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In the present decade, the world has witnessed many great earthquakes like
Bhujj in India in 2001, Iran in 2003, the Asian Tsunami in Indonesia in 2004
and Pakistan in 2005 resulting in the death of thousands of people and
significant property damage. Housing and safety are basic human needs.
Structures adequately designed for usual loads need not necessarily be safe
for earthquake forces. In the case of design to withstand earthquake loading,
it is not practical and economically viable to design the structures to remain
within elastic limits. Cracking of concrete and yielding of steel which would
be considered unacceptable for usual types of loading are depended on to
dissipate the seismic energy without collapse during ground shaking that
may take place infrequently.

Earthquake engineering is a relatively new subject. A dynamic approach,
taking into account the flexibility of the structure and an inelastic response
with ductility, is universally accepted as the appropriate method of analysis
for earthquakes. In view of the earthquake risk in various countries, it is of
paramount importance that civil engineering students are taught the basic
principles of analysis of structures pertaining to earthquakes. As technology
in this area continues to advance, practical dynamic analysis, both linear and
nonlinear, of extremely complicated systems are becoming more commonplace.
Therefore, it is imperative that engineers familiarize themselves with these
modern numerical solution techniques and implementation on digital
computers.

The objectives of this book are to provide engineers and students with an
understanding of the dynamic response of structures to earthquakes and of
the common analysis techniques employed to evaluate these responses. Even
though the book emphasizes numerical solution techniques, a comprehensive
treatment of the classical analytical methods is also included. The first 15
chapters of the book deal with dynamic analysis and the next six chapters are
devoted to the response of the structure due to earthquake excitation. Moreover,
the solution techniques demonstrated throughout the text are versatile and
not limited to one application but are appropriate for many other applications
in civil, mechanical and aerospace engineering. The topics single- and multiple-
degrees-of-freedom systems, continuous systems, linear and nonlinear dynamic
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response, finite element method, differential quadrature and differential
transformation methods are applicable to earthquake engineering and are
discussed in 21 chapters. Even though there are many general purpose packages
available to calculate the response of structures to earthquakes to the user,
they are like a black box. For understanding the basic principles, a suite of
computer programs in MATHEMATICA and MATLAB are given and they
may be employed for problem solving. Depending on a student’s level of
sophistication, they may write their own program.

This book may not only be used as a textbook but also as a reference book
for practising engineers. The contents of the book are the result of teaching
courses viz: structural dynamics and aseismic design of structures to the
graduate students at PSG College of Technology.

The author thanks Mr G. Rangaswamy, Managing Trustee, Dr R.
Rudramoorthy, Principal and Dr J. V. Ramasamy, Head of the Department of
Civil Engineering of PSG College of Technology for providing the necessary
facilities to write this book. He is indebted to the colleagues and also to the
present and past graduate students. The author also thanks the anonymous
reviewer who reviewed the manuscript and offered valuable suggestions. It
is but natural that some errors might have crept in the text of such volume.
The author would appreciate it if such errors are brought to his notice.
Suggestions for improvements of the book are also welcome. The author is
indebted to the authors of all books listed in the references and further
reading lists and numerous authors of journal papers on the subject. The
author also wishes to thank the Bureau of Indian Standards for granting
permission to quote from the Indian Code IS 1893 (Part 1): 2002. The author
would like to thank Woodhead Publishing Limited, who helped to shepherd
the project to completion and mold the final product.
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1
Introduction to dynamics

Abstract: The effects of vibration are discussed. Different types of dynamic
loads that are encountered in nature are listed. The differences between static
and dynamic problem are illustrated. Modelling of structures subjected to
dynamic loads is discussed.

Key words: periodic motion, stochastic, natural frequency, finite element
method, resonance.

1.1 Introduction

This text is concerned with the analysis of structures subjected to dynamic
loads. Dynamics in this context means time varying. Both application of
load and removal of load necessarily vary with time. Hence, the internal
stresses and the resulting deflections are also time dependent or dynamic in
nature.

In the real world, no loads that are applied to a structure are truly static.
All bodies possessing mass and elasticity are capable of vibration. Thus
most engineering machines and structures experience vibration to some degree
and their design generally requires consideration of oscillatory behaviour.

The effects of vibration are very common in our daily life. We live on the
beating of our hearts. Planetary motion is also another example of vibration.
These motions are called periodic motions (periodic motion is a motion that
repeats itself regularly after a certain interval of time). This interval of time
is known as the period of the system or motion. In general, vibration has
both good and bad effects. In civil engineering, the good effect of vibration
is harnessed by the compaction of fresh concrete. The bad effects of vibrations
on a structure are those produced by natural forces such as wind gusts, and
earthquakes and by mechanical forces on a bridge.

Oscillatory systems can be broadly characterized as linear or nonlinear. In
general, for linear systems, the principle of superposition is valid, and the
mathematical techniques available are well developed. Techniques for the
analysis of nonlinear systems are less well known and difficult to apply,
since changes in stiffness and damping characteristics occur during nonlinear
inelastic response.

In general, vibration can be classified as free vibration and forced vibration.
Free vibration takes place when a system oscillates under the actions of
forces inherent in the system itself and external forces are absent. The system
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Structural dynamics of earthquake engineering2

under free vibration will vibrate at one or more of its natural frequencies,
which are properties of the dynamics system.

Vibration that takes place under the excitation of external forces is called
forced vibration. If the frequency of excitation coincides with one of the
natural frequencies of the system, a condition of resonance occurs, resulting
in large oscillations in structures, which ultimately results in the failure of
the structure.

1.2 Different types of dynamic loads

Dynamic loads may be classified as ‘deterministic’ and ‘non-deterministic’.
If the magnitude, point of application of the load and the variation of the load
with respect to time are known, the loading is said to be deterministic and the
analysis of a system to such loads is defined as deterministic analysis. On the
other hand, if the variation of load with respect to time is not known, the
loading is referred to as random or stochastic loading and the corresponding
analysis is termed as non-deterministic analysis.

Dynamic loads may also be classified as periodic and non-periodic loadings.
When a loading repeats itself at equal time intervals then it is called periodic
loading. A single form of periodic loading is either a sine or cosine function
as shown in Fig. 1.1a. A vibration induced due to rotating mass is a periodic
motion. This type of periodic loading is called simple harmonic motion as
shown in Fig. 1.1a. The type of loading shown in Fig. 1.1b is a periodic
loading but non-harmonic. Later on we will see that most periodic loads can
be represented by summing sufficient number of harmonic terms in a Fourier
series. Any loading which does not come under the category of periodic
loading is termed as non-periodic. Blast loading shown in Fig. 1.1c and
earthquake ground motion as shown in Fig. 1.1d are the examples of non-
periodic loads.

1.3 Difference between dynamic and static

problems

In two aspects, a dynamic problem is different from a static problem. The
first and most obvious difference is the time-varying load and the response
is also time varying. This needs analysis over a specific interval of time.
Hence dynamic analysis is complex and computationally extensive and
expensive compared with static analysis. The other difference between dynamic
and static problems is the major occurrence of inertia forces when the loading
is dynamically applied. Consider a water tank as shown in Fig. 1.2a subjected
to load F at the top. The resulting deflection, shear force and bending moment
can be calculated on the basis of static structural analysis principles. On the
other hand, if the time-varying load F(t) is applied at the top, the structure is
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1.1 Different types of dynamic loads: (a) simple harmonic; (b) non-
harmonic (periodic); (c) non-periodic (short duration); (d) non-
periodic (long duration).
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set to motion or vibration and experiences accelerations. According to Newton’s
second law, inertia force is proportional to acceleration. Inertia forces are
proportional to the mass and they develop in the structure that resists these
accelerations. Depending on the contribution made by inertia force to shear
and bending moment will determine whether dynamic analysis is warranted.

1.4 Methodology

A physical problem based on certain assumptions is idealized into a mechanical
model by correctly defining in terms of geometry, kinematics and loading
and boundary conditions. The governing differential equations are solved to
obtain the dynamic response and the results are interpreted in a meaningful
manner. For complex structures, it may be necessary to refine the analysis by
considering a more detailed mechanical model. In a mechanical model, infinite
degrees of freedom are converted to finite degrees of freedom, and for each
degree of freedom, exhibiting the structure, there exists a natural frequency
at which the structure vibrates in a particular mode of vibration. A mechanical
model can also be categorized as either continuous or discrete. Consider a
chimney as shown in Fig. 1.3a. In a real structure, the structure manifests
distributed mass and stiffness characteristics along the height. The continuous
model is shown in Fig. 1.3b. Hence the mathematical continuous model
incorporates distributed mass and distributed stiffness to arrive at the response
of the system. The displacement v is a function of space and time. On the
other hand, we can place the whole mass at the top of the chimney as shown
Fig. 1.3c and can consider single-degree-of-freedom (SDOF) in which entire
mass m of the structure is localized (lumped) at the top of the structure has
constant stiffness k. The independent displacement V(t) is a function of time
alone. The lumped mass representation shown in Fig. 1.3d is a three-degrees-

F F(t)

(a) (b)

1.2 Water tank subjected to static and dynamic loads: (a) static load;
(b) dynamic load.
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Introduction to dynamics 5

of-freedom system in which each localized mass m1, m2, m3 has its own
displacements V1(t), V2(t), V3(t) respectively. Practical dynamic analysis of
large complicated multiple-degrees-of-freedom (MDOF) is generally
accomplished by computer-implemented numerical analysis techniques such
as the finite element method.

1.5 Types of vibration

Vibration can occur in a structure by imposing initial conditions, which
generally manifest themselves as energy input. If the initial input is imparting
velocity to the system, kinetic energy is produced. If the displacement is
imparted to the system, potential energy is produced. If the structural vibration
occurs in the absence of external loads, it is termed free vibration. Free
vibration usually occurs at the fundamental natural frequency. Owing to
damping present in the system, the free vibration eventually dampens out. If
the vibration takes place under the excitation of external force, it is called
forced vibration. If the source of vibration is periodic, the resulting vibration
may constitute both steady state and transient. Steady state response transpires
at the frequency of excitation. The transient response is due to the initial
energy stored in the structure. A transient response may also occur if the
structure is subjected to blast loads.

X

V (x, t)

V (t)
V 3(t)

V 2(t )

V 1(t )

(a) (b) (c) (d)

1.3 Different mechanical models of a chimney: (a) physical
representation; (b) continuum method; (c) SDOF discrete method;
(d) 3-DOF discrete method.
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2
Free vibration of single-degree-of-freedom

systems (undamped) in relation to
structural dynamics during earthquakes

Abstract: In this chapter, the governing equations of motion are formulated
for free vibration of single-degree-of-freedom (SDOF) (undamped) system.
Vibration characteristics are studied by taking an example of a simple
pendulum. Free vibration of rigid bodies without damping is also discussed.

Key words: frequency, amplitude, phase angle, harmonic motion, Newton’s
law, Rayleigh method.

2.1 Introduction

The study of vibration deals with oscillatory motion of a machine or a
structure about an equilibrium position when it is subjected to shock or an
oscillating force. The oscillations may be repeated uniformly, or change with
time. Vibration in machines and structures is quite common and undesirable.
In most cases its undesirable effects may be classified with respect to human
characteristics and damage to engineering structures. An extreme example is
a slender skyscraper whose wind-induced oscillations are entirely safe for
the structure, yet unpleasant to the occupants of the upper floors. At the other
extreme, certain vibrations in aeroplanes may be unnoticeable to the passengers,
yet cause damage (fatigue) with catastrophic consequences.

The simultaneous occurrence of unpleasant and structurally damaging
vibrations such as those in cars and trucks is the most common. Some vibrations
are desirable, viz. beating of the heart, planets revolving around the sun and
the consolidation of concrete by using vibrators. Damage to the structure
occurs through earthquake loadings by forming cracks due to undesirable
vibrations. Hence, in such cases, vibrations must be reduced to the minimum
or should be eliminated. For elimination or reduction and to produce controlled
vibrations, where necessary, a study of basic vibration theory is essential.

2.2 Formulation of the equation of motion

The governing equation of motion can be formulated using

• simple harmonic motion theory;
• Newton’s second law;
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• Energy method;
• Raleigh method;
• D’Alembert’s principle.

2.3 Simple harmonic theory

A special kind of motion occurs when the force on the body is proportional
to the displacement of the body from equilibrium as shown in Fig. 2.1. If this
force acts towards the equilibrium position of the body, a repetitive back and
forth motion about this position occurs. Such a motion is an example of
periodic or oscillatory motion. F is proportional to (–x).

F  ∝ –x 2.1

∴ = − d
d

2
m x

t
kx2 2.2

where k is a constant.
Or

d
d

     0
2

2
x

t
k
m

x+ = 2.3

Assume

ω ωn n
k
m

k
m

2 = =or 2.4

D D in n
2 2 0+ = = ±ω ω; 2.5

or

x B e B ei t in n
t= + −

1 2
ω ω 2.6

= +C t D tn n cos  sin ω ω 2.7

x A tn= + sin ( )ω φ 2.8

where ωn is known as natural frequency. The particle moving along x-axis is
said to exhibit simple harmonic motion if it satisfies Eq. 2.8, where A, ωn and
φ are constants of the motion. In order to give a physical meaning to these
constants, the graph in Fig. 2.2 shows x as a function of time t.

X

F = ma

2.1 Motion of the particle when force is proportional to the
displacement.

�� �� �� �� �� ��
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The constant A is called amplitude of the motion, which is the maximum
displacement of the particle in either a positive or negative x-direction. The
constant angle φ is called the phase constant (or phase angle) acting along
with the amplitude A which can be determined uniquely by the initial
displacement and initial velocity of the particle.

Note: The function x is periodic and repeats itself when ωnt increases by
2π rad.

The period T of the motion is the time it takes for the particle to complete
one full cycle, i.e.

A sin (ωnt + φ) = A sin [ωn(t + T) + φ] 2.9

or

ωnt = 2π 2.10a

T
n

= 2π
ω 2.10b

The inverse of the period is called frequency (f) of the motion. It represents
the number of oscillations that a particle makes per unit time.

f
T

n= =1
2
ω

π 2.11

The unit of frequency (f) is cycles/s or hertz (Hz). The angular frequency
is:

ω π π
n f

T
= =2 2 2.12

The unit is rad/s. The displacement–time relationship is written as:

x = A sin (ωnt + φ) 2.13a

Differentiating displacement with respect to time, we get

v x
t

tn n= = +d
d

  cos ( )ω ω φA 2.13b

φ
ωn

X T

t

A

2.2 Displacement–time relation.
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a x
t

t xn n= = − + = −d
d

  sin ( )
2

2
2 2ω ω φ ωA 2.13c

From Eq. 2.13, we get the maximum displacement, velocity and acceleration
as:

xmax = A 2.14a

vmax = ωnA 2.14b

a nmax = ω 2 A 2.14c

Figure 2.3 shows displacement vs. time, velocity vs. time and acceleration
vs. time curves. The curves shown in Fig. 2.3 indicate that the phase difference
between the velocity and displacement is π/2 radians or 90°, i.e. when x is
maximum or minimum, the velocity is zero. Likewise, when x is zero the

X T

t

A

0

(a)

V

t
0

Vmax = ωnA

a

0

amax
    ωn A2

t

(b)

(c)

2.3 Displacement, velocity and acceleration time relation.
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velocity is maximum. Furthermore, the phase of the acceleration is out of
phase by π radians or 180° with displacement, i.e. when x is maximum,
acceleration is maximum in the opposite direction.

Equation 2.3 is a second order differential equation and therefore two
initial conditions are required to solve the equation. Let x x v vt t= == =0 0 0 0;  
be the initial conditions. Substituting t = 0 in Eq. 2.13,

x0 = A sin φ 2.15a

v0 = + ωn A cos φ 2.15b

a n0
2= −ω φ A sin 2.15c

From Eq. 2.15a and 2.15b, we get

sin φ = x0

A
2.16a

cos φ ω= v

n

0

A
2.16b

or A = + 



x

v

n
0
2 0

2

ω 2.16c

tan φ ω= 



n

x
v

0

0
2.16d

Thus we see that φ and A can be calculated if x vn0 0,  and ω are known.
The following important properties are to be noted if a particle is moving

in simple harmonic motion.

• The displacement, velocity and acceleration shown in Fig. 2.3 vary
sinusoidally with time but are not in phase.

• The acceleration of the particle is proportional to the displacement but in
the opposite direction.

• The frequency and period of motion are independent of amplitude.

In this book, we use force unit of newton, length unit of metres and mass unit
of kilogram.

Example 2.1
A body oscillates with a simple harmonic motion along the x-axis. Its
displacement varies with time according to x = 8 cos (πt + π/4), where t is in
seconds and the angle is in radians.

(a) Determine the amplitude, frequency and period of motion.
(b) Calculate the velocity and acceleration of the body at any time t.
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(c) Using the results of (b), determine the position, velocity and acceleration
of the body at t = 1 second.

(d) Determine the maximum speed and acceleration.
(e) Find the displacement of the body between t = 0 to t = 1 second.

Solution
  x = 8 cos (πt + π/4)

  x = 8 sin (πt + 3π/4)

 A = 8; ωn = π rad/s

f n= =ω
π2

1
2

Hz

∴ = =T
f
1 2 seconds

v = –8π sin (πt + π/4); a = 8π2 cos (π t + π /4)

At t = 1

x = 8 cos (π + π/4) = 8 cos (5π/4) = –5.66 m

v = –8π sin (5π/4) = 17.78 m/s2

a = –8π2 cos (π + π/4) = 55.8 m/s2

vmax = 8π m/s, amax = 8π 2 m/s2

At t = 0

x0 = 8 cos (0 + π/4) = 5.66 m

At t = 1 s

x = –2.83 × 2 = –5.66 m

Hence displacement from t = 0 to t = 1 second is

∆x = x – x0 = –5.66 – 5.66 = –11.32 m

Since the particle’s velocity changes sign during the first second, the magnitude
of ∆x is not the same as the distance travelled in the first second.

2.4 Newton’s second law

2.4.1 Spring–mass system

Consider a physical system consisting of mass attached to the end of a spring
as shown in Fig. 2.4 where it is free to move. Due to the self-weight of the
mass, the spring elongates by x0 and this position is called the equilibrium
position. Considering the free body diagram
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kxg = mg 2.17

Assume that the spring oscillates back and forth when it is disturbed from
equilibrium position. From Newton’s second law,

ma = mg – k (x + xg) 2.18

or

ma + kx = 0 since kxg = mg 2.19

or m x
t

kxd
d

0
2

2 + = 2.20

d
d

0
2

2
x

t
k
m

x+ = 2.21

which is the same equation as obtained in Eq. 2.3
We see that the solution must be that of simple harmonic motion. Wherever

the force acting on a particle is linearly proportional to the displacement and
acts in the opposite direction, the particle is said to be in simple harmonic
motion.

x(t) = A sin (ωnt + φ) 2.22

v t
x t

t
tn n( )

d ( )
d

  cos ( )= = +ω ω φA 2.23

a t tn n( )   sin ( )= − +ω ω φ2 A 2.24a

In Eq. 2.18, self-weight is cancelled with kxg and usually it is not considered
during the analysis. Since period T = 2π/ωn and frequency is inversely
proportional to period, we can express the period and frequency of the system
as

T m
k

f
T

k
m

= = = =2 2 1 1
2

π
ω π π;  2.24b

E
q

u
ili

b
ri

u
m

p
o

si
ti

o
n

k
kxg

m
(Xg) mg

mg mg

x

xg

mg F = ma

k(x + xg)

F = ma

2.4 Spring–mass system.
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From Fig. 2.5

x tn= +A sin ( )ω φ 2.25

where A x
v

n
= + 



0

2 0
2

ω 2.26a

tan φ ω= n
x
v

0

0
2.26b

Case I
Suppose if the mass is pulled to a distance x0 and released without any
velocity, i.e. v0 = 0

A x x= + =0
2

00 2.27a

tan ;φ ω φ π= = ∞ =n
x0

0 2
2.27b

x x tn= +



0 2

 sin ω π
2.28a

∴ =x x tn0  cos ( )ω 2.28b

where

ω n k m= / 2.28c

v x t a x tn n n n= − = −ω ω ω ω0
2

0 sin ;   cos 2.29

The displacement, velocity and acceleration time curves are shown in Fig.
2.6.

m

Motion of paper

2.5 Simple harmonic motion.
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Case II

Suppose if the mass is given an initial velocity v0 in the downward direction
from the equilibrium position so that at t = 0, v = v0 and x0 = 0 at t = 0, we
get

A x
v v

n n
= + 



 =0

2 0
2

0

ω ω 2.30a

and tan ;φ ω φ= = =n v
0 0 0
0

2.30b

∴ =x
v

t
n

n
0

ω ωsin 2.30c

v v t a v tn n n= = −0 0 cos ;  sin ω ω ω 2.31

Example 2.2
A car of mass 1300kg is constructed using a frame supported by four springs.
Each spring has a force constant 20 000 N/m. If the combined mass of two

x

v

a

T/2

a = –    ωn A2  cos ωnt A = x0

3T/2

(c)

(b)

(a)

T/2

T

T

3T/2

t

t

t

xt=0 = x0
x = A cos ωnt

vt=0 = 0
v = –ωn A sin ωnt

3T/2

TT/2

2.6 Displacement, velocity and acceleration time curves.
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people in a car is 160 kg, find the frequency of vibration when it is driven
over a pothole on the road. Also determine the period of execution of two
complete vibrations.

Solution
From angular frequency,

ω n
k
m

= = × = × =20 000 4
1460

3.70 2 7.40 rad/s

∴ = = =f nω
π π2

7.4
2

1.18Hz

Period of vibration T = 1/f = 0.847 seconds.
Time for one complete vibration = 0.847 seconds.
∴ Time taken for two complete vibrations = 1.694 seconds.

Example 2.3
A mass of 400 g shown in Fig. 2.7 is connected to a light spring whose force
constant is 5 kN/m. It is free to oscillate on a horizontal frictionless track. If
the mass is displaced 10 cm from equilibrium and released from rest, find (a)
period of motion, (b) maximum speed of the mass, (c) maximum acceleration
of the mass, and (d) equations for displacement, speed and acceleration as
function of time.

Solution

ω n
k
m

= = × =5 1000
400

3.53rad/s

(a) Period of motion

T = 2π/ωn = 2π/3.53 = 1.779 s

(b) Maximum speed of mass

vmax = ωn A = 3.53 × 10/100 = 0.353m/s

(c) Maximum acceleration of mass

a Anmax (3.53) 10/100 1.246= = × =ω 2 2 m/s2

m

x0   t = 0
 A = x0
v0 = 0
 x = A cos ωnt

2.7 Mass–spring system.
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(d) Equations as a function of time

x A t tn= = cos 0.1 cos 3.53ω

v = –ωnA sin ωnt = –3.53 × 0.1 sin (3.53t) = – 0.353 sin (3.53t)

a A t tn= − = −ω ω2  cos 1.246 cos 3.53n

2.5 Simple pendulum

The simple pendulum is another mechanical system that moves in an oscillatory
motion. It consists of a point mass ‘m’ suspended by means of light inextensible
string of length L from a fixed support as shown in Fig. 2.8. The motion
occurs in a vertical plane and is driven by a gravitational force. The forces
which are acting on the mass are shown in the figure. The tangential component
of the gravitational force, mg sin θ, always acts towards the mean position
θ = 0 opposite to the displacement, restoring force acting tangent to the arc.

F mg m s
tt = − =sin d

d

2

2θ 2.32a

For small displacement sin θ � θ and the motion of the bob is along the arc

∴ s = Lθ 2.32b

Hence d
d

sin 
2

2
θ θ θ

t
g
L

g
L

= − = − 2.33a

or d
d

0
2

2
θ θ

t
g
L

+ = 2.33b

d
d

0
2

2
2θ ω θ

t
+ =n 2.33c

where ω n = g
L

2.34

L

θ

T

mg
θ
mg cos θ

mg sin θ

2.8 Simple pendulum.
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The period of motion is given by

T L
g

= =2 2π
ω π

n
2.35

θ ω φ= +A tn sin ( ) 2.36

From the above equation, it is seen that the period and frequency of a simple
pendulum depend only on the length of the string and the value g.

Since the period is independent of the mass, a pendulum of equal length
at the same location oscillates with equal periods. The analogy between the
simple pendulum is the mass–spring system as shown in Fig. 2.9. The
displacement, velocity, acceleration, kinetic energy and potential energy are
given in Table 2.1 for various positions of the pendulum.

Example 2.4
A man wants to measure the height of a tower. He notes that a long pendulum
extends from the ceiling almost to the floor and that its period is 24 s.
Determine (a) the height of the tower and (b) the period when the pendulum
is taken to the moon where g = 1.67m/s2.

θ0
EP

x0 amax

(a) (b)

Vmax

EP

EP

EP

x0

θ0

θ0

x0

amax

EP

(d) (e)

(c)

2.9 Analogy between simple pendulum and spring mass system.
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Solution
We know that

T L g= 2π /

L
gT= = × =

2

2

2

24
9.81 24

4
143.13m

π π

Therefore, height of the tower = 143.13m.

At the moon T = =2 143.13
1.67

58.17 secondsπ

2.6 Comparison of simple harmonic motion and

uniform circular motion

Consider a particle at a point P moving in a circle of radius A with constant
angular speed ωn as shown in Fig. 2.10. We refer to the circle as reference

Table 2.1 Displacement, velocity, acceleration, kinetic energy and potential energy for
various positions of the pendulum

Figure t x v a T V

Fig. 2.9a 0 A 0     – A2ω n 0
    
1
2

2kA

Fig. 2.9b
  
Τ
4

0 –ωnA 0
    
1
2

2kA 0

Fig. 2.9c
  
Τ
2

–A 0     ω n
2 A 0

    
1
2

2kA

Fig. 2.9d
  
3
4
Τ 0 ωnA 0

    
1
2

2kA 0

Fig. 2.9e T A 0     ω n
2 A 0

    
1
2

2kA

T = kinetic energy; V = potential energy.

ω n

p
A

φ
0

y
M

p′

ω nt
φ

0 Q

x

φ = ω nt + φ

V = ω nA
p

Vx

Vx ax

a

ax

a =     ωn A2

(a) (b) (c) (d)

2.10 Uniform circular motion.
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circle. As the particle rotates its position, the vector rotates about the origin
0 and at t = 0, 0P makes an angle of φ. At time t, θ = ωnt + φ.

This expression shows that point M moves with simple harmonic motion
along the y-axis. Therefore we conclude that:

Simple harmonic motion along a straight line can be represented by the
projection of uniform circular motion along diameter of a reference circle.

Similarly, we can show that point θ exhibits simple harmonic motion.
Therefore:

Uniform circular motion can be considered as a combination of two simple
harmonic motions.

2.7 Energy method

2.7.1 Energy of simple harmonic oscillator

Consider a mass–spring system discussed in Section 2.3 (see Fig. 2.4).
Assuming the system to be conservative, we expect the total mechanical
energy as constant. We can express kinetic energy as

T mv m tn n= = +1
2

1
2

A cos ( )2 2ω ω φ2 2 2.37

The elastic potential energy is the energy stored in the spring due to the
elevation x is

V A= = +1
2

1
2

 sin )2kx k tn
2 2 (ω φ 2.38

The total mechanical energy of the system can be given as

E T V m t k tn n n= + = + + +1
2

2 2 2ω ω φ ω φA A2 2 cos ( ) 1
2

 sin  ( )

2.39a

Since mechanical energy is constant, dE/dt = 0

( ) cos ( ) sin ( ) 02− + + + =m k t tn n nω ω φ ω φ2 2A A 2.39b

We see that T and V are always positive quantities, ω n
2 ( )= k m/ . We can

express the total energy of the simple oscillator as

E T V= + = [sin  ( ) cos  ( )]2 21
2

2kA t tn nω φ ω φ+ + + 2.40a

= 1
2

kA2 2.40b
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At the equilibrium position x = 0; V = 0 and the energy at that position

E T= 1
2max = kA2 2.40c

Plots of kinetic and potential energy versus time are shown in Fig. 2.11a for
φ = 0. The variations of T and V with displacements are plotted in Fig. 2.11b.
Energy is continuously being transformed between potential energy stored
in the spring and the kinetic energy of the mass. The kinetic energy and
potential energy for the pendulum and spring mass system are shown in Fig.
2.9.

Example 2.5
A mass 0.5kg is connected to a light spring of stiffness 20N/m, and oscillates
on a horizontal frictionless track.

(a) Calculate the total energy of the system and the maximum speed of the
mass if the amplitude of motion is 3cm.

(b) Calculate the velocity of the mass when the displacement is equal to
2 cm.

(c) Compute kinetic and potential energies of the system when the
displacement is equal to 2cm.

T, V

–A 0 A X
(b)

    

1
2

 2kA

kiv

T/2 T
t

(a)

2.11 (a) Plot of kinetic energy and potential energy with respect to
time; (b) plot of kinetic energy and potential energy with respect to
displacement.
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Solution

E k A= = × = ×− −1
2

1
2

 ( )( ) 9.0 10 32 2 220 3 10

When the mass at x = 0, V = 0, E = 1/2 mvmax
2

1
2

9.0 10max
2 3mv = × −

vmax

318 10
5

0.19= × =
−

m/s

1
2

1
2

1
2

2mv kx k2 2+ = A

v k
m

A x2 2 2= − ( )

v k
m

A x A xn= ± − = ± −( )2 2 2 2ω

v = ± − × = ±−20
0.5

( 2 ) 10 0.141432 2 m/s

T = = = × −1
2

1
2

(0.5)( . ) 5.0 10 3mv 2 20 141

V = = × × × = ×− −1
2

20 2 102 2 2kx 1
2

( ) 4.00 10 3

Note that T + V equals total mechanical energy E.

2.8 Rayleigh method

E = V + T = VMAX = TMAX 2.41a

When strain energy is maximum, kinetic energy is zero and vice versa.
From Eq. 2.37 and 2.38

vmax = ωaA and xmax = A 2.41b

V kA T m Anmax max= = =1
2

1
2

2 2 2ω 2.41c

or ω n
k
m

= 2.41d

2.9 D’Alembert’s principle

D’Alembert’s principle of dynamic equilibrium is a convenient method for
establishing the equation of motion for simple single-degree-of-freedom
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(SDOF) and multiple-degree-of-freedom (MDOF) systems. It essentially
involves invoking Newton’s second law of motion to the system.

Considering Eq. 2.20, introduce the appropriate inertia force and it can be
reasoned that applied force on the mass is in equilibrium with inertia force,
i.e. inertia force is acting in the opposite direction to the applied force.
Therefore dynamic problem is reduced to equivalent static problem.

D Alembert’s principle states that a system may be set in a state of dynamic
equilibrium by adding to the external forces a fictitious force which is commonly
known as the inertial.

Applying the equation of equilibrium for the free body shown in Fig. 2.12
we get

mx kx˙̇ + = 0 2.42

2.10 Free vibration of rigid bodies without damping

The basic concepts of analysing a vibrating system that were developed up
to Section 2.6 are a particular class of problem. The following list gives the
characteristics of problems and some practical considerations.

• One degree of freedom. A degree of freedom is defined as the independent
coordinate with which we define the displaced shape of the structure. A
system with a single coordinate function is said to be a one-degree-of-
freedom system.

• Free vibration. Equation 2.3 is valid when a disturbing force is applied
only once to give a mass on initial displacement. The mass is in free
vibration when only two kinds of forces are acting on it: (a) an elastic-
restoring force within the system and (b) gravitational or other constant
forces that cause no displacement from the equilibrium position of the
system.

• Undamped vibration. In the absence of dissipative forces acting on a
vibrating mass, the amplitude of vibration is constant, and the motion is
said to be undamped.

• Natural frequency. Each mass spring system vibrates at a characteristic
frequency in free vibration. This is known as natural frequency of the
system.

kx

FI =     mẋ̇
F (t )

2.12 Free body diagram.
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f k
m

= 1
2π 2.43

• Lumped parameters. Strictly speaking, Eq. 2.3 is valid only for a particle
of mass m and a spring of no mass and spring constant k. In practice, the
mass of a translating rigid body is assumed to be concentrated as a
particle and the mass of the spring is completely ignored.

Example 2.6
Find the natural frequency of the system shown in Fig. 2.13.

Solution
Taking moment at A

+ M IA = + + × + × =˙̇ ˙̇ ˙̇θ θ θ θm l l k l l m l l
2 1

3
2

3
2

0

I m
l

m l=
( )

=2

2

2

22
12 3

m l m l m l k l2

2

2
2

2
2

3
9
4

0



 + +



 + =˙̇ ˙̇θ θ θ1

4
3

9
4

m m k2 1 0+



 + =˙̇θ θ

A

B
m1 C

1

m2

1/2

      m l2
˙θ̇

klθ

lθ
θ

    l˙θ̇

      
m

L
1

3

2






˙θ̇

(a)

(b)

2.13 (a) Cantilever beam; (b) Free body diagram.
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The above equation is similar to Eq. 2.3

m k˙̇θ θ+ = 0

ω n
k
m m m

= =
+
4

4 3 9 42( ) ( ) 1/ /

Example 2.7
A single one storey reinforced concrete (RC) building idealized as a massless
frame is shown in Fig. 2.14 supporting a dead load of 50 kN at the roof level.
The frame is 8 m wide and 4 m high. Each column and beam is 250 mm
square. Assume Young’s modulus of concrete as 30 × 106kN/m2 determine
the natural frequency and period of the system. Assume stiffness of an
equivalent SDOF system is k = 96EI/7h3.

Solution
Moment of inertia of the cross-section

I = = ×250
12

3.254 10 mm
4

8 4

I = 3.254 × 10–4 m4

k EI
h

= = × × × ×
× =

−96
7 7 643

96 30 10 3.254 10 2093kN/m
6 4

mass = 50 10
9.81

5096 kg
3× =

ω n
k
m

= = × =2092 10
5096

20.26 rad/s
3

T f
Tn

= = = =2 1π
ω 0.31s; 3.22 Hz

8m

4m

2.14 Portal frame.
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2.11 Program 2.1: MATLAB program to draw

displacement, velocity and acceleration with

respect to time

Consider the spring–mass system shown in Fig. 2.4 with mass of 2kg m and
stiffness of 8 N/m. We can write the following MATLAB program to draw
the displacement–time, velocity–time and acceleration–time curves. We can
solve symbolically the second order differential equation as shown in the
listing. Initial displacement and velocity may be assumed as 3 m and 5m/s.

2.11.1 Listing of MATLAB program

clc;
close all;
m=2;
k=8;
dt=0.02;
w=sqrt(k/m);
y=dsolve(‘D2y=-2^2*y’,‘y(0)=3’,‘Dy(0)=5’,‘x’);
simplify(y)
for i=1:1500

t(i)=(i-1)*dt;
z(i)=3*cos(w*t(i))+5*sin(w*t(i))/w;
v(i)=-w*3*sin(w*t(i))+5*cos(w*t(i));
a(i)=-3*w^2*cos(w*t(i))-5*w*sin(w*t(i));

end
figure(1)
plot(t,z,‘k’)
xlabel(‘t’)
ylabel(‘u’)
title(‘ Displacement Time Curve’)
figure(2)
plot(t,v,‘k’)
xlabel(‘t’)
ylabel(‘v’)
title(‘Velocity time curve’)
figure(3)
plot(t,a,‘k’)
xlabel(‘t’)
ylabel(‘a’)
title(‘Acceleration time curve’)

Figures 2.15, 2.16 and 2.17 represent displacement–time, velocity–time and
acceleration–time curves.
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2.12 Program 2.2: MATHEMATICA program to draw

displacement, velocity and acceleration with

respect to time

2.12.1 Listing of MATHEMATICA program

The listing of the program in MATHEMATICA is shown below. Using
MATHEMATICA we can solve the second order differential equation and
plot the displacement–time, velocity–time and acceleration–time curves.

D
is

p
la

ce
m

en
t

4

2

0

–2

–4
0 5 10 15 20 25 30

Time in secs

V
el

o
ci

ty

10

5

0

–5

–10
0 5 10 15 20 25 30

Time in secs

2.15 Displacement–time curve.

2.16 Velocity–time curve.
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2

8

2

6 Cos[2 x] + 5 Sin[2 x]

{{y[x] -> —————————————————————————}}
2

3 Cos[2 x] + 2.5 Sin[2 x]

5. Cos[2 x] - 6 Sin[2 x]

-12 Cos[2 x] - 10. Sin[2 x]

A
cc

el
er

at
io

n

4

2

0

–2

–4
0 5 10 15 20 25 30

Time in secs

2.17 Acceleration–time curve.
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time in secs

0.5 1 1.5 2

displacement

4

2

–2

–4

time in secs
0.5 1 1.5 2

velocity

4

2

–2

–4

–6

–8

time in secs
0.5 1 1.5 2

acceleration

15

10

5

–5

–10

–15
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2.13 Free vibration of structural systems

2.13.1 Laterally loaded elastic system

Consider the portal frame as shown in Fig. 2.18.

Case (a) When the beam stiffness is infinitely rigid (shear frame)

From Fig. 2.19a:

Force in the horizontal direction F
EI

h
uh

c=
24

3

EIc

EIb

L = 2h

EIc h

2.18 Portal frame.

    

6
2

EI
h

c u = 1

    

6
2

EI
h

c

    

1
3

2EI
h

c

    

1
3

2EI
h

c

    

1
3

2EI
h

c

    

1
3

2EI
h

c

    

6
2

EI
h

c

    

6
2

EI
h

c

(a)

2.19 Forces induced in a shear frame.
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Hence stiffness =
24

3

EI
h

c

Case (b) When the beam stiffness is negligible

Force in the horizontal direction Fh =
6

3

EI
h

uc

Hence stiffness =
6

3

EI
h

c

Case (c) When the beam stiffness is appreciable (see Fig. 2.20)

u1 = 1   u2 = 1   u3 = 1

u = 1

    

3EI
h

c
3

    

3EI
h

c
3

(b)

2.19 Continued

u1

u2
u3

2.20 Forces induced in a frame (beam stiffness is negligible).
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[ ] =

–1/ 0

–1/

–1/

–1/ 0 0

β

h

h

h

h

0

1 0

0 1 0

0 0 1
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[ ] =

4
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4
[0] [0]

[0]
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2
2

 
4

2

[0]

[0] [0]
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2

2
 

4

6 6k

EI
h

EI
h

EI
h

EI
h

EI
h

EI
h

EI
h

EI
h

EI
h

EI
h

EI
h

EI
h

c c

c c

b b

b

c c

c c

×



































































b






















If Ib = Ic, then,

EI
h

h h

h h h

h h h

u

u

u

F

F

F

c
g

3
2 2

2 2

1

2

3

2

3

 

24 6 6

6 6

6

 =

6









































u1 – Master degree of freedom u2, u3 Slave degrees of freedom

Using the static condensation technique, eliminating slave degrees of
freedom,

A B

B C

u

u

F
T

m

s

m





















=
0

[K]3×3 = [ ]3 6
Tβ ×  [k]6×6 [β]6×3

From second equations of the above matrix

BTUm + CUs = 0

Us = –C–1 BTUm

From first equation of the above matrix

AUm + BUs = Fm
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AUm + B (–C–1BTUm) = Fm

∴[A – BC–1BT]UM = FM

EI
h

h h
h h

h h

h

h
u Fc

m3

2 2

2 2

–1

1 24 – 6    6
6

6

6

6
 =〈 〉































∴ F
EI
h

um
c

m= 96
7 3

In the frame shown in Fig. 2.18, let us define

ρ =
4
I
I
b

c
 = beam to column stiffness ratio, then

k
EI

h
c=

24 12 + 1
12 + 43

ρ
ρ







The lateral stiffness is plotted as a function of p as shown in Fig. 2.21.
As an example, find the stiffness of the system shown in Fig. 2.22. Taking

moment about 0,

ml 2 ˙̇θ  + mglθ = 0,

˙̇θ θ ω+ ;    ;     2g
l

g
l

k
mg
l

= = =0 n

Example 2.8
Find the stiffness of the system shown in Fig. 2.23.

6

    

k
EI h

c

c / 3

10–4 10–3 10–2 10–1 10 101 102 ρ

2.21 Plot of stiffness of frame with respect to ρ.
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Solution

ka ml Wl2 2 0θ θ θ+ + =˙̇

˙̇θ θ+ +







=ka
ml

Wl
ml

2

2 2 0

˙̇θ θ+ +







=ka
ml

g
l

2

2 0

∴ = + 



 =ω π

ωn
n

g
l

a
l

k
m

T
2

2
2;

Example 2.9
Find the natural frequency of the system (Fig. 2.24) having mass less rigid
rod

θ
I

θ

    ml˙θ̇

mg
Free Body Diagram

2.22 Pendulum.

a

l

m

kaθ

lθ

W     ml˙θ̇

θ

2.23 Pendulum supported by a spring.

�� �� �� �� �� ��



Free vibration of SDOF systems (undamped) 37

Solution
ka ml2 2ϑ θ+ =˙̇ 0

˙̇θ θ ω+ 





∴ 





ka
ml

2

2 = 0;    =
2

2n
ka
ml

Example 2.10
Find the natural frequency of the systems shown in Figs. 2.25, 2.26, and
2.27.

Example 2.11
Find the natural frequency of the system shown in Fig. 2.28.

Example 2.12
A small one storey building 6m × 9m in plan is shown in Fig. 2.29 with
moment frames in the north–south direction and braced frames in the east–

a

k

l

m

kaθ mlθ

2.24 Rigid bar supported by a spring.

k1
k2

m

Solution

    
ωN

k k
m

= 
+ 1 2

2.25 Springs in parallel.

k1

k2

m

Solution

    
ωN

k k
k k m

= 
( + )

1 2

1 2

2.26 Springs in series.

θ
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west direction. The weight of the structure can be idealized as 7kN/m2

lumped at roof level. The horizontal cross-bracing is at the bottom chord of
the roof trusses. All columns are wide flange sections Ix = 3.446e–5 m4, Iy =
0.7616e–5 m4. For steel, E = 200 GPa. The vertical cross-bracings are made
of 25.4 mm diameter rods. Formulate the equation governing the free vibration
in the north–south direction and east–west direction. Assume a reinforced
steel (RSJ) column at each corner.

l

l

l

m

m

Solution

    

ω

ω

n

n

EI
ml

EI
ml

= 12

= 3

3

3

m

2.27 Beam with different boundary conditions.

m Ib → ∝

E1I1l1 E2I2l2

Solution

    
k

E I
l

E I
l

e = 
12

 + 
31 1

1
3

2 2

2
3

2.28 Portal frame.
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Solution
Assume mass is lumped at the roof and is rigid,

M = 7e3 9 6
9.81

= 38532kg× ×

(a) N-S direction

k EI
hNS 34 12 48 200e9 3.446e–5

4
e3N/m= 



 = = × × =3 3

48 5169EI
h

ω n
k
mNS
NS= = 5169e3

38532
= 11.58 rad/s

(b) E–W direction
For an inclined truss member equivalent stiffness in the direction of motion
(here horizontal) is (EA/l) cos2 θ, where θ is the inclination measured from
horizontal.

cos  =  6
36 + 16

= 0.832θ

Area of the brace =
4
π 25.42e–6 = 5.0674e–4m2

Length of bracing = (4 + 6 ) = 7.21m2 2

k for one brace = 200e9 × 5.0674e–4 0.832
7.21

2
 = 1167e3N/m

Effective number of braces = 2
∴kEW = 2 × 1167e3 = 2334e3N/m

ω n
k
mEW
EW= = 2334e3

38532
= 7.782 rad/s

2.14 Exercises

1. Determine the equivalent spring stiffness and natural frequency of the
following vibrating systems when (see Fig. 2.30).

9m

6m

9m 6m

4m

Plan EW elevation NS elevation

2.29 One storied building.
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(a) the mass is suspended to a spring;
(b) the mass is suspended at the bottom of two springs in series;
(c) the mass is fixed in between two springs;
(d) the mass is fixed to a point on a bar joining free ends of the springs.

2. A rocket arm is modeled as a uniform slender rod of mass m hinged at
point O as shown in Fig. 2.31. The spring touches the rod but no force
is applied to it when the rod is vertical. Derive an expression for circular
frequencyωn of the system for small displacements.

3. Fluid of mass m and mass density ρ occupies a segment of length l of the
U-tube as shown in Fig. 2.32. The column of fluid is displaced to x0 from
the equilibrium position and starts to oscillate with negligible friction.
Determine the period of oscillation.

4. In a spring–mass vibrating system, the natural frequency of vibration is
3.56Hz. When the amount of suspended mass is increased by 5kg, the
natural frequency is lowered to 2.9Hz. Determine the original unknown
mass and spring constant.

5. A 200kg shake cable T moves horizontally with negligible friction on its
tracks. The actuator rod A moves under displacement control defined by
d = 0.15 sin 12 t m. Determine the amplitude of vibration of the table if
it is connected to rod A through a spring of stiffness k = 1kN/m.

(a) (b) (c) (d)

k1
k1

k1 k1 k2

m

m

m

m
k2

k2

a  b

2.30

0

V

2.31
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6. Determine the range of values of the forcing frequency ω for which the
amplitude of the vibration is less than 1% of the static deflection caused
by P0 a constant force (see Fig. 2.33).

7. A 70kg astronaut is belted to a chair of stiffness k = 10 kN/m. The
vertical acceleration of the astronaut should not exceed 3g. Determine
the allowable amplitude d0 of the massive platform at a frequency 10Hz.

8. Determine the natural frequency for horizontal motion of the steel frame
in Fig. 2.34. Assume the horizontal girder to be infinitely rigid and
neglect the mass of the columns. Assume I of columns as 3.254 × 108mm4.

9. A system shown in Fig. 2.35 is modelled by two freely vibrating masses
m1 and m2 interconnected by a spring having a constant k. Determine for
the system the differential equation of motion for the relative displacement
u = u2 – u1 between the two masses. Also determine the corresponding
the natural frequency of the system.

x0

x0

2.32

k

m P = P0 sin ωt

2.33

50kN y

4m 6m 6m

6m

4m

2.34
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3
Free vibration of single-degree-of-freedom

systems (under-damped) in relation to
structural dynamics during earthquakes

Abstract: In this chapter, the governing equations of motion are formulated
for free vibration of single-degree-of-freedom (SDOF) (under-damped)
systems. Motion characteristics are studied for under-damped, critically
damped and over-damped systems. Vibration characteristics of an under-
damped system are illustrated. Hysteresis damping and Coulomb damping
are also discussed. Programs in MATLAB and in MATHEMATICA are
listed for the vibration of various under-damped SDOF systems.

Key words: viscous damping, logarithmic decrement, critical damping,
hysteresis damping, Coulomb damping.

3.1 Introduction

It was seen in the preceding chapter that a simple oscillator under idealized
conditions without damping will oscillate indefinitely with a constant amplitude
at its natural frequency. In practice, it is not possible to have an oscillator
that vibrates indefinitely. In any practical structure frictional or damping
forces will always be present in the mechanical energy of the system, whether
potential or kinetic energy is transformed to heat energy. In order to account
for these forces, we have to make certain assumptions about these forces
based on experience.

3.2 Damping free vibrations

The oscillatory motions considered so far have been for ideal systems, i.e.
systems that oscillate indefinitely under the action of linear restoring force.
In real systems, dissipative forces, such as friction, are present and retard the
motion. Consequently, the mechanical energy of the system diminishes in
time, and the motion is said to be damped.

One common type of retarding force is proportional to the speed and acts
in the direction opposite to the motion. The damping caused by fluid friction
is called viscous damping. The presence of this damping is always modelled
by a dashpot, which consists of a piston A moving in a cylinder B as shown
in Fig. 3.1. The frictional force is proportional to velocity and is denoted by
cẋ  and the constant c is called the coefficient of viscous damping.
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Consider the damped free vibration of a spring–mass damper system
shown in Fig. 3.2. Using D’Alembert’s principle, a dynamic problem can be
converted to a static problem by considering inertia force.

m cx kx˙̇ ˙x + + = 0 3.1

Equation 3.1 is a linear, second order, homogeneous differential equation. It
has the solution of the form

x t= eλ 3.2

Substituting it in Eq. 3.2, we get

mλ2 + cλ+ k = 0 3.3

which has two roots given by

λ λ1 2

2

2 2
, = − ± 



 −c

m
c
m

k
m

3.4

B

AF
F

F    cẋ

3.1 Model of a dashpot.

k

m

C

kx
    mẋ̇

Inertia
force

    cẋ
      x x x, , ˙ ˙˙

3.2 Spring–mass damper system.
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Thus the general solution of Eq. 3.4 is the sum of two exponentials λ1 and
λ2. The critical damping coefficient is given by

cc 2= km 3.5

and ρ = =c
cc

damping factor 3.6

∴ = − + −λ ρ ρ1
2

2

22 4
c

m
c
m

k mc c ( )/ 3.7

λ ρω ρ ω ω1
2 2 2= − + −n n n 3.8

λ ω ρ ρ1
2 1= − + −n ( ) 3.9a

λ ω ρ ρ2
2 1= − − −n ( ) 3.9b

and x t t= +Ae Beλ λ1 2 3.10

There are three special cases of damping that can be distinguished with
respect to the critical damping coefficient.

3.2.1 Over-damped system

When c > cc and ρ > 1

x e et t= +A Bλ λ1 2 3.11

There are two constants A and B which can be evaluated using initial conditions

xt=0 = x0; vt=0 = v0.

v x
t

A Bt t= = +d
d

e eλ λλ λ
1 2

1 2 3.12

x0 = A + B 3.13a

v0 = λ1A + λ2B 3.13b

Solving the above two equations:

λ λ λ1 0 1 1x = +A B

v0 1= λ λA B+ 2

λ λ λ1 0 0 2x v− = −B( )1

∴ = −
− = −

−B A
( )
( )

;  
( )
( )

λ
λ λ

λ
λ λ

1 0 0

1 2

2 0 0

1 2

x v x v
3.14

As t increases x decreases. This motion is non-vibratory or a periodic as
shown in Fig. 3.3.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering46

3.2.2 Critically damped system

When c = cc and ρ = 1 3.15

λ1 = –c/2m; λ2 = –c/2m 3.16a

λ1 = –ωn; λ2 = –ωn 3.16b

When we have two repeated roots

x A Bt nt= ( + )e –ω 3.17

This motion is also non-vibratory but it is of special interest because x
decreases at the fastest possible rate without oscillation of the mass and is
shown in Fig. 3.3.

3.2.3 Under-damped system

When c < cc and ρ < 1. The roots shown in Eq. 3.7 are complex.

λ ω ρ ρ1
21= − + −n i( ) 3.18a

λ ω ρ ρ2
21= − − −n i( ) 3.18b

∴ = − + −− − −x A t B tn nt i
n

t i
ne e e eρω ρωρ ω ρ ω1 12 2 3.19

= − + −−e (  sin  cos )ρω ω ρ ω ρnt
n nc t c t1

2
2

21 1 3.20

Equation 3.20 may be written as

x A tnt
d= +−e [sin ( )]ρω ω φ 3.21

Again there are two constants, which can be evaluated using initial conditions
x x v v0 0 0 0= =; .

a under-damped
b critically damped
c over-damped

c

b

a
t

Time

D
is

p
la

cm
en

t

3.3 Displacement versus time.

x
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The constant ωd is defined as the damped natural frequency of the system,
which is expressed as

ω ω ρd n= −1 2 3.22

where ω n k m= /  is the natural frequency of the undamped vibration.

Equation 3.21 defines the harmonic oscillations of diminishing amplitude
as shown in Fig. 3.3. The amplitude is A nte − ρω

x tnt
d= +−Ae [sin ( )]ρω ω φ 3.23a

ẋ A tn
t

d
n= − +−ρω ω φρωe [sin ( )] + e [cos ( )]dA − +ρω ω ω φnt

d t
3.23b

at t = 0 x xt= = =0 0 A sin θ 3.24a

ẋ vt n d= = = − +0 0 ρω φ ω φ A sin  A cos 3.24b

or
( )

 cos 
v x

An

d

0 0+
=

ρω
ω φ 3.24c

tan 
( )

φ ω
ρω= +
d

n

x
v x

0

0 0
3.25

A x
v xn

d

= +
+

0
2 0 0

2

2

( )ρω
ω

3.26

x
v x

t x tnt n

n

n n=
+

−
− + −













−e
( )

sin   cosρω ρω
ω ρ

ρ ω ρ ω0 0

2
2

0
2

1
1 1

3.27

i.e. x X tnt
n= − +−e [sin ( )]ρω ω ρ φ1 2 3.28

3.3  Logarithmic decrement

A convenient way to determine the amount of damping present in a system
is to measure the rate of decay of free oscillations. The larger the damping
the greater will be the decay. Consider the damped vibration expressed by
the general equation:

x X tnt
n= − +−e [sin ( )]ρω ω ρ φ1 2 3.29

which is shown graphically in Fig. 3.4.
We introduce a term called logarithmic decrement defined as
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δ ρω τ
ρω

ρω τ
ρω τ= = = =

−

− +( )log log e
e

log e
d

d
d

x
x

X
X

n

n

n
t

t n
1

2
3.30

τ π
ω ρ

d =
−

2
1 2

n
3.31

∴ =
−

=
−

=δ ρω π
ω ρ

πρ
ρ

n

n

2

1

2

12 2
logarithmic decrement 3.32

The above is an exact equation,
When ρ is small

δ πρ≅ 2 3.33

Figure 3.5 shows a plot of the exact and approximate values of δ as function
of ρ.

From Eq. 3.31 it is seen that the period of the damped vibration τd is
constant even though the amplitude decreases

τ π
ωd

d
= 2 3.34

The period of damped vibration is always larger than the period of the same
system without damping.

Example 3.1
A diesel engine generator of mass 1000 kg is mounted on springs with total
stiffness 400kN/m. If the period of oscillation is 0.32s. determine the damping
coefficient c and damping factor ρ.

Given m = 1000 kg; k = 400 × 103N/m; T = 0.32.

x1

x

x2

τd

t

3.4 Damped vibration.
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Solution

T k
m

n

n=
−

= =2
1 2

π
ω ρ

ω0.32;  

ω n = × =400 10
1000

20
3

∴ =
−

0.32
20

2
1 2

π
ρ

1 22− = =ρ π ρ
6.4

;  0.19

c kmc = = × × = × ×2 2 2 20 103400 10 10003

c cc= = × ×ρ 0.19 40 103

c = 7608 Ns/m

Example 3.2
A gun barrel (Fig. 3.6) weighing 5395.5N has a recoil spring of stiffness
300 000 N/m. If the gun barrel recoils 1.2m on firing, determine

(a) the initial recoil velocity of the barrel;

δ

ρ

12

10

8

6

4

2

0.2 0.4 0.6 0.8 1.0

δ = 2πρ

3.5 Logarithmic decrement as a function of ρ.

c k
m

3.6 Model of gun barrel.

  

δ πρ

ρ
 = 

2

1 – 2
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(b) the critical damping coefficient of dash pot which is engaged at the end
of recoil stage;

(c) the time required for the barrel to return to a position 50 mm from its
initial position.

Solution
Weight of gun barrel = 5395.5 N, m = 550 kg, k = 300 000 N/m
Kinetic energy = potential energy in the spring

∴ =1
2

 mv k x1
2 21

2

1
2

550 1
2

300 000 1.22× × = × ×vi
2

vi = initial recoil velocity = 28.025m/s

C kmc = = × =2 2 300 000 550 25690 N s/m

Since it is critical damping:

x tw tn= +−e ( )A B

ω n = = =k
m

300 000
550

23.35 rad/s

x t= +−e ( )23.35t A B

at t = 0; x0 = –1.2 m

t = 0; ẋ0 = 0

ẋ A B Bt= − + +− −23.35e ( ) e23.35 23.35t t

ẋ A B B At = = − + = =0 023.35 ;  23.35

x|t=0; A = 1.2 and B = –28.02

x = e–23.35t (–1.2 – 28.02t)

x = –0.05 = e–23.35t (–1.2 – 28.02t)

Solving by trial and error t = 0.2135 second.

Example 3.3
A vibrating system shown in Fig. 3.7 consists of weight W = 9.81kN, a
spring stiffness 20 kN/cm and a dashpot with coefficient 0.071kN/cm/s.,
Find (a) damping factor, (b) logarithmic decrement and (c) ratio of any two
consecutive amplitudes.
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Solution
Given weight W = 9.81kN = 9.81 × 103N; m = 103kg

k = × × = ×20 10 10
1

N/m
3 2

2 106

c = 0.071 × 103 × 102N/m/s

= 0.071 × 105N/m/s

cc
50.8944 10= = × × = ×2 2 2 10 106 3km

Since c < cc it is an under-damped system.

Damping factor c
cc

= 0.071
08944

= 0.079

ω n = = × =k
m

2 10
10

6

3 44.72 rad/s

x X t= − +− ×e (sin 44.72 1 .79 ).079 44.720 20t φ

x = Xe–3.5325t [sin (44.58 t + φ)] where tan 
( )

φ ω
ρω= +
d

n

x
x

0

0 0v

Logarithmic decrement = =
−

δ πρ
ρ

2

1 2

When ρ is small,
δ πρ π≅ = × =2 2 0.79 0.496

log 0.496
x
x

0

1
=

 
x
x

0

1
= =e 1.640.496

Example 3.4
A free vibration test is carried out on an empty elevated water tank shown in
Fig. 3.8. A cable attached to the tank applies a lateral force 144 kN and pulls

C

m

3.7 Vibrating system.
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the tank by 0.050 m. Suddenly the cable is cut and the resulting vibration is
recorded. At the end of five complete cycles, the time is 2 seconds and the
amplitude is 0.035m. Compute (a) stiffness, (b) damping factor, (c) undamped
natural frequency, (d) weight of the tank, (e) damping coefficient and (f)
number of cycles when the amplitude becomes 0.005 m.

Solution
Horizontal force = F = 144 kN = 144000N
Displacement = u = 0.05 m

(a) Stiffness = K = F/u =144 000/0.05 = 2 880 000 N/m
Time taken for 5 cycles = 2 seconds

Period of damped oscillation = 2/5 = 0.4; Td = 2π/ωd

 ω π πd
d

= =2 5
T

ωn = natural frequency = 5π rad/s.

Logarithmic decrement = δ = = =
+

1  ln  ln 0.05
0.035

0.07133
n

a
an

1

1

1
5

2πρ = δ = 0.07133

(b) ρ = 0.0113 = 1.13%

natural frequency of damped system = 2π
T

= 15.7 rad/s

ω ρn
2 21( ) 15.72− =

(c) ω π
n T= = =15.7015;  

15.7015
0.40016s( )undamped

2

ω
ωn

n

k
m

m K2
2= = = =;  

2880 000
15.7015

11682 kg2

3.8 Elevated water tank.
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(d) Weight of the tank W = × =11682 9.81/1000 kN 114.6kN

(e) c Km Nc 2 2 880 000 11682 366846.889 s/m= = × =2

c = ρ cc = 0.0113 × 366846.889 = 4145.36 Nsc/m

(f) 1
n

ln 50
5

2 2 0.0113 0.07099= = × =π ρ π

1
n

n2.3025 0.070 99;  32.43 cycles 33cycles= = =

Example 3.5
For small damping, show that the logarithmic decrement is expressed in
terms of vibrational energy U and the energy dissipated per cycle.

Solution

δ δ δδ= = = − + +−ln ;    or e 1 ...
x
x

x
x

1

2

2

1

2 2/

The vibrational energy of the system is that stored in the spring at maximum
displacement.

U U1 1
2

2
1
2

1
2

= =Kx Kx; 2
2

U U
U

U
U

x

x
1 2

1

2

1

2
2

1
2

2 21 1 1 2 4
− = − = − = − = −−e ...δ δ δ

∆U
U

= 2 δ

3.4 Hysteresis damping

Real structures and machines do not exhibit the highly idealized form of
viscous damping considered in previous sections. When materials are cyclically
stressed, energy is dissipated within the material itself due to primarily to
internal friction caused by the slipping and sliding of particles at internal
planes during deformations. Such internal damping is generally referred to
as hysteresis damping or structural damping. This form of damping results
in a phase lag between the damping force and deformation as illustrated in
Fig. 3.9. This curve is generally referred to as a hysteresis loop. The area
enclosed within the loop represents the energy loss or dissipated energy per
loading cycle.

If ∆U represents the energy loss per cycle as illustrated in Fig. 3.9 then the
energy loss can be written as

�� �� �� �� �� ��



Structural dynamics of earthquake engineering54

x X x X t= =sin ; cosω ω ωt ˙ 3.35a

∆U F x c x xD= =∫ ∫d de4 ˙ 3.35b

∆U c x k x c
k= = =π ω π η η

ωe e; where2 2 3.35c

Based on experiments conducted on the internal damping it can be proved
that the energy dissipated per cycle is independent of frequency and proportional
to the square of the amplitude of vibration. Thus, the energy loss per cycle
may be expressed as

∆U K x= πη 2 3.36
where
η = a dimensionless structural damping coefficient for the material
k = the equivalent stiffness of the system
x = the displacement amplitude
π = a convenient proportionality constant.

∆U
U

k x
k x

= = =πη π η δ
2

2 2 2
0.5

3.37

Hence logarithmic decrement δ = πη 3.38

δ π η π ω= = c ne

K
3.39

Hence equivalent viscous damping coefficient is given by

c
k

n
e = η

ω 3.40

Therefore, for a structure considered to exhibit hysteretic or structural damping
characteristics, the coefficient η  can be determined by measuring successive

Loading Energy loss ∆U

Unloading

3.9 Hysteresis loop.
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amplitudes of the oscillation and then applying Eq. 3.38. Then the structure
can be analysed as an equivalent viscously damped system by calculating the
equivalent viscous damping coefficient calculated from Eq. 3.40.

Example 3.6
The main span of a bridge structure is considered as a single-degree-of-
freedom (SDOF) system for calculation of its fundamental frequency. From
preliminary vibration tests, the effective mass of the structure was determined
to be 400 000 kN and the effective stiffness to be 40 000 kN/m. The ratio of
successive displacement amplitude from a free vibration trace was measured
to be 1.25. Calculate the values of the structural damping coefficient and the
equivalent viscous damping coefficient.

Solution

The ratio of successive amplitude = 1.25
x
x

1

2
=

Logrithmic decrement = ln 0.2231 =  δ π η= =x
x

1

2

η π= =0.2231 0.071

The equivalent viscous damping coefficient is determined as

c
n

c = η
ω

K

where

ω n = = =K
m

40 000 000
400 000

10 rad/s

The equivalent viscous damping coefficient is

cc
0.071 40 000

10
284kNs m= × = /

3.5 Coulomb damping

In most of the structures, damping occurs when relative motion takes place
at interfaces or joints between adjacent members. This form of damping is
referred to as Coulomb damping or dry-friction damping. The friction forces
developed are independent of vibration amplitude and frequency. These forces
are acting in the opposite direction of motion of the mass and the magnitude
is essentially constant.
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Frictional damping force is given by

Fd = µN = µmg 3.41

Referring to Fig. 3.10b for the mass to move from left to right U̇ > 0. The
equation of motion is written as

mU KU m g˙̇ + + =µ 0 3.42

or ˙̇U U gn+ = −ω µ2 3.43

The solution of Eq. 3.42 for motion from left to right is

U t A t B t g/K( ) sin cos= + −1 1ω ω µn n 3.44

Referring to Fig. 3.10c for the mass to move from right to left U̇ < 0. The
equation of motion is written as

mU KU m g˙̇ + − =µ 0 3.45

The solution of Eq. 3.45 for motion from right to left is

U t A t B tn n( ) sin cos= + +2 2ω ω µg/K 3.46

Assume initial conditions as U(0) = U0 and U̇ (0) = 0 and the motion is from
right to left.

Substituting the initial conditions in Eq. 3.46, we get

U(t) = (U0 – µmg/K) cos ωnt + µmg/K   0 ≤ t ≤ π/ωn 3.47

Equation 3.47 is valid until the motion to left ceases or when the velocity is
equal to zero.

U Un n( / ) ( 2 ), ( / ) 0π ω µ π ω= − + =0 m g/K U̇

K
KU

    mU̇̇

      ̇u > 0

Direction of motion

µmg

N = mg

KU

    mU̇̇ µmg

      U̇ < 0

Direction of motion

N = mg

3.10 Model for Coulomb damping.
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and the motion is from left to right.
Solving for constants in Eq. 3.44 using the conditions at t = π ω/ n , we get

the solution for the displacement as

U(t) = –(U0 – 3µmg/K) cos ωnt – µmg/K 3.48

Substituting when t = 2π/ωn we get

U U m g/K U(2 ) ( ), (2 / ) 0π ω µ π ω/ ˙
n n= − =0 4 3.49

Figure 3.11 shows the free vibration of a system with Coulomb damping. It
is seen that the amplitude decreases by 4Fd/K after every cycle and the
amplitudes decay linearly with time.

Example 3.7
For the system shown in Fig. 3.10W = 1kN; K = 70kN/m; coefficient of
friction µ = 0.15 and the initial conditions are initial displacement is 0.15m
with zero initial velocity. Determine the vibration displacement amplitude
after four cycles and number of cycles of motion completed before the mass
comes to rest.

Solution

Fd 0.15 1 0.15= = × =µN kN

ω n = = × =K
m

70 000 9.81
1000

26.2rad/s

T
n

= = =2 2
26.2

0.2398 sπ
ω

π

0 1 2 3 4 5
Time (sec)

D
is

p
la

ce
m

en
t 

(m
)

3

2

1

0

–1

–2

–3

3.11 Free vibration with Coulomb damping.
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After every cycle amplitude reduction

= 
4 4 0.15

70
8.57 10 m 8.57mmd 3F

K
= × = × =−

After four cycles displacement amplitude

= 150 – 4 × 8.57 = 115.72mm

Motion will cease when the amplitude of the nth cycle such that KUn ≤ Fd or
Un ≤ 2.14228mm.

150 – n × 8.57 ≤ 2.1428

n >17.25 cycles

This indicates that motion will terminate after 17.25 cycles.

3.6 Numerical method to find response due to

initial conditions only

The dynamic equation of equilibrium for free vibration of damped system
can be written as

m x c x˙̇ ˙+ + =K x 0 3.50

or

˙̇ ˙x x xn n+ + =2 02ρ ω ω 3.51

where

c/m K/m= =

= − = =
−

2 ;  ;  

;  ;  
(1 )2

ρω ω ω

ω ρ ω ω ρ ρ ρ
ρ

n n d

n n

2

21 3.52

and

b bn d0 1
2 2

22 2= = − =ρω ω ω ωω;  ; db 3.53

Defining

s t t c t t( ) e sin ( );  ( ) e cos ( )d d= =− −ρω ρωω ωn nt t 3.54

we get using the approach of Wilson

˙ ˙s t s t t c t t( ) ( ) ( );  (t) ( ) ( )= − + = − −ω ω ω ωd dc c s 3.55

˙̇ ˙s t b s t b c t c t b c t b s t( ) ( ) ( );  ( ) ( ) ( )= − − = − +1 2 1 2 3.56

A t c t s t A t
s t

1 2( ) ( ) ( );  ( )
( )

d
= + =ρ ω 3.57
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A t t3 1 4 2( ) ( ) ( ) ( )  ( ) ( )
( )

d
= = + = =˙ ˙ ˙ ; ˙ ˙

A t c t s t A t A
s tρ ω 3.58

A A c s A A
s

5 1 6 2( ) ( ) ( ) ( );  ( ) ( )
( )

d
t t t t t t

t= = + = =˙̇ ˙̇ ˙̇ ˙̇ ˙̇
ρ ω 3.59

x t A t A t( ) ( ) ( ) = +1 0 2 0x ẋ 3.60a

˙ ˙ ˙ ˙ ˙x A x A x A x A x( ) ( ) ( ) ( ) ( ) t t t t t= + = +1 0 2 0 3 0 4 0 3.60b

˙̇ ˙̇ ˙̇ ˙ ˙x A x A x A x A x( ) ( ) ( ) ( ) ( ) t t t t t= + = +1 0 2 0 5 0 6 0 3.60c

Equation 3.60 gives the relationship between displacement, velocity and
acceleration with time.

3.7 Program 3.1: MATLAB program for free

vibration of under-damped (SDOF) systems

clc
close all
%****************************************************
% give mass of the system
m=2;
%give stiffness of the system
k=8;
wn=sqrt(k/m);
%give damping coefficient
c1=1;
%give initial conditions - displacement and velocity
u(1)=.3;
udot(1)=.5;
uddot(1)=(-c1*udot(1)-k*u(1))/m;
%****************************************************
cc=2*sqrt(k*m);
rho=c1/cc;
wd=wn*sqrt(1-rho^2);
wba=rho*wn;
rhoba=rho/sqrt(1-rho^2);
b0=2.0*rho*wn;
b1=wd^2-wba^2;
b2=2.0*wba*wd;
dt=0.02;
t(1)=0;
for i=2:1500

t(i)=(i-1)*dt;
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s=exp(-rho*wn*t(i))*sin(wd*t(i));
c=exp(-rho*wn*t(i))*cos(wd*t(i));
sdot=-wba*s+wd*c;
cdot=-wba*c-wd*s;
sddot=-b1*s-b2*c;
cddot=-b1*c+b2*s;
a1=c+rhoba*s;
a2=s/wd;
a3=cdot+rhoba*sdot;
a4=sdot/wd;
a5=cddot+rhoba*sddot;
a6=sddot/wd;
u(i)=a1*u(1)+a2*udot(1);
udot(i)=a3*u(1)+a4*udot(1);
uddot(i)=a5*u(1)+a6*udot(1);

end
figure(1);
plot(t,u,‘k’);
xlabel(‘ time’);
ylabel(‘ displacement ’);
title(‘ displacement - time’);
figure(2);
plot(t,udot,‘k’);
xlabel(‘ time’);
ylabel(‘ velocity’);
title(‘ velocity - time’);
figure(3);
plot(t,uddot,‘k’);
xlabel(‘ time’);
ylabel(‘ acceleration’);
title(‘ acceleration- time’);

The displacement time, velocity time and accelertion time curves are
shown in Fig. 3.12.

3.8 Program 3.2: MATHEMATICA program for free

vibration of damped SDOF systems

1

16
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0.8

8

0.03(1. Cos[3.97995 x]+0.51927 Sin[3.97995 x])
{{y[x] -> ————————————————————————————————————————}}

0.4 x

E

0.03 (1. Cos[3.97995 x]+0.51927 Sin[3.97995 x])
———————————————————————————————————————————————

0.4 x

E

displacement

0.03

0.02

0.01

–0.01

–0.02

–0.03

5 10 15 20
time in secs

0.03 (1. Cos[3.97995 x]+0.51927 Sin[3.97995 x])
———————————————————————————————————————————————

0.4 x
E

{0.03, -0.0212113, 0.00553537, 0.00456859,
-0.00658279, 0.00384845, -0.000492167, -0.00128801,
0.0013758, -0.00065462,
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-0.0000313427, 0.000322237, -0.000274792,
0.000101551, 0.0000324349, -0.0000747065,
0.000052398, -0.0000134052, -0.0000115266,

-6
0.0000163566, -9.48387 10  }

4

Pi

—
2

0.00553537

0.0031892

1.73566

0.551387

94.93

0.569142

0.03 (2.06667 Cos[3.97995 x]-3.97995 Sin[3.97995 x])

——————————————————————————————————————————————————
0.4x
E

0.012 (1. Cos[3.97995 x]+0.51927 Sin[3.97995 x])
– ————————————————————————————————————————————————

0.4 x

E
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0.03 (2.06667 Cos[3.97995 x]-3.97995 Sin[3.97995 x])

——————————————————————————————————————————————————
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0.012 (1. Cos[3.97995 x]+0.51927 Sin[3.97995 x])
- ————————————————————————————————————————————————
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velocity
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0.03 (2.06667 Cos[3.97995 x]-3.97995 Sin[3.97995 x])
——————————————————————————————————————————————————

0.4x

E
0.012 (1. Cos[3.97995 x] + 0.51927 Sin[3.97995 x])

- —————————————————————————————————————————————————

0.4x
E

{0.05, 0.0402039, -0.0585079, 0.0343856, -0.00453622,
-0.0113839, 0.0122435, -0.00586079, -0.00024736,

0.00285517, -0.00244842,
0.000912015, 0.000282556, -0.000663096, 0.000467483,

-0.000121134, -0.000101461, 0.000145385, -0.0000847438,

0.0000106441, 0.0000285358}
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0.03 (2.06667 Cos[3.97995 x]-3.97995 Sin[3.97995 x])
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{0.05, 0.0402039, -0.0585079, 0.0343856, -0.00453622,

-0.0113839, 0.0122435, -0.00586079, -0.00024736,
0.00285517, -0.00244842,
0.000912015, 0.000282556, -0.000663096, 0.000467483,

-0.000121134, -0.000101461, 0.000145385, -0.0000847438,
0.0000106441, 0.0000285358}

3.9 Summary

Real structures dissipate energy while undergoing vibratory motion. The
common method is to assume that dissipated energy is proportional to damping
forces. Damping forces are proportional to velocity acting in the opposite
direction of motion. The analytical expression for the solution of the governing
differential equation depends on the magnitude of the damping ratio. Three
cases are possible: (i) under-damped system, (ii) critically damped system,
and (iii) over-damped system. A practical method of determining the damping
present in a system is to evaluate experimentally the logarithmic decrement
which is defined as the natural logarithm of the ratio of two consecutive
peaks in free vibration. The damping ratio in buildings and bridges is usually
less that 20% of critical damping. For such systems the damped frequency is
equal to the undamped natural frequency.

3.10 Exercises

1. A vibration system consists of a mass 50 kg, a spring of stiffness 30 kN/
m and a damper. The damping provided is only 20% of the critical value.
Determine (a) the damping factor, (b) the critical damping coefficient,
(c) the natural frequency of the damped vibrations, (d) the logarithmic
decrement and (e) the ratio of two consecutive amplitudes.

2. Determine the time at which the mass in a damped vibrating system
would settle down to 1/50th of its initial deflection for the following
data: m = 200 kg; ρ = 0.22; k = 40 N/mm.
Also find the number of oscillations completed to reach this value of
deflection.

3. In a single degree of damped vibrating system, a suspended mass of 8kg
makes 30 oscillations in 18 seconds. The amplitude decreases to 0.25 of
the initial value after five oscillations. Determine (a) the stiffness of the
spring, (b) logarithmic decrement, (c) the damping factor and (d) the
damping coefficient.

4. A machine mounted on springs and filled with a dashpot has a mass of
60kg. There are three springs each of stiffness 12N/nm. The amplitude
of vibration reduces from 45 to 8 mm in two complete oscillations.
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Assuming that the damping force varies as the velocity, determine (a)
the damping coefficient, (b) the ratio of frequencies of damped and
undamped vibrations and (c) the periodic time of damped vibration.

5. A machine weighs 18 kg and is supported on springs and dashpots. The
total stiffness of the spring is 12N/mm and damping is 0.2 N/mm/s. The
system is initially at rest and a velocity of 120mm/s is imparted to the
mass. Determine (a) the displacement and velocity of mass as a function
of time and (b) the displacement and velocity after 0.4 s.

6. A gun is so designed that on firing the barrel recoils against a spring. A
dashpot at the end of the recoil allows the barrel to come back to its
initial position within the minimum time without any oscillation. A gun
barrel has a mass of 500kg and a recoil spring of stiffness 300 N/mm.
The barrel recoils 1m on firing. Determine (a) the initial recoil velocity
of the gun barrel and (b) critical damping coefficient of the dashpot
engaged at the end of the recoil stroke.
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4
Forced vibration (harmonic force) of single-

degree-of-freedom systems in relation to
structural dynamics during earthquakes

Abstract: In this chapter, forced vibration of single-degree-of-freedom
(SDOF) systems (both undamped and under-damped) due to harmonic force
is considered. Governing equations are derived and the displacement
response is determined using Wilson’s recurrence formula. Vibration
excitation due to imbalance in rotating machines is discussed. Equations for
transmissibility are derived for force and displacement isolation. The
underlying principle of vibration-measuring instruments is illustrated.

Key words: resonance, transient, steady state, magnification factor, beating,
transmissibility, seismometer, accelerometer.

4.1 Forced vibration without damping

In many important vibration problems encountered in engineering work, the
exciting force is applied periodically during the motion. These are called
forced vibrations. The most common periodic force is a harmonic force of
time such as

P = P0 sin ωt 4.1

where P0 is a constant, ω is the forcing frequency and t is the time. The
motion is analysed using Fig. 4.1.

mx kx P t˙̇ + = 0  sin ω 4.2

The general solution of Eq. 4.2 (non-homogeneous second order differential
equation) consists of two parts x = xc + xp where xc = complementary solution,

    mẋ̇kx

P

k

x
m P = P0 sin ω t

4.1 Spring–mass system subjected to harmonic force.
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and xp = particular solution. The complementary solution is obtained by
setting right hand side as zero.

mx kx˙̇ c c+ = 0 4.3

xc = c1 sinωnt + c2 cos ωnt 4.4

where ω n = k/m c c and  and 1 2  are arbitrary constants.
Assume xp = A sin wt and substituting

mx kx P t˙̇ p p  sin + = 0 ω 4.5

(–ω2mA + kA) sin ωt = P0 sin ωt 4.6

A
P P=

−
=

−
0

2 2 21 1k m k k n( ) ( / )
0

ω ω ω/
4.7

Since β = ω/ωn,

A
P P=
−

=
−

0
2

0
21 1k

k
( ) ( )β β

/
4.8

If P0 is applied statically, the static deflection

δ st
P
k

= 0 4.9

A
( )

=
−
δ

β
st

1 2 4.10

The general solution of the forced vibration without damping is

 x = xc + xP 4.11

x
t t st t= + + −C Cn1 n sin  cos 

free vibration (transient)
 sin /( )

forced vibration (steady state)
ω ω δ ω β2

21
4.12

The first two terms of free vibration are dependent only on properties m and
k of the system and also on initial conditions. This is called transient vibration
because, in a real system, it is damped out by friction.

The third term represents forced vibration and depends on the amplitude
of applied force and forcing frequency ω (or β = ω/ωn). This is called steady
state vibration since it is the motion of the system after a transient vibration
is dissipated.

Resonance: Steady state vibration

x
tst

p
 sin 

( )
=

−
δ ω

β1 2 4.13
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The amplitude is δst/(1 – β 2) and it becomes infinite when β = 1. This
condition is called resonance.

Of course the amplitude does not become infinity in practice because of
damping or physical constraints but the condition is a dangerous one, causing
fractures. We define magnification factor as

MF = 1
( )

Px

stδ β
=

−1 2 4.14

and it is plotted as shown in Fig. 4.2. Several items are of particular interest
in this diagram.

Example 4.1
A 1500 kg truck cab is assumed to be supported by four springs each with
stiffness 120 kN/m. Determine the resonant frequency of the cab in unit of
Hz and the amplitude of vibration if the displacement input of each accelerator
is d = 0.05 sin 6t.

Solution
We know that

mx kx P t˙̇ + = 0  sin ω

m = 1500 kg; k = 4 × 120 × 1000 = 480 × 1000

P0 = kδ = 480 × 1000 × 0.05 = 24 000N

Substituting in the above equation,

1500 480 1000  sin 6˙̇x x+ × = P t0

MF

3

2

1

–1

–2

–3

–4

Motion in phase
with excitation

Motion 180°
out of phase
with excitation

Resonance

0 1 2 3 4 β

4.2 Magnification factor in forced vibration.
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δ ωst = =P
k
0 0.05; = 6

MF 1
(1 )

;  480 1000
1500

17.9 rad/s=
−

= = × =
β

ω2 n
k
m

Resonant frequency ω = ωn = 17.9

f n= = =ω
π π2

17.9
2

2.85Hz

MF
(6 / 17.9)

1.1266=
−

=1
1 2

Amplitude= δst × MF = 0.0563 m

Equation 4.12 is also written as

x = X sin (ωnt + φ) + δst sin (ωt)/(1– β2) 4.15

Three distinct types of motion are possible depending on whether the value
of frequency ratio β is less than, equal to or greater than 1.

If β <1 then ω < ωn indicating that the natural frequency response (transient)
is greater than forced response (steady state). The resulting motion is represented
in Fig. 4.3a. The free vibration portion of the motion completes several
cycles in the time required for one cycle of the forced response. The total
motion (depicted by dotted line) exhibits a sinusoidal variation about a lower
frequency base curve (represented by the solid line in Fig. 4.3a. In this case
the forced response is greater than the equivalent static deflection δst.

When the frequency ratio β > 1 then ωn < ω and the total motion is
characterized as the forced response oscillating about the free vibration portion
of the response as indicated in Fig. 4.3b. Also if β > 2 , the amplitude of
the forced response will be less than the equivalent static deflection δst.

Example 4.2
The undamped spring–mass system has a mass of 4.5 kg and a spring stiffness
of 3500 N/m. It is excited by a harmonic force having an amplitude F0

=100 N and an excitation frequency of ω =10 rad/s. The initial conditions are
x(0) = 0.015m and v(0) = 0.15 m/s. Determine (a) the frequency ratio (b) the
amplitude of the forced response (c) the displacement of the mass at time
t = 2 s. and (d) the velocity of mass at time t = 4 s. Draw the forced response
and total response curves. If the excitation frequency is 40 r/s determine how
the forced response and total response curves change.

Solution
The natural frequency of the system is calculated as
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ω = = =K/m 3500/4.5 27.89 rad/s

(a) Frequency ratio β ω
ω= = =

n

10
27.89

0.35855

(b) The frequency ratio is used to determine the amplitude of the forced
response as

D
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m
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)
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–0.02

–0.04
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Forced response

Total response
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Time (sec)
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Forced response
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(b)

4.3 (a) Steady state and transient response when β < 1; (b) β > 1.
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X
F K

f 2( )
100/3500

(1 0.35855 )
=

−
=

−
0

21
/
β

 = 0.032 78m

(c) To determine the displacement at t = 2 s the constants in the complete
solution must be evaluated by applying the initial conditions.

x
t t st t= + + −C Cn1 n sin  cos 

free vibration (transient)
 sin /( )

forced vibration (steady state)
ω ω δ ω β2

21

x C t C= + +1 sin (27.89 ) cos (27.89 ) 0.03278 sin (10 )2 t t

Using the initial conditions x(0) = 0.015 m and v(0) = 0.15 m/s we get

C C2 1= =0.015;  0.004 20

Substituting these values in displacement equation and t = 2 s, we get x
(t = 2) = 0.037 79m and v(t = 2) = 0.2270 m/s. The harmonic response
of an undamped single-degree-of-freedom (SDOF) system to harmonic
excitation for this problem is shown in Fig. 4.3a. When the excitation
frequency is 40 rad/s then β = 1.434; the harmonic response is shown in
Fig. 4.3b.

4.2 Beating phenomenon

Two very important phenomena occur when the frequency of the forcing
function ω approaches natural circular frequency of the system ωn or when
β → 1. First consider ω and ωn are nearly the same or ωn is slightly greater
than ω.

x c t c tn( ) sin ( ) cos ( )
(1 )

 sin (t tn
st= + +

−1 2 2ω ω δ
β

ω ) 4.16

Assume initial conditions to be zero, hence displacement x(t) may be written
as

x tst
n( )

(1 )
 [sin ( ) sin ( )]t t=

−
−δ

β
ω β ω2 4.17

Using ωn – ω = 2ε and simplifying Eq. 4.17 we get

x t t( )
2

 sin ( )  cos ( )t st n= −





δ ω
ε ε ω 4.18

ω is much larger than ε in the term sin (εt) and oscillates with much larger
period than cos (ωt) does. The resulting motion, illustrated in Fig. 4.4, is a
rapid oscillation with slowly varying amplitude and referred to as beat.
Sometimes the two sinusoids add to each other, and at other times they
cancel each other out, resulting in a beating phenomenon.
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Example 4.3
An undamped system is harmonically forced resulting in a beating condition.
The natural and excited frequencies are 1500 cycles/min and 1450 cycles/
min respectively. Determine (a) beat period (b) number of oscillations in
each beat and (c) the maximum amplitude of oscillation if W = 50kN and the
amplitude of steady state force is 25 kN.

Solution

Excited frequency = 1450 2
60

151.8 rad/s× =π

Natural frequency = 1500 2
60

157rad/s× =π

ε ω ω= − = − =n

2
157 151.8

2
2.6

(a) Beat period = 2.417s2π
ε =

(b) Number of oscillations within each beat

= 
2 /
2 /

2.417 151.8
2

58.4
π ε
π ω π= × =

(c) maximum amplitude =
2

δ ω
ε

st
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2π /ε

4.4 Beating phenomenon when ω → ωn.
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stiffness of the system = K = m nω 2  = 50 000 × 1572/9.81 = 12.57 × 107

N/m

δ st =
×

= × −25000
12.57 10

1.9899 10 m7
4

maximum amplitude = 1.9899 10 151.8
5.2

4× ×−

= 5.8 × 10–3m = 5.8mm

4.3 Resonance

When the excited frequency is exactly equal to the natural circular frequency
we get a condition known as resonance. At this point β = 1 and the amplitude
of vibration increases without bound. For this the solution given in Eq. 4.16
is no longer valid. The particular solution for the equation Eq. 4.5 now is

x
F
K

tnp( )
2

cos ( )t tn= − 0 ω ω 4.19

For zero initial conditions, the displacement is given as

x t
F
K

t tn n( )
2

[ cos ( ) sin ]= − −0 ω ω ωt n 4.20

The first term is predominant and the amplitude varies linearly with respect
to time as shown in Fig. 4.5.

Example 4.4
An SDOF system has a total weight of 5 kN and a spring stiffness of 360kN/
m. The system is excited at resonance by a harmonic force of 3 kN. Determine
the displacement amplitude of the forced response after (a) 1.25 cycles and
(b) 10.25 cycles.

Solution

δ st
F
K

= = =0 3
360

0.00833m

ω n
K
m

= = × =360000 9.81
5000

26.56rad/s

x tst n
n( )

2
sin ( )

0.00833 26.56 sin (26.56 )
2

0.1106 sin (26.56 )

t t
t t

t t

= = × × ×

=

δ ω ω
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(a) Noting that the natural period of the system T is equal to 2π/ωn, then
after 1.25 cycles

t T
n

= 1.25 = 2.5 0.295π
ω =

x t( ) 0.00833 1.25  sin (2.5 )

0.0327sin 2.5 0.0327m

= ×

= =

π π

π

(b) t after 10.25 cycles = 10.25 10.25 2 2.424T
n

= × =π
ω

x t( ) 0.00833 32.2 sin (20.5 ) 0.2682m= × =π

Equation 4.19 indicates that for a system operating at resonance, the amplitude
of the forced response increases linearly with time by πδst per cycle as
indicated in Fig. 4.5. Theoretically, the amplitude will eventually approach
infinity. In reality, however, the system will break down once the amplitude
becomes intolerably large for the structure. Fortunately, since the steady
state amplitude varies directly with time, the system would have to operate
at resonance for an extended period before the amplitude becomes destructively
large. Therefore, it is acceptable for a system or a machine in route to its
operating frequency to quickly pass through the resonance amplitude.
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(m
)

2
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1
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–2

4.5 Resonance condition (excited frequency is equal to natural
frequency).
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4.4 Forced vibration with damping

Consider a forced vibration of the under-damped system shown in Fig. 4.6.
The dynamic equilibrium equation is written as,

mx cx kx P t˙̇ ˙+ + = 0  sin ω 4.21

Equation 4.21 is a second order non-homogeneous equation and it has both
a complementary solution xc and a particular solution xP . xc is same as that
for free vibration of an under-damped system.

x X tc
t

n
n= − +−e (sin )ρω ω ρ φ1 2 4.22a

tan
( )

φ ω
ρ ω= +
d x

v xn

0

0 0
4.22b

Assume

xP = D cos ωt + E sin ωt. 4.22c

Substituting for xP  in Eq. 4.21, we get

m(–ω2D cos ωt – w2E sin ωt) + c(–ωD sin ωt + ωE cos ωt)

+ k(D cos ωt + E cos ωt) = P0 sin ωt 4.23

cos ωt(–mω2D + ωc + kD) + sin ωt(–ω2Em– cωD + kE)

= P0 sin ωt 4.24

Comparing coefficient of cosωt and sin ωt on both sides we get

D(k – mω2) + ωcE = 0 4.25a

–ωcD + E(k – mω2) = P0 4.25b

D(1 – β2) + 2ρβE = 0 4.25c

–2ρβ D + E(1 – β2) = P0/k 4.25d

kx
    mẋ̇

    cẋ̇

P0 sin ωt

k

C

P0 sin ωt

      x x x, , ˙ ˙˙

m

4.6 Forced vibration of under-damped system.
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Solving,

D
P

= −
− +

0
2

(2 )
[(1 ) (2 ) ]

ρβ
β ρβk 2 2 4.25e

E
P= − −

− +
0

2

2

(1 )
[(1 ) (2 ) ]2 2

β
β ρβk 4.25f

x
k

tP
0P

( ) ( )
 cos = −

+ −
2

2 12 2 2

ρβ
ρβ β

ω

+ −
+ −

P ( )
( ) ( )

 sin 0

k
t

1
2 1

2

2 2 2

β
ρβ β

ω 4.26

= X sin (ωt – ψ) = X (sin ωt cos ψ – cos ωt sin ψ) 4.27

Comparing

X
P

 cos
( )

( ) ( )
ψ β

β ρβ
= −

− +
0

2

2 2 2

1
1 2k

4.28a

X
P
k

 sin 
( )

( ) ( )
ψ ρβ

β ρβ
=

− +
0

2 2 2

2
1 2

4.28b

Squaring and adding

X
k

=
− +

P0

2 2 21 2
1

( ) ( )β ρβ
4.29a

tan 
( )

ψ ρβ
β

=
−
2

1 2 4.29b

Now x x xc p= + 4.30a

x A tnt
n= − +−e (sin )ρω ω ρ φ1 2

+
− +

−P
k

t0

2 2 2

1
1 2( ) ( )

 sin ( )
β ρβ

ω ψ 4.30b

In Eq. 4.30b, the first term corresponds to the transient state and the second
term corresponds to the steady state.

The amplitude of steady state

δ
β ρβ

δ
β ρβ

=
− +

=
− +

P k st0

2 2 2 2 2 21 2 1 2

/

( ) ( ) ( ) ( )
4.31
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MF = =
− +

δ
δ β ρβst

1
( ) ( )1 22 2 2

4.32

and the plot of MF is shown in Fig. 4.7.
The dramatic increase in MF near the natural frequency ωn is called

resonance and ω is called the resonance frequency. The following items are
of interest in the diagram.

• Static loading: ω δ= =0 0; / / 1.P k  It is independent of damping.
• Resonance: ω = ωn the amplitude is magnified substantially when the

coefficient of viscous damping ρ is low.
• High-frequency excitation: ω >> ωn; δ/δst � 0 the mass is essentially

stationary because of its inertia of any damping of motion.
• Large coefficient of viscous damping: The amplitude of the vibration is

reduced at all values of (ω/ωn) as the coefficient of viscous damping ρ
is increased in a particular system.

4.5 Program 4.1: MATHEMATICA program to find

displacement response of under-damped

system subjected to sinusoidal loading

2

1

MF

3.0

2.0

1.0

β

1.0 2.0 3.0 4.0 5.0

ρ = –1.0

ρ = 0

ρ = 0.25

ρ = 0.375

ρ = 5

β
1.0 2.0 3.0

ρ = 1 ρ = 0.375

180

ψ

90

4.7 Magnification factor versus frequency ratio.
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4.6 Recurrence formula of Wilson

The recurrence formula is derived in a similar way to that of free vibration
of an under-damped system. The displacement is given in terms of Eq. 4.30.
The displacement x is written as

x(t) = AC + BS + D cos + E si 4.33a

where

S Cn nt
d

t
d= =− −e sin ;  e cosρ ω ρ ωω ωt t 4.33b

(where the functions C and S are defined in Chapter 3) and co = cos (ωt); si
= sin (ωt) where ω is the excited frequency. Differentiating with respect to
time t we get velocity expression as

˙( ) ˙ ˙x t A B D si E co= + − +C S ω ω 4.34

The constants D and E are given in Eq. 4.25e and f respectively.
For the initial conditions of displacement and velocity the displacement at

any time is given as

x t c s x s

c s E

D D

D D

( ) [ ( ) ] ( / )

          [ ( )] ( / )

= + +

− + − + +

ω ω ω

ω ω ω ω

/ ˙0 0x

D / S D co E si
4.35

Apart from the last two terms other terms belong to transient part and the last
two terms to steady state. Figure 4.8 shows the transient, steady state and
total response for forced vibration of under-damped SDOF system.

Total response Transient Steady state
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–3

4.8 Transient, steady state and total response.
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4.7 Program 4.2: MATLAB program for finding

response due to harmonic force

clc
close all
%****************************************************
% give mass of the system
m=6;
%give stiffness of the system
k=8;
wn=sqrt(k/m);
%give damping coefficient
c1=2;
%give initial conditions - displacement and velocity
u(1)=.25;
udot(1)=.5;
% give magnitude of harmonic force
f=4;
%give excited frequency of the force
w=1;
%****************************************************
beta=w/wn;
cc=2*sqrt(k*m);
rho=c1/cc;
wd=wn*sqrt(1-rho^2);
wba=rho*wn;
rhoba=rho/sqrt(1-rho^2);
b0=2.0*rho*wn;
b1=wd^2-wn^2;
b2=2.0*wba*wd;
dt=0.02;
t(1)=0;
for i=2:1500

t(i)=(i-1)*dt;
s=exp(-rho*wn*t(i))*sin(wd*t(i));
c=exp(-rho*wn*t(i))*cos(wd*t(i));
sdot=-wba*s+wd*c;
cdot=-wba*c-wd*s;
sddot=-b1*s-b2*c;
cddot=-b1*c+b2*s;
a1=c+rhoba*s;
a2=s/wd;
d=-2.0*f*(rho*beta)/(k*(1-beta^2)^2+(2*rho*beta)^2);
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e=f*(1-beta^2)/(k*(1-beta^2)^2+(2*rho*beta)^2);
u(i)=a1*u(1)+a2*udot(1)-d*(c+wba*s/wd)-e*w*s/wd;
v(i)=d*(cos(w*t(i)))+e*sin(w*t(i));
x(i)=u(i)+v(i);

end
figure(1);
plot(t,x,‘k’);
xlabel(‘ time’);
ylabel(‘ displacement ’);
title(‘ displacement - time’);

4.8 Vector relationship in forced vibration

For small values of ω/ωn << 1, both inertia and damping forces are small,
which results in a small phase angle ψ. The magnitude of the impressed force
is then nearly equal to the spring force as shown in Fig. 4.9a. For ω/ωn = 1,
the phase angle is 90° and the force diagram appears as in Fig. 4.9b. The
inertia force, which is now larger, is balanced by the spring force; whereas
the impressed force overcomes the damping force. The amplitude at resonance
can be found from Eq. 4.29a. At large values of ω/ωn > 1 the phase angle
approaches 180° and the impressed force is expended almost entirely in
overcoming the large inertia force as shown in Fig. 4.9c

Example 4.5
An SDOF system shown in Fig. 4.10 is modelled as 3000kg mass on a
spring stiffness k = 400 kN/m. The system has a damping factor of c/cc= 0.4.
Assume that the spring is attached to the base whose vertical displacement
are defined by d  = 0.04 sin 6t. Write the equation of motion of m for steady

4.9 Vector relationship in forced vibration.

    m xnω 2

  c xnω

ψ
Kx

F0

    m xnω 2

F0 Kx

  c xnω

F0 Kx

    m xnω 2

  c xnω

ψ = 90°
(a) (b)

(c)
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vibration. Determine the magnification factor of the amplitude of vibration,
the amplitude A and phase angleψ.

Solution

my cy k y d˙̇ ˙+ + − =(  sin ) 00 ωt

my cy ky kd t˙̇ ˙+ + = 0  sin ω

The above equation is the same as Eq. 4.21.

ω = = × =k
m

400 10
3000

11.5rad/s
3

MF 1
) ( )

=
− +

δ
β ρβd0 2 2 21 2

=
− + × ×

1
[1 (6/11.5) ] (2 .4 6/11.5)2 2 2

A = = × =1.19 1.19 0.04 0.0476 md0

c = =0.4 0.4 (2 )cc km

= × × ×

=

0.4 2 400 10 3000

27.720Ns/m

3

ψ ρβ
β

=
−

= × ×
−









−tan
( )

tan
2 4 (6 / 115)
[ ( / . ) ]

1 –12
1 1 6 11 52 2

∴ = ⇒ = °−ψ ωtan (0.57) 29.71

Example 4.6
A weight attached to a spring of stiffness 530 N/m and undergoes viscous
damping and the weight was displaced and released as shown in Fig. 4.11.

    mẏ̇

    cẏ

k(y – d0 sin ω t)

k

m
y

c

d – d0 sin ω t

4.10 An SDOF system.
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The period of vibration was found to be 1.8 seconds. The ratio of consecutive
amplitudes was found to be 4.2/1. Determine the amplitude and phase angle
when a force of 200 cos 3t acts on the system.

Solution
Given k = 530 N/m; t = 1.8 seconds; (xn+1/xn) = 4.2
Logarithmic decrement = loge 4.2 = 1.435

2

1
1.435

πρ
ρ−

=
2

4
( )

1.4352π ρ
ρ

2 2

21 −
=

2.059(1 – ρ2) = 4π2ρ2

Solving,

ρ = 0.2226

Period = = =
−

=T
n

2 2
1 2

π
ω

π
ω ρd

1.8

2π
ω n 1 0.2226

1.8
2−

=

Solving,

ω n = 3.5805

ω n m
= = =k

m
530 3.5805

m = =530
3.5805

41.3kg2

530N/m

m F = 200 cos 3t

c

4.11 Spring–mass and damper system.
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F t= =200 cos 3 ; 3ω

β ω
ω= = =

n

3
3.5805

0.837

δ st
F
k

= = =0 200
530

0.372

Magnification factor

MF 1
( ) ( )

1
(1 0.837 ) (2  0.2226  0.837)

2.092
2 2 2

=
− +

=
− + × ×

=

1 2 22 2β ρβ

Amplitude = δst(MF) = 0.372(2.092) = 0.779

Phase angle ψ ρβ
β

=
−

= × ×
−







= ° ′tan
( )

tan
2  0.2226  0.837

1 .837
51 21–1 –1

2

2
1 02

Hence XP = 0.779 sin (3t – ψ) is a steady state.

Example 4.7
The spring of an automobile trailer shown in Fig. 4.12 is compressed under
its weight by 100mm. Find the critical speed when the tractor is travelling
over a road with a profile approximated by a sine wave of amplitude 75mm
and a wavelength of 16m. What will be the amplitude of vibration at
64 km/h? Neglect damping.

Solution

Profile of the road = y = 0.075 sin (2πs/16)

The equation of motion mx k x y˙̇ + − =( ) 0  or mx kx ky˙̇ + =

˙̇x x yn n+ =ω δ ω2 2

s = distance covered = vt

s

16m

w x
y

4.12 Trailer on a road profile.
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64 1000
3600

17.77m/s× =

∴   s = 17.77t

y t= ×0.075 sin 2 17.77
16

π

Forcing frequency

ω π= × =2 17.77
16

6.98

y = 0.075 sin 6.98t

ω δn
g= = = = =k

m
kg
W st

9.81
0.1

9.9rad/s

ωn = 2π(v/L)

v = × =9.90 16
2

25.2m/sπ
When ω = ωn resonance occurs and that speed is called the critical speed.

Critical speed 25.2 3600
1000

90.75km/h= × =

at    64km/h;  6.98
9.9

0.7052β ω
ω= = =

n

Amplitude 0.075
(1  0.7052)

0.149mst=
−

=
−

=2 21
δ

β

4.9 Rotating imbalance

Imbalance in rotating machines is a common source of vibration excitation.
Let us consider a spring–mass system constrained to move in the vertical
direction and excited by a rotating machine that is unbalanced as shown in
Fig. 4.13. The imbalance is represented by an eccentric mass m with eccentricity
e rotating with angular velocityω.

Let x be the displacement of the non-rotating mass (M–m) from the static
equilibrium position, and the displacement of m is

x + e sin ωt

The equation of motion is

( ) d
d

 (  sin )M m m
t

x e t kx cx− + + = − −˙̇ ˙x
2

2 ω 4.36
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Mx cx kx me t˙̇ ˙+ + = ( ) sin ω ω2 4.37

It is evident that the above equation is identical to Eq. 4.21 where P0 is
replaced by meω2. Hence steady state amplitude is given by

X
me / me/M=

− +
=

− +
ω

β ρβ
β

β ρβ

2

2 2 2

2

2 2 21 2 1 2

k

( ) ( )

( )

( ) ( )
4.38

or 
( ) ( )

Mx
me

=
− +

β
β ρβ

2

2 2 21 2
4.39

and tan 
( )

φ ρβ
β

=
−
2

1 2 4.40

The solution is

x X tnt
n= − +−

1
21e  sin ( )ρω ω ρ φ

+
− +

−me /ω
β ρβ

ω φ
2

2 2 21 2

k
t

( ) ( )
sin ( ) 4.41

MX/me versus frequency is plotted in Fig. 4.14 for various damping ratios.
The phase angle with respect to frequency ratio for various damping values
is the same as in Fig. 4.7.

Example 4.8
A machine part having a mass of 2.5kg vibrates in a viscous medium.
A harmonic exciting force of 30N acts on the part and causes resonant
amplitude of 14 mm with a period of 0.22s. Find the damping coefficient. If
the frequency of the exciting force is changed to 4 Hz, also determine the

m

e

ω t
x

M

k/2

c
k /2

4.13 Harmonic disturbing force.
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increase in the amplitude of the forced vibration upon the removal of the
damper.

Solution

Given 2.5kg;  30 N;  14mm;  0.22sm P= = = =0 A T

ω ω π π= = = =n T
2 2

0.22
28.56rad/s

At resonance ω = ωn

ω n
k
m

= = 28.56

k m= × = × =28.56 2.5 28.56 2039N/m2 2

Magnification factor =
− +

1
( ) ( )1 22 2 2β ρβ

At resonance β = 1

MF 1
2

= ρ

A
(30/2039)

0.014;  0.526= = = =P /0

2 2
k

ρ ρ ρ

M
X

/m
e  

fa
ct

o
r

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6

Frequecy ratio

rho = 0.2

rho = 0.4

rho = 0.6

rho = 0.8
rho = 1.0

rho = 1.2

4.14 Plot of MX/me factor with frequency ratio for rotating
imbalance.
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c kmc = 2

c = × = × × =0.526 c 0.526 2 2039 2.5 75.04N/m/sc

If ω π π β= = × = =2 2f 4 25.13rad;  25.13
28.56

MF 1

1 –
25.13
28.56

2 0.526
25.13
28.56

= 1.0495

2 2
=















 + × × 











2

Amplitude MF= = ×A
P
k
0  = 30

2039
 (MF) = 00155m

Without damper ρ = 0

MF
(25.13/28.56)

4.429=
−

=1
1 2

A = 



 =30

2039
(MF) 0.0652m

Increase in magnitude = 0.0652 – 0.0155 = 0.0497m

Example 4.9
A single cylinder vertical diesel engine has a mass of 400kg and is mounted
on a steel chassis frame. The static deflection owing to the weight of the
chassis is 2.4mm. The reciprocating mass of the engine is 18kg and the
stroke of the engine is 160 mm. A dashpot with a damping coefficient of
2N/mm/s is also used to dampen the vibration. In the steady state of vibration,
determine (a) the amplitude of the vibration if the driving shaft rotates at 500
rpm and (b) the speed of the driving shaft when the resonance occurs.

Solution
Given m = 400 kg; N = 500rpm; c = 2000 N/m/s

ω π π= = × =2
60

2 500
60

52.36rad/sN

kδ = mg

k × 0.0024 = 400 × 9.81; k = 1.635 × 106N/m

∴   ω n
k
m

= = × =1.635 10
400

63.93rad/s
6
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β ω
ω= = =

n

52.36
63.93

0.819

Since stroke is 0.16, radius = 0.08m. Centrifugal force due to reciprocating
parts (or static force)

P0 = mr ω2 = 18 × 0.08(52.36)2 = 3948N

(a) Amplitude

A =
− +

= ×
− +

P k0

2

6

2 2 2

/

( ) ( )

(3948/1.635 10 )

(1  0.819 ) (2  0.819)1 22 2β ρβ ρ

cc = = × × =2 2 1.635 10 400 51148.46km

ρ ρ= = =c
c

2000
51148.4

0.039

A = ×
− + × ×

=3948/1.635 10

(1  0.819 ) (2  0.039  0.819)
0.0072m

6

2 2 2

(b) Resonant speed

ω = ωn = 63.93 rad/s

2
60

63.93 and 610.5rpmπN N= =

Example 4.10
A body having a mass of 15kg is suspended from a spring which deflects
12mm under the weight of the mass. Determine the frequency of free vibration
and also the viscous damping force needed to make the motion periodic or
a speed of 1mm/s.

When dampened to this extent, a disturbing force having a maximum
value of 100N and vibrating at 6Hz is made to act on the body. Determine
the amplitude of ultimate motion.

Solution
Given 15kg; δst = 12mm; P0 = 100N; f = 6Hz

f
st

n
g= = =1

2
1

2
9.81

0.012
4.55Hzπ δ π

The motion becomes a periodic when the damped frequency is zero or
when it is critically damped, i.e. ρ = 1 and ω = ωn = 2πf = 2π × 4.55 = 28.59
rad/s
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c c km mc n= = = = × ×2 2 ω 2 15 28.59

= 857N/m/s = 0.857N/mm/s

Thus the force required is 0.857N at a speed of 1mm/s

ω n
k
m

= = 28.59

where

k = 28.592 × 15 = 12260N/m

ω = 2π × f = 2π × 6 = 37.7 rad/s

A =
− + ×

= =

(100/12 260)

[ (37.7/28.59) ] (2 37.7/28.59)

0.00298m 2.98mm

1 2 2 2

4.10 Transmissibility (force isolation)

Consider the spring–mass–damper system subjected to harmonic force shown
in Fig. 4.15 which is generated by machines and engines. These vibrations
are often unavoidable; however, their effect on a dynamical system can be
reduced significantly by properly designed springs and damper system known
as isolators.

We know that the displacement response is given by

x
tst=

−
− +

δ ω ψ
β ρβ

 sin ( )

(1 ) (2 )2 2 2
4.42

The force transmitted to the foundation is given by

F k x c x
F t

T 2 2 2

[sin ( ) (2 ) cos ( )]

(1 ) (2 )
= + =

− + −
− +

˙ 0 ω ψ ρ β ω ψ
β ρ β

t
4.43

k/2 k/2

c

F0 sin (ωt)

4.15 Isolation.
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Hence magnitude of the force transmitted to the foundation is given by

F FT

2

2 2 2

1 (2 )

(1 ) (2 )
=

+

− +
0

ρ β

β ρ β 4.44

Transmissibility is defined as the proportion of the force transmitted to the
foundation given by

TR
1 (2 )

(1 ) (2 )
T

2

2 2 2
= =

+

− +
F
F0

ρ β

β ρ β 4.45

4.11 Program 4.3: MATLAB program to compute MF,

MX/me and TR

for i=1:6
rho=i*0.2;
z(i)=rho;
for j=1:61

x(j)=(j-1)*0.1;
% take y according to 1 - harmonic force
% 2 - machine with imbalance
% 3 - transmissibility

% 1- for harmonic force
% y(j,i)=1/(sqrt((1-x(j)^2)^2+(2*rho*x(j))^2));
% 2- when the machine running with imbalance mass with speed omega
%y(j,i)=x(j)^2/(sqrt((1-x(j)^2)^2+(2*rho*x(j))^2));
%3- Transmissibility
y(j,i)=sqrt(1+(2.0*rho*x(j))^2)/(sqrt((1-x(j)^2)^2+(2*rho*x(j))^2));
end

end
for i=1:61

z1(i)=y(i,1)
z2(i)=y(i,2)
z3(i)=y(i,3)
z4(i)=y(i,4)
z5(i)=y(i,5)
z6(i)=y(i,6)

end
% 1- ylabel MF
% 2- ylabel MX/me
% 3- ylabel TR
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figure(1)
plot(x,z1,x,z2,x,z3,x,z4,x,z5,x,z6)
xlabel(‘ time’)
ylabel(‘ TR factor’)
gtext(‘ rho=0.2’)
gtext(‘ rho=0.4’)
gtext(‘ rho=0.6’);
gtext(‘rho=0.8’)
gtext(‘rho=1.0’)
gtext(‘ rho=1.2’)
figure(2)
surf(z,x,y);
zlabel(‘TR’);
xlabel(‘ zeta’)
ylabel(‘ beta’)

Figures 4.16 and 4.17 show the variation of TR for various values of frequency
ratios for different values of damping.

4.12 Effectiveness of foundation

For the design of a vibration isolation system, it is convenient to express
behaviour of the system in terms of isolation effectiveness rather than
transmissibility effectiveness. An isolation system (see Fig. 4.15) is effective
only if β > 1.414 and since damping is undesirable in that range, it is evident

Tr
an

sm
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si
b

ili
ty

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6

Frequency ratio

rho = 0.2

rho = 0.4

rho = 0.6

rho = 1.0

rho = 0.8

rho = 1.2

4.16 Transmissibility versus frequency ratio.
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that isolated monitoring should have very little damping. When ρ = 0 and β
> 1.414 TR = 1/(β2 – 1). Then in that case effectiveness of the foundation is
given by (1–TR).

Simplifying we get

β ω δ β2
2

2TR TR 1;
(1 TR)

TR
− = = = +st

g
4.46

or δ
πst f

= +g(1 TR)
4 TR2 2 4.47

4.13 Displacement isolation

Consider the spring mass damper system shown in Fig. 4.18 in which the
support moves by xs. The equation of motion is written as

Mx c x x k x xs s˙̇ ˙ ˙+ − + − =( ) ( ) 0 4.48

Denoting x x xR s= −  Eq. 4.48 is rewritten as

Mx cx kx MxR R R s˙̇ ˙ ˙̇+ + = − 4.49

Simplifying we get for relative displacement as

x
M x t

k
R

s=
−

− +
ω ω ψ

β ρβ

2 sin ( )

(1 ) (2 )2 2 2
4.50a

4.17 Transmissibility varying with respect to frequency ratio and
damping factor.
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or

x
x

R
s=

−
− +

β ω ψ
β ρβ

2 sin ( )

(1 ) (2 )2 2 2

t
4.50b

xR is lagging behind x by an angle of ψ as shown in Fig. 4.19.

x x x x xR s R s
2 2 2= + + 2 cos ( )ψ 4.51

and tan ( )
2

(1 )
ψ ρβ

β
=

− 2 4.52

Hence x is written as in terms of TR as

TR
1 (2 )

(1 ) (2 )

2

2 2 2
= =

+

− +
x
xs

ρ β

β ρ β 4.53

Hence transmissibility of force and displacement are the same.

4.14 Vibration-measuring instruments

• Seismometer: This works for large values of β or a low value of natural
frequency. Hence a seismometer is a low natural frequency instrument.
When β becomes infinity, the relative displacement xR becomes equal to
xs (see Eq. 4.50a). The mass M then remains stationary while the supporting
case moves with the vibrating body. A large seismometer is required.
This instrument will have natural frequency of 2–5 Hz and a useful
range of 10–500Hz.

• Accelerometer: These instruments are of smaller size with high sensitivity.
Using the instrument acceleration is obtained and velocity and displacement
are obtained by integration. Examining Eq. 4.50a when β → 0

x
x t

R
s=

−( ) sin ( )ω ω ψ
ω

2

2
n

4.54

k /2 k /2

x

c xs

4.18 Displacement isolation.

x
xs

xRψ

4.19 Vector sum.

�� �� �� �� �� ��



Forced vibration (harmonic force) of SDOF systems 97

and the amplitude is

x
x

R
s

n n

= =ω
ω ω

2

2 2
acceleration 4.55

Accelerometers are high-frequency instruments and the useful range for β is
from zero to 0.4. Those used for earthquake measurements have a natural
frequency of 20 Hz, which allows ground motion of frequency less than 8Hz
to be reproduced. This is shown in Fig. 4.20.

4.15 How to evaluate damping in SDOF

4.15.1 Amplitude decrement in free vibration

We have seen in Chapter 3 that logarithmic decrement is written as

δ =
+

1 ln
n

x
x

m

m n
4.56

where xm, xm+n are the amplitudes after m and m + n cycles. Logarithmic
decrement is also written as

δ πρ
ρ

=
−

2

(1 )2
4.57
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4.20 Accelerometer and seismometer.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering98

For very small damping δ = 2πρ. Hence 4.58

ρ π=
+

1
2

ln
n

x
x

m

m n
4.59

By using a minimal instrumentation, one can find the damping coefficient by
measuring amplitudes at m and m + n cycles.

4.15.2 Measuring resonant amplitude

Harmonic excitation is applied to the structure by applying harmonic load F0

sin (ωt). A frequency–response curve for a damped structure is shown in Fig.
4.7. The dynamic magnification factor (DMF) is given by

DMF 1
(1 ) (2 )2 2 2

= =
− +

x
stδ β ρβ

4.60

when  β = 1,

DMF 1
2

= ==x

st

β

δ ρ
1

4.61

It is difficult to measure x(β=1) and hence it is practical to measure at a
slightly lower frequency as xβ=1–ε. Thus the damping factor is given by

ρ δ
β ε

=
= −

st

2( )x 1
4.62

In this method, evaluation of static displacement may pose a problem because
many type of loading systems cannot be operated at zero frequency.

4.15.3 Bandwidth methods (see Fig. 4.21)

To determine the damping factor by this method determine the frequency
ratio β for which

DMF

  DMF/ 2

2ρ

β1 β2

4.21 Bandwidth method.
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DMF 1
2

(DMF) 1
2 2

max= =
ρ

4.63

1
2 2

1
(1 ) (2 )2 2 2ρ β ρβ

=
− +

4.64

Solving

β ρ ρ ρ ρ ρ

β ρ ρ ρ ρ ρ

1
2 2

1
2 2

= − − + = − −

= − + + = + −

1 2 2 (1 ) 1

1 2 2 (1 ) 1

2 2

2 2
4.65

bandwidth = β2 – β1 ≈ 2ρ 4.66

or ρ β β= −2 1

2
4.67

The reciprocal of bandwidth is commonly defined as the quality factor Q
given by

Q = − =1
( )

1
22 1β β ρ 4.68

Example 4.11
Data collected from a frequency response test of a structure were plotted to
construct a response curve similar to the one shown for DMF vs. frequency
ratio. From the plot it was determined that DMFmax was 1.35 and DMF at
half power points was 0.95. The response ratios corresponding to half power
points are 0.91 and 1.05 respectively. Estimate the amount of damping in the
system.

Solution

Q = − =1
1.05 0.91

7.14

Q = =1
2

7.14ρ

 ρ = 0.07

4.16 Response to ground acceleration

Referring to Fig. 4.15 when the base moves by xg the equation of motion is
written as

M x x c x k xg( ) 0˙̇ ˙̇ ˙+ + + = 4.69

�� �� �� �� �� ��



Structural dynamics of earthquake engineering100

where x is the relative displacement and ˙̇xg  is the ground acceleration given
by

˙̇ ˙̇x x tg g= 0 sin ( )ω 4.70

Equation 4.69 is simplified to

˙̇ ˙ ˙̇x x x xn n g+ + = −2 2ρ ω ω ω0  sin ( )t 4.71

The relative displacement response is given by

x xg n( ) sin ( )(DMF)/t t= − −˙̇ 0
2ω ψ ω 4.72

where DMF is given by

DMF 1
(1 ) (2 )2 2 2

=
− +β ρβ

4.73

Total acceleration of the mass is

˙̇ ˙̇ ˙̇x t x x tt
g( ) ( )= + 4.74

Assuming ˙̇x t
0  is the maximum value of the amplitude then transmissibility

is given by

TR
1 (2 )

( ) (2 )

2

2 2
= =

+

− +

˙̇
˙̇
x
x

t

g

0

0 21

ρβ

β ρβ
4.75

The value of acceleration ˙̇x t
0  transmitted to the mass and the amplitude ˙̇xg 0

of the ground acceleration is also known as the TR of the system. It is clear
that TR for ground acceleration problem is the same as ground displacement
problem.

TR
1 (2 )

(1 ) (2 )
0

0

2

2 2 2
= =

+

− +
x
x

t

g

ρβ

β ρβ
4.76

Example 4.12
A sensitive instrument with weight 500N is to be installed at a location
where vertical acceleration is 0.1g and at frequency = 10Hz. This instrument
is mounted on a rubber pad of stiffness 12800 N/m and damping such that
the damping factor is 0.1.

(a) What acceleration is transmitted to the instrument?
(b) If the instrument can tolerate only an acceleration of 0.005 suggest a

solution assuming that the same rubber pad is used.
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Solution

(a) ω n
k
M

= = × = 
12800 9.81

500
rad/s15 84.

excited frequency ω = 2π × 10 = 62.83rad/s

frequency ratio β ω
ω= = =62.83

15.84
3.966

TR
1 (2 )

(1 ) (2 )

2

2 2 2
= =

+

− +

˙̇
˙̇
x
x

t

g

0

0

ρβ

β ρβ

Substituting for β = 3.966, ρ = 0.1

TR = 0.0867

or ˙̇x t
0  = 0.0867 × 0.1g = 0.00867g

Damping coefficient of rubber pad = 2ρ kM

= × =0.2 12800 500/9.81 161.54 s/mN

(a)Assume some weight is added. Now the weight is W (newtons)

ω n W W
= × =12800 9.81 354.36

Frequency ratio = β = =62.83
354.36

0.177
W

W

Damping factor = ρ = =
×

=c
c W Wc

161.54
2 12800 /9.81

2.236

2 2 2.236 0.177 0.7915ρβ = × × =W
W

TR 0.005
0.01

0.05 1 0.7915

[1 (0.177 ) ] 0.7915

2

2 2 2
= = = +

− +W

We get quadratic equation in W as

0.000 975 W2 – 0.0626W – 648.774 = 0

Solving we get W = 815.72 Ns.

4.17 Exercises

1. A single-cylinder vertical diesel engine has a mass of 400kg and is
mounted on a steel chassis frame. The static deflection owing to the
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weight of the chassis is 2.4mm. The reciprocating masses of the engine
amount to 18kg and the stroke of the engine is 160mm. A dashpot with
a damping coefficient of 2N/mm/s is also used to dampen the vibrations.
In the steady state of vibration, determine
(a) the amplitude of vibration of the driving shaft which rotates at 500

rpm;
(b) the speed of the driving shaft when the resonance occurs.

2. In a single-degree damped vibrating system the suspended mass of 4kg
makes 24 oscillations in 20 seconds. The amplitude decreases to 0.3 of
the initial value after 4 oscillations. Find the stiffness of the spring, the
logarithmic decrement, the damping factor and damping coefficient.

3. A 100kg instrument is resting on four springs whose static deflection is
0.02m. The mass is deflected to additional 0.03m by an external force
and released. The damping factor is c/cc = 0.1. Determine the general
solution of the vibration.

4. A simple fatigue testing machine is modelled as a mass m = 20kg which
is constrained to move vertically. A mass of 1kg is rotating at 1800 rpm
on a 20cm diameter path centred at point O on block M. Calculate the
amplitude of vibration of M if k = 20kN/m, ρ = 300Ns/m. (see Fig.
4.22).

5. The suspension of an automobile may be approximated by the simplified
spring and dashpot system shown in Fig. 4.23.
(a) Write the differential equation defining absolute motion of the mass

‘m’ when the system moves at a speed ‘v’ over a road of sinusoidal
cross-section as shown.

(b) Derive an expression for the amplitude of the absolute motion of
‘m’.

4.22

w

0

m

M

k
c
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6. A spring mass damper system is subjected to an external force of the
form F0 sin pt. Show that maximum amplitude occurs at a frequency

ratio given by p/w = −1 2 2ρ  and the maximum value of MF

is[1/2 (1 ) ]ρ ρ− 2  where ρ = c/cc.
7. A spring mass damper is displaced initially by an amount x0 from its

equilibrium position and released with zero velocity. Show that the energy
loss in one cycle is given by

E kx c

m
= − −

−
























1
2

1 exp 2
( / ) ( / )

0
2

22
π

k m c m

8. A delicate test apparatus is placed on a platform of mass 20kg which
rests on springs with a combined stiffness of 2kN/m with a combined
damping coefficient of 50N s/m. If the floor vibrates sinusoidal with an
amplitude of 0.5mm and with a frequency of 20Hz, determine the
amplitude of motion of the platform.

9. An air blower of mass 500kg is subjected to a disturbing force of 2.1kN
at a frequency of 1440 rpm. The blower is mounted on springs with a
static deflection of 4mm. If the damping factor is 0.2, determine the
amplitude of motion.
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5
Response of structures to periodic

dynamic loadings

Abstract: In many real problems, it is found that exciting forces vary with
time in a non-harmonic fashion that may be periodic or non-periodic. When
the function defined over a period repeats indefinitely, it is known as a
periodic function. In this chapter, we apply the Fourier series to determine
the response of the system to periodic forces.

Key words: periodic function, Fourier series, odd function, even function,
frequency domain, spectrum, Gibbs phenomenon.

5.1 Introduction

We have seen in Chapter 4 that harmonic excitation occurs in power installations
equipped with rotating and reciprocating machinery. The solution to harmonic
excitation is simple and straightforward since a closed form solution is always
available. In many realistic situations, the exciting forces vary with time in
a non-harmonic fashion that may be periodic or non-periodic. A periodic
function is one in which the portion defined over a period T0 repeats itself
indefinitely, (see Fig. 5.1). Propeller force on a ship, wind loading induced
by vortex shedding on tall slender structures are the examples of periodic
forces, whereas, earthquake ground motion has no resemblance to periodic
function.

This chapter presents the application of Fourier series to determine the
response of a system to periodic forces in the frequency domain, an alternative
approach to the usual analysis of time domain. To make practical use of
Fourier method, it is necessary to replace the integration with finite sums.

Fo
rc

e

Time

T0

5.1 Periodic excitation.
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5.2 Fourier analysis

Consider an undamped single-degree-of-freedom (SDOF) system subjected
to force F(t)

The governing equation is written as

mx kx F t˙̇ ( )+ = 5.1a

˙̇ ( )x x
F
m

f tn+ =ω 2 0 5.1b

Let the forcing function be represented as shown in Fig. 5.2. The duration
of one pulse or period T0 = 4s.

F(t) = 10 t <2s

F(t) = –10 2 < t < 4 5.2

Fourier has shown that a periodic function can be expressed as a sum of
infinite number of sine and cosine terms and such a sum is known as a
Fourier series.

F t
a

a t a t b t b t( )
2

{ cos cos 2 } { sin sin }0
1 2= + + … + + …ω ω ω ω1 2 2

or

F t
a

a n t b n tn n( ) {= + +
=

∞0

2
Σ

n 1
cos sin }ω ω 5.3

where the frequency of excited forcing function is

ω π= 2
0T

5.4

The coefficients a0, an, bn are evaluated once we know the forcing function
to be

a
T

F t t
t

t T

0
0

2

1

1 0

=
+

∫ ( ) d

Force
10

Time

4s2s

5.2 Forcing function (odd).
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a
T

F t n t tn
t

t T

=
+

∫2
0 1

1 0

( ) cos ( ) dω

b
T

F t n t tn
t

t T

=
+

∫2
0 1

1 0

( ) sin ( ) dω 5.5

t1 in Eq. 5.5 can take any value of time, but is usually – T/2 or zero. Note that
Fourier coefficients a1, an, bn may be expedited if the forcing function can be
recognized as being odd or even. If the forcing function is anti-symmetric
about the origin (y-axis) then it is an odd function. For example, the given
function shown in Fig. 5.2 is an odd function because

F(t) = – F(–t) 5.6a

For an odd function, the Fourier coefficients a0, a1,…, an = 0
The forcing function is even if

F(t) = F(–t) 5.6b

For an even function, the Fourier coefficients b0, b1,…, bn = 0
Clearly then an odd function can be represented by the Fourier sine series

and an even function by the Fourier cosine series. If, however, the function
is neither odd nor even, then the full Fourier series must be employed. The
Fourier coefficients can very easily be evaluated using the MATHEMATICA
package as shown by the following examples.

Example 5.1
Determine the Fourier series expression for the square wave, periodic function
as shown in Fig. 5.2. Plot the Fourier representation for the first four non-
zero harmonic components. (Assume F0 = 10)

Solution
Since the forcing function is an odd function, the Fourier coefficients a0,
a1,…, an = 0. Thus the forcing function is represented by the Fourier sine
series as

F t b n t
n n( )  sin ( )=

=

∞
Σ

1
ω

where

b
T

F t n t tn
T

T

=
−∫2 ( ) sin ( d

0 / 2

/ 2

0

0

ω )

or
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b
T

F t n t tn

T

= ∫4 ( ) sin ( ) d
0

/ 20

0
ω

= 40 sin ( ) d
–40 cos ( )

0 0

/ 2

0 0

/ 20 0

T
n t t

T
n t

n

T

∫ = 





ω ω
ω

T

b
n

nn = −20 [ cos ( )]π π1

b
nn
40
π  for n = 1, 3, 5…

bn = 0 for n = 2, 4, 6

Since

T0 = 4s
4 2

ω π π= =2

F t t t t( ) [sin ( / ) sin ( 2)/ sin ( /2)/ ]= + + …40 2 3 3 5 5π π π π/

The forcing function is represented in Fig. 5.3 in terms of 1, 2, 3 and 4 non-
zero terms of Fourier series.

Example 5.2
Determine the Fourier series expression for square wave periodic forcing
function as shown in Fig. 5.4. Plot the Fourier representation of the first four
non-zero components.

–0 –1 1 2

10

5

–5

–10

Force

Time

5.3 Odd function represented by sine series.
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Solution
Since F(t) is an even function, b1, b2, bn are zero. Thus ‘a’ coefficients are
represented by Fourier cosine series as

F t
a

a n t
n n( )  sin ( )= +

=

∞
0

12
Σ ω

a
T

F t t
T

0
0 0

4= ∫ ( ) d
0 /2

= −




∫ ∫4 d d = 0

0

0

0/4

/4

/2

T
t t

T

T

T

0 0
10 10

a
T

F t n t tn

T

= ∫4 ( ) cos ( ) d
0

/ 20

0
ω

= −








∫ ∫4 cos ( d cos d

0

/40

T
n t t n t t

T

T

T

0 4

2

10 10
0

0

ω ω) ( )
/

/

T0 8 2
8 4

= = =s;ω π π

a n t t n t tn

T

T

T

= −








∫ ∫4 4 4

0

0

4

2

T0 0

/ 4

10 cos ( ) d 10 cos ( ) d
0

π π/ /
/

/

a
n

n
n n

nn = + −







1
2

40 sin ( /2) 40 [sin ( /2) sin ( ]π
π

π π
π

)

= − … = …−4
( 1) 1, 3, 5( )/ 2F

n
nn0 1

π

10 Force

Time

2s 4s

5.4 Forcing function (even).
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i.e. F t
n

n t
n

( ) 40 ( 1)
cos ( )

=1,3,5

( ) / 2

= −
…

∞ −

π πΣ
n

1

4/

In Fig. 5.5 the forcing function is represented in terms of 1, 2, 3, 4 non-zero
terms of cosine series.

The MATHEMATICA program is used to find the Fourier coefficients.

Example 5.3
Determine the Fourier series expansion for a square wave periodic forcing
function as shown in Fig. 5.6. Plot the Fourier representation of the first four
non-zero components

Force

10

5

–5

–10

–4 4
Time

5.5 Even function represented by cosine series.

1 2 3 4
Time

Force

10

8

6

4

2

5.6 General function represented by both sine and cosine series.
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Solution
Since F(t) is neither odd nor even function, this should contain both sine and
cosine terms. In Fig. 5.6 the forcing function is represented in terms of 1, 2,
3 and 4 non-zero terms of Fourier series.

5.3 Program 5.1: MATHEMATICA program to

determine Fourier coefficients of forcing

function

4

1

2

4

1

1

-
4

Pi

—
2

4

10

0
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If[t < 2, f[t], g[t]]

10

10

10 Sin[n Pi]
—————————————

n Pi

-10 (-1 + Cos[n Pi])

————————————————————
n Pi

Pi t
20 Sin[——]

2
5 + ——————————

Pi

10

8

6

4

2

1 2 3 4
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Pi t 3 Pi t
20 Sin[——] 20 Sin[———]

2 2

5 + —————————— + —————————————
Pi 3 Pi

Pi t 3 Pi t 5 Pi t
20 Sin[——] 20 Sin[———] 4 Sin[———]

2 2 2
5 + ————————— + ——————————— + ———————————

Pi 3 Pi Pi

Pi t 3 Pi t 5 Pi t 7 Pi t
20 Sin[——] 20 Sin[——] 4 Sin[——] 20 Sin[——]

2 2 2 2
5 + ———————— + ————————— + ———————— + —————————

Pi 3 Pi Pi 7 Pi

10

8

6

4

2

1 2 3 4
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10

8

6

4

2

1 2 3 4

10

8

6

4

2

1 2 3 4
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8

6

4

2

1 2 3 4
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10

8

6

4

2

1 2 3 4
Time

Force

4

5.4 Response to periodic excitation

Next, consider the response of a viscously damped SDOF system to periodic
non-harmonic excitation of period T0. The differential equation of motion of
steady state response is given by

mx cx kx F t
a

a n t b n t
n n n˙̇ ˙+ + = ( ) =

2
+ [ cos + sin ]0

=1
Σ
∞

ω ω 5.7

in which Fourier series expansion was used to represent F(t). The transient
response will decay with time and is hence neglected. To obtain the particular
solution for the steady state response, it is noted that differential equation is
linear, and therefore principle of superposition is applicable. Hence the steady
state response is merely the sum of the individual particular solutions for all
harmonic terms representing F(t). Hence we obtain

x t
a

k
a n t b n t

k n n
p

n n n n( )
[ cos ( ) sin ( )]

(1 ) (2 )=1 2 2 2 2
= +

− + −
− +

∞
0

2
Σ

n

ω ψ ω ψ
β ρ β

5.8

where ψ ρ β
βn

n

n
=

−
−tan

(1 )
1 2

2 2 5.9

and the frequency ratio β ω
ω=

n
5.10

in which ψn is the phase angle for the steady state response.
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5.5 Program 5.2: MATHEMATICA program for

finding the response to a periodic function

4

1

2

4

1

1
-

4

Pi
—

2

4

5 t
———

 2

5 t
———
 2
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10

5

–5

5 10 15 20

Displacement

Time

008

Example 5.4
For the harmonic periodic forcing function shown in Fig. 5.5 determine the
steady state response for a viscously under-damped SDOF system.
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Solution

F t
F

n
n t

T

n

( ) = − 





∞ −4 0

=1,3,5

( 1) / 2

0

( 1)
cos

2
π

πΣ
n

The differential equation of motion is given by

mx cx kx F t
F

n
n t

T

n
˙̇ ˙+ + = = − 





∞ −
( )

( 1)
cos

2
=1,3,5

( ) / 24 0
1

0π
πΣ

n

x t
F

n k n n

n t
Tp

n

n( )
4 ( 1)

) ( )
cos

=1,3,5

( ) / 2

= −
− +

−





∞ −
0

1

2 2 2 01 2

2
π β ρ β

π ψΣ
n (

where ψ ρ β
βn

n

n
=

−
−tan

(1 )
1

2 2

2

and β ω
ω=

n

Example 5.5
The building frame shown in Fig. 5.7 is constructed of rigid girders
and flexible columns. The frame supports a uniformly distributed load of
weight of 130kN and is subjected at its girder level to the periodic force
described in Fig. 5.4. Evaluate the steady state response of the structure and
plot displacement vs. time assuming F0 = 80kN, period of exciting force is
2 s, E = 200GPa, damping factor = 0.1, height of end columns is 4m, the
height of centre column is 6m and the span of the beams is 6m. The values
of I for end columns and centre column are 2.6 × 108 and 3.254 × 108mm4

respectively.

5.7 Building frame.

4m
6m

6m

130kN
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Solution

Stiffness of two end columns =

k EI
h1

9 8

12
6 200 10 2 6 10

10 64
= × × = × × × ×

×
= ×2 3 . 4.875 10

1
3

6

Stiffness of centre column = k EI
h2 = ×12

2
3

= × × × ×
×

12 200 10 3.254 10
10 216

9 8

12

= 3.6155 × 106

Total stiffness of columns = 8.490 × 106N/m

Mass of the building = 130 1000
9.81

13251kg× =

ω n
k
m

= = =8490000
13251

25.3rad/s

ω π π π β ω
ω= = = = =2 2

2
; 0.12417

T n0

ρ = 0.1

Using the MATHEMATICA program, one can get the displacement response
as shown in Fig. 5.8.

Time
5 10 15 20

Displacement

7.5 ×10–6

5.0×10–6

2.5 × 10–6

–2.5 ×10–6

–5.0 ×10–6

–7.5 ×10–6

5.8 Displacement response.
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Example 5.6
Consider a system loaded as shown in Fig. 5.9. Find the steady state response.

Solution

a
T

t T t F
T

0
0

0= =∫2 sin (2 d0 0
0

/20

F π π/ ) /

a
T

F t T n t T tn

T

= ∫2 sin(2 cos (2 d0
0

/ 20

0
0 0π π/ ) / )

=
=

−
=

0
2

1
0

2

, odd

, even

n
F

n
nπ ( )

b
T

F t T n t T t
F

n

n
n

T

= = =
>∫2 sin (2 sin (2 d ,

,   
0

/ 20

0
0

0
0

0

2
1

0 1
π π/ ) / )

Thus forcing function can be written as

F(t) =

 ×
F

t t t t0
1 1 1 12

2 4π
π ϖ ϖ ϖ ϖ1 sin 2

3
cos 2

15
cos 2

35
cos 6+ − − − …( )

in which ϖ = 2π/T0.
Using the MATHEMATICA program, the displacement response is obtained

for β = π/4, T0 = 4s ρ = 0.25 as shown in Fig. 5.10.

5.6 Frequency domain analysis

The dynamic response of the complex systems can be examined by two
approaches: time domain solution and the frequency domain solution. Up to
now, all solutions have been in time domain and the equations are solved by

Fo
rc

e

F0 sin (2πt/T0)

Time

T0 /2 T0 /2

5.9 Excited Force.
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integrating with time. In frequency domain technique, the amplitude coefficients
in the Fourier series solution corresponding to each frequency are determined.
For this we use discrete Fourier transform (DFT) or fast Fourier transform
(FFT) methods.

5.7 Alternative form of Fourier series

The arbitrary periodic forcing function can be represented in the form of
Fourier series (see Eq. 5.3) as

F t
a

a n t b n t
n n n( ) =

2
+ ( cos + sin )0

=1
Σ
∞

ω ω 5.11

in which a0, a1… an, b1, b2, … bn are real constants, t is the time and ω is the
forcing frequency given by ω = 2π/T0 where T0 is the period of the forcing
function. If the period of the forcing function is not known or if the forcing
function does not have period for this case ω = 2π/TD where TD is the total
time duration of the forcing function.

Equation 5.11 may also be written as

F t
a

a b a a b n tn n n n n( ) ( [= + + +
∞

0

=1
1/ 2 1/ 2

2
) { /( ) ] cosΣ

n
2 2 2 2 ω

  + +[ ] sinb a b n tn n n/( ) }/2 2 1 2 ω 5.12

or

F t
a

a b n tn n n( )  ( ) [cos ( ) cos
=1

1/ 2= + +
∞

0 2 2
2

Σ
n

ψ ω

  + sin(ψn) sin n ω t] 5.13

Displacement

10

7.0

5

2.5

–2.5

–5

–7.5

5 10 15 20
Time

5.10 Displacement response.
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or

F t
a

a b n tn n n( )
2

 ( ) [cos( )]0

=1
2 2 1/ 2= + + −

∞
Σ

n
ω ψ 5.14

where

tanψ n
n

n

b
a

= 5.15

Define constants

A
a

A a bn n n0
0 1/ 2

2
; ( )= = +2 2 5.16

Now forcing function is written as

F t A n tn n( ) = −
∞
Σ

n=0
cos ( )ω ψ 5.17

in which ψ0 = 0. Hence forcing function is now written in terms of positive
real amplitude and phase shift. This method replaces the coefficients of an,
bn by An, ψn. There is still the same number of coefficients. The plots of An

and ψn are called amplitude spectrum and phase spectrum respectively. They
are discrete and occur at Fourier frequencies nω = (2π n)/TD.

Example 5.7
A periodic load function of three frequency components is given by

F(t) = 10 cos (ω t – 0.5) + 7 cos (2ω t – 0.2) + 2 cos (3 ω t – 0.1)

in which ω = 2π/TD and TD = 5s. Plot the periodic function and the amplitude
and phase spectrum.

Solution
The equation for the coefficients are given as

a
T

F t t
D

TD

0
2 ( )d= ∫0

a
T

F t n t tn
D

TD

= ∫2 ( ) cos( dω )
0

b
T

F t n t tn
D

TD

= ∫2 ( )sin ( )dω
0

except that we use TD as fundamental period. Evaluating the integrals in the
above equations yields the values given in Table 5.1.
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5.8 Program 5.3: MATLAB program to evaluate

amplitudes and phase angles

clc;
close all;
for i=1:200

t(i)=(i-1)/40;
p(i)=10*cos(2*pi*t(i)/5–0.5)+7.0*cos(4*pi*t(i)/5–0.2)+2.0*cos(6.0*pi*t(i)/
5–0.1)

end
figure(1)
plot(t,p)
xlabel(‘ t’);
ylabel(‘p(t)’);
title(‘ time series plot’);
figure(2)
a=fft(p);
plot(abs(a));
title(‘ amplitude’)
for i=1:200

b(i)=real(a(i));
c(i)=imag(a(i));
d(i)=atan(-c(i)/b(i));
e(i)=sqrt(b(i)^2+c(i)^2);

end
print{‘ real part’,\n);
b
print(‘ imaginary part’,\n);
c
print(‘ phase angle’,\n);
d
print(‘ amplitude’,\n)’
e

Table.5.1 Amplitudes and phase angles

n nω an bn     A a bn n n = (  + )2 2 1/2

    
ψ n

n

n

b
a

= tan –1 





0 0 0 – 0
1 ω 8.77 –4.794 10 0.5
2 2ω 6.86 –1.39 7 0.2
3 3ω 1.99 –0.199 2 0.1
4 4ω 0 0 0 –
5 5ω 0 0 0 –
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figure(3)
plot(d);
title(‘ phase’)
figure(4);
plot(t,b,t,c,’*’);
title(‘ real and imaginary part(*)’)

The forcing function F(t) examined in Example 5.6 is rather a simple
function, although, from the plot presented in Fig. 5.11a it is not readily

0 1 2 3 4 5
Time
(a)

p
(t

)

20

15

10

5

0

–5

–10

–15

0 1 2 3 4 5
Time
(b)

A
m

p
lit

u
d

e

1200

1000

800

600

400

200

0

5.11 (a) Forcing function; (b) amplitude spectrum; (c) phase
spectrum.
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apparent that this is a simple function. However the amplitude and phase
spectrum parts shown in Fig. 5.11b and 5.11c reveal clearly three cosines
and their phases. As functions become more complex with many frequency
components, plots of amplitude spectra become even more important in
understanding the structure of the functions.

Example 5.8
A simple periodic load is characterized by the following deterministic amplitude
coefficients

F
F

m m m

p p

4
(1 ( / ) )e p

4
= 





−ω
ω

ω ω  m = 0, 1, 2,…

ωp = peak frequency
ωm = Fourier frequency
Fp = amplitude of the forcing function at the peak frequency
Fp = 5; ωp = 2π; TD = 100s. Assume random phase spectrum

Solution
The amplitude spectrum is to be determined. The time series is determined
using

F t
i m ti

m( ) 5
2

2
e cos

=1

5 4
[ ( / ) ]4= ×





 −





−Σ
m

π
π

π ψ
100

2
100

1 100

Figure 5.12 shows the time series and amplitude spectrum using the MATLAB
program.

0 1 2 3 4 5
Time

(c)

P
h

as
e 

an
g

le

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

5.11 Continued
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5.9 Expression of forcing function using complex

variable approach

The forcing function is written as

F t
a

a n t b n tn n( )
2

( cos sin )0

=1
= + +

∞
Σ

n
ω ω 5.18

0 50 100 150 200
t

(a)

Time series plot

p
(t

)

5

4

3

2

1

0

–1
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–3

–4

–5

0 50 100 150 200
t

(b)

Amplitude
45

40

35

30

25

20

15

10

5

0

5.12 (a) Time series plot; (b) phase spectrum.
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Writing cos (n ω t) and sin (n ω t) terms of exponential

cos(n ω t) = (einωt) + e–inωt)/2 5.19

sin(n ω t) = (einωt) – e–inωt)/2 5.20

where i = –1 , and collecting similar terms we get

F t
a a i b a i bn n i n t n n i n t( )
2

( )
2

e
( )

2
e

=1
= + − + +∞

−0 Σ
n

ω ω 5.21

Using new constants as

P
a

P
a i b

P
a i b

n
n n

n
n n

0 2
;

2
;

2
= = − = +

−
0 5.22

Hence forcing function is written as

F t Pn
i n t( ) e

=–
=

∞

∞
Σ

n
ω 5.23

Equation 5.23 is the exponential form of the Fourier series. Now the summation
is from –∞ to ∞. When n < 0, Fourier frequencies are negative.

Now the coefficient Pn is written as

P
T

F t tn
i n t

t

t Td

= −
+

∫1
D

( ) e dω 5.24

P Pn= * = complex conjugate of Pn

P
T

F t t
t

t T

0
D

1 ( )d
D

=
+

∫ 5.25

In fact P0 is real in value since F(t) is real in value.

Example 5.9
Determine Pn for the square wave of Example. 5.1. Sketch the spectra of
R(Pn), I(Pn), |Pn|.

Solution

P
T

F t
T

F tn
i n t

T
i n t

T

T

= + −− −∫ ∫1 e d 1 ( ) e d
D

0
0

/ 2

D
0

0

D

D / 2

D
ω ω

Integrating and substituting ωTD = 2π, we get

P
i F

nn
i n i n= − −− −0

(2 e e )
2

1 2
π

π π

P
n

F i
n

nn = −
0

2 0

  even

  if oddπ
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These coefficients can very easily be obtained using the MATHEMATICA
package:

n = 5

5
qn = Integrate[Exp[-0.4*n*Pi*t*I], {t, 0, 2.5}]
9.745107727628695*^-17 - 0.3183098861837907*I

rn = Integrate[Exp[-0.4*n*Pi*t*I], {t, 2.5, 5}]

-2.9235323182886082*^-16 + 0.3183098861837907*I

pn = 10*(qn - rn)/5
7.796086182102956*^-16 - 1.2732395447351628*I

The exponential form is more convenient to use than the real form. To
illustrate the fact, consider SDOF system subjected to harmonic forcing. The
equation of motion is given by

mx cx kx F t Pn
i n t˙̇ ˙+ + = =

∞

∞
( ) e

=–
Σ

n
ω 5.26

The steady state solution of Eq. 5.26 will respond to same frequencies making
up the forcing function.

R(Fn)

I(Fn)

|Fn |

5 3 1 1 3 5

20/5π

20/3π

20/π

5.13 Real, imaginary and absolute values of spectra.
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x t Xn
i n t( ) e

=–

=
=

∞

∞
Σ

n

n
ω 5.27

Substituting Eq. 5.27 in Eq. 5.26 yields

(–n2ω2m + i c n ω + k) xn = Pn 5.28

or

xn = HnPn 5.29

where Hn is given by

H
n m i c n k

k n m ic n

k n m c n
n =

− + +
= − −

− +
1

( ( )2 2

2 2

ω ω
ω ω

ω ω2 2 2 2)
5.30

Writing in this way, the response at each frequency is simply a function of
the forcing transfer function. For a given structure H depends only on frequency
nω. This is termed the frequency domain solution. Consider β as the frequency
ratio and ρ as the damping factor. The function Hn is written as

H
n i n

k n nn =
− −
− +

( ) ( )1 2
1 2

2 2

2 2 2 2

β β ρ
β β ρ[( ) ( ) ] 5.31

The phase is now defined as

ψ β ρ
βn

n

n

H
H

n

n
= =

−
− −tan

Im
Re

tan
2

(1 )
1 1

2 2
5.32

in which Re and Im denote real and imaginary parts.
Hence x(t) is written as

x t P
n n

i n t n( ) e ( )=
=−∞

∞
+Σ | |Hn

ω ψ 5.33

where the amplitude or modulus of transfer function is represented by

| | | |H H Hn n=
) (2 ]2 2 2 2 1/ 2

=
− +

1
1k n n[( )β β ρ

5.34

where Hn
* is the complex conjugate of Pn and φn is the phase. It is to be noted

that forcing function Pn can be complex. Expressing Pn as a modulus and
phase we get

x t P
n n

i n t n( ) e ( + )=
=−∞

∞
+Σ | || |Hn

nω ψ φ 5.35

Since the spectral coefficients are even, this implies that a spectrum plot we
can consider either all frequencies between –∞ and ∞ or just frequencies
from 0 to ∞ and double the heights. The former is called a double-sided
spectrum and the latter is called a single-sided spectrum. Both spectra are
reasonable representations and both are used in practice.
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5.10 Discrete Fourier transform (DFT) and fast

Fourier transform (FFT)

Although Fourier integral technique discussed in previous sections provide
a means for determining the transient response of a system, numerical integral
of the Fourier integral became a practical reality only with the publication of
Cooley-Tukey algorithm for the FFT in 1965. Since that date, FFT has
revolutionized many areas of technology such as the areas of measurements
and instrumentation.

Two steps are involved in the numerical evaluation of Fourier transforms.
DFTs correspond to the equation

F t P
n n

i n t( ) e=
=−∞

∞
Σ ω 5.36

and

P
T

F t tn
i n t

t

t T

= −
+

∫1 ( ) e d
D

D
ω 5.37

Assume ∆t is a uniform time increment

∆t = TD/N 5.38

where N is the number of points in the time series approximation of F(t). We
can write

nω = 2πn/TD = 2πn fD 5.39

The DFT is given as

f
T

P n Nn m
n m N= = … −1 e ; , , 1

D =0

–1
Σ

m

N
2 0 1 2π / 5.40

and the frequency coefficients are expressed as

P
T
N

f m Nm n n
n m i N= = … −

=
−D

–1
/e ;  0, 1, 2, ,Σ

0
2 1

N
π 5.41

The total number of discrete time values and frequency values are same.
The N term appearing before the summation in Eq. 5.40 is not unique. In

DFT it can be used as 1/N in Eqs. 5.40 and 5.41 or N  in both.

Example 5.10
Determine the DFT of the following function defined by

f (n ∆t) = 6 + 14 sin (nπ/2) … n = 0, 1, 2,…, 7

Solution
Before developing a solution using the DFT, it is useful to first examine the
time series. The discrete trigonometric Fourier series is expressed as
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f a a n m N b n m Nn m m= +0 2/ / / )Σ
m

N

=1

–1
[ cos (2 )] + [ cos (2 ]π π

In this example N = 8 and all coefficients are zero except a0 = 12; b2 = 14.
For this problem the solution could be determined by inspection. With use of
the Euler formulae, the time series is written as

Fn = 6–7ieinπ/2 + 7i e–inπ/2

The transform of the series is given by

P
T
N

F m Nm n
i n m= … = −−D

=0

–1
/ 4e 0,1, 2 1Σ

n

N
2 π

P
T
N

im
in m in m i n= + −( )− −D

=0

–1
/ 4

=0

–1
/ 4 / 26 e e eΣ Σ

n

N

n

N
π π π14

2

+ ( ) −i in m i n14
2

Σ
n

N

=0

–1
/ 4 – / 2e eπ π

These coefficients may be evaluated using the MATHEMATICA package
and given by

P
T

P
T

P
T

i

P
T

P
T

P
T

P
T

i
P
T

0

D

1

D

2

D

3

D

4

D

5

D

6

D

7

D

6 7

0 0 0

7

= = = −

= = =

= =























0

0

These are the same coefficients that were determined by inspection of equation
defining Pn, Pm = Pm+n or P–2 = P6.

5.11 Gibbs phenomenon

The Fourier series approximation of a square wave has been plotted in Fig.
5.34. The approximation is generally quite good as shown in the figure.
However, an inaccuracy exists at the corners of the wave. Sines and cosines
are smooth, continuous functions and therefore are best suited to approximately
other smooth and continuous functions. However, jumps or discontinuities
exist in them and the approximation is poor. For the square wave a discontinuity
exists at t/T0 = 0.5. At this location, the square wave has two values +1 and
–1. When the function has jumps or double values, a Fourier series passes
through the mean of the two points as shown in Fig. 5.34, which in our case
is zero. It is also to be noted that t/T0 = 0.5 the square wave is vertical. The
fourier series tends to overshoot at the corners. This is called the Gibbs
phenomenon. This does not disappear even if large number of terms are used
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in the series. It is concluded that the Gibbs phenomenon is local and the
contribution to total energy is minimal.

5.12 Summary

Fourier integrals can be evaluated numerically. There are a number of software
packages available to do this, such as MATHEMATICA and MATLAB. DFT
has a finite number of frequencies and Fourier integrals have continuous
frequencies in the interval –∞ < f < ∞ and high frequency terms are lost. The
other way of doing the Fourier integral is to use polynomial interpolation
functions which can be integrated analytically over most of the data.

5.13 Exercises

1. Determine the Fourier series representation for the forcing function shown
in Fig. 5.14. The load is given by

f t
f t T t T

t T
( )

0
0/ 2=

<
>





0 0
2

0

2

2

( / )

/

Verify your answer using the MATHEMATICA package.
2. Determine the real Fourier series for the periodic excitation shown in

Fig. 5.15
3. The undamped SDOF system shown in Fig. 5.16 is subjected to excitation

f (t) given in problem 2. (a) Determine the steady state response of the
system if ωn = 2.5ω (b) Sketch the response spectra for Pn and xn.

f0

T0/2

5.14

f0

T0

5.15

k
m

f (t)

5.16
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4. If the under-damped system of SDOF with damping coefficient C is
subjected to exciting force of Problem 2, determine the steady state
response when ωn = 2ω and damping factor = 0.1

5. A 20N weight is attached to a spring damper system similar to the one
shown in Fig. 5.16. The weight is acted upon by a horizontal force with
the following frequency components

j Aj f (Hz) Phase (j)

1 1 0.02 219°
2 2 0.04 18°
3 3 0.08 2°
4 2 0.16 246°
5 1 0.32 233°

f t f tj j( ) cos (2 )
=1

5
= +Σ

j jA π φ

Assume k =1N/m and 10% critical damping determine amplitude and
phase spectra for the forcing function using FFT. Plot the amplitude of
the forcing and response spectrum.

6. Determine horizontal displacement spectra for the steel frame shown in
Fig. 5.17. the periodic horizontal force is given by

f t
f t T t T

T t T
( )

sin (2 / ) 0 /2

0 /2
0

0
=

< <
< <





0 0

0

π

with f0 = 1kN, T0 = 5s, I = 2.3 × 108mm4, height of column = 4m and
span of the beam = 5m.
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6
Response of structures to impulsive loads

Abstract: Impulsive force is a force of large magnitude that acts over a
short time interval. In practice, vehicles and cranes are subjected to
impulsive loads. In this chapter, the response of the single-degree-of-
freedom system with or without damping subjected to impulsive loads is
considered. The concept of response spectrum, which is a very useful tool in
the design, is also illustrated.

Key words: impulsive loads, dynamic magnification factor, shear frame,
Duhamel integral, ramp, response spectrum, Laplace transform.

6.1 Introduction

An impulsive load consists of a single principal impulse as illustrated in Fig.
6.1. Such a load is generally of short duration. Vehicles and cranes, etc., are
subjected to impulsive loads. The maximum response is reached due to
impulsive loads within a short period of time before damping forces absorb
much energy. Hence for this reason only, an undamped response to impulsive
loads will be considered, and for completeness an under-damped system
subjected to impulsive load will also be discussed.

6.2 Impulsive loading – sine wave

Consider a sine wave impulse as shown in Fig. 6.2 with the duration of sine
pulse as t1.

t

F (t)

6.1 Arbitrary impulsive loading.

�� �� �� �� �� ��



Response of structures to impulsive loads 137

6.2.1 Phase I

During this phase, the structure is subjected to harmonic loading starting
from rest. The undamped response including transient and steady state may
be obtained as

x t
F

k
t t t tn( )

(1 )
[sin ( ) sin ( )]    00

2 1=
−

− ≤ ≤
β

ω β ω 6.1

where β is the frequency ratio, ωn is the natural frequency of the system and
t1 is the time duration of the pulse.

6.2.2 Phase II

In this phase, there is no impulsive load but at the start of the second phase,
i.e. t′ = t–t1 = 0, there will be velocity and displacement present at the end of
phase I that is, at the end of Phase I and at the beginning of Phase II

x t x t t
F

k
t tn( 0) ( )

(1 )
[sin ( ) sin ( )2 1 1′ = = = =

−
−1

0

β
ω β ω ] 6.2

ẋ t
F

k
t tn n( )

(1 )
[ cos ( ) cos ( )]0

2 1 1=
−

−
β

ω ω βω ω 6.3

We have seen in Chapter 2 the response of undamped system due to initial
velocity and initial displacement is given by

x t x t t
x t

tn
n

n( ) ( 0) cos ( )
( 0)

sin ( )′ = ′ = ′ + ′ = ′ω ω ω
˙

6.4a

or

x t x t t t t
x t t

t tn
n

n( ) ( ) cos [ ( ) ]
( )

sin [ ( )]1
1

1= = − + = −ω ω ω1
˙

for t ≥ t1 6.4b

t

F
(t

)

t1

6.2 Half sine wave F(t) = F0 sin(ω t).
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x t
F

k
t t t tn( )

(1 )
[sin ( ) sin ( )   2 1=

−
− ≤ ≤0 0

β
ω β ω 6.4c

To find the maximum response velocity must be equated to zero. Usually
this occurs in Phase I.

ẋ t
F

k
t tn( )

(1 )
[ cos ( ) cos ( )] 02=

−
− =0

β
ω ω ω ω 6.5a

ω t = 2 π n ± ωnt   n = 0, ± 1, 2, 3… 6.5b

The least time where it reaches zero is given by

ω π
ω
ω

t
n

=
+

2

1
6.6

Hence maximum displacement can be obtained by substituting ω t in Eq. 6.6
in Eq. 6.4c. The result is valid only if ω t < 1 or β < 1, i.e. ωn < ω. For β >
1 the maximum response occurs in Phase II. The amplitude of vibration is
given by

A
x t

x t
n

2
2

2( 0)
[ ( 0)]= ′ =





+ ′ =
˙

ω 6.7

A =
−

+ 













( )
(1 )

2 2 cos2

1/ 2
F k0 /

β
β π

β 6.8

Hence DMF (dynamic magnification factor = x(t)/xst) is given by

DMF
2

(1 )
cos 2=

−






β
β

π
β2

   for   β > 1 and t > t1 6.9

6.2.3 Case 1 When t1/Tn ≠ 1/2

Forced vibration phase

x t
x T

t

t
t

T
t

t
T

t t
st n

n

n

( )
(0)

1

1
2

sin
2

sin
2

 

1

2
1 1

1=
− 









 − 











<π π
6.10

Free vibration phase

x t
x

T
t

T
t

t
T

t
T

t
Tst

n

n n n n

( )
(0)

2
1

cos sin 2
2

1

1

2
1 1=











 −





 −











π π 6.11
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6.2.4 Case 2 When t1/Tn = 1/2

Forced vibration phase

x t
x

t
T

t
T

t
T

t t
st n n n

( )
(0)

1
2

sin
2 2

cos
2

 1= 



 − 











>π π π
6.12

Free vibration phase

x t
x

x
st

( )
(0) 2

( ) 01
1= → =π ˙ t 6.13

The above equation implies that the displacement in the forced vibration
phase reaches a maximum at the end of the phase.

x t
x

t
T

t t
st n

( )
(0) 2

cos 2 1
2

 1= −



 ≥π π 6.14

The displacement response for sine pulse with duration of pulse t1 = 1s is
shown in Fig. 6.3.

Maximum response

The maximum values of response over each of the two phases, forced vibration
and free vibration, are determined separately. The larger of the two values is
the overall maximum response.

A program in MATLAB to obtain the maximum response for various
values of t1/Tn is given below.
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Time in secs

D
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6.3 Displacement response for sine pulse (t1 = 1).
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6.3 Program 6.1: MATLAB program to obtain

maximum response for half sine cycle pulse

%Program to obtain maximum response for half cycle pulse force
%For various values of t1/Tn- Tn assumed as 1 rad/sec
for j=1:97
c(j)=(j-1)*0.0625
d=1/c(j);
t1=c(j);
% time increment
dt=0.002;
if c(j)==0.50

for i=1:2000
t(i)=dt*(i-1);
if t(i)<t1
y(i)=abs(0.5*(sin(2*pi*t(i))-2*pi*t(i)*cos(2*pi*t(i))));
else
y(i)=abs(0.5*pi*cos(2*pi*(t(i)-0.5)));
end

end
else

t1=c(j);
for i=1:2000
t(i)=dt*(i-1);
if t(i)<t1
y(i)=((sin(pi*t(i)/t1)-d/2*sin(2*pi*t(i)))/(1-.25*d^2));
else
y(i)=(d*cos(pi*c(j))*sin(2*pi*(t(i)-c(j)/2))/((.25*d^2)-1));
end
end

end
%DMF calculated for various values of t1/Tn
w(j)=max(y);
end
w(1)=0;
figure(1)
plot(c,w,‘k’)
xlabel(‘ t1/Tn’)
ylabel(‘ DMF’)
title(‘ DMF for undamped system for various values of t1/Tn’)

Figure 6.4 shows the shock spectrum (the relationship between maximum
response (DMF) and t1/Tn. DMF and response ratio have the same meaning.
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The response spectrum concept is useful in design. A response spectrum is
a plot of maximum peak response of the single-degree-of-freedom (SDOF)
system oscillator. Different types of shock excitation result in different response
spectra which will be discussed in later in this chapter.

6.4 Response to other arbitrary

dynamic excitation

6.4.1 Rectangular pulse force

Next let us consider the case of a load F0 applied instantly to a structure. The
force is suddenly removed after a finite time t1 as shown in Fig. 6.5. Such a
force is commonly denoted as rectangular pulse force and t1 is known as
duration. When t1 tends to infinity then the load is a suddenly applied load.
The rectangular pulse force is a representative example of an impulsive or
shock loading of short duration. Consequently, the response is not significantly
affected by the presence of damping in the system. Hence the effect of
damping is neglected in the following discussion. The forcing function of
the rectangular pulse is defined as

F t
F t t

t t
( ) =

≤ ≤
>





0

1

0 1

0
6.15

The equation of motion for undamped forced vibration can be written as
mx kx F t˙̇ + = ( )

˙̇x x
F t

n+ =ω 2 ( )
m 6.16

0 1 2 3 4 5 6
t1/Tn

D
M

F

2

1.5

1

0.5

0

6.4 Response spectrum for sine pulse.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering142

Phase I

x x x A t B t F k

x A t B t t t
c p n n

n n n

= + = + +
= − ≤ ≤

 sin ( ) cos ( )

[ cos ( ) sin ( )] 0 1

ω ω
ω ω ω

0 /
˙ 6.17

For zero initial conditions, at t = 0 both x x= =0;  0˙
Substituting the initial conditions in Eq. 6.17 we can solve for constants

A and B as

A B
F
k

= = −0; 0 6.18a

and

x
F
k

t t tn= − ≤ ≤0 [1 cos ( )] 0 1ω 6.18b

In this phase x is maximum when cos (ωnt) = – 1 or ωn t = π; t = π /ωn.

x
F
k

x
x xt

max
0

max
max2

; DMF
(0)

2= = = 6.19

Phase II

The end of phase I is the beginning of phase II. At the end of phase I

x t t
F
k

t

x t t
F
k

t

n

n n

(

˙

= = −

= =

1 1

1 1

) [1 cos ( )]

( ) sin ( )

0

0

ω

ω ω
6.20

Assume the time from this point as t′ = t – t1

x t
F
k

t

x t
F
k

t

n

n n

(

˙

′ = = −

′ = =

0) [1 cos ( )]

( 0) sin ( )

1

1

0

0

ω

ω ω
6.21

The equation for the response in phase II can be written as

F0

t1

6.5 Rectangular pulse force.
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x t x t t t t
x t t

t tn
n

n( ) ( ) cos [ ( )]
( )

sin [ ( )]1 1
1

1= = − + = −ω ω ω
˙

for t ≥ t1 6.22

x t
F
k

t t tn n( ) [1 cos ( )] cos [ ( )]1 1= − −0 ω ω

+ sin (ωnt1) sin [ωn(t – t1)] for t ≥ t1 6.23

DMF
/

cos[ ( )] cos (  
0

= = − − ≥x
F k

t t t tn nω ω1 1) t 6.24a

From Eq. 6.18

x
F
k

t t tn= − ≤ ≤0
1[1 cos ( ] 0ω ) 6.24b

A plot of R(t) vs t/Tn is presented in Fig. 6.6 for several values of t1/Tn. It
is obvious from these plots that during the forced vibration phase, the system
oscillates about the static displacement position at its natural period Tn. In
the transient phase t tending to t1, the system oscillates about its original
equilibrium position. Examining Fig. 6.5 reveals that maximum displacement
for the forced vibration phase = Rmax = 2. This can occur when cos(ω t) = –
1 or ω t = π or 2π/Tn t = π or t/Tn = 0.5 or t must be equal to 0.5 Tn to yield
Rmax = 2. Thus the maximum displacement response occurs in the forced
vibration phase when t1 > Tn/2.
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6.6 Response of undamped SDOF to rectangular pulse.
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6.4.2 Triangular pulse force

A triangular pulse force as shown in Fig. 6.7 is usually employed to simulate
a blast. The load F0 is instantly applied to the structure and decreased linearly
over the time duration t1.

Phase I

mx kx F t
t

˙̇ + = −



0

1
1 6.25a

˙̇x x
F
m

t
tn+ = −



ω 2 0

1
1 6.25b

x = xc + xp 6.25c

= + + −



 ≤ ≤A t B t

F
k

t
t

t tn nsin ( ) cos ( ) 1  00

1
1ω ω 6.25d

ẋ A t B t
F
k tn n n n= − −ω ω ω ωcos ( ) sin ( ) 0

1
6.25e

With zero initial conditions, Substituting t = 0 and solving we get

B
F
k

A
F

k tn
= − =0 ;    0

1ω 6.26

Substituting A and B in Eq. 6.25d we get

x
F
k

t
t

t t
t

t tn

n
n= − − +





≤ ≤0

1
1

sin ( )
cos ( ) 1  0

ω
ω ω

1
6.27a

ẋ
F
k

t
t

t
t

t tn n

n
n n= + −





≤ ≤0

1
1

cos ( )
sin ( ) 1  0

ω ω
ω ω ω

1
6.27b

At the end of phase I

x
F
k

t
t

tn

n
n= −





0

1
1

sin ( )
cos ( )

ω
ω ω1 6.28a

6.7 Triangular pulse.
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F0(1 – t/t1)
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ẋ
F
k

t
t

t
t

n
n n= + −





0 1

1 1

cos ( )
sin ( ) 1ω ω ω 1 6.28b

Phase II

x x t t t
x t

t t t tn
n

n= − + − ≥( ) cos[ ( )]
( )

sin [ ( ] 1 1
1

1ω ω ω
˙

)1 6.29

A plot of R(t) versus t/Tn is presented in Fig. 6.8 for several values of t1/Tn.

Example 6.1
The shear frame (moment of inertia of the beam is very high) shown in Fig.
6.9 is constructed of a rigid girder and flexible column. The frame supports
uniformly distributed load having a total weight of 2.5kN. The frame is

t1 /Tn = 0.25
t1/Tn = 0.50
t1/Tn = 0.75
t1/Tn = 1.00
t1/Tn = 1.25
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6.8 Reponse of undamped SDOF to triangular pulse.

W = 2.5kN

K = 1000kN/m

4kN

t1 = 0.05s

6.9 Portal frame.
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subjected to an impulsive load of triangular pulse as shown in Fig. 6.9 at
girder level. Determine the shear in the column.

Solution

m = 2500/9.81 = 254.84kg

ω n
k
m

= = × =1000 1000
254.84

62.6rad/s

Tn
n

= =2 0.1sπ
ω

t
Tn

1 0.05
0.1

0.5= =

From Fig. 6.7 DMFmax = 1.25

xmax = xst × 1.25

k xmax
4

1000
1.25 1000 5kN= × × =

6.5 Duhamel integral

In Chapter 5, it was shown that for any periodic function represented by a
trigonometric series, the analysis can be extended by using the principle of
superposition to include the solution for a general periodic forcing function.

6.5.1 Physical approach

Figure 6.10 shows an arbitrary forcing function in which exciting force is
applied at t = 0. The forcing function can be considered as made up of thin
strips like F(τ) dτ summed up.

F

F (τ )

dττ

t

6.10 Forcing function.
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Consider a small strip alone as shown in Fig. 6.11. According to Newton’s
second law

F m x( ) d
d

( )
2

2τ
τ

= ∆ 6.30a

F m x( ) d
d

d
d

( )τ τ τ= ∆ 6.30b

F m x( ) dτ τ = ∆˙ 6.30c

F(τ) dτ is called the linear impulse and m x∆˙  is the momentum. The impulse
produces a velocity of ∆ẋ  without any displacement. Hence ∆x when t > τ
can be written as

∆ ∆x x t
n

n= −˙
ω ω τsin ( ) 6.31a

∆x
F

m
t

n
n= −( ) d

sin ( )
τ τ
ω ω τ 6.31b

Hence the total displacement x due to the sum of such strips is given by

x
m

t
n

n= −∫1 ( ) sin ( ) d
0ω τ ω τ τ
t

F 6.32

The above integral is known as the Duhamel integral or the convolution
integral. For a viscously under-damped system

∆ ∆x x t
d

t
d

n= −− −˙
ω ω τρω τe sin ( )( ) 6.33

∆x
F

t
d

t
d

n= −− −( ) d
e sin ( )( )τ τ

ω ω τρω τ 6.34

or x
m

F t
d

t
d

n= −∫ − −1 ( ) e sin ( ) d
0

( )

ω τ ω τ τρω τ
t

6.35

F (τ )

dτ
τ

6.11 Increment component of arbitrary force.
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6.5.2 Formal approach

The differential equation of motion for an undamped system with an exerting
force F(τ) is

˙̇x x
F

mn+ =ω τ2 ( )
6.36

Multiplying both sides by sin ωn(t – τ) and integrating, this becomes

0

2

0
sin ( ) d sin ( ) d

t t

∫ ∫− + −˙̇x t x tn n nω τ τ ω ω τ τ

= −∫1 ( ) sin ( ) d
0

0

m
F tnτ ω τ τ 6.37

ẋ t x tn n nsin ( ) cos ( )0 0ω τ ω ω τ− + −| |t t

= −∫1 ( ) sin ( ) d
0m

F tn

t

τ ω τ τ 6.38

Substituting the limits of integration we get,

x
m

F t
x

t x t
n

n
n

n n= − + +∫1 ( ) sin ( ) d sin cos
0

0
0ω τ ω τ τ ω ω ω

t ˙
6.39

If initial displacement and velocity are zero then the response becomes

x
m

F t
n

n= −∫1 ( ) sin ( ) d
0ω τ ω τ τ
t

6.40

6.6 Response to arbitrary dynamic excitation

To illustrate the application of the Duhamel integral in evaluating the response
of an SDOF system to arbitrary excitation, several classical load functions
are considered.

6.6.1 Ideal step force

Consider a suddenly applied force of the F0 that remains constant at all times
as shown in Fig. 6.12. For an undamped system

x
m

F t
n

n= −∫1 ( )sin ( ) d
0ω τ ω τ τ
t

 where F(τ) = F0 6.41

x
F

m
t

F
m

t
n

n
n

n
t= − = −∫0

ω ω τ τ
ω

ω τ
0

0
2 0sin ( ) d [cos ( )]

t

6.42
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x
F

m
t

n
n= −0 [1 cos ]ω ω 6.43

The DMF is given by

DMF
( )

[1 cos ]0

0
= = −x t

x
F k

m F
t

st n
nω ω 6.44

or DMF = [1 – cos ωn t] 6.45

DMF is maximum when

ωnt = π 6.46a

DMFmax = 2 6.46b

For an under-damped system

x t
F

m
t

d

t
d

n( ) e sin ( ) d0

0

( )= −∫ − −
ω ω τ τρω τ

t

6.47a

or

x t
F
k

t tn t
d d( ) [1 e (cos

1
sin )]0

2
= − +

−
− ρ ω ω ρ

ρ
ω 6.47b

DMF( ) [1 e (cos
1

sin )]
2

t t tn t
d d= − +

−
− ρ ω ω ρ

ρ
ω 6.47c

A plot of DMF(t) versus t/Tn is presented in Fig. 6.13 for several levels of
damping. DMF(t) = 1 on the response ratio plot corresponds to static
displacement position and DMF(t) >1 represents displacement beyond the
static displacement position or overshoot. For an undamped system subjected
to step force, the resulting response is oscillating motion about the static
displacement position with maximum values of DMFmax = 2. In a damped
system, the response ratio gradually approaches static values of 1 after a
number of cycles of damped oscillation. The maximum overshoot in a damped
system as well as the rate of decay of the oscillation about static equilibrium
position depends on the damping factor as illustrated in Fig. 6.13.

F0

t

6.12 Ideal step force.
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6.6.2 Program 6.2: MATLAB program to find the
response for step force

%program for finding max dynamic response factor for given loading
% define damping ratios for which response is required
rho=[0 0.02 0.05 0.1 0.2]
for jj=1:5

zeta=rho(jj);
%assume natural period 1
wn=2*pi;
% assume mass =1
m=1;
% find natural frequency of damped system
wd=wn*sqrt(1-zeta^2);
ts=0.002; %sampling period
N=1000 % sampling points
%force is defined for ideal step force
for n=1:N

t(n)=ts*(n-1);
f(n)=1;

end
figure(1)
plot(t,f)
xlabel(‘ time in secs’)
ylabel(‘ force ‘)

rho = 0
rho = 2%
rho = 5%
rho = 10%
rho = 20%

0 0.5 1 1.5 2
t /Tn

R
(t

)

2

1.5

1

0.5

0

6.13 Response of SDOF to a step force.
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title(‘ force definition’)
n=[1:N]
g=ts*exp(-(n-1)*zeta*wn*ts).*sin((n-1)*wd*ts)/(m*wd);
c0=conv(f,g);
for i=1:N

tt(i)=(i-1)*ts;
c1(i)=abs(c0(i)*wn^2);

end
figure(2)
plot(tt,c1,‘k’)
hold on
end
gtext(‘rho=0’)
gtext(‘rho=2%’)
gtext(‘rho=5%’)
gtext(‘rho=10%’)
gtext(‘rho=20%’)
xlabel(‘ t/Tn’);
ylabel(‘ R(t)’)
title(‘ Response of SDOF to ideal step force’)

6.6.3 Rectangular pulse force

Let us consider the case of load F0 applied instantly to a structure for a finite
time duration of t1 known as rectangular pulse.

Undamped system

F t
t t

t t
( ) =

≤ ≤
≥





F0 1

1

for 

0 for 

0
6.48

x t
F

m
t t t

n
n( ) sin ( ) d  00

0
1= − ≤ ≤∫ω ω τ τ

t

= − ≤ ≤F
k

t t tn
0

1(1 cos )   0ω 6.49

DMF (t) = (1 – cos ωnt) 6.50

x t
F

m
t t t

n
n( ) sin ( ) d  0

0
1

1

= − ≤ ≤ ∞∫ω ω τ τ
t

DMF (t) = [cos ωn(t – t1) – cos ωnt] t > t1 6.51

For an under-damped system similar to Eq. 6.47, the response can be derived.
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Several plots of DMF(t) as a function of t/Tn for several values of t1/Tn are
presented in Fig. 6.14. It is seen that DMFmax = 2 which can occur at cos ωn

t = –1.

6.6.4 Step force with ramp

Consider a force which is applied over a finite time t1. Such a forcing
function is called a ramp function and is shown in Fig. 6.15. The dynamic
response is significantly affected by t1/Tn.

The Duhamel integral for the loading in the time interval 0 ≤ t ≤ t1

x t x t
F

m t
t

n
n( ) ( ) sin ( ) d1

0

0 1
= = −∫ω

τ ω τ τ
t

6.52

Expanding sine we get

t1 /Tn = 0.25
t1/Tn = 0.50
t1/Tn = 0.75
t1/Tn = 1.00
t1/Tn = 1.25

0 0.5 1 1.5 2 2.5 3
t/Tn

R
es
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1.5

1

0.5

0
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–2

6.14 Response of SDOF to single rectangular pulse force.

F0

t1
t

= +
F0τ/t1

t1

F0(τ-t1)/t1

6.15 Ramp force resolved into two triangular pulses.
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x(t) = x1(t)

     = −




∫ ∫F

m t
t t

n
n n n n

0

1 0 0
sin cos d cos sin dω ω τ ω τ τ ω τ ω τ τ

t t

6.53
Simplifying and substituting the limits, we get

x t
F
k

t
t

t
t
n

n
( )

sin0

1
= −



1

ω
ω 6.54

DMF( )
sin

1
t t

t
t

t
n

n
= −



1

ω
ω 6.55

Now for t1 < t < ∞ one has to add negative ramping function as

F
t

F
t

t
t

( )τ
τ

τ τ=
… <

− − >






0 0, <
( )

for 

1

1

1
10

6.56

The corresponding displacement response to the force F ( )τ  is termed as
x ( )t  and then the actual displacement is x t x t1 ( ) ( )+ .

When t > t1

x t
F

m
t

t
t

n
n( ) sin ( ) d0

0
= − −∫ω

τ ω τ τ
t ( )1

1

= − − − −





F
k

t t
t

t t
t

n

n

0

1

( ) sin ( )1

1

1ω
ω 6.57

x x
F
k t

t t t
n

n n1
0

1
11 1 [sin ( ) sin ]+ = + − −

ω ω ω 6.58

and DMF ( ) 1 1 [sin ( ) sin ]
1

1t
t

t t t
n

n n= + − −
ω ω ω 6.59

Figure 6.16 shows the plot of response ratio values versus t/Tn for several
ratios of t1/Tn. These plots indicate that as t1 approaches zero (t1/Tn << 1) the
response approaches that of an ideal step function. Dynamic effects can be
ignored for ramp forces if t1/Tn > 3.0.

6.6.5 Triangular pulse force

A load function often employed to simulate blast is the triangular pulse
shown in Fig. 6.17. The load F0 is instantly applied to the structure and
decreases linearly over the time duration t1.
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F
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1 0
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τ τ
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 1

6.60

Forced vibration phase 0 ≤ τ ≤ t1

The Duhamel expression is given as

x t
F

m t
t

n
n( ) 1 sin ( ) d0

0
= −



 −∫ω

τ ω τ τ
t

1
6.61

Simplifying the integral Eq. 6.61 yields

x t
F
k

t
t

t
t

tn
n

n
( ) 1 cos

sin0

1 1
= − − +



ω ω

ω 6.62

Transient vibration phase τ > t1

x t
F

m t
t

n
n( ) 1 sin ( ) d0

0 1

1

= −



 −∫ω

τ ω τ τ
t

6.63

= − − −F
k t

t t t t t
n

n n n n
0

1
1 1[sin sin ( ) cos ]ω ω ω ω ω 6.64
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6.16 Response of undamped SDOF to step force with ramp.

F0

t1

t

6.17 Triangular pulse force.
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Once the Duhamel integral has been evaluated for a specific forcing function,
the result may be used to evaluate response of any SDOF system to that
particular type of loading. Figure 6.18 depicts the plot of response ratio
versus t/Tn for triangular loading for several values of t1/Tn, the overshoot
becomes less with smaller oscillations above the static displacement position.
Similarly such curves are drawn for step single sine pulse and double triangle,
in Figs 6.19 and 6.20 respectively.
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6.18 Response of undamped SDOF to triangular pulse.

6.19 Response of undamped SDOF to single sine pulse.
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Example 6.2
The shear frame shown in Fig. 6.21 is constructed of rigid girder and flexible
columns. The frame supports uniformly distributed load of total weight of
120kN and the frame is subjected to step force with a ramp as shown in Fig.
6.21 at the girder level. Determine the horizontal displacement at t = 0.75s.
E = 200 GPa and damping can be assumed as zero. Moment of inertia of end
columns and centre column are 3.4465e–5mm4 and 7.07e–5mm4 respectively.

Solution

k = 2 × 3EI1/5
3 + 12 × EI2/73

= × − + × −



 ×6 3.446e 5

125
12 7.07e 5

343
200 109

k = 825200N/m

m = × =120 1000
9.81

1232.4kg
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6.20 Response of undamped SDOF to double triangular pulse.

80kN

t1 = 0.5s

6.21 Portal frame.
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ω n
k
m

= = =825200
12232.4

8.21rad/s

T
n

= =2 0.76sπ
ω

The response is needed at t = 0.75s which is greater than 0.5s. Hence

x t
F
k t

t t t
n

n n( ) 1 1 [sin ( ) sin ]0

1
= + 



 − −






ω ω ω1

x t xst( ) 1
1

8.2 0.5
[sin 8.2 (0.75 0.5) sin 8.2 0.75]= + ×





 − − ×








x(0.75) = 1.248xst

xst = =80000
825200

0.096m

x(0.7) = 0.096 × 1.248 = 0.1198m

The Duhamel method is a closed form procedure for calculating a system
response to arbitrary dynamic excitation. But evaluation of the integral is
cumbersome as evidenced in previous sections. But with the MATLAB and
MATHEMATICA packages these convolution integrals may be evaluated
quite easily. It is not possible to apply a closed form procedure for earthquake
ground motion since ground motion recordings are in digitized form. In such
cases a numerical procedure is resorted to.

6.7 Response spectrum

A shock represents a sudden application of force or other form of disruption
which results in a transient response of a system. The maximum value of the
response is a good measure of the severity of the shock and is of course
dependent upon dynamic characteristics of the system. In order to categorize
all types of shock excitation an SDOF system oscillator is chosen as the
standard.

The response spectrum concept is useful in design. A response spectrum
is a plot of maximum peak response of the SDOF system oscillator. Different
types of shock excitation result in different response spectra. It is possible to
have similar response spectra for two different shock excitation. In spite of
this limitation, the response spectrum is a useful concept that is extensively
used.

Consider the excited force function as F(τ) = F0f (τ) and the response for
SDOF of an undamped system as given by
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x t
F

m
f t

n
n( ) ( ) sin ( ) d0

0
= −∫ω τ ω τ τ

t

6.65

which is obtained from dynamic equation of equilibrium

mx kx F t˙̇ + = ( ) 6.66

In the case when the shock is due to sudden motion of the support point, the
equation of motion becomes

m x x kxg( ˙̇ ˙̇+ + =) 0 6.67

or

mx kx mxg˙̇ ˙̇+ = − 6.68

Hence F(t) is to be replaced by −mxg˙̇  and Eq. 6.65 becomes

x t x tg n( ) ˙̇= – 1 ( ) sin ( ) d
0ω τ ω τ τ

n

t

∫ − 6.69

The inner product given in the integral is f(τ) sin ωn(t – τ) and the integral
is known as the convolution integral. MATLAB can calculate a convolution
integral very easily.

6.8 Program 6.3: MATLAB program to find the

response spectrum for any load pulse

%program for finding max dynamic response factor for given loading
% define damping ratios for which response is required
rho=[0 0.02 0.05 0.1 0.2]
for jj=1:5

zeta=rho(jj);
%define the fac=td/Tn= duration of loading / natural period
for ii=1:193

fac(ii)=0.03125*(ii-1);
td=0.1; %period of forcing function
% natual frequency of the system
wn=fac(ii)*2*pi/td;
% assume mass =1
m=1;
% find natural frequency of damped system
wd=wn*sqrt(1-zeta^2);
ts=0.002; %sampling period
N=1000 % sampling points
load=1
%force is defined for rectangular pulse
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for n=1:N
t(n)=ts*(n-1);
if n>td/ts+1

f(n)=0;
else

f(n)=1;
end

end
%load=2
%force is defined for triangular load
%for n=1:N

% t(n)=ts*(n-1);
% if n>td/ts+1
% f(n)=0;
% else
% f(n)=1-t(n)/td;
% end

%end
%load=3
% force is defined for sinusoidal loading
% defining force
%for n=1:N
% t(n)=ts*(n-1);
% if n>td/ts+1
% f(n)=0;

% else
% f(n)=sin(pi*t(n)/td);
% end

%end
%load=4;
%force is defined for double triangular load
% for n=1:N
% t(n)=ts*(n-1);
% if n<=(td/2)/ts+1
% f(n)=2.0*(n-1)*ts/td;
% else
% f(n)=2.0*(1-(n-1)*ts/td);
% end
% if n>td/ts+1;
% f(n)=0; end
% end
% load=5
% force is defined as ramp loading
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% for n=1:N
% t(n)=ts*(n-1);
% if n>td/ts+1
% f(n)=1;
% else
% f(n)=t(n)/td;
% end
% end
figure(1)
plot(t,f)
xlabel(‘ time in secs’)
ylabel(‘ force ’)
title(‘ force definition’)
n=[1:N]
g=ts*exp(-(n-1)*zeta*wn*ts).*sin((n-1)*wd*ts)/(m*wd);
c0=conv(f,g);
for i=1:N

tt(i)=(i-1)*ts;
c1(i)=c0(i)*wn^2;

end
dmf(ii)=max(abs(c1));
end
if load<4

dmf(1)=0
else
end
figure(2)
plot(fac,dmf,‘k’)
hold on
end
gtext(‘rho=0’)
gtext(‘rho=2%’)
gtext(‘rho=5%’)
gtext(‘rho=10%’)
gtext(‘rho=20%’)
xlabel(‘ td/Tn’);
ylabel(‘ DMF’)
title(‘ Response spectrum for the given loading’)

The responses spectrum for (a) rectangular pulse, (b) triangular pulse, (c)
sine pulse, (d) double triangle pulse and (e) step ramp loadings are shown in
Fig. 6.22.
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Example 6.3
Determine the maximum horizontal displacement of structural frame when
subjected to ramp loading as given in Example 6.2.

Solution

t
Tn

1 = =0.5
0.76

0.657
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rho = 2%
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rho = 20%
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6.22 Response spectra for (a) rectangular pulse; (b) triangular pulse;
(c) sine pulse; (d) double triangle pulse; and (e) step ramp pulse.
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6.22 Continued
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DMFmax = 1.5

xmax = 1.5 × 0.096 = 0.144m

The construction of response spectrum can be greatly facilitated through
numerical evaluation techniques. The construction of a response spectrum
by numerical integration is addressed in later chapters. Once constructed, the
response spectrum offers the design engineer an opportunity to evaluate the
response of a wide frequency range of structures to a specific input.

6.9 Laplace transform

The Laplace transform method of solving the differential equation provides
a complete solution, yielding both transient and forced vibrations. Here in
we give a brief introduction of the theory and illustrate with some examples.

If f (t) is a function of t for t > 0 its Laplace transform f s( )  is defined as

f s f t t L f tst( ) ( )= =
∞

−∫0
e d ( ) 6.70

where ‘s’ is a complex variable. For the real part of s > 0 the integral exists
provided f (t) is absolutely integrable function in the time interval 0 to infinity.

1. If f (t) = a

L a a t a
s

a
s

st
st

= = −∞
−

−
∞∫0
0e d e = 6.71
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6.22 Continued
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which exist for R(s) > 0.
2. If f (t) = at

L at at t a
s

st( ) ( ) e d
0

2= =
∞

−∫ 6.72

3. Similarly it can be proved that

L
f t

t
s f s f

L
f t
t

s f s s f f

d ( )
d

( ) ( )

d ( )
d

( ) ( ) ( )2

= −

= − − ′

0

0 0
2

2

6.73

4. L x t x s bbt[e ( )] ( )= − 6.74

where x s L x t( ) ( )= .
5. Transformation of ordinary differential equation

mx c x k x F t˙̇ ˙+ + = ( ) 6.75

Laplace transform of the above equation gives

m s x s s x x c s x s x k x s F s[ ( ) ( ) ( )] [ ( ) ( )] ( ) ( )2 − − + − + =0 0 0˙ 6.76

or

x s
F s

ms cs k
ms c x m x

ms cs k
( )

( ) ( ) (0) (0)
2=

+ +
+ + +

+ +2

˙
6.77

x(t) can be found out from the inverse Laplace transform as

x t L x s( ) [ ( )]1= − 6.78

For Laplace transform of simpler expressions, the reader may consult any
mathematics handbook or one can use the MATHEMATICA package to
obtain both Laplace transform and inverse Laplace transform.

Example 6.4
Write a MATHEMATICA program to obtain the motion of the mass subjected
to initial conditions. There is no external forcing function. The SDOF system
is shown in Fig. 6.23; m = 4kg, K = 10N/m; c = 6Ns/m and at t = 0
x x( ) 0.1m and ( ) 0.16m/s.0 0= =˙

k

m
c

6.23 Spring mass damper system.
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Solution

mx cx kx˙̇ ˙+ + = 0

Taking Laplace transform we get

x s
mx s m x c x

m s cs k
( )

( ) ( ) ( )
2= + +

+ +
0 0 0˙

x s( )
0.1 0.31

1.5 2.52= +
+ +

s
s s

Taking inverse transform of the above equation, we get x(t) which is given
in the MATHEMATICA program.

Example 6.5
For the same problem, when 20N force (step input) is applied and the system
is at rest initially.

Solution

mx cx kx F˙̇ ˙+ + =

when the initial conditions are zero the Laplace transform of the above
equation

(ms2 + cs + k)x(s) = L(F)

x s( ) 20
(4 6 10)2=

+ +s s s

Taking inverse transform we get x(t) which is given in MATHEMATICA
program.

Example 6.6
When F(t) = 20e–2t.

Solution

x s( ) 20
( 2)(4 6 10)2=

+ + +s s s
Taking inverse transform we will get x(t).

6.10 Program 6.4: MATHEMATICA program for

Laplace transform method

f=InverseLaplaceTransform[(.1 *s+0.31)/

(s^2+1.5*s+2.5),s,t]
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E^((-0.75 - 1.3919410907075054*I)*t)*

(0.05000000000000001 + 0.08441449195258423*I + (0.05

-0.08441449195258421*I)* E^(2.7838821814150108*I*t))

f

E^((-0.75 - 1.3919410907075054*I)*t)

*(0.05000000000000001 + 0.08441449195258423*I + (0.05

- 0.08441449195258421*I)*E^(2.7838821814150108*I*t))

 Plot[f,{t,0,5},AxesLabel→{“time in sec”,

“displacement”},PlotStyle→{Thickness[0.008]}]

displacement

0.125

0.1

0.075

0.05

0.025

–0.025
1 2 3 4 5

time in sec

g=InverseLaplaceTransform[(20)/(s*(4*s^2+6*s+10)),s,t]

2/31*(31 - (31*Cos[(Sqrt[31]*t)/4])/E^((3*t)/4) -

(3*Sqrt[31]*Sin[(Sqrt[31]*t)/4])/E^((3*t)/4))

Plot[g,{t,0,5},AxesLabelÆ{“time in sec”,

“displacement”},PlotStyleÆ{Thickness[0.008]}]

displacement

2

1.5

1

0.5

1 2 3 4 5
time in sec
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h=InverseLaplaceTransform[(20)/

((s+3)*(4*s^2+6*s+10)),s,t]

(5/217*(31 - 31*E^((9*t)/4)*Cos[(Sqrt[31]*t)/4] +

9*Sqrt[31]*E^((9*t)/4)*Sin[(Sqrt[31]*t)/4]))/E^(3*t)

Plot[h,{t,0,5},AxesLabel→{“time in sec”,

“displacement”},PlotStyle→{Thickness[0.008]}]

displacement

0.5

0.4

0.3

0.2

0.1

–0.1

1 2 3 4 5
time in sec

6.11 Summary

In this chapter, the response spectrum is constructed only for certain loads
such as rectangular, triangular, double triangle, sine and ramp pulses. For
any other general pulses, the numerical technique as addressed in Chapter 7
should be used. Once constructed, the response spectrum offers the design
engineer the opportunity to evaluate the maximum response of a wide frequency
range of structures to a specific input. Application of the response spectrum
will follow in later chapters for earthquake loading.

6.12 Exercises

1. Use the Duhamel integral method to determine expressions for the
displacement response of an undamped SDOF system subjected to the
load shown in Fig. 6.24 over the following intervals: (a) 0 ≤ t ≤ t1;

6.24

F0

t1

    

F t F t
t

( ) = 1 – 0
1

2
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(b) t ≥ t1. Assume zero initial conditions. Also using the MATLAB
program draw response spectrum curves for various damping ratios,
assuming the natural period of the system = 1s and the time duration of
the pulse is 0.2s and F0 = 1.

2. Show that the maximum deformation u0 of a SDOF system due to unit
pulse p(t) = δ(t) is

u
m0

n

–11 exp tan= −
−

−







ω

ρ
ρ

ρ
ρ1

1
2

2

Plot the result as a function of ρ. Comment on the influence of damping
on the maximum response.

3. Use the Duhamel integral method to determine the expression for the
displacements for an undamped SDOF system subjected to load function
shown in Fig. 6.25 over the following intervals (a) 0 ≤ t ≤ t1; (b) t1 ≤ t
≤ t2; (c) t ≥ t2. Assume zero initial conditions. Assuming suitable values
draw response spectrum curves.

4. (a) Determine the response of an undamped SDOF system to the force
shown in Fig. 6.26 for each of the following intervals. (a) 0 ≤ t ≤ t1/
2; (b) 2t/t1 ≤ t ≤ t1; (c) t ≥ t1. Assume zero initial conditions.

(b) Draw a response spectrum curve by assuming suitable values.
5. The 30m high full water tank (see Fig. 6.27) is subjected to a force P(t)

caused by an above-ground explosion.

t1
t2

F0

P0

–P0
t1/2 t1

6.25 6.26

40kN

0.02 0.04

6.27
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(a) Determine the maximum base shear and bending moment at the
base of the tower supporting the tank (assume W = 100kN and
stiffness = 8200kN/m).

(b) If the tank is empty (weight 20kN) calculate the base shear and
bending moment at the base of the tower supporting the tank.

(c) By comparing these results with those of the full tank, comment on
the effect of mass on the response to impulsive force. Explain the
reason.

6. For the shear building shown in Fig. 6.28 determine the horizontal
deflection due to the load function shown in Fig. 6.28 corresponding to
times 0.5s, 0.8s. Assume force as 30kN, time duration –0.7s, E = 200GPa
and W = 20kN and damping zero. Height of the columns may be assumed
as 5m and moment of each column may be assumed as 2.7 × 106mm4.

F t F
t
t

t t( ) sin  0
1

1= ≤ ≤0 2
π

.
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7
Dynamic response of structures using

numerical methods

Abstract: There are two basic approaches to numerically evaluate the
dynamic response. The first approach is numerical interpolation of the
excitation and the second is numerical integration of the equation of motion.
Both approaches are applicable to linear systems but the second approach is
related to non-linear systems. In this chapter, various numerical techniques
based on interpolation, finite difference equation and assumed acceleration
are employed to arrive at the dynamic response due to force and base
excitation.

Key words: time stepping, time history, central difference, explicit method,
Runge–Kutta method, Newmark’s method, Wilson-θ method.

7.1 Introduction

It was clearly demonstrated in earlier chapters that analytical or closed form
solution of the Duhamel integral can be quite cumbersome even for relatively
simple excitation problems. Moreover, the exciting force such as an earthquake
ground record cannot be expressed by a single mathematical expression,
such as the analytical solution of the Duhamel integral procedure. Hence to
solve practical problems, numerical evaluation techniques must be employed
to arrive at the dynamic response.

To evaluate dynamic response problem there are two approaches, the first
of which has two parts:

1. Numerical interpolation of the excitation
2. Numerical integration and Duhamel integral.

The other approach is derived by integration of the equation of motion

[ ]{ } [ ]{ } [ ]{ } { }m x x k x F˙̇ ˙+ + =c 7.1

or for the single-degree-of-freedom (SDOF) system

mx cx kx F˙̇ ˙+ + = 7.2

Both the above approaches are applicable to linear systems, but only the
second approach is valid for non-linear systems.
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7.2 Time stepping methods

Assume an inelastic equation to be solved as

m u c u k u p t( ) ( )( ) ( ) ( )˙̇ ˙+ + = 7.3

or in the case of base excitation due to an earthquake

m u c u k( ) ( )( ) ( ) ( )˙̇ ˙ ˙̇+ + = −u mu tg 7.4

Subject to the initial condition

u u u u0 0= (0);  = (0)˙ ˙ 7.5

Usually the system is assumed to have a linear damping, but other forms of
damping such as nonlinear damping should be considered. The applied force
F(t) is defined at discrete time intervals and the time increment (see Fig. 7.1)

∆ti = ti+1 – ti 7.6

may be assumed as constant, although this is not necessary. If the response
is determined at the time ti, is called ith step displacement; velocity and
acceleration at the ith step are denoted by u u ui i i, ,˙ ˙̇  respectively. The
displacement, velocity and acceleration are assumed to be known, satisfying
Eq. 7.3 as

m u c u u pi i i i( ) ( )( ) ( )˙̇ ˙+ + =k 7.7

The third term on the left has solution gives the resisting force at time ti as
fsi and for linear elastic system but would depend on the prior history of
displacement and the velocity at time ‘i’ if the system were inelastic. We
have to discuss the numerical procedure, to determine the response quantities

F(t)

fi

F(τ )

ti τ ti + 1 t

7.1 Piecewise linear interpolation of forcing function.
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u u ui i i+ + +1 1 1, ,˙ ˙̇  as i + 1th step. Similar to Eq. 7.7, at (i + 1)th step the
dynamic equilibrium equation is written as

m( ) ( )( ) ( )1 1 1 1˙̇ ˙u c u k u pi i i i+ + + ++ + = 7.8

if the numerical procedure is applied successively with i = 0, 1, 2,…. The
time stepping procedure gives the desired response at all times with the
known initial conditions u0 and u̇0 .

The time stepping procedure is not an exact procedure. The characteristics
of any numerical procedure that converges to a correct answer are as follows:

• Convergence – if the time step is recorded, the procedure should converge
to an exact solution.

• The procedure should be stable in the presence of numerical rounding
errors.

• The procedure should provide results close enough to the exact solution.

7.3 Types of time stepping method

There are three types of time stepping method:

1. Methods based on the interpolation of the excitation function (See Section
7.3.1).

2. Methods based on finite difference expressions for the velocity and
acceleration (See Section 7.3.3).

3. Methods based on assumed variation of acceleration (See Section 7.3.5).

7.3.1 Interpolation of the excitation

Duhamel integral expression for the damped and undamped SDOF system to
arbitrary excitation can be solved using numerical quadrature techniques
such as Simpson’s method, trapezoid method or Gauss rule. It is generally
more convenient to interpolate the excitation function F(t) as (see Fig. 7.1)

F F
F
ti
i( )τ τ= + 





∆
∆ 7.9

where

∆F F Fi i i= −+1 7.10a

and

∆t = ti+1 – ti 7.10b

F(τ) is known as interpolated force and τ varies from 0 to ∆t. Hence differential
equation of noted for an undamped SDOF system becomes
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˙̇u u
m

F
F
tn
i+ = + 











ω τ2 1
i

∆
∆ 7.11

The solution of Eq. 7.11 of the sum of the homogeneous and particular
solutions on the time interval 0 ≤ τ ≤ ∆t. The homogeneous part of the
solution is evaluated for initial condition of displacement ui and velocity u̇i

at τ = 0.
The particular solution consists of two parts: (1) the response to an real

step for a magnitude of Fi ; and (2) the response to a ramp function by
(∆Fi/∆t)τ. Hence

u u t
u

t
F
k

ti i n
i

n
n

i
n+ = + 



 −1 cos ( ) sin +  [1 cos( )]ω ω ω ω∆ ∆ ∆

˙

+ 1 [ sin ( )]
∆

∆ ∆ ∆F
k t

t ti

n
n n











 −ω ω ω 7.12a

and

˙ ˙u
u t

u
t

F
k

ti

n
i n

i

n
n

i
n

+ = − + 





1

ω ω ω ω ωsin ( ) cos ( ) + sin ( )∆ ∆ ∆

+ [1 cos ( )/ ]
∆ ∆ ∆F
k

t ti
n n− ω ω 7.12b

Equation 7.12a and 7.12b are the recurrence formulae for computing
displacement ui+1 and velocity u̇i+1 at time ti+1.

Recurrence formulae for a displacement and velocity under-damped system
may be derived in the same manner. A simpler and more convenient
representation of the recurrence formulae simplified by Eq. 7.12a and 7.12b
are

u a u bu c F Fi i i i+ += + + +1 1˙ d i 7.13a

˙ ˙u a u b u c F d Fi i i i i+ += ′ + ′ + ′ + ′1 1 7.13b

Equation 7.13a and 7.13b are the recurrence formulae for ρ < 1. The coefficients
given in Table 7.1 depend on ωn, k and ρ and time interval ∆t. In practice ∆t
should be sufficiently small to closely approximate the excitation force and
also to render results at the required time intervals. The practice to select ∆t
≤ T/10 where T is the natural period of the structure. This is to ensure that the
important peaks of structural response are not omitted. As long as ∆t is
constant, the recurrence formulae coefficients need to be calculated once.

Example 7.1
The water tank shown in Fig.7. 2a is subjected to the blast loading illustrated
in Fig 7.2b. Write a computer program in MATLAB to numerically evaluate
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the dynamic response of the tower by interpolation of the excitation. Plot the
displacement u(t) and velocity u̇ t( )  response in time interval 0 ≤ t < 0.5s.
Assume W = 445.5kN, k = 40913kN/m, ρ = 0.05; F0 = 445.5kN, td = 0.05s.
Use the step size as 0.005s.
Calculate natural period.

Solution

K = 40913kN/m = 40931 × 103N/m

m = 445.5 × 1000/9.81 = 45412.8kgm

ω = = ×k
m

40913 10
45412.8

= 30.02rad/s
3

T = 2π/ω = 2 π/30.02 = 0.209s

∆t = 0.005< T/10 = 0.0209 s Hence o.k

Table 7.1 Coefficients in recurrence formula Eq. 7.13 (ρ < 1)

    a t tn t
d d = e (  sin  + 1 –  cos )/ (1 –  )– 2 2ρω ρ ω ρ ω ρ∆ ∆ ∆
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ω∆ ∆
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The constants are calculated as

a = 0.9888 a′ = –4.4542
b = 0.0049 b′ = 0.9740
c = 1.82 e–10 c′ = 5.4196e–08
d = 9.1305e–011 d′ = 5.467e–08

Using the recurrence formulae u and u̇  can be calculated as shown in Table
7.2.

The displacement time history and the velocity time history are plotted as
shown in Fig. 7.3 and the program is given below.

F(t)

w

R

(a) (b)

td

F0

F(t)

7.2 (a) Water tank; (b) forcing function.

Table 7.2 Displacement and velocity values at various times for Example 7.1

t u     ̇u t u     ̇u

0 0 0 0.055 0.0066 0.0794
0.005 0.0001 0.0461 0.060 0.0069 0.0479
0.010 0.0004 0.0856 0.065 0.0071 0.0158
0.015 0.0010 0.1177 0.070 0.0071 –0.0161
0.020 0.0016 0.1419 0.075 0.0069 –0.0473
0.025 0.0024 0.1577 0.080 0.0066 –0.0769
0.030 0.0032 0.1648 0.085 0.0062 –0.1094
0.035 0.0040 0.1634 0.090 0.0056 –0.1291
0.040 0.0048 0.1534 0.095 0.0049 –0.1506
0.045 0.0055 0.1353 0.100 0.0041 –0.1684
0.050 0.0061 0.1096
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7.3.2 Program 7.1: MATLAB program for dynamic
response of SDOF using recurrence formulae

%***********************************************************
% DYNAMIC RESPONSE DUE TO EXTERNAL LOAD USING WILSON
RECURRENCE FORMULA

0 0.1 0.2 0.3 0.4 0.5
Time (t) in seconds

(a)

R
es

p
o

n
se

 d
is

p
ac

em
en

t 
u

 i
n

/m

8

6

4

2

0

–2

–4

–6

–8

×10–3

0 0.1 0.2 0.3 0.4 0.5
Time (t) in seconds

(b)

R
es

p
o

n
se

 v
el

o
ci

ty
 v

 i
n

 m
/s

ec

0.2

0.15

0.1

0.05

0

–0.05

–0.1

–0.15

–0.2

7.3 Response history for (a) displacement and (b) velocity for
Example 7.1.
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% **********************************************************
m=45412.8;
k=40913000;
wn=sqrt(k/m)
r=0.05;
u(1)=0;
v(1)=0;
tt=.50;
n=100;
n1=n+1
dt=tt/n;
td=.05;
jk=td/dt;
for m=1:n1
 p(m)=0.0;
end
t=-dt
% **********************************************************
% ANY EXTERNAL LOADING VARIATION MUST BE DEFINED HERE
% **********************************************************
for m=1:jk+1;

t=t+dt;
p(m)=445500*(td-t)/td;

end
wd=wn*sqrt(1-r^2);
a=exp(-r*wn*dt)*(r*sin(wd*dt)/sqrt(1-r^2)+cos(wd*dt));
b=exp(-r*wn*dt)*(sin(wd*dt))/wd;
c2=((1-2*r^2)/(wd*dt)-r/sqrt(1-r^2))*sin(wd*dt)-(1+2*r/(wn*dt))*cos(wd*dt);
c=(1/k)*(2*r/(wn*dt)+exp(-r*wn*dt)*(c2));
d2=exp( - r*wn*d t )* ( (2 .0* r^2 -1 ) / (wd*d t )*s in (wd .*d t )+2 .0* r /
(wn*dt)*cos(wd*dt));
d=(1/k)*(1-2.0*r/(wn*dt)+d2);
ad=-exp(-r*wn*dt)*wn*sin(wd*dt)/(sqrt(1-r^2));
bd=exp(-r*wn*dt)*(cos(wd*dt)-r*sin(wd*dt)/sqrt(1-r^2));
c 1 = e x p ( - r * w n * d t ) * ( ( w n / s q r t ( 1 - r ^ 2 ) + r / ( d t * s q r t ( 1 -
r^2)))*sin(wd*dt)+cos(wd*dt)/dt);
cd=(1/k)*(-1/dt+c1);
d1=exp(-r*wn*dt)*(r*sin(wd*dt)/sqrt(1-r^2)+cos(wd*dt));
dd=(1/(k*dt))*(1-d1);
for m=2:n1

u(m)=a*u(m-1)+b*v(m-1)+c*p(m-1)+d*p(m);
v(m)=ad*u(m-1)+bd*v(m-1)+cd*p(m-1)+dd*p(m);

end
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for m=1:n1
s(m)=(m-1)*dt

end
figure(1);

plot(s,u,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
figure(2);
plot(s,v,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)

7.3.3 Direct integration of equation of motion

In direct integration, the equation of motion is integrated using a step-by-
step procedure. It has two fundamental concepts: (1) the equation of motion
is satisfied at only discrete time intervals ∆t and (2) for any time t, the
variation of displacements, velocity and acceleration with each time interval
∆t is assumed.

Consider the SDOF system

mu cu ku F t˙̇ ˙+ + = ( ) 7.14

It is assumed that displacement velocity and acceleration at time t = 0 are
given as u0, ˙ ˙̇u u0,  0  respectively. Algorithms can be derived to calculate the
solution at some time t + ∆t based upon the solution at time ‘t’. Several
commonly based direct integration methods are presented below.

Central difference method

This method is based on finite difference approximation of the time derivations
of displacements (velocity and acceleration). Taking a constant time step ∆t

u̇
u u

ti
i i= −+ −1 1

2∆ 7.15a

˙̇u
u u u

ti
i i i= − −+ −1 2 1

2∆
7.15b

Substituting the approximate velocity and acceleration expressions in Eq.
7.14 we get

ˆ ˆk u Fi i+ =1 7.16
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where

k̂ m
t

c
t

= +
∆ ∆2 2

7.17a

F̂ F
t

c
t

u k
m
t

ui i i i= − −



 − −



−

m
∆ ∆ ∆2 1 22

2
7.17b

Hence the unknown displacement ui+1 can be solved as

u F ki i+ =1
ˆ ˆ 7.18

The above method uses equilibrium condition at time i but does not satisfy
equilibrium condition at i + 1.

In Eq. 7.17b it is observed that known displacements of ui, ui–1 are used
to interpolate ui+1. Such methods are called explicit methods. In Eq. 7.17b, it
is observed that known displacements of ui, ui–1 are required to determine
ui+1. Thus u0, u–1 are required to determine u1.

˙ ˙̇u
u u

t
u

u u u
ti

i i i
i

i i i i= − = − −+ − + −1 1
22

2
∆ ∆

;  7.19

In Eq. 7.19 substituting i = 0 we get

u u t u
u

– ˙
˙̇

1 ( )
( )
2

= − +0 0
0

2

∆ ∆t
7.20

This could have been obtained by using Taylor’s series expansion as

u t u t u(0 ) ( )
( )

2
...0− = − +∆ ∆ ∆

0 0

2

˙ ˙̇u
t

7.21

ü0 is obtained by using equilibrium equation at t = 0 as

˙̇
˙

u
F cu ku

m0
0 0 0= − −( )

7.22

It has been observed from practice that the central difference method will
give meaningless results if the time step chosen is not short enough.

∆t
T

< 1
π 7.23

This is not a constraint for SDOF systems because a much smaller time step
is chosen for better accuracy. The steps taken in the central difference method
are given in Table 7.3.

Example 7.2
A single story shear frame shown in Fig. 7.4a is subjected to arbitrary excitation
force specified in Fig. 7.4b. The rigid girder supports a load of 25.57kN/m.
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Assume the columns bend about their major axis and neglect their mass, and
assuming damping factor of ρ = 0.02 for steel structures, E = 200GPa. Write
a computer program for the central difference method to evaluate dynamic
response for the frame. Plot displacement u(t), velocity v(t) and acceleration
a(t) in the interval 0 ≤ t ≤ 5s.

Solution

(a) The total load on the beam = 25.57 × 10 = 255.7kN

Mass = m = 
255.7 10

9.81
26065kg

3× =

Table 7.3 Central difference method

Step 1
      
˙˙

˙
u

F cu ku
m0

0 0 0= 
–  –  

Step 2
      
u u t u t u–1 0 0

2

0= –  ( ) + ( )
2

 ∆ ∆˙ ˙˙

Step 3
      
k̂ m

t
c

t
 =  + 

22∆ ∆

Step 4
    
a m

t
c

t
 =  –  

22∆ ∆

Step 5
    
b k m

t
 =  –  2

( )2∆
Step 6 Calculation of time step i

      F̂ F au bui i i i= –  –  –1

Step 7       u F ki i+1 = /ˆ ˆ

Step 8 Calculate
      
u̇

u u

ti
i i i

= 
–  

2
;

+ –1

∆

      
˙u̇

u u u

t
i

i i i i
= 

–  2 _ + –1

2∆

10m

5m

F(t)
20kN

12kN

(a)

0.2 0.4 0.6 0.9

(b)

Columns ISLB 325 @431N/m
I = 9874.6 × 104mm4

7.4 (a) Single storey shear frame; (b) excitation force.
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(b) Stiffness of the frame (shear frame)
Left column base fixed

k EI
L1 = = × × × ×

×
12 12 200 10 9874.6 10

5 103

9 4

3 12
 = 1895 923N/m

Right column base pinned

k EI
L2 = =3 473 981N/m3

Hence total stiffness = 2369904N/m
(c) Dynamic characteristics of the structure

ω n
k
m

= = =2 369 904
26065

9.53rad/s

T
n

= = =2 2
9.52

0.659sπ
ω

π

(d) Time step

∆ ∆t t r T
c∠ = = =π π

0.659 0.209

or

∆t T= = =
10

0.659
π 0.659 s

Use time step of 0.05s

(e) C kmc = 2

C = ρ 2 √km

= 2 × 0.02 √2369904 × 26065

= 9941.5 N. sec/m

Table 7.4 gives the displacement, velocity and acceleration up to 1s.
The displacement, velocity and acceleration response are shown in Fig.

7.5. The computer program in MATLAB is given below.

Program 7.2: MATLAB program for dynamic response of SDOF
using central difference method

% **********************************************************
% DYNAMIC RESPONSE USING CENTRAL DIFFERENCE METHOD
% **********************************************************
ma=26065;
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Table 7.4 values of u,v and a for Example 7.2

t U V a t U V a

0 0 0 0.7673 0.55 0.0015 –0.0889 0.3594
0.05 0.001 0.0358 0.6664 0.60 –0.0025 –0.0602 0.7886
0.10 0.0036 0.0629 0.4174 0.65 –0.0045 –0.0185 0.8801
0.15 0.0073 0.0754 0.0791 0.70 –0.0044 0.0228 0.7718
0.20 0.0110 0.0704 –0.2700 0.75 –0.0023 0.0544 0.4717
0.25 0.0143 0.0500 –0.5528 0.80 0.0011 0.0693 0.1062
0.30 0.0161 0.0185 –0.7052 0.85 0.0047 0.0646 –0.2960
0.35 0.0162 –0.0165 –0.6959 0.90 0.0075 0.0416 –0.6237
0.40 0.0145 –0.0510 –0.6821 0.95 0.0088 0.0059 –0.8051
0.45 0.0111 –0.0809 –0.5750 1.00 0.0081 –0.0324 –0.7256
0.50 0.0064 –0.0831 –0.0831
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k=2369904.0;
wn=sqrt(k/ma)
r=0.02;
c=2.0*r*sqrt(k*ma)
u(1)=0;
v(1)=0;
tt=5;
n=100;

7.5a Displacement spectrum for Example 7.2; (b) velocity spectrum
for Example 7.2; (c) acceleration spectrum for Example 7.2.
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n1=n+1
dt=tt/n;
td=.9;
jk=td/dt;
%***********************************************************
% LOADING IS DEFINED HERE
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7.5 Continued
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%***********************************************************
for m=1:n1

p(m)=0.0;
end
t=-dt
for m=1:8;

t=t+dt;
p(m)=20000;

end
p(9)=16000.0
for m=10:12
t=t+dt
p(m)=12000.0
end
for m=13:19
t=t+dt
p(m)=12000.0*(1-(t-0.6)/.3)
end
an(1)=(p(1)-c*v(1)-k*u(1))/ma
up=u(1)-dt*v(1)+dt*dt*an(1)/2
kh=ma/(dt*dt)+c/(2.0*dt)
a=ma/(dt*dt)-c/(2.0*dt)
b=k-2.0*ma/(dt*dt)
f(1)=p(1)-a*up-b*u(1)
u(2)=f(1)/kh
for m=2:n1

f(m)=p(m)-a*u(m-1)-b*u(m)
u(m+1)=f(m)/kh

end
v(1)=(u(2)-up)/(2.0*dt)
for m=2:n1
v(m)=(u(m+1)-u(m-1))/(2.0*dt)
an(m)=(u(m+1)-2.0*u(m)+u(m-1))/(dt*dt)
end
n1p=n1+1
for m=1:n1p

s(m)=(m-1)*dt
end
for m=1:n1
x(m)=(m-1)*dt
end
figure(1);

plot(s,u,‘k’);
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xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
figure(2);
plot(x,v,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)

figure(3);
plot(x,an,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response acceleration a in m/sq.sec’)
title(‘ dynamic response’)

7.3.4 Single step methods

Runge–Kutta method

These methods are classified as single step since they require knowledge of
only xi to determine xi+1. Hence the methods are called self-starting as they
require no special starting procedure unlike the central difference method.
The Runge–Kutta method of order 4 is usually applied in practice. Consider
the differential equation of motion for a single degree of freedom as

mu cu ku F t˙̇ ˙+ + = ( ) 7.24

Consider v u= ˙ . Hence Eq. 7.24 may be expressed in terms of two first order
equations as

˙ ˙̇ ˙v u
m

F t cu ku= = − −1 [ ( ) ] 7.25a

and u̇ v= 7.25b
The Runge–Kutta recurrence formulae for ui+1 and vi+1 respectively are

given as

u u t u u u ui i+ = + + + +1 1 2 3 42 2∆
6

 ( )˙ ˙ ˙ ˙

u u v v v vi i+ = + + + +1 1 2 3 46
2 2∆t ( ) 7.26a

and

v v t v v v vi i+ = + + + +1 1 2 3 42 2∆
6

( )˙ ˙ ˙ ˙ 7.26b

Equations 7.26a and 7.26b represent an averaging of the velocity and
acceleration by Simpson’s rule within the time interval ∆t. The fourth order
Runge–Kutta method is summarized in Table 7.5.
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Table 7.5 Runge–Kutta method

A. Initial calculations
1. Calculate k, c, m.
2. Initialize variables

      v u0 0= ˙

      
v̇

m
F cv ku0 0 0= 1  [ (0) –  –  ]

3. Select an appropriate time step ∆t.

B. For each time step
1. Calculation at the beginning of time interval.

t = ti
x = u = ui
v1 = vi

      
v̇ v

m
F t cv kui i i1 =  1  [ ( ) –  –  ]

2. Calculation at the first midpoint of the time interval
t = ti + ∆t/2

x = ui+∆t/2 = ui + vi 
    
∆t
2

v2 = vi+∆t/2 = vi + 
      
v̇ t

i
∆
2

      
˙ ˙v v

m
F t cv kxi t2 + /2 2= = 1  [ ( ) –  –  ]∆

3. Calculation at the second midpoint of time interval
t = ti+∆t/2

x = ui+∆t/2 = ui + v2 
    

∆t
2

v3 = vi+∆t/2 = vi + 
      
v̇

t
2 2

∆

      
v̇

m3 = 1  [F(t) – cv3 – kx]

4. Calculate displacements at the end of time interval
t = ti+∆t
x = ui+∆t = ui + v3∆t
v4 = vi+∆t = vi +       ̇v 3 ∆t

      
v̇

m4 = 1  [F(t) – cv4 – kx]

5. Calculate displacement and velocity at the end of time interval

    
u u

t
v v v vi i+1 1 2 3 4= + 

6
 [ + 2 + 2 + ]

∆

      
v v

t
v v v vi i+1 1 2 3 4= + 

6
 [ + 2 + 2 + ]

∆ ˙ ˙ ˙ ˙

Example 7.3
A steel water tank shown in Fig. 7.6a is analysed as an SDOF system having
a mass on top of cantilever which acts as a spring and dashpot for damping.
A blast load of P(t) is applied as shown in Fig. 7.6b. The values of the force
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are given in Table 7.6. Draw displacement, velocity and acceleration responses
up to 0.5s. The damping for steel may be assumed to be 2% of critical
damping.

Solution
Given

W = 133.5kN

P(t)
W = 133.5kN

K = 17.5kN/m

0 0.05 0.1 0.15
Time(t) in seconds
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(a)

(b)

7.6 (a) Steel water tank; (b) excitation force.
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Mass = m = 
133 500

9.81
13 608.5 kg=

k = 17500 × 103N/m

ω n
k
m

= = × =17 500 10
13608.5

35.8rad/s
3

35.8/2π = 5.7 cycles/s.

Fundamental period T = 1/5.7 = 0.175s.

∆t T
cr = = =π π

0.175 0.055s

∆t = T/10 = 0.0175s.

Use ∆t = 0.01s

Figure 7.7 shows the displacement, velocity and acceleration response for
the tank. The values are given in Table 7.7 and the program is given below.

Program 7.3: MATLAB program for dynamic response of SDOF by
Runge–Kutta method

%********************************************************************
% DYNAMIC RESPONSE DUE TO EXTERNAL LOADING RUNGE
KUTTA METHOD
%********************************************************************
ma=13608.5;
k=17500000;
wn=sqrt(k/ma)
r=0.02;
c=2.0*r*sqrt(k*ma)
u(1)=0;
v(1)=0;
tt=.5;
n=50;
n1=n+1
dt=tt/n;
td=.1;

Table 7.6 Blast load at various times

t 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
103 × P(t) 0 267 445 364 284 213 142 89 53.4 26.9 0
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jk=td/dt;
%**************************************************************
% EXTERNAL LOADING IS DEFINED HERE
%**************************************************************
for m=1:n1
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7.7 (a) Displacement spectrum; (b) velocity spectrum; and (c)
acceleration spectrum for Example 7.3.
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p(m)=0.0;
end
p(2)=267000.0
p(3)=445000.0
p(4)=364000.0
p(5)=284000.0
p(6)=213000.0
p(7)=142000.0
p(8)=89000.0
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7.7 Continued

Table 7.7 Displacement, velocity and acceleration at various times for Example 7.3

t u v a t u v a

0 0 0 0 0.11 0.0083 –0.9789 –9.2278
0.01 0.0007 0.1605 18.5579 0.12 –0.0011 –1.0071 3.6697
0.02 0.0036 0.4375 27.4821 0.13 –0.0195 –0.9077 15.9694
0.03 0.0090 0.6282 14.2647 0.14 –0.0250 –0.6991 26.0770
0.04 0.0157 0.6789 –0.2441 0.15 –0.0273 –0.3973 32.7473
0.05 0.0221 0.5909 –13.6410 0.16 –0.0261 –0.0544 25.1872
0.06 0.0271 0.3783 –24.9000 0.17 –0.0216 0.2909 33.1480
0.07 0.0294 0.0805 –31.3880 0.18 –0.0145 0.5946 24.9539
0.08 0.0286 –0.2509 –32.4410 0.19 –0.0056 0.8188 17.442
0.09 0.0244 –0.5663 –28.6582 0.20 0.0038 0.9365 5.8649
0.10 0.0174 –0.8250 –21.2242
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p(9)=53400.0
p(10)=26700.0
an(1)=(p(1)-c*v(1)-k*u(1))/ma
t=0.0
for i=2:n1
ui=u(i-1)
vi=v(i-1)
ai=an(i-1)
d(1)=vi
q(1)=ai
for j=2:3
l=0.5
x=ui+l*dt*d(j-1)
d(j)=vi+l*dt*q(j-1)
q(j)=(p(i)-c*d(j)-k*x)/ma
end
j=4
l=1
x=ui+l*dt*d(j-1)
d(j)=vi+l*dt*q(j-1)
q(j)=(p(i)-c*d(j)-k*x)/ma
u(i)=u(i-1)+dt*(d(1)+2.0*d(2)+2.0*d(3)+d(4))/6.0
v(i)=v(i-1)+dt*(q(1)+2.0*q(2)+2.0*q(3)+q(4))/6.0
an(i)=(p(i)-c*v(i)-k*u(i))/ma
end
for i=1:n1
s(i)=(i-1)*dt
end
figure(1);

plot(s,u,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
figure(2);
plot(s,v,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)

figure(3);
plot(s,an,‘k’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response acceleration a in m/sec’)
title(‘ dynamic response’)
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figure(4);
plot(s,p,’k’)
xlabel(‘ time (t) in seconds’)
ylabel(‘ force in Newtons’)
title(‘ Excitation Force’)

7.3.5 Assumed acceleration methods

Average acceleration method

It is assumed that with a small increment of time ∆t, the acceleration is the
average value of the acceleration at the beginning of the interval ˙̇ui  and the
acceleration at the end of the interval ˙̇ui+1 as illustrated in Fig. 7.8. Hence
acceleration at the some time τ between ti and ti+1 can be expressed as

˙̇ ˙̇ ˙̇u u ui i i( ) 1
2

( )τ = + +1 7.27

Integrating Eq. 7.27 yields

˙ ˙ ˙̇ ˙̇u u t u ui i i i+ += + +1 1
∆
2

( ) 7.28

Integrating Eq. 7.28 again yields

u u t u t u ui i i i i+ += + + +1 1∆ ∆( )
4

( )
2

˙ ˙̇ ˙̇ 7.29

The dynamic equation of equilibrium at ti+1

mu cu ku Fi i i i˙ ˙+ + + ++ + =1 1 1 1 7.30

From Eq. 7.30 ˙̇ui+1 can be solved in terms of ui+1. From substituting this
expression for ˙̇ui+1 into Eq. 7.29 its expression for ˙̇ui+1 and u̇i+1 each in
terms of unknown displacements, ui+1 can be determined. These subsequent

      
˙U̇i+1

    
˙U̇i

t1
τ

∆t ti+1

      
˙˙ ˙˙ ˙˙U U Ui i i( ) = / ( + )1

2 +1τ

7.8 Numerical interpretation using average acceleration method.
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expressions for u̇i+1 and ˙̇ui+1 are then substituted in Eq. 7.30 to solve for
ui+1. The recurrence formula for ui+1 can be given as

u

K m
t

c
t

i+ =
+ 





+



















1

2
2

1

4
∆ ∆

m
u
t

u
t

u c
u
t

u Fi i
i

i
i i

4 4 4
2∆ ∆ ∆+ +



 + +



 +





+
˙

˙̇ ˙ 1 7.31

After ui+1 is determined from Eq. 7.31, ˙̇ui+1 can be determined from Eq.
7.29

˙
˙

˙̇u
t

u u
u
t

ui i i
i

i+ += − − −1 1
44 ( )2∆ ∆ 7.32

and u̇i+1 can be calculated for expression 7.28

˙ ˙ ˙̇ ˙̇u u t u ui i i i+ += + +1 1
∆
4

( ) 7.33

A computational algorithm can be developed in terms of incremental quantities
for applied load ∆Fi  for displacement ∆ui for velocity ∆u̇i  and for acceleration
∆ ˙̇ui  quantities as

∆Fi = Fi+1 – Fi

∆ui = ui+1 – ui

∆ ˙ ˙ ˙u u ui i i= –+1

∆ ˙̇ ˙̇ ˙̇u u ui i i= –+1 7.34

Simplifying we get

ˆ ˆk u Fi i∆ ∆= 7.35

where

k̂ k
c
t

m
t

= + 



 +2 4

( )∆ ∆ 2 7.36

k̂  is called effective stiffness and effective incremental force ∆F̂  can be
calculated as

∆ ∆ ∆
ˆ ˙ ˙̇F F

m
t

c u mui i i i= + +



 +4

2 2 7.37

Once ∆ui has been calculated ∆u̇i  can be found out from the following
equation as
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∆ ∆ ∆˙ ˙u
t

u ui i i= 



 −2

2 7.38

and ∆ ˙̇ui  can be obtained as

∆
∆

∆ ∆˙̇ ˙ ˙̇u
t

u tu ui i i i= − −4 ( ) 22 7.39

Hence knowing the values of u u ui i i, ,˙ ˙̇  at time ti+1 the displacement and
velocity and acceleration may be calculated as

 ui+1 = ui + ∆ui

˙ ˙ ˙u u ui i i+1 = + ∆

˙̇ ˙̇ ˙̇u u ui i i+1 = + ∆ 7.40

Even though this kind of incremental form is not necessary for linear
systems, it is required for nonlinear systems and with non-proportional damping
which we will see in a later chapter. Table 7.8 gives a step-by-step solution
using the average acceleration method (incremental form).

Table 7.8 Average acceleration method

A. Initial calculations
1. Calculate k, c, m, ωn
2. Calculate ü0 as

      
˙˙ ˙u

m
F cu ku0 = 1  [ (0) –  –  ]0 0

3. Select appropriate time step, ∆t
4. Calculate effective system     ̂k

      
k̂ k

t
m c

t
 =  + 4

( )
  + 2

2∆ ∆






B. For each time step calculate effective incremental force

1.
      
∆ ∆

∆
ˆ ˙ ˙˙F F

m
t

c u mui i i i= + 
4

 + 2  + 2






2. Solve for incremental displacement

      
∆ ∆

u
F

k
i

i= 
ˆ

ˆ

3. Calculate incremental velocity and acceleration

      
∆

∆
∆u

t
u ui i i= 

2
 –  2







˙

      
∆

∆
∆ ∆˙˙ ˙ ˙˙u

t
u tu ui i i i= 4  ( –  ) –  2

2

4. Calculate displacement, velocity and acceleration at time … as
ui+1 = ui + ∆ui

      
˙ ˙ ˙u u ui i i+1 = + ∆

üi+1 = üi + ∆üi
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It can be proved that the average acceleration method or constant acceleration
method just discussed is equivalent to the trapezoidal rule. It is also a special
form of the Newmark method which will be discussed later.

Example 7.4
The shear frame shown in Fig. 7.9a is subjected to the exponential pulse
force shown in Fig 7.9b. Write a computer program for the average acceleration
method (incremental formulation) to evaluate the dynamic response of the
frame. Plot the time histories for displacement u(t), velocity u̇ t( )  and
acceleration ˙̇u t( )  in the time interval 0–3s. Assume E = 200 GPa, W =
1079.1kN, ρ = 0.07, F0 = 450kN and td = 0.75s and use a time step ∆t of
0.01s.

Solution
Given

I for ISWB 600 @1337 = 106 198.5e4mm4

Mass = m = 110 000 kg

k = × × × ×
×

3 200 10 106198.5 10
10 5

9 4

12 3

+ × × × ×
×

12 200 10 106198.5 10
10 8

9 4

12 3

Rigid girder

8m
5m

ISWB 600
@ 1337

(a)

td = 0.75

F(T) = f0 (1 – t /td) e–2t/t d

F0 = 450kN

(b)

7.9 (a) Shear frame; (b) excitation force.
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= 5097528 + 4978054

= 10075582N/m

ω n
k
m

= = × =10075582
110 1000

9.57rad/s

T
n

= = =2 2
9.57

0.65sπ
ω

π

∆

∆

t T

t

≤

≤
10

0.065s

We use ∆t = 0.01s.
The displacement velocity and acceleration response are shown in Fig.

7.10 and the values are given in Table 7.9. The program using MATLAB for
constant acceleration method is given below.

Program 7.4: MATLAB program for dynamic response by constant
acceleration method

% Response by constant acceleration method.
ma=110000;
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7.10 (a) Displacement response; (b) velocity response; and
acceleration response for Example 7.4.
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k=10075582;
wn=sqrt(k/ma)
r=0.07;
c=2.0*r*sqrt(k*ma)
u(1)=0;
v(1)=0;
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7.10 Continued
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tt=3;
n=300;
n1=n+1
dt=tt/n;
td=.75;
jk=td/dt;
for m=1:n1

p(m)=0.0;
end
jk1=jk+1
for n=1:jk1
t=(n-1)*dt
p(n)=450000*(1-t/td)*exp(-2.0*t/td)
end
an(1)=(p(1)-c*v(1)-k*u(1))/ma
kh=k+4.0*ma/(dt*dt)+2.0*c/dt
for i=1:n1
s(i)=(i-1)*dt
end
for i=2:n1
ww=p(i)-p(i-1)+(4.0*ma/dt+2.0*c)*v(i-1)+2.0*ma*an(i-1)
xx=ww/kh
yy=(2/dt)*xx-2.0*v(i-1)
zz=(4.0/(dt*dt))*(xx-dt*v(i-1))-2.0*an(i-1)
u(i)=u(i-1)+xx
v(i)=v(i-1)+yy
an(i)=an(i-1)+zz
end
figure(1);

Table 7.9 Displacement, velocity and acceleration response for Example 7.4

t u v a t u v a

0 0 0 4.0909 1.01 0.0185 0.2701 0.5505
0.01 0.0002 0.0397 3.8587 1.02 0.0212 0.2738 0.1883
0.02 0.0008 0.0770 3.6001 1.03 0.0239 0.2739 –0.1669
0.03 0.0017 0.1116 3.3177 1.04 0.0266 0.2705 –0.5122
0.04 0.0030 0.1433 3.0141 1.05 0.0293 0.2637 –0.8446
0.05 0.0046 0.17178 2.6922 1.06 0.0319 0.2537 –1.1615
0.06 0.0064 0.1937 2.3550 1.07 0.0347 0.2406 –1.4602
0.07 0.0085 0.2189 2.0057 1.08 0.0367 0.2246 –1.7385
0.08 0.0108 0.2371 1.6473 1.09 0.0389 0.2059 –1.9941
0.09 0.0132 0.2518 1.2832 1.10 0.0408 0.18580 –2.2253
0.10 0.0158 0.2628 0.9165
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plot(s,u);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
figure(2);
plot(s,v);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)

figure(3);
plot(s,an);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response acceleration a in m/sec’)
title(‘ dynamic response’)

figure(4);
plot(s,p)
xlabel(‘ time (t) in seconds’)
ylabel(‘ force in Newtons’)
title(‘ Excitation Force’)

7.3.6 Assumed acceleration method (linear variation)

Linear acceleration method

In this method a linear variation of acceleration from time ti to ti+1 is assumed
as illustrated in Fig 7.11. Let τ denote the time within the interval ti and ti+1

such that 0 ≤ τ ≤ ∆t (see Fig. 7.11). Then acceleration at time τ is expressed
as

˙̇ ˙̇ ˙̇ ˙̇u u
t

u ui i i( ) ( )τ τ= + −+∆ 1 7.41

      
˙U̇i+1

    
˙U̇i

t1 τ ti+1

      
˙˙ ˙˙ ˙˙ ˙˙U U t U Ui i i i( ) = + /  ( + )+1τ τ ∆

7.11 Numerical integration using linear acceleration method.
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Integrating once we get

˙ ˙ ˙̇ ˙̇ ˙̇u u u
t

u ui i i i( )
2

( )
2

τ τ τ= + + −+∆ 1 7.42

and integrating once more we get

u u u u
t

u ui i i i i( )
2 6

( )
2 3

τ τ τ τ= + + + −+˙ ˙̇ ˙̇ ˙̇
∆ 1 7.43

at time ti+1 Eq. 7.42 and 7.43 simplify to Eq. 7.44a and 7.44b respectively as
shown below.

˙ ˙ ˙̇ ˙̇u u t u ui i i i+ += + +1 1
∆
2

( ) 7.44a

and u t u t u ui i i i+ += + + +1 1ui ∆ ∆˙ ˙̇ ˙̇
2

6
( 2 ) 7.44b

In Eq. 7.45a and 7.45b the acceleration and velocity can be solved in terms
of displacement at i + 1 as

˙̇ ˙ ˙̇u
t

u u u ui i i i i+ += − − −1 1
6 26 ( )2∆ ∆t

7.45a

˙ ˙ ˙̇u
t

u u u t ui i i i i+ += − − −1 1 23 ( )
2∆
∆ 7.45b

Substituting Eq. 7.45a and 7.45b into the equation of motion

mu cu ku Fi i i i˙̇ ˙+ + + ++ + =1 1 1 1 7.46

we get

u
K

m
t

c
t

i+ =
+ 



 +



















1 6
1

3
2∆ ∆

m
u
t

u
t

u
u
t

u t
u

Fi i
i

i
i

i
i

6
( )

3
2

22∆ ∆ ∆ ∆+ +





+ + +



 +









+

6
2 1

˙
˙̇

˙
˙̇

˙̇
c 7.47

After determining ui+1 Eq. 7.45a and 7.45b may be used to determine
velocity u̇i+1  and acceleration ˙̇ui+1 . The above algorithm is for total formulation.
However this algorithm can be modified for incremental formulation as
shown in Table 7.10.

The displacement velocity and acceleration are almost the same as in the
average acceleration method and the response curve is exactly the same as in
Fig. 7.10. The program for linear acceleration method in MATLAB is given
below.
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Program 7.5: MATLAB program for dynamic response by linear
acceleration method

% Linear Acceleration Method.
%*******************************
ma=110000;
k=10075582;
wn=sqrt(k/ma)
r=0.07;
c=2.0*r*sqrt(k*ma)
u(1)=0;
v(1)=0;

Table 7.10 Linear acceleration method – dynamic response

A Initial calculations
1. Input m, c, k, u0,       ̇u0  = v0 given
2. Calculate ü0 from initial conditions as

      
˙u̇

m
F cv ku0 0 0= 1  [ (0) –  –  ]

3. Select the time step size  ∆t
B For each time step

1. Calculate incremental force
∆F = Ft+∆t  – Ft

2. Calculate effective incremental force

      
∆ ∆

∆
∆ˆ ˙

˙˙ ˙ ˙˙F F m
u
t

u c u
t

uti
t t t =  + 

6
 + 3  + 3 + 

2
 













3. Calculate effective stiffness     ̂k

      
k̂ k m

t

c
t

 =  + 6  + 
3

2∆ ∆






4. Solve for ∆u as

      
∆

∆
u

F

k
i

i= 
ˆ

ˆ

5. Calculate     ∆ ∆˙˙ ˙u ut t  as

      
∆

∆
∆ ∆

∆
˙˙ ˙ ˙˙u

t
u tu

t
ut t t t= 6  –  –  

2
 

2

2






      
∆ ∆

∆
∆˙ ˙˙ ˙˙u u t

t
ui i i=  + 

2
 ( )

      
∆ ∆

∆ ∆
∆u tu

t
u

t
ut t t t= + 

2
 + 

6
 

2 2

˙ ˙˙ ˙˙

6. Calculate displacements, velocity and acceleration at time  t + ∆t
ut+∆t = ut + ∆ut

      
˙ ˙ ˙u u ut t t t+ = + ∆ ∆

üt+∆t = üt + ∆üt
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tt=3;
n=300;
n1=n+1
dt=tt/n;
td=.75;
jk=td/dt;
for m=1:n1

p(m)=0.0;
end
jk1=jk+1
for n=1:jk1
t=(n-1)*dt
p(n)=450000*(1-t/td)*exp(-2.0*t/td)
end
an(1)=(p(1)-c*v(1)-k*u(1))/ma
kh=k+6.0*ma/(dt*dt)+3.0*c/dt
for i=1:n1
s(i)=(i-1)*dt
end
for i=2:n1
ww=p(i)-p(i-1)+ma*(6.0*v(i-1)/dt+3.0*an(i-1))+c*(3.0*v(i-1)+dt*an(i-1)/2)
xx=ww/kh
zz=(6.0/(dt*dt))*(xx-dt*v(i-1)-dt*dt*an(i-1)/2)
yy=dt*an(i-1)+dt*zz/2.0
vv=v(i-1)*dt+(dt*dt)*(3.0*an(i-1)+zz)/6.0
v(i)=v(i-1)+yy
an(i)=an(i-1)+zz
u(i)=u(i-1)+vv
end
figure(1);

plot(s,u);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
figure(2);
plot(s,v);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)

figure(3);
plot(s,an);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response acceleration a in m/sec’)
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title(‘ dynamic response’)
figure(4);
plot(s,p)
xlabel(‘ time (t) in seconds’)
ylabel(‘ force in Newtons’)
title(‘ Excitation Force’)

7.3.7 Stepping methods

Newmark’s method

In 1959, N.M. Newmark developed a time stepping method based on the
following equations:

˙ ˙ ˙̇ ˙u u t u t ui i i i+ += + − +1 1[(1 ) ] ( )ν ν∆ ∆ 7.48a

u u tu t u ui i i i i+ += + + − +1
2

1∆ ∆ ∆[(0.5 )( ) ] [ ( ) ] 2β β˙̇ ˙̇t 7.48b

The parameter β and γ define the variation of acceleration over a time step
and determine the stability and accuracy characteristics of the method. Usually

γ is selected as 1/2 and 1
6

 1
4

≤ ≤β  is satisfactory from all points of view,

including accuracy. Equation 7.48 combined with an equilibrium equation at
the end of the time step provides the basis of computing u u ui i i+ + +1 1 1, ,˙ ˙̇  knowing
the values of u u ui i i, ,˙ ˙̇ .

For linear systems as the ones discussed in the chapter there is no iteration
needed. Newmark’s method for linear systems is given in Table 7.11. It is
proved that Newmark’s method is stable if

∆t
Tn

≤
−

1
2

1
2π γ β

7.49

For γ = 1/2, β = 1/4, the condition in Eq. 7.49 becomes

∆t/Tn < ∝ 7.50

The above proves that the average acceleration method is stable for any ∆t,
no matter how large; however, it is accurate only if ∆t is small enough. For
the linear acceleration method γ = 1/2, β = 1/6 and that is stable if

∆t
Tn

≤ 0.551 7.51

To get an accurate estimate a shorter time step must be used:
The program for Newark’s method’s given in below. Example 7.4 is solved

using Newark’s method (γ = 1/2, β = 1/6) – linear acceleration method – and
we get displacement, velocity and acceleration time response as shown in
Fig 7.10.
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Program 7.6: MATLAB program for Nemark’s method for linear systems

%***********************************************************
% NEWMARK’S METHOD FOR AVERAGE OR LINEAR
ACCELERATION METHODS
% BETA=0.25 .... AVERAGE ACCELERATION METHOD
% BETA = 0.167 .... LINEAR ACCELERATION METHOD
%***********************************************************
ma=110000;
k=10075582;
wn=sqrt(k/ma)
gamma=0.5
beta=0.25
r=0.07;
c=2.0*r*sqrt(k*ma)

Table 7.11 Newmark’s method for linear systems

A. Initial calculation

1.
      
˙˙

˙
u

F cu ku
m0

0 0 0= 
–  –  

2. Select ∆t
3. Find modified stiffness

      
k̂ k v

t
c

t
m =  +   + 1

2β β∆ ∆
4. Calculate

    
a m

t
c

 =  + 
β

γ
β∆

    
b m t c = 

2
 +  

2
 –  1  

β
γ
β

∆






B. for each time step

1.       ∆
ˆ ˙ ˙˙F F F au bui i i i i= –  + + +1

2.
      
∆

∆
u

F

k
i

i= 
ˆ

ˆ

3.
      
∆

∆
∆ ∆˙ ˙ ˙̇u

t
u u t ui i i i=  –  + 1 – 

2
 ν

β β β
ν ν





4.
      
∆

∆
∆

∆
˙˙ ˙ ˙˙u

t
u

t
u ui i i i= 1

( )
–  1  –  1

2
 

2β β β
5.       u u u u u u u u ui i i i i i i i i+1 +1 +1= + ; = + , = + ∆ ∆ ∆˙ ˙ ˙ ˙˙ ˙˙ ˙˙

C. The above steps are repeated for other time steps.
In the above equations,
γ = 1/2 β = 1/4 Average acceleration method
γ = 1/2 β = 1/6 Linear acceleration method
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u(1)=0;
v(1)=0;
tt=3.0;
n=300;
n1=n+1
dt=tt/n;
td=.75;
a=ma/(beta*dt)+gamma*c/beta
b=ma/(2.0*beta)+dt*c*(gamma/(2.0*beta)-1)
jk=td/dt;
%***********************************************************
% THIS IS WHERE LOAD IS DEFINED
%***********************************************************
for m=1:n1

p(m)=0.0;
end
jk1=jk+1
for n=1:jk1
t=(n-1)*dt
p(n)=450000*(1-t/td)*exp(-2.0*t/td)
end
an(1)=(p(1)-c*v(1)-k*u(1))/ma
kh=k+ma/(beta*dt*dt)+gamma*c/(beta*dt)
for i=1:n1
s(i)=(i-1)*dt
end
for i=2:n1
ww=p(i)-p(i-1)+a*v(i-1)+b*an(i-1)
xx=ww/kh
zz=xx/(beta*dt*dt)-v(i-1)/(beta*dt)-an(i-1)/(2.0*beta)
yy=(gamma*xx/(beta*dt)-gamma*v(i-1)/beta+dt*(1-gamma/(2.0*beta))*an(i-
1))
v(i)=v(i-1)+yy
an(i)=an(i-1)+zz
vv=dt*v(i-1)+dt*dt*(3.0*an(i-1)+zz)/6.0
u(i)=u(i-1)+vv
end
figure(1);

plot(s,u,‘K’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
figure(2);
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plot(s,v,‘K’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)

figure(3);
plot(s,an,‘K’);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response acceleration a in m/sec’)
title(‘ dynamic response’)

figure(4);
plot(s,p,’K’)
xlabel(‘ time (t) in seconds’)
ylabel(‘ force in Newtons’)
title(‘ Excitation Force’)

7.3.8 Conditionally stable method

Wilson-θ method

A method developed by E L Wilson is a modification of the conditionally
stable linear acceleration method that makes it unconditionally stable. This
is based on the assumption that acceleration varies linearly over an extended
time step δt = θ∆t as shown in Fig. 7.12. The accuracy and stability properties
of the method depend on the value θ which is always greater than 1.

The numerical procedure is derived in a similar line of linear acceleration
methods. Everything described in this chapter will be useful to a multiple-
degrees-of-freedom (MDOF) non-linear system with non-proportional
damping. The incremental velocity and incremental acceleration can be given
as

Ui+1 = ai+1

Ui = ai

ti ti+1 ti+v

δt = θ∆t

∆ Ui

δ   Ui

7.12 Linear variation of acceleration and normal excited time.
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∆ ∆ ∆ ∆˙ ˙̇ ˙̇u t u t ui i i= +( )
2

7.52a

∆ ∆ ∆ ∆ ∆u u u
t

ui i i i= + +( )
( )

2
( )

6

2 2

t
t˙ ˙̇ ˙̇ 7.52b

Replacing ∆t by δt and the incremental responses by δ δ δu u , ui i i, ˙ ˙̇

δ δ δ δ˙ ˙̇ ˙̇u t u
t

ui i i= +( )
2

7.53a

δ δ δ δ δu u u ui i i i= + +( )
( )

2
( )

6

2

t
t t˙ ˙̇ ˙̇

2

7.53b

Equation 7.53b can be solved for δ ˙̇ui  as

δ
δ

δ δ
˙̇ ˙ ˙̇ ˙u

t
u u

t
ui i i i= − −6 6

2 3 7.54

Substituting Eq. 7.54 in Eq. 7.53a we get

δ δ δ δ˙ ˙ ˙̇u
t

u u
t

ui i i i= − −3 3
2

7.55

Equations 7.54 and 7.55 are substituted into several equations of motion as

m u c u k u Fi i i iδ δ δ δ˙̇ ˙+ + = 7.56

based on the assumption that the exciting force vector also varies linearly
over the extended time step.

δ θFi = ( )∆Fi 7.57

This leads to

ˆ ˆkδ δu Fi i= 7.58a

when

k̂ k
t

mi= + +3 6
2θ θ∆ ∆t

c 7.58b

δ θ δ θ
θˆ ˙ ˙̇F F

t
m c u m

t
c ui i i i= + +



 + +



( )

2
6

3 3∆
∆

7.58c

Equation 7.58a is solved for δui and δ ˙̇ui  is computed from Eq. 7.34

∆ ˙̇ ˙̇u ui i= 1
θ δ 7.59

and the incremental velocity and displacement are determined from Eq.
7.52a, 7.52b. For the MDOF system δui is determined using a tangent stiffness
matrix and an iterative procedure. Table 7.12 gives the algorithm for the
Wilson-θ method.
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As discussed earlier, the value of θ governs the stability characteristics of
the Wilson-θ method. If θ = 1 this method is the linear acceleration method,
which is stable for ∆t< 0.551 Tn when Tn is the shortest natural period of
time. If θ ≥ 1.37 the Wilson-θ method is unconditionally stable, making it
suitable for direct solution of

mu cu ku F t˙̇ ˙+ + = ( ) 7.60

It is proved by Wilson that θ = 1.42 gives optimal accuracy.
The computer program in MATLAB for Wilson-θ method for Example

7.4 is given below and we get the displacement. The velocity and acceleration
response are the same as Fig. 7.10.

Program 7.7: MATLAB program for dynamic response by Wilson-θ
Method

% Wilson theta method
%**********************
ma=110000;

Table 7.12 Algorithm for Wilson-θ method

A. Initial calculation
1. Initial condition        u u0 0, ˙
2. Solve        mu F cu ku˙˙ ˙0 0 0 0= –  –  

3.
    
a

t
m c b m t c = 6   + 3 ;  = 3  + 

2
 

θ
θ

∆
∆

B. For each time step

1.       δ θˆ ˙ ˙F F au bui i i i= ( ) + + ∆
2. Determine tangent stiffness      ̂k

      
k̂ k

t
c

t
mi = + 3   + 6  

2θ θ∆ ∆
3. Solve for δu for        

ˆ ˆk u Fi iδ δ= 

4.
      
δ

θ
δ

θ
˙˙ ˙ ˙˙u

t
u

t
u ui i i i= 6

( )
 –  6  –  3

2∆ ∆

5.
      
∆˙˙

˙˙
u

u
i

i= 
δ
θ

6.
      
∆ ∆ ∆ ∆˙ ˙˙ ˙˙u t u t ui i i=  + 

2
 

7.
      
∆ ∆ ∆ ∆ ∆u t u t u t ui i i i=  + ( )

2
 + ( )

6
 

2 2
˙˙ ˙ ˙˙

ui+1 = ui + ∆ui

8.       
˙ ˙ ˙u u ui i i+1 = + ∆

      
˙˙ ˙˙ ˙˙u u ui i i+1 = + ∆

C. Repeat for the the next time step
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k=10075582;
wn=sqrt(k/ma)
theta=1.42
r=0.07;
c=2.0*r*sqrt(k*ma)
u(1)=0;
v(1)=0;
tt=3.0;
n=300;
n1=n+1
dt=tt/n;
td=.75;
jk=td/dt;
for m=1:n1

p(m)=0.0;
end;
jk1=jk+1;
for n=1:jk1;
t=(n-1)*dt;
p(n)=450000*(1-t/td)*exp(-2.0*t/td);
end;
an(1)=(p(1)-c*v(1)-k*u(1))/ma;
kh=k+3.0*c/(theta*dt)+6.0*ma/(theta*dt)^2;
a=6.0*ma/(theta*dt)+3.0*c;
b=3.0*ma+theta*dt*c/2.0;
for i=1:n1;
s(i)=(i-1)*dt;
end;
for i=2:n1;
ww=(p(i)-p(i-1))*theta+a*v(i-1)+b*an(i-1);
xx=ww/kh;
zz=(6.0*xx/((theta*dt)^2)-6.0*v(i-1)/(theta*dt)-3.0*an(i-1))/theta;
yy=dt*an(i-1)+dt*zz/2.0;
v(i)=v(i-1)+yy;
an(i)=an(i-1)+zz;
vv=dt*v(i-1)+dt*dt*(3.0*an(i-1)+zz)/6.0;
u(i)=u(i-1)+vv;
end;
figure(1);

plot(s,u);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
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figure(2);
plot(s,v);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)

figure(3);
plot(s,an);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response acceleration a in m/sec’)
title(‘ dynamic response’)

figure(4);
plot(s,p)
xlabel(‘ time (t) in seconds’)
ylabel(‘ force in Newtons’)
title(‘ Excitation Force’)

7.4 Response to base excitation

Evaluating the dynamic response of structures due to arbitrary base or support
motion can generally be facilitated by numerical integration methods. The
response of structures to base excitation is the most important consideration
in earthquake engineering. Consider the one storey shear frame shown in
Fig. 7.13. The structure experiences any arbitrary ground displacements or
acceleration ˙̇u tg( ). It is assumed that the shear frame is attached to a rigid
base that moves with the ground. In analysing the structural response there
are several components of motion that must be considered; specifically ui.

ut

u
M

C
K/2

ug

Ground
Rigid base

7.13 One storey shear frame.
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The relative displacement of the structure and uT the total or absolute
displacement of the structure measured from reference axis.

mu cu kut˙̇ ˙+ + = 0 7.61

The zero on the right hand side of Eq. 7.61 would suggest that the structure
is not subjected to any external load F(t). This is not entirely true since the
ground motion creates the inertia of forces in the structure.

Thus, noting total displacement of the mass ut is given by

u u ut g= + 7.62

and the absolute or total acceleration of the mass is expressed as

˙̇ ˙̇ ˙̇u u ut g= + 7.63

Substituting Eq. 7.63 in Eq. 7.61, the equation of motion can be expressed as

m u u cu kug( ) 0˙̇ ˙̇ ˙+ + + = 7.64

or

mu cu ku mug˙̇ ˙ ˙̇+ + = − 7.65

The term mug˙̇  can be thought of as an effective load Feff (t) applied externally
in the mass of the structure shown in Fig. 7.14. Therefore the equation of
motion

mu cu ku F t˙̇ ˙+ + = eff ( ) 7.66

or

˙̇ ˙u c
m

u k
m

u
F t

m
+ + = eff ( )

7.67

Substituting

c
m n= 2ρω 7.68

F(t)

K/2 K/2

ug

Rigid base

m

7.14 Effective load on frame.
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we get

˙̇ ˙ ˙̇u u u u tn n g+ + = −2 ( )2ρω ω 7.69

Note that in Eq. 7.69. u u ui i i, ,˙ ˙̇  represent relative displacement, velocity and
acceleration of the mass respectively. We will see in later chapters that we
can convert an ‘n’-degrees-of-freedom system to ‘n-single-degree-of-freedom
system’ for linear vibration with proportional damping.

Equation 7.69 can be integrated by any of the methods discussed in the
chapter. We will apply the Wilson-θ method. This is also useful in establishing
response spectra.

Example 7.5
A single storey shear frame shown in Fig 7.15a is subjected to El Centro
ground excitation as shown in Fig. 7.15c. The simplified model is shown in

k /4

c = 993.6 k

W = 25.57kN

k = 1895923N/m

m

F(eff)

k

c

(b)(a)

0 10 20 30 40 50
Time in seconds

(c)

G
ro

u
n

d
 a

cc
el

er
at

io
n

 (
g

)

0.40

0.30

0.20

0.10

0.00

–0.10

–0.20

–0.30

7.15 (a) Shear frame with damping; (b) mass spring and damper
model; (c) El Centro earthquake motion (k = stiffness; c = damping
coefficient).
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Fig. 7.15b. The rigid girders support a load of 25.57kN/m. Assuming a
damping factor ρ = 0.02 for steel frame, E = 200GPa. Write a computer
program for the Wilson-θ method to evaluate dynamic response of the frame
and plot u(t), v(t) and at(t) in the interval.

Solution

ωn = 9.53rad/s

Tn = 0.659s

ρ = 0.02

˙̇ ˙ ˙̇u u u un n g+ + = −2 2ρω ω 7.70

Once u, v and at have been determined

a a ut n g= + ˙̇

The absolute acceleration can be obtained. The program using Wilson-θ
method is given below for ground movement. The displacement, velocity
and acceleration (total) response are shown in Fig 7.16.

7.16 (a) Displacement response; (b) velocity response; and (c) total
acceleration response due to ground motion for Example 7.5.
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7.16 Continued
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7.4.1 Program 7.8: MATLAB program for dynamic
response to base excitation using Wilson-θ
method

% Response due to ground excitation using Wilson-Theta method
%**********************************************************
ma=1;
k=90.829;
wn=sqrt(k/ma);
tn=6.283/wn;
theta=1.42;
r=0.02;
c=2.0*r*sqrt(k*ma);
u(1)=0;
v(1)=0;
tt=50.0;
n=2500;
n1=n+1;
dt=tt/n;
d=xlsread(‘eqdata’);
for i=1:n1;
ug(i)=d(i,2);
p(i)=-ug(i)*9.81;
end;
an(1)=(p(1)-c*v(1)-k*u(1))/ma;
kh=k+3.0*c/(theta*dt)+6.0*ma/(theta*dt)^2;
a=6.0*ma/(theta*dt)+3.0*c;
b=3.0*ma+theta*dt*c/2.0;
for i=1:n1;
s(i)=(i-1)*dt;
end;
for i=2:n1;
ww=(p(i)-p(i-1))*theta+a*v(i-1)+b*an(i-1);
xx=ww/kh;
zz=(6.0*xx/((theta*dt)^2)-6.0*v(i-1)/(theta*dt)-3.0*an(i-1))/theta;
yy=dt*an(i-1)+dt*zz/2.0;
v(i)=v(i-1)+yy;
an(i)=an(i-1)+zz;
vv=dt*v(i-1)+dt*dt*(3.0*an(i-1)+zz)/6.0;
u(i)=u(i-1)+vv;
end;
% Find total acceleration
for i=1:n1;
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an(i)=an(i)+ug(i)*9.81;
end;
figure(1);

plot(s,u);
xlabel(‘ time (t) in seconds’);
ylabel(‘ Response displacement (relative) u in m’);
title(‘ dynamic response’);
figure(2);
plot(s,v);
xlabel(‘ time (t) in seconds’);
ylabel(‘ Response velocity (relative) v in m/sec’);
title(‘ dynamic response’);

figure(3);
plot(s,an);
xlabel(‘ time (t) in seconds’);
ylabel(‘ Response acceleration (total) a in m/sec’);
title(‘ dynamic response’);

figure(4);
plot(s,ug);
xlabel(‘ time (t) in seconds’);
ylabel(‘ ground acceleration / g’);
title(‘ Elcentro NS’);

7.5 Wilson’s procedure (recommended)

7.5.1 Damped free vibration due to initial conditions

The equation of motion is written as

mu cu ku˙̇ ˙+ + = 0 7.71a

or

˙̇u u+ + =2 0n n
2ρω ω 7.71b

in which initial nodal displacements u0 and velocity u̇0  are specified due to
previous loading acting on the structure. Note that the functions s(t) and c(t)
given in Table 7.13 are solutions to Eq. 7.71a.

The solution for Eq. 7.71 can be written as

u t A t u A t u( ) ( ) ( )0 2 0= +1 ˙ 7.72a

˙ ˙u t A t u A t u( ) ( ) ( )3 0 4 0= + 7.72b
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7.5.2 General solution due to arbitrary loading

There are many different methods available to solve the typical modal equations.
However, according to Wilson, the use of the exact solutions for a linear load
over a small time increment has been found to be the most economical and
accurate method to numerically solve the equations using a computer program.
This method does not have problems such as stability and does not introduce
numerical damping. Since the most seismic ground motion is defined a
linear within 0.005s intervals, the method is exact for the type of loading for
all frequencies. All modal equations are converted to ‘n’ uncoupled equations.

Using the equation as

˙̇ ˙u t u t u t R t( ) 2 ( ) ( ) ( )n n
2+ + =ρω ω 7.73

the equation for the linear load function within the time step by definition
(see Fig. 7.17) is

R t
t
t

R t
t

Ri i( ) 1= −



 +−∆ ∆1 7.74

where time ‘t’ refers to the start of time step. Now the exact solution within
the time step can be written as

u t A t u A t u A t R A t Ri u i i( ) ( ) ( ) ( ) ( )1 1 2 1 3 1= + + +− − −˙ 4 7.75

where all functions are as defined in Table 7.14.

Table 7.13 Summary of notations used in dynamic response

Constants

    
ω ω ρ ω ω ρ ρ

ρ
ρ

ρ
ωD n n n

n
a

t
= 1 –  ; = ;  = 

(1 –  )
; = 

22
2 0 ∆

    
a a a

t
a a

a

D
0 1 2 3 1

2= – ; = –  1 ; = – –  
∆

ρ
ω

    
a a a a a a a a

a

D
4 1 5 0 6 2 7 5

6= – ; = – ; = – ; = – –  ρ
ω

    a a a aD n n D8 5 9
2 2

10= – ; = – ; = 2ω ω ω ω

Functions

      s t t s t s t c t s t a s t a c tnt
n D( ) = e sin( )   ( ) = – ( ) + ( ); ( ) = – ( ) –  ( )–

9 10
ρω ω ω ω∆ ˙ ˙˙

      c t t c t c t s t c t a c t a s tnt
D n D( ) = e cos( );   ( ) = – ( ) –  ( ); ( ) = – ( ) –  ( )–

9 10
ρω ω ω ω˙ ˙˙

    A t c t s s1( ) = ( ) + ( )ρ

    
A t s t

D
2( ) = 1  ( )

ω

    
A t a a t a s t a c t

n

3
2

1 2 3 4( ) = 1  [ + + ( ) + ( )]
ω

    
A t a a t a s t a c t

n

4
2

5 6 7 8( ) = 1  [ + + ( ) + ( )]
ω
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Velocity and acceleration can be obtained within the time step as

˙ ˙ ˙ ˙ ˙ ˙u t A t u A t u A t R A t Ri i i i( ) ( ) ( ) ( ) ( )1 1 2 1 3 1= + + +− − − 4 7.76a

˙̇ ˙̇ ˙̇ ˙ ˙̇ ˙̇u t A t u A t u A t R A t Ri i i i( ) ( ) ( ) ( ) ( )1 1 2 1 3 1 4= + + +− − − 7.76b

Equations 7.75, 7.76a and 7.76b are evaluated at the end of time increment
∆t and the following displacement, velocity and acceleration at the end of i th
time step are given by the recurrence relation.

R(t)

Ri–1

Ri

∆t

7.17 Typical modal load function.

Table 7.14 Constants used in recurrence relation

    A A t c t s t1 1= ( ) = ( ) + ( )∆ ∆ ∆ρ

    
A A t s t

D
2 2= ( ) = 1  ( )∆ ∆

ω

    
A A t a a t a s t a c t

n
3 3 2 1 2 3 4= ( ) = 1  [ + + ( ) + ( )]∆ ∆ ∆ ∆

ω

    
A A t a a t a s t a c t

n
3 4 2 5 6 7 8= ( ) = 1  [ + + ( ) + ( )]∆ ∆ ∆ ∆

ω

      A A t c t s t5 1= ( ) = ( ) + ( )˙ ˙ ˙∆ ∆ ∆ρ

      
A A t s t

D
6 2= ( ) = 1  ( )˙ ˙∆ ∆

ω

      
A A t a a s t a c t

n
7 3 2 2 3 4= ( ) = 1  [ + ( ) + ( )]˙ ˙ ˙∆ ∆ ∆

ω

      
A A t a a s t a c t

n
8 4 2 6 7 8= ( ) = 1  [ + ( ) + ( )]˙ ˙ ˙∆ ∆ ∆

ω

      A A t c t s t9 1= ( ) = ( ) + ( )˙˙ ˙˙ ˙˙∆ ∆ ∆ρ

      
A A t s t

D
10 2= ( ) = 1  ( )˙̇ ˙̇∆ ∆

ω

      
A A t a s t a c t

n
11 3 2 3 4= ( ) = 1  [ ( ) + ( )]˙˙ ˙˙ ˙˙∆ ∆ ∆

ω

      
A A t a s t a c t

n
12 4 2 7 8= ( ) = 1  [ ( ) + ( )]˙˙ ˙˙ ˙˙∆ ∆ ∆

ω
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u t A u A u A R A Ri u i i( ) 1 1 2 1 3 1 4= + + +− − −˙ 7.77a

˙ ˙u t A u A u A R A Ri i i i( ) 5 1 6 1 7 1 8= + + +− − − 7.77b

˙̇ ˙ ˙̇u t A u A u A R A R ui i i i( ) 9 1 10 1 11 1 12 1= + + + +− − − −i 7.77c

The constants A1 to A12 are summarized in Table 7.14 and they need to be
calculated only once. Therefore for each time increment only 12 multiplications
and 9 conditions are required. Hence the computer time required solving for
200 steps per second for 50s duration earthquake approximately 0.01s or
100 modal equations can be solved in 1s of computer time. Therefore, there
is no need to consider other numerical methods (as per Wilson) such as
approximate fast Fourier transform, or numerically evolution of the Duhamel
integral to solve the equation.

Because of the speed of this exact piecewise linear technique, it can also
be used to develop accurate earthquake response spectra using a very small
amount of computer time.

Example 7.6
Solve Example 7.4 by Wilson’s proposed procedure with different data as
shown below.

 m = 0.065
  k = 7.738
  ρ = 0.07
F0 = 10

Solution
The equation of motion is written as

mu cu ku F˙̇ ˙+ + = 0

or

˙̇ ˙u u u
F
m

f tt n n+ + =2 ( )2 0ρω ω

ω n = =7.738
0.065

10.9rad/s

˙̇ ˙u u u f t+ 2 0.07 10.9 118.81 153.8 ( )× × + =

A program for Wilson’s method is written in MATLAB as shown below. The
force time curves are shown in Fig. 7.18a. The displacement, velocity and
acceleration response are shown in Fig.7.18b, c and d respectively. Wilson’s
method is the best to solve problems involving base excitation.

�� �� �� �� �� ��



Dynamic response of structures using numerical methods 221

7.5.3 Program 7.9: MATLAB program for dynamic
response by Wilson’s general method

%Matlab program using Wilson’s general method
%*********************************************
ma=0.065;
k=7.738;
wn=sqrt(k/ma)
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7.18 (a) Force–time curve; (b) displacement response; (c) velocity
response; and (d) acceleration response for Example 7.6.
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r=0.07;
wd=wn*sqrt(1-r^2);
c=2.0*r*sqrt(k*ma);
wnb=wn*r;
rb=r/sqrt(1-r^2);
tt=3.0;
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7.18 Continued
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n=300
n1=n+1
dt=tt/n
td=.75;
jk=td/dt;
a0=2.0*r/(wn*dt);
a1=1+a0
a2=-1/dt;
a3=-rb*a1-a2/wd;
a4=-a1;
a5=-a0;
a6=-a2;
a7=-rb*a5-a6/wd;
a8=-a5;
a9=wd^2-wn^2;
a10=2.0*wnb*wd;
u(1)=0;
v(1)=0;
for m=1:n1;

pa(n)=0.0
p(m)=0.0;

end;
jk1=jk+1;
for n=1:jk1;
t=(n-1)*dt;
p(n)=10.0*(1-t/td)*exp(-2.0*t/td);
p(n)=pa(n)/ma;
end;
s=exp(-r*wn*dt)*sin(wd*dt);
c=exp(-r*wn*dt)*cos(wd*dt);
sd=-wnb*s+wd*c;
cd=-wnb*c-wd*s;
sdd=-a9*s-a10*c
cdd=-a9*c+a10*s;
ca1=c+rb*s;
ca2=s/wd;
ca3=(a1+a2*dt+a3*s+a4*c)/(wn^2);
ca4=(a5+a6*dt+a7*s+a8*c)/(wn^2)
ca5=cd+rb*sd;
ca6=sd/wd;
ca7=(a2+a3*sd+a4*cd)/(wn^2);
ca8=(a6+a7*sd+a8*cd)/(wn^2);
ca9=cdd+rb*sdd;
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ca10=sdd/wd;
ca11=(a3*sdd+a4*cdd)/(wn^2);
ca12=(a7*sdd+a8*cdd)/(wn^2);
an(1)=(p(1)-2.0*r*wn*v(1)-(wn^2)*u(1));
for i=1:n1
ti(i)=(i-1)*dt
end
for i=2:n1
u(i)=ca1*u(i-1)+ca2*v(i-1)+ca3*p(i-1)+ca4*p(i);
v(i)=ca5*u(i-1)+ca6*v(i-1)+ca7*p(i-1)+ca8*p(i);
an(i)=an(i-1)+ca9*u(i-1)+ca10*v(i-1)+ca11*p(i-1)+ca12*p(i);
end;
figure(1);

plot(ti,u);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response displacement u in m’)
title(‘ dynamic response’)
figure(2);
plot(ti,v);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response velocity v in m/sec’)
title(‘ dynamic response’)

figure(3);
plot(ti,an);
xlabel(‘ time (t) in seconds’)
ylabel(‘ Response acceleration a in m/sec’)
title(‘ dynamic response’)

figure(4);
plot(ti,p)
xlabel(‘ time (t) in seconds’)
ylabel(‘ force in Newtons’)
title(‘ Excitation Force’)

7.6 Response of elasto-plastic SDOF system

When a steel or reinforced concrete building is subjected to extreme loading
it undergoes elasto-plastic behaviour. Usually excursions beyond the elastic
range are not permitted under normal conditions of operation; the extent of
the permanent damage the structure may sustain when subjected to extreme
conditions such as blast or earthquake loading is frequently of interest to the
design engineer.

Consider a one storey structural steel shear frame subjected to a horizontal
static force F as shown in Fig. 7.19. Assume the girder to be infinitely rigid
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compared with the column, when the load is applied numerically with the
frame. Plastic hinges will eventually form at the end of the columns. The
plot of resistance versus displacement relationship is given in Fig. 7.20a.
The behaviour is linear up to the point ‘a’ corresponding to resistance Ry

where first yielding in the cross section occurs. As the load is increased, the
resistance curve becomes nonlinear as the column cross-sections plasticize
under the system softens. The full plastification of the cross-section occurs
at point ‘b’ corresponding to maximum resistance Rm. Upon unloading, the
system rebounds elastically along the line ‘bc’ parallel to initial linear portion
‘Oa’. The system remains elastic until first yielding again attained at point
‘d’ corresponding to resistance Ry. As the load is increased, further plastic
hinges reform at – Rn corresponding to point ‘e’. Unloading will be linear
elastic parallel to line ‘cd’.

If the maximum positive and negative resisting forces Rm and –Rm are
numerically equal, the hysteresis loop formula by the cyclic loading will be
symmetric with respect to origin. For each cycle, energy is dissipated by an
amount that is proportional to the area within the hysteresis loop. The behaviour
illustrated in Fig. 7.20a is often simplified by assuming linear behaviour up
to the point of plastification. This type of behaviour is referred to as ‘elasto-
plastic’. This slope of the elastic loading and unloading curve is proportional
to stiffness. The elasto-plastic behaviour can be idealized shown in Fig 7.20b.
One hysteresis loop is discussed below.

Stage 1 Elastic loading

This is defined by segment ‘oa’ on the resistance displacement curve 0 ≤ u
≤ uel and u̇  > 0 where uel = Rm/k.

The resisting force as the stages is given by

Rm = Kx 7.78

Unloading in the stage occurs when u̇  < 0.

M

F

Plastic hinge

7.19 Elasto-plastic shear frame.
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7.20 (a) General plastic behaviour, (b) elasto-plastic resistance
displacement relationship.
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Stage 2 Plastic loading

This stage is represented by the segment ab on the resistance–displacement
curve and corresponds to the condition uel < u <umax and u̇  > 0 where u max

is the displacement in hysteresis loop. The resisting force in this stage is
given by

Fs = Rm 7.79

Stage 3 Elastic rebound

This stage is defined by the segment bc on the resistance–displacement
curve and corresponds to a condition (umax–2 uel) < u < umax and u̇< 0. The
resistance is given by

Fs = Rm – k (um – u) 7.80

It is to be noted that load reversal in this stage occurs than u u u< −( )max 2 ˙
and u̇ < 0.

Stage 4 Plastic loading

The system response in this stage is represented by segment ‘cd’ on the
resistance displacement curve and corresponds to condition umin < u < (umax

–uel) and u̇  < 0 where umin is the minimum displacement as the stage. The
system resistance is given by

Fs = –Rm 7.81

Stage 5 Elastic rebound

Once the cycle of hysteresis is completed, the system unloads elastically
along segment ‘de’. This stage corresponds to the condition umin < u < (umin

+ 2uel) and u̇  > 0. This resisting force is given by

Fs = k(u – umin) – Rm 7.82

7.7 Program 7.10: MATLAB program for dynamic

response for elasto-plastic SDOF system

% program for elasto-plastic analysis
% simulates nonlinear response of SDOF using
%elasto-plastic hysteresis loop to model
%spring resistance. The program uses Newmark-B integration scheme
clc;
k=1897251;
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m=43848;
c=7767.7;
% for elasto-plastic rm=66825.6 and
% for elastic response rm is increased such that rm=6682500.6
rm=66825.6;
tend=30.0;
h=0.02;
nfor=1500;
% earthquake data
% d=xlsread(‘eldat’);
% for i=1:nfor
%   tt(i)=d(i,1);
%   ft(i)=d(i,2);
%   ft(i)=m*ft(i)*9.81;
% end
%force data
d=xlsread(‘forcedat’)
for i=1:nfor

tt(i)=d(i,1)
ft(i)=d(i,2)

end
ic=1;
for t=0:h:tend

for i=1:nfor-1
if (t >= tt(i)) & (t < tt(i+1))
p(ic)=ft(i)+(ft(i+1)-ft(i))*(t-tt(i))/(tt(i+1)-tt(i));

ic=ic+1;
continue

end
continue
continue

end
end
x(1)=0;
x1(1)=0;
x2(1)=p(1)/m;
xel=rm/k;
xlim=xel;
xmin=-xel;
a1=3/h;
a2=6/h;
a3=h/2;
a4=6/(h^2);
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kelas=k+a4*m+a1*c
kplas=a4*m+a1*c
ic=2;
loop=1;
for t=h:h:tend-30*h

if loop==1
[x,x1]=Respond(kelas,p,x,x1,x2,m,c,ic,a2,a3,a1);
r=-rm-(xmin-x(ic))*k;
x2(ic)=(p(ic)-c*x1(ic)-r)/m;
if x(ic) >= xlim
loop=2;
end
ic=ic+1;
continue

elseif(loop==2)
loop;
[x,x1]=Respond(kplas,p,x,x1,x2,m,c,ic,a2,a3,a1);
r=rm;
x2(ic)=(p(ic)-c*x1(ic)-r)/m;
if x1(ic)<=0
loop=3;
xmax=x(ic);
xlim=x(ic)-2*xel;
end
ic=ic+1;

continue
elseif(loop==3)

loop;
[x,x1]=Respond(kelas,p,x,x1,x2,m,c,ic,a2,a3,a1);
r=rm-(xmax-x(ic))*k;
x2(ic)=(p(ic)-c*x1(ic)-r)/m;
if x(ic)<=xlim
loop=4;
end
ic=ic+1;

continue
elseif(loop==4)

loop;
[x,x1]=Respond(kplas,p,x,x1,x2,m,c,ic,a2,a3,a1);
r=-rm;
x2(ic)=(p(ic)-c*x1(ic)-r)/m;
if x1(ic)>=0
loop=1

�� �� �� �� �� ��



Structural dynamics of earthquake engineering230

xlim=x(ic)+2.0*xel;
xmin=x(ic);
end
ic=ic+1;

continue
end

end
ic=ic-1;
for i=1:ic

tx(i)=(i-1)*h;
xx(i)=x(i);

end
plot(tx,xx)
hold on
xlabel(‘ time’)
ylabel(‘ displacement in m’)
title(‘ Displacement response history ‘)
function [x,x1]=Respond(k,p,x,x1,x2,m,c,ic,a2,a3,a1)
dps=p(ic)-p(ic-1)+x1(ic-1)*(a2*m+3*c)+x2(ic-1)*(3*m+a3*c);
dx=dps/k;
dx1=a1*dx-3*x1(ic-1)-a3*x2(ic-1);
x(ic)=x(ic-1)+dx;
x1(ic)=x1(ic-1)+dx1;

Example 7.7
A shear frame structure shown in Fig. 7.4a is subjected to time varying force
shown in Fig. 7.21. Evaluate the elastic and elasto-plastic response of the
structure by the Newmark method without equilibrium iterations.

Solution
k = 1897251N/m

m = 43848kg

0.5s 1s

133651N

7.21 Time varying force.
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c = 34605.4Ns/m

Rm = 66825.6N

∆t = 0.001

Figure 7.22 shows the displacement due to loading for elastic and elasto-
plastic cases.

7.8 Response spectra by numerical integration

Construction of response spectrum by analytical evaluation of the Duhamel
integral is quite tedious. To develop response spectrum by numerical integration,

0 1 2 3
Time in seconds

(a)

D
is

p
la

ce
m

en
t 

in
 m

0.3

0.2

0.1

0

–0.1

0 0.5 1 1.5 2 2.5 3
Time in seconds

(b)

D
is

p
la

ce
m
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t 

in
 m

0.4

0.3

0.2

0.1

0

7.22 (a) Displacement response (elastic response) and (b)
displacement response for Example 7.7 (elasto-plastic response).
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consider a family of SDOF oscillations shown in Fig. 7.23. Each oscillator
has different natural period and frequency:

T1< T2 < T3……Tn 7.83

Specify a function F(t).
The dynamic magnification factor can be calculated as

DMF = umax/F0/k 7.84

Finally DMF is plotted against desired spectrum curve.

Example 7.8
Construct a response spectrum for the symmetric triangle shown in Fig.
7.24a. Plot DMF vs td/T in the integral 0 ≤ td/T ≤ 10. Assume ρ = 0, td = 2s.
A MATLAB program for drawing response spectrum is given in Chapter 6.
The response curve is shown in Fig. 7.24b.

Solution
A family of response spectrum curves or response spectra can be produced
for a specific load case by evaluating response maxima for several values of
damping ρ. Hence maximum response of a linear SDOF to a specified time
depends on ωn and ρ.

7.9 Numerical method for evaluation of the

Duhamel integral

7.9.1 For an undamped system

The response of an undamped SDOF system subjected to a general type of
forcing function as given by the Duhamel integral as

x t
F
m

t
n

t

( )
( )

 sin ( – ) d
0

= ∫ τ
ω ω τ τn 7.85

M1,T1

K1

K7

M 7,T7

7.23 Family of SDOF oscillators for the construction of response
spectra.
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= ∫sin
( )

cos  d
0

ω τ
ω ω τ τn

t

n
nt

F
m

− ∫cos  
( )

sin  d
0

ω τ
ω ω τ τn

t

n
nt

F
m

7.86

x t A t t B t tn n( ) ( ) sin  ( ) cos = −ω ω 7.87

where A(t) and B(t) could be identified as

A B( )
( )

cos  d ;  ( )
( )

sin  d
0 0

t
F
m

t
F
m

t

n
n

t

n
n= =∫ ∫τ

ω ω τ τ τ
ω ω τ τ 7.88

The variation of displacement with time is of interest. Time is divided into
a number of equal intervals. Each duration can be taken as ∆t and the response
at these sequences of time can be evaluated.

Applying Simpson’s rule

A t A t t t F t t t t

F t t t t F t

n
n

n n

( ) ( 2 )
3

[ ( ) cos ( 2 )

   ( ) cos ( ) ( ) cos ]

= − + − −

+ − − +

∆ ∆ ∆ ∆

∆ ∆

ω ω

ω ω

m

t

2

4
7.89

F(t)

td
(a)

0 2 4 6 8 10
td /Tn
(b)

D
M

F

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

7.24 (a) Symmetrical triangular pulse; (b) response spectrum for
displacement for triangular pulse.
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A(t – 2∆t) is the value of the integral at time instant (t – 2∆t) by summation
of previous values. B(t) can be obtained in a similar way.

Example 7.9
A water tank shown in Fig. 7.25a is subjected to a dynamic load shown in
Fig. 7.25b. Evaluate numerically using the Duhamel integral for the response.

Solution
mass = 400 × 1000/9.81 = 40774.7kg
k = 35000 × 1000N/m

ω n = × =3500 1000
40774.7

29.2rad/s

T t
n

= = =2 0.214s;  0.01sπ
ω ∆

∆ ∆A t
m n

 from 0 to 0.02s =
3

[400 1379.4 266.85]

0.01 9.81
3 400 29.2

[2046.25] 0.005 72

ω + +

= ×
× × =

The values of A and B are evaluated as shown in Table 7.15.

7.9.2 For an under-damped system

u t
m

F t
n

t
t

d
n( ) 1 ( ) e sin ( ) d

0

( )= −∫ − −
ω τ ω τ τρ ω τ 7.90

or

u t
m

A t t B t t
d

d d( ) e [ ( ) sin  ( ) cos ]= −
− ρω

ω ω ω
nt

7.91

W = 400kN

F(t)

K = 35000kN/m

400kN
F(t)

0.1s
(a) (b)

7.25 (a) Water tank; (b) excited forcing function.
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Table 7.15 (a) Evaluation of A in Duhamel’s integral and (b) evaluation of B in Duhamel’s integral

(a) (b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
multi- multi-

τ F(t) sin ωnτ cos ωnτ 2 × 4 plier 5 ×  6 ∆A A 2× 3 plier 10 ×11 ∆B B 9× 3 4 × 14 15–16

0.00 400 0 1 400 1 400 0 0 1 0 0 0 0 0

0.01 360 0.287 0.958 344.88 4 1379.4 0.00572 103.32 4 413.28 0.00165

0.02 320 0.5513 0.634 266.88 1 266.85 0.00572 176.41 1 176.41 0.00165 0.00315 0.00137 0.00178

0.03 280 0.768 0.64 179.2 4 716.8 0.00301 215.05 4 860.2 0.00351

0.04 240 0.9199 0.393 94.92 1 94.92 0.00873 220.77 1 220.77 0.00516 0.00803 0.00214 0.00589
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where

A t F
t

d
n( ) e ( ) cos  d

0
= ∫ ρω τ τ ω τ τ

B t F
t

d
n( ) e ( ) sin  d

0
= ∫ ρω τ τ ω τ τ 7.92

Again numerical integration by Simpson’s rule can be carried out to find the
values of A(t) and B(t) and hence u(t).

7.10 Selection of direct integration method

It is apparent that a large number of different numerical integration methods
are possible by specifying different integration parameters. A few of the
most commonly used methods are summarized in Table 7.16.

For SDOF systems the central difference method is most accurate, and the
linear acceleration method is more accurate than the average acceleration
method. It appears that the modified average acceleration method, with a
minimum addition of proportional damping is a general procedure that can
be used for the dynamic analysis of all structural systems.

The basic Newmark constant acceleration method can be extend to nonlinear
dynamic analysis. This requires that iterations must be performed at each
time step in order to satisfy equilibrium. For multiple degrees of freedom,
which will be seen in later chapters incremental matrix must be formed and
triangularized at each iteration or at selective point of time. Many different
numerical tricks including element by element methods have been developed
in order to minimize computational requirements.

Table 7.16 Summary of Newmark method modified by δ factor

Method γ β δ ∆t/time Accuracy

Central difference 1/2 0 0 0.3183 Excellent for small ∆t
unstable for large ∆t

Linear acceleration 1/2
1/6 0 0.5513 Very good for small ∆t

unstable for large ∆t

Average acceleration 1/2
1/4 0 α Good for small ∆t.

No energy dissipation

No defined 1/2
1/4 ∆T/π α Good for small ∆t. Energy

average dissipation for
acceleration large ∆t

Hismis proposed Best for all problems
method
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7.11 Summary

For earthquake analysis of linear structures it should be noted that direct
integration of the dynamic equilibrium is normally not numerically efficient
as compared to mode superposition method (for MDOF). The Newmark
constant acceleration method with the addition of very small amount of
stiffness proportional damping is recommended for dynamic analysis of
nonlinear structure systems.

In the area of nonlinear dynamic analysis one cannot prove that any one
method will always converge. One should always check the error in the
conservation of energy for every solution obtained.

7.12 Exercises

1. The spring mass system has a mass m = 1kg and natural frequency
10rad/s. It is excited by a force shown in Fig. 7.26. Determine the
response using the finite difference technique. Check your answer using
the MATLAB program given.

2. The single storey shear frame shown in Fig. 7.27a is subjected to a time
varying force as given in Fig. 7.27b. Calculate the dynamic response
using linear acceleration method. Plot displacement, velocity and
acceleration response in time interval 0 ≤ t ≤ 3s. W = 200kN; k = 40000
kN/m; ρ = 0.2. Use time step as Tn/10s.

100N

0.4s 0.8s

7.26

k /2 k /2

Rigid beam 300kN

0.7s
(a) (b)

7.27
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3. Solve numerically using Wilson-θ method the differential equation
8 ˙̇x  + 4000 x = F(t) when the system starts from rest and F(t) is indicated
in Fig. 7.28.

4. An SDOF system has the following properties: m = 4.5kg; k = 1800N/
mm; natural period = 1s; damping factor 5%. Determine x(t) of the
system due to F(t) defined by half cycle sine pulse as given by F(t) = 45
(πt/0.6).

5. We have developed recurrence formulae for numerical solution of the
equation of motion of an SDOF linear system based on linear interpolation
of force F(t) over each time step. Develop a similar procedure using
piecewise constant representation of forcing function wherein the value
of the force in the interval ti to ti+1 is a constant equal to F̃i . Show the
recurrence formulae for the response of undamped system as

x x t x
t F

k
ti i n i i

n i

n

i
n i+ = + + −1 cos ( )

sin ( )
(1 cos )ω ω

ω ω∆ ∆ ∆˙
˜

˙ ˙
˜

x x t x t
F

k
ti i n n i i n i

i n
n i+ = − + +1 ( sin ( ) cos (sin  )ω ω ω ω ω∆ ∆ ∆

Specialize the recurrence formulae for the following definition of piecewise
constant force as

F̃ F Fi i i= + +( )/21

x A x B x C F D Fi i i i i+ += + + +1 ˙ 1

˙ ˙x A x B x C F D Fi i i i i+ += ′ + ′ + ′ + ′1 1

Write equations for constants A, B… D′.
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8
Generalized coordinates and energy

methods in relation to structural
dynamics during earthquakes

Abstract: A structural system consisting of multiple interconnected mass
and flexibilities is modelled as a simple oscillator and the response is
studied. The governing equations are derived based on the principle of
virtual work. Raleigh’s method is employed to approximate the fundamental
frequency of continuous system. Hamilton’s principle is derived and the
general dynamic equilibrium equations are obtained using Lagrange’s
equations. A program in MATHEMATICA is given to obtain the dynamic
equilibrium equations once Lagrange equation is given.

Key words: virtual work, shape function, generalized mass, Rayleigh
method, Hamilton’s principle, Lagrange equation.

8.1 Introduction

In the earlier chapters, we obtained the response due to dynamic loads of
structures modelled as a simple oscillator system. In this chapter, we present
the response of a structural system consisting of multiple interconnected
rigid bodies or having distributed mass or flexibility. It will be seen that this
will also be modelled as a single-degree-of-freedom (SDOF) system. The
equations are derived based on principle of virtual work (virtual displacements).

8.2 Principle of virtual work

This principle is very useful in establishing dynamic equation of equilibrium
for multiple interconnected rigid bodies. This principle was originally developed
for equilibrium system but it can also be applied to dynamic system by the
simple recourse to D’Alembert’s principle. The principle of virtual displacement
may be stated as follows:

For a system that is in equilibrium, the work done by all the forces during an
assumed displacement (virtual displacement) which is compatible with the
system constraints is equal to zero.

To illustrate the application of virtual work, let us consider a spring mass–
damper system subjected to external force as shown in Fig. 8.1. Since the
inertial forces have been included among the external forces, the system is

240
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in equilibrium. If a virtual displacement δu  is assumed to have taken place,
the total work done by the forces shown is equal to zero i.e.

( ) ( )mu cu ku u F t u˙̇ ˙+ + − =δ δ 0 8.1a

( ) ( )mu cu ku u F t u˙̇ ˙+ + =δ δ 8.1b

Since δu  is arbitrary, imaginary not equal to zero, cancelling δu  on both
sides we get

( ) ( )mu cu ku F t˙̇ ˙+ + = 8.2

Thus we obtain the differential equation of motion for the damped oscillator.

8.3 Generalized SDOF system: rigid bodies

Most frequently the configuration of a dynamic system is specified by
coordinates indicating the linear or angular position of elements of the system.
Generalized coordinates are independent coordinates with which we define
the deformed shape of the structure.

The example of the rigid body shown in Fig. 8.2 consists of a rigid bar
with distributed mass m/unit length with rigid mass M at right end. The
rod is supported by springs and dampers. Dynamic excitation is provided
by a transverse load F(x, t) varying in a triangular fashion as shown in
Fig. 8.2. There is also a rotation spring of stiffness kθ  at the left end. Our
purpose is to obtain the differential equation of motion and to identify the
corresponding expressions for parameters of the simple oscillation representing
the system.

k

c

u

F(t)

δ U

ku

cu

N mg

mü F(t)

8.1 Spring mass and damper system.
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Figures 8.3 and 8.4 represent the true deformed shape and virtual deformed
shape diagram. Since it is a rigid bar, the internal work is zero. The external
virtual work is calculated as shown in Table 8.1.

Summing up the fourth column of Table 8.1 we get (assuming kθ is zero)

[( /3) ( 9 ) /16 ( /4 ) ]2 3
1 2

2 2ML mL c c L kL NL+ + + + −˙̇ ˙θ θ θ δθ

= FL2δθ/4 8.3

or

[( /3 ( 9 ) / ( /4 ) ] /42 3
2

2 2 2ML mL c c L kL NL FL+ + + + − =) ˙̇ ˙θ θ θ1 16

8.4

F(t)
M

N

kθ

L/4 c1
k

c2

θ

kθ  θ

      c L1 /4θ̇ kLθ/2
      c L2 /4θ̇

N

    mL˙θ̇

L(1 – cos θ)

8.2 Example of SDOF with rigid bar (divided into four equal parts).

8.3 Real deformed shape.

8.4 Virtual displacement diagram.

L δθ /4

L δθ /2

3L δθ /4

Lθ  δθ

L δθ
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( * * /16 * ) *M c k F˙̇ ˙θ θ θ+ + = 8.5

where

M* = (ML2 + mL3/3); c* = (c1 + 9c2)L2/16; K* = (kL2/4–NL);

F* = FL2/4 8.6

If N increases, k* decreases and the buckling load is given by

Ncr = kL/4 8.7

and the natural frequency is given by

ω n
k
M

= *
*

8.8

8.4 Systems having distributed stiffness and

distributed mass

For systems idealized with distributed mass and distributed stiffness
characteristics, flexural deformations occur that allow the structure to exhibit
an infinite degrees of freedom. However, a generalized SDOF analysis can
be made if it is assumed that only a single deflection pattern could occur.
Hence the motion of the body can be described by a single variable, or
generalized coordinate and only one degree of freedom exists. Systems
idealized in the manner are referred to as generalized SDOF systems.

Consider a cantilever beam shown in Fig. 8.5. It is assumed that it has
distributed mass and distributed stiffness properties. The vertical displacement
v at any location on the beam is a function of both position and time, i.e.
v(x, t) which can be written as

v(x, t) = Z(t)ψ (x) 8.9

where Z(t) is the generalized coordinates representing deflection at the free

Table 8.1 Virtual work calculation

Designation Real force Virtual Virtual work
displacement

Spring force kLθ/2 –L δθ/2 –kL2 θδθ/4
Damping force 1

      c L1 /4θ̇ –L δθ/4
      – /161

2c L θ̇δθ
Damping force 2

      3 /42c L θ̇ –3L δθ/4 –9c2L2
  θ̇ δθ/16

Conc mass (inertia force)
    ML ˙θ̇ – L δθ

      –
2ML ˙θ̇ δθ

Distributed mass (inertia)
      mL2 /2˙θ̇ – L δθ/2

      – /43mL ˙θ̇ δθ
Rotary inertia

      mL3 /12˙θ̇ –δθ
      – /123mL ˙θ̇ δθ

External force FL/2 L δθ/2 FL2 δθ/4
Axial load N Lθ δθ NL θ δθ
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end at any time ‘t’ and ψ(x) is the shape function. The kinetic energy T of the
beam shown in Fig. 8.5 vibrating in the pattern indicated by Eq. 8.9 is

T m x x Z t x= ∫0

21
2

( )[ ( ) ( )] d
L

ψ ˙ 8.10

Equating the expression for the kinetic energy of the SDOF system

1
2

( )[ ( ) ( )] d 1
2

( )
0

2 2
L

∫ =m x x Z t x M Z tψ ˙ * ˙ 8.11

Hence generalized mass M* is given by

M m x x x* ( ) ( ) d
0

2= ∫
L

ψ 8.12

The flexural strain energy U of a prismatic beam may be determined as
the work done by the bending moment M(x) undergoing angular displacement
dθ. This angular displacement is obtained as

d
d

d
d

2

2
v

x x
M
EI

= =θ 8.13a

or   d dθ = M
EI

x 8.13b

Hence strain energy is given by

U M x M x EI= =∫ ∫1
2

( ) d d /(2 )
0 0

2
L L

θ 8.14

where M is given by

M EI x v
x

= 



( ) d

d

2

2

2

8.15

U EI x v
x

x EI x
x

x
Z t= 



 = 



∫ ∫1

2
( ) d

d
d 1

2
( )

d ( )
d

( ) d
0

2

2

2

0

2

2

2
2

L L

x
ψ

(8.16)

8.5 Cantilever beam.

x

v

ψ (x)

L

Z(t)

p(x, t)
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Finally, equating the potential energy Eq. 8.16 for the continuous system
to the potential energy of the equivalent system, we get

U k Z t EI x
x

x
Z t x= = 



∫1

2
* ( ) 1

2
( )

d ( )
d

( ) d2

0

2

2

2
2

L ψ
8.17a

or the generalized stiffness is given as

k EI x x x* ( )= ′′∫0

2( ) [ ] d
L

ψ 8.17b

where

′′ =ψ ψ
( )

d
d

2

2x
x

8.17c

The generalized force F*(t) may be found from the virtual displacements
δZ(t) of the generalized coordinate Z(t) upon equating the work performed
by the external forces in the structure to the wok don by the generalized
force in the equivalent SDOF system.

W p x t v x= ∫0
( , ) d

L

δ 8.18a

F t Z p x t x Z x* ( ) ( , ) ( ) d
0

δ ψ δ= ∫
L

8.18b

Hence

F t p x t x x* ( ) ( , ) ( ) d
0

= ∫
L

ψ 8.18c

Similarly the generalized damping constant is given by

c c x x x* ( )[ ( )]d
0

2= ∫
L

ψ 8.19

To calculate the potential energy of the axial force N, which is unchanged
during vibration of the beam and consequently is a conservative force, it is
necessary to evaluate the horizontal component of the motion δu(t) at the
free end of the beam.

dL = (dx2 + dv2)1/2 8.20a

d 1 d
d

d
2 1/ 2

L v
x

x= + ( )





8.20b
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new length

′ = + ( )





= + ( ) − ( ) + …



∫ ∫L v

x
x v

x
v
x

x
0

2 1/ 2

0

2 4

1 d
d

d 1 1
2

d
d

1
8

d
d

d
L L

8.20c

Neglecting higher-order terms

d ( ) 1
2

d
d

d
0

2

u t L L
v
x

x= ′ − = 



∫

L

8.20d

Work done by the axial force N is given by

N u t N v
x

xd ( )
2

d
d

d
0

2

= 



∫

L

Substituting for v we get

virtual work done by N
L

= 



∫N x

x
x Z t

2
d ( )

d
d  ( )

0

2ψ 2 8.21

Now we define a new stiffness coefficient to be called the geometric
stiffness kG*.

Hence

1
2

( )
2

d ( )
d

d ( )2

0

2
2k Z t N x

x
x tG * = 



∫

L

Z
ψ

= ′∫N x x Z t
2

[ ( )] d ( )
0

2 2
L

ψ 8.22a

or

k N x xG * = ′∫0

2[ ( )] d
L

ψ 8.22b

To calculate the buckling load we use the condition that at buckling load
the effective stiffness is zero.

k(eff) = k* – kG* = 0; or k* = kG* 8.23

i.e.

0

2

0

2( ) [ ( )] d ( )] d
L L

∫ ∫′′ = ′EI x x x N x xψ ψ[ 8.24

or
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N
EI x x x

x x
cr =

′′

′

∫
∫

0

2

0

2

( )[ ( )] d

[ ( )] d

L

L

ψ

ψ
8.25

The dynamic equilibrium equation is given by

M Z t c Z t k Z t F t* ( ) * ( ) (eff) ( ) * ( )˙̇ ˙+ + = 8.26

and the natural frequency is given by

ω
ψ ψ

ψ
n

k
M

EI x x x N x x

m x x x

= =
′′ − ′∫ ∫
∫

(eff)
*

( )[ ( )] d [ ( )] d

( ) ( ) d

0

2

0

2

0

2

L L

L

8.27

Example 8.1
Determine the dynamic equation of motion, natural frequency and buckling
load of the water tower shown in Fig. 8.6 with distributed mass m, stiffness
EI, concentrated mass at the top = mL. The tower is subjected to earthquake
ground motion of ˙̇ug  and an axial compression load at the top. Neglect
damping in the system. Assume that during the motion, the shape of the
tower is given by ψ(x) = x2/L2.

Solution

M m x x mL m x
L

x mL mL* [ ( )] d d 6
50

2

0

4

4= + = 



 + =∫ ∫

L L

ψ

L

M = mL

1 – (x/L)

Distributed
mass = m

(b)(a)

8.6 Water tank.
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k EI x x EI
L

x EI
L

* [ ( ] d 4 d 4
0

2

0
4 3= ′′ = 



 =∫ ∫

L L

ψ )

N* = [mL + mL(1 – x/L)] g = mLg(2 – x/L)

k mLg x L x
L

x
mg

G* (2 / ) 4 d
5

30

2

4= − =∫
L

F mu x x mLu mLug g g* ( ) d 4
3eff

0
= − − = −∫

L

˙̇ ˙̇ ˙̇ψ

buckling load N mg k EI
L

EI
Lcr cr= = = × =( ) 3 *

5
3 4

5
12
53 3

ω n
k
M L

EI
m L

EI
m

= = =*
*

1 20
6

1.8257
2 2

The dynamic equilibrium equation is

M u k u F* (eff) *eff˙̇ + =

where k* (eff) = K* – kG*

8.5 Rayleigh method

The method is based on the principle of stationary potential energy. Lord
Rayleigh in his famous work ‘Theory of sound’ published this work in 1877
states that:

‘In a natural mode of vibration of a conservative system the frequency of
vibration is stationary.’

The Rayleigh method is the basis for the majority of approximate techniques
used in vibration analysis. It may also be employed to approximate the
fundamental frequency of continuous systems.

From the previous section (assuming concentrated mass = 0), the
displacement at any section X is written as

v = ψ(x) Z(t) 8.28

where Z(t) = C sin ωnt.

Ż t C tn n( ) cos= ω ω 8.29

and the maximum displacement and velocity at the free end are given by

Z t C Z t Cn( ) ˙
max max;  ( )= = ω 8.30

C is the amplitude of vibration at the generalized coordinate location. Now,
maximum potential energy is given by
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U C EI x x xmax

2

0

2

2
( )[ ( )] d= ′′∫

L

ψ 8.31

and the maximum kinetic energy is given by

T
C

m x xn
max

2 2

0

2

2
[ ( )] d= ∫ω ψ

L

8.32

For the conservation of energy

Tmax = Umax 8.33

λ ω ω
ψ

ψ
R R

EI x x x

m x x

= = =
′′∫

∫
n

L

L
2 0

2

0

2

( ) [ ( )] d

[ ( )] d

2 8.34

where ωR is known as the Rayleigh frequency.
Obviously, the more closely the assumed shape function ψ(x) approximates

the exact vibration mode, the more accurate will be the estimate of the
fundamental frequency. As a minimum requirement, the assumed shape function
should satisfy the prescribed geometry boundary condition for the problem
and also be differentiable at least to the order appearing in the strain energy
expression.

Example 8.2
A uniform cantilever beam shown in Fig. 8.5 of length L, and having a
flexural rigidity EI, cross-sectional area A and mass density ρ has a concentrated
mass M at the free end that is pinned to a linear spring of stiffness k. Determine

ωn by the Rayleigh method. Assume shape function as ψ π
( ) 1 cos

2
x

x
L

= −





where x is measured from the left end.

ψ π ψ π π
( ) 1 cos

2
;    ( )

2
sin

2
x

x
L

x
L

x
L

= − ′ =

T
C

A
x
L

xn
max

2 2

0

2

2 2
1 cos

2
d= 





+ −



∫M Cn

Lω ω ρ π2 2

T
C

M
ALn

max

2 2

2 2
(3 8)= + −





ω ρ
π π

Maximum potential energy is given by

U EI x x x k C
EI
L

k Cmax
0

2
4

3
21

2
( ) [ ( )] d 1

2 32
= ′′ +









= +



∫

L

ψ π2
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Equating Tmax to Umax we get

ω π
ρ π πn

EI L k
M A L

= +
+ −
[ /(32 )]
[ /(2 ) ](3 8)

4 3

If k → 0 and M → 0 then

ω
ρn

EI
AL

= 3.663 4

whereas the actual value is

ω
ρ(act) 43.516= EI

A L

which results in relative error of 4.18%. If ψ is assumed as ψ = x2/L2 would
result in relative error of of 27.2%. This indicates that the assumed shape
function does not provide an accurate representation of the actual vibration
mode.

8.6 Improved Rayleigh method

The concept of applying inertial forces as static loads in determining the
deformed shape for Rayleigh’s method may be used in developing an improved
scheme for the method. In the application of the improved Rayleigh’s method,
one would start with assumed deformation curve followed by the calculation
of the mass values for kinetic energy and for potential energy of the system.
An approximate value of natural frequency is calculated by equating maximum
kinetic energy with maximum potential energy. Thus an improved value of
natural frequency may be obtained by loading the structure with inertial
loads associated with assumed deflection. This load results in a new deformed
shape which is used for calculating maximum potential energy.

Example 8.3
Determine using improved Rayleigh’s method the natural frequency of the
cantilever beam subjected to concentrated masses (see Fig. 8.7).

For the given loading, as a first step calculate the deflections under the
loads as

v WL
EI

C v WL
EI

C C WL
EI1

3

2

3 37
48

1 ;    21
48

3 ;    where   7
48

= = = = =

U W C W Cmax
1
2

{1 3} 2= + =

T W
g

C
WC
g

n
max

2
2 2 2

2 2

2
{1 3 }

5= + =ω ωn
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equating Umax to Tmax we get

2
5 2 2

W C
WC

g
n= ω

assuming g = 9.81m/s2 we get as a first approximation

ω n
EI

WL
= 5.186 3

Now the inertia forces acting on the cantilever beam are shown in Fig. 8.8.
For the given forces the deflections are calculated as

v
m C L

EI
v

m C L
EI

n n
1

2 3 2 317
48

;    
53

48
= =ω ω

2

U m C
m C L

EI
m C L

EIn
n n

max
2

2 3 2 2 31
2

17
48

3 53
48

176
96

= + ×( ) =ω ω ω 4

This Umax is equated to Tmax of the previous step, hence we get

ω n
EI

WL
= 5.172 3

8.7 Hamilton’s principle

The Irish mathematician and physicist Sir William Hamilton (1805–1865)
formulated his principle in dynamics in which the governing equation depends
explicitly on the energy of the system.

W W

v1
v2

    m Cnω 2

    3
2m Cnω

v2v1

8.7 Cantilever beam.

8.8 Inertia force on a cantilever beam.
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Consider an ideal system of interconnected rigid masses whose
displacements are ujj = 1, 2 … n within the interval of time t = t1 to t = t2 as
shown in Fig. 8.9. We can plot the displacement ui as a function of time as
shown in Fig. 8.10.

The velocity is obtained by taking time derivative as

d
d

( )
t

u u u ui i i i+ = +δ δ˙ ˙ 8.35

The operators δ and d/dt are commutative. The kinetic energy of the system
is given by

T m ui i= 1
2

  2Σ ˙ 8.36

Virtual kinetic energy or variation in kinetic energy is given by

δ δ δT T
u

u m u
t

u
i

i i i i= ∂
∂

Σ Σ
˙

˙ ˙ ˙=  d
d 8.37

d
d

( )   
t

m u u m u u m u ui i i i i i i i iΣ Σ Σ˙ ˙̇ ˙ ˙δ δ δ= + 8.38

where

Σ Σ  m u F u Wi i i i iü δ δ δ= = 8.39a

u1

m2

m1
u2

u1(t1)

u1(t2)

8.9 Displacement configuration of masses.

8.10 Newtonian path.

u1(t)

u1(t2)

u1(t1)

t1 + ∆t t

u1(t1 + ∆t)

δu1(t1 + ∆t)
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Σ Σ 1
2

d
d

 2m u u
t

m u Ti i i i i˙ ˙ ˙δ δ= = 8.39b

hence

d
d

(  
t

m u u W Ti i iΣ ˙ )δ δ δ= + 8.40

Integrating both sides over time interval t1 → t2 we get

(  ( ) d
1
2

1

2
tΣ m u u T W ti i i˙ )δ δ δ|t

t

t

= +∫ 8.41

When we consider varied paths over time interval t1 → t2

δ δu ui i| |t t1 2= = 0 8.42

Hence

t

t

1

2

( ) d 0∫ + =δ δT W t 8.43

The above is the statement of Hamilton’s principle. For a conservative system
in which all forces Fi are derivable from potential energy

δW = –δV = Fi δui 8.44

Hence Hamilton’s principle states

δ
t

t

1

2

( ) d 0;∫ − =T V t    or   δ
t

t

1

2

d 0∫ =L t 8.45

L is termed as Lagrangian or the kinetic potential when strain energy U alone
is potential.

Hamilton’s principle states that of all the possible paths of motion of a
system during the interval of time t1 to t2 the actual path will be the one for

which the integral 
t

t

1

2

d∫ L t  has a stationary value. This value is in fact a

minimum value.

L = T – U 8.46

8.8 Lagrange’s equations

The French mathematician Lagrange (1736–1813) discovered a relationship
for providing a method of great power and versatility for the formulation of
dynamic equations of equilibrium. Consider a system of connected rigid
bodies.
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T T u u u u un= … …( , , )1 2 1˙ ˙ 2 8.47

δ δ δT T
u

u T
u

u
i

i
i

i= ∂
∂

+ ∂
∂





 Σ ˙

˙ 8.48

δW = ∑ Fiδui 8.49

According to Hamilton’s principle

t

t

1

2

( ) d 0∫ + =δ δT W t 8.50

t

t

1

2

d 0∫ ∂
∂

+ ∂
∂

+





=Σ T
u

u T
u

u F u t
i

i
i

i i i˙
˙δ δ δ 8.51

t

t

t
t

t

t

1

2

1
2

1

2

d  d
d

d∫ ∫∂
∂

= ∂
∂

− ∂
∂







T
u

u t T
u

u u
t

T
u

t
i

i
i

i i
i˙

˙
˙ ˙

δ δ δΣ Σ| 8.52

The first term is equal to zero and hence Eq. 8.51 is rewritten as

Σ
t

t

1

2 d
d

d 0∫ − ∂
∂





 + ∂

∂
+





=δu
t

T
u

T
u

F ti
i i

i˙
8.53

Since ui is the generalized coordinate and arbitrary, the expression in chain
brackets must be equal to zero.

− ∂
∂





 + ∂

∂
+ =d

d
0

t
T
u

T
u

F
i i

i˙
8.54

or d
dt

T
u

T
u

F
i i

i
∂
∂





 − ∂

∂
=

˙ 8.55

There are n equations (i = 1, 2… n) expressed in terms of generalized
coordinates.

According to Castigliano’s second theorem

F V
ui

i
= − ∂

∂
8.56

Substituting Eq. 8.56 in Eq. 8.55 we get

d
d

0
t

T
u

T
u

V
ui i i

∂
∂





 − ∂

∂
+ ∂

∂
=

˙ 8.57

V is a function of displacement only and hence Eq. 8.57 is rewritten as

d
d

0
t

L
u

L
ui i

∂
∂





 − ∂

∂
=

˙
8.58
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where L T U= − 8.59

L  is the Lagrangian.

Example 8.4
Obtain the dynamic equation of equilibrium using Lagrange equations. m =
mass/unit length of the cylinder, L = length of the cylinder, M = mass of the
rectangular block, r = radius of the cylinder (see Fig. 8.11).

Solution
There are two generalized coordinates u1 and u2.

Kinetic energy = T = T1 + T2 + T3

T1 = Translational energy of the cylinder = 1
2 1

2mLu̇

T2 = Translational energy of rectangular block = 1
2 2

2Mu̇

T3 = Rotational energy of the cylinder = 1
2 4

2 1
2

J
mLu˙ ˙

θ =

Potential energy V U W k u k u u= − = + −1
2

1
2

)1 1
2

2 2 1
2(

L T V ml u Mu mL u k u k u u= − = + + − − −1
2

1
2 4

1
2

1
2

( )1
2

2
2

1
2

1 1
2

2 2 1
2˙ ˙ ˙

L  is a function of u u u u1 2 1 2, ,    and   ˙ ˙ .
The equilibrium equations can be written as

d
d

0
1 1t

L
u

L
u

∂
∂





 − ∂

∂
=

˙

k1
k2

u1

M

u2

Mass = m/unit
length

8.11 Mass spring system.
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d
d

0
2 2t

L
u

L
u

∂
∂





 − ∂

∂
=

˙

∂
∂

= ∂
∂

=L
u

mL u L
u

Mu
˙

˙
˙

˙
1

1
2

2
3
2

;    

∂
∂

= − + + ∂
∂

= − −L
u

k k u k u L
u

k u u
1

1 2 1 2 2
2

2 2 1( ) ;  ( )

The two dynamic equilibrium equations are

d
d

3
2

( ) 01 1 2 1 2 2t
mL u k k u k u˙( ) + + − =

d
d

( ) 02 2 1 2 2t
Mu k u k u˙ − + =

Writing in matrix form we get dynamic equilibrium equations as

3
2

mL

M

u

u

k k k

k k

u

u
0

0

( )
{0}

1

2

1 2 2

2 2

1

2





















+
+ −

−













=
˙̇

˙̇

or

[ ]{ } [ ]{ } {0}M u k u˙̇ + =

where [M] is called mass matrix and [k] is called stiffness matrix.

Example 8.5
A simple pendulum of length L and end mass m pivots about a body of mass
M that vibrates in a horizontal plane as shown in Fig. 8.12. Use Lagrange’s
equation to determine the equation of motion. Assume small oscillations.

Solution
There are two generalized coordinates u and θ to define complete motion of
the system.

k

u

M

θ

m

8.12 Pendulum with moving pivot.
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Kinetic energy of the system T = T1 + T2

T1 = Kinetic energy of the mass M = 1
2

2Mu̇

T2 = Kinetic energy of the end mass M = 1
2 R

2mu̇

where uR is the resultant velocity of the end mass. This can be computed as
shown in Fig. 8.13.

˙ ˙ ˙ ˙ ˙u u L u LR
2 2 2 2 2 cos (180 )= + − −θ θ θ

V = potential energy of the system = potential energy of the spring + potential
energy of the end mass

V ku mgL= + −1
2

(1 cos )2 θ

L T V Mu m u L u L= − = + + +1
2 2

( 2 cos )2 2 2 2˙ ˙ ˙ ˙ ˙θ θ θ

− − −1
2

(1 cos )2ku mgL θ

∂
∂

= + +L
u

Mu mu mL
˙

˙ ˙ θ̇ θ cos

∂
∂

= +L mL mLu˙
˙ ˙

θ
θ θ2 cos

∂
∂

= −L
u

ku

∂
∂

= − −L mL u mgLθ θ θ θ˙ ˙ sin sin

Dynamic equations of equilibrium are written as

    ̇u

    ̇u

    Lθ̇

180-θ

8.13 Resolution of velocities.
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d
d

0
t

L
u

L
u

∂
∂





 − ∂

∂
=

˙

d
d

0
t

L L∂
∂







− ∂
∂

=
θ̇ θ

For small oscillations cos θ = 1; sin θ = 0 we get

M m mL

mL mL

u k

mgL

u+













+ 













=2

0

0
0

˙̇
˙̇θ θ

Example 8.6
Write Lagrange dynamic equations of equilibrium for the spring pendulum
having a mass ‘m’ suspended by an elastic spring of stiffness ‘k’ and free
length L. Assume the pendulum moves without any friction (see Fig. 8.14)
and that horizontal and vertical positions at instant of time are two generalized
degrees of freedom.

Solution

u f q q q q

u f q q q q
1 1 1 2 2 1

2 2 1 2 2 1

( , ) sin 

( , ) cos

= =
= =

˙ ˙ ˙u q q q q q1 2 1 2 1 1 sin cos= +

˙ ˙ ˙u q q q q q2 2 1 2 1 1cos  sin= −

For small oscillations cos q1 = 1; sin q1 = 0. So

˙ ˙ ˙ ˙u q q u q1 2 1 2 2;  = =

u2
L

q1

q2

m

u1

8.14 Spring pendulum.

�� �� �� �� �� ��



Generalized coordinates and energy methods 259

Kinetic energy T is written as

T m u u m q q q= + = +1
2

) 1
2

[( ) ]1
2

2
2

1 2
2

2
2( ˙ ˙ ˙ ˙

V = potential energy = U = strain energy stored in the spring – potential of
mass

V k q L mg u k q L mg q q= − − = − −
2

( )
2

( ) cos2
2

2 2
2

2 1

L T V m q q q k q L mg q q= − = + − − +1
2

[( ) ]
2

( ) cos1 2
2

2
2

2
2

2 1˙ ˙

∂
∂

= ∂
∂

= ∂
∂

= −L
q

mq q L
q

mq L
q

mgq q
˙

˙
˙

˙
1

1 2
2

2
2

1
2 1; ; sin

∂
∂

= − − +L
q

mq q k q L mg q
2

1
2

2 2 1( ) cos˙

Hence equilibrium equations are written as

d
d

0
1 1t

L
q

L
q

∂
∂







− ∂
∂

=
˙

d
d

0
2 2t

L
q

L
q

∂
∂







− ∂
∂

=
˙

mq q mq q q mgq q˙̇ ˙ ˙1 2
2

1 2 1 2 12 sin 0+ + =

mq mq q k q L mg˙̇ ˙2 1
2

2 2( ) 0− + − − =

8.9 Computer-generated Euler-Lagrange

equations using MATHEMATICA

Since the Euler–Lagrange equations follow in a unique way once a generic
functional is given, a computer may be used to find the derivative. Below we
begin with a program which derives a single equation, and then extend this
approach to a system with two degrees of freedom.

8.9.1 SDOF system

Starting with harmonic oscillator (see Fig. 8.15) formulate its Lagrangian, L
and its derivatives.

    
L mh kh= −1

2

.

1
2

1
2
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la = 0.5*m*(h1t)^2 – 0.5*k*h1^2

Compute the derivatives and get one Lagrange equation

q1 = D[la, h1t]; f1 = D[la, h1];

means

q
la

h t
m h t f

la
h

k h1 11
1

1
= ∂

∂
= = ∂

∂
= −( )

( )
* ;  

( )
( )

1*

define

d = {h1t – > d[h1[t], t],h1 → h1[h]};

h1t = ḣ1′[t]; h1 = h1[t]

s1 = q1/.d; c1 = f1/.d

s
t

la
h t

mh t c
la
h

kh t1 1= ∂
∂





 = ′ = ∂

∂
= −d

d
( )

( 1 )
( ); 1

( )
1

1( )

Here h1 is the generalized coordinate and h1t is the velocity. The equation of
equilibrium is obtained as

− − =kh t m
t

h t1( ) d
d

1( ) 0
2

2

The following shows the listing of the MATHEMATICA program.

8.9.2 Program 8.1: MATHEMATICA program to obtain
dynamic equilibrium equations from Lagrangian
for SDOF

“SINGLE DEGREES OF FREEDOM”
“state the lagrangian of the simple oscillator”
la=0.5*m*(h1t)^2-0.5*k*h1^2;

“compute the derivatives and get one Euler-Lagrange
equations”
q1=D[la,h1t];f1=D[la,h1];

d={h1t->D[h1[t],t],h1->h1[t]};
s1=q1/.d;c1=f1/.d;

8.15 Spring mass system.

k
m

h1
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equation1==Simplify[f1-D[s1,t]]

“SINGLE DEGREES OF FREEDOM”

“state the lagrangian of the simple oscillator”

“compute the derivatives and get one Euler-Lagrange
equations”

equation1 == -h1*k - m*Derivative[2][h1][t]

The program applies to other systems of a SDOF system provided the
Lagrangian is properly specified.

8.9.3 Two degrees of freedom

Consider two bar pendulum shown in Fig. 8.16.

V = –m2gL2 cos θ2 – (m1 + m2)gL1 cos θ1

T m m L m L m L Ll= + + + −( ) /2 /2 cos ( )1 2 1
2

1
2

2
2

2
2

2 1 2 1 2 1 2
˙ ˙ ˙ ˙θ θ θ θ θ θ

A program in MATHEMATICA for the above two degrees of freedom is
given below.

8.9.4 Program 8.2: MATHEMATICAL program to obtain
dynamic equilibrium equations from Lagrangian for
two-degrees-of-freedom system

“TWO DEGREES OF FREEDOM”

“state the lagrangian of the non-linear pendulum
using (D19.1) and (D19.2)”

L1
m1

L2

m2

8.16 Two bar pendulum.
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l a = ( m 1 + m 2 ) * L 1 ^ 2 * h 1 t ^ 2 / 2 + m 2 * L 2 ^ 2 * h 2 t ^ 2 /
2+m2*L1*L2*h1t*h2t*Cos[h1-h2]+
m2*g*L2*Cos[h2]+(m1+m2)*g*L1*Cos[h1];

“compute the derivatives and get two Euler-Lagrange
equations”
q1=D[la,h1t];q2=D[la,h2t];f1=D[la,h1];f2=D[la,h2];

d={h1t->D[h1[t],t],h2t->D[h2[t],t],h1->h1[t],h2-
>h2[t]};
s1=q1/.d;c1=f1/.d;s2=q2/.d;c2=f2/.d;

equation1==Simplify[c1-D[s1,t]]
equation2==Simplify[c2-D[s2,t]]

Out[19]=
TWO DEGREES OF FREEDOM
Out[20]=

state the lagrangian of the non-linear pendulum
using (D19.1) and (D19.2)
Out[22]=

compute the derivatives and get two Euler-Lagrange
equations
Out[26]=

2
equation1 == -(L1 (g m1 Sin[h1[t]] + g m2 Sin[h1[t]]

+ L2 m2 Sin[h1[t] - h2[t]] h2'[t] + L1 (m1 + m2)
h1'’[t] +

L2 m2 Cos[h1[t] - h2[t]] h2'’[t]))
Out[27]=

2
equation2 == -(L2 m2 (g Sin[h2[t]] - L1 Sin[h1[t]
- h2[t]] h1'[t] + L1 Cos[h1[t] - h2[t]] h1'’[t] +

L2 h2'’[t]))

By changing the expression for the Lagrangian with the help of the editor,
one may investigate other systems of two or three degrees of freedom.

8.10 Summary

In many practical situations, Newton’s second law would be sufficient to
obtain the equations of motion for multiple-degrees-of-freedom systems.
But when the system is complex, using the Lagrange equations, one can
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write the equations of motion in terms of generalized coordinates. Hamilton’s
principle is a general variational principle from which Lagrange
equations are derived. It is also seen that multiply interconnected rigid
bodies may be modeled as a simple oscillator. In the next chapter, we will
consider free and forced vibration of undamped two or three degree of freedom
system.

8.11 Exercises

1. Use the Lagrangian equations to derive the equations of motion for the
system shown in Fig. 8.17.

2. Use the Lagrange equations to derive the equation of motion for the
system shown in Fig. 8.18.

3. The rigid beam shown in Fig. 8.19 has a uniform mass per unit length of
m. Derive the equation of motion by principle of virtual displacement
(PVD) and calculate the natural frequency of the system. Assume small
angle of rotation.

4. Derive the natural frequency of a simply supported beam using Rayleigh’s

k

m

kg

k
L

2m

EI

L/2 L/2 m

m

8.17

8.18

�� �� �� �� �� ��



Structural dynamics of earthquake engineering264

method. Assume the deflection curve given by ψ π
( ) sinx Y

x
L

= . The

total mass of the beam M, flexural rigidity EI and length = L.
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9
Two-degrees-of-freedom linear system

response of structures

Abstract: This chapter deals with the free and forced vibration of two-
degrees-of-freedom systems. Coordinate coupling is illustrated by means of
an example. The concept behind the vibration absorber is given.

Key words: beat, dynamic coupling, static coupling, vibration absorber,
positive definite.

9.1 Overview

In many textbooks the concepts presented in the previous chapters are extended
from a single-degree-of-freedom (SDOF) system to a multiple-degrees-of-
freedom (MDOF) system without first presenting the solutions for the two-
degrees-of-freedom system. Such an approach does not allow readers to
gradually learn the methodology and also means many important structural
engineering concepts are not presented. Therefore, this chapter is devoted to
the two-degrees-of-freedom system.

When a system requires two coordinates to describe its motion, it is said
to have two degrees of freedom. A two-degrees-of-freedom system will have
two natural frequencies when free vibration takes place at one of these
natural frequencies, a definite relationship exists between the amplitude of
the two coordinates and the configuration is referred to as normal mode. The
two-degrees-of-freedom system will then have two natural modes of vibrations
corresponding to the two natural frequencies. For a linear system, free vibration
initiated under any condition will in general be the two normal modes of
vibration.

Free vibration of a two-degrees-of-freedom system will be taken first, and
then its forced vibration characteristics dealt with. There are many ways that
a two-degrees-of-freedom system can be represented, three of which are
shown in Fig. 9.1.

9.2 Free vibration of undamped two-degrees-of-

freedom system

The system shown in Fig. 9.2 has two masses m1 and m2 connected by springs
of stiffness k1, and k2. It is a two-degrees-of-freedom system and the configura-
tion is fully described by two displacements x1 and x2 as shown in Fig. 9.2.
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Writing the dynamic equations of equilibrium, considering the free body
diagrams shown in Fig. 9.3, we get

m X k k X k X1 1 1 3 1 3 2( ) 0˙̇ + + − = 9.1a

m X k k X k X2 2 2 3 1 3 1( ) 0˙̇ + + − = 9.1b

Writing in matrix form

m

m

X

X

k k k

k k k

X

X
1

2

1

2

1 3 3

3 2 3

1

2

0

0 ( )
{0}















+
+ −

− +













=
˙̇

˙̇
( )

9.2

K1
F1
U1

K2
F2
U2

m1 m2

C1 C2

(a)

F2,u2

F1,u1

(b) (c)

K2,C2

K1,C1

F2,u2

F1,u1

K2/2

C2

K1/2
C1

K1/2

K2/2

9.1 Representation of two degrees of freedom.

k1

X1

X2

k2

m2

m1

k3

9.2 Two-degrees-of-freedom system.
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or

[ ]{ } [ ]{ } {0}m X k X˙̇ + = 9.3

One can identify [m] as mass matrix and [k] as stiffness matrix. {m} and [k]
are symmetric and positive definite. Mass matrix is uncoupled and stiffness
matrix is coupled and hence it is known as dynamically uncoupled and
statically coupled system.

Try a solution

X1 = A1 sin (ωnt + φ); X2 = A2 sin (ωnt + φ) 9.4

˙̇ ˙̇X A t X A tn n n n1
2

1 2
2

2cos ( );  cos ( )= − + = − +ω ω φ ω ω φ 9.5

Substituting Eq. 9.5 in Eq. 9.3 we get

− 













+
+ −

− +













=ω n

m

m

A

A

k k k

k k k

A

A
2 1

2

1

2

1 3 3

3 2 3

1

2

0

0

( )

( )
{0} 9.6

Equation 9.6 involves two homogeneous equations. A trivial solution is A1 =
A2 = 0. Equation 9.6 is rewritten as

( )
/

/
( )

{0}

1 3

1

2
3 1

3 2
2 3

1

2

1

2

k k
m

k m

k m
k k

m

A

A

n

n

+ −



 −

− + −































=
ω

ω
9.7

For a non-trivial solution to exist, the determinant of the above matrix should
be equal to zero. Simplification yields the characteristic equation as

ω ωn n
k k

m
k k

m
k k k k

m m
k

m m
4 2 1 3

1

3 2

2

1 3 3 2

1 2

3
2

1 2

( ) ( ) ( )( )
0− + + +





+ + + −








 =

9.8

The characteristic equation is of the form

p a p b p n
2 20;    − + = = ω 9.9

      m X1 1
˙˙ k1X k3(X1 – X2)

m1 m2

k1X1 k3(X1 – X2)
K2X2

      m X2 2
˙˙

9.3 Free body diagram of both the masses.
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where the roots of the equation are

p a a b
n n(lower) (lower) 4

2
2

1
2

2
= = = − −ω ω 9.10a

p a a b
n(higher) (higher) 4

2
2

2
2

2
= = = + −ω ω n 9.10b

Once the values of ω ωn n1
2

2
2 and  are determined, A2 and A1 have known

ratios as given by the following equation.

First mode of vibration ωn = ωn1

( )
/

/
( )

{0}

1 3

1
1

2
3 1

3 2
2 3

1
1

2

1
(1)

2
(1)

k k
m

k m

k m
k k

m

n

n

+ −



 −

− + −


































=

ω

ω

A

A
9.11a

From the first equation of Eq. 9.11a we get

A

k k
m

k
m

A
n

2
(1)

1 3

1
1

2

3

1

1
(1)

1 1
(1)A=

+ −























=
ω

µ 9.11b

The superscript (1) shows that is the first mode.

Second mode of vibration ωn = ωn2

( )
/

/
( )

{0}

1 3

1
2

2
3 1

3 2
2 3

1
2

2

1
(2)

2
(2)

k k
m

k m

k m
k k

m

A

A

n

n

+ −



 −

− + −


































=

ω

ω
9.12a

A

k k
m

k
m

A
n

2
(2)

1 3

1
2

2

3

1

1
(2)

2 1
(2)A=

+ −























=
ω

µ 9.12b

Then the displacement response may be obtained as

X A t A tn n1 1
(1)

1 1 1
(2)

2 2sin ( ) sin ( )= + + +ω φ ω φ 9.13a

X A t A tn n2 2
(1)

1 1 2
(2)

2 2sin ( ) sin ( )= + + +ω φ ω φ 9.13b
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or

X1 = a(1) sin (ωn1t) + b(1) cos (ωn1t)

  + a(2) sin (ωn2t) + b(2) cos (ωn2t) 9.14a

X2 = µ1 [a
(1) sin (ωn1t) + b(1) cos (ωn1t)]

  + µ2 [a
(2) sin (ωn2t) + b(2) cos (ωn2t)] 9.14b

There are four unknowns a(1), b(1), a(2), b(2) which can be evaluated using the
initial conditions namely

X t X t X t X t1 2 2| | | |( 0); ( 0); ( 0);  ( 0)1= = = =˙ ˙ 9.15

Assume k1 = k2 = k; m1 = m2 = m we get

ω ωn n
k
m

k k
m1 2

3;  
2= = +

9.16

For the first mode ωn = ωn1

Substituting ωn1 in Eq. 9.11b we get

A A2
(1)

1
(1)= 9.17a

then

X1 = A1 sin (ωn1t + φ1); X2 = A1 sin (ωn1t – φ1) 9.17b

Then the system vibrates in first mode as shown in Fig. 9.4. In the first
normal mode, two masses move in phase as shown in Fig. 9.4 and the centre
spring is not compressed.

k

k

m2

m1

k3

1st mode 2nd mode

9.4 First and second mode of spring mass system.
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For the second mode ω ωn n= 2

Substituting in Eq. 9.12b we get

A A2
(2)

1
(2)–= 9.18

Then

X1 = A1 sin (ωn2t + φ2); X2 = –A1 sin (ωn2t + φ2) 9.19

The second mode is also plotted in Fig. 9.4. In the second normal mode, the
masses move in opposition, out of phase with each other. For the second
mode there is one node, which is the point other than support at which
displacement is zero. For the mth mode there must be (m – 1) nodes.

Example 9.1
k = 2; k3 = 3; m1 = m2 = 1 (See Fig. 9.2). Find the natural frequencies. Find
the displacements of the masses when (a) X1(0) = 1; Ẋ1 (0) = X2(0) = 1;
Ẋ2  = 0, (b) X1(0) = 1; Ẋ1 (0) = X2(0) = –1; Ẋ2  = 0, (c) X1(0) = 1;
Ẋ1 (0) = X2(0) = Ẋ2  = 0.

Solution

a
k k

m
k k

m
= + + +



 =1 3

1

3 2

2
10

b
k k k k k k

m m
= + + =( )

161 2 2 3 3 1

1 2

The characteristic equation is

p2 – 10p + 16 = 0; p1 = 2; p2 = 8

Hence natural frequencies are

ω ωn n1 22 ;  8= =

First mode
Substituting p = 2 in Eq. 9.7 we get

(5 ) 3

3 (5 )
0;  

3 3

3 3
{0}1

(1)

2
(1)

1
(1)

2
(1)

− −
− −

















=

−
−

















=

p

p

A

A

A

A

A A2
(1)

1
(1)=

Second mode
Substituting p = 8 in Eq. 9.7 we get
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–3 3

3 –3
0;1

(2)

2
(2) 2

(2)
1
(2)−

−
















= = −

A

A
A A

X1 = a(1) sin (ωn1t) + b(1) cos (ωn1t) + a(2) sin (ωn2t) + b(2) cos (ωn2t)

X2 = [a(1) sin (ωn1t) + b(1) cos (ωn1t)]

– [a(2) sin (ωn2t) + b(2) cos (ωn2t)]

Ẋ n1 1= ω [a(1) cos (ωn1t) – b(1) sin (ωn1t)]

+ ωn2 [a(2) cos (ωn2t) – b(2) sin (ωn2t)]

Ẋ n2 1= ω [a(1) cos (ωn1t) – b(1) sin (ωn1t)]

– ωn2 [a(2) cos (ωn2t) – b(2) sin (ωn2t)]

(a) Using the initial conditions X1(0) = 1: Ẋ1 (0) = X2(0) = 1; Ẋ2 = 0  When
solved we get b(1) = 1; a(1) = a(2) = b(2) = 0

X t X t1 2cos 2 ;  cos 2= =

Hence the spring–mass system vibrates in first mode.

(b) Using initial conditions X1(0) = 1: Ẋ1 (0) = X2(0) = –1; Ẋ2 = 0  when
solved we get b(2) = 1; a(1) = a(2) = b(1) = 0

X t X t1 2cos 8 ;  cos 8= = −

Hence the spring–mass system vibrates in second mode

(c) Using initial conditions X1(0) = 1: Ẋ1 (0) = X2(0) = Ẋ2 = 0

when solved we get b a a b(2) (1) (2) (1)1
2

; 0; 1
2

= = = =

The displacement response is obtained as

X t t X t t1
1
2

(cos 2 cos 8 ); 1
2

(cos 2 cos 8 )= + = −2

The solution of a coupled differential equation is performed using
MATHEMATICA, including response curves. The program in
MATHEMATICA is given below.
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9.3 Program 9.1: MATHEMATICA program to solve

coupled differential equation

 <>]}}

{{y -> InterpolatingFunction[{{0., 30.}}, <>],
z-> InterpolatingFunction[{{0., 30.}},

1

0.75

0.5

0.25

0

–0.25

–0.5

d
i
s
p
l
a
c
e
m
e
n
t

2 4 6 8

time in sec
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The same method is programmed in MATLAB and the listing is given below.
The example considered in MATHEMATICA is also solved in MATLAB
and Figs 9.5 and 9.6 give the displacement response corresponding to first
and second degrees of freedom respectively.

9.4 Program 9.2: MATLAB program to solve free

vibration of undamped two-degrees-of-

freedom system

% two degrees of freedom forced vibration undamped
clc;
% mass matrix

0.5

0.25

–0.25

–0.5

–0.75

–1

d
i
s
p
l
a
c
e
m
e
n
t

2 4 6 8

time in sec

D
is

p
la

ce
m

en
t 

in
 m

1

0.5

0

–0.5

–1
0 2 4 6 8

Time in secs

9.5 Displacement response of first degree of freedom.
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m=[1 0;0 1];
% stiffness matrix
k=[5 -3;-3 5];
%give initial displacements and velocities
u=[1 0 0 0];
% calculate flexibility matrix
a=inv(k);
am=a*m;
%find eigen values and eigenvectors
[ev,evu]=eig(am);
%calculate frequencies and factors
for i=1:2

omega(i)=sqrt(1/evu(i,i));
mew(i)=ev(i,2)/ev(i,1);

end
%find b matrix
b=[0 1 0 1;omega(1) 0 omega(2) 0;0 mew(1) 0 mew(2);...

omega(1)*mew(1) 0 omega(2)*mew(2) 0];
a=inv(b)*u’;
for i=1:401

tt(i)=(i-1)*.02;
t=tt(i);
bb=[sin(omega(1)*t) cos(omega(1)*t) sin(omega(2)*t) cos(omega(2)*t);
o m e g a ( 1 ) * c o s ( o m e g a ( 1 ) * t ) - o m e g a ( 1 ) * s i n ( o m e g a ( 1 ) * t )
omega(2)*cos(omega(2)*t)...
-omega(2)*sin(omega(2)*t);
mew(1)*sin(omega(1)*t)mew(1)*cos(omega(1)*t) mew(2)*sin(omega(2)*t)

mew(2)*cos(omega(2)*t);...

D
is

p
la

ce
m

en
t 

in
 m

1

0.5

0

–0.5

–1
0 2 4 6 8

Time in secs

9.6 Displacement response of second degree of freedom.
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mew(1)*omega(1)*cos(omega(1)*t) -mew(1)*omega(1)*sin(omega(1)*t)...
mew(2)*omega(2)*cos(omega(2)*t) -omega(2)*mew(2)*sin(omega(2)*t)]
c=bb*a
u(i)=c(1);
v(i)=c(3);

end
figure(1)
plot(tt,u)
xlabel(‘ time in secs’)
ylabel(‘ displacement in m’)
title(‘ response first degree of freedom’)
figure(2)
plot(tt,v)
xlabel(‘ time in secs’)
ylabel(‘ displacement in m’)
title(‘ response second degree of freedom’)
igure(2)

9.5 Program 9.3: MATLAB program to solve

coupled differential equations

MATLAB has several functions or solvers, based on the use of Runge–Kutta
methods that can be used for the solution of a system of first order ordinary
differential equations. It is to be noted that nth order ordinary differential
equations are converted to n first order ordinary differential equations before
using the MATLAB functions. The MATLAB function ode23 implements a
combination of second and third order Runge–Kutta methods while the function
ode45 is based on a combination of fourth and fifth order Runge–Kutta
methods. To solve a system of first order differential equation ẏ f t y= ( , )
using MATLAB function ode23, the following command can be used

[t,y]=ode23[‘dfunc’,tspan,y0]

where ‘dfunc’ is the name of the function m-file whose input must be t and
y and whose output must be a column vector denoting dy/dt on f (t, y). The
number of rows in the column vector must be equal to the number of first
order equations. The vector ‘tspan’ should contain the initial and final values
of the independent variable t, and optimally any intermediate value of ‘t’ at
which the solution is desired. The vector y0 should contain the initial values
of y(t). The function ‘m-file’ should have two input arguments t and y. A
similar procedure can be used with MATLAB functions ode45.

Assume y1, y3 represent the displacements x1 and x2 and the two second
order equations can be converted to four first order equations as
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f
y
t

y1
1

2
d
d

= =

f
y
t

k
m

y
k
m

y2
2 11

11
1

12

11
3

d
d

= = − −

f
y
t

y3
3

4
d
d

= =

f
y
t

k
m

y
k
m

y4
4 21

22
1

22

22
3

d
d

= = − −

The problem discussed in MATHEMATICA is solved using MATLAB. Figure
9.7 shows the displacement response.

%Matlab program for solving coupled differential equation using RK method
tspan=[0:.01:20];
%Initial displacements and velocities
y0=[1.0;0.0;0.0;0.0];
%Use RK method of order 4 and 5 combined
[t,y]=ode45(‘dfunc1’,tspan,y0);
subplot(211)
plot(t,y(:,1));
xlabel(‘t’);
ylabel(‘x1(t)’);

0 5 10 15 20
t

0 5 10 15 20
t

1

0.5

0

–0.5

–1

x 1
(t

)

1

0.5

0

–0.5

–1

x 1
(t

)

9.7 Displacement response.
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title(‘ x1(t) vs t’);
subplot(212)
plot(t,y(:,3));
xlabel(‘t’);
ylabel(‘x2(t)’);
title(‘x2(t) vs t’);

function f=dfunc1(t,y)
% four first order equations are given by f
f=zeros(4,1);
%mass matrix
m=[1,0;0,1];
%stiffness matrix
k=[5 -3;-3 5];
%four first order equations
f(1)=y(2);
f(2)=-k(1,1)*y(1)/m(1,1)-k(1,2)*y(3)/m(1,1);
f(3)=y(4);
f(4)=-k(2,1)*y(1)/m(2,2)-k(2,2)*y(3)/m(2,2);

Example 9.2
Assume k1 = k2 = 1.7; k3 = 0.3. Investigate the beating phenomenon assuming
the initial conditions as X1(0) = 1: Ẋ1 (0) = X2(0) = Ẋ2 = 0 .

Solution
The equilibrium equations written in matrix form are (where p = ω2)

2 0.3

0.3 2
{0}

1

2

− −
− −















=
p

p

A

A

The characteristic equation is

p2 – 4p + 3.91 = 0

Solving we get two frequencies as

  p1 = 1.7; p2 = 2.3

ω ωn n1 21.7 1.3038;  2.3 1.5165= = = =

 X t t1
1
2

(cos 1.3038 cos 1.5165 );= +

 X t t2
1
2

(cos 1.3038 cos 1.5165 )= −

The beating phenomenon is shown in Fig. 9.8 and the curves are obtained
using the MATLAB package. The resulting motion is a rapid oscillation with
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a slowly varying period and is referred as beat. Sometimes the two sinusoids
add to each other, and all other times they cancel each other out, resulting in
a beating phenomenon. The beating phenomenon often manifests itself in
mechanical equipment with the emitted sound having a similar cyclically
varying magnitude.

Example 9.3
In Fig. 9.9 two pendulums are coupled by means of a weak spring k, which
is unconstrained when two pendulum rods are in the vertical position. Determine
the normal modes of vibration.

0 5 10 15 20 25 30
t

1

0.5

0

–0.5

–1

x 1
(t

)

1

0.5

0

–0.5

–1

x 2
(t

)

0 5 10 15 20 25 30
t

9.8 Beating phenomenon in two-degrees-of-freedom system.

θ2

θ1 a

k

L

m m

ka(θ1 – θ2)

mg
mg      mL˙θ̇2

      mL˙θ̇1

9.9 (a) Coupled pendulum; (b) free body diagram of pendulum 1;
(c) free body diagram of pendulum 2.
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Solution
Assuming anticlockwise angular displacement to be positive and taking
moments about the point of suspension, we obtain the following equations of
motion for small oscillation.

mL ka mgL

mL ka mgL

2
1

2
1 2 1

2
2

2
1 2 2

( ) 0

( ) 0

˙̇

˙̇
θ θ θ θ
θ θ θ θ

+ − + =
− − + =

9.20

Writing in matrix form

m

m

ka mgL ka

ka ka mgL

0

0
{0}1

2

2 2

2 2

1

2















+
+ −

− +

















=
˙̇

˙̇
θ
θ

θ
θ

9.21

Assuming the normal modes of vibration as

θ1 = A1 sin (ωnt + φ); θ2 = A3 sin (ωnt + φ) 9.22

The natural frequencies are obtained by solving the characteristic equation
obtained from the determinant of the following matrix as

ka mgL m ka

ka ka mgL m
n

n

2 2 2

2 2 2
0

+ − −
− + −

=
ω

ω 9.23

ω ωn n
g
L

g
L

ka
mL

1 2

2

2;  2= = + 9.24

A
A

A
A

1

2

(1)
1

2

(2)

1;  1



 = 



 = − 9.25

Thus in the first mode the two pendulums move in phase and the spring
remains unstretched. In the second mode, the two pendulums are out of
phase and the coupling is actively involved with a node at its midpoint.
Consequently the natural frequency is higher. In the coupled pendulum assume
m1 = m1 = 0.1; k = 5; a = 0.4 m; L = 1m. We get the beating phenomenon as
shown in Fig. 9.10. A MATLAB program using ode45 can be used to find the
response of the pendulums.

9.6 Coordinate coupling

The differential equations of motion for the two-degrees-of-freedom system
are in general coupled. In that both coordinates appear in each equation. In
the most general case, the two equations of the undamped system have the
following form:

m X m X k X k X11 1 12 2 11 1 12 2 0˙̇ ˙̇+ + + = 9.26a

m X m X k X k X21 1 22 2 21 1 22 2 0˙̇ ˙̇+ + + = 9.26b
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The above equations can be expressed in matrix form as

m m

m m
X

X

k k

k k

X

X
11 12

21 22

1

2

11 12

21 22

1

2
{0}















+ 












=
˙̇

˙̇ 9.27

or in short

[m]{ }˙̇X  + [k]{X} = {0} 9.28

In the above equations, the mass and stiffness matrices are non-diagonal.
Hence mass or dynamic coupling and stiffness or static coupling exist.

It is also possible to find the coordinate system which has neither form of
coupling. The two equations are then decoupled and each equation may be
solved independently of the other. For example {X} is written in terms of
some other coordinate as

{X} = [φ]{Y} 9.29

Choose Y coordinate such that

[φ]T[m][φ] = [I]; [φ]T[k][φ] = diag[∧] 9.30

Substituting for {X} and premultiplying with [φ]T we get

0 1 2 3 4 5 6 7 8
t

1

0.5

0

–0.5

–1

θ 1

1

0.5

0

–0.5

–1

θ 2

0 1 2 3 4 5 6 7 8
t

9.10 Beating phenomenon in coupled pendulum.
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[φ]T[m][φ] { }˙̇Y  + [φ]T[k][φ] {X} = {0} 9.31

or

{ } diag[ }{ } {0}˙̇Y Y+ ∧ = 9.32

or

˙̇Y Y1 1 1 0+ ∧ = 9.33

˙̇Y Y2 2 2 0+ ∧ = 9.34

{Y} coordinates are called principal coordinates or normal coordinates.
Although it is possible to decouple the equations of motion for an undamped

system, this is not the case for the damped system. The following system of
equations show uncoupled mass and stiffness matrices but coupled damping
matrix.

m

m
X

X

c c

c c
X

X

k

k

X

X
11

22

1

2

11 12

21 22

1

2

11

22

1

2
{0}














+ 












+

















=
˙̇

˙̇

˙

˙

9.35

If in Eq. 9.35 c12 = c21 = 0 then damping is said to be proportional damping.
The damping matrix is also uncoupled when we assume damping is proportional
to stiffness and mass matrices.

Example 9.4
Figure 9.11 shows a rigid bar of an automobile with its centre of mass not
coinciding with its geometric centre . L1 ≠ L2 and supported by two springs
of stiffness k1, k2. This represents a two-degrees-of-freedom system since
two coordinates are necessary to describe its motion. The choice of coordinates
will define the type of coupling.

Solution
1. Choose coordinates X and θ as the displacement at centre of mass and

rotation of rigid bar (see Fig. 9.11b). The free body diagram is shown in
Fig. 9.12.
Writing the equations of dynamic equilibrium we get

Σ ( ) ( ) 01 2 1 1 2 2V mX k k X k L k L= + + − − =˙̇ θ

Σ ( – ) ( ) 02 2 1 1 1 1
2

2 2
2M J k L k L X k L k L= + + + =˙̇θ θ

Writing in matrix form we get

m

J

X k k k L k L

k L k L k L k L

X0

0

( ) ( )

( ) ( )
{0}

1 2 2 2 1 1

2 2 1 1 1 1
2

2 2
2















+
+ −
− +



















=
˙̇

˙̇θ θ
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The above equations show mass or dynamic uncoupling and static or
stiffness coupling. If k1L1 = k2L2 we obtain uncoupled X and θ vibration.
Then stiffness matrix is also uncoupled.

2. Choose coordinates X and θ as displacements at the centre of gravity C
of the bar as shown in Fig. 9.11c and rotation of the bar. Assume C is
selected such that k1L3 = k2L4. The free body diagram is shown in Fig. 9.13.

W

k1 k2

L2L1

(a)

X

θ

(b)

X

θ

(c)

(d)

X

θ

9.11 Choice of coordinates in two-degrees-of-freedom system.

    J˙θ̇

    k X L1 1(  – )θ     mẊ̇ k1(X + L2θ)

9.12 Free body diagram.
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Writing the equations of dynamic equilibrium

Σ ( ) ( ) ( ) 01 2 2 4 1 3V m X e k k X k L k L= − + + + − =˙̇ ˙̇θ θ

Σ 0 ( )CM J m X e e= = − −˙̇ ˙̇ ˙̇θ θ  + k2(X + L4θ)L4 – k1(X – L3θ)L3 = 0

writing in matrix form we get

m me

me J

X k k

k L k L

X−
−















+
+

+


















=
C

1 2

2 4
2

1 3
2

0

0 ( )
0

˙̇

˙̇θ θ

In the above equations, mass matrix is coupled (dynamic coupling) and
stiffness matrix is uncoupled (static uncoupling).

3. Choose the coordinates X and θ such that X is the displacement at the left
support and θ is the rotation of the rigid bar as shown in Fig. 9.11d. The
free body diagram is shown in Fig. 9.14.

Writing the dynamic equations of equilibrium, we get

Σ ( ) ( ) 01 2 2V mX mL k k X k L= + + + + =˙̇ ˙̇
1θ θ

Σ 0 ( ) ( ) = 0(left end) 1
2

1 2
2M J mL mL X k LX L= = + + + +˙̇ ˙̇θ θ

writing in matrix form

m mL

mL J mL
X k k k L

k L k L

X1

1 1
2

1 2 2

2 2
2 0

+
















+
+













=
˙̇

˙̇θ θ

L3 L4e

C

k1(X – L3θ)
k2(X – L4θ)

      m X e(  – )˙˙ ˙θ̇

9.13 Free body diagram.

L1 e

    J˙θ̇

k1(X)
k2(X – Lθ)

      m X L(  + )1
˙˙ ˙θ̇

9.14 Free body diagram.
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In the above equation, mass and stiffness matrices are coupled and hence
there exists both dynamic and static coupling. This example shows the
choice of coordinates will define the types of coupling which can
immediately be determined for the mass and stiffness matrices.

9.7 Simple system: two storey shear building

9.7.1 Influence coefficient method

The influence coefficients associated with stiffness and mass matrices are
respectively known as stiffness and inertia influence coefficients. The inverse
of stiffness matrix is the flexibility matrix. kij is the stiffness influence coefficient
defined as the force developed at ‘i’ due to unit force applied at ‘j’. We first
formulate the equation of motion for the simplest possible two-degrees-of-
freedom system, a highly idealized two storey frame. In this idealization, the
beams and floor systems are rigid (infinitely stiff) in flexure. Axial deformations
in the beams and columns and the effect of axial force on stiffness of the
columns are neglected. Even though it is unrealistic nevertheless we can
illustrate how equations of motion for an MDOF system are developed.
Consider a two storey frame shown in Fig. 9.15.

The equation of motion may be written as

h2

h1

m2

m1

EI2

EI1

U2

U1

U1 = 1

U2 = 1

    24 /2 2
3EI h

    24 /2 2
3EI h

    24 /1 1
3EI h

    24 /  = 2 2
3

22EI h k

    k EI h21 2 2
3= 24 /

= k21

= k11

9.15 Two storey frame.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering286

m

m

U

U

k k k

k k
1

2

1

2

1 2 2

2 2

0

0

–

–

0

0














+
+





= 







˙̇

˙̇ 9.36

where

k EI h k EI h1 1 1
3

2 2 2
324 / ;  24 /= = 9.37

Assume

U1 = A1 sin (ωnt + φ); U2 = A2 sin (ωnt + φ) 9.38

we get

[( )/ ] /

/ ( / )
{0}1 2 1

2
2 1

2 2 2 2
2

1

2

k k m k m

k m k m

A

A
n

n

+ − −
− −


















=
ω

ω 9.39

For a non-trivial solution to exist, the determinant of the above matrix must
be zero.

We get the characteristic equation as

p2 – ap + b = 0 9.40

where

p a k k m k m b k k m m= = + + =ω n
2

1 2 1 2 2 1 2 1 2;  ( )/ / ; /( ) 9.41

By solving the above quadratic equation, one can find two natural frequencies
and the corresponding mode shapes.

Example 9.5
In the above two storey shear frame problem

m1 = m; m2 = 0.5m; k1 = k2 = k

Find the natural frequencies and mode shapes.

p2 – (4 k/m)p + 2(k/m) = 0

Solving

p k
m

p k
mn n1

2
2 2

20.586 ;  3.414= = = =ω ω1

To get the first mode shape
Substituting for ω n

2  = 0.586 in the matrix equation we get

(2 0.586) 1

2 (2 0.586)
0

1

2

− −
− −















=
A

A

If A1 = 1; A2 = 1.414
The first mode shape is plotted in Fig. 9.16a.
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To get the second mode shape
Substituting for ω n

2  = 3.414 in the matrix equation we get

(2 3.414) 1

2 (2 3.414)
0

1

2

− −
− −














=
A

A

If A1 = 1; A2 = –1.414
The second mode shape is plotted in Fig. 9.16b.

Example 9.6
Solve the two-degrees-of-freedom system shown in Fig. 9.17 by Laplace
transform. Obtain the response given initial conditions initial displacements
corresponding to two degrees of freedom are 3 and 5 respectively and initial
velocities corresponding to two degrees of freedom are 1 and 4 respectively.

Solution
The equations of motion can be written as

˙̇X X X1 1 2200 100 0+ − =

2 100 200 02 1 2
˙̇X X X− + =

Taking Laplace transform of the equations, we get

s X s sX X X s X s2
1 1 1 1 2( ) (0) (0) 200 100 ( ) 0− − + − =˙ ( )

1st mode
(a)

2nd mode
(b)

9.16 Stick model and two modes.

100

X1 X2

100

1 2

9.17 Two-degrees-of-freedom system.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering288

2 ( ) 2 (0) 2 (0) 100 ( ) 100 ( ) 02
2 2 2 1 2s X s sX X X s X s− − − + =˙

Writing in matrix form

( 200) 100

100 2 100

( )

( )
(0) (0)

2 (0) 2 (0)

2

2

1

2

1 1

2 2

s

s

X s

X s

sX X

sX X

+ −
− +


















=
+
+









˙

˙

substituting initial conditions

( 200) 100

100 2 100

( )

( )

3 1

10 8

2

2

1

2

s

s

X s

X s

s

s

+ −
− +


















=
+
+









or
X s

X s

s

s

s

s
1

2

2

2

1
( )

( )

( 200) 100

100 2 100

3 1

1 8








=
+ −

− +










+
− +









−

Taking inverse Laplace transform we will get X1(t), X2(t). The program in
MATHEMATICA is given below and the response curves are shown for
both the displacements.

9.8 Program 9.4: MATHEMATICA program for

finding the responses of an undamped two-

degrees-of-freedom system – free vibration

2 2

{{200 + s , -100}, {-100, 100 + 2 s }}

2 2
{{200 + s , -100}, {-100, 100 + 2 s }}

1 1 1 1
{{———————, -(———)}, {-(———), ———————}}

2 100 100 2
200 + s 100 + 2 s

3

1
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5

v20=4
4

1 + 3 s

8 + 10. s

{{1 + 3 s}, {8 + 10. s}}

1 1 1 1

{{———————, -(———)}, {-(———), ———————}}
2 100 100 2
200 + s 100 + 2 s

1 1 1 1
-8 - 10. s 1 + 3 s -1 - 3 s 8 + 10. s

{{—————————— + ————————}, {———————— + —————————}}

100 2 100 2
200 + s 100 + 2 s

Sin[10 Sqrt[2] t] 8 DiracDelta[t] - 10. DiracDelta’[t]

3 Cos[10 Sqrt[2] t] + —————————————— + ——————————————————

10 Sqrt[2] 100

-DiracDelta[t] - 3 DiracDelta’[t]

(5. + 0. I) Cos[5 Sqrt[2] t] + (0.565685 + 0. I) Sin[5
Sqrt[2] t] +

100
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3

2

1

–1

–2

–3

d
i
s
p
l
a
c
e
m
e
n
t

2 4 6 8 10

time in sec

4

2

–2

–4

d
i
s
p
l
a
c
e
m
e
n
t

2 4 6 8 10

time in sec

Example 9.7
A cantilever beam is modelled by lumping the mass as shown in Fig. 9.18.
Determine the natural frequencies and mode shapes of the beam.

Solution
The dynamic equilibrium equations may be written as

2 0

0 2
[ ] {0}1

2

1

2

m

m

U

U
k

U

U













+ 







=
˙̇

˙̇

For the model, it is easier to develop a flexibility matrix, and inverting
flexibility matrix we get the stiffness matrix as shown below.
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Flexibility matrix = [a] = 
a a

a a
11 12

21 22







aij is the deflection at ‘i’ due to unit load at ‘j’. (see Fig. 9.19a and b for the
definition of aij).

The flexibility coefficients may be calculated as

a L
EI

a L
EI

L
EI

L
EI

a a L
EI11

3

21

3 3 3

12 22

3

3
;  

2 3
5
6

;  8
3

= = + = = =

Hence the flexibility matrix is

[ ]
6

2 5

5 16

3
a L

EI
= 





L L

U1

U2

2m m

9.18 Cantilever beam.

L L

a12

a22

1

(a)

L L

a11

a21

1

(b)

9.19 Flexibility coefficients.
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The stiffness matrix is the inverse of flexibility matrix

[k] = [a]–1; [a] = [k]–1

− + =ω n M U k U2 [ ]{ } [ ]{ } {0}

1 { } [ ] [ ]{ } [ ][ ]{ }2
1

ω n

U k M U a M U= =−

= 












L m
EI

U
3

6
2 5

5 16

2 0

0 1
{ }

1 { }
6

4 5

10 16
{ }2

3

ω n

U L m
EI

U= 





Assume

λ
ω

= 6
3 2

EI
L m n

we get

(4 ) 5

10 16
0

−
−

=
λ

λ

The characteristic equation is

λ2 – 20λ + 14 = 0

Solving the above quadratic equation

λ1 = 19.27; λ2 = 0.7265

We get

λ ω1 1 319.27;  0.558= =n
EI

mL

Substituting this in the matrix equation, we get fundamental mode shape as

(4 19.27) 5

10 16 19.27
0

1

2

−
−














=
U

U

U1 = 1; U2 = 3.058

Mode shape corresponding to second frequency

λ ω2 2 30.7265;  2.873= =n
EI

mL
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(4 0.7265) 5

10 (16 0.7265)
{0}

1

2

−
−














=
U

U

U1 = 1; U2 = –0.654

The mode shapes are shown in Fig. 9.20.

9.9 Forced vibration of two-degrees-of-freedom

undamped system

It is required to study the steady state response of the system shown in Fig.
9.21 when the mass m1 is excited by the force F1 = F10 cos(ω t) and also to
plot the frequency response curve.

Dynamic equations of equilibrium can be written as

m

m

U

U

k k

k k

U

U

F t0

0

2

2

cos ( )

0
1

2

1

2














+
−

−














= 







˙̇

˙̇
10 ω

9.42

We assume the solution to be as follows

Uj(t) = Aj cos (ω t) 9.43

Substituting we get

1

1
3.058

–0.654

9.20 Mode shapes.

m

m

k

k

k

F10 cos (ω t )
U1

U2

9.21 Two-degrees-of-freedom system.
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(2 )

(2 ) 0

2

2

1

2

10k m k

k k

A

A

F− −
− −


















= 







ω
ωm

9.44

Solving we get

A
k m F

k m k m1

2
10

2 2( )
(2 )

(3 ) ( )
ω ω

ω ω
= −

− −
9.45

A
kF

k m k m2
10

2 2( )
(3 )( )

ω
ω ω

=
− −

9.46

The characteristic equation of matrix in Eq. 9.44 is

ω ωn n
k

m
k

m
4 2

2

2
4 3 0− + = 9.47

Solving the above quadratic equation in terms of ω n
2 , we get

ω ωn n
k
m

k
m1

2
2

2;  3= = 9.48

Equations 9.45 and 9.46 are written in terms of ωn1, ωn2

A
F

k

n

n

n n n

1 ( )
(2 / )

1

2
1

2
10

2
2

1
2

2

1
2

2

1
2

ω
ω ω

ω
ω

ω
ω

ω
ω

=
−

−






−






9.49

A
F

k n

n n n

2
10

2
2

1
2

2

1
2

2

1
2

( )

1

ω
ω
ω

ω
ω

ω
ω

=
−







−






9.50

or

A k
F

n

n

n n n

1

10

2
1

2

2
2

1
2

2

1
2

2

1
2

( ) (2 / )

1

ω ω ω
ω
ω

ω
ω

ω
ω

=
−

−






−






9.51

A k
F

n

n n n

2

10 2
2

1
2

2

1
2

2

1
2

( ) 1

1

ω
ω
ω

ω
ω

ω
ω

=
−







−






9.52

The responses A1 and A2 are shown on page 296 respectively in terms of
dimensionless parameter ω/ω1. In the dimensionless parameter ω/ω1 ω1 is
selected arbitrarily. It can be seen that amplitudes of U1 and U2 become
infinity when ω ω2

1
2= n  or ω ω2

2
2= n . These are the resonance conditions

for the system, one at ωn1 and the other at ωn2. At all other values of ω, the
amplitudes of vibration are finite. It can be noted from the figure on page
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296 that there is a particular value of frequency ω at which the vibration of
first mass m to which force F1 is applied is reduced to zero. This concept is
made use of in vibration absorbers.

9.10 Program 9.5: MATHEMATICA program for

forced vibration of two-degrees-of-freedom

undamped system

2 2

{{2 k - m om , -k}, {-k, 2 k - m om }}

2
2 k - m om -k

2
-k 2 k - m om

{{f10}, {0}}

f10

 0

2
2

2 k - m
om k k 2 k - m om
{{——————————, ——————————}, {—————————, ——————————}}

2  2 2 4 2  2 2 4 2  2 2 4 2  2 2 4
3 k - 4 k m om + m om 3 k - 4 k m om + m om

3 k - 4 k m om + m om 3 k - 4 k m om + m om

2
f10 (2 k - m om ) f10 k

{{———————————————————}, {—————————————————}}

2  2 2 4 2  2 2 4
3 k - 4 k m om + m om 3 k - 4 k m om + m om
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     1

—————————————————
   2   2
(1 - x ) (3 - x )

2
2 - x

—————————————————
2 2

(1 - x ) (3 - x )

15

10

5

–5

–10

–15

u
2
*
k
/
F
1
0

0.5 1 1.5 2 2.5

w/wn1

20

10

–10

–20

u
2
*
k
/
F
1
0

0.5 1 1.5 2 2.5

w/wn1
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9.11 Vibration absorber

A spring mass system k2, m2 tuned to the frequency of the exciting force such
that ω2 = k2/m2 will act as a vibration absorber and reduce the motion of the
main mass m1 to zero (see Fig. 9.22).

Assuming the motion to be harmonic, the equation for amplitude can be
shown equal to that given by Eq. 9.54 by substituting for fundamental
frequencies given by Eq. 9.53.

ω ω11
2 1

1
22
2 2

2
;  = =k

m
k

m
9.53

A k
F k

k
k
k

1

10

2
22
2

2

1

2

11
2

2

22
2

2

1

( ) (1 / )

1 1

ω ω ω

ω
ω

ω
ω

=
−

+ −






−






−
9.54

Assume m1 = 1; m2 = 0.2; k1 = 1; k2 = 0.2; ω11
2  = k1/m1 = 1; ω 22

2  = k2/m2 = 1.
Figure 9.23 shows a plot of Eq. 9.54. If ω = ω22 the amplitude A1 = 0 but

the absorber mass undergoes an amplitude equal to

U
F
k2

0

2
= − 9.55

since the force acting on m2 is –F0. The absorber system k2, m2 exerts a force
equal and opposite to the disturbing force. Thus the size of k2, m2 depends on
the allowable value of U2.

Figures 9.24 and 9.25 show the response of both degrees of freedom by
varying the excited frequency. It is seen that when the excited frequency =
1rad/s the displacement corresponding to the first degree of freedom is zero.

k2

k1

F0 sin (ω t )

m2

m1

9.22 Vibration absorber.
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9.12 Forced response of a two-degrees-of-freedom

under-damped system

Consider a two-degrees-of-freedom under-damped system as shown in Fig.
9.26. The equations of motion can be written in matrix form as shown in Eq.
9.56.

0.5 1 1.5 2 2.5
w/wn2

u
1 

+ 
k 1

/F
10

20

15

10

5

9.23 Response vs frequency.
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9.24 Displacement (first degree of freedom response) for different
excited frequencies.
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9.25 Displacement (second degree of freedom response) for different
excited frequencies.
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9.26 Two degrees of damped system.
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where

F

F

F t

F t
1

2

10

20

cos ( )

cos ( )








= 







ω
ω

9.57

with initial conditions

X X X V X X X V1 1 2 2( ) 10;  (0) 10;  (0) 20; (0) 200 = = = =˙ ˙ 9.58

Equation 9.56 must be written in terms of four first order equations. Substituting

Y X Y X Y Y X Y X1 1 2 1 1 3 2 4 2;  ;  ;  = = = = =˙ ˙ ˙

Ẏ Y1 2=

Ẏ F t c m Y c m Y k m Y2 10 1 11 1 2 12 1 4 11 1 1cos ( )/ ( / ) ( / ) ( / )= − − −ω m

 – (k12/m1)Y3

Ẏ Y3 4=

Ẏ F t c m Y c m Y k m Y4 20 2 21 2 2 22 2 4 21 2 1cos ( )/ ( / ) ( / ) ( / )= − − −ω m

 – (k22/m2) Y3 9.59

with initial conditions

Y

Y

Y

Y

Y

X

V

X

V

(0)

(0)

(0)

(0)

(0)

10
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20

20

1

2

3

4

=



















=



















9.60

The functions Ode23 and, Ode45 in MATLAB can solve these four first
order equations. As an example let us consider

[ ]
1 0

0 2
;  [ ]

4 1

1 2
;  [ ]m c k= 





=
−

−






=
−

−






= 







5 2

2 3
; { }

1

2
cos (3 )F t 9.61

with initial conditions as

X

V

X

V
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20

0.2

1

0

0



















=



















9.62
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Figure 9.27 shows the displacement response for this two-degrees-of-freedom
system.

The program in MATLAB is given below.

9.13 Program 9.6: MATLAB program for

displacement response of two-degrees-of-

freedom under-damped system for forced

vibration

%FORCED RESPONSE OF TWO DEGREE OF FREEDOM UNDER
DAMPED SYSTEM
tspan=[0:.01:20];
y0=[0.2;1.0;0.0;0.0];
[t,y]=ode45(‘dfunc’,tspan,y0);
subplot(211)
plot(t,y(:,1));
xlabel(‘t’);
ylabel(‘x1(t)’);
title(‘ x1(t) vs t’);
subplot(212)
plot(t,y(:,3));
xlabel(‘t’);
ylabel(‘x2(t)’);
title(‘x2(t) vs t’);

0 5 10 15 20
t

0 5 10 15 20
t

x 2
(t

)

0.4

0.2

0

–0.2

–0.4

x 2
(t

)

0.4

0.2

0

–0.2

9.27 Displacement response of two-degrees-of-freedom system
(under-damped) response.
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function f=dfunc(t,y)
f=zeros(4,1);
m=[1 0;0 2];
c=[4 -1;-1 2];
k=[5 -2;-2 3];
force=[1;2];
om=3.0;
f(1)=y(2);
f(2)=force(1)*cos(om*t)-c(1,1)*y(2)/m(1,1)-c(1,2)*y(4)/m(1,1)...

-k(1,1)*y(1)/m(1,1)-k(1,2)*y(3)/m(1,1);
f(3)=y(4);
f(4)=force(2)*cos(om*t)-c(2,1)*y(2)/m(2,2)-c(2,2)*y(4)/m(2,2)...

-k(2,1)*y(1)/m(2,2)-k(2,2)*y(3)/m(2,2);

9.14 Summary

In this chapter, response of two-degrees-of-freedom system undamped and
under-damped free vibration and forced vibration is discussed. The relevant
programs in MATHEMATICA and MATLAB are given. In the next chapter,
free vibration of multiple-degrees-of-freedom systems is discussed.

9.15 Exercises

1. Determine the natural frequencies of the system shown in Fig. 9.28
2. Find the natural frequencies and mode shapes of the torsional system

shown in Fig. 9.29.

2k 3k 2k
m 2m

9.28

Angle of rotation θ

J2
k2

J1

k1

9.29
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3. For the two storey frame shown in Fig. 9.30 determine the natural
frequencies and mode shapes. The beams in each floor are assumed to be
rigid.

4. An airfoil of mass m is suspended by a linear spring of stiffness k and
torsional stiffness KR in a wind tunnel as shown in Fig. 9.31. The cg is
located at a distance of e from point O. The mass moment of inertia of
the airfoil about an axis passing through point O is Jo. Find out the
natural frequency of the airfoil.

5. Using MATLAB plot the response of the following two-degrees-of-
freedom system.

2 0

0 10

20 4

4 6

60 20

20 20
1

2

1

2

1

2
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−
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−

−













˙̇

˙̇

˙

˙
U

U

U

U

U

U

= 







3sin (3 )

5 sin (3 )

t

t

6. Determine the stiffness matrix of the frame shown in Fig. 9.32 and write
the dynamic equation of equilibrium (neglect axial deformation).

9.16 Further reading

Biggs J M (1964) Introduction to Structural Dynamics, McGraw-Hill, New York.
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engineering, Eastern Economy Edition, Prentice-Hall of India, New Delhi.

2m

3m

2k

3k

2k

3k

9.30

O
k

cg

e

9.31

2EI, L

EI, 2L

Mass = m
Rotary
inertia = J

9.32
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10
Free vibration of multiple degrees of

freedom in relation to structural dynamics
during earthquakes

Abstract: In this chapter, free and forced vibration of the multiple-degrees-
of-freedom (MDOF) system are discussed. The generalized equations are
obtained by applying either Newton’s second law or solving Lagrange
equations. The orthogonality principle between modes is illustrated. It is also
shown how modes are normalized. The stiffness method is used to derive the
stiffness matrix of a structure. Relevant programs in MATHEMATICA and
MATLAB are also given.

Key words: Cordon’s solution, orthogonality, normalization, stiffness
method, static condensation.

10.1 Introduction

After having seen the behaviour of two degrees of freedom, we now proceed
to a more general treatment of the problem. Analysis of two degrees of
freedom is more involved than a single degree of freedom. When more
masses are considered, the mathematical formulation becomes much more
complicated. Most engineering systems are continuous and have an infinite
number of degrees of freedom. The vibration analysis of continuous systems
requires the solution of partial differential equations which is quite difficult.
In fact a solution is not available for many partial differential equations. The
analysis of multiple degrees of freedom (MDOF), on the other hand, requires
the solution of a set of ordinary differential equation which is relatively
simple. Hence, for simplicity of analysis, continuous systems are often
approximated as MDOF. All the concepts introduced in the previous chapters
can be directly extended to the case of MDOF. One can write one differential
equation of equilibrium for each generalized coordinate. The equations can
be obtained either by applying Newton’s second law or solving Lagrange’s
equations.

There are N natural frequencies, each associated with its own mode shape
for a system having n degrees of freedom. Similar to two degrees of freedom,
natural frequencies can be obtained by finding the roots of the nonlinear
equations. Two degrees of freedom involves quadratic equations in terms of
ω n

2 . Since all the frequencies are real numbers, a direct solution such as
Cordon’s solution is available for solving a cubic equation. However, as the
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number of degrees of freedom increases, the solution of the characteristic
equation becomes complex. The entire mode shapes exhibit a property known
as orthogonal property which often enables us to simplify the analysis of
such degrees of freedom systems.

10.2 Modelling of a continuous system as an

MDOF system

Consider a three storeyed reinforced concrete (RC) building as shown in Fig.
10.1. One can replace the distributed mass or inertia of the system by a finite
number of lumped masses or rigid bodies. The masses are assumed to be
connected by mass-less elastic damping members. Linear or angular coordinates
are used to describe the motion of the lumped masses. Such models are
called lumped parameter, lumped mass or discrete mass systems. The minimum
number of coordinates necessary to describe the deformed shape of the
structure is called the generalized degrees of freedom. Considering the three
storeyed RC building as shown in Fig. 10.1a suggests a three degree lumped-
mass model as indicated in Fig. 10.1b.

Another popular method of approximating a continuous system as an
MDOF system involves replacing the geometry of the system by a large
number of elements. By assuming a simple solution within each element, the
principle of compatibility and equilibrium are used to find the approximate
solution to the original system. This method is the finite element method,
which will be discussed later.

(b)(a)

U3,F3

k3

U2,F2

k2

U1,F1

k1

m3

c3

m2

c2

m1

c1

10.1 Three storeyed building.

�� �� �� �� �� ��



Free vibration of multiple degrees of freedom 307

10.3 Equations of motion of an MDOF system

Consider a three storeyed building modelled as shown in Fig. 10.1b. If one
wants to study the dynamic behaviour of a multi-storey frame in the x direction
one can consider the generalized coordinates U1, U2, U3 as shown.

Consider the free body diagram of three masses as shown in Fig. 10.2 and
applying D’Alembert’s principle, the equations of motion are written as

m U c c U c U k k U k U1 1 1 2 1 2 2 2 1 2 2( ) ( ) 0˙̇ ˙ ˙+ + − + + − =1

m U c U c c U c U k U2 2 2 1 2 3 2 3 3 2 1( )˙̇ ˙ ˙ ˙− + + − −

+ (k2 + k3)U2 – k3U3 = 0

m U c U c U k U k U3 3 3 2 3 3 3 2 3 3 0˙̇ ˙ ˙− + − + = 10.1

Writing in matrix form we get

m

m

m

U

U

U

c c c

c c c c

c c

U

U

U

1

2

3

1

2

3

1 2 2

2 2 3 3

3 3

1

2

3

( ) 0

( )

0
































+

+ −
− + −

−

































˙̇

˙̇

˙̇

˙

˙

˙

+

( ) 0

( )

0

{0}
1 2 2

2 2 3 3

3 3

1

2

3

k k k

k k k k

k c

U

U

U

+ −
− + −

−




























=k 10.2

10.2 Free body diagram of three masses.

k2(U1 – U2)
      c U U2 1 2( – )˙ ˙

m1

K1U1

m1Ü1

      c U1 1
˙

K3(U2 – U3)       c U U3 2 3( – )˙ ˙

m2

m2Ü2

K2(U2 – U1)
      c U U2 2 1( – )˙ ˙

m3

m3Ü3

k2(U3 – U2)
      c U U3 3 2( – )˙ ˙
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or

[ ]{ } [ ]{ } [ ]{ } {0}m U c U k U˙̇ ˙+ + = 10.3

where [m] = mass matrix
[c] = damping matrix
[k] = stiffness matrix

If the system has n degrees of freedom, the size of [m], [c] and [k] is
n × n.

• Mass matrix: There are two ways of forming the mass matrix of the
structure: lumped mass and consistent mass. The mass matrix shown in
Eq. 10.2 is a lumped mass matrix. If we consider rotational degrees of
freedom, rotary inertia must be considered. The consistent mass matrix
is fully populated whereas lumped mass matrix is diagonal.

• Stiffness matrix: The stiffness matrix [k] is symmetric. The total stiffness
matrix will be formed by assembling all the elements together to form a
structure. The stiffness matrix for dynamic analysis is to be calculated
by using standard structural application procedures.

• Damping matrix: The damping values are to be obtained experimentally.
Usually a concrete structure has 5% of critical damping and steel structure
and 2% of critical damping. [c] matrix will be reduced to simpler forms
to facilitate the analysis.

• Load vector: The dynamic loads are assumed to act at nodal points.

10.4 Free undamped vibration of an MDOF system

The equation of motion for an undamped system can be written as

[ ]{ } [ ]{ } {0}m U k U˙̇ + = 10.4

Assuming the solution is of the form

{ } e { }U a i tn= ω ψ 10.5

where a is a scalar of dimension L, ωn is the natural frequency and {ψ} is a
non-dimensional vector

{ } e { }2˙̇U an
i tn= −ω ψω 10.6

Substituting for acceleration and displacement terms in Eq. 10.4, we get

[ [ ]{ } [ ]{ }] e = {0}2− +ω ψ ψ ω
n

i tm k a n 10.7

or

([ ] [ ]){ } {0}2k mn− =ω ψ 10.8a

For a non-trivial solution to exist the following determinant should be equal
to zero.
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|| ||[ ] [ ] = 02k mn− ω 10.8b

The determinant is known as frequency determinant or characteristic equation.
Equation 10.7 can also be written as

[ ][ ] 1 [ ]{ } {0}2m k
n

ψ
ω

ψ− = 10.9

Hence for a non-trivial solution to exist the determinant of the following
matrix must be equal to zero

[ ] 1 [ ] = 02m k
n

−
ω

10.10

Equation 10.8b leads to the nth order nonlinear equation in terms of ω n
2

whereas Eq. 10.10 involves the nth order nonlinear equation in terms of
1/ω n

2 . Equation 10.9 is also written as

1 { } [ ] [ ]{ }2
1

ω
ψ ψ

n

k m= − 10.11

or λ{ψ} = [a][m]{ψ} = [D]{ψ} 10.12

where [D] = [k]–1[m] = [a][m] is known as the dynamic matrix. Equation
10.12 is in the form of a typical eigenvalue problem. The vector {ψ} is
called an eigenvector and λ = 1/ω n

2  is called the eigenvalue.
One of the various ways of obtain the solution is to make the following

determinant zero.

|| ||[ ] [ ]D I− λ = 0 10.13

The characteristic equation becomes

λn + c1λn–1 + c2λn–2cn = 0 10.14

The determinant with respect to eigenvalue is plotted in Fig. 10.3.
The solution of the polynomial equation Eq. 10.14 is known as characteristic

equation or frequency equation that will yield n values of λ. Once λ are

Determinant

λ1 ≤ λ2 ≤ λ3 ≤ λn

10.3 Determinant vs eigenvalues.
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determined {ψ} can be determined. It may be noted that a unique solution
for {ψ} does not exist. We obtain only the ratios among {ψ}s.

10.5 Orthogonality relationship

For an MDOF system if ω ωn
r

n
s( ) ( ),  are two natural frequencies, {ψ}(r),

{ψ}(s) are the corresponding modal vectors.
For the rth mode Eq. 10.7 can be written as

( ) [ ]{ } [ ]{ }( ) 2 ( ) ( )ω ψ ψn
r r rm k= 10.15a

For the sth mode Eq. 10.7 can be written as

( ) [ ]{ } [ ]{ }( ) 2 ( ) ( )ω ψ ψn
s s sm k= 10.15b

Premultiplying Eq. 10.15a by {ψ}(s) and Eq. 10.15b by {ψ}(r) we get

( ) ({ } ) [ ]{ } ({ } ) [ ]{ }( ) 2 ( ) T ( ) ( ) T ( )ω ψ ψ ψ ψn
r s r s rm k=

( ) ({ } ) [ ]{ } ({ } ) [ ]{ }( ) 2 ( ) T ( ) ( ) T ( )ω ψ ψ ψ ψn
s r s r sm k= 10.16

Since [m] and [k] matrices are symmetric and subtracting the first equation
from the second we get

[( ) ( ) ]({ }} [ ]{ } 0( ) 2 ( ) 2 Tω ω ψ ψn
s

n
r r sm− = 10.17a

For distinct eigenvalues [( ) ( ) ] 0( ) 2 ( ) 2ω ωn
s

n
r− ≠  and hence

({ψ}(r))T[m]{ψ}(s) = 0 10.17b

So we get the orthogonality relationship as

({ψ}(r))T[m]{ψ}(s) = 0 10.18a

({ψ}(r))T[k]{ψ}(s) = 0 10.18b

If [m] is a diagonal matrix

Σ
i

n

i
r

i
sm i=

=
1

ψ ψ( ) ( ) 0 10.19

In Example 9.5, we considered a two storeyed building in which

[ ]
1

0.5
; [ ]

2 1

1 1
m m k= 





=
−

−






10.20

We obtained two fundamental frequencies as

ω ωn n
k
m

k
m1 20.765 ;  1.847= = 10.21

The mode shapes corresponding to the above frequencies are obtained as
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{ }
1

1.414
;  {

1

1.414
(1) (2)ψ ψ= 








=
−









} 10.22

check

({ψ}(1))T[m]{ψ}(2) = 0 10.23

Σ
i i i im
=

= × × + × × − =
1

2
(1) (2) 1 1 1 0.5 1.414 ( 1.414) 0ψ ψ 10.24

check

({ψ}(1))T[k]{ψ}(2) = 0 10.25

< >
−

−




 −







= < >

−







=1  1.414

2 1

1 1

1

1.414
1  1.414

3.414

2.414
0

10.26

Multiply Eq. 10.24 by −a i t i t
n

n n2
1

2e e1 2ω ω ω  we get

( e ) ( e )1 1
2

1
(1)

1
(2)1 2−m a an

i t i tn nω ψ ψω ω

− =( e ) ( e ) 02 1
2

2
(1)

2
(2)1 2m a an

i t i tn nω ψ ψω ω

= + =m U U m U U1 1
(1)

1
(2)

2 2
(1)

2
(2) 0˙̇ ˙̇ 10.27

m U1 1
(1)˙̇  = inertia force of mass m1 for the first mode

U1
(2) = displacement of mass m1 in the second mode

m U2 2
(1)˙̇  = Inertia force of mass m2 for the first mode

U2
(2) = displacement of mass m2 for the second mode

Equation 10.27 can then be interpreted as the work done by inertia forces
occurring in the first mode in going through displacements of the second
mode are equal to zero. This is known as the orthogonality relationship.

10.6 Normalization of modes

It has been seen that the normal modes indicate the ratio between displacements.
As such, the different elements may be varied in such a way that a constant
ratio is maintained. There are an infinite numbers of such possibilities. Scaling
of the normal modes is sometimes done to standardize their elements associated
with amplitudes in various degrees of freedom which is known as normalization.
For example for the two storey frame discussed

({ } ) [ ]{ }(1) T (1)
1

2
1
2ψ ψ ψm m M

i

n

i i= =
=
Σ

1
10.28
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M m m1
2 2(1 1 0.5 1.414 ) 2= × + × = 10.29

or M m m1 1.414= =2 10.30

Let us normalize the vector {ψ}(0) by dividing each of the elements by M1

and call it as {φ}(1) denoted as the normalized eigenvector corresponding to
first mode. It is given by

{ } 1 { } 1
1.414

1

1.414
1 0.707

1
(1)

1

(1)φ ψ= = 






= 






M m m

10.31

Then

({φ}1)T[m]{φ}1 = 1 10.32

To get the normalized vector corresponding to the second mode

{ }
1

1.414
(2)ψ =

−








10.33

Then

M m m2
2 2[1 1 0.5 ( 1.414) ] 2= × + × − = 10.34

or

M m2 1.414= 10.35

{ } 1 { } 1
1.414

1

1.414
1 0.707

1
(2)

2

(2)φ ψ= =
−








=

−






M m m

10.36

Hence with respect to first normalized mode

({ } ) [ ]{ } ({ } ) [ ]{ }(1) T (1)
1

2 (1) T (1)
1

2φ φ ω φ φ ωk mn n= = 10.37

to check whether the above is correct

1 0.707  1
2 1

1 1
1 0.707

1
0.5861

2

m
k

m
k
mn< >

−
−














= =ω 10.38

with respect to second normalized mode

1 0.707  1
2 1

1 1
1 0.707

1
3.4132

2

m
k

m
k
mn< − >

−
−





 −








= =ω

10.39

Hence combining orthogoanality and the normalization principle we get

{φ}T[m]{φ} = [I] 10.40
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[ ] [ ][ ]T
1

2

2
2

n
2

φ φ
ω

ω
ω

k
n

n

n

=
















10.41

In future chapters we will use a normalized vector {φ} instead of an eigenvector
{ψ}.

10.7 Influence coefficient method

The equations of motion of an MDOF system can also be written in terms of
influence coefficients which are extensively used in structural engineering.
Basically one set of influence coefficients can be associated with each of the
matrices involved in the equation of motion. For some problems it is easier
to find the flexibility matrix (inverse of stiffness matrix) rather than the
stiffness matrix.

Assume three masses are attached to a string as shown in Fig. 10.4. The
tension in the string can be assumed to be equal to P. We can develop
dynamic equation of equilibrium as shown below.

First develop the flexibility matrix. The flexibility influence coefficient
aij is defined as the deflection at ‘i’ due to unit force at ‘j’. Apply unit force
at 1, the vertical displacement at 1 is found out by resolving the tension in
the direction of 1 as

P
a
L

a
L

11 11

3
1+



 = 10.42

All masses = m
F1, U1 F2, U2 F3, U3

L 1 L 2 L 3 L

P

a11

a21

a31

a12

a22

a32

10.4 Three degrees of freedom.
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solving

a L
P11

3
4

= 10.43

From similar triangles we can get a21 and a31 as

a L
P

a L
P21 31

2
4

;  
4

= = 10.44

Similarly let us apply unit force at 2 and resolving the tension in the cable in
the direction of 2 as

P
a

L
a

L
22 22

2 2
1+



 = 10.45

solving

a L
P

a L
P

a L
P22 12 32;  ;  

2
= = =

2 10.46

Similarly applying unit load at 3 (which is similar to applying load at 1)

P
a

L
a
L

33 33

3
1+



 = 10.47

Solving

a L
P

a L
P

a L
P33 23 13

3
4

;  2
4

;  
4

= = = 10.48

The equation of motion can be written as

[ ]{ } [ ]{ } {0}m U k U˙̇ + = 10.49

assuming

{U} = {A} sin {ωnt + φ} 10.50

Equation 10.49 reduces to

− + =ω n m A k A2 [ ]{ } [ ]{ } {0} 10.51

or

1 { } [ ] [ ]{ } [ ][ ]{ }2
1

ω n

A k m A a m A= =− 10.52

Substituting [a] and [m] we get

λ{ }

3 2 1

2 4 2

1 2 3

1

1

1

{ }A A=
































10.53
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or

(3 ) 2 1

2 (4 ) 2

1 2 (3

{ } 0

−
−

−

















=
λ

λ
λ )

A 10.54

where

λ
ω

= 4
2

P
m L n

10.55

For a non-trivial solution to exist, the determinant of the above matrix should
be equal to zero.

The characteristic equation is

λ3 – 10λ2 + 24λ – 16 = 0 10.56

For civil engineering problems all roots are real. If roots are real one can
apply Cordon’s solution to find the roots of a characteristic equation if it is
cubic.

10.7.1 Cordon’s solution

Consider the following cubic equation

λ3 + bλ2 + cλ + d = 0 10.57

Find

p c b q b cb d
q

p
= − = − + = −

−



2 3

33
;  2

27 3
;  cos 

2
3

α 10.58

y
p

1 2
3

cos 
3

= −



α 10.59

y
p

2 2
3

cos
3

60= − −

 +( )α 10.60

y
p

1 2
3

cos
3

60= − −

 −( )α 10.61

Now the roots of the characteristic equation are

λ λ λ1 1 2 2 3 33
;  

3
;  

3
= − = − = −y b y b y b 10.62

For the problem b = –10; c = 24; d = –16
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p q= − = − = × − + × − = −24 10
3

9.333;  
2 ( 10)

27
10 24

3
16 10.07

2 3

− = =p
3

9.33
3

1.7635

cos
2(1.7625)

10.07
2 5.484

0.9183α = − = × =q

α = 0.407rad = 23.346°

y1 = 2 × 1.7635 cos (0.407/3) = 3.527

Y2 = –2 × 1.7635 cos [(0.407 + π)/3] = 2

Y2 = 2 × 1.7635 cos [(0.407 + π)/3] = 1.16

λ1 = y1 – b/3 = 3.527 + 3.33 = 6.85

λ2 = y2 – b/3 = –1.33 + 3.33 = 2

λ3 = y3 – b/3 = –2.17 + 3.33 = 1.16

Check λ1 + λ2 + λ3 = 10 = 3 + 3 + 4 = trace of the matrix.

λ
ω

ω ω1 = = = =6.85 4 ;  4
6.85

;  0.7642 1
2

1
P

mL
P
mL

P
Ln

n n

λ
ω

ω ω2 2 2
2

22.0 4 ;  4
2

;  1.414= = = =P
mL

P
mL

P
Ln

n n

λ
ω

ω ω3 = = = =1.16 4 ;  4
1.16

;  1.8562 3
2

3
P

mL
P
mL

P
Ln

n n

One can find the mode shapes corresponding to the values of natural
frequencies.

If λ1 = 6.85, substituting in the matrix

3 6.85 2 1

2 4 6.85 2

1 2 3 6.85

0
1

2

3

−
−

−




























=

A

A

A

Assuming A1 = 1 using second and third equations of the above matrix

−
−













=

−
−
















= 








2.85 2

2 3.85

2

1
;  

1.414

1
2 2

3

A

A

A

A3

Hence mode shape corresponding to λ1 = 6.85 is given by (see Fig. 10.5a)

A

A

A

1

2

3

1

1.414

1












=
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One can find the mode shapes corresponding to the values of natural
frequencies.

If λ1 = 2.0 the mode shape is obtained by solving

4 2 2

2 3 2

2

1
;  

0

1
2

3

−
−













=

−
−
















=

−








A

A

A

A
2

3

Hence the mode shape corresponding to λ1 = 2.0 is given by (see Fig.
10.5b)

A

A

A

1

2

3

1

0

1












=

−













One can find the mode shapes corresponding to the values of natural
frequencies.

If λ1 = 1.16 the mode shape is obtained by solving

4 1.16 2

2 3 1.16

2

1
;  

1.414

1
2

3

2

3

−
−













=

−
−
















=

−







A

A

A

A

Hence mode shape corresponding to λ1 = 1.16 is given by (see Fig.
10.5c)

A

A

A

1

2

3

1

1.414

1












= −













We can get the characteristic equation and the solution of the characteristic
equation using MATHEMATICA as shown below.

1 1.414 1 –1

– 1.414 1

(a) (b)

1 1

(c)

10.5 Mode shapes.
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10.8 Program 10.1: MATHEMATICA program for

finding the solution of the characteristic

equation

{{3 - p, 2, 1}, {2, 4 - p, 2}, {1, 2, 3 - p}}

MatrixForm [a]

3 - p 2 1
2 4 - p 2
1 2 3 - p

2 3
16 - 24 p + 10 p - p

{p -> 1.17157}

{p -> 2.}

{p -> 6.82843}

Converted by Mathematica August 26, 2007

10.9 Program 10.2: MATLAB program to find the

frequencies and normalized mode shapes

% program to get normalized vectors and eigen values
clc;
close all;
m=[1 0 0;0 1 0;0 0 1];
disp(‘ mass matrix’)
m
%you can give stiffness matrix
% disp(‘ stiffness matrix’)
% k=[2 -1 0;-1 2 -1;0 -1 1];
% k
% a=inv(k);
% or you can given flexibility matrix directly
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a=[.75 .5 .25;.5 1 .5;.25 .5 .75];
disp(‘ flexibility matrix’)
a
c=a*m;
[ms,ns]=size(m);
%eigen values and eigen vectors
[V,D]=eig(c);
for i=1:ms

e(i)=1/D(i,i);
end
Qh=max(e)+0.001;
Ql=0;
for i=1:ms

for j=1:ms
if e(j) > Ql & e(j) < Qh

kk=j;
Qh=e(j);

else
end
end

Ql=Qh;
Qh=max(e)+0.001;
om1(i)=e(kk);
omega(i)=sqrt(e(kk));
for l=1:ms

p1(l,i)=V(l,kk);
end
end
%Normalizing the mode shape
L=p1'*m*p1;
%develop modal matrix
for i=1:ms

for j=1:ms
p(i,j)=p1(i,j)/sqrt(L(j,j));

end
end
disp(‘ Natural frequencies in rad/sec’)
disp(omega)
disp(‘ normalized modal vector’)
disp(p)
p’*m*p

�� �� �� �� �� ��



Structural dynamics of earthquake engineering320

OUTPUT
mass matrix
m =

1 0 0
0 1 0
0 0 1
flexibility matrix

a =
0.7500 0.5000 0.2500
0.5000 1.0000 0.5000
0.2500 0.5000 0.7500
Natural frequencies in rad/sec
0.7654 1.4142 1.8478
normalized modal vector
0.5000 –0.7071 –0.5000
0.7071 0.0000 0.7071
0.5000 0.7071 –0.5000

ans = proof of normality principle
1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

Example 10.1
Determine the stiffness matrix and write the dynamic equation of equilibrium
for the frame shown in Fig. 10.6. Neglect the effect of axial stiffness of the
members AB, BC and CD.

Solution
In total there are six degrees of freedom, three at B and three at C. But we

neglect axial deformations in all the three members.
Generalized coordinate = total coordinates – constraint equations = 6 – 3

= 3

8J, 2m
B

3J, m

A

L

C

D

L

10.6 Portal frame.
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The three generalized coordinates are q1, q2, the rotations at B and C and
horizontal sway q3 at C. For every member let us consider the moment stress
resultants as shown in Fig. 10.7.

The deformations are denoted by δ. We can establish the compatibility
matrix which gives relationship between deformations and generalized
coordinates (see Fig. 10.8)

{δ} = [β]{q}

The first, second and third columns of [β] matrix are established by applying
unit values for the generalized coordinates as

[ ]

0 0 1 /

1 0 1 /

1 0 0

0 1 0

0 1 1 /

0 0 1 /

β =

−
−

−
−

























L

L

L

L

We can establish the relationship between element stress resultants to
deformations as

P2

P1

P3

P4

P5

P6

10.7 Element stress resultants.

q1 = 1 q2 = 1
q3 = 1

10.8 Deformations due to generalized coordinates.
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P

P

P

P

P

P

EI
L

1

2

3

4

5

6

1

2

3

4

5

6

4 2

2 4

2 4

4 2

4 2

2 4





























=





















































δ
δ
δ
δ
δ
δ

= [k]{δ} = [k][β]{q}

From the principle of virtual work it can be proved that the generalized
forces are written in terms of element stress resultants as

{Q} = [β]t{p} = [β]t[k][β] = [K]{q}

so the structural stiffness matrix can be written in terms of element stiffness
matrix as

[ ] [ ] [ ][ ]

8 2 6/

2 8 6/

6/ 6/ 24/

T

2

K k EI
L

L

L

L L L

= =
−
−

− −

















β β

The stiffness matrix could also be obtained straight away by applying the
influence coefficient method.
The mass matrix is given by

[ ]

8

3

3

M

J

J

m

=
















Hence dynamic equilibrium equations can be written as

[ ]{ } [ ]{ } { }M q K q Q˙̇ + =

Since the structure has three degrees of freedom, Cordon’s solution can be
applied to evaluate the frequencies and mode shapes.

Example 10.2
Determine the stiffness matrix and dynamic equation of equilibrium for the
frame shown in Fig. 10.9. Neglect axial deformations.

Solution
Let us consider total six displacements, three at each node B and C as shown
in Fig. 10.9d.

Generalized coordinates = total coordinates – constraint equations

= 6 – 3 = 3
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viz. q1, q2, q3.
Consider any member IJ as shown in Fig. 10.10. Axial deformation can

be written as

∆IJ = (UJ – UI)C + (VJ – VI)S

where

C
X X

L
X
L

S
Y Y

L
Y
L

J I

IJ

JI

IJ

J I

IJ

JI

IJ
= = − = = = − =cos

( )
:  sin

( )θ θ

We can write the three constraint equations corresponding to axial deformations
of the three members as

2m, 8J
B C

m, 3J
q1 q2 q3

1

1 L 1
A D

(a) (b)

(c) (d)

P3 P4

U3 U4

P5P2

P1
P6

U1 U4

U5 U6

10.9 (a) Irregular frame; (b) generalized coordinates; (c) element
stress resultants; (d) constrained coordinates.

UJ

VJ

UI

θ

I(XI, YI)

J(XJ, YJ)

VI

10.10 Deformation in any member.�� �� �� �� �� ��
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∆AB = l(U1 + U3) = 0

∆BC = L(U2 – U1) + 0(U4 – U3) = 0; i.e (U2 – U1) = 0

∆CD = l(–U2 + U4) = 0 i.e. (–U2 + U4) = 0

Writing this in matrix form

1 0 1 0

–1 1 0 0

0 –1 0 1

= {0}

1

2

3

4



































U

U

U

U

Selecting constraint coordinate as U1, the other three displacements can be
written as in terms of constrained coordinate as

0 1 0

1 0 0

1 0 1

1

1

0

2

3

4

1

−




























= −













U

U

U

U

solving we get U2 = U1; U3 = –U1; U4 = U1.
We can write relation between constrained coordinates and generalized

coordinates as

U

U

U

U

U

U

q

q

q

C q

1

2

3

4

5

6

1

2

3

1 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 0 1

[ ]{ }





























=
−




































=

Mass matrix corresponding to generalized coordinates is given by

[M]q = [C]T[M]U[C]

where [M]U is given by

























=

J

J

m

m

m

m

M U

3

8

2

2

][
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Mass matrix corresponding to generalized coordinates is given by

[ ]

6

8

3

M

m

J

J
q =

















Now we can get the relationship between generalized displacements and
deformations (see Fig. 10.11). The relationship between element deformations
and generalized displacements is given as (l = 0.707). (Assume lengths of all
the members are equal to L = 1).

[ ]

1.414 0 0

1.414 1 0

2 1 0

2 0 1

1.414 0 1

1.414 0 0

β =

−
−

−
−

























The element stiffness matrix is given as

[ ]

4 2

2 4

4 2

2 4

4 2

2 4

k EI
l

=

























q1 = 1
q2 = 1

q3 = 1

10.11 Deformed shape due to unit value of generalized coordinate.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering326

Hence structural stiffness matrix is given as (assume EI = 1 and l = 0.707)

[ ] [ ] [ ][ ]

95.985 3.516 3.516

3.516 8 2

3.516 2 8

TK k= =
















β β

Dynamic equation of equilibrium is written as

6

8

3

95.985 3.516 3.516

3.516 8 2

3.516 2 8

{0}
1

2

3

1

2

3

m

J

J

q

q

q

q

q

q




























+




























=

˙̇

˙̇

˙̇

Since there are only three degrees of freedom Cordon’s solution can be
applied to evaluate the frequencies.

10.10 Program 10.3: MATLAB program for solving

structural problem by the stiffness method

% Analysis of structures by stiffness method - semi direct approach
clc;
clear all; r=input(‘ENTER “0” FOR DATA FROM FILE,“1” FOR DATA
FROM TERMINAL,“2” FOR INTERACTIVE’);
ff1=fopen(‘stout.dat’,‘w’);
if r<1
ff=fopen(‘st.dat’,‘r’);
x1=fscanf(ff,‘%s’,1);
disp(x1);
rb=fscanf(ff,‘%f’,1);
cb=fscanf(ff,‘%f’,1);
for i=1:rb
for j=1:cb
c1=fscanf(ff,‘%f’,1);
b(i,j)=c1;
end
end
disp(b);
x2=fscanf(ff,‘%s’,1);
disp(x2);
rk=fscanf(ff,‘%f’,1);
ck=fscanf(ff,‘%f’,1);
for i=1:rk
for j=1:ck
c2=fscanf(ff,‘%f’,1);
k(i,j)=c2;

�� �� �� �� �� ��



Free vibration of multiple degrees of freedom 327

end
end
disp(k);
x3=fscanf(ff,‘%s’,1);
disp(x3);
rdo=fscanf(ff,‘%f’,1);
cdo=fscanf(ff,‘%f’,1);
for i=1:rdo
for j=1:cdo
c3=fscanf(ff,‘%f’,1);
do(i,j)=c3;
end
end
disp(do);
x4=fscanf(ff,‘%s’,1);
disp(x4);
rfo=fscanf(ff,‘%f’,1);
cfo=fscanf(ff,‘%f’,1);

for i=1:rfo
for j=1:cfo
c4=fscanf(ff,‘%f’,1);
fo(i,j)=c4;
end
end
disp(fo);
x5=fscanf(ff,‘%s’,1);
disp(x5);
rpo=fscanf(ff,‘%f’,1);
cpo=fscanf(ff,‘%f’,1);
for i=1:rpo
for j=1:cpo
c5=fscanf(ff,‘%f’,1);
po(i,j)=c5;
end
end
disp(po);
x6=fscanf(ff,‘%s’,1);
disp(x6);
rsk=fscanf(ff,‘%f’,1);
csk=fscanf(ff,‘%f’,1);
for i=1:rsk
for j=1:csk
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c5=fscanf(ff,‘%f’,1);
ks(i,j)=c5;
end
end
disp(ks);
else
if r<2
%INPUT FOR BETA MATRIX
b=[-1.414 0 0;-1.414 1 0;2 1 0;2 0 1;-1.414 0 1;-1.414 0 0];
%disp(b);
%INPUT FOR ELEMENT STIFFNESS MATRIX k
k=[4 2 0 0 0 0; 2 4 0 0 0 0;0 0 4 2 0 0;0 0 2 4 0 0;0 0 0 0 4 2;0 0 0 0 2 4];
disp(k);
%INPUT FOR INITIAL STRAIN DO
do=[0;0;0;0;0;0];
disp(do);
%INPUT FOR APPLIED FORCE
fo=[0;0;0];
disp(fo);
%INPUT FOR INITIAL STRESS pO
po=[0;0;0;0;0;0];
disp(po);
%input spring stiffness
ks=[0,0,0;0,0,0;0,0,0];
disp(ks);
else
rb=input(‘NUMBER OF ROWS IN B MATRIX’);
cb=input(‘NUMBER OF COLUMNS IN B MATRIX’);
for i = 1:rb
for j = 1:cb
bm = input(‘ ’);
b(i,j)=bm;
end
end
disp(b);
rk=input(‘NUMBER OF ROWS IN ELEMENT STIFFNESS MATRIX’);
ck=input(‘NUMBER OF COLUMNS IN ELEMENT STIFFNESS MATRIX’);
for i=1:rk
for j=1:ck
c2=input(‘’);
k(i,j)=c2;
end
end
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disp(k);
rdo=input(‘NUMBER OF ROWS IN INITIAL STRAIN MATRIX’);
cdo=input(‘NUMBER OF COLUMNS IN INITIAL STRAIN MATRIX’);
for i=1:rdo
for j=1:cdo
c3=input(‘’);
do(i,j)=c3;
end
end
disp(do);
rfo=input(‘NUMBER OF ROWS IN APPLIED FORCES’);
cfo=input(‘NUMBER OF COLUMNS IN APPLIED FORCES’);
for i=1:rfo
for j=1:cfo
c4=input(‘’);
fo(i,j)=c4;
end
end
disp(fo);
rpo=input(‘NUMBER OF ROWS IN INITIAL STRESS MATRIX’);
cpo=input(‘NUMBER OF COLUMNS IN INITIAL STRESS MATRIX’);
for i=1:rpo
for j=1:cpo
c5=input(‘’);
po(i,j)=c5;
end
end
disp(po);
end
end
K1=(b’*k*b);
K=K1+ks;
ffi=fo-(b’*po)+(b’*k*do);
u=inv(K)*ffi;
p=(k*b*u);
pf=po+p-(k*do);
q=input(‘ENTER “0” FOR O/P IN FILE,”1" for O/P IN TERMINAL’) ;
if q>0
‘DISPLACEMENTS AT GENERALIZED COORDINATES’
disp(u);
‘ELEMENT FORCES DUE TO APPLIED FORCES’
disp(p);
‘FINAL ELEMENT FORCES’
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disp(pf);
else
fprintf(ff1,’\r\nDISPLACEMENTS AT GENERALIZED COORDINATES’);
fprintf(ff1,’\r\n%10.4f ‘, u);
fprintf(ff1,’\r\nELEMENT FORCES DUE TO APPLIED FORCES’);
fprintf(ff1,’\r\n%10.4f’, p);
fprintf(ff1,’\r\nFINAL ELEMENT FORCES’);
fprintf(ff1,’\r\n%10.4f’,pf);
end

Output

>> K

K =

95.9855 3.5160 3.5160
3.5160 8.0000 2.0000
3.5160 2.0000 8.0000

10.11 Static condensation of stiffness matrix

In most of the structural dynamics problems, mass moment of inertia is only
included corresponding to translational degrees of freedom. However, a more
generalized formulation of stiffness matrix includes terms corresponding to
rotational degrees of freedom. It is necessary to eliminate the extraneous
degree of freedom associated with rotation from the stiffness matrix. This
method is called static condensation. This enables the number of degrees of
freedom to be reduced to a desired level.

To establish the equations used in static condensation, assume that [K]
and the corresponding force vector are partitioned as

K K

K K

U F

F

Ftt t

t

t tθ

θ θθ θθ












= 







= 






0

10.63

From the second equation

θ = –(Kθθ)
–1Kθt U 10.64

Substituting for θ in the first equation

([ ]{ } { }1K K K K U Ftt t t t− =−
θ θθ θ 10.65

or

[KR]{U} = {Ft} 10.66
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The stiffness is now suitable for use with the lumped mass matrix to write
equations of motion for translational vibration. Once translational degrees of
freedom are obtained, rotational degrees of freedom can be obtained from
Eq. 10.64.

10.12 General viscous damping

The differential equation governing the free vibration of an MDOF system
with general viscous damping is given by

[ ]{ } [ }{ } [ ]{ } {0}M X C X K X˙̇ ˙+ + = 10.67

If the damping matrix is arbitrary, it is somewhat complex to solve the
equations. The above equation is reformulated as 2n first order differential
equations by writing

[ ]{ } [ ]{ } {0}˜ ˙ ˜M Y K Y+ = 10.68

where

[ ]
[0] [ ]

[ ] [ ]
;  [ ]

[ ] [0]

[0] [ ]
;  { }

{ }

{ }
˜ ˜

˙
M

M

M C
K

M

K
Y

X

X
= 





=
−








=








10.69

A solution to the above equation is assumed as

{Y} = {φ}e–γ t 10.70

Substituting Eq. 10.70 in Eq. 10.68 yields

γ φ φ[ ]{ } [ ]{ }˜ ˜M K= 10.71

or

[ ] [ ]{ } { }1˜ ˜M K− =φ γ φ 10.72

Thus the values of γ are the eigenvalues of [ ] [ ]1˜ ˜M K−  and the vectors are the
corresponding eigenvectors.

The values of γ occur in complex conjugate pairs. The system is stable
only if all eigenvalues have non-negative real parts. Eigenvectors correspond
to complex conjugates of one another. Eigenvectors correspond to eigenvalues
which are not complex conjugates satisfy the orthogonality relationship

˜ ˜ ˜φ φi jMT 0= 10.73

Example 10.3
Plot the free vibration response of the shear frame shown in Fig. 10.12 under
initial conditions.
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Solution

X X X X X X1 1 2 3 2 3(0) (0) (0) (0) 0;  (0) 0.01; (0) 0.05= = = = = =˙ ˙ ˙

The dynamic equilibrium equation is
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k =10000N/m; m = 20000kg; c = 8000Ns/m
A solution is assumed in the form of

{Y} = {φ} e–γ t

The resulting eigenvalues and eigenvectors are obtained using MATLAB.
The general solution is a total combination of all solutions as

{ } { } e
1

6
Y C t

j j j
j=

=
−Σ φ γ

All the three displacements are plotted as shown in Fig. 10.13.

10.13 Program 10.4: MATLAB program for free

vibration of MDOF with general damping

% FREE VIBRATION OF GENERAL DAMPED THREE DEGREE OF
FREEDOM SYSTEM
clc;
clear all;
digits(5)

m, X3

m, X2

2m, X1

k Damping = c

k

2k

10.12 Three storey frames – under-damped system.
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% mass matrix
disp(‘ mass matrix’)
m=[40000 0 0;0 20000 0;0 0 20000];
m
[ms,ns]=size(m);
%damping matrix
disp(‘ damping matrix’)
c=[0 0 0;0 -8000 8000;0 -8000 8000];
c
%stiffness matrix
disp(‘ stiffness matrix’)
k=[30000 -10000 0;-10000 20000 -10000;0 -10000 10000];
k
z=zeros(ms);
MT=[z m;m c];
KT=[-m z;z k];
Z=inv(MT)*(KT);
[V,D]=eig(Z);
disp(‘ eigenvalues’)
for i=1:2*ms

DS(i)=D(i,i);
end
DS
disp(‘ eigenvectors’)
V

X1

X2

X3
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 m
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10.13 Displacement response for Example 10.3.
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disp(‘ initial conditions’)
x0=[0;0;0;0;0.01;0.05];
disp(‘ constants of integration’)
S=inv(V)*x0
tk=linspace(0,40,2001);
%Evaluation of time dependent response
%recall that x1=y4; and x2=y5; x3=y6
for k=1:2001

t=tk(k);
for i=ms+1:2*ms

x(k,i-ms)=0;
for j=1:2*ms

x(k,i-ms)=x(k,i-ms)+(real(S(j))*real(V(i,j))-...
imag(S(j))*imag(V(i,j)))*cos(imag(D(j,j))*t);

x(k,i-ms)=x(k,i-ms)+(imag(S(j))*real(V(i,j))-...
real(S(j))*imag(V(i,j)))*sin(imag(V(j,j))*t);

x(k,i-ms)=x(k,i-ms)*exp(-real(D(j,j))*t);
end

end
end
figure(1)
plot(tk,x(:,1),’k—’,tk,x(:,2),’k’,tk,x(:,3),’k-.’)
xlabel(‘ t(sec)’)
ylabel(‘ displacement in m’)
gtext(‘———— x1’)
gtext(‘______ x2’)
gtext(‘-.-.-.-.-.x3’)

Output
mass matrix

m =

40000 0 0
0 20000 0
0 0 20000

damping matrix

c =

0 0 0
0 -8000 8000
0 -8000 8000
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stiffness matrix

k =

30000 –10000 0
–10000 20000 –10000
0 –10000 10000

eigenvalues

ans =

–0.0882 – 1.2170i
–0.0882 + 1.2170i
0.0367 – 0.8097i
0.0367 + 0.8097i
0.0516 – 0.3537i
0.0516 + 0.3537i

eigenvectors

V =

0.2012 – 0.0597i 0.2012 + 0.0597i –0.0206 – 0.4559i –0.0206 + 0.4559i
-0.0156 – 0.0762i –0.0156 + 0.0762i

–0.6333 –0.6333 0.1004 – 0.1794i 0.1004 + 0.1794i –0.0280 – 0.1935i –
0.0280 + 0.1935i

0.0741 – 0.3841i 0.0741 + 0.3841i 0.3371 + 0.1799i 0.3371 – 0.1799i –
0.0379 – 0.2600i –0.0379 + 0.2600i

0.0608 + 0.1609i 0.0608 – 0.1609i 0.5630 0.5630 0.2172 – 0.0124i 0.2172
+ 0.0124i

–0.0375 – 0.5177i –0.0375 + 0.5177i 0.2155 + 0.1337i 0.2155 – 0.1337i
0.5470 + 0.0005i 0.5470 – 0.0005i

0.3184 + 0.0378i 0.3184 – 0.0378i –0.2405 + 0.4054i –0.2405 – 0.4054i
0.7349 0.7349

initial conditions
x0 =

0
0
0
0
0.0100
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0.0500

constants of integration

S =

0.0049 – 0.0109i
0.0049 + 0.0109i
–0.0135 - 0.0058i
–0.0135 + 0.0058i
0.0237 + 0.0317i
0.0237 – 0.0317i

10.14 Newmark’s numerical integration

In 1959, N M Newmark developed a family of time stepping methods. The
method discussed for the SDOF system in Chapter 7 may be extended to the
MDOF system.

Algorithm

• Average acceleration method γ = 1/2; β = 1/4
• Linear acceleration method γ = 1/2; β = 1/6

1. Initial conditions
(a) Give initial displacements and velocities of all degrees of freedom

u0, v0

(b) Calculate {a0} = [M]–1(–[C]{v0} – [K]{u0})
(c) Select ∆t
(d) Calculate modified stiffness

[ ] [ ] [C] 1 [ ]2K̂ K
t t

M= + +γ
β β∆ ∆

(e) calculate the constants

A
t

M C B M t C= + = + −





1 [ ] [ ];
2

[ ] [ ]β
γ
β β

γ
β∆ ∆1

2
1

2. Calculation at each time step

(a) { }∆P̂ A v B ai i= +

(b) ∆ ∆u K Pi = −[ ] { }1ˆ ˆ

(c) ∆ ∆ ∆ ∆v
t

u v t ai i i i= − + −





γ
β

γ
β

γ
β1

2
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(d) ∆
∆

∆ ∆a
t

u
t

v ai i i i= − −1 1 1
22β β β

(e)

u u u

v v v

a a a

i i i

i i i

i i i

+

+

+

= +
= +
= +

1

1

1

∆
∆
∆

3. Repeat step 2 for next time step by replacing i by i + 1

10.15 Program 10.5: MATLAB program for Newmark’s

method of MDOF with generalized damping

% free vibration of mdof system damped using newmark’s method
% mass matrix
clc;
close all;
m=[40000 0 0;0 20000 0;0 0 20000];
disp(‘ mass matrix’)
m
%damping matrix
c=[0 0 0;0 8000 -8000;0 -8000 8000];
disp(‘ damping matrix’)
c
%stiffness matrix
k=[30000 -10000 0;-10000 20000 -10000;0 -10000 10000];
k
%specify integration parameters for linear acceleration method
% beta=1/6;
% gamma=0.5;
%specify integration parameters for constant acceleration method
beta=1/4;
gamma=0.5;
%specify increment in time
dt=0.002;
% calculate the following constants
b1=1/(beta*dt^2);
% b2=1/(beta*dt);
% b3=beta-0.5;
b4=gamma*dt*b1;
% b5=1+gamma*dt*b2;
% b6=dt*(1+gamma*b3-gamma);
kt=k+b1*m+b4*c;
ad=(1/(beta*dt))*m+(gamma/beta)*c;
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bd=(1/(2*beta))*m+dt*(gamma/(2.0*beta)-1)*c;
%specify initial displacements
u0=[0 0.01 0.05]’;
v0=[0 0 0]’;
a0=inv(m)*(-c*v0-k*u0);
t(1)=0;
for i=1:3
u(i,1)=u0(i);
v(i,1)=v0(i);
a(i,1)=a0(i);
end
for i=2:20000

t(i)=(i-1)*dt;
for j=1:3

uu(j)=u(j,i-1);
vv(j)=v(j,i-1);

aa(j)=a(j,i-1);
end
fba=(ad*vv’+bd*aa’);
kti=inv(kt);
up=kti*fba;
vp=(gamma/(beta*dt))*up-(gamma/beta)*vv’+(1-gamma/(2.0*beta))*aa’;
ap=b1*up-(1/(beta*dt))*vv’-(1/(2.0*beta))*aa’;
for j=1:3

u(j,i)=u(j,i-1)+up(j);
v(j,i)=v(j,i-1)+vp(j);
a(j,i)=a(j,i-1)+ap(j);

end
end
figure(1)
plot(t‘,u(1,:)’,‘-’,t’,u(2,:)’,‘k’,t’,u(3,:)’,‘-.’)
gtext(‘- - x1’)
gtext(‘___x2’)
gtext(‘-.-. x3’)

When Example 10.3 is solved by Newmark’s method we get the response as
shown in Fig. 10.14.

10.16 Forced response of a three-degrees-of-freedom

under-damped system

Consider forced vibration of a three-degrees-of-freedom under-damped system
as shown in Fig. 10.1b. The equation of motion is written in matrix form as
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[ ]{ } [ ]{ } [ ]{ } { }cosm x c x k x F t˙̇ ˙+ + = ω 10.74

with initial conditions as

{ } { } ;  { } { }0 0 t 0 0x x x xt= == =˙ ˙ 10.75

Assuming

{ } { }ẋ z= 10.76

we get equilibrium equations as

{ } [ ] ({ }cos [ ]{ } [ ]{ })1˙ ˙z m F t c x k x= − −− ω 10.77

Combining Eq. 10.76 and 10.77 we get six first order linear differential
equations and they are solved using the Runge–Kutta method as explained in
Chapter 9.

As an example consider

[ ]

100

10

10

;  [ ] 100

4 2 0

2 4 2

0 2 2

;m c=
















=
−

− −
−

















[ ] 1000

8 4 0

4 8 4

0 4 4

k =
−

− −
−
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10.14 Dynamic response of MDOF (generalized damping) by
Newmark’s method.
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{ } 50

100

10

10

;  ( ) = [ ] ( ) =

50

50

50

;  50 rad/s–1F =























=F M F ω

A MATLAB listing of the program is given below and the displacement
response is shown in Fig. 10.15.

10.16.1Program 10.6 MATLAB program for forced
vibration of three degrees of freedom by
Runge–Kutta method

% three degrees of freedom forced vibration by rk method
clc;
tspan=[0:.01:10];
y0=[0;0;0;0;0;0];
[t,y]=ode45(‘dfunc3f’,tspan,y0);
subplot(311)
plot(t,y(:,1));
xlabel(‘t’);
ylabel(‘x1(t)’);
title(‘ x1(t) vs t’);

0 2 4 6 8 10
t

0 2 4 6 8 10
t

0 2 4 6 8 10
t

x 1
(t

)
x 2

(t
)

x 3
(t

)

5

0

–5

10

0

–10

10

0

–10

10.15 Displacement response of a three-degrees-of-freedom under-
damped system.
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subplot(312)
plot(t,y(:,3));
xlabel(‘t’);
ylabel(‘x2(t)’);
title(‘x2(t) vs t’);
subplot(313)
plot(t,y(:,5));
xlabel(‘t’);
ylabel(‘x3(t)’);
title(‘x3(t) vs t’)

function f=dfunc3f(t,y)
% four first order equations are given by f
f=zeros(6,1);
%mass matrix
m=[100,0,0;0,10,0;0,0,10];
%damping matrix
c=[400,-200,0;-200,400,-200;0,-200,200];
%stiffness matrix
k=1000*[8,-4,0;-4,8,-4;0,-4,4];
%give forces
force=50*[1;1;1];
om=5.0;
%four first order equations
f(1)=y(2);
f(2)=force(1)*cos(om*t)-c(1,1)*y(2)/m(1,1)-c(1,2)*y(4)/m(1,1)...

-c(1,3)*y(6)/m(1,1)-k(1,1)*y(1)/m(1,1)-k(1,2)*y(3)/m(1,1)-k(1,3)*y(5)/
m(1,1);

f(3)=y(4);
f(4)=force(2)*cos(om*t)-c(2,1)*y(2)/m(2,2)-c(2,2)*y(4)/m(2,2)...
-c(2,3)*y(6)/m(2,2)-k(2,1)*y(1)/m(2,2)-k(2,2)*y(3)/m(2,2)-k(2,3)*y(5)/m(2,2);
f(5)=y(6);
f(6)=force(3)*cos(om*t)-c(3,1)*y(2)/m(3,3)-c(3,2)*y(4)/m(3,3)...
-c(3,3)*y(6)/m(3,3)-k(3,1)*y(1)/m(3,3)-k(3,2)*y(3)/m(3,3)-k(3,3)*y(5)/m(3,3)

10.17 Summary

The vibration of an n-degree-of-freedom system is governed by a system of
n differential equations. The general solution of these differential equations
is the sum of a homogeneous solution and a particular solution. The
homogeneous solution is the free vibration response, and its determination is
often necessary before the forced response can be determined. The free
vibration analysis of an MDOF system is significantly more complicated
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than the free vibration analysis of a one or two-degrees-of-freedom
system.

10.18 Exercises

1. Determine the flexibility matrix of the uniform beam shown in Fig.
10.16. Disregard the mass of the beam compared to concentrated masses
placed on the beam. Assume L and EI are constant .

2. The properties of an undamped three storeyed building are: masses of
the first and second floor = m; mass of the roof = 2m; stiffness of ground
storey = k; stiffness of middle storey = 7k/9; stiffness of the top floor =
k/3. Obtain the natural frequencies and mode shapes. Use Cordon’s solution.

3. The mass and stiffness of an MDOF system is given as

[ ]

1

1

2

;  [ ]

2 1

1 3 2

2 2

M m K k=
















=
−

− −
−

















The normalized eigenvector is given by

1
0.1103 0.2068 0.1368

0.2052 0.078 0.2894

0.2384 0.1045 0.0929
m

− −
− − −
−

















Prove orthogonality and normality principles.
4. Determine the natural frequencies and mode shapes of the torsional

system shown in Fig. 10.17. The length between discs may be assumed
to be L.

5. For the free torsional vibration problem of floor discs connected at
different locations of a cantilever shaft, the first two mode shapes are
approximated as

[ ]

0.242 0.5843

0.4472 0.4472

0.5843 0.2472

0.6325 0.6325

ψ =
−
−



















10.16

Each mass = m

L L L L
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Stiffness and mass matrices are

[ ]

1

1

1

0.5

;  [ ]

2 1

1 2 1

1 2 1

1 1

M J K k=



















=

−
− −

− −
−



















Determine the first two natural frequencies by the Rayleigh–Ritz method.
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11
Numerical solution methods for natural

frequencies and mode shapes in relation to
structural dynamics during earthquakes

Abstract: This chapter discusses basic solution schemes as well as
approximate methods for finding natural frequencies and mode shapes. The
methods include Vianello–Stoodala power method, transfer matrix method,
Jacobi method, Holzer method, Rayleigh’s approximation and Dunkerley’s
approximation. Some of the approximate methods will lead to upper bound
solutions and some lower bound solutions. A relevant program in
MATHEMATICA is also given.

Key words: banded matrix, sweeping technique, deflation, transfer matrix,
Holzer method.

11.1 Introduction

The important step in the dynamic analysis of a multiple-degrees-of-freedom
(MDOF) system is quite often the solution of the eigenvalue problem, or the
determination of the system natural frequencies and the corresponding normal
vibration modes. This is particularly true if a mode superposition analysis is
to be conducted. Several procedures for solving the eigenvalue problem
have been discussed in many books. Predicting or finding the roots of the
characteristic polynomial as discussed in Chapter 10 is satisfactory only for
systems having few degrees of freedom. For large MDOF systems, extracting
the roots of the characteristic polynomial requires computational effort and
is quite often an indeterminable task. This chapter discusses the basic solution
schemes as well as approximate methods for finding frequencies.

11.2 General solution methods for eigen problems

In structural dynamics, the basic eigen problem for an MDOF system having
‘n’ degrees of freedom is represented as

[k]{φ} = λ[m]{φ} 11.1

Let [k] be the stiffness matrix of order ‘n’ and [m], the mass matrix, also of
order ‘n’. For most structural systems, [k] is normally banded matrix and [m]
is a diagonal matrix for a lumped mass formulation (without rotary inertia)
coupling or a narrowly banded matrix for a consistent mass formulation.
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There are ‘n’ eigenvalues and ‘n’ eigenvectors satisfying the above equation.
The rth eigen pair is determined by (λr,{φ}r). In dynamic problems, the
eigenvalues are the square of the natural frequencies ω n

2  such that

0 < λ1 < λ2 <…< λn 11.2

The dynamic response of MDOF systems having a large number of degrees
of freedom is generally confined to a relatively small subset of the lowest
vibration modes of the system. Therefore for such systems, only ‘p’ eigen
pairs need to be solved for where p << n. The solution of p eigen values and
the corresponding eigenvectors can be written as

[ ] { } = [ ]{ }[ ]k m
n n n p n n n p p p× × × × ×

∧φ φ 11.3

The majority of the eigen problem solution techniques can be classified as

• vector iteration methods;
• transformation methods;
• polynomial iteration methods.

Clearly all the methods are iterative in nature because the solution of the
eigen problem as defined in Eq. 11.1 is tantamount to solving the characteristic
polynomial of order ‘n’. Since explicit formulas for the determination of
roots to the characteristic polynomial having an order higher than 4 do not
exist, an iterative solution is mandatory.

The main essence of each method is very distinctive. The vector iteration
methods are based on the property

[k]{φ}r = λr[m]{φ}r 11.4

The transformation methods are characterized by ortho-normal relationship

[φ]T[k][φ] = [K]

[φ]T[m][φ] = [M] 11.5

Let [K] and [M] be modal stiffness and modal mass respectively. The polynomial
iteration is based on the property that the characteristic polynomial is a
function of λr, and

P(λr) = 0 11.6a

where

P(λr) = det([k] – λ[M]) 11.6b

The characteristic polynomial is of order ‘n’. Solution of characteristic
polynomial has been discussed in Chapter 10.
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11.3 Vector iteration technique

11.3.1 Vianello and Stoodala method (power method)

This iterative method can be applied to extract the highest eigenvalue of
either symmetric or unsymmetric matrix of any order. Consider the
homogeneous equation written in the form of

[A]{x} = λ{x} 11.7

[A]{x}0 = {y}1 = λ1{x}1 11.8

Assume any vector {x}0 and multiplying with [A] matrix gives {y}1 can be
written in terms of λ1{x}1 by taking highest element (associated vector)
outside and this can be used in the next iteration as

[A]{x}k = {y}k+1 = λk+1{x}k+1 11.9a

[A]{x}1 = {y}2 = λ2{x}2 11.9b

It can be seen that the eigenvalue λ as well as eigenvector will converge. The
iteration can be stopped when |λn+1 – λn| < ε (tolerance) and λ is the highest
eigenvalue in the absolute sense.

Consider the problem in dynamics

[k]{φ} = λ[m]{φ} 11.10

or

1 { } = [ ] [ ]{ }–1

λ φ φk m 11.11

1 { } = [ ] { }1λ φ φD 11.12

[D]1 is called the dynamic matrix. Application of the power method will
converge to (1/λ)max or λmin = λ1 · λ1 is called the least dominant eigenvalue
and {ϕ}1 is called least dominant eigenvector. However the method may be
modified to calculate eigenvalues and the corresponding eigenvectors for
higher modes by matrix deflation or deflation of the iteration vectors.

Assume using the power method we get the (1/λ)max or λmin = λ1 and {φ}1

pair. The basic premise for vector deflation is that, for an iteration vector to
converge to a required eigenvector, the iteration vector must be orthogonal
to the eigenvector. Therefore, for this case at hand, this can be interpreted as
meaning that if the iterative vector is orthogonalized to the eigenvectors
already calculated (for example {φ}1) the vector is precluded and occurs
instead to another (higher) eigenvector. More succinctly, an eigen pair other
than (λ1, {φ}1) becomes the least dominant eigen pair.
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11.3.2 Method 1 sweeping technique

To find the second eigenvalue assume a trial vector that is a linear combination
of all eigenvectors.

{x}0 = c1{φ}1 + c2{φ}2 + … cn{φ}n 11.13

Pre-multiplying both sides with [m]

[m]{x}0 = c1[m]{φ}1 + c2[m]{φ}2 + … cn[m]{φ}n 11.14

Pre-multiplying with { }1
Tφ , we get

{ } [ ]{ } 0 01
T 0

1 1φ m x c M= + … + 11.15

Since ortho-normal principle if i ≠ 1

{ } [ ]{ } 01
T

iφ φm = 11.16

or

c
m x

m1
1
T

1
T

1

{ } [ ]{ }

{ } [ ]{ }
=

φ
φ φ

11.17

In the trial vector assumed in Eq. 11.13, let us sweep out the effect of mode
1 as

{ } – { } { }
{ } { } [ ]{ }

{ } [ ]{ }
0

1 1
0 1 1

T
0

1
T

1
x c x

m x

m
φ

φ φ
φ φ

= − 11.18

{ } [ ]
{ } { } [ ]

{ } [ ]{ }
{ }0

1 1
T

1
T

1
0x I

m

m
x= −







φ φ
φ φ

11.19

= [S]1{x}0

Now the dynamic matrix is

[ ] { } [ ] [ ]
{ } { } [ ]

{ } [ ]{ }
{ }2

0
1

1 1
T

1
T

1

0D x D I
m

m
x= −







φ φ
φ φ

11.20

[D]2 = [D]1[S]1 11.21a

If {φ}1 is the normalized eigenvector, as proved in Chapter 10,
{ } [ ]{ } 11

T
1φ φm =  because of the normalization principle. In that case dynamic

matrix is written as [D]2 = [D]1[S]1 where [S]1 is given as in Eq. 11.18 as

[ ] = ([ ] – { } { } [ ])1 1 1
TS I mφ φ 11.21b

In Eq. 11.19, [S]1 is called sweeping matrix for the first mode. The purpose
of [S]1 is to eliminate or sweep out the effect of mode 1. Similarly [S]n is to
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sweep out the effect of modes for 1 to n and allow the mode (n + 1) to
become least dominant.

Example 11.1
Find the natural frequencies and their normalized mode shapes for a three
storeyed building whose dynamic equilibrium equation is written as

[ ]{ } [ ]{ } {0}m X k X˙̇ + =

Solution

ω n m A k A2 [ ]{ } [ ]{ };=

or

1 { } [ ] [ ]{ };  or { } [ ] { }2
1

1ω
λ

n

A k m A A D A= =−

where

[ ]

4

3

2

;  [ ]

10 4 0

4 6 2

0 2 2

m k=
















=
−

− −
−

















[ ] [ ]

0.1667 0.1667 0.1667

0.1667 0.4166 0.4166

0.1667 0.4166 0.9166

1k a− = =
















[ ] [ ][ ]

0.6667 0.5 0.333

0.6667 1.25 0.8333

0.6667 1.25 1.833
1D a m= =

















To establish the first (highest) eigenvalue
Iteration 1

0.6667 0.5 0.333

0.6667 1.25 0.8333

0.6667 1.25 1.833

1

1

1

1.5

2.75

3.75

3.75

0.4

0.733

1




























=












=













Iteration 2

0.6667 0.5 0.333

0.6667 1.25 0.8333

0.6667 1.25 1.833

0.4

0.733

1

0.966

2.016

3.0167

3.0167

0.320 44

0.6685

1




























=












=
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Iteration 3

0.6667 0.5 0.333

0.6667 1.25 0.8333

0.6667 1.25 1.833

0.320 44

0.6685

1

0.8812

1.8826

2.8826

2.8826

0.305

0.653

1




























=












=













Iteration 4

0.6667 0.5 0.333

0.6667 1.25 0.8333

0.6667 1.25 1.833

0.305

0.653

1

0.8637

1.8535

2.8535

2.8535

0.3026

0.6495

1

































=
















=
















Iteration 5

0.6667 0.5 0.333

0.6667 1.25 0.8333

0.6667 1.25 1.833

0.3026

0.6495

1

0.8598

1.847

2.847

2.847

0.302

0.6487

1




























=












=













Iteration 6

0.6667 0.5 0.333

0.6667 1.25 0.8333

0.6667 1.25 1.833

0.302

0.6487

1

0.859

1.8456

2.8457

2.8457

0.30188

0.6485

1




























=












=













Iteration 7

0.6667 0.5 0.333

0.6667 1.25 0.8333

0.6667 1.25 1.833

0.30188

0.6485

1

0.8588

1.8453

2.8453

































=
















=











2.8453

0.30186

0.64854

1

First eigenvalue λ ω
λ1 1

1

2.8453;  1 0.5925rad/s= = =n

The eigenvector corresponding to this eigenvalue

{ }

.

.1ψ =
















0 301 86

0 648 54

1

Find
M m M1

2
1
T

1 1{ } [ ]{ } 3.62653;  1.904= = =ψ ψ
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{ } 1 { } ;  1
1.904

0.30186

0.648 54

1

0.1585

0.3405

0.525
1

1
1φ ψ=












=












M

To establish the second highest eigenvalue
Find sweeping matrix

[ ] ([ { } { } [ ]

0.8994 0.16197 0.1665

0.215 96 0.65201 0.3576

0.332 98 0.5365 0.4485
1 1 1

TS I m= − =
− −

− −
− −

















] φ φ

[ ] [ ] [ ]

0.380 68 0.03918 0.1403

0.052 21 0.259 92 0.1843

0.2808 0.2766 0.26416
2 1 1D D S= =

−
−

− −

















Iteration 1

0.380 68 0.03918 0.1403

0.052 21 0.259 92 0.1843

0.2808 0.2766 0.26416

1

1

1

0.2795

0.1278

0.2932

−
−

− −




























=

−













=
−












0.2932

0.9533

0.4358

1

Iteration 2

0.380 68 0.03918 0.1403

0.052 21 0.259 92 0.1843

0.2808 0.2766 0.26416

0.9533

0.4358

1

0.520

0.3474

0.6524

−
−

− −















 −












=

−













=
−












0.6524

0.7976

0.5325

1

Iteration 3

0.380 68 0.03918 0.1403

0.052 21 0.259 92 0.1843

0.2808 0.2766 0.26416

0.7976

0.5325

1

0.4648

0.3644

0.6354

−
−

− −















 −












=

−













=
−












0.6354

0.7315

0.5735

1
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Iteration 4

0.380 68 0.03918 0.1403

0.052 21 0.259 92 0.1843

0.2808 0.2766 0.26416

0.7315

0.5735

1

0.4412

0.3716

0.6282

−
−

− −















 −












=

−













=
−












0.6282

0.7024

0.5915

1

Iteration 5

0.380 68 0.03918 0.1403

0.052 21 0.259 92 0.1843

0.2808 0.2766 0.26416

0.7024

0.5915

1

0.4309

0.3747

0.625

−
−

− −















 −












=

−













=
−












0.625

0.6894

0.5996

1

Iteration 6

0.380 68 0.03918 0.1403

0.052 21 0.259 92 0.1843

0.2808 0.2766 0.26416

0.6894

0.5996

1

0.4263

0.3762

0.6236

−
−

− −















 −












=

−













=
−












0.6236

0.6836

0.6033

1

Iteration 7

0.380 68 0.03918 0.1403

0.052 21 0.259 92 0.1843

0.2808 0.2766 0.26416

0.6836

0.6033

1

0.4263

0.3768

0.623

−
−

− −















 −












=

−













=
−












0.623

0.6836

0.6033

1

Second eigenvalue λ ω
λ2

2

0.623;  1 1.2669rad/s2= = =n
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The eigenvector corresponding to this eigenvalue

{ }

0.6836

0.6033

1
2ψ =

−













Find
M m M2

2
2
T

2 2{ } [ ]{ } 4.96115;  2.227= = =ψ ψ

{ } 1 { } ;  1
2.227

0.6836

0.6033

1

0.3069

0.2709

0.449
2

2
2φ ψ=

−












=

−












M

To establish the last eigenvalue
Find sweeping matrix

[ ] ([ { } { } [ ]

0.5227 0.4113 0.1090

0.5484 0.4319 0.1144

0.2181 0.1717 0.0453
2 2 2

TS S m= − =
−

− −
− −

















]1 φ φ

[ ] [ ] [ ]

0.1469 0.1155 0.0306

0.1553 0.1225 0.0326

0.0628 0.0492 0.012 82
3 1 2D D S= =

−
− −

−

















Iteration 1

0.1469 0.1155 0.0306

0.1553 0.1225 0.0326

0.0628 0.0492 0.012 82

1

1

1

0.062 05

0.065

0.0265

−
− −

−




























= −

−













= −











0.065

0.9546

1

0.4083

Iteration 2

0.1469 0.1155 0.0306

0.1553 0.1225 0.0326

0.0628 0.0492 0.012 82

0.9546

1

0.4083

0.268 85

0.285

0.1146

−
− −

−

















−











= −













= −











0.285

0.9433

1

0.4023
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Iteration 3

0.1469 0.1155 0.0306

0.1553 0.1225 0.0326

0.0628 0.0492 0.012 82

0.9433

1

0.4023

0.2663

0.282

0.1136

−
− −

−

















−











= −













= −











0.282

0.9445

1

0.4027

Iteration 4

0.1469 0.1155 0.0306

0.1553 0.1225 0.0326

0.0628 0.0492 0.012 82

0.9445

1

0.4027

0.2666

0.282

0.1137

−
− −

−

















−











= −













= −











0.282

0.9445

1

0.4032

Third eigenvalue λ ω
λ3 0.282; 1 1.883 rad/s3= = =n

3

The eigenvector corresponding to this eigen value

{ }

0.945

1

0.4032
3ψ = −













Find

M m M3
2

3
T

3 3{ } [ ]{ } 6.8972;  2.6272= = =ψ ψ

{ } 1 { } ;  1
2.6272

0.945

1

0.4032

0.3598

0.38

0.153
3

3
3φ ψ= −












= −












M

The procedure can very easily be performed in the EXCEL package to find
all the eigenvalues and eigenvectors of three degree of freedom by the sweeping
technique. The natural frequencies and mode shapes are shown in Table
11.1.

11.3.3 Method 2 – deflation method

Assume we find (λ1, {φ}1) pair to obtain some eigenvalue using the ortho-
normal principle.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering354

{ } [ ]{ } [ ]1
T

0

11

21

31

T
1

2

3

φ
φ
φ
φ

m x m=
























X

X

X

11.22

or φ11m1x1 + φ21m2x2 + φ31m3x3 = 0 11.23

or x
m x

m
m x
m1

21 2 2

11 1

31 3 3

11 1
0+ + =φ

φ
φ

φ 11.24

or x
m x

m
m x
m1

21 2 2

11 1

31 3 3

11 1
= − −φ

φ
φ

φ 11.25

and

X2 = X2 11.26a

X3 = X3 11.26b

The sweeping matrix is

[ ]

0

0 1 0

0 0 1
1

21 2 2

11 1

31 3 3

11 1

S =

− −



















φ
φ

φ
φ

m x
m

m x
m

11.27

[D]2 = [D]1[S]1 11.28

The power method will converge to the second eigenvalue and the
corresponding normalized eigenvector {ϕ}2 can be obtained.

To extract the third eigenvalue,

{ } [ ]{ } = 01
T

0ϕ m x 11.29

or

x
m x

m
m x
m1

21 2 2

11 1

31 3 3

11 1
= − −φ

φ
φ

φ 11.30

{ } [ ]{ } = 02
T

0φ m x 11.31

or

x
m x

m
m x
m1

22 2 2

21 1

32 3 3

21 1
= − −φ

φ
φ

φ 11.32

Table 11.1 Natural frequencies and mode shapes

ωn1 = 0.5925 ωn2 = 1.2269 ωn3 = 1.883

X1i 0.1585 0.3067 0.3598
X2i 0.3405 0.2709 –0.38
X3i 0.525 –0.449 0.153
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Solving

φ
φ

φ
φ

φ
φ

φ
φ

21 2

11 1

22 2

21 1
2

31 3

11 1

32 3

21 1
3

m
m

m
m

x
m
m

m
m

x−



 = −





x

m
m

m
m

x

m
m

m
m

2

31 3

11 1

32 3

21 1
3

21 2

11 1

22 2

21 1

=
−





−





φ
φ

φ
φ

φ
φ

φ
φ

11.33

Substituting for X2, X1 can be written in terms of X3 as

S2

0 0

0 0

0 0

=
















X

X

X

11.34

Now

[D]3 = [D]1 [S]2 11.35

Using the power method, the iteration will converge to third eigenvalue and
the corresponding normalized eigenvector can be obtained.

Let us use the same example and assume we obtain the highest eigenvalue
as 2.8453 and the corresponding normalized eigenvector as given in method
1. Substituting the corresponding values in Eq. 11.25, we get

x
x x

1
2 30.3405 3

4 0.1585
0.525 2
4 0.1585

0+ ×
× + ×

× =

x1 + 1.611x2 + 1.656x3 = 0

or

x

x

x

x

x

x

S x
1

2

3

1

2

3

1

0 1.611 1.656

0 1 0

0 0 0

[ ] { }












=

− −


























=

[ ] [ ] [ ]

0 0.5742 0.7708

0 0.17579 0.2708

0 0.17579 0.729 17

2 1 1D D S= =

− −

−
















Iteration 1

0 0.5742 0.7708

0 0.17579 0.2708

0 0.175 79 0.729 17

1

1

1

1.345

0.095

0.905

1.345

1

0.0707

0.6728

− −

−
































=

−

−
















=

−

−
















�� �� �� �� �� ��



Structural dynamics of earthquake engineering356

Iteration 2

0 0.5742 0.7708

0 0.17579 0.2708

0 0.17579 0.72917

1

0.0707

0.6728

0.4781

0.1946

0.4781

− −

−
















−

−
















=

−

−
















=
−

−











0.4781

1

0.4071

1.0

Iteration 3

0 0.5742 0.7708

0 0.175 79 0.2708

0 0.175 79 0.72917

1

0.4071

1.0

0.5372

0.3424

0.657 75

− −
−

















−
−












=

−
−













=
−
−












0.657 75

0.8167

0.5206

1.0

Iteration 4

0 0.5742 0.7708

0 0.175 79 0.2708

0 0.175 79 0.72917

0.8167

0.5206

1.0

0.4719

0.3623

0.6376

− −
−

















−
−












=

−
−













=
−
−












0.6376

0.74

0.568

1.0

Iteration 5

0 0.5742 0.7708

0 0.175 79 0.2708

0 0.175 79 0.72917

0.74

0.568

1.0

0.444

0.370

0.6293

− −
−

















−
−












=

−
−













=
−
−












0.6293

0.7043

0.589

1.0
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Iteration 6

0 0.5742 0.7708

0 0.175 79 0.2708

0 0.175 79 0.72917

0.7043

0.589

1.0

0.4325

0.3744

0.6256

− −
−

















−
−












=

−
−













=
−
−












0.6256

0.6914

0.5984

1.0

Iteration 7

0 0.5742 0.7708

0 0.175 79 0.2708

0 0.175 79 0.72917

0.6914

0.5984

1.0

0.4272

0.376

0.6239

− −
−

















−
−












=

−
−













=
−
−












0.6239

0.684

0.602

1.0

Iteration 8

0 0.5742 0.7708

0 0.175 79 0.2708

0 0.175 79 0.72917

0.684

0.602

1.0

0.4248

0.3768

0.6232

− −
−

















−
−












=

−
−













=
−
−












0.6232

0.684

0.602

1.0

λ ω
λ

ψ2 = = = =
−
−












0.6232;  1 1.2668;  { }

0.684

0.602

1
2

2
2n

Find

M m M2
2

2
T

2 2{ } [ ]{ } 4.96115;  2.227= = =ψ ψ

{ } 1 { } ;  1
2.227

0.684

0.602

1

0.3069

0.2709

0.449
2

2
2φ ψ=

−
−












=

−
−












M

Using the first normalized eigenvector we obtain the equation

x1 = –1.611x2 – 1.656x3   (a)
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Using the second normalized eigenvector we obtain the equation

x
m x

m
m x
m1

22 2 2

21 1

32 3 3

21 1
= − −φ

φ
φ

φ

x
x x

1
2 30.2709 3

0.3069 4
0.449 2
0.3069 4

= − ×
× + ×

×
or

x1 = –0.662x2 + 0.7315x3   (b)

Solving Eqs a and b we get

x1 = 2.3955x3; x2 = –2.515x3; x3 = x3

Writing in matrix form we get [S]2 matrix as

[ ]

0 0 2.3955

0 0 2.515

0 0 1
2S = −

















[ ] [ ] [ ]

0 0 0.6727

0 0 0.7136

0 0 0.286 45
2 1 2D D S= = −

















Iteration 1

[ ] [ ] [ ]

0 0 0.6727

0 0 0.7136

0 0 0.286 45
2 1 2D D S= = −

















0 0 0.6727

0 0 0.7136

0 0 0.286 45

1

1

1

0.6727

0.7136

0.286 45

0.7136

0.9426

1

0.40142

−



























= −












= −













Iteration 2

0 0 0.6727

0 0 0.7136

0 0 0.286 45

0.9426

1

0.40142

0.270

0.2864

0.114 99

−
















−











= −













= −











0.2864

0.9428

1

0.40149
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λ ω
λ

ψ3 2 20.2864;  1 1.883; { }

0.9428

1

0.40149

= = = = −











n

3

Find

M m M3
2

3
T

3 3{ } [ ]{ } 6.8972;  2.6272= = =ψ ψ

{ } 1 { } ;  1
2.6272

0.9428

1

0.40149

0.3598

0.38

0.153
3

3
3φ ψ= −












= −












M

The procedure can be programmed very easily in the EXCEL package.

11.4 Jacobi’s method

The matrix iteration method discussed in Section 11.3 produces the eigenvalues
and eigenvectors of matrix [D]1 one at a time. Jacobi’s method is also an
iterative method but produces all the eigenvalues and eigenvectors of the
matrix [D]1 simultaneously. [D]1 is a real symmetrix matrix and has only real
eigenvalues. There is an orthogonal matrix [R] such that [R]T[D]1[R] is a
diagonal matrix. The diagonal elements are the eigenvalues and the columns
of [R] is generated as a product of several rotation matrices as

[R] = [R1][R2][R3]… 11.36

Consider the highest off-diagonal term of matrix [D]1. Let it be dij.
Find

tan 2
2

θ = −
d

d d
ij

ii jj
11.37

Form matrix

[ ]

1
cos sin

1
sin cos

1
                 

1R
i

j

=
−





















θ θ

θ θ
11.38

Find

[D]2 = [R1]T[D]1[R1] 11.39

which makes

dij = dji = 0 11.40
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Again find the highest off-diagonal term and form [R2] matrix. While making
this off-diagonal term as zero, it introduces non-zero contributions to formerly
zero positive. However, successive matrices of the form

[R2]T[R1]T[D]1[R1][R2] 11.41

[R3]T[R2]T[R1]T[D]1[R1][R2][R3] 11.42

converges to the required diagonal form. Find matrix [R] such that

[R] = [R1][R2][R3]…[Rn] 11.43

is the required eigenvector.
Consider Example 11.1 with mass matrix as [I]. The dynamic matrix is

written as

[ ]
0.1667 0.1667 0.1667
0.1667 0.4167 0.4167
0.1667 0.4167 0.9167

1D =












Highest off-diagonal term is (2, 3) = 0.4167.

θ1
1
2

atan 2 0.4167
(0.4167 0.9167)

0.5102= ×
−





 = −

[ ]
1 0 0
0 0.8702 0.4927
0 0.4927 0.8702

1R =
−













[ ] [ ] [ ] [ ]
0.1667 0.0629 0.2272
0.0629 0.1808 0
0.2272 0 1.1526

2 1
T

1 1D R D R= =












Highest off-diagonal term is (1, 3) hence calculate

θ 2
1
2

atan 2 0.2272
(0.1667 1.1526)

0.2159= ×
−





 = −

[ ]
0.9768 0 0.2143

0 1 0
0.2143 0 0.9768

2R =
−













[ ] [ ] [ ] [ ]
0.1169 0.0615 0
0.0615 0.1808 0.0135

0 0.0135 1.2025
3 2

T
2 2D R D R= =













[ ]
0.8547 0.5190 0
0.5190 0.8547 0

0 0 1
R3 = −
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[ ] [ ] [ ] [ ]
0.0795 0 0.0070

0 0.2186 0.0115
0.0070 0.0115 1.2025

4 3
T

3 3D R D R= =
−

−













[ ] [ ][ ][ ]
0.8349 0.5070 0.2143
0.5419 0.6890 0.4813

0.0964 0.5179 0.85
1 2 3T R R R= = −

−













will finally converge to

[ ]
0.0795

0.2179
1.2027

D n =












[ ]
0.836 0.5049 0.2150
0.539 0.6830 0.4927

0.1019 0.5278 0.8432
T = −

−













11.5 Transfer matrix method to find the

fundamental frequency of a multi-storeyed

building (shear frame)

Consider a shear frame shown in Fig. 11.1 consisting of ‘n’ storeys. Consider
the free body diagram of the ith storey as shown in Fig. 11.2. Here ‘m’ is the
mass, ‘k’ is the stiffness, ‘V’ is the shear, ‘ω’ is the natural frequency and ‘v’
is the displacement.

n

n
 –

 1

2

1

mn

mn–1

m2

m1

Vn

V1

11.1 Shear frame of n storeys.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering362

Considering inertia force, the shear in the ith storey can be written in
terms of shear of (i+1)th storey.

Vi = Vi+1 + miω2vi 11.44a

v v
V
k

V
k

m v
ki i

i

i

i

i

i i

i
− = = +−

+
1

1
2ω

or
V

v

m

k
m

k

V
v

i

i

i

i

i

i

i

i−

+


=
− −
















1

2

2 1
1

1 1

ω
ω 11.44b

Initially the displacement at the top storey level and the natural frequency
are both assumed. By using the transfer matrix method, it is possible to find
the displacement at the base as well as shear in the base storey. If the support
displacement is not zero, a new value for the natural frequency is assumed
and the procedure is repeated till we get the value of the base displacement
as zero.

Example 11.2
Find the natural frequency of the three storeyed shear building as shown in
Fig. 11.3, given the mass and the stiffness.

Solution
Since ‘MATHEMATICA’ can solve the problem using symbolic processing, we
will write in symbolic form. Transfer matrix at top frame ( assume p = ω n

2 )

V

v

m p

k
m p
k

V

v
3

2

3

3

3

3

4 0

3

1

– 1 1 –
[ ]

0

1








=




















= 







=
a 11.45

V
v

m p

k
m p
k

V
v

V
v

b a2

1

2

2

2

2

3

2

3

2

1
1 1

[ ] [ ][ ]
0
1




= − −














= 


= 


b 11.46

i + 1

i

Vi+1

miω2Vi

Vi

Vi–1

Vi

11.2 Free body diagram of ith storey.
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V
v

m p

k
m p
k

V
v

V
N

c b a1

0

1

1

1

1

2

1

2

1

1
1 1

[ ] [ ][ ][ ]
0
1




= − −














= 


= 


c

( )[ ][ ]
0
1

= { } = 1

0
c b a d

V
v







11.47

d (2, 1.5, 1, 1800, 1200, 600, 211)
543.43

4504 10 4= − ×


− 11.48

For, p = 211, v0 = 0. Hence

ω n = 211 = 14.520rad/s 11.49

One we get natural frequency one can also get the mode shape as shown
below.

V

v

V

v
3

2

4

3

1 211
1

600
1 211

600

0

1

211

0.648








= − −












=
=









= 







11.50

V

v

V

v
2

1

3

2

1 316.5
1

1200
1 316.5

1200

211

0.648

416.198

0.3015








= − −












=
=









= 







11.51

V

v

V

v
1

0

2

1

1 422
1

1800
1 422

1800

416.198

0.3015

543.43

0








= − −












=
=









= 







11.52

Hence mode shape is given by

{ }

0.3015

0.648

1

ψ =











11.53

The base shear = 543.43N.

V3

V2

V1

m3 = 1

m2 = 1.5

m1 = 2

K = 600

K = 1200

K = 1800

v2

11.3 Three storeyed shear frame.
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11.6 Program 11.1: MATHEMATICA program to find

the fundamental frequency and the

corresponding mode shape (transfer matrix

method)

1 389
{{1, 211}, {–(———), ———}}

600 600

1

{{1, 316.5}, {-(—————), 0.73625}}
1200

1 689
{{1, 422}, {-(—————), —————}}

1800 900

{{0}, {1}}

0

1

1 211

1 389
-(———) ———

600 600

 1 316.5

 1
–(————)
 1200 0.73625
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1 422

1 689

-(————) ————
1800 900

{{-0.396996, 543.431}, {-0.00183986, -0.000404238}}

-0.396996 543.431

-0.00183986 -0.000404238

{{543.431}, {-0.000404238}}

543.431

-0.000404238

2

1.5

1

1800

1200

600

-0.000404238
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211

-0.000404238

389
{{211}, {————}}

600

{{416.198}, {0.301502}}

{{543.431}, {-0.000404238}}

11.7 Holzer method for torsional vibrations

The Holzer method falls under the determinant search technique. The method
can be applied to rectilinear or angular motions for damped as well as undamped
systems. The method is best suited for systems where the components are
arranged along the basic axis. Let us consider the torsional vibration for
shafts as shown in Fig. 11.4.

The torsional moment equilibrium at node 1 can be written as

J k1 1 1 1 2( ) 0˙̇θ θ θ+ − = 11.54

At node 2

J k k2 2 1 2 1 2 2 3( ) ( ) 0˙̇θ θ θ θ θ+ − + − = 11.55

…

1 2 3 i n

      J1 1
˙θ̇       J2 2

˙θ̇       J3 3
˙θ̇     Ji i

˙θ̇     Jn n
˙θ̇

k1 k2 kn–1

11.4 Torsion in shafts.
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J kn n n n n
˙̇θ θ θ+ − =− −1 1( ) 0 11.56

Summing all the equations we get

Σ Σ
i

n

i i n i

n

i iJ J
= =

=
1

2
1

 ;    = 0˙̇θ ω θ0 11.57

The method is explained as follows. Assume ω n
2  and θ1 = 1. At node 1

− + − =ω θ θ θn J k2
1 1 1 1 2( ) 0 11.58

or ( ) / ;  or ( / )2 1
2

1 1 1 2 1
2

1 1 1θ θ ω θ θ θ ω θ− = − = −n nJ k J k 11.59

Similarly summing up to node 2 we get

( ) / ;  or /3 2
2

1

2

2 3 2
2

1

2

2θ θ ω θ θ θ ω θ− = − = −
= =n i i i n i i iJ k J kΣ Σ 11.60

Like this, all values θ of can be calculated. Check

ω θn i i iJ2
1

= 0Σ
=

n

11.61

Example 11.2

J1 = J2 = J3 = J4 = 4000; J5 = 90000; J6 = 50000

k1 = k3 = 800 × 106; k2 = 500 × 106; k4 = 600 × 106;

k5 = 20 × 106

Solution
As a first trial, assume node occurs between 5 and 6. The equilibrium equations
can be written as

−

















+
−

−

















=ω
θ

θ

θ

θn
2 5

6

6 5

6

90000

50000
10

20 20

20 20
{0}

Solving the characteristic equation ω ω ωn n
4 2 2622.2 0;  622.2− = =n  ωn =

24.246.
First assume ω n

2  = 690 and the calculations carried out as shown in Table
11.2. It is found that Σ 0j ˙̇θ ≠ .

Next assume ω n
2  = 587.87 and the calculations carried out as shown

in Table 11.3. It is found that Σ 0j ˙̇θ = . Hence ω n
2  = 587.87 and ωn =

24.24rad/sec.
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Table 11.2 Holtzer method     (  = 690)2ω n

Node θ       
˙θ̇ ω θ = 2

n       J
˙θ̇ (10 )6

      Σ  (10 )6J˙θ̇ k(106)       Σ /J k˙θ̇

1 1 690 2.76 2.76 800 0.00345
2 1 – 0.00345 = 0.9965 687.5 2.75 2.76 + 2.75 = 5.51 500 0.01102
3 0.9965 – 0.0110 = 0.9855 679.99 2.72 5.51 + 2.72 = 8.23 800 0.01028
4 0.9855 – 0.0105 = 0.9752 672.88 2.691 8.23 + 2.89 = 10.92 600 0.0182
5 0.9752 – 0.0182 = 0.9570 660.33 59.43 10.92 + 59.43 = 70.35 20 3.5175
6 0.957 – 3.517 = –2.56 – 1766 – 88.3 70.35 – 88.3 = –17.95

Table 11.3 Holtzer method     (  = 587.87)2ω n

Node θ       
˙θ̇ ω θ = 2

n       J
˙θ̇ (10 )6

      Σ  (10 )6J˙θ̇ k(106)       Σ /J k˙θ̇

1 1 587.87 2.3514 2.3514 800 0.00293
2 1 – 0.00293 = 0.99706 586.14 2.344 2.3514 + 2.344 = 4.69 500 0.00939
3 0.9965 – 0.0110 = 0.9970 580.62 2.3221 4.69 + 2.32 = 7.02 800 0.00877
4 0.9970 – 0.0087 = 0.9788 575.46 2.301 7.02 + 2.30 = 9.322 600 0.01555
5 0.9788 – 0.0155 = 0.9633 566.33 50.96 9.322 + 0.96 = 60.29 20 3.01451
6 0.9633 – 3.0145 = –2.0511 –1205 –60.29 60.29 – 60.29 = 0
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11.8 Approximate methods for finding the

natural frequencies

11.8.1 Rayleigh’s quotient

In many practical situations involving MDOF systems, only the accurate
estimation of the fundamental frequency is required. In such cases, laborious
calculations to extract all the normal vibration modes of the system are not
warranted and the approximate methods are desirable. This section discusses
two approximate methods for estimating the fundamental frequency of MDOF
systems.

The first method, Rayleigh’s method, is an upper bound method based on
energy principles and stiffness approach. The second method, Dunkerley’s
approximation, is based on the flexibility of the system eigenvalue problem
and therefore provides lower bound estimation of the fundamental frequency.
Thus the upper bound estimation of the fundamental frequency provided by
Rayleigh’s method can be complemented by the lower bound estimation
afforded by Dunkerley’s approximations to envelope true fundamental
frequency.

Consider that an undamped single-degree-of-freedom (SDOF) mass spring
system is in free harmonic motion given by

x = X sin (ωnt + φ) 11.62a

x X tn n
• = +ω ω φcos ( ) 11.62b

Strain energy of the system V is given by

V kx kx tn= = +1
2

1
2

sin ( )2 2 2 ω φ 11.63

Kinetic energy of the system T is given by

T m x mx tn n= = +•1
2

1
2

cos ( )
2 2 2 2ω ω φ 11.64

According to the principle of conservation of energy, total mechanical energy
E = T + V = constant.

E mx t kx tn n n= + + +1
2

cos ( ) 1
2

sin ( )2 2 2 2 2ω ω φ ω φ 11.65

when

V = Vmax = T = 0 11.66a

T = Tmax = V = 0 11.66b

Hence maximum kinetic energy = maximum strain energy.

Tmax = Vmax 11.67a
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Deriving

˜

˜

T mx

T V
kx m

n

n
max

2

2
max max

2 2
1
2 ;  1

2
1
2

=

=
=

ω
ω 11.67b

ω n k m2 = / 11.67c

ω n k m= / 11.67d

11.8.2 Rayleigh’s quotient method to MDOF

In the above we have discussed Rayleigh’s method to determine the fundamental
frequency of an SDOF system. Application of the Rayleigh’s method to
determine the fundamental frequency of an MDOF system is presented in
this section.

Consider the eigenvalue problem of the MDOF system represented by
equation

[k][φ] = λ[m][φ] 11.68a

where λ = ω2 11.68b
[m], [k] = symmetric mass and stiffness matrices.
[φ] = modal matrix
For the rth mode Eq. 11.68a may be written as

λr[m]{φ}r = [k]{φ}r 11.69

where {φ}r is the modal vector for the rth mode. Premultiplying by both
sides { }Tφ r ,

λ φ φ φ φr r r r rm k{ } [ ]{ } = { } [ ]{ ]T T 11.70a

From which,

λ φ φ
φ φr

r r

r r

k

m
=

{ } [ ]{ }
{ } [ ]{ }

T

T 11.70b

In Eq. 11.70b, the denominator is related to the kinetic energy for the rth
mode and the numerator is related to the potential energy, or the strain
energy of the rth mode. If the modal vector {φ}r is replaced with any arbitrary
vector {A}, Eq. 11.70b is written as

λ r R A
A k A
A m A

= ({ }) =
{ } [ ]{ }
{ } [ ]{ }

T

T 11.71

where R({A}) is a scalar quantity referred to as Rayleigh’s quotient. It is
evolved from Eq. 7.51 that Rayleigh’s quotient is dependent upon the known
matrix [m] and [k] and the unknown arbitrary vector {A}. Obviously if {A}
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coincides with one of the systems normal modes then λR is the corresponding
eigenvalue or normal frequency of the system. A very important property of
Rayleigh’s quotient is

λ1 ≤ R({A}) ≤ λn 11.72

and it also follows that for any vector {A}, if [K] is positive definite, R({A})
> 0. If [K] is positive semi-definite,

R({A}) ≥ 0 11.73

Equation 11.65 thus indicates that the Rayleigh’s quotient is never lower
than the fundamental eigenvalue, and furthermore the minimum value the
Rayleigh’s quotient can assume is that of the fundamental eigenvalue itself.
Therefore, Rayleigh’s quotient is very good technique to estimate the
fundamental frequency of MDOF systems. A reasonable estimate for the
vector {A} corresponding to the fundamental mode is the vector of static
displacement resulting from subjecting the masses in the system to forces
proportional to their weights. Many seismic design code present expressions
to estimate the fundamental frequency of high-rise building based on this
concept. The natural frequency thus obtained is called the Rayleigh frequency
ωR expressed as

λ ωR n R A= =2 ({ }) 11.74

The accuracy of the Rayleigh frequency ωR depends entirely on the
displacement vector {A} used to represent the vibration mode shape. In
principle, any vector {A} may be selected which satisfies the geometric
boundary conditions. However, any vector other than the true modal vector
requires the action of additional external constraints to maintain equilibrium,
which would in turn stiffen the structure, resulting in increased computed
frequency. Therefore the true vibration mode will yield the lowest frequency
obtained by Rayleigh’s method. Hence the approximation yielding the lowest
frequency for a particular case is the best result.

Steps

1. Estimate the fundamental mode of vibration. This may be done either by
assuming the displacement of the modes directly or computing the
displacement from the associated forces.

2. Compute the values of Vmax and T̃max  corresponding to the estimated
mode.

3. ω R
V

T
2 max

max

=
˜

11.75

4. ω ωR n
2 2> 11.76
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If the frequency is computed for several displacement-assumed configurations,
the smallest of the computed values will be close to the exact value of ωn and
the associated configuration is closest to the actual configuration.

Example 11.4
Estimate the approximate natural frequency of two storey shear frame shown
in Fig. 11.5.

Solution

Assumption 1
Apply force at 1.

Stiffness matrix = [ ]
2

k
k k

k k
=

−
−







11.77a

[ ]
1 0

0 1
m m= 





11.77b

V x x
k k

k k

x

xmax
1

2

1
2

  
2

= 〈 〉
−

−














1 2 11.78

= 〈 〉
−

−














1
2

1  1
2 1

1
= /2

k k

k k
k 11.79

or
1/2 (stiffness of each storey × drift2) = 1/2 (k × 1) = 0.5k

T̃ m mmax
1
2

1  1
1 0

0 1

1

1
= 〈 〉 












= 11.80

2

1

m

h

m

h

1

k

k

x2

x1

(a) (b)

1

1

11.5 (a) Two storey shear frame; (b) assumed displacement (first
trial).
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ω n
V

T

k
m

k
m

2 max

max
2

0.5= = =
˜

11.81

Assumption 2
Apply unit force at 2 and the assumed displacement shape is obtained as
shown in Fig. 11.6.

V k k kmax
2 21

2
[(1 – 0) + (2 – 1) ]== 11.82

T̃ m m mmax
21

2
( 1 4) 5

2
= × + × = 11.83

ω n
V

T

k
m

k
m

2 max

max

2
5

0.4= = =
˜

11.84

Assumption 3
Apply unit force at 1 and 2 and the assumed displacement is obtained as
shown in Fig. 11.7.

V k k kmax
21

2
( 1 0.5 ) 1.25 /2= × + × = 11.85

2

1

11.6 Assumed displacement (second trial).

1

1 + =1

2 3/2 = 1.5

2/2 = 1

11.7 Assumed displacement (third trial).
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T̃ m m mmax
1
2

( 1 2.25 ) 3.25
2

= × + = 11.86

ω n
k
m

k
m

2 1.25
3.25

0.3846= = 11.87

Assumption 3 leads to lowest frequency

ω n
k
m

2 0.38197=    actual value

% error = 0.06 % 11.88

Example 11.5
Find the Rayleigh’s frequency for a three storeyed shear frame shown in Fig.
11.8.

Ṽ k k kmax
1
2

(3 49 9 1)= × + × + × 11.89

= + +( ) =147 9 1
2

157
2

k k

T̃ m m mmax
1
2

(4 49 2 100 121)= × + × + × 11.90

= + + =1
2

(196 200 121) 517
2

m m

ω n
k
m

k
m

2 157
517

0.3036= = 11.91

ω n
k
m

= 0.55

m

2m

4m

k

k

3k

4

4

4

4

4

2

3

2

  1

11

10

7

+ + =

Assumed deflection

11.8 Three storey shear frame.
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For better approximation we can estimate displacement as

{A} = [a]{F} 11.92a

=



























=













0.33 0.33 0.33

0.33 1.33 1.33

0.33 0.33 2.33

4

2

1

2.31

5.31

6.31

11.92b

V kmax
2 2 21

2
(3 2.31 1 3 1 1 )= × + × + ×

= + + = =k
2

( ) 26
2

1316 9 1 k k 11.93

T̃ m
max

2 2 2

2
(4 2.31 2 5.31 1 6.31 )= × + × + × 11.94

= 58.77m

ω R
k
m

k
m

2 13
58.77

0.221= =

ω R
k
m

= 0.470 11.95

By sweeping technique

ω n
k
m

= 0.457  error = 2.84% 11.96

Example 11.6
Determine the fundamental frequency of the shear frame shown in Fig. 11.3
by the improved Rayleigh method.

Solution
R00 method
Assume the mode shape as shown in Fig. 11.9. Maximum potential energy:

1

1

1

11.9 Assumed mode shape.
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V kmax
21

2
= Σ ∆

where ∆ is the drift in each floor.

Vmax
1
2

[1800 1 1200 0 600 0] 900= × + × + × =

maximum velocity of the floor = ωn × maximum displacement

Maximum kinetic energy

T n
nmax

2
2 2 2 2

2
[2 1 1.5 1 1 1 ] 2.25= × + × + × =ω ω

Equating the maximum potential energy to maximum kinetic energy we get

2.25 900;  20rad/s2ω ωn n= =

R01 method
By calculating the shear in each floor let us improve the mode shape. The
shear in each floor can be calculated as (see Fig. 11.10)

V V Vn n n3
2

2
2 2;  2.5 ;  4.5= = =ω ω ω1

The drift in each floor may be calculated as

∆1 1 1
2 2/ 4.5 /1800 0.0025 = = =V k n nω ω

∆ 2 2 2
2 2/ 2.5 /1200 0.002 08 = = =V k n nω ω

∆ 3 3 3
2 2/ /600 0.00167 = = =V k n nω ω

So displacements are (see Fig. 11.11)

u u un n n1
2

2
2

3
20.0025 ;  0.004 58 ;  0.006 25= = =ω ω ω

V3

V2

V1

    ωn
2

    1.5 2ωn

    2
2ωn

11.10 Shear in each storey.
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Improved potential energy

V n
nmax

4
4

2
(0.006 25 1.5 0.004 58 2 0.0025) 0.009 06= + × + × =ω ω

Equating this improved potential energy to previously calculated kinetic
energy

0.009 06 2.254 2ω ωn n=

or

ω ωn n
2 234.375; 15.309= =

R11 method
Improve the kinetic energy. Velocity at each storey level:

v v vn n n1
3

2
3

3
30.0025 ;  0.004 58 ;  0.006 25 = = =ω ω ω

T nmax(improved)
6 2 2 2/2[2 0.0025 1.5 0.004 58 1 0.006 25 ]= × + × + ×ω

= × −4.15135 10 5 6ω n

Equating maximum kinetic energy to maximum potential energy, we get

0.009 06 4.15135 104 5 6ω ωn n= × −

ω n
2

5

0.009 06
4.15135 10

218.24=
×

=−

ωn = 14.77rad/s

11.9 Dunkerley’s approximation

It is another approximate method for estimating the fundamental frequency
for MDOF systems. The method yields accurate results for systems for which

0.00625    ωn
2

0.00458    ωn
2

0.0025    ωn
2

11.11 Deflected shape.
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damping is negligible and the natural frequencies are well separated.
Dunkerley’s equation provides a ‘lower bound’ estimate with fundamental
frequency and is therefore complementary with the Rayleigh method that
provides an ‘upper bound’ estimate with fundamental frequency.

To derive Dunkerley’s equation consider the equation

[k]{A}  ω2[m]{A} 11.97

or

1 { } = [ ] [ ]{ }2
–1

ω
A k m A 11.98

where

[D] = [K]–1[m] 11.99

or

([D]–λ[I]){A} = {0} 11.100

where λ
ω

= 1 and [ ]2 D  is system dynamic matrix given by

[D] = [a][m] 11.101

where [a] is the flexibility matrix.
The frequency equation is obtained by expanding the determinant of the

characteristic matrix in Eq. 11.101.
Let us consider a two-degrees-of-freedom system with lumped mass diagonal

matrix. Thus the resulting characteristic determinant becomes

a m a m

a m a m

11 1 2 12 2

21 1 22 2 2

1

1 = 0
−

−
ω

ω

11.102

Expanding Eq. 11.102 results in the system frequency equation, i.e. second
order equation in λ = 1/ω2 given by,

1 ( ) 1 ( ) 04 11 1 22 2 2 1 2 11 22 12 21ω ω
− + + − =a m a m m m a a a a 11.103

If the roots are 1/ω1
2 , 1/ω 2

2

1 1 trace2
2
2 11 1 22 2ω ω1

+ = = +a m a m 11.104

The relationship represented by Eq. 11.104 also holds true for systems
having ‘n’ degrees of freedom. Extending this ‘n’ degrees of freedom system
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1 1 1

1
2

2
2 2 11 1 22 2ω ω ω

+ − … = + + …
n

nn nna m a m a m 11.105

Dunkerley’s approximation to the fundamental frequency is made on the
assumption that if the fundamental frequency ‘ω’ is much lower than the
higher harmonics (ω2,… ωn) then the terms on the left hand side 1/ω 2

2 … 1/
ω n

2  can be calculated. The elimination of these terms yields an estimate of
1/ω1

2  which is higher than the true value thereby making the estimate of ‘ω1’
lower than the exact value of fundamental frequency. The Dunkerley’s lower
bound estimate of ‘ω1’ is approximated to

1

1
2 11 1 22 2ω

≅ + + …a m a m a mnn nn 11.106

=
=
Σ
i

n

ii ia m
1

In Eq. 11.106 the term ‘aiimi’ represents the contribution of each mass to
1/ω1

2  in the absence of all other masses. Thus

a mii i
ii

= 1
2ω

11.107

where ω ii
2  is the natural frequency of an SDOF system with mass ‘mi’ acting

alone at state i. Hence Dunkerley’s equation is given by

1 1 1 1

1
2

11
2

22
2 2ω ω ω ω

≅ + + … +
nn

11.108

Example 11.7
Find the fundamental frequency of the frame shown in Fig. 11.12 by
Dunkerley’s approximation.

Solution

1 4
3

8
3

7
3

19
32ω n

m
k

m
k

m
k

m
k

= + + =

ω ωn n
k
m

k m2 0.1578 ;  0.397 /= =

Actual 0.457 k m/

Alternatively

[ ] 1
0.33 0.83 0.33

0.33 1.33 1.33

0.33 1.33 2.33

–1k
k

=
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 1 (4 0.33 2 1.33 2.33)
2ω n

m m m
k

= × + × + ×

= 6.31 m
k

 ω n
k
m

= 0.398

Error is 12%.

11.10 Summary

In this chapter the sweeping technique combined with power method and
transfer matrix methods have been discussed to find the natural frequencies
of n-degrees-of-freedom system. In addition, Rayleigh’s coefficient method
and Dunkerley’s approximate methods are also discussed to find the
approximate fundamental frequency of an n-degrees-of-freedom system.

11.11 Exercises

1. A three storey building frame is to be considered as a shear building. The
following data are given: m1 = m2 = 30kg; m3 = 20kg, k1 = 1000N/m;
k2 = 800N/m; k3 = 600N/m. Using the Vianello and Stodola method based
on stiffness coefficient, determine the fundamental frequency and
characteristic shape of all modes.

m

2m

4m

k

k

3k

=
4m

2m

m

3k
3k

k

k

k

3k

= =
    ω11

2  = 3 4k / m

2m

3k/4

2m

3k/7

    ω22
2  = 3 8k / m     ω33

2  = 3 7k / m

11.12 Three storey shear frame (Dunkerley’s method).
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2. Use Rayleigh’s quotient modified approach to determine the fundamental
frequency and the corresponding mode shape for Problem 1

3. Use the transfer method to determine the fundamental frequency and
mode shape for the three storey building frame of Problem 1.

4. Solve the above problem by Dunkerley’s approximation.
5. Determine the natural frequency and mode shape of the system shown in

Fig. 11.13 by the Holzer method.
6. The fundamental mode shape of a cantilever beam shown in Fig. 11.14

can be approximated as {φ}T =< 0.175 0.566 1.0 >. Obtain and estimate
the natural frequency by Rayleigh’s method.
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12
Time history response by mode

superposition in relation to structural
dynamics during earthquakes

Abstract: In this chapter, the mode superposition method using the mode
displacement and the mode acceleration methods is used to find the response
of the structure with classical damping. In addition, numerical methods
discussed in Chapter 7 for a single-degree-of-freedom system are extended
to find the dynamic response for a multiple-degrees-of-freedom system.
Relevant programs in MATLAB are also given.

Key words: normal coordinate, classical damping, time history, response
spectrum, SRSS rule, CQC rule.

12.1 Introduction

In the multi-storey building or in any system having n degrees of freedom,
if principal modes (normal modes) are used as generalized coordinates, the
n dynamic equilibrium equations will be uncoupled. Hence each uncoupled
equation can be solved independently as each equation contains one degree
of freedom only. One can apply any one of the numerical methods to determine
the response of a single-degree-of-freedom system. The response of a multiple-
degrees-of-freedom (MDOF) system is obtained by mode superposition by
summing the response of the individual modes. This procedure of dynamic
analysis is referred to as the mode superposition method, normal mode method
or simply modal analysis.

12.2 Limitations

Modal analysis is valid for linear systems only. Damping in the system must
be proportional to mass and stiffness and this damping is known as classical
damping. There are two forms of mode superposition method:

• mode displacement method;
• mode acceleration method.

The mode displacement method is based on stiffness formulation and the
mode acceleration method is based on the flexibility approach. Hence the
second method is not widely used. We will discuss mode displacement method
first followed by the mode acceleration method.
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It is observed in structural or mechanical systems that in most types of
dynamic loadings, the contributions of the various modes to the dynamic
response are the greatest for lowest frequencies and tend to decrease for
higher frequencies. Hence for practical applications, it is usually not necessary
to include any of the higher modes of vibration in the superposition process.

12.3 Mode displacement method for uncoupled

system

Method 1

The dynamic equation of motion for an n degree of freedom system may be
written as

[ ]{ } [ ]{ } { ( )} { } ( )m u k u F t F f t˙̇ + = = 12.1

where k and m are the symmetric stiffness and mass matrices respectively,
u u, ˙̇  are displacement and acceleration in physical coordinates respectively,
F(t) is the external force vector. Equation 12.1 is a coupled equation since it
cannot be solved independently, only simultaneously. The coupling may be
due to stiffness coupling or inertial coupling. The mass matrix will be uncoupled
for a lumped mass system and coupled for a consistent mass system. The
mode superposition method cannot be applied to the coupled form of equation
such as Eq. 12.1.

It is therefore necessary to find a coordinate system which will exhibit
neither stiffness coupling nor mass coupling which is the main essence of
mode superposition method. The coordinates that enable the decoupling of
the equations of motion are called ‘principal coordinates’ or ‘normal
coordinates’.

To uncouple the equations we introduce an alternative set of coordinates
y such that

y = y(u1, u2,…, un) 12.2

i.e. the actual generalized coordinate u can be written in terms of new
coordinates y as

{u} = [ψ]{y} 12.3

where [ψ] is the modal matrix determined from the solution of eigenvalue
problem. Each column vector of denotes the normalized eigenvector
corresponding to that particular mode. Hence u can be written as

{u} = [ψ]{y} 12.4

Hence transforming the equations of motion Eq. 12.1 from physical coordinates
to normal coordinates as
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[m][ψ]{ }˙̇y  + [k][ψ]{y} = {F} 12.5

Premultiplying with [ψ]T we get

[ψ]T[m][ψ]{ }˙̇y  + [ψ]T[k][ψ]{y} = [ψ]T[F] 12.6

[ψ]T[m][ψ] = [M] 12.7a

M is a modal mass matrix. Similarly,

[φ]T[k][φ] = [K] 12.7b

where [K] is the modal stiffness matrix.
If [ψ] happens to be normalized eigenvector matrix [φ]

[φ]T[m][φ] = [I] 12.8a

[φ]T[k][φ] = [ω]2 12.8b

{P(t)} = [φ]T{F} 12.8c

P(t) is called modal force vector or modal participation factor.
Since the modal mass = I and modal stiffness matrices = [ ]2ω n  are diagonal

can be written in a uncoupled equations as

˙̇y y P tr r r+ = ( )2ω r 12.9a

where,

P t F tr r( ) = ( )Tφ 12.9b

The complete response for the rth mode can be expressed as the sum of
response due to initial conditions and the modal response due to Pr(t).

The solution of Eq. 12.9a is written as

yr = ycr + ypr 12.10

where

y y t
y

tcr r r
r

r
r= +0

0cos sin ω ω ω
˙

12.11

and

y y DmFp st rr r= ( ) 12.12

The initial conditions for physical coordinates are

Displacement = {u}0 12.13a

Velocity = ( )0u̇ 12.13b

{u}0 = [φ]{y}0 12.14a

Premultiplying by [φ]T[m] we get
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[φ]T[m]{u}0 = [φ]T[m][φ]{y}0 12.14b

Since

φTmφ = I

{y}0 = [φ]T[m]{u}0 12.15a

Similarly,

{ } = [ ] [ ]{ }0
T

0ẏ m uφ 12.15b

or,

y m ur r0 = ( ) ( )T
0φ 12.16a

˙ ˙y m ur r0 = ( ) ( )T
0φ 12.16b

Thus complete response for the rth mode in normal coordinate can be
represented by the Duhamel integral expression as

y t y t
y

t p tr r r
r

r
r

r

t

r r( ) = cos + sin + 1 ( ) sin ( – ) d0
0

0
ω ω ω ω τ ω τ

˙
∫ t

12.17

The procedure discussed in an earlier chapter for evaluating an integral is
also applicable to Eq. 12.17. However for random dynamic excitation, it is
generally necessary to employ one of the numerical techniques discussed in
earlier chapters to obtain the time history response.

Now the exact response in physical coordinate is obtained by summing up
all the individual modal responses in normal coordinates given by

{u(t)} = [φ]{y} 12.18a

= ( )]Σ
r

N

r ry t
=1

φ [ 12.18b

Modal analysis is effective when only a few modes of the system are
required to render an accurate solution. In the case of tall buildings having
hundreds of degrees of freedom, the entire building possesses 100 eigen
pairs (i.e. 100 eigenvalues and 100 eigenvectors) that describe the normal
vibration mode. If it is known that frequency content of excitation force is in
the vicinity of the lowest few frequencies of the building, the higher modes
will not be excited and the force response can be determined by superposition
of only these few low frequency modes. Hence the displacement u(t) is
given as

u t( ) = Σ
r

p

r ry
=1

φ 12.19a

where p ≤ N. Suppose the excited force vector is given as

�� �� �� �� �� ��



Time history response by mode superposition 387

f = F0 sin ω t 12.20a

P = (φ)TF0 sin ω t 12.20b

The static response of normal coordinates

y t
P

trp
r

r

r

( ) = 1

1 –

sin2 2ω ω
ω

ω
























12.21a

u t
P

t
r

n

r
r

r

r

( ) = 1

1 –

sin
=1 2 2Σ φ

ω ω
ω

ω



 























12.21b

An approximate truncated solution is

u t
P

t
r

p

r
r

r

r

( ) = 1

1 –

sin
=1 2 2Σ ϕ

ω ω
ω

ω



 























12.21c

12.4 Modal participation factor

The forced response of an MDOF system is expressed in Eq. 12.21b as

u(t) = ∑ {φ}ryrRr(t) 12.22

when

yr r r= Γ /ω 2 12.23a

R(t) response factor is given by

= 1

1 –

sin2ω
ω

ω

r

t
























12.23b

Γr is called modal participation factor and is particular useful when used in
conjunction with the response spectrum analysis of MDOF systems.

Method 2 due to Chopra

Dynamic equation of motion of an n-degrees-of-freedom system is given by
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[ ]{ } [ ]{ } { } ( )m u k u F f t˙̇ + = 12.24

Assume the force vector is written in terms of normalized eigenvector as

{F} = ∑ Γι[m]{φ}i 12.25

Premultiplying both sides with { }Tφ n  we get

Γn n F= { } { }Tφ 12.26

where Γn is known as the modal participation factor corresponding to mode
n. Similarly all the modal participation factors can be found.

Now the force contribution for each mode can be found out as

[F] = [m][φ][Γ] 12.27

where [Γ] is a diagonal matrix consisting of all modal participation factors.
[F] contains n – columns = number of degrees of freedom of the system. The
first column of [F] may be viewed as an expression of the distribution of {F}
of applied force in terms of force distribution {F1} associated with natural
period ωn1. The force vector {Fnf (t)} produces a response only in the nth
mode and no response in other modes. The dynamic response in the nth
mode is entirely due to partial force vector {Fnf (t)}.

12.5 Time history analysis

Example 12.1
Solve the shear frame in Fig. 12.1 due to <F> = <10001000 500> f (τ) where
f (τ) is shown in Fig. 12.2.

F3

F2

F1

1

1.5

2

V3

K3 = 600

V2

K2 = 1200

V1

K1 = 1800

12.1 Three storey frame.
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Solution

K

k k k

k k k k

k k

=

+ – 0

– + –

0 –

=

3000 –1200 0

–1200 1800 –600

0 –600 600

1 2 2

2 2 3 3

3 3

































Given

U

U

U

U

U

U

1

2

3

1

2

3

0.5

0.4

0.3

;

0

9

0












=





























=












˙

˙

˙

where

U̇
U
t1
1d

d
=

F

F

F

f T
1

2

3

=

1000

1000

500

( )





























[ ]

2

1.5

1

m =
















[ ] 10

5.556 5.556 5.556

5.556 13.89 13.89

5.556 13.89 30.56

1 4K − −=
















[ ] [ ] 10

1.111 0.833 0.5556

1.111 2.083 1.389

1.111 2.083 3.056

1 3K m− −=
















Solving as an eigenvalue problem

1 { } [ ] [ ]{ }2
1

ω
ψ ψ= −K m  we get three eigenvalues and three

 eigenvectors.

1

0.024

12.2 Load vs. time.
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[ ]

0.3 0.676 2.47

0.64 0.601 2.57

1 1 1

ψ =
− −
−

−

















[ ] [ ][ ]

1.801

2.455

23.1

T
1
2

2
2

3
2

ψ ψm

M

M

M

=
















=
















From ψ  one will be able to get the normalized eigenvector φ.
Hence the natural frequencies and the normalized mode shapes are given

as

ωn 14.522 31.048 46.099

φ1i 0.224 –0.432 –0.513

φ2i 0.482 –0.386 0.535

φ3i 0.743 0.636 –0.21

The normalized eigenvector is given by

[ ]

0.224 0.432 0.513

0.482 0.38 0.535

0.743 0.636 0.21

φ =
− −
−

−

















The normal mode shapes are shown in Fig. 12.3.

[ ] [ ][ ] [ ]

210.87

963.959

2124.2

T 2φ φ ωK = =
















ω = 14.522 ω = 31.048 ω = 46.09

0.743

0.482

0.224

–0.38

–0.432

0.636 –0.21

–0.513

0.535

12.3 Normalized mode shapes.
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[φ]T[m][φ] = [I]

{ }

1000

1000

500

( )F f=











τ

[ ] { }

1077

494.45

83.663

Tφ F = −
−













{y}0 = [φ]T[m]{u}0

   = − −
− −












































= −

−













0.224 0.482 0.743

0.432 0.38 0.636

0.513 0.535 0.21

2

1.5

1

0.5

0.4

0.3

0.7361

0.4728

0.255

{ } [ ] [ ]{ }0
T

0˙ ˙y m u= φ

= − −
− −












































= −













0.224 0.482 0.743

0.432 0.38 0.636

0.513 0.535 0.21

2

1.5

1

0

9

0

6.507

5.211

7.2225

Uncoupled equations are

1. ˙̇y1+210.87 y1 = 1077 with y10 = 0.7361; ′y10  = 6.507
2. ˙̇y2  + 963.959 y2 = –494.45 with y20 = –0.4728; ẏ20  = –5.211
3. ˙̇y3  + 2124.2y3 = –83.663 with y30 = –0.255; ẏ30  = 7.2225

y

y

y

p

p

p

1

2

3

= =

= − = −

= − =

1077
210.87

DLF1 5.1074 DLF1

499.45
963.959

DLF2 0.518 DLF2

83.663
2124.2

DLF3 0.0393 DLF3

where DLF for the triangular loading shown in Fig. 12.4 is given by

DLF = ( ) sin ( – ) dω τ ω τ τn f t∫
=

–
 sin ( – ) dω τ ω τ τn

d

d
n

t
t

t∫ 
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=  sin ( – ) d – sin ( – ) d
0 0

ω ω τ τ τ ω τ τn

t

n

t

d
nt

t
t∫ ∫









=
cos ( – )

– 1 d cos ( – ) dω ω τ
ω ω τ ω τ τn
n

n n d
n

t
t

t∫





=
cos ( – )

– 1 [ cos ( – )]0ω ω τ
ω ω τ ω τn
n

n n d
n

tt
t

t


+ 1 cos ( – ) dω ω τ τ
n d

nt
t∫ 



=
cos ( – )

– 1 [ cos ( – )]0ω ω τ
ω ω τ ω τn
n

n n d
n

tt
t

t


+ 1 (–sin ( – )

0
ω

ω τ
ωn d

n

n

t

t
t










= 1 – 1 [ ] + 1 (0) –
cos 

+
sin 

2 2ω ω ω ω
ω

ω
ω

ωn
n n d d

n

n

n

n dt
t

nt
t t

t






= 1 – cos – +
sin ω ω

ωn
d

n

n
t t

t
t





   0 ≤ t < td

= − − − +





cos
sin ( ) sinω ω

ω
ω

ωn
n d

n g

n

n
t

t t
t

t
   td ≤ t ≤ ∞

For example

y t t
t

t
tp

d d
3 0.0393 1 cos 46.09

sin 46.09
46.09

= − − − +





   0 ≤ t ≤ td

y3p = –0.0393

× − − − +





cos 46.095
sin 46.095( )

46.095
sin 46.095

46.095
t

t t
t

td

d

td ≤ t ≤ ∞

1

ρ td

12.4 Load vs. time.
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Similarly y1p, y2p may be calculated as

y1 = y1c + y1p

y2 = y2c + y2p

y3 = y3p + y3p

Knowing y, u can be calculated as

{u} = [φ]{y}

Assuming initial displacement and velocities as zero, the steady state
solution is given by

{ }

1.145

2.460

3.794

DLF1

0.2232

0.1989

0.3299

DLF2

0.019 98

0.020 98

0.008 06

DLF3u =











+

−












+ −













Method 2 due to Chopra (All forces must vary with time with the same
function f (t)).

Modal participation factors may be calculated as

{ } [ ] { }

1077

494.45

83.643

TΓ = = −
−












φ F

Find [F] as

[ ] [ ][ ][ ]

482.7 431.1 85.15

779.03 288.17 66.6

800.58 317.36 17.43

F m= = −
−

















φ Γ

The force distribution is shown in Fig. 12.5. Now we are in a position to
calculate the displacement. For the first mode

800.58 317.3 17.43

779

482.7

288

431

66.6

85.1

==

500

1000

1000

12.5 Force distribution for Example 12.1.
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{ } [ ]

482.7

779.03

800.58

DLF1

1.145

2.460 83

3.79416

DLF11
1U Kp =












=












−

{ } [ ]

431.1

288.17

317.36

DLF1

0.2233

0.198 95

0.3299

DLF22
1U Kp =

−












=

−












−

{ } [ ]

85.15

66.6

17.43

DLF1

0.019 98

0.0209 86

0.0080 63

DLF33
1U Kp = −












= −












−

{U} = {U}1p + {U}2p + {U}3p

which agrees with the results of method 1.

Example 12.2
For the umbrella steel structure shown in Fig. 12.6 is acted upon by forces
at three degrees of freedom as {F}T=<10 20 30> sin ω t.

(a) Determine modal expansion vector of the forces.
(b) Find the displacement response assuming initial displacements and

velocities as zero.
(c) Find also the bending moment at the base.

Solution
The flexibility matrix is given by

[ ]

0.333 sym

0.5 1.333

0.5 1 1.333

a L
EI

= −
−

















3

m

L U3

3m m
U1

U2

L L

12.6 Umbrella frame.
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The mass matrix is

[ ]

5

1

1

m m=
















The dynamic equilibrium equation is given by

[K]{U} = ω2[m]{U}

Solving as an eigenvalue problem we get

Mode 1 Mode 2 Mode 3

    
ω mL

EI

3
0.526 1.614 1.732

U1 1 1 0

U2 –1.949 1.283 1

U3 1.949 –1.283 1

The above [ψ] may be converted to normalized eigenvector as

[ ] 1
0.281 0.347 0

0.547 0.445 0.707

0.547 0.445 0.707

φ = −
−

















m

{ }

10

20

30

F =












Find modal participation factors as

Γ1 1
T 8.28= =φ F

m

Γ2
T 0.98= = −φ2 F

m

Γ3
T 35.349= =φ3 F

m
Now the force component for each mode can be calculated as

[ ] [ ][ ][ ]

11.633 1.7 0

4.529 0.436 24.992

4.529 0.436 24.992

F m= =
−

− −
















φ Γ
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The force contributions for each mode are shown in Fig. 12.7.

{ } [ ]{ }

8.402

16.38

16.38

DLF11 1

3
U a F L

EI
= = −













{ } [ ]{ }

0.13

0.167

0.167

DLF22 2

3
U a F L

EI
= =

−
−













{ } [ ]{ }

0

8.322

8.322

DLF33 3

3
U a F L

EI
= =













where

DLF1 1
(1 )

sin ;  DLF2 1
(1 )

sin ;
1
2

2
2=

−
=

−β
ω

β
ωt t

DLF3 1
(1 )

sin
3
2=

− β
ω t

where

β ω
ω β ω

ω β ω
ω1

1
2

2
3

3
;  ;  = = =

n n n

{U} = {U}1 + {U}2 + {U}3

Moment at the base = (4.529 × 2L + 11.633L) DLF1

+ (0.436 × 2L – 1.7L) DLF2 + (0)

11.633 1.704

4.529
4.529 0.436

Mode 1

0.436

Mode 2

Mode 3

24.992 24.992

12.7 Force distribution for Example 12.2.
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12.6 Mode superposition solution for systems

with classical damping

Consider a multi-storey frame shown in Fig. 12.8. Usually damping which is
inherent property of the structure is present. In addition to stiffness, and
masses the damping of each floor is given by c1, c2, c3 respectively.

The equation of motion for a general as shown in viscously damped
MDOF Fig. 12.8 is expressed as

[ ]{ } +  [ ]{ } + [ ]{ } = { ( )}m u c u k u f t˙̇ ˙ 12.28

where M is = mass matrix
c is = damping matrix
k is = stiffness matrix

Writing generalized coordinates in terms of ‘normal’ coordinates as

{u} = [φ]{y} 12.29

Substituting in terms of normalized coordinates Eq. 12.28 becomes

[ ][ ]{ } [ ][ ]{ } [ ][ ]{ } { ( )}m y c y k y F tφ φ φ˙̇ ˙+ + = 12.30

Premultiplying with [φ] we get

[φ]T[m][φ]{ }˙̇y  + [φ]T[c][φ]{ }ẏ  + [φ]T[k][φ]{y] = [φ]T{F} 12.31

or

[ ]{ } [ ]{ } [ }{ } { ( )}M y C y K y P t˙̇ ˙+ + = 12.32

m3

c3

m2

m1

c2

c1

K1

V1

K2

V2

K3

V3

12.8 Viscously damped 3-degrees-of-freedom system.
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where M, C and K are the generalized mass, generalized damping and
generalized stiffness matrices. If [φ] is the normalized eigenvector

[φ]T[m][φ] = [I]

[φ]T[K][φ] = [ω2] 12.33

C is an n × n symmetric matrix that is diagonal only for a special case of [c].
This special case of [c] is referred to a classical damping or proportional
damping for which [c] is proportional to m and k as

[c] = α[m] + β[k] 12.34a

Hence,

[C] = [φ]T[c][φ] = α[φ]T[m][φ] + β[φ]T[k][φ] = α[I] + β [ ]2ω r

12.34b

where [C] is a diagonal matrix and is called the modal damping matrix, in
which,

cr r= + 2α β ω 12.35

Cr is called the modal damping coefficient for rth mode. Assume modal
damping factor is given by

ζ α
ω βωr

r
r= +





1
2

12.36a

Cr = 2ζrωr 12.36b

The modal damping factor ζr is given by

ζ ωr
r

r

C=
2

12.37

Hence Eq. 12.31 leads to uncoupled equations such as

˙̇ ˙y y y P tr r r r r r+ 2 + = ( )2ζ ω ωr 12.38

The solution of Eq. 12.38 for the rth mode can be expressed by the same
form as a single-degree-of-freedom (SDOF) system and the solution is given
by

y t P tr
dr

r
t

dr
r r( ) 1 ( ) e sin ( ) d

0

( )= −∫ − −
ω τ ω τ τζ ω τ

t

+ −y tr
t

d
r r(0) e cosζ ω ω

+ + −1 [ (0) (0) ]e sinω ζ ω ωζ ω

dr
r r r

t
dy y tr r˙r 12.39
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where

ω ω ζdr r r= 1 – 2 12.40

Frequently, in the absence of more definite information about damping, a
reasonable value for modal damping as Eq. 12.38 is simply assumed to be
valid.

If the solution of ‘n’ modal equations given by Eq. 12.38 are substituted
in Eq. 12.29

u t y t
r

N

r r( ) = ( )
=1
Σ ϕ 12.41

Then the exact system response u(t) in physical coordinates for all n mode
is obtained. However, if only p modes are retained in the solution then

u t y t
r

p

r r( ) = ( )
=1
Σ ϕ 12.42

rather than Eq. 12.41 is used to define the truncated response. The resulting
mode superposition solution omits the contribution of the modes (p + 1)
to n.

The damping discussed above is called Rayleigh damping, which is just
one example of proportional damping. This damping is also referred to as
classical damping, orthogonal damping and modal damping.

In Rayleigh damping the modal damping matrix [c] is defined as

c = [2ζrωr] 12.43

Rayleigh damping is therefore defined for an MDOF system by specifying
for two different unequal frequencies of vibration and solving by simultaneous
solution of the equation

ζ α
ω βωr

r
r= +





1
2

12.44

i.e. ζ α
ω βω1

1
1

1
2

= +



 12.45a

ζ α
ω βω2

1
2

1
2

= +



 12.45b

Solving Eqs 12.45a and 12.45b we get α and β and hence [c] matrix is
defined. It is also seen in Eq. 12.44 that contribution of mass in damping is
inversely proportional to ωr and contribution of stiffness is proportional to
ωr.

Therefore for large ωr the stiffness proportional term determines the system
damping. This trend generally leads to unrealistically high damping ratios in
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higher modes. For a large MDOF system fortunately the modal superposition
methods, we consider p < < n modes only and hence damping in the higher
modes is generally not a critical issue. In modal analysis it is not necessary
to formulate or explicitly give the equation for [C] displacement since the
values of ζr are required. But [C] is required for dynamic response of MDOF
system by direct numerical integration procedure.

Example 12.3
For the three storey shear building shown in Fig. 12.1, the modal damping
factors for the first two fundamental modes of vibration have been determined
as ζ1 = 0.05; ζ2 = 0.06 respectively. Calculate ζ1 on the assumption of
Rayleigh damping.

Solution

{ }

14 522

31.048

46.099

ω n =












[ ]

0.224 0.432 0.513

0.482 0.386 0.535

0.743 0.636 0.21

φ =
− −
−

−

















Rayleigh damping factor for rth mode is given by

ζ α
ω βωr

r
r= 1

2
+





for

ωn1 = 14.522; ς1 = 0.05

0.05 1
2 14.522

14.522= +( )α β

for

ωn2 = 31.048; ς2 = 0.06

0.06 1
2 31.048

31.048= +( )α β

Solving,

α + 210.88 β = 1.4522

α + 963.97 β = 3.7258
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Solving α = 0.8155; β = 3.019e–03. Hence ζ3 is determined as

ζ 3
1
2

0.8155
46.097

3.019 3 46.09 0.0784= + − ×( ) =e

Hence

[C] 2

1.4532

3.7257

7.228

1 1

2 2

3 3

=
















=
















ζ ω
ζ ω

ζ ω

12.7 Numerical evaluation of modal response

The numerical integration procedures discussed in earlier chapters for an
SDOF system can readily be applied to MDOF systems. Using modal analysis
we get n independent (uncoupled) differential equations which are then
evaluated at discrete time intervals by any numerical procedure. These normal
coordinates are transformed back to physical coordinates u and updated after
each time step.

One has to resort to numerical integration procedure since the forcing
function is arbitrary and cannot be expressed by means of a simple analytical
expression. The algorithm is given in Table 12.1. As has been already seen
for accuracy t ≤ Tn/10 should be selected where Tn is the natural period

Table 12.1 Algorithm for dynamic response of an MDOF system

(a) Initial calculation
(i) Establish m, k, F(t)
(ii) Calculate natural frequencies and mode shapes. For a large MDOF

system consider only p modes. P<<N. Get normalized mode shape.
(iii) Calculate proportional damping factors if required.
(iv) Calculate modal force vectors
(v) Express independent equation in normal coordinates

    ̇˙ ˙y y y P tr r r r r r r+ 2 + = ( )2ς ω ω

(vi) Select time step 
    
∆t

Tn≤
10

 or 
    
∆t

T p≤
10

 for large system.

(vii) Make the remaining initial calculation required for the numerical
procedure selection.

(b) Calculation for each time step
(i) Perform the required calculation on each independent equation.
(ii) Establish normal coordinates.
(iii) Transform normal coordinates to physical coordinates as

u = ϕ(y)

    ̇ ˙u y = ( )ϕ

    ̇˙ ˙˙u y = ( )ϕ
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corresponding to highest ratio mode associated with the system. When fewer
modes are considered ∆t ≤ Tp/10 where Tp is the period of pth mode.

Example 12.4
All three levels of a three storeyed shear building shown in Fig. 12.9 are
subjected to an arbitrary time varying force specified in Fig. 12.10. Determine
the dynamic response by mode superposition method. Plot the value of
displacement, velocity and acceleration time histories for the roof. Calculate
based on Rayleigh damping. I = 6.243 × 10–4m4, E = 200 GPa. Heights of
bottom storey, middle storey and lower storey are 6, 3.6 and 3 m respectively.
Moments of inertia of columns of bottom middle and lower storey are 0.75I,
I, 0.75I. Weights of first, second and roof are 180, 135 and 90 kN respectively.
Assume ς1 = 0.03; ς2 = 0.04. Determine ς3.

Solution
Mass of the first floor = 18348.6kg

Mass of the second floor = 13761kg

Mass of the roof = 91 74 kg

Stiffness of ground storey =10276543N/m

Stiffness of first floor = 64228394N/m

Stiffness of second floor = 83240000N/m

Force–time diagrams are shown in Fig. 12.10.

ω1 = 15.33

F3

F2

F1

m3

m2

m1

V3

V2

V1

12.9 Three storey frame.
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12.10 Force–time diagram.

F2

58000N

0 1.0 1.5

F3

66723N

44482N

0 3

F1

36 000N

0 1 4

ω2 = 74.79

ω3 = 134.24

ζ α
ω ω β1

1
1

1
2

= +





0.03 2 =
15.33

15.33× +( )α β

α + 15.332β = 15.33 × 0.03 × 2

= 0.9198
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ζ α
ω ω β2

2
2

1
2

= +





2 0.04
74.79

74.79× = +α β

α + 74.792β = 2 × 0.04 × 74.79

= 5.9832

Hence,

β(74.792 – 15.332) = 5.0634

β = 9.4 e–4

Substituting in any equation

α = 0.6977

ς 3
–41

2
0.6977
134.24

134.24 * 9.4 e 0.0656= +



 =

The displacement, velocity and acceleration history at the roof are shown in
Fig. 12.11 using a program developed in MATLAB and whose listing is
given below.

R
o

o
f 

d
is

p
la

ce
m

en
t 

in
 m

0.03

0.025

0.02

0.015

0.01

0.005

0

–0.005

–0.01
0 1 2 3 4 5

Time in secs
(a)

12.11 (a) Displacement response; and (b) velocity response; and (c)
acceleration response of the roof.
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12.8 Program 12.1: MATLAB program for dynamic

response using modal superposition

% program to get dynamic response of MDOF using modal superposition
%force.dat contains data time, force1, force2, force3
clc;
close all;
m=[18348 0 0;0 13761 0;0 0 9174];
[nd,nd]=size(m);

12.11 Continued

R
o

o
f 

ve
lo

ci
ty

 i
n

 m
/s

ec

0.3

0.2

0.1

0

–0.1

–0.2
0 1 2 3 4 5

Time in secs
(b)

R
o

o
f 

ac
ce

le
ra

ti
o

n
 i

n
 m

/s
q

.s
ec

8

6

4

2

0

–2

–4

–6
0 1 2 3 4 5

Time in secs
(c)
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disp(‘ mass matrix’)
m
% if forces are acting at degrees of freedom
force=‘force.dat’
f=load(force);
%if base ground acceleration is given
% dis=‘disp.dat’
% di=load(dis);
% % convert to equivalent nodal loads
% for i=1:nd
% f(:,i)=-di*m(i,i);
% end
%you can give stiffness matrix
disp(‘ stiffness matrix’)
k=[.74504e8 -.64228e8 0;-.64228e8 .14746e9 -.8324e8;0 -.8324e8 .8324e8];
k
a=inv(k);
% or you can given flexibility matrix directly
% a=[.75 .5 .25;.5 1 .5;.25 .5 .75];
disp(‘ flexibility matrix’)
a
cc=a*m;
[ms,ns]=size(m);
%eigen values and eigen vectors
[V,D]=eig(cc);
for i=1:ms

e(i)=1/D(i,i);
end
Qh=max(e)+0.001;
Ql=0;
for i=1:ms

for j=1:ms
if e(j) > Ql & e(j) < Qh

kk=j;
Qh=e(j);

else
end
end

Ql=Qh;
Qh=max(e)+0.001;
om1(i)=e(kk);
omega(i)=sqrt(e(kk));
for l=1:ms
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p1(l,i)=V(l,kk);
end
end
%Normalizing the mode shape
L=p1'*m*p1;
%develop modal matrix
for i=1:ms

for j=1:ms
ph(i,j)=p1(i,j)/sqrt(L(j,j));

end
end
disp(‘ Natural frequencies in rad/sec’)
disp(omega)
disp(‘ normalized modal vector’)
disp(ph)
ph’*m*ph
%give alpha and beta
alpha=0.6978;
beta=9.4e-4;
disp(‘ damping matrix’)
cd=alpha*m+beta*k;
cd
for i=1:ms

zeta(i)=0.5*(alpha/omega(i)+beta*omega(i));
end
%give initial displacements and velocities of all degrees of freedom
xin=[0; 0.0; 0.0];
vin=[.0; 0.0; 0];
disp(‘ initial displacements of all degrees of freedom’)
xin
disp(‘ initial velocities of all degrees of freedom’)
vin
xmin=ph’*m*xin;
vmin=ph’*m*vin;
%define forces at various times at all degrees of freedom
dt=0.02;
ttot=5.0;
p=f*ph;
for ii=1:nd

x(1,ii)=xmin(ii,1);
x1(1,ii)=vmin(ii,1);
c=2.0*zeta(ii)*omega(ii);
x2(1,ii)=p(1,ii)-c*x1(1,ii)-omega(ii)^2*x(1,ii);
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ks=omega(ii)^2+2.0*c/dt+4.0/(dt^2);
ic=1;
for t=0:dt:ttot-dt

dps=p(ic+1,ii)+(4.0*x(ic,ii)/dt^2+4.0*x1(ic,ii)/dt...
+x2(ic,ii)+c*2.0*x(ic,ii)/dt+x1(ic,ii));

x(ic+1,ii)=dps/ks;
x2(ic+1,ii)=(4.0/dt^2)*(x(ic+1,ii)-x(ic,ii)-...

dt*x1(ic,ii))-x2(ic,ii);
x1(ic+1,ii)=(2.0/dt)*(x(ic+1,ii)-x(ic,ii))-x1(ic,ii);
ic=ic+1;
end

end
u=x*ph’;
v=x1*ph’;
acn=x2*ph’;
tt=linspace(0,5,251);
figure(1);
plot(tt,u(:,3),‘k’)
xlabel(‘ time in secs’);
ylabel(‘ roof displacement in m’);
title(‘ displacement response of the roof’)
figure(2);
plot(tt,v(:,3),‘k’)
xlabel(‘ time in secs’);
ylabel(‘ roof velocity in m/sec’);
title(‘ velocity response of the roof’)
figure(3);
plot(tt,acn(:,3),‘k’)
xlabel(‘ time in secs’);
ylabel(‘ roof acceleration in m/sq.sec’);
title(‘ acceleration response of the roof’)

OUTPUT OF MATLAB

mass matrix

m =

18348 0 0
0 13761 0
0 0 9174

force =
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force.dat

stiffness matrix

k =

74504000 –64228000 0
–64228000 147460000 –83240000
0 –83240000 83240000

flexibility matrix

a =

1.0e-006 *

0.0974 0.0974 0.0974
0.0974 0.1130 0.1130
0.0974 0.1130 0.1250

damping matrix

cd =

1.0e+005 *

0.8284 –0.6037 0
–0.6037 1.4821 –0.7825
0 –0.7825 0.8465

Natural frequencies in rad/sec
15.3317 74.7946 134.2407

normalized modal vector
–0.0046 –0.0055 0.0016
–0.0051 0.0024 –0.0064
–0.0052 0.0063 0.0065

ans =

1.0000 0.0000 –0.0000
0.0000 1.0000 0.0000
–0.0000 0.0000 1.0000
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initial displacements of all degrees of freedom

xin =

0
0
0

initial velocities of all degrees of freedom

vin =

0
0
0

12.9 Dynamic analysis using direct integration

methods

In Chapter 7, we saw the dynamic analysis of a SDOF system using the
direct integration method. Here Newmark’s constant and linear acceleration
methods can be extended to get dynamic response for MDOF systems. Table
12.2 gives the algorithm for the dynamic analysis of MDOF systems using
Newmark’s method. This algorithm can be modified so as to apply Wilson-
θ or any other numerical method discussed in Chapter 7.

The program developed in MATLAB is applied to Example 12.4 and the
dynamic displacement, velocity and acceleration response of the roof are
obtained as shown in Fig. 12.12.

12.10 Program 12.2: MATLAB program for finding

dynamic response of MDOF using direct

integration method (Newmark’s method)

% dynamic analysis using direct integration method
% input mass matrix
*force.dat contains data for forces as time, force1, force2,force3
clc;
close all
m=[18438.6 0 0;0 13761 0;0 0 9174];
disp(‘ mass matrix’)
m
[ns,ms]=size(m);
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Table 12.2 Algorithm for dynamic analysis using the
direct integration method

Special cases:
(1) Average acceleration method γ = 1/2; β = 1/4
(2) Linear acceleration method γ = 1/2; β = 1/6

1. Initial conditons

1.1     { } = [ ] {{ } – [ ]{ } – [ ]{ } )0
–1

0 0 0˙˙ ˙u M F C u K u
1.2 Select ∆t

1.3
      
[ ] = [ ] + 

 
[ ] + 1 [ ]

2
K̂ K

t
C

t
M

γ
β β∆ ∆

1.4
    
[ ] = 1

 
[ ] + [ ]a

t
M C

β
γ
β∆

    
[ ] = 1

2
[ ] + 

2
–1 [ ]b M t C

β
γ
β

∆






2. Calculate for each time step

2.1
      { } = { } + [ ]{ } + [ ]{ }∆ ∆ˆ ˙ ˙ ˙F F a u b ui i i i

2.2
      { } = [ ] { }–1∆ ∆u K Fi i

ˆ ˆ

2.3
      
{ } = { } – { } + 1 – 

2
{ }∆

∆
∆ ∆˙ ˙ ˙ ˙u

t
u u t ui i i i

γ
β

γ
β

γ
β







2.4
      
{ } = 1 { } – 1 { } – 1

2
{ }

2
∆

∆
∆

∆
˙ ˙ ˙ ˙ ˙u

t
u

t
u ui i i iβ β β

2.5 {u}i+1 = {u}i + {∆u}i

    { } = { } + { }+1˙ ˙ ˙u u ui i i∆

    { } = { } + { }+1˙˙ ˙˙ ˙˙u u ui i i∆
3. Repeat steps 2 for other time steps.

% if forces are acting at degrees of freedom
force=‘force.dat’
f=load(force);
% disp(‘ force at various degrees of freedom’);
% f;
%if base ground acceleration is given
% dis=‘disp.dat’
% di=load(dis)
% % convert to equivalent nodal loads
% for i=1:ns
% f(:,i)=-di*m(i,i)
% end
%input damping matrix
c=100000*[0.82836 -0.6037 0;-0.6037 1.4821 -0.7824;0 -0.7824 0.84647];
disp(‘ damping matrix’)
c
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%input stiffness matrix
k=[74504937 -64228394 0;-64228394 147468394 -83240000;0 -83240000
83240000];
disp(‘ stiffness matrix’)
k

format long;
kim=inv(k)*m;
[evec,ev]=eig(kim);

12.12 (a) Displacement response; (b) velocity response; and (c)
acceleration response of the roof.
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0.02

0.015

0.01

0.005

0
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(a)
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(b)
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for i=1:ns
omega(i)=1/sqrt(ev(i,i));

end
disp(‘ natural frequencies’)
omega
% give gamma=0.5 and beta=0.25 for Newmark average accln method
%gama=0.5;
%beta=0.25;
%give gamma=0.5 and beta=0.1667 for Newmark linear accln method
gama=0.5;
beta=0.167;
%give initial conditions for displacements
u0=[0.0 0.0 0.0];
disp(‘ initial displacements’)
u0
%give initial condition for velocities
v0=[0. 0. 0.];
disp(‘ initial velocities’)
v0
for i=1:ns

a0=inv(m)*(f(1,:)’-c*v0'-k*u0');
end
dt=0.02;
kba=k+(gama/(beta*dt))*c+(1/(beta*dt*dt))*m;
kin=inv(kba);

12.12 Continued
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aa=(1/(beta*dt))*m+(gama/beta)*c;
bb=(1/(2.0*beta))*m+dt*(gama/(2.0*beta)-1)*c;
u(1,:)=u0;
v(1,:)=v0;
a(1,:)=a0;
for i=2:251

df(i,:)=f(i,:)-f(i-1,:)+v(i-1,:)*aa’+a(i-1,:)*bb’;
du(i,:)=df(i,:)*kin;
dv(i,:)=(gama/(beta*dt))*du(i,:)-(gama/beta)*v(i-1,:)+dt*(1-gama/

(2.0*beta))*a(i-1,:);
da(i,:)=(1/(beta*dt^2))*du(i,:)-(1/(beta*dt))*v(i-1,:)-(1/(2.0*beta))*a(i-1,:);
u(i,:)=u(i-1,:)+du(i,:);
v(i,:)=v(i-1,:)+dv(i,:);
a(i,:)=a(i-1,:)+da(i,:);

end
tt=linspace(0,5,251);
figure(1);
plot(tt,u(:,3),’k’);
xlabel(‘ time in secs’);
ylabel(‘ roof displacement’);
title(‘ displacement response of the roof’);
figure(2);
plot(tt,v(:,3),’k’);
xlabel(‘ time in secs’);
ylabel(‘ roof velocity’);
title(‘velocity response of the roof’);
figure(3);
plot(tt,a(:,3),’k’);
xlabel(‘ time in secs’);
ylabel(‘ roof acceleration’);
title(‘ acceleration response of the roof’)

OUTPUT

mass matrix

m =

1.0e+004 *

1.84386000000000 0 0
0 1.37610000000000 0
0 0 0.91740000000000
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force =

force.dat

damping matrix

c =

82836 –60370 0
–60370 148210 –78240
0 –78240 84647

stiffness matrix

k =

74504937 –64228394 0
–64228394 147468394 –83240000
0 –83240000 83240000

natural frequencies

omega =

1.0e+002 *

0.15323852988388 0.7469278455770 1.34226456460257

initial displacements

u0 =

0 0 0

initial velocities

v0 =

0 0 0

12.11 Normal mode response to support motions

In many structures there is a great interest in studying the response of MDOF
systems due to support motions such as the earthquake response of structures
(see Fig. 12.13).
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Let ug be the ground displacement due to earthquake motion. The system
equilibrium equations is physical components is written as

[ { } { } [ ]{ } [ ]{ } { }m u I u c u k ug] ˙̇ ˙̇ ˙+ + + = 0 12.46a

or,

[ ]{ } [ ]{ } [ ]{ } [ ]{ } ( )effm u c u k u m I u F tg˙̇ ˙ ˙̇+ + = − = 12.46b

In terms of normal coordinates,

{ } [ ]{ } [ ]{ } { ( )}eff˙̇ ˙y y y P tn n n+ + =2 2ρ ω ω 12.47

The procedure is similar to the force acting at the coordinates.

Example 12.5
The base of the three storeyed shear frame building shown in Fig.12.9 is
excited by horizontal ground acceleration ˙̇ug  shown in Fig. 12.14. Determine
the dynamic response of the structure by mode superposition method. Plot
the histories for relative displacement, relative velocity and total absolute
acceleration for the top level of the building for the time interval 0 ≤ t ≤ 5.

Solution
The displacement, velocity and total acceleration history at the roof are
shown in Fig. 12.15.

12.12 Response spectrum analysis

In Chapter 6 we discussed the response spectra or shock spectra for a specific
dynamic disturbance particular for an SDOF system. The technique is also

u

ug

12.13 Support motion of a multi-storey frame.
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applicable to MDOF systems. Usually the design engineer is interested in
finding the maximum response of a system to a specified input. In such cases
response spectrum analysis is useful. The maximum modal response of rth
mode of an MDOF system to a specified input is expressed in physical
coordinates as

{ } (DMF) /-maxu r r r r r= | |φ ωΓ 2 12.48

Where,
{u}r-max = maximum response of rth mode

{φ}r = normalized eigenvector of fth mode
Γr = modal participation factor

(DMF)r = dynamic magnification factor for rth mode.

0.45g

0.25g

0
0.75 1.5

12.14 Excited ground acceleration.
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12.15 (a) Displacement response; (b) velocity response; and
acceleration response of the roof.
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An upper bound for the total response may be obtained by summing numerically
the maximum response for each mode. Hence maximum response can be
expressed as

{ }u ma r

p

r r r r=
−
Σ Γ

1
φ ω(DMF) / 2 12.49

The numerical sum as given in Eq. 12.49 is a very conservative estimate.
This shows that maximum response for all modes occur simultaneously.
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This is neither reasonable nor correct. Many statistical methods for combining
the maximum modal response have been developed and several of these
modal combinations will be discussed later. A popular method is square root
of sum of squares (SRSS) given by

{ }u
r

n

r r rmax =
2({ } (DMF) )

1
2

= 





Σ Γ

1
φ 12.50

The SRSS method for combining modal maximum has been shown to
render acceleration approximation to two-dimensional structural systems
exhibiting well-separated vibration frequencies. For three-dimensional systems
and other systems with closely spaced modes, the complete quadratic
combination (CQC) method renders significant improvement in estimating
the response. (Two consecutive modes are assumed as closely spaced of
their corresponding frequencies differ from each other by 10% or less of the
lower frequency.) The CQC combination is expressed as

R R P R
r

n

s

n

r rs smax =
 =

=
Σ Σ

1 1
12.51

where Rr and Rs are the peak values or the particular response for the rth and
sth modes respectively. For constant damping ζ = ζ1 = ζ2 = … = ζp and Prs

is given is

Prs = +
− + +

8 (1 )
(1 ) 4 (1 )

2 3/ 2

2 2 2 2

ζ λ λ
λ ζ λ λ

12.52

ω ω λ ω
ωs r

r

s
> =;  12.53

R R P Rmax [ ]{ }= < > 12.54

Example 12.6
The top level of the three storeyed building shown in Fig. 12.9 is subjected
to arbitrary time varying force as shown in Fig. 12.16. Determine the maximum
displacement of the top level (u3)max by

(a) time history analysis;
(b) response spectrum technique.

Combine the individual modal maxima by the SRSS method. Assume F0 =
58000N.

Solution
The natural frequencies and mode shapes for this structure are calculated
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( ) =  

18 348.6

13 761

9174

m

















( ) =  

74 504 937 –64 228 394 0

–64 228 394 147 468 394 –83 240 000

0 –83 240 000 83 240 000

k

















eigenvector =  

–0.5383 –0.6328 0.1734

–0.5881 0.2772 –0.6915

–0.6038 0.7230 0.7012

v

















ω1 = 15.3387; ω2 = 74.7945; ω3 = 134.242

v mvT =  

13 418 0 0

0 13 200 0

0 0 11643

















=
1

2

3

M

M

M

















Normalized eigenvector ( ) =

–0.0046 –0.0055 0.0016

–0.00051 –0.0024 –0.0064

–0.0052 0.0067 0.0065

φ
















T1
1

= 2 = 2
15.3387

= 0.4096π
ω

π

T2
2

= 2 = 2
74.7945

= 0.084π
ω

π

58000N

0 0.25 0.5

12.16 Time varying force.
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T3
3

= 2 = 2
134.24

= 0.046 80π
ω

π

Force vector = { } =

0

0

5800

F

N













Modal participation factor/ω2

y F1 1
T

1
2/= φ ω

= 

–0.0046

–0.0051

–0.0052

0

0

58 000

15.3387

T

2

































= 1.28

y
F2 2

T

2
2=

( )ϕ
ω

=

–0.0055

–0.0024

–0.0003

0

0

58 000

74.7945
= 0.0653

T

2

































y
F3 3

T

3
2=

( )ϕ
ω

=

–0.0016

–0.0064

–0.0065

0

0

58 000

134.24
= 0.0209

T

2

































The response spectrum for the triangular load pulse shown in Fig. 12.17 is
given in Fig. 12.18. Therefore the DMF for each mode is given by (referring
to Fig. 12.18)

Mode1 = d

1

t
T

= 0.5
0.4096

= 1.22

DMF1 = 1.48
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Mode 2 = d

2

t
T

= 0.5
0.084

= 5.95

DMF2 = 1.04

Mode 3 = d

3

t
T

= 0.5
0.046 80

= 10.68

DMF3 = 1.0

12.17 Rectangular, triangular and double triangular pulses.

Case 1: Rectangular pulse
Case 2: Triangular pulse
Case 3: Symmetric triangular pulase

0.10 1.00 10.0
td/T

D
M

F

2.50

2.00

1.50

1.00

0.50

0.00

12.18 DMF for various pulses.
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The individual modal maxima represented in physical coordinates are
determined from

(U3)max1 = φ31y1(DMF)1

= 0.0052 × 1.28 × 1.48

= 0.0098

(U3)max2 = φ32y2(DMF)2

= 0.0067 × 1.04 × 0.0653

= 0.000455

(U3)max3 = φ33y3(DMF)3

= 0.0065 × 0.0209 × 1

= 0.000 135 85

Combining the modal maximum by SRSS method, we get

( ) 0.0098 0.000 455 0.000135853 Max
2 2 2U = + +

= 0.0108 m

By CQC method (Assume ζζζζζ = 0.05)

λ =
















1 0.205 0.114

4.876 1 0.557

8.7518 1.799 1

[ ]

1 0.00243 0.000874

0.00243 1 0.02645

0.000874 0.02645 1

p =
















u u P uR = < > [ ]{ }

u PR = < >











0.0098 0.000 455 0.00013585 [ ]

0.0098

0.000 455

0.00013585

= 0.009 86 m

For time history analysis one could use the program developed in MATLAB.
The comparison of values by time history and response spectrum method is
given in Table 12.3.
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Example 12.7
Determine for Example 12.5 earthquake participation factor =
Γr r m I= { } [ ]{ }Tφ
Solution

Γ1 =< − − − >



























0.0046 0.0051 0.0052

18 348.6

13 762

9174

1

1

1

= –202.09

Γ2 0.0055 0.0024 0.0063

18 348.6

13 762

9174

1

1

1

=< − >




























= –10.09

Γ3 0.0016 0.0064 0.0065

18 348.6

13 762

9174

1

1

1

=< − >




























= 0.91836

12.13 Mode acceleration method

An alternative form of mode superposition method is mode acceleration
method. Since it is a flexibility approach, it is not usually employed in
dynamics. Compared with mode superposition analysis it exhibits improved
convergence characteristics. In this method we require fewer vibration modes.

The equation of motion can be written as

{ ( )} [ ] ({ ( )} [ ]{ }]1u t K F t m u= −− ˙̇ 12.55

where [K]–1 = [a]. If the acceleration vector is approximately û  then truncated
mode acceleration solution is given by

Table 12.3 Comparison of values by time history and
response spectrum method

DOF Max t SRSS CQC

1 0.008366 0.314
2 0.00938 0.314
3 0.01003 0.32 0.0108 0.00986
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{ ( )} [ ] ({ ( )} [ ]{ }]1ˆ ˙̇u t K F t m u= −− 12.56

But ˙̇u t( )  (physical coordinates) can be written in terms of normalized
coordinates as

˙̇ ˙̇u t y t
r

p

r r( )  ( )
=

= Σ
1

φ 12.57

Now we get,

ˆ ˙̇u t y t
r r( ) ( ) –  ( )–1 –1

=
= k F t k m

p

rΣ
1

ϕ 12.58

But,

[ ] ( ){ } = 1–1
2K m r
r

rϕ
ω

ϕ 12.59

So,

{ ( )} [ ] { ( )} –  1 (–1
= 2

ˆ ) ˙̇u t y
r r= 





k f t
p

r
rΣ

1 ω
ϕ 12.60

The first term of Eq. 12.60 represents the pseudo-static response and the
second term is the mode acceleration, which gives the method its name.
Since ω is in the denominator, this method provides quadratic convergence.
Even though it is enough to consider ‘p’ modes, it is also important to
consider all the roots whose frequencies are close proximity to any excitation
frequency.

Example 12.8
Do the same problem as Example 12.5 by mode acceleration method when
it is subjected to force = 58 000 sin(2.5 ω1t).

k1 = 10 276 543

k2 = 64 228 394

k3 = 83 240 000

m =

18 348.6

13 761

91.74

















k =

74 504 937 –64 228 394 0

–64 228 394 147 468 394 –83 240 000

0 –83 240 000 83 240 000

















Solution
The natural frequencies and the normalized eigenvector are
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ω φ=

15.3387

74.7945

134.2420

;  =

–0.0046 –0.0055 0.0016

–0.0051 0.0024 –0.064

–0.0052 0.0063 0.0065

































P = (φ)TF

=

–301.6

365.4

377.0

















[a] = [k]–1

a

E E E

E E E

E E E

=

9.73 – 08 9.73 – 08 9.73 – 08

9.73 – 08 1.128 – 07 1.128 – 07

9.73 – 08 1.128 – 02 1.248 – 07

















ω = 2.5 × ω1

= 2.5 × 15.3387

= 38.346

The truncated solution for the top level of the structure is expressed in
physical coordinates as

ˆ ˙̇u t a F t y t
r

r r3 33 0 2 3( ) = sin 38.346  – 1 ( ) ( )Σ
ω

φ

Since

˙̇y t yr r r( ) 2= −ω

so

û t a F t
r

y
n

p

r r3 33 0 =1

2

3( ) = sin 38.346  – ( )Σ ω
ω φ





û t a F t3 33 0( ) = sin 38.346

+ ( ) 1
(1 – )

sin 38.34
=1

2

3 2 2Σ
n

p

r
r

rr
p

r
tω

ω φ
ω β















û t E t
r

p
rn

p

r
r

3 =1

2

3 2( ) = 1.248 – 07 58 000 sin 38.34 + ( )× 



Σ ω

ω φ
ω
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1
(1 – )

sin 38.342β r
t









= 0.0072 sin 38.34t

+ 38.346
15.3387

(0.0052) 301.6
15.3387

sin 38.4
(2.5 – 1)

2

2 2( ) 





t

+ 38.346
74.7945

(0.0063) 365.4
74.7945

sin 38.4
(1 – 0.512 )

2

2 2( ) 





t

= 0.0072 sin 38.34t|p=1 + 0.002 00 sin 38.4t |p=2

+ 0.001 466 sin 38.4t |p=3 + 0.000 00 sin 38.4t

u3 = 0.009 28 sin 38.4t

For low-excitation frequencies even a one-term solution produces a fairly
accurate result. However for high-frequency excitation cases, all three modes
must be considered for exact solution. This is because the excitation frequencies
are in the vicinity of natural frequencies.

A general expression for ˙̇y tr ( ) for any arbitrary excitation can be obtained
as by substituting in modal acceleration equation

y t y t y tr r r
r

r r( ) ( ) cos ( ) 1 ( ) sin ( ( ))= +0 0ω ω ω˙

 + −∫1 ( ) sin ( ) d
0M

P t
r r

r rω τ ω τ τ
t

12.61

Any numerical integration can be used to solve the above equation.

12.14 Summary

In this chapter, time history analysis has been carried out by modal superposition
and numerical integration methods. In addition, the modal acceleration method
is also applied to find the dynamic response of the structures.

12.15 Exercises

1. The stiffness and mass matrices for a certain two-degrees-of-freedom
structure are

[ ]
400 200

200 200
;  [ ]

2 0

0 1
k M=

−
−







= 





Determine the damping matrix of the system corresponding to 20% of
critical damping or the first mode and 10% for the second mode.
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2. The natural frequencies and normal modes (arranged in the modal
method) for a three storey building are

ωn1 = 9.31 rad/s; ωn2 = 20.94 rad/s; ωn3 = 29 rad/s and

[ ]

0.1114 0.1968 0.1245

0.2113 0.0277 0.2333

0.2703 0.2868 0.2114

φ =
− −
−

−

















Determine the damping matrix for the system corresponding to damping
ratios of 10% for the modes.

3. Do Exercise 1 by modal analysis if the forces acting at the two degrees
of freedom are shown in Fig. 12.19 (neglect damping).

4. Do Exercise 3 by direct integration using Newmark’s linear acceleration
method and assume (∆t = 0.005 s) find displacement, velocity and
acceleration at 0.02 s.

5. Use the program developed in MATLAB for modal analysis of the
frame given in Exercise 1 and obtain the displacement, velocity and
acceleration response for the roof.

6. Use the program developed in MATLAB for direct integration method
and obtain the displacement, velocity and acceleration response for the
roof of Exercise 1.

7. A three storey building is subjected to an excited force of P cos (ω t)
at the top level due to steady state vibration. Determine the response at
the top level on the basis of consideration of (a) first mode only, (b)
first two modes only and (c) all three modes for ω = 0; ω = 0.5 ωn1; ω
= 1.3 ωn2. The stiffness of bottom, middle and top storeys are 240, 160
and 160 kN/mm respectively. The mass at all storey levels is 20 000 kg.
Solve the problem by modal superposition method.

8. Solve Problem 7 by mode acceleration method.
9. For a three storey shear building masses of all floors = 20 000kg. The

stiffness of the bottom middle and top storey are 24 × 107, 16 × 107 and
16 × 107 kN/m respectively. The pulses to which masses are subjected
have been shown in Fig. 12.20. Find out the displacements at the level
of second mass. What is the maximum force developed just below

12.19

18kN

0.2s 0.5s

27kN
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second mass? Use either the modal superposition method or the modal
acceleration method. Compare your answers by running the MATLAB
program.

10. The base of the frame shown in Fig. 12.21 is subjected to horizontal
displacement

x
t

t
t t x t t

d
d d0 00.1 sin ;  0 ;  0 = ≤ ≤ = ≥π

.

Neglecting damping and assuming td = 0.1 s determine the horizontal
displacement of the masses. What are their maximum values?

11. Use the program developed in MATLAB for modal superposition method
and find the displacement for Exercise 10.

12. Use the program developed in MATLAB for direct integration by
Newmark’s method to find the displacement for Exercise 10.

13. The top level of the three storeyed shear frame building is subjected to
triangular load pulse shown in Fig. 12.19. By the mode superposition
method, determine the expression for displacement response in the time
intervals (a) 0 ≤ t ≤ td, (b) t > td. F0 = 150 kN; td = 1.0s. The weights
of all the floors may be assumed as 200 kN. The stiffness of the bottom,
middle and top storeys are k, 0.75k, 0.5k where k = 23 000 kN/m.

14. Solve Exercise 13 by the program developed in MATLAB for mode
superposition method.

15. Solve Exercise 13 by the program developed in MATLAB for direct
integration by numerical method.

Fi

td = 0.1s

F1 = 1000kN; F2 = 1500kN; F3 = 500kN

12.20

12.21

K1 = 1MN/m

K1= 1MN/m

M2

M1

X2

X1

M1 = M2 = 1000kg
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16. Determine the maximum displacement of the top level of the frame in
Exercise 13 by response spectrum method. Use appropriate spectrum
curve. Combine the individual modal responses by the SRSS method.

12.16 Further reading

Anderson R A (1967) Fundamentals of Vibration, Macmillan Co., New York.
Bathe K J (1982) Finite Element Procedures in Engineering Analysis, Prentice Hall,

Englewood Cliffs, NJ.
Biggs J M (1964) Introduction to Structural Dynamics, McGraw-Hill, New York.
Chopra A K (2002) Dynamics of Structures – Theory and applications to earthquake

engineering, Eastern Economy Edition, Prentice Hall of India, New Delhi.
Clough R W and Penzien J (1974) Dynamics of Structures, McGraw-Hill, New York.
Craig R R (1981) Structural Dynamics, John Wiley and Sons, New York.
DenHartog J P (1956) Mechanical Vibrations, 4th ed., McGraw-Hill, New York.
Fertis D G (2000) Dynamics and Vibrations of Structures, 2nd ed., John Wiley & Sons,

New York.
Ferzinger J H (1981) Numerical Methods for Engineering Applications, Wiley,

New York.
Hart G C and Wong K (2001). Structural Dynamics for Structural Engineers, John Wiley,

New York.
Hilderbrand F B (1956) Introduction to Numerical Analysis, McGraw-Hill Book Co.,

New York.
Humar J L (1990) Dynamics of Structures, Prentice Hall, Englewood Cliffs, N.J.
Hurty W C and Rubinstein M F (1967) Dynamics of Structures, Prentice Hall of India,

New Delhi.
Inman D J (1994) Engineering Vibration, Prentice Hall, Englewood Cliffs, NJ.
Jacobsen L S and Ayre R S (1958) Engineering Vibrations, McGraw-Hill Book Co.,

New York.
James M L, Smith G M and Wolford J C (1985) Applied Numerical Methods for Digital

Computation, 3rd ed., Harper and Row, New York.
James M L, Smith G M, Wolford J C and Whaley P W (1989) Vibration of Mechanical

and Structural Systems, Harper and Row, New York.
Mukhopadhyay M (2006) Structural Dynamics, Ane Books India, New Delhi.
Newmark N M (1959) A method of computation for structural dynamics, Journal of

Engineering Mechanics Division, ASCE, vol. 88, pp 67–94.
Schilling R J and Harris S L (2000) Applied Numerical Methods for Engineers using

Matlab and C, Brooks/Cole, New York.
Tse F S, Morse I E and Hinkle R T (1978) Mechanical Vibrations, Theory and Applications,

2nd ed., Allyn and Bacon, Boston, MA.
Warburton G B (1976) The Dynamical Behaviour of Structures, 2nd ed., Pergamon Press,

Oxford.
Weaver W, Timoshenko S P and Young D H (1990) Vibration Problems in Engineering,

5th ed., Wiley, New York.
Wilson E L (2002) Three Dimensional Static and Dynamic Analysis of Structures, Computers

and Structures, Inc., Berkeley, CA.

�� �� �� �� �� ��



431

13
Free and forced vibration of a continuous
system in relation to structural dynamics

during earthquakes

Abstract: A physical system can also be modelled as a continuous system
with distributed mass and stiffness. The governing differential equations of
distributed systems are partial differential equations. In this chapter, strings,
bars, shafts and beams are modelled as distributed systems and the dynamic
response is studied by solving partial differential equations. Relevant
programs in MATHEMATICA and MATLAB are also given.

Key words: distributed systems, normal modes, orthogonality, rotary inertia,
shear deformation, moving loads.

13.1 Introduction

Structures analysed so far have been treated as discrete systems. In discrete
systems stiffness and mass as well as damping are modelled as discrete
properties. Dynamic analysis of discrete structures will lead to ordinary
differential equations which are amenable to numerical solutions. Another
method of modelling physical systems is based on the distributed mass and
stiffness characteristics. Systems for which stiffness and mass have distributed
rather than discrete properties are referred to as distributed systems or
continuous systems.

If the system is modelled as a distributed system, the governing
differential equations are partial differential equations which are more
difficult to solve. The result obtained from a continuous model is more
accurate than discrete systems. In this chapter, we shall consider the
vibration of simple continuous systems, strings, bars, shafts and beams. It
will readily become apparent, however, that analytical or closed form
solutions can be obtained only for relatively simple continuous systems with
well-defined boundary conditions. In general, the frequency equation of a
continuous system is a transcendental equation that yields an infinite number
of natural frequencies and normal modes. This is in contrast to the behaviour
of discrete systems which yield a finite number of frequencies and mode
shapes.
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13.2 Vibration of a string

Consider a flexible string of mass ρ/unit length is stretched under tension T
as shown in Fig. 13.1. The dynamic analysis is carried out based on the
following assumptions:

• lateral deflection v is very small;
• the change in tension ∆T with deflection is negligible.

Considering vertical equilibrium of forces we get

T
x

x T v xθ θ θ ρ+ ∂
∂





 − =d d˙̇ 13.1

or

T
x

v
t

∂
∂

= ∂
∂

θ ρ
2

2 13.2

Since the slope of the string is θ = ∂
∂

v
x

T v
x

v
t

∂
∂

= ∂
∂

2

2

2

2ρ 13.3

or

∂
∂

= ∂
∂

= ∂
∂

2

2

2

2 2

2

2
v

x T
v

t c
v

t

ρ 1 13.4a

where

c T2 = ρ 13.4b

Assume v of the form

v = V(x)G(t) 13.5

13.1 String under lateral vibration.

dx
T

    
θ θ +  d∂

∂x
xpv dx

θ
T

v
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Substituting in Eq. 13.4a we get

G V
x c

V G
t

∂
∂

= ∂
∂

2

2 2

2

2
1 13.6

or

1 12

2 2

2

2

2

2V
V

x c G
G

t c
∂
∂

= ∂
∂

= − ω 13.7

From Eq. 13.7 we get two second order linear differential equations as

d
d

0
2

2

2

2
V

x c
V+ =ω 13.8

d
d

0
2

2
2G

t
G+ =ω 13.9

The general solution is

V A
c

x B
c

x= + sin  cosω ω 13.10

G = C sin ω t + D cos ω t 13.11

So the lateral displacement of the string is written as

v A
c

x B
c

x C t D t= +( ) + sin  cos (  sin  cos )ω ω ω ω 13.12

A, B, C and D can be solved depending on initial and boundary conditions.
For example if the string is stretched between two fixed points with distance
L, the boundary conditions are

v(0, t) = v(L, t) = 0

v(0, t) = 0 requires B = 0 so that the solution is

v
c

x C t D t= ( ) +sin ( sin cos )1 1
ω ω ω 13.13

The condition v(L, t) = 0 leads to

sin 0   or   
ω ω πx

L
l

c
n= = 13.14

The natural circular frequency of the string is given by

ω π π
ρ= =n c

L
n
L

T 13.15

The natural frequency is determined from the above equation as

f
n c

L
n
L

T n= = = …π
π ρ2 2

; 1, 2, 3 13.16
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The mode shape is sinusoidal with distribution

V x
n x

L
( ) sin= π

13.17

The mode shape of the string is shown in Fig. 13.2. In the more general case
of free vibration initiated in any manner, the solution will contain many of
the normal modes and the equation for displacement is written as

v
n
L

x C t D t
n n n= 



 +

=

∞
Σ

1
sin ( sin cos )1 1

π ω ω 13.18

where

ω π π
ρn

n c
L

n
L

T= = 13.19

Fitting the equation to the initial conditions v(x, 0), and v̇ x( , 0) the values of
Cn1, Dn1 can be evaluated.

Example 13.1
A uniform string of length L = 2 m is fixed at the ends and stretched under
tension. The string is displaced into a shape of 0.1 sin πx and released
without any velocity. Find Cn1, Dn1 and obtain the displacement (T and ρ are
such that T/ρ = 4).

First mode

Second mode

Third mode

Fourth mode

0 0.5 1 1.5 2
Section distance

D
is

p
la

ce
m

en
t

1

0.5

0

–0.5

–1

13.2 Mode shapes of the string.
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Solution
At t = 0

v x D
n x

L
x

n n( , 0) sin 0.1 sin 1= =
=

∞
Σ

1

π π

Comparing left and right hand sides we get Dn2 = 0.1, Dni = 0 … i = 1, 3, 4…

The velocity is given as

v̇ x C t D t
n x

Ln n n n n n n( , 0) ( cos sin ) sin 01 1= − =
=

∞
Σ

1
ω ω ω ω π

So
Cn1 = 0

Hence displaced shape of the string at any instant of time is given as

v(x, t) = 0.1 cos ω2t sin π x

A program is written in MATHEMATICA to find the displacement of the
string at any time. This displacement of the string at any time and at x is
shown at the foot of this page.

13.3 Program 13.1: MATHEMATICA program to find

displacement of a string

{{y -> InterpolatingFunction[{{0., 2.}, {0., 7.5}},
<>]}}

1

0.5

0

–0.5

–1
0

0.5

1

1.5

0

2

4

6

2

�� �� �� �� �� ��



Structural dynamics of earthquake engineering436

13.4 Longitudinal vibration of a uniform rod

The rod considered in the section is thin and uniform along its length. The
rod has cross-sectional area A, modulus of elasticity E and material mass
density ρ/unit volume as shown in Fig. 13.3.

The free body diagram of a differential element is shown in Fig. 13.3. In
the deformed position the deformed length of dx is dx [1 + (∂u/∂x) dx].
Summing the horizontal forces the equilibrium equation is written as

F F
x

x F A u
t

x+ ∂
∂

− − ∂
∂

=d d 0
2

2ρ 13.20

Simplifying Eq. 13.20 we get

∂
∂

= ∂
∂

F
x

A u
t

ρ
2

2 13.21

where ∂2u/∂t2 is the acceleration of the differential element. Noting that axial
force F can be expressed as

F EA u
x

= ∂
∂

13.22

or

∂
∂

= ∂
∂

F
x

EA u
x

2

2 13.23

Combining Eq. 13.21 and 13.23 we get

EA u
x

A u
t

∂
∂

= ∂
∂

2

2

2

2ρ 13.24

13.3 Longitudinal vibration of uniform rod.

A, E,ρ

x dx

F

u

    
u u

x
x +  d∂

∂

    
F F

x
x +  d∂

∂

    
ρA u

t
x  d

2

2
∂
∂ D’ Alembert force

�� �� �� �� �� ��



Free and forced vibration of a continuous system 437

or

E u
x

u
t

c u
x

u
tρ

∂
∂

= ∂
∂

∂
∂

= ∂
∂

2

2

2

2
2

2

2

2

2; 13.25

where

c E= ρ 13.26

Equation 13.26 is essentially the same as Eq. 13.4b.
The solution is

u = U(x) G(t) 13.27

where

U x A
c

x B
c

x( ) sin cos= +ω ω 13.28a

and

G(t) = C sin ω t + D cos ω t 13.28b

where

ω π
ρn

n
L

E= 13.29

Following the initial conditions and the boundary conditions the displacement
can be obtained at any time t at any position x.

Example 13.2
Determine expressions for the natural frequencies and displacement response
for longitudinal vibration of a uniform rod with one end fixed and the other
end free as shown in Fig. 13.4.

Solution

u A t B t C
x

c
C

x
c

= + +



( sin  cos sin cos1 2ω ω ω ω

)

Boundary conditions:
At x = 0 u = 0. Hence C2 = 0.

E, A, ρ

L

13.4 Cantilever rod.
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At x = L, i.e. the free end must be free from stress. So

At x = L EA u
x

∂
∂

= 0

So C
c

L
c1 cos 0ω ω =

If C1 = 0 is a trivial solution, for a non-trivial solution to exist

cos 0
ω c
L

= ; 
ω π πL

c
= …

2
,

2
3

ω π π π π= … −c
L

c
L

c
L

n c
L2

,
3
2

,
5
2

(2 1)
2

or

ω π
ρn

n
L

E n= − = …∞(2 1)
2

   1, 2, 3

From the equation, the displacement for a particular mode is

u A t B t
x

cn n n n n
n= +( sin cos ) sinω ω

ω

A few lower mode shapes have been plotted in Fig. 13.5. The arbitrary
constants must be determined from the initial conditions.

Example 13.3
Determine the natural frequencies and mode shapes of a free–free rod (a rod
with both ends free).

0 0.5 1 1.5 2
Section distance

Fourth mode

First mode Third mode Second mode

D
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p
la

ce
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t

1

0.5

0

–0.5

–1

13.5 Mode shapes of longitudinal vibration of a rod.
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Solution
Boundary conditions:

∂
∂

= = =u
x

atx x L0 0 and 

u A t B t C
x

c
C

x
c

= + +



(  sin  cos ) sin cos1 2ω ω ω ω

∂
∂

= = =u
x

at x C0 10; 0

∂
∂

= = + −



 =u

x
at x L A t B t

c
C

L
c

0  ; ( sin  cos sin 02ω ω ω ω
)

For a non-trivial solution to exist,

sin 0
ω L

c
=

ω π π π πL
c

n= …, 2 , 3

ω π
ρn

n
L

E=

where n represents the order of the mode.
The solution of the free free rod with zero initial conditions can be written as

u u
n x

L
n
L

E t= 0 cos sin
π π

ρ

The amplitude of the longitudinal vibration along the rod is therefore a
cosine wave having n nodes. The mode shapes are shown in Fig. 13.6.

Example 13.4
Determine the expression for the natural frequencies and displacement response
for longitudinal vibration of a uniform rod with one end fixed and the other
end having a concentrated mass M as shown in Fig. 13.7. Determine the
expression for the frequency equation of longitudinal vibrations. Length of
the rod = L, mass density = ρ, and cross-sectional area = A.

Solution
The general solution for longitudinal vibration of a uniform bar is given by

u x t A t B t C
x

c
D

x
cn n n n n( , ) ( sin cos ) sin cos= + +



=

∞
Σ

1
ω ω ω ω

There is no displacement at the fixed end at x = 0
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u(0, t) = 0

Dynamic force in the bar at the free end is equal to the inertia force of
concentrated mass

AE
u L t

x
M

u L t
t

∂
∂

= − ∂
∂

( , ) ( , )2

2

Applying the boundary conditions, U(0, t) = 0, applying the first boundary
condition we get Dn = 0. Applying the second boundary condition yields

M
L

c
A E

c
L

cn
n n nω ω ω ω2 sin cos=

or AE
M c

c
Ln

n

ω
ω= tan

in which ωn is the only unknown.

AEL
Mc

L
c

L
c

n n
2 tan= ω ω
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First mode

13.6 Mode shapes of a free–free rod.

x

L

M

13.7 Cantilever rod.
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Substituting for ‘c’ we get

A L
M

L
c

L
c

n nρ ω ω= tan

ρ A L denotes the mass of the shaft ‘m’ and denoting λ = [(ωnL)/c] we get

λ λtan = m
M

Denoting m/M = α we get

tan λ α
λ=

For any given value of α, λ can be solved using the MATHEMATICA package.
The values of the frequencies of the first two frequencies of first two modes
are given in Table. 13.1. When α is infinity, i.e. concentrated mass is very
small compared with the mass of the bar, frequency equation becomes

tan λ = ∞

or

λ ω π= = − = …n L
c

n
n

(2 1)
2

;  1, 3, 5

ω π
ρn

n
L

E= −(2 1)
2

When M is very large compared to the total mass of the bar, the frequency
equation becomes tan λ = 0. The system behaviour corresponds to a simple
single-degree-of-freedom (SDOF) spring mass system

ω1 = EA
mL

13.5 Torsional vibration of shaft or rod

Figure 13.8 represents a non-uniform shaft subjected to an external torque
m(x, t)/unit length. If θ (x, t) denotes the angle of twist of the cross-section,
the relation between twist and twisting moment Mt (x, t) is given by

Table 13.1 Values of frequencies ω = λL/c for various ratios of m/M

First two Values of α
frequencies

0.01 0.1 1.0 10.0 100.0
λ1 0.1 0.3113 0.8602 1.4291 1.5549
λ2 3.1448 3.1736 3.4267 4.3063 4.6658
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M x t G J x
x t
xt ( , ) ( )

( ,  )= ∂
∂

θ
13.30

where G is the shear modulus and GJ(x) is the torsional stiffness, with J(x)
denoting polar moment of inertia of the cross-section.

If the mass polar moment of inertia of the shaft/unit length is I0, the inertia
torque acting on an element of length dx becomes

I x
x0

2

2d ∂
∂

θ

If an external torque mT (x, t) acts on the shaft/unit length, the application of
Newton’s second law yields

M
M
x

x m x t x M I x
tt

t
T t+ ∂

∂
+ − = ∂

∂
d ( , ) d d0

2

2
θ 13.31

or

∂
∂

∂
∂







+ = ∂
∂x

GJ x
x t
x

m x t I x
x t

tT( )
( , )

( , ) ( )
( , )

0

2

2

θ θ
13.32

For a uniform shaft

GJ
x

m I
tT

∂
∂

+ = ∂
∂

2

2 0

2

2
θ θ 13.33

If the shaft has uniform section I0 = ρ J.
For free vibration

G
x t

∂
∂

= ∂
∂

2

2

2

2
θ ρ θ 13.34

dx

Mt(x, t)

θ (x, t)

    
M x t

M x t
x

xt
t( , ) + 
( , )

 d
∂

∂

    
θ θ( , ) + ( , )  dx t x t

x
x∂

∂

13.8 Torsional moment in a shaft.
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or

c
x t

2
2

2

2

2
∂
∂

= ∂
∂

θ θ 13.35

where

c G= /ρ 13.36

The equation is analogous to the longitudinal vibration of a rod.
If the shaft is given an initial angular displacement θ0(x) at t = 0, the

initial conditions can be stated as

θ (x, t = 0) = θ0(x)

˙ ˙θ θ( , 0) ( )0x t x= = 13.37

The solution of the governing equation Eq. 13.35 is

θ ω ω ω ω
( , ) ( sin cos ) sin cosx t A t B t C

x
c

D
x

cn n n n n n
n

n
n= + +



=

∞
Σ

1

13.38

The common boundary conditions for torsional vibration of uniform shaft
are indicated in Table 13.2 along with corresponding frequency conditions.

13.6 Free flexural vibration of beams

Consider a beam sufficiently long compared with its cross-section so that
shear deformations can be ignored. The effect of axial load, shear deformation
and rotary inertia will be discussed in the following sections. The free body
diagram of a beam segment of element length dx is shown in Fig. 13.9.

Table 13.2 Torsional vibration of a uniform shaft

End condition Frequency Mode shape Natural frequency
equation

Fixed–free
    
cos  = 0

ωL
c

    
C

n x
Ln sin

(2  + 1)
2

π



     

(2  + 1)
2

n
L

cπ

n = 0, 1, 2

Free
    
sin  = 0

ωL
c     

C
n x

Ln cos
π

    

n c
L
π

;  n = 0, 1, 2, 3

Free
Fixed

Fixed
    
sin  = 0

ωL
c     

C
n x

Ln cos
π

    

n c
L
π

;  n = 0, 1, 2, 3

�� �� �� �� �� ��



Structural dynamics of earthquake engineering444

The equilibrium equation in the Z direction gives

− − ∂
∂

+ + = ∂
∂

V
V
x

x p x t x V x t A
w x t

t
xz

z
zd ( , ) d ( ,  )

( , )
d

2

2ρ 13.39

Simplifying

∂
∂

+ = ∂
∂

V
x

x p x t x A
w x t

t
xz d ( , ) d

( , )
d

2

2ρ 13.40

Writing the moment equilibrium

M M
x

x M V x V M
xz z+ ∂

∂
− − = = ∂

∂
d d ;   or  0 13.41

Substituting for Vz in Eq. 13.40 we get

− ∂
∂

+ = ∂
∂

2

2

2

2( , )M
x

p x t A w
t

ρ 13.42

From the elementary theory of bending of beam (Euler–Bernoulli theory)

M E I w
x

= ∂
∂

2

2 13.43

Substituting for M in Eq. 13.42 we get

∂
∂

∂
∂







+ ∂
∂

=
2

2

2

2

2

2 ( , )
x

E I w
x

A
w

t
p x tρ 13.44

where E is the Young’s modulus and I is the moment of inertia of beam
cross-section about y-axis. For free vibration of beams p(x, t) = 0 and hence
the equation for free vibration of non uniform beam is written as

p(x, t)

z

x
dx

w

M
p(x, t)

Vz

    
ρA

w
t

x  d
2

2

∂
∂

    
M

M
x

x +  d
∂
∂

    
V

V
x

x2
2 +  d

∂
∂

13.9 A beam in bending.
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∂
∂

∂
∂







+ ∂
∂

=
2

2

2

2

2

2 0
x

E I w
x

A
w

t
ρ 13.45

For uniform beams

E I
w x t

x
A

w x t
t

∂
∂







+ ∂
∂

=
4

4

2

2

( , ) ( , )
0ρ 13.46a

or

c
w x t

x
w x t

t
c EI

A
2

4

4

2

2
2( , ) ( , )

0;   
∂

∂






+ ∂
∂

= = ρ 13.46b

The equation of motion involves a second order derivative with respect to
time and a fourth derivative with respect to x and hence two initial conditions
and four boundary conditions are necessary to solve the problem. Usually,
the values of lateral displacement w0(x) and ẇ x0 ( )  at t = 0 so that initial
conditions become

w(x, t = 0) = w0(x) 13.47a

˙ ˙w x t w x( , 0) ( )0= = 13.47b

The free vibration solution can be found by using the method of separation
of variables as

w(x, t) = W(x) T(t) 13.48

Substituting in Eq. 13.46b we get

T t c
W x
x

W X
T t
t

( )
( )

( )
( )

02
4

4

2

2

∂
∂

+ ∂
∂

= 13.49a

or

c
W x

W x
x T t

T t
t

2 4

4

2

2( )
( ) 1

( )
( )

0
∂

∂
+ ∂

∂
= 13.49b

or

c
W x

W x
x T t

T t
t

2 4

4

2

2
2

( )
( ) 1

( )
( )∂

∂
= − ∂

∂
= ω 13.50

We can write in terms of two equations as

d ( )
d

( ) 0
4

4

2

2

W x
x c

W x− =ω 13.51
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and

d ( )
d

( ) 0
2

2
2T t

t
T t+ =ω 13.52

Denoting

β ω ρ ω4
2

2

2

= =
c

A
EI

13.53

and

T(t) = A cos ω t + B sin ω t 13.54

whereas Eq. 13.51 is written as

d
d

0
4

4
4W

x
W− =β 13.55

Assuming

W(x) = C eβx 13.56

where C and β are constants and derive the auxiliary equation as

s4 – β4 = 0 13.57

The roots of the equation are

s1,2 = ±β; s3,4 = ± i β 13.58

Hence W(x) can be written as

W(x) = C1e
βx + C2e–βx + C3e

iβx + C4e–iβx 13.59

Equation 13.59 can be expressed as

W(x) = C1 sinh β x + C2 cosh β x + C3 sin β x + C4 cos β x 13.60

The natural frequencies of the beam are computed as

ω β ρ β
ρ ρ

= = =2 2
4

2
4( )EI

A
L EI

A L
k EI

A L
13.61

The function W(x) is known as normal mode or characteristic function of
the beam and ω  is the natural frequency of vibration. For any beam there
will be an infinite number of modes with one natural frequency associated
with each normal mode. The unknown values C1, C2, … C4 and the value of
β can be determined from the boundary conditions of the beam as indicated
below.
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W x x x x

C

C

C

C

=< >



















sinh , cosh , sin , cos

1

2

3

4

β β β β 13.62

For a beam of length L the deflection, slope, curvature and d3W/dx3 may
be written at the two ends of the beam (x = 0, x = L) as

W
W
W
W
W
W
W
W

L L L L
L L L L
L L

L

L

L

L

0

0

0

0

2 2

3 3

0 1 0
0 0

0 0
0 0

sinh cosh sin cos 
cosh sinh cos  sin
sinh cosh

′
′′
′′′

′
′′
′′′































=

−
−

−
−

1

2 2 2

β β
β β

β β
β β β β

β β β β β β β β
β β β β β sinsin cos

cosh sinh cos sin

1

2

3

4

β β β
β β β β β β β β

L L
L L L L

C
C
C
C

−
−













































2

3 3 3 3

13.63

or

{q} = [A]{C} 13.64

The boundary conditions are given in the form of a matrix as shown below.

Simply supported beam

W(x = 0) = 0; W″ (x = 0) = 0; W(x = L) = 0; W″ (x = L) = 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

{0}

0

0

0

0



















′
′′
′′′

′
′′
′′′





































=

W

W

W

W

W

W

W

W

L

L

L

L

13.65

or [B]{q} = 0 13.66

[B][A]{C}={0} 13.67
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or {BA}{C} = 0. For a non-trivial solution to exist ||BA|| = 0. Equation 13.66
may also be written as

[ ] {0}

0

0

2
0

3
0

2

3

B

W

LW

L W

L W

W

LW

L W

L W

L

L

L

L

′
′′
′′′

′
′′
′′′





































= 13.68

W
LW
L W
L W
W
LW
L W
L W

k k
k k

k k
k k k k

k k k k k k k k
k k k k k

L

L

L

L

0

0
2

0
3

0

2

3

3 3

2 2 2

0 1 0 1
0 0

0 0
0 0

sinh cosh sin cos
cosh sinh cos sin
sinh cosh sin

′
′′
′′′

′
′′
′′′

































=

−
−

−
−

2 2

kk k k
k k k k k k k k

C
C
C
C

−
−













































2

3 3 3 3

1

2

3

4

cos
cosh sinh cos sin

13.69

= [ ]{ }A C

Equation 13.67 may also be written as (k = β L)

[ ][ ]{ } 0;   or  [ ]{ } {0}B A C BA C= = 13.70

For a non-trivial solution to exist || ||BA = 0 and the determinant is a function
of k and the root of the equation can be found out. This can very easily be
done using the MATHEMATICA package.
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13.7 Program 13.2: MATHEMATICA program to find

the frequency of a long beam with usual

boundary conditions

2 2

{{0, 1, 0, 1}, {k, 0, k, 0}, {0, k , 0, -k },

3 3

{k , 0, -k , 0}, {Sinh[k], Cosh[k], Sin[k],

Cos[k]}, {k Cosh[k], k Sinh[k], k Cos[k],

2 2
-(k Sin[k])}, {k Sinh[k], k Cosh[k],

2 2
-(k Sin[k]), -(k Cos[k])},

3 3 3
{k Cosh[k], k Sinh[k], -(k Cos[k]),

3
k Sin[k]}}
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{{1, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 1, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 1, 0}}

2 2
{{0, 1, 0, 1}, {0, k , 0, -k },

{Sinh[k], Cosh[k], Sin[k], Cos[k]},

2 2 2

{k Sinh[k], k Cosh[k], -(k Sin[k]),

2

-(k Cos[k])}}

4
-4 k Sin[k] Sinh[k]
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{k -> 3.14159}

In the above program k = β L.

For various boundary conditions [B] matrix will be different:

1. Left end free and right end free

W″(x = 0) = 0; W″′(x = 0) = 0; W″(x = L) = 0; W″′(x = L) = 0

[ ]

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

B =



















13.71

2. Simply supported ends

W(x = 0) = 0; W″(x = 0) = 0; W(x = L) = 0; W″(x = L) = 0

[ ]

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

B =



















13.72

3. Clamped ends

W(x = 0) = 0; W′(x = 0) = 0; W(x = L) = 0; W ′(x = L) = 0

1000

750

500

250

–250

–500

1 2 3 4 5
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[ ]

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

B =



















13.73

Table 13.3 gives the frequency equation and natural frequency of the beam
with common boundary conditions. The mode shapes for various end conditions
are also given in Table 13.4

Table 13.3 Common boundary conditions for transverse vibration of a beam

Boundary Frequency Value of kn = βnL
condition equation

Pinned–pinned sinh k sin k = 0 k1 = π; k2 = 2π; k3 = 3π, k4 = 4π

Free–free cosh k cos k = 1 k1 = 4.73004; k2 = 7.853205
k3 = 10.9956; k4 = 14.13716

Fixed–fixed cosh k cos k = 1 k1 = 4.73004; k2 = 7.853205
k3 = 10.9956; k4 = 14.13716

Fixed–free cosh k cos k = –1 k1 = 1.8751; k2 = 4.694 01
k3 = 7.85675; k4 = 10.995541

Fixed–pinned tanh k – tan k = 0 k1 = 3.92660;  k2 = 7.068 583
k3 = 10.210176; k4 = 13.35176

Pinned–pinned tanh k – tan k = 0 k1 = 3.92660; k2 = 7.068583
k3 = 10.210 176; k4 = 13.351 76

Table 13.4 Mode shapes of the beam for various boundary conditions

End conditions Mode shape Wn(x) αn

Pinned–pinned Cn sin βnx

Free–free Cn [sin βn x + sinh βn x
+ αn(cos βn x + cosh βn x)]

    

sin – sinh
cosh – cos

β β
β β
n n

n n

L L
L L







Fixed–fixed Cn [–sin βn x + sinh βn x
+ αn(–cos βn x + cosh βn x)]

    

sin – sinh
cosh – cos

β β
β β
n n

n n

L L
L L







Fixed–free Cn [sin βn x – sinh βn x
– αn(cos βn x – cosh βn x)]

    

sin + sinh
cosh + cos

β β
β β
n n

n n

L L
L L







Fixed–pinned Cn [sin βn x – sinh βn x
– αn(cos βn x – cosh βn x)]

    

sin – sinh
cos – cosh

β β
β β

n n

n n

L L
L L







Pinned–free Cn (sin βn x + αn sinh βn x)
    

sin
sinh

β
β

n

n

L
L
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Example 13.5
Determine the natural frequencies and normal mode of vibration of a simply
supported beam of length L with uniform cross-section of moment of inertia
I area A and mass density ρ.

Solution
For a simply supported beam

[ ] [ ][ ]BA B A=

[ ][ ]

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

B A =



















   ×

−
−

−
− −
−

































0 1 0 1

0

0 0

0 0

sinh cosh sin cos

cosh sinh cos sin

sinh cosh sin cos

cosh sinh cos sin

2

3 3

2 2 2 2

3 3 3 3

k k

k k

k k

k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

0
2

The determinant of [ ]BA  should equal zero. The determinant may be calculated
as

kkkkkkkk

kkkk

kk

cossincoshsinh

cossincoshsinh

00

1010

2222

22

−

−

sinh k sin k = 0
solving k1 = π; k2 = 2π; k3 = 3π
Hence fundamental frequency is given by

ω
ρ

π
ρ

= =k EI
A L

EI
A L

2
4

2
4

�� �� �� �� �� ��



Structural dynamics of earthquake engineering454

The free vibration response for the simply supported beam is obtained by
superposition by the normal modes expressed as

w x t A t B t
n x

Ln n n n n( , ) ( sin cos ) sin= +
=

∞
Σ

1
ω ω π

Hence the first three modes are given by

w x t A t B t
x

L
( , ) 1 = ( sin cos ) sin1 1 1 1| ω ω π+

w x t A t B t
x

L
( , ) 2 ( sin cos sin

2
2 2| = +ω ω π

2 2 )

w x t A t B t
x

L
( , 3 ( sin cos )sin

3
3 3 3) | = +ω ω π

3

where

ω π
ρ1

2
4= EI

AL

ω π
ρ2

2
4= 4 EI

A L

ω π
ρ3

2
49= EI

A L

The modes shapes are shown in Fig. 13.10.

0 0.5 1 1.5 2
x

(a)

D
is

p
la

em
en

t

1

0.5

0

–0.5

–1

13.10 First three modes of simply supported beam: (a) first mode
shape; (b) second mode shape; (c) third mode shape.
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Example 13.6
Determine the frequency equation for a two span beam shown in Fig. 13.11.
Assume each span has a flexural rigidity of EI, cross-sectional area A and
mass density ρ.

Solution
For each span, select the exterior support for the origin as shown in Fig.
13.11. the general displacement solution is given by (span 1)

0 0.5 1 1.5 2
x

(b)

D
is

p
la

em
en

t

1

0.5

0

–0.5

–1

0 0.5 1 1.5 2
x

(c)

D
is

p
la

em
en

t

1

0.5

0

–0.5

–1

13.10 Continued
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W1(x1) = (A1 sin β1x1 + B1 cos β1x1 + C1 sinh β1x1 + D1 cosh β1x1)

for span 2

W2(x2) = (A2 sin β2x2 + B2 cos β2x2 + C2 sinh β2x2 + D2 cosh β2x2)

Since spans are symmetric β1, β2, β. The boundary conditions are applied
next.

For span 1

W1(x1 = 0) = 0; B1 + D1 = 0; D1 = –B1

d
d

( 0) 0;  1

1
1 1 1

W
x

x C A= = = −

W1(x1 = L) = 0

A1(sin β L – sinh βL) + B1(cos β L – cosh β L) = 0

or

B A
L L
L L1 1

(sin sinh )
(cos cosh )

= − −
−

β β
β β

Similarly applying boundary conditions for span 2.

W2(x2 = 0) = 0; B2 + D2 = 0; D2 = –B2

d
d

( 0) 0;  2

2
2 2 2

W
x

x C A= = = −

W2(x2 = L) = 0

B A
L L
L L2 2

(sin sinh )
(cos cosh )

= − −
−

β β
β β

A

x1

B C

x2

13.11 Continuous beam.
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At interior support B, x1 = x2 = L the condition for slope of the elastic curve

B1(–sin β L – sinh β L) + A1(cos β L – cosh β L)

= B2(–sin β L – sinh β L) + A2 (cos β L – cosh β L)

Also at point B, the bending moment in each span must be equal, i.e.

d ( )
d

d ( )
d

2
1

1
2

2
2

2
2

W L
x

W L
x

= −

which results in

A1(–sin β L – sinh β L) + B1(cos β L – cosh β L)

= B2(–sin β L – sinh β L) + B2 (cos β L – cosh β L)

Substituting B1, B2 in terms of A1, A2 we get

2(A1 + A2)(1 – cos β L cosh β L) = 0

and

2(A1 – A2)(–sin β L cosh β L + cos β L sinh β L) = 0

or

cos β L cosh β L = 1

and tan β L = tanh β L

The frequency equations derived above correspond to the single span case of
fixed–fixed and fixed–pinned cases as illustrated in Fig. 13.11.

13.8 Orthogonality of normal modes

The normal function W(x) satisfies Eq. 13.51 as

c
W x
x

W x2
4

4
2d ( )

d
( ) 0− =ω 13.74

Assume Wi(x) and Wj(x) to be the normal mode functions corresponding to
two natural frequencies ωi, ωj so that

c
W x
x

W xi
i i

2
4

4
2d ( )

d
( )= ω 13.75

c
W x

x
W x

j
j j

2
4

4
2

d ( )

d
( ) 0= =ω 13.76

Multiplying Eq. 13.75 by Wj and Eq. 13.76 by Wi we get
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W x c
W x
x

W x W xj
i

i j i( )
d ( )

d
( ) ( )2

4

4
2= ω 13.77a

W x c
W x

x
W x W xi

j
j i j( )

d ( )

d
( ) ( )2

4

4
2= ω 13.77b

Integrating both sides with respect to x we get

0
2 2

0
d

( )
{ }d

L

i j
i j

L

i
iv

j j
iv

iW W x c W W W W x∫ ∫=
−

−
2

ω ω
13.78a

The RHS can be shown to be equal to zero at x = 0 and x = L. Hence for any
combination of boundary conditions

0

L

i jW x W x x∫ =( ) ( ) d 0 13.78b

which proves the orthogonality of normal functions for the transverse vibration
of beams.

13.9 Effect of axial force (tension or compression)

The study of vibration of beams under the action of axial force finds application
in the study of vibration of cables and guy wires. Even though we have
treated the cable by an equivalent string, many cables have failed owing to
fatigue caused by alternating flexure, which is the result of regular shedding
of vortices from the cables due to high wind. Hence it is important to study
the vibration of beams due to axial forces.

Consider the equation of motion of an element of the beam shown in Fig.
13.12. Writing the equation of equilibrium for vertical motion we get

dx

x

P

θ

M

V

P

    
M

M
x

x +  d
∂
∂

    
θ θ
 +  d

∂
∂x

x

    
V

V
x

x +  d
∂
∂

13.12 An element of a beam under axial load.
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− + ∂
∂





 + + ∂

∂




 +V V

x
x V P

x
P p x t xd sin sin – ( , ) d– θ θ θ

= ∂
∂

– d
2

2ρ A x w
t

13.79

or

∂
∂

+ ∂
∂

= ∂
∂

V
x

P
x

A w
t

θ ρ+ ( ,  )
2

2p x t 13.80

Writing the equation of equilibrium for rotary motion

M M
x

x M V x p x+ ∂
∂





 − − + =d  d d

2
0

2
13.81

or

∂
∂

− + =M
x

V p xd /2 0 13.82a

or

V M
x

p x= ∂
∂

+ d /2 13.82b

Substituting for V in Eq. 13.80 we get

∂
∂

+ ∂
∂

+ = ∂
∂

2

2

2

2( , )M
x

P
x

p x t A w
t

θ ρ 13.83

and substituting

M EI w
t

= − ∂
∂

2

2

we get

∂
∂

∂
∂





 + ∂

∂
− ∂

∂
=

2

2

2

2

2

2 ( , )
x

EI w
x

A w
t

P w
x

p x t
2

2 ρ 13.84

For the free vibration of uniform beam, we get the governing equation as

EI w
x

P w
x

A w
t

∂
∂

− ∂
∂

+ ∂
∂

=
4

4

2

2

2

2 0ρ 13.85

The solution can be obtained using the method of separation of variables as

w(x, t) = W(x)T(t) 13.86

T t EI W
x

P
W x
x

W x A
T t
t

( )
( )

( ) 0
4

4

2

2
∂
∂

− ∂
∂







+ ∂
∂

=ρ
2

2

( )
13.87
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or

1
( )

( ) ( ) 1
( )

( )4

4

2

2

2

2
2

ρ ω
A W x

EI
x

x
P

W x
x T t

T t
t

∂
∂

− ∂
∂







= − ∂
∂

=W
13.88

The time-dependent solution is given by

T(t) = A sin ω t + B cos ω t 13.89

For the time-independent solution one has to solve

∂
∂

− ∂
∂

− =
4

4

2

2
2( ) ( )

( ) 0
W x
x

P
EI

W x
x

A
EI

W xω ρ
13.90

Assume

W(x) = Cesx 13.91

Then the characteristic equation is

s P
EI

s
A
EI

4 2
2

0− − =
ρ ω

13.92

Solving, we get four roots as

s s P
EI

P
E I

A
EI1

2
2
2

2

2 2

2 1/ 2

,
2

= ± +



4

ρ ω
13.93a

s s P
EI

A E I

P1
2

2
2

2

2

1/ 2

,
2

1 1
4

= ± +

















ρ ω
13.93b

Denoting λ β2
1
2 2

2
2;= − =s s . The roots of the equation are

r1 = λ; r2 = –λ; r3 = iβ; r4 = –iβ 13.93c

where W = C, sinh λx + C2 cosh λx + C3 sin βx + C4 cos βx

λ ρ ω2
2

2

1/ 2

2
1 1

4
= + +

















P
EI

A E I

P
13.94

and

β ρ ω2
2

2

1/ 2

2
1

4
– 1= +

















P
EI

A E I

P 13.95

For a simply supported beam of length L the boundary conditions are

W(0) = W(L) = W″(0) = W″(L) = 0 13.96
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Applying the boundary conditions

C1 = C2 = C4 = 0;   and   C3 sin β L = 0 13.97

or β L = nπ; n = 1, 2, 3… 13.98

β π ρ ω2
2 2

2

2

2

1/ 2

2
1

4
– 1= = +

















n
L

P
EI

A E I

P
13.99

or

2 E I n
P L

A E I

P

2 2

2

2

2

1/ 2

1 1
4π ρ ω

+ = +





13.100

Squaring both sides we get

4 4E I n
P L

E I n
PL

A E I

P

2 2 4 4

2 4

2 2

2

2

21 1
4π π ρ ω

+ + = + 13.101

Simplifying

ω π
ρ

π
ρ

2
4 4

4

2 2

2= +n E I
A L

n P
AL

13.102

ω
ω π

2

2

2

2 2[ ( 0)]
1

P
P L

n E I=
= + 13.103

or

ω
ω

2

2[ ( 0)]
1

P
P
Pcr=

= + 13.104

or

ω ω= = +



[ (P 0)] 1

1/ 2P
Pcr

13.105

The natural frequency expressed in Eq. 13.105 extends the application to
single span beams with different boundary conditions by selecting appropriate
value for β from Table 13.3. If EI = 0 the problem degenerates to that of a
flexible taut cable discussed in Section 13.1. As we see from Eq. 13.105 the
tensile load ‘stiffens’ the beam, thereby increasing the natural frequency.

13.9.1 Beams subjected to axial compression

In the above equation substitute –P for P to get the frequency for a beam
subjected to axial compression:
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ω ω= = −



[ ( 0)] 1

1/ 2

P
P
Pcr

13.106

The following observations can be made:

• If P = 0 the natural frequency will be the same as that of a simply
supported beam.

• If EI = 0 the frequency reduces to that of a string.
• If P > 0 the natural frequency increases with tensile force as it stiffens

the beams.
• If P < 0 the natural frequency decreases with compressive force and

approaches zero when P = Pcr.

13.10 Effect of rotary inertia and shear deformation

If the cross-sectional dimensions are not small compared with the length of
the beam, we need to consider the effects of rotary inertia and shear deformation.
This was first presented by Timoshenko and is known as thick beam theory
or Timoshenko beam theory.

If the effect of shear deformation is disregarded (see Fig. 13.13), the
tangent to the deflection centre line OT coincides with the normal to the face
B′C′ (since the cross-section normal to the centre line remains normal even
after deformation). Owing to deformation, the tangent to the deformed centre
line O′T will not be perpendicular to B′C′.

M

A′

V

φ

O

D ′

dx

B ′
N

γ

T

C ′

    
M

M
x

x +  d
∂
∂

    
V

V
x

x +  d
∂
∂

  

∂
∂
w
x

    
ρA x 

w
t

 d
2

2

∂
∂

    
ρ φ
I 

t
x

∂
∂

2

2
 d

13.13 An element of Timoshenko beam.
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The angle between tangent to the deformed line OT and normal to the face
ON denotes the shear deflection of an element. Since positive shear on the
fight face B′C′ acts downward we have from Fig. 13.13

γ φ= − ∂
∂
w
x

13.107

where φ denotes the slope of the deflection curve due to bending deflection
alone. Note that because of shear alone, the element distorts and does not
rotate.

The bending moment M and the shear force V are related to the slope and
deflection as

M EI
x

V k AG k AG w
x

= ∂
∂

= = − ∂
∂







φ γ φ;  13.108

where G denotes the modulus of rigidity of the material of the beam and ‘k’
is a constant known as Timoshenko’s shear coefficient which depends on the
shape of the cross section. For a rectangular section k = 5/6; circle = 9/10.
The equation of motion can be derived as follows.

1. For translation in the Z direction

– ( , ) d ( , ) ( , ) d d
2

2V x t V
x

x V x t p x t x A x w
t

− ∂
∂

+ + = ∂
∂

ρ 13.109a

or

− ∂
∂

+ = ∂
∂

V
x

x p x t x A x w
t

d ( , ) d d
2

2ρ 13.109b

2. For rotation writing the moment equilibrium as

M x t M
x

x M x t V x t x p x t x( , ) d ( , ) – ( , ) d ( , ) d
2

2
+ ∂

∂
− +

= ∂
∂

ρ φ
I x x

t
( ) d

2

2 13.110

or

∂
∂

+ = ∂
∂

M
x

V x t p x t x I x
t

– ( , ) ( , ) d
2

( )
2

2ρ φ
13.111

Substituting for V in Eq. 13.110 we get

− ∂
∂

− ∂
∂







+ = ∂
∂

k AG
x

w
x

p x t A w
t

φ ρ
2

2

2

2( , ) 13.112a

E I
x

k AG w
x

I
t

∂
∂

− − ∂
∂





 = ∂

∂

2

2

2

2

φ φ ρ φ
13.112b
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By solving Eq. 13.112a for ∂φ/∂x and substituting the result of Eq. 13.112a
in Eq. 13.112b we obtain (for uniform beams and for free vibration p = 0)

E I w
x

A w
t

I E
kG

w
x t

I
kG

w
t

∂
∂

+ ∂
∂

− +





∂
∂ ∂

+ ∂
∂

=
4

4

2

2

4

2 2

2 4

41 0ρ ρ ρ
13.113

For most practical situations, the increased accuracy obtained by including
shear and rotary effect is much less than the modelling errors. The contribution
for shear stress is generally less than the contribution for rotation, but both
effects can generally be ignored for shallow beams. The following boundary
conditions are to be applied.

• Fixed end φ = w = 0.

• Simply supported end EI
x

w
∂
∂

= =φ
0.

• Free end kAG w
x

EI
x

∂
∂

−



 = ∂

∂
=φ φ

0 .

Example 13.7
Determine the effects of rotary inertia and shear deflection on the natural
frequency of a simply supported uniform beam.

Solution

Define α ρ
2 2;  = =EI

A
r I

A

Equation 13.113 is rewritten as

α ρ2
4

4

2

2
2

4

2 2

2 4

41 0∂
∂

+ ∂
∂

− +





∂
∂ ∂

+ ∂
∂

=w
x

w
t

r E
kG

w
x t

r
kG

w
t

Express the solution of the form

w x t C
n x

L
t( , ) sin cos= π ω

while satisfying the boundary conditions at x = 0 and x = L. Here C is a
constant and ω is the natural frequency. Substituting for w in the above
equation, we get

ω ρ ω π α π2
2

2
2 2 2

2

4 4 4

41 1 0
r

kG
n r

L
E

kG
n
L







− + +( )





+ =

We get two roots. The small one corresponds to bending deformation mode
while larger one corresponds to shear deformation mode. The natural frequency
for classical theory is given by ω2 = β4 α2.

�� �� �� �� �� ��



Free and forced vibration of a continuous system 465

The following points should be noted with respect to rotary inertia and
shear deformation.

• If the rotary inertia alone is included and the shear deformation is neglected,
the governing equation is

E I w
x

A w
t

I w
x t

∂
∂

+ ∂
∂

− ∂
∂ ∂

=
4

4

2

2

4

2 2 0ρ ρ

In this case the frequency equation reduces to

ω α π
π

2
2 4 4

4
2 2 2

21
=

+





n

L n r
L

• If the shear deformation is considered and rotary inertia is neglected, the
governing equation of motion is

E I w
x

A w
t

EI
kG

w
x t

∂
∂

+ ∂
∂

− ∂
∂ ∂

=
4

4

2

2

4

2 2 0ρ ρ

In this case the frequency equation reduces to

ω α π
π

2
2 4 4

4
2 2 2

21
=

+





n

L n r E
L kG

• If both effects of inertia and shear deformation are disregarded, the
governing equation is

E I w
x

A w
t

∂
∂

+ ∂
∂

=
4

4

2

2 0ρ

and the frequency equation is

ω α π2
2 4 4

4= n
L

13.11 Forced axial vibration of bars

Consider a bar as shown in Fig. 13.14 which is fixed at one end and free at
the other end to which an exciting force P(t) is applied.

E, A, ρ

P

L

13.14 Forced axial vibration of a bar.
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The equation of the forced vibration of the bar is given by

EA u
x

A u
t

P t∂
∂

− ∂
∂

= −
2

2

2

2 ( )ρ 13.114

u(x, t) is given by

u x t U x T t
r

n

r r( , )  ( ) ( )=
=
Σ

1
13.115

Referring to Example 13.2

U x
r x

Lr ( ) sin
(2 1)

2
= − π

13.116

and

ω π
ρr

r
L

E= −(2 1)
2

13.117

The load applied at the free end P can be resolved into components as

P U P
s

n

s s=
=
Σ

1
 13.118

Multiplying both sides by Ur and integrating

0

2d sin
(2 1)

2
  

L

r r s s r rP U x P
r

U U P U P∫ = − = =π Σ Σ 13.119

Since

0 0

2d ;  d /2
L

r s

L

rU U x U x L∫ ∫= =0 13.120

Hence

P P
L

r
r =

−2 sin
(2 1)

2
ρ

13.121

Substituting in Eq. 13.114 for P and write the rth component

˙̇T
r c

L
T P

L
r

r r+ − = −(2 1)
4

2 sin
(2 1)

2

2 2 2

2

π π
13.122

Using Duhamel’s integral

T P
r A c

r r c t
Lr

t

= −
− − −∫4

(2 1)
sin

(2 1)
2

sin
(2 1) ( )

2
d

0ρ π
π π τ τ

13.123
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where

c E2 = ρ 13.124

Assume the structure is at rest at t = 0 and hence u is obtained as

u PL
c A r

r=
−

−8
π ρ

π
2 2 2 1

(2 1)
sin

(2 1)
2

Σ

× − − −





sin
(2 1)

2
1 cos

(2 1)
2

r x
L

r ct
L

π π
13.125

Maximum displacement will occur at the end of the beam when x = L and
time t = 2L/c.

We get

Σ
r =

∞

1,2,3 2

21
(2 – 1)

=
8r

π 13.126

Hence

maximum value = 2PL
AE

13.127

A suddenly applied load therefore produces twice the deflection than that
one would obtain if the load is applied gradually.

Example 13.8
Forced vibration of a flexural member

The simply supported beam shown in Fig. 13.15a having mass density ρ
and cross-sectional area A, moment of inertia I has a distributed load whose
variation with time is shown in Fig. 13.15b. Determine the expression for
dynamic deflection of the beam.

Solution
It is already seen

w x t W x T t
r r r( , )  ( ) ( )=

=
Σ

1

L

P(t)

P (t)

t
(b)(a)

13.15 (a) Forced vibration of a beam; (b) time varying load.
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The natural frequency of the beam is given by

ω π
ρr r

E I
AL

= ( )2
4

The governing equation is

E I w
x

A w
t

P t∂
∂

+ ∂
∂

=
4

4

2

2 ( )ρ

Assume

w = ∑ Wr(X)T
r(t)

where Wr(x) is the mode shape and Tr(t) represents the normal or principal
coordinates. Substituting for w, premultiplying with Ws and integrating with
respect to x we get

0

4

4
0

 d  d
L

s
r

r

L

s r rW EI
W
x

T x AW W T x∫ ∫∂
∂







+Σ Σρ ˙̇

= ∫0
d

L

sP t W x( )

Using orthogonality principles we write the equation for free vibration of the
beam as

0

4

4
2

0

2d d
L

s
s

n

L

sW EI
W
x

x A W x∫ ∫∂
∂







= ω ρ

So the equation of motion is written as (assume P(t) = p x f t( ) ( ))  we get

˙̇
( )

T T
f t p x W x

A W x
s s s

L

s

L

s

+ =
∫
∫

ω
ρ

2 0

0

2

( ) d

d

If p x( )  and f (t) are known

T t A t B t f ts s s s s
s

s

t

s( ) cos sin ( ) sin ( ) d
0

= + + −∫ω ω ω τ ω τ τΓ

where

Γs

L

s

L

sp x W x AW x= ∫ ∫0 0

2( ) d / dρ

w W t T t
r r=

=

∞
Σ

1
( ) ( )
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Example 13.9
A simply supported beam carries a uniformly distributed load of q. Find the
resulting vibration of the beam when the load is suddenly removed.

Solution

w
n x

L
A t B tn n n n= +Σ sin ( cos sin )

π ω ω

where

ω πn n EI
mL

= 2 2
4

at t = 0

w t A
n x

Ln( 0) sin= = Σ π

ẇ t B
n x

Ln n( 0) sin= = ω πΣ

As the loading is removed without any initial velocity Bn = 0
so

w A
n x

Ln= Σ sin
π

The governing equation is

EI w
x

q∂
∂

=
4

4

Substituting for w we get

Σ
n nEI n

L
A

n x
L

q
=

∞ ( ) =
1

π π4

sin

Multiplying both sides with sin nπx/L and integrating with respect to x we
get

A
qL

E I n
n = 4 4

5 5π
when n is odd. Or

w
qL

E I n
n x

L
= 4

 1 sin
4

5 5π
πΣ

13.12 Beams subjected to moving loads

A particular class of problem which has long been of interest to engineers
involves the determination of the dynamic response of a beam or girder
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resulting from the passage of a force or mass across the span. Examples
include the analysis of crane beams and moving vehicles in highway and
railway bridges.

13.12.1Constant force with constant velocity

Let us consider a constant force F moving across the span of the beam at
constant velocity v as indicated in Fig. 13.16. The dynamic deflection may
be represented by the summation of modal components as

w x t A W x
n n n( , ) ( )=

=
Σ

1

N

13.128

where An is the modal amplitude (which varies with time) and Wn(x) is the
characteristic shape. The velocity is given by

˙ ˙w x t A W x
n n n( , ) ( )=

=
Σ

1

N

13.129

For use in Lagrange’s equation, the kinetic energy T is expressed for the
complete system as

T m w x m A W x x
L L

n n= =∫ ∫2
d

2
[  ( )] d

0

2

0

2˙ ˙Σ 13.130

where m is the uniform mass.
Since Wn(x) is the ortho-normal function

T m A W x x
n n

L

n=
= ∫2

( ) d2

0

2Σ
1

N
˙ 13.131

∂
∂

= ∫T
A

m A W x x
n

n

L

n˙
˙

0

2 ( ) d 13.132

d
d

d
0

2

t
T
A

m A W x
n

n

L

n
∂
∂







= ∫˙
˙̇ 13.133

W

vt

F
v

13.16 Constant force crossing a beam with constant velocity.
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The work done by external dynamic force during an arbitrary distortion is

W P t x A W x x
L

n n= ∫0
( , )[  ( )]dΣ  for uniformly distributed load

13.134

or

W = F(t, x) AnWn(CF) 13.135

where CF is the distance from the end of the span to the force.

∂
∂

=W
A

FW CF
n

n ( ) 13.136

Using Lagrange equation of equilibrium as

d
dt

T
q

T
q

U
q

W
qi i i i

∂
∂







− ∂
∂

+ ∂
∂

= ∂
∂˙

13.137

or

d
dt

T
A

T
A

U
A

W
An n n n

∂
∂







− ∂
∂

+ ∂
∂

= ∂
∂˙ 13.138

mA W x U
A

F W CFn

L

n
n

n
˙̇

0

2 d ( )∫ + ∂
∂

= 13.139

whereas the strain energy is

U KA W xn

L

n= ∫1
2

d2

0

2 13.140

Substituting for U in Eq. 13.139 we get

m A W x K A W x F W CFn

L

n n

L

n n
˙̇

0

2

0

2d ( )∫ ∫+ = 13.141

or

˙̇A A
F W CF

m W x x
n n n

n

n

+ =

∫
ω 2

2

( )

( ) d
13.142

CF is a function of time. Assume the beam to be prismatic and simply
supported

L

CFn
CFWn

)(
sin)(

π= 13.143

�� �� �� �� �� ��



Structural dynamics of earthquake engineering472

where

CF = vt 13.144

so

W CF
n vt

Ln ( ) sin
( )= π

13.145

and

0

2 d
2

L

nW x L∫ = 13.146

Simplifying Eq. 13.142 we get

˙̇A A F
m L

n v t
Ln n n+ =ω π2 2 sin 13.147

or

An = Anst(DLF)n 13.148

(DLF is dynamic load factor) where

A F
m Lnst

n

= 2
2ω

13.149

and

(DLF) 1
(1 )

(sin sin )2m
m

m m nt t=
−

−
β

ω β ω 13.150

where

β ω
ω

π
ωm

m

n n

m v
L

= = 13.151

Hence the solution is

w F
m l

t t
k

N

n k
k

k

n
n=

−
−

=

2 1
( )

(sin sin )2 2Σ
1 ω ω

ω ω
ω ω 13.152

Example 13.10
Derive the mid-span deflection of a simple beam traversed by a constant
force, ignoring damping and including only a fundamental mode (higher
modes are of negligible importance). The parameters of the system are given
as M = 2 kg; EI = 78 700 Nm2, L = 10 m, v = 12.5 m/s. Calculate the critical
speed to cause resonance.
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Solution

ω π π
n L

EI
m

= = =
2

2

2

100
78 700

2
19.578 rad/s

ω π π= = × =v
L

12.5
10

3.9269

β ω
ω= =

n
0.204

w x L F

t t

( /2)
20 (19.2 3.9269 )

          (sin 3.9269 0.204 sin19.578 )

2 2= =
−

−

2

w x L
w x L

t t
( =
= = −/2)

( /2)static
1.06953 (sin 3.9269 0.204 sin19.578 )

The first term of the above expression is forced and the second one is free
vibration. The deflection is plotted in Fig. 13.17 as a fraction of mid-span
deflection. The abscissa may be considered to be either time or the position
of load on the span. Plotted separately is the forced part of the solution which
is very nearly equal to the static deflection ordinates of Fig. 13.17 may also
be regarded as the ratio of dynamic to static moments.

To find the critical velocity

ω ω π= = = =n
v

19.578
10

62.3 m/s(or)224 km h

13.17 Response of a simple beam to constant force crossing span
with constant velocity.
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13.13 Summary

The dynamic analysis of string, bar and beam with distributed properties
(mass and elasticity) and subjected to various types of loading were presented
in this chapter. The extension of the analysis to multi-span continuous beams,
though possible, is complex and impractical. The results obtained from these
single span beams are particularly important in evaluating an approximate
method based on discrete models.

13.14 Exercises

1. A uniform cable of length L and mass/unit length ρ is fixed at its ends
and is stretched to initial shape as shown in Fig. 13.18 and suddenly
released. Determine the expression for natural frequency and free dynamic
response.

2. The cord of a musical instrument is fixed at both ends and has a length
of 1 m, diameter d = 0.5 mm and mass density 8000 kg. Determine the
tension needed in the cord so as to have a fundamental frequency of
transverse vibration of 250 Hz.

3. A uniform beam of length L is one end fixed and other end free. The
free end is excited by a force in the axial direction which is suddenly
removed. Determine the displacement equation of the bar.

4. Determine the first three fundamental frequencies and corresponding
mode shapes of a simply supported reinforced concrete beam having
a cross-section 250 mm wide and 600mm depth with span of 12 m.
EI = 3.5 × 1010N m2. Weight density = 25 kN/m3 (Neglect shear
deformation and rotary inertia.)

5. A prismatic bar of having both ends free is 3 m long and weighs 15 000
N/m3. The lowest natural frequency in longitudinal direction of the rod
is 300 cycles/s. Determine E of the material of the bar if A = 0.1 m3.

6. A shaft has a length of 1.5m and diameter 30 mm G = 70 × 109 N/m2

and density 7800 kg/m3. Both ends of the shaft are fixed. Determine
the natural frequency of the torsional vibration of the shaft.

13.18

w0

L
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7. For the transverse vibration of a simply supported uniform beam solve
for responses for free response if the initial conditions given are

w(x, 0) = B(x/L – 3(x/L)2 + 2(x/L)3)

and initial velocity is zero.
8. Determine the frequency equation of a uniform beam pinned at one

end and elastically supported at the other end.
9. Determine the effect of rotary inertia on a free vibration of uniform

cantilever beam.
10. A simply supported bridge of span 20 m  EI = 8 GNm2 ρ A = 20 000 kg/

m is subjected to a load P sin 2π f t which moves with a velocity of
20m/s. If f = 5 Hz what is the largest amplitude of vibration of the
bridge.

11. Determine the expression for displacement and bending moment of a
uniform simply supported beam subjected to a step force P0 at a distance
of ξ from the left end.

12. For Problem 11 if the concentrated force varies with respect to time as
P(t) = P0e–ωt. Determine the expression for the forced displacement
response.

13.15 Further reading

Anderson R A (1967) Fundamentals of Vibration, Macmillan Co., New York.
Belvins R D (1979) Formulas for Natural Frequency and Mode Shape, Van Nostrand

Reinhold, New York.
Benaroya H (1998) Mechanical Vibration, Prentice Hall, Englewood Cliffs, NJ.
Biggs J M (1964) Introduction to Structural Dynamics, McGraw-Hill, New York.
Chopra A K (2002) Dynamics of Structures – Theory and applications to earthquake

engineering, Eastern Economy Edition, Prentice Hall of India, New Delhi.
Clark S K (1972) Dynamics of Continuous Elements, Prentice Hall, Englewood Cliffs,

NJ.
Clough R W and Penzien J (1974) Dynamics of Structures, McGraw-Hill, New York.
Cowper G R (1966) The shear coefficient in Timoshenko’s beam theory, Journal of

Appplied Mechanics, vol. 33, pp 335–340.
Craig R R (1981) Structural Dynamics, John Wiley and Sons, New York.
Deb K K (1875) Dynamics of a string and an elastic hammer, Journal of Sound and

Vibration, vol. 40, pp 243–248.
DenHartog J P (1956) Mechanical Vibrations, 4th ed., McGraw-Hill, New York.
Fertis D G (2000) Dynamics and Vibrations of Structures, 2nd ed., John Wiley & Sons,

New York.
Housner G W and Keightley W O (1963) Vibrations of linearly tapered beams, Part I,

Transactions of ASCE, vol. 128, pp 1020–1048.
Humar J L (1990) Dynamics of Structures, Prentice Hall, Englewood Cliffs, NJ.
Hutchinson J R (1981) Transverse vibrations of beams: exact versus approximate solutions,

Journal of Applied Mechanics, vol. 48, pp 923–928.
Hutton D V (1981) Applied Mechanical Vibrations, McGraw-Hill, New York.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering476

Irvine H M (1986) Structural Dynamics for the Practicing Engineer, Allyn and Unwin,
Boston, MA.

Jacobsen L S and Ayre R S (1958) Engineering Vibrations, McGraw-Hill Book Co., New
York.

James M L, Smith G M, Wolford J C and Whaley P W (1989) Vibration of Mechanical
and Structural Systems, Harper and Row, New York.

Klein L (1974) Transverse vibrations of non-uniform beams, Journal of Sound and Vibration,
vol. 22, pp 133–142.

Mukhopadhyay M (2006) Structural Dynamics, Ane Books India, New Delhi.
Paz M (1980) Structural Dynamics, Theory and Computation, Van Nostrand Reinhold,

New York.
Rao S S (2003) Mechanical Vibrations, 4th ed., Prentice Hall, Englewood Cliffs, NJ.
Steidel R F (1971) An Introduction to Mechanical Vibrations, Wiley, New York.
Thompson W T (1981) Theory of Vibration with Applications, 2nd ed., Prentice Hall,

Englewood, Cliffs, NJ.
Timoshenko S (1955) Vibration Problems in Engineering, Van Nostrand Co., Princeton,

NJ.
Timoshenko S P and Gere J (1961) Theory of Elastic Stability, McGraw-Hill, New York.
Tolstov G P (1962) Fourier Series, Dover Publications, New York.
Tse F S, Morse I E and Hinkle R T (1963) Mechanical Vibrations, Theory and Applications,

2nd ed., Allyn and Bacon, Boston, MA.
Vierck R K (1979) Vibration Analysis, 2nd ed., Harper and Row, New York.
Wang T M (1970) Natural frequencies of continuous Timoshenko beam, Journal of

Sound and Vibration, vol. 13, pp 409–414.
Weaver W, Timoshenko S P and Young D H (1990) Vibration Problems in Engineering,

5th ed., Wiley, New York.

�� �� �� �� �� ��



477

14
Finite element method in relation to

structural dynamics during earthquakes

Abstract: The basic procedure of the finite element method, with application
to simple vibration problems, is presented in this chapter. The element
stiffness, mass (both consistent and lumped mass) and forced vibration are
derived for truss elements, shafts and beam elements. The transformation of
the above matrices with respect to the local coordinate system is now
transformed to the global system. The equations of motion of the complete
system of finite element and the incorporation of boundary conditions are
discussed. Relevant computer programs in MATHEMATICA and MATLAB
are presented for truss, torsion and beam elements. Although techniques
presented are applicable to two- or-three dimensional systems, only the one-
dimensional element is treated in this chapter.

Key words: discrete element natural frequency, modes, Rayleigh–Ritz
method, boundary conditions.

14.1 Introduction

The finite element method is a powerful numerical method that is used to
provide approximations to continuous systems. The disciplines in which the
finite element method can be applied include stress analysis, heat transfer,
electromagnetic analysis, fluid flow and vibrations. Application of the finite
element method to continuous systems requires the systems to be divided
into a finite number of discrete elements. Interpolations for the dependent
variables are assumed across each element and are chosen to ensure appropriate
inter-element continuity. The interpolating functions are developed in terms
of unknown values of the dependent variables at discrete points, called nodes
which are located for a one-dimensional system at element boundaries. The
defined interpolations are used to provide approximation to the dependent
variables across the system. Lagrange’s equations are then applied for vibration
problems resulting in a set of differential equations for the dependent variables
at nodes. Total structure is obtained as assembly of elements.

The term finite element was coined by Prof Clough. Boundary conditions
for continuous systems are classified as being of two types:

• geometric boundary conditions are those which must be satisfied according
to geometric constraints. For example, u(x = 0) = 0 u′(x = 0) = 0 at a
fixed end of a cantilever;
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• natural boundary conditions are those that must be satisfied as a result of
free and moment balances. For example, EI (∂2u/∂x2) (x = L) = 0 is a
moment boundary condition at the free end of a cantilever.

The chosen interpolating function must satisfy geometric boundary
conditions.

The type of problem that comes from the realm of structural dynamics is
restricted to the calculation of natural frequencies and the corresponding
mode shapes of free undamped vibration of common structural components
and forms. This requires the development of mass matrix, which will represent
the effect of dynamic loading (proportional to the square of frequency) which
is set up during vibration. Vibration problems are eigenvalue problems in
which eigenvalues represent the square of the natural frequencies and
eigenvectors define the shape of the structure when vibrating at a particular
frequency.

14.2 Dynamic analysis

Basically four different types of problems can be distinguished in the field of
dynamics, free vibration, steady state vibration, transient response to known
excitations and response to random excitations.

14.3 Torsional vibration of a shaft

The shaft element shown in Fig. 14.1 has two nodes at its two ends. The
unknown displacements at each end are the angles of twist φ1, φ2. The
displacement function, which is the angle of twist, is given by

φ
α
α

=< > 







1 
1

2
x 14.1

Linear interpolation function may be assumed as

φ
φ

α
α

1

2

1

2

1 0

1







= 










L

14.2

1 2

T1, φ1 T2, φ2

L

14.1 A shaft with two nodes subjected to torsion.
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Hence

α
α

φ
φ

1

2

1

2

1 0

1 1







=

−











L

L
14.3

Hence twist at any section may be written as

φ
φ
φ

=< − > 







(1 / ) /
1

2
x L x L 14.4

or

φ
φ
φ

φ=< > 






=< >N N N1 2

1

2
{ } 14.5

where N1 N2 are the shape functions given by

N1 = (1 – x/L); N2 = x/L 14.6

where { }φ  are the nodal coordinates.

The equivalent stress strain relation of the shaft is

T GJ
x

= ∂
∂
φ

14.7

where T is the torsional moment, G is modulus of rigidity and J is the polar
moment of inertia.

Equation 14.7 is analogous to

σ = Cε 14.8

where C = GJ and ε = ∂φ/∂x
Now strain displacement relation is written as

ε φ φ
φ

= ∂
∂

=< − > 





x L L

1 1 1

2
14.9

or

ε φ= { }[ ]B 14.10

or

σ φ= [ ][ ]{ }C B 14.11

Let us consider undamped free vibration case. The inertia force is I ˙̇φ
acting on the shaft where I is the mass moment of inertia/unit length. Hence
total potential energy can be written as

Π = +∫ ∫1
2

d d
0

T

0

T
L L

x I xε σ φ φ̇̇ 14.12
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or

Π =
< > 



∫

φ
φ

T

0

T

2
[ ] [ ][ ]d { }

L

B C B x

+ < > < >∫I φ φ
0

{ } { }d
L

N N x˙̇ 14.13

The principle of minimum potential energy requires

∂
∂

=Π
{ }

0φ 14.14

∂
∂

=






+






=∫ ∫Π
{ }

d d { } {0}
0

T

0

T

φ φ φ
L L

B C B x I N N x{ } ˙̇ 14.15

i.e.

[ ] { } [ ] { } {0}k Me e e eφ φ+ = 14.16

where

[ ] d

1

1
1  1 > d

0

T

0
k B C B x L

L

GJ
L L

L xe

L L

= =
−











< −∫ ∫

=
−

−






GJ
L

1 1

1 1
14.17

[ ]
1

1  d
6

2 1

1 20
M I

x
L

x
L

x
L

x
L

x
I L

e

L

=
−( )











< −( ) > = 



∫ 14.18

If [M]e is a lumped mass matrix (it is assumed that mass is lumped at
nodes)

[ ]
2

1 0

0 1
M

I L
e = 





14.19

Even though consistent mass is more accurate, lumped mass gives better
results because both stiffness and mass are over-estimated, thus resulting in
the correct answer.

The next step is the assembly of stiffness matrix. Assume that the shaft is
idealized into a number of elements as shown in Fig. 14.2 and that each
element has two nodes and one degree of freedom at each node. The elements
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of the stiffness matrix will go into the corresponding position of global
stiffness matrix as

[ ]
1 1

1 1
k GJ

L
i

je =
−

−






←
←







14.20

↑ ↑
i j

Similarly the mass matrix will go into the corresponding to the locations of
global matrix as

[ ]
6

2 1

1 2
M

I L i

je = 





←
←







14.21

↑ ↑
i j

When all elements of the element stiffness matrices and mass matrices are
assembled, and the boundary conditions incorporated, the final equations of
free vibration is as follows

[ ]{ } [ ]{ } {0}M k˙̇φ φ+ = 14.22

Assume the solution for φ as

{φ} = eiωt{A} 14.23

Equation 14.22 reduces to

–ω2[M]{A} + [K}{A} = {0} 14.24

or

1 { } [ ] [ ]{ };   or  { } [ ] [ ]{ }2
1 1

ω
λA K M A A K M A= =− − 14.25

where

ω
λ

= 1 14.26

Equation 14.26 is a typical eigenvalue problem.

14.2 Idealization of shaft into a number of elements.

1 2 3 i-1 i i+1 N-1 N
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Example 14.1
A uniform shaft having one end fixed and the other end free is divided into
two equal elements as shown in Fig. 14.3. Determine the natural frequency
for torsional vibration of the shaft.

Solution
Give node numbers as 1, 2 and 3 and element numbers as 1 and 2.

Consider element 1
Stiffness matrix of the element

[ ]
2 1 1

1 1

1

21k
GJ
L

=
−

−






←
←







↑ ↑
1 2

Mass matrix of the element

[ ]
12

2 1

1 2

1

21M
I L= 





←
←







↑ ↑
1 2

Consider element 2
Stiffness matrix is

[ ]
2 1 1

1 1

2

32k
GJ
L

=
−

−






←
←







↑ ↑
2 3

I, G, J
T2, φ2

T1, φ1 T3, φ3

1 2

L

1 2 3

14.3 A cantilever shaft.
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Mass matrix is

[ ]
12

2 1

2

2

32M
I L= 





←
←





1

↑ ↑
2 3

Assemble the element stiffness matrix to arrive at global stiffness
matrix as

[ ] 2
1 1 0

1 1 1 1

0 1 1

2
1 1 0

1 2 1

0 1 1

K GJ
L

GJ
L

=
−

− + −
−
















=

−
− −

−

















Similarly assemble the element mass matrix to arrive at global mass matrix
as

[ ]
12

2 1 0

1 2 2 1

0 1 2
12

2 1 0

1 4 1

0 1 2

M IL IL= +















=

















Apply boundary conditions
Since left end of the shaft is fixed φ1 = 0. Hence by cancelling the first row
and column in the global stiffness matrix and mass matrix, we get the stiffness
matrix and mass matrix after applying the boundary conditions:

[ ] 2 2 1

1 1
K GJ

L
=

−
−







[ ]
12

4 1

1 2
M IL= 





24 { }
5 3

6 5
{ };  { }

5 3

6 5
{ }2 2

GJ
IL

A A A A
ω

λ= 





= 





solving λmax = 9.2426.

ω 2
22.596= GJ

IL

or

ω = 1.611
L

GJ
I
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where I = J ρ and substituting in the above equation we get

ω ρ= 1.611
L

G

and the fundamental mode of vibration is shown in Fig. 14.4.
If the system is subjected to forced vibration and damping is included in

the system, Eq. 14.22 is modified as

[ ]{ } [ ]{ } [ ]{ } { ( )}M C K F t˙̇ ˙φ φ φ+ + = 14.27

where

 [ ] =  d
0

TC
L

N N x∫ 14.28

where µ is some numerical value of viscous damping. Once the structural
stiffness matrix, damping matrix and mass matrix are formed, the procedure
of analysis is same as presented in Chapter. 12.

14.4 Axial vibration of rods

The total degrees of freedom for a bar element are the axial displacements at
the ends of the element instead of the angle of twist for torsional vibration.
Let u1, u2 be the displacements at the left end and right end of an element
(see Fig. 14.1). Axial displacement at any section is written as

u x L x L
u

u
=< − > 








(1 / ) /
1

2
14.29

Let us consider undamped free vibration case. The inertia force is mu Au˙̇ ˙̇= ρ
acting on the bar shaft where m is the mass/unit length. Hence total potential
energy can be written as

Π = < > 



∫u

B C B x u
LT

0

T

2
[ ] [ ][ ]d { }

+ < > < >∫ρ A u N N u x
L

0
{ } { }d˙̇ 14.30

0.5774

0.8165

14.4 Fundamental mode shape.
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Hence the stiffness matrix of an element for axial vibration of a rod is the
same as torsional vibration of the rod except that GJ is to be replaced by EA.

[ ]
1 1

1 1
k EA

Le =
−

−






14.31

[ ]
1

1 d
6

2 1

1 20
M A

x
L

x
L

x
L

x
L

x
A L

e

L

=
−( )











< −( ) > = 



∫ρ ρ

14.32

Hence I in the torsional vibration must be replaced by ρA for axial vibration
of the rod.

Example 14.2
For the rod shown in Fig 14.3 determine the lowest frequency for longitudinal
vibration of the rod by the finite element method by considering two elements.
Solution

ω ρ= 1.611 /
L

E

In the above method, admissible functions are used as basis functions in
a Rayleigh–Ritz approximation to solution of an eigenvalue problem.
Sometimes the Rayleigh–Ritz method is difficult to apply to vibration problems.
The assumed modes method, introduced in the next section, is based on
application of Lagrange’s equations and leads to the same approximation as
that for the same set of interpolating functions as the Rayleigh–Ritz method.
In the next section we will use the finite element method for the longitudinal
vibration by the assumed modes method.

14.5 Assumed modes method

Example 14.3
Consider a forced vibration of a longitudinal bar as shown in Fig. 14.5. The
displacement u is a function of spatial coordinate x and time t, i.e. u(x, t).

Solution
Assume A(x), area of the section varies along the length as A = 0.001 (1–
0.005x), stiffness of the spring K = 3 × 107N/m and ρ = 7800 kg/m3; L = 4
m; E = 200GPa.

Let u1(x), u2(x), un(x) be a set of linearly independent functions that are at
least first order differentiable and satisfy all the system’s geometric boundary
conditions.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering486

u(x, t) = ∑ Ti(t) Ui(x) 14.33

Ui(x) may be assumed to satisfy boundary conditions as

U x
x
L

U x
x

L
U x

x
L1 2 3( ) sin

2
;  ( ) sin

3
2

;  ( ) sin
5
2

= = =π π π
14.34

The kinetic energy of the bar is calculated as

T A x u
t

x M u
t

x L
L

= ∂
∂





 + ∂

∂
=



∫1

2
( ) d

2
( )

0

2 2

ρ 14.35

Simplifying we get

T T T
i

n

j

n

i j=
= =

1
2

 Σ Σ
1 1

˙ ˙

 × +








∫ = =0

( ) ( ) ( ) d 1
2

 ( ) ( )
L

i j i

n

j

n

i jA x U x U x x MU L U Lρ Σ Σ
1 1

14.36

The kinetic energy has the quadratic form as

T M T T
i

n

j

n

ij i j=
= =

1
2

 Σ Σ
1 1

˙ ˙ 14.37

where Mij is the element of the equivalent mass matrix given by

M A x U x U x x MU L U Lij

L

i j i j= +∫0
( ) ( ) ( ) d ( ) ( )ρ 14.38

The potential energy of the system is given by

V E A x u
x

x K U L
L

= ∂
∂





 +∫1

2
( ) d 1

2
( ( ))

0

2
2

= +








= = ∫1

2
( )

d ( )
d

d ( )
d

d ( ) ( )
0

Σ Σ
i

n

j

n

i j

L
i j

i jT T EA x
U x

x
U x

x
x KU L U L

1 1

14.39

A1 = 0.001

ρ, E, A(x)
F(L, t)

x M
K

L = 4 m

14.5 Forced vibration of a longitudinal bar.
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The potential energy has the quadratic form given by

V K T T
i

n

j

n

ij i j=
= =

1
2

Σ Σ
1 1

14.40

where

K E A x
U x

x
U x

x
x KU L U Lij

L
i j

i j= +∫0
( )

d ( )
d

d ( )
d

d ( ) ( ) 14.41

For a free vibration of the system using Lagrange’s equation, we get the
dynamic equilibrium equation as

MT K T˙̇ + = 0 14.42

where the element of the mass matrix is the coefficient given by Eq. 14.37
and the element of the stiffness matrix as given by Eq. 14.40. If scalar
product notation is used

Mij = (Ui, Uj)T; Kij = (Ui, Uj)V 14.43

Approximations to ‘r’ lowest natural frequencies are obtained as

1/ eigenvalues  of K–1M. The corresponding mode shape vectors are used in

u x t T t U x
i

n

i i( , ) ( ) ( )=
=
Σ

1
14.44

to approximate the mode shape for the frequency. For the problem

M x
x
L

x
L

x M
L

12
0

0.001(1 0.005 ) sin sin d sin
2

sin 3
2

= − +



∫ ρ π π π π

2
3
2

14.45a

K E x
L L

x
L

x
L

x K
L

12
0

0.001(1 0.005 )
2

3
2

cos cos
3
2

d= − ( )  
 +



∫ π π π π

2

14.45b

The MATLAB program given in Section 14.6 illustrates the use of symbolic
algebra to determine mass and stiffness matrices for the assumed modes
approximation. If X1 =< X11X12X13 > is the eigenvector corresponding to the
eigenvalue that gives an approximation to the lowest natural frequency, the
approximation to the corresponding mode is given by

u1(x) = X11U1(x) + X12U2(x) + X13U3(x) 14.46

The natural frequencies are obtained by running MATLAB. Figure 14.6
shows the modal approximation to the mode shape.
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14.6 Program 14.1: MATLAB program for the

assumed modes method

%example 14.3
% assumed modes method to determine natural frequencies m mode
%shapes, and forced response of tapered bar with attached mass and spring
clc;
close all;
digits(5);
x=sym(‘x’);
%parameters
e=200*10^9; % youngs modulus in N/sq.m
rho=7800; % mass density in kgm/cu.m
l=4.0; % span of the beam in m
m=10; % concentrated mass in kgm
k=3*10^7; % spring constant
%functions
a=0.001*(1-.005*x);% area in sq.m
u(1)=sin(pi*x/(2*l)); % assumed modes
u(2)=sin(3*pi*x/(2*l));
u(3)=sin(5*pi*x/(2*l));
%mass and stiffness matrices
for i=1:3

for j=1:i
c1=subs(u(i),x,l)*subs(u(j),x,l);
Mint=rho*a*u(i)*u(j);

1st mode
2nd mode
3rd mode

0 1 2 3 4
x (m)

w
(x

) 
m

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

14.6 Mode shapes for mode approximation method.
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Kint=e*a*diff(u(i),x)*diff(u(j),x);
M(i,j)=int(Mint,x,0,l)+m*c1;
K(i,j)=int(Kint,x,0,l)+k*c1;
M(j,i)=M(i,j);
K(j,i)=K(i,j);

end
end
disp(‘ stiffness matrix’)
K=vpa(K)
disp(‘ mass matrix’)
M=vpa(M)
K1=double(K);
M1=double(M);
C=inv(K1)*M1;
[V,D]=eig(C);
for i=1:3

w(i)=1/sqrt(D(i,i));
end
disp(‘ natural frequencies in rad/sec’)
w=vpa(w);disp(w’)
%Normalize mode shape vectors
E=V’*M*V;
for j=1:3

for i=1:3
P(i,j)=V(i,j)/sqrt(E(j,j));

end
end
disp(‘ modal matrix’)
P=vpa(P);disp(P)
%mode shapes
xx=linspace(0,l,37);
P1=single(P);
for k=1:37

for i=1:3
v(i,k)=0;
for j=1:3

v(i,k)=v(i,k)+P1(j,i)*subs(u(j),x,xx(k));
end

end
end
plot(xx,v(1,:),’k’,xx,v(2,:),’*k’,xx,v(3,:),’—k’);
xlabel(‘ x (m)’)
ylabel(‘ w(x) m’)
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legend(‘ 1st mode’, ‘2nd mode’, ‘3rd mode’)

Output for example 14.3
stiffness matrix
K =
[ .91319e8, -.29250e8, .30139e8]
[ -.29250e8, .57987e9, -.26250e8]
[ .30139e8, -.26250e8, .15570e10]

mass matrix
M =
[ 25.381, -9.9368, 9.9930]
[ -9.9368, 25.437, -9.9368]
[ 9.9930, -9.9368, 25.442]

natural frequencies in rad/sec
1895.7
5062.1
8984.0
modal matrix
[ .19713, -.94408e-1, -.53048e-1]
[ -.26221e-2, -.20576, .89500e-1]
[ .79332e-3, .28353e-1, .22280]

14.7 Truss element

Consider a truss element oriented as shown in Fig. 14.7 in the global coordinate
system.

FYJ, VJ

FZJ, WJ

FXJ, UJ
j

Y

FYI, V2

FZI, Wi

i
θ

FXI, uJ

X

14.7 Truss element.
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14.7.1 Element stiffness and mass matrices

Since the truss element is a bar element subjected to axial forces, the stiffness
matrix is given by

F

F
EA
L

w

w
Z i

Z j

i

j








=

−
−














1 1

1 1
14.47

The local displacements <wi wj> can be written in terms of global displacements
as

w

w

c s

c s

u

v

u

v

i

j

i

i

j

j








= 























0 0

0 0
14.48

where c = cos (θ); s = sin (θ).
Equation 14.48 can be written as

{q}l = [T]{q}g 14.49

where {q}l represents local displacements and {q}g represents global
displacements.

By using contra-gradient law

{F}g = [T]T{F}l 14.50

{F}g = [T]T[k]l{q}l 14.51

or

{F}g = [T]T[k]l[T]{q}g 14.52

or

{F}g = [k]g{q}g 14.53

where

{k}g = [T]T[k]l{T} 14.54

[ ]

0

0

0

0

0 0

0 0
k

c

s

c

s

EA
L

c s

c sg =

























=

− −
− −

− −
− −



















EA
L

c cs c cs

cs s cs s

c cs c cs

cs s cs s

2 2

2 2

2 2

2 2

14.55
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where mass matrix in global system is given by

[ ]
6

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

M
A L

g =



















ρ
14.56

14.7.2 Assembly

The elements of the stiffness matrix and mass matrix will assemble in the
proper location of structural stiffness matrix as

a a a a

a a a a

a a a a

a a a a

i

i

j

j

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

2 1

2

2 1

2

↑ ↑ ↑ ↑























← −
←

← −
←

14.57

2i – 1 2i 2j – 1 2j

14.7.3 Application of boundary conditions

• If any of the degrees of freedom is constrained, the row and column
corresponding to that degree of freedom are deleted from the assembled
stiffness or mass matrix.

• Add springs of very high stiffness at the constrained degree of freedom.
• Use Lagrangian multiplier method to incorporate the constraints.

14.7.4 Solve as an eigenvalue problem

[K]{q} = ω2[M]{q} 14.58a

or 1 { } [ ] [ ]{ }2
1

ω
q K M q= − 14.58b

λ{q} = [K]–1[M]{q} 14.58c

or

ω
λ

= 1 14.58d

and the corresponding mode shape is also obtained.
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Example 14.4
Use the finite element method to obtain the lowest natural frequency for the
truss shown in Fig. 14.8. The data are: L1 = 1.2 m; L2 = 2.68 m; L3 = 2.4 m;
L4 = 1.2 m; θ = 63.43°; sin θ = 0.894; cos θ = 0.447 E = 2 × 1011N/m2; A =
0.04 m2; ρ = 7600 kg/m3.

Solution
The element stiffness matrix and mass matrix are shown below.

θθ sin;cos == sc

[ ] ;  [ ]

2 2

2 2

2 2

2 2

k
E A
L

c cs c cs

cs s cs s

c cs c cs

cs s cs s

Me e=

− −
− −

− −
− −



















=



















ρ A L
l

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

Element 1 i = 4, j = 3 c = 1; s = 0

[ ] 10

6.667 0 6.667 0

0 0 0 0

6.667 0 6.667 0

0 0 0 0

7

8

5

6
1

9k =

−

−

↑ ↑ ↑ ↑























←
←
←
←

7 8 5 6

4 1 3

2

3

θ

1 4 2

(a) (b)

14.8 (a) Four bar truss; (b) mode shape.
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[ ]

121.6 0 60.8 0

0 121.6 0 60.8

121.6 0 60.8 0

0 60.8 0 121.6

7

8

5

6
1M =

↑ ↑ ↑ ↑























←
←
←
←

7 8 5 6

Element 2 i = 1 j = 3 c = 0.447 s = 0.894

[ ] 10

0.5966 1.1928 0.5966 1.1928

1.1928 2.3852 1.1928 2.3852

0.5966 1.1928 0.5966 1.1928

1.1928 2.3852 1.1928 2.3852

1

2

5

6
2

9k =

− −
− −

− −
− −

↑ ↑ ↑ ↑























←
←
←
←

1 2 5 6

[ ]

271.877 0 135.938 0

0 271.877 0 135.938

135.938 0 271.877 0

0 135.938 0 271.877

1

2

5

6
2M =

↑ ↑ ↑ ↑























←
←
←
←

1 2 5 6

Element 3 i = 2 j = 3 c = 0 s = 1

[ ] 10

0 0 0 0
0 3.333 0 3.333
0 0 0 0
0 3.333 0 3.3333

3
4
5
6

3
9k =

−

−
↑ ↑ ↑ ↑





















←
←
←
←

3 4 5 6

[ ] =

243.2 0 121.6 0

0 243.2 0 121.6

121.6 0 243.2 0

0 121.6 0 243.2

3

4

5

6
3M

↑ ↑ ↑ ↑























←
←
←
←

3 4 5 6
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Element 4 i = 1; j = 2 c = 1 s = 0

[ ] 10

6.667 0 6.667 0

0 0 0 0

6.667 0 6.667 0

0 0 0 0

1

2

3

4
4

9k =

−

−

↑ ↑ ↑ ↑























←
←
←
←

1 2 3 4

[ ]

121.6 0 60.8 0

0 121.6 0 60.8

121.6 0 60.8 0

0 60.8 0 121.6

1

2

3

4
4M =

↑ ↑ ↑ ↑























←
←
←
←

1 2 3 4

Assembling all the elements and eliminating the 1st, 2nd, 7th and 8th (boundary
conditions) we get resulting stiffness and mass matrices as

[ ] 10

6.667 0 0 0

0 3.333 0 3.333

0 0 7.263 1.1928

0 3.333 1.1928 5.7185

9K =
−

−



















[ ]

364.8 0 121.6 0

0 364.8 0 121.6

121.6 0 636.67 0

0 121.6 0 636.67

M =



















Solving as an eigenvalue problem

1 { } [ ] [ ]{ }2
1

ω
A K M A= −

The natural frequencies are 1251, 3234 and 4531 and the fundamental mode
shape is shown in Fig. 14.8b.
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14.8 Program 14.2: MATLAB program for free

vibration of trusses

Trussdyn
% solution of plane truss free vibration by finite element method
clc;
K=zeros(12,12);
M=zeros(10,10);
e=200e9;
a=0.04;
l1=1.2;
rho=7600;
l2=2.683;
l3=2.4;
l4=1.2;
l5=2.4;
% calculate element lengths
% calculate element stiffness
k1=PlaneTrussElementStiffness(e,a,l1,0);
m1=PlaneTrussElementMass(rho,a,l1,0);
k2=PlaneTrussElementStiffness(e,a,l2,63.43);
m2=PlaneTrussElementMass(rho,a,l2,63.43);
k3=PlaneTrussElementStiffness(e,a,l3,90);
m3=PlaneTrussElementMass(rho,a,l3,90);
k4=PlaneTrussElementStiffness(e,a,l4,0);
m4=PlaneTrussElementMass(rho,a,l4,0);
% assemble element stiffness to global stiffness
K=PlaneTrussAssemble(K,k1,4,3);
K=PlaneTrussAssemble(K,k2,1,3);
K=PlaneTrussAssemble(K,k3,2,3);
K=PlaneTrussAssemble(K,k4,1,2);
M=PlaneTrussAssemble(M,m1,4,3);
M=PlaneTrussAssemble(M,m2,1,3);
M=PlaneTrussAssemble(M,m3,2,3);
M=PlaneTrussAssemble(M,m4,1,2);
format long;
ks=1;
% apply boundary conditions for stiffness matrix and mass
K(9,1)=ks;
K(10,2)=ks;
K(11,7)=ks;
K(12,8)=ks;
M(9,1)=ks;
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M(10,2)=ks;
M(11,7)=ks;
M(12,8)=ks;
K(1,9)=ks;
K(2,10)=ks;
K(7,11)=ks;
K(8,12)=ks;
M(1,9)=ks;
M(2,10)=ks;
M(7,11)=ks;
M(8,12)=ks;
invk=inv(K);
km=invk*M;
[ms,ns]=size(M);
% eigen values and eigen vectors
[evec,ev]=eig(km);
for i=1:ms

ee(i)=1/ev(i,i);
end
Qh=max(ee)+0.001;
Ql=0;
for i=1:ms

for j=1:ms
if ee(j) > Ql & ee(j) < Qh

k=j;
Qh=ee(j);

else
end
end

Ql=Qh;
Qh=max(ee)+0.001;
om1(i)=ee(k);
omega(i)=sqrt(ee(k));
for m=1:ms

p1(m,i)=evec(m,k);
end
end
%Normalizing the mode shape
L=p1'*m*p1;
%develop modal matrix
for i=1:ms

for j=1:ms
p(i,j)=p1(i,j)/L(j,j);
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end
end
disp(‘ Natural frequencies in rad/sec’)
disp(omega’)
disp(‘ normalized modal vector ‘)
disp(p)

function y = PlaneTrussElementStiffness(E,A,L, theta)
%PlaneTrussElementStiffness This function returns the element
% stiffness matrix for a plane truss
% element with modulus of elasticity E,
% cross-sectional area A, length L, and
% angle theta (in degrees).
% The size of the element stiffness
% matrix is 4 x 4.
x = theta*pi/180;
C = cos(x);
S = sin(x);
y = E*A/L*[C*C C*S -C*C -C*S ; C*S S*S -C*S -S*S ;

  -C*C -C*S C*C C*S ; -C*S -S*S C*S S*S];

function y = PlaneTrussElementMass(rho,A,L, theta)
%PlaneTrussElementStiffness This function returns the mass
% matrix for a plane truss
% element with mass density rho,
% cross-sectional area A, length L, and
% angle theta (in degrees).
% The size of the element stiffness
% matrix is 4 x 4.
x = theta*pi/180;
C = cos(x);
S = sin(x);
% for consistent mass use the following
y = (rho*A*L/6)*[2 0 1 0 ; 0 2 0 1 ;1 0 2 0 ; 0 1 0 2];
%for lumped mass use the following
%y=(rho*A*L/2)*[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];

function y = PlaneTrussAssemble(K,k,i,j)
%PlaneTrussAssemble This function assembles the element stiffness
% matrix k of the plane truss element with nodes
% i and j into the global stiffness matrix K.
% This function returns the global stiffness
% matrix K after the element stiffness matrix
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% k is assembled.
lm(1)=2*i-1;
lm(2)=2*i;
lm(3)=2*j-1;
lm(4)=2*j;
for m=1:4

ii=lm(m);
for n=1:4

jj=lm(n);
K(ii,jj)=K(ii,jj)+k(m,n);

end
end
y = K;

OUTPUT

Natural frequencies in rad/sec
1.0e+003 *

0.00100000000000
0.00100000000000
1.25105969735243
3.23474518944287
4.53189428385080

14.9 Beam element

Consider a uniform beam element of length L and cross-sectional area A and
mass density ρ as shown in Fig. 14.9. The modulus of elasticity of the
material is E and I is the second moment of area. The unknown displacement
of the element are deflections and rotations at the two ends, in total four
degrees of freedom for each element or two degrees of freedom/node. The
displacement function is represented by the equation given by

θi
θj

wi

L

wj

14.9 Beam element.
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w x x x=< >



















1   2 3

1

2

3

4

α
α
α
α

14.59

or

w =< d > {α} 14.60

The degrees of freedom at the two ends of the element are written as

w

w L L L

L L

i

i

j

j

θ

θ

α



















=



















1 0 0 0

0 1 0 0

1

0 1 2 3

{ }2 3

2

14.61

or

{ } [ ]{ }w A= α 14.62

or

{ } [ ] { }1α = −A w 14.63

Hence

w d A w N w=< > =< >−[ ] { } { }1 14.64

where

{N}T =< N1N2N3N4 > 14.65

N x
L

x
L1

2

2

3

31 3 2= − +





N x x
L

x
L2

2 3

22= − +





N x
L

x
L3

2

2

3

33 2= −





N x
L

x
L4

2 3

2= − +



 14.66

The stiffness matrix is derived from strain energy as

U
E I w

x
x EI w N N x w

L L

xx xx= 



 = < > < >∫ ∫2

d
d

d
2

{ } d { }
0

2 2

0
, ,2

14.67
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or

d
d

[ ]{ }U
w

k w= 14.68

or

[ ] { } d
0

, ,k EI N N x
L

xx xx= < >∫ 14.69

where

{ } 6 12 , 4 6 ,,
T

2 3 2N
L

x
L L

x
Lxx = − +



 − +





× −



 − +





6 12 , 2 62 2L
x
L L

x
L

14.70

The matrix can very easily be generated using MATHEMATICA.
The element stiffness matrix is given by

[ ]

12 sym

6 4

12 6 12

6 2 6 4

3

2

2 2

k EI
L

L L

L

L L L L

e =
− −

−



















14.71

The consistent mass matrix is derived from kinetic energy as

T Aw x
L

= ∫ω ρ
2

0

2

2
d 14.72

= < > < > =∫ω ρ ω
2

0

2

2
{ } d [ ]

A
w N N x M

L

14.73

where

[ ] { } d
0

M A N N x
L

= < >∫ρ 14.74

and is given by

[ ]
420

156

22 4

54 13 156

13 –3 22 4

2

2 2

M
A L L L

L

L L L L

=

− = −



















ρ
14.75
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14.10 Program 14.3: MATHEMATICA program for

evaluation of stiffness matrix, and mass matrix

of a beam element

12 i ym 6 i ym -12 i ym 6 i ym

——————— ——————— ——————— ———————
3 2 3 2
L L L L

6 i ym -6 i ym
——————— 4 i ym ——————— 2 i ym

2 ——————— 2 ———————
L L L L
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-12 i ym -6 i ym 12 i ym -6 i ym
——————— ——————— ——————— ———————

3 2 3 2

L L L L

6 i ym -6 i ym
——————— 2 i ym ——————— 4 i ym

2 ——————— 2 ———
L L L L

2 2
13 A L Ò 11 A L Ò 9 A L Ò -13 A L Ò

——————— ——————— ——————— —————————
35 210 70 420

2 3 2 3

11 A L Ò A L Ò 13 A L Ò -(A L Ò)
——————— ——————— ——————— —————————

210 105 420 140

2 2
9 A L Ò 13 A L Ò 13 A L Ò -11 A L Ò

——————— ——————— ——————— —————————
70 420 35 210

2 3 2 3
-13 A L Ò -(A L Ò) -11 A L Ò A L Ò
——————— ——————— ——————— ———————

420 140 210 105

6 P P -6 P P
——— ——— ————— ———

5 L 10 5 L 10
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P 2 L P -P -(L P)
——— ————— ——— ———————
10 15 10 30

-6 P -P 6 P -P
—————— ——— ———— ———

5 L 10 5 L 10

P -(L P) -P 2 L P

——— —————— ——— —————
10 30 10 15

Example 14.5
Find the fundamental frequency of a simply supported uniform beam shown
in Fig. 14.10.

Solution
Idealize the beam into one element and applying boundary conditions as

w1 = w2 = 0

[ ]
4 2

2 43

2 2

2 2
k EI

L

L L

L L
=











[ ]
420

4 3

3 4

2 2

2 2
M

AL L L

L L
=

−
−











ρ

||[k] – λ[M]|| = 0

where

λ ρ ω
=

AL
E I

2

420

we get

4 4 2 3

2 3 4 4
0

− +
+ −

=
λ λ
λ λ

θ1

w1

L

θ2

w2

14.10 Simply supported beam.
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7λ2 – 44λ + 12 = 0

Solving we get

λ λ1 2
2
7

;  6= =

Taking the lowest value

ω ρ= 10.95
2L

EI
A

The correct value of the coefficient is 9.66. One element solution gives
reasonably accurate value. The solution obtained by finite element will always
be higher than the true value. With the beam element if one includes axial
displacement (truss element) one can get the stiffness matrix for a frame
element.

Example 14.6
Set up the system of equation governing free vibration in its own plane of the
portal frame shown in Fig. 14.11.

A = 1.85187 × 10–5; I = 2.857 85 × 10–11; E = 210 GPa;

ρ = 25 613.5 kg/m3; L = 0.2413m.

Solution
After assembling and incorporating boundary conditions

14.11 Free vibration of a plane frame.

L

L
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10

1587.2
0 1587 sym

0.0609 0.0609 0.019 59
1587 0 0 1587
0 0.5098 0.0609 0 1587
0 0.0609 0.00489 0.0609 0.0609 0.019 59

11 −
−

− −
− −























–

8066.3
0 8066.3 sym

144.6 144.6 12.89
1907 0 0 8066

0 1471.4 85.48 0 8066
0 85.48 4.76 144.6 144.6 12.69

02ω −

− − − −























=

Figure 14.12 shows the fundamental mode shape corresponding to fundamental
frequency of 195 rad/s.

14.11 Program 14.4: MATLAB program to find the

natural frequency of beams or rigid frames

FRAMEDYN

% dynamics of plane frame by finite element method
clc;
nj=7;
ne=6;

Y
Z

X

14.12 Fundamental mode shape.
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neq=3*nj;
K=zeros(neq,neq);
M=zeros(neq,neq);
% give nodi and nodj of each member
nodi=[1 2 3 4 5 6];
nodj=[2 3 4 5 6 7];
%give the values of e,a,i angle and lengths of members
e=210e9;
a=[1.85187e-5 1.85187e-5 1.85187e-5 1.85187e-5 1.85187e-5 1.85187e-5] ;
mi=[2.85785e-11 2.85785e-11 2.85785e-11 2.85785e-11 2.85785e-11...

2.85785e-11];
angle=[90 90 0 0 -90 -90];
l=[.12065 .12065 .12065 .12065 .12065 .12065];
% give density of the material
rho=25613.5;
% number of constraint degrees of freedom
nbou=6;
% the numbers of constrained degrees of freedom
nb=[1 2 3 19 20 21];
% form 6 x 6 element stiffness and mass matrix and assemble wilson method
for n=1:ne

i=nodi(n);
j=nodj(n);

k=PlaneFrameElementStiffness(e,a(n),mi(n),l(n),angle(n));
m=PlaneFrameElementMass(rho,a(n),l(n),angle(n));
K=PlaneFrameAssemble(K,k,i,j);
M=PlaneFrameAssemble(M,m,i,j);
end
% apply boundary conditions using wilson method
for i=1:nbou

ii=nb(i);
for j=1:neq

K(ii,j)=0.0;
K(j,ii)=0.0;
M(ii,j)=0.0;
M(j,ii)=0.0;

end
K(ii,ii)=1;
M(ii,ii)=1;

end
% find inv(K)*M
invk=inv(K);
km=invk*M;
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format long;
% find the eigen values and mode shapes of inv(K)*M
[ms,ns]=size(M);
% %eigen values and eigen vectors
[evec,ev]=eig(km);
for i=1:ms

ee(i)=1/ev(i,i);
end
Qh=max(ee)+0.001;
Ql=0;
for i=1:ms

for j=1:ms
if ee(j) > Ql & ee(j) < Qh

k=j;
Qh=ee(j);

else
end
end

Ql=Qh;
Qh=max(ee)+0.001;
om1(i)=ee(k);
omega(i)=sqrt(ee(k));
for m=1:ms

p1(m,i)=evec(m,k);
end
end
%Normalizing the mode shape
L=p1'*m*p1;
%develop modal matrix
for i=1:ms

for j=1:ms
p(i,j)=p1(i,j)/L(j,j);
end

end
disp(‘ Natural frequencies in rad/sec’)
disp(omega’)
disp(‘ normalized modal vector ’)
disp(p)

function y = PlaneFrameElementStiffness(E,A,I,L,theta)
%PlaneFrameElementStiffness This function returns the element
% stiffness matrix for a plane frame
% element with modulus of elasticity E,
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% cross-sectional area A, moment of
% inertia I, length L, and angle
% theta (in degrees).
% The size of the element stiffness
% matrix is 6 x 6.
x = theta*pi/180;
C = cos(x);
S = sin(x);
w1 = A*C*C + 12*I*S*S/(L*L);
w2 = A*S*S + 12*I*C*C/(L*L);
w3 = (A-12*I/(L*L))*C*S;
w4 = 6*I*S/L;
w5 = 6*I*C/L;
y = E/L*[w1 w3 -w4 -w1 -w3 -w4 ; w3 w2 w5 -w3 -w2 w5 ;

-w4 w5 4*I w4 -w5 2*I ; -w1 -w3 w4 w1 w3 w4 ;
-w3 -w2 -w5 w3 w2 -w5 ; -w4 w5 2*I w4 -w5 4*I];

function y = PlaneFrameElementMass(rho,A,l, theta)
%PlaneFrameElementMass This function returns the mass
% matrix for a plane frame
% element with mass density rho,
% cross-sectional area A, length L, and
% angle theta (in degrees).
% The size of the element stiffness
% matrix is 6 x 6.
x = theta*pi/180;
C = cos(x);
S = sin(x);
% for consistent mass use the following
%mass matrix of frame element consistent matrix
f33_00=[0.333,0 ,0 ,0 .167,0 ,0;0 ,0 .37143,0 .05238*l ,0 ,0 .12857,-
0.03095*l;0,.05238*l,.00952*l*l,0,0.03095*l,-.00714*l*l;

0.167,0,0,0.333,0,0;0,0.12857,0.03095*l,0,0.37143,-0.05238*l;0,-
0.03095*l,-0.00714*l*l,0,-0.05238*l,0.00952*l*l];
t=[C,S,0,0,0,0;-S,C,0,0,0,0;0,0,1,0,0,0;0,0,0,C,S,0;0,0,0,-S,C,0;0,0,0,0,0,1];
n=t’*f33_00*t;
% lumped mass
%n=[0.5,0,0,0,0,0;0,.5,0,0,0,0;0,0,0,0,0,0;0,0,0,.5,0,0;0,0,0,0,.5,0;0,0,0,0,0,0];
y=rho*A*l*n;
function y = PlaneFrameAssemble(K,k,i,j)
%PlaneFrameAssemble This function assembles the element stiffness
% matrix k of the plane frame element with nodes
% i and j into the global stiffness matrix K.
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% This function returns the global stiffness
% matrix K after the element stiffness matrix
% k is assembled.
lm(1)=3*i-2;
lm(2)=3*i-1;
lm(3)=3*i;
lm(4)=3*j-2;
lm(5)=3*j-1;
lm(6)=3*j;
for l=1:6

ii=lm(l);
for n=1:6

jj=lm(n);
K(ii,jj)=K(ii,jj)+k(l,n);

end
end
y = K;

OUTPUT

Natual frequencies in rad/sec
1.0e+004 *

0.00010000000000
0.01957884271941
0.07771746384284
0.12745125003361
0.13873461021422
0.31352858884033

14.12 Forced vibration of a beam

Example 14.7
Use a two element model for the beam to determine the steady state response
of the system shown in Fig. 14.13.

Solution
For a two element model of the beam, the system has five degrees of freedom.
The global coordinates are illustrated by q.

After assembly and incorporating boundary conditions we obtain the stiffness
matrix as
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[ ]

4 6 2 0 0

6 24 0 6

2 0 8 2 0

0 6 2 4 0

0 0 0

3

2 2

3 3

2 2 2

2 2

3 3

k
E I
L

L L L

L kL
EI

L kL
EI

L L L

L L L
kL
EI

kL
EI

=

−
− + −

−

























14.76

The mass matrix is

[ ]
420

4 13 3 0 0

13 3 0 13 0

3 0 8 3 0

0 13 3 4 0

0 0 0 0
420

2 2

2

2 2 2

2 2
M

AL

L L L

L L L

L L L

L L L
M

AL

=

−
−

− −
− −

























ρ

ρ

14.77

F0 sin ωt

1 = L/2

k

M

1 = L/2

q1 q2 q3 q4

q5

vi = 0 vj = q2 vi = q2 vj = 0

θi = q1 θi = q3 θi = q3 θj = q4

14.13 Forced vibration of a beam.
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The generalized forces are

{ }

1
48
13
16
1
8
5

192
0

F

L

L

L

=

−

−

−































14.78

The method of undetermined coefficients is used to approximate the steady
state response of the system. The steady state response is assumed as q(t) =
S sin ω t where S is the vector of undetermined coefficients. The relation
between global coordinates and local coordinates for each element is used to
determine the steady state mode shape. The MATLAB file is shown below.
The steady state mode shape is given in Fig. 14.14.

14.13 Program 14.5: MATLAB program for the forced

vibration of a beam

FORCED VIBRATION OF A BEAM

%example 14.7 Two element finite element model for forced response
%of a simply supported beam with discrete mass-spring
%system attached at midspan.

0 2 4 6 8
x(m)

w
(x

) 
(m

)

0

–0.002

–0.004

–0.006

–0.008

–0.01

–0.012

14.14 Steady state mode shape.
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clc;
digits(5);
L=8; % length in m
rho=7600; %mass density in kg/cu.m
e=2e11; %youngs modulus of the material
i=1.6*10^-6; % moment of inertia in m^4
a=3.6*10^-3 % area in m^2
m=20; % mass of hanging block in kg
k=3*10^4; % stiffness of discrete spring in N/m
s=L/2; %element length
f0=2500; % excitation amplitude in N
om=80; %excitation frequency in rad/s
disp(‘global mass matrix’)
M=rho*a*s/420*[4*s^2,13*s,-3*s^2,0,0;13*s,312,0,-13*s,0;...

-3*s^2,0,8*s^2,-3*s^2,0;0,-13*s,-3*s^2,4*s^2,0;...
0,0,0,0,420*m/(rho*a*s)];

K=e*i/s^3*[4*s^2,-6*s,2*s^2,0,0;-6*s,24+k*s^3/(e*i),0,6*s,-k*s^3/(e*i);...
2*s^2,0,8*s^2,2*s^2,0;0,6*s,2*s^2,4*s^2,0;...
0,-k*s^3/(e*i),0,0,k*s^3/(e*i)];

M1=vpa(M);disp(M1)
K1=vpa(K);disp(K1)
%natural frequencies
W2=eig(inv(K)*M);
for i=1:5

w(i)=1/sqrt(W2(i));
end
disp(‘ natural frequencies’)
w=vpa(w’)
%force vector
disp(‘ force vector’)
f=f0*s*[-s/48;13/16;-s/8;-5*s/192;0]
%use of undetermined coefficients
z=-om^2*M+K;
W=inv(z)*f;
x=linspace(0,L,21);
for k=1:21

if x(k) <s
xi=x(k)/s;
y(k)=(xi-2*xi^2+xi^3)*W(1)+(3*xi^2-2*xi^3)*W(2);
y(k)=y(k)+(-xi^2+xi^3)*W(4);

else
xi=(x(k)-s)/s;
y(k)=(1-3*xi^2+2*xi^3)*W(2)+(xi^2-2*xi^2+xi^3)*W(3);
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y(k)=y(k)+(-xi^2+xi^3)*W(4);
end

end
plot(x,y,‘-k’);
xlabel(‘ x(m)’);
ylabel(‘w(x) (m)’);

W=vpa(W);
disp(‘ steady state amplitude in m’);disp(W)

OUTPUT

global mass matrix
[ 16.677, 13.550, -12.507, 0., 0.]
[ 13.550, 81.298, 0., -13.550, 0.]
[ -12.507, 0., 33.353, -12.507, 0.]
[ 0., -13.550, -12.507, 16.677, 0.]
[ 0., 0., 0., 0., 20.]

[ .32000e6, -.12000e6, .16000e6, 0., 0.]
[ -.12000e6, .15000e6, 0., .12000e6, -30000.]
[ .16000e6, 0., .64000e6, .16000e6, 0.]
[ 0., .12000e6, .16000e6, .32000e6, 0.]
[ 0., -30000., 0., 0., 30000.]

natural frequencies
w =
15.162
42.623
74.044
186.76
339.31

force vector
f =

1.0e+003 *

-0.8333
8.1250
-5.0000
-1.0417
0
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steady state amplitude in m
-.43073e-1
-.10930e-1
.25384e-1
-.22861e-1
.33458e-2

14.14 Vibration of a Timoshenko beam

We have already seen that Euler–Bernoulli’s theory predicts the frequencies
for a shallow beam with adequate precision. But with the increasing depth of
the beam, the effect of transverse shear deformation and rotary inertia become
more important. Many varieties of Timoshenko beam elements have been
proposed. It has been observed that the element described below is adequate
for practical use.

The deflection function is given by

w x x x=< >



















1  3

1

2

3

4

2

α
α
α
α

14.79

The relation between transverse shear strain γ, w′ and θ is

w′ = θ + λ 14.80

Transverse shear strain may be taken as constant independent of x as

γ = β0 14.81

The moment curvature relationship is given by

M EI
x

= − d
d
θ 14.82

and shear force V is related to transverse shear strain by

V = k A Gγ 14.83

where k is Timoshenko’s shear constant = 5/6 for rectangular section and
9/10 for circular sections.

The bending moment and shear force are related as follows

d
d
M
x

V= 14.84

Substituting in Eq. 14.80 and 14.81 we get

β α φ
0

3
2

2
= − L

14.85
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where

φ = 12
2

E I
k AG L

14.86

Substituting the values we get nodal displacements as
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14.87

or

{ } [ ]{ };  { } [ ] { }1q A A q= = −α α 14.88

Hence

w x x x A q N q=< > =< >−1  [ ] { } { }2 3 1 14.89

where Ni are the shape functions for nodal degrees of freedom.
The expression for strain energy if we add the effect of axial loads

U EI L
x

x
K AG

x P w
x

x
L L

= ( ) + + ( )∫ ∫ ∫2
d
d

d
2

d
2

d
d

d
2

0

2

0

2θ γ 14.90

Following the procedure explained in Chapter 13 we obtain the stiffness
matrix as

[ ]
(1 )

12 sym

6 (4 )

12 6 12

6 (2 ) 6 (4 )

3

2

3 2 3

2 2

k EI

L

L L

L L L

L L L L

e = +

+

− −

− − +
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φ

φ φ

+

6
5

sym

1
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2
15

6
5

1
10

6
5

1
10 30

1
10

2
15

P

L
L

L L
L L

− −

− −

























14.91
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Kinetic energy is given by

T A w
t

x I
t

x
L L

= ∂
∂





 + ∂

∂




∫ ∫1

2
d 1

2
d

0

2

0

2

ρ ρ θ 14.92

Following the steps explained in Chapter 13 we obtain the mass matrix as

[ ]

13
35

7
10 3

11
210

11
120 24

1
105 60 120

9
70

3
10 6
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420
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40 24
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1
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2 2
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Example 14.8
Find the fundamental frequency of a Timoshenko beam by using the program
‘Timoshenkovib’ given that

E = 210 GPa; G = 70 GPa; ρ = 7800 kg/m3, A = 1.85187e–5;

I = 2.85785e–11; P = 200N; k = 5/6.

The lowest frequency obtained from the program is 11.7 rad/s.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering518

14.15 Program 14.6: MATLAB program to find the

frequency of a Timoshenko beam

TIMOSHENKOVIB
% dynamics of Timoshenko beam by finite element method
clc;
ne=5;
nj=ne+1;
neq=2*nj;
K=zeros(neq,neq);
M=zeros(neq,neq);
% give nodi and nodj of each member
for i=1:nj

nodi(i)=i;
nodj(i)=i+1;

end
%give the values of e,g,a,i and lengths of beam
e=210e9;
g=70e9;
a=[1.85187e-5 1.85187e-5 1.85187e-5 1.85187e-5 1.85187e-5 1.85187e-5] ;
mi=[2.85785e-11 2.85785e-11 2.85785e-11 2.85785e-11 2.85785e-11...

2.85785e-11];
angle=0;
L=10;
for i=1:ne
l(i)=L/ne;
end
% give density of the material
rho=7800.0;
%give axial load of the member
P=200;
%give timoshenko shear constant ko=5/6 for rect ko=9/10 for circular
ko=5/6;
% number of constraint degrees of freedom
nbou=2;
% the numbers of constrained degrees of freedom
nb=[1 2*nj-1];
% form 6 x 6 element stiffness and mass matrix and assemble wilson method
for n=1:ne

i=nodi(n);
j=nodj(n);
phi(n)=12.0*e*mi(n)/(ko*a(n)*g*l(n)^2);

k=TimoshenkoElementStiffness(e,a(n),mi(n),l(n),P,phi(n));
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m=TimoshenkoElementMass(rho,a(n),mi(n),l(n),phi(n));
K=TimoshenkoAssemble(K,k,i,j);
M=TimoshenkoAssemble(M,m,i,j);
end
% apply boundary conditions using wilson method
for i=1:nbou

ii=nb(i);
for j=1:neq

K(ii,j)=0.0;
K(j,ii)=0.0;
M(ii,j)=0.0;
M(j,ii)=0.0;

end
K(ii,ii)=1;
M(ii,ii)=1;

end
% find inv(K)*M
invk=inv(K);
km=invk*M;
format long;
% find the eigen values and mode shapes of inv(K)*M
[ms,ns]=size(M);
% %eigen values and eigen vectors
[evec,ev]=eig(km);
for i=1:ms

ee(i)=1/ev(i,i);
end
Qh=max(ee)+0.001;
Ql=0;
for i=1:ms

for j=1:ms
if ee(j) > Ql & ee(j) < Qh

kl=j;
Qh=ee(j);

else
end
end

Ql=Qh;
Qh=max(ee)+0.001;
om1(i)=ee(kl);
omega(i)=sqrt(ee(kl));
for lm=1:ms

p1(lm,i)=evec(lm,kl);
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end
end
%Normalizing the mode shape
LL=p1'*M*p1;
%develop modal matrix
for i=1:ms

for j=1:ms
p(i,j)=p1(i,j)/LL(j,j);

end
end
disp(‘ Natural frequencies in rad/sec’)
disp(omega’)
disp(‘ normalized modal vector ‘)
disp(p)

function y = TimoshenkoElementStiffness(E,A,I,L,P,phi)
%TimoshenkoElementStiffness This function returns the element
% stiffness matrix for a Timoshenko beam element
% element with modulus of elasticity E,
% cross-sectional area A, moment of
% inertia I, length L, and angle
% theta (in degrees).
% The size of the element stiffness
% matrix is 6 x 6.
con=E*I/(1+phi);
w1 = 12*con/L^3+1.2*P/L;
w2 = 6*con/L^2+P/10;
w3 = con*(4+phi)/L+2*P*L/15;
w4 = con*(2-phi)/L-P*L/30;
y = [w1,w2,-w1,w2;w2,w3,-w2,w4;-w1,-w2,w1,-w2;w2,w4,-w2,w3];

function y = TimoshenkoElementMass(rho,A,I,l,phi)
%TimoshenkoElement Mass matrix This function returns the mass
% matrix for a Timoshenko beam
% element with mass density rho,
% cross-sectional area A, length L, and
% angle theta (in degrees).
% The size of the element stiffness
% matrix is 4 x 4.
a(1,1)=13/35+7*phi/10+phi^2/3;
a(1,2)=(11/210+11*phi/120+phi^2/24)*l;
a(1,3)=9/70+3*phi/10+phi^2/6;
a(1,4)=-(13/420+3*phi/40+phi^2/24)*l;
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a(2,2)=(1/105+phi/60+phi^2/120)*l^2;
a(2,3)=(13/420+3*phi/40+phi^2/24)*l;
a(2,4)=-(1/140+phi/60+phi^2/120)*l^2;
a(3,3)=(13/35+7*phi/10+phi^2/3);
a(3,4)=-(11/210+11*phi/120+phi^2/24);
a(4,4)=(1/105+phi/60+phi^2/120)*l^2;
b(1,1)=1.2;
b(1,2)=(0.1-0.5*phi)*l;
b(1,3)=-1.2;
b(1,4)=(0.1-0.5*phi)*l;
b(2,2)=(2/15+phi/6+phi^2/3)*l^2;
b(2,3)=(-1/10+phi/2)*l;
b(2,4)=(-1/30-phi/6+phi^2/6)*l^2;
b(3,3)=1.2;
b(3,4)=(-0.1+0.5*phi)*l;
b(4,4)=(2/15+phi/6+phi^2/3)*l^2;
for i=2:4

for j=1:(i-1)
a(i,j)=a(j,i);
b(i,j)=b(j,i);

end
end
y=(rho*A*l)*a+(rho*I/((1+phi^2)*l))*b;

function y = TimoshenkoAssemble(K,k,i,j)
%Timoshenko beam This function assembles the element stiffness
% matrix k of the Timoshenko beam with nodes
% i and j into the global stiffness matrix K.
% This function returns the global stiffness
% matrix K after the element stiffness matrix
% k is assembled.
lm(1)=2*i-1;
lm(2)=2*i;
lm(3)=2*j-1;
lm(4)=2*j;
for l=1:4

ii=lm(l);
for n=1:4

jj=lm(n);
K(ii,jj)=K(ii,jj)+k(l,n);

end
end
y = K;
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end
y = K;

OUTPUT
Natual frequencies in rad/sec

1.0e+002 *
0.01000000000000
0.11701648818926
0.23474939088448
0.35376511095837
0.47263579452189
0.61764685636320
0.77724091967848
0.93007476129177
1.12011725011258
1.36597976298605
1.66895296196556
1.66895296196556

14.16 Summary

In this chapter, free and forced vibrations of beams, trusses and frames are
discussed. In the next chapter, we will apply other numerical methods such
as differential quadrature and transformation methods to find the natural
frequencies of structures.

14.17 Exercises

1. Find the natural frequency of the steel truss system shown in Fig. 14.15.
The area of the members may be assumed as 0.04 m2, L = 2 m. Use the
MATLAB program Trussdyn to verify your answer.

2. Use a two element finite element model to approximate the lowest natural
frequency of the system shown in Fig. 14.16.

3. Use a two element finite element model to approximate the natural
frequency of the torsional system shown in Fig. 14.17.

35°
40 L

14.15
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4. Use a two element model to approximate the two lowest natural frequencies
for the system shown in Fig. 14.18 for the following loads. Given that I1

= 1.5 × 10–6m4; A1 = 2.6 × 10–3; I2 = 8.8 × 10–7m4; A2 = 8.5 × 10–4; E
= 200GPa; G = 70GPa; v = 7800kg/m3; P = 0. Neglect shear deformation
and rotary inertia.
(a) P = 0 consider shear deformation and rotary inertia
(b) P = 200 × 103 N
(c) P = –300 × 103N
Verify your answer using the Timoshenkodyn program.

5. Derive the global mass and stiffness matrices for the system shown in
Fig. 14.19.

d

L

d/2

G, ρ, J

L

    
I

JL
 = 

4
ρ

L
K

M

14.16

14.17

14.18

14.19

1 2

P
1.2 m 1.2 m
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6. Write the deflection equation governing the motion of the system shown
in Fig. 14.20 where the element is used to model the beam.
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15
Differential quadrature and transformation
methods for vibration problems in relation
to structural dynamics during earthquakes

Abstract: In this chapter, natural frequencies are obtained for beam-like
structures with different boundary conditions using the differential
quadrature method and differential transformation methods. The results
obtained are compared with those obtained from the finite element method
and other numerical methods. Programs in MATLAB are given for solving
beam problems by the differential quadrature method. The symbolic
programming package MATHEMATICA is ideally suited to solve recursive
equations of differential transformation methods.

Key words: differential quadrature, harmonic quadrature, Lagrange
interpolation, differential transformation, boundary conditions, natural
frequency.

15.1 Introduction

Numerical solutions to free vibration analysis of beams and columns are
obtained by the method of differential quadrature (DQ) and harmonic
differential quadrature (HDQ) for various support conditions. The obtained
results are compared with the existing solutions available from other numerical
methods such as finite element method (FEM) and analytical results. In
addition, this chapter also uses a recently developed technique, known as the
differential transformation (DT) to determine the natural frequency of beams
and columns. In solving the problem, governing differential equations are
converted to algebraic equations using DT methods which must be solved
together with applied boundary conditions. The symbolic programming package
MATHEMATICA is ideally suited to solve such recursive equations by
considering fairly large numbers of terms.

15.2 DQ method

These problems of free vibration of beams and columns either prismatic or
non-prismatic, could easily be solved using the DQ method, which was
introduced by Bellman and Casti (1971). With the application of boundary
conditions as per Wilson’s method (Wilson 2002) the DQM method will also
be straightforward and easy for engineers to use. Since the introduction of
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this method, applications of the DQ method to various engineering problems
have been investigated and their success has shown the potential of the
method as an attractive numerical analysis tool. The basic idea of the DQM
method is to quickly compute the derivatives of a function at any grid point
within its bounded domain by estimating the weighted sum of the values of
the functions at a small set of points related to the domain. In the originally
derived DQM, Lagrangian interpolation polynomial was used (Bert and Malik
1996, Bert et al. 1993, 1994). A recent approach of the original differential
quadrature approximation, HDQ, was originally proposed by Striz et al.
(1995). Unlike the DQ method, HDQM uses harmonic or trigonometric
functions as the test functions. As the name of the test function suggested,
this is called the HDQ method. All the problems in this chapter have
demonstrated that the application of the DQ and HDQ methods will lead to
accurate results with less computational effort and that there is a potential
that the method may become alternative to conventional methods such as
finite difference, finite element and boundary element.

15.3 Lagrangian interpolation

This interpolation technique is applied if the given points may or may not be
equally spaced (see Fig. 15.1). The polynomial is an approximation to the
function f (x), which coincides with the polynomial at (xi, yi).

y = y0φ0(x) + y1φ1(x)… + ynφn(x) 15.1

To derive the function φk(x) which has the value of 1 at x = xk and all the
points have zero value

φ k i
i k

n

ic x x= (  –  )
=0
Π
≠

15.2a

The constants can be evaluated by

15.1 Lagrangian interpolation.

(x – x0) = 0 (x – x2) = 0 (x – xk+1) = 0 (x – xn) = 0

x0 x1 x2 xk–1 xk xk+1 xn–1 xn

(x – x1) = 0 (x – xk–1) = 0 (x – xk+1) = 1

y
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φ k

i
i k

n

i

i
i k

n

k i

x x

x x
=

(  –  )

(  –  )

=0

=0

Π

Π

≠

≠

… 15.2b

15.4 Differential quadrature method formulation

The fourth order governing differential equation for free vibration of column
with varying flexural rigidity ‘D’ (D = EI) and w (= the lateral deflection)
may be written as

d
d

d
d

( ) 0
2

2

2

2
2

x
D w

x
A x w



 − =ω ρ 15.3

or
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d
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 = ω ρ 15.4

For a function f (ξ), DQ approximation of the mth order derivative at the ith
sampling point is given by

d
d
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( )
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for , 1, 2, ...,
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i j n
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⋅ ⋅



















=



















=

1

2 15.5

where n is the number of sampling points. Assuming Lagrangian interpolation
polynomial

f
M

M
i n

i i
( )

( )
( ) ( )

for 1, 2....,
1

ξ ξ
ξ ξ ξ

=
−

= 15.6

where

M j
n

j( ) ( )1ξ ξ ξ= −=Π

M i ni j j i
n

i j1 1,( ) ( )... for 1, 2, ...,ξ ξ ξ= − == ≠Π 15.7

Substituting Eq. 15.7 in Eq. 15.6 leads to

C
M

Mij
i

i j j

( )

1

( )
( ) ( )

1 1=
−

ξ
ξ ξ ξ

   for   i, j = 1, 2,…,n;   i ≠ j
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C Cii j
j i

n

IJ
( )

1

( )1 1= −
=
≠

Σ 15.8

The second and third and higher derivative can be calculated as

C C C i j nij
k

n

ik kj
( )

1

( ) ( ) 1, 2 ,2 1 1= … = = …
=
Σ

C C C i j nij
m

k

n

ik kj
m( )

1

( ) ( 1)  for 1, 2= … = = …
=

−Σ 1 15.9

and the number of sampling points n > m.
A natural and often convenient choice for sampling point is that of equally

spaced points or CGL mesh distribution as given by Eq. 15.8. For the sampling
points, we adopt well accepted Chebyshev–Gauss–Lobatto mesh distribution
given by Shu (2000) as

ξ πi
i
n

= − −
−







1
2

1 cos
( 1)
( 1)

15.10

where

ξi
ix

L
= 15.11

‘L’ is the length of the column, the column is divided into ‘ne’ (say 40)
divisions or ne+1 (41) sampling points in the case of DQM and xi is the
distance from the bottom end of the column.

15.5 HDQ method

The harmonic test function hi(ξ) used in the HDQ method is defined as

hi

k
k i

n

k

k
k i

n

i k

( )

sin [ ( )/2]

sin[ ( )/2]

0

0

ξ

π ξ ξ

π ξ ξ
=

−

−

=
≠

=
≠

Π

Π
15.12

According to the HDQ method, the weighting coefficients of the first order
derivative Cij

1  for i ≠ j is obtained using the form

C i j
P

P
i j ni

j i j
( , ,1)

( )/2
( ) sin [ ( )/2]

 , 1, 2=
−

= …π ξ
ξ π ξ ξ

15.13

C i i C i j
j
j i

n

( , ,1) ( , ,1)
1

= −
=
≠

Σ 15.14
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where

P j ni j
j i

n

i j( )  sin [ ( )/2]  for  1, 2
1

ξ π ξ ξ= − = …
=
≠

Π 15.15

The weighting coefficients of the second order derivative are given by

C(i, j, 2) = C(i, j, 1){2 C(i, j, 1) – π cot [π(ξi – ξj)/2]}

i, j ≠ 1, 2…n 15.16

C i i C i j
j
j i

n

( , , 2) ( , , )= −
=
≠

Σ
1

2 15.17

Higher order derivatives can be obtained using Eq. 15.9.

15.6 Transverse vibration of pre-tensioned cable

The transverse vibration of a taut cable or string has an equation of motion
similar to the governing longitudinal vibration of a uniform rod. Consider a
uniform elastic cable, having mass/unit length (ρ A), ρ being the mass density,
to be stretched under tension T between two fixed points as shown in Fig.
15.2. Assuming small deflections and slopes, the equation of motion for
transverse vibration is given by

∂
∂

= ∂
∂

2

2 2

2

2
1y

x c
y

t
15.18

where c T= / Aρ  is the velocity of wave propagation along the cable and
y is the transverse deflection of the string at any distance x . The above
equation is also identical to the wave equation. The transverse deflection
may be assumed as

y(x, t) = f (x)g(t) = f (x) sin (ω t + φ) 15.19

∂
∂

= −
2

2
2 ( ) ( )

y
t

f x g tω 15.20

Substituting Eq. 15.20 in Eq. 15.18 we get

15.2 Vibration of a cable.
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∂
∂

= −
2

2

2 2

2

f
x

L
c

fω 15.21

where x is a non-dimensional coordinate given by x x L= /
Equation 15.21 may be written in DQ form as

C(:,:, 2){f} = –λ f;   or [G]{f} = –λ f 15.22

with boundary conditions f (x = 0) = 0 and f (x = 1) = 0 given by

G[n + 1, 1] = 1.0; G[n + 2, n] = 1.0; G[1, n + 1]

= 1.0; G[n, n + 2] = 1.0

Solving as an eigenvalue problem, one will be able to get λ and hence ω.

ω λ ρ= =c
L L

T1
15.23

A MATLAB program to find the natural frequency of transverse vibration of
pretensioned string is shown below.

15.7 Program 15.1: MATLAB program for finding the

natural frequency of lateral vibration of pre-

tensioned string

STRINGVIB

% free vibration of a pretensioned cable by differential quadrature
clc; close all;
ne=20;
n=ne+1;
nn=2*n;
no=4;
m=zeros(n,1);
x=zeros(n,1);
c=zeros(n,n,no);
d=zeros(n+2,n+2);
f=zeros(n+2,n+2);
%give length and mass density and area of the cable
l=1;
dl=l/ne;
rho=7800;
ar=0.005;
ma=rho*ar;
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%give tension in the cable
T=4*ma;
format long;
for i=1:n

x(i)=.5*(1-cos((i-1)*pi/ne));
end
%c=qquadrature(x,n,no);
c=harquadrature(x,n,no);
d(1:n,1:n)=c(:,:,2)/l^2;
%application of boundary conditions
d(n+1,1)=1.0;
d(n+2,n)=1.0;
d(1,n+1)=1.0;
d(n,n+2)=1.0;
din=inv(d);
f(1:n,1:n)=-eye(n,n);
ddf=din*f;
[u,eu]=eig(ddf);
for i=1:n

ww1(i)=u(i,3);
ww2(i)=u(i,4);
ww3(i)=u(i,5);

end
disp(‘ fundamental natural frequency\n’)
wn1=sqrt(T/(eu(3,3)*ma))
disp(‘fundamental mode shape\n’)
ww1'
disp(‘ second natural frequency’)
wn2=sqrt(T/(eu(4,4)*ma))
disp(‘second mode shape’)
ww2'
disp(‘ third natural frequency’)
wn3=sqrt(T/(eu(5,5)*ma))
disp(‘ third mode shape’)
ww3'
figure(1);
plot(x,ww1);
xlabel(‘x’);
ylabel(‘w’);
title(‘ fundamental mode shape’);
figure(2);
plot(x,ww2);
xlabel(‘x’);
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ylabel(‘w’);
title(‘ fundamental mode shape’);
figure(3);
plot(x,ww3);
xlabel(‘x’);
ylabel(‘w’);
title(‘ fundamental mode shape’);

function[y]=harquadrature(x,n,no)
m=zeros(n,1);
c=zeros(n,n,4);
for i=1:n

m(i,1)=1;
for k=1:n

if ((k ==i ))
jk=i;

else
m(i,1)=m(i,1)*sin((x(i)-x(k))*pi/2);

format long
end

end
end
m;
for i=1:n

for j=1:n
if(j==i)

jk=i;
else

c(i,j,1)=(pi*m(i,1))/(2.0*sin((x(i)-x(j))*pi/2)*m(j,1));
end

end
end
for i=1:n

c(i,i,1)=0.0;
for j=1:n
if ((i==j))

jk=i;
else
c(i,i,1)=c(i,i,1)-c(i,j,1);

end
end

end
o=2;
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for i=1:n
for j=1:n

if(j==i)
jk=i;

else
c(i,j,o)=c(i,j,1)*(2.0*c(i,i,1)-pi/tan(((x(i)-x(j))*pi/2)));
end

end
end
for i=1:n

c(i,i,2)=0.0;
for j=1:n
if ((i==j))

jk=i;
else
c(i,i,2)=c(i,i,2)-c(i,j,2);

end
end

end
for o=3:no

for i=1:n
for j=1:n

c(i,j,o)=0.0;
for k=1:n
c(i,j,o)=c(i,j,o)+c(i,k,1)*c(k,j,(o-1));

end
end

end
end
y=c;

function[y]=qquadrature(x,n,no)
m=zeros(n,1);
c=zeros(n,n,4);
for i=1:n

m(i,1)=1;
for k=1:n

if ((k ==i ))
jk=i;

else
m(i,1)=m(i,1)*(x(i)-x(k));

format long
end
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end
end
for i=1:n

for j=1:n
if(j==i)

jk=i;
else

c(i,j,1)=m(i,1)/((x(i)-x(j))*m(j,1));
end

end
end
for i=1:n

c(i,i,1)=0.0;
for j=1:n
if ((i==j))

jk=i;
else
c(i,i,1)=c(i,i,1)-c(i,j,1);

end
end

end
for o=2:no

for i=1:n
for j=1:n

c(i,j,o)=0.0;
for k=1:n
c(i,j,o)=c(i,j,o)+c(i,k,1)*c(k,j,(o-1));

end
end
end

end
c(:,:,1);
y=c;

OUTPUT

fundamental natural frequency

wn1 =
6.28318530717963

fundamental mode shape
ans =
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0
0.00733128915883
0.02911774918179
0.06459034487273
0.11203447410058
0.16833305876402
0.22868163719304
0.28673229986014
0.33532231670280
0.36772667715649
0.37911498526798
0.36772667715649
0.33532231670280
0.28673229986015
0.22868163719305
0.16833305876402
0.11203447410058
0.06459034487273
0.02911774918180
0.00733128915883
0

second natural frequency
wn2 =

12.56637061435911

second mode shape

ans =

0
0.01384802941406
0.05484814152807
0.12024309852971
0.20220761642762
0.28495445387276
0.34458819094757
0.35438646074539
0.29557188373010
0.16900007820430
-0.00000000000001
-0.16900007820432
-0.29557188373010
-0.35438646074539
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-0.34458819094755
-0.28495445387275
-0.20220761642761
-0.12024309852971
-0.05484814152806
-0.01384802941406
0

third natural frequency
wn3 =

18.84955592153890
third mode shape

ans =

0
0.02026414001026
0.07989008567297
0.17170783853740
0.27374891998932
0.34314670851919
0.32560576874274
0.18817009067074
-0.03995789607568
-0.25873859745335
-0.34947339621276
-0.25873859745337
-0.03995789607570
0.18817009067073
0.32560576874275
0.34314670851920
0.27374891998931
0.17170783853740
0.07989008567298
0.02026414001026
0

Example 15.1
A string of length 1m subjected to pre-tension of 156 N is under transverse
vibration. Calculate the first three fundamental natural frequencies assuming
mass density = 7800 kg/m3 and area of the cable = 0.005 m2.
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Solution
The nth natural frequency is given by

ω π
ρn

n
L

T
A

=

1 1
1

156
7800 0.005

2
L

T
Aρ = × =

ωn = 2 nπ

ω1 = 6.2831 rad/s; ω2 = 12.566 rad/s; ω3 = 18.8493 rad/s

The values obtained by DQ are

ω1 = 6.2831 rad/s; ω2 = 12.5633 rad/s; ω3 = 18.8495 rad/s

which agree with the true values. The mode shapes corresponding to these
three frequencies are shown in Fig. 15.3 for first, second and third modes.

15.8 Lateral vibration of uniform Euler beams

The governing differential equation of lateral vibration of uniform beams is
given as

EI w
x

A wd
d

4

4
2= −ω ρ 15.24

0 0.2 0.4 0.6 0.8 1
x

(a)

w

0.25

0.2

0.15

0.1

0.05

0

15.3 (a) Fundamental mode shape; (b) second mode shape; (c) third
mode shape.
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Assuming c(:,:,m) is the mth derivative, i.e. Cij
m , Eq. 15.24 may be written as

EI
L

c w A w4
2[ (: , : , 4)]{ } { }= − ω ρ 15.25

λ ([G]){w} = –[I]{w} 15.26

Boundary conditions

Pinned–pinned

w = 0 at x = 0; G[n + 1,1] = 1.0

0 0.2 0.4 0.6 0.8 1
x

(b)

w

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

0 0.2 0.4 0.6 0.8 1
x

(c)

w

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

15.3 Continued
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w″ = 0 at x = 0; G[n + 2, 1: n] = c(1, 1: n, 2/L2)

w = 0 at x = L; G[n + 3, n] = 1

w″ = 0 at x = L; G[n + 4, 1: n] = c(n, 1: n, 2)/L2 15.27

Similarly other boundary conditions may be incorporated as shown in the
next section,
where

λ
ω ρ

= EI
AL2 4 15.28

or

ω λρ= 1
2L

EI
A

15.29

Example 15.2
Find the fundamental three natural frequencies of a simply supported beam
given that E = 200 GPa; I = 18.6 × 10–6; A = 2.42 × 10–4; ρ = 7800 kg/m3;
L = 20 m.

Solution
The closed form solutions for the problem are given by

ω ρ1 2 2

11 6

4
9.87 9.87

20
2 10 18.6 10

7800 2.42 10
= = × × ×

× ×

−

−L
E I

A

= 34.639 (34.6382)

ω ρ1 2 2

11 6

4
39.5 9.87

20
2 10 18.6 10

7800 2.42 10
= = × × ×

× ×

−

−L
E I

A

= 138.62 (138.553)

ω ρ3 2 2

11 6

4
88.9 9.87

20
2 10 18.6 10

7800 2.42 10
= = × × ×

× ×

−

−L
E I

A

= 311.996 (311.744)

The bracketed values are those obtained using differential quadrature method.
The mode shapes for the first three fundamental modes are similar to those
obtained for vibration of string.
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15.9 Program 15.2: MATLAB program for free

vibration of an Euler beam

EULERBEAMVIB

% free vibration of a beam by differential quadrature for different boundary
conditions
clc; close all;
ne=20;
n=ne+1;
nn=2*n;
no=4;
m=zeros(n,1);
x=zeros(n,1);
c=zeros(n,n,no);
d=zeros(n+4,n+4);
f=zeros(n+4,n+4);
iy=18.6e-6;
ar=2.42e-4;
ymod=200e9;
l=20.0;
dl=l/ne;
mden=7800;
format long;
for i=1:n

x(i)=.5*(1-cos((i-1)*pi/ne));
end
c=qquadrature(x,n,no);
%c=harquadrature(x,n,no);
d(1:n,1:n)=ymod*iy*c(:,:,4)/l^4;
%application of boundary conditions
%pinned - pinned
d(n+1,1)=1.0;
d(n+2:n+2,1:n)=c(1,1:n,2)/l^2;
d(n+3,n)=1.0;
d(n+4:n+4,1:n)=c(n,1:n,2)/l^2;
d(1,n+1)=1.0;
d(n,n+3)=1.0;
for i=1:n

d(i,n+2)=d(n+2,i);
d(i,n+4)=d(n+4,i);

end
%fixed - fixed
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% d(n+1,1)=1.0;
% d(n+2:n+2,1:n)=c(1,1:n,1)/l;
% d(n+3,n)=1.0
% d(n+4:n+4,1:n)=c(n,1:n,1)/l;
% d(1,n+1)=1.0;
% d(n,n+3)=1.0;
% for i=1:n
% d(i,n+2)=d(n+2,i);
% d(i,n+4)=d(n+4,i);
% end
%fixed - free
% d(n+1,1)=1;
% d(n+2:n+2,1:n)=c(1,1:n,1)/l;
% d(n+3:n+3,1:n)=c(n,1:n,2)/l^2;
% d(n+4:n+4,1:n)=c(n,1:n,3)/l^3;
% for i=1:n
% d(i,n+1)=d(n+1,i);
% d(i,n+2)=d(n+2,i);
% d(i,n+3)=d(n+3,i);
% d(i,n+4)=d(n+4,i);
% end
din=inv(d);
f(1:n,1:n)=eye(n,n);
ddf=din*f;
[u,eu]=eig(ddf);
for i=1:n

ww1(i)=u(i,5);
ww2(i)=u(i,6);
ww3(i)=u(i,7);

end
sprintf(‘ fundamental natural frequencies\n’)
wn1=sqrt(1/(mden*ar*eu(5,5)))
wn2=sqrt(1/(mden*ar*eu(6,6)))
wn3=sqrt(1/(mden*ar*eu(7,7)))
sprintf(‘ fundamental mode shape\n’)
ww1'
figure(1);
plot(x,ww1);
xlabel(‘x’);
ylabel(‘w’);
title(‘ fundamental mode shape’);
figure(2);
plot(x,ww2);
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xlabel(‘x’);
ylabel(‘w’);
title(‘ second mode shape’);
figure(3);
plot(x,ww3);
xlabel(‘x’);
ylabel(‘w’);
title(‘ third mode shape’);

OUTPUT

ans =
fundamental natural frequencies

wn1 =

34.63827370993050

wn2 =

1.385530948382473e+002

wn3 =

3.117444633857984e+002

15.10 To find natural frequency and mode shape

given variation of D = EI for Euler beam

with axial load

In this problem, (D = EI) and P are known and w and ω are unknown values
that can be found by solving as an eigenvalue problem as explained below.
Assuming c(:,:,m) is the mth derivative , i.e. Cij

m , the governing equation
may be written as

∂
∂

∂
∂





 +

∂
∂





 =

∂
∂

2

2

2

2

2

2

2

2x
D w

x
P w

x
A w

t
ρ 15.30

{[K][c(:,:,4)]/L4 + 2[α][c(:,:,3)]/L3 + ([β] + P[I])[c(:,:,2)]/L2}{w}

= –ω2ρ{Aw} 15.31
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where

[ ]
.

1

2
K

D

D

Dn

=



















15.32a

where [α] and [β] are diagonal matrices given as

[ ]

0 0 0

0 0 0

0 0 . 0

0 0 0

;  [ ]

0 0 0

0 0 0

0 0 . 0

0 0 0

11

22

11

α

α
α

α

β

β
β

β

=



















=



















nn nn

22

15.32b

and

{ } [ ( ,1: ,1){ }]/ d
d

α ii c i n D L D
x

= =

{ } [ ( , 1: , 2){ }]/ d
d

2
2

2β ii c i n D L D
x

= =

E = –ρ(diag A){w}/L2 15.33

Equation 15.30 may be written as

1
2

[ ]{ } [ ]{ }ω G w E w= 15.34

n × n n × n

Boundary conditions

Since it is a fourth order differential equation, four boundary conditions
should be given. The boundary conditions will be applied as follows.

Clamped–pinned

w = 0 at x = 0; G[n + 1, 1] = 1.0

w′ = 0 at x = 0; G[n + 2, 1: n] = c(1, 1: n, 1)/L

w = 0 at x = L; G[n + 3, n] = 1

w″ = 0 at x = L; G[n + 4, 1: n] = c(n, 1: n, 2)/L2 15.35
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Clamped–clamped

w = 0 at x = 0; G[n + 1, 1] = 1.0

w′ = 0 at x = 0; G[n + 2, 1: n] = c(1, 1: n, 1)/L

w = 0 at x = L; G[n + 3, n] = 1

w′ = 0 at x = L; G[n + 4, 1: n] = c(n, 1: n, 2)/L 15.36

Pinned–pinned

w = 0 at x = 0; G[n + 1, 1] = 1.0

w″ = 0 at x = 0; G[n + 2, 1: n] = c(1, 1: n, 2/L2)

w = 0 at x = L; G[n + 3, n] = 1

w″ = 0 at x = L; G[n + 4, 1: n] = c(n, 1: n, 2)/L2 15.37

Clamped–free

w = 0 at x = 0; G[n + 1, 1] = 1.0

w′ = 0 at x = 0; G[n + 2, 1: n] = c(1, 1: n, 1)/L

w″ = 0 at x = L; G[n + 3, n] = c(n, 1: n, 2)/L2

d
d

 at ; [ 4,1: ]D
x

w Dw Pw x L G n n′′ + ′′′ = − ′ = +

= αnnc(n, 1: n, 2)/L2 + Dnnc(n, 1: n, 3)/L3

–Pc (n, 1: n, 1)/L 15.38

15.10.1Wilson’s method (Wilson, 2002) of applying
boundary conditions

In general, the boundary conditions are given by

[G]1{w} = [E]1{w}

4 × n   n × 1   4 × 1 15.39

Combining governing equations and boundary conditions, we get

1

[ ]

[ ] { }

[ ]

[ ] { }2

0

1 1ω

G

n n
G

n

w

E

n n
E

n

w
×

×



















= ×

×



















4 4

15.40
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Using the Lagrange multiplier approach as recommended by Wilson (2002),
Eq. 15.40 can be modified to square matrix as

1 [ ] [ ]

[ ] [0]

{ }

{ }

[ ] [ ]

[ ] [0]2
0 1

T

1

1
T

1ω λ λ
G G

G

w E E

E

w















=

















15.41

The above equation has both equilibrium and equation of geometry. Solving
Eq. 15.41 is an eigenvalue problem; one will be able to obtain the natural
frequency.

15.11 Program 15.3: MATLAB program for solving

free vibration problem of non-prismatic beam

with or without axial load

EULERVIB

% free vibration of non-prismatic Euler beams with or without axial load
%using differential quadrature method
clc;
ne=50;
n=ne+1;
nn=2*n;
no=4;
m=zeros(n,1);
x=zeros(n,1);
xi=zeros(n,1);
c=zeros(n,n,no);
d=zeros(n+4,n+4);
e=zeros(n+4,n+4);
z=zeros(n+4,1);
f=zeros(n+4,1);
alp=zeros(n,n);
bet=zeros(n,n);
zz=zeros(n,1);
ki=zeros(n,n);
eta=zeros(n,n);
const=1.0;
l=12;
ymod=200e09;
rho=7800;
format long;
for i=1:n

xi(i)=.5*(1-cos((i-1)*pi/ne));

�� �� �� �� �� ��



Structural dynamics of earthquake engineering546

%mi(i)=0.000038*(1-xi(i)^2/2);
ar(i)=1/rho;
mi(i)=0.000038;
ki(i,i)=ymod*mi(i);

end
c=qquadrature(xi,n,no);
%c=harquadrature(xi,n,no)
for i=1:n

alp(i,i)=0;
bet(i,i)=0;
for j=1:n

alp(i,i)=alp(i,i)+c(i,j,1)*ki(j,j)/l;
bet(i,i)=bet(i,i)+c(i,j,2)*ki(j,j)/l^2;

end
end
d=zeros(n+4,n+4);
% free vibration of the beam
% axial load on the beam t=+ if it is compressive t=- if it is tensile
% weight of the beam / unit length
t=520895.0;
d(1:n,1:n)=2.0*alp*c(:,:,3)/l^3+bet*c(:,:,2)/l^2+ki*c(:,:,4)/l^4+eta+t*c(:,:,2)/
l^2;
% boundary conditions
% clamped - free
% d(n+1,1)=1.0;
% d(n+2:n+2,1:n)=alp(n,n)*c(n,1:n,2)/l^2+ki(n,n)*c(n,1:n,3)/l^3+t*c(n,1:n,1)/
l;
% d(n+3:n+3,1:n)=c(1,1:n,1)/l;
% d(n+4:n+4,1:n)=ki(n,n)*c(n,1:n,2)/l^2;
% d(1,n+1)=1.0;
% for i=1:n
% d(i,n+2)=d(n+2,i);
% d(i,n+3)=d(n+3,i);
% d(i,n+4)=d(n+4,i);
% end
% pinned - pinned
d(n+1,1)=1.0;
d(n+2:n+2,1:n)=ki(n,n)*c(n,1:n,2)/l^2;
d(n+3:n+3,1:n)=ki(1,1)*c(1,1:n,2)/l^2;
d(n+4,n)=1.0;
d(n,n+4)=1.0;
d(1,n+1)=1.0;
d(n+4,n)=1.0;
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for i=1:n
d(i,n+2)=d(n+2,i);

d(i,n+3)=d(n+3,i);
end

e=zeros(n+4,n+4);
for i=1:n

e(i,i)=rho*ar(i);
end

din=inv(d);
z=din*e;
[ev,euv]=eig(z);
for i=1:n

zz(i)=ev(i,5);
end
omega=sqrt(1/euv(5,5));
sprintf(‘ natural frequency\n’)
omega
figure(1);
plot(xi,zz)
xlabel(‘ x/L ’)
ylabel(‘ z’)
title (‘ fundamental mode shape ’)

Example 15.3
Find the buckling load of a pinned–pinned column given E = 200 GPa;
I = 0.000 038 m4; mass density = 7800 kg/m3, A = 1/7800; span = 12 m. Find
the natural frequency if the axial load is tension of magnitude 300 000 N.

Solution
By trial and error giving various axial loads the natural frequency is calculated
for each axial load and the load at which natural frequency becomes imaginary
is the buckling load. For the problem, buckling load is 520 895 N which
agrees with (π 2 E I/L2) = 520 895 N.

When the axial load = 0 the natural frequency corresponds to the Euler
beam simply supported conditions without axial load and is given by ωn =
188.9 rad/s. When the axial load is negative, i.e. tension say P = –300000N,
the natural frequency is 237.19 which corresponds to the true value

ω
ω n crP

P
P( 0)

1 1.5795
2

=




 = − =

and hence ω = 1.5795  × 188.9 = 237.40 rad/s.
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Example 15.4
A cantilever beam shown in Fig. 15.4 is analysed for free vibration. The data
E = 200 GPa; mass density = 7800 kg/m3 L = 4.572 m. The width of the
flange = 0.203 m and thickness of flange and web are 0.0178 and 0.0114 m
respectively.

Solution
The natural frequency is obtained as 195.628 rad/s which agrees with 191
rad/s obtained by Wekezer (1987).

15.12 Vibration of Timoshenko beam by DQ method

The governing differential equations for free vibration of Timoshenko beam
(including shear deformation and rotary inertia) have been given in Eq.
13.112 as

kAG w
x

kAG
x

A w
t

∂
∂

− ∂
∂

= ∂
∂

2

2

2

2

φ ρ 15.42a

− ∂
∂

+ − ∂
∂

= − ∂
∂

kAG w
x

kAG EI
x

I
t

φ φ ρ φ2

2

2

2 15.42b

where φ is the slope due to bending given by

φ − ∂
∂

=w
x

V
kAG

15.43a

and

∂
∂

=φ
x

M
EI

15.43b

0.572m

0.227m

4.572m

15.4 Cantilever beam.
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Boundary conditions are

w = 0 and ϕ = 0 for clamped

w 0 and EI 0 for simply supported= ∂
∂

=ϕ
x

15.44

The corresponding differential quadrature equations for the governing
equations are given by

kGA c L kGA c L

kGA c L kGA I EI c L

w(: , : , 2)/ 2 (: , : ,1)/

(: , : ,1)/ [ ] (: , : , 2)/ ^ 2

^ −
− −












φ

=
−












ρω φ
2

[ ]

[ ]

A I

I I

w
15.45

where [I] is the unit matrix and I is the moment of inertia. Equation 15.45 is
written as

λ[ ]{ } [ ]{ }B q D q= 15.46

where [B] is of size nn = 2 × n where n is the number of discrete points.
Applying boundary conditions (clamped clamped conditions)

B[nn + 1, 1] = 1.0

B[nn + 2, n] = 0

B[nn + 3, n + 1] = 1.0

B[nn + 4, 2n] = 1.0

Using Wilson’s method

B[1, nn + 1] = 1.0

B[n,nn + 2] = 1.0

B[n + 1, nn + 3] = 1.0

B[2n, nn + 4] = 1.0

Now [B] and [D] matrices of size nt + 4 because of the application of
boundary conditions. Solving as an eigenvalue problem λ and hence ω can
be determined.

Example 15.5
Find the natural frequency of a clamped clamped beam for the following
conditions: L = 10m, E = 200 GPa, ρ = 7800 kg/m3, assume unit width (k =
0.83).
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Solution
(a) h/L = 0.01; h = 0.1; A = 0.1 m2 I = 8.333e–5. For this case the natural

frequency ω is obtained as 32.68 rad/s. The non-dimensional parameter
λ given by Lee and Schultz (2004) can be calculated as

λ ω ρ2 2 2
11 532.68 10 7800 0.1

2 10 8.33 10
4.7287= = × ×

× × ×
=−L

A
EI

whereas the value obtained by Lee and Schultz (Lee and Schultz, 2004)
is 4.7284.

(b) h/L = 0.2; h = 2; A = 2; I = 0.667. The natural frequency is obtained as
529.2 rad/s and the corresponding λ value is calculated as

λ ω ρ2 2 2
11529.2 10 7800 2

2 10 0.667
4.254= = × ×

× ×
=L

A
EI

whereas the value obtained by Lee and Schultz is 4.24.

The mode shapes are shown in Fig. 15.5a for lateral deflection and in
Fig.15.5b for φ. The program in MATLAB is given below.

15.13 Program 15.4: MATLAB program for free

vibration analysis of Timoshenko beam

TIMOSHENKOVIB

% free vibration analysis of timoshenko beam
clc; close all;
ne=20;
no=2;
n=ne+1;
nn=2*n;
nt=nn+4;
m=zeros(n,1);
x=zeros(n,1);
c=zeros(n,n,no);
d=zeros(nt,nt);
e=zeros(nt,nt);
l=10;
e=2e11;
g=.8e11;
ar=2;
ir=0.667;
ak=0.83;
rho=7800;
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for i=1:n
x(i)=0.5*(1-cos((i-1)*pi/ne));

end
c=qquadrature(x,n,no);
d(1:n,1:n)=ak*g*ar*c(:,:,2)/l^2;
d(1:n,n+1:nn)=-ak*g*ar*c(:,:,1)/l;
d(n+1:nn,1:n)=-ak*g*ar*c(:,:,1)/l;
d(n+1:nn,n+1:nn)=ak*g*ar*eye(n,n)-e*ir*c(:,:,2)/l^2;
% %boundary conditions for fixed end
d(nn+1,1)=1.0;

0 0.2 0.4 0.6 0.8 1
x

(a)

Z

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0 0.2 0.4 0.6 0.8 1
x

(b)

p
h

i

0.08

0.06

0.04

0.02

0

–0.02

–0.04

–0.06

–0.08

15.5 Mode shape for (a) lateral deflection; and (b) φ.
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d(nn+2,n)=1.0;
d(nn+3,n+1)=1.0;
d(nn+4,nn)=1.0;
d(1,nn+1)=1.0;
d(n,nn+2)=1.0;
d(n+1,nn+3)=1.0;
d(nn,nn+4)=1.0;
%boundary conditions for ssd end
% d(nn+1,1)=1.0;
% d(nn+2,n)=1.0;
% d(nn+3:nn+3,n+1:nn)=c(1:1,1:n,1)/l;
% d(nn+4:nn+4,n+1:nn)=c(n:n,1:n,1)/l;
% d(1,nn+1)=1.0;
% d(n,nn+2)=1.0;
% for i=1:n
% d(n+i,nn+3)=d(nn+3,n+i);
% d(n+i,nn+4)=d(nn+4,n+i);
% end
e(1:n,1:n)=-rho*ar*eye(n,n);
e(n+1:nn,n+1:nn)=rho*ir*eye(n,n);
e(nn+1:nt,1:nt)=0;
ddi=inv(d);
f=ddi*e;
[evv,ev]=eig(f);
disp(‘ natural frequency’);
wn1=sqrt(1/ev(5,5))
figure(1);
for i=1:n

z(i)=evv(i,5);
end
plot(x,z)
xlabel(‘ x ‘)
ylabel(‘ z’)
title (‘ mode shape of deflection’)
figure(2);
for i=1:n

z(i)=evv(n+i,5);
end
plot(x,z)
xlabel(‘x’)
ylabel(‘ phi’)
title(‘ mode shape of phi’)
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OUTPUT

natural frequency
wn1 =

5.292070310268033e+002

15.14 DT method

The concept of the DT method was first introduced some 30 years ago by
Pukhov (Chai and Wang 2006) Since then, DT has been used with success in
structural mechanics. The concept of the DT method is readily available in
Russian literature. For a function w(x), DT exists as

W k
k

w x
x

x
k

k
k

[ ] 1 d ( )
d

; 0 1
0

= 





≤ ≤
=

!
15.47

where w(x) can be regarded as buckled shape of the piles. By inverse
transformation, one can also obtain w(x) as

w x x W k
k

k( )  [ ]=
=

∞
Σ

0
15.48

or

w x x
k

w x
xk

k k

k
x

( )
d ( )

d 0

= 



=

∞

=
Σ

0 !
15.49

Equation 15.49 is obviously a Taylor series expansion of the function w(x)
about x = 0. The differential technique essentially converts a differential
equation into an algebraic equation, similar to integral transform methods
such as Laplace and Fourier transform. The final resulting algebraic equations
are solved together with boundary conditions. The transformation can be
given by a simple formula as

DT ( ) ( ) ( )x y k i Y k
i

α β
β

α α β= − +








 − +

=
Σ

1 15.50

where

y
y

x
β

β

β= d

d
15.51

15.15 Transverse vibration of pre-tensioned cable

The governing equation for the transverse vibration of a pre-tensioned cable
is
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∂
∂

= −
2

2

y
x

a y 15.52

where x x L= /  is a non-dimensional coordinate varying from 0 to 1
where

a
L
T

=
ω ρ2 2

15.53

where the notations are already defined and T is the pre-tension in the cable.
Applying the transformation rule we get

(k + 1)(k + 2)Y[k + 2] = –aY[k] 15.54

or

Y k
a Y k

k k
[ 2]

[ ]
( 1)( 2)

+ = −
+ + 15.55

When the string is fixed at both ends

y(0) = 0; y′(0) ≠ y(1) = 0 15.56

The DT of the boundary condition y(0) gives rise to

Y(0) = 0 15.57

and the boundary condition y′(0) ≠ 0 gives rise to

Y(1) = c 15.58

The boundary condition y(1) = 0 gives rise to

Σ
k

Y k
=

∞
=

0
( ) 0 15.59

Using the recursive relation of Eq. 15.55 we can get Y[2], Y[3]…, all

containing the terms ‘a’ and ‘c’. Hence Σ
k

Y k f c a
=

∞
= =

0
 ( ) ( , ) 0  will be a

nonlinear equation in terms of ‘a’ and linear in terms of ‘c’. Equation 15.59
may be written as A * c = 0, and since c ≠ 0, A must be zero where A is the
coefficient of c in f (c, a). It should be noted that a fairly a large number of
terms are needed for convergence of the natural frequency coefficient. Figure
15.6 shows the convergence of a for different numbers of terms in the
summation of Eq. 15.59 and a is obtained as 9.8696. Hence natural frequency
is obtained as

ω ρ ρ= =1 3.1415
L

Ta
L

T
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15.16 Program 15.5: MATHEMATICA program for

finding the natural frequency of vibration of a

pre-tensioned cable

CABLEVIBDT

0

c

16

0

2 3 4 5 6 7

a a a a a a a

1– — + ——— - ————— + —————— - ——————— + ————————— - ————————————

6 120 5040 362880 39916800 6227020800 1307674368000

15.6 Number of terms required for convergence.
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{a -> 9.8696}

15.17 Free vibration analysis of Euler beam

The governing equation is given by Eq. 15.24 as

EI
y

x
A L y

d
d

4

4
2 4= −ω ρ 15.60

where x x L= /  a non-dimensional coordinate varying from 0 to 1,
or

d
d

4

4

y
x

ay= − 15.61

where

a
AL

EI
=
ω ρ2 4

15.62

DT of Eq. 15.61 is written as

Y k
aY k

k k k k
[ 4]

[ ]
( 1)( 2)( 3)( 4)

+ = − + + + + 15.63

Boundary conditions

Case 1 Simply supported at both ends

y(0) = 0; y″(0) = 0; y(1) = 0; y″ (1) = 0 15.64

The DT equivalents are

Y[0] = 0; Y[1] = c; Y[2] = 0; Y[3] = d

and

S = y(1) = 0 leads to Σ
k

Y k
=

∞
=

0
[ ] 0 15.65

T = y″(1) = 0 leads to Σ
k

k k Y k
=

∞
− =

0
 ( 1) [ ] 0 15.66

Equations 15.65 and 15.66 may be written as

aa bb

cc dd

c

d












= { }0 15.67
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since c and d are not zero, for a non-trivial solution to exist the determinant
of the matrix must be zero, i.e.

aa × dd – cc × bb = 0 15.68

where aa, bb, are the coefficients of c and d in the equation S = 0 and cc, dd
are the coefficients of c and d in the equation T = 0. The root of Eq. 15.68 is
the solution for the problem.

For a beam with simply supported ends a = 97.4091 leads to natural
frequency asy′(1) = 0.

ω ρ= 9.8696
2L

EI
A

which agrees with closed form value.

Case 2 Roller and fixed support
The boundary conditions are y(0) = 0; y″(0) = 0; y(1) = 0; y′ (1) = 0

Y[0] = 0; Y[1] = c; Y[2] = 0; Y[3] = d 15.69

y Y k
k

( ) 0; [ ] 0
0

1 = =
=

∞
Σ 15.70

′ = =
=

∞
y k Y k

k
(1) 0; [ ] 0

0
Σ 15.71

For a beam with one end simply supported and the other end clamped,
a = 237.721 leads to natural frequency as

ω ρ= 15.418
2L

EI
A

which agrees with the closed form value.

Case 3 Fixed–fixed supports
The boundary conditions are y(0) = 0; y′(0) = 0; y(1) = 0; y′ (1) = 0

Y[0] = 0; Y[1] = 0; Y[2] = c; Y[3] = d 15.72

y Y k
k

(1) 0;  [ ] 0
0

= =
=

∞
Σ 15.73

′ = =
=

∞
y k Y k

k
(1) 0;  [ ] 0

0
Σ 15.74

For a beam with one end simply supported and the other end clamped, a =
500.564 leads to natural frequency as

ω ρ= 22.373
2L

EI
A

which agrees with the closed form value.
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15.18 Program 15.6: MATHEMATICA program for

finding the natural frequency of vibration of an

Euler beam

EULERVIBDT

0

c

0

d

30

0

0
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{a -> -97.4091}

15.19 Natural frequency of Euler beam

subjected to axial load

The governing differential equation for an Euler beam subjected to axial
load is given by

∂
∂

∂
∂






+ ∂

∂





= − ∂

∂
2

2

2

2

2

2

2

2x
EI

y
x

P
y

x
A

y
t

ρ 15.75

writing in terms of non-dimensional coordinate x x L= /  Eq. 15.75 may be
rewritten as

d
d

d
d

4

4

2 2

2
2 4y

x
P L
EI

y
x

L Ay+ = ω ρ 15.76

where EI is flexural rigidity, P is axial compressive load, ρ is mass density/
unit volume, L is span of the beam and y = lateral deflection.

Substituting β = PL2/EI into Eq. 15.76 leads to

d
d

d
d

4

4

2

2
2 4y

x
y

x
L Ay+ =β ω ρ 15.77

Using the following definitions of DT

yIV = (k + 1)(k + 2)(k + 3)(k + 4) Y[k + 4] 15.78a

y″ = (k + 1)(k + 2) Y[k + 2] 15.78b

y = Y[k] 15.78c

Substituting DT in Eq. 15.77 yields

Y k
a y k k k Y k

k k k k
[ 4]

{ [ ] ( 1)( 2) [ 2]}
{( 1)( 2)( 3)( 4)}

+ = − + + +
+ + + +

β
15.79

15.19.1Pin roller support

The boundary conditions are

y(0) = y″(0) = y(1) = y″(1) = 0 15.80

This can be interpreted in terms of DT as

Y[0] = 0; Y[2] = 0; Y[1] = c; Y[3] = d 15.81a
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and

y Y k
k

(1) 0,  i.e. [ ] 0
0

= =
=

∞
Σ 15.81b

′′ = − =
=

∞
y k k Y k

k
(1) 0,  i.e.  ( 1) [ ] 0

0
Σ 15.81c

All other DT coefficients such as Y[4], Y[5] … can be written in terms of c
and d.

Equations 15.81b and 15.81c simplify to

aa bb

cc dd

c

d
A

c

d












= 







={0},  i.e. [ ] {0} 15.82

where aa, bb are the coefficients of c and d in Eq. 15.81b and cc and dd are
the coefficients of c and d in Eq. 15.81c. For a numerical solution to exist,
the determinant || A || has to be zero and hence a can be found once β is given.
One has to include more terms, say, than 35 in Eq. 15.79 for accuracy.

Example 15.6
Find the buckling load of a pinned–pinned column given E = 200GPa; I =
0.000 038m4; mass density = 7800 kg/m3, A = 1/7800; span = 12 m. Find the
natural frequency if the axial load is tension of magnitude 300000N.

Solution
By trial and error giving various axial loads the natural frequency is calculated
for each axial load and the load at which natural frequency becomes imaginary
is the buckling load. For the problem, the buckling load is (β = 9.862) P =
520 895 N, which agrees with (π2 EI/L2) = 520 895 N.

When the axial load = 0 the natural frequency corresponds to the Euler
beam simply supported conditions without axial load and a is given by a =
97.4091 for which ωn = 188.9 rad/s.

When the axial load is negative, i.e. tension, say P = – 300 000 N (β = –
5.864), the value of a = 153.5 obtained from DT from which natural frequency
is 237.19 which corresponds to the true value

ω
ω n crP

P
P( 0)

1 1.5795
2

=




 = − =

and hence ω = 1.5795 188.9 = 237.40× rad/s.

Similarly, other boundary conditions could be tackled.

�� �� �� �� �� ��



Differential quadrature and transformation methods 561

15.20 Program 15.7: MATHEMATICA program for

finding the natural frequency of an Euler beam

subjected to axial load

EULERBEAMAXIALVIB

0

c

0

d

-5.68

30

0

0
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{a -> 153.468}

15.21 Natural frequency of a Timoshenko beam

The governing differential equation for free vibration of Timoshenko beams
(including shear deformation and rotary inertia into account) is given in Eq.
15.42a and 15.42b. Combining these two equations and identifying y = w =
lateral deflection of the beam, the governing differential equation is given by

EI
y

x
A

y
t

I E
kG

y
x t

I
kG

y
t

∂
∂

+ ∂
∂

− +( ) ∂
∂ ∂

+ ∂
∂

=
4

4

2

2

4

2 2

2 4

4 0ρ ρ ρ
1 15.83

where x  is the spatial coordinate and t is time.
Using a non-dimensional coordinate x x L= /  where L is the span of the

beam, Eq. 15.80 is rearranged as

0'' 3
4

2
2

1
2 =++− yfyfyfyiv ωωω 15.84

where

f
AL
EI

f
L
E

E
kG

f
L

kGE1

4

2

2

3

2 4

;  ;  = = +( ) =
ρ ρ ρ

1 15.85

Identifying a = ω2 the DT of the above equation is written as

Y k
a f a f Y k k k a f Y k

k k k k
[ 4]

{( ) [ ] ( 1)( 2) [ 2]}
( 1)( 2)( 3)( 4)

1
2

3 2+ = − − + + +
+ + + + 15.86

For clamped beam the following boundary conditions are to be applied: y =
0 and φ = 0 both at x = 0 and x = 1. In the absence of incorporating the correct
boundary conditions, assuming the shear deformation at the ends of the
beam are negligible, we can apply the boundary conditions as

y = 0 and y′ = 0, both at x = 0 and x = 1.

Example 15.7
Find the natural frequency of a clamped-clamped beam for the following
conditions. L = 10 m, E = 200 GPa, ρ = 7800 kg/m3. Assume unit width
(k = 0.83).
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Solution

(a) h/L = 0.01; h = 0.1; A = 0.1, m2 I = 8.333e–5. For this case the natural
frequency ω = 33.34 rad/s; The non-dimensional parameter a = ω2 is
obtained as 1107.5 or ω = 33.34 rad/s. a = λ given by Lee and Schultz
(2004) can be calculated as

λ ω ρ2 2 2
11 533.34 10 7800 0.1

2 10 8.33 10
4.824= = × ×

× × ×
=−L

A
EI

whereas the value obtained by Lee and Schultz is 4.7284.
(b) h/L = 0.2 h = 2; A = 2; I = 0.667. The natural frequency is obtained as

592 rad/sec and the corresponding λ value is calculated as

λ ω ρ2 2 2
11592 10 7800 2

2 10 0.667
4.76= = × ×

× ×
=L

A
EI

whereas the value obtained by Lee and Schultz is 4.24.

The error in the deep beam may be due to incorporation of wrong boundary
conditions.

15.22 Program 15.8: MATHEMATICA program for

finding the natural frequency of a Timoshenko

beam

TIMOSHENKOVIBDT

11
2.08 10

10

8. 10

7800

0.000083

0.1
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0.83

780.

10

0.451807

0.000015497

-11
4.40512 10

35

0

0

c

d

-6
-1.29142 10 a c

-7

-7.74849 10 a d
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0

0

{a -> 1107.45}

15.23 Summary

The DQ and HDQ methods are applied to solve for natural frequency of
strings and, beams with or without axial load. For finding the natural
frequencies, unlike Rayleigh–Ritz methods, DQ and HDQ methods do not
need the construction of an admissible function that satisfies the boundary
conditions a priori. Accurate results are obtained for the problems even with
a small number of discrete points used to discretize the domain. This approach
is convenient for solving problems governed by higher order differential
equations, and matrix operations could be performed using MATLAB with
ease. It is also easy to write algebraic equations in the place of differential
equations and to apply boundary conditions. It is also explained in this
chapter how the Lagrange multiplier method is used to convert rectangular
matrix to square matrix by incorporating boundary conditions using Wilson’s
method. Results with high accuracy are obtained in all study cases and DQM
and HDQ methods are computationally efficient. DQM and HDQ methods
are straightforward so the same procedures can be easily employed for handling
problems with the other boundary conditions.

In this chapter, the DT method is also highlighted and its usefulness
demonstrated by solving stability analysis of fully supported prismatic and
non-prismatic piles. It is also shown in this chapter how DT can be used to
convert differential equation to a set of algebraic equations of recursive
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nature. It is also shown that, together with boundary conditions, these equations
are solved for natural frequency of various types of problems. A fairly large
number of terms, say 35 to 40, are required for convergence. DT is efficient
and easy to implement, particularly in symbolic program packages such as
MATHEMATICA. Mode shape also could be obtained using Eq. 15.48. It is
expected that DQ, HDQ and DT will be more promising for further development
into efficient and flexible numerical techniques for solving practical engineering
problems in future.

15.24 Exercises

1. Using the DQ method, find the fundamental frequency for torsional
vibration of a shaft of length 2 m and diameter 50 mm when both ends
are fixed. The density of the material is 7800kg/cm and the modulus of
rigidity is 80GPa.

2. Use the DT method to find the fundamental frequency of the above problem.
3. Compute the first three natural frequencies and the corresponding mode

shapes of a transverse vibration of a uniform beam of rectangular section
(100mm × 300 mm) with L = 2 m, E = 200 GPa, mass density = 7800
kg/m3 for the following cases.
(a) when both ends are simply supported;
(b) when both ends are built-in;
(c) when one end is fixed and the other end is free; and
(d) when both ends are free.
Plot the mode shapes. Use the HDQ method.

4. Use DT to find the first three natural frequencies of the above beam for
the above conditions.

5. Derive necessary equations for longitudinal vibration of a tapered bar
shown in Fig. 15.7 and solve for fundamental frequency by the DQ
method. The mass/unit length is given by

m x m x
L

( ) 2 10= −( )
and the stiffness is given by

EA x EA x
L

( ) 2 10= −( )

O x

15.7
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6. Solve Problem 5 by the DT method.
7. A cantilever beam has a constant width b, but has a linearly varying

depth d(x). The depth at the left fixed end is d0 and right free end is d0/2.
Estimate the first two natural frequencies and mode shapes for transverse
vibration by the DQ method. Assume the beam has material modulus of
elasticity E and mass density ρ.

8. Solve Problem 7 by the DT method.
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16
Earthquake and earthquake ground motion

Abstract: This chapter summarizes the fundamental concepts of earthquake
engineering. Causes of earthquakes, earthquake measuring scales, seismicity
and characteristics of strong ground motion are discussed. The intensity and
magnitude of the earthquake are differentiated. An introduction to response
of structures to earthquake ground motion is presented in Chapters 17 and
18.

Key words: magnitude, intensity, peak ground acceleration, faults, tsunami,
rebound theory.

16.1 Introduction

Vibrations in structural systems may result from a wide variety of sources.
Some of the most common and significant dynamic waves imposed on the
structure are those carried by environmental activities such as wind, earthquakes
and waterways. In these environmental sources, earthquakes rank as the
most important in terms of their enormous potential for damage to structure
and loss of human life. An earthquake has long been feared as one of the
most terrifying natural phenomena. Early in human history, the sudden shaking
of the earth and the death and destruction that resulted were seen as mysterious
and uncontrollable. We now understand the origin of earthquakes and know
that they must be accepted as a natural environmental process. An earthquake
is one of the periodic adjustments that the Earth makes in its evolution.
Arriving without warning, the earthquake in few seconds can create a level
of death and destruction that can be equalled only by the most extreme
weapons of war. This uncertainty combined with terrifying sensation of
earth movement creates our fundamental fear of earthquake.

The Tangshan, China earthquake of 1976 is officially reported to have
caused 255 000 deaths. The city of Tangshan was essentially levelled as if
struck by an atomic bomb. Tangshan was built mostly from non-engineered,
unreinforced masonry buildings, and this level of destruction is not expected
in a city built to recent seismic codes.

Every year, approximately 10 000 people on average die from earthquakes
worldwide. In addition to this staggering loss of life, earthquakes are responsible
for hundreds of millions of dollars in property damage annually. The costs of
renovating structures after the Loma prieta earthquake of 1989 and the North
ridge earthquake of 1994 are estimated at $6.8 billion and $25 billion
respectively. For the 1995 Kobe earthquake, the repair costs exceed $100 billion.
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India is a land of approximately 3 280 483 km2. More than 60% of the
area is in an earthquake-prone zone. During the last 100 years, India has lost
about 100 000 lives to earthquakes. On average this is 1000 lives/year but
20 000 lives have perished in a matter of seconds. In 1905 the Kangra earthquake
of Richter scale M = 8.0 in Himachal Pradesh resulted in 13 800 lives lost.
In Gujarat in the Kachchh earthquake of 2001, hundreds of thousands of
houses collapsed or were severely damaged. In each event one can imagine
the misery of the survivors and the impact on the economy of the affected
region.

The tragedy of Al Asnam in Algeria should indeed be an eye-opener to
planners, engineers and builders. In October 1980 an earthquake of 7.5 M
rocked the lives and reduced most of its sandstone modern buildings to
rubble. The estimate of lives lost was 2500, with 200 000 injured. The worst
part of the story is, however, the fact that barely 26 years earlier, the same
town had been destroyed by an earthquake affecting 1600 people at that
time, and the present town was mostly built anew after the earthquake.

In India itself, after the tragic occurrence of the Bhutan–Nepal earthquake
of 1934 (M = 8.4) in which more than 13 000 people died, no improvements
have been made in construction practice, as a result of which even during the
moderate earthquake of 21 August, 1988, with M = 6.6, the results were
catastrophic with a loss of lives of about 900 and property millions have
been destroyed. The Bhujj earthquake resulted in calamity in five districts of
Gujarat, and also showed that lessons had not been learnt even after the
tragedy of 1956 earthquake.

Table 16.1 gives some of the largest and deadliest earthquakes that have
occurred worldwide during 1900–2007. Table 16.2 shows the number of
earthquakes worldwide between 2000 and 2007 and mortality figures.

16.2 What is an earthquake?

Simply stated, earthquakes are vibrations of the Earth’s surface caused by
waves emanating from a source of disturbance inside the Earth. The nature
of the disturbing source can vary from a volcanic eruption to an underground
explosion. An earthquake is the sudden violent movement of the Earth’s
surface from the release of energy in the Earth’s crust.

There is some evidence that provides information about the interior of the
Earth. Volcanoes are within 200 km in depth; erosion exposes rocks of 20–
25 km in depth, whereas existing mines are only a few kilometres in depth.
The Mohole Project was drilled by American scientists. To minimize the
drilling depth, the drilling was carried out in the east Pacific Ocean because
of its minimum oceanic crust; the depth drilled was up to 5.5 km. The proposed
depth was 10 km, but owing to high cost and difficulties the project was
abandoned. A similar project was carried out at Kola Peninsula by Russians.
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Table 16.1 Largest and deadliest earthquakes (1990–2007)

Largest earthquakes Deadliest earthquakes

Date Magnitude Fatalities Region Date Magnitude Fatalities Region

12 September 8.4 9 Southern Sumatra, 15 August 8.0 514 Near the coast
2007 Indonesia 2007 of Central Peru

15 November 8.3 0 Kuril Islands 26 May 2006 6.3 5749 Java, Indonesia
2006

28 March 8.6 1313 Northern Sumatra, 8 October 7.6 80 361 Pakistan
2005 Indonesia 2005

26 December 9.1 227 898 Off west coast of 26 December 9.1 227 898 Off west coast of
2004 Northern Sumatra 2004 Northern Sumatra

25 September 8.3 0 Hokkaido, Japan 26 December 6.6 31 000 Southeastern Iran
2003 region 2003

3 November 7.9 0 Central Alaska 25 March 6.1 1000 Hindu Kush
2002 2002 region,

Afghanistan
23 June 2001 8.4 138 Near coast of 26 January 7.7 20 023 India

Peru 2001
16 November 8.0 2 New Ireland 4 June 2000 7.9 103 Southern

2000 region, P.N.G. Sumatra,
Indonesia

20 September 7.7 2297 Taiwan 17 August 7.6 17 118 Turkey
1999 1999

25 March 8.1 0 Balleny Islands 30 May 1998 6.6 4000 Afghanistan–
1998 region Tajikistan border

region
14 October 7.8 0 South of Fiji 10 May 1997 7.3 1572 Northern Iran

1997 Islands
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5 December 7.8 0 Near east coast of
1997 Kamchatka

17 February 8.2 166 Irian Jaya region, 3 February 6.6 322 Yunnan, China
1996 Indonesia 1996

30 July 8.0 3 Near coast of 16 January 6.9 5530 Kobe, Japan
1995 Northern Chile 1995

9 October 8.0 49 Near coast of
1995 Jalisco Mexico

4 October 1994 8.3 11 Kuril Islands 20 June 1994 6.8 795 Colombia
8 August 1993 7.8 0 South of Mariana 29 September 6.2 9748 India

Islands 1993
12 December 7.8 2519 Flores Region, 12 December 7.8 2519 Flores region,
1992 Indonesia 1992 Indonesia

22 April 1991 7.6 75 Costa Rica 19 October 6.8 2000 Northern India
22 December 7.6 0 Kuril Islands 1991
1991

16 July 1990 7.7 1621 Luzon, Philippine 20 June 1990 7.4 50 000 Iran
Islands

Table 16.1 Continued

Largest earthquakes Deadliest earthquakes

Date Magnitude Fatalities Region Date Magnitude Fatalities Region
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Table 16.2 Number of earthquakes worldwide (2000–2007) and mortality figures

Magnitude 2000 2001 2002 2003 2004 2005 2006 2007

8.0–9.9 1 1 0 1 2 1 1 2
7.0–7.9 14 15 13 14 14 10 10 2
6.0–6.9 158 126 130 140 141 141 132 70
5.0–5.9 1345 1243 1218 1203 1515 1697 1483 678
4.0–4.9 8045 8084 8584 8462 10 888 13 918 13 069 4556
3.0–3.9 4784 6151 7005 7624 7932 9189 9953 3239
2.0–2.9 3758 4162 6419 7727 6316 4636 4016 1153
1.0–1.9 1026 944 1137 2506 1344 26 19 17
0.1–0.9 5 1 10 134 103 0 2 0
No magnitude 3120 2938 2937 3608 2939 865 849 784
Total 22 256 23 655 27 453 31 419 31 194 30 483 29 534 10 501
Estimated deaths 231 21 357 1685 33 819 284 010 82 364 6605 136
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The results obtained were important but not sufficient to determine the interior
of the Earth since its radius is 6378 km. The only source that provides reliable
information about the interior of the Earth is produced by seismic waves.
Seismic waves travel at different velocities since the Earth has many different
compositions and discontinuities. This throws light on the interior of the
Earth. It consists of three layers, viz. crust, mantle and core. The Mohorovicčic
(moho) discontinuity divides the crust and mantle, and the Gutenberg
discontinuity divides the mantle and core.

16.2.1 Crust

The crust is the outermost part of the Earth. Crustal thickness in mountainous
areas such as the Alps and Himalaya is 70 km and in plains the thickness is
30 km. But below the ocean the thickness is 5–8 km. The upper layer of the
crust is called sial, and the rock composition is granite; the bottom layer is
called sima, and the rock composition is basalt. Sial is absent in the ocean.
A discontinuity called the Conrad discontinuity separates sial and sima. The
velocity of the P wave in sial is 6.1 km/s and sima is 6.8 km/s. An S wave
travels at 3.4–4.4 km/s. Seismic waves attain greater velocity at 65 km,
indicating the Moho discontinuity. The specific gravity of the crust ranges
from 2.5 to 3.4. The volume of the crust is 2%.

16.2.2 Mantle

The volume of the mantle is 82%. Velocities of P wave and S wave are 8.1
and 4.5 km/s respectively. Peridotite is the rock type found in mantle. From
50 to 250 km seismic wave velocity decreases, indicating a change in
composition. Here P wave velocity decreases from 8.1 to 7.8 km/s and S
wave velocity decreases from 4.6 km/s. The temperature at this level is enough
to make the rock mobile. This layer is known as the asthenosphere. Above
this is the lithosphere, which is rigid and comprises crust and parts of upper
mantle. Hence the lithosphere moves above the asthenosphere and this
movement is known as plate tectonics. Deep focus earthquakes occur up to
a depth of 700 km. In the lower mantle, P wave velocity increases from 8.1
to 14 km/s. The temperature is up to 3000 °C. Pressure varies from 9 to
1400 kilobars.

16.2.3 Core

The volume of the core is 16%. The core starts from 2900 km and reaches
down to 6378 km (Fig. 16.1). Here P wave velocity decreases from 14 to
8.1 km/s, indicating the change from solid state to liquid state. S waves are
not recorded because the outer core is in liquid state. The outer core is
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separated from the inner core by the Gutenberg discontinuity. In the inner
core P wave velocity increases from 8.1 to 10.3 km/s. Specific gravity increases
to 11.8 and pressure increases to 3180 kbars. At the inner core P wave velocity
increases to 11.2 km/s. Pressure is up to 3300–3600 kbars and temperature is
6000 °C.

16.3 Plate tectonic theory

The lithosphere of the Earth is not a single piece but is made up of continental
plates containing land mass and oceanic plates are under water. They fix
together like jigsaw puzzle. The plates float over magma in many directions
with different speeds (see Fig. 16.2).

Convection currents develop in the viscous mantle because of the prevailing
high temperature and pressure gradients between the crust and the core. The
convective flow of mantle causes the crust and same portion of the mantle to
slide in the hot molten outer core. This sliding of the Earth’s mass takes
place in pieces called ‘Tectonic plates’. The surface of the Earth consists of
seven major tectonic plates and many smaller ones (Fig. 16.2). Sometimes,
the plate in the front is slower than the plate behind it and they collide
(forming mountains) and sometimes two plates move away from one another
(creating rifts). In another case, two plates move side by side in opposite
directions. These three types of inter-plate interactions are the convergent,
divergent and transform boundaries. The relative movement of these plate
boundaries varies across the Earth; on average it is of the order of couple of
tens of centimetres/year.

When the crust is subjected to tectonic forces, it bends slightly. Because
the crust is rigid and stress exceeds the strength of the rock, the crust breaks
and snaps into a new position. Vibrations called seismic waves are generated
and travel both through the Earth and along the surface. The seismic wave
causes the movement which we call earthquakes.

Upper mantle

Mantle

Inner core

Outer core

Crust

16.1 Section of the Earth.
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16.4 Faults

Earthquakes generally originate on a plane of weakness in the Earth’s crust
called a ‘fault’. Faults are formed when two crustal rock beds slip relative to
each other. Faults are classified according to the directions of relative slippage.

16.4.1 Strike–slip fault

If the movement or slippage is primarily horizontal it is a strike–slip fault.
They can either be left lateral or right lateral (see Fig. 16.3).

16.4.2 Dip–slip fault

If the slippage is vertical it is called a dip–slip fault. Such faults may be
normal faults or reverse faults. A fault that reveals itself on the Earth’s
surface due to past earthquake activity is known as an earthquake fault. The
well-noted ‘San Andreas’ fault, for example, emerges to the surface between
Point Arena and the Gulf of California and reveals its presence by a linear
trough in the Earth’s surface approximately 250 km long. The San Andreas
fault occurs along the intersection of the Pacific Plate and the North American

Epicentres of earthquakes

Alpine
Himalayan

Australian
Plate

Pacific Plate

Circum

Pacific

North American
Plate

Eurasian Plate

African Plate

Mid
Atlantic

South
American

Plate
Nazca
Plate

Antarctic Plate

16.2 Continental plates, epicentres and earthquake belts (adapted
from Barazangi and Dorman, 1969).
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Plate and has a total length of approximately 960 km, extending almost
vertically into the Earth to a depth of 30 km.

Earthquakes often occur at ‘active faults’. Active faults are faults for
which there is a past history and movements or deformation. The San Andreas
fault system has been active during the past 200 years and other faults have
been active for thousands of years.

Most earthquakes occur in the world along the boundaries of the tectonic
plates which are called inter-plate boundaries (e.g., 1897 Assam earthquake).
A number of earthquakes can also occur within the plate itself away from the
plate boundaries (e.g., 1993 Lattur earthquake). These are called intra-plate
boundaries. In both types of earthquake, the slip generated at the fault during
earthquake is along both vertical and horizontal directions (called dip–slip),
and lateral directions (called strike–slip), with one of them dominating at
some times.

In the Indian subcontinent, part of the Indo-Australian Plate is pushing
against the Eurasian Plate along the Himalayan belt. Therefore the Himalayan
belt is highly seismic (see Table 16.3), whereas peninsular India, which is
not traversed by any plate boundary, is relatively less seismic. Earthquakes
became frequent after the construction of Koyna Dam and these are regarded
as reservoir-induced (or artificial). However, the Latur earthquake of 1993,
which occurred in what was previously considered to be the most stable
region on the Earth, implies that no region is entirely safe from devasting
earthquakes.

When considering the regional distribution of earthquakes in the Indian
subcontinent, the whole area can be divided in to the following seismic
regions:

Extensional Compressional

Transform

16.3 Different types of faults.
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• Kashmir and western Himalayas.
• Central Himalayas (including Nepal).
• North-east India.
• Indo-Gangetic basin (Rajasthan).
• Cambag and the Rann of Kutch.
• Peninsular India.
• Andaman and Nicobar Islands.

The seismic activities of these regions are summarized in Table 16.4.

16.5 Earthquake belts in the world

• Circum-Pacific belt: This follows the region around the Pacific Ocean
from Japan, China, Alaska Aleutians, California (San Andreas fault system),

Table 16.3 Some better known damaging earthquakes in India

Year Area Magnitude Maximum Mortality
modified
Mircalli
intensity

1819 Gujarat (Kachchh) 8 XI Many
thousand

1833 Bhutan-Nepal 7.7 XI 100
1897 Assam (Shillory) 8.7 XII 1600
1900 Coimbatore–Kerala border 6.0

(Palghat)
1905 Himachal Pradesh (Kangra) 8 XI 20 000
1930 Assam (Dhubri) 7.1 IX Many
1934 Bihar-Nepal 8.3 XI 14 000
1941 Andaman 8 X Many
1943 Assam (NE) 7.2 X
1950 Assam (NE) 8.6 XII 1500
1956 Gujarat (Anjar) 7.0 VII 100
1956 Uttar Pradesh (Bulland sahar) 6.3 VII Many
1958 Uttar Pradesh (Kapkoci) 6.3 VII Many
1960 Delhi 6 VII
1963 Kashmir 5.5 VII 100
1966 Western Nepal and Himachal 6.3 VIII
1966 Uttar Pradesh (Moradabad) 5.3 VII
1967 Nicobar 6.2 –
1967 Maharashtra (Koyna) 6.5 VIII
1970 Gujarat (Broach) 5.7 VII
1975 Himachal Pradesh 6.5 VIII
1988 Bhutan Nepal 6.6 VIII 1003
1991 (Uttarkasi) 6.6 VIII 768
1993 Maharashtra (Killari) 6.3 VIII 7920
1997 Jabalpur 6.0 VII 38
1999 Chamoli 6.8 VIII 103
2001 Kachchh 6.9–7.6 X 13 811
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Table 16.4 Earthquakes in India by region

Serial No Region 5–5.9 6–6.9 7–7.9 8 or more Maximum modified Average return
Mircalli intensity period observed
(MMI) For M >5.0

1 Kashmir and western 25 7 2 1 x 2.5–3 years
Himalayas

2 Central Himalayas 68 28 4 1 xi 1 year
(Uttaranchal), Nepal
Himalayas, north Bhutan

3 North-east India 200 130 15 4 > x < 4 months
4 Indo-Gangetic basin 14 6 – – viii 5 years

(Rajasthan … Delhi)
5 Cambay and Rann of Kutch 4 4 1 1 viii 20 years
6 Peninsular India 32 10 – – viii 2.5–3 years
7 Andaman Nicobar 80 68 1 1 >ix <8 months
Total 423 253 23 8
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Mexico, Equador, Peru, Chile and New Zealand. These are the areas
characterized by plate subduction, active volcanoes, strain build-up and
periodic release, causing earthquakes.

• Mid-Atlantic Ridge: This follows the lines of Mid-Oceanic Ridges from
near the North Pole to the equator, turning around South Africa and ends
up to Rift Valley region of East Africa. Seismicity is low in this region.

• The Alpine-Himalayan Trans-Asiatic Belt: The Alpine mountain areas
of Europe, North Africa, Asia Minor, Caucasus, Turkey, Iraq, Iran,
Himalayan region such as Kashmir to Assam, Myanmar and Philippines.
This zone passes through boundaries of continental crustal plate with
high mountain ranges where intense compression takes place.

16.6 Elastic rebound theory

Each type of plate intersection produces significant straining in crustal rocks.
The strain is accumulated by gradual shifting of tectonic plates. The rocks
become disturbed but maintain their original positions because of continuity,
mechanical bond and friction. When accumulated stress finally exceeds the
strength of rocks, fracture occurs and the Earth shapes back in to an unstrained
position. This phenomenon is generally known as ‘elastic rebound theory’ or
Reid’s theory. The great release of energy associated with the rupture of
rocks produces shock waves that propagate through Earth’s crust and cause
an earthquake. The great (major) earthquakes are usually the transform fault
and subduction types. Sometimes, earthquakes are associated with volcanic
eruptions or subterranean movement of magma.

16.7 Seismic waves

As the first occurrence of an earthquake, seismic waves are generated that
propagate through the Earth’s crust. The position of the fault plane where
seismic motion originates is called the ‘focus’ (see Fig. 16.4) or hypo-centre.

The point in the Earth’s surface directly above the focus is the epicentre.
The focal distance and the epicentral distance are the distance from the
focus and the epicentre respectively to the point of observed ground motion.
As seen before, depending upon the depth of the focus, the earthquake is
classified as shallow, intermediate or deep.

Earthquake forces may occur at any depth from near the surface to a depth
of 700 km. When the focal depth of an earthquake is less than 60 km, the
ground motion is localized and the earthquake is called a normal or shallow
focus earthquake. If the focal depth is between 185 and 300 km, the earthquake
is felt over a wide area and it is called a deep focus earthquake. When the
focal depth is between 60 and 180 km it is called an intermediate earthquake.
Sometimes, associated with volcanic eruptions or subterranean movement of
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magma the major problem activity observed is of tectonic origin. Shallow
focus earthquakes are devasting. All known earthquakes to date in California
have been the shallow focus type.

Two basic types of waves (body waves and surface waves) make up the
shaking and cause damage in an earthquake. These waves are similar in
many important ways to the familiar waves in air, water and gelatin. Of
these, two propagate within a body of solid rock.

16.7.1 Body waves P wave (primary wave)

The faster of these body waves is appropriately called a P wave. Its motion
is the same as that of a sound wave in that, as it spreads out, it alternately
pushes (compressive) and pulls (dilates) the rock (see Fig. 16.5). These P
waves, like sound waves, are able to travel through both solid rock such as
granite mountains, liquid material such as volcanic magma or the water of
the oceans. They travel with a velocity of approximately 350 m/s and are the
first to reach the surface. Usually their speeds are 330 m/s in air, 1450 m/s in
water and 5000 m/s in granite. These waves are less destructive than S waves
because of their low amplitude.

16.7.2 S wave (secondary wave)

The S wave is also referred to as the shear or transverse wave. It propagates
in a direction perpendicular to vibration (see Fig. 16.5). Thus at the ground
surface S waves can produce both vertical and horizontal motions. S waves
cannot propagate in the liquid parts of the Earth such as oceans and their

Epicentre

Epicentral
distance

Focal depth

Rock

Focus

16.4 Definition of focus and epicentre.
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16.5 Different waves in earthquakes.
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amplitude is significantly reduced in liquefied soil. Their speed is about 60%
of that of P wave in a given material. Their amplitudes are several times
larger than P waves.

The actual speed of P and S seismic waves depends on the density and
elastic properties of the rocks and soil through which they pass. In most
earthquakes, P waves are felt first. The effect is similar to a seismic boom
that bumps and rattles windows. Some seconds later the S waves arrive with
their significant component of side to side motion so that ground shaking is
both vertical and horizontal. This wave cause most damage to structures.

The speed of P and S waves is given in terms of density of elastic material
and elastic modulus. The propagation velocity of a P wave is Vp and of an S
waves is Vs in elastic materials. The velocities are frequency independent
and are expressed as

V
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+ −
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where E = modulus of elasticity, G = modulus of rigidity and ρ = density.
In all materials Vp > Vs. Therefore P waves arrive first to the surface.

Although S waves travel more slowly than P waves, they transmit more
energy and are most effective in inflicting damage on structures. Surface
waves in an earthquake can be divided into two types:

• L (Love) wave. The L wave has essentially the same motion as that of an
S wave, i.e. it has no vertical displacement. It moves the ground side to
side in a horizontal plan parallel with Earth’s surface but at right angles
to the direction of propagation (see Fig. 16.5). It travels faster than an R
wave, with 90% of S wave velocity.

• R (Rayleigh) wave. The second type of surface wave is like rolling
ocean waves, in that the pieces of rocks disturbed by Rayleigh waves
move both vertically and horizontally in a vertical plane pointed in the
direction in which the waves are travelling. Each piece of rock moves in
an ellipse as the wave passes. The velocity of an R wave is 70% that of
an S wave and has been asserted to be visible during an earthquake in
open space. Cars move up and down with these waves.

Surface waves travel more slowly than body waves and of the two surface
waves, Love waves generally travel faster than Rayleigh waves. Thus as the
waves radiate outwards from the earthquake source into the rocks of the
Earth’s crust, the different types of waves separate out from the another in a
predictable pattern.
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When P waves and S waves reach the surface of the ground, most of the
energy is reflected back into the crust, so that the surface is affected almost
simultaneously by upward and downward moving waves. For these reasons
considerable amplifications of shaking typically occur near the surface,
sometimes doubling the amplitude of the upcoming waves.

The velocity differential between P waves and S waves can be used to
locate the epicentre and focus of the earthquake. The time interval between
the arrival of a P wave Tp and an S wave Ts to a seismographic station is
called the duration of preliminary tremors and is expressed as

Tsp = [(1/Vs) – (1/V p)] d 16.3

where Tsp = Ts – Tp and d is the distance travelled by the waves.
The quantity Tsp is determined from seismogram as the difference between

the initial time of the S wave and P wave. The focal depth d can be determined
from the above equation. The location of the focus and epicentre can be
ascertained if d is determined from three or more seismograph stations (see
Fig. 16.6).

16.8 Measuring instruments

The first instrument to measure an earthquake was invented in AD 132 by
Zhang Heng, a Chinese philosopher. It was a 2 m in diameter bronze jar with
a central pendulum inside and decorated outside with a series of dragon
heads connected to a pendulum, each with a ball in a hinged mouth. Directly
below each dragon’s head on the surface of the stand was a bronze frog head
with its mouth open to receive the ball from the dragon’s mouth. During the
earthquake the ground motion would move the balls to fall from the dragon’s
mouth into the frog’s mouth. The direction of earthquake was indicated by

S wave

P wave

Tp Ts

A = amplitude

16.6 Typical seismogram.
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which of the dragon heads dropped a ball. By the end of the nineteenth
century several European inventors had constructed different seismographs.
Most used electromagnetics operated by suspending magnetic mass or
pendulum within an electric coil as shown in Fig. 16.7.

A seismometer is an instrument that senses the Earth’s motion and a
seismograph combines a seismometer with recording equipment to obtain
permanent record of motions. Scientists can compute how much energy is
released during an earthquake. Calculations are made in various seismographs
near to and far from the epicentre to determine the intensity of the earthquake.

From three different locations the place of epicentre can be located exactly,
as shown in Fig. 16.8. One such instrument is required in each of the two
orthogonal horizontal directions. Of course for measuring vertical oscillations
the string pendulum is replaced with a spring pendulum oscillating about a

2400km

480km

3600km

16.8 Location of epicentre.

16.7 A simple seismograph.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering588

fulcrum. Some instruments do not have a timer device (i.e., the drum holding
the chart paper does not rotate). Such instruments proved only the maximum
extent of the motion during the earthquake and for that reason they are called
seismoscopes.

A number of smaller size earthquakes take place before and after a big
earthquake (main shock). Those occurring before the big one are called fore
shocks and the ones after are called after shocks.

16.9 Earthquake intensity and magnitude

16.9.1 Intensity

The oldest useful yardstick of the strength of an earthquake is the earthquake
intensity. The intensity of an earthquake is used to determine its severity at
a particular location as determined by human reactions to Earth’s movement,
observed damage to structures, and observation of other physical effects.
Because earthquake intensity assessments do not depend on instruments, but
on the actual observation of effects in the seismal zone, intensities can be
assigned to historical earthquakes. In this way the historical record becomes
of utmost importance in modern estimates of seismological risk. Thus the
intensity will vary with distance from the causative fault and with local
ground conditions. Intensity is a qualitative measure of the actual shaking at
a location during an earthquake, and assigned as Roman capital numerals.

The first intensity scale was developed by de Rossi of Italy and Forel of
Switzerland in the 1880s. This scale, with values I to X, was used for reports
of the intensity of the 1906 San Francisco earthquakes, for example. A new
refined scale was devised by the Italian volcanologist and seismologist Mercalli
in 1902 with a 12-degree range from I to XII. More refined scales were
developed by Cancanio. In 1931 Frank Neumann and H O Wood proposed
a 12 grade modified Mircalli (MMI) scale, which has been widely adopted
in South America, and other parts of the world. Other intensity scales in use
today are the 12-grade Medvedev – Sponheuer Karnik (MSK-64) scale and
the 8-grade Japanese Meteorological Agency (JMA) scale. Because intensity
scales are subjective and highly dependent on the construction practices and
socio-economic conditions of a country, and bear no specific relation to the
ground motion, correlation among the various intensity scales is not easily
done. Both the MMI and the MSK scales are quite similar and range from I
(least perceptive) to XII (most severe). The intensity scales are based on
three features of shaking:

• perception by people and animals;
• performance of buildings;
• changes to natural surroundings.
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IS1893 (Part 1): 2002 adopts a comprehensive intensity scale (MSK-64) and
this is given in Table 16.5 for completeness.

The intensity of the earthquake is greatest in the vicinity of the causative
fault and decreases with distance from the fault. Curves of equal intensity as
shown in Fig. 16.9 called ‘isoseismals’ assume a bell-shaped pattern for
small earthquakes. For large earthquakes having a slipped length of fault of
several hundred kilometres, the idealized isoseismals become quite elongated
in a direction parallel to causative fault. In actuality, however, the isoseismals
are more complex as they are influenced by such factors as local site and
geological conditions.

16.9.2 Earthquake magnitude

If sizes of earthquakes are to be compared worldwide, a measure is needed
that does not depend, as does intensity, on the density of population and type
of construction. A strictly quantitative scale that can be applied to earthquakes

Table 16.5 Intensity scale (MSK-64)

Intensity Damage

1 Not noticeable
2 Scarcely noticeable
3 Weak, partially observed
4 Largely observed
5 Awakening
6 Frightening
7 Damage of buildings
8 Destruction of buildings
9 General damage of buildings

10 General destruction of buildings
11 Destruction
12 Landscape changes

Fault

VI
IX

VIII

VII

16.9 Isoseismal zones of large earthquakes.

�� �� �� �� �� ��



Structural dynamics of earthquake engineering590

in both inhabited and uninhabited regions was originated by Wadati in 1931
in Japan and developed by Charles Richter in 1935 in California.

Richter defined the magnitude of a local earthquake as the logarithm to
base ten of the maximum seismic wave amplitude in micrometres (10–4 cm)
recorded on a Wood Anderson seismograph located at a distance of 100 km
from the earthquake epicentre. This means that a ten-fold increase in the
amplitude of the earthquake waves results in the magnitude of the scale
going up by one unit.

Since the fundamental period of a seismograph is 0.8 s, it selectively
amplifies those seismic waves with a period ranging from 0.5 to 1.5 s because
the natural period of many buildings is within this range. The local Richter
magnitude remains the value familiar to engineers. Richter also found that
among earthquakes occurring at the same distance, larger earthquakes have
bigger wave amplitude than smaller earthquakes and also greater distances
have lower amplitude than at shorter distances. This is obtained from the
seismogram and accounts for the dependence of wave-form amplitude and
epicentral distance. This scale is called Richter scale or local magnitude
scale.

The magnitude of the earthquake is determined from the expression:

M = log10 A 16.4

where A is the maximum seismic amplitude in (10–4 m). However, a standard
seismograph is not always set at a distance of 100 km from the epicentre, in
which case it can be modified as

M = log10 A – log10 A0 16.5

where A is the maximum seismic wave amplitude for the measured earthquake
at a given epicentre distance and A0 is the seismographic reading produced
by standard earthquake (A0 = 0.001). A correlation between the amount of
energy Ef released at the causative fault and the Richter magnitude was
developed by Gutenberg and Richter and is expressed as

log10 Ef = 4.8 + 1.5M 16.6

Because the Richter magnitude is a logarithmic scale, an increase of unity in
magnitude represents 10-fold increase in the amplitude of the seismic waves
(e.g., a reading of 7 represents 10 times greater amplitude than a reading
of 6).

For instance, energy release for earthquakes of values 6 and 7.

(Ef) 7 = 104.8+10.5 = 1015.3 16.7

(Ef) 6 = 104.8+9.0 = 1013.8 16.8

( )
( )

= 10
10

= 10 = 10 31
7

6

15.3

13.8
1.50 1.5

E
E

f

f
≈ 16.9
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So the energy released in an M7 earthquake is about 31 times that released
in an M6 and in an M8 the energy released is about 1000 (31 × 31) times that
released in an M6 earthquake. Most of the energy released goes into heat and
fracturing rocks and only a small fraction of it (fortunately) goes into the
seismic waves that travel a larger distance, causing shaking of the ground en
route and hence damage to structures. The energy releases for various
magnitudes of earthquake and the corresponding intensity scales are compared
in Table 16.6.

An empirical relation between Richter magnitude M, modified Mercalli
intensity (MM) and focal distance ‘d’ in km was suggested by Esteva and
Rosenblueth as

MM = 8.16 + 1.45 M–2.46 ln (d) 16.10

It is interesting to note that energy released in an M6.3 earthquake is equivalent
to that released by the 1945 atom bomb dropped on Hiroshima.

Earthquakes having M < 5 generate ground motions unlikely to cause
damage because of their very short duration and moderate acceleration. An
earthquake with a magnitude of 7.2 would be considered a strong earthquake.
Earthquakes with magnitudes above 7.5 are referred to as great earthquakes,
whereas earthquakes with magnitude < 2 or less are known as micro-
earthquakes. Table 16.7 shows the frequency of occurrence of various types
of earthquakes. There are one million earthquakes annually, 80 000/month;
2600/day; 2/minute; 1 earthquake is felt every 30 s. The frequency of earthquake
for any magnitude >M is given by N = 106.7–0.9M.

At its inception, the idea behind the Richter-local magnitude scale (ML)
was a modest one, applicable to shallow earthquakes and epicentre distance

Table 16.6 Earthquake magnitude and intensity scales compared

Richter Equivalent Equivalent Mercalli Witnessed
magnitude energy in energy in intensity observations

weight of TNT Hiroshima near
(tonnes) atom bomb epicentre

3–4 15 1/100 II–III Feels like vibrations
of nearby truck

4–5 480 3/100 IV–V Smooth objects upset,
sleepers awaken

5–6 15 000 1 VI–VII Difficult to stand,
damage to masonry

6–7 475 000 37 VII–VIII General panic, walls
fall

7–8 15 000 000 1160 IX–XI Wholesale destruction,
large landslides

8–9 475 000 000 36 700 XI–XII Total damage, waves
seen on ground
surface

�� �� �� �� �� ��



Structural dynamics of earthquake engineering592

< 600 km. Today the method has been extended to a number of types of
seismographs throughout the world. Consequently there are a variety of
magnitude scales on different formulae for epicentre distance and the ways
of choosing appropriate wave amplitude.

16.9.3 Surface wave magnitude (Ms)

Periods of 20 s are usually dominant on seismograph records of distant
earthquakes (epicentral distance > 2000 km). Gutenberg defined a magnitude
scale based on measuring the amplitude of surface waves within a period of
20 s.

16.9.4 Body wave magnitude (Mb)

Deep focus earthquakes have only small or insignificant trains of surface
waves. It is customary to measure the velocity of the P wave, which is not
affected by focal depth of the source.

16.9.5 Moment magnitude (Mw)

The best estimates of an earthquake’s magnitude, especially for great
earthquakes, are given by the moment magnitude (Mw). This scale emulates
the magnitude of an earthquake in terms of seismic movement, M0, that is
directly related to the amount of energy released in the earthquake. Mw is
expressed as

Mw = log10 (M0/1.5) – 10.7 16.11

where M0 = µ AsD, µ = parameter characterizing the rigidity of the material
surrounding the causative fault, As = slipping area and D = distance of slip.

In the light of the above discussions, an application of different scales has
been suggested for measuring shallow earthquakes of various magnitudes.

Table 16.7 Frequency of earthquakes in the world

Description Richter magnitude Frequency

Great 8.7 1
Major 7–7.9 18
Destruction large 6–6.9 120
Moderate damage 5–5.9 1000
Minor damage 4–4.9 6000
Generally felt 3–3.9 49 000
Potentially perceptible 2–2.9 300 000
Imperceptible <2 600 000+
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MD for magnitudes < 3 16.12

ML or Mb 3< M < 7 16.13

Ms 5 < M < 7.5 16.14

Mw for all magnitudes 16.15

Table 16.8 shows some of the major earthquakes in the world 1971–2008.
Out of various earthquakes occurring in the world, the circum-pacific

seismic zone is the principal zone which accounts for 80% of all earthquakes

Table 16.8 Chronology of earthquakes

Dates Region Deaths Magnitude

9 February 1971 Soucali 65 6.5
23 December 1972 Nicharag 5000 6.2
4 February 1976 Gautame 22 000 7.9
24 July 1977 Tangshan, China 250 000+ 7.6
4 March 1980 Romania 2000 7.2
10 October 1980 Algeria 35 000 7.7
23 November 1981 Italy 3000 7.2
11 June 1982 Iran 3000 6.9
13 December 1982 Yemen 28 000 6
13 October 1985 Turkey 1342 6
19 September 1989 Mexico 10 000 7
7 December 1989 Armeria 25 000 6.9
17 October 1989 California 67 7.1
20 June 1990 Iran 40 000 7.7
16 July 1990 Philippines 1200 6.8
1 February 1991 Pakistan, Afghanistan 1200 6.8
20 October 1991 Uttarkashi India 1600 6.1
12 December 1992 Indonesia 2200 6.1
30 September 1993 Lattur, India 22 000 6.4
20 May 1995 Neftegorse, Russia 1989 7.5
10 May 1997 Iran 2000 7.1
4 February 1998 Afghanistan 4500 6.1
30 May 1998 Afghanistan 3000 7.0
25 January 1999 Colombia 4500 6.2
17 August 1999 Turkey 12 000 7.8
26 January 2001 Gujarat, India 50 000 7.9
13 January 2001 El Salvador 844 7.7
25 March 2002 Hindu Kush, Aeguri, 1000 6.1

Afghanistan
26 December 2003 South-east Iran 26 200 6.6
21 May 2003 Northern Algeria 2266 6.8
24 February 2004 Near North-east of Morocco 628 6.4
26 December 2004 West coast of Northern 300 000 dead 9.3

Sumatra, Indonesia & missing
8 October 2005 Kashmir, Pakistan border 75 000+ 7.6
27 May 2006 Indonesia, Java 6000 6.3
12 May 2008 Sichuan Province, China 64 200 8.0
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and most tectonic activity. At some places chains of volcanoes cause a ‘circle
of fire’; Alpide zone accounts for 15% of earthquakes and the remaining are
in the narrow zone of Atlantic and Indian Ocean.

16.10 Basic difference: magnitude versus intensity

The magnitude of an earthquake is a measure of its size. For instance, one
can measure the size of an earthquake by the amount of strain energy released
by the fault rupture. This means that the magnitude of an earthquake is a
single value for a given earthquake; on the other hand, intensity is an indicator
of the severity of shaking generated at a given location – clearly, the severity
of shaking is much higher near the epicentre than further away. Thus, during
the same earthquake of a certain magnitude, different locations experience
different levels of intensity.

To elaborate these distinctions consider the analogy of a boiler. The
temperature at a location near the boiler is higher than that further away from
it (see Fig. 16.10). When the boiler releases 100 watts of energy, the temperature
at a location depends on the energy of the boiler and its distance from the
boiler. Hence the wattage of the boiler is like the magnitude of an earthquake
and the temperature at a location is like the intensity of shaking at that
location.

16.11 Earthquake ground motion

Strong earthquake ground motion must be recorded for the purpose of seismic
engineering. The ground motion is usually recorded with strong motion
accelerographs placed at various locations. The acceleration record of a
strong earthquake usually consists of two horizontal components and one

80°
70° 60°

50°

16.10 Boiler under heat.
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vertical component. Generally, the two horizontal components are of equal
magnitude and the vertical component is somewhat smaller. The accelerograph
record frequently includes instrumentation errors, owing to frequency
characteristics of the accelerograph and other inherent features that must be
corrected by filtering and other procedures. The corrected accelerogram is
then integrated to obtain the velocity and displacement histories of ground
motion. The records of Northridge, Helena and El Centro earthquakes are
shown in Fig. 16.11. The Northridge accelerogram is extremely irregular and
complex and is a typical earthquake accelerogram recorded on firm ground.
On the other hand, on the surface of the soft strata the earthquake ground
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motion assumes an almost harmonic nature, resulting from filtering of the
seismic waves as they travel through soft strata.

Earthquake accelerograms are thus complex and can vary considerably
from one another. They are significantly affected by local site conditions,
distance from the causative fault, and the transmission path of the seismic
waves. Newmark and Rossenblueth classified earthquake ground motion
into four groups in accordance with their surface ground motion characteristics:

1. Single shock type. This occurs only at close proximity with epicentre on
firm strata and for shallow earthquakes. Port Hueneme earthquake is an
example for this.

2. A moderately long, extremely irregular motion. This is associated with
an intermediate focal depth and occurs only on firm ground. It is typical
of earthquakes originating in the circum-Pacific belt. The NS component
of 1940 E1 Centro earthquake is indicative of this type.

3. A long ground motion exhibiting pronounced prevailing periods of
vibration. Motions of the type are recorded at layers of soft strata, through
which seismic waves have been filtered and subjected to multiple
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reflections at the layer boundaries. The 1964 Mexico City earthquake
exemplifies this behaviour.

4. A ground motion involving large-scale permanent deformation of the
ground. These types of earthquake may entail landslides or soil liquefaction.
The Alaska and Niigata earthquakes of 1964 characterize this type of
earthquake.

From the examinations of the ground motions shown in Fig 16.11 three
characteristics of ground motions are important: (1) peak of maximum ground
motion; (2) duration of ground motion; and (3) the frequency content. The
structural response is affected by each of these factors. Peak ground motion,
primarily peak ground acceleration (PGA), influences the vibration amplitude,
and has been employed to scale earthquake design spectra and acceleration
time forces. The severity of ground shaking is significantly influenced by the
duration of ground motion. For example, an earthquake with high peak
acceleration poses a high hazard potential, but if it is sustained for only a
short period of time it is unlikely to inflict significant damage to many types
of structures. Conversely an earthquake with moderate peak acceleration
and a long duration can build up damaging motion in certain types of structure.
Finally, ground motion amplification to a structure is more likely to occur
and the frequency content of ground motion is in close proximity to the
natural frequency of the structure.

A correlation equation for peak ground acceleration can be given in terms
of Richter magnitude M as

Log10 PGA = –2.1 + 0.81M–0.027M2 16.16

Table 16.9 shows peak ground acceleration and time duration for various
Richter magnitudes.

Equation 16.16 is site dependent. Although PGA decreases with distance
from the causative fault, the rate of decrease is relatively small, over a
distance comparable to the vertical dimensions of the shipped fault. The
values given in Table 16.9 are conservatively high, and most actual earthquakes
exhibit somewhat small values of PGA.

Table 16.9 PGA and duration of strong phase shaking

Magnitude PGA (g) Duration (sec)

5.0 0.09 2
5.5 0.15 6
6.0 0.22 12
6.5 0.29 18
7.0 0.37 24
7.5 0.45 30
8.0 0.5 34
8.5 0.5 37
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16.12 Earthquake classification

Earthquakes can be classified according to location, epicentral distance, focal
depth and magnitude:

1. Based on location
(i) Interplate
(ii) Intraplate

2. Based on epicentral distance
(i) Local earthquake < 1 degrees
(ii) Regional earthquake 1–10 degrees
(iii) Teleseismic earthquake >10 degrees

3. Based on focal depth
(i) Shallow depth 0–70 km
(ii) Intermediate depth 71–300 km
(iii) Deep earthquake > 300 km

4. Based on magnitude
(i) Micro earthquake M < 3
(ii) Intermediate earthquake 3–4
(iii) Moderate earthquake 5–5.9
(iv) Strong earthquake 6–6.9
(v) Major earthquake 7–7.9
(vi) Great earthquake >8

16.13 Asian tsunami disaster

The main tremor occurred at 7.58 local time on 26 December 2004 (00.58
GMT) of magnitude 9 ‘mega thrust’ at Aceh, Sumatra. The scale of slippage
was quite heavy, 30 km, from seafloor at 1200 km a stretch of Indian Plate
thrust up to 20 m under the Burmese plate, raising the seafloor by several
metres as shown in Fig. 16.12. The Indian Plate and Burmese Plate rubbed
each other and about 1200 km of the latter was snapped off. Historically this
was the fourth biggest earthquake in the last century. The others are given in
Table 16.10.

The epicentre of this earthquake lay 250 km south-east of Banda Aceh,
Indonesia and 1600 km north-west of Jakarta. The energy released was

16.12 Rubbing of plates.

Indian Plate

Burmese Plate
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equivalent to 475 000 kilotonnes of TNT or 23 000 Hiroshima-sized atom
bombs. The earthquake caused a tsunami. Tsunami is a Japanese word, ‘Tsu’
meaning harbour and ‘nami’ meaning wave. Some people prefer to use the
term tidal wave, but this is a misnomer. Scientists call this a seismic sea
wave. Seismic sea waves are due to an earthquake but tsunami waves may be
due to non-seismic activity such as a landslide or meteorite impact. Wind
waves have a period of 10 s with a wavelength of 150 m, and shallow tsunami
water waves have a wavelength of 100 km and T = 1 hour. A wave behaves
as a shallow water wave if the ratio between water depth and wavelength
gets very small.

v gh= 16.17

where h = 1000 m and v = 200 m/s or 700 km/h.
The rate at which a wave loses its energy is inversely related to its

wavelength. As a tsunami leaves the deep water of the open ocean, it travels
into shallow water near the coast it transforms. As water depth decreases, the
tsunami slows and because of the shoaling effect, the tsunami magnitude
grows several metres in height. Thirteen countries, including Indonesia, Sri
Lanka, India, Thailand, Myanmar, Malaysia, Maldives and Sumatra were
affected. It is estimated that more than 250 000 people died and many were
injured. Table. 16.11 gives the equivalent tsunami magnitude corresponding
to the earthquake magnitude.

16.13.1Unfamiliarity with warning signs

In the minutes preceding a tsunami strike, the sea often recedes temporarily
from the coast. The total energy released = 2.0 exajoules (12 × 1018 joules),
enough to boil 150 litres of water for every person on Earth. The 2004
tsunami resulted in an oscillation of the Earth’s surface of about 20–30 cm.
This was felt across the planet up to Oklahoma. It has shortened the day by
2.68 microseconds. The smaller islands of Sumatra have moved by 20 m. A
tsunami in deep water waves forms only a small hump that is barely noticeable
and harmless, which travels at a very high speed 500–1000 km/h. In shallow

Table 16.10 Five biggest earthquakes

Place Year Magnitude

Chile 1960 9.5
Alaska 1964 9.2
Alaska 1957 9.1
Kamachatka 1952 9.0
Indonesia 2004 9.0
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water near the coastline a tsunami slows down to only 10 km/h. In doing so,
it forms large destructive waves. Because the 1200 km of the fault line affected
by the earthquake were in nearly north–south direction, the greatest strength
of tsunami waves were in east–west direction. The tsunami reached the
Indian Ocean in 2 hours. In South Africa, which is 8500 km from Sumatra,
a 1.5 m high tide surged on shore after 16 hours.

16.14 Damage mechanisms due to earthquakes

• Very large inertial forces develop in a structure due to earthquake ground
motion and could cause collapse.

• Earthquakes instigate landslides and other surficial movements.
• They induce soil consolidation or liquefaction beneath the foundation.
• Sudden fault displacement in close proximity to a structure is hazardous

to pipelines, canals and dams.
• Tsunamis are seismically induced water waves that may threaten coastal

regions.
• Earthquakes may induce fire and explosions.

16.15 Summary

Ground shaking poses the most potentially hazardous damage mechanism to
structures and its effects may be widespread. Hence the response of structures
to earthquake ground motion should be addressed.

16.16 Web links

URL
http://www.atccouncil.org
http://www.bssconline.org

Table 16.11 Tsunami magnitude and earthquake
magnitude

Earthquake Tsunami Maximum
magnitude magnitude height (m)

6 –2 <0.3
6.5 –1 0.5–0.75
7 0 1–1.5
7.5 1 2–3
8 2 4–6
8.25 3 8–12
8.5 4 10–24
8.75 5 >32
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http://en.wikipedia.org/wiki
http://www.seismic.ca.gov
http://www.cosmoseq.org
http://www.eeri.org
http://www.eqnet.org
http://www.fema.gov
http://www.iccsage.org
http://mcwwr.buffalo.edu
http://www.nist.gov
http://peer.berkeley.edu
http://www.seaint.org
http://www.johnmartin.org
http://www.nisee.berkeley.edu
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17
Earthquake response spectra

Abstract: In this chapter, earthquake excitation problems are treated as base
excitation problems. In many engineering applications, one requires
maximum absolute quantities experienced by the structure during the
earthquake of interest. In that respect, the response spectrum method is
ideally suited to designing structures against earthquake motion. It is shown
how the tripartite plot is useful for reading all the spectral quantities for a
given period. The construction of a Newmark–Hall design spectrum is
illustrated and the distinction is made between design and response spectra.
In all the codes, site-specific response spectra are recommended. Finally
inelastic design spectra are also discussed.

Key words: accelerograph, response spectrum, spectral quantity, pseudo
spectral quantity, ductility, time history.

17.1 Introduction

The earthquake response problem is essentially a base excitation problem
similar to the one discussed in the earlier chapter for single-degree-of-freedom
(SDOF) systems. The equation of motion is written as

m u c u k ut˙̇ ˙+ + = 0 17.1a

or

˙̇ ˙u c
m

u k
m

ut = − − 17.1b

˙̇ ˙ ˙̇u u u un n g+ + = −2 2ρω ω 17.1c

Thus for any arbitrary acceleration of the supports the relative displacement
of the mass can be computed using the Duhamel integral as

u t t
r

t

g n
n( ) = –1

1 –
( ) e sin 1 – ( – ) d

2 0

– ( – ) 2

ω ρ
τ ω ρ τ τρω τ τ∫ ˙̇u

17.2

From Eq. 17.2 it is seen that the relative response of the structure is characterized
by its natural frequency, damping factor and the nature of base excitation.

Generally we use undamped natural frequency instead of damped frequency
and the negative sign is ignored (the sense of response has no significance in
earthquake analysis)
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u t R t
n

( ) = 1 ( )ω 17.3

where,

R t u tg
t

n
n( ) ( ) e sin 1 – ( ) d( ) 2= −∫ − −˙̇ τ ω ρ τ τρ ω τ 17.4

v(t) = R(t) is called the earthquake response integral. The relative displacement
is important since it is required to calculate base shear.

V(t) = shear = ku(t) 17.5

It is noticed that base shear represented in Eq. 17.5 is equivalent to restoring
force Fs(t). The exact relative velocity is given by

˙ ˙̇u t u tg
t

n
n( ) ( ) e cos 1 ( ) d( ) 2= − − −∫ − −τ ω ρ τ τρω τ

 +
−

− −∫ − −ρ
ρ

τ ω ρ τ τρω τ

1
( ) e sin 1 ( ) d

2

( ) 2˙̇u tg
t

n
n 17.6

The absolute total acceleration of the mass is obtained by adding relative
acceleration with ground acceleration as

˙̇ ˙̇u t u tn
g

t
n

n( )
(1 2 )

1
( ) e sin 1 ( ) d

2

2

( ) 2=
−
−

− −∫ − −ω ρ
ρ

τ ω ρ τ τρω τ

  + − −∫ − −2 ( ) e cos 1 ( ) d( ) 2ρω τ ω ρ τ τρω τ
n g

t
nu tn˙̇ 17.7a

or it can be obtained from Eq. 17.1c as

˙̇ ˙̇u u ut n n= − −2 2ρω ω 17.7b

The total acceleration has many important applications. It can most easily be
measured experimentally during a strong earthquake. When an accelerograph
is located in a structure, it records in close approximation the total acceleration
at that point. From this we can calculate inertia force

m t˙̇ut ( ) = inertia force 17.8

Equations 17.2, 17.6 and 17.7 represent the earthquake time history response
for an SDOF system. Once we know base shear V (effective earthquake
force), we can design a system.
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17.2 Earthquake response spectra

It has been seen from earlier chapters that the evaluation of dynamic response
(displacement, velocity and acceleration) at every instant of time during an
earthquake requires significant computational effort even for relatively simple
structural systems. However, for many engineering applications we require
maximum absolute quantities experienced by the structure during the
earthquake. These are commonly referred to as spectral displacement Sd,
spectral velocity Sv and spectral acceleration Sa, given by

sd = | u(t) |max 17.9a

s u tv = ( ) max| |˙ 17.9b

s u ta t= ( ) max| |˙̇ 17.9c

where | u(t) |max, u̇ t u tt( ) , ( )max max| | |  are the maximum absolute values of
relative displacement, relative velocity and total acceleration determined
from Eq. 17.2, 17.6 and 17.7. However, these quantities are generally
determined from numerical integration techniques.

Plots of Sd, Sv, Sa versus undamped natural period of vibration for various
damping ratios are called earthquake response spectra. We can construct an
earthquake response spectrum, say, for Northridge earthquake (see Fig 17.1a)
by considering a series of oscillators (inverted pendulums) as shown in Fig.
17.1b with varying periods of vibration attached with movable base. The
base is subjected to same ground motion as that of Northridge earthquake.
The maximum response for each pendulum (Sd, Sv, Sa) is plotted against the
natural period for a particular value of damping. Such curves are the response
spectra and are very useful for design. Figure 17.2 shows response spectra
for relative displacement, relative velocity and total acceleration for the
Northridge earthquake.

These quantities are generally determined by numerical evaluation using
any of the numerical techniques developed in Chapter 7. Plots of Sd, Sv and
Sa versus undamped natural period of vibration or natural frequency for
various damping factors make up the earthquake response spectrum. The
MATLAB program for drawing the spectra in Fig. 17.2 using Wilson’s
recurrence formulae is shown below.

17.3 Program 17.1: MATLAB program for drawing

spectra for any specified earthquake

%**********************************************************
% WILSON’S RECURRENCE FORMULA TO DRAW SPECTRA FOR
ANY EARTHQUAKE MOTION
%**********************************************************
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clc;close all;
%give initial displacement and initial velocity
u(1)=0;
v(1)=0;
%tt=50 sec n=2500 for nridge
%tt=30 n=1500 for elcentro ns
tt=50.0;
n=2500;
n1=n+1;
dt=tt/n;
mass=1;
%**********************************************************
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17.1 (a) Northridge earthquake data; (b) family of SDOF oscillators.
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% EARTHQUAKE DATA FILE FOR NORTH-RIDGE EQ IS READ FROM
EXCEL DATA FILE
% DATA FILE CONSISTS OF TIME AND THE CORRESPONDING A/G
VALUES
% DATA FILE CHOPRA CONSISTS OF ELCENTRO NS DATA
% EQDATA CONTAINS NORTHRIDGE DATA
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17.2 (a) Response spectrum for spectral displacement; (b) response
for spectral velocity; (c) response for spectral acceleration (dam =
damping).
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%**********************************************************
de=xlsread(‘eqdata’);
%de=xlsread(‘chopra’)
for i=1:n1;
ug(i)=de(i,2);
ug(i)=-ug(i)*9.81;
p(i)=ug(i)*mass;
end;
%define damping ratios for which response is required
rho=[0 0.02 0.05 .1 0.2];
for jj=1:5

r=rho(jj);
mass=1;
for ii=1:200

tn=0.05*ii;
wn=2.0*pi/tn;
ss(ii)=tn;

k=mass*wn^2;
c=2.0*r*sqrt(k*mass);
wd=wn*sqrt(1-r^2);
a=exp(-r*wn*dt)*(r*sin(wd*dt)/sqrt(1-r^2)+cos(wd*dt));
b=exp(-r*wn*dt)*(sin(wd*dt))/wd;
c2=((1-2*r^2)/(wd*dt)-r/sqrt(1-r^2))*sin(wd*dt)-(1+2*r/(wn*dt))*cos(wd*dt);
c=(1/k)*(2*r/(wn*dt)+exp(-r*wn*dt)*(c2));
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17.2 Continued
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d 2 = e x p ( - r * w n * d t ) * ( ( 2 . 0 * r ^ 2 - 1 ) / ( w d * d t ) * s i n ( w d * d t ) + 2 . 0 * r /
(wn*dt)*cos(wd*dt));
d=(1/k)*(1-2.0*r/(wn*dt)+d2);
ad=-exp(-r*wn*dt)*wn*sin(wd*dt)/(sqrt(1-r^2));
bd=exp(-r*wn*dt)*(cos(wd*dt)-r*sin(wd*dt)/sqrt(1-r^2));
c 1 = e x p ( - r * w n * d t ) * ( ( w n / s q r t ( 1 - r ^ 2 ) + r / ( d t * s q r t ( 1 -
r^2)))*sin(wd*dt)+cos(wd*dt)/dt);
cd=(1/k)*(-1/dt+c1);
d1=exp(-r*wn*dt)*(r*sin(wd*dt)/sqrt(1-r^2)+cos(wd*dt));
dd=(1/(k*dt))*(1-d1);
for m=2:n1

u(m)=a*u(m-1)+b*v(m-1)+c*p(m-1)+d*p(m);
v(m)=ad*u(m-1)+bd*v(m-1)+cd*p(m-1)+dd*p(m);
ta(m)=(-c*v(m)-k*u(m))/mass;

end
dmf(ii,jj)=max(abs(u));
vmf(ii,jj)=max(abs(v));
amf(ii,jj)=max(abs(ta));
end
end
for m=1:n1

s(m)=(m-1)*dt;
end
figure(1);
plot(s,ug/9.81,‘K’);
xlabel(‘ time (t) in seconds’);
ylabel(‘ ground acceleration/g’);
title(‘ North Ridge EQ data’);
figure(2);
for ii=1:5

plot(ss,dmf(:,ii),‘K’);
hold on

end
xlabel(‘ period T in seconds’);
ylabel(‘ Spectral displacement Sd in m’);
title(‘ Response spectrum for Sd North Ridge EQ)’);
legend(‘ dam=0’,‘dam=0.02’,‘dam=0.05’, ‘dam=0.1’,‘dam=0.2’)
figure(3);
for ii=1:5
plot(ss,vmf(:,ii),‘K’);
hold on
end
xlabel(‘ period T in seconds’);
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ylabel(‘ Spectral velocity Sv in m/sec’);
title(‘ Response spectrum for Sv (North Ridge EQ)’);
legend(‘ dam=0’,‘dam=0.02’,‘dam=0.05’, ‘dam=0.1’,‘dam=0.2’)
figure(4);
for ii=1:5
plot(ss,amf(:,ii)/9.81,‘K’);
hold on
end
xlabel(‘ period T in seconds’);
ylabel(‘ Spectral total acceleration Sa/g’);
title(‘ Response spectrum for Sa (total) (North Ridge EQ)’);
legend(‘ dam=0’,‘dam=0.02’,‘dam=0.05’, ‘dam=0.1’,‘dam=0.2’)
fid=fopen(‘sv.out’,‘w’)

for jj=1:200
fprintf(fid,‘ %6.3f %6.2f %6.2f %6.2f %6.2f %6.2f\n’...
,ss(jj),vmf(jj,1),vmf(jj,2),vmf(jj,3),vmf(jj,4),vmf(jj,5));

end
fclose(fid)

Example 17.1
An industrial building is shown in Fig. 17.3. Idealize the structure as an
SDOF system. Assume the structure acts as a braced frame in the EW direction
(having a total of six braced bays) and unbraced shear frame (with column
base) pinned in the NS direction. Assume all columns bend about the major
axis to the NS direction.

The vertical cross-bracings in the EW direction are 25.4 mm diameter
steel rods. The dead weight of the structure is 1291.95 kN which is concentrated
at the base of the roof trusses. Moment of inertia of columns 8.6992 ×
107 mm4. The height of the building may be assumed as 4.2672 m and the
damping is 5% of critical damping. Consider Northridge earthquake.

(a) Determine the natural period for the NS and EW directions.
(b) Conduct a time history analysis of the structure in both directions. Use

the NS component of the 17 January, 1994 Northridge earthquake shown
in Fig. 17.1a as input.

Solution
(a) Natural period. Mass of the structure

M = 1291.95 10
9.81

3×

= 131 697.2 kg

Stiffness in NS direction 24 columns
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(b)

1.524m

4.2672m

(c)

NS

h Ev

U(f)

m(t)

5 × 7.62m
(a)

3 
× 

6.
09

6
m

17.3 (a) Plan of an industrial building; (b) N–S elevation of an
industrial building; (c) E–W elevation of an industrial building; (d)
column moments; (e) axial force in bracing rod.

(d) (e)

U(f)

T(f)

I
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K
h

= 24 3 EI3
×

= 24 3 200 10 8.6992 10
10 4.2672

9 7

12 3
× × × × ×

×
= 16 121 773 N/m

Stiffness in EW direction

K AE
L

= 6 cos2 θ

A = 25.4
4

= 506.70 mm
2

2π ×

θ = tan 4.2676
7.62

= 29.24–1 °

L = 8.73

K (EW) = 6 506.7 200 10
10 8.73

cos 29.24
9

6
2× × ×

×

= 53 030 983.8 N/m

Natural frequency in NS direction = k
m

=
16121773
131697.2

= 11.06 rad/s

Period in NS = 2
11.06

= 0.567 sT π

Natural frequency in EW = =
53 030 983.8

131697.2
= 20 rad/sk

m

Natural period in EW direction = 0.313 s

(b) Time history response. The parameters in the time history response are
relative displacement, u(t), relative velocity is u̇ t( ) , absolute total acceleration
is ˙̇u tt ( ) . Also of interest of base shear V(t), the bending moment in columns
M(t) and axial force in the steel rods T(t).

The equation of moment in NS direction

˙̇ ˙ ˙̇u u u u tg+ × × + = −2 0.05 11.06 11.06 ( )2

i.e. ˙̇ ˙ ˙̇u u u u tg+ + = −1.106 122.32 ( )

�� �� �� �� �� ��



Earthquake response spectra 615

Equation of moment in EW direction

˙̇ ˙ ˙̇u u u u tg+ × × + = −2 0.05 20 20 ( )2

i.e. ˙̇ ˙ ˙̇u u u u tg+ + = −2 400 ( )

The value can be obtained for the Northridge earthquake by integrating
above two expressions.

As an example. The response displacement, velocity and total acceleration
are shown in Fig. 17.4 and Table 17.1 gives maximum response in NS
direction.
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17.4 (a) Relative displacement response; (b) relative velocity
response; (c) total acceleration response.
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Example 17.2
Construct response spectra for the NS component of E1 Centro earthquake
(see Fig. 17.5a). Consider damping factors 0, 0.02, 0.05, 0.1 and 0.2.

Solution
The spectral displacement Sd, spectral velocity Sv and spectral acceleration
Sa are determined from Eq. 17.9a, b and c respectively. The responses are
evaluated numerically by direct integration of the equation

˙̇ ˙ ˙̇u u u un n g+ + = −2 2ρω ω 17.10

for ρ = 0.02, 0.05 and 0.1 from which maximum responses are determined.
The response spectral Sd, Sv and Sa are presented in Fig. 17.5b, c and d due
to the El Centro earthquake (NS) shown in Fig. 17.5a.

Let us define pseudo-spectral velocity and pseudo spectral acceleration as
Spv, Spa as Spa = ω n

2  Sd = ωn Sv; Spv = ωn Sd. Usually the parameters Spv and
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17.4 Continued

Table 17.1 Maximum response in NS direction

Physical quantity Notation Value

Maximum relative displacement umax 0.045 m
Maximum relative velocity     ̇umax 0.5 m/s
Maximum absolute total acceleration üt(max) 5.8 m/s2

Maximum base shear VB(max) 725 kN
Maximum moment in columns 725 × 4.2672/24 128.8 kN/m
Maximum bending stress in columns M/z 128.8/z

�� �� �� �� �� ��



Earthquake response spectra 617

Spa have certain characteristics that are of practical interest. The pseudo-
spectral velocity Spv is close to spectral velocity Sv for short period structure.
The comparison between Spv and Sv for the NS component of the El Centro
earthquake for ς = 0.05 is illustrated in Fig. 17.6. For zero damping, the
pseudo-spectral acceleration Spa is identical to spectral acceleration. However,
for damping other than zero, the two are slightly different. Nevertheless for
damping levels encountered in most engineering applications, the two can be
considered practically equal.
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17.5 (a) El Centro NS earthquake; (b) displacement response
spectrum; (c) velocity response spectrum; (d) total acceleration
response spectrum.
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S Spa n d= ω 2 17.11a

Spv = ωnSd 17.11b

Hence the spectral relationship significantly expedites the construction of
earthquake response spectra. Evaluation of spectra displacement sd after
numerical integration to obtain time history response, the corresponding
pseudo spectral velocity Spv and pseudo spectral acceleration Spa can readily
be established and we see later how sd, spv and Spa can then all be plotted on
a four-way logarithmic paper.
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Then for a given frequency or for a given period all the spectral quantities
can be read simultaneously for the same tripartite plot. A tripartite plot of sd,
spvr, Spa for the NS component of the El Centro earthquake for various damping
factors is presented in Fig. 17.7.
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17.6 (a) Comparison of Sv and Spv (ρ = 0.05) (El Centro NS
earthquake); (b) comparison of Sa and Spa (ρ = 0.05) (El Centro NS
earthquake).
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17.4 Program 17.2: MATLAB program to draw

tripartite plot

%**********************************************************
% to draw elastic design spectra from the earthquake data
% read the response spectrum values in this program
%**********************************************************
for k=.00001:.00001:.0001
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=.0001:.0001:.001
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)

10–2 10–1 100 101 102

Period in sec

17.7 Tripartite plot for NS component of El Centro earthquake.
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y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=.001:.001:.01
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
xlabel(‘ period in secs’)
ylabel(‘ spectral velocity sv in cm/sec’)
for k=.01:.01:.1
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=.1:.1:1
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=1:1:10
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
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loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=10:10:100
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=100:100:1000
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=1000:1000:10000
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
end
axis([0.01 100 0.02 500])
% d=xlsread(‘svdata’);
sv=‘sv.out’
d=load(sv)
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plot(d(:,1),100*d(:,2),‘k’)
plot(d(:,1),100*d(:,3),‘k’)
plot(d(:,1),100*d(:,4),‘k’)
plot(d(:,1),100*d(:,5),‘k’)
plot(d(:,1),100*d(:,6),‘k’)
text(0.2,0.02,‘0.001’);
text(0.6,0.1,‘0.01’);
text(2,0.3,‘0.1’);
text(7,1,‘1’);
text(20,3,‘10’);
text(80,10,‘100’)
text(20,1,‘sd in cm’)
xlabel(‘ period in sec’)
ylabel(‘ sv in cm/sec’)
text(0.01,200,‘100’)
text(0.01,20,‘10’)
text(0.01,2,‘1’)
text(0.02,0.4,‘0.1’)
text(0.07,0.1,‘0.01’)
text(.02,0.8,’sa/g’)
gtext(‘ no damping’)
gtext(‘ damping=2%’)
gtext(‘ damping=5%’)
gtext(‘ damping=10%’)
gtext(‘ damping=20%’)

17.5 Importance of response quantities

For structural engineers, the deformation of the system or relative displacement
with respect to the ground is of great interest. Internal forces, base shear and
moments are usually related to displacement. Knowing the total displacement
of the mass ut(t) would be useful in providing a separation between adjacent
buildings to prevent their pounding against each other during an earthquake.
Pounding is the main cause of damage to several buildings during almost
every earthquake. Similarly, the total acceleration is obtained by supporting
sensitive equipment and the motion imparted to the equipment can be
determined.

17.5.1 Response history

For a given earthquake ground motion ˙̇u tg ( ) , the deformation depends on
natural period of vibration and damping ratio. Figure 17.8 shows the
deformation response of three different systems due to electro ground motion.
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The damping factor is 2%. The only difference among the three systems is
the natural periods. It is also seen that the time required for a SDOF systems
to complete a cycle of vibration when subjected to earthquake ground motion
is also equal to the natural period of displacement. Peak displacement is
shown in each case

The longer the natural period, the greater the peak deformation. Figure
17.9 shows the deformation response of three systems to the same ground
motion. Vibration period Tn is the same for all but damping is different.
From Fig. 17.9 we can observe that systems with more damping respond less
than lightly damped systems because the natural periods of three systems are
same. Once U(t) is known the base shear V may be calculated (see Fig. 17.10).

Fs(t) = Vb(t) = K U(t) 17.12

Equivalent static force is introduced which is a central concept in earthquake
response of the structure. At any instant of time t, the force Fs is the static
(slowly) applied force that will produce deformation U(t)

FS t m U tn( ) = [ ( )]2ω  = mA (t) 17.13a

where

A t U tn( ) ( )2= ω 17.13b

Deformation
in mm

Deformation
in response

Tn = 0.5sec s = 0.02

67mm

Tn = 1sec s = 0.02

150mm

Tn = 2sec s = 0.02

188 mm

17.8 Deformation response for various periods (damping = 0.02).
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Deformation
in mm

Tn = 2sec
s = 0

231.14mm

Tn = 2 sec s = 0.02

188mm

Tn = 2 sec
s = 0.05

136.39mm

T – sec

17.9 Deformation response for various damping conditions
(Tn = 2s).

fs(t)

V Column

17.10 Calculation of shear from displacement.
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Observe that the equivalent static force is m times A(t), the pseudo-acceleration,
not m times total acceleration.

The pseudo-acceleration response can be calculated from the deformation
response for the three systems Tn = 0.5: wn = 12.56: A for (Tn = 0.5) is
calculated as (see Fig. 17.8)

= × =12.56 67
1000

1.072 g

For Tn = 1 s A = 0.603g; for Tn = 2 s, A = 0.188g. The pseudo-acceleration
graphs are presented in Fig. 17.11.

Thus a static analysis of structure would be required at each time when
the response is desired. The base shear and base moment are calculated as

Vb(t) = fs(t); Mb(t) = hfs(t)
or

Vb(t) = mA(t); Mb(t) = Vb(t)h 17.14

17.6 Response spectrum concept

G W Housner was instrumental in the widespread acceptance of the concept
of earthquake response spectrum introduced by M A Biot in 1932. This is a

Tn = 0.5s s = 0.02

1.079g

Tn = 1s s = 0.02

0.603g

Tn = 2s s = 0.02

0.188 g

17.11 Acceleration response for various periods (damping = 0.02).

�� �� �� �� �� ��



Earthquake response spectra 627

practical way of characterizing the ground motions and their effects with
structure. It provides a convenient means of summarizing peak response of
all possible SDOF systems to a particular component of ground motion. It
also provides a practical approach to apply knowledge of dynamics to design
of structure and development of lateral force requirements in loads. We have
already seen that

Spectral displacement = Sd 17.15a

= | u(t) |max

Spectral velocity = Sv

= ( ) max| |u̇ t 17.15b

Spectral acceleration = Sa

= ( ) max| |˙̇u t 17.15c

In typical engineering structure the percentage of critical damping is relatively
small. It is approximately 2–8% for steel buildings and 5–10% for concrete

structures. Therefore 1 12− =ρ  and the terms of order 2 and higher in Eq.
17.2, 17.6 and 17.7 may be neglected. Also of ‘cosine’ term in Eq. 17.6 is
replaced by sine term then U t U t U t( ), ( ), ( )˙ ˙̇  can be written as

u t u t
n

g
t

n
n( ) 1 ( ) e sin ( ) d( )= −∫ − −

ω τ ω τ τρω τ˙̇ 17.16a

˙ ˙̇u t u tg
t

n
n( ) ( ) e sin ( ) d( )= −∫ − −τ ω τ τρω τ 17.16b

˙̇ ˙̇u t u tg
t

n
n( ) ( ) e sin ( ) d( )= −∫ − −ω τ ω τ τρω τ

n 17.16c

The following approximate relationships exist between spectra quantities:

D
S

d
v

n
≅ ω 17.17a

Sa ≅ ωnSv 17.17b

For engineering applications the following approximations are generally
employed:

Spv = ωnSd 17.18a

S Spa n d= 2ω 17.18b

where Spv and Spa are called pseudo-velocity and pseudo-acceleration
respectively.
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One can plot deformation with respect to natural period for the El Centro
earthquake as shown in Fig. 17.12. The pseudo-velocity and pseudo-
acceleration are also plotted in Fig. 17.13a.

17.7 Pseudo-velocity spectrum

Consider spectral velocity related to deformation as

Sv = ωnSd 17.19a
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17.12 (a) Deformation response for El Centro earthquake (damping =
0.02); (b) deformation response for T = 0 to 2s (damping = 0.02) El
Centro earthquake.
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V = velocity = ωnD

Let peak deformation

D ≡ u0 17.19b

Then elastic force is obtained from the strain energy or kinetic energy of the mass.

= 1
2 0

2ku

= 1
2

= 1
2

2 2KD mV 17.19c
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17.13 (a) Pseudo-velocity response and (b) pseudo-acceleration
response for T = 0 to 2s (damping = 0.02) El Centro earthquake.
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The right-hand side is the kinetic energy of mass with velocity V and is
called peak pseudo-velocity.

A pseudo-spectral velocity response spectrum is a plot of V in terms of
natural period Tn.

Spv = ωSd 17.20

17.8 Pseudo-spectral acceleration

Consider a quantity A for a SDOF system

A Dn= 2ω 17.21

S Spa n pd= 2ω 17.22

Inertia force = mA = m Dnω 2

= KD

= base shear

mV V W
g

Ab= =0 17.23

since Vb0 = W(A/g).
Let A/g be called base shear coefficient or lateral force coefficient. It is

used in building codes to represent the coefficient by which structural weight
is multiplied to obtain the base shear. A is the peak pseudo-acceleration. A
pseudo-acceleration response spectrum is a plot of A as functions of Tn.

The parameters have certain characteristics that are of practical interest.
The pseudo-spectral velocity Spv is close to spectral velocity Sv for short
period structures and is almost equal to the intermediate periods but is different
for long period structures. A comparison of the NS component of the Northridge
earthquakes is made in Fig. 17.14 for spectral velocity and spectral acceleration
for ς = 0.05. For zero damping, pseudo-spectral acceleration is identical to
spectral acceleration Sa. However, for damping other than zero these two
are slightly different. Nevertheless, for damping levels encountered in
most engineering applications the two may be considered to be practically
equal.

Evaluation of spectral displacement Sd by the use of Eq. 17.9a after numerical
integration of Eq. 17.2 is to be carried out to obtain the time history response
u(t). The corresponding pseudo-spectral velocity Spv and pseudo-spectral
acceleration Spa can readily be established from Eq. 17.19 and 17.21.
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17.9 Combined deformation, velocity and

acceleration (DVA) spectrum

Each of the deformation pseudo-velocity and pseudo-acceleration response
spectra for given ground motion contains the same information, no more no
less. The three different spectra are simply different ways of presenting the
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17.14 (a) Comparison of Sv and Spv (ρ = 0.05) (Northridge NS
earthquake); (b) comparison of Sa and Spa (ρ = 0.05) (Northridge NS
earthquake) (damping = 0.05).
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same information on the structural response. Knowing one of the spectra, the
other two can be obtained by algebraic operation.

Then why do we need three spectra? Each one gives different physical
meanings. The deformation spectrum directly provides peak deformation of
the system. The pseudo-velocity spectrum gives peak strain energy stored in
the system. The pseudo-acceleration spectrum is related directly to the peak
value of the equivalent static force and base shear. For this purpose a combined
plot showing all three of the spectral quantities is especially useful. This type
of plot was developed by A S Velestos and N M Newmark in 1960 for
earthquake response.

17.10 Velestos and Newmark spectra

The relationship between pseudo-spectral acceleration, pseudo-spectral velocity
and spectral displacement may be written as (shown in Fig. 17.14)

S
S S

pa

n
pv n dω ω= = 17.24

Writing in terms of the natural period of the system

T
S

Sn
pa

pv2
=π

= 2π
T

S
n

d 17.25

Considering,

T
S

Sn
pa

pv2
=π 17.26

Taking logarithm

log Tn + log Spa – log 2π = log Spv 17.27

log Spv = log Tn + log C 17.28

The curve between log Spv and log Tn is a straight line with +45° slope for
which Spa is constant. Hence the slope of log Spa is –45°.

Similarly taking

S
T

Spv
n

d= 2π 17.29

log Spv = log Sd – log Tn + log 2π 17.30a

= –log Tn + log C 17.30b

Hence log Spv vs. log Tn line is a straight line with – ve slope of 45°. Hence
Sd line is constant at an angle of +45°.
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Once the graph paper has been constructed, the three responses of
deformation, pseudo-velocity and pseudo-acceleration of Fig. 17.15 can readily
be combined into one plot. For example V = 596.9 mm/s for Tn = 2 s is
plotted and the corresponding Sd = 189.7 mm and Spa = 0.191g is read from
the graph. The four-way plot is a complete presentation of deformation,
pseudo-velocity and pseudo-acceleration plots.

A response spectrum should cover a wide range of natural periods and
several damping values so that it provides a peak response for all possible
structures. The period range should be extended because tall buildings and
long bridges may have longer vibration periods and several damping ratios
will need to be included from 0 to 20% over a period range of 0.2 to 50 s. The
response spectrum has proved to be very useful in earthquake engineering
for all ground motions.

17.11 How the response spectrum is constructed

Assume for any earthquake ground motion record ˙̇u tg ( )  is available.

1. Numerically define the ground acceleration ˙̇u tg ( )  coordinates at every
0.02 s.

2. Select natural vibration period and damping factor ρ for a SDOF system.
3. Compute the deformation response u(t) of the SDOF system to the ground

motion ˙̇u tg ( )  by any of the numerical methods discussed in previous
chapters.

Spr = 596.9
mm/s

Spa./g

f = 0.02s
Sd

Sd

Sa

0.191g

0.5 1 2 3
T in seconds

17.15 Tripartite plot.
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4. Determine umax peak value of u(t).
5. Sd = umax; Spv = (2π/Tn) Sd; Spa = (2π/Tn)2 Sd.
6. Repeat steps 2 to 5 for a range of Tn and ρ covering all the possible

systems of engineering interest.
7. Present these results as three different spectra or all spectra on one sheet.

Example 17.3
A 4 m long vertical cantilever 100 mm internal diameter steel pipe supports
25 kN weight attached on the top as shown in Fig. 17.16a. Do = 115 mm,
Di = 100 mm, I = 3.676 × 106 mm4 E = 200 × 106 kN/m2. Determine the peak
deflection; bending stress due to El, Centro ground motion.

4m

25kN

(a)

Spa/g

0.2

Sd

127mm

1.7s

Tn(b)

17.16 (a) Vertical cantilever; (b) tripartite plot for El Centro
earthquake.
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Solution

k I
l

E= 3
3

= 3 200 10 10 3.676 10
64

6 3 –6× × × × ×

= 34.46 × 103 N/m

Total weight of the pipe (weight /m = 0.01875 kN/m) = 0.01875 × 4 = 0.075 kN
Compared with the top weight, the pipe weight is very small and can be

neglected.

W = 25 kN

= 25 000 N

m =
25000
9.81

= 2548 kg

ω n
k
m

= = 34.46 10
2548

= 3.674 rad/s
3×

Tn
n

= = =2
3.674

1.70 sπ
ω

π2

From Fig. 17.16b

Sd = 127 mm

Spa/g = 0.2

Spa = V = 508 mm/s

fs0 = mSpa = W × 0.2

= 0.2 × 25 = 5 kN

σ =
M
I

y

= 5 4 10 115
2 3.676 10

= 312 MPa
6

6
× × ×
× ×

The stress calculation exceeded the limit, hence the designer decided to
increase the size of the pipe as D0 = 220 mm; Di = 200 mm; I = 3.645 ×
107 mm4. Comment on the advantage or disadvantage of using bigger pipes.

k = 3EI/l3

= 3 2 10 3.645 10
64

8 –5× × × ×
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k = 341.71 kN/mm

m = 2548 kg

ω n = 341.71 10
2548

= 11.5 rad/s
3×

 Tn
n

= 2 = 0.546π
ω

Sd = 68.58 mm

Spa/g = 1.11

Horizontal force = 1.11 × 25 = 27.5 kN

M = 27.5 × 4 = 111 kN m

σ = 111 10 220
2 3.647 10

6

7
× ×

× ×
= 334.9 MPa

The above example points out an important difference between the response
of structures due to earthquake excitation and a fixed value of static force. In
the static case, the stress decreases by increasing the size of the member. In
the case of earthquake excitation the increase in frequency shortens the
natural period from 1.7 to 0.54 s which for this spectrum increases the inertia
force. Increase or decrease in stress depends on section modulus.

Example 17.4
A single storey reinforced concrete (RC) building (see Fig. 17.17a) is idealized
for this purpose of structural analysis as a mass-less frame supporting a dead
load (DL) of 50 kN on the beam level. The frame is 8 m wide and 4 m high.
Each column and beam have a 250 mm square section. Assuming
ρ = 5%, determine peak response of the frame due to El Centro ground
motion. In particular determine the peak lateral deflection at the beam level
and plot the diagram of bending moment at the instant of peak response.

Solution

I E= × = × = ×1
12

250 3.256 10 mm ;  30 10 kN/m4 8 4 6 2

The beam is not rigid. The stiffness of the beam has to be taken into account.

k EI
h

= 96
7 3

= 96 30 10 3.256 10
7 64

6 –4× × × ×
×

= 2092 kN/m
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ω n
k
m

=

m = =50 000
9.81

5096 kg

ω n = × =2092 10
5096

20.26 rad/s
3

Tn
n

= 2 = 2
20.26

= 0.31sπ
ω

π

ρ = 0.05 spa = 0.76g sd = 17 mm (read from spectrum)

static force = m a = 50 × 0.76 = 38 kN

Consider half of the frame due to symmetry

Stiffness of beam = 6I/L = 6/8 = 0.75 (for Nylor’s moment distribution)

250mm

4m

8m

(a)

0.75

0.25

  

–38
    9.5
–28.5

  

–47.5
 –9.5
–38

(b)

17.17 (a) Single storey RC building; (b) moment distribution for a
symmetrical structure; (c) bending moment diagram.

28.5

47.5
(c)
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Stiffness of column = I/h = 1/4 =0.25

Sway moment at top and bottom = 19 × 2 = 38 kN/m

Moment distribution for half of the frame is shown in Fig. 17.17b and the
bending moment diagram is shown in Fig. 17.17c.

Example 17.5
The frame shown in Fig. 17.18 is for use in a building to be located on
sloping ground. The beams are made much stiffer than columns and can be
assumed to be rigid. The cross-section of the columns is 250 mm square but
their lengths are 4 m and 8 m respectively. Determine the base shear in the
two columns, at the instant of peak response due to El Centro ground motion.
Assume damping as 5% of critical damping.

Solution
Since the beam is rigid, the stiffness of columns can be taken as

K
EI
hi

ci

i

=
=
Σ

1

2

3

12

= 12 30 10 3.254 10
4

6 –4

3
× × × ×

+ 12 30 10 3.254 10
8

6 –4

3
× × × ×

= 1830.9 + 229
(shorter) (longer)

= 2059.8 kN m

Mass = 5096 kg

4m

8m

17.18 Unsymmetrical frame.
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ω n
k
m

=

=
20 59800

5096
= 20 rad/s

Tn
n=

2
= 0.31s

ω
π

Sd = 17 mm

A = 0.76g

Lateral force = 50 × 0.76 = 38 kN

Force shared by two columns

Force shared by short column = 38
2059.8

1830.9× = 33.79 kN

Force shared by long column = 38 – 33.79 = 4.21 kN

The shear in columns as well as bending moment diagram are shown in Fig.
17.19.

Observe that both columns go through equal deflection. The stiffer column
carries greater force than the flexible column. Sometimes this basic principle
is not recognized in building design, leading to unanticipated damage to the
stiffer structure.

33.79kN 4.21kN

67.58 16.8 kNm

67.58

16.84 kNm

17.19 Bending moment diagram for unsymmetrical frame.
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17.12 Elastic design spectrum

Although the recorded ground acceleration and response spectra of past
earthquakes provide a basis for the rational design of structures to resist
earthquakes, they cannot be used directly in design, since the response of a
given structure to past earthquakes will invariably be different from its response
to a future earthquake. However, certain similarities exist among earthquakes
recorded under similar conditions. These characteristics have been discussed
in previous sections on response spectra. Earthquake data with common
characteristics have been averaged and ‘smoothed’ to create ‘design spectra’.

17.12.1Newmark–Hall ‘broad-banded’ designs spectrum

This spectrum is normalized to a maximum ground acceleration of 1.0g. The
maximum ground velocity is specified by 1219.2 mm/s and maximum ground
displacement is 914.4 mm. The principal regions (acceleration, velocity and
displacement) of the design spectrum are identified in which the response is
approximately a constant, amplified value. Amplification factors are then
applied to the maximum ground motion in these regions to obtain the desired
design spectrum. The procedure is as follows:

1. Plot the anticipated ground motion polygon on four-way logarithmic
paper.

2. Apply the appropriate amplification factor presented in Table 17.2 with
maximum ground motion to construct design spectrum for specific damping
values.

3. Draw the amplified displacement bound parallel to maximum ground
motion displacement.

4. Draw the amplified velocity bound parallel to maximum ground velocity.
5. Draw the amplified acceleration bound parallel to maximum ground

acceleration.

Table 17.2 Relative values of spectral amplification factors

% of critical Amplification factors
damping

Displacement Velocity Acceleration

0.0 2.5 4 6.4
0.5 2.2 3.6 5.8
1.0 2.0 3.2 5.2
2.0 1.8 2.8 4.3
5.0 1.4 1.9 2.6
7.0 1.2 1.5 1.9
10.0 1.1 1.3 1.5
20.0 1.0 1.1 1.2
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6. Below a period of 0.17 s the amplified acceleration bound approaches
the maximum ground acceleration. Draw a straight line from the
amplification acceleration bound at 0.17 s to the maximum ground
acceleration line at 0.033 s.

7. Below a period of 0.033 s the acceleration bound is the same as maximum
ground acceleration.

In general, the spectral intensities for vertical motion can be taken as
approximately two-thirds of horizontal motion when the fault positions are
horizontal. Where fault motions are expected to involve large vertical
components, the spectral intensity, vertical motion is assumed to be equal to
horizontal.

Example 17.6
Construct a Newmark–Hall design spectrum for a maximum ground
acceleration equal to that of Northridge earthquake 0.308g and for concrete
buildings.

Solution
(a) Determine maximum ground motion parameters

Maximum ground acceleration | |˙̇u t gg ( ) = 0.308

Maximum ground velocity = 1219.2 × 0.308

| |u̇ tg ( ) = 375.5mm/smax

Maximum ground displacement = 914.4 × 0.308

| Ug(t) |max = 281.63 mm

(b) Determine the amplified response parameters for p = 0.05

From table amplified Spa = 2.6 × 0.308g

= 0.801g m/s2

Amplified Spv = 1.9 × 375.5

= 713.45 mm/s

Amplified Spd = sd = 1.4 × 281.63

= 394.28 mm

(c) Construction of design spectrum
(i) Draw the maximum ground motion polygon using | |˙̇u tg ( ) ,max

| | | |u̇ t u tg g( ) , ( )max max .
(ii) Draw the amplified displacement Sd bound parallel to the maximum

ground displacement.
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(iii) Draw the amplified velocity Sv parallel to the maximum ground
velocity line. It intersects displacement bound at T1 = 3.5 s.

(iv) Draw the amplified acceleration Spa bound to maximum ground
acceleration. It intersects velocity bound at 0.55 = T2. Extend the
amplified acceleration bound downward left to the point
corresponding to T3 = 0.17.

(v) Draw the amplified acceleration bound linearly from the point
corresponding to T3 = 0.17 so that it intersects a line at T4 = 0.033 s
with maximum ground acceleration.

This spectrum is shown in Fig. 17.20.
Researchers have developed procedures to construct the design spectra.

From the ground motion parameters the recommended values for firm ground
are Ta = 1/33; Tb = 1/8; Te = 10; Tf = 33 s. The amplification factors for αa,
αv, αd for Spa, Spv, Sd were developed for two different non-accedence
probabilities 50% and 84.1% as given in Table 17.3. Newmark–Hall elastic
spectrum construction is shown in Fig. 17.21.

17.13 Program 17.3: MATLAB program for drawing

Nemark–Hall design spectra

%**********************************************************
% TO DRAW ELASTIC DESIGN NEWMARK-HALL SPECTRA
%**********************************************************

a n
 S pc

an Spv

a
n  S

pd

Max. ground
acceleration

Damping

T (s)
0.033 T3 = 0.17 T2 = 0.55 T1 = 3.5

17.20 Construction of design spectrum.
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%give ip=1 for 50% mean and ip=2 for 84.1% median
ip=1
%**********************************************************
c=[3.21 4.38;2.31 3.38;1.82 2.73];
d=[-.68 -1.04;-.41 -0.67;-.27 -.45];
%**********************************************************
% give damping value rho
%**********************************************************
rho=5
%**********************************************************
%**********************************************************
% give peak ground acceln, peak ground velocity peak ground disp
%**********************************************************
pga=981.0;
pgv=121.92;
pgd=91.44;
ca=c(1,ip)+d(1,ip)*log(rho);

Table 17.3 Amplification factors

Damping Median 50% One sigma 84.1%
(%) ———————————————— ————————————————

αa αv αd αa αv αd

1 3.21 2.31 1.82 4.38 3.18 2.73
2 2.7 2.03 1.63 3.66 2.92 2.42
5 2.12 1.65 1.39 2.71 2.3 2.01

10 1.64 1.37 1.2 1.99 1.84 1.69
20 1.17 1.08 1.01 1.26 1.37 1.38
ρ 3.21– 2.31– 1.82– 4.38– 3.38– 2.73–

0.368 ln ρ 0.41 ln ρ 0.27 ln ρ 0.04 ln ρ 0.67 ln ρ 0.45 ln ρ

Ta Tb Tc Td Te Tf

3

2

5

4

6

1

1. Draw the lines corresponding to
max       

˙˙ ˙ν ν νg g g, , 

2. Draw line αA max     
˙ν̇g  from Tb to Tc

3. Draw line αV max     ν̇g  from Tc to Td

4. Draw line αD max vg from Td to Te

5. Draw connecting line from Ta to Tb

6. Draw connecting line from Te to Tf

17.21 Newmark–Hall elastic spectrum.
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cv=c(2,ip)+d(2,ip)*log(rho);
cd=c(3,ip)+d(3,ip)*log(rho);
for k=.00001:.00001:.0001
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=.0001:.0001:.001
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=.001:.001:.01
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
xlabel(‘ period in secs’)
ylabel(‘ spectral velocity sv in cm/sec’)
for k=.01:.01:.1
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
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t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=.1:.1:1
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=1:1:10
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=10:10:100
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=100:100:1000
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
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hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
hold on
end
for k=1000:1000:10000
x=0.01:1:100
t=log(2*pi*k)-log(x)
y=exp(t)
loglog(x,y,‘k’),grid on
hold on
t=log(k*9.81/(2*pi))+log(x)
y=exp(t)
loglog(x,y,‘k’)
end
axis([0.01 100 0.02 500])
text(0.2,0.02,‘0.001’);
text(0.6,0.1,‘0.01’);
text(2,0.3,‘0.1’);
text(7,1,‘1’);
text(20,3,‘10’);
text(80,10,‘100’)
text(20,1,‘Sd in cm’)
xlabel(‘ period in sec’)
ylabel(‘ Sv in cm/sec’)
text(0.01,200,‘100’)
text(0.01,20,‘10’)
text(0.01,2,‘1’)
text(0.02,0.4,‘0.1’)
text(0.07,0.1,‘0.01’)
text(.02,0.8,‘Sa/g’)
xc(1)=0.01;
xc(2)=0.0303;
xc(3)=0.125;
xc(4)=cv*pgv*2*pi/(ca*pga);
xc(5)=cd*pgd*2*pi/(cv*pgv);
xc(6)=10;
xc(7)=33.0
xc(8)=100.0;
yc(1)=pga*0.01/(2.0*pi);
yc(2)=pga*0.0303/(2*pi);
yc(3)=ca*pga*0.125/(2*pi);
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yc(4)=cv*pgv;
yc(5)=cv*pgv;
yc(6)=cd*pgd*2*pi/10;
yc(7)=pgd*2*pi/33;
yc(8)=pgd*2*pi/100;
line(xc,yc,‘linewidth’,3,‘color’,‘k’);
title(‘ Newmark- Hall Design Spectrum 50% Median and rho=5%’)

17.14 Response spectrum characteristics

Let ˙̇ ˙u u ug g g0 0 0, ,  be the peak values of ground acceleration, velocity and
displacement respectively. Response spectrum values are presented to
normalized form in Fig. 17.22. The period range may be separated by period
values at a, b, c, d, e and f where Ta = 0.033 s, Tb = 0.125 s, Te = 10 s, Tf =
33 s.

We identify the effects of damping on systems with short period Tn < Ta

= 0.033, the peak-pseudo acceleration A = Spa approaches ˙̇ug 0  and D = Sd is
very small. For a fixed mass, very short period means extremely stiff or
essentially rigid. Deformation will be very small and it moves with the
ground.

For a system with longer period Sd with approach to ug0, Spa is very small.
For a rigid mass the structure is flexible. In that case

˙̇ut ( ) = 0 ( ) – ( )t u t u tg≅  or Sd ≅ ug0

17.22 Newmark–Hall design spectrum (50% median, damping = 5%

      
˙u̇ 1ggo = ) .
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�� �� �� �� �� ��



Structural dynamics of earthquake engineering648

For short period system TnTa < Tn < Tc. Spa exceeds ˙̇ug 0  with amplification
depending on Tn, ρ over a period range Tb to Tc, Spa may be constant = ˙̇ug 0

× amplification factor depending on ρ .
For a long period Td < Tn < Tf, Sd generally exceeds ug0 with amplification

generally depending on ρ. Over a portion of the period Td to Te(3–10 s) Sd

may be idealized as a constant × amplification factor depending on ρ. For
intermediate period systems with Tn between Tc < Tn < Td, Spv exceeds u̇g 0

Over the period range Spv may be idealized as a constant value × amplification
factor depending on ρ.

Based on the observation of response spectrum, it is logical to divide the
spectrum into three ranges:

• Long period range Tn > Td. Displacement-sensitive region because
structure response is related mostly to ground displacement.

• Short period range Tn < Tc. Acceleration-sensitive region because
structural response is mostly related to ground acceleration.

• Intermediate range Tc < Tn < Td. Velocity-sensitive region because
structural response appears to be better related to ground velocity than to
other ground motion parameters.

The periods Ta, Tb, Te, Tf on the idealized spectrum are independent of
damping but Tc and Td vary with damping.

Idealizing a spectrum by a series of straight lines a, b, c, d, e, f in the four-
way logarithmic plot is obviously not a precise process. The period values at
a–f and amplification factors are judgemental. The advantages of an idealized
spectrum are that we can very easily construct a design spectrum. These
values vary from one ground motion with others.

Example 17.7
Consider an elastic design spectrum, 84.1% for ground motion ˙̇ ˙u g ug g0 01 ;=
= 121.92 cm/s; ug0 = 91.44 cm; ρ = 5%. Using the program developed it is
possible to construct a design spectrum as shown in Fig. 17.23.

Solution
From Fig. 17.23, we can construct a pseudo-acceleration spectrum in terms
of g plotted in log scale in Fig. 17.24 for ground acceleration of 1g and
damping factor 5%. Similarly for various values of ρ an elastic pseudo-
acceleration spectrum can be plotted in log scale as shown in Fig. 17.25 and
a design spectrum in Fig. 17.26. If pseudo-acceleration is plotted at a normal
scale, the diagram is as shown in Fig. 17.26.

Example 17.8
Estimate the maximum sensitive response for the industrial building of Example
17.1 using Newmark–Hall design spectra for an anticipated ground acceleration
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17.23 Newmark–Hall design spectrum (84.1% median, damping = 5%;

      
˙u̇ 1ggo = ) .
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17.24 Pseudo-acceleration design spectrum plotted in log scale
(damping = 5%).
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of 0.308g and for a damping factor of 0.05. Compare the results with the
maximum response obtained from time history analysis.

Solution
Damping = 5%

(i) NS direction, T = 0.567 s
From chart (see Fig. 17.23), spectra value Sd = 6.35 cm; Spv = 71.12 cm/s;
Spa = 784.35 cm/s2.

Maximum base shear = mSpa

= 131 697.2 × 7.843

= 1032.9 kN

Spc

1g

f = 20%

f = 1%

T (s)

17.25 Pseudo-acceleration design spectrum plotted in semi-log scale
(x-axis – log scale; y-axis – normal scale).

1 2 3 T in sec

1

f = 1%

f = 20%

17.26 Pseudo-acceleration design spectrum plotted in normal scale.�� �� �� �� �� ��
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Column bending moment = 
3

2

EIS
h

d

= 3 200 10 8.6997 10 0.063
4.2672

9 –5

2
× × × × ×

= 181.9 Nm

(ii) EW direction
Sd = 20 mm
Spv = 393.7 mm/s
Spa = 7.843 mm/s2

ωn = 20 rad/s
T = 0.313

Maximum base shear = mSpa

= 1032.9 kN

Axial force in rod =
cosEA
L

Sd
θ

= 506.7 10 200 10 0.8712
8.73

0.02
–6 9× × × ×

= 202.20 kN

Comparison of the maximum response obtained from time history analysis
response spectra and design spectrum analysis is presented in Table 17.4 for
NS direction. There is a considerable discrepancy between the results of
response spectrum and design spectrum. The former represents the response
to a specific earthquake while the latter represents predicted response to any
earthquake.

17.15 Distinction between design and response

spectra

A design spectrum conceptually differs from a response spectrum in two
ways. A response spectrum is a jagged plot of peak response of all possible

Table 17.4 Comparison of response and design spectral values

Response quantity Response Design %
spectrum spectrum error

Relative displacement 0.045m 0.063 m 40
Relative velocity 0.5m/s 0.711 42.2
Max. absolute acceleration 5.8m/s2 7.843m/s2 35
Base shear 725kN 1032.9kN 42.3
Bending moment in columns 128.8N/m 189.12N.m 46.8
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SDOF systems, and hence is a description of a particular ground motion. A
design spectrum is smooth and is the envelope of the different elastic design
spectra. Figure 17.27 shows a design spectrum as the envelope of design
spectra for earthquakes originating on the different faults. The conceptual
differences between the response obtained from the response spectrum and
design spectrum are demonstrated in Fig. 17.27. In this figure, notice that for
some periods these values obtained for response and design spectra are the
same, and for some other periods there is a considerable discrepancy. In
general, the response spectrum and the design spectrum do not yield the
same result since the former represents the response to a specific earthquake,
while the latter represents only the predicted response to an earthquake
having the same PGA (peak ground acceleration).

17.16 Response spectrum

17.16.1Acceleration, velocity and displacement spectrum

With the pseudo-velocity design spectrum (see Fig. 17.28), the pseudo-
acceleration design spectrum and deformation design spectrum are determined
from the equation

Sa/ωn = Sv = ωnSd 17.31

and plotted in Figs 17.29 and 17.30 respectively.
It is to be observed that in the spectral acceleration design spectrum, A

approaches ˙̇U gg = 1  at Tn = 0 and D tends to Ug0 = 120 cm at Tn = 50 s. The
design spectrum can be defined completely by numerical values Ta = 0.0303;
Tb = 1/8; Tc, Td, Te = 10 s Tf = 33 s and equations for A(Tn); V(Tn); D(Tn) for

17.27 Design and response spectra.
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each branch of the spectra. Out of six periods, four of them in Ta; Tb; Te; Tf

are fixed but the others Tc; Td depend on damping. Equations describing
various branches of the pseudo-acceleration design spectrum are given in
Fig. 17.23. Observe that the pseudo-acceleration design spectrum for 84.1%
for ground motion ˙̇ ˙U g Ug g0 01 ; 122= = cm/s; Ug0 = 91.44 cm has been plotted
in two formats, logarithmic scale, and linear scale as shown in Figs 17.28

17.28 Pseudo-velocity design spectrum according to damping ratios.

0 1 2 3 4
Period T in secs

S
a
/g

5

4

3

2

1

0

rho = 1

rho = 2.0

rho = 5.0

rho = 10.0

rho = 20.0

rho = 30.0

17.29 Pseudo-acceleration design spectrum according to damping
ratios.
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and 17.29. The two plots include spectrum values for six different damping
values 1%, 2% , 5%, 10%, 20% and 30% respectively. Scaling the spectrum
by η is the simplest way to obtain design spectra for ground motion of
˙̇U gg 0 = η .

17.16.2Peak structural response from spectrum

It is possible to get a peak response of SDOF from the response spectrum
without computing the response history. Corresponding to the natural vibration
period Tn and damping ratio ρ, the values of D, V and A are read from the
spectrum of Fig. 17.23.

Peak values of elastic static force fs0

fs0 = mA = kD = mg(a/g) = WA/g 17.32

For a one storey structure shown in Fig. 17.31 the base shear is calculated as

Vb0 = WA/g 17.33

and the moment at the base is

Mb0 = Vb0 h 17.34

Base shear can be obtained out of the D, V, A spectrum. One of D, V, A needs
to be obtained in structural design.

10–1 100 101
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102

101

100

10–1

10–2

rho = 1
rho = 2.0
rho = 5.0
rho = 10.0
rho = 20.0
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17.30 Deformation design spectra according to damping ratios.
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17.17 Site-specific response spectra

The design spectra such as those presented above were based on earthquake
records on alluvium and did not consider soil condition as a parameter. It is
concluded from various studies that soil condition at a site significantly
affects the amplifications and shapes as illustrated in Fig. 17.32. Thus the
ground motions near the surface where a structure may be located are affected
by the properties of the soil (e.g., stiffness, strength and layering) and the
rock strata between the site and the source. The available data suggest that
there is a major difference between spectral amplification factors calculated
on soft soils and those calculated in competent rock. In relatively soft soils,
spectral specifications vary with the frequency and intensity of ground motion,
and spectral velocities and accelerations may be twice those of competent
rock. In extremely soft soil the accelerations may decrease slightly but spectral
displacements and velocities may increase by a factor of 2 compared with
the rock.

To account for variability in the soil condition at the site in an approximate

h

M
Vb0

17.31 One storey frame.

Soft soil

Medium soil

Hard rock

0 1 2 3 4
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0

17.32 Site-dependent response spectra.
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manner, modification factors for the spectral amplification factors are presented
in Table 17.5. For especially important structures or where local conditions
are not amenable to simple classification, the use of smooth spectra curves
is inadequate. In such cases, site-specific studies are performed to determine
more precisely the expected intensity and character of seismic motion. It is
necessary to be aware of the procedure used in the generation of site-specific
response spectra. At a site, the maximum capable earthquake (MCE) is
selected as the largest earthquake reasonably likely to occur. The slip rates of
the faults are eliminated with some probability. Using a statistical approach
the peak ground acceleration, velocity and displacement values are estimated
at a site. By applying structure amplification factors to these values the
spectral bounds are obtained for each desired value of spectral damping. The
ground motion values for a given site thus vary with the magnitude of the
earthquake and the distance of the site from the point of energy release.
These values provide the basis for developing site-dependent response spectrum
curves as shown in Fig. 17.32.

17.18 Estimating the ground motion

To construct a design spectrum for a particular site, an estimate of earthquake
ground motion is necessary. This is based on seismic history in the vicinity
of the site. Unfortunately in many regions this information is not available.
Based on limited information, seismic risk procedures and attenuation
relationship for estimating the peak ground acceleration (PGA) has been
developed. From these studies it was recommended that the ratio of peak
velocity to peak acceleration v/a be used to estimate the peak ground velocity
and ratio of peak acceleration – peak displacement product to the square of
the peak velocity (ad/v2) be used to estimate the peak displacement. A log
normal distribution summary of v/a and ad/v2 for records on four different
soil conditions is presented in Table 17.6. In the table L, S and V denote the
larger of two horizontal acceleration, the smaller of two peak horizontal
accelerations and the vertical component of the earthquake motion. Using
the seismal risk map and Table 17.6 one can estimate the maximum ground
motion at a site. This information is used to construct a site-specific spectrum.

Table 17.5 Modification factors for spectral accelerations

Soil condition Modification factor

Competent rock 0.67
Soft rock on firm sediment 1.0
Soft sediment 1.5
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Example 17.9
Construct Newmark–Hall broad-banded design spectrum for a site. Develop
spectrum curves using the program for damping factors 0.02, 0.05, 0.1.
Estimate the maximum horizontal ground displacement assuming the maximum
ground acceleration = 0.4g, assuming group L and 84.1% on 50 m alluvium
by bed rock.

Solution
Maximum ground acceleration = 0.4g = 0.4 × 981 cm/s2 = 392.4 cm/2

From Table 17.6 v/a = 117/g; ad/v2= 7.8

v = 117 × 0.4 = 46.8 cm/s

d = 7.8 v2/a = 7.8 × 46.82/392.4 = 43.53 cm

a = 392.4 cm/s2; v = 46.8 cm/s d = 43.53 cm

Construct the maximum ground motion polygon with the values of a, v and
d. Apply appropriate amplification factors to the maximum ground motion
components in a manner similar to that described in this chapter.

17.19 Seismic analysis and design verification

Usually, the structures are designed for gravity loads and checked for earthquake
loads. This ensures

Table 17.6 Summary of v/a and ad/v2 ratios (log normal distribution)

Soil Group v/a (cm s/g) ad/v2 d/a (cm/g)

50% 84.1% 50% 84.1%
50

Rock L 60 97 5.3 11 20
S 69 112 5.2 11.2 25
V 71 114 6.1 11.8 30

<10m L 76 145 4.5 7.7 28
alluvium S 99 157 4.2 8.2 43
underlain V 84 135 6.8 13.3 48
by rock

10–70m L 76 117 5.1 7.8 30
alluvium S 91 147 3.8 6.4 33
underlain V 76 117 7.6 13.7 46
by rock

Alluvium L 122 175 3.9 6 58
S 145 216 3.5 4.9 74
V 122 178 4.6 7 69

Adapted from ‘A study of Earthquake Response spectra for different geological
conditions’, by B Mohraz, Bulletin of the Seismological Survey of America, vol. 66,
No. 3, 1976.
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• elastic response under moderate earthquake;
• collapse is precluded under a severe earthquake.

As discussed already, the important factors that influence earthquake-resistant
design are the geographical location of the structure, the site soil and foundation
conditions, the importance of the structure, the dynamic characteristics of
the structure such as natural periods and properties of the structure such as
strength, stiffness, ductility and energy dissipation capacity. These factors
are considered directly or indirectly in all the methods of analysis.

17.19.1Elastic response analysis

Usually elastic response analysis is performed as a part of the usual design
procedure. In the seismic coefficient method, also known as equivalent static
load method, a certain proportion of (gravity + % live load) is assumed to act
as a static horizontal load and the structure is analysed for it. For simple and
regular structures, the seismic coefficient method is normally used. Structures
as multi-storey buildings, overhead water tanks and bridge piers are usually
designed by the response spectrum method while for important structures
such as nuclear reactors, time history response analysis is usually adopted.

17.19.2Response spectrum method

Although the response spectrum method requires more calculations than the
seismic coefficient method, it has the advantage that it can account for
irregularities as well as higher mode contributions and gives more accurate
results. Therefore, this is the most widely used method in seismic analysis.

17.19.3Time history method

For important structures both linear and nonlinear response can be obtained
by carrying out a detailed time history analysis for one or more design
accelerograms These design accelerograms may be either natural accelerograms
recorded at site or at similar sites or they can be artificial accelerograms
generated such a way as to be compatible with the design response spectrum.
A variety of numerical time stepping methods (Chapter 7) are available for
calculation response of time history.

17.20 Inelastic response spectra

While the foregoing discussion has been for elastic response spectra, most
structures are not expected or even designed to remain elastic under strong
ground motions. Rather, structures are expected to enter the inelastic region,
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and the extent to which they behave inelastically can be defined by the
ductility factor

µ = u
u

m

y
17.35

assuming the simplest force deformation relationship is chosen. Figure 17.33a
shows the elastic perfectly plastic (elasto-plastic) force deformation relation,
f u us ( , sign )˙ . The elastic stiffness is K and the post-yield stiffness is zero.

The yield strength is fy and the yield deflection is uy. During unloading the
algebraic sign of u̇  is negative and during reloading the algebraic sign of u̇
is positive and hence the hysteretic system occurs along a path parallel to the
initial elastic branch without any deterioration of stiffness and strength.
Within the linear elastic range the natural vibration period is Tn (Tn = 2π/ωn)
and the damping ratio is ρ.

17.20.1Ductility factor and yield strength reduction factor

The yield strength reduction factor Ry is defined as

R
f
f

u
uy

y y
= =0 0 17.36

where f0 and u0 are the minimum yield strength and yield deflection required
for the structure to remain elastic during ground motion.

ductility factor = um/uy 17.37

The inelastic deformation ratio is defined as the ratio of deflection of inelastic
and the corresponding linear system related by µ and Ry.

u
u R

m

y0
= µ

17.38

The ductility ratio is explained in Fig. 17.33b

17.33 (a) Inelastic load deformation response; (b) definition of
ductility factor.
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17.20.2Equations of motion and controlled parameters

The governing equation of motion is

mu cu f mu ts g˙̇ ˙ ˙̇+ + = − ( ) 17.39

Dividing the whole equation 17.39 by m gives

˙̇ ˙̇u f m u tn s g+ + = −2 / ( )ρω 17.40

The same numerical procedures discussed in Chapter 7 can also be applied
here with the difference that the time instants must be detected accurately
enough when the system changes from elastic to yield branch.

For a given ground excitation ˙̇u tg ( ) , u(t) depends on three system
parameters ωn(Tn = 2π/ωn), ρ, and uy and the ductility factor µ depends on
ωnρ and Ry.

17.20.3 Inelastic response shock spectrum

Peak deformation and ductility demand

The deformation response of an inelastic system is obtained from its initial
elastic vibration period Tn and damping factor ρ and force deflection relation
and its corresponding linear system are also obtained.

µ = =u
u

R R
u
u

m
y y

y0

0, 17.41

Inelastic response spectra can be calculated in the time domain by direct
integration, analogous to elastic response spectra but with structural stiffness
as a nonlinear function of displacements K = K(u). If elastic plastic behaviour
is assumed, then elastic response spectra on the basis that at high periods Tn

> 33 s (fn < 0.03 Hz) displacements are the same and at high frequencies and
at low periods Tn < 1/33 s (fn > 33 Hz) acceleration are equal and at intermediate
periods (frequencies) the absorbed energy is preserved.

An inelastic design spectrum is most commonly created directly from the
elastic design spectrum. Observe then the spectral velocity Sv, spectral
displacement Sd, converted to force-based design values by dividing them by
the ductility factor:

µ µ= =elastic response
maximum stress developed

max

max

F
F

17.42

In the acceleration constant region, the reduction factor Ry is attained by
equating elastic and inelastic strain energies. The resultant reduction factor

is 2 1µ − . The inelastic design spectrum follows elastic spectrum in the

acceleration constant region where it is multiplied by µ µ/ 2 1− . This
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quantification of relative displacement maxima is usually referred to as ‘equal
displacement’ when incorporated with the description of the design process.

Several researchers have proposed equations of variation of Ry with Tn,
and µ. The elastic spectrum equation for Ry goes back to the work of Velestos
and Newmark:

R

T T

T T T

T T
y

n a

b n c

n c

=
<

− < <
>







1

2 1µ
µ

17.43

where the periods Ta, Tb,…, Tf separating the spectral regions are already
defined. The basis of the well-known design spectra developed by Newmark
and Hall is plotted for several values of µ in log–log format as shown in Fig.
17.34, where sloping straight lines are included to provide transition among
the three constant segments. The construction of inelastic design spectrum is
shown in Fig. 17.35. The inelastic design spectrum for 5% damping 84%
˙̇ ˙u g ug g0 1 ;  122 cm/s,= =  ug0 = 91.44 cm is shown in logarithmic and normal
scale in Figs 17.36 and 17.37 respectively.

Spectra such as those described above provides the basis for safety evaluation
of new and existing structures which will be discussed in later chapters.

17.21 Application of inelastic design spectrum

The design deformation for an SDOF system can be determined for
inelastic design spectrum given the parameters Tn, ρ and µ and design yield

10–1 100 101

Periodin secs

R
y

101

100

Ta = 0.0303

Tb = 0.125

Ic Id

Te = 10
Tf = 33

µ = 10%

µ = 8%
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µ = 2%

µ = 1.5%

µ = 1%

17.34 Yield strength reduction factor Ry with respect to µ.
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strength. The minimum yield strength for a given ductility factor is given
by

f W
A
gy

y=    or   
f
W

A
g

y y= 17.44

and the peak deformation is given by

u
T

Am
n

y= 



µ π2

;
2

   or   u
R

T
Am

y

n
y= 





µ
π2

2

17.45

17.35 Construction of inelastic design spectra.
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where Ay is the pseudo-acceleration of the inelastic response spectrum. Consider
an SDOF system with Tn = 1 s, ρ = 5% peak ground acceleration 0.5g. Table
17.7 gives strength and deflection demands.

There are two properties that must be considered while designing a structure,
strength and ductility. One can design a very strong structure or a very
ductile one or economic combination of both the properties. If the combination
of strength and ductility is inadequate repairing such a structure is uneconomical
or the structure will collapse.

17.22 Inelastic deformation

Assume we want to draw a curve relating Sa/g to D for a peak ground
acceleration of 0.5g. The graph shown in Fig. 17.37 is converted to Ay versus
D format, resulting in data pairs (Ay, D). Such a diagram is called demand
diagram as shown in Fig. 17.38 for inelastic systems. Along the radial lines
the period is constant. Superimposing on the demand curve, the load

0 0.5 1 1.5 2 2.5 3 3.5 4
Period T in secs

mµ = 8

mµ = 5

mµ = 1.5

mµ = 1

mµ = 6

mµ = 2

S
a
/g

4

3.5

3

2.5

2

1.5

1

0.5

0

17.37 Inelastic Sa/g spectrum according to ductility ratio.

Table 17.7 Strength and deflection demands

Ductility Strength demand Deformation um
factor µ

fy /W fy/f0%
in cm

1 0.90 100 22.35
2 0.45 50 22.35
4 0.225 25 22.35
8 0.113 12.5 22.35
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deformation curve i.e. capacity curve for an elasto-plastic SDOF system, the
ductility factor can be obtained from the intersection point of demand and
capacity curves. This point provides the deformation demand.

17.23 Summary

This chapter has shown how a design response spectrum curve is constructed
and subsequently used for design purposes. Codes recommend site-specific
response spectra. Inelastic design spectra were also discussed. Relevant
programs in MATLAB were also given.

17.24 Exercises

1. Use the program given to construct response spectrum for Sd, Sv and Sa

for NS component of Northridge earthquake. Consider damping factors
as 0.02, 0.05 and 0.1.

2. Construct a Newmark–Hall design spectrum for maximum ground
acceleration for that of Northridge earthquake of 0.308g and for a damping
factor of 0.05.

3. Use the NS ground acceleration component of 1954 Northridge earthquake
and conduct a time history analysis of a shear frame shown in Fig.
17.39. Plot the time history response for the relative displacement u(t),
base shear V(t) and moment M(t). Assume all columns bend about their
major axes. All columns are ISMB 300.

0 20 30 60 80 100
D in cm

10s
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2s

1s
0.5 s
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mµ = 1.5
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1
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17.38 Inelastic demand diagram.
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4. Estimate the maximum relative displacement u, maximum base shear
Vmax and maximum column bending moment for the shear frame shown
in Fig. 17.39. Compare the results with the results obtained in Problem
3, assuming the damping factor as 5% of critical damping. Explain any
discrepancies in the result.

5. Conduct a time history analysis for a tower structure shown in Fig.
17.40 for the NS component of Northridge earthquake.

m(z) = 0.3(1.5 – z/L) kg/m;   EI(z) = 104(1– z/L) N/m2

Assume the shape function ψ(z) = (z/L)2, and using the generalized
SDOF system approach plot the relative displacement time history u(t)
at z = L. Also plot the shear time history V(t) and moment time history
M(t) at z = 0. Assume L = 70 m, m = 2 kg/m and damping as 0.05. L is
the height of the tower and z is the spatial coordinate.

6. Using the broad-banded elastic design spectra construct corresponding
inelastic design spectrum for ductility of 3 and 5 on a four-way log plot.

7. A structure modelled as an SDOF system has a natural period T = 0.5 s,
mass m. Using the elastic design spectrum and inelastic design spectrum
obtained in Problem 6, estimate the elastic and inelastic displacement
response and the elastic and inelastic design forces for the system for the
following cases.

(a) ρ = 0.03; µ = 3
(b) ρ = 0.05; µ = 5

8. For the design earthquake at a site the peak values of ground acceleration,
velocity and displacement have been estimated as ˙̇ ˙u g ug g0 00.36 ;  = =
43.89 cm/s; ug0 = 33 cm for systems with 2% damping ratio and allowable
ductility of 3, construct 50% design spectra together on (a) four-way log
paper, (b) log–log paper showing pseudo acceleration with natural period
and (c) linear–linear paper showing pseudo-acceleration using Tn for 0
to 5 s. Determine equations A(Tn) for each branch of inelastic spectra
and the period values at intersections of the branch.

17.39

4m

12m

6m

17.40
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9 For a system with Tn = 0.5 s and damping 5% and El Centro ground
motion, verify the following assertion ‘doubling the ground acceleration
˙̇u tg 0 ( )  will produce the same response µ(t) as if the yield strength had
been halved’.
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18
Earthquake analysis of linear systems

Abstract: In this chapter procedures for earthquake analysis of structures
idealized as a lumped mass system are developed. This chapter also
describes the calculation of structural response as a function of time when
the structure is subjected to earthquake ground motion. Discussion will be
with respect to multi-storey buildings with symmetric plan using response
history analysis (RHA). Then response spectrum analysis (RSA) is applied
to compute the peak response of a structure during the earthquake from the
earthquake response. Analysis of buildings with an unsymmetric plan is also
discussed.

Key words: response spectrum, response history, modal contribution factor,
earthquake analysis, linear systems, CQC rule, SRSS rule.

18.1 Introduction

The earthquake excitation of structures is defined in terms of ground motion
which varies from site to site. Hence, defining the appropriate ground motion
of a particular site has been the subject of research. The irregular slippage
among faults succeeded by multiple random reflections, refractions and
attenuations within the ground earth formation through which they pass
produce earthquakes responsible for ground shaking. Hence, stochastic
modelling of strong ground motion seems appropriate and this has led to the
development of procedures to generate synthetic accelerograms. For very
important structures like nuclear reactors and nuclear power plants located
in a zone of high seismic activity, it is desirable to carry out a stochastic
seismic analysis that describes the response in probabilistic terms. However,
for most of the structures deterministic seismic analysis is sufficient. This
chapter discusses the deterministic earthquake response of structures; that is,
the response of structures to prescribed earthquake loadings. There are two
commonly used deterministic procedures for specifying seismic design loads:

1. dynamic analysis
2. the equivalent static procedure.

The dynamic analysis can be either a response spectrum analysis (RSA)
or a complete time history analysis (THA). The equivalent static force procedure
(which will be discussed in the next chapter) detailed in most seismic design
codes of various countries, specifies earthquake induced inertial force in the
structure as equivalent static loads by the use of empirical formulae. This

�� �� �� �� �� ��



Structural dynamics of earthquake engineering668

chapter provides an introduction to the deterministic earthquake response of
structures.

18.2 Lumped mass system: shear building

Consider the shear building shown in Fig. 18.1 subjected to earthquake
excitations. The masses of N stories are lumped at these levels with mj

denoting the mass at the jth floor. The system has n degrees of freedom u1,
u2 … un. Assume there is no damping.

We assume floor displacement relative to the ground can be expressed as

uj(t) = ψjz(t)      j = 1, 2… N

u = {ψ}z(t) 18.1

Where z and ψ are the displacement of the roof and shape function respectively.

Hence total displacement

  

{ } = { } +u u

u

ut

g

g

M















18.2

18.2.1 Equation of motion

Shear Vj in the jth storey can be given as

Vj = kj (storey drift)

= kj ∆j

= kj(uj – uj–1) 18.3

hj

N

j

2

1

mN

mj

m2

m1

UN

U

Uj

u2

u1

fIN

fIN–1

fI2

fI1

18.1 Shear building.
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kj, the storey stiffness, is the sum of all lateral stiffness of all columns to that
storey

k EI
hj = 12

3Σ 18.4

where EI is the flexural rigidity of the column and h is the storey height.
At each time instant the system is in equilibrium under the action of

internal storey shear and inertia force and using D’Alembert’s principle we
get

f m u t u tij j j g= – [ ( ) + ( )]˙̇ ˙̇ 18.5

Using the principle of virtual displacement to formulate equilibrium equation,
the external virtual work can be written as

δ δW f uE j

N

ij j=  
=1
Σ 18.6

Substituting for fij we get

δ δ δW m u m uE j

N

j j j g j

N

j ju t u t= –  –  ( ) ( )Σ Σ˙̇ ˙̇ 18.7

The internal virtual work is due to storey shear Vj(t) acting through storey
drifts

δ δ δW V u uI j

n

j j jt=  – )
=–1 –1( ) (Σ 18.8

Now we can express displacement in terms of generalized coordinates as

uj = ψjz

δuj = ψjδz 18.9

δWE = δWI

(–  –  )2 ( )z m m zj j g j ju tΣ Σψ ψ δ˙̇

=  ( – ) ( – )
1

–1 –1δ ψ ψ ψ ψz k z
j j j j j j
n

Σ 18.10

Simplifying we get

(  ( – ) ) + (  ) = ––1
2 2Σ Σk Z m Z L uj j j j j gψ ψ ψ ˙̇ ˜ ˙̇ 18.11

where,

k̃ k j j j=  ( – )–1
2Σ ψ ψ 18.12a

m̃ m j j=  2Σ ψ 18.12b

L̃ m j j=  Σ ψ
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˜ ˜k m,  are the generalized stiffness and generalized mass, or in matrix form

m̃ m= Tψ ψ 18.13a

k̃ k= Tψ ψ 18.13b

L̃ mI= Tψ 18.13c

where ∆j, the stories drift given in terms of storey displacements (see Fig.
18.2), {I} is a vector with all elements equal to unity. The equations denoted
above are not only applicable to shear building but also to all structures.

Consider a three storey frame shown in Fig. 18.3.
It can be proved,

k̃ k= Tψ ψ

=  ( – )–1
2Σ k j j jψ ψ 18.14

k

k k k

k k k k

k k
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18.15
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18.16

ψ ψ ψ ψ ψ
ψ ψ ψ
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18.2 Displacements in a storey. 18.3 Three storey frame.
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= ( + ) – –1 2 1
2

2 1 2 2 1 2k k k kψ ψ ψ ψ ψ

+ ( + ) – – +2 3 2
2

3 2 3 3 3 2 3 3
2k k k k kψ ψ ψ ψ ψ ψ

= + ( – ) + ( – )1 1
2

2 2 1
2

3 3 2
2k k kψ ψ ψ ψ ψ

= ( ) + ( – ) + ( – )1 1
2

2 2 1
2

3 3 2
2k k kψ ψ ψ ψ ψ 18.17b

18.2.2 Response analysis

ω n
k
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˜
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18.18a

ω ψ ψ
ψ ψn

k

m
2

T

T= 18.18b

Hence the equation of motion

˙̇ ˜
˜

˙̇Z Z L
m

ug tn+ = – ( )2ω 18.19a

Z L
m

A

n
0 2= –

˜
˜ ω

18.19b

Z D0 = –Γ 18.19c

where Γ = /˜ ˜L m .

Uj0 = ψjZ0

= –  Γ D jψ 18.19d

The equivalent static forces associated with their displacement are given by

f m Aj j j0 = Γ ψ 18.20a

Shear in the storey

V fi j

N

j0 =1 0=  Σ 18.20b

M h h fi j

N

j i j0 =1 0 ( – )= Σ 18.20c

where h is the height of the floor above base. In particular the shear and
over-turning moment at the base are
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V f M h fbo j

N

jo bo j

N

j jo= Σ Σ
=1 =1

 ; =  18.21a

= = =Γ Γ ΓΣA m L A M ALj j b  ;  0ψ θ˜ ˜ 18.21b

L̃ h m fj j j
0

=1
= Σ

j

N

18.21c

The parameters L L, ,θ Γ  depend on the system. Instead of using ψ one
can use φ and then in that case φTmφ = I.

Example 18.1
The uniform five storey shear frame with rigid beams shown in Fig. 18.4 is
subjected to ground acceleration. All the floor masses are m and all stories
have same height and stiffness k. Assume the displacement to increase linearly
with height above base; formulate the equation of motion for the system and
determine natural frequency.

Solution
1. Determine general properties

 k̃ k j j j=  ( – )–1
2Σ ψ ψ

= 1
25

+ 1
25

+ 1
25

+ 1
25

+ 1
25

k ( )
=

5
k

m

m

m

m

m

k

k

k

k

k

1

4/5

3/5

2/5

1/5

18.4 Five storey frame.
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m m j j=  2Σ ψ

= m
(1 + 4 + 9 + 16 + 25)

25
= 11

5
m

L m m mi i=  =
5

(1 + 2 + 3 + 4 + 5) = 3Σ ψ

2. Formulate equation of motion

11
5

+
5

= –3mz k z mug˙̇ ˙̇

˙̇ ˙̇Z k
m

Z ug+
11

= –15
11

ω n
k
m

= 0.302

The above is 6% higher than actual = 0.285 k
m

.

Example 18.2
Determine the peak displacement, storey shears, floor overturning moment
for the above frame with m = 45 412 kg, k = 5530 kN/m; h = 3.657 m due to
ground motion characterized by design spectrum scaled to peak ground
acceleration of 0.25g. The spectrum is given in Fig. 18.5.

Solution
1. Compute natural period

ω n
k
m

= 0.302

= 0.302 5530 10
45 412

= 3.335 rad/s
3×

1

A/g

1/33 0.125 0.66 4 –12

    11.7 –0.704Tn 2.71

    1.80 –1Tn

    7.40 –2Tn

    28.44 –2.585Tn

T in sec

18.5 Design spectrum.
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T
n

= 2 = 1.89sπ
ω

A
g

= (1.89) 1.80 0.25 = 0.238–1 ×

A = 0.238 × 9.81 = 2.334 m/s2

D A

n

= = 2.334
3.335

= 0.212 m2 2ω

Z D= Γ

Γ = /˜ ˜L m

= 3
11

5 = 15
11

m
m

×

Z = 15
11

0.212 = 0.286 m×

The displacement diagram is shown in Fig. 18.6.

Storey shear = ω2mjuj

= ω2mjψjZ

= mjψjAj Γ

= 15
11

2.334 45412× × × ψ j

= 144.5ψ kN

The base shear is 430 kN. The show force diagram is shown in Fig. 18.7.

0.286

4 × 0.286/5 = 0.228

3 × 0.286/5 = 0.172

2 × 0.286/5 = 0.114

1 × 0.286/5 = 0.0572

18.6 Displaced shape of the frame.
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Total weight = 45 412 9.81
1000

5× ×

= 2227 kN

Vb = 430

430
2227

= 19.3% of total weight of the building.

Example 18.3
Solve Example 18.1 using a normalized vector φ instead of ψ.

Solution

[ ]

1

1

1

1

1

;  { } 1
5

1

2

3

4

5

;m m=























=



























ψ

M m m M m
1
2 T

1
55
25

;  11
5

= = =ψ ψ

{ } 1 { } 1
55

1

2

3

4

5

1
φ ψ= =



























M m

144.5kN

115.6

86.7

57.8

28.9

114.5

259

345

402

430

18.7 Shear force diagram and bending moment diagram of the
frame.
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When a normalized vector is used, the participation factor is

Γ Σ= = = + + + + = T { }
55

(1 2 3 4 5) 15
55

m m i m
m

m
j jφ φ

uj = φjZ(t)

To determine Z(t) consider the dynamic equilibrium equation

˙̇ ˙̇Z t Z t un g( ) ( )2+ = −ω Γ

ω φ φ φ φn j j jk k k
m

2 T
1

2 ( )
11

= = − =−Σ

ω n
k
m

k m= = × =0.302 ;  5530 10 N/m;  45412 kg3

ω π
ωn

n
T= = =3.335 rad/s; 2 1.89s

A
g

T A= × = = × =−1.8 0.25 0.238;  0.238 9.81 2.334 m/s1 2

D A

n

= = =
ω 2 2

2.334
3.335

0.212

Z D m= = ×Γ 15 0.212
55

{ } { } 15 0.212
55

1

2

3

4

5

0.0572

0.1144

0.1716

0.228

0.286

u Z m
m

= = ×



























=



























φ

The results obtained are the same as the ones obtained in Example 18.2

18.3 Modal response contribution using

Chopra’s method (Chopra, 2002)

The forced vibration of undamped system and the dynamic equation of
motion may be written as

mu ku F t˙̇ + = ( ) 18.22

We now consider the common loading case in which the force Fj(t) have the
same time variation f (t) and their spatial distribution is defined, independent
of time. Thus
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F(t) = Ff (t) 18.23

We can expand the vector F as

F Fr= Σ
r

N

=1
 

= Σ Γ
r

N

=1
 r rmφ 18.24

where φr is the normalized eigenvector for the rth mode.
Pre-multiplying both sides with φn

T  and utilizing the orthogonalization
property of the modes we get

φn
T F n= Γ 18.25

and

Fn = Γnmφn 18.26

which is independent of how the modes are normalized.
Equation 18.26 may be viewed as an expression of the distribution F of

applied force in terms of force distribution Fn associated with natural period.
This interpretation becomes apparently clear by considering the structure
vibration in the nth mode with acceleration ˙̇ ˙̇u y tn n n= φ ( ) . The associated
inertia force = ( )− = −mu t m yn n n˙̇ ˙̇φ  and their spatial distribution given by
vector nmφ which is same as Fn.

Two useful properties are to be noted:

1. The force vector Fn f (t) produces response only in the nth mode, there
is no response in another mode.

2. This dynamic response in the nth mode is entirely due to the partial force
vector Fnp(t).

Example 18.4
Consider a five storey building (rigid floor beams and slabs) with lumped
mass m at each floor, and same storeyed stiffness k. <F>= <0 0 –1 1 2).
See Fig. 18.8.

Solution
Use the MATHEMATICA or MATLAB package. Assume k = 1 m = 1.

[ ]

2

2

2

1

1

m =























�� �� �� �� �� ��



Structural dynamics of earthquake engineering678

| |k =

2 –1

–1 2 –1

–1 2 –1

–1 2 –1

–1 1























Using the MATLAB program we get five natural frequencies and five
normalized mode shapes.

ω1 = 0.2439; ω2 = 0.6689; ω3 = 1.0; ω4 = 1.286; ω5 = 1.6850 rad/s

Normal eigenvector

[ ]

0.1585 0.3602 0.4472 0.3804 0.0193

0.2982 0.3981 0 0.4976 0.0711

0.4023 0.0797 0.4472 0.2703 0.2423

0.4586 0.31 0. 0.1441 0.8202

0.4877 0.5610 0.4472 0.2204 0.446

φ =

− − −
− − − − −
− −
− −
− − −























<F> = <0 0 –1 1 2>

Γ1 1
T 1.0316= = −φ F

Γ2 2
T 1.5117= =φ F

Γ3 3
T 1.3416= = −φ F

Γ4 4
T 0.5669= = −φ F

k

k

k

k

m

m

2m

2m

2m

k

k

k

k

k

u5

u4

u3

u2

u1

18.8 Five storey frame.
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Γ5 5
T 0.1706= = −φ F

Check

Σ ΣΓ
i

N

i
i

=1
2

=1

5

= mi

only when [F] = [m](I).

[F] = ∑ Γn[m]φn = [m][φ][Γ]

[ ]

0.3271 1.0891 1.2 0.4314 0.0066

0.6152 1.2036 0 0.5641 0.0243

0.8301 0.2410 1.2 0.3064 0.0827

0.4731 0.4686 0 0.0817 0.1399

0.5031 0.8481 0.6 0.1249 0.0761

F =

− − −
−
− − − −

−
−























The modal expansion of the excitation vector is shown in Fig. 18.9.

18.4 Modal analysis for ΓΓΓΓΓ f (t)

From equation 18.25 ˙̇ ˙y y y f tn n n n n n+ 2 + = ( )2ρ ω ω Γ 18.27

2

1

1

=

0.6

1.2

1.2

0.5031

0.4731

0.8301

0.6152

0.3271

0.8481

0.4686

0.2410

1.2036

1.0891

0.1249

0.0817

0.3064

0.5641

0.4314

0.0761

0.1399

0.0827

0.0243

0.0066

18.9 Modal expansion of excitation vector.
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The factor Γn which multiplies the force f (t) is sometimes known as the
modal participation factor, implying that it is a measure of the degree to
which the nth mode participates in the response. This is not a useful definition
because Γn is not independent of how the mode is normalized or a measure
of the contribution of the mode to a response quantity. Both these drawbacks
are overcome by the modal contribution factor.

Let us consider the uncoupled equation of motion

˙̇ ˙D w D w D f tn n n n n n+ 2 + = ( )2ρ 18.28

Comparing the above two equations 18.27 and 18.28

yn = ΓnDn(t) 18.29

Hence yn is readily available once equation 18.30 has been solved for Dn (t)
utilizing the available result of single-degree-of-freedom (SDOF) systems
say, for example, subjected to harmonic step impulsive forces, etc.

u t n D tn n n( ) = ( )ϕ 18.30

which is the contribution of the nth mode of modal displacement u(t).
Substituting Eq. 18.30 to get the equivalent static force as

f t m u tn n n( ) = ( )2ω

= ( )2ω ϕn n nm n D t 18.31

Fn is the nth contribution of exciting force

Fn = Γnmφn

f t F D tn n n n( ) [ ( )]2= ω 18.32

The nth mode contribution to any response quantity R(t) is determined by
static analysis of structures subjected to forces fn(t). If Rn

st  denotes the modal
static response, the static value indicating ‘st’ of R due to external force Fn

then

R t R D tn n
st

n n( ) [ ( )]2= ω 18.33

Combining the response contribution to all the modes gives

R t R t R D tn n
st

n n( )  ( )  [ ( )]
=1 =1

2= =Σ Σ
n

N

n

N

ω 18.34

The model analysis procedure just presented is a special case of the one
presented earlier. It has the advantage of providing a basis for identifying
and understanding the factors that influence the relative modal contributions
to the response. The above procedure can be applied only if the f (t) for all
the forces are the same.
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18.5 Interpretation of modal analysis

1. Determine natural frequencies and modes.
2. Force distribution is expanded into modal components {F}.

The rest of the procedure is explained in Table 18.1.

18.6 Modal contribution factor

The contribution Rn of the nth mode to response quantity R can be expressed
as

R t R D tn n
st

n n( ) ( )2= ω 18.35a

R t R R Dn
st

n n( ) [ ]2= ω 18.35b

where

R
R
Rn

n
st

st= 18.36

where Rst is the static value of R due to external force F and the nth modal
contribution factor is defined as

R
R
Rn

n
st

st= 18.37

Table 18.1 Modal contribution to dynamic response

Mode Static analysis Dynamic analysis of SDOF Modal of dynamic
response

    R t R D tn n
st

n n( ) = ( )2ω

    
R t R t

n

N

n( ) =  ( )
=1

Σ

1
F1

F(t) D1(t)

ω1, ρ1

F(t) Dn(t)

ωn, ρn1

n

Fn

    R t R D tst
1 1 1

2
1( ) = ( )ω
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These modal contribution factors have three important properties:

1. They are dimensionless.
2. They are independent of how modes are normalized.
3. The sum of modal contribution factors over all modes is unity.

Σ
n

N

=1
 1Rn = 18.38

18.7 Modal response and required number of modes

Consider the displacement Dn(t) of the nth mode SDOF system. The peak
value is defined as

Dn0 = Max t| Dn(t) | 18.39a

The corresponding value Rn(t) is

R R R Dn
st

n n n0
2

0= ω 18.39b

R R R D R R R D R R R Dn
st

n n n
st

n n dn n st
st

n n dn n st0
2

0
2

, 0
2

, 0( ) ( )= = =ω ω ω

18.40

For nth mode SDOF system where

R
D

Ddn
n

n st
= 0

, 0( )
18.41

(Dn st)0 is the peak value of Dn(st) static response

D t
f t

n st
n

1 ( ) =
( )
2ω

18.42

( ) =1
0
2D

f
n st o

nω
18.43

R f R R Rn
st

n dn0 0= 18.44

The algebraic system of Rno is same as the modal static response R R Rn
st st

n= .
The modal contribution factor dynamic response factor R(t) influences the
relative response contribution of vibration mode, and hence the minimum
number of modes that should be included in dynamic analysis. If only J
modes are included in the static response

e Rj n= −1
=1
Σ

n

J

18.45

For a fixed J, ej depends on spatial distribution of F of the applied force.
When all modes are included ej = 0. Hence modal analysis can truncate
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modes when | ej | < ε. Hence most important factors are modal contribution
factor and dynamic response factors.

18.8 Modal contributions

Fj = Γnmjφnj 18.46

Fjn = Γnmjφjn 18.47a

The base shear is written as

V F mbn
st

jn n j jn= =Σ ΣΓ
j

N

j

N

=1 =1
φ 18.47b

Hence displacement is

u k F k mn
st

n n j jn
n

n
NN= = =− −1 1

2Γ Γφ
ω

φ 18.47c

Hence

uN
st NN

n

n
n= φ
ω 2 roof displacement 18.47d

For the five storey situation three modes are required for base shear and two
modes are required for roof displacement.

Example 18.5
For the five storey building example

F(t) = Ff (t); < F >=< 0 0 – 1 1 2>

The system is undamped. Compute only the steady state response.

Solution

f t f t
T
T

( ) sin ;  0.750
1

1= = =ω ω
ω

D t
f

R tn dn( ) sin0
2=

ω
ω

n

Rdn
n

= 1
1 – ( / )2ω ω

Rdn may be +ve or –ve

R t R R f R tn
st

n dn( ) sin0= ω

R t f R R R tst
n dn( ) ( ) sin 0= ω
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Maximum value

R f R R Rst
n dn0 0 ( )=

V V f V V Rb
st

b b
st

bn dn= =2;    0 0 Σ
V
f

V V Rb
b
st

bn dn
0

0
  = Σ

For the five storey building {F}is resolved into model components as shown
in Fig. 18.10. For example for mode 1 ω1 = 0.2439.

Rd1

1

2 2
1

1

1

1 0.1829
0.2439

2.284=
− 





=
− ( )

=
ω
ω

V
F
b 0

0

5.6
2

2.8= =  (See Table 18.2)

If we include ‘p’ modes

V
f

V R Vb
bn dn bn

0

0 =1 =1
1 –= + Σ Σ

n

p

n

N

The calculations are shown in Table 18.2.

2

1

1

0.6

1.2

1.2

0.5031

0.4731

0.8301

0.6152

0.3271

0.8481

0.4686

0.2410

1.2036

1.0891

0.1249

0.0817

0.3064

0.5641

0.4314

0.0761

0.1399

0.0827

0.0243

0.0066

0.6 0.1305 0.0012

2.7486 1.217

18.10 Modal contributions to base shear.
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Example 18.6
Figure 18.11 shows a shear frame (i.e. rigid beams) and its floor masses and
storey stiffness. This structure is subjected to horizontal harmonic force at
the top floor. p0 = 500 kN.

(a) Determine the equation for steady state displacement of the structure.
(b) Determine the direct solution of coupled equations.
(c) Determine the modal analysis (neglect damping).
(d) If k = 63 600 kN/m, m = 45 413 kg and ω = 0.75 ω1 split the load into

modal components and obtain the solution using Chopra’s method.

Solution
(a) Equation for steady state displacement

m

m

U

U

k k

k k

U

U p
t

/2

2 0
sin 1

2

1

2 0














+
−

−













= 







˙̇

˙̇ ω

(b) Direct solution of coupled equations, using the MATHEMATICA package

ω1 = 0.765 k
m

ω 2 = 1.848 k
m

Table 18.2 Dynamic base shear calculation

Mode ωn   V b Rd   V Rb d

1 0.2439 2.7486 2.284 6.28
2 0.6689 –1.217 1.0808 –1.31
3 1 0.6 1.0346 0.62
4 1.286 –0.1305 1.0206 0.13
5 1.685 –0.0012 1.0119 –0.12

∑ 5.60

m/2

m
k

k

u2

u1

18.11 Two storey frame.
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To obtain a particular solution assume

U1 = U10 sin wt

U2 = U20 sin wt

We get

(2 )

2

0

sin

2

2
10

20 0

k m k

k k m
U

U p t

− −

− −( )



















= 







ω
ω ω

solving

U
p ko

10

1

2

2

2
=

/

1 – 1 –ω
ω

ω
ω

































U
p k mw

m

o
20

2

2
1
2

2
2

1

2

2

2
=

2 (2 – )

1 – 1 –ω ω ω
ω

ω
ω

































(c) Modal analysis

Eigenvector = [ ]
0.5773 0.5735

0.816 49 0.816 49
ψ =

−









To obtain the unit eigenvector

ψ ψT 1
2

2
2

0.666 0

0 0.666
m m

M

M
= 





=










M M m1 2 0.816= =

[ ] 1 0.707 0.707

1 1
φ =

−



m

φ φ φ φ φT T Tm y k y F˙̇ + =

{ }
0.5852

3.415
{ } 1 sin 

0

0

˙̇y y
m

p

p
t+ 





= 







k
m

ω

Solving the above two coupled equations we get

y
p m

k
t1

0
20.58529

1

1

sin=
− 















ω
ω

ω

1
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y
p m

k
t2

0
23.415

1

1

sin=
− 















ω
ω

ω

2

The physical coordinate {U} can be written as

{U} = [φ]{y}

=
−












1 0.707 0.707

1 1
1

2m

y

y

U t
p
k

t1
0

2

2

2
( ) 1.207

1

0.207

1

sin=
− 















−
− 



































ω
ω

ω
ω

ω

1

U t
p
k

t2
0

2

2

2
( ) 1.707

1

0.293

1

sin=
− 















+
− 



































ω
ω

ω
ω

ω

1

By algebraic manipulation it can be shown that these results are the same as
those obtained by solving coupled equation (k = 63 600 kN/m m = 45 413 kg).

(d) Using Chopra’s method

ω1 = = × =0.765 0.765
63600 10

45413
28.5 rad/s

3k
m

ω 2

3

1.848 1.848
63600 10

45413
69 rad/s= = × =k

m

Step 1: Determine the modal participation factors and spatial distribution of
forces.

Γ
Γ

1

2

T

0

0

0

1 0.707 1

0.707 1

0 /

/









= =
−














=








φ F
m p

p m

p m

{ } [ ]{ }
1

0.5
1 0.707

1

0.707

0.5
1 1 1

0
0F m

p

m
m

m
p= =



















=








Γ φ
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{ } [ ]{ }
1

0.5
1 0.707

1
2 2 2

0F m
p

m
m

m
= =











−







Γ φ

=
−








p0

0.707

0.5

{F}1 and {F}2 are shown in Fig. 18.12.

Step 2: Determine the static displacements due to two modes.
Mode 1

U

U
k p

st

st
11

21

1
0[ ]

0.707

0.5









= 







−

=
−

−














= 







−
1

63600
2 1

1 1

0.707

0.5
500

0.0095

0.0134

1

U

U
k p

st

st
12

22

1
0[ ]

0.707

0.5









=
−








−

=
−

−










−







=
−








−
1

63600

2 1

1 1

0.707

0.5
500

0.0016

0.0023

1

U

U

st

st
1

2

0.0079

0.0157
;  =  DLF1 +  DLF2









= 































U

U

U

U

U

U

st

st

st

st

1

2

11

21

12

22

To find the base shear Vb0 = kU1. The calculations are shown in Table 18.3.

V
p
b 0

0
2.526=

Example 18.7
Figure 18.13 shows a mass-less simply suported beam with three lumped
masses and the following properties: L = 3.81 m, m = 33665 kg, E = 207.15 GPa.

P0
P0

0.5

0.707

= P0

P0

0.5

0.707

+ P0

Mode 1 Mode 2

18.12 Modal expansion of excited vectors.
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We are interested in studying the dynamic response of the beam to F(t) =
Ff(t) where < F >=<1 0 0>.

(a) Determine the modal expansion of vector {F} that defines the spatial
distribution of force.

(b) For the bending moment M1 at the location of U1 degrees of freedom
determine the modal static response

M Mst

n

N

n
st

1 – 1 1=  Σ

(c) Calculate and tabulate modal contribution factors their cumulative values
for various numbers of modes included J = 1, 2, 3 and the error ej for
static response. Comment on how the relative values of modal contribution
factors and the error ej are influenced by spatial distribution of forces.

(d) Determine the peak value of (M1n)0 modal response due to F(t)

p t
p t td t td

t td
o

( ) =
sin /   

0   

π ≤
≥









Assume td = 0.598 s which is the same as T1.
The distribution of the pulse td = T1 the fundamental period of the
system. For the shock spectrum of half cycle sine wave Rd = 1.73, 1.14
and 1.06 for T1/td = 1; T2/td = 0.252; T3/td = 0.119 respectively. It will be

Table 18.3 Dynamic base shear calculation

Mode ωn

    

R
U

U
i

st
  = 1

1

    

R d

i

= 1

1 –  

2

ω
ω











    γ = RR d

1 28.5
  
0.0095
0.0079

 = 1.21 2.28 2.758

2 69
  
–0.0016
0.0079

 = –0.211 1.106 –0.232

u1

u2 u3

θ1 θ2 θ3

L′ = L/4

18.13 Simply supported beam.
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convenient to organize the computation in a table with following headings:
n, Tn/td, Rdn, M n1  and [( ) /( )]1 0 0 1M p Mn

st

(e) Comment on how the peak modal response determined in part (d)
depend on modal static response, modal contributed factor M n1  and Rdn

and S.
(f) Is it possible to determine the peak value of the total (considering all

modes) response from peak modal response? Justify your answer.

E = 207.15 GPa

m = 33 665 kg

L = 3.81 m

I = 4.1623 × 107 mm4

Solution
Step 1

U U U U UM S
T

1 2 3
T

1 2 3=< >;  =< >θ θ θ

Step 2 Mass matrix

m =

33 665

33 665

33 665

















Step 3 Determine stiffness matrix (sym)

K EI
L

L L L L

L L L L

L L L

Kss KSM

Kms Kmm

=

7 2 0 3 –6 0

8 2 6 0 –6

7 0 6 –3

15 –12 0

24 –12

15

3

2 2

2 2

2

′

′ ′ ′ ′
′ ′ ′ ′

′ ′ ′

































Using the static condensation procedure the modified stiffness matrix for the
master degree of freedom can be written as

EI
L ′

−
−

















3

9.8501 9.4283 3.864

13.713 9.4283

9.8501sym

or
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Step 4 Determine lateral stiffness

=

630.86 603.43 246.86

877.71 –603.43

630.86
3

EI
L

−















EI
L3

9 7

12 3= 207.15 10 4.1623 10
10 3.81
× × ×

×
= 155 899.02

K = 10

983.5 940.74 384.45

1368.34 –940.74

Syn 983.5

5

−















Step 5 Determine natural frequencies solving using the MATHEMATICA
package

ω1 = 10.589; ω2 = 42.1824, ω3 = 89.55 rad/s

EV =

0.50 0.707 0.50

0.707 0 –0.707

0.50 –0.707 0.50

















Normalized eigenvector = φTmϕ = I
where

ϕ =

0.0027 0.00385 0.0027

0.00385 0 –0.00385

0.0027 –0.00385 0.0027

















The mode shapes are shown in Fig. 18.14.
Step 6 Determine modal expansion F

F F
n n=

=
Σ

1

3

= =Σ Γ Γ   where  T
n n n nm Fφ φ

Γ =












0.0027

0.00385

0.0027

F1 = Γ1mφ1;

The modal expansion of F is shown graphically in Fig. 18.15 and tabulated
in Table 18.4.
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0.0027 0.00385 0.0027

–0.00385

0.00385

0.0027 0.0027

–0.00385

Freq 1
10.589

Freq 2
42.1824

Freq 3
89.55

18.14 Mode shape.

18.15 Modal expansion of force vector.

1

0.25 0.35 0.25

0.5

0.5

0.25

0.35

0.25
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Step 7 Determine modal static response as shown in Fig. 18.16. The value
of moments due to forces F is determined by the linear combination to the
above three load cases. The resultants are as given in Table 18.5.

Next we can determine

M Lst
1 = 3

16
= 0.1875L

Table 18.4 Modal contribution of
excitation vectors

F F1 F2 F3

1 0.25 0.5 0.25
0 0.35 0 –0.35
0 0.25 –0.5 0.25

M1 = 3L/16

M1 = 2L/16

M1 = L/16

0.250.75

0.5

1

1

1

1

1

18.16 Modal static response.

Table 18.5 Calculation of moment at 1

Mode     M Fn
st
1 due to 

1
    
0.25  3

16
 + 0.35  

8
 + 0.25 

16
 = 0.10672× ×L L L L

2
    
0.5  3

16
 – 0.5 

16
 = 0.0625× L L L

3
    
0.25  3

16
 – 0.35 

8
 + 0.25 

16
 = 0.0183× L L L L

    
Σ
n n

stM
=1

3

1 0.1875 × L = 0.1875 × 3.81 L

= 0.7143 N m
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We have demonstrated

Σ
n=1

3

1 1=M Mn
st st

Step 8 Determine modal contribution factors, their cumulative values and
error.

The modal contribution factors and error are given in Table 18.6
In the above the modal contribution factor is largest for first mode and

progressively decreases for the second and third modes.
Step 9 Determine response to the half cycle sine pulse. The peak modal

response equation is specialized for R = M1 to obtain (see Table 18.7)

( )0 1 1M p M M Rn
st

n dn1 0=

Step 10 Comments

• For the given force, the modal response decreases for higher modes. The
decrease is more rapid because of Rdn. It also decreases with mode n.

• The peak value of the total response cannot be determined from the peak
modal response because the modal peaks occur at different time instants.
Square root of sum of squares (SRSS) and complete quadratic combination
(CQC) do not apply to pulse excitations.

Table 18.6 Modal contribution and error

Mode n1 or no. of modes J Due to F     M n1
    
Σ
n

J

M n
=1

1 e

1
  
0.1067
0.1875

 = 0.5691 0.5691 0.4309

2
  

0.625
0.1875

 = 0.333 0.9024 0.0976

3
  
0.0183
0.1875

 = 0.0976 1.0 0

Table 18.7 Peak modal response

Mode n Spectral values M1n × Rdn

Tn/td Rdn     M n1     ( ) /( )1 0 0 1M p Mn
st

1 1 1.73 0.5691 0.985
2 0.252 1.14 0.333 0.379
3 0.119 1.06 0.0976 0.103
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18.9 Program 18.1: MATLAB program to find the

ratio of dynamic shear to static shear in a

multi-storey building

% program to get modal components of the forces and calculate
% ratio of dynamic shear to static shear
clc;
close all;
% m=45413*[1 0;0 0.5];
m=[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1];
disp(‘ mass matrix’)
m
%you can give stiffness matrix

disp(‘ stiffness matrix’)
% k=63600000*[2 -1 ;-1 1];
k=[2 -1 0 0 0;-1 2 -1 0 0;0 -1 2 -1 0;0 0 -1 2 -1;0 0 0 -1 1];

k
a=inv(k);

% or you can given flexibility matrix directly
% a=[.75 .5 .25;.5 1 .5;.25 .5 .75];
disp(‘ flexibility matrix’)
a
c=a*m;
[ms,ns]=size(m);
par=zeros(ns,ns);
% force vector
% s=[0;500000]
s=[0;0;0;-1;2];
su=0;
for i=1:ns

su=su+s(i);
end
% imposed frequency
% omimp=21.376;
disp(‘ imposed frequency’)
omimp=0.15
%eigen values and eigen vectors
[V,D]=eig(c);
for i=1:ms

e(i)=1/D(i,i);
end
Qh=max(e)+0.001;
Ql=0;
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for i=1:ms
for j=1:ms
if e(j) > Ql & e(j) < Qh

kk=j;
Qh=e(j);

else
end
end

Ql=Qh;
Qh=max(e)+0.001;
om1(i)=e(kk);
omega(i)=sqrt(e(kk));
for l=1:ms

p1(l,i)=V(l,kk);
end
end
%Normalizing the mode shape
L=p1'*m*p1;
%develop modal matrix
for i=1:ms

for j=1:ms
p(i,j)=p1(i,j)/sqrt(L(j,j));

end
end
disp(‘ Natural frequencies in rad/sec’)
disp(omega)
disp(‘ normalized modal vector’)
disp(p)
disp(‘ check pT m p=I’)
p’*m*p
% for earthquake analysis
%s=[m(1,1);m(2,2);m(3,3);m(4,4);m(5,5)]
gamma=p’*s;
for i=1:ns

par(i,i)=gamma(i);
end
% modal contribution of forces
disp(‘ modal contribution of forces’)
ee=m*p*par
disp(‘ dynamic magnification factors’)
for i=1:ns

rdn(i,i)=1/(1-(omimp/omega(i))^2);
end
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rdn
ust=a*ee;
u=ust*rdn;
for i=1:ns

dis(i)=0;
for j=1:ns

dis(i)=dis(i)+u(i,j);
end

end
%disp(‘ amplitude of displacements’);
dis;
fo=k*dis’;
sum=0;
for i=1:ns

sum=sum+fo(i);
end
ratio=sum/su;
disp(‘ ratio of dynamic base shear to static shear’)
ratio

OUTPUT
mass matrix

m =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

stiffness matrix

k =

2 –1 0 0 0
–1 2 –1 0 0
0 –1 2 –1 0
0 0 –1 2 –1
0 0 0 –1 1

flexibility matrix
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a =

1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 2.0000 2.0000 2.0000 2.0000
1.0000 2.0000 3.0000 3.0000 3.0000
1.0000 2.0000 3.0000 4.0000 4.0000
1.0000 2.0000 3.0000 4.0000 5.0000

imposed frequency

omimp =

0.1500

Natural frequencies in rad/sec
0.2846 0.8308 1.3097 1.6825 1.9190

normalized modal vector
–0.1699 –0.4557 –0.5969 –0.5485 0.3260
–0.3260 –0.5969 –0.1699 0.4557 –0.5485
–0.4557 –0.3260 0.5485 0.1699 0.5969
–0.5485 0.1699 0.3260 –0.5969 –0.4557
–0.5969 0.5485 –0.4557 0.3260 0.1699

check pT m p=I

ans =

1.0000 –0.0000 –0.0000 –0.0000 0.0000
–0.0000 1.0000 0.0000 0.0000 0.0000
–0.0000 0.0000 1.0000 0.0000 –0.0000
–0.0000 0.0000 0.0000 1.0000 –0.0000

0.0000 0.0000 –0.0000 –0.0000 1.0000

modal contribution of forces

ee =

0.1096 –0.4225 0.7386 –0.6851 0.2594
0.2104 –0.5534 0.2102 0.5692 –0.4364
0.2941 –0.3023 –0.6788 0.2122 0.4748
0.3539 0.1575 –0.4034 –0.7455 –0.3625
0.3851 0.5086 0.5640 0.4072 0.1352
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dynamic magnification factors

rdn =

1.3845 0 0 0 0
0 1.0337 0 0 0
0 0 1.0133 0 0
0 0 0 1.0080 0
0 0 0 0 1.0061

ratio of dynamic base shear to static shear

ratio =

1.5039

18.10 Earthquake analysis of linear systems

Usually the systems are idealized as lumped-mass systems. In the first part,
we will find the structural response as a function of time when the system is
subjected to ground acceleration This is known as the response history analysis
(RHA) procedure. In the second part, we can compute peak response of a
structure during an earthquake directly from earthquake response or design
spectrum without the need for response history analysis. The values given by
response spectrum analysis (RSA) are fairly accurate.

18.10.1RHA

Let us assume that earthquake-induced motion ˙̇u tg ( )  is identical to all support
points. The equation of motion can be written as

mu cu ku miug˙̇ ˙ ˙̇+ + = − 18.48

where i is known as the influence vector

{u} = [φ]{y} 18.49

Where y represents normal coordinates we get equation of motion as

˙̇ ˙ ˙̇y y y Fun n n n n n n g+ + = −2 2 Tρ ω ω φ 18.50a

where

{F} = [m]{i} 18.50b

φTF is called Γ or the participation factor.

˙̇ ˙̇y y un n n n n g+ + = −2 2ρ ω ω n 18.51a
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Γn n nF m i= =φ φT T 18.51b

or,

φ φ φn n n nF mT T= Γ 18.52

or,

Fn = Γnmφn 18.53

or

˙̇ ˙ ˙̇D D D u tn n n n n n g+ + = −2 ( )2ρ ω ω 18.54

Knowing Dn we can compute yn as

yn = ΓnDn(t) 18.55

Using the numerical time stepping method for SDOF from Eq. 18.51b

{ } [ ]{ }F m i= 18.56a

ϕ φn n nF m iT T= = Γ 18.56b

i = ∑ Γnϕn 18.56c

Γn is called modal participation factor, implying that it is a measure of the
degree to which the nth mode participates in the response. Γ is not independent
of how the mode is normalized nor a measure of modal contribution to
response quantity.

18.11 Modal response

Displacement in physical coordinates may be obtained as

un(t) = ϕnyn(t)

= ϕnΓnDn(t) 18.57

Static force is obtained as

fn(t) = Kun(t)

= Kϕnyn(t) 18.58

where

A t D tn n n( ) = ( )2ω

The equivalent static force is the product of two quantities:

• nth mode contribution;
• pseudo-acceleration response of the nth mode SDF system.

The nth modal contribution to any response quantity R(t) may be determined
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by static analysis of structures subjected to external force fn(t). If Rn
st  is the

static value

R t R A tn n
st

n( ) ( )= 18.59

Rn
st  may be positive or negative and is independent of how the mode is

normalized.

u k F k mn
st

n n n
n

n
n= = =− −1 1

2( )Γ Γϕ
ω

φ 18.60

u t A tn
n

n
n n( ) = ( )2

Γ
ω

ϕ 18.61

= ΓnϕnDn(t) 18.62

18.11.1Total response

u t u t
N

n( ) = ( )
1

Σ
n=

= ( )
1

Σ Γ
n=

N

n n nD tϕ 18.63

or any response quantity can be written as

R t R A tn
st

n( ) ( )= Σ 18.64

The response contributions of some of the higher modes may under appropriate
circumstances be determined by simple static analysis instead of dynamic
analysis. For short periods Tn ≤ 1/33

Spa = A(t)

= – ( )˙̇u tg

If the period range included is the natural periods from Nd+1 to N, then,

R t R A t u t R
n n

st
n g n

st( ) ( ) ( ) 1
1 +1

= −
=
Σ Σ
N

N

Nd

d
˙̇

= ( ) ( ) 1 + ( ) 1
1 =11 1

Σ Σ Σ
n n

st
n g n

st
g n

stR A t u t R u t R
=

−
N

n

N Nd d

˙̇ ˙̇ 18.65

= ( ) ( ) + ( )
1 1

Σ Σ
n n

st
n g

st
g n

stR A t u t R u t R
=

−
N Nd d

˙̇ ˙̇

R R A t u t R Rst

n n
st

n g
st

n
st= ( ) ( ) –

1 1
Σ Σ
=

−








N Nd d

˙̇ 18.66
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18.11.2 Interpretation of modal analysis

At first the dynamic properties natural frequencies and mode shapes of the
structure are computed and the force distribution vector mi is expanded into
modal components. The rest of the analysis procedure is shown schematically
in Table 18.8.

Example 18.8
Determine the response of the inverted L-shaped frame shown in Fig. 18.17
to horizontal ground motion.

Table 18.8 Modal contribution to dynamic response

Mode Static analysis Dynamic analysis of SDOF Modal to dynamic
response

1

    R t R D tst
1 1 1

2
1( ) = ( )ω

n

    R t R D tn n
st

n n( ) = ( )2ω

Total response
    
R t R t

n

N

n( ) =  ( )
=1

Σ

2L

3m
EI

EI
L

2m
V2

V1

18.17 Inverted L-shaped frame.

F1

Fn

A1(t)

An(t)

ω1, ρ1

ωn, ρn1
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Solution
Assume the two elements to be axially rigid. The degrees of freedom are as
shown in Fig. 18.17 Influence vector i = <1 0 >. Assign horizontal and
vertical displacement of mass 2m as v1, v2 respectively.

The mass and stiffness matrices are

m
m

m
a L

EI
k EI

L
= 





= 





=
−

−






5

2
:  

3
1 3

3 20
;  3

11

20 3

3 1

3

3

F t miuef g( ) = – ˙̇

= 











–
5 0

0 2

1

0

m

m
˙̇ug

= 





–
5

0

m
ug˙̇

The force in the vertical direction is zero because ground motion is horizontal

ω ω1 3 2 30.2659 ;  1.0754= =EI
mL

EI
mL

Eigenvector

EV =
−





0.1604 2.493

1 1

M m m1
2 0.1604 1 [ ]

0.1604

1
2.1281=< > 








=

M m m2
2 2.493 1 [ ]

2.493

1
33.075=< − >

−







=

[ ] 1 0.110 0.433

0.687 0.1739
φ =

−



m

Γ1
1
T

1
T

1

1 0.11 0.687
5

0
0.55= = < > 








=
φ

φ φ
mi

m m

m
m

Γ2
2
T

2
T

2

1 0.433 0.1739
5

0
2.165= = < − > 








= −
φ

φ φ
mi

m m

m
m

F m
m

m

m

m1 1 1 0.55
5

2

0.11

0.687

0.3025

0.7557
= = 












= 







Γ φ
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F m
m

m

m

m2 2 2 2.165
5

2

0.433

0.1739

4.697

0.7557
= = − 





−







=
−









Γ φ

m m m
5

0

0.3025

0.7557

4.697

0.7557








= 







+
−









The modal expansion of spatial distribution of effective force is shown in
Fig. 18.18. Observe that the forces along the vertical degree of freedom in
the two modes cancel each other because the effective earthquake force in
this degree of freedom is zero.

Substitution for Γn and φn gives the first mode displacement

{ ( )}
( )

( )
( ) 0.55

0.11

0.687
( )1

1

2 1
1 1 1 1U t

u t

u t
D t D t= 








= = 







Γ φ

= 







0.0605

0.3778
( )1D t

Second mode displacement

{ ( )}
( )

( )
( ) 2.165

0.433

0.1739
( )2

1

2 2
2 2 2 2U t

u t

u t
D t D t= 








= = −
−








Γ φ

=
−









0.937

0.376
( )1D t

u1(t) = 0.0605 D1(t) + 0.937 D2(t)

u2(t) = 0.3778 D1(t) – 0.376 D2(t)

The earthquake-induced bending moment Mb at the base of the column
due to the nth mode is given by

M t M A tb b
st

nn n
( ) = ( )

Static analysis of the frame for the forces F1 and F2 gives M Mb
st

b
st

1 2,   as

L

3m

2L 5m

2m =
L

3m

2L 2L

3m
0.302m 4.697m

0.7557m
+

L0.7557m

    
M mLb

st
1

= 1.8139
    
M mLb

st
2

= 3.187

18.18 Modal contribution.
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shown in Fig. 18.19. Substituting for Mbn
st  and combining modal contribution

gives the total bending moment

M t M t mLA t mLA tb n bn( ) ( ) 1.8139 ( ) 3.187 ( )
1

3

1 2= = +
=
Σ

Three response quantities have been considered here, and other responses
can be expressed in terms of Dn(t) and An(t). These responses of the nth
mode SDOF system to given ground acceleration ˙̇u tg ( ) can be determined
by using numerical time-stepping methods.

18.11.3Analysis of response to base rotation

The modal analysis procedure is applicable after slight modification when
the excitation is base rotation. Consider the cantilever frame shown in Fig.
18.19.

Influence vector ( ) =
1

2

3

i

h

h

x















18.67

( ) =

2

7

4

m

m

m

m

















18.68

F t mi tgt g( ) = – ( )˙̇θ 18.69

= –

2

7

4

( )
1

2

3

mh

mh

mh

tg















˙̇θ 18.70

m2 = 3m

m1 = 2m

L

h1

h2 v1

v3

θg

v2

X3 m3 = 4m

X3f2 = h
2

f1 = h1

θg

18.19 Response to base rotation.
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18.12 Multi-storey buildings with symmetrical plan

The equation of motion for this structure is (see Fig. 18.20)

m cu ku mi˙̇ ˙ ˙̇u ug+ + = – ⋅ 18.71

where

i =



























1

1

1

1

1

18.72

mi = mI

= =
1 1

Σ Σ Γ
n n n n nF m

= =

N N

φ 18.73

Γn
n

nM
= L

L mi M mn n n n n;  where = ;  =T Tφ φ φ

Σ Σ
n

N

n n

N

n nF m
–1 –1

 =  Γ φ 18.74

Example18.9
The two storey shear frame shown in Fig. 18.21 is excited by a horizontal
ground motion ˙̇u tg ( ). Determine

(a) modal expansion of effective earthquake forces;

18.20 Multi-storey building with symmetric plan.

VN

V2

V1
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(b) the floor displacement response of Dn(t);
(c) the storey shear in terms of An(t);
(d) the first floor and base overturning moments in terms of An(t).

Solution

[ ]
2 1

1 1
;  

1

1/2
k m m=

−
−







= 





(a) Using the MATHEMATICA package,

ω1 = 0.765 k
m

ω 2 = 1.847 75 k
m

Eigenvector =
0.57735 –0.57735

0.816 497 0.816 497











M m1
2 = < 0.577 35  0.816 477 >

1

0.5

0.57735

0.816 497














= 0.666 m

M2
2  = 0.666 m

Normalized eigenvector =
0.707 –0.707

1 1
1



 m

F1 = Γ1mφ1   where   Γ1 1
T= ϕ mI

F2 = Γ2mφ2   where   Γ2 2
T= ϕ mI

0.5m

m

E1 E2

h

h

18.21 Two storey shear frame.
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Γ1 = < 0.707   1 >
1 0

0 0.5

1

1














m

= < 0.707   1 >
1

0.5








m

= 1.207 m

Γ2 = < –0.707   1 >
1

0.5

1

1














m

= –0.207  since { } = [ ]{1};  + = + = 151
2

2
2

1 2m F m m mΓ Γ

[ ] [ ] 1.207
1 0

0 0.5

0.707

11 2F F F m= = 













− 





−







0.207
1 0

0 0.5

0.707

1
m

= 







+
−









= +m F F
0.853

0.6035
 

0.146

0.1035 1 2m

The modal expansion of effective earthquake forces is shown in Fig.
18.22.
(b) Substitution of Γn and φ gives the displacement.

u t

u t
D t

1

2 1
1

( )

( )
1.207

0.707

1
( )







= 







=
0.854

1.207
( )1









D t  which is same as [ ] ( ) ( )–1
1 1

2
1k F D tnω

18.22 Modal expansion of effective earthquake force.

0.5m

m

0.6035m

0.853m

–0.1035m

0.146m= +
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u t

u t
D t

1

2 2
2

( )

( )
–0.207

–0.707

1
( )







= 







= 







0.146

–.207
( )2D t   which is same as [ ] ( ) ( )–1

2 2
2

2k F D tnω

Combining we get

u1(t) = 0.854 D1(t) + 0.146 D2 (t)

u2(t) = 1.207 D1(t) – 0.207 D2 (t)

(c) Storey shear can be determined as follows (see Fig. 18.23). Substituting
this we get storey shear as

V m A t m A tb
st = 1.4565 ( ) + 0.0425 ( )1 2

V t m A t m A t1 1 2( ) = 0.6035 ( ) – 0.1035 ( )

(d) Static analysis of the structure for external floor stress FN gives static
responses M Mb

st st,  1  for the overturning moments Mb, and M1 at the base
and first floor respectively.

Mb
st ( ) = 2.062 ( ) – 0.062 ( )1 2t mh A t mh A t

M1(t) = 0.604 mh A1(t) – 0.104 mh A2(t)

Example 18.10
Figure 18.24 shows a two storey frame with flexural rigidity EI for beams
and columns (span of the beam = 2h). Determine the dynamic response of
the structure to horizontal ground motion ˙̇u tg ( )  and express

(a) floor displacement and joint rotations in terms of )(tDn ;
(b) the bending moments in a first storey column and in the second floor

beam in terms of An(t).

0.6035

0.6035m
0.853

1.4565m

+

0.1035m

0.1035m
0.146m

0.0425m

18.23 Storey shear and moment.
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Solution
Mass matrix

[ ] =
1

0.5
m m







The complete stiffness matrix to the corresponding to degrees of freedom
is given by

k EI
h

h h

h h h h

h h h h

h h h h

h h h h h

h h h h h

=

48 –24 0 0 –6 –6

–24 24 6 6 6 6

0 6 10 1 2 0

0 6 1 10 0 2

–6 6 2 0 6 1

–6 6 0 2 1 6

3

2 2 2

2 2 2

2 2 2

2 2 2

























Denoting

U
u

u
U

u

u

U

U
m s

i

m

s
= ; = :

= master degree of freedom

= slave degree of freedom
1

2

3




















K mm k k k kmm ms ss sm
* –1= –

=
37.15 –15.12

–15.12 10.193
EI
h







ω1 3= 2.407 EI
mh

ω 2 3= 7.193 EI
mh

u3

u5 m/2

m

u6

u4

h

u2

u2

h

18.24 A two storey frame.
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Eigenvector =
0.482 –1.037

1 1






Normalized eigenvector = 1 0.563 –0.826

1.165 0.796m







Γ1 1
T= (1)ϕ m

= 1 < 0.563   1.1687 >
1

0.5

1

1m
m














= (0.563 + 0.584) m

= 1.147 m

Γ2 2
T= (1)ϕ m

= < – 0.826   0.796 >
1

0.5

1

1













m

= (–0.826 + 0.398) m

= – 0.428 m

(a) Floor displacement due to first mode

U t
u t

u t1
1

2
( ) =

( )

( )








= 1.147
0.563

1.168
( )1









D t

=
0.647

1.340
( )1









D t

The joint rotations can be obtained from

U k k Us ss sm m= – –1

U
h

D ts = 1

–0.164 –0.411

–0.164 –0.411

0.904 –0.74

0.904 –0.74

0.647

1.34
( )1



























= 1

–0.657

0.657

–0.407

–0.407

( )1h
D t



















�� �� �� �� �� ��



Structural dynamics of earthquake engineering712

Floor displacements due to second mode

U t
u t

u t2
1

2 2

( ) =
( )

( )








= –0.425
–0.826

0.796
( )2









D t

=
0.313

–0.341
( )2









D t

The joint rotations for the structure

( ) = 1

0.082

0.082

0.572

0.572

( )2 2U
h

D ts



















Combining we get

U t
u t

u t
( ) =

( )

( )
1

2







=
0.647 ( ) + 0.753 ( )

1.341 ( ) – 0.341 ( )
1 2

1 2

D t D t

D t D t






U
h

D t D t

D t D t

D t D t

D t D t

s = 1

–0.657 ( ) + 0.082 ( )

–0.657 ( ) + 0.082 ( )

–0.407 ( ) + 0.572 ( )

–0.407 ( ) + 0.582 ( )

1 2

1 2

1 2

1 2



















(b) The bending moment at the ends of the flexural elements are related to
modal displacement as

M EI
l

EI
l

EI
l

u EI
l

ua a b a b= 4 + 2 + 6 – 6
2 2θ θ

M EI
l

EI
l

EI
l

u EI
l

ub a b a b= 2 + 4 + 6 – 6
2 2θ θ

Substituting the above quantities we get the moments at the ends ‘a’ and ‘b’
of the column (see Fig. 18.25)
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M EI
h

U EI
h

EI
h

U EI
ha = 4 + 2 (0) + 6 ( ) – 6 (0)3 2 1 2

= [1.254 ( ) + 2.446 ( )]2 1 2
EI
h

D t D t

The bending moment at the right-hand is similar (see Fig. 18.26).

Relating Dn(t) to An(t) as)

D t
A t

1
1

1
2( ) =
( )

ω

=
(2.407)

( )
3

2 1
mh

EI
A t

D t
A t

2
2

2
2( ) =
( )

ω

=
(7.193)

( )
3

2 2
mh

EI
A t

Solving we get the bending moment at the top of the column

Ma = mh[0.216A1(t) + 0.0403A2(t)]

Similarly bending moment at the right side of the beam

M EI
h

U EI
h

Ub = 2 + 6
3 2 1

= mh[0.443 A1(t) + 0.0441 A2(t)]

h

θa = u3

θb = 0

ub = 0

ua

ua = 0 ub = 0

u 5 u 6

18.25 Moment in column.

18.26 Moment in beam.
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For the second floor beam L = 2h

Ma = mh[–0.21A1(t) + 0.0332A2(t)]

Mb = mh[–0.21A1(t) + 0.0332A2(t)]

18.12.1Modal responses

The relative lateral displacement Uin(t) is written as

Ujn(t) = ΓnϕijDn(t)

The storey drift is

Djn(t) = Ujn(t) – Uj–1,n(t)

= Γn(ϕjn – ϕj–1, n)Dn(t)

The equivalence static force for the nth mode fn(t) is given by

fn(t) = FnAn(t)

fjn(t) = FjnAn(t)

where fjn(t) is lateral force at any jth floor level.

Rn(t) due to nth mode is given by

R t R A tn n
st

n( ) ( )=

The modal static response Rn(st) is determined by static analysis of building
due to the external force Fn. The modal static responses are presented in
Table 18.9, where

L h mn

N

j j jn
ϑ ϕ=  

1
Σ
j =

Table 18.9 Modal static response

Response Modal static response   R n
st

Vi
    
V Fin

st

j i

N

jn =  
=
Σ

Mi
    
M h h Fin

st

j i

N

j i jn =  ( – )
=
Σ

Vb
    
V F L Mb

st

j

N

jn n n
h

n =  =  = 
=1

*Σ Γ

Mb
    
M h F L h Mbn

st

j

N

j jn n n n n =  =  = 
=1

* *Σ Γ θ

uj     
u j n

st
n n jn = ( / )2Γ ω φ

∆j     
∆ Γj n

st
n n jn j n = ( / ) (  – 2

( –1)ω φ φ
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18.12.2Total response

Combining the response contribution of the entire mode gives the earthquake
response of the multi-storey building

R t R t R A t
n n n n

st
n( ) ( )  ( )

1 1
= =

= =
Σ Σ
N N

˙̇ ˙̇ ˙̇u t u t D tj
t

g n n jn n( ) ( ) ( )
1

= +
=
Σ Γ
N

φ

The steps of analysis are given below:

1. Define ground acceleration ˙̇u tg ( )  numerically at every time step ∆t.
2. Define structural properties:

(a) determine mass and stiffness matrix,
(b) estimate modal damping ratio.

3. Determine natural frequencies (Tn = 2π/ωn) and natural modes of vibration.
4. Determine modal components RN of the effective earthquake force

distribution.
5. Compute the response contribution of nth mode by following steps:

(a) Perform static analysis of building subjected to Fn forces.
(b) Determine pseudo-acceleration response An(t) for the nth mode of

SDOF system.
(c) Determine An(t).

6. Combine modal contributions Rn(t) to determine the total response. As
already seen, only lower fewer modes contribute significantly to the
response. Hence steps 3, 4 and 5 need to be implemented only for these
modes.

18.13 Spectrum analysis by modal response

In the case of design of structures, complete time history analysis is not
necessary; it is enough to valuate the peak values of forces and deformations.
A good estimate, although not accurate, of the peak response can be determined
directly from response spectrum for the ground motion. These peak modal
responses are combined using any one of the rules discussed below to get the
value of the total response. This method is known as RSA.

For any response value such as force or deformation, the peak value Rn0

of the nth modal contribution is given by

R R An n
st

n0 = 18.75

where An(Tn, ρn) is the ordinate of the pseudo-acceleration response spectrum
corresponding to the natural vibration period Tn = 2π/ω and the damping
ratio ρn. Rn0 is either positive or negative depending on whether Rn

st  is
positive or negative.
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18.13.1Modal contribution rules

Knowing the peak value Rn0 of the nth mode contribution it is necessary to
find the peak value R0 if the total response R(t). As we have seen in earlier
chapters, the peak value Rn0 for each node occurs at different times and the
combined peak response may attain its peak at a different time instance.

18.13.2Absolute sum rule

If we assume that all peak values of modal responses occur at the same time,
and ignore the algebraic sign for the peak value of the total response, we get

R R
n n0 1 0≤

=
Σ
N

| | 18.76

The above estimate is highly conservative and not popular in structural
design applications.

18.13.3SRSS rule

The SRSS rule provides an estimate of peak value according to the equation

R R
n n0 1 0

2
1/ 2

≈ 



=

Σ
N

18.77

The algebraic sign of Rn0 does not affect the value of R0. This rule is applicable
for structures where natural vibration frequencies are well separated. The
SRSS rule was developed by Rosenblueth (1951).

18.13.4CQC rule

The rule is applicable to wide range of structures in which natural frequencies
of closely spaced such as those in unsymmetric buildings. According to the
CQC rule (first developed by Rosenblueth and Elorduy)

R0 = (∑ ∑ ρinRi0 Rj0)1/2 18.78

or

r R R0
T= ρ 18.79

where

{ }
10

20

0

R

R

R

R N

=











18.80
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and

ρ
ς β β

β ς β βij
ij ij

ij ij ij

=
+

− + +
8 (1 )

(1 ) 4 (1 )

2 3/ 2

2 2 2 2 18.81

where

β ω
ωij

i

j
= 18.82

It is assumed that the damping ratio ς is the same for all modes. Figure 18.27
shows the variation of correlation coefficient with respect to βij. It is to be
observed that the correlation coefficient ρij is significant at βij = 1.

In ρ matrix the leading diagonal terms are equal to 1. Hence Eq. 18.78 is
rewritten as

R R R R
n n i j ij i j0 1 0

2
1 1 0 0+  =

= = =
Σ Σ Σ
N N N

ρ 18.83

The first summation of the right-hand side is identical to SRSS combination
rule, whereas the next term may be positive or negative, depending the
algebraic signs of Rn0. It is also seen from Fig. 18.27 that ρij ≈ 0 when ωi, ωj

move farther apart. For well-separated vibration frequencies ρij vanish. As a
result the second term can be neglected and Eq. 18.83 reduces to the SRSS
rule.

rho = 0.02
rho = 0.05
rho = 0.1
rho = 0.2

10–1 100 101

Frequency ratio beta

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t

1

0.8

0.6

0.4

0.2

0

18.27 Variation of correlation coefficients with respect to frequency
ratio.
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18.13.5Factors influencing the earthquake response

There are two parameters which influence the earthquake response: (1)
fundamental natural vibration period T1 and (2) beam to column stiffness
ratios based on the properties of the beam and column in the storey closest
to the mid-height of the frame.

γ =
Σ
Σ

beams

columns

/

/

EI L

EI L

b b

c c
18.84

where EIb and EIc are the flexural rigidities of beams and columns and Lb

and Lc denote the lengths of the beams and columns. If γ → ∞ the beam
imposes no restraint on joint rotations and the frame will bend as a flexure
beam. If λ > ∞ the structure will behave like a shear beam with double
curvature bending in each column. An intermediate value of γ represents the
column and beam undergoing double curvature bending. This property γ
controls several properties of the structure when γ is small and the vibration
periods are more separated.

As the fundamental period increases with the velocity and displacement-
sensitive regions of the structure, the higher mode response generally becomes
an increasing percentage of the total response. For design accuracy more
modes should be included in the analysis of buildings with longer periods
than the buildings with shorter period. More modes should be included in the
analysis of buildings with smaller γ. In some codal provisions, we have to
include the number of modes such that 90% of the total mass is the participating
mass.

18.14 Effective modal mass and modal height

The base shear for ‘n’ mode is calculated as

V t V A tbn bn
st

n( ) = ( ) 18.85

or if it were one storey building

Vbn(t) = MnAn(t) 18.86

Vbn(t) = M*An(t) 18.87

M n
*

 is called base shear modal mass or brevity effective modal mass. From
that it is clear that only the portion of Mn of the mass of a multi-storey
building is effective in producing base shear due to nth mode because the
building mass is distributed among various floor levels and the equivalent
static force mjϕjn varies over the height. The sum of effective modal masses
Mn over the modes is equal to the mass of this building.
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The base overturning moment for a multi-storey building is given by

M t M A tbn bn
st

n( ) = ( )

= hn
*Vbn(t) 18.88

h n
*  is called the base moment effective modal height or effective modal

height (see Fig. 18.28)

h M h Mn n j j j=
=
Σ

1

N

18.89

Example 18.11
Determine the effective modal mass and the effective modal height for the
frame shown in Fig. 18.29.

Solution
The modal distribution of effective earthquake force is given in Fig. 18.30.
Taking moment at base

Fjn(t) mj

hj

    Mn
*

    M hn n
* *

    hn
*

18.28 Multi-storey frame.

0.5m

u2

u1

m

E2E1

h

hk = 1

k = 1

18.29 Two storey frame.
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h
h

1
* =

(0.853 1 + 0.6035 2)
1.456

× ×

=
(0.853 + 1.2070)

1.456
h

=
(2.060)

1.456
h

= 1.414 h   M1
*  = 1.456 m

h
h

m2
* =

(0.146 1 – 0.1035 2)
0.0425

× ×

=
(0.146 – 0.2070)

0.0425
h

(–1.435) h;   M2
*  = 0.0425 m

The effective modal mass and modal height are indicated in Fig. 18.31.

Example 18.12
Consider a five storey building (Example 18.1) (see Fig. 18.32) whose
properties are given. Calculate effective modal mass and height.

Model 1 Model 2
0.6035m

0.853m

    M m2 = 0.0425φ

0.1035m

0.146m

18.30 Modal contribution of masses.

    M m1 = 1.456φ

18.31 Effective modal mass and height.

    M m1 = 1.456φ

    h1
φ = 1.44h

    M 2
φ = 0.0425m

    h1
φ = – 1.435h
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Solution
Using the MATHEMATICA package, the normalized eigenvector is given as

[ ]

0.1585 0.3602 0.4472 0.3804 0.0193

0.2982 0.3981 0 0.4976 0.0711

0.4023 0.0797 0.4472 0.2703 0.2423

0.4586 0.31 0 0.1441 0.8202

0.4877 0.5610 0.4472 0.2204 0.446

φ =

− − −
− − − − −
− −
− −
− − −























The numerical analysis value is

< F >=<2   2   2   1   1>

The modal contribution of mass (see Fig. 18.33) is

φ1
T

1 2.6644F = = −Γ

Γ2 = –0.8051

Γ3 = –0.4472

Γ4 = 0.23

Γ5 = 0.0068

[F] = [m][ϕ][Γ]

The effective modal mass and modal height are shown in Fig. 18.34.
The ground acceleration ˙̇u tg ( ) is defined by its numerical value as time

instant equally spaced at ∆t. This time step is chosen small enough to define
˙̇u tg ( )  and to determine accurately the response of the SDOF system:

k

v2

v1

m

m

2m

2m

2m

18.32 Five storey frame.
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Base shear = m (7.0926A1(t) + 0.6471A2(t) + 0.2A3(t)

+ 0.0528A4(t) + 0.0003A5(t))

Base moment = mh (7.0927 × 3.079A1(t) + 0.6471 × (–1.563)A2(t)

+ 0.2A3(t) + 0.0528 × (–0.587)A4(t)

+ 0.0003 × 7.67A5(t))

1

1

2

2

2

8m 7.0926m 0.6471m

=

1.2993

1.222

2.133

1.5889

0.8447

0.4517

0.2496

0.1284

0.64

0.58

0.2m 0.0528m 0.0003m

0.2

0.4

0.4

0.0507

0.0331

0.1243

0.2289

0.175

0.0033

0.0056

0.0033

0.001

0.0003

18.33 Modal contribution of masses.

3.079h –1.563h h –0.587h 7.67h

7.0926m
0.6471m

0.20m
0.0528m

0.0003m

18.34 Effective modal mass and height.
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18.15 Multiple support excitation

There are certain examples in which the ground motion generated by an
earthquake is different from support to support. For example the Golden
Gate Bridge is 1965 m in length and the ground motion is expected to vary
significantly over the length of the base at the two ends of the bridge.

Example18.13
A uniform two span continuous bridge shown in Fig. 18.35 with flexural
stiffness EI idealized as lumped mass. Let us formulate the equation of
motion subjected to vertical motion at 1, 2, 3 as ug1, ug2, ug3 at supports.

Solution
Formulation stiffness matrix 10 × 10. Assuming translational displacement
as master and other degrees of freedom as slaves we get reduced stiffness
matrix of size 5 × 5.

[ ]

236.5 92.4 87.6 226.2 15.6

92.4 236.7 15.3 226.2 83.3

87.6 15.3 38.7 61.5 2.58

226.2 226.2 61.5 329.1 61.5

15.6 83.3 2.58 61.5 38.7

3K EI
L

=

− − −
− − −

− −
− −
− −























=










k k

k k
g

g gg
T

where

[ ]
87.6 226.2 15.6

15.3 226.2 83.33k EI
Lg =

− − −
− − −







    
Ug1     

Ug2     
Ug3

A m B m C

y2 y2 y2 y2

3 1 4 2 5

6 7 8 9 10

18.35 Two span continuous beam.
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[ ]

38.7 61.5 2.58

61.5 329.1 61.5

2.58 61.5 38.7
3k EI

Lgg =
















k
u

u
kg

u

u

u

1

2

3

4

5

+ = 0




















u

u
k kg

u

u

u

1

2

–1

3

4

5

= –[ ]




















U

U

U

U

U

1

2

3

4

5

=
0.406 0.687 –0.093 75

–0.093 75 0.687 0.406


























The influence vectors associated with each support are

i1 =
0.406 25

–0.093 75






i2 =
0.687 50

0.687 50






i3 =
–0.093 75

0.406 25






We could obtain the above influence vector using a strength of materials
approach, as shown below.

Apply unit load at 3 (to get influence vector i1)

 Moment at 4 = L

Rotation at 4 =
3

2L
EI

Hence u ML
EI

L
EI2

2 3

16 16
= − = −

Displacement at the free end u L
EI

L
EI

L
EI3

3 3 3

3 3
2
3

= + =

Calculate u2 when u3 = 1
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That is given by

− = = −L EI
EI L

3

3

3
16 2

3
32

0.093 75

The – sign shown the deflection at 2 is downward.
Now calculate deflection at 1 due to unit load at 3= deflection at 3 due to

unit load at 1.

Apply unit load at 1

Rotation at 4 =
2 3 6

2 2L
EI

L
EI× =

Deflection at 1 =
(0.5 )

3 6 2 8

3 2 3L
EI

L
EI

L L
EI

+ =

Slope at 1 =
6 8

7
24

2 2 2L
EI

L
EI

L
EI

+ =

Deflection at 3 =
8

7
24 2

13
48

3 2 3L
EI

L
EI

L L
EI

+ =

Both deflections at 3 and 1 are upwards and hence positive.
If u3 = 1 let us calculate what is u1. It is given by

13
48

3
2

13
32

0.406 25
3

3
L
EI

EI
L

= =

Hence

i1
0.406 25

0.093 75
=

−








To find the influence vector i2, apply unit load at 4 and find the deflection
at 1 and 4. The deflection at 4 due to unit load at 4 is given by L3/6EI. If the
load is at a distance of ×2 and the deflection is to be calculated at ×1, then
deflection at ×1 is given by

u u
x x
EI L

L x x1 2
1 2 2

1
2

2
2

6 2
(4 )= = − −

= − − =( /2)( )
6 2

(4 /4) 11
96

2 2 2
3L L

EI L
L L L L

EI

When the deflection at 4 is equal to 1 what is the deflection at 1 and 2 which
may be calculated as

11
96

6 0.6875
3

3
L
EI

EI
L

=
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Hence the influence vector i2 is given as

i2

0.6875

0.6875
= 








Once i1 vector is known, i3 vector is written as

i3

0.093 75

0.406 25
=

−







The equations of motion are

( ) + =m u ku Pg˙̇

m u ku m i i i

u

u

u

g

g

g

˙̇

˙̇

˙̇

˙̇
+ = – [ ]1 2 3 2

1

3















18.16 Symmetric plan buildings: translational

ground motion

Consider an N-storey symmetric plan building having rigid floor displacement
and several frames in each x and y direction as shown in Fig. 18.36.

fxi = kiuxi   and   uxi = ui

fxi = kxiui 18.90

Assume ux1, ux2,… are displacements of the floor at the centre of mass.

f fx xi=  Σ
= (  )Σ k ux ii

= kxui 18.91

y

  
v iy

  ui x
x

18.36 Symmetric plan building.
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Similarly,

fy = kyvi 18.92

18.16.1One storey, two way unsymmetric system

Consider the idealized one storey frame shown in Fig. 18.37. Assume the
diaphragm is rigid. Assume frame A is located at a distance of e:

f

f

f

k k k

k k k

k k k

u

u

u

x

y

xx xy x

yx yy y

x y

x

y

ϑ

ϑ

ϑ

ϑ ϑ ϑϑ ϑ

















































= 18.93

or,

f = ku 18.94

Displacement of frame

B u d ux= –
2 ϑ

f k u d uxB xB x= –
2 ϑ( ) 18.95

C u d ux=  +
2 ϑ

Frame B

d
Uθ

Uy

Ux Frame A

Frame C

fyA VA fxB UB, Uc

fxC

18.37 Unsymmetrical building.
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Displacement of frame

f k u d uxC xC x= +
2 ϑ( ) 18.96

fx = FxB + fxC

= ( + ) +
2

–
2

k k u k d k d uxB xC x xC xB( ) ϑ 18.97

Similarly for the frame A

VA = uy + euϑ

fyA = kyA(uy + eua)

f f d f d f exB xC yA0 = –
2

+
2

+

= –
2 2

+ +
2 2

+ ( + )k u d u d k u d u d k u eu exB x xC x yA yϑ ϑ ϑ( ) ( ) 18.98

f d k k u k u e k k d k d uxC xB x yA y yA xC xBϑ ϑ=
2

( – ) + + +
4

+
4

2
2 2











18.99

f = ku 18.100

where,

K

k k d k k

k A ek

d k k ek A e k k d
y

k d
y

xB xC xC xB

y yA

xC xB y yA xC xB

=

( + ) 0
2

( – )

2
( – ) + +2

2 2

0
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M

m

m

I

=

0
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18.16.2Equation of motion
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u

u
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u

u

u
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˙̇

˙̇

˙̇ ϑ ϑ





























+ = 0 18.103

Considering earthquake excitation defined by ˙̇ ˙̇ ˙̇u t u t u tgx gy g( ), ( ), ( )θ , we get
the equation of motion if (kxC = kxB)
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18.104

The above equations are coupled. Thus the response of the system to x and
y components of ground motion is not restricted to lateral displacement x and
y directions but will also include lateral motions in tranverse directions and
the torsion of the roof diaphragm about the vertical axis.

In Fig. 18.36, if frame A passes through the centre of mass ‘O’, then (e =
0) (kxB = kxC).

m
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All three equations are uncoupled and solved.

18.17 Summary

Procedures of earthquake analysis of structures idealized as lumped mass
systems have been discussed. Forced vibration of damped systems can very
easily be solved using Chopra’s method by splitting the excited force into
various modal components provided the time variation of all the forces is the
same. The same method is applied to solve earthquake analysis of linear
systems by the response spectrum method. In the next chapter, general code
provisions of various codes are discussed and the problems are solved using
IS1893-2002 Part I.

18.18 Exercises

1. Figure 18.38 shows a shear frame (rigid beams) and its floor weights
and storey stiffness. The structure is subjected to harmonic force p(t) =
p0 sin ω t on the top floor where p0–500 kN and ω = 0.75 ω1 (ω1 is the
fundamental frequency).
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Determine the steady state displacements using
(i) direct solution of coupled equations
(ii) modal analysis
(iii) by finding the modal expansion vector for the forces and define the

spatial distribution of forces. Find also the dynamic base shear.
(W = 450 kN; K = 57 235 kN/m h = 4 m)

2. Figure 18.39a shows a structural steel beam E = 200 GPa, I = 41.6 ×
108 mm4, L = 6 m, mL = 15 500 kg. Determine the displacement response
of the system due to force p(t) which is shown in Fig. 18.39b and applied
at the right mass. Plot as a function of time the displacement uj due to
each vibration mode separately and combined. Assume damping 2% of
critical damping.

3. The response of a two storey frame shown in Fig. 18.40 to El Centro
ground motion is to be computed as function of time. The properties of
the frame are h = 4 m, m = 450 kN/g, I = 4.16 × 108 mm4, E = 200 GPa
and damping 5%.

h

2h

m/2

m

m

k

18.38

mL/3 mL/3

L/3

450 kN

0.30 s

18.39

(a)

(b)
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(a) Determine the SDOF system response Dn(t) and An(t) using numerical
time stepping method. Plot Dn(t) and An(t).

(b) For each natural mode, calculate as a function of time the following
response quantity: (i) the displacement at each floor, (ii) storey shear,
(iii) floor and base overturning moments.

(c) At each instant of time, combine modal contributions to each of the
response quantity to obtain total response. For selected response
quantity plot as a function of time the modal response and total
response.

4. Figure 18.41 shows a three storey frame. Determine the dynamic response
of the frame to horizontal ground motion. Express (a) the floor displacement
and joint rotations in terms of Dn(t), (b) bending moment in the I storey
column and in the second floor beam in terms of An(t). The stiffness
values of ground middle and top storey are k; 2k/3; k/3 where k = 24 EI/
L3.

5. For the umbrella structure shown in Fig. 18.42 excited by horizontal
ground motion ˙̇u tg ( )  determine
(a) the modal expansion of earthquake forces,
(b) the displacement response in terms of Dn(t),
(c) the bending moment at the base of the column and at location a of

the beam in terms of An(t).

h

m

m/2

2h

h

2h

m/2

m

m

18.40 18.41

U3

2m

U2

c 5m a
d

2m
U1

b

18.42
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Modulus of rigidity = EI for all the members and the lengths of all the
members = L.

6. A cantilever tower shown in Fig. 18.43 with three lumped mass and
flexural stiffnesses m = 8700 kg, EI/L3 = 10 000 kN/m; ρn = 5%.
(a) Determine natural periods and modes and sketch the modes.
(b) Expand effective earthquake forces in to their modal components

and sketch this expansion graphically.
(c) Compute the modal static response for three quantities (i)

displacement of the top mass (ii) shear force at the base of the
tower (iii) moment at the base of the lower.
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19
Building codes for aseismic design

Abstract: In this chapter, various building codes for seismic design are
compared and the salient features are discussed. Various design examples
have been carried out using IS1893-2002 Part 1. Using similar procedures,
designs can be carried out using different codes.

Key words: capacity design, structural performance factor, zone factor,
ductility, spectrum analysis.

19.1 Introduction

The purpose of building codes is to promote and protect public welfare,
which includes health and safety of individual citizens as well as economic
well-being of the community. This task is accomplished by the building
codes by setting minimum standards for materials of construction that may
be used for structures of different types of occupancies. Governments have
the power to enforce these standards through the code adoption process in
converting the code to a legal standard. If building codes were not specified
in a unified manner, design and construction processes would vary widely
and many structures would be unable to afford their occupants adequate
protection against collapse.

Design loads are set by building codes at levels that have a moderate to
low probability of earthquake occurrence during the life of the structure.
Buildings may be designed for earthquake shaking likely to occur once
every 500 years or wind load anticipated once in 100 years. Building code
provisions for earthquakes are unique. They do not intend that structures be
capable of resisting design loads within the elastic or near-elastic range of
response, in that some level of damage is permitted.

The provisions governing design for earthquake resistance by building
codes may be traced back as far as building regulations enacted in Lisbon,
Portugal, following the earthquake of 1755. Early building code provisions
for earthquake design focused on probability of certain type of construction.
But modern codes supplement this prescribing requirement, with specifications
of minimum permissible structural strength and stiffness. Although most
developed countries develop and enforce their own building codes, the seismic
provisions currently used throughout the world generally follow one of four
basic models:
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1. NEHRP (National Earthquake Hazard Reduction Program – Recommended
provisions developed by Building Science Safety Council in the USA
(BSSC 1997).

2. Building Standard of Japan.
3. New Zealand Building Standard Code.
4. Eurocode 8.

Although each individual code has many original requirements and provisions,
in general all are based on similar concepts.

19.2 Historical development

1. Phase I, termed as experimental basis. This phase consists of observations
and behaviour of real structures in earthquakes and the development of
prescriptive rules.

2. Phase II termed as theoretical basis. It consists of the body of analytical
and experimental research that has been developed over the years.

3. Phase III termed as engineering judgement. This is based on the expertise
of practising civil engineers.

The first modern code containing seismic provisions is generally acknowledged
to be the first edition of the Uniform Building Code (UBC) published by
Pacific Coast Building Officials in 1927 (PCBO 1927) following the 1925
Santa Barbara earthquake. The PCBO later became the International Conference
of Building Officials (ICBO) and continue to publish UBC for another 70
years, the last edition being published in 1997. The seismic provisions of the
UBC were based primarily on the SEAOC (Structural Engineers Association
of California) recommendations and remained in a leadership role over the
full 70 years.

The 1927 edition of UBC incorporates the lessons learned observing series
of earthquakes in California during 1868–1925. Since there were no records
of actual ground motion available in 1927 the selection of 10% distribution
of lateral strength level must surely have been judgemental.

In the 1937 edition of UBC, the concept of differentiating seismic resistance
by means of zonal maps was introduced. The first map divided the United
States into three zones. Base shear can be given by the formula

V
N

W= +
0.6

4.5
19.1

where N is the number of stories. Short structures were designed for the most
severe lateral forces equivalent to 10% of structure’s weight while the design
force of taller structures can be reduced in proportion to the number of
storeys.

The recommendations of Biot (1941, 1942) and, Housner (1959), and
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research recommendations were incorporated by SEAOC into the first edition
of recommended lateral force requirements and commentary (SEAOC 1999)
commonly known as the Blue Book and adopted in the 1958 UBC. Total
lateral force is given by the formula

V = ZKCW 19.2

Z = zone coefficient related to seismicity (0 to 3)
For zone 3 Z = 1
Zone 2 Z = 1/2
Zone 1 Z = 1/4
Zone 0 Z = 0 no earthquake requirement of seismicity
K = structural system coefficient given by Table 19.1
C is the coefficient accounting for spectral amplification of ground motion
given by

C
T

= 0.05 19.3

where T = fundamental mode natural period and W = total dead weight of the
structure.

Once the base shear was determined, lateral forces were distributed to
each level of structure proportional to mass supported at that level (assuming
uniform distribution). Allowable stresses for load conditions containing
earthquake were permitted to be increased by one-third relative to one of
gravity load resistance. For 10 years after publication of the 1958 code
seismic provisions remained stable.

The magnitude 6.6 earthquake that occurred on 9 February 1971 near
Sylmar, California, was one of the most significant earthquakes of modern
times. The SEAOC formed the Applied Technology Council (ATC) as a not-
for-profit applied research agency and sought funding for earthquake
engineering. In 1978 ATC published ATC-3-06 (1978) report in the development
of seismic provisions.

In 1988 UBC were rewritten by SEAOC and some important
recommendations were made:

• Introduction of site factors to account for the effect of soils.
• Introduction of occupancy importance factors.

Table 19.1 Structural system coefficients

Type K

Light timber 1
Building frame 1
Box system 1.33
Moment resisting frame 0.67
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• A one-third increase in minimum design force level for all
structures.

• Introduction of inter-storey drifts.
• Requirement to design anchorage for nonstructural components.

In 2000, three model building codes, UBC, BSSC, ASCE-7, served as the
basis of building requirements in the United States. These three codes have
now been replaced by a single code ‘International Building Code’ (IBC).
The seismic provisions in IBC are transcribed from the 1997 edition of
NEHRP provisions with some modifications.

The seismic provisions in the following codes will be discussed in the
next sections (see Paz, 1994).

• International Building Code USA–2000
• New Zealand Standard NZS-1170-5
• Eurocode 8
• Uniform Building Code (UBC) 1997
• National Building Code (NBC) of Canada 1995
• Mexican Federal District Code (MFDC) 1993
• Japanese Society of Civil Engineers (JSCE) 2000
• Iranian code
• Chinese code
• Indian standard ‘Criteria for earthquake resistant design of structures’,

IS 1893–2002

19.3 Codal provisions for seismic design

19.3.1 International Building Code of USA 2000

The base shear is given by

Vb = CsW 19.4

where W is the total weight and applicable portions of other loads and the
seismic coefficient CS is given by

C
C
RS

e= 19.5

This coefficient corresponding to R = 1 is known as the elastic seismic
coefficient.

Ce = IC 19.6

where I is the importance factor: I = 1 for most structures, I = 1.25 for
structures that have substantial public hazard due to occupancy and I = 1.5
for essential facilities that are required for post earthquake recovery.

The period coefficient C depends on the location of the structures and site
class.
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For site class B
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where wi is the weight of the ith floor and ui are the floor displacements due
to static application of a set of lateral loads Fi at floor levels i = 1, 2, 3,…,N.
These forces Fi may be any reasonable distribution over the building height
and need not be exactly the design lateral forces specified in the code.

The response modification factor R depends on several factors, including
ductility capacity and inelastic performance of structural materials and systems
during past earthquake. Specified values of R vary between 1.5 and 8.

The distribution of lateral force over the height of building is given by

F V
w h

w h
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j j
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19.9

where k is the coefficient given by
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( 19.10

The deterministic overturning moments are multiplied by a factor J. J = 1.0
for the top 10 storeys, 1–0.8 for next ten storeys from top and varying
linearly with the height 0.8 for remaining floors.

19.3.2 New Zealand Standards NZS 1170.5

Seismic design in New Zealand has evolved over the past 30 years from an
‘allowable stress basis’ to ‘strength capacity’ approach. The concept of
‘Capacity design’ is well established as a way of thinking for New Zealand
structural engineers and dominates their design approach. Over the past 15
years, the loading standards (NZS 4203-92, NZS 1170.5) have been used as
a basis of design a ‘constant hazard design spectrum’. The spectra is not
intended to be an ‘earthquake’ spectrum but a spectrum for which the
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acceleration at each spectral period has an equal likelihood of being exceeded
over some passage of time. New Zealand design spectra are anchored back
to a constant hazard approach.

The forces acting on a structure as a result of ground shaking are usually
determined by one of the following methods:

• Static analysis: using equivalent static force obtained from acceleration
response spectra from horizontal earthquake motions.

• Dynamic analysis: either the modal response spectrum method or numerical
integration time history method using earthquake records:

According to New Zealand standard for general structural design loading for
buildings the equivalent static method of analysis can be applied only where
at least one of the following criteria is satisfied:

• The height between the base and top of the structure does not exceed
15 m.

• The calculated fundamental period of vibration of the structure does not
exceed 0.45 s.

• The structure satisfies the horizontal and vertical regularities requirement
standard and has a fundamental period of vibration <2 s.

According to NZS 4203:1993[1.3] when the equivalent static force method
is used, the design horizontal seismic forces acting at the base of the structure
or at the serviceability limit state is

V C T S R Z Wh p t= 1
6

( ,1)1 19.11

and at the ultimate limit

V = Ch(T1, µ)Sp R Z Wt 19.12

Ch(T1, µ) = basic seismic horizontal coefficient which depends on fundamental
period of vibration T1, required structural ductility factor µ of the structure.
Ch(T1, 1) = basic seismic hazard coefficient when µ = 1. Sp – structural
performance factor, R – risk factor, Z – zone factor to take into account
regional seismicity, Wt – weight of structure and contents considered to be
present during earthquake.

The horizontal seismic design force V given by Eqs 19.11 and 19.12 are
distributed appropriately up to the height of the structure. µ is the structural
ductility factor given by ∆max/∆y.

According to NZS 4203: 1992 (1.3) structural performance factor SP is
taken as 2/3 unless specified otherwise in the material standard. A value of
2/3 is justified as a result of beneficial effects.

In some structures Sp ≈ 1 may be more appropriate. The risk factor R
varies between 1.3 for buildings dedicated to the preservation of human life
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or for which loss function would have a severe impact on society and 0.6 for
buildings of secondary importance with a range of values between. The zone
factor Z varies between 0.6 and 1.2. For most of the New Zealand zones, the
value of Z corresponds to approximately to 5% damped spectral acceleration
coefficient at a fundamental period of vibration of 0.2 s of 450 year return
period uniform risk hazard spectra for elastic response. Figure 19.1 shows
the response spectrum for the basic hazard acceleration coefficient for near
or very stiff soil recommended by NZS-4203: 1992[3].

The above elastic response spectra for ultimate limit state have an assured
return period of 450 years (approximately 10% of probability of exceedence
in 50 years). NZS 3101: 1995[1.5] specifies values for displacement factors
and design procedures for various categories of ductility of reinforces concrete
(RC) structures.

19.3.3 Eurocode 8 procedure (EC-8)

The method is referred to as ‘simplified modal response spectrum analysis’
rather than ‘equivalent static analysis’ and is restricted to structures that are
not significantly affected by higher modes and/or stiffness irregularities. The
base shear is calculated as

VB = Sd(T1)W 19.13

Sd(T1) is the ordinate of the design spectrum corresponding to fundamental
period T1 of the structure and W is the gravity load contributing W.

The inertia forces are taken as permanent loads G and portion ψEQ of
variable live loading Q. The fundamental period T1 can be estimated for a
proper eigen value analysis or from empirical formula included in the code.

The lateral force corresponding to VB can be calculated as

19.1 Response spectrum for nearly or very stiff soil.
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19.14

where Fi is the horizontal force acting in storey i, si and sj are displacement
of masses mi, mj in the fundamental mode shape. The code assumes the
fundamental mode shape is increasing linearly with the height of the building,
hence si is substituted for zi.

In order to cover uncertainties in the distribution of mass and stiffness as
well as spatial variability of ground motion, an accidental eccentricity of the
loads Fi with respect to mass centre CM of the storey has to be introduced in
the analysis and is equal to

e1i = ±0.05Li 19.15

where Li is the floor dimension perpendicular to the direction of force Fi.
The eccentricity e1 is additional to any existing eccentricity e0 between the
stiffness centre CS and mass centre CM at any storey. Hence torsional moment
Mt = Fi(e0 + e1) or simply Fie1 if a three-dimensional model is used to act at
the mass centre. The load combination including seismic loading is

∑ Gkj ‘+’ ∑ ψ2i Q ki ‘+’ γ1 Ed 19.16

‘+’ means to be combined with; G = permanent dead load; Q = variable
imposed load; γ1 important factor; Ed design value for seismic action.

The criterion for the required number of modes to be included in the
analysis is two-fold:

1. The sum of effective modal mass should amount to at least 90% of the
total mass.

2. All modes with effective mass >5% of the total mass should be considered.

The modal action should be combined with SRSS unless the period of two
of them considered modes differ by less than 10%, in which case CQC
approach should be used.

19.3.4 Uniform Building Code (UBC) 1997

The method is applicable to all buildings in the low seismicity zone (zone 1
and usual structures in seismic zone 2), regular structures up to 73 m and
irregular structure having no more than five stories. The design base shear is
given by

V
C I
RT

W
C IW

RB
v a= ≤

1
2.5 19.17

W = seismic dead load, Ca, Cv I and R define the design spectrum. The
seismic coefficients Ca, Cv of 1997 UBC are given in Table 19.2.
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Two lower bounds for VB are given as

• For all seismic zones

VB ≥ 0.11 Ca I W 19.18a

• For seismic zones 4 and higher

V
Z N I W

RB
U≥ 0.82

19.18b

The following combinations involving seismic loading E are specified in
UBC as

1.2 G + E + f1Q1 + f2Q2 19.19

0.9G ± E 19.20

Q1 = live load f1 = 0.5 19.21a

Q2 = snow load f2 = 0.2 or 0.7 19.21b

The load factor in the above equations should be increased by 10% for
design of RC and masonry structures. There are two differences in the modal
analysis procedure specified in UBC:

1. The elastic rather than the design response spectrum is used for estimating
actual effect.

2. The elastic force calculated above is then scaled down to account for
inelastic effects. This is done by adjusting them to 90% of VB used in the
equivalent stated analysis in the case of regular structures 100% in case
of irregular structures.

19.3.5 National Building Code (NBC) of Canada (1995)

The base shear is expressed as

VB = CsW 19.22

The seismic coefficient Cs is given by

Table 19.2 Seismic coefficients for different soils

Soil Vs (m/s) Coefficient Z = 0.075 Z = 0.15 Z = 0.2 Z = 0.3 Z = 0.4

Sa – hard >1500 Ca 0.06 0.12 0.16 0.24 0.32Na
soil Cv 0.06 0.12 0.16 0.24 0.32Na

Se – soft <180 Ca 0.19 0.30 0.34 0.36 0.36Na
soil Cv 0.26 0.5 0.64 0.84 0.96Na

Na = N factor for acceleration

�� �� �� �� �� ��



Building codes for aseismic design 743

C
C
R

Us
e= 19.23

U = 0.6 is a calibration factor applied to maintain the design base shear at
the same level of protection (as in the preceding edition of the code) for
buildings with good to excellent capability of resisting seismic loads. The
elastic seismic coefficient is given by

C
S

Fe = γ
19.24

1. Zonal velocity factor γ varies between 0 for least seismic zone to 0.4 and
the worst seismic zone.

2. I = 1.5, 1.3 and 1 for post-disaster building, for schools and for other
buildings respectively.

3. F = 1.0, 1.3, 1.5, 2.0 foundation factors depending on soil category.
4. S = seismic response factor varies with T1

For T1 < 0.5 s

S = 4.2      Za > Zv      T1 < 0.25 s

S = 3.0      Za = Zv      T1 < 0.25 s 19.25

S = 2.1      Za > Zv      T1 < 0.25 s

For T1 = 0.5, S = 2.1 for all the three cases.
For T1 > 0.5

S T= 1.5/ 1 19.26

Za, Zv represent acceleration-related seismic zones and velocity-related
seismic zones respectively. Canada is divided into seven zones based on
each of the two criteria.

The empirical formula for calculating T1 is

T
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i i
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19.27

where ui is the floor displacement of ith floor, wi is a set of lateral loads at
floor levels. The elastic seismic coefficient Ce depends on pseudo-acceleration
design spectrum scaled to ground velocity of 0.4 m/s (γ = 0.4).

A g
T

T T
/

1.2 0.03 0.427

0.512/ 0.427
1

1 1
=

≤ ≤
>





19.28

The force modification factor R varies from 1 for brittle structure to 4 for
ductile moment resisting space frames.
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The distribution of lateral forces over the height of the building is determined
from

F V F
w h

w h
j b t

j j

i i

= −( )
 

–1
Σ
i

N 19.29

where
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19.30

Overturning moments are to be multiplied by the J factor given by

J

T

T T

T
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− ≤ ≤
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19.31

J J J
h
hi

i

N
= + − 



(1 )

3

19.32

The National Building Code of Canada (NBC) was revised in 2005. The
seismic hazard map is given and the seismic hazard is expressed as the most
powerful ground motion that is likely to occur in an area for a given probability
level. Building design for various earthquake loads is addressed in Sections
4.1.8, 9.20.1.2, 9.23.10.2 and 9.31.6.2 of the 2005 NBC. The seismic hazard
values are described by spectral acceleration values at periods 0.2, 0.5, 1.0
and 2.0 s. It is a better measure of potential damage than the peak measure
used by 1995 and thus improves earthquake design. PGA is still used in
foundation design. The probability used in the 2005 NBC is 0.000404 per
annum equivalent to 2% probability exceeding over 50 years. A building
designed to tolerate a sideward pushing force equivalent to 40% of it own
weight should prove earthquake-resistant.

19.3.6 Mexican Federal District Code (MFDC) 1993

The seismic coefficient is calculated as

Cs = Ce/Q′ 19.33

Elastic seismic coefficient
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T1 Fundamental time period, Tb and Tc = beginning and end of constant
acceleration regions, Am, ν, Tb, Tc are given in Table 19.3.

The elastic seismic coefficient

′ = + − <
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The lateral force distribution is given by

F V
w h

w h
j b

j j

i i i

=

=
Σ

1
 

N       T1 ≤ Tc

F V
w h

w h

V
w h

w h
j b

j j

i i i

b
j j

i i i

= +

= =

(1)

1

(2)
2

1
2  Σ Σ

N N       T1 > Tc 19.37
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Overturning moments determined are multiplied by reduction factor that
varies linearly from 1.0 at the top of the building to 0.8 at its base to obtain
design values.

Table 19.3 Seismic coefficients

Zone Am Tb Tc ν

I Hard 0.16 0.2 0.6 1/2
II Transition 0.32 0.3 1.5 2/3
III Soft 0.4 0.6 3.9 1
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19.3.7 Japanese Society of Civil Engineers (JSCE) 2000

All codes except the JSCE code basically apply the concepts of the capacity
design philosophy. Although the JSCE code does not follow the capacity
design principles, it should be noted that basic ideas of seismic design are
essentially similar and the JSCE code does not prescribe any specific design
earthquake motion. The seismic code of buildings in Japan was revised in
June 2000 to implement a performance-based structural engineering framework.
The code provides the performance objectives, life safety and damage limitation
of a building at the two corresponding levels of earthquake.

Design response spectra at engineering bedrock

The earthquake ground motion used for the seismic design at the life safety
limit is the site-specific motion of an extremely rare earthquake which is
expected to occur once in approximately 500 years. The engineering bedrock
is assumed to be the soil layer whose shear wave velocity is >400 m/s. The
basic design earthquake acceleration response spectra S0 of the seismic ground
motion at the exposed outcrop engineering bedrock is given as

S T

T T

T

T T
0 ( )

(3.2 30 ) 0.16

8 0.16 0.64

5.12/ 0.64

=
+ <

≤ <
≤






19.39

where S0 = basic design acceleration response spectra in m/s2 and T = natural
period. The level of earthquake ground motion used for the seismic design at
the damage limit should be reduced to one-fifth of life safety.

Design response spectra at ground motion

Sa(T) = Gs(T) Z S0(T) 19.40
where
Sa = design acceleration response spectra at ground surface m/s2, Gs = surface
soil layer amplification factor, Z = seismic zone factor 0.7 to 1.0 and T =
natural period.
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19.41

�� �� �� �� �� ��



Building codes for aseismic design 747

Gs1 = Gs ratio at T1

Gs2 = Gs ratio at T2

T1 = predominant period of surface soil layer for first mode
T2 = predominant period of surface soil layer for second mode
Minimum values of Gs

G
T T

T Ts (min)
1.5 1.2

1.35 1.20
 damage limit state

1

1
=

≤
<





G
T T

T Ts (min)
1.2 1.2

1.0 1.20
 life safety limit state

1

1
=

≤
<





19.42

19.3.8 Iranian code

Almost everywhere in Iran is prone to earthquake as two major earthquake
belts run through the country. Every decade or so a major earthquake strikes
Iran, resulting in many fatalities and collapsed buildings. Traditional Iranian
buildings, especially in the rural areas, have very little resistance to earthquakes
of higher magnitude.

After numerous major earthquakes, in particular that of 1963 in Bouein
Zahra, the Iranian government began the preparation of code of practice for
earthquake protection in 1967. Iran’s Ministry of Housing first published a
code of practice for earthquake-resistant construction which requires buildings
taller than 11 m to be made of RC or steel frames.

In 1993 the Iranian Building Research Centre further revised the code and
after three stages of research, construction and design and the updated and
revised Iranian code for seismic resistant design was published in 1997
(IS2800). This code was revised in 1999 and covers seismic design of RC
and steel and masonry construction. According to IS2800 (1999) chapter 2,
the seismic base shear coefficient is obtained from

V = Cw

C = ABI/R

B = 2.5 (T0/T)2/3     ≤ 2.5

T = 0.05H3/4 19.43

where
V = base shear
w = total weight of the building (DL+0.2LL)
C = base shear coefficient
A = design base acceleration or ratio to gravity which may be 0.2, 0.25, 0.3,
0.35 depending on regions (0.3g for Bamm in region 2 of the seismic micro-
organization map of Iran)
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B = building response factor obtained from design response spectrum
(amplification factor)
I = importance factor of the building = 0.8, 1.0 or 1.2
T = natural period of the building
T0 = corner period of the acceleration response spectrum dependent on soil
type (0.4 0.5 0.7 1.0) 0.5 s for soil type in Bamm
R = building factor varying from 4 to 11 (for example, 4 for simple masonry
with frame 6 for concentric steel-braced buildings)
H = height of the building from base in m

For a two storey masonry building B = 2.5, I = 1, R = 4, the base shear
coefficient C is estimated as 0.19. Seismic lateral forces may be calculated
from

V Fi j i j=
= +
Σ

1

N

19.44

where

F V F
w h

w h
i t

i i

j j j

= −

=

( )
 Σ

1

N 19.45

Ft = 0.07T V < 0.25V 19.46

The overturning moment may be calculated as

M F h h F h hi t N i j i j j i= − + −
= +

( ) ( )
1

Σ
N

19.47

19.3.9 Chinese code

Before 1964 there was no seismic-resistant design code for buildings and
other structures in China. Earthquake-resistant design was not considered
for most buildings. A draft of seismic-resistant design code in China was
prepared in 1964. The first official seismic code of China was issued in
1974. In 1975 and 1976 China suffered two strong earthquakes: 1975 earthquake
of Haichung with a magnitude of 7.3 and Tangshan with a magnitude of 7.8.
These two earthquakes were considered to be catastrophic disasters, killing
242 829 people. The code was revised and put into effect in 1993. Equivalent
lateral force method was recommended.

The total horizontal seismic action FEK (base shear) is given by

FEK = αweq

w weq i i=
=
Σ

1

N

 19.48
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where weq is the total equivalent seismic weight of a building and α  is the
seismic coefficient which can be determined from

α
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19.49

where Tg is the characteristic period of vibration of the soil given in Table
19.4

The total seismic weight should be used when the structure is modelled as
a single-degree-of-freedom (SDOF) system, 85% of total seismic weight if
it is modelled as a multiple-degrees-of-freedom (MDOF) system. Table 19.5
gives values of αmax.

The horizontal seismic force Fi applied at any level I of the building is
given by

F
w H

w H

Fi
i i

j j j

EK n= −

=
Σ

1

1N

 
( )δ 19.50

with the additional ∆FN applied at the top level of the building as

∆FN = δNFEK 19.51

where δN is called additional seismic action coefficient given in Table 19.6.
The overturning moment is given as

M F H Hi j i j j i= −
= +
Σ

1
( )

N

19.52

Table 19.4 Characteristic period for various soils

Epicentral Soil category
distance I II III IV

Near surface 0.2 0.3 0.4 0.65
earthquake

Remote 0.25 0.4 0.55 0.85
earthquake

Table 19.5 αmax values

Intensity VI VII VIII IX
αmax 0.04 0.08 0.16 0.32
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For any other country code one may refer to the international handbook of
earthquake engineering codes by Maria Paz (1994).

19.3.10Indian Seismic Code 1893 – Part 1 – 2002

The first Indian Seismic Code (IS 1893) was first published in 1962 and it
has since been revised in 1966, 1970, 1975 and 1984. More recently it was
decided to split this code into a number of parts and Part 1 of the code
containing general provisions (applicable to all structures) and specific
provisions for buildings has been published. Some extracts of the code are
given below.

The design horizontal seismic coefficient Ah for a structure can be determined
from

A
ZIS

Rgh
a=

2
19.53

Provided that for any structure with T ≤ 0.1 s the value of Ah will not be less
than Z/2 whatever may be the value of I/R.

Z = zone factor as given in Table 19.7 and it is for a maximum considered
earthquake (MCE) and service life of structure in a zone. The factor 2 is
used in the denominator to reduce MCE to design basis earthquake (DBE).
I = importance factor depending upon the functional use of the structure
characterized by hazardous consequences of its failure varying from 1 to 1.5.
R = response reduction factor depending on the perceived seismic damage
performance of the structure characterized y ductile or brittle deformations.
However, the ratio of I/R ≤ 1.
Sa/g – average response acceleration coefficient for rock or soil sites given
by for 5% damping. For rocky or hard soil

Table 19.6 Additional seismic action coefficients

RC multi-storey building multi-storey inner Other
framed brick building building

Tg T1 > 1.4Tg T1 ≤ 1.4Tg 0.2 No need to
≤ 0.25 0.08T1 + 0.07 No need to consider
0.3–0.4 0.08T1 + 0.017 consider
≥ 0.55 0.08T1–0.02

Table 19.7 Zone factor

Seismic zone II III IV V

Seismic intensity Low Moderate Severe Very severe
Z 0.1 0.16 0.24 0.36
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For a medium soil site
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For a soft soil site
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19.56

The response spectrum for IS1893-2002 is shown in Fig. 19.2 and the zone
factors are shown in Table 19.7.

Table 19.8 gives the multiplying factors for obtaining spectral values for
various other damping ratios.

Table 19.8 Multiplying factor for other damping ratios

Damping (%) 0 2 5 7 10 15 20 25 30
Factor 3.2 1.4 1 0.9 0.8 0.7 0.6 0.55 0.5

0 1 2 3 4
Period in sec

Soft soil

S
a
/g

3.0

2.5

2.0

1.5

1.0

0.5

0

Hard rock

Medium soil

19.2 Response spectrum (IS1893) according to soil condition.
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The seismic weight of each floor is its full dead load plus an appropriate
amount of imposed load. The total design lateral force or design seismic
base shear is given by

VB = AhW 19.57

The approximate fundamental natural period of vibration Ta is seconds of a
moment resisting building without brick infill panel and may be estimated as

Ta = 0.075h0.75      for RC frame

Ta = 0.085h0.75      for steel frame 19.58

where h is the height of the building.
The approximate fundamental period of all other buildings, including

moment resisting frame with brick infills may be estimated as

T h da = 0.09 / 19.59

where d = base dimension of the building at the plinth level in the direction
along the consideration of lateral force.

Vertical distribution of base shear to different floor levels can be obtained
as

Q V
W h

W h
i B

i i

j j j

=

=

2

2 Σ
1

n 19.60

Dynamic analysis shall be performed to obtain the design seismic force and
its distribution to different levels along the height of the building.

• Regular building >40 m in the zone IV and V and >90 m in the height in
Zones II and III

• Irregular building. All framed buildings >12 m in zones IV and V >40 m
in Zones II and III.

Dynamic analysis may be performed either by the time history method or the
response spectrum method. However, base shear VB is compared with VB

obtained by using approximate method. If V VB B<  all the response quantities
to be multiplied by VB/VB.

Modal mass is calculated as

M

W
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k

i i ik
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φ
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s 19.61

The modal participation factor is given by
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19.62

The design lateral force at each floor level

Qik = AkφikPkWi 19.63

and storey shear force in each mode

V Qik j i jk=
= +
Σ

1

N

19.64

The peak storey shear force Vi in each first storey due to all modes considered
is obtained by combining those due to each mode in accordance with square
root of sum of squares (SRSS) or complete quadratic combination (CQC)
rules.

19.4 Program 19.1: MATLAB program for

IS1893 code

A program in MATLAB is written to calculate the shear in each storey as
well as drift calculations for a multi-storey frame. Example 19.8 is solved by
the MATLAB program and the results are also given below.

% IS1893 - 2002, Part 1 multistorey buildings
% calculation of shear in each storey and drifts
nst=6;
m=zeros(nst,nst);
K=zeros(nst,nst);
ma=zeros(nst,1);
ak=zeros(nst,1);
t=zeros(nst,1);
sa=zeros(nst,1);
pf=zeros(nst,1);
d=zeros(nst,nst);
v=zeros(nst,nst);
vv=zeros(nst,nst);
vr=zeros(nst,1);
ah=zeros(nst,1);
sf=zeros(nst,nst);
% ***************************************************
%input data
%*****************************************************
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%give masses for various floors starting from ground
ma(1,1)=262.59e3;ma(2,1)=262.59e3;ma(3,1)=262.59e3;ma(4,1)=262.59e3;
ma(5,1)=262.59e3;ma(6,1)=229.934e3;
%give stiffnesses for various floors starting from ground
ak(1,1)=586926e3;ak(2,1)=586926e3;ak(3,1)=586926e3;ak(4,1)=318652e3;
ak(5,1)=318562e3;ak(6,1)=318562e3;
%soil s=1 for rocky soil s=2 medium soil s=3 for soft soil
s=1;
%give zone number
zo=4;
% give damping % for concrete 5% for steel 2% etc
da=5;
% importance of the structure
is=1;
% response reduction factor
r=3;
% height of the building
ht=21;
% width of the building
width=14;
%it=1 for rc frame buildig without brick infil panel
%it =2 for steel frame building with out brick infil panel
%it=3 for all buildings with brick infill panel
it=3;
% *******************************************************
% input completed
%********************************************************
if zo==2

z=0.1;
end
if zo==3

z=0.16;
end
if zo==4

z=0.24;
end
if zo==5

z=0.36;
end
fid=fopen(‘output.table’,‘w’);
fprintf(fid,‘zone = %2i\n’,zo);
fprintf(fid,‘soil=%2i\n’,s);
fprintf(fid,‘importance factor=%2i\n’,is);
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fprintf(fid,‘response reduction factor=%2i\n’,r);
fprintf(fid, ‘storey mass\n’);
for i=1:nst

fprintf(fid,‘%2i , %f\n’,i,ma(i,1));
end
fprintf(fid,‘ storey stiffness\n’);
for i=1:nst

fprintf(fid,‘%2i,%f\n’,i,ak(i,1));
end
ak(nst+1,1)=0.0;
nstm1=nst-1;
weight=0.0;
for i=1:nstm1

ip1=i+1;
m(i,i)=ma(i,1);
K(i,i)=ak(i,1)+ak(ip1,1);
K(i,ip1)=-ak(ip1,1);
weight=weight+m(i,i)*9.81;

end
K
m(nst,nst)=ma(nst,1);
K(nst,nst)=ak(nst,1);
weight=weight+ma(nst,1)*9.81;
for i=1:nst

for j=i:nst
K(j,i)=K(i,j);

end
end
m
K
ki=inv(K);
kim=ki*m;
[v,d]=eig(kim);
for i=1:nst

for j=1:nst
v(i,j)=v(i,j)/v(nst,j);

end
end
for i=1:nst

om(i,1)=1/sqrt(d(i,i));
t(i,1)=2*pi/om(i,1);

end
fprintf(fid,‘mode period\n’);
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for i=1:nst
fprintf(fid,‘%2i,%f\n’,i,t(i,1));

end
for j=1:nst

fprintf(fid,‘mode shape for mode = %2i\n’,j);
for i=1:nst

fprintf(fid,‘%f\n’,v(i,j));
end

end
if s<2

ml=0.4;
co=1;

elseif (s>2)
ml=0.67;
co=1.67;

else
ml=0.55;
co=1.36;

end
for i=1:nst

if t(i,1)<0.1
sa(i,1)=1+15*t(i,1);
elseif t(i,1)>ml

sa(i,1)=co/t(i,1);
else

sa(i,1)=2.5;
end
end
if da==0

mf=3.2;
end
if da==2;

mf=1.4;
end
if da==5;

mf=1.0;
end
if da==7;

mf=0.9;
end
if da==10;

mf=0.8;
end
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fprintf(fid,‘ sa/g \n’);
for i=1:nst

sa(i,1)=mf*sa(i,1);
fprintf(fid,‘%f\n’,sa(i,1));

end
for i=1:nst

sum=0.0;
sum1=0.0;
for j=1:nst

sum=sum+m(j,j)*v(j,i);
sum1=sum1+m(j,j)*v(j,i)^2;

end
%sum
%sum1
pf(i,1)=sum/sum1;
pmas(i,1)=pf(i,1)*sum*9.81/weight;

end
fprintf(fid,‘mode participation factor\n’);
for i=1:nst

fprintf(fid,‘%2i, %f\n’,i,pf(i,1));
end
fprintf(fid,‘ percentage of modal masses\n’);
for i=1:nst

fprintf(fid,‘%2i, %f\n’,i,pmas(i,1));
end
for i=1:nst

ah(i,1)=z*is*sa(i,1)/(2.0*r);
if t(i,1)<0.1 & ah(i,1) <z/2

ah(i,1)=z/2;
end

end
fprintf(fid,‘mode Ah\n’);
for i=1:nst

fprintf(fid,‘%2i , %f\n’,i,ah(i,1));
end
for i=1:nst
for j=1:nst

sf(j,i)=pf(i,1)*ah(i,1)*m(j,j)*v(j,i);
end
end
%sf
for j=1,nst
vv(nst+1,j)=0.0;
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end
for j=1:nst
for i=1:nst

ii=nst-i+1;
vv(ii,j)=sf(ii,j)+vv(ii+1,j);

end
end
for i=1:nst

for j=1:nst
vv(i,j)=9.81*vv(i,j);

end
end
fprintf(fid,’ shear in various stories for various modes\n’);
for i=1:nst

fprintf(fid,’ for mode =%2i\n’,i);
for j=1:nst
fprintf(fid,’%2i %f\n’,j,vv(j,i));
end

end
for i=1:nst
vr(i,1)=0.0;
for j=1:nst

vr(i,1)=vr(i,1)+vv(i,j)^2;
end
vr(i,1)=sqrt(vr(i,1));

end
fprintf(fid,‘ base shear as per modal calculation\n’);
fprintf(fid,‘%f\n’,vr(1,1));
fprintf(fid,‘ approximate calculation as per the code\n’);
if it==1

tn=0.075*ht^0.75;
end
if it==2

tn=0.085*ht^0.75;
end
if it==3

tn=0.09*ht/sqrt(width);
end
fprintf(fid,‘ fundamental natural period = %f\n’,tn);
if tn<0.1

saf=1+15*tn;
elseif tn>ml

saf=co/tn;
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else
saf=2.5;

end
ahf=saf*z*is/(2*r);
if tn<0.1 & ahf <z/2

ahf=z/2;
end
ahf=ahf*mf;
weight
vb=ahf*weight
fprintf(fid,‘ base shear as per codal approximate period %f\n’,vb);
factor=vb/vr(1,1);
if factor>1

for i=1:nst
vr(i,1)=factor*vr(i,1);

end
end
fprintf(fid,‘ resultant shear in various stories\n’);
for i=1:nst

fprintf(fid,‘%2i %f\n’,i,vr(i,1));
end
fprintf(fid,‘ drift in various stories\n’);

for i=1:nst
dr(i,1)=vr(i,1)/ak(i,1);
fprintf(fid,‘%2i %f \n’,i,dr(i,1));

end
dr;
fclose(fid);

OUTPUT

zone = 4
soil= 1
importance factor= 1
response reduction factor= 3
storey mass
1,262590.000000
2,262590.000000
3,262590.000000
4,262590.000000
5,262590.000000
6,229934.000000
storey stiffness
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1,586926000.000000
2,586926000.000000
3,586926000.000000
4,318652000.000000
5,318562000.000000
6,318562000.000000
mode period
1,0.589328
2,0.223705
3,0.138951
4,0.072667
5,0.104123
6,0.093019
mode shape for mode = 1
0.182786
0.356276
0.511647
0.749899
0.917955
1.000000
mode shape for mode = 2
–0.581337
–0.957496
–0.995713
–0.418807
0.430599
1.000000
mode shape for mode = 3
0.641094
0.695710
0.113885
–1.149675
–0.475857
1.000000
mode shape for mode = 4
–83.585291
112.412194
–67.595631
17.300351
–4.396286
1.000000
mode shape for mode = 5
–1.155218
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–0.428418
0.996338
0.630861
–1.628296
1.000000
mode shape for mode = 6
3.061088
–0.126548
–3.055856
3.038515
–2.293290
1.000000

sa/g
1.696847
2.500000
2.500000
2.090004
2.500000
2.395278
mode participation factor
1, 1.329829
2, -0.472949
3, 0.210335
4, -0.001019
5, -0.110181
6, 0.043985
percentage of modal masses
1, 0.813473
2, 0.132582
3, 0.025087
4, 0.004336
5, 0.013297
6, 0.011226
mode Ah
1,0.067874
2,0.100000
3,0.100000
4,0.120000
5,0.100000
6,0.120000
shear in various stories for various modes
for mode = 1
1 835695.230296
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2 793195.356194
3 710356.969254
4 591392.874440
5 417032.256536
6 203596.660163
for mode = 2
1 200671.454855
2 129845.975774
3 13192.337190
4 -108117.437477
5 -159141.610729
6 -106680.868269
for mode = 3
1 37970.806318
2 3234.813194
3 -34460.412555
4 -40630.981084
5 21661.132553
6 47444.203966
for mode = 4
1 7875.062753
2 -18466.077913
3 16959.597905
4 -4342.547766
5 1109.499737
6 -275.949577
for mode = 5
1 20126.010937
2 -12662.189159
3 -24821.840801
4 3456.897732
5 21362.427841
6 -24852.979108
for mode = 6
1 20389.068926
2 -21231.973689
3 -19511.317627
4 22038.591323
5 -19275.537688
6 11905.898799
base shear as per modal calculation
860802.021330
approximate calculation as per the code
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fundamental natural period = 0.505124
base shear as per codal approximate period 1198572.993130
resultant shear in various stories
1 1198572.993130
2 1119971.883836
3 991684.516096
4 839604.037191
5 623536.713435
6 329037.218693
drift in various stories
1 0.002042
2 0.001908
3 0.001690
4 0.002635
5 0.001957
6 0.001033

19.5 Comparison of codes

In all the codes in one way or the other the following parameters are involved.

• elastic seismic coefficient (base shear);
• design force reduction;
• lateral force distribution;
• overturning moments.

19.5.1 Base shear

NEHRP provisions, the source document of the IBC, gives the period formula
identical to the Rayleigh method in which static deflection due to a set of
lateral forces Fi is ui assumed as shape function. The period formula given
by the NBCC has the same base except that the lateral forces used to determine
the static deflections are equal to the lumped weight at the floors. For a
linear elastic system we have seen that elastic seismic coefficient Ce is
related to pseudo-acceleration spectrum for an SDOF system

V A
g

Wb =    or   CeW 19.65

where Ce is the seismic coefficient. The IBC, NBCC, MFDC and EQ-8 and
Indian codes give the base shear formula as

V
C W

R
UC W

R
C W
Q

C W
q

A Wb
e e e e

h= = = ′ = ′ =; ; ; ; 19.66
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By taking R = Q′ = q′ = 1 Ce in the building code corresponds to A/g and
these two values given by Eq. 19.65 and 19.66 are not identical.

19.5.2 Design force reduction

Most codes specify that the design base shear to be smaller than the elastic
base shear (determined from using elastic seismic coefficient Ce). For most
of the codes discussed the reduction factors are R, Q′ and q′ where R = Q′ =
q′ = 4 factors independent of T1 in IBC and NBCC and depends on period in
MFDC and EC. The actual strength of the building exceeds design strength,
especially for short period systems. The over-strength of a building is usually
not recognized explicitly in building codes.

19.5.3 Lateral force distribution

According to structural dynamics force at any floor level i

f V
W

W
jn bn

j jn

i i i in

=

=

φ

φΣ
N 19.67

If φjn is proportional to hj then NBCC agrees with structural dynamics formula.
Linear mode shape is a reasonable shape for a building in between ρ = 0 and
∞ (ρ = beam to column stiffness). In IBC the height-wise distribution of
lateral force based on the assumption that lateral displacement is proportional
to the heights when T1 ≤ 0.5 s and to hj

2  when T1 ≥ 2.5 s and to an intermediate
power of the height for intermediate values of T1. This is intended to recognize
the changing fundamental mode and increasing higher mode contributions to
response with increasing T1. The Indian code uses

Q V
W h

W h
i B

i i

j j j

=

=

2

2 Σ
1

N 19.68

but stipulates dynamic analysis for regular buildings h > 40 m in Zones IV
and V and h > 90 m in Zones II and III. In such cases

Qik = AkφikPkWi 19.69

Storey shear in the required mode is given by

V Qik j i jk=
= +
Σ

1

n

19.70

and storey shears for all modes must be done using SRSS and CQC rules.
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19.5.4 Overturning moments

Certain building codes such as NBC, IBC, and MFDC allow reduction of
overturning moment relative to the values computed by lateral force Fj by
statics because the response contribution of higher modes are more significant
for storey shear than the overturning moments. The reduction factor in IBC
at the base of the building varies between 1 (no reduction) and 0.8, depending
on the number of stories. The EC-8 permits no reduction of overturning
moments relative to the values computed from lateral forces by statics.

In the following, we will calculate shear in various buildings based on
IS1893 2002, Part 1. The method used in the other codes will be similar
except for some variations. The reader can adapt the following problems
according to their country’s seismic code or international building code.

19.6 Design examples using IS1893 2002 Part 1

Example 19.1
Generalize the base width requirement for a wall subjected to an earthquake
for given height and weight. Calculate the base width in terms of height in
zone V. Assume the wall is rigid (see Fig. 19.3).

Solution
Resisting moment = (Wb/2) > Mo for stability

Mo = EQ × h/2 E Q = Ah × W

From IS1893 clause 6.4.2 (assume sa/g = 1)

A
Z I S

Rgh
a=

2

Z = 0.36 (Zone V)

I = 1,      R = 1

Ah = (0.36/2) × (1/1) × 1

= 0.18

EQ W
M0

19.3 A wall.
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EQ = 0.18 × W

Mo = 0.18 × W × (h/2)

For stability,
Resisting moment > Mo

Wb/2> 0.18 Wh/2

b > 0.18h

Example 19.2
Check the stability of sunshade of 1 m outer projection. Room size = 5 m ×
4.5 m. Load coming on slab = 2.4 kN/m2. Other dimensions are given in Fig.
19.4. Building located on zone V. Thickness of sunshade = 0.06 m.

Solution
Weight of slab finishes = 5 × 4.5 × (0.12 × 24 + 2.4)

= 118.8 kN

Load per unit length = 118.8/19

= 6.25 kN/m

19.4 Sunshade.

120mm

1m

200mm

4.5m

5m

1m

2m
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Earthquake force calculation

W = W of slab + W of wall

According to clause 6.4.5.

Design acceleration spectrum in vertical direction = 2/3 of Ah

According to clause 7.12.2.2. all horizontal projections shall be designed
and checked for stability for 5 Ah

EQ = 5 × (2/3 Ah) × Wsunshade

Wsunshade = 1 × 1 × 0.06 × 24 = 1.44

Z = 0.36

I = 1

R = 1

Sa/g =1

Ah = 0.18

EQ = (10/3) × 0.18 × 1.44

= 0.864 kN

Mo = (Wsunshade + E Q) × 1/2

= (1.44 + 0.864) × 1/2

= 1.152 kN/m

To calculate the weight of the wall, if the height of the wall above the
lintel i.e., 1 m < 0.866 × 1.25 m the whole rectangular portion of masonry
load between slab and sunshade and slab load to be taken.

Height of wall = 0.866 × 1.25

Weight of slab = 6.25 kN/m

Weight of wall = 1 × 0.2 × 19 kN/m

= 3.8 kN/m

Total load = 10.05 kN/m

MR = (1 – Ah 2/3) × W × width of wall/2

= (1 – 0.12) × 10.05 × 0.20/2

= 0.8841 kN/m

MR < Mo

Hence the design is unsafe.
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Example 19.3
Determine the design seismic force and design suitable bracing for an overhead
water tank shown in Fig. 19.5a supported on steel bracing in Zone V. The
weight of the empty water tank is 1000 kN and it can hold water of 2000 kN.
The tank is supported by 4 ISMB 400@616 N/m. Assume weight of staging
to be 180 kN.

Solution
Damping ratio = 2% since it is a steel structure

1. When tank is empty

W = 1000 + 180/3

= 1060 kN

For first trial, assume Sa/g = 2.5. For ρ = 2%, magnification factor = 1.4, so

Sa/g = 1.4 × 2.5

= 3.5

Horizontal seismic force: since it is a water tank

importance factor I = 1.5

Response reduction factor R = 4

A
Z I S

Rgh
a=

2

= (0.36/2) × (1.5/4) × 3.5

= 0.236

4m

4m

4m
(a) (b)

19.5 (a) Water tank; (b) shear in brace.
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Base shear = 0.236 × 1060

= 245.4 kN

2. When tank is full

W = 1000 + 2000 + 180/3

= 3060 kN

Ah = 0.236

Base shear = 0.236 × 3060

= 708.4

Design of bracing (see Fig. 19.5b)
One is subjected to tension and other to compression.

Force in brace = 708.4/cos 45

= 1001.8 kN

Net area required for brace = γmlTdn/(α´fu)

γml = 1.25

fu = 410 MPa

α´ = 0.6 (for 1 or 2 bolts)

An = 1001.8 1.25
0.6 410

×
×

= 5090.86 mm2

Assume bolt size of 20 mm of high strength friction grip (HSFG).

Thickness of angle =12 mm

Area of bolt = 21.5 × 12

= 258 mm2

Gross area = (5090.86 + 258 × 2) = 5606 mm2

Choose double angles 2 × ISA 150 × 150 × 10 area = 5806 mm2> 5606

rmin = 46.3 mm

l/rmin = 5656/46.3

= 122.2<350
Hence OK.
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(i) Stiffness of the column in each bay can be taken as

=
12 2 10 20 458.4 10

4000

5 4

3

× × × ×

= 7671.9 N/mm

Kc = 12 EI/h3

(ii) stiffness of bracing is given by

Kb = A E cos2θ/L

= 5808 2 10 0.5
5656.8

5× × ×

= 102 636.5 N/mm

(iii) In each bay there are four columns and two bracings, one on either side.
The two other bracings are assumed to buckle under compression therefore
the total stiffness of the bay becomes

K1 = 4kc + 2kb = 4 × 7671.9 + 2 × 102 636.5 = 235 960.6 kN/m

Since there are two bays, one over the other, the stiffness of the staging k is
given by

1/ke = 1/k1 + 1/k1 and so ke = k1/2 = 117 980.3 kN/m

T = 2Π/ω = 2Π√(m/k) = 2 × 3.14√ 30 600
117980 10

= 0.3273×






For T = 0.327, Sa/g = 2.5 × 1.5

The same acceleration as assumed as initially since there is no need for iteration.
Provide double angles 2 × ISA 150 × 150 × 10 of area = 5806 mm2 for

bracing.

Example 19.4
Determine the design seismic load by the response spectrum method of
IS1893 2002 for a three storey residential building with the following
information. The live loads are 4 kN each for all the three storeys. The height
is 3 m each. The building is a residential with an ordinary moment resisting
concrete frame. It is located in Zone V and the building has the following
details centre to centre of the frame is 3 m (in each storey exterior colomns
are of same size).

Column sizes c1 = 230 × 300 mm

c2 = 230 × 380 mm

c3 = 230 × 230 mm
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Beam sizes B1 = 230 × 300 mm

Reinforced cement concrete slab = 120 mm thick

Walls = 230 mm thick, fck = 20 MPa; fy = 415 MPa; Zone V = rock, density
of concrete = 25 kN/m3.

The elevation and plan of the structure are shown in Fig. 19.6.

Solution
Dynamic analysis should be performed to obtain design seismic force for the
following buildings: (a) regular building whose height >40 m in Zones IV
and V and those >90 m in height in Zones II and III, (b) irregular buildings: all
buildings higher than 12 m in Zones IV and V and 40 m in Zones II and III.

Load calculation
Calculation of dead weight of each floor:

Weight of beam = (2 × 2 × 0.23 × 0.3 × 25)

+ (2 × 3 × 0.23 × 0.3 × 25)

= 17.25 kN

(a)

2m 3 m 3m 2m

3m

3m

3m

c3

c1

c1

B1

C1

B1

B1

C1

B1

B1

C1

B1

B1

B1

C2

B1

C2

B1
C2

B1 B1

C2 C2
C2

C1 C1

(b)

19.6 (a) Three storey and four bay frame (elevation); (b) plan of a
three storey frame.
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Weight of column

for 1st and 2nd storey = (2 × 3 × 0.23 × 0.3 × 25)

+ (3 × 3 × .23 × 0.38 × 25)

= 30.015 kN

For 3rd storey = (2 × 3 × 0.23 × 0.23 × 25)

+ (3 × 3 × 0.23 × 0.3 × 25)

= 23.46 kN

Weight of slab = (2 × 2 × 3 × 0.12 × 25) + (2 × 3 × 3 × 0.12 × 25)

= 90 kN

Weight of wall = (2 × 2 × 3 × 0.23 × 18) + (2 × 3 × 3 × 0.23 × 18)

= 124.20 kN

Calculation of live load, as per IS1893 (I): 2002 Table 8 clauses 7.3.1 and
7.3.2

Live load at 1st floor and 2nd floor level = (2 × 2 × 3 × 4 × 0.5)

+ ( 2 × 3 × 3 × 4 × 0.5)

= 60 kN

Lumped weight at each floor:

Floor level 1 = 17.25 + 30.01 + 90 + 124.2 + 60

= 321 kN

Floor level 2 = 17.25 + (30.01/2) + (23.46/2) + 90 + 124.2 + 60

= 318 kN

Roof level = 17.25 + (23.46/2) + 90 + (124.2/2)

= 181 kN

Therefore, W1 = 321 kN

W2 = 318 kN

W3 = 181 kN

Lumped mass at each floor:

Mass at first floor level = 321 1000
9.81

= 32 722 kg×

Mass at second floor level = 318 1000
9.81

= 32 416 kg×
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Mass at roof level = 181 1000
9.81

= 18451kg×

Therefore, m1 = 32 722 kg

m2 = 32 416 kg

m3 = 18 451 kg

As per IS456: 2000 Clause 6.2.3.1.

Stiffness of columns (K)

E = modulus of elasticity of concrete = 5000 = 5000 20fck ×

E = 22 360 N/mm2

L = length of column = 3 m

The moments of inertia of various columns are given in Table 19.9.

Stiffness of column on first storey = (2 × 5.14 × 106)

+ (3 × 10.45 × 106)

= 41.63 × 106 N/m

Stiffness of column on second storey = (2 × 5.14 × 106)

+ (3 × 10.45 × 106)

= 41.63 × 106 N/m

Stiffness of column on third storey = (2 × 2.32 × 106)

+ (3 × 5.14 × 106)

= 20.06 × 106 N/m

The stick model is shown in Fig. 19.7.

Modal analysis
From modal analysis we get the results shown in Table 19.10.

Table 19.9 Moments of inertia for various columns

Column Size (mm) Area (mm2) I = B D3/12 K = 12EI/L3

C1 230 × 300 69 000 0.52 × 109 5.14 × 106

C2 230 × 380 87 400 1.05 × 109 10.45 × 106

C3 230 × 230 52 900 0.23 × 109 2.32 × 106
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Design horizontal seismic coefficient

Ah = (z/2) × (I/R) × (Sa/g)

Z = 0.36

R = 3

I = 1

Ah values are given in Table 19.11.

m3

m2

m3

m3 = 18451kg
k3 = 20.06 × 106N/m

m2 = 32416kg
k2 = 41.63 × 106 N/m

m1 = 32722kg
k1 = 41.63 × 106 N/m

19.7 Equivalent mass and stiffness model.

Table 19.10 Results of modal analysis

Mode 1 Mode 2 Mode 3

Nat Frequency (r/s) 17.63 40.93 63.32
Time period 0.36 0.16 0.10
Roof 1.0 1.0 1.0
2nd floor 0.716 –0.444 –2.366
1st floor 0.407 –0.579 2.70
Mode shape

Table 19.11 Ah values

T 0.36 0.16 0.10

Sa/g 2.5 2.5 2.5
Ah 0.15 0.15 0.15 but use 0.18

clause 6.4.2
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As per Clause 6.4.2 for T ≤ 0.1 s, Ah ≤ Z/2 = 0.18 whatever the value of
I/R.

Modal mass Mk and modal participation factor Pk (see Table 19.12)
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Participation factors and percentage of modal mass have been calculated as
shown in Table 19.12.

Design lateral force at each floor and storey shear

Lateral force Qik = AhPkWiφik

Shear force V Qik j i ik=
= +
Σ

1

n

Lateral force Qik and shear force Vik (see Table 19.13).

Storey shear force due to all mode and lateral force at each storey
Applying the SRSS rule (see Table 19.14)

V V V VSRSS 1
2

2
2

3
2= ( + + )

Example 19.5
Analyse and design a steel moment resisting frame for the building shown in
Fig. 19.6. Also determine the design seismic force by the response spectrum
method of IS1893: 2002. The live load is 4.0 kN each for all the three stories
is 3.0 m each. The building is residential with a special moment resisting
frame. It is located in Zone V and the building has the following details.

fck = 20 N/mm2

fy = 250 N/mm2

fy = 415 N/mm2

Zone V Rock soil site

Density of concrete = 25 kN/m3

Live load = 4 kN/m2
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Table 19.12 Participation factors and % of modal weights

Storey Weight Mode 1 Mode 2 Mode 3

(kN) Φi WiΦik     Wi ikΦ 2 Φi WiΦik     Wi ikΦ 2 Φi WiΦik     Wi ikΦ 2

1 321 0.407 130.647 53.173 –0.579 –185.85 107.6 2.7 866.7 2340.09
2 318 0.716 227.688 163.02 –0.444 –141.19 62.68 –2.36 –752.39 1780.15
3 181 1 181 181 1 181 181 1 181 181
∑ 820 539.335 397.2 –146.05 351.3 295.312 4301.24
Wk 540 –146 296

% of total weight 1.36*540*
  
100
820

 = 89.51% –0.41*(–146)*
  
100
820

 = 7.32 0.06*296*
  
100
820

 = 2.44

Pk
  
539.335

397.2
 = 1.36

  
– 146.05

351.3
 = –0.41

  
295.31

4301.24
 = 0.06

Table 19.13 Lateral force distribution

Storey Weight Mode1 Mode2 Mode3

(kN) Φi Qik Vik Φi Qik Vik Φi Qik Vik

1 321 0.407 26.652 110.02 –0.579 11.54 9.06 2.7 9.36 3.18
2 318 0.716 46.4484 83.372 –0.444 8.768 –2.472 –2.36 –8.12 –6.17
3 181 1 36.924 36.924 1 –11.24 –11.24 1 1.944 1.964
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Column sizes C1 = ISMB300@44.2 kg/m

C2 = ISMB350@52.4 kg/m

C3 = ISMB200@25.4 kg/m

Beam size B1 = ISMB200@25.4 kg/m

Solution

(A) Load calculation (see Tables 19.15–19.19)

Floor area = (2 × 2 × 3) +( 2 × 3 × 3 ) = 30 m2

Floor load calculations for the first, second and third storey are shown in
Tables 19.15–19.18. The lumped weight and mass at each floor are shown in
Table 19.19.

Table 19.14 Drift calculation

Storey V1 Mode V2 Mode V3 Mode VSRSS Q K × 106 Drift

1 110.02 9.06 3.18 110.4 27 41.63 0.0026
2 83.37 –2.47 –6.176 83.56 45 41.63 0.002
3 36.92 –11.24 1.944 38.59 38.59 20.06 0.0019

Table 19.15 Floor load for first and second storeys

Description Calculation Load (kN/m2)

Dead load of slab 0.125 × 25 3.12
Floor finish load 0.50
Construction load 0.75
Partition load 1.5
50% live load 2.0
Total 7.87

As per clause IS1893(I):2002 Table 8 Clause 7.3.1

Table 19.16 Total load for first and second storeys

Description Calculation Value (kN)

Load 7.87 × 30 236.10
Add 10% of weight 23.61
of beam and column
Total load 260
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(B) Stiffness of columns (see Table 19.20)

E = modulus of elasticity of steel

= 2 × 105 N/mm2

L = length of column = 3 m

Stiffness of column on first and second storey

= (2 × 7.65 × 106) + (3 × 12.11 × 106)

= 51.63 × 106 N/m

Stiffness of column on third storey = (2 × 1.99 × 106)

+ (3 × 7.65 × 106)

= 26.93 × 106 N/m

Table 19.17 Floor load for third storey

Description Calculation Load (kN/m2)

Dead load of slab 0.125 × 25 3.12
Floor finish load 0.5
Construction load 0.75
Partition load 0.75
Total 5.12

Table 19.18 Total load for third storey

Description Calculation Value (kN)

Load 5.12 × 30 153.60
Add 10% of weight 15.36
of beam and column
Total load 169

Table 19.19 Lumped weight and mass at each floor

Storey Weight (kN) Mass (kg)

1 260 26 503
2 260 26 503
Roof 169 17 227

Table 19.20 Stiffness of various columns

Column Size Area (mm2) I = from table K=12EI/L3 N/m

C1 ISMB300 5626 8603.6 × 104 7.65 × 106

C2 ISMB350 6671 13 630.3 × 104 12.11 × 106

C3 ISMB200 3233 2235.4 × 104 1.99 × 106

�� �� �� �� �� ��



Building codes for aseismic design 779

The stick model is shown in Fig. 19.8.

[ ] = 17227*

1.5384

1.5384

1

M

















[ ] = 26.93e6

3.834 –1.917 0

–1.917 2.917 –1

0 –1 1

*k

















[ ] [ ]{ } = 1 { }–1
2k M x x

ω

(C) Modal analysis (see Table 19.21)

(D) Design horizontal seismic coefficient

A
ZIS

Rgh
a=

2

m3 = 17227kg
k3 = 26.93 × 106N/m

m2 = 26503kg
k2 = 51.63 × 106 N/m

m1 = 26503kg
k1 = 51.63 × 106 N/m

19.8 Equivalent mass and stiffness model.

Table 19.21 Frequencies, periods and mode shapes

Mode 1 Mode 2 Mode 3

Natural frequency (rad/s) 21.09 48.84 74.79
Time period (s) 0.3 0.13 0.08<0.1
First floor 0.404 –0.678 2.959
Second floor 0.716 –0.526 –2.578
Roof 1 1 1
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Z = 0.36

I = 1

R = 5

The horizontal seismic coefficients are given in Table 19.22.

(E) Modal mass and participation factor

M

g
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n

ik

n
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i i

i i
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=
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 ( )2

Σ
Σ
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W
i

i

φ
φ

Wk = Pk ∑ wiφik

The calculations are shown in Table 19.23.

Pk1 = 460/344 = 1.34

Pk2 = –144/360 = –0.4

Pk3 = 268/4173 = 0.06

Wk1 = 1.34 × 460 = 616

Wk2 = –0.4 × –144 = 57.6

Wk3 = 0.06 × 268 = 16.08

Percentage contribution for 1st mode = 616/689 = 89.4
Percentage contribution for 2nd mode = 57.6/689 = 8.27
Percentage contribution for 3rd mode = 16.08/689 = 2.46

(F) Design lateral force for each storey (see Table 19.24)
Apply the SRSS rule.

(G) Storey shear due to all modes (see Table 19.25)

Table 19.22 Horizontal seismic coefficients

Mode 1 Mode 2 Mode 3

Sa /g 3.5 3.5 3.08
Ah 0.126 0.126 0.11

use Z/2 = 0.18
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Table 19.23 Participation factors and % of modal weights

Storey W Mode 1 Mode 2 Mode 3

Φik WiΦik     Wi ikΦ 2 Φik WiΦik     Wi ikΦ 2 Φik WiΦik     Wi ikΦ 2

1 260 0.404 105 42 –0.678 –176 119 2.959 769 2276
2 260 0.716 186 133 –0.326 –129 72 –2.578 –670 1728
3 169 1 169 169 1 169 169 1 169 169

460 344 –144 360 268 4173

Table 19.24 Lateral force for each storey

Storey Weight Mode 1 Mode 2 Mode 3
(kN) Φi Qik Vik Φi Qik Vik Φi Qik Vik

1 260 0.407 17.8666 77.69 –0.678 8.8845 7.725 2.959 8.31 2.90
2 260 0.716 31.4313 59.96 –0.526 6.8927 –1.63 –2.578 –7.23 –5.41
3 169 1 28.534 28.534 1 –8.5176 –8.517 1 1.82 1.82
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(H) Analysis of frames
The frame is analysed as a plane frame for dead load, live load and lateral
load obtained by response spectrum method for various load combinations.
Partial safety factor for limit state design of steel structures:

(a) 1.5(DL + LL)
(b) 1.2(DL + LL ± EL)
(c) 1.5(DL ± EL)
(d) 0.9(DL ± 1.5EL)

Moment resisting connection (see Fig. 19.9)

Storey drift (max) = 0.004 × storey height

Storey drift (actual) = storey shear/stiffness

Storey drift calculations are shown in Table 19.26.

(J) Column thickness
The individual thickness of the column and doubler plates should satisfy the
following (as per IS800 draft)

t ≥ (dp + bp)/90

19.9 Moment resisting frame.

Table 19.25 Storey shear for all modes

Storey V1k V2k V3k VSRSS Q kN

1 77.69 7.725 2.90 78.19 18.02
2 59.96 –1.63 –5.41 60.17 30.36
3 28.53 8.51 1.82 29.81 29.81
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where
t = thickness of doubler plate or column web
dp = panel zone between continuity plate
bp = panel zone between column flanges (see Tables 19.27 and 28).

(K) Beam and column limitation
The section selected for beams and columns shall satisfy the following

Σ
Σ

 

 
1.2

M

M
pc

pb
≥

where
∑Mpc = sum of the moments above and below column centrelines
∑Mpb = sum of the moments in the beam at the intersection of the

beam and column centrelines

In all the elements the ratio is greater than 1.2.
Conclusion: From the above result it is proved that the provided sections

are efficient in carrying dead load, live load and earthquake load.

Table 19.26 Storey drifts

Storey Storey shear Stiffness Storey drift Storey drift
(N) (N/m) (act) (max)

1 77690 51.63 × 106 0.00150 0.012
2 59960 51.63 × 106 0.00161 0.012
3 28530 26.93 × 106 0.00105 0.012

Table 19.27 Properties of a column

Section h b tw tf

ISMB 200 200 100 5.7 10.8
ISMB 300 300 140 7.5 12.4
ISMB 350 350 140 8.1 14.2

Table 19.28 Thickness of column and doubler plate

Column Beam dp bp tmin tpro

ISMB 200 ISMB 200 178.4 178.4 3.96 5.7
ISMB 300 ISMB 200 178.4 275.2 5.04 7.5
ISMB 350 ISMB 200 178.4 321.6 5.55 8.1

�� �� �� �� �� ��



Structural dynamics of earthquake engineering784

Example 19.6
Find the seismic load on shear building shown in Fig. 19.10 by varying the
stiffness of columns and mass of the floors. Table 19.29 gives the comparison.

Example 19.7
Calculate the shear force at the ground storey columns for the following
building (Zone V; rock; concrete column, Fig. 19.11) h = 3 m.

Data given: G + 2, slab; 120 mm thick, walls = 230 mm brick
Live load: 4 kN/m2

Column size GF: 230 × 300, FF = 230 × 300, SF = 230 × 230
Beam size: 230 × 300 (0.1 m thick weathering course may be assumed on

the roof)
(Assume DL for beams and columns: 10% of DL for slab + walls)

Solution
The area calculation is shown in Table 19.30. (120 mm thickness slab).

Dead weight for 1 m2 slab = 0.12 × 25 = 3 kN /sm2

Total dead weight of slab in one floor = 144 × 3 = 432 kN

Wall thickness = 230 mm

Assuming walls only at the peripheral line of the plan

Total volume of brick masonry wall = [(12 + (2 × 8) + (2 × 8) + 6)]

× 3 × 0.23 × 20

= 690 kN

19.10 Shear frame (M = 1000 kg, k = 600 kN/m, 5% damping, Zone V
assumed).

M3

M2

M1

K3

K2

K1
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Table 19.29 Comparison of various types of shear buildings

Shear building Φ1 Φ2 Φ3 T1 & Sa/g T2 & Sa/g T3 & Sa/g VSRSS Drift Remarks
——————————— × 10–3

Storey M for K for
1,2,3 1,2,3

1 1 1 0.445 –1.247 1.80 0.58 0.21 0.142 3129 5.26 Regular bldgs.
2 1 1 0.801 –0.554 –2.247 1.73 2.5 2.5 2358 3.92 Lower storeys
3 1 1 1 1 1 1314 2.19 weak & flexible

to carry shear.

1 1 3 0.254 –0.456 8.2 0.39 0.17 0.10 4181 2.32 Pyramid type
2 1 2 0.584 –1.29 –5.29 2.5 2.5 2.5 3333 2.77 (stiff)
3 1 1 1 1 1 1991 3.31

1 2 2 0.309 –0.809 1 0.59 0.22 0.18 5280 4.4 Irregular due to
2 2 1 0.809 –0.309 –1 1.7 2.5 2.5 3740 6.23 sudden drop in
3 1 1 1 1 1 1515 2.53 stiffness at second

storey level, leading
to soft storey.

1 1 2 0.315 –2.07 0.763 0.48 0.15 0.12 3751 3.12 Design for pancaking.
2 1 1 0.855 –0.403 –1.452 2.5 2.5 2.5 2800 4.66 Also quite stiff with
3 1 2 1 1 1 1524 1.27 low T1

1 1 1 0.635 –1.19 1.31 0.51 0.16 0.10 3452 5.74 Typical stilt floor bldg,
2 1 2 0.873 –0.272 –2.10 1.96 2.5 2.5 2538 2.11 leading to soft storey
3 1 2 1 1 1 1365 1.13 failure.
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Half of the wall load will come to each floor above and below the wall. So

Total load from slab and wall on 1st and 2nd storey = 432 + 690

= 1122 kN

For roof = 432 + 690/2 = 777 kN

Total dead load for beam and column for 1st and 2nd storey

= 0.1 × 1122 = 112.2 kN

For top floor = 0.1 × 777 = 77.7 kN

So altogether dead load for 1st and 2nd storey = 1122 + 112.2

= 1234.2 kN

And that of top floor = 777 + 77.7 = 854.7 kN

4m each

3m each

19.11 Unsymmetrical building.

Table 19.30 Area calculation

Length (m) Breadth (m) Area (m2) Total area (m2)

8 12 96 144
8 6 48

(Assume excitation is in the direction of x-axis)
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Consider 50% of live load in 1st and 2nd floor = 144 × 0.5 × 4

= 288 kN

Considering weathering for 3rd floor = 288 kN

So total DL + LL for 1st and 2nd floor = 1522.22 kN

and that of roof = 1142.70 kN

Equivalent mass for 1st and 2nd floor = 152 200 kg

For 3rd floor = 116 500 kg

Table 19.31 gives the calculation of storey stiffness for ground floor and first
floor and Table 19.32 for the roof. Table 19.33 gives the results of dynamic
analysis using the MATLAB package. By the SRSS method

V V V VSRSS 1
2

2
2

3
2( )= + +

= 336.14 kN

Table 19.31 Storey stiffness for ground floor and first Floor

Type Breadth Depth I = bd3/12 EN (m2) K = 12EI/h3 No. of ∑ K
(m) (m) (m4) (N/m) columns (N/m)

1 0.23 0.3 0.000 518 12 937 500 5 750 000 7 40 25 0000
2 0.3 0.23 0.003 04 7 604 375 3 379 722 6 20 278 333

Total = 60 528 333

Table 19.32 Storey stiffness of roof

Type Breadth Depth I = bd3/12 EN(m2) K = 12EI/h3 No. of ∑ K
(m) (m) (m4) (N/m) columns (N/m)

1 0.23 0.23 0.000 233 5 830 021 2 591 120 13 33 684 565

Table 19.33 Results of dynamic analysis

Mode 1 Mode 2 Mode 3

T 0.69 0.29 0.19
Sa/g 1.45 2.5 2.5
φ1i 0.396 –0.789 3.364
φ2i 0.7085 –0.638 –2.95
φ3i 1.0 1.0 1.0
Γ 1.3128 –0.368 0.056
% of modal mass 88.79 8.8 2.36
Ah 0.087 0.15 0.15
Base shear (kN) 331.1 55.98 14.516
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The centre of mass is calculated as shown in Table 19.34. So the coordinates
of centre of mass are (6,6.67).

The calculation of centre of stiffness is shown in Table 19.35. So the
coordinates of centre of stiffness are (6,6.48)

Distance between centre of stiffness and centre of mass (esi)

= 6.67–6.48

= 0.19 m

Design eccentricity to be used (clause 7.9.2; IS1893 2002)

edi = 1.5 × esi + 0.05 bi

where bi is the floor plan dimension perpendicular to the direction of force.
In our case

esi = 1.5 × 0.19 + 0.05 × 16 = 1.085 m

Lateral shear Vb = 336

Moment about centre stiffness Mt

= 336 × 1.085

= 364.56 kN/m (clockwise moment)

Table 19.34 Calculation of centre of mass

Part Width Breadth Area Distance Area Y coordinate
moment of centre

of mass

1 12 8 96 4 384 960/144
2 6 8 48 12 576 = 6.67

144 960

Table 19.35 Calculation of centre of stiffness

Breadth Depth I No of n × I Distance n × I × y Y coordinate
columns (y) of centre of
(n) stiffness

0.23 0.3 0.000 518 3 0.001 553 0 0 ∑ n × I × y/
0.23 0.3 0.000 518 3 0.001 553 8 0.012 42 ∑ n × I
0.23 0.3 0.000 518 1 0.000 518 16 0.008 28 = 6.48
0.3 0.23 0.000 304 2 0.000 608 0 0
0.3 0.23 0.000 304 2 0.000 608 8 0.004 867
0.3 0.23 0.000 304 2 0.000 608 16 0.009 734

∑ 0.005 448 ∑ 0.0353
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so resisting moment is anticlockwise and negative. The calculation of column
shear due to base shear is shown in Table 19.36.

The lateral force is acting from left to right at the mass centre and the
column shear due to shear force is acting from right to left. Owing to torsional
resisting moment (clockwise positive) the displacements are calculated as

Ui = – Yiθ
Vi = Xiθ

and the forces are given by

Fxi = –(KxiUi)

= Kxi Yiθ

Fyi = –(KyiVi)

= –Kyi Xiθ
Hence resisting torsional moment is given by (clockwise is positive)

Mt = FxiYi – FyiXI

M K Y K X Jt xi i yi i= ( + ) =2 2θ θ θ
Θ = Mt/J

Fxi = KxiYix Mt/J

Fyi = –KyiXix Mt/J

where Mt = –364.56.

The resultant shear due to base shear and torsional moment in various
columns are given in Table 19.37

Vx = –364.56 × IxiYi/2657

Vy = 364.56 × IyiXi/2657

The final column shear and its direction due to direct shear and torsional
moment are shown in Fig. 19.12.

Table 19.36 Calculation of column shear due to base shear Vb

Breadth Depth I No of n × I I/∑nI Fxi n × Fxi
columns
(n)

0.23 0.3 0.000 518 7 0.003 623 0.095 31.9 223
0.3 0.23 0.000 304 6 0.001 825 0.056 18.7 112.4

∑ = 0.005 45 ∑ = 335.4
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Table 19.37 Resultant shear in various columns

Column Ixi Iyi Xi Yi IxiYi IyiXi     I Yxi i
2

    I Xyi i
2 Vx/10 Vy/10 Direct Vx(total)/ Vy/10

no. Vx/10 10

1 5.1 3 –6 –6.48 –33.05 –18 214.15 108 0.45 –0.25 –3.19 –2.737 –0.247
2 3 5.1 –3 –6.48 –19.44 –15.3 125.97 45.9 0.27 –0.21 –1.87 –1.604 –0.21
3 5.1 3 0 –6.48 –33.05 0 214.15 0 0.45 0 –3.19 –2.737 0
4 3 5.1 3 –6.48 –19.44 15.3 125.97 45.9 0.27 0.21 –1.87 –1.604 0.21
5 5.1 3 6 –6.48 –33.05 18 214.15 108 0.45 0.25 –3.19 –2.737 0.25
6 5.1 3 –6 1.52 7.752 –18 11.783 108 –0.11 –0.25 –3.19 –3.296 –0.247
7 3 5.1 –3 1.52 4.56 –15.3 6.9312 45.9 –0.06 –0.21 –1.87 –1.932 –0.21
8 5.1 3 0 1.52 7.752 0 11.783 0 –0.11 0 –3.19 –3.296 0
9 3 5.1 3 1.52 4.56 15.3 6.9312 45.9 –0.06 0.21 –1.87 –1.932 0.21

10 5.1 3 6 1.52 7.752 18 11.783 108 –0.11 0.25 –3.19 –3.296 0.25
11 3 5.1 –3 9.52 28.56 –15.3 271.89 45.9 –0.39 –0.21 –1.87 –2.261 –0.21
12 5.1 3 0 9.52 48.55 0 462.22 0 –0.66 0 –3.19 –3.855 0
13 3 5.1 3 9.52 28.56 15.3 271.89 45.9 –0.39 0.21 –1.87 –2.261 0.21

1949.6 707.4
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Example 19.8
A six storey reinforced concrete building has a plan dimension as shown in
Fig. 19.13. The size of exterior columns (9 each on lines A & C ) are 300 ×
500 mm and interior column (9 on line B) is 300 × 600 mm for the lower
three floors and respectively 300 × 400 mm and 300 × 500 mm for the upper
three floors. The height between floors is 3.5 m. Dead load/unit area of floor
which consist of floor slab, half the weight of column above and below the
floor, partition walls, etc., are assumed to be 5 kN/m2. The intensity of live
load is assumed to be 3 kN/m2. The soil below is hard and the building is
located in Delhi.

4m

3m

19.12 Final column shear direction.

19.13 Plan of the building.

8 @ 4m 2 @ 7m

C

B

A
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Solution
Equivalent lumped weight at various floors:

The load on all floors except roof = 5 + 0.25 × 3 = 5.75 kN/m2

Load on roof = 5 kN/m2

Plan area = 14 × 32 = 448 m2

Equivalent weight on each floors except roof = 5.75 × 448

= 2576 kN

Equivalent weight on roof = 5 × 448 = 2240 kN

Total wt = 5 × 2576 + 2240 = 15 120 kN

(A) Empirical method
To find natural period (T)

From clause 7.6.1 T1 = 0.075 h0.75

= 0.075 × 210.75

= 0.735;  = 0.09 = 0.09 21 14 = 0.505T h
d

a ×

(B) Horizontal seismic coefficient
Delhi is in Zone IV and Z = 0.24; I = 1; R = 3; Sa/g = 1/T

A
Z I S

Rgh
a=

2

= 0.24 1 1.98
2 3
× ×

×
= 0.0792

Base shear = 0.0792 × 15120

=1197 kN

Lateral load and shear force at various levels are calculated as shown in
Table 19.38 and shown in Fig. 19.14.

By modal superposition method, Assume the frame as shear frame for
the calculation of periods

K = 12EI/h3; h = 3.5 m; E = 20 × 109 N/mm2

For 300 500; = 12 20 10 300 500
3.5 12 10

9 3

3 12× × × × ×
× ×

K

= 17 493 kN/m
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For col 300 × 600 K = 30 228 kN/m

For col 300 × 400 K = 8956.4 kN/m

In the lower three floors there are 18 columns of size 300 × 500 and 9 of 300
× 600 and columns are acting parallel.

K = 18 × 17 493 + 9 × 30 228 = 586 926 kN/m

For upper three floors K = 18 × 8956.4 + 9 × 17 493

= 318 652 kN/m

The equivalent column stiffness and mass along the shorter direction are
given in Table 19.39.

[ ] = 10

262.59

262.59

262.59

262.59

262.59

228.34

3M

























Table 19.38 Shear force at various levels

Floor Wi hi     W hi i
2

    W h W hi i i i
2 2Σ Qi Vi

1 2576 3.5 31 556 0.0116 13.8 1193
2 2576 7 126 224 0.0483 55.42 1180
3 2576 10.5 284 004 0.1043 124.8 125
4 2576 14 504 891 0.1854 221 1001
5 2576 17.5 788 900 0.2897 346 780
6 2240 21 987 840 0.3627 434 434
∑ 15 120 277 340

19.14 (a) Earthquake loads; (b) shear force.
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Using the MATHEMATICA package, periods and mode shapes can be
calculated as shown in Table 19.40.

Earthquake response: design horizontal seismic coefficient Ah

A
Z I S

Rgh
a=

2

Z = 0.24; I = 1, R = 3

Ah values are given in Table 19.41.
Modal mass and modal participation factor:

M

g
k

n

ik

n

ik

=

 

 ( )

2

2

Σ

Σ

i i

i i

W

W

=

=







1

1

φ

φ

Table 19.39 Equivalent stiffness and mass

Storey no. M (kg) K(N/m)

1 262.59 × 103 586 926 × 103

2 262.59 × 103 586 926 × 103

3 262.59 × 103 586 926 × 103

4 262.59 × 103 318 652 × 103

5 262.59 × 103 318 652 × 103

6 228.34 × 103 318 652 × 103

Table 19.40 Frequencies, periods and mode shapes

ω1 = 10.68 ω2 = 28.11 ω3 = 45.6
T1 = 0.587 T2 = 0.223 T3 =0.138

Φ1n –0.1088 0.306 0.344
Φ2n –0.212 0.504 0.374
Φ3n –0.304 0.523 0.0599
Φ4n –0.446 0.218 –0.6187
Φ5n –0.545 –0.228 –0.2527
Φ6n –0.594 –0.527 0.5391
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φ
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Wk = Pk ∑ wiφik

Modal mass and participation factors are calculated in Table 19.42.

Weight in first mode = 54902/2451 = 12 296

% wt in 1st mode = 12 296/15 120 = 0.813

Weight in 2nd mode = 22272/2478 = 2001

% wt in 2nd mode = 2001/15 120 = 0.1324

Weight in 3rd mode = 8942/2423 = 330

% wt in 3rd mode = 330/15 120 = 0.021

Participation factor (pk)

P1 = –5490/2451 = –2.239

P2 = 2227.5/2478.6 = 0.898

P3 = 894/2423 = 0.36

Design lateral force and storey shear in each mode

Lateral force Qik = AhPkWiφik

Lateral forces are calculated as shown in Table 19.43.
Base shear 874 kN by modal analysis is less than VB  = 1195 kN and as per

clause 7.8.2 all the response quantities must be multiplied by 1195/874 =
1.367 and the shear is calculated as shown in Table 19.43. Drift calculations
are given in Table 19.44.

Example 19.9
An eight storey RC framed building shown in Fig. 19.15 with live load of
3 kN/m2 is to be constructed in Coimbatore. Work out seismic forces in the
structure. All beams and columns assumed to be 250 × 400 mm and 400 ×
500 mm respectively. The roof and floor slabs are assumed to be 150 mm
thick. The walls all around are 120 mm thick. H = 3 m.

Table 19.41 Ah values

Mode 1 Mode 2 Mode 3

Sa/g 1.703 2.5 2.5
Ah 0.068 0.1 0.1
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Table 19.42 Calculation for modal mass and participation factors

Storey Wt Mode 1 Mode 2 Mode 3
(kN) Φi Wiφik     Wi ikφ 2 Φi Wiφik     Wi ikφ 2 Φi Wiφik     Wi ikφ 2

1 2576 –0.108 –278.2 30.046 0.306 788.2 241.20 0.314 808.864 253.983
2 2576 –0.212 –546.1 115.78 0.504 1298. 654.34 0.374 963.424 360.321
3 2576 –0.304 –783.1 238.06 0.523 1347. 704.61 0.06 154.302 9.24271
4 2576 –0.446 –1148.0 512.41 0.218 561.5 122.42 –0.618 –1592 983.836
5 2576 –0.545 –1403.0 765.14 –0.228 –587.0 133.91 –0.253 –650.96 164.496
6 2240 –0.594 –1330.0 790.35 –0.527 –1180. 622.11 0.54 1209.15 652.7

Sum –5490.8 2451.8 2227.5 2478.6 892.819 2424.58

Table 19.43 Lateral force calculation

Storey Weight Mode 1 Mode 2 Mode 3 VSRSS mod Vb
(kN) Φi Qik Vik Φi Qik Vik Φi Qik Vik

1 2576 –0.108 42.3577 836.09 0.306 70.84 057 200 0.314 29.8552 32.7 874 1195
2 2576 –0.212 83.1466 793.62 0.504 116.6786 129 0.374 35.56 2.9 805 1100
3 2576 –0.304 119.229 710.48 0.523 121.0772 12.07 0.06 5.6953 –32.69 711 972
4 2576 –0.446 174.922 591.25 0.218 50.46812 –108 –0.618 –58.76 –37 602 823
5 2576 –0.545 213.75 416.33 –0.228 –52.7832 –158 –0.253 –24.027 21 417 570
6 2240 –0.594 202.58 202.58 –0.527 –106.09 –106.09 0.54 44.6298 44.6298 232 317
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Solution
Step 1: Dead weights are shown in Table 19.45. Imposed load at all floors
except roof:

(25% of imposed load for 3 kN/m2 – see Table 19.8 of IS1893 2002)

= 22.5 × 22.5 × 3 × 0.25 = 379.7 kN

Lumped mass at floor level except roof

W = 432 + 230.4 + 1822.5 + 648 + 379.7 = 3512.6 kN

Lumped mass at roof level:

W = 432 + 230/2 + 1822.5 + 648/2 = 2693.7 kN

Table 19.44 Drift calculation

Storey Shear force K Drift (m) U

1 1195 586 926 2.03 × 10–3 0.002
2 1100 586 926 1.87 × 10–3 0.0039
3 972 586 926 1.06 × 10–3 0.004 96
4 823 318 652 2.58 × 10–3 0.007 54
5 570 318 652 1.789 × 10–3 0.009 32
6 317 318 652 9.95 × 10–4 0.010 315

7.5m each

7.5m
each

19.15 Eight storeye RC framed building.

Table 19.45 Dead weights

Items Size (L × B × H) Numbers Density Dead weight
(m3) (kN/m3) (kN)

Beams 0.40 × 0.25 × 7.5 24 24 432
Columns 0.4 × 0.5 × 3 16 24 230.4
Slab 22.5 × 22.5 × 0.15 1 24 1822.5
Wall 22.5 × 3 × 0.12 4 20 648
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Step 2: Base shear calculation

Total gravity load on building = 7 × 3512.6 + 2693.7 = 27 281.9 kN

According to clause 7.6.2 the fundamental natural period of vibration

Ta h d= 0.09 /

= (0.09 24)/ 22.5×

= 0.455 s

From Figure 2 of IS1893 2002

Sa/g = 2.5

Horizontal seismic coefficient = A
Z I S

Rgh
a=

2

(see Table 2 of IS1893 2002)

Z = 0.16      I = 1     R = 3

Ah = (0.16/2) × (1/3) × 2.5

= 0.067

Base shear VB = Ah × w

= 0.067 × 272 81.9

= 1827.8 kN

Step 3: Distribution of shear force is given in Table 19.46.

Example 19.10
A 15 storey RC framed building (30 m × 22.5 m in plan) with live load of
2 kN/m2 soil below is hard. The site lies in Zone V. All beams are of size 400
× 500 mm and columns are 600 × 600 mm. The spacing of columns is 7.5 m.
Slabs are assumed to be 150 mm thick. The walls all around is 120 mm thick.
Also analyse for soft soils.

Table 19.46 Distribution of shear force

Floor hi Wi     W hi i
2

    W hi i
2 Σ Qi V

1 3 3512.6 31 613.4 0.005 28 9.7 1827.9
2 6 3512.6 126 453.6 0.0211 38.7 1818.2
3 9 3512.6 284 520.6 0.0475 87 1779.5
4 12 3512.6 505 814.4 0.0846 154.7 1692.5
5 15 3512.6 790 335 0.1322 241.6 15 375
6 18 3512.6 1 138 082.4 0.19 348 1296.2
7 21 3512.6 1 549 056.8 0.259 473.7 948.2
8 24 2693.7 1 551 571 0.2 474.5 474.5

�� �� �� �� �� ��



Building codes for aseismic design 799

Solution
Calculation of dead loads is shown in Table 19.47.
Imposed load at all floors except roof:

(25% of imposed load for 2 KN/m2 – see Table 8 of IS1893 2002)

= 22.5 × 30 × 2 × 0.25 = 337.5 kN

Total load on all floors except roof = 4810.40 + 337.5 = 5147.9 kN

Roof = 1116 + 518.4/2 + 2420 +756/2 = 4173.20 kN

Stiffness of 20 columns = K

= 20 × 12 × 18.8 × 103× 1.08 × 1010/30003

= 1 804 800 kN/m

To find natural frequencies

[ ] [ ]{ } = 1 { }–1
2k M x x

ω
Using the MATHEMATICA or MATLAB package

ω1 = 6.029 rad/s, ω2 = 18.05 rad/s, ω3 = 29.91 rad/s

T1 = 1.042 s, T2 = 0.348 s, T3 = 0.21 s

Modal shapes at various floor levels are given in Table 19.48.
For Zone V; rock site (Z = 0.36); moment resisting frame (R = 5); (I = 1)

we get Ah
1  = 0.034 (rock), 0.0576 (soil); Ah

2 = 0.09 (both); Ah
3 = 0.09 (both)

and modal participation factors are P1 = 3.57; P2 = 1.18; P3 = 0.692 and the
percentage of modal mass participating to various modes in percentages are
83.7%, 14%, 3.4% respectively.

Calculations are carried out as per the code and finally the shear in each
floor may be carried out and given in Table 19.49 for first mode only after
modification as shown below.

Calculation of base shears using fundamental period.
Rock X direction:

T h d xa = = =0.09 / 0.09 45/ 30 0.739 s

Table 19.47 Dead loads

Items Size (L × B × H) Numbers Density Dead weight
(m3) (kN/m3) (kN)

Beams 7.5 × 0.40 × 0.5 31 24 1116
Columns 3 × 0.6 × 0.6 20 24 518.40
Slab 22.5 × 30 × 0.15 1 24 2420
Wall (22.5 + 30) × 3 × 0.12 2 20 756

∑ 4810.40
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Sa/g = 1/T = 1.353; Ah = 0.36
2

1
5













 1.353 = 0.048

V A WB h= = × = >0.048 76243.8 3650 kN 2270 kN

Hence all shears are to be multiplied by 3650/2270 = 1.61. For soft soil similar
calculations are carried out and the multiplying factor is 6085/3659 = 1.66.

Allowable drift in each storey = 3000/400 = 7.5 mm

Hence actual drift is less then allowable drift (Program 19.1 can be used).

19.7 Summary

All the codes more or less use structural dynamics concepts. The seismic
design approach must also consider, much more realistically than has been

Table 19.48 Mode shapes at various floor levels

Floor Mode 1 Mode 2 Mode 3

15 0.356 –0.355 0.353
14 0.353 –0.33 0.283
13 0.347 –0.273 0.14
12 0.336 –0.19 –0.039
11 0.323 –0.089 –0.208
10 0.305 0.019 –0.324

9 0.285 0.127 –0.355
8 0.261 0.222 –0.296
7 0.235 0.296 –0.158
6 0.206 0.342 0.019
5 0.175 0.356 0.192
4 0.143 0.336 0.315
3 0.0108 0.285 0.356
2 0.073 0.206 0.305
1 0.037 0.108 0.175

Table 19.49 Shear and drift calculation

Floor Rock Soft Drift soft Floor Rock Soft Drift soft
(mm) (mm)

1 3497 6073 3.36 9 2244 3899 2.16
2 3460 6009 3.32 10 1956 3398 1.88
3 3385 5879 3.26 11 1648 2863 1.58
4 3276 5690 3.15 12 1321 2295 1.27
5 3131 5439 3.01 13 982 1704 .94
6 2954 5132 2.84 14 631 1095 0.607
7 2746 4770 2.64 15 273 476 0.263
8 2508 4357 2.41 Total disp. at the roof 32.69
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done in the past, the demands imposed by earthquakes on structures and the
structural capacity to meet the demands. For design of special structures,
special earthquake considerations are necessary. According to Newmark and
Rosenblueth (1971) ‘Earthquake effects on structures systematically bring
all the mistakes made in the design and construction even the minutest
mistakes’. To understand the codes, the above examples have been carried
out using IS1893 2002. Nevertheless, with slight modifications, the examples
could also be worked out using the individual country codes.

19.8 Exercises

1. Calculate the shear force at the base of the ground storey column for the
three storey concrete building shown in Fig. 19.16 (Zone V, rock) for
first mode only. Storey height may be assumed as 3 m, slab thickness of
120 mm, walls 230 mm brick all round. Live load can be taken as 4 kN/
m2. The column sizes for the ground and first floors may be assumed as
230 × 300 mm and for the second floor as 230 × 230 mm. E for concrete
may be assumed as 25 GPa. Assume dead load for beams and columns
as 10% of dead load for slab + walls. The response reduction factor may
be assumed as R = 3. The periods and mode shapes are given in Table.
19.50.

2. The three storeyed RCC school building has three columns in each

Table 19.50 Natural frequencies and normalized
mode shapes

Nat period 0.775 s 0.326 s 0.226 s

U1 0.432 –0.616 1.48
U2 0.757 –0.345 –1.849
U3 1.0 1.0 1.0

19.16

3

1

4

2

6m

8m
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direction at a spacing of 4 m. The building is located in seismic Zone V
the type of soil encountered is medium stiff and it is proposed to design
the building with a special moment resisting frame. The intensity of
dead load 10 kN/m2 and the floor are to take an imposed load of 3 kN/
m2. Determine the design seismic loads on the structure by static analysis.
Assume the height of each floor as 3 m.

3. For the building data given in Exercise 2 find the distribution of lateral
force due to earthquake by dynamic analysis as proposed in the code
IS1893 2002 Part 1. Use the program to check your answers. Also calculate
the moments at various points by using cantilever method.

4. A ten storeyed ordinary moment resisting frame (OMRF) building has
four columns in the x direction and five columns in the y direction with
a spacing of 6 m. The storey height is 3 m. The DL/unit area of floor
carrying of floor slab and finishes, etc. is 4 kN/m2. Weight of partitions
on the floor can be assumed to be 2 kN/m2. The intensity of live load on
each floor is 3 kN/m2 and on the roof is 1.5 kN/m2. The soil below is
medium and the building is located in Coimbatore (in Zone III). Determine
the seismic forces and shears at all floor levels.
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20
Response of structures to earthquakes:

approximate analysis techniques for
lateral loads

Abstract: Approximate methods provide the basis for selecting preliminary
member sizes for rigorous analysis to determine whether design criteria are
met. Hence simplified analyses are often used for preliminary design and for
gaining valuable insight into system performance. The zero moment point
method for single bay multi-storey frame and portal, cantilever, factor and
stiffness centre methods for multi-storey and multi-bay frames are discussed
and a comparison is made.

Key words: zero moment point, portal, cantilever, contra-flexure, stiffness
centre.

20.1 Introduction

Even in today’s high-speed computer-oriented world with all its sophisticated
analysis capability, there is still a need for approximate analysis of structures.
First it provides a basis for selecting preliminary member sizes because the
design of a structure, no matter how simple or complex, begins with a tentative
selection of members. With the preliminary sizes, an analysis is made to
determine if design criteria are met. If not, an analysis of the modified
structure is made to improve its agreement with the requirements and the
process is continued until a design is obtained within the limits of acceptability.

When it comes to earthquakes, earthquake-resistant structural design often
requires the ability to analyse complex frames for lateral loads arising from
systematic loading. Sophisticated, very accurate analysis may not be necessary
since large uncertainties are involved in seismic loading. Hence simplified
analyses are often used for preliminary gaining and for getting valuable
insight into system performance. Preliminary designs are very useful in
locating weak solutions.

In order to model a structure subjected to earthquake loading several
assumptions and approximations are made. Hence the results arising from
these will not reflect the true behaviour. It is customary to assume a structure
has a shear frame for the purposes of determining natural frequencies, periods
and mode shapes. For such an idealization the beam slab system is assumed
to be infinitely rigid in comparison with columns. Even though it is deviating
from reality, this reduces the dynamic degrees of freedom quite significantly.
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Frames with uniform distribution of mass and stiffness are called regular
frames and they may be idealized as a single multi-storeyed frame for the
purpose of analysis in elevation. Structures which are unsymmetrical in plan
produce torsion in plan and introduce more shears on perimeter and corner
columns. When a diaphragm is discontinuous, it will significantly affect the
distribution of forces between the vertical lateral load resisting (VLLR)
elements. Usually codal guidelines are given for ensuring good seismic
performance in the absence of detailed analysis tools.

20.2 Simplified analysis for lateral loads

The following assumptions are made:

• Horizontal loads are concentrated at floor levels.
• The effect of shear on deformation is neglected. This is valid for frames

but not for walls.
• The effect of axial force in deformation is neglected. This is true as long

as total length is not small with respect to the height.

The methods of analysis are:

• For multi-storey, single bay frame
• Zero moment point method
• Continuum method (only for buildings with large degree of uniformity)

• For multi-storey, multi-bay frames
• portal method,
• cantilever method,
• factor method,
• stiffness centre method.

These will be discussed in more detail in the following sections.

20.3 Zero moment point method

A one bay multi-storey framed building of height h and width l is considered.
Assume the building is subjected to lateral loads as a result of ground motion.
The bending moment diagram due to lateral loading is shown in Fig. 20.1.

M V
hoBot =
2

M V
h hoTot =

–
2

20.1

The position of the point where the moment is zero is defined as the zero
moment point (ZMP).
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20.2

Hence,

M VS hBot =
2

M V STop = – 1
2

20.3

The position of the ZMP depends on the ratio of beam stiffness to column
stiffness given by

M
I
lb
b=

K
I
hc
c= 20.4

The ratio is given as

r
K
K

b

c
= 20.5

n

n

I = 1
  = G

h

h

V

mTop

mBot

h

h0

20.1 Bending moment diagram due to lateral loads.
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If storey beams are very stiff, the ZMP lies at the mid-height of each storey
and if the beams are very flexible, the behaviour is more like a cantilever
(see Fig. 20.2).

The approximate position of ZMP will now be determined for uniform
and non-uniform frames.

20.3.1 Uniform frames

It is assumed that storey heights are constant and moments of inertia are
constant at each storey. The frame is analysed for inverted triangular load.
Various analyses have been performed with different values of beam to
column stiffness as r = 0.01, 0.1, 0.5, 1, 2, 5, 10, 10000. The positions
of ZMP are as follows. The average values of S is plotted for various
values of r for ground storey, first floor and mid-height of the building in
Fig. 20.3.

• At first storey S is 0.5–0.6 for r > 2 and greater than 1 for r < 0.2
(ground).

• At mid-heights S is about 0.5 for r > 0.5 average values of S at ground
floor, first floor and new mid-height floor are shown in Fig. 20.3.

It is to advisable to increase the moments at mid-height by 10–20% with
respect to moments based on Sm. By relating maximum moment on columns
(Mmax) to that, acting on cantilever (Mcant) the ratio of (Mmax/Mcant) as shown
in Table 20.1 are obtained.

Rigid beams

Rigid beams

ZMP

20.2 ZMP when storey beams are very stiff.
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20.3.2 Non-uniform frames

When the frame has a varying column moment of inertia but constant beam
moment of inertia, the frame can be analysed using the curves for uniform
moment of inertia as

r
K

K
b

c
=

max
20.6

For frames with soft ground storey

K
I
hg

K
I
hcg

cg
c

c= < = 20.7

may be used

r
K
Kg

b

cg

=

=

I
l

I

h

b

c

g

g

20.8

Mid-storey

First floor

Ground floor

Ratio – r
0.1 1 10

S
 v

al
u

e
1.4

1.3

1.2

1.0

0.9

0.8

0.7

0.6

0.5

0.4

20.3 S value versus r.

Table 20.1 Maximum moment
in columns

r Mmax/Mcant

0.001 0.8–0.9
0.01 0.4–0.6
0.1 0.15–0.3
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r

I
l
I
h

b

c
= 20.9

20.3.3 Substitution in equivalent frame method

A multi-storey multi-bay frame is replaced by the equivalent single bay
frame shown in Fig. 20.4.

K
k

c
c* =

2
Σ

K kb b
* =  Σ 20.10

K
I
h

K
I
lc

c
b

b= ; = 20.11

Studies show the deflection of the substitution frame is identical to the actual
frame. The bending moment in columns of the substitution frame is

Σ = 2* *M Mc c

=  
2

Σ Mc 20.12

The total moment Σ *Mc  will be distributed to the columns in proportion to
moment of inertia.

The distribution is accurate only if the beams are very stiff (r > 10) or
very flexible (r < 0.05). Hence computed moments in interior columns have
to be multiplied by the factors as

20.4 Equivalent single bay frame.
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• for ground floor – 1.1 to 1.2
• for other floors – 1.2 to 1.3

Using equilibrium equations beam moment may be calculated.

20.3.4 Deflection estimation

The deformed shape of one bay, multi-storey structure depends on the ratio
of stiffness of beam to column r = kb/kc and on the type of loading 0.1 < r <
5. The deformed shape is close to a straight line as advocated by most
seismic codes. The deflections are sensitive to changes in geometry and
rigidity and so only the order of magnitude can be estimated. When 2 < r <
5. it is strong beam–weak column design and 0.01 < r < 1 is the weak beam
and strong column design which is preferred for earthquake design.

• Uniform frame subjected to concentrated force at the top (see Fig. 20.5)

U nFh
EIR

c
=

24

3
20.13

• Uniform frame subjected to equal concentrated load at the floor levels
(see Fig. 20.6)

U Fh
EI

nR
c

=
24

{1 + 2 + }
3

…

=
( + 1)
48

2n n
EI

Fh
e

20.14

• Uniform frame subjected to inverted triangular load at floor levels (see
Fig. 20.7)

F nδ

    

24 
  = 

El
h

Fc

c
δ

20.5 Uniform frame subjected to concentrated load at top.
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U
n n

EI
F hR

e
=

( + 1)(2 + 1)
144

 max
4

Umax = µUR 20.15

The average value of µ is shown in Fig. 20.11 which may be used for any
lateral load distribution.

For high values of beam stiffness (weak columns and strong beam) (r >>
1) the frame deforms as shown in Fig. 20.8. For low values of beam stiffness
(strong columns and weak beam) r < 0.1 the frame behaves like of cantilever
shown in Fig. 20.9.

F

    

Fh
Elc

3

24 

    

2
24 

3Fh
Elc

    

nFh
Elc

3

24 

20.6 Uniform frame subjected to equal concentrated load at floor
levels.

H

W = Fmax

20.7 Uniform frame subjected to inverted triangular load at floor
levels.
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20.8 Deformation of the frame.

F

20.9 Behaviour of frame as a cantilever.

F

F

F

20.10 Frame subjected to equal concentrated loads.
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• For concentrated load at top

U FH
EIR

c
=

6

3
20.16

• For equal concentrated loads as shown in Fig. 20.10

U FH
EI

F n
n EI

H
F n

n EI
H
nR

c c

=
6

+
( – 1)

6
+ +

( – 1)
2

+
3 3

3
3

2

3

3
… …

=
16

3nFH
EIc

20.17

• For inverted triangular load

U
n
EI

F HR
c

=
11( + 1)

max
4 20.18

The deflection calculations are required for checking storey drafts.
For regular frames, since the deflection shape is a straight line, the following

relation holds good (see Fig. 20.11).

H

h

∆4

Umax

µ = Vma/Vn

15

10

5

1

r
0.1 0.2 0.3 0.4 0.5 0 1 2 3 4 5

20.11 Linear variation of displacement.

20.12 Variation of µ with r.
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∆u
h

U
H

= max 20.19

For buildings with the height of the ground floor (hg) > height of floors
above h is (hg > h)

U
h

S
Fh
EI

G

G
G

G

G
= 3( – 1) 

 
12

2Σ
20.20

where SG can be taken from graph (Fig. 20.3).

20.4 Approximate methods of analysis of multi-bay

frames (lateral loads)

20.4.1 Portal method (version 1)

This method was developed by Robin Fleming (Norris and Wilbur,1960).
The name is derived from the concept which treats aisles of buildings as
individual portals, as shown in Fig. 20.13.

The load P is transmitted horizontally from portal, to portal giving rise to
an independent overturning effect in all of them. The leeward and windward
columns of each portal are subjected to compression and tension respectively.
There is no direct stress in the interior columns. This method is the most
expeditious of all the various methods of approximate analysis for wind and
earthquake. In the absence of a marked design dissymmetry, this method is
effective up to 25 stories.

The following assumptions are made (Version 1):

1. The points of contra-flexure are at the mid-points of the columns and
girders.

2. The sum of all the earthquake loads above a given storey is distributed
as shear among the columns of that storey, in direct proportion to the
width of the aisles.

3. The bent resists all the earthquake load (with no help from the walls,
floors and partition). This assumption is common to all the methods.

P

20.13 Aisles of building as individual portals.
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Steps

1. Compute the wind or earthquake loads. In a typical panel, load is the
storey height times the bay width times the unit wind or earthquake load.
The roof load is based on half the height of the top storey plus the
parapet wall if any.

2. Distribute the wind or earthquake load as shear among its columns in
direct proportion to the width of the aisles. In case of equal width aisles,
the exterior columns of the bent are assumed to take half as much shear
as interior ones.

3. Compute the moments in all the columns. Since the points of contra-flexure
are assumed to be at mid-storey height, the moments at the top and bottom
will be equal to the product of column shear and half the storey height.

4. Beginning at the upper left corner of the bent and work towards the right
and downward.

5. Find the shear in the girders. The shear in the girder is equal to its end
moment divided by half of its span.

6. Find the direct stress in the columns. This is done by taking out the
joints one at a time as free bodies and apply ∑ V = 0.

7. Find the direct stress in girders in the same free bodies used in step 6 and
apply ∑ H = 0.

The free body diagram is shown in Fig. 20.14 and the bending moment
diagram in Fig. 20.15.

20.4.2 Portal method version II

The assumptions are same as in Version I except that shear in interior columns
is twice the shear is exterior columns whatever the aisle width. The free body

4m

4m

0.75

3.75

G

D

1.875

5.625

A

H
0.75 0.75

3

E

10m

3

3

9

B
6m

C

F

6kN

1.125

3.375

0.75

3.75

12kN

20.14 Free body diagram.
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3.75

3.750

2.25

2.25

6.75

6.75

15

11.250

6

9

15

18

20.15 Bending moment diagram.

and bending moment diagrams (BMD) are shown in Figs 20.16 and 20.17
respectively.

20.4.3 Cantilever method – Robin Fleming (1913)

The building is treated as a cantilever beam standing on end and fixed to the
ground. The beam formula thus applies and the columns become chord
members under an increasing direct stress from the neutral axis of the building

4m

4m

G

D

1.5

4.5

A

H

2.4

E

10m

3

4

9

B
6m

C

F

6kN

1.5

4.5

12kN

3

0.6

0.6 1

4

I

1

52

20.16 Free body diagram for portal method version II.
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outward. This method is effective up to about 35 stories provided the height
to width ratio is not greater than four or five to one and provided the bents
are not too much out of symmetry. It must be assumed that in order to get
cantilever action, the interior girders must be sufficiently stiff to hold the
floors in a plane under lateral deflection from wind. This calls for a
comparatively low length–depth ratio for the girders when shallow girder–
column an earthquake wind connection is used.

The following assumptions are made:

1. The direct stress in a column is directly proportional to its distance from
the neutral axis of the bent.

2. The point of contra-flexure in the girders is at mid-span.
3. The points of contra-flexure of the columns are at mid-height.

Steps it is usual to assume cross-sectional area of columns to be equal to 1:

1. Locate the neutral axis of the bent by taking static moments of the
column areas about either external column.

2. Compute the moment of inertia of the column areas.
3. Compute the external wind shears and moments to be applied at each

mid-story height and record them.
4. Compute direct stress in the exterior columns by f = My/I.
5. Beginning at the upper left corner of the bent and working toward the

right and downward, find and record girder shears. This is done by
considering the free body and applying ∑ V = 0.

3

3

9

9

15

6

3

3

12

18 9

20.17 Bending moment diagram.
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6. Find and record girder moments. They are equal to the product of girder
shear times half the span.

7. Find and record column moments.
8. Find and record beam moments.

The sum of the column shears across any storey should be equal to the total
external shear taken by that story. The free body and bending moment diagrams
are shown in Figs 20.18 and 20.19 respectively.

4m

4m

G

D

A

H

E

10m
B

6m
C

F

6kN

12kN

0.788

I

3.976

0.788 1.970

6.03

3.191

0.6151

0.122 0.122

0.667

1.005

2.702

0.667

3.3693.059.06

20.18 Free body diagram for cantilever method.

3.940
5.941

3.94

15.955
3.99

12.05

12.05

15.917

8.106

2.00

8.10

618.12

20.19 Bending moment diagram.

�� �� �� �� �� ��



Response of structures to earthquakes 819

Taking the moment at A (see Fig. 20.18) we can find the neutral axis as

x = + =10 16
3

8.67 m from A

Top storey

Moment at mid-height of top storey = 6 × 2 = 12 kN m
Taking the moment about the neutral axis

k(1.332 + 7.342 + 8.672) = 12; k = 0.091

Reaction in column GD = 0.091 × 8.67 = 0.788

Reaction in column HE = 1.34 × 8.67 = 0.122

Reaction in column IE = 7.34 × 8.67 = 0.667

Ground storey

Similarly taking moment at mid-height of bottom storey

k(1.332 + 7.342 + 8.672) = 60; k = 0.4591

Reaction in DA = 0.451 × 8.67 = 3.976

Reaction in EB = 0.4591 × 1.34 = 0.6151

Reaction in CF = 0.4591 × 7.34 = 3.369

20.4.4 The factor method

The factor method (Wilbur, 1934) is another approximate method for analysing
building frames subject to lateral loads. This method is said to be more
accurate than either the portal or the cantilever method. In portal or cantilever
methods, certain stress assumptions are made so as to make the structure
determinate. In this method the same assumptions regarding the elastic action
of the structure are made. These assumptions enable an approximate slope
deflection analysis of the bent to be made.

In the previous methods, the relative K values of the members do not
enter into the calculations, but this method takes the relative K-values of the
members. To this extent, the results of this method are more accurate than
other methods.

Steps:
1. For each joint, compute the girder factor ‘g’ by using g = ∑ Kc/∑ K (as

shown in Table 20.2) where ∑ Kc = sum of k values of all columns
meeting at the joint, ∑ K = sum of k values of all members meeting at the
joints. Write ‘g’ values at the near end of each joint.
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2. For each joint, compute column factor ‘c’ as c = 1 – g; write c values at
near end. For fixed column bases of first storey take c = 1.

3. To each of these members of c or g values add half of the number at the
other end of the members.

4. Multiply each sum from step 3, by the K values of the member concerned.
For columns, call this factor the column moment factor Cm; for girders
call this factor the girder moment factor Gm.

5. The column moment factors obtained from step 4 are actually approximate
relative values for column end moments in that storey. The sum of the
column end moments in a storey is equal by statics to the total horizontal
shear of the storey multiplied by storey height. Hence individual column
moments may be found.

6. Girder moment factors Gm from step 4 are really relative end moment
values for the girders at each joint. The sum of girder end moments at
each joint is equal to sum of column end moments at that joint. Hence
girder end moments can be worked out.

7. Knowing the end moments of all members, other values such as girder
shears, column shears and column axial forces and girder forces can be
worked out.

The calculations are shown in Figs 20.20 and 20.21 and the bending moment
diagram is shown in Fig. 20.22.

Table 20.2 Girder factors

Joint I/L Sum
    

Σ
Σ
 
 
K
K

c

GH=1/10 0.25/0.35
G GD=1/4 0.35 = 0.714

HG=1/10 0.25/0.517

H HE=1/4 0.517 = 0.4835
HI=1/6
HI=1/6 0.25/0.417

I IF=1/4 0.417 = 0.6
DG=1/4 0.5/0.6

D GE=1/10 0.6 = 0.833
DA=1/4
EH=1/4 0.5/0.767

E ED=1/10 0.767 = 0.6518
EF=1/6
EB=1/4
FI=1/4 0.5/0.667

F FE=1/6 0.667 –0.749
FC=1/4
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Assume stiffness of GH = I/10 = 1

Corresponding stiffness of HI = 1 × 10/6 = 1.667

Corresponding stiffness of DG = 1 × 10.4 = 2.5

Corresponding stiffness of AD = 2.5

Multiply the factors obtained by stiffness factors; these values are given in
Fig. 20.21.

Top storey column moments

G

D

0.915

0.775

2.725

1.675

0.9555

1.158
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H0.84
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2.935
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1.3125
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20.21 Girder factor × stiffness factor.
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20.22 Bending moment diagram.
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A(0.915 + 0.775 + 1.6 + 1.52 + 1.3125 + 1.1275) = 24; A = 3.31

MGD = 3.31 × 0.915 = 3.028

and similarly other moments are calculated and the moment diagram is
shown in Fig. 20.22.

20.4.5 Stiffness centre method

With the exception of the factor method, the portal and cantilever methods
both assume that there is a point of inflexion at the mid-points of each girder
and column when the building frame is subjected to lateral loads (Kardestuncer,
1974a).

In the cantilever method the magnitude of axial force in each column
varies according to the distance of the centre of gravity of all columns under
consideration. When a system consists of hollow portions or is made of
beams and columns, due to rotations of girders the plane sections no longer
remain plane after the application of loads. Hence the concept of centre of
gravity in the cantilever method is a grossly wrong assumption, although the
factor method formulated by Wilbur has improved the calculations considerably.

Steps:
1. Calculate axial stiffness coefficients

K EA
L

EI
Li

C

g

g
= +  

3Σ 20.21

Quite often, since the change in length of a member has very little effect
it can be omitted. The second term in this equation represents the
summation of transverse bending stiffness of girders attached to the
column. Note that the cantilever method omits the second term instead
of the first (see Fig 20.23).

2. Locate the stiffness centre by

d
d  K

K
i i

i
=

 
 

Σ
Σ

20.22

3. The axial force developed in each column due to total moment of all
forces above the mid-height of the storey under consideration will be
computed analogous to the axial stress distribution in a cross-section,
but having the neutral axis located at the stiffness centre.

4. Calculate transverse stiffness coefficients as

K DFi c= 1 – 3
4

 

DF
I K

I cc
c c=
/
 /Σ 20.23

�� �� �� �� �� ��



Structural dynamics of earthquake engineering824

The deformation diagram is shown in Fig. 20.24.
5. Distribute the wind shear according to the transverse stiffness coefficients

V
k
k

Vi
i

i
=

 Σ 20.24

The above equation explains why the interior columns of a storey with
equal size of columns carry larger transverse force than do the exterior
columns. The ratio, however, is never twice.

6. The inflexion point of a column may be located as

b
a

K
K
c

g
= 1 +

 2Σ 20.25

For columns with a fixed base, the inflexion point is between the mid-
height and the top of the column. Most often it is found to be located at

K1

K2

20.23 Axial deformation in columns.

ma

m1

V1

= + =

V2
m2

ma

a

b

Inflexion
point

mb
    

m1

2

20.24 Deformation diagram.
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0.6L–0.7L from the base rather than 0.5L. The inflexion point is higher
in exterior columns than in interior columns.

7. Calculate moments and shears.
Axial stiffness coefficients

K EI
1 3= 3

10
= 1

K EI EI
2 3 3= 3

10
+ 3

6
= 5.63

K3 = 4.63

8. Calculate stiffness centre

4.63 16 + 5.63 10
11.20

= 11.579× ×

or, 1.579 to the right of centre column.

I = 1 × 11.5792 + 5.63 × 5.792 × 4.63 × 4.6212

= 226.45

Column axial force in top storey (A1 = 1; A2 = 5.63; A3 = 4.63) and
σ = A

P ADG 1= 12 11.579
226.45

= 0.613 1 = 0.613× ×

P A AEH 2 2= 12 1.579
226.45

= 0.0336 = 0.470×

P A AFI 3 3= 12 4.421
226.45

= 0.234 = –1.08×

Tranverse stiffness coefficients

Top storey

K1 = 1 – 3
4

1
4

1
4

+
1
10

= 1 – 0.75 0.25
0.35

= 0.464






×

K2 = 1 –

3
4

1
4

1
4

+
1
10

+
1
6

= 1 – 0.75 0.25
0.516

= 0.636
×







×
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K3 = 1 –

3
4

1
4

1
4

+
1
6

= 0.549
×







Column shear

V1 = 6 0.464
(0.464 + 0.636 + 0.549)

= 1.688×

V2 = 6 0.636
1.649

= 2.314×

V3 = 6 0.549
1.649

= 1.997×

Bottom storey

K1 = 1 –

3
4

1
4

0.5 + 0.1
= 0.6875

×

K2 = 1 –

3
4

1
4

1
4

+ 1
4

+ 1
10

+
1
6

= 0.755
×







K3 = 1 –

3
4

1
4

1
4

+ 1
4

+
1
6

= 0.72
×







Column shear

V1 = 1 0.6875
2.1625

= 5.728 ×

V2 = 1 0.755
2.1625

= 6.2898 ×

V3 = 6

The inflexion point may be assumed to be between 0.6 and 0.7L from base.
Knowing the shear, the column moment may be calculated. From the column
moments beam moments may be calculated. The bending moment diagram
by the stiffness centre method is shown in Fig. 20.25.

A comparison of various methods is given in Table 20.3.
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20.5 Analysis of buildings simple in plan for lateral

loads

The distribution of the load to the VLLR elements depends on the stiffness
and rigidity of the diaphragm. If the diaphragm is rigid, the lateral force
acting in a particular storey can be distributed to the VLLR elements in
proportion to their stiffness.

The following assumptions are made:

1. All the elements are connected by a rigid deck.
2. The axes passes through centre of stiffness.
3. Forces and distances are positive in the positive coordinate direction;

rotations and moments are positive in the anticlockwise direction.

Let CS be the centre of stiffness. The displacement at centre of stiffness
may be defined as (see Fig. 20.26)

Displacement of CS in x direction = UC

Displacement of CS in y direction = VC

Angle of rotation = θ

The centre of stiffness can be determined as follows. Consider the ith column
(see Fig. 20.27)
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3.46
3.69 3.28
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2.31 2 1.08

2.704
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9.15

4.05

1.839 5.72

13.728

1.41

10
5.54

6.4

15.072 14.47

9.6

14.4
6 3.24

20.25 Bending moment diagram.
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Table 20.3 Comparison of various methods

Method Left column Centre column Right column

Axial Shear Moment Axial Shear Moment Axial Shear Moment

Portal method version 1 3.75 5.625 11.25 0 9.0 18.0 3.75 3.375 6.75
Portal method version 2 3.0 9.5 9.0 2.0 9.0 18.0 5.0 4.5 9.0
Cantilever method 3.976 6.025 12.05 0.6151 9.06 18.12 3.369 3.05 6.105
Factor method 13.843 14.90 14.90
Stiffness centre method 1.839 5.721 13.728 1.41 6.28 15.07 3.24 6.0 14.41
Actual 1.606 4.718 12.221 2.52 6.02 13.93 4.12 5.25 12.94
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f K Ux x ii i=

= [ – ( – ) ]K u y yx c i ci θ 20.26a

f K V x xy y c i ci i= [ + ( – ) ]θ 20.26b

M F x x F y yT y i c x i ci i= ( – ) – ( – ) 20.26c

Simplifying,

F K U K y yx x C x i ci i i= – ( – )θ 20.27a

F K V K x xy y c y i ci i i= + ( – )θ 20.27b

M K V x x K U y yT yi c i c xi c i c= ( – ) – ( – )

 + [ ( – ) + ( – ) ]2 2K x x K y yyi i c xi i c θ 20.27c

In matrix form

Σ
Σ
Σ

Σ Σ
Σ Σ

Σ Σ




































 

 

 

=

 0  ( – )

0   ( – )

  ( – )
( – )

+ ( – )

–

–
2

2

f

f

M

K K y y

K K x x

K K x x
K x x

K y y

x

y

T

x x i c

y x i c

x y i c
y i c

x i c

i

i

i

i i

i i

i i
i

i















U

V
i

i

θ

20.28

y

Ye

Xe X

20.26 Displacements at centre of stiffness.

20.27 ith column.

fyi

C
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In order to uncouple the equations

Σ Σ ( – ) = 0;     ( – ) = 0K y y K x xx i c y i ci i ; 20.29a

y
K y

Kc
x i

x

i

i

=
 

 

Σ
Σ 20.29b

x
K x

Kc
y i

y

i

i

=
 

 

Σ
Σ 20.29c

or,

F

F

M

K

K

J

U

V
x

y

T

x

y

c

c

















































=

θ
20.30

where,

J K y y y y K x x x xx i i c c y i c ci i=  ( – 2 + ) + ( – 2 + )2 2 2
1

2Σ 20.31a

=  – 2  +  2 2 2Σ Σ ΣK y y K y Kx i i x c xi i i

 +  – 2   +   2 2 2Σ Σ ΣK x x K x Ky i i y c yi i i
20.31b

Solving we get,

U
f
K
x

xi

=
 Σ 20.32a

V
f

K
y

yi

=
 Σ 20.32b

θ =
M
J

T 20.32c

F K
F
K

K
M
Jx x

x

x
x

T
i i

i
i yi

=
 

–Σ ⋅ 20.33a

F K
F

K
K

M
Jy y

y

y
y

T
i i

i
i xi

=
 

+Σ ⋅ 20.33b

In the case of an unsymmetric plan of the building, the resultant eccentric to
and acting at the centre of mass may be replaced by an equivalent load and
a moment ‘M’ acting at the centre of the stiffness. The forces acting on each
column may be denoted as in the x and y directions.
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20.6 Summary

In this chapter an approximate analysis technique for a multi-storey, single
bay and multi-bay frames have been discussed. Sophisticated, very accurate
analysis may not be required since large uncertainties are involved in
determination of seismic loads. Hence these approximate methods are useful
in providing a basis for selecting the preliminary size of various members.

20.7 Exercises

1. Analyse the frame shown in Fig. 20.28 by all the four methods. The
lengths of the first, second and third bays are 4m, 10m and 6m respectively
and the height of the storey is 3m. Compare the results.

2. Figure 20.29 shows a one storey building consisting of rigid diaphragms
by three frames A, B and C. The lateral stiffness of the frame in A in the
y direction is 80 kN/m and the lateral stiffness of frames B and C in the
x direction is 150kN/m. Assume a horizontal force as a result of earthquake
ground motion of magnitude 20 kN is acting at one corner in the x-
direction of the building, calculate the shear in each frame and also
calculate the displacements.

8kN

16kN

10m

6m

Frame B

Frame C

Frame A

20.28

20.29
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21
Response of structures to earthquakes:

analysis of shear walls

Abstract: Shear walls possess adequate lateral stiffness to reduce inter-
storey distortions due to earthquake-induced motions. In this chapter,
analysis of shear walls with a moment resisting frame using the Khan and
Sbarounis method is discussed. When two or more shear walls are connected
by a system of beams or slabs total stiffness exceeds the summation of
individual stiffness. Openings normally occur in vertical rows throughout the
height of the wall and the connection between wall cross-section is provided
by connecting beams. Such shear walls are called coupled shear walls. The
analysis of coupled shear walls by Rosman’s continuous medium method is
also discussed.

Key words: shear wall, egg crate, lazy S curve, coupled shear wall,
continuous medium.

21.1 Introduction

Frame action is obtained by the interaction of slabs and columns and this is
not adequate to give the required lateral stiffness for buildings taller than
about 15–20 storeys. Shear walls must be strategically located as shown in
Fig. 21.1.

The walls can be planar, open sections or closed sections as shown in Fig.
21.2. They are provided around elevators and staircases. Shear walls of
skewed and irregular layouts require 3D analysis to determine the distribution
of lateral loads. The shear wall in essence behaves as a deep and slender

Shear walls

21.1 Location of shear walls.
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cantilever. When no major opening is present, stresses in the walls can be
determined using simple bending theory. Complicated shapes are analysed
using finite element analysis.

The term ‘shear wall’ is a misnomer as far as the high-rise building is
concerned, since a slender wall when subjected to lateral force has predominant
moment deflections and only very insignificant shear distortion. Major shear
walls are usually positioned in the transverse direction, separating individual
compartments. Stability in the longitudinal direction is provided by elevator
shafts or some longitudinal shear walls. They are known as egg crate or
cross-wall buildings. They are extremely rigid in the direction of shear walls.

Hence shear walls possess adequate lateral stiffness to reduce inter-storey
distortions due to earthquake-induced motions. Shear walls or structural
walls reduce the likelihood of damage to nonstructural elements of a building.
When used with rigid frames, walls form a system that combines the gravity
load-carrying efficiency of the rigid frame with the lateral load-resisting
efficiency of the structural wall. Significant energy dissipation capacity lakes
place. There is consistently better performance of shear wall buildings during
earthquakes. They are better both with respect to life safety and damage
control. Greater lateral stiffness is introduced in earthquake-resistant multi-
storey shear wall buildings.

21.2 Shear wall frame

Without question this system is one of the most, if not the most, popular
systems for resisting lateral loads. The system has a broad range of applications
and has been used for buildings as low as 10 storeys to as high as 50 storeys
or even taller buildings. With the advent of haunch girders the applicability
of the system is easily extended to buildings in the 70–80 storey range.

21.2.1 Shear wall frame interaction

This interaction has been understood for quite some time. The classical
mode of the interaction between a prismatic shear wall and a moment frame
is shown in Fig. 21.3. The frame basically deflects in a so-called shear mode
to which the shear wall predominantly responds by bending as a cantilever.

21.2 Different cross-sections of shear walls.
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Compatibility of horizontal deflection produces interaction between the
two. The linear sway of the moment frame, when combined with storey sway
of shear walls, results in enhanced stiffness because the wall is restrained by
the frame in the upper floor while at lower levels the frames restrained by the
wall, resulting in deflected shape in the form of a ‘lazy S’ curve.

However, it is always easy to differentiate between modes. A frame with
closely spaced columns with deep beams tends to behave more or less like
a shear wall in bending mode, while the wall weakened by large openings
tends to act more or less like a frame deflecting in shear mode. The combined
structural action therefore depends on the relative rigidity of the two and
their modes of deformation.

The simple interaction diagram shown in Fig. 21.3 is valid only:

• if the shear wall and frame have constant stiffness throughout the height;
• if stiffness varies, the relative stiffness of the wall and the frame remains

unchanged throughout the height.

First consider an example of shear wall with moment resisting frame analysed
by the Khan and Sbarounis (1964) method.

Example 21.1
Analyse the building shown in Fig. 21.4 for a uniform lateral load of
1.5 kN/m2 which is the result of earthquake motion. All girders are
300 × 500 mm.

Shear wall
Moment

frame

21.3 Shear wall frame interaction.
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Solution
IG = 8.859 × 109 mm4 (includes slab) except 3 m link beam (250 × 400 mm
size). ILB = 3.25 × 109 mm4 (link beams are assumed to be hinged). E (concrete)
= 20 GPa.

Beam stiffness in any floor = +S Sb b′

= 8 8.859 10
7000

+ 3.25 10
3000

9 9× × ×

= 11 207 904 mm3

= 0.0112 m3

The stiffness of columns of various storeys are given in Table 21.1.

I for shear wall = 1
12

 × 300 × 40003

= 1.6 × 1012 mm4

= 1.6 m4

Lateral load due to earthquake (for the whole frame)

On the nodes 2, 3, 4, 5 = 1.5 × 4 × 12

= 72 kN

3m

4m

7m 7m 7m

6m

6m
4m

5m
1 560 × 560

560 × 560
2

3

4

R

500 × 500

450 × 450

21.4 Plan of the building.

Table 21.1 Column stiffness

Storey Height Size I
    
S I

I
c

c

= 11 m3

4–roof 4 450 × 450 3.41 × 109 9377500 9.377 × 10–3

3–4 4 500 × 500 5.20 × 109 14300000 14.30 × 10–3

2–3 4 500 × 500 5.20 × 109 14300000 14.30 × 10–3

1–2 4 560 × 560 8.19 × 109 22537386 22.5 × 10–3

Ground–1 5 560 × 560 8.19 × 109 183030540 18.03 × 10–3
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On node 1 = 1.5 × 4.5 × 12

= 81 kN

Step 1 Estimate wall deflections. For the approximate analysis, compute
deflection of the wall having I = Iw + Ic (1.6 + Ic) loaded with full lateral load.
The deflection is computed using Newmark’s method. Ic is comparatively
smaller and hence need not be taken into account. The calculations are
shown in Fig. 21.5.

Step 2 For the frame to fit the wall and compute the moments by using
anti-symmetric loading on a symmetrical structure to reduce the frame to
single column frame. Distribution factors are given in Table 21.2 and shown
in Fig. 21.6.

Beam stiffness = 1.5 ( + )S Sb b′

= 0.0168 m3

Fixed end moment in columns due to 0.001 drift

M EI
l

E
l

S

F

c

= 6

2

2 ∆

= 6 ∆

81 72 72 72 72

5m 4m 4m 4m 4m

1.6 1.6 1.6 1.6 1.6 I

369 288 216 144 72 V

1845 1152 864 576 288 ∆M

4725 2880 1728 864 288 0 M

2953 1800 1800 1080 1080 540 540 180 180 0 α = M/I

7706 6553 4680 3960 2700 2160 1260 900 360 180 2 αA + αB

6421 5460 3120 2640 1800 1440 840 600 240 120 h(above)/6

6421 15002 19422 21722 22569 E∆θ

0.321 0.75 0.97 1.086 1125 1000∆θ

1.60 3.0 3.89 4.34 4.51 ∆θh1000

21.5 Newmark’s method.
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The fixed moments due to drift are shown in Table 21.3. Moment distribution
is carried out as shown in Table 21.4. Now the wall has to be analysed for the
loading condition as shown in Fig. 21.7. The convergence characteristics are
given in Fig. 21.8. The free body diagram is shown in Fig. 21.9.

Table 21.2 Distribution factors

Jt Member Stiff Total DF Jt Member Stiff Total DF

R R be 0.0168 2 23 0.00715 0.203
0.0214 2be 0.0165 0.0352

R4 0.0046 0.214 21 0.01125 0.319
4 4R 0.0046 0.164 12 0.01125 0.304

4 be 0.0168 0.028 1 1be 0.0165 0.037
43 0.00715 0.255 19 0.009 0.243

3 34 0.00715 0.229
3be 0.0168 0.0311
32 0.00715 0.229

Wall

R

4

3

2

1

0.0048

0.00715

0.00715

0.0125

0.009

0.0168

0.0168

0.0168

0.0168

0.0168

21.6 Stiffness of beams and columns.

Table 21.3 Fixed end moments due to drift

Storey 6E/l Sc/2 0.001

  

6E

1
  

Sc

2
∗









 Drift Finite

element
method

4–roof 3 × 107 4.68 × 10–3 141 0.0045 –635
3–4 3 × 107 7.15 × 10–3 214.5 0.00434 –931
2–3 3 × 107 7.15 × 10–3 214.5 0.00389 –834
1–2 3 × 107 11.25 × 10–3 337.5 0.003 –1012
Ground–1 2.4 × 107 9 × 10–3 216 0.0016 –345
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Table 21.4 Moment distribution

0.243 0.304 0.319 0.203 0.229 0.229 0.255 0.164 0.214

Node 1 Node 2 Node 3 Node 4 Node 5

–345 –345 –1012 –1012 –834 –834 –930 –930 –635 –635 FEM
329.751 412.528 588.874 374.738 403.956 403.956 399.075 256.66 135.89 Dis

164.876 0 294.437 206.264 201.978 187.369 199.5375 201.978 67.945 128.33 CO
–71.548 19 –89.5088 –130.23 –82.873 –88.6016 –88.601 59 –68.8304 –44.2674 –27.4626 Dis

–35.7741 0 –65.1146 –44.754 –44.301 –41.4366 –34.415 18 –44.3008 –13.7313 –22.1337 CO
15.822 85 19.794 84 28.4086 18.0782 17.37 17.37005 14.798 19 9.5172 65 4.736 609 Dis

7.911 42 0 14.204 31 9.897 42 8.685 02 9.0391 7.399 093 8.685 025 2.368 304 4.758 633 CO
–3.451 647 –4.318 11 –5.9278 –3.7722 –3.764 35 –3.764 347 –2.8186 –1.812 75 –1.018 35 Dis

–1.725 82 0 –2.9639 –2.1591 –1.8822 –1.886 12 –1.409 299 –1.882 17 –0.509 17 –0.906 37 CO
0.720 228 0.9010 26 1.289 15 0.820 37 0.754 65 0.754 651 0.609 794 0.392 181 0.193 964 Dis

0.360 11 0 0.644 576 0.450 51 0.377 33 0.410 18 0.304 897 0.377 325 0.096 982 0.196 09 CO
–0.156 632 –0.195 95 –0.2641 –0.1681 –0.163 75 –0.163 754 –0.120 95 –0.077 79 –0.041 96 Dis

–0.078 32 0 –0.132 04 –0.098 –0.0819 –0.084 03 –0.060 474 –0.081 88 –0.020 98 –0.038 89 CO
0.032 086 0.040 14 0.057 37 0.036 51 0.033 09 0.033 09 0.026 229 0.0168 69 0.008 323 Dis

–209.431 –73.830 31 –431.684 –360.19 –362.36 –351.004 –429.0594 –422.485 –358.423 –412.488 sum
56.4 197.5 179 212 193 shear

FEM – Fixed end moment
Dis – Distribution
Co – Carry over
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21.3 Coupled shear walls

When two or more shear walls are connected by a system of beams or slabs,
total stiffness exceeds the summation of individual stiffness. This is because
the connecting beam restrains individual cantilever action. Shear walls resist
lateral forces up to 30–40 storeys (see Fig. 21.10). Walls with openings
present a complex problem to the analyst.

Openings normally occur in vertical rows throughout the height of the
wall and the connection between wall cross-sections is provided either by
connecting beams which form part of the wall or floor slab or a combination
of both. The terms ‘coupled shear walls’, ‘pierced shear walls’ and ‘shear
wall with openings’ are commonly described for such units. If the openings
are very small, their effect on the overall state of stress in the shear wall is
minimal. Large openings have a pronounced effect and if large enough result
in a system in which frame action predominates. The degree of coupling
between two walls separated by a row of openings has been expressed of
geometric parameter α (having a unit of 1/length) which it gives a measure
of relative stiffness of beams with respect to that of walls. When αH exceeds
13, the walls may be analysed as a single homogenous cantilever. When
αH<0.8 the wall may be analysed as the separate cantilever, 0.8<αH<13, the

Wall

314 314

280

142

107

256

34

138

35

363

256

21.7 Shear force diagram of a shear wall.

1
3 5

5 9

2
4 6 8

21.8 Convergence characteristics.
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72

72

72

72

81

193

212

179

197.5

56.4
256.2

314

280

142

107

21.9 Free body diagram.

b

v

h

H
I1

A1

I2

A2

21.10 Coupled shear wall.
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stiffness of connecting beam must be considered. The effectiveness of coupling
can clearly be seen in Fig. 21.11.

21.3.1 Continuous medium method due to
Rosman (1966)

The individual connecting beams of finite stiffness Ib are replaced by an
imaginary continuous connection or lamina. The equivalent stiffness of the
lamina for a storey height h is Ib/h, giving stiffness of Ib/h dx for a height of
dx (see Fig. 21.12).

When the wall is subjected to horizontal loading, the walls deflect, inducing
vertical shear force in the laminas. The system is made statically determinate

Storey
level

20
Beam + slab coupling

Cantilever

Slab coupling

Shear walls level

21.11 Coupling between various units.

b

X
Ib

I

H

T 1

Wall 1 Wall 2

I1

A1

I2

A2

21.12 Coupled shear wall.

h
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by introducing a cut along a centre line of beams, which is assumed to lie on
the points of contra-flexure. The displacement at each wall is determined
and by considering the compatibility of deformation of the lamina, a second
order differential equation with the vertical shear force as a variable is
established. The solution of the differential equations with fixed base boundary
conditions is most common loading to an equation for the integral shear T
from which the moment, axial loads in the walls can be established and all
the other quantities can be written.

E – Modulus of elasticity
b – Width of opening
Ab – Area of connecting beam
I – I1 + I2

G – Shear modulus
Ib – Moment of inertia of connecting beam including shear deformation
d – depth of inter-connecting beam
ν – Poisson’s ratio
α, β, µ are the parameters given by following equations:

α 2
3

2

1 2
=

12
 +

EI
hb

l
I

A
A A

b 





21.1

β =
6

3

wlI
Ib h

b 21.2

µ = 1 +
1 2

2
AI

A A l
21.3

A = A1 + A2 21.4

Under lateral loads the two ends of the beam experience a vertical displacement
consisting of contributions δ1, δ2, δ3 and δ4 as shown in Fig. 21.13

Wall rotation

The relative displacement δ1 due to bending of each wall element is given by

δ1
d
d

= l
y
x

21.5

Beam bending

The shear force V = qh acting at each floor level at the centre of connecting
beams with centre relations displacement δ2

δ 2

3

12
= ′

qb h
EI b

21.6
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Beam shear deflection

The same shear force causes a deformation δ3 as

Shear stress = ′
qh

bA

Shear strain = ′
qh

A Gb

δ γ3 = = ′b
qbh
A Gb

21.7

For a rectangular section effective cross-sectional area ′Ab  may be taken as
Ab/1.2

δ 3
1.2= qbh

GAb
21.8

Axial compression and tension

The displacement δ4 is the relative displacement of the two wall elements
due to axial deformations of the walls caused by T acting as a vertical wall
on the wall elements

T q x
x

=  d
0∫ 21.9.a

or q T
x

= d
d

21.9.b

Total increase in length in wall 1

=  d
1

T x
A Ex

H

∫ 21.10

Axial shortening of wall 2

=  d
2

T x
A Ex

H

∫ 21.11

δ4 = relative displacement

δ 4
1 2

= 1 1 + 1  d
E A A

T x
x

H



 ∫ 21.12

Since the two walls are connected, the compatability and stipulation that the
relative displacement vanishes

δ1 + δ2 + δ3 + δ4 = 0 21.13a
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l
y
x

b hq
EI

qbh
GA E A A

T x
b b x

Hd
d 12

1.2 1 1 1  d = 0
3

1 2
+ ′ + − +



 ∫

Substituting

q T
x

= d
d 21.13b

l
y
x

b h
EI

bh
GA

T
x E A A

T x
b b x

Hd
d 12

1.2 d
d

1 1 1  d = 0
1 2

+ ′ +



 − +



 ∫

3
21.14

Differentiating once again

EI
y

x
b hI

I l
bhEI

GA l
T

x
TAI

lA Ab b

d
d 12

1.2 d
d

2

2

3 2

2
1 2

= − ′ +



 + 21.15

The first two terms on the right-hand side of the above equation which
pertain to bending and shear deflection of the beam and can be combined to
a single term by reducing moment of inertia to include shear deformation as

I
I b

d
b

b =

1 + 2.4

 (1 + )2

′






ν 21.16a

Using the above equation

EI
y
x

b hI
I l

T
x

TAI
lA Ab

 
d
d

= –
12

 d
d

+
2

2

3 2

2
1 2

21.16b

Hence EI
y
x

m m Tlx ex 
d
d

= + = –
2

2 20.16c

–
12

 d
d

+ = –
3 2

2
1 2

b hI
I l

T
x

TAI
lA A

m Tl
b

ex 21.16d

d
d

–
 12

 = –
12

 ( – )
2

2
1 2

3 3
T

x
AI I l

lA A b hI
T

I l
b hI

m Tlb b
ex 21.17a

d
d

–
12

 + =
–12

 ( )
2

2 3

2

1 2
3

T
x

I
b h

l
I

A
A A

I l
b hI

mb b
ex




21.17b

where

m W x

wx

ex =

=

(for concentrated load at the top)

2
(for uniformly distributed load)

2

= −





wx x
H

w
w

2

2
1

6
(for trapezoidal load
at top and /2 at bottom) 21.18

= −





wx 2

2
1

3
 (for inverted triangular load)

x
H
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20.3.2 Coupled shear wall subjected to uniformly
distributed load)

d
d

– = –
2

2
2 2T

x
T xα β 21.19a

or,

d T
dx

T m
w

2

2
2– = –  where = 2α ψ ψ β

21.19b

α ψ2
3

1 2
3

12
;  and 

12= +



 =I

b h
l
I

A
A A

I l
hb I

b b
2

β =
6

3

I wl
hb I

b 21.19c

The solution is

T c x c x x=  sinh +  cosh + + 2
1 2 2

2
2α α β

α α




 21.20

where c1 and c2 are the constants of the integral. At x = H

q T
x

= d
d

= 0

At x = 0

T = 0 21.21

Substituting we get

T H H
H

x x=
2

 1 + sinh –
cos 

 sinh +
24

2 2β
α

α α
α α α


21.22

Once the distribution of force T has been obtained the shear force in the
coupling beam may be determined as the difference in values of T at levels
h/2 above below and above that level

bending moment (BM) in wall 1 =
2

–  
2

1wx Tl
I
I





 21.23

BM wx Tl
I
I

 in wall 2 =
2

–
2

1



 21.24

The general expression for deflection y at a point x can be obtained by
integrating with the expression

EI
y
x

x
Tl 

d
d

=
2

–
2

2

2ω
21.25
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and substituting proper boundary conditions as

y = 0 at x = H; 
d
d

y
x

= 0 at x = H 21.26

where H is measured from the top. Although inter-storey drifts are important
most usually in preliminary analysis, the maximum deflection at the top is of
prime interest. This is given by the following expression

y wH
EImax

4
=

2
0.251 – 1

µ






– 2  sinh – cosh + 1
( )  cosh 

– 1
2( )4 2µ

α α α
α α α

H H H
H H H









21.27a

where

µ = 1 +
1 2

2
AI

A A l
21.27b

To analyse a system of coupled shear wall by the method requires laborious
calculation. Several researchers have proposed simplified procedures. Coull
and Choudhury (1967) proposed the following method. The stress distribution
of coupled shear walls is obtained as a combination of two distinct actions.

1. Walls acting together as a single composite cantilever with neutral axis
located at the centroid of two elements.

2. Walls acting as two independent cantilever bending about their neutral
axis. Semi-graphical methods are also presented for rapid design.

General solution

T c x c x
w x=  sinh +  cosh +

2
+ 1

1 2 2

2

2α α ψ
α α





 21.28a

where w =Udl

c
w H

H
H

H1
4

3=
 cosh 

sinh 
– 1

α α
α

α




 21.28b

c
w

2 4= −
ψ

α
21.28c

For trapezoidal load,

c
w H

H
H

H H1 3 2 2=
 cosh 

sinh 
+ 1

2
– 0.75

ψ
α α

α
α α





 21.29a

c
w

2 4= −
ψ

α
21.29b
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For inverted triangular load,

c
w H

H
H

H H1 3 2 2=
 cosh 

sinh 
+ 1 – 0.5

ψ
α α

α
α α





 21.30a

c
w

2 4= −
ψ

α
21.30b

For concentrated load at top,

H

w
c

αα
ψ

cosh21 −= 21.31a

02 =c 21.31b

Substituting, we get the solution for T.

T-determination (Rosman’s method)

Steps:

1. α 2
2

1 2 1 2
3=

+
+ 1 + 1 12l

I I A A
I

hb
b



 21.32a

where, I
I

d
b

b
b=

1 + 2.4 (1 + )
2

′

( ) v
20.32b

2. Determine ψ =
+

12
1 2

3
l

I I
I

hb
b 21.32c

3. Determine 
ψ
α 2 20.32d

4. Compute the external moment mH and external shear VH at the bottom of
shear wall group; find

ψ
α

ψ
α2 2mH ;  hVH 21.33

5. Compute external moment
m = ωmH read values of ω
T = V

= 2

ηψ
α

mH  (for αH read values of η) 21.34

6. Q hTH= 2′η ψ
α

21.35

This is done at various values of ξH.
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7. Coefficients of η and η′ for various values of αH are read from Tables
21.5 and 21.6 at each 0.1 point

M = mex – Tl 21.36

αH l
I A A

I
hb

Hb= + 1 + 1 12
 (for one row of openings)

2

1 2
3Σ







αH l
I A

I
hb

Hb b= 2 + 1 12
 (for two rows of openings)

2

1
3Σ







ψ
α 2 2

1 2

=
+ 1 + 1

 (for one row of openings)

l
I

l
I A A

Σ

Σ

ψ
α 2 2

1

=
2 + 1

 (for two row of openings)

l
I

l
I A

Σ

Σ
M = ωMH

T m

Q V

H

H

=

= ′

η ψ
α

η ψ
α

2

2

(for trapezoidal loading)

m wH

V wH

H

H

=

=

5
12

3
4

2

M
I

I I
m M M M1

1

1 2
2 1=

+
;  = – 21.37

Compute the moment in the connecting beam

M Qb= /2 21.38a

Q
h VH= ′η ψ

α 2 21.38b

Example 21.2
Analyse the shear wall shown in Fig. 21.14. Thickness of wall = 300 mm;
width of I wall = 4.88 m; width of II wall = 2.44 m
Width of opening = 2.44m.
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Table 21.5 Coefficients of η and ω

αH

ω ξ 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50

0 0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.012 0.1 0.018 0.017 0.017 0.017 0.017 0.016 0.016 0.016 0.016 0.016
0.046 0.2 0.053 0.053 0.052 0.052 0.052 0.051 0.051 0.051 0.051 0.051
0.103 0.3 0.109 0.109 0.108 0.108 0.107 0.107 0.107 0.107 0.107 0.107
0.179 0.4 0.185 0.185 0.185 0.184 0.184 0.184 0.184 0.183 0.183 0.183
0.275 0.5 0.281 0.280 0.280 0.280 0.279 0.279 0.279 0.279 0.279 0.279
0.389 0.6 0.394 0.394 0.393 0.393 0.393 0.393 0.393 0.392 0.392 0.392
0.519 0.7 0.524 0.524 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.522
0.666 0.8 0.667 0.667 0.667 0.668 0.668 0.668 0.668 0.668 0.668 0.668
0.826 0.9 0.814 0.815 0.816 0.817 0.817 0.818 0.819 0.819 0.820 0.820
1.0 1.0 0.904 0.906 0.909 0.911 0.913 0.915 0.917 0.919 0.921 0.922
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Table 21.6 Coefficients of η′ and ω

αH

ω ξ 18.00 18.50 19.00 19.50 20.00 20.50 21.00 21.50 22.00 22.50

0 0.0 0.072 0.070 0.068 0.067 0.065 0.063 0.062 0.061 0.059 0.058
0.012 0.1 0.140 0.139 0.139 0.138 0.137 0.137 0.136 0.136 0.135 0.135
0.046 0.2 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.253 0.252
0.103 0.3 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.369 0.369 0.369
0.179 0.4 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.479 0.479 0.479
0.275 0.5 0.581 0.581 0.581 0.582 0.582 0.582 0.582 0.582 0.582 0.582
0.389 0.6 0.677 0.677 0.678 0.678 0.678 0.678 0.678 0.678 0.678 0.679
0.519 0.7 0.763 0.764 0.765 0.765 0.766 0.766 0.767 0.767 0.767 0.767
0.666 0.8 0.824 0.827 0.829 0.831 0.833 0.835 0.837 0.838 0.840 0.841
0.826 0.9 0.763 0.771 0.779 0.786 0.793 0.800 0.806 0.812 0.818 0.823
1.0 1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Solution

Total width = 4.88 + 4.88 = 9.76

I = 2.44+ 2.44+ 1.22

= 6.1 m

b = 2.44 m

d = 1.22 m

H = 73.152 m

h = 3.66 m

A1 = 0.3 × 4.88 = 1.464 m2

A2 = 0.3 × 2.44 = 0.732 m2

I1 = 2.9057 m4

I2 = 0.36317 m4

′ × ×Ib = 1
12

0.3 1.223

= 0.045 396

15kN/m 6.1

30kN/m 4.88
2.44

1.22

2.44

3.66

21.14 Coupled shear wall.
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Ib = reduced stiffness of connecting beam ν = 0.2

=
1 + 2.4

4
(1 + )

′

×

Ib

ν

=
1.7

′Ib

= 0.026704

Step 1

αH l
I I A A

I
hb

Hb=
+

+ 1 + 1  
12

 
2

1 2 1 2
3







=  6.1
3.268

+ 1
1.464

+ 1
0.732

 
12 0.0267 04
3.66 2.44

2

3






×
×

αH = 21

ψ
α 2

1 2
2

1 2 1 2

=
+

+
+ 1 + 1

l
I I

l
I I A A







= 6.1

3.268 
6.1

3.268
+ 1

1.464
+ 1

0.732

2
















= 0.1389
Step 2
mH at the bottom of the hall

wT = load at top (note Th = VH)

= 5
12

2w HT

= 5
12

30 73.152× ×

= 66 866.5 kNm

TH = 1
2

73.15(45)×

= 1609.3 kN

T mH= 2

ψ
α

= 0.1389 × 66 886.5
= 9290 kN
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ψ
α 2 THh = 0.1389 × 1609.3 × 3.66

= 817.97 kNm

Step 3

moment in wall = ωmH

mω = 668 86ω

Axial force in the wall = 2η ψ
α

m

= η × 0.1389 × 66 886

= 9290η
Shear in connecting beam,

Q hTH= 2′η ψ
α

Q = 817.91η′
Step 4

m = mω – Tl

Moment in shear wall 1 =
+

1

1 2

mI
I I

= 0.889 m

Moment in shear wall 2 = 0.111 m

Step 5 Moment in connecting beam

= 1
2

bQ

= 2.44
2

Q

= 1.22Q

The calculations for the variations of moments, T, in the walls and the moment
in the connecting beam are shown in Table 21.7 and the moments in both the
walls, the moment in the link beam and T in the walls are shown in Fig. 21.15.

Coupled shear walls with two rows of openings are shown in Fig. 21.16.

21.4 Program 21.1 MATHEMATICA program for

coupled shear wall

The program is executed in MATHEMATICA and the variation of moment
in wall 1, moment in wall 2, moment in link beam and T of the wall are as
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Table 21.7 Calculation of a coupled shear wall

ε top ε bottom Omega η η′ T = 9290η Q=817.9η′ 66886ω 6.096 T m (total m1 = 0.889 m m2 = 0.111m m(lb) = 1.22Q
X/H walls) wall 1 wall 2

0 1 0 0 0.062 0 50.7098 0 0 0 0 0 61.865 956
0.1 0.9 0.012 0.02 0.136 148.64 111.2344 802.632 906.10944 –103.47744 –91.991444 –11.486 135.705 968
0.2 0.8 0.046 0.05 0.253 473.79 206.9287 3076.756 2888.22384 188.53216 167.60509 20.92707 252.453 014
0.3 0.7 0.103 0.11 0.368 994.03 300.9872 6889.258 6059.60688 829.65112 737.559846 92.09127 367.204 384
0.4 0.6 0.179 0.18 0.478 1709.36 390.9562 119 72.59 10 420.2586 1552.335 44 1380.026 21 172.3092 476.966 564
0.5 0.5 0.275 0.28 0.582 2591.91 476.0178 183 93.65 15 800.2834 2593.366 64 2305.502 94 287.8637 580.741 716
0.6 0.4 0.389 0.39 0.678 3613.81 554.5362 260 18.65 22 029.7858 3988.868 24 3546.103 87 442.7644 676.534 164
0.7 0.3 0.519 0.52 0.787 4858.67 643.6873 347 13.83 29 618.4523 5095.381 68 4529.794 31 565.5874 785.298 506
0.8 0.2 0.66 0.67 0.837 6205.72 684.5823 441 44.76 37 830.0691 6314.690 88 5613.760 19 700.9307 835.190 406
0.9 0.1 0.826 0.82 0.806 7608.51 659.2274 552 47.84 46 381.477 88 66.359 04 7882.193 19 984.1659 804.257 428
1 0 1 0.92 0 8518.93 0 668 86 51 931.3973 14 954.6027 13 294.6418 1659.961 0
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shown in Fig. 20.15 for the coupled shear wall of height 73.15 m with width
of the walls 4.88 and 2.44 m and thickness of the wall 0.3 m, width and depth
of opening as 2.44 m, depth of link beam as 1.22 m and centre to centre of the
wall as 6.1 m subjected to trapezoidal load of 30 k/m at the top and 15 kN/m
at the bottom. Young’s modulus and Poisson’s ratio may be assumed as
20 GPa and 0.2 respectively. For the problem considered α2 = 0.08237; ψ =
00114; c2 = 15; c3= –0.0346. The program in MATHEMATICA is shown on
page 859.

Wall 1
Wall 2

–4000 0 4000 8000 12000
Moment in kNm

(a)

x/
H

 f
ro

m
 b

o
tt

o
m

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 200 400 600 800 1000
Moment in kNm

(b)

x/
H

 f
ro

m
 b

o
tt

o
m

1.2

1

0.8

0.6

0.4

0.2

0

21.15 (a) Moments in walls; (b) moments in link beams; (c) T in
walls.
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21.15 Continued
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21.16 Coupled shear walls with two rows of openings.
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———————————————————————————————
DSolve[{T’’[x]-0.08237*T[x]==-0.0114*(15*x^2-

0.0346*x^3),T[0]==T’[73.15]==0},T[x],x]

.

T=T[x]

t = –6.01903 × 10–7e–0.287002x(8.37456 × 107

–8.37456 × 107e0.287002x + 1.e0.574003x

–579519.e0.287002xx2 + 7955.83e0.287002xx3)

Plot[t,{x,0,73.15}]

m=15*x^2-0.0346*x^3-t*6.1

m1=m*2.9557/3.2688

m2=m-m1

Plot[m1,{x,0,73.15}]

Plot[m2,{x,0,73.15}]

q=D[t,x]

mlb=q*2.44*3.66/2

Plot[mlb,{x,0,73.15}]

Dsolve[{y”[x] == m/(20000000 * 3.2688),

y[73.15] == y’[73.15] == 0}, y[x],x]

z=y[x]

      

z e

e x

e x e x

x

x

x x

x

= × × +

× − ×

+ −

−

− −6.81818 10 (8.37456

3.44906 10

4367.98 6.04528

6.04525e )

14 0.287002

6 0.287002 3

0.287002 4 0.287002 4

0.287002 5

x

xe x

10 3 38539

10

7

11 0 287002

.

.

Plot[z,{x,0,73.15}]

Do[Print[“x,” “,t,” “,m1,” “, m1,” “,mlb,” “,z,” ],

{x,0,73.15,7.315}]

———————————————————————————————

If the same problem has to be carried out by finite element packages, the
coupled shear wall has to be modelled into four-node finite elements. Wilson
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(2002) recommends that four-node element cannot model linear bending if
fine mesh is used and produces infinite stresses. Hence the coupled shear
wall has to be modelled into beam, column and rigid zones, otherwise the
results are not reliable. Parametric studies for the coupled shear considered
could be easily made by changing α, ψ in symbolic programming whereas
it cannot be done so easily with the finite element method. The deflected
shape of the shear wall is shown in Fig. 21.17.

21.5 Summary

In this chapter, analysis of shear wall with moment-resisting frame and
coupled shear wall is discussed. Shear walls possess adequate lateral stiffness
to reduce inter-storey distortions due to earthquake-induced motions. Shear
walls reduce the likelihood of damage to non-structural elements of a building.
When used with rigid frames, walls form a system that combines the gravity
load-carrying efficiency of the rigid frames with the lateral load-resisting
efficiency of the structural wall. Greater lateral stiffness is introduced in
earthquake-resistant multi-storey shear wall buildings.

21.6 Exercises

1. A building with a shear wall can be modelled as a moment resisting
frame with a shear wall as shown in Fig. 21.18. There are eight girders
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21.17 Deflection along the height of the shear wall.
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with moment of inertia of each beam 7.5 × 109 mm4 (including slab) and
a link beam of moment of inertia of 3 × 109 mm4. There are 11 columns
whose moments of inertia are given in Table. 21.8. E for concrete may
be assumed as 20 GPa. Use the Khan and Sbarounis method and carry
out at least one iteration.

2. Analyse the coupled shear wall shown in Fig. 21.19 using the Rosman
method. The thickness of the wall is 0.4 m. The depth of the opening and
the link beam may be assumed to be 2 m and 1 m respectively. Calculate

21.18

Table 21.8 Moment of inertia of each column

Floor M I (mm4) h (m)

Fourth 3.49 × 109 3
Third 5.4 × 109 3
Second 5.4 × 109 3
First 8 × 109 3
Ground 8 × 109 4

21.19
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Table 21.9 Coefficients

ξ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ω 0 0.012 0.046 0.103 0.179 0.275 0.389 0.519 0.666 0.826 1.0

η′ αH = 19 0.068 0.139 0.253 0.68 0.478 0.581 0.678 0.765 0.829 0.779 0.0
αH = 20 0.065 0.137 0.253 0.68 0.478 0.582 0.678 0.766 0.833 0.793 0

η αH = 19 0 0.017 0.052 0.108 0.185 0.280 0.393 0.523 0.667 0.816 0.909
αH = 20 0 0.017 0.052 0.108 0.184 0.279 0.393 0.523 0.668 0.817 0.913
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moment in wall 1 and 2 and thrust T at every 6 m intervals, and plot the
distribution along the height. The widths of walls 1 and 2 may be assumed
to be 4 m and 2 m respectively. The breadth of the opening is 1.5 m. The
earthquake load at top and bottom may be assumed to be 40 kN/m and
20 kN/m. For various values of ξ = X/H (where X is measured from the
top and H = 60 m is the height of the wall) the values of ω, η, η′ are
given in Table 21.9. Use the MATHEMATICA package to verify your
answers.

21.7 References and further reading

1. Coull A and Choudhury J R (1967) Analysis of coupled shear walls, ACI Journal,
vol. 64, No. 9.

2. Khan F and Sbarounis J A (1964) Interaction of shear walls and frames, ASCE,
Journal of Structural Division, vol. 90, ST3, June.

3. Rosman R (1966) Tables for the Internal Forces of Pierced Shear Walls Subjected to
lateral Loads, Verlag von Wilhelm Ernst & Sohn, Berlin.

4. Taranath B S (1988) Structural Analysis and Design of Tall Buildings, McGraw-
Hill, New York.

5. Taranath B S (2005) Wind and Earthquake Resistant Buildings: Structural analysis
and design, Marcel Dekker, New York.

6. Wilson E L (2002) Three Dimensional Static and Dynamic Analysis of Structures,
Computers and Structures, Inc., Berkeley, CA.

�� �� �� �� �� ��



Index

acceleration methods
average, 193–200
linear, 200–4

accelerograph, 594, 606
accelerometer, 96–7
accidental eccentricity, 741
aftershocks, 588
Applied Technology Council, 736
arbitrary dynamic excitation

rectangular pulse force, 141–3
duration, 141
undamped SDOF response, 143

SDOF response
ideal step force, 148–50
Program 6.2: MATLAB program to

find the response for step force,
150–1

rectangular pulse force, 151–2
step force with ramp, 152–3
triangular pulse force, 153–7

triangular pulse force, 144–6
portal frame, 145
triangular force, 144
undamped SDOF response, 145

Asian tsunami disaster, 599–601
asthenosphere, 576

bandwidth methods 98–9
bars, forced axial vibration, 465–9
basalt, 576
base shear, 763–4

Chinese code, 748
EC-8 calculation, 740
formula, 735
Indian Seismic Code 1893, 752
International building code of USA 2000,

737
Iranian code, 747
NBC of Canada (1995), 742
UBC 1997, 741
see also elastic seismic coefficient

beam
common boundary conditions for

transverse vibrations, 452
continuous, frequency equation

determination, 455–7
forced vibration, 510–12

force vector, 514
generalised forces, 512
global mass matrix, 514
mass matrix, 511
natural frequencies, 514
steady state amplitude, 515
steady state mode shape, 512

free vibration of a plane frame, 505
mode shapes for various boundary

conditions, 452
simply supported

effects of rotary inertia and shear
deflection, 464–5

first mode shape, 454
free vibration response, 454
natural frequencies and normal mode of

vibration, 453
resulting vibration after load removal,

469
second mode shape, 455
third mode shape, 455

subjected to moving loads, 469–73
constant force and constant velocity,

470–2
constant force crossing beam with

constant velocity, 470
ratio of dynamic to static moments, 473

beam element, 499–501
consistent mass matrix from kinetic energy,

501
fundamental mode shape, 506
simply supported beam, 504
stiffness matrix from strain energy, 500–1

beam slab system, 805
beat, 279
beating phenomenon, 73–5, 278–9
bending theory, simple, 834
Blue Book, 736
buckling load, 243, 246, 248
building code

for aseismic design, 734–802
codal provisions for seismic design, 737–53

additional seismic action coefficients,
750

characteristic period for various soils,
749

Chinese code, 748–50
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EC-8, 740–1
Indian Seismic Code 1893 – Part 1 – 2002,

750–3
International Building Code of USA

2000, 737–8
Iranian code, 747–8
JSCE 2000, 746–7
αmax values, 749
MDFC 1993, 744–5
Mexican Federal District Code

(MDFC) 1993, 744–5
multiplying factors for obtaining

spectral values, 751
NBC of Canada (1995), 742–4
New Zealand standards NZS 1170.5,

738–40
response spectrum according to soil

condition, 751
response spectrum for nearly or very

stiff soil, 740
seismic coefficients, 745
soils seismic coefficients, 742
UBC 1997, 741–2
zone factor, 750

comparison of codes, 763–5
base shear, 763–4
design force reduction, 764
lateral force distribution, 764
overturning moments, 765

design examples using IS1893 Part – 1,
765–800

area calculation, 786
centre of mass calculation, 788
centre of stiffness calculation, 788
column shear due to base shear

calculation, 789
dead loads, 799
dead weights, 797
design of bracing, 769–70
distribution of shear force, 798
drift calculation, 777, 797
earthquake force calculation, 767
earthquake loads and shear force, 793
eight storeys RC framed building, 797
empty water tank seismic force, 768–9
equivalent mass and stiffness model,

774
equivalent stiffness and mass, 794
final column shear direction, 791
floor load for first and second storeys,

777
floor load for third storey, 778
frequencies, periods and mode shapes,

779, 794
full water tank seismic force, 769
Ah values, 795
Aη values, 774
horizontal seismic coefficients, 780
lateral force calculation, 796
lateral force distribution, 776
lateral force for each storey, 781
lumped weight and mass at each floor,

778

modal analysis results, 774
modal mass and participation factors

calculation, 796
mode shapes at various floor level, 800
moment resisting frame, 782
moments of inertia for various

columns, 773
participation factors and % of model

weights, 776, 781
plan of the building, 791
plan of three storey frame, 771
properties of a column, 783
response spectrum method for seismic

load determination, 770–5
resultant shear in various columns, 790
results of dynamic analysis, 787
seismic force and suitable bracing for

overhead water tank, 768–70
seismic forces in an eight storey RC

framed building, 795–8
seismic load on shear building, 784
shear drift and calculation, 800
shear force at the ground storey

column, 784–90
shear force at various levels, 793
shear force in a 15 storey RC framed

building, 798
shear force in a six storey reinforced

concrete building, 791–5
shear frame, 784
stability of sunshade, 766–7
steel moment resisting frame, 775–83
stiffness of various columns, 778
storey drifts, 783
storey shear force for all modes, 782
storey stiffness for ground floor and

first floor, 787
storey stiffness of roof, 787
sunshade, 766
thickness of column and doublar plate,

783
three storey and four bay frame, 771
total load for first and second storeys,

777
total load for third storey, 778
unsymmetrical buildings, 786
various types of shear buildings, 785
wall base width calculation, 765–6
water tank and shear in brace, 768

exercises, 801–2
historical development, 735–7

engineering judgment, 735
experimental basis, 735
structural system coefficients, 736
theoretical basis, 735

MATLAB program for IS1893 code,
753–63

purpose, 734

calibration factor, 743
cantilever method, 816–19
Castigliano’s second theorem, 254
central difference method, 179–86
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CGL mesh distribution see Chebyshev–
Gauss–Lobatto mesh distribution

Chebyshev–Gauss–Lobatto mesh distribution,
529

Chinese code, 748–50
Chopra’s method, 676–9, 687

modal response contribution, 676–9
excitation vector modal expansion, 679
five storey frame, 678
normal eigenvector, 678–9

classical damping see Rayleigh damping
complete quadratic combination, 419, 423,

694, 753
rule, 716–17

Conrad discontinuity, 576
constant acceleration regions, 745
continuous systems

free and forced vibrations in relation to
structural dynamics during
earthquakes, 431–75

types
geometric boundary conditions, 477
natural boundary conditions, 478

Cooley-Tukey algorithm, 131
Cordon’s solution, 305, 322
Coulomb damping, 55–8

damping model, 56
free vibration, 57

coupled differential equation, 273–4
coupled shear wall

continuous medium method due to
Rosman, 842–55

axial compression and tension, 845–6
beam bending, 843
beam shear deflection, 845
wall rotation, 843

subjected uniformly distributed load,
847–55

general solution, 848–9
T-determination, 849–50, 853–5

CQC see complete quadratic combination
cross-wall buildings, 834
crust

sial, 576
sima, 576

D’Alembert’s principle, 24–5, 44, 240, 307,
669

free body diagram, 25
damping free vibrations, 43–7

critically damped system
displacement vs time, 46

D’ Alembert’s principle, 44
dashpot model, 44
over-damped system, 45–6
spring-mass damper system, 44
underdamped system, 46–7

damping matrix, 308
deep focus earthquake, 582
design basis earthquake, 750
DFT see discrete Fourier transform
differential quadrature method, 525–6

CGL mesh distribution, 529

exercises, 566–7
formulation, 527–8
HDQ method, 528–9
Lagrangian interpolation, 526–7
natural frequency and mode shape for

Euler beam with axial load, 542–8
boundary conditions, 543–4
buckling load of pinned-pinned

column, 547
cantilever beam, 548
governing equation, 542–3
Lagrange multiplier approach, 545
Wilson’s method of applying boundary

conditions, 544
Timoshenko beam vibration, 548–53

boundary conditions, 549
lateral deflection, 551
mode shape, 551
natural frequency, 553
natural frequency of clamped clamped

beam, 549–50
Wilson’s method, 549

transverse vibration of pre-tensioned cable,
529–37

boundary conditions, 530
equation of motion, 529
fundamental mode shape, 534–5, 537
fundamental natural frequency, 534
second mode shape, 535–6, 538
second natural frequency, 535
third mode shape, 536, 538
third natural frequency, 536
transverse deflection, 529
vibration of a cable, 529

uniform Euler beams lateral vibration,
537–42

boundary conditions, 538–9
fundamental natural frequencies, 542
governing differential equation, 537

and for vibration problem in relation to
structural dynamics during
earthquake, 525–67

vs HDQ method, 526
differential transformation method

Euler beam free vibration analysis, 556–9
boundary conditions, 556–7
equation, 556
fixed–fixed supports, 557
roller and fixed support, 557
simply supported at both ends, 556–7

exercises, 566–7
natural frequency of Euler beam subjected

to axial load, 559–62
boundary conditions, 559–60
buckling load of pinned–pinned

column, 560
differential equation, 559
pin roller support, 559–60

pre-tensioned cable transverse vibration,
553–6

boundary equation, 554
equation, 553–4
natural frequency, 554
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number of terms required for
convergence, 555

Taylor series expansion, 553
Timoshenko beam natural frequency, 562–5

boundary conditions, 562
differential equation, 562
natural frequency of clamped clamped

beam, 562–3
and for vibration problem in relation to

structural dynamics during
earthquake, 525–67

discrete Fourier transform, 131–2
discrete systems, 431
displacement isolation, 95–6

spring mass damper system, 96
vector sum, 96

distributed systems see continuous systems
DMF see dynamic magnification factor
dry friction damping see Coulomb damping
ductility factor, 659
Duhamel integral, 146–8, 171, 220, 386, 466,

605
displacement response, 167
formal approach, 148
physical approach, 146–7

forcing function, 146
increment component of arbitrary

force, 147
structural dynamics response, 232–6

evaluation of A and B in Duhamel’s
integral, 235

undamped system, 232–4
underdamped system, 234–6
water tank and excited force function,

234
undamped SDOF displacement system,

168
Dunkerley’s approximation, 377–80

equation derivation, 378
flexibility matrix, 378
for fundamental frequency estimation for

MDOF, 377–80
system dynamic matrix, 378
three storey shear frame, 380

dynamic analysis, 478, 739, 752, 771, 787,
802

dynamic coupling, 284
dynamic equation of equilibrium, 58–9
dynamic load factor, 472
dynamic loadings

response of structures, 105–34
alternative form of Fourier series,

122–4
complex variable approach for forcing

function expression, 127–30
discrete Fourier transform and fast

Fourier transform, 131–2
exercises, 133–4
Fourier analysis, 106–11
frequency domain analysis, 121–2
Gibbs phenomenon, 132–3
periodic excitation, 105
Program 5.1: MATHEMATICA

program to determine Fourier
coefficients of forcing function,
111–15

Program 5.2: MATHEMATICA
program for finding the response to
a periodic function, 116–21

Program 5.3: MATLAB program to
evaluate amplitudes and phase
angles, 124–7

response to periodic excitation, 115
dynamic magnification factor, 98, 232, 417,

418, 419, 421, 422, 423
dynamic response, 607
dynamics, 1–5

load types, 3
deterministic, 2
non-deterministic, 2

methodology, 4–5
mechanical chimney models, 5

types of vibration, 5
vs static problems, 2, 4

water tank static and dynamic loads, 4

earthquake
aftershocks, 588
Asian tsunami disaster, 599–601

rubbing of plates, 599
unfamiliarity with warning signs,

600–1
belts in the world, 580, 582

Alpine-Himalayan Trans-Asiatic belt,
582

Circum-Pacific belt, 580, 582
Mid-Atlantic Ridge, 582

better known damaging, in India, 580
body waves

P wave, 583
S wave, 583, 585

chronology, 593
classification, 599
continental plates, epicentres and

earthquake belts, 578
damage mechanisms, 601
definition of focus and epicentre, 583
description, 572, 576–7

core, 576–7
crust, 576
mantle, 576
different waves, 584

DQ and DT methods for vibration
problems in relation to structural
dynamics, 525–67

exercises, 566–7
and earthquake ground motion, 571–602
elastic rebound theory, 582
faults, 578–80

different types, 579
dip–slip fault, 578–80
strike–slip fault, 578

finite element method in relation to
structural dynamics, 477–524

five biggest earthquakes, 600
forced vibration (harmonic force) of
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single-degree-of-freedom systems
vs structural dynamics, 68–103

fore shocks, 588
free and forced vibration of continuous

system in relation to structural
dynamics, 431–75

free vibration
MDOF in relation to structural

dynamics, 305–43
single-degree-of-freedom systems

(undamped) vs structural dynamics,
9–42

single-degree-of-freedom systems
(underdamped) vs structural
dynamics, 43–67

frequency of earthquake in the world, 592
generalised coordinates and energy

methods in relation to structural
dynamics, 240–64

ground motion, 594–5, 597–8
El Centro earthquake, 597
Helena earthquake, 596
Northridge earthquake, 595
PGA and duration of strong phase

shaking, 598
intensity and magnitude, 588–94

basic difference, 594
body wave magnitude, 592
boiler under heat, 594
earthquake magnitude, 589–92
intensity, 588–9
intensity scale, 589
isoseismal zones of large earthquakes,

589
moment magnitude, 592–4
scales compared, 591
surface wave magnitude, 592

largest and deadliest earthquakes, 573–4
measuring instruments, 586–8

location of epicentre, 587
seismograph, 587
seismometer, 587
seismoscopes, 588
simple seismograph, 587
typical seismogram, 586

number of earthquakes worldwide and
mortality figures, 575

plate tectonic theory, 577
response of structures

approximate analysis techniques for
lateral loads, 804–31

shear wall analysis, 833–63
sections of the earth, 577
seismic waves, 582–3, 585–6
structural dynamics in relation to natural

frequencies and mode shapes,
344–81

surface waves
L wave, 585
R wave, 585

time history response by mode
superposition method in relation to
structural dynamics, 383–430

type
inter-plate boundaries, 579
intra-plate boundaries, 579

earthquake analysis
effective modal mass and modal height,

720, 722
base moment, 722
base shear, 722
five storey frame, 721
modal contribution of masses, 720, 722
multi-storey frame, 719
normalised eigenvector, 721
two storey frame, 719

exercises, 729–32
five storey frame subjected to ground

acceleration, 672–6
design spectrum, 673
displaced shape of the frame, 674
equation of motion formulation, 673
five storey frame, 672
general properties, 672
shear force diagram and bending

moment diagram, 675
inverted L-shaped frame, 702

eigenvector, 703–4
mass and stiffness matrices, 703
modal contribution, 704
response to base rotation, 705
response to ground motion, 702–5

linear systems, 667–732
lumped mass system, 668–76

equation of motion, 668–71
response analysis, 671–2
shear building, 668

modal analysis
for Γ f (t), 679–80
interpretation, 681
modal contribution to dynamic

response, 681
modal contribution factor, 681–2
modal contributions, 683–94

base shear, 683
to base shear, 684
dynamic base shear calculation, 685,

689
to dynamic response, 702
excited vectors modal expansion, 688
force displacement, 683

modal response, 700–6
analysis of response to base rotation,

705
contribution using Chopra’s method,

676–9
interpretation of modal analysis, 702–5
and required number of modes, 682–3
total response, 700–1

multi-storey buildings with symmetrical
plan, 706–15

eigenvector, 707
equation of motion, 706
excited by ground motion, 706
modal expansion of effective

earthquake force, 708
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modal response, 714
multi-storey frame, 706
normalised eigenvector, 707–8
storey shear and moment, 709
total response, 715
two storey shear frame, 707

multiple support excitation, 723–6
equation of motion, 723, 726
Golden Gate Bridge, 723
influence vector, 726
two span continuous beam, 723

simply supported beam with three lumped
masses, 688–94

calculation of moment at 1, 693
lateral stiffness, 691
mass matrix, 690
modal contribution and error, 694
modal contribution of excitation vector,

693
modal expansion of force vector, 692
modal static response, 693
mode shape, 692
natural frequencies, 691
normalised eigenvector, 691
peak modal response, 694
simply supported beam, 689
stiffness matrix, 690

spectrum analysis by modal response,
715–18

absolute sum rule, 716
correlation coefficients variation with

respect to frequency ratio, 717
CQC rule, 716–17
factors influencing response, 718
modal contribution rules, 716
SRSS rule, 716

translational ground motion
displacement of frame, 727–9
equation of motion, 728–9
one way, two way unsymmetric system,

727–9
symmetric plan building, 726–7
unsymmetrical building, 728

two storey frame with flexural rigidity,
709–15

bending moment, 712
eigenvector, 711
mass matrix, 710
modal static response, 714
moment in beam, 713
moment in column, 713
normalised eigenvector, 711
stiffness matrix, 710
two storey frame, 710

earthquake engineering, xxi–xxii
dynamic analysis, xxi

earthquake ground motion, 594–5, 597–8
characteristics

duration, 598
frequency content, 598
peak of maximum motion, 598

classification, 597–8
large-scale permanent ground

deformation, 598
long motion with pronounced

prevailing vibration periods, 597–8
moderately long, extremely irregular

motion, 597
single shock type, 597

and earthquake, 571–602
earthquake response integral, 606
earthquake response spectra, 605–66

application of inelastic design spectrum,
661–6

strength and deflection demands, 663
characteristics, 647–51

intermediate period range, 648
long period range, 648
Newmark–Hall design spectrum, 647,

649
response and design spectral values

comparison, 651
short period range, 648

combined definition, velocity and
acceleration spectrum, 631–2

concept, 626–8
construction procedure, 633–9

bending moment diagram, 637
bending moment diagram for

unsymmetrical frame, 639
moment distribution for symmetrical

structure, 637
single storey RC building, 637
unsymmetrical frame, 638
vertical cantilever and tripartite plot,

634
design and response spectra, 652
distinction between design and response

spectra, 651–2
El Centro earthquake, 616–20

column base shear at the instant of
peak response, 638–9

deformation response, 628
deformation response for T = 0 to 2s,

628
displacement response spectrum, 617
NS earthquake, 617
peak deflection and bending stress

determination, 634–6
peak lateral deflection and diagram of

bending moment, 636–8
pseudo-velocity and pseudo-

acceleration response, 629
spectral total acceleration vs pseudo-

spectral acceleration, 619
spectral velocity vs pseudo-spectral

velocity, 619
total acceleration response spectrum,

618
tripartite plot for NS component, 620
velocity response spectrum, 618

elastic design spectrum, 640–2
amplification factors, 643
construction of design spectrum, 642
Newmark–Hall ‘broad-banded’ designs

spectrum, 640–2
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Newmark–Hall elastic spectrum, 643
relative values of spectral amplification

factors, 640
exercises, 664–6
family of SDOF oscillators, 608
ground motion estimation, 656–7

Newmark–Hall broad-banded design
spectrum construction, 657

summary of V/a and ad/V2 ratios, 657
importance of response quantities, 623–6

acceleration response for various
periods, 626

deformation response for various
damping conditions, 625

deformation response for various
periods, 624

shear calculation from displacement,
625

industrial building, 612–16
axial force in bracing rod, 613
column moments, 613
E–W elevation, 613
maximum response in NS direction,

616
natural period, 612–13
N–S elevation, 613
plan, 613
relative displacement response, 615
relative velocity response, 615
time history response, 614–16
total acceleration response, 616

inelastic deformation, 663–4
inelastic demand diagram, 664
inelastic response electra, 658–61

construction of inelastic design spectra,
662

ductility factor definition, 659
equations of motion and controlled

parameters, 660
inelastic load deformation response,

659
inelastic response shock spectrum,

660–1
inelastic Sa/g spectrum, 663
Newmark–Hall design spectra 84%

median, 662
yield strength reduction and ductility

factor, 659
yield strength reduction factor, 661

MATLAB program for drawing
Newmark–Hall design spectrum,

642–7
spectra for any specified earthquake,

607–19
tripartite plot, 620–3

Northridge earthquake
data, 608
natural period for NS and EW

directions, 612–14
Newmark–Hall design spectrum for

ground acceleration, 641–2
spectral acceleration vs pseudo-spectral

acceleration, 631

spectral velocity vs pseudo-spectral
velocity, 631

time history analysis of structure,
614–16

pseudo-acceleration design spectrum
plotted in log scale, 649
plotted in normal scale, 650
plotted in semi-log scale, 650

pseudo-spectral acceleration, 630
pseudo-velocity spectrum, 628–30
response spectrum, 652–4

acceleration, velocity and displacement
spectrum, 652–4

deformation design spectra, 654
one storey frame, 655
peak structural response from

spectrum, 654–5
pseudo-acceleration design spectrum, 653
pseudo-velocity design spectrum, 653

seismic analysis and design verification,
657–8

elastic response analysis, 658
response spectrum method, 658
time history method, 658

site-specific response spectra, 655–6
modification factors for spectral

accelerations, 656
site-dependent response spectra, 655

spectral acceleration, 610
spectral displacement, 609
spectral velocity, 609
Velestos and Newmark spectra, 632–3

tripartite plot, 633
EC-8 see Eurocode 8 procedure
eccentricity, 741, 788
effective earthquake force, 606
egg crate, 834
eigen problems, general solutions method,

344–5
techniques

polynomial iteration methods, 345
transformation methods, 345
vector iteration methods, 345

eigenvalue
in general viscous damping, 331
obtained using MATLAB, 332
in orthogonality relationship, 310
vs determinants, 309

eigenvalue analysis, 740
eigenvector, 309, 313, 331

normalised, 312, 347
obtained using MATLAB, 332

El Centro earthquake, 616–20
column base shear at the instant of peak

response, 638–9
deformation response, 628
deformation response for T = 0 to 2s, 628
displacement response spectrum, 617
NS earthquake, 617
peak deflection and bending stress

determination, 634–6
peak lateral deflection and diagram of

bending moment, 636–8
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pseudo-velocity and pseudo-acceleration
response, 629

spectral total acceleration vs pseudo-
spectral acceleration, 619

spectral velocity vs pseudo-spectral
velocity, 619

total acceleration response spectrum,
618

tripartite plot for NS component, 620
velocity response spectrum, 618

elastic design spectrum, 640–2
elastic rebound theory, 582
elastic seismic coefficient, 737, 743, 744, 745,

763, 764
see also base shear

elasto-plastic behaviour, 224
energy dissipation, 834
energy method, 19–22

kinetic and potential energy vs time and
displacement, 23

simple harmonic oscillator, 22–4
epicentral distance, 582
epicentre, 582
‘equal displacement,’ 661
equation of formulation, 9–10

D’Alembert’s principle, 24–5
free body diagram, 25

energy method, 19–22
kinetic and potential energy vs time

and displacement, 23
simple harmonic oscillator, 22–4

Newton’s second law, 14–19
displacement, velocity and acceleration

time curves, 17
400g mass-spring system, 18
simple harmonic motion, 16
spring-mass system, 15

Rayleigh method, 24
simple harmonic theory, 10–14
simple pendulum, 19–21

displacement, velocity, acceleration,
kinetic energy and potential energy,
21

pendulum, 19
pendulum and spring mass system

analogy, 20
Euler beam

DQ method
with axial load, natural frequency and

mode shape, 542–8
lateral vibration, 537–42

DT method
free vibration analysis, 556–9
subjected to axial load, natural

frequency, 559–62
Euler formula, 132
Euler–Bernoulli theory, 444, 515
Euler–Lagrange equations, 259
Eurocode 8 procedure, 740–1
EXCEL package

for finding eigenvalues and eigenvectors
deflation method, 359
sweeping technique, 353

explicit methods, direct integration of equation
of motion, 180

factor method, 819–20, 822–3
fast Fourier transform, 131–2
FFT see fast Fourier transform
finite element analysis, 834
finite element method, 306, 525

assumed modes method, 485–8
dynamic equilibrium equation, 487
forced vibration of a longitudinal bar,

486
mass matrix, 490
modal matrix, 490
mode shapes, 488
natural frequencies, 490
scalar product notation, 487
stiffness matrix, 490

axial vibrations of rods, 484–5
fundamental mode shape, 484
Lagrange’s equation, 485
Rayleigh–Ritz method, 485

beam element, 499–501
consistent mass matrix from kinetic

energy, 501
free vibration of a plane frame, 505
fundamental mode shape, 506
simply supported beam, 504
stiffness matrix from strain energy,

500–1
dynamic analysis, 478
forced vibration of a beam, 510–12

force vector, 514
generalised forces, 512
global mass matrix, 514
mass matrix, 511
natural frequencies, 514
steady state amplitude, 515
steady state mode shape, 512

MATHEMATICA program
evaluation of stiffness matrix, and mass

matrix of beam element, 502–6
MATLAB program

assumed modes method, 488–90
forced vibration of a beam, 512–15
free vibration of trusses, 496–9
frequency of Timoshenko beam,

518–22
natural frequency of beams or rigid

frames, 506–10
in relation to structural dynamics during

earthquakes, 477–524
exercises, 522–4

Timoshenko beam vibration, 515–17
fundamental frequency from

‘Timoshenkovib’ program, 517
kinetic energy, 517
mass matrix, 517
natural frequencies in rad/sec, 522
nodal displacement, 516
shear constant, 515
stiffness matrix, 516

torsional vibration of a shaft, 478–84
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cantilever shaft, 481
fundamental mode shape, 484
idealisation of shaft into a number of

elements, 481
and natural frequency determination,

482–4
shaft with two nodes subjected to

torsion, 478
truss element, 490–5

assembly, 492
boundary conditions application, 492
element stiffness and mass matrices,

491–2
four bar truss and mode shape, 493
natural frequencies, 499
orientation in global coordinate system,

490
solve as an eigenvalue problem,

492–5
fixed end moment, 837, 838
flexibility matrix, 313
forced vibration

harmonic force in spring-mass system, 68
magnification factor, 70
magnification factor vs frequency ratio, 79
single-degree-of-freedom systems in

relation to structural dynamics
during earthquakes, 68–103

steady state and transient response, 72
underdamped system, 77
vector relationship, 83–7

impressed vs spring force, 83
SDOF system, 84
spring-mass damper system, 85
vibration amplitude of a trailer on a

road profile, 86
fore shocks, 588
four node finite elements, 859
Fourier analysis, 106–11

even function represented by cosine series,
110

forcing function, 106
odd function represented by sine series,

108
sine and cosine series in general function,

110
square wave periodic forcing function, 109

Fourier series, 106
Fourier transform, 220
free vibration

rigid bodies with damping, 25–7
cantilever beam, 26
free body diagram, 26
reinforced concrete building as a

massless frame, 27
structural systems, 32–9

direction of vibration, 39
lateral stiffness, 35
natural frequency of beam with

different boundary conditions, 38
natural frequency of parallel springs,

37
natural frequency of portal frame, 38

natural frequency of rigid bar with
spring support, 37

natural frequency of springs in series,
37

negligible beam stiffness force, 33
pendulum system stiffness, 36
portal frame, 32
shear frame induced forces, 32–3

frequency domain analysis, 121–2
frequency domain solution, 122
time domain solution, 121–2

Gauss rule, 173
general viscous damping, 331–2
generalised coordinates and energy methods

computer-generated Euler–Lagrange
equations, 259–62

SDOF system, 259–61
two degrees of freedom, 261–2

generalised SDOF system – rigid bodies,
241–3

real deformed shape, 242
SDOF with rigid bar, 242
virtual displacement diagram, 242
virtual work calculation, 243

Hamilton’s principle, 251–3
displacement configuration of masses,

252
Newtonian path, 252

improved Rayleigh method, 250–1
cantilever beam, 251
inertia force on cantilever beam, 251

Lagrange’s equations, 253–9
mass spring system, 255
pendulum with moving pivot, 256
resolution of velocities, 257
spring pendulum, 258

principle of virtual work, 240–1
application, 240–1
differential equation of motion, 241
spring mass and damper system, 240–1

Rayleigh method, 248–50
in relation to structural dynamics during

earthquakes, 240–64
systems with distributed stiffness and

distributed mass, 243–8
buckling load, 248
cantilever beam, 244
water tank, 247

generalised degrees of freedom, 306
generalised SDOF system, 241–3

generalised damping, 245
generalised force, 245
generalised mass, 244
generalised stiffness, 245
real deformed shape, 242
SDOF with rigid bar, 242
virtual displacement diagram, 242
virtual work calculation, 243

geometric stiffness, 246
geometry boundary condition, 249
Gibbs phenomenon, 132–3
granite, 576



Index 873

Gutenberg discontinuity, 576

Hamilton’s principle, 251–3
harmonic differential quadrature method,

528–9
harmonic force. see forced vibration
Holzer method, for torsional vibrations, 366–7

equilibrium equations, 367
computations, 368

torsion in shafts, 366
hypo-centre, 582
hysteresis damping, 53–5

hysteresis loop, 54

ideal step force, 148–50
MATLAB program, 150–1
SDOF response, 150

impulse loading
structure response, 136–69

arbitrary dynamic excitation, 141–6
arbitrary impulse loading, 136
Duhamel integral, 146–8
exercises, 167–9
Laplace transform, 163–5
maximum response, 139
Program 6.1: MATLAB program to

obtain maximum response for half
sine cycle pulse, 140–1

Program 6.3: MATLAB program to
find the response spectrum for any
load pulse, 158–63

Program 6.4: MATHEMATICA
program for Laplace transform
method, 165–7

response spectrum, 157–8
response to arbitrary dynamic

excitation, 148–57
sine wave, 136–9

Indian Seismic Code 1893 – Part 1 – 2002,
750–3

industrial building, 612–16
axial force in bracing rod, 613
column moments, 613
E–W elevation, 613
maximum response in NS direction, 616
natural period, 612–13
N–S elevation, 613
plan, 613
relative displacement response, 615
relative velocity response, 615
time history response, 614–16
total acceleration response, 616

inelastic deformation ratio, definition, 659
inelastic response electra, 658–61
inertial coupling, 384
intensity, of earthquake, 588–9

scale
JMA, 588
MMI, 588
MSK-64, 588

vs magnitude, 594
intermediate earthquake, 582
International Building Code, 737

International Building Code of USA 2000,
737–8

International Conference of Building Officials,
735

Iranian code, 747–8
isolators, 92
isoseismals, 589

Jacobi’s method, 359–61
dynamic matrix, 360
highest off-diagonal term, 360–1
orthogonal matrix, 359

Japanese Meteorological Agency, 8-grade, 588
Japanese Society of Civil Engineers 2000,

746–7
design response spectra

at engineering bedrock, 746
at ground motion, 746–7

JMA. see Japanese Meteorological Agency, 8-
grade

JSCE 2000 see Japanese Society of Civil
Engineers 2000

Khan and Sbarounis method, 835

Lagrange’s equation, 253–9, 305, 470, 471,
477, 485, 487

Lagrangian interpolation, 526–7
Laplace transform, 163–5
MATHEMATICA program, 165–7
spring mass damper system, 164
two-degrees-of-freedom system, 287–8
‘lazy S’ curve, 835
lithosphere, 576, 577
load vector, 308
local magnitude scale see Richter scale
logarithmic decrement, 47–53

damped vibration, 48
free vibration test of elevated water tank,

52
recoil velocity, damping coefficient and

time of gun barrel model, 49
vibrating system, 51

Love wave, surface waves, 585
lumped mass matrix, 480
lumped mass system

earthquake analysis, 668–76
displacement in a storey, 670
equation of motion, 668–71
response analysis, 671–2
shear building, 668
three storey frame, 670

magnification factor, 70
magnitude, of earthquake, 589–94

body wave, 592
earthquake, 589–92
moment wave, 592–4
surface wave, 592
vs intensity, 594

mantle
asthenosphere, 576
lithosphere, 576
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mass matrix, 308
MATHEMATICA, 794, 799, xxii

characteristic equation, 318
coupled differential equation, 273–4
for coupled shear wall, 855–60
displacement, velocity and acceleration

with respect to time, 29–31
displacement response of underdamped

system subjected to sinusoidal
loading, 79–80

dynamic equilibrium equations from
Lagrangian

for SDOF, 260–1
for two-degrees-of-freedom system,

261–2
Euler-Lagrange equations, 259–61
evaluation of stiffness matrix, and mass

matrix of beam element, 502–6
Fourier coefficients of forcing function

determination, 111–15
for free vibration of under damped (SDOF)

systems, 60–6
displacement, velocity and acceleration,

61
frequencies and normalised mode shapes,

318–26
frequency of long beam with usual

boundary conditions, 449–57
fundamental frequency and the

corresponding mode shape (transfer
matrix method), 364–6

Laplace transform method, 165–7
natural frequency

Euler beam subjected to axial load,
561–2

Timoshenko beam, 563–5
vibration of Euler beam, 558–9
vibration of pre-tensioned cable, 555–6

periodic function response, 116–21
displacement response, 120, 122
excited force, 121
steady state response of building frame,

119
string displacement, 435
undamped two-degrees-of-freedom system

forced vibration, 295–6
free vibration, 288–90

mathematical continuous model, 4–5
MATLAB, 799, xxii

amplitudes and phase angles, 124–7
forcing function, amplitude spectrum

and phase spectrum, 125–6
time series and phase spectrum, 127

assumed modes method, 488–90
coupled differential equation, 276–8
displacement, velocity and acceleration

with respect to time, 28–9
acceleration-time curve, 30
displacement-time curve, 29
velocity-time curve, 29

for dynamic response
using direct integration method,

410–15

using mode superposition method,
405–10

dynamic to static shear ratio in a multi-
storey building, 695–9

finding natural frequency of lateral
vibration of pretensioned string,
530–7

forced vibration of a beam, 512–15
forced vibration of three degrees of

freedom by Runge-Kutta method,
340–1

free vibration
under damped (SDOF) systems, 59–60
Euler beam, 540–2
MDOF with general damping, 332–6
problem of non-prismatic beam with or

without axial load, 545–8
Timoshenko beam analysis, 550–3
trusses, 496–9

frequency of Timoshenko beam, 518–22
for IS1893 code, 753–63
maximum response for half sine cycle

pulse, 140–1
response spectrum for sine pulse, 141

MF, MX/me and TR computations, 93–4
transmissibility vs frequency ratio, 94
transmissibility vs frequency ratio and

damping factor, 95
natural frequency of beams or rigid frames,

506–10
Newmark’s method

linear systems, 205–7
MDOF with generalised damping,

337–8
response due to harmonic force, 82–3
response for step force, 150–1
response spectrum for any load pulse,

158–63
SDOF dynamic response

by Runge–Kutta method, 189–93
using central difference method, 182–6
using recurrence formula, 177–9

solving structural problem by stiffness
method, 326–30

structural dynamic response
to base excitation using Wilson-q

method, 216–17
by constant acceleration method,

197–200
for elasto-plastic SDOF system, 227–30
by linear acceleration method, 202–4
by Wilson’s general method, 221–4

two-degrees-of-freedom system
forced vibration of underdamped

system, 301–2
free vibration of undamped system,

274–6
MATLAB program for drawing

Nemark–Hall design spectrum, 642–7
spectra for any specified earthquake,

607–19
tripartite plot, 620–3

maximum capable earthquake, 656
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maximum considered earthquake, 750
MDFC 1993 see Mexican Federal District

Code 1993
MDOF see multiple degrees of freedom
Medvedev – Sponheuer Karnik, 12-grade, 588
Mexican Federal District Code 1993, 744–5
MF see magnification factor
MMI see modified Mircalli, 12-grade
modal analysis see mode superposition method
modal contribution factor, 680, 681–2
modal damping

coefficient, 398
factor, 398
matrix, 398
see also Rayleigh damping

modal participation factor, 387–8, 680, 700
mode shapes

and natural frequencies in relation to
structural dynamics during
earthquakes, 344–81

mode superposition method
acceleration method, 424–7

equation of motion, 425
natural frequencies and normalised

eigenvector, 425–6
displacement method for uncoupled system

equation of motion, 384
modal mass matrix, 385
modal stiffness matrix, 385

dynamic analysis using direct integration
methods, 410

acceleration response of roof, 412
algorithm, 411
displacement response of roof, 412
velocity response of roof, 412

exercises, 427–30
forms

mode acceleration method, 383
mode displacement method, 383

limitations, 383–4
MATLAB program for dynamic response

using direct integration method, 410–15
using mode superposition method,

405–10
modal participation factor, 385, 387–8
normal mode response to support motions,

415–16
acceleration response of the roof, 418
displacement response of the roof, 417
excited ground acceleration, 417
support motion of a multi-storey frame,

416
velocity response of the roof, 418

numerical evaluation of modal response,
401–5

acceleration response of the roof, 405
algorithm for MDOF system dynamic

response, 401
displacement response of the roof, 404
force-time diagram, 403
three storey frame, 402
velocity response of the roof, 405

response spectrum analysis, 416–24

comparison of values by time history
and response spectrum method, 424

CQC method, 423–4
DMF for various pulses, 422
modal participation factor, 417, 421
rectangular, triangular and double

triangular pulses, 422
time varying force, 420

systems with classical damping, 397–401
viscously damped 3-degrees-of-

freedom system, 397
time history analysis, 388–96

force distribution, 396
load vs time, 389, 392
modal participation factor, 393, 395
natural frequencies and normalised

mode shapes, 390
normalised eigenvector, 390, 395
normalised mode shapes, 390
three storey frame, 388
umbrella frame, 394
uncoupled equations, 391

time history response in relation to
structural dynamics during
earthquakes, 383–430

modified Mircalli, 12-grade, 588
Mohoroviccic (moho) discontinuity, 576
MSK-64 see Medvedev – Sponheuer Karnik,

12-grade
multi-bay frames, approximate methods of

analysis, 814–27
cantilever method, 816–19

assumptions, 817
bending moment diagram, 818
free body diagram, 818
steps, 817–18

factor method, 819–20, 822–3
bending moment diagram, 822
calculation of girder factor, 821
girder factor x stiffness factor, 822
girder factors, 820
steps, 819–20

portal method (version 1)
aisles of building as individual portal,

814
assumptions, 814
bending moment diagram, 816
free body diagram, 815
steps, 815

portal method (version II), 814–15
bending moment diagram, 817
free body diagram, 816

stiffness centre method, 823–7
axial deformation in columns, 824
bending moment diagram, 825
deformation diagram, 824
steps, 823–5

multiple degrees of freedom
equations of motion

damping matrix, 308
free body diagram of three masses, 307
load vector, 308
mass matrix, 308
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stiffness matrix, 308
three storeyed building, 306

forced response of a three-degrees-of-
freedom underdamped system,
338–41

free undamped vibration
determinant vs eigenvalues, 309

free vibration, in relation to structural
dynamics during earthquakes,
305–43

exercises, 342–3
general viscous damping, 331–2

constants of integration, 336
damping matrix, 334
displacement response, 333
dynamic equilibrium equation, 332
dynamic response by Newmark’s

method, 339
eigenvalues, 335
eigenvectors, 335–6
mass matrix, 334
stiffness matrix, 335
three storey frames –underdamped

system, 332
influence coefficient method, 313–17

Cordon’s solution, 315
mode shapes, 317
three degrees of freedom, 313

MATHEMATICA program
find the frequencies and normalised

mode shapes, 318–26
finding solution of the characteristic

equation, 318
MATLAB program

free vibration of MDOF with general
damping, 332–6

for Newmark’s method of MDOF with
generalised damping, 337–8

solving structural problem by stiffness
method, 326–30

modelling of continuous system, 306
modes normalisation, 311–13

constrained coordinates, 323
deformation in any member, 323
deformations due to generalised

coordinates, 321
deformed shape due to unit value of

generalised coordinate, 325
dynamic equilibrium equations, 322
element stress resultants, 321, 323
flexibility matrix, 320
generalised coordinates, 323
irregular frame, 323
natural frequencies, 320
portal frame, 320
proof of normality principle, 320

Newmark’s numerical integration, 336–7
orthogonality relationship, 310–11
static condensation of stiffness matrix,

330–1
multiple-degrees-of-freedom system, 207, 383,

749
MATLAB program

using direct integration method, 410–15
using modal superposition, 405–10

modal participation factor, 387
numerical evaluation of modal response, 401
Rayleigh damping, 399–400
response spectrum analysis, 416–24
response to support motions, 415–16
viscously damped, equation of motion, 397

National Building Code of Canada (1995),
742–4

natural frequencies
approximate methods, 369–77

Dunkerly’s approximation, 377–80
MDOF, Rayleigh’s quotient method,

370–7
SDOF, Rayleigh’s quotient method,

369–70
and mode shapes in relation to structural

dynamics during earthquakes,
344–81

exercises, 380–1
general solutions method for eigen

problems, 344–5
Holzer method for torsional vibrations,

366–7
Jacobi’s method, 359–61
MATHEMATICA program, 364–6
transfer matrix method, 361–3
vector iteration technique, 346–59

NBC of Canada (1995) see National Building
Code of Canada (1995)

New Zealand standards NZS 1170.5, 738–40
Newmark–Hall spectrum

‘broad-banded’ designs, 640–2
construction, 657

design spectra 84% median, 662
design spectrum, 647, 649

ground acceleration, 641–2
elastic spectrum, 643

Newmark’s method, 204–7, 236, 837
average acceleration method, 196
MATLAB program for dynamic response,

410–15
Newmark constant acceleration, 236
steps for linear systems, 205

Newmark’s numerical integration, 336–7
Newton’s second law, 14–19, 305

displacement, velocity and acceleration
time curves, 17

400g mass-spring system, 18
simple harmonic motion, 16
spring-mass system, 15

normal coordinates, 282, 384
normal mode method see mode superposition

method
normalisation, 311, 347
Northridge earthquake

data, 608
natural period for NS and EW directions,

612–14
Newmark–Hall design spectrum for ground

acceleration, 641–2
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spectral acceleration vs pseudo-spectral
acceleration, 631

spectral velocity vs pseudo-spectral
velocity, 631

time history analysis of structure, 614–16

orthogonal damping see Rayleigh damping
orthogonal property, 306
orthogonality relationship, 310–11, 312, 331
orthonormal principle, 353
oscillatory system, 1
overturning moments

Chinese code, 749
comparison of codes, 765
International Building Code of USA 2000,

738
Iranian code, 748
MFDC 1993, 745
NBC of Canada (1995), 744

participation factor, 699
peak ground acceleration, 598
peridotite, 576
periodic forcing function, 122

amplitude and phase angles, 124
periodic motion, 1
pierced shear wall, 840
plate tectonic theory, 577
plate tectonics, 576
Poisson’s ratio, 857
portal method (version 1), 814–15
portal method (version II), 815–16
pounding, 623
primary wave, body seismic wave, 583
principal coordinates, 282, 384
principle of minimum potential energy, 480
principle of stationary potential energy, 248
principle of superposition, 115
principle of virtual displacement, 669
principle of virtual work, 240–1

application, 240–1
differential equation of motion, 241
spring mass and damper system, 240–1

pseudo-spectral acceleration, 630
pseudo-velocity spectrum, 628–30

ramp function, 152–3
resolved ramp force in two triangular

forces, 152
undamped SDOF response, 154

Ray leigh wave, surface waves, 585
Rayleigh damping, 383, 399
Rayleigh frequency, 249, 371

by sweeping technique, 375
three storey shear frame, 374

Rayleigh method, 24, 248–50, 763
improved, 250–1

Rayleigh–Ritz method, 485
Rayleigh’s quotient, 370

improved, 375–7
deflected shape, 377
shear in each storey, 376

MDOF, 370–7

first trial assumed displacement, 372
modal matrix, 370
second trial assumed displacement, 373
steps, 371–2
stiffness matrix, 372
third trial assumed displacement, 373
two storey shear frame, 372

SDOF, 369–70
rectangular pulse force, 141–3, 151–2

SDOF response, 152
recurrence formula, 174, 176, 186, 194, 238
Reid’s theory, 582
resonance, 75–7

amplitude-time, 76
response spectrum, 157–8

analysis, 667, 699–700, 715
MATLAB program, 158–63

rectangular, triangular, sine, double
triangle and step ramp pulse, 161–3

Richter scale, 590
rods, axial vibrations, 484–5

fundamental mode shape, 484
Lagrange’s equation, 485
Rayleigh–Ritz method, 485

rotary inertia, 308
effect on free flexural vibration of beams,

443–8
and shear deformation, 462–5

rotating imbalance, 87–92
damping ratios, 89
harmonic disturbing force, 88

Runge–Kutta method, 186–93, 276
MATLAB program for forced vibration of

three degrees of freedom, 340–1

San Andreas fault, 578
SDOF see single-degree-of-freedom system
secondary wave, body seismic wave, 583
seismic action coefficient, additional, 749
seismic hazard

coefficients, 739, 740
map, 744
values, 744

seismic loads, lateral
approximate analysis techniques

analysis of buildings simple in plan,
827, 829–30

approximate analysis techniques, 804–31
comparison of various methods, 828
displacement at centre of stiffness, 829
exercises, 831
ith column, 829
methods for multi-bay frames, 814–26
simplified analysis, 805
zero point method, 805–14

seismic response factor, 743
seismic wave, 577, 582–6, 600
seismograph, 587
seismometer, 96, 587
seismoscope, 588
shallow focus earthquake, 583
shallow forces, 582
shear deformation
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effect on free flexural vibration of beams,
443–8

and rotary inertia, 462–5
shear walls

analysis, 833–63
column stiffness, 836
convergence characteristics, 840
distribution factors, 838
exercises, 860–3
fixed and moments due to drift, 838
moment distribution, 839
Newmark’s method, 837
plan of the building, 836
shear force diagram, 840
stiffness of beams and columns, 838

coupled, 841, 842, 853
calculation, 856
coefficients of h and w, 851
coefficients of η′  and ω, 852
continuous medium method due to

Rosman, 842–3, 845–6
coupling between various units, 842
deformations, 844
free body diagram, 841, 845–50
lateral load due to earthquake, 836–7
moments in walls, link beams and T in

walls, 857–8
Program 21.1 MATHEMATICA

program, 855, 857, 859–60
subjected uniformly distributed load,

847–50, 853–5
with two rows of openings, 858

different cross-sections, 834
frame interaction, 834–9
location, 833
modelling, 860

simple fatigue testing machine, 102
simple harmonic theory, 10–14

displacement, velocity and acceleration
time relation, 12

displacement-time relation, 11
simple oscillator system, 240
simple pendulum, 19–21
Simpson’s method, 174, 186, 233, 236
sine wave impulse, 137
single-degree-of-freedom system, 171, 259–60,

605, 749
elasto-plastic response, 224–32

displacement response, 231
elastic loading, 225
elastic rebound, 227
elasto-plastic shear frame, 225
MATLAB program, 227–30
plastic loading, 227
plot of resistance vs displacement

relationship, 226
time varying force, 230
velocity response, 231

generalised see generalised SDOF system
MATHEMATICA program for dynamic

equilibrium equations, 260
spring mass system, 260
undamped mass spring system, 369–70

spectral acceleration, 610
spectral displacement, 609
spectral velocity, 609
spring and dashpot system, 103
square root of sum of squares, 419, 694, 753

rule, 716
static condensation, 330
static coupling, 284
static force, equivalent, 624, 626
steady state vibration, 69
stiffness centre method, 823–7
stiffness coupling, 283, 384
stiffness matrix, 308
string

displacement at any time and at x, 435
lateral displacement, 433
under lateral vibration, 432
mode shapes, 434
natural circular frequency, 433

structural damping see hysteresis damping
structural dynamics

during earthquake
in relation to DQ and DT methods for

vibration problems, 525–67
in relation to finite element method,

477–524
in relation to natural frequencies and

mode shapes, 344–81
free and forced vibration of continuous

system during earthquake, 431–75
free vibration of MDOF during

earthquakes, 305–43
generalised coordinates and energy

methods during earthquakes, 240–
64

in relation to forced vibration (harmonic
force) of single-degree-of-freedom
systems during earthquakes, 68–103

beating phenomenon, 73–5
with damping, 77–9
damping evaluation in SDOF, 97–9
displacement isolation, 95–6
effectiveness of foundation, 94–5
exercises, 101–3
ground acceleration, 99–101
Program 4.1: MATHEMATICA

program to find displacement
response of underdamped system
subjected to sinusoidal loading,
79–80

Program 4.2: MATLAB program for
finding response due to harmonic
force, 82–3

Program 4.3: MATLAB program to
compute MF, MX/me and TR, 93–4

resonance, 75–7
rotating imbalance, 87–92
transmissibility (force isolation), 92–3
vector relationship in forced vibration,

83–7
vibration measuring instruments, 96–7
Wilson recurrence formula, 81
without damping, 68–73
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in relation to free vibration of single-
degree-of-freedom systems
(undamped) during earthquakes,
9–42

equation of motion formulation, 9–10
Program 2.1: MATLAB program to

draw displacement, velocity and
acceleration with respect to time,
28–9

Program 2.2: MATHEMATICA
program to draw displacement,
velocity and acceleration with
respect to time, 29–31

rigid bodies without damping, 25–7
simple harmonic and uniform circular

motion, 21–2
structural systems, 32–42
uniform circular motion, 21

in relation to free vibration of single-
degree-of-freedom systems
(underdamped) during earthquakes,
43–67

Coulomb damping, 55–8
damping free vibrations, 43–7
exercises, 66–7
hysteresis damping, 53–5
logarithmic decrement, 47–53
numerical method for initial conditions,

58–9
Program 3.1: MATLAB program for

free vibration of under damped
(SDOF) systems, 59–60

Program 3.2: MATHEMATICA
program for free vibration of under
damped (SDOF) systems, 60–6

in relation to time history response by
mode superposition during
earthquakes, 383–430

response evaluation using numerical
methods, 171–238

Duhamel integral evaluation, 232–6
elasto-plastic SDOF system response,

224–32
exercises, 237–8
response spectra, 231–2
selection of direct integration method,

236
summary of Newmark’s method

modified by d factor, 236
time stepping methods, 172–211
Wilson’s procedure (recommended),

217–24
response spectra

for displacement of triangular pulse,
233

family of SDOF oscillators, 232
symmetrical triangular pulse, 233

response to base excitation
displacement response due to ground

motion, 214
effective load on frame, 212
El Centro earthquake motion, 213
mass spring and damper model, 213

MATLAB program, 216–17
one-storey shear frame, 211
shear frame with damping, 213
total acceleration response due to

ground motion, 215
velocity response due to ground

motion, 215
Structural Engineers Association of California,

735
support motion, 211
sweeping matrix, 347

Taylor series expansion, 180, 553
tectonic plates, 577
thick beam theory, 462
three degrees of freedom system

forced response underdamped system,
338–41

MATLAB program using Runge–Kutta
method, 340–1

time history analysis, 667
mode superposition method, 388–96

force distribution, 396
load vs time, 389, 392
modal participation factor, 393, 395
natural frequencies and normalised

mode shapes, 390
normalised eigenvector, 390, 395
normalised mode shapes, 390
three storey frame, 388
umbrella frame, 394
uncoupled equations, 391

mode superposition method in relation to
structural dynamics during
earthquakes, 383–430

time stepping methods
average acceleration methods, 193–200

acceleration response, 198
computational algorithm, 194–5
displacement, velocity and acceleration

response, 199
displacement response, 197
as Newmark method, 196
numerical interpretation, 193
recurrence formula, 194
shear frame and excitation force, 196
steps, 195
velocity response, 198

conditionally stable method, 207–11
algorithm for Wilson-q method, 209
linear variation of acceleration and

normal excited time, 207
Wilson’s-q method, 207–11

direct integration of equation of motion,
179–86

acceleration spectrum, 184
displacement, velocity and acceleration

values, 183
displacement spectrum, 183
fundamental concepts, 179
single storey shear frame and excitation

force, 181
steps in central difference method, 181
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velocity spectrum, 184
evaluation of dynamic response of

structures, 172
interpolation of the excitation, 173–9

coefficients in recurrence formula, 175
displacement and velocity values at

various times, 176
displacement response history, 177
velocity response history, 177
water tank and forcing function, 176

linear acceleration methods, 200–4
numerical integration, 200
steps, 202

piecewise linear interpolation of forcing
function, 172

single step methods, 186–93
acceleration spectrum, 191
displacement, velocity and acceleration

at various time, 191
displacement spectrum, 190
fourth order Runge–Kutta method, 187
steel water tank and excitation force,

188
velocity spectrum, 190

stepping methods, 204–7
types, 173–211

Timoshenko beam, 462
DQ method, 548–53
DT method, 562–5
frequency using MATLAB program, 518–22
vibration, 515–17

fundamental frequency from
‘Timoshenkovib’ program, 517

kinetic energy, 517
mass matrix, 517
natural frequencies in rad/sec, 522
nodal displacement, 516
shear constant, 515
stiffness matrix, 516

‘Timoshenkovib’ program, 517
torsional moment, 479
torsional vibration

shaft, 478–84
cantilever shaft, 481
fundamental mode shape, 484
idealisation of shaft into a number of

elements, 481
and natural frequency determination,

482–4
shaft with two nodes subjected to

torsion, 478
shaft or rod, 441–3

common boundary conditions for, 443
torsional moment in a shaft, 442

transfer matrix method
fundamental frequency of multi-storeyed

building (shear frame), 361–3
base shear, 363
free body diagram of ith storey, 362
MATHEMATICA program, 364–6
mode shape, 363
natural frequency, 363
shear frame of n storeys, 361

three storeyed shear frame, 363
transient vibration, 69
transmissibility (force isolation), 92–3

isolation, 92
trapezoid method, 173
trapezoid rule, 196
triangular pulse force, 144–6, 153–7

portal frame, 145, 156
triangular pulse, 154
undamped SDOF response, 145, 155

double triangular pulse, 156
single sine pulse, 155

truss element, 490–5
assembly, 492
boundary conditions application, 492
element stiffness and mass matrices, 491–2
four bar truss and mode shape, 493
natural frequencies, 499
orientation in global coordinate system,

490
solve as an eigenvalue problem, 492–5

two-degrees-of-freedom system
beating phenomenon, 278

curves, 279
coordinate coupling, 280–5

choice of coordinates, 283
equations of dynamic equilibrium, 282,

284
free body diagram, 283, 284

coupled differential equation
displacement response, 277
MATHEMATICA program, 273–4
MATLAB program, 276–8

coupled pendulum
beating phenomenon, 280
equations of motion, 280
free diagram of pendulum 1 and 2, 279
natural frequencies, 280
normal modes of vibration, 280

forced vibration of undamped system,
293–5

dynamic equations of equilibrium, 293
MATHEMATICA program, 295–6

forced vibration of underdamped system,
298–301

displacement response, 301
equations of motion, 299
MATLAB program, 301–2
two degrees of damped system, 299

free vibration of undamped system, 266–72
displacement response, 272
dynamic equations of equilibrium,

267–8
first and second mode of spring mass

system, 270
first degree of freedom displacement

response, 274
free body diagram, 268
MATHEMATICA program, 288–90
MATLAB program, 274–6
natural frequencies, 271–2
second degree of freedom displacement

response, 275
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Laplace transform, 287–8
equations of motion, 287

lumped mass system, 290–3
cantilever beam, 291
dynamic equilibrium equations, 290
flexibility coefficients, 291
flexibility matrix, 291
mode shapes, 293
stiffness matrix, 292

representation, 267
response of structures, 266–303
simple system, 285–8

equation of motion, 286
natural frequencies and mode shapes,

286
stick model and two modes, 287
two storey frame, 285

vibration absorber, 297–8
first degree of freedom displacement

response, 298
response vs frequency, 298
second degree of freedom displacement

response, 299

UBC 1997 see Uniform Building Code 1997
Uniform Building Code 1997, 741–2

vector iteration technique, 346–59
method 1 sweeping technique, 347–53

dynamic matrix, 347
first (highest) eigenvalue establishment,

348–50
last eigenvalue establishment, 352–3
natural frequencies and mode shapes,

354
second eigenvalue establishment, 350–2

method 2–deflation method, 353–9
highest eigenvalue, 354–5
sweeping matrix, 354
third eigenvalue extraction, 354–5

Vianello and Stoodala method (power
method), 346

Velestos and Newmark spectra, 632–3
vertical lateral load resisting, 805
Vianello and Stoodala method (power

method), 346
vibration, 1–2

absorber, 295
first degree of freedom displacement

response, 298
response vs frequency, 298
second degree of freedom displacement

response, 299
beam

common boundary conditions for
transverse vibrations, 452

continuous, frequency equation
determination, 455–7

mode shapes for various boundary
conditions, 452

beam subjected to moving loads, 469–73
constant force and constant velocity,

470–2

constant force crossing beam with
constant velocity, 470

ratio of dynamic to static moments, 473
boundary conditions matrix, 451–2

clamped ends, 451–2
left end free and right end free, 451
simply supported ends, 451

DQ and DT methods in relation to
structural dynamics during
earthquake, 525–67

effect of axial force, 458–62
beams subjected to axial compression,

461–2
boundary conditions, 460
element of a beam under axial load,

458
equilibrium equation for rotary motion,

459–61
natural frequency, 461

effect of rotary inertia and shear
deformation, 462–5

element of Timoshenko beam, 462
forced, 2, 5

of a beam, 510–12
flexural member, 467
of a flexural member, 467–8
three degrees of freedom, 338–41
time varying load, 467
undamped two-degrees-of-freedom

system, 293–5
underdamped two-degrees-of-freedom

system, 298–301
forced axial, of bars, 465–9
free, 1–2, 5

MDOF in relation to structural
dynamics during earthquakes,
305–43

plane frame, 505
undamped two-degrees-of-freedom

system, 266–72
free and forced, of a continuous system in

relation to structural dynamics
during earthquakes, 431–75

exercises, 474–5
free flexural, of beams, 443–8

beam in bending, 444
boundary conditions, 447–8
equation of motion, 445
equilibrium equation, 444
moment equilibrium, 444

free free rod
mode shapes, 440
natural frequencies and mode shapes

determination, 438–9
longitudinal, of a uniform rod, 436–41

cantilever rod, 437
cantilever rod with concentrated mass

at one end, 440
displacement for a particular mode, 438
free body diagram of differential

element, 436
mode shapes, 438
values of frequencies, 441
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MATHEMATICA program
frequency of long beam with usual

boundary conditions, 449–57
string displacement, 435

measuring instruments, 96–7
accelerometer and seismometer, 97

orthogonality of normal modes, 457–8
simply supported beam

effects of rotary inertia and shear
deflection, 464–5

first mode shape, 454
free vibration response, 454
natural frequencies and normal mode of

vibration, 453
resulting vibration after load removal,

469
second mode shape, 455
third mode shape, 455

string
displacement at any time and at x, 435
lateral displacement, 433
under lateral vibration, 432
mode shapes, 434
natural circular frequency, 433

of a string, 432–5
of Timoshenko beam, 515–17
torsional

common boundary conditions for, 443
shaft, 478–84
shaft or rod, 441–3
torsional moment in a shaft, 442

vibrations, torsional, Holzer method, 366–7
viscous damping, 43
VLLR see vertical lateral load resisting

Wilson recurrence formula, 81, 607
transient, steady state and total response, 81

Wilson’s procedure
acceleration response, 222
constants used in recurrence relation, 219
damped free vibration due to initial

conditions, 217–18

displacement response, 221
evaluation of dynamic response of

structures, 217–24
force–time curve, 221
general solution due to arbitrary loading,

218–20
MATLAB program, 221–4
summary of notations used in dynamic

response, 218
typical modal load function, 219
velocity response, 222

Young’s modulus, 444, 857

zero moment point method
approximate analysis technique for lateral

load, 805–14
bending moment diagram, 806
definition, 805
deflection estimation, 810–11, 813–14

concentrated load at top of uniform
frame, 810

displacement linear variation, 813
equal concentrated load at floor of

uniform frame, 811
frame behaviour as cantilever, 812
frame deformation, 812
frame subjected to equal concentrated

loads, 812
inverted triangle load at floor of

uniform frame, 811
variation of µ with r, 813

non-uniform frames, 808–9
substitution in equivalent frame method,

809–10
equivalent single bay frame, 809

uniform frames, 807–8
maximum moment in columns, 808
S values vs r, 808

ZMP when storey beams are very stiff,
807

zonal velocity factor γ, 743




