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Preface

One of my hopes is that this small book will aid the readers, especially the young
ones, to develop their own judgment on the huge literature in the field and to make
some distinction between the “essence” and “the water”. It is also among the reasons
that the main themes of this small book are about fundamental issues of paradig-
matic nature. The reasons for using the term “issues of paradigmatic nature” instead
of, say, just “paradigms in turbulence” is due to the question on the very existence
of the latter (so far).

The main premises and the reasons/causes that it was possible to make this book
short are the absence of theory based on first principles and inadequate tools to han-
dle both the problem and the phenomenon of turbulence. Obviously, for this reason
the “essence” appears implicatively rather than explicitly. This state of matters was
and is continuously stressed in the community including many prominent scientists
and among them by Batchelor (1962), Kolmogorov (1985), Liepmann (1979), Lum-
ley and Yaglom (2001), von Neumann (1949), Ruelle (1990), Saffman (1978, 1991),
Wiener (1938), see Appendix for essential quotations.

Indeed, the heaviest and the most ambitious armory from theoretical physics and
mathematics was tried for more than fifty years, but without much success: genuine
turbulence, the big T-problem, as a physical and mathematical problem remains
unsolved.

It is not a trivial task to address things like paradigmatic issues (as, in fact, there
are no real paradigms in fundamental research of turbulence) in a field which—in
words of Liepmann is the graveyard of theories, so that one has to relay mainly
on the empirical evidence. The task is not made easier in view of no consensus on
what is (are) the problem(s) of turbulence, neither is there an agreement on what
are/should be the aims/goals of turbulence research/theories and what would consti-
tute its (their) solution.

The basic properties of turbulence of fundamental nature and the essential math-
ematical complications of the subject were only disclosed by actual experience with
the physical (and numerical) counterparts of these equations (von Neumann 1949)
and of the theoretical objects in question many of which still await to be found and
properly defined. Today, as before, observations remain the major exploratory tool
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viii Preface

in elucidating the properties of turbulence as a physical phenomenon. This is not
to claim absence of theory(ies). On the contrary, there are plenty—many with qual-
itatively different and even contradictory premises—all agreeing well with some
experimental data and even claiming rigor, but not necessarily for the right reasons
and not based on first principles with few exceptions having no direct bearing on the
Navier–Stokes equations and thereby being mostly out of scope of this book.

Paradoxically, due to the alarming overabundance and continuing major over-
production of publications of theoretical nature claiming “theory” or exploiting the
term turbulence in one way or another, the above task is made easier. This is because
most of such publications did not bring any real breakthrough in understanding and
have not much to do with the essence of turbulence without contributing to alle-
viating the long-lasting and continuing paradigmatic crisis in the basic research of
turbulence. There was still a need for the “Saffman’s criterion” (Saffman 1978),
in order to reduce the amount of references but complemented by typically giving
some early and latest references. The book by the author (Tsinober 2009), contains
more than one thousand references on basic issues, so that it may be of help also in
the context of this small book as the former is devoted also exclusively to the basic
issues.

Still in such a situation one has to make difficult choices on what one has to put
on paper. It is obvious, however, that the choice has to be made out of issues of
fundamental/basic nature which are based on fundamental observations/facts and
closely related issues.

The book is limited by incompressible flows and consists of three parts and an
Epilogue. Part I is devoted to main aspects of what is both the nature of the phe-
nomenon and the problem of turbulence, what equations describe turbulence ad-
equately, and also inadequately, along with some closely related issues. Part II is
about brief description of what are the origins of turbulence and in a bit more detail
about the nature of both the phenomenon and the problem with the emphasis on dis-
cussion of various facets of the “undeniably statistical nature” contrasted to the “de-
terministic origin” of turbulence as described by purely deterministic non-integrable
equations and related issues. This includes a discussion of the consequences of com-
plex behavior of systems described by purely deterministic equations such as the
necessity of change of the paradigmatic meaning of apparent randomness, stochas-
ticity of turbulence which is roughly just the complexity due to a large number of
strongly interacting degrees of freedom governed by the Navier Stokes equations.
Part III is a continuation of the previous part, and covers more specific issues, but not
less important. What follows comprises or are related to the second part of the major
qualitative universal features of turbulent flows briefly described in Chap. 1. A dis-
tinction is also made between the issues of paradigmatic nature and those which are
apparently/seemingly, i.e. pseudo-paradigmatic such as the most popular cascades.

The Epilogue is a brief reiteration of the main points with different more general
accents and reminding that all ideas/theories, etc. proposed so far did fall/failed
belong to the category of misconceptions and/or ill defined concepts, see Chap. 9 in
Tsinober (2009). These are followed by remarks on what next.

A. TsinoberTel Aviv, Israel
March, 2013
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Part I
The Phenomenon and the Problem

of Turbulence

Let us first understand the facts, and then we may seek for their causes
(Aristotle 384–322 BC).

Remember, when discoursing about water, to induce first experience, then
reason (Leonardo da Vinci 1452–1519).

We are certainly not to relinquish the evidence of experiments for the sake
of dreams and vain fictions of our own devising (Isaac Newton, Preface to his
Principia Mathematica, Motte translation as revised by F. Cajori, Berkeley,
1947, pp. xvii–xviii).

Studying nature, which is what natural sciences do, requires a flexible ap-
proach based on facts and not on dogmas (Ginzburg 2003, Autobiography).

It is of importance to make at the outset a clear distinction between the phe-
nomenon and the problem of turbulence—just like between the observations and
the theories attempting to explain them, which are far from being synonymous. One
has also to make a distinction between the nature of the phenomenon and of the
problem, for example, one cannot qualify the phenomenon of turbulence just as a
purely statistical object. The statistical/probabilistic nature is one among numerous
attempts to put turbulence into the Procrustean bed of some specific field pretty
arbitrarily and essentially just because it is more than very complex so that we are
still quite disoriented as to the relevant factors, and as to the proper analytical ma-
chinery to be used (von Neumann in Collected works, vol. 6, pp. 437–472, 1949).
Statistics is an approach in the first place, so one can hardly speak about statistical,
probabilistic, etc. nature of turbulence as a phenomenon. In contrast, one can easily
assign a statistical/random as contrasted to deterministic “nature” to a theory—with
the question whether such a theory is adequate to the phenomenon of turbulence.
In other words, theory—if such exists—is the human representation of the phe-
nomenon and it is important to make a distinction with the phenomenon itself.

Indeed, unlike other complicated phenomena it is easy to observe at least some
of the numerous manifestations of turbulence as a physical phenomenon, but it is
extremely difficult to comprehend, interpret, understand and explain—all this com-
prising the problem of turbulence.

The rest of this Part I is devoted to which equations describe turbulence ade-
quately, and also inadequately, along with some closely related issues.



Chapter 1
The Phenomenon of Turbulence as Distinct
from the Problem of Turbulence

Abstract The issue is about turbulence as a natural physical phenomenon as related
to observations as distinct from the problem of turbulence. The dichotomic distinc-
tion between laminar and turbulent flows is problematic in several respects. First,
most flows termed “turbulent” are in reality partly turbulent: some portions of the
flow as turbulent and some as laminar—the coexistence of the two regimes in one
flow is a common feature with continuous transition of laminar into turbulent state
via the entrainment process through the boundary between the two. Moreover, the
reality is not that simple as the laminar/turbulent dichotomy as, e.g. the behavior of
passive objects in flows with small Reynolds number looks as perfectly turbulent
reflecting the qualitative difference between the chaotic flow properties in Eule-
rian and Lagrangian settings. These examples illustrate the enormous difficulties in
defining what is both (i) turbulence and (ii) the turbulence problem. As concerns
(i) one can only provide a description of major qualitative universal (sic) features
of turbulent flows as obtained almost exclusively from observations (rather than by
any theoretical deliberations) which form most important part of the “essence” of
turbulence. This is because these mostly widely known qualitative features of all tur-
bulent flows are essentially the same, i.e., it is meaningful to speak about qualitative
universality of turbulent flows. It has to be stressed that the term “phenomenon of
turbulence” as used above is mostly associated with the observational aspects, which
in turbulence play far more important role due the unsatisfactory state of “theory”:
there seems to exist no such a thing based on first principles. Hence it is vital to put
the emphasis on the physical aspects based in the first place on observations.

The issue is about turbulence as a natural physical phenomenon as related to obser-
vations both passive and active.

A typical starting statement on turbulence is as follows:
It is known that all flows of liquids and gases may be divided into two sharply

different types; the quiet smooth flows known as “laminar” flows, and their oppo-
site, “turbulent” flows in which the velocity, pressure, temperature and other fluid
mechanical quantities fluctuate in a disordered manner with extremely sharp and
irregular space- and time-variations (Monin and Yaglom 1971, p. 1).

A. Tsinober, The Essence of Turbulence as a Physical Phenomenon,
DOI 10.1007/978-94-007-7180-2_1,
© Springer Science+Business Media Dordrecht 2014
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4 1 The Phenomenon of Turbulence as Distinct from the Problem of Turbulence

Fig. 1.1 Side view of a turbulent boundary layer visualized by smoke traces, courtesy of Professor
H. Nagib

However, as common as it is, this division is problematic in several respects.
First, looking at Fig. 1.1 one can easily see that the flow is only partly turbulent
(PTF).

Most flows termed “turbulent” are of this kind: boundary layers, all free shear
turbulent flows (jets, plumes, wakes, mixing layers), penetrative convection in the
atmosphere and in the ocean, gravity currents, avalanches and other phenomena at
the boundary between single phase fluid and fluid loaded by a sediment (which
includes resuspension), clear air turbulence, and many others (e.g., combustion).
Transitional flows consisting as a rule of turbulent regions growing in a laminar
environment (such as turbulent spots) are also partly-turbulent flows.

However, it is does not look as conceptually correct to say that a turbulent flow
(not a partly turbulent flow) is completely laminar locally, e.g. at small scales with
locally small Reynolds number, as in the examples belonging to a span of time
period of 65 years (Batchelor 1947; Southerland et al. 1994; Hamlington et al. 2012
and references therein). Another example is a problematic statement that “the large
scale circulation of the atmosphere is non-turbulent” though “the smaller scale flow
is certainly turbulent” (Cullen 2006).

In these flows one observes some portions of the flow as turbulent and some
as laminar—the coexistence of the two regimes in one flow is a common feature
with continuous transition of laminar into turbulent state via the entrainment pro-
cess through the boundary between the two. All these flows are also neither homo-
geneous nor isotropic with some other “N’s” , which has implications of using an
interpretation the data for comparisons, “validation” of theoretical stuff based on
homogeneous, isotropic and/or flows with periodic BC’s.

Both PTF’s and “purely” turbulent flows exhibiting a high degree of apparent
randomness and disorder often reveal the presence of what is termed frequently as
ordered embedded flow structures.

Another worthy mentioning is a class of very intense objects such as rotat-
ing storms in the atmosphere again existing in and coexisting with “ordinary”
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Fig. 1.2 May 28, 2004
Highway 12 Nebraska
Supercell. http://www.spc.
ncep.noaa.gov/exper/archive/
event.php?date=20040528

flows/regimes which, see Fig. 1.2. The intense objects are generally strongly tur-
bulent whereas the ordinary environment may be even close to a laminar state.

Moreover, the reality is not that simple as the laminar/turbulent dichotomy as
illustrated by Fig. 1.3 in which the flow looks perfectly turbulent. In fact, this is
a flow at Reynolds number of order unity with an essentially linear dependence
between the flow rate and the pressure drop and other dynamic attributes of laminar
flows at low Reynolds numbers. There is a great variety of flows with Reynolds
number effectively close to zero, i.e. laminar in Euler setting (E-laminar) but is
chaotic in Lagrangian setting (L-turbulent), for references (Tsinober 2009).

This is because what looks to be turbulent by employing visualizations such as
via observing passive objects, e.g. using some dye, may have nothing to do with
the behavior of dynamic variables such as velocity and vorticity and even with the
turbulent nature of the flow in question, and reflecting the chaotic nature of the
behavior of passive objects in a purely laminar flow in an Eulerian setting called
also Lagrangian/kinematic chaos, or “Lagrangian turbulence” as distinct from the
chaos in Eulerian setting. Another example is about the “streaks” in a turbulent flow
in a plane channel (Baig and Chernyshenko 2005). Although the vortical structure
of the flow is the same, the scalar streak spacing varies by an order of magnitude
depending on the mean profile of the scalar concentration. Moreover, passive-scalar
streaks were observed even in an artificial “structureless” flow field.

The above examples illustrate the enormous difficulties (and impossibility, so
far) in defining what is both (i) turbulence/turbulent motion1 and (ii) the turbulence
problem. As concerns (i) one can only provide a description of major qualitative

1Though there are many attempts to do so. In contrast to mathematical theories in which the defini-
tion of the main object of the theory precedes the results, in turbulence (as in any field of physics)
even if such a definition would be possible it is likely to come after the basic mechanisms of
turbulence as a physical phenomenon are well understood.

In any case there is considerable ‘turbulence’ in the attempts to define what is turbulence indi-
cating that such attempts at the present stage are futile not to mention that no adequate theory is
in existence.

http://www.spc.ncep.noaa.gov/exper/archive/event.php?date=20040528
http://www.spc.ncep.noaa.gov/exper/archive/event.php?date=20040528
http://www.spc.ncep.noaa.gov/exper/archive/event.php?date=20040528
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Fig. 1.3 Mixing in PPM—partitioned-pipe mixer at very low Reynolds number. (a) Schematic
of the PPM, (b) is a close-up of the upper part of (c). From Kush and Ottino (1992). For other
examples see references in Tsinober (2009)

universal (sic) features of turbulent flows as obtained almost exclusively from ob-
servations rather than by any theoretical deliberations, see the quotation by von
Neumann (1949) in the Appendix essential quotations.

1.1 Major Qualitative Universal Features of Turbulent Flows

The list below contains a brief description of the major qualitative universal fea-
tures of turbulent flow. Important quantitative and more specific features will be
discussed in more detail in the sequel. These altogether form most important part of
the “essence” of turbulence.
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• Intrinsic spatio-temporal apparent randomness. Turbulence is definitely chaos.
However, vice versa, generally, is not true: many chaotic flow regimes are not nec-
essarily turbulent, e.g. Lagrangian/kinematic chaos or ‘Lagrangian turbulence’
(L-turbulent), but laminar in Euler setting flows (E-laminar). One of the most im-
portant aspects is that the apparent stochastic/random nature of turbulent flows
is its intrinsic property,2 i.e. self-stochastization or self-randomization. We em-
phasize the term apparent randomness/stochasticity: after all turbulent flows are
known (so far) to be governed by the NSE which are purely deterministic, so that
there is quite a bit of a problem with the random/deterministic dichotomy either
just like with the use of term randomness and its synonyms.

• Extremely wide range of strongly and non-locally interacting degrees of freedom
which are not necessarily synonymous to the most popular modes of some decom-
position. Turbulent flows are very large systems. In atmospheric flows, relevant
scales range from hundreds of kms to parts of a mm, i.e., there exist ∼ 1029 ex-
cited degrees of freedom, many of which are strongly interacting. Hence extreme
complexity of turbulence enforcing the statistical description of turbulent flows.
We emphasize again that statistical description is not synonymous to statistical
theorization not to mention statistical “nature”.

• Loss of predictability, which is one of the attributes of the chaotic nature of turbu-
lence. Two initially nearly (but not precisely) identical turbulent flows become un-
recognizably different on the time scale of dynamic interest. However, generally,
different realizations of the same turbulent flow have the same statistical proper-
ties. In this sense the statistical properties (not only some means, but almost all
statistical properties) of turbulent flows are insensitive to disturbances—turbulent
flows are statistically stable as possessing statistically stable properties.

The above items are discussed in Part II, the rest in Part III.
• Turbulent flows are three-dimensional, highly dissipative and thereby time ir-

reversible and rotational, i.e., carry lots of strain and vorticity. Thus the field
of velocity derivatives is of special importance. One of the key physical pro-
cesses is the predominant production of the velocity derivatives, to stress both
strain/dissipation and vorticity as almost equal partners. “Almost” is because it is
the strain production is responsible for production of both contrary to common
view about amplification vorticity. These attributes are, probably, the most spe-
cific and important as concerns fluid dynamic turbulence. On the paradigmatic
level it is the nonlinearity that is responsible for these most basic key properties
of turbulence as essentially rotational and strongly dissipative phenomenon. It is
noteworthy that the predominant production of velocity derivatives is irreversible,
i.e. not just dissipation is responsible for the irreversibility.

There is no consensus whether two-dimensional chaotic flows even with many
degrees of freedom should be qualified as turbulence. The main reason is that

2Cf. with the case of random boundary/initial conditions and random noise on the RHS of NSE. Of
special interest for this comparison are systems/equations which do not exhibit any quasi-random
behavior without external stochastic excitation. For example, Burgers and Korteveg de Vries equa-
tions or just the NSE at small Reynolds numbers.
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such flows lack the mechanism of vorticity and strain amplification and weak
excitation of small scales.

• Strongly diffusive (random waves are not). Turbulent flows exhibit strongly en-
hanced transport processes of momentum, energy, passive objects (scalars, e.g.,
heat, salt, moisture, particles; vectors, e.g., material lines, gradients of passive
scalars, magnetic field). It should be emphasized that in respect with passive ob-
jects this property is true of a much broader class of systems. Namely, any ran-
dom velocity field and even laminar flows in Euler setting, which are Lagrangian
chaotic, exhibit enhanced transport of passive objects.

• Strongly nonlinear, non-integrable, nonlocal, non-Gaussian with some more N’s,
see Chap. 7.

These mostly widely known qualitative features of all turbulent flows are es-
sentially the same, i.e., it is meaningful to speak about qualitative universality of
turbulent flows. We discuss this issue in Chap. 8.

It has to be stressed that the term “phenomenon of turbulence” as used above
is mostly associated with the observational aspects, which in turbulence play far
more important role due the unsatisfactory state of “theory”: there seems to exist no
such a thing based on first principles. It is vital to put the emphasis on the physical
aspects based in the first place on observations with the distinction between “active”
and “passive”. Otherwise, such an endeavor becomes pretty problematic due to the
highly dimensional nature of the phenomenon: one can do a continuum of things
leading to nowhere or at best with very small useful output. In other words, we
stress that the observational aspect is not that trivial in such a highly-dimensional
system as turbulence. It is intimately related to the skill/art of asking the right and
correctly-posed questions: one has to have at least some idea what to look at and
for what reason, i.e. one has to have some idea about what is (are) the problem(s) of
turbulence. The latter brings us to the issue of the problem of turbulence.



Chapter 2
The Problem of Turbulence as Distinct
from the Phenomenon of Turbulence

Abstract The issue involves a set of questions concerning theory(ies) of turbulence
and questions such as what is physics and what is mathematics of turbulence and
what are the physical/mathematical problems of turbulence.

Though there is no acceptable definition of (what is) turbulence as a physical
phenomenon, the relative “easiness” of observing its diverse manifestations leaves
less problems than in the above. There is no consensus on what is (are) the prob-
lem(s) of turbulence and what would constitute its (their) solution. There are even
doubts about the very existence of the problem or any essence in it, so that the fail-
ure so far of theoretical efforts may be blamed on the problem itself. Neither is there
agreement on what constitutes understanding. There is also no consensus on what
are the main difficulties and why turbulence is so impossibly difficult: almost every
aspect of turbulence is controversial, which by itself is one of the greatest difficul-
ties. As concerns the basic aspects of the problem there is far more to say about the
difficulties rather than achievements. The problem was recognized by Neumann and
Kolmogorov among others.

The most acute difficulty is of basic and conceptual nature and concerns the
physics of turbulence and the lack of knowledge about the basic physical processes
of turbulence, its generation and origin, and poor understanding of the very few
processes which are already known. One of the key physical processes is the pre-
dominant production of the velocity derivatives, to stress both strain/dissipation and
vorticity as almost equal partners. “Almost” is important because it is the strain
production is responsible for production of both contrary to common view about
amplification of vorticity. These attributes are, probably, the most specific and im-
portant as concerns fluid dynamic turbulence. Another set of much neglected issues
is about the nonlocal properties of turbulence and related questions such as the ill
posedness of the concepts/paradigms of inertial range and cascade, and the role of
large scales and viscosity/dissipation; scale invariance, symmetries and universality
in turbulence; origins of intermittency and the so-called ‘anomalous scaling in the
inertial range’ just to mention some.

This state of matters to a large extent can be qualified as long-lasting and contin-
uing paradigmatic crisis.
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The issue involves a set of questions concerning theory(ies) of turbulence and ques-
tions such as what is physics and what is mathematics of turbulence and what is the
physical/mathematical problem of turbulence; what equations describe turbulence
adequately. The very question is a problem—how one can decide whether, say, NSE
are adequate or what are the equations of turbulent motion, see Chap. 3.

Though there is no acceptable definition of (what is) turbulence as a physical
phenomenon, the relative easiness of observing its diverse manifestations leaves less
problems than in the question what is/comprises (are) the scientific, mathematical
and physical, problem(s) of turbulence. There is no consensus on what is (are) the
problem(s) of turbulence and what would constitute its (their) solution.1 Neither is
there agreement on what constitutes understanding. Also just like no sophisticated
experiment, laboratory or DNS,2 by itself does not bring understanding, neither does
modeling of whatever sophistication. This can be brought only by a genuine theory,
which seems to be not in existence so far. Though there exists a set of deterministic
differential equations, the Navier–Stokes equations (NSE), probably containing (al-
most) all of turbulence, most of our knowledge about turbulence comes from obser-
vations and experiments, laboratory, field and later numerical, which is unfortunate
as theory is supposed to guide and gives meaning to observation.3 This was under-

1There are even doubt about the very existence of the problem or any essence in it, so that he failure
so far of theoretical efforts may be blamed on the problem itself:

I hope that my talk will help to clarify a number of the problems and I think that some of the
models of chaotic phenomena that I will discuss are illuminating and suggestive, but it is far too
early to claim that any of them gives the essence of the phenomenons of turbulence—if indeed it is
a single phenomenon and has an essence (Martin 1976).

. . . we should not altogether neglect the possibility that there is no such thing as ‘turbulence’.
That is to say, it is not meaningful to talk of the properties of a turbulent flow independently of
the physical situation in which it arises. In searching for a theory of turbulence, perhaps we are
looking for a chimera (Saffman 1978).

However, today there is no doubt about the existence of a set of qualitatively universal proper-
ties comprising the essence of any three-dimensional turbulent flow. This is result of dealing in the
first place with the phenomenon itself, rather than with “theories”, though excessively and quite
ineffectively.
2Progress in numerical calculation brings not only great good but also awkward questions about
the role of the human mind. . . The problem of formulating rules and extracting ideas from vast
masses of computational or experimental results remains a matter for our brains, our minds (Zel-
dovich 1979).

There are essential differences between physical and numerical experiments. If underresolved
the former still provide correct information which is a problem with the latter especially as concerns
numerical errors sometimes interpreted as genuine chaos.
3This is the main reason that this book is biased experimentally and this is why the importance of
experimental research in turbulence goes far beyond the view of those who think of an experimen-
talist as a superior kind of professional fixer, knowing how to turn nuts and bolts into a confirmation
of their theories. From the basic point of view there is almost nothing to be confirmed so far. In
absence of true theory and in view of the high dimensional nature of the problem the issue of con-
firmation/validation of ‘theories’ in turbulence is far more serious than just checking the ‘validity’
of some formulae or any other theoretical stuff via comparison with limited experimental evidence,
especially because turbulence is a highly dimensional problem.
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stood long ago by many outstanding people, Kolmogorov, Von Neumann, Wiener
and many other, see references and quotations for the preface in the Appendix.

Indeed, the basic properties of turbulence of fundamental nature such as the ma-
jor features listed above among others were only disclosed by actual experience
with the physical (and numerical) counterparts of the theoretical objects in question
many of which still await to be found and properly defined. Today, as before, the ex-
periment (physical and numerical) remains the major exploratory tool in elucidating
the properties of turbulence as a physical phenomenon. This is not to claim absence
of theory(ies). On the contrary, there are plenty—many with qualitatively different
and even contradictory premises/assumptions—all agreeing well with some experi-
mental data, but not based on first principles, i.e. with few exceptions have no direct
bearing on the Navier–Stokes equations and thereby being mostly out of scope of
this book as lacking the main attribute of a true theory:

The problem of turbulence is not just to find more accurate formulae for various
physical quantities associated with a turbulent fluid, but also to obtain a conceptu-
ally satisfactory theory based on first principles. . . In spite of satisfaction which one
may have in writing rigorous inequalities originating from nontrivial linear theory,
it must be said that the great difficulty which remains is to understand the nonlinear
objects of turbulence (Ruelle 1990). But as mentioned ‘understanding’ is a vague
concept, just like it is far from being clear enough what are ‘the nonlinear objects
of turbulence’, though some would jump on ‘coherent structures’ which along with
some other objects called “structures” still are pretty elusive and share quite a bit
in common with the Emperors’s new Clothes. Unfortunately, this is true of several
other aspects of turbulent research.

In general terms and in absence of true theory the physical/mathematical problem
is to identify, understand/interpret and explain the major basic/fundamental physical
mechanisms that, e.g. result in the major qualitative universal properties of turbu-
lent flows as described above along with some other specific fundamental issues.
This includes the identification and study of the significant nonlinear objects of tur-
bulence, i.e. what objects are right to look at and requires non-trivial efforts from
theoretical physicists and mathematicians. Reiterating, so far, neither theoreticians
nor the mathematicians were able to achieve any of these goals.

Indeed, though the heaviest and the most ambitious armory from theoretical
physics and mathematics was tried for more than fifty years, as concerns the ba-
sic/fundamental aspects, the progress is far less than modest and the state of matters
is not much different from that described by Batchelor (1962), Liepmann (1979),
von Neumann (1949), Saffman (1968, 1991) along with many other famous scien-
tists, see Appendix essential quotations and Tsinober (2009).

Along with widely recognition that turbulence is formidably difficult,4 just like
there is no consensus on what is (are) the problem(s) of turbulence and what would

4The mood was not always that skeptical. Here are two examples from outstanding people.
Hopf (1952): My attempts at finding the “relevant” solutions of the α-equation have been

unsuccessful even in the simplest case of boundary-free flow, but I believe that the mathematical
difficulties of the problem arise from the fact that it is unprecedented and not from any intrinsic
complexity.
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constitute its (their) solution, there is no consensus on what are the main difficulties
and why turbulence is so impossibly difficult: almost every aspect of turbulence
is controversial, which by itself is one of the greatest difficulties. As concerns the
basic aspects of the problem there is far more to say about the difficulties rather
than achievements. The difficulties mentioned by Neumann and Kolmogorov among
others comprise only a part of the whole set of difficulties. Naturally, this is one of
the themes throughout this small book along with the emphasis on the key issues of
turbulence as a physical phenomenon.

2.1 On Physics and Mathematics of Turbulence

One of the key words is—as expected—difficulties, so that a considerable place is
taken here discussing this issue.

The most acute difficulty is of basic and conceptual nature and concerns the
physics of turbulence and the lack of knowledge about the basic physical processes
of turbulence, its generation and origin, and poor understanding of the very few
processes which are already known. For example, the underlying mechanisms of
predominant vortex stretching, which is why in turbulent flows vorticity is stretched
more than compressed, are poorly understood and essentially not known. Until re-
cently a not less important concomitant process of strain production was mostly
neglected by the community. It is this process, rather than vortex stretching, that is
directly responsible for the enhanced dissipation of turbulent flows and even feeds
the process of predominant vortex stretching as well. There are qualitative differ-
ences between the two. The enstrophy production is a nonlocal process, whereas
the strain production is mostly a local process, i.e. self-production. It is noteworthy
that this “self” is conditional in the sense that the field of strain is efficient in the
above two missions only with the aid of vorticity, i.e. only if the flow is rotational.
Another set of much neglected issues is about a set of nonlocal properties of tur-
bulence and related questions such as the ill posedness of the concepts/paradigms
of inertial range and cascade, and the role of large scales and viscosity/dissipation;
scale invariance, symmetries and universality in turbulence; origins of intermittency
and the so-called ‘anomalous scaling in the inertial range’ just to mention some.

This state of matters to a large extent can be qualified as long-lasting and contin-
uing paradigmatic crisis. Indeed, the basic properties of turbulence of fundamental
nature, such as the major features listed above among others, were only disclosed

Kraichnan (1961): In order to keep the formalism as simple as possible, we shall, work here
with the one-dimensional scalar analog to the Navier–Stokes equation proposed by Burgers. In
the method to be presented here, the true problem is replaced by models that lead, without ap-
proximation, to closed equations for correlation functions and averaged Green’s functions. . . The
treatment of Navier–Stokes equation for an incompressible fluid, which we shall discuss briefly,
does not differ in essentials.

The temptations with such and similar analogies are still going on.
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by actual experience with the physical and numerical counterparts of the theoreti-
cal objects in question (von Neumann 1949) many of which still await to be found
and properly defined. Today, as before, the observations and experiments, physical
and numerical, remain the major exploratory tool in elucidating the properties of
turbulence as a physical phenomenon.

Another kind/set of difficulties is mostly of a formal/technical nature and
concerns the lack of adequate tools to handle the problem(s)—both theoreti-
cal/mathematical and experimental, especially at large Reynolds numbers not ac-
cessible via DNS.

Whatever the tools applied the emphasis in the sequel is made among other things
on the difficulties of general nature in the contexts of conceptual and fundamental
nature.



Chapter 3
What Equations Describe Turbulence
Adequately?

Abstract As for today the standpoint of continuum mechanics reflected by the
Navier–Stokes equations as a coarse graining over the molecular effects is consid-
ered as adequate the and “Perhaps the biggest fallacy about turbulence is that it
can be reliably described (statistically) by a system of equations which is far easier
to solve than the full time-dependent three-dimensional Navier–Stokes equations”
(Bradshaw in Exp. Fluids 16:203–216, 1994).

One of the hot issues is on large Re, zero viscosity limit and relevance of Eu-
ler equations with the natural but futile tendency to “circumvent” in a variety of
ways (as described in this chapter) the singular nature of the zero viscosity limit.
A variety of empirical observations show clearly that turbulence is not a slightly
viscous/dissipative phenomenon and that inertial and dissipative effects are of the
same order at whatever Reynolds number and are not limited each by its own range
of scales. This is manifested not only by the finite energy dissipation rate, but
among other evidence, for example, by the so called Tennekes and Lumley bal-
ance between the enstrophy production (and similarly strain) and its viscous de-
struction/‘dissipation’, so that vorticity is not frozen in the flow field—again at any,
however, large Reynolds numbers.

Special mentioning deserve the issue of utility of various decompositions. Being
useful in many respects in the analysis of both flow states and processes decomposi-
tions have a rich potential (i) to be misused leading to misconceptions and ambigui-
ties and introducing non-trivial artifacts and spurious effects due to properties of the
decompositions not characteristic of genuine turbulence and not found in physical
space and (ii) become an object of study by themselves keeping many people busy
to a large extent with the properties of decompositions themselves rather than with
genuine physics of turbulence. The above is among the reasons why decomposi-
tions became to some extent less productive/useful and even obscuring the physics
of turbulence.

An important issue concerns the formal equivalence of Eulerian and Lagrangian
representations. However, the latter appear to be ‘more chaotic’ with the multitude
of E-laminar flows having no counterpart to the corresponding L-turbulent statistics
in the same fluid flow.

One more problem is with use of functional analysis as “suspect” to belong to
excessive generalizations or ‘overgeneralizations’ dealing with generally singular
objects of unknown relevance to the physical phenomenon of turbulence. This ten-
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dency for overgeneralization in science was criticized by Poincare at the beginning
of the 20-th century 1902.

The title contains already a statement that some equations do which is definitely a
luck. The existing evidence and the consensus is that these are the Navier–Stokes
equations. This short statement has quite a bit behind. At this stage the most im-
portant is that the observed properties of turbulence statistical and not, for a given
flow geometry and a given Reynolds number, are the same in air as in water and
many other Newtonian fluids very different at a molecular level and share very little
except the Navier–Stokes equations.

3.1 Navier–Stokes Equations

Perhaps the biggest fallacy about turbulence is that it can be reliably described (statisti-
cally) by a system of equations which is far easier to solve than the full time-dependent
three-dimensional Navier–Stokes equations (Bradshaw 1994).

Though the NSE have a limited kinetic foundation, they are commonly believed
to be adequate in the sense that their solutions correspond to real fluid flows and,
indeed, there exists large empirical evidence that NSE are adequate, at least, at all
accessible Reynolds numbers. Theoretically this is not obvious, since the NSE are
a gradient expansion. So in principle, higher order terms may become dominant in
regions with large velocity gradients, but so far there no evidence for this.1

Thus as for today the standpoint of continuum mechanics reflected by the NSE
as a coarse graining over the molecular effects is considered as adequate. One of
the basic reasons for the success of the NSE is the existence of a gap between the
scales of molecular motions and the scales of the smallest relevant scales in fluid
flows including turbulence.

Thus at least formally, as concerns ‘theory’ the first step is to solve the Navier–
Stokes equations subject to initial and boundary conditions and forcing. At present,
it is possible to obtain fully resolved solutions at modest Reynolds numbers via di-
rect numerical simulations of the Navier–Stokes equations. Such solutions are in

1But see Goldstein (1972) concerning the success of NSE equations for the laminar flows of vis-
cous fluids, but even in this case, it is, in fact, surprising that the assumption of linearity in the
relation between τij and sij as usually employed in continuum theory, . . . works as well, and over
as large a range, as it does. Unless we are prepared simply to accept this gratefully, without further
curiosity, it seems clear that a deeper explanation must be sought.

Also, Ladyzhenskaya (1975) and McComb (1990), Friedlander and Pavlović (2004) on alter-
natives to NSE, and Tsinober (1998b, 2009) and references therein. In any case it is safe to keep in
mind that no equations are Nature.

Note also the statement by Ladyzhenskaya (1969): . . . it is hardly possible to explain the tran-
sition from laminar to turbulent flows within the framework of the classical Navier–Stokes theory.

Finally, since Leray (1934) one was not sure about the (theoretical, but not observational) pos-
sibility that turbulence is a manifestation of breakdown of the Navier–Stokes equations.
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some sense of the same nature as the data available from observations, but both
are only necessary for the beginning of the process called understanding. However,
strong arguments were given that looking at the behavior of a particular solution
may not necessarily contribute much to the understanding of the basic physics of
turbulent flows, so that nothing less than a thorough understanding of the [global
behavior of the] system of all their [NSE] solutions would seem to be adequate
to elucidate the phenomenon of turbulence. . . There is probably no such thing as
a most favored or most relevant, turbulent solution. Instead, the turbulent solu-
tions represent an ensemble of statistical properties, which they share, and which
alone constitute the essential and physically reproducible traits of turbulence2 (von
Neumann 1949). That is in order to understand the dynamics, or the main charac-
teristics of the dynamics, it is necessary to understand a significant portion of the
phase flow. However, at present (if ever) it is impossible due to very high dimension
and complex behavior of turbulent flows and structure of the underlying attractors
(assumed to exist): one may never be able to realistically determine the fine-scale
structure and dynamic details of attractors of even moderate dimension. . . The the-
oretical tools that characterize attractors of moderate or large dimensions in terms
of the modest amounts of information gleaned from trajectories [i.e., particular so-
lutions]. . . do not exist. . . they are more likely to be probabilistic than geometric in
nature (Guckenheimer 1986). Note the accent on “probabilistic tools” rather than
“nature” in contrast to, e.g. Foiaş et al. (2001).

In other words, one has so far to resort to statistical methods of data processing
and analysis (not synonymous to statistical theorization) as the necessity imposed
by extremely intricate, complex, effectively/apparently and seemingly random be-
havior along with a huge number of strongly and nonlocally interacting degrees of
freedom.

With all this we will take the position that the basic block of the operational
truth is provided by a solution of a “master” problem such as an initial, boundary
conditions problem with deterministic (rather than stochastic/random) forcing for
the NSE without stratification, rotation, combustion, etc. if not stated otherwise,
assuming that such a problem is well posed, which seems to be the case for the
NSE. Though the latter is still not rigorously proven there is evidence and consensus
is that NSE most probably contain all of incompressible turbulence. We return to the
issue of the dichotomy deterministic—statistical and related in Chap. 5.

There are serious issues about adequate boundary and initial conditions relevance
of the Euler equation and other equations “replacing” NSE such as employing hy-
perviscosity, Galerkin truncations and decimated approaches among others.

2However, a far less-trivial issue is ergodicity, i.e. if the flow is statistically stationary, the common
practice is to use one long enough realization, i.e. it may suffice to have such a realization at least
for those who believe that statistics is enough. The basis of this is the ergodicity hypothesis, see
Chap. 6.
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3.1.1 On Boundary Conditions

Using the NSE for simulating real turbulent flows is quite a bit more complicated
due to the problems with the boundary conditions. Among others these include in-
flow and outflow conditions, and problems with the so called and popular periodic
boundary conditions believed to be appropriate in DNS computations to mimic (but
seems that not more than that!) some artificial/idealistic flows such as statistically
homogeneous turbulent flows or flows with a homogeneous direction(s). An exam-
ple of a problem of conceptual nature is represented by good agreement between the
results of typical DNS computations of NSE of turbulent flows (e.g., in a circular
pipe and a plane channel, in a cubic box, etc.) with periodic boundary conditions
with the results obtained for real flows in laboratory, in which the boundary condi-
tions have nothing to do with periodicity and pretty frequently even not well known,
and in which the initial conditions were totally different from those used in DNS.
Other examples concern the role “remaining” for boundary conditions at zero vis-
cosity limit, relevance of the Euler equation, etc.

3.2 Large Re, Zero Viscosity Limit and Relevance of Euler
Equations

One of the ‘natural’ conjectures in the mathematical community was that turbulent
flows may be described asymptotically correctly by some sort of specially selected
weak, i.e. distributional solutions of the Euler equations, though these singular solu-
tions have little to do with real physics at any however large Reynolds number. This
was prompted mainly by two inputs. The first is the hypothesis on the existence at
high Reynolds numbers of the so called inertial range in which viscosity/dissipation
play no role (Kolmogorov 1941a), the second is the conjecture by Onsager (1949)
that not smooth enough solutions of the Euler equations do not conserve energy, i.e.
in some sense are “dissipative” and thereby time irreversible.

It is the right place to remind that dissipation (energy input) or drag only are
not sufficient to define the properties of a turbulent flow. For example, Bevilaqua
and Lykoudis (1978) performed experiments on flows past a sphere and a porous
disc with the same drag. However, other properties of these flows even on the level
of velocity fluctuations were quite different; see also Wygnanski et al. (1986) who
performed similar experiments with a larger variety of bodies with the same drag,
and also references in George (2012). It should be kept in mind that in both cases
the flow was partly turbulent and most probably had different large scale stability
properties for different bodies not directly related to the turbulent nature of the flow
within the wake. This may contribute too to the differences in the observations.
Similarly, many properties of turbulent flows with rough boundaries are not defined
uniquely by their friction factor either (Krogstad and Antonia 1999).

The existence of such weak solutions of the Euler equations has not been proven.
Even though a nontrivial and important question is about what happens in the zero-
viscosity singular limit to quantities described by smooth physically meaningful
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solutions of the Navier–Stokes equations. This concerns not only the conserved
quantities in Euler such as energy, but also key quantities such as strain, vorticity,
their production, acceleration (especially its solenoidal part) among others. More
problematic are geometrical issues even the most elementary as the alignments of
vorticity with the eigenframe of strain. In problems with long time behavior, i.e.
infinite time limit there is a problem that the result, generally, appears not the same
depending on the order which limit is taken first. This contrasts the absence of such
a problem for any finite however large Reynolds number.

A variety of empirical observations show clearly that turbulence is not a slightly
viscous/dissipative phenomenon and that inertial and dissipative effects are of the
same order at whatever Reynolds number and are not limited each by its own range
of scales. This is manifested not only by the finite energy dissipation rate, but
among other evidence, for example, by the so called Tennekes and Lumley bal-
ance between the enstrophy production (and similarly strain) and its viscous de-
struction/‘dissipation’, so that vorticity is not frozen in the flow field—again at any,
however, large Reynolds numbers. This is not surprising as the zero-viscosity limit
is singular. Nevertheless, there are numerous attempts to construct “theories” based
solely on Euler equations with justifications such as that a theorem which is valid for
any finite, but very large, Reynolds number is expected to be compatible with results
concerning infinite Reynolds number (Bardos and Titi 2007), also (Migdal 1995).
Such expectations, however, are not convincing since as mentioned the vanishing
viscosity limit of solutions of Navier–Stokes equations is singular. Moreover, the
existing experimental evidence does not provide any indication whatsoever that Eu-
ler equations are relevant to turbulence which is a strongly dissipative phenomenon
of non-local nature at any however large Reynolds number.

Another theme is about the so called truncated Euler equations in which the ther-
malized modes (smaller scales) act as a fictitious microworld on modes with smaller
wave numbers in such a way that the usual dissipative Navier–Stokes dynamics is
recovered at large scales because artificial microscopic systems can act just like
the real ones as far as the emergence of hydrodynamics is concerned and because
dissipation in real fluids is just the transfer of macroscopically organized (hydrody-
namic) energy to molecular thermal energy (Frisch et al. 2008). One of the problems
here is that in real fluids the role of strain field is not limited just by dissipation. The
consequence is that the nature of dissipation makes an essential qualitative differ-
ence including nonlocal effects so that different dissipative mechanisms result in
different outcomes including the “inertial range” contrary to the common beliefs,
see Chaps. 7 and 8.

3.3 Averaged Equations, Filtering, Decompositions and Similar
Approaches/Issues

Based on detailed assessment of an attractor dimension it is shown that a low dimensional
quantitative model is very likely fools’ quest (Sirovich 1997).

The intricacy of turbulent flows as a high dimension phenomenon with its many
degrees of freedom and nonlinear not weak interaction prompted the question
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whether a kind of low-dimensional description is possible (Kraichnan and Chen
1989), for more see Chap. 3 in Tsinober (2009). It was made meaningful by the
fortunate empirically observed property of turbulent flows exhibiting reproducible
statistical properties including averages, though had nothing more justifying the as-
sumption of such a possibility. This resulted in Reynolds averaged Navier–Stokes
equations (RANS) and large eddy simulations (LES) and similar modeling ap-
proaches such as methods of stochastic modeling. The key word is “modeling” as
all of these approaches produce “equations of turbulent motion”, using the language
of Monin and Yaglom (1971, p. 20), which are always unclosed. The consequence is
that one needs additional information to close these equations. This is the so called
closure problem, in which one treats explicitly only a small fraction of the whole
flow field, e.g. modes in some decomposition and represent the dynamic effects of
the “rest” of the flow, typically small scales, by some additional information based
on dimensional analysis, variety of scaling arguments, symmetries, invariant proper-
ties and various assumptions, many of which are of unknown validity and obscured
physical and mathematical justification (if any) along with using non-trivial “surg-
eries” with removal large fractions of the flow field. The really acute question is
whether all these “equations of turbulent motion” are adequate in describing the
genuine/true physics of turbulent flows, i.e. whether all they do really deserve to be
termed as “equations of turbulent motion” or they just mimic some the properties
of turbulent flows not necessarily for the right reasons. It is only formally the ori-
gin of the closure problem looks as essentially technical due to the nonlinearity, but
formidably difficult and so far unsolved, if ever. The above questions are of con-
ceptual nature and utmost importance as they are about the nature, properties and
the role of the “rest”, i.e. of the part of the flow not treated explicitly, i.e. modeled.3

In other words, these questions are about whether or not adequate reduced descrip-
tion of the highly dimensional problem is possible from the fundamental point of

3Saffman wrote in (1968): A property of turbulent motion is that the boundary conditions do not
suffice to determine the detailed flow field but only average or mean properties. For example,
pipe flow or the flow behind a grid in a wind tunnel at large Reynolds number is such that it is
impossible to determine from the equations of motion the detailed flow at any instant. The true
aim of turbulence theory is to predict the mean properties and their dependence on the boundary
conditions.

The latter view is still very popular in the community. Such an aim may be interpreted as giving
up important aspects of understanding the physics of basic processes of turbulent flows. Indeed,
there exist a multitude of various “theories” predicting at least some of the mean properties of some
flows, but none seem to claim penetration into the physics of turbulence.

It may be said that most of the theoretical work on the dynamics of turbulence has been devoted
(and still is devoted) to ways of overcoming the difficulties associated with the closure problem
(Monin and Yaglom 1971, p. 9).

These difficulties have not been overcome and it does not seem that this will happen in the near
future if at all. There are several reasons for this. One of the hardest is the nonlocality property
which is discussed in Chap. 7.

We mention that formally there exist two closed formulations which in reality are suspect to be
just a formal restatement of the Navier–Stokes equations, at least, as concerns the results obtained
to date. One is due to Keller and Friedmann (1925) infinite chain of equations for the moments and
the equivalent to this chain Hopf equation in term’s of functional integrals (Hopf 1952).
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view. The crucial—explicit and/or implicit—assumption here is that the “rest” is
somehow ‘slaved’ to the explicitly treated part of the flow (ETPF) without any re-
action back and serving at best as a passive sink of energy so that the ‘rest’ can be
“parameterized” in a simple way. This is a major misconception: the rich direct an
bidirectional coupling between large and small scales comprises an essential part
of the complex interaction between the multitude of the degrees of freedom in tur-
bulent flows. Indeed, there is a variety of manifestations of direct and bidirectional
impact/coupling of large and small scales which is essentially nonlocality: turbulent
flows appear to be far more nonlocal than a theoretician would like to encounter.

Indeed, even just looking at the equations for the small/unresolved scales
it is straightforward to realize that the small/unresolved scales depend on the
large/resolved scales via nonlinear space and history-dependent functionals, i.e. es-
sentially non-local both spatially and temporally. So it is unlikely—and there is ac-
cumulating evidence for this—that relations between them (such as “energy flux”,
but not the only) would be approximately local in contradiction to K41a hypotheses
and surprisingly numerous efforts to support their validity.

One of the severe consequences of low dimensional approaches, i.e. closure, is
that the essential dynamics and physics of the rotational and dissipative effects,
which are mostly “small scale” ones, are treated in terms of transport coefficients
like an eddy viscosity.

Another related misconception is that the large/resolved, etc. scales obey in some
sense just the Euler equation, e.g. Landau and Lifshits (1987), Migdal (1995).

As it stands now all the enormous effort in this direction—being useful in a great
variety of applications—lacks inherently the basis to be used in the issues of funda-
mental nature, though some people believe that successful approximation methods
would almost certainly illuminate the physics of turbulent flow (Salmon 1998). The
key words are ‘successful approximations’ and the remaining big question is how
successful are “equations of turbulent motion” in the sense just mentioned above in
the context of basic physics of turbulence. So far, any modeling remains modeling
only and in principle cannot contribute to the basic aspects of turbulence problem
and our understanding of the (nature, etc.) of turbulence. Modeling still resembles
what von Karman termed the “science of variable constants”. The history of science
shows clearly that the importance and non-trivial consequences of the fundamental
research of practical importance far broader than for (validation of) LES, subgrid
modeling, etc. cannot and should not be underestimated.

Modeling involves typically a kind of decomposition: means versus fluctuations
as in Reynolds decomposition, resolved-unresolved in LES and a variety of other
decompositions both formal and heuristic. But the issue of using decompositions in
turbulent flows is far broader. It is the introduction of some decomposition which
along with the nonlinearity results in a “cascade” with its properties depending on
the properties of the decomposition. This makes the popular concept of cascade ill
posed which along with other important issues calls for reminding the acute and
generic problems arising from employing decompositions.

A final note is about RDT approximation and similar quasi-linear approaches
which pretend (in both meanings) to be able addressing issues of genuine turbulence
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both the problem and the phenomenon. However, the latter is a strongly non-linear
phenomenon and its fundamental issues do not seem to be amenable to quasi-linear
methods.

3.3.1 On the Utility of Various Decompositions

It is still true today as long before that there exist no proper analytical machin-
ery to be used (von Neumann 1949), in turbulence research. In other words, there
are no adequate tools to treat turbulence either analytically or via other theoretical
approaches such as attempts to construct statistical and/or other theories. Conse-
quently, among the most common approaches are those borrowed from methods
used in linear problems both in theory and data analysis in turbulence which are
mostly reductionist ones. A typical example is represented by various decomposi-
tions of the flow field. Being useful in many respects in the analysis of both flow
states and processes decompositions have a rich potential (i) to be misused leading
to misconceptions and ambiguities and introducing non-trivial artifacts and spurious
effects due to properties of the decompositions not characteristic of genuine turbu-
lence and not found in physical space and (ii) become an object of study by them-
selves keeping many people busy to a large extent with the properties of decomposi-
tions themselves rather than with genuine physics of turbulence. The above is among
the reasons why decompositions became to some extent less productive/useful and
even obscuring the physics of turbulence. A typical example of rather popular en-
gagement is the study, sometimes pretty sophisticated, of interaction of the com-
ponents of some decomposition not necessarily reflecting any physics, at least as
concerns physical space, though frequently claiming confirmation of the classical
energy cascade picture such as in the latest examples in Aluie (2012), Leung et al.
(2012) and references therein, see Chap. 7.

There is a multitude of decompositions from formal to heuristic ones and there
are several difficulties with all/any decompositions as an essentially linear procedure
mainly due to the nonlinear and nonlocal nature of turbulence. These difficulties are
not trivial and are ‘generic’. The outstanding examples are the ill defined concepts
of cascade as born via introducing some decomposition with dependence on the
“physics” of the specific decomposition, inertial range, large scale modeling, all
with the nonlinearity considered as the main guilty though nonlocality is not less
malignant.

By nonlocality is meant (among other things) the direct an bidirectional coupling
between large (resolved) and small (unresolved) scales, see Chap. 6 in Tsinober
(2009), and below Chap. 7. Indeed, the most accepted division of turbulent flows
on large and small scales is to a large extent artificial and in some sense even un-
physical due to strong coupling between the two and due to an ambiguity of the
very term ‘scale’ and the problematic nature of the decomposition approach to the
phenomenon of turbulence and the necessity to handle turbulence as a whole.

More specific issues involve the phenomenon of cancellations with the total being
much smaller than contributions from ‘+’ and ‘−’ modes, e.g. (Meneveau 1991a,
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1991b; Chen et al. 2003), and misinterpretations of the meaning of this “smallness”
of the total; employing wavepacket filters and/or narrow local wavepacket filters
with some results very similar in the NSE turbulence and the corresponding random
Gaussian field, e.g. that “pancake eddies” in turbulent flows possess strong align-
ments between velocity and vorticity, the so-called local Beltramization of purely
kinematic nature (Yakhot and Orszag 1987a, 1987b; Shtilman 1987); the property
of the nonlocal interactions with local transfer character of triadic interactions as
not a property of turbulence physics, but rather a general feature of the Fourier rep-
resentation (Waleffe 1992); and the general kinematic effect of “narrow banding”
leading to Gaussian statistics in the narrow bands of modes whatever the departure
from Gaussian statistics in physical space.

Moreover, with a large number of degrees of freedom, a large class of plausible
phase-space distributions have low-order moments that are indistinguishable from
the low-order moments of the Gaussian distribution. This result is just a special case
of the central limit theorem (Orszag 1977). See also Lumley (1970, pp. 50 and 91),
Leonov and Shiryaev (1960).

These are examples of warning against overprocessing of the data.
A closely related is the hunt (mostly futile so far) for “simple basic structures”

and other ‘simple’ objects usually embedded in a “structureless random” back-
ground, such as the so called “coherent structures” that “govern the dynamics of
the flow” and similar strong claims though there seems to exist no simple dynami-
cally relevant structure(s) of the kind hunted for quite while (worms, sheets, vortex
structures/filaments, vortons, ‘eigensolutions’, significant shear layers, etc.). Those
which are observed are very far from being simple, but frequently misinterpreted as
such. This is among the reasons and one of the acute problems that the structure(s) is
(are) not represented by the modes of any known formal decomposition, and heuris-
tic attempts at representation of turbulence as a collection of simple objects. For
example, a Fourier-decomposition of a flow in a box with periodic boundary con-
ditions. The emergence of structures in such a flow, such as the slender vortex fila-
ments, in a random fashion (at random times with random orientation, and to a large
extent random shapes) points to the limitation of Fourier decomposition or similar,
which does not ‘see’ these or any other real physical structure(s) which is generally
true of any decompositions. Another example is the chaotic regime of a system with
few degrees of freedom only, e.g. three as in the Lorenz system (Lorenz 1963), or
four in the forced spherical pendulum (Miles 1984), but with a continuous spec-
trum. This points to a serious problem since components of a decomposition are not
synonymous and cannot be automatically identified as degrees of freedom. Hence
the problems with the ambiguity of decompositions. A noteworthy problem is that
there is an inherent problem of definition of scales generally and in terms of some
decomposition. A serious problem is that the objects claimed to represent “simple”
elements of turbulence structure are “educed” from time snapshots of the flow field
do not possess any (e.g. Lagrangian) identity allowing to follow their time evolution
unambiguously in a reasonable manner except of “cartoon-like” approaches and
alike. The problem is more general, e.g. vortex lines having no Lagrangian identity
as it is not frozen in the flow field at however large Reynolds numbers and conse-
quently problems with the phenomenon of reconnection.
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A recent (but not the only) example concerns employing band pass filters de-
composition. On one hand Eyink and Aluie (2009a, 2009b) insist on localness of
energy cascade, i.e. that the interscale energy transfer is dominated by local triadic
interactions. On the other hand Leung et al. (2012) find quite a bit of non-locality
in the relation between filtered vorticity and strain (Most of the enstrophy gener-
ation occurs during stretching by the largest strain. . . due to non-local straining)
but at the same time claiming that they have found that the classical view of the en-
ergy cascade is qualitatively correct, with energy passing down the cascade as large
vortices straining the smaller ones. Perhaps, it is the right place to remind that the
problematic concept “cascade” whatever this means, is a local process by definition.

A most popular paradigmatic heuristic example is the decomposition on energy-
containing (ECR), inertial (IR) and dissipative ranges (DR). It is massively ac-
cepted/believed that the statistical properties of IR at large Reynolds numbers are
universal (in some sense) and independent of viscosity/nature of dissipation and
consequently of the properties of DR. In particular, it is widely believed that Kol-
mogorov’s basic assumption (Kolmogorov 1941a) is essentially that the internal dy-
namics of the sufficiently fine-scale structure (in x-space) at high Reynolds numbers
should be independent of the large-scale motion. The latter should, in effect, merely
convect, bodily, regions small compared to the macro scale (Kraichnan 1959). This
is what is called sweeping which is claimed to have purely kinematic nature. Though
these hypotheses indeed appear to be approximately correct due to the kinematical
effects, the subtle point is that they are erroneous conceptually as missing essential
effects responsible for all the dynamics in the Eulerian representation, see Sect. 7.3.

3.4 Eulerian Versus Lagrangian Representations

Though these are formally equivalent the majority of the issues are considered in
Eulerian setting in which the observation of the system is made in a fixed frame as
the fluid goes by. In this case the motion is characterized by the velocity field u(x, t)

as a function of position vector, x, and time, t . In the Lagrangian4 setting the obser-
vation is made following the fluid particles wherever they move. Here the dependent
variable is the position of a fluid particle, X(a, t), as a function of the particle label,
a (usually it’s initial position, i.e., a ≡ X(0)) and time, t . With the relation between
the two ways of description5 both are formally equivalent. However, there are es-
sential differences of conceptual nature rather than just technical ones. As concerns
the technical side, the NSE equations in a pure Lagrangian (LNSE) setting are in-
tractable so far for viscous flows. However, the very form of LNSE as compared to
ENSE provokes nontrivial and important questions of conceptual nature.

4In fact it is also due to Euler, see Lamb (1932). A detailed account on the ‘misnomer’ by which
the ‘Lagrangian’ equations are ascribed to Lagrange is found in Truesdell (1954, pp. 30–31).
5This relation is given by the equation ∂X(a, t)/∂t = u[X(a, t); t], i.e., the Lagrangian veloc-
ity field, v(a, t) = ∂X(a, t)/∂t , is related to the Eulerian velocity field, u(x, t), as v(a, t) ≡
u[X(a, t); t].
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The first issue of this kind is that in the Lagrangian setting the fluid particle
acceleration is linear in the fluid particle displacement so that the ‘inertial’ non-
linear effects are manifested only by the term containing pressure, i.e. there are no
terms like the advective terms (u ·∇)u in the pure Eulerian setting and consequently
no sweeping. Moreover, one can hardly speak about things like Reynolds decom-
position and Reynolds stresses, turbulent kinetic energy production in shear flows
in a pure Lagrangian setting. The inertial, i.e. non-viscous nonlinearity in the La-
grangian representation cannot be interpreted in terms of some cascade as it cannot
be maintained solely by pressure gradient, and it is far less clear how one can employ
decompositions even at the problematic level as done in the pure Eulerian setting.

Another issue of conceptual nature is comes from the seemingly simple kine-
matic equation relating the Eulerian and Lagrangian settings. This equation is
nonlinear for almost all even for very simple fluid flows and is generically non-
integrable for all flows with the exception of very simple flows such as unidirec-
tional ones. Thus for a wide class of almost all laminar flows in the Eulerian set-
ting, i.e. with the Eulerian velocity field, u(x; t) not chaotic, regular and laminar,
the Lagrangian velocity field v(a, t) ≡ u[X(a, t); t] as any other property of fluid
particle is chaotic because X(a, t) is chaotic! This fact is of utmost importance for
issues like the relation between the Eulerian and Lagrangian (statistical) character-
istics of the same flow field. It has to be emphasized that this chaotic behavior is
of purely kinematic nature resulting solely from the equation relating the Eulerian
and Lagrangian settings and has nothing to do with dynamics, i.e. genuine (as NSE)
turbulence. This concerns also all problems with prescribed velocity fields in Eu-
lerian setting—synthetic, Gaussian, etc. Similarly, all randomly forced E-laminar
flows with low Reynolds number including multiscale ones, flows in porous media,
microdevices, to name some, belong to this category.

Whereas the E-turbulence is a dynamic phenomenon this is not necessarily the
case with the L-turbulence which may be a purely kinematic one. In other words the
Eulerian setting reveals the pure dynamic chaotic aspects of genuine turbulence as
contrasted to “mixing” of the kinematical with the dynamic ones in the Lagrangian
setting, i.e., in genuine turbulence the latter contains both which seem to be es-
sentially inseparable. Consequently, studying Lagrangian statistics only may not
provide adequate information of the L-statistics of genuine turbulence as not nec-
essarily containing its pure dynamic “stochasticity”. In other words the flow can
be purely L-turbulent, i.e. E-laminar as mentioned above. However, if the flow is
E-turbulent, i.e. Re � 1 it is L-turbulent as well. One more consequence is that the
structure and evolution of passive objects including fluid particles in genuine turbu-
lent flows arises from two contributions: one due to the Lagrangian chaos and the
other due to the complex nature of the Eulerian velocity field itself.

Thus the ENSE and LNSE are not equivalent as the latter appear to be ‘more
chaotic’ with the multitude of E-laminar flows having no counterpart to the corre-
sponding L-turbulent statistics in the same fluid flow. The equivalence is between
the LNSE with the ENSE plus the equation relating the Eulerian and Lagrangian
settings.
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3.5 Final Remarks

Returning to the NSE, the conclusion that NSE are useful as only an experimen-
tal tool would be incorrect. It is true that there is little substantial theoretical use
of NSE in turbulence and the road to high Re does not look as short even in the
simplest geometries. However, there are several ways to do this implicitly, i.e., by
indirect use of NSE and their consequences. For example, looking at the NSE and
their consequences themselves enables one to recognize at least some of the dynami-
cally important quantities and physical processes involved including some important
nonlinear objects many of which still await to be identified and properly defined. In
other words, NSE and their consequences tell us what quantities and relations should
be studied aiding the difficult task of identifying the significant nonlinear objects of
turbulence. So far this can be done mostly experimentally,6 but this kind of ‘guiding’
is hoped to be also useful theoretically. The most elegant exception is a set of theo-
retical results on the a priory upper bounds of long time averages of dissipation and
global transport of mass, momentum and heat, see Doering (2009) and references
therein.

It looks that in order to solve the standard NSE problems, there is a need for
progress in the understanding of turbulence as a physical phenomenon and not the
other way around. So there is every reason to follow the advise of Kolmogorov
(1985) to go on with non-trivial observations. The role of mathematics in physical
sciences cannot be underestimated. As concerns turbulence mathematics it is sup-
posed to aid the goals of basic physical problems. However, in case of turbulence
mathematics did not became what von Neuman and von Karman would expect and
played a pretty modest role especially as concerns the qualitative physics of tur-
bulence mainly limited by proofs of well known facts and related via employing
methods of functional analysis with Sobolev, Besov and other more exotic spaces
with not less exotic objects. These are “suspect” to belong to excessive general-
izations or ‘overgeneralizations’ dealing with objects of unknown relevance to the
physical phenomenon of turbulence and unjustified claims that sometimes it makes
physical sense to admit solutions with singularities in spite that, generally, singular-
ities are not admissible from the physical point of view and, in fact, nobody can tell
so far what is the relation between the two. The big problem is that it is not at all
clear how the results obtained with these singular (!) objects, e.g. distributions are
relevant/related or even have anything to do with turbulence. The issue is broader
and extends well into the theoretical physics either.

This tendency for overgeneralization in science was criticized by Poincare at the
beginning of the 20-th century 1902:

And in demonstration itself logic is not all. The true mathematical reasoning is
a real induction, differing in many respects from physical induction, but, like it,
proceeding from the particular to the universal. All the efforts that have been made
to upset this order, and to reduce mathematical induction to the rules of logic, have

6Victor Yudovich used to say that one of the best solutions of NSE is experiment (1971, private
communication).
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ended in failure, but poorly disguised by the use of a language inaccessible to the
uninitiated (Poincare 1952a).

Some have set no limits to their generalizations, and at the same time they have
forgotten that there is a difference between liberty and the purely arbitrary. So that
they are compelled to end in what is called nominalism; they have asked if the savant
is not the dupe of his own definitions, and if the world he thinks he has discovered
is not simply the creation of his own caprice (Poincare 1952b, pp. xxiii–iv).

For example, Foiaş et al. (2001) have shown that there are measures on a func-
tion space that are time-invariant. However, invariance under time evolution is not
enough to specify a unique measure which possibly would describe turbulence. An
attempt to select the right one was made by Ruelle (1979): The effect of thermal
fluctuations on a turbulent flow is estimated, and it is argued that these fluctuations
are important in selecting the stationary measure on phase space which describes
turbulence.

Another problem is that it is not clear how the objects that the authors have
constructed and used in their proofs are relevant/related or even have anything to do
with turbulence.

All these and similar ones are of interest for their own sakes, but from the point
of view of theoretical study of turbulence and its understanding it is definitely not
the first priority to reproduce in a (more or less) rigorous manner simple known re-
sults by complicated theory. It may be original to produce a simple known result by
a complicated theory, but mathematical study of turbulence is not supposed to have
its main aim as providing full employment for abstract mathematicians (Saffman
1978). Quoting von Karman (1943), in order to get the solution of engineering
problems. . . , you need some kind of tool designers. These are the real applied math-
ematicians. Their original backgrounds may differ. . . , but their common aim is to
“tool up” mathematics for engineering and physics. It is of interest to contrast the
statement by Friedrichs: Applied mathematics is those areas in which physicists are
no longer interested. In turbulence there seem to be still no such tool up at all.
Mathematicians mostly live their own life in a variety of functional spaces and even
have their own Journal of Mathematical Fluid Dynamics. However, this is only a
part of the problem. Sometimes experiments provide us with so beautiful and clear
results that it is a shame on theorists that they cannot interpret them (Yudovich
2003), not to say to guide the observations. I am afraid that not many care about
the observational evidence. The approach in reality is in some sense reverse. The
widespread view of both mathematicians and theoretical physicists is that the main
function of all experiments/observations both physical and numerical is to “validate
theories”—paradoxically nonexistent so far. This is beautifully reflected by Monin
and Yaglom (1971, p. 21) especially in the last sentence of the following quotation:
The combination of theoretical and experimental approaches, which is extremely
fruitful in all investigations of natural phenomena, is especially necessary in statis-
tical fluid mechanics where the theory is often still of a preliminary nature and is
almost always based on a number of hypotheses which require experimental veri-
fication. However, we have avoided introducing experimental results which have
no theoretical explanation and which do not serve as a basis for some definite
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theoretical deductions, even if these data are in themselves very interesting or
practically important. It is an approach which to a large degree what not unjustly
was called “postdiction” and is not useful especially in a situation in which from
the basic point of view there is almost nothing to be confirmed. Correlations after
experiments done is bloody bad. Only prediction is science (Hoyle 1957). In other
words, the role of experiments in turbulence goes far beyond the view of those who
think of experimentalists as a superior kind of professional fixers knowing how to
turn nuts and bolts into a confirmation of other people’s ‘theories’. The issue is more
than serious in view of the general theoretical failure, i.e. absence of theory based
on first principles. There is a number of issues of special concern about the rela-
tion of what is called theory in turbulence research and observations/experiments,
in particular, regarding the use of the factual information as concerns fundamental
aspects.



Part II
Issues of Paradigmatic Nature I:

Origins and Nature of Turbulence

The true problem of turbulence dynamics is the problem of its origin(s) and succes-
sive development from some initial and with some boundary conditions and forcing
to an ultimate state assuming “for simplicity” that this state is statistically stationary,
i.e. with statistically stationary forcing. However, since this route is extremely com-
plicated and involved, a second approach is used quite frequently using statistical
methods with the price being of loosing important aspects of dynamics among other.
Namely, turbulent flows are studied ‘as they are’ disregarding their origin. This was
prompted also by the beliefs in universality and lack of “memory” as concerns the
initial and boundary conditions and the nature of the mechanisms of turbulence pro-
duction and sustaining. It appears that there is far less universality and quite a bit of
memory than expected. In both approaches, at least some aspects of the time evolu-
tion are of central importance, since turbulence dynamics is a process and has mem-
ory along with other properties such as nonlocality with its diverse manifestations.
These are the reasons that before getting to the main theme—the fully developed
turbulent flows—an overview is given of the origins of turbulence. This is followed
by the discussion of the various facets of the “undeniably statistical nature”, e.g.
(Foiaş et al., Navier–Stokes equations and turbulence, 2001) contrasted to the “de-
terministic origin” of turbulence as described by purely deterministic non-integrable
equations and related issues, such as the necessity of replacing the paradigm of the
meaning of apparent randomness, stochasticity of turbulence which is roughly just
the complexity due to a large number of strongly interacting degrees of freedom
governed by purely deterministic equations. These comprise the first part of the ma-
jor qualitative universal features of turbulent flows briefly described/listed in the
Introduction. Considerable attention is given to the limitations of statistical meth-
ods.



Chapter 4
Origins of Turbulence

Abstract It is a common view (but not the only) that the origin of turbulence is
in the instabilities of some basic laminar flow. As the Reynolds number increases,
some instability sets in, which is followed by further instabilities/bifurcations, tran-
sition and a fully developed turbulent state and the processes by which flows become
turbulent are quite diverse. One process deserves special attention as a specific uni-
versal phenomenon. It is the continuous transition of laminar flow into turbulent via
the entrainment process through the boundary between laminar/turbulent regions
in the partly turbulent flows. In all these there is a distinct Lagrangian aspect: the
abrupt transition of fluid particles (i.e. Lagrangian objects) from the laminar to tur-
bulent state when passing across the laminar/turbulent ‘interface’. Abrupt is a key
word, i.e. without any cascade whatsoever. Another issue of special interest is that
there is a conceptual difference between the two kinds of flows: those arising ‘natu-
rally’, e.g. by a simple time independent and smooth in space deterministic forcing,
i.e. governed by a purely deterministic system and those produced by some exter-
nal random source. The point is illustrated by the examples of stochastic forcing
of integrable nonlinear equations (Burgers, Korteveg de Vries, etc.) which without
such forcing do not exhibit any “stochastic” behavior whatsoever. In other words,
the properties of a turbulent flow are not neutral to the nature of excitation. Like-
wise boundary, initial and inflow conditions may cause qualitative differences either
especially due to essential role of nonlocal properties of the system.

There is a qualitative difference between transition to turbulence as a phe-
nomenon characterized by a large number of strongly interacting degrees of free-
dom and transition to chaotic behavior, in general, and between such notions as
degrees of freedom and the dimension of attractor (assumed to exist), in particu-
lar. Any fluid flow which is adequately represented by a low-dimensional system
is not turbulent—a kind of definition of ‘non-turbulence’. The immediate exam-
ples are laminar in Euler setting (E-laminar) low-dimensional chaotic fluid flows
(L-turbulent).

The state of some particular flow configuration depends on the magnitude of the
Reynolds number, Re, but is not solely defined by Re. At small enough Re the flow
is laminar for any initial conditions and is the same for stationary conditions. At
larger Re the flow state, generally, depends strongly of initial conditions, at large
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Re is turbulent and is believed to be smooth enough and unique in some sense at
any Re. For example, for statistically stationary conditions the asymptotic state is
an attractor—a complex non-trivial object (Doering and Gibbon 2004; Foiaş et al.
2001; Robinson 2001, 2007).

4.1 Instability

It is a common view (but not the only) that the origin of turbulence is in the insta-
bilities of some basic laminar flow. This is understood in the sense that any flow
is started at some moment in time from rest, and as long as the Reynolds num-
ber or a similar parameter is small, the flow remains laminar. As the Reynolds
number increases, some instability sets in, which is followed by further instabili-
ties/bifurcations, transition and a fully developed turbulent state. Such sequences of
events occur, generally, not throughout the whole flow field, but at successive down-
stream locations in spatially developing flows, at the laminar/turbulent ‘interfaces’
in turbulent spots and in all partly turbulent flows which comprise the majority of
all observed ones. The main special features of these flows are the coexistence of re-
gions with laminar and turbulent states of flow and continuous transition of laminar
flow into turbulent via the entrainment process through the boundary between the
two. In all these there is a distinct Lagrangian aspect: the abrupt transition of fluid
particles (i.e. Lagrangian objects) from the laminar to turbulent state when pass-
ing across the laminar/turbulent ‘interface’. Abrupt is a key word, i.e. without any
cascade whatsoever.

From the mathematical point of view the transitions from one flow regime to
another with increasing Reynolds number—as we observe them in physical space—
are believed to be a manifestation of generic structural changes of the mathematical
objects called phase flow and attractors in the phase space through bifurcations in
a given flow geometry (Hopf 1948), though partly turbulent flows with the special
feature of these flows being the coexistence of regions with laminar and turbulent
states of flow are not easily ‘fit’ in this picture.

Whereas the processes by which flows become turbulent are quite diverse,1 most
known qualitative and some quantitative properties of many (but not all) turbulent

1The diversity of the processes by which flows become turbulent is in part due to the sensitivity
of the instability and transition phenomena to various details characterizing the basic flow and its
environment. For example, the Orr-Sommerfeld equation governing the linear(ized) (in)stability
contains the second derivative of the basic velocity profile. Many flows (some of the so-called
open flows) are very sensitive to external noise and excitation. There are essential differences in
the instability features of turbulent shear flows of different kinds (wall bounded—pipes/channels,
boundary layers, and free—jets, wakes and mixing layers), thermal, multidiffusive and composi-
tional convection, vortex breakdown, breaking of surface and internal waves and many others. It
is important that such differences occur also for the same flow geometry, which display in words
of M.V. Morkovin bewildering variety of transitional behavior. The specific route may depend on
initial conditions, level of external disturbances (receptivity), forcing, time history and other de-
tails in most of the flows mentioned above. This diversity is especially distinct for the very initial
stage—the (quasi)linear(ized) instability. Later nonlinear stages are less sensitive to such details.
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flows were considered as do not depending either on the initial conditions or on the
history and particular way of their creation, e.g. whether the flows were started from
rest or from some other flow and/or how fast the Reynolds number was changed.
However, relatively recent evidence shows that there exist differences deserving
special attention; some flow properties, generally, do depend on the nature of ex-
citation, i.e. forcing and inflow, initial and boundary conditions. This calls for a dis-
cussion and reexamination of such issues as universality, symmetries and nonlocal
properties of turbulent flows among others.

One of the basic features of utmost importance of processes resulting in turbu-
lence is that all of them tend to enhance the field of velocity derivatives, i.e. the
rotational and dissipative properties of the flow in the process of transition to tur-
bulence. The first property is associated with the production of vorticity (i.e. its
rotational nature), whereas the second property is due to the production of strain,
i.e. its dissipative nature. These two key properties of all turbulent flows are among
our main concerns below.

4.2 Transition to Turbulence Versus Routes to Chaos

One of the main achievements of modern developments in deterministic chaos is
the recognition that chaotic behavior is an intrinsic fundamental property of a wide
class of nonlinear physical systems (including turbulence) described by purely de-
terministic equations/laws, and not a result of external random forcing or errors in
the input of the numerical simulation on the computer or the physical realization in
the laboratory. The nonlinear systems and the equations describing them produce
an apparently random output ‘on their own’, ‘out of nothing’—it is their very na-
ture. However, there is a variety of qualitatively different systems exhibiting such a
behavior just like there is a large diversity of such behaviors.

The qualification of turbulence as a phenomenon characterized by a large number
of strongly interacting degrees of freedom enables us to make a clear distinction
between transition to turbulence and transition to chaotic behavior, in general, and
between such notions as degrees of freedom and the dimension of attractor (assumed
to exist), in particular.

The main points of distinction are as follows.
Low dimensional chaotic systems like the famous Lorenz (1963) system or the

spherical pendulum studied by Miles (1984) change their behavior from simple reg-
ular (as periodic) to distinctly chaotic as some parameter of the system changes.
However, obviously the number of degrees of freedom of all such systems remains
the same, only the character of the interaction of these degrees of freedom changes.
In contrast, the idea that the essential feature of transition to turbulence2 is an in-
crease of the number of excited degrees of freedom dates back to Landau (1944)

Hence there is some tendency to universality in strongly nonlinear regimes, such as developed
turbulence.
2Not to be confused with transition to low dimensional (usually) temporal chaos.
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and Hopf (1948) and is correct, though the details of their scenario appeared to be
not precise, see Monin (1986). However, Kolmogorov’s ideas on the experimental-
ist’s difficulties in distinguishing between quasi-periodic systems with many basic
frequencies and genuinely chaotic systems have not yet been formalized (Arnold
1991). In other words it is very difficult if not impossible to make such a distinction
in practice.

It is now recognized that despite the considerable successes of the present stud-
ies of the application of modern ideas on chaos to well-controlled fluid flows, they
appear to have little relevance when applied to the more general problem of fluid
turbulence (Mullin 1993, p. 93); see also Tritton (1988, p. 410) and that consider-
ations of the properties of fully-developed turbulence require rather different ideas
(Batchelor 1989).

So it is quite plausible that any fluid flow which is adequately represented by a
low-dimensional system is not turbulent—a kind of definition of ‘non-turbulence’.
The immediate examples are laminar in Euler setting (E-laminar) low-dimensional
chaotic fluid flows (L-laminar) and other examples mentioned in the introduction
above and Chaps. 3 and 9 in Tsinober (2009).

Here is the right place to note that there is an important difference between the
number of degrees of freedom roughly proportional to the number of ordinary dif-
ferential equations necessary to adequately represent a system described by partial
differential equations (NSE) and the dimension of the attractor of the system, though
sometimes it is considered natural to identify the dimension of the attractor as an
effective measure of the number of degrees of freedom in the system (Doering and
Gibbon 2004). However, in a particular dynamic system described by ODE, the for-
mer is obviously fixed and is independent of the parameters of the system, whereas
the latter is changing with the parameters but is bounded. In turbulence both are
essentially increasing with the Reynolds number and become very large at large
Reynolds number.

4.3 Many Ways of Creating (Arising/Emerging) Turbulent Flows

Any turbulent flow is maintained by an external source of energy produced by one or
more mechanisms. The mechanisms maintaining/sustaining and influencing turbu-
lence, at least some of them, are believed to be closely related (but are not the same)
to those by which laminar and transitional flows become turbulent. Apart from a
great variety of turbulent flows in nature/technology and ‘natural’ ways resulting
from instabilities, turbulent flows can be produced by ‘brute force’, i.e. by applying
external forcing of various kinds both in real physical systems and in computa-
tions by adding some forcing in the right hand side of the Navier–Stokes equations.
For example, one of the “simplest” kinds of turbulent flow—quasi-homogeneous
and quasi-isotropic—can be established by moving a grid through a quiescent fluid
or placing such a grid in a wind tunnel, or oscillating such grids in a water tank.
Turbulence is produced by forcing in the interior of the fluid flow (by electromag-
netic forces, e.g. in electrolytes, liquid metals or plasma; or other body forces) or
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at flow boundaries, which can be still or moving/flexible, smooth or rough, simple
or complex. Similarly turbulent flow can be produced numerically with an infinite
versatility by adding a force (random or deterministic) to the right hand side of the
Navier–Stokes equations and/or forcing the flow at its boundaries.

An important point is that the nature of forcing (deterministic, random, tempo-
rally modulated or whatever) is secondary in establishing and sustaining a turbulent
flow, provided that the Reynolds number is large enough and the forcing is mostly
in the large scales, but, in contrast to the common beliefs, not necessarily unimpor-
tant to the particular properties of the resulting turbulent flow. Moreover, there is a
conceptual difference between the two kinds of flows: those arising ‘naturally’, e.g.
by a simple time independent and smooth in space deterministic forcing, i.e. gov-
erned by a purely deterministic system and those produced by some external random
source.3 The point is illustrated by the examples of stochastic forcing of integrable
nonlinear equations (Burgers, Korteveg deVries, etc.) which without such forcing
do not exhibit any “stochastic” behavior whatsoever. In other words, one can won-
der about the differences between the turbulent flows produced by some stochastic
forcing of NSE (or a real physical system) and those arising intrinsically, though it
is a common practice to consider both as similar, at least qualitatively, so that the
stochastically forced ones are even seen as representative of real turbulent flows.
However, the properties of a turbulent flow are not neutral to the nature of excita-
tion: if, e.g. it is not large scale may result in qualitative differences such as in case
of broadband forcing.4 Similarly boundary, initial and inflow conditions may cause
qualitative differences either especially due to essential role of nonlocal properties
of the system.

At small enough Reynolds numbers, the flow produced by deterministic forcing
is not random, it is laminar, but the flow produced by random forcing, though ran-
dom, is in many respects trivial as any randomly forced linear system, e.g. there is
no interaction between its degrees of freedom. Strictly speaking this is true of pure
dynamic flow properties described in Eulerian setting because some of its ‘kine-
matic’ properties as described in pure Lagrangian setting can be and usually are
pretty complex and not trivial (L-turbulent), see, e.g. Fig. 1.3.

Thus a turbulent flow originates not necessarily out of a laminar flow with the
same geometry. It can arise from any initial state including a ‘turbulent’ one, such
as random initial conditions in direct numerical simulations of the Navier–Stokes
equations. That is, the transition from laminar to turbulent regime is not the only
causal relation. This problem is related to a somewhat ‘philosophical’ question on
whether flows become or whether they just are turbulent, and to the unknown prop-
erties of the phase flow, attractors and related matters, which are mostly beyond the
scope of this book.

3The random force method in turbulence theory is due to Novikov (1963).
4In this case if the forcing is strong enough not only in the large scales it can balance the viscous
effects directly thereby bypassing the nonlinearity.



Chapter 5
Nature of Turbulence

Abstract The main dispute about the origins and nature of turbulence involves a
number of aspects and issues in the frame of the dichotomy of deterministic versus
random. In science this dispute covers an enormous spectrum of themes such as
philosophy of science, mathematics, physics and other natural sciences. Fortunately,
we do not have to dwell into this ocean of debate and opposing and intermediate
opinions. This is mainly because (as it stands now) turbulence is described by the
NSE which are purely deterministic equations with extremely complex behavior
enforcing use of statistical methods, but this does not mean that the nature of such
systems is statistical in any/some sense as frequently claimed. The bottom line is that
turbulence is only apparently random: the apparently random behavior of turbulence
is a manifestation of properties of a purely deterministic law of nature in our case
adequately described by NSE. An important point is that this complex behavior does
make this law neither probabilistic nor indeterminate.

One of the problems of turbulent research is that we are forced to use statis-
tical methods in one sense/way or another. All statistical methods have inherent
limitations the most acute reflected in the inability of all theoretical attempts (both
physical and mathematical) to create a rigorous theory along with other inherent
limitations of handling data such as description and interpretation of observations.
However, the technical necessity of using statistical methods is commonly stated as
the only possibility in the theory of turbulence. The consequence of this leads to the
necessity of low-dimensional description with the removal of small scale and high-
frequency components of the dynamics of a flow including quantities containing
a great deal of fundamental physics of the whole flow field such as rotational and
dissipative nature of turbulence among others. Thus, relying on statistical methods
only (again with all the respect) one is inevitably loosing/missing essential aspects
of basic physics of turbulence. So one stays with the troublesome question whether
it is possible to penetrate into the fundamental physics of turbulence via statistics
only. In other words, there is an essential difference between the enforced neces-
sity to employ statistical methods in view absence of other methods so far and the
impossibility in principle to study turbulence via other approaches. This is espe-
cially discouraging all attempts to get into more than just “en masse”. Also such a
standpoint means that there is not much to be expected as concerns the essence of
turbulence using exclusively statistical methods.

A. Tsinober, The Essence of Turbulence as a Physical Phenomenon,
DOI 10.1007/978-94-007-7180-2_5,
© Springer Science+Business Media Dordrecht 2014
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Typical questions are as follows. Is turbulence just probabilistic or just determinis-
tic? or both or whatever? Can it be just statistical? But perhaps, as it stands today
the first question is whether these questions are as meaningful as thought before.

The main dispute about the origins and nature of turbulence involves a number
of aspects and issues in the frame of the dichotomy of deterministic versus random.
The latter term is frequently replaced by its synonyms such as statistical, stochastic,
probabilistic: to stress this point we will use deliberately all of these terms as having
the same meaning. In science this dispute covers an enormous spectrum of themes
such as philosophy of science, mathematics, physics and other natural sciences.

Fortunately, we do not have to dwell into this ocean of debate and opposing
and intermediate opinions.1 This is mainly because (as it stands now) turbulence
is described by the NSE which are purely deterministic equations.2 It is due to
this fact along with the developments in what is called deterministic chaos that the
quite common contraposing the ‘traditional’ statistical and deterministic (and the
so called structural) approaches in turbulence research has lost most (but not all)
of its meaning. As mentioned it is well established that even simple systems gov-
erned by purely deterministic nonlinear sets of equations, such as those described by
only three nonlinear ordinary differential equations, as a rule exhibit irregular appar-
ently random/stochastic behavior. In fact, in respect to turbulence this was known
long before the ‘discovery of chaos’: this deterministic system was (and is) stud-
ied by exclusively statistical methods, which are used today to study the statistical
properties of various chaotic dynamical systems described by purely deterministic
equations, e.g. Ornstein and Weiss (1991), Loskutov (2010).

Even the simplest nonlinear systems exhibiting chaotic behavior are analyzed via
various statistical means. Also, the so called ‘coherent structures’ in turbulent flows
are looked for using essentially statistical methods, such as conditional statistics
though with limited success. Finally, methods of dimensional analysis, similarity
and symmetries including group theoretical methods and phenomenological argu-
ments are applied exclusively to quantities expressing the statistical properties of
turbulent flows, see, e.g. Bonnet (1996), Holmes et al. (1996).

One can study the properties of deterministic systems by statistical methods, but
this does not mean that the nature of such systems is statistical in any/some sense as
frequently claimed.

1Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real
thing. The theory says a lot, but does not really bring us any closer to the secret of the “old one.”
I, at any rate, am convinced that He does not throw dice (Einstein 1926).

Not only does God definitely play dice, but He sometimes confuses us by throwing them where
they can’t be seen (Hawking and Penrose 1996).

Today “chaotic” and “determinstic” are not considered as counterparts of a false dichotomy.
This takes it origin to Poincare (1952b, pp. xxiii–iv).
2However, we repeat that since Leray (1934) until recently one was not sure about the theoretical,
but not observational, possibility that turbulence is a manifestation of breakdown of the Navier–
Stokes equations. Also note the statement by Ladyzhenskaya (1969): . . . it is hardly possible to
explain the transition from laminar to turbulent flows within the framework of the classical Navier–
Stokes theory.
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5.1 Turbulence is Only Apparently Random

One of the most important aspects is that the apparently stochastic/random behav-
ior of turbulent flows is their intrinsic property—as in intrinsic chaos—though in
many other respects the NSE turbulence is qualitatively different. This is in contrast
to stochastic NSE with the external random forcing or other excitation. There is no
necessity for external random forcing either in the interior of the fluid flow or at
its boundaries, nor does one need to start the turbulent flow with some random ini-
tial conditions provided that the Reynolds number is large enough. The fascinating
popular question is how such a behavior emerges from purely deterministic equa-
tions as the Navier–Stokes equations are, deterministic forcing along with smooth
nonrandom initial and boundary conditions. The common answer is the extreme
sensitivity to disturbances whatever small (initial conditions, boundary conditions,
external noise). However, this has little to do with complete randomness associated
with the “absence of laws” as turbulence is governed by purely deterministic equa-
tions. The essential point and the bottom line is that to say that turbulent flow is
‘completely random’ would define turbulence out of existence (Tritton 1988).

The term “apparently” is stressed again for several reasons. The first—already
mentioned—is that turbulence is described by purely deterministic equations. Sec-
ond, turbulence only looks and exhibits seemingly/effectively random behavior.
This extremely intricate and complex behavior stems from the non-trivial strong
nonlinear and nonlocal interaction of an enormously large number of degrees of
freedom (DOF) with the number of DOF increasing from unity for a stationary lam-
inar flow at subcritical Reynolds number and growing as ∼Re9/4 at large Reynolds
numbers (Landau and Lifshits 1959), not later editions, since this estimate was re-
moved from the subsequent editions. Another and a different way to put this is that
what is called intrinsic stochasticity is just the complexity of the dynamics along
the attractor rather than its stability (Arnold 1991), with highly non-trivial struc-
ture of the attractor governed by the NSE. The third concerns the very meaning of
the term “random”. Mathematicians and physicists alike have found it advantageous
to introduce axiomatically the concept of complete randomness associated with the
“absence of laws”, which is not the case here.

Indeed, Most problems in classical stochastic processes are reduced to solubil-
ity by statistical independence, or the assumption of a normal distribution (which
is equivalent) or some other stochastic model; because of the governing differen-
tial equations, the turbulent velocity at two space-time points is, in principle, never
independent—in fact, the entire dynamical behavior is involved in the departure
from statistical independence. The equations, in fact, preclude the assumption of
any ad hoc model, although this is often done in the absence of a better idea (Lum-
ley 1970).

It is the intricacy and complexity which is taken frequently as identical/
synonymous to random/statistical nature of turbulence and which enforces to em-
ploy the statistical methods which is a quite different matter. The necessity and
justification of using statistical methods comes both from our ignorance/lack of
information about some aspects of the phenomenon in question—or, in words of
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Kolmogorov (1956)—a large number of random factors and/or from excessively
large amounts of information and consequently inability or lack of desire to handle
this huge information otherwise ideally in full. The two situations are essentially
the same as in both only partial information is used. In other words the probabilistic
approach is related, in part to this ignorance, in part to our knowledge (Laplace
1951). The fascinating empirical outcome in both cases is exhibited by statistically
stable properties, but the problematic aspect is that statistical methods both in theory
and description and interpretation of the data from laboratory, field and numerical
experiments are inherently limited/deficient, see next subsection.

On the other hand, the apparently random behavior of turbulence is a manifes-
tation of properties of a purely deterministic law of nature in our case adequately
described by NSE. An important point is that this complex behavior does make
this law neither probabilistic nor indeterminate. Frequently assumed unpredictabil-
ity of individual realizations of turbulent motion—which has made the application
of stochastic theory attractive—is incompatible with the fact that this as any other
realization is governed by NSE. The lack of predictability is related to what we
human beings are able to observe, analyze and compute, i.e. in a sense subjective,
independently whether this lack of predictability is due to sensitive dependence on
initial conditions or not. The real issue here is that the law of nature we deal with is
deterministic rather than probabilistic. After all it is well known that ‘chaotic’ (not
synonymous with random!) behavior is fully compatible with deterministic laws.
Thus the above issue is not identical to what is called “uncertainty”, e.g. Within
classical physics, with their deterministic and precisely known laws, the evolution
of many systems is nevertheless uncertain because these laws are chaotic (Palmer
and Hardaker 2011).

In discussing the nature of turbulence an important distinction has to be made
between the nature of the phenomenon and of the problem. Indeed, one can assign
statistical nature to a theory which is then qualified as statistical hydrodynamics
claimed by many as synonymous to theory of turbulence or even mathematical tur-
bulence theory, which is not, as—we repeat again—some aspects of turbulence can
be treated via statistical methods, but it is a physical phenomenon which cannot be
qualified as having purely statistical nature.

In fact, the “statistical nature” is introduced into the problem of turbulence at the
outset “by hand” as the NSE are not stochastic PDE, they are purely deterministic.
This is done in different ways and motivations. For example, just by claiming the
necessity due to observations and treating the variables as random, e.g. It is natural
to assume that in a turbulent flow. . . the. . . fluid dynamic variables, will be random
fields (Monin and Yaglom 1971, p. 214), and studying from the outset, for example,
probabilistic measures in some function space that are supported on Navier–Stokes
solution, statistical solutions of the Navier–Stokes equations, etc. (Foiaş et al. 2001;
Monin and Yaglom 1971; Vishik and Fursikov 1988). Another approach is replac-
ing NSE by stochastic NSE, i.e. introducing a stochastic random force in the RHS
of NSE both in theoretical physics, mathematics and computations with the be-
lief that the SNSE with some “properly chosen” stochastic forcing are equivalent
to some problems of pure NSE with numerous attempts to mimic the behavior of
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real turbulence in such a way, but there is hard evidence that different forcing of
NSE—even in large scales only—result in different outcomes unless with the ran-
dom force is properly chosen as in, e.g. RNG theories, see Biferale et al. (2004) and
references therein, there is an issue of choice of not only random forcing in DNS.
An obvious counter-example is the mentioned above stochastic forcing/excitation of
integrable equations, e.g. Burgers, Korteveg de Vries, restricted Euler, etc., which
without such forcing do not exhibit any “stochastic” behavior whatsoever. More
generally random behavior of nonlinear systems as a response to random forcing is
not necessarily turbulence and is an example among a multitude of qualitatively dif-
ferent phenomena—from Hamiltonian chaos to dissipative systems—all of which
are qualified as “stochastic behavior”.

We stress again that the statistical descriptions of the phenomenon of turbulence
are not synonymous with the “statistical nature” of both the phenomenon and the
problem. Both are different from each other and by no means are not exhausted by
the term “statistical”.

Another important distinction is between statistical theories and statistical meth-
ods of description and interpretation of the data from laboratory, field and numerical
experiments. For example, in the former ad hoc assumptions are made in one way
or another that a kind of low-dimensional description is possible with correspond-
ing hypotheses mostly of unknown validity and obscured physical and mathematical
justification about modeling/parametrization of the unresolved scales in terms of the
resolved ones. As concerns the latter having fully resolved data from experiments
and/or DNS one can get access to such key small scale quantities as the veloc-
ity derivatives (strain, vorticity, their production, etc.) providing the possibility of
studying the rotational and dissipative nature of turbulence, along with other im-
portant quantities (e.g. fluid particles accelerations) for fundamental physics of the
whole flow field rather than large or small scales only, keeping in mind that this flow
decomposition is to a large extent artificial and in some sense even unphysical due to
strong coupling between the two and due to the ambiguity of the very term ‘scale’
and the problematic nature of the decomposition approach to the phenomenon of
turbulence and the necessity to handle turbulence as a whole.

5.2 Limitations of Statistical Methods

One of the problems of turbulent research is that we are forced to use statistical
methods in one sense/way or another. All of them have inherent limitations the most
acute reflected in the inability of all theoretical attempts to create a rigorous theory
along with other inherent limitations of statistical methods, e.g. of handling data.
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5.2.1 Statistical Theories

As mentioned this was recognized by many outstanding people. We just remind the
two great probabilists Wiener (1938) and Kolmogorov (1985) who admitted that it is
not clear how one has to treat rigorously turbulence using probabilistic approaches:

It has been realized since the beginning that the problem of turbulence is a statis-
tical problem; that is a problem in which we study instead of the motion of a given
system, the distribution of motions in a family of systems. . . It has not, however, been
adequately realized just what has to be assumed in a statistical theory of turbulence
(Wiener 1938).

From the very beginning it was clear that the theory of random functions of many
variables (random fields), whose development only started at that time, must be
the underlying mathematical technique. . . I soon understood that there was little
hope of developing a pure, closed theory, and because of absence of such a theory
the investigation must be based on hypotheses obtained on processing experimental
data (Kolmogorov 1985), see Tikhomirov (1991, p. 487).

Note that both claim that the problem of turbulence is a statistical problem and
both state that there is no such a theory in existence so that the investigation must
be based on hypotheses obtained on processing experimental data.

The reason for the not optimistic second part of both statements above most prob-
ably is that as in other theoretical approaches the beautiful probabilistic instruments
(probability as a measure, etc.) produced by Kolmogorov (1933) following the pro-
posal by Borel (1909) appeared to be not instrumental for realization as concerns
turbulence. Nevertheless, people in mathematical community insist that, e.g. such
a theory should be based on the Navier–Stokes equations and their invariant mea-
sures and ergodic properties. Note the plural, which by itself is a problem as there
exist unifinitely many and the choice is not a trivial matter as no one knows which
one describes the real turbulence (Ruelle 1979 and references therein). Along with
this problem there are several others. The general one is that is not all sure that a
purely statistical rigorous approach if possible will be effective in solving the key
physical problems—on the contrary, it seems that progress with the latter will aid
the progress with the former.

The statements by Wiener and Kolmogorov were followed by the community in
recognition that whatever the nature of the phenomenon and of the problem the in-
tricacy and complex behavior of turbulence enforces use of statistical methods. This
became a common view throughout the community and necessity also as concerns
the theory of turbulence whatever this means, e.g. The theory of turbulence by its
very nature cannot be other than statistical, i.e., an individual description of the
fields of velocity, pressure, temperature and other characteristics of turbulent flow
is in principle impossible and unavoidable study of specific statistical laws, inher-
ent in phenomena en masse,3 i.e., in large ensembles of similar objects (Monin and
Yaglom 1971, p. 3).

3The en masse comes from the analogy with statistical physics. But there one has literally many
similar objects—molecules. So one realization there may well suffice either, see below.
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Just as in statistical physics, the technical reason that the statistical approach
should be adopted from the outset in turbulence not only in ‘theories’, but also in
handling the data from physical and numerical experiments. In both cases certain
statistical hypotheses are made. But the former was quite successful in making a
number of important predictions, whereas the latter, with few exceptions, such as
the Kolmogorov four-fifths law (Kolmogorov 1941b) was unable to produce gen-
uine predictions based on the first principles and did not result in any substantial
progress of fundamental nature. All the rest—with all the respect to statistics—are
postdictions and mimicking after the experiments done (Hoyle 1957). Apart from
the above-mentioned reasons for such a failure it should be mentioned that, unlike
in statistical physics, in turbulence neither ‘simple objects’—such that a collection
of these objects would adequately represent turbulent flows (perhaps the basic non-
linear objects of turbulence), if such exist and can be identified—‘to do statisti-
cal mechanics’ with them, nor ‘right’ statistical hypotheses have so far been found
enabling. e.g. the “solution of the closure problem”. The question about the very
existence of both remains open. Nevertheless, major theoretical effort in statisti-
cal theories was made using various ad hoc assumptions of unknown validity and
obscured physical and mathematical justification mainly on the relation of the small-
scale structure with the rest of the flow. All this efforts are motivated by the natural
tendency to simplify the problem which is manifested in numerous searches for a re-
duced/low dimensional description of turbulent flows. As mentioned the whole issue
is closely related to the problem of decomposition/representation of turbulent flows.
From the fundamental point it is not obvious that such a reduced adequate descrip-
tion does exist and/or is possible at all4 because, e.g. it is missing essential physics
contained in small scales associated with such fundamental properties of turbulence
being a rotational and dissipative phenomenon, see Chaps. 7 and 8, and Chap. 3
in Tsinober (2009). Among the essential differences—apart of those mentioned in
Monin and Yaglom (1971, pp. 4–5)—it should be mentioned that the small scales in
turbulence (i) are very far from being simple as objects used in statistical mechanics
and (ii) interact non-trivially, bidirectionally and non-locally, with the rest of the
flow, i.e. contrary to the common view, the small scales cannot be seen as a kind
passive sink of energy and/or as ‘slaved’ to the large scales—the small scales react
back in a nonlocal manner and (iii) they carry lots of basic physics of turbulence.
For this reason the following rather popular expectation appears to be conceptually
incorrect: It is both reasonable and realistic to expect that the removal of small scale
and high-frequency components of the dynamics of a flow be described in terms of
modified molecular transport coefficients like an eddy viscosity (Orszag et al. 1993).

The eddy viscosity is one of the oldest and greatest analogies/misconceptions in
the sense that it ‘explains the enhanced transfer rates’, etc. whereas it is just an em-
pirical way of accounting for such rates, but not at all an explanation in any sense.

4The basic question (which usually is not asked) concerning statistical description is whether
such complex behavior permits a closed representation that is simple enough to be tractable and
insightful but powerful enough to be faithful to the essential dynamics (Kraichnan and Chen 1989).

The problem is that in such an approach the rotational and dissipative aspects are not considered
as belonging to the essential dynamics.
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Moreover, it is doubtful that any model except (hopefully) the NSE can be used to
adequately study the physics of turbulent flows which in the first place means its
basic/fundamental and conceptual aspects. Perhaps the biggest fallacy about tur-
bulence is that it can be reliably described (statistically) by a system of equations
which is far easier to solve than the full time-dependent three-dimensional Navier–
Stokes equations (Bradshaw 1994).

In other words, the consequence of insisting on statistical theory as the only
possibility in the theory of turbulence leads to the necessity of low-dimensional
description with the removal of small scale and high-frequency components of
the dynamics of a flow including quantities containing a great deal of fundamental
physics of the whole flow field such as rotational and dissipative nature of turbulence
among others. Thus, relying on statistical methods only (again with all the respect)
one is inevitably loosing/missing essential aspects of basic physics of turbulence,
see Chaps. 7 and 8.

The problem seems to be even a bit more complicated since turbulence—
being studied by all kinds of statistical methods of description—cannot be con-
sidered as just a problem of statistical physics/mechanics only. There is no effec-
tive/satisfactory theoretical framework to handle turbulence—nothing new: this was
stated by von Neumann (1949), though there are claims that turbulence can be seen
also (but only in part!) as a problem of nonequilibrium statistical physics or what-
ever. For example, most of turbulent flows are only partly turbulent with the coexis-
tence of regions with laminar and turbulent states in the same flow.

There are inherent limitations of any theory employing statistical methods as han-
dling quantities like probabilities because probabilistic approaches avoid the details
of time evolution (i.e. dynamics) and structure. Indeed, the fluid flow is described
by a trajectory in phase space. It is obviously not described adequately only by the
corresponding probability distributions and similar objects. Having the latter only,
which is what one gets using statistical methods reflects, at least in part, our igno-
rance of the trajectories and the information associated with it such as dynamical
and evolutionary aspects/details and structure(s) of turbulent flows, from relatively
simple to the fine-scale structure of attractors (Guckenheimer 1986). In other words,
statistical methods aim from the outset and allow to get only partial information, e.g.
Monin and Yaglom (1971, pp. 8, 217). This is of special concern due to the trou-
blesome question whether it is possible to penetrate into the fundamental physics
of turbulence via statistics only. All this even if the aim as formulated by Orszag
(1977) would be fully fulfilled: Ideally, the objective of analytical turbulence theory
is the exact calculation of all statistical properties of turbulence.

There is an essential difference between the enforced necessity to employ sta-
tistical methods in view absence of other methods so far and the impossibility in
principle to study turbulence via other approaches. This is especially discouraging
all attempts to get into more than just “en masse”. Also such a standpoint means
that there is not much to be expected as concerns the essence of turbulence using
statistical methods.

Another important aspect is that use of statistical methods—together with ex-
cessive (over)generalizations such as functional analysis introducing objects with
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unknown relevance to real physical objects and unclear physical meaning—brings
inherent problems of interpretation of experimental data. The issue of difficulties of
interpretation of statistical objects introduced by humans is not new, see e.g. Orszag
(1977). In particular, statistics only can be misused and misleading, so there is a dif-
ficult issue of interpretation, especially if the information is not in physical space,
e.g. Fourier or any other decomposition. Here the question is also about what kind
of statistics one has to use. It is directly related to the most difficult question on what
are the problems, i.e., to the skill/art to ask the right and correctly posed questions,
which is quite a problem in turbulence research.

It is for the above reasons that (meanwhile) our concern here is not with statis-
tical theories of whatever nature as so far not useful in handling the fundamental
issues: our concern is mostly much less ambitious—the focus is on statistical meth-
ods of description and interpretation of the data from laboratory, field and numerical
experiments on turbulent flows via appropriate processing of the data. The latter is
likely to be a prerequisite for any worthy ‘theory’ of turbulence.

5.2.2 Statistical Methods of Description and Interpretation
of the Data from Laboratory, Field and Numerical
Experiments

There are also limitations of statistical methods of description and interpretation
of the data from laboratory, field and numerical experiments with each particular
statistical tool having its own limitations. Well known examples are represented by
relatively simple quantities like means, correlations, spectra, and probability density
functions of various quantities. These tools like means and correlations smooth out
some important qualitative features of (typical) individual realizations. The ‘mean
fields’, e.g., large-scale averages of velocity or concentration of some species or par-
ticles, are smooth whereas the individual realizations are not. They are corrugated,
highly intermittent and contain clusters/regions of high level of some quantity/ies
(enstrophy, dissipation, passive tracer, reacting species, particles, etc.) surrounded
by low level ‘voids’ of this quantity. In other words, ‘standard’ ‘traditional’ statisti-
cal methods to a large extent ignore the structure(s) of turbulent flows, which was the
main reason for numerous objections against statistical methods often understood as
averaging only. More subtle statistical properties of turbulent flows associated with
their structure(s) both in small and large scales are important in many applications.

For instance, special information on small-scale structure(s) is needed in prob-
lems concerning, e.g., combustion, disperse multiphase flow, mixing, cavitation, tur-
bulent flows with chemical reactions, some environmental problems, generation and
propagation of sound and light in turbulent environments, and some special prob-
lems in blood flow related to such phenomena as hemolysis and thrombosis. In
such problems, not only special statistical properties are of importance like those
describing the behavior of smallest scales of turbulence, but also actual ‘nonstatisti-
cal’ features like maximal concentrations in such systems as an explosive gas which
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should be held below the ignition threshold, some species in chemical reactions,
concentrations of a gas with strong dependence of its molecular weight on concen-
tration (such as hydrogen fluoride used in various industries, e.g., in production of
unleaded petrol) and toxic gases. Similarly, problems such as the manipulation (and
possibly control) of turbulence and turbulence induced noise require information on
large-scale structure(s) of turbulent flows far beyond such simple statistical charac-
teristics as averages, correlations, spectra and PDFs.

One of the general claims is that the only possibility in the theory of turbulence is
statistical description, based on the study of specific statistical laws, inherent in phe-
nomena en masse, i.e., in large ensembles of similar objects and that an individual
description of the fields of velocity, pressure, temperature and other characteristics
of turbulent flow is in principle impossible (Monin and Yaglom 1971, p. 3). If so it
is by itself a severe and pretty problematic limitation since in many cases one has
to look not only at the properties of turbulent flows en masse, but also of special
interest is prediction of the behavior of particular fields and specific properties of
individual realizations like those involved in weather forecasting.

Investigators who prefer to look upon turbulence as a stochastic process may be
interested in predicting the future statistical properties of developing or decaying
turbulence, or simply in determining the statistical properties of stationary turbu-
lence. At the same time they may have little interest in predicting future states of
particular realizations. Indeed, it is likely to be some assumed basic unpredictability
of individual fields of turbulent motion which has made the application of stochastic
theory attractive to these investigators. There are nevertheless some (look for other
examples with a single realization!!!) instances where prediction of the behavior of
particular fields of turbulent motion is of considerable interest and importance. This
is notably true in the case of weather forecasting. The atmosphere is, after all, a tur-
bulent fluid; the migratory cyclones and anticyclones which bring us much of our
weather are among the more conspicuous turbulent elements (Lorenz 1972, p. 195).

After all one does not need ensemble averaging to be sure that the coffee will
be well mixed via only one and pretty short realization. Likewise, not much can be
done statistical-wise to cope with a destructive hurricane or a tropical cyclone.

It may also be that such (i.e. very rare and exceptionally strong) events are rather
sensitive to details of the physics that do not appreciably affect the character of the
majority of events. This does not mean that one should not keep trying, by insight
and discernment, to discover useful statistical measures, but rather that statistics
will have to be used with that humility and appreciation of the combination of ad-
mission of ignorance and decision to ignore detail so successfully used by workers
in the past (Mollo-Christensen 1973).

The problematic aspects of the claim that the only possibility in the theory of
turbulence is the study of specific statistical laws, inherent in phenomena en masse,
i.e., in large ensembles of similar objects are seen from the emergence of apparently
random behavior in a system described by a purely deterministic system as NSE
in one realization. In particular, some essential aspects of important physics of all
these similar objects may be lost in handling them en masse. The issue is pretty well
familiar to experimentalists who are using on a routine basis long enough single re-
alizations to study various statistically stationary turbulent flows, or single snapshots
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of homogeneous flows in DNS on the basis of the ergodicity hypothesis, see below,
which in a way eliminates the necessity to study the problem en masse: one “good”
realization/or snapshot may be (and in many cases is) good enough. Figure 6.1 con-
tains a clear indication how much can be lost as concerns time evolution looking
just at the statistics.

5.2.3 On Particular Tools—Examples

Each particular statistical tool has its own limitations; being useful in one con-
text/respect, it may say nothing in many others. A typical example is correlation,
widely used in many aspects of turbulence research. Usually if a correlation be-
tween two quantities is not small, it reflects some important relation. However, if
the correlation is small, it is not necessarily insignificant. For instance, let us have
a look at the famous Reynolds stress 〈u1u2〉—the correlation between the velocity
fluctuations in the direction of the mean flow (x1) and those normal to the wall (x2)
in a wall-bounded turbulent flow. The typical value of the corresponding correla-
tion coefficient is 〈u1u2〉/u′

1u
′
2 ∼ 0.4. However, the real quantity entering the equa-

tion for the mean flow is the derivative d〈u1u2〉/dx2. In a developed turbulent flow
with its mean properties independent of the streamwise coordinate, x1 (flat channel,
pipe), d〈u1u2〉/dx2 = 〈(ω × u)1〉 ≡ 〈ω2u3〉 − 〈ω3u2〉. That is the ‘turbulent force’
is due to the coupling between large and small scales, i.e. nonlocality, see Chap. 7.
The corresponding correlation coefficients between velocity and vorticity are small:
both 〈ω2u3〉 and 〈ω3u2〉 are of order 10−2 or smaller. However, this does not mean
that the coupling between ω and u is insignificant. Indeed, without such a coupling
d〈uv〉/dx2 = 0, so that the mean flow would not ‘know’ anything about turbulent
fluctuations at all and therefore would remain as the laminar one. In this context a
flow model with a mean homogeneous shear of infinite extent is pretty problematic.
This is an example of more general problems with theoretical idealizations.

Moreover, even if a correlation between two quantities is very small or even pre-
cisely vanishing, this still does not necessarily mean that the interrelation/coupling
between these two quantities is not existing or is unimportant. For example, in ho-
mogeneous turbulent flows, velocity and vorticity, and vorticity and the rate of strain
tensor are precisely uncorrelated, 〈ω×u〉 ≡ 0, 〈ωisij 〉 ≡ 0, but their interaction is in
the heart of the physics of any turbulent flow! Similarly, the correlation coefficient
between u and ∇2u is very small (∼Re−1/4) in high Reynolds number flows, but
is very significant as directly related to the rate of dissipation of energy in turbu-
lent flows. It is noteworthy that the above correlations are ≈0 in quasi (or locally)-
homogeneous flows either.

One more example of the limited value of quantities like correlations and cor-
relation coefficients is provided by a helically forced turbulent flow (Galanti and
Tsinober 2006). In such a flow correlations between u and ω, and also ω and curlω
are not vanishing due to lack of reflectional symmetry. Nevertheless these correla-
tions are an order of magnitude smaller than those between u and curlω , and ω and
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curl curlω. This is in spite of the fact that the scales of u and ω are ‘closer’ than
those of u and curlω in the sense that the characteristic scales of u and ω differ
less that those of u and curlω. Moreover, in flows with reflectional symmetry the
correlation coefficients between u and ω, and ω and curlω vanish, whereas corre-
lations between u and curlω, and ω and curl curlω remain practically unchanged.
The latter is directly related to the rate of dissipation of energy in turbulent flows as,
e.g. in homogeneous flows 〈u · curlω〉 = −2〈sij sij 〉.

Single point statistics in many cases may be and usually is insufficient and even
misleading. For example, single point PDFs of velocity fluctuations are known to
be quite close to the Gaussian distribution. In particular, the third moment of ve-
locity fluctuations is close to zero, more precisely its skewness, 〈u3

1〉/〈u2
1〉3/2 ≈ 0,

and the flatness, 〈u4
1〉/〈u2

1〉2 ≈ 3, as in a Gaussian field. Similarly other higher order
odd moments are small, and even moments assume values close to those of a Gaus-
sian field, e.g. 〈u6

1〉/〈u2
1〉3 ≈ 15. However, the conclusion that velocity fluctuations

are really almost Gaussian is a misconception, not to mention the field of velocity
derivatives. This is already seen when one looks at two-point statistics. For instance,
in such a case the odd moments are significantly different from zero, e.g. Frenkiel
et al. (1979). This is one of the simplest among numerous examples when multipoint
in space and time statistics is useful. The widely known two-point correlations for
some separation r and/or time t are related to the flow structure(s) larger than ∼ r/t .

An example of special interest concerns the so called sweeping decorrelation
hypothesis called also as random Taylor hypothesis:

Kolmogorov’s basic assumption (Kolmogorov 1941a) is essentially that the in-
ternal dynamics of the sufficiently fine-scale structure (in x-space) at high Reynolds
numbers should be independent of the large-scale motion. The latter should, in ef-
fect, merely convect, bodily regions small compared to the macro scale (Kraichnan
1959, p. 536). This is what is called sweeping which is claimed to have purely kine-
matic nature, and the claims that it preserves the shapes of the advected small scale
eddies—this is why Lagrangian aspects are of importance—and thus has no effect
on the turbulence energy spectrum in the Eulerian frame; An underlying assumption
of Kolmogorov theory is that very large spatial scales of motion convect very small
scales without directly causing significant internal distortion of the small scales.
The assumption usually is considered to be consistent with, and to imply, statistical
independence of small and large scales (Kraichnan 1964, p. 1723).

That is, this hypothesis is a reflection of a simplest heuristic decomposition of
the flow field on large an small scales. The consequence is that, following Ten-
nekes (1975), at large Reynolds numbers one can assume that Taylor’s “frozen-
turbulence”, random Taylor hypothesis—RTH, approximation should be valid for
the analysis of the consequences of large-scale advection of the turbulent mi-
crostructure and that the microstructure is statistically independent of the energy
containing eddies.5 So that the fluid particle acceleration as assumed to vanish a = 0

5The experimental evidence points to the opposite: the microstructure is not statistically indepen-
dent of and even not decorrelated from the energy containing eddies, see below, Chaps. 7 and 8
below and Chap. 6 in Tsinober (2009) and references therein.
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Fig. 5.1 Left: PDFs of the cosine of the angle between al and ac . The insets show this dependence
with the vertical in log and in the proximity of cos(al ,ac) ≈ −1. This alignment was observed
first in DNS shown at the left (Tsinober et al. 2001), and also in laboratory experiments (Lüthi
et al. 2005) and in the atmospheric surface layer (Gulitskii et al. 2007a, 2007b, 2007c). Right:
Correlation coefficients between al and ac , and al and acs , DNS (Tsinober 2001; Tsinober et al.
2001). The latter is the solenoidal part of ac . Similar results for al and ac obtained in laboratory
experiments (Lüthi et al. 2005) and in the atmospheric surface layer (Gulitskii et al. 2007b)

which is true if the sweeping is purely kinematic. On the other hand, the equality
a = 0 cannot and should not be understood literally because otherwise one is lead
to absurd consequences. First, a = 0 brings turbulence out of existence. Second,
a = 0 would mean that both −ρ−1∇p + ν∇2u = 0 and ∂u/∂t + (u · ∇)u = 0 are
valid, which is wrong even as an “approximation”. However, it is true that in some
sense a ≈ 0, i.e. a is small compared both to the local acceleration, al = ∂u/∂t and
ac = (u · ∇)u, e.g., 〈a2〉/〈a2

l 〉 
 1 and 〈a2〉/〈a2
c 〉 
 1. This in turn is possible if

there is mutual (statistical) cancellation between al and ac. Since these quantities
are vectors, the degree of this mutual cancellation should be studied both in terms
of their magnitude and the geometry of vector alignments. Indeed, both in terms
of magnitude, the total acceleration a is much smaller than its local and convective
components al and ac , and that there is a strong anti-alignment between al and ac ,
see Fig. 5.1.

An important observation here is very large in magnitude values of correlation
between al = ∂u/∂t and ac = (u · ∇)u, see Fig. 5.1b.

In other words the approximation a ≈ 0 is very good and becomes better with
increasing Reynolds numbers. This is true also of the validity of the Random Tay-
lor Hypothesis (RTH) or sweeping decorrelation hypothesis (SDH). The important
point is that though both are approximately kinematic, this—as mentioned above—
does not mean that the non-kinematic “small difference” justifies the validity of
the equations ∂u/∂t + (u · ∇)u = 0 and −ρ−1∇p + ν∇2u = 0. It is this “small
non-kinematic difference” which is mostly responsible for all the dynamics in the
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Eulerian representation and that sweeping cannot be considered as just a kinematic
effect. The dynamics involved is of utmost importance as there is no turbulence
without the above mentioned “small difference”! This is because in the Kraich-
nan/Tennekes ‘decomposition’ there are two ingredients in the Eulerian decorre-
lation: (i) the sweeping of microstucture by the large scale motions and associated
kinematic nonlocality, (ii) and the local straining, which is roughly pure Lagrangian.
It appears that this kind of ‘decomposition’ is insufficient as it is missing an essential
dynamical aspect—the interaction between the two. The random Taylor hypothesis,
and, of course, the conventional Taylor hypothesis, lack/discard this aspect at the
outset, which does not mean that these hypotheses are useless, but both are ‘too
kinematic’. It is noteworthy that the efforts on elimination of the sweeping interac-
tions from theories of hydrodynamic turbulence are continuing (Gkioulekas 2007).

In the context of the discussion on correlations the above results show that very
large correlations may be of little dynamical significance as contrasted to small
counterparts of utmost importance: the decomposition on large and small scales
appears “too kinematic” as it is missing an essential dynamical aspect—the direct
and bidirectional interaction between the two.

In a more general context the above example shows that the statistical predomi-
nance not necessarily corresponds to the dynamical relevance as also seen from the
recent example which concerns recent use of averaging of turbulent flow fields rep-
resented in the local coordinate system defined by the eigenvectors of the strain rate
tensor at each point (Elsinga and Marusic 2010). Calculating the average fluctuating
velocity field on a grid aligned with eigenframe of the strain revealed a shear layer at
45° with the most stretching and compressing eigendirections, which separates two
larger-scale flow with regions of opposing velocity directions and vorticity associ-
ated with this shear layer preferentially oriented in the intermediate eigen-direction.
The claim is that such organization of the small-scale motions is not only found in
the average patterns, but is also frequently observed in the instantaneous velocity
fields of the different turbulent flows and that the presented average pattern in the
strain rate eigenframe is representative of a general frequently occurring flow pat-
tern with similar claims throughout the paper. However, the problem is that all the
evidence as presented by the authors (and some other) on the instantaneous fields
is different from the above mentioned average, though with preferential alignment
of vorticity and the intermediate eigen-direction. Moreover, though this alignment
is statistically predominant it not most dynamically relevant as the flow patterns
associated with the preferential alignment of vorticity and the largest positive eigen-
direction contribute most to the enstrophy production. That is at best it is not clear
in what sense the above mentioned average is representative of a general frequently
occurring the instantaneous flow pattern if at all. Thus the approach of the authors
is suspicious to what can be called oveprocessing of the data by “exotic” averaging.

Similar concern is arising in issues handling turbulence structure(s). These are
finite objects which nevertheless are mostly hunted by isosurfacing and thresholding
and are defined at some time moment only and, moreover, they cannot be followed
in time. Therefore producing statistics is performed out of collections of “similar
objects” obtained from snapshots at the same and different time moments. But the
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painful question is how really “similar” are all these if they are typically defined by
one parameter? It is almost obvious that such kind of “statistical” processing, i.e.
another kind of “exotic” averaging is killing most of essential features of the real
“structure” and leaves the question of relevance, say the dynamical one, of these
“structures” at best open.

The bottom line is that with all the respect, relying on statistics only such as, e.g.
very strong and very weak correlations, ‘exotic averaging’, etc., may bring one to
nowhere by missing essential dynamical effects. Judicious use of statistics is more
than vital in turbulence research.



Chapter 6
Additional Issues of Importance Related
to the Use of Statistical Methods

Abstract One of the concerns is that statistics only can be misused and misleading,
so there are difficult issues of interpretation, validation and related, especially if the
information is not in physical space, e.g. Fourier or any other decomposition.

One of the concerns is the issue of statistical dominance versus dynamical rel-
evance. The statistical predominance not necessarily corresponds to the dynamical
relevance as, e.g. in the case of sweeping decorrelation hypothesis or “exotic” av-
eraging of turbulent flow fields such as represented in the local coordinate system
defined by the eigenvectors of the strain rate tensor at each point.

Similar concern is arising in issues handling turbulence structure(s). These are
finite objects which nevertheless are mostly hunted by isosurfacing and thresholding
and are defined at some time moment only and, moreover, they cannot be followed
in time. Therefore, producing statistics is performed out of collections of “similar
objects” obtained from snapshots at the same and different time moments. But the
painful question is how really “similar” are all these if they are typically defined by
one parameter only? It is almost obvious that such kind of “statistical” processing,
i.e. another kind of “exotic” averaging is killing most of essential features of the
real “structure” and leaves the question of relevance, say the dynamical one, of
these “structures” at best open.

The bottom line is that with all the respect, relying on statistics only such as, e.g.
very strong and very weak correlations, ‘exotic averaging’, etc., may bring one to
nowhere by missing essential dynamical effects.

Among the consequences is a serious misuse and interpretational (and termino-
logical either) abuse of observations, which is essentially “aided” by the absence of
genuine theory.

It is not unusual that when it goes about validation that the hard data (both from
physical observations and numerical) is considered as kind of inferior as compared
to ‘models’ so that the former are tested against the latter and not vice a versa as
it is done even in fields being in possession of rigorous theories. Not many care
about the observational evidence. The approach in reality is in some sense reverse.
The widespread view of both mathematicians and theoretical physicists is that the
main function of all experiments/observations both physical and numerical is to
“validate theories”—paradoxically nonexistent so far. In such a situation the issue
of interpretation and validation as concerns the right results for the right reasons
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or “theories” versus hard evidence becomes of more than of utmost importance.
A related issue of importance is on ergodicity and similar.

As mentioned statistical methods are practically the only employed in turbulence
research be it theory (whatever this means) or experiment. Along with the high di-
mensional nature, very large number of strongly and nonlocally interacting degrees
of freedom a number of issues take on special significance. Following is the list of
those we consider as especially important for basic research in turbulence. Each are
explained via short comments illustrated by way of exemplification.

6.1 Interpretation and Validation or What About the Right
Results for the Right Reasons or Theories Versus Hard
Evidence

The issues of interpretation and validation refer not just to “theories”, but in the first
place to the factual information and the relation between the two. Among the seri-
ous problems is that most of the “theories” claiming explanations of some specific
aspects of observations in fact appear to be mere descriptions of these same particu-
lar observations or using these same observations for justifications/confirmations of
these same theories.

6.1.1 Interpretation

This refers not just to “theories” but in the first place to experiments. The main point
here is that the right results should be interpreted and related to the right reasons at
least as concerns fundamental studies. The correspondence with experimental re-
sults may (and very frequently does—judging by massive agreement between “the-
ories” on one hand and absence of genuine theory, on the other) occur for the wrong
reasons,1 i.e. this correspondence is at best a necessary condition. One of the prob-
lems is misinterpretation, which is “aided” by the extremely complex nature of the
problem. Another acute problem is that most of the theories claim explanations of
some specific aspects of observations being in fact mere descriptions of these same
particular observations.

Before getting to specific examples we remind again the general issue of use
of statistical methods together with excessive (over)generalizations such as func-
tional analysis introducing objects with unknown relevance to real physical objects

1For example, it is clear that if a result can be derived by dimensional analysis alone. . . then it
can be derived by almost any theory, right or wrong, which is dimensionally-correct and uses the
right variables (Bradshaw 1994).
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and unclear physical meaning which brings inherent problems of interpretation of
experimental data.

The first example concerns the celebrated k−5/3 energy spectrum which is con-
sidered as one of the basic attributes of many turbulent flows. In some sense this
is correct, but there exist a multitude of phenomena (even not fluid dynamical, for
more examples see Tsinober 2009, Chap. 7, p. 230, also pp. 211–216; Chap. 5,
Sects. 5.3 and 5.4.5) possessing the same spectrum. Moreover, an extreme example
is a single sharp change in velocity, which is local in physical space. Represented
in Fourier space it has an energy spectrum k−6/3 which is not so easy to distin-
guish from k−5/3. This is true not only of the above particular scaling exponent,2

but generally of scaling exponents as there exists no one-to-one relation between
simple statistical manifestations and other more subtle properties such as the under-
lying structure(s) of turbulence, so that qualitatively different phenomena can and
do possess the same set of scaling exponents. For example, there exist numerous
models that attempted to reproduce the anomalous scaling for higher order statistics
which are based on qualitatively different premises/assumptions, but all of which
are in good agreement with the same experimental and numerical evidence, see Tsi-
nober (2009, pp. 211–216) and references therein. Likewise similar PDFs of some
quantities can correspond to qualitatively different processes, structure(s) and quan-
titatively different values of Reynolds numbers.

Another issue is the use of some theoretical considerations frequently called “the-
ories” for idealized homogeneous and isotropic flows for “interpretation” of exper-
iments which are neither homogeneous nor isotropic and even less: most of turbu-
lent flows are only partly turbulent flows (PTF) with the coexistence of regions with
laminar and turbulent states in the same flow, such as jets, wakes, mixing layers and
some boundary layer flows.

In other words, there is a serious misuse of experimental data.
Two examples are given below.
The first example belongs to the category of spatially developing flows, self-

similarity versus true time evolution. It concerns the use experimental data in partly
turbulent flows and grid turbulence. Both are evolving in space statistically station-
ary inhomogeneous flows in spatially bounded domains with some boundary condi-
tions. It should be stressed that the inflow conditions are indeed boundary conditions
too—they are not initial conditions. Nevertheless, it is a common rather problem-
atic practice to replace the evolution in space (in the streamwise coordinate) by the
evolution in time. In particular, the grid turbulence data are frequently considered
as decaying in time with the flow at each location x in the streamwise direction as
representing an imaginary statistically spatially homogeneous turbulent flow in all

2It is noteworthy that this spectrum is not precisely the “right” one. Indeed, if one looks at the data
by Grant et al. (1962), especially unpublished, but see Long (2003), the error bar is not that small
as to exclude the k−6/3 spectrum which correspond just to a single sharp change in velocity, see
also Tsinober (2009, p. 334) and references therein for recent results on the “approximately” k−5/3.
Moreover, the “small” differences are essential and increase as concerns higher order quantities,
derivatives and “strong events”.
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the three dimensions of infinite extent, which is obviously incorrect. Indeed, on one
hand the ∂/∂t �= 0 for the imaginary three-dimensional state as it evolves, but not
the x-dependence (∂/∂x) when looking at such a state at each time moment. The
problematic aspect is not only with the streamwise direction, but also in the other
two directions influenced by the boundaries. The “quasi-homogeneous” behavior of
some quantities in bounded regions is misleading due to several factors, the main
being the nonlocal nature of turbulence. From the conceptual point the nonlocality
makes local homogeneity, isotropy, etc. impossible unless the whole (infinite extent)
flow is such, which is trivially impossible.

A second example is the so called multifractal formalism (MF) (Frisch 1995),
using the experimental data in turbulent flows of the kind mentioned above such as
in the proximity of the centerline of a jet at moderate Reynolds numbers. The data
is used to justify the MF and at the same time the MF is used to “explain” the data,
see below.

The above extends into misinterpretations of analogies such as between the gen-
uine (e.g. NSE) turbulence and passive “turbulence”, i.e. evolution of passive objects
in random (or just not too simple) velocity fields. The differences are more than es-
sential, though there are numerous claims for the well-established phenomenologi-
cal parallels between the statistical description of mixing and fluid turbulence itself
(Shraiman and Siggia 2000), which are a consequence of multiple repetition of this
claim without almost any factual basis. The first example is the famous verse by
Richardson (1922, p. 6) related to the cascade picture of turbulent flows:

. . . we find that convectional motions are hindered by the formation of small ed-
dies resembling those due to dynamical instability. Thus C.K.M. Douglas writing of
observations from aeroplanes remarks: “The upward currents of large cumuli give
rise to much turbulence within, below, and around the clouds, and the structure of
the clouds is often very complex”. One gets a similar impression when making a
drawing of a rising cumulus from a fixed point; the details change before the sketch
is completed. We realize thus that: big whirls have little whirls that feed on their
velocity, and little whirls have lesser whirls and so on to viscosity—in the molecular
sense.

The point is that this observation was made by looking at the structure of
clouds, i.e., condensed water vapor, at the interface between laminar and turbulent
flows in their bulk, which today is known not necessarily reflecting the structure
of the underlying velocity field. The analogy between genuine and passive turbu-
lence is illusive and mostly misleading, see Fig. 1.3, Chap. 1 and Tsinober (2009,
Sects. 9.3, 9.4, 9.5.4) and references therein. In this context of special interest is a
recent statement by Eyink and Frisch (2011, p. 362):

. . . Kraichnan’s model of a passive scalar advected by a white-in-time Gaussian
random velocity has become a paradigm for turbulence intermittency and anoma-
lous scaling (the authors mean the genuine NSE turbulence). . . The theory of pas-
sive scalar intermittency has not yet led to a similar successful theory of inter-
mittency in Navier–Stokes turbulence. However, the Kraichnan model has raised
the scientific level of discourse in the field by providing a nontrivial example of a
multifractal field generated by turbulence dynamics. It is no longer debatable that
anomalous scaling is possible for Navier–Stokes.
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There are three points of problematic nature. First, the Kraichnan model it is not
a paradigm for turbulence intermittency and anomalous scaling—it is even not a
paradigm for intermittency and anomalous scaling for passive objects due to use of
unphysical velocity field. Second, it is not an example of multifractal model, but
rather an example of anomalous scaling which are definitely not synonymous.3 And
third, it is definitely not debatable that anomalous scaling is possible for Navier–
Stokes, and even more the anomalous scaling is in the Navier–Stokes as it is ob-
served in experiments for quite a while in real systems which are described by NSE.
However, the real issue is about the reasons/interpretation or even better underly-
ing mechanisms. The very problem is reflected by the term “anomalous scaling”
as it is observed in what is called “inertial range” which in reality is an object in
non-existence as not well defined due to severe contamination of the convention-
ally defined inertial range by strong dissipative events at whatever large Reynolds
numbers, see Chap. 8. Far more can be found on misuse and misinterpretations of
analogies in Chap. 9 (Tsinober 2009).

An additional example of interest is by Berdichevsky et al. (1996) in which mean
velocity distributions were obtained ‘from the first principles’ for turbulent Couette
and Poiseuille flows, which are in very good agreement with experimental results
for real three-dimensional flows. The problem is that these theoretical results are
based on a two-dimensional model lacking any essential phenomena specific for
three-dimensional flows such as vortex stretching whatsoever.

6.1.2 Validation or Theories Versus Hard Evidence

An intimately related to the just discussed issue of interpretation is the one concern-
ing experimental validation of ‘theories’ understood as any theoretical treatment
including modeling. This is directly related to the question on how meaningful and
in what sense is the experimental ‘confirmation’ and/or ‘validation’ of a ‘theory’
as the first thing one is wondering about what one is supposed to validate and/or
confirm. This is in the first place because in turbulence it is especially true that
experimentalists observe what cannot be explained whereas theoreticians claim to
explain these observations on the basis of idealizations which can not be realized.
This statement is far more specific than it seems as we will see all along this text.

The highly dimensional nature of turbulence is one of the main reasons and
obstacle for assessment of conceptual validity/reliability of any theory let alone
low-dimensional (LD) modeling. From a conceptual point of view the main ques-
tion remains whether it is at all possible and why does it ‘work’, of course, there is

3In this context it is of interest to quote Goto and Kraichnan himself (2004): Multifractal models
of turbulence have not been derived from the NS equation but they are supported by theoretical
arguments and their parameters can be tuned to agree well with a variety of experimental mea-
surements. . . Multifractal cascade models raise the general issue of distinction between what is
descriptive of physical behavior and what can be used for analysis of data. . . Multifractal models
may or may not express well the cascade physics at large but finite Reynolds numbers.
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a serious concern about the meaning of the term ‘works’. Any LD model or some
kind of a “theory” that represent a corresponding LD part/aspect of some particu-
lar kind/class of turbulent flows—but not necessarily for the right reason—will be
(and usually is) inadequate in other flows. Just like simple interpolation/fits poly-
nomials, etc. describe faithfully the behavior of data without any physical reason
(purely empirical/technical), so many models do precisely the same. Mostly they
are postdictions (rather than predictions) and, quite often, successful and useful
semi-empirical interpolation schemes. There are many theories—many with contra-
dictory premises—but all agreeing well with some experimental data. The issue is
more serious as there are many situations in which agreement with experiment may
not help too much even if the agreement between “theories” and experiment is ex-
cellent as the correspondence with the experimental results may occur for the wrong
reasons as happens from time to time in the field of turbulence. For example, there
are quantities/properties that are insensitive/invariant to some specific properties of
the flow field whether it is real or in some sense synthetic, Gaussian/quasi-normal,
Markovian, etc. For example, addressing issues associated with Gaussian/quasi-
normal manifestations of turbulent flows and having a perfect agreement with some
theory based on quasi-Gaussianity and/or quasi-normality an experimentalist en-
counters, in fact, a dilemma whether his measurements are perfect or just a nice
Gaussian noise.

It is not unusual that when it goes about validation a frequent phenomenon is
that the hard data (both from physical observations and numerical) is considered as
kind of inferior as compared to ‘models’ so that the former are tested against the
latter and not vice a versa as it is done even in fields being in possession of rigorous
theories.

Returning to the mentioned above multifractal formalism (Frisch 1995), it is
claimed to be an explanation of the ‘anomalous scaling’ and that the multifractal
model is well supported by experimental evidence. In fact, it is another description
of the observed anomalous scaling, i.e. of the experimental evidence employing at
best some general properties such as basic symmetries and dimensional arguments,
conservation laws and some other general properties etc. as the Navier–Stokes and
even Euler equations. On top of this the experimental data used are all at best at mod-
erate Reynolds numbers, whereas the MF is designed for Re → ∞. As mentioned
there are numerous alternative descriptions—sometimes standing in contradiction
with each other—which are also “well supported” by the experimental evidence.
A notable one is called breakdown coefficients/multipliers by Novikov (1990a).

It is should be stressed in all of the above that one of the key symmetries—the
very existence of scaling exponents in the statistical sense, e.g., in the inertial range
is assumed, i.e. it is a hypothesis only and is taken for granted, so it is a problem
by itself. In other words such models are more or less successfully mimicking the
experimental observations on the anomalous scaling, the multifractal formalism be-
ing (probably) the most successful as having the most freedom—a whole range of
exponents and a function—claimed to be universal—for adjustment to the experi-
mental data—at this stage the universality is forgotten. This issue (and some related)
is even more serious as there are problems concerning the experimental evidence it-
self used.
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We mention also the self-preservation theory of flows, e.g. past grids in the ver-
sion as described in George (2012), see also references therein. Though it is termed
as “theory” it is based on the spectral energy equation only, the spectral analogue of
the von Karman and Howarth equation (1938), i.e. for low order statistics only.
These equations contain more than one unknown, so that like von Karman and
Howarth a “hidden closure” is introduced which in this case is the self-preservation
hypothesis. Thus as any other model involving closure it cannot be considered as
genuine theory. It is also noteworthy that this model (like the MF formalism) is in
possession of considerable freedom for adjustment to the experimental data. There
are many other attempts to “solve” some “equations of turbulence” by closing them
using other “hidden closures”, e.g. exploiting Lie group formalisms (Rosteck and
Oberlack 2011; She et al. 2012; Hou et al. 2013) via multiscale analysis of the
Reynolds stress in terms of the solutions of local periodic cell problems, see also
references in the above papers.

An outstanding example of different nature is the Kolmogorov 4/5 law which
is independent of and insensitive to the nature of dissipation mechanism as it de-
pends on the mean energy injection rate only. Its validity at high Reynolds num-
bers in the form S3 ≡ 〈(�u)3〉 = −4/5〈ε〉r , i.e. with negligible viscous term
V T ≡ 6νd〈(�u)2〉/dr , which was interpreted in favor of existence of the inertial
range. However, this common view is not acceptable, since the negligible viscous
term V T in the Kolmogorov 4/5 law does not contain all the viscous contributions:
the PDF of �u and consequently S3 contains a nonnegligible contribution from dis-
sipative events which keep the 4/5 law precise—without the dissipative events just
mentioned the 4/5 law does not hold! The bottom line is that the 4/5 law is not
a purely inertial relation even at Reλ ≈ 104. We address this and related issues in
Chap. 8. Two more examples are the Yaglom 4/3 law for the passive scalar and the
Richardson pair diffusion law which are true for any random isotropic velocity field
including the Gaussian ones.

It seems that validation of “theories” which are not based on NSE (or more gen-
erally some other first principles—if such exist) is not that meaningful from the
fundamental point of view. The remaining are theories involving severe idealiza-
tions, which by themselves have to be tested far more carefully than it is usually
done. These involve assumptions of statistical homogeneity and isotropy, and other
symmetries and assumptions (such as self-similarity originated by von Karman and
Howarth (1938) and subsequent different versions, see references in George (2012)
and employing other “hidden symmetries”, etc.) possessed by the original NSE with
and/or without boundary conditions and other constraints, but not by statistical prop-
erties of flows in question. Hence the term “assumptions” in above.

The presence of boundaries prompted Kolmogorov (1941a) to postulate restoring
in some statistical sense of all the symmetries locally in space/time4 except for one
involving scaling:

4Frisch (1995) presents this in the form of his hypothesis H1 (p. 74), but omits to mention that it
is due to Kolmogorov: there is no presentation of the hypothesis of local isotropy in his book.

It is noteworthy that Kolmogorov theory is in reality based on similarity and dimensionality
and has no connection to NSE, see e.g. Monin and Yaglom (1971, p. 21): The great attention paid
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. . . we think it rather likely that in an arbitrary turbulent flow with sufficiently
large Reynolds number Re = LU

ν
the hypothesis of local isotropy is realized with

good approximation in sufficiently small regions G of the four-dimensional space
(x1, x2, x3, t) not lying close to the boundaries of the flow or its other special re-
gions.

It is noteworthy that though assuming sufficiently large Reynolds numbers Kol-
mogorov did not assume anything about the scaling properties at the outset. In order
to cope with this issue he introduced the concept of the inertial range (IR) for which
he assumed independence of statistical flow properties of viscosity and postulated
the validity of the scaling symmetry for statistical properties. This appeared to be in
(approximate) agreement for the second order statistics, but not for orders equal or
higher than four with increasing deviations with the order. It appeared that one of
the main problems is the ill-posedness of the concept of the IR: it is postulated and
widely believed that (ideally) there is no dissipation and viscosity does not play any
role in IR. However, there is hard evidence that at least some properties of the con-
ventionally defined IR do depend on the nature of dissipation at whatever large Re
and that strong dissipative events, which live in the IR and which appear to be not
so rare, make a nonnegligible impact on the behavior of traditionally inertial char-
acteristics such as structure functions and are at the origin of the so called anoma-
lous scaling The relation for the third order—the so called 4/5 law (Kolmogorov
1941b)—is a direct consequence of NSE, so that at high Reynolds numbers it is
indeed confirmed experimentally. The experimental results for the second order and
the validity of the 4/5 law enhanced the belief as concerned the higher order statis-
tics, but not for long. As mentioned, recent experimental evidence shows the 4/5 law
is not a purely inertial relation, see Chap. 8.

To put it simply, there is no such an object as an IR with properties independent of
viscosity, so it its meaningless to look for models explaining (not just describing—
there are great many of such) the intermittency in such a nonexistent object (i.e. IR),
as the multifractal formalism is, for more see Chap. 8 and Tsinober (2009, Chap. 5,
Sect. 5.3, pp. 102–110, also Chap. 7, p. 215).

Another important issue is the Reynolds number dependence. In the context of
the issue of validation/interpretation it is disturbing that the experimental evidence
was obtained at moderate Reynolds numbers for finite nontrivial statistically non-
homogeneous systems, including such flows as jets which are even only partially
turbulent as they consist of coexisting turbulent-nonturbulent regions. Nevertheless,
theoreticians claimed an ‘explanation’ of these same observations based on infinite
statistically homogeneous objects/boxes and Re → ∞. Today they say that these
same effects of finite box are of special interest. Again one of the latest examples of

in this book to, similarity and dimensionality is also conditioned by the fact that Kolmogorov’s
theory of locally isotropic turbulence (which is based entirely on these methods) is given a great
deal of space here. In other words, experimental validation of Kolmogorov (1941a) theory, as
all theories of this kind, has a limited value. Again, it is clear that if a result can be derived by
dimensional analysis alone. . . then it can be derived by almost any theory, right or wrong, which
is dimensionally-correct and uses the right variables (Bradshaw 1994).
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this kind is the “multifractal formalism”. Another disturbing aspect of globally (and
also locally) homogeneous turbulent flows is that in such flows, e.g. correlations of
quantities which are in the heart of any turbulent flow like 〈ω×u〉 and/or 〈(u ·∇)u〉,
〈ωj sij 〉 and/or 〈(ω · ∇)u〉, 〈sikskj 〉 and 〈∂2p/∂xi∂xj 〉 vanish. In particular, homo-
geneous turbulence with non-zero mean shear has constant Reynolds stresses with
zero divergence, so that a field of homogeneous turbulence can have no effect on
the field of mean velocity, if it stays homogeneous. In other words, generally, one
cannot apply results for globally homogeneous turbulent flows to flows which are
approximately homogeneous in a bounded region of flows, which are otherwise
non-homogeneous due to effects of nonlocality. As mentioned the attraction of Kol-
mogorov hypotheses is that they concern the local properties of any turbulence,
not necessarily homogeneous or isotropic or decaying or stationary, provided the
Reynolds number is large enough. The consistency of these hypotheses is debated
for quite a while both from the theoretical point of view, but as with other similar
issues without much progress from the fundamental point (Gkioulekas 2007; Hill
2006) and references therein. Similar problems are encountered with anisotropy.
One of the main problems is the inherent property of nonlocality questioning the
validity of the above hypotheses on local homogeneity/isotropy in bounded flow do-
mains surrounded by nonhomogenous/anisotropic flow regions, which is supported
by experimental evidence, see Chaps. 7 and 8.

The “quasi-homogeneous” behavior of some quantities in bounded regions is
misleading due to several factors, the main being the nonlocal nature of turbulence.
From the conceptual point the nonlocality makes local homogeneity, isotropy, etc.
impossible unless the whole (infinite extent) flow is such, which is trivially impos-
sible.

A final note is that the idealized configurations such as global homogeneity, etc.
are attractive for theoretical approaches, but they are useful for systems with dom-
inating properties of local nature. This seems to be not the case with turbulence.
Hence the problem with the utility of idealized configurations, not to mention that
they were not so useful in view of absence of theory from first principles anyhow.

6.2 Ergodicity and Related

The general approach in statistical methods in theory is assumed to employ the
concept of ensembles consisting of realizations of the “same” turbulent flow under
nominally identical external conditions.5 The problem is which probability should
be assigned to each realization, so that the ensemble would correspond to most
closely to physical reality and what is the relation of the statistics based on ensem-
bles and statistics obtained from space-time information from a limited number of
realizations because experiments cannot not usually be repeated a sufficiently large

5In the language of mathematicians invariant probability measures, and there is a question which
one is selected in experiments (Ruelle 1983).
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number of times for statistics large enough ensembles to be made. The ergodicity
hypothesis is the tool which is used to cope with this problem.

For statistically stationary flows ergodicity is roughly equivalence of ‘true’ sta-
tistical properties, not only means/averages, but ‘almost’ all statistical properties,
of an ensemble to those obtained using time series in one very long realization.
A similar property is defined in space by replacing time by space coordinate(s) in
which the flow domain has an infinite extension, at least in one direction. In other
words, the ergodicity hypothesis in a way eliminates the necessity to study the prob-
lemen masse: one “good” realization/or snapshot may be and in many cases is good
enough.

Though it is not known whether three-dimensional turbulent flows are ergodic,6

it is common to use the ergodicity hypothesis in turbulence research, e.g., in phys-
ical and numerical experiments: turbulent flows are just believed to be ergodic at
least the statistically stationary ones. In other words, in statistically stationary sit-
uations the time statistics obtained in experiments is believed to correspond to a
unique probability measure invariant under time evolution. Also there seems to ex-
ist no direct evidence regarding the validity of the ergodicity hypothesis in turbulent
flows except of one exploiting the property of a turbulent flow which is both statisti-
cally stationary in time and homogeneous in space (Galanti and Tsinober 2004). In
such a flow its temporal and spatial statistical properties such as temporal statistics
corresponding to a time series at a single point in space and spatial statistics based
on a single time snapshot over the flow domain should be the same if the ergodic
hypothesis is correct, see Fig. 6.1. One sees that indeed the temporal and spatial
statistical properties shown in this figure are close to be identical. However, we re-
peat that though the statistics are the same there is far more one has to explore as
concerns individual realizations—either one long time realization or a single time
spatial snapshot. It should be emphasized that though this example is in favor of the
ergodicity hypothesis, there are non-trivial problems such as outlined in Tsinober
(2009, Sect. 3.7).

A tempting simplified interpretation or even better just illustration (no proofs,
etc. so far) of the ergodicity property of statistically stationary flows is in terms of
an attractor assumed to exist,7 which is a very complex non-trivial object (Doering

6The problem with this ergodicity assumption is that nobody has ever even come close to prov-
ing it for the Navier–Stokes equation (Foiaş 1997), though some mathematical results, which are
claimed to be relevant to turbulence are given in Foiaş et al. (2001). Namely, they have shown
that there are measures—in the language of physics ensembles—on a function space that are time-
invariant. However, invariance under time evolution is not enough to specify a unique measure
which would describe turbulence. Another problem is that it is not clear how the objects that the
authors have constructed and used in their proofs are relevant/related or even have anything to do
with turbulence.
7Turbulent flows possess (empirically) stable statistical properties (SSP), not just averages but al-
most all statistical properties. In case of statistically stationary flows the existence of SSP seems
to be an indication of the existence of what mathematicians call attractors. But matters are more
complicated as many statistical properties of time-dependent in the statistical sense turbulent flows
(possessing no attractor, but stable SSP) are quite similar at least qualitatively to those of statisti-
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Fig. 6.1 Top: The ‘tearing drop’ pattern, which is the joint PDF of the invariants R,Q of the
velocity gradient tensor ∂ui/∂xj ,R = −1/3{sij sjkski + (3/4)ωiωj sij }, and Q = (1/4){ω2 −2s2}.
On the left is shown temporal statistics corresponding to a time series at single point in space. On
the right is shown spatial statistics based on a single time snapshot over the flow domain. Bottom:
An example of joint statistics of three quantities related by incompressibility relation—joint PDF
of the eigenvalues of the rate of strain tensor Λ1, Λ2, Λ3 in the plane Λ1 +Λ2 +Λ3 = 0. Note that
the time statistics in the figure on the right shows clear traces of time evolution, whereas nothing
of the kind is observed with the spatial statistics on the left as it corresponds to one time snapshot
and in this sense has nothing to do with the time evolution (Galanti and Tsinober 2004)

and Gibbon 2004; Foiaş et al. 2001; Robinson 2001). Almost any particular long
enough flow realization comes very close to almost (i.e. with exception of measure
zero) points of the attractor, and so will do almost any other (very long) realization.
In other words, the solutions corresponding to the trajectories in the phase space
will asymptotically visit (almost) all the attractor provided that the time span is
long enough. In this sense almost all realizations will be almost the same. Hence
the almost the same statistical properties—not just means, i.e. ergodicity. These re-

cally stationary ones as long as the Reynolds number of the former is not too small at any particular
time moment of interest. This can be qualified as some manifestation of qualitative temporal uni-
versality/memory.
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alizations will differ in their instantaneous, i.e. particular appearance not only due
to (the popular) sensitive dependence on initial conditions, but also due to insta-
bilities/complexity of the behavior due to complex structure of the attractor Arnold
(1991) almost at any time and point of phase space and physical space either. Tritton
(1988) defines turbulence as a state of continuous instability. Noteworthy is that the
“same” above is essentially “statistically”, their instantaneous “appearance” cannot
be expected to be close in every respect. It is noteworthy that one cannot give a sim-
ilar interpretation of spatially homogeneous flows as any single time snapshot does
not reflect any time evolution, see again Fig. 6.1.

A related issue is predictability, e.g. in meteorology dealing with a more com-
plicated issue ideally attempting prediction of individual realization in spite of the
general claim that two initially nearly (but not precisely) identical turbulent flows
become unrecognizably different on the time scale of dynamical interest. In real-
ity, predictability in meteorology is dealing with prediction of (statistical) large
scale properties of some “narrow sub-ensemble” of realizations based on models
(like LES) with—again—eliminating the “small scales”, but not totally: The prob-
lem faced by anyone trying to model weather and climate is that we cannot totally
ignore the unresolved scales of motion (Palmer 2005). Instead, as in any modeling
approach we try to represent the unresolved scales in climate models by imagining
an ensemble of sub-grid processes in approximate secular equilibrium with the re-
solved flow. The ensemble-mean (or “bulk”) effect of these sub-grid processes is
then given by a set of relatively simple (e.g. diffusive-like) deterministic formulae.
We call such formulae “parametrizations” of the sub-grid processes (Palmer 2005).
One of the fascinating issues of fundamental nature is the dynamics of an initial
error, which is the measure of the differences between some two realizations of a
turbulent flow under almost (hence the error) the same conditions. An important as-
pect is that the error also possesses stable statistical properties in the sense that errors
corresponding to different pairs of realizations have the same statistical properties
e.g. see Tsinober and Galanti (2003).

Another related issue concerns reproducibility beyond just the overall statistical,
which, in fact, to a large extent is the same as the one of predictability in meteo-
rology. Far better predictions may be possible when a system is under strong influ-
ences like rotation, stable stratification (Cullen 2006) and similar; with high level
of control of, e.g. inflow conditions as in a recent example in a boundary layer flow
(Borodulin et al. 2011) and a far broader general theme of flow control including tur-
bulent flows mainly in engineering (Gad-el Hak and Tsai 2006), and mathematical
sciences (Barbu 2011) and references therein.



Part III
Issues of Paradigmatic Nature II:

Specific Features

This part is a continuation of the previous part, which included a discussion of the
consequences of complex behavior of systems described by purely deterministic
equations including the necessity of change of the paradigmatic meaning of apparent
randomness, stochasticity of turbulence which is roughly just the complexity due to
a large number of strongly interacting degrees of freedom governed by the Navier
Stokes equations.

It is devoted to more specific than in the previous part issues, but not less impor-
tant. What follows comprises or are related to the second part of the major qualita-
tive universal features of turbulent flows briefly described/listed in Chap. 1. These
include the N’s of turbulence with the emphasis on nonlinearity and nonlocality and
the impact of the latter on such issues as large Reynolds number behavior and re-
lated. Here we make also a distinction between the issues of paradigmatic nature
and those which are apparently/seemingly (pseudo-) paradigmatic such as the as the
most popular cascades. A noteworthy feature is that the arguments in Chaps. 7 and 8
are supported by result from experiments at high Reynolds numbers not accessible
to DNS of NSE with pointwise access to the full tensor of velocity derivatives, e.g.
vorticity, strain among many others. Intermittency and structure(s) of and/in turbu-
lence are overviewed in the last chapter taking into account the relevant aspects from
the previous material.



Chapter 7
The N’s of Turbulence

Abstract We start with the N’s of turbulence. These comprise most of why turbu-
lence is so impossibly difficult along with the essential constructive aspects facilitat-
ing all what is found in this book, i.e. to a large extent the “essence” as well. What-
ever the approaches there are important common issues/difficulties/features most of
which belong to this category: nonlinearity, nonlocality (and consequently “nonde-
composability”) and non-integrability, non-Gaussianity and non-Markovianity, non-
equilibrium and (time) nonreversible, no scale invariance and no other symmetries,
no small parameters and no low-dimensional description, and as a consequence of
all this no theory based on first principles as NSE equations, which is a real frustra-
tion for a theoretician.

We concentrate on the most acute—to our view—with brief remarks on the rest,
which does not mean that they are unimportant. These are in the first place the non-
linearity and nonlocality. Among a number of important roles of nonlinearity we
stress also that it is responsible for the key properties of turbulence as an essentially
rotational and strongly dissipative phenomenon. Nonlocality is a generic internal
property of turbulent flows and exists independently of the presence of mean shear
or other external factors, but has different and rich manifestations for different ex-
ternal factors. One of such manifestations is the direct and bidirectional coupling
between large and small scales. We comment on the problematic issue of a vari-
ety of claims for locality which are not unrelated with the interpretational abuse of
observations.

7.1 Non-integrability

In 1788 Lagrange wrote: One owes to Euler the first general formulas for fluid
motion. . . presented in the simple and luminous notation of partial differences. . .
By this discovery, all fluid mechanics was reduced to a single point analysis, and if
the equations involved were integrable, one could determine completely, in all cases
the motion of a fluid moved by any forces (Lagrange 1788, Sect. X, p. 271).

The if in the above citation is crucial: the Navier–Stokes equations are not inte-
grable. Integrable systems, such as those having a solution ‘in closed form’ exhibit
regular organized behavior, even those having an infinite number of strongly cou-
pled degrees of freedom. A prominent example is provided by the solitons in the
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systems described by the Korteveg–de Vries and Shrödinger equations. Two other
examples are the Burgers and the so-called restricted Euler equation, which are in-
tegrable equations, and exhibit random behavior only under random forcing and or
initial conditions, otherwise their solutions are not random.1 That is, these examples
represent the response of nonlinear systems to random forcing and which otherwise
are not random, and should be distinguished from problems involving genuine tur-
bulence. Navier–Stokes equations at sufficiently large Reynolds number have the
property of intrinsic stochasticity in the sense that they possess mechanisms of self-
“randomization” most probably at all scales, which are not fully understood. An
important point is that non-integrability is intimately related to chaotic/complex be-
havior.

7.2 Nonlinearity

The role of nonlinearity—the general one, the chaotic/complex behavior of the fluid
flow was discussed in Part I, it is also the most frequently fingered as the main
‘guilty party’ for the difficulties and for almost everything as concerns turbulence.
This is definitely true as without nonlinearity there are no instabilities, bifurcations,
transitions and turbulence itself. It is nonlinearity which makes life difficult due to
massive use of decompositions. But, as we will see below, it is not alone. And there
are several ‘howevers’.

First, there are nonlinear problems that are completely integrable. The well-
known examples, are systems displaying solitons or solitary waves. In these sys-
tems the many degrees of freedom are so strongly coupled that they do not display
any chaotic/irregular behavior. Instead they are entirely organized and regular, see
Zakharov (1990), Kosmann-Schwarzbach et al. (2004) and references therein. By
a quite questionable and pretty problematic analogy it is thought for quite a while
without almost any constructive output that the so-called coherent structures in tur-
bulent flows may be viewed and treated viewed in a similar way, e.g. (Newton and
Aref 2003).

Second, nonlinearity is frequently blamed for the difficulties in the closure prob-
lem which is associated with some form of decomposition, such as the Reynolds de-
composition of the flow field into the mean and the fluctuations, or similar decompo-
sitions into resolved and unresolved scales associated with large eddy simulations.

1There is no consensus on the meaning of the term integrability, but it is agreed mostly that inte-
grable systems behave nicely and are globally ‘regular’, whereas the nonintegrable systems are not
‘solvable exactly’ and exhibit chaotic behavior, see Zakharov (1990) and Kosmann-Schwarzbach
et al. (2004) for more examples and discussion on what is integrability. The latter write It would fit
for a course entitled “Integrability” to start with a definition of this notion. Alas, this is not pos-
sible. There exists a profusion of definitions and where you have two scientists you have (at least)
three different definitions of integrability but mention the definition by Poincar´e: to integrate a
differential equation is to find for the general solution a finite expression, possibly multivalued, in
a finite number of functions.
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The essence of the problem is that the equations for the mean field (resolved scales)
contain moments of the fluctuations (unresolved scales) due to the nonlinearity of
the NSE. However, a similar problem exists for the so-called advection-diffusion
equation describing the behavior of a passive scalar in some flow field. But this
equation is linear. The problem arises due to the multiplicative nature of the veloc-
ity field, since velocity enters this equation as its coefficients. Finally, a noteworthy
caveat is that the inertial nonlinearity in the Euler setting, (u · ∇)u have a relative
nature as depending on the frame of reference—it is not Galilean invariant and in
pure Lagrangian setting is even not present—the acceleration in pure Lagrangian
setting is linear so that the inertial nonlinearity consists only of a term with pres-
sure. Getting back to Eulerian setting it is noteworthy that the nonlinearity (u · ∇)u
consists of two parts, irrotational and solenoidal, (u · ∇)u = ∇(α + u2/2) + ∇ × β ,
where ∇α and ∇ × β are the irrotational and solenoidal parts of the Lamb vector
ω × u = ∇α + ∇ × β . We remind also that there is strong cancellation between
∂u/∂t and (u ·∇)u and so that the irrotational part of the sum a = ∂u/∂t + (u ·∇)u,
i.e. the acceleration is dominated by pressure, but in the norm 〈(· · ·)2〉, see DNS
by Vedula and Yeung (1999). However, it is the rotational part of acceleration
as = ∂u/∂t + ∇ × β = ν∇2u without which there is no turbulence.

7.2.1 Nonlinearity Plus Decompositions Gives Birth to “Cascades”

Cascade is essentially a phenomenological creature. Though phenomenology is not
a genuinely fundamental problem/issue, see Chap. 5 in Tsinober (2009), there are
several aspects of paradigmatic nature. Hence a short digression. First, as concerns
decompositions any decomposition results in a nontrivial bidirectional relation be-
tween small and the large scales (whatever this means) which is non-local (func-
tional) both in space and time, i.e. history-dependent. Nonlinearity along with any
decomposition/representation of a turbulent field results in a process of interac-
tion/exchange of (not necessarily only) energy between the components of the de-
composition and, in particular, in a “cascade” with its properties depending on the
“physics” of the specific decomposition.

This alone plus nonlocality (see below) makes the popular concept of cascade
ill posed which along with other important issues calls for reminding the acute and
generic problems arising from employing decompositions. Indeed, one of the prob-
lems with decompositions is that the nonlinear term redistributes, e.g. the energy
among the components of a particular decomposition in a different way for differ-
ent decompositions, i.e. the energy exchange/transfer is decomposition dependent,
though one would expect that energy transfer, just like any physical process, should
be invariant of particular decompositions/representations of a turbulent field. On the
contrary the production of strain, i.e. dissipation which is the final destination of the
assumed cascade does not care about decompositions. In other words, the energy
‘cascade’ (whatever this means, if anything) is associated primarily with the quan-
tity −sij sjkski responsible for the strain production, rather than with the enstrophy
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production ωiωj sij and that vortex stretching suppresses the cascade and does not
aid it, at least in a direct manner. Consequently, it is the vortex compression, i.e.
ωiωj sij < 0, that aids the production of strain/dissipation and, in this sense, the
‘cascade’, see below. So there is a problem with the classical energy cascade pic-
ture, in which vortices of a given scale are stretched by and absorb energy from
structures of a somewhat larger scale (Leung et al. 2012 and references therein). It
is noteworthy that this and similar classical views of the energy cascade are based
mainly on an erroneous analogy with material lines and other passive vectors, see
Sect. 9.4 Vorticity versus passive vectors in Chap. 9 on analogies and misconcep-
tions in Tsinober (2009).

The notion that turbulent flows are hierarchical, which underlies the concept
of the cascade, though convenient, is more a reflection of the unavoidable (due to
the nonlinear nature of the problem) hierarchical structure of models of turbulence
and/or decompositions rather than reality, see e.g. the rigorous treatment of cascade
between the components based on eigensolutions of the Stokes operator in Foiaş
et al. (2001).

The class of flows called partly turbulent comprises a strong counter example to
the cascade. In all such flows the fluid becomes turbulent in ‘no time’ without any
cascade whatsoever. The ill-posedness of the cascade concept is emphasized in the
case of passive objects, whose evolution is governed by linear equations, with the
velocity field entering multiplicatively in these equations, thus making them ‘statis-
tically nonlinear’. In the Lagrangian description the inertial effects are manifested
only by the term containing pressure. Therefore, the nonlinearity in the Lagrangian
representation cannot be interpreted in terms of some cascade. An extreme exam-
ple is the absence of a “cascade” in Lagrangian chaotic, but Eulerian laminar flows.
There is much confusion of fluxes in inhomogeneous flows with cascades, e.g. the
recent example by Jimenez (2012).

We should also mention two examples from stability related to the above. The
first is about the of spatially periodic flows, which may destabilize directly into
small-scale three-dimensional structures (Pierrehumbert and Widnall 1982). The
second example shows that significant variations down to very small scale can be
produced by a single instability at much larger scale without any ‘cascade’ of suc-
cessive instabilities (Ott 1999).

The bottom line is that the cascade picture of turbulence is more a reflection
of the hierarchic structure of various models of turbulent flows rather than reality.
Most of these models have no connection with Navier–Stokes equations. Other relay
severely on closures.

7.2.2 Turbulence Is Essentially Rotational and Strongly
Dissipative Phenomenon

It is the Eulerian setting which enables one to observe the following key paradig-
matic properties of turbulence associated with the nonlinearity of NSE.
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There are two concomitant qualitatively universal physical mechanisms turning
turbulence into a strongly dissipative and rotational phenomenon. These are the pre-
dominant production of the rate of strain tensor, sij and vorticity, ωi . The rate of
strain tensor, sij and vorticity, ωi are just the symmetric and antisymmetric parts of
the tensor of velocity derivatives Aij = ∂ui/∂xj ≡ sij + 1

2εijkωk . Though formally
the two representations are trivially equivalent, it is also trivially obvious that it is
more appropriate from the physical point of view to use strain and vorticity as cor-
responding to the two fundamental properties of turbulence as strongly dissipative
and essentially rotational. We emphasize that the direct causal relation to dissipation
is not the only role played by strain ε = 2νsij sij in turbulent flows, rather than to
enstrophy.

The mechanisms of strain and vorticity production are reflected by the terms
−sikskj and ωj sij in the equations for sij and ωi correspondingly. It should be em-
phasized that these terms are Galilean invariant unlike the term (u · ∇)u they take
their origin is not Galilean invariant. Likewise the terms −sij sjkski and ωiωj sij
responsible for the production of the total strain s2 ≡ sij sij and the enstrophy ω2

correspondingly. These are the outstanding quantities of third order and the empiri-
cal fact of paradigmatic importance is that both are positively skewed, so that both
−〈sij sjkski〉 and 〈ωiωj sij 〉 are positive.

In contrast to the common view: It seems that the stretching of vortex filaments
must be regarded as the principal mechanical cause of the high rate of dissipation
which is associated with turbulent motion (Taylor 1938a, 1938b) it is the production
of strain which is responsible both for (i) the enhanced dissipation of turbulence
and in particular, for what is called “cascade” as resulting in enhanced dissipation,
which is not surprising as the appropriate level of dissipation moderating the growth
of turbulent energy is achieved by the build up of strain of sufficient magnitude
and (ii) the enstrophy production either. In other words, apart of dissipation the
strain field plays the role (among several others) of an engine producing the whole
field of velocity derivatives, both itself and the vorticity, with compression aiding
the prevalent production of strain and stretching aiding the prevalent production
of enstrophy. It is of special importance on paradigmatic level that it is the strain
production which is responsible for the finite overall dissipation at (presumably)
any however large Reynolds numbers in contrast to two-dimensional flows where
s2 is an inviscid invariant.

The fascinating aspect of the above non-conformistic statements is that it be-
comes literally obvious when one takes the labor to look at both equations, i.e. for
ω2 and for s2 too.

1

2

Dω2

Dt
= ωiωj sij + νωi∇2ωi + εijkωi

∂Fk

∂xj

,

1

2

Ds2

Dt
= −sij sjkski − 1

4
ωiωj sij − sij

∂2p

∂xi∂xj

+ νsij∇2sij + sijFij .

It is seen also that the enstrophy production ωiωj sij appears in RHS of the equation
for s2 with the negative sign, so that the vortex stretching is opposing the production
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of dissipation/strain: all instantaneous positive values of ωiωj sij make a negative
contribution to the RHS in the equation for s2, i.e. enstrophy production ωiωj sij
has an additional role as drain of “energy” of strain, i.e. s2.

Since ωiωj sij is essentially a positively skewed quantity, its mean contribution
to the strain production is negative. In other words, the energy ‘cascade’ (whatever
this means, if anything) is associated primarily with the quantity −sij sjkski , rather
than with the enstrophy production ωiωj sij and that vortex stretching suppresses the
cascade and does not aid it, at least in a direct manner. Consequently, it is the vortex
compression, i.e. ωiωj sij < 0, that aids the production of strain/dissipation and, in
this sense, the ‘cascade’, for more see Tsinober (2009, Sect. 6.2.2, pp. 128–133);
also Schumacher et al. (2011).

The term sijΠij , with Πij ≡ ∂2p/∂xi∂xj , is a divergence, so it is vanishing in
the mean in “locally”-homogeneous flows. However, sijΠij is still of importance as,
e.g. the PDF of sijΠij is asymmetric and is positively skewed at large s2 (Tsinober
2000). The term sijΠij becomes important in inhomogeneous flows especially in
purely irrotational inhomogeneous ones, e.g. in the nonlocal production of strain
on the laminar side (not only in the proximity) of the turbulent non-turbulent “in-
terface” in partly turbulent flows. It is noteworthy that the evolution equations for

ωiωj sij and sij sjkski contain important nonlocal terms ωiωj
∂2p

∂xi∂xj
and sikskj

∂2p
∂xi∂xj

,
see Appendix C in Tsinober (2009).

An important a bit subtler aspect is that the field of strain is efficient in the above
two missions only with the aid of vorticity, i.e. only if the flow is rotational, since
otherwise the strain (self-)production, sij sjkski , for an irrotational flow field is just a
divergence sij sjkski = ∂{· · ·}/∂xi . In this context the vortex stretching is necessary

to support the rotational nature of turbulence. Otherwise. e.g. it is the term sij
∂2p

∂xi∂xj

which is mainly responsible for the strain production on the laminar side of the
turbulent non-turbulent “interface” in partly turbulent flows, see the upper part of
Fig. 1.1. The above does not exhaust the roles of strain, see Sect. 6.22 in Tsinober
(2009).

There is a conceptual and qualitative difference between the nonlinear interaction
between vorticity and strain, e.g. ωiωj sij and the self-amplification of the field of
strain, − sij sjkski , which is a specific feature of the dynamics of turbulence having
no counterpart (more precisely analogous—not more) in the behavior of passive and
also active objects. This process (i.e., sij sjkski ) is local in contrast to ωiωj sij , as the
field of vorticity and strain are related nonlocally.

Unlike the strain self-production the interaction of vorticity and strain involve
important issues of geometrical nature which are complicated by the nonlocal re-
lation between them. For example, ωiωj sij = ω2Λk cos2(ω,λk) so that the en-
strophy production is essentially dependent on (i) the magnitude of ω2, (ii) the
eigenvalues Λi of the rate of strain tensor sij (Λ1 > Λ2 > Λ3; due to incom-
pressibility Λ1 + Λ2 + Λ3 = 0 so that Λ1 > 0, Λ3 < 0), (iii) the alignments be-
tween vorticity ω and the eigenframe λi of the rate of strain tensor sij and corre-
lations between the three (i)–(iii). It appears that the main contribution to the en-
strophy production and its rate is due to the first term associated with the ω,λ1
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Fig. 7.1 (a) Histograms of the total rate of enstrophy production ωiωj sij /ω
2 and separate con-

tributions Λk cos2(ω,λk), k = 1,2,3. It seen clearly that the main contribution to the total on
the positive part comes from Λ1 cos2(ω,λ1). (b) Conditional averages of EPR = ωiωj sij /ω

2 on
cos2(ω,λk). We preferred to use the evidence as obtained for real physical fields to avoid any
abuse by some additional processing such as decompositions, etc. We stress that this is qualita-
tively different from the ω,λ1 alignment for some “parts” of the flows processed in some way, e.g.
removing some ‘local’ part of strain or using band pass filtering, see Kevlahan and Hunt (1997),
Porter et al. (1998), Hamlington et al. (2008), Leung et al. (2012)

alignment, see Tsinober (2009 and references therein). For example, in the field
experiments with Reλ ≈ 104 the relation between the mean of the three contri-
butions 〈ω2Λ1 cos2(ω,λ1)〉 : 〈ω2Λ2 cos2(ω,λ2)〉 : 〈ω2Λ3 cos2(ω,λ3)〉 = 3.1 : 1.0 :
−2.1. The dynamical dominance of the term associated with the ω,λ1 alignment
is much stronger for the corresponding rates, i.e. ωiωj sij /ω

2 = Λk cos2(ω,λk);
〈Λ1 cos2(ω,λ1)〉 : 〈Λ2 cos2(ω,λ2)〉 : 〈Λ3 cos2(ω,λ3)〉 = 4.9 : 1.0 : −3.8, which ex-
hibits far stronger role of strain and ω,λi alignments. For PDFs of involved quanti-
ties see Fig. 7.1.

Thus it appears that the flow patterns with ω,λ1 alignment are dominant in en-
strophy production in spite of the observed statistical predominance of the ω,λ2
alignment. In other words, the predominant vortex stretching is indeed due to align-
ment ω,λ1, but for this there is no need for the statistical predominance of this
alignment as massively expected, since statistical dominance is not synonymous
to dynamical relevance.2 This apparent “contradiction” is resolved by noting that:
(i) the intermediate eigenvalue, Λ2, assumes both positive and negative values thus
reducing the terms 〈ω2Λ2 cos2(ω,λ2)〉 and 〈Λ2 cos2(ω,λ2)〉 which involve both
stretching and slightly less compressing; whereas Λ1 is positive; and (ii) the magni-

2This expectation takes its origin mainly from the incorrect analogy with material lines and other
passive vectors, see Sect. 9.4 Vorticity versus passive vectors in Chap. 9 on analogies and mis-
conceptions in Tsinober (2009). In particular, the nonlocality of the relation between vorticity and
strain—which does not have an analogue with passive vectors—play an important role in the issue
of ω,λi alignments (Hamlington et al. 2008).

An important general aspect is that the strongest interaction between vorticity and strain occurs
in regions with ω,λ1 alignments and large strain, see Chap. 6, pp. 150–153 in Tsinober (2009).
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tude of Λ1 is much larger, e.g. 〈Λ2
1〉 : 〈Λ2

2〉 : 〈Λ2
3〉 = 10.2 : 1.0 : 13.7, see Table 6.6

and Fig. 6.7 in Tsinober (2009).
We would like to recapitulate the qualitative differences between the enstrophy

and strain production. It is the strain production (rather than vortex stretching) that
is directly responsible for the enhanced dissipation of turbulent flows and it is a lo-
cal process with predominant compressing whereas the enstrophy production is a
nonlocal process with predominant stretching. To stress, though vorticity is com-
monly given more stress whereas in reality strain and vorticity are almost “equal
partners”. Almost because it is the strain production that plays the role of an engine
producing the whole filed of velocity derivatives provided that the flow field is not
vorticity-free.

The bottom line here is that on the paradigmatic level it is the nonlinearity that is
responsible for such most basic key properties of turbulence as essentially rotational
and strongly dissipative phenomenon. This is just because the excitation of small
scales is due to the nonlinearity of the NSE.

It is worth of emphasizing that these two concomitant key properties and pro-
cesses are observed in a rather straightforward manner, so that there is no need
for “cascades”, decompositions etc. These latter so far are mainly obscuring rather
than helping to “understand the physics of cascades” or whatever, not to say about
the positively skewed nature of the −sij sjkski and ωiωj sij , which is in the heart
of the physics of turbulence. These quantities are among typical representing gen-
uinely nonlinear processes in turbulence making it not amenable to quasi-nonlinear
approaches such as RDT.

A final remark is that the dominance of strain and enstrophy production,
−sij sjkski and ωiωj sij , as manifested, e.g. in the Tennekes and Lumley balance,
see below, is challenged in regions lying close to the flow boundaries and other spe-
cial regions such as those with large shear and laminar/turbulent interfaces in partly
turbulent flows.

7.3 Nonlocality

7.3.1 Introductory/General Remarks

Turbulence is a nonlocal process. One can see clear hints to this from the term
(u · ∇)u ≡ ω × u + ∇(u2/2) and terms appearing in a number of precise conse-
quences of NSE such as (ω · ∇)u ≡ ∂/∂xj {uiωj }—so it is naturally to call uiωj as

helicity tensor, ∇2p = ρ(ω2 − 2sij sij ) = −ρ
∂2uiuj

∂xi∂xj
among many others.

The term nonlocality is used here in several related meanings which will become
clear in the course of the discussion of the issues throughout this section and in the
sequel. This includes anisotropy especially in small scales, statistical dependence of
small and large scales, nonlocality versus decompositions, intermittency and struc-
ture(s), helicity, flows with additives, memory effects, flow history and predictability
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and effects of boundary including inflow conditions, closures and nonlocal relations
between resolved and unresolved scales and constitutive relations and some other
related issues. These are described, in Tsinober (2009, Sects. 1.3.5 and 6.6). Here
we concentrate on the issues which have a touch to paradigmatic issues with some
updating.

Nonlocality is a generic internal property of turbulent flows and exists indepen-
dently of the presence of mean shear or other external factors, but has different
manifestations for different external factors. For example, in the presence of a mean
shear the small scales become anisotropic, whereas if the small scales are artifi-
cially excited the overall dissipation and mixing rate of the turbulent flow increase
substantially. The direct interaction/coupling of large and small scales is in full con-
formity and is the consequence of the generic property of Navier–Stokes equations,
which are integro-differential. It appears that the Kolmogorov 4/5 law can be inter-
preted as one of the manifestations of nonlocality in the above sense, see Sect. 8.1
below. Nonlocality is associated also with ‘kinematics’ due to the nonlocal rela-
tions between, e.g. velocity and its increments and between vorticity and strain.
The non-local nature of the inertial nonlinearity is clearly seen looking at purely
Lagrangian setting in which the inertial nonlinearity consists of the term with pres-
sure only. We remind that from the formal point of view a process is called local if
all the terms in the governing equations are differential. If the governing equations
contain integral terms, then the process is nonlocal. The Navier–Stokes equations
are integro-differential for the velocity field in both physical and Fourier space or
any other. Therefore, generally, the Navier–Stokes equations describe nonlocal pro-

cesses. Indeed, since ∇2p = ρ(ω2 − 2sij sij ) = −ρ
∂2uiuj

∂xi∂xj
, the relation of pressure

and velocity is nonlocal due to the nonlocality of the operator ∇−2. This aspect
of nonlocality is strongly associated with the essentially non-Lagrangian nature of
pressure. Therefore it is not surprising that replacing in the Euler equations the pres-

sure Hessian Πij ≡ ∂2p
∂xi∂xj

, which is both nonlocal and non-Lagrangian, by a local

quantity δij∇2p = ρ/2{ω2 − 2sij sij } turns the problem into a local and integrable
one and allows to integrate the equations for the invariants of the tensor of velocity
derivatives ∂ui/∂xj in terms of a Lagrangian system of coordinates moving with a
particle, see Cantwell (1992), Meneveau (2011) and references therein. One of the
reasons for the disappearance of turbulence (and formation of singularity in finite
time) in such models, called restricted Euler models, is that the eigenframe of sij in
these models is fixed in space Novikov (1990b), whereas in a real turbulent flow it
is oriented randomly in space and time. This means that nonlocality due to pressure
is essential for (self-)sustaining turbulence: no pressure Hessian—no turbulence.

In view of special/paradigmatic status of the strain and enstrophy production
it is of interest to mention that the pressure Hessian Πij enters the equations for
the rate of change of strain and enstrophy production, i.e. D(sij sjkskj )/Dt and
D(ωiωj sij )/Dt respectively, in the form sij sjkΠij , ωiωjΠij which reflect the in-
teraction between strain and vorticity and the pressure Hessian with a nonlocal con-
tribution stemming from the deviatoric part of the pressure Hessian.
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The fluid particle acceleration a ≡ Du/Dt—a kind of small scale quantity, which
is dominated by the pressure gradient, ∇p and thereby the fluid particle acceler-
ation is also related in a nonlocal manner to the velocity field. Hence the scal-
ing properties of the acceleration variance do not obey Kolmogorov-like scaling.
From the kinematic point a ≡ Du/Dt = ∂u\∂t + (u · ∇)u = − 1

ρ
∇p + ν∇2u =

∂u\∂t + ω × u + ∇(u2/2), i.e. it is a ‘mixed’ quantity due to presence of both ve-
locity and velocity derivatives. Thus the impact of nonlocality on the behavior of
acceleration.

There is a large set of fluid flows with “stronger” nonlocality. These are flows
possessing additional mechanisms as the ability of supporting waves such as ro-
tating, stably stratified and magnetohydrodynamic. Flows with special properties
related to helicity such as with helical forcing are of this kind too.

Though turbulence is inherently nonlocal there are attempts to single out at least
some aspects which are in some sense “local” by putting forward some hypotheses.

The main reason for such attempts becomes clear because nonlocality is among
the main reasons of the absence of a sound theory of turbulence based on first prin-
ciples. This state of matters is not unique for turbulence. Landau (1960) wrote: It is
well known that theoretical physics is at present almost helpless in dealing with the
problem of strong interactions. . . and that it is necessary to consider “distributed”,
non-local, interactions. . . Unfortunately, the non-local nature of the interaction ren-
ders completely useless the technique of the present existing theory.

It is probably one of the reasons why Kolmogorov (1985) wrote: I soon under-
stood that there was little hope of developing a pure, closed theory, and because of
absence of such a theory the investigation must be based on hypotheses obtained on
processing experimental data.

Other reasons are more “practical”. With nonlocality it is far from trivial if not
impossible to use the experimental data—which are all limited in space and time—
for “validation” of theoretical developments for, e.g. homogeneous flows, i.e. in
‘infinite’ domains. Also, locality is necessary for the ‘physical foundation’ of large-
eddy simulation (LES) modeling of turbulence (Aluie 2012 and references therein).

Even just looking at the equations for the small/unresolved scales it is straightfor-
ward to realize that the small/unresolved scales depend on the large/resolved scales
via nonlinear space and history-dependent functionals, i.e. essentially non-local both
spatially and temporally. So it is unlikely—and there is accumulating evidence for
this—that relations between them (such as “energy flux”) would be approximately
local in contradiction to K41a hypotheses and surprisingly numerous efforts to sup-
port their validity.

Before proceeding on the subject of nonlocal nature of turbulence several com-
ments are given here on the issue of relevance and utility of locality in basic tur-
bulence research. The first attempt of this kind was made by von Karman (1943)
and von Karman and Howarth (1938) as an attempt to “solve” the famous Karman
Howarth (KH) equation, containing both second and triple order correlations. This
required a hypothesis to close the KH equation which is known as the so-called self-
preservation (or self-similarity) hypothesis. The main basis for such a closure is the
assumption that the turbulent motion at some point in time and space are defined
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by its immediate proximity. Hence locality. Though from the fundamental point of
view there is little justification for the above closure, there is quite a bit of publica-
tions on the issue and related, see Sect. 16 in Monin and Yaglom (1975) and George
(2012).

The next attempt of this kind was made by Kolmogorov (1941a) putting forward
the statistical hypothesis of local homogeneity and isotropy: . . . we think it rather
likely that in an arbitrary turbulent flow with sufficiently large Reynolds number
Re = LU

ν
the hypothesis of local isotropy is realized with good approximation in

sufficiently small regions. . . not lying close to the boundaries of the flow or its other
special regions. It is noteworthy that the hypothesis was formulated for an arbitrary
(i.e. not homogeneous isotropic, etc.) turbulent flow with sufficiently large Reynolds
number Re = LU

ν
. It was called by Batchelor (1953) as “universal equilibrium the-

ory”; the term “equilibrium” was not given much justification and is causing a bit of
confusion until now, see, e.g. references in George (2012) and also Jimenez (2012).

Locality is assumed in all treatments of “cascades” starting from Onsager (1945,
1949), for later references see Aluie (2012), Jimenez (2012) and references therein.
This is done via employment of some decomposition and essential assumptions on
existence of inertial range as defined by Kolmogorov (1941a) and locality of in-
teractions in the cascade between components of similar magnitude most of which
concern on how local is the energy transfer (spectral energy flux) with invariable
claims on its locality in statistical sense in spite of the general expectation on nonlo-
cality of interactions, which was convincingly demonstrated by Laval et al. (2001)
on an example of a particular decomposition of the flow field. We mention also
the so called “local equilibrium approximation” in wall bounded flows such that
“statistically energy is dissipated close to where it is produced” at some locations
along the normal to the wall (McKeon and Morrison 2007; Marusic et al. 2010;
Smits et al. 2011; Jimenez 2012). As mentioned the motivation for locality at least
in some sense is understandable, see above the quotation by Landau (1960), but the
reality—which is the consequence of the nonlocal nature of turbulence—does not
seem to fit mostly the predominantly wishful thinking on this issue. This is seen
to some extent from what follows in the sequel. The bottom line is that generally
locality cannot be assumed due to the inherently non-local nature of turbulence. For
more on the issue of nonlocality as discussed above, see Tsinober (2009, Sect. 6.6,
pp. 163–182). To put this differently, locality belongs to the same category as “small
parameters”, etc. No theory based on some locality, small parameters, etc., has little
chance to succeed if any.

7.3.2 A Simple Example

We start from a simple example. Taking the position that velocity fluctuations repre-
sent the large scales and the velocity derivatives represent the small scales, one can
state that, in homogeneous (not necessarily isotropic) the large and the small scales
do not correlate. This can be expressed quantitatively by a correlation between ve-
locity and vorticity. For example, in a homogeneous turbulent flow the Lamb vector
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〈ω × u〉 = 0 and also 〈(u · ∇)u〉 = 0. If the flow is statistically reflectionally sym-
metric, then 〈ω · u〉 = 0 too. However, as mentioned, vanishing correlations do not
necessarily mean absence of dynamically important relations. Indeed, the quantities
(u · ∇)u ≡ ω × u + ∇(u2/2) and ω × u, are the main ‘guilty parties’ responsible
for all we call turbulence. Both contain the large scales (velocity) and small scales
(velocity derivatives, strain, vorticity). So some kind of essential coupling between
the two is more than unavoidable.

To illustrate the dynamical nature of this coupling we consider a unidirectional
in the mean fully developed turbulent shear flow, such as the flow in a plane channel
in which all statistical properties depend on the coordinate normal to the channel
boundary, x2, only. In such a flow, a simple precise kinematic relation is valid

d〈u1u2〉/dx2 ≡ 〈ω × u〉1 = 〈ω2u3 − ω3u2〉 �= 0,

which is just a consequence of the vector identity (u · ∇)u ≡ ω × u + ∇(u2

2 ) in
which incompressibility and d〈· · ·〉/dx1,3 = 0 where used, and 〈· · ·〉 means an aver-
age in some sense (e.g. time or/and over the planes x2 = const, etc.). The dynamic
aspect is that in turbulent channel flows d〈u1u2〉/dx2 �= 0 is essentially different
from zero at any arbitrarily large Reynolds number as far as the data allow to make
such a claim, see Fig. 17 in Wei and Willmarth (1989). Therefore one can see from
the above equation that at least some correlations between velocity and vorticity in
such flows are essentially different from zero, see also Priyadarshana et al. (2007)
and references therein. The important point is that without these correlations the
mean flow would not “know” about the fluctuations at all whatever small are the
corresponding correlation coefficients.

Let us look at the properties in the proximity of the midplane, x2 ≈ 0, of the
turbulent channel flow. In this region dU/dx2 ≈ 0 and 〈u1u2〉 ≈ 0, but—contrary to
common assumptions the flow is neither homogeneous nor isotropic also at level of
velocity derivatives, since the gradient d〈u1u2〉/dx2 is essentially �= 0 and is finite
independently of the Reynolds number. This is also a clear indication of nonlocality,
since in the bulk of the flow, i.e. far from the boundaries, dU/dx2 ∼ 0, and also
a clear counterexample to the hypothesis of the local isotropy: even in the prox-
imity of the centerline of the channel this hypothesis does not hold for whatever
large Reynolds numbers. The absence of the k−5/3 spectrum at the highest avail-
able Reynolds numbers, Re = 230000, based on the mean velocity and half channel
width (Compte-Bellot 1965) is consistent with the above. It is noteworthy that pres-
ence of two walls is essential.

7.3.3 Direct and Bidirectional Coupling Between Large and Small
Scales

Here we concentrate on nonlocality as manifested in direct and bidirectional inter-
action/coupling between large and small scales. There exist massive evidence that
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this is really the case as there are many indications that this interaction is bidirec-
tional. We should first mention the well known effective use of fine honeycombs
and screens in reducing large scale turbulence in various experimental facilities
(Laws and Livesey 1978; Tan-Attichat et al. 1989). The experimentally observed
phenomenon of strong drag reduction in turbulent flows of dilute polymer solutions
and other drag reducing additives is another example of such a ‘reacting back’ effect
of small scales on the large scales. Third, one can substantially increase the dissipa-
tion and the rate of mixing in a turbulent flow by directly exciting the small scales
experimentally, e.g. in a jet and in DNS in a periodic box (Suzuki and Nagano 1999;
Vukasinovich et al. 2010). Similar effects are observed with small-scale acoustic ex-
citation. Fourth, mostly recent developments in wall bounded shear flows revealed
the importance of interactions of structure(s) in the flow, such as inner-outer inter-
actions including the large-small scales, generally, and with the nearwall region, in
particular (Klewicki 2010; Marusic et al. 2010; Smits et al. 2011; Jimenez 2012).

As one of the premises we would like to remind that vorticity and strain are not
just velocity derivatives. They are special for several reasons. As discussed above
they reflect the rotational and dissipative nature of turbulence. In the context of
nonlocality the property to be stressed here is that the whole flow field is determined
entirely by the field of strain and/or vorticity with appropriate boundary conditions:
∇2ui = 2∂sij /∂xj ; ∇2u = − curlω; i.e. the velocity field is a linear functional of
strain ui = G{sij } and/or vorticity u = F{ω}, i.e. the field of velocity u(x, t) in each
space point x is defined by the whole field of strain and/or vorticity. Alteration of
the field of velocity derivatives reflects on the velocity field, vorticity and strain are
not passive—they react back and not only for the above (kinematic) reason. This in
turn means that the large scales as represented by the velocity field and the small
scales as represented by vorticity and strain, should be strongly coupled (which is
not the same as being correlated), as indeed is the case.

Along with the kinematic relation above ui = G{sij } (and u = F{ω}) the pro-
duction of strain −sij sjkskj (and enstrophy ωiωj sij ) ‘reacts back’ in creating the
corresponding velocity field, i.e. the small scales are not just ‘swept’ by the large
ones. Therefore, it is incorrect to treat the small scales as a kind of passive object
(e.g. passive sink of energy) just ‘slaved’ to the large scales (e.g. the velocity field),
which are not decoupled from the small ones just like the vice versa. Moreover, at
the level of velocity derivatives the inertial, −sij sjkskj , ωiωj sij and viscous terms,
νωi∇2ωi , νsij∇2sij , do not act as if they were additive and independent—their
interaction is crucial and among other things is manifested in the (approximate)
Tennekes and Lumley (1972) balance for the enstrophy production and a similar
relation for strain production, see Sect. 6.3 in Tsinober (2009).

For a statistically stationary and homogeneous flow with large scale forcing

0 ≈ 〈ωiωj sij 〉 − ν
〈
(∂ωi/∂xk)

2〉; 0 ≈ −(2/3)〈sij sjkski〉 − ν
〈
(∂sij /∂xk)

2〉.

Using simple estimates for a turbulent shear flow at high Reynolds number Ten-
nekes and Lumley (1972) arrived to a similar approximate balance as the first rela-
tion above called Tennekes and Lumley balance (TL). An important aspect is that
this balance appears to be valid in different meanings (not only in the mean) as fol-
lows. The first feature that the TL balance holds at Reλ as low as ≈ 60. Second,
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it holds pointwise in time, i.e. the integrals over the flow domain of the enstrophy
production and of its viscous destruction are approximately balanced at any time
moment,

∫
ωiωj sij dV ≈ −ν

∫
ωi∇ωidV . The features concerning the TL balance

appear to be true for temporally modulated turbulent flows and for flows with hyper-
viscosity of different orders, h = 2,4,8, h = 1 corresponds to Newtonian fluid. The
approximate balance as described above between the ‘inertial’ and diffusive pro-
cesses shows that they are very far from being additive and point to strong mutual
interaction. In particular, this is a strong indication that the nature of dissipation is
important in the enstrophy/strain production and the properties of the vorticity/strain
in the whole flow field. This in turn means that it should be important in the proper-
ties of the velocity too as the latter is fully determined by the field of vorticity/strain.
We return to these issues in section Chap. 7 below, also for more on this see Tsinober
(2009, Chap. 6, pp. 135–141).

It is noteworthy, that one of the claims is that the TL balance is the reason is
the for the predominant enstrophy (and strain) production. This argument is mis-
leading and puts the consequences before the reasons, since it is known that, for
Euler equations, the enstrophy production increases with time very rapidly, appar-
ently without limit, see references in Tsinober (1998a, 1998b, 2000). Another rather
common view that the prevalence of vortex stretching is due to the predominance of
stretching of material lines which is due to an erroneous, for more on the differences
between these processes see Tsinober (2009, Chap. 9, pp. 307–310).

In other words, the presence of viscosity changes qualitatively the nature of
the enstrophy/strain production and the properties of the vorticity/strain field. This
in turn means that the nature of dissipation/viscosity is important in the proper-
ties of the velocity (including structure functions, inertial range, etc.) since—as
mentioned—the latter is fully determined by the field of vorticity/strain. In other
words, the nonlocal impact of the small (including dissipative) scales on the whole
flow field is realized through the chain −sij sjkskj , ωiωj sij to ω2, s2 (and ωi, sij )
and the velocity field as described above, including what can be termed the back
reaction of dissipation on the whole flow field, see Chap. 7 below.

A noteworthy aspect is the nonlocality of (purely kinematic) relations between
the fields of vorticity and strain and similar relations such as between −sij sjkskj
and ωiωj sij , see Fig. 7.2.

The above and other aspects of nonlocality contradict the idea of cascade in phys-
ical space, which is local by definition, e.g. see Frisch (1995, p. 104). For example,
the commonly assumed statistical independence between large and small scales (i.e.
sweeping decorrelation hypothesis) both of (i) structure functions Sp ≡ 〈(�u)p〉;
�u ≡ u(x + r) − u(xr/r) on the (nature) of dissipation, i.e. strain, in the ‘inertial
range’ and (ii) the small scales on the large ones stand in contradiction with the
relation u = G{sij (x, t)} together with the process of self-production of strain in
turbulent flows. This leads to ill-posedness of both the concepts of cascade and iner-
tial range with the former being the reason for the so called anomalous scaling, see
Chap. 8.
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Fig. 7.2 Top: Left—PDFs of 3/4ωiωj sij ,−sij sjkski , and −17.5(∂u1/∂x1)
3 normalized on their

means, Reλ = 104, Right—Joint PDF and scatter plot of 3/4ωiωj sij versus −sij sjkski , normalized
on their means. Note that though the univariate PDFs of 3/4ωiωj sij and −sij sjkski are practically
the same, their Joint PDFs show that the strongest activity in strain production corresponds to
weakest that of enstrophy and vice versa, which is not the case for the strain and enstrophy them-
selves as seen from the figure on bottom right. Bottom: Left—PDFs of ω2 and s2, Right—their
Joint PDF. Field experiment at, Reλ = 104 (Gulitskii et al. 2007a, 2007b, 2007c)

Direct and bidirectional coupling between large and small scales is observed in
diverse manifestations. These are described in Sect. 6.6. in Tsinober (2009). One
of the issues concerns the statistical dependence of small and large scales. The
impact of large scales on the small ones is known for a while. It was addressed
by Kolmogorov (1962) following the famous remark by Landau (1944)3 and some
earlier experimental data (Monin and Yaglom 1971; Obukhov 1962). Kolmogorov
formulated modified K41 hypotheses assuming among other things the log-normal

3Kolmogorov did these modifications following the Landau objection to universality in the first
Russian edition of Fluid Mechanics by Landau and Lifshits (1944) about the role of large-scale
fluctuations of energy dissipation rate, i.e., non-universality of both the scaling exponents and the
prefactors: important part will be played by the manner of variation of ε over times of the order of
the periods of large eddies (of size �), see Landau and Lifshits (1987, p. 140).
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Fig. 7.3 Left—conditional averages of enstrophy ω2 and total strain sij sij conditioned on magni-
tude of velocity fluctuations vector, u. The fit is in the spirit of the Kolmogorov refined similarity
hypothesis, though it is a fit in the first place. This fit cannot be expected to be universal quanti-
tatively and should at least have different coefficients a and b for flows with different large-scale
properties in the spirit of the Landau remark. Right—conditional averages of squared acceleration
magnitude a2 on magnitude of velocity fluctuations vector, u (Gulitskii et al. 2007a, 2007b)

distribution coarse-grained dissipation,4 i.e. averaged over a sphere of radius r ,
with r in the conventionally defined inertial range (CDIR), i.e. L > r > η with
some ‘external scale’ L and the ‘internal scale’ η = (ν3/〈ε〉)1/4. The main re-
sult is that the statistics of structure functions in the CDIR depends on the large
scale structure of the flow both in scaling exponents and prefactor: Sp ≡ 〈(�u)p〉 =
Cp(x, t)(L/r)

1
2 kp(p−3)(r〈ε〉)p/3; for p = 2 giving S2 = Cp(x, t)(L/r)−k(r〈ε〉)2/3.

The factor C(x, t) “depends on the macrostructure of the flow”, k is the so called
“intermittency” exponent. This model captures qualitatively the correction to the
structure function scaling, though it is known that turbulence is not lognormal.

Flows with inhomogeneous large scales, large scale or mean strain, shear etc.
can exert stronger impact on small scales—the issue goes back to Corrsin (1958),
see references, in Saddoughi (1997), Hill (2006) and Tsinober (2009). But there
is strong statistical dependence of small scales on the large ones in weakly-
inhomogeneous/anisotropic flows either, e.g. Fig. 7.3.

A less trivial is another aspect which until recently was neglected as unimportant:
the impact of small scales, especially in the dissipative range with r < η, on the
conventionally defined inertial range (CDIR), which appears to be contaminated
also by strong dissipative events from the conventionally defined dissipative range
(CDDR). It appears that quite the opposite is true as found in recent experiments
at large Reynolds numbers up to Reλ ≈ 104 with access to the tensor of velocity

4This assumption is due to Obukhov (1962) because as he wrote it not very restrictive as an approx-
imate hypothesis since the distribution of any essentially positive characteristic can be represented
by a logarithmically Gaussian distribution with correct values of the first two moments.

This is correct for empirical purposes, but when it goes about the right results for the right
reasons it is not sufficient.
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derivatives ∂ui/∂xj and in particular local strain (i.e. dissipation) and vorticity, see
Borisenkov et al. (2011), Kholmyansky and Tsinober (2009), Tsinober (2009) and
references therein. The main underlying reason is again nonlocality. We address
this issue in the next section for several reasons the main being that it is of special
importance at large Reynolds numbers.



Chapter 8
Large Reynolds Number Behavior, Symmetries,
Universality

Abstract The large Reynolds number behavior is of special importance from sev-
eral points of fundamental nature which include such issues as restoring (or not)
the symmetries of Navier–Stokes equations, and in some sense even scale invari-
ance of Euler equations via the “multifractal formalism” (Frish, Turbulence: the
legacy of A.N. Kolmogorov, 1995, pp. 18, 144), and universality, the role of vis-
cosity/dissipation and the concept of inertial range, the role of the nature of forc-
ing/excitation, inflow, initial and boundary conditions. In view of the arguments and
experimental results on nonlocality and the direct and bidirectional coupling be-
tween large and small scales in the previous section a natural question arises what
is the impact of nonlocality on all the above and whether there are enough reasons
and evidence for a discussion and reexamination of the above issues, generally, and
in relation to the nonlocal properties of turbulent flows among others, especially.
Navier–Stokes equations at sufficiently large Reynolds number have the property of
intrinsic mechanisms of becoming complex without any external aid including strain
and vorticity amplification. There is no guarantee that the outcome is the same from,
e.g. natural “self-randomization” and with random forcing, on one hand, and differ-
ent kinds of forcing, boundary and initial conditions, on the other hand. Moreover
there is serious evidence that the outcome may be and indeed is different.

We have chosen to start with the issue of the role of viscosity and/or dissipa-
tion (including their nature) and the concept of inertial range as most convincing to
demonstrate that the concern is justified. Indeed, there are every reasons not only to
expect, but also hard experimental evidence that the small scales from the dissipa-
tive range, at least those which are strong, have an important impact on the larger
scales including the conventionally defined inertial range (CDIR). Among the main
points below is that due to nonlocality at least some key nonlinear terms are not
purely inertial in the CDIR in contrast to common beliefs, the 4/5 Kolmogorov law
at large Re being an outstanding example of not purely inertial relation and a victim
of interpretational abuse.

We have chosen to start with the issue of the role of viscosity and/or dissipation (in-
cluding their nature) and the concept of inertial range as most convincing to demon-
strate that the concern is justified. Indeed, there are every reasons to expect that the
small scales from the dissipative range, at least those which are strong, should have
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important impact on the larger scales including the conventionally defined inertial
range (CDIR). Among of the main points below is that due to nonlocality at least
some key nonlinear terms are not purely inertial in the CDIR.

8.1 Inertial Range, the Roles of Viscosity/Dissipation and
Related Issues

We start with reminding the common view that turbulence is an essentially iner-
tial phenomenon such that how the energy is dissipated in the small scales does
not influence the large scales as long as the amount is correct, i.e. the small scales
are just a passive sink of energy and the nature of dissipation does not matter for
large scales and in particular in the CDIR,1 see references and citations on this kind
of statements at pp. 103 and 335 in Tsinober (2009). Some more are given in the
Appendix essential quotations.

One of the popular arguments for the existence of the conventionally defined
inertial range (CDIR) at large Reynolds numbers is the Kolmogorov 4/5 law which
is the consequence of the NSE and under some assumptions (including isotropy)
takes the following form, for a precise form, see Eq. (34.20), p. 139 in Landau and
Lifshits (1987),

S3 = −(4/5)〈ε〉r + 6νdS2/dr

and in which the last term is negligible at large Reynolds numbers. Moreover, there
is an experimental confirmation that at Reynolds numbers up to Reλ ≈ 104 the term
6νdS2/dr is negligible so that the relation

S3 = −(4/5)〈ε〉r,
does hold in a broad range of scales exceeding three decades at Re ≈ 104

(Kholmyansky and Tsinober 2008).
Thus one gets an impression that the 4/5 is a purely inertial relation at large Re,

and that the third-order moment is universal, i.e. it does not depend on the details of
the turbulence production, but is determined solely by the mean energy dissipation
rate only. However, this would be true if the S3 ≡ 〈(�u)3〉, or more precisely just
velocity increments �u ≡ [u(x + r) − u(x)]r/r , would not contain non-negligible
contributions from dissipative events, i.e. in reality what is called IR is assumed to
be purely inertial and having no contribution from viscous events. Indeed, com-
puting �u one encounters also large and even very large instantaneous dissipation
at the ends (x,x + r).2 In other words, the second Kolmogorov (1941a) hypothesis
involves a strong assumption that the dissipative events such that at least at one of

1This latter is due to Kolmogorov (1941a). We emphasize that the correction he proposed in 1962
concerns the impact of the large scales on the scaling of structure functions in CDIR.
2The same happens, e.g. when computing the increments of Lagrangian velocity along the fluid
particle trajectory. The consequences are expected to be the same at least qualitatively.
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Fig. 8.1 Histograms of the increments of the longitudinal velocity component for the full data and
the same data in which the strong dissipative events were removed: (a) r/η = 400 and threshold
q = 3, (b) r/η = 400 with different thresholds; field experiment, Reλ ≈ 104;—the lower edge of
the inertial range is about r/η = 40. An event �u ≡ [u(x + r) − u(x)]r/r is qualified as a strong
dissipative if at least at one of its ends (x, x + r) the instantaneous dissipation ε > q〈ε〉 with q > 1.
Note that the PDFs with removed strong dissipative events (dark blue ones) are not close to the
Gaussian curve. An important feature is that dissipative events literally live within the CDIR in
turbulence at high Reynolds numbers, i.e. nonlocality is a broader issue and does not necessarily
involve scale separation such as in long range interactions (Kholmyansky and Tsinober 2009)

their ends (x,x + r) the instantaneous dissipation ε > q〈ε〉 with q > 1 do not matter
for the statistics of velocity increments. To (dis)prove this one needs access to in-
stantaneous dissipation at large Reynolds numbers. Indeed, looking at Fig. 8.1 it is
seen that there exists a substantial number of dissipative (!) events (DE) living in the
conventionally defined dissipative range (CDDR) with contributing essentially to
the PDF of velocity increments in the conventionally defined inertial range (CDIR)
at high Reynolds numbers, Reλ ≈ 104.

The key feature is that this contribution is largest to the tails of the PDF of ve-
locity increments. Thus the CDIR is an ill-defined concept. In particular, this means
that the neglected viscous term in the Kolmogorov 4/5 law does not contain all the
viscous contributions. Those present in the structure function S3 itself remain and
keep the 4/5 law precise: without the dissipative events just mentioned the 4/5 law
does not hold! In this sense the 4/5 law is not a pure inertial law even at Reλ ≈ 104.
Indeed, strong dissipative events do contribute to the 4/5 law, see Fig. 8.2, and re-
moving them leads to an increase of the scaling exponent above unity, see insert in
Fig. 8.2. It is noteworthy that the contribution of the dissipative events in the 4/5 law
at large Reynolds numbers is not small in spite of considerable cancellation between
the negative and positive events.

Thus—contrary to common view—the 4/5 law is not a pure inertial relation at
large Re. The important implication of more general nature is that nonlinear interac-
tions (NI) are not synonymous to purely inertial ones. They (NI) consist of purely in-
ertial ones with an essential contribution from the viscous and cross-interactions. In
case of the third order functions and energy fluxes these interactions are constrained
by the 4/5 law. The consequence is that the purely inertial and dissipative events
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Fig. 8.2 Contributions of the
strong dissipative events in
the CDIR to the third-order
structure function as a
function of the threshold q

for various separations r ;
blue circles—r/η = 4,
green squares—r/η = 40,
brown triangles—r/η = 400,
red crosses—r/η = 4000; in
the insert: scaling exponents
of the third-order structure
function as a function of the
threshold (Kholmyansky and
Tsinober 2009)

are adjusting to keep some quantities such as the total dissipation or the energy flux
approximately constant at large Reynolds numbers. The constraint responsible for
this adjustment is just the 4/5 law or more generally the NSE.3

In other words, the independence of some parameter of viscosity at large
Reynolds numbers does not mean that viscosity is unimportant. It means only that
rather than being unimportant the (cumulative) effect of viscosity is Reynolds num-
ber independent. Thus, speaking about asymptotic (large Re) behavior a realistic
option is that some (not all) quantities �⇒ const as they do in observations, but this
does not mean that they have to become independent on viscosity, i.e. generally the
limit ν �⇒ 0 is not viscosity independent. We return to this issue below, for more
on this issue see Sect. 10.2 in Tsinober (2009).

As concerns structure functions of higher order p > 3 there is no simple con-
straint as the 4/5 law for S3. The consequence is that the mentioned above dissi-
pative events are responsible for what is called anomalous scaling for Sp,p > 3.
This is clearly seen from Fig. 8.3. Thus the anomalous scaling is not an attribute
of the conventionally-defined inertial range (CDIR), and the latter is not a well-
defined concept, just like “cascade” and the conventionally defined dissipative
range, CDDR.

A noteworthy conjecture concerns the Lagrangian setting in which the sweeping
effects are mostly (but not totally! see Chap. 4) removed so that the contribution of
the strong dissipative events (SDE) in the CDIR is even larger than in the Eulerian
setting. Thus one is tempted to bet that this is the reason for the absence of the
expected scaling a la Kolmogorov 41 (it is due to Landau and Lifshits 1944) even at
the level of the second order Lagrangian structure function. In other words removal

3A noteworthy is the pure kinematic relation involving the third order structure function
(Hosokawa 2007; Kholmyansky and Tsinober 2008; Germano 2012), −〈(�u)3〉 = 3〈u2

sum�u〉,
with 2usum = u(x + r) + u(x), which together with the 4/5 law results in a relation equivalent
to the 4/5 law 〈u2

sum�u〉 = 〈ε〉r/30. Thus the 4/5 law provides a clear indication of absence of
statistical independence between the quantities residing at large and small scales.
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Fig. 8.3 Scaling exponents
of structure functions at
Reλ ≈ 104 for the
longitudinal velocity
component corresponding to
the full data and the same
data in which the strong
dissipative events with
various thresholds q were
removed. With q = 3 the
higher order structure
functions (p > 3) exhibit
Kolmogorov scaling p/3

of the SDE from appropriate Lagrangian data set as above in the Eulerian setting
would bring the expected scaling, which is not observed so far (Falkovich et al.
2012).

It is naturally to expect a similar phenomenon of non-negligible contribution
of dissipative events to quantities in the CDIR on a more general level than just
structure functions. For example, not all quantities entering equations such as RANS
or LES for resolved scales in the “inertial range” are indeed purely inertial. Indeed,
it appears strong dissipative events make a nonnegligible contribution to the SGS
stresses and SGS energy flux Π(x; r) = −τik[sik] where τik = [uiuk]−[ui][uk], are
the SGS stresses and the filtered quantities are denoted as [. . .], see Fig. 8.4. Indeed,
this is observed on a qualitative level by necessity of using time series and one
dimensional standard Gaussian filter of width r . There is an essential contribution
of the dissipative events to the SGS energy flux in the conventionally-defined inertial
range with a considerable dependence on the threshold q , which is increased with
the decrease of q . The main point is that the Reynolds stresses, subgrid stresses,
etc. are not inertial range quantities, because the contribution of viscous effects is
not limited by the viscous terms corresponding, e.g., to the Laplacian in the filtered
equations as in the case of 4/5 law.

Another example of the contribution of DE within the CDIR is observed in the
behavior of other key quantities such as the enstrophy and strain production ωiωj sij ,
sij sjkski . Though the origin of both quantities and corresponding processes is purely
inertial, it appears that both quantities contain a substantial contribution from the
dissipative events. This is clearly seen from Fig. 8.5 showing the contribution of DE
and examples of the PDFs of ωiωj sij and sij sjkski for the whole data and the sets
with removed dissipative events.

This is a direct demonstration of the nonlocal impact of the dissipative scales
on the whole flow field through the chain −sij sjkskj , ωiωj sij to ω2, s2 and the
velocity field as described above. This includes what is termed the back reaction of
dissipation on the whole flow field.
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Fig. 8.4 An example showing the contribution of strong dissipative events to the subgrid scale
(SGS) energy flux Π(x; r) = −τik[sik] at Reλ = 104 for the longitudinal velocity component cor-
responding to the full data and the same data in which the strong dissipative events (when at least
at one point x or x + r the instantaneous dissipation ε > q〈ε〉) with various thresholds q were
removed

Fig. 8.5 (a) Contributions of strong dissipative events (when at point x the dissipation ε > q〈ε〉)
to the enstrophy production as a function of the threshold q . (b) Histograms of the enstrophy
production for the same data with removed strong dissipative events for various values of the
threshold q . Similar results are observed for strain production, see Fig. 4 in Borisenkov et al.
(2011)

This impact of viscosity is seen also from the equations for strain and vorticity
with the production terms −sij sjkskj , ωiωj sij and is consistent with the Tennekes
and Lumley balance, see Chap. 7 above. As mentioned an important aspect is that
this balance appears to be valid in different meanings (not only in the mean) as fol-
lows. The first feature that the TL balance holds at Reλ as low as ≈ 60. Second,
it holds pointwise in time, i.e. the integrals over the flow domain of the enstrophy
production and of its viscous destruction are approximately balanced at any time
moment,

∫
ωiωj sij dV ≈ −ν

∫
ωi∇ωidV . The features concerning the TL balance

appear to be true for temporally modulated turbulent flows and for flows with hy-
perviscosity of different orders, h = 2,4,8 with h = 1 corresponding to Newtonian
fluid.
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Before proceeding further a short summary of the above is as follows:

(A) The important aspects of the evidence presented just above is that the sub-
Kolmogorov scales (dissipative events—DE), defined as conventionally dis-
sipative range (CDDR), are directly and bidirectionally coupled with the
conventionally-defined inertial range (CDIR). These DE literally live within the
CDIR in turbulence at high Reynolds numbers, e.g. they make the largest con-
tribution to the tails of the PDF of velocity increments in the CDIR. Hence sev-
eral non-trivial consequences including those of paradigmatic nature: (i) both
the CDIR and CDDR (and thereby cascade) are ill defined concepts, e.g. it is
the presence of the dissipative events which is responsible for what is called
anomalous scaling in the CDIR, i.e. its ‘anomalous scaling’ is not an attribute
of the inertial range simply as such is not in existence (ii) the 4/5 law is a not
pure inertial relation at large Re. Similarly filtered equations for the inertial
range quantities are not purely inertial range relations either. In both there is an
essential contribution of dissipative events from the conventionally dissipative
range. The same is true of such processes as enstrophy and strain production
and other key nonlinear processes, these are to not purely inertial processes with
an essential contribution from the of dissipative events from the conventionally
dissipative range.4

(B) In other words the recent experimental evidence with direct access to the field
of velocity derivatives at large Reynolds numbers does not support the hypoth-
esis on existence of an inertial range with some scaling symmetry at large
Reynolds numbers with viscosity/dissipation being far more important than
just a passive sink of energy. A similar state of matters is with the issue of
universality and related. Many beliefs in various aspects of universality (quite
understandable, especially needed in theoretical treatments) appear to be not
real—the evidence points to the contrary: the flow, generally, depends on the
nature of forcing, inflow, initial and boundary conditions and a variety of issues
in flow control(liability) both in engineering and mathematical contexts. After
all NSE, BCs and ICs define the flow field in its entirety.

The above calls for a discussion and reexamination of the issues mentioned above
such as asymptotics at large Reynolds numbers, symmetries and universality espe-
cially in relation to the nonlocal properties of turbulent flows among others.

8.2 Reynolds Number Dependence and Behavior of Turbulent
Flows at Large Reynolds Numbers

Observations show that there are two kinds of properties of turbulent flows. Some
properties of turbulent flows become Reynolds number independent as the Reynolds

4Thus the question by Kraichnan (1974): How a theoretical attack on the inertial-range problem
should proceed is far from clear seems to be irrelevant as there is no such an object in existence.
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number becomes large enough. Other remain Reynolds number dependent and the
existing modest evidence indicates that they may never saturate as Re → ∞.

The first kind of properties is represented by the drag of bluff bodies (a cir-
cular disc is one of the cleanest examples—it’s drag coefficient is independent of
Reynolds number beyond Re ∼ 103); another example is exhibited by the indepen-
dence of dissipation of Reynolds number in a variety of flows form basic config-
urations to diverse applications in engineering, geophysical flows and others all of
which are neither homogeneous nor isotropic. Things like 2/3, 4/5 and 4/15 laws,
k−5/3 spectrum and some others belong to the same category.

However, it should be stressed that the meaning of Reynolds independence (and
being insensitive to the nature of dissipation) requires caution, since, in fact, there is
a “hidden” dependence on viscous effects as with the 4/5 law even at Reλ ∼ 4 × 104

as demonstrated above. In other words, the independence of some parameter of vis-
cosity at large Reynolds numbers does not mean that viscosity is unimportant. It
means only that the (cumulative) effect of viscosity is Reynolds number indepen-
dent. Moreover, though the dissipation is known empirically to tend presumably to
saturate to a nonzero limit as ν → 0 (or at least essentially non-vanishing) this how-
ever, does not mean that there exist a limit as ν → 0 in the sense (or any other sense)
that all other flow characteristics do saturate as well.

As a simple illustration let us look at the consequence of dissipation being con-
stant for the field of velocity derivatives. Since at large Re〈ε〉 = 2ν〈s2〉 ≈ ν〈ω2〉 this
means that at large Reynolds numbers both 〈s2〉, 〈ω2〉 ≈ ν−1, i.e. the field of velocity
derivatives is not only Reynolds number dependent, but also becomes singular in the
limit ν → 0 (Re → ∞). Due to the intermittent nature of the field of velocity deriva-
tives one can expect that the maximal values of s2,ω2 (or max(|∂ui/∂xk|)) increase
even faster with the Reynolds number. This possible unboundedness of the field
of velocity derivatives as Re → ∞ has an implication that the Newtonian approxi-
mation can break down as ν → 0, since the linear stress/strain relation is only the
first term in the gradient expansion. So far, however, there seems to be no evidence
that the Navier–Stokes equations are inadequate for describing turbulent flows, i.e.
breakdown of the of the continuum approximation, which is also an indication of
absence of breakdown of the NSE due to possible formation of singularities in finite
time; but still it is safe to keep in mind that any equations are not Nature. In this
context it is instructive to remind a quotation from Goldstein (1972) concerning the
success of NSE equations for the laminar flows of viscous fluids, but even in this
case, it is, in fact, surprising that the assumption of linearity in the relation between
τij and sij as usually employed in continuum theory,. . . works as well, and over as
large a range, as it does. Unless we are prepared simply to accept this gratefully,
without further curiosity, it seems clear that a deeper explanation must be sought.
Among the possible reasons that the possible violation is not so easy to detect is
that, even if it happens, it will occur at rather large Reynolds numbers and small
regions due to the strong intermittency of the field of velocity derivatives.

Let us turn to the Re-dependence at large Reynold numbers. There exists consid-
erable evidence on Reynolds number dependence of various properties in different
turbulent flows; for a partial list of recent references, see Tsinober (2009). The first
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Fig. 8.6 Reynolds-number
dependence of the ratio of the
variances of the irrotational
and solenoidal parts of the
nonlinear term (u · ∇)u and
ω × u in a DNS simulation of
quasi-isotropic turbulence
(Tsinober et al. 2001)

Fig. 8.7 Normalized
acceleration variance,
a0 = (1/3)aka

3/2
k ν−1/2

versus Reλ, from Gylfason
et al. (2004) with added
experimental data from field
experiment (Gulitskii et al.
2007b) and from the PTV
experiments (Lüthi et al.
2005)

example is the flatness factor of the streamwise velocity derivative ∂u1/∂x1 is in-
creasing from 3–4 at Reλ ∼ 10 to about 40 at Reλ ∼ 4 × 104, without showing any
trend for saturation, see Fig. 6 in Sreenivasan and Antonia (1997); (Gulitskii et al.
2007a and references therein). There is no understanding of the reasons for such a
strong Reynolds number dependence at large values of the Reynolds number. An-
other example is about the Reynolds number dependence of the relation between
the solenoidal and irrotational ‘components’ of the nonlinearity as represented by
(u ·∇)u and ω×u, Fig. 8.6. There is a clear tendency of enhancement of solenoidal-
ity of the nonlinearity as the Reynolds number increases. Here too it is not clear what
will happen when the Reynolds number will become very large.

The third example is the behavior of acceleration, see Fig. 8.7. Though the evi-
dence is not conclusive, the indication is that there is no saturation of acceleration
variance at large Reynold numbers either.

In Fig. 8.7 a number of points are shown obtained by Gulitskii et al. (2007b).
The main feature is that there seems to be no saturation in the Re-dependence of
the acceleration variance normalized on ε3/2ν−1/2. This means that the scaling pro-
posed by Yaglom (1949), see Monin and Yaglom (1975, p. 369) is not ‘perfect’ and
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the acceleration variance is larger than that proposed by Yaglom. The trend seen in
Fig. 8.7 may be contaminated by the imperfections the method. The issue seems to
be open and requires further far more precise measurements.

Another aspect of concern is that a2 ∼ ε3/2ν−1/2 ∼ u
9/4
0 L−3/4ν1/4, i.e. the ac-

celeration variance along with viscosity, ν, depends explicitly on the large scale
characteristics, u0, of the flow contrary to the claim that the turbulent acceleration
is determined largely by the very small-scale motions l � η (Monin and Yaglom
1971). Indeed, the observations show, see Fig. 7.3 right, that the conditional statis-
tics of a2 on u0 show a significant statistical dependence, see also Biferale et al.
(2004) and Lüthi et al. (2005) and references therein. The bottom line is that fluid
particle acceleration variance does not (seem to) obey K41 scaling at any Reynolds
number (Hill 2002).

Finally, as discussed above, the so called ‘anomalous scaling’ in the “inertial
range” is due to viscous/diffusive effects with two options. One is just the finite
Reynolds number effect, though the latest observations are at Reλ ∼ 104. The other
one is due the influence of viscous/diffusive effects in the tails (i.e. strong events)
of corresponding PDFs and is expected to be present at any Reynolds number. The
evidence seems to favor the latter option. In this case there remains the question
whether the “anomalous scaling” is Reynolds number independent.

These examples, along with other results, show that the issue of the asymptotic
‘ultimate’ regime/state of turbulent flows at very large Reynolds numbers remains
open. Unfortunately, progress in mathematical treatment of the problem is very
small if any, especially as related to basic physical aspects, for an overview see
Sect. 10.2 in Tsinober (2009).

8.3 Symmetries

The starting point are the symmetries of the NSE and Euler
The Euler and the Navier Stokes equations are invariant under the following

transformations, see e.g. Frisch (1995):

Translations in space (homogeneity) and time,
Full group of rotation including rotations and reflections (isotropy),
Galilean transformation u(x, t) ⇒ u(x − Ut, t) + U , U = const,
The Euler equation is in addition invariant under time reversal t ⇒ −t , u ⇒ −u,
p ⇒ p.
scaling transformation r ⇒ λr; t ⇒ λ1−ht ; u ⇒ λhu; p ⇒ λ2hp, λ > 0 for any h.

The Navier–Stokes equations obey the scaling transformation for h = −1 only.
However, it is not that uncommon belief that it “may be justified at very high
Reynolds number. . . that there are infinitely many scaling groups, labeled by their
scaling exponent h, which can be any real number”, i.e. “in the inviscid limit, the
Navier–Stokes equation is invariant under infinitely many scaling groups, labeled
by an arbitrary real scaling exponent h” (Frisch 1995, pp. 18, 144), just like in
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the case of Euler equation. However, it is more than problematic why one can ig-
nore the singular nature of the limit Re → ∞ (ν → 0). Is not clear at all why one
should forget that at any finite however large Re there is no such freedom as there
is for a pure Euler case, especially when using experimental data at pretty moderate
Reynolds numbers both for their “explanation” by the multifractal formalism and
simultaneously its “confirmation” by the same data.

One of the issues of general nature is the belief//hypothesis that in “turbulence
at very high Reynolds numbers all or some possible symmetries are restored in a
statistical sense and that for this it is necessary that flow should not be subject
to any constraint, such as a strong large-scale shear, which would prevent it from
‘accepting’ all possible symmetries and that in order to achieve maximum symmetry
it is advantageous not to have any boundaries. We could thus assume that the fluid
fills all of the space R

3. The unboundedness of the space does, however, lead to
some mathematical difficulties. We shall therefore often assume periodic boundary
conditions in the space variable r (in a box of scale L) and recovering the case of a
fluid in the unbounded space R

3 by letting L → ∞ (Frisch 1995, pp. 11, 14).
In this context the first question is how relevant is such an idealized turbulent

flow to any real one even at the qualitative level and the second question is about
how real, even approximately is the just mentioned hypothetical(!) restoring of the
symmetries in the statistical sense . The experimental and DNS evidence for this
hypothesis is scarce, very limited and at best marginal.

It is for the above reasons that Kolmogorov (1941a) proposed a hypothesis postu-
lating that all the symmetries (including homogeneity and isotropy) of the Navier–
Stokes equations are restored in the statistical sense in any turbulent flow for large
enough Reynolds number in sufficiently small regions G of the four-dimensional
space (x1, x2, x3, t) (i.e. time-space) not lying close to the boundaries of the flow
or its other special regions5—except for the one involving scaling. In order to han-
dle this latter Kolmogorov introduced the concept of inertial range (IR) with the
assumption that the statistical properties of this conventionally defined IR (CDIR)
are independent of viscosity, thus assuming the scale invariance in the IR with the
mean dissipation 〈ε〉 being the only governing parameter.

There are numerous interpretations and ascribings of many things not belonging
to Kolmogorov. The relevant one is about assumption is localness of interactions
(Frisch 1995, p. 104)—we use the term locality. The above involves some decompo-
sition just like the suggestion by Kraichnan (1974) about the ‘proper inertial-range
quantity: the local rate of energy transfer’ with all the problems in proper defini-
tions of this quantity and use of Fourier transform. One more issue deserving spe-
cial mentioning is the claim that the Euler equations are valid in the inertial range.
For example (among several), In the inertial range we can neglect the viscosity and
forcing and study the Eulerian dynamics of an ideal incompressible fluid (Migdal
1995). Even if the inertial range does exist (which is not) after excluding some range

5Frisch (1995) presents this in the form of his hypothesis H1 (p. 74), but omits to mention that
it is due to Kolmogorov: there is no presentation of the hypothesis of local isotropy in his book.
A similar omitting is pretty ubiquitous, the latest example being (Falkovich 2009).
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of scales such a statement by itself does not seem to make any sense—after all Euler
is a differential equation. Finally, Kolmogorov used exclusively dimensional analy-
sis and similarity arguments and did not make any claims about things like validity
of Euler in the inertial range.

Anyway, it is a common view in consensus that in real systems the symmetries
are broken due to instabilities, forcing (excitation), inflow, initial and boundary con-
ditions, but that following Kolmogorov the symmetries are expected to be restored
locally in statistical sense at high Reynolds numbers. However, this expectation ig-
nores the role of nonlocal nature of turbulence. The consequence due of effects
of nonlocality is that, generally, one cannot apply results for globally homoge-
neous, isotropic turbulent flows to flows which are approximately homogeneous in
a bounded region of flows and otherwise are non-homogeneous, because the nonlo-
cality makes local homogeneity, isotropy, etc. impossible unless the whole (infinite
extent) flow is such, which is trivially impossible. The “quasi-homogeneous” behav-
ior of some quantities in bounded regions is misleading due to several factors, the
main being the nonlocal nature of turbulence. Typically these are quantities and re-
lations exhibiting “quasi-Gaussian” manifestations. On this see Sect. 6.8.2, Chap. 6
in Tsinober (2009).

As mentioned the attraction of Kolmogorov hypotheses is that they concern the
local properties of any turbulence, not necessarily homogeneous or isotropic or de-
caying or stationary, provided the Reynolds number is large enough. The consis-
tency of these hypotheses is debated for quite a while both from the theoretical point
of view (Gkioulekas 2007; Hill 2006 and references therein) and also experimen-
tally, but as with other similar issues without much progress from the fundamental
point. One of the main problems is the inherent property of nonlocality questioning
the validity of the above hypotheses on local homogeneity/isotropy in bounded flow
domains surrounded by nonhomogenous/nonisotorpic flow regions.

A similar controversial situation is with spatially developing flows claimed to
possess the property of self-similarity in analogy with von Karman (1943) and von
Karman and Howarth (1938) as an attempt to “solve” their famous (KH) equation,
containing both second and triple order correlations. This required a hypothesis to
close the KH equation which is known as the so-called self-preservation (or self-
similarity) hypothesis. Such a claim is essentially an assumption of locality both in
time and space: the turbulent motion at some point in time and space is assumed to
be defined by its immediate proximity.

A special example is about reflectional symmetry, e.g. involving helicity defined
as the integral of the scalar product of velocity and vorticity, H = ∫

u ·ωdx, see Tsi-
nober (2004). The hypothesis of local isotropy (K41a) includes restoring of all the
symmetries in small scales. Thus one expects restoring of reflection-invariance at
small scales. However, to maintain finite “helicity dissipation” to balance the finite
helicity input in a statistically stationary turbulence helically forced at large scales
the tendency to restore reflection symmetry at small scales can not be realized. This
is because helicity dissipation is associated with broken reflection symmetry at small
scales, since helicity dissipation, DH = −νHs is just proportional to the superhelic-
ity Hs = ∫

ω ·curlωdx, showing the lack of reflection symmetry of the small scales.
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The important point is that helicity dissipation is vanishing if reflectional symmetry
holds in small scales. Moreover, if the helicity dissipation should remain finite as the
Reynolds number increases this lack of reflectional symmetry should increase since
the dissipation of helicity (DH = −νHs ) is proportional to viscosity. A noteworthy
phenomenon is breaking of reflectional symmetry in a turbulent flow with initially
vanishing pointwise helicity density u · ω ≡ 0 (Shtilman et al. 1988)—a result that
can be interpreted in terms of statistical instability of turbulent flow with reflectional
symmetry to disturbances breaking this symmetry, see also a non-trivial experiment
in Kholmyansky et al. (2001c).

To repeat, the role of nonlocality is the same in the issue concerning the scale
invariance in the conventionally defined inertial range (CDIR). The experimental
results at high Reynolds numbers show unequivocally that such an object is ill de-
fined and that the CDIR in reality contains dissipative events which among other
things are responsible for what is called anomalous scaling in the CDIR.

The bottom line is that there is no answer to the question by Kraichnan (1974):
How a theoretical attack on the inertial-range problem should proceed is far from
clear, because this question relates to a nonexistent object. A similar statement is
true as concerns the ‘theories’ such as multifractal formalism (Frisch 1995), see also
She and Zhang (2009), attempting to ‘explain’ intermittency and anomalous scaling
in such a nonexistent object, for more see Chap. 5, Chaps. 6 and 9 in Tsinober
(2009).

On Analogies Involving Symmetries and Related Issues A general aspect is
that it is much less than sufficient for two systems to share the same basic symme-
tries, conservation laws and some other general properties, to have the same or simi-
lar basic properties. However, it is a common practice and multitude of models such
as, e.g. using results from the so called “passive turbulence” (i.e. a passive scalar in a
random velocity field—not necessarily physical) to draw conclusions about genuine
turbulence obeying the NSE. However, this is not really the case, as, e.g. pointed
out by Kraichnan (1974) in a counter example of a ‘dynamical equation is exhibited
which has the same essential invariances, symmetries, dimensionality and equilib-
rium statistical ensembles as the Navier–Stokes equations, but which has radically
different inertial-range behavior.’ The issue is much broader. Using the above prop-
erties only many essential properties are missed, such as a variety of dynamically
relevant geometrical aspects. The first example, concerns the interaction of vorticity
and strain and enstrophy production. Here of utmost importance are the geometrical
relations between the vorticity and the eigenframe of the rate of strain tensor, see
Chap. 6 and Sect. 6.4 in Tsinober (2009).

As described in Sect. 5.1.1 in Tsinober (2009) the issue extends into broad mis-
interpretations of a variety of analogies such as between the genuine (e.g. NSE)
turbulence and passive “turbulence”, i.e. evolution of passive objects in random (or
just not too simple) velocity fields. The differences are more than essential, though
there are numerous claims for the well-established phenomenological parallels be-
tween the statistical description of mixing and fluid turbulence itself (Shraiman and
Siggia 2000). Of special interest here is the anomalous scaling in genuine versus
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passive turbulence, e.g. a recent statement by Eyink and Frisch (2011, p. 362):
. . . Kraichnan’s model of a passive scalar advected by a white-in-time Gaussian
random velocity has become a paradigm for turbulence intermittency and anoma-
lous scaling. The authors mean the genuine NSE turbulence. We just repeat that the
analogy between genuine and passive turbulence is illusive and mostly misleading.
Far more can be found on misuse and misinterpretations of analogies in Chap. 9 in
Tsinober (2009) and references therein.

On Periodic Boundary Conditions There is considerable evidence that the sta-
tistical properties of some turbulent flows with the same geometry at very modest
Reynolds numbers are invariant of the boundary and even initial conditions (BC
and IC). For example, typical DNS computations of NSE of turbulent flows (e.g.,
in a circular pipe and a plane channel, in a cubic box, etc.) involve extensive use
of periodic BC. The results of these computations agree well with those obtained in
laboratory experiments, in which the BC have nothing to do with periodicity. Indeed,
the correlation coefficient between two values of any quantity at the opposite ends of
such boundaries (i.e., the points separated at maximal distance in the flow domain)
is precisely equal to unity and close to unity for the points in the proximity of such
boundaries, whereas in any real flow the correlation coefficient becomes very small
for points separated by a distance on the order of (and larger than) the integral scale
of turbulent flows.) and in which the IC were totally different from those in DNS.
No explanation of this kind of invariance is known so far, but it is natural to expect
that it is related to some kind of hidden symmetry(ies) of the NSE. If such exist, this
may be the reason for the similarity of results obtained via DNS of NSE in, e.g.,
periodic boxes by various forcing (different deterministic, random/stochastic, etc.).

The above property, however, is not universal and there are many examples of
long memory of turbulent flows which do ‘remember’, e.g., the inflow and initial
conditions. As mentioned the reasons for this behavior may involve nonlocal prop-
erties in conjunction with the changing environment so that this “memory” is an
attribute of a transient phenomenon in spatially developing flows due to continu-
ously changing conditions preventing approach to some universal state/behavior.

8.4 Universality

The issue of universality is one of several continuously debated controversies in
the problem of turbulence. This includes the meaning of the term ‘universality’
which always refers to behavior at large Reynolds numbers. For example, one is-
sue involves the invariance of Reynolds number of (some) properties of a particular
turbulent flow at large enough Reynolds numbers (here and then). Another issue is
concerned with the universality of (mostly scaling) properties of small-scale turbu-
lence assumed to be the same in any flow, which has remained for more than fifty
years one of the most active fields of inquiry. Derivation of scaling properties of fully
developed turbulent flows directly from the Navier–Stokes equations analytically is
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one of the most popular illusive goals of theoretical research. Since the Kolmogorov
papers (1941a, 1941b), there exists still almost a religious belief in some universal
properties of small scale turbulence.6 This belief was strengthened by achievements
in dynamical chaos, such as the discovery of some universal numbers by Feigen-
baum, etc.

The expectation of universality in turbulence stems from the nonlinear nature
of turbulence. However, this expectation is to a large extent did not come true due
to much neglected set of properties of essentially nonlocal nature. This includes
practically all cases where quantitative universality was expected. In other words,
the problems with universality are due to the competition between nonlinearity and
non-locality, the latter is also aided by linear processes, such as in the proximity
of walls (Kim 2012 and references therein). However, as it stands now, the main
problems are with quantitative universality, i.e. universality of numbers and the ne-
cessity to distinguish between quantitative universality and the qualitative one, i.e.
involving some more general universal features and processes.

8.4.1 Quantitative Universality

With the exception of the 2/3 (5/3) and the 4/5 laws there appeared to exist no quan-
titative universality so far: the first doubt came from the famous remark by Landau
in the first Russian edition of Fluid Mechanics by Landau and Lifshitz about the
fluctuations of energy dissipation rate. These were followed by various ‘universal’
corrections, which did not appear to be universal either. These corrections were
followed by the (multi) fractal approach using either the so-called D(h) or f (α)

formalisms, in which the functions D(h) and/or f (α) are assumed to be universal.
However, they do not seem to be universal either. There is quite solid evidence ac-
cumulated during the last fifty years against the most beautiful hypothesis on the
restoring of the symmetries in the statistical sense of the Navier–Stokes equations
locally in time and space, i.e. local isotropy together with scale invariance. And so
people started to look for some universality in the anisotropic properties of turbu-
lent flows, see references in Biferale and Procaccia (2005). This involves the SO(3)
decomposition of tensorial objects again assuming universal scaling behavior in r

of each component of the decomposition. Consequently there is no “simple” scaling
of, say, structure functions in r , but rather the different terms of the SO(3) decom-
position each with its own scaling exponent assumed to be universal. Thus all the
attraction of simple scaling as in Kolmogorov (1941a, 1941b) has gone.

The assumption of universality has no serious justification and is more a kind of a
belief much weaker than the belief in the inertial range. Moreover, it is not clear at all

6That far that one of the principal incentives for writing this book was a desire to summarize the
development of the idea of a universal local structure in any turbulent flow for sufficiently large
Reynolds number (Monin and Yaglom 1971, p. 21). This is 1600 pages total.
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why each “sector” of the irreducible representation is expected to have its own uni-
versal scaling exponent independently of the physical/dynamical nature/underlying
mechanisms of anisotropy such as mean shear, strain, rotation, stratification (both
stable and unstable), magnetic field, etc. The expectation of universality is especially
problematic in case of strong anisotropy (Q2D) in all the above cases. There is a
claim that the amplitudes of the various contributions are nonuniversal and that it is
possible to fit the experimental data by keeping fixed the scaling properties and ad-
justing only the prefactors. It is also noteworthy that in determination of anisotropic
scaling exponents one encounters the same kind of difficulties as those known from
previous experience. This however, does not prove much regarding universality and
may well be at best the “right result not necessarily for the right reason”. One more
difficulty may arise due to nonuniqueness of the SO(3) decomposition in the sense
that there exists more than one possibility to chose its basis in case when the SO(3)
decomposition is applied to tensorial objects. There are also similar claims on uni-
versality related to passive objects. This kind of a claim is quite surprising, as passive
objects are governed by linear equations and thus its statistics and scaling exponents
are expected to be sensitive to the statistics of the velocity field.

The nonuniversality of small scale structure of turbulence is mostly due to non-
locality along with the difference in the mechanisms of large-scale production. The
latter depend on the particularities of a given flow and thus are not universal. The
large scales, especially their edges seem to be responsible for the contamination
of the small scales. This ‘contamination’ is unavoidable even in homogeneous and
isotropic turbulence, since there are many ways to produce such a flow, e.g., many
ways to produce the large scales. The situation is complicated by the reaction back
of the small scales on the large ones.

On the Special Status of Scaling Exponents of the Second and Third Order
Structure Functions The empirically observed Reynolds number independent
behavior of some global characteristics of turbulent flows at large Re, such as the to-
tal dissipation, the drag of bluff bodies and resistance in many other configurations,
comprises one of the quantitative universal properties of turbulence at large Re. This
is distinct from some possibly universal (mostly scaling) properties of small-scale
turbulence. The exception in some sense are the scaling exponents of the second and
third order structure functions.

It is widely thought that the Kolmogorov similarity hypotheses imply that the
mean dissipation, remains finite/non-vanishing as Re → ∞, whereas they are based
on an assumption that this is the case. The issue is whether the properly normalized
mean dissipation (usually by U3/L−1 as suggested by Taylor 1935) tends really to
a finite limit as Re → ∞ (ν → 0), or is Re dependent even at very large Reynolds
numbers. There is much speculation about this subject, while the experimental and
recent evidence from DNS favoring the former is solid but still limited, though in
a variety of fluid engineering practice this fact was recognized long ago in a great
variety of flow configurations since the end the 19th century. Since the finite limit
of the mean dissipation at large Re defines a unique scaling exponent in the 2/3
law and since the 4/5 law is a consequence of the Navier–Stokes equations, the two
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scaling exponents, ζ2 = 2/3 and ζ3 = 1, possess a special status provided that the
inertial range is a well defined concept (which is not) and the mean dissipation is
indeed Reynolds number independent as Re → ∞. It is noteworthy that rigorous up-
per bounds of the long time averages of dissipation are independent of the Reynolds
number at large Re (Doering 2009 and references therein), and thereby are consis-
tent with the experimental results. This, however, does not fully resolve the problem
since there are no results on the lower bounds, except trivial values corresponding to
the laminar flows. There are also experimental results on the energy spectra at large
Reynolds numbers with the exponent steeper than −k−5/3 (see references and new
results in Tsinober 2009) and there is a need for different Reynolds numbers in the
experimental confirmations of the 4/5 law at large Reynolds number (Kholmyansky
and Tsinober 2009). Thus it makes sense to keep in mind the possible alternatives,
see e.g. Grossman (1995), Long (2003) and references in Abe and Antonia (2011).

In other words, it seems that the dream of quantitative universality of turbulence,
i.e. universality of numbers, may never come true.7 The main reason is the nonlocal-
ity leading not only to breaking of the symmetries embodied in the Navier–Stokes
equations, but preventing them to be restored in the statistical sense at high Reynolds
numbers, along with the ill posedness of the concept of inertial range as discussed
below in the next subsection on qualitative universality.

8.4.2 Qualitative Universality

Though there may not exist such a thing like quantitative universality of turbulence,
i.e. universality of numbers, there seems to exist a qualitative one. The concept of
qualitative universality is not just a fuzzy idea. First, the major qualitative features
of turbulent flows as described in Chap. 1 are universal for all turbulent flows arising
in qualitatively different ways and circumstances and generally characterize turbu-
lent flows as a whole. It is these qualitative features which do not depend on the
diverse processes/ways by which flows become turbulent. Second, these qualitative
features possess a number of quantitative attributes/features which are more specific
for turbulent flows and are of special interest. Third, as mentioned it is natural to use
the major universal qualitative manifestations of turbulent flows as a basis and as a
first step to ‘define’ what is turbulence.

In other words, apart of general qualitative properties of turbulence as apparent
randomness, enhanced effective diffusivity and dissipation, rotational nature, and
others as discussed in Chaps. 1 and 6, of particular interest are more specific qual-
itative universal properties of turbulent flows along with the quantitative attributes
of the former.

Below we attend a number of most important issues on and/or related to qualita-
tive universality.

7For other negative statements about universality see, for example, Saffman (1978) and Hunt and
Carruthers (1990).
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Turbulent flows possess (empirically) stable statistical properties (SSP), not just
averages but almost all statistical properties. In case of statistically stationary flows
the existence of SSP seems to be an indication of the existence of what mathemati-
cians call attractors. But matters are more complicated as many statistical properties
of time-dependent in the statistical sense turbulent flows possessing no attractor but
stable SSP are quite similar at least qualitatively to those of statistically stationary
ones as long as the Reynolds number of the former is not too small at any particular
time moment of interest. This can be qualified as qualitative temporal universal-
ity/memory.

Velocity Derivatives, Self Amplification, Tennekes and Lumley Balance The
most important is the process of self-amplification of velocity derivatives, both strain
and vorticity which turns turbulence into a strongly dissipative and rotational phe-
nomenon. These two concomitant processes posses a quantitative universal aspect
as reflected in the Tennekes an Lumley balance. It should be stressed again that there
is an essential and qualitative difference between the process of self-amplification
of strain and other similar processes. It is a specific feature of the dynamics of tur-
bulence having no counterpart in the behavior of passive objects. In contrast, the
process of self-amplification of vorticity, along with essential differences, has a
number of common features with analogous processes in passive vectors; in both
the main factor is their interaction with strain, whereas the production of strain is a
self-production provided that the flow is rotational.

The amplification of derivatives in other systems as passive objects is a property
which can be seen as universal not only for any random fluid flow, be it real or arti-
ficial, such as the Gaussian velocity field, but of any fluid flows that are Lagrangian
chaotic, many of which are simple laminar in the Eulerian setting.

On Universal Aspects of Turbulence Structure In dynamical systems, one
looks for structure in the phase space (Shlesinger 2000; Zaslavsky 1999), since it
is relatively ‘easy’ due to low dimensional nature of the problems involved. In tur-
bulence nothing is known about its properties in the corresponding infinite or very
high dimensional phase space.8 Therefore, it is common to look for structure in the
physical space with the hope that the structure(s) of turbulence—as we observe it
in physical space—is (are) the manifestation of the generic structural properties of
mathematical objects in phase space, which are called attractors and which are in-
variant in some sense. In other words, the structure(s) is (are) assumed to be ‘built
in’ in the turbulence independently of its (their) origin—hence universality. How-
ever, as mentioned, the expectation for universal numbers seems to be unjustified.
It is more natural to expect universal qualitative statistical features in the physi-
cal space rather than universal numbers. Indeed, some of such features have been
already observed, which are common for very different—essentially all known—
turbulent flows. These are not only the general qualitative features of turbulent flows
as described in Chap. 1, but rather specific ones.

8Hopf (1948) conjectured that the underlying attractor is finite dimensional due to presence of
viscosity.
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We bring three examples with features which are essentially the same for all
known incompressible flows such as grid turbulent flow, periodic flow in a compu-
tational box, turbulent boundary layer and channel flow, mixing layer and compress-
ible flows as well. Such features can be seen as universal statistical manifestations
of the structure of turbulent flows.

The first example, is the so-called ‘tearing drop’ feature observed in the invariant
map of the second invariant, Q = 1

4 (ω2 − 2siksik), versus the third invariant R =
− 1

3 (sikskmsmi + 3
4ωiωksik) of the velocity gradient tensor ∂ui/∂xk , such as shown

in Fig. 6.1. This feature appears to be essentially the same for all known turbulent
flows. We draw the attention to the ‘tail’ of the teardrop which is mainly located
in the quadrant Q < 0,R > 0, in which most of turbulent activity happens in a
variety of ways. The important point is that this is the region dominated by strain
as compared with enstrophy, 2siksik > ω2, and by production of strain as compared
with production of enstrophy, −sikskmsmi > 3

4ωiωksik . This is in full conformity
with the behavior of nonlinearities in these regions, see Sect. 6.5 and Chap. 10.1.3
in Tsinober (2009).

The second example is related to depression of nonlinearity. We mention here
one aspect of this problem, which seems to be universal in the sense that it is true
for different flows (including shear) and different Reynolds numbers, though the
evidence is still quite limited. Namely, all key nonlinearities appear to be much
stronger in the strain dominated regions rather than in regions with concentrated
vorticity, in contrast to the common expectation that, for example, the vorticity am-
plification process will be strongest where the vorticity already happens to be large.
The regions with concentrated vorticity are in approximate equilibrium in the sense
that the rate of enstrophy production is in approximate balance with the viscous de-
struction in these regions even at low Reynolds numbers. Therefore, their life time
is considerably larger than the life time of the regions dominated by strain, which
are in strong disequilibrium in the sense that the rate enstrophy production is much
larger than its destruction by viscosity in these regions. This is reflected in the R–Q

diagram as the strongest activity in the fourth quadrant in which Q and R are nega-
tive, i.e. 2s2 > ω2 and −sikskmsmi > 3

4ωiωksik .
It is noteworthy that the issue of depression of nonlinearity was initiated via

comparison of nonlinearities in real turbulent flows with their Gaussian counter-
parts with the results that turbulent flows tend to deplete nonlinearity significantly.
The problem is that such a comparison is too narrow as it is meaningful for even
moments only, because for a Gaussian field all odd moments such as, e.g. strain and
enstrophy production, vanish identically. In other words, measured by odd moments
the real nonlinearity is infinitely larger, see Tsinober (2009, p. 154).

The third example is related to geometrical statistics for example of enstrophy
production as a process of interaction of vorticity and strain. These are various align-
ments between vorticity and the eigenbasis of the rate of strain tensor, and between
vorticity and the vortex stretching vector. It appears that these and many other simi-
lar properties are the same for all known flows and, moreover, for a broad range of
Reynolds numbers. For example, the character of the above alignments is essentially
the same at Reλ ∼ 102 and Reλ ∼ 104.
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The same similarity is observed recently for a variety of alignments and other
properties associated with fluid particle accelerations (Gulitskii et al. 2007b) and for
passive scalars (Gulitskii et al. 2007c) such as alignments of passive scalar gradient,
G with the eigenframe λi of the rate of strain tensor, conditional averages on ω2 and
s2 of the production −GiGj sij , tilting of G and some others.

There is a far more difficult issue of universality of finite objects in turbulence,
which is discussed in the next chapter.



Chapter 9
Intermittency and Structure(s)
of and/in Turbulence

Abstract Intermittency specifically in genuine fluid turbulence is associated mostly
with some aspects of its spatiotemporal structure. Hence, the close relation between
the origin(s) and meaning of intermittency and structure of turbulence. Just like
there is no general agreement on the origin and meaning of the former, there is no
consensus regarding what are the origin(s) and what turbulence structure(s) really
mean. At the present state of matters both issues are pretty speculative and an ex-
ample of ‘ephemeral’ collection of such is given in this chapter. We have to admit
at this stage that structure(s) is(are) just an inherent property of turbulence.

Structureless turbulence is meaningless. There is no turbulence without struc-
ture(s). Every part (just as the whole) of the turbulent field—including the so-called
‘structureless background’—possess structure. Structureless turbulence (or any of
its part) contradicts both the experimental evidence and the Navier–Stokes equa-
tions. The claims for ‘structureless background’ is a reflection of our inability to
‘see’ more intricate aspects of turbulence structure: intricacy, complexity and ‘ran-
domness’ are not synonymous for absence of structure.

What is definite is that turbulent flows have lots of structure(s). The term struc-
ture(s) is used here deliberately in order to emphasize the duality (or even multi-
plicity) of the meaning of the underlying problem. The first is about how turbulence
‘looks’. The second implies the existence of some entities. Objective treatment of
both requires use of some statistical methods. It is thought that these methods alone
may be insufficient to cope with the problem, but so far no satisfactory solution was
found. One (but not the only) reason—as mentioned—is that it is not so clear what
one is looking for: the objects seem to be still elusive. For example, there is still
a non-negligible set of people in the community that are in a great doubt that the
concept of coherent structure is much different from the Emperors’s new Clothes.

An example of acute difficulties described in this chapter is associated with high
dimension of what is called structures so that simple single parameter thresholding
is inappropriate to make on them statistics due to the painful question how really
“similar” are all these if the individual members of such an ensemble are defined
by one parameter only. The view that turbulence structure(s) is(are) simple in some
sense and that turbulence can be represented as a collection of simple objects only
seems to be a nice illusion which, unfortunately, has little to do with reality. It seems
somewhat wishfully naive to expect that such a complicated phenomenon like tur-
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bulence can merely be described in terms of collections of only such ‘simple’ and
weakly interacting object.

The nature and characterization of the structure(s) of turbulent flows are among the
most controversial issues in turbulence research with extreme views on many as-
pects of the problem—in words of Richard Feynmann (1963, pp. 41–12), holding
strong opinions either way. For example, it is common in the vast literature on tur-
bulence to consider the terms statistical and structural (and also deterministic) as
incompatible or even contradictory, see for example Dwoyer et al. (1985), Lumley
(1989). However, there are common points as well. For instance, it is mostly agreed
that turbulence definitely possesses structure(s) (whatever this means) and that in-
termittency, which is addressed in the following subsection, is intimately related to
some aspects of the structure(s) of turbulence.

At present it became clear that it is a misconception to contrapose the statistical,
the structural and the deterministic and that they represent different facets/aspects
of the same problem, so that there is no real gap between structure(s), statistics (but
not in the sense of absence of laws) and determinism. Just like it seems impossible
to separate the structure(s) from the so called ‘random structureless background’ or
the ‘random processes from the nonrandom processes’, Dryden (1948) due to strong
interaction and nonlocality, both between individual structures, and between struc-
tures and the ‘background’. In other words, there is no turbulence without structure,
every part of the turbulent field just like the whole possess structure.1 Structureless
turbulence or any its part contradicts both the experimental evidence and the Navier–
Stokes equations. It is noteworthy that the statement that turbulence has structure is
in a sense trivial: to say that turbulent flow is ‘completely random’ would define
turbulence out of existence (Tritton 1988, p. 295).

One of the basic properties underlying both aspects, i.e. intermittency and struc-
ture(s) is the essentially non-Gaussian nature of turbulence, which follows from
NSE, e.g. Novikov (1967), Lumley (1970), and there are numerous experimental
observations on non-Gaussianity of turbulence, see e.g. Sect. 6.8 in Tsinober (2009)
on non-Gaussian nature of turbulence, e.g. the outstanding non-zero odd moments:
the strain and enstrophy production −〈sij sjkski〉, 〈ωiωj sij 〉. It has to be stressed that
(i) non-Gaussianity and intermittency/structure are not synonymous as not any non-
Gaussian field is turbulent and (ii) non-Gaussianity is only a statistical manifestation
of intermittency/structure.

As a simple illustration one can see that even if the flow field is initially Gaussian,
the dynamics of turbulence makes it non-Gaussian with finite rate. This is seen by
looking 〈. . .〉 at the equation for 〈ωiωj sij 〉 (dropping the viscous term).

D〈ωiωj sij 〉/Dt = 〈ωj sijωksik〉 − 〈ωiωjΠij 〉.

1There are proposals to scan out the structure(s). In fact there is no way to do so, since structure is
everywhere. Even the so-called ‘simple’ structures, worms, sheets, etc. are ‘renormalized’ by the
background.
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For a Gaussian velocity field 〈ωiωj sij 〉G = 0, 〈ωiωjΠij 〉G = 0 and 〈ωj sijωksik〉G =
1
6 〈ω2〉2 > 0. Since the quantity ωj sijωksik ≡ W 2, Wi = ωj sij , it is positive point-
wise for any vector field. Hence for an initially Gaussian field

{
D〈ωiωj sij 〉/Dt

}
t=0 = {〈ωj sijωksik〉

}
t=0 > 0.

It follows that, at least for a short time interval t , the mean enstrophy production
will become positive.

The above equations and similar ones for 〈sij sjkski〉 can be seen as one of the
manifestations of the statistical irreversibility of turbulent flows (Betchov 1974;
Novikov 1974). The corresponding dynamical instantaneous (inviscid) equations
are reversible. Hence, the term “statistical”. One would claim that the Kolmogorov
4/5 law in the conventionally defined inertial range belongs to the same category,
but as described above it appears to be not a purely inertial relation. Another aspect
of irreversibility is related to the dissipative nature of turbulence—its not “slightly”
dissipative at whatever large Reynolds number.

Turbulence—being essentially non-Gaussian—is such a rich phenomenon that
it can ‘afford’ a number of Gaussian-like manifestations, some of which are not
obvious and even nontrivial, for examples see Sect. 6.8.2 in Tsinober (2009). Hence
the importance of parameters related to the non-Gaussian nature of turbulence and
not only in various contexts of intermittency and structure(s).

9.1 Intermittency

At any instant the production of small scales is. . . occurring vigorously in
some places and only weakly in the others (Tritton 1988).

Intermittency is a phenomenon where Nature spends little time, but acts
vigorously (Betchov 1993).

Typical distribution of scalar and vector fields is one in which there appear
characteristic structures accompanied by high peaks or spikes with large in-
tensity and small duration or spatial extent. The intervals between the spikes
are characterized by small intensity and large extent (Zeldovich et al. 1990).

The term intermittency is used in two distinct (but not independent) aspects of
turbulent flows. The first one is the so-called external intermittency. It is associated
with what is called here partly turbulent flows, specifically with the strongly irreg-
ular and convoluted structure and random movement of the ‘boundary’ between the
turbulent and nonturbulent fluid.

The second aspect is the so-called small scale, internal or intrinsic intermittency
and is associate with spotty temporal and spatial patterns of the small scale struc-
ture(s) in the interior of turbulent flows.
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9.1.1 The External Intermittency and Entrainment

This kind of intermittency was studied first by Townsend (1948) and involves the
so called entrainment which is one of the most basic processes of transition from
laminar to turbulent state with the coexistence of both in one flow. It is associated
with the coexistence of laminar and turbulent flow regions—an observer located in
the proximity of either side of the ‘mean’ boundary between these regions observes
intermittently laminar and turbulent flow in the form of a signal similar to that as
in Fig. 21.4 in Tritton (1988), clearly demonstrating the external intermittency of in
the wake past a circular cylinder. Here we again encounter the question about what
turbulent is. Looking at signals like the mentioned one clearly sees what is turbulent
and what is laminar. But the question is how one can say whether a small part of
flow is turbulent. In other words if turbulence is to be identified by statistical means,
then what is the meaning of ‘turbulent’ locally? This involves taking decisions about
what is turbulent using some conditional criterion, see discussion and references in
Kuznetsov et al. (1992).

The main mechanism by which nonturbulent fluid becomes turbulent locally as
it crosses the interface is due viscous diffusion of vorticity across the interface. As
this process is associated with small scales it is thought to be the reason why the
interface appears sharp compared to the scale of the whole flow.

However, at large Reynolds numbers, the entrainment rate and the propagation
velocity of the interface relative to the fluid are known to be independent of viscos-
ity. Therefore the slow process of diffusion into the ambient fluid must be accelerated
by interaction with velocity fields of eddies of all sizes, from viscous eddies to the
energy-containing eddies so that the overall rate of entrainment is set by large-scale
parameters of the flow (Townsend 1976). That is although the spreading is brought
about by small eddies [viscosity] its rate is governed by the larger eddies. The total
area of the interface, over which the spreading is occurring at any instant, is de-
termined by these larger eddies (Tritton 1988). This is analogous to independence
of dissipation of viscosity in turbulent flows at large Reynolds numbers. In other
words, small scales do the ‘work’, but the amount of work is fixed by the large
scales in such a way that the outcome is independent of viscosity. This shows that
independence of some parameter of viscosity at large Reynolds numbers does not
mean that viscosity is unimportant. It means only that the (cumulative) effect of vis-
cosity is Reynolds number independent, for more see Tsinober (2009), Wolf et al.
(2012a, 2012b) and references therein.

9.1.2 The Small Scale, Internal or Intrinsic Intermittency

The second aspect is the so-called small scale, internal or intrinsic intermittency. It
is usually associated with the tendency to spatial and temporal localization of the
‘fine’ or small scale structure(s) of turbulent flows with large probability of tak-
ing values of some variable both very large and very small compared to its stan-
dard deviation. An important feature is that regions of exceptionally high values
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Fig. 9.1 Percent of the strong dissipative events as defined in the text (a) and their contribution to
the total dissipation (b) as a function of the threshold q for various separations r . The value of sep-
aration is not relevant as concerns the contribution of the dissipative events to the total dissipation
(Kholmyansky and Tsinober 2009)

make disproportionately large contribution (sometimes even dominant) to the inte-
gral properties even though occupying a small fraction of the flow. Consequently,
regions with “voids” (low intensity) occupy a “disproportionately” large fraction
of the flow and thus being statistically dominating, but contribute far less to the
dynamics. For example, in field experiments with Reλ ≈ 104 the dissipative events
with dissipation exceeding the mean 12 times (i.e. ε < 12〈ε〉) contribute to 〈ε〉 about
20 % while taking about 1 % of the total volume, see Fig. 9.1. The instantaneous
values of dissipation exceed 104〈ε〉.

Similar behavior is observed for other variables exhibiting intermittency, e.g. en-
strophy and enstrophy and strain production, see Tsinober (2009).

Our concern here is with the intermittency of this second kind. It is noteworthy
that in a broad sense intermittency is a ubiquitous phenomenon occurring in a great
variety of qualitatively different systems, see Zeldovich et al. (1990) for a lively
exposition of a wide number of different systems exhibiting intermittency, and also
Vassilicos (2001). The main common features of all of them is (space/time) irregu-
larity and localization (both spatial and temporal) of their ‘fine’ structure. However,
this is not enough to define intermittency. For example, almost any nonlinear func-
tion or almost any nonlinear functional of a random Gaussian field is intermittent in
the above sense, though random Gaussian fields by definition lack any intermittency.

We do not make a special distinction between the intermittency in the inertial and
dissipative ranges as both are not well defined.

The intermittent nature of the small scale structure of turbulent flows was fore-
seen by Taylor (1938b): . . . the view frequently put forward by the author that the
dissipation of energy is due chiefly to the formation of very small regions where vor-



110 9 Intermittency and Structure(s) of and/in Turbulence

ticity is very high.2 Indeed, such behavior is not unexpected since the viscous term
in the NSE contains the highest-order derivative while high Reynolds number tur-
bulence involves the limit ν → 0. This limit is a singular perturbation problem and
localized regions in which gradients are large should be expected to form (Orszag
1977). Along with nonlocality this means that the consequence of intermittency is
not just a small “correction” in the properties of turbulence with the possible excep-
tion of the quasi-Gaussian ones.

The phenomenon of small scale intermittency was observed by Batchelor and
Townsend (1949) in experiments with turbulent grid flows and in a wake past a
circular cylinder.

Batchelor and Townsend (1949) wrote: The basic observation which requires
explanation is that activation of large wave-numbers is very unevenly distributed
in space. These space variations in activation can be described as fluctuations in
the spectrum at large wave-number. . . As the wave-number is increased the fluctu-
ations seem to tend to an approximate on-off, or intermittent variation. Whatever
the reason for the occurrence of these fluctuations, they appear to be intrinsic to
the equilibrium range of wave-numbers. All the evidence is consistent with the in-
ference that the fluctuations are small in the region of smallest wave-numbers of
equilibrium range and become increasingly large at larger wave-numbers. . . the
mean separation of the visible activated regions is comparable with the integral
scale of the turbulence, i.e. with the size of the energy-containing eddies. Batche-
lor and Townsend (1949, pp. 252–253) obtained some evidence that the deviation
from Gaussianity is stronger as the Reynolds number is increased. However, they
did not appreciate this effect and claimed that the flatness factors seems to vary a lit-
tle with Reynolds number, though this factor changed from 5 to 7 for the third order
derivative; see their Fig. 5 for the flatness factor of velocity derivatives of different
orders and different Reynolds numbers. This was confirmed by a number of sub-
sequent experiments such as by Kuo and Corrsin (1971), for an updated overview
of the subsequent results see, e.g. Sreenivasan and Antonia (1997). An example of
time records of the streamwise velocity component, and their derivatives obtained
in a field experiment at Reλ = 104 is shown in Fig. 1.17 in Tsinober (2009). The in-
creasingly intermittent behavior of the signal with the derivative order is seen quite
clearly. Also shown are records for the enstrophy ω2, total strain 2s2 ≡ 2sij sij and
their surrogate (∂u1/∂x1)

2, and enstrophy production ωiωj sij , sij sjkski and their
surrogate (∂u1/∂x1)

3. The experiment was performed in the atmospheric surface
layer at a height 10 m in approximately neutral (slightly unstable) conditions.

A qualitative summary is that small scale intermittency of turbulence is associ-
ated with its spotty (spatio-temporal) structure which among other things is mani-
fested as a particular kind of non-Gaussian behavior of turbulent flows. This devia-
tion from Gaussianity, increases with both (1) increasing the Reynolds number and

2However, note that dissipation is highest in regions where strain—not vorticity—is high. Likewise
the enstrophy production, ωiωisij , is small where strain production, sij sjkski , is large and versa,
see Fig. 7.2 above.
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(2) decreasing the ‘scale’. In other words, intermittency involves two (not indepen-
dent) aspects of turbulent flows—their structure/geometry and statistics. These two
aspects are reflected in attempts to ‘define’ intermittency, see references in Tsinober
(2009).

9.1.3 Measures/Manifestations of Intermittency

There are numerous quasi-Gaussian manifestations of turbulent flows, for some see
Sect. 7.2.2 in Chap. 7, Tsinober (2009). Hence the importance of parameters related
to the non-Gaussian nature of turbulence in various contexts of intermittency and
structure(s). It is important that intermittency implies non-Gaussianity, but not nec-
essarily vice versa—practically any parameter can at most indicate the degree of
intermittency of a flow already known to be intermittent. A statistical measure such
as flatness or some similar intermittency factors may deviate strongly from a Gaus-
sian value without any intermittency in the flow field. The simplest example is the
Gaussian field itself, which by definition lacks any intermittency. However, any non-
linear function (or functional) of a variable, which is Gaussian, is non-Gaussian. For
instance enstrophy, dissipation, pressure, etc. of a Gaussian velocity field possess ex-
ponential tails and their flatness is quite different from 3. For example, for a Gaus-
sian velocity field FG(ω2) = 〈ω4〉/〈ω2〉2 = 5/3 and FG(s2) = 〈s4〉/〈s2〉2 = 7/5.
But this by no means indicates that, for a Gaussian velocity field, these quantities
are intermittent as claimed sometimes. Moreover, the flatness of enstrophy is larger
than that of total strain, Fω2 − Fs2 = 4/15. Similarly, the Reynolds stress uiuj ex-
hibits ‘intermittency’. The main contribution to this intermittency comes from the
fact that uiuj is a product of two random variables both distributed close to Gaus-
sian. For example, the PDF of the u1u2 of the strongly intermittent signal obtained
by Lu and Willmarth (1973) in a turbulent boundary layer is strongly non-Gaussian.
However, the PDF of u1u2 is approximated with high precision by assuming both
u1 and u2 to be Gaussian with a correlation coefficient between them adjusted from
the experiment −0.44.3

Passive objects (scalars like heat, vectors like magnetic field) in a random ve-
locity field (real or artificially prescribed) are nonlinear functionals. of the velocity
field and forcing/excitation. Therefore, even when both the velocity field and forcing
are Gaussian the field of a passive object is expected to be strongly non-Gaussian
as usually (but not always) is the case (Majda and Kramer 1999). Such kinematic
intermittency is observed in a great number of theoretical and some experimental
works. The term ‘kinematic’ is used here in the sense that there is no relation to the
dynamics of fluid motion, which does not enter in the problems in question, and the
velocity field is prescribed and often assumed to be Gaussian.

3The above examples may serve as a warning that multiplicative models enable to produce inter-
mittency for a purely nonintermittent field as is the Gaussian velocity field. See Zeldovich et al.
(1990) on interesting observations on this and related matters.
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Odd Moments Any odd moment of a Gaussian variable vanishes, for example
skewness SG(a) ≡ 〈a3〉/〈a2〉3/2 = 0. Therefore, odd moments are very sensitive to
deviations from Gaussianity, so that non-zero odd moments may be especially good
indicators of intermittency. Build-up of odd moments is a result of both the (kine-
matic) evolution of a passive field in any random velocity field and the dynamics
of turbulence itself. In the latter case, non-vanishing odd moments are the most
important, dynamically significant manifestations of non-Gaussianity, i.e. they re-
flect directly the dynamic aspects of intermittency. The most prominent odd mo-
ments are the third order structure function for longitudinal velocity increments
S

‖
3 = 〈{[u(x + r) − u(x)] · (r/r)}3〉 entering the 4/5 law, the enstrophy production

〈ωiωksik〉 and the third order moment of the strain tensor 〈sij sjkski〉. Note that all
these and other odd moments vanish in a Gaussian velocity field. In contrast similar
“odd” moments for passive objects, 〈GiGksik〉, 〈BiBksik〉 do not vanish. Hence, the
passive objects in some sense are “more intermittent”.

We remind that the non-Gaussian nature of genuine turbulent flows and of pas-
sive objects is qualitatively different just like is intermittency in a great variety of
physically different systems.

Scaling Exponents and PDFs It is commonly believed that among the manifesta-
tions of the small scale intermittency in the commonly defined inertial range4 is the
experimentally observed deviation of the scaling exponents for structure functions
S

‖
p = 〈{[u(x + r) − u(x)] · (r/r)}p〉 for p > 3 from the values implied by the Kol-

mogorov theory, i.e. anomalous scaling, which in turn is due to rare strong events.

Namely, S
‖
p(r) ∝ rζ

‖
p , where ζ

‖
p = p/3 − μp < p/3 is a convex nonlinear function

of p.
However, there are major problems with scaling as follows.
First, there exists no one-to-one relation between simple statistical manifesta-

tions and the underlying structure(s) of turbulence. Moreover, qualitatively differ-
ent phenomena can and do possess the same set of scaling exponents, so that one
needs more subtle statistical characterizations of turbulence structure(s) and inter-
mittency. For example, until recently one of the common beliefs was that the ob-
served vortex filaments/worms are mainly responsible for the phenomenon of inter-
mittency understood as anomalous scaling. However, it appears that this is not the
case, see the evidence and references given in Tsinober (1998a, 2009). More specifi-
cally, the problem with the intermittency in the conventionally defined inertial range
(CDIR) and the related anomalous scaling is in the object (CDIR) itself as it is ill
defined and does not exist in reality. Hence the problem with theories attempting

4A last example is the paper by Dowker and Ohkitani (2012), see also references therein in which
the anomalous scaling is identified with intermittently as is done multitude of papers.

One more example is in Seiwert et al. (2008) who studied the decrease of intermittency in
decaying rotating turbulence via looking at the scaling of the longitudinal velocity structure func-
tions, up to order q = 8. This decrease can be explained by suppression of strong dissipative events
in the presence of rotation.
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explanations of intermittency in this nonexistent phenomenon, e.g. breakdown co-
efficients/multipliers (Novikov 1974, 1990a), multi-fractals (Frisch 1995) and the
so-called ‘hierarchical symmetry’ (She and Zhang 2009).

There are no ‘corrections’ to the scaling exponent in 4/5 law—it is an exact
consequence of NSE. However, as (i) it manifests the non-Gaussian nature of turbu-
lence and (ii) the PDFs of the longitudinal velocity increments especially at small
r have flaring tails, i.e. hanging far above the Gaussian PDF, the 4/5 law should be
considered as related to intermittency. This shows that ‘intermittency corrections’
are not that reliable as indicators of intermittency, if at all. Reminding that recent
experiments at high Reynolds numbers showed that the 4/5 law is not a pure inertial
relation (which is one of the manifestations of the ill posedness of the CDIR) since
the PDFs of the velocity increments contain strong dissipative events with nonneg-
ligible contributions to the structure functions S

‖
p(r) increasing with the order and

among them S
‖
3(r).

The next example is represented by numerous models attempted to reproduce the
anomalous scaling. A partial list of references is given in Sreenivasan and Antonia
(1997) and Tsinober (1998b). These models followed the Kolmogorov (1962) re-
fined similarity hypothesis (RSH) in which the mean dissipation 〈ε〉 was replaced
by ‘local’ dissipation εr averaged over a region of size r . The scaling exponents
obtained in all of these models are in good agreement with the experimental and nu-
merical evidence, e.g. these models exhibit the same scaling properties (and some
other such as PDFs) as in real turbulence. It is noteworthy that many of these models
are based on qualitatively different premises/assumptions and with few exceptions
have no direct bearing on the Navier–Stokes equations. Therefore the success of
such models can hardly be evaluated on the basis of how well they agree with
experiments. Phenomenology and models only will hardly be useful and con-
vincing, since almost any dimensionally correct model, both right or wrong,
will lead to correct scaling without appealing to NSE and/or elaborate physics.
For example, there exist many theories which produce the k−5/3 energy spectrum
for qualitatively and/or physically different reasons. A recent example is a sugges-
tion that the spectrum of fully developed turbulence is determined by the equilib-
rium statistics of the Euler equations and that a full description of turbulence re-
quires only a perturbation, small in some appropriate metric, of a Gibbsian equilib-
rium (Chorin 1996). The most common justification for the preoccupation with such
models is that they (at least some of them) share the same basic symmetries, conser-
vation laws and some other general properties, etc. as the Navier–Stokes equations.
The general belief is that this—along with the diversity of such systems (there are
many having nothing to do with fluid dynamics, e.g. granular systems, financial
markets, brain activity)—is the reason for the above mentioned agreement. How-
ever, this is not really the case, e.g. in Kraichnan (1974) a counter example of a
‘dynamical equation is exhibited which has the same essential invariances, sym-
metries, dimensionality and equilibrium statistical ensembles as the Navier–Stokes
equations but which has radically different inertial-range behavior’! The major-
ity of models exhibit temporal chaos only. Therefore, such and most other models
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hardly can be associated with the intermittency of real fluid turbulence, which in-
volves essentially spatial chaos as well. Again, for the above reasons the agreement
between such models and experiments (both laboratory and numerical) cannot be
used for evaluation of the success of such models. There are proposals to use two
sets of independent exponents ζ

‖
p and ζ⊥

p (Chen et al. 2003) and there exist other
‘universality’ proposals involving ‘much more’ scaling exponents, see e.g. Biferale
and Procaccia (2005), Frisch (1995) and references therein.

Scaling laws alone are not necessarily theories. With all the attractiveness of
scaling, turbulence phenomena are infinitely richer than their manifestation in scal-
ing and related things. Most of these manifestations are beyond the reach of phe-
nomenology. Phenomenology is inherently unable to handle the structure of turbu-
lence in general, and phase and geometrical relations in particular, to say nothing
of dynamical features such as build up of odd moments, interaction of vorticity and
strain resulting in positive net strain and enstrophy production/predominant vortex
stretching. It seems that there is little promise for progress in understanding the ba-
sic physics of turbulence in going on dealing with scaling and related matters only,
without looking into the structure and, where possible, basic mechanisms which
are specific to turbulent flows. In fact, the main question of principle which should
have been asked long ago is: Why on earth should we perform so many elaborate
measurements of various scaling exponents without looking into the possible con-
comitant physics and/or without asking why and how more precise knowledge of
such exponents, even assuming their existence, can aid our understanding of tur-
bulent flows? This is not to say that one has to abandon the issues of scaling. An
example of affirmative answer is given in Sect. 7.1 concerning the ill-posedness of
the concept of inertial range.

Second, as discussed in the previous section the very existence of scaling expo-
nents in statistical sense (as, e.g. for various structure functions or corresponding
PDFs, etc.) which is taken for granted, is a problem by itself.

A similar question arises in respect with multifractality which was designed to
‘explain’ the ‘anomalous’ scaling, since there is no direct experimental evidence
on the multifractal structure of turbulent flows. So there is a possibility that multi-
fractality in turbulence is an artifact (see Frisch 1995, p. 190). Moreover, in reality
multifractality in fact is a kind of description of finite Reynolds number effect at
whatever large Re due to ill posedness of the inertial range as mentioned several
times above.

The PDFs of an intermittent variable are quite useful as, e.g. they carry the in-
formation showing that extremely small and extremely large values are much more
likely than for a Gaussian variable. However, they contain no information on the
structure of the underlying weak and strong events, nor on the structure of the back-
ground field. Hence, the same PDFs can have qualitatively different underlying
structure(s) of the flow, i.e. ‘how the flow looks’. Similar PDFs of some quanti-
ties can correspond to qualitatively different structure(s) and quantitatively different
values of Reynolds number, see references in Tsinober (1998a, 1998b, 2009). For
example, the qualitative difference in the behavior and properties of regions dom-
inated by strain and those with large enstrophy cannot be captured by such means
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and other conventional measures of intermittency. Also the PDFs, like scaling expo-
nents, do not allow us to infer much about the underlying dynamics. This, however,
is true of ‘conventional’ PDFs like those of velocity increments, but not of any PDFs
such as those directly associated with geometrical flow properties.

Note that the largest deviation from Gaussianity occurs at small scales. In this
sense, the field of velocity derivatives, ∂ui/∂xk , is more intermittent than the field
of velocity, ui , itself. One of the possible reasons for this is in the different nature
of nonlinearity at the level of velocity field, i.e. in the Navier–Stokes equations and,
for example, in the equation for vorticity.

9.1.4 On Possible Origins of Small Scale Intermittency

At the present state of matters the issue is pretty speculative, and an example of
‘ephemeral’ collection of such is given below.

As one of manifestations of turbulence structure(s), intermittency has its origins
in the structure of turbulence, see next section. Therefore we briefly address here the
issue on possible origins of intermittency. There are roughly two kinds of origins of
intermittency: kinematic and dynamic.

Before proceeding we reiterate again that non-Gaussianity and intermittency are
not synonymous just like the origins of non-Gaussian statistics in various systems
and genuine turbulence are generally quite different even qualitatively. Therefore,
it is misleading to ‘explain’ such properties of genuine turbulence by analogy with
non-Gaussian behavior of, e.g. Burgers and/or restricted Euler equations. An impor-
tant point is that these are integrable equations, and exhibit random behavior only
under random forcing and or initial conditions, otherwise their solutions are not
random and should be distinguished from problems involving genuine turbulence.
Navier–Stokes equations at sufficiently large Reynolds number have the property
of intrinsic mechanisms of becoming complex without any external aid including
strain and vorticity production. There is no guarantee that the outcome, e.g. such
as structure(s) is the same from, e.g. natural “self-randomization” and with random
forcing and even with different kinds of forcing. Moreover there is evidence that the
outcome is indeed different.

Direct and Bidirectional Interaction/Coupling Between Large and Small Scales
As discussed, direct and bidirectional interaction/coupling between large and

small scales is one of the elements of the nonlocality of turbulence. It is both of
kinematic and dynamic nature.

The first recognized manifestation of such interaction is that the small scales do
not forget the anisotropy of the large ones. There is a variety of mechanisms pro-
ducing and influencing the large scales: various external constraints like boundaries
with different boundary conditions, including the periodic ones, initial conditions,
forcing (as in DNS), mean shear/strain, centrifugal forces (rotation), buoyancy, mag-
netic field, external intermittency in partially turbulent flows, etc. Most of these
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factors usually act as organizing elements, favoring the formation of coherent struc-
tures of different kinds (quasi-two-dimensional, helical, hairpins, etc.). These, as a
rule, large scale features depend on the particularities of a given flow that are not
universal. Therefore the direct interaction between large and small scales leads to
‘contamination’ of small scales by the large ones, e.g. the edges of large scale struc-
tures are believed to be responsible for such ‘contamination’ in any kind of flow.
This contamination is unavoidable even in homogeneous and isotropic turbulence,
since there are many ways to produce such a flow, i.e. many ways to produce the
large scales. It is the difference in the mechanisms of large scale production which
‘contaminates’ the small scales. Hence, non-universality.

The direct and bidirectional interaction/coupling of large and small scales, i.e.
nonlocality, is a generic property of all turbulent flows and one of the main reasons
for small scale intermittency, non universality, and quite modest manifestations of
scaling. This dates back to the famous Landau remark stating that the important part
will be played by the manner of variation of ε over times of the order of the periods
of large eddies (of size �) (Landau and Lifshits 1944, see 1987, p. 140).

“Near” Singularities It is not known for sure whether Navier–Stokes equations
at large Reynolds numbers develop a genuine singularity in finite time, though there
no evidence in favor of this, so the term “near” singularities is just another term
for strong events not necessarily just dissipative. Nevertheless, it seems a reason-
able speculation that the ‘near’ singularities trigger topological change and large
dissipation events; their presence is felt at the dissipation scales and is perhaps the
source of small scale intermittency (Constantin 1996).

In any case, the ‘near’ singular objects may be among the origins of intermittency
of a dynamical nature.5 However, there is a problem with two-dimensional ‘turbu-
lence’. Namely, in this case everything is beautifully regular, but there is intermit-
tency in the sense of the above definitions, with the exception of scaling exponents
for velocity structure functions and corresponding quasi-Gaussian behavior. How-
ever, non-Gaussianity is strong at the level of velocity derivatives of a second order.
Hence the possible formation of singularities in 3D is not necessarily the underly-
ing reason for intermittency in 3D turbulence. Another example relates to modified
Navier–Stokes equations such as those using hyperviscosity replacing the Laplacian
by a higher order operator (−1)h+1∇2h with h > 1 with the underlying assumption
that this manipulation changes only the small scales. In this case too everything is
beautifully regular too for h > 5/4, i.e. the solution remains regular for all times
and any Reynolds number (Ladyzhenskaya 1975; Lions 1969) and some features of
turbulence are reproduced well (such k−5/3 spectrum) including intermittency, but
its structure(s) appear quite different from those as for true NSE.

Multiplicative Noise, Intermittency of Passive Objects in Random Media It
has been known for about thirty years that passive objects (scalars, vectors) exhibit

5We mean singularities which appear at random in space and time and not in a strictly periodic (and
fully coherent and mutually amplifying) fashion as in DNS with periodic boundary conditions.
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‘anomalous scaling’ behavior and other strong manifestations of intermittency even
in pure Gaussian random velocity field, see references in Tsinober (2009). These
are dynamically linear systems, but they are of the kind which involve the so-called
multiplicative ‘noise’, i.e. the coefficients in the equations that depend on the ve-
locity field. Therefore, statistically they are ‘nonlinear’, since the field of passive
objects is a nonlinear functional of the velocity field. Therefore, passive objects
exhibit strong deviations from Gaussianity. In such systems, intermittency results
either from external pumping (forcing term on RHS of the equations), or in systems
without external forcing from instability (self-excitation) of a passive object in a
random velocity field under certain conditions.

The velocity field does not ‘know’ about the passive objects. In this sense, prob-
lems involving passive objects are kinematic in respect with the velocity field in
real fluid turbulence. They may reflect the contribution of kinematic nature in real
turbulent flows. In view of the recent progress in this field it was claimed that in-
vestigation of the statistics of the passive scalar field advected by random flow is
interesting for the insight it offers into the origin of intermittency and anomalous
scaling of turbulent fluctuations (Pumir et al. 1997), for later references see Tsi-
nober (2009). More precisely it offers an insight into the origin of intermittency and
anomalous scaling of fluctuations in random media generally and independently of
the nature of the random motion (Zeldovich et al. 1990), i.e. it gives some insight
into the contributions of kinematic nature, but does not offer much regarding the
specific dynamical aspects of strong turbulence in fluids. Moreover, anomalous dif-
fusion and scaling of passive objects occurs in purely laminar flows in Eulerian
sense (E-laminar flows) as a result of Lagrangian chaos (L-turbulent flows), i.e. in-
termittency of passive objects may even have nothing to do with the random nature
of fluid motion in Eulerian setting.

Thus in real turbulent flows there are two contributions to the behavior of passive
objects, kinematic and dynamic. It seems hopeless to separate them in any sense.

Summarizing, intermittency specifically in genuine fluid turbulence is associated
mostly with some aspects of its spatiotemporal structure, especially the spatial one.
Hence, the close relation between the origin(s) and meaning of intermittency and
structure of turbulence. Just like there is no general agreement on the origin and
meaning of the former, there is no consensus regarding what are the origin(s) and
what turbulence structure(s) really mean. What is definite is that turbulent flows
have lots of structure(s). The term structure(s) is used here deliberately in order to
emphasize the duality (or even multiplicity) of the meaning of the underlying prob-
lem. The first is about how turbulence ‘looks’. The second implies the existence of
some entities. Objective treatment of both requires use of some statistical methods.
It is thought that these methods alone may be insufficient to cope with the problem,
but so far no satisfactory solution was found. One (but not the only) reason—as
mentioned—is that it is not so clear what one is looking for: the objects seem to be
still elusive. For example, there is still a non-negligible set of people in the commu-
nity that are in a great doubt that the concept of coherent structure is much different
from the Emperors’s new Clothes.



118 9 Intermittency and Structure(s) of and/in Turbulence

9.2 What Is(Are) Structure(s) of Turbulent Flows? What We See
Is Real. The Problem Is Interpretation

What we see is real. The problem is interpretation as there is even a problem of
defining of “seeing”.

The issue is pretty speculative, and an example of ‘ephemeral’ collection of such
is given below. We have to admit at this stage that structure(s) is(are) just an inherent
property of turbulence. Structureless turbulence is meaningless.

The difficulties of definition what the structure(s) of turbulence are of the same
nature as the question about what is turbulence itself. So before and in order to
‘see’ or ‘measure’ the structure(s) of turbulence one encounters the most diffi-
cult questions such as: what is (say, dynamically relevant) structure?, Structure of
what? Which quantities possess structure in turbulence? What is the relation be-
tween structure(s) and ‘scales’—unfortunately both ill defined? Can structure exist
in ‘structureless’ (artificial) pure random Gaussian fields? Which ones? All this—
like many other issues—are intimately related to the skill/art to ask the right and
correctly posed questions. These impossibly difficult questions are made not easier
due to quite a bit of turbulence in terminological aspects and terminological abuse
by use of a variety of ill defined terms (eddies, worms, sheets, tubes, pancakes, rib-
bons, vortex or vortical structures/filaments, vortons, ‘eigensolutions’, significant
shear layers, etc. Some people would include in this list also coherent structures fre-
quently used as synonyms of components of some decompositions or similar “ex-
ecutions” of the real flow field, which are usually followed by studies—sometimes
pretty sophisticated—of their interaction not necessarily reflecting any physics, at
least as concerns physical space. One of the popular games of this kind is looking for
confirmation of the classical energy cascade picture, such as in the latest examples
in Aluie (2012), Leung et al. (2012) and references therein.

The main starting point here is at the end of the previous section: just like there
is no general agreement on the origin and meaning of intermittency, there is no con-
sensus regarding what are the origin(s) and what turbulence structure(s) really mean.
What is definite is that turbulent flows have lots of structure(s). The term structure(s)
is used here deliberately in order to emphasize the duality (or even multiplicity) of
the meaning of the underlying problem. The first is about how turbulence ‘looks’.
The second implies the existence of some entities. This follows by more serious
issues which unfortunately are mostly even not properly posed.

The meaning of structure(s) depends largely on what is meant by turbulence it-
self, and especially structure(s) of the particular field one is looking. For example,
the velocity field may have no structure, but the passive tracer may well have a pretty
nontrivial one, simple laminar Eulerian velocity field (E-laminar) creates compli-
cated Lagrangian field (L-turbulent). Purely Gaussian, i.e. ‘structureless’ velocity
field creates structure in the field of passive objects. The structure(s) seen in the ve-
locity field depend on the motion of the observer. Finally, what is called “coherent
structures” or “organized motion”, which has been rediscovered many times, may
be not directly related to the turbulent nature of the flow (such as mixing layer), but
are rather a result of large scale instability of the flow as ‘whole’ (zooming out).
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9.2.1 On the Origins of Structure(s) of/in Turbulence

This question—in some sense—is a ‘philosophical’ one. But its importance is in di-
rect relation to even more important questions about the origin of turbulence itself.
Hence again an ‘ephemeral’ collection of such possible reasons/causes of struc-
ture(s) in turbulence flows keeping in mind that structure(s) is (are) just an inherent
property of turbulence. There is no turbulence without structure(s).

Instability As mentioned in Chap. 2, the most commonly accepted view on the
origin of turbulence is flow instability. An additional factor is that instability is con-
sidered as one of the origins of structure(s) in/of turbulence. However, this latter
view requires to assume that turbulence has a pretty long ‘memory’ of or, alterna-
tively, that the ‘purely’ turbulent flow regime, i.e. at large enough Reynolds num-
bers, has instability mechanisms similar to those existing in the process of transition
from laminar to turbulent flow state. The problem is that speaking about (in)stability
requires one to define the state of flow (in)stability of which is considered, which is
not a simple matter in the case of a turbulent flow.

Note the observation made by Goldshtik and Shtern (1981): The fact that the phe-
nomenon of intermittency and structures are observed in the proximity of the outer
boundary of turbulent flow or in close to the wall and in the small scale “tail” of
turbulent flow flows, i.e. when the characteristical Reynolds numbers are relatively
not large, prompts an assumption that “structureness” is associated with mecha-
nisms of turbulence origins. This may be an underlying reason of some similarity
between some flow patterns (“structures”) in transitional and developed turbulent
flows. This idea appeared in a number of subsequent publications, e.g. Blackwelder
(1983), Pullin et al. (2013) and references therein. It should be stressed that even if
the above hypothesis is true there in no escape from nonlocal effects!

Emergence Another less known view holds that structure(s) emerge in large
Reynolds number turbulence out of ‘purely random structureless’ background, e.g.
via the so-called inverse cascades or negative eddy viscosity. Among the spectacu-
lar examples, are the ‘geophysical vortices’ in the atmosphere, and ocean, as well as
astrophysical objects. Another example is the emergence of coherent entities, such
as vortex filaments/worms and other structure(s), out of an initially random Gaus-
sian velocity field via the NSE dynamics, for examples see references in Tsinober
(2009).

Anderson (1972) emphasizes the concept of ‘broken symmetry’, the ability of a
large collection of simple objects to abandon its own symmetry as well as the sym-
metries of the forces governing it and to exhibit the ‘emergent property’ of a new
symmetry. One of the difficulties in turbulence research is that no objects simple
enough have been found so far such that a collection of these objects would ade-
quately represent turbulent flows. It is not clear how meaningful is the very question
on the existence of such objects.
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It ‘Just Exists’, or Do Flows Become or Are They Are ‘Just’ Possessing Struc-
ture? To the flows observed in the long run after the influence of the initial condi-
tions has died down there correspond certain solutions of the Navier–Stokes equa-
tions. These solutions constitute a certain manifold M = M(μ) (or M = M(Re))
in phase space invariant under phase flow (Hopf 1948). Kolmogorov’s scenario was
based on the complexity of the dynamics along the attractor rather than its stability
(Arnold 1991), see also Keefe (1990a), Keefe et al. (1992).

This view is a reflection of one of the modern beliefs that the structure(s) of
turbulence—as we observe in physical space—is (are) the manifestation of the
generic structural properties of mathematical objects in phase space, which are
called attractors and which are invariant in some sense. In other words, here the
structure(s) are assumed to be ‘built in’ the turbulence independently of its origin,
hence the tendency to universality.6 It is noteworthy that the assumed attractor ex-
istence makes sense for statistically stationary turbulent flows. However, for flows
which are not such, e.g. decaying turbulent flows past a grid or a DNS simulated
flow in box the attractor is trivial. Nevertheless, these flows possess many properties
which are essentially the same as their statistically stationary counterparts provided
that their Reynolds numbers are not too small (Reλ ≥ 102).

The above refers to the dynamical aspects of real turbulent flows. We mention
again here also the

Emergence of Structures in Passive Objects in Random Media In which the
velocity field and the external forcing are prescribed. Whatever their nature—even
Gaussian—structure is emerging in the field of passive objects (Zeldovich et al.
1990; Ott 1999 and references therein).

9.2.2 How Does the Structure of Turbulence ‘Look’?

For long time the first and the only impression/answer to this question was obtained
by employing visualization techniques. First in experiments using mainly passive
markers and later using the DNS simulations looking mainly at objects bounded by
isosurfaces of some quantity, such as enstrophy, ω2.

The first important result was that even turbulence which is ‘homogeneous’ and
‘isotropic’ has structure(s), i.e. contains a variety of strongly localized events. The
primary evidence is related to spatial localization of subregions with large enstrophy,
i.e. intense vorticity, which are organized in long, thin tubes-filaments-worms. Some
evidence was obtained about regions with large strain, sij sij , i.e. dissipation, being
sheet-like objects with very sharp edges (razors/flakes), see references in Tsinober
(2009) for both.

6In the strange attractor theory, the experimental measurements are viewed as projections of these
attractors onto low dimension that correspond to these measurements.
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The relatively simple appearance of the observed ‘structures’ is due simple tech-
niques as looking at isosurfaces of some quantity, e.g. enstrophy ω2, with thresh-
olding using conditional sampling techniques. This is how the first evidence of con-
centrated vorticity/filaments/worms was obtained.

This prompted a rather popular view that turbulence structure(s) is (are) simple in
some sense and that essential aspects of turbulence structure and its dynamics may
be adequately represented by a random distribution of simple (weakly interacting)
objects.

In particular, it is commonly believed that most of the structure of turbulence is
associated with and is due to various strongly localized intense events/structures,
e.g. mostly regions of concentrated vorticity so that turbulent flow is dominated by
vortex tubes of small cross-section and bounded eccentricity (Chorin 1994, p. 95),
for other quotes and references see Tsinober (1998a, 2009), and that these events
are mainly responsible for the phenomenon of intermittency. It is demonstrated in
Tsinober (1998a, 2009) that such views are inadequate. It appears that—though
important—these structures are not the most dynamically important ones and are
the consequence of the dynamics of turbulence rather than its dominating factor.
Namely, regions other than those involving concentrated vorticity such as: (i) ‘struc-
tureless’ background, (ii) regions of strong vorticity/strain (self) interaction and
largest enstrophy and strain production dominated by large strain rather than large
enstrophy, and (iii) regions with negative enstrophy production are all dynamically
significant and in some important respects more significant than those with con-
centrated vorticity, strongly non-Gaussian, and possess structure. Due to the strong
nonlocality of turbulence in physical space all the regions are in continuous inter-
action and are strongly coupled. A similar statement can be made regarding the so
called streamwise vortices observed in many turbulent flow. Moreover, as described
in Chap. 7 the anomalous scaling is due to strong dissipative events, i.e. large strain
s2, so that the conventionally defined inertial range is an ill defined concept and
turning it out of existence.

To emphasize, the above conclusions are the outcome of the use of quantitative
manifestations of turbulence structure, which just like intermittency are in the first
place of statistical nature independently of how specifically the individual structures
look and whether they do exist at all.

Though the isosurfacing/thresholding approach is useful and ‘easy’, it is inher-
ently limited and reflects at best the simplest aspects of the problem. Even for char-
acterization of some aspects of the local (i.e. in a sense ‘point’-wise) structure of
the flow field in the frame following a fluid particle requires at least two parame-
ters.7 Therefore attempts to adequately characterize finite scale structure(s) by one
parameter only are unlikely to be successful. The one parameter approaches are not

7These are Q = 1/4(ω2 − 2s2) and R = −1/3(sij sjkski + 3/4ωiωj sij ). Here Q is the second—
and R is the third invariant of the velocity gradient tensor ∂ui/∂xj . The first is vanishing due to
incompressibility.

A similar problem arises when attempting to characterize structure(s) of turbulent flows using
two-point information but based on a single velocity component only, e.g. longitudinal structure
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made any better (but rather more misleading) by adding to thresholding and iso-
surfacing some decomposition, e.g. Leung et al. (2012) and references therein. One
can study some geometrical issues of the isosurfaces in the filtered fields and even
the “interaction” between such “structures” belonging to the fields corresponding to
different filter bands with the remaining acute problem as to how all this is related
to the whole flow field in the real physical space. More generally, the problem is
related to pattern recognition and requires defining a conditional sampling scheme
involving more than two parameters. This scheme is in turn based on what a par-
ticular investigator thinks are the most important physical processes, features, etc.
This in turn opens a Pandora box of possibilities and contains an inherent element
of subjectivity and arbitrariness, since the physics of turbulence is not well under-
stood. In this sense, the circle is closed: in order to objectively define and educe
some structure, one needs clear understanding of the physics of turbulence, which,
it is in turn believed, can be achieved via study of turbulence structure(s).

There are other serious problems in observations of individual structures obtained
via isosurfacing and thresholding or similar and alike.

First, the “boundaries” of flow regions isolated by such methods cannot be qual-
ified as “natural” in any sense and serve as a technical means only. One cannot take
such an approach for granted as reliable for getting the “natural” boundaries of these
structures and serving simultaneously as definitions of those “structures”. Both can
be qualified as wishful thinking at best. On the other hand, there exists a number of
attempts to define what is, e.g. a coherent structure, a vortex, etc., see references in
Malm et al. (2012) and also Monin (1991), Townsend (1987), Bonnet (1996) and
Holmes et al. (1996).

Second, these structures are just single time snapshots in space having no iden-
tity beyond the particular time moments of their (infinitesimal) life time, so that one
cannot observe their time evolution. The latter difficulty is nontrivial, because one
ventures to deal with finite objects. Namely, even having defined such a finite rel-
atively simple object at some time moment one is loosing it in a pretty short time
even if there is a possibility to follow this object as in case of purely Lagrangian
objects. This is illustrated in Fig. 9.2. It is for these reasons people produce statis-
tics out of collections of “similar objects” obtained from snapshots at the same and
different time moments via isosurfacing and thresholding and other tricks to justify
these “surgeries”, etc. But the painful question is how really “similar” are all these if
they are typically defined by one parameter only? It is almost obvious that such kind
of “statistical” processing is killing most of essential features of the real “structure”
and leaves the question of relevance, say the dynamical one, of these “structures” at
best open.

The above points to acute problems in defining instantaneous structures not to
mention studying them, though it is commonly assumed that there exist instanta-
neous “structures” which are in some sense “key” objects from some point of view

functions S
‖
n(r), since such an approach does not ‘know’ (almost) anything about the two other

velocity components.
Likewise there are many attempts to handle ‘structures’ even with just steamwise velocity com-

ponent time series.
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Fig. 9.2 Evolution of a tetrahedron with edge of ≈ 4η at t = 0 using the data base of Johns
Hopkins University (Li et al. 2008), for a 10244 space-time history of a direct numerical simulation
of isotropic turbulent flow in incompressible fluid in 3D. Courtesy Beat Luethi. It seen that a
simple Lagrangian tetrahedron, i.e. consisting of fluid particles, becomes not so simple after just
one Kolmogorov time scale τη and turns into a non-trivial object in time of few Kolmogorov time
scales

and that these unknown objects even govern the dynamics of the flow. Claims of
this kind are pretty frequent, but without much—if any—explanation/justification
or whatever.

As concerns the individual structure it was already mentioned that the regions
of concentrated vorticity are of limited dynamical relevance. First, these regions are
characterized by approximate balance between enstrophy production ωiωksik and
its viscous destruction in a way similar to that of Tennekes and Lumley balance,
see Tsinober (2009). Second, they belong to the category of flow patterns with pre-
dominant alignment of vorticity and the strain eigenvector λ2 corresponding to the
intermediate strain eigenvalue, �2. However, the major contribution to the enstro-
phy production comes from the regions with the ω,λ1 alignment (corresponding
to the largest strain eigenvalue, �1) and in which there is no approximate balance
between enstrophy production ωiωksik and its viscous destruction with strong dom-
inance of ωiωksik . Moreover, the regions with the ω,λ1 alignment comprise a large
part of those where the vorticity/strain interaction is strongest, see Chap. 7 above
and Chap. 6 in Tsinober (2009).

Recently there is some trend of reviving and ascribing some excessive importance
to thin shear layers (Hunt et al. 2010; Elsinga and Marusic 2010; Worth and Nick-
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els 2011; Ishihara et al. 2011 and references therein). However, they are not more
relevant than the “worms” as they belong to the same category with predominant
alignment of vorticity and the strain eigenvector corresponding to �2 the interme-
diate strain eigenvalue �2,8 whereas as mentioned the most dynamically active are
flow patterns with predominant ω,λ1 alignment, e.g. as concerns enstrophy produc-
tion and other essential nonlinear processes, see Chap. 7 above (Tsinober 2009 and
references therein).

A final note is that though the patterns with predominant alignment of vortic-
ity and the strain eigenvector corresponding to the intermediate strain eigenvalue,
�2 (worms, shear layers and more involved patterns) are statistically dominant they
are not the most dynamically relevant. In other words, statistical dominance is not
synonymous to dynamical relevance. The qualification of “shear layer” as (several
previous “key” objects, e.g. worms) belongs to the category of oversimplified con-
cepts and vague terminology—as mentioned more preferable are well defined strain
and vorticity. The oversimplification (thin layers!) is seen clearly from the above as
neglecting important issues of geometrical nature among others, e.g. the aspects of
alignments of vorticity and the eigenframe of the rate of strain tensor.

9.2.3 Structure Versus Statistics

The ‘not objective enough’ nature of a variety of conditional sampling procedures
resulted in a whole ‘zoo’ of ‘structures’ in different turbulent flows, which some
people believe to be significant in some sense, but many do not. The zoo seems
to have a tendency to grow at least exponentially with the introduction of multi-
scale approaches, but one cannot help reminding the question by Kadanoff (1986)
when the mulifractal “formalism” was just born: Where is the physics? Among the
reasons for such skepticism is some evidence that the attempts at adequate represen-
tation of such a complicated phenomenon like turbulence as a collection of simple
objects/structures only are unlikely to succeed. As mentioned, until recently it was
believed that concentrated vorticity/filaments is the dominating structure in turbu-
lent flows in the sense that most of the structure of turbulence is associated with and
is due to regions of concentrated vorticity. It appears that—though important—these
structures are not the most dynamically important ones and are the consequence of
the dynamics of turbulence rather than being its dominating factor. A similar state-
ment is true in respect of recently revived sheer layer.

Nevertheless, some ‘objectiveness’ can be achieved using quantities appearing in
the NSE and/or the equations which are exact consequences of NSE.

The question about what structure(s) of turbulence mean(s) can be answered via a
statement of impotence: speaking about ‘structure(s)’ in turbulence the implication

8Indeed, e.g. Ishihara et al. (2011) state on observations of thin shear layers consisting of a cluster
of strong vortex tubes with typical diameter of order 10η, where η is the Kolmogorov length scale.
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is that there exist something ‘structureless’, e.g. Gaussian random field as a repre-
sentative of full/complete disorder. Gaussian field is appropriate/natural to represent
the absence of structure in the statistical sense. Hence all non-Gaussian manifes-
tations of turbulent flows can be seen as some statistical signature of turbulence
structure(s). This does not imply that an exactly Gaussian field does not necessarily
possess any spatial or temporal structures, see, e.g. Fig. 3 in She et al. (1990)—any
individual realization of a Gaussian field does have structures. However, an exactly
Gaussian field does not possess dynamically relevant structure(s), it is dynamically
impotent.

So the next most difficult question is about the relevance/significance of some
particular aspect of non-Gaussianity for a specific problem in question. It seems
that here one enters the subjective realm: the criteria of significance (which is the
matter of physics!) are decided by the researchers. However, the following examples
show that objective choice of the structure sensitive statistics is dictated by general
dynamical aspects of the problem.

For instance, the build up of odd moments is an important specific manifesta-
tion of structure of turbulence along with being the manifestation of its nonlinearity.
The two most important examples are the third order velocity structure function
S3(r) = 〈{[u(x + r) − u(x)] · r/r}3〉 and the mean enstrophy production 〈ωiωksik〉.
The first one is associated with the −4/5 Kolmogorov law S3(r) = −4/5〈ε〉r (Kol-
mogorov 1941b), which is the first strong indication of the presence of structure in
the inertial range showing that both non-Gaussianity and the structure of turbulence
are directly related to it’s dissipative nature. It is remarkable that the title of this pa-
per by Kolmogorov is Dissipation of energy in the locally isotropic turbulence. The
−4/5 Kolmogorov law clearly overrules the claims that ‘Kolmogorov’s work on the
fine-scale properties ignores any structure which may be present in the flow’ (Frisch
1995, p. 182) and that it is associated with near-Gaussian statistics, see references in
Tsinober (2009) among multitude of others. As concerns the near Gaussian statis-
tics it is correct that single point statistics is known to be quite close to the Gaussian
one. However, the conclusion that velocity fluctuations are really almost Gaussian
is a misconception, not to mention the field of velocity derivatives. This is already
seen when one looks at two-point velocity statistics. For instance, in such a case the
odd moments are significantly different from zero, e.g. Frenkiel et al. (1979).

The essentially positive value of the mean enstrophy production 〈ωiωksik〉, dis-
covered by Taylor (1938a) is the first indication of the presence of structure in the
small scales, where turbulence is particularly strongly non-Gaussian and intermit-
tent. The above two examples show that both the essential turbulence dynamics and
its structure are associated with those aspects of it’s non-Gaussianity exhibited in
the build up of odd moments, which among other things means phase and geometri-
cal coherency, i.e. structure. Hence, the importance of odd moments as indicators of
intermittency. It is to be noted that the non-Gaussianity found experimentally both
in large and small scales is exhibited not only in the nonzero odd moments, but also
in strong deviations of even moments from their Gaussian values. Thus both the
large and small scales differ essentially from Gaussian indicating that both possess
structure.
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However, an important point is that probability criteria are insufficient, since
one can find in statistical data irrelevant structures with high probability (Lumley
1981). In other words the structure(s) should be relevant/significant in some sense.
For example, it should be dynamically relevant for velocity field, and related quan-
tities such as vorticity and strain. This does not mean that kinematical aspects of
turbulence structure(s) are of no importance. For example, anisotropy is a typical
kinematic statistical characteristic of turbulent flows of utmost dynamical signif-
icance/impact which hardly can be applied to individual structures, e.g. a turbu-
lent flow consisting mostly of ‘anisotropic’ individual structures can be statistically
isotropic. Among the first statistical treatments of turbulence structure is, of course,
the first paper by Kolmogorov (1941a), the very title of which is The local structure
of turbulence in incompressible viscous fluid for very large Reynolds numbers.

The advantage of such an approach is that it allows one to get insights into the
structure of turbulence without the necessity of knowing much (if anything) about
the actual appearance of it’s structures, since the very question of this kind may
well be just meaningless. This is especially important in view of numerous prob-
lems/ambiguities in definitions of individual structures in turbulent flows, their iden-
tification and statistical characterization as well as their incorporation in ‘theories’.
The main reason is that there exist an intrinsic problem of both defining what the rel-
evant structures are, see Bonnet (1996) for references and a review of existing tech-
niques which all are based on statistics anyhow, e.g. of defining extracting/educing
and characterizing the so-called coherent structures. For a number of reasons, it is
very difficult, if not impossible, to quantify the information on the instantaneous
structures of turbulent flows into dynamically relevant/significant form. The ob-
served individual structures strongly depend on the method observation/extracting,
but more importantly none of them are simple, neither are they weakly interacting
between themselves or with the background which in fact is not structureless as as-
sumed by many. Indeed, you can find structures, essentially arbitrary, which have
equal probability to the ones we have latched onto over the years: bursts, streaks,
etc. . . If structures are defined as those objects which can be extracted by condi-
tional sampling criteria, then they are everywhere one looks in turbulence (Keefe
1990b). For instance, looking at a snapshot of the enstrophy levels of a purely Gaus-
sian velocity field in She et al. (1990) one can see a number of filaments—the irrel-
evant ones—like those observed in real turbulent flows, i.e. pure Gaussian velocity
field has some structure(s) too.

9.2.4 What Kinds of Statistics Are Most Appropriate
to Characterize at Least Some Aspects for Turbulence
Structure

Returning to isosurfacing and thresholding it should be mentioned that these al-
low to handle regions (rather than “structures”) with some properties of interest, for
latest example see Malm et al. (2012). These authors used a measure of vorticity
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stretching related to the magnitude of the vortex stretching vector Wi ≡ ωisij , which
is exemplifying that the main criteria should be of dynamical relevance, and sensi-
tiveness to the non-Gaussian properties of turbulence, so that one can speak about
statistics weakly sensitive to structure and structure sensitive statistics.

Examples of Statistics Weakly Sensitive to Structure(s) The first examples of
this kind are energy spectra in which the phase (and geometric) information is lost.
Hence their weak sensitivity to the structure of turbulence. This insensitivity, in par-
ticular, is exhibited in the scaling exponents when/if such exist. For example, the
famous −5/3 exponent can be obtained for a great variety of qualitatively different
real systems—not necessarily fluid dynamical—and theoretical models, for a par-
tial list of references see Tsinober (2009). One can also construct a set of purely
Gaussian velocity fields, i.e. lacking any dynamically relevant structure(s), with any
desired length of the −5/3 ‘inertial’ range (Elliott and Majda 1995). An extreme
example is a single sharp change in velocity represented in Fourier space has an
energy spectrum ∝ k−6/3 which is not so easy to distinguish from k−5/3! Vice versa
the spectral slope can change, but the structure remains essentially the same ‘yet re-
taining all the phase information’ (Armi and Flament 1987). Moreover, not only ‘the
spectral slope alone is inadequate to differentiate between theories’, alone it does
not correspond to any particular structure(s) in turbulence or it’s absence: there is no
one-to-one relation between scaling exponents and structure(s) of turbulence. This
is true not only of exponents related to Fourier decomposition with its ambiguity
(Tennekes 1976), but of many other scaling exponents including those obtained in
some wavelet space, SO(3) decomposition and in the physical space—a much over-
stressed aspect of turbulent flows. Likewise, similar PDFs of some quantities can
correspond to qualitatively different structure(s) and quantitatively different values
of Reynolds number. The emphasis is on some quantities like pressure or some other
usually (but not necessarily) even order quantities in velocities or their derivatives,
since the PDFs of other appropriately chosen quantities are sensitive to structure
(see below).

As mentioned turbulence possess a number of quasi-Gaussian manifestations.
The corresponding statistics belongs to the weakly sensitive to structure(s).

Structure Sensitive Statistics It is noteworthy that—as shown by Hill (1997)—
the −4/5 Kolmogorov law is more sensitive to the anisotropy, i.e. the third-order
statistics (again odd moments), than the second-order statistics. Likewise the struc-
ture functions of higher odd orders S

‖
p(r) = 〈(�u‖)p〉 are essentially different from

zero, see references in Betchov (1976), Sreenivasan and Antonia (1997), Tsinober
(1998b).

Odd Moments and Related PDFs This is an example how structure sensitive
statistics can help in looking for the right reasons of measured spectra in the lower
mesoscale range (Lindborg 1999). The procedure involves using the third order
structure functions which are generally positive in the two dimensional case con-
trary to the three-dimensional case. Calculations based on wind data from airplane
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flights, reported in the MOZAIC data set. It is argued that the k−3-range is due to
two-dimensional turbulence and can be interpreted as an enstrophy inertial range,
while the k−5/3-range is probably not due to two-dimensional turbulence and should
not be interpreted as a two-dimensional energy inertial range. There is a competing
hypothesis that the large scale −5/3 range is the spectrum of weakly non-linear in-
ternal gravity waves with a forward energy cascade (Van Zandt 1982). A third claim
is that the spectral slope in the enstrophy range is more shallow than −3 and is close
to −7/3 (Tsinober 1995). This range and related anomalous diffusion is explained in
terms of the phenomenon of spontaneous breaking of statistical isotropy (rotational
and/or reflectional) symmetry—locally and/or globally.

Another example is the demonstration that the small scale structure of a homo-
geneous turbulent shear flow is essentially anisotropic at Reynolds number up to
Reλ ≈ 1000 (Shen and Warhaft 2000); see also Ferchichi and Tavoularis (2000). In
order to detect this anisotropy the authors measured the velocity structure functions
of third and higher odd orders of both longitudinal and transverse velocity compo-
nents and corresponding moments of velocity derivatives. In particular, they found
a skewness of order 1 of the derivative of the longitudinal velocity in the direction
of the mean gradient, which should be very small (or ideally vanish) for a locally
isotropic flow. Similar results were obtained in DNS, see references in Tsinober
(2009). We should recall that analogous ‘misbehavior’ of large Reynolds-number
turbulence regarding the skewness of temperature fluctuations in the atmospheric
boundary layer is known since late sixties (Stewart 1969; Gibson et al. 1970, 1977).

Odd moments such as strain and enstrophy production are obviously of primary
importance.

Geometrical Statistics This example shows how conditional sampling based on
geometrical statistics can help to get insight into the nature of various regions of
turbulent flow, e.g. those associated with strong/weak vorticity, strain, various align-
ments, and other aspects of dynamical importance. The first general aspect is the
qualitative difference in the behavior and properties of regions with large enstro-
phy from strain dominated regions, which is also one of the manifestations of inter-
mittency. Various alignments comprise important simple geometrical characteristics
and manifestation of the dynamics and structure of turbulence. For example, there
is a distinct qualitative difference between the PDFs of cos(ω,λi ) for a real tur-
bulent flow and a random Gaussian velocity field. In the last case, all these PDFs
are precisely flat. An example of special dynamical importance is the strict align-
ment between vorticity, ω, and the vortex stretching vector Wi ≡ ωj sij , since the
enstrophy production is just their scalar product, ωiωj sij = ω · W. In real turbu-
lent flows, the PDF of cos(ω,W) is strongly asymmetric whereas it is symmetric
for a random Gaussian field. It remains essentially positively skewed for any part
of the turbulent field, e.g. in the ‘weak background’ involving whatever definition
based on enstrophy, strain, both and/or any other relevant quantity. Thus, contrary
to common beliefs, the so called ‘background’ is not structureless, dynamically not
inactive and essentially non-Gaussian, just like the whole flow field or any part of
it. The structure of the apparently random ‘background’ seems to be rather com-
plicated. The previous qualitative observations (mostly from DNS) about the ‘little
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apparent structure in the low intensity component’ or the ‘bulk of the volume’ with
‘no particular visible structure’ should be interpreted as meaning that no simple
visible structure has been observed so far in the bulk of the volume in the flow. It
is a reflection of our inability to ‘see’ more intricate aspects of turbulence structure:
intricacy and ‘randomness’ are not synonyms for absence of structure.

Pressure Hessian Some quantities like pressure or other usually (but not nec-
essarily) even order quantities in velocity or their derivatives are less sensitive to
structure. The example below present an opposite case

Of special interest is the pressure Hessian Πij ≡ ∂2p
∂xi∂xj

. Among the general rea-
sons for such an interest is that the pressure Hessian is intimately related to the non-
locality of turbulence in physical space, see references in Tsinober (1998a, 1998b,
2009).

One of the quantities in the present context directly associated with the pressure
Hessian is the scalar invariant quantity ωiωjΠij . It is responsible for the nonlo-
cal effects in the rate of change of enstrophy production ωiωksik . What is special
about this quantity, which is of even order in velocity, is that for a Gaussian ve-
locity field 〈ωiωkΠij 〉G ≡ 0, whereas in a real flow it is essentially positive and
〈ωiωkΠij 〉 ∼ 1

3 〈W 2〉, where Wi ≡ ωksik is the vortex stretching vector. Thus inter-
action between the pressure Hessian and the vorticity is one of the essential features
of turbulence structure associated with its nonlocality. It is noteworthy that a sim-
ilar useful quantity involving strain is non-vanishing for a Gaussian velocity field,
〈sikskjΠij 〉G = − 1

20 〈ω2〉2
G.

On Passive Objects and Lagrangian Coherent Structures Above we discussed the
dynamical aspects of the problem. The issues of structure(s) in various ‘kinematic’
issues, like the transport of passive objects (scalars, vectors, etc.), in which Gaussian
or other prescribed velocity fields are used rather successfully, can be treated in a
similar way as the one described in this section.

As mentioned in Lagrangian setting the dissipative effects are more “influencing”
due to strong removal of sweeping effects. Hence stronger deviations from Gaussian
statistics in the Lagrangian setting as compared to the Eulerian one just because
“inbetween” there is a relation turning even a pure Gaussian velocity field in the
Eulerian setting into strongly non-Gaussian one. Hence the so called Lagrangian
coherent structures (LCS’s) even in pure laminar in the Eulerian setting and pure
Gaussian Eulerian velocity field. In this sense the LCS are purely kinematic objects
just like the structures in the passive objects evolving in a purely Gaussian velocity
field due to the non-linear and non-integrable relation between the Eulerian and
Lagrangian fields, for more see Tsinober (2009, p. 300) and Pouransari et al. (2010).

9.2.5 Structure(s) Versus Scales and Decompositions

It is natural to ask how meaningful is it to speak about different scales in the context
of ‘structure(s)’ and in what sense, especially when looking at the ‘instantaneous’
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structure(s) of/in turbulence. The known structures indeed possess quite different
scales. Vortex filaments/worms—have at least two essentially different scales, their
length can be of the order of the integral scale, whereas their cross-section is of
the order of Kolmogorov scale. Similarly, the ramp-cliff fronts in the passive scalar
fields have a thickness much smaller than the two other scales. This fact is consistent
with the observation by Batchelor and Townsend (1949), that the mean separation of
the visible activated regions is comparable with the integral scale of the turbulence,
i.e. with the size of the energy-containing eddies.

It is believed that appropriately chosen decompositions may represent struc-
ture(s) of turbulence, e.g. Holmes et al. (1996, 1997). Here again several notes are
in order. First, this position depends strongly on what is meant by structure(s). Sec-
ond, such a possibility is realistic when the flow is dominated by (usually large
scale) structures, when many, or practically any reasonable decompositions will do
anyhow. And third, structure(s) (and related issues such as geometry) emerging in
the ‘simplest’ case of turbulent flows, in a box with periodic boundary conditions,
is(are) are inaccessible via Fourier decomposition, the most natural one in this case.

One of the popular ‘decompositions’ is into ‘coherent structures’ and ran-
dom/dissipative ‘background’.9 This latter is generally considered as structureless
and as a kind of passive sink of energy. None is true: the background is not passive at
all, it is strongly coupled with the ‘coherent structures’, and possess lots of it ‘own’
structure(s).

There is no turbulence without structure(s). Every part (just as the whole) of the
turbulent field—including the so-called ‘structureless background’—possess struc-
ture. Structureless turbulence (or any of its part) contradicts both the experimental
evidence and the Navier–Stokes equations. The qualitative observations on the little
apparent structure in the low intensity component or the bulk of the volume with
no particular visible structure should be interpreted as indicating that no simple
visible structure has been observed so far in the bulk of the volume in the flow. It
is a reflection of our inability to ‘see’ more intricate aspects of turbulence structure:
intricacy and ‘randomness’ are not synonyms for absence of structure.

Another kind of decomposition is represented by a latest example attempting
to take into account the undeniable structure of the above mentioned “structure-
less background” by dividing the flow in two characteristic regions: the mentioned
above “thin shear layers” occupying a small part of the volume of and the quasi-
homogeneous rest (Hunt et al. 2010; Ishihara et al. 2011 and references therein).
The assumption of “thin” is necessary in order to employ a kind of RDT approach.
Another recent example is the mentioned above by Leung et al. (2012). Apart of

9An example of a typical statement is represented by the following: The emergence of collective
modes in the form of coherent structures in turbulence amidst the randomness is an intriguing
feature, somewhat reminiscent of the mix between the regular “islands” and the “chaotic sea” ob-
served in chaotic, low-dimensional dynamical systems. The coherent structures themselves approx-
imately form a deterministic, low-dimensional dynamical system. However, it seems impossible to
eliminate all but finite number degrees of freedom in a turbulent flow—the modes not included form
an essential, dissipative background, often referred as an eddy viscosity, that must be included in
the description (Newton and Aref 2003).
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problematic nature of such decompositions from the fundamental point, e.g. the
claims that the components of some decomposition represent physically meaning-
ful “structures”, there are many problems of conceptual and technical nature with
what is called ‘coherent structures’, “thin shear layers”, vortex structures, filaments
etc., starting from the very beginning of their definition (in fact non-existent or
at best vague) and ending with their role in fluid flows both in Eulerian and La-
grangian setting. It is for this reason that At this stage, this alternative approach (i.e.
the ‘structural’) has not led to a generally applicable quantitative model, neither—
for better or worse—has it a major impact on the statistical approaches. Conse-
quently the deterministic viewpoint is neither emphasized nor systematically pre-
sented (Pope 2000). This does not mean that there exists “generally applicable
quantitative model” based on statistical approaches. It looks that so far Liepmann
was correct (but a bit over-optimistic) in his prediction: Clearly, the exploration of
the concept of coherent structure is still on the rise. Turbulence is and will remain
the most difficult problem of fluid mechanics, and the past experience suggests that
the subsequent fall of interest in the coherent structures is more than likely. The re-
sulting net gain in understanding of turbulence may be less than our expectations
of today but will certainly be positive (Liepmann 1979). Unfortunately, (so far) the
resulting net gain in understanding of turbulence is far less than was expected in
1979 and on. Nevertheless, though essentially there is no acceptable definition of
“coherent structure” the boldest part of the community wonders about “quantifi-
cation” and even “the dynamical equations for coherent structures to predict their
evolution”, see e.g. Holmes et al. (1997). Apart of sensible definition of this finite
object one needs also a definition of the “incoherent components” not to mention the
tools to handle their interaction. On top of this there is a not just technical question
on coherent structures of what? It is the right place to remind that the objects termed
“coherent structures” as other terms just structures or alike are still elusive, and may
appear to be not much different from the Emperors’s new Clothes.

The reason for the above statement is as follows.
In dynamical systems, one looks for structure in the phase space (Shlesinger

2000; Zaslavsky 1999), since it is relatively ‘easy’ due to low dimensional nature
of the problems involved. In turbulence nothing is known about its properties in the
corresponding very high dimensional phase space.10 Therefore, it is common to look
for structure in the physical space with the hope that the structure(s) of turbulence—
as we observe it in physical space—is (are) the manifestation of the generic struc-
tural properties of mathematical objects in phase space, which are called attractors
and which are invariant in some sense. In other words, the structure(s) is (are) as-
sumed to be ‘built in’ in the turbulence independently of its (their) origin. The prob-
lem is that due to very high dimension and complex behavior of turbulent flows
and structure of the underlying attractors one may never be able to realistically de-
termine the fine-scale structure and dynamic details of attractors of even moderate
dimension. . . The theoretical tools that characterize attractors of moderate or large

10Hopf (1948) conjectured that the underlying attractor is finite dimensional due to presence of
viscosity.
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dimensions in terms of the modest amounts of information gleaned from trajectories
[i.e., particular solutions] . . . do not exist. . . they are more likely to be probabilistic
than geometric in nature (Guckenheimer 1986). Therefore, it is indeed unlikely
that one can succeed in hunting individual structures of finite dimensions using
low-dimensional tools not to mention isosurfacing based on one parameter since
evolution of finite objects is not low dimensional. The remaining question is what
does one see in reality named as “structure”, “coherent structure” and so on. This
question deserves far more serious attention beyond weakly founded speculations.

At present the dynamical systems community advocates an alternative approach
to turbulence, based on recently found simple invariant solutions and connecting
orbits in Navier–Stokes flows (Cvitanović and Gibson 2010; Kawahara et al. 2012).
This requires handling of ODEs systems with a large number degrees of freedom
for pretty moderate Reynolds numbers, typically larger 105 for Re ∼ 102, which
hardly can be qualified as low-dimensional. This means that even here one cannot
avoid statistics. However, though the system of these equations seems to be not far
easier to solve than the full time-dependent three-dimensional Navier–Stokes equa-
tions there is an important hope and even promise to “get into” what von Neumann
wrote about in 1949: nothing less than a thorough understanding of the [global be-
havior of the] system of all their solutions would seem to be adequate to elucidate
the phenomenon of turbulence. . . There is probably no such thing as a most favored
or most relevant, turbulent solution. Instead, the turbulent solutions represent an
ensemble of statistical properties, which they share, and which alone constitute the
essential and physically reproducible traits of turbulence. The results obtained so
far are significant for a theoretical description of transition to turbulence. However,
the claim that the same is true of “also fully turbulent flow” seems to be a bit pre-
mature even for low Reynolds numbers ≤ 103 as long as one talks about things
like “resembling the spatially coherent objects found in the near-wall region of true
turbulent flows”, having “the potential to represent coherent structures”, “simple in-
variant solutions could represent turbulence dynamics, whereas the simple solutions
themselves would represent coherent structures embedded in a turbulent state”, rem-
iniscence of things observed in DNS as “regeneration cycle in the buffer layer”, etc.
All this for low Reynolds numbers with considerably lower capability than DNS
of NSE. The bottom line is that one is tempted to ask the question by Cvitanović
and Gibson (2010) Should this be called ‘turbulence?’. Resemblance is far less than
necessary and definitely not sufficient.



Part IV
Epilogue

As mentioned at the very beginning there is far more to say about the difficulties
rather than achievements when it comes to the basic aspects of the problem. we
reiterate some main points with a bit different accents which are followed by some
remarks on what next.



Chapter 10
On the Status

Abstract As mentioned at the very beginning there is far more to say about the dif-
ficulties rather than achievements when it comes to the basic aspects of the problem.
All ideas/ theories, etc. proposed so far did fail falling into category of misconcep-
tions and/or ill defined concepts, see Chap. 9 in Tsinober (An informal conceptual
introduction to turbulence, 2009). We reiterate some main points with different more
general accents. These are followed by some remarks on what next.

• Cascade (versus decompositions), inertial range and its intermittency and ‘anoma-
lous scaling’, ‘hierarchical structure’ of turbulence and their numerous represen-
tations, rather than explanation, by things like breakdown coefficients/multipliers
(Novikov 1974, 1990a) or equivalently multi-fractals (Frisch 1995) and the so-
called ’hierarchical symmetry’ (She and Zhang 2009). The main problems are
due to misinterpretations of observations such as in the case of the famous by
Richardson poem 1922 among many subsequent and more general problems in
using experimental data; almost infinite belief in some hypotheses as in case of
existence of inertial range and, more generally, excessive belief in locality proper-
ties of turbulence; the view that turbulent flows are hierarchical, which underlies
the concept of the cascade, though convenient, is more a reflection of the un-
avoidable (due to the nonlinear nature of the problem) hierarchical structure of
models of turbulence and/or decompositions rather than reality; similarly view
that turbulence structure(s) is(are) simple in some sense and that turbulence can
be represented as a collection of simple objects only seems to be a nice illusion
which, unfortunately, has little to do with reality. It seems somewhat wishfully
naive to expect that such a complicated phenomenon like turbulence can merely
be described in terms of collections of only such ‘simple’ and weakly interacting
objects. We remind again that structure—whatever this means—can be very sim-
ple and complex in the same flow depending on the field of interest, see Fig. 1.3.
In particular, flow visualizations used for studying the structure of dynamical
fields (velocity, vorticity, etc.) of turbulent flows may be quite misleading, mak-
ing the question “what do we see?” extremely nontrivial. The commonly used
isosurfacing/thresholding cannot be expected to correspond to generic aspects of
turbulence structure(s) and objects in question many of which still await to be
found and properly defined. There is no turbulence without structure(s). Every
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part (just as the whole) of the turbulent field—including the so-called ‘structure-
less background’—possess structure. Structureless turbulence (or any of its part)
contradicts both the experimental evidence and the Navier–Stokes equations. The
qualitative observations on the little apparent structure in the low intensity com-
ponent or the bulk of the volume with no particular visible structure should be
interpreted as indicating that no simple visible structure has been observed so far
in the bulk of the volume in the flow. It is a reflection of our inability to ‘see’
more intricate aspects of turbulence structure: intricacy and ‘randomness’ are not
synonyms for absence of structure.

• Origins of vorticity amplification, prevalence of vortex stretching and high rate
of dissipation in turbulent motion (Taylor 1938a, 1938b). The main problems are
due a misconception that vorticity amplification, which is a dynamical process, is
due to the same mechanism as stretching of material lines, which is a kinematical
process as with other passive objects, see Chap. 9 in Tsinober (2009); misin-
terpretation of the prevalence of vortex stretching—the enhanced dissipation is
due to strain production and prevalence of compression in this process. It is the
strain production which plays the role of an engine producing the whole field
of velocity derivatives, both itself and the vorticity. It is of special importance
on paradigmatic level that it is the strain production which is responsible for the
finite overall dissipation at (presumably) any however large Reynolds numbers.
An important aspect is that the field of strain is efficient in the above two mis-
sions only with the aid of vorticity, i.e. only if the flow is rotational. There is a
conceptual and qualitative difference between the nonlinear interaction between
vorticity and strain, e.g. ωiωj sij and the self-amplification of the field of strain
i.e., sij sjkski , which is a specific feature of the dynamics of turbulence having no
counterpart (more precisely analogous—not more) in the behavior of passive and
also active objects. This process, i.e., sij sjkski is local in contrast to ωiωj sij , as
the field of vorticity and strain are related nonlocality.

• The problem of closure, eddy viscosity, low dimensional description, LES and
similar and even “the dynamical equations of coherent structures”. This is set
of problems comprising an everlasting dream to be able to, e.g. obtain the mean
properties and large scale properties of turbulence without solving directly the
NSE. So no wonder that most of the theoretical work on the dynamics of turbu-
lence has been devoted (and still is devoted) to ways of overcoming the difficulties
associated with the closure problem (Monin and Yaglom 1971, p. 9). These dif-
ficulties have not been overcome and it does not seem that this will happen in
the near future if at all. Moreover, not everybody in the community will agree to
qualify this work as really theoretical. Nevertheless the common and even mas-
sive practice is to employ some “parameterization”, e.g. representing the unre-
solved scales in climate models by imagining an ensemble of sub-grid processes
in approximate secular equilibrium with the resolved flow (Palmer 2005), see
also Palmer and Williams (2008). The use of such approaches—all being a kind
of low dimensional description—is successful and even adequate in the narrow
sense as a (semi) empirical tool. However, from the basic point of view the dream
about the low-D description seems to be ephemeral—there cannot be adequate
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low-D description of turbulence—this would be a major oversimplification of the
complex interaction of large/resolved and small/underresolved scales including
the direct and bi-directional, i.e. non-locality. This concerns also a set of issues
on the adequacy of quasi-two-dimensional approximations, e.g. models of large
scale atmospheric motions with poor (if any) understanding of their interaction
(direct and bidirectional) with the smaller scale three-dimensional turbulent flow.

Indeed, looking at the equations for the small/unresolved scales it is straightfor-
ward to realize that the small/unresolved scales depend on the large/resolved scales
via nonlinear space and history-dependent functionals, i.e. essentially non-local both
spatially and temporally. So it is unlikely—and there is accumulating evidence for
this—that relations between them (such as “energy flux”, but not only) would be ap-
proximately local in contradiction to K41a hypotheses and surprisingly numerous
attempts to support their validity.

Among the strong arguments for this is that the low-D description is killing an
important part of turbulence physics residing in the small scales and in particular
those associated with the dissipative and rotational properties of turbulence—the
two properties of distinct paradigmatic nature and importance. Looking for the right
reasons the unresolved scales cannot be represented by simple formulae relating
them to rest of the flow due to non local properties of turbulence among other rea-
sons. In other words, in the low-D approaches the rotational and dissipative prop-
erties do not seem to be considered as belonging to the essential dynamics due
to the very nature of low-D approaches: The basic question (which usually is not
asked) concerning statistical description is whether such complex behavior per-
mits a closed representation that is simple enough to be tractable and insightful
but powerful enough to be faithful to the essential dynamics (Kraichnan and Chen
1989). Thus from fundamental point of view a fluid flow which is adequately repre-
sented by a low-dimensional system is not turbulent—a kind of definition of ‘non-
turbulence’.

Two additional remarks.
The first concerns use of statistical methods and possible alternative. There is an

essential difference between the enforced necessity to employ statistical methods in
view absence of other methods and tools so far and the impossibility in principle
(Monin and Yaglom 1971), to study turbulence via other approaches. This is espe-
cially discouraging all attempts to get into more than just “en masse”. Also such a
standpoint means that there is not much to be expected as concerns the essence of
turbulence using statistical methods only. In reality other approaches are being used
in some special cases as described in the text. At present the dynamical systems
community advocates an alternative approach to turbulence. There is some hope
and possibly promise to “get into” what von Neumann wrote about in 1949 at least
at low Reynolds numbers.

A final remark here is about the ambiguity of turbulence language with imper-
fect/inadequate terminology which is characteristic of an underdeveloped branch
of science. This is related to ill defined concepts either, etc. The terminological
problem is divided roughly in two. One is about more or less specific like terms as
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“scales” and “structures” and also some buzzwords, the other concerns more general
terms as “relevant” and “significant”.

10.1 What Next

As concerns genuine theory it is hard to imagine clear optimistic expectations. In-
deed, along with absence of genuine theory there is no consensus on what is (are)
the problem(s) of turbulence and what would constitute its (their) solution; there is
no consensus on what are the main difficulties and why turbulence is so impossibly
difficult: almost every aspect of turbulence is controversial, which by itself is one
of the greatest difficulties. Neither is there agreement on what constitutes under-
standing which can be brought only by a genuine theory: just like no sophisticated
experiment (laboratory or DNS1) by itself does not bring understanding, neither
does modeling of whatever sophistication, see references and quotations in the Ap-
pendix. Judging by previous experience there is no basis for optimism as concerns
all known theoretical approaches definitely including statistical methods due to their
inherent limitations.

We remind that this is not to claim absence of theory(ies). On the contrary, there
are plenty, many with qualitatively different and even contradictory premises but
all agreeing well with some experimental data and even claiming rigor—people
attempting to find it are in danger of a non-trivial waste of time—but not necessarily
for the right reasons and not based on first principles with few exceptions having no
direct bearing on the Navier–Stokes equations.

There is a need for a genuine physical theory with some non-trivial understand-
ing of the physics taking into account the nonlocal properties of turbulence—no
theory based on some “locality”, “small parameters”, etc., has little chance to suc-
ceed if any. There seem to exist no small parameters, except of the genuinely small
parameter introduced by Saffman (1978), which he called information density, εI ,
and defined as the ratio, S/N , in the literature, with S = signal (understanding), and
N = noise (mountains of publications).

In view of the general theoretical failure, i.e. absence of theory based on first
principles a number of issues of special concern are about the relation(s) of what is
called theory today in turbulence research and observations/experiments. These in-
clude the use of the factual information as concerns fundamental aspects as it stands
now the experimental ‘confirmation’ of a ‘theory’ became meaningless. The above
concern includes also the issue of non-trivial resources (not just money) needed for
serious progress. Special care is needed as there is no theory to guide the observa-
tions.

1Progress in numerical calculation brings not only great good but also awkward questions about
the role of the human mind. . . The problem of formulating rules and extracting ideas from vast
masses of computational or experimental results remains a matter for our brains, our minds (Zel-
dovich 1979).

There are essential differences between physical and numerical experiments. If underresolved
the former still provide correct information which is a problem with the latter especially as concerns
numerical errors sometimes interpreted as genuine chaos.
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There exist a great variety of observations in a great variety of conditions. The
problem is that the theoretical community did not express much interest in most be-
cause almost if not all these observations did not match the requirements of a vari-
ety of idealized concepts and “simplifications” such as homogeneity and anisotropy
both local and global, scaling and other symmetries, universality, periodic BC’s,
very large Reynolds numbers, etc.

It is becoming clear that such a matching is impossible as the idealizations are
far more different than conditions corresponding to all observations. Thus the turbu-
lence community is in danger to stay divided forever between experimentalists who
observe what cannot be explained and theoreticians who try to explain what can not
be observed, and there will be more attempts to replace explanation with mere de-
scription. The existing theoretical “frame” of idealizations is too narrow mainly due
to problems associated with nonlocal effects. Insistence on such a “frame” results in
misinterpretation of experimental data and irrelevant models such as in the case of
“anomalous scaling” and intermittency in the inertial range—a nonexistent object.
In other words, due to nonlocal effects—quite a bit of manifestations—one cannot
generally assume that approximately homogeneous (isotropic) regions in a bounded
region in flows, which are otherwise non-homogeneous, have the same properties
as those globally homogeneous, though it is done this pretty frequently. This is also
true of local homogeneity and isotropy.

The issue of interpretation and validation refers not just to “theories”, which any-
way are not in existence, but in the first place to the factual information. The main
point here is that the right results should be interpreted and related to the right rea-
sons at least as concerns fundamental studies. The correspondence with experimen-
tal results may and mostly does occur for the wrong reasons, i.e. this correspondence
is at best a necessary condition. One of the problems is misinterpretation, which is
“aided” by the extremely complex nature of the problem. Another acute problem is
that most of the theories claim explanations of some specific aspects of observations
being in fact mere descriptions of these same particular observations.

An example of such a position is found in Monin and Yaglom (1971, p. 21):
. . . we have avoided introducing experimental results which have no theoretical ex-
planation and which do not serve as a basis for some definite theoretical deductions,
even if these data are in themselves very interesting or practically important. This is
because one of the principal incentives for writing this book was a desire to summa-
rize the development of the idea of a universal local structure in any turbulent flow
for sufficiently large Reynolds number. In other words, they looked for confirma-
tion of something very important as everybody does. Unfortunately, just like stated
by Liepmann (1979), digging a bit deeper into the observations evidence proved
that what Monin and Yaglom were seeking appeared as problematic as all previous
and subsequent ideas though far more popular. However, quoting Saffman (1978),
It must of course be kept in mind that the achievements or intrinsic value of a theory
is not decided by democratic means. The majority view in science is not necessar-
ily the right one. This stands is drastic contradiction with the modern ‘culture’ of
evaluation such as ‘ratings’ and similar bureaucratic ‘inventions’, which contributed
significantly to the alarming overabundance and continuing major over-production
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of publications. Another aspect is about the attitude of modelers: Whenever they fail
in their predictions, scientists tend to blame the poor accuracy of the observations,
the lack of computer power and the inadequate parametrization in their numerical
models, rather than their own lack of skill in computing the accuracy that can be
obtained with present resources (Tennekes 1993).

The bottom line is that a narrow mathematical, theoretical, observational, etc.
standpoint is outstandingly and especially harmful for basic research in turbulence.
The exception seems to be a physical standpoint understood in as broad sense as
one can imagine.

10.2 What to Do

The answer so far is to move along the von Neumann’s suggestion with the hope
to break the deadlock, but not only by extensive well planned computational ef-
forts. It became obvious that DNS is not as powerful as claimed for quite a while,
von Neumann was too optimistic especially as concerns large Reynolds numbers.
Physical experiments are badly needed especially at large Reynolds numbers as ad-
vised by Kolmogorov. Among the observations among the most important are those
associated with the rotational and dissipative nature of turbulence and its nonlocal
properties. Though there is no theory to guide the observations we are lucky to be in
possession of the NSE. It is true that there is little substantial theoretical use of NSE
in turbulence, since there is almost no way to use them explicitly in theoretical ap-
proaches, e.g. by solving them by ‘hand’. However, there are several ways to do this
implicitly, i.e. by indirect use of NSE and their consequences. For example, look-
ing at the NSE and their consequences such as those for vorticity strain, helicity and
some other themselves enables us to recognize the dynamically important quantities
and physical processes involved. In other words, NSE and their consequences tell us
at least in part what quantities and relations should be studied, see e.g. pp. 366–367
in Tsinober (2009) for the equations of evolution of enstrophy and strain produc-
tion revealing the invariant quantities ωiωjΠij and sikskjΠij . Another example is
the equation for the “energy” of strain s2 discussed in Chap. 7 above which by it-
self allowed to arrive to the unequivocal conclusion about the key role of the strain
production as concerns the issues of self-amplification of velocity derivatives rather
that the enstrophy production.

One of the problems is that any serious planning of experiments (numerical, labo-
ratory, field) cannot be undertaken without reasonable a priory basic understanding.
The lack of such comprises a real deadlock in turbulence research. So the success of
basic research depends strongly on scientific curiosity and those who are not afraid
of real adventure. In spite and because of the state of matters in the field it is very
much rewarding to dwell into this mysterious world and the hope is on intelligent,
clever and courageous young people.

An important question is what not to do. As the reader already realized from the
text the list is not short. In any case one has to be definitely extremely careful in
“validation” of theories, as the latter appear pretty fast out of existence, unless the
“new idea” looks enough trustworthy and attractive. Too little is still known about



10.2 What to Do 141

the properties of real turbulence. So as concerns basic issues it seems not justified
to put too much pretty futile efforts in it’s modeling which mostly is mimicking
it without much understanding. Hence the necessity to follow the advice of those
cited at the beginning of Part I. The observational aspect is not that trivial in such a
highly-dimensional system as turbulence if one does not stay with a hopeless choice
of one velocity component.

The future of basic research depends strongly on questions of paradigmatic na-
ture independently and as contrasted to pragmatic needs in applications. It is far
more difficult close to impossible to ask the right questions to promote the basic
research. However, this contrast is only short-term and as shows history of natural
sciences disappears in the long run. The contrast may extend for a long time in case
when “science” is pursued solely/mainly for the purposes of making better weapons
and neater gadgets and, of course, money. But in such a case it is destined to degen-
eration as science: There are no such things as applied sciences, only applications
of science (Louis Paster 1872, Address 11 Sept 1872, Comptes Rendus des Travaux
du Congress Viticole et Sericole de Lyon, 9–14 Septembre, 1882, p. 49).



Chapter 11
Appendix. Essential Quotations

Abstract Along with a relatively limited number of intext citations we bring a small
collection of citations in this Appendix, more is found in Tsinober (An informal
conceptual introduction to turbulence, 2009). In this reference one of the aims was
an extensive treatment of the dialog in the turbulence community with an emphasis
on problems of a conceptual nature.

Here we put more emphasis on the pretty early recognition in the community of
the fundamental difficulties as concerns the theoretical aspects of the problem and as
a consequence the absence of theory based on first principles and inadequate tools
to handle both the problem and the phenomenon of turbulence. This rather peculiar
state of matters exists along with a set of deterministic differential equations, the
Navier–Stokes equations probably containing all of turbulence, so that most of our
knowledge about turbulence comes from observations and experiments, laboratory,
field and later numerical, which is unfortunate as theory is supposed to guide and
gives meaning to observation.

Along with absence of genuine theory there is no consensus on what is (are) the
problem(s) of turbulence and what would constitute its (their) solution. Neither is
there agreement on what constitutes understanding which can be brought only by a
genuine theory.

This state of matters was understood long ago by many outstanding people, Kol-
mogorov, von Neumann, Wiener and many other as quoted below. Related issues
concern the multitude of “approaches” and the continuing diversity of opinions on
what is important, what are the main questions and similar.

11.1 To Preface

11.1.1 On Absence of Genuine Theory

• My overall impression of the Symposium is that no really new and important
ideas have been presented. . . I think we must admit that little new theory has been
put before us. Batchelor 1959 Some reflections on the theoretical problems raised
at the Symposium, Proceedings of a Symposium on Atmospheric diffusion and air
pollution, editors F.N. Frenkiel and P.A. Sheppard, Advances in Geophysics, 6, 449–
452.
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• Formal mathematical investigations have produced remarkably little value. . .
A number of general procedures for calculation of various dynamical aspects of
homogeneous turbulence have been devised, but none of them impresses me as be-
ing likely either to advance our understanding of turbulence or to achieve results
on which we can place reliance. . . The universal similarity theory of the small-
scale components of the motion stands out in this rather grey picture as a valuable
contribution. Batchelor G.K. 1962 The dynamics of homogeneous turbulence: in-
troductory remarks, In A. Favre, editor, Mécanique de la Turbulence, Colloques
Interntionaux du CNRS, No. 108, Marseille, 28 aôut–2 septembre 1961, p. 96.

• Turbulence was probably invented by the Devil on the seventh day of Creation
when the Good Lord wasn’t looking. P. Bradshaw 1994 Experiments in Fluids, 16,
203.

• Turbulence is the last great unsolved problem of classical physics. Remarks of
this sort have been variously attributed to Sommerfeld, Einstein, and Feynman, al-
though no one seems to know precise references, and searches of some likely sources
have been unproductive. Of course, the allegation is a matter of fact, not much in
need of support by a quotation from a distinguished author. However, it would be
interesting to know when the matter was first recognized. P.J. Holmes, G. Berkooz
and J.L. Lumley 1996 Turbulence, coherent structures, dynamical systems and sym-
metry, Cambridge University Press.

• As a doctorate I proposed to Heisenberg no theme from Spectroscopy but the
difficult problem of Turbulence, in the hope, that WENN IRGENDEINER (if any-
body), would solve this problem. However, the problem is until now not solved.
A. Sommerfeld 1942, Scientia, Nov./Dez. 1942.

• I soon understood that there was little hope of developing a pure, closed the-
ory, and because of absence of such a theory the investigation must be based on
hypotheses obtained on processing experimental data, Kolmogorov A.N. 1985, in
notes preceding the papers on turbulence in the first volume of his selected papers;
English translation, Selected works of A.N. Kolmogorov, I, ed. Tikhomirov, p. 487,
Kluwer.

• . . . the essential mathematical complications of the subject were only disclosed
by actual experience with the physical counterparts of these equations. . . The entire
experience with the subject indicates that the purely analytical approach is beset
with difficulties, which at this moment are still prohibitive. The reason for this is
probably as was indicated above: That our intuitive relationship to the subject is
still to loose—not having succeeded at anything like deep mathematical penetration
in any part of the subject, we are still quite disoriented as to the relevant factors,
and as to the proper analytical machinery to be used. Under these conditions there
might be some hope to “break the deadlock” by extensive, but well planned compu-
tational efforts. J. von Neumann 1949 Recent theories of turbulence—A report to
Office of Naval Research. Collected works, 6 (1963), pp. 468–469, ed. Taub., A.H.,
Pergamon. Note the ‘bias’ of a mathematician/theoretician: equations first, but cf.
the statement by Kolmogorov 1985.

• It remains to call attention to the chief outstanding difficulty (i.e. turbulence)
of our subject. H. Lamb 1927 Hydrodynamics, p. 651.
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• I am an old man now, and when I die and go to Heaven there are two matters
on which I hope for enlightenment. One is quantum electrodynamics and the other
is the turbulent motion of fluids. And about the former I am rather optimistic. Sir
Horace Lamb as quoted by S. Goldstein 1969Goldstein (1969), ARFM, 1, 23.

• Turbulence is the graveyard of theories, H.W. Liepmann, 1997 A brief history
of boundary layer structure research, in Self-sustaining mechanisms of wall turbu-
lence, editor R.L. Panton, p. 4, Comp. Mech. Publ.

• It is much easier to present nice rational linear analysis than it is to wade into
the morass that is our understanding of turbulence dynamics. With the analysis,
professor and students feel more comfortable; even the reputation of turbulence
may be improved, since the students will find it not as bad as they had expected. A
discussion of turbulence dynamics would create only anxiety and a perception that
the field is put together out of folklore and arm waving Lumley, J.L. 1987 Review
of ‘Turbulence and random processes in fluid mechanics’ by M.T. Landahl and E.
Mollo-Christensen, J. Fluid Mech., 183, 566–567.

Even after 100 years turbulence studies are still in their infancy. We do have a
crude practical working understanding of many turbulence phenomena but certainly
nothing approaching comprehensive theory and nothing that will provide predic-
tions of an accuracy demanded by designers. Lumley, J.L. and Yaglom, A.M. 2001
A century of turbulence, Flow, Turbulence and Combustion, 66, 241–286.

• It is at this point that the study of turbulence does prove to be an exception: the
applied physics involvement is almost completely absent. In view of the extraordi-
nary practical importance of turbulence. . . , this is quite astonishing. Yet the reason
for such apparent neglect is easily found. Quite simply the fundamental problems of
turbulence are still unresolved. D. McComb 1990 The physics of turbulence, Oxford
Univ. Press, p. vii.

• While the experimental techniques that have been invaluable in understanding
phase transitions promise to be very useful in the study of hydrodynamic phenom-
ena, I suspect that the recent addition to our theoretical arsenal may be less effective
than many had hoped Martin, P.C. 1976 The onset of turbulence: A review of recent
developments in theory and experiment, in: L.Pál and P. Szépfalusy, editors, Statis-
tical physics: Proceedings of the International Conference, Budapest, 5–29 August,
1975, pp. 69–96. Amsterdam: North-Holland.

• . . . a fundamental theoretical understanding is still lacking. M. Nelkin, 1994
Universality and scaling in fully developed turbulence, Adv. Phys., 43, 143.

• The existence of an asymptotic statistical state is strongly suggested experi-
mentally, in the sense that reproducible statistical results are obtained. However,
physical plausibility aside, it is embarrassing that such an important feature of tur-
bulence as its statistical stability should remain mathematically unresolved, but such
is the nature of the subject. Orszag, S.A. 1977, Lectures on the statistical theory of
turbulence, in: R. Balian and J.-L. Peube, editors, Fluid Dynamics, pp. 235–374,
Gordon and Breach.

• we should not altogether neglect the possibility that there is no such thing
as ‘turbulence’. That is to say, it is not meaningful to talk of the properties of a
turbulent flow independently of the physical situation in which it arises. In searching
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for a theory of turbulence, perhaps we are looking for a chimera, P.G. Saffman 1978
Problems and progress in the theory of turbulence, Lect Notes in Phys., 76 (II), 276.

• One of the things that I always found troubling in the study of the problem
of turbulence is that I am not quite sure what the theoretical turbulence problem
actually is. . . One reason I think we have so much difficulty in solving it, is that
we are not really sure what it is. . . I just cannot think of anything where a genuine
prediction for the dynamics of turbulent flow has been confirmed by an experiment.
So we have a big vast empty field. P.G. Saffman 1991 in The Global Geometry of
Turbulence, NATO ASI Ser. B 268, ed. J. Jimenez, pp. 348, 349, Plenum.

• In contrast to this experimental cornucopia, theory can offer only a few crumbs.
Siggia, E. 1994 High Rayleigh number convection, Ann. Rev. Fluid Mech., 26, 137–
168.

• In spite of a huge number of papers and a large amount of research on turbu-
lence, it remains an unsolved problem left for future generations. Sinai, Ya.G. 1999
Mathematical problems of turbulence, Physica, A263, 565–566.

• . . . the absence of a sound theory is one of the most disturbing aspects of the
turbulence syndrome. R.W. Stewart, 1969, Turbulence Nat. Committee for Fluid
Motion Films, dist. Encyclopedia Britannica Educational Corp.

• Sometimes experiments provide us with so beautiful and clear results that it is
a shame on theorists that they cannot interpret them, Yudovich, 2003.

• It has been realized since the beginning that the problem of turbulence is a
statistical problem; that is a problem in which we study instead of the motion of a
given system, the distribution of motions in a family of systems. . . It has not, how-
ever, been adequately realized just what has to be assumed in a statistical theory of
turbulence, Wiener, N. 1938 Homogeneous chaos, American Journal of Mathemat-
ics, 60, 897–936.

11.2 To Chap. 1

11.2.1 On Multitude of “Approaches”; for More See Also Chaps. 3
and 9 in Tsinober (2009)

• Kolmogorov’s ideas on the experimentalist’s difficulties in distinguishing be-
tween quasi-periodic systems with many basic frequencies and genuinely chaotic
systems have not yet been formalized. Arnold 1991.

• From the point of view of theoretical physics, turbulence is a classical field
theory, out of equilibrium and in a strong coupling regime, Announcement by Chi-
nese Academy of Sciences of a programme New Directions in Turbulence, held at
Bejing, Mar 12 to Apr 20, 2012.

• An example from the mathematical community by Foias et al. 2001: The word
turbulence has different meanings to different people,which indicates that turbu-
lence is a complex and multifaceted phenomenon. For mathematicians, outstanding
problems revolve around the Navier–Stokes equations (such as wellposedness and



11.2 To Chap. 1 147

low-viscosity behavior,especially in the presence of walls or singular vortices). For
physicists, major questions include ergodicity and statistical behavior as related
to statistical mechanics of turbulence. Engineers would like responses to questions
simple to articulate but amazingly difficult to answer: What are the heat transfer
properties of a turbulent flow? What are the forces applied by a fluid to its boundary
(be it a pipe or an airfoil)? To others pursuing the dynamical system approach, of
interest is the large time behavior of the flow. Another ambitious question for engi-
neers is the control of turbulence (to either reduce or enhance it), which is already
within reach. Finally, a major goal in turbulence research—of interest to all and
toward which progress is constantly made—is trustworthy and reliable computation
of turbulent flows.

• In the present-day statistical fluid mechanics, it is always implied that the fluid
mechanical fields of a turbulent flow are random fields in the sense used in proba-
bility theory. Monin and Yaglom, 1971, pp. 3–4, 7.

• It is natural to assume that in a turbulent flow. . . the. . . fluid dynamic variables,
will be random fields (Monin and Yaglom 1971, p. 214).

• From the very beginning it was clear that the theory of random functions of
many variables (random fields), whose development only started at that time, must
be the underlying mathematical technique. A.N. Kolmogorov, 1985 in notes pre-
ceding the papers on turbulence in the first volume of his selected papers, English
translation, Tikhomirov, 1991, p. 487.

• A list of interest is from the engineering community by Lumley (1990): Turbu-
lence is rent by factionalism. Traditional approaches in the field are under attack,
and one hears intemperate statements against long time averaging, Reynolds de-
composition and so forth. Some of these are reminiscent of the Einstein–Heisenberg
controversy over quantum mechanics, and smack of a mistrust of any statistical ap-
proach. Coherent structure people sound like The Emperors’s new Clothes when
they say that all turbulent flows consist primarily of coherent structures, in the face
of visual evidence to the contrary. Dynamical systems theory people are sure that
turbulence is chaos. Simulators have convinced many that we will be able to com-
pute anything within a decade. . . The card-carrying physicists dismiss everything
that has been done on turbulence from Osborne Reynolds until the last decade. Cel-
lular Automata were hailed on their appearance as the answer to a maidens prayer,
so far as turbulence was concerned. Lumley 1990, as quoted by Cantwell, B.J. 1990
Future directions in turbulence research and the role of organized motion, in J.L.
Lumley (ed)., Whither turbulence?, pp. 97–131, Springer.

• I think that the k-space decomposition does actually obscure the physics. Mof-
fatt, H.K. 1990 in: J.L. Lumley, editor, Whither turbulence? Turbulence at the cross-
roads, Springer, Berlin, p. 296.

• . . . one may never be able to realistically determine the fine-scale structure and
dynamical details of attractors of even moderate dimension. The theoretical tools
that characterize attractors of moderate or large dimensions in terms of the modest
amounts of information gleaned from trajectories [i.e. particular solutions]. . . do not
exist. . . they are more likely to be probabilistic than geometric in nature. Gucken-
heimer, J. 1986 Strange attractors in fluids: another view, Ann. Rev. Fluid. Mech.,
18, 15–31.
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11.3 To Epilogue

11.3.1 On the Continuing Diversity of Opinions on What Is
Important, What Are the Main Questions and Related

• . . . it is amazing how many different, nearly orthogonal, points of view there
are about a phenomenon which is governed by Newton’s innocent-looking, linear
second law of motion, with a little help or hindrance from viscosity. Bradshaw 2003
Review of “Turbulent Flow: Analysis, Measurement and Prediction” by P.S. Bernard
& J.M. Wallace. Wiley, 2002, J. Fluid Mech., 478, 344–345.

• A principal objective of any theory of fluid motion is the prediction of the spread
of matter or “tracer” within the fluid, Bennet, A. 2006 Lagrangian fluid dynamics,
CUP.

• The main ambition of the modern theory of turbulence is to explain the phys-
ical mechanisms of intermittency and anomalous scaling in different physical sys-
tems, and to understand what is really universal in the inertial-interval statistics.
Falkovich, G., Gawedzki, K., and Vegassola, M. 2001 Particles and fields in fluid
turbulence, Rev. Mod. Phys., 73, 913–975.

• If we assume as a basic starting point in every theory of turbulence its repre-
sentation in terms of spectral coefficients, statistical or physical averages, or more
generally simple objects conditionally extracted by a weak background, turbulence
modeling could be defined reductively, as the art of writing the equations that pro-
duce directly such quantities. Germano, M. (1999) Basic issues of turbulence mod-
eling, in: A. Gyr, W. Kinzelbach and A. Tsinober, editors, Fundamental Problematic
Issues in Turbulence, 213–219, Birkhäuser.

• The separation of scales is a central problem in turbulence. Germano 2012
The simplest decomposition of a turbulent field, Physica D 241, 284–287.

• A property of turbulent motion is that the boundary conditions do not suffice to
determine the detailed flow field but only average or mean properties. For example,
pipe flow or the flow behind a grid in a wind tunnel at large Reynolds number is such
that it is impossible to determine from the equations of motion the detailed flow at
any instant. The true aim of turbulence theory is to predict the mean properties
and their dependence on the boundary conditions. Saffman P.G., 1968 Lectures
on homogeneous turbulence, in: N.J. Zabusky, editor, Topics in nonlinear physics,
pp. 485–614, Springer.

• An early goal of the statistical theory of turbulence was to obtain a finite,
closed set of equations for average quantities, including the mean velocity arid the
energy spectrum. That goal is now viewed to be unrealistic. The goal nowadays is to
reduce to a manageable number the many degrees of freedom necessary to describe
the flow, to determine the equations governing the dynamics of the reduced degrees
of freedom, and to solve those equations analytically or numerically to calculate
fundamental quantities that characterize the flow. Thus a theory may treat all or
only some of the degrees of freedom statistically. Frisch, U. and Orszag, S.A. 1990
Turbulence: challenges for theory and experiment, Phys. Today, 43, 24–32.
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• Herein lies the central obstacle of the entire theory of turbulence known as
the closure problem, Jovanović, J. 2004 The statistical dynamics of turbulence,
Springer.

When coupled to the basic conservation laws of fluid flow, such treatment, how-
ever, leads to an unclosed system of equations: a consequence reasoned, in the
scientific community, the closure problem. This is the central and still unresolved
issue of turbulence which emphasizes its chief peculiarity: our inability to do re-
liable predictions even on the global flow behavior. The equations of motion for
this covariance contain third order moments of the velocity field, the equations of
motion for the third-order moments contain fourth-order moments, and so forth, ad
infinitum. A central goal of turbulence theory is the closing of this infinite chain of
coupled equations into a determinate set containing only moments below some finite
order. Kraichnan 1957 The structure of isotropic turbulence at very high Reynolds
numbers, J. Fluid Mech., 5, 497–543.

• The central problem of turbulence is to find the analog of the Gibbs distribution
for the energy cascade. The mathematical formulation of this problem is amazingly
simple. In the inertial range we can neglect the viscosity and forcing and study the
Eulerian dynamics of an ideal incompressible fluid. Migdal, A.A. 1995 Turbulence
as Statistics of Vortex Cells, in Mineev, V.P., editor, The first Landau Institute Sum-
mer School, 1993, Gordon and Breach, pp. 178–204.

• Following is a set of questions distributed by John Lumley at the meeting Tur-
bulence at the Crossroads Whither Turbulence? Held at Conell University, Ithaca,
NY, March 22–24, 1989.

1. What are the advantages and disadvantages of long-time averaging (Reynolds
averaging)? Is this a technique that is intellectually bankrupt, that systematically
excludes certain information, that has mislead us over the years, or is it still viable
if used judiciously?

2. Where do we stand on statistical approaches generally? Is it a problem that
mean quantities seldom occur, or that the things being described statistically have
considerable spatial structure? How do we feel about statistical approaches close
to critical values of parameters, when the flow is relatively ordered?

3. What is our position on coherent structures? Do most turbulent flows con-
sist of more- or -less organized structures, or is there a large range of organiza-
tion/disorganization in flows with different etiology? How can we use this informa-
tion?

4. What role do we feel Dynamical Systems Theory can play in turbulence in
open flow systems? What is the evidence for strange attractors in fluid turbulence?
Are there Reynolds/Rayleigh/Richardson number limitations on the utility of these
approaches?

5. Where do we stand on large eddy simulation and exact simulation vis a vis
computer development? Is it only a matter of a couple of decades until we will be
able to calculate everything, and hence we can soon abandon all modeling and
experiment, or are some things still going to be out of reach? Which things?

6. How do we feel about modeling? Granted that .there has been a lot of bad
modeling done, there are more fundamental issues: Is it necessary? Is it potentially
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capable of real predictive value? What are the limitations of current approaches, if
any? (E.g.—is the fact that it is based on Reynolds averaging a fatal flaw? Will it
always be necessary to have zonal models?) Is it essential to include, I or example,
coherent structures explicitly in modeling?

7. What role can we expect cellular automata to play in the future of turbulence?
The accuracy and cost relative to finite difference schemes appear to be respectively
low and high, but are there loopholes? Are current schemes Galilean invariant, and
does it matter? Is there a niche where this approach can be useful?

8. The physics community appears to feel that most work on turbulence until
the recent past was essentially engineering, and did not shed light on the heart of
the problem. Many research managers in Washington seem to feel that, if this work
was engineering, it was not responsive to program needs; only new and different
approaches seem to attract support now. Are these perceptions of past accomplish-
ments accurate, or are they a mix of specialty chauvinism, a failure to appreciate
the difficulty of the turbulence problem, and the natural desire of a manager to make
changes that will bear fruit during his tour of duty?

• The wake behind the cylinder exhibits a flow field which is chaotic in both
space and time, but whose averages and statistical properties are stable. It is these
averages and statistical properties that we want to understand. Nelkin 1989. What
Do We Know about Self-Similarity in Fluid Turbulence, J. Stat. Phys., 54, 1–15.

• We are not interested in details of the mechanism of energy input at small
wave numbers (are they not important??). This problem has been nicely solved by
Edwards Nelkin, M. 1974 Turbulence, critical fluctuations, and intermittency Phys.
Rev., A9, 388–395.

• What are the measures describing turbulence? The question arises because
invariance under time evolution (the Hopf equation) is not enough to specify a
unique probability measure which would describe turbulence. One knows indeed
that strange attractors typically carry uncountably many disjoint invariant proba-
bility measures. The ones one wants probably satisfy stability under small stochastic
perturbations. This is a powerful restriction, but hard to exploit, Ruelle, D. 1984
Conceptual Problems of Weak and Strong Turbulence, Phys. Rep., 103, 81–85.

• However, it might well be possible to get a very good approximation to the
average velocity curve with much less work than that required to take and average
all the measurements. Even more importantly, a successful approximation method
would almost certainly illuminate the physics of turbulent flow. These are the hopes
on which turbulence closure theory rests. Salmon, R. 1998 Lectures on geophysical
fluid dynamics, Oxford University Press.

• Do the Navier–Stokes equations on a 3-dimensional domain � have a unique
smooth solution for all time?. . . The solution of this problem might well be a fun-
damental step toward the very big problem of understanding turbulence. Smale, S.,
1998 Mathematical problems for the next century, The Mathematical Intelligencer,
20, 7–15.
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Foiaş C, Manley O, Rosa R, Temam R (2001) Navier–Stokes equations and turbulence. Cambridge

University Press, Cambridge
Frenkiel FN, Klebanoff PS, Huang TT (1979) Grid turbulence in air and water. Phys Fluids

22:1606–1617
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