on the outcome. A description of the effect of the jth
covariate is given in the form of f̂j:

Classification and regression trees (CART) (Breiman et al., 1984) divide the
predictor space into a series of mutually exclusive and exhaustive subsets. Given
the subsets, the model can be written as linear in a series of indicator functions. The
splits (or nodes) defined by CART are arrived at by recursive partitioning of the
predictor space based on a splitting criterion which measures homogeneity within
the nodes (e.g., the sum of the squared residuals). The approach is appealing
because it seamlessly handles many different predictor types and missing values,
automatically detects interactions and avoids distributional assumptions. Pruning
of the tree based on cross-validation is commonly used to avoid over-fitting.

3.5. Other non-linear models

In many situations, scientific knowledge about a biological phenomenon of
interest suggests an appropriate form for the regression relationship between
outcome and predictors. Because many such models cannot be reduced to the
linear additive form familiar from conventional regression, alternate techniques
for estimation and inference are often required. An example is provided by
analyses of left ventricular pressure data aimed at estimating clinically relevant
features indicative of cardiac performance (Takeuchi et al., 1991). The basic data
are in the form of pressure data obtained from cardiac catheterization, and are in
the form of loops corresponding to individual heartbeats. A typical example is
illustrated in Fig. 1. The points represent the observed data for a single beat, and
the line gives the theoretical pressure curve. The latter cannot be observed
directly because in a typical ventricular contraction, the heart valves release
before maximum pressure is attained and observed pressure drops accordingly.
The labeled quantity Pmax represents the maximum pressure that the ventricular
contraction can theoretically generate. The goal of the analysis is to fit a plausible
model to the observed data (typically using multiple beats for a given individual),
and use it to estimate Pmax. A model for pressure, P(t), as a function of time, t,
has been proposed by Takeuchi et al. (1991), which takes the following form:

PðtÞ ¼ 1=2Pmax½1� cosðotþ CÞ� þ EDP. (54)
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Here, Pmax, o, and C represent the amplitude, angular frequency, and phase
shift angle of the theoretical pressure curve, respectively. EDP refers to end-
diastolic ventricular pressure, which is defined as the distance from the lowest
point of the curve to the horizontal axis in the figure. The angular frequency
o ¼ 2p/T, where T is the duration of the approximated pressure curve. The
quantities o and EDP are typically obtained from separate measurements, leav-
ing C and Pmax as the primary unknown parameters to be estimated from the
observed pressure data.

The model (55) can be viewed as a special case of the following general non-
linear regression model:

Yi ¼ fðxi; hÞ þ �i i ¼ 1; . . . ;N, (55)

where f is a non-linear function of predictor variables x, h is a vector of
parameters, and the errors e are typically assumed to be i.i.d. normally
distributed. Estimation is typically performed via non-linear least squares, where
the estimate ĥ is obtained as the minimizer of the following equation:

ĥ ¼ argmin
XN
i¼1

Yi � fðxi; hÞð Þ2 (56)

When the errors e are normally distributed this yields the maximum likelihood
estimate of h. Even in situations where this is not the case, estimation is typically
based on Eq. (56). For the data presented in Fig. 1, the estimates (approximate
standard errors) for Pmax and C were 337.2 (6.87) and �7.3 (0.007).
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Fig. 1. Ventricular pressure data for a single heart beat.
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The asymptotic regression model, Eq. (57), provides another example of an
inherently non-linear model:

Yi ¼ b0 þ b2e
b2xi (57)

For negative values of b2, Y reaches the asymptote b0 as x increases. This model
is commonly applied in analyses of growth curves.

Additional examples arise in a number of applications where models of
biological phenomena exist. For instance, studies of pharmacokinetic properties
of drugs often focus on quantities such as the rate of drug metabolism as a
function of applied dose. This relationship can frequently be described using
simple differential equation models, the parameters of which are useful in sum-
marizing characteristics of the drug. The Michaelis–Menten model is an example
(Pinheiro and Bates, 2000). Other examples include models of carcinogenesis
(Day, 1990) and of infectious disease spread (Becker, 1989). Techniques for
estimation and inference for such models are reviewed in a number of books,
including Seber and Wild (2003) and Bates and Watts (1988).

4. Special topics

4.1. Causal models

Regression models used to isolate the effect of a predictor or understand multiple
predictors often have the implicit goal of assessing possible causal relationships
with the outcome. The difficulties of achieving this goal are clearly recognized in
epidemiology as in other fields relying on observational data: in particular the
requirement that all confounders must have been measured and adequately
adjusted for in the model. The superiority of experiments, including clinical trials,
for determining causation stems from random assignment to treatment or
experimental condition, more or less ensuring that all other determinants of the
outcome are balanced across the treatment groups, and thus could not confound
treatment assignment. In contrast, treatment actually received could be con-
founded; estimating the causal effect of treatment in trials with poor adherence
poses problems similar to those posed by inherently observational data.

Propensity scores (Rosenbaum and Rubin, 1983) attempt to avoid potential
difficulties in adequately adjusting for all confounders of a non-randomized
treatment by adjusting instead for an estimate of the probability of receiving the
treatment, given the full range of confounders (that is, the propensity score);
related strategies are to stratify by or match on the scores (D’Agostino, 1998).
Closely related inverse probability of treatment weighted (IPTW) models weight
observations in inverse proportion to the estimated probability of the treatment
actually received (Hernan et al., 2001; Robins et al., 2000). Propensity scores are
most clearly an improvement over conventional regression adjustment when the
outcome is binary and rare, limiting our ability to adjust adequately, but treat-
ment is relatively common, so that the propensity score is relatively easy to
model. However, this approach does not avoid the crucial requirement that all
confounders are measured. Moreover, variability in the effect of treatment across
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levels of the propensity score, as well as gross dissimilarity between the treated
and untreated subsamples, can invalidate the analysis (Kurth et al., 2005).

Instrumental variables are an alternative method for estimating causal effects
from observational data (Greenland, 2000). An instrumental variable is associ-
ated with the treatment received, but uncorrelated with the outcome after con-
trolling for treatment received. Because treatment assignment meets these
criteria, instrumental variable arguments can be used to motivate a well-known
estimator of the causal effect of treatment in trials with all-or-nothing adherence
in which the observed treatment–control difference in the mean value of the
outcome is inflated by the inverse of the proportion adherent. In observational
settings, identification and validation of the instrumental variable is of course
crucial.

4.2. Measurement error and misclassification

Data collected in many experimental and observational studies in epidemiology
and medicine are based on measurements subject to error. Errors may occur
in both the outcome and predictors of regression models, and may arise from
a number of sources, including laboratory instruments and assays, medical
devices and monitors, and from participant responses to survey questions. The
presence of measurement error raises a legitimate concern that estimates from
fitted regression models may be biased, and that associated inferences may be
incorrect.

There is a wealth of published research on the impacts of measurement error
in predictors in the context of linear models (Fuller, 1987). Most of this relies on
the classical error model, in which the observed (and error prone) predictor W is
related to the actual predictor X via the additive model

W ¼ XþU, (58)

in which U is a random variable with conditional (given X and other predictors
measured without error) mean zero and variance s2u: In the linear regression
model (8) with a single predictor X, regression of the outcome Y on the error-
contaminated W in Eq. (58) yields an attenuated estimate b
 of the true coeffi-
cient b; defined as E½YjX ¼ xþ 1� � E½YjX ¼ x�: The degree of attenuation is
described by the multiplicative factor

s2�
s2� þ s2u

o1. (59)

An additional impact of this type of measurement error is inflation of the residual
variance of the outcome, resulting in reduced precision of estimates. In practice,
the impact of measurement error in this context depends on a number of factors,
including the nature of the assumed measurement error model, presence of
additional predictors, and bias in W as an estimate of X.

In the case of non-linear models (e.g., generalized linear models with links
other than the identity), the effects of measurement error are more complex than
in the situation just described. Although these are usually manifested as
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attenuation in estimated coefficients and inflation of associated variances, the
nature of the bias depends on the model, the type of parameter, and the assumed
error model. The book by Carroll et al. (2006) provides broad coverage of this
topic for non-linear models.

Measurement error can also occur in the outcome variable Y. In the case of
linear models, this is generally handled via modifications of the conditional error
distribution. Approaches for non-linear models are discussed in Carroll et al.
(2006) and illustrated in Magder and Hughes (1997).

4.3. Missing data

For the medical services utilization example, consider a regression model for the
effect of depression on the cost of care. It is possible that some subjects may have
missing values for cost and/or depression, as measured by the BDI. The possible
causes for these missing values could be missed visits or declining to fill out a
sensitive item on a questionnaire. When the fact that the data are missing is
related to the outcomes of interest, loss of efficiency or serious distortion of study
results can occur. Therefore it is useful to classify the mechanism of missing data
to understand these relationships and to inform analytic approaches. An
exhaustive treatment is given by Little and Rubin (1986).

Denote the complete data as Yfull. In the example, this would be the values of
depression and cost of care on all subjects. The available values of cost and
depression are denoted by Yobs while the missing values are denoted as Ymiss. The
variable Ri indicates the pattern of missing data for subject i; in particular,
Ri ¼ (0,0) if both cost and BDI are available, (1, 0) if only cost is missing; (0, 1) if
only BDI is missing; and (1, 1) if both are missing. Let g(R;c) denote the dis-
tribution of R.

Missing data fall into three broad classes. Data are said to be missing com-
pletely at random (MCAR) if the distribution of R depends on neither Ymiss nor
Yobs: that is, g(R|Ymiss, Yobs; c) ¼ g(R;c). If the data are missing at random
(MAR) the distribution of R does not depend on Ymiss after conditioning on Yobs.
Formally, this implies that g(R|Ymiss, Yobs; c) ¼ g(R|Yobs; c). Both of these are
ignorable missing data mechanisms, in the sense, explained in more detail below,
that we can consistently estimate the regression parameters of interest without
loss of efficiency while ignoring g(R|Yobs; c). Otherwise, the data are said to have
a non-ignorable missing data mechanism, or to be missing not at random
(MNAR).

It can be shown that if data are MCAR, then naive approaches which just
delete observations with missing values (so-called complete case analyses) will
yield unbiased estimates. However, this can be quite inefficient if the number of
omitted observations is large. Further, the MCAR assumption is not credible in
many practical situations. Fortunately, it can be shown that for data which are
MAR, likelihood-based methods will yield correct inferences. This is because the
likelihood

fðYobs; hÞ ¼
Z

fðYobs;Ymiss; hÞdYmiss (60)
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is proportional to the full data log-likelihood

fðR;Yobs; hÞ ¼
Z

f Yobs;Ymiss; hð Þg RjY;Yobs;Ymiss; cð ÞdYmiss (61)

which under the MAR mechanism is then

Z
f Yobs;Ymiss; hð ÞgðRjYobs; cÞdYmiss (62)

which simplifies to the observed data likelihood

f Yobs; hð Þg RjYobs; cð Þ (63)

Provided there are no common elements in the parameter vectors h and c, we can
safely maximize Eq. (60) while ignoring g(R|Yobs; c). Many statistical approaches
are likelihood-based and thus can easily handle MAR data without modeling the
missing data mechanism.

In some cases, it is difficult to calculate or maximize the likelihood for the
observed data; however, it would be easy to calculate the likelihood estimates for
the complete data. In such cases, the EM algorithm (Dempster et al., 1977) is a
useful approach to ML estimation. The EM algorithm alternates between an E
(expectation) step and an M (maximization) step. In the E-step, we calculate the
expected values of the sufficient statistics (i.e., the data or data summaries) of the
complete data log-likelihood, conditional on the observed data and current
parameter estimates. Then in the M-step the parameters of the complete data
log-likelihood are maximized, using the expected values from the E-step. The
algorithm is iterated to convergence and produces parameter estimates which can
be shown to maximize the observed data log-likelihood.

To see how the EM algorithm might work, consider the exponential AFT
model for censored survival times presented in Section 3.2. When the survival
times are censored, the observed data consist of (Y, D, X), where Yi ¼ Ti, the
actual survival time, only for uncensored subjects (i.e. Di ¼ 1), and X is the
familiar matrix of predictors. In contrast, the full data are just (T, X). The log-
likelihood for the full data is

Xn
i¼1

log lþ x0ib� lTi expðx0ibÞ (64)

The more complicated log-likelihood for the observed data, Eq. (46), could be

maximized by repeated maximization of Eq. (64) using the EM algorithm. In the

pth iteration of the E-step, we calculate eTðpÞ; the expected value of T, given the
observed data and the current parameter estimates ðl̂ðpÞ; b̂ðpÞÞ: Under the expo-
nential AFT,

~T
ðpÞ
i ¼ E TijYi;Di;xi;l̂

ðpÞ
; b̂
ðpÞ� �

¼
Yi Di ¼ 1

Yi þ exp �x0ib̂
ðpÞ� �

=l̂
ðpÞ

Di ¼ 0

8<
: ð65Þ
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In the pth iteration of the M-step, updated parameter estimates ðl̂ðpþ1Þ; b̂ðpþ1ÞÞ
are obtained by maximizing Eq. (64) over the parameters, using eTðpÞ in place of T.
The two-step algorithm is iterated to convergence, yielding estimates ðl̂em; b̂emÞ
that maximize Eq. (46).

An alternative approach is to augment the data by multiple imputation
(Rubin, 1987; Schafer, 1999). In this method, we sample the missing values from
f{Yfull|Yobs}, resulting in several ‘‘completed’’ datasets, each of which is analyzed
using complete-data methods. Summary parameter estimates are found by aver-
aging over the estimates from each of the imputations; in addition, the averaged
standard errors are inflated by a function of the between-imputation variability
in the parameter estimates, to reflect that fact that some of the data are imputed,
not observed, and thus only known approximately. This approach can be used in
settings where the E-step is difficult to calculate analytically, as well as in MNAR
problems where the missingness mechanism can be specified.

Many techniques discussed in this chapter (e.g., generalized estimating equa-
tions) are not likelihood based. Robins et al. (1994) proposed an approach in
which an explicit model for the missingness is postulated. Weights inversely
proportional to the estimated probability that each subject is observed are then
incorporated explicitly in the analysis. This approach is adapted from classic
methods for survey sampling developed by Horvitz and Thompson (1952). By
incorporating the inverse weights, non-likelihood based methods such as GEE
are valid for MAR data.

Analysis of MNAR data requires detailed specification of the missing data
mechanism. Two alternative approaches stem from different decompositions
of the full-data likelihood. The decomposition Eq. (61) represents a so-called
selection model (Little, 1995), because the missingness or selection mechanism is
specified by g(R|Yobs,Ymiss;c); results are known to be sensitive to this specifi-
cation (Kenward, 1998). Under the alternative pattern mixture model, the com-
plete data likelihood is decomposed as

f R;Yobs; hð Þ ¼
Z

f 
 Yobs;YmissjR; h
ð Þg
 R; c
ð ÞdYmiss (66)

(Little, 1993). In this case summary parameter estimates are weighted averages
over the various missing data patterns. The two strategies are closely related but
pattern mixture models typically are more computationally feasible (Schafer and
Graham, 2002).

As an example of the pattern mixture model, consider a randomized placebo-
controlled trial of clopidogrel, an antiplatelet agent, administered in the first
24 hours following a mild stroke. One objective of the trial is to assess the effect
of clopidogrel on cognitive function, as measured by the Digit Symbols Substi-
tution Test (DSST). The DSST will be administered at enrollment, 1 month, and
3 months. Denote the DSST values for subject i by Y0i ¼ ðY0i;Y1i;Y2iÞ: Pattern
mixture models specify the distribution of Y conditional on the pattern of missing
data. Nearly all subjects will have a baseline DSST, so missing data will involve
missing values of Y1 and Y2. We again denote patterns of missing data by Ri, the
vector of missing data indicators, with values (0, 1, 0), (0, 0, 1), or (0, 1, 1), when
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the second, third, or both follow-up DSST values are missing, respectively. We
index those three patterns of missing data as M ¼ 1, 2, 3, respectively; subjects
with complete data (i.e., R ¼ (0, 0, 0)) are indexed as pattern M ¼ 0.

Then the pattern mixture model is the product of a multinomial model for M
and a model for f(Y|M). One possibility might be to estimate m ¼ E(Y) and
R ¼ cov(Y), the mean and variance of Y, the first of which can be expressed as

m ¼
X3
m¼0

mðmÞPðM ¼ mÞ: (67)

where l(m) ¼ E(Y|M ¼ m). The pattern mixture approach obtains MLEs of l
through likelihood-based estimates of the parameters of the mixture model (68).

The MLEs of P(M ¼ m) are just the observed frequencies of the missing
data patterns. However, the parameters l(m) are under-identified by this model.
For instance, there are no data on Y2 in the subsample with M ¼ 2, so
mð2Þ2 ¼ E(Y2|M ¼ 2) cannot be estimated. To estimate all parameters, identifying
restrictions must be imposed. For example, we might assume that the trend over
time is the same for M ¼ 2 as for M ¼ 1. Other potential restrictions encompass
the familiar MCAR and MAR assumptions; if the data are MCAR, the param-
eterization is simplified because l(m) and R(m) are identical for all patterns. It is
also possible to specify pattern mixture models which allow for more general
ignorable and non-ignorable missingness mechanisms (Little, 1993). An impor-
tant advantage of these models, especially compared with selection models, is the
fact that the identifying restrictions are explicitly specified. Furthermore, the
likelihoods for these models are straightforward to maximize as compared to
those for selection models.

The weighting approach described earlier can also be applied to MNAR data;
see Bang and Robins (2005) for a review. This approach is related to selection
models, but handles missingness using a weighted analysis. As before, data
points are weighted in inverse proportion to the estimated probability of being
observed.

4.4. Computing

Regression problems have been one of the major driving forces in many of the
recent advances in numerical computing. Books by Gentle (2005), Monahan
(2001), and Thisted (1988) cover many of these, and provide details on compu-
tational techniques used in many of the methods covered here.

The continued expansion in the number of software tools to perform statistical
analyses coupled with increases in the processing speed and capacity of modern
computer hardware has made what were once considered insurmountable tasks
practical even for many desktop machines. Major commercial statistical software
packages with extensive facilities for many of the regression methods described
here include SAS (SAS Institute Inc., 2005), Stata (StataCorp LP., 2005), SPSS
(SPSS Inc., 2006), and S-PLUS (Insightful Corporation, 2006). The R statistical
programming language (R Development Core Team, 2005) is public domain
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software most similar to S-PLUS. Despite substantial overlap in regression-
oriented features, these packages are quite different in terms of programming
style and user interface. SAS, SPSS, and Stata have generally more developed
and ‘‘user friendly’’ interfaces, while S-PLUS and R are more akin to interpreted
programming languages that provide many ‘‘canned’’ procedures, but also allow
great flexibility in user-defined functions (including support for linking with
external routines written in compiled languages such as C and FORTRAN).

Table 1 summarizes capabilities for many of the methods covered here.
Although all offer similar features for standard regression methods and gener-
alized linear models, the depth of coverage of more specialized techniques varies
considerably. In the area of mixed-effects regression, the MIXED and
NLMIXED procedures in SAS are more fully featured than competitors. Stata
is distinguished by the implementation of generalized estimating equation and
robust variance methods as an option with most of the included regression
commands. In addition, methods for bootstrap, jackknife, and permutation
testing are implemented in a very accessible way. Because of their extensibility
and the availability of a large range of procedures written by researchers,
S-PLUS and R tend to have more functionality in the areas of non-parametric
regression, smoothing methods, alternative variable selection procedures, and
approaches for dealing with missing data and measurement error.

In addition to the major packages covered here, there are a number of spe-
cialized software offerings that target particular regression methods or related
numerical computations. These include CART (Steinberg and Colla, 1995) soft-
ware for classification and regression tree methods and the LogXact (Mehta and
Patel, 1996) program for exact logistic regression. Additional packages that focus
more generally on numerical computation, but that also provide more limited
regression capabilities (and also support user-defined regression functions)
include Matlab (MathWorks, 2006), Mathematica (Wolfram Research Inc.,
2005), and Maple (Maplesoft, 2003).
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Count Response Regression Models

Joseph M. Hilbe and William H. Greene

Abstract

Count response regression models refer to regression models having a count as
the response; e.g., hospital length of stay, number of bacterial pneumonia cases
per zip code in Arizona from 2000 to 2005. Poisson regression is the basic
model of this class. Having an assumption of the equality of the distributional
mean and variance, Poisson models are inappropriate for many count-modeling
situations. Overdispersion occurs when the variance exceeds the nominal mean.
The negative binomial (NB2) is commonly employed to model overdispersed
Poisson data, but NB models can themselves be overdispersed. A wide variety
of alternative count models have been designed to accommodate overdispersion
in both Poisson and NB models; e.g., zero-inflated, zero-truncated, hurdle,
and sample selection models. Data can also be censored and truncated; spe-
cialized count models have been designed for these situations as well. In
addition, the wide range of Poisson and NB panel and mixed models has been
developed. In the chapter we provide an overview of the above varieties of count
response models, and discuss available software that can be used for their
estimation.

1. Introduction

Modeling counts of events can be found in all areas of statistics, econometrics,
and throughout the social and physical sciences. Some familiar applications
include:

� the incidence of diseases in specific populations,
� numbers of patents applied for,
� numbers of regime changes in political units,
� numbers of financial ‘incidents’ such as defaults or bankruptcies,
� numbers of doctor visits,
� numbers of incidents of drug or alcohol abuse, and so on.
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The literatures in all these fields and many more are replete with applications of
models for counts. The signature feature of all of these is that familiar linear
regression techniques that would relate the measured outcomes to appropriate
covariates – smoking and disease or research and development to patents for
examples – would not be applicable because the response variable is discrete, not
continuous. Nonetheless, a related counterpart to the familiar regression model is
a natural departure point. The Poisson regression model has been used through-
out the research landscape to model counts in applications such as these. The
Poisson model is a nonlinear, albeit straightforward and popular modeling tool.
It is ubiquitous enough that estimation routines are built into all well-known
contemporary computer programs. This chapter will survey models and methods
for analyzing counts, beginning with this basic tool.

The Poisson model provides the platform for modeling count data. Practical
issues in ‘real’ data have compelled researchers to extend the model in several
directions. The most fundamental extension involves augmenting the model to
allow amore realistic treatment of variation of the responses variable. The Poisson
model, at its heart, describes the mean of the response. A consequence of the
specification is that it implies a wholly unsatisfactory model for the variance of the
response variable. Models such as the NB model are designed to accommodate a
more complete description of the distribution of observed outcomes. Observed
data often present other forms of ‘nonPoissonness.’ An important example is the
‘excess zeros’ case. Survey data often contain more zero responses (or more of
some other responses) than would be predicted by a Poisson or a NB model. For
example, the incidence of hypertension in school age children, or credit card
default, are relatively rare events. The count response is amenable to modeling in
this framework; however, an unmodified Poisson model will underpredict the zero
outcome. In another interesting application, Poisson-like models are often used to
model family size; however, family size data in Western societies will often display
excess twos in the number of children, where, once again, by ‘excess’ we mean in
excess of what would typically be predicted by a Poissonmodel. Finally, other data
and situation-driven applications will call for more than one equation in the count
model. For example, in modeling health care system utilization, researchers often
profitably employ ‘two part models’ in which one part describes a decision to use
the health care system and a second equation describes the intensity of system
utilization given the decision to use the system at all.

This chapter will survey these count models. The analysis will proceed as
follows: Section 2 details the fundamental results for the Poisson regression
model. Section 3 discusses the most familiar extension of models for counts, the
NB model. Section 4 considers the types of broad model extensions suggested
above including the important extensions to longitudinal (panel) data. Section 5
presents several additional more specialized model extensions. Section 5 describes
some of the available software tools for estimation. Rather than collecting an
extended example in one place at the end of the survey, we will develop some
applications as part of the ongoing presentations. Our analyses are done with
LIMDEP statistical software. Section 5 describes this and a few other packages in
some more detail. Section 6 concludes.
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2. The Poisson regression model

The Poisson model derives from a description of how often events occur per unit
of time. Consider, for example, a service window at a bank, or an observer
watching a population for the outbreak of diseases. The ‘interarrival time’ is the
amount of time that elapses between events, for example, the duration between
arrivals of customers at the teller window or the amount of time that passes
between ‘arrivals’ of cases of a particular disease. If the interarrival time is such
that the probability that a new incident will occur in the next instant of time is
independent of how much time has passed since the last one, then the process is
said to be ‘memoryless.’ The exponential distribution is used to describe such
processes. Now, consider not the interarrival time, but the number of arrivals
that occur in a fixed length interval of time. Under the assumptions already
made, if the length of time is short, then the ‘Poisson’ distribution will be an
appropriate distribution to use to model the number of arrivals that occur during
a fixed time interval.1

More formally, suppose the process is such that the expected interarrival time
does not vary over time. Say y is this value. Then, the number of arrivals that can
be expected to arrive per unit of time is l ¼ 1/y. The distribution of the number
of arrivals, Y, in a fixed interval is the Poisson distribution

f ðYÞ ¼ Prob½Y ¼ y� ¼ expð�lÞly
y!

; y ¼ 0; 1; . . . ; l40. (1)

The Poisson model describes the number of arrivals per single unit of time.
Suppose that the observer observes T consecutive intervals. Then, the expected
number of arrivals would naturally be lT. Assuming the process is not changing
from one interval to the next, the appropriate distribution to model a window of
length T, rather than 1, would be

f ðYÞ ¼ Prob½Y ¼ y� ¼ expð�lTÞðlTÞy
y!

; y ¼ 0; 1; . . . ; l40. (2)

One can imagine a sampling process such that successive observers watched
the population or process for different amounts of time. The appropriate model
for the number of observed events in such a sample would necessarily have to
account for the different lengths of time. A sample of observations would be
(y1,T1),y (yN,TN). The joint observations would consist of an observed count
variable and an observed ‘exposure’ variable. (For reasons that are far from
obvious, such a variable is often called an ‘offset’ variable – see, e.g., the

1 Another way to develop the Poisson model from first principles is to consider a Bernoulli sampling

process in which the success probability, p, becomes small while the number of trials, T, becomes large

such that pT is constant. The limiting process of this binomial sampling scheme is the Poisson model.

By treating the ‘draws’ as specific short intervals of time, we can view this as an alternative view of the

exponential model suggested earlier.
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documentation for Stata or SAS.) An analogous process would follow if the
observation were designed so that each observation was based on a count of
occurrences in a group of size Ti, whereTi is allowed to differ from one observation
to another. Larger groups would tend to produce larger counts, not because the
process had changed, but because of the increased ‘exposure’ to the same process.

The Poisson random variable has mean

E½Y� ¼ lT (3)

and variance

Var½Y� ¼ lT. (4)

These are derived for the case T ¼ 1 in any basic statistics book. For con-
venience at this point, we will focus on that case as well. Where necessary, we will
reinstate the exposure as part of the model for a particular sampling process.
Note, in particular, that the variance equals the mean, a fact that will become
important in the next section of this survey.

To extend this model to a regression context, consider once again the health
application. For any group observed at random in a population in a given time
interval, suppose the Poisson model, is appropriate. To consider a concrete
example, suppose we observe new cancer cases per unit of time or per group. The
overall average number of cases observed per unit of time may be well described
with a fixed mean, l. However, for the assumed case, three significant comorbidity
factors, age, weight, and smoking, stand out as possible explanatory variables.
For researchers observing different populations in different places, one might
surmise that the parameter, l, which is the mean number of new cases per unit of
time, would vary substantively with these covariates. This brings us to the point of
‘model’ building, and, in particular, since we have surmised that the mean of the
distribution is a function of the covariates, regression modeling.

Precisely, how the covariates in the model should enter the mean is an
important question. Suppose we denote average age, average weight, and percent
who smoke in the different observed groups suggested by the example, for con-
venience, as (x1,x2,x3), it would be tempting to write the mean of the random
variable as

l ¼ b0 þ b1x1 þ b2x2 þ b3x3. (5)

However, a crucial feature of the model emerges immediately. Note in (1), and
for obvious reasons, l40. This is the mean of a nonnegative random variable. It
would not be possible to insure that the function in (5) is positive for all values of
the parameters and any data. The constraint is more important yet in view of (4).
The commonly accepted solution, and the conventional approach in modeling
count data, is to use

l ¼ expðb0xÞ, (6)
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where the vector notation is used for convenience, and b and x are assumed to
include a constant term.2

To summarize, then, the Poisson regression model that is typically used to
model count data is

f ðYjxÞ ¼ Prob½Y ¼ y� ¼ expð�lTÞðlTÞy
y!

; y ¼ 0; 1; . . . ;

l ¼ expðb0xÞ40. ð7Þ

This is a nonlinear regression which has conditional mean function

E ½Yjx� ¼ l ¼ expðb0xÞ (8)

and heteroskedastic conditional variance

Var½Yjx� ¼ l. (9)

2.1. Estimation of the Poisson model

The parameters of the nonlinear Poisson regression model, b, can, in principle, be
estimated by nonlinear least squares by minimizing the conventional sum of
squares. With a sample of N observations, (y1,x1),y, (yN,xN), we would min-
imize

SSðbÞ ¼
XN
i¼1
½yi � expðb0xi þ log TiÞ�2. (10)

However, maximum likelihood estimation is the method of most common choice
for this model. The log-likelihood function for a sample of N observations may
be characterized as

log LðbÞ
XN
i¼1

yiðb0xi þ log TiÞ � expðb0xi þ log TiÞ � logðyi!Þ. (11)

Note how the exposure variable enters the model, as if it were a covariate having
a coefficient of one. As such, accommodating data sets that are heterogeneous in
this respect does not require any substantial modification of the model or the
estimator. For convenience in what follows, we will assume that each observation
is made in an interval of one period (or one observation unit; Ti ¼ 1; lnTi ¼ 0).
As noted earlier, this is a particularly straightforward model to estimate, and it is
available as a built-in option in all modern software.

2 This implies that the model is a ‘log-linear’ model in the development of McCullagh and Nelder

(1983) – indeed, in the history of log-linear modeling, the Poisson model might reasonably be regarded

as the log-linear model. The Poisson model plays a central role in the development of the theory. As

we will not be exploring this aspect of the model in any depth in this review, we note this feature of the

model at this point only in passing.
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The conditional mean function for the Poisson model is nonlinear

E½yjx� ¼ expðb0xÞ. (12)

For inference purposes, e.g., testing for the significance of average weight in the
incidence of disease, the coefficients, b, provide the appropriate metric. For anal-
ysis of the behavior of the response variable, however, one typically examines the
partial effects

dðxÞ ¼ @E½yjx�
@x

¼ expðb0xÞ � b: (13)

As in any regression model, this measure is a function of the data point at which it
is evaluated. For analysis of the Poisson model, researchers typically use one of
the two approaches: The marginal effects, computed at the mean, or the center of
the data are

dð �xÞ ¼ @E½yj �x�
@ �x

¼ expðb0 �xÞ � b, (14)

where �x ¼ ð1=NÞSN
i¼1xi is the sample mean of the data. An alternative, commonly

used measure is the set of average partial effects,

�dðXÞ ¼ 1

N

XN
i¼1

@E½yjxi�
@xi

¼ 1

N

XN
i¼1

expðb0xiÞ � b. (15)

Although the two measures will generally not differ by very much in a practical
setting, the two measures will not converge to the same value as the sample size
increases. The estimator in (15) will converge to that (13) plus a term that depends
on the higher order moments of the distribution of the covariates.

We note two aspects of the computation of partial effects that are occasionally
overlooked in applications. Most applications of count models involve individual
level data. The typical model will involve dummy variables, for example, sex, race,
education, marital status, working status, and so on. One cannot differentiate
with respect to a binary variable. The proper computation for the partial effect of
a binary variable, say zi is

DðziÞ ¼ E½yjx; z ¼ 1� � E½yjx; z ¼ 0�.

In practical terms, the computation of these finite differences will usually pro-
duce results similar to those that use derivatives – the finite difference is a crude
derivative. Nonetheless, the finite difference presents the more accurate picture
of the desired result. Second, models often include nonlinear functions of the
independent variables. In our applications below, for example, we have a tezrm
b1AGE+b2AGE2. In this instance, neither coefficient, nor the associates marginal
effect, is useful by itself for measuring the impact of education. The appropriate
computation would be

dðAGEÞ ¼ expðb0xiÞ½b1 þ 2b2AGE�.
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2.2. Statistical inference

For basic inference about coefficients in the model, the standard trinity of
likelihood-based tests, likelihood ratio, Wald and Lagrange multiplier (LM), are
easily computed.3 For testing a hypothesis, linear or nonlinear, of the form

H0 : cðbÞ ¼ 0, (16)

the likelihood-ratio statistic is the obvious choice. This requires estimation of
b subject to the restrictions of the null hypothesis, for example, subject to the
exclusions of a null hypothesis that states that certain variables should have
zero coefficients – that is, that they should not appear in the model. Then, the
likelihood-ratio statistic is

w2½J� ¼ 2ðlog L� log L0Þ, (17)

where logL is the log-likelihood computed using the unrestricted estimator,
logL0 the counterpart based on the restricted estimator and the degrees of free-
dom, J, the number of restrictions (an example appears below).

Each predictor, including the constant, can have a calculated Wald statistic,
defined as [bj/SE(bj)]

2, which is distributed as w2. [bj/SE(bj)] defines both the t or z
statistic, respectively distributed as t or normal. For computation of Wald sta-
tistics, one needs an estimate of the asymptotic covariance matrix of the coeffi-
cients. The Hessian of the log-likelihood is

@2 logL

@b@b0
¼ �

XN
i¼1

lixix0i, (18)

where li ¼ exp(b0xi). Since this does not involve the random variable, yi, (18) also
gives the expected Hessian. The estimated asymptotic covariance matrix for the
maximum likelihood, based on the Hessian, is

VH ¼ Est:Asy:Var½b̂MLE� ¼
XN
i¼1

l̂ixix0i

" #�1
, (19)

where l̂i ¼ expðb̂0xiÞ: Although in practice, one normally uses the variance
matrices discussed in Section 2.4, a commonly used alternative estimator based
on the first derivatives is the BHHH, or outer products estimator,

VOPG ¼ Est:Asy:Var½b̂MLE� ¼
XN
i¼1
ðyi � l̂iÞ2xix0i

" #�1
. (20)

Researchers often compute asymptotic standard errors for their estimates of
the marginal effects. This is a moderately complicated exercise in some cases. The

3 The presentation here is fairly terse. For more detailed derivations of these results, the reader may

refer many of the sources that develop this model in detail, including Hilbe (2007), Winkelmann

(2003), or Greene (2003, Chapter 21).
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most straightforward case is based on (14). To use the delta method to estimate the
asymptotic covariance matrix for d̂ð �xÞ; we would require the Jacobian,

Ĝ ¼ @d̂ð �xÞ
@b̂

¼ l̂ð �xÞðIþ b̂ �x0Þ. (21)

Then, the desired asymptotic covariance matrix is computed using

Est:Asy:Var½d̂ð �xÞ� ¼ ĜVĜ
0
. (22)

The analogous computation can be done for the average partial effect in (15). To
do this, note that in the sample mean computed there, allN terms are based on the
same estimator of b. As such, the computation of an asymptotic analogous to (22)
must have N2 terms. The result will be

Est:Asy:Var½ �̂dðXÞ� ¼ 1

N2

XN
i¼1

XN
j¼1

ĜiVĜ
0
j. (23)

An alternative method of computing an asymptotic covariance matrix for such a
function of the estimated parameters suggested by Krinsky and Robb (1986) is to
sample from the estimated asymptotic variance distribution of and compute b̂ the
empirical variance of the observations on d̂ð �xÞ: This method does not appear to be
widely employed in this setting.

To compute a LM statistic, also referred to as a score test, we note that the
bracketed matrix (uninverted) in either (18) or (19) is an estimator of the
asymptotic covariance matrix of the score vector

gðbÞ ¼ @ logL

@b
¼
XN
i¼1

eixi, (24)

where ei is the generalized (as well as the simple) residual, ei ¼ yi�exp(b0xi). The
LM statistics for tests of restrictions are computed using the w2 statistic

LM ¼ gðb̂0Þ0½V0��1gðb̂0Þ, (25)

where b̂0 is the estimator of b with the restrictions imposed, and V0 is either of the
matrices in (18) or (19) evaluated at b̂0 (not b). In view of (24), the LM statistic
based on (19) has an interesting form

LM ¼
XN
i¼1

eixi

 !0 XN
i¼1

e2i xix
0
i

 ! XN
i¼1

eixi

 !

¼ i0XnðXn0XnÞ�1Xn0 i, ð26Þ

where i is a column of ones and X* a matrix of derivatives; each row is one of the
terms in the summation in (24). This is the NR2 in a linear regression of a column
of ones on the first derivatives, gi ¼ eixi.
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2.3. Fit and prediction in the Poisson model

Like any nonlinear model, the Poisson regression specification does not imply an
obvious counterpart to R2 for measuring the goodness of fit of the model to the
data. One measure that has become very popular is the

Pseudo� R2 ¼ 1� logL0

logL
, (27)

where logL0 is the log-likelihood for a model that contains only a constant and
logL the log-likelihood for the model as a whole. Note that for this measure to
‘work,’ the latter must actually contain a constant term. As happens in the linear
model as well, if the regression does not contain a constant, then fit measures,
such as these, can be negative or larger than one, depending on how they are
computed. By construction, the pseudo�R2 is between zero and one, and
increases toward one as variables are added to a model. Beyond that, it is difficult
to extend the analogy to the R2 in a linear model, since the maximum likelihood
estimation (MLE) in the Poisson model is not computed so as to maximize the fit
of the model to the data, nor does it correspond to a proportion of variation
explained. Nonetheless, it is current practice to report this statistic with one’s
other results.

Two other statistics related to the lack of fit of the model are often computed.
The deviance measure is

G2 ¼ 2
XN
i¼1

yi log
yi

l̂i

� �
(28)

(where it is understood that 0� log 0 ¼ 0). The Pearson goodness-of-fit statistic is

C2 ¼
XN
i¼1

ðyi � l̂iÞ2
l̂i

: (29)

The second of these resembles the familiar fit measure in discrete response analysis

C2
� ¼

XN
i¼1

ðObservedi � ExpectediÞ2
Expectedi

: (30)

Both of these statistics have limiting w2 distributions. They can be translated to
aggregate fit measures by dividing each by the counterpart measure that uses the
simple mean as the prediction. Thus,

R2
Deviance ¼ 1�

PN
i¼1

yi logðyi=l̂iÞ
PN
i¼1

yi logðyi= �yÞ
(31)

and
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R2
Pearson ¼ 1�

PN
i¼1
ðyi � l̂iÞ2=l̂i

PN
i¼1
ðyi � �yÞ2= �y

. (32)

We note, although there is no obvious counterpart to R2 in the linear model,
with regard to ‘explained variation,’ one can compute the correlation between the
actual and fitted values in the Poisson model easily enough by using the con-
ditional mean function as the prediction. The statistic would be

ry;l̂ ¼

PN
i¼1
ðyi � �yÞðl̂i � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
ðyi � �yÞ2PN

i¼1
ðl̂i � �yÞ2

s (33)

(where we have made use of the first-order condition,
�̂l ¼ �y).

The Wald, likelihood ratio and LM tests developed in Section 2.2 are used to
analyze the specification of the conditional mean function by testing restrictions
on the parameters. Nonnested (and nested) models are often compared on the
basis of the ‘information criteria’ statistics, which are, in the realm of maximum
likelihood estimation, rough counterparts to adjusted R2s. A frequently used
statistic is the Akaike information criterion (AIC),

AIC ¼ �2 logLþ 2K

N
, (34)

where K is the full number of parameters in the model (see Hardin and Hilbe,
2007; McCullagh and Nelder, 1989).

2.4. Specification testing and robust covariance matrix estimation

A crucial part of the specification of the Poisson model, the assumption that the
conditional mean and variance are equal (to li), cannot be tested in this fashion.
Nonetheless, this is generally viewed as the fundamental shortcoming of the
model, and is always subjected to close scrutiny. There are several ways of
addressing the question of over- (or under-) dispersion. Section 3 considers a
direct approach of specifying a more general model. Alternatively, one can begin
the analysis by examining the estimated Poisson model itself to ascertain whether
it satisfies the assumption. In the same manner that the squares of OLS regression
residuals can be examined for evidence of heteroskedasticity, the squared residuals
in the Poisson model can provide evidence of overdispersion. Cameron and
Trivedi (1990) suggested a pair of statistics to examine this relationship. In the
linear regression of zi ¼ ½ðyi � l̂iÞ2 � yi�=l̂

ffiffiffi
2

p
on wi ¼ gðl̂iÞ=l̂i

ffiffiffi
2

p
; if the equidis-

persion assumption of the model is correct, then the coefficient on wi should be
close to zero, regardless of the choice of g(.). The authors suggest two candidates
for gðl̂iÞ; l̂i; and l̂

2

i : A simple t-test of the restriction that the coefficient is zero is
equivalent to a test of the equidispersion hypothesis. (The literature contains many
other suggested tests, most based on this idea. See Hilbe (2007) or Winkelmann
(2003) for discussion of some others.)
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Another concern about the estimator of the model parameters is their robust-
ness to failures of the assumption of the model. Specifically, if the specification of
the Poisson model is incorrect, what useful information can be retained from the
MLE? For a certain failure of the assumptions, namely the equidispersion
restriction, the Poisson maximum likelihood estimator remains consistent. How-
ever, the estimated asymptotic covariance matrix based on (18) or (19) may miss-
estimate the appropriate matrix. An estimator based on both (18) and (19) – now
colorfully called the ‘sandwich estimator’ – solves the problem. The robust
covariance matrix based on this result is

Est:Asy:Var½b̂MLE� ¼
XN
i¼1

l̂ixix0i

" #�1 XN
i¼1
ðyi � l̂iÞ2xix0i

" # XN
i¼1

l̂ixix0i

" #�1
.

(35)

We emphasize, this is not a cureall for all possible model misspecification, and if
we do use (35), then the likelihood-ratio and LM tests in Section 2.2 are no longer
valid. Some, such as endogeneity of the covariates, missing variables, and many
others, render the MLE inconsistent. In these cases, ‘robust’ covariance matrix is a
moot point.

A related issue that gets considerable attention in the current literature is the
so-called ‘cluster effects.’ Suppose observations in the sample of N are grouped in
sets of Ni in some fashion such that observations within a group are correlated
with each other. Once again, we have to assume that in spite of this, the (now,
pseudo-) MLE remains consistent. [‘pseudo-’ is used since the cluster nature of the
data violates the iid assumption of likelihood theory.] It will follow once again
that the estimated asymptotic covariance matrix is inaccurate. A commonly used
alternative to (18) or (19) is related to (32). In the clustering case, the center matrix
in (35) is replaced with

C ¼
XG
r¼1

XNg

i¼1
ðgir � �grÞðgir � �grÞ0

" #
(36)

where there are G groups or clusters, the number of observations in cluster ‘r’ is
Nr, gir ¼ eirxir, and �gr ¼ ð1=NrÞ

PNr

i¼1gir:

2.5. An application

To illustrate this model (and several extensions), we will employ the data used in
the study by Ripahn et al. (2003). The raw data are published on the Journal of
Applied Econometrics data archive website, http://qed.econ.queensu.ca/jae/ 4

The .zip file contains the single data file rwm.data.5 The data file contains raw
data on variables (original names) (Table 1).

4 The URL for the data file is http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/

This URL provides links to a text file which describes the data, http://qed.econ.queensu.ca/jae/2003-

v18.4/riphahn-wambach-million/readme.rwm.txt and the raw data, themselves, which are in text form,

zipped in the file http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/rwm-data.zip.
5 Data handling and aspects of software usage are discussed in Section 5.
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The data file contains 27,326 observations. They are an unbalanced panel,
with group sizes ranging from 1 to 7 with frequencies T: 1 ¼ 1525, 2 ¼ 2158,
3 ¼ 825, 4 ¼ 926, 5 ¼ 1051, 6 ¼ 1000, and 7 ¼ 987. Additional variables created
in the data set included year dummy variables, sex ¼ female+1, and age2/1000.
For the purpose of this illustration, we are interested in the count variable
DOCVIS, which is the number of doctor visits in the last three months. A his-
togram of this variable appears in Fig. 1.

The model in Table 2 is based on the authors’ specification in the paper. The
estimator of the asymptotic covariance matrix is based on the second derivatives,
as in (18). The likelihood-ratio test of the hypothesis that all of the coefficients
are zero is computed using the log-likelihood for the full model, �89,431.01,
and the log-likelihood for the model that contains only the constant term,
�108,662.1. The w2 statistic of 38,462.26 is far larger than the 95% critical value
for the w2 distribution with 16 degrees of freedom, 26.29. There are two alter-
native methods of testing this hypothesis. The Wald statistic will be computed
using

W ¼ ðb̂0 � 0Þ½Est:Asy: Varðb̂0 � 0Þ��1ðb̂0 � 0Þ, (37)

Table 1

Data used in applications

id person – identification number

female female ¼ 1; male ¼ 0

year calendar year of the observation

age age in years

hsat health satisfaction, coded 0 (low) – 10 (high)

handdum handicapped ¼ 1; otherwise ¼ 0

handper degree of handicap in percent (0–100)

hhninc household nominal monthly net income in German marks/

1000

hhkids children under age 16 in the household ¼ 1; otherwise ¼ 0

educ years of schooling

married married ¼ 1; otherwise ¼ 0

haupts highest schooling degree is high school; degree ¼ 1;

else ¼ 0

reals highest schooling degree is college degree ¼ 1; else ¼ 0

fachhs highest schooling degree is technical degree ¼ 1; else ¼ 0

abitur highest schooling degree is trade school ¼ 1; otherwise ¼ 0

univ highest schooling degree is university degree ¼ 1;

otherwise ¼ 0

working employed ¼ 1; otherwise ¼ 0

bluec blue collar employee ¼ 1; otherwise ¼ 0

whitec white collar employee ¼ 1; otherwise ¼ 0

self self employed ¼ 1; otherwise ¼ 0

beamt civil servant ¼ 1; otherwise ¼ 0

docvis number of doctor visits in last three months

hospvis number of hospital visits in last calendar year

public insured in public health insurance ¼ 1; otherwise ¼ 0

addon insured by add-on insurance ¼ 1; otherwise ¼ 0
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where b̂0 is all coefficients save the intercept (the latter 16 of them) and
Est:Asy:Varðb̂0 � 0Þ is the 16� 16 part of the estimated covariance matrix that
omits the constant term. The result is 41,853.37, again with 16 degrees of freedom.
As before, this is far larger than the critical value, so the hypothesis is rejected.
Finally, the LM statistic is computed according to (18) and (23), giving a value of
44,346.59. As is typical, the three statistics are reasonably close to one another.

The coefficient estimates are shown at the left of the table. Standard tests of the
hypothesis that each is zero are shown in the third column of results. Most of the
individual significance tests decisively reject the hypothesis that the coefficients are
zero, so the conclusions drawn above about the coefficient vector as a whole are
not surprising. The partial effects reported at the right of the table are average
partial effects, as defined in (15), with standard errors computed using (22). As
these are a straightforward multiple of the original coefficient vector, conclusions
drawn about the impacts of the variables on the response variable follow those
based on the estimate of b. The multiple, 3.1835 is, in fact, the sample mean of the
response variable. (This is straightforward to verify. The necessary condition for
maximization of logL in (24) implies that Siei ¼ Si(yi�li) ¼ 0 at the MLE. The
claimed result follows immediately. Note that this does not occur if the model does
not contain a constant term – the same result that occurs in a linear regression
setting.) As noted earlier, since AGE enters this model nonlinearly, neither the
coefficients nor the partial effects for AGE or AGESQ give the right measure for
the impact of AGE. The partial effects evaluated at the means would be

dð �x;AGEÞ ¼ ðb3 þ 2b4AGE=1000Þ � expðb0 �xÞ, (37a)

which we compute at the mean of age of 43.5256898. The resulting estimate is
0.012924. In order to compute a standard error for this estimator, we would use

Fig. 1. Histogram of doctor visits.
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the delta method. The required derivatives are (g1, g2,y, g17), where all 17 com-
ponents equal dð �x;AGEÞ times the corresponding element of �x save for the third
and fourth (corresponding to the coefficients on AGE and AGE2/1000, which are

g3 ¼ @dð �x;AGEÞ=@b3 ¼ lð �x;AGEÞ þ dð �x;AGEÞ �AGE (37b)

g4 ¼ @dð �x;AGEÞ@b4 ¼ lð �x;AGEÞ þ 2AGE=1000

þ dð �x;AGEÞ �AGE
2
=1000. ð37cÞ

The estimated standard error is 0.001114. (There is a large amount of variation
across computer packages in the ease with which this kind of secondary com-
putation can be done using the results of estimation.)

These data are a panel, so, in fact, the motivation for the cluster robust
covariance matrix in (32) or (33) would apply here. These alternative estimates of
the standard errors of the Poisson regression coefficients are given in Table 2. As is

Table 2

Estimated Poisson regression model

Coeff. Std. Err. b/Std. Err. Robust SE Cluster SE Partial Effect SE Partiala

Constant 2.48612758 .06626647 37.517 .17631321 .21816313 0. 0.

FEMALE .28187106 .00774175 36.409 .02448327 .03106782 .89734351 .03529496**

AGE �.01835519 .00277022 �6.626 .00804534 .00983497 �.05843420 .01121654**

AGESQ .26778487 .03096216 8.649 .09134073 .11183550 .85249979 .12576669**

HSAT �.21345503 .00141482 �150.871 .00449869 .00497983 �.67953940 .01375581**

HANDDUM .09041129 .00963870 9.380 .02960213 .02873540 .28782659 .03917770**

HANDPER .00300153 .00017626 17.029 .00057489 .00073815 .00955544 .00073483**

MARRIED .03873812 .00881265 4.396 .02752875 .03325271 .12332377 .03558146**

EDUC �.00342252 .00187631 �1.824 .00489031 .00639244 �.01089568 .00756284

HHNINC �.16498398 .02291240 �7.201 .06072932 .07060708 �.52523061 .09283605**

HHKIDS �.09762798 .00862042 �11.325 .02555567 .03154185 �.31080111 .03519498**

SELF �.23243199 .01806908 �12.864 .05225385 .06470690 �.73995303 .07402117**

BEAMT .03640374 .01921475 1.895 .04994140 .06426340 .11589220 .07745533

BLUEC �.01916882 .01006783 �1.904 .02922716 .03577130 �.06102440 .04058392

WORKING .00041819 .00941149 .044 .02808178 .03266767 .00133132 .03792298

PUBLIC .14122076 .01565581 9.020 .03926803 .04593042 .44957981 .06360250**

ADDON .02584454 .02544319 1.016 .05875837 .06596606 .08227672 .10253177

a ** indicates the ratio of estimate to standard error as larger than 2.0.

Diagnostic Statistics for Poisson Regression

Number of observations 27,326

Log-likelihood function �89,431.01
Restricted log-likelihood �10,8662.1
w2 38,462.26

Akaike information criterion 6.54673

McFadden pseudo R2 .176981

w2 based on Pearson residuals 184,919.711

R2 based on Pearson residuals .3345

G2 based on deviance 25,823.429

R2 based on deviance .2341

Overdispersion test: g ¼ li 22.899

Overdispersion test: g ¼ l2i 23.487
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clearly evident, these are substantially larger than the ‘pooled’ counterparts. While
not a formal test, these results are strongly suggestive that the Poisson model as
examined so far should be extended to accommodate these data.

The two Cameron and Trivedi tests of overdispersion also strongly suggest
that the equidispersion assumption of the Poisson model is inconsistent with the
data. We will pursue this now, in the next section. Together, these results are
convincing that the specification of the Poisson model is inadequate for these
data. There are two directions to be considered. The overdispersion tests suggest
that a model that relaxes this restriction, such as the NB model discussed below,
should be considered. The large increase in the standard errors implied by the
cluster corrected estimator would motivate this researcher to examine a formal
panel data specification, such as those detailed in Section 4.

3. Heterogeneity and overdispersion

The test results in the preceding example that suggest overdispersion in the
Poisson model are typical – indeed it is rare not to find evidence of over- (or
under-) dispersion in count data. The equidispersion assumption of the model is
a fairly serious shortcoming. One way to approach the issue directly is to allow
the Poisson mean to accommodate unmeasured heterogeneity in the regression
function. The extended model appears

E ½yjx; �� ¼ expðb0xþ �Þ; Cov½x; �� ¼ 0, (38)

where the unmeasured e plays the role of a regression disturbance. More to the
point here, it plays the role of the unmeasured heterogeneity in the Poisson model.
How the model evolves from here depends crucially on what is assumed about the
distribution of e. In the linear model, a normal distribution is typically assumed.
That is possible here as well (see ESI, 2007), however, most contemporary
applications use the log-gamma density to produce an empirically manageable
formulation. With the log-gamma assumption, as we show below, the familiar NB
model emerges for the unconditional (on the unobserved e) distribution of the
observed variable, y. The NB model has become the standard device for accom-
modating overdispersion in count data since its implementation into commercial
software beginning with LIMDEP (1987), Stata Corp. (1993), and SAS (1998).

3.1. The negative binomial model

The Poisson model with log-gamma heterogeneity may be written

fðyijxi; uiÞ ¼ Prob½Y ¼ yijxi; ui�

¼ expð�liuiÞðliuiÞyi
yi!

; y ¼ 0; 1; . . . . ð39Þ

The log-gamma assumption for e implies that ui ¼ exp(ei) has a gamma dis-
tribution. The resulting distribution is a Poisson-gamma mixture model. The
gamma noise, which is mixed with the Poisson distribution, is constrained to
have a mean of one. The conditional mean of yi in (38), given the gamma
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heterogeneity, is therefore given as liui rather than the standard Poisson mean, li.
(We can thus see that this will preserve the Poisson mean, li, but induce
additional variation, which was the purpose.) In order to estimate the model
parameters (and use the model), it must be written in terms of the observable
variables (so that we can construct the likelihood function). The unconditional
distribution of yi is obtained by integrating ui out of the density. Thus,

f ðyijxiÞ ¼
Z
n

f ðyijxi; uiÞgðuiÞ dui

¼
Z
u

expð�liuiÞðliuiÞyi
yi!

gðuiÞ dui; yi ¼ 0; 1; . . . : ð40Þ

The gamma density is a two-parameter distribution; g(u) ¼ [yg/G(g)] exp(-yu)
ug�1. The mean is g/y, so to impose the restriction that the mean is equal to one, we
set g ¼ y. With this assumption, we find the unconditional distribution as

f ðyijxiÞ ¼
Z 1

0

expð�liuiÞðliuiÞyi
Gðyi þ 1Þ

yy

GðyÞ expð�yuiÞu
y�1
i dui; yi ¼; 0; 1; . . . .

(41)

The variance of the gamma distribution is g/y2 ¼ 1/y, so the smaller is y, the
larger is the amount of overdispersion in the distribution. (Note we have used the
identity yi! ¼ G(yi+1).) Using properties of the gamma integral and a bit of
manipulation, we can write this as.

f ðyijxiÞ ¼
Gðyi þ yÞ

Gðyi þ 1ÞGðyÞ
y

li þ y

� �y li
li þ y

� �yi

; yi ¼ 0; 1; . . . . (42)

By dividing all terms by y, we obtain another convenient form,

f ðyijxiÞ ¼
Gðyi þ yÞ

Gðyi þ 1ÞGðyÞ
1

1þ ðli=yÞ

� �y

1� 1

1þ ðli=yÞ

� �yi

; y ¼ 0; 1; . . . .

(43)

By defining the dispersion parameter a ¼ 1/y so that there will be a direct
relationship between the model mean and a, we can obtain another convenient
form of the density,

f ðyijxiÞ ¼
Gðyi þ 1=aÞ

Gðyi þ 1ÞGð1=aÞ
1

1þ ali

� �1=a ali
1þ ali

� �yi

; y ¼ 0; 1; . . . .

(44)

One of the important features of the NB model is that the conditional mean
function is the same as in the Poisson model,

E ½yijxi� ¼ li. (45)

The implication is that the partial effects are computed the same way.
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3.2. Estimation of the negative binomial model

Direct estimation of the NB model parameters (b,a) can be done easily with a few
modern software packages including LIMDEP, Stata, and SAS. The likelihood
equations for the algorithm are revealing

@ logL

@b
¼
XN
i¼1

ðyi � liÞ
1þ ali

� �
xi ¼ 0. (46)

We can see immediately, as might be expected, that these are not the same as for
the Poisson model, so the estimates will differ. On the other hand, note that as a
approaches zero, the condition approaches that for the Poisson model – a point
that will become important below. The other necessary condition for estimation
is the derivative with respect to a,

@ logL

@a
¼
XN
i¼1

1

a2
logð1þ aliÞ � log

Gðyi þ 1=aÞ
Gð1=aÞ

� �� �
� yi � li

að1þ aliÞ

� �� �
.

(47)

Second derivatives or outer products of the first derivatives can be used to
estimate the asymptotic covariance matrix of the estimated parameters. An exam-
ple appears below.

3.3. Robust estimation of count models

The conditional mean in the mixture model is E[yi|xi,ui] ¼ liui. By a simple
application of the law of iterated expectations, we find E[yi|xi] ¼ Eu[liui|ui] ¼
liE[ui] ¼ li. (Since the terms are independent, the mean is just the product of
the means.) The fact that the conditional mean function in the NB model is the
same as in the Poisson model has an important and intriguing implication. It
follows from the result that the Poisson MLE is a generalized mixed models
(GMM) estimator for the NB model. In particular, the conditional mean result
for the NB model implies that the score function for the Poisson model,

g ¼
X

i
ðyi � liÞxi (48)

has mean zero even in the presence of the the overdispersion. The useful result for
current purposes is that as a consequence, the Poisson MLE of b is consistent even
in the presence of the overdispersion. (The result is akin to the consistency of
ordinary least squares in the presence of heteroskedastic errors in the linear model
for panel data.) The PoissonMLE is robust to this kind of model misspecification.
The asymptotic covariance matrix for the Poisson model is not appropriate,
however. This is one of those rare instances in which the increasingly popular
‘robust’ covariance matrix (see (35)) is actually robust to something specific that
we can identify. The upshot of this is that one can estimate the parameters, an
appropriate asymptotic covariance matrix, and appropriate partial effects for the
slope parameters of the NB model just by fitting the Poisson model and using (32).
Why then would one want to go the extra distance and effort to fit the NB model?
One answer is that the NB estimator will be more efficient. Less obvious is that we
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do not have a test with demonstrable power against the equidispersion hypothesis
in the Poisson model. With the NB model, we can begin to construct a test
statistic, though as shown below, new problems do arise.

3.4. Application and generalizations

Table 3 presents both Poisson and negative binomial estimates of the count
model for doctor visits. As anticipated, the estimates do differ noticeably. On the
other hand, we are using quite a large sample, and both sets of estimates are
consistent. The large differences might make one suspect that something else is
amiss with the model; perhaps a different specification is called for, and neither
estimator is consistent. Unfortunately, this cannot be discerned internally based
on just these estimates, and a more detailed analysis would be needed. In fact, the
differences persist in the partial effects – in some cases, these are quite large as
well. We might add here that there is an efficacy gain from the NB2 model since
the standard errors are roughly 25% less than the heteroskedasticity-robust
standard errors for the Poisson.

Testing for the specification of the NB model against that of the Poisson model
has a long and wide history in the relevant literature (see Anscombe, 1949; Blom,
1954). Unfortunately, none of the tests suggested, save for the Cameron and
Trivedi tests used earlier, are appropriate in this setting. These tests include the
LM tests against the negative binomial for overdispersed data, and against the
Katz system for underdispersed data. Hilbe (2007) discusses a generalized Poisson
which can also be used for underdispersed data. Regardless, the problem is that
the relevant parameter, a, is on the edge of the parameter space, not in its interior.
The test is directly analogous to a test for a zero variance. In practical terms, the
LM test cannot be computed because the covariance matrix of the derivatives is
singular at a ¼ 0. The Wald and likelihood-ratio tests can be computed, but
again, there is the issue of the appropriate distribution for the test statistic. It is
not w2(1). For better or worse, practitioners routinely compute these statistics in
spite of the ambiguity.6 It is certainly obvious that the hypothesis a ¼ 0 would be
rejected by either of these tests.

Table 3 also presents robust standard errors for the NB model. For the pooled
data case, these differ only slightly from the uncorrected standard errors. This is
to be expected, since the NB model already accounts for the specification failure
(heterogeneity) that would be accommodated by the robust standard errors. This
does call into question why one would compute a robust covariance matrix for
the NB model. Any remaining violation of the model assumptions is likely to
produce inconsistent parameter estimates, for which robust standard errors
provide dubious virtue.

The literature, mostly associating the result with Cameron and Trivedi’s
(1986) early work, defines two familiar forms of the NB model. Where

li ¼ expðb0xiÞ, (49)

6 Stata reports one half the standard w2[1] statistic. While this surely is not the appropriate test

statistic, one might surmise that it is a conservative result. If the hypothesis that a ¼ 0 is rejected by

this test, it seems extremely that it would not be rejected by the appropriate w2 test, whatever that is.
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the Negbin 2 or NB-2 form of the probability is the one we have examined thus
far

ProbðY ¼ yijxiÞ ¼
Gðyþ yiÞ

GðyÞGðyi þ 1Þ u
y
i ð1� uiÞyi , (50)

where ui ¼ y/(y+li) and y ¼ 1/a. This is the default form of the model in most (if
not all) of the received statistics packages that provide an estimator for this
model. The signature feature of the model is the relationship between the mean
and the variance of the model,

Var½yijxi� ¼ li½1þ alP�1i �. (51)

Thus, when a ¼ 0, we revert to the Poisson model. The model considered thus far
has P ¼ 2, hence the name NB-2. The Negbin 1 form of the model results if y in
the preceding is replaced with yi ¼ yli. Then, ui becomes u ¼ y/(1+y), and the
density becomes

ProbðY ¼ yijxiÞ ¼
Gðyli þ yiÞ

GðyliÞGðyi þ 1Þw
ylið1� wÞyi , (52)

where w ¼ y/(y+1). In this instance, P ¼ 1, and the model is one of a more pure
form of overdispersion,

Var½yijxi� ¼ li½1þ a�. (53)

Note that this is not a simple reparameterization of the model – it is a NB model
of a different form. The general Negbin P or NB-P model is obtained by allowing
P in (51) to be a free parameter. This can be accomplished by replacing y in (50)
with yl2�P. For convenience, let Q ¼ 2�P. Then, the density is

ProbðY ¼ yijxiÞ ¼
GðylQi þ yiÞ

GðylQi ÞGðyi þ 1Þ
ylQi

ylQi þ li

 !ylQ
i l

ylQi þ li

 !yi

.

(54)

(As of this writing, this model is only available in LIMDEP.) The table following
the parameter estimates shows this specification analysis for our application.
Though the NB-1 and NB-2 specifications cannot be tested against each other,
both are restricted cases of the NB-P model. The likelihood-ratio test is valid in
this instance, and it decisively rejects both models (see Hilbe, 1993; Hilbe, 1994;
Lawless, 1987; Long and Freese, 2006).

4. Important extensions of the models for counts

The accommodation of overdispersion, perhaps induced by latent unobserved
heterogeneity, is arguably the most important extension of the Poisson model for
the applied researcher. But, other practicalities of ‘real’ data have motivated
analysts to consider many other varieties of the count models. We will consider
four broad areas here that are often encountered in received data: censoring and
truncation, zero inflation, two part models, and panel data applications. In this
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section, we will turn to a sample of more exotic formulations that are part of the
(very large) ongoing frontier research.

4.1. Censoring and truncation

Censoring and truncation are generally features of data sets that are modified as
part of the sampling process. Data are censored when values in certain ranges of
the distribution of outcomes are collapsed into one (or fewer) values. For exam-
ple, we can see in Fig. 1 for the doctor visits data that the distribution of out-
comes has an extremely long (perhaps implausibly so) right tail. Perhaps if one
were skeptical of the data gathering process, or even if just to restrict the in-
fluence of outliers, they might recode all values above a certain value, say 15 in
those data, down to some upper limit (such as 8). Values in a data set may be
censored at either or both tails, or even in ranges within the distribution (see, e.g.,
Greene’s (2003, pp. 774–780) analysis of Fair’s (1978) data on extramarital
affairs). The most common applications of censoring in counts will, however,
involve recoding the upper tail of the distribution, as suggested in our example.

Truncation, in contrast, involves not masking a part of the distribution of
outcomes, but discarding it. Our health care data suggest two possibilities. The
number of zeros in our data is extremely large, perhaps larger than a Poisson
model could hope to predict. One (perhaps not very advisable, but we are speak-
ing theoretically here) modeling strategy might be simply to discard those zeros,
as not representative. The distribution that describes the remaining data is trun-
cated – by construction, only values greater than zero will be observed. In fact, in
many quite reasonable applications, this is how data are gathered. In environ-
mental and recreation applications, researchers are often interested in numbers of
visits to sites. Data are gathered on site, so, again, by construction, it is not
possible to observe a zero. The model, however, constructed, applies only to value
1,2, .... One might, as well truncate a distribution at its upper tail. Thus, in our
data set, again referring to the histogram in Fig. 1, rather than censor the values
larger than 15, we might just discard them. The resulting distribution then applies
to the values 0,1, ..., 15, which is a truncated distribution.

Estimation of count models for censored or truncated distributions requires a
straightforward extension of the base model. We illustrate for the Poisson case,
but by a simple change of the function, the results can be extended to negative
binomial or, in fact, any other specification.

The applicable distribution for the random variable that is censored is formed
by using the laws of probability to produce a density that sums to one. For
example, suppose the data are censored at an upper value, U. Thus, any actual
value that is U or larger is recorded as U. The probability distribution for this set
of outcomes is

f ðYjxiÞ ¼ Prob½Y ¼ yjxi� ¼
expð�liÞlyi

y!
; y ¼ 0; 1; . . . ;U� 1;

Prob½Y ¼ Ujxi� ¼
P1
u¼U

expð�liÞlui
u!

; li ¼ expðb0xiÞ40:
(55)
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The log-likelihood is formulated by using these probabilities for the observed
outcomes. Note that the upper tail involves an infinite number of terms. This is
transformed to a finite sum by noting that

Prob½Y ¼ Ujxi� ¼ 1� Prob½YoUjxi�. (56)

(For a detailed development of this result, see Econometric Software, Inc.,
2007, Chapter 25). There are three important implications of this specification:

� Estimation of the model ignoring the censoring produces an inconsistent
estimator of b. The result is precisely analogous to ignoring censoring in the
linear regression model (see Greene, 2003, Chapter 22)

� Under this specification, the mean of Y is no longer li. It is easy to see based on
how the model is constructed that the mean must be less than li. Intuitively,
large values are being converted into small ones, so this must shrink the mean.
(The opposite would be true if the censoring were in the lower tail.)

� Because the conditional mean is affected by the censoring, the partial effects
are also. A full development of the appropriate partial effects is fairly com-
plicated (see, again, Econometric Software, Inc. (ESI), 2007). The end result is
that the censoring dampens the partial effects as well.

The analysis here parallels the development of the censored regression (Tobit)
model for continuous data. See Terza (1985) for extensive details. (An alternative
representation of censoring in count models in terms of discrete survival models
can be found in Hilbe (2007).)

The truncation case is handled similarly. In this case, the probability distribu-
tion must be scaled so that the terms sum to one over the specified outcomes.
Suppose, for example, that the distribution is truncated at lower value L. This
means that only values L+1, L+2, ... appear in an observed sample. The appro-
priate probability model would be

f ðYjxiÞ ¼ Prob½Y ¼ yjxi� ¼
expð�liÞlyi
	 


=y!

Prob½Y4L� ; y ¼ Lþ 1;Lþ 2; . . . ,

li ¼ expðb0xiÞ40. ð57Þ

Once again, we use complementary probabilities to turn infinite sums into finite
ones. For example, consider the common case of truncation at zero. The appli-
cable distribution for the observed counts will be

f ðYjxiÞ ¼ Prob½Y ¼ yjxi� ¼
expð�liÞlyi
	 


=y!

Prob½Y40�

¼ expð�liÞlyi
	 


=y!

1� Prob½Y ¼ 0�

¼ expð�liÞlyi
	 


=y!

1� expð�liÞ
; Y ¼ 1; 2; . . . . ð58Þ

As in the censoring case, truncation affects both the conditional mean and the
partial effects. (A detailed analysis appears in ESI, 2007.) Note, finally, these (and
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the cases below) are among those noted earlier in which computing a ‘robust’
covariance matrix does not solve the problem of nonrobustness. The basic MLE
that ignores the censoring or truncation is inconsistent, so it is not helpful to
compute a robust covariance matrix.

To demonstrate these effects, we continue the earlier application of the Poisson
model. Table 4 shows the impact of censoring at 8 in the distribution. This masks
about 10% of the observations, which is fairly mild censoring. The first set of
results in the table at the left is based on the original uncensored data. The center
set of results is based on the censored data, but ignore the censoring. Thus, the
comparison to the first set shows the impact of ignoring the censoring. There is no
clear generality to be drawn in the table, because it is clear that some of the
changes in the coefficients are quite large, while others are quite small. The partial
effects, however, tell a somewhat different story. These change quite substantially.
Note, for example, that the estimated partial effect of income (HHNINC) falls by
80% while that of children (HHKIDS) falls by half. The third set of results in
Table 4 is based on the corrected likelihood function. In principle, these should
replicate the first set. We see, however, that for these data, the full MLEs for the
censored data model actually more closely resemble those for the estimator that
ignored the censoring. One might expect this when the censoring is only a small
part of the distribution. The impact of the censoring is likely to be more severe
when a larger proportion of the observations are censored.

Table 5 repeats the calculations for the truncation at zero case. The zeros are
37% of the sample (about 10,200), so we would expect a more noticeable impact.
Indeed, the effect of ignoring the truncation is quite substantial. Comparing the
left to the center set of estimates in Table 5, we see that some coefficients change
sign, while others change considerably. The third should replicate the first. How-
ever, truncating 37% of the distribution quite substantively changes the distri-
bution, and the replication is not particularly good. One might suspect, as we
explore below, that the data process that is producing the zeros actually differs
from that underlying the rest of the distribution.

Hilbe (2007) developed a survival parameterization of the censored Poisson
and NB models. Rather than having cut points below or above which censored
observations fall, and observation in the data may be censored. Characterized
after traditional survival models such as the Cox proportional hazards model and
parametric survival models such as exponential, Weibull, gamma, log-logistic,
and so forth, the censored Poisson and censored NB response is parameterized in
terms of a discrete count. For example, a typical count response in health care
analysis is hospital length of stay data. The response we have been using for our
examples, number of patient visits to the hospital, is also appropriate for mode-
ling censored count models. If various counts are lost to a length of stay study
after reaching a certain time in the hospital, these counts may be considered as
right censored. In modeling LOS data, it is important to take into account the
days that were counted for particular patients, even though records are lost
thereafter.

Survival parameterized censored count models will differ from what has been
termed (Hilbe, 2007) the econometric parameterization as earlier discussed in that
the values of censored responses are not recast to the cut level. This method
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changes the values of censored data. Table 6 shows the results of survival censored
Poisson and NB models using the same data as in Tables 4 and 5. Note the much
better fit using the censored negative binomial. The AIC and BIC statistics have
significantly lower values than the Poisson. Derivation of the respective likeli-
hoods as well as a discussion of both methods can be found in Hilbe (2007).
Supporting software is at http://ideas.repec.org/s/boc/bocode.html or at http://
econpapers.repec.org/software/bocbocode/.

4.2. Zero inflation

The pattern in Fig. 1 might suggest that there are more zeros in the data on
DOCVIS than would be predicted by a Poisson model. Behind the data, one
might, in turn, surmise that the data contain two kinds of respondents, those who
would never visit a doctor save for extreme circumstances, and those who reg-
ularly (or even more often) visit the doctor. This produces a kind of ‘mixture’
process generating the data. The data contain two kinds of zeros: a certain zero
from individuals who never visit the physician and an occasional zero from
individuals who for whatever reason, did not visit the doctor that period, but
might in some other. (The pioneering study of this kind of process is Lambert’s
(1992) analysis of process control in manufacturing – the sampling mechanism
concerned the number of defective items produced by a process that was either
under control (y always zero) or not under control (y sometimes zero).)

The probability distribution that describes the outcome variable in a zero-
inflated Poisson (ZIP) or zero-inflated negative binomial (ZINB) model is built up
from first principles: The probability of observing a zero is equal to the prob-
ability that the individual is in the always zero group plus the probability that the
individual is not in that group times the probability that the count process pro-
duces a zero anyway. This would be

Prob½y ¼ 0� ¼ Qþ ½1�Q� � Pð0Þ, (59)

where Q is the regime probability and P(0) the Poisson, negative binomial, or
other probability for the zero outcome in the count process. The probability of a
nonzero observation is, then

Prob½y ¼ j40� ¼ ½1�Q� � PðjÞ. (60)

It remains to specify Q, then we can construct the log-likelihood function. Various
candidates have been suggested (see ESI, 2007, Chapter 25); the most common is
the logistic binary choice model,

Qi ¼ Prob½Regime 0�

¼ expðc0ziÞ
1þ expðc0ziÞ

, ð61Þ

where zi is a set of covariates – possibly the same as xi that is believed to influence
the probability of the regime choice and c is a set of parameters to be estimated
with b.
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The log-likelihood for this model based on the Poisson probabilities is

logL ¼
X
yi¼0

log
expðc0ziÞ

1þ expðc0ziÞ
þ expð�liÞ

1þ expðc0ziÞ

� �

þ
X
yi40

log
expð�liÞlyii

1þ expðc0ziÞ½ �yi!

� �
. ð62Þ

This formulation implies several new complications. First, its greater complexity is
apparent. This log-likelihood function is much more difficult to maximize than that
for the Poisson model. Second, the conditional mean function in this model is now

E ½yjx; z� ¼ Qili ¼
expðc0ziÞ expðb0xiÞ

1þ expðc0ziÞ
, (63)

which is much more involved than before, and involves both the original covariates
and the variables in the regime model. Partial effects are correspondingly more
involved;

@E ½yjx; z�

@
x

z

� � ¼ liQi

b

Qið1�QiÞc

 !
. (64)

If there is any overlap between x and z, the partial effect of that variable is the sum of
the two effects shown.

The zero inflation model produces a substantial change in the specification of
the model. As such, one would want to test the specification if possible. There is
no counterpart to the LM test that would allow one to test the model without
actually estimating it. Moreover, the basic model is not a simple restricted version
of the ZIP (ZINB) model. Restricting g to equal zero in the model above, for
example produces Q ¼ 1/2, not Q ¼ 0, which is what one would hope for. Com-
mon practice is to use the Vuong (1989) test for these nonnested models. The
statistic is computed as follows, based on the log-likelihood functions for the two
models. Let logLi0 be an individual contribution (observation) in the log-
likelihood for the basic Poisson model, and let logLi1 denote an individual
contribution to the log-likelihood function for the zero inflation model. Let
mi ¼ (logLi1�logLi0). The statistic is

Z ¼
ffiffiffiffi
N

p
�m

sm
(65)

where �m ¼ ð1=NÞSimi and sm ¼ ð1=NÞSiðmi � �mÞ2: In large samples, the statistic
converges to standard normal. Under the assumption of the base model, Z will be
large and negative, while under the assumption of the zero inflation model, Z will
be large and positive. Thus, large positive values (greater than 2.0) reject the
Poisson model in favor of the zero inflation model.

To illustrate the ZIP model, we extend the Poisson model estimated earlier
with a regime splitting equation

Qi ¼ Lðg1 þ g2FEMALEþ g3HHNINCþ g4EDUCþ g5ADDONÞ,
(66)

where L(t) is the logistic probability shown in (60). The estimated model is shown
in Table 7.
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The log-likelihood for the ZIP model is �77,073.779 compared to �89,431.005
for the Poisson model, which implies a difference of well over 12,000. On this basis,
we would reject the Poisson model. However, as noted earlier, since the models are
not nested, this is not a valid test. The Vuong statistic is +39.08, which does
decisively reject the Poisson model. One can see some quite large changes in the
results, particularly in the marginal effects. These are different models. On the
specific point of the specification, the estimation results (using LIMDEP) indicate
that the data contain 10,135 zero observations. The Poisson model predicts 2013.6
zeros. This is computed by multiplying the average predicted probability of a zero
across all observations times the sample size. The zero inflation model predicts
9581.9 zeros, which is, as might be expected, much closer to the sample proportion.

4.3. Two part models

Two models that are related to the zero inflation model, hurdle models and
sample selection models play important roles in the contemporary literature. A
hurdle model (Mullahy, 1986) specifies the observed outcome as the result of two
decisions, a participation equation and a usage equation. This is a natural variant
of the ZIP model considered above, but its main difference is that the regime split
is not latent. The participation equation determines whether the count will be
zero or positive. The usage equation applies to the positive count outcomes.
Thus, the formal model determining the observed outcomes is

Probðy ¼ 0Þ ¼ Ri;

Probðy40Þ ¼ 1� Ri;

Prob½y ¼ jjy40�½1� Ri�PiðjÞ=½1� Pið0Þ�:
(67)

The participation equation is a binary choice model, like the logit model used in
the previous section. The count equation is precisely the truncated at zero model
detailed in Section 4.1. This model uses components that have already appeared.
The log-likelihood function separates the probabilities into two simple parts:

logL ¼
X
y¼0

logRi

þ
X
y40

log½1� Ri� � log½1� Pið0Þ� þ logPiðjÞ. ð68Þ

The four terms of the log-likelihood partition into two log-likelihoods,

logL ¼
X
d¼0

logRi þ
X
d¼1

log½1� Ri�

þ
X
d¼1

logPiðjÞ � log½1� Pið0Þ�, ð69Þ

where the binary variable di equals zero if yi equals zero and one if yi is greater
than zero. Notice that the two equations can be estimated separately: a binary
choice model for di and a truncated at zero Poisson (or negative binomial) model
for the positive values of yi.
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We shall illustrate this model with the same specification as the ZIP model.
The hurdle equation determines whether the individual will make any visits to the
doctor. Then, the usage equation is, as before, a count model for the number of
visits. This model differs from the ZIP model in that the main equation applies
only to the positive counts of doctor visits. Not surprisingly, the model results are
quite similar. The hurdle model and the zero inflation model are quite similar
both in the formulation and in how the models are interpreted (Table 8).

Models for sample selection differ considerably from the frameworks we have
considered so far. Loosely, while the two part models considered so far concern
the utilization decision, the sample selection models can be viewed as a two part
model in which the first involves a decision whether or not to be in the observed
sample. A second crucial aspect of the model is that the effects of the first step are
taken to operate on the unmeasured aspects of the usage equation, not directly in
the specified equations.

To put this in a context, suppose we hypothesize that in our health care data,
individuals who have insurance make their utilization decisions differently from
those who do not, in ways that are not completely accounted for in the observed
covariates. An appropriate model might appear as follows:

Insurance decision ð0=1Þ ¼ Fða0wi þ uiÞ, (70)

where wi is the set of measured covariates and ui is the unmeasured element of the
individual’s decision to have insurance. Then, the usage equation holds that

Doctor visits ðcountÞ ¼ Gðb0xi þ �iÞ, (71)

where ei accounts for those elements of the usage decision that are not directly meas-
uredby the analyst. The second equation ismotivated by the same considerations that
underlie the overdispersionmodels, such as theNBmodel. There can be unmeasured,
latent elements in the usage equation that influence the outcome, but are not observ-
able by the analyst. In our earlier application, this induced overdispersion, whichwas
easily accommodated by extending the Poisson model to the NB framework. The
effect is more pernicious here. If our estimation sample for the count variable con-
tained only those individuals who have insurance, and if the unmeasured effects in the
two equations are correlated, then the sampling mechanism becomes nonrandom. In
effect, under these assumptions, the variables wi will be acting in the background to
influence the usage variable, and will distort our estimates of b in that equation.7

It is a bit ambiguous how the unmeasured aspects of the usage decision should
enter the model for the count outcome. Note there is no ‘disturbance’ in (7)–(9). On
the other hand, the presence of the latent heterogeneity in the overdispersion
models in Section 3 provides a suitable approach. The following two part model for
a count variable embodies these ideas:

z�i ¼ a0wi þ ui,

zi ¼ 1 if z�i 40; 0 otherwise ða standard binary choice modelÞ ð72Þ

7 In Greene (1994), this method is used to model counts of derogatory reports in credit files for a

sample of individuals who have, in an earlier screening, applied for a specific credit card. The second

step of the analysis is applied only to those individuals whose credit card application was approved.
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Prob½yi ¼ jjzi ¼ 1; xi; �i� ¼ Pðb0xi þ s�iÞ ðPoisson count modelÞ, (73)

where the data for the count model are only observed when zi ¼ 1, e.g., only for
the insured individuals in the larger sample. The first equation is the participation
equation. The second is the usage equation. The model is made operational by
formal distributional assumptions for the unobserved components; (ui,ei) are ass-
umed to be distributed as joint standard normal with correlation r. It is the
nonzero r that ultimately induces the complication of the selection effect.

Estimation of this model is considerably more involved than those considered
so far. The presence of the unobserved variable makes familiar maximum like-
lihood methods infeasible. The model can be estimated by maximum simulated
likelihood. (Development of the method is beyond the scope of our presentation
here. Readers may refer to Greene (1994, 2003 or 2006) or ESI (2007) for details.)
To illustrate the selection model, we have estimated a restricted version of the
count model used earlier for doctor visits; the participation equation for whether
or not the individual has PUBLIC health insurance is based on

w ¼ ðConstant;AGE;HHNINC;HHKIDS;EDUCÞ. (74)

The usage equation includes

x ¼ ðConstant;AGE;FEMALE;HHNINC;HHKIDS,

WORKING;BLUEC; SELF;BEAMTÞ: ð75Þ
The estimates are given in Table 9. The leftmost estimates are obtained by the
Poisson regression model ignoring the selection issue. The point of comparison is
the second set of results for the Poisson model. (These are computed jointly with
the probit equation at the far right of the table.) It can be seen that the effect of the
selection correction is quite substantial; the apparently significant income effect in
the first equation disappears; the effect of kids in the household becomes consid-
erably greater; the positive and significant effect of BLUEC becomes negative and
significant; and the insignificant BEAMT coefficient changes sign and becomes
significant in the modified equation. Apparently, the latent effect of the insurance
decision is quite important in these data. The estimate of r is �.3928, with a
standard error of .0282. Based on a simple t-test, we would decisively reject the
hypothesis of no correlation, which reinforces our impression that the selection
effect in these data is indeed substantial. The fairly large negative estimate sug-
gests that the latent effects that act to increase the likelihood that the individual
will have insurance act in turn to reduce the number of doctor visits. A theory
based on moral hazard effects of insurance would have predicted a positive
coefficient, instead.

4.4. Panel data

The health care data we have been using are a panel. Data sets such as this one
are becoming increasingly common in applications of count models. The main
virtues of panel data are that they allow a richer specification of the model that
we have been using so far, and they allow, under suitable assumptions, the
researcher to learn more about the latent sources of heterogeneity that are not
captured by the measured covariates already in the model. We shall examine the
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two most familiar approaches here, fixed effects and random effects. A wider
variety of panel models is presented in Stata and ESI (2007). As suggested by the
application, we assume that the sample contains N individuals, indexed by
i ¼ 1, ...,N. The number of observations available for each individual is denoted
Ti; this may vary across individuals, as it does in our data set. [Note that Ti is
used here differently than in Section 2.1.]

In general terms, the availability of panel data allows the analyst to incorporate
individual heterogeneity in the model. For the fixed effects case, this takes the
form of an individual-specific intercept term.

log lit ¼ ai þ b0xitðþ�it for the negative binomial modelÞ. (76)

where ai can be interpreted as the coefficient on a binary variable, di, which
indicates membership in the ith group. A major difference between this and the
linear regression model is that this model cannot be fit by least squares using
deviations from group means – the transformation of the data to group mean form
in this context brings no benefits at all. Two approaches are used instead. One
possibility is to use a conditional maximum likelihood approach – the model con-
ditioned on the sum of the observations is free of the fixed effects and has a closed
form that is a function of b alone. This is provided for both Poisson and negative
binomial (see Hausman et al., 1984). A second approach is direct, brute force
estimation of the full model including the fixed effects. The unconditional estimator
is obtained by a direct maximization of the full log-likelihood function and
estimating all parameters including the group-specific constants. A result that is
quite rare in this setting is that for the Poisson model (and few others), the con-
ditional and unconditional estimators are numerically identical. The choice of
approach can be based on what feature is available in the computer package one is
using. The matter is more complicated in the NB case. The conditional estimator
derived in HHG is not the same as the brute force estimator. Moreover, the un-
derlying specifications are different. In HHGs specification, the fixed effect
(dummy variable) coefficients appear directly in the distribution of the latent het-
erogeneity variable, not in the regression function as shown above. Overall, the
fixed effects, negative binomial (FENB) appears relatively infrequently in the count
data literature. Where it does occur, current practice appears to favor the HHG
approach.

We note before turning to random effects models two important aspects of
fitting FE models. First, as in the linear regression case, variables in the equation
that do not differ across time become collinear with the individual-specific dummy
variables. Thus, FE models cannot be fit with time invariant variables. (There is
one surprising exception to this. The HHG FENB models can be fit with a full set
of individual dummy variable and an overall constant – a result which collides
with familiar wisdom. The result occurs because of the aforementioned peculiarity
of the specification of the latent heterogeneity.) The second aspect of this model is
relatively lightly documented phenomenon known as the incidental parameters
problem (see Greene, 1995). The full unconditional maximum likelihood estima-
tor of models that contain fixed effects is usually inconsistent – the estimator is
consistent in T (or Ti), but T is usually taken to be fixed and small. The Poisson
model is an exception to this rule, however. It is consistent even in the presence of
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the fixed effects. (One could deduce this from the discussion already. The brute
force estimator would normally suffer from the incidental parameter problem.
But, since it is numerically identical to the conditional estimator, which does not,
the brute force estimator must be consistent as well.)

The random effects model is

log lit ¼ b0xit þ ui. (77)

Once again, the approach used for the linear model, in this case, two-step
generalized least squares, is not usable. The approach is to integrate out the
random effect and estimate by maximum likelihood the parameters of the result-
ing distribution (which, it turns out, is the NB model when the kernel is Poisson
and the effect is log-gamma). The bulk of the received literature on random effects
is based on the Poisson model, though HHG and modern software (e.g.,
LIMDEP and Stata) do provide estimators for NB models with random effects.

The random effects model for the count data framework is

log lit ¼ b0xit þ ui; i ¼ 1; . . . ;N; t ¼ 1; . . . ;Ti, (78)

where ui is a random effect for the ith group such that exp(ui) has a gamma
distribution with parameters (y,y). Thus, E [exp(ui)] has mean 1 and variance
1/y ¼ a. This is the framework, which gave rise to the NB model earlier, so that,
with minor modifications, this is the estimating framework for the Poisson model
with random effects.

For the NB model, Hausman et al. proposed the following approach: We begin
with the Poisson model with the random effects specification shown above. The
random term, ui is distributed as gamma with parameters (yi,yi), which produces
the NB model with a parameter that varies across groups. Then, it is assumed that
yi/(1+yi) is distributed as beta (an,bn), which layers the random group effect onto
the NB model. The random effect is added to the NB model by assuming that the
overdispersion parameter is randomly distributed across groups. The two random
effects models discussed above may be modified to use the normal distribution for
the random effect instead of the gamma, with ui�N[0,s2]. For the Poisson model,
this is an alternative to the log-gamma model which gives rise to the negative
binomial.

Table 10 displays estimates for fixed and random effects versions of the Poisson
model, with the original model based on the pooled data. Both effects models lead
to large changes in the coefficients and the partial effects. As usually occurs, the FE
model brings the larger impact. In most cases, the fit of the model will improve
dramatically – this occurs in linear models as well. The pooled model is a restric-
tion on either of the panel models. Note that the log-likelihood function has risen
from �89,431 in the pooled case to �45,480 for the FE model. The w2 statistic for
testing for the presence of the fixed effects is about 87,900 with 7292 degrees of
freedom. The 95% critical value is about 7500, so there is little question about
rejecting the null hypothesis of the pooled model. The same result applies to the
random effects model. The fixed effects and random effects are not nested, so one
cannot use a likelihood-ratio test to test for which model is preferred. However,
the Poisson model is an unusual nonlinear model in that the FE estimator is
consistent – there is no incidental parameters problem. As such, in the same fashion
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as in the linear model, one can use a Hausman (1978) (see also Greene, 2003,
Chapter 13) test to test for fixed vs. random effects. The appropriate statistic is

H ¼ ðb̂FE � b̂REÞ0½Est:Varðb̂FEÞ � Est:Varðb̂REÞ��1ðb̂FE � b̂REÞ. (79)

(Note the constant term is removed from the random effects results.) Applying this
computation to the models in Table 10 produces a w2 statistic of 114.1628. The
critical value from the table, with 16 degrees of freedom is 26.296, so the hypothesis
of the random effects model is rejected in favor of the FE model.

Texts providing a thorough discussion of fixed and random effects models and
generalized estimating equations (GEE) with an emphasis in health analysis
include Zeger et al. (1988), Hardin and Hilbe (2003), Twist (2003), and Hilbe
(2007). Texts discussing multilevel count models include Skrondal and Rabe-
Hesketh (2005). Hilbe (2007) is the only source discussing multilevel NB models.

5. Software

Count response regression models include Poisson and NB regression, and all of
the enhancements to each that are aimed to accommodate some violation in the
distributional assumptions of the respective models. The most commonly used
extended Poisson and NB models include zero-truncated, zero-inflated, and panel
data models. Hurdle, sample selection, and censored models are used less fre-
quently, and thus find less support in commercial software. The heterogeneous
NB regression is a commonly used extension that has no Poisson counterpart.
Other count model extensions that have been crafted have found support in
LIMDEP, which has far more count response models available to its users than
other commercial software.

LIMDEP and Stata are the only commercial statistical packages that provide
their respective users with the ability to model Poisson, negative binomial, as well
as their extensions. LIMDEP offers all of the enhanced models mentioned in this
chapter, while Stata offers most of the models, including both base models,
NB-1, zero-truncated and zero-inflated Poisson and negative binomial, a full
suite of count panel data models, mixed models, and heterogeneous negative
binomial. Stata users have written hurdle, censored, sample selection, and
Poisson mixed model procedures. Both software packages provide excellent free
technical support, have exceptional reference manual support with numerous
interpreted examples, and have frequent incremental upgrades.

Unfortunately, other commercial programs provide limited support for count
response models. SAS has Poisson and negative binomial as families within its
SAS/STAT GENMOD procedure, SAS’s generalized linear models (GLM) and
GEE facility. SAS also supports Poisson panel data models. SPSS provides no
support for count response regression models, but is expected to release a GLM
program in its next release, thereby providing the capability for Poisson regression.
GENSTAT supports Poisson and NB regression, together with a variety of
Poisson panel and mixed models.

R is a higher language statistical software environment that can be freely
downloaded from the web. It enjoys worldwide developmental and technical
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support from members of academia as well as from statisticians at major research
institutions or agencies. R statistical procedures are authored by users; thus its
statistical capabilities depend entirely on the statistical procedures written and
filed in user-supported R libraries. Although R has a rather complete suite of
statistical procedures, it is at present rather weak in its support of count response
models. R has software support for Poisson and NB regression, but not for any
of the extensions we have discussed. A basic NB-2 model in R is provided as part
of the MASS software package, based on the work of Venables and Ripley
(2002). We expect, though, that this paucity of count response model offerings is
only temporary and that most if not all of the extensions mentioned in this
chapter will be available to users in the near future.

Other commercial statistical software either fails to support count response
models, or provides only the basic models, and perhaps a GEE or fixed/random
effects Poisson panel data module.

When evaluating software for its ability to model counts, care must be taken
to check if the model offered has associated goodness-of-fit statistics and if it
allows the user to generate appropriate residuals for model evaluation. Several
of the software packages referenced in the previous paragraph may offer Poisson
or NB regression, yet fail to provide appropriate fit statistics in their output.
A model without fit analysis is statistically useless, and fosters poor statistical
practice.

A caveat should be given regarding NB regression capability from within the
framework of GLM. Since GLMs are one-parameter models, and the negative
binomial has two parameters to estimate, the heterogeneity parameter, a, must be
entered into the GLM algorithm as a constant. If the software also has a full
maximum likelihood NB procedure, one may use it to obtain an estimate of a, and
then insert it into the GLM negative binomial algorithm as the heterogeneity
parameter constant. The value of adopting this two-stage procedure is that GLM
procedures typically have a variety of goodness-of-fit output and residual analysis
support associated with the procedure. Model evaluation may be enhanced.
On the other hand, software such as LIMDEP provides extensive fit and residual
support for all of its count regression models, thereby making the two-stage
modeling task unnecessary. We advise the user of statistical software to be aware
of the capability, as well as the limitations, of any software being used for modeling
purposes.

With the increased speed of computer chips and the availability of cheap
RAMs has made available the ability of statistical software to estimate highly
complex models based on permutations. Cytel Corp has recently offered users of
its LogXact program, the ability to model Poisson regression based on exact
statistics. That is, the procedure calculates parameter estimate standard errors,
and hence confidence intervals, based on exact calculations, not on traditional
asymptotics. This is a particularly valuable tool when modeling small or ill-
defined data sets. Software such as SAS, SPSS, Stata, and StatXact have exact
statistical capabilities for tables, but only LogXact and Stata (version 10) provide
exact statistical support for logistic and Poisson models. Cytel intends to extend
LogXact to provide exact NB regression, but as of this writing the research has
not yet been done to develop the requisite algorithms.
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We have provided an overview of the count response regression capabilities
currently available in commercial statistical software. LIMDEP and Stata stand
far above other packages in the number of count models available, but also in
their quality; i.e., providing a full range of goodness-of-fit statistics and residuals.
As the years pass, other software vendors will likely expand their offerings to
include most of the count models discussed in this chapter. As we mentioned
before though, before using statistical software to model count responses, be
certain to evaluate its fit analysis capability as well as its range of offerings.

6. Summary and conclusions

We have surveyed the most commonly used models related to the regression of
count response data. The foundation for this class of models is Poisson regres-
sion. Though it has provided the fundamental underpinning for modeling counts,
the equidispersion assumption of the Poisson model is a severe limitation. This
shortcoming is generally overcome by the NB model, which can be construed as
the unconditional result of conditioning the Poisson regression on unobservable
heterogeneity, or simply as a more general model for counts that is not limited by
the Poisson assumption on the variance of the response variable. We also con-
sidered the most common extensions of these two basic count models: zero
inflation models, sample selection, two part (hurdle) models, and the most
familiar panel data applications. The applications presented above focused on
the Poisson model, though all of them have been extended to the NB model as
well. The basic models are available in most commercial software packages, such
as Stata, LIMDEP, GENSTAT, and SAS. The more involved extensions tend to
be in more limited availability, with the most complex count response models
only supported in LIMDEP and Stata.

The literature, both applied and theoretical, on this subject is vast. We have
omitted many of the useful extensions and theoretical frontiers on modeling
counts. (See, e.g., Winkelmann (2003), which documents these models in over 300
pages, Hilbe (2007), which provides detailed examples, most related to health
data, for each major count response model, particularly all of the varieties of NB
regression, or Cameron and Trivedi (1998), which has been a standard text on
count response models, but emphasizes economic application.) Recent develop-
ments include many models for panel data, mixed models, latent class models, and
a variety of other approaches. Models for counts have provided a proving ground
for development of an array of new techniques as well, such as random param-
eters models and Bayesian estimation methods.

References

Anscombe, F.J. (1949). The statistical analysis of insect counts based on the negative binomial dis-

tribution. Biometrics 5, 165–173.

Blom, G. (1954). Transformations of the binomial, negative binomial, Poisson, and w2 distributions.
Biometrika 41, 302–316.

Cameron, A., Trivedi, P. (1986). Econometric models based on count data: Comparisons and

applications of some estimators and tests. Journal of Applied Econometrics 1, 29–54.

J. M. Hilbe and W. H. Greene144



Cameron, A., Trivedi, P. (1990). Regression based tests for overdispersion in the Poisson model.

Journal of Econometrics 46, 347–364.

Cameron, C., Trivedi, P. (1998). Regression Analysis of Count Data. Cambridge University Press, New

York.

Econometric Software, Inc (1987). LIMDEP, version 4, Plainview, NY.

Econometric Software, Inc (2007). LIMDEP and NLOGIT. Plainview, New York.

Fair, R. (1978). A theory of extramarital affairs. Journal of Political Economy 86, 45–61.

Greene, W. (1994). Accounting for excess zeros and sample selection in Poisson and negative binomial

regression models. Working Paper No. EC-94-10, Department of Economics, Stern School of

Business, New York University.

Greene, W. (1995). Sample selection in the Poisson regression model. Working Paper No. EC-95-6,

Department of Economics, Stern School of Business, New York University.

Greene, W. (2003). Econometric Analysis, 5th ed. Prentice-Hall, Englewood Cliffs.

Greene, W. (2006). A general approach to incorporating selectivity in a model. Working Paper No.

EC-06-10, Stern School of Business, Department of Economics.

Hardin, J., Hilbe, J. (2003). Generalized Estimating Equations. Chapman & Hall/CRC, London, UK.

Hardin, J., Hilbe, J. (2007). Generalized Linear Models and Extensions, 2nd ed. Stata Press, College

Station, TX.

Hausman, J. (1978). Specification tests in econometrics. Econometrica 46, 1251–1271.

Hausman, J., Hall, B., Griliches, Z. (1984). Economic models for count data with an application to

the patents–R&D relationship. Econometrica 52, 909–938.

Hilbe, J. (1994). Negative binomial regression., Stata Technical Bulletin STB-18, sg16.5.

Hilbe, J. (2007). Negative binomial regression. Cambridge University Press, Cambridge, UK.

Hilbe, J.M. (1993). Log negative binomial regression as a generalized linear model. Technical Report

COS 93/94-5-26, Department of Sociology, Arizona State University.

Hilbe, J.M. (1994). Generalized linear models. The American Statistician 48(3), 255–265.

Krinsky, I., Robb, A.L. (1986). On approximating the statistical properties of elasticities. Review of

Economics and Statistics 68, 715–719.

Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing.

Technometrics 34(1), 1–14.

Lawless, J.F. (1987). Negative binomial and mixed Poisson regression. The Canadian Journal of

Statistics 15(3), 209–225.

Long, J.S., Freese, J. (2006). Regression Models for Categorical Dependent Variables using Stata, 2nd

ed. Stata Press, College Station, TX.

McCullagh, P., Nelder, J. (1983). Generalized Linear Models. Chapman & Hall, New York.

McCullagh, P., Nelder, J.A. (1989). Generalized Linear Models, 2nd ed. Chapman & Hall, New York.

Mullahy, J. (1986). Specification and testing of some modified count data models. Journal of Econo-

metrics 33, 341–365.

Rabe-Hesketh, S., Skrondal, A. (2005).Multilevel and Longitudinal Modeling Using Stata. Stata Press,

College Station, TX.

Ripahn, R., Wambach, A., Million, A. (2003). Incentive effects in the demand for health care: A

bivariate panel count data estimation. Journal of Applied Econometrics 18(4), 387–405.

SAS Institute (1998). SAS. SAS Institute, Cary, NC.

Skrondal, A., Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling. Chapman & Hall/

CRC, Boca Raton, FL.

Stata Corp., (1993, 2006). Stata. Stata Corp., College Station, TX.

Terza, J. (1985). A Tobit type estimator for the censored Poisson regression model. Economics Letters

18, 361–365.

Twist, J. (2003). Applied Longitudinal Data Analysis for Epidemiology. Cambridge University Press,

Cambridge, UK.

Vuong, Q. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica

57, 307–334.

Venables, W., Ripley, B. (2002). Modern Applied Statistics with S, 4th ed. Springer, New York.

Winkelmann, R. (2003). Econometric Analysis of Count Data, 4th ed. Springer, Heidelberg, Germany.

Zeger, S.L., Liang, K-Y., Albert, P.S. (1988). Models for longitudinal data: A generalized equation

approach. Biometrics 44, 1049–1060.

Count response regression models 145



Handbook of Statistics, Vol. 27

ISSN: 0169-7161

r 2007 Elsevier B.V. All rights reserved

DOI: 10.1016/S0169-7161(07)27008-7

5

Mixed Models

Matthew J. Gurka and Lloyd J. Edwards

Abstract

This paper provides a general overview of the mixed model, a powerful tool for
analyzing correlated data. Numerous books and other sources exist that cover
the mixed model comprehensively. However, we aimed to provide a relatively
concise introduction to the mixed model and describe the primary motivations
behind its use. Recent developments of various aspects of this topic are dis-
cussed, including estimation and inference, model selection, diagnostics, miss-
ing data, and power and sample size. We focus on describing the mixed model
as it is used for modeling normal outcome data linearly, but we also discuss its
use in other situations, such as with discrete outcome data. We point out
various software packages with the capability of fitting mixed models, and
most importantly, we highlight many important articles and books for those
who wish to pursue this topic further.

1. Introduction

1.1. The importance of mixed models

Why mixed models? Simply put, mixed models allow one to effectively model
data that are not independent. Of course, such a statement is quite general, and
the actual use of mixed models varies widely across fields of study. Data suited
for analysis via mixed models usually have some multilevel or hierarchical
organization (hence mixed models are often times referred to as multilevel or
hierarchical models). This usually means that this kind of data can be organized
into different levels, or clusters. Observations made within a cluster are usually
assumed to be dependent, whereas clusters themselves are assumed to be inde-
pendent of one another.

One may wonder what kind of data lend themselves to such a cluster
arrangement. The most convenient and common example of this sort of hierar-
chical organization is longitudinal data, in which observations are collected over
time on a subject. Obviously characteristics unique to that subject or individual
dictate that multiple observations collected over time on that individual will be
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correlated. Because of this, mixed models have become one common method for
analyzing many types of longitudinal data, particularly from medical research.

But, mixed model analysis is by no means limited to longitudinal studies.
Mixed models are often used in settings in which data are collected on families,
schools, or hospitals. In using the individuals that comprise those groups, it is
recommended that one take into account the natural correlation of those indi-
viduals from the same family, school, or hospital, depending on the motivation of
the analysis. Mixed models can accommodate data from such studies easily and
in a straightforward fashion that is easy to interpret.

Our aim for this chapter was to generally introduce the mixed model for the
reader who is not an expert on such an analysis tool. In doing so, we describe the
main aspects of the model, such as estimation and inference. We also discuss
areas of research within the mixed model that are ongoing, such as model selec-
tion and power analysis. Our main goal was to provide a fairly comprehensive
and current reference to textbooks, journal articles, and other sources of infor-
mation that give details on more specific topics related to the mixed model for the
reader who wishes to learn more about this popular method of analyzing data.

1.2. ‘‘Mixed’’ models

In introducing mixed models, one should discuss what makes a model ‘‘mixed.’’
A model is ‘‘mixed’’ because it contains different types of effects to be estimated:
namely, ‘‘fixed’’ effects and ‘‘random’’ effects. What sets apart a mixed model
from a typical univariate or multivariate model is the addition of the random
effects. While introducing the concept of linear mixed models, it is most straight-
forward to discuss with reference to linear models. However, mixed models can
be applied to nonlinear models as well, and this concept will be introduced later.

In the case of the univariate linear model, the following form is typically
observed:

y ¼ Xbþ �. (1)

Here, we are fitting a model to data from N sampling units (subjects), considered
to be independent of one another. In model (1), y is the (N� 1) vector of
responses from the N subjects, X the (N� p) design matrix of known variables,
b a (p� 1) vector of fixed, unknown parameters, and e the (N� 1) vector whose
rows represent unobservable random variables that capture the subject-specific
deviation from the expected value. So, each row of y, X, and e correspond to a
subject. Typically, the rows of e are assumed to be normally distributed with
mean 0 and common variance s2; i.e., � � N ð0;s2IÞ:

Now, the linear mixed model, in the common form developed by Laird and
Ware (1982) for longitudinal data analysis, is as follows:

yi ¼ Xibþ Zibi þ ei. (2)

Here, i2{1,y,m}, where m is the number of independent sampling units (sub-
jects), yi an ni� 1 vector of observations on the ith subject; Xi an ni� p known,
constant design matrix for the ith subject with rank p; b a p� 1 vector of
unknown, constant population parameters; Zi an ni� q known, constant design
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matrix for the ith subject with rank q corresponding to bi, a q� 1 vector of
unknown, random individual-specific parameters (the ‘‘random effects’’); and ei
an ni� 1 vector of random ‘‘within-subject,’’ or ‘‘pure,’’ error terms.

Additionally, let eI ¼ Zibi+ei be the ‘‘total’’ error term of model (2). The
following distributional assumptions are usually held: bi is normally distributed
with mean vector 0 and covariance matrix D and bi independent of bj, i=j. Also,
ei is distributed normally with mean vector 0 and covariance matrix Ri, inde-
pendent of bi. The covariance matrices D and Ri are typically assumed to be
characterized by unique parameters contained in the k� 1 vector y. Often, a
‘‘conditionally independent’’ model is assumed; i.e., Ri ¼ s2Ini : The total vari-
ance for the response vector in (2) is varðyiÞ ¼ varð�iÞ ¼ SiðyÞ ¼ ZiDðyÞZ 0

i þ
RiðyÞ: It is common to write Si ¼ SiðyÞ; D ¼ D (y), and Ri ¼ Ri(y) so that Si ¼
ZiDZ 0

i þ Ri:
As alluded to in Section 1.1, the utility of the mixed model is primarily in its

applicability to non-independent data. So, the standard univariate linear model
(1) is valid when one observation each is collected on numerous ‘‘subjects’’ that
are independent of one another.

A subject here can be a person, a family, a hospital, or so on. When multiple
observations are collected on each person/family/hospital, independence of obser-
vations, at least taken from the same subject, can no longer be assumed. The mixed
model (2), then, with its additional source of variation represented by the random
effects (bi) can accommodate such data.

1.3. An example

The mixed model is especially useful when fitting longitudinal data. It allows an
analyst to not only make inferences about the population, but it also accom-
modates estimation and inference about subject-specific level deviation from the
population estimates of typical interest. An especially useful property for the
mixed model, particularly in longitudinal data analysis, is the fact that it can
accommodate missing data. Missing data, usually in the form of withdrawals or
drop outs, are a common characteristic of most studies collecting information on
individuals over time. To be discussed later, depending on the nature of the
missingness, mixed models can allow for missing data.

To exemplify the use of the mixed model in a repeated measures setting, we
introduce an application to obesity research. In the United States, the prevalence
of obesity has reached epidemic levels (Flegal et al., 2002). Additionally, obesity
is a major risk factor for type 2 diabetes (Mokdad et al., 2001). Lifestyle
treatment with modest weight loss has been shown to prevent type 2 diabetes
(Knowler et al., 2002), and can thus be seen as a crucial element for diabetes
control in obese individuals.

Improving Control with Activity and Nutrition (ICAN) was a randomized
control trial designed to assess the efficacy of a modestly priced, registered dietician
(RD)-led case management (CM) approach to lifestyle change in patients with type
2 diabetes (Wolf et al., 2004). The primary goal of the study was to compare the
intervention to usualmedical carewith respect toweight loss for obese patients with
type 2 diabetes. Weight in kilograms and waist circumference (cm) were recorded
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on 124 individuals at the beginning of the study, and then at 4, 6, 8, and 12 months
following baseline. A significant overall difference was found in weight loss over the
period of the trial favoring lifestyle CM over usual care (UC).

The primary focus of the study and the subsequent analysis of the data were in
differences between the two groups, the lifestyle CM group and the UC group,
with respect to weight loss over time. To do this, one would estimate and make
inferences about the ‘‘fixed effects’’ portion of the model. One could with such a
model fit a linear trend over time for each group and then compare groups, or
one could examine polynomial effects over time.

It would also prove interesting to study the variation observed in the data aswell.
Namely, we could examine whether the variability in weight loss over time was
different between the two groups. Such an examination would allow investigators
tomake decisions on the overall effectiveness of the CM intervention in facilitating
consistent weight loss. Themixedmodel allows for separatemodels of the variation
for the two intervention groups, and one could thenmake conclusions based on the
resulting estimates. Similarly, examination of outliers in both groups using random
effect estimates (i.e., subject-specific deviations from the average trendover time for
the group) could also be useful in helping to identify underlying individual factors
that may influence the response to such an intervention.

In order to achieve such goals, a linear mixed model was fitted to the data.
Previous experience with the data coupled with careful model fitting strategies
resulted in the following model of interest:

yij ¼ b1ðBASELINE WEIGHTÞi þ b2ðBASELINE AGEÞi þ b3ðUCiÞ
þ b4ðCMiÞ þ ðb5UCi þ b6CMiÞtij þ b1iðUCiÞ þ b2iðCMiÞ þ eij. ð3Þ

Here, yij is the change from baseline weight (kg) observed for individual i at
month tij (tij ¼ 4,6,8,12). CMi and UCi are indicator variables for those subjects
in the CM and UC groups, respectively. The among-unit variation was modeled
separately for each group; i.e., varðb1iÞ ¼ s2b;UC for those individuals in the UC
group and varðb2iÞ ¼ s2b;CM for those individuals in the CM group. This variation,
stemming from the random intercept included in the model (b1i and b2i, depend-
ing on the group assignment for subject i), represents the variation of the
deviations of each subject’s estimated intercept from the population intercepts
(b3 and b4). In this instance, we assumed a constant within-unit variation between
the two groups. Thus, varðeijÞ ¼ s2e :

In the majority of applications, as is the case here, primary interest lies in
inference about the fixed effects; namely, we wish to know if there is a difference
between the two groups with respect to weight loss over time. So, we wish to
make inferences about the intercept and time parameters for the two groups.
With this particular mixed model, we assume a linear change in weight loss over
time for both groups, on average. But, the mixed model allows for individual
deviations from these population estimates. Here, we only allow for deviation
from the intercept; each individual has a random intercept estimate that will
represent that person’s deviation from the estimate of the average initial weight
loss (intercept) for that particular group. However, one could add a number of
random effects to account for multiple sources of variation that one believes can
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be modeled in such a fashion. In this particular case, we could have included a
random slope term that represented the subject’s deviation from the population
slope estimate. As we will discuss later, there are methods to assess the necessity
for including such random effects. In doing so, we decided that a random
intercept term was only required, but we allowed for the random intercept’s
variation to differ between the two groups.

Figure 1 displays model-predicted weight loss at the mean values of age and
weight (50 years old and 105 kg, respectively) for both groups, as well as a
random sampling of individual profiles. These individual observations over time
allow for estimation of average changes over time per group as well as estimation
of variation from those average changes. The figure displays that in the UC
group, there is no discernable pattern of weight change over the span of the
study, as to be expected since this group of subjects did not receive any inter-
vention more than what is considered ‘‘usual care.’’ However, the subjects in the
CM group on average lost more weight than those in the UC group. The figure of
the individual profiles is extremely helpful in determining the appropriate model
of the data. As one can see, there is considerable variation of the measurements
for both groups over time, both among subjects as well as within-subjects.

Table 1 includes the estimates of the parameters in model (3). After using
inference techniques described later, we can conclude from this model that there
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Fig. 1. Random sample of individual profiles of weight change from ICAN study along with estimated

average weight loss (based on mixed model (3), using the mean values of age and weight (50 years old

and 105 kg, respectively)).

Dashed lines represent observed weights for each individual over the span of the study. Solid lines

represent the model-estimated weight change from baseline for each group. The individual profiles seen

here represent only a random sampling of the entire set of subjects used to estimate the parameters of

model (3).

M. J. Gurka and L. J. Edwards150



is a significantly greater initial amount of weight loss at four months in the CM
group, compared to the UC group. However, there is no significant difference in
the two population slopes, signifying that the two groups do not differ in weight
loss/gain over time after the initial weight change at four months. In fact, the
subjects in the CM group actually gained weight throughout the rest of the study
on average, while the patients in the UC group remained relatively stable in terms
of weight change throughout the year. Thus, we can conclude based on the fixed
effect estimates that the intervention to be tested is effective at initial weight loss
on average, but that those who received this intervention could not maintain this
weight loss over the span of the study. Additionally, we observe that the subjects
in the CM group experienced greater variation in their initial weight loss than
those in the UC group. We could then look at actual random intercept estimates
(not displayed) to determine those subjects who experienced the most weight loss.

1.4. Marginal versus hierarchical

To begin, it is worth writing the linear mixed model (2) again:

yi ¼ Xibþ Zibi þ ei.

The motivation behind the analysis or scientific question of interest will drive the
interpretation of the estimates resulting from fitting model (2) to the data. As
alluded to in the discussion of the ICAN example, most often analysts are
interested in estimation and inference about the fixed effects parameters, b, and
possibly the ‘‘variance components,’’ the variance parameters of y. In this setting,
model (2) with ei ¼ Zibi+ei, i.e., yi ¼ Xib+ei, is often referred to as the marginal
model (Verbeke and Molenberghs, 2000), or the population-averaged model
(Zeger et al., 1988). Here, the following distributional assumptions are all that are
needed in making the conclusions necessary from the analysis of the data:

yi � N Xib;Si ¼ ZiDZ 0
i þ Ri

� �
. (4)

Use of the marginal model does not imply that random effects are unnecessary
for such an analysis. On the contrary, proper modeling of the random effects

Table 1

ICAN mixed model (3) parameter estimates

Effect Parameter Estimate Standard Error

Baseline weight b1 �0.008 0.013

Baseline age b2 �0.084 0.042

Intercepts

UC group b3 6.121 3.042

CM group b4 1.458 3.054

Month effect

UC group b5 �0.025 0.069

CM group b6 0.164 0.076

Var(b1i) s2b;UC 8.626 2.035

Var(b2i) s2b;CM 10.404 2.477

Var(eij) s2e 10.573 0.798
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provides for a typically intuitive way of modeling variation of complex data that
allows for accurate estimation and inference on the parameters of interest, b, and
sometimes h. Although not explicitly defined or needed in this case, random
effects make it convenient in modeling the variation of multilevel data.

But, many times it is also important for one to focus on the random effects
themselves. In this case, we should view (2) as a ‘‘hierarchical’’ model (Verbeke
and Molenberghs, 2000), or a ‘‘subject-specific’’ model (Vonesh and Chinchilli,
1997). Rather than explicitly ignore the random effects in the model, bi, we now
define the distributional assumptions of the model conditional on bi:

yijbi � N ðXibþ Zibi; RiÞ;
bi � N ð0;DÞ. ð5Þ

Notice that here, yi � N ðXib; SiÞ; which is the same distributional assumption
of the marginal model. However, the marginal model and the hierarchical model
are not equivalent, at least in terms of interpretation and utility of the models.
When we discuss the potential for using the mixed model, specifically the random
effects portion of it, to focus on individual-specific deviation from the mean
profiles (fixed effects), it is in the context of the hierarchical perspective. The
hierarchical model then accommodates analyses to identify outlying individuals
and to make predictions on the individual level.

Naturally, one may place certain restrictions on the structure and the number of
parameters of both covariance matrices, D and Ri. The structure of D is often
dictated by the number of random effects included in the model. For example, in
the context of longitudinal data, if one included only a random intercept, then one
only needs to estimate the variance of this random intercept term. However, if one
also includes a random slope as well, then one must decide whether or not to allow
the two random effects to covary.Most software can accommodatemany different
specified parametric models of both covariance matrices of the mixed model. For
more detailed information, see Verbeke and Molenberghs (2000).

2. Estimation for the linear mixed model

Seminal papers by Harville (1976, 1977) developed the linear mixed model as is
written in (2), and Laird and Ware (1982) discussed its use for longitudinal data.
Harville (1976) extended the Gauss–Markov theorem to cover the random
effects, bi, in estimating linear combinations of b and bi. The prediction of bi is
also derived in an empirical Bayesian setting. Harville (1977) provided a review of
the maximum likelihood (ML) approach to estimation in the linear mixed model.
For model (2), the maximum log-likelihood is written as

lMLðhÞ ¼ �N

2
logð2pÞ � 1

2

Xm
i¼1

log Sij j

� 1

2

Xm
i¼1
ðyi � XibÞ0S�1i ðyi � XibÞ. ð6Þ
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Maximization of lMLðhÞ produces ML estimators (MLEs) of the unknown param-
eters b and h. When h is known, the MLE of b is given by

b̂ ¼
Xm
i¼1

X 0
iS
�1
i Xi

 !�1Xm
i¼1

X 0
iS
�1
i yi. (7)

Kackar and Harville (1984) stated that the best linear unbiased estimators of
the fixed and random effects are available when the true value of the variance
parameter, h, is known. In the usual case when h is unknown, Si is simply replaced
with its estimate, Ŝi: Kackar and Harville (1984) concluded that if h needs to be
estimated, themean squared error of the estimates of b and bi becomes larger. They
also provided an approximation of this decrease in precision.

Harville (1974) also introduced the use of the restricted, or residual, maximum
likelihood (REML) developed by Patterson and Thompson (1971) in estimating
the covariance parameters of the linear mixed model. ML estimations of h are
biased downward since the loss of degrees of freedom resulting from the esti-
mation of the fixed effects is not taken into account. REML estimation
acknowledges this loss of degrees of freedom and hence leads to less biased
estimates. The REML estimator of h is calculated by maximizing the likelihood
function of a set of error contrasts of yi, u

0yi; chosen so that Eðu0yiÞ ¼ 0: The
resulting function, not dependent on b, is based on a transformation of the
original observations that lead to a new set of N�p observations. Harville (1974)
showed that the restricted log-likelihood function can be written in the following
form based on the original observations:

lREMLðhÞ ¼ �N� p

2
logð2pÞ þ 1

2
log

Xm
i¼1

X 0
iXi

�����
������

1

2

Xm
i¼1

log Sij j

� 1

2
log

Xm
i¼1

X 0
iS
�1
i Xi

�����
������

1

2

Xm
i¼1
ðyi � Xib̂Þ0S�1i ðyi � Xib̂Þ, ð8Þ

where b̂ is of the form given above (7).
Laird and Ware (1982) introduced the linear mixed model in a general setting

as it applies to longitudinal data, discussing how the model can be reduced to
both growth curve models and repeated measures models. This two-stage ran-
dom effects model is touted as being superior to ordinary multivariate models in
its fitting of longitudinal data since it can handle unbalanced situations that
typically arise when one gathers serial measurements on individuals. A unified
approach to fitting the linear mixed model is the primary theme, comparing
estimation of the model parameters using ML as well as empirical Bayes
methods.

Harville (1977) noted that estimating the parameters of the linear mixed model
via ML methods has computational disadvantages by requiring the solution of a
nonlinear problem, an issue that is not as detrimental today with advances in
computer technology that have dramatically increased the speed of estimation
algorithms. Laird and Ware (1982) discussed the use of the Expectation-
Maximization (EM) algorithm for estimation in the linear mixed model for
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longitudinal data. The EM algorithm was originally introduced by Dempster
et al. (1977) as an iterative algorithm that can be used for computing ML
estimates in the presence of incomplete data. Laird et al. (1987) attempted to
improve the speed of convergence of the EM algorithm, noting the rate of con-
vergence is dependent on the data and the specified forms of the covariance
matrices, D and Ri.

Lindstrom and Bates (1988) proposed an efficient version of the Newton–
Raphson (NR) algorithm for estimating the parameters in the linear mixed model
via both ML and REML. They also developed computationally stable forms of
both the NR and EM algorithms and compared the two in terms of speed and
performance. While the NR algorithm is concluded to require fewer iterations to
achieve convergence, it is not guaranteed to converge, whereas the EM algorithm
will always converge to a local maximum of the likelihood. The faster conver-
gence time of the NR algorithm has made it the preferred estimation method of
choice for most mixed model fitting procedures.

3. Inference for the mixed model

3.1. Inference for the fixed effects

As stated previously, it is extremely common to be primarily interested in making
conclusions regarding the fixed effects of the model. Not surprisingly, then,
inference tools for the fixed effect parameters in the mixed model have received
most of the attention methodologically. Likelihood ratio tests (LRTs) can com-
pare two nested mixed models (Palta and Qu, 1995; Vonesh and Chinchilli, 1997;
Verbeke and Molenberghs, 2000) with ML estimation and are assumed to exhibit
a w2 distribution.

McCarroll and Helms (1987) evaluated a ‘‘conventional’’ LRT with a linear
covariance structure via simulation studies. They showed that the LRT inflates
Type I error rates. In addition, the LRT gave observed power values that were
usually higher than the hypothesized values. McCarroll and Helms (1987) rec-
ommended using tests other than the LRT.

Use of the LRT based on the REML log-likelihood function is not valid when
interest lies in the comparison of models with different sets of fixed effects.
Welham and Thompson (1997) proposed adjusted LRTs for the fixed effects
using REML, while Zucker et al. (2000) developed what they termed ‘‘refined
likelihood ratio tests’’ in order to improve small sample inference. The adjusted
tests of Welham and Thompson (1997) are reasonably well approximated by w2

variables. Zucker et al. (2000) found that an adjusted LRT based on the
Cox–Reid adjusted likelihood produced Type I error rates lower than nominal.
Consequently, a Bartlett correction greatly improved the Type I error rates of
the adjusted LRT. Though the techniques appear promising, new and extensive
analytic work seems required for each specific class of model.

Approximate Wald and F-statistics allow testing hypotheses regarding b.
However, Wald tests can underestimate the true variability in the estimated
fixed effects because they do not take into account the variability incurred by
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estimating h (Dempster et al., 1981). The approximate F-test is more commonly
used. The null hypothesis H0: Cb ¼ 0, with C a a� p contrast matrix, can be
tested with

TF ¼ a�1ðCb̂Þ0 C
Xm
i¼1

X 0
i Ŝ
�1
i Xi

 !�1
C 0

2
4

3
5
�1

ðCb̂Þ. (9)

Under the null hypothesis, it is assumed that TF has an approximate F-
distribution with a numerator degrees of freedom, and n denominator degrees of
freedom, denoted F(a,n). The denominator degrees of freedom, n, have to be
estimated from the data. Determining the denominator degrees of freedom has
been a source of research and debate for many years, with no clear consensus.
However, in the analysis of longitudinal data, Verbeke and Molenberghs (2000,
Section 6.2.2, p. 54) noted that ‘‘... different subjects contribute independent
information, which results in numbers of degrees of freedom which are typically
large enough, whatever estimation method is used, to lead to very similar
p-values.’’ Unfortunately, the approximate F-statistic is known to result in
inflated Type I errors and poor power approximations in small samples, even for
complete and balanced data (McCarroll and Helms, 1987; Catellier and Muller,
2000). Finally, Vonesh (2004) concluded that the denominator degrees of free-
dom of the F-test in the linear mixed model should be the number of independent
sampling units minus ‘‘something’’ and we simply do not know what that
‘‘something’’ is.

Kenward and Roger (1997) presented a scaled Wald statistic with an approx-
imate F-distribution for testing fixed effects with REML estimation that per-
forms well, even in small samples. The Wald statistic uses an adjusted estimator
of the covariance matrix to reduce the small sample bias. A drawback occurs
when the variance components are constrained to be nonnegative and estimates
fall on a boundary. In such cases the Taylor series expansions underlying the
approximations may not be accurate. In addition, the procedure can fail to
behave well with a nonlinear covariance structure. The technique has been
implemented in popular mixed model fitting procedures such as SAS PROC
MIXED (SAS Institute, 2003b). However, even this inference technique is not
ideal, as documented performance of the Kenward–Roger F-statistic for some
small sample cases has revealed inflated Type I error rates with various covar-
iance model selection techniques (Gomez et al., 2005).

3.2. Inference for the random effects

When one is interested in the random effects themselves in the mixed model, then
one needs to make inferences from the hierarchical model perspective. It is most
convenient to estimate the random effects using Bayesian techniques, resulting in
the following form of the estimates of bi, assuming h is known:

b̂i ¼ DZ 0
iS
�1
i ðyi � XibÞ. (10)
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The variance of b̂i is then approximated by

nðb̂iÞ ¼ DZ 0
i S�1i � S�1i Xi

Xm
i¼1

X 0
iS
�1
i Xi

 !�1
X 0

iS
�1
i

8<
:

9=
;ZiD. (11)

As noted by Laird and Ware (1982), (11) underestimates the variability in b̂i � bi
because it ignores the variation of bi. Consequently, inference about bi is typically
based on

nðb̂i � biÞ ¼ D� nðb̂iÞ. (12)

As with inference for the fixed effects, we typically do not know h beforehand.
And, in this particular setting, we most often do not know b. So, we usually
replace h and b with their ML or REML estimates in the above equations. In this
case, b̂i in (10) is known as the ‘‘empirical Bayes’’ estimate of bi. Again, as is the
case when making inference about the fixed effects, when we use ĥ in place of h,
we then underestimate the variability of b̂i: In this setting too, then, it is rec-
ommended that inference on the random effects be based on approximate F-tests
with specific procedures for the estimation of the denominator degrees of free-
dom (Verbeke and Molenberghs, 2000).

3.3. Inference for the covariance parameters

Even though focus typically lies on the fixed effects, it is important to effectively
model the variation of the data via the variance parameters in such a model.
Making valid conclusions about the variability of the data are important infor-
mation in itself, but it also leads to proper inference about the fixed effects as
well. As discussed in Verbeke and Molenberghs (2000), likelihood theory allows
for the distribution of both the ML and REML estimators of h, ĥ; to be
approximated by a normal distribution with mean vector h and covariance
matrix equaling the inverse of the Fisher information matrix. Thus, techniques
such as LRTs and Wald tests can be used to make inferences about h. Of course,
there are restrictions to the possible values of the parameters contained in h, most
commonly that variance components be strictly positive. To demonstrate, in the
example model (3), we assume varðb1iÞ ¼ s2b;UC40: Of course, in practice, when
one fits the data using a mixed model procedure in a software package, if a value
of a variance parameter is close to the boundary space (e.g., the variance is close
to 0), this indicates that the source of variation may not need to be modeled. In
the case when a negative value of the variance component parameter is not
allowed, Verbeke and Molenberghs (2003) discuss the use of one-sided tests, in
particular the score test.

In the context of a generalized nonlinear mixed model (to be discussed),
Vonesh and Chinchilli (1997, Section 8.3.2) proposed a pseudo-likelihood ratio
test (PLRT) used by Vonesh et al. (1996) to assess goodness-of-fit of the modeled
covariance structure. The idea was to compare the robust ‘‘sandwich’’ estimator
of the fixed effects covariance matrix to the usual estimated covariance matrix.
The fixed effects covariance matrix is O ¼ nðb̂Þ: The usual estimate and the
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robust ‘‘sandwich’’ estimator of the fixed effects covariance matrix for (2) are
given by

Ô ¼
Xm
i¼1

X 0
i Ŝ
�1
i Xi

 !�1
(13)

and

ÔR ¼ Ô
Xm
i¼1

X 0
i Ŝ
�1
i ðyi � Xib̂Þðyi � Xib̂Þ0Ŝ�1i Xi

" #
Ô. (14)

By comparing the closeness of the estimators using a PLRT, one can evaluate the
goodness-of-fit of the modeled covariance matrix Si: Assuming that mÔR has an
approximate Wishart distribution, the PLRT is approximately distributed as a
chi-square with pðpþ 1Þ=2 degrees of freedom. One advantage of the technique is
that it does not require repeated fittings of models. The authors suggested that
the PLRT should not be used when the outcomes exhibit a non-normal distri-
bution. More work needs to be done to assess the performance of the PLRT for
the mixed model in general. For more details of the technique, the reader is
directed to Vonesh and Chinchilli (1997, Section 8.3.2).

4. Selecting the best mixed model

Discussion of estimation and inference on the parameters of the linear mixed
model naturally falls under the discussion of model selection. Often, we usually
perform hypothesis tests on model parameters to decide whether or not their
inclusion in the model is necessary. Inference tools discussed previously are useful
in linear mixed models when the parameters of note are nested. However, in the
context of mixed models, it is common to want to compare models that are not
nested, particularly when trying to determine the best model of the covariance.

4.1. Information criteria

Information theoretic criteria have played a prominent role in mixed model
selection due to their relative validity in comparing non-nested models. Most
practitioners use the Akaike Information Criterion (AIC, Akaike, 1974) and the
Bayesian Information Criterion (BIC, Schwarz, 1978). Many variations have
been introduced, including the corrected AIC, or AICC (Hurvich and Tsai,
1989), and the consistent AIC, or CAIC (Bozdogan, 1987). In their original
forms, a larger value of the criteria for a given model indicates a better fit of the
data. However, it is common to see them presented in a ‘‘smaller-is-better’’ form
when they are calculated directly from the �2� log-likelihood. Table 2 displays
the formulas for the AIC, AICC, CAIC, and BIC from both angles, based on
formulas familiar to readers of Vonesh and Chinchilli (1997).

Here, l is either lREML(h) or lML(h), s refers to the number of parameters of the
model, and N* is a function of the number of observations. When using ML
estimation, most often s ¼ p+k, the total number of parameters in the model.
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The proper formulas and application of these formulas under REML is still
debated; see Gurka (2006) for a summary of the various viewpoints and forms
specific to REML model selection. The general consensus (Vonesh and
Chinchilli, 1997) is that under ML, N* ¼ N, the total number of observations,
and under REML, N* ¼ N�p, given that the restricted likelihood is based on
N�p observations. However, this recommendation has not been consistently
employed and needs further investigation (see Gurka, 2006 for more discussion).
Shi and Tsai (2002) noted that Akaike (1974) used the likelihood function as a
basis for obtaining the AIC, but just like the variance estimates of a linear mixed
model when using the unrestricted likelihood, the estimator used in the criterion
is biased. They then proposed a ‘‘residual information criterion’’ (RIC) that uses
REML, applying it to the classical regression setting. Extension of the RIC for
use with the linear mixed model is an area of future research.

When discussing model selection criteria, one should introduce the large-
sample notions of efficiency and consistency. Efficient criteria target the best
model of finite dimension when the ‘‘true model’’ (which is unknown) is of
infinite dimension. In contrast, consistent criteria choose the correct model with
probability approaching 1 when a true model of finite dimension is assumed to
exist. Selection criteria usually fall into one of the two categories; for instance, the
AIC and AICC are efficient criteria, while the BIC and CAIC are considered to
be consistent criteria. Debate has ensued as to which characteristic is preferred,
as opinions are largely driven by the field of application in which one is interested
in applying model selection techniques. For further discussion, see Burnham and
Anderson (2002) or Shi and Tsai (2002).

In Hjort and Claeskens (2003) and Claeskens and Hjort (2003), the authors
discuss model selection, inference after model selection, and both frequentist and
Bayesian model averaging. Claeskens and Hjort (2003) noted that traditional
information criteria aim to select a single model with overall good properties, but
do not provide insight into the actual use of the selected model. Claeskens and
Hjort (2003) proposed to focus on the parameter of interest to form the basis of
their model selection criterion, and introduce a selection criteria for this purpose
denoted as the focused information criterion (FIC). Discussions that follow the
article describe limitations of the frequentist model averaging estimator and the
FIC (Shen and Dougherty, 2003).

Jiang and Rao (2003) developed consistent procedures for selecting the fixed
and random effects in a linear mixed model. Jiang and Rao (2003) focused on

Table 2

General formulas for commonly used information criteria in mixed model selection

Criteria Larger-is-Better Formula Smaller-is-Better Formula

AIC l�s �2l+2s

AICC l�s(N*/N*�s�1) �2l+2s(N*/N*�s�1)
CAIC l�s(logN*+1)/2 �2l+s(logN*+1)

BIC l�s(logN*)/2 �2l+s(logN*)

Note: Here, l is either lREML(h) or lML(h), s refers to the number of parameters of the model, and N* a

function of the number of observations.
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two types of linear mixed model selection problems: (a) selection of the fixed
effects while assuming the random effects have already been correctly chosen and
(b) selection of both the fixed effects and random effects. Their selection criteria
are similar to the generalized information criterion (GIC), with the main idea
centering on the appropriate selection of a penalty parameter to adjust squared
residuals. Owing to the inability to provide an optimal way of choosing the best
penalty parameter for a finite set of data, the methods require further investi-
gation before recommending its widespread use.

It is very common to see values for information criteria in standard output of
many mixed model fitting procedures, such as SAS PROC MIXED. The appli-
cability of information criteria for mixed model selection is apparent. However,
as one can observe by the above summary of this area of research, much more
work needs to be performed to consolidate the utility of information criteria to
mixed model selection. Thus, we must caution the analyst in using the values of
computed information criteria from standard procedures without a through
investigation of the research to date in this area.

4.2. Prediction

The introduction of cross-validation methods (Stone, 1974; Geisser, 1975) led to
ensuing research in model selection focused on the predictive ability of models
(Geisser and Eddy, 1979; Stone, 1977; Shao, 1993). The predictive approach
generally involves two steps. For a given number of independent sampling units,
m, the data are split into two parts, with m ¼ mc+mv. Sample size mc is used for
model construction and sample size mv is used for model validation.

For modeling repeated measures data with correlated errors, Liu et al. (1999)
generalized a cross-validation model selection method, the Predicted Residual
Sum of Squares (PRESS). Allen (1971) originally suggested PRESS as a model
selection criterion in the univariate linear model. PRESS is a weighted sum of
squared residuals in which the weights are related to the variance of the predicted
values. Though Liu et al. (1999) presented various definitions of PRESS, only
PRESS for the fixed effects was developed since it could be applied to unbal-
anced designs and the distribution of the statistic yielded useful results. As a
result, the PRESS statistic should not be used for selecting random effects in the
linear mixed model. No conclusive evidence exists of its performance against
other model selection criteria. As with the LRT and information criteria, PRESS
requires repeated fittings of mixed models and hence does not allow model
adequacy to be assessed using only the chosen model of interest.

Vonesh et al. (1996) proposed a weighted concordance correlation coefficient as
a measure of goodness-of-fit for repeated measurements. The concordance cor-
relation coefficient for the linear and nonlinear mixed effects model (Vonesh and
Chinchilli, 1997), denoted by rc, is a function of the observed outcomes, yi, and the
model-predicted outcomes, ŷi: The rc is a modification of Lin’s (1989) proposed
concordance correlation coefficient to assess the level of agreement between two
bivariate measurements. In general, �1rrcr1, with rc ¼ 1 being a perfect fit and
rcr0 being significant lack of fit. Unlike the LRT, information criteria, or PRESS,
rc does not require repeated fittings of mixed models to evaluate adequacy of fit.
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However, rc can be used to differentiate between different hypothesized models by
choosing the model with the largest rc. It does not appear that rc has been widely
implemented in the literature for linear mixed models, and its performance has not
been assessed via any large-scale simulation studies.

Vonesh and Chinchilli (1997) also presented a modification of the usual
R2-statistic from the univariate linear model that is interpreted as the explained
residual variation, or proportional decrease in residual variation. Unlike rc, the
R2-statistic requires specification of a hypothesized model and a null model
(one that is simple but consistent with the application). As with the rc, the lack
of evidence describing the performance of R2 strongly discourages its use in
selecting a linear mixed model. Vonesh and Chinchilli (1997) noted that rc may
be preferred since it equals a concordance correlation between observed and
predicted values.

Xu (2003) and Gelman and Pardoe (2005) investigated measures to estimate
the proportion of explained variation under the linear mixed model. Xu (2003)
considered three types of measures and generalized the familiar R2-statistic from
the univariate linear model to the linear mixed model for nested models. In order
to measure explained variation, the method by Xu (2003) relies upon defining a
‘‘null’’ model such as a model with only a fixed effect and random effect inter-
cept. Gelman and Pardoe (2005) presented a Bayesian method of defining R2 for
each level of a multilevel (hierarchical) linear model, which includes the linear
mixed model. The method is based on comparing variances in a single-fitted
model rather than comparing to a null model. Xu’s (2003) simulation results
demonstrated that the R2 measure gives good estimates with reasonably large
cluster sizes, but overestimates the proportion of variation in y explained by the
covariates if the cluster sizes are too small. Gelman and Pardoe (2005) performed
no simulations to assess the performance of their R2 measure. More investigation
must be done.

Weiss et al. (1997) presented a Bayesian approach to model selection for
random effect models. In a data analysis example, Weiss et al. (1997) found
conflicting results, showing that the selected model was dependent on the chosen
priors and hyperparameter settings. In comparing their technique to the LRT,
AIC, and BIC, the results were again mixed. There exists a lack of evidence that
the Bayesian approach performs well in model selection for linear mixed models,
since no in-depth simulation study or other additional comparative procedures
have been conducted.

In the univariate linear model, Mallows’ Cp criterion (Mallows, 1973) requires
a pool of candidate models which are each separately nested within a single full
model. It compares the mean square error (MSE) of each candidate model to the
MSE of the full model, which then allows comparing one candidate to another.
However, the MSE for the linear mixed model is not well defined since there are
two independent sources of variation, one due to deviations about the population
profile and one due to deviations about subject-specific profiles. Recently, Can-
toni et al. (2005) suggested a generalized version of Mallows’ Cp, denoted GCp,
for marginal longitudinal models. GCp provides an estimate of a measure of
adequacy of a model for prediction. Though the technique was developed for
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models fitted using generalized estimating equations (GEE), there is potential for
considering the method in linear mixed model analysis.

The small sample characteristics of model selection methods based on pre-
dictive approaches require further investigation. Furthermore, in some cases the
approach cannot be used. For example, in many small sample applications it is
unacceptable to split the sample for determining model construction and model
validation.

4.3. Graphical techniques

Graphical techniques have long been a component of model selection in both
univariate and multivariate settings. Plotting the estimated response function or
residuals against predicted values provides statisticians with visual aids that help
in model selection. Similarly, graphical techniques can help select a linear mixed
model. Plotting the estimated response function from the fixed effects and com-
paring it to a mean curve constructed using averages at selected time points
provides one useful aid. For longitudinal data, plotting the collection of esti-
mated individual response functions against the observed data can greatly help
model selection.

For simple examples and some small sample applications, graphical tech-
niques can work well, even though they are subjective aids. More complex sce-
narios make using graphical techniques either very challenging or render
graphical techniques almost useless. In addition, due to the subjective nature of
graphical procedures, perhaps the techniques can never be considered as a pri-
mary means of model selection. Grady and Helms (1995), Diggle et al. (2002) and
Verbeke and Molenberghs (2000) gave expanded discussions of the use of
graphical techniques.

5. Diagnostics for the mixed model

As is the case with ordinary linear regression, the linear mixed model has dis-
tributional assumptions that may or may not be valid when used with applied
data. Unlike univariate linear regression, however, diagnostics to assess these
assumptions, and consequent alternatives when violations of the assumptions are
suspected have not been developed fully for the linear mixed model, primarily
due to the relative youth of the analysis tool. An area that has received some
attention is the assumed normality of the random effects, bi. Lange and Ryan
(1989) described a method for assessing the distribution assumption of the ran-
dom effects that uses standardized empirical Bayes estimates of bi. The assumed
linearity of the covariance matrices of the observations, along with assuming
Ri ¼ s2Ini ; allows these standardized estimates to be independent across indi-
viduals. They then used classical goodness-of-fit procedures, in particular a
weighted normal plot, to assess the normality of the random effects. Butler and
Louis (1992) demonstrated that the normality assumption of the random effects
has little effect on the estimates of the fixed effects; they did not investigate the
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effect on the estimates of the random effects themselves. Verbeke and Lesaffre
(1996) investigated the impact of assuming a Gaussian distribution for the ran-
dom effects on their estimates in the linear mixed model. They showed that if the
distribution of the random effects is a finite mixture of normal distributions, then
the estimates of bi may be poor if normality is assumed. Consequently, they
argued it is beneficial to assume a mixture of normal distributions and compare
the fitted model to the model fit when assuming a Gaussian distribution.

Verbeke and Lesaffre (1997) showed that the ML estimates for the fixed effects
as well as the variance parameters, h, obtained when assuming normality of the
random effects, are consistent and asymptotically normally distributed, even
when the random effects distribution is not normal. But, they claimed that a
sandwich-type correction to the inverse of the Fisher information matrix is
needed in order to obtain the correct asymptotic covariance matrix. They showed
through simulations that the obtained corrected standard errors are better than
the uncorrected ones in moderate to large samples, especially for the parameters
in D. Very little work has been done on the performance of the linear mixed
model in small sample settings when normality of the random effects is assumed
but not achieved.

Little attention has been given to the distribution assumption of the pure
errors, ei, in the linear mixed model. Often it is assumed that mixed models
exhibit conditional independence, i.e., Ri ¼ s2Ini ; as in some cases it is arguable
that the correlation exhibited between observations within an individual can be
accounted for fully by the random effects covariance structure. In certain
instances this assumption is included simply for computational convenience.
Chi and Reinsel (1989) developed a score test of the assumption of conditional
independence compared to a model that assumes auto-correlation in the within-
individual errors. They argued that assuming an auto-correlation structure for Ri

can actually reduce the number of required random effects needed in the final
model. One could note that not only does one assume independence when it is
given that Ri ¼ s2Ini ; but also that there is a constant within-unit error variance.
Ahn (2000) proposed a score test for assessing this homoskedasticity of the
within-unit errors.

Transformations have also been utilized in mixed model settings. Lipsitz et al.
(2000) analyzed real longitudinal data by applying a Box–Cox transformation
on the response of a marginal (population-averaged) model. Since the model
did not explicitly contain random effects, the authors assumed the transforma-
tion achieved normality of the overall error term only. Gurka et al. (2006) dis-
cussed details that follow when extending the Box–Cox transformation to the
linear mixed model. They showed that the success of a transformation may be
judged solely in terms of how closely the total error, ei, follows a Gaussian
distribution. Hence, the approach avoids the complexity of separately evaluating
pure errors and random effects when one’s primary interest lies in the marginal
model. Oberg and Davidian (2000) extended the method for estimating trans-
formations to nonlinear mixed effects models for repeated measurement data,
employing the transform-both-sides model proposed by Carroll and Ruppert
(1984).
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6. Outliers

Of course, mixed models are sensitive to outlying observations. However, the
multilevel structure of the mixed model allows for different definitions of outliers.
When viewed as a marginal model, yi � Xib̂ is one form of a residual that meas-
ures deviation from the overall population mean. Likewise, yi � Xib̂� Zib̂i
measures the amount of difference from the observed value to a subject’s pre-
dicted regression. As defined earlier, the random effect estimate itself, b̂i; is also
an estimate of deviation; in the longitudinal setting, it is a measure of the subject-
specific deviation. As one can imagine, then, due to the many definitions of
residuals in the mixed model, diagnostic techniques regularly used for the
univariate linear model (leverage, Cook’s distance, etc.) do not extend to the
mixed model in a straightforward fashion. For a more detailed discussion of
influence for the linear mixed model, the reader is directed to Chapter 11 in
Verbeke and Molenberghs (2000).

As is the case in the univariate linear model, some researchers have examined
robust estimation and inference procedures that will not be greatly affected by such
influential observations for mixed models. But, since mixed models are a relatively
modern statistical technique, the literature on robust estimation for the linear
mixed model is sparse. Fellner (1986) proposed a method for limiting the influence
of outliers with respect to the random components in a simple variance components
model. A robust modification of restricted ML estimation, Fellner’s method uses
influence functions attributed to Huber (1981) without explicitly using the likeli-
hood function. Richardson and Welsh (1995) introduced the definitions of robust
ML and robust restrictedML in the context of mixedmodels that are also based on
bounding the influence. They applied the methods to data and performed simu-
lation studies to show the advantages of these robust procedures.

7. Missing data

As introduced previously, one common characteristic of study data, particularly
longitudinal data, is missing data. This is especially the case in biomedical studies
of human beings over time, as it is impossible to ensure 100% compliance with
the study protocol. Subjects drop out of studies for many reasons, or may simply
miss a visit and continue the study.

The mixed model can accommodate missing data, thus making it an ideal tool
to analyze longitudinal data. Unlike other multivariate models, such as the gen-
eral linear multivariate model (Muller and Stewart, 2006), complete data are not
required when fitting a mixed model as long as the missing data are of a certain
type. However, the validity of the parameter estimates of the mixed model
depends on the nature of the missingness.

Standard classifications of missing data exist. For a more comprehensive look
at missing data, see Little and Rubin (1987). The ‘‘best’’ type of missing data
is data that are missing completely at random (MCAR). Simply put, with
MCAR the fact that the data are missing has nothing to do with any of the effects

Mixed models 163



(e.g., the treatment to be studied) or outcomes of interest. Data in which MCAR
is present will not lead to biased estimates of the parameters of the mixed model.
The next classification of missingness, one that is also not ‘‘bad’’ from a validity
standpoint for the mixed model, is missing at random (MAR). For MAR, the
missingness depends on previous values of the outcome, but the missingness is
still independent of the model covariates of interest. Handling MAR data is not
as simple as MCAR, as careful strategies must be taken in order for valid con-
clusions to be made from the fitted mixed model.

The type of missingness that results in biased estimates of the parameters of
the mixed model is generally referred to as non-ignorable missingness. Generally
speaking, missingness that is non-ignorable results when the pattern of missing-
ness is directly related to the covariates of interest. There is no way to accom-
modate this type of missingness while fitting standard mixed models.

It would be most helpful to give examples of each type of missingness in the
context of the ICAN study, where we are comparing two intervention groups with
respect to weight loss over time. If a few patients in each intervention group
dropped out of the study because theymoved out of the area, this most likely would
be classified as MCAR. However, since the study participants were obese type 2
diabetes patients, it is quite possible that some of the subjects were so overweight
and unhealthy that they could not continue tomake their regularly scheduled visits.
This pattern ofmissingness is not directly related to the intervention group in which
they belong, but rather the outcome (their weight), and hencemost likely this would
be classified most likely as MAR. Finally, if many of the patients in the CM group,
the intervention that was more intensive, dropped out due to the intensity of this
intervention, this type of missingness would be non-ignorable.

To summarize, mixed models are extremely powerful in analyzing longitudinal
data in particular due to its ability to accommodate missing data. However, the
analyst must be careful in determining which pattern of missingness is present in
the data they wish to model. Analytical tools exist to model the incompleteness,
thus providing insight into the nature of the missingness. Additionally, impu-
tation methods exist to ‘‘fill in the holes,’’ so to speak. As alluded to earlier,
missing data are an expansive area of research in itself, and the reader is referred
to other articles and texts that deal exclusively with missing data issues. For an
excellent overview of missing data in the context of linear mixed models for
longitudinal data, see Verbeke and Molenberghs (2002). Also, Diggle et al. (2002)
discuss missing data in the longitudinal data setting.

8. Power and sample size

The research on power analysis for mixed models is sparse. Exact power cal-
culations are not available for the mixed model simply because the exact dis-
tributions of the tests used in the mixed model are not known. That being said, all
hope is not lost in calculating power based on tests of the mixed model. To our
knowledge, research on power analysis for the linear mixed model has been
limited to calculations based on tests of the fixed effects of the model. As pre-
viously discussed, the test of the form (9) follows an approximate F-distribution
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under the null hypothesis. Simulation results in Helms (1992) support the notion
that (9) follows an approximate non-central F-distribution under the alternative
hypothesis. We must point out again the uncertainty regarding the denominator
degrees of freedom of (9). We have no reason to believe that this uncertainty does
not carry over to its use when considering the power of the test. For additional
discussion regarding power and the mixed model in this setting, see Stroup (1999)
and Littell et al. (2006, Chapter 12).

Power analyses in general require many assumptions. For simple analyses such
as a t-test or a univariate linear model, one must have an estimate of the var-
iability of the data, and some idea of what is considered a meaningful effect size
before determining the appropriate sample size for a given power. As one can
imagine, in settings where the mixed model is ideal (e.g., longitudinal studies), the
amount of parameters to make assumptions is relatively large, and the required
assumptions become more complicated. For instance, one must make assump-
tions about the structure of the correlation of the data, and then determine
reasonable values to base the power analysis. Such a task is neither simple nor
straightforward. Unfortunately, little has been done in terms of laying out
sound strategies to perform power calculations for complicated settings such as
repeated measures studies.

Calculating sample size for the linear mixed model is directly related to com-
puting power analysis. As noted before, since little has been done to obtain sound
strategies for power analysis, the same is then true for computing sample size.
Sample size requirements for the linear mixed model, depending on the moti-
vation behind the analysis, can be quite large. However, it is not clear what is
sufficiently large with regard to sample size in order to make valid inferences
about the model parameters. The primary application of mixed models, the
analysis of clustered or longitudinal data, makes this question even more chal-
lenging. Should one focus on obtaining more subjects or clusters, or should one
try to gather more measurements per subject, or individuals within a cluster? We
mentioned earlier that it is generally recognized that for valid inference about the
fixed effects, one should perhaps target a larger number of independent sampling
units (Vonesh, 2004). However, this has not been proven definitively beyond
simulation studies. One useful discussion regarding sample size calculations for
repeated measures designs can be found in Overall and Doyle (1994).

9. Generalized linear mixed models

The linear mixed model discussed thus far is primarily used to analyze outcome
data that are continuous in nature. One can see from the formulation of the
model (2) that the linear mixed model assumes that the outcome is normally
distributed. As mentioned previously, researchers have studied the utility of the
linear mixed model when the continuous outcome does not follow a Gaussian
distribution.

Often times, however, one is interested in modeling non-continuous outcome
data, such as binary data or count data. The generalized linear model is appro-
priate for modeling such data. The generalized linear model encompasses many
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commonly used models, such as logistic regression, Poisson regression, and in
fact linear regression. For an introduction to the generalized linear model, see
McCullagh and Nelder (1989).

In the same way the linear mixed model builds on the capabilities of the linear
model by allowing for clustered or longitudinal data, the generalized linear mixed
model accommodates clustered or longitudinal data that are not continuous.
Similar to the linear mixed model, the generalized linear mixed model can be
viewed from a marginal or a hierarchical standpoint. Remember that in the
hierarchical case of the linear mixed model,

EðyijbiÞ ¼ Xibþ Zibi.

Now, for the generalized linear mixed model (McCulloch and Searle, 2001),
again assuming bi � N ð0;DÞ;

EðyijbiÞ ¼ fðXibþ ZibiÞ, (15)

where f is a function of the fixed and random effects of the model. The inverse of
this function, say g, is typically called the ‘‘link’’ function. So, g EðyijbiÞ

� � ¼
Xibþ Zibi: There are many common link functions, each usually corresponding
to an assumed distribution of yijbi: The simplest function is g EðyijbiÞ

� � ¼
EðyijbiÞ; the identity link, where yijbi is assumed to be normally distributed.
This simple case is the linear mixed model, a specific case of the generalized
linear mixed model. For logistic regression, the link function is called the logit
link, gðxÞ ¼ log x=ð1� xÞ� �

; where x is assumed to follow a binary distribution.
Logistic regression is popular in many epidemiological and other biomedical
studies where the outcome has two options, e.g., disease or no disease, and
interest lies in estimating the odds of developing the disease. For Poisson
regression, the link function is the log link, gðxÞ ¼ logðxÞ; where x is assumed to
follow a Poisson distribution. Poisson regression is often used to model count or
rate data. There are many other link functions and corresponding distributions
used in the case of generalized linear models, including generalized linear mixed
models.

Again, the addition of the random effect term in this setting allows for clus-
tered or repeated data. For instance, one may be interested in estimating the odds
of developing a disease, but has data on multiple individuals from the same
families. In this case, it may be unreasonable to assume that these individuals are
independent of one another with respect to the risk of developing the disease.
Here, then, the generalized linear mixed model allows the analyst to accommo-
date this dependence.

The above formulation applies to the hierarchical view of the mixed model,
but the marginal view is applicable in this setting as well. In this case, we simply
assume EðyiÞ ¼ fðXibÞ: If one is simply interested in population estimates
(averages), then alternatives to the generalized linear mixed model exist, such as
GEE. See Diggle et al. (2002) for a discussion of GEE. Thus, most often when
generalized linear mixed models are used, the hierarchical standpoint is of
interest; here the random effects included in the model are of importance and not
just a nuisance.
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Although at first glance the generalized linear mixed model, when using a link/
distribution other than the identity/normal, does not seem to be much more
complicated with respect to estimation and inference, the methodology involved
for this model is actually quite a bit more complex. When using a link function
other than the identity link, it is more difficult to express the likelihood of yi,
which now involves an integral with respect to bi. The difficulty with expressing
the likelihood, coupled with the lack of closed-form solutions, makes estimation
much more computationally intensive. Sophisticated numerical techniques are
necessary, and the body of literature in this area is relatively expansive. More
in-depth introductions and discussions of generalized linear mixed models, along
with estimation and inference about its parameters, can be found in many books
(McCulloch and Searle, 2001; Diggle et al., 2002; Agresti, 2002; Demidenko,
2004; Molenberghs and Verbeke, 2005).

10. Nonlinear mixed models

Another version of the mixed model is the nonlinear mixed model. The nonlinear
mixed model actually follows the same general form (15) as the generalized linear
mixed model. However, the function f for a nonlinear mixed model is typically
more complicated than the standard functions used for the generalized linear
mixed model. It is common to see applications in which the data are best fitted by
models that are nonlinear in the parameters of interest. As mentioned, gener-
alized linear mixed models are one form of nonlinear mixed models. More com-
plicated forms of nonlinear models are often used in pharmacokinetics and
biological and agricultural growth models. In most of these cases, there is a
known or suspected form, based on past experiences or theoretical knowledge,
for how the parameters enter the model in a nonlinear fashion.

As an example of the applicability of the nonlinear mixed model in phar-
macokinetic settings, Pinheiro and Bates (1995) fit what is referred to as a
first-order compartment model to data on serum concentrations of the drug
theophylline from 12 subjects observed over a 25-h period. The nonlinear mixed
model in this case has the following form:

yit ¼
Dkei � kai

Cliðkai � keiÞ

� �
� eð�kei tÞ � eð�kai tÞ
� �þ eit. (16)

Here, yit is the observed serum concentration of the ith subject at time t, D the
dose of theophylline, kei the elimination rate constant, kai the absorption rate
constant, and Cli the clearance for subject i. Also, eit represents the error term
that is assumed to be normally distributed. The ‘‘mixed’’ model stems from the
following assumed forms of kei ; kai ; and Cli:

Cli ¼ eðb1þbi1Þ,

kei ¼ eðb2þbi2Þ;

kai ¼ eðb3þbi3Þ. ð17Þ
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Similar to the preceding treatment of linear mixed models, here b1, b2, and b3 are
fixed effect parameters representing population averages, and bi1, bi2, and bi3 are
random effect parameters. As one can see, both the fixed effects and random
effects of model (16) enter the model in a nonlinear fashion. Additionally, it is
easy to imagine that estimating and inferring on the parameters of such a model
is quite difficult from a computational perspective. Discussion of estimation and
inference for the nonlinear mixed model is beyond the scope of this presentation
on mixed models. However, the interested reader is referred to numerous texts
that deal with the subject, including Davidian and Giltinan (1995), Vonesh and
Chinchilli (1997) and Demidenko (2004). For demonstration of the analysis of
data from this example, see Example 51.1 of the SAS online documentation (SAS
OnlineDoc 9.1, SAS Institute Inc., 2003a, 2003b).

11. Mixed models for survival data

Random effects can also be included in models of time-to-event data as well.
These types of models are often referred to as survival models, as one popular
‘‘event’’ of interest is death. The mixed model approach in estimating time to a
certain event has two main uses, depending on the nature of the event to be
modeled. When the event can only occur once, such as death, inclusion of ran-
dom effects can be helpful when correlation among subjects may exist. For
instance, subjects from the same hospital, nursing home, or even community may
not be independent of one another, and this dependence might need to be taken
into account depending on the motivation of the analysis. Mixed time-to-event
models may also be useful when the event occurs repeatedly on the same indi-
viduals, and thus we have repeated durations that should be modeled accord-
ingly. For a detailed discussion of what is often referred to as ‘‘multilevel’’
survival data models, see Goldstein (2003, Chapter 10).

12. Software

As alluded to often in this discussion, many computational techniques for fitting
mixed models exist. We wish not to create an exhaustive list, but rather highlight
some of the more popular tools.

Tools for fitting linear mixed models are the most readily available. PROC
MIXED in SAS (2003b), lme in S-PLUS (MathSoft, 2002) and R (R Develop-
ment Core Team, 2006), and xtmixed in STATA (StataCorp, 2005) are just a few
of the linear mixed model fitting procedures. Additionally, SPSS (2006) has the
ability to fit linear mixed models to data. Most of these procedures have similar
capabilities, with many distinctions between them too detailed to list here. Rest
assured that developers of most of these statistical software packages are kept
abreast of the current mixed model research, and these procedures are contin-
uously being updated and improved.

Tools exist for the analysis of generalized and nonlinear mixed models as well,
although one must be warned that due to the complicated nature of these
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modeling scenarios, such procedures should not be used without substantial
knowledge of both the modeling process as well as the procedure itself. PROC
GLIMMIX and PROC NLMIXED are now available in SAS (2003) to fit gen-
eralized linear mixed models and nonlinear mixed models, respectively. S-PLUS
(MathSoft, 2002) and R (R Development Core Team, 2006) have the nlme
function for nonlinear mixed models. For an overview of fitting mixed models
using S and S-PLUS, see Pinheiro and Bates (2000). Again, we simply wanted to
cite some of the available options without trying to show favor to one particular
software package. There are almost assuredly other options available in other
software packages.

13. Conclusions

The powerful set of statistical analysis tools that collectively fit into the category
‘‘mixed models’’ is indeed quite large, and the capabilities of these tools continue
to grow. It is impossible to write a comprehensive exposition of the topic of
mixed models in a book, let alone a chapter of a book. We simply wished to
introduce the mixed model in general, providing details regarding its applicability
and utility. At the same time, we attempted to introduce some of the more recent
areas of research that have been performed on the mixed model. More impor-
tantly, we aimed to provide references for areas of mixed model research for the
reader interested in more details.

The theory behind the mixed model has existed for decades; however,
advances in computing have made the mixed model a popular analytical tool
only in the past 10–15 years. Consequently, the availability of this powerful
method of analysis has led to more sophisticated study designs which in turn has
allowed for answers to hypotheses previously too complicated to be addressed
using standard statistical techniques. For example, more and more studies
involve repeated measurements taken on subjects, as tools such as the mixed
model can provide valid analyses of such data. For someone familiar with
univariate linear models in a simple sense, mixed models are fairly intuitive and
thus have great appeal to data analysts working with researchers without an
extensive background in statistics.

The primary focus of this chapter is on the most straightforward form of the
mixed model, the linear mixed model for continuous outcome data. We also
introduce more general and complicated forms of the linear mixed model, the
generalized, and the nonlinear mixed models. Owing to the computational
intensity necessary for these more advanced types of mixed models, their use has
become more commonplace only recently. The relatively recent expanded use of
mixed models makes it necessary to continue methodological research on aspects
of these models. For example, much more study is required on power analysis for
the mixed model, and inference, particularly for small samples, needs to be fur-
ther refined. Model selection and diagnostic tools also should be addressed in
more detail. However, the practical utility of the mixed model in a variety of
applications coupled with its complexity makes the mixed model a very exciting
statistical analysis tool for future study.
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Factor Analysis and Related Methods

Carol M. Woods and Michael C. Edwards

Abstract

This chapter introduces exploratory and confirmatory factor analysis (EFA
and CFA) with brief mention of the closely related procedures principle com-
ponents analysis and multidimensional item response theory. For EFA, empha-
sis is on rotation, the principle factors criterion, and methods for selecting
the number of factors. CFA topics include identification, estimation of model
parameters, and evaluation of model fit. EFA and CFA are introduced for
continuous variables, and then extensions are described for non-normal con-
tinuous variables, and categorical variables. Study characteristics that influ-
ence sample size (for EFA or CFA) are discussed, and example analyses are
provided which illustrate the use of three popular software programs.

1. Introduction

Factor analysis (FA) refers to a set of latent variable models and methods for
fitting them to data. Factors are latent variables: Unobservable constructs pre-
sumed to underlie manifest variables (MVs). The objective of FA is to identify
the number and nature of the factors that produce covariances or correlations
among MVs. The variance of each MV is partitioned into common variance which
is shared with other MVs, and unique variance, which is both random error and
systematic variance unshared with other MVs (called specific variance). Because
specific variance and random error are not modeled separately in FA, unique
variance is often considered ‘‘error’’ variance. Common factors represent com-
mon variance and unique factors represent unique variance.

The FA model is:

X
xx
¼ LFLT þDc; (1)

where Rxx is the p� p covariance matrix among MVs x1, x2,y, xp, K is a p�m
matrix of regression coefficients called factor loadings that relate each factor to
each MV, U is an m�m matrix of correlations among m factors, and Dc is a
p� p diagonal matrix of unique variances (one for each MV). The model could
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be fitted to a matrix of correlations instead of covariances; this standardizes the
factor loadings and elements of Dc. Standardized unique variances are referred
to as uniquenesses. The sum of squared standardized factor loadings, incorpo-
rating the correlations among factors (i.e., KUKT) gives the communalities for the
MVs. The communality for an MV is the proportion of total variance it shares
with other MVs, or its reliability. Notice that the communality and the unique-
ness sum to 1.

Classic FA is applicable to continuous MVs and is analogous to multivariate
linear regression, except that the predictors are unobservable. Assumptions
comparable to those made in linear regression are made in FA: Common and
unique factors are presumed uncorrelated, unique factors are presumed uncor-
related with one another, and MVs are assumed to be linearly related to the
(linear combination of) factors. Additional assumptions are needed to identify
the model because latent variables have no inherent scale. The scale of the com-
mon factors is often identified by fixing the mean and variance to 0 and 1,
respectively. The mean of the unique factors is also usually fixed to 0, but the
variance is estimated. The variance of a unique factor is usually interpreted as the
error variance of the MV.

FA can be exploratory or confirmatory depending on the degree to which
investigators have prior hypotheses about the number and nature of the under-
lying constructs. Although some of the methods used in exploratory and con-
firmatory factor analysis (EFA and CFA) are distinct, the boundary between
them is often blurred. Rather than imagining them as completely separate tech-
niques, it is useful to think of EFA and CFA as opposite ends of the same
continuum.

In EFA, a preliminary sense of the latent structure is obtained, often without
significance testing. Additional research is needed to make definitive claims about
the number and nature of the common factors. In CFA, a hypothesized model is
tested, and sometimes compared to other hypothesized models. CFA is a special
case of a structural equation model (SEM); thus many principles of SEM also
apply to CFA. CFA models are evaluated using significance tests and other
indices of fit. Though replication and cross-validation is important for both types
of FA, results from CFA are more definitive because prior hypotheses are tested.

2. Exploratory factor analysis (EFA)

EFA is performed when investigators are unable or unwilling to specify the
number and nature of the common factors. A key task is to select the number of
common factors (m) that best accounts for the covariance among MVs. Several
models with differing m are fitted to the same data and both statistical infor-
mation and substantive interpretability are used to select a model. The goal is to
identify the number of major common factors such that the solution is not only
parsimonious, but also plausible and well matched to the data. Typically, all pm
elements of K are estimated rather than constrained to a particular value. Unique
variances and correlations among factors are also estimated.
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Once the parameters of a model with a particular m are estimated, the solution
is rotated to improve substantive interpretability. Rotated, not un-rotated, factor
loadings aid in the selection of m. The term factor rotation was coined during an
era when FA was carried out by hand. FA models were represented graphically in
m-dimensional space with an axis for each factor and a point for each MV. Axes
were literally rotated to a subjective, simple structure solution. Thurstone (1947)
specified formal criteria for simple structure, but essentially, each factor should
be represented by a distinct subset of MVs with large factor loadings, subsets of
MVs defining different factors should overlap minimally, and each MV should be
influenced by only a subset of common factors.

In contemporary FA, rotation is objective and automated by computer soft-
ware. The matrix of rotated loadings is produced by multiplying K by an m� p
transformation matrix, T. The elements of T are chosen to either maximize a
simplicity function or minimize a complexity function. These functions mathe-
matically specify simple structure, or its opposite (complexity) in the pattern of
loadings.

The EFA model is rotationally indeterminate, meaning that if a single K can be
found that satisfies the model for a particular Rxx, then infinitely many other Ks
exist that satisfy the model equally well. Procedures used to estimate EFA model
parameters (discussed in a subsequent section) impose criteria to obtain unique
values; however, an infinite number of alternative Ks could replace the initial
solution.

Numerous rotation methods have been developed (see Browne, 2001). One
major distinction among them is whether factors are permitted to correlate.
Orthogonal rotations force factors to be uncorrelated whereas oblique rotations
permit nonzero correlations among factors. Orthogonal rotations are primarily
of didactic or historical interest; they are easier and were developed first. It is
usually best to use an oblique rotation because factors are typically correlated to
some degree, and correlation estimates will be 0 if they are not. A few of the most
popular oblique rotation procedures are described next.

2.1. Rotation

The two-stage oblique Promax rotation procedure (Hendrikson and White, 1964)
is frequently used and widely implemented in software. Orthogonal rotation is
carried out first, followed by a procedure that permits correlations among fac-
tors. The first stage consists of rotating loadings to an orthogonal criterion called
‘‘Varimax’’ (Kaiser, 1958). The transformation matrix for orthogonal Varimax
rotation maximizes the sum of the variances of the squared factor loadings on
each factor. The simplicity criterion is:

V ¼
Xm
k¼1

1

p

Xp
j¼1
ðl2jk � �l

2

:kÞ2; where �l
2

:k ¼
1

p

Xm
k¼1

l2jk (2)

and ljk is an element of K for the jth MV and the kth factor. Greater variability in
the magnitude of the squared loadings indicates better simple structure.
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The second stage of the Promax procedure is to raise Varimax-rotated load-
ings to a power (often the 4th), restore the signs, and estimate new loadings that
are as close as possible to the powered loadings. Least squares estimation is used
to minimize the sum of squared differences between the Varimax-rotated load-
ings and the powered (target) loadings, tjk, which is the complexity function:

P ¼
Xm
k¼1

Xp
j¼1
ðl2jk � tjkÞ2. (3)

Because variables with larger communalities have more influence on the
rotated solution than variables with smaller communalities, each row of K is
standardized before rotation and returned to the original scale after rotation.
Loadings for each MV are divided by the square root of the communality (called
a Kaiser weight) before rotation, and then multiplied by the Kaiser weight after
rotation. This process of row standardization was originally introduced for
orthogonal Varimax rotation, but is now commonly used with most rotations,
both orthogonal and oblique.

Other popular oblique rotations are members of a family described by
Crawford and Ferguson (1970). The general complexity function is:

CF ¼ ð1� kÞ
Xp
j¼1

Xm
k¼1

Xm
‘¼1

l2jkl
2
j‘

k=‘

þk
Xm
k¼1

Xp
j¼1

Xp
h¼1

l2jkl
2
hk

j=h

, (4)

where k weights MV complexity (first term) and factor complexity (second term),
and 0rkr1. MV complexity is minimized when there is a single nonzero loading
in each row of K; factor complexity is minimized when there is a single nonzero
loading in each column of K.

Researchers select k and specify whether the rotation is orthogonal or oblique.
When k ¼ 1/p, and orthogonal rotation is specified, the Crawford–Ferguson
(CF) criterion is the same as the orthogonal Varimax criterion. Oblique Varimax
rotation is also possible. When k ¼ 0, complexity in the MVs, but not the factors,
is minimized. Oblique rotation renders the CF criterion equivalent to the oblique
quartimax criterion (also called ‘‘quartimin’’ or ‘‘direct quartimin’’), introduced
by Jennrich and Sampson (1966).

Some FA experts prefer oblique quartimax rotation (e.g., Browne, 2001), but
the best approach may depend on the particular data set and the goals of the FA.
It is sometimes useful to use two or three different rotation criteria and then
select the most substantively interpretable solution.

We turn now to methods for estimating the parameters of EFA models. The
two most common methods are iterative principle factors and maximum like-
lihood (ML) estimation. Typically, correlations rather than covariances are
analyzed because factor loadings are easier to interpret when standardized. Also,
note that the columns of K (i.e., the factors) are always uncorrelated following
initial estimation. In EFA, correlations among factors are introduced only by
oblique rotation.
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2.2. Principle factors

Because the EFA model is rotationally indeterminate, an additional criterion is
imposed when the parameters are estimated so that initial factor loadings are
unique. By the criterion of principle factors, each common factor should account
for the maximum possible amount of variance in the MVs. Only one K satisfies
the principle factors criterion. A principle factors solution uses eigenvalues and
eigenvectors to estimate K. If S is a symmetric matrix and Su ¼ ‘u; then ‘ is an
eigenvalue of S and u is an eigenvector of S.

In EFA, eigenvalues and eigenvectors of the reduced correlation matrix, Rxx,
are used to compute K. Rxx has communalities for each MV on the diagonal
(rather than 1’s). For a given m, K is constructed from the m largest eigenvalues
and the corresponding eigenvectors: K ¼ UD

1=2
‘ : U is a p�m orthogonal

matrix with columns equal to eigenvectors, and D
1=2
‘ is an m�m diagonal matrix

with nonzero elements equal to square roots of eigenvalues. An eigenvalue is
equal to the sum of squared loadings down each column of K, interpreted as the
proportion of variance accounted for by each factor.

A complication inherent in the procedure just described is that communalities
are needed prior to the computation of factor loadings. These so-called prior
communalities must be estimated. Guttman (1940) showed that the squared
multiple correlation (R2) from the regression of an MV on the p�1 other MVs is
a lower bound for the communality. Though somewhat conservative, R2s from
these regressions are usually used as estimates of prior communalities.

A newer way to estimate prior communalities is the partitioning method
(Cudeck, 1991), which may be used only if pZ2m+1. For each MV, the
remaining p�1 MVs are divided into two mutually exclusive subsets of m var-
iables (because the method is contingent upon m, it must be repeated for every
different m under consideration). The jth MV for which a communality is sought
is subset 1, and the other mutually exclusive sets of MVs are subsets 2 and 3. The
communality for the jth MV is given by q13P

�1
23 q21; where q13 is the vector of

correlations between subsets 1 and 3, q21 is the vector of correlations between
subsets 1 and 2, and P�123 is the (inverse of) the m�m matrix of correlations
between subsets 2 and 3.

The set of procedures described thus far is referred to as principle factors
conditional on prior communalities (or simply, conditional principle factors).
However, a closely related method, iterative principle factors, can provide better
answers. Iterative principle factors minimizes the sum of squared residuals, which
are discrepancies between sample correlations (or covariances) and a particular
solution for the FA model:

RSS ¼
Xp
i¼1

Xp
j¼1
½Rxx � ðKUKTÞ�2ij, (5)

where RSS is the residual sums of squares, U is diagonal (prior to rotation), and
Dc is not shown because it has been subtracted from the full correlation matrix to
create Rxx. A key feature of the iterative approach is that communalities placed
on the diagonal of Rxx are estimated simultaneously with the factor loadings.
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The iterative approach begins as conditional principle factors. Then the initial
estimate of K is used to estimate new communalities as the sum of squared
loadings across each row. These are placed on the diagonal of Rxx, eigenvalues
and eigenvectors are obtained as before, and K is re-estimated. This process
continues until the communalities change minimally from one iteration to the
next (i.e., converge).

2.3. Normal theory maximum likelihood (ML) estimation

One advantage of principle factors methods is that no distributional assumption
about the MVs is needed. However, the disadvantage is that no standard errors
(SEs), significance tests, or confidence intervals (CIs) are available. If MVs can be
assumed to jointly follow a multivariate normal distribution, EFA parameters
can be estimated as in conditional principle factors, with the additional require-
ment that they maximize a multivariate normal likelihood function. Normal
theory ML estimation is the same as iterative principle factors except that load-
ings are chosen to maximize the likelihood function rather than to minimize RSS.
The joint likelihood is

L ¼
YN
i¼1

Rxxj j:5
ð2pÞ:5p exp � 1

2
ðxi � lÞTS�1xx ðxi � lÞ

� �
, (6)

where N is the total number of observations, xi the vector of MV scores for
observation i, and l is the vector of MV means.

When ML is used, a likelihood ratio (LR) test statistic and numerous
descriptive indices may be used to evaluate global model fit. Two versions of the
LR statistic are used. The classic LR statistic is (N�1)(�2)[log(L)], and Bartlett’s
(1950) corrected version is ðN� ðð2pþ 11Þ=6Þ � ð2m=3ÞÞ � ð2Þ½logðLÞ�: L is
(Eq. (6)) evaluated at the maximum. With sufficient N, the LR statistic is
approximately w2-distributed with degrees of freedom:

df ¼ 1

2
pðpþ 1Þ � pþ pm� 1

2
mðm� 1Þ

� �
¼ ðp�mÞ2 � ðpþmÞ

2
(7)

Bartlett’s correction may increase the degree to which the LR statistic is
w2-distributed. The LR statistic may be used to test the null hypothesis (H0) that
the FA model with m factors holds. Rejection of Ho indicates that Rxx has no
particular structure or that more factors are needed. Thus, failing to reject H0 is
desirable. However, this test of perfect fit is sensitive to N. Virtually any par-
simonious model is rejected if N is large enough, and substantial misfit is missed
if N is small.

Numerous descriptive indices of model fit have been developed that should be
consulted along with, or instead of, the w2-test. These indices are usually studied
or discussed in the context of CFA rather than EFA; thus it is more natural to
review them when describing CFA. However, the indices are also useful for EFA,
and are the primary method by which the number of factors is decided upon
when ML is used. ML also provides SEs for the factor loadings and inter-factor
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correlations (following oblique rotation), which aids in the often subjective
process of assigning MVs to factors in EFA.

2.4. Tools for choosing m

Three statistical tools used to choose m (which may be used with either principle
factors or ML) are residuals, a scree plot, and parallel analysis. Smaller residuals
indicate better model fit. A summary statistic, such as the root mean square
residual or the maximum absolute residual, can be compared for models with
different m. Examination of residuals for each correlation or covariance may help
to identify specific areas of model misfit. The best model typically has many small
residuals and no particularly large ones. Many software programs standardize
residuals, which aid in the interpretation of their magnitude. Typically, a stand-
ardized residual greater than about 2 is considered large.

Another tool, the scree plot (Cattell, 1966), is a graph of the eigenvalues of
Rxx. Figure 1 shows an example for 9 MVs. The vernacular definition of ‘‘scree’’
is an accumulation of loose stones or rocky debris lying on a slope or at the base
of a hill or cliff. In a scree plot, it is desirable to find a sharp reduction in the size
of the eigenvalues (like a cliff), with the rest of the smaller eigenvalues consti-
tuting rubble. When the eigenvalues drop dramatically in size, an additional
factor would add relatively little to the information already extracted. Because
scree plots can be subjective and arbitrary to interpret, their primary utility is in
providing two or three reasonable values of m to consider. The plot in Fig. 1
suggests that a useful model for these data may have 3 or 4 factors.

Parallel analysis (Horn, 1965) helps to make the interpretation of scree plots
more objective. The eigenvalues of Rxx are plotted with eigenvalues of the
reduced correlation matrix for simulated variables with population correlations
of 0 (i.e., no common factors). An example is displayed in Fig. 2. The number of
eigenvalues above the point where the two lines intersect (3 for the example in
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Fig. 1. Example scree plot.
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Fig. 2) is the suggested m. The rationale for parallel analysis is that useful factors
account for more variance than could be expected by chance. Recall that an
eigenvalue is the proportion of variance explained by each factor. Only factors
with eigenvalues greater than those from uncorrelated data are useful.

We are not aware of a commercial computer program that implements parallel
analysis, but any software that will simulate data from a normal distribution and
compute eigenvalues may be used. To carry out parallel analysis, generate N
observations from a normal distribution for p variables (N and p for the sim-
ulated data match those for the observed data). Then compute the reduced cor-
relation matrix among simulated MVs and its eigenvalues, repeat this process
approximately 100 times, and average the eigenvalues for each simulated MV.
It is these mean eigenvalues that are plotted against the eigenvalues of Rxx.
Syntax for parallel analysis using SPSS (SPSS Incorporated, 2006), or SAS soft-
ware (SAS Institute, 2006) was published by O’Connor (2000).

Additional tools are available to help select m when ML is used. Global
indices of model fit may be compared among models with differing m. Increasing
m improves model fit to some degree, but the goal is to identify m such that one
fewer factor results in substantially poorer fit and one additional factor has little
impact on the fit. Additionally, nested models can be statistically compared using
a w2-difference test. The difference between the LR statistics for a model with
k factors and a model with k�1 factors is approximately w2-distributed with
degrees of freedom (df) equal to the difference between the df for the two models.
A significant difference suggests that fit is better for the model with k factors.
Otherwise, the more parsimonious model is preferred. The final model selected
should fit in an absolute, as well as relative, sense.

We conclude this section with a warning about an approach commonly
employed to select m, which is theoretically unjustifiable and likely to be mis-
leading. The eigenvalue-greater-than-one rule (also called the Kaiser criterion or
the Kaiser–Guttman rule) leads researchers to select m equal to the number of
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Fig. 2. Example of parallel analysis.
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eigenvalues of Rxx that exceed 1. The number of eigenvalues greater than 1 is a
lower bound for the number of components to extract in principle components
analysis (discussed next), but it should never be used as the sole criterion to select
m for EFA.

3. Principle components analysis (PCA)

PCA is a data reduction method sometimes confused with EFA. Conditional
principle factors EFA is mathematically similar to PCA. For both, parameters
interpreted as standardized regression coefficients are calculated from eigenvec-
tors and eigenvalues of a correlation matrix. However, EFA analyzes the reduced
correlation matrix, with prior communalities on the diagonal, whereas PCA
analyzes the full correlation matrix, with 1’s on the diagonal. Because a com-
munality is the proportion of MV variance that is reliable, PCA treats MVs as
error-free. Thus, what may seem like a small technical difference between PCA
and EFA has important implications for interpretation.

The purpose of EFA and PCA differs, as does interpretation of the results.
EFA seeks to explain covariation among MVs and is useful for understanding
underlying structure in the data. Total MV variance is separated into common
and unique elements, and common factors are constructs thought to give rise to
MVs. In contrast, PCA is useful for reducing a large number of variables into a
smaller set. Instead of separating common and unique variance, total MV var-
iance is reorganized into linear combinations called components. A component is
a linear combination of MVs, not a latent variable. Component loadings are
standardized regression coefficients indicating the strength of relation between
each MV and each component. However, a component has no particular inter-
pretation beyond ‘‘linear combination of’’ MVs. When the goal of an analysis is
to understand underlying dimensions implied by correlations (or covariances)
among MVs, and interpret the dimensions as constructs, FA is applicable and
PCA is not.

4. Confirmatory factor analysis (CFA)

CFA is used to test a hypothesized model. Investigators specify the number of
factors, and typically constrain many factor loadings to 0. Thus, fewer loadings
are estimated in CFA than in EFA because not all factors are hypothesized to
underlie all MVs. MVs with nonzero loadings on a factor are indicators of the
factor. Researchers decide when fitting the model to data which parameters
are free (i.e., to be estimated) and which are fixed (i.e., constrained to some
value).

Because more restrictions are placed on the parameters than in EFA, CFA
models are not rotationally indeterminate. Thus, eigenvalues and eigenvectors
are not used in CFA, and correlations among factors are not introduced by
rotation. Instead, researchers specify whether correlations among factors are free
or fixed. Typically, unique variances are estimated as in EFA and correlations
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among them can be estimated if relationships are hypothesized. An important
consideration in CFA that influences how many parameters can be freed is model
identification.

4.1. Identification

A CFA model is identified if parameter estimates are unique, otherwise the model
is unidentified (also called under-identified) and the results are not trustworthy.
At a minimum, there must be more known quantities (e.g., non-redundant
elements of Rxx) than unknown quantities (i.e., parameters to estimate). This is a
necessary but not sufficient condition for model identification. Bollen (1989)
describes conditions that are sufficient but not necessary for identification that
are useful for models matching these criteria. Models with m 4 1 are identified if
there are 3 or more indicators per factor, each indicator has a nonzero loading on
only 1 factor, and unique variances are uncorrelated. Only 2 indicators per factor
are acceptable if either all the factors are correlated (i.e., U has no zeros), or each
row of U has at least one nonzero off-diagonal element.

Many possible models can be specified and identified which do not match
Bollen’s (1989) criteria above. Identification can be proven by matrix algebra,
but this is tedious, error-prone, and unrealistic for some users. Most software
programs detect some types of under-identification and warn users that re-
specification may be needed. If identification is uncertain, Jöreskog and Sörbom
(1986) suggest fitting the model to data, computing the model-implied covariance
matrix, and then re-fitting the model treating the model-implied covariances as if
they were observed. If parameter estimates from the two fittings differ, the model
is not identified.

In addition to model identification, the scales of all latent variables must be
identified in CFA. Typically, unique factors are handled as in EFA: Means are
fixed to 0 and variances are free. The scales of common factors also may be
identified as in EFA, by fixing the means and variances to 0 and 1, respectively.
Alternatively, a common factor can be assigned the scale of one MV to which it is
highly related by fixing that MV’s loading to 1. This permits estimation of the
common-factor variance which is sometimes of interest. Model fit is unaffected
by the procedure used to identify the scales of the factors.

4.2. Estimation

A CFA model is usually fitted to data with ML under the assumption that MVs
are continuous and multivariate normal. The likelihood is:

LCFA ¼ log R̂xx

�� ��þ trðRxxR̂
�1
xx Þ � log Rxxj j � p, (8)

where Rxx is the observed covariance matrix, Ŝxx the model-implied covariance
matrix, and ‘‘tr’’ refers to the trace (i.e., sum of diagonal elements). Thus, SEs for
factor loadings and inter-factor correlations are available, as is an LR statistic for
evaluating model fit that is w2-distributed in large samples. The LR statistic is
(N�1)LCFA (where LCFA is (Eq. (8)) evaluated at the maximum) with df equal to
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the number of nonredundant elements in Rxx less than the number of free
parameters, t:

df ¼ 1

2
pðpþ 1Þ � t (9)

CFA models should be fitted to covariance, not correlation, matrices, unless
one’s software is known to handle correlation matrices correctly (Cudeck, 1989).
The statistical theory that justifies CFA does not apply to correlation matrices
without modification. Because the procedures are more complicated for corre-
lation versus covariance matrices, many computer programs do not handle cor-
relation matrices appropriately and will provide incorrect SEs (and possibly an
incorrect LR statistic). The RAMONA program (Browne et al., 1994) and PROC
CALIS in SAS (SAS Institute, 2006) handle correlation matrices appropriately,
but with most software programs, it is best to fit a CFA model to a covariance
matrix to ensure a proper analysis.

4.3. Evaluation of model fit

After a CFA model has been specified, identification has been addressed,
and parameters have been estimated, a fundamental concern is how well the
model fits the data. First, there should be no improper parameter estimates. If a
correlation is outside the range �1 to 1, or a variance is negative (called a
Heywood case), the solution should not be interpreted and causes of the problem
should be explored. Improper estimates can occur when the population
parameter is near the boundary, when outliers or influential observations are
present in the data, when the model is poorly specified, or because of sampling
variability.

If all parameter estimates are within permissible ranges, global model fit is
evaluated. As in EFA, the w2-test of absolute fit is sensitive to sample size and
could provide misleading results. However, the difference between LR statistics
for two nested models provides a useful w2-difference test (for large samples)
with df equal to the difference in dfs for the two models. A significant differ-
ence supports the larger model; otherwise, the more parsimonious model is pre-
ferred.

Absolute fit is evaluated using descriptive indices. Available options are
abundant and sometimes contradict one another. However, Hu and Bentler
(1998, 1999) extensively studied many indices and provide guidance for selecting
and interpreting a manageable subset. They recommend reporting one residuals-
based measure such as the standardized root mean square residual (SRMR;
Bentler, 1995; Jöreskog and Sörbom, 1981), and one or more of the following:
(a) the root mean square error of approximation (RMSEA; Browne and Cudeck,
1993; Steiger, 1990; Steiger and Lind, 1980), (b) the Tucker–Lewis (1973) incre-
mental fit index (TLI; also known as the non-normed fit index due to Bentler and
Bonett, 1980), (c) Bollen’s (1988) non-normed index (D2), and (d) Bentler’s (1990)
comparative fit index (CFI).
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The SRMR summarizes the differences between the observed and model-
implied covariance matrices:

SRMR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

pðpþ 1Þ
Xp
i¼1

Xi
j¼1

ðsij � ŝijÞ
siisjj

� 	2( )vuut , (10)

where sij is an element of Rxx and ŝij is an element of Ŝxx: Values closer to 0
indicate better fit; Hu and Bentler (1999) suggested that fit is good if SRMR
r about .09.

The RMSEA indicates the degree of discrepancy between the model and the
data per degree of freedom:

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2LCFA � df

N�1
df

s
, (11)

where LCFA is (Eq. (8)) evaluated at the maximum. Values closer to 0 indicate
better fit.

Roughly, model fit is quantified as close (RMSEA o .05), reasonably good
(.05 o RMSEA o .08), mediocre (.08 o RMSEA o .10), or unacceptable
(RMSEA 4 .10) (Browne and Cudeck, 1993). Hu and Bentler (1999) suggested
that RMSEA r about .06 indicates good fit. The RMSEA is unique because
under certain assumptions, its sampling distribution is known; thus, CIs can be
computed (Browne and Cudeck, 1993; Curran et al., 2003).

The TLI, CFI, and D2 are the incremental fit indices that measure the pro-
portionate improvement in fit by comparing our model to a more restricted,
hypothetical baseline model. Usually the baseline model has independent MVs,
thus 0 factors. The TLI and D2 indicate where our model lies on a continuum
between a hypothetical worst (baseline) model and a hypothetical perfect model,
for which the LR statistic equals its df (thus, the ratio is 1):

TLI ¼
w2
b

dfb
� w2m

dfm

w2
b

dfb
� 1

, (12)

and

D2 ¼
w2b � w2m
w2b � dfm

. (13)

Subscripts ‘‘b’’ and ‘‘m’’ refer to the baseline model and the fitted model with m
factors.

The CFI shows how much less misfit there is in our model than in the worst-
fitting (baseline) model:

CFI ¼ ðw
2
b � dfbÞ � ðw2m � dfmÞ

w2b � dfb
. (14)

If our model fits perfectly, w2m ¼ dfm and CFI ¼ 1. The worst possible fit for our
model is w2m ¼ w2b with dfm ¼ dfb; thus, CFI ¼ 0. The TLI and D2 are also
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typically between 0 and 1 with larger values indicating better fit, but values
outside that range are possible. Hu and Bentler (1999) suggested that values of
TLI, CFI, or D2 equal to at least .95 indicate good fit.

It is possible for a model that fits well globally to fit poorly in a specific region;
thus additional elements of model fit should be evaluated. Parameter estimates
should make sense for the substantive problem, and most factor loadings should
be statistically significant. It is useful to screen for extreme residuals, because
specific misfit may not be reflected in the SRMR summary statistic. Models that
are well matched to the data have moderate to large R2s for each MV and reliable
factors that explain substantial variance in the MVs.

The R2 is the proportion of total variance in an MV that is accounted for by
the common factors (i.e., the communality). Larger values are generally pre-
ferred. Fornell and Larcker (1981) recommend interpreting a reliability coeffi-
cient, rZ, for each factor:

rZ ¼

Pp
j¼1

lj

 !2

Pp
j¼1

lj

 !2

þPp
j¼1

s2jj

, (15)

where s2jj is the (estimated) unique variance for the jth MV. A rule of thumb is
that .7 or larger is good reliability (Hatcher, 1994). Fornell and Larcker (1981)
suggest an additional coefficient, rvc(Z), as a measure of the average variance
explained by each factor in relation to the amount of variance due to measure-
ment error:

rvcðZÞ ¼

Pp
j¼1

l2j

Pp
j¼1

l2j þ
Pp
j¼1

s2jj

. (16)

If rvc(Z) is less than .50, the variance due to measurement error is larger than the
variance measured by the factor; thus, the validity of both the factor and its
indicators is questionable (Fornell and Larcker, 1981, p. 46).

5. FA with non-normal continuous variables

In practice, MVs are often not approximately multivariate normal. This should
be evaluated before methods described in the previous sections are applied.
If ML estimation is used to fit an FA model to non-normal (continuous) data, the
LR statistic and SEs are likely to be incorrect (Curran et al., 1996; Yuan et al.,
2005; West et al., 1995). Thus, significance tests, CIs, and indices of model fit are
potentially misleading. Coefficients and tests of multivariate skewness and
kurtosis (e.g., Mardia, 1970) are available in many computer programs and
should be used routinely. Outliers can cause non-normality, so screening for
outliers also should be common practice.
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If non-normality is detected in CFA, one alternative is a weighted least
squares estimator called asymptotically distribution free (ADF) (Browne, 1982,
1984). Parameter estimates minimize the sum of squared deviations between Rxx

and Ŝxx; weighted by approximate covariances among elements of Rxx. However,
with large p, it becomes impractical to invert the p� p weight matrix, and it
appears that large sample sizes (e.g., 1,000–5,000) are needed for the ADF
method to perform well (Curran et al., 1996; West et al., 1995).

A more generally applicable alternative is to use ML with a correction to the
LR statistic and SEs. The Satorra–Bentler correction (Satorra and Bentler, 1988;
Satorra, 1990) has performed well with moderate sample sizes such as 200–500
(Chou et al., 1991; Curran et al., 1996; Hu et al., 1992; Satorra and Bentler,
1988). It is implemented in the EQS (Bentler, 1989) and Mplus (Muthén and
Muthén, 2006) programs for CFA. ML with the Satorra–Bentler correction can
also be used for EFA and is implemented in Mplus. If SEs and an LR statistic are
not needed, conditional or iterative principle factors could be used for EFA
because multivariate normality is not required.

6. FA with categorical variables

Both EFA and CFA are commonly used to assess the dimensionality of ques-
tionnaires and surveys. Typically, such items have binary or ordinal response
scales; thus, classic FA is not appropriate for several reasons. For one, linear
association is not meaningful because absolute distances between categories are
unknown. Thus, the classic model of linear association among MVs, and between
each MV and the factor(s), is inapplicable. Also, Pearson correlations are atten-
uated for categorical data, which can lead to underestimates of factor loadings if
classic FA is applied. Strictly speaking, discrete variables cannot follow the con-
tinuous multivariate normal distribution. Serious biases can result when standard
ML is used for FA with Pearson correlations computed from categorical data
(DiStefano, 2002; West et al., 1995). An alternative to classic FA is needed for
categorical data.

One solution is to posit that a continuous but unobserved distribution
underlies the observed categories. In other words, in addition to an observed
categorical MV, x, there is an unobserved continuous variable, x*. It is assumed
that the categorization occurs such that:

x1 ¼

1; if x�1 � t1
2; if t1ox�1 � t2
::: :::

c� 1; if tc�2ox�1 � tc�1
c; if tc�1ox�1

8>>>>>><
>>>>>>:

(17)

where sj is the threshold separating category j from j+1 and j ¼ 1, 2,y, c. While
a linear relationship between x and the latent construct(s) is untenable, linearity
is reasonable for x*.
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If it can be assumed for a given research context that the observed categorical
data arose through a categorization of unobserved continuous data, and that
every pair of unobserved variables is bivariate normal, then the correlations
among the underlying, continuous variables can be estimated by polychoric cor-
relations (called tetrachoric correlations when both variables are binary).
Typically, a polychoric correlation is computed in two stages (Olsson, 1979).
First, ts are estimated for each MV based on the proportions of people
responding in each category (and the normality assumption). Second, the cor-
relation between each pair of underlying variables is estimated by ML. The
likelihood is a function of the ts and the bivariate frequencies. The classic
FA model is then fitted to the matrix of polychoric correlations. However, an
alternate estimator is also needed.

Unweighted least squares requires no distributional assumptions about
the MVs and produces consistent estimates of the factor loadings. However,
SEs, significance tests, and most fit indices are not available; thus, it is only
useful for EFA. Weighted least squares (WLS) is a popular alternative that
may be used for EFA or CFA. When the asymptotic covariance matrix (i.e.,
the covariances among all the elements in the covariance matrix among MVs)
is used as the weight matrix, WLS can provide accurate estimates of the
SEs and the LR statistic. Unfortunately, inversion of the weight matrix
(required for WLS) becomes increasingly difficult as the number of MVs
increases, and very large sample sizes are needed for accurate estimation (West
et al., 1995).

A compromise solution, called diagonally weighted least squares (DWLS;
Jöreskog and Sörbom, 2001), uses only the diagonal elements of the asymptotic
covariance matrix; thus, the weight matrix is much easier to invert. This results in
a loss of statistical efficiency, but corrective procedures (e.g., the Satorra–Bentler
correction) can be used to obtain accurate estimates of the SEs and the LR
statistic. DWLS with these corrections is sometimes called robust DWLS. Recent
simulations suggested that robust DWLS performs well, and better than WLS
based on a full weight matrix (Flora and Curran, 2004). Robust DWLS is
implemented in the LISREL (Jöreskog and Sörbom, 2005) and Mplus (Muthén
and Muthén, 2006) programs.

Another way to evaluate the latent dimensionality of categorical MVs is with
models and methods in the domain of item response theory (IRT; Embretson and
Reise, 2000; Thissen and Wainer, 2001). Unlike FA, IRT models were originally
developed for categorical data. As in FA, IRT models are based on the premise
that latent variables give rise to observed data, and parameters provide infor-
mation about relationships between MVs and factor(s). The exploratory–
confirmatory continuum described for FA also applies in IRT. In certain
circumstances, FA parameters may be converted by simple algebra to IRT
parameters (McLeod, Swygert, and Thissen, 2001; Takane and de Leeuw, 1987).
Multidimensional IRT (MIRT) methods (i.e., those involving more than one
common factor) are sometimes referred to as full information item factor analysis
(Bock et al., 1988; Muraki and Carlson, 1995) in acknowledgment of the sim-
ilarities between classic FA and IRT. ‘‘Full information’’ reflects the fact that
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IRT models are fitted to the raw data directly rather than to summary statistics
such as polychoric correlations. An ML-based estimation scheme described by
Bock and Aitkin (1981) is typically used to fit the models.

MIRT is not as widely used as categorical FA, probably because software
development has lagged behind that for FA. At the time of this writing, the
commercially available TESTFACT program (v.4; Bock et al., 2002) performs
exploratory MIRT and fits one very specific type of hierarchical confirmatory
model known as the bi-factor model (Holzinger and Swineford, 1937; Gibbons
and Hedeker, 1992). However, the only models implemented are for binary MVs.
The ltm package (Rizopoulos, 2006) for R offers slightly more flexibility in the
factor structure, but is limited to dichotomous variables and a maximum of two
latent factors. The POLYFACT program (Muraki, 1993) performs exploratory
MIRT for ordinal MVs, but this program has not been as widely distributed.
Software for general kinds of confirmatory MIRT models is not readily available.

MIRT methods are appealing because the model is fitted to the data directly,
thus polychoric correlations need not be calculated. However, the disadvantage is
that m-dimensional numerical integration is required (m ¼ number of factors);
thus, solutions are more difficult to obtain as m increases. Nevertheless, Markov
chain Monte Carlo estimation methods may hold promise for use with MIRT
models (Edwards, 2006), and we anticipate advancements in software for MIRT
in future years.

7. Sample size in FA

For classic FA (without assumption violations), how many observations are
needed for accurate estimation? Historically, minimum Ns have been suggested
such as 100 (Gorsuch, 1983; Kline, 1979), 200 (Guilford, 1954), 250 (Cattell,
1978), or 300 (Comrey and Lee, 1992), or minimum ratios of N to p such as 3
(Cattell, 1978), or 5 (Gorsuch, 1983; Kline, 1979). More recently, MacCallum,
Widaman, Zhang, and Hong (1999) astutely pointed out that such rules of thumb
are meaningless because the optimal N depends on characteristics of the study.
These authors showed that under certain conditions 60 observations can be
adequate, whereas in other situations, more than 400 observations are needed.
Results apply to both EFA and CFA.

The theoretical arguments presented by MacCallum et al., 1999 (see also
MacCallum and Tucker, 1991) are based on the fact that nonzero correlations
between common and unique factors, and among unique factors, are a major
source of error in the estimation of factor loadings. The correlations tend to be
farther from zero with smaller N. However, small uniquenesses (e.g., r.3), and
highly overdetermined factors, having four or more indicators with large loadings,
can offset the limitations of small samples. Uniquenesses act as weights on
the matrices of correlations between unique and common factors and among
unique factors. The less these correlations are weighted, the less impact they have
on the FA results. Further, with the number of MVs held constant, increasing
the number of indicators per factor reduces m, which reduces the number of
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correlations among common and unique factors and among unique factors, giv-
ing them less overall influence on results.

MacCallum et al. (1999) found that when uniquenesses were small (.2, .3,
or .4), accurate recovery of K could be achieved with around 60 observations with
highly overdetermined factors, and 100 observations with weakly determined
factors having 2 or 3 indicators. When uniquenesses were large (.6, .7, or .8), 400
observations were inadequate for recovery of K unless the factors had 6 or 7
strong indicators each, in which case NZ200 was required. When uniquenesses
varied over MVs (.2, .3,y, .8), N ¼ 60 provided pretty good recovery of K for
factors with 6 or 7 strong indicators, but NZ200 was needed with weakly
determined factors. These results were observed both with (MacCallum et al.,
2001) and without (MacCallum et al., 1999) mis-specification of the model in the
population.

The sample size question is perhaps even more crucial when analyzing cat-
egorical MVs. As mentioned above, WLS requires many observations (perhaps
several thousand) for stable parameter estimates (Potthast, 1993), primarily
because of the potentially massive number of parameters in the weight matrix.
Robust DWLS has performed well with smaller samples. For example, Flora and
Curran (2004) found that a sample size of 200 was adequate for relatively simple
CFA models (e.g., 10 or 20 MVs and 1 or 2 factors), MVs with 2 or 5 categories,
and communalities of .49.

With either WLS or robust DWLS, adequate sample size is needed for esti-
mation of polychoric correlations because sparseness in the 2-way contingency
tables used in their computation can cause serious instability in the correlation
estimate. Sparseness is especially problematic for two dichotomous MVs, because
a tetrachoric correlation is inestimable when there is a zero cell in the 2� 2
contingency table. In addition, no easily implemented method exists to deal with
missingness, and the common practice of listwise deletion can further exacerbate
the problem. Robust DWLS is a relatively new procedure and additional
research on the sample-size question is warranted.

8. Examples of EFA and CFA

In this section we present three example FAs. Many software packages are
capable of estimating some (or all) of the FA models discussed in this chapter.
We selected CEFA (Browne et al., 2004) because it is one of the most flexible
EFA programs, and we chose LISREL (Jöreskog and Sörbom, 2005), and Mplus
(Muthén and Muthén, 2006) to illustrate CFA because they are very popular,
easy to use, and have many features. Other popular software programs that
perform EFA and CFA include SAS (SAS Institute, 2006), Splus (Insightful
Corporation, 2005), and R (R Development Core Team, 2005); all SEM pro-
grams carry out CFA. Our examples use only a fraction of currently available
options in the selected programs and the software is always expanding and
improving. Nevertheless, these examples should provide a valuable introduction
to persons unfamiliar with the software or with FA.
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8.1. EFA with continuous variables using CEFA

The first example is an EFA carried out using CEFA.1 Continuous multivariate
normal data were simulated using Mplus from a model with three correlated
factors and 18 MVs (N ¼ 400). For each factor, six different MVs had nonzero
loadings, and all other MVs had zero loadings. The population factor loadings
and communalities are given in Table 1. Population correlations among factors
i and j (rij) were: r12 ¼ .3, r13 ¼ .5, and r23 ¼ .4. The total sample of 400 was
divided in half to provide one sample for EFA and another for a follow-up CFA
(described in the next section).

For EFA, we analyzed a Pearson correlation matrix using ML (presuming
multivariate normality). A scree plot of the eigenvalues, given in Fig. 3, suggests
that no more than four factors should be extracted. Table 2 compares the fit of
models with between one and four factors. The maximum absolute residual is in a
correlation metric; thus, values of .33 and .29 are very large. The information in
Table 2 indicates that fit is very poor for the one- and two-factor models. However,
the three-factor model fits well, and is not significantly improved upon by the
addition of a fourth factor. A w2-difference test comparing the three- and four-
factor (nested) models is nonsignificant (w2(15) ¼ 21.99, p ¼ .108). With real data,
the substantive interpretability of the rotated factor loadings with different numbers
of factors is as important as the fit and should be considered as part of model
selection.

Estimated factor loadings, their SEs, and communalities for the three-factor
model are given in Table 1. The loadings have been rotated using the oblique
quartimax criterion. The estimated parameters match up well with the values used to
generate the data. The estimated correlations among factors and their SEs were:
r12 ¼ .37 (.06), r13 ¼ .47 (.07), and r23 ¼ .44 (.07). These are also close to the pop-
ulation values.

CEFA is unusual among EFA programs because it provides SEs (and CIs) for
the parameters which can be useful for assigning MVs to factors. Often, factor
assignment is done using an arbitrary criterion such as ‘‘MVs with a loading
of .30 or larger load on the factor’’. Arbitrary criteria are still needed when SEs
are available, but sampling variability can be incorporated into the process.
In Table 1, the MVs we assigned to each factor are highlighted in bold. In this
case, loadings are either small or large so factor assignment is fairly straight-
forward.

8.2. CFA with continuous variables using LISREL

Once a structure has been determined from an EFA, it is useful to cross-validate it
with CFA using a new sample. Splitting the initial sample in half is often a
practical way to cross-validate EFA results. In this section, the other half of the
simulated data described in the previous section is analyzed with CFA using
LISREL.

1 The CEFA software and user’s manual may be downloaded for free from http://faculty.psy.ohio

state.edu/browne/software.php.
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Performing CFA in LISREL is a two-stage process. In the first stage, a
covariance matrix is estimated from the raw data using the PRELIS program,
which is distributed with LISREL. The PRELIS syntax we used is given in
Appendix A. The first two lines are the title, followed by a data format line (DA)
that specifies the number of indicators (NI), the number of observations (NO),
and where the data are stored (FI). The last line tells PRELIS to output (OU) a

Table 1

Factor loadings and communalities for the EFA example

Population Values Sample Estimates (N ¼ 200)

MV lj1 lj2 lj3 h2j l̂j1ðSEÞ l̂j2ðSEÞ l̂j3ðSEÞ ĥ
2

j

1 .6 0 0 .36 .61 �.02 .07 .41

(.06) (.07) (.07)

2 .6 0 0 .36 .63 �.03 .04 .40

(.06) (.07) (.07)

3 .6 0 0 .36 .48 �.12 .23 .33

(.07) (.08) (.08)

4 .7 0 0 .49 .71 .05 �.02 .52

(.06) (.06) (.06)

5 .7 0 0 .49 .64 .07 �.05 .42

(.06) (.07) (.07)

6 .7 0 0 .49 .71 .04 �.03 .51

(.06) (.06) (.06)

7 0 .7 0 .49 �.05 .70 .05 .50

(.05) (.06) (.06)

8 0 .7 0 .49 �.08 .81 �.01 .60

(.04) (.05) (.05)

9 0 .7 0 .49 .07 .65 .10 .53

(.05) (.07) (.06)

10 0 .8 0 .64 .04 .81 �.04 .65

(.04) (.05) (.05)

11 0 .8 0 .64 .05 .80 �.03 .65

(.04) (.05) (.05)

12 0 .8 0 .64 .04 .76 �.06 .65

(.04) (.05) (.05)

13 0 0 .6 .36 �.11 .08 .72 .50

(.06) (.06) (.06)

14 0 0 .6 .36 �.02 �.05 .67 .41

(.06) (.06) (.07)

15 0 0 .6 .36 .06 .22 .42 .34

(.07) (.08) (.08)

16 0 0 .8 .64 .03 .10 .65 .50

(.06) (.06) (.06)

17 0 0 .8 .64 .01 .01 .80 .66

(.05) (.05) (.05)

18 0 0 .8 .64 .11 �.06 .75 .61

(.05) (.05) (.06)

Note: MV, measured variable; ljk, true factor loading for MV j on factor k; h2j ; true communality for

MV j; k̂jkðSEÞ; estimated factor loading for MV j on factor k, with its standard error; ĥ
2

j ; estimated

communality for MV j. The estimated loadings have been rotated using the oblique quartimax

criterion.
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sample covariance matrix (CM) from the data described in the preceding line.
The output file will be created in the same folder as the syntax file.

The second stage is to estimate the CFA model in LISREL. The syntax we used
is given in Appendix A. The first line provides a title (TI) for the output file. The
second line describes the data (DA) being used in terms of number of indicators
(NI), number of observations (NO), number of groups (NG), and the kind of
matrix (MA) that is to be analyzed. The third line specifies the file that contains
the matrix to be analyzed. The next line contains a model statement (MO) that
describes the CFA generally. In addition to indicating the number of MVs to be
modeled (NX) and the number of factors (NK), this line indicates how the factor
loading matrix (LX), error covariance matrix (TD), and the inter-factor corre-
lation matrix (PH) should be structured. For this example, the error covariance
matrix is diagonal (DI) and freely estimated (FR) and the inter-factor correlation
matrix is standardized (i.e., it has 1’s on the diagonal) and symmetric (ST). The
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Fig. 3. Scree plot for EFA example.

Table 2

Comparisons among EFA models with differing numbers of factors

m w2(df) Max. Residual RMSEA (90% CI)

1 645.64 .33 .14

(135) (.13, .15)

2 300.69 .29 .09

(118) (.08, .10)

3 105.58 .08 .01

(102) (.00, .04)

4 83.59 .09 .00

(87) (.00, .04)

Note: m, number of factors; Max. Residual, maximum absolute correlation residual (range: 0–1);

RMSEA (90% CI), root mean square error of approximation, with 90% confidence interval.

Factor analysis and related methods 193



factor-loading matrix is set to be full (FU) and fixed (FI) meaning there is a
complete 18 by 3 loading matrix (K), but none of the loadings are to be estimated.
This is not the model we are interested in, but this is remedied in the next three
lines. These lines, each of which begins with FR, indicate to LISREL which
elements of the factor loading matrix are to be estimated. For instance, LX 3 1 is
the factor loading for the third measured variable on the first factor, found in row
3, column 1 of K. The last two lines indicate the output desired. The PD line
produces a path diagram of the model being estimated, which is a convenient way
to verify that the model being estimated is the desired model. The final line is an
output line (OU), which defines the structure of the output file (RS prints resid-
uals, ND ¼ 2 sets the number of decimal places in the output file to two) and
indicates which method of estimation (ME) should be used (ML indicates max-
imum likelihood).

There were no improper estimates such as negative variances, thus we proceed
to evaluation of model fit. Though LISREL produces numerous global fit
statistics, we followed Hu and Bentler’s (1999) recommendations (described
above) for selecting and evaluating a subset of them. The model fits very well
(SRMR: .04; RMSEA: .00 with 90% CI: .00, .03; TLI: 1.00; CFI: 1.00). LISREL
also provides a great deal of information about residuals which are differences
between the sample covariance matrix and the model-implied covariance matrix
(labeled the ‘‘fitted covariance matrix’’ in the output). Residuals are presented in
both raw and standardized metrics, and plotted several ways. A model that fits
the data well has mostly small residuals that do not show any particular pattern.

The estimated factor loadings, their SEs and the communalities (usually
referred to as squared multiple correlations in a CFA context) are given in
Table 3. Correlations among factors and their SEs were: r12 ¼ .43 (.07), r13 ¼ .37
(.07), and r23 ¼ .54 (.06). The estimates match the true values reasonably well;
accuracy improves with larger samples. LISREL provides t-statistics for testing
whether each factor loading or inter-factor correlation is significantly different
from 0. All the estimates were significant (a ¼ .05) for this example.

8.3. CFA with categorical MVs using Mplus

The data for this example were simulated using Mplus from a model with three
correlated factors and 18 MVs (N ¼ 400). As before, there were six indicators for
each factor. The variables are binary (coded 0 or 1), thus each one has a single
threshold parameter. The population thresholds, factor loadings and commu-
nalities are given in Table 4. Population correlations among factors were:
r12 ¼ .3, r13 ¼ .5, and r23 ¼ .4.

The Mplus syntax we used for the CFA is given in Appendix B. Following the
title is the DATA line that specifies a path for the raw data file. The VARIABLE
command specifies names for the variables. For the correct analysis, it is
extremely important to indicate here that the MVs are categorical. The MODEL
statement specifies the model. BY indicates a directional path and WITH
requests estimation of a correlation or covariance. In the context of CFA,
relationships between MVs and factors are directional paths; thus, ‘‘f1 BY y1-y6’’
indicates that factor 1 should load on MVs y1, y2, y3, y4, y5, and y6. An asterisk
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is used to override the default method for setting the scale (fixing the first factor
loading for each factor to one) and the last three lines of the MODEL statement
fix the factor variances to 1. The ANALYSIS line specifies the estimation
method; WLSMV is robust DWLS. Finally, the OUTPUT line controls elements
of the output. For categorical MVs, thresholds are obtained by requesting sample
statistics (SAMPSTAT).

Table 3

Factor loadings and communalities for the CFA example

Sample Estimates (N ¼ 200)

MV l̂j1ðSEÞ l̂j2ðSEÞ l̂j3ðSEÞ R2
j

1 .60 – – .36

(.07)

2 .58 – – .32

(.07)

3 .57 – – .31

(.07)

4 .65 – – .45

(.07)

5 .66 – – .41

(.07)

6 .79 – – .59

(.07)

7 – .75 – .56

(.06)

8 – .73 – .53

(.06)

9 – .79 – .56

(.07)

10 – .78 – .61

(.06)

11 – .91 – .69

(.06)

12 – .91 – .72

(.06)

13 – – .58 .35

(.07)

14 – – .61 .36

(.07)

15 – – .64 .42

(.07)

16 – – .75 .59

(.06)

17 – – .81 .64

(.06)

18 – – .83 .67

(.06)

Note: MV, measured variable; –, loading was fixed to 0 (not estimated); k̂jkðSEÞ; estimated factor

loading for MV j on factor k, with its standard error; R2
j ; squared multiple correlation for MV j.
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There were no improper estimates such as negative variances and global model
fit was very good (SRMR: .07; RMSEA: .02; TLI: .98; CFI: .98). The estimated
thresholds, factor loadings, their SEs, and the squared multiple correlations are
given in Table 5. Correlations among factors and their SEs were: r12 ¼ .48 (.08),
r13 ¼ .48 (.08), and r23 ¼ .41 (.07). The estimates are fairly close to the generating
values. All of the loadings and inter-factor correlations were significantly
(a ¼ .05) different from 0 for this example.

For comparison, the analysis was redone using classic WLS (with a full weight
matrix). The only change needed in the Mplus input file is the name of the
estimator in the ANALYSIS statement. There were no improper estimates or
other estimation difficulties, but global model fit declined quite a bit (SRMR: .12;
RMSEA: .05; TLI: 88; CFI: .90) compared to the robust DWLS solution. WLS
estimates of the thresholds, factor loadings, and communalities are given in
Table 5. Correlations among factors and their SEs were: r12 ¼ .49 (.05), r13 ¼ .55
(.05), and r23 ¼ .49 (.04). Two-thirds of the robust DWLS factor loadings are
closer to the true values than the WLS estimates. This is consistent with Flora
and Curran’s (2004) finding that robust DWLS performs better than WLS in
smaller (realistic) sample sizes.

9. Additional resources

This has been an introduction to EFA and CFA, with brief mention of the closely
related procedures PCA and MIRT. For additional information, readers are
referred to several textbooks on FA and related methods (Bartholomew and

Table 4

Population parameters for the CFA example with categorical MVs

MV tj lj1 lj2 lj3 h2j

1 �.5 .5 0 0 .25

2 0 .5 0 0 .25

3 .5 .5 0 0 .25

4 �.5 .6 0 0 .36

5 0 .6 0 0 .36

6 .5 .6 0 0 .36

7 �.5 0 .6 0 .36

8 0 0 .6 0 .36

9 .5 0 .6 0 .36

10 �.5 0 .7 0 .49

11 0 0 .7 0 .49

12 .5 0 .7 0 .49

13 �.5 0 0 .5 .25

14 0 0 0 .5 .25

15 .5 0 0 .5 .25

16 �.5 0 0 .7 .49

17 0 0 0 .7 .49

18 .5 0 0 .7 .49

Note: MV, measured variable; tj, true threshold for MV j; ljk, true factor loading for MV j on factor k;

h2j ; true communality for MV j.
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Knott, 1999; Bollen, 1989; Brown, 2006; Comrey and Lee, 1992; Gorsuch, 1983;
McDonald, 1985; Thissen and Wainer, 2001). Many special issues in FA were not
mentioned here, such as multiple group analyses, hierarchical FA, and missing
data. Some of these topics are covered in the texts listed above, but developments
are ongoing and the methodological literature should be consulted for the most
current developments in FA.

Table 5

Factor loadings, thresholds, and communalities for the CFA example with categorical MVs

Robust DWLS WLS

MV t̂j l̂j1ðSEÞ l̂j2ðSEÞ l̂j3ðSEÞ R2
j l̂j1ðSEÞ l̂j2ðSEÞ l̂j3ðSEÞ R2

j

1 �.52 .45 – – .20 .48 – – .23

(.08) (.06)

2 �.03 .49 – – .24 .50 – – .25

(.07) (.05)

3 .38 .42 – – .17 .62 – – .38

(.08) (.06)

4 �.55 .52 – – .27 .59 – – .35

(.08) (.05)

5 �.01 .55 – – .31 .64 – – .41

(.07) (.05)

6 .43 .64 – – .41 .66 – – .44

(.08) (.06)

7 �.44 – .67 – .45 – .74 – .54

(.06) (.04)

8 .06 – .59 – .35 – .57 – .33

(.06) (.04)

9 .43 – .71 – .51 – .82 – .67

(.06) (.04)

10 �.62 – .65 – .43 – .79 – .62

(.06) (.04)

11 .04 – .77 – .59 – .84 – .70

(.05) (.03)

12 .52 – .78 – .61 – .74 – .54

(.06) (.04)

13 �.46 – – .61 .37 – – .66 .43

(.06) (.04)

14 �.01 – – .58 .34 – – .73 .53

(.06) (.04)

15 .53 – – .53 .28 – – .57 .32

(.08) (.05)

16 �.57 – – .59 .35 – – .72 .52

(.06) (.04)

17 �.01 – – .73 .54 – – .89 .80

(.05) (.03)

18 .53 – – .69 .48 – – .86 .74

(.07) (.04)

Note: MV, measured variable; ŝj; estimated threshold for MV j; k̂jkðSEÞ; estimated factor loading for

MV j on factor k, with its standard error; R2
j ; squared multiple correlation for MV j.
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Appendix A:. PRELIS andLISRELcode for theCFAexamplewith continuousMVs

PRELIS Code

PRELIS code to get covariance matrix for
FA chapter continuous CFA example
DA NI ¼ 18 NO ¼ 200 FI ¼ ‘***insert your directory here***/conFA-2.dat’
OU CM ¼ conFA-2.cm

LISREL Code

TI FA chapter continuous CFA example
DA NI ¼ 18 NO ¼ 200 NG ¼ 1 MA ¼ CM
CM ¼ conFA-2.cm
MO NX ¼ 18 NK ¼ 3 LX ¼ FU,FI TD ¼ DI,FR PH ¼ ST
FR LX 1 1 LX 2 1 LX 3 1 LX 4 1 LX 5 1 LX 6 1
FR LX 7 2 LX 8 2 LX 9 2 LX 10 2 LX 11 2 LX 12 2
FR LX 13 3 LX 14 3 LX 15 3 LX 16 3 LX 17 3 LX 18 3
PD
OU RS ND ¼ 2 ME ¼ML

Appendix B:. Mplus code for CFA example with categorical MVs

TITLE: CFA with categorial measured variables in Mplus
DATA: FILE IS catFA.dat;
VARIABLE: NAMES ARE y1-y18;

CATEGORICAL ARE y1-y18;
MODEL: f1 BY y1-y6;

f2 BY y7-y12;
f3 BY y13-y18;
f1 WITH f2 f3;
f2 WITH f3;
f1 BY y1*.5;
f2 BY y7*.5;
f3 BY y13*.5;
f1@1;
f2@1;
f3@1;

!ANALYSIS: ESTIMATOR ¼WLS;
ANALYSIS: ESTIMATOR ¼WLSMV;
OUTPUT: SAMPSTAT;
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Abstract

Structural equation modeling (SEM) is a multivariate statistical technique for
testing hypotheses about the influences of sets of variables on other variables.
Hypotheses can involve correlational and regression-like relations among
observed variables as well as latent variables. The adequacy of such hypotheses
is evaluated by modeling the mean and covariance structures of the observed
variables. After an introduction, we present the statistical model. Then we
discuss estimation methods and hypothesis tests with an emphasis on the max-
imum likelihood method based on the assumption of multivariate normal data,
including the issues of model (parameter) identification and regularity con-
ditions. We also discuss estimation and testing with non-normal data and with
misspecified models, as well as power analysis. To supplement model testing, fit
indices have been developed to measure the degree of fit for a SEM model.
We describe the major ones. When an initial model does not fit well, Lagrange
Multiplier (score) and Wald tests can be used to identify how an initial model
might be modified. In addition to these standard topics, we discuss extensions
of the model to multiple groups, to repeated observations (growth curve
SEM), to data with a hierarchical structure (multi-level SEM), and to non-
linear relationships between latent variables. We also discuss more practical
topics such as treatment of missing data, categorical dependent variables, and
software information.

1. Models and identification

1.1. Introduction

Structural equation modeling (SEM) is a multivariate statistical technique
designed to model the structure of a covariance matrix (sometimes the structure
of a mean vector as well) with a relatively few parameters, and to test the adequacy
of such a hypothesized covariance (mean) structure in its ability to reproduce
sample covariances (means). An interesting model would be well motivated subst-
antively and provide a parsimonious and adequate representation of the data.
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SEM emerged from several different modeling traditions, e.g., multiple regres-
sion, path analysis, exploratory factor analysis (Lawley and Maxwell, 1971),
confirmatory factor analysis (Jöreskog, 1969), and simultaneous equation models
in econometrics. It is meant to be a unifying methodology that can handle these
various models as special cases, as well as generalized models that are hard or
impossible to handle with earlier methods. Initially, SEM was developed in the
social sciences, especially in psychology and sociology, where it is still popular
(e.g., MacCallum and Austin, 2000). However, it has become employed as a
useful research tool in a variety of other disciplines such as education and mar-
keting to more medically oriented fields such as epidemiology, imaging, and other
biological sciences (see e.g., Batista-Foguet et al., 2001; Bentler and Stein, 1992;
Davis et al., 2000; Dishman et al., 2002; Duncan et al., 1998; Hays et al., 2005;
Peek, 2000; Penny et al., 2004; Shipley, 2000; van den Oord, 2000).

Numerous texts have been written on SEM. Introductory-level textbooks
include Byrne (2006), Dunn et al. (1993), Kline (2005), Loehlin (2004), Maruyama
(1998), Raykov and Marcoulides (2006). The most well-known intermediate-level
text is Bollen (1989). Two more advanced overviews are those of Bartholomew
and Knott (1999) and Skrondal and Rabe-Hesketh (2004). Some collections of
articles on a variety of topics related to SEM can be found in Berkane (1997),
Marcoulides and Schumacker (1996, 2001), and Schumacker and Marcoulides
(1998). The most complete and somewhat technical overview is given by the 18
chapters in Lee’s (2007) Handbook of Structural Equation Models.

Structural models are often represented by a path diagram in which squares
represent observed variables, ovals represent hypothesized latent variables, uni-
directional arrows represent regression-type coefficients, and bidirectional arrows
represent unanalyzed correlations or covariances. Any such diagram is precisely
synonymous with a set of equations and variance and covariance specifications
(see e.g., Raykov and Marcoulides, 2006 (Chapter 1) for more details). In this
section we concentrate on the algebraic and statistical representation.

1.2. Structural equation models

By late 1970s, full SEM formulations were given by several authors. The earliest
and most widely known is the factor analytic simultaneous equation model based
on the work of Jöreskog, Keesling, and Wiley (see Bentler, 1986 for a history).
It is widely known as the Lisrel model, after Jöreskog and Sörbom’s (1979, 1981)
computer program. Another approach is the Bentler–Weeks model (Bentler and
Weeks, 1980). These models are formally equivalent, though differing in appar-
ent mathematical structure. We start with the Bentler–Weeks structure. Let n be a
vector of independent variables and g be a vector of dependent variables, where
‘‘independent’’ variables may be correlated but, unlike dependent variables, are
not explicit functions of other variables. The structural equation that relates these
variables is

g ¼ LgþMn, (1)

where L and M are coefficient matrices. Elements of these matrices are known as
path coefficients, and would be shown as unidirectional arrows in a diagram.
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Note that this allows dependent variables to be influenced not only by inde-
pendent variables, as in regression and linear models in general, but also by other

dependent variables. Let us denote B ¼ L 0

0 0

� �
; C ¼ M

I

� �
; and m ¼

g

n

 !
;

where I is the identity matrix of an appropriate order. Then (1) can be expressed
in an alternative form

m ¼ Bm þ Cn. (2)

Now assume that I–B is non-singular so that the inverse of I–B exists, then

m ¼ ðI� BÞ�1Cn. (3)

This gives an expression of all the variables as a linear combination of the
independent variables. For generality, we allow both independent and dependent
variables to be observed variables, in the data file, as well as hypothesized latent
variables such as factors, residuals, and so on. Thus, we introduce the matrix G
whose components are either 1 or 0 which connects n to the observed variables x
such that x ¼ Gn. Let l ¼ E(x), lx ¼ E(n), R ¼ Cov(x), andU ¼ Cov(n). Various
covariances fij are shown as two-way arrows in path diagrams. The full mean
and covariance structure analysis model (MCSA) follows as:

Mean structure : l ¼ GðI� BÞ�1Clx (4)

Covariance structure : R ¼ GðI� BÞ�1CUC0ðI� BÞ�10G 0. (5)

When the mean structure is saturated, i.e., l does not have a structure as given
by (4), then we may consider only the covariance structure (5). This explains the
name covariance structure analysis (CSA) as another generic name for SEM in
which means are ignored.

In the above, there is no obvious use of latent variables. Bollen (2002) provides
a review of several definitions of such variables. Among these, Bentler’s (1982)
approach (see also Bentler and Weeks, 1980) is the clearest to differentiate a
latent variable model from a measured variable model. In this approach, the
ranks or dimensionality of U and R are compared. If dim(U) 4 dim(R), i.e., the
dimensionality of the independent variables exceeds that of the data variables,
the model is a latent variable model. This means that the measured variables x
may be generated by the n, but the n cannot be generated by the x. This clarifies
some traditional controversies in the field, e.g., it follows immediately that prin-
cipal components analysis is not a latent variable model, since the principal
components exist in the space of measured variables; and similarly that factor
analysis, although typically talked about as a dimension-reducing method,
actually is a dimension-inducing method since the space of factors is at least the
number of variables plus one.

In a simple variant of the factor analytic simultaneous equation model, the
measurement model, a factor analysis model, relates observed to latent variables via

x ¼ lþ Knþ e. (6)
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Here K is a matrix of factor loadings, n a vector of factors, and e a vector of
residuals often known as unique variates. The simultaneous equation model relates
the latent variables to each other via

n ¼ Bnþ f, (7)

where B is a coefficient matrix and f a vector of residuals. Equation (7) allows any
factor xi to be regressed on any other factorxj: Assuming no correlations between n,
f, e, and a full rank (I –B), we can rewrite

n ¼ ðI� BÞ�1f, (8)

x ¼ lþ KðI� BÞ�1fþ e. (9)

If themeans are unstructured, l ¼ E(x).With a structure, we take l ¼ 0 in (9) and
let lz ¼ E(f), and with the covariance matrix of the f and the e given as Uz and W,
respectively, the mean and covariance structure of the model are given as:

l ¼ KðI� BÞ�1lz, (10)

R ¼ KðI� BÞ�1UzfðI� BÞ�1g0K0 þW. (11)

This representation makes it easy to show that the confirmatory factor analysis
model

R ¼ KUzK
0 þW (12)

can be obtained as a special case by setting B ¼ 0.
These two representation systems can also be made even more abstract. Con-

sidering the elements of the matrices in (4)–(5) or (10)–(11) as generic parameters
arranged in the vector h, we may write the SEM null hypothesis as l ¼ l(h) and
R ¼ R(h). The statistical problem is one of estimating the unknown parameters
in h, and evaluating whether the population means l and covariances R are
consistent with the null hypothesis or whether l=l(h) and/or R=R(h). This
notation can be made even more compact by arranging b ¼ {l0, vech(R)0}0, where
vech(A) vectorizes the lower or upper triangle of a symmetric matrix A, and
writing b ¼ b (h). When only a covariance structure is of interest, we may write
r ¼ r(h), where r ¼ vech(R). We use this notation extensively.

1.3. Model identification

Clearly SEM models can have many parameters, and hence, the identification of
parameters in the model is an important issue. Model identification is discussed
in detail in Bollen (1989) and especially in Bekker et al. (1994). The concept of
model degrees of freedom is essential to understand identification. Let p be the
number of observed variables. The number of non-redundant elements in the
mean vector and covariance matrix is p+p(p+1)/2. Then the degrees of freedom
in SEM is given by df ¼ p(p+1)/2+p – q1 for MCSA; df ¼ p(p+1)/2 – q2 for
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CSA, where q1 and q2 are the number of parameters to be estimated. When the
model df is positive, that is, when the number of non-redundant elements in the
means and covariance matrix exceed the number of parameters, the model is said
to be over-identified; when the model df is negative, the model is said to be under-
identified; and when the model df is exactly zero, the model is said to be just-
identified. Here, note that over-identification does not necessarily guarantee that
the model can be identified. Over-identified models, if identified, are testable;
under-identified models cannot be tested; and just-identified models also cannot
be tested but simply represent a mapping of the data into an equivalent model
structure.

Generic necessary conditions for model identification are given in many
introductory textbooks (e.g., Raykov and Marcoulides, 2006). These are as
follows:

(i) There are constraints to determine the scale of each of independent latent
variables, which is typically done by either setting one of the coefficients to a
fixed constant for each latent independent variable, or setting the variance of
each to a fixed constant.

(ii) df needs to be non-negative (dfZ0, that is, the model is not under-identified).
(iii) There are at least two (sometimes three) observed variables for each latent

variable.

Note that the above three generic conditions are necessary but not sufficient
conditions. Therefore, satisfying these conditions does not necessarily guarantee
model identification. As we discuss next, identification serves as one of the reg-
ularity conditions for estimation of parameters.

2. Estimation and evaluation

2.1. Regularity conditions

The following regularity conditions are typical.

(i) Compactness: The true parameter vector h0 belongs to a compact subset of
the multi-dimensional (q-dimensional) Euclidian space, where q is the
number of parameters; h02H �Rq.

(ii) Identification: The model structure is identified; b(h) ¼ b(h0) implies h ¼ h0.
(iii) Differentiability: b(h) is twice continuously differentiable.
(iv) Rank condition 1: The matrix of partial derivatives _b ¼ @bðhÞ=@h0 is of full

rank.
(v) Rank condition 2: The covariance matrix of (xi

0 {vech((xi–l0)(xi–l0)0)}0)0 is of
full rank.

Note that (1) Conditions (i) and (ii) are required for the consistency of the
parameter estimates; (2) Conditions (iii) and (iv) are required for asymptotic
normality; (3) Condition (v) is needed for the parameter estimates or the test
statistics for the overall model to have proper asymptotic distributions; and
(4) Condition (v) is typically satisfied in real data unless there are artificial
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dependencies among variables. These conditions imply that the information
matrix is positive definite. In practice, rank deficiency in the estimated informa-
tion matrix provides a clue as to lack of identification of the model (see e.g.,
Browne, 1984; Shapiro, 1984; Kano, 1986; Yuan and Bentler, 1997a for further
discussions on regularity conditions in SEM).

2.2. Estimation methods and the corresponding fit functions

(1) Estimation methods: Based on a sample of size n, we may estimate the
unstructured population mean vector and covariance matrix by �x and S.
Currently, there are four major estimation methods in SEM based on these
unstructured estimates. They are: (i) LS (least squares), (ii) GLS (generalized
least squares), (iii) ML (maximum likelihood), and (iv) ADF (asymptotic
distribution free) (Browne, 1984). The first three are variants of methods
routinely used in other areas of statistics such as multiple regression. The LS
method is distribution free. The GLS and ML method are based on the
assumption of multivariate normality of the variables to be analyzed. The
ADF method, a minimum w2 method (see Ferguson, 1958, 1996), was devel-
oped to provide correct statistics regardless of the distribution of variables.

(2) Fit functions: For each estimation method there is a so-called fit function or
discrepancy function to be minimized using some algorithm. The fit functions
for MCSA are:
(i) LS : FLS ¼ ð �x� lðhÞÞ0ð �x� lðhÞÞ þ ð1=2ÞtrðS� RðhÞÞ2; where tr(A) is the

trace operator of a square matrix A.
(ii) GLS : FGLS ¼ ð �x� lðhÞÞ0S�1ð �x� lðhÞÞ þ ð1=2ÞtrðRðhÞS�1 � IpÞ2;
(iii) ML : FML ¼ ð �x� lðhÞÞ0RðhÞ�1ð �x� lðhÞÞ þ trðSRðhÞ�1Þ �

log jSRðhÞ�1j � p; where |A | is the determinant of a matrix A.
(iv) ADF : FADF ¼ ðt� bðhÞÞ0V̂�1ðt� bðhÞÞ;

where t ¼ ð �x0; s0Þ0; s ¼ vechðSÞ; and V is the asymptotic covariance matrix of t

which is expressed as a partitioned matrix
V1 V12

V21 V2

 !
; where V1 ¼ R, the

elements of V12 are E{(xi–mi) (xj–mj) (xk–mk)}, V21 ¼ V 0
12; and the elements of V2

are E{(xi–mi) (xj–mj) (xk–mk) (xl–ml)}–sijskl (cf., Bentler, 1995, pp. 211–212).
Clearly, the ADF method assumes the existence of the finite fourth-order
moments. Since these may be hard to estimate, the use of ADF requires a huge
sample size (see e.g. Hu et al., 1992).

Clearly these fit functions simplify in CSA without a mean structure. For
(i)–(iii), in CSA the first term can be dropped, since with a ‘‘saturated’’ mean
structure, l̂ ¼ �x: In CSA with ADF, the fit function in (iv) is reduced to
FADF¼ ðs� rðhÞÞ0V̂�12 ðs� rðhÞÞ:

2.3. Maximum likelihood estimation with normal data

Because a maximum likelihood estimator (MLE) is known to have some good
properties, we further discuss parameter estimation and model evaluation by

Structural equation modeling 207



ML. First, we summarize the results for ML with normal data. Under the null
hypothesis of correct model structure:

(i) Test statistic: The test statistic

TML ¼ ðn� 1ÞFML (13)

is known to converge in distribution to a w2 distribution with df ¼ p(p+1)/
2+p – q1 for MCSA and with df ¼ p(p+1)/2 – q2 for CSA, where n is the
sample size.

(ii) Asymptotic normality: When the data are from a multivariate normal dis-
tribution with true population mean vector and true population covariance
matrix, the estimators are consistent and asymptotic normal, that is,

ffiffiffi
n

p ðĥ� h0Þ ! Nð0;XMLÞ, (14)

where the covariance matrix is XML ¼ ð _b0Wn _bÞ�1 with the weight matrix

Wn ¼ R�1 0

0 W

 !
with W ¼ ð1=2ÞD0pðR�1 � R�1ÞDp; where the duplication

matrix Dp (Magnus and Neudecker, 1999) is defined such that vec(R) ¼
Dpvech(R). To compute MLEs we need to employ some algorithm for
optimization, see e.g., Lee and Jennrich (1979) and Yuan and Bentler (2000b),
among others.

Test statistics based on the other estimation methods are also possible. The
simplest case is with GLS, where TGLS ¼ (n–1)FGLS. Browne (1974) showed that
for CSA with normal data, TGLS and TML are asymptotically equivalent. This
was extended to the MCSA by Yuan and Chan (2005), who showed that the
asymptotic equivalence of TGLS and TML does not depend on the distribution of
data but on the correctness of the model structure. That is, the asymptotic
equivalence holds for MCSA as long as the model is specified correctly. Similarly,
the estimators ĥML and ĥGLS are asymptotically equivalent.

2.4. Maximum likelihood estimation with non-normal data

(1) Consistency and asymptotic normality: It is natural to question whether ML is
still valid if the data are not from a multivariate normal distribution. It has
been shown that:
(i) Consistency: The parameter estimates are still consistent as long as b(h) is

identified and correctly specified.
(ii) Asymptotic normality: With non-normal data, asymptotic normality still

holds with a modified covariance matrix of the estimator as follows:

ffiffiffi
n

p ðĥ� h0Þ ! Nð0;XSWÞ, (15)

with the sandwich-type covariance matrix

XSW ¼ ð _b0W
n _bÞ�1ð _b0W nVW n _bÞð _b0W n _bÞ�1, (16)

where V and W* were defined above. The sandwich-type covariance
matrix was originated in Huber (1967) and it has been used in SEM by
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many researchers (e.g., Bentler, 1983; Bentler and Dijkstra, 1985; Browne,
1984; Browne and Arminger, 1995; Satorra and Bentler, 1994; Shapiro,
1983; Yuan and Bentler, 1997b). Note that when the data are from a
multivariate normal distribution, W* ¼ V�1 in Eq. (16) and XSW is
reduced to XML in Eq. (14).

(2) Satorra–Bentler rescaled statistic: For CSA (i.e., with saturated means) with
correctly specified models, TML can be approximated by a weighted sum of
independent w2 distributions with 1 degree of freedom, that is

TML !
Xdf
i¼1

kiw2ið1Þ as n!1, (17)

where ki’s are the nonzero eigenvalues of UV2, with

U ¼W�W _rð _r0W _rÞ�1 _r0W, (18)

(cf. e.g. the appendix of Yuan et al., 2002). When data are normal, the weights
ki’s are all 1 and TML approaches a w2 distribution with df ¼ p(p+1)/2–q2. For
CSA, Satorra and Bentler (1988, 1994, 2001) observed the relation trðUV2Þ ¼Pdf

i¼1ki and proposed

TRML ¼ TML=k̂ with k̂ ¼ trðÛV̂2Þ=df, (19)

which is known as the Satorra–Bentler rescaled statistic. Simulation studies
(Curran et al., 1996; Hu et al., 1992; Yuan and Bentler, 1998a) have shown that
this rescaled statistic works quite well under a variety of conditions. Technically,
however, the Satorra–Bentler rescaled statistic only corrects the scaling such that
the expected ML test statistic matches the degrees of freedom of the model, i.e.,
E(TML) ¼ df. It does not correct the distributional shape to that of w2 (Yuan and
Bentler, 1998a; Bentler and Yuan, 1999). Satorra and Bentler also proposed an
adjusted statistic that corrects the variance in addition to the mean.

Similarly to CSA, for MCSA with correctly specified models, TML can be
approximated by the weighted sum of independent w2 distributions with 1 degree
of freedom, with the weights being the nonzero eigenvalues of U*V where

U n ¼W n �W n _bð _b0W n _bÞ�1 _b
0
W n (20)

(Yuan and Bentler, 2006). Thus the Satorra–Bentler rescaled statistic for MCSA
can be defined as a simple extension of that for CSA, that is, TML ¼ TML=k̂n with
k̂n ¼ trðÛ n

V̂Þ=df with df ¼ p(p+1)/2+p – q1. Clearly this is of the same form as
in CSA.
(3) Corrected ADF and F-statistics: With normal distribution-based MLE from

non-normal data, Browne (1984) proposed a residual-based ADF statistic
in the context of CSA. Unlike the Satorra–Bentler rescaled statistic, the
residual-based ADF statistic asymptotically follows a w2 distribution regard-
less of the distribution form of the data. However, like the ADF statistic, the
residual-based ADF statistic needs a huge sample size to have its behavior
described by a w2 distribution. In the context of MCSA, a corrected ADF
statistic and an F-statistic were developed by Yuan and Bentler (1997a) and
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Yuan and Bentler (1999c), respectively. Their residual-based versions were
given in Yuan and Bentler (1998a). All the four statistics are asymptotically
distribution free and also perform well with finite sample sizes that are com-
monly encountered in practice (Bentler and Yuan, 1999).

(4) Finite mixtures: When the distribution is very different from normality, use of
finite mixtures may be appropriate. See e.g., Yung (1997) and Hoshino (2001)
on this point. Finite mixture SEMs have become very popular (e.g., Lubke
and Muthén, 2005), but they are problematic to use and can falsely discover
typologies when none exist (Bauer and Curran, 2003, 2004).

2.5. Robustness

Although we made a distinction between methods based on normal distribution
theory and distribution-free methods, there are times where normal theory sta-
tistics can be used because they are robust to violation of distributional assump-
tions. Anderson and Amemiya (1988) and Amemiya and Anderson (1990)
established the asymptotic robustness of SEM in the factor analysis context,
namely that when (i) factors and error vector are independent and (ii) the el-
ements of the error vector are also independent, then TML asymptotically follows
a w2 distribution and information-based standard errors for factor loadings will
be correct. The results were generalized in various direction by Browne and
Shapiro (1988), Kano (1992), Mooijaart and Bentler (1991), Satorra (1992, 2002),
Satorra and Bentler (1990), and Yuan and Bentler (1999a, 1999b). Unfortu-
nately, there are two problems in applications. It is hard to know whether these
independence conditions are met in any real data situation. Also, this is an
asymptotic theory, and it is hard to know when it will work with moderate
sample sizes.

Another approach to estimation with non-normal data is to employ a
method that does not make a strong assumption such as multivariate nor-
mality. Historically, elliptical distributions provided the first generalization of
non-normality used in SEM (e.g., Bentler and Berkane, 1985; Browne and
Shapiro, 1988; Kano et al., 1993; Shapiro and Browne, 1987; Tyler, 1983; see Fang
et al., 1990, on elliptical distributions). Elliptical distributions include heavy-tailed
distributions with different degrees of multivariate kurtosis (Mardia, 1970) such as
the multivariate t-distribution, however, they have a drawback of not allowing any
skewed distributions. A more general distribution that allows heterogeneous
kurtosis parameters also has been developed for CSA (Kano et al., 1990).

In classical statistics, case weighting to achieve robust statistics has a long
history (see e.g. Huber, 1964, 1981; Hampel et al., 1986). This methodology has
been extended to SEM (Yuan and Bentler, 1998c). A promising approach to
robust procedures in SEM is based on M-estimators. Maronna (1976) obtained
the properties of the M-estimators for the population mean vector and covar-
iance matrix. The two commonly used weight functions for the M-estimators are
(i) Huber-type weights and (ii) weights based on multivariate t-distribution. The
robust transformation by Yuan et al. (2000) is a useful robust procedure based on
the M-estimator approach that can be applied to SEM (see also Yuan et al., 2004,
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and the appendix of Yuan, 2005). Their robust transformation can be used in a
variety of situations (e.g., Hayashi and Yuan, 2003). Concretely speaking the
M-estimators are defined as follows: Let

dðxi;l;RÞ ¼ ½ðxi � lÞ0R�1ðxi � lÞ�1=2, (21)

with

l ¼
Xn
i¼1

u1ðdiÞxi=
Xn
i¼1

u1ðdiÞ, (22)

R ¼
Xn
i¼1

u2ðd2i Þðxi � lÞðxi � lÞ0=n: (23)

The weight functions are defined through a tuning parameter r that gives the
percentage of influential cases we want to control, and r is a constant determined
through Pðw2p4r2Þ ¼ r: Then the weight functions u1 and u2 are given by

u1ðdiÞ ¼ 1 if di � r;

r=di if di4r;
(24)

u2ðdiÞ ¼ fu1ðdiÞg2=j, (25)

where j is a constant determined by r through Efw2pu2ðw2pÞg ¼ p: Note that equa-
tions (22) and (23) can be solved by iteration, and let m̂ and Ŝ be the solution of
(22) and (23), respectively. Yuan et al. (2004) proposed to choose r based on
empirical efficiency by applying the bootstrap to the transformed sample (Yuan
et al., 2000)

x
ðpÞ
i ¼ ffiffiffiffiffiffi

u2i
p ðxi � l̂Þ, (26)

where u2i ¼ u2fd2ðxi; l̂; R̂Þg; the optimal r corresponds to the most efficient
parameter estimates. Yuan et al. (2000) and Yuan and Hayashi (2003) proposed
alternative rationales for choosing rU Other approaches to robust SEM are
developed in Yuan and Bentler (1998b, 2000b) and Yuan et al. (2004). For other
forms of M-estimator, see e.g., Campbell (1980).

2.6. Misspecification and power

(1) Model misspecification: Any model is only an approximation to the truth.
This implies that we inevitably encounter misspecified models in SEM. Mis-
specified models are known to create: (i) biases to parameter estimates;
(ii) inconsistent standard errors; and (iii) an invalid asymptotic distribution
of the w2 test statistic (White, 1982). A brief summary of research on model
misspecification in SEM is as follows:
(i) Consistency: Many parameter estimates in CSA and MCSA are still con-

sistent even when the model is misspecified (Yuan et al., 2003; Yuan and
Bentler, 2006).
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(ii) Convergence in distribution: The test statistics under misspecified models
can be approximated by the non-central w2 distribution. However, a
problem in this approximation is that it requires the assumption of a
sequence of local alternative hypotheses, which may not be realistic in
practice. Alternatively, we can employ the asymptotic normal distribution
(Vuong, 1989; Yanagihara et al., 2005; Yuan et al., 2007). Based on the
approach by Vuong (1989), Yuan et al. (2007) derived the following
normal approximation:

ffiffiffi
n

p ðTML=n� mÞ ! Nð0;o2
MLÞ, (27)

where m ¼ FML+tr(U*V)/n and o2
ML is quite involved; the formulas for

U* and o2
ML are given in Yuan et al. (in press). Here, note that the second

term tr(U*V)/n substantially improves the normal approximation. For
additional recent research, see Li and Bentler (2006).

(2) Power: Misspecification of the model means that the null hypothesis b ¼ b(y)
on the mean and covariance structure is wrong. Thus, it is tightly connected
with the concept of power. There are two main approaches to obtaining
power in SEM:
(i) Non-central w2 distribution: Among the approaches to obtain power, the

most common approach is based on a non-central w2 distribution. The
references include Satorra and Saris (1985); Saris and Satorra (1993);
Kim (2005); MacCallum et al. (1996); Hancock (2001). The Satorra and
Saris (1985) approach requires a specification of the model under the
alternative hypothesis, which can be quite complicated in a heavily param-
eterized model. Later they relaxed the requirement (Saris and Satorra,
1993). MacCallum et al. (1996) developed an approach where the degree
of misspecification can be measured by the RMSEA fit index (see below),
which does not require specification of specific alternative values for various
parameters. In addition to testing the standard exact fit null hypothesis, they
also discussed assessment of ‘‘close’’ fit. Statistical justifications for such
approach are only recently being developed (Li and Bentler, 2006).

(ii) Bootstrap approach: A problem in using the non-central w2 distribution
to evaluate power is that the meaning of a non-centrality parameter is
not clear when the behavior of the test statistic cannot be described by
a w2 variates (Yuan and Marshall, 2004). Because of its flexibility,
the bootstrap has frequently been used in SEM (Beran and Srivastava,
1985; Bollen and Stine, 1993; Yung and Bentler, 1996; Yuan and
Hayashi, 2006), and recently, it has been used to develop a promising
approach to power (Yuan and Hayashi, 2003). On the bootstrap in
general, see e.g., Beran (1986) or Davison and Hinkley (1997). According
to Yuan and Hayashi (2003), for data sets with heavy tails, the bootstrap
can be applied to a transformed sample by a downweighting procedure as
in (26) (Yuan et al., 2000), which has the advantage of not requiring the
assumption that the data come from a multivariate normal distribution.

Besides methods based on the non-central w2 distribution or the bootstrap,
there are other approaches to power such as simulation (see e.g., Muthén and
Muthén, 2002, and Mooijaart, 2003).
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2.7. Fit indices

Besides the test statistics T, there exist numerous so-called fit indices to measure
the degree of overall fit of a model to data. w2 tests inherently have the following
two major problems in practice. The first problem is that T ¼ (n�1)F increases as
n increases. As a result, any model structure null hypothesis such as (12) will tend
to be rejected when the sample size n gets large enough, yet the model may be
good enough for practical purposes. Another problem is that in SEM, the role
of null and alternative hypothesis is reversed compared to classical hypothesis
testing. As the positer of a model (such as (12)), we hope to retain the null
hypothesis. Because of these shortcomings, fit indices based on test statistics have
been developed. The statistical properties of some fit indices are known (e.g.,
Ogasawara, 2001), and simulation studies are needed to fully understand the
behaviors of various fit indices (see e.g., Hu and Bentler, 1998, 1999). While many
fit indices have been proposed, only a few are frequently used (McDonald and
Ho, 2002) and we limit our discussion to those.

There are several ways to classify fit indices (e.g., Tanaka, 1993). Recently,
Yuan (2005) classified fit indices based on their distributional assumptions. For
convenience, we classify fit indices into the following four categories: (i) residual-
based; (ii) independence-model-based; (iii) root mean square error of approxi-
mation; and (iv) information-criterion-based fit indices. The first two types are
only appropriate to covariance structures.

(1) Residual-based fit indices (see e.g., Jöreskog and Sörbom, 1981): The follow-
ing three are all the functions of the residuals S� RðĥÞ:
(i) Standardized root mean square residual (SRMR): As the name shows,

SRMR is the square root of the sum of squares of the residuals in a
correlation metric. SRMR is given by

SRMR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

pðpþ 1Þ
X
i�j
fsij � sijðĥÞg2=siisjj

s
, (28)

where sijðĥÞ is the (i, j) element of RðĥÞ: Obviously, when the value of
SRMR is small and close to zero, the fit is good.

(ii) Goodness of fit index (GFI): GFI has been compared to a squared mul-
tiple correlation in multiple regression. GFI is given by

GFI ¼ 1� tr½fRðĥÞ�1ðS� RðĥÞÞg2�
tr½fRðĥÞ�1Sg2�

. (29)

When the value of GFI is close to 1, the fit is good.
(iii) Adjusted goodness of fit index (AGFI): AGFI corresponds to the

squared multiple correlation adjusted for degrees of freedom. AGFI is
given by

AGFI ¼ 1� pðpþ 1Þð1� GFIÞ
pðpþ 1Þ � 2q2

. (30)

When the value of AGFI is close to 1, the fit is good. AGFI is always
less than or equal to GFI.
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(2) Independence-model-based fit indices: The independence model is defined as
model in which the covariance structure is diagonal: RI ¼ diag(s11,y, spp).
Clearly the independence model is the smallest (i.e., most constrained) model
in SEM. In contrast, the largest model is the saturated model (Bentler and
Bonett, 1980). The idea of these 0–1 fit indices is to locate the current model
along a line between the independence model and the saturated model, where
0 is a model no better than the independence model and 1 is a model as good
as the saturated model. Let TM and TI be the test statistics under the current
model and the independence model, respectively, and let dfM and dfI be the
associated degrees of freedom.
(i) Normed fit index (NFI; Bentler and Bonett, 1980): NFI is given by the

relative location of the current model between the saturated model with
TS ¼ 0 and the independence model TI:

NFI ¼ 1� TM

TI
. (31)

NFI ranges between 0 and 1, and a value of NFI close to 1 means a
good fit. An advantage of this index is that it can be defined even if T is
only a descriptive statistic that has no known distribution.

(ii) Non-normed fit index (NNFI; Bentler and Bonett, 1980; Tucker and
Lewis, 1973): Originally, Tucker and Lewis (1973) proposed what is now
called the Tucker–Lewis index (TLI) in the context of exploratory factor
analysis. NNFI is an extension of TLI to SEM. When the sample size n is
not large, NFI is known to have a drawback of not approaching 1 even if
the current model is correct. NNFI corrects this drawback by introduc-
ing the model degrees of freedom, as follows:

NNFI ¼ 1� ðTM=dMÞ � 1

ðTI=dIÞ � 1
. (32)

When the current model is correct, the expected value of TM should be
close to its degrees of freedom dfM. Thus, TM/dfM should be close to 1.
However, NNFI can exceed 1.

(iii) Comparative fit index (CFI; Bentler, 1990): Bentler (1990) proposed to
use population non-centrality parameters to define an index like (31):

CFI ¼ 1� tM
tI

. (33)

In practice, CFI is estimated using t̂M ¼ maxfTM � dfM; 0g and t̂I ¼
maxfTM � dfM;TI � dfI; 0g: Obviously, CFI is always between zero
and 1. It avoids the underestimation of NFI and the overestimation of
NNFI. In this category of fit indices, CFI is the most frequently reported
one.

(3) Root mean square error of approximation (RMSEA; Steiger and Lind, 1980;
Browne and Cudeck, 1993): First introduced by Steiger and Lind (1980) for
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exploratory factor analysis, the RMSEA became popular due to Browne and
Cudeck (1993). As a population index it is given as

RMSEApop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tM=df

p
, (34)

which can be interpreted as the square root of population misfit per degree of
freedom. When the value of RMSEA is small, the fit is good, and for the same
degree of misfit as measured by tM, models with higher df fit better. In
practice, RMSEA is computed as

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfðTM � dfMÞ=ðn � dfMÞ; 0g

p
. (35)

Yuan (2005) pointed out that an implicit assumption in RMSEA is that TM

under the alternative hypothesis is distributed as a non-central w2 with the
non-centrality parameter tM equal to the sample size n times the value meas-
ured by the fit function. For this to be true, we need to assume that the
concept of a sequence of local alternative hypotheses makes sense. However,
this holds only when the true population covariance matrix is sufficiently
close to the hypothesis R(h). According to Yuan (2005), the distribution of
the sample RMSEA is unknown in general. Any probability or confidence
interval attached to RMSEA, as printed out in software, has little justifica-
tion for real data or even simulated data from a normal distribution. None-
theless, applied researchers keep using it in practice to assess the fit of their
model.

(4) Information-criterion-based fit indices: The goodness of fit of several different
models can be compared with the information criteria AIC (e.g., Akaike,
1974, 1987), CAIC (Bozdogan, 1987), and BIC (Schwarz, 1978), defined as
follows:

AIC ¼ TML þ 2q, (36)

CAIC ¼ TML þ ð1þ log nÞq, (37)

BIC ¼ TML þ ðlog nÞq, (38)

respectively, where q is the number of parameters (either q1 or q2 depending
on the model). Assuming that the model makes sense theoretically, the model
with the smallest information criterion may be chosen.

2.8. Modification of the model

When an initial model has a poor fit, it may be desirable to modify the model to
improve the fit. In principle, for nested models this can be accomplished by a
model comparison procedure based on the w2 difference test such as TD ¼ TML1–
TML2, where TML1 is the test statistic for a more restricted model and TML2 is the
test for a more general model. However, this would require specifying various
pairs of models and estimating both models in a pair. In SEM, two types of well-
known tests, the Lagrange Multiplier (LM) or score test and the Wald test, are
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frequently used in addition or instead of a difference test. They only require
estimation of one model, either the more restricted model in the case of the LM
test, or the more general model in case of the Wald test. More importantly, both
tests are available in an exploratory methodology where a search procedure can
be used to find alternative parameters that may influence model fit (see e.g., Lee
and Bentler, 1980; Bentler and Dijkstra, 1985; Lee, 1985; Bentler, 1986; Satorra,
1989; Chou and Bentler, 1990, 2002).

(1) LM test or Score test: When we would like to know which paths may be
added to improve the fit of a model, i.e., which restricted parameters in a
model should perhaps be freed and estimated, we can employ the score test
(Rao, 1947, 1973) or its equivalent, the LM test (Aitchison and Silvey, 1958).
When considering a single parameter to free, asymptotically the LM test
follows a w2 distribution with 1 df (Satorra, 1989). A large w2 indicates that
the restriction is not consistent with the data, that a better model most likely
can be obtained when the parameter is freed, and that the model test statistic
(e.g., TML) then would decrease by an amount approximately equal to the
LM test value. Then the model can be re-estimated, and the procedure
repeated. However, the tests can also be applied sequentially before re-
estimating the model. In this way it is a multivariate LM test with df equal to
the number of restrictions being tested. The multivariate test can be imple-
mented in a forward stepwise procedure where the parameter making the
biggest improvement in fit is added first, a next parameter is added that yields
the largest increment in fit after controlling the influence of the first, etc.
(Bentler, in press). For a comparison of these two approaches, see e.g., Green
et al. (1999). In some SEM software, the LM test is called the modification
index (Sörbom, 1989). Under the null hypothesis that the model differenti-
ating parameters are zero in the population, LM tests are asymptotically w2

distributed, but this may not be true when applied in a search methodology.
In small samples, parameters may be chosen that capitalize on chance, i.e.,
the method may identify restrictions to release that do not hold up well in
cross-validation (e.g., MacCallum et al., 1992).

(2) Wald test: If we have a model that fits but seems to have unnecessary
parameters, standard errors can be used to find and eliminate particular
nonsignificant parameters. The Wald test (Wald, 1943) is a multivariate gen-
eralization that allows testing a set of parameters simultaneously to see if they
are sufficiently unimportant that they could be eliminated. Again this meth-
odology has been implemented in a search fashion. The procedure corre-
sponds to backward elimination in multiple regression, that is, the least
significant parameter is removed first, residuals are computed, then next least
significant parameter is removed, and so on until a set is obtained that is
simultaneously not significant. This implies that removal of those parameters
from the model may increase the test statistic (e.g., TML), but only by a small
amount. Like the LM test, under the null hypothesis that the model param-
eters are zero in the population, and with an a priori selection of parameters
to test, the Wald test asymptotically follows the w2 distribution with either
1 df or as many df’s as there are parameters being tested (see e.g., Satorra,
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1989). Again, however, this test procedure can be misleading in small samples
when used empirically to search for unimportant parameters.

(3) A word of caution: The asymptotic distribution of the difference test TD in
SEM was studied theoretically by Steiger et al. (1985). In theory, the more
general model need not be true for the distribution of TD to be asymptotically
w2. However, recent research has shown that when the more general model is
false, tests such as TD perform very badly in small to medium sized samples
and cannot be relied upon (Yuan and Bentler, 2004a; Maydeu-Olivares and
Cai, 2006). Clearly the same caution should be used with LM and Wald tests.
This is not a trivial matter because in practice, even the best model may not fit
statistically (see fit indices above).

3. Extensions of SEM

3.1. Extensions

So far, we have discussed SEM for the simplest case of only linear latent variable
models for one standard sample from a population. However, the SEM paradigm
has been extended in many different directions so that more complicated model
and data structures can be handled effectively. This includes the ability to handle
incomplete data, nonlinear relations among latent variables, multiple samples,
hierarchical data structures, categorical variables, and so on. Here we just give a
flavor of some of these developments.

3.2. Multi-group SEM

The most typical extension of SEM is to the multiple-group case, where parts of
models or entire models may be held to be equal across groups in order to
determine similarities or differences among samples or populations. A typical
example is the two-group case, where males vs. females may be compared. Multi-
group SEM was originated by Jöreskog (1971) and Sörbom (1974), and has been
further developed by Bentler et al. (1987), Lee and Tsui (1982), and Muthén
(1989a, 1989b). Yuan and Bentler (2001) gave a unified approach to multi-group
SEM under non-normality and with missing data. Thus, we follow their notation.

(1) Test statistic and fit function: Suppose we have m groups with sample sizes
nj, j ¼ 1,y,m. Let N ¼ n1 þ � � � þ nm be the total sample size including all
the m groups. The parameters from the m groups can be arranged as
h ¼ (h1

0,y, hm
0)0. Then the test statistics is given by

Tm
ML ¼ N � Fm

ML, (39)

where

Fm
ML ¼

Xm
j¼1

nj
N
ð½l̂j � ljðhjÞ�0R�1j ðhjÞ½l̂j � ljðhjÞ�Þ

þ tr½R̂jR
�1
j ðhjÞ� � log jR̂jR

�1
j ðhjÞj � pÞ ð40Þ
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is a weighted sum of the fit functions from each group. Obviously, when there
are no constraints on parameters, the degrees of freedom is m times the
degrees of freedom for the model for each group. More typically, the fit
function will be optimized under r constraints in the form of h(h) ¼ 0, and the
df will be adjusted accordingly. In addition to likelihood ratio tests of nested
models, multi-group version of the Satorra–Bentler rescaled statistic (Satorra,
2000) and the sandwich-type covariance matrix exist to handle distributional
violations. In addition, normal theory or generalized LM tests can be used to
test the significance of the constraints.

(2) Constraints and invariance: As noted, multi-group SEM typically will involve
constraints on the parameters because it is natural to evaluate whether path
coefficients are the same among m groups. If we can assume the existence of
the same latent variable(s) among the groups in the populations, we say that
factorial invariance exists in the populations (see e.g., Meredith, 1993, and
Millsap, 1997, on factorial invariance). However, there are different levels of
factorial invariance (Horn et al., 1983). For example, when the test using the
test statistic of the form (39) (without any equality constraints among the
groups) is not rejected, we say that we could not reject configural invariance.
When the structure of path coefficients is identical across groups in the pop-
ulations, we say that metric invariance holds. We can put equality constraints
also on the residual variances and/or factor correlations among the groups
and can test for the factorial invariance under stronger conditions. A concrete
example of these ideas is the confirmatory factor model, where each group
has a structure such as (12). If the structure of factor loadings is equal across
groups, we have metric invariance even if the remaining parameter matrices
differ. Equality of the factorial structure implies that the same latent factors
are measured in each group.

(3) Mean structure: When considering a factor model such as (6) for each group,
it is possible to fix l and K as common across all groups, but to have E(n) ¼
lx differ across groups. This implies that the same latent factors are being
measured in the groups, but that they differ in their level on the trait. For
example, a natural question to ask might be whether there is any significant
difference in factor means between males vs. females. Because factor means
can have any location unit, one group’s vector of factor means lx is set to
zero. Without such a constraint, the model is usually non-identified.

3.3. Growth curve models

In medical and epidemiological research, many research designs are longitudinal
in nature and the consistency or change of individuals across time is a key focus.
We can imagine a line or curve connecting all the repeated observations of a
given individual across time, and dozens or hundreds of such lines or curves to
represent the entire sample. When the repeated measures are obtained a few to a
dozen times, such data can be analyzed using SEM as a procedure to characterize
mean trends in these curves as well as individual differences and their anteced-
ents, correlates, or consequences. In this field, the methodology is known as
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growth curve modeling, see e.g., Bentler (2005) or Stoel (2003) for summaries, or
Bollen and Curran (2006) and Duncan et al. (2006) for text-length treatments.
In the simplest model setup, this methodology represents a special case of (4)–(5)
or (6)–(11) and it amounts to an application of MCSA. For example, we may take
x ¼ l+Kn+e, but consider l ¼ 0 so that the mean information is carried by lx.
Then there are some features unique to growth curve SEM that are worth noting.

(1) The xi will represent a quantitative variable repeatedly measured across time,
and the latent factors n are interpreted as representing important features of
the shapes of the growth curves across time. There are many ways to code
shapes, but a standard one is to consider the starting point or ‘‘intercept,’’ the
linear trend (commonly referred to as ‘‘slope’’), or a higher order curve fea-
ture such as a ‘‘quadratic’’ trend. When the repeatedly measured variable
represents a substantive construct (such as ‘‘depression’’), the factors repre-
sent time trends in that construct (e.g., ‘‘depression’’).

(2) A given latent factor, say the slope nj, has scores for every individual in the
sample. Each of those scores represents the given trend in scores for that
individual, e.g., for slope it can be considered to be a coefficient to represent
that person’s linear trend across time. Some persons may be growing rapidly,
and others not at all, and these individual differences show up in the variance
of nj. The corresponding factor mean lx(j) represents the average trend in the
data, e.g., it would be the group average slope or linear trend. Predictors,
correlates, and consequences of nj can also be determined.

(3) Since factor loadings are weights attached to the factors to predict a variable,
those for a given factor, such as the jth column of K, contains weights that
represent time. Unlike standard factor analysis, the coefficients in K are taken
to be known a priori in accord with the coding of time. Different factors code
different aspects of time, such as the starting point, or linear or quadratic
changes across time. In particular, (i) the path coefficients from the intercept
factor to the observed variables are set to an equal constant, typically to 1;
(ii) the factor loadings for the linear slope factor are set proportional to time
elapsed. For example, if the time differences are equal among the observed
variables, the path to the initial measure may take the value of 0, that to the
second measure the value of 1, that to the third measure gets the value of 2,
etc.; (iii) likewise, paths from the quadratic factor may be coded as (02, 12,
22,y) ¼ (0, 1, 4,y); (iv) because raw polynomial coefficients become very
large as time elapses and as the degree of polynomials increase, standardized
coefficients can be used. For example, for three equally spaced observed
variables, the coefficients from the intercept, linear, and quadratic factors are
(0.577, 0.557, 0.555), (�0.707, 0, 0.707), and (0.408, �0.816, 0.408), respec-
tively. This is one example of orthogonal polynomials (see e.g., Maxwell and
Delaney, 2004, Chapter 6); (v) alternative approaches to the linear slope
factor exist, such as spline factors by Meredith and Tisak (1990) and the
piecewise linear model (Raudenbush and Bryk, 2002, p. 178). Also, since a
model with fixed nonzero factor loadings may be hard to fit, researchers
sometimes free these loadings. This leads to a different interpretation of time
trends, and thus needs to be done with caution (see e.g., Bentler, 2005).
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3.4. Multilevel SEM

Multilevel analysis, also called hierarchical linear modeling, is a statistical tech-
nique for analyzing data collected from a hierarchical sampling scheme such as
level-1 observations (e.g., students) nested within level-2 observations (e.g.,
classes). The number of levels can be extended, though a large sample size at the
highest level is required for stable estimation. Most multi-level analyses are two-
level. Some general references for multi-level analysis include Goldstein (2003),
Raudenbush and Bryk (2002), and Reise and Duan (2003). SEM can be used to
estimate parameters for multi-level data, and this approach is especially useful
when latent variables are involved, e.g., Bentler and Liang (2003), Bentler et al.
(2005), du Toit and du Toit (2002), Goldstein and McDonald (1988), McDonald
and Goldstein (1989), Lee (1990), Lee and Poon (1998), Lee et al. (1995), Lee and
Shi (2001), Lee and Song (2001), Liang and Bentler (2004), Muthén (1994, 1997),
Poon and Lee (1994), and Yuan and Bentler (2002, 2003, 2004b).

According to Liang and Bentler (2004) and Bentler et al. (2005), two-level
SEM can be formulated as

zg

ygi

 !
¼

zg

vg

 !
þ

0

vgi

 !
, (41)

where zg (p2� 1) is a vector of i.i.d. level-2 observations (g ¼ 1,y,G), and ygi
(p1� 1) is a vector of level-1 observations (i ¼ 1,y,Ng) from the same cluster or
group (level-2 unit), and p ¼ p1+p2. Under the model, the observed ygi are
decomposed into a part exhibiting between-cluster variation vg and a part
exhibiting within-cluster variation vgi.

Note that for a fixed group g, ygi are i.i.d., while for all i’s and g’s, ygi are not
independent. In Eq. (41), we typically assume: (i) zg and vg are independent of vgi;
(ii) zg and vg are correlated. Let us introduce further notation: lz ¼ E(zg),
ly ¼ E(ygi) ¼ E(vg), Rzz ¼ Cov(zg), RB ¼ Cov(vg), RWi ¼ Cov(vgi) typically
assumed to be homogeneous across clusters with RWi ¼ RW, and Rzy ¼ Cov(zg,
ygi) ¼ Cov(zg, vg). Under a SEM structure, we can further structure the within-
cluster covariance matrix, for example, as a confirmatory factor model (see (12))
as in:

Rw ¼ KWUWK0W þWW. (42)

More generally, the means and covariances in multi-level SEM are l ¼
lz

ly

 !
;

~RB ¼
Rzz Rzy

Ryz RB

 !
; and RW, and any of these vectors and matrices can be further

structured as in (4)–(5) or (10)–(11).
Parameter estimation methods such as ML have been developed for multilevel

SEM. For ML estimation based on Gauss–Newton or Fisher scoring algorithms,
see du Toit and du Toit (2002), Goldstein and McDonald (1988), Lee (1990), and
McDonald and Goldstein (1989). Muthén (1994, 1997) proposed an approximate
ML estimator commonly called Muthén’s ML, or MUML. MUML has the
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advantage of easier calculation and faster convergence than full ML estimation.
When level-1 samples are equal in size, MUML is equivalent to full ML esti-
mation. Yuan and Hayashi (2005) analytically studied the statistical properties of
MUML and identified further conditions for MUML to be close to ML. The EM
algorithm (Dempster et al., 1977) also has been applied by Raudenbush (1995)
and Lee and Poon (1998). The approach of Lee and Poon (1998) was further
extended by Bentler and Liang (2003) and Liang and Bentler (2004). Finally, just
as ML test statistics in simple SEM can lead to distorted w2 tests and standard
error estimates under non-normality, the same can occur if level-1 or level-2
observations are not multivariate normal. Corrected test statistics for this sit-
uation, and the study of robustness of multilevel SEM can be found in Yuan and
Bentler (2003, 2004b, 2005a, 2005b).

3.5. Nonlinear SEM

In multiple regression, the dependent variable can be a nonlinear function of the
independent variables by the use of polynomial and/or interaction terms. This is
straightforward. On the contrary, in SEM it has been a difficult task to connect
a dependent latent variable with independent latent variables in a nonlinear
fashion. Efforts to construct and estimate a nonlinear SEM have been made for
the last 20 years. Early works include Kenny and Judd (1984), Bentler (1983),
Mooijaart (1985), and Mooijaart and Bentler (1986). The Kenny–Judd model, a
particular simple nonlinear model that includes an interaction term, has been
intensively studied. More recent works include Bollen (1996), Bollen and Paxton
(1998), Jöreskog and Yang (1996), Klein and Moosbrugger (2000), Lee et al.
(2004), Lee and Zhu (2000, 2002), Marsh et al. (2004), Wall and Amemiya (2000,
2001, 2003), Yang Jonsson (1998). The Bollen–Paxton and Klein–Moosbrugger
approaches seem to be especially attractive. The Wall–Amemiya approach seems
to be the most theoretically defensible under a wide range of conditions, since
it yields consistent estimates under distributional violations. The Bayesian
approaches of Lee and his colleagues are the most promising for small samples.
However, to the best of the authors’ knowledge, no general SEM software
incorporates the Wall–Amemiya or Lee approaches.

4. Some practical issues

4.1. Treatment of missing data

Missing data are encountered frequently in data analysis, and this problem cer-
tainly also arises in the context of SEM. Rubin (1976) and Little and Rubin
(2002) are general references on the missing data problem, while Allison (2002)
provides a non-technical account. It is useful to discuss this topic by considering
Rubin’s (1976) missing data mechanisms: (1) MCAR (missing completely at
random): Missingness of the data is independent of both the observed and the
missing values; (2) MAR (missing at random): Missingness of the data is inde-
pendent of the missing values but can depend on the observed values; (3) NMAR
(not missing at random): Misssingness depends on the missing values themselves.
While unprincipled methods such as listwise deletion require MCAR data for
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appropriate inference, most methodological developments on missing data in
SEM focus on the normal theory ML procedure because it allows the weaker
MAR mechanism. When the data are from a multivariate normal distribution
and the missing data mechanism is either MCAR or MAR, the MLE is consistent
and asymptotically normal. However, note that MAR mechanism may not be
ignorable when using the wrong density to perform the ML estimation. Yuan
(2006) employed the normal density to model a non-normal distribution with
missing data and gave sufficient conditions under which consistent MLE will be
guaranteed when data are MAR.

The references on missing data related to ML include Arbuckle (1996),
Jamshidian and Bentler (1999), Lee (1986), Muthén et al. (1987), and Tang and
Bentler (1998). When missingness occurs in the context of non-normal data, the
classical ML methodology has to be extended to provide corrections to test sta-
tistics and standard errors. References include Arminger and Sobel (1990), Savalei
and Bentler (2005), Yuan and Bentler (2000a), and Yuan (2006) mentioned above.

Because of its importance in the missing data context, we describe one
approach using the EM algorithm (Dempster et al., 1977) to obtaining MLE in
this context. Let xi be the ith case including both observed variables xio and
missing variables xim. That is, xi ¼ (xio

0, xim0)0. Corresponding to the partition of

xi, let l ¼ (lo
0, lm0)0 and R ¼

Roo Rom

Rmo Rmm

 !
be the partitioned population mean

vector and the covariance matrix.

(1) E-step: Then, under the normal distribution assumption, the conditional
expectation of E(xim|xio) and E(ximxim

0|xio) are given by:

EðximjxioÞ ¼ lm þ RmoR
�1
oo ðxio � loÞ, (43)

Eðximx0imjxioÞ ¼ ðRmm � RmoR
�1
oo RomÞ þ EðximjxioÞEðximjxioÞ0. (44)

These Eqs (43) and (44) are incorporated in

EðxijxioÞ ¼ ðx0io;EðximjxioÞ0Þ0, (45)

Eðxix0ijxioÞ ¼
xiox

0
io xioEðximjxioÞ0

EðximjxioÞx0io Eðximx0imjxioÞ

 !
, (46)

respectively.
(2) M-step: Let �x ¼ ð1=nÞPn

i¼1EðxijxioÞ and S ¼ ð1=nÞPn
i¼1Eðxix0ijxioÞ � �x �x0:

Then the M-step consists of minimizing the ML fit function:

FML ¼ ð �x� mðyÞÞ0SðyÞ�1ð �x� mðyÞÞ þ trðSSðyÞ�1Þ � log jSSðyÞ�1j � p (47)

with respect to h. Further details can be found in Jamshidian and Bentler
(1999). More general methods based on Markov chain Monte Carlo
(MCMC) methods (e.g., Lee et al., 2003; Song and Lee, 2002) hold promise
for improved inference in small samples. Robert and Casella (2004) provide
an overview of MCMC methods.
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It would be desirable to be able to evaluate whether data are MCAR, MAR,
or NMAR. With regard to MCAR, it is possible to evaluate whether the various
patterns of missing data are consistent with sampling from a single normal pop-
ulation. This can be done by testing homogeneity of means, covariances, or
homogeneity of both means and covariances (Kim and Bentler, 2002). It is diffi-
cult to find general approaches to testing MAR and NMAR, although specific
models for NMAR have been proposed and evaluated (Tang and Lee, 1998; Lee
and Tang, 2006).

4.2. Treatment of categorical dependent variables

So far, we have assumed that the observed variables are continuous. This may
not always hold true in practice. Categorical variables are frequently used
in medical and epidemiological research. First of all, note that no special meth-
ods are needed if the categorical variables are independent variables. It is com-
mon that independent variables are categorical in multiple regression, and SEM
can handle such variables by dummy coding as is done in multiple regression.
Second, if a dependent categorical variable is ordered and has at least 4 or 5
categories as in a typical Likert scale, treating it as a continuous variable will
create few serious problems (e.g., Bentler and Chou, 1987). The remaining case is
when a dependent categorical variable is either binary or with three categories.
Even three-category data treated continuously can perform well enough
(Coenders et al., 1997), but we do not recommend it as routine practice. Gen-
eral accounts on how to treat such dependent categorical variables in the context
of exploratory factor analysis, and hence to SEM more generally, are given
by Flora and Curran (2004), Jöreskog and Moustaki (2001), and Moustaki
(2001). Approaches can be categorized into two major types (see Jöreskog and
Moustaki, 2001).

(1) Underlying variable approach: The idea that the observed correlation between
categorical variables does not optimally represent the correlation between
continuous latent variables that may have given rise to the observed cate-
gories is about a century old. The tetrachoric correlation was developed to
describe the correlation between two underlying continuous normal variables
that are categorized into binary variables. Extensions of tetrachorics to
polychoric and polyserial correlations (see Poon and Lee, 1987) provided the
foundation for an SEM approach (Muthén, 1978, 1984). In this approach
either a sample polychoric or polyserial correlation between variables is
computed from bivariate marginal likelihoods for given thresholds, which are
estimated from the univariate marginal distribution. After polychoric or
polyserial correlations have been computed, their asymptotic covariance
matrix is computed and used in an ADF-type estimation method to estimate
the covariance structure. Because ADF requires large sample sizes, inefficient
estimates such as least squares estimates can be computed, and the results
corrected for misspecification using Satorra–Bentler type procedures. Related
approaches were given by Jöreskog (1994), Lee et al. (1990, 1992, 1995), and
Lee and Song (2003). This methodology is implemented in most major SEM
software.
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(2) Generalized latent variable model approach: This approach stems from the
models for educational tests called the item response theory (Baker and Kim,
2004). In this approach, conditional on the latent variables, the response model
is identical to a generalized linear model (McCullagh and Nelder, 1989). The
linear latent predictors are then connected with a dependent variable via a
link function, which takes care of the categorical nature of the dependent
variable. References on this approach include Bartholomew and Knott (1999),
Maydeu-Olivares (2001, 2005), and Skrondal and Rabe-Hesketh (2004).

4.3. Further practical information

(1) Software: Finally, we provide some practical information. Because of the
complexity of optimization algorithm(s) required in SEM, we recommend
that applied researchers use existing SEM software such as Amos (http://
www.spss.com/amos/), EQS (Bentler, in press; http://www.mvsoft.com/),
Lisrel (Jöreskog and Sörbom, 2001; http://www.ssicentral.com/), Mplus
(Muthén and Muthén, 2001; http://www.statmodel.com/), or SAS Proc Calis
(http://www.sas.com/). It is possible to learn to use the software of choice
from the associated program manuals or from some textbooks mentioned in
the introduction. Both sources provide many examples of worked problems.
Amos and EQS are especially easy to learn to use due to their graphical
interface that allows model specification via path diagrams.

(2) Computational difficulties: We do not want to overemphasize the ease of use
of SEM. A well thought-out model with many variables can be difficult to fit
because such a model may be misspecified in hundreds of ways. When a
model is complex, and starting values are poor, the iterative calculations may
not be able to optimize the statistical function involved, i.e., non-convergence
may occur. Also, a related practical problem may be that one or more
residual variances may be estimated negatively or held to a zero boundary,
called an improper solution (or a Heywood case; see e.g., Boomsma, 1985,
Chen et al., 2001, Kano, 1998, Rindskopf, 1984, or van Driel, 1978). In these
situations, simplifying the model, improving start values, or other strategies
such as fitting submodels may be needed to provide meaningful as well as
statistically adequate solutions. In general, SEM modeling will require
subject-matter experts to cooperate with statistical experts.
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Statistical Modeling in Biomedical Research:
Longitudinal Data Analysis

Chengjie Xiong, Kejun Zhu, Kai Yu and J. Philip Miller

Abstract

This chapter discusses some major statistical methods for longitudinal data
analysis in biomedical research. We have provided a detailed review to some of
the most used statistical models for the analyses of longitudinal data and
relevant design issues based on these models. Our focus is on the conceptu-
alization of longitudinal statistical models, the assumptions associated with
them, and the interpretations of model parameters. It is not our intention
to present the detailed theory on statistical estimations and inferences for
these models in this chapter. Instead, we have presented the implementations
for some of these basic longitudinal models in SAS through real-world
applications.

1. Introduction

Why should longitudinal studies in biomedical research be conducted? The
answer to this question depends on the study objectives in biomedical research.
There is a fundamental difference between a longitudinal study and a cross-
sectional study. Cross-sectional studies are those in which individuals are
observed only once. Most surveys are cross-sectional, as are studies to construct
reference ranges. Longitudinal studies, however, are those that investigate
changes over time, possibly in relation to an intervention. Therefore, the primary
characteristic of a longitudinal study is that study subjects are measured repeat-
edly through time. The major advantage of a longitudinal study is its capacity to
separate what in the context of population studies are called cohort and age
effects (Diggle et al., 2002). Outcome variables in the longitudinal studies may be
continuous measurements, counts, dichotomous, or categorical indicators, and in
many cases, outcomes may even be multivariate as well. Covariates in the lon-
gitudinal studies may also be continuous measurements, counts, dichotomous, or
categorical indicators, and in many cases, covariate may be time varying as well.
As an example, in the study of healthy ageing and Alzheimer’s disease (AD), the
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understanding of natural history of AD requires a longitudinal design and the
corresponding appropriate analysis. One of the primary objectives in these stud-
ies is to model the cognitive function as a function of baseline age, the time lapse
from the baseline, the disease status, and other possible risk factors. For the
purpose of demonstration, we consider a simple case and let Y(a,t) be the cog-
nitive function at time lapse t from the baseline (i.e., t ¼ 0 at baseline) for a
subject whose baseline age is a. Assume that the expected value of Y(a,t) is a
linear function of both baseline age a and the time lapse t from the baseline, i.e.,

EYða; tÞ ¼ b0 þ b1aþ b2t.

The standard interpretation of b1 is the expected change of cognitive function at
the baseline (or at the same time t during the longitudinal course) for two subjects
whose baseline age is 1 year apart. The standard interpretation of b2 is the
expected change of cognitive function per time unit for the same subject during
the longitudinal course of the study. The crucial difference between b1 and b2 is
that b1 measures a between-subject or a cross-sectional change, whereas b2
measures a within-subject or a longitudinal change. If only cross-sectional cog-
nitive measures are available, i.e., the study is measured only at baseline, then
t ¼ 0 and EYða; tÞ ¼ b0 þ b1a: Therefore, any statistical inferences from the
cross-sectional data can only be made on b1, i.e., the cross-sectional rate of
change. On the other hand, if longitudinal cognitive measures are available, then
statistical inferences can be made on both b1 and b2. Therefore, longitudinal
studies enable not only the estimation of cross-sectional rate of change based on
baseline age, but also the estimation of the rate of intra-individual change based
on the time lapse in the study.

Another main study objective for a longitudinal study is to relate intra-subject
rate of change over time to individual characteristics (e.g., exposure, age, etc.), or
to an experimental condition. In the above example, studying the healthy ageing
and AD, many potential risk factors in addition to baseline age could affect not
only the cognitive status of subjects at baseline but also the rate of cognitive
decline after the baseline. These risk factors range from demographics such as
gender and education to genetic status (i.e., Apolipoprotein E genotypes) and to
relevant biomarkers and imaging markers. In addition, the stage or the severity
of AD could also be an important factor affecting the rate of further cognitive
decline. In general, therapeutic trials of AD are longitudinal, and the most crucial
scientific question to be addressed in these trials is whether the therapeutic
treatment is efficacious in slowing the cognitive and functional decline of AD
patients. Therefore, the rate of cognitive decline in AD clinical trials is modeled
as a function of treatment received. More specifically, let bt2 be the expected rate
of cognitive decline over time for subjects randomly assigned to receive a ther-
apeutic treatment, and let bc2 be the expected rate of cognitive decline over time
for control subjects. The longitudinal nature of the study allows the statistical test
on whether bt2 is the same as bc2and the statistical estimation on the difference
between these two rates of cognitive decline.

As in all biomedical studies, there are two major statistical components in
longitudinal studies: statistical design and statistical analysis. This chapter will
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review some of the most used statistical models for the analyses of longitudinal
data and relevant design issues based on these models. Throughout this chapter,
we will focus on the conceptualization of basic longitudinal statistical models, the
basic assumptions these models are based on, and the interpretations of model
parameters. It is not our intention to present the detailed theory on statistical
estimations and inferences based on these models. Instead, we will present the
implementations for some of these basic longitudinal models in SAS through
real-world applications. For detailed statistical theory on the parameter estima-
tion and inferences from these models, readers are referred to some of the
excellent references in longitudinal statistical methods such as Diggle et al.
(2002), Fitzmaurice et al. (2004), Verbeke and Molenberghs (2000), and Singer
and Willett (2003).

2. Analysis of longitudinal data

The defining characteristic of longitudinal data analysis is the fact that the
response variable or variables are repeatedly measured on the same individuals
over time and therefore the resulting responses on the same individuals are sta-
tistically correlated. Whereas much of the focus in the analysis of longitudinal
data is on the mean response over time, the correlation among the repeated
measures plays a crucial role and cannot be ignored. Generally, there are two
approaches for modeling the mean response over time. The first approach is the
analysis of response profile in which repeated measures analysis of variance or
covariance serves as special examples. The important feature of analysis of
response profile is that it allows for an unstructured pattern of mean response
over time, i.e., no specific time trend is assumed. Because the analysis of response
profile treats times of measurements as levels of a discrete study factor, it is
especially useful when the objective of the study is to make statistical inferences
at individual times or to compare mean responses among different time points.
On the other hand, this approach to the analysis of longitudinal data is generally
only applicable to the case when all individuals under study are measured at the
same set of time points and the number of time points is usually small compared
to the sample size.

Another common approach to analyze longitudinal data is based on a par-
ametric growth curve for the mean response over time. Because this approach
assumes a parametric function of time, it generally has the advantage of a much
smaller number of parameters in the model as compared to the analysis of
response profile and provides a very parsimonious summary of trend over time in
the mean response, and therefore is especially useful when the objective of the
study is to make statistical inferences on certain parameters from the parametric
curve. As an example, if a linear trend is appropriate to model the mean response
over time, two parameters, the intercept and the slope over time, completely
characterize the entire mean response over time. Because the slope parameter
measures the rate of change in mean response over time, it could be the primary
interest in the statistical inference. In contrast to the analysis of response profile,
the longitudinal analysis based on a parametric or semi-parametric growth curve
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does not require the study subjects be measured at the same set of time points,
nor even the same number of repeated measures among different subjects.

2.1. Analysis of response profiles

When all individuals under study are measured at the same set of time points, the
vector of longitudinal means over time is usually called the mean response pro-
file. The analysis of response profiles is especially useful when there is a one-way
treatment structure and when there is no pilot information on the mean response
profiles over time among different treatment groups. This method assumes no
specific structure on the mean response profile and nor on the covariance struc-
ture of the repeated measures.

Assume a longitudinal study in which the treatment factor has a total of u
levels and the response variable Y is measured at each of the n time points. For
the ith treatment group, i ¼ 1,2,y, u and kth time point, i ¼ 1,2,y, v, let mik be
the mean of the response variable. Let mi ¼ ðmi1;mi2; . . . ;mivÞt (superscript t stands
for the matrix transpose) be the response profile for the ith treatment group.
In general, the most important question in this type of longitudinal study is
whether the response profiles are parallel among different treatment groups, which
are the same as whether there exists an interaction between the treatment factor
and the time factor. Mathematically, let d i ¼ mi � m1 ¼ ðdi1; di2; . . . ; divÞt be the
vector of mean difference profile between the ith treatment group and the first
treatment group (i.e., the reference group). If there is no interaction between the
treatment factor and the time factor, then the hypothesisH0 : di1 ¼ di2 ¼ � � � ¼ div
holds for i ¼ 2; 3; . . . ; u: The test of this hypothesis has a degree of freedom equal
to (u�1)(v�1). Notice that the null hypothesis of no interaction between the
treatment factor and the time factor is equivalent to

H0 : D ¼ ðd22; d23; . . . ; d2v; d32; d33; . . . ; d3v; . . . ; du2; :du3; . . . ; duvÞt ¼ 0,

where dik ¼ dik � di1; i ¼ 2; 3; . . . ; u; and k ¼ 2; 3; . . . ; v:
When analyzing response profiles, it is generally assumed that the response

vector Yj ¼ ðy1; y2; . . . ; yvÞt follows a multivariate normal distribution (Graybill,
1976) and that the covariance matrix of response vector Yj ¼ ðyi; y2; . . . ; yvÞt is
unstructured, although it is required to be symmetric and positive-definite. When
longitudinal data are observed, the maximum likelihood (ML) estimates or the
restricted maximum likelihood (REML) estimates D̂ ¼ ðd̂22; d̂23; . . . ; d̂2v; d̂32;
d̂33; . . . ; d̂3v; . . . ; d̂u2; :d̂u3; . . . ; d̂uvÞt can then be obtained (Diggle et al., 2002). Fur-
ther, assume that the covariance matrix of D̂ can be estimated by ŜD̂: Then the
test of interaction effect between the treatment factor and the time factor can be
carried out through the standard Wald test by computing

w2 ¼ D̂
t X̂

D̂

� ��1
D̂.

At a significance level of að0oao1Þ; this test rejects the null hypothesis when
w24w2a ðu� 1Þðv� 1Þð Þ; where w2a ðu� 1Þðv� 1Þð Þ is the upper 100a% percentile
of the w2 distribution with (u�1)(v�1) degrees of freedom.
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Likelihood-ratio test can also be used to test the interaction effect between the
treatment factor and the time factor. This requires fitting two models with and
without the constraint of the null hypothesis. Without the constraint (also called
the full model), this amounts to the standard sampling theory of multivariate
normal distributions, and the likelihood function Lfull can be readily computed
through the standard ML estimates of mean response vector and covariance
matrices. Under the null hypothesis (also called the reduced model), another
maximization procedure is needed to find the ML estimates of mean response
vector and covariance matrices, and the likelihood function Lreduced under the null
hypothesis can be obtained. Finally, the likelihood-ratio test of interaction effect
between the treatment factor and the time factor can be carried out by computing

LRT ¼ 2 logðLfullÞ � 2 logðLreducedÞ,

and further by comparing it to the upper 100a% percentile of the w2 distribution
with (u�1)(v�1) degrees of freedom. Depending on the results from the statistical
test on the interaction effect between the treatment factor and the time factor, one
can proceed to test the main effects for both the treatment factor and the time
factor, as well as the pairwise comparisons between different levels of the treatment
factor at given time points and between different levels of the time factor at given
treatment levels.

An analysis of response profiles can be implemented in SAS through the
following codes, where TREATMENT is the classification variable of the treat-
ment factor, TIME is the classification variable for the time factor, and ID is the
identification for subjects under the study:

PROC MIXED DATA ¼ ; CLASSES ID TREATMENT TIME;
MODEL Y ¼ TREATMENT TIME TREATMENT*TIME;
REPEATED TIME/TYPE ¼ UN SUBJECT ¼ ID R RCORR;
LSMEANS TREATMENT TIME TREATMENT*TIME/PDIFF;
RUN;

When the number of time points is relatively large, the omnibus test with
(u�1)(v�1) degrees of freedom on the interaction effect might become rather
insensitive to the specific departures from parallelism and therefore have a rather
low statistical power to detect the treatment differences. There are several differ-
ent ways that more powerful tests on the interaction effect could be derived. In a
two-arm randomized clinical trial consisting of a novel therapeutic treatment and
a placebo, by the nature of randomization, the treated group and the placebo
group should have the same mean response at the baseline. Therefore, it might
make sense to examine the treatment difference by comparing the difference
between the mean response over all time points beyond the baseline and the mean
response at the baseline. More specifically, if there are 6 time points used in the
study (coded as 1,2,3,4,5,6 with 1 ¼ baseline), one would assess the effect of the
novel treatment (coded as 2) as compared to the placebo (coded as 1) by testing
H0 : ððm22þm23þm24þm25þm26Þ=5Þ�m21 ¼ ððm12þm13þm14þm15þm16Þ=5Þ�m11:
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This test has 1 degree of freedom and can be implemented by the following SAS
codes with a CONTRAST statement. (The CONTRAST statement could differ
depending on how these factors are coded in SAS, but option E should clearly
indicate whether a correct CONTRAST statement was written (SAS Institute,
Inc., 1999).)

PROC MIXED DATA ¼ ; CLASSES ID TREATMENT TIME;
MODEL Y ¼ TREATMENT*TIME/NOINT;
REPEATED TIME/TYPE ¼ UN SUBJECT ¼ ID R RCORR;
CONTRAST ‘1 DF INTERACTION TEST’
TREATMENT*TIME 1 -0.2 -0.2 -0.2 -0.2 -0.2 -1 0.2 0.2 0.2 0.2 0.2/E;
RUN;

In addition to the insensitivity of the general test with (u�1)(v�1) degrees of
freedom on the interaction effect to specific departures from the parallelism, the
analysis of response profiles has other limitations in the analyses of longitudinal
data despite the fact it is relatively simple to understand and easy to implement.
The primary limitation of this approach is the requirement that all individuals
under study be measured at the same set of time points, which prevents the use of
the method in unbalanced and incomplete longitudinal studies. Another limita-
tion is the fact that the analysis does not take into account of the time ordering of
the repeated measurements from the same subjects, resulting in a possible loss of
power in the analysis. Further, when the number of time points is relatively large,
the analysis requires the estimation of a large covariance matrix, which also partly
explains the fact the omnibus test with (u�1)(v�1) degrees of freedom on the
interaction effect has a rather low statistical power to detect the treatment differ-
ences.

2.2. Repeated measures analysis of variance

When a longitudinal study has a simple and classical design in which all subjects are
measured at the same set of time points, and the only covariates which vary over
time do so by design, the repeated measure analysis of variance can be used. The
rationale for the repeated measures analysis of variance is to regard time as a
within-subject factor in a hierarchical design which is generally referred to as a split-
plot design in agricultural research. Unlike the analysis of response profiles in which
the covariance matrix from the repeated measures from the same subjects are
generally assumed unstructured, the repeated measures analysis of variance allows
much simpler covariance matrix structure for the repeated measures over time.
However, the usual randomization requirement in a standard split-plot design is
not available in the longitudinal design because allocation of times to the multiple
observations from the same subjects cannot be randomized. Therefore, it is nec-
essary to assume an underlying model for the longitudinal data, which is essentially
a special case of the general linear mixed models to be discussed in the next section.

Assume again that the covariate (i.e., the study conditions or treatments) takes
a total of u possibilities and the response variable Y is measured at a total of
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v time points. The repeated measures analysis of variance models the response yijk
for the jth subject at the ith study condition and the kth time point as

yijk ¼ mik þ pij þ eijk,

where mik is the mean response for the ith study condition or treatment at the kth
time point, pij represents the subject error, and eijk the time interval error. The
standard assumptions made to this type of models are that pij are independent
and identically distributed as Nð0;s2pÞ; eijk are independent and identically dis-
tributed as Nð0; s2eÞ; and that eijk’s and pij’s are statistically independent. Let
Yij ¼ ðyij1; yij2; . . . ; yijvÞ be the vector of the repeated measures for the jth subject
under the ith study condition. Under the above assumptions, it is straightforward
to derive the covariance matrix of Yij as

CovðYijÞ ¼

s2p þ s2e s2p . . . s2p
s2p s2p þ s2e . . . s2p
. . . . . . . . . . . .

s2p s2p . . . s2p þ s2e

0
BBBB@

1
CCCCA.

This covariance structure is called the structure of compound symmetry, which
further implies that the correlation between any two repeated measures from the
same subject j is CorrðYijk;Yijk0 Þ ¼ s2p=ðs2p þ s2eÞ:

The above assumptions on the variance components pij and eijk will guarantee
that the usual F-tests from a standard two-way analysis of variance of a split-plot
design are still valid to test the main effect of study conditions and the main effect of
the time intervals, as well as the interaction effect between the study conditions and
the time intervals. The more general assumptions required for the usual F-tests from
a standard two-way analysis of variance to be valid requires certain forms of
the covariance matrix of the measurement errors of the time intervals and of the
covariance matrix of the error terms of the subjects assigned to a given study con-
ditions. This form is called the Huynh–Feldt (H–F) condition (Huynh and Feldt,
1970). A covariance matrix S of dimension v by v satisfies the H–F condition if
S ¼ lIv þ gJtv þ Jvgt; where Iv is the v by v identity matrix, Jv a v-dimensional
column vector of 1’s, l an unknown constant, and g a v-dimensional unknown
column vector of parameters. The following SAS code can be used to fit the above
model (where GROUP is the classification variable of study conditions):

PROC MIXED DATA ¼ ; CLASS GROUP ID TIME;
MODEL Y ¼ GROUP TIME GROUP*TIME;
RANDOM ID(GROUP);
RUN;

The covariance structure of compound symmetry may be inappropriate in
longitudinal studies because of the constant correlation between any two repeated
measures from the same subjects regardless of their time distance between the
repeated measures. Many other covariance structures on the repeated measures
have been proposed, most of which are motivated by the standard time series
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analyses and therefore might be more appropriate in longitudinal data. For
example, in the following autoregressive error structure, the covariance matrix is
proportional to

X
¼

1 r . . . rv�1

r 1 . . . rv�2

. . . . . . . . . . . .

rv�1 rv�2 . . . 1

0
BBBB@

1
CCCCA

for some �1oroþ 1: This covariance matrix represents the fact that the more
two repeated measures are apart in time, the less correlation are between them.
Unfortunately, when such covariance matrix is assumed for the within-subject
error terms on the repeated measures, the H–F condition generally no longer
holds. When the H–F condition is not satisfied, the statistical comparison on the
study conditions (i.e., the whole plot analysis in the standard two-way analysis
of variance from a split-plot design) from the usual analysis of variance is
still accurate and valid. The inferences from the within-subject comparisons,
however, can only be approximated through various appropriate F-tests or
t-tests. These are especially true for the tests of the main effect on time and
the interactive effect between the study condition and the time factor. Multiple
approximations to these tests can be used, for example, Box’s correction
method (Box, 1954), and those based on the Satterthwaite’s approximation
(Satterthwaite, 1946) to the denominator degrees of freedoms in F- and t-tests.
Other types of covariance matrix on the errors of the time intervals can also be
fitted to this model in SAS. SAS also provides several different options for
approximating the degrees of freedoms when approximate F-tests are needed.

The following SAS code fits the repeated measures analysis of variance model
with autoregressive within-subject error structure and the approximate F- and
t-tests based on Satterthwaite’s method:

PROC MIXED DATA ¼ ; CLASS GROUP ID TIME;
MODEL Y ¼ GROUP TIME GROUP*TIME/DDFM ¼ SATTERTH;
RANDOM ID(GROUP);
REPEATED TIME/SUBJECT ¼ ID TYPE ¼ AR;
RUN;

2.3. General linear models and general linear mixed models

2.3.1. General linear models for longitudinal data
General linear models and general linear mixed models are statistical method-
ologies frequently used to analyze longitudinal data. These models recognize the
likely correlation structure from the repeated measurements on same subjects
over time. The general linear models are built on either explicit parametric
models of the covariance structure of repeated measures over time whose validity
can be checked against the available data or, where possible, to use methods of
inference which are robust to misspecification of the covariance structure. Unlike
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the analysis of response profiles and repeated measures analysis of variance, the
general linear models and general linear mixed models do not require that the
longitudinal design be balanced or completed. In many cases, especially when
the sample size is relatively small or moderate with many covariate variables,
a parametric structure also need to be imposed on the covariance matrix of
repeated measurements over time. Many different types of covariance structures
have been used in the general linear models. In general, there are essentially two
most popular ways to build a structure into a covariance matrix: using serial
correlation models, and using random effects. The uniform correlation model
assumes a positive correlation between any two measurements on the same sub-
ject. In contrast, the exponential correlation model (also called the first-order
autoregressive model, Diggle, 1990) assumes an exponential decay toward 0 for
the correlation between two measurements on the same subject as the time sep-
aration between the two measurements increases. The covariance structure of
repeated measures based on random effects depends on the design matrix
associated with the random effects.

Let Yj ¼ ðyj1; yj2; . . . ; yjkj Þt be the vector of longitudinal observations for the
variable of interest on the jth subject over kj different time points Tj ¼
ðtj1; tj2; . . . ; tjkjÞt: Notice that here we allow not only different numbers of time
points but also different design vector over time among different subjects. Let
Xjk ¼ ðxjk1; xjk2; . . . ; xjkpÞt be the p by 1 vector of covariates associated with the
kth measurement on the jth subject. Notice here that the vector of covariates
could be time dependent. Let Xj ¼ ðXj1;Xj2; . . . ;Xjkj Þt be the design matrix of the
jth subject. In longitudinal data analyses, it is generally assumed that Xj contains
Tj itself and possibly some other covariates. The most general assumptions of a
general linear model is

(1) ðY1;X1Þ; ðY2;X2Þ; . . . ; ðYn;XnÞ are stochastically independent, which, in the
case of fixed design matrix by design, is equivalent to ðY1;Y2; . . . ;YnÞ that are
independent, where n is the sample size of subjects under study;

(2) Given Xj, EYj ¼ Xjb; where b is a p by 1 column vector of regression
coefficients, and covðYjÞ ¼ Sj:

2.3.2. Random effects models and general linear mixed models
A general way of introducing a covariance structure on repeated measurements is
through the two-stage random effects models. When study subjects are sampled
from a population, various aspects of their behavior may show stochastic var-
iation between subjects. The simplest example of this is when the general level of
the response profile varies between subjects, that is, some subjects are intrinsically
high responders, others low responders. The two-stage random effect model
(Diggle, 1988; Laird and Ware, 1982; Vonesh and Carter, 1992) allows the
individual-specific response profile or ‘growth curve’ for each study subject at the
first stage. The second stage of the two-stage random effects models introduces
the between-subjects variation of the subject-specific effects and the population
parameters of the subject-specific effects. The entire process leads to the devel-
opment of the general linear mixed models. The ML estimates, the REML
estimates, and the method-of-moment estimators are used to estimate the
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regression parameters in general linear mixed models. In addition, the general
linear mixed models not only provide the best linear unbiased estimator (BLUE)
(Graybill, 1976) for any estimable contrast of the regression parameters, but also
estimate the subject-specific effects through the best linear unbiased predictor
(BLUP) (Harville, 1977).

The major advantages of using random effects model is both to provide a way
of modeling correlation among repeated measures from the same subjects and
to derive good estimates to the subject-specific random effects. First, random
effects are useful when strict measurements protocols in biomedical studies
are not followed or when the design matrix on time was irregularly spaced and
not consistent among subjects. Although many times biomedical studies are not
designed this way, it can happen because of protocol deviation, bad timing, or
missing data. Therefore the covariance matrix in the vector of longitudinal
measurements might then depend on the individual subjects. Random effects
model can handle this type of dependence in a very natural way. More specifi-
cally, the two-stage random effects models first assume that given the subject-
specific design matrix Zj of dimension kj� q and the subject-specific regression
coefficients bj of dimension q� 1,

Yj ¼ Zjbj þ ej,

where ej follows a multivariate normal distribution with a mean vector of 0’s and
a covariance matrix equal to s2Ikj�kj (Ikj�kj is the identity matrix of dimension kj).
At the second stage, given subject-level covariates Aj of dimension q� p and
another set of regression coefficients b of dimension p� 1, the variation among
subject-specific regression coefficients bj is modeled by another linear function of
subject-level covariates as

bj ¼ Ajbþ bj,

where bj follows another multivariate normal distribution with a mean vector of
0’s and a covariance matrix D of dimension q. Other standard assumptions about
the two-stage random effects model are that the vectors ðYj;Zj;AjÞ are inde-
pendent among a sample of size n, j ¼ 1; 2; . . . ; n; and that ej and bj are statis-
tically independent, j ¼ 1; 2; . . . ; n: Notice that the design matrix Aj at the second
stage is between-subjects and typically time independent, whereas the design
matrix Zj at the first stage is within-subjects and could be time dependent. In fact,
Zj usually specifies some type of growth curve model over time, such as linear or
quadratic or spline functions.

An intuitive way to think of the two-stage random effects models in a lon-
gitudinal design is that each subject has his or her own ‘growth curve’ which is
specified by the subject-specific regression coefficients bj in the model from the
first stage, and the population means of subject-specific regression coefficients bj
are given by the model at the second stage, which depends on the between-
subjects covariates Aj. Combining the model from Stage 1 and that from Stage 2
in the two-stage random effects models, it follows that

Yj ¼ XjðAjbþ bjÞ þ ej,
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i.e.,

Yj ¼ ðXjAjÞbþ Zjbj þ ej.

This final model is a special case of the general linear mixed model formulation
which has the following general form:

Yj ¼Wjbþ Zjbj þ ej,

where bj follows a multivariate normal distribution with a mean vector of 0’s and
a covariance matrix D of dimension q, ej follows another multivariate normal
distribution with a mean vector of 0’s and a covariance matrix Rj, Wj and Zj are
the design matrices associated with the fixed and random effects, respectively.
AlthoughRj could assume different structures, it is generally assumed the diagonal
matrix s2Ikj ; where Ikj is the identity matrix of dimension kj. Under this assump-
tion, eji’s could be interpreted as measurement errors. Other standard assumptions
about the general linear mixed model are that, givenWj, ej, and Yj are statistically
independent, j ¼ 1; 2; . . . ; n: In the general linear mixed models, coefficients b are
called the vector of fixed effects, which are assumed the same for all individuals and
can be interpreted as the population parameters. In contrast to b, bj are called
random effects and are comprised of subject-specific regression coefficients, which,
along with the fixed effects, describe the mean response for the jth subject as

EðYjjbjÞ ¼Wjbþ Zjbj.

It is also straightforward to derive that

EðYjÞ ¼Wjb,

and

Sj ¼ CovðYjÞ ¼ ZjDZt
j þ Rj.

Weighted least squares estimation and the ML or REML methods through the
EM algorithm (Patterson and Thompson, 1971; Cullis and McGilchrist, 1990;
Verbyla and Cullis, 1990; Tunnicliffe-Wilson, 1989; Dempster et al., 1977; Laird
andWare, 1982; Vonesh and Carter, 1992) are used to estimate the mean response
and the covariance parameters. Software is readily available for ML and REML.

2.3.3. Predictions of random effects
In many longitudinal biomedical studies, subject-specific growth curve on
repeated measures could be crucial information not only for investigators to
understand the biological mechanism of the diseases under study, but also for
clinicians to better predict the disease progression and eventually offer better care
to the patients. Under the framework of the general linear mixed model, it is
possible to obtain estimates to the subject-specific effects, bj. The estimate to bj,
along with the estimates to the fixed effects, b, subsequently provides an estimate
to the subject-specific longitudinal trajectories, Wjbþ Zjbj:

The prediction of random effects can be best understood in the framework of
Bayesian analysis when each random effect is treated as a random parameter
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whose prior is a multivariate normal distribution with a mean vector of 0’s and a
covariance matrix D. Given the vector of responses Yj ¼ ðyj1; yj2; . . . ; yjkjÞt; it is
well known (Graybill, 1976) that the best predictor of bj is the conditional
expectation of the posterior distribution:

b̂j ¼ EðbjjYjÞ.
The well-known Bayesian Theorem then implies that the conditional distribution
of bj, given Yj ¼ ðyj1; yj2; . . . ; yjkjÞt; is another normal distribution with mean

m̂bj ¼ DZt
jS
�1
j ðYj �WjbÞ

and covariance matrix

Sbj ¼ CovðbjjYjÞ ¼ D�DZt
jS
�1
j ZjD.

Because m̂bj is a linear function of the response vector Yj ¼ ðyj1; yj2; . . . ; yjkj Þt; and
it can be shown that m̂bj is also an unbiased predictor to bj and has the minimum
variance in the class of unbiased linear predictors of bj, m̂bj is therefore a BLUP of
bj. Because m̂bj is also a function of unknown parameters b, D, and Sj; the ML or
REML estimates to these parameters can be used to obtain the empirical BLUP
of bj as

b̂j ¼ D̂Zt
jŜ
�1
j ðYj �Wjb̂Þ.

Obtaining a valid estimate to the covariance matrix of the empirical BLUP b̂j
turns out to be more challenging. A simple replacement of unknown parameters
by their estimates in Sbj would underestimate the variability because of the
ignorance to the uncertainty in the estimate of b. Notice that

Covðb̂j � bjÞ ¼ D�DZt
jS
�1
j ZjDþDZt

jS
�1
j Wj

�
Xn
j¼1

Wt
jS
�1
j Wj

 !�1
Wt

jS
�1
j ZjD.

The standard error of the empirical BLUP b̂j can be obtained by substituting the
ML or REML estimates for the unknown parameters in Covðb̂j � bjÞ: Finally, the
predicted growth curve for the jth subject is

Ŷj ¼Wjb̂þ Zjb̂j,

which can be rewritten as

Ŷj ¼ R̂jŜ
�1
j

� �
Wjb̂þ Ikj � R̂jŜ

�1
j

� �
Yj.

Therefore, the predictor of individual growth curve Yj can be conceptualized as a
weighted sum between the population mean growth curve Wjb̂ and the observed
growth curve Yj ¼ ðyj1; yj2; . . . ; yjkjÞt; which indicates some type of ‘shrinkage’
(James and Stein, 1961) for the predictor of individual growth curve Yj toward the
population mean growth curve Wjb̂: The degree of ‘shrinkage’ that is reflected by
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the weights depends on Rj and Sj: In general, when the within-subject variability,
Rj, is large relative to the between-subject variability, more weight is given to
the population mean growth curve Wjb̂ than to the individual growth curve
Yj¼ ðyj1; yj2; . . . ; yjkjÞt: On the other hand, when the between-subject variability is
large relative to the within-subject variability, more weight is assigned to the in-
dividually observed growth curve than to the population mean growth curveWjb̂:

We now present some applications of general linear mixed models in bio-
medical applications, especially in the study of AD. AD is a neurodegenerative
disease which is characterized by the loss of cognitive and functional ability. It is
the most common of the degenerative dementias affecting up to 47% of the
population over the age of 85 (Evans et al., 1989; Herbert et al., 1995; Crystal
et al., 1988; Katzman et al., 1988; Morris et al., 1991). Many neuropsychological
measures and staging instruments have been used to describe the longitudinal
disease progression. For example, the severity of dementia can be staged by the
clinical dementia rating (CDR) according to published rules (Morris, 1993).
A global CDR is derived from individual ratings in multiple domains by an
experienced clinician such that CDR 0 indicates no dementia and CDR 0.5, 1, 2,
and 3 represent very mild, mild, moderate, and severe dementia, respectively.
A major interest in longitudinal AD research is to estimate and compare the rate
of cognitive decline as a function of disease severity and other possible risk
factors such as age, education, and the number of Apolipoprotein E4 alleles.

Example 1. Random intercept and random slope model at different stages
of AD.

Let Yj ¼ ðyj1; yj2; . . . ; yjkj Þt be the vector of longitudinal observations for the
cognitive function on the jth subject over kj time points Tj ¼ ðtj1; tj2; . . . ; tjkj Þt (i.e.,
TIME). Suppose that the growth curve over time is approximately linear for each
stage of the disease as measured by CDR and that subjects stayed at the same
CDR stage during the longitudinal follow-up. At the first stage of the two-stage
random effects model, a linear growth curve is assumed for each subject, i.e.,
given the subject-specific intercept and slope over time,

yjk ¼ b0j þ b1jtjk þ ejk,

for k ¼ 1; 2; . . . ; kj; or Yj ¼ Ajbj þ ej in the matrix form, where Aj ¼ ðJ TjÞ; J is
the column vector of 1’s, bj ¼ ðb0j b1jÞ; and ej ¼ ðej1; ej2; . . . ; ejkj Þt: At the second
stage, the subject-specific intercept and slope are modeled as functions of possible
subject-level covariates. Because it has been well established in the literature that
the rate of cognitive decline in AD is associated with the disease severity at the
baseline (Storandt et al., 2002), one such subject-level covariate could be the
baseline disease severity as measured by CDR. Therefore, one can model the
subject-specific intercept and slope separately as a function of CDR in a standard
analysis of variance (ANOVA) model (Milliken and Johnson, 1992), i.e.,

b0j ¼ b0CDR þ b0j,

b1j ¼ b1CDR þ b1j.
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One difference between here and the standard ANOVA model is that two var-
iables (the intercept and the slope) are conceptualized from the same subjects.
Therefore a correlation structure is usually required to account for the possible
correlation between the intercept and the slope from the same subjects. These are
generally done by assuming that the error vector bj ¼ ðb0j b1jÞt follows a normal
distribution with mean vector of 0’s and a covariance matrix D which could be
assumed completely unstructured (i.e., specified by the option TYPE ¼ UN) or
with certain structured form. The above model can be easily implemented in SAS
with the following codes:

PROC MIXED DATA ¼ ; CLASSES ID CDR;
MODEL Y ¼ CDR TIME CDR*TIME /DDFM ¼ SATTERTH;
RANDOM INT TIME/SUBJECT ¼ ID TYPE ¼ UN;
RUN;

It is important to understand the hypothesis that each term in the model is
testing. The term CDR*TIME is testing the hypothesis that the mean slopes are
the same across all baseline CDR groups, whereas the term CDR is testing
whether the mean intercepts at TIME ¼ 0 (i.e., the baseline) are the same across
the CDR groups. The term TIME is testing the main effect of the slope over time
across the CDR groups, which can in general only be interpreted if the test on
CDR*TIME is not statistically significant.

If the estimates to the mean intercepts and mean slopes for each CDR and
subject-specific predictions to the random effects are needed, the following SAS
code can be used:

PROC MIXED DATA ¼ ; CLASSES ID CDR;
MODEL Y ¼ CDR CDR*TIME/NOINT S DDFM ¼ SATTERTH;
RANDOM INT TIME/SUBJECT ¼ ID TYPE ¼ UN SOLUTION;
RUN;

One needs to be careful about the interpretation of the output from this new
set of codes. The term CDR*TIME is no longer testing the hypothesis that the
mean slopes are the same across all CDR groups, but the hypothesis that all
mean slopes across CDR groups are simultaneously equal to 0. Likewise, the
term CDR is no longer testing whether the mean intercepts at TIME ¼ 0 are the
same across the CDR groups, but whether all the mean intercepts are simulta-
neously equal to 0. Some of these hypotheses tested by this new set of codes
might not be scientifically interesting, but the set of codes does offer the valid
estimates to the fixed effects and random effects.

Example 2. Random intercept and random slope model at different stages of
AD adjusting for the baseline age.

In Example 1, a random intercept and random slope model was used to describe
the growth curve of cognitive decline across different stages of AD. It is also well
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known that baseline age is an important risk factor for the cognitive decline. An
extended two-stage random effects model can be used to describe the rate of
cognitive decline as a function of both baseline CDR and baseline age (i.e., AGE).
The first stage of this model will be the same as the first stage of the model
introduced in Example 1. At the second stage, where the subject-specific intercept
and slope are modeled as functions of possible subject-level covariates, one can
conceptualize both the subject-specific intercept and subject-specific rate of
cognitive decline for each CDR stage as a linear function of baseline age in a
standard analysis of covariance (ANOCOVA) model (Milliken and Johnson,
2001), i.e.,

b0j ¼ b0CDR þ g0CDR �AGEþ b0j,

b1j ¼ b1CDR þ g1CDR �AGEþ b1j.

Notice here b0CDR; g0CDR are the intercept and slope of the subject-specific intercept
as a linear function of AGE, and b1CDR; g1CDR are the intercept and slope of the
subject-specific longitudinal rate of cognitive decline as a linear function of AGE.
Again, a correlation structure is usually required to account for the possible
correlation between the intercept and the slope from the first-stage model by
assuming that the error vector bj ¼ ðb0j b1jÞt at the second stage of the model
follows a normal distribution with mean vector of 0’s and a covariance matrix D
which could be assumed completely unstructured. The above model can be easily
implemented in SAS by the following code:

PROC MIXED DATA ¼ ; CLASSES ID CDR;
MODEL Y ¼ CDR AGE CDR*AGE TIME AGETIME CDR*TIME
CDR*AGETIME /DDFM ¼ SATTERTH;
RANDOM INT TIME/SUBJECT ¼ ID TYPE ¼ UN;
RUN;

In these codes, AGETIME is the variable created in the data set by multi-
plying TIME and AGE. All the terms CDR AGE CDR*AGE in the MODEL
statement are modeling the intercept part of the cognitive function, whereas
all the other terms in the MODEL statement are modeling the longitudinal
rate of the cognitive function. More specifically, the term CDR*AGETIME here
tests whether all g1CDR are the same across different CDR levels, the term
CDR*AGE tests whether all g0CDR are the same across different CDR levels, and
the term CDR*TIME tests whether all b1CDR are the same across different CDR
levels.

Different variations and extensions to the above models can also be used.
These include the cases when either the subject-specific intercepts or subject-
specific slopes but not both are assumed random and the other cases when
additional risk factors for AD such as education and the number of Apolipo-
protein E4 alleles are also entered into the model. There are also cases that
additional random effects need to be introduced into the model. For example,
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with a multicenter study, centers are usually treated as a random effect to
account for the possible variation among centers and the possible correlation of
the measures for subjects from the same centers.

Example 3. Piecewise random coefficients model in AD.

Piecewise linear growth curves are common in many biomedical applications.
In AD research, it has been well recognized that the rate of cognitive decline
depends on the disease severity at the baseline (Storandt et al., 2002). This further
implies that a simple linear growth curve over time is inappropriate when subjects
make conversions from lower CDR level to higher CDR levels. Again let Yj ¼
ðyj1; yj2; . . . ; yjkjÞt be the vector of longitudinal observations for the cognitive
function on the jth subject over kj time points Tj ¼ ðtj1; tj2; . . . ; tjkj Þt: Assume that
the subject begins with CDR 0 and then converts into CDR 0.5 at time tjk0:5

j
;

1ok0:5
j okj; the subject goes on at CDR 0.5 and makes another conversion into

CDR 1 at time tjk1j
; 1 � k0:5

j ok1j � kj: Suppose that the growth curve over time is
approximately linear at each CDR level. Then at the first stage of a two-stage
random effects model, a piecewise linear growth curve connected at the CDR
conversion times is assumed for each subject, i.e., given the subject-specific
intercept and slopes over time,

yjk ¼ b0j þ b0j tjk þ b0:5
j t0:5

jk þ b1j t
1
jk þ ejk,

where t0:5
jk ¼ tjk when k � k0:5

j ; and t0:5
jk ¼ 0 when kok0:5

j ; and t1jk ¼ tjk when
k� k1j ; and t1jk ¼ 0 when kok1j : Notice that the parameters in this model indicate
three different rates of cognitive decline at three different CDR levels during the
longitudinal follow-up. b0j represents the slope of cognitive decline at CDR 0,
b0j þ b0:5

j represents the slope of cognitive decline at CDR 0.5, and b0j þ b0:5
j þ b1j

represents the slope of cognitive decline at CDR 1. Therefore, b0:5
j represents the

difference on the slope of cognitive decline between CDR 0.5 and CDR 0, and b1j
represents the difference on the slope of cognitive decline between CDR 1 and
CDR 0.5. At the second stage, the subject-specific intercept and slopes are again
modeled as a function of possible subject-level covariates. Assume that the
subject-specific slopes are to be compared between subjects with at least one
Apolipoprotein E4 allele (i.e., E4 positive) and those without Apolipoprotein E4
alleles (i.e., E4 negative). One can then write four analysis of variance models as

b0j ¼ b0E4 þ b0j,

b0j ¼ b0E4 þ b0j ,

b0:5
j ¼ b0:5

E4 þ b0:5
j ,

and

b1j ¼ b1E4 þ b1j .

The variation among subject-specific parameters and the correlation for within-

subject parameters are modeled by assuming bj ¼ b0j b0j b0:5
j b1j

� �t
follows a
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normal distribution with mean vector of 0’s and a covariance matrix D which
could be assumed completely unstructured. The above model could be imple-
mented in SAS by the following codes:

PROC MIXED DATA ¼ ; CLASSES ID E4;
MODEL Y ¼ E4 T T0.5 T1 E4*T E4*T0.5 E4*T1;
RANDOM INT T T0.5 T1 /SUBJECT ¼ ID TYPE ¼ UN;
RUN;

In these codes, T, T0.5, and T1 represent tjk, t
0:5
jk ; and t1jk; respectively. All terms

in above model test specific hypotheses. For example, E4*T0.5 tests whether the
difference on the rate of cognitive decline between CDR 0.5 and CDR 0 is the
same between E4-positive and E4-negative subjects. The following SAS codes
give estimates to the mean intercepts and mean slopes for each CDR level and
subject-specific predictions to the random effects. (The ESTIMATE statement
could differ depending on how these factors are coded in SAS, but option E
should clearly indicate whether a correct ESTIMATE statement was written
(SAS Institute, Inc., 1999.)

PROC MIXED DATA ¼ ; CLASSES ID E4;
MODEL Y ¼ E4 E4*T E4*T0.5 E4*T1/NOINT DDFM ¼ SATTERTH
SOLUTION;
RANDOM INT T T0.5 T1 /SUBJECT ¼ ID TYPE ¼ UN SOLUTION;
ESTIMATE ‘rate at CDR 0.5 for E4 +’ E4*T 1 0 E4*T0.5 1 0/E;
ESTIMATE ‘rate difference by E4 at CDR 0.5’ E4*T 1 -1 E4*T0.5 1 -1/E;
RUN;

The first ESTIMATE statement gives the estimated mean rate of cognitive
decline at CDR 0.5 for subjects with positive E4 (it could be for subjects with
negative APOE4 depending on the code of APOE4, but the option E should
indicate clearly which one is estimated). The second ESTIMATE statement
estimates the mean difference on the mean rate of cognitive decline at CDR 0.5
between subjects with positive E4 and those with negative E4 and tests whether
the difference is 0. Similar additional ESTIMATE statements can be written to
estimate the rate of cognitive decline at CDR 1 and test whether a difference
exists between E4-positive and E4-negative subjects.

2.4. Generalized linear models for longitudinal data

The generalized linear models for longitudinal data extend the techniques of
general linear models. They are suited specifically for non-linear models with
binary or discrete responses, such as logistic regression, in which the mean
response is linked to the explanatory variables or covariates through a non-linear
link function (McCullagh and Nelder, 1989; Liang and Zeger, 1986; Zeger and
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Liang, 1986). Several approaches have been proposed to model longitudinal data
in the framework of generalized linear models. The marginal models for longi-
tudinal data permit separate modeling of the regression of the response on
explanatory variables, and the association among repeated observations of the
response for each subject. They are appropriate when inferences about the pop-
ulation averages are the focus of the longitudinal studies. For example, in an AD
treatment clinical trial, the average difference between control and treatment is
the most important, not the difference for any single subject. Marginal models
are also useful in AD epidemiological studies. It could help to address what the
age-specific prevalence of AD is, whether the prevalence is greater in a specific
sub-population, and how the association between a specific sub-population and
the AD prevalence rate changes with time. The techniques of generalized esti-
mating equations (GEEs) can be used to estimate the regression parameters in the
marginal models (Liang and Zeger, 1986; Gourieroux et al., 1984; Prentice, 1988;
Zhao and Prentice, 1990; Thall and Vail, 1990; Liang et al., 1992; Fitzmaurice
et al., 1993). The approach of random effects models in the setup of generalized
linear model allows the heterogeneity among subjects in a subset of the entire set
of the regression parameters. Two general approaches of the estimation are used
in the random effects models. One is to find the marginal means and variance of
the response vector and then apply the technique of GEE (Zeger and Qaqish,
1988; Gilmore et al., 1985; Goldstein, 1991; Breslow and Clayton, 1993; Lipsitz
et al., 1991). The other is the likelihood approach (Anderson and Aitkin, 1985;
Hinde, 1982) or the penalized quasi-likelihood (PQL) approach (Green, 1987;
Laird, 1978; Stiratelli et al., 1984; McGilchrist and Aisbett, 1991; Breslow and
Clayton, 1993). Another generalized linear model is the transition model for
which the conditional distribution of the response at a time given the history of
longitudinal observations is assumed to depend only on the prior observations
with a specified order through a Markov chain. Full ML estimation can be used
to fit the Gaussian autoregressive models (Tsay, 1984), and the conditional
ML estimation can be used to fit logistic and log-linear models (Korn and
Whittemore, 1979; Stern and Coe, 1984; Zeger et al., 1985; Wong, 1986; Zeger
and Qaqish, 1988). A comprehensive description of various models for discrete
longitudinal data can be found in Molenberghs and Verbeke (2005).

2.4.1. Marginal models and generalized estimating equations
In many biomedical applications the longitudinal responses are not necessarily
continuous, which imply that the general linear models and general linear mixed
models might not apply. For example, the presence or absence of depression and
the count of panic attacks during certain time interval are all likely response
variables of scientific interest. When the longitudinal responses are discrete,
generalized linear models are required to relate changes in the mean responses to
covariates. In addition, another component is needed to introduce the within-
subject associations among the vector of repeated responses. Marginal models
are one of these choices.

We again let Yj ¼ ðyj1; yj2; . . . ; yjkjÞt be the vector of longitudinal observations
for the response variable on the jth subject over kj time points Tj ¼
ðtj1; tj2; . . . ; tjkjÞt: Let Xjk ¼ ðxjk1; xjk2; . . . ;xjkpÞt be the p by 1 vector of covariates
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associated with the kth measurement on the jth subject. Notice here that the
vector of covariates could be time dependent. Let Xj ¼ ðXj1;Xj2; . . . ;XjkjÞt be the
design matrix of the jth subject. A marginal model for longitudinal data specifies
the following three components:

(1) The conditional expectation of Yjk, given Xjk, is assumed to depend on the
covariates through a given link function g, i.e.,

EðYjkjXjkÞ ¼ mjk

and

gðmjkÞ ¼ Xt
jkb,

where b is a p by 1 vector of unknown regression parameters.
(2) The conditional variance of Yjk, given Xjk, is assumed to depend on the mean

according to some given ‘variance function’ V, i.e.,

VarðYjkjXjkÞ ¼ fVðmjkÞ,

where f is an additional parameter.
(3) The conditional within-subject association among repeated responses, given

the covariates, is assumed to depend on an additional set of parameters a,
although it could also depend on the mean parameters.

The first two conditions in a marginal model are standard requirements from a
generalized linear model (McCullagh and Nelder, 1989) relating the marginal
means to a set of covariates at each individual time point. The third condition is
in addition to the standard assumptions in generalized linear model, which makes
the application of generalized linear model to longitudinal data possible. Notice
that even if all three components are completely specified in a marginal model,
the model still does not completely specify the joint distribution of the vector
of repeated measures on the response variable. In fact, it will be clear later that
such a complete specification of joint distribution is not needed to obtain valid
asymptotic statistical inferences to the regression parameters b. The following are
several examples of marginal models for longitudinal data.

Example 1: In the case of continuous response variables, the standard repeated
measure analysis of variance models and the two-stage random effects models are
special cases of marginal models. Here the link function is the simple identity
function, i.e., gðmjkÞ ¼ mjk; and the variance function is constant 1, i.e., V ¼ 1.
The conditional within-subject association is described by correlations among
repeated measures of the response, which are independent of the mean para-
meters.

Example 2: In a longitudinal study to examine the longitudinal trend on the
probability of depression and to relate this probability to other covariates such as
gender and education, the occurrence of depression is longitudinally observed.
Because Yjk is binary and coded as 1 when depression occurs and 0 otherwise, the
distribution of each Yjk is Bernoulli which is traditionally modeled through a
logit- or probit-link function, i.e., the conditional expectation of Yjk, given Xjk, is
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EðYjkjXjkÞ ¼ PrðYjk ¼ 1jXjkÞ ¼ mjk; and the logit-link function links mjk with
covariates by

ln
mjk

1� mjk

 !
¼ Xt

jkb.

The conditional variance of Yjk, given Xjk, is given by the ‘variance function’,

VarðYjkjXjkÞ ¼ mjkð1� mjkÞ,
i.e., f ¼ 1. The conditional within-subject association among repeated responses,
given the covariates, is usually specified by an unstructured pairwise odds ratio
between two repeated responses,

ak1k2 ¼
PrðYjk1 ¼ 1;Yjk2 ¼ 1ÞPrðYjk1 ¼ 0;Yjk2 ¼ 0Þ
PrðYjk1 ¼ 1;Yjk2 ¼ 0ÞPrðYjk1 ¼ 0;Yjk2 ¼ 1Þ .

Example 3: In many studies of AD, psychometric tests are generally used to
assess subjects’ cognition longitudinally. One of these tests records the number of
animals that the subject can name within a given period of time. This type of
count data could be modeled by a Poisson distribution, using a log-link function.
More specifically, the conditional expectation of Yjk, given Xjk, is EðYjkjXjkÞ ¼
mjk; and is assumed to depend on the covariates through the log-link function,

lnðmjkÞ ¼ Xt
jkb.

The conditional variance of Yjk, given Xjk, is given by the Poisson ‘variance
function’,

VarðYjkjXjkÞ ¼ mjk,

i.e., f ¼ 1. The conditional within-subject association among repeated responses,
given the covariates, is usually specified by unstructured pairwise correlations
between two repeated responses,

ak1k2 ¼ CORRðYjk1 ;Yjk2 Þ.

This marginal model is sometimes referred to a log-linear model.
When a marginal model is specified, the estimation of the model parameters is

generally done through the GEE instead of the standard inferences based on the
ML estimates. Part of the reason that a standard ML approach is not used here is
that the marginal model fails to specify the joint distribution on the vector of
repeated responses and therefore a likelihood function is not available. The basic
idea of GEE is to find b that minimizes the following generalized sum of square
(also called the objective function):

X
j

½Yj � mj�tV�1j ½Yj � mj�,
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where mj is the vector of expectations of repeated responses for the jth subject
which is a function of the regression parameters b. Vj is called the ‘working’
covariance matrix of Yj and is given by

Vj ¼ A
1=2
j CORRðYjÞA1=2

j ,

where A
1=2
j is the diagonal matrix such that ðA1=2

j Þ2 ¼ Aj; and Aj the diagonal
matrix consisting of the variance of Yjk, and CORRðYjÞ the correlation matrix of
Yj depending on the set of parameters a’s (also possibly b’s). The reason that Vj

is called the ‘working’ covariance matrix of Yj is that it is not necessarily the
same as the true covariance matrix of Yj. The mathematical minimization of the
above objective function is equivalent to finding b that solves the following
GEEs:

X
j

Dt
jV
�1
j ½Yj � mj� ¼ 0;

where

Dj ¼

@mj1=@b1 @mj1=@b2 . . . @mj1=@bp
@mj2=@b1 @mj2=@b2 . . . @mj2=@bp

. . . . . . . . . . . .

@mjkj=@b1 @mjkj=@b2 . . . @mjkj=@bp

0
BBBB@

1
CCCCA

is called the derivative matrix of mj with respect to the regression parameters b.
Notice that mjk ¼ g�1ðXt

jkbÞ; where g�1 is the inverse of the link function g.
Although the derivative matrix is only a function of the regression parameters,
the GEEs involve not only the regression parameters b but also the parameters a
and f. The latter are usually called nuisance parameters because they generally
are not the major interest in biomedical research, but they play important roles
in the inferential process. In general, the GEEs have no closed form solutions
with a non-linear link function, and therefore require an iterative algorithm to
approximate the solutions. The standard two-stage iterative algorithms are
available for these computations and can be found in the literature (Fitzmaurice
et al., 2004). These iterative algorithms begin with some seed estimates to
parameters a and f, and then estimate regression parameters b by solving the
system of GEEs at the first stage. At the second stage of the iterative algorithms,
the current estimates of b’s are used to update the estimates of a and f. These
two-stage processes are iterated until computational convergence is achieved.
These algorithms are also implemented in many standard statistical software
packages.

Assume that b̂ is the final solution of b to the GEEs after the two-stage
iterative algorithm converges. The most appealing part of a marginal model is the
fact that b̂ is a consistent estimator, i.e., when the sample size is sufficiently large,
b̂ approaches the true regression parameters b. This is true even when the within-
subject associations have been incorrectly specified in the marginal model.
In other words, as long as the mean component of the marginal model is
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correctly specified, b̂ will provide valid statistical inferences. Another important
appealing property of GEE estimate b̂ is the fact that it is almost as efficient as
the MLE estimate, especially in the generalized linear mixed models for contin-
uous outcome variable under the assumption of multivariate normality over
repeated measures. Similar to the standard asymptotic properties of ML esti-
mates, when the sample size is sufficiently large, b̂ follows an asymptotically
multivariate normal distribution with mean b and a covariance matrix which can
be estimated by the so-called ‘sandwich’ estimator

Ŝ ¼ B̂
�1
M̂B̂

�1
,

where B̂ ¼ SjD̂
t

j V̂
�1
j D̂j and M̂ ¼ SjD̂

t

j V̂
�1
j ½Yj � m̂j�½Yj � m̂j�tV̂

�1
j D̂j; and the esti-

mates D̂j; V̂j; and m̂j are obtained by replacing b, a, and f by their GEE estimates
from Dj, Vj, and mj, respectively.

For the statistical inferences about the regression parameters b, valid standard
errors can be obtained based on the above sandwich estimator Ŝ ¼ B̂

�1
M̂B̂

�1
:

In fact, both GEE estimate of b and the sandwich estimator to Cov(b̂) are robust
in the sense that it is still valid even if the within-subject associations have been
incorrectly specified in the marginal model. This does not imply that it is not
necessary to try to specify correctly the within-subject associations in the mar-
ginal model. In fact, the correct modeling or approximation to the within-subject
associations is important as far as the efficiency or the precision on the estimation
of regression parameters b is concerned. It can be mathematically proved that the
optimum efficiency in the estimation of regression parameters b can be obtained
when the working matrix Vj is the same as the true within-subject association
among repeated responses. On the other hand, the sandwich estimate is most
appropriate when the study design is almost balanced and the number of subjects
is relatively large and the number of repeated measures from the same subject is
relatively small, especially when there are many replications on the response
vectors associated with each distinct set of covariate values. When the longitu-
dinal study designs severely deviate from these ‘ideal’ cases, the use of sandwich
estimator for the statistical inferences might be problematic, in which case, the
specification of the entire model over the repeated measures might be desired and
therefore the effort to specify the correct covariance matrix become necessary.

The following is a SAS code to obtain GEE for Example 2 above in which the
longitudinal trend on the probability of depression is modeled as a function of
gender and time through the logit-link function. The occurrence of depression is
treated as binary and longitudinally observed. The option LOGOR specifies the
possible working covariance structure based on log odds ratio for the within-
subject responses:

PROC GENMOD DESCENDING DATA ¼ ;
CLASSES ID GENDER;
MODEL DEPRESSION ¼ GENDER TIME GENDER*TIME/
DIST ¼ BINOMIAL LINK ¼ LOGIT;
REPEATED SUBJECT ¼ ID/WITHINSUBJECT ¼ TIME LOGOR ¼ ;
RUN;
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2.4.2. Generalized linear mixed effect models
The basic conceptualization of the generalized linear mixed effects models is quite
similar to that of the general linear mixed effects models, although there are
crucial differences in the parameter interpretations of these models. More spe-
cifically, a generalized linear mixed effects model for longitudinal data assumes
the heterogeneity across subjects in the study in the entire set or a subset of the
regression coefficients. In other words, the entire set or a subset of the subject-
specific regression coefficients are assumed to be random variables across study
subjects which follow a univariate or a multivariate normal distribution.

The generalized linear mixed effects models can also be thought of following a
standard two-stage paradigm in which the first stage specifies a conditional dis-
tribution for each response Yjk. More specifically, at the first stage, it is assumed
that conditional on the subject-specific random effect bj and covariates Xjk, the
distribution of Yjk belongs to a very wide family of distributions called the
exponential family. The exponential family covers essentially all the important
distributions used in biomedical applications. These distributions include, but are
not limited to, the normal distribution, the binomial distribution, and the Poisson
distribution. Let

mjk ¼ EðYjkjbj;XjkÞ.
The conditional variance of Yjk is given through some known variance func-
tion V

VarðYjkjbj;XjkÞ ¼ fVðmjkÞ.
Further, conditional on the random effect bj and covariates Xjk, Yjk’s are
assumed independent. The conditional mean of Yjk is linked to a linear predictor
through a given link function g

gðmjkÞ ¼ Xt
jkbþ Zt

jkbj.

The final assumption on generalized linear mixed models is about the distri-
bution for the random effects. It is common to assume that bj follows a mul-
tivariate normal distribution with a mean vector of 0’s and a covariance matrix D
and is independent of covariates Xjk.

The primary difference between a generalized linear mixed model and a mar-
ginal model is that the former completely specifies the distribution of Yj while the
latter does not. It is also clear that the general linear mixed model is a special case
of the generalized linear mixed models. However, the interpretations of regres-
sion parameters are also different between the marginal models and the gener-
alized linear mixed models. Because the mean response and the within-subject
association are modeled separately, the regression parameters in a marginal
model are not affected by the assumptions on the within-subject associations, and
therefore can be interpreted as population averages, i.e., they describe the mean
response in the population and its relations with covariates. As an example, a
marginal model can be used in a longitudinal study to examine the longitudinal
trend on the probability of depression and to relate this probability to other
covariates such as gender. Because Yjk is binary and coded as 1 when depression
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occurs and 0 otherwise, the distribution of each Yjk can be modeled through a
logit-link function, i.e., the conditional expectation of Yjk, given time (i.e., tjk)
and gender (coded numerically as GENDER), is EðYjkjXjkÞ ¼ PrðYjk ¼ 1jXjkÞ ¼
mjk; and

ln
mjk

1� mjk

 !
¼ b0 þ tjkb1 þGENDER�b2.

The parameter b’s here have the standard population averaged interpretations. b2
is the log odds ratio of depression between the two genders at a given time point,
and b1 is the log odds ratio of depression for each unit increase of time for a given
gender. On the other hand, in a generalized linear mixed model with time (i.e., tjk)
and gender through the same logit link, assuming a random coefficient for the
intercept and the regression coefficient (i.e., the slope) before time,

ln
PðYjk ¼ 1jbj;GENDERÞ

1� PðYjk ¼ 1jbj;GENDERÞ

� �
¼ b0 þ tjkb1 þGENDER�b2 þ b0j þ tjkb1j,

where ðb0j; b1jÞt follows a bivariate normal distribution. The regression param-
eters b’s now describe the subject-specific mean response and its association with
covariates. b1 is the subject-specific log odds ratio of depression for each unit
increase of time because ðb0j; b1jÞt; the random effects from the individual, and
gender are fixed for the subject. The interpretation of b2 has to be extrapolated
because gender is a between-subject covariate and it is impossible to change it
within a subject. Therefore, b2 can only be interpreted as the log odds ratio of
depression between two subjects of different genders who happen to have exactly
the same random effects ðb0j; b1jÞt: A SAS code to implement the above gener-
alized linear mixed effects model is given below:

PROC GLIMMIX DATA ¼ ; CLASSES ID GENDER;
MODEL DEPRESSION ¼ GENDER TIME/DIST ¼ BINOMIAL
LINK ¼ LOGIT;
RANDOM INT TIME/SUBJECT ¼ ID TYPE ¼ UN;
RUN;

Much of the difference in the interpretation of the regression parameters
between a marginal model and a generalized linear mixed effects model is due to
the fact that the former directly specifies EðYjkjXjkÞ; whereas the latter specifies
EðYjkjXjk; bjÞ instead. When there is an identical link, both approaches become
equivalent based on the fact EðYjkjXjkÞ ¼ Ebj ½EðYjkjXjk; bjÞ�; and the interpreta-
tion of regression parameters in the generalized linear mixed model can also be
made in terms of population averages. When the link function is non-linear,
however, the interpretations for the regression parameters in generalized linear
mixed models are distinct from those in the marginal models. These distinctions
allow different scientific questions to be addressed in longitudinal biomedical
studies. Because of the subject-specific feature on the regression coefficients at
least to within-subject covariates or time-varying covariates, the generalized
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linear mixed effects models are most useful when the primary scientific objective
is to make inferences about individuals rather than the population averages in the
longitudinal studies.

2.5. Missing data issues

Missing data arise in the analysis of longitudinal data whenever one or more of
the sequences of measurements from subjects within the study are incomplete,
in the sense that the intended measurements are not taken, are lost, or are
otherwise unavailable. Missing data occur in almost all longitudinal studies,
and they cause not only technical difficulties in the analysis of such data, but
also deeper conceptual issues as one has to ask why the measurements are
missing, and more specifically whether their being missing has any bearing on
the practical and scientific objectives to be addressed by the data. A general
treatment of statistical analysis with missing data along with a hierarchy of
missing data mechanisms (MDM) has been proposed (Little and Rubin, 2002).
MDM is classified as missing completely at random (MCAR), missing at
random (MAR), or non-ignorable (NI). These are generally described in a
designed study which calls for k planned observations on each subject but lesser
than k are actually observed.

Let Yj ¼ ðyj1; yj2; . . . ; yjkÞt be the vector of planned longitudinal measurements
for the variable of interest on the jth subject over k time points. Let Ij ¼
ðIj1; Ij2; . . . ; IjkÞt be the vector of indicators of observations with Iji ¼ 1 if the ith
measurement is actually observed and Iji ¼ 0 otherwise. Let Xj be the vector of
covariates on the jth subject, and let f ðYjjXj;bÞ be the conditional density of Yj

given Xj and a set of parameters b, and let f ðIjjYj;Xj;cÞ be the conditional
density of Ij given ðYj;Xj;cÞ; where c is the parameters associated with missing
data. The missing responses are said to be MCAR if

f ðIjjYj;Xj;cÞ ¼ f ðIjjXj;cÞ,
i.e., given the covariates Xj; the probability of missingness does not depend on
Yj ¼ ðyj1; yj2; . . . ; yjkÞt; observed or not. This simply implies that the missingness
is the results of a chance mechanism that does not depend on either observed or
unobserved components of Yj ¼ ðyj1; yj2; . . . ; yjkÞt: With missing data MCAR, it
can be mathematically proved that the joint distribution of these observed yji’s is
the same as the ordinary marginal distribution of these observed from Yj. This
then implies that the observed yji’s are just random samples of yji’s, and thus
essentially any method of analysis will yield valid statistical inferences as long as
the distribution satisfies the assumptions under which the method is justified. In a
longitudinal study, if dropout from the study is not related to any factors under
study, the missingness is considered MCAR.

The missing responses are said to be MAR if

f ðIjjYj;Xj;cÞ ¼ fðIjjYo
j ;Xj;cÞ,

where Y o
j is the observed vector of Yj ¼ ðyj1; yj2; . . . ; yjkÞt: The MAR implies

that given the covariates, the probability of missingness depends only on the
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observed yji’s, but not on the missing values. With missing data MAR, it is no
longer true that the joint distribution of these observed yji’s is the same as the
marginal distribution of these observed from Yj. However, it can be concluded
that the contribution of the jth subject to the full likelihood as a function of b
is proportional to the ordinary marginal distribution of these observed from Yj

as long as b and c do not share any parameters, or in another word, are
functionally distinct. The implication of this result is that, as far as the sta-
tistical inferences of b are concerned, any likelihood-based methods are still
valid as long as the distribution satisfies the assumptions under which the
method is justified. Examples of MAR include the cases when a study protocol
requires that subjects be removed from the study once the value of an outcome
variable falls outside of a normal range, which implies that the missingness is
related to the observed components only. In summary, whether missing data
are MCAR or MAR, standard likelihood procedures can be applied to the
observed data without worrying about the effect of missing to the validity of
the statistical inferences. It is in this sense that both MCAR and MAR are
called ignorable.

The missing responses are said to be NI or not missing at random (NMAR) if
f ðIjjYj;Xj;cÞ depends on the missing data, although it may or may not depend on
Y o

j : In a longitudinal study of cognitive function for Alzheimer’s patients, the
missing responses are NI if patients are not able to complete the cognitive and
psychometric tests because their cognition is severely impaired. Several other
examples of NI can also be found in Diggle and Kenward (1994). With missing
data NI, special attention should be paid to the case when non-likelihood-based
statistical inferential procedures are used. Likelihood-based inferential proce-
dures can still be used, but generally this can only be done with the specification
of the MDM. The validity of such likelihood-based inference methods depends
on the validity of these specifications of MDM, f ðIjjYj;Xj;cÞ; which are generally
not verifiable based on the collected data. NI missingness is also sometimes called
informative, indicating the crucial role of the MDM in the analyses of this type of
missing data. Other approaches have also been available in the literature that
tried to relax the requirement on the precise specification of MDM when miss-
ingness is NI. Little (1993) discussed pattern-mixture models, a broad class of
models that do not require precise specification of the MDM. Little and Wang
(1996) extended the simple pattern-mixture model developed in Little (1994) to
repeated-measures data with covariates. Little (1995) developed a model-based
framework for repeated-measures data with dropouts, and placed existing liter-
ature within this framework.

The details on the analyses of missing data can be found in Little and
Rubin (2002). Little and Raghunathan (1999) compared ML and summary
measures approaches to longitudinal data with dropouts in a simulation study.
There is also an important distinction between intermittent missing and drop-
out in the analysis, where the latter refers only to missing all measurements
after a certain time point. If the intermittent missing values arise from a
known censoring mechanism, for example, if all values below a known
threshold are missing, the EM algorithm (Dempster et al., 1977) provides a
possible theoretical framework for the analysis, but practical implementation
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for a realistic range of longitudinal data seems to be rather difficult (Laird,
1988). When the intermittent missing values do not arise from censoring, it
may be reasonable to assume that they arise from mechanisms unrelated to
the measurement process, and therefore are MCAR or MAR. In such cases,
all likelihood-based inferences would be valid. Dropouts do not arise as a
result of censoring mechanism applied to individual measurements. Often a
subject’s withdrawal is for reasons directly or indirectly related to the meas-
urement process. Methods are also proposed for the statistical test of MDM
(Diggle, 1989; Ridout, 1991; Cochran, 1977; Barnard, 1963). The modeling of
the dropout process (Diggle and Kenward, 1994; Wu and Carroll, 1988; Wu
and Bailey, 1989) highlights the practical implications of the distinctions
between MCAR, MAR, and informative dropouts and provides a possible
framework for routine analysis of longitudinal data with dropouts. Although
complete generality in dealing with missing values in longitudinal data is
not available as yet, one should be very aware of the fact that in general
likelihood-based inferences will no longer be valid when the MDM is NI. The
sensitivity analysis has also been recommended as a necessary step to help the
analysis of missing data.

3. Design issues of a longitudinal study

In this section we focus on the response variables which are of continuous type,
although the case when the longitudinally measured response variable is binary
or ordinal can be worked out in a similar fashion.

As stated earlier, the major objective of a longitudinal study is to study the
rate of change over time on response variables. There are different designs that
can be used when planning a longitudinal study. The determination of sample
sizes and the corresponding statistical powers are some of the most important
issues when designing a longitudinal study. The answers to these questions
depend on several factors: the primary hypotheses/objectives of the study, the
statistical models used for analyzing the longitudinal data, the significance level
of the primary statistical test or the confidence level of the confidence interval
estimate to the rate of change over time, the statistical power desired for a
statistical test, or the degree of accuracy in the confidence interval estimate to the
rate of change. Most of times, analysis of response profiles, repeated measures
analysis of variance, and the general linear mixed models are the major statistical
models used for determining the sample sizes of longitudinal studies when the
primary outcome variable is of continuous type.

When no parametric forms are assumed for the mean response profiles which
are estimated and compared based on the analysis of response profiles or the
repeated measures analysis of variance, the methods of sample size determination
can be based on the standard analysis of response profiles and repeated measures
analysis of variance. In a longitudinal study to compare multiple treatment groups
over time, if repeated measures analysis of variance is used under the assumption
that the covariance matrices of the measurement errors of the time intervals and
the error terms of the subjects assigned to a given study conditions satisfy the H–F
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condition (Huynh and Feldt, 1970), the sample size determination can be further
based on the F-tests or t-tests from a standard two-way analysis of variance (Chow
and Liu, 2003) based on appropriate statistical tests on the primary hypothesis of
the study. We consider here several types of longitudinal studies which are analy-
zed by the general linear mixed effects models in which a linear growth curve over
time is assumed, one is to estimate the rate of change over time, and the other is to
compare two subject groups on the rate of change over time.

Case 1. Estimating a single rate of change over time.

The simplest longitudinal study design is an observational study for which
study subjects are followed for a certain period of time. This type of longitudinal
study can be used to estimate the rate of change for the outcome variable over a
certain time period. In many of these observational studies, the most important
objective is to achieve an accurate estimate to the rate of change over time on
some important measures for a population of subjects. Suppose that a sample of
size n will be used in the study for which each subject is planned to take k
repeated measures of the response variable at time points t1; t2; . . . ; tk: Let Yj ¼
ðyj1; yj2; . . . ; yjkÞt be the vector of longitudinal measurements of the jth subject.
For simplicity, we assume that changes in the mean response can be modeled by a
linear trend over time and therefore the slope over time can be used to describe
the rate of change. The major objective here is to obtain an accurate confidence
interval estimate to the mean slope over time for the population of subjects under
study. Recall that the two-stage random effects model assumes an individual
growth curve for each subject at Stage 1

Yji ¼ b0j þ b1jti þ eji,

where eji’s are assumed to be independent and identically distributed as a normal
distribution with mean 0 and variance s2e : At Stage 2, the subject-specific rates of
change b1j’s are assumed to follow another normal distribution with mean b1 and
variance s2b and are independent of eji’s (the distribution of b0j need not be used
here). The major interest is in the estimation of mean change of rate b1 in the
population. The simple least square estimate to the subject-specific rate of change
for the jth subject is

b̂1j ¼

Pk
i¼1
ðti � �tÞYji

Pk
i¼1
ðti � �tÞ2

,

where �t ¼ Sk
i¼1ti=k: Notice that b̂1j follows a normal distribution with mean b1

and variance s2, where

s2 ¼ s2e
Xk
i¼1
ðti � �tÞ2

( )�1
þ s2b.

Therefore a 100(1�a)% ð0oao1Þ confidence interval for b1 based on a sample of
size n is �b1 	 za=2ðs=

ffiffiffiffiffi
nÞ

p
; where
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�b1 ¼

Pn
j¼1

b̂1j

n
.

This gives the sample size required for achieving a confidence interval estimate of
b1 with a margin of error 7d as

n ¼ ðza=2sÞ2
d2

.

If the longitudinal study is unbalanced or incomplete in which different study
subjects may have different design vectors of times or even different number of
time points, similar sample size formula could be derived under certain conver-
gence assumptions on the design vectors of times.

Case 2. Estimating the difference of two rates of change over time.

A comparative longitudinal study compares the longitudinal courses of one or
more response variables over two or more techniques, treatments, or levels of a
covariate. In many clinical trials that evaluate the efficacy of one or more ther-
apeutic treatments for a disease such as AD, a comparative longitudinal design is
likely used to compare the treatments with placebo on the rate of change over
time for a primary endpoint. Here we consider estimating the difference on the
rates of change for the primary endpoint between the treated group and the
placebo. The random coefficients model in this case assumes that the subject-
specific slope b1j follows a normal distribution with mean bt and variance s2bt
when the subject belongs to the treated group and another normal distribution
with mean bc and variance s2bc when the subject belongs to the control group.
Similar to Case 1, when the subject belongs to the treated group, b̂1j follows a
normal distribution with mean bt and variance s2t ; where

s2t ¼ s2e
Xk
i¼1
ðti � �tÞ2

( )�1
þ s2bt.

When the subject belongs to the control group, b̂1j follows another normal dis-
tribution with mean bc and variance s2c ; where

s2c ¼ s2e
Xk
i¼1
ðti � �tÞ2

( )�1
þ s2bc.

Therefore a 100(1�a)% ð0oao1Þ confidence interval for the difference bt � bc
on the mean rates of change over time between the treated group and the control

group is �bt � �bc 	 za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2t =ntÞ þ ðs2c=ncÞ

q
; where

�bi ¼

Pni
j¼1

b̂1j

ni

for i ¼ t, c, and nt, nc are the sample size for the treated group and the control
group, respectively. Let l ¼ nt=nc be the sample size ratio between two subject
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groups. This confidence interval also yields the sample sizes for the two study
groups required for achieving a confidence interval estimate of bt � bc with a mar-
gin of error 7d as

nc ¼ s2t
l
þ s2c

� �
za=2

d

� �2
,

and nt ¼ lnc:

Case 3. Testing a hypothesis on the difference of two rates of change over time.

Along the similar arguments made in Case 2, the test statistic for testing H0 :
bt ¼ bc against Ha : bt � bc ¼ D=0 is

z ¼
�bt � �bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2t =ntÞ þ ðs2c=ncÞ
q .

The test statistic follows a standard normal distribution when the null
hypothesis is true. The test therefore rejects the null hypothesis when jzj4za=2 at
a significance level of a ð0oao1Þ: The power of the test, as a function of D is
given by

PðDÞ ¼ 1� F za=2 �
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2t =ntÞ þ ðs2c=ncÞ
q

0
B@

1
CA

þ F �za=2 �
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2t =ntÞ þ ðs2c=ncÞ
q

0
B@

1
CA.

Therefore, the sample sizes required to achieve a statistical power of
(1�g)ð0ogo1Þ is the solution to nt and nc such that

PðDÞ ¼ 1� g.

Notice that in all these sample size formulas, the length of the study, the number
of repeated measures on the response variable, and the time spacing of the
repeated measures all impact the statistical power through the quantity

f ðt1; t2; . . . ; tkÞ ¼
Xk
i¼1
ðti � �tÞ2.

Because this quantity is inversely related to the variance of the estimated subject-
specific rate of change over time, the larger the quantity is, the smaller the
variance for the estimated subject-specific slope is, the more accurate the con-
fidence interval estimates to the mean slopes are, and the more powerful the
statistical test is for comparing the two mean rates of changes over time between
the treated group and the control group. Therefore, an optimal design should in
theory maximize the quantity f ðt1; t2; . . . ; tkÞ over the choice of k; t1; t2; . . . ; tk:
Notice that tk � t1 is the entire duration of the study. Although theoretically it
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should be chosen to maximize f ðt1; t2; . . . ; tkÞ; many economic and logistic and
subject matters factors constrain the choice of tk � t1: In addition, the validity of
the assumed statistical model also constrains the choice of tk � t1 in the sense that
a linear growth over time might not be a reasonable assumption with a very long
study duration, which is especially the case in the study of cognitive decline in
Alzheimer’s patients. Similarly, the number of repeated measures in a longitu-
dinal study might also be constrained by many practical factors and cannot be
freely chosen by the designers of the study. As a result, many longitudinal studies
are restricted to relatively short duration with a predetermined number of
repeated measures which is not chosen statistically based on an optimal design.
Given that tk � t1 and k are typically chosen by some non-statistical reasons, the
optimal design now relies on the choice of time spacing to maximize
f ðt1; t2; . . . ; tkÞ: It can be mathematically proved that with an even k,
f ðt1; t2; . . . ; tkÞ is maximized when k/2 observations are taken at baseline t1 and
the other k/2 taken at the final time point tk for each study subject. This math-
ematically optimal design, however, is not only impractical in many longitudinal
studies but also completely erases the ability of verifying the validity of the linear
growth curve based on the collected data. Therefore optimal longitudinal designs
are sometimes based on further assumptions on the spacing of design vector of
times. For example, if the researchers would want to design an equally spaced
longitudinal study, then

f ðt1; t2; . . . ; tkÞ ¼
ðtk � t1Þ2kðkþ 1Þ

12ðk� 1Þ .

This function indicates the relevant influence of tk � t1 and k on the sample size
computations. In general, if the linear growth curve is a valid statistical model
and that the logistic and practical factors allow, an increase of either the study
duration or the frequency of repeated measures will decrease the within-subject
variability and improve the precision of parameter estimates or the statistical
power in the test on the rate of change over time.

Missing data almost always happen in longitudinal studies. In general, the
impact of missing data on sample size determination is difficult to quantify pre-
cisely because of the complexity in the patterns of missingness. The simplest
conservative approach to account for the missing data in sample size determi-
nation is to first compute the sample sizes required assuming all subjects have the
complete data, and then adjust the sample sizes based on an estimated rate of
attrition accordingly.
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Sequential and Group Sequential Designs in
Clinical Trials: Guidelines for Practitioners

Madhu Mazumdar and Heejung Bang

Abstract

In a classical fixed sample design, the sample size is set in advance of collecting
any data. The main design focus is choosing the sample size that allows the
clinical trial to discriminate between the null hypothesis of no difference
and the alternative hypothesis of a specified difference of scientific interest.
A disadvantage of fixed sample design is that the same number of subjects will
always be used regardless of whether the true treatment effect is extremely
beneficial, marginal, or truly harmful relative to the control arm. Often, it is
difficult to justify because of ethical concerns and/or economic reasons. Thus,
specific early termination procedures have been developed to allow repeated
statistical analyses to be performed on accumulating data and to stop the trial
as soon as the information is sufficient to conclude. However, repeated analyses
inflate the false positive error to an unacceptable level. To avoid this problem,
many approaches of group sequential methods have been developed. Although
there is an increase in the planned sample size under these designs, due to the
sequential nature, substantial sample size reductions compared with the single-
stage design is also possible not only in the case of clear efficacy but also in the
case of complete lack of efficacy of the new treatment. This feature provides an
advantage in utilization of patient resource. These approaches are methodo-
logically complex but advancement in software packages had made the plan-
ning, monitoring, and analysis of comparative clinical trials according to these
approaches quite simple. Despite this simplicity, the carrying on of a trial
under group sequential design requires efficient logistics with dedicated team of
data manager, study coordinator, biostatistician, and clinician. Good collab-
oration, rigorous monitoring, and guidance offered by an independent data
safety monitoring committee are all indispensable pieces for its successful
implementation.

In this chapter, we provide a review of sequential designs and discuss the
underlying premise of all current methods. We present a recent example and an
historical example to illustrate the methods discussed and to provide a flavor
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of the variety and complexity in decision making. A comprehensive list of
softwares is provided for easy implementation along with practical guidelines.
Few areas with potential for future research are also identified.

1. Introduction

Randomized clinical trial (RCT) is regarded as the gold standard for assessing
the relative effectiveness/efficacy of an experimental intervention, as it minimizes
selection bias and threats to validity by estimating average causal effects. There
are two general approaches for designing RCT: (1) fixed sample design (FSD)
and (2) group sequential design (GSD). In FSD, a predetermined number of
patients (ensuring a particular power for proving a given hypothesis) are accrued,
and the study outcome is assessed at the end of the trial. In contrast, a design
where analyses are performed at regular intervals after a group of patients are
accrued is called GSD. In comparative therapeutic trials with sequential patient
entry, FSDs are often unjustified on ethical and economic grounds, and GSDs
are preferred for their flexibility (Geller et al., 1987; Fleming and Watelet, 1989).
Currently used methods can be classified into three categories: group sequential
methods for repeated significance testing; stochastic curtailment or conditional
power (Lan et al., 1982; Pepe and Anderson, 1992; Betensky, 1997) and Bayesian
sequential methods (Spiegelhalter and Freedman, 1994; Fayers et al., 1997).
While no single approach addresses all the issues, they do provide useful guid-
ance in assessing the emerging trends for safety and benefit.

Trials using GSDs are common in published literature and the advantage of
this kind of design is self evident by their impact (Gausche et al., 2000; Kelly
et al., 2001; Sacco et al., 2001). One example of its successful use is a trial
reported by Frustaci et al., where 190 sarcoma patients (a rare form of cancer)
were to be accrued in order to detect a 20% difference in 2-year disease-free
survival (60% on the adjuvant chemotherapy treatment arm versus 40% in the
control arm undergoing observation alone) (Frustaci et al., 2001). An interim
analysis was planned after half of the patients were accrued with stopping rule in
terms of adjusted p-value. The trial was stopped as this criterion was met thereby
saving 50% of the planned patient accrual. The observed difference was found to
be 27% (72% on the treatment arm versus 45% on the control arm), 7% higher
than what was hypothesized initially at the design stage. Therefore, the risk of
treating additional patients with suboptimal therapy was greatly reduced.

Independent data safety monitoring committee (DSMC) with responsibilities of
(1) safeguarding the interests of study patients, (2) preserving the integrity and cred-
ibility of the trial in order to ensure that future patients be treated optimally, and (3)
ensuring that definitive and reliable results be available in a timely manner to the
medical community has beenmandated for all comparative therapeutic clinical trials
sponsored by national institutes (URL: http://cancertrials.nci.nih. gov; Ellenberg,
2001). GSD provides an excellent aid to the DSMC for decision making. Other
names utilized for this kind of committees playing virtually the same role are data or
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patient safety monitoring board (DSMB or PSMB), data monitoring and ethics
committees (DMEC), and policy and data monitoring board (PDMB).

In this chapter, we start with a historical account of sequential methods and
provide introduction to the underlying concept and approaches to the commonly
utilized methods of inflation factor (IF) for sample size calculation and alpha
spending function for monitoring the trials for early stopping. A listing of soft-
wares is provided that has the capabilities of accommodating all of the methods
discussed. A table of IF for sample size calculation of GSD is provided for quick
assessment of feasibility of a trial (in regard to sample size) even before acquiring
any special software for GSD. One current example is presented with standard
template of a biostatistical consideration for writing study protocol, details of a
stopping boundary utilized, items to be included in an interim analysis reports
presented to the DSMC, and the substance included in the statistical section
write-up for final dissemination in published literature. Another historical
example (the BHAT trial) is discussed to highlight that the DSMC’s decision to
stop early was based not only on statistical group sequential boundary point, but
also on a variety of other subjective considerations.

Several review papers and books from various perspectives are recommended
to those who wish to learn about further details (Fleming and DeMets, 1993;
Jennison and Turnbull, 2000; Sebille and Bellissant, 2003; Proschan et al., 2006).

2. Historical background of sequential procedures

The first strictly sequential method, the sequential probability ratio test, was
developed during the Second World War (Wald, 1947). As its main application
was the quality control of manufactured materials, its publication was only
authorized after the end of the war, in 1947. Another class of sequential test is
based on triangular continuation regions (Anderson, 1960). The basic idea on
which these methods rely is to constantly use the available information to deter-
mine whether the data are compatible with null hypothesis, with alternative
hypothesis, or insufficient to choose between these two hypotheses. In the first two
cases, the trial is stopped and the conclusion is obtained whereas in the third case
the trial continues. The trial is further processed until the data allows a legitimate
(or per-protocol) decision between the two hypotheses. An example of a com-
pletely sequential trial can be found in Jones et al. (1982).

Armitage (1954) and Bross (1952) pioneered the concept of group sequential
methods in medical field (Bross, 1952; Armitage, 1954). At first, these plans were
fully sequential and did not gain widespread acceptance perhaps due to the
inconvenience in their application. The problems discussed included the fact that
response needs to be available soon after the treatment is started and that there
would be organizational problems, such as coordination in multicenter trials and
a much greater amount of work for the statistician. The shift to group sequential
methods for clinical trials did not occur until the 1970s. Elfring and Schultz
(1973) specifically used the term ‘group sequential design’ to describe their
procedure for comparing two treatments with binary response (Elfring et al.,
1973). McPherson (1974) suggested that the repeated significance tests of
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Armitage et al. (1969) might be used to analyze clinical trial data at a small
number of interim analyses (Armitage et al., 1969; McPherson, 1974). Canner
(1977) used Monte Carlo simulation to find critical values of a test statistic for a
study with periodic analyses of survival endpoint (Canner, 1977). However,
Pocock (1977) was the first to provide clear guidelines for the implementation of
the GSD attaining particular operating characteristics of type I error and power
(Pocock, 1977). He made the case that most investigators do not want to evaluate
results every time a couple of new patients are accrued but do want to understand
the comparative merit every few months to assess if the trial is worth the time and
effort and that continual monitoring does not have a remarkable benefit. More
specifically, only a minor improvement is expected with more than five interim
looks. A more comprehensive account of this history can be read from the
excellent book by Jennison and Turnbull (2000).

3. Group sequential procedures for randomized trials

A primary difficulty in performing repeated analyses over time is the confusion
about the proper interpretation of strength of evidence obtained from such
evaluations. Suppose that only a single data analysis is performed after data
collection has been fully completed for a trial. Then a two-sided (or one-sided if
justified, e.g., non-inferiority design) significance value of pr0.05, obtained from
a test of hypothesis of no difference between an experimental therapy and a
control, is usually interpreted as providing strong enough evidence that the new
therapy provides an advantage. The interpretation is justified by the willingness
of investigators to accept up to five false-positive conclusions in every 100 trials
of regimens that, in truth, have equivalent efficacy. Unfortunately, even when a
new treatment truly provides no advantage over a standard therapy, performing
repeated analyses can greatly increase the chance of obtaining positive conclu-
sions when this p r 0.05 guideline is repeatedly used.

As such, interim data safety reports pose well-recognized statistical problems
related to the multiplicity of statistical tests to be conducted on the accumulating
set of data. The basic problem is well known and is referred to as ‘‘sampling to a
foregone conclusion’’ (Cornfield, 1966) and has been illustrated mathematically,
pictorially or through simulations by many researchers (Fleming and Green,
1984). Specifically, in a simulation of 100 typical clinical trials of two interven-
tions with truly equivalent efficacy that called for up to four periodic evaluations,
17 (rather than five) trials yielded false-positive conclusions (i.e. pr0.05) in at
least one analysis. The rate of false-positives continues to rise as the frequency of
interim analyses rises. This serious increase in the likelihood of reaching false-
positive conclusions due to misinterpretation of the strength of evidence when
repeated analyses are conducted over time partly explains why many published
claims of therapeutic advances have been false leads and provides the motivation
for development of GSD.

A GSD first provides a schedule that relates patient accrual to when the
interim analyses will occur. This schedule is conveniently expressed in terms of
the proportion of the maximal possible number of patients that the trial could
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accrue. Second, such designs give a sequence of statistics used to test the null
hypothesis, and third, they give a stopping rule defined in terms of a monotone
increasing sequence of nominal significance levels at which each test will be
conducted. This sequence of significance levels is carefully chosen to maintain the
overall type I error at some desired level (e.g., 0.05 or 0.10) using one- or two-
sided hypothesis. Either the number or the time of analyses is prespecified or the
rate at which the overall significance level is ‘‘used up’’ is fixed in advance. Thus,
undertaking group sequential trials assumes that hypothesis testing at nominal
significance levels less than a prestated overall significance level will be per-
formed, and that if results are ever extreme enough to exceed prespecified
thresholds, the trial should be stopped. While such group sequential procedures
differ in detail, they have certain common features.

The two commonly discussed pioneering mechanisms in GSD are given by
Pocock (Pocock, 1977) and O’Brien and Fleming (OBF) (O’Brien and Fleming,
1979). Pocock adapted the idea of a repeated significance test at a constant
nominal significance level to analyze accumulating data at a relatively small
number of times over the course of the study. Patient entry was divided into
equally sized groups and the data are analyzed after each group of observations
has been collected. As an alternative, OBF proposed a test in which the nominal
significance levels needed to reject the null hypothesis at sequential analyses
increase as the study progresses, thus, making it more difficult to reject the null
hypothesis at the earliest analysis but easier later on. Other variations to these
schemes have also been developed but OBF is the most commonly utilized GSD
as it fits well with the wishes of clinical trialists who do not want to stop a trial
prematurely with insufficient evidence based on less reliable or unrepresentative
data. There are other reasons for this preference. Historically, most clinical trials
fail to show a significant treatment difference, hence from a global perspective, it
is more cost-effective to use conservative designs. Indeed, even a conservative
design such as OBF often shows a dramatic reduction in the average sample
number (ASN or expected sample size) under the alternative hypothesis, HA,
compared to a FSD (see Table 1 for brief overview). Moreover, psychologically,
it is preferable to have a nominal p-value at the end of the study for rejecting the
null hypothesis, H0, which is close to 0.05 in order to avoid the embarrassing
situation where, say, a p-value of 0.03 at the final analysis would be declared non-
significant.

Later, Wang et al. (1987) proposed a class of generalized formulation that
encompasses Pocock and OBF methods as two extreme members.

Table 1

General properties of monitoring designs

Design General ASN (under H0) ASN (under HA)

Fixed Most conservative Low Large

OBF Conservative, hard to stop early Mid Mid

Pocock Most liberal, early stopping properties Large Low
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Although the formulation of GSD started with binary outcomes, a generalized
formulation has helped establish the wide applicability of the large sample theory
for multivariate normal random variables with independent increments (i.e.,
standardized partial sums) to group sequential testing (Jennison and Turnbull,
1997; Scharfstein et al., 1997). This structure applies to the limiting distribution of
test statistics which are fully efficient in parametric and semiparametric models,
including generalized linear models and proportional hazards models (Tsiatis et al.,
1995). It applies to all normal linear models, including mixed-effects models
(Lee and Demets, 1991; Reboussin et al., 1992). Gange and Demets showed its
applicability to the generalized estimating equation setting and Mazumdar and Liu
showed the derivation for the comparative diagnostic test setting where area under
the receiver operating characteristic curve is the endpoint (Mazumdar and Liu,
2003; Mazumdar, 2004). In short, almost any statistic likely to be used to
summarize treatment differences in a clinical trial will justify group sequential
testing with this basic structure and common mathematical formulation (Jennison
and Turnbull, 2000).

3.1. Power and sample size calculation using inflation factor

Sample size computation in GSD setting involves the size of the treatment effect
under some non-null hypothesis, the standard error of the estimated treatment effect
at the end of the trial, and the drift of the underlying Brownian motion used to
model the sequentially computed test statistics. The appropriate drift is determined
bymultiple factors such as the group sequential boundaries, type I error, and desired
power. The theoretical background for design of group sequential trials has been
discussed elsewhere (Kim andDeMets, 1992; Lan and Zucker, 1993) but the drift of
commonly usedGSDs can be easily translated into the corresponding IFs, provided
in Table 2. The sample size approximation for a GSD in any setting is simply
obtained by multiplying the sample size under the corresponding FSD by the IF
provided in this table for the features of the specific GSD chosen. It is easy to note
that the sample size inflation under OBF is minimal.

Table 2

Inflation Factors for Pocock and O’Brien–Fleming alpha spending functions for different total num-

bers of looks (K) under equal-sized increments

a ¼ 0.05 (Two-sided) a ¼ 0.01 (Two-sided)

K Spending function Power (1–b) K Spending function Power (1–b)

0.80 0.90 0.95 0.80 0.90 0.95

2 Pocock 1.11 1.10 1.09 2 Pocock 1.09 1.08 1.08

2 OBF 1.01 1.01 1.01 2 OBF 1.00 1.00 1.00

3 Pocock 1.17 1.15 1.14 3 Pocock 1.14 1.12 1.12

3 OBF 1.02 1.02 1.02 3 OBF 1.01 1.01 1.01

4 Pocock 1.20 1.18 1.17 4 Pocock 1.17 1.15 1.14

4 OBF 1.02 1.02 1.02 4 OBF 1.01 1.01 1.01

5 Pocock 1.23 1.21 1.19 5 Pocock 1.19 1.17 1.16

5 OBF 1.03 1.03 1.02 5 OBF 1.02 1.01 1.01

M. Mazumdar and H. Bang274



3.2. Monitoring boundaries using alpha spending functions

The earlier publications for group sequential boundaries required that the
number and timing of interim analyses be fixed in advance. However, while
monitoring data for real clinical trials, it was felt that more flexibility in being
able to look at the data at time points dictated by the emerging beneficial or
harmful trend is desired. To accommodate this capability, Lan and Demets pro-
posed a more flexible implementation of the group sequential boundaries
through an innovative ‘alpha spending function’ (Lan and Demets, 1983;
Lan and DeMets, 1989). The spending function controls how much of the false-
positive error (or false-negative error when testing to rule out benefit) can be
used at each interim analysis as a function of the proportion (t*, range 0 (study
start)�1 (study end)) of total information observed. In many applications, t*
may be estimated as the fraction of patients recruited (for dichotomous out-
comes) or the fraction of events observed (for time to event outcomes) out of the
respective total expected. The alpha spending functions underlying OBF GSD
correspond to

a1ðtnÞ ¼ 2� 2F
Z1�ða=2Þ
ðtnÞ1=2

" #
,

whereas the one for Pocock is described by

a2ðtnÞ ¼ a ln½1þ ðe� 1Þtn�.
The advantage of the alpha spending function is that neither the number nor

the exact timing of the interim analyses needs to be specified in advance. Only the
particular spending function needs to be specified. It is useful to note that the
nominal significance levels utilized in any GSD will always add up to more than
the overall significance level, because with multiple significance testing the prob-
ability of rejecting the null hypothesis does not accumulate additively due to
positive correlations among test statistics.

Following is a sample ‘Biostatistical Consideration’ write-up for a clinical trial
in Germ Cell Tumor (GCT) utilizing GSD with OBF boundaries. IF approach
with three total looks (K ¼ 3) was chosen at design stage and a series of boundaries
and sequence of significance level were computed accordingly. The option of uti-
lizing spending function approach was also kept open, which is often the case in
practice.

3.3. Design of a phase 3 study with OBF GSD: A sample template

3.3.1. Biostatistical considerations

1. Objective and background: The objective of this study is to compare in a pro-
spective randomized manner the efficacy of an experimental combination
regimen versus the standard regimen in previously untreated ‘poor’ risk GCT
patients. The poor risk criterion helps identify patients who are expected to
have high probability of worse outcome. It is described in the protocol and
roughly depends on the primary site, histology, and specific blood markers
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being high. For this kind of cancer, a patient’s prognosis is considered to be
favorable if their tumor completely disappears and does not come back at least
for a year. The response of these patients is called durable complete responder
(DCR) at one year. In the institutional database at Memorial Sloan–Kettering
Cancer Center (MSKCC) of size 796 patients treated by standard therapy, the
proportion of patients remaining DCR at one year for the poor risk group
(n ¼ 141) is 30% with a 95% confidence interval (Cl) of 22.2–37.3%.

2. Primary endpoint, power and significance level: The major endpoint for this
trial is DCR at one year where the time is computed from the day a patient is
defined responder. This study is planned to detect a 20% absolute difference
from the currently observed rate of 30% (30% versus 50%). We are expecting
an accrual of 50 patients per year. The sample size calculation based on log-
rank test for an FSD with 80% power and 5% level of significance, 195
patients will be needed. To incorporate two interim looks and a final look (so
total K ¼ 3) at the end of full accrual, an IF of 1.02 was multiplied to 195
requiring 199 patients ( ¼ 1.02� 195) using OBF method (O’Brien and
Fleming 1979). Rounding it off to 200 patients (100 per arm), we decide to
place the two interim looks at the end of second and third year and the final
look at the end of fourth year as the accrual rate of 50 patients makes the
length of study to be four years.

3. Randomization: After eligibility is established, patients will be randomized via
a telephone call to the coordinating center at MSKCC clinical trial office
(Phone number: XXX-XX-XXXX; 9:00 am to 5:00pm Monday through Fri-
day). Randomization will be accomplished by the method of stratified random
permuted block, where patient institution (MSKCC versus ECOG versus
SWOG versus remaining participating institutions) was adopted for stratifi-
cation, where ECOG denotes Eastern Cooperative Oncology Group and
SWOG denotes Southwest Oncology Group.

4. Data safety monitoring committee and interim analyses: The data will be
reviewed at designated intervals by an independent DSMC. This committee was
formed with two independent oncologists and one independent biostatistician.
The committee will be presented with the data summary on accrual rates,
demographics and bio-chemical markers etc. and comparative analysis (using
Fisher’s exact test) on toxicity and DCR proportion by the principal investi-
gator (PI) and the biostatistician on study. Survival and progression-free sur-
vival curves will be estimated only if there is an enough number of events that
governs statistical power. Semi-annual reports on toxicity will be disseminated
to all the participating groups.

Normalized z-statistics according to the OBF boundary to be used for stop-
ping early if the experimental regimen looks promising are 73.471, 72.454,
72.004, where the corresponding sequence of nominal significance levels are
0.001, 0.014, and 0.036, respectively (East, Cytel Statistical Software). If situation
emerges where these time points are not the most convenient or desirable,
Lan–Demets spending function utilizing OBF boundaries will be used to com-
pute the corresponding z-statistics and significance level. The committee is
expected to use the statistical stopping rules as a guideline in addition to both
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medical judgment and the relevant emerging data in the literature, especially ones
obtained from similar trials.

5. Final analysis: All toxicities will be evaluated based on the NCI common
toxicity criteria and tabulated by their frequencies and proportions. Fisher’s
exact test will be used to compare the toxicities and adverse events by the
two arms. The primary analysis, DCR-free survival curves will be estimated
using Kaplan–Meier method and with appropriate follow-up, comparisons
will be made using log-rank test (Kaplan and Meier, 1958; Mantel, 1966).
Once the trial stops (either at interim look or at final look), standard statis-
tical estimation and inference will be undertaken for the observed treatment
difference.

3.4. Analyses following group sequential test

Analysis following a group sequential test consists of two scenarios: The first is
upon conclusion of the trial after the test statistic has crossed a stopping bound-
ary and the second is when an interval estimate of the treatment difference is
desired whether the design calls for a termination or not. Tsiatis et al. (1984) have
shown that in both situation, it is inappropriate to compute a ‘naı̈ve’ CI, treating
the data as if they had been obtained in a fixed sample size experiment. They
estimated naı̈ve CI following a five-stage Pocock’s test with 5% level of signifi-
cance and found their coverage to vary between 84.6% and 92.9%, depending on
the true parameter value.

For the first scenario, Tsiatis et al. suggested a numerical method for cal-
culating an exact CIs following group sequential tests with Pocock (1977) or
O’Brien and Fleming (1979) boundaries based on ordering the sample space in
a specific manner. They derived the CIs based on normal distribution the-
ory, which pull the naive CIs toward zero and are no longer symmetric
about the sample mean. They also commented that their method is applicable
to any (asymptotically) normal test statistic which has uncorrelated increments
and for which the variance can be estimated consistently. Whitehead (1986)
suggested an approach for adjusting the maximum likelihood estimate as
the point estimate by subtracting an estimate of the bias. Wang and Leung
(1997) proposed a parametric bootstrap method for finding a bias-adjusted
estimate, whereas Emerson and Fleming (1990) provide a formulation of uni-
formly minimum variance unbiased estimator calculated by Rao–Blackwell
technique.

For the second scenario, the multiple-looks problem affects the construction
of CIs just as it affects significance levels of hypothesis tests. Repeated CIs
for a parameter y are defined as a sequence of intervals Ik, k ¼ 1,y,K,
for which a simultaneous coverage probability is maintained at some level, say,
1� a. The defining property of a (1� a)-level sequence of repeated CIs for y is
P ½y 2 Ik for all k ¼ 1; . . . ; K � ¼ 1� a for all y (Jennison and Turnbull, 1983,
1984, 1985). The interval Ik, k ¼ 1,y,K, provides a statistical summary of the
information about the parameter y at the kth analysis, automatically adjusted to
compensate for repeated looks at the accumulating data. As a result, repeated
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CIs instead of group sequential testing can be used for monitoring clinical trials
(Jennison and Turnbull, 1989).

Most conventional trials are designed to have a high probability of detecting a
predefined treatment effect if such an effect truly exists. That probability is called
the power of the trial. Most trials use power in the range of 0.8–0.95 for a
plausible range of alternatives of interest and the sample size of the study is
calculated to achieve that power. The concept of ‘conditional power’ comes into
play when supporting evidence is sought to decide the power midstream.

3.5. Stochastic curtailment

Once the trial starts and data become available, the probability that a treatment
effect will ultimately be detected can be recalculated (Halperin et al., 1982; Lan
et al., 1982; Lan and Wittes, 1988). An emerging trend in favor of the treatment
increases the probability that the trial will detect a beneficial effect, while an
unfavorable trend decreases the probability of establishing benefit. The term
‘conditional power’ is often used to describe this evolving probability. The term
‘power’ is used because it is the probability of claiming a treatment difference at
the end of the trial, but it is ‘conditional’ because it takes into consideration the
data already observed that will be part of the final analysis. Conditional power
can be calculated for a variety of scenarios including a positive beneficial trend, a
negative harmful trend, or no trend at all. However, these calculations are fre-
quently made when interim data are viewed to be unfavorable. For this scenario,
it represents the probability that the current unfavorable trend would improve
sufficiently to yield statistically significant evidence of benefit by the scheduled
end of the trial. This probability is usually computed under the assumption that
the remainder of the data will be generated from a setting in which the true
treatment effect was as large as the originally hypothesized in the study protocol.

When an unfavorable trend is observed at the interim analysis, the conditional
probability of achieving a statistically significant beneficial effect is much less
than the initial power of the trial. If the conditional power is low for a wide range
of reasonable assumed treatment effect, including those originally assumed in the
protocol, this might suggest to the DSMC that there is little reason to continue
the trial since the treatment is highly unlikely to show benefit. Of course, this
conditional power calculation does increase the chance of missing a real benefit
(false-negative or type II error) since termination eliminates any chance of
recovery by the intervention. However, if the conditional power under these
scenarios is less than 0.2 compared to the hypothesis for which the trial originally
provided power of 0.85–0.9, the increase in the rate of false-negative error is
negligible. There is no concern with false-positive error in this situation since
there is no consideration of claiming a positive result. An example of its use will
follow in the Beta-Blocker Heart Attack Trial (BHAT) trial description later in
this chapter.

3.6. Bayesian monitoring

The Bayesian approach for monitoring accumulating data considers unknown
parameters to be random and to follow probability distributions (Spiegelhalter
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et al., 1986; Freedman et al., 1994; Parmar et al., 1994; Fayers et al., 1997). The
investigators specify a prior distribution(s) describing the uncertainty in the
treatment effect and other relevant parameters. These prior distributions are
developed based on previous data and beliefs. It is quantified through a distri-
bution of possible values and is referred to as the prior distribution. The observed
accumulating data are used to modify the prior distribution and produce a pos-
terior distribution, a distribution that reflects the most current information on
the treatment effect, taking into account the specified prior as well as the
accumulated data. This posterior distribution can then be used to compute a
variety of summaries including the predictive probability that the treatment is
effective. In 1966, Cornfield introduced the idea of Bayesian approach to mon-
itoring clinical trial (Cornfield, 1966). Although, interest has recently increased in
its use (Kpozehouen et al., 2005) and availability of computational tools have
made it more feasible to use, these methods are still not widely utilized.

3.7. Available softwares

Softwares for implementing GSDs have been developed and commercialized
since the early 1990s. Extended descriptions of these softwares are available
through their user’s guide and some review papers (Emerson, 1996; Wassmer and
Vandemeulebroecke, 2006). Most of the computational tools employ the recur-
sive numerical integration technique that takes advantage of a quadrature rule of
replacing integral by a weighted sum for probabilistic computations (Armitage
et al., 1969; Jennison and Turnbull, 2000).

Here, we provide a comprehensive listing of appropriate links for free self-
executable softwares as well as codes written in FORTRAN, SAS, Splus, and R
languages. FORTRAN source code used in the textbook by Jennison and
Turnbull (2000) can be downloaded from Dr. Jennison’s homepage on http://
people.bath.ac.uk/mascj/book/programs/general. The code provides continua-
tion regions and exit probabilities for classical GSDs including those proposed
by Pocock (1977), O’Brien and Fleming (1979), Wang and Tsiatis (1987) and
Pampallona and Tsiatis (1994). In addition, the spending function approach
according to Lan and Demets (1983) is implemented. Another implementation
in FORTRAN of the spending function approach is available for use under
UNIX and MS-DOS. It can be downloaded from http://www.biostat.wisc.edu/
landemets/ as a stand-alone program with a graphical user interface, while details
of methodologies and algorithms are found in Reboussin et al. (2000). These
codes provide computation of boundaries and exit probabilities for any trial
based on normally or asymptotic normally distributed test statistics with inde-
pendent increments, including those in which patients give a single continuous or
binary response, survival studies, and certain longitudinal designs. Interim anal-
yses need not be equally spaced, and their number need not be specified in
advance via flexible alpha spending mechanism. In addition to boundaries, power
computations, probabilities associated with a given set of boundaries, and CIs
can also be computed.

The IML (Interactive Matrix Language) module of SASs features the calls
SEQ, SEQSCALE, and SEQSHIFT that perform computations for group
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sequential tests. SEQ calculates the exit probabilities for a set of successive con-
tinuation intervals. SEQSCALE scales these continuation regions to achieve a
specified overall significance level and also returns the corresponding exit prob-
abilities. SEQSHIFT computes the non-centrality parameter for a given power.

S-PLUS that is commercially available provides a package for designing,
monitoring, and analyzing group sequential trials through its S+SeqTrialTM

module. It makes use of the unifying formulation by Kittelson et al. (Kittelson
and Emerson, 1999), including all classical GSDs, triangular tests (Whitehead,
1997), and the spending function approach. It offers the calculation of contin-
uation regions, exit probabilities, power, sample size distributions, overall
p-values and adjusted point estimates and CIs, for a variety of distributional
assumptions. It comes with a graphical user interface and very good documentation,
which can be downloaded from http://www.insightful.com/products/seqtrial/
default.asp.

In R (http://www.r-project.org/), cumulative exit probabilities of GSDs can be
computed by the function seqmon. It implements an algorithm proposed by
Schoenfeld (2001) and the documentation and packages are freely downloadable
at http://www.maths.lth.se/help/R/.R/library/seqmon/html/seqmon.html.

PEST, version 4 offers a wide range of scenarios, including binary, normal,
and survival endpoints, and different types of design. The main focus of PEST is
the implementation of triangular designs. Sequential designs from outside PEST
can also be entered and analyzed. Besides the planning tools, the software offers
a number of analysis tools including interim monitoring and adjusted p-values,
CIs, and point estimates for the final analysis. An important and unique feature
of PEST is that interim and final data can be optionally read from SAS data sets.
More information about the software can be found at http://www.rdg.ac.uk/
mps/mps_home/software/software.htm#PEST%204.

East of Cytel Statistical Software and Services (http://www.cytel.com/Products/
East/) is the most comprehensive package for planning and analyzing group
sequential trials. The software provides a variety of capabilities of advanced
clinical trial design, simulation and monitoring, and comes with extensive docu-
mentation including many real data examples. Tutorial sessions for East are fre-
quently offered during various statistical meetings and conferences and educational
settings.

‘‘PASS 2005 Power Analysis and Sample Size’’ is distributed by NCSS Inc.
This software supplies the critical regions and the necessary sample sizes but it is
not yet possible to apply a sequential test to real data in the sense of performing
an adjusted analysis (point estimates, CIs, and p-values). Documentation and a
free download are available on http://www.ncss.com./passsequence.html.

‘‘ADDPLANAdaptiveDesigns-Plans andAnalyses’’ (http://www.addplan.com/)
is designed for the purpose of planning and conducting a clinical trial based on an
adaptive group sequential test design. New adaptive (flexible) study designs allow
for correct data-driven re-estimation of the sample size while controlling the type I
error rate. Redesigning the sample size in an interim analysis based on the results
observed so far considerably improves the power of the trial since the best available
information at hand is used for the sample size adjustment. The simulation
capabilities for specific adaptation rules are also provided.

M. Mazumdar and H. Bang280



The choice of software is based on the users’ need and the complexity of
design. The freely available softwares are often enough to implement basic func-
tions to be used in standard or popular designs and to perform associated data
analyses outlined in this chapter unless special features are required.

3.8. Data safety monitoring committee

Early in the development of modern clinical trial methodology, some investiga-
tors recognized that, despite the compelling ethical needs to monitor the accu-
mulating results, repeated review of interim data raised some problems. It was
recognized that knowledge of the pattern of the accumulating data on the part of
investigators, sponsors, or trial participants, could affect the course of the trial
and the validity of the results. For example, if investigators were aware that the
interim trial results were favoring one of the treatment groups, they might be
reluctant to continue to encourage adherence to all regimens in the trial, or to
continue to enter patients in the trial, or they may alter the types of patients they
would consider accrual. Furthermore, influenced by financial or scientific conflicts
of interest, investigators, or the sponsor might take actions that could diminish the
integrity and credibility of the trial. A natural and practical approach to dealing
with this problem is to assign sole responsibility for interim monitoring of data on
safety and efficacy to a committee whose members have no involvement in the
trial, no vested interest in the trial results, and sufficient understanding of the trial
design, conduct, and data-analytical issues to interpret interim analyses with
appropriate caution. These DSMCs consisting of members from variety of
background (clinical, statistical, ethical, etc.) have become critical components
of virtually all clinical trials.

For the above example, an independent DSMC consisting of three members
with background in oncology (one from community hospital and one from spe-
cialized center) and biostatistics met every year to discuss the progress of the trial.
The outcome comparison was only presented when an interim analysis with OBF
was allowed. Below we present a list of items that were included in the interim
report for this trial. This is a typical template for a clinical trial and could be
useful in other scenarios.

Items included in the interim report:

1. Brief outline of the study design
2. Major protocol amendments with dates (or summary) if applicable
3. Enrollment by arm and year and center (preferably, updated within a month

of the DSMC meeting date)
4. Information on eligibility criterion violation or crossover patients
5. Summary statistics (e.g., mean/median) on follow-up times of patients
6. Frequency tables of baseline characteristics (demographics, toxicity, and

adverse event summary, laboratory test summary, precious treatment) of the
full cohort

7. Comparative analysis of primary and secondary endpoints (when data
mature)

8. Subgroup analyses and analyses adjusted for baseline characteristics (and
some secondary outcomes data, if any)
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9. Comparative analysis of adverse event and toxicity data
10. Comparative analysis of longitudinal lab values.

The GCT study referred above struggled with accrual of patients and remained
open for 10 years instead of the four years planned initially. To improve accrual
rate, new centers were added and the patient eligibility was expanded. DSMC
met annually and approved these actions. The first DSMC meeting where out-
come data were compared was at 6th year after study start instead of the 2nd
year. Lan–Demets with OBF boundary was utilized to compute the appropriate
boundary but the boundary was not crossed. DSMC deliberations continued
with concern for the accrual rate but since the experimental regimen utilizing
autologus bone marrow transplant was quite a novel and unique approach and it
was added to the standard therapy, the DSMC did not feel any harm to patients
and decided to keep the trial open. More assertive accrual plans were adopted but
when many of these plans failed to improve accrual, the study was at last closed
at 219 patients (in contrast, N ¼ 270 in the original plan).

3.8.1. Details included in the final paper (on design and primary analysis)
The final write-up or summary report needs to include as much details as possible
about the original design (including sample size/power calculation), modifica-
tions, rationale for modification, decisions by DSMC, and conclusions. Here’s
part of the ‘Statistical Methods’ section from the final paper related to the GCT
study (Motzer et al., 2007):

The trial was designed with the proportion of patients with durable complete

response (DCR) at one year from entry onto the trial as the primary endpoint.
The original study population to be enrolled on this study was poor-risk GCT
patients only. We had planned to accrue 200 patients (100 per arm) to detect a

20% difference in DCR rate at one year (an improvement from 30% to 50%)
with a 5% level of significance and 80% power. However, as the trial pro-
gressed, the accrual rate was far lower than our expectation of 50 poor-risk

patients per year. Also during this time, an international effort brought along a
newly developed but broadly accepted risk group classification and it was felt
that the intermediate-risk group patients with poor markers (lactate dehy-

drogenase greater than 3 times upper limit of normal) would benefit from the
treatment under investigation. Therefore it was decided to extend the study to
this modified intermediate risk group from the poor risk classification utilized
before. Based on a historical one-year DCR rate of 45% in the poor and

intermediate risk groups combined, we then modified our target accrual to 218
patients to detect an improvement of 20% with the same level and power.

A final modification to the study was implemented in 2002 after a new center
CALGB was added to the study and accrual at that center began. At that
point, it was our hope to be able to address the original question of interest in
the poor-risk group of patients. We planned to accrue 270 patients, consisting

of 216 poor-risk patients (200 per original calculation +16 to account for
withdrawals) and 54 intermediate-risk patients. However, as accrual did not
meet our expectations even with the additional cooperative group participat-

ing, the study was closed in August of 2003. The data were reviewed annually
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by an independent DSMC. Initially, the design included an O’Brien and
Fleming stopping rule with the sequence of nominal significance levels of 0.001,
0.014, and 0.036 for the two interim analyses and the final analysis, respec-

tively. A formal comparative interim analysis on DCR proportion and overall
survival was presented in May 2000 based on a recalculated boundary utilizing
Lan–Demets spending function. The decision was to continue the trial as the

boundary was not crossed and no ethical conflict was found since the exper-
imental regimen was an autologus bone marrow transplant regimen on top of
the standard therapy. The study was at last stopped in 2003 due to not being

able to improve accrual rate.

3.9. Historical example of GSD use

It is always educational to look back on the trials that were planned with GSD
and benefited from it. Two excellent books by DeMets et al., 2006 and Ellenberg
et al., 2006 provide essential and in-depth reading materials for clinical trialists
starting in this field. An example considered by these books and many other
publications is described below to show the multifaceted decision process that
goes into the deliberation of DSMB.

The BHAT compared the beta-blocker propranolol against placebo in patients
who had a myocardial infarction recently. The statistical design called for
enrollment of 4,020 patients, aged 30–69 years, who had a myocardial infarction
5–21 days prior to randomization. The primary objective of the study was to
determine if long-term administration of propranolol would result in a difference
in all-cause mortality. The design utilized O’Brien–Fleming boundary with alpha
level set at two-tailed 0.05, 90% power, and three-year average follow-up. The
attempt was to detect a 21.25% relative change in mortality, from a three-year
rate of 17.46% in the control (placebo) group to 13.75% in the intervention
group, which were obtained from earlier studies (Furberg and Friedwald, 1978;
Anderson et al., 1979) after taking non-adherence into account (Byington, 1984).

Enrollment began in 1978 and a total of 3,837 participants were accrued
instead of the planned 4,020. This reduced the power slightly from the planned
90% to 89%. The PDMB first reviewed the data in May 1979. Subsequent data
reviews were to occur approximately every six months, until the scheduled end of
the trial in June 1982. At the October, 1979 meeting of the PDMB, the log-rank
z-value exceeded the conventional 1.96 critical value for a nominal p of 0.05 but
was far from significance due to the conservative nature of the O’Brien–Fleming
boundaries early in the study. PDMB recommended continuation of the trial.

At the meeting in April 1981, the PDMB reviewed not only the accumulating
BHAT data but the results of the timolol trial that had just been published. This
trial of 1,884 survivors of an acute myocardial infarction showed a statistically
significant reduction in all-cause mortality, from 16.2% to 10.4%, during a mean
follow-up of 17 months. At this point, BHAT was no longer enrolling patients,
but follow-up was continuing. The PDMB recommended that BHAT continues,
primarily because, despite the timolol findings, the BHAT data did not show
convincing evidence of benefit. Not only had the monitoring boundary not been
crossed, but the long-term effect on mortality and possible adverse events was
unknown. Importantly, all patients in BHAT had been in the trial for at least six
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months post-infarction, and there was no evidence that beta-blockers started
after that time produced benefit. Thus, there was not an ethical concern about
leaving the participants on placebo. The PDMB advised that the study inves-
tigators be informed of the timolol results. However, it also advised that because
there had been conflicting results from other beta-blocker trials, the positive
results of the timolol trial should not preclude the continuation of BHAT. Fur-
thermore, timolol was not available for sale in the United States then. At its
October 1981 data review, the PDMB noted that the upper OBF boundary had
been crossed. The normalized log-rank statistic was then 2.82, which exceeded
the boundary value of 2.23. In addition to the monitoring boundaries, the PDMB
considered a number of factors in its recommendation to stop early:

1) Conditional power calculations indicated that there was little likelihood that

the conclusions of the study would be changed if follow-up were to continue;
2) The gain in precision of the estimated results for the first two years would be
tiny, and only modest for the third year; 3) The results were consistent
with those of another beta-blocker trial; 4) There would be potential medical

benefits to both study participants on placebo and to heart attack patients
outside the study; 5) Other characteristics, such as subgroup examinations and
baseline comparability, confirmed the validity of the findings; 6) The consent

form clearly called for the study to end when benefit was known. Following
points in favor of continuing until the scheduled end were considered but were
not found to weigh enough in favor of not stopping: 1) Even though slight,

there remained a chance that the conclusions could change; 2) Because therapy
would be continued indefinitely, it would be important to obtain more long-
term (4 year) data; 3) It would be important to obtain more data on subgroups

and secondary outcomes; 4) The results of a study that stopped early would not
be as persuasive to the medical community as would results from a fully
powered study that went to completion, particularly given the mixed results
from previous trials.

Lessons learnt from these experiences are that 1) O’Brien-Fleming approach to
sequential boundaries could prove very helpful in fostering a cautious attitude
with regard to claiming significance prematurely. Even though conventional

significance was seen early in the study, the use of sequential boundaries gave
the study added credibility and probably helped make it persuasive to the
practicing medical community; 2) The use of conditional power added to
the persuasiveness of the results, by showing the extremely low likelihood that

the conclusions would change if the trial were to continue to its scheduled end;
3) The decision-making process involves many factors, only some of which are
statistical (Friedman et al., 2003).

4. Steps for GSD design and analysis

4.1. Classical design

Step 1: Decide the number of maximum looks (or groups) K and the choice of
boundary (that can be indexed by shape parameter, D (Wang and Tsiatis,
1987).
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Remark:
a) The gain in ASN is most dramatic when going from K ¼ 1 (i.e., the

fixed sample size design) to K ¼ 2. Beyond K ¼ 5, there is relatively
little change in ASN.

b) The choice of K may be dictated by some practicality such as the fre-
quency of the DSMC meetings that is feasible.

c) D ¼ 0 for OBF and D ¼ 0.5 for Pocock.
Step 2: Compute the sample size for fixed design as you would ordinarily do

(using significance level, power, and effect size). Multiply by the appro-
priate IF.

Step 3: After computing the maximum sample size, divide it into K equal
group sizes and conduct interim analyses after each group. Reject H0 at the
first interim analysis where the test statistic using all the accumulated data
exceeds the boundary values computed. Alternatively, we can translate the
boundaries to the corresponding nominal p-values at each look and con-
duct the test using p-values.

4.2. Information-based design

Step 1: Specify level of significance, power, K and alternative of interest (g).
Remark:
You specify K at the design stage but you may deviate from this at the time of

analysis.
Step 2: Choose a spending function and stopping boundary (Lan and DeMets

spending function with OBF or Pocock or other boundaries).
Step 3: Compute maximum information (MI) required to have a specific

power as MI ¼ (z1�a/2 +z1�b/g)
2 X IF.

Step 4: The first time the data are monitored, say, at time t1, compute the
proportion of information compared to MI. Then find the first boundary
value. If the test statistic exceeds the boundary computed, stop and reject
H0. If not, continue to next monitoring time.

Step 5: At time t2, compute the ratio of observed information and MI. Then
perform the testing.

Step 6: Continue in this fashion, if necessary, until the final analysis, at which
point you use up the remaining significance level.

Remark:
With this strategy, you are guaranteed a level alpha test regardless of how

often or when you look at the data prior to obtaining MI.

5. Discussion

In RCTs designed to assess the efficacy and safety of medical interventions,
evolving data are typically reviewed on a periodic basis during the conduct of the
study. These interim reviews are especially important in trials conducted in the
setting of diseases that are life-threatening or result in irreversible major mor-
bidity. Such reviews have many purposes. They may identify unacceptably slow
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rates of accrual or high rates of ineligibility determined after randomization,
protocol violations that suggest that clarification of or changes to the study
protocol are needed or unexpectedly high dropout rates that threaten the trial’s
ability to produce unbiased results. The most important purpose, however, is to
ensure that the trial remains appropriate and safe for the individuals who have
been or are still to be enrolled. Efficacy results must also be monitored to enable
benefit-to-risk assessments to be made. Repeated statistical testing of the primary
efficacy endpoint was seen to increase the chance of false-positive rate. The
methods of adjusting the significance levels at each interim analysis so that the
overall false-positive rate stays at an acceptable level gave rise to GSDs. The field
has been developing for past 30 years and is now quite mature with various
methods with well-studied operating characteristics and availability of an array
of user-friendly software.

One new field of applications has been cluster-randomized trials (CRTs).
CRTs have been used increasingly over the past two decades to measure the
effects of health interventions applied at the community level. Excellent reviews
and books are written by Donner et al. and Murray (Donner and Brown, 1990;
Murray, 1998; Donner and Klar, 2000). Recently, Zou et al. (2005) developed
group sequential methods that can be applied to CRT. Although the design
aspect is well characterized and related computer program is available upon
request, effect estimation following this group sequential test remains a topic of
future research. This method is not yet used prospectively on a clinical trial.
Development of methodology for novel design such as the split-cluster design
could also be a useful addition to this field (Donner and Klar, 2004).

Adaptive designs in the context of group sequential testing allow modifications
of particular aspects of the trials (such as inappropriate assumptions, excessive
cost, or saving in time) after its initiation without undermining the validity and
integrity of the trial. Some developments have been made to combine the advan-
tages of adaptive and of classical group sequential approaches. Although research
has been ongoing in this field, it still remains a field of research priority (Tsiatis and
Mehta, 2003; Jennison and Turnbull, 2005; Kuehn, 2006; Wassmer, 2006).

There are some settings where GSDs may not be appropriate. For example,
when the endpoint assessment time is lengthy relative to the recruitment period,
there might be enough interim results to perform an analysis only after all or
most subjects have been recruited and treated, thereby potentially rendering the
GSD irrelevant. Most other large studies will benefit from having planned look at
the data as trial progresses. Quite surprisingly, we found that many large trials
follow FSD (Cooper et al., 2006; Cotton et al., 2006; Nicholls et al., 2006).
A systematic literature search to assess the percentage of studies that would
benefit from GSD but is not currently planning to use it would be interesting.
This effort could also identify additional areas for further research or need for
expanded exposure of these designs among practitioners.
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Abstract

Researchers frequently use multiple informants to predict a single outcome and
compare the marginal relationships of each informant with response; a com-
mon application is diagnostic testing where the goal is to determine which
diagnostic test best predicts disease. We review generalized estimating equa-
tions (GEE) for marginal regression models using continuous multiple source
predictors with a continuous outcome and introduce a new maximum likelihood
(ML) approach. ML and GEE yield the same regression coefficient estimates
when (1) allowing different regression coefficients for each informant report,
(2) assuming equal variance for the two multiple informant reports and
constraining the marginal regression coefficients to be equal and (3) including
non-multiple informant covariates with cases 1 or 2. With the ML technique,
likelihood ratio tests (LRTs) can be formed to easily compare regression
models and a broader array of models can be fit. Using asymptotic relative
efficiency (ARE), we show that a constrained model assuming equal variance
is more efficient than an unconstrained model. We apply the methods to a
study investigating the effect of vigorous exercise on body mass index (BMI)
with measures of exercise collected on two informants: children and their
mothers.

1. Introduction

Multiple informant data refer to information obtained from different individuals
or sources used to measure a single construct. We use the term multiple informant
data to describe data obtained from either multiple sources or multiple measures
on a commensurate scale. Typically, researchers are interested in the relationship
of each multiple informant predictor with response (Horton et al., 1999; Horton
and Fitzmaurice, 2004). For example, Field et al. (2003) conducted a study to
estimate the marginal correlation of different measures of body mass index (BMI)
with a gold standardmeasurement of percentage body fat; the aim of the study is to
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find the best measure of BMI. Pepe et al. (1999) compared results from different
informants to predict adult obesity from childhood obesity. We consider a val-
idation study by Hernández et al. (1999) used to design a larger study of the
relationship between physical activity/inactivity and obesity in children. Physical
activity and inactivity in the validation study are reported by multiple informants:
children and their mothers, but feasibility issues dictate that only children’s
responses will be used in the main study. Our goal is to compare the relationship
of child’s report of physical activity and BMI with the relationship of mother’s
report of physical activity and BMI in the context of study design. In some settings,
if both informants yield similar results, it may be useful to obtain a more efficient
and robust estimate of the effect by fitting a model with common slopes. For
instance, Horton et al. (2001) predict mortality in a 16-year follow-up period
of Stirling County Study subjects from multiple informants (self and physician
report) about psychiatric disorders; their final model has a constrained estimate
of the association between diagnosis and overall mortality (controlling for age
and gender).

For simplicity, we define the response as Y and the two reports of physical
activity measured by informants as X1 and X2, though extensions to more than
two informants can be accommodated. In general, multiple informants can be
used either as outcomes or as predictors in a standard regression model. Multiple
informant outcomes have been considered by Fitzmaurice et al. (1995, 1996),
Kuo et al. (2000) and Goldwasser and Fitzmaurice (2001). As described above,
we instead consider the case where the multiple informants are predictors.

Over the years, researchers have developed many ‘ad hoc’ techniques to anal-
yze multiple informants as predictors. One analysis method is to pool reports
from the multiple informants (Offord et al., 1996). However, this method does
not take into account the potential differences between the informants. Inves-
tigators also proposed models predicting E(Y|X1,X2) where all multiple inform-
ants are in the model simultaneously (Horton and Fitzmaurice, 2004). In this
case, the regression coefficient for a given multiple informant covariate is con-
ditional on all other multiple informants in the model. However, as in the Field
et al. (2003) study, the objective is not to best predict percentage body fat using
all multiple informants, but rather to find the single measure of BMI that best
predicts body fat. Thus, rather than fitting a model with all the multiple inform-
ants where we obtain a regression coefficient for each covariate that is condi-
tional on the others in the model, we model the univariate relationship between
percentage body fat and one BMI measure by predicting E(Y|X1) and also model
the relationship between percentage body fat and another BMI measure by pre-
dicting E(Y|X2) (Horton and Fitzmaurice, 2004). Performing separate analyses
such as this (Gould et al., 1996) has been done, but because measures from the
different informants are not independent of one another, separate analyses are
not amenable to comparing coefficients from the two models and it is not clear
how to interpret a combined analysis.

Pepe et al. (1999) and Horton et al. (1999) independently developed a non-
standard application of generalized estimating equations (GEE) (Liang and
Zeger, 1986; Zeger and Liang, 1986) in regression analyses with multiple
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informants as predictors. The technique provides marginal estimates of the
multiple informants while appropriately controlling for the outcomes being the
same. Using GEE requires fewer assumptions than maximum likelihood (ML); in
particular, it only assumes that the model for the mean is correctly specified. We
review this approach in Section 2.

This paper describes a ML approach for analysis of multiple informants as
predictors and introduces constrained models that can increase efficiency. For
simplicity, only the complete-data case is considered here, although additional
research has been performed considering missingness (Litman et al., 2007). ML
has been previously used for analysis of multiple informants as covariates when
the responses and multiple informants are discrete (O’Brien et al., 2006). This
research showed no loss of efficiency associated with using GEE compared with
ML when there are no shared parameters. With a common parameter for the
association between outcome and two multiple informant predictors, efficiency
loss is modest with the minimum asymptotic relative efficiency (ARE) over a
range of conditional parameter values being approximately 0.90 (O’Brien et al.,
2006). Our paper instead considers a continuous outcome and continuous pre-
dictors. For simplicity, we consider a model from the Hernández et al. (1999)
dataset with one univariate response and one predictor measured by two
informants. Section 3 describes our new ML technique. Simulations to compare
GEE and ML variance estimates are presented in Section 4 and efficiency of a
constrained model is discussed in Section 5. Application of ML to the Hernández
et al. (1999) study is presented in Section 6.

2. Review of the generalized estimating equations approach

We briefly review the method introduced by Horton et al. (1999) and Pepe et al.
(1999) that was originally presented for a binary response using a logit link func-
tion, but here we assume a linear model. We define an outcome Y and K multiple
source predictorsX1,y,Xk. The GEE approachmodels the marginal associations
betweenY andXk, defined asE(Y|Xk) for k ¼ 1,y,K. In the simplest case with no
covariates and distinct parameters for each informant, the model fit is

EðYjXkÞ ¼ ak þ bkXk for k ¼ 1; . . . ;K, (1)

where ak and bk are parameters in the kth regression. Defining

~Y¼

Yi

Yi

..

.

Yi

0
BBBB@

1
CCCCA
ðK�1Þ

Xi ¼

1 Xi1 0 0 � � � 0 0

0 0 1 Xi2 � � � 0 0

..

.

0 0 0 0 � � � 1 XiK

0
BBBB@

1
CCCCA
ðK�2KÞ

b¼

a1
b1
a2
b2

..

.

aK
bK

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
ð2K�1Þ

,
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the GEE equations assuming an identity link, constant variance and a working
independence correlation matrix simplify to the ordinary least squares (OLS)
equations:

Xn
i¼1

XT
i ð ~Yi�XibÞ ¼ 0. (2)

Note that each vector of responses, ~Yi; consists of the same response K times
(Pepe et al., 1999). Also, the data records from each subject are treated as inde-
pendent clusters. We assume an independence working correlation matrix as have
previous papers developing GEE (Horton et al., 1999; Pepe et al., 1999); we show
later that the use of this matrix is optimal under the likelihood model. Solving
Eq. (2), we find that b̂¼ Sn

i¼1ðXT
i XiÞ�1XT

i
~Yi where âk and b̂k are the intercept

and slope estimates from a univariate regression model with response Y and a
single predictor Xk. A strength of the GEE approach is that it provides a joint
variance–covariance matrix for the 2K univariate parameter estimates (Pepe et al.,
1999).

Estimates of varðb̂Þ can be derived using empirical or model-based variance
formulas. The empirical or ‘sandwich’ variance estimator has traditionally been
used because it allows the variance of the response to depend on the design
matrix while taking the correlation of the residuals into account (Huber, 1967).
Using the empirical variance formula and assuming working independence,

cvarðb̂Þ ¼ Xn
i¼1

XT
i Xi

 !�1 Xn
i¼1

XT
i ð ~Yi � Xib̂Þð ~Yi � Xib̂ÞTXi

 !

�
Xn
i¼1

XT
i Xi

 !�1
. ð3Þ

Since the ‘sandwich’ variance makes no modeling assumptions, it provides a
robust expression appropriate for many applications. Because ML assumes
var(Yi) does not depend on Xi, to facilitate comparison of ML to GEE, we use a
version of the model-based variance for the GEE estimator:

cvarðb̂Þ ¼ Xn
i¼1

XT
i Xi

 !�1 Xn
i¼1

XT
i ŜXi

 ! Xn
i¼1

XT
i Xi

 !�1
, (4)

where

Ŝ ¼
Pn

i¼1ð ~Yi � Xib̂Þð ~Yi � Xib̂ÞT
n

. (5)

We define the diagonal elements of Ŝ as Ŝ11; . . . ; ŜKK (estimated variances) and
the off-diagonal elements as Ŝ12; . . . ; ŜðK�1ÞK (estimated covariances). The var-
iance in Eq. (4) is model-based since it assumes the same Ŝ for each individual
and Ŝ does not depend on the design matrix. Using Eq. (4) and because Sn

i¼1X
T
i Xi
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is block diagonal, the estimated variance–covariance matrix for the slopes can be
expressed as

cvar
b̂1
b̂2

..

.

b̂K

0
BBBBB@

1
CCCCCA
¼

Ŝ11

SS
X2
1

� � � SSX1 ;XK
Ŝ1K

SS
X2
1
SS

X2
K

..

.

SSX1 ;XK
Ŝ1K

SS
X2
1
SS

X2
K

� � � ŜKK

SS
X2
K

0
BBBBBB@

1
CCCCCCA
, (6)

where

SSX2
k
¼
Xn
i¼1
ðXik � �XkÞ2,

and

SSXkXl
¼
Xn
i¼1
ðXik � �XkÞðXil � �XlÞ.

We also consider a constrained model with b1 ¼ b2 ¼y ¼ bK ¼ bC defined as

EðYjXkÞ ¼ ak þ bCXk for k ¼ 1; . . . ;K, (7)

where ~Yi remain the same as in the unconstrained model,

Xi ¼

1 0 . . . 0 Xi1

0 1 . . . 0 Xi2

..

.

0 0 . . . 1 XiK

0
BBBB@

1
CCCCA and b ¼ ða1; a2; . . . ; aK;bCÞT.

The same general expression for b̂ holds and it is again straightforward to show that

b̂ ¼ �Y� b̂C �X1; . . . ; �Y� b̂C �XK

�
,

Pn
i¼1ðXi1 � �X1ÞðYi � �YÞ þ � � � þPn

i¼1ðXiK � �XKÞðYi � �YÞPn
i¼1ðXi1 � �X1Þ2 þ � � � þ

Pn
i¼1ðXiK � �XKÞ2

!T

,

and from Eq. (4),

cvarðb̂CÞ ¼ SSX2
1
Ŝ11 þ � � � þ SSX2

K
ŜKK þ

P
i4jSSXi;Xj

Ŝij

ðSSX2
1
þ � � � þ SSX2

K
Þ2 . (8)

We also extend the model to incorporate a vector of continuous or discrete
covariates Z not measured by multiple informants. We predict E(Y|Xk,Z) using
the following model:

EðYjXk;ZÞ ¼ ak þ bkXk þ gkZ for k ¼ 1; . . . ;K. (9)
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This model is a simplification of a more general one that includes an interaction
between each Xk and Z. Our simplified model makes the standard regression
assumption that the variance–covariance matrix of (Y, X1, X2,y , XK) is con-
ditioned on Z, but does not depend explicitly on Z, e.g., is not a function of Z. To
implement the GEE approach we modify Xi and b as

Xi ¼

1 Xi1 Zi 0 0 0 � � � 0 0 0

0 0 0 1 Xi2 Zi � � � 0 0 0

..

.

0 0 0 0 0 0 � � � 1 XiK Zi

0
BBBBBBBB@

1
CCCCCCCCA

b ¼ ða1;b1; g1; a2;b2; g2; . . . ; aK; bK; gKÞT.

Similar to the case without covariates, âk; b̂k and ĝk are estimates from a univariate
regression model with response Y, multiple informant Xk and covariates Z. Using
Eq. (4), we can obtain variances as in the case without covariates.

3. Maximum likelihood estimation

To use ML we assume a joint multivariate distribution for the outcome and
multiple informants. For simplicity, we consider only two predictors here but the
model extends straightforwardly. For each of n observations, letQi ¼ (Yi,X1i,X2i)

T

and thus

Qi �MVN

mY

mX1

mX2

0
BBB@

1
CCCA;

s2Y sX1;Y sX2;Y

sX1;Y s2X1
sX1;X2

sX2;Y sX1;X2
s2X2

0
BBB@

1
CCCA

0
BBB@

1
CCCA.

From this distribution, we find estimates for y ¼ ðmY;mX1
; mX2

;s2Y;sX1Y;
sX2;Y; sX1;X2

; s2X1
;s2X2

ÞT: However, we are interested in the regression parameter
estimates from Eq. (1) with K ¼ 2. Thus, we make a transformation from the
original parameters, y, to the parameters of interest t ¼ ða1;b1; a2; b2;
V11;V22;V12ÞT: To make the transformation full rank, we include two parameters,
mY and s2Y; from y into t. Using conditional mean formulas for the multivariate
normal distribution, we find EðYjXiÞ ¼ mY þ sXi ;YðXi � mXi

Þ=s2Xi
; where i ¼ 1, 2.

We define ai ¼ mY � bimXi
and bi ¼ sXi ;Y=s2Xi

; where i ¼ 1, 2 and thus Eq. (1)
follows. We also define V11, V22 and V12 in terms of y by utilizing conditional
variance formulas for the multivariate normal distribution, e.g., V11 ¼
varðYjX1Þ; V22 ¼ varðYjX2Þ and V12 ¼ covðYjX1;YjX2Þ:

From standard ML theory, ŷ are sample means, variances and covariances
with n in the denominators of the variances and covariances; we then make the
full rank transformation to obtain t̂ and find that the ML estimates of b are
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identical to the estimates found by GEE. Furthermore, using the multivariate
normal model, we find varðb̂Þ ¼ JvarðŷÞJT; where J is the 9� 9 Jacobian matrix
for the transformation from h to t. Thus, asymptotically

var

ffiffiffi
n

p
b̂1ffiffiffi
n

p
b̂2

 !
!

s2Yð1� r2X1;YÞ
s2X1

s2Yð1� AÞsX1;X2

s2X1
s2X2

s2Yð1� AÞsX1;X2

s2X1
s2X2

s2Yð1� r2X2;YÞ
s2X2

0
BBBB@

1
CCCCA, (10)

where

A ¼ 2ðr2X1;Y þ r2X2;Y � rX1;YrX2;YrX1;X2
Þ � rX1;YrX2;Y

rX1;X2

.

If we estimate the asymptotic ML variance using the ML estimates of sX1;Y; sX2;Y;
sX1;X2

; the estimated variances of GEE and ML are the same; the estimated
covariances given by GEE and ML are not identical but are quite similar in
practice (results not presented).

We also consider the constrained model where b1 ¼ b2 ¼ bC; one approach is
to define

sX1;Y ¼ bCs
2
X1

;sX2;Y ¼ bCs
2
X2

(11)

and all other variance–covariance terms remain as in the unconstrained model.
ML estimation assuming Eq. (11), where bC is the common slope and no
assumption is made regarding equality of the multiple informant variances, does
not lead to closed form solutions. We find no obvious way to set up GEE to
reproduce the model assuming Eq. (11). However, if we constrain the slopes to be
equal and also assume equal multiple informant variances, we can derive the
same estimates as obtained by fitting Eq. (7) using GEE when assuming

sX1;Y ¼ sX2;Y ¼ sX;Y; s2X1
¼ s2X2

¼ s2X. (12)

The model assuming Eq. (12) implies that b1 ¼ b2 ¼ bC when assuming the
variances for the two covariates are equal and also implies equal correlation of
each informant with the response. Similar to the unconstrained case, we define
y ¼ ðmY; mX1

;mX2
; s2Y;sX;Y; sX1;X2

;s2XÞT and t ¼ ða1; a2; bC;V11C;V12CÞT: Equation
(7) follows directly with ak ¼ mY � bCmXk

for k ¼ 1, 2 and bC ¼ sX;Y=s2X: The ML
estimates of y under the constrained model are the same as in the unconstrained
case except with ŝX;Y ¼ ðSn

i¼1ðXi1 � �X1ÞðYi � �YÞ þ Sn
i¼1ðXi2 � �X2ÞðYi � �YÞÞ=2n

and ŝ2X ¼ ðSn
i¼1ðXi1 � �X1Þ2 þ Sn

i¼1ðXi2 � �X2Þ2Þ=2n; furthermore, we find that
b̂C is the same for GEE and ML. An expression for varðb̂CÞ is derived;
asymptotically

varð ffiffiffi
n

p
b̂CÞ !

s2Yð1þ rX1;X2
Þð1� rðCÞ

2

YjX1;X2
Þ

2s2X

 !
, (13)
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where

rðCÞ
2

YjX1;X2
¼ 2r2X;Y

1þ rX1;X2

.

Next we incorporate a vector of covariates Z not measured by multiple
informants using the model in Eq. (9) and find the same estimates as derived by
the GEE approach. We assume that

Qi �MVN

m0 þ m1Z

d0 þ d1Z

n0 þ v1Z

0
B@

1
CA;

s2YjZ sX1;YjZ sX2;YjZ

sX1;YjZ s2X1jZ sX1;X2jZ

sX2;YjZ sX1;X2jZ s2X2jZ

0
BB@

1
CCA

0
BB@

1
CCA,

and make no distributional assumptions on Z. As done previously, we obtain
mean expressions for Y given (X1, Z) and Y given (X2, Z) and relate these to
Eq. (9). Using the results of standard multivariate normal regression theory,
estimates for y are obtained from three separate regressions. In summary, (m0, m1)
are regression coefficients from fitting E(Y|Z), (d0, d1) are from E(X1|Z) and (n0,
n1) are from E(X2|Z). After obtaining these estimates, we make a transformation
to t; the vector consists of the regression coefficients from Eq. (9) (b), variance–
covariance terms that condition on Z and values from y that ensure a full rank
transformation. We find that estimates of b obtained from ML are the same
as those from GEE. We calculate varðb̂Þ using the same technique as without
covariates.

In this section, we have found that ML and GEE give the same estimates
under an unconstrained model, assuming a constrained model with equal var-
iances and with inclusion of covariates not measured by multiple informants. To
obtain ML estimates, we have assumed multivariate normality. However, in the
situations where the ML and GEE estimates are identical, ML is clearly robust to
the distributional assumptions on the multiple informants.

4. Simulations

We performed 10,000 simulations to compare the empirical GEE, model-based
GEE and ML variances. We generate our first dataset from the trivariate normal
distribution with response Y and multiple informants X1 and X2 for i ¼ 1, y,
500. For the subsequent 9999 draws, we generate each of the 500 Y values from
a normal distribution with mean E(Y|X1,X2) and variance varðYjX1;X2Þ; thus
X1 and X2 are fixed since each iteration has the same set of 500 X1, X2 values.
We consider four scenarios assuming different unconstrained parameters; the
first case we present, sX1;Y ¼ �0:142; sX2;Y ¼ �0:156 and sX1;X2

¼ 0:333;
are values from the illustration described in Section 6. Table 1 gives the slope
variances from the simulations using Eqs (3) and (6) for the empirical GEE
and model-based GEE variances, respectively. We calculate the ML variance
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using

cvar
ffiffiffi
n

p
b̂1ffiffiffi

n
p

b̂2

 !
¼

ŝ2Yð1� r̂2X1;YÞ
ŝ2X1

ŝ2Yð1� r̂2YjX1;X2
ÞŝX1;X2

ŝ2X1
ŝ2X2

ŝ2Yð1� r̂2YjX1;X2
ÞŝX1;X2

ŝ2X1
ŝ2X2

ŝ2Yð1� r̂2X2;YÞ
ŝ2X2

0
BBBBB@

1
CCCCCA
,

(14)

where

r̂2YjX1;X2
¼ ŝ2X2

ŝ2X1;Y � 2ŝX1;YŝX1;X2
þ ŝ2X1

ŝ2X2;Y

ðŝ2X1
ŝ2X2

� ŝ2X1;X2
Þŝ2Y

.

We omit varðb̂2Þ since its results are similar to varðb̂1Þ; we also present the
covariance between the slopes, covðb̂1; b̂2Þ:

We compare the variance using each of the three methods (empirical GEE and
model-based GEE and ML) to the variance of the simulations (reported in the
column of Table 1 entitled Simulation) calculated as

varðb̂1Þ ¼
Pm

i¼1ðb̂1i � b̂1Þ2
m

, (15)

where m is the number of simulations and b̂1 is the average of the b̂
ð1Þ
1i values over

all simulations. We compare the covariance using a similar technique.
Nonparametric 95% confidence intervals (not reported) for the empirical,
model-based and ML variances illustrate that the estimated variances are similar
and closely approximate the simulated variances in most cases. In general, we
find that the empirical estimates are more variable than their model-based and
ML counterparts. The largest difference occurred when sX1;Y ¼ 0:8; sX2;Y ¼ 0:5
and sX1;X2

¼ 0; for example, the empirical covariance appears inconsistent with
the simulated covariance, but its confidence interval (0.00054, 0.00174) nearly
includes the simulated value. All other empirical values fell within the
nonparametric confidence intervals, and hence were trivial differences. Table 2
presents results when assuming a constrained model with equal variances
(Eq. (12)) under three scenarios assuming different constrained parameters. As in
the unconstrained case, the estimated variances from the GEE and ML

Table 2

Variance simulation results – constrained model

varðb̂CÞ

sX1 ;Y sX2 ;Y sX1 ;X2

a Empirical Model-Based ML Simulation

�0.149 �0.149 0.333 0.00125 0.00125 0.00124 0.00123

0.400 0.400 0.600 0.00206 0.00204 0.00201 0.00198

0.500 0.500 0.000 0.00217 0.00194 0.00169 0.00173

a s2Y ¼ s2X1
¼ s2X2

¼ 1:
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techniques are similar and both are consistent with the true variance estimates for
the constrained case.

5. Efficiency calculations

We now discuss when using a constrained model leads to efficiency gains by
comparing the variances of the slope estimates under the unconstrained model and
the constrained model assumed in Eq. (12) using ARE, defined as the ratio of two
asymptotic variances. Specifically, ARE is the ratio of varðb̂1Þ to varðb̂CÞ assuming
b1 ¼ b2 ¼ bC since varðb̂1Þ ¼ varðb̂2Þ under the constrained model. If the ARE is
greater than 1, then the estimated slope variance of the constrained model is more
efficient than the estimated slope of the unconstrainedmodel; this leads to increased
power for detecting associations between multiple informants and response.

Using the asymptotic ML variances derived in Section 3 and assuming sX1;Y ¼
sX2;Y ¼ sX;Y and s2X1

¼ s2X2
¼ s2X; we calculate

ARE ¼ 2ð1� r2X;YÞ
ð1þ rX1;X2

Þð1� r2YjX1;X2
Þ .

Because r2YjX1;X2
� r2X;Y � 0 and �1 � rX1;X2

� 1 it follows that AREZ1 for all
values of rX1;X2

; r2X;Y and r2YjX1;X2
: Therefore, the slope estimate under the

constrained model is always as efficient or more efficient than the unconstrained
estimate when the constrained model holds. We consider ARE at particular
values of rX1;X2

; for instance, with rX1;X2
¼ 0; ARE increases as the difference

between r2YjX1;X2
and r2X;Y increases (Fig. 1). As rX1;X2

increases, the general
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shape of the ARE function remains the same but both the minimum and
maximum ARE values decrease. In summary, if the slopes are similar, fitting a
constrained model offers efficiency in the slope estimate over fitting an
unconstrained model.

6. Illustration

In 1996, a study investigating the association between physical activity/inactivity
and obesity was performed in two towns of Mexico City (Hernández et al., 1999,
2000, Hernández, 1998). Our goal is to compare the marginal relationship
between BMI (Y) and vigorous exercise as reported by the child (X1) and the
relationship between BMI and vigorous exercise reported by the child’s mother
(X2). We also fit a constrained model for increased efficiency. Although we could
control for many covariates concerning the child (age, grade, gender, school,
socioeconomic status, whether or not the child was sick on the evaluation day,
nutritional status and whether or not the child was obese), for illustration we
include only child’s grade level in school. Grade is dichotomized with elementary
school children of grades 5 and 6 in one category compared with secondary
school children of grades 1 and 2. Complete information is available for 82
observations.

The raw summary measures for BMI and vigorous exercise are given in Table 3.
Because the vigorous exercise measurements are highly skewed and the multiple
informant variances are not equal, we convert the measurements to normal scores
and then mean center and standardize these in order to compare the covariance of
BMI and each covariate on the same scale. Grade is also mean centered and
standardized for simplicity. Table 4 provides a summary of the estimates derived
from GEE or ML and their standard errors (empirical GEE, model-based GEE/
ML) for models of BMI and vigorous exercise fit using R (2004).

The marginal relationship between BMI and child’s report of vigorous
exercise, b̂1; and the marginal relationship between BMI and mother’s report, b̂2;
are not statistically significantly different; furthermore, both measures have a

Table 3

Estimated means and variance–covariance matrix for vigorous exercise

Variable Estimated Mean

BMI (Y) 21.382

Vigorous exercise reported by child (X1) 0.986

Vigorous exercise reported by mother (X2) 0.786

S

Y X1 X2

Y 12.108 �0.374 �0.413
X1 �0.374 0.897 0.150

X2 �0.413 0.150 0.455

H. J. Litman et al.302
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negative relationship with BMI and neither are statistically significant predictors
of BMI. Thus, we fit a constrained model to gain efficiency (although physical
activity is still not statistically significantly related to BMI); the constrained slope
coefficient is �0.536, indicating that for every one unit increase in vigorous
exercise a child receives, BMI decreases by over one half of a unit. In addition,
fitting a constrained slope is more efficient than fitting two separate slopes
ðdARE ¼ 1:51Þ; the estimated variance of the constrained slope is approximately
50% smaller than when fitting an unconstrained model and provides more power
to assess the association between vigorous exercise and BMI. We report �2 log
(likelihood) values to compare models by constructing likelihood ratio tests
(LRTs) in Table 5; according to a one degree of freedom LRT, fitting a
constrained model as compared with the unconstrained model is appropriate. We
also include grade in the models; according to a two degree of freedom LRT,
adding grade is reasonable (p-value ¼ 0.04). We also find that fitting a model
where we constrain the slope to be equal in the presence of grade is appropriate
according to a one degree of freedom LRT. Therefore, the relationship between
vigorous exercise and BMI is similar regardless of respondent. Fitting a
constrained model is simpler and more efficient; adding the covariate increases
the predictive power. With regard to design issues, using either mother or child
responses should yield similar results. Including both would increase power,
although may not be feasible.

7. Conclusion

In this paper, we review a nonstandard application of GEE (Horton et al., 1999,
Pepe et al., 1999) and introduce a novel ML method for modeling marginal
regression models with multiple source predictors. ML and GEE yield the
same estimates of the regression coefficients in the following situations:
(1) unconstrained model, (2) constrained model with the multiple informants
having equal variances (assuming Eq. (12)) and (3) including covariates not
measured by multiple informants (assuming covariates have possibly different
slopes). The model-based GEE and ML variances are similar; in practice, the
covariances are as well. Our work also demonstrates that, at least in simple cases,
the working correlation matrix recommended by Pepe et al. (1999) is optimal.
The GEE empirical variance yields similar variance and covariance estimates as

Table 5

�2 log likelihood values

Model �2 log(Likelihood)

Unconstrained model 437.856

Constrained model 437.869

Unconstrained model with covariate 431.437

Constrained model with covariate 431.572
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the model-based GEE and ML estimates, but the GEE empirical variance quan-
tities are more variable than the former.

Throughout this paper, our goal has been to estimate the marginal relation-
ship of each multiple informant covariate with response; we have presented two
approaches to do so. Alternative techniques include use of latent variable or
measurement error models; in both cases, the problem could be construed as
each of the multiple informants being an imprecise surrogate for the true value
(Horton and Fitzmaurice, 2004). However, when comparing diagnostic tests
in practice researchers are interested in the actual reports and how they
compare.

The ML technique can be extended to include more than two sets of multiple
informants. For example, the Hernández et al. (1999) study had additional mul-
tiple informant measures including video viewing, moderate exercise and video-
game playing. To implement ML in this setting, two equations with sets of
regression slope coefficients for each additional multiple informant measure are
necessary. This provides estimates of each multiple informant measure condi-
tional on the other multiple informant measures in the model. If we take the case
of two sets of multiple informants with Xij, where i ¼ set, j ¼ multiple informant,
instead of using E(Y|X1) and E(Y|X2) to find the transformation from y to t,
E(Y|X11,X21) and E(Y|X12,X22) is used. Aside from the proliferation of param-
eters, solutions should extend from the existing methods.

Another extension is dealing with one construct measured with more than two
multiple informants (K42). In this situation, K separate regression equations are
fit rather than 2. This may lead to estimation of a large number of parameters
and a Jacobian matrix for the transformation from y to t of high dimension; e.g.,
with K ¼ 3, y consists of 14 parameters. The models can also be extended to
include a vector of covariates not measured by multiple informants. Rather than
predicting Y, X1, X2 from Z using an intercept and a slope, the model would be a
multiple linear regression with an intercept and K slopes. Using a potentially
cumbersome transformation from y to t, the 2(K+1) regression parameters are
found as previously described. While extending the ML technique leads to addi-
tional parameters, ML can accommodate constrained models where the slope
parameters are equal. In addition to providing efficiency gains, constraining
coefficients also helps maintain parsimonious models.

Considering the advantages and disadvantages of using GEE and ML for
analysis of multiple informants as predictors, GEE is more flexible than ML since
it does not require a model for the multiple informants nor does it need normality
of the multiple informants or the dependent variable. However, because ML and
GEE yield the same solutions in most situations, ML does not require the mul-
tivariate normality assumption to be valid. In fact, the vigorous activity multiple
informant measurements in the Hernández et al. (1999) dataset were skewed to
the left; although we standardized this data, an analysis without standardization
reveals that ML is still equivalent to GEE, thus confirming the robustness of ML
to deviations from normality. A drawback of the GEE approach is that the
independence working correlation structure must be assumed for the model to be
valid (Pepe and Anderson, 1994). However, we have shown that the use of the
independence working correlation matrix is optimal for certain models when
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assuming normality where the GEE and ML approaches yield identical estimates
and standard errors.

An advantage of ML is the ability to fit a broader range of models than what
can be fit using GEE; for example, ML can fit a model when a constrained effect
is desired but the variance differs across levels of X1 and X2 (e.g. with large
amounts of missing data on the multiple informants). Another positive aspect of
the ML approach is that likelihood-based tests can be constructed to easily
compare models; this is particularly helpful when considering many models.
Perhaps the biggest advantage ML can offer is an efficiency gain compared with
GEE when considering data with missingness (Litman et al., 2007).
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The Bayesian Approach to Experimental
Data Analysis

Bruno Lecoutre

Abstract

This chapter introduces the conceptual basis of the objective Bayesian
approach to experimental data analysis and reviews some of its methodolog-
ical improvements. The presentation is essentially non-technical and, within
this perspective, restricted to relatively simple situations of inference about
proportions. Bayesian computations and softwares are also briefly reviewed
and some further topics are introduced.

It is their straightforward, natural approach to inference that makes them

[Bayesian methods] so attractive.
(Schmitt, 1969, preface)

Preamble: and if you were a Bayesian without knowing it?

In a popular statistical textbook that claims the goal of ‘‘understanding statis-
tics,’’ Pagano (1990, p. 288) describes a 95% confidence interval as

an interval such that the probability is 0.95 that the interval contains the
population value.

If you agree with this statement, or if you feel that it is not the correct inter-
pretation but that it is desirable, you should ask yourselves: ‘‘and if I was a
Bayesian without knowing it?’’

The correct frequentist interpretation of a 95% confidence interval involves a
long-run repetition of the same experiment: in the long run 95% of computed
confidence intervals will contain the ‘‘true value’’ of the parameter; each interval
in isolation has either a 0 or 100% probability of containing it. Unfortunately,
treating the data as random even after observation is so strange that this ‘‘correct’’
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interpretation does not make sense for most users. Actually, virtually all users
interpret frequentist confidence intervals in terms of ‘‘a fixed interval having a
95% chance of including the true value of interest.’’

In the same way, many statistical users misinterpret the p-values of null
hypothesis significance tests as ‘‘inverse’’ probabilities: 1� p is ‘‘the probability
that the alternative hypothesis is true.’’ Even experienced users and experts in
statistics (Neyman himself) are not immune from conceptual confusions.

In these conditions [a p-value of 1/15], the odds of 14 to 1 that this loss was
caused by seeding [of clouds] do not appear negligible to us. (Battan et al.,
1969)

After many attempts to rectify these (Bayesian) interpretations of frequentist
procedures, I completely agree with Freeman (1993, p. 1446) that in these
attempts ‘‘we are fighting a losing battle.’’

It would not be scientifically sound to justify a procedure by frequentist

arguments and to interpret it in Bayesian terms. (Rouanet, 2000b, p. 54)

We then naturally have to ask ourselves whether the ‘‘Bayesian choice’’ will
not, sooner or later, be unavoidable (Lecoutre et al., 2001).

1. Introduction

Efron (1998, p. 106) wrote

A widely accepted objective Bayes theory, which fiducial inference was intended
to be, would be of immense theoretical and practical importance. A successful

objective Bayes theory would have to provide good frequentist properties in
familiar situations, for instance, reasonable coverage probabilities for whatever
replaces confidence intervals.

I suggest that such a theory is by no means a speculative viewpoint but, on the
contrary, is perfectly feasible (see especially, Berger, 2004). It is better suited to
the needs of users than frequentist approach and provides scientists with relevant
answers to essential questions raised by experimental data analysis.

1.1. What is Bayesian inference for experimental data analysis?

One of the most important objective of controlled clinical trials is to impact on
public health, so that their results need to be accepted by a large community of
scientists and physicians. For this purpose, null hypothesis significance testing
(NHST) has been long conventionally required in most scientific publications
for analyzing experimental data. This publication practice dichotomizes each
experimental result (significant vs. non-significant) according to theNHSToutcome.
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But scientists cannot in this way find all the answers to the precise questions posed in
experimental investigations, especially in terms of effect size evaluation.

But the primary aim of a scientific experiment is not to precipitate decisions,
but to make an appropriate adjustment in the degree to which one accepts, or
believes, the hypothesis or hypotheses being tested. (Rozeboom, 1960)

By their insistence on the decision-theoretic elements of the Bayesian
approach, many authors have obscured the contribution of Bayesian inference
to experimental data analysis and scientific reporting. Within this context, many
Bayesians place emphasis on a subjective perspective. This can be the reasons why
until now scientists have been reluctant to use Bayesian inferential procedures in
practice for analyzing their data. It is not surprising that the most common (and
easy) criticism of the Bayesian approach by frequentists is the need for prior
probabilities. Without dismissing the merits of the decision-theoretic viewpoint,
it must be recognized that there is another approach that is just as Bayesian,
which was developed by Jeffreys in 1930s (Jeffreys, 1961/1939). Following the
lead of Laplace (1986/1825), this approach aimed at assigning the prior prob-
ability when nothing was known about the value of the parameter. In practice,
these non-informative prior probabilities are vague distributions that, a priori, do
not favor any particular value. Consequently, they let the data ‘‘speak for them-
selves’’ (Box and Tiao, 1973, p. 2). In this form, the Bayesian paradigm provides,
if not objective methods, at least reference methods appropriate for situations
involving scientific reporting. This approach of Bayesian inference is now rec-
ognized as a standard.

A common misconception is that Bayesian analysis is a subjective theory; this
is neither true historically nor in practice. The first Bayesians, Bayes (see Bayes
(1763)) and Laplace (see Laplace (1812)) performed Bayesian analysis using a

constant prior distribution for unknown parameters y (Berger, 2004, p. 3)

1.2. Routine Bayesian methods for experimental data analysis

For more than 30 years now, with other colleagues in France we have worked
in order to develop routine Bayesian methods for the most familiar situations
encountered in experimental data analysis. These methods can be learned and
used as easily, if not more, as the t, F or w2 tests. We argued that they offer
promising new ways in statistical methodology (Rouanet et al., 2000).

We have especially developed methods based on non-informative priors. In
order to promote them, it seemed important to us to give them a more explicit
name than ‘‘standard,’’ ‘‘non-informative’’ or ‘‘reference.’’ Recently, Berger
(2004) proposed the name objective Bayesian analysis.

The statistics profession, in general, hurts itself by not using attractive names
for its methodologies, and we should start systematically accepting the ‘objec-

tive Bayes’ name before it is co-opted by others. (Berger, 2004, p. 3)
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With the same incentive, we argued for the name fiducial Bayesian (Lecoutre,
2000; Lecoutre et al., 2001). This deliberately provocative name pays tribute to
Fisher’s work on scientific inference for research workers (Fisher, 1990/1925).
It indicates their specificity and their aim to let the statistical analysis express
what the data have to say independently of any outside information.

An objective (or fiducial) Bayesian analysis has a privileged status in order to
gain public use statements. However, this does not preclude using other Bayesian
techniques when appropriate.

1.3. The aim of this chapter

The aim of this chapter is to introduce the conceptual basis of objective Bayesian
analysis and to illustrate some of its methodological improvements. The pres-
entation will be essentially non-technical and, within this perspective, restricted
to simple situations of inference about proportions. A similar presentation for
inferences about means in the analysis of variance framework is available else-
where (Lecoutre, 2006a).

The chapter is divided into four sections. (1) I briefly discuss the frequentist
and Bayesian approaches to statistical inference and show the difficulties of the
frequentist conception. I conclude that the Bayesian approach is highly desirable,
if not unavoidable. (2) Its feasibility is illustrated in detail from a simple illus-
trative example of inference about a proportion in a clinical trial; basic Bayesian
procedures are contrasted with usual frequentist techniques and their advantages
are outlined. (3) Other examples of inferences about proportions serve me to
show that these basic Bayesian procedures can be straightforward extended to
deal with more complex situations. (4) The concluding remarks summarize the
main advantages of the Bayesian methodology for experimental data analysis.
Bayesian computations and softwares are also briefly reviewed. At last, some
further topics are introduced.

The reader interested in more advanced aspects of Bayesian inference, with an
emphasis on modeling and computation, is especially referred to the Volume 25
of this series (Dey and Rao, 2005).

2. Frequentist and Bayesian inference

2.1. Two conceptions of probabilities

Nowadays, probability has at least two main definitions (Jaynes, 2003). (1) Prob-
ability is the long-run frequency of occurrence of an event, either in a sequence of
repeated trials or in an ensemble of ‘‘identically’’ prepared systems. This is the
‘‘frequentist’’ conception of probability, which seems to make probability an
observable (‘‘objective’’) property, existing in the nature independently of us, that
should be based on empirical frequencies. (2) Probability is a measure of the
degree of belief (or confidence) in the occurrence of an event or in a proposition.
This is the ‘‘Bayesian’’ conception of probability.

This dualistic conception was already present in Bernoulli (1713), who clearly
recognized the distinction between probability (‘‘degree of certainty’’) and
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frequency, deriving the relationship between probability of occurrence in a single
trial and frequency of occurrence in a large number of independent trials.

Assigning a frequentist probability to a single-case event is often not obvious,
since it requires imagining a reference set of events or a series of repeated exper-
iments in order to get empirical frequencies. Unfortunately, such sets are sel-
dom available for assignment of probabilities in real problems. By contrast, the
Bayesian definition is more general: it is not conceptually problematic to assign a
probability to a unique event (Savage, 1954; de Finetti, 1974).

It is beyond any reasonable doubt that for most people, probabilities about

single events do make sense even though this sense may be naive and fall short
from numerical accuracy. (Rouanet, 2000a, p. 26)

The Bayesian definition fits the meaning of the term probability in everyday
language, and so the Bayesian probability theory appears to be much more
closely related to how people intuitively reason in the presence of uncertainty.

2.2. Two approaches to statistical inference

The frequentist approach to statistical inference is self-proclaimed objective con-
trary to the Bayesian conception that should be necessary subjective. However,
the Bayesian definition can clearly serve to describe ‘‘objective knowledge,’’ in
particular based on symmetry arguments or on frequency data. So Bayesian
statistical inference is no less objective than frequentist inference. It is even the
contrary in many contexts.

Statistical inference is typically concerned with both known quantities – the
observed data – and unknown quantities – the parameters and the data that have
not been observed. In the frequentist inference, all probabilities are conditional
on parameters that are assumed known. This leads in particular to

� significance tests, where the parameter value of at least one parameter is fixed
by hypothesis;

� confidence intervals.

In the Bayesian inference, parameters can also be probabilized. This results in
distributions of probabilities that express our uncertainty:

� before observations (they do not depend on data): prior probabilities;
� after observations (conditional on data): posterior (or revised) probabilities;
� about future data: predictive probabilities.

As a simple illustration let us consider a finite population of size 20 with a
dichotomous variable success/failure and a proportion j (the unknown param-
eter) of success. A sample of size 5 has been observed, hence these known data:

0 0 0 1 0 f ¼ 1=5

The inductive reasoning is fundamentally a generalization from a known
quantity (here the data f ¼ 1/5) to an unknown quantity (here the parameter j).
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2.3. The frequentist approach: from unknown to known

In the frequentist framework, we have no probabilities and consequently no
possible inference. The situation must be reversed, but we have no more prob-
abilitiesy unless we fix a parameter value. Let us assume, for instance, j ¼ 0.75.

Then we get sampling probabilities Pr(f |j ¼ 0.75) – that is frequencies –
involving imaginary repetitions of the observations. They can be obtained by sim-
ulating repeated drawing of samples of 5 marbles (without replacement) from a
box that contains 15 black and 5white marbles. Alternatively, they can be (exactly)
computed from a hypergeometric distribution. These sampling probabilities serve
to define a null hypothesis significance test. If the null hypothesis is true (j ¼ 0.75),
one find in 99.5%of the repetitions a value f41/5 (the proportion of blackmarbles
in the sample), greater than the observation in hand: the null hypothesis j ¼ 0.75
is rejected (‘‘significant test’’: p ¼ 0.005). Note that I do not enter here in the
one-sided/two-sided test discussion, which is irrelevant for my purpose.

However, this conclusion is based on the probability of the samples that have
not been observed, what Jeffreys (1961, Section 7.2) ironically expressed in the
following terms:

If P is small, that means that there have been unexpectedly large departures
from prediction. But why should these be stated in terms of P? The latter gives
the probability of departures, measured in a particular way, equal to or greater

than the observed set, and the contribution from the actual value is nearly
always negligible. What the use of P implies, therefore, is that a hypothesis that
may be true may be rejected because it has not predicted observable results that
have not occurred. This seems a remarkable procedure.

As another example of null hypothesis, let us assume j ¼ 0.50. In this case, if
the null hypothesis is true (j ¼ 0.50), one find in 84.8% of the repetitions a value
f41/5, greater than the observation: the null hypothesis j ¼ 0.50 is not rejected
by the data in hand. Obviously, this does not prove that j ¼ 0.50!

Now a frequentist confidence interval can be constructed as the set of possible
parameter values that are not rejected by the data. Given the data in hand we get
the following 95% confidence interval: [0.05, 0.60]. How to interpret the con-
fidence 95%? The frequentist interpretation is based on the universal statement:

whatever the fixed value of the parameter is, in 95% (at least) of the repetitions

the interval that should be computed includes this value.

But this interpretation is very strange since it does not involve the data in hand ! It
is at least unrealistic, as outlined by Fisher (1990/1973, p. 71):

Objection has sometimes been made that the method of calculating Confidence
Limits by setting an assigned value such as 1% on the frequency of observing 3

or less (or at the other end of observing 3 or more) is unrealistic in treating the
values less than 3, which have not been observed, in exactly the same manner
as the value 3, which is the one that has been observed. This feature is indeed

not very defensible save as an approximation.
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2.4. The Bayesian approach: from known to unknown

As long as we are uncertain about values of parameters, we will fall into the
Bayesian camp. (Iversen, 2000)

Let us return to the inductive reasoning, starting from the known data, and
adopting a Bayesian viewpoint. We can now use, in addition to sampling prob-
abilities, probabilities that express our uncertainty about all possible values of
the parameter. In the Bayesian inference, we consider, not the frequentist prob-
abilities of imaginary samples but the frequentist probabilities of the observed
data Pr(f ¼ 1/5|j) for all possible values of the parameter. This is the likelihood
function that is denoted by

‘ðjjdataÞ.
We assume prior probabilities Pr(j) before observations. Then, by a simple
product, we get the joint probabilities of the parameter values and the data:

Pr j and f ¼ 1

5

� �
¼ Pr f ¼ 1

5

����j
� �

� PrðjÞ ¼ ‘ðjjdataÞ � PrðjÞ.

The sum of the joint probabilities gives the marginal predictive probability of the
data, before observation:

Pr f ¼ 1

5

� �
¼
X
j

Pr j and f ¼ 1

5

� �
.

The result is very intuitive since the predictive probability is a weighted average
of the likelihood function, the weights being the prior probabilities.

Finally, we compute the posterior probabilities after observation, by appli-
cation of the definition of conditional probabilities. The posterior distribution
(given by Bayes’ theorem) is simply the normalized product of the prior and the
likelihood:

Pr j f ¼ 1

5

����
� �

/ ‘ðjjdataÞ � PrðjÞ ¼ Prðj and f ¼ 1=5Þ
Prðf ¼ 1=5Þ .

2.5. The desirability of the Bayesian alternative

We can conclude with Berry (1997):

Bayesian statistics is difficult in the sense that thinking is difficult.

In fact, it is the frequentist approach that involves considerable difficulties due
to the mysterious and unrealistic use of the sampling distribution for justifying
null hypothesis significance tests and confidence intervals. As a consequence,
even experts in statistics are not immune from conceptual confusions about fre-
quentist confidence intervals.

For instance, in a methodological paper, Rosnow and Rosenthal (1996, p. 336)
take the example of an observed difference between two means d ¼+0.266. They
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consider the interval [0, +0.532] whose bounds are the ‘‘null hypothesis’’ (0) and
what they call the ‘‘counternull value’’ (2d ¼+0.532), computed as the symmet-
rical value of 0 with regard to d. They interpret this specific interval [0, +0.532]
as ‘‘a 77% confidence interval’’ (0.77 ¼ 1�2� 0.115, where 0.115 is the one-sided
p-value for the usual t-test). If we repeat the experience, the counternull value and
the p-value will be different, and, in a long-run repetition, the proportion of null–
counternull intervals that contain the true value of the difference dwill not be 77%.
Clearly, 0.77 is here a data-dependent probability, which needs a Bayesian
approach to be correctly interpreted. Such difficulties are not encountered with the
Bayesian inference: the posterior distribution, being conditional on data, only
involves the sampling probability of the data in hand, via the likelihood function
‘ðjjdataÞ that writes the sampling distribution in the natural order: ‘‘from
unknown to known.’’

Moreover, since most people use ‘‘inverse probability’’ statements to interpret
NHST and confidence intervals, the Bayesian definition of probability, condi-
tional probabilities and Bayes’ formula are already – at least implicitly – involved
in the use of frequentist methods. Which is simply required by the Bayesian
approach is a very natural shift of emphasis about these concepts, showing that
they can be used consistently and appropriately in statistical analysis. This makes
this approach highly desirable, if not unavoidable.

With the Bayesian inference, intuitive justifications and interpretations of
procedures can be given. Moreover, an empirical understanding of probability
concepts is gained by applying Bayesian procedures, especially with the help of
computer programs.

2.6. Training strategy

The reality of the current use of statistical inference in experimental research
cannot be ignored. On the one hand, experimental publications are full of
significance tests and students and researchers are (and will be again in the
future) constantly confronted to their use. My opinion is that NHST is an
inadequate method for experimental data analysis (which has been denounced by
the most eminent and most experienced scientists), not because it is an incorrect
normative model, just because it does not address the questions that scientific
research requires (Lecoutre et al., 2003; Lecoutre, 2006a, 2006b). However,
NHST is such an integral part of experimental teaching and scientists’ behavior
that its misuses and abuses should not be discontinued by flinging it out of the
window.

On the one hand, confidence intervals could quickly become a compulsory
norm in experimental publications. On the other hand, for many reasons due to
their frequentist conception, confidence intervals can hardly be viewed as the
ultimate method. In practice, two probabilities can be routinely associated with a
specific interval estimate computed from a particular sample.

� The first probability is ‘‘the proportion of repeated intervals that contain the
parameter.’’ It is usually termed the coverage probability.

� The second probability is the Bayesian ‘‘posterior probability that this interval
contains the parameter,’’ assuming a non-informative prior distribution.
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In the frequentist approach, it is forbidden to use the second probability. On
the contrary, in the Bayesian approach, the two probabilities are valid. More-
over, an objective Bayes interval is often ‘‘a great frequentist procedure’’ (Berger,
2004).

As a consequence, it is a challenge for statistical instructors to introduce
Bayesian inference without discarding either NHST or the ‘‘official guidelines’’
that tend to supplant it by confidence intervals. I argue that the sole effective
strategy is a smooth transition towards the Bayesian paradigm (Lecoutre et al.,
2001).

The suggested training strategy is to introduce Bayesian methods as follows:
(1) to present natural Bayesian interpretations of NHST outcomes to call atten-
tion about their shortcomings. (2) To create as a result of this the need for a
change of emphasis in the presentation and interpretation of results. (3) Finally, to
equip users with a real possibility of thinking sensibly about statistical inference
problems and behaving in a more reasonable manner.

3. An illustrative example

My first example of application will concern the inference about a proportion
in a clinical trial (Lecoutre et al., 1995). The patients under study were post-
myocardial infarction patients, treated with a low-molecular-weight heparin as a
prophylaxis of an intra-cardial left ventricular thrombosis. Because of the limited
knowledge available on drug potential efficacy, the trial aimed at abandoning
further development as early as possible if the drug was likely to be not effective,
and at estimating its efficacy if it turned out to be promising. It was considered that
0.85 was the success rate (no thrombosis) above which the drug would be attrac-
tive, and that 0.70 was the success rate below which the drug would be of no
interest.

The trial was initially designed within the traditional Neyman–Pearson frame-
work. Considering the null hypothesis H0: j ¼ 0.70, the investigators planned a
one-sided fixed sample Binomial test with specified respective Type I and Type II
error probabilities a ¼ 0.05 and b ¼ 0.20, hence a power 1�b ¼ 0.80 at the
alternative Ha: j ¼ 0.85 (the hypothesis that they wish to accept!). The asso-
ciated sample size was n ¼ 59, for which the Binomial test rejects H0 at level
0.05 if the observed number of success a is greater than 47. Indeed, for a sample
of size n, the probability of observing a successes is given by the Binomial
distribution

ajj � Binðj; nÞ,

PrðajjÞ ¼ n

a

� �
jað1� jÞn�a,

hence the likelihood function

‘ðjjdataÞ � jað1� jÞn�a.
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For n ¼ 59 (which can be found by successive iterations), we get:

Prða447jH0 : j ¼ 0:70Þ ¼ 0:035o0:05 ðaÞ
Prða447jHa : j ¼ 0:85Þ ¼ 0:83440:80 ð1� bÞ:

Note that, due to the discreteness of the distribution, the actual Type I error rate
and the actual power differ from a and 1� b.

Since it would be preferable to stop the experiment as early as possible if the
drug was likely to be ineffective, the investigators planned an interim analysis
after 20 patients have been included. Since the traditional Neyman–Pearson
framework requires specification of all possibilities in advance, they designed a
stochastically curtailed test. Stochastic curtailment suggests that an experiment
be stopped at an interim stage when the available information determines the
outcome of the experiment with high probability under either H0 or Ha. The
notations are summarized in Table 1.

3.1. Stochastically curtailed testing and conditional power

Stochastically curtailed testing uses the ‘‘conditional power’’ at interim analysis,
which is defined as the probability, given j and the available data, that the test
rejects H0 at the planned termination. At interim analysis, termination occurs to
reject H0 if the conditional power at the null hypothesis value is high, say greater
than 0.80. In our example, even if after 20 observations 20 successes have been
observed, we do not stop the trial.

Similarly, early termination may be allowed to accept H0 if the conditional
power at the alternative hypothesis value is weak, say smaller than 0.20. For
instance, if 12 successes have been observed after 20 observations this rule sug-
gests stopping and accepting the null hypothesis. A criticism addressed to this
procedure is that there seems little point in considering a prediction that is based
on hypotheses that may be no longer fairly plausible given the available data. In
fact, the procedure ignores the knowledge about the parameter accumulated by
the time of the interim analysis.

3.2. An hybrid solution: the predictive power

Many authors have advocated calculating the ‘‘predictive power,’’ averaging
conditional power over values of the parameter in a Bayesian calculation. We are
led to a Bayesian approach, but still with a frequentist test in mind. Formally, the
prediction uses the posterior distribution of j given a prior and the data available

Table 1

Summary of the notations for the inference about a proportion

Number of Successes Number of Errors Sample Size

Current data at interim stage a1 n1�a1 n1 ¼ 20

Future data a2 n2�a2 n1 ¼ 39

Complete data a ¼ a1+a2 n�a n ¼ 59
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at the interim analysis. For the inference about a proportion, the calculations are
particularly simple if we choose a conjugate Beta prior distribution

j � Betaða0; b0Þ,
with density

pðjÞ ¼ 1

Bða0; b0Þ
ja0�1ð1� jÞb0�1.

The advantage is that the posterior is also a Beta distribution (hence the name
conjugate), with density

pðjjdataÞ / ‘ðjjdataÞ � pðjÞ / ja0þa�1ð1� jÞb0þb�1.
The prior weights a0 and b0 are added to the observed counts a1 and b1, so that at
the interim analysis

jjdata � jja1 � Betaða1 þ a0; b1 þ b0Þ.
The predictive distribution, which is a mixture of Binomial distributions, is
naturally called a Beta–Binomial distribution

a2ja1 � Beta2Binða1 þ a0; b1 þ b0; n2Þ.
A vague or non-informative prior is generally considered. It is typically defined by
small weights a0 and b0, included between 0 and 1. Here, I have retained a Beta
prior with parameters 0 and 1

j � Betað0; 1Þ.
This choice is consistent with the test procedure. I shall address this issue in

greater detail later on.
In the example above with n1 ¼ 20 and a1 ¼ 20, the predictive probability of

rejecting H0 at the planned termination (n ¼ 59) explicitly takes into account the
available data (no failure has been observed). It is with no surprise largely greater
than the probability conditional on the null hypothesis value

Prða447ja1 ¼ 20Þ ¼ Prða2427ja1 ¼ 20Þ ¼ 0:99740:80,

hence the decision to stop and reject H0.
This predictive probability is a weighted average of the probabilities condi-

tional to j, the weights being given by the posterior distribution

Prða447ja1 ¼ 20 and jÞ ¼ Prða2427ja1 ¼ 20 and jÞ,
some examples of which being

j 7! Pr(a447|a1 ¼ 20 and j)
1 1
0.95 0.9999997
0.85 0.990
0.70 0.482
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Since the predictive power approach is a hybrid one, it is most unsatisfactory.
In particular, it does not give us direct Bayesian information about j. The
trouble is that a decision (to accept H0 or to accept Ha) is taken at the final
analysis (or eventually at an interim analysis), even if the observed proportion
falls in the no-decision region [0.70, 0.85], in which case nothing has been proved.

What the investigators need is to evaluate at any stage of the experiment the
probability of some specified regions of interest and the ability of a future sample
to support and corroborate findings already obtained. The Bayesian analysis
addresses these issues.

3.3. The Bayesian solution

Bayesian methodology enables the probabilities of the pre-specified regions of
interest to be obtained. Such statements give straight answers to the question of
effect sizes and have no frequentist counterpart. Consider the following example
of Bayesian interim analysis, with 10 observed successes (n1 ¼ 20 and a1 ¼ 10).

3.3.1. Evaluating the probability of specified regions
Let us assume the Jeffreys prior Beta(1/2, 1/2) – hence the posterior Beta(10.5,
10.5) shown in Fig. 1 – that will give the privileged non-informative solution
(I shall also address this issue later on).

In this case it is very likely that the drug is ineffective (jo0.70), as indicated
by the following statements

Prðjo0:70ja1 ¼ 10Þ ¼ 0:971

Prð0:70ojo0:85ja1 ¼ 10Þ ¼ 0:029 Prðj40:85ja1 ¼ 10Þ ¼ 0:0001:

Note that in this case, the Bayesian inference about j at the interim analysis does
not explicitly integrate the stopping rule (which is nevertheless taken into account
in the predictive probability). In the frequentist framework, the interim inferences
are usually modified according to the stopping rule. This issue – that could
appear as an area of disagreement between the frequentist and Bayesian
approaches – will be considered later on. Resorting to computers solves the
technical problems involved in the use of Bayesian distributions. This gives the
users an attractive and intuitive way of understanding the impact of sample sizes,

Fig. 1. Example of interim analysis (n1 ¼ 20 and a1 ¼ 10). Density of the posterior distribution

Beta(10.5, 10.5) associated with the prior Beta(1/2, 1/2).
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data and prior distributions. The posterior distribution can be investigated by
means of visual display.

3.3.2. Evaluating the ability of a future sample to corroborate the available results
As a summary to help in the decision whether to continue or to terminate the
trial, it is useful to assess the predictive probability of confirming the conclusion
of ineffectiveness. If a guarantee of at least 0.95 for the final conclusion is wanted,
that is Pr(jo0.70|a)40.95, the total number of successes a must be less than
36 out of 59. Since a1 ¼ 10 successes have been obtained, we must compute
the predictive probability of observing 0ra2r25 successes in the future data.
Here, given the current data, there is about 87% chance that the conclusion
of ineffectiveness will be confirmed. Table 2 gives a summary of the analyses
for the previous example and for another example more favorable to the new
drug.

3.3.3. Determining the sample size
Predictive procedures are also useful tools to help in the choice of the sample size.
Suppose that in order to plan a trial to demonstrate the effectiveness of the
drug, we have realized a pilot study: for instance, with n0 ¼ 10 patients, we
have observed zero failure. In this case, the posterior probability from the pilot
experiment (starting with the Jeffreys prior) is used as prior distribution. Here,
for this prior, Pr(j40.85) ¼ 0.932. If the preliminary data of the pilot study are
integrated in the analysis (‘‘full Bayesian’’ approach), the procedure is exactly
the same as that of the interim analysis. However, in most experimental devices,
the preliminary data are not included, and the analysis is conducted using a non-
informative prior, here Beta(1/2, 1/2).

The procedure remains analogous: we compute the predictive probability
that in the future sample of size n (not in the whole data), the conclusion of

Table 2

Summary of the Bayesian interim analyses

Prior Distribution Beta(1/2, 1/2)

Example 1: n1 ¼ 20 and a1 ¼ 10

Inference about j Predictive probability (n ¼ 59)

Posterior probability Conclusion with guaranteeZ0.95

Pr(jo0.70|a1 ¼ 10) jo0.70

0.971 0.873 (ao36)

Pr(jo0.85|a1 ¼ 10) jo0.85

0.9999 0.9998 (ao46)

Example 2: n1 ¼ 20 and a1 ¼ 18

Inference about j Predictive probability (n ¼ 59)

Posterior probability Conclusion with guaranteeZ0.95

Pr(jo0.70|a1 ¼ 10) j 40.70

0.982 0.939 (a446)

Pr(jo0.85|a1 ¼ 10) j40.85

0.717 0.301 (a454)
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effectiveness (j40.85) will be reached with a given guarantee g. Hence, for
instance, the following predictive probabilities for g ¼ 0.95

n ¼ 20 7!0:582 ða419Þ n ¼ 30 7!0:696 ða428Þ
n ¼ 40 7!0:744 ða437Þ n ¼ 50 7!0:770 ða446Þ
n ¼ 60 7!0:787 ða455Þ n ¼ 70 7!0:696 ða464Þ
n ¼ 71 7!0:795 ða465Þ n ¼ 72 7!0:829 ða465Þ:

Values within parentheses indicate those values of a that satisfy the condition

Prðj40:85jaÞ � 0:95.

Based on the preliminary data, there are 80% chances to demonstrate effective-
ness with a sample size about 70. Note that it is not surprising that the
probabilities can be non-increasing: this results in the discreteness of the variable
(it is the same for power).

3.4. A comment about the choice of the prior distribution: Bayesian procedures are
no more arbitrary than frequentist ones

Many potential users of Bayesian methods continue to think that they are too
subjective to be scientifically acceptable. However, frequentist methods are full of
more or less ad hoc conventions. Thus, the p-value is traditionally based on the
samples that are ‘‘more extreme’’ than the observed data (under the null hypoth-
esis). But, for discrete data, it depends on whether the observed data are included
or not in the critical region. So, for the usual Binomial one-tailed test for the null
hypothesis,j ¼ j0 against the alternativej4j0, this test is conservative, but if the
observed data are excluded, it becomes liberal. A typical solution to overcome this
problem consists in considering a mid-p-value, but it has only ad hoc justifications.

In our example, suppose that 47 successes are observed at the final analysis
(n ¼ 59 and a ¼ 47), that is the value above which the Binomial test rejects
H0:j ¼ 0.70. The p-value can then be computed according to the three following
possibilities:

(1) pinc ¼ Pr(aZ47|H0: j ¼ 0.70) ¼ 0.066 [‘‘including’’ solution]
)H0 is not rejected at level a ¼ 0.05 (conservative test)

(2) pexc ¼ Pr(a447|H0: j ¼ 0.70) ¼ 0.035 [‘‘excluding’’ solution]
)H0 is rejected at level a ¼ 0.05 (liberal test)

(3) pmid ¼ 1/2(pinc+pexc) ¼ 0.051 [mid-p-value]

Obviously, in this case the choice of a non-informative prior distribution
cannot avoid conventions. But the particular choice of such a prior is an exact
counterpart of the arbitrariness involved within the frequentist approach. For
Binomial sampling, different non-informative priors have been proposed (for a
discussion, see, e.g., Lee, 2004, pp. 79–81). In fact, there exist two extreme non-
informative priors that are, respectively, the most unfavorable and the most
favorable priors with respect to the null hypothesis. They are respectively the
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Beta distribution of parameters 1 and 0 and the Beta distribution of parameters 0
and 1. These priors lead to the Bayesian interpretation of the Binomial test: the
observed significance levels of the inclusive and exclusive conventions are exactly
the posterior Bayesian probabilities that j is greater than j0, respectively,
associated with these two extreme priors. Note that these two priors constitute an
a priori ‘‘ignorance zone’’ (Bernard, 1996), which is related to the notion of
imprecise probability (see Walley, 1996).

(1) Pr(jo0.70|a ¼ 47) ¼ 0.066 ¼ pinc
for the prior j �Beta(0, 1) (the most favorable to H0)
hence the posterior j|a�Beta(47, 13)

(2) Pr(jo0.70|a ¼ 47) ¼ 0.035 ¼ pexc
for the prior j�Beta(1, 0) (the most unfavorable to H0)
hence the posterior j|a�Beta(48, 12)

(3) Pr(jo0.70|a ¼ 47) ¼ 0.049�pmid

for the prior j �Beta(1/2, 1/2)
hence the posterior j|a�Beta(47.5, 12.5)

Then the usual criticism of frequentists towards the divergence of Bayesians
with respect to the choice of a non-informative prior can be easily reversed.
Furthermore, the Jeffreys prior, which is very naturally the intermediate Beta
distribution of parameters 1/2 and 1/2, gives a posterior probability, fully jus-
tified, close to the observed mid-p-value. The Bayesian response should not be to
underestimate the impact of the choice of a particular non-informative prior, as it
is often done,

In fact, the [different non informative priors] do not differ enough to make
much difference with even a fairly small amount of data. (Lee, 2004, p. 81)

but on the contrary to assume it.

3.5. Bayesian credible intervals and frequentist coverage probabilities

In other situations, where there is no particular value of interest for the pro-
portion, we may consider an interval (or more generally a region) estimate for j.
In the Bayesian framework, such an interval is usually termed a credible interval
(or credibility interval), which explicitly accounts for the difference in interpre-
tation with the frequentist confidence interval.

3.5.1. Equal-tails intervals
Table 3 gives 95% equal-tails credible intervals for the following two examples,
assuming different non-informative priors.

The prior Beta(1, 0), which gives the largest limits, has the following fre-
quentist properties: the proportion of samples for which the upper limit is less
than j is smaller than a/2 and the proportion of samples for which the lower limit
is more than j is larger than a/2. The prior Beta(0, 1), which gives the smallest
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limits, has the reverse properties. Consequently, simultaneously considering the
limits of these two intervals protects the user both from erroneous acceptation
and rejection of hypotheses about j. This is undoubtedly an objective Bayesian
analysis. If a single limit is wanted for summarizing and reporting results, these
properties lead to retain the intermediate symmetrical prior Beta(1/2, 1/2) (which
is the Jeffreys prior). Actually, the Jeffreys credible interval has remarkable
frequentist properties. Its coverage probability is very close to the nominal level,
even for small-size samples, and it can be favorably compared to most frequentist
intervals (Brown et al., 2001; Agresti and Min, 2005).

We revisit the problem of interval estimation of a Binomial proportion y We
begin by showing that the chaotic coverage properties of the Wald interval are

far more persistent than is appreciated y We recommend the Wilson interval
or the equal-tailed Jeffreys prior interval for small n. (Brown et al., 2001,
p. 101)

Note that similar results are obtained for negative-Binomial (or Pascal)
sampling, in which we observe the number of patients n until a fixed number
of successes a is obtained. In this case, the observed significance levels of the
inclusive and exclusive conventions are exactly the posterior Bayesian probabilities
associated with the two respective priors Beta(0, 0) and Beta(0, 1). This suggests
privileging the intermediate Beta distribution of parameters 0 and 1/2, which is
precisely the Jeffreys prior. This result concerns an important issue related to the
‘‘likelihood principle.’’ I shall address it in greater detail further on.

3.5.2. Highest posterior density intervals
A frequently recommended alternative approach is to consider the highest pos-
terior density (HPD) credible interval. For such an interval, which can be in fact
an union of disjoint intervals (if the distribution is not unimodal), every point
included has higher probability density than every point excluded. The aim is to
get the shortest possible interval. However, except for a symmetric distribution,
each of the two one-sided probabilities is different from a/2. This property is
generally undesirable in experimental data analysis, since more questions are
‘‘one-sided’’ as in the present example.

Moreover, such an interval is not invariant under transformation (except for a
linear transformation), which can be considered with Agresti and Min (2005,

Table 3

Example of 95% credible intervals assuming different non-informative priors

Beta(0, 1) Beta(1, 1) Beta(1/2, 1/2) Beta(0, 0) Beta(1, 0)

n1 ¼ 20, a1 ¼ 19

[0.7513, 0.9877] [0.7618, 0.9883] [0.7892, 0.9946] [0.8235, 0.9987] [0.8316, 0.9987]

n1 ¼ 59, a1 ¼ 32

[0.4075, 0.6570] [0.4161, 0.6633] [0.4158, 0.6649] [0.4240, 0.6728] [0.4240, 0.6728]
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p. 3) as ‘‘a fatal disadvantage.’’ So, for the data n ¼ 59, a ¼ 32 and the prior
Beta(1/2, 1/2), we get the HPD intervals

½0:4167; 0:6658� for j and ½0:7481; 2:1594� for
j

1� j
,

with the one-sided probabilities

Prðjo0:4167Þ ¼ 0:026 and Pr
j

1� j
o0:7481

� �
¼ 0:039,

Prðjo0:6658Þ ¼ 0:024 and Pr
j

1� j
o2:1594

� �
¼ 0:011.

It must be emphasized, from this example, that the posterior distribution of
j/(1�j) is easily obtained: it is a Fisher–Snedecor F distribution. We find the
95% equal-tails interval [0.712, 1.984].

3.6. The contribution of informative priors

When an objective Bayesian analysis suggests a given conclusion, various prior
distributions expressing results from other experiments or subjective opinions
from specific, well-informed individuals (‘‘experts’’), whether skeptical or con-
vinced (enthusiastic), can be investigated to assess the robustness of conclusions
(see, in particular, Spiegelhalter et al., 1994).

The elicitation of a prior distribution from the opinions of ‘‘experts’’ in the
field can be useful in some studies, but it must be emphasized that this needs
appropriate techniques (see for an example in clinical trials Tan et al., 2003) and
should be used with caution. The following examples are provided to understand
how the Bayesian inference combines information, and are not intended to cor-
respond to a realistic situation (in the current situation, no good prior infor-
mation was available). I leave the reader the task to appreciate the potential
contribution of these methods.

3.6.1. Skeptical and convinced priors
Consider again the example of data n ¼ 59, a ¼ 32, for which the objective
Bayesian procedure concludes to inefficiency (jo0.70). For the purpose of
illustration, let us assume the two priors, a priori, respectively, very skeptical
and very convinced about the drug:

j � Betað20; 80Þ with mean 0:200 for which Prðjo0:70Þ � 1,

j � Betað98; 2Þ with mean 0:980 for which Prðj40:85Þ ¼ 0:999998.

The respective posteriors are

j � Betað52; 107Þ with mean 0:327 for which Prðjo0:70Þ � 1,

j � Betað130; 29Þ with mean 0:818 for which Prðj40:85Þ ¼ 0:143.

Of course the first prior reinforces the conclusion of inefficiency. Figure 2 shows
this prior density (thick line) and the posterior (medium line), which can be
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compared to the objective posterior for the prior Beta(1/2, 1/2) (thin line). How-
ever, for the planned sample size, this prior opinion does not have any chance of
being infirmed by the data. Even if 59 successes and 0 error had been observed,
one would have Pr(jo0.70)|a ¼ 59) ¼ 0.99999995.

The second prior allows a clearly less unfavorable conclusion. However, the
efficiency of the drug cannot be asserted:

Prðj40:70ja ¼ 32Þ ¼ 0:997 but Prðj40:85ja ¼ 32Þ ¼ 0:143.

It is enlightening to examine the impact of the prior Beta(a0, b0) on the posterior
mean. Letting n0 ¼ a0+b0, the ratios n0/(n0+n) and n/(n0+n) represent the rel-
ative weights of the prior and of the data. The posterior mean can be written

a0 þ a

n0 þ n
¼ n0

n0 þ n

a0
n0
þ n

n0 þ n

a

n
,

and is consequently equal to

prior relative weight� prior meanþ data relative weight� observed mean.

The posterior means are as follows:

100=159� 0:200þ 59=159� 0:542 ¼ 0:327 for the prior j � Betað20; 80Þ;

100=159� 0:980þ 59=159� 0:542 ¼ 0:818 for the prior j � Betað98; 2Þ:

3.6.2. Mixtures of Beta densities
A technique that remains simple to manage is to use a prior with a density
defined as a mixture of prior densities of Beta distributions. The posterior is again
such a mixture. This prior has two main interests, on the one hand to approx-
imate any arbitrary complex prior that otherwise would need numerical inte-
gration methods, and on the other hand to combine several pieces of information
(or different opinions). As an illustration, let us consider for the same data a
mixture of the two previous distributions with equal weights, that is

j � 1

2
Betað20; 80Þ 	 1

2
Betað98; 2Þ,

Fig. 2. Example of skeptical prior for the data n ¼ 59 and a ¼ 32. Densities of the prior Beta(20, 80)

(thick line) and of the posterior distributions associated with this prior (medium line) and with the

prior Beta(1/2, 1/2) (thin line).
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where 	 refers to a mixture of densities, that is symbolically written

pðjÞ ¼ 1

2
pðBetað20; 80ÞÞ þ 1

2
pðBetað98; 2ÞÞ.

Note that this distribution must not be confounded with the distribution of the
linear combination of two variables with independent Beta distributions (that
would have a much more complex density).

Figure 3 shows the prior density (thick line), which is bimodal, the corre-
sponding posterior (medium line) and the Jeffreys posterior (thin line). In fact, in
this case, the data n ¼ 59, a ¼ 32 allow us, in some sense, to discriminate between
the two distributions of the mixture, as the posterior distribution is

0:999999903Betað52; 107Þ 	 0:000000097Betað130; 29Þ;

so that it is virtually confounded with the distribution Beta(52, 107) associated
with the prior Beta(20, 80).

It is enlightening to note that the weight associated with each Beta distribution
of the posterior mixture is proportional to the product of the prior weight times
the predictive probability of the data associated with the corresponding Beta
prior.

If the number of patients is multiplied by 10, with the same proportion of
successes (n ¼ 590, a ¼ 320), the posterior density, shown in Fig. 4, is virtually
confounded with the posterior Beta(340, 350) associated with the prior Beta(20,
80). Of course, it is closer to the Jeffreys solution.

Fig. 3. Example of mixture prior for the data n ¼ 59 and a ¼ 32. Densities of the bimodal prior

(1/2)Beta(20, 80)	(1/2)Beta(98, 2) (thick line) and of the posterior distributions associated with this

prior (medium line) and with the prior Beta(1/2, 1/2) (thin line).

Fig. 4. Example of mixture prior for the data n ¼ 590 and a ¼ 320. Densities of the bimodal prior

(1/2)Beta(20, 80)	(1/2)Beta(98, 2) (thick line) and of the posterior distributions associated with this

prior (medium line) and with the prior Beta(1/2, 1/2) (thin line).
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3.7. The Bayes factor

In order to complete the presentation of the Bayesian tools, I shall present the
Bayes factor. Consider again the example of data n ¼ 59, a ¼ 32, with the
convinced prior j�Beta(98, 2) and the corresponding a priori probabilities
Pr(j>0.85) ¼ 0.99999810 (that will be denoted pa), and consequently
Pr(jo0.85) ¼ 0.00000190 (p0). The notations p0 and pa are usual, since the
Bayes factor is generally presented as a Bayesian approach to classical hypothesis
testing; in this framework, p0 and pa are the respective prior probabilities of the
null H0 and alternative Ha hypotheses.

It is then quite natural to consider:

� the ratio of these two prior probabilities, hence

p0
pa
¼ Prðjo0:85Þ

Prðj40:85Þ ¼ 0:0000019,

which here is of course very small,
� and their posterior ratio, hence

p0
pa
¼ Prðjo0:85ja ¼ 32Þ

Prðj40:85ja ¼ 32Þ ¼
0:8570

0:1430
¼ 5:99,

which is now distinctly larger than 1.
The Bayes factor (associated with the observation a) is then defined as the

ratio of these two ratios

BðaÞ ¼ p0=pa
p0=pa

¼ p0pa
pap0

¼ 3154986,

which evaluates the modification of the relative likelihood of the null hypothesis
due to the observation. However, the Bayes factor is only an incomplete sum-
mary, which cannot replace the information given by the posterior probabilities.

The Bayes factor applies in the same way to non-complementary hypotheses
H0 and Ha, for instance, here j o0.70 and j >0.85. However, in this case the
interpretation is again more problematic, since the ‘‘no-decision’’ region
0.70ojo0.85 is ignored.

In the particular case of two simple hypotheses H0: j ¼ jo and Ha: j ¼ ja,
the Bayes factor is simply the classical likelihood ratio

BðaÞ ¼ pðj0jaÞpðjaÞ
pðjajaÞpðj0Þ

¼ pðajj0Þ
pðajjaÞ

,

since pðj0jaÞ / pðajj0Þpðj0Þ and pðjajaÞ / pðajjaÞpðjaÞ:
Note again that when H0 and Ha are complementary hypotheses (hence

pa ¼ 1–p0), as in the example above, their posterior probabilities can be
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computed from the prior probabilities (pa ¼ 1�p0) and the Bayes ratio. Indeed, it
can be easily verified that

1

p0
¼ 1þ 1� p0

p0

1

BðaÞ .

4. Other examples of inferences about proportions

4.1. Comparison of two independent proportions

Conceptually, all the Bayesian procedures for a proportion can be easily
extended to two Binomial independent samples, assuming two independent
priors (see Lecoutre et al., 1995). In order to illustrate the conceptual simplicity
and the flexibility of Bayesian inference, I give in the subsequent subsection an
application of these procedures for a different sampling model.

4.2. Comparison of two proportions for the play-the-winner rule

From ethical point of view, adaptative designs can be desirable. In such designs
subjects are assumed to arrive sequentially and they are assigned to a treatment
with a probability that is updated as a function of the previous events. The intent
is to favor the ‘‘most effective treatment’’ given available information. The play-
the-winner allocation rule is designed for two treatments t1 and t2 with a dichot-
omous (e.g., success/failure) outcome (Zelen, 1969). It involves an ‘‘all-or-none’’
process: if subject k�1 is assigned to treatment t (t1 or t2) and if the outcome is a
success (with probability jt), subject k is assigned to the same treatment; if, on
the contrary, the outcome is a failure (with probability 1�jt), subject k is
assigned to the other treatment.

For simplicity, it is assumed here that the outcome of subject k�1 is known
when subject k is included.

For a fixed number n of subjects, the sequel of treatment allocations (t1, t2,y,
tk, tk+1, y, tn+1) contains all the information in the data. Indeed, tk ¼ tk+1

implies that a success to tk has been observed and tk=tk+1 implies that a failure
to tk has been observed. Moreover, the likelihood function is simply

‘ðj1;j2Þjðt1; . . . ; tnþ1Þ ¼
1

2
jn11
1 ð1� j1Þn10jn21

2 ð1� j2Þn20 ,

where nij is the number of pairs (tk, tk+1) equal to (ti, t j), so that n11 and n21 are
the respective numbers of success to treatments t1 and t2, and n10 and n20 are the
numbers of failure (1/2 is the probability of t1).

Since Bayesian methods only involve the likelihood function, they are
immediately available. Moreover, since the likelihood function is identical (up
to a multiplicative constant) with the likelihood function associated with the
comparison of two independent binomial proportions, the same Bayesian
procedures apply here, even if the sampling probabilities are very different.
On the contrary, with the frequentist approach, specific procedures must be
developed. Due to the complexity of the sampling distribution, only asymptotic
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solutions are easily available. Of course, except for large samples, they are
not satisfactory.

4.2.1. Numerical example
Let us consider for illustration the results of a trial with n ¼ 150 subjects. The
observed rates of success are, respectively, 74 out of 94 attributions for treatment
t1 and 35 out of 56 attributions for treatment t2. Note that, from the definition of
the rule, the numbers of failures (here 20 and 21) can differ at most by 1. A joint
probability statement is, in a way, the best summary of the posterior distribution.
For instance, if we assume the Jeffreys prior, that is two independent Beta(1/2,
1/2) distributions for j1 and j2, the marginal posteriors Beta(74.5, 20.5) and Beta
(35.5, 21.5) are again independent, so that a joint probability statement can be
immediately obtained. We get, for instance,

Prðj140:697 and j2o0:743jdataÞ ¼ 0:95

which is deduced from Pr(j140.697) ¼ Pr(j240.743) ¼
ffiffiffiffiffiffiffiffiffi
0:95

p
¼ 0:9747;

obtained as in the case of the inference about a single proportion.
It is, in a way, the best summary of the posterior distribution. However, a

statement that deals with the comparison of the two treatments directly would be
preferable. So we have a probability 0.984 that j24j1. Furthermore, the dis-
tribution of any derived parameter of interest can be easily obtained from the
joint posterior distribution using numerical methods. We find the 95% equal-tails
credible intervals:

½þ0:013;þ0:312� for j1 � j2½1:02; 1:62� for j1

j2

½1:07; 4:64� for j1=ð1� j1Þ
j2=ð1� j2Þ

.

For the Jeffreys prior, Bayesian methods have fairly good frequentist coverage
properties for interval estimates (Lecoutre and ElQasyr, 2005).

4.2.2. The reference prior approach
For multidimensional parameter problems, the reference prior approach intro-
duced by Bernardo (1979) (see also Berger and Bernardo, 1992) can constitute a
successful refinement of the Jeffreys prior. This approach presupposes that we are
interested in a particular derived parameter y. It aims at finding the optimal
objective prior, given that y is the parameter of interest and the resulting prior is
consequently dependent on this parameter. An objection can be raised against
this approach in the context of experimental data analysis. Even when a par-
ticular parameter is privileged to summarize the findings, we are also interested in
other parameters, so that joint prior and posterior distributions are generally
wanted.

4.3. A generalization with three proportions: medical diagnosis

Berger (2004, p. 5) considered the following situation (Mossman and Berger,
2001; see also in a different context Zaykin et al., 2004).
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Within a population for which j0 ¼ Pr(Disease D), a diagnostic test results in

either a Positive (+) or Negative (�) reading. Let j1 ¼ Pr(+|patient has D)
and (j2 ¼ Pr(+|patient does not have D). [the authors notations pi have been
changed to ji]

By Bayes’ theorem, one get the probability y that the patient has the disease given
a positive diagnostic test

y ¼ PrðDjþÞ ¼ PrðþjDÞPrðDÞ
PrðþjDÞPrðDÞ þ Prðþj �DÞPrð�DÞ ¼

j1j0

j1j0 þ j2ð1� j0Þ
.

It is assumed that for i ¼ 0, 1, 2 there are available (independent) data ai, having
Binomial distributions

aijji � Binðji; niÞ,

hence a straightforward generalization of the inference about two independent
proportions. Note that, conditionally to j0, the situation is that of inference
about the ratio of two independent Binomial proportions, since for instance

Prðyoujj0Þ ¼ Pr
j2

j1

4
1� j0

j0

1� u

u

� �
.

The marginal probability is a mixture of these conditional probabilities.
It results ‘‘a simple and easy to use procedure, routinely usable on a host of

applications,’’ which, from a frequentist perspective ‘‘has better performance [y]
than any of the classically derived confidence intervals’’ (Berger, 2004, pp. 6–7).

Another situation that involves a different sampling model but leads to the
same structure is presented in greater detail hereafter.

4.4. Logical models in a contingency table

Let us consider a group of n patients, with two sets of binary attributes, respec-
tively, V ¼ {v1, v0} and W ¼ {w1, w0}. To fix ideas, let us suppose that W is
cardiac mortality (yes/no) and that V is myocardial infarction (yes/no). Let us
consider the following example of logical model (Lecoutre and Charron, 2000).

An absolute (or logical) implication n1) w1 (for instance) exists if all the
patient having the modality v1 also have the modality w1, whereas the converse
is not necessarily true.

However, the hypothesis of an absolute implication (here ‘‘myocardial inf-
arction implies cardiac mortality’’) is of little practical interest, since a single

observation of the event (v1, w0) is sufficient to falsify it.

Consequently, we have to consider the weaker hypothesis ‘‘v1 implies in most

cases w0’’ (v1+w1).
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The issue is to evaluate the departure from the logical model ‘‘the cell (v1, w0)
should be empty.’’ A departure index Zv1+w1 can be defined from the cell pro-
portions

W1 w0
v1 j11 j10 j1.

v0 j01 j00 j0.

j.1 j.0 1

as

Zv1+w1 ¼ 1� j10

j1:j:0

ð�1oZv1+w1oþ 1Þ.

This index has been actually considered in various frameworks, with different
approaches. It can be viewed as a measure of predictive efficiency of the model
when predicting the outcome of W given v1.

� The prediction is perfect (there is an absolute implication) when Zv1+w1 ¼+1.
� The closer to 1 Zv1+w1 is, the more efficient the prediction.
� In case of independence, Zv1+w1 ¼ 0.
� A null or negative value means that the model is a prediction failure.

Consequently, in order to investigate the predictive efficiency of the model, we
have to demonstrate that Zv1+w1 has a value close to +1. Of course, one can
define in the same way the indexes Zv1+w0; Zw1+v1; and Zw0+v0 One can, again,
characterize the equivalence between two modalities. An absolute equivalence
between v1 and w1 (for instance) exists if Zv1+w1 ¼+1 and Zv0+w0 ¼+1 (the
two cells [v1, w0] and [v0, w1] are empty). Consequently, the minimum of these
two indexes is an index of departure from equivalence.

Let us assume a multinomial sampling model, hence for a sample of size n, the
probability of observing the cell counts nij

Prðn11; n10; n01; n00jj11;j10;j01;j00Þ ¼
n!

n11!n10!n01!n00!
jn11
11 j

n10
10 j

n01
01 j

n00
00 .

4.5. Frequentist solutions

Asymptotic procedures (see, e.g., Fleiss, 1981) are clearly inappropriate for small
samples. Alternative procedures based on Fisher’s conditional test (Copas and
Loeber, 1990; Lecoutre and Charron, 2000) have been proposed. This test
involves the sampling distribution of n11 (for instance). A classical result is that
this distribution, given fixed observed margins, only depends on the cross prod-
uct r ¼ j11j00=j10j01 (Cox, 1970, p. 4). The null hypothesis r ¼ r0 can be tested
against the alternative ror0 (or against r4r0), by using the probability that n11
exceeds the observed value in the appropriate direction.

Consequently, the procedure is analogous to the Binomial test considered for
the inference about a proportion. We can define in the same way an ‘‘including’’
solution and an ‘‘excluding’’ solution.
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In the particular case r0 ¼ 0, this test is the Fisher’s randomization test of the
null hypothesis r ¼ 1 (i.e., Zv1+w1 ¼ 0) against ro1 (Zv1+w1o0).

By inverting this conditional test, confidence intervals can be computed for the
cross product r. An interval for Zv1+w1 is then deduced by replacing r by its
confidence limits in the following expression that gives Zv1+w1 as a function of r

Zv1+w1 ¼
1þ ðr� 1Þðj1: þ j:1 � j1:j:1 � ½ð1þ ðj1: þ j:1Þðr� 1Þ2 � 4j1:j:1rðr� 1Þ�1=2

2ðr� 1Þj:1ð1� j1:Þ
.

Unfortunately, these limits depend on the true margin values j.1 and j1.. The
most common procedure consists in simply replacing these nuisance parameters
by their estimates f.1 and f1.. It is much more performing than asymptotic
solutions, but is unsatisfactory for extreme parameter values. More efficient
principles for dealing with nuisance parameters exist (for instance, Toecher, 1950;
Rice, 1988). However, one comes up against a problem that is eternal within the
frequentist inference, and that is of course entirely avoided in the Bayesian
approach. In any case, Bayesian inference copes with the problem of nuisance
parameters. Moreover, it explicitly handles the problems of discreteness and
unobserved events (null counts) by way of the prior distribution.

4.6. The Bayesian solution

The Bayesian solution is a direct generalization of the Binomial case. Let us
assume a joint (conjugate) Dirichlet prior distribution, which is a multidimen-
sional extension of the Beta distribution

ðj11;j10;j01;j00Þ � Dirichletðn11; n10; n01; n00Þ.
The posterior distribution is also a Dirichlet in which the prior weights are simply
added to the observed cell counts.

ðj11;j10;j01;j00Þjdata � Dirichletðn11 þ n11; n10 þ n10; n01 þ n01; n00 þ n00Þ.

From the basic properties of the Dirichlet distribution (see, e.g., Bernardo and
Smith, 1994, p. 135), the marginal posterior distribution for the derived param-
eter Z11 can be characterized as a function of three independent Beta distributions

X ¼ j10jdata � Betaðn10 þ n10; n11 þ n11 þ Z01 þ v01 þ Z00 þ v00Þ,
Y ¼ j00

1� j10

¼ j00

1� X
jdata � Betaðn00 þ v00; n11 þ n11; n01 þ v01Þ,

Z ¼ j11

1� j10 � j00

¼ j11

ð1� YÞð1� XÞ jdata � Betaðn11 þ v11; n01 þ v01Þ,

since

Zv1+w1 ¼ 1� X

ðXþ Zð1� YÞð1� XÞÞðXþ Yð1� XÞÞ
This leads to straightforward numerical methods.
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4.7. Numerical example: mortality study

4.7.1. Non-treated patients
The data in Table 4 were obtained for 340 high-risk patients who received no
medical treatment. Let us consider the implication ‘‘Myocardial infarction +
Cardiac mortality within 2 years.’’

The observed values of the index are

� for the implication ‘‘Infarction + Decease’’ (cell [yes,no] empty):
Hv1+w1 ¼ 0.12,

� for the implication ‘‘Decease + Infarction’’ (cell [no,yes] empty):
Hv1+w1 ¼ 0.37.

The marginal proportions of decease are (fortunately!) rather small – respec-
tively, 0.22 after infarction and 0.07 without infarction – so that the count 72 in
the cell [yes,no] is proportionally large. Consequently, relatively small values of
the index are here ‘‘clinically significant.’’ Assuming the Jeffreys prior Dirichlet
(1/2, 1/2, 1/2, 1/2), we get the posterior

F ¼ ðj11;j10;j01;j00Þjdata � Dirichletð20:5; 72:5; 17:5; 231:5Þ.
from which we derive the marginal posteriors. Figure 5 shows the decreasing
distribution function of the posterior of Zv1+w1 and its associated 90% credible
interval.

From the two credible intervals,

� ‘‘Infarction + Decease’’: Pr(+0.06oZv1+w1 o+0.19) ¼ 0.90
� ‘‘Decease + Infarction’’: Pr(+0.20oZw1+v1o+0.54) ¼ 0.90.

Table 4

Mortality data for 340 high-risk patients who received no medical treatment

Decease

Yes No

Myocardial infarction Yes 20 72 92 [20/92 ¼ 0.22]

No 17 231 248 [17/248 ¼ 0.07]

37 303 340

Fig. 5. Implication ‘‘Infarction + Decease’’ (non-treated patients). Decreasing distribution function

for Zv1+w1 [Pr(Zv1+w1ox)] associated with the prior Dirichlet(1/2, 1/2, 1/2, 1/2).
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we can assert an implication of limited importance. In fact, it appears that
decease is a better prognostic factor for infarction than the reverse.

4.7.2. Treated patients
Other data reported in Table 5 were obtained for 357 high-risk patients who
received a preventive treatment.

Here, it is, of course, expected that the treatment would reduce the number of
deceases after infarction. Ideally, if there was no cardiac decease among the
treated patients after infarction (cell [yes,yes] empty), there would be an absolute
implication ‘‘Infarction )No decease.’’ We get the following results for this
implication:

‘‘Infarction + No decease’’ : Hv1+w0 ¼ þ0:68 and Prð�0:10oZv1+w0oþ 0:94Þ ¼ 0:90:

Here, in spite of a distinctly higher observed value, it cannot be concluded to the
existence of an implication. The width of the credible interval shows a poor
precision. This is a consequence of the very small observed proportions of
decease. Of course, it cannot be concluded that there is no implication or that the
implication is small. This illustrate the abuse of interpreting the non-significant
result of usual ‘‘tests of independence’’ (chi-square for instance) in favor of the
null hypothesis.

4.8. Non-informative priors and interpretation of the observed level of Fisher’s
permutation tests

The Bayesian interpretation of the permutation test (conditional to margins)
generalizes the interpretation of the Binomial test. For the usual one-sided test
(including solution), the null hypothesis H0: Zv1+w0 ¼ 0 is not rejected
(pinc ¼ 0.145). It is well known that this test is conservative, but if we consider
the excluding solution, we get a definitely smaller p-value pexc ¼ 0.028. This
results from the poor experimental accuracy. As in the case of a single propor-
tion, there exist two extreme non-informative priors, Dirichlet(1, 0, 0, 1) and
Dirichlet(0, 1, 1, 0) that constitute the ignorance zone. They give an enlightening
interpretation of these two p-values, together with an objective Bayesian analysis.

(1) Pr(Zv1+w0o0) ¼ 0.145 ¼ pinc
for the prior Dirichlet(1, 0, 0, 1) (the most favorable to H0)
hence the posterior Dirichlet(2, 78, 13, 266)

Table 5

Mortality data for 357 high-risk patients who received a preventive treatment

Decease

Yes No

Myocardial infarction Yes 1 78 79 [1/79 ¼ 0.01]

No 13 265 278 [13/278 ¼ 0.05]

14 343 357
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(2) Pr(Zv1+w0o0) ¼ 0.028 ¼ pexc
for the prior Dirichlet(0, 1, 1, 0) (the most unfavorable to H0)
hence the posterior Dirichlet(1, 79, 14, 265)

(3)Pr(Zv1+w0o0) ¼ 0.072�(pinc+pexc)/2 ¼ 0.086
for the prior Dirichlet(1/2, 1/2, 1/2, 1/2)
hence the posterior Dirichlet(1.5, 78.5, 13.5, 265.5)

4.8.1. The choice of a non-informative prior
As for a single proportion, the choice of a non-informative prior is no more
arbitrary or subjective than the conventions of frequentist procedures. Moreover,
simulation studies of frequentist coverage probabilities favorably compare Bay-
esian credible intervals with conditional confidence intervals (Lecoutre and
Charron, 2000). For each lower and upper limits of the 1�a credible interval, the
frequentist error rates associated with the two extreme priors always include a/2.
Moreover, if a single limit is wanted for summarizing and reporting results,
the symmetrical intermediate prior Dirichlet(1/2, 1/2, 1/2, 1/2) has fairly good
coverage properties, including the cases of moderate sample sizes and small
parameter values. Of course the differences between the different priors in the
ignorance zone is less for small or medium values of Zv1+w1 and vanishes as the
sample size increases.

4.9. Further analyses

There is no difficulty in extending the Bayesian procedures to any situation
involving the multinomial sampling model, for instance, the comparison of two
proportions based on paired data. Here, in particular, the distribution of the
minimum of the two indexes for asserting equivalence is easily obtained by sim-
ulation. Moreover, the procedures can be extended to compare the indexes
associated with two independent groups (for instance, here treated and non-
treated patients).

Of course, in all these situations, informative priors and predictive probabil-
ities can be used in the same way as for a single proportion.

Note again that binary and polychotomous response data can also be analyzed
by Bayesian regression methods. Relevant references are Albert and Chib (1993)
and Congdon (2005).

5. Concluding remarks and some further topics

Time’s up to come to a positive agreement for procedures of experimental data
analysis that bypass the common misuses of NHST. This agreement should fills
up its role of ‘‘an aid to judgment,’’ which ‘‘should not be confused with
automatic acceptance tests, or ‘decision functions’’’ (Fisher, 1990/1925, p. 128).
Undoubtedly, there is an increasing acceptance that Bayesian inference can be
ideally suited for this purpose. It fulfills the requirements of scientists: objective
procedures (including traditional p-values), procedures about effect sizes (beyond
p-values) and procedures for designing and monitoring experiments. Then, why
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scientists, and in particular experimental investigators, really appear to want a
different kind of inference but seem reluctant to use Bayesian inferential pro-
cedures in practice? In a very lucid paper, Winkler (1974, p. 129) answered that
‘‘this state of affairs appears to be due to a combination of factors including
philosophical conviction, tradition, statistical training, lack of ‘availability’,
computational difficulties, reporting difficulties, and perceived resistance by
journal editors.’’ He concluded that if we leave to one side the choice of phil-
osophical approach, none of the mentioned arguments are entirely convincing.
Although Winkler’s paper was written more than 30 years ago, it appears as if it
had been written today.

We [statisticians] will all be Bayesians in 2020, and then we can be a united

profession. (Lindley, in Smith, 1995, p. 317)

In fact the times we are living in at the moment appear to be crucial. On the
one hand, an important practical obstacle is that the standard statistical packages
that are nowadays extensively used do not include Bayesian methods. On the
other hand, one of the decisive factors could be the recent ‘‘draft guidance doc-
ument’’ of the US Food and Drug Administration (FDA, 2006). This document
reviews ‘‘the least burdensome way of addressing the relevant issues related to the
use of Bayesian statistics in medical device clinical trials.’’ It opens the possibility
for experimental investigators to really be Bayesian in practice.

5.1. Some advantages of Bayesian inference

5.1.1. A better understanding of frequentist procedures

Students [exposed to a Bayesian approach] come to understand the frequentist

concepts of confidence intervals and P values better than do students exposed
only to a frequentist approach. (Berry, 1997)

To take another illustration, let us consider the basic situation of the inference
about the difference d between two normal means. It is especially illustrative
of how the Bayesian procedures combine descriptive statistics and significance
tests.

Let us denote by d (assuming d=0) the observed difference and by t the value
of the Student’s test statistic. Assuming the usual non-informative prior, the
posterior for d is a generalized (or scaled) t distribution (with the same degrees of
freedom as the t-test), centered on d and with scale factor the ratio e ¼ d/t (see,
e.g., Lecoutre, 2006a).

From this technical link with the t statistic, it results conceptual links. The one-
sided p-value of the t-test is exactly the posterior Bayesian probability that the
difference d has the opposite sign of the observed difference. Given the data, if
for instance d40, there is a p posterior probability of a negative difference and a
1�p complementary probability of a positive difference. In the Bayesian frame-
work these statements are statistically correct. Another important feature is the
interpretation of the usual confidence interval in natural terms. It becomes
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correct to say that ‘‘there is a 95% [for instance] probability of d being included
between the fixed bounds of the interval’’ (conditionally on the data).

In this way, Bayesian methods allow users to overcome usual difficulties
encountered with the frequentist approach. In particular, using the Bayesian
interpretations of significance tests and confidence intervals in the language of
probabilities about unknown parameters is quite natural for the users. In return,
the common misuses and abuses of NHST are more clearly understood. In par-
ticular, users of Bayesian methods become quickly alerted that non-significant
results cannot be interpreted as ‘‘proof of no effect.’’

5.1.2. Combining information from several sources
An analysis of experimental data should always include an objective Bayesian
analysis in order to express what the data have to say independently of any
outside information. However, informative Bayesian priors also have an impor-
tant role to play in experimental investigations. They may help refining inference
and investigating the sensitivity of conclusions to the choice of the prior. With
regard to scientists’ need for objectivity, it could be argued with Dickey (1986,
p. 135) that

an objective scientific report is a report of the whole prior-to-posterior map-
ping of a relevant range of prior probability distributions, keyed to meaningful
uncertainty interpretations.

Informative Bayesian techniques are ideally suited for combining information
from the data in hand and from other studies, and therefore planning a series of
experiments. More or less realistic and convincing uses have been proposed (for a
discussion of how to introduce these techniques in medical trials, see, e.g., Irony
and Pennello, 2001). Ideally, when ‘‘good prior information is available,’’ it could
(should) be used to reach the same conclusion that an ‘‘objective Bayesian anal-
ysis,’’ but with a smaller sample size. Of course, they should integrate a real
knowledge based on data rather than expert opinions, which are generally
controversial. However, in my opinion, the use of these techniques must be more
extensively explored before appreciating their precise contribution to experimen-
tal data analysis.

5.1.3. The predictive probabilities: a very appealing tool

An essential aspect of the process of evaluating design strategies is the ability to
calculate predictive probabilities of potential results. (Berry, 1991, p. 81)

A major strength of the Bayesian paradigm is the ease with which one can
make predictions about future observations. The predictive idea is central in
experimental investigations, as ‘‘the essence of science is replication: a scientist
should always be concerned about what would happen if he or another scientist
were to repeat his experiment’’ (Guttman, 1983). Bayesian predictive procedures
give users a very appealing method to answer essential questions such as: ‘‘how
big should be the experiment to have a reasonable chance of demonstrating a
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given conclusion?’’ ‘‘given the current data, what is the chance that the final
result will be in some sense conclusive, or on the contrary inconclusive?’’
These questions are unconditional in that they require consideration of all pos-
sible values of parameters. Whereas traditional frequentist practice does not
address these questions, predictive probabilities give them direct and natural
answer.

In particular, from a pilot study, the predictive probabilities on credible limits
give a useful summary to help in the choice of the sample size of an experiment
(for parallels between Bayesian and frequentist methods, see Inoue et al., 2005).

The predictive approach is a very appealing method (Baum et al., 1989) to aid
the decision to stop an experiment at an interim stage. On the one hand, if the
predictive probability that it will be successful appears poor, it can be used as a
rule to abandon the experiment for futility. On the other hand, if the predictive
probability is sufficiently high, this suggests to early stop the experiment and
conclude success.

Predictive probabilities are also a valuable tool for missing data imputation.
Note that interim analyses are a kind of such imputation. The case of censored
survival data is particularly illustrative. At the time of interim analysis, available
data are divided into three categories: (1) included patients for whom the event
of interest has been observed, (2) included patients definitely censored and
(3) included patients under current observation for whom the maximum obser-
vation period has not ended. Consequently, the missing data to be predicted are
respectively related to these last patients for which we have partial information
and to the new patients planned to be included for which we have no direct
information. The Bayesian approach gives us straightforward and effective ways
to deal with this situation (Lecoutre et al., 2002).

It can again be outlined that the predictive distributions are also a useful tool
for constructing a subjective prior, as it is often easier to express an opinion
relative to expected data.

5.2. Bayesian computations and statistical packages

There is currently increasingly widespread application of Bayesian inference for
experimental data analysis. However, an obstacle to the routine use of objective
Bayesian methods is the lack of user-friendly general purpose software that
would be a counterpart to the standard frequentist software. This obstacle may
be expected to be removed in the future. Some packages have been designed to
learn elementary Bayesian inference: see, for example, First Bayes (O’Hagan,
1996) and a package of Minitab macros (Albert, 1996). With a more ambitious
perspective, we have developed a statistical software for Bayesian analysis of
variance (Lecoutre and Poitevineau, 1992; Lecoutre, 1996). It incorporates both
traditional frequentist practices (significance tests, confidence intervals) and rou-
tine Bayesian procedures (non-informative and conjugate priors). These proce-
dures are applicable to general experimental designs (in particular, repeated
measures designs), balanced or not balanced, with univariate or multivariate
data, and covariables. This software also includes the basic Bayesian procedures
for inference about proportions presented in this chapter.
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At a more advanced level, the privileged tool for the Bayesian analysis of
complex models is a method called Markov Chain Monte Carlo (MCMC). The
principle of MCMC techniques (Gilks et al., 1996; Gamerman, 1997) is to sim-
ulate, and consequently approximate, the posterior and predictive distributions
(when they cannot be determined analytically). This can be done for virtually any
Bayesian analysis. WinBUGS (a part of the BUGS project) is an any general
purpose flexible and efficient Bayesian software. It ‘‘aims to make practical
MCMC methods available to applied statisticians’’ and largely contributes to the
increasing use of Bayesian methods. It can be freely downloaded from the web
site: http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml. However, it can hardly
be recommended to beginners unless they are highly motivated.

Very recently, Bayesian analysis has been added in some procedures of the
SAS/STAT software. In addition to the full functionality of the original ones, the
new procedures produce Bayesian modeling and inference capability in gener-
alized linear models, accelerated life failure models, Cox regression models, and
piecewise constant baseline hazard models (SAS Institute Inc., 2006).

5.3. Some further topics

I do not intend to give here an exhaustive selection of topics, but rather to simply
outline some areas of research that seems to me particularly important for the
methodological development of objective Bayesian analysis for experimental
data.

5.3.1. The interplay of frequentist and Bayesian inference
Bayarri and Berger (2004) gave an interesting view of the interplay of frequentist
and Bayesian inference. They argued that the traditional frequentist argument,
involving ‘‘repetitions of the same problem with different data’’ is not what is
done in practice. Consequently, it is ‘‘a joint frequentist–Bayesian principle’’ that
is practically relevant: a given procedure (for instance, a 95% confidence interval
for a normal mean) is in practice used ‘‘on a series of different problems involving
a series of different normal means with a corresponding series of data’’ (p. 60).
More generally, they reviewed current issues in the Bayesian–frequentist synthe-
sis from a methodological perspective. It seems a reasonable conclusion to hope a
methodological unification, but not a philosophical unification.

Philosophical unification of the Bayesian and frequentist positions is not likely,
nor desirable, since each illuminates a different aspect of statistical inference.
We can hope, however, that we will eventually have a general methodological

unification, with both Bayesians and frequentists agreeing on a body of stand-
ard statistical procedures for general use. (Bayarri and Berger, 2004, p. 78)

In this perspective, an active area of research aims at finding ‘‘probability
matching priors’’ for which the posterior probabilities of certain specified sets are
equal (at least approximately) to their coverage probabilities: see Fraser et al.
(2003) and Sweeting (2005).
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5.3.2. Exchangeability and hierarchical models
Roughly speaking, random events are exchangeable ‘‘if we attribute the same
probability to an assertion about any given number of them’’ (de Finetti, 1972,
p. 213). This is a key notion in statistical inference. For instance, future patients
must be assumed to be exchangeable with the patients who have already been
observed in order to make predictive probabilities reasonable. In the same way,
similar experiments must be assumed to be exchangeable for a coherent inte-
gration of the information.

The notion of exchangeability is very important and useful in the Bayesian
framework. Using multilevel prior specifications, it allows a flexible modeling of
related experimental devices by means of hierarchical models (Bernardo, 1996).

If a sequence of observations is judged to be exchangeable, then any subset of
them must be regarded as a random sample from some model, and there exist a
prior distribution on the parameter of such model, hence requiring a Bayesian

approach. (Bernardo, 1996, p. 5)

Hierarchical models are important to make full use of the data from a mul-
ticenter experiment. They are also particularly suitable for meta-analysis in which
we have data from a number of relevant studies that may be exchangeable on
some levels but not on others (Dumouchel, 1990). In all cases, the problem can be
decomposed into a series of simpler conditional models, using the hierarchical
Bayesian methodology (Good, 1980).

5.3.3. The stopping rule principle: a need to rethink
Experimental designs often involve interim looks at the data for the purpose of
possibly stopping the experiment before its planned termination. Most experi-
mental investigators feel that the possibility of early stopping cannot be ignored,
since it may induce a bias on the inference that must be explicitly corrected.
Consequently, they regret the fact that the Bayesian methods, unlike the fre-
quentist practice, generally ignore this specificity of the design. Bayarri and
Berger (2004) considered this desideratum as an area of current disagreement
between the frequentist and Bayesian approaches. This is due to the compliance
of most Bayesians with the likelihood principle (a consequence of Bayes’ theo-
rem), which implies the stopping rule principle in interim analysis:

Once the data have been obtained, the reasons for stopping experimentation
should have no bearing on the evidence reported about unknown model

parameters. (Bayarri and Berger, 2004, p. 81)

Would the fact that ‘‘people resist an idea so patently right’’ (Savage, 1954) be
fatal to the claim that ‘‘they are Bayesian without knowing it?’’ This is not so
sure, experimental investigators could well be right! They feel that the experi-
mental design (incorporating the stopping rule) is prior to the sampling infor-
mation and that the information on the design is one part of the evidence. It is
precisely the point of view developed by de Cristofaro (1996, 2004, 2006), who
persuasively argued that the correct version of Bayes’ formula must integrate the
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parameter y, the design d, the initial evidence (prior to designing) e0, and the
statistical information i. Consequently, it must be written in the following form:

pðyji; e0; dÞ / ðyje0; dÞpðijy; e0; dÞ.

It becomes evident that the prior depends on d. With this formulation, both the
likelihood principle and the stopping rule principle are no longer automatic
consequences. It is not true that, under the same likelihood, the inference about y
is the same, irrespective of d. Note that the role of the sampling model in the
derivation of the Jeffreys prior in Bernoulli sampling for the Binomial and the
Pascal models was previously discussed by Box and Tiao (1973, pp. 45–46), who
stated that the Jeffreys priors are different as the two sampling models are
also different. In both cases, the resulting posterior distribution have remarkable
frequentist properties (i.e., coverage probabilities of credible intervals).

This result can be extended to general stopping rules (Bunouf, 2006). The basic
principle is that the design information, which is ignored in the likelihood func-
tion, can be recovered in the Fisher’s information. Within this framework, we can
get a coherent and fully justified Bayesian answer to the issue of sequential
analysis, which furthermore satisfy the experimental investigators desideratum
(Bunouf and Lecoutre, 2006).
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