Equilibrium in Analytical Chemistry Using Maple®

An emphasis on lonic Equilibrium - Part II
Prof. R.V. Whiteley

Prof. R.V. Whiteley, Jr., Pacific University Oregon

Equilibrium in Analytical Chemistry Using Maple ${ }^{\circledR}$

An emphasis on Ionic Equilibrium - Part II

[^0]
Contents

To see Part I download Equilibrium in Analytical Chemistry Using Maple Part I
Preface
Part I

1 The Fundamentals of Chemical Equilibrium
Part I

2 Ionic Strength, Activity Coefficients and an Introduction to Maple
Part I

3 Strong Electrolytes, $\mathbf{p H}$ and the Mathematics of Ionic Equilibrium
Part I

4 Weak Acids and Weak Bases
Part I

5 The Salts of Weak Acids and Weak Bases
Part I

6
Buffer Solutions
Part I

7

Acid / Base Titrations and an Introduction to Maple Programming

Part I

Free eBook on Learning \& Development

By the Chief Learning Officer of McKinsey

Download Now

8
Polyprotic Acids and Bases7
9 Complexometric Chemical Equilibrium 53
10 Solubility Equilibrium 110
Appendix I 174
Solvent Parameters for Calculations of Aqueous Solutions Using Extended Debye-Hückel Theory 174
Appendix II 175
Constants for Calculating Activity Coefficients 175
Appendix III 177
Autoprotolysis Constants for Water 177
Appendix IV 178
Acid Dissociation Constants for Some Common Weak Acids 178
Appendix V 182
Properties of Some Common Acid / Base Indicators 182

Appendix VI 183
Formation Constants of Some Metal Complexes 183
Appendix VII 192
Formation Constants of Some Metallochrome Indicators with Their $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ 192
Appendix VII 193
pK sp Constants for Some Sparingly Soluble Substances 193
Appendix VIII 194
Glossary of Maple Terms and Operations 194
Endnotes for Part I Part I
Endnotes for Part II 220
Index for Part I 225
Index for Part II 226

Deloitte.
© Deloitte \& Touche LLP and affiliated entities.

8 Polyprotic Acids and Bases

The equilibration of both strong and weak acids and bases has been studied in detail, but the study has been limited to those acids and bases that can provide or accept only one proton. Most acids and bases can exchange several protons. Polyprotic acids are denoted $H_{n} A^{m}$ and undergo successive dissociations:

$$
\begin{array}{rll}
\mathrm{H}_{\mathrm{n}} \mathrm{~A}^{\mathrm{m}} & \rightleftharpoons & \mathrm{H}^{+}+\mathrm{H}_{\mathrm{n}-1} \mathrm{~A}^{\mathrm{m}-1} \\
\mathrm{H}_{\mathrm{n}-1} \mathrm{~A}^{\mathrm{m}-1} & \rightleftharpoons & \mathrm{H}^{+}+\mathrm{H}_{\mathrm{n}-2} \mathrm{~A}^{\mathrm{m}-2} \\
\mathrm{H}_{\mathrm{n}-2} \mathrm{~A}^{\mathrm{m}-2} & \rightleftharpoons & \mathrm{H}^{+}+\mathrm{H}_{\mathrm{n}-3} \mathrm{~A}^{\mathrm{m}-3}
\end{array}
$$

Just as with monoprotic acids, the degree to which each dissociation occurs is expressed as an acid dissociation constant $\mathrm{K}_{\mathrm{an}}{ }^{156}$

$$
\begin{align*}
& \mathrm{K}_{\mathrm{a} 1}=\frac{\left[\mathrm{H}^{+}\right]\left[\left[\mathrm{H}_{\mathrm{n}-1} \mathrm{~A}^{\mathrm{m}-1}\right]\right.}{\left[\mathrm{H}_{\mathrm{n}} \mathrm{~A}^{\mathrm{m}}\right]} \\
& \mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\left[\mathrm{H}_{\mathrm{n}-2} \mathrm{~A}^{\mathrm{m}-2}\right]\right.}{\left[\mathrm{H}_{\mathrm{n}-1} \mathrm{~A}^{\mathrm{m}-1}\right]} \\
& \mathrm{K}_{\mathrm{a} 3}=\frac{\left[\mathrm{H}^{+}\right]\left[\left[\mathrm{H}_{\mathrm{n}-3} \mathrm{~A}^{\mathrm{m}-3}\right]\right.}{\left[\mathrm{H}_{\mathrm{n}-2} \mathrm{~A}^{\mathrm{m}-2}\right]}
\end{align*}
$$

It is always true that $\mathrm{K}_{\mathrm{a} 1}>\mathrm{K}_{\mathrm{a} 2}>\mathrm{K}_{\mathrm{a} 3}>\ldots>\mathrm{K}_{\mathrm{an}}$. This should be intuitive because, with each proton loss, the charge on the remaining conjugate base becomes less positive (more negative) and so it would be expected that abstracting a positively charged proton should be increasingly more difficult. Typically each K_{a} is 10^{-3} to 10^{-6} as large as its previous K_{a}. So although the number of protons that can be dissociated is limited to n, sometimes n is effectively less than the number of protons on $H_{n} A^{m}$. For example NH_{4}^{+} is not a tetraprotic acid: indeed, in water it can dissociate only one of its four protons. The first proton dissociates only slightly, $\mathrm{K}_{\mathrm{a}}^{\circ}=5.710^{-10}$, but in aqueous solutions, there is no loss of a second proton to produce $\mathrm{NH}_{2} \cdot{ }^{-157}$ So the ammonium ion would more appropriately be written as $\mathrm{HNH}_{3}{ }^{+}$which more correctly depicts it as a monoprotic acid.

Polyprotic bases are not as easily recognized. In Chapter 4 (Part I, page 80) the weak base was introduced as M^{n}, but such a designation provided no indication as to how many protons can be acquired by this base. In that chapter, it was taken to be 1 and n was taken as zero. But in general terms,

$$
\begin{aligned}
& \mathrm{M}^{\mathrm{n}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{MH}^{\mathrm{n}+1}+\mathrm{OH}^{-} \\
& \mathrm{MH}^{\mathrm{n}+1}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \\
& \mathrm{MH}_{2}{ }^{\mathrm{n}+2}+\mathrm{OH}^{-} \\
& \mathrm{MH}_{2}{ }^{\mathrm{n}+2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \\
& \mathrm{MH}_{3}{ }^{\mathrm{n}+3}+\mathrm{OH}^{-}
\end{aligned}
$$

might be possible, and predictably, the number of protons M^{n} can accept would depend on n . Typically, the charge on the conjugate acid will not exceed +1 . (See Problem 4 at the end of this chapter.) So, in order for M^{n} to acquire two protons and become $\mathrm{MH}_{2}^{\mathrm{n}+2}, \mathrm{n}$ should be less than or equal to minus one. Likewise M^{1+} would show no affinity for protons; if anything, it would behave as an acid and bind OH , as illustrated in Equation 5-8.

The affinity for a proton by each form of the base is expressed as a K_{b} :

$$
\begin{align*}
\mathrm{K}_{\mathrm{b} 1} & =\frac{\left[\mathrm{MH}^{\mathrm{n+1}]}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{M}^{\mathrm{n}}\right]} \\
\mathrm{K}_{\mathrm{b} 2} & =\frac{\left[\mathrm{MH}_{2}^{\mathrm{n}+2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{MH}^{\mathrm{n+1}}\right]} \\
\mathrm{K}_{\mathrm{b} 3} & =\frac{\left[\mathrm{MH}_{3}^{\mathrm{n}+3}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{MH}_{2}^{\mathrm{n+2}}\right]}
\end{align*}
$$

Because the charge on the conjugate acid increases with each additional proton, it should be logical that $\mathrm{K}_{\mathrm{b} 1}>\mathrm{K}_{\mathrm{b} 2}>\mathrm{K}_{\mathrm{b} 3}>\ldots>\mathrm{K}_{\mathrm{bn}}$.

The relationship between K_{a} and K_{b} in polyprotic acids and bases is the same as it is for monoprotic acids and bases. Consider the first dissociation of a diprotic acid

$$
\mathrm{H}_{2} \mathrm{~A} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HA}^{-}
$$

and compare it to the behavior of the conjugate base in water

$$
\mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{~A}+\mathrm{OH}^{-} .
$$

The respective equilibrium constants are:

$$
\mathrm{K}_{\mathrm{a} 1}=\frac{\left[\mathrm{H}^{+}\right]\left[\left[\mathrm{HA}^{-}\right]\right.}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}
$$

and

$$
\mathrm{K}_{\mathrm{b} 2}=\frac{\left[\mathrm{H}_{2} \mathrm{~A}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HA}^{-}\right]}
$$

By inspection, $\mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{b} 2}$ equals $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$, and this is equal to K_{w}. So ,

$$
\mathrm{K}_{\mathrm{a} 1}=\frac{\mathrm{K}_{\mathrm{W}}}{\mathrm{~K}_{\mathrm{b} 2}} \text { and } \mathrm{K}_{\mathrm{b} 2}=\frac{\mathrm{K}_{\mathrm{W}}}{\mathrm{~K}_{\mathrm{a} 1}}
$$

The numerical subscripts might cause confusion, but that relationship is simple too: for an ' n ' photic acid, this relationship is between $K_{a x}$ and $K_{b y}$ where $\mathrm{x}+\mathrm{y}$ must equal $\mathrm{n}+1$. For example, for a tetraprotic acid, the equilibrium constant pairs are $\mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{K}_{\mathrm{b} 4}, \mathrm{~K}_{\mathrm{a} 2}$ and $\mathrm{K}_{\mathrm{b} 3}, \mathrm{~K}_{\mathrm{a} 3}$ and $\mathrm{K}_{\mathrm{b} 2}$, and finally, $\mathrm{K}_{\mathrm{a} 4}$ and $\mathrm{K}_{\mathrm{b} 1}$. So $\mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{b} 4}=\mathrm{K}_{\mathrm{w}}$ etc.

The relationship between K_{an} and $\mathrm{K}^{\circ}{ }_{\mathrm{an}}$ also follows the monoprotic acid model.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{an}}^{\circ}=\frac{\gamma_{\mathrm{H}+}\left[\mathrm{H}^{+}\right] \gamma_{\mathrm{H}-1 \mathrm{Am}-1}\left[\mathrm{H}_{\mathrm{n}-1} \mathrm{~A}^{\mathrm{m}-1}\right]}{\gamma_{\mathrm{HnAm}}\left[\mathrm{H}_{\mathrm{n}} \mathrm{~A}^{\mathrm{m}}\right]} \\
& \mathrm{K}_{\mathrm{an}}^{\circ}=\frac{\gamma_{\mathrm{H}+} \gamma_{\mathrm{Hn}-1} \mathrm{~A}_{\mathrm{m}-1}}{\gamma_{\mathrm{HA} \mathrm{~m}}} \mathrm{~K}_{\mathrm{an}} \\
& \mathrm{~K}_{\mathrm{an}}=\frac{\gamma_{\mathrm{Hnam}}}{\gamma_{\mathrm{H}+}+\gamma_{\mathrm{Hn}-1 \mathrm{Am}-1}} \mathrm{~K}_{\mathrm{an}}^{\circ}
\end{aligned}
$$

A practical example is the K_{a3} for the triprotic acid $\mathrm{H}_{3} \mathrm{PO}_{4}$.

$$
\mathrm{K}_{\mathrm{a3} 3}=\frac{\gamma_{\mathrm{HPO} 42-}}{\gamma_{\mathrm{H}+\gamma_{\mathrm{PO} 43-}}} \mathrm{K}_{\mathrm{a} 3}^{\circ}
$$

Do you like cars? Would you like to be a part of a successful brand?

Send us your CV on www.employerforlife.com (f)

It should be apparent then, that the ionic strength affects every $K_{a n}$, but what might not be so apparent is the degree of that effect as the charge on each specie deviates from zero. Recall from Chapter 2, Equations 2-6 and 2-8, that an activity coefficient changes with $\left(10^{-2}\right)^{2}$. So the activity of a divalent ion is more profoundly affected by an increase in μ than is the activity of a monovalent ion. This will become clear as pH calculations for polyprotic acids are presented.

Although polyprotic acids carry the same K_{a} to $\mathrm{K}_{\mathrm{a}}{ }_{\mathrm{a}}$ and K_{a} to K_{b} relationships seen with monoprotic acids, there are two issues that make their equilibrium calculations more complicated.

First, the calculation of ionic strength cannot be made by simply adding the concentrations of all of the cations, or by adding the concentrations of all of the anions. For a solution of monovalent ions, z equals 1 in 2-5,

$$
\mu=1 / 2 \sum \mathrm{M}_{\mathrm{i}} \cdot \mathrm{z}_{\mathrm{i}}^{2}=1 / 2 \sum \mathrm{M}_{\mathrm{i}} \cdot 1
$$

and because the sum of the cation charges must equal the sum of the anion charges, the ${ }^{1} / 2$ can be removed when only the cations or only the anions are counted, as we did with Equation 3-13. When z is not ± 1, the discussion on Part I, page 39 becomes relevant.

Second, that discussion of ionic strength on page 39 pertained only to strong electrolytes and that is of little relevance to polyprotic acids and bases because none of these fully dissociate into all of their congeners. The correlation between $\left[\mathrm{H}_{\mathrm{n}} \mathrm{A}\right]$ and $\mathrm{C}_{\mathrm{HnA}}$ for limited dissociation takes the form of Equation 4-9. But because there will be more than one charged congener of $\mathrm{H}_{\mathrm{n}} \mathrm{A}$ a somewhat more complicated charge balance expression will emerge. ${ }^{158}$

The most efficient way to develop the charge balance expression for these polyprotic acids (and bases) is to resurrect the concept of α which was first introduced in Equations 4-21 and 4-22. Consider the acid $\mathrm{H}_{3} \mathrm{~A}$. It can (at best) dissociate into three congeners: $\mathrm{H}_{2} \mathrm{~A}^{-}, \mathrm{HA}^{2-}$ and A^{3-}. That is, along with the parent acid, $\mathrm{H}_{3} \mathrm{~A}$, there are four possible forms of this acid in solution. Mass balance will require that:

$$
\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}=\left[\mathrm{H}_{3} \mathrm{~A}\right]+\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]+\left[\mathrm{HA}^{2-}\right]+\left[\mathrm{A}^{3-}\right] .
$$

Equilibrium expressions can be taken from $\mathbf{8 - 1 a}, \mathbf{8 - 1 b}$, and $\mathbf{8 - 1} \mathbf{c}$ with $\mathrm{n}=3$ and $\mathrm{m}=0$. These will be used to create a set of expressions for the four congeners in terms of the dissociation constants and one of the congeners; arbitrarily, $\left[\mathrm{H}_{3} \mathrm{~A}\right]$ is chosen to be that "reference" congener, but any of the four could have been chosen.

```
> restart; H2A:= solve(K[a1] = H*H2A/H3A, H2A); HA:= solve(K[a2] =
    H*HA/H2A, HA); A := solve(K[a3] = H*A/HA, A);
```

$$
\begin{gathered}
H 2 A:=\frac{K_{a 1} H 3 A}{H} \\
H A:=\frac{K_{a 2} K_{a 1} H 3 A}{H^{2}} \\
A:=\frac{K_{a 3} K_{a 2} K_{a 1} H 3 A}{H^{3}}
\end{gathered}
$$

(One could have begun with H3A: = solve (K[a1]=H*H2A/H3A, H3A); and had expressions in terms of $K_{a 1}, K_{a 2}, K_{a 3}$, and H2A.) Next, the mass balance requirement is entered followed by the definition of each alpha, analogous to 4-21 and 4-22. The order in which these are entered is critical so that each assignment can be incorporated into the subsequent assignment. The simplification command is necessary to effect the clearest form of these expressions. Without this simplify, the expressions are correct but ambiguous.

$$
\begin{aligned}
& >C[H 3 A]:=\mathrm{H} 3 \mathrm{~A}+\mathrm{H} 2 \mathrm{~A}+\mathrm{HA}+\mathrm{A} ; \text { alpha['H3A']:=}=\operatorname{simplify~(H3A/~} \\
& \left.C\left[' H 3 A^{\prime}\right]\right) ; ~ a l p h a\left[' H 2 A^{\prime}\right]:=\operatorname{simplify}\left(H 2 A / C\left[' H 3 A^{\prime}\right]\right) ; \text { alpha['HA']:= } \\
& \text { simplify (HA/C['H3A']); alpha['A']:= simplify(A/C['H3A']); } \\
& C_{H 3 A}:= \\
& H 3 A+\frac{K_{a 1} H 3 A}{H}+\frac{K_{a 2} K_{a 1} H 3 A}{H^{2}}+\frac{K_{a 3} K_{a 2} K_{a 1} H 3 A}{H^{3}} \\
& \alpha_{H 3 A}:=\frac{H^{3}}{H^{3}+K_{a 1} H^{2}+K_{a 2} K_{a 1} H+K_{a 3} K_{a 2} K_{a 1}} \\
& \alpha_{H 2 A}:=\frac{K_{a 1} H^{2}}{H^{3}+K_{a l} H^{2}+K_{a 2} K_{a 1} H+K_{a 3} K_{a 2} K_{a 1}} \\
& \alpha_{H A}:=\frac{K_{a 2} K_{a 1} H}{H^{3}+K_{a 1} H^{2}+K_{a 2} K_{a 1} H+K_{a 3} K_{a 2} K_{a 1}} \\
& \alpha_{A}:=\frac{K_{a 3} K_{a 2} K_{a 1}}{H^{3}+K_{a 1} H^{2}+K_{a 2} K_{a 1} H+K_{a 3} K_{a 2} K_{a 1}}
\end{aligned}
$$

This $\mathrm{H}_{3} \mathrm{~A}$ example provides just enough structure that one can probably guess the form of any alpha for any $\mathrm{H}_{\mathrm{n}} \mathrm{A}$. Notice that each alpha has the same denominator, as well they should, inasmuch as the denominator represents $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}$. Each denominator contains four (i.e. $\mathrm{n}+1$) terms. Each term in the denominator "takes its turn" in the numerator to represent each congener. Predictably, the fully protonated congener $\left(\mathrm{H}_{3} \mathrm{~A}\right)$ is represented by $\left[\mathrm{H}^{+}\right]^{n}\left(\left[\mathrm{H}^{+}\right]\right.$being represented as H in the output), and the fully deprotonated congener (A^{3-}) is represented by $\left[\mathrm{H}^{+}\right]^{0} \mathrm{~K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{a} 2} \times \mathrm{K}_{\mathrm{a} 3} \ldots \times \mathrm{K}_{\mathrm{an}}$. So what might $\alpha_{\mathrm{H} 2 \mathrm{~A} 3-}$ be for the pentaprotic acid $\mathrm{H}_{5} \mathrm{~A}$ look like? Is

$$
\frac{\left[\mathrm{H}^{+}\right]^{2} \mathrm{~K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3}}{\left[\mathrm{H}^{+}\right]^{5}+\left[\mathrm{H}^{+}\right]^{4} \mathrm{~K}_{\mathrm{a} 1}+\left[\mathrm{H}^{+}\right]^{3} \mathrm{~K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2}+\left[\mathrm{H}^{+}\right]^{2} \mathrm{~K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3}+\left[\mathrm{H}^{+}\right] \mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3} \mathrm{~K}_{\mathrm{a} 4}+\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3} \mathrm{~K}_{\mathrm{a} 4} \mathrm{~K}_{\mathrm{a} 5}}
$$

reasonable? The monoprotic example is found in Equations 4-21 and 4-22 which follow this structure: two terms in the denominator for an " $\mathrm{n}=1$ " acid; the protonated form uses $\left[\mathrm{H}^{+}\right]^{1}(4-22)$ in the numerator and the deprotonated form uses $\left[\mathrm{H}^{+}\right]^{0} \times \mathrm{K}_{\mathrm{a}}$, i.e. K_{a} in the numerator (4-21).

The form of these alphas is consistent with Le Châtelier's Principle just as it was for monoprotic acids. In a solution with a high H^{+}concentration, protonation of the acid should be favored, and in a highly alkaline solution where $\left[\mathrm{H}^{+}\right] \longrightarrow 0$, the deprotonated forms should prevail. Where a particular K_{an} becomes especially small, the alpha for all congeners that contain that K_{an} in the numerator become smaller and smaller. We continue the worksheet to illustrate these points for $H_{3} \mathrm{~A}$.

So that the alphas can be portrayed over a wide range of pH values, H will be replaced with 100^{pH} (continuing the abuse of " pH "). The values selected for dissociation constants will show the effects of a small and then a large difference between successive K_{an} 's.

```
>H := 10^(-pH): K[a1] := 1e-2: K[a2] := 1e-7: K[a3] := 1e-
    9: alpha[`H3A'] := alpha[`H3A']; alpha[`H2A']: alpha[`HA']:
    alpha['A']:
```


Only $\alpha_{\text {H3A }}$ is shown.

$$
\begin{aligned}
& \alpha_{H 3 A}:= \\
& \\
& \frac{\left(10^{-p H}\right)^{3}}{\left(10^{-p H}\right)^{3}+0.010\left(10^{-p H}\right)^{2}+1.00010^{-9} 10^{-p H}+1.00010^{-18}}
\end{aligned}
$$

```
> plot([alpha['H3A'], alpha ['H2A'], alpha[`HA'], alpha [`A']],
    pH=0..14, labels = ["-log[H+]", "alpha [HnA]"], axes = boxed,
    color = [red, blue, green, black]);
```


Figure 8-1
$\mathrm{H}_{3} \mathrm{~A}$ (red) dominates at high $\left[\mathrm{H}^{+}\right]$but where $\left[\mathrm{H}^{+}\right]$is less than about 10^{-11} the acid is entirely deprotonated (black). Had $\mathrm{K}_{\mathrm{a} 3}$ been smaller than 10^{-9}, it would have required a still smaller [H^{+}] to achieve complete deprotonation (of HA^{-2}). The small difference between $\mathrm{K}_{\mathrm{a} 2}$ and $\mathrm{K}_{\mathrm{a} 3}$ is manifest as coexistence (measurable alphas) of three rather than two congeners. Notice that $\alpha_{\mathrm{HA} 2-}$ never reaches 0.9 . This too is a consequence of the close lying $\mathrm{K}_{\mathrm{a} 2}$ and $\mathrm{K}_{\mathrm{a} 3}$. In chemical terms, it means that HA ${ }^{2-}$ begins to lose protons before the $\mathrm{H}_{2} \mathrm{~A}^{-}$is completely deprotonated. (Cf. problem 6 in chapter 7.) This coexistence of congeners will be shown to create buffer capacity in this pH region, i.e. $\mathrm{pH} \approx 8$.

Before leaving the topic of alphas, the issue of ionic strength effects on these terms will be considered. α is not directly a function of $\mathrm{C}_{\mathrm{HnA}}$, but μ certainly is, and μ affects γ which affects all $\mathrm{K}_{\mathrm{an}} \mathrm{s}$ which affect α. First, the plot structure for Figure 8-1 will be saved so that it can be plotted along with more rigorously determined results.

```
> Quick_Plot:= plot([alpha[`H3A'], alpha[`H2A'], alpha[`HA'],
    alpha[`A']], pH = 0.. 14, labels = ["-log[H+]", "alpha[HnA]"],
    axes = boxed, color = [red, blue, green, black]):
```

Applying Equation 2-5 we begin by calculating the ionic strength based on the given dissociation constants (which imply the existence of four congeners $\mathrm{H}_{3} \mathrm{~A} \ldots \mathrm{~A}^{3}$).

$$
\left.\mu=\quad 1 / 2\left[\left[\mathrm{H}^{+}\right]+\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]\left(-1^{2}\right)+\left[\mathrm{HA}^{2}\right]\right]\left(-2^{2}\right)+\left[\mathrm{A}^{3}\right]\left(-3^{2}\right)+\left[\mathrm{OH}^{-}\right]\left(-1^{2}\right)\right\}
$$

If one expects to change only $\left[\mathrm{H}^{+}\right]$, this expression for μ is incomplete! Consider this: $\left[\mathrm{H}^{+}\right]$represents the total positive charge. Charge balance would require that if the positive charges decrease, the negative charges must decrease equally, but equilibrium requirements show an increase in $\alpha_{\text {HA2- }}$ and $\alpha_{\mathrm{A3}-}$ as $\left[\mathrm{H}^{+}\right]$ decreases (Figure 8-1) and mass balance requirements translate those increases into increases in [HA^{2}] and $\left[\mathrm{A}^{3}\right]$. Clearly, the negative charge increases with decreasing $\left[\mathrm{H}^{+}\right]$, and that contradicts the charge balance! Mathematically and chemically, this is reconciled by adding a spectator cation, $\mathrm{M}^{\mathrm{n}+} ; \mathrm{n}$ equal to 1 is the simplest approach; K^{+}or Na^{+}would be suitable. This is achieved by adding the strong base MOH. ${ }^{159}$ What better way to diminish $\left[\mathrm{H}^{+}\right]$than to add a strong base? This approach is achieved with a simple addition to the ionic strength expression:

$$
\mu={ }^{1} / 2\left[\left[\mathrm{H}^{+}\right]+\left[\mathrm{M}^{+}\right]+\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]\left(-1^{2}\right)+\left[\mathrm{HA}^{2}\right]\left(-2^{2}\right)+\left[\mathrm{A}^{3}\right]\left(-3^{2}\right)+\left[\mathrm{OH}^{-}\right]\left(-1^{2}\right)\right\}
$$

In an acid / strong base titration, one could substitute $\mathrm{C}_{\text {мон }}$ for $\left[\mathrm{M}^{+}\right]$(see Chapter 7), but charge balance requirements can be used to eliminate $\left[\mathrm{M}^{+}\right]$altogether. Consider

$$
\left[\mathrm{H}^{+}\right]+\left[\mathrm{M}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]+2\left[\mathrm{HA}^{2-}\right]+3\left[\mathrm{~A}^{3}\right]+[\mathrm{OH}] .
$$

So,

$$
\left[\mathbf{M}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]+2\left[\mathrm{HA}^{2}\right]+3\left[\mathrm{~A}^{3}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right] .
$$

Making this substitution for $\left[\mathrm{M}^{+}\right]$into the ionic strength expression eliminates $\left[\mathrm{M}^{+}\right]$altogether.

$$
\begin{aligned}
& \mu=\quad 1 / 2\left[\left[\mathrm{H}^{+}\right]+\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]+2\left[\mathrm{HA}^{2}\right]+3\left[\mathrm{~A}^{3}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]+\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]\left(-1^{2}\right)+\right. \\
& \left.\left[\mathrm{HA}^{2}\right]\left(-2^{2}\right)+\left[\mathrm{A}^{3}\right]\left(-3^{2}\right)+[\mathrm{OH}]\left(--^{2}\right)\right\} \\
& \mu=\left\{\left[\mathrm{H}_{2} \mathrm{~A}\right]+3\left[\mathrm{HA}^{2}\right]+6\left[\mathrm{~A}^{3}\right]+\left[\mathrm{OH}^{-}\right]\right\}
\end{aligned}
$$

The next step in the process of considering ionic strength effects is to distinguish $K_{a n}$ from $K_{a n}^{\circ}$ and K_{w} from $\mathrm{K}_{\mathrm{w}}^{0}$. Figure $\mathbf{8 - 1}$ was generated by presuming that each K is equal to its respective K°. We continue the Maple worksheet by making these assignments. ${ }^{160}$

```
> K K [w]:= 1.0e-14: K[w]:= 1.0e-14: K
    K}[\mp@code{[a3]:= 1e-9: C[`H3A'] := 0.20: pH:= 0:
```

K_{w} was not assigned in the creation of Figure 8-1 because it was not needed there, but it is needed here. Also, a relatively large $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}$ is selected for this illustration so that ionic strength effects will be apparent.

The process of incrementing the pH is done with a "for loop" but not quite as it was done in Chapter 7 (Part I, page 191) which used nested loops. That inner (nested) loop is not used to reiterate ionic strength effects; rather, the recalculated K_{an} and K_{w} at a given pH is fed back to the top of the "for loop" for the next round of calculations. Recall, that in earlier work using nested loops, every iteration started with $\mathrm{K}_{\mathrm{an}}^{\circ}$ and $\mathrm{K}_{\mathrm{w}}^{\circ}$. So nothing was gained from a previous set of iterations, but here, the system "learns" from its calculation of μ at the previous pH , which differs by only 0.1 pH unit.

```
> for j from 0 to 140 do
> Den :=(10^(-3*pH)) + (K[a1]*10^(-2*pH)) + (K[a1]*K[a2]*10^(-pH))
    +(K[a1]*K[a2]*K[a3]); alpha['H3A']:= (10^(-3*pH))/Den; alpha
    ['H2A']:= (K[a1]*10^(-2*pH))/Den; alpha['HA']:= (K[a1]*K[a2]
    *10^}(-pH))/Den; alpha['A']:= (K[a1]*K[a2]*K[a3])/Den
```


MAERSK


```
> H2A:= alpha[`H2A']*C[`H3A'] ; HA:= alpha[`HA']*C[`H3A']; A:=
    alpha[`A' ]*C[`H3A']; OH:= K[w]*10^(pH); \mu:= H2A + (3*HA) + (6*A)
    + OH;
```

A few explanations are in order before continuing. At the first line, because j is started at 0 rather than the default 1 , it is necessary to insert from $0 .{ }^{161}$ On the second line, each $\alpha_{\text {HnA }}$ was derived (and assigned) early in this worksheet, but within this loop, each α_{HnA} will require redefinition as each K_{an} is recalculated in subsequent lines. To do this, a little short cut is used here. Recall that every alpha has the same denominator. So the denominator is defined (as Den) and then used in each subsequent assignment. Finally, in the third command line, notice the improved definition of μ which uses Equation 8-5.

Proceeding with the ionic strength effects, $\mathrm{g}[1]$ represents the activity coefficient for all ± 1 ions, i.e. H^{+}, $\mathrm{H}_{2} \mathrm{~A}^{-}$and OH^{-}, while $\mathrm{g}[2]$ is the γ for HA^{2-} and $\mathrm{g}[3]$ is for $\gamma_{\mathrm{A}} 3-$. Notice that all K_{an} 's are not corrected the same way (cf. 8-3a, 8-3b and $\mathbf{8 - 3 c}$). $\mathrm{K}_{\mathrm{a} 2}$ is especially interesting because $\gamma_{\mathrm{H}}+$ in the numerator is cancelled out by $\gamma_{\mathrm{H} 2 \mathrm{~A}}$ - in the denominator. ${ }^{162}$

```
> g[1]:= 10^(-0.5*((sqrt( }\mu\mathrm{ )/(1 + sqrt( ( ) )) ) - 0.15*sqrt( ( ) ) ): g[2]:=
    10^(-0.5*4*((sqrt(\mu)/(1 + sqrt( (\mu))) - 0.15*sqrt(\mu))) : g[3]:=
    10^(-0.5*9*((sqrt ( }\mu\mathrm{ )/(1 + sqrt( ( ) )) - 0.15*sqrt ( }\mu\mathrm{ ) )):
> K[a1]:= K
    K
```

With adjustments made to every equilibrium constant, a second iteration is made. After this second iteration the pH and each alpha is indexed to j and assigned. The pH is more appropriately designated as $\log _{_} \mathrm{H}$ because it is not $-\log \left\{\mathrm{H}^{+}\right\}$. Finally, before returning to the top of the "for loop" the pH (which strictly speaking is $\left.-\log \left[\mathrm{H}^{+}\right]\right)$is increased by 0.1 pH unit. The loop is finally closed.

```
> Den:= (10^(-3*pH)) + (K[a1]*10^(-2*pH)) + (K[a1]*K[a2] *10^(-
    pH)) + (K[a1]*K[a2]*K[a3]); alpha[`H3A']:= (10^(-3*pH))/
    Den; alpha[`H2A']:= (K[a1]*10^(-2*pH))/Den; alpha[`HA']:=
    (K[a1]*K[a2]*10^(-pH))/Den; alpha[`A']:= (K[a1]*K[a2]*K[a3]) /Den;
> H2A:= alpha[`H2A']*C[`H3A']; HA:= alpha[`HA']*C[`H3A']; A :=
    alpha['A']*C[`H3A']; OH:= K[w]*10^}(\textrm{pH}); \mu:= H2A + (3*HA) + (6*A)
    + OH;
> log_H[j]:= pH; alphaH3A[j]:= alpha[`H3A']: alphaH2A[j]:= alpha
    [`H2A']: alphaHA[j]:= alpha[`HA'] :alphaA[j]:= alpha[`A']:
> pH:= pH + 0.1; end:
```

One can call any $\log _{_} H j$ or alphaHnAj for reference or to check that the results are reasonable. For example

```
> log_H[10],alphaA[10], alphaHA[10];
```

$$
1.000,4.94710^{-15}, 2.08910^{-7}
$$

We continue by packaging the results as sequences of ordered pairs, a $\log _{-} H_{\mathrm{j}}$ with its associated α_{i}.

```
> Alpha H3A:= [seq([log H[j], alphaH3A[j]], j= 0..140)]: Alpha
H2A:= [seq([log_H[j], alphaH2A[j]], j= 0..140)]: Alpha_
HA:= [seq([log_H[j], alphaHA[j]], j= 0..140)]: Alpha_A:=
[seq([log_H[j], alphaA[j]], j= 0..140)]:
```

Each alpha is ready for plotting by pointplot, and that is achieved with plots[pointplot] (Alpha_HnA, Not shown below is the step where each set of points is plotted in order to ascertain that, indeed, the plot looks like it was intended to look (as in Part I, page 181). Then, one edits the input line by inserting HnA_plot : = before each respective plots[pointplot] in order to create a plot structure for each data pair.

```
> H3A_plot:= plots[pointplot](Alpha_H3A, labels = ["-log [H+]",
    "alpha[HnA]"], axes = boxed, color = red): H2A_plot:= plots
    [pointplot](Alpha_H2A, color = blue) ; HA_plot:= plots
    [pointplot](Alpha_HA, color = green): A_plot:= plots[pointplot]
    (Alpha_A, color = black):
```

By using only points (default shape is an open circle), the difference between considering and not considering ionic strength effects becomes clear. For further clarity, the color designation for each $\alpha_{\text {HnA }}$ is preserved from Quick_Plot. To achieve the composite plot, plots[display] is called with a list \{of all plot structures\} to be displayed.

```
> plots[display]({Quick_Plot, H3A_plot, H2A_plot, HA_plot, A_
    plot});
```


Figure 8-2

The effect of ionic strength is appreciable (at least here, for $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}=0.20 \mathrm{M}$) and it is predictable. It should not be surprising that $\alpha_{\mathrm{H} 3 \mathrm{~A}}$ would be least affected and α_{A3} would be most affected. At high [H^{+}] where $\alpha_{\mathrm{H} 3 \mathrm{~A}} \approx 1, \mathrm{H}_{3} \mathrm{~A}$ is largely associated and so μ is much less than $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}$. On the other hand as $\left[\mathrm{H}^{+}\right]$becomes very small and $\alpha_{\text {A3- }}$ becomes significant (approaches 1), $H_{3} \mathrm{~A}$ becomes fully dissociated and μ exceeds $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}\left(\approx 6 \mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}\right.$ according to Equation 8-5). So the effects of ionic strength become appreciable. Moreover, consider the numerator of each $\alpha_{\mathrm{HnA}}: \alpha_{\mathrm{H} 3 \mathrm{~A}}$ has no K_{an} in its numerator. So corrections to the dissociation constants have relatively little effect in that alpha. $\alpha_{A 3-}$ conversely, has all three constants $\left(K_{a 1} K_{a 2} K_{a 3}\right)$ in its numerator and corrections to these will measurably alter this alpha. The lesson is that the alpha plots presented in many textbooks are accurate only at low concentrations.

Let's now take a more general look at solutions of a triprotic acid and rather than consider a solution of only $C_{H 3 A}$, consider also solutions of $C_{M H 2 A}, C_{M 2 H A}$, and $C_{M 3 A}$ where M^{+}is a spectator ion. For all four solutions charge balance can be written as it was in $8-4$; it just happens that for a solution of $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}^{\prime}},\left[\mathrm{M}^{+}\right]$ is set equal to zero. The other mass balance requirements are also the same for all four solutions. That is,

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{~A}\right]=\alpha_{\mathrm{H} 3 \mathrm{~A}} \mathrm{C}_{\mathrm{MxH}(3-\mathrm{x}) \mathrm{A}}} \\
& {\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]=\alpha_{\mathrm{H} 2 \mathrm{~A}} \mathrm{C}_{\mathrm{MxH}(3-\mathrm{x}) \mathrm{A}}} \\
& {\left[\mathrm{HA}^{2-}\right]=\alpha_{\mathrm{HA}} \mathrm{C}_{\mathrm{MxHH}(3-\mathrm{x}) \mathrm{A}}} \\
& {\left[\mathrm{~A}^{3-}\right]=\alpha_{\mathrm{A}} \mathrm{C}_{\mathrm{MxH}(3-\mathrm{x}) \mathrm{A}} .}
\end{aligned}
$$

where x represents the problem at hand $(x=1,2$ or 3$)$. By this point, the reader should be able to write the denominator for any polyprotic acid. ${ }^{163}$ Rather than deriving all four alphas, the technique described on page 11 using Den is employed. Also, the numerator for each alpha is extracted from the denominator using the op command (Part I, page 175). A solution of $\mathrm{MH}_{2} \mathrm{~A}(i . e . x=1)$ would stipulate that

$$
\left[\mathrm{M}^{+}\right]=\mathrm{C}_{\mathrm{MH} 2 \mathrm{~A}}
$$

but an $\mathrm{M}_{2} \mathrm{HA}(x=2)$ solution would require

$$
\left[\mathrm{M}^{+}\right]=2 \mathrm{C}_{\mathrm{M} 2 \mathrm{HA}}
$$

and an $\mathrm{M}_{3} \mathrm{~A}(x=3)$ solution would require

$$
\left[\mathrm{M}^{+}\right]=3 \mathrm{C}_{\mathrm{M} 3 \mathrm{~A}}
$$

With charge balance requirements settled, a new worksheet is started for the prediction of the pH of each of these solutions over a wide range of concentrations (i.e. $C=1.010^{-4}$ to $0.409 \mathbf{M}$).

```
> restart: Den:= H^3 + K[al]*H^2 + K[a1]*K[a2]*H +
    K[a1]*K[a2]*K[a3]: alpha[`H3A']164:=op(1, Den)/Den; alpha
    ['H2A']:= op(2, Den)/Den; alpha['HA']:= op(3, Den)/Den; alpha
    ['A']:= op(4, Den)/Den; H3A:= alpha[`H3A']*C: H2A:= alpha
    [`H2A']*C: HA:= alpha['HA']*C: A:= alpha[`A']*C: OH:= K[w]/H:
    ChBal:= H + M = H2A + 2*HA + 3*A + OH;
```

$$
\alpha_{H 3 A}:=\frac{H^{3}}{H^{3}+K_{a 1} H^{2}+K_{a 1} K_{a 2} H+K_{a 1} K_{a 2} K_{a 3}}
$$

ChBal := H + M =

$$
\frac{K_{a 1} H^{2} C}{H^{3}+K_{a 1} H^{2}+K_{a 1} K_{a 2} H+K_{a 1} K_{a 2} K_{a 3}}
$$

$$
+\frac{2 K_{a 1} K_{a 2} H C}{H^{3}+K_{a 1} H^{2}+K_{a 1} K_{a 2} H+K_{a 1} K_{a 2} K_{a 3}}
$$

$$
+\frac{3 K_{a 1} K_{a 2} K_{a 3} C}{H^{3}+K_{a 1} H^{2}+K_{a 1} K_{a 2} H+K_{a 1} K_{a 2} K_{a 3}}+\frac{K_{w}}{H}
$$

Only $\alpha_{\mathrm{H} 3 \mathrm{~A}}$ is shown along with the 5° charge balance expression which will be simplified but not reduced to its 4° approximation.

```
> ChBal:= simplify(ChBal*Den*H): ChBal:= lhs(ChBal)- rhs (ChBal):
    ChBal:= collect(ChBal, H):
```

$$
\begin{aligned}
& C h B a l:=H^{5}+\left(K_{a 1}+M\right) H^{4}+\left(-K_{w}-K_{a 1} C+K_{a 1} K_{a 2}\right. \\
& \left.\quad+K_{a 1} M\right) H^{3}+\left(K_{a 1} K_{a 2} K_{a 3}+K_{a 1} K_{a 2} M-K_{w} K_{a 1}\right. \\
& \left.-2 K_{a 1} K_{a 2} C\right) H^{2}+\left(K_{a 1} K_{a 2} K_{a 3} M-K_{w} K_{a 1} K_{a 2}\right. \\
& \left.\quad-3 K_{a 1} K_{a 2} K_{a 3} C\right) H-K_{w} K_{a 1} K_{a 2} K_{a 3}
\end{aligned}
$$

From this general expression for a triprotic acid, we derive a unique charge balance expression for each solution $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}$ through $\mathrm{C}_{\mathrm{M} 3 \mathrm{~A}}$ using the subs command; these become ChBal0 (where $x=0$ i.e. for the $\mathrm{H}_{3} \mathrm{~A}$ solution) through ChBal 3 which pertains to an $\mathrm{M}_{3} \mathrm{~A}$ solution. Only ChBal0 and ChBal3 are shown.

```
> ChBal0 := subs(M=0, ChBal); ChBall := algsubs(M = C, ChBal):
    ChBal2 := algsubs(M= 2*C,ChBal): ChBal3 := algsubs(M =
    3*C,ChBal);
```

$$
\begin{aligned}
& \text { ChBal0 }:=H^{5}+K_{a 1} H^{4}+\left(-K_{w}-K_{a l} C+K_{a 1} K_{a 2}\right) H^{3} \\
& \quad+\left(K_{a 1} K_{a 2} K_{a 3}-K_{w} K_{a 1}-2 K_{a 1} K_{a 2} C\right) H^{2}+\left(-K_{w} K_{a 1} K_{a 2}\right. \\
& \left.\quad-3 K_{a 1} K_{a 2} K_{a 3} C\right) H-K_{w} K_{a 1} K_{a 2} K_{a 3} \\
& \text { ChBal3 }: \begin{array}{l}
=H^{4}\left(K_{a 1}+3 C\right)+H^{3}\left(-K_{w}+2 K_{a 1} C+K_{a 1} K_{a 2}\right) \\
\quad+H^{2}\left(K_{a 1} K_{a 2} K_{a 3}+K_{a 1} K_{a 2} C-K_{w} K_{a 1}\right)-K_{w} K_{a 1} K_{a 2} H+H^{5} \\
\quad-K_{w} K_{a 1} K_{a 2} K_{a 3}
\end{array}
\end{aligned}
$$

With all four alphas assigned, the next step is to implement the mass balance requirements e.g. H3A: = alpha ['H3A'] *C, etc. Then, after assigning an expression for every charged congener in solution, the charge balance requirement is expressed. The final inputs in this group are in preparation for calculating μ within a nested "for loop." As shown previously, within that loop $\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right],\left[\mathrm{HA}^{2-}\right],\left[\mathrm{A}^{3-}\right]$ and $\left[\mathrm{OH}^{-}\right]$are required for μ, and each of these requires $\left[\mathrm{H}^{+}\right]$which is found by solving the charge balance expression for H. A loop ($i=1$ to 3) will be used to settle on an ionic strength; H will be assigned to the current H [i] for the computation, and then it will be unassigned $\left(\mathrm{H}:={ }^{\prime} \mathrm{H}^{\prime}\right)$ so that it can be computed in the next solve command.

"I studied English for 16 years but...
 ...I finally
 learned to speak it in just six lessons"
 Jane, Chinese architect

ENGLISH OUT THERE

Click to hear me talking before and after my unique course download

Next, the constants can be assigned, and each K is given the same value as its respective K°. This is a one way of presuming that, at each first iteration $(i=1), \mu \approx$ zero.

```
> K [ [w]:= 1.0e-14: K [a1]:= 1e-2: K [a2] [a= 1e-7: K [a3]:= 1e-9:
    K[w]:= K
    1.0e-4:
```

The concentration of the solute, C, can be set at any value of interest, but here it is set at what might be considered the lowest value of interest $\left(10^{-4} \mathbf{M}\right)$. In addition to finding the pH for each solution at one C, a loop will be used to increase C to some maximum value of interest $(\approx 0.5 \mathrm{M})$. This will be done by doubling C at the end of each trip through the outer (j) loop. At the end of this loop, j, will equal 13 and C will be 2^{12} larger than its initial $10^{-4} \mathbf{M}$. This has two beneficial effects. First it allows one to increase C over several orders of magnitude with only a dozen or so cycles, and second, on a logarithmic plot of C, the points will be equally spaced. So for the effects of $\mathrm{C}_{\mathrm{MxH}(3-\mathrm{x}) \mathrm{A}}$ on the pH of a solution over a wide range of concentrations is clear.

Ideally, all four solution types would be addressed using only one loop with its nested loop for μ correction, but inasmuch as C affects μ for a solution of $\mathrm{H}_{3} \mathrm{~A}$ very differently from how it affects an $\mathrm{M}_{3} \mathrm{~A}$ solution, each solution type will be handled separately. An inner loop (i) is be used to correct every K° to K using three iterations as presented in Chapter 7. It will be necessary to set "Round calculations to" to ≥ 20 digits.

We begin (arbitrarily) with the $\mathrm{H}_{3} \mathrm{~A}$ solution. $\mathrm{Hi}[\mathrm{i}]$ is computed from the solve command and the suitable root was discovered with a preliminary "scout line" followed by a numeric reformatting ${ }^{165}$ of the output.

```
> Test:= solve(ChBal0,{H});
```

Test: $:=\left\{H=9.9110^{-5}\right\},\left\{H=-3.3010^{-11}\right\}\left\{H=-1.5310^{-9}\right\},\left\{H=-1.9810^{-7}\right\},\left\{H=-1.0110^{-2}\right\}$

This shows that it is the first root that makes sense. A few points about the inner loop for ionic strength corrections are in order here: i to 3 has been shown to be adequate for addressing ionic strength effects; ${ }^{166}$ the expression for μ does not contain a term for [M^{+}], but it will for the other three solutions; $\left[\mathrm{H}^{+}\right]$is temporarily set equal to $\mathrm{Hi}[\mathrm{i}]$. This is so that it can be used in the expression for μ which contains not only $\left[\mathrm{H}^{+}\right]$but also $[\mathrm{OH}]$ and the three charged congeners of $\mathrm{H}_{3} \mathrm{~A}$, and those also contain $\left[\mathrm{H}^{+}\right] .\left[\mathrm{H}^{+}\right]$is then unassigned before this inner loop is closed so that it can be solved for again in the next trip through this loop. The activities are calculated with the Davies Equation (2-8) because the ion diameters (a) are not known. And because the Davies Equation is used $\gamma_{\mathrm{H}^{+}}=\gamma_{\mathrm{OH}^{-}}=\gamma_{\mathrm{H} 2 \mathrm{Al}-}$ and this makes the corrections to K° look simple but unfamiliar.

```
> for j to 13 do
> for i to 3 do
```

```
> Rts0:= solve(ChBal0,{H}); Hi[i]:= subs(Rts0[1],H): H:= Hi[i]:
> \mu:= 0.5*(H + H2A + 4*HA + 9*A + OH):
> g[1]:= 10^(-0.5*((sqrt( }\mu\mathrm{ )/(1 + sqrt( ( ) )) - 0.15* (1)):
    g[2]:=10^(-0.5* 4* ((sqrt(\mu)/(1 + sqrt( (\mu))) - 0.15* \mu)):
    g[3]:=10^(-0.5*9*((sqrt(\mu)/(1 + sqrt(\mu))) - 0.15*\mu)):
> K[a1]:= K
    K
> end:
> log_C[j]:= log[10](C); pH0[j]:= -log[10](g[1]*Hi[3]); C:= 2*C:
    end:
```

The ordered pairs of the \log of C and pH are packaged into $\mathrm{pH} _\mathrm{H} 3 \mathrm{~A}$ for point plotting. Then the plot structure is assigned to $\mathrm{H} 3 \mathrm{~A} _\mathrm{Pl}$ ot for composite plotting with the three other solutions that will be investigated.

```
> pH_H3A:= [seq([log_C[j], pH0[j]], j = 1..13)]:
> H3A_Plot:= plots[pointplot](pH_H3A, labels= ["log_C", "pH"],
    axes= boxed, symbol= solidcircle, symbolsize= 20, color= red):
```

Two plot options are added here: the default open circle symbols are replaced with solid circles, and the default symbol size $=10$ is enhanced to 20 . One might examine this plot with:

```
> plots[display](H3A_Plot);
```

And finally, before addressing the next solution, MH2A, C and the four equilibrium constants must be reset to initial values.

```
> C:= 1.0e-4: K[w]:= K [w]: K[a1]:= K [a1]: K[a2]:= K [a2]: K[a3]:=
    K}\mp@subsup{}{}{\circ}[a3]
```

$\mathrm{MH}_{2} \mathrm{~A}$ is studied just as $\mathrm{H}_{3} \mathrm{~A}$ was studied, except for two differences. First, Hi[i] is found by solving a different charge balance expression, namely ChBal1, and μ must now contain $\left[\mathrm{M}^{+}\right]$, which for $\mathrm{MH}_{2} \mathrm{~A}$, is equal to C. It is presumed that again, it is the first root that produces the viable $\left[\mathrm{H}^{+}\right]$; if that were not the case, an error would be received at the pH 1 [j] command which would attempt to find the logarithm of a negative number. Notice that, for clarity, Rts0 has become Rts1 and pH0 has become pH1, the 1 representing x from $\mathrm{C}_{\mathrm{MxH}(3-x) \mathrm{A}}$.

```
> for j to 13 do
> for i to 3 do
```

```
> Rts1:= solve(ChBal1,{H}); Hi[i]:= subs(Rts1[1],H): H:= Hi[i]:
> \mu:= 0.5*(C + H + H2A + 4*HA + 9*A + OH):
> g[1]:= 10^(-0.5*((sqrt(\mu)/(1 + sqrt(\mu))) - 0.15* \mu)):
    g[2]:=10^(-0.5* 4* ((sqrt (\mu)/(1 + sqrt( (\mu))) - 0.15*\mu)):
    g[3]:=10^(-0.5*9*((sqrt( }\mu\mathrm{ ) /(1 + sqrt( ( ) )) - 0.15* 
> K[a1]:= K
    (g[1]*g[3]): K[w]:= K
> log_C[j]:= log[10](C); pH1[j]:= -log[10](g[1] *Hi[3]); C:= 2*C:
    end:
> pH_H2A:= [seq([log_C[j], pH1[j]], j = 1..13)]:
> H2A_Plot:= plots[pointplot] (pH_H2A, symbol= solidcircle,
    symbolsize= 20, color= "DarkBlue"):
```

Again, the ordered pairs of the \log of C and pH are packaged, this time into $\mathrm{pH}_{-} \mathrm{H} 2 \mathrm{~A}$, and the plot structure is assigned, this time to H2A_Plot, but inasmuch as H3A_Plot already contains the labels and axes, these can be omitted here. One might inspect the first two plots with

```
> plots[display]({H3A_Plot, H2A_Plot});
```

Before addressing the next solution, C and the four equilibrium constants are again reset to initial values.


```
> C:= 1.0e-4: K[w]:= K [w]: K[a1]:= K [a1]: K[a2]:= K [a2]: K[a3]:=
    K}[\mp@code{[a]:
```

For the next two solutions, simply cutting and pasting the command lines from the previous computations is appropriate. Only a few, critical changes are required. For the $\mathrm{M}_{2} \mathrm{HA}$ solution Rts2:= solve(ChBal2, \{H\}), $\mu:=0.5 *(2 * C+H+H 2 A+4 * H A+9 * A+O H)$, pH_HA: = [seq ([logC[j], pH2[j]], ..., and for its HA_Plot it would be wise to change the color of the symbol. (The composite plot (below) has color = "ForestGreen".) For the $\mathrm{M}_{3} \mathrm{~A}$ solution Rts 3 is used with ChBal3, and μ has $3 * C$ for $\left[\mathrm{M}^{+}\right]$, and A_{-}Plot does not specify a color which means that the default color $=$ black is rendered.

```
> plots[display]({H3A_Plot, H2A_Plot,HA_Plot, A_Plot});
```


Figure 8-3

We see here the true $\mathrm{pH}\left(-\log \left\{\mathrm{H}^{+}\right\}\right)$of a wide range of concentrations of four solutions made from the triprotic acid and each of the three salts of that acid. The behavior of each solution might have been predicted. $\mathrm{H}_{3} \mathrm{~A}$ is an acid, and so it should be expected that as $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}$ increases, the pH should decrease (just as Equation 4-25 predicts). Likewise $\mathrm{M}_{3} \mathrm{~A}$ is a base,

$$
\mathrm{A}^{3-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}^{2-}+\mathrm{OH}^{-}
$$

and one should expect that increasing $\mathrm{C}_{\text {м3 }}$ would increase the pH . The behavior of $\mathrm{MH}_{2} \mathrm{~A}$ would imply that it has weakly acidic properties. The small effect $\mathrm{C}_{\text {мН2 }}$ has on the pH is due to the amphoteric property of $\mathrm{H}_{2} \mathrm{~A}^{-}$

$$
\mathrm{H}_{2} \mathrm{~A}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HA}^{2-}
$$

and,

$$
\mathrm{H}_{2} \mathrm{~A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{~A}+\mathrm{OH}^{-}
$$

Adding more and more $\mathrm{H}_{2} \mathrm{~A}$ does not materially change the dual nature of this ion which attempts to lower (first equation) and raise (second equation) the pH , simultaneously. Evidently, its acidic property outweighs its alkaline property. The same argument is made for the behavior of $\mathrm{M}_{2} \mathrm{HA}$ solution because there

$$
\mathrm{HA}^{2-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{3-}
$$

and,

$$
\mathrm{HA}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{~A}^{-}+\mathrm{OH}^{-}
$$

The amphoteric property is same the reason that MHA, the salt of a weak acid / weak base also has so little effect on pH , as described in Part I, page 109. Recall that Equation $\mathbf{5 - 1 5}$ implies that $\left[\mathrm{H}^{+}\right]$is independent of $\mathrm{C}_{\text {мНА }}$.

$$
\left[\mathrm{H}^{+}\right]=\sqrt{ } \mathrm{K}_{\mathrm{aA}} \mathrm{~K}_{\mathrm{am}}
$$

How can this be applied to the salts of polyprotic acids (or bases)? Figure 8-3 indicates little dependence of $\left[\mathrm{H}^{+}\right]$on C for $\mathrm{MH}_{2} \mathrm{~A}$ and no dependence of $\left[\mathrm{H}^{+}\right]$for $\mathrm{M}_{2} \mathrm{HA}$ over a wide range of these concentrations. Indeed, for either solution

$$
\left[\mathrm{H}^{+}\right] \approx \sqrt{ } \mathrm{K}_{\mathrm{an}} \mathrm{~K}_{\mathrm{a}(\mathrm{n}+1)},
$$

where the pair of dissociation constants $K_{a n}$ and $K_{a(n+1)}$ pertain to the two most relevant stages of dissociation of $\mathrm{H}_{\mathrm{n}} \mathrm{A}$. If we presume that a solution of $\mathrm{MH}_{2} \mathrm{~A}$ is largely driven by

$$
\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~A}^{-} \rightleftharpoons \mathrm{H}_{3} \mathrm{~A}
$$

This would entail the first and second dissociations of $H_{3} A$ and so one might expect $K_{a 1}$ and $K_{a 2}$ to be factors for the $\mathrm{MH}_{2} \mathrm{~A}$ solutions. Where the ionic strength is negligible (at $\mathrm{C}=10^{-4}$, and $\gamma_{\mathrm{H}}+\approx 1$), the pH is about $5.5\left(\left[\mathrm{H}^{+}\right] \approx 10^{-5.5}\right)$. Given that $\mathrm{K}_{\mathrm{a} 1}$ is 1.010^{-2}, and $\mathrm{K}_{\mathrm{a} 2}$ is 1.010^{-7}, then, applying Equation 8-6:

$$
\sqrt{\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2}}=10^{-4.5}
$$

Figure 8-3 indicates $\mathrm{pH} \approx 5.5$ at $\mu \approx 0$; a fairly crude estimate. 8-6 can be used to better effect on the $\mathrm{M}_{2} \mathrm{HA}$ solution. Its pH is quite constant at 8 . So $\left[\mathrm{H}^{+}\right] \approx 10^{-8}$. Note that with $\mathrm{K}_{\mathrm{a} 3}=10^{-9}$,

$$
\sqrt{\mathrm{K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3}}=10^{-8},
$$

an excellent approximation of this solution's pH ! Why so much better? A look at Figure 8-2 (solid lines) shows that A^{3-} measurably encroaches on $\mathrm{H}_{2} \mathrm{~A}^{1-}$ thus pulling the pH above its predicted value for a solution of $\mathrm{H}_{2} \mathrm{~A}^{1-}$; the HA^{2-} prediction is quite good because its solutions are nearly equally populated with $\mathrm{H}_{2} \mathrm{~A}^{1-}$ and A^{3-}, offsetting each other's effect on the pH . Equation 8-6 works very well for diprotic acids where the problem seen with $\mathrm{MH}_{2} \mathrm{~A}$ cannot occur. (Setting $\mathrm{K}_{\mathrm{a} 3}$ to zero or even to an absurdly small value greater than zero will prove this point.)

When Figure 8-2 is considered along with Figure 8-3, one can infer that $\mathrm{MH}_{2} \mathrm{~A}$ and $\mathrm{M}_{2} \mathrm{HA}$ behave as buffers, just as MHA was shown to resist pH change (Part I, page 143 et seq.): Figure 8-2 shows that several congeners of $\mathrm{H}_{\mathrm{n}} \mathrm{A}^{3-\mathrm{n}}$ coexist in the same pH range where Figure $8-3$ shows $\mathrm{MH}_{2} \mathrm{~A}$ and $\mathrm{M}_{2} \mathrm{HA}$ solutions reside. That is to say, in either of these solutions, two or more congeners will coexist at measurable levels and that will stabilize the pH against acid or base additions. This resistance to pH is best illustrated with a pH plot for the titration of $\mathrm{H}_{3} \mathrm{~A}$ with a strong base, MOH .

For the $\mathrm{H}_{3} \mathrm{~A}$ titration it should be apparent that

$$
\mathrm{H}_{3} \mathrm{~A}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{~A}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

will be achieved when the moles of MOH are equal to the moles of $\mathrm{H}_{3} \mathrm{~A}$ in the titrand, and if $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}^{\circ}$ is set equal to $\mathrm{C}^{\circ}{ }_{\text {MOH }}$, this will occur when $\mathrm{V}_{\text {мOH }}$ equals $\mathrm{V}_{\mathrm{H} 3 \mathrm{~A}}^{\circ}$. Likewise
$\mathrm{H}_{2} \mathrm{~A}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{HA}^{2-}+\mathrm{H}_{2} \mathrm{O}$

American online LIGS University

 is currently enrolling in the Interactive Online BBA, MBA, MSc, DBA and PhD programs:enroll by September 30th, 2014 and save up to 16% on the tuition!
pay in 10 installments / 2 years
Interactive Online education
visit www.ligsuniversity.com to find out more!

Note: LIGS University is not accredited by ans nationally recognized accrediting agency listed by the US Secretary of Education. More info here.

,

is achieved when $\mathrm{V}_{\text {Мон }}$ reaches $2 \times \mathrm{V}_{\text {НЗА }}^{\circ}$, and the third proton,

$$
\mathrm{H}_{2} \mathrm{~A}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{HA}^{2-}+\mathrm{H}_{2} \mathrm{O},
$$

will be removed when $\mathrm{V}_{\text {мон }}$ reaches $3 \times \mathrm{V}_{\text {н }}^{\circ}$. So $\mathrm{V}_{\text {мон }}$ should extend at least to $3 \times \mathrm{V}_{\text {нЗА }}^{\circ}$ to illustrate the three equivalence points. Recall from Chapter 7 that is instructive to extend the plot well beyond $(\geq 10 \%)$ the final equivalence point. A new worksheet will be started for this pH plot, but most of the input will be familiar.

```
> restart: Den:= H^3 + K[a1]*H^2 + K[a1]*K[a2]*H +
    K[a1]*K[a2]*K[a3]: alpha[`H2A']:= op(2,Den)/Den: alpha[`HA']:=
    op (3,Den)/Den: alpha['A']:= op(4,Den)/Den: H2A:= alpha
    [`H2A']*C[H3A]: HA:= alpha[`HA']*C[H3A]: A:= alpha[`A']*C[H3A]:
    OH:= K[w]/H: M:= C[MOH]: ChBal:= H + M = H2A + 2*HA + 3*A + OH;
```

The output here is nearly identical to the first output of the previous worksheet (page 20) except that M is represented as $\mathrm{C}_{\text {мон }}$ and the general concentration for any congener of $\mathrm{H}_{3} \mathrm{~A}$ is represented here with $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}$. And as in that worksheet the 5° expression for charge balance will be rendered in its $a x^{5}+b x^{4}+c x^{3} \ldots$ form.

```
> ChBal:= simplify(ChBal*Den*H): ChBal:= lhs(ChBal) - rhs(ChBal):
    ChBal:= collect(ChBal,H);
```

Then, Equations $\mathbf{7 - 8 a}$ and $\mathbf{7 - 8 b}$ will be used to expression these concentrations as volumes of titrant and titrand, respectively.

```
>C[MOH] :=V[MOH]*C}\mp@subsup{}{}{\circ}[\textrm{MOH}]/(V[\textrm{MOH}]+\mp@subsup{V}{}{\circ}[H3A]):C[H3A]:= V V [H3A]
    *C}\mp@subsup{}{}{\circ}[H3A]/(V[MOH] +V`[H3A]): ChBal;
```

$$
\begin{aligned}
H^{5}+ & \left(K_{a 1}+\frac{V_{M O H} C^{\circ}{ }_{M O H}}{V_{M O H}+V_{H 3 A}^{\circ}}\right) H^{4}+\left(-K_{w}-\frac{K_{a 1} V_{H 3 A}^{\circ} C_{H 3 A}^{\circ}}{V_{M O H}+V_{H 3 A}^{\circ}}\right. \\
& \left.+K_{a 1} K_{a 2}+\frac{K_{a 1} V_{M O H} C^{\circ}{ }_{M O H}}{V_{M O H}+V_{H 3 A}^{\circ}}\right) H^{3}+\left(K_{a 1} K_{a 2} K_{a 3}\right. \\
& \left.+\frac{K_{a 1} K_{a 2} V_{M O H} C^{\circ}{ }_{M O H}}{V_{M O H}+V_{H 3 A}^{\circ}}-K_{w} K_{a 1}-\frac{2 K_{a 1} K_{a 2} V_{H 3 A}^{\circ} C_{H 3 A}^{\circ}}{V_{M O H}+V_{H 3 A}^{\circ}}\right) H^{2} \\
& +\left(\frac{K_{a 1} K_{a 2} K_{a 3} V_{M O H} C^{\circ}{ }_{M O H}}{V_{M O H}+V_{H 3 A}^{\circ}}-K_{w} K_{a 1} K_{a 2}\right. \\
& \left.-\frac{3 K_{a 1} K_{a 2} K_{a 3} V_{H 3 A}^{\circ} C_{H 3 A}^{\circ}}{V_{M O H}+V_{H 3 A}^{\circ}}\right) H-K_{w} K_{a 1} K_{a 2} K_{a 3}
\end{aligned}
$$

This gives the necessary polynomial, expressed in terms of the appropriate equilibrium constants, the C° for the titrand and titrant and the V° of the titrand. Each of these can be set and then $\left[\mathrm{H}^{+}\right]$can be computed for a given volume of titrant. As introduced in Chapter 7, a "for loop" will handle the sequential calculations. And also, as in Chapter 7, a nested loop will handle the change in ionic strength as titrant is added. We will perform the calculations with and without ionic strength corrections. This will require two charge balance expressions, one using K° 's, the other using K's.

```
> ChBalC:= algsubs(K[w]=Ko[w], ChBal): ChBalC:= algsubs(K[al] =
    K}[a1], ChBalC): ChBalC:= algsubs(K[a2] = K [a2], ChBalC):ChBalC:=
    algsubs(K[a3] = K [ [a3], ChBalC);'167
```

This output is not shown because it is simply a reproduction of the previous ChBal expression but with K_{w}° replacing $K_{\mathrm{w}} e t c$, although the $a \mathrm{x}^{5}+b \mathrm{x}^{4}+c \mathrm{x}^{3} \ldots$ form is inexplicably lost.

Now all constants will be assigned, and so that ionic strength effects can be demonstrated $\mathrm{C}_{\mathrm{H} 3 \mathrm{~A}}^{\circ}$ and $\mathrm{C}^{\circ}{ }_{\mathrm{MOH}}$ will be set at relatively high values, $0.20 \mathrm{M} . \mathrm{V}_{\mathrm{H} 3 \mathrm{~A}}^{\circ}$ is arbitrarily set to 15.00 mL . So a titration to 50 mL will yield a distinct excess for the third equivalence point (45.00 mL). The call for solve (ChBalc, $\{\mathrm{H}\}$; shows that the expression must contain only $\left[\mathrm{H}^{+}\right]$because otherwise it could not be solved for a numerical value of $\left[\mathrm{H}^{+}\right]$, and it shows that it is the first root that is appropriate.


```
    C
    Test:= solve(ChBalC,{H});
```

$$
\begin{aligned}
& \text { Test }:=\{H=0.040\},\left\{H=-1.66710^{-14}\right\},\{H= \\
&\left.-1.51110^{-9}\right\},\left\{H=-1.98510^{-7}\right\},\{H=-0.050\}
\end{aligned}
$$

The loop will entail 501 cycles $(j=1$ to 501$)$ to provide $V_{\text {Мон }}=0.0$ to 50.0 mL in 0.1 mL increments. The nested loop will provide two iterations of μ and the four equilibrium constants. The ChBalC calculations are run in the outer loop where ionic strength corrections are not considered, but they require estimates of these equilibrium constants, and this is done by taking all activity coefficients to be exactly $1 .{ }^{168}$

```
> g[1]:= 1.0: g[2]:= 1.0: g[3]:= 1.0:
> for j to 501 do
> for i to 3 do
> K[a1]:= K [a1]/g[1]^2: K[a2]:= K [o[a2]/g[2]: K[a3]:= g[2]*K`[a3]/
    (g[1]*g[3]): K[w]:= K
> H_act:= solve(ChBal,{H}); Ha[i]:= subs(H_act[1],H): H:=Ha[i]:
> \mu:=0.5*(C[MOH] + H + H2A + 4*HA + 9*A + OH):
```

```
> g[1]:= 10^(-0.5*((sqrt(\mu)/(1 + sqrt(\mu))) - 0.15*\mu)):
    g[2]:=10^(-0.5* 4*((sqrt ( \mu)/(1 + sqrt( (\mu))) - 0.15* \mu)):
    g[3]:=10^(-0.5*9*((sqrt ( \mu)/(1 + sqrt( }\mu))) - 0.15* \mu)):
> H:=' H'
> H_conc:= solve(ChBalC,{H}); Hc:= subs(H_conc[1],H): pH_conc[j]:=
    -log[10](HC);
> pH_act[j]:= -log[10](g[1]*Ha[3];); V[j]:= V[MOH]; V[MOH]:= V[MOH]
    + 0.10;
> end:
```

These computations require 1505 calculations for the 501 pH_act points and 501 calculations for the pH _conc points and can require over a minute on slower ($\leq 1 \mathrm{GHz}$) processors. One can inspect points. For example:

```
> V[51], pH_conc[51], pH_act[51];
```


[^1]We continue by preparing to plot both sets of data. The circle point display will be replaced with style $=$ line because this produces a clearer depiction of the results. The same color code for activity $v s$. concentration used for Figure 7-6 is used here.

```
> pH_CONC:= [seq([V[j], pH_conc[j]],j= 1..501)]: pH_ACT:=
    [seq([V[j], pH_act[j]], j= 1..501)]:
> ConcPlot:= plots[pointplot](pH_CONC, style = line, axes = boxed,
    labels = ["Vol of MOH","pH"], color = "DarkRed"): ActPlot:=
    plots[pointplot](pH_ACT, style = line, color = "DarkBlue"):
> plots[display]({ConcPlot, ActPlot});
```


Figure 8-4

This figure shows precisely the same result found for the titration of a monoprotic acid (Figure 7-6): at the onset, where the acid is largely associated and so μ is not significant, the two plots are indistinguishable; late in the titration where HA^{2-} and A^{3-} become significant, the two plots diverge. They converge again after the third equivalence point (45 mL) because there, $\mathrm{K}_{3 \mathrm{a}}$ is the only important parameter, and the effect of γ on the activity of H^{+}and on K_{a3} largely cancel out.

Figure 8-4 also shows that the first equivalence point is easily resolved with its significant ${ }^{\Delta p H} / \Delta r$ that the second equivalence point is barely apparent and that the third equivalence point is marginally useful. The second equivalence point is a victim of the buffer capacity. This could have been predicted from Figure $\mathbf{8 - 2}$ which shows no $\alpha>0.9$ at $\mathrm{pH} \approx 8$. It was illustrated in Part I, page 184 that $\alpha=0.991$ was not sufficient to achieve a sharp endpoint.

Indeed, in lieu of a titration plot, a simple calculation of the appropriate α 's is quick way to assess the viability of endpoints. Had calculation of the titration plot been skipped in the current worksheet, it might look something like:

```
>H:=' H': 169 V [MOH]:= 15.0; H_conc:= solve(ChBalC,{H}): H:= subs(H_
    conc[1],H) ; 170
```

1.5010^{1}
3.0510^{-5}

```
> Den:= H^3 + K K [a1]*H^2 + K K
    alpha[H3A]:= H^3/Den; alpha[`H2A']:= K
```

2.9910^{-3}
3.0110^{-5}

This shows (with output formatting in scientific notation) that at the first equivalence point, 0.3% of the triprotic acid retains all three protons and that 99.4% of $\mathrm{H}_{3} \mathrm{~A}$ now exists as $\mathrm{H}_{2} \mathrm{~A}$; by inference another 0.3% is in either the HA^{2-} or A^{3-} form. Ideally, the first equivalence point would put 99.9% of $\mathrm{H}_{3} \mathrm{~A}$ in the $\mathrm{H}_{2} \mathrm{~A}^{-}$form, but this result is quite good. Consider now the second equivalence point, noting the need to reassign all of the parameters.

```
> H:='H':V[MOH]:= 30.0; H_conc:= solve(ChBalC,{H}): H:=
    subs(H_conc[1],H); Den:= H^3 + K [ [a1]*H^2 + K K [a1]*K [ [a2]*H
```



```
    Den; alpha[`HA']:= K
    K
```

A good, second equivalence point would have $\alpha_{\text {HA2- }}>0.999$, but here it is only 0.833 , not only incomplete, but providing good buffer capacity! The third equivalence point (not calculated here) shows $\alpha_{\text {HA2- }}=0.014$ and $\alpha_{A 3-}>0.986$ which is a marginal equivalence point, incomplete and with appreciable buffer capacity. Clearly, one would be advised to titrate to the first equivalence point. And with a $\left[\mathrm{H}^{+}\right]_{\text {FirstEqPt }}=3.0110^{-5}$ the ideal indicator ${ }^{171}$ would have

```
> H:=''H':V [MOH]:= 15.0; H_conc:= solve(ChBalC,{H}):H:= subs(H_
    conc[1], H); pK[Ideal]:= - log[10](solve(0.90909 = K[In]/(H +
    K[In])));
```

$$
p K_{\text {Ideal }}:=3.521
$$

Appendix V shows that Methyl Orange and Bromophenol Blue bracket this $\mathrm{pK}_{\mathrm{In}}$. The first is a bit too strong and would give a premature endpoint; the other too weak giving a late endpoint, but either would likely be acceptable. Better than the rule of thumb (Endnote 124), Appendix V indicates that Bromophenol Blue takes on its In^{-}form at pH 4.6 which is very close to the $\mathrm{pH}_{\mathrm{EqPt}}=4.52$.

If $\mathrm{K}_{\mathrm{a} 2}$ had been at least three orders of magnitude larger than $\mathrm{K}_{\mathrm{a} 3}, \mathrm{~A}^{3-}$ would not have begun to form until virtually all of the $\mathrm{H}_{2} \mathrm{~A}$ had been deprotonated (by MOH). Indeed, if the reader wishes, this worksheet can be modified to consider a hypothetical $\mathrm{H}_{3} \mathrm{~A}$ with the same range of dissociation constants, but which are equally spaced. (Shown below). This plot does not address ionic strength effects because it was created without the nested i loop. The new, simpler loop is shown following the new values for equilibrium constants (which, here, are not tied to K° values).

```
> K[w]:= 1.0e-14: K[a1]:= 1e-2: K[a2]:= 10^(-5.5): K[a3]:= 1e-9:
    C}\mp@subsup{}{}{\circ}[\textrm{MOH}]:=0.20: C [ [H3A]:= 0.20: V [ [H3A]:= 15.00: V [MOH]:= 0.00:
    Test:= solve(ChBal,{H});
\[
\text { Test: }=\left\{H=4.00 \times 10^{-2}\right\},\left\{H=-1.67 \times 10^{-14}\right\},\left\{H=-1.50 \times 10^{-9}\right\}
\]
\[
\left\{H=-6.32 \times 10^{-6}\right\},\left\{H=-5.00 \times 10^{-2}\right\}
\]
```

```
> for j to 501 do
```

> for j to 501 do
> Rt:= solve(ChBal,{H}); H[j]:= subs(Rt[1],H):
> Rt:= solve(ChBal,{H}); H[j]:= subs(Rt[1],H):
> V[j]:= V[MOH]: pH[j]:= -log[10](H%5Bj%5D): V[MOH]:= V[MOH] + 0.10:
> V[j]:= V[MOH]: pH[j]:= -log[10](H%5Bj%5D): V[MOH]:= V[MOH] + 0.10:
> end:
> end:
> pH_fig85:= [seq([V[j], pH[j]], j= 1..501)]: V[151],pH[151];
> pH_fig85:= [seq([V[j], pH[j]], j= 1..501)]: V[151],pH[151];
15.00, 3.77

```

We see that the pH at the first equivalence point is unchanged, and this is appropriate because it is largely influenced by only \(\mathrm{K}_{\mathrm{a} 1}\).
```

> plots[pointplot](pH_fig85, style=line, axes = boxed, labels= ["Vol
of MOH","pH"], color= "DarkGreen");

```


Figure 8-5

But while this change in dissociation constants has improved the second equivalence point, it has noticeably compromised the first equivalence point. Generally, when \(K_{a n} \geq 10^{4} \times \mathrm{K}_{\mathrm{a}_{(n+1)}} \geq 10^{4} \times \mathrm{K}_{\mathrm{a}(\mathrm{n}+2)}\) etc., the endpoints are sharp. This is because the respective \(\alpha\) 's approach 1.0. This should be logical: when it becomes 10,000 times as difficult to remove a proton from \(\mathrm{H}_{\mathrm{n}} \mathrm{A}\) as it is from \(\mathrm{H}_{\mathrm{n}-1} \mathrm{~A}^{1}\), it should be obvious that the base will thoroughly deprotonate \(\mathrm{H}_{\mathrm{n}} \mathrm{A}\) before trying to abstract protons from \(\mathrm{H}_{\mathrm{n}-1} \mathrm{~A}^{1 .}\). So \(\alpha_{\mathrm{Hn}-1 A^{-}} \longrightarrow 1\) means minimal buffer capacity and that allows a large \({ }^{\Delta \mathrm{PH}} / \Delta \mathrm{V}\). If one were to recreate this plot with \(\mathrm{K}_{\mathrm{a} 1}=1.010^{-2}, \mathrm{~K}_{\mathrm{a} 2}=1.010^{-6}\) and \(\mathrm{K}_{\mathrm{a} 3}=1.010^{-10}\) the first two equivalence points would be sharp, but the third equivalence point would suffer, because achieving \(\alpha_{\text {HA2 }} \leq 0.001\), that is \(\geq 99.9 \%\) deprotonation of \(\mathrm{HA}^{2-}\) would require a pH of about 13 . We show this with:
```

> restart; Expr:= alpha[HA]= K[a1]*K[a2]*H/(H^3 + K[a1]*H^2 +
K[a1]*K[a2]*H + K[a1]*K[a2]*K[a3]);

$$
\text { Expr }:=\alpha_{H A}=\frac{K_{a 1} K_{a 2} H}{H^{3}+K_{a 1} H^{2}+K_{a 1} K_{a 2} H+K_{a 1} K_{a 2} K_{a 3}}
$$

$$
>\mathrm{K}[\mathrm{a} 1]:=1 \mathrm{E}-2: \mathrm{K}[\mathrm{a} 2]:=1 \mathrm{E}-6: \mathrm{K}[\mathrm{a} 3]:=01 \mathrm{E}-10: \text { alpha[HA]:= } 0.001 ;
$$

$$
\mathrm{pH}[\text { Reqd }]:=-\log [10](\text { fsolve (Expr, H)) }
$$

```
\[
p H_{\text {Reqd }}:=13.000
\]

The titrant is \(\mathrm{C}_{\text {MOH }}^{\circ}=0.20 \mathrm{M}\). This gives \(\left[\mathrm{H}^{+}\right] \approx 510^{-14}\) and so the pH of pure titrant is \(\approx 13.3\) (Equation 3-24). That is, even pure titrant can barely achieve a pH high enough to deprotonate \(\mathrm{HA}^{2-}\), to this degree and this is because \(\mathrm{K}_{\mathrm{az}}\) is too small for this titrant. (This problem was discussed in Problem 3 of Chapter 7 for the very weak monoprotic acid HA.) The remedy for titrating acids with an extraordinarily small \(\mathrm{K}_{\mathrm{a}}\) is to use a non-aqueous medium (Problem 5, Chapter 7).

This concludes the analysis of polyprotic acids. Their properties as weak acid and buffers can be found in polyprotic bases using exactly the same mass balance and charge balance principles. Indeed, treating a diprotic base, \(\mathrm{M}^{-}\)which has two conjugate acids, MH and \(\mathrm{MH}_{2}{ }^{+}\)is no different than analyzing the diprotic acid \(\mathrm{H}_{2} \mathrm{~A}\) which has two conjugate bases, \(\mathrm{HA}^{-}\)and \(\mathrm{A}^{2-.}\). The analysis of a diprotic base has been deferred to the example problems below. The example problems begin with a problem that ties the salt of a weak acid / weak base discussion in Chapter 6 to the polyprotic acid discussion in this chapter.

\section*{Example Problems}
1. Neglecting ionic strength effects, calculate the pH of a \(0.050 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}\) solution.
2. Ethylenediaminetetraacetic acid, EDTA, is a tetraprotic acid. \({ }^{172}\) At \(\mu=0.1, \mathrm{pK}_{\mathrm{a} 1}=1.99, \mathrm{pK}_{\mathrm{a} 2}\) \(=2.67, \mathrm{pK}_{\mathrm{a} 3}=6.16\), and \(\mathrm{pK}_{\mathrm{a} 4}=10.26\). Presume that \(\mu\) can be maintained at 0.1 as \(\left[\mathrm{H}^{+}\right]\)is changed from \(10^{-13}\) to \(10^{-1}\) and show how each alpha changes over that range. (In Chapter 9 this acid will be shown to be very important, so important that it has its own "symbol," \(\mathrm{H}_{4} \mathrm{Y}\).)

\section*{D Maastricht University}

Leading

\section*{Join the best at} the Maastricht University
- \(33^{\text {rd }}\) place Financial Times worldwide ranking: MSc the Maastricht University International Business
- \(1^{\text {st }}\) place: MSc International Business School of Business and
- \(1^{\text {st }}\) place: MSc Financial Economics
- \(2^{\text {nd }}\) place: MSc Management of Learning Economics!
- \(2^{\text {nd }}\) place: MSc Economics
- \(2^{\text {nd }}\) place: MSc Econometrics and Operations Research
- \(2^{\text {nd }}\) place: MSc Global Supply Chain Management and Change
Sources: Keuzegids Master ranking 2013; Elsevier 'Beste Studies' ranking 2012; Financial Times Global Masters in Management ranking 2012

\title{
Visit us and find out why we are the best! Master's Open Day: 22 February 2014
}
3. \(\mathrm{H}_{2} \mathrm{SO}_{3}\) has a \(\mathrm{pK}_{\mathrm{a} 1}^{\circ}=1.89\) and \(\mathrm{pK}_{\mathrm{a} 2}^{\circ}=7.21\). At what pH does \(\alpha_{\mathrm{HSO} 3}\) - equal \(\alpha_{\mathrm{SO}_{3}{ }^{2-}}\) if \(\mathrm{C}_{\mathrm{H} 2 \mathrm{SO} 3}\) is 0.40 M ? (It would be wise to presume that at this pH , only \(\mathrm{HSO}_{3}{ }^{1-}\) and \(\mathrm{SO}_{3}{ }^{2-}\) exist in solution. This can be verified when the pH is found.)
4. Hydrazine, \(\mathrm{N}_{2} \mathrm{H}_{4}\), is a diprotic base. Using the data in Appendix IV, calculate the pH of a 1.00 M solution of hydrazine using the Davies Equation to compensate for ionic strength effects.
5. Consider the acidimetric analysis of \(\mathrm{NaHC}_{2} \mathrm{O}_{4}\). Because \(\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\)is amphoteric, it can be titrated with a strong acid (to \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) ) or with a strong base (to \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\) ). Create titration plots for the titration of \(25.00 \mathrm{~mL} 0.025 \mathrm{M} \mathrm{NaHC}_{2} \mathrm{O}_{4}\) with either 0.030 M HCl or \(0.030 \mathbf{M}\) NaOH . Ignore ionic strength effects.

\section*{Solutions to Example Problems}
1. We begin by stating mass balance requirements for \(\mathrm{NH}_{4}^{+}\)and the three charged congeners of \(\mathrm{H}_{3} \mathrm{PO}_{4}\). C will represent the analytical concentration of the \(\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}\). Notice that each mole of this salt contains three moles of \(\mathrm{NH}_{4}^{+}\)(plus its \(\mathrm{NH}_{3}\) congener).
```

> restart; NH4:= 3*alpha["NH4"] [73*C; H2PO4:= alpha
["H2PO4"]*C;HPO4:= alpha["HPO4"]*C; PO4:= alpha["PO4"]*C;

```
\[
\begin{gathered}
\text { NH4 }:=3 a_{{ }^{\prime N H 4 "}} C \\
H 2 P O 4:=a l p h a_{"{ }^{\mathrm{H} 2 \mathrm{PO} 4 "}} C
\end{gathered}
\]
etc.
Next each alpha is expressed. There are two kinds of alpha, the one for \(\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}\)and the three for the dissociation of \(\mathrm{H}_{3} \mathrm{PO}_{4}\). So they are developed differently. For the \(\mathrm{H}_{\mathrm{n}} \mathrm{PO}_{4}{ }^{\mathrm{n}-3}\) alphas, we will use the "Den shortcut" from page 15.
\[
\begin{aligned}
& >\text { alpha["NH4"] := H/(H + K[a]); Den := H^3 + K[a1]*H^2 + } \\
& K[a 1] * K[a 2] * H+K[a 1] * K[a 2] * K[a 3]: ~ a l p h a[" H 2 P O 4 "]:=o p(2 \text {, } \\
& \text { Den)/Den; alpha["HPO4"] := op(3, Den)/ Den; alpha["PO4"] } \\
& \text { : = op (4, Den)/Den; } \\
& \alpha_{" \mathrm{NH} 4 "}:=\frac{H}{H+K_{a}} \\
& \alpha_{" \mathrm{H} 2 \mathrm{PO} 4 "}:=\frac{K_{a I} H^{2}}{H^{3}+K_{a I} H^{2}+K_{a I} K_{a 2} H+K_{a I} K_{a 2} K_{a 3}}
\end{aligned}
\]
etc.
Before writing a charge balance expression, we will use Equation 3-24 to replace \(\left[\mathrm{OH}^{-}\right]\).
```

> OH:= K[w]/H: ChBal:= simplify(H + NH4 = H2PO4 + 2*HPO4 +
3*PO4 + OH);

$$
\begin{aligned}
& C h B a l:=\frac{H\left(H+K_{a}+3 C\right)}{H+K_{a}}=\left(K_{a 1} H^{3} C+2 K_{a 1} K_{a 2} H^{2} C\right. \\
& \quad+3 K_{a 1} K_{a 2} K_{a 3} C H+K_{w} H^{3}+K_{w} K_{a 1} H^{2} \\
& \left.+K_{w} K_{a 1} K_{a 2} H+K_{w} K_{a 1} K_{a 2} K_{a 3}\right) /\left(\left(H^{3}+K_{a 1} H^{2}\right.\right. \\
& \left.\left.\quad+K_{a 1} K_{a 2} H+K_{a 1} K_{a 2} K_{a 3}\right) H\right)
\end{aligned}
$$

```

The simplify command is necessary to render an intelligible expression of ChBal. This leaves only the task of assigning C and values to every K and then solving ChBal for \(H\). The equilibrium constants are taken from Appendix IV.
```

> K[a] := 10^(-9.24): K[a1]:= 10^(-2.23): K[a2]:= 10^(7.21):
K[a3]:= 10^(-12.32):K[w] := 1.01E-14: C:= 0.05:
> Rts:=solve(ChBal,{H});
Rts :={H=1.1519 10-9}},{H=-0.0529+309.0295 I },{H
-6.4030 10-14 },{H=-7.5432 10-13}},{H=-0.0500},{
= -0.0529-309.0295 I}

```

Only the first root has real meaning, and so:
```

> pH:= -log[10](subs);

```
\[
p H:=8.939
\]
pH 8.94 would be reported. This is considerably more acidic than a \(\mathrm{K}_{3} \mathrm{PO}_{4}\) solution of this concentration, because \(\mathrm{K}^{+}\)unlike \(\mathrm{NH}_{4}^{+}\)has no acidic nature.
2. We begin developing the expressions for \(\alpha\), and again, we use the "Den shortcut." Only one alpha is shown; notice how it follows the structure described on page 11.
```

> restart; Den:= H^4 + K[a1]*H^3 + K[a1]*K[a2]*H^2
+ K[a1]*K[a2]* K[a3]*H + K[a1]*K[a2]*K[a3]*K[a4]:
alpha[H4Y]:= op(1,Den)/Den; alpha[H3Y]:= op(2,Den)/Den:
alpha[H2Y]:= op(3,Den)/Den: alpha[HY]:= op(4,Den)/Den:
alpha[Y]:= op(5,Den)/Den:

```
\[
\begin{aligned}
\alpha_{H 4 Y} & :=H^{4} /\left(H^{4}+K_{a 1} H^{3}+K_{a 1} K_{a 2} H^{2}\right. \\
& \left.+K_{a 1} K_{a 2} K_{a 3} H+K_{a 1} K_{a 2} K_{a 3} K_{a 4}\right)
\end{aligned}
\]

Setting the ionic strength here \((\mu=0.10)\) will allow \(H\) to be expressed in terms of pH with an appropriate adjustment for ionic strength. Given that,
\[
\left\{\mathrm{H}^{+}\right\}=\gamma_{\mathrm{H}^{+}}\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}},
\]
we will, therefore, use
\[
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=\left(10^{-\mathrm{pH}}\right) / \gamma_{\mathrm{H}}+} \\
>\mu:=0.1: \mathrm{g}[\mathrm{H}]:=10^{\wedge}(-0.511 * \operatorname{sqrt}(\mu) /(1+0.329 * 9 * \operatorname{sqrt}(\mu))): \\
g_{\mathrm{H}}:=0.8252
\end{gathered}
\]

This substitution is done with the algebraic substitution command for each \(\alpha\). Notice that \(\gamma_{\mathrm{H}}{ }^{+}\) is embedded in the replacement for H. Again only one alpha is shown.
```

> alpha[H4Y]:= algsubs(H=(10^(-pH))/g[H], alpha[H4Y]);
alpha[H3Y]:= algsubs (H=(10^(-pH))/g[H], alpha[H3Y]):
alpha[H2Y]:= algsubs (H = (10^(-pH))/g[H], alpha[H2Y]);
alpha[HY]:= algsubs(H=(10^(-pH))/g[H], alpha[HY]):
alpha[Y]:= algsubs(H = (10^(-pH))/g[H], alpha[Y]):

$$
\begin{gathered}
\quad \alpha_{H 4 r}=\left(2.1568\left(10^{-p H}\right)^{4}\right) /\left(K_{a 1} K_{a 2} K_{a 3} K_{a 4}\right. \\
+2.1568\left(10^{-p H}\right)^{4}+1.4686 K_{a 1} K_{a 2}\left(10^{-p H}\right)^{2} \\
\left.+1.7797 K_{a 1}\left(10^{-p H}\right)^{3}+1.2119 K_{a 1} K_{a 2} K_{a 3} 10^{-p H}\right)
\end{gathered}
$$

```

This operation does not lead to a simple expression of each \(\alpha\). For example, in \(\alpha_{\mathrm{H} 4 \mathrm{Y}}\) above, \(\left(10^{-\mathrm{pH}}\right)^{4}\) is more clearly expressed as \(10^{-4^{*} \mathrm{pH}}\) or even more simply as \(10000^{\star} 10^{-\mathrm{pH}}\). This can be achieved by \(>\) alpha[H4Y] := simplify(alpha[H4]); but that simplification is not necessary and moreover, the resulting "simplified" expression is not simple looking.

Assigning values to each dissociation constant is next. Notice that none is corrected for ionic strength effects. This is because these are \(\mathrm{K}_{\mathrm{a}} \mathrm{s}\) not \(\mathrm{K}_{\mathrm{a}}{ }_{\mathrm{s}}\). Their output is unnecessary. One might add alpha [H4Y]; to the end of this input group to demonstrate that pH is the only remaining variable in the expression. Then, the five \(\alpha\) s are plotted.
```

> K[a1]:= 10^(-1.99): K[a2]:= 10^(-2.67): K[a3]:= 10^(-6.16):
K[a4]:= 10^(-10.26):
> plot([alpha[H4Y],alpha[H3Y],alpha[H2Y],alpha[HY],alpha[Y]
],pH =0..14,labels = ["pH","alpha[HnY]"], axes = boxed,
color = [red,blue,green,black,"DarkCyan"]);

```


Figure 8-6

Chapter 9 will show that \(\alpha_{Y^{4}-}\) ("Dark Cyan") is a very important value, but, it is difficult to extract that value from Figure 8-6 when \(\mathrm{pH}<8\). So the figure is modified. Rather than displaying \(\alpha\), one can display \(\log _{10} \alpha\). This is especially useful in looking at each \(\alpha\) as it approaches zero. \({ }^{174}\) One might enter \(\log [10]\) (alpha[H3Y]) as an argument in the plot command, or much more simply access the plot menu: Plot > Axes > Properties > to reach the dialog box that allows this transformation.


Figure 8-7

This produces the more useful the log-log plot:


Figure 8-8

\section*{Need help with your dissertation?}

Get in-depth feedback \& advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info


One minor point on this transformation. Had this plot been achieved with > plot (log [10] ( [alpha[H4Y]) , ...the scale would have been logarithmic, i.e. \(0,-1,-2,-3 \ldots\) instead of \(10^{-30}\), \(10^{-24}, 10^{-18} \ldots\)
3. It might appear that a few reiterations are going to be necessary in order to correct each \(\mathrm{K}^{\circ}\) to its respective \(K\), but a little thought can save a lot of computation. Notice that \(K_{a 1}\) and \(K_{a 2}\) are quite far apart. This means that the solution, at a given pH will contain no more than two (of the three) \(\mathrm{H}_{2} \mathrm{SO}_{3}\) congeners. \({ }^{175}\) If \(\mathrm{HSO}_{3}{ }^{-}\)and \(\mathrm{SO}_{3}{ }^{2-}\) are the only congeners in solution and their \(\alpha\) s are equal, then their \(\alpha\) s are each equal to 0.5 (or very, very close to that). So
\[
\left[\mathrm{HSO}_{3}^{-}\right] \approx 0.5 \times \mathrm{C}_{\mathrm{H} 2 \mathrm{SO} 3}
\]
and,
\[
\left[\mathrm{SO}_{3}{ }^{2-}\right] \approx 0.5 \times \mathrm{C}_{\mathrm{H} 2 \mathrm{SO} 3} .
\]

Using the logic that led from Equation 8-4 to 8-5, \(\left[\mathrm{H}^{+}\right]\)and \(\left[\mathrm{M}^{+}\right]\)can be eliminated from the ionic strength expression because
\[
\left[\mathrm{H}^{+}\right]+\left[\mathrm{M}^{+}\right]=\left[\mathrm{HSO}_{3}^{-}\right]+2\left[\mathrm{SO}_{3}^{2-}\right]+[\mathrm{OH}] .
\]

So replacing \(\left[\mathrm{H}^{+}\right]+\left[\mathrm{M}^{+}\right]\)in the expression for \(\mu\) gives:
\[
\mu=1_{2}\left\{2\left[\mathrm{HSO}_{3}^{-}\right]+6\left[\mathrm{SO}_{3}^{2-}\right]+2\left[\mathrm{OH}^{-}\right]\right\} .
\]

Guessing that the pH will lie somewhere between 4 and 11 means that \(\left[\mathrm{OH}^{-}\right]\)(and \(\left[\mathrm{H}^{+}\right]\)) will be negligible. \({ }^{176}\) Taking \(\left[\mathrm{OH}^{-}\right] \approx 0\) and using the substitutions for \(\left[\mathrm{HSO}_{3}^{-}\right]\)and \(\left[\mathrm{SO}_{3}^{2-}\right]\) produces:
\[
\mu=1 /{ }_{2}\left\{\mathrm{C}_{\mathrm{H} 2 \mathrm{SO} 3}+3 \mathrm{C}_{\mathrm{H} 2 \mathrm{SO} 3}\right\}=2 \mathrm{C}_{\mathrm{H} 2 \mathrm{SO} 3} .
\]

This will be verified after the solution pH has been determined, but we can begin the problem with this excellent estimation of \(\mu\).
```

> restart; C[H2SO3]:= 0.4: \mu := 2*C[H2SO3]:

```

Given the high ionic strength, the Davies Equation will be used to compute activity coefficients. The nomenclature used to generate Figure 8-2 is used here as well. To some, it might be evident that \(\mathrm{K}_{\mathrm{a} 1}\) and \(\mathrm{K}_{\mathrm{w}}\) are not needed for this problem because when \(\alpha_{\mathrm{HSO} 3}{ }^{-}\)and \(\alpha_{\mathrm{SO} 32-}\) are written out and set equal to each other one finds only that \(\left[\mathrm{H}^{+}\right] \mathrm{K}_{\mathrm{a} 1}=\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2}\) remains. That is \(\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a} 2}\) ! All three constants, however, will be needed to verify the ionic strength calculations given above.
```

> g[1]:= 10^(-0.5*((sqrt(\mu)/(1 + sqrt(\mu))) - 0.15* \mu)): g[2]:=

```

```

 10^(-1.89): K
 K[a2]:= K
    ```
\[
\begin{gathered}
K_{\mathrm{a} 1}:=.0290 \\
K_{\mathrm{a} 2}:=3.12110^{-7}
\end{gathered}
\]

With excellent estimations of the equilibrium constants in place, the two relevant alphas can be expressed in terms of \(H\) only.
\[
\begin{gathered}
>\operatorname{Den}:=\mathrm{H}^{\wedge} 2+\mathrm{K}[\mathrm{a} 1] * \mathrm{H}+\mathrm{K}[\mathrm{a} 1] \star \mathrm{K}[\mathrm{a} 2]: \text { alpha[HSO3] }:= \\
\mathrm{Op}(2, \mathrm{Den}) / \text { Den; alpha[SO3]:=op(3,Den)/Den; } \\
\alpha_{H S O 3}:=\frac{0.029 H}{H^{2}+0.029 H+9.04510^{-9}} \\
\alpha_{S O 3}:=\frac{9.04510^{-9}}{H^{2}+0.029 H+9.04510^{-9}}
\end{gathered}
\]

We need only find the value of \(H\) at which these alphas are equal.
```

> H:= solve(alpha[HSO3] = alpha[SO3], H);

$$
H:=3.12110^{-7}
$$

```

Of course \(\alpha_{\mathrm{HSO}_{3}}{ }^{-}=\alpha_{\mathrm{SO} 32}{ }^{-}\)does not require that each is equal to 0.50 . How close to 0.50 are they? We need to know because our calculation of \(\mu\) presumed that each equals 0.50 . Now that \(H\) has been assigned to the value above, the alphas will be fixed. So they need only be called, but with a considerable increase in decimal places.
```

> 'alpha[HSO3]' = alpha[HSO3]; 'alpha[SO3]' = alpha[SO3];

$$
\alpha_{\mathrm{HSO}^{3}}=0.4999973
$$

$$
\alpha_{\mathrm{SO}_{3}}=0.4999973
$$

```

Clearly our guess that these will dominate the solution was correct. So \(\mu\), and \(\gamma_{H}+\), are correct. Finally, then
```

> pH:= -log[10](g%5B1%5D*H);

```
\[
p H:=6.818
\]

And one would report \(\mathbf{p H}=\mathbf{6 . 8 2}\) to be consistent with the \(\mathrm{pK}_{\mathrm{a}} \mathrm{s}\).
4. Because \(\mathrm{N}_{2} \mathrm{H}_{4}\) is a base, the reactions under consideration are:
\[
\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~N}_{2} \mathrm{H}_{5}^{+}+\mathrm{OH}^{-}
\]
and
\[
\mathrm{N}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~N}_{2} \mathrm{H}_{6}^{2+}+\mathrm{OH}^{-}
\]

These equilibria are described with a \(\mathrm{K}_{\mathrm{b} 1}\) and \(\mathrm{K}_{\mathrm{b} 2}\), respectively, but it is \(\mathrm{K}_{\mathrm{a} 1}\) and \(\mathrm{K}_{\mathrm{a} 2}\) that will be needed, and provided in Appendix IV. Had only \(\mathrm{pK}_{\mathrm{b} 1}^{\circ}\) and \(\mathrm{pK}_{\mathrm{b} 2}^{\circ}\) been provided, the \(\mathrm{K}_{\mathrm{a}}\) 's could have been extracted from:
\[
\mathrm{K}_{\mathrm{a} 1}^{\circ}=\frac{\mathrm{K}_{\mathrm{W}}^{\circ}}{\mathrm{K}_{\mathrm{b} 2}^{\circ}} \text { and } \mathrm{K}_{\mathrm{a} 2}^{\circ}=\frac{\mathrm{K}_{\mathrm{W}}^{\circ}}{\mathrm{K}_{\mathrm{b} 1}^{\circ}}
\]

But we have \(\mathrm{pK}^{\circ}{ }_{\mathrm{a} 1}\) and \(\mathrm{pK}_{\mathrm{a} 2}^{\circ}\) and so \(\mathrm{K}_{\mathrm{a} 1}^{\circ}=10^{-\mathrm{pK}^{\circ}{ }_{\mathrm{a}} 1}\) and \(\mathrm{K}_{\mathrm{a} 2}^{\circ}=10^{-\mathrm{pK}^{\circ} \mathrm{a} 2}\). These are corrected to \(\mathrm{K}_{\mathrm{a} 1}\) and \(K_{a 2}\) using Equations 8-3a and 8-3b.


When the Davies equation is used for activity coefficient calculations, \(\gamma_{\mathrm{H}+}\) and \(\gamma_{\mathrm{N} 2 \mathrm{H} 5+}\) will be equal and cancel out of the \(\mathrm{K}_{\mathrm{a} 1}\) expression. A first iteration will be made taking \(\mu \approx 0\) because \(\mathrm{K}_{\mathrm{a} 2}^{\circ}\) is quite small, implying very little \(\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}\)formation, and \(\mathrm{K}_{\mathrm{b} 2}\) is so small, that there will be virtually no \(\mathrm{N}_{2} \mathrm{H}_{6}{ }^{2+}\) in solution. This will be verified later.
```

> restart; K}\mp@subsup{K}{}{0}[\textrm{w}]:=10^(-13.997): K [a1]:= 10^(-0.27):
K}[\mp@code{[a2]:= 10^(-7.94): C[N2H4]:= 1.00:
K}\mp@subsup{}{\textrm{w}}{0}:=1.0071\mp@subsup{0}{}{-14
K}\mp@subsup{}{a1}{\circ}:=0.53
K}\mp@subsup{}{\textrm{a}2}{\circ

```

These outputs are shown here so that when \(\mu\) is found and each K is calculated from its respective \(\mathrm{K}^{\circ}\), the modest changes can be seen.

Next, the \(\alpha\) s are derived and from them a charge balance expression. Notice that only the \(\alpha\) s for charged congeners are expressed, and that N 2 H 6 and N 2 H 5 require protection because these terms will be used as variables in the next command set. Only \(\alpha_{N 2 H 6}\) is shown because either \(\alpha\) should be predictable.
```

> Den:= H^2 + K[a1]*H + K[a1]* K[a2]: alpha["N2H6"]:=
op(1, Den)/Den; alpha["N2H5"]:= op (2,Den)/Den; N2H6:=
alpha["N2H6"]*C[N2H4]; N2H5 := alpha["N2H5"]*C[N2H4]; OH:=
K[w]/H: ChBal:= H + N2H5 + 2*N2H6= OH;
\alpha}\mp@subsup{\alpha}{N2H:}{}:=\frac{\mp@subsup{H}{}{2}}{\mp@subsup{H}{}{2}+\mp@subsup{K}{al}{}H+\mp@subsup{K}{aI}{}\mp@subsup{K}{a2}{}
ChBal:=H+}\frac{1.000\mp@subsup{K}{al}{}H}{\mp@subsup{H}{}{2}+\mp@subsup{K}{al}{}H+\mp@subsup{K}{al}{}\mp@subsup{K}{az}{}
+}\frac{2.000\mp@subsup{H}{}{2}}{\mp@subsup{H}{}{2}+\mp@subsup{K}{aI}{}H+\mp@subsup{K}{aI}{}\mp@subsup{K}{a2}{}}=\frac{\mp@subsup{K}{w}{}}{H

```

Now we effectively presume that \(\mu\) is approximately zero by making each \(\gamma\) equal to 1 . The exercise of calculating \(\mu\) and from that the \(\gamma\) 's and from those the K's should be familiar. Rather than using the tedious procedure of Chapter 4, we will do the reiterations with a loop as first described in Part I, page 191.
```

> g[1]:= 1: g[2]:= 1: K[w]:= K
K}\mp@subsup{}{}{\circ}[a1]/g[2]: K[a2]:= K [a2]/g[2]^2:
> test:= solve(ChBal,{H});

```

The output is not shown here, but it demonstrates that only the first of the four roots has \(\left[\mathrm{H}^{+}\right]>0\). We can now write the "three cycle" loop. The unassignment of H is placed at the beginning of the loop so that there will be a value for \(\left[\mathrm{H}^{+}\right]\)when the loop terminates at \(i=3\). The loop is terminated with a semicolon so that all three iterations will display. The output will be tabulated below for comparison to the \(\mu=1\) input (above).
```

>for i to 3 do
> H:='H': Rts:= solve(ChBal, {H}): H:= subs(Rts[1],H):
\mu:=0.5*(H + N2H5 + 4*N2H6 + OH):
> g[1]:= 10^(-0.5*((sqrt(}\mu\mathrm{)/(1 + sqrt (}\mu\mathrm{))) - 0.15*
10^(-0.5*4* ((sqrt (}\mu\mathrm{) /(1 + sqrt (}\mu\mathrm{))) - 0.15* }\mu))
> K[w]:= K [w]/g[1]^2 :K[a1]:= K [a1]/g[2]: K[a2]:= K

```
\begin{tabular}{|c|c|c|c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & á \(=\mathrm{Z}=\mathrm{N}\) & \(\mathrm{a}=\mathrm{Z}=\mathrm{O}\) & \(\mathrm{a}=\mathrm{Z}=\mathrm{P}\) \\
\hline\(\left[\mathrm{H}^{+}\right]\) & \(1.07610^{-11}\) & \(1.27510^{-11}\) & \(1.26510^{-11}\) \\
\hline\(\gamma_{1 \pm}\) & 0.977 & 0.968 & 0.981 \\
\hline\(\gamma_{2 \pm}\) & 0.873 & 0.878 & 0.878 \\
\hline \(\mathrm{~K}_{\mathrm{w}}\) & \(1.07810^{-14}\) & \(1.07410^{-14}\) & \(1.07510^{-14}\) \\
\hline \(\mathrm{~K}_{\mathrm{a} 1}\) & 0.615 & 0.611 & 0.611 \\
\hline \(\mathrm{~K}_{\mathrm{a} 2}\) & \(1.50710^{-8}\) & \(1.48810^{-8}\) & \(1.48910^{-8}\) \\
\hline
\end{tabular}

Clearly \(\mathrm{i}=3\) is sufficient. So, for the pH :
```

> pH:= - log[10](g%5B1%5D*H);

```
\[
p H:=10.912
\]
5. Both titrations begin at the same point, with a \(0.025 \mathrm{M} \mathrm{NaHC}_{2} \mathrm{O}_{4}\) solution, but in one titration, HCl is added and in the other NaOH is added. The charge balance expressions will be different only in that the HCl titration will contain a \([\mathrm{Cl}]\) term; the NaOH titration will not. Nevertheless, one charge balance expression can be used by addressing the \([\mathrm{Cl}\) ] as a function of \(\mathrm{V}_{\mathrm{HCl}}\) and setting \(\mathrm{V}_{\mathrm{HCl}}\) equal to zero throughout the NaOH titration. We begin using what should be familiar expressions for each component of the charge balance equation. This will produce a charge balance expression in terms of the concentrations and volumes of the titrand ( NaHOx ), and both titrants. Notice that unlike Problems 1 and 4, single quotation marks around HO x and Ox are sufficient to protect these expressions. This, protection, recall, is because these terms are subsequently evaluated.
```

> restart; Den:= H^2 + H*K[a1] + K[a1]*K[a2]: alpha[`HOx']:= op(2,Den)/Den: alpha['Ox']:= op(3,Den)/Den: OH:= K[w]/H: C[HCl]:= V[HCl]*C}\mp@subsup{}{}{\circ}[HCl]/(V[HCl] + V '0[NaHOx]): Cl:= C[HCl]: C[NaOH]:= V[NaOH]*C [[NaOH]/(V[NaOH] + V [N [NaHOx]):C[NaHOx]:= V [NaHOx]*C}\mp@subsup{}{}{\circ}[\mathrm{ NaHOx]/(V[HCl] + V[NaOH] + Vo`[NaHOx]): Na:=
C[NaOH] + C[NaHOx]: HOx:= alpha[`HOx']*C[NaHOx]: Ox:= alpha[`Ox']*C[NaHOx]: ChBal:= H + Na = HOx + 2*Ox + Cl +
OH;

```
\[
\begin{aligned}
& \text { ChBal }:=H+\frac{V_{\text {NaOH }} C^{o}{ }_{\text {NaOH }}}{V_{\text {NaOH }}+V_{\text {NaHOx }}^{o}}+\frac{V_{\text {NaHOx }}^{0} C_{\text {NaHOx }}^{0}}{V_{H C l}+V_{\text {NaOH }}+V_{\text {NaHOx }}^{\circ}} \\
& =\frac{H K_{a 1} V_{N a H O x}^{\circ} C_{\text {NaHOx }}^{o}}{\left(H^{2}+H K_{a l}+K_{a 1} K_{a 2}\right)\left(V_{H C l}+V_{N a O H}+V_{N a H O x}^{\circ}\right)} \\
& +\frac{2 K_{a 1} K_{a 2} V^{0}{ }_{\mathrm{NaHOx}} C^{\circ}{ }_{\text {NaHOx }}}{\left(H^{2}+H K_{a 1}+K_{a 1} K_{a 2}\right)\left(V_{H C l}+V_{\mathrm{NaOH}}+V_{\text {NaHOx }}^{0}\right)} \\
& +\frac{V_{H C l} C_{H C l}^{\circ}}{V_{H C l}+V_{\text {NaHOx }}^{\circ}}+\frac{K_{w}}{H}
\end{aligned}
\]

\section*{TURN TO THE EXPERTS FOR SUBSCRIPTION CONSULTANCY}

Subscrybe is one of the leading companies in Europe when it comes to innovation and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do business reviews of existing subscription businesses and we develope acquisition and retention strategies.

Learn more at linkedin.com/company/subscrybe or contact
Managing Director Morten Suhr Hansen at mha@subscrybe.dk

> SUBSCR【BE - to the future
```

> C }\mp@subsup{}{}{\circ}[\textrm{NaHOx}]:= 0.025: C C [NaOH] := 0.030: C C [HCl]:= 0.030:
V [NaHOx]:= 25: K[w]:= 1.007e-14: K[a1]:= 10^(-1.271):
K[a2]:= 10^(-4.272): ChBal;

```

ChBal is called (although not shown here) to verify that only \(\mathrm{H}, \mathrm{V}_{\mathrm{NaOH}}\) and \(\mathrm{V}_{\mathrm{HCl}}\) remain to be solved for or assigned. Two expressions, one for each titration, will be created from ChBal.
```

> HCl_Titr:= subs(V[NaOH]= 0, ChBal); NaOH_Titr:= subs(V [HCl]
= 0,ChBal):

```
\[
\begin{aligned}
H C l-T i t r ~ & =H+\frac{0.625}{V_{H C l}+25} \\
& =\frac{0.033 H}{\left(H^{2}+0.054 H+0.000\right)\left(V_{H C l}+25\right)} \\
& +\frac{0.000}{\left(H^{2}+0.054 H+0.000\right)\left(V_{H C l}+25\right)} \\
& +\frac{0.030 V_{H C l}}{V_{H C l}+25}+\frac{1.00710^{-14}}{H}
\end{aligned}
\]

It should be possible to create both plots within the same loop because in each case the titrant will be incremented by 0.2 mL and each plot has its own charge balance expression. First, to find the suitable root for each using \(\mathrm{V}_{\text {Titrant }}=0\).
```

> V[HCl]:= 0: V[NaOH]:= 0: test[HCl]:= solve(HCl_Titr, {H});
test[NaOH]:= solve(NaOH_Titr,{H});
test }\mp@subsup{HCl}{}{:={H=0.0009},{H=-4.0280 10-13},{H=
-0.0010}, {H=-0.0785}
test }\mp@subsup{}{\textrm{NaOH}}{}:={H=0.0009},{H=-4.0280 10-13 },{H
-0.0010},{H=-0.0785}

```

Both outputs show the same \(\left[\mathrm{H}^{+}\right]\), as expected, and they both have their first root as the only \(\left[\mathrm{H}^{+}\right]>0\) root. So the loop can now be written; we will start the loop at \(i=0\) only so that \(\mathrm{V}[0\) ] will equal 0.0 mL . Notice the intrepid use of subscripts with subscripts as in pH [ HCl ] [i]: \(=\), and the combination of commands like -log [10] (subs...
```

> for i from 0 to 115 do
> H_HCl:= solve(HCl_Titr,{H}): H_NaOH:= solve(NaOH_Titr, {H}):

```
```

> pH[HCl][i]:= -log[10](subs(H_HCl%5B1%5D,H)): pH[NaOH][i]:=
-log[10] (subs(H_NaOH[1],H)): V[i]:= V[HCl]:
> V[HCl]:= V[HCl] + 0.2: V[NaOH]:= V[NaOH] + 0.2:
> end:
> HCl_points := [seq([V[i], pH[HCl][i]], i = 0..115)]: NaOH_
points := [seq([V[i], pH[NaOH][i]], i = 0..115)]:
> Acid := plots[pointplot] (HCl_points, color = red, style
= line, thickness = 2, axes = boxed, labels = ["mL of
Titrant","pH"]): Base := plots[pointplot](NaOH_points,color
= blue, style = line, thickness = 2):
> plots[display]({Acid, Base});

```


Figure 8-9

The success of an acid / base titration depends entirely on the existence of a large change in pH at the equivalence point. That break is clear in the titration with NaOH but absent in the titration with HCl . Why?

As with the \(H A^{2-}\) neutralization (page 36) this is not a buffer issue: it has to do with \(K_{a}, K_{a 1}\) here. Let us compare the two equivalence points. Recall that each occurs at \(20.8_{333} \mathrm{~mL}\) (Equation 7-9).
```

> V[HCl]:= 20.8333; V[NaOH]:= V[HCl]; H_HCl:= solve
(HCl_Titr,{H}): H_NaOH:= solve(NaOH_Titr, {H}): H:=
subs(H_HCl[1],H); 'HCl_alpha[`HOx']'= alpha[`HOx'];
'HCl_alpha['Ox']'= alpha['Ox']; H:= subs(H_NaOH[1],H)
;'NaOH_alpha[`HOx']' = alpha[`HOx']; 'NaOH_alpha['Ox']'=
alpha['Ox'];

```
\begin{tabular}{|c|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & HCl Eq. Pt. & NaOH Eq. Pt. \\
\hline\(\left[\mathrm{H}^{+}\right]\) & 0.0113 & \(6.313810^{-9}\) \\
\hline\(\alpha_{\text {Hох }}{ }^{-}\) & 0.8224 & 0.0001 \\
\hline\(\alpha_{\text {ox }}{ }^{2-}\) & 0.0039 & 0.9999 \\
\hline
\end{tabular}

For the acid titration, the HCl has failed to protonate a substantial portion of the \(\mathrm{HOx}^{-}\)(more than \(99 \%\) ). Again this is not really a buffer capacity issue: it more relates to the fact that \(\mathrm{H}_{2} \mathrm{Ox}\) with \(\mathrm{pK}_{\mathrm{a} 1}=1.271\) is a pretty strong acid, and so protonating \(\geq 99.9 \%\) of \(\mathrm{HOx}^{1-}\) is no easy task, especially for a 0.030 M solution of HCl . Compare this to the NaOH titration where less than \(0.1 \%\) of the \(\mathrm{HOx}^{-}\)remains. When \(\mathrm{OH}^{-}\)is added to this solution, \(\mathrm{H}_{2} \mathrm{O}\) is the best source of \(\mathrm{H}^{+}\) and so the pH rises rapidly.

The pH for this equivalence point is calculated so that a suitable indicator might be chosen.

\(>\) pH[NaOH_EqPt]:= -log[10](H);
\[
p H_{\mathrm{NaOH} \_\mathrm{EqP}}:=8.1997
\]

The "rule of thumb" and Appendix V would suggest Bromothymol Blue at the point of "completely blue," but note that the appendix more precisely describes "completely blue" as \(\mathrm{pH}=7.6\) which is quite early. Appendix V also suggests Phenol Red which it characterizes as "completely red" at pH 8.4. Theoretically late, but given the large \({ }^{\Delta \mathrm{pH}} /{ }_{\Delta \mathrm{V}}\) shown in Figure 8-9, the titration error is likely to be insignificant.

\section*{9 Complexometric Chemical Equilibrium}

The previous four chapters have been dedicated exclusively to acid / base equilibrium, and from that material one should be able to calculate the pH of many kinds of solutions. But, in addition to proton exchange reactions, there are three other types of chemical processes that are important in analytical applications. The first of these pertains to the formation of complex ions and molecules. For example:
\[
\mathrm{Fe}^{3+}+6 \mathrm{CN}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{CN})_{6}^{3-}
\]

This is the subject of this chapter. The final reactions of interest involve the formation of insoluble products and oxidation-reduction reactions.

The formation of a metal complex like \(\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}\) is driven by the ability of most metals (nearly all except those in Group 1A) to accept electron pairs, and the availability of electron pairs from some molecules and anions. The molecules or anions that bind to the metal atom or ion are called ligands. The more available the electron pair, the more effective the is ligand at binding. Because a positive charge on the ligand would render the electron pair unavailable, cations never behave as ligands.

Consider the successive formation of a metal complex between a metal \(\mathrm{M}^{\mathrm{p}+}\) and a ligand \(\mathrm{L}^{\mathrm{q}}\).
\[
\begin{array}{rll}
\mathrm{M}^{\mathrm{p}+}+\mathrm{L}^{\mathrm{q}-} & \rightleftharpoons & \mathrm{ML}^{\mathrm{p}-\mathrm{q}} \\
\mathrm{ML}^{\mathrm{p}-\mathrm{q}}+\mathrm{L}^{\mathrm{q}-} & \rightleftharpoons & \mathrm{ML}_{2}^{\mathrm{p}-2 \mathrm{q}} \\
\mathrm{ML}_{2}^{\mathrm{p}-2 \mathrm{q}}+\mathrm{L}^{\mathrm{q}-} & \rightleftharpoons & \mathrm{ML}_{3}^{\mathrm{p}-3 \mathrm{q}} \\
\mathrm{ML}_{3}{ }^{\mathrm{p}-3 \mathrm{q}}+\mathrm{L}^{\mathrm{q}-} & \rightleftharpoons & \mathrm{ML}_{4}{ }^{\mathrm{p}-4 \mathrm{q}}
\end{array}
\]

These formations can continue, but rarely beyond \(\mathrm{ML}_{6}{ }^{\mathrm{p}-6 \mathrm{q}}\). The extent to which each complex is formed is expressed as a formation constant, \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}\) where n represents the number of ligands in the complex. The first two formation constants would be expressed:
\[
\mathrm{K}_{\mathrm{fl}}=\frac{\left[\mathrm{ML}^{\mathrm{p}-\mathrm{q}}\right]}{\left[\mathrm{M}^{\mathrm{p}+}\right]\left[\mathrm{L}^{\mathrm{q}-}\right]}
\]
and
\[
\mathrm{K}_{\mathrm{f} 2}=\frac{\left[\mathrm{ML}_{2}{ }^{\mathrm{p}-2 \mathrm{q}}\right]}{\left[\mathrm{ML}^{\mathrm{p}-\mathrm{q}}\right]\left[\mathrm{L}^{\mathrm{q}-}\right]}
\]

These formation constants can be traced to their thermodynamic equivalents, \(\mathrm{K}_{\mathrm{f} 1}^{\circ}\) and \(\mathrm{K}_{\mathrm{f} 2}^{\circ}\) exactly as \(\mathrm{K}_{\mathrm{a}}\) is traced to \(\mathrm{K}_{\mathrm{a}}^{\circ}\) (cf. Equations 2-15 through 2-18). That is, by expressing the reactants and products in terms of activity rather than molarity, or by applying an activity coefficient to each molarity. This exercise will not be addressed in this chapter for two reasons: First, many formation constants are provided at \(\mu=0.1\), a reasonable ionic strength for most analytical calculations. \({ }^{178}\) Second, the difference between \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}\) and \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}^{\circ}\) rarely produces a meaningful difference in the computations that are routinely carried out.

Like \(\mathrm{K}_{\mathrm{a}, \mathrm{n}}, \mathrm{K}_{\mathrm{f}, \mathrm{n}}\) is frequently expressed logarithmically; that is as minus \(\log _{10} \mathrm{~K}_{\mathrm{f}, \mathrm{n}}\) which becomes \(\mathrm{p} \mathrm{K}_{\mathrm{f}, \mathrm{n}}\). But unlike \(\mathrm{K}_{\mathrm{a} 1}, \mathrm{~K}_{\mathrm{a} 2}\), .. \(\mathrm{K}_{\mathrm{an}}\), successive values for \(\mathrm{K}_{\mathrm{f} 1}, \mathrm{~K}_{\mathrm{f} 2}, \ldots \mathrm{~K}_{\mathrm{fn}}\) are frequently combined to simplify calculations. For example, suppose that the concentration of \(\mathrm{ML}_{4}^{\mathrm{p}-4 \mathrm{q}}\) is to be calculated. What information is necessary? From the expression for \(\mathrm{K}_{\mathrm{fp}}\),
\[
\mathrm{K}_{\mathrm{f} 4}=\frac{\left[\mathrm{ML}^{\mathrm{p}-4 \mathrm{q}}\right]}{\left[\mathrm{ML}_{3}{ }^{\mathrm{p}-3 \mathrm{q}}\right]\left[\mathrm{L}^{\mathrm{q}}\right]}
\]
it is evident that \(K_{f q},\left[\mathrm{ML}_{3}{ }^{p-3 q}\right]\), and [ \(\left.L^{q}\right]\) are required. By the same analysis, it can be shown that finding [ \(\left.\mathrm{ML}_{3}^{\mathrm{p}-3 \mathrm{q}}\right]\) will require \(\mathrm{K}_{\mathrm{f} 3}\) and \(\left[\mathrm{ML}_{2}^{\mathrm{p}-2 \mathrm{q}}\right]\), and then finding \(\left[\mathrm{ML}_{2}{ }^{\mathrm{p}-2 q}\right]\), likewise will require both \(\mathrm{K}_{\mathrm{f} 2}\) and \(\left[\mathrm{ML}^{p-2}\right]\). The point is that when using \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}\), finding the concentration of the \(\mathrm{n}^{\text {th }}\) complex, requires finding the concentration of every preceding complex.


Now consider the expressions for \(\mathrm{K}_{\mathrm{f} 1}\) and \(\mathrm{K}_{\mathrm{f} 2}\) above and notice that the numerator in \(\mathrm{K}_{\mathrm{f} 1}\) is contained in the denominator of \(\mathrm{K}_{\mathrm{f} 2}\). It is shown that:
\[
\mathrm{K}_{\mathrm{fl}} \times \mathrm{K}_{\mathrm{f} 2}=\frac{\left[\mathrm{ML}^{\mathrm{p}-\mathrm{q}}\right]}{\left[\mathrm{M}^{\mathrm{p}+}\right]\left[\mathrm{L}^{\mathrm{q}-}\right]} \times \frac{\left[\mathrm{ML}^{\mathrm{p}-2 \mathrm{q}}\right]}{\left[\mathrm{ML}^{\mathrm{pq}}\right]\left[\mathrm{L}^{\mathrm{q}-}\right]}=\frac{\left[\mathrm{ML}_{2}^{\mathrm{p}-2 \mathrm{q}}\right]}{\left[\mathrm{M}^{\mathrm{p}+}\right]\left[\mathrm{L}^{\mathrm{q}-}\right]^{2}}
\]

A little work will show that the numerator of each formation constant is contained in the denominator of its subsequent formation constant. Multiplying a series of these constants produces a simplified expression. So multiplying \(\mathrm{K}_{\mathrm{f} 1}\) through \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}\) would produce:
\[
\Pi_{\mathrm{Kfl}}^{\mathrm{Kfn}}=\frac{\left[\mathrm{ML}_{\mathrm{n}}^{\mathrm{p}-\mathrm{nq}}\right]}{\left[\mathrm{M}^{\mathrm{p}}\right]\left[\mathrm{L}^{\mathrm{q}}\right]^{\mathrm{n}}}
\]

From this relationship, the concentration of the \(n^{\text {th }}\) complex can be determined from the concentration of the free ligand and free \({ }^{179}\) metal, without consideration of any other concentrations. This quantity, the cumulative formation constant, is sufficiently important that it is often reported in lieu of individual \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}\) values. \({ }^{180}\) Indeed,
\[
\Pi_{\mathrm{Kfl}}^{\mathrm{Kfn}}=\beta_{\mathrm{n}}
\]

The similarity to \(\beta\) used for buffer index (Equations 6-12 and 6-13) is unfortunate. This expression, like each \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}\), is sometimes expressed as \(-\log _{10} \beta_{\mathrm{n}}\); that is, as \(\mathrm{p} \beta_{\mathrm{n}}\).
\(\mathrm{p} \beta_{6}\) for the hexacyanoferrate(III) is -31 meaning that \(\beta_{6}\) is equal to \(10^{31}\). Given this along with [ \(\mathrm{CN}^{-}\)] and \(\left[\mathrm{Fe}^{3+}\right]\), it is a simple matter to calculate \(\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}\right]\).
\[
\beta_{6}=\frac{\left[\mathrm{Fe}(\mathrm{CN})_{6}^{3}-\right]}{\left[\mathrm{Fe}^{3} 7\right]\left[\mathrm{CN}^{1}\right]^{6}}=10^{31}
\]

The magnitude of \(\beta_{6}\) is telling: the concentrations of free \(\mathrm{Fe}^{3+}\) and \(\mathrm{CN}^{-}\)must be remarkably small, because the numerator is limited by solubility to no more than about \(10 \mathbf{M} .{ }^{181}\) If \(\left[\mathrm{Fe}^{3+}\right]\) and \(\left[\mathrm{CN}^{-}\right]\)come only from the \(\mathrm{Fe}\left(\mathrm{CN}_{6}\right)^{3-}\) complex, then \(\left[\mathrm{CN}^{-}\right]\)must equal \(6\left[\mathrm{Fe}^{3+}\right]\). For simplicity, if \(\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}\right]\) is taken as 10 M, a very generous maximum, then
```

> restart; CN:= 6*Fe: Exp:= beta[6] = FeCN[6]/(Fe*CN^6);
Exp := \beta

```

And with \(\beta_{6}=10^{31},\left[\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\right]=10\) and a formatting change, the free \(\mathrm{Fe}^{3+}\) concentration must be.
```

> beta[6]:= 10^31: FeCN[6]:= 10: Fe:= fsolve(Exp,Fe);

```

From the earlier stipulation, then, \(\left[\mathrm{CN}^{-}\right]\)equals \(6 \times 1.1110^{-5}=6.6610^{-5} \mathrm{M}\). This calculation is simple but of limited use. Of greater interest would be the determination of \(\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}\right]\) given analytical concentrations for \(\mathrm{Fe}^{3+}\) and \(\mathrm{CN}^{-}\). This would be from \(\mathrm{C}_{\mathrm{Fe}^{3+}}\) and \(\mathrm{C}_{\mathrm{CN}}\). From the definition of analytical concentration (see Part I, page 38 et seq.)
\[
\mathrm{C}_{\mathrm{Fe}}{ }^{3+}=\left[\mathrm{Fe}^{3+}\right]+\left[\mathrm{FeCN}^{2+}\right]+\left[\mathrm{Fe}(\mathrm{CN})_{2}{ }^{+}\right]+\left[\mathrm{Fe}(\mathrm{CN})_{3}{ }^{0}\right]+\left[\mathrm{Fe}(\mathrm{CN})_{4}{ }^{1-}\right]+\left[\mathrm{Fe}(\mathrm{CN})_{5}{ }^{2-}\right]+\left[\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\right],
\]
and
\(\mathrm{C}_{\mathrm{CN}}{ }^{-}=\left[\mathrm{CN}^{-}\right]+\left[\mathrm{FeCN}^{2+}\right]+2\left[\mathrm{Fe}(\mathrm{CN})_{2}{ }^{+}\right]+3\left[\mathrm{Fe}(\mathrm{CN})_{3}{ }^{0}\right]+4\left[\mathrm{Fe}(\mathrm{CN})_{4}{ }^{1-}\right]+5\left[\mathrm{Fe}(\mathrm{CN})_{5}{ }^{2-}\right]+6\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}\right] . .^{182}\)

Strictly speaking, neither of these equations fully accounts for all of the iron(III) or cyanide in solution. These omissions will be addressed on page 60 et seq., but for now, the additional forms of iron and cyanide will be ignored.

The calculation will be pursued in general terms by using the \(\mathrm{M}^{\mathrm{p}+} / \mathrm{L}^{\mathrm{q}-}\) complex described above. For brevity, the complex will be limited to \(n\) equals three, but extending \(n\) to six or beyond is simple enough. We begin by applying the familiar concept of \(\alpha\). Maple will be used to carry out these operations and while using Maple here will provided added practice, it will restrict the way expressions can be written. For example, \(\left[\mathrm{M}^{\mathrm{p}+}\right]\) and \(\left[\mathrm{ML}_{2}{ }^{\mathrm{p}-2 \mathrm{q}}\right]\) are expressed as M and ML [2] , respectively. ML is expressed as ML [1] (i.e. \(M L_{1}\) ) because \(M L\) which represents \(\mathrm{M}^{\star} \mathrm{L}\) looks too much like \(M L\).

Using the definition of \(C_{M p+}\) which equals \(\left[\mathrm{M}^{p+}\right]+\left[\mathrm{ML}^{\mathrm{p}-\mathrm{q}}\right] \ldots\) and the definition of \(\alpha_{\mathrm{M}} \mathrm{p}+\) we can directly get the expanded form of \(\alpha_{\mathrm{Mp}+}\).
```

> restart; C[`M']:= M + ML[1] + ML[2] + ML[3]: alpha[`M']:=
M/C['M'];

```
\[
\alpha_{M}:=\frac{M}{M+M L_{1}+M L_{2}+M L_{3}}
\]

Then, using the definition of \(\beta\) inside the solve command:
```

> ML[1]:= solve(beta[1]= ML[1] /(M*L), ML[1]); ML[2]:=
solve(beta[2]= ML[2]/(M* L^2), ML[2]); ML[3]:= solve (beta[3]=
ML[3]/(M*L^3), ML[3]); alpha[`M'];

```
\[
\begin{gathered}
M L_{1}:=\beta_{1} M L \\
M L_{2}:=\beta_{2} M L^{2} \\
M L_{3}:=\beta_{3} M L^{3} \\
M \\
\hline M+\beta_{1} M L+\beta_{2} M L^{2}+\beta_{3} M L^{3}
\end{gathered}
\]

Notice the similarity of \(\alpha_{M}\) to \(\alpha_{H n A}\) (page 11). Every form of \(\mathrm{M}^{\mathrm{p}}\), like every form of \(\mathrm{H}_{\mathrm{n}} \mathrm{A}\), is contained in the denominator and each \(\alpha\) is expressed by copying the appropriate operand from the denominator into the numerator. Recognizing this, one could have used the shortcut introduced on page 15 wherein the denominator was defined (as Den) and then each numerator was selected as op ( \(n, D e n\) ). But all the definitions are already in place in this worksheet to illustrate our point regarding the form of any of the alphas. All four alphas will be needed. So they are defined, although only \(\alpha_{\mathrm{ML} 2}\) is shown. Notice that \(M\) is embedded in the expression, but it is easily removed.
```

> alpha[`ML[1]']:= ML[1]/C [`M']: alpha[`ML[2]']:= ML[2]/C[`M'];
alpha[`ML[3]']:= ML[3]/C[`M']:

```
\[
\alpha_{M L}:=\frac{\beta_{2} M L^{2}}{M+\beta_{1} M L+\beta_{2} M L^{2}+\beta_{3} M L^{3}}
\]

```

> alpha[`ML[1]']:= simplify (alpha[`ML[1]']): alpha [`ML[2]']:=

```
    simplify(alpha ['ML[2]']); alpha['ML[3]']:= simplify(alpha
    [ \(\mathrm{ML}[3]\) ] \()\) :
\[
\alpha_{M L_{2}}:=\frac{\beta_{2} L^{2}}{1+\beta_{1} L+\beta_{2} L^{2}+\beta_{3} L^{3}}
\]

With any alpha so readily available, it would appear that any [ \(\left.\mathrm{ML}_{\mathrm{n}}{ }^{\mathrm{p}-\mathrm{nq}}\right]\) could be calculated (from \(\alpha_{\mathrm{MLn}} \times \mathrm{C}_{\mathrm{M}}\) ). But the problem with these expressions is that they contain \(\left[\mathrm{L}^{q}\right]\) (as \(L\) ) which is not \(\mathrm{C}_{\mathrm{Lq}}\) - Indeed, it is necessary to express [ \(\mathrm{L}^{q}\) ] as a function of \(\mathrm{C}_{\mathrm{Lq}}-\) to make these expressions useful. Could this simply be \(\left[L^{q}\right]=\alpha_{\mathrm{Lq}}-\times \mathrm{C}_{\mathrm{L}}\) ? No! Look at \(\alpha_{\mathrm{Lq}}\) below noting the coefficients for \(\mathrm{ML}_{2}\) etc. used in \(\mathrm{C}_{\mathrm{L}}\).
```

> alpha[`L']:= L/C[`L']: C[`L']:= ML[1] + 2*ML[2] + 3*ML[3]: alpha[`L']:= simplify(alpha[`L']);

```
\[
\alpha_{L}:=\frac{1}{M\left(\beta_{1}+2 \beta_{2} L+3 \beta_{3} L^{2}\right)}
\]

This alpha contains two predictable properties: it will decrease as the \(\left[\mathrm{M}^{p+}\right]\) concentration increases, which ties up a larger fraction of free \(\mathrm{L}^{\mathrm{q}}\), and it will decrease as any \(\beta\) increases, thereby more thoroughly binding \(\mathrm{L}^{\mathrm{q}}\). It also contains a problematic property: it depends upon [ \(\mathrm{L}^{\mathrm{q}}\) ] itself! If one were to try to find, say, [ \(\left.M L^{p-q}\right]\) using \(\beta_{1} \times[M] \times[L]\), the "L" cannot be removed by replacing it with \(\alpha_{L} q-\times C_{L}\) because \(\alpha_{\mathrm{L}}\) also contains L.

The problem is solvable by introducing a useful concept. The amount of free \(\mathrm{L}^{\mathrm{q}-}\) and the amount of complexed \(\mathrm{L}^{\mathrm{q}-}\) depend on \(n\), the number of ligands that can be bound to M , and on the magnitude of every \(\beta . \mathrm{C}_{\mathrm{L}}\) is the sum of the concentration of bound \(\mathrm{L}^{q-}\) and the concentration of unbound \(\mathrm{L}^{q-}\). The concentration of bound \(L^{q}\) can be found, most simply, from the average number of ligands per \(\mathrm{M}^{p+}\) times the analytical concentration of \(\mathrm{M}^{\mathrm{p}+\text {. That is } n_{\text {ave }} \times \mathrm{C}_{\mathrm{M}} \text {. If } n_{1} \text { is the number of L's bound in } \mathrm{ML}_{1} \text { and } n_{2} \text { is }{ }^{\text {in }} \text {. }}\) the number of L's bound in \(\mathrm{ML}_{2}\) etc., then the concentration of \(\mathrm{L}^{q}\) bound in each complex is \(n_{1} \times\left[\mathrm{ML}_{1}\right]\) plus \(n_{2} \times\left[\mathrm{ML}_{2}\right]\) plus \(n_{3} \times\left[\mathrm{ML}_{3}\right]\) etc. Dividing the sum of these concentrations by the total concentration will produce the average number of ligands, \(n_{\text {ave }}\). (The \(0 * M\) term is included below for completeness.)
\[
\begin{gathered}
>\mathrm{n}[\text { ave }]:=(0 * \mathrm{M}+1 * \mathrm{ML}[1]+2 * \mathrm{ML}[2]+3 * \mathrm{ML}[3]) / \mathrm{C}\left[\mathrm{'M}^{\prime}\right] ; \\
n_{\text {ave }}:=\frac{\beta_{1} M L+2 \beta_{2} M L^{2}+3 \beta_{3} M L^{3}}{M+\beta_{1} M L+\beta_{2} M L^{2}+\beta_{3} M L^{3}}
\end{gathered}
\]
```

> n[ave]:= simplify(n[ave]);

```
\[
n_{a v e}:=\frac{L\left(\beta_{1}+2 \beta_{2} L+3 \beta_{3} L^{2}\right)}{1+\beta_{1} L+\beta_{2} L^{2}+\beta_{3} L^{3}}
\]

Predictably, \(n_{\text {ave }}\) increases as [ \(L^{q}\) ] increases, and it increase three times as fast for \(\beta_{3}\) as it does for \(\beta_{1}\) because there are three times as many ligands on \(\mathrm{ML}_{3}^{\mathrm{p}-3 \mathrm{q}}\) as there are on \(\mathrm{ML}^{\mathrm{p}-\mathrm{q}}\).

Now the requirement that the total ligand concentration must equal the concentration of bound ligands plus the concentration of free ligands can be applied. A change in nomenclature will be used here: \(C_{\text {Metal }}\) will be used in place of \(C_{M}\) and \(C_{\text {Ligand }}\) will be used in place of \(C_{L}\), because \(C_{M}\) and \(C_{L}\) have already been assigned. Recognizing that \(C_{\text {metal }}\) exactly equals \(C_{M}\) and \(C_{L i g a n d}\) exactly equals \(C_{L}\) the mass balance requirement for \(\mathrm{C}_{\text {Ligand }}\) is imposed.
```

> Eqn:= C[Ligand]= n[ave]*C[Metal] + L;

```
\[
\text { Eqn }:=C_{\text {Ligand }}=\frac{L\left(\beta_{1}+2 \beta_{2} L+3 \beta_{3} L^{2}\right) C_{\text {Metal }}}{1+\beta_{1} L+\beta_{2} L^{2}+\beta_{3} L^{3}}+L
\]

One could, at this point, solve Eqn for L, but the output is daunting, even for this example which limits \(n\) to three. Moreover, there is no real advantage to having an explicit expression for [ \(\mathrm{L}^{\mathrm{q}}\) ]. Inasmuch as \(E q n\) is an expression with [ \(L^{q}\) ] as the only variable, once \(C_{L i g a n d}, C_{\text {Metal }}\), and every \(\beta\) have been defined, it can be solved numerically for [ \(L^{q}\) ] and that value can be used to find any desired [ \(\mathrm{ML}_{\mathrm{n}}{ }^{\mathrm{p}-\mathrm{nq}}\) ] or, more usefully, any \(\alpha_{\text {MLn. }}\). Consider the following analytical concentrations and betas. \({ }^{183}\)
```

> C[Ligand]:= 0.10: C[Metal]:= 0.025: beta[1]:= 10^(9.4): beta[2]:=
10^(16.2): beta[3]:= 10^(20.4): Eqn;

```
\[
0.100=\frac{0.025 L\left(2.51210^{9}+3.17010^{16} L+7.53610^{20} L^{2}\right)}{1+2.51210^{9} L+1.58510^{16} L^{2}+2.51210^{20} L^{3}}+L
\]

The output is shown only to demonstrate that all of the parameters have been assigned. [ \(\mathrm{L}^{\mathrm{q}}\) ] is the solution to this equation. It is called Lig in order to preempt a recursion error.
```

> Lig:= fsolve(Eqn, L);

```
\[
\text { Lig }:=0.025
\]

Notice that only one fourth of \(\mathrm{C}_{\text {Ligand }}(=0.100)\) is unbound. That means that three fourths is bound, and that requires a substantial fraction of \(\mathrm{ML}_{3}^{\mathrm{p}-3 q}\) because \(\mathrm{C}_{\text {Meal }}(=0.025)\) is much less than \(\mathrm{C}_{\text {Ligand }}\) if \(\mathrm{ML}_{2}^{\mathrm{p}-2 q}\) were substantial, there would not be enough \(\mathrm{L}^{-9}\) to go around! We can show this.
```

> L:= Lig: 'alpha[M]'=184 alpha [`M']; 'alpha[ML[1]]'= alpha[`ML[1]']; 'alpha [ML[2]]'= alpha[`ML[2]']; 'alpha[ML[3]]'= alpha [`ML[3]'];

```
\[
\begin{gathered}
\alpha_{M}=2.522410^{-16} \\
\alpha_{M L_{1}}=1.588010^{-8} \\
\alpha_{M L_{2}}=0.0025 \\
\alpha_{M L_{3}}=0.9975
\end{gathered}
\]

As predicted, \(\alpha_{\text {ML3 }}\) dominates, but this might have been apparent from the magnitude of \(\beta_{3}\) which is four orders of magnitude larger than \(\beta_{2}\). Of course, it is \(\alpha_{\text {ML3 }}\) that "suffers" most as \(C_{\text {Ligand }}\) approaches zero. The reader is invited to experiment with different concentrations of the metal and ligand. To do this, it is necessary to unassign \(L\), or more simply to return to the first input line with its requisite restart command.

\section*{Free eBook on Learning \& Development}


This problem can be made more general by considering the mixture of two solutions, one of \(\mathrm{C}^{\circ}{ }_{\mathrm{Mp+}}\) and the other of \(\mathrm{C}_{\mathrm{Lq}}^{\circ}\). If the volumes are \(\mathrm{V}^{\circ}{ }_{\mathrm{Mp}+}\) and \(\mathrm{V}_{\mathrm{Lq}}^{\circ}\), respectively, then, analogous to in Equations 7-2a and 7-2b:
\[
C_{\text {Ligand }}=\frac{\mathrm{V}_{\text {Ligand }} \times \mathrm{C}_{\text {Ligand }}^{\circ}}{\mathrm{V}_{\text {Ligand }}+\mathrm{V}_{\text {Metal }}^{\circ}}
\]
and,
\[
\mathrm{C}_{\text {Metal }}=\frac{\mathrm{V}_{\text {Metal }}^{\circ} \times \mathrm{C}_{\text {Metal }}^{\circ}}{\mathrm{V}_{\text {Ligand }}^{\circ}+\mathrm{V}_{\text {Metal }}^{\circ}}
\]

A final point pertains to the nature of \(\mathrm{L}^{\mathrm{q}}\). The most effective ligands are also good proton acceptors, that is good bases. \({ }^{185}\) This implies a competition between \(\mathrm{M}^{\mathrm{p}}\) and \(\mathrm{H}^{+}\)for \(\mathrm{L}^{\mathrm{q}}\).
\[
\begin{array}{llll}
\mathrm{HL}^{1-\mathrm{q}} & \rightleftharpoons & \mathrm{H}^{+}+\mathrm{L}^{\mathrm{q}-} & \mathrm{K}_{\mathrm{a} 1} \\
\mathrm{M}^{\mathrm{p}^{+}}+\mathrm{L}^{\mathrm{q}-} & \rightleftharpoons & \mathrm{ML}^{\mathrm{p}-\mathrm{q}} & \mathrm{~K}_{\mathrm{fl}}
\end{array}
\]

The simplest approach to addressing this competition is to prescribe the pH , or here, \(-\log _{10}\left[\mathrm{H}^{+}\right]\), and from that pH calculate \(\alpha_{\mathrm{Lq}}\), not as a ligand, but as the anion of a weak acid. That is, from \(\left[\mathrm{H}^{+}\right], \mathrm{K}_{\mathrm{a} 1}, \mathrm{~K}_{\mathrm{a} 2}\) etc. as described on page 11. Because the pH is fixed, the \(\alpha_{\text {Lq }}\) is then effectively a constant, and if it is multiplied by a formation constant like \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}\) or \(\beta_{\mathrm{n}}\), a conditional formation constant, \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}^{\prime}\) or \(\beta_{\mathrm{n}}^{\prime}\) is created.

The nature of \(\alpha_{\mathrm{Lq}_{-}}\)is that it approaches 1 as \(\left[\mathrm{H}^{+}\right]\)approaches zero (e.g. Figure 8-1 black line). Clearly then, \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}^{\prime}\) and \(\beta_{\mathrm{n}}^{\prime}\) approach their respective maxima, \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}\) and \(\beta_{\mathrm{n}}\), as \(\left[\mathrm{H}^{+}\right]\)approaches zero, or as \(-\log _{10}\left[\mathrm{H}^{+}\right]\) increases. Increasing the pH of a metal-ligand solution to enhance formation of a metal complex, however, can become counterproductive: As \(\left[\mathrm{H}^{+}\right]\)approaches zero, \(\left[\mathrm{OH}^{-}\right]\)becomes substantial (Equation 3-24), and \(\left[\mathrm{OH}^{-}\right]\)is, itself, a formidable ligand (Appendix VIa). As the concentration of hydroxide increases, competition between \(\mathrm{OH}^{-}\)and \(\mathrm{L}^{4-}\) for \(\mathrm{M}^{\mathrm{p}^{+}}\)becomes significant if \(\beta_{\mathrm{m}, \mathrm{OH}}\) is appreciable.
\[
\begin{array}{rlll}
\mathrm{M}^{\mathrm{p}+}+m \mathrm{OH}^{-} & \rightleftharpoons & \mathrm{MOH}^{\mathrm{p}-\mathrm{m}} & \beta_{\mathrm{m}, \mathrm{OH}} \\
\mathrm{M}^{\mathrm{p}^{+}+n \mathrm{~L}^{\mathrm{q}-}} & \rightleftharpoons & \mathrm{ML}^{\mathrm{p}-\mathrm{nq}} & \beta_{\mathrm{n}, \mathrm{~L}}
\end{array}
\]

This is because \(\alpha_{\mathrm{mP}^{+}}\)will decrease as [ \(\mathrm{OH}^{-}\)] increases.
\[
\alpha_{\mathrm{mp}^{+}}=\frac{1}{1+\left[\mathrm{OH}^{-}\right] \beta_{1}+\left[\mathrm{OH}^{-}\right]^{2} \beta_{2}+\ldots+\left[\mathrm{OH}^{-}\right]^{\mathrm{n}} \beta_{\mathrm{n}}}
\]
(A lower case \(m\) is used here to distinguish this alpha from \(\alpha_{\mathrm{Mp}+}\) which pertains to formation of complexes with \(\mathrm{L}^{\mathrm{q}}\).) Using Equation 3-24 to replace \(\left[\mathrm{OH}^{-}\right]\)and then rearranging gives:
\[
\alpha_{m p^{+}}=\frac{\left[\mathrm{H}^{+}\right]^{\mathrm{n}}}{\left[\mathrm{H}^{+}\right]^{\mathrm{n}}+\mathrm{K}_{\mathrm{w}} \beta_{1}\left[\mathrm{H}^{+}\right]^{\mathrm{n}-1} \mathrm{~K}_{\mathrm{w}}{ }^{2} \beta_{2}\left[\mathrm{H}^{+}\right]^{\mathrm{n}-2}+\ldots+\mathrm{K}_{\mathrm{w}}{ }^{\mathrm{n}} \beta_{\mathrm{n}}}
\]

By fixing the \(\left[\mathrm{H}^{+}\right]\left(\right.\)or \(-\log \left[\mathrm{H}^{+}\right]\)or pH\()\) at a given value, \(\alpha_{\text {mp+ }}\) becomes a constant that can be multiplied by any of the \(\mathrm{ML}_{\mathrm{n}}{ }^{\mathrm{p}-\mathrm{nq}}\) formation constants to give yet another conditional formation constant.

So there are two effects of pH on the formation of \(\mathrm{M}^{\mathrm{p}+} / \mathrm{L}^{\mathrm{q}^{-}}\)complexes, one that can diminish \(\left[\mathrm{L}^{-\mathrm{q}}\right]\) and the other that can diminish \(\left[\mathrm{M}^{\mathrm{p}+}\right]\). The \(\alpha_{\mathrm{Lq}_{-}}\)factor must be considered for all ligands except the anions of strong acids, and the \(\alpha_{\mathrm{mp}+}\) must be considered for any metal ion that appreciably binds with hydroxide ion, even at what one might consider to be a neutral pH . Often, both factors are considered together, and the results, \(\alpha_{\mathrm{Lq}_{-}} \times \alpha_{\text {mp }} \times \mathrm{K}_{\mathrm{ffn}}\) and \(\alpha_{\mathrm{Lq} q^{\prime}} \times \alpha_{\mathrm{mp}+} \times \beta_{\mathrm{n}}\) then become doubly conditional, or conditional-conditional formation constants, \(K_{f, n}^{\prime \prime}\) and \(\beta_{n}^{\prime \prime}\), respectively. \({ }^{186}\) These are characterized by having a maximum value, always less than \(K_{f, n}\) and \(\beta_{\mathrm{n}}\) at some pH that is usually between 5 and 12 . This property will be illustrated below with an important kind of ligand, the chelating agent.

A chelate is a ligand that can provide several electron pairs to a single, central metal (ion). In analytical chemistry, the most important chelating agents, often called chelons, are those that can provide all of the electron pairs, and so the complex is one to one in \(\mathrm{M}^{\mathrm{p}}\) to \(\mathrm{L}^{\mathrm{q}}\). For these special ligands, \(\mathrm{Lc}^{\mathrm{q}^{\mathrm{q}}}\) will be used in place of \(\mathrm{L}^{9-}\) so that only a \(1: 1\) complex will be anticipated. \({ }^{187} \mathrm{If}^{\mathrm{Lc}}{ }^{9}\) can provide four electron pairs, it is certain that it is the anion of at least a triprotic acid. The presence of protons in solution, therefore, impairs its ability to bind with \(\mathrm{M}^{\mathrm{p}+}\) because \(\mathrm{HLc}^{1-q}\) through \(\mathrm{H}_{3} \mathrm{Lc}^{3-q}\) can form. Consider the formation of the MLc \({ }^{\mathrm{p}-\mathrm{q}}\) complex where \(\mathrm{Lc}^{\mathrm{q}^{-}}\)is the anion of a tetraprotic acid, and that \(\mathrm{M}^{\mathrm{p}+}\) is capable of forming complexes, \(\mathrm{M}(\mathrm{OH})_{\mathrm{n}}{ }^{\mathrm{p}-\mathrm{n}}\), with n equal to one through four.
```

> restart; Den[Lc]:= H^4 + K[a1]*H^3 + K[a1]*K[a2]*H^2 + K[a1]*
K[a2]*K[a3]*H + K[a1]*K[a2]*K[a3]*K[a4]: alpha[Lc]:= op(5,
Den[Lc])/Den[Lc]; Den[M]:= 1 + beta[1]*OH + beta[2]*OH^2 +
beta[3]*OH^3 + beta[4]*OH^4: alpha[m]:= 1/Den[M];

$$
\begin{aligned}
\alpha_{L c} & :=\left(K_{a 1} K_{a 2} K_{a 3} K_{a 4}\right) /\left(H^{4}+K_{a 1} H^{3}+K_{a 1} K_{a 2} H^{2}\right. \\
& \left.+K_{a 1} K_{a 2} K_{a 3} H+K_{a 1} K_{a 2} K_{a 3} K_{a 4}\right) \\
\alpha_{m} & :=\frac{1}{1+\beta_{1} O H+\beta_{2} O H^{2}+\beta_{3} O H^{3}+\beta_{4} O H^{4}}
\end{aligned}
$$

```

To illustrate the derivation of the expression for \(\alpha_{\text {mp+ }}\) (page 61):
\[
\begin{aligned}
& >\text { alpha }[\mathrm{m}]:=\text { algsubs }(\mathrm{OH}=\mathrm{K}[\mathrm{w}] / \mathrm{H}, \mathrm{alpha}[\mathrm{~m}]) ; \\
& \\
& \qquad \alpha_{m}:=\frac{H^{4}}{\beta_{4} K_{w}^{4}+H \beta_{3} K_{w}^{3}+H^{4}+H^{3} \beta_{1} K_{w}+H^{2} \beta_{2} K_{w}^{2}}
\end{aligned}
\]

From the definition of a doubly conditional formation constant, \(\mathrm{K}_{\mathrm{f}}{ }_{\mathrm{f}}\) is expressed as \(\mathrm{Kpp}_{\mathrm{f}}\)
```

> Kpp[f]:= alpha[Lc]*alpha[m]*K[f]:

```

One more modification is recommended before displaying \(K p p_{f}:\left[\mathrm{H}^{+}\right]\)will be varied over several orders of magnitude; so it is more convenient to express \(\left[\mathrm{H}^{+}\right]\)as \(10^{-\mathrm{pH}}\).
```

> Kpp[f]:= algsubs(H= 10^(-pH), Kpp[f]);

```


\[
\begin{aligned}
K p p_{f} & :=\left(K_{a 1} K_{a 2} K_{a 3} K_{a 4} K_{f}\left(10^{-p H}\right)^{4}\right) /\left(\left(K_{a 1} K_{a 2} K_{a 3} K_{a 4}\right.\right. \\
& +\left(10^{-p H}\right)^{4}+K_{a 1} K_{a 2}\left(10^{-p H}\right)^{2}+K_{a I}\left(10^{-p H}\right)^{3} \\
& \left.+K_{a I} K_{a 2} K_{a 3} 10^{-p H}\right)\left(\beta_{4} K_{w}^{4}+\left(10^{-p H}\right)^{4}+\beta_{2}\right. \\
& \left.\left.K_{w}^{2}\left(10^{-p H}\right)^{2}+\beta_{1} K_{w}\left(10^{-p H}\right)^{3}+\beta_{3} K_{w}^{3} 10^{-p H}\right)\right)
\end{aligned}
\]

The existence of a maximum \(K_{f}{ }_{f}\) can be illustrated with the \(\mathrm{Zn}^{2+}\) / EDTA complex. The \(K_{a, n}\) values for EDTA, \(\beta_{\mathrm{n}}\) values for \(\mathrm{Zn}(\mathrm{OH})_{\mathrm{n}}{ }^{2-\mathrm{n}}\) and \(\mathrm{K}_{\mathrm{w}}\) are assigned from Appendix IV and VIa).
\(>\mathrm{K}[\mathrm{a} 1]:=10^{\wedge}(-1.99): \mathrm{K}[\mathrm{a} 2]:=10^{\wedge}(-2.67): \mathrm{K}[\mathrm{a} 3]:=10^{\wedge}(-6.16): \mathrm{K}[\mathrm{a} 4]:=10^{\wedge}(-10.26):\) beta[1]:= \(10^{\wedge} 4.40\) : beta[2] \(:=10^{\wedge} 11.3: \operatorname{beta}[3]:=10^{\wedge} 13.14: \operatorname{beta}[4]:=10^{\wedge} 14.66: \mathrm{K}[\mathrm{f}]:=10^{\wedge} 16.50: \mathrm{K}[\mathrm{w}]:=1.007 \mathrm{e}-14\); \({ }^{\prime} \operatorname{Kpp}[\mathrm{f}]\) ' \(=\operatorname{Kpp}[\mathrm{f}] ;\)
\[
\begin{aligned}
K p p_{f} & =\left(3.162310^{16} \alpha_{L c}\left(10^{-p H}\right)^{4}\right) /\left(4.700210^{-42}\right. \\
& +\left(10^{-p H}\right)^{4}+2.023310^{-17}\left(10^{-p H}\right)^{2} \\
& \left.+2.529510^{-10}\left(10^{-p H}\right)^{3}+1.409610^{-29} 10^{-p H}\right)
\end{aligned}
\]

The output for Kpp [f] is requested in order to verify that all parameters have been assigned.
```

> plot(Kpp[f], pH= 0..14, labels= ["pH","K[f]"], color = "Purple",
gridlines = true, axes = box,);

```


Figure 9-1

This plot shows that the doubly conditional formation constant is very large over a narrow pH range. (Notice that while " pH " was used in the worksheet, the axis is more correctly labeled " \(-\log [\mathrm{H}+]\).") The plot shows that \(\mathrm{Zn}^{2+}\) and EDTA bind most strongly when \(-\log _{10}\left[\mathrm{H}^{+}\right]\)is about 8.3, although even there, \(K_{f}^{\prime \prime}\) is much less than \(K_{f}\) Recalling that the maximum \(K_{f}^{\prime \prime}\) is found where \({ }_{f / d / \mathrm{PH}}\) is equal to zero, the optimum pH can be calculated.
```

> Max:= diff(Kpp[f],pH): pH[optimum]:= fsolve(Max = 0,pH,0..14);

$$
p H_{\text {optimum }}:=8.344
$$

```

Figure 9-1 does not clearly indicate the pH above or below which \(\mathrm{K}_{\mathrm{f}}\) is too small for appreciable complex formation. The appropriate pH range can be made evident by plotting the \(\log\) of \(\mathrm{Kpp}_{\mathrm{f}}\) For further clarity, the \(\log\) of \(\alpha_{\mathrm{mpt}}\) and \(\alpha_{\mathrm{mq}}\) will also be provided.
```

> logofK[pp[f]]:= log[10] (Kpp[f]): alpha[Lc]:= algsubs(H = 10^(-
pH), alpha[Lc]); alpha[m]:= algsubs(H = 10^(-pH), alpha[m]):
logofalpha[Lc]:= log[10](alpha%5BLc%5D): logofalpha[Lc]:= log[10]
(alpha[Lc]): logofalpha[m]:= log[10](alpha%5Bm%5D):

```
```

> plot([logofK[pp[f]], logofalpha[Lc], logofalpha[m]], pH= 0..14,

```
> plot([logofK[pp[f]], logofalpha[Lc], logofalpha[m]], pH= 0..14,
    labels= ["pH", "log of (K[f] or alpha)"], color= ["Purple",
    labels= ["pH", "log of (K[f] or alpha)"], color= ["Purple",
    "DarkCyan" , "DarkGreen"], gridlines" = true, axes = box);
```

 "DarkCyan" , "DarkGreen"], gridlines" = true, axes = box);
    ```


Figure 9-2

The appearance of this figure required some manipulation of the vertical axis through plot > axes > properties...


Figure 9-3


The dark cyan line here corresponds to the dark cyan line in Figures 8-6 and 8-8 which also pertain to the protonation of EDTA. The intent of Figure 9-2 is to show that as EDTA is deprotonated at high pH , thereby becoming more available to the \(\mathrm{Zn}^{2+}\), the \(\mathrm{Zn}^{2+}\) (green line) is becoming less available to the EDTA as it binds more and more to the hydroxide ions. The purple line, \(\mathrm{K}_{\mathrm{f}}\) is the product \({ }^{189}\) of these expressions.

An important question to ask from Figure \(\mathbf{9 - 2}\) is, what pH range is acceptable for assuring complete binding between \(\mathrm{Zn}^{2+}\) and EDTA? Recall that "complete" is defined as at least \(99.9 \%\) (Part I, page 9). So, what is the minimum value for \(\mathrm{K}_{\mathrm{f}}^{\prime}\) that will assure \(\geq 99.9 \%\) for
\[
\mathrm{Zn}^{2+}+\mathrm{Y}^{4-} \rightleftharpoons \mathrm{ZnY}^{2-?}{ }^{190}
\]

To answer this question, the meaning of \(\mathrm{K}_{\mathrm{f}}\) should be clarified because it is often misinterpreted. It should be clear that
\[
\mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{ZnY}^{2}\right]}{\left[\mathrm{Zn}^{2}\right]\left[\mathrm{Y}^{4}\right]}
\]

Also,
\[
\left[\mathrm{Zn}^{2+}\right]=\alpha_{\mathrm{Zn} 2+} \times\left(\mathrm{C}_{\mathrm{Zn} 2+}-\left[\mathrm{ZnY}^{2-}\right]\right)
\]
and
\[
\left[\mathrm{Y}^{4-}\right]=\alpha_{\mathrm{Y} 4-} \times\left(\mathrm{C}_{\mathrm{Y} 4-}-\left[\mathrm{ZnY}^{2-}\right]\right)
\]

This might lead one to make the following substitution:
\[
\mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{ZnY}^{2-}\right]}{\alpha_{\mathrm{Zn}^{2}+} \mathrm{XC}_{\mathrm{Zn}^{2}+} \mathrm{X}_{\mathrm{Y}^{4}-\mathrm{XC}}^{\mathrm{Y} 4-}}
\]
which would be wrong. Look closely (in the worksheet) at the derivations of \(\alpha_{\mathrm{Znn} 2+}\left(\alpha_{\mathrm{m}}\right)\) and \(\alpha_{\mathrm{Y} 4 .}\left(\alpha_{\mathrm{LL}}\right)\). Neither includes a term for \(\left[\mathrm{ZnY}^{2-}\right]\) (MLc). So neither completely considered \(\mathrm{C}_{\mathrm{Zn} 2+}\left(\mathrm{C}_{\mathrm{M}}\right)\) or \(\mathrm{C}_{\mathrm{Y} 4}\left(\mathrm{C}_{\mathrm{Lc}}\right)\); each left out one term, a term that, before the solutions are mixed, cannot exist, but after they mix should be significant! It is not appropriate to multiply an "incomplete" \(\alpha\) by a total concentration. When the solutions are mixed, the expressions for \(\left[\mathrm{Zn}^{2+}\right]\) and \(\left[\mathrm{Y}^{4}\right]\) given above must be modified to compensate for the previously-impossible \(\left[\mathrm{ZnY}^{2}\right]\).
\[
\left[\mathrm{Zn}^{2+}\right]=\alpha_{\mathrm{Zn} 2++} \times\left(\mathrm{C}_{\mathrm{Zn} 2+}-\left[\mathrm{ZnY}^{2}\right]\right)
\]
and
\[
\left[\mathrm{Y}^{4-}\right]=\alpha_{\mathrm{Y} 4-} \times\left(\mathrm{C}_{\mathrm{Y} 4-}-\left[\mathrm{ZnY}^{2-}\right]\right)
\]

And, now
\[
\mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{ZnY}^{2-}\right]}{\alpha_{\mathrm{Zn}^{2+}} \mathrm{X}\left(\mathrm{C}_{\mathrm{Zn}^{2+}}-\left[\mathrm{ZnY}^{2-}\right]\right) \mathrm{X} \alpha_{\mathrm{Y}^{4-}} \mathrm{X}\left(\mathrm{C}_{\mathrm{Y}^{4-}}-\left[\mathrm{ZnY}^{2-}\right]\right)}
\]

Rearranging this gives the appropriate expression for \(\mathrm{K}_{\mathrm{f}}\). That is,
\[
\mathrm{K}_{\mathrm{f}}^{\prime \prime}=\alpha_{\mathrm{Zn}^{2+}} \mathrm{X} \alpha_{\mathrm{Y}^{4-}} \mathrm{X} \mathrm{~K}_{\mathrm{f}}=\frac{\left[\mathrm{ZnY}^{2-}\right]}{\left(\mathrm{C}_{\mathrm{Zn}^{2+}}-\left[\mathrm{ZnY}^{2-}\right]\right) \mathrm{X}\left(\mathrm{C}_{\mathrm{Y}^{4-}}-\left[\mathrm{ZnY}^{2-}\right]\right)}
\]

To answer the question, what \(\mathrm{K}_{\mathrm{f}}\) is necessary to assure \(\geq 99.9 \% \mathrm{ZnY}^{2-}\) formation at the equivalence point, first, \(\mathrm{C}_{\mathrm{Zn} 2_{2}}\) and \(\mathrm{C}_{\mathrm{Y} 4-}\) are made equal because this is, by definition, the equivalence point. They are defined as \(\mathrm{C}_{\mathrm{EqpP}}\), and second \(\left[\mathrm{ZnY}^{2}\right]\) becomes \(0.999 \mathrm{C}_{\text {Eqpt }}\) because that represents a \(99.9 \%\) completion. So,
\[
\mathrm{K}_{\mathrm{f}}^{\prime \prime} \geq \frac{0.999 \mathrm{C}_{\mathrm{EqPt}}}{0.001 \mathrm{C}_{\mathrm{EqPt}} \mathrm{X} 0.001 \mathrm{C}_{\mathrm{EqPt}}}
\]

This shows that to achieve this degree of complexation, a \(\mathrm{K}_{\mathrm{f}}\) of at least \(10^{6} / \mathrm{C}_{\mathrm{Eqpt}_{\mathrm{t}}}\) is required. This is to say that, as the concentration of the titration mixture decreases, a larger and larger formation constant is required to achieve "complete" complex ion formation. \({ }^{191}\)

Borrowing from Equation 7-10:
\[
\mathrm{C}_{\mathrm{EqPt}}=\frac{\mathrm{C}_{\mathrm{M}}^{\circ} \mathrm{X} \mathrm{C}^{\circ}{ }_{\text {EDTA }}}{\mathrm{C}_{\mathrm{M}}^{\circ}+\mathrm{C}_{\text {EDTA }}^{\circ}}
\]

If one were to attempt a titration of \(10^{-3} \mathrm{M} \mathrm{Zn}^{2+}\) with \(10^{-3} \mathbf{M}\) EDTA, \(\mathrm{C}_{\mathrm{EqPt}}\) would equal \(5 \times 10^{-4}\) and so \(\mathrm{K}_{\mathrm{f}}\) would have to be at least \(2 \times 10^{9}\). From Figure \(9-2\) it is evident that this \(\mathrm{K}_{\mathrm{f}}\) can be achieved at a pH greater than 5 but less than 12 .

The consequence of operating well outside of the range, say where \(\mathrm{K}_{\mathrm{f}}\) is less than \(1\left(\log _{10} \mathrm{~K}_{\mathrm{f}}<0\right)\), implies that \(\mathrm{ZnY}{ }^{2-}\) complex is largely dissociated. This dependence of \(\mathrm{K}_{\mathrm{f}}\) on pH can be exploited. Consider the titration of a solution that contains two metals (as ions) and both metals form a complex with a given chelating agent, but with measurably different affinities (different \(\mathrm{K}_{\mathrm{f}}\) ), or that the two metals have substantially different affinities for \(\mathrm{OH}^{-}\)(different \(\beta_{\mathrm{n}} \mathrm{s}\) ). It might, then, be possible to adjust the pH of the titrand so that, at the equivalence point, one complex "completely" forms while the other is effectively, "completely" dissociated. Completely dissociated, would imply that no more than \(0.1 \%\) of \(\mathrm{M}^{\mathrm{p}+}\) is associated with \(\mathrm{Lc}^{\mathrm{q}}\) and likewise no more than \(0.1 \%\) of \(\mathrm{Lc}^{\mathrm{q}^{-}}\)is associated with \(\mathrm{M}^{\mathrm{p}}\). Consequently, at least \(99.9 \%\) of \(\mathrm{M}^{\mathrm{p}+}\) and \(\mathrm{Lc}^{\mathrm{q}^{-}}\)are free to associate with \(\mathrm{OH}^{-}\)and \(\mathrm{H}^{+}\), respectively. Applying these restrictions to \(\left[\mathrm{M}^{\mathrm{p}+}\right]\), \(\left[\mathrm{Lc}^{\mathrm{q}}\right]\) and \(\left[\mathrm{MLC}^{p-q}\right]\) gives the largest allowable \(\mathrm{K}_{\mathrm{f}}\) that will assure "no" binding between metal and chelate:
\[
\mathrm{K}_{\mathrm{f}}^{\prime \prime} \leq \frac{0.001 \mathrm{C}_{\mathrm{EqPt}}}{0.999 \mathrm{C}_{\mathrm{EqPt}} \mathrm{X} 0.999 \mathrm{C}_{\mathrm{EqPt}}}
\]

This requires that \(\mathrm{K}_{\mathrm{f}}\) must be no greater than \(0.001 \div \mathrm{C}_{\text {Eqpt }}\).
For the \(\mathrm{ZnY}{ }^{2-}\) complex, complete dissociation would be difficult to achieve, even if \(\mathrm{C}_{\mathrm{EqP}^{\mathrm{pt}}}\) were as small as \(10^{-4} \mathbf{M}\). This would require a \(\mathrm{K}_{\mathrm{f}} \leq 10\), or \(\log _{10} \mathrm{~K}_{\mathrm{f}} \leq 1\). Notice, from Figure 9-2, that this is difficult to achieve, but it is difficult only because the \(\mathrm{K}_{\mathrm{f}}\) for \(\mathrm{ZnY}^{2-}\) is so large \(\left(10^{16.50}=3.210^{16}\right)\). Problem 2 at the end of this chapter will provide a clearer example of this point.


Do you like cars? Would you like to be a part of a successful brand? We will appreciate and reward both your enthusiasm and talent. Send us your CV. You will be surprised where it can take you.

\section*{Send us your CV on} www.employerforlife.com (f)

So far, it has been presumed that \(\mathrm{K}_{\mathrm{f}}{ }^{\text {c }}\) can be adjusted only by protonating \(\mathrm{Lc}^{\mathrm{q}}\), or by hydroxylating \(\mathrm{M}^{\mathrm{p}+}\). There are, however, more effective ways of masking \(\mathrm{M}^{\mathrm{p}+}\) than with \(\mathrm{OH}^{-}\). The most effective way is to add to the solution a second ligand which binds some but not all of the different metal ions in the titrand. Consider for example the titration with EDTA of a solution containing approximately equal concentrations of \(\mathrm{Ni}^{2+}\) and \(\mathrm{Pb}^{2+}\). Both have approximately the same affinity for \(\mathrm{Y}^{4-}\) and for \(\mathrm{OH}^{-}\). So adjusting the pH will not provide a sufficiently different \(\alpha_{\mathrm{Ni} 2+}\) from \(\alpha_{\mathrm{Pb} 2+}\). Of course \(\alpha_{\mathrm{Y} 2-}\) would change with changing pH (cyan line, Figure 9-2) regardless of whether \(\mathrm{Ni}^{2+}\) or \(\mathrm{Pb}^{2+}\) is being titrated. However, \(\mathrm{Pb}^{2+}\) has no appreciable affinity for \(\mathrm{CN}^{-}\)while \(\mathrm{Ni}^{2+}\) has a \(\beta_{4}\) of \(10^{31.3} .{ }^{192}\) Providing a \(\mathrm{C}_{\mathrm{CN}}\) - of at least \(4 \times \mathrm{C}_{\mathrm{Ni} 2+}\) will diminish \(\mathrm{K}_{\mathrm{f}}\) for \(\mathrm{NiY}^{2-}\) to the point that \(\mathrm{Ni}^{2+}\) is "entirely" unavailable for binding to \(\mathrm{Y}^{4-}\).

To demonstrate the effect of cyanide on \(\mathrm{K}_{\mathrm{f}}\) for \(\mathrm{Ni}^{2+}\) and \(\mathrm{Pb}^{2+}\), the following worksheet is created. The approach follows that which was used earlier in this chapter. Notice the simple, but important difference in the form of \(\alpha_{\mathrm{Ni} 2+}\) with and without cyanide in solution, and that for some of these full quotations marks are necessary to protect the notation. The simplify command is included in the alpha[... assignments so that \(\left[\mathrm{Ni}^{2+}\right]\) or \(\left[\mathrm{Pb}^{2+}\right]\) will be factored out of the alpha expressions, directly. For clarity and economy of space, not all of the requested output is provided here; rather, only a few, instructive outputs are provided.
```

> restart; Ni(CN)[4]:= beta[`NiCN[4]']*Ni*CN^4; Ni(OH)[1]:=
beta["Ni(OH) 1"]*Ni*OH; Ni(OH)[2]:= beta["Ni(OH)2"]*Ni*OH^2:
Ni(OH)[3]:= beta["Ni(OH)3"]*Ni*OH^3: Pb(OH)[1]:= beta
["Pb(OH)1"]*Pb*OH: Pb (OH)[2]:= beta["Pb(OH)2"]*Pb*OH^2: Pb (OH)
[3]:= beta["Pb(OH)3"]*Pb*OH^3: alpha['Ni']:= simplify(Ni/ (Ni +
Ni(CN)[4] + Ni(OH)[1] + Ni(OH)[2] + Ni(OH)[3])); alpha ["Ni no
CN"]:= simplify(Ni/(Ni + Ni(OH)[1] + Ni(OH)[2] + Ni(OH)[3]));
alpha['Pb']:= simplify(Pb/(Pb + Pb(OH)[1] + Pb(OH)[2] + Pb(OH)
[3]));193

```
\[
\alpha_{" \mathrm{Ni} \mathrm{no} \mathrm{CN"}}:=\frac{1}{1+\beta_{" \mathrm{Ni}(\mathrm{OH}) 1 "} O H+\beta_{" \mathrm{Ni}(\mathrm{OH}) 2^{"}} O H^{2}+\beta_{" \mathrm{Ni}(\mathrm{OH}) 3^{"}} O H^{3}}
\]
\[
\alpha_{P b}:=\frac{1}{1+\beta_{" \mathrm{~Pb}(\mathrm{OH}) 1^{\prime}} O H+\beta_{" \mathrm{~Pb}(\mathrm{OH}) 2 "} O H^{2}+\beta_{\mathrm{"Pb}(\mathrm{OH}) 3^{\prime \prime}} O H^{3}}
\]

In the previous worksheet, OH was replaced with \(\mathrm{K}_{\mathrm{w}} / \mathrm{H}\) and then H was replaced with \(10^{-\mathrm{pH}}\). Here, these steps are combined, and 14 will be used instead of using \(\mathrm{pK}_{\mathrm{w}}\). That is, in purely general terms, OH would be \(10^{(\mathrm{pH}-\mathrm{pKw})}\), but here OH will be replaced with \(10^{(\mathrm{pH}-14)}\).
```

> alpha[`Ni']:= algsubs(OH = 10^(pH-14), alpha[`Ni']); alpha["Ni no
CN"]:= algsubs(OH = 10^(pH-14), alpha["Ni no CN"]); alpha[`Pb']:= algsubs(OH = 10^(pH -14), alpha[`Pb']);

$$
\begin{aligned}
\alpha_{N i} & :=1 /\left(1+\beta_{" \mathrm{Ni}(\mathrm{OH}) 3^{\prime}}\left(10^{p H-14}\right)^{3}+\beta_{" \mathrm{Ni}(\mathrm{OH}) 1 "} 10^{p H-14}\right. \\
& \left.+\beta_{" \mathrm{Ni}(\mathrm{OH}) 2^{\prime \prime}}\left(10^{p H-14}\right)^{2}+\beta_{\mathrm{NiCN}_{4}} C N^{4}\right)
\end{aligned}
$$

```

The next step is to address the effects of \(\left[\mathrm{H}^{+}\right]\)on \(\mathrm{H}^{+}+\mathrm{CN}^{-} \rightleftharpoons \mathrm{HCN}\) and on \(\mathrm{H}^{+}+\mathrm{Y}^{4-} \rightleftharpoons \mathrm{HY}^{3-}\) etc. The form of \(\alpha_{\mathrm{CN}}\) - follows that of Equation 4-21 and \(\alpha_{\mathrm{Y} 4-}\) follows the approach used above but both use \(10^{-\mathrm{pH}}\) in place of \(\left[\mathrm{H}^{+}\right]\).
```

> alpha[`CN']:= K[a]/(10^(-pH) + K[a]); alpha['Y4']:= K[a1]
*K[a2]*K[a3]*K[a4]/(10^(-4*pH) + K[a1]*10^(-3*pH) + K[a1]*K
[a2]*10^(-2*pH) + K[a1]*K[a2]*K[a3]*10^(-pH) + K[a1]*K[a2]*
K[a3]*K[a4]);

```

Finally, [ \(\mathrm{CN}^{-}\)] is calculated for use in \(\alpha_{\mathrm{Ni} 2+}\), and normally this might follow the discussion on page 56 et seq. regarding the calculation of [ \(\left.\mathrm{L}^{\mathrm{q}}\right]\). But here the problem is simplified in two ways: first, there is effectively only one complex between \(\mathrm{Ni}^{2+}\) and \(\mathrm{CN}^{-}\), namely \(\mathrm{Ni}(\mathrm{CN})_{4}{ }^{2-}\); second, the complex is so stable \(\left(\beta_{\mathrm{Ni}(\mathrm{CN}) 4}=2.010^{31}\right)\), that essentially all of the \(\mathrm{Ni}^{2+}\) will be bound to \(\mathrm{CN}^{-}\)as along as there is enough CN . Yes: this is an exercise in circular logic in that we presume that all of the \(\mathrm{Ni}^{2+}\) is bound to CN - and then we carry out a calculation for \(\alpha_{\mathrm{Ni} 2+}\), which, by our presumption should be zero. This, however, is an approximation, not a contradiction. The average number of cyanides per \(\mathrm{Ni}^{2+}\) would be
\[
\mathrm{n}_{\mathrm{ave}}=\frac{4 \beta_{4}\left[\mathrm{CN}^{-}\right]^{4}}{1+\beta_{4}\left[\mathrm{CN}^{-}\right]^{4}}
\]

The 1 in the numerator is a remnant of \(\left[\mathrm{Ni}^{2+}\right]\) which can been taken as insignificant. Certainly, \(1+\) \(\beta_{4}[\mathrm{CN}]^{4} \approx \beta_{4}[\mathrm{CN}]^{4}\) for any measurable concentration of cyanide. That is to say, 1 is insignificant here. For this reason, \(\mathrm{n}_{\text {ave }}\) is taken to be exactly 4 . So the concentration of \(\mathrm{CN}^{-}\)bound to \(\mathrm{Ni}^{2+}\) is simply four times the analytical concentration of \(\mathrm{Ni}^{2+}\). The total \(\mathrm{CN}^{-}\)is the analytical concentration of, say, potassium cyanide, which is the source of \(\mathrm{CN}^{-}\)for the titration. Finally, then, the concentration of unbound \(\mathrm{CN}^{-}\)is the difference between \(\mathrm{C}_{\mathrm{KCN}}\) and \(4 \times \mathrm{C}_{\mathrm{Ni} 2+}\). This is multiplied by \(\alpha_{\mathrm{CN}}\) - to adjust for the fact that some of this "free" cyanide will be protonated. This is achieved as follows, showing only the \(\alpha_{\mathrm{Ni}}\) which addresses the three hydroxy forms of \(\mathrm{Ni}^{2+}\) along with the tetracyano and the free forms.
```

> CN:= alpha[`CN']*(C[KCN] - 4*C [`Ni']); 'alpha['Ni']'=
alpha['Ni'];

```
\[
\begin{aligned}
& \alpha_{N_{i} i^{\prime}}=1 /\left(1+\beta_{{ }^{\prime \mathrm{Ni}(\mathrm{OH}) 3^{3 "}}}\left(10^{p H-14}\right)^{3}+\beta_{{ }^{\prime \mathrm{Ni}(\mathrm{OH}) 14}} 10^{p H-14}\right. \\
& \left.+\beta_{\mathrm{NXi}_{\mathrm{N}}(\mathrm{OH}) 2^{2}}\left(10^{p H-14}\right)^{2}+\frac{\beta_{\mathrm{NiCN}_{4}} K_{a}^{4}\left(C_{K C N}-4 C_{N i}\right)^{4}}{\left(10^{-p H}+K_{a}\right)^{4}}\right)
\end{aligned}
\]
\(\alpha_{\mathrm{Ni} 2+}\) shown in order to illustrate its dependence on \(\mathrm{C}_{\mathrm{KCN}}\) and \(\mathrm{C}_{\mathrm{Ni} 2++}{ }^{194}\)

Finally, all of the parameters can be assigned. The \(\mathrm{C}_{\mathrm{Ni} 2+}\) and \(\mathrm{C}_{\mathrm{Pb} 2+}\) are given values that are equal as prescribed in the premise of the problem and \(\mathrm{C}_{\mathrm{KCN}}\) is made greater than \(4 \times \mathrm{C}_{\mathrm{Ni} 2+}\) as required for the " \(n_{\text {ave }}=4\) " presumption.
```

> beta[NiCN[4]]:= 10^31.3; beta["Ni(OH)1"]:= 10^4.97;
beta["Ni(OH)2"]:= 10^8.55; beta["Ni(OH)3"]:= 10^11.33;
beta["Pb(OH) 1"]:= 10^7.82; beta["Pb(OH)2"]:= 10^10.85;
beta["Pb(OH)3"]:= 10^14.58; K[a]:= 6.2e-10; C[`Pb']:= 0.01; C[`Ni']:= 0.01; C[KCN]:= 0.05; K[a1]:= 10^(-1.99); K[a2]:=
10^(-2.67); K[a3]:= 10^(-6.16); K[a4]:= 10^(-10.26); K[Ni,f]:=
10^18.62; K[Pb,f]:= 10^18.04;

```


The values for \(\mathrm{K}_{\mathrm{f}}\) will vary over several orders of magnitude when the pH is increased from 0 to 14 . So it is prudent to express these constants logarithmically. Expressing these in simple terms:
```

> L['NiCN']:= log[10](alpha%5B'Ni'%5D*alpha%5B'Y4'%5D*K%5BNi,f%5D): L[`Ni']:= log[10](alpha["Ni no CN"]*alpha['Y4']*K[Ni,f]): L[`Pb']:= log[10](al
pha[`Pb']*alpha[`Y4']*K[Pb,f]):
> plot([L[`Ni'], L[`NiCN'],L [`Pb']],pH= 0..14,labels=
["-log[H+]","log(Kf'')"], color = [magenta, navy, "DarkOrange"],
axes = box);

```


Figure 9-4

In order to complex \(\mathrm{Ni}^{2+}\) "completely" without at all complexing the \(\mathrm{Pb}^{2+}\), a pH must be found where \(\mathrm{K}_{\mathrm{Pb}, \mathrm{f}}\) (dark orange) is less than \(0.001 / \mathrm{C}_{\mathrm{Pb} 2+}\) while \(\mathrm{K}_{\mathrm{Ni}, \mathrm{f}}\) (magenta) is greater than \(10^{6} / \mathrm{C}_{\mathrm{Ni} 2+}\). So if either C is taken to be, say 0.01 M , then we ask, is \(\mathrm{K}_{\mathrm{Pb}, \mathrm{f}}\) ever less than \(0.1\left(\log _{10} \mathrm{~K}_{\mathrm{Pb}, \mathrm{f}}=\right.\) minus 1\()\) where, at the same \(\mathrm{pH}, \mathrm{K}_{\mathrm{Ni}, \mathrm{f}}^{\prime \prime}\) is greater than \(10^{8}\) ? Never. Notice that the three \(\mathrm{K}_{\mathrm{f}} \mathrm{s}\) are nearly identical when \(-\log \left[\mathrm{H}^{+}\right]\) is less than 4 ; this means that the titrations are indistinguishable there; it means that \(\mathrm{CN}^{-}\)has no effect on \(\mathrm{Ni}^{2+}\) until \(\mathrm{pH}>3\). And without cyanide in solution, the conditional formation constants for \(\mathrm{Ni}^{2+}\) and \(\mathrm{Pb}^{2+}\) (dark orange and magenta) never diverge enough to make a selective titration possible, at any \(\mathrm{C}_{\mathrm{Ni} 2+}\) \(=\mathrm{C}_{\mathrm{Pb} 2+}\). The presence of an appreciable \(\mathrm{CN}^{-}\)concentration at \(\mathrm{pH}>8\), however, so diminishes \(\mathrm{K}_{\mathrm{Ni} \mathrm{f}}\) ( navy ) that \(\mathrm{Ni}^{2+}\) is invisible to EDTA. Indeed, at pH 8 one would expect nearly optimal binding between \(\mathrm{Pb}^{2+}\) and \(\mathrm{Y}^{4-}\) and insignificant binding between \(\mathrm{Ni}^{2+}\) and \(\mathrm{Y}^{4-}\).

Control of \(\mathrm{K}_{\mathrm{f}}\) is critical to regulating the composition of a solution at the equivalence point. But what is the makeup of a solution before and after this equivalence point? The composition of a solution throughout the addition of a chelating agent to a metal ion solution (or visa versa) is described with a titration plot, exactly as it was demonstrated in Chapter 7. Minus \(\log _{10} \mathrm{M}^{\mathrm{p}+}\) is followed rather than pH , and \(\mathrm{K}_{\mathrm{f}}{ }_{\mathrm{f}}\) is used in place of \(\mathrm{K}_{\mathrm{an}}\). Because ionic strength effects are disregarded in these titrations, \(\mathrm{K}_{\mathrm{p}}\), unlike \(\mathrm{K}_{\mathrm{an}}\), is taken to be constant throughout the titration. But inasmuch as \(\mathrm{K}_{\mathrm{f}}\) varies as solution conditions vary, it is imperative that the solution be buffered, and if a masking agent (like \(\mathrm{CN}^{-}\)) is used, the concentration of that agent must be stabilized to simplify the calculations and to assure consistent masking. To that end, it is wise to buffer both the titrand and titrant, and to add the masking agent, in the same concentration, to both the titrand and titrant.

As an example of this, a simple complexometric (chelomteric) titration will be monitored for the titration of \(0.010 \mathrm{M} \mathrm{Cu}^{2+}\) with 0.015 M nitrilotriacetic acid (NTA). NTA is triprotic acid that forms a 1:1 \(1^{195}\) complex with \(\mathrm{Cu}^{2+}\) and because it is a weak acid, its \(\alpha_{\text {NTA3- }}\) is affected by \(\mathrm{pH} . \mathrm{Cu}^{2+}\) forms four, hydroxy complexes. So \(\alpha_{\mathrm{Cu} 2+}\) is also affected by pH . It is necessary, therefore, to begin the analysis by selecting a pH that will provide a \(\mathrm{K}_{\mathrm{f}} \geq 10^{6} / \mathrm{C}_{\text {Eqpt }}\). For this part of the exercise, only the input and final output are provided. Then, the process of creating a titration plot is addressed with greater detail.
```

> restart; alpha[NTA3]:= K[a1]*K[a2]*K[a3]/(10^(-3*pH) +
K[a1]*10^(-2*pH) + K[a1]*K[a2]*10^(-pH) + K[a1]*K[a2]*K[a3]);
alpha[`Cu']:= 1/(1 + beta[1]*OH + beta[2]*OH^2 + beta[3]*OH^3 + beta[4]*OH^4); alpha[`Cu']:= algsubs(OH = 10^(pH-14),
alpha['Cu']);

```

All constants are then assigned.
```

> K[a1]:= 10^(-1.65): K[a2]:= 10^(-2.94): K[a3]:= 10^(-10.33);
beta[1]:= 10^7.00: beta [2]:= 10^13.68: beta[3]:= 10^17.00:
beta[4]:= 10^18.5:

```
 \(\mathrm{K}_{\mathrm{f}, \mathrm{CLNTA}}\) reaches a maximum.
```

> condition:= alpha['Cu']*alpha[NTA3];

$$
\begin{aligned}
\text { condition } & :=\left(1.20210^{-15}\right) /\left(\left(1+3.16210^{18}\left(10^{p H}-{ }^{14}\right)^{4}\right.\right. \\
& +4.78610^{13}\left(10^{p H}-{ }^{14}\right)^{2}+1.00010^{17}\left(10^{p H}-{ }^{14}\right)^{3} \\
& \left.+1.00010^{7} 10^{p H}-{ }^{14}\right)\left(10^{-3 p H}-0.02210^{-2 p H}+0.00010^{-p H}\right. \\
& \left.\left.+1.20210^{-15}\right)\right)
\end{aligned}
$$

```

We find that maximum (or minimum) at \({ }^{\text {dCondition }}{ }_{\text {dpH }}=0\). So,
```

> optimum:= diff(condition,pH); pH[`optimum']:= fsolve(optimum = 0,
pH, 0..14);

```
\[
p H_{\text {optimum }}:=7.159
\]

This value can be assigned to the pH which will then be used to calculate each alpha, condition, and \(\mathrm{K}_{\mathrm{f}}{ }^{\text {. The output formatting for the alphas is altered for future use (page 77). }}\)
```

> pH:= pH[`optimum']; 'alpha [`'Cu']'= alpha['Cu']; 'alpha [NTA3]'=
alpha [NTA3]; 'condition'= condition; K[f]:= 10^ 13.10;
Kpp[f]:=condition* K[f];

```
\[
\begin{gathered}
p H:=7.159 \\
a_{\mathrm{CUu}^{\prime}}=2.90610^{-1} \\
a_{\mathrm{NTA3}}=6.74610^{-4} \\
\text { condition }=0.000196 \\
K_{\mathrm{f}}:=1.25910^{13} \\
\text { Kpp }_{\mathrm{f}}:=2.46810^{9}
\end{gathered}
\]
\(\mathrm{K}_{\mathrm{f}}\) is calculated in order to ascertain that the CuNTA complex will be sufficiently stable that \(\geq 99.9 \%\) of the \(\mathrm{Cu}^{2+}\) will be complexed at the equivalence point. Applying Equation \(9-4\) with \(\mathrm{C}^{\circ}{ }_{\mathrm{Cu2+}}=0.010 \mathrm{M}\) and \(\mathrm{C}_{\text {NTA }}^{\circ}=0.015 \mathbf{M}\) gives \(\mathrm{C}_{\mathrm{EqPt}}=0.0060 \mathbf{M}\). The criterion from Equation \(9-3\) would require \(\mathrm{K}_{\mathrm{f}} \geq 10^{6} / 0.0060\) \(=1.710^{8}\). At pH 7.16, \(\mathrm{Kpp}_{\mathrm{f}}=2.46810^{9}\), is more than good enough!

The expression that provides \(\left[\mathrm{Cu}^{2+}\right]\) as a function of \(\mathrm{V}_{\mathrm{NTA}}\) is derived from mass balance and equilibrium requirements, but does not need charge balance considerations. After beginning the titration, there are three kinds of copper in solution: free \(\mathrm{Cu}^{2+}\), copper bound to NTA, and copper bound to at least one hydroxide. So \(\mathrm{C}_{\mathrm{C} 12+}\) must be the sum of the concentrations of these three forms of copper. The free copper and copper bound to NTA concentrations are simply \(\left[\mathrm{Cu}^{2+}\right]\) and [CuNTA], represented as Cu 2 and CuNTA, respectively. Before, the solutions are mixed,
\[
\left[\mathrm{Cu}^{2+}\right]=\alpha_{\mathrm{Cu}^{2}+} \times \mathrm{C}_{\mathrm{Cu} 2+},
\]
and from the definition of \(\alpha_{\mathrm{Cu2}+}\), it follows that the remaining forms of copper would be:
\[
\Sigma\left[\mathrm{Cu}(\mathrm{OH})_{\mathrm{n}}^{2-\mathrm{n}}\right]=\left(1-\alpha_{\mathrm{Cu} 2+}\right) \times \mathrm{C}_{\mathrm{Cu} 2+} .
\]

Recalling the discussion on page 67, after the solutions are mixed, i.e. during the titration, a new form of copper appears, and \(\alpha_{\mathrm{Cu} 2+}\) can no longer be applied to \(\mathrm{C}_{\mathrm{Cu} 2+}\); the concentration of that new form must be subtracted from \(\mathrm{C}_{\mathrm{Cu} 2+}\). This gives:
\[
\Sigma\left[\mathrm{Cu}(\mathrm{OH})_{\mathrm{n}}^{2-\mathrm{n}}\right]=\left(1-\alpha_{\mathrm{Cu}^{2+}}{ }^{2+}\right) \times\left(\mathrm{C}_{\mathrm{Cu}}{ }^{2+}-[\mathrm{CuNTA}]\right)
\]

On the Maple worksheet, this is carried out after a restart command so that the form of the following expressions is evident. Otherwise, the values assigned to \(\alpha_{C u 2+}, K_{f}\) etc. would be incorporated in the derivation, and the structure of the mass balance expression would not be clear. Alternatively, of course, each parameter could have been unassigned.
```

> restart; MassBal:= C['Cu'] = Cu2+CuNTA + (1 - alpha['Cu'])*
(C ['Cu'] - CuNTA);

```
\[
\begin{aligned}
& \text { MassBal }:= \\
& \qquad C_{C u}=C u 2+C u N T A+\left(1-\alpha_{C u}\right)\left(C_{C u}-C u N T A\right)
\end{aligned}
\]
[CuNTA] can be extracted from the equilibrium expression for \(K_{f}\left(\operatorname{not} K_{f}^{\prime \prime}\right)\).
\[
\mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{CuNTA}^{-}\right]}{\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{NTA}^{3-}\right]}
\]


MAERSK
[ \(\mathrm{NTA}^{3-}\) ] can be expressed as \(\alpha_{\mathrm{NTA} 3} \times\left(\mathrm{C}_{\mathrm{NTA}}-[\mathrm{CuNTA}]\right) .{ }^{196}\)
```

> CuNTA:= solve(K[f]= CuNTA/(Cu2*alpha[NTA3]*(C[NTA] - CuNTA)),
CuNTA);

```
\[
C u N T A:=\frac{K_{f} C u 2 \alpha_{N T A 3} C_{N T A}}{K_{f} C u 2 \alpha_{N T A 3}+1}
\]

This will be substituted into the mass balance expression.
> MassBal;
\[
\begin{aligned}
C_{C u}= & C u 2+\frac{K_{f} C u 2 \alpha_{N T A 3} C_{N T A}}{K_{f} C u 2 \alpha_{N T A 3}+1}+(1 \\
& \left.-\alpha_{C u}\right)\left(C_{C u}-\frac{K_{f} C u 2 \alpha_{N T A 3} C_{N T A}}{K_{f} C u 2 \alpha_{N T A 3}+1}\right)
\end{aligned}
\]

Solving this expression for [ \(\mathrm{Cu}^{2+}\) ] will produce two roots. So the solutions will be listed by using braces around Cu 2 .
```

> Copper:= solve(MassBal, {Cu2});

```
\[
\begin{aligned}
& \text { Copper }:=\left\{C u 2=\frac{1}{2} \frac{1}{K_{f} \alpha_{N T A 3}}\left(-\alpha_{C u} K_{f} \alpha_{N T A 3} C_{N T A}-1\right.\right. \\
& \quad+\alpha_{C u} C_{C u} K_{f} \alpha_{N T A 3} \\
& \quad+\left(\alpha_{C u}^{2} K_{f}^{2} \alpha_{N T A 3}^{2} C_{N T A}^{2}+2 \alpha_{C u} K_{f} \alpha_{N T A 3} C_{N T A}\right. \\
& \quad-2 \alpha_{C u}^{2} K_{f}^{2} \alpha_{N T A 3}^{2} C_{N T A} C_{C u}+1+2 \alpha_{C u} C_{C u} K_{f} \alpha_{N T A 3}+ \\
& \left.\left.\left.\alpha_{C u}^{2} C_{C u}^{2} K_{f}^{2} \alpha_{N T A 3}^{2}\right)^{1 / 2}\right)\right\},\{C u 2=
\end{aligned}
\]
\[
\begin{aligned}
& -\frac{1}{2} \frac{1}{K_{f} \alpha_{N T A 3}}\left(\alpha_{C u} K_{f} \alpha_{N T A 3} C_{N T A}+1\right. \\
& -\alpha_{C u} C_{C u} K_{f} \alpha_{N T A 3} \\
& +\left(\alpha_{C u}^{2} K_{f}^{2} \alpha_{N T A 3}^{2} C_{N T A}^{2}+2 \alpha_{C u} K_{f} \alpha_{N T A 3} C_{N T A}\right. \\
& -2 \alpha_{C u}^{2} K_{f}^{2} \alpha_{N T A 3}^{2} C_{N T A} C_{C u}+1+2 \alpha_{C u} C_{C u} K_{f} \alpha_{N T A 3}+ \\
& \left.\left.\left.\alpha_{C u}^{2} C_{C u}^{2} K_{f}^{2} \alpha_{N T A 3}^{2}\right)^{1 / 2}\right)\right\}
\end{aligned}
\]

The first root given is the logical (physically possible, i.e. \(\mathrm{Cu}^{2+} \geq 0\) ) solution because of its (not-at-all evident) " + sqrt" term. It is selected.
```

> Cu[titration]:= subs(Copper [1], Cu2);

```
\(\mathrm{Cu}_{\text {titration }}\) represents \(\left[\mathrm{Cu}^{2+}\right]\) as a function of the two alphas, \(\mathrm{K}_{\mathrm{f}} \mathrm{C}_{\mathrm{NTA}}\) and \(\mathrm{C}_{\mathrm{Cu2}+}\). The expression contains \(K_{p}\) rather than \(K_{p}^{\prime \prime}\) but closer examination shows that each \(K_{f}\) is multiplied by \(\alpha_{\mathrm{Cu2}^{+}}\)and \(\alpha_{\mathrm{NTA} 3}\), which is \(\mathrm{K}_{\mathrm{f}}\) The way this is written above allows one to ignore the previous calculation for \(\mathrm{K}_{\mathrm{f}}{ }_{\mathrm{f}}\) and use any legitimate \(\alpha_{\mathrm{Cu} 2+^{+}}\)and any \(\alpha_{\mathrm{NTA} 3}\), but because the pH of the solution is the same for \(\mathrm{Cu}^{2+}\) as it is for the NTA, these alphas are linked to each other. A given value for \(\alpha_{\mathrm{Cu}^{2}+}\) implies a specific pH , and that pH mandates a specific \(\alpha_{\text {NTA3. }}\). The values for \(\alpha_{\mathrm{Cu} 2+}\) and \(\alpha_{\mathrm{NTA} 3-}\) (page 74) are cut from the previous worksheet and pasted into the next line. Not only are these appropriately paired, their product (at condition) is the maximum possible product. And so, effectively, \(\mathrm{K}_{\mathrm{f}} \mathrm{i}\) is used here, and it is the maximum \(\mathrm{K}_{\mathrm{f}}\) All other parameters are assigned and finally, \(\mathrm{C}_{\mathrm{Cu} 2+}\) and \(\mathrm{C}_{\mathrm{NTA}}\) are expressed in terms of their respective \(\mathrm{C}^{\circ}\) and \(\mathrm{V}^{\circ}\) or \(\mathrm{V} . \mathrm{Cu}[\) titration \(]\); is called (and shown to three decimal places) to ascertain that \(V_{\mathrm{NTA}}\) is the only remaining parameter.
```

> alpha[`Cu']:= 2.9061E-1; alpha[NTA3]:= 6.746E-4; K[f]:= 10^13.10; V [``Cu']:= 25.0; C' ['Cu']:= 0.010; C'[NTA]:= 0.015; C[`'Cu']:=

```

```

 (V' ['Cu'] + V[NTA]);'Cu[titration]' = Cu [titration];
    ```
\[
\begin{gathered}
C u_{\text {titration }}=-\frac{0.002 V_{N T A}}{25.000+V_{N T A}}-5.88710^{-11}+\frac{0.036}{25.000+V_{N T A}} \\
+5.88710^{-11}\left(\frac{1.37110^{15} V_{N T A}^{2}}{\left(25.000+V_{N T A}\right)^{2}}+\frac{7.40410^{7} V_{N T A}}{25.000+V_{N T A}}\right. \\
-\frac{4.56910^{16} V_{N T A}}{\left(25.000+V_{N T A}\right)^{2}}+1+\frac{1.23410^{9}}{25.000+V_{N T A}} \\
\left.+\frac{3.80710^{17}}{\left(25.000+V_{N T A}\right)^{2}}\right)^{1 / 2}
\end{gathered}
\]

Because \(\left[\mathrm{Cu}^{2+}\right]\) will decrease by orders of magnitude as NTA is added (and as CuNTA \({ }^{1-}\) is formed), it will be plotted logarithmically, just as one would plot \(\left[\mathrm{H}^{+}\right]\)in an acid / base titration. Given that \(\mathrm{V}^{\circ}{ }_{\mathrm{Cu} 2+}\) \(=25.0 \mathrm{~mL}, \mathrm{C}^{\circ}{ }_{\mathrm{Cu} 2+}=0.010 \mathrm{M}\) and \(\mathrm{C}_{\mathrm{NTA}}^{\circ}=0.015 \mathrm{M}, \mathrm{V}_{\mathrm{NTA}, \mathrm{EqPt}} \mathrm{can}\) be shown \({ }^{197}\) to be 16.7 mL . So varying \(\mathrm{V}_{\mathrm{NTA}}\) from 0 to 20 mL should provide a full titration plot.
```

> pCu := -log[10](Cu%5Btitration%5D): plot(pCu,V[NTA] = 0.. 20, labels
= ["mL of NTA","-log[Cu2+]"], axes = boxed);

```



Figure 9-5
Like the acid / base titration, the equivalence point is characterized by a dramatic change in the concentration of the titrand. Both pH and chelometric titrations can be monitored potentiometrically; that is by monitoring the potential at an indicating electrode as titrant is added. The electrode voltage will change linearly with the \(\log \left\{\mathrm{H}^{+}\right\}\)or with \(\log \left\{\mathrm{M}^{\mathrm{p}+}\right\}\). For the \(\mathrm{Cu}^{2+} /\) NTA titration described here, there would remain the matter of converting the \(\left[\mathrm{Cu}^{2+}\right]\) to its activity, \(\left\{\mathrm{Cu}^{2+}\right\}\), and that would require \(\gamma_{\mathrm{Cu} 2+}\) which would, in turn, require a calculation of \(\mu\) at each incremental change in \(\mathrm{V}_{\mathrm{NTA}}{ }^{198}\) This exercise is unimportant because \(-\log _{10}\left\{\mathrm{Cu}^{2+}\right\}\), like \(-\log _{10}\left[\mathrm{Cu}^{2+}\right]\) will change dramatically at the equivalence point as long as \(K_{f}^{\prime \prime}\) is at least \(10^{6} / \mathrm{C}_{\mathrm{EqPt}}\) So either measure, concentration or activity, will reveal \(\mathrm{V}_{\mathrm{EqPt}}\).

Also, like the acid / base titration, the equivalence point can be identified by using an indicator. Instead of using the \(\mathrm{HIn} \rightleftharpoons, \mathrm{H}^{+}+\mathrm{In}\) equilibration (Part I, page 169), a metallochrome indicator is used. These exploit the MIn \(n^{p-r} \rightleftharpoons \mathrm{M}^{\mathrm{p}+}+\mathrm{In}^{r-}\) equilibration. Such indicators are, themselves, weak acids and consequently their behavior toward \(\mathrm{M}^{\mathrm{p}+}\) is affected by the pH of the solution in which they are used. That is, \(\alpha_{\text {Inr- }}\) must be taken into consideration. \(\alpha_{\text {Inr- }}\) takes the form that would be found for any polyprotic acid as described in Chapter 8 (page 11).

The complexometric titration using a metallochrome indicator entails competition between the chelating ligand, \(\mathrm{Lc}^{+}\)and \(\mathrm{In}^{\mathrm{r}-}\) for the metal ion \(\mathrm{M}^{\mathrm{p}+}\). Of course, as discussed earlier and again here, \(\mathrm{H}^{+}\)competes with \(\mathrm{M}^{\mathrm{p}}\) for \(\mathrm{Lc}^{\mathrm{q}^{-}}\)and \(\mathrm{In}^{\mathrm{r}}\). At the equivalence point, it is expected that \(99.9 \%\) of \(\mathrm{Lc}^{\mathrm{q}}\) has bound to \(\mathrm{M}^{\mathrm{p}}\). Recalling the behavior of acid / base indicators, it is expected that the concentration of one form of the indicator (MIn \({ }^{p-r}\) or \(\mathrm{In}^{r}\) ) would be ten times the concentration of the other form so that one of the two colors clearly dominates. Usually, the titrand contains the \(\mathrm{M}^{\mathrm{p}+}\) and the titrant provides the \(\mathrm{Lc}^{\mathrm{q}} .{ }^{-199} \mathrm{In}\) this case, the titrand contains \(\mathrm{M}^{\mathrm{p}}\) along with \(\mathrm{MIn}^{\mathrm{pr}}\). As \(\mathrm{Lc}^{4-}\) is added, it first binds to the more labile, free \(\mathrm{M}^{\mathrm{p}+}\), but as the supply of free \(\mathrm{M}^{\mathrm{p}+}\) is depleted, then
\[
\mathrm{Lc}^{\mathrm{q}-}+\mathrm{MIn}^{\mathrm{p}-\mathrm{r}} \rightleftharpoons \mathrm{In}^{\mathrm{r}-}+\mathrm{MLc}^{\mathrm{p}-\mathrm{q}}
\]

The endpoint would coincide with point at which \(\left[\mathrm{In}^{r}\right]\) reaches \(10 \times\left[\mathrm{MIn}^{\mathrm{p}-\mathrm{r}}\right]\). Given that,
\[
\mathrm{K}_{\mathrm{f}, \mathrm{In}}=\frac{\left[\mathrm{MIn}^{\mathrm{p}-\mathrm{r}}\right]}{\left[\mathrm{M}^{\mathrm{p}}\right]\left[\mathrm{In}^{\mathrm{r}}\right]}
\]
what, then, is the necessary relationship between \(\mathrm{K}_{\mathrm{f}}\) and \(\mathrm{K}_{\mathrm{f}, \mathrm{In}}\) to achieve this distribution of \(\left[\mathrm{M}^{\mathrm{p}+}\right],\left[\mathrm{MLc}^{p-q}\right]\), [MIn \(\left.{ }^{\mathrm{pr-r}}\right]\), and \(\left[\mathrm{In}^{\mathrm{r}}\right]\) ? There is a simple approach to this question that follows from
\[
\mathrm{K}_{\mathrm{f}}=\frac{\left[\mathrm{ML}^{\mathrm{p}-\mathrm{q}}\right]}{\left[\mathrm{M}^{\mathrm{p}}\right]\left[\mathrm{L}^{\mathrm{q}}\right]}
\]

Solving this for \(\left[\mathrm{M}^{\mathrm{p}+}\right]\) gives:
\[
\left[\mathrm{M}^{\mathrm{p}+}\right]=\frac{\left[\mathrm{ML}^{\mathrm{p}-\mathrm{q}}\right]}{\left.\mathrm{K}_{\mathrm{f}} \mathrm{X} \mathrm{~L}^{\mathrm{q}}\right]}
\]
and substituting this back into the expression for \(\mathrm{K}_{\mathrm{f}, \mathrm{In}}\) produces
\[
\mathrm{K}_{\mathrm{f}, \mathrm{In}}=\frac{\left[\mathrm{MIn}^{\mathrm{p}-\mathrm{r}}\right] \mathrm{X} \mathrm{~K}_{\mathrm{f}} \mathrm{X}\left[\mathrm{Lc}^{\mathrm{q}-}\right]}{\left[\mathrm{In}^{\mathrm{r}}\right] \times\left[\mathrm{MLc}^{-\mathrm{q}}\right]}
\]
which provides the relationship between \(\mathrm{K}_{\mathrm{f}, \mathrm{ln}}\) and \(\mathrm{K}_{\mathrm{f}}\) At the equivalence point, recall the expectation that [MLc \({ }^{\mathrm{p}-\mathrm{r}}\) ] is 1000 times larger than [ \(\mathrm{Lc}^{\mathrm{r}}\) ] (hence \(99.9 \%\) association) and that [ \(\mathrm{In}^{\mathrm{r}}\) ] is 10 times larger than \(\left[\mathrm{MIn}^{\mathrm{p}-\mathrm{r}}\right]\) (hence the dominance of its color). Making these substitutions gives:
\[
K_{\mathrm{f}, \mathrm{In}}={ }_{\mathrm{f}}^{\mathrm{K}} \mathrm{f}_{10,000} .
\]

This is a generally accepted rule of thumb, \({ }^{200}\) but it cannot be complete in that it ignores \(\alpha_{\text {Lcq- }}\) and \(\alpha_{\text {Inr- }}\) which change differently with pH , and it ignores any dependence on \(\mathrm{C}_{\text {Indicator }}\) and \(\mathrm{C}_{\text {Chelate' }}\) which are sure to influence the distribution of \(\left[\mathrm{M}^{\mathrm{p}+}\right]\), [ \(\left.\mathrm{MLc}{ }^{\mathrm{p}-\mathrm{q}}\right]\), [ \(\left.\mathrm{MIn}^{\mathrm{pr}}\right]\), and \(\left[\mathrm{In}^{\mathrm{r}}\right] . .^{201}\) Reilley and Schmid \({ }^{202}\) have addressed the problem of indicator choice and concentration but at a level beyond what is appropriate here.

A very different approach to indicator selection is presented here: rather than calculating an ideal \(\mathrm{K}_{\mathrm{f}, \mathrm{In} \text {, }}\) and using that \(\mathrm{K}_{\mathrm{f}, \mathrm{I}}\) to choose an indicator, an indicator is chosen and its suitability is checked. This is a practical approach because there is a considerable literature on metallochrome indicators and the metal ions for which they are applicable (e.g. Appendix VIb). Moreover, this approach can provide insight into the way that the indicator behaves. That is, it can reveal which form or forms \(\left(\mathrm{H}_{\mathrm{n}} \mathrm{In}^{\mathrm{nr}}\right)\) of the indicator participate in the color change at the endpoint. This indicator evaluation process will be demonstrated by returning to the \(\mathrm{Cu}^{2+}\) / NTA titration and evaluating 4-(2-pyridylazo)resorcinol (known also as PAR) as an indicator for detecting the equivalence point.

A triprotic acid like PAR is expected to have four congeners, \(H_{n} P A R,{ }^{203}\) with \(n\) equals 0 to 3 , but in the presence of a copper ion to which it can complex, there is a fifth form, CuPAR. The expression for any one of its five alphas is a simple modification of the process described on page 11: but the denominator requires one more term, namely [CuPAR]. The [CuPAR] component can be expressed in terms of \(\mathrm{K}_{\mathrm{f}, \mathrm{In}}\), \(\left[\mathrm{Cu}^{2+}\right]\) and \(\left[\mathrm{PAR}^{3-}\right]\) by modifying the expression for \(\mathrm{K}_{\mathrm{f}, \mathrm{In}}\) above. That is,
\[
\alpha_{\mathrm{CuPAR}}=\frac{[\mathrm{CuPAR}]}{\left[\mathrm{H}_{3} \mathrm{PAR}\right]+\ldots+[\mathrm{PAR}]+[\mathrm{CuPAR}]}=\frac{\mathrm{K}_{\mathrm{f}, \mathrm{In}}[\mathrm{Cu}][\mathrm{PAR}]}{\left[\mathrm{H}_{3} \mathrm{PAR}\right]+\ldots+[\mathrm{PAR}]+\mathrm{K}_{\mathrm{f}, \mathrm{In}}[\mathrm{Cu}][\mathrm{PAR}]}
\]

Then using substitutions like \(\left[\mathrm{H}_{3} \mathrm{PAR}\right]=\left[\mathrm{H}^{+}\right]^{3}[\mathrm{PAR}] / \mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3}\) and \([\mathrm{HPAR}]=\left[\mathrm{H}^{+}\right][\mathrm{PAR}] / \mathrm{K}_{\mathrm{a} 3}\) produces expressions for alpha in terms of \(\left[\mathrm{H}^{+}\right],\left[\mathrm{Cu}^{2+}\right]\) and the four equilibrium constants; \([\mathrm{PAR}]\) cancels out giving,
\[
\alpha_{\text {CuPAR }}=\frac{\mathrm{K}_{\mathrm{f}, \mathrm{In}}[\mathrm{Cu}] \mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3}}{\left[\left[\mathrm{H}^{+}\right]^{3}+\ldots+\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3}+\mathrm{K}_{\mathrm{f}, \mathrm{In}}[\mathrm{Cu}]\left[\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~K}_{\mathrm{a} 3}\right.\right.}
\]
which can be adjusted to give any of the five alphas simply by replacing the term in the numerator with the appropriate term from the denominator (again, as on page 11). Notice that when \(\left[\mathrm{Cu}^{2+}\right]\) equals zero the \(\mathrm{K}_{\mathrm{f}, \mathrm{In}} \times\left[\mathrm{Cu}^{2+}\right] \times \mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{a} 2} \times \mathrm{K}_{\mathrm{a} 3}\) term will equal zero. Not only does this make \(\alpha_{\text {CuPAR }^{-}}\)equal zero, but it simplifies all other alphas to their "Chapter 8 form."

\title{
"I studied English for 16 years but... \\ ...I finally learned to speak it in just six lessons" Jane, Chinese architect
}


ENGLISH OUT THERE Click to hear me talking before and after my unique course download

Continuing from the >plot command on page 79, the expressions for three (of the four) forms of PAR are derived. These are \(\mathrm{H}_{2} \mathrm{PAR}^{1-}, \mathrm{HPAR}^{2-}, \mathrm{PAR}^{3-}\) and of course CuPAR. All five might have been articulated, but given the pH of this titration, \(\mathrm{H}_{3} \mathrm{PAR}\) not likely to be a factor. (See page 84.)
```

> Den:= 10^(-3*pH) + K[a1]*10^(-2*pH) + K[a1]*K[a2]*10^(-pH) + K
[a1]*K[a2]*K[a3] + K[f,In]*Cu2*K[a1]*K[a2]*K[a3]: alpha [H2PAR]:=
op(2,Den)/Den; alpha[HPAR2]:= op(3,Den)/Den; alpha[PAR3]:=
op(4,Den)/Den; alpha[CuPAR]:= op(5,Den)/Den;

```
\[
\begin{aligned}
& \alpha_{C u P A R}:=\left(K_{f, I n} C u 2 K_{a l} K_{a 2} K_{a 3}\right) /\left(10^{-3 p H}+K_{a 1} 10^{-2 p H}\right. \\
& \left.\quad+K_{a 1} K_{a 2} 10^{-p H}+K_{a I} K_{a 2} K_{a 3}+K_{f, I n} C u 2 K_{a l} K_{a 2} K_{a 3}\right)
\end{aligned}
\]

Only \(a_{\text {CuPAR }}\) is shown. Its similarity to the expression in the previous paragraph is made apparent by using Cu2 in place of \(\mathrm{Cu}_{\text {titration }}\). Recall that \(\mathrm{Cu}_{\text {titration }}\) is the expression for \(\left[\mathrm{Cu}^{2+}\right]\) that is written in terms of \(\mathrm{C}^{\circ}{ }_{\text {NTA }}\), \(\mathrm{V}_{\mathrm{NTA}}, \mathrm{C}^{\circ}{ }_{\mathrm{Cu}}\) and \(\mathrm{V}_{\mathrm{Cu}}^{0}\). Cu 2 will be replaced with \(\mathrm{Cu}_{\text {titration }}\) presently, but first, all of the parameters will be assigned their values from Appendix VIb and then each alpha will be checked to see that it is a function of only Cu2. It might seem strange that we are assigning a value to the pH here, after we have created a titration plot that strongly depends on pH , but recall, we had effectively assigned the pH by assigning alpha [ 'Cu'] and alpha [NTA3] which were determined from the same pH that is assigned here. The values are not shown, but should be inspected for errors.
```

> K[a1]:= 10^(-2.30); K[a2]:= 10^(-6.95); K[a3]:= 10^(-12.4);
K[f,In]:= 10^10.3; pH := 7.1594;

```

We might now inspect the new alphas for their exclusive dependence on \(\left[\mathrm{Cu}^{2+}\right]\) :
```

> 'alpha[H2PAR]'= alpha [H2PAR]; 'alpha[HPAR2]'=alpha[HPAR2];
`alpha[PAR3]'= alpha [PAR3]; 'alpha[CuPAR]'= alpha[CuPAR];

```
\[
\begin{aligned}
& \alpha_{\text {H2PAR }}=\frac{2.40510^{-17}}{6.30110^{-17}+4.46710^{-12} \mathrm{Cu} 2} \\
& \alpha_{\text {HPAR2 }}=\frac{3.89610^{-17}}{6.30110^{-17}+4.46710^{-12} \mathrm{Cu} 2} \\
& \alpha_{\text {PAR3 }}=\frac{2.23910^{-22}}{6.30110^{-17}+4.46710^{-12} \mathrm{Cu} 2} \\
& \alpha_{\text {CuPAR }}=\frac{4.46710^{-12} \mathrm{Cu} 2}{6.30110^{-17}+4.46710^{-12} \mathrm{Cu} 2}
\end{aligned}
\]

And now, Cu 2 can be replaced with the expression that will provide \(V_{\mathrm{NTA}}\) dependence. The resulting expressions are too long to display and too complicated inspect reliably.
```

> alpha[H2PAR]:= algsubs(Cu2 = Cu[titration], alpha[H2PAR]):
alpha[HPAR2]:= algsubs(Cu2 = Cu[titration], alpha[HPAR2]):
alpha[PAR3]:= algsubs(Cu2 = Cu[titration], alpha[PAR3]):
alpha[CuPAR]:= algsubs(Cu2 = Cu[titration], alpha[CuPAR]):

```

Logarithmic conversions are made, which also are too complex for a useful display.
```

> p_alpha[H2PAR]:= -log[10](alpha%5BH2PAR%5D): p_alpha[HPAR2]:= -log[10]
(alpha[HPAR2]): p_alpha[PAR3]:= -log[10](alpha%5BPAR3%5D): p_
alpha[CuPAR]:= -log[10](alpha%5BCuPAR%5D):

```

Along with the plot of these four alphas, the originally plotted pCu (again in red) is included so that comparison to the equivalence point is clear. It shows that a rapid change in \(\mathrm{p} \alpha_{\text {CuPAR }}\) coincides with the 16.67 mL equivalence point where \(\left[\mathrm{Cu}^{2+}\right]\) is shown to change rapidly.

The plot also shows that after the equivalence point, it is the HPAR \({ }^{2-}\) that dominates the solution, and so it is likely that the color transition one sees is due to a CuPAR \(\longrightarrow\) HPAR \(^{2-}\) transition. \({ }^{204}\) It also shows that that \(\mathrm{H}_{2} \mathrm{PAR}\) is the next most abundant congener, and therefore, it probably makes a considerable contribution to the color of the titrand, after the equivalence point.
```

> plot([pCu, p_alpha[H2PAR], p_alpha[HPAR2], p_alpha [PAR3], p_
alpha[CuPAR]], V[NTA] = 0..20, color = [red, black, blue, green,
"Purple"], labels = ["mL of NTA","-log "],axes = boxed);

```


Figure 9-6

Excellent Economics and Business programmes at:



Click on the ad to read more

Let's take a closer look at the congeners of the indicator, at the equivalence point and \(0.1 \%\) before and \(0.1 \%\) after the equivalence point. At the equivalence point:
```

> V[NTA]:= V [[`Cu']*C` [`Cu']/C'}[NTA]; alpha[HPAR2[EqPt]]:
alpha[HPAR2]; alpha[PAR3[EqPt]]:= alpha[PAR3]; alpha
[CuPAR[EqPt]]:= alpha[CuPAR];

```
before the equivalence point:
```

> V[NTA]:= 0.999*V[NTA]; alpha[HPAR2[Early]]:= alpha [HPAR2];
alpha[PAR3[Early]] := alpha[PAR3]; alpha[CuPAR[Early]]:=
alpha[CuPAR];

```
and after the equivalence point:

```

 alpha[HPAR2]; alpha[PAR3[Late]]:= alpha[PAR3];
 alpha[CuPAR[Late]]:= alpha[CuPAR];
    ```
\begin{tabular}{|c|c|c|c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \(0.1 \%\) Early & At the Eq. Pt. & \(0.1 \%\) Late \\
\hline \(\mathrm{V}_{\text {NTA }}\) & 16.65 & 16.67 & 16.68 \\
\hline \(\mathrm{a}_{\text {H2PAR1- }}\) & 0.3374 & 0.3699 & 0.3788 \\
\hline \(\mathrm{a}_{\text {HPAR2- }}\) & 0.5464 & 0.5990 & 0.6134 \\
\hline \(\mathrm{a}_{\text {PAR3- }}\) & \(3.1410^{-6}\) & \(3.4410^{-6}\) & \(3.5310^{-6}\) \\
\hline \(\mathrm{a}_{\text {CUPAR1- }}\) & 0.1162 & 0.0311 & 0.0078 \\
\hline
\end{tabular}

Under these conditions there is only a trace of \(\mathrm{PAR}^{3}\). This is due to the relatively low pH of the titrand; we would have done as well to ignore this congener as we were to ignore \(\mathrm{H}_{3} \mathrm{PAR}\).

The key to finding a suitable indicator is finding a substantial \({ }^{\Delta p a}{ }_{\Delta v}\) at the equivalence point, not as an absolute \(\Delta \mathrm{p} \alpha\) but as a relative change. In absolute terms \(\mathrm{p} \alpha_{\text {H2PARI- }}\) and \(\mathrm{p} \alpha_{\text {HPAR2- }}\) change the most, but the color of a solution that has, for example, \(34 \%\) of the indicator in the \(\mathrm{H}_{2} \mathrm{PAR}^{1-}\) form before and \(38 \%\) after the equivalence point is not likely to be remarkable, But a change from \(12 \% \mathrm{CuPAR}^{-1}\) to \(0.8 \%\) is likely to be appreciable.

Recall that on page 75 we found the optimum pH for the titration of \(\mathrm{Cu}^{2+}\) with \(\mathrm{NTA}^{3-}\) and that this optimum pH produced a \(\mathrm{K}_{\mathrm{f}}=2.510^{9}\), and that we require only \(\mathrm{K}_{\mathrm{f}} \geq 1.710^{8}\) to achieve a good equivalence point. This means that we could adjust the pH and diminish the \(\mathrm{K}_{\mathrm{f}}\) as we attempt to alter \(\alpha_{\text {CuPAR1 }}\). Suppose that we move to a higher pH where more \(\mathrm{PAR}^{3-}\) is likely but because of \(\mathrm{Cu}(\mathrm{OH})_{\mathrm{n}}{ }^{2-\mathrm{n}}\), there is less \(\mathrm{Cu}^{2+}\) to bind. It can be shown that at pH 8.5 , for example: \({ }^{205}\)


Figure 9-7

Is this an improvement over what is shown in Figure 9-6? Clearly \(\Delta \mathrm{pCu}^{2+}\) at the equivalence point has been diminished; that was expected because at the higher pH , there is less free \(\mathrm{Cu}^{2+}\) throughout the titration, and as predicted, there is less \(\mathrm{H}_{2} \mathrm{PAR}^{-}\)and more \(\mathrm{HPAR}^{2-}\) at this higher pH . The color of the solution is dominated by CuPAR \({ }^{1-}\) well before the equivalence point and \(\operatorname{HPAR}^{2-}\) well after the equivalence point.
\begin{tabular}{|c|c|c|c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \(0.1 \%\) Early & At the Eq. Pt. & \(0.1 \%\) Late \\
\hline \(\mathrm{V}_{\text {NTA }}\) & 16.65 & 16.67 & 16.68 \\
\hline \(\mathrm{a}_{\text {H2PAR1- }}\) & 0.0264 & 0.0269 & 0.0271 \\
\hline \(\mathrm{a}_{\text {HPAR2- }}\) & 0.9365 & 0.9539 & 0.9629 \\
\hline \(\mathrm{a}_{\text {PAR3- }}\) & \(1.1810^{-4}\) & \(1.2010^{-4}\) & \(1.2110^{-4}\) \\
\hline \(\mathrm{a}_{\text {CUPAR1- }}\) & 0.0370 & 0.0191 & 0.0098 \\
\hline
\end{tabular}

The important observation is the magnitude of \({ }^{\Delta p \alpha} /{ }_{\Delta V}\) for \(C u P A R^{1-}\) which has clearly been diminished at this pH . Not only has the relative change been mitigated, the absolute value of this alpha has been diminished. So the contribution by CuPAR \({ }^{1-}\) to the solution's color will be considerably smaller and so its color change will be more difficult to perceive. Lowering the pH to 6.5 gives:


Figure 9-8
This plot shows that the solution color is again dominated by \(\mathrm{CuPAR}^{-1}\) up to the equivalence point, that \(\alpha_{\text {CuPAR1- }}\) drops even more precipitously at this lower pH , and that it is \(\mathrm{H}_{2} \mathrm{PAR}^{-}\)that replaces \(\mathrm{CuPAR}^{-1}\) at the equivalence point. This implies a different color change than what is seen at pH 7.16 . (Fig. 9-6)

\section*{American online LIGS University}
is currently enrolling in the Interactive Online BBA, MBA, MSc, DBA and PhD programs:
- enroll by September 30th, 2014 and
- save up to \(16 \%\) on the tuition!
- pay in 10 installments / 2 years
- Interactive Online education
- visit www.ligsuniversity.com to find out more!

Note: LIGS University is not accredited by ans nationally recognized accrediting agency listed by the US Secretary of Education. More info here.

\(\mathrm{C}_{\text {Indicator }}\) has not been considered, but it is important for three reasons. First, if \(\mathrm{C}_{\text {Indicator }}\) is too large it can cause a titration error, \({ }^{202}\) and second, if it is too large it can become difficult to achieve a large \(\alpha_{\text {MInp-r }}\) because there is simply not enough \(\mathrm{M}^{\mathrm{p}+}\) in solution to "metallize" enough \(\operatorname{In}^{\mathrm{r}-} .{ }^{206}\) Third, if \(\mathrm{C}_{\text {Indicator }}\) is too small, there might be insufficient coloration of the titrand to perceive the endpoint. The third concern is minor because all metallochrome indicators of note are intensely colored and that allows one to use minute concentrations, on the order of \(10^{-5} \mathrm{M}\). Only enough indicator should be added to make the titrand color just perceptible. The consequence of too little indicator is obvious, not enough color; the effect too much indicator is often not apparent, but can cause a serious error.

Also omitted from discussion is the issue of kinetics. Every reaction considered came with the presumption of rapid equilibration, but all reactions are not fast. Indeed, some metal ions react so slowly with some chelons that a titration is impractical, and some metals dissociate from indicator complexes so slowly that an endpoint for the titration is not seen. Either of these problems can be circumvented by means of a back titration. In a back titration, a known amount of chelating agent is added, in excess, to a metal ion solution. After the \(\mathrm{M}^{\mathrm{p}+} / \mathrm{Lc}^{\mathrm{q}^{-}}\)or \(\mathrm{M}^{\mathrm{p}+} / \mathrm{In}^{\mathrm{n}-}\) reaction has reached completion, the excess \(\mathrm{Lc}^{\mathrm{q}^{-}}\)is determined by titration with a different metal ion. A back titration problem is included in the Example Problems in this chapter.

What is presented in this chapter should enable the reader to address a wide range of problems in complexometric equilibrium. But for brevity, some other issues have been omitted. For example, some chelating agents form two complexes with metal ions: they form a protonated complex, HMLc \({ }^{1+p-q}\), as well as a non protonated complex MLc \({ }^{p-q}\). This serves to enhance the effectiveness of this chelon, especially at a pH where protonation can impair the formation of \(\mathrm{MLc}^{\mathrm{p}-\mathrm{q}}\).

\section*{Example Problems}
1. Consider the formation of the four \(\mathrm{CdCl}_{\mathrm{n}}{ }^{2-\mathrm{n}}\) complexes where \(\mathrm{n}=1\) to 4 . Given that \(\log _{10} \beta_{1}\) through \(\log _{10} \beta_{4}\) are \(2.05,2.60,2.40\), and 2.90 , respectively. Calculate:
a) \(\mathrm{K}_{\mathrm{f} 3}\) for the trichloro complex.
b) the \(\alpha_{\mathrm{Cd} 2+}\) through \(\alpha_{\text {CdC142- }}\) for a solution that is \(0.0050 \mathbf{M}\) in total \(\mathrm{Cd}^{2+}\left(\right.\) i.e. \(\left.\mathrm{C}_{\mathrm{Cd} 2+}\right)\) and 0.0100 M in total \(\mathrm{Cl}^{-}\)(i.e. \(\mathrm{C}_{\mathrm{Cl}^{-}}\)).
c) the \(\alpha_{\mathrm{Cd} 2+}\) through \(\alpha_{\text {CdCl12- }}\) for a solution that is \(0.0050 \mathbf{M}\) in \(\mathrm{Cd}^{2+}\left(\right.\) i.e. \(\left.\mathrm{C}_{\mathrm{Cd} 2+}\right)\) and \(0.0500 \mathbf{M}\) in \(\mathrm{Cl}^{-}\)(i.e. \(\mathrm{C}_{\mathrm{Cl}^{-}}\)).
d) the minimum \(\mathrm{C}_{\mathrm{Cl}^{-}}\)necessary to assure that \(\alpha_{\mathrm{CdCl42}}{ }^{-}\)is at least 0.90 (with \(\mathrm{C}_{\mathrm{Cd} 2+}=0.0050\) M).
5. Consider the problem of titrating a \(0.0010 \mathbf{M}\) solution of \(\mathrm{Fe}^{3+}\) which is \(0.010 \mathbf{M}\) in \(\mathrm{Mn}^{2+}\) using 0.0025 M DCYTA \({ }^{207}\). Find a pH at which the \(\mathrm{Fe}^{3+}\) can be titrated without interference from the \(\mathrm{Mn}^{2+}\).
6. Suppose that you have a metal ion, \(\mathrm{M}^{3+}\) which forms two complexes with a chelate, \(\mathrm{Ch}^{2}\); they are \(\mathrm{MCh}^{+}\), and \(\mathrm{MCh}_{2}\). Suppose that \(\mathrm{K}_{\mathrm{f} 1}=114\) and \(\mathrm{K}_{\mathrm{f} 2}=10200\) and that \(\mathrm{pK}_{\mathrm{a} 1}\) and \(\mathrm{pK} \mathrm{a}_{\mathrm{a} 2}\) for \(\mathrm{H}_{2} \mathrm{Ch}\) are 2.88 and 5.88 , respectively, and that \(\mathrm{p} \beta_{1}, \mathrm{p} \beta_{2}\) and \(\mathrm{p} \beta_{3}\) for \(\mathrm{M}(\mathrm{OH})_{\mathrm{n}}{ }^{3-\mathrm{n}}\) are -5.51 , -8.83 and -11.77 , respectively. Calculate the alphas for the metal and the chelate when \(C_{M}=\) 0.0500 M and \(\mathrm{C}_{\mathrm{Ch}}=0.100 \mathrm{M}\).
7. Although sulfate is not a metal ion, it can be determined by an EDTA titration! \(\mathrm{Ba}^{2+}\) forms an insoluble precipitate with \(\mathrm{SO}_{4}{ }^{2}\) :
\[
\mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2--} \longrightarrow \mathrm{BaSO}_{4}(\mathrm{~s})
\]

To assure total precipitation of all of the \(\mathrm{SO}_{4}{ }^{2-}\), an excess of \(\mathrm{Ba}^{2+}\) is added to a solution containing \(\mathrm{SO}_{4}{ }^{2-}\). The solid is filtered off and washed free of the excess \(\mathrm{Ba}^{2+}\) and then dissolved in a measured excess of EDTA solution. This will dissolve the precipitate.
\[
\mathrm{BaSO}_{4}(\mathrm{~s})+\mathrm{Y}^{4-} \longrightarrow \mathrm{BaY}^{2-}+\mathrm{SO}_{4}^{2-}
\]

The amount of EDTA in excess is determined by a back titration. Specifically, it is titrated with a \(\mathrm{Mg}^{2+}\) solution of known concentration. \({ }^{208}\) Eriochrome Black T (EBT) is the indicator of choice.

EBT is effectively a diprotic \({ }^{209}\) metallochrome indicator; its deprotonated congener binds with metals to form a pink \(\mathrm{MIn}^{\mathrm{n}-3}\) complex. But for EBT, \(\mathrm{In}^{3}\) is orange. \({ }^{210}\) So a change in the \(\left[\mathrm{MIn}^{\mathrm{n}-3}\right]\) : \(\left[\mathrm{In}^{3}\right]\) ratio is very difficult to detect (orange \(\rightarrow\) pink!). However, \(\mathrm{HIn}^{2-}\) is blue, and so the \(\left[\mathrm{MIn}^{\mathrm{n}-3}\right]:\left[\mathrm{HIn}^{2}\right]\) ratio can be exploited, but to do this requires titration conditions that yield an appreciable \(\alpha_{\mathrm{HIn} 2}\) either before or after the equivalence point, depending on whether the titrant is \(\mathrm{M}^{\mathrm{p}+}\) or \(\mathrm{Lc}^{q^{-}}\). Here, the titrant is \(\mathrm{M}^{\mathrm{p}^{+}}\left(\mathrm{Mg}^{2+}\right)\). The MgEBT \({ }^{1-}\) will not exist before the equivalence point, only after the equivalence point. On the other hand \(\mathrm{HEBT}^{2-}\) will dominate before the equivalence point.

Suppose that \(0.15 \mathrm{mmoles}(35 \mathrm{mg})\) of \(\mathrm{BaSO}_{4}\) has been isolated. It is dissolved in 10.00 mL of 0.100 M EDTA at pH 8.8 and after the \(\mathrm{BaSO}_{4}\) has dissolved, the solution is back titrated with \(0.110 \mathrm{M} \mathrm{Mg}^{2+}\), also maintained at pH 8.8 .

Note that \(\mathrm{Mg}^{2+}\) forms one hydroxy complex \(\mathrm{MgOH}^{+}\)and an insoluble salt \(\mathrm{Mg}(\mathrm{OH})_{2}\). Given the presence of EDTA, the formation of this precipitate can be ignored. (See Chapter 10.)
a) Create a titration curve for this back titration.
b) Provide an analysis for completeness of the \(\mathrm{Mg}^{2+} / \mathrm{Y}^{4}\) reaction at the equivalence point.
c) Finally, assess the effectiveness of EBT for providing an endpoint that coincides with the equivalence point.

\section*{Solutions to Example Problems}
1. a. Recalling from page 55 the relationship between \(\beta_{\mathrm{n}}\) and \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}\),
\[
\beta_{2}=\mathrm{K}_{\mathrm{f} 1} \times \mathrm{K}_{\mathrm{f} 2}
\]
and
\[
\beta_{3}=\mathrm{K}_{\mathrm{f} 1} \times \mathrm{K}_{\mathrm{f} 2} \times \mathrm{K}_{\mathrm{f} 3} .
\]

So,
\[
\beta_{3} \div \beta_{2}=K_{f 3}
\]

Which is:
\[
10^{2.05} \div 10^{2.60}=10^{-0.55}=\mathbf{0 . 2 8 2}
\]
1. b. The expressions for the five \(\alpha s\) are created using the principles and techniques developed in Chapter 8.
```

> restart; Den:= Cd + beta[1]*Cd*Cl+beta[2]*Cd*Cl^2 +
beta[3] *Cd*Cl^3 + beta[4]*Cd*Cl^4; alpha[0]:= op(1,Den)/
Den; alpha[1]:= op(2,Den)/Den; alpha[2]:= op(3,Den)/Den;
alpha[3]:= op(4,Den)/Den; alpha[4]:= op(5,Den)/Den;

```


Some advice just states the obvious. But to give the kind of advice that's going to make a real difference to your clients you've got to listen critically, dig beneath the surface, challenge assumptions and be credible and confident enough to make suggestions right from day one. At Grant Thornton you've got to be ready to kick start a career right at the heart of business.

\section*{Sound like you? Here's our advice: visit GrantThornton.ca/careers/students}

Scan here to learn more about a career with Grant Thornton.

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

\[
\begin{aligned}
& \alpha_{3}:=\frac{\beta_{3} C d C l^{3}}{C d+\beta_{1} C d C l+\beta_{2} C d C l^{2}+\beta_{3} C d C l^{3}+\beta_{4} C d C l^{4}} \\
& \alpha_{4}:=\frac{\beta_{4} C d C l^{4}}{C d+\beta_{1} C d C l+\beta_{2} C d C l^{2}+\beta_{3} C d C l^{3}+\beta_{4} C d C l^{4}}
\end{aligned}
\]
alpha[n]:=simplify(alpha[n]): would remove \(C d\) from the respective expression. This is necessary only in part dof this problem, and that is where it will be done.

From page 59, the total \(\mathrm{Cl}^{-}\)concentration will equal the bound \(\mathrm{Cl}^{-}+\)free \(\mathrm{Cl}^{-}\). Bound chloride will equal the average number of chlorides on each \(\mathrm{Cd}^{2+}\) times the total cadmium ion concentration, \(n_{\mathrm{ave}} \times \mathrm{C}_{\mathrm{Cd}} \mathrm{n}_{\mathrm{ave}}\) is a function of the four betas and the concentration of free chlorides. This might appear to be an opportunity to replicate the derivation of \(\mathrm{n}_{\text {ave }}\) on page 59 , but alternatively one might anticipate the form on \(n_{\text {ave }}\) by extending the tri-substituted complex to this tetrasubstituted complex. In this case:
```

> n[ave]:= Cl*(beta[1]+2*beta [2]*Cl+3*beta[3]*Cl^2+4*bet
a[4]*Cl^3)/(1+beta[1]*Cl+beta[2]*Cl^2+beta[3]*Cl^3+beta
[4]*Cl^4);

$$
n_{\text {ave }}:=\frac{C l\left(\beta_{1}+2 \beta_{2} C l+3 \beta_{3} C l^{2}+4 \beta_{4} C l^{3}\right)}{1+\beta_{1} C l+\beta_{2} C l^{2}+\beta_{3} C l^{3}+\beta_{4} C l^{4}}
$$

```

For those choosing to replicate the derivation on page 59:
```

> n[ave]:= (beta[1]*Cd*Cl+2*beta[2]*Cd*Cl^2 +
3*beta[3]*Cd*Cl^3 + 4*beta[4]*Cd*Cl^4)/(Cd + beta[1]*Cd*Cl
+ beta[2]*Cd*Cl^2 +beta[3]*Cd*Cl^3 + beta[4]*Cd*Cl^4);

$$
n_{\text {ave }}:=\frac{\beta_{1} C d C l+2 \beta_{2} C d C l^{2}+3 \beta_{3} C d C l^{3}+4 \beta_{4} C d C l^{4}}{C d+\beta_{1} C d C l+\beta_{2} C d C l^{2}+\beta_{3} C d C l^{3}+\beta_{4} C d C l^{4}}
$$

```
simplify ( n [ave]) then produces the output we got (above) directly. Using mass balance requirements, the total chloride concentration is expressed.
```

> Cl[bound]:= n[ave]*C[`Cd']: MassBal:= Cl[Total]=Cl[bound] +
Cl;

```
\[
\begin{aligned}
& \text { MassBal }:=C l_{\text {Total }} \\
& \qquad=\frac{C l\left(\beta_{1}+2 \beta_{2} C l+3 \beta_{3} C l^{2}+4 \beta_{4} C l^{3}\right) C_{C d}}{1+\beta_{1} C l+\beta_{2} C l^{2}+\beta_{3} C l^{3}+\beta_{4} C l^{4}}+C l
\end{aligned}
\]

With this, the form of the expression should be clear, particularly that the concentration of free chloride depends on the total Cd concentration, the total \(\mathrm{Cl}^{-}\)concentration, and the four formation constants. Solving this expression for Cl will allow the calculation of the five \(\alpha \mathrm{s}\). First, all constants must be assigned. Then fsolve is used to find Cl , and to preclude physically impossible solutions (e.g. \(\left[\mathrm{Cl}^{-}\right]<0\) ), a range of zero to \(\mathrm{C}_{\text {Chloride }}\) is imposed. (It would be just as easy to represent the range as \(0 . .0 .01\); see part \(\mathbf{c}\).) The free chloride is called Cl_b (_b for part \(\mathbf{b}\) ).
```

> beta[1]:= 10^2.05: beta[2]:= 10^2.60: beta[3]:= 10^ 2.40:
beta[4]:= 10^2.90: Cl[Total]:= 0.010; C['Cd']:= 0.0050;
Cl_b:=fsolve(MassBal, Cl, O..Cl[Total]);
C}\mp@subsup{T}{\mathrm{ Total }}{}:=0.010
C
Cl_b := 0.0076

```
```

> Cl:= Cl_b; 'alpha[0]'= alpha [0];'alpha[1]'= alpha[1];

```
> Cl:= Cl_b; 'alpha[0]'= alpha [0];'alpha[1]'= alpha[1];
    'alpha[2]'= alpha[2]; 'alpha[3]'= alpha[3]; 'alpha[4]'=
    'alpha[2]'= alpha[2]; 'alpha[3]'= alpha[3]; 'alpha[4]'=
    alpha[4];
```

 alpha[4];
    ```
\[
\begin{gathered}
C l:=0.0076 \\
\alpha_{0}=0.5330 \\
\alpha_{1}=0.4547 \\
\alpha_{2}=0.0123 \\
\alpha_{3}=0.0001\left(5.8810^{-5}\right) \\
\alpha_{4}=0.0000\left(1.4110^{-6}\right)
\end{gathered}
\]

A quick check will show that the sum of these alphas equals 1.00000 .
1. c. Unassigning Cl and assigning a new value to \(\mathrm{C}_{\text {Chloride }}\) is all that is necessary for part \(\mathbf{c}\).
```

> Cl:= 'Cl': Cl[Total]:= 0.050; Cl[bound]:= n[ave]*C['Cd'];
MassBal:= Cl[Total] = Cl[bound] + Cl:'211 Cl_c:= fsolve
(MassBal, Cl, O..C[Total]);

```
\[
\begin{gathered}
C_{\text {Chloride }}:=0.0500 \\
C l \_c:=0.0451
\end{gathered}
\]

And again, calling the free chloride and five alphas:
\[
\begin{gathered}
C l:=0.0451 \\
\alpha_{0}=0.1450 \\
\alpha_{1}=0.7338 \\
\alpha_{2}=0.1174 \\
\alpha_{3}=0.0033\left(3.3410^{-3}\right) \\
\alpha_{4}=0.0005\left(4.7610^{-4}\right)
\end{gathered}
\]

Predictably, with a larger total chloride concentration, the \(\alpha_{\text {Cd2+ }}\left(\alpha_{0}\right)\) has decreased and the remaining \(\alpha\) s have increased.
1. d. Again it is necessary to unassign Cl . Also, \(\alpha_{\mathrm{CdCl42+}}\) will have to be purged of its Cd term. This will happen when alpha [4] is simplified.
\[
\begin{aligned}
& >\mathrm{Cl}:=\text { 'Cl': alpha[4]:= simplify }(a l p h a[4]) ; \\
& \alpha_{4}= \\
& \left(7.94310^{24} \mathrm{Cl}^{4}\right) /\left(1.00010^{22}+1.12210^{24} \mathrm{Cl}\right. \\
& \\
&
\end{aligned}
\]



Appropriately, this is a function of \(\left[\mathrm{Cl}^{-}\right]\)only, besides, of course all of the embedded \(\beta \mathrm{s}\). Setting \(\alpha_{\text {CdCl42+ }}\) at the target 0.90 and solving the expression for \(\left[\mathrm{Cl}^{-}\right]\)will give the free chloride concentration. From the expression for \(\alpha_{\text {CdCl12+ }}\) (because of the \(C l^{4}\) term) it is evident that there will be four roots. So the solutions will be listed using \(\{\mathrm{Cl}\}\). Alternatively, one could have used fsolve with a range beginning at 0 .
```

> Free_Cl := solve(0.90 = alpha[4], {Cl});

```

Free_Cl \(:=\{\mathrm{Cl}=4.040\},\{\mathrm{Cl}=-0.009\},\{\mathrm{Cl}=-0.376\},\{\mathrm{Cl}=-0.809\}\)

The first root is the only viable solution. So,
```

> Cl:= subs(Free_Cl[1], Cl);

```

To achieve this concentration of free chloride, there must be enough total chloride to coordinate the \(\mathrm{CdCl}^{1+}, \mathrm{CdCl}_{2}{ }^{0}, \mathrm{CdCl}_{3}^{1-}\) and \(\mathrm{CdCl}_{4}^{2-}\) complexes. Each concentration is its respective \(\alpha\) multiplied by \(\mathrm{C}_{\mathrm{Cd}}(=0.050 \mathrm{M})\) Then, the amount necessary for each congener is \(n\) times each \(\alpha \times \mathrm{C}_{\mathrm{Cd}}\). (This is where the dependence of \(\mathrm{C}_{\mathrm{Cl}, \text { total }}\) on \(\mathrm{C}_{\mathrm{Cd} 2+}\) comes from.) \(\mathrm{C}_{\mathrm{Cl}, \text { total }}\), then, would be the sum of these products plus the concentration of free chloride:
```

> Cl[total]:= Cl + (alpha[1] + 2*alpha [2] + 3*alpha[3] +
4*alpha[4])*C['Cd'];

```
\[
C_{\mathrm{Cl}, \text { total }}:=4.060
\]

This is a relatively high concentration, especially given that \(\mathrm{C}_{\mathrm{Cd} 2+}=0.0050 \mathrm{M}, \mathrm{a} \mathrm{C}_{\mathrm{Cl}}\) that is not easily achieved. At \(20^{\circ} \mathrm{C}\), the solubility limit of KCl is 4.6 M and for NaCl it is 6.1 M . Given these limits, it is likely that \(\alpha_{\text {CdCl42- }}\) cannot get much larger, and 0.99 is impossible. The reader is invited to verify this. (Revisit 1 b with \(\mathrm{C}_{\mathrm{Cl}}{ }^{-}=6.1 \mathrm{M}\) ).
2. Equations 9-3 and 9-5, respectively, are used to determine the required \(\mathrm{K}_{\mathrm{f}}\) for \(\mathrm{Fe}^{3+}\) to be "completely" titrated, and \(\mathrm{K}_{\mathrm{f}}\) for \(\mathrm{Mn}^{2+}\) to be "ignored." For the \(\mathrm{Fe}^{3+}\) titration, \(\mathrm{C}_{\mathrm{EqPt}}\) can be calculated from 9-4
\[
\mathrm{C}_{\mathrm{Fe} 3+}^{\circ} \times \mathrm{C}_{\mathrm{DCYTA}}^{\circ} \div\left(\mathrm{C}_{\mathrm{Fe} 3+}^{\circ}+\mathrm{C}_{\mathrm{DCYTA}}^{\circ}\right)=7.14_{3} 10^{-4} \mathrm{M} .
\]

So the minimum practical \(\mathrm{K}_{\mathrm{f}}\) would be \(10^{6} \div 7.14_{3} 10^{-4} \mathbf{M}=1.410^{9}\).

If we (arbitrarily) take \(\mathrm{V}_{\mathrm{Fe} 3+}^{\circ}\) to be 25.00 mL , the \(\mathrm{DCYTA} / \mathrm{Fe}^{3+}\) equivalence point would be at
\[
\mathrm{V}_{\mathrm{Fe}}^{\circ} 2+\times \mathrm{C}_{\mathrm{Fe} 2+}^{\circ} \div \mathrm{C}_{\mathrm{DCYTA}}^{\circ}=10.00 \mathrm{~mL}
\]

So \(\mathrm{C}_{\mathrm{Mn} 2+}\) (contained in the 25.00 mL of \(\mathrm{Fe}^{3+}\) solution at the \(\mathrm{Fe}^{3+}\) equivalence point) would be:
\[
(25.00 \mathrm{~mL} \times 0.010 \mathbf{M}) \div(25.00+10.00) \mathrm{mL}=7.14_{3} 10^{-3} \mathbf{M}
\]
the maximum allowable \(\mathrm{K}_{\mathrm{f}}\) would be
\[
10^{-3} \div 7.14_{3} 10^{-3} \mathbf{M}=0.140
\]

These differ by ten orders of magnitude. From Appendix VIa, the DCYTA formation constants for \(\mathrm{Fe}^{3+}\) and \(\mathrm{Mn}^{2+}\) are \(10^{29.3}\) and \(10^{16.8}\), respectively. This provides a difference of more than twelve orders of magnitude; it's an important start but does not necessarily assure success. If, with rising \(\mathrm{pH}, \alpha_{\mathrm{Fe} 3+}\) decreases a lot faster than \(\alpha_{\mathrm{Mn} 2+}\) decreases, the \(\mathrm{K}_{\mathrm{f}} \mathrm{s}\) could converge in the pH region where \(\alpha_{\mathrm{D} 4-}\) is large enough to make \(\mathrm{K}_{\mathrm{f}, \mathrm{Fe}}^{\prime}\) acceptable. Using the four, acid dissociation constants and the metal-hydroxy formation constants for \(\mathrm{Fe}^{3+}\) and \(\mathrm{Mn}^{2+}\), the doubly conditional formation constants will be compared.
```

> restart; alpha[D4]:= K[a1]*K[a2]*K[a3]*K[a4]/(10^(-
4*pH) + K[a1]*10^(-3*pH) + K[a1]*K[a2]*10^(-2*pH) +
K[a1]*K[a2]*K[a3] *10^(-pH) + K[a1]*K[a2]*K[a3]*K[a4]);
alpha [Mn2]:= 1/(1 + beta[1,Mn]*OH + beta[3,Mn]*OH^3):
alpha [Mn2]:= algsubs(OH= 10^(pH-14), alpha[Mn2]);
alpha[Fe3]:= 1/(1 + beta[1,Fe]*OH + beta [2,Fe]*OH^2 +
beta[1,Fe]*OH + beta[3,Fe]* OH^3): alpha[Fe3]:= algsubs(OH=
10^(pH-14),alpha[Fe3]);

$$
\begin{aligned}
\alpha_{D 4} & :=\left(K_{a 1} K_{a 2} K_{a 3} K_{a 4}\right) /\left(10^{-4 p H}+K_{a 1} 10^{-3 p H}\right. \\
& \left.+K_{a 1} K_{a 2} 10^{-2 p H}+K_{a 1} K_{a 2} K_{a 3} 10^{-p H}+K_{a 1} K_{a 2} K_{a 3} K_{a 4}\right) \\
\alpha_{M n 2}: & :=\frac{1}{\beta_{1, M n} 10^{p H-14}+\beta_{3, M n}\left(10^{p H-14}\right)^{3}+1} \\
\alpha_{F e 3} & :=1 /\left(1+\beta_{3, F e}\left(10^{p H-14}\right)^{3}+\beta_{2, F e}\left(10^{p H-14}\right)^{2}\right. \\
& \left.+2 \beta_{1, F e} 10^{p H-14}\right)
\end{aligned}
$$

```
```

> Kpp[f,MnD]:= alpha[D4]*alpha[Mn2]*K[f,MnD]; Kpp[f,FeD]:=

```
> Kpp[f,MnD]:= alpha[D4]*alpha[Mn2]*K[f,MnD]; Kpp[f,FeD]:=
    alpha[D4]*alpha[Fe3]*K[f,FeD];
```

 alpha[D4]*alpha[Fe3]*K[f,FeD];
    ```

These outputs should be predictable. So they are not shown. The constants are now assigned. They too are not shown but the reader should inspect the output for typographical errors. Notice that there is no value given for \(\beta_{2, \mathrm{Mn}}\). This implies that \(\mathrm{Mn}(\mathrm{OH})_{2}{ }^{0}\) is not a significant form of \(\mathrm{Mn}^{2+}\) in solution. (See Chapter 10.)
```

> K[a1]:= 10^(-2.43); K[a2]:= 10^(-3.54); K[a3]:= 10^(-6.10);
K[a4]:= 10^(-11.70); beta[1,Mn]:= 10^3.90; beta[3,Mn]:=
10^ 8.3; beta[1,Fe]:= 10^11.87; beta[2,Fe]:= 10^21.17;
beta[3,Fe]:= 10^29.67; K[f,MnD]:= 10^16.8; K[f,FeD]:=
10^29.3;

```

With constants assigned, a logarithmic plot can be created. Notice that the \(\log _{10}\) function is embedded in the plot command.
```

> plot([log[10](Kpp[f, MnD]), log[10](Kpp%5Bf,FeD%5D)], pH
= 0..14, labels = ["-log[H+]","log of Kpp"], color =
["DarkGreen", orange], axes = box);

```

Figure 9-9 shows that the two, doubly conditional formation constants remain more than ten orders of magnitude apart over a wide pH range ( 0 to about 4.5). It remains to be seen if \(\mathrm{K}_{\mathrm{f}, \mathrm{FeD}}\) is sufficiently large when \(\mathrm{K}_{\mathrm{f}, \mathrm{Mn}}^{\prime}\) is \(\leq 0.14\), or if \(\mathrm{K}_{\mathrm{f}, \mathrm{Mn}}\) is sufficiently small when \(\mathrm{K}_{\mathrm{f}, \mathrm{FeD}}^{\prime} \geq 1.410^{9}\). The first of these two options is pursued.


Figure 9-9
```

> pH:= fsolve(Kpp[f,MnD] = 0.140, pH, -1..14);
pH:= 1.542

```

At \(\mathrm{pH} 1.54, \mathrm{~K}_{\mathrm{f}, \mathrm{MnD}}\) will be sufficiently small to render it "invisible" at the equivalence point. What, then, is \(\mathrm{K}_{\mathrm{f}, \mathrm{FeD}}\) at this pH ?
```

> Kpp[f,FeD];

```

This is clearly an acceptable pH . From Figure 9-9 it appears that a slightly lower pH will reduce \(\mathrm{K}_{\mathrm{f}, \mathrm{MnD}}^{\prime}\) to an even safer value without making \(\mathrm{K}_{\mathrm{f}, \mathrm{FeD}}^{\prime}\) too small.
```

> pH:=1; Kpp[f,MnD]; Kpp[f,FeD];

```
\[
\begin{gathered}
p H:=1 \\
K p p_{\mathrm{f}, \mathrm{MnD}}=0.001 \\
K p p_{\mathrm{f}, \mathrm{FeD}}=2.845 \quad 10^{9}
\end{gathered}
\]

\section*{Join the best at}
the Maastricht University School of Business and Economics!
- \(33^{\text {rd }}\) place Financial Times worldwide ranking: MSc International Business
- \(1^{\text {st }}\) place: MSc International Business
- \(1^{\text {st }}\) place: MSc Financial Economics
- \(2^{\text {nd }}\) place: MSc Management of Learning
- \(2^{\text {nd }}\) place: MSc Economics
- \(2^{\text {nd }}\) place: MSc Econometrics and Operations Research
- \(2^{\text {nd }}\) place: MSc Global Supply Chain Management and Change
Sources: Keuzegids Master ranking 2013; Elsevier 'Beste Studies' ranking 2012; Financial Times Global Masters in Management ranking 2012

Maastricht
University is the best specialist university in the Netherlands

> Visit us and find out why we are the best!
> Master's Open Day: 22 February 2014

This would be quite good: \(\mathrm{K}_{\mathrm{f}, \mathrm{MnD}}\) is less than \(1 \%\) of its maximum allowed value and \(\mathrm{K}_{\mathrm{f}, \mathrm{FeD}}\) is more than twice its minimum allowed value. These assignments will be maintained for the titration plot calculation. That calculation will follow exactly the process used for the \(\mathrm{Cu}^{2+} /\) NTA titration. Again, many outputs, although called (with;) are not shown. They are called because the user should verify the form of each expression at each step.
```

> MassBal:= C[Fe3] = Fe + FeDCYTA + (1 - alpha[Fe3])*(C[Fe3]
- FeDCYTA);
> EqExp:= K[f,FeD] = FeDCYTA/(Fe*alpha[D4]*(C[DCYTA] -
FeDCYTA));
> FeDCYTA:= solve(EqExp, FeDCYTA);
> MassBal;
> Iron:= solve(MassBal,{Fe});

```

The output must be inspected to decide which of the two roots is suitable for the titration expression. It will be the one with the + sqrt term, not the one with the -sqrt term.
```

> Fe[titration]:= subs(Iron[1],Fe);

```
\[
\begin{aligned}
& F e_{\text {titration }}:=0.435 C_{F e 3}-1.53110^{-10}-0.435 C_{D C Y T A} \\
& \quad+2.50610^{-49}\left(3.01910^{96} C_{F e 3}^{2}+2.12310^{87} C_{F e 3}\right. \\
& \quad-6.03910^{96} C_{F e 3} C_{D C Y T A}+3.73110^{77} \\
& \left.\quad+2.12310^{87} C_{D C Y T A}+3.01910^{96} C_{D C Y T A}^{2}\right)^{1 / 2}
\end{aligned}
\]

This confirms that the values for \(\left[\mathrm{Fe}^{3+}\right]\) throughout the titration depend only on the analytical concentrations, \(\mathrm{C}_{\mathrm{Fe} 3+}\) and \(\mathrm{C}_{\mathrm{DCYTA}}\). Next, these concentrations are expressed as \(\mathrm{C}^{\mathrm{o}} \mathrm{s}\) and \(\mathrm{V}^{\mathrm{o}}{ }_{\mathrm{Fe} 3+}\) and \(\mathrm{V}_{\text {DCYTA }} .\left(\mathrm{V}_{\text {Fe3 }+}^{\circ}\right.\) is arbitrarily taken as 25.00 mL .)
```

> C[DCYTA]:= C}\mp@subsup{}{}{\circ}[DCYTA]*V[DCYTA]/(V0[Fe3] + V[DCYTA])
C[Fe3]:= C}
0.0010: C [[DCYTA]:= 0.00250: V [[Fe3]:=25.00; Fe[titration];

```

From 7-3 the 25.00 mL implies an equivalence point volume of DCYTA of 10.00 mL . To assure a good look at the post equivalence point, \(0 . .15\) is inserted in the plot command. Notice also that the conversion of \(\left[\mathrm{Fe}^{3+}\right]\) to minus \(\log _{10}\left[\mathrm{Fe}^{3+}\right]\) has been made within the plot command rather than making that conversion in a separate input line.
```

> plot(-log[10](Fe%5Btitration%5D), V[DCYTA]= 0..15, labels =
["mL of DCYTA","-log [Fe3+]"], axes = boxed);

```


Figure 9-10

This figure indicates that \(\left[\mathrm{Fe}^{3+}\right]\) will change by several orders of magnitude within 0.1 mL of the equivalence point. Even within \(0.1 \%\) (i.e. 0.01 mL ) the change is appreciable.
```

>V[DCYTA]:= 0.999* C
Fe[titration]; V[DCYTA]:= C [Fe3]*V}\mp@subsup{}{}{\circ}[Fe3]/C [[DCYTA]:
Fe[EqPt]:= Fe[titration]; V [DCYTA]:= 1.001*C [[Fe3]*Vo [Fe3]/
C

$$
\begin{aligned}
F e_{\text {before }} & :=8.46810^{-7} \\
F e_{\text {EqPt }} & :=4.36210^{-7} \\
F e_{\text {affer }} & :=2.24810^{-7}
\end{aligned}
$$

```

We see a \(74 \%\) decrease in free \(\mathrm{Fe}^{3+}\) over this 0.02 mL range of titrand, not spectacular but significant; a change of this magnitude should be easy to recognize. Appendix VIb offers only HQS and QIN as candidate indicators. Both offer the necessary advantage that they bind much more strongly to \(\mathrm{Fe}^{3+}\) than to \(\mathrm{Mn}^{2+}\), a requirement because \(\mathrm{C}_{\mathrm{Fe} 3+}=0.1 \mathrm{C}_{\mathrm{Mn} 2+}\).
3. Two mass balance expressions are necessary, one that delineates all forms of \(\mathrm{M}^{3+}\) in solution and the other for \(\mathrm{Ch}^{2}\). The scripting used below is not perfectly clear, but \({ }^{\wedge} \mathrm{OH}^{\prime}\) and even " \(\mathrm{OH}^{\prime}\) are not successful at protecting OH in the worksheet when OH is used as a variable. A predictable error in the \(\mathrm{Ch}^{2-}\) mass balance is the omission of the coefficient 2 for the \(\mathrm{MCh}_{2}\) congener.
```

> restart; MassBal[M3]:= C[`M']= M + MCh1 + MCh2 + MHy1 + MHy2 + MHy3; MassBal[Ch2]:= C[`Ch']= Ch + HCh + H2Ch + MCh1
+2*MCh2;

```
\[
\begin{aligned}
& \text { MassBal }_{M 3}:=C_{M}=M+\text { MCh1 }+ \text { MCh2 } \\
& \quad+\text { MHy1 }+ \text { MHy } 2+\text { MHy } \\
& \text { MassBal }_{\text {Ch2 }}:=C_{C h}=\text { Ch }+ \text { HCh }+ \text { H2Ch } \\
& \quad+\text { MCh1 }+2 \text { MCh2 }
\end{aligned}
\]

Each entity is then expressed in terms of equilibrium constants ( \(\mathrm{K}_{\mathrm{a}}\) 's, \(\mathrm{K}_{\mathrm{f}}\) 's or \(\beta\) 's), H, OH, M and Ch .
```

> MCh1:= M*K[f1]*Ch;MCh2:= M*K[f1]*K[f2]*Ch^2; MHy1:= M*beta
[1]*OH; MHy2:= M*beta[2]*OH^2; MHy3:= M*beta[3]*OH^3;
H2Ch:= Ch*H^2/(K[a1]*K[a2]); HCh:= Ch*H/K[a2];
'MassBal[M3]'= MassBal[M3]; 'MassBal[Ch2]'= MassBal[Ch2];
MassBal M3 }=(\mp@subsup{C}{M}{}=M+M\mp@subsup{K}{f1}{}Ch+M\mp@subsup{K}{f1}{}\mp@subsup{K}{f2}{}C\mp@subsup{h}{}{2

```

```

 MassBal Ch2 = (C Ch =Ch+}\frac{ChH}{\mp@subsup{K}{a2}{}}+\frac{Ch\mp@subsup{H}{}{2}}{\mp@subsup{K}{a1}{}\mp@subsup{K}{a2}{}
 +MK}\mp@subsup{K}{f1}{Ch}+2M\mp@subsup{K}{f1}{}\mp@subsup{K}{f2}{}C\mp@subsup{h}{}{2}
    ```

The two expressions contain only two unknowns, M and Ch , because all of the equilibrium constants along with \(\mathrm{C}_{\mathrm{m}}\) and \(\mathrm{C}_{\mathrm{Ch}}\) are known. A lot of unintelligible algebra can be saved by assigning all of these constants and concentrations here, before proceeding.
```

> K[f1]:= 114: K[f2]:= 10200: K[a1]:= 10^(-2.88): K[a2]:=
10^(-5.88): beta[1]:= 10^(5.51): beta[2]:= 10^(8.83):
beta[3]:= 10^(11.77): OH:= 1E-10: H:= 1E-4: C[`M']:= 0.050; C[`Ch']:= 0.10; MassBal[M3]; MassBal[Ch2];
0.050 = 1.000 M + 114MCh+1162800 MCh2
0.100 = 82.612Ch+114Ch+2325600 MCh

```

Here it is perfectly obvious that only \(\left[\mathrm{M}^{3+}\right]\) and \(\left[\mathrm{Ch}^{2}\right]\) remain. There are several strategies for finding these, for example solve MassBal \(_{\mathrm{M} 3}\) for M (in terms of Ch ) and substitute that expression into MassBal \({ }_{\mathrm{Ch} 2}\) or vice versa. We will introduce a third strategy: we will allow Maple to solve the equations simultaneously. For this we can use the solve or fsolve command; because each expression is a quadratic in one of the terms, there are four solutions, and only one can have physical reality. The fsolve command will produce only that solution. (The numeric formatting should be altered to reveal Ch at a more useful precision.)
```

> fsolve({MassBal[M3], MassBal[Ch2]},{M,Ch});

```
\[
\{C h=0.00736, M=0.029175\}
\]

After assigning these values to Ch and M , all of the alphas can be computed. In so doing we discover a strange calculation: the need to compute \(\alpha_{\mathrm{MCh}}\) and \(\alpha_{\mathrm{MCh} 2}\) twice! This is because either complex can represent a fraction of \(C_{M}\) or a fraction of \(C_{C h}\).
```

> Ch:= 0.000736; M:= 0.029175; alpha[`H2Ch']:= H2Ch/C[`Ch'];
alpha[`HCh']:= HCh/C['Ch']; alpha[`Ch']:= Ch/C[`Ch']; alpha [`MCh1']:= MCh1/C[`Ch']; alpha[`MCh2']:= MCh2/C[`Ch']; alpha [`M']:= M/C[`M']; alpha[`MOH']:= MHyl/C[`M']; alpha [`M(OH)[2]']:= MHy2/C[`M']; alpha[`M(OH)[3]']:= MHy3/
C[`M']; alpha[`MCh']:= MCh1/C[`M']; alpha[`MCh2']:= MCh2/
C['M'];

```
\[
\begin{gathered}
a_{\mathrm{H} 2 \mathrm{Ch}}:=0.042352 \\
a_{\mathrm{HCh}}:=0.558313 \\
a_{\mathrm{Ch}}:=0.007360 \\
a_{\mathrm{MCh} 1}:=0.024479 \\
a_{\mathrm{MCh} 2}:=0.183769 \\
a_{\mathrm{M}}:=0.58500 \\
a_{\mathrm{MOH}}:=0.000019 \\
a_{\mathrm{M}(\mathrm{OH}) 2}:=3.94494410^{-12} \\
a_{\mathrm{M}(\mathrm{OH}) 3}:=3.43590310^{-19} \\
a_{\mathrm{MCh}}:=0.048958 \\
a_{\mathrm{MCh} 2}:=0.367537
\end{gathered}
\]

We might check the validity of these by verifying that all of the alphas associated with \(\mathrm{C}_{\mathrm{Ch}}\) add to one, and that the alphas associated with \(C_{M}\) do the same.
```

> alpha[`H2Ch'] + alpha [`HCh'] + alpha[`Ch'] + alpha[`MCh1'] + alpha [`MCh2']; alpha[`M'] + alpha [`MOH'] + alpha[`M(OH)[2]'] + alpha[`M(OH)[3]'] + alpha[`MCh'] +
alpha[`MCh2'];

```
1.000042
1.000014

Not exactly one, but recall that M and Ch were not assigned their exact values. When two more decimal places are used for these assignments, the sums of the alphas are within \(10^{-6}\) of exactly one.

Other tests can be done on this system. For example, if \(C_{M}=0\), what happens to the alphas associated with \(\mathrm{C}_{\mathrm{Ch}}\) ? (The alphas associated with \(\mathrm{C}_{\mathrm{M}}\) are undefined with \(\mathrm{C}_{\mathrm{M}}=0\).) [ \(\mathrm{Ch}^{2-}\) ] becomes \(1.2110^{-3}\) and \(\alpha_{\mathrm{MCh} 1}\) and \(\alpha_{\mathrm{MCh} 2}\) predictably become zero. Setting \(\mathrm{C}_{\mathrm{Ch}}\) to zero produces predictable effects as well. There, \(\left[M^{3+}\right]\) becomes 0.0499984 , implying that the \(\mathrm{M}(\mathrm{OH})_{\mathrm{n}}^{3-\mathrm{n}}\) complexes are essentially nonexistent, which is not surprising at pH 4.
4. a. As the \(\mathrm{BaSO}_{4}\) dissolves, the 0.15 mmole of \(\mathrm{Ba}^{2+}\) will bind to 0.15 mmole of the EDTA \(\left(\log _{10} \mathrm{~K}_{\mathrm{f}}=7.8\right)\), so effectively that this titration is like titrating 10.00 mL of 0.085 M EDTA with \(0.11 \mathrm{M} \mathrm{Mg}^{2+}\). The \(\left[\mathrm{Ba}^{2+}\right]\) can be ignored because it will exist in solution almost entirely as \(\mathrm{BaY}^{2-}\).

The following work closely replicates the \(\mathrm{Cu}^{2+}\) / NTA titration curve worksheet developed on page 74 et seq. It begins with a Mg mass balance that addresses the three forms of \(\mathrm{Mg}: \mathrm{Mg}^{2+}\), \(\mathrm{MgOH}^{+}\)and \(\mathrm{MgY}^{2-}\). The hydroxy forms be collected is \(\alpha_{\mathrm{MgOH}} \times\left(\mathrm{C}_{\mathrm{Mg}}-\mathrm{MgY}\right)\), and that is (1\(\left.\alpha_{\mathrm{Mg} 2}\right) \times\left(\mathrm{C}_{\mathrm{Mg}}-\mathrm{MgY}\right)\).
> restart; MassBal:= C[`Mg'] = Mg2 + MgY + (1 alpha[ \(\left.\left.{ }^{\prime} \mathrm{Mg}^{\prime}\right]\right)\) * (C[ \(\left.\mathrm{Mg}^{\prime}\right]\) - MgY);

\section*{Need help with your dissertation?}

Get in-depth feedback \& advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation!

\(\qquad\) ove
\[
\begin{gathered}
\text { MassBal }:= \\
C_{M g}=M g 2+M g Y+\left(1-\alpha_{M g}\right)\left(C_{M g}-M g Y\right) \\
>\text { EquilExp: }=\mathrm{K}[\mathrm{f}]=\mathrm{MgY} /\left(\text { alpha }\left[\mathrm{Mg}^{\prime}\right] *\left(\mathrm{C}\left[\mathrm{'Mg}^{\prime}\right]-\mathrm{MgY}\right) * a l p h a\right. \\
[\mathrm{Y} 4] *(\mathrm{C}[\mathrm{EDTA}]-\mathrm{MgY})) ; \\
\text { EquilExp }:=K_{f}=\frac{M g Y}{\alpha_{M g}\left(C_{M g}-M g Y\right) \alpha_{Y 4}\left(C_{E D T A}-M g Y\right)}
\end{gathered}
\]

After the equilibrium expression is solved for \(\left[\mathrm{MgY}{ }^{2-}\right]\) and called FreeMg, the solution (the second root) can be put back into the mass balance expression.
```

> FreeMg:= solve(EquilExp,{MgY}): MgY:= subs(FreeMg[2],MgY);

```

Output remains much too complicated to show here. We can clean this up by first defining the alphas to assure their correctness, and then assigning values to all the equilibrium constants and the pH . These alphas will look familiar, and with numeric assignments, the MassBal expression will be a lot cleaner.
```

> alpha[Y4]:= K[a1]*K[a2]*K[a3]*K[a4]/(10^(-4*pH)
+K[a1]*10^(-3*pH) + K[a1]*K[a2]*10^(-2*pH) +
K[a1]*K[a2]*K[a3]*10^(-pH) + K[a1]*K[a2]*K[a3]*K[a4]);
alpha[`Mg`]:= 1/(1 + beta[1]*OH); alpha[`Mg']:= algsubs(OH = 10^(pH - 14), alpha[`Mg`]); \alpha}\mp@subsup{Mg}{}{:=}\frac{1}{1+\mp@subsup{\beta}{1}{1}1\mp@subsup{0}{}{pH-14} > K[a1]:= 10^(-1.99); K[a2]:= 10^(-2.67); K[a3]:= 10^(- 6.16); K[a4]:= 10^(-10.26); beta[1]:= 10^2.58; K[f]:= 10^8.69; pH:= 8.8; 'alpha[Y4]'= alpha[Y4]; 'alpha[`Mg']'=
alpha[`Mg']; Kpp[f,Mg]:= alpha[Y4]*alpha[`Mg']*K[f];'MassB
al' = MassBal;

```
\[
K_{\mathrm{ffpp}}:=1.633810^{7}
\]
\[
\begin{aligned}
& \text { MassBal }=\left(C_{M g}=M g 2+0.5012 C_{M g}+0.4988 C_{E D T A}\right. \\
& \quad+3.053010^{-8} \\
& \quad-3.053010^{-8}\left(2.669310^{14} C_{M g}^{2}-5.338510^{14} C_{E D T A} C_{M g}\right. \\
& \quad+3.267610^{7} C_{M g}+2.669310^{14} C_{E D T A}^{2} \\
& \left.\left.\quad+3.267610^{7} C_{E D T A}+1\right)^{112}\right)
\end{aligned}
\]
5. b. Notice that \(\mathrm{K}_{\mathrm{f}}\) has been calculated ( \(1.6410^{7}\) ). With \(\mathrm{C}_{\mathrm{EqPt}}=0.0479\) (found below), we could show that indeed, \(\mathrm{K}_{\mathrm{f}}>10^{6} \div \mathrm{C}_{\mathrm{EqPt}}\). Also, \(\mathrm{V}_{\mathrm{EqPt}}\) is calculated so that the range for \(\mathrm{V}_{\mathrm{EqPt}}\) can be set.

Appropriately, \(\left[\mathrm{Mg}^{2+}\right]\) in the MassBal expression depends only on \(\mathrm{C}_{\mathrm{Mg}}\) and \(\mathrm{C}_{\text {EDTA }}\), and these can now be expressed in terms of \(\mathrm{C}_{{ }_{\mathrm{Mg}}}^{\circ} \mathrm{C}_{\text {EDTA }}^{\circ}, \mathrm{V}_{\mathrm{Mg}}\) and \(\mathrm{V}_{\text {EDTA }}^{\circ}\) (7-2a and 7-2b). Then, we assign values for the \(\mathrm{C}^{\circ}\) s and \(\mathrm{V}^{\circ}\). Remember that \(\mathrm{C}_{\text {EDTA }}^{\circ}\) is not 0.100 because the \(\mathrm{Ba}^{2+}\) has precipitated \(15 \%\) of it as \(\mathrm{BaSO}_{4}\) ).
```

> C[`Mg']:= V[`Mg']*C'0[`Mg']/(V`[EDTA] + V[`Mg']); C[EDTA]:=

```

```

> V' [EDTA]:= 10.0; C' [EDTA]:= 0.085; C [['Mg']:= 0.110;
C[EqPt]:= C }\mp@subsup{}{}{\circ}[EDTA]*C C [`Mg']/(C'0[EDTA] + C'0[`Mg'])

```

\[
\begin{aligned}
C_{\mathrm{EqPt}} & :=0.0479 \\
V_{\mathrm{EqPt}} & :=7.7273
\end{aligned}
\]
\[
\begin{aligned}
& \text { MassBal }=\left(\frac{0.1100 V_{M g}}{10.0000+V_{M g}}=M g 2+\frac{0.0551 V_{M g}}{10.0000+V_{M g}}\right. \\
& \quad+\frac{0.4240}{10.0000+V_{M g}}+3.053010^{-8} \\
& \quad-3.053010^{-8}\left(\frac{3.229810^{12} V_{M g}^{2}}{\left(10.0000+V_{M g}\right)^{2}}-\frac{4.991510^{13} V_{M g}}{\left(10.0000+V_{M g}\right)^{2}}\right. \\
& \quad+\frac{3.594310^{6} V_{M g}}{10.0000+V_{M g}}+\frac{1.928510^{14}}{\left(10.0000+V_{M g}\right)^{2}} \\
& \left.\left.\quad+\frac{2.777410^{7}}{10.0000+V_{M g}}+1\right)\right)
\end{aligned}
\]

It is \(\left[\mathrm{Mg}^{2+}\right]\) from MassBal that we are seeking. We extract this as the solution to MassBal at any given \(\mathrm{V}_{\mathrm{Mg}}\). We will call the solution FreeMg. For plotting purposes, we will take \(-\log _{10}\) of that solution.
```

> MgFree:= solve(MassBal, Mg2);pMg:= -log[10](MgFree):

```

The expression is suitable for plotting, and could be plotted to fulfill \(\mathbf{4 a}\) and to assure that the expression is correct. But first we turn to characterizing the indicator. We will closely follow the treatment of the CuPAR system (page 81). We will presume that EBT exists only as \(\mathrm{H}_{2} \mathrm{EBT}^{-1}\), \(\mathrm{HEBT}^{2-}, \mathrm{EBT}^{3-}\) and MgEBT. Again we will (only as an approximation) include [ \(\mathrm{MgEBT}^{1-}\) ] in the alpha expression. Also, we will assign values for \(\mathrm{K}_{\mathrm{In} 1}, \mathrm{~K}_{\mathrm{In} 2}\) and \(\mathrm{K}_{\mathrm{f}, \mathrm{In}}\) first, so that the alpha will be rendered in terms of only the free \(\mathrm{Mg}^{2+}\). That is \(\left[\mathrm{Mg}^{2+}\right]\).
```

> K[In1]:= 10^(-6.3); K[In2]:= 10^(-11.5); K[f,In]:= 1e7;
alpha[HEBT2]:= K[In1]*10^ (-pH)/(10^}(-2*pH) + K[In1]*10^(-
pH) + K[In1]*K[In2] + K[In1]*K[In2]*MgFree*K[f,In]);
alpha[MgEBT]:= K[In1]*K[In2]*MgFree*K[f,In]/
(10^}(-2*\textrm{pH})+K[In1]*10^(-pH) + K[In1]*K[In2] +
K[In1]*K[In2]*MgFree*K[f,In]);

```


The two alphas are not shown here because each contains MgFree and those are themselves large expressions in terms of \(\mathrm{V}_{\mathrm{Mg}}\), but the reader should inspect these expressions to be sure that the only variable they contain is \(\mathrm{V}_{\mathrm{Mg}}\). Again, we create expressions suitable for plotting, and then execute the plot.
```

> p_alpha_HEBT2:= -log(alpha[HEBT2]): p_alpha_MgEBT:=
-log(alpha [MgEBT]):
> plot([pMg, p_alpha_HEBT2, p_alpha_MgEBT], V[`Mg'] = 0..10,
color = [black,blue,red], labels = ["mL of EDTA", "-log Mg
or alpha"], axes= boxed);

```


Fig 9-11
6. c. It is apparent, qualitatively, from Figure 9-11 that EBT will be an effective indicator, that \(\alpha_{\text {невт2- }}\) is essentially 1.0 right up to the equivalence point and that immediately thereafter \(\alpha_{\text {MgEBT }}\) becomes 1.0. So a blue to pink change is expected very close to the equivalence point. To be quantitative, the relationship between these alphas must be quantified. Using the \(10: 1\) criterion introduced in Chapter 7 (Part I, page 170), \(V_{\mathrm{Mg}}\) can be calculated for what might be defined as an endpoint. That is, at what \(\mathrm{V}_{\mathrm{Mg}}\) will \(\alpha_{\mathrm{MgEBT}^{-}}\)be ten times \(\alpha_{\mathrm{HEBT2}}\) ? This was in 4 b above. With \(\mathrm{V}_{\text {EndPoint }}=7.890\) and \(\mathrm{V}_{\text {EqPt }}=7.727\), we have:
```

> Error:= 100*(V[EndPoint] - V[EqPt])/V[EqPt];

```

This is not acceptable, but it is based on an arbitrary definition of endpoint. If \(\alpha_{\text {MgEBT }}\) equals \(\alpha_{\text {Hebr2. }}\) had been used as the endpoint, \(\mathrm{V}_{\text {EndPoint }}\) would have been 7.734 mL , an error of only \(0.088 \%\). This is still late, but tolerably.

As an aside: the consequence of a late endpoint can be alleviated by performing a "blank" titration. In such a titration, no sample (in this case no \(\mathrm{BaSO}_{4}\) ) is added. The titration to the same endpoint would also be late. The analysis is based on the difference in volume required to reach the blank endpoint and the volume required to reach an endpoint with sample present.

Both endpoints are late by the same volume of titrant, and so the endpoint error is cancelled out. This technique is a natural part of the back titration, but it is also used in direct titrations where the endpoint is intrinsically late. This will be addressed in the precipitation titration in the next chapter.

\section*{10 Solubility Equilibrium}

The final topic on chemical equilibrium includes reactions in which either the reactants or products are insoluble. It pertains either to the formation of solids from soluble reactants or to the dissolution of solids to form soluble products. It is a subject appropriately placed at the end of a text on ionic equilibrium because solubility is affected by the other types of equilibration, acid / base and complex formation, discussed in earlier chapters. These effects will be explored after presenting the most simple examples solubility equilibrium.

Consider the salt, potassium perchlorate. It is sparingly soluble in water. Its dissolution might be written:
\[
\mathrm{KClO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{K}^{+}+\mathrm{ClO}_{4}^{-}
\]

As long a some of the \(\mathrm{KClO}_{4}\) remains undissolved, the thermodynamic equilibrium expression \({ }^{212}\) for this process might be written:
\[
\mathrm{K}_{\mathrm{eq}}^{\circ}=\frac{\left\{\mathrm{K}^{+}\right\}\left\{\mathrm{ClO}_{4}^{-}\right\}}{\left\{\mathrm{KClO}_{4}\right\}}
\]

\section*{TURN TO THE EXPERTS FOR SUBSCRIPTION CONSULTANCY}

Subscrybe is one of the leading companies in Europe when it comes to innovation and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do business reviews of existing subscription businesses and we develope acquisition and retention strategies.

Learn more at linkedin.com/company/subscrybe or contact Managing Director Morten Suhr Hansen at mha@subscrybe.dk
SUBSCR:BE - to the future

But this form contains a hidden redundancy: if \(\mathrm{KClO}_{4}\) is a pure solid, as it should be in this example, its activity will be exactly 1 . So the activity of the precipitate is never included in these equilibrium expressions. These equilibrium expression are given a name, solubility product, and this constant is expressed thermodynamically as
\[
\mathrm{K}_{\mathrm{sp}}^{\circ}=\left\{\mathrm{K}^{+}\right\}\left\{\mathrm{ClO}_{4}^{-}\right\}
\]

There is also the concentration-based equilibrium expression for this reaction:
\[
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{K}^{+}\right]\left[\mathrm{ClO}_{4}^{-}\right]}{\left[\mathrm{KClO}_{4}\right]}
\]

This expression, too, contains a redundancy in that for a pure solid like \(\mathrm{KClO}_{4}\), the mass to volume ratio should be effectively a constant, and so \(\left[\mathrm{KClO}_{4}\right]\) is likewise a constant. This constant is not moved to the left hand side of the expression and combined with the constant \(\mathrm{K}_{\text {eq }}\); it is simply omitted giving:
\[
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{K}^{+}\right]\left[\mathrm{ClO}_{4}^{-}\right] .
\]

With this expression, it is easy to forget the proviso that this equilibration requires the presence of some solid \(\mathrm{KClO}_{4}\).

Recalling, from Equation 2-3, the relationship between molarity and activity leads to:
\[
\mathrm{K}_{\mathrm{sp}}^{\circ}=\gamma_{\mathrm{K}+}\left[\mathrm{K}^{+}\right] \gamma_{\mathrm{ClO}^{4}-}-\left[\mathrm{ClO}_{4}^{-}\right]
\]
so that
\[
\mathrm{K}_{\mathrm{sp}}^{\circ}=\gamma_{\mathrm{K}+} \gamma_{\mathrm{ClO} 4} . \mathrm{K}_{\mathrm{sp}}
\]
and
\[
\mathrm{K}_{\mathrm{sp}}=\mathrm{K}_{\mathrm{sp}}^{\circ} / \gamma_{\mathrm{K}+} \gamma_{\mathrm{ClOO}^{-}} .
\]

In general terms, consider the solubility equilibrium of the ionic solid \(\mathrm{M}_{\mathrm{x}} \mathrm{A}_{\mathrm{y}}\) as it dissolves to produce
\[
\mathrm{M}_{\mathrm{x}} \mathrm{~A}_{\mathrm{y}}(\mathrm{~s}) \rightleftharpoons \mathrm{xM}^{\mathrm{m}+}+\mathrm{yA}^{\mathrm{a}-} .
\]

The thermodynamic solubility product could be expressed as
\[
\begin{aligned}
& \mathrm{K}_{\text {sp }}^{\circ}=\left\{\mathrm{M}^{\mathrm{mt}}\right\}^{\mathrm{x}}\left\{\mathrm{~A}^{\mathrm{a}-}\right\}^{\mathrm{y}}, \\
& \mathrm{~K}_{\text {sp }}^{\circ}=\left(\gamma_{\mathrm{M}^{m}}\right)^{\mathrm{x}}\left(\gamma_{\mathrm{A}^{\mathrm{a}}}\right)^{\mathrm{y}}\left[\mathrm{M}^{\mathrm{mt}}\right]^{\mathrm{x}}\left[\mathrm{~A}^{\mathrm{a}-}\right]^{\mathrm{y}}
\end{aligned}
\]
or
\[
\mathrm{K}_{\mathrm{sp}}^{\circ}=\left(\gamma_{\mathrm{Mm}}+\right)^{\mathrm{x}}\left(\gamma_{\mathrm{A}^{\mathrm{a}}}\right)^{\mathrm{y}} \mathrm{~K}_{\mathrm{sp}} .
\]

The concentration based solubility product might be expressed as
\[
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{M}^{\mathrm{m}+}\right]^{\mathrm{x}}\left[\mathrm{~A}^{\mathrm{a}-]^{\mathrm{y}}}\right.
\]
or as
\[
\mathrm{K}_{\text {sp }}=\mathrm{K}_{\text {sp }}^{\circ} /\left(\left(\gamma_{\mathrm{M}^{\mathrm{mt}}}\right)^{\mathrm{x}}\left(\gamma_{\mathrm{A}^{\mathrm{a}}}\right)^{y}\right) .
\]

Just as with thermodynamic acid dissociation constants, the thermodynamic solubility product is genuinely a constant (for a given solvent at a given temperature), but because the activity coefficients, \(\gamma_{\mathrm{Mm}+}\) and \(\gamma_{\mathrm{Aa}}\), for the soluble species vary profoundly with ionic strength, it is clear that the concentration based solubility product is not a real constant. Nevertheless, \(\mathrm{K}_{\text {sp }}\) is commonly treated as a constant for approximation, and often this yields good approximations. Here, ionic strength effects will be taken into consideration in order to enhance the accuracy of most of the calculations presented. Admittedly, it is often difficult to know if a table of solubility products provides \(\mathrm{K}_{\mathrm{sp}}\) or \(\mathrm{K}_{\text {sp }}{ }^{\circ}\). The values in Appendix VII are presumed to be \(\mathrm{K}_{\text {sp }}^{\circ}\) values.

Returning to the \(\mathrm{KClO}_{4}\) equilibrium, a calculation of molar solubility from \(\mathrm{K}_{\text {sp }}^{\circ}\) and the effect of ionic strength on that solubility will be demonstrated. If \(\mathrm{K}_{\mathrm{sp}}^{\circ}\) for \(\mathrm{KClO}_{4}\) is taken as \(1.110^{-2}\), what is the molar concentration of a solution saturated \({ }^{213}\) with \(\mathrm{K}^{+}\)and \(\mathrm{ClO}_{4}^{-}\)? This is carried out using Maple, perhaps in a more elaborate way than might be done on a calculator, but the example is intended to exercise Maple worksheet skills, not simply to find a solution. We begin with a statement of the equilibrium requirement, but presuming that the activities of \(\mathrm{K}^{+}\)and \(\mathrm{ClO}_{4}^{-}\)can be approximated with their respective concentrations. That is K is taken as \(\left[\mathrm{K}^{+}\right]\), not \(\left\{\mathrm{K}^{+}\right\}\), and \(\mathrm{ClO}[4]\) represents \(\left[\mathrm{ClO}_{4}^{-}\right]\), not \(\left\{\mathrm{ClO}_{4}^{-}\right\}\).
> restart; SolEq:= \(\mathrm{K}^{\circ}[\mathrm{sp}]=\mathrm{K}^{*} \mathrm{ClO}[4]\);
\[
\text { SolEq := } K_{s p}^{\circ}=\mathrm{KClO}_{4}
\]

Mass balance would require that \(\left[\mathrm{K}^{+}\right]\)equals \(\left[\mathrm{ClO}_{4}^{-}\right]\)because both come in equal amount from the same source. So, the K and \(\mathrm{ClO}[4]\) are set equal, and then SolEq can be solved for \(\mathrm{ClO}[4]\). This will effectively make \(\mathrm{K}_{\mathrm{sp}}^{\circ}\) equal to \(\left[\mathrm{ClO}_{4}^{-}\right]^{2}\) and that will mean two roots for \(\left[\mathrm{ClO}_{4}^{-}\right]\). So that the two roots can be isolated, they are listed, i.e. included in braces.
```

> K:= ClO[4]; Root:= solve (SolEq,{ClO[4]});

```
\[
\begin{gathered}
\mathrm{K}:=\mathrm{ClO}_{4} \\
\text { Root }:=\left\{\mathrm{ClO}_{4}=\sqrt{K_{s p}^{\circ}}\right\},\left\{\mathrm{ClO}_{4}=-\sqrt{K_{s p}^{\circ}}\right\}
\end{gathered}
\]

Only the first root has physical meaning because the second root, being less than zero, cannot be observed. Therefore,
```

> K}\mp@subsup{K}{}{0}[sp]:= 1.1e-2; ClO[4]:= subs(Root[1], ClO[4]); 'K'= K

```
\[
\begin{gathered}
K_{s p}^{\circ}:=0.0110 \\
\mathrm{ClO}_{4}:=0.1049 \\
K=0.1049
\end{gathered}
\]

In order to achieve such concentrations, it is necessary that 0.105 mole of \(\mathrm{KClO}_{4}\) dissolve in each liter of water. There is, however, a bit of a paradox here. Notice that the concentrations are considerable, and that consequently, the ionic strength is appreciably greater than 0.001 where it can be ignored. To resolve this, the reiteration process introduced in Chapter 4 (Part I, page 74 et seq.) might be used, but, as illustrated in Chapter 7, this process will be automated. From Equation 2-5, a calculation of ionic strength is made.

```

> \mu:= 0.5*(K + ClO[4]);

```
\[
\mu:=0.1049
\]

This \(\mu\) is then used to calculate \(\gamma_{\mathrm{K}+}\) and \(\gamma_{\mathrm{ClO}^{-}}\)by the Davies Equation (2-8). This, recall, will not discriminate between \(\mathrm{K}^{+}\)and \(\mathrm{ClO}_{4}^{-}\). So the two activity coefficients will be equal and called \(g\). Because \(\mathrm{K}=\mathrm{ClO}_{4}\), either of these is simply \(\sqrt{ } \mathrm{K}_{\mathrm{sp}}\). They will be called Solubility, and \(\mu\) which is the sum of these two, equal concentrations times \(0.5, \mu=\) Solubility.
```

> for i to 3 do
> g:= 10^(-0.5* (1^2)*((sqrt (}\mu)/(1+\operatorname{sqrt}(\mu)) - 0.15* (1)))
> Solubility[i]:= evalf(sqrt(K}\mp@subsup{|}{}{\circ}[sp]/\mp@subsup{g}{}{\wedge}2)); \mu:= Solubility[i]
> end;

```
\[
\begin{aligned}
& \text { Solubility }_{1}:=0.1365 \\
& \text { Solubility }_{2}:=0.1398 \\
& \text { Solubility }_{1}:=0.1400
\end{aligned}
\]

Clearly, the largest adjustment comes when \(\mathrm{K}_{\text {sp }}\) replaces \(\mathrm{K}_{\text {sp }}^{\circ}\) where the solubility increases from 0.104 , to \(0.136_{5}\); the final iteration makes little difference.

Before moving on to solubility equilibria which are affected by competing reactions like acid/base and complex formation, another type of problem will be addressed. It pertains to completeness of precipitation. This concept is crucial to gravimetric analyses which require two conditions: First the precipitation must be "complete" and by that, the \(99.9 \%\) rule is implied; second, the precipitate must be of known stoichiometery so that the mass of the precipitate can be converted into the mass of analyte using its formula weight. This second issue will be addressed in the context of competing precipitation reactions.

Addressing the first issue, consider another simple system, \(\mathrm{CsClO}_{4}\), which is essentially the only insoluble salt of cesium. The \(\mathrm{K}_{\text {sp }}^{\circ}\) is \(4.010^{-3}\). If one were to mix equal volumes of \(0.25 \mathbf{M ~ C s}^{+}\)with \(0.25 \mathrm{M} \mathrm{ClO}_{4}^{-,},{ }^{214}\) would a precipitate form, and if so, how complete would that precipitation be? The first step is to recognize that each solution will be diluted upon mixing. This will be addressed in the opening input of a new Maple worksheet using the dilution concept introduced in Equation 7-2.
```

> restart; C[Cs]:= V [[Cs]*C`[Cs]/(V [Cs] + V [o[ClO[4]]); C[ClO[4]]:=
V

```
\[
\begin{aligned}
& C_{C s}:=\frac{V^{\circ}{ }_{C s} C^{\circ}{ }_{C s}}{V^{\circ}{ }_{\mathrm{Cs}}+V^{\circ}{ }_{\mathrm{ClO}_{4}}} \\
& C_{\mathrm{ClO}_{4}}:=\frac{V^{\circ}{ }_{\mathrm{ClO}_{4}{ }^{\circ} C^{\circ}{ }_{\mathrm{COO}_{4}}}^{V^{\circ}{ }_{\mathrm{Cs}}+V^{\circ} \mathrm{ClO}_{4}}}{}
\end{aligned}
\]
```

> V'[ClO[4]]:= V [[Cs]: 'C[Cs]'= C[Cs]; 'C[ClO[4]]'= C[ClO[4]];

```
\[
\begin{aligned}
C_{C s} & =\frac{1}{2} C^{\circ}{ }_{C s} \\
C_{\mathrm{ClO}_{4}} & =\frac{1}{2} C^{\circ}{ }_{C l O}^{4}
\end{aligned}
\]

For the reader who anticipated that this mix would dilute each reagent exactly in half, it would be tempting to enter \(\mathrm{C}_{\mathrm{Cs}}:=1_{2} \mathrm{C}^{\circ}{ }_{\mathrm{Cs}}\) etc., but with the strategy used here, one can experiment with different volumes and concentrations by modifying the \(\mathrm{V}^{\circ}[\mathrm{ClO}[4]]:=\mathrm{V}^{\circ}[\mathrm{Cs}]:\) input.

The next step is to invoke the conditions of a solubility equilibrium for
\[
\mathrm{CsClO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Cs}^{+}+\mathrm{ClO}_{4}^{-}
\]

This requires that
\[
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Cs}^{+}\right]\left[\mathrm{ClO}_{4}^{-}\right] .
\]

What is needed is the relationship between \(\mathrm{C}_{\mathrm{Cs}}\) and \(\left[\mathrm{Cs}^{+}\right]\)and between \(\mathrm{C}_{\mathrm{ClO} 4}\) and \(\left[\mathrm{ClO}_{4}^{-}\right]\). The balanced equation above indicates that exactly as much \(\mathrm{Cs}^{+}\)will be lost from solution as \(\mathrm{ClO}_{4}{ }^{-}\)will be lost. This will be lost as precipitate which can be called Prcp. So,
\[
\left[\mathrm{Cs}^{+}\right]=\mathrm{C}_{\mathrm{Cs}}-\operatorname{Prcp}
\]
and,
\[
\left[\mathrm{ClO}_{4}^{-}\right]=\mathrm{C}_{\mathrm{ClO} 4}-\operatorname{Prcp}
\]

These can then be written into a solubility equilibrium expression.
\[
\begin{array}{r}
>\operatorname{SolEq}:=\mathrm{K}[\mathrm{sp}]=(\mathrm{C}[\mathrm{Cs}]-\operatorname{Prcp}) *(\mathrm{C}[\mathrm{ClO}[4]]-\operatorname{Prcp}) ; \\
\text { SolEq }:=K_{s p}=\left(\frac{1}{2} C_{C s}^{\circ}-\operatorname{Prcp}\right)\left(\frac{1}{2} C_{C l O_{4}}^{\circ}-\operatorname{Prcp}\right)
\end{array}
\]

This allows for a calculation of the amount of \(\mathrm{CsClO}_{4}\) that will precipitate out of solution when equal volumes of \(\mathrm{Cs}^{+}\)and \(\mathrm{ClO}_{4}^{-}\)are mixed. \({ }^{215}\) Assigning values to the parameters and solving the equilibrium expression gives:
```

> K[sp]:= 4e-3: C}\mp@subsup{C}{}{\circ}[\textrm{Cs}]:=0.25: Co[ClO[4]]:= 0.25: Prcp_s:=
solve(SolEq, {Prcp}); Prcp_f:= fsolve(SolEq, Prcp, 0.. C[Cs]);
Prcp_s := {Prcp = 0.0618},{Prcp=0.1882}
Prcp_f:= 0.0618

```

SolEq is solved two ways here. The first method, solve (SolEq...) is general, and because Prcp is squared in the expression, two roots are expected. In previous chapters, the "physically impossible" root has been immediately recognizable because it has always been less than zero. But here, both roots are greater than zero. Nevertheless, one of the two is impossible: it is not possible to precipitate out more \(\mathrm{Cs}^{+}\left(\right.\)or \(\left.\mathrm{ClO}_{4}^{-}\right)\)than exists in solution! \(\mathrm{C}_{\mathrm{Cs}}=1 / 2 \mathrm{C}^{\circ}{ }_{\mathrm{Cs}}=0.125 \mathrm{M}\). Prcp, therefore, cannot exceed 0.125 . So the first root, will be selected (below).

The second way to solve SolEq is for those who would rather not inspect the list of roots and decide which is the physically possible root; \(£\) solve is a prudent strategy, but only if it is framed by the range of physically possible solutions. This would be 0 to \(\mathrm{C}_{\mathrm{Cs}}\) (or 0 to \(\mathrm{C}_{\mathrm{ClO} 4}\) ). Of course the solution from fsolve is contained in the list of roots given by solve. For those who pursue the solve route, the root of choice must be selected. Solid is used to denote this solution.


```

> Solid:= subs(Prcp_s[1], Prcp);

```
\[
\text { Solid }:=0.0618
\]

And finally, using either Prcp_for Solid, the completeness of the precipitation can be computed.
```

> Completeness:= 100*Solid/C[Cs];

```

Completeness : \(=49.4036\)

This is not impressive, nor is it surprising. \({ }^{216}\) This \(\mathrm{K}_{\mathrm{sp}}\) is too large to provide a thorough precipitation, especially with relatively dilute agents \((0.125 \mathrm{M}) .{ }^{217}\) One could go back and use \({ }^{1 /}\) 五 the volume of \(\mathrm{ClO}_{4}^{-}\) at ten times its concentration \((2.5 \mathbf{M})\). This would increase \(\mathrm{C}_{\mathrm{Cs}}\) and \(\mathrm{C}_{\mathrm{Cl} 04}\) appreciably. Yet, this would increase completeness to only \(72 \%\), still unsatisfactory for quantitative work. Is it not possible to achieve "complete" precipitation? Maybe it is, but not if we require that \(\mathrm{C}_{\mathrm{Cs}+}=\mathrm{C}_{\mathrm{ClO}_{4}}\) - in the mixture.

For a precipitation titration, it is expected that precipitation is \(\geq 99.9 \%\) complete at the equivalence point. On the other hand, for gravimetric analyses one can certainly add an excess of \(\mathrm{ClO}_{4}^{-}\)thereby making \(\mathrm{C}_{\mathrm{ClO} 4}>\mathrm{C}_{\mathrm{Cs}}\) to increase the completeness of the precipitation. We continue now with gravimetric issues using this \(\mathrm{CsClO}_{4}\) precipitation.

The solubility equilibrium expression is entered for reference. Then and \(\mathrm{C}_{\mathrm{Cs}}\) and \(\mathrm{C}_{\mathrm{ClO} 4}\) are written in terms of \(\mathrm{V}^{\mathrm{o}} \mathrm{s}\) and \(\mathrm{C}^{\circ} \mathrm{s}\).
```

> restart; SolEq:= K[sp]= (C [Cs] - Prcp)*(C[ClO[4]] - Prcp):

```

```

 V
 Expression"= SolEq;
    ```
\[
\begin{gathered}
C_{C s}:=\frac{V^{\circ}{ }_{C s} C^{\circ}{ }_{C s}}{V_{C s}^{\circ}+V^{\circ}{ }_{C l O}^{4}} \\
C_{C l O_{4}}:=\frac{V^{\circ}{ }_{C l O_{4}} C^{\circ}{ }_{C l O_{4}}}{V_{C s}^{\circ}+V^{\circ}{ }_{C l O_{4}}} \\
\text { "Solubility Expression" }=\left(K_{s p}=\left(\frac{V_{C s}^{0} C_{C s}^{\circ}}{V_{C s}^{0}+V_{C l O}^{0}}\right.\right. \\
\left.-\operatorname{PrCp})\left(\frac{V_{C l O}^{0} C^{\circ}{ }_{C l O}}{V_{C s}^{0}+V_{C l O}}-\operatorname{Prcp}\right)\right)
\end{gathered}
\]

Here we stipulate that it is \(\mathrm{Cs}^{+}\)that is to be "completely" precipitated. Given that, Prcp must be \(99.9 \%\) of \(\mathrm{C}_{\mathrm{Cs}}\). So,
```

> Prcp:= 0.999*C[Cs]: SolEq;

```
\[
\left.K_{s p}=\frac{0.001 V_{C s}^{0} C_{C s}^{\circ}\left(\frac{V_{C l O}^{0} C_{C l O}}{0}\right.}{V_{C s}^{0}+V_{C l O}^{0}}-\frac{0.999 V_{C s}^{0} C_{C s}^{\circ}}{V_{C s}^{0}+V_{C l O}^{0}}\right)
\]

This is the equilibrium expression that must be satisfied to "completely" precipitate \(\mathrm{Cs}^{+}\)using a \(\mathrm{ClO}_{4}^{-}\) solution. Suppose now that we are using 10.00 mL of a \(0.25 \mathrm{M} \mathrm{Cs}^{+}\)and that a \(4.0 \mathrm{M} \mathrm{NaClO}_{4}\) solution is to be used to effect the precipitation. How much of this \(\mathrm{ClO}_{4}^{-}\)solution is required? Values are assigned to each of the parameters. Then SOlEq is inspected to show that only \(\mathrm{V}^{\mathrm{C}}{ }_{\mathrm{ClO} 4}\) remains as a variable.
```

> K[sp]:= 4e-3: V }\mp@subsup{V}{}{\circ}[\textrm{Cs}]:= 10.0: C C [Cs]:= 0.25: C C [ClO[4]]:= 4.0:
'SolEq' = SolEq;

```
\[
\begin{aligned}
\text { SolEq }= & \left(\begin{array}{l}
0.0040 \\
\end{array} \quad=\frac{0.0025\left(\frac{4.0000 V^{\circ} \mathrm{ClO}_{4}}{10.0000+V^{\circ} \mathrm{ClO}_{4}}-\frac{2.4975}{10.0000+V^{\circ} \mathrm{ClO}_{4}}\right)}{10.0000+V_{\mathrm{ClO}_{4}}^{\circ}}\right)
\end{aligned}
\]

Then, SolEq is solved for \(V^{\circ}{ }_{\text {Clo4 }}{ }^{\circ}\)
> Vol[Reqd]:= solve(SolEq, \{V[ClO[4]]\});
\[
V o l_{\text {Reqd }}:=\left\{V_{\mathrm{ClO}_{4}}^{\circ}=-8.750+5.000 \mathrm{I}\right\},\left\{V_{\mathrm{ClO}_{4}^{\circ}}^{\circ}=-8.750-5.000 \mathrm{I}\right\}
\]

Both roots are complex numbers, indicating that there is no real solution to this problem! That is to say, there is no amount of \(4.0 \mathrm{M} \mathrm{NaClO}_{4}\) that can be added to a \(0.25 \mathrm{M} \mathrm{Cs}^{+}\)solution that will cause at least \(99.9 \%\) of the \(\mathrm{Cs}^{+}\)to precipitate out. How can this be? It might seem that some very large volume of \(\mathrm{ClO}_{4}^{-}\) solution would be effective, but look again at the expression for \(\mathrm{C}_{\mathrm{ClO} 4}\) (in terms of \(\mathrm{C}_{\mathrm{ClO}_{2}}^{\circ}\) and the two \(\mathrm{V}^{\circ} \mathrm{s}\) ).
\[
C_{\mathrm{ClO}_{4}}:=\frac{V_{\mathrm{ClO}_{4}} \mathrm{C}^{\circ}{ }_{\mathrm{ClO}_{4}}}{V_{\mathrm{Cs}^{\circ}+V^{\circ}{ }_{C l O}^{4}}}
\]
\(\mathrm{As} \mathrm{V}{ }_{\mathrm{ClO} 4}^{0} \longrightarrow \infty, \mathrm{C}_{\mathrm{ClO} 4} \longrightarrow \mathrm{C}_{\mathrm{CIO} 4}^{\circ}\). So adding more and more \(\mathrm{ClO}_{4}^{-}\)solution cannot increase \(\left[\mathrm{ClO}_{4}^{-}\right]\) indefinitely; it can at best reach 4.0 M . At the same time as the volume of \(\mathrm{ClO}_{4}^{-}\)solution is increased, \(\mathrm{C}_{\mathrm{Cs}}\) decreases, and this, of course reduces \(\left[\mathrm{Cs}^{+}\right]\)which works against the precipitation of \(\mathrm{CsClO}_{4}\).
\[
C_{C s}:=\frac{V_{C s}^{\circ} C^{\circ}{ }_{C s}}{V_{C s}^{\circ}+V^{\circ}{ }_{C l O_{4}}}
\]

The problem here is that the \(\mathrm{K}_{\text {sp }}\) is too large or the concentrations of \(\mathrm{Cs}^{+}\)or \(\mathrm{ClO}_{4}^{-}\)are too small. The reader is invited to experiment with the previous worksheet to find just how thoroughly the \(\mathrm{Cs}^{+}\)can be precipitated. \({ }^{218}\) Trial and error shows that \(98.3 \%\) precipitation is about as well as one can do given the \(\mathrm{K}_{\mathrm{sp}}, \mathrm{C}_{\mathrm{Cs}}^{\circ}\) and \(\mathrm{C}_{\mathrm{ClO}}^{\circ}{ }^{\circ}\)
```

> Prcp:= 0.983*C[Cs]: SolEq: Vol983:= fsolve(SolEq, V [ClO[4]]);

```
\[
\text { Vol983 := } 10.578
\]


If \(99.9 \%\) cannot be achieved, what level of completeness is possible? For this, it is easier to start over. From the solubility equilibrium expression, \(\operatorname{Prcp}\) is expressed in terms of \(C_{\mathrm{C}}, C_{\mathrm{ClO} 4}\) and \(K_{\mathrm{sp}}\). Then, completeness (i.e. percent completeness), is expressed as the amount precipitated divided by the total amount \({ }^{219}\) of \(\mathrm{Cs}^{+}\) in solution. Then, \(\mathrm{C}_{\mathrm{Cs}}\) and \(\mathrm{C}_{\mathrm{CIO} 4}\) are expressed in terms of \(\mathrm{C}^{\circ} \mathrm{s}\) and \(\mathrm{V}^{\circ} \mathrm{s}\) as before. Enough of what follows has been shown in the previous worksheet that most of the output can be omitted.
```

> restart; SolEq:= K[sp]= (C[Cs] - Prcp)*(C[ClO[4]] - Prcp):
> P_roots:= solve(SolEq,{Prcp});

```
\[
\begin{aligned}
P_{-} \text {roots } & :=\left\{\operatorname{Prcp}=\frac{1}{2} C_{C s}+\frac{1}{2} C_{C l O}^{4}\right. \\
& +\frac{1}{2} \sqrt{C_{C s}^{2}-2 C_{C s} C_{C l O}+C_{C l O}^{4}} 2+4 K_{s p}
\end{aligned},
\]

The two expressions for Prcp provide two values for \(\operatorname{Prcp}\) at a single \(V_{\text {Clo4 }}^{\circ}\). One of the values is larger than \(\mathrm{C}_{\mathrm{Cs}}\), a physical impossibility. It will soon become apparent which of these two expressions is meaningless. Careful study of each expression might show that it is the first expression that provides unrealistic values for \(\operatorname{Prcp}\), but rather than eliminate the irrelevant expression here, we will continue until its irrelevance becomes obvious.
```

> P[1]:= subs(P_roots[1], Prcp): P[2]:=subs (P_roots[2], Prcp):

```

These are used in the calculation of completeness which would be \(100 \mathrm{P}_{1} / \mathrm{C}_{\mathrm{Cs}}\) and \(100 \mathrm{P}_{2} / \mathrm{C}_{\mathrm{Cs}}\). The simplify operation is not necessary, but it does clarify the expression.
```

> Comp[1]:= simplify(100*P[1] /C[Cs]); Comp[2]:= simplify
(100*P[2]/C[Cs]);

```
\[
\begin{aligned}
\text { Comp }_{1} & :=\frac{1}{C_{C s}}\left(5 0 \left(C_{C s}+C_{C l O_{4}}\right.\right. \\
& \left.\left.+\sqrt{C_{C s}^{2}-2 C_{C s} C_{C l O_{4}}+C_{C l O_{4}}^{2}+4 K_{s p}}\right)\right)
\end{aligned}
\]
\[
\begin{aligned}
\text { Comp }_{2} & :=-\frac{1}{C_{C s}}\left(5 0 \left(-C_{C s}-C_{C l O_{4}}\right.\right. \\
& \left.\left.+\sqrt{C_{C s}^{2}-2 C_{C s} C_{C l O_{4}}+C_{C l O_{4}}^{2}+4 K_{s p}}\right)\right)
\end{aligned}
\]

With the expressions for completeness in order, it is now safe to expand them by expressing the analytical concentrations in terms of \(\mathrm{V}^{\circ} \mathrm{s}\) and \(\mathrm{C}^{\circ} \mathrm{s}\). Then values can be assigned to the parameters. We continue as in the previous problem wherein 10.0 mL of \(0.25 \mathrm{M} \mathrm{Cs}^{+}\)is to be treated with \(4.0 \mathrm{M} \mathrm{NaClO}_{4}\) solution to effect the best possible precipitation of \(\mathrm{Cs}^{+}\).

```

 [ClO[4]]*C}\mp@subsup{}{}{\circ}[\textrm{ClO[4]]/(V`[Cs] + V}\mp@subsup{V}{}{\circ}[ClO[4]])
 > V [CS]:=10.0: C
Comp[1]; Comp[2];

```
\(\operatorname{Comp}_{1}\) and \(\operatorname{Comp}_{2}\) are expressions in one variable only, namely \(V_{\text {Clo4 }}^{0}\). They are very long and although they are called (with ;), they are not shown here. These expressions should increase with \(V_{\mathrm{ClO} 4}^{\circ}\) and then, as too much \(\mathrm{ClO}_{4}^{-}\)is added, they should begin to decrease. This maximum is determined as the point at which \({ }^{\mathrm{dComp}} /{ }_{\mathrm{dV}}=0\). Revisiting the differentiation operation introduced in Chapter 6 (Part I, page 139). Both \(\operatorname{Comp}_{1}\) and \(\operatorname{Comp}_{2}\) are differentiated with respect to \(V_{\text {ClO4 }}^{\circ}\), but because of the complexity of these expressions, they are not shown.
```

> Der[1]:= diff(Comp[1], V`[ClO[4]]): Der[2]:= diff(Comp[2],V`[ClO[4]]):

```

Then, each is solved for the volume of \(\mathrm{ClO}_{4}^{-}\)solution that will provide \({ }^{\mathrm{dComp}} /{ }_{\mathrm{dV}}=0\).
```

> V[1]:= solve(Der[1] = 0, V [0[ClO [4]]); V[2]:= solve(Der[2] =
0, V}\mp@subsup{}{}{\circ}[\textrm{ClO[4]]);

```
\[
\begin{gathered}
V_{1}:= \\
V_{2}:=11.229
\end{gathered}
\]

Maple is unable to find a maximum or minimum to \(\operatorname{Comp}_{1}\), a sign that the function is inappropriate. So we look at Comp \({ }_{1}\) and Comp for completeness. At the same time, an option for plotting is revisited. It is the thickness \(=\mathrm{n}\) specification, where increasing n increases the plot line thickness. The reader will notice that Comp \({ }_{1}\) makes no sense: it implies more than \(100 \%\) precipitation, even where no \(\mathrm{ClO}_{4}^{-}\)has been added!
```

> plot([Comp[1], Comp[2]], Vo[ClO[4]] = 0..3,color = [navy,
orange], thickness = 3, labels = ["Vol of ClO4 Solution", "%
Precipitated"], axes = boxed);

```


Figure 10-1

\title{
Free eBook on Learning \& Development
}

By the Chief Learning Officer of McKinsey

Download Now


Clearly Comp , with \(>100 \%\) precipitation makes no sense. Comp \({ }_{2}\) is plotted alone, its form is easier to appreciate. An interesting segment of such a plot is found where the volume of \(\mathrm{ClO}_{4}^{-}\)solution is much less than the optimum 11.229 mL .
> plot(Comp[2], \(V^{\circ}[\mathrm{ClO}[4]]=0 . .1\), labels \(=[" V o l\) of ClO 4
Solution","\% Precipitated"], color = orange, axes = boxed);


Figure 10-2

Notice that below \(\mathrm{V}_{\mathrm{ClO}_{4}} \approx 0.04 \mathrm{~mL}\), the percentage of \(\mathrm{Cs}^{+}\)precipitated is less than zero. This is a manifestation of the requirement that there must be solid in equilibrium with the solution if solubility equilibrium conditions are invoked. The volume of \(\mathrm{ClO}_{4}^{-}\)at which Prcp reaches zero, represents the minimum volume required to initiate precipitation. At a volume less than that, the SolEq expression is invalid because there is no \(\mathrm{CsClO}_{4}(\mathrm{~s})\).

To continue with the analysis of this \(\mathrm{CsClO}_{4}\) precipitation, \(\mathrm{V}^{\circ}{ }_{\mathrm{ClO}}\) is given the value of \(\mathrm{V}_{2}(11.229 \mathrm{~mL})\) and out of curiosity, \(\mathrm{Comp}_{1}\) is computed. Then \(V_{\mathrm{ClO}_{4}}\) is set at zero.
```

> V}\mp@subsup{V}{}{0}[ClO[4]]:= V[2]; Completeness[1] = Comp[1]; Completeness[2
= Comp[2]; V [ClO[4]]:= 0; Completeness[1] = Comp[1];
Completeness[2] = Comp[2];

$$
V_{\mathrm{ClO}_{4}}^{0}:=11.229
$$

$$
\text { Completeness }_{1}=1798.302
$$

$$
\text { Completeness }_{2}=98.302
$$

```
\[
\begin{gathered}
\mathrm{V}_{\mathrm{ClO}_{4}}:=0 \\
\text { Completeness }_{1}=106.036 \\
\text { Completeness }_{2}=-6.036
\end{gathered}
\]

At 11.229 mL of \(4.0 \mathrm{M} \mathrm{NaClO}_{4}\), and 10.0 mL of \(0.25 \mathrm{M} \mathrm{CsCl}, \mathrm{Cs}^{+}\)is precipitated as completely as possible, and that is at \(98.3 \%\). One more adjustment is required for precise work: the supernatant solution will have an ionic strength equal to \(\mathrm{C}_{\mathrm{ClO4}}\) (see Equation 3-13).
```

> V [ClO[4]]:= V[2]: }\mu:=C[ClO[4]]

```
\[
\mu:=2.116
\]

At this ionic strength even the Davies equation is inadequate for finding activity coefficients accurately, but any adjustment is likely to be better than none. \(\mathrm{K}_{\mathrm{sp}}\) would be adjusted with the activity coefficients and the problem solved again.

These problems pertaining to \(\mathrm{KClO}_{4}\) and \(\mathrm{CsClO}_{4}\) are the simplest possible examples of solubility equilibria, first because they involve \(1: 1\) compounds and second because they do not entail competing reactions \({ }^{220}\). The most important competing reaction is between \(\mathrm{H}^{+}\)and \(\mathrm{M}^{\mathrm{m}+}\) for the anion that precipitates \(\mathrm{M}^{\mathrm{n+}}\), and the next-most important is the competition between \(\mathrm{OH}^{-}\)and \(\mathrm{A}^{\mathrm{ad}}\) for \(\mathrm{M}^{\mathrm{m}+}\).

Consider the solubility of \(\mathrm{CaF}_{2}\). Its ionic dissolution would entail
\[
\mathrm{CaF}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}
\]

The equilibrium for this reaction is affected by reactions involving each of the product ions:
\[
\begin{array}{rlll}
\mathrm{Ca}^{2+}+\mathrm{OH}^{-} & \rightleftharpoons & \mathrm{CaOH}^{+} & \mathbf{1 0 - 6} \\
\mathrm{H}^{+}+\mathrm{F} & \rightleftharpoons & \mathrm{HF} . & \mathbf{1 0 - 7}
\end{array}
\]

So, at high \(\mathrm{pH}, \mathrm{Ca}^{2+}\) is removed from solution by the abundance of hydroxide ion, and at low \(\mathrm{pH}, \mathrm{F}\) is removed from solution by the abundance of hydronium ion. Either condition enhances the solubility of \(\mathrm{CaF}_{2}\). These adjustments to \(\left[\mathrm{Ca}^{2+}\right]\) and \([\mathrm{F}]\) are addressed by replacing \(\mathrm{C}_{\mathrm{Ca} 2+}\) with \(\alpha_{\mathrm{Ca}^{2}+} \mathrm{C}_{\mathrm{Ca} 2+}\) and \(\mathrm{C}_{\mathrm{F}}-\) with \(\alpha_{\mathrm{F}}-\mathrm{C}_{\mathrm{F}}-\), and calculating the respective alphas.

The \(\mathrm{K}_{\mathrm{sp}}\) for the ionic dissolution of \(\mathrm{CaF}_{2}\) would be
\[
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right][\mathrm{F}]^{2}
\]

In the previous examples \(\left[\mathrm{K}^{+}\right]\)could be replaced with \(\mathrm{C}_{\mathrm{K}+}\) and \(\left[\mathrm{ClO}_{4}^{-}\right]\)could be replaced with \(\mathrm{C}_{\mathrm{ClO}_{4}^{-}}\) because each alpha was exactly 1 . Here, the alphas cannot be omitted. So
\[
\mathrm{K}_{\mathrm{sp}}=\alpha_{\mathrm{C} 2+2} \mathrm{C}_{\mathrm{C} 22+}\left(\alpha_{\mathrm{F}}-\mathrm{C}_{\mathrm{F}}-\right)^{2}
\]

In the worksheet that follows, \(\left[\mathrm{Ca}^{2+}\right]\) will be denoted \(\mathrm{Sol}_{\mathrm{Ca}}\) meaning soluble \(\mathrm{Ca}^{2+}\) and \([\mathrm{F}]\) will be \(\mathrm{Sol}_{\mathrm{F}}\) This will avoid recursive error warnings when Ca and F are used as subscripts.
```

> restart; SolEq:= K[sp] = Sol[Ca]*Sol[F]^2:
> Sol[Ca] := alpha[Ca]*C[Ca]; Sol[F]:= alpha[F]*C[F]; 'SolEq'=
SolEq;

```
\[
\text { SolEq }=\left(K_{s p}=\alpha_{C a} C_{C a} \alpha_{F}^{2} C_{F}^{2}\right)
\]

If the question is to determine the molar solubility of \(\mathrm{CaF}_{2}\), this can be determined simply from \(\mathrm{C}_{\mathrm{Ca}}\) because all of the \(\mathrm{Ca}^{2+}\) in solution regardless of its form, originated from any \(\mathrm{CaF}_{2}\) that dissolved. This is true also for \(\mathrm{C}_{\mathrm{F}}\), and from the stoichiometery of the salt, \(\mathrm{C}_{\mathrm{F}}\) must be \(2 \times \mathrm{C}_{\mathrm{Ca}}\). Therefore, to find the molar solubility of \(\mathrm{CaF}_{2}\), one substitution and a rearrangement of \(\operatorname{SolEq}\) is all that is necessary. SolEq being a \(3^{\circ}\) polynomial will have three roots (which will not be shown), but the only the first of the three is real. It is isolated and shown in the next step.
```

> C[F]:= 2*C[Ca]: Sol_roots:= solve(SolEq,{C[Ca]}):
> Solubility:= subs(Sol_roots[1], C[Ca]):
Solubility:}=\frac{1}{2}\frac{\mp@subsup{2}{}{1/3}(\mp@subsup{K}{sp}{}\mp@subsup{\alpha}{Ca}{2}\mp@subsup{\alpha}{F}{}\mp@subsup{)}{}{1/3}}{\mp@subsup{\alpha}{Ca}{}\mp@subsup{\alpha}{F}{}

```

The simplify operation does not simplify the Solubility expression, but a little thought should make the relationship clearer: the solubility of \(\mathrm{CaF}_{2}\) goes as
\[
\left(\alpha_{C a+}\right)^{-1 / 3}\left(\alpha_{\mathrm{F}}\right)^{-2 / 3 / 3} .
\]

So as either alpha approaches its maximum value of one, the solubility decreases, and as either alpha approaches zero, the solubility increases. This is consistent with Le Châtelier's Principle (Part I, page 9) as it would apply to Equations 10-6 and 10-7. The dependence of solubility on pH comes as these alphas are written in terms of \(\left[\mathrm{H}^{+}\right]\)and then pH (actually minus \(\log _{10}\left[\mathrm{H}^{+}\right]\)). \(\alpha_{\mathrm{Ca}}\) is taken from Chapter 9 (page 62 et seq.) \(\alpha_{\mathrm{F}}\) - is simply an application of Equation 4-21, and taken directly from Part I, page 77. By first writing \(\left[\mathrm{H}^{+}\right]\)and \(\left[\mathrm{OH}^{-}\right]\)in terms of pH (as on page 71), the alphas will directly substitute into Solubility as a function of \(\mathrm{pH}, \mathrm{K}_{\mathrm{a}}\) and \(\mathrm{K}_{\mathrm{sp}}\).
```

> OH:= 10^(pH-14); H:= 10^(-pH); alpha[Ca]:= 1/(1 + OH*beta[1]);
alpha[F]:= K[a]/(H + K[a]); Solubility;

```
\[
\begin{gathered}
\alpha_{C a}:=\frac{1}{1+10^{p H-14} \beta_{1}} \\
\alpha_{F}:=\frac{K_{a}}{10^{-p H}+K_{a}}
\end{gathered}
\]

\[
\begin{aligned}
& \text { Solubility }=\frac{1}{2} \frac{1}{K_{a}}\left(( 1 + 1 0 ^ { p H - 1 4 } \beta _ { 1 } ) \left(10^{-p H}\right.\right. \\
& \left.\left.\quad+K_{a}\right) 2^{1 / 3}\left(\frac{K_{s p} K_{a}}{\left(1+10^{p H-14} \beta_{1}\right)^{2}\left(10^{-p H}+K_{a}\right)}\right)^{1 / 3}\right)
\end{aligned}
\]

And now, values can be assigned for equilibrium constants (Appendix IV, VI and VII, respectively). \({ }^{221}\)
```

> K[a]:= 10^(-3.18); beta[1]:= 10^(1.46); K[sp]:= 10^(-8.28);
`Solubility `= Solubility;

```
\[
\begin{aligned}
& \text { Solubility }=0.1145\left(1+28.840310^{p H-14}\right)\left(10^{-p H}\right. \\
& \quad+0.0007) \\
& \quad 2^{1 / 3}\left(\frac{1}{\left(1+28.840310^{p H-14}\right)^{2}\left(10^{-p H}+0.0007\right)}\right)^{1 / 3}
\end{aligned}
\]

Now expression for solubility contains only one variable, pH . As pH changes from 0 to 14 , the solubility of \(\mathrm{CaF}_{2}\) will change over several orders of magnitude. So, in order to make a plot of this solubility more meaningful, it will be expressed logarithmically, actually as \(-\log _{10}\) (Solubility), or " \(p\) (Solubility)." To do this, the \(-\log [10]\) operation is carried out within the plot command.
```

> plot(-log[10](Solubility), pH = 0..14, axes = boxed, labels =
["-log[H+]", "p(Solubility)"], color = magenta);

```


Figure 10-3

Apparently, \(\mathrm{CaF}_{2}\) becomes nearly soluble at \(-\log _{10}\left[\mathrm{H}^{+}\right]=0\), or \(\left[\mathrm{H}^{+}\right]=1.0 \mathrm{M}\).
```

> pH:= 0: 'Solubility'= evalf222(Solubility);

```
\[
\text { Solubility }=0.0284
\]

At this concentration, \(\left[\mathrm{H}^{+}\right]\)would be \(1.00 \mathrm{M}, \mathrm{Ca}^{2+}\) would be 0.028 M , and [ \(\mathrm{F}^{-}\)] would be \(2 \times 0.0284 \mathrm{M}\). Charge balance would require an anion concentration of \(1.00 / \mathrm{zM}\) where z is the charge on that anion (A- from HA plus \(F^{-}\)). At any rate, even with \(z=1\), it should be apparent that the ionic strength at this pH would be considerable and it would require a substantial modification to \(\mathrm{K}_{\mathrm{a}}, \beta_{1}\) and \(\mathrm{K}_{\mathrm{sp}}\) in order to compute the solubility accurately. We will not pursue the problem into ionic strength effects because the point has been made: the pH profoundly affects the solubility of \(\mathrm{CaF}_{2}\).

For gravimetric analysis, it is the region of minimum solubility that matters most. One might find dsolubility/ \(\mathrm{dpH}=0\), but from Figure 10-3 it is apparent that the region of minimum solubility is broad and flat (on a logarithmic scale). Indeed, assigning different values for the pH , between 5 and 11 shows that the solubility remains at \(2.1610^{-4} \pm 110^{-6}\).


Deloitte.
Discover the truth at www.deloitte.ca/careers

\(\mathrm{Ca}^{2+}\) like the Group IA and other Group IIA ions is not apt to form metal complexes with simple \({ }^{223}\) anions, but consider what might look like a simple solubility equilibrium with a Group IB metal
\[
\mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}+\mathrm{Cl}^{-}
\]

While chloride ion offers the simplicity of being unaffected by pH because it is the anion of a strong acid, it brings a new complexity to the solubility equilibrium of all but a few metal ions: it is a sufficiently strong ligand to create multiple complexes with its cation.
\begin{tabular}{lll}
\(\mathrm{Ag}^{+}+\mathrm{Cl}^{-}\) & & \begin{tabular}{l}
\(\mathrm{AgCl}(a q)\) \\
\(\mathrm{Ag}^{+}+2 \mathrm{Cl}\) \\
\(\mathrm{Ag}^{+}+3 \mathrm{Cl}^{-}\) \\
\(\mathrm{Ag}^{+}+4 \mathrm{Cl}^{-}\)
\end{tabular} \\
\(\mathrm{AgCl}_{2}^{-}\)
\end{tabular}

These provide for four more soluble forms of \(\mathrm{Ag}^{+}\)(in addition to \(\mathrm{Ag}^{+}\)itself). So, while increasing the chloride concentration might appear to drive the equilibrium toward the formation of solid AgCl , at the same time, the four competing reactions are driven so as to diminish \(\left[\mathrm{Ag}^{+}\right]\)which would enhance the dissolution of solid AgCl . Consequently, there will be an optimal \(\left[\mathrm{Cl}^{-}\right]\)that minimizes \(\mathrm{AgCl}(\mathrm{s})\) solubility. This will be determined in the next example.

Before pursuing the effect of \(\left[\mathrm{Cl}^{-}\right]\)on \(\mathrm{AgCl}(\mathrm{s})\) solubility, however, it would be timely to compare the two reactions
\[
\mathrm{AgCl}(\mathrm{~s}) \quad \rightleftharpoons \quad \mathrm{Ag}^{+}+\mathrm{Cl}
\]
and
\[
\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \quad \rightleftharpoons \quad \mathrm{AgCl}(a q) .
\]

Their equilibria are represented as \(\mathrm{K}_{\mathrm{sp}}\) and \(\mathrm{K}_{\mathrm{fl}}\), respectively. The sum of these reactions is:
\[
\mathrm{AgCl}(\mathrm{~s}) \quad \rightleftharpoons \quad \mathrm{AgCl}(a q) .
\]
which would have the thermodynamic and concentration based equilibrium expressions
\[
\mathrm{K}_{\mathrm{eq}}^{\circ}=\mathrm{K}_{\mathrm{sp}}^{\circ} \times \mathrm{K}_{\mathrm{fl}}^{\circ}=\{\mathrm{AgCl}(\mathrm{aq})\}
\]
and
\[
\mathrm{K}_{\mathrm{eq}}=\mathrm{K}_{\mathrm{sp}} \times \mathrm{K}_{\mathrm{fl}}=[\mathrm{AgCl}(\mathrm{aq})],
\]
respectively. The concentration based equilibrium expression says that the concentration of aqueous AgCl is a constant, and so as long as there is some solid AgCl in contact with the supernatant liquid, a constant amount of \(\mathrm{AgCl}(\mathrm{s})\) will dissolve giving a constant \(\mathrm{AgCl}(\mathrm{aq})\) concentration! Moreover, being a constant, it cannot be diminished by adding an excess of either \(\mathrm{Ag}^{+}\)or \(\mathrm{Cl}^{-}\). This phenomenon is known as intrinsic solubility. As the name implies, it is inherent to the solid and not alterable. It provides an upper limit to the completeness of precipitating that solid. This will become apparent in the example that follows here.

The existence of an intrinsic solubility is somewhat predictable. It requires a considerable degree of covalency in the substance. Generally, bonds between atoms on the right hand side of the periodic table are more covalent than bonds between atoms on opposite sides of the table. This is why the issue of intrinsic solubility was not raised with the \(\mathrm{CaF}_{2}\) example, but it would have been an issue had \(\mathrm{PbF}_{2}\) been addressed. Also, oxyanions have little covalent character in their bonds with metal ions. So, in terms of intrinsic solubility, chlorates are better than chlorides, sulfates are better than sulfides, etc.

A final point: because intrinsic solubility can be appreciable, using \(K_{s p}\) to estimate solubility can be precarious. Consider for example HgS with its \(\mathrm{K}_{\mathrm{sp}}\) of only \(4.010^{-53}\). This implies that when this solid is in equilibrium with its supernatant solution, \(\left[\mathrm{Hg}^{2+}\right]\) and \(\left[\mathrm{S}^{2-}\right]\) are equal to \(6.3 \times 10^{-27}\) which is nominally one \(\mathrm{Hg}^{2+}\) ion and one \(\mathrm{S}^{2-}\) ion per thousand liters. One would, however, find a lot more mercury than that in the supernatant liquid because of the considerable presence of \(\mathrm{HgS}(\mathrm{aq})\), and this because of the highly covalent Hg -S bond.

Returning to the \(\mathrm{AgCl}(\mathrm{s})\) problem in terms of chloride ion effects, we begin with the solubility equilibrium requirement. The expression given earlier should be modified to
\[
\mathrm{K}_{\mathrm{sp}}=\alpha_{\mathrm{Ag}^{+}} \mathrm{C}_{\mathrm{Ag}+}\left[\mathrm{Cl}^{-}\right]
\]
because \(\mathrm{C}_{\mathrm{Ag}+}\) represents the total, soluble component of \(\mathrm{AgCl}(\mathrm{s})\). After all, if one is attempting to isolate \(\mathrm{Ag}^{+}\)by precipitating it out of solution, it doesn't matter how it escapes filtration, be it as \(\mathrm{Ag}^{+}\)or \(\mathrm{AgCl}_{4}^{3-}\). We can express this solubility with a simple rearrangement:
\[
\text { Solubility }=\mathrm{C}_{\mathrm{Ag}+}=\mathrm{K}_{\mathrm{sp}} / \alpha_{\mathrm{Ag}^{2}}+\left[\mathrm{Cl}^{-}\right] .
\]

A cursory inspection of this expression might lead one to believe that increasing the chloride concentration will diminish the solubility of \(\mathrm{AgCl}(\mathrm{s})\), but \(\alpha_{\mathrm{Ag}+}\) is itself a function of \(\left[\mathrm{Cl}^{-}\right]\).
```

> restart; SolEq:= K[sp] = alpha[Ag]*C[Ag]*Cl: Solubility:=
solve(SolEq, C[Ag]);

```
\[
\text { Solubility: }=\frac{K_{s p}}{\alpha_{A G} C I}
\]

The expression for \(\alpha_{\text {Agt }}\) is not derived here; rather, the reader is directed to page 55 et seq. or Example Problem 9-1 for details on its derivation. In the following step, it would be simple enough to enter \(1 /(1\) \(\left.+\beta_{1} \mathrm{Cl}+\beta_{2} \mathrm{Cl}^{2}+\beta_{3} \mathrm{Cl}^{3}+\beta_{4} \mathrm{Cl}^{4}\right)\) for \(\alpha_{\mathrm{Ag}_{5}}\), but an analysis of the solution makeup will be interesting. So the more deliberate approach used in Chapter 9 is taken. With this approach all five alphas can be expressed so that they can be computed later in the worksheet. Showing only two of the alphas:
```

> Den:= 1 + beta[1]*Cl + beta[2]*Cl^2 + beta[3]*Cl^3 + beta
[4]*Cl^4: alpha[Ag]:= 1/Den; alpha[AgCl]:= op(2,Den)/Den;
alpha[AgCl[2]]:= op(3,Den)/Den; alpha[AgCl[3]]:= op(4, Den)/Den;
alpha[AgCl[4]]:= op(5,Den)/Den; 'Solubility' = Solubility;

```
\[
\begin{gathered}
\alpha_{A g}:=\frac{1}{1+\beta_{1} C l+\beta_{2} C l^{2}+\beta_{3} C l^{3}+\beta_{4} C l^{4}} \\
\alpha_{A g C l_{4}}:=\frac{\beta_{4} C l^{4}}{1+\beta_{1} C l+\beta_{2} C l^{2}+\beta_{3} C l^{3}+\beta_{4} C l^{4}} \\
\text { Solubility }=\frac{K_{s p}\left(1+\beta_{1} C l+\beta_{2} C l^{2}+\beta_{3} C l^{3}+\beta_{4} C l^{4}\right)}{C l}
\end{gathered}
\]

\section*{We will turn your CV into an opportunity of a lifetime}


Do you like cars? Would you like to be a part of a successful brand?

Send us your CV on www.employerforlife.com d

From this expanded expression for Solubility, it is apparent that increasing [Cl] indefinitely might not continue to diminish the solubility of \(\mathrm{AgCl}(\mathrm{s})\). From Appendix VIa and VII the constants are assigned next.
```

> K[sp]:= 10^(-9.75); beta[1]:= 10^3.04; beta[2]:= 10^5.04;
beta[3]:= 10^5.04; beta[4]:= 10^5.30;

```

In order that [ \(\mathrm{Cl}^{-}\)] may be changed over several orders of magnitude and the result clearly plotted, Solubility will be expressed as a function of pCl and that requires the replacement of Cl with \(10^{-\mathrm{pcl}}\).
```

> SOLUBILITY:= algsubs(Cl = 10^(-pCl), Solubility);
SOLUBILITY:= 直 (1.780 10-10 (1.000
+1.000 106 (10-pCl}\mp@subsup{)}{}{4}+63095.734(1\mp@subsup{0}{}{-pCl}\mp@subsup{)}{}{2
+3.162105 (10-pCl}\mp@subsup{)}{}{3}+501.1871\mp@subsup{0}{}{-pCl})

```

Notice that the al subs operation has not purged all of the Cls from the expression. (This operation does not make all substitutions when some of the expressions to be substituted have negative exponents.) Here, Cl was expressed to the first, second, third, fourth and minus first power (i.e. Cl in the denominator). This can be cleaned up with a second application of alsubs. \(1 / \mathrm{Cl}\) would be \(10^{+\mathrm{pCl}}\). So,
```

> SOLUBILITY:= algsubs(1/Cl = 10^pCl, SOLUBILITY);

```
\[
\begin{aligned}
& \text { SOLUBILITY: }=1.000\left(1.78010^{-10}+0.000\left(10^{-p C l}\right)^{4}\right. \\
& \quad+0.000\left(10^{-p C l}\right)^{2}+0.000\left(10^{-p C l}\right)^{3} \\
& \left.\quad+8.92110^{-8} 10^{-p C l}\right) 10^{p C l}
\end{aligned}
\]

Finally the logarithmic plot can be rendered. Again the command is built into the plot command, but recall that through Plot \(>\) Axes > Properties... it is a simple matter to change the vertical axis to a logarithmic scale, but the numbering will be different.
```

> plot(log[10](SOLUBILITY), pCl = 0..5, axes = boxed, labels =
["pCl","log of Solubility"], color = maroon);

```


Figure 10-4

The point of minimum \(\mathrm{AgCl}(\mathrm{s})\) solubility can be found quantitatively by finding the point at which dsolubility/ \({ }_{\mathrm{dCl}}\) is equal to zero. Unlike the work in Chapter 6 (Part I, page 139) we will combine two steps into one.
```

> Cl[optimum]:= solve(diff(Solubility, Cl) = 0, {Cl});

```
\[
\begin{gathered}
C l_{\text {optimum }}:=\{C l=0.0030\} \\
\left\{C l=-0.1832+03868^{\star} \mathrm{I}\right\},\{C l=-0.0030\} \\
\left\{C l=-0.1832-03868^{\star} \mathrm{I}\right\}
\end{gathered}
\]

Only one physically possible root is found, the first root. After a change in numeric formatting:
```

> Cl:= subs(Cl[optimum][1], Cl);

```
\[
C l:=0.00301
\]

With \(\left[\mathrm{Cl}^{-}\right]\)assigned the value that gives minimal solubility, the nature of the solution can be analyzed by calling Solubility and the five alphas.
```

> 'Solubility'= Solubility; 'alpha[Ag]'= alpha[Ag]; 'alpha[AgCl]'=
alpha[AgCl]; 'alpha[AgCl[2]]'=alpha[AgCl[2]]; 'alpha[AgCl[3]]'=alp
ha[AgCl[3]]; 'alpha[AgCl[4]]'= alpha[AgCl[4]];

```

Solubility \(=3.1293110^{-7}\)
\[
\begin{gathered}
a_{\mathrm{Ag}}=0.18874 \\
a_{\mathrm{AgCl}}=0.62309 \\
\alpha_{\mathrm{AgCl}_{2}}=0.18760 \\
\alpha_{\mathrm{AgCl}_{3}}=0.00056 \\
\alpha_{\mathrm{AgCl}_{4}}=0.00000
\end{gathered}
\]

The issue of intrinsic solubility emerges again: Notice that most (62.3\%) of the silver in solution in in the form of \(\mathrm{AgCl}(\mathrm{aq})\), and that less than one fifth exists as free \(\mathrm{Ag}^{+}\).
\(\left[\mathrm{Cl}^{-}\right]=0.00301\) should not be confused with \(\mathrm{C}_{\mathrm{Cl}}\), which is the total chloride concentration necessary to effect minimum solubility of \(\mathrm{AgCl}(\mathrm{s})\). \(\mathrm{Each} \mathrm{AgCl}(\mathrm{s})\) will require one Cl , each \(\mathrm{AgCl}_{2}^{-}\)will require two Cl -s etc. \({ }^{224}\)
```

> C[Chloride, total]:= Cl + (alpha[AgCl] + 2*alpha[AgCl[2]] + 3*
alpha[AgCl[3]] + 4*alpha[AgCl[4]])*Solubility;

```
\(C_{\text {Chloridetotala }}:=0.00301\)



This is indistinguishable from Cl , but C [Chloride, total] - Cl ; reveals a difference of (only) \(3.110^{-7}\). This is small because the total solubility is so small \(\left(3.110^{-7}\right)\).

The effect of ligand concentration on solubility is used more proactively by introducing strong ligands that can mask a cation from anions that cause it to precipitate. The principle is exactly the same as what was addressed in Chapter 9 (page 70) regarding the masking of metal cations from chelating agents. Indeed, ligands or more specifically chelating agents can be used to dissolve insoluble salts. This was the premise of Example Problem 4 in the previous chapter.

Consider the process of dissolving \(\mathrm{AgCl}(\mathrm{s})\) in \(\mathrm{NH}_{3}(\mathrm{aq})\). Because \(\mathrm{NH}_{3}\) is a much stronger ligand than \(\mathrm{Cl}^{-}\), it is much more effective at reducing \(\alpha_{\mathrm{Ag}+}\). The solubility of \(\mathrm{AgCl}(\mathrm{s})\) in water can be calculated by the process discussed on page \(110\left(\mathrm{KClO}_{4}\right.\) example). What about the solubility of \(\mathrm{AgCl}(\mathrm{s})\) or \(\mathrm{AgBr}(\mathrm{s})\) in \(6.0 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})\) ? The process will follow that of the \(\mathrm{KClO}_{4}\) example except that \(\alpha_{\text {Ag+ }}\) will be included in the solubility equilibrium expression. \(\mathrm{As} \mathrm{AgCl}(s)\) dissolves, \(\mathrm{Cl}^{-}\)will be released, but the formation of \(\mathrm{AgCl}_{\mathrm{n}}{ }^{1-\mathrm{n}}\) complexes will not be considered for the simple reason that [ \(\mathrm{Cl}^{-}\)] will not be able to exceed \(\left[\mathrm{Ag}^{+}\right]\). So there will not be enough chloride to form appreciable quantities of those chloro complexes, especially with their relatively small formation constants.
```

> restart; SolEq:= K[sp] = alpha[Ag]*C[Ag]*C[Cl];

```
\[
\text { SolEq }:=K_{s p}=a_{A g} C_{A g} C_{C l}
\]

Inasmuch as all of the \(\mathrm{Ag}^{+}\)and all of the \(\mathrm{Cl}^{-}\)come from the same source, namely \(\mathrm{AgCl}(\mathrm{s}), \mathrm{C}_{\mathrm{Ag}}\) and \(\mathrm{C}_{\mathrm{Cl}}\) must be equal. (And this is why \(\mathrm{AgCl}_{\mathrm{n}}^{1-\mathrm{n}}\) with \(\mathrm{n}>1\) cannot form.) By the same reasoning, \(\mathrm{C}_{\mathrm{Ag}}\) and \(\mathrm{C}_{\mathrm{Br}}\) will be equal when \(\operatorname{AgBr}(\mathrm{s})\) dissolves.
```

> C[Cl]:= C[Ag]: SolRoots:= solve(SolEq, {C[Ag]});

```
\[
\text { SolRoots }:=\left\{C_{A g}=\frac{\sqrt{\alpha_{A g} K_{s p}}}{\alpha_{A g}}\right\},\left\{C_{A g}=-\frac{\sqrt{\alpha_{A g} K_{s p}}}{\alpha_{A g}}\right\}
\]

The second root, with \(\mathrm{C}_{\mathrm{Ag}}<0\), can have no physical meaning. So,
> Solubility:= subs(SolRoots[1], C[Ag]);
\[
\text { Solubility: }=\frac{\sqrt{\alpha_{A g} K_{s p}}}{\alpha_{A g}}
\]

Notice that the expression for solubility is no longer AgCl -specific. Indeed, it is applicable to any \(1: 1\) AgX salt. The specificity comes from \(\mathrm{K}_{\mathrm{sp}}\) and that will be incorporated presently. But first, \(\alpha_{\mathrm{Ag}}\) will be expressed. The output is not shown because the operation has been performed several times in this and the previous chapters. \(\alpha_{\mathrm{Ag}}\) and \(\alpha_{\mathrm{NH} 3}\) are defined here because they are going to be needed to convert \(\mathrm{C}_{\mathrm{NH} 3}\) to \(\left[\mathrm{NH}_{3}\right]\) in a few input lines.
```

> Den:= 1 + beta[1]*NH[3] + beta[2]*NH[3]^2: alpha[Ag]:= 1/Den:

```
    alpha[AgNH3]:=op(2,Den)/Den; alpha[AgNH3[2]]:=op(3,Den)/Den:
    Solubility;
\[
\text { Solubility }=\left(1+\beta_{1} N H_{3}+\beta_{2} N H_{3}^{2}\right) \sqrt{\frac{K_{s p}}{1+\beta_{1} N H_{3}+\beta_{2} N H_{3}^{2}}}
\]

This expression for solubility shows that increasing \(\left[\mathrm{NH}_{3}\right], \beta_{1}, \beta_{2}\), or \(\mathrm{K}_{\mathrm{sp}}\) will lead to an increase in solubility of the precipitate. Of course the latter three are constants that cannot be changed without changing the chemistry. Only the betas are assigned next.
```

> beta[1]:= 10^3.32: beta[2]:= 10^7.24:

```

Now, rather than simply assign one value to \(\mathrm{K}_{\text {sp }}\) for AgCl and then another value for AgBr , the subs operation will be used. This will create two, compound-specific expressions from the same general expression.
```

> Sol[AgCl]:= subs(K[sp] = 1.78e-10, Solubility); Sol[AgBr]:=
subs(K[sp] = 5.3e-13, Solubility);

```

The results (not shown) are two expressions that contain \(\mathrm{NH}_{3}\) as the only variable. One might wish to plot \(\mathrm{Sol}_{\mathrm{AgCl}}\) and \(\mathrm{Sol}_{\mathrm{AgBr}}\) as a function of \(\left[\mathrm{NH}_{3}\right]\), but the problem at hand is to calculate these solubilities at \(C_{N H 3}\). The best approximation that can be provided for \(\left[\mathrm{NH}_{3}\right]\) is \(\mathrm{C}_{\mathrm{NH} 3}\).
```

> NH[3]:= 6.0: AgCl_in_NH3:= Sol[AgCl]; AgBr_in_NH3:= Sol[AgBr];

```
\[
\begin{aligned}
& A g C l \_i n \_N H 3:=0.334 \\
& A g B r \_i n \_N H 3:=0.018
\end{aligned}
\]

This shows a considerable solubility of both silver salts despite their small solubility products. If 0.334 mole of AgCl were to dissolve in one liter of \(6.0 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})\) one should suspect a measurable \(\mathrm{NH}_{3}\) loss to the formation of \(\mathrm{AgNH}_{3}{ }^{+}\)and \(\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\). That is to say, \(\left[\mathrm{NH}_{3}\right]\) will be measurably smaller than \(\mathrm{C}_{\mathrm{NH} 3}\). This adjustment is achieved with the reiteration, and as on page 114.
```

>for i to 4 do
> NH[3]:= 6-(alpha[AgNH3] + 2* alpha[AgNH3[2]])*Sol[AgCl];
> end;

```
\[
\begin{aligned}
& N H_{3}:=5.333 \\
& N H_{3}:=5.407 \\
& N H_{3}:=5.399 \\
& N H_{3}:=5.399
\end{aligned}
\]

Even after one iteration, \(\left[\mathrm{NH}_{3}\right]\) settles in to within \(1.2 \%\) of the "final" computation. Using this refined value for \(\left[\mathrm{NH}_{3}\right]\) gives a reliable answer for AgCl solubility in \(\mathrm{C}_{\mathrm{NH} 3}=6.0 \mathrm{M}\), by using \(\left[\mathrm{NH}_{3}\right]=5.399\).
```

> Solubility_of_AgCl = Sol[AgCl];

```
\[
\text { Solubility_of_AgCl }=0.300
\]


MAERSK


An identical loop is executed for the AgBr solubility, using of course \(\mathrm{Sol}[\mathrm{AgBr}]\). It yields:
\[
\begin{aligned}
& \mathrm{NH}_{3}:=5.967 \\
& N H_{3}:=5.964 \\
& N H_{3}:=5.964 \\
& N H_{3}:=5.964
\end{aligned}
\]

Notice that \(\mathrm{NH}[3]:=6\) was not required. This is because the assignment of \(\mathrm{NH}[3]\) in the loop effectively does that for us. Why did this loop settle on a concentration so quickly? Because so little AgBr dissolves that it barely perturbs the initial \(6.0 \mathrm{M} \mathrm{NH}_{3}\) concentration. Using the final \(\left[\mathrm{NH}_{3}\right]\) gives:
> Solubility_of_AgBr = Sol[AgBr];
\[
\text { Solubility_of_AgBr }=0.018
\]

Before leaving this problem, two comments are in order: first, ionic strength effects have, again, been ignored. They will be significant for both solids, especially the AgCl dissolution where \(\mathrm{C}_{\mathrm{Ag}^{+}}\)and \(\mathrm{C}_{\mathrm{Cl}^{-}}\)will be 0.300 M . This can be shown to equal the ionic strength. It would be simple enough to embed the \(\mu\) calculation and \(\gamma\) calculations inside the for loops above. Even without this refinement, the calculation is useful in illustrating that AgCl is quite soluble in \(6 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})\) and that AgBr is not. The second point is that a more rigorous treatment of this problem would have \(\left[\mathrm{NH}_{3}\right]\) represented as \(\alpha_{\mathrm{NH} 3} \mathrm{C}_{\mathrm{NH} 3}\). This is because, recall, \(\mathrm{NH}_{3}\) is a weak base and so its \(\alpha_{\mathrm{NH} 3}\) is profoundly affected by pH . Indeed, adding \(\mathrm{H}^{+}\)to the \(\mathrm{AgCl} / \mathrm{NH}_{3}\) solution will re-precipitate the AgCl as \(\alpha_{\mathrm{NH} 3}\) is driven to zero.

The final topic in this chapter is the precipitation titration. The requirements of gravimetric methods have been enumerated (page 114), and they are crucial to a successful analysis. In addition to these, there must be enough analyte to provide a large enough mass of precipitate that it can be weighed with confidence. When this is not the case, the precipitation titration can be an attractive alternate to gravimetric methods. Moreover, volumetric techniques are almost always carried out more quickly than gravimetric techniques.

Consider the prospect of titrating OCN with \(\mathrm{Ag}^{+} .{ }^{225}\) The nomenclature used in Chapters 7 and 9 will be continued here. So, the titrand will have a concentration \(\mathrm{C}^{\circ}{ }_{\text {OCN }}\) and will be delivered as volume \(\mathrm{V}^{\circ}{ }_{\mathrm{OCN}}\), and the titrant will have a concentration \(\mathrm{C}_{\mathrm{Ag}^{\circ}}\) and a volume \(\mathrm{V}_{\mathrm{Ag}^{\prime}}\). Because \(\mathrm{Ag}^{+}\)and OCN react 1:1, the equivalence point volume of \(\mathrm{Ag}^{+}\)can be determined from:
\[
\mathrm{C}_{\mathrm{Ag}_{\mathrm{g}}^{\circ} \mathrm{V}_{\mathrm{EqPt}}=\mathrm{C}_{\mathrm{OCN}}^{\circ} \mathrm{V}_{\mathrm{OCN}}^{\circ} .}
\]

At any point in the titration, \(\mathrm{C}_{\mathrm{Ag}^{+}}\)and \(\mathrm{C}_{\mathrm{OCN}}\) - are calculated as in Equation 7-8, and the equivalence point, analytical concentrations of \(\mathrm{Ag}^{+}\)and \(\mathrm{Cl}^{-}\)will be determined as in Equation 7-10.

Finally, the solubility equilibrium condition follows what has been presented in earlier examples. That is
\[
\mathrm{K}_{\mathrm{sp}}=\left(\mathrm{C}_{\mathrm{Ag}}-\operatorname{Prcp}\right)\left(\mathrm{C}_{\mathrm{oCN}}-\operatorname{Prcp}\right) . .^{226}
\]

Applying these principles to a new Maple worksheet might look like:
```

> restart; SolEq:= K[sp] = (C[Ag] - Prcp)*(C[OCN] - Prcp);
>C[Ag]:= C [[Ag]*V[Ag]/(V`[OCN] + V[Ag]):C[OCN]:= C
[OCN]/(V}[\mp@subsup{V}{}{\circ}[OCN] + V[Ag]): SolEq
K

```

This expression is a quadratic in Prcp. Next, because there are no soluble forms of \(\mathrm{Ag}^{+}\)in solution other than \(\mathrm{Ag}^{+},\left[\mathrm{Ag}^{+}\right]=C_{\mathrm{Ag}}-\operatorname{Prcp}\). So it remains only to compute \(C_{\mathrm{Ag}}\) and \(\operatorname{Prcp}\) at each given \(\mathrm{V}_{\mathrm{Ag}}\) to acquire the \(\left[\mathrm{Ag}^{+}\right]\)at that point in the titration. \({ }^{227}\)
```

> SolEq_Roots:= solve(SolEq, {Prcp});

```

Neither of the two roots is shown here. They are long, complicated, and neither is clearly the physically possible root (i.e. \(\operatorname{Prcp} \leq \mathrm{C}_{\mathrm{Ag}^{\prime}}\) ). So a guess is made. If the guess were wrong, it would be apparent in the plot and then the other root would be chosen. The correct guess, by the way, is the second root.
```

> Prcp:= subs(SolEq_Roots[2], Prcp);

```
\[
\begin{aligned}
& \text { Prcp }:=\frac{1}{V_{O C N}^{\circ}+V_{A g}}\left(\frac{1}{2} C_{A g}^{\circ} V_{A g}+\frac{1}{2} C_{O C N}^{\circ} V_{O C N}^{0}\right. \\
& -\frac{1}{2}\left(C^{\circ}{ }_{A g}^{2} V_{A g}^{2}-2 C^{\circ}{ }_{A g} V_{A g} C_{O C N}{ }_{O C N} V_{O C N}+C^{\circ}{ }_{O C N} V_{O C N}^{\circ 2}\right. \\
& \left.\left.+4 K_{s p} V_{O C N}^{\circ}+8 K_{s p} V_{O C N}^{0} V_{A g}+4 K_{s p} V_{A g}^{2}\right)^{\prime \prime 2}\right)
\end{aligned}
\]

Finally, we use \(C_{\mathrm{Ag}}\) and \(\operatorname{Prcp}\) to compute the soluble \(\mathrm{Ag}^{+}\)from what is left of \(C_{\mathrm{Ag}}\) after AgOCN precipitates out. The expression will be displayed after the appropriate constants are assigned. The \(\mathrm{K}_{\mathrm{sp}}\) is found in the literature and the other constants arbitrarily chosen to depict a routine titration. The final expression will show that only \(V_{\mathrm{Ag}}\) is required for input.
```

> Sol[Ag]:= C[Ag] - Prcp;

```

```

 'Sol[Ag]'= Sol[Ag];
    ```
\[
\begin{aligned}
\text { Sol }_{A g} & =\frac{0.250 V_{A g}}{10.000+V_{A g}} \\
& -\frac{1}{10.000+V_{A g}}\left(0.125 V_{A g}+1.000\right. \\
& \left.-\frac{1}{2} \sqrt{0.063 V_{A g}^{2}-1.000 V_{A g}+4.000}\right)
\end{aligned}
\]
```

> plot(-log[10](Sol%5BAg%5D), V[Ag] = 0..12, labels = ["mL of Ag+","-
log[Ag+]"], axes = boxed);

```


Figure 10-5

The equivalence point should occur at 8.00 mL of \(\mathrm{Ag}^{+}\). So points were plotted to 12 mL ( \(50 \%\) excess) to make the \({ }^{\Delta \mathrm{PAg}} /{ }_{\Delta \mathrm{V}}\) at the equivalence point especially clear, but the \({ }^{\Delta \mathrm{PAg}} /{ }_{\Delta \mathrm{V}}\) is not particularly sharp. This is due to the relatively large \(\mathrm{K}_{\mathrm{sp}}\) for the \(\mathrm{C}_{\text {Agt }}\) at the equivalence point, a problem precisely like what was seen for the titration of weak acids at low concentrations. \({ }^{228}\) This \(K_{\text {sp }}\) does not quite yield the requisite \(\geq 99.9 \%\) completion at the equivalence point. To illustrate this the completeness is calculated with \(\mathrm{V}_{\mathrm{Ag}}=8.00 \mathrm{~mL}\).
```

> V[Ag]:= 8.00: EqPt[Ag]:= Sol[Ag]; EqPt[Precip]:= Prcp;

```
\[
\begin{gathered}
E q P t_{A g}:=0.00048 \\
E q P t_{\text {Precip }}:=0.11063
\end{gathered}
\]

Before continuing with the calculation for completeness, a few comments might be useful: The value computed for Sol [Ag] will be needed in subsequent calculations, but care was taken not to assign Sol [Ag] to that value. Doing that would have made it a constant, no longer an expression and so later in the worksheet, one could not compute a new \(S o l_{A g}\) from a new \(V[A g]\), nor compute a \(V_{A g}\) from an assigned Sol [Ag]. Notice, also, the subtle change to the EqPt subscript; Prcp currently has a value. So calling \(E q P t_{P r c p}\) would have given \(E q P t_{0.11063}\). This is done in lieu of protecting Prcp.

Completeness will be the "concentration" of precipitated \(\mathrm{Ag}^{+}\)divided by the analytical concentration of \(\mathrm{Ag}^{+}\), times one hundred, of course.
```

> Completeness:= 100*Prcp/C[Ag];

```

Completeness :=99.568


How can this equivalence point be observed? A potentiometric titration would require measurement of \(\left\{\mathrm{Ag}^{+}\right\}\)which will track \(\left[\mathrm{Ag}^{+}\right]\)closely, and both \(\left\{\mathrm{Ag}^{+}\right\}\)and \(\left[\mathrm{Ag}^{+}\right]\)will show a rapid change at the equivalence point. Another way to detect the equivalence point in a precipitation titration is by adding a small amount of a second anion that forms a precipitate with the metal ion being precipitated. The concentration of this second anion can be chosen so that it will not precipitate until the equivalence point is reached. For example, \(\mathrm{CrO}_{4}{ }^{2-}\) will precipitate \(\mathrm{Ag}^{+}\)as \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})\). It is much less soluble than \(\mathrm{AgOCN}(\mathrm{s})\) having a \(\mathrm{K}_{\text {sp }}\) of only \(1.110^{-12}\). From the previous output, the equivalence point \(\left[\mathrm{Ag}^{+}\right]\)is 0.00048 M . What \(\left[\mathrm{CrO}_{4}{ }^{2-}\right]\) is necessary to cause the initial formation of \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})\) at this \(\left[\mathrm{Ag}^{+}\right]\)? Given that
\[
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right]
\]
the worksheet is continued with definitions, a \(\mathrm{K}_{\mathrm{sp}}\) (from Appendix VII) and a numeric formatting change for \(\mathrm{C}_{\mathrm{Cro4}}\) :
```

> IndicatorEq:= K[spCrO4] = EqPt[Ag]^2*C[CrO4];

```
\[
\text { IndicatorEq }:=K_{\text {spCro4 }}=2.30000
\]
```

> K[spCrO4]:= 10^(-11.95): C[CrO4]:= fsolve(IndicatorEq, C[CrO4]);

```
\[
4.88 \times 10^{-6}
\]

So, the titrand must be made to \(4.910^{-6} \mathbf{M}\) in \(\mathrm{CrO}_{4}^{2-}\) at the equivalence point. This would be at a total volume of 18 mL , plus the volume of the chromate solution. The volume of chromate indicator can be rendered insignificant by preparing the indicator at a high concentration. Suppose that one drop is taken as 0.05 mL , and one wishes to achieve \(4.910^{-6} \mathbf{M ~ C r O}_{4}^{2-}\) by adding one drop of \(\mathrm{C}^{\circ}{ }_{\mathrm{CrO}}\) solution to the titrand. Then, \(\mathrm{C}^{\circ}{ }_{\mathrm{CrO}} \mathrm{can}\) be calculated from its initial volume, 0.05 mL , and final volume (at the equivalence point).
```

> Ind_Con:= solve(0.05*C0[CrO4] = (10 + 8 + 0.05)*C[CrO4]);
Ind_Con := 0.00176

```

The procedure would require the preparation of a \(0.0018 \mathbf{M ~ C r O}_{4}^{2-}\) solution, probably as \(\mathrm{K}_{2} \mathrm{CrO}_{4}\) and adding one drop of this to the titrand. This would impart a pale yellow color to the solution which would persist until the silver ion concentration reaches 0.00048 M . At this point, which coincides with the equivalence point, \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\), a brick red precipitate would form, constituting an endpoint. But suppose that a drop is 0.04 or 0.06 mL . What, then, is the titration error? Considering the use of 0.04 mL of indicator solution, \(\mathrm{C}_{\mathrm{CrO4}}\) is unassigned and then calculated.
```

> C[CrO4]:= 'C[CrO4]': C[CrO4]:= solve(0.04*Ind_Con = (10 + 8 +
0.04)*C[CrO4]);

```
\[
C_{C r O 4}:=0.0000039048
\]

Adding too little indicator makes the chromate concentration too small by a factor of \(0.8\left(\right.\) i.e. \(\left.{ }^{3.9 \mathrm{E}-6} /{ }_{4.9 \mathrm{E}-6}\right)\). What will \(\left[\mathrm{Ag}^{+}\right]\)be at the onset of \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) precipitation? IndicatorEq is rewritten in terms of EndPt \([\mathrm{Ag}]\). Because \(E n d P t_{A g}\) will be squared in this expression, two roots are anticipated, and therefore they are to be listed by using braces in the solve command.
```

> IndicatorEq:= K[spCrO4] = EndPt[Ag]^2*C[CrO4]; Ind_Roots:=
solve(IndicatorEq, {EndPt[Ag]});
IndicatorEq := 1.1000 10-12 = 0.0000 EntPt ' }\mp@subsup{}{\textrm{g}}{
Ind_Roots :={EndPt }\mp@subsup{A}{Ag}{}=-0.00054},{EndP\mp@subsup{t}{Ag}{}=0.00054

```

Clearly, it is the second root that has meaning. So it is selected.
```

> EndPt[Ag]:=subs(Ind_Roots[2], EndPt[Ag]);

```
\[
E n d P t_{A g}:=0.00054
\]

Next, \(V_{A g}\) is unassigned so that, again, it becomes a variable in \(S o l_{A g}\). It can be determined when Sol \(_{A g}\) has been given a value. Sol \(_{A g}\) will equal the endpoint \(\left[\mathrm{Ag}^{+}\right]\).
```

> V[Ag]:= 'V[Ag]'; V[EndPoint]:= solve(Sol[Ag] = EndPt[Ag], V[Ag]);

$$
V_{\text {EndPoint }}:=8.00771
$$

```

The volume of \(\mathrm{Ag}^{+}\)solution needed to reach the endpoint (onset of \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) precipitation) exceeds the volume necessary to reach the equivalence point. This is to be expected because by using too little \(\mathrm{CrO}_{4}{ }^{2-}\) indicator solution, \(\left[\mathrm{CrO}_{4}{ }^{2-}\right]\) is too low, and so \(\left[\mathrm{Ag}^{+}\right]\)must be too large to offset this error. Notice that making \(\left[\mathrm{CrO}_{4}^{2-}\right] 20 \%\) too small does not translate into a \(20 \%\) error. Indeed, because \(\Delta\left[\mathrm{Ag}^{+}\right] / \Delta \mathrm{V}_{\mathrm{Ag}}\) is appreciable at the equivalence point, the \(5.610^{-5} \mathbf{M} \Delta\left[\mathrm{Ag}^{+}\right]\)produces only a \(0.0077 \mathrm{~mL} \Delta \mathrm{~V}\). Taking the equivalence point as 8.00 mL ,
```

> Rel_Error:= 100*(V[EndPoint] - 8)/8;
Rel_Error:= 0.09631

```

A similar analysis would show that had 0.06 mL of indicator been used, the \(V_{\text {EndPoint }}\) would have preceded the \(V_{\text {EqPt }}\) by about the same relative error.

In closing, the reader should be aware that for precipitation titrations there are several indicator strategies. Some indicators are sensitive to the net charge on a precipitate; that charge changes as the equivalence point is passed. \({ }^{229}\) Other indicators respond to the change in the oxidation-reduction potential of the titrand as analyte is precipitated out of the titrand. \({ }^{230}\) Calculating \(V_{\text {EndPoint }}\) in these indicators requires more information than is provided here, but the principle of titration error remains the same, nevertheless.

\section*{Example Problems}
1. Suppose that 10.00 mL of \(0.15 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\) were mixed with 20.00 mL of \(0.15 \mathrm{M} \mathrm{HIO}_{3}\). Given that the \(\mathrm{K}_{\mathrm{sp}}^{\circ}\) for \(\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}(\mathrm{~s})\) is \(7.110^{-7}\), and considering ionic strength effects
a) would a precipitate form?
b) If so, what percent of the \(\mathrm{Ca}^{2+}\) would be precipitated?
c) If that percentage is less than \(99.9 \%\), how complete can the precipitation of \(\mathrm{Ca}^{2+}\) be made given the \(\mathrm{V}_{\mathrm{Ca}}^{\circ} \mathrm{C}^{\circ}{ }_{\mathrm{Ca}}\) and \(\mathrm{C}_{\mathrm{IO} 3}^{\circ}\) allowing an increase in \(\mathrm{V}_{\mathrm{IO} 3}\).

\section*{"I studied English for 16 years but... \\ ...I finally learned to speak it in just six lessons" Jane, Chinese architect}


Click to hear me talking before and after my unique course download

4. One of the most important applications of pH control of precipitation pertains to the selective precipitation of sulfides. Consider a solution which is \(0.10 \mathbf{M}\) in \(\mathrm{Pb}^{2+}, \mathrm{Ni}^{2+}\), and \(\mathrm{Fe}^{2+}\). Suppose that this solution could be made 0.20 M in total \(\mathrm{S}^{2-}\) (i.e. \(\mathrm{C}_{\mathrm{S} 2-}=0.20\) ). Could the pH of the solution be adjusted so that one or more might be precipitated completely \((\geq 99.9 \%)\) without at all \((\leq 0.1 \%)\) precipitating one or more of the others? Presume that the ionic strength of the solution is 0.3 and use Debye-Hückel to adjust for ionic strength effects.
5. \(\mathrm{Zn}(\mathrm{OH})_{2}\) is insoluble \(\left(\mathrm{K}_{\mathrm{sp}}=1.210^{-17}\right)\), but it forms four hydroxy complexes as seen in Chapter 9 (page 61 et seq.). Ignoring ionic strength effects, what is the optimum \(\left[\mathrm{H}^{+}\right]\)for precipitating \(\mathrm{Zn}^{2+}\) as its hydroxide?
6. In Chapter 9, Example Problem 4, \(\mathrm{BaSO}_{4}(\mathrm{~s})\) was dissolved in 10.00 mL of 0.100 M EDTA at pH 8.8. Would that much \(\mathrm{BaSO}_{4}\) have dissolved and what is the maximum solubility of \(\mathrm{BaSO}_{4}\) there?
7. Recreate the \(\mathrm{Ag}^{+} / \mathrm{OCN}^{-}\)titration begun on page 138, except calculate \(\left\{\mathrm{Ag}^{+}\right\}\)and plot pAg rather than \(-\log _{10}\left[\mathrm{Ag}^{+}\right]\).

\section*{Solutions to Example Problems}
1. a. This problem follows the form of the work given on page 111, but with some important differences: this is a \(1: 2\) compound, and it is a \(1: 2\) mixture of solutions. This will change the solubility equilibrium expression and the relationship between \(C\) and \(C^{\circ}\) for each agent.

Because \(\mathrm{HIO}_{3}\) is taken as a strong acid (see Table 3-1), \(\alpha_{\mathrm{IO} 3}\) can be taken as 1.00 , even at a high \(\left[\mathrm{H}^{+}\right]\), and because \(\mathrm{HIO}_{3}\) is being added to the \(\mathrm{Ca}^{2+}\) solution, the solution will be distinctly acidic and no \(\mathrm{CaOH}^{+}\)will be formed. This will allow \(\alpha_{\mathrm{Ca} 2+}\) to be taken as 1.00 also.

The calculations are begun taking \(\mathrm{K}_{\mathrm{sp}} \approx \mathrm{K}_{\mathrm{sp}}^{\circ}\). After \(\operatorname{Prcp}\) is calculated and subtracted from \(\mathrm{C}_{\mathrm{Ca}}\) and \(\mathrm{C}_{\mathrm{IO} 3}\), the soluble \(\left[\mathrm{Ca}^{2+}\right]\) and \(\left[\mathrm{IO}_{3}^{-}\right]\)can be calculated and used to find \(\mu\), then the \(\gamma \mathrm{s}\) and finally \(\mathrm{K}_{\mathrm{sp}}\). This correction is not necessary for part \(\mathbf{a}\).
```

> restart; SolEq:= K[sp] = (C[Ca] - Prcp)*(C[IO3] -
2*Prcp)^2;

```
\[
\text { SolEq }:=K_{s p}=\left(C_{C a}-\operatorname{Prcp}\right)\left(C_{I O 3}-2 \operatorname{Prcp}\right)^{2}
\]

SolEq is a cubic polynomial in \(\operatorname{Prcp}\). Following the approach used in the \(\mathrm{CsClO}_{4}\) example, solve (SolEq, Prcp) ; would be used and from the output, the one, physically relevant root would be selected for the computation of Prcp. A simpler, although less illustrative approach will be taken here: fsolve will be used because it can be guided to the only physically relevant root by setting the range over which roots are sought to 0 to \(\mathrm{C}_{\mathrm{Ca}}\). The advantage is that, with solve, it can be difficult to select the appropriate root from the many lines of output, each line containing the many parameters. Also, fsolve, if it does not miss the root, provides "one-stop-shopping." With a 0 to \(\mathrm{C}_{\mathrm{Ca}}\) range, only a physically real root can be found
\(\mathrm{C}_{\mathrm{Ca}}\) and \(\mathrm{C}_{\mathrm{IO} 3}\) are expressed in terms of the volumes and initial concentrations of these solutions,

```

 C}
    ```
and values are assigned to these parameters.

```

 0.15: K[sp]:= 7.1e-7: Precipitate:= fsolve(SolEq, Prcp,
 0..C[Ca]);
    ```
    Precipitate \(:=0.04438\)

Yes a precipitate will form. Because this calculation does not make adjustments for the considerable ionic strength of the solution, it will require a reiteration for part \(\mathbf{b}\).
1. b. The ionic strength will be
\[
\mu={ }^{1} /{ }_{2}\left\{\left[\mathrm{Ca}^{2+}\right](2)^{2}+\left[\mathrm{H}^{+}\right](1)^{2}+\left[\mathrm{IO}_{3}^{-}\right](-1)^{2}+\left[\mathrm{NO}_{3}^{-}\right](-1)^{2}\right\} .
\]

Because \(\left[\mathrm{H}^{+}\right]\)from \(\mathrm{H}_{2} \mathrm{O}\) is much less than \(\left[\mathrm{H}^{+}\right]\)from \(\mathrm{HIO}_{3}\) (see Part I, page 44) we can safely say that
\[
\left[\mathrm{H}^{+}\right]=\mathrm{C}_{\mathrm{IO} 3}
\]

Because \(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\) is a strong electrolyte,
\[
\left[\mathrm{NO}_{3}^{-}\right]=2 \mathrm{C}_{\mathrm{Ca}}
\]

Mass balance requires that the concentration of soluble \(\mathrm{Ca}^{2+}\) will be diminished by the amount of \(\mathrm{Ca}^{2+}\) lost to precipitate formation. \({ }^{231}\) So,
\[
\left[\mathrm{Ca}^{2+}\right]=\mathrm{C}_{\mathrm{Ca}}-\text { Precipitate } .
\]

Likewise, mass balance for iodate will require that the concentration of soluble \(\mathrm{IO}_{3}^{-}\)will be diminished, but by twice the amount that is lost to precipitate formation because each \(\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}\) obviously contains two \(\mathrm{IO}_{3}\) 's.
\[
\left[\mathrm{IO}_{3}^{-}\right]=\mathrm{C}_{\mathrm{IO} 3}-2 \times \text { Precipitate. }
\]

This allow the expression of \(\mu\) in fewer terms:
```

> \mu:= 0.5*((C[Ca] - Precipitate)*2^2 + C[IO3] + (C[IO3] -
2*Precipitate) + 2*C[Ca]);

```
\[
\mu:=0.117
\]

Using Equation 2-13 with ionic radii from Appendix II provides the necessary activity coefficients.
```

> a[Ca]:= 6; a[IO3]:= 4; Gamma[Ca]:=
10^(-0.511*(2^2)*sqrt(\mu)/(1 + (0.329*a[Ca]*sqrt (\mu))));
Gamma[IO3]:= 10^(-0.511*sqrt (}\mu\mathrm{) / (1 +
(0.329*a[IO3]*sqrt(\mu))));

```

\section*{American online LIGS University}
is currently enrolling in the Interactive Online BBA, MBA, MSc, DBA and PhD programs:
enroll by September 30th, 2014 and
save up to \(16 \%\) on the tuition!
pay in 10 installments / 2 years
Interactive Online education
visit www.ligsuniversity.com to find out more!

Note: LIGS University is not accredited by anv nationally recognized accrediting agency listed by the US Secretary of Education. More info here.

```

Now, for the correction of K}\mp@subsup{\textrm{K}}{\mathrm{ sp }}{}\mathrm{ to K }\mp@subsup{\textrm{K}}{\mathrm{ sp}}{}
> K[sp]:= K[sp]/(Gamma[Ca]*Gamma[IO3]^2);
3.23\times10-6

```

This represents a substantial change in \(\mathrm{K}_{\mathrm{sp}}\). It is almost five times larger than \(\mathrm{K}_{\mathrm{sp}}^{\circ}\left(7.1 \times 10^{-7}\right)\) and that will substantially reduce the completeness of the precipitation.
```

> Precipitate:= fsolve(SolEq, Prcp, O..C[Ca]);

```
\[
\text { Precipitate }:=0.04069
\]

This constitutes a ten percent decrease in Precipitate from what was found in part a.
```

> Completeness:= 100*Precipitate/C[Ca];

```
\[
\text { Completeness }:=81.37
\]
1. c. This completeness is far from adequate and it will likely require a substantial excess of \(\mathrm{HIO}_{3}\) solution to drive this precipitation to completion.

There are several strategies to finding an optimum volume of \(\mathrm{HIO}_{3}\) solution. It might appear that one could return to SolEq and assign Prcp: \(=0.999 * V^{\circ}[\mathrm{Ca}] * \mathrm{C}^{\circ}[\mathrm{Ca}] /\left(\mathrm{V}^{\circ}[\mathrm{Ca}]\right.\) +V [IO3]), assign the two concentrations, \(\mathrm{V}_{\mathrm{Ca}}^{0}\) and \(\mathrm{K}_{\mathrm{sp}}\) and then solve for \(\mathrm{V}_{\mathrm{IO} 3}\). But this gives \(\mathrm{V}_{\mathrm{IO} 3}=8.47 \mathrm{~mL}\), an obviously incorrect answer! \(\left(\mathrm{V}_{\mathrm{IO} 3}\right.\) must be at least \(2 \times \mathrm{V}^{\circ}{ }_{\mathrm{Ca}}\) to provide enough \(\mathrm{IO}_{3}{ }^{-}\)to precipitate \(\mathrm{V}_{\mathrm{Ca}}^{\circ} \times \mathrm{C}^{\circ}{ }_{\mathrm{Ca}}\) moles of \(\mathrm{Ca}^{2+}\).) The problem is a misguided use of Precp which contains \(\mathrm{IO}_{3}^{-}\). We will see shortly that \(99.9 \%\) precipitation is not possible (page 151). An entirely new approach is necessary.

We will solve this problem by revisiting the mass balance requirements, and rewriting the equilibrium expression without Prcp. This new strategy will create an expression that Maple can handle.

Consider the \(\mathrm{Ca}^{2+}\) and \(\mathrm{IO}_{3}^{-}\)mass balance requirements that were introduced in the ionic strength calculation. \(\mathrm{Sol}[\mathrm{Ca}]\) pertains to \(\left[\mathrm{Ca}^{2+}\right]\) which is the soluble portion of \(\mathrm{Ca}^{2+}\) in solution; likewise \(\mathrm{Sol}[\mathrm{IO} 3]\) represents the soluble \(\mathrm{IO}_{3}^{-}\).
```

> restart; CaMassBal:= C[Ca] - Prcp = Sol[Ca]; IO3MassBal:=
C[IO3] - 2*Prcp = Sol[IO3];

```
\[
\begin{gathered}
\text { CaMassBal }:=C_{C a}-\operatorname{Prcp}=\text { Sol }_{C a} \\
\text { IO3MassBal }:=C_{I O 3}-2 \text { Prcp }=\text { Sol }_{I O 3}
\end{gathered}
\]

Prcp can be removed from this pair of expressions and a more general mass balance expression can be written.
```

> MassBal:= 2*CaMassBal - IO3MassBal;

```
\[
\text { MassBal := } 2^{*} C_{C a}-C_{I O 3}=2^{*} \text { Sol }_{C a}-\text { Sol lol }_{\text {IO3 }}
\]

The solubility equilibrium requirement remains as it was, but it is expressed in newer terms: Sol \({ }_{x x}\) instead of \(C_{x x}\) - Prcp.
```

> SolEq:= K[sp]= Sol[Ca]*Sol[IO3]^2;

```
SolEq :=

This is used to express Sol \(_{I O 3}\) in terms of Sol \(l_{C a}\).
```

> IO3Roots:= solve(SolEq, {Sol[IO3]});

```
\[
\begin{gathered}
\text { IO3Roots }:=\left\{\text { Sol }_{I O 3}=\frac{\sqrt{S o l_{C a} K_{s p}}}{S o l_{C a}}\right\},\left\{\text { Sol }_{I O 3}=\right. \\
\left.-\frac{\sqrt{S o l_{C a} K_{s p}}}{S o l_{C a}}\right\}
\end{gathered}
\]

The second root can have no physical meaning. So,
```

> Sol[IO3]:= subs(IO3Roots[1], Sol[IO3]):

```

For inspection,
```

> 'MassBal'= MassBal;

```
\[
\text { MassBal }=\left(2 C_{C a}-C_{I O 3}=2 S o l_{C a}-\frac{\sqrt{S o l_{C a} K_{s p}}}{S o l_{C a}}\right)
\]

The concentrations are expressed in terms of unmixed concentrations and solution volumes, and MassBal is again inspected.
\[
\begin{aligned}
& >C[C a]:=V^{\circ}[C a] * C^{0}[C a] /\left(V^{0}[C a]+\mathrm{V}[I O 3]\right): C[I O 3]:=\mathrm{V}[I O 3] * \\
& C^{\circ}[I O 3] /\left(V^{\circ}[\mathrm{Ca}]+\mathrm{V}[I O 3]\right): \text { 'MassBal'=MassBal; } \\
& \text { MassBal }=\left(\frac{2 V_{C a}^{\circ} C^{\circ}{ }_{C a}}{V_{C a}^{\circ}+V_{I O 3}}-\frac{V_{I O 3} C^{\circ}{ }_{I O 3}}{V_{C a}^{0}+V_{I O 3}}=2 \mathrm{Sol}_{C a}\right. \\
& \left.-\frac{\sqrt{\operatorname{Sol}_{C a} K_{s p}}}{S o l_{C a}}\right)
\end{aligned}
\]

The parameters from Parts \(\mathbf{a}\) and \(\mathbf{b}\) are assigned. \(\mathrm{K}_{\mathrm{sp}}^{\circ}\) is not given here because we will not correct for ionic strength effects as we did in Part \(\mathbf{b}\). MassBal is called but will not be shown here for one more, critical step.
```

> V [[Ca]:= 10.00: C}\mp@subsup{C}{}{\circ}[\textrm{Ca}]:= 0.150: C C [IO3]:= 0.150: K[sp]:=
7.1e-7: 'MassBal'= MassBal:

```


Some advice just states the obvious. But to give the kind of advice that's going to make a real difference to your clients you've got to listen critically, dig beneath the surface, challenge assumptions and be credible and confident enough to make suggestions right from day one. At Grant Thornton you've got to be ready to kick start a career right at the heart of business.

\section*{Sound like you? Here's our advice: visit GrantThornton.ca/careers/students}

Scan here to learn more about a career with Grant Thornton.

© Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

This is the implicit expression for the concentration of soluble \(\mathrm{Ca}^{2+}\) in terms of the volume of \(\mathrm{HIO}_{3}\) added. To write it explicitly:
```

> Soluble[Ca]:= solve(MassBal, {Sol[Ca]});

```

The three roots are too long to be displayed meaningfully. An inspection of the output would show that the second and third roots yield complex numbers. So the first root is selected. This solubility might be expressed as a relative solubility because absolute solubility is meaningless. \({ }^{232}\) So:
```

> Solubility:= 100*subs(Soluble [Ca][1],Sol[Ca])/ C[Ca]:

```

And finally a plot, but the plot shown required a bit of trial and error to create the clear display. The \(\mathrm{V}_{\mathrm{IO} 3}\) that produces the minimum relative solubility is not obvious. So experimenting with the range for V [IO3] was required. This optimum volume might be found by plotting a narrower and narrower region.
```

> plot(Solubility, V[IO3] = 50..100, axes = boxed, color
= blue, labels = ["Vol of HIO3","% Ca in Solution"],
gridlines = true);

```


Figure 10-6

The scale here is a bit misleading: note that between 50 and 80 mL of \(\mathrm{HIO}_{3}\) the percentage of \(\mathrm{Ca}^{2+}\) that remains in solution decreases from only \(0.500 \%\) to \(0.425 \%\). The optimum \(\mathrm{V}_{\mathrm{IO3}} \mathrm{can}\) be found where \({ }^{\text {dsolubility }}{ }_{\mathrm{dv}}=0 . £ \mathrm{fsOl}^{2}\) ve requires the \(\mathrm{V}_{\text {IO3 }}=50\) to 100 range; without a range, the operation fails to return a value.
```

> DerSol:= diff(Solubility, V[IO 3]): V[Min Sol]:= fsolve
(DerSol, V[IO3]=50..100);

```
\[
V_{\text {Minsol }}:=79.745
\]

And what is that minimum solubility, and what percentage of \(\mathrm{Ca}^{2+}\) is precipitated at this volume?
```

> V[IO3]:= %: MinSol:= evalf(Solubility); PercentPrecip:= 100

- %;

```
\[
\begin{gathered}
\text { MinSol }:=0.425 \\
\text { PercentPrecip }:=99.575
\end{gathered}
\]

Before leaving this problem, it is worth noting that substituting 20.0 mL for \(\mathrm{V}_{\mathrm{IO}}\) into the Solubility expression will produce:
```

> V[IO3]:= 20.0: Sol[EqPt]:= evalf(Solubility);
PercentPrecip:= 100 - %; P:= C[Ca]*%/100;
Sol EqPt
PercentPrecip := 88.76009
P:= 0.04438

```
\(P\) is the amount of precipitate found in part a of this problem; it agrees exactly with the output obtained from the cubic polynomial expression used to solve directly for Precipitate. So that expression was correct, but only very near the equivalence point ( 20 mL of \(\mathrm{HIO}_{3}\) ). The lesson is that it is sometimes necessary to present Maple with a different formulation of a problem in order to extract correct answers. In Part a and in the resolution of 1:1 precipitates like AgOCN , it is acceptable to solve for Prcp, the amount of an agent that is precipitated from solution. In Part \(\mathbf{c}\), however, it became evident that it is necessary to solve for Sol the amount of agent not precipitated and then to subtract Sol from the total concentration, \(C\), to get Prcp. Only by careful inspection of the two strategies does it become apparent that they yield different results, and inasmuch as only one can be correct, always check the results to see if they are reasonable.
2. "Complete precipitation" would require that \(\leq 0.1 \%\) of the metal cation remains in solution.

Given that \(\mathrm{C}^{\circ}{ }_{\mathrm{M} 2+}\) is 0.10 M , this implies \(\left[\mathrm{M}^{2+}\right] \leq 110^{-4} \mathrm{M}\) or \(\mathrm{pM} \geq 4\). "No precipitation" requires that \(\geq 99.9 \%\) of the metal cation remains in solution so that \(\left[\mathrm{M}^{2+}\right] \geq 9.9910^{-2} \mathrm{M}\) or \(\mathrm{pM} \geq 1\). Plotting \(\mathrm{pM} v\) s. pH should illustrate the feasibility of this separation.

Because \(\mathrm{H}_{2} \mathrm{~S}\) is a weak acid \(\left(\mathrm{pK}_{\mathrm{a} 1}^{\circ}=6.97\right.\) and \(\left.\mathrm{pK}^{\circ}{ }_{\mathrm{a} 2}=12.92\right)\), \(\alpha_{\mathrm{S} 2}\) must be calculated for each pH . A rigorous calculation would also necessitate the computation of each \(\alpha_{\mathrm{M} 2+}\) because all three are susceptible to \(\mathrm{M}(\mathrm{OH})_{\mathrm{n}}{ }^{2-\mathrm{n}}\) formation. But it will be shown that this question can be answered at \(\mathrm{pH} \leq 6\) where the formation of hydroxy complexes is negligible. So \(\alpha_{\mathrm{M} 2+}\) will be taken as 1.000 in this work.

The strategy here will be to write a single expression for \(\mathrm{Pb}^{2+}, \mathrm{Ni}^{2+}\) and \(\mathrm{Fe}^{2+}\) addressing ionic strength effects, and then to distinguish the three cations by substituting the appropriate \(\mathrm{K}_{\mathrm{sp}}{ }^{\circ}\) into the general expression. Because we are seeking the activity, not concentration, of each cation, the activity coefficients will not need to be calculated. Also, it will turn out that \(\gamma_{\mathrm{H}+}\) will not need to be calculated, because it cancels out of the general expression. We begin with the familiar solubility equilibrium expression, but in terms of \(\mathrm{K}_{\mathrm{sp}}^{\circ}\) rather than \(\mathrm{K}_{\mathrm{sp}}\). This requires the use of the activity of \(\mathrm{M}^{2+}\) and \(\mathrm{S}^{2-}\) in place of their respective molarities.
```

> restart; SolEq:= K

```


From Equation 2-3:
```

> Act[S]:= Gamma[S]*Sol[S]: Sol[S] := alpha[S]*C[S]:
'SolEq' =SolEq;

```
\[
\text { SolEq }:=\left(K_{s p}^{\circ}=A c t_{M} \Gamma_{s} a_{s} C_{s}\right)
\]

From page 11:
```

> alpha[S]:= K[a1]*K[a2]/(H^2 + H*K[a1] + K[a1]*K[a2]);
`SolEq'= SolEq;

```
\[
\begin{gathered}
\alpha_{S}:=\frac{K_{a 1} K_{a 2}}{H^{2}+H K_{a 1}+K_{a 1} K_{a 2}} \\
\text { SolEq }=\left(K_{s p}^{\circ}=\frac{A c t_{M} \Gamma_{S} K_{a l} K_{a 2} C_{S}}{H^{2}+H K_{a l}+K_{a 1} K_{a 2}}\right)
\end{gathered}
\]

Now to address ionic strength effects. See Equations 8-3a-8-3c for the effects on the dissociation constants of a polyprotic acid. The effects on solubility constants were discussed early in this chapter. Notice that Gamma [Hyd] is used for \(\gamma_{\mathrm{H}+}\). This is because " \(\mathrm{H}^{\prime}\) " is used in an expression and is later assigned a new expression. This new expression would then be incorporated in Gamma [ H\(]\). Then \(\left[\mathrm{H}^{+}\right.\)] will be expressed as pH .
```

> K[a1]:= Ko[a1]/(Gamma[Hyd]*Gamma[HS]); K[a2]:=
Gamma[HS]*K`[a2]/ (Gamma[Hyd]*Gamma[S]); H := 10^(-pH)/
Gamma [Hyd];

```
\[
\begin{aligned}
K_{a l} & :=\frac{K_{a 1}^{\circ}}{\Gamma_{H y d} \Gamma_{H S}} \\
K_{a 2} & :=\frac{\Gamma_{H S} K_{a 2}^{\circ}}{\Gamma_{H y d} \Gamma_{S}} \\
H & :=\frac{10^{(-p H)}}{\Gamma_{H y d}}
\end{aligned}
\]

An expression for \(\left\{\mathrm{M}^{2+}\right\}\) is extracted from the solubility equilibrium expression by solving it for \(A c t_{M}\). This is why \(\gamma_{M}\) was never required.
\[
\begin{aligned}
& >\text { Act }[\mathrm{M}]:=\text { solve(SolEq, Act }[\mathrm{M}]) ; \\
& \qquad A c t_{M}:= \\
& \frac{K_{s p}^{\circ}\left(\left(10^{-p H}\right)^{2} \Gamma_{H S} \Gamma_{S}+10^{-p H} K_{a l}^{\circ} \Gamma_{S}+K_{a 1}^{\circ} K_{a 2}^{\circ}{ }_{a,} \Gamma_{H S}\right)}{K_{a 1}^{\circ} K_{a 2}^{\circ} \Gamma_{H S} \Gamma_{S} C_{S}}
\end{aligned}
\]

Notice that the activity coefficient for \(\mathrm{H}^{+}\left(\Gamma_{\mathrm{Hyd}}\right)\) has cancelled out. This \(A c t_{M}\) is converted into a logarithmic form for plotting. Yes, this operation can be carried out within the plot command, but remember that we are going to break this general expression into three, metal ion-specific expressions. So we convert to -log here.
```

> pM:= -log[10](Act%5BM%5D):

```

The two activity coefficients, \(\gamma_{\mathrm{HS}}-\) and \(\gamma_{\mathrm{S} 2-}\) are constants because \(\mu\) has been set at 0.3 . Constants are taken from Appendix II, and \(\gamma\) s are calculated with Equation 2-13.
```

> \mu:= 0.3; a[HS]:= 3.5; a[S]:=5; Gamma[HS]:=
10^(-0.511*sqrt(\mu)/ (1 + (0.329*a[HS]*sqrt(())));
Gamma[S]:= 10^(-0.511*((-2)^2)* sqrt(\mu)/(1 +
(0.329*a[S]*sqrt(p))));

$$
\begin{gathered}
\Gamma_{\mathrm{HS}}:=0.6735 \\
\Gamma_{\mathrm{S}}:=0.2577
\end{gathered}
$$

```

Finally, values are assigned to the dissociation constants and to \(C_{\mathrm{s}}\) and then \(p M\) is called, for one final inspection.
```

> K
' }\mp@subsup{\textrm{pM}}{}{\prime}=\textrm{pM}

```
\[
\begin{aligned}
p M & = \\
& -\frac{1}{\ln (10)}\left(\operatorname { l n } \left(2.39623010^{21}{K_{s p}^{\circ}}_{s p}(0.173557\right.\right. \\
& \left(10^{-p H}\right)^{2}+2.57677710^{-8} 10^{-p H} \\
& \left.\left.\left.+8.09775510^{-21}\right)\right)\right)
\end{aligned}
\]

Only two variables remain, \(\mathrm{K}_{\text {sp }}^{\circ}\) which distinguishes \(\mathrm{Pb}^{2+}\) from \(\mathrm{Ni}^{2+}\) from \(\mathrm{Fe}^{2+}\) and pH which of course drives pH effects. Each pM is now created using the subs operation. ( \(\mathrm{Fe}^{2+}\) is designated Fe 2 to distinguish it from \(\mathrm{Fe}^{3+}\).)
```

> pPb:= subs(K}\mp@subsup{K}{}{\circ}[\textrm{sp}]=10^(-26.60),pM): pNi:= subs(\mp@subsup{K}{}{\circ}[\textrm{sp}]
10^ (-18.49), pM): pFe2:= subs(}\mp@subsup{K}{}{\circ}[\textrm{sp}]=10^(-17.30), pM)

```

The output is predictable: it looks like the previous output but without the \(\mathrm{K}_{\text {sp }}^{\circ}\) parameter. This leaves the three expressions that will be plotted. Here we add two "pseudo expressions." These are constants that will produce horizontal lines on the plot; they will delineate the pM above which M is "completely" soluble and below which M is "completely" insoluble. \({ }^{233}\)
```

> soluble:= 1: insoluble:= 4:

```

The three expressions and two pseudo expressions are plotted.
```

> plot([pPb, pNi, pFe2, soluble, insoluble], pH = 0..7, axes
= boxed, color = ["DarkOrchid", "DarkGreen", "DarkBlue",
black, black], labels = ["pH", "pM"], gridlines = true);

```

Leading
in Learning!

\section*{Join the best at} the Maastricht University
- \(33^{\text {rd }}\) place Financial Times worldwide ranking: MSc

School of Business and
- \(1^{\text {st }}\) place: MSc International Business
- \(1^{\text {st }}\) place: MSc Financial Economics
- \(2^{\text {nd }}\) place: MSc Management of Learning Economics!
- \(2^{\text {nd }}\) place: MSc Economics
- \(2^{\text {nd }}\) place: MSc Econometrics and Operations Research
- \(2^{\text {nd }}\) place: MSc Global Supply Chain Management and Change
Sources: Keuzegids Master ranking 2013; Elsevier 'Beste Studies' ranking 2012; Financial Times Global Masters in Management ranking 2012

\title{
Visit us and find out why we are the best! \\ Master's Open Day: 22 February 2014
}

Master's Open Day: 22 February 2014


Figure 10-7

The solubility line for \(\mathrm{Pb}^{2+}\) (orchid) lies entirely above the completely insoluble boundary indicating that even at pH zero, \(\alpha_{\mathrm{s} 2-}\) cannot be made sufficiently small to provide a measurable solubility of PbS . Even for \(\mathrm{Ni}^{2+}\) and \(\mathrm{Fe}^{2+}\), green and blue respectively, the pH must be maintained below 1.6 and 2.2, respectively, to effect complete dissolution.

To answer the question regarding the separation of these metals, it is evident that \(\mathrm{Pb}^{2+}\) can be selectively precipitated from \(\mathrm{Ni}^{2+}\) and \(\mathrm{Fe}^{2+}\) using a \(0.2 \mathrm{M} \mathrm{S}^{2-}\) solution if it is maintained below pH 1.6 (and above \(\approx \operatorname{minus} 2\) ). The \(\mathrm{Ni}^{2+}\) and \(\mathrm{Fe}^{2+}\) solubility lines never separate by more than 1.5. This means that over this pH range, one sulfide \((\mathrm{FeS})\) is constantly \(10^{1.5}(=32)\) times as soluble as the other (NiS). To effect a clean separation, one must be 999 times as soluble as the other at some pH . Such a pH does not exist.
3. This is a variation on the AgCl problem of page 129. It is an illustration that if a little \(\mathrm{Cl}^{-}\)(or \(\mathrm{OH}^{-}\)) is good, more is not necessarily better. The principle follows from the equilibrium requirement that:
\[
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}
\]
that
\[
\left[\mathrm{Zn}^{2+}\right]=\alpha_{\mathrm{Zn} 2+} \mathrm{C}_{\mathrm{Zn} 2+}
\]
and that \(\alpha_{\mathrm{Zn} 2+}\) decreases with increasing \(\left[\mathrm{OH}^{-}\right]\). The solubility of \(\mathrm{Zn}^{2+}\) is not \(\left[\mathrm{Zn}^{2+}\right]\) alone; it is \(\mathrm{C}_{\mathrm{Zn} 2+}\) because this represents all soluble forms of zinc in solution. So the solubility of zinc becomes
\[
\mathrm{C}_{\mathrm{Zn} 2+}=\mathrm{K}_{\mathrm{sp}} \div\left(\alpha_{\mathrm{Zn} 2+}\left[\mathrm{OH}^{-}\right]^{2}\right)
\]

The expression for \(\alpha_{\mathrm{Zn} 2+}\) was derived in Chapter 9 (page 61 et seq.), but its derivation will be recreated here because with the \(\left[\mathrm{OH}^{-}\right]^{2}\) term, the final expression for \(\mathrm{C}_{\mathrm{Zn} 2+}\) takes on a different look that might not be appreciated by simply cutting and pasting the work from Chapter 9 . Nevertheless, a lot of output that is called (;) but not shown because it should be familiar.
```

> restart; SolEq:= K[sp] = Zn2*OH^2;

```
\[
\text { SolEq }:=K_{s p}=\mathrm{Zn} 2 O H^{2}
\]

Zn 2 is used to represent \(\left[\mathrm{Zn}^{2+}\right]\) rather than Zn as we have been using. This is to preclude a recursive assignment error in the next step where Zn is used as a subscript.
```

> Zn2:= alpha[Zn]*C[Zn]; SolEq;

```

Still another designation for [ \(\mathrm{Zn}^{2+}\) ] will be necessary for the expression of \(\alpha_{\mathrm{Zn} 2+}\). Free \({ }_{\mathrm{Zn}}\) is used. The concentrations of the four hydroxy complexes are contained in the denominator with obvious representations.
```

> alpha[Zn]:= Free[Zn]/(Free [Zn]+Zn(OH)[1]+Zn(OH)[2]+ Zn(OH)
[3]+Zn(OH)[4]);

```
\[
\alpha_{Z n}:=\frac{\text { Free }_{Z n}}{\text { Free }_{Z n}+Z n(O H)_{1}+Z n(O H)_{2}+Z n(O H)_{3}+Z n(O H)_{4}}
\]

From the definition of \(\beta_{n}\) (Equations 9-1 and 9-2), and showing only a couple of the \(\mathrm{Zn}(\mathrm{OH})_{\mathrm{n}}{ }^{2-\mathrm{n}}\) expressions and the solubility equilibrium expression
\[
\begin{aligned}
& >\mathrm{Zn}(\mathrm{OH})[1]:=\text { beta }[1] * \text { Free }[\mathrm{Zn}] * \mathrm{OH} ; \mathrm{Zn}(\mathrm{OH})[2]:=\text { beta } \\
& {[2] * \text { Free }[\mathrm{Zn}] * \mathrm{OH}^{\wedge} 2 ; \mathrm{Zn}(\mathrm{OH})[3]:=\text { beta }[3] * \text { Free }[\mathrm{Zn}] * O H \wedge 3 ;} \\
& \mathrm{Zn}(\mathrm{OH})[4]:=\text { beta }[4] * \text { Free }[\mathrm{Zn}] * \mathrm{OH}^{\wedge} 4 ; \text { 'SolEq'}=\text { SolEq; } \\
& \mathrm{Zn}(\mathrm{OH})_{1}:=\beta_{1} \text { Free }_{\mathrm{Zn}} \mathrm{OH} \\
& \mathrm{Zn}(\mathrm{OH})_{4}:=\beta_{4} \text { Free }_{\mathrm{Zn}} \mathrm{OH}^{4}
\end{aligned}
\]
\[
\begin{gathered}
\text { SolEq }=\left(K_{s p}=\left(\text { Free }_{\text {Zn }} C_{Z n} \text { OH }^{2}\right) /\left(\text { Free }_{\text {Zn }}+\beta_{1} \text { Free }_{\text {Zn }}\right. \text { OH }\right. \\
\left.\left.\quad+\beta_{2} \text { Free }_{\text {Zn }} O H^{2}+\beta_{3} \text { Free }_{\text {Zn }} O H^{3}+\beta_{4} \text { Free }_{\text {Zn }} O H^{4}\right)\right)
\end{gathered}
\]
\(\left[\mathrm{Zn}^{2+}\right]\) or Free \(_{\text {Zn }}\) can be cancelled out of the numerator and denominator.
```

> SolEq:= simplify(SolEq);

```
\[
\text { SolEq }:=K_{s p}=\frac{C_{Z n} O H^{2}}{1+\beta_{1} O H+\beta_{2} O H^{2}+\beta_{3} O H^{3}+\beta_{4} O H^{4}}
\]

Using concepts from Chapter 3 and applied in Chapter 9 (e.g. page 61) we express [ \(\mathrm{OH}^{-}\)] in terms of pH (actually \(\left.-\log _{10}\left[\mathrm{H}^{+}\right]\right) . \mathrm{K}_{\mathrm{w}}\) is taken to be \(1.0010^{-14}\).
```

> SolEq:= algsubs(OH = K[w]/H, SolEq); SolEq:= algsubs(H =
10^(-pH), SolEq);

```
\[
\begin{aligned}
\operatorname{SolEq} & :=K_{s p} \\
& =\frac{C_{Z n} K_{w}^{2} H^{2}}{\beta_{4} K_{w}^{4}+H \beta_{3} K_{w}^{3}+H^{4}+H^{3} \beta_{1} K_{w}+H^{2} \beta_{2} K_{w}^{2}}
\end{aligned}
\]



Click on the ad to read more

Now \(C_{Z n}\), the concentration of all soluble species of zinc, can be extracted from the solubility equilibrium expression. This, \(\mathrm{C}_{\mathrm{Zn}}\), represents all the zinc that is in solution; appropriately it is shown to increase as \(\mathrm{K}_{\mathrm{sp}}\) or any of the betas increase, because these increases lead to a decrease in \(\mathrm{Zn}(\mathrm{OH})_{2}\) (s) and increases in \(\mathrm{Zn}(\mathrm{OH})_{\mathrm{n}}{ }^{2-\mathrm{n}}\).
\[
\begin{aligned}
& >C[\mathrm{Zn}]:=\operatorname{solve}(\text { SolEq }, \quad C[\mathrm{Zn}]) ; \\
& \qquad \begin{aligned}
C_{Z n}: & =\frac{1}{\left(10^{p H-14}\right)^{2}}\left(K _ { s p } \left(1+\beta_{4}\left(10^{p H-14}\right)^{4}\right.\right. \\
& \left.\left.+\beta_{2}\left(10^{p H-14}\right)^{2}+\beta_{3}\left(10^{p H-14}\right)^{3}+\beta_{1} 10^{p H-14}\right)\right)
\end{aligned}
\end{aligned}
\]

Assigning values to each of the four betas and \(K_{\text {sp }}\) produces an expression for the solubility of zinc as a function of only pH .
```

> K[w]:= 1.01E-14:beta[1]:= 10^4.40: beta[2]:= 10^11.3:
beta[3]:= 10^13.14: beta[4]:= 10^14.66: K[sp]:= 10^(-
16.92): 'C[Zn]'= C[Zn];

$$
\begin{aligned}
C_{Z n} & =\frac{1}{\left(10^{-p H}\right)^{2}}\left(1 . 1 7 9 1 0 ^ { 1 1 } \left(4.75610^{-42}+\left(10^{-p H}\right)^{4}\right.\right. \\
& +2.03510^{-17}\left(10^{-p H}\right)^{2}+2.53710^{-10}\left(10^{-p H}\right)^{3} \\
& \left.\left.+1.42210^{-29} 10^{-p H}\right)\right)
\end{aligned}
$$

```

For a qualitative answer to this question, the expression will be plotted.
```

> plot(-log[10](C%5BZn%5D), pH = 0..14, axes = boxed, labels =
["-log[H+]","-log[Zinc]"], thickness = 2, gridlines = true);

```

The plot (below) shows that at \(\mathrm{pH}<6\), zinc is freely soluble \(\left(-\log _{10}[\mathrm{Zinc}] \leq 0\right.\) implies \(\mathrm{C}_{\mathrm{Zn}}\) is \(\geq 1 \mathbf{M}\) ). It should be realized that \(-\log _{10}[\mathrm{Zinc}] \leq-1\) is in practice unachievable as this implies concentrations in excess of \(10 \mathbf{M}\); this requires more than 650 g of zinc in a liter of solution! From the plot, an optimum pH , that is a pH of minimum \(\mathrm{C}_{\mathrm{Zn}}\) is not apparent, only a pH range. To compute this optimum \(\mathrm{pH},{ }^{\mathrm{dC}[\mathrm{Zn}]}{ }_{\mathrm{dpH}}=0\) might be found, but instead we introduce a special Maple package for directly finding a maximum or minimum. It is the non-linear program solver, NLPSOlve which first must be called using the with command.


Figure 10-8
```

> with(Optimization);

```
[ImportMPS, Interactive, LPSolve, LSSolve, Maximize, Minimize, NLPSolve, QPSolve]
```

> NLPSolve(C[Zn],pH=6..12);

```
\[
\left[2.42 \times 10^{-6},[p H=9.805]\right]
\]

This represents the pH at which zinc is least soluble and the solubility at that pH . It might require a numeric reformatting to see that \(\mathrm{C}_{\mathrm{Zn}}=2.4210^{-6}\).
4. The specification of a pH 8.8 in Problem \#4, Chapter 9 was made so that \(\alpha_{\text {y4- }}\) could be calculated. That relatively high pH also assured that \(\alpha_{\text {so42- }}\) would be very close to 1.000 (minimal \(\mathrm{HSO}_{4}^{-}\)and of course zero \(\mathrm{H}_{2} \mathrm{SO}_{4}\), a strong acid). This pH is likewise sufficiently low that we can ignore the formation of \(\mathrm{BaOH}^{+}\). \({ }^{234}\)

We begin with the familiar solubility equilibrium expression, but with a novel representation of \(\left[\mathrm{Ba}^{2+}\right]\) and \(\left[\mathrm{SO}_{4}^{2-}\right]\). This is because still another representation for \(\left[\mathrm{Ba}^{2+}\right]\) will be needed later in an expression for \(\alpha_{\mathrm{Ba} 2+}\). Again, output should be inspected by the reader but is sparsely shown here.
```

> restart; SolEq:= K[sp] = Ba2*SO[4]:

```

The solubility of \(\mathrm{BaSO}_{4}\) in a solvent that does not itself contain \(\mathrm{Ba}^{2+}\) or \(\mathrm{SO}_{4}{ }^{2-}\) will allow that the total barium concentration will equal the total sulfate concentration because each comes exclusively from the same source, namely the solid \(\mathrm{BaSO}_{4}\).
```

> Ba2:= alpha[Ba]*C[Ba]; SO[4]:= C[Ba]; SolEq;

```

Next, \(\alpha_{\mathrm{Ba} 2+}\) is expressed in terms of \(\left[\mathrm{Ba}^{2+}\right]\) and \(\left[\mathrm{BaY}^{2-}\right]\) (but ignoring \(\left[\mathrm{BaOH}^{+}\right]\)).
```

> alpha[Ba]:= Free[Ba]/(Free[Ba] + BaY); 'SolEq'= SolEq;

```
\[
\text { SolEq }=\left(K_{s p}=\frac{\text { Free }_{B a} C_{B a}^{2}}{\text { Free }_{B a}+B a Y}\right)
\]

\section*{Need help with your dissertation?}

Get in-depth feedback \& advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation!


Go to www.helpmyassignment.co.uk for more info
\(\left[\mathrm{BaY}^{2-}\right](=B a Y)\) can be extracted from an expression for the formation equilibrium. That expression includes [ \(\mathrm{Y}^{4-}\) ], the free \(\mathrm{Y}^{4-}\) concentration. In Chapter 9 (page 56) it was shown that it is inappropriate to represent \(\left[\mathrm{Y}^{4-}\right]\) as \(\alpha_{\mathrm{Y} 4-} \times \mathrm{C}_{\mathrm{Y}}\) because the alpha does not include \(\mathrm{MY}^{\mathrm{n}-4}\left(\mathrm{BaY}^{2-}\right.\) here). The correct expression is \(\alpha_{Y 4} \times\left(\mathrm{C}_{\mathrm{Y}}-\left[\mathrm{BaY}^{2-}\right]\right)\). However, using this correct expression for [ \(\mathrm{Y}^{4}\) ] (Free \({ }_{Y}\) below) will leave Free \(_{B a}\) in the formation equilibrium expression, and this value is unknown. We will use \(\alpha_{\mathrm{Y} 4} \times \mathrm{C}_{\mathrm{Y}}\) for Free \(_{\mathrm{Y}}\) and correct it later. The penultimate form of SolEq will contain \(\mathrm{Free}_{B a}\) in the numerator and denominator such that it can be factored out with the simplify command, but this is carried out on a subsequent command line to avoid a warning message.
```

> FormEq:= K[f] = BaY/(Free[Ba]*Free[Y4]): Free[Y4]:= alpha
[Y4]*C[Y]: BaY:= solve(FormEq , BaY); 'SolEq'= SolEq;

```

```

> SolEq:= simplify(SolEq);

$$
\text { SolE } q:=K_{s p}=\frac{C_{B a}^{2}}{1+K_{f} \alpha_{Y 4} C_{Y}}
$$

```

All of the barium in solution, i.e. \(C_{B a}\), comes from the dissolution of \(\mathrm{BaSO}_{4}(\mathrm{~s})\). So the solubility of \(\mathrm{BaSO}_{4}\) is \(C_{B a}\).
```

> Sol_Roots:= solve(SolEq, {C[Ba]});

```
\[
\begin{aligned}
\text { Sol_Roots } & :=\left\{C_{B a}=\sqrt{K_{s p}+K_{s p} K_{f} \alpha_{Y 4} C_{Y}}\right\}, \\
\left\{C_{B a}\right. & \left.=-\sqrt{K_{s p}+K_{s p} K_{f} \alpha_{Y 4} C_{Y}}\right\}
\end{aligned}
\]

Only the first root gives \(C_{B a}\) greater than zero. So it is chosen, and appropriately named Solubility.
\[
\begin{aligned}
>\text { Solubility }:= & \text { subs }(\text { Sol_Roots[1], } \mathrm{C}[\mathrm{Ba}]) ; \\
& \text { Solubility }:=\sqrt{K_{s p}+K_{s p} K_{f} \alpha_{Y 4} C_{Y}}
\end{aligned}
\]

This expression for the solubility of an insoluble salt in a complexing agent makes perfect sense: Solubility increases as \(\mathrm{K}_{\mathrm{sp}}\) increases, as \(\mathrm{K}_{\mathrm{f}}\) increases, as the fraction ( \(\alpha\) ) of free complexing agent increases and as the concentration of complexing agent increases. Moreover, when no complexing agent is present \(\left(C_{Y}=0\right)\), the solubility depends only on \(K_{s p}\) as it should. Remember, however, that it is based on a presumption that \(\mathrm{C}_{\mathrm{Y}}\) is approximately \(\mathrm{C}_{\mathrm{Y}}-\left[\mathrm{BaY}^{2}\right]\). This will be addressed after Solubility has been calculated, and that requires providing values for the four parameters. \(\alpha_{\mathrm{Y} 4}\) could be calculated from the four \(\mathrm{K}_{\mathrm{a}}\) for EDTA and the given pH , but this has already been done on page 104 as part of solving Problem \#4 in Chapter 9. It will be copied from that work.
```

> K[sp]:= 1.1e-10; K[f]:= 10^7.8; alpha[Y4]:= 0.03344; C[Y]:=
0.10; 'Solubility' = Solubility;

```
    Solubility :=0.00482

So, the solubility of \(\mathrm{BaSO}_{4}\) in 0.100 M EDTA at pH 8.8 is 4.8 mmole per liter, but this is artificially high because we presumed an artificially large [ \(\left.\mathrm{Y}^{4}\right]\); we presumed [ \(\mathrm{Y}^{4}\) ] to be \(\alpha_{\mathrm{Y4}} \times \mathrm{C}_{\mathrm{Y}}\) not \(\left.\alpha_{\mathrm{Y} 4} \times\left(\mathrm{C}_{\mathrm{Y}}-\mathrm{BaY}^{2}\right]\right)\). How large can [ \(\left.\mathrm{BaY}^{2}\right]\) possibly be? Not larger than \(\mathrm{C}_{\mathrm{Ba}}\). So the smallest \(\left[\mathrm{Y}^{4}\right]\) is \(\alpha_{\mathrm{Y} 4} \times\left(\mathrm{C}_{\mathrm{Y}}-0.00481_{5}\right)\). So, to simulate this, \(\mathrm{C}_{\mathrm{Y}}\) can be adjusted downward.
```

> C[Y]:= C[Y] - Solubility; 'Solubility'= Solubility;

```
\[
C_{Y}:=0.095182
\]
\[
\text { Solubility }:=0.004700
\]

The difference of \(2.5 \%\) is acceptable for the problem at hand. That is, to decide if indeed the 35 mg of \(\mathrm{BaSO}_{4}\) added to \(10.00 \mathrm{~mL}(0.01 \mathrm{~L})\) of 0.100 M EDTA at pH 8.8 would dissolve completely. Using the \(0.00482 \mathbf{M}\) solubility and the formula weight of \(\mathrm{BaSO}_{4}\) :
\(>\) Mass[BaSO[4]]:= 0.01*Solubility*(137.327 +
\(32.066 * 4 * 15.9994)\);
\[
\text { Mass }_{\text {BaSO }_{4}}:=0.01029
\]

This is more than 100 mg implying that the 35 mg of \(\mathrm{BaSO}_{4}\) from the problem would certainly dissolve completely.
5. Although this problem has been addressed (page 138 et seq.), it will be approached here in a different manner: as in Example Problem 1 part \(\mathbf{c}\), the concentration of free, soluble cation will be determined directly, rather than by subtracting the "concentration" of precipitated cation from its analytical concentration. It will be apparent that the results are the same as those illustrated in Figure 10-5. And by calculating both \(\left[\mathrm{Ag}^{+}\right]\)and \(\left\{\mathrm{Ag}^{+}\right\}\)in this problem, we can show the difference between the two titration curves, one in minus \(\log _{10}\left\{\mathrm{Ag}^{+}\right\}\) (i.e. pAg ) and the other in minus \(\log _{10}\left[\mathrm{Ag}^{+}\right]\).

The details of calculating the activity of \(\mathrm{Ag}^{+}\)from its molarity, at each point in the titration, will be presented later, after an expression for \(\left[\mathrm{Ag}^{+}\right]\)as a function of \(\mathrm{V}_{\mathrm{AgNO} 3}\) has been developed. In order to make ionic strength effects specific, counter ions for \(\mathrm{Ag}^{+}\)and OCN are assigned. For this we assign \(\mathrm{NO}_{3}^{-}\)to \(\mathrm{Ag}^{+}\)and \(\mathrm{K}^{+}\)to OCN , and so the titrant becomes \(\mathrm{AgNO}_{3}\) and the titrand becomes KOCN.

Using this more specific nomenclature, we follow the process described in Example Problem 1, that is where we remove Prcp from the mass balance expression.

```

> restart; MassBal[Ag]:= C[AgNO3] = Sol[Ag] + Prcp;
MassBal[OCN] := C[KOCN] = Sol[OCN] + Prcp;

```
\[
\begin{gathered}
\text { MassBal }_{A g}:=C_{A g N O 3}=\operatorname{Sol}_{A g}+\operatorname{Prcp} \\
\text { MassBal }_{O C N}:=C_{K O C N}=\text { Sol }_{O C N}+\operatorname{Prcp}
\end{gathered}
\]

The Prcp term is removed by subtracting one expression from the other.
```

> MassBal[Total]:= MassBal[Ag] - MassBal[OCN];

$$
\text { MassBal }_{\text {Total }}:=C_{A g N O 3}-C_{K O C N}=\text { Sol }_{A g}-\text { Sol }_{O C N}
$$

```

The solubility equilibrium requirement is used to express \(\operatorname{Sol} l_{O C N}\) in terms of \(\operatorname{Sol}_{A g} . \mathrm{K}_{\mathrm{sp}}^{\mathrm{o}}\) is used in anticipation of addressing ionic strength effects later in the problem.
```

> Sol[OCN]:= solve(K}\mp@subsup{}{}{\circ}[\textrm{sp}]=\mathrm{ Sol[Ag]*Sol[OCN], Sol[OCN]);
'MassBal[Total]'= MassBal[Total];

```
\[
\text { MassBal }_{\text {Total }}=\left(C_{A g N O 3}-C_{K O C N}=S o l_{A g}-\frac{K_{s p}^{\circ}}{S o l_{A g}}\right)
\]

The analytical concentrations for the mixed solution are now expressed in terms of unmixed analytical concentrations and volumes for the titrand and titrant. Keeping the tradition of using \(\mathrm{V}^{0}\) for the titrand (because it does not change throughout the titration) and V for the titrant (because it does change), the expressions are:
```

> C[AgNO3]:= C}\mp@subsup{C}{}{\circ}[AgNO3]*V[AgNO3]/(V [0 [KOCN] + V[AgNO3]):
C[KOCN]:= C
[Total]' = MassBal[Total];
MassBal Total }=(\frac{\mp@subsup{C}{\mathrm{ AgNO3 }}{\circ}\mp@subsup{V}{\mathrm{ AgNO3 }}{}}{\mp@subsup{V}{\textrm{KOCN}}{0}+\mp@subsup{V}{\mathrm{ AgNO3 }}{}
-}\frac{\mp@subsup{C}{KOCN}{\circ}\mp@subsup{V}{KOCN}{\circ}}{\mp@subsup{V}{KOCN}{0}+\mp@subsup{V}{AgNO3}{*}}=So\mp@subsup{l}{Ag}{}-\frac{\mp@subsup{K}{sp}{\circ}}{So\mp@subsup{l}{Ag}{}}

```

Solving for the two roots:
```

> AgRoots:= solve(MassBal[Total], {Sol[Ag]});

```

Either by trial and error or by careful inspection, the first root is chosen as the expression that will provide physically possible \(\left(\mathrm{C}_{\mathrm{AgNO} 3}>\mathrm{Sol}_{\mathrm{Ag}}>0\right)\) values for \(\left[\mathrm{Ag}^{+}\right]\). This expression will be called \(\mathrm{Conc}^{\circ}[\mathrm{Ag}]\) to denote that it derives from \(\mathrm{K}_{\mathrm{sp}}^{\circ}\).
\[
\begin{aligned}
& >\text { Conc }^{\circ}[\text { Ag] }:=\text { subs (AgRoots [1], Sol[Ag]): } \\
& \text { Conc }_{\text {Ag }}^{\circ}:=\frac{1}{2} \frac{1}{V_{\mathrm{KOCN}}^{\circ}+V_{A g N O 3}}\left(C^{\circ}{ }_{\mathrm{AgNO} 3} V_{\mathrm{AgNO} 3}\right. \\
& -C^{\circ}{ }_{\text {KOCN }} V^{\circ}{ }_{\text {KOCN }} \\
& +\left(C^{\circ}{ }_{\mathrm{AgNO} 3}^{2} V_{\mathrm{AgNO} 3}^{2}-2 \mathrm{C}_{\mathrm{AgNO} 3}^{\circ} V_{\mathrm{AgNO} 3} C_{\mathrm{KOCN}}^{\circ} V_{\mathrm{KOCN}}^{\circ}\right. \\
& \left.\left.V_{K O C N}^{2}+8 V_{K O C N}^{\circ} K_{s p}^{\circ} V_{A g N O 3}+4 K_{s p}^{\circ} V_{A g N O 3}^{2}\right)^{\prime \prime 2}\right)
\end{aligned}
\]

The compliment to Conc \(^{\circ}[\mathrm{Ag}]\) is Conc \([\mathrm{Ag}]\) which will derive from \(\mathrm{K}_{\mathrm{sp}}\). Recalling that \(\mathrm{K}_{\mathrm{sp}}\) would be \(\mathrm{K}_{\mathrm{sp}}^{\circ} /\left(\gamma_{\mathrm{Ag}}+\gamma_{\mathrm{OCN}}-\right)\), the algsubs operation can be used to effect this new definition.
```

> Conc[Ag]:= algsubs(K}\mp@subsup{}{}{\circ}[\textrm{sp}]=\mp@subsup{K}{}{\circ}[\textrm{sp}]/(Gamma[Ag]*Gamma[OCN])
Conc}\mp@subsup{}{}{\circ}[Ag])

```

Appropriately, the new expression contains activity coefficients. In order to clear out the clutter of the many parameters, they will be assigned values before continuing. All of these come directly from the initial approach to this problem (page 139). For that reason, the output is not shown.
```

> C}\mp@subsup{}{}{\circ}[AgNO3]:= 0.25: C C [KOCN]:= 0.20: V [^[KOCN]:= 10.00:
K

```

For inspection:
\[
\begin{aligned}
& >{ }^{\prime} \text { Conc }[\mathrm{Ag}]^{\prime}=\operatorname{Conc}[\mathrm{Ag}] ; \\
& \qquad \begin{array}{l}
\text { Conc }_{A g}=\frac{1}{2} \frac{1}{10.000+V_{A g N O 3}}\left(0.250 V_{A g N O 3}-2.000\right. \\
\\
+\left(0.063 V_{A g N O 3}^{2}-1.000 V_{A g N O 3}+4.000\right.
\end{array} \\
& \left.\left.+\frac{9.20010^{-7}\left(100.000+20.000 V_{A g N O 3}+V_{A g N O 3}^{2}\right)}{\Gamma_{A g} \Gamma_{O C N}}\right)^{1 / 2}\right)
\end{aligned}
\]

Clearly \(\mathrm{Conc}_{\mathrm{Ag}}\) changes with \(V_{\mathrm{AgNO}_{3}}\), but the two activity coefficients change with \(V_{\mathrm{AgNO}_{3}}\) also. This is because, as we know, \(\gamma\) changes with \(\mu\), and \(\mu\) will change with \(C_{K O C N}\) and \(C_{A g N O 3}\) which, of course change with \(V_{\text {AgNO3. }}\). We develop this relationship here.
```

> a[Ag]:= 2.5; a[OCN]:= 3.5; Gamma[Ag]:= 10^(-0.511*sqrt
(\mu)/(1 + (0.329*a[Ag]*sqrt(}\mu\mathrm{)))); Gamma[OCN]:=
10^(-0.511*sqrt (\mu)/(1 + (0.329*a[OCN]*sqrt (\mu))));

```

Now, Conc \(_{\text {Ag }}\) is an expression in terms of \(V_{\text {AgNO3 }}\) and \(\mu\).

Finally, to address the relationship between \(\mu\) and \(\mathrm{V}_{\mathrm{AgNO}}\) consider the expression for ionic strength as it would pertain to this titration.
\[
\mu={ }^{1}{ }_{2}\left\{\left[\mathrm{~K}^{+}\right]+\left[\mathrm{OCN}^{-}\right]+\left[\mathrm{Ag}^{+}\right]+\left[\mathrm{NO}_{3}^{-}\right]\right\}
\]

In the true spirit of being spectator ions, \(\left[\mathrm{K}^{+}\right]\)and \(\left[\mathrm{NO}_{3}^{-}\right]\)exactly equal the analytical concentration of their parent compound. So,
\[
\mu=1 /{ }_{2}\left\{\mathrm{C}_{\mathrm{KOCN}}+[\mathrm{OCN}]+\left[\mathrm{Ag}^{+}\right]+\mathrm{C}_{\mathrm{AgNO}^{-}}\right\}
\]

\section*{TURN TO THE EXPERTS FOR SUBSCRIPTION CONSULTANCY}

Subscrybe is one of the leading companies in Europe when it comes to innovation and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do business reviews of existing subscription businesses and we develope acquisition and retention strategies.

Learn more at linkedin.com/company/subscrybe or contact Managing Director Morten Suhr Hansen at mha@subscrybe.dk
SUBSCR\BE - to the future

The concentrations of \(\mathrm{OCN}^{-}\)and \(\mathrm{Ag}^{+}\)are regulated by the solubility equilibrium expression; \(\left[\mathrm{Ag}^{+}\right]\)is \(\mathrm{Conc}_{\text {Ag }}\) which, for simplification, can be closely approximated with Conc \({ }^{\circ}{ }_{A g}{ }^{235}[\mathrm{OCN}]\) can be expressed in terms of \(\operatorname{Conc}^{\circ}{ }_{A g}\) by considering the charge balance requirement:
\[
\left[\mathrm{K}^{+}\right]+\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{OCN}^{-}\right]+\left[\mathrm{NO}_{3}^{-}\right]
\]

So,
\[
[\mathrm{OCN}]=\left[\mathrm{K}^{+}\right]+\left[\mathrm{Ag}^{+}\right]-\left[\mathrm{NO}_{3}^{-}\right]
\]
and then,
\[
\left[\mathrm{OCN}^{-}\right]=\mathrm{C}_{\mathrm{KOCN}}+\text { Conc }_{\text {Ag }}^{\circ}-\mathrm{C}_{\mathrm{AgNO}} .
\]

Rewriting the expression for \(\mu\) with all of these substitutions gives a very simple expression:
\[
\mu=C_{\text {KOCN }}+\text { Conc }^{\circ}{ }_{A g^{\circ}}
\]

Using this expression for \(\mu\) which will implicitly contain \(\mathrm{V}_{\mathrm{Ag} \mathrm{NO} 3}\) we have:
\[
\begin{aligned}
>\mu:=C[\mathrm{KOCN}] & +\mathrm{Conc}^{\circ}[\mathrm{Ag}] ; \\
\mu:= & \frac{2.000}{10.000+V_{\text {AgNO3 }}} \\
& +\frac{1}{2} \frac{1}{10.000+V_{\text {AgNO3 }}}\left(0.250{V_{\text {AgNO3 }}-2.000}\right. \\
& \left.+\sqrt{0.063 V_{\text {AgNO3 }}^{2}-1.000{V_{\text {AgNO3 }}}+4.000}\right)
\end{aligned}
\]

Expressions for \(\left[\mathrm{Ag}^{+}\right]\)regarding and disregarding ionic strength effects are now complete. A "for loop" will be used to compute each of these from 0.10 to 10 mL of \(\mathrm{AgNO}_{3}\) titrant. We begin at a volume measurably greater than 0 mL because at a very small volume of titrand, no precipitate will form and that will make the solubility equilibrium condition irrelevant (i.e. non binding).
```

> V[AgNO3]:= 0.10:
V (AgNOS
> for i to 100 do
> pAg_Con[i] := - log[10](Conc%7D%5Cmp@subsup%7B%7D%7B%7D%7B%5Ccirc%7D%5BAg%5D): pAg_Act[i]:= -log [10]
(Gamma [Ag]*Conc[Ag]): V[i]:= V[AgNO3]:

```
```

> V[AgNO3]:= V[AgNO3] + 0.10:
> end:

```

We can quickly compare \(\left\{\mathrm{Ag}^{+}\right\}\)and \(\left[\mathrm{Ag}^{+}\right]\)at the equivalence point by calling these values at \(i\) \(=80\), which corresponds to \(V_{A g N O 3}=8.00 \mathrm{~mL}\).
```

> 'V'=V[80]; '-log_Ag_conc' = pAg_Con[80]; '-log_Ag_act'=
pAg_Act[80];

```
\[
\begin{gathered}
V=8.000 \\
-\log _{-} A g_{-} c o n c=3.319 \\
- \text { log_Ag_conc }^{2}=3.324
\end{gathered}
\]

There is not much difference between the molarity and activity of \(\mathrm{Ag}^{+}\). Notice also that there is no difference between the molarity of \(\mathrm{Ag}^{+}\)calculated here and what was calculated from \(C_{A g}-\operatorname{PrCp}\) on page \(140 .{ }^{236}\)

For a thorough comparison, the data are packaged for plotting (Part I, page 192). There is no need to show that output.
```

> ConcData:= [seq([V[i], pAg_Con[i]], i = 1..100)]: ActData:=
[seq([V[i], pAg_Act[i]], i = 1..100)]:

```

Then, the plot structures are set. Recall that because the two structures will be plotted together there is no need to include label or axis specifications in both structures. Again, there is no value in displaying the output from this input line. The \(\mathrm{Ag}^{+}\)concentration results are plotted as a red line because they should exactly replicate what was calculated for Figure \(\mathbf{1 0 . 5}\) and shown there as a red line. The reader might notice that we have not attempted a simpler approach, using plots [pointplot] ([ConcData,ActData], ......). . Point plotting does not allow plotting multiple data sets. So each plot structure is stored and then combined for plotting with plots[display].
```

> ConcPlot:= plots[pointplot](ConcData, style = line, labels
= ["Vol of AgNO3","-logAg"], axes = boxed, color = red):
ActPlot := plots[pointplot](ActData, symbol = circle, color
= blue):

```

Finally, the plot is generated.
```

> plots[display]({ConcPlot, ActPlot});

```


Figure 10-9


The difference between concentration and activity is not significant, especially near the equivalence point. This phenomenon was seen with the acid base titration of (Figure 7-6). It might seem surprising that with ionic strength exceeding \(\mathrm{C}_{\mathrm{KOCN}}, \gamma_{\mathrm{Ag}+}\) would not make \(\left\{\mathrm{Ag}^{+}\right\}\) appreciably different from \(\left[\mathrm{Ag}^{+}\right]\)or \(\mathrm{K}_{\text {sp }}^{\circ}\) different from \(\mathrm{K}_{\mathrm{sp}}\). In fact \(\gamma_{\mathrm{Ag}+}\) changes both of these significantly, but in opposite ways. So the changes offset and effectively \(\left\{\mathrm{Ag}^{+}\right\} \approx\left[\mathrm{Ag}^{+}\right]\). At the end of the titration ( 10 mL of KOCN ), for example:
```

> ' }\mp@subsup{\mu}{}{\prime}=\mu; 'Gamma[Ag]'= Gamma [Ag]; 'Gamma[OCN]'= Gamma
[OCN]; 'V_of_KOCN'= V[100]; 'p[Ag_Conc]'= pAg_Con[100];
'p[Ag_Act]'= pAg_Act[100]; 'Conc_of_KOCN'= C[KOCN];

```
\[
\begin{gathered}
\mu=0.126 \\
\Gamma_{A g}=0.724 \\
\Gamma_{\text {oCN }}=0.744 \\
V_{-} o f_{\_} K O C N=10.000 \\
p\left[A g_{-} C o n c\right]=1.602 \\
p\left[A g_{-} A c t\right]=1.742 \\
\text { Conc_of_KOCN }=0.100
\end{gathered}
\]

The calculation of activity is important in potentiometric titrations because it is the activity of a titrand or titrant ion that is monitored. In automated systems, it is \({ }^{\Delta A \text { ctivity }}{ }_{\Delta V o l u m e}\) or more correctly \({ }^{\Delta \mathrm{pActivity}} / \Delta \mathrm{Volume}\) that is monitored. This can be recreated from the data at hand with a very short "for loop." What we do here is simply find the difference between adjacent pAg's (i and \(\mathrm{i}+1\) ) from the previous "for loop."
```

> for i to 99 do
> delta_pAg[i]:= (pAg_Act[i + 1] - pAg_Act[i])/(V[i+1] -
V[i]):
> end:

```

Packaging and plotting the data follow. Notice that there is no need to create a plot structure for plots[display] because plots[pointplot] can be used directly.
```

> Delta_Data := [seq([V[i], delta_pAg[i]], i = 1..99)]:
> plots[pointplot](Delta_Data, style = line, color = navy,
axes = boxed, labels = ["mL of AgNO3","\DeltapAg"]);

```


Figure 10-10

The equivalence point is marked by the greatest change in pAg per change in volume of titrant. But a caution is in order: the coincidence of this endpoint and equivalence point pertains only to \(1: 1\) precipitates. The endpoint for a titration in which \(\mathrm{M}_{2} \mathrm{~A}(\mathrm{~s})\) or \(\mathrm{MA}_{2}(\mathrm{~s})\) is produced will not coincide with the equivalence point. \({ }^{237}\)

\section*{Appendix I}

\section*{Solvent Parameters for Calculations of Aqueous Solutions Using Extended Debye-Hückel Theory}
\(-\log _{10} \gamma=\left(\mathrm{Az}_{1}{ }^{2} \sqrt{ } \mu\right) /(1+\mathrm{Ba} \sqrt{ } \mu)\)
z is the charge of ion, \(i\).
\(a\) is the effective ionic radius of ion i expressed in \(\AA\). See Appendix II.
\begin{tabular}{|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{C}\) & A & B \\
\hline 0 & 0.4918 & 0.3248 \\
\hline 5 & 0.4952 & 0.3256 \\
\hline 10 & 0.4989 & 0.3264 \\
\hline 15 & 0.5028 & 0.3273 \\
\hline 20 & 0.5070 & 0.3282 \\
\hline 25 & 0.5115 & 0.3291 \\
\hline 30 & 0.5161 & 0.3301 \\
\hline 35 & 0.5211 & 0.3312 \\
\hline 40 & 0.5262 & 0.3323 \\
\hline 45 & 0.5317 & 0.3334 \\
\hline 50 & 0.5373 & 0.3346 \\
\hline 55 & 0.5432 & 0.3358 \\
\hline 60 & 0.5494 & 0.3371 \\
\hline 65 & 0.5558 & 0.3384 \\
\hline 70 & 0.5625 & 0.3397 \\
\hline 75 & 0.5695 & 0.3411 \\
\hline 80 & 0.5767 & 0.3426 \\
\hline 85 & 0.5842 & 0.3440 \\
\hline 90 & 0.5920 & 0.3456 \\
\hline 95 & 0.6001 & 0.3471 \\
\hline 100 & 0.6086 & 0.3488 \\
\hline
\end{tabular}

\section*{Appendix II}

\section*{Constants for Calculating Activity Coefficients}

The estimated values for the a parameter for selected inorganic ions. \({ }^{238}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{Ag}^{+}\) & 2.5 & \(\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}\) & 5 & \(\mathrm{Ni}^{2+}\) & 6 \\
\hline \(\mathrm{Al}^{3+}\) & 9 & \(\mathrm{Fe}^{2+}\) & 6 & \(\mathrm{NO}_{2}{ }^{-}\) & 3 \\
\hline \(\mathrm{Ba}^{2+}\) & 5 & \(\mathrm{Fe}^{3+}\) & 9 & \(\mathrm{NO}_{3}{ }^{-}\) & 3 \\
\hline \(\mathrm{Be}^{2+}\) & 8 & \(\mathrm{H}^{+}\) & 9 & \(\mathrm{OH}^{-}\) & 3.5 \\
\hline \(\mathrm{BrO}_{3}{ }^{-}\) & 3.5 & \(\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\) & 4-4.5 & \(\mathrm{Pb}^{2+}\) & 4.5 \\
\hline \(\mathrm{Ca}^{2+}\) & 6 & \(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\) & 4-4.5 & \(\mathrm{PO}_{4}{ }^{3-}\) & 4 \\
\hline \(\mathrm{Cd}^{2+}\) & 5 & \(\mathrm{HCO}_{3}^{-}\) & 4-4.5 & \(\mathrm{Pr}^{3+}\) & 9 \\
\hline \(\mathrm{CdCl}^{+}\) & 4-4.5 & \(\mathrm{Hg}^{2+}\) & 5 & \(\mathrm{Ra}^{2+}\) & 5 \\
\hline \(\mathrm{Ce}^{3+}\) & 9 & \(\mathrm{Hg}_{2}{ }^{2+}\) & 4-4.5 & Rb \({ }^{+}\) & 2.5 \\
\hline Ce \({ }^{4+}\) & 11 & \(\mathrm{HPO}_{4}{ }^{\text {- }}\) & 4 & \(\mathrm{S}^{2-}\) & 5 \\
\hline \(\mathrm{Cl}^{-}\) & 3 & HS & 3.5 & \(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{-}\) & 4 \\
\hline \(\mathrm{ClO}_{2}{ }^{-}\) & 3.5 & \(\mathrm{HSO}_{3}{ }^{-}\) & 4-4.5 & \(\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}\) & 5 \\
\hline \(\mathrm{ClO}_{3}^{-}\) & 4-4.5 & I- & 3 & \(\mathrm{Sc}^{3+}\) & 9 \\
\hline \(\mathrm{ClO}_{4}^{-}\) & 3.5 & \(\mathrm{In}^{3+}\) & 9 & \(\mathrm{SeO}_{4}{ }^{2-}\) & 4 \\
\hline CN & 3 & \(1 \mathrm{O}_{3}{ }^{\text {- }}\) & 4-4.5 & \(\mathrm{Sm}^{3+}\) & 9 \\
\hline CNO- & 3.5 & \(1 \mathrm{O}_{4}{ }^{-}\) & 3.5 & \(\mathrm{Sn}^{2+}\) & 6 \\
\hline \(\left[\mathrm{Co}(\mathrm{en})_{3}{ }^{3+}\right.\) & 6 & \(\mathrm{K}^{+}\) & 3 & \(\mathrm{Sn}^{4+}\) & 11 \\
\hline \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\) & 4 & \(\mathrm{La}^{3+}\) & 9 & \(\mathrm{SO}_{3}{ }^{-}\) & 4.5 \\
\hline \(\mathrm{Co}^{2+}\) & 6 & \(\mathrm{Li}^{+}\) & 6 & \(\mathrm{SO}_{4}{ }^{-}\) & 4 \\
\hline \(\mathrm{CO}_{3}{ }^{-}\) & 4.5 & \(\mathrm{Mg}^{2+}\) & 8 & \(\mathrm{Sr}^{2+}\) & 5 \\
\hline \(\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\) & 4 & \(\mathrm{Mn}^{2+}\) & 6 & Th \({ }^{4+}\) & 11 \\
\hline \(\mathrm{Cr}^{3+}\) & 9 & \(\mathrm{MnO}_{4}^{-}\) & 3.5 & T \({ }^{+}\) & 2.5 \\
\hline \(\mathrm{CrO}_{4}{ }^{2-}\) & 4 & \(\mathrm{MoO}_{4}{ }^{\text {- }}\) & 4.5 & \(\mathrm{WO}_{4}{ }^{\text {- }}\) & 5 \\
\hline \(\mathrm{Cs}^{+}\) & 2.5 & \(\mathrm{Na}^{+}\) & 4-4.5 & \(\mathrm{Y}^{3+}\) & 9 \\
\hline \(\mathrm{Cu}^{2+}\) & 6 & NCS & 3.5 & \(\mathrm{Zn}^{2+}\) & 6 \\
\hline F- & 3.5 & \(\mathrm{Nd}^{3+}\) & 9 & \(\mathrm{Zr}^{4+}\) & 11 \\
\hline \(\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}\) & 4 & \(\mathrm{NH}_{4}^{+}\) & 2.5 & & \\
\hline
\end{tabular}

The estimated values for the a parameter for selected organic ions. \({ }^{239}\)
\begin{tabular}{|c|c|}
\hline Acetate & 4.5 \\
\hline Benzoate & 6 \\
\hline \(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{COO}\) & 6 \\
\hline \(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ClCOO}\) & 6 \\
\hline \(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OHCOO}\) & 6 \\
\hline \(\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHCOO}\) & 8 \\
\hline \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\) & 6 \\
\hline \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}\) & 5 \\
\hline \(\mathrm{CCl}_{3} \mathrm{COO}\) & 5 \\
\hline \(\mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right) \mathrm{COO}\) & 4.5 \\
\hline \(\mathrm{CH}_{2} \mathrm{ClCOO}^{-}\) & 4.5 \\
\hline \(\mathrm{CH}_{3} \mathrm{COO}\) & 4.5 \\
\hline \(\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{COO}\) & 7 \\
\hline \(\mathrm{CHCl}_{2} \mathrm{COO}^{-}\) & 5 \\
\hline Chloroacetate & 4.5 \\
\hline Citrate & 5 \\
\hline \((\mathrm{COO})_{2}{ }^{2-}\) & 4.5 \\
\hline Dichloroacetate & 5 \\
\hline Diethyl Ammonium & 4.5 \\
\hline Dihydrogen Citrate & 3.5 \\
\hline Dimethyl Ammonium & 3.5 \\
\hline Dipropyl Ammonium & 6 \\
\hline Ethyl Ammonium & 3.5 \\
\hline Formate & 3.5 \\
\hline \(\mathrm{CH}_{2}\left(\mathrm{NH}_{3}{ }^{+} \mathrm{COOH}\right.\) & 4 \\
\hline \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}\) & 3.5 \\
\hline \(\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-}\) & 3.5 \\
\hline \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\) & 3.5 \\
\hline
\end{tabular}
\(\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-} \quad 4.5\)
\(\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+} \quad 3.5\)
HCOO 3.5
\(\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{H}_{2}^{+} \quad 4.5\)
\(\mathrm{NH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}{ }^{+} \quad 5\)
\(\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{H}_{2}^{+} \quad 6\)
\(\mathrm{NH}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{3}^{+} \quad 7\)
\(\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{H}_{3}^{+} \quad 5\)
\(\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+} \quad 4\)
Hydrogen Citrate 4.5
Methyl Ammonium 3.5
\(\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}^{+} \quad 6\)
\(\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}^{+} \quad 8\)
\(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}{ }^{+} \quad 4.5\)
\(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} \quad 4.5\)
\(\left(\mathrm{NO}_{2}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}^{-} 7\)
Oxalate 4.5
Phenylacetate 6
Picrate 7
Propyl Ammonium 5
Tetraethyl Ammonium 4.5
Tetraethyl Ammonium 6
Tetrapropyl Ammonium 8
Trichloroacetate 5
Triethyl Ammonium 5
Trimethyl Ammonium 4
Tripropyl Ammonium 7

\section*{Appendix III}

\section*{Autoprotolysis Constants for Water}
\begin{tabular}{|c|c|c|}
\hline Temp. \({ }^{\circ} \mathbf{C}\) & \(\mathbf{p K}_{w}\) & \(\mathbf{K}_{w}\) \\
\hline 0 & 14.994 & \(1.0139 \mathrm{E}-15\) \\
5 & 14.734 & \(1.8450 \mathrm{E}-15\) \\
10 & 14.535 & \(2.9174 \mathrm{E}-15\) \\
15 & 14.346 & \(4.5082 \mathrm{E}-15\) \\
20 & 14.167 & \(6.8077 \mathrm{E}-15\) \\
25 & 13.996 & \(1.0093 \mathrm{E}-14\) \\
30 & 13.833 & \(1.4689 \mathrm{E}-14\) \\
35 & 13.680 & \(2.0893 \mathrm{E}-14\) \\
40 & 13.535 & \(2.9174 \mathrm{E}-14\) \\
45 & 13.396 & \(4.0179 \mathrm{E}-14\) \\
50 & 13.262 & \(5.4702 \mathrm{E}-14\) \\
55 & 13.137 & \(7.2946 \mathrm{E}-14\) \\
60 & 13.017 & \(9.6161 \mathrm{E}-14\) \\
65 & 12.90 & \(1.2589 \mathrm{E}-13\) \\
70 & 12.80 & \(1.5849 \mathrm{E}-13\) \\
75 & 12.69 & \(2.0417 \mathrm{E}-13\) \\
80 & 12.60 & \(2.5119 \mathrm{E}-13\) \\
85 & 12.51 & \(3.0903 \mathrm{E}-13\) \\
90 & 12.42 & \(3.8019 \mathrm{E}-13\) \\
100 & 12.34 & \(4.5709 \mathrm{E}-13\) \\
\hline 12.26 & \(5.4954 \mathrm{E}-13\) \\
\hline
\end{tabular}

\section*{Appendix IV}

Acid Dissociation Constants for Some Common Weak Acids
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Formula & pK \({ }_{\text {a }}\) \\
\hline Acetic Acid & \(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) & 4.756 & & & \\
\hline Ammonium & \(\mathrm{NH}_{4}^{+}\) & 9.24 & & & \\
\hline 2-Ammoniumbenzoic acid & \(\mathrm{H}_{2} \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}{ }^{+}\) & 2.09 & 4.79 & & \\
\hline 3-Ammoniumbenzoic acid & \(\mathrm{H}_{2} \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}{ }^{+}\) & 3.07 & 4.79 & & \\
\hline 4-Ammoniumbenzoic acid & \(\mathrm{H}_{2} \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}{ }^{+}\) & 2.41 & 4.85 & & \\
\hline 2-Ammoniumbutanoic Acid & \(\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}_{2}^{+}\) & 2.286 & 9.38 & & \\
\hline Anilinium & \(\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{~N}^{+}\) & 4.596 & & & \\
\hline Arsenic Acid & \(\mathrm{H}_{3} \mathrm{AsO}_{4}\) & 2.22 & 6.98 & 11.5 & \\
\hline Arsenous Acid & \(\mathrm{HAsO}_{2}\) & 9.18 & & & \\
\hline Benzoic Acid & \(\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\) & 4.204 & & & \\
\hline Boric Acid (ortho) & \(\mathrm{H}_{3} \mathrm{BO}_{3}\) & 9.24 & 12.74 & 13.8 & \\
\hline Boric Acid (tetra) & \(\mathrm{H}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\) & 4 & 9 & & \\
\hline Bromoacetic Acid & \(\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{O}_{2}\) & 2.902 & & & \\
\hline Bromoacetic Acid & \(\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{BrO}_{2}\) & 2.902 & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Formula & pK \({ }_{\text {a }}\) & pK \({ }_{\text {a } 2}\) & \(\mathrm{pK}_{\mathrm{a} 3}\) & pK \({ }_{\text {a } 4}\) \\
\hline 2-Bromobenzoic Acid & \(\mathrm{HC}_{7} \mathrm{H}_{4} \mathrm{BrO}_{2}\) & 2.85 & & & \\
\hline 3-Bromobenzoic Acid & \(\mathrm{HC}_{7} \mathrm{H}_{4} \mathrm{BrO}_{2}\) & 3.81 & & & \\
\hline 4-Bromobenzoic Acid & \(\mathrm{HC}_{7} \mathrm{H}_{4} \mathrm{BrO}_{2}\) & 3.99 & & & \\
\hline 3-Bromophenol & \(\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{BrO}\) & 9.031 & & & \\
\hline 4-Bromophenol & \(\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{BrO}\) & 9.34 & & & \\
\hline Butanoic Acid & \(\mathrm{HC}_{4} \mathrm{H}_{9} \mathrm{O}_{2}\) & 4.817 & & & \\
\hline Carbonic Acid & \(\mathrm{H}_{2} \mathrm{CO}_{3}\) & 6.36 & 10.33 & & \\
\hline Chloric Acid & \(\mathrm{HClO}_{3}\) & -2.7 & & & \\
\hline Chloroacetic Acid & \(\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2}\) & 2.867 & & & \\
\hline 2-Chlorobenzoic Acid & \(\mathrm{HC}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}\) & 2.877 & & & \\
\hline 3-Chlorobenzoic Acid & \(\mathrm{HC}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}\) & 3.83 & & & \\
\hline 4-Chlorobenzoic Acid & \(\mathrm{HC}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}\) & 3.986 & & & \\
\hline 2-Chlorophenol & \(\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{ClO}\) & 8.55 & & & \\
\hline 3-Chlorophenol & \(\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{ClO}\) & 9.1 & & & \\
\hline 4-Chlorophenol & \(\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{ClO}\) & 9.43 & & & \\
\hline Chlorous Acid & \(\mathrm{HClO}_{2}\) & 1.94 & & & \\
\hline Chromic Acid & \(\mathrm{H}_{2} \mathrm{CrO}_{4}\) & -0.98 & 6.5 & & \\
\hline Citric Acid & \(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\) & 3.128 & 4.761 & 6.396 & \\
\hline Cyanic Acid & HOCN & 3.46 & & & \\
\hline Cyanoacetic Acid & \(\mathrm{HC}_{3} \mathrm{H}_{2} \mathrm{NO}_{2}\) & 2.46 & & & \\
\hline 1,2-Diaminocyclohexane- \(\mathrm{N}, \mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}{ }^{\prime}\) tetraacetic acid DCYTA & \(\mathrm{H}_{4} \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{8}\) & 2.43 & 3.54 & 6.10 & 11.70 \\
\hline Dibromoacetic Acid & \(\mathrm{HC}_{2} \mathrm{HBr}_{2} \mathrm{O}_{2}\) & 1.39 & & & \\
\hline Dichloroacetic Acid & \(\mathrm{HC}_{2} \mathrm{HCl}_{2} \mathrm{O}_{2}\) & 1.26 & & & \\
\hline Diethylammonium & \(\mathrm{HC}_{4} \mathrm{H}_{11} \mathrm{~N}^{+}\) & 10.8 & & & \\
\hline Difluoroacetic Acid & \(\mathrm{HC}_{2} \mathrm{HF}_{2} \mathrm{O}_{2}\) & 1.33 & & & \\
\hline Dimethylammonium & \(\mathrm{HC}_{2} \mathrm{H}_{7} \mathrm{~N}^{+}\) & 10.77 & & & \\
\hline 2,4-Dinitrophenol & \(\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\) & 4.08 & & & \\
\hline Ethylammonium & \(\mathrm{HC}_{2} \mathrm{H}_{6} \mathrm{~N}^{+}\) & 10.63 & & & \\
\hline Ethylenediamine-N,N,N,N'N'-tetraacetic Acid ( \(\mu=0.1\) ) EDTA & \(\mathrm{H}_{4} \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8}\) & 1.99 & 2.67 & 6.16 & 10.26 \\
\hline Ethylenediammonium & \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}^{2+}\) & 6.85 & 9.93 & & \\
\hline Ethyleneglycol bis(oxyethylenenitrilo) tetraacetic acid EGTA & \(\mathrm{H}_{4} \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{10}\) & 2.00 & 2.65 & 8.85 & 9.46 \\
\hline Fluoroacetic Acid & \(\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{FO}_{2}\) & 2.586 & & & \\
\hline 2-Fluoroanilinium & \(\mathrm{HC}_{6} \mathrm{H}_{6} \mathrm{NF}^{+}\) & 3.2 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Formula & pK \({ }_{\text {a }}\) & pK \({ }_{\text {a } 2}\) & \(\mathrm{pK}_{\mathrm{a} 3}\) & pK \({ }_{\text {a }}\) \\
\hline 3-Fluoroanilinium & \(\mathrm{HC}_{6} \mathrm{H}_{6} \mathrm{NF}^{+}\) & 3.58 & & & \\
\hline 4-Fluoroanilinium & \(\mathrm{HC}_{6} \mathrm{H}_{6} \mathrm{NF}^{+}\) & 4.65 & & & \\
\hline 3-Fluorobenzoic Acid & \(\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{FO}_{2}\) & 3.865 & & & \\
\hline 3-Fluorophenol & \(\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{FO}\) & 9.29 & & & \\
\hline Formic Acid & \(\mathrm{HCHO}_{2}\) & 3.751 & & & \\
\hline Fumaric Acid & \(\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{2}\) & 3.1 & 4.6 & & \\
\hline Glutaric Acid & \(\mathrm{H}_{2} \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\) & 3.77 & 6.08 & & \\
\hline Glycine & \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}^{+}\) & 2.351 & 9.78 & & \\
\hline Hydrazinium & \(\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{H}_{4}{ }^{2+}\) & 0.27 & 7.94 & & \\
\hline Hydrazoic Acid & \(\mathrm{HN}_{3}\) & 4.72 & & & \\
\hline Hydrocyanic Acid & HCN & 9.21 & & & \\
\hline Hydrofluoric Acid & HF & 3.18 & & & \\
\hline Hydrogen Peroxide & \(\mathrm{H}_{2} \mathrm{O}_{2}\) & 11.65 & & & \\
\hline Hydrosulfuric Acid & \(\mathrm{H}_{2} \mathrm{~S}\) & 6.97 & 12.92 & & \\
\hline Hydroxylammonium & HNH2OH+ & 5.95 & & & \\
\hline Hypobromous Acid & HBrO & 8.6 & & & \\
\hline Hypochlorous Acid & HClO & 7.54 & & & \\
\hline Hypoiodous Acid & HIO & 10.64 & & & \\
\hline Hyponitrous Acid & \(\mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\) & 7.05 & 11.4 & & \\
\hline Hypophosphorous Acid & \(\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}\) & 2 & 2.19 & 6.77 & 9.48 \\
\hline Iodic Acid & \(\mathrm{HIO}_{3}\) & 0.804 & & & \\
\hline lodoacetic Acid & \(\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{OO}_{2}\) & 3.175 & & & \\
\hline Maleic Acid & \(\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{2}\) & 1.91 & 6.33 & & \\
\hline Malonic Acid & \(\mathrm{H}_{2} \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\) & 2.826 & 5.696 & & \\
\hline Methylammonium & \(\mathrm{HCH}_{3} \mathrm{~N}^{+}\) & 10.62 & & & \\
\hline Nitrilotriacetic Acid & \(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{6}\) & 1.65 & 2.94 & 10.33 & \\
\hline Nitroacetic Acid & \(\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{NO}_{4}\) & 1.68 & & & \\
\hline 2-Nitrophenol & \(\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\) & 7.222 & & & \\
\hline 3-Nitrophenol & \(\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\) & 8.36 & & & \\
\hline 4-Nitrophenol & \(\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\) & 7.15 & & & \\
\hline Nitrous Acid & \(\mathrm{HNO}_{2}\) & 3.14 & & & \\
\hline Oxalic Acid & \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) & 1.271 & 4.272 & & \\
\hline Periodic Acid & \(\mathrm{HIO}_{4}\) & 1.55 & & & \\
\hline Phosphoric Acid & \(\mathrm{H}_{3} \mathrm{PO}_{4}\) & 2.15 & 7.2 & 12.38 & \\
\hline o-Phthalic Acid & \(\mathrm{H}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\) & 2.95 & 5.408 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Formula & pK \({ }_{\text {a }}\) & pK \({ }_{\text {a2 }}\) & pK \({ }_{\text {a }}\) & pK \({ }_{\text {a }}\) \\
\hline Propanoic Acid & \(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\) & 4.874 & & & \\
\hline Pyridinium & \(\mathrm{HC}_{5} \mathrm{H}_{5} \mathrm{~N}^{+}\) & 5.17 & & & \\
\hline Salicylic Acid & \(\mathrm{H}_{2} \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}\) & 2.98 & 12.38 & & \\
\hline Selenous Acid & \(\mathrm{H}_{2} \mathrm{SeO}_{3}\) & 2.64 & 8.27 & & \\
\hline Sulfurous Acid & \(\mathrm{H}_{2} \mathrm{SO}_{3}\) & 1.89 & 7.21 & & \\
\hline t-Butylammonium & \(\mathrm{HC}_{4} \mathrm{H}_{11} \mathrm{~N}^{+}\) & 10.685 & & & \\
\hline Thiosulfuric Acid & \(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\) & 0.6 & 1.6 & & \\
\hline Tribromoacetic Acid & \(\mathrm{HC}_{2} \mathrm{Br}_{3} \mathrm{O}_{2}\) & -0.147 & & & \\
\hline Trichloroacetic Acid & \(\mathrm{HC}_{2} \mathrm{Cl}_{3} \mathrm{O}_{2}\) & 0.52 & & & \\
\hline Triethylammonium & \(\mathrm{HN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}^{+}\) & 10.72 & & & \\
\hline Triethylenetetraammonium & \(\mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{4}{ }^{4+}\) & 3.32 & 6.67 & 9.2 & 9.92 \\
\hline Trifluoroacetic Acid & \(\mathrm{HC}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\) & 0.5 & & & \\
\hline Trimethylammonium & \(\mathrm{HN}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}\) & 9.8 & & & \\
\hline Uric Acid & & 5.4 & 5.53 & & \\
\hline Water & \(\mathrm{H}_{2} \mathrm{O}\) & 15.74 & & & \\
\hline
\end{tabular}

\section*{This e-book is made with SetaPDF}

\section*{Appendix V}

\section*{Properties of Some Common Acid / Base Indicators}
\begin{tabular}{|l|l|l|l|l|}
\hline Indicator & \(\mathbf{p K}_{\text {In }}{ }^{240}\) & Transition \(\mathbf{p H}^{241}\) & Color of [HIn] & \\
\hline Cresol Purple & 1.5 & \(1.2-2.8\) & Red & Yellow \\
Thymol Blue & 1.65 & \(1.2-2.8\) & Red & Yellow \\
Tropeoline OO & 2.0 & \(1.3-3.0\) & Red & Yellow \\
Methyl Yellow & 3.2 & \(2.9-4.0\) & Red & Yellow \\
Methyl Orange & 3.4 & \(3.1-4.4\) & Yellow & Orange \\
Bromophenol Blue & 3.9 & \(3.0-4.6\) & Yellow & Purple \\
Bromocresol Green & 4.9 & \(3.8-5.4\) & Yellow & Blue \\
Methyl Red & 5.0 & \(4.2-6.2\) & Red & Yellow \\
Chlorophenol Red & 6.1 & \(5.4-6.8\) & Yellow \\
Bromothymol Blue & 7.2 & \(6.2-7.6\) & Yellow & Blue \\
Phenol Red & 7.5 & \(6.4-8.4\) & Red \\
Cresol Red & 8.2 & \(7.2-8.8\) & Yellow \\
Cresol Purple & 8.3 & \(7.4-9.0\) & Yellow & Purple \\
Thymol Blue & 8.9 & \(8.0-9.6\) & Yellow & Blue \\
Phenolphthalein & 9.4 & \(8.1-9.9\) & Colorless & Red \\
Thymolphthalein & 9.9 & Colorless & Blue \\
Alizarine Yellow & 11.2 & \(10.0-12.0\) & Colorless & Yellow \\
Nitramine & 11.9 & \(10.8-13.0\) & Colorless & Orange \\
Tropeoline O & 12 & \(11.0-13.0\) & Yellow & Orange \\
\hline
\end{tabular}

\section*{Appendix VI}

\section*{Formation Constants of Some Metal Complexes}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\log _{10} \beta_{1}\) & \(\log _{10} \beta_{2}\) & \(\log _{10} \beta_{3}\) & \(\log _{10} \beta_{4}\) & \(\log _{10} \beta_{5}\) & \(\log _{10} \beta_{6}\) \\
\hline Ammonia & \multicolumn{6}{|l|}{\[
\mathrm{NH}_{3}
\]} \\
\hline \(\mathrm{Ag}^{+}\) & 3.32 & 7.24 & & & & \\
\hline \(\mathrm{Au}^{+}\) & & \(\approx 27\) & & & & \\
\hline \(\mathrm{Au}^{3+}\) & & & & 30 & & \\
\hline \(\mathrm{Cd}^{2+}\) & 2.51 & 4.47 & 5.77 & 6.56 & 6.26 & 4.56 \\
\hline \(\mathrm{Co}^{2+}\) & 1.99 & 3.5 & 4.43 & 5.07 & 5.13 & 4.39 \\
\hline \(\mathrm{Co}^{3+}\) & 7.3 & 14.00 & 20.1 & 25.7 & 30.8 & 35.21 \\
\hline \(\mathrm{Cu}^{+}\) & 5.93 & 10.86 & & & & \\
\hline \(\mathrm{Cu}^{2+}\) & 3.99 & 7.33 & 10.06 & 12.03 & 11.43 & 8.9 \\
\hline \(\mathrm{Fe}^{2+}\) & 1.4 & 2.2 & ? & 3.7 & & \\
\hline \(\mathrm{Hg}^{2+}\) & 8.8 & 17.5 & 18.5 & 19.3 & & \\
\hline \(\mathrm{Mg}^{2+}\) & 0.23 & 0.08 & -0.34 & -1.04 & -1.99 & -3.29 \\
\hline \(\mathrm{Mn}^{2+}\) & 0.8 & 1.3 & ? & ? & ? & \(\approx 9\) \\
\hline \(\mathrm{Ni}^{2+}\) & 2.67 & 4.79 & 6.4 & 7.47 & 8.1 & 8.0 \\
\hline \(\mathrm{Tl}^{3+}\) & & & & \(\approx 17\) & & \\
\hline \(\mathrm{Zn}^{2+}\) & 2.18 & 4.43 & 6.74 & 8.700 & & \\
\hline
\end{tabular}
\begin{tabular}{|llllll|}
\hline \multicolumn{1}{l}{\(\mathrm{Bromide}^{l}\)} & Br & & & \\
\hline \(\mathrm{Ag}^{+}\) & 4.38 & 7.34 & 8.00 & 8.73 & \\
\(\mathrm{Au}^{+}\) & & 12.46 & & & \\
\(\mathrm{Au}^{3+}\) & & & & 31.5 & \\
\(\mathrm{Bi}^{3+}\) & 2.26 & 4.45 & 6.33 & 7.84 & 9.42 \\
\(\mathrm{Cd}^{2+}\) & 2.23 & 3.001 & 2.83 & 2.93 & 9.52 \\
\(\mathrm{Ce}^{3+}\) & 0.38 & & & & \\
\(\mathrm{Co}^{2+}\) & -2.30 & & & & \\
\(\mathrm{Cu}^{+}\) & & & & & \\
\(\mathrm{Cu}^{2+}\) & -0.03 & & & & \\
\(\mathrm{Fe}^{3+}\) & 0.55 & 0.82 & & & \\
\(\mathrm{Hg}^{2+}\) & 9.05 & 17.33 & 19.74 & 21.00 & \\
\(\mathrm{ln}^{3+}\) & 1.20 & 1.78 & 2.48 & 3.33 & \\
\(\mathrm{Ni}^{2+}\) & -0.12 & -3.24 & \(?\) & -8.12 & \\
\(\mathrm{~Pb}^{2+}\) & 2.23 & 3.00 & 2.83 & 2.93 & \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|l|l|l|l|}
\multicolumn{1}{c|}{\(\log _{10} \beta_{\mathbf{1}}\)} & \(\log _{10} \beta_{\mathbf{2}}\) & \(\log _{10} \beta_{\mathbf{3}}\) & \(\log _{10} \beta_{\mathbf{4}}\) & \(\log _{10} \beta_{\mathbf{5}}\) & \(\log _{10} \beta_{\mathbf{6}}\) \\
\(\mathrm{Pt}^{2+}\) & & & 20.5 & & \\
\(\mathrm{Sn}^{2+}\) & 0.73 & 1.14 & 1.35 & & & \\
\(\mathrm{Tl}^{+}\) & 0.95 & 1.01 & 0.6 & -0.2 & & \\
\(\mathrm{Tl}^{3+}\) & 9.7 & 16.6 & 21.2 & 23.9 & 25.5 & 26.2 \\
\(\mathrm{Zn}^{2+}\) & -0.8 & -2.2 & -2.9 & -2.5 & & \\
\hline
\end{tabular}
\begin{tabular}{|llllll|}
\hline Chloride & Cl & & & \\
\hline \(\mathrm{Ag}^{+}\) & 3.04 & 5.04 & 5.04 & 5.30 & \\
\(\mathrm{Au}^{+}\) & & 9.42 & & & \\
\(\mathrm{Au}^{3+}\) & & & & & \\
\(\mathrm{Bi}^{3+}\) & 2.43 & 4.7 & 5.0 & 5.6 & 6.1 \\
\(\mathrm{Cd}^{2+}\) & 2.05 & 2.60 & 2.4 & 2.9 & \\
\(\mathrm{Ce}^{3+}\) & 0.22 & & & & \\
\(\mathrm{Cr}^{3+}\) & 0.60 & -0.11 & & & \\
\(\mathrm{Cu}^{+}\) & & 5.35 & 5.63 & & \\
\(\mathrm{Cu}^{2+}\) & 0.07 & -0.57 & -2.1 & & \\
\(\mathrm{Fe}^{2+}\) & 0.36 & 0.401 & & & \\
\(\mathrm{Fe}^{3+}\) & 1.45 & 2.10 & 1.10 & -0.85 & \\
\(\mathrm{Hg}^{2+}\) & 6.74 & 13.22 & 14.07 & 15.07 & \\
\hline
\end{tabular}

\title{
Free eBook on Learning \& Development
}

By the Chief Learning Officer of McKinsey

Download Now

\begin{tabular}{|ll|l|l|l|l|l|}
\cline { 2 - 7 } & \(\log _{10} \boldsymbol{\beta}_{\mathbf{1}}\) & \(\log _{10} \boldsymbol{\beta}_{\mathbf{2}}\) & \(\log _{10} \boldsymbol{\beta}_{\mathbf{3}}\) & \(\log _{10} \boldsymbol{\beta}_{\mathbf{4}}\) & \(\log _{10} \boldsymbol{\beta}_{\mathbf{5}}\) & \(\log _{10} \boldsymbol{\beta}_{\mathbf{6}}\) \\
\hline \(\mathrm{In}^{3+}\) & 1.01 & 1.5 & 1.55 & 1.35 & & \\
\(\mathrm{~Pb}^{2+}\) & 1.62 & 2.44 & 2.04 & 1.01 & & \\
\(\mathrm{Pt}^{2+}\) & & 11.5 & 14.00 & 16.00 & & \\
\(\mathrm{Sn}^{2+}\) & 1.51 & 2.24 & 2.03 & 1.48 & & \\
\(\mathrm{Tl}^{+}\) & 0.52 & 0.09 & -0.8 & & & \\
\(\mathrm{Tl}^{3+}\) & 8.14 & 13.60 & 15.78 & 18.00 & 17.47 & \\
\(\mathrm{Zn}^{2+}\) & 0.43 & 0.61 & 0.53 & 0.20 & & \\
\hline
\end{tabular}

Cyanide CN-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{Ag}^{+}\) & & 19.85 & 20.55 & 19.42 & & \\
\hline \(\mathrm{Au}^{+}\) & & 38.3 & & & & \\
\hline \(\mathrm{Au}^{3+}\) & & & & \(\approx 56\) & & \\
\hline \(\mathrm{Cd}^{2+}\) & 5.18 & 9.60 & 13.92 & 17.11 & & \\
\hline \(\mathrm{Co}^{2+}\) & & & & & & 19.09 \\
\hline \(\mathrm{Co}^{3+}\) & & & & & & \(\approx 64\) \\
\hline \(\mathrm{Cu}^{+}\) & & 24.0 & 28.6 & 30.3 & & \\
\hline \(\mathrm{Fe}^{2+}\) & & & & & 15.7 & \(\approx 24\) \\
\hline \(\mathrm{Fe}^{3+}\) & & & & & & \(\approx 31\) \\
\hline \(\mathrm{Hg}^{2+}\) & 18.0 & 34.70 & 38.53 & 41.51 & & \\
\hline \(\mathrm{Ni}^{2+}\) & & & & 31.0 & 30.3 & \\
\hline T \({ }^{3+}\) & & & & \(\approx 35\) & & \\
\hline \(\mathrm{Zn}^{2+}\) & & & \(\approx 17\) & \(\approx 19\) & & \\
\hline
\end{tabular}
\begin{tabular}{lr|}
\cline { 2 - 2 } & \multicolumn{1}{c}{\(\boldsymbol{l o g}_{10} \boldsymbol{\beta}_{\mathbf{1}}\)} \\
\multicolumn{1}{c}{ DCYTA } & \\
\hline \(\mathrm{Al}^{3+}\) & 17.6 \\
\(\mathrm{Ba}^{2+}\) & 8. \\
\(\mathrm{Bi}^{3+}\) & 24.1 \\
\(\mathrm{Ca}^{2+}\) & 12.5 \\
\(\mathrm{Cd}^{2+}\) & 19.2 \\
\(\mathrm{Co}^{2+}\) & 18.9 \\
\(\mathrm{Cu}^{2+}\) & 21.3 \\
\(\mathrm{Fe}^{2+}\) & 18.2 \\
\(\mathrm{Fe}^{3+}\) & 29.3 \\
\(\mathrm{Hg}^{2+}\) & 24.3 \\
\(\mathrm{Mg}^{2+}\) & 10.3 \\
\(\mathrm{Mn}^{2+}\) & 16.8 \\
\(\mathrm{Ni}^{2+}\) & 19.4 \\
\(\mathrm{~Pb}^{2+}\) & 19.7 \\
\(\mathrm{Sr}^{2+}\) & 10.0 \\
\(\mathrm{Th}^{2+}\) & 23.2 \\
\(\mathrm{Zn}^{2+}\) & 18.7 \\
\hline
\end{tabular}

\begin{tabular}{|lr|}
\hline \(\mathrm{Ag}^{+}\) & \\
\(\mathrm{Al}^{2+}\) & 7.3 \\
\(\mathrm{Ba}^{2+}\) & 16.1 \\
\(\mathrm{Bi}^{3+}\) & 22.8 \\
\(\mathrm{Ca}^{2+}\) & 10.7 \\
\(\mathrm{Cd}^{2+}\) & 16.5 \\
\(\mathrm{Co}^{2+}\) & 16.3 \\
\(\mathrm{Cr}^{3+}\) & 23 \\
\(\mathrm{Cu}^{2+}\) & 18.8 \\
\(\mathrm{Fe}^{2+}\) & 14.4 \\
\(\mathrm{Fe}^{3+}\) & 25.1 \\
\(\mathrm{Hg}^{2+}\) & 21.8 \\
\(\mathrm{In}^{3+}\) & 24.95 \\
\(\mathrm{Mg}^{2+}\) & 8.7 \\
\(\mathrm{Mn}^{2+}\) & 14.0 \\
\(\mathrm{Ni}^{2+}\) & 18.6 \\
\(\mathrm{~Pb}^{2+}\) & 18.0 \\
\(\mathrm{Sn}^{2+}\) & 22.1 \\
\(\mathrm{Sr}^{2+}\) & 8.6 \\
\(\mathrm{Th}^{4+}\) & 23.2 \\
\(\mathrm{Tl}^{3+}\) & 21.3 \\
\(\mathrm{Zn}^{2+}\) & 16.5 \\
\hline
\end{tabular}

EGTA
\begin{tabular}{|lr|}
\hline \(\mathrm{Ba}^{2+}\) & 8.4 \\
\(\mathrm{Ca}^{2+}\) & 11.0 \\
\(\mathrm{Cd}^{2+}\) & 15.6 \\
\(\mathrm{Co}^{2+}\) & 12.3 \\
\(\mathrm{Cu}^{2+}\) & 17.0 \\
\(\mathrm{Hg}^{2+}\) & 23.2 \\
\(\mathrm{Mg}^{2+}\) & 5.2 \\
\(\mathrm{Mn}^{2+}\) & 11.5 \\
\(\mathrm{Ni}^{2+}\) & 12.0 \\
\(\mathrm{~Pb}^{2+}\) & 13.0 \\
\(\mathrm{Sr}^{2+}\) & 8.5 \\
\(\mathrm{Sn}^{2+}\) & 12.8 \\
\(\mathrm{Th}^{4+}\) & 23.2 \\
\(\mathrm{Tl}^{3+}\) & 21.3 \\
\(\mathrm{Zn}^{2+}\) & 16.5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\log _{10} \beta_{1}\) & \[
\log _{10} \beta_{2}
\] & \[
\log _{10} \beta_{3}
\] & \(\log _{10} \beta_{4}\) & \(\log _{10} \beta_{5}\) & \(\log _{10} \beta_{6}\) \\
\hline \multicolumn{7}{|l|}{Ethylenediamine \(\mathbf{H}_{\mathbf{2}} \mathbf{N C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{N H}_{\mathbf{2}}\)} \\
\hline \(\mathrm{Ag}^{+}\) & 4.701 & 7.70 & & & & \\
\hline \(\mathrm{Cd}^{2+}\) & 5.47 & 10.09 & 12.09 & & & \\
\hline \(\mathrm{Co}^{2+}\) & 5.91 & 10.64 & 13.94 & & & \\
\hline \(\mathrm{Co}^{3+}\) & 18.7 & 34.9 & 48.69 & & & \\
\hline \(\mathrm{Cr}^{2+}\) & 5.15 & 9.19 & & & & \\
\hline \(\mathrm{Cu}^{+}\) & & 10.8 & & & & \\
\hline \(\mathrm{Cu}^{2+}\) & 10.67 & 20.00 & 21.01 & & & \\
\hline \(\mathrm{Fe}^{2+}\) & 4.34 & 7.65 & 9.70 & & & \\
\hline \(\mathrm{Hg}^{2+}\) & 14.3 & 23.3 & & & & \\
\hline \(\mathrm{Mn}^{2+}\) & 2.73 & 4.79 & 5.67 & & & \\
\hline \(\mathrm{Ni}^{2+}\) & 7.52 & 13.84 & 18.33 & & & \\
\hline \(\mathrm{Zn}^{2+}\) & 5.77 & 10.83 & 14.11 & & & \\
\hline Fluoride & F & & & & & \\
\hline \(\mathrm{Ag}^{+}\) & 0.36 & & & & & \\
\hline \(\mathrm{Al3}^{+}\) & 7.10 & 11.98 & 15.83 & 18.53 & 20.20 & 20.67 \\
\hline \(\mathrm{Ca}^{2+}\) & \(\approx 1\) & & & & & \\
\hline \(\mathrm{Cd}^{2+}\) & 0.46 & 0.53 & & & & \\
\hline \(\mathrm{Ce}^{3+}\) & 3.99 & & & & & \\
\hline \(\mathrm{Cr}^{3+}\) & 5.201 & 8.54 & 11.02 & & & \\
\hline \(\mathrm{Cu}^{2+}\) & 1.23 & & & & & \\
\hline \(\mathrm{Fe}^{3+}\) & 6.04 & 10.74 & 13.74 & 15.74 & 16.10 & \(\approx 16\) \\
\hline \(\mathrm{Hg}^{2+}\) & 1.56 & & & & & \\
\hline \(\mathrm{In}^{3+}\) & 4.63 & 7.41 & 10.23 & & & \\
\hline \(\mathrm{Mg}^{2+}\) & 1.82 & & & & & \\
\hline \(\mathrm{Mn}^{2+}\) & 5.76 & & & & & \\
\hline \(\mathrm{Sc}^{3+}\) & 7.08 & 12.88 & 17.33 & 20.81 & & \\
\hline \(\mathrm{Sn}^{2+}\) & 4.85 & ? & \(\approx 10\) & & & \\
\hline Th \({ }^{4+}\) & 7.65 & 13.46 & 17.97 & & & \\
\hline \(\mathrm{Tl}^{+}\) & 0.10 & & & & & \\
\hline \(\mathrm{Zn}^{2+}\) & 1.26 & & & & & \\
\hline \(\mathrm{Zr}^{4+}\) & 9.801 & 17.37 & 23.45 & & & \\
\hline Hydrazine & \(\mathrm{N}_{2} \mathrm{H}_{4}\) & & & & & \\
\hline \(\mathrm{Cd}^{2+}\) & 2.25 & 2.40 & 2.78 & 3.89 & & \\
\hline \(\mathrm{Ni}^{2+}\) & 2.76 & 5.20 & 7.35 & 9.20 & 10.75 & 11.99 \\
\hline \(\mathrm{Zn}^{2+}\) & 3.40 & 3.70 & 3.78 & 3.88 & & \\
\hline Hydroxide & \(\mathrm{OH}^{-}\) & & & & & \\
\hline \(\mathrm{Ag}^{+}\) & 2.301 & 4.0 & 5.2 & & & \\
\hline \(\mathrm{Al3}^{+}\) & 9.04 & ? & ? & 33.0 & & \\
\hline \(\mathrm{As}^{3+}\left(\mathrm{AsO}^{+}\right)\) & 14.33 & 18.73 & 20.60 & 21.2 & & \\
\hline \(\mathrm{Ba}^{2+}\) & 0.85 & & & & & \\
\hline \(\mathrm{Bi}^{3+}\) & 12.4 & 15.8 & ? & 35.2 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\log _{10} \beta_{1}\) & \(\log _{10} \beta_{2}\) & \(\log _{10} \beta_{3}\) & \(\log _{10} \beta_{4}\) & \(\log _{10} \beta_{5}\) & \(\log _{10} \beta_{6}\) \\
\hline \(\mathrm{Ca}^{2+}\) & 1.46 & & & & & \\
\hline \(\mathrm{Cd}^{2+}\) & 4.17 & 8.33 & 9.02 & 8.62 & & \\
\hline \(\mathrm{Ce}^{3+}\) & 4.3 & & & & & \\
\hline \(\mathrm{Ce}^{4+}\) & 13.28 & 27.06 & & & & \\
\hline \(\mathrm{Co}^{2+}\) & 4.4 & 4.6 & 10.5 & & & \\
\hline \(\mathrm{Cr}^{3+}\) & 10.1 & 17.8 & & 29.9 & & \\
\hline \(\mathrm{Cu}^{2+}\) & 7.0 & 13.68 & 17.0 & 18.5 & & \\
\hline \(\mathrm{Fe}^{2+}\) & 5.56 & 9.77 & 9.67 & 8.56 & & \\
\hline \(\mathrm{Fe}^{3+}\) & 11.87 & 21.17 & 30.67 & & & \\
\hline \(\mathrm{Hg}^{2+}\) & 10.30 & 21.70 & 21.20 & & & \\
\hline \(\mathrm{In}^{3+}\) & 9.9 & 19.8 & ? & 28.7 & & \\
\hline Li+ & 0.17 & & & & & \\
\hline \(\mathrm{Mg}^{2+}\) & 2.58 & & & & & \\
\hline \(\mathrm{Mn}^{2+}\) & 3.9 & & 8.3 & & & \\
\hline \(\mathrm{Ni}^{2+}\) & 4.97 & 8.55 & 11.33 & & & \\
\hline \(\mathrm{Pb}^{2+}\) & 6.9 & 10.8 & 13.3 & & & \\
\hline \(\mathrm{Sn}^{2+}\) & 11.86 & 20.64 & 25.13 & & & \\
\hline Th \({ }^{4+}\) & 10.0 & 21.2 & 32.0 & ? & 8.7 & 38.7 \\
\hline Tl+ & 0.82 & & & & & \\
\hline T \({ }^{3+}\) & 12.86 & 25.37 & & & & \\
\hline \(\mathrm{Zn}^{2+}\) & 4.4 & 11.3 & 13.14 & 14.66 & & \\
\hline Zr \({ }^{4+}\) & 14.32 & 28.26 & 41.91 & 55.27 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{Al}^{3+}\) & \(\approx 11\) & \\
\hline \(\mathrm{Ba}^{2+}\) & 4.8 & \\
\hline \(\mathrm{Ca}^{2+}\) & 7.60 & 11.61 \\
\hline \(\mathrm{Cd}^{2+}\) & 9.80 & 15.2 \\
\hline \(\mathrm{Co}^{2+}\) & 10.38 & 14.5 \\
\hline \(\mathrm{Cr}^{3+}\) & \(\approx 11\) & \\
\hline \(\mathrm{Cu}^{2+}\) & 13.1 & \\
\hline \(\mathrm{Fe}^{2+}\) & 8.8 & \\
\hline \(\mathrm{Fe}^{3+}\) & 15.87 & 24.32 \\
\hline \(\mathrm{Hg}^{2+}\) & 12.7 & \\
\hline \(\mathrm{In}^{3+}\) & \(\approx 15\) & \\
\hline \(\mathrm{Mg}^{2+}\) & 5.36 & 10.2 \\
\hline \(\mathrm{Mn}^{2+}\) & 8.60 & 11.1 \\
\hline \(\mathrm{Ni}^{2+}\) & 11.26 & 16.0 \\
\hline \(\mathrm{Pb}^{2+}\) & 11.8 & \\
\hline \(\mathrm{Sr}^{2+}\) & 6.73 & \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|l|l|l|l|}
\multicolumn{1}{c|}{\(\log _{10} \beta_{\mathbf{1}}\)} & \(\log _{10} \beta_{\mathbf{2}}\) & \(\log _{10} \beta_{\mathbf{3}}\) & \(\log _{10} \beta_{\mathbf{4}}\) & \(\log _{10} \beta_{5}\) & \(\log _{10} \beta_{6}\) \\
\(\mathrm{Th}^{4+}\) & 12.4 \\
\(\mathrm{Zn}^{2+}\) & 10.45 & 13.45 & & \\
\hline
\end{tabular}

Oxalate \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\)
\begin{tabular}{|llll|}
\hline \(\mathrm{Ag}^{+}\) & 2.41 & & \\
\(\mathrm{Al}^{3+}\) & 7.3 & \(\approx 13\) & 16.3 \\
\(\mathrm{Ba}^{2+}\) & 2.3 & & \\
\(\mathrm{Ca}^{2+}\) & \(\approx 3\) & & \\
\(\mathrm{Cd}^{2+}\) & 4.00 & 5.77 & \\
\(\mathrm{Ce}^{3+}\) & 6.52 & 10.48 & 11.30 \\
\(\mathrm{Co}^{2+}\) & 4.7 & 6.7 & 9.7 \\
\(\mathrm{Cu}^{2+}\) & 6.7 & 10.3 & \\
\(\mathrm{Fe}^{2+}\) & 2.9 & 4.52 & 5.22 \\
\(\mathrm{Fe}^{3+}\) & 9.4 & 16.2 & 20.2 \\
\(\mathrm{Mg}^{2+}\) & 2.55 & 4.38 & \\
\(\mathrm{Mn}^{2+}\) & 3.82 & 5.25 & \\
\(\mathrm{Mn}^{3+}\) & 9.98 & 16.57 & 19.42 \\
\(\mathrm{Ni}^{2+}\) & 5.3 & 6.51 & 8.5 \\
\(\mathrm{~Pb}^{2+}\) & & 6.54 & \\
\(\mathrm{Sr}^{2+}\) & 2.54 & & \\
\(\mathrm{Tl}^{+}\) & 2.03 & &
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\log _{10} \beta_{1}\) & \(\log _{10} \beta_{2}\) & \(\log _{10} \beta_{3}\) & \(\log _{10} \beta_{4}\) & \(\log _{10} \beta_{5}\) & \(\log _{10} \beta_{6}\) \\
\hline \(\mathrm{Zn}^{2+}\) & 5.00 & 7.36 & \multicolumn{2}{|l|}{8.15} & & \\
\hline Tartrate & \multicolumn{2}{|l|}{\(\left[(\mathrm{CHOH})_{2}(\mathrm{COO})\right]_{2}{ }^{2-}\)} & & & & \\
\hline \(\mathrm{Ba}^{2+}\) & 2.54 & & & & & \\
\hline \(\mathrm{Ca}^{2+}\) & 2.98 & & & & & \\
\hline \(\mathrm{Cd}^{2+}\) & 2.8 & & & & & \\
\hline \(\mathrm{Co}^{2+}\) & 2.1 & & & & & \\
\hline \(\mathrm{Cu}^{2+}\) & 3.1 & 5.11 & 4.8 & 6.3 & & \\
\hline \(\mathrm{Fe}^{2+}\) & 4.8 & & & & & \\
\hline \(\mathrm{Fe}^{3+}\) & 7.49 & & & & & \\
\hline \(\mathrm{Mg}^{2+}\) & 1.36 & & & & & \\
\hline \(\mathrm{Pb}^{2+}\) & 3.78 & & & & & \\
\hline \(\mathrm{Sr}^{2+}\) & 1.59 & & & & & \\
\hline \(\mathrm{Zn}^{2+}\) & 2.68 & & & & & \\
\hline Thiocyanate & SCN- & & & & & \\
\hline \(\mathrm{Ag}^{+}\) & 4.75 & 8.23 & 9.45 & 9.67 & & \\
\hline \(\mathrm{Au}^{+}\) & & \(\approx 24\) & & & & \\
\hline \(\mathrm{Au}^{3+}\) & & & & 42.00 & 42.00 & 42.04 \\
\hline \(\mathrm{Bi}^{3+}\) & 1.15 & 2.26 & & 3.41 & & 4.23 \\
\hline \(\mathrm{Cd}^{2+}\) & 1.39 & 1.98 & 2.58 & 3.6 & & \\
\hline \(\mathrm{Co}^{2+}\) & -0.04 & -0.7 & 0 & 3.00 & & \\
\hline \(\mathrm{Cr}^{3+}\) & 1.87 & 2.98 & & & & \\
\hline \(\mathrm{Cu}^{\text {+ }}\) & 12.11 & 5.18 & & & & \\
\hline \(\mathrm{Cu}^{2+}\) & 2.30 & 3.65 & 5.19 & 6.52 & & \\
\hline \(\mathrm{Fe}^{2+}\) & 0.95 & 0.07 & & & & \\
\hline \(\mathrm{Fe}^{3+}\) & 3.01 & 4.66 & 4.63 & 4.23 & 3.23 & \\
\hline \(\mathrm{Hg}^{2+}\) & & 17.47 & 19.15 & 19.77 & & \\
\hline \(\mathrm{In}^{3+}\) & 2.58 & 3.60 & 4.63 & & & \\
\hline \(\mathrm{Ni}^{2+}\) & 1.18 & 1.64 & 1.81 & & & \\
\hline \(\mathrm{Pb}^{2+}\) & 1.09 & 2.52 & & 0.85 & & -0.30 \\
\hline Th \({ }^{4+}\) & 1.08 & & 1.78 & & & \\
\hline \(\mathrm{TI}^{+}\) & 0.8 & 0.65 & 0.2 & 0 & & \\
\hline \(\mathrm{Zn}^{2+}\) & 1.7 & 2.1 & 2.2 & 3.7 & & \\
\hline
\end{tabular}

\section*{Appendix VII}

\section*{Formation Constants of Some Metallochrome Indicators with Their \(\mathrm{pK}_{\mathrm{a}} \mathrm{s}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & CAL & CMG & EBT & HQS & MPT & MUR & NIN & PAN & PAR & PYV & QIN & XYO \\
\hline & \(\mathrm{pK}_{\mathrm{a}}\) & pK \({ }_{\text {a }}\) & \(\mathrm{pK}_{\mathrm{a}}\) & pKa & \(\mathrm{pK}_{\mathrm{a}}\) & pK \({ }_{\text {a }}\) & \(\mathrm{pK}_{\mathrm{a}}\) & \(\mathrm{pK}_{\mathrm{a}}\) & pK \({ }_{\text {a }}\) & pK \({ }_{\text {a }}\) & pK \({ }_{\text {a }}\) & \(\mathrm{pK}_{\mathrm{a}}\) \\
\hline Hin & 7.36 & & & 1.3 & 2.2 & 0 & 11.2 & 1.9 & 2.30 & 0.3 & 5.13 & -1.74 \\
\hline \(\mathrm{H}_{2} \mathrm{In}\) & 13.5 & 8.14 & 6.3 & 4.15 & 2.9 & 9.20 & & 12.3 & 6.95 & 7.82 & 9.89 & -1.09 \\
\hline \(\mathrm{H}_{3} \mathrm{In}\) & & 12.35 & 11.5 & 8.74 & 7.0 & 10.50 & & & 12.4 & 9.76 & & 2.58 \\
\hline \(\mathrm{H}_{4} \mathrm{In}\) & & & & & 7.8 & & & & & 12.50 & & 3.23 \\
\hline \(\mathrm{H}_{5} \mathrm{In}\) & & & & & 11.4 & & & & & & & 6.37 \\
\hline \(\mathrm{H}_{6} \mathrm{In}\) & & & & & 12.01 & & & & & & & 10.46 \\
\hline \(\mathbf{H}_{7} \mathrm{In}\) & & & & & & & & & & & & 12.28 \\
\hline & \(\mathrm{pK}_{\mathrm{f}}\) & \(\mathrm{pK}_{\text {f }}\) & \(\mathrm{pK}_{\text {f }}\) & \(\mathrm{pK}_{\mathrm{f}}\) & \(\mathrm{pK}_{\mathrm{f}}\) & \(\mathrm{pK}_{\mathrm{f}}\) & \(\mathrm{pK}_{\mathrm{f}}\) & pK & pK \({ }_{\text {f }}\) & \(\mathrm{pK}_{\text {f }}\) & \(\mathrm{pK}_{\text {f }}\) & \(\mathrm{pK}_{\mathrm{f}}\) \\
\hline \(\mathbf{A l}^{3+}\) & & & & & & & & & & \[
\begin{aligned}
& 19.13 \\
& \mathrm{Al}_{2} \mathrm{In} \\
& 4.95
\end{aligned}
\] & & \\
\hline \(\mathbf{B a}^{2+}\) & & & & & 6.2 & & & & & & & \\
\hline \(\mathrm{Bi}^{3+}\) & & & & & & & & & & \[
\begin{aligned}
& 27.07 \\
& \mathrm{Bi}_{2} \operatorname{In} 5.25
\end{aligned}
\] & & 5.52 \\
\hline \(\mathrm{Ca}^{2+}\) & 5.58 & 6.05 & 5.4 & & 7.8 & 5.0 & & & & & & \\
\hline \(\mathrm{Cd}^{2+}\) & & & & \[
\begin{aligned}
& 7.6 \mathrm{CdIn}_{2} \\
& 5.9
\end{aligned}
\] & & & & & & \[
\begin{aligned}
& 8.13 \\
& \mathrm{CdHIn} \\
& 5.86 \\
& \mathrm{Cd}_{2} \text { In } 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.2 \mathrm{CdIn}_{2} \\
& 6.2
\end{aligned}
\] & \\
\hline \(\mathrm{Co}^{2+}\) & & & & \[
\begin{aligned}
& 9.2 \mathrm{CoIn}_{2} \\
& 7.6
\end{aligned}
\] & & & & > 12 & CoHIn \(>12\) & \begin{tabular}{l}
\[
9.01
\] \\
CoHIn
\[
6.53
\]
\end{tabular} & \[
\begin{aligned}
& 9.1 \mathrm{CoIn}_{2} \\
& 8.1
\end{aligned}
\] & \\
\hline \(\mathrm{Cu}^{\text {+ }}\) & 21 & & & \[
\begin{aligned}
& 12.5 \\
& \mathrm{CuIn}_{2} \\
& 10.6
\end{aligned}
\] & & 17.9 & & 16 & 10.3 & \begin{tabular}{l}
16.47 \\
CuHIn \\
11.18
\end{tabular} & \begin{tabular}{l}
12.2 \\
\(\mathrm{CuIn}_{2}\)
\[
11.2
\]
\end{tabular} & \\
\hline \(\mathrm{Fe}^{2+}\) & & & & \[
\begin{aligned}
& 8.4 \mathrm{FeIn}_{2} \\
& 6.7
\end{aligned}
\] & & & & & & & \[
\begin{aligned}
& \text { 8.0 } \mathrm{FeIn}_{2} \\
& 7.0
\end{aligned}
\] & 5.70 \\
\hline \(\mathrm{Fe}^{3+}\) & & & & 12.0 & & & & & & & \[
\begin{aligned}
& 12.3 \mathrm{FeIn}_{2} \\
& 11.3
\end{aligned}
\] & \\
\hline \(\mathbf{M g}{ }^{\mathbf{2 +}}\) & 7.64 & 8.05 & 7.0 & & 8.9 & & \[
\begin{aligned}
& 5.80 \\
& \mathrm{MgIn}_{2} \\
& 3.80
\end{aligned}
\] & & & \begin{tabular}{l}
4.42 \\
MgHIn \\
3.66 \\
\(\mathrm{Mg}_{2} \mathrm{In}\) \\
4.6
\end{tabular} & & \\
\hline \(\mathbf{M n}{ }^{\text {2+ }}\) & & & & \[
\begin{aligned}
& 6.6 \mathrm{MnIn}_{2} \\
& 4.9
\end{aligned}
\] & & & \begin{tabular}{l}
7.10 \\
\(\mathrm{MnIn}_{2}\)
\[
5.50
\]
\end{tabular} & \begin{tabular}{l}
8.5 \\
\(\mathrm{MnIn}_{2}\) \\
7.9
\end{tabular} & \[
\begin{aligned}
& \text { MnHIn } 9.7 \\
& \mathrm{Mn}(\mathrm{HIn})_{2} \\
& 9.2
\end{aligned}
\] & \begin{tabular}{l}
7.13 \\
MnHIn \\
5.36
\end{tabular} & \[
\begin{aligned}
& 6.8 \mathrm{MnIn}_{2} \\
& 5.8
\end{aligned}
\] & \\
\hline \(\mathrm{Ni}^{2+}\) & & & & \[
\begin{aligned}
& 10.0 \mathrm{NiIn}_{2} \\
& 8.1
\end{aligned}
\] & & 11.3 & \[
\begin{aligned}
& 10.70 \\
& \mathrm{NiIn}_{2} 9.20 \\
& \mathrm{NiIn}_{3} 5.9
\end{aligned}
\] & \[
\begin{aligned}
& 12.7 \mathrm{NiIn}_{2} \\
& 12.6
\end{aligned}
\] & \[
\begin{aligned}
& \text { NiHIn } 13.2 \\
& \mathrm{Ni}(\mathrm{HIn})_{2} \\
& 12.8
\end{aligned}
\] & \[
\begin{aligned}
& 9.35 \\
& \mathrm{NiHIn} \\
& 6.85 \mathrm{Ni}_{2} \mathrm{In} \\
& 4.38
\end{aligned}
\] & \[
\begin{aligned}
& \text { 9.9 } \mathrm{NiIn}_{2} \\
& 8.8
\end{aligned}
\] & \\
\hline \(\mathbf{P b}^{2+}\) & & & & & & & & & & \[
\begin{aligned}
& 13.25 \\
& \text { PbHIn } \\
& 10.19
\end{aligned}
\] & \[
\begin{aligned}
& 10.61 \\
& \mathrm{PbIn}_{2} \\
& 8.09
\end{aligned}
\] & \\
\hline \(\mathrm{Sc}^{3+}\) & & & & & & & & & 4.8 & & & \\
\hline \(\mathrm{Tl}^{3+}\) & & & & & & & & 2.29 & 4.23 & & & 4.90 \\
\hline \(\mathbf{Z n}^{\mathbf{2 +}}\) & 12.5 & & 13.5 & \[
\begin{aligned}
& 8.4 \mathrm{ZnIn}_{2} \\
& 6.7
\end{aligned}
\] & 15.1 & & \[
\begin{aligned}
& 8.7 \mathrm{ZnIn}_{2} \\
& 7.00
\end{aligned}
\] & \[
\begin{aligned}
& 11.2 \\
& \mathrm{ZnIn}_{2} \\
& 10.5
\end{aligned}
\] & \[
\begin{aligned}
& 10.41 \\
& \mathrm{ZnHIn} 7.21 \\
& \mathrm{Zn}_{2} \operatorname{In} 6.21
\end{aligned}
\] & \[
\begin{aligned}
& 10.41 \\
& \mathrm{ZnHIn} \\
& 7.21 \\
& \mathrm{Zn}_{2} \mathrm{In} \\
& 6.21
\end{aligned}
\] & \[
\begin{aligned}
& 9.96 \\
& \mathrm{ZnIn}_{2} \\
& 8.90
\end{aligned}
\] & 6.15 \\
\hline
\end{tabular}

CAL \(=\) Calcon, \(\mathrm{CMG}=\) Calmagite, \(\mathrm{EBT}=\) Eriochrome Black T, HQS \(=8\)-hydroxy-5-quinolinesulfonic acid, MPT
\(=\) Metalphthalein, MUR = Murexide, NIN = 2-nitroso-1-naphthol, PAN = 1-(2-pyridylazo)-2-naphthol, PAR = 4-(2-pyridylazo)resorcinol, PYV = Pyrocatechol violet, \(\mathrm{QIN}=8\)-quinolinol, \(\mathrm{XYO}=\) Xylenol orange

\section*{Appendix VII}
pK \({ }_{\text {sp }}\) Constants for Some Sparingly Soluble Substances


\section*{Appendix VIII}

\section*{Glossary of Maple Terms and Operations}
\begin{tabular}{ll} 
Command & Page \(^{242}\) \\
\(:=\) & 18,20
\end{tabular}

\section*{Comment}
\(\mathrm{x}:=2\) assigns x the value of 2 . Until x is unassigned or the restart command is used, every time \(x\) is entered into the worksheet, it will be replaced with the value 2 . This is not to be confused with the equal (=) symbol. While \(x:=x+2\) is possible; \(\mathrm{x}=\mathrm{x}+2\) is not.

These braces delineate a set of expressions, solutions, numbers or instructions. In a set, each element is unique (no repetitions) and the order of elements is not stored. One might solve two expressions for two variables with solve(\{expr1, \(\operatorname{expr} 2\},\{x, y\})\). The second set of braces yields two independent terms, one for x and the other for \(y\). Using square brackets \([x, y]\), solve would produce a single, indivisible term for x and y.

19, 29, 181 These symbols enclose lists of numbers, variables, expressions or sets. Their order is preserved and replicates are allowed. When used inside commands like plot, if a list of expressions (to be plotted) is followed by a list of line colors, the order of line colors follows the order of the expressions. This is not the case when options are entered as sets.

These brackets also create subscripts. See Subscripting below.

One of two characters required for separating or terminating statements in the Worksheet Mode. This causes Maple to execute that statement (command) without providing its output. See Semicolon below.
;
\%

One of two required characters for terminating a command in the Worksheet Mode. This causes Maple to execute that command with output. \(c f\). Colon above.
The ditto or nullary operator reevaluates the last expression computed (or defined). It allows an operation to be performed on the most recent output without having to reenter that output. \(\% \%\) reevaluates the second most recent output; \(\% \frac{\%}{\circ}\) third most recent.

Be advised that most recent pertains to time and not space. And so, if one were to scroll several command lines up a worksheet and enter sqrt (\%) ; , the square root operation would be applied not to the output immediately above this command, but rather to the output most recently generated, i.e. at the bottom of the worksheet.

Finally, there are "level" issues that complicate the use of this operator. Reference to the Maple Help menu is recommended.

52, 64, Part II, Enclosing input between single quotation marks can (but not always) protect that input from being evaluated. That is, it is treated as an unassigned name. It allows its output without the quotation marks. For example \(\mathrm{x}:=2\) : SQRT['x']:=sqrt(x); would yield \(S Q R T_{x}:=\sqrt{ }\). Without the protection, \(S Q R T_{2}:=\) \(\sqrt{ }\). "" offers a defacto protection by disguising the string with quotation marks; this would produce \(S Q R T_{{ }_{n x}:}:=\sqrt{2}\).

The single quotation marks are useful for adding an unassigned name to an output. Continuing with the example above, 'answer'= sqrt(x); would return answer \(=\sqrt{ } 2\). The single quotation marks are used also to unassign a previously assigned name. (see Unassign below).
algsubs

Apply Globally

Apply to Session
58

Assignment operator \(=\mathrm{WZ} \quad 18,20\)
algsubs \((x=y\), exp) replaces \(y\) with \(x\) in an algebraic expression, exp. So if \(\exp\) is \(\mathrm{y}+2\) and \(\mathrm{EXP}:=\) algsubs \((x=y, e x p)\), then EXP will become \(x+2\).

One of two options (buttons at bottom of the screen) on each page of the Preferences. This allows the user to direct changes to every worksheet opened or yet to be opened (Globally). The other option is [Apply to Session].

One of two options (button at bottom of the screen) on each page of Preferences. This allows the user to direct changes only to the currently open worksheet. The other option is [Apply Globally].
\(x:=2\) assigns x the value of 2 . Until x is unassigned or the restart command is used, every time x is entered into the worksheet, it will be replaced with the value 2 . This is not to be confused with the equal (=) symbol. While \(\mathrm{x}:=\mathrm{x}+2\) is possible; \(\mathrm{x}=\) \(x+2\) is not.

Do you like cars? Would you like to be a part of a successful brand? We will appreciate and reward both your enthusiasm and talent. Send us your CV. You will be surprised where it can take you.

Send us your CV on www.employerforlife.com

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{axes}} & \multirow[t]{2}{*}{26, 132} & One of several options for plotting, axes = boxed, normal, frame or none. If expr is the expression to be plotted, then plot (expr, axes = boxed) might be used. Using axes = normal is the equivalent of omitting this option. \\
\hline & & & Right (or control) clicking on the plot and accessing the plot menu provides a simple way to effect this and other plot options. \\
\hline Braces & (\} & 43, 50 & These delineate a set of expressions, solutions, numbers or instructions. In a set, each element is unique (no repetitions) and the order of elements is not stored. One might solve two expressions for two variables with solve (\{expr1, expr2\}, \{x,y\}). The second set of braces yields two independent terms, one for x and the other for \(y\). Using square brackets \([x, y]\), solve would produce a single, indivisible term for x and y . \\
\hline collect & & 71 & collect (expr, term) This collects all of the terms in the polynomial, expr according to the power to which the named term is raised. For example if expr is \(b x+\mathrm{ax}^{2}+\mathrm{cx}\), then collect (expr, x ) ; or collect (bx \(\left.+a x^{2}+c x, x\right)\) would return \(b x+a x^{2}+c x\). One can right (or control) click on the \(b x+a x^{2}+c x\) output to open a menu from which collect can be chosen. Within that menu is an-other option to collect the terms by a, b, c, or x . \\
\hline Colon & & 18 & One of two characters required for separating or terminating statements in the Worksheet Mode. This causes Maple to execute that statement (command) without providing its output. See Semicolon below. \\
\hline
\end{tabular}

One of several options for plotting. This dictates the color of any expression to be plotted. Without this option, default colors are provided. There are dozens of color choices, many with obvious names: green, red, blue; there are more esoteric names that require quotation marks like "Lime," "Maroon," and "HotPink." All color names are case-sensitive. When multiple colors are required, they should be listed in square brackets to correlate their order with the order of the expressions being plotted. plot ([expr1, expr2], color =[black,"Fuchsia"]);

Using the color option in plot 3 d paints the entire surface the specified color and overrides Maple's default which paints the surface in a gradient of colors to enhance the curvature of the surface. The color option is particularly useful in 3-D plotting when multiple expressions are plotted and they are to be articulated with multiple colors, in square brackets, of course. One of severaloptionsfor contour plotting. coloring \(=[x, y]\) dictates the range of the " \(z\) axis" in the contour plot. The lowest value is articulated by lines of color x and the maximum by lines of color y , where \(x\) and \(y\) are colors as described in color, above.

Used to create a contour plot of a three dimensional function or expression in two dimensions. (It might be necessary to call it from Maple's plot package using with(plots, contourplot); before using it for the first time.) This command requires an expression (or list of expressions in square brackets) followed by a comma, then the identity and range for each of the two axes separated with a comma. (cf. plot \(3 d\) ) If options are listed, they follow the axis ranges. For example, a contour plot of \(\sin \left(x^{*} y\right)\) might be created with contourplot \(\left(\sin \left(x^{*} y\right), x=-\right.\) 2. . \(2, y=-2\). 2, option , option \(_{2} \ldots\) ) ; Options like coloring, contours and grid are described elsewhere in this Appendix.

Contours \({ }^{243}\)
diff \({ }^{244}\)

Digits

139, Part II, 121 This operator differentiates a function or expression in terms of any one of its variables. So if expr is \(x^{2}+2 y+z=0\), then diff (expr, \(x\) ) ; yields \(2 x\). This operator can be accessed by right (or control) clicking on the \(x^{2}+2 y+z=0\) output. This will open a menu from which Differentiate can be chosen. Within that menu is another option to differentiate in terms of \(\mathrm{x}, \mathrm{y}\) or z . Digits: \(=n\) where \(n\) is an integer \(>0\) sets the number of digits Maple uses in numerical calculations. This can also be set in the Precision tab of the Preferences window by checking \(\nabla\) Round calculations to [ n ] significant figures. Digits \(:=\mathrm{n}\) will not override the screen display setting. That too can be set in the Precision tab described above.


Display tab do

Document mode

One of six tabs found within Preferences. Here several default settings can be reset. All worksheets can be made to open with and use Maple Notation or 2-D Math Notation for input or output. One can also set Maple to show plots (Plot display) in line with output or as a separate window.

Precedes a sequence of statements (instructions) to be carried out more than once. It is not followed by a colon or semicolon, but rather with od or end or end do at the end of the sequence of command lines. The od or end or end do must be followed by : (for no output display) or ; to display the output. Each command within the sequence is followed with a colon. (A semicolon following commands between do and end does not yield an output.) It is only the semicolon following end or od or end do that produces an output display.

The do command can be preceded with a for clause in order to define how many times the sequence is executed. Alternatively, a while clause (a Boolean expression) can be used to establish the condition at which the execution of the sequence will terminate. An alternate to the Worksheet mode (envi-ronment). Unless it is reset in Interface tab in Preferences, this is the default operating mode. In the document mode, the work area is a blank page, where input prompts ( \(>\) ) are replaced with a blinking, slanted cursor. The input operations are different because this mode uses Math input (see below). As in the Worksheet mode, a right (or Control) click on the output from a command line opens a menu of operations that can be performed on this expression. They include Differentiate, Integrate, Simplify and Solve.
done168
end180
eval57

The done command (synonyms with quit and stop) terminates the Command-Line Maple session and returns the user to the shell from which Maple was started. This does not quit Maple. This command might be disabled, and its use will cause a "Warning, done/ quit/stop disabled. Please use File->Close" output.

This is the terminal statement that follows the sequence of commands after the do command. It can be replaced with od or end do. A colon for suppressing output or semicolon for displaying output must follow end. This operator allows the evaluation of an ex-pression, say expr, at any point where its parameters are defined. For example if expr is defined as \(\mathrm{x}^{2}+\) \(y^{2}\), then eval (expr, \(\left.[x=3, \quad y=4]\right)\); or eval ( \(x^{\wedge} 2+y^{\wedge} 2, \quad[x=3, \quad y=4]\) ); yields 25 , and eval \(\left(x^{\wedge} 2+y^{\wedge} 2,=3\right)\); yields \(9+y^{2}\). By right (or control) clicking on the output \(x^{2}+y^{2}\) a menu from which Evaluate at a point can be selected. This will contain a submenu for choosing the desired value of \(x\) and \(y\).

This operator can produce an ambiguous output. For example eval(sqrt(2)); yields \(\sqrt{ } 2\), and eval (log[10] (2)); yields \(\left.{ }^{\ln (2)}\right|_{\ln (10)}\), legitimate but not useful outputs. For an unambiguous numeric output, evalf is recommended. However, one can also produce approximated numeric values by right (or control) clicking on the output and selecting Approximate from the menu that opens. Within that menu, the number of decimalplaces used to approximate the output can be chosen. This does not affect the number of places used to display the approximated output. For that see Numeric Formatting.
evalf 57

This command calls the math coprocessor and uses floating point arithmetic to provide a numerical calculation of an expression. cf. eval above. But where eval can have an algebraic output, evalf must be a purely numeric output. The number of decimal places used in the floating point approximation can be set in this command by enclosing that number in square brackets after the floating point evaluation command. For example evalf [5] (sqrt (2)) ; returns 1.414 while evalf[2] (sqrt(2)); returns 1.400.

This returns the factors multivariate polynomial expression with integer, rational, (complex) numeric, or algebraic number coefficients. By right (or control) clicking on the output of an expression, a menu will appear from which Factor can be selected. This will execute the factor operation as factor (expr) where expr is the assigned polynomial. factor ( \(x^{\wedge} 2-1\) ) ; returns \((x-1)(x+1)\).


MAERSK


An optional clause that precedes the do com-mand. It defines how many times the sequence is executed. It does this by describing a counter, something like i. It can set the initial value of the counter with a from option (see below); it can set the increment size for the count with a by option; and it must set the final value of the counter with the to command. When from and by are omitted they are taken to be 1 . The syntax might look like: from j \(=3\) by 2 to 17 do.
An optional part of the for command that sets the initial value of the counter. Without it, that value is taken to be 1 .

As with the evalf command, this calls the math coprocessor and uses floating point arithmetic to solve an equation numerically, and so it provides only real, numeric solutions unless the complex option is included in the fsolve command as in fsolve(expr, \(x\), complex), where expr is an expression in x and x is the term to be solved for, and complex calls for complex solutions. If an option like complex is not included in the syntax, it is not necessary to stipulate the variable to be solved for, because in \(f\) solve there can be only one variable if only one expression is to be solved for. (See below.)

This command can be executed by right (or control) clicking on the output for expr and first selecting Solve from the menu and then selecting Numerically solve from the submenu.

The range over which fsolve seeks roots can be set by stipulating the range as, for example, \(x=0\). .13) ; . While this is not required, providing a range increases the likelihood that fsolve will find a root as long as a root indeed exists within the stated range. See also solve.

Multiple expressions can be solved simultane-ously by including the multiple expressions within braces, \(\{\) \}, as a set. If the variables to be solved for are to be specified, they must also be expressed as a set. For example fsolve ( \(\{x \quad+2 * y=3, \quad x-y=0\},\{x, y\})\); returns \(\{x=1.000, y=1.000\}\).

This is an option in plot3d. It is entered after the expression(s) to be plotted in the form grid = \([m, n]\) where \(m\) is an integer stipulating the number of grid lines on the first of two axes required for the plot, and n is the integer stipulating grid lines on the second axis.
gridlines

Interface tab

An option for the plot command. It is entered after the function to be plotted and activated with gridlines \(=\) true. The gridline properties are best set from the plot menu which is accessed by right (or control) clicking on the plot. That menu contains Axes which contains a Gridlines Properties... in its submenu which then leads to a screen for making adjustments.
One of six tabs found within Preferences. Here several default settings can be reset. The user can reset the default format for new worksheets from Document to Worksheet.


\begin{tabular}{|c|c|c|}
\hline labels & 26, 132 & An option that can be applied to plot, plot3d or countourplot. This option follows the expression(s) to be plotted; the syntax for a 3-D plot would be labels \(=\left[\right.\) text \(_{x}\), text \(_{y}\), text \(\left.{ }_{z}\right]\) where text \(_{x}\), text \(_{y}\) and text \({ }_{z}\) are the text that will label the \(x, y\) and \(z\) axes, respectively. Note the use of square brackets. Right (or control) clicking on the plot will open the plot menu which contains an Axes option that contains a Labels sub-option. Within the Labels selection there are options to remove or edit each of the available axis titles. \\
\hline lhs & 71 & An operation that calls the left hand side of an expression. The expression must contain an equal sign. So if expr: \(=x^{\wedge} 2+2=y^{\wedge} 2:\), then lhs (expr) ; returns \(x^{2}+2\). \\
\hline line & 44 & One of the options within the style option for plot, plot3d and countourplot. It is the default setting in lieu of style=point. So it need not be called, but if multiple expressions are plotted and not all are to be plotted with a line, then style \(=\) [point, line] would render the plots with the first expression listed using points and the second expression using a line. Several line options can be accessed within the plot menu. Right (or control) click on plot and scroll to Line. See also the thickness option. \\
\hline \(\log\) & 21 & This command returns the natural logarithm of an expression or real number. For a logarithm to a base other than \(e\), that base must be specified in square brackets following the log command. For example \(\log [10](17)\); returns the common \(\log\) of 17. However, it is not displayed numerically: this requires the evalf command, see above. \\
\hline Manipulator & 133, Part II, 211 & A menu item accessed by right (or control) clicking on a contour, two dimensional or three dimensional plot. Selecting Manipulator leads to a sub menu Point probe, Pan or Scale. The Manipulator for a three dimensional plot has a Rotate option. \\
\hline
\end{tabular}

An option that can be applied to plot, plot 3 d or countourplot. This option follows the expression(s) to be plotted; the syntax for a 3-D plot would be labels \(=\) [text \({ }_{x}\), text \(_{y}\), text \(_{z}\) ] where \(t e x t_{x}\), \(t e x t_{y}\) and \(t e x t_{z}\) are the text that will label the \(x, y\) and \(z\) axes, respectively. Note the use of square brackets. Right (or control) clicking on the plot will open the plot menu which contains an Axes option that contains a Labels sub-option. Within the Labels selection there are options to remove or edit each of the available axis titles.

An operation that calls the left hand side of an expression. The expression must contain an equal sign. So if expr: \(=x^{\wedge} 2+2=y^{\wedge} 2:\), then lhs (expr) ; returns \(x^{2}+2\).

One of the options within the style option for plot, plot3d and countourplot. It is the default setting in lieu of style=point. So it need not be called, but if multiple expressions are plotted and not all are to be plotted with a line, then style \(=\) [point, listed using points and the second expression using a line. Several line options can be accessed within the plot menu. Right (or control) click on plot and scroll to Line. See also the thickness option.

This command returns the natural logarithm of an expression or real number. For a logarithm to a base other than \(e\), that base must be specified in square brackets following the log command. For example \(\log [10](17) ;\) returns the common \(\log\) of 17. However, it is not displayed numerically: this requires the evalf command, see above.

A menu item accessed by right (or control) clicking on a contour, two dimensional or three dimensional plot. Selecting Manipulator leads to a sub menu Point probe, Pan or Scale. The Manipulator for a three dimensional plot has a Rotate option.

Math input

Minimum exponent digits 34

The default mode of entry in the Document or Worksheet mode. Math / Text Input modes can be toggled by clicking on the Text or Math buttons at the left edge of the menu at the top of the worksheet.

With Math input, mathematical operations are automatically interpreted, and the terminating command (a semicolon) is not required. So entering \(x^{2}+2 x-14\) would require the following keystrokes: \(x\), then \(\wedge\), then 2 , then \(\longrightarrow\) (right arrow), then + , then 2 , then x (note that there is no need for * between the 2 and \(x\) ), then - ,then 1 then 4 , and finally [return]. This returns \(x^{2}+2 x-14\).

Within the Numeric Formatting... menu there are options for displaying numbers, among these is Scientific. When this output format is selected, one can set the minimum number of digits, \(\boldsymbol{n}\), used in the \(\times 10^{n}\) part of the output.

\section*{"I studied English for 16 years but... \\ ...I finally learned to speak it in just six lessons" Jane, Chinese architect}

ENGLISH OUT THERE


Click to hear me talking before and after my unique course download

NLPSolve normal

Numeric Formatting

Part II, 160 A non-linear program solver that computes a minimum or maximum of an object function. If that function is Fnc, then NLPSolve (Fnc) ; would be called. The search (for a minimum or maximum) can be specified for each variable. If Fnc contains \(x\), then NLPSolve (Fnc, \(x=0 . .2\) ) ; might be called, but note that NLPSOlve finds a true maximum or minimum, not the greatest or smallest value within the cited range.
(Before using this operator for the first time, it might be necessary to call it from Maple's plot package using with(Optimization):)

This command can somewhat "clean up" a polynomial, especially those that contain a denominator. normal ( \(\left.\left(x^{\wedge} 3-2 * x^{\wedge} 2+14 * x\right) / x\right)\); would return \(x^{2}-2 x+14\).

A menu item which is accessed by right (or contro) clicking on an output. Clicking on Numeric Formatting... opens a window that allows the output display to be customized such as fixed decimal, scientific or engineering notation.

A caution is in order here. If, for example \(\mathrm{X}:=\) 0.0035 ; , is entered, and \(X=0.0035\) is returned, adjusting the output to scientific notation as described above will change that output to \(3.50 \times 10^{-3}\). The font and color are changed, and the \(X=\) are lost irreversibly. Even restarting the worksheet will not recover this original output. See Protection (below) for a way to preserve output text with single quotation marks.

This is the terminator for a "do loop" used on earlier releases of Maple. It is still functional and can be used in lieu of end which is used on current releases.
op ( n, expr) ; isolates the \(\mathrm{n}^{\text {th }}\) operand in the expression expr for assignment or for manipulation. For example \(D:=o p(2\), expr \()-o p(1, \operatorname{expr}) ;\)
orientation \(=[\psi, \theta]\) specifies the angles (in degrees) at which a three dimensional plot is rendered. The default values are \(45^{\circ}\) and \(45^{\circ}\). Each value can be \(\leq 0^{\circ}\).

Pan 133, Part II, 211 One of the options for the Manipulator. Select-ing Pan from the submenu turns the cursor into the image of a hand that allows one to slide the graph into uncharted regions of \(x\) and \(y\).

Percent (\%) 58
The ditto or nullary operator reevaluates the last expression computed (or defined). It allows an operation to be performed on the most recent output without having to reenter that output. \(\% \%\) reevaluates the second most recent output; the \(\% \% \%\) third most recent.

Be advised that most recent pertains to time and not space. And so, if one were to scroll several command lines up a worksheet and enter sqre (\%) ; , the square root operation would be applied not to the output immediately above this command, but rather to the output most recently generated, i.e. at the bottom of the worksheet.

Finally, there are "level" issues that complicate the use of this operator. Reference to the Maple Help menu is recommended.

The command for creating a two dimensional plot of an expression (or series of points). The expression can be explicitly included e.g. plot (sin(x)) ; or predefinede.g.expr \(:=\sin (x) ;\) plot (expr) ; The range over which the variable is to be plotted can (should) be dictated e.g. plot ( expr, \(x=\) -1 . . 1) ; . Following these parameters, several options can be added, each separated with a comma. These include (and are described in this Appendix): axes, color, labels, gridlines, style, title and titlefont.

Multiple expressions can be plotted by separ-ating them with a comma and placing them in square brackets. e.g. plot ([expr1, expr2 ], x=0..4) ; If options are assigned individ-ually to each expression, they too should be in square brackets, assigned in the same order as the expressions. e.g. color \(=\) [black, "Crimson"]).

Found in the menu bar at the top of the work-sheet when a plot is "clicked on," or by right (or control) clicking on any plot. This opens a list of operations and options pertinent to the type of plot.

A record of all elements necessary to render a plot. This is achieved by assigning a name to the command used to create a plot. So if plot (expr, \(x=-1 . .1\), option \(_{1}\), option \(_{2}, \ldots\) ) ; creates a desired plot, then Structure := plot(expr, \(x=-1 . .1\), option \({ }_{1}\), option \({ }_{2}\)....) ; willstorethat structure which can be rendered with the plots [display] (Structure) ; command.
plot3d
plots[display]
plots[pointplot]
point

Point Probe

The command for creating a three dimensional plot of an expression (or series of points). The expression can be explicitly included e.g. plot ( \(\left.\sin \left(x^{*} y\right)\right)\); or predefined e.g. expr \(:=\sin \left(x^{*} y\right)\); plot (expr); The range over which the variable is to be plotted can (should) be dictated e.g. plot ( expr, \(x=-1 . .1, \quad y=-1.1\) ); Following these parameters, several options can be added, each separated with a comma. These include (and are described in this Appendix): axes, color, labels, gridlines, orientation, style and title.
plots[display] (X,Y,Z); combines the plot and display commands to render, in a single plot, the plot structures (above) defined as \(\mathrm{X}, \mathrm{Y}\), and Z . That is, the three plots, \(\mathrm{X}, \mathrm{Y}\) and Z are plotted on the same axes. Options like \(t i t l e\) are not required in every plot structure; indeed, if each has its own title, the title for the first structure listed (X here) will prevail.
Creates a two dimensional plot of a sequence of ordered pairs. The points to be plotted may come from a set or list. The set of points can be entered directly as \(\left\{\left[x_{1}, y_{1}\right],\left[x_{2} \cdot y_{2}\right] \ldots\right\}\) or indirectly by first assigning the set, SET: \(=\{[1,1],[2,4] \ldots\}:\). Multiple sets can be plotted and the options available for plot are available in addition to connect \(=\) true to connect the points. See also pointplot.
One of two options for the style option in plot. The other option is line. The syntax is style \(=\) point. One of the options for the Manipulator. Selecting Point Probe from the submenu turns the cursor into a circle with crosshairs that allows one to find the x and \(y\) coordinates of any point within the plot. The coordinates are shown in a window at the top left of the worksheet that contains the plot.
Precision tab
Preferences
Properties
Part II, 41
Part 66

One of six tabs found within Maple Preferences. Here the output can be adjusted to a prescribed number of decimal places; the significant figures used in calculations can be set, and digit truncation (elision) can be set. These can be set globally or to only the current session with the appropriate button at the bottom of the tab screen.

The precision of any numeric output can also be set or altered by right (or control) clicking on the output and selecting Numeric Formatting... from the pop up menu. The output precision can be set for a command line and all subsequent command lines using Digits:=n:.

Can be accessed from the menu bar at the top left of the screen by clicking on Maple \(n\) (where \(n\) is the release) and scrolling down to Preferences. Alternatively it can be opened with \(\mathscr{A}\), keystrokes. This opens six tabs: General, Display, Export, Precision and Security.

One of several submenus among the Axes selection within the Plot menu (see above). The resulting tab is illustrated on page \(8-23\). It allows modifications to the horizontal and vertical axes ( \(x, y\) and \(z\) for three dimensional plots).
\begin{tabular}{|c|c|c|}
\hline Protection ' . . .' & \[
\begin{aligned}
& 52,64, \\
& \text { Part II, } 101
\end{aligned}
\] & \begin{tabular}{l}
Enclosing input between single quotation marks can (but not always) protect that input from being evaluated. That is, it is treated as an unassigned name. It allows its output without the quotation marks. For example x:=2: SQRT['x']:=sqrt(x); would yield \(S Q R T_{x}:=\sqrt{ } 2\). Without the protection, \(S Q R T_{2}:=\) \(\sqrt{ }\) 2. "" offers a defacto protection by disguising the string with quotation marks; this would produce \(S Q R T_{" x} x^{\prime \prime}:=\sqrt{ } 2\). \\
The single quotation marks are useful for adding an unassigned name to an output. Continuing with the example above, 'answer'= sqre(x); would return answer \(=\sqrt{ } 2\). The single quotation marks are used also to un-assign a previously assigned name. (see Unassign below).
\end{tabular} \\
\hline restart & 18 & This command is equivalent to starting a new Maple session: it clears Maple's internal memory thereby erasing all assignments and memory of all executions. \\
\hline rhs & 71 & An operation that calls the right hand side of an expression. The expression must contain an equal sign. So if expr \(:=x^{\wedge} 2+2=y^{\wedge} 2:\), then rhs (expr) ; returns \(y^{2}\). \\
\hline Rotate manipulator & 133 & One of the options for the Manipulator in the three dimensional plot menu. Right (or control) clicking on a 3-D plot opens the plot menu; selecting Rotate from the submenu turns the cursor into a curved arrow that allows one to rotate a 3-D plot by depressing and moving the mouse. \\
\hline Round calculations & 20 & A setting made from the Precision tab within Preferences (H),). Setting this to an inappropriately small integer will cause errors in numeric computations. For example (1E-3)-(1E-7); requires at least four significant digits to return the correct output, regardless of the precision of the screen display (below). \\
\hline
\end{tabular}


Simplification rules are applied to an expression, expr when simplify (expr); is called. Terms are collected and redundancies are removed. So simplify \(\left(x^{\wedge} 2+\sin (x)^{\wedge} 2+\cos (x)^{\wedge} 2-\right.\) \(\left.3 * x^{\wedge} 2\right)\); returns \(-2 x^{2}+1\).
solve(expr,var); symbolically solves the expression expr for the variable var. Multiple expressions can be solved simultaneously by including the multiple expressions within braces ( \(\}\), as a set). If the variables to be solved for are to be specified, they must also be expressed as a set. For example solve ( \(\{x+2 * y=3, x-y=0\},\{x, y\})\); returns
\(\{x=1, y=1\} . c f\). fsolve.

This command can be executed by right (or control) clicking on the output for expr and selecting Solve from the menu and then select-ing Solve from the submenu. If more than one variable appears in the expression, the submenu will allow one to select the variable to be solved for.

This command extracts the square root of an argument. The syntax would be sqrt (arg) ; where arg is an expression, numerical value or variable. sqre (3) ; returns \(\sqrt{ } 3\); not 1.732; that would require evalf(sqrt(3));

These symbols enclose lists of numbers, variables, expressions or sets. Their order is preserved and replicates are allowed. When used inside commands like plot, if a list of expressions (to be plotted) is followed by a list of line colors, the order of line colors follows the order of the expressions. This is not the case when options are entered as sets.

These brackets also create subscripts. See Subscripting below.

Pertains to a plot option. style can be stip-ulated in the plot command by including, for example, style = point); Without this stipulation, the default style is line. Including a style \(=\) is required where several styles are used in a single plot; these are listed in square bracketse.g. style \(=\) [line, point].

This plot option can be extracted from the plot menu with a right (or control) click on the plot to be modified to open the menu and select Style for the type of plot to be rendered The options include Line, Point, Polygon etc. When the menu for a 3-D plot is accessed, the style options also include Surface with Line, Surface, Surface with Contour and Contour among others.
subs (old \(=\) new, expr) ; effects a sub-stitution of an old expression ( \(\circ\) ld) for a new expression (new) in an expression expr or list of expressions (enclosed in square brackets). expr: \(=x^{\wedge} 2+2 * x-14=\) 6*x^3; subs ( \(x=y\), expr); returns \(y^{2}+2\) \(y-14=6 y^{3}\). Note that expr is not redefined as new expres-sion in \(y\); that would require expr \(:=\) subs ( . . . . Also, old and new can be numeric values. See also algsubs.

Subscripts can be appended to text or numbers by adding the desired subscript in square brackets. This operation is not allowed in the middle of text, as in \(z[2] y\) which will not return \(z_{2} y\). Successive pairs of brackets, like \(z[2[3]]\) will produce a subscript 3 to the subscript 2.

While there is no mechanism for effecting a superscript output from 1-D Maple Input, the superscript \({ }^{\circ}\) can be included in the input text and displayed in the output by simultaneously using the [shift] [option] [8] keys.
\begin{tabular}{|c|c|c|}
\hline symbol & Part II, 23 & An option available in any of the plotting formats (2\(\mathrm{D}, 3-\mathrm{D}\), contour) where style \(=\) point is called. symbol \(=\mathrm{XX}\) is included in the string of parameters (see plot structure). XX can be asterisk, box, circle, cross, diagonalcross, diamond, point, solidbox, solidcircle, solid-diamond. See also symbolsize and color for 2-D and coloring for 3-D and contour plots. \\
\hline symbolsize & Part II, 23 & An option available in any of the plotting formats (2-D, 3-D, contour) where style \(=\) point is called. symbolsize \(=n\) sets the size of the symbol with the integer \(n\). The default value is 10 . \\
\hline Text input & 17 & One of two entry modes in the Document or Worksheet mode.Unlike with the default Math input, mathematical operations are not automatically interpreted. And the terminating command (a semicolon) is required. See Document mode for more information on using Math input. \\
\hline thickness & Part II, 50 & One of several options for \(\qquad\) commands. This dictates the thickness of lines used when lines are used (either by default or specified). The default thickness is 0 , and "any" integer > 0 can be specified. For multiple plots, one might use , thickness \(=[0,2]\) ); in the plot structure in order to differentiate the lines used for each plot. \\
\hline title & 26 & One of several options for any of the plot packages. title = "any text" adds a title (any text) to the plot. Enclosing the title in single quotes, 'any text' adds the title in italics. \\
\hline
\end{tabular}

This is an option that can be appended to the title option. The syntax titlefont \(=[\mathrm{X}, \mathrm{Y}, \mathrm{Z}]\) specifies three characteristics of the title. \(X\) is the font which can be entered as TIMES, COURIER, HELVETICA, or SYMBOL. Y represents the style of the font which includes BOLD, ITALIC, or BOLDITALIC. These styles are not available for the SYMBOL font. \(Z\) represents the point size, \(8,10,1214 \mathrm{etc}\). to be used.

This option can be accessed by right (or control) clicking on the plot and scrolling down to Title which leads to a submenu for adding or editing the title.

There also exists a labelfont option that behaves exactly like titlefont except that it specifies the characteristics of any (axis) labels on the plot.
A required part of the for command that sets the final value of the counter. The syntax might look something like: for i to 14. Here Maple would presume that \(i\) begins at 1 (see for to alter this default), and would terminate the loop when i reaches 14 .

When a character or term is assigned after the restart: command, e.g. \(x:=\) sqrt (y); anytime x is called or used in an expression, \(\sqrt{ } y\) will be returned and used in included in that expression until either the restart command or unassign operation is used. x can be unassigned with \(\mathrm{x}:=\mathrm{X}^{\mathrm{x}}\) ';
A command that calls special, optimization packages within Maple.

A command that calls special, plotting packages within Maple.

One of two environments under which Maple can operate. One can open a worksheet mode page with HN keystrokes \({ }^{245}\) or by going to File in the menu bar and scrolling down to New and then over to Worksheet Mode. This will create a tab in the current Maple file. (Tabs are accessed just below the menu at the top of the worksheet.)

This mode is intended for interactive use. It is characterized by the [ \(>\) input prompt at the left edge of the worksheet. It requires the use of : or ; at the end of a command line, and commands require normal programming syntax like \(2 *_{x}\) to enter " \(x\) multiplied by 2 ."

\section*{Endnotes for Part II}
156. Like \(\mathrm{K}_{\mathrm{a}}\) these constants have a thermodynamic equivalent \(\mathrm{K}^{\circ}{ }_{\mathrm{an}}\) which is expressed in terms of activities, \(\left\{\mathrm{H}^{+}\right\},\left\{\mathrm{H}_{\mathrm{n}-1} \mathrm{~A}^{\mathrm{m}-1}\right\}\), etc.
157. \(\mathrm{NH}_{2}^{-}\)is a much stronger base than \(\mathrm{OH}^{-}\). Consequently:
\(\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{2}^{-} \longrightarrow \mathrm{OH}^{-}+\mathrm{NH}_{3}\)
will lie so far to the right that no \(\mathrm{NH}_{2}^{-}\)is detected. This implies that \(\mathrm{K}_{\mathrm{a} 2}\) (the dissociation of \(\mathrm{H}^{+}\)from \(\mathrm{NH}_{3}\) ) is less that \(10^{-14}\) so that \(\mathrm{K}_{\mathrm{b}}\) for \(\mathrm{NH}_{2}{ }^{-}\)is greater than 1.
158. There are two important trends that should become apparent in the following pages: 1. For the acid \(H_{n} A\), there will exist \(n+1\) congeners, and all but one will bear a charge, and 2 . the charge balance expression will be an \(n+2\) degree polynomial in \(\left[\mathrm{H}^{+}\right]\).
159. Recall from Chapter 3 that the defining property of a strong base MOH is that \(\mathrm{M}^{+}\)is completely dissociated and remains inert in solution.
160. In Preferences, Round calculations to... has been set to 20 to preclude round off errors in computations to come.
161. This is done so that \(\mathrm{j}=0\) coincides with \(\mathrm{pH}=0\), which is convenient but not critical.
162. Of course, only because the Davies Equation is used to calculate the coefficients. DebyeHückel would have produced a different \(\gamma\) for each of these, because each ion has a unique "a." (See Appendix II.)
163. If not, review the discussion in Part II page 11.
164. Notice the need to protect H3A, H2A etc. in the alpha subscripts by using single quotes. Without this protection, the subscripts will take on numerical values as soon as H3A, H2A etc. are evaluated.
165. "Right clicK" on the output.
166. Part I page 76.
167. Recall that algsubs allows only one substitution at a time, but one can string algsubs commands together. For example ChBalC:= algsubs (K[a1]= \(K^{\circ}\) [a1], algsubs (K[w] \(\left.\left.=K^{\circ}[w], C h B a l\right)\right)\);
168. Alternatively, we could also have set \(\mathrm{K}_{\mathrm{a} 1}=\mathrm{K}_{\mathrm{a} 1}^{\circ}\) etc. with \(\mathrm{K}[\mathrm{a} 1]:=\mathrm{K}^{\circ}[\mathrm{a} 1]\) etc. in place of \(\mathrm{g}[1]\) \(:=1.0: \mathrm{g}[2]:=1.0: \mathrm{g}[3]:=1.0:\)
169. This command is necessary because the plot was not skipped and at this point \(H\) would have a residual assignment from the final trip through the \(j\) loop.
170. The change in output font here is due to a change in the numeric formatting (right click on output and select Numeric Formatting... See Figure 2-10).
171. See Part I page 169 for the discussion on indicator choice.
172. Strictly speaking it is a hexaprotic acid, but because only four protons can be exchanged in the pH 2 to 14 range, it is traditionally treated as tetraprotic.
173. Notice the use of full quotation marks here to protect the subscript. Normally single quotations are sufficient, but if 'NH4' is used, an Error, recursive assignment warning is produced.
174. The reader should remember that the maximum value for an \(\alpha\) is one, and that \(\log (1)\) is zero.
175. The reader is welcome to verify this by creating an \(\alpha\) vs. pH plot for this acid. The solution to this problem is found where the two \(\alpha\) 's cross.
176. This is not such a bold assumption. Looking at Figures \(\mathbf{8 - 1}\) and \(\mathbf{8 - 6}\) one sees that when \(\left[\mathrm{H}^{+}\right]\) approaches the "last" \(K_{a n}\) the totally deprotonated congener begins to dominate. That is \(\alpha_{A n}{ }^{-}\) begins to approach 1 .
177. \(\mathrm{K}_{\mathrm{w}}\) will not be required if our presumption about the pH of the solution and the alphas is correct.
178. The reader should be able to correct the equilibrium constants back to \(\mu=0\) conditions and then correct to the desired ionic strength. Because ionic radii data are rarely available, the Davies Equation (Equation 2-8) would be required for this operation. The difference between \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}^{\circ}\) and \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}\) can be substantial because, where n is large, some of the ionic charges can be substantial (i.e. \(\mathrm{z}= \pm 4\) ).
179. This is to say \(\left[\mathrm{M}^{\mathrm{p}+}\right]\) and \(\left[\mathrm{L}^{\mathrm{q}}\right]\).
180. There is no need to report, for example, \(\mathrm{K}_{\mathrm{f} 5}\) and \(\beta_{5}\) because it can be shown that \(\mathrm{K}_{\mathrm{f5}}=\beta_{5} \div \beta_{4}\).
181. It is difficult to prepare any solution to a concentration more than about 10 M .
182. The logic of the coefficients is presented with Equations 3-7 and 3-8. It should seem reasonable that to have a \(1 \mathbf{M}\) solution of \(\mathrm{Fe}(\mathrm{CN})_{3}\), it would be necessary to have at least \(3 \mathbf{M}\) total \(\mathrm{CN}^{-}\)in solution.
183. These are taken from the \(\mathrm{Fe}^{3+}\) complex with the oxalate ion, \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\) (Appendix VIa). A pH large enough to assure that \(\alpha_{\text {нгох }}\) and \(\alpha_{\text {нох }}\) are negligible is presumed. The output here has been reformatted.
184. Recall how the placement of single quotation marks in the input will create the labels in the output above.
185. Three exceptions are \(\mathrm{Cl}, \mathrm{Br}^{\text {r}}\), and I .
186. \(\alpha_{\mathrm{L}} \mathrm{q}-\times \mathrm{K}_{\mathrm{f}, \mathrm{n}}\) and \(\alpha_{\mathrm{L}} \mathrm{q}-\times \beta_{\mathrm{n}}\) are known as conditional formation constants, \(\mathrm{K}_{\mathrm{f}, \mathrm{n}}^{\prime}\) and \(\beta_{\mathrm{n}}^{\prime}\), respectively.
187. That is, there will be no need to look for \(\beta_{1}, \beta_{2}\) etc.
188. The gridlines \(=\) true command is used here in lieu of the practice of adding gridlines from the plot menu.
189. Or in logarithmic terms, the sum of the log \(\alpha\) 's.
190. Recall (Problem 2, Chapter 8) that EDTA is so important that it has its own symbol, \(\mathrm{H}_{4} \mathrm{Y}\).
191. This concept was introduced in Chapter 1 in the context of the reaction quotient, Q. It was discussed again in Chapter 4 (page 78) in the context of \(\alpha_{A^{-}}\), and it is most recently addressed as \(\mathrm{C}_{\text {Eqpt }}\) in Problem 3 in Chapter 7.
192. When a formation constant becomes this large, constants like \(\beta_{3}, \beta_{2}\), and \(\beta_{1}\) are unnecessary because \(\mathrm{Ni}(\mathrm{CN})_{4}{ }^{2-}\) so dominates the solution makeup.
193. Even this alpha is incomplete because it ignores mixed complexes like \(\mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{CN})_{2}{ }^{2-}\). Such complexes are legitimate when the concentrations of the two ligands and formation constants favor their formation. Here, because \(\mathrm{CN}^{-}\)is so strongly bound, these mixed complexes are insignificant.
194. There is a subtle flaw in this expression: Setting \(\mathrm{C}_{\text {кСN }}\) equal to zero does not lead to the correct \(\alpha_{\mathrm{Ni} 2+}\) expression for the cyanide-free solution. This is because the \(1+\beta_{4}[\mathrm{CN}]^{4} \approx\) \(\beta_{4}[\mathrm{CN}]^{4}\) approximation is \(u n\)-true when \([\mathrm{CN}]<1.8810^{-9} \mathrm{M}\).
195. Some sources report a \(\mathrm{Cu}(\mathrm{NTA})_{2}{ }^{4}\) complex, but the \(\mathrm{K}_{\mathrm{f}}\) for this second complex is about \(10^{-10}\) as strong as the CuNTA complex. So it can be ignored without consequence.
196. Not as \(\alpha_{\text {NTA3 }} \times \mathrm{C}_{\text {NTA }}\) for the reason described in Part II page 67.
197. Just as calculated by Equation 7-2b, Part I page 164.
198. See the discussion in Part I page 190.
199. For an example where the titrand contains the complexing agent and the titrant contains the metal ion, see Example Problem 4 at the end of this chapter.
200. Although the rule is very general, the work from which it is taken, Flaschka, H., Talanta, 1, 60 (1958), provides a rigorous derivation of more specific guidelines.
201. Aside: If \(\left[\mathrm{MIn}^{\mathrm{p}-\mathrm{r}}\right]\) is more than about \(0.1 \%\) of \(\mathrm{C}_{\text {Metal, }}\) the titration error can be considerable. This issue was ignored in the Chapter 7 because \(\mathrm{C}_{\text {Indicator }}\) for acid / base titrations is routinely insignificant. So there, \(\left[\mathrm{Hin}^{1-r}\right]\) is taken to be negligible.
202. Reilley, C.N. and Schmid, R.W., Anal. Chem., 31, 887 (1959).
203. Charges are omitted for clarity.
204. The colors here do not represent the actual color change: it is a wine red to yellow that one sees. Note also that \(\alpha_{\text {H2PAR1- }}\) and \(\alpha_{\text {HPAR2- }}\) are not too different. So \(H_{2}\) PAR \(^{1-}\) might well contribute to the color of the titrand.
205. None of the necessary input is provided because it is essentially a rewrite of the worksheet begun in Part II page 76 but with several prudent shortcuts. First, the \(\mathrm{pH}_{\text {optimum }}\) calculation is not necessary. Second, constants, including \(\mathrm{pH}:=8.5\), are assigned early so as to minimize the complexity of the output. In doing so, note that if \(\mathrm{K}_{\mathrm{a} 1}\), \(\mathrm{K}_{\mathrm{a} 2}\) and \(\mathrm{K}_{\mathrm{a} 3}\) are used for NTA, they cannot be used for PAR: \(\mathrm{K}_{\mathrm{In} 1}, \mathrm{~K}_{\mathrm{In} 2}\) and \(\mathrm{K}_{\mathrm{In} 3}\) make sense there. Also, the alpha ( n ) : \(=\mathrm{op}(\mathrm{n}\), Den)/Den command will not work, because with the constants pre-assigned, Den will not contain more than one operand.
206. In fact, if \(\mathrm{C}_{\text {Indicator }}\) is more that about \(1 \%\) of \(\mathrm{C}_{\mathrm{EqPq}}\) the mass balance developed here is invalid because our mass balance made no allowances for \(\left[\mathrm{MIn}^{\mathrm{p}-\mathrm{r}}\right]\).
207. 1,2-diaminocyclohexane-N,N,N', \({ }^{\prime}\)-tetraacetic acid. See Appendix VIa for the \(K_{f}\) values.
208. Only the excess is titrated because the \(\mathrm{K}_{\mathrm{f}}{ }_{\mathrm{f}}\) for \(\mathrm{MgY}^{2-}\) is not sufficient for \(\mathrm{Mg}^{2+}\) to displace \(\mathrm{Ba}^{2+}\) from \(\mathrm{BaY}^{2-}\) until it has exhausted \(\mathrm{Y}^{4-}\) and the \(\operatorname{In}^{3-}\).
209. Appendix VIb shows only two acid dissociation constants. So although \(\mathrm{H}_{2} \mathrm{EBT}\) is a congener, there is no \(\mathrm{H}_{3} \mathrm{EBT}\); there is only \(\mathrm{H}_{2} \mathrm{EBT}^{2}, \mathrm{HEBT}^{2-}\) and \(\mathrm{EBT}^{3-}\).
210. \(\mathrm{H}_{2} \mathrm{In}^{-}\)is red. This too should be minimized so as not to impart its color to the titrand.
211. Recall that it is necessary to reassign MassBal because \(\mathrm{C}_{\text {Total }}=0.010\) is embedded in MassBal.
212. See Chapter 2, especially Equation 2-2 for review. Also see Part II page 118 (and Endnote 215) for an example of how this expression fails if there is no solid in equilibrium with the solution.
213. Saturated would imply that some, even if only a trace, \(\mathrm{KClO}_{4}(\mathrm{~s})\) would be present.
214. Of course counter ion are needed for the \(\mathrm{Cs}^{+}\)and \(\mathrm{ClO}_{4}-\). Because both are (or could be) members of Table 3-1, any counter ion for each would do. So, CsCl and \(\mathrm{NaClO}_{4}\) would be reasonable.
215. Intuitively, one would expect that if \(\mathrm{C}_{\mathrm{Cs}}^{\circ}\) or \(\mathrm{C}_{\mathrm{ClO} 4}^{\circ}=0\), there would be no precipitate (i.e. \(\operatorname{Prcp}=0\) ). But the expression for SolEq does not produce that result! This is because the equilibrium expression that defines solution makeup is not binding (or even relevant) when there is no precipitate present.
216. This value will vary when ionic strength effects are considered, but because it is so much less than the desired \(99.9 \%\), there is little point is making that adjustment.
217. This is analogous to the discussion in Chapter 7 (page 205) regarding the relationship among \(\mathrm{C}_{\text {EqPP }} \mathrm{K}_{\mathrm{a}}\), and \(\alpha_{\mathrm{A}}-\). As \(\mathrm{C}_{\mathrm{EqPt}}\) approaches zero, \(\mathrm{K}_{\mathrm{a}}\) must become larger and larger to keep \(\alpha_{A}\) - from approaching 1 .
218. Also, see Example Problem 1 part c at the end of this chapter.
219. By amount, concentration is meant, but this is an awkward term for a material that has precipitated out of solution. Mathematically, however, it is as though this concentration has disappeared from solution.
220. Only the cations of Group IA do not bind \(\mathrm{OH}^{-}\)to any measurable degree, and only the anions of strong acids do not measurably bind \(\mathrm{H}^{+}\). So salts of these cations and anions are not affected by pH . Also, oxyanions (perchlorate, sulfate etc.) are least likely to form complexes with metals as described in Chapter 9. And finally, oxyanion salts are highly ionic in nature, and that precludes a second mode of dissolution, the intrinsic solubility which will be discussed presently.
221. Note that just as \(\mathrm{K}_{\mathrm{a}}=10^{-\mathrm{pKa}}, \mathrm{K}_{\mathrm{sp}}=10^{-\mathrm{pKsp}}\).
222. The evalf command is necessary; with eval one gets \(0.11462^{1 / 3}\).
223. That is anions that are not chelating agents. Chelating agents like EDTA form complexes with Group IIA metal ions as demonstrated in Chapter 9.
224. If this point is not clear, see Part II page 56 and the discussion that follows or Example Problem 1, part d in Chapter 9.
225. Chloride in the previous examples has been replaced with cyanate here because cyanate, being an oxyanion is less inclined to form complexes \(\mathrm{Ag}(\mathrm{OCN})_{n}{ }^{1-\mathrm{n}}\) and also it will not have an intrinsic solubility \((\mathrm{n}=1)\). This is an important consideration when the metal ion \(\mathrm{M}^{\mathrm{m}+}\) is the titrant because \(\mathrm{M}^{\mathrm{mt}}\) falling into a "sea" of ligand anions (titrand) is likely to form many soluble complexes prior to forming a precipitate. Not only does this lead to an end point that follows the equivalence point, it complicates the mathematics of the precipitation titration.
226. See Example Problems 1c and 5 for a different approach to finding \(C\) - Prcp.
227. And then, if desired, to calculate the activity coefficient for \(\mathrm{Ag}^{+}\)at that point in the titration so that \(\left[\mathrm{Ag}^{+}\right]\)can be converted to \(\left\{\mathrm{Ag}^{+}\right\}\). Ignoring ionic strength effects allows one to create the titration curve with the plot command. This is the approach we will take here, deferring the calculation of \(\left\{\mathrm{Ag}^{+}\right\}\)to Example Problem 5 at the end of this chapter.
228. Part I page 173 and especially in Problem 4 of that chapter.
229. This principle derives from the Paneth-Fajans-Hahn adsorption rule.
230. An excellent example of this is the titration of \(\mathrm{Zn}^{2+}\) with \(\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4}\).
231. The soluble calcium is restricted to \(\mathrm{Ca}^{2+}\) because the acid solution (from \(\mathrm{HIO}_{3}\) ) will preclude the formation of \(\mathrm{CaOH}^{1+}\) and \(\mathrm{Ca}(\mathrm{OH})_{2}\).
232. This is because the absolute solubility will decrease indefinitely, but \(\mathrm{C}_{\mathrm{Ca}}\) also decreases indefinitely with increasing \(\mathrm{V}_{\mathrm{IO} 3}\).
233. Recall the significance of the 1 and 4, described in problem 2 in Part II page 153.
234. The reader is invited to include \(\mathrm{BaOH}^{+}\)in the \(\alpha_{\mathrm{Ba}^{2+}}\) calculation and to calculate \(\alpha_{\mathrm{HSO}^{1-}}\).
235. This might well seem like silliness: that we go to the trouble to create separate expressions for Conc \(^{\circ}{ }_{A g}\) and \(\operatorname{Conc}_{A_{g}}\) only to say Conc \(^{\circ}{ }_{A g} \approx \operatorname{Conc}_{A_{g}}\). Indeed the two are close enough that when either is added to \(C_{\text {KоСN }}\), approximately the same \(\mu\) is found. Moreover, Conc \(_{\text {A }_{g}}\) cannot be used in the expression for \(\mu\) because it contains \(\mu\) (see above) and one would produce a recursive assignment error.
236. \(-\log _{10}(0.0004795832)=3.319136082\).
237. Butler, James N., Ionic Equilibrium A Mathematical Approach, Addison-Wesley, Reading, MA, 1964, p. 191.
238. Taken from J. Kielland, J. Am. Chem. Soc. 59, 1675 (1937)
239. Taken from J. Kielland, J. Am. Chem. Soc. 59, 1675 (1937)
240. At nominally \(\mu=0.1\).
241. This is \(-\log _{10}\left\{\mathrm{H}^{+}\right\}\)at \(\mu=0.1\) which gives \(\gamma_{\mathrm{H}^{+}}=0.761\) so that this \(\mathrm{pH} \approx 0.12+\log _{10}\left[\mathrm{H}^{+}\right]\). This correction is rarely necessary. Indeed, \(\mathrm{K}_{\mathrm{In}}\) as it is determined from \(\mathrm{K}_{\mathrm{In}}^{\circ}\) requires a knowledge of the activity coefficients for \(\mathrm{H}^{+}\)and In . Moreover, some indicators are of the type \(\mathrm{HIn}^{+}\) \(\rightleftharpoons \mathrm{H}^{+}+\mathrm{In}\), and this entails a different correction procedure than \(\mathrm{HIn} \rightleftharpoons \mathrm{H}^{+}+\mathrm{In}\). See Part I page 89.
* In some cases, the insoluble product is an oxide like \(\mathrm{Ag}_{2} \mathrm{O}\) or oxyhydroxide like BiOOH .
\({ }^{* *}\) This does not include \(\mathrm{BiO}^{+}\)salts which have insoluble chlorides etc.
242. Part I unless otherwise noted. The page on which a term is first introduced. Subsequent page references are for significantly different applications of the term.
243. Note that contour (no s) is a style option in plot3d.
244. Diff executes a partial differentiation with respect to multiple variables.
245. This presumes that the Worksheet Mode has been chosen as the default mode under the Interface tab of the Preferences menu. Otherwise the \(\mathscr{H} \mathbf{N}\) keystrokes will open a new tab in the Document mode.

\section*{Index for Part I}

Activity 13
Activity coefficient 14
Algebraic substitution 55
Alpha 75
Analytical concentration 38
Association 36
Autoprotolysis 47,74
Buffer 127
Buffer index 138
Buffer preparation 146
Charge balance 41
Completeness 8
Composite plotting 138, 182
Conjugate 80, 101
Contour plot 142
Davies, C.W. 14
Debye-Hückel Theory 13
Derivative 139
Dissociation 36
Do loop 180
Document mode 16
Endpoint 171
Equilibrium constant 8,36
Equivalence point 163
Exponent digits 34
Extended Debye-Hückel Theory 14
For loop 180, 187
Gamma ( \(\gamma\) ) 20
Hydrolysis 66
Indicator-acid / base 169
Input prompt 17
Insoluble salts 37
Ionic strength ( \(\mu\) ) 13, 35
\(\mathrm{K}_{\text {eq }}^{\circ} \quad 13\)
\(\mathrm{K}_{\mathrm{w}}^{\circ} 41\)
\(K_{a} 65\)
\(\mathrm{K}_{\mathrm{b}} 65\)
\(\mathrm{K}_{\text {eq }} 8,13,36\)
\(\mathrm{K}_{\text {in }} 170\)
\(\mathrm{K}_{\mathrm{w}} 41\)
Le Châtelier's Principle \(9,68,77,127\),
Loop 180
Manipulator (plot) 24, 133
Mass balance 38, 48,
Math mode 17
Molality 14
\(\mathrm{Mu}(\mu) \quad 19\)
Nested loop 191
Neutral (aqueous solution) 47
Non aqueous titration 194
Numeric formatting 34, 44
Output line number 18
pH 40
Plot structure 137
Precision 20
Preferences 16
Q 8
Reaction quotient 8
Salt 101
Single quotation marks 52
Sparingly soluble Salts 37
Strong acid 42
Strong base 49
Strong electrolytes 19, 36, 78
Target cursor 30
Text mode 17
Thermodynamic equilibrium constant 13
Titrand 163
Titrant 163
Titration error 172
Worksheet mode 16

\section*{Index for Part II}

\author{
Alpha \\ 11
}

Back titration 89
Beta ( \(\beta\) ) 14055
Brønsted-Lowrey 223
Chelate 62
Chelometric titration 68, 80
Chelon 62
Composite plotting 17
Conditional formation constant 61
Doubly conditional formation constant 62
Formation constant 53
Intrinsic solubility 130
Ionic strength \((\mu) \quad 10,13\)
\(K_{f} 53\)
\(\mathrm{K}_{\mathrm{f}, \mathrm{in}} 80\)
\(K_{\text {in }} 170\)
Kinetics ..... 89
\(K_{\text {sp }}\) ..... 111
Le Châtelier's Principle ..... 12, 126
Ligand ..... 53
Masking ..... 70
Mass balance ..... 10, 148
Metal complex ..... 53
Metalochrome indicator ..... 80
Molality ..... 220
\(p_{\beta}\)Polyprotic acids
Precipitation ..... 114
Precipitation titration ..... 138
Saturate ..... 112
Solubility product ..... 111
Sparingly soluble Salts ..... 193```


[^0]:    Equilibrium in Analytical Chemistry Using Maple ${ }^{\circledR}$
    An emphasis on Ionic Equilibrium - Part II
    © 2013 Prof. R.V. Whiteley, Jr., Pacific University Oregon \& bookboon.com ISBN 978-87-403-0424-4

[^1]:    © Grant Thornton LLP. A Canadian Member of Grant Thornton International Ltd

