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PREFACE TO THE SECOND EDITION

The subject of turbulence remains and probably will remain as the
most exciting one for the mind of researchers in a variety of fields. Since
publication of the first edition of this book in November 2001 a number of
other books on turbulence have appeared, for example Bernard and Wallace
(2002), Oberlack and Busse (2002), Foias et al. (2001), Biskamp (2003),
Davidson (2004), Jovanovich (2004), Sagaut and Cambon (2008) to mention
a few. So one has to ask again the question why a second edition of one book
from a field of so many on the same subject? Does it make any difference?

There are additional reasons apart of those given in the first edition. One
of the basic premises of this book is that We absolutely must leave room for
doubt or there is no progress and no learning. There is no learning without
posing a question. And a question requires doubt. . . Now the freedom of
doubt, which is absolutely essential for the development of science, was born
from a struggle with constituted authorities. . .R. Feynmann (1964). This is
closely related to the term ‘conceptual ’: the book has now a different title
An informal conceptual introduction to turbulence. One of the main fea-
tures of the first edition was indeed its conceptual orientation. The second
edition is an attempt to make this feature dominant. Consequently items
which are secondary from this point of view were reduced and even removed
in favour of those added which are important conceptually. This required
addressing in more detail most common misconceptions, which are conse-
quences of the profound difficulties of the subject and which travel from one
publication to another. Consequently a one page Appendix D listing some
of these misconceptions in the first edition became chapter 9 titled Analo-
gies, misconceptions and ill defined concepts. Other main additions include
sections on ergodicity, Eulerian versus Lagrangian descriptions, validation
of theories in chapter 3; a section on anomalous scaling and ill-posedness
of the concept of inertial range in chapter 5; a section on the Tennekes and
Lumley balance in chapter 6; and a section on mathematics versus turbu-
lence in chapter 10. Along with a number of minor changes and (hopefully)
improvements throughout the whole text, new material was added to the
section dealing with issues on the role of strain and its production (which
unlike enstrophy production is a local process), nonlocality and fluid par-
ticle accelerations all in chapter 6. The Bibliography is changed not much
from the first edition, with a marginal number of items dropped and only a
few added. Those few are generally recent publications that can help guide
a reader through the recently published. A characteristic feature of the
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viii PREFACE TO THE SECOND EDITION

text is a considerable number of intext citations which somewhat has been
increased in this edition. The main aim is an extensive treatment of the
dialogue in the turbulence community with an emphasis on problems of a
conceptual nature. All this resulted in an increase by one third as compared
to the first edition. This is in spite of the original intention (and the advice
by H. Tennekes) not to increase the number of pages and even to make the
second edition ‘thinner’. It is my opinion that today thick books aiming to
describe ‘everything’ are of little value for several reasons. First, the amount
of information is not digestible for an individual. Second, in spite of fre-
quent claims of considerable progress, the Saffman ratio (see the Preface to
the first edition below) still remains the only genuinely small parameter in
turbulence. Unfortunately, there continues to be a major over-production
of publications, without any real breakthrough in understanding. In opin-
ion of this author, the overabundance of literature can only confuse, rather
than clarify the real issues, and so it seems that the set of potential readers
of thick books (and, unfortunately, not only thick ones) is a pretty small
subset of the whole, which is hopefully not a set of measure zero. Thus the
next edition with the title A conceptual introduction to turbulence should
be about half as large as to the first edition, which is a really hard, but
hopefully not impossible task.

The present edition was influenced considerably by the Lectures on Con-
ceptual Aspects of Turbulence and Approaches to Turbulence Research given
by the author at the Imperial College in 2007 and 2008 (http://www3.impe-
rial.ac.uk/ mathsinstitute/programmes/research/turbulence/marie curie
chair and/or http://www.eng.tau.ac.il/ tsinober/). As previously the book
is intended for as broad a readership as possible with the aim of making
it interesting and useful both to graduate students and scientists in all the
above mentioned fields. It is hoped that this aim is relatively realistic due
to the informal nature of this book, with its emphasis on turbulence as a
physical phenomenon, observations, misconceptions and unresolved issues
rather than on conventional formalistic elements and models. However, like
anything/everything related to turbulence it is not easy.

The list of acknowledgements is again too long to be reproduced here.
I am grateful to all those who responded to my queries and requests.

Corrections will be placed at http://tau.eng.ac.il/ tsinober/book. Sug-
gestions and criticisms are very welcomed at tsinober@eng.tau.ac.il.

Tel Aviv, Israel and London, UK A. Tsinober

April, 2009.



PREFACE TO THE FIRST EDITION

Lightly amended

Over the last decade a number of books on turbulence have appeared.
To mention a few: Biswas and Eswaran (2000), Bohr et al. (1998), Chorin
(1994), Durbin and Pettersson (2001), Frisch (1995), Holmes et al. (1996),
Lesieur (1997), Libby (1996), Mankbadi (1994), Mathieu and Scott (2000),
McComb (1990), Piquet (1999), Pope (2000), Scott and Mathieu (2000).
So why one more book on the subject? Does it make any difference?

The key words are informal introduction. The book, which is not a
textbook, is essentially an introduction, and it is an informal introduction
that, as far as possible, presents its material in a qualitative form. There
are several reasons why an introduction to turbulence should be as informal
(in several meanings) as possible.

First, there seems to be little chance in the foreseeable future of cre-
ating a pure, formal theory of turbulence – even for its simplest cases. To
quote A. N. Kolmogorov (1985): I soon understood that there was little
hope of developing a pure, closed theory, and because of absence of such a
theory the investigation must be based on hypotheses obtained on process-
ing experimental data, see Tikhomirov (1991, p. 487). This refers – in the
words of E. Spiegel – to the big T-problem, i.e. the true dynamical problem
(most probably) described by the Navier–Stokes equations, which is the
main focus of this book; surrounding the big T-problem there are several
‘little t-problems’ such as turbulent diffusion or more generally behaviour
of passive objects in real turbulent or some artificial random velocity field
(‘passive turbulence’), Burgers and wave “turbulence”.

Indeed the heaviest and the most ambitious armoury from theoretical
physics and mathematics was tried for more than fifty years, but without
much success: genuine turbulence, the big T-problem, as a physical and
mathematical problem remains unsolved. There is even no consensus on
what is (are) the problem(s) of turbulence1, neither is there an agreement
on what are/should be the aims/goals of turbulence research/theories and
what would constitute its (their) solution. Therefore lots of formalisms are
avoided, since the methods mostly brought in from linear analysis (such as

1One of the things that I always found troubling in the study of the problem of
turbulence is that I am not quite sure what the theoretical turbulence problem actually
is... One reason I think we have so much difficulty in solving it, is that we are not really
sure what it is (Saffman, 1991).
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x PREFACE TO THE FIRST EDITION

various decompositions, perturbation methods, etc.) failed, and genuinely
nonlinear analytic methods applicable to turbulence mostly do not exist.

Second, the existing theoretical (mathematical, physico-theoretical and
traditional fluid mechanical) material is rather complicated and extremely
large in scope. The same is true of the experimental information (laboratory,
field and numerical). Many existing books are overloaded with technical
details, a notable exception being the most successful course by Tennekes
and Lumley (1972) and also the book by Pope (2000). The unwary reader is
totally lost in the enormous ocean of existing references. Therefore highly
technical information has, for the most part, not been included in this
volume. Instead references are given in the text, where appropriate, to the
above mentioned books and other sources.

Third, the subject as hardly can be claimed of no other similar subject is
of intimate vital interest and importance for scientists in a really enormous
variety of fields2.

Finally, many of the existing texts tend to avoid most of the contro-
versies, contradicting views, unresolved questions (in turbulence there are
more of them than ‘solutions’); they attempt to ‘smooth the angles’ as much
as possible, in ways that are, to my view, both inappropriate and mislead-
ing. Consequently some interpretations/views expressed in this book may
appear to some as flagrant/egregious.

For these reasons all the subject(s) will be discussed in an essentially
informal form/style, maximally avoiding complicated formalisms, which are
useful to a very limited extent only – if at all. Following the advice of
Leonardo da Vinci Remember, when discoursing about water, to induce
first experience, then reason the emphasis is on the physical aspects based in
the first place on observations and empirical facts as distinct from intuitive
conjectures/hypotheses. This does not mean that the latter are ignored and
that the presentation is oversimplified or even easy.

The informal nature of the book allows also to make it ‘thin’. The
very nature of the problem of turbulence and turbulent flows (absence of
a systematic theory, extreme difficulty and enormous scope of the subject)
left its mark/imprint on this small book – there are no simple analytical
solutions (with one exception – the 4/5 law of Kolmogorov – they do not
exist in the field of turbulence), etc. On the contrary, it contains as many,
questions and similar things (or even more) as does answers, along with

2Mathematics including Applied and Computational, Physics, Engineering (Aero-
nautical, Naval/Marine, Hydraulic, Civil/Environmental, Chemical/Petroleum, Material
Processing, . . .), Geo-Astrophysical Sciences (Atmospheric, Meteorology, Oceanography,
Fluid Dynamics of Earth Interior, Astrophysics, Cosmology), Bio-Medical Fluid Dynam-
ics. . . . turbulence undoubtedly represents a central principle for many parts of physics,
and a thorough understanding of its properties must be expected to lead to important
advances in many fields (Neumann, 1949).
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(hopefully) unbiased discussion of the unresolved issues, controversies and
major problems. In particular there are no lapses into brevity at difficult
places3.

Due to the above mentioned nature of the problem/subject, the book
has to some extent a character of an updated guide to major sources dealing
in more detail with its various aspects of the problem.

For the same reasons, visual material is used and/or referenced wherever
possible and useful. It is supplied by extended figure captions.

The book is based in part on the graduate course delivered by the author
in the Department of Fluid Mechanics, Tel Aviv University, and in part on
lectures delivered by the author in Delft Technical University, Swiss Federal
Institute of Technology – Lausanne and Zurich, Ecole Normale Supérieure,
Université Paris VII and in Laboratoire Modélisation en Mécanique, Uni-
versité Paris VI, and in part on its revision and updating on the basis of
the latest work during the period of the Programme on Turbulence held
in the Isaac Newton Institute, Cambridge, January 6 – July 2, 1999 and
the research Program on Physics of Hydrodynamics of Turbulence held in
the Institute of Theoretical Physics, Santa Barbara, January 31 – June 30,
2000.

It should be emphasized that this is an informal introduction only, it
is not a textbook, but an introduction to turbulence as a physical phe-
nomenon. Those who want to go deep(er) into the field are warned not to
underestimate the numerous difficulties, disappointments and even frustra-
tion awaiting them. This book standing alone gives only an impression of
what turbulence is. It can serve as an introduction to the research and the
literature in the field in conjunction with a self-contained text, such as the
book written by Pope (2000).

The scope of the book is mostly limited to purely basic aspects of turbu-
lent flows of incompressible fluids. The prerequisites include a basic course
in fluid dynamics (including turbulence) and standard knowledge of physics
and mathematics at mid-graduate level. Therefore no systematic introduc-
tion to general fluid dynamics is included, neither is any material on prob-
abilistic tools4. Both are usually included in books on turbulence, and the
latter sometimes at a quite elaborate level. However, its use in these books
is very limited with most of the highest probability and stochastic tools

3It is much easier to present nice rational linear analysis than it is to wade into the
morass that is our understanding of turbulence dynamics. With the analysis, professor
and students feel more comfortable; even the reputation of turbulence may be improved,
since the students will find it not as bad as they had expected. A discussion of turbulence
dynamics would create only anxiety and a perception that the field is put together out
of folklore and arm waving (Lumley, 1987).

4The recently published book by Pope (2000) contains well balanced information on
all these and other useful tools for treating turbulence.
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remaining unused. In order to aid the reader, glossaries of some terms and
brief discussions of basic fluid mechanics as well as some other useful in-
formation are given in the appendices. More details about the scope of the
book are given at the end of the first chapter. This is an introduction in
which the most important points are mentioned, and discussed in more de-
tail in the subsequent chapters along with some additional material. The
list of references is limited to major sources: books/monographs, collections
of essays, review papers and selected specific papers with some emphasis on
the most recent ones, overlooking essentially all the rest, which are many
indeed. This book is biased unavoidably by my views of what matters, and
in this sense the book is to a large extent a personal view of the author on
the subject. In selecting the references, I used the (genuinely small) param-
eter introduced by Saffman (1978), which he called information density, εI ,
and defined as the ratio, S/N , in the literature, with S = signal (under-
standing), and N = noise (mountains of publications). In order to increase
the value of εI I did all my best to concentrate on the numerator, S, and to
reduce the denominator, N , to the best of my knowledge, ability and judge-
ment/understanding. However, absence of references does not necessarily
mean that – in my view – they belong to N , but is due to my ignorance
and/or the lack of space needed to discuss them here.

The book is intended for as broad a readership as possible with the aim
of making it interesting and useful both to graduate students and scientists
in all the above mentioned fields. It is hoped that this aim is relatively realis-
tic due to the informal nature of this book, with its emphasis on turbulence
as a physical phenomenon, observations, misconceptions and unresolved is-
sues rather than on conventional formalistic elements and models.

The list of acknowledgements is too long to be reproduced here. I am
grateful to all those who responded to my queries and requests and to my
hosts in the places mentioned above for their hospitality.

Tel Aviv, Israel A. Tsinober

March 2001.
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CHAPTER 1

INTRODUCTION

About the main features of turbulent flows
and the main problems

This introductory chapter comprises the basis and to a large extent is
a guide for the rest of the book. It starts with a brief discussion of the his-
tory of the subject, which is followed by a number of various representative
examples. The principal aim of bringing these examples is to demonstrate
the variety of situations in which turbulent flows occur and the diversity
of their manifestations. Where appropriate the examples are supplied by
comments emphasizing the differences between turbulent and laminar flows
and some specific properties of the former. Instead of a definition of tur-
bulence a subsection is devoted to major qualitative universal properties
of turbulent flows with cross references to the previous subsection on the
representative examples. This is followed by a subsection attempting to
give an idea as to why turbulence is such an extremely difficult problem.
The last subsection contains an overview of the contents of the following
chapters and the rest of the book.

1.1. Brief history

The Rise and Fall of Ideas in Turbulence
Liepmann (1979).

Only a brief outline of some major milestones in turbulence research is given
below. Full appreciation of these comes only after reading this book. More
details are given in Monin and Yaglom (1971, 1992) and Loitsyanskii (1966);
see also Frisch (1995) for interesting historical digressions/excursus and
Lumley and Yaglom (2001) for additional comments on the developments
during the last century.

1
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1st century AD Use of the term ‘turbulent’ in the fable Lupus et Agnus
by Phaedrus.

1500 Recognition of two states of fluid motion by Leonardo da Vinci and
use of the term la turbolenza.

1839 ‘Rediscovery’ of two states of fluid motion by G. Hagen.
1883 Osborne Reynolds’ experiments on pipe flow. Concept of critical

Reynolds number – transition from laminar to turbulent flow regime.
1887 Introduction of the term ‘turbulence’ by Lord Kelvin.
1895 Reynolds decomposition. Beginning of statistical approach.
1909 D. Riabuchinsky invents the constant-current hot-wire anemometer.
1912 J.T. Morris invents the constant-temperature hot-wire anemometer.
1921, 1935 Statistical approach by G.I. Taylor.
1922 L.F. Richardson’s hierarchy of eddies.
1924 L.V. Keller and A.A. Friedmann formulate the hierarchy of moments.
1938 G.I. Taylor discovers the prevalence of vortex stretching.
1941 A.N. Kolmogorov local isotropy, 2/3 and 4/5 laws.
1943 S. Corrsin establishes the existence of the sharp laminar/turbulent

interface in shear flows.
1949 Discovery of intrinsic intermittence by G. Batchelor and A. Townsend.
1951 Turbulent spot of H.W. Emmons.
1952 E. Hopf functional equation.
1962 Beginning of quantitative experiments at large Reynolds numbers by

H.L. Grant, R.W. Stewart and A. Moilliet.
1967 Bursting phenomenon by S.J. Kline et al.
1972 Beginning of large-scale computing of turbulent flows by S.A. Orszag

and G.S. Patterson.
1976 Recapitulation of large-scale coherent structures by A. Roshko.

Most of the developments in turbulence research have occurred since
Osborne Reynolds undertook his experiments. During this period, research
in turbulence was conducted almost exclusively by the engineering commu-
nity and in some other practical fields, such as in atmospheric and ocean
sciences, and astrophysics. The last three decades have been marked by an
increasing involvement of physicists and applied mathematicians though
still with pretty limited foci.

1.2. Nature and major qualitative universal features
of turbulent flows

1.2.1. REPRESENTATIVE EXAMPLES OF TURBULENT FLOWS

Unlike other complicated phenomena, turbulence is easily observed, but is
extremely difficult to interpret, understand and explain.
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There exist a number of beautiful collections of images of turbulent
flows. To mention some: Corrsin (1961), Fantasy of Flow (1993), Atlas of
Visualization (1997), van Dyke (1982) and Werlé (1987). Precise and pene-
trating in capturing the essential aspects of turbulent flows, the drawings by
Leonardo da Vinci deserve a special mention; see Pedretti (1982), Popham
(1994) and Richter (1970).

What follows is a selection of such pictures attempting to illustrate the
diversity of circumstances in which turbulent flows occur and the variety
of their manifestations. A note of warning is that most visualizations em-
ploy passive tracers (i.e., objects of Lagrangian nature) which may not
reflect the underlying dynamical structure/features of genuine turbulence,
see chapters 3, 4 and 9.

Flows in pipes
A qualitative repetition of the Reynolds experiment on his original facility
in Manchester is shown in figure 1.1.

In a particular example shown in figure 1.2 the flow becomes turbulent
at the value of Reynolds number, Re ∼ 2700, though with appropriate
measures it can be kept laminar for Re up to 105 and, in principle, at much
higher values of Reynolds number, since this flow is stable to small enough
(infinitesimal) disturbances. The only other flow known to possess a similar
property is the Couette flow in a plane channel. Both become turbulent at
relatively low Reynolds numbers with disturbances of finite amplitude.

In the laminar regime the pressure difference at distance, l, along the
pipe is proportional to the mean velocity, U , whereas in the turbulent
regime it is much larger and is approximately proportional to U7/4 in pipes
with smooth walls and to U2 in pipes with rough walls, see, for instance,
figure 20.18 in Schlichting (1979). The latter means that the rate of en-
ergy losses, Δpd2U , i.e., rate of energy dissipation, in the turbulent regime
in pipes with rough walls, is proportional to U3/d and is independent of
viscosity. In other words the nondimensional rate of energy dissipation per
unit mass ε ≡ Δpd2U

ρld2(U3/d) or simply dissipation, is Reynolds independent.
This appears to be true of most turbulent flows at large enough Reynolds
numbers, Idelchik (1996).

As mentioned, the visual observations shown in the above and subse-
quent figures were made by using some dye, i.e., via observing passive
objects1, which is not a dynamical quantity such as velocity or vorticity.
In order to be able to ‘see’ some dynamical variable one has to use more

1Most visualizations are made in such a way. It has to be noted that what one sees
looking at a pattern of a passive scalar in a turbulent flow may have nothing to do with
the behaviour of dynamical variables such as velocity and vorticity. We return to this
issue in chapters 3, 4, 7 and 9.
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Figure 1.1. Reynolds experiment in a circular pipe. The smallest mean velocity corre-
sponds to the upper frame where the flow regime is laminar, the largest mean velocity
corresponds to the lower frame where the flow regime is turbulent. Courtesy of Professor
J.D. Jackson, School of Engineering, University of Manchester

elaborate methods such as tracking small enough neutral particles, which is
still not a trivial matter, or use the data from direct numerical simulations
(DNS) of the Navier–Stokes equations (NSE), see figure 1.3.
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Figure 1.2. Reynolds number dependence of the friction factor, Cf , of flow with mean
velocity, U , in a circular pipe of diameter, d, with corresponding flow visualization at
particular values of Reynolds number Re = Ud/ν, where ν is the kinematic viscosity of
the fluid. The friction factor is defined as Cf = (Δpd)/(l 1

2
ρU2), where Δp is the pressure

drop on the distance, l, along the pipe, and ρ is the fluid density. Note that there is a range
of values of Reynolds number in which the friction factor, Cf , follows the laminar law,
Cf = 64/Re, but the flow pattern (pictures 4–6) is far from looking as purely laminar.
Adapted from Dubs (1939)

One can see the difference between the quiet laminar and the restless
turbulent flow regimes by looking at the water jet from a tap, see figure 2
in Corrsin (1961) or figure 4.1 in Mullin (1993). Note that this is more ‘pipe
turbulence’ rather than ‘jet turbulence’.
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Figure 1.3. Visualization of the field of the enstrophy production ωiωksik from the data
in DNS of NSE in a circular pipe flow at Re≈ 7000, performed by Eggels et al. (1994).
One of the prominent features of all turbulent flows is that in the mean the enstrophy
production is always positive, 〈ωiωksik〉 > 0. Note large regions with instantaneous neg-
ative enstrophy production, ωiωksik < 0. Courtesy of Professor F.T.M. Niewstadt and
Dr. J.M.J. den Toonder

Boundary layers
Boundary-layer flows belong to the same category as the flows in pipe,
channels and other wall-bounded flows.

The flows shown in figures 1.1–1.5 have many common features and
properties, such as their near-wall behaviour. However, turbulent boundary
layers possess specific essential features.
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Figure 1.4. Side view of a turbulent boundary layer visualized by (top) smoke traces,
courtesy of Professor H. Nagib, and (bottom) by hydrogen bubbles. Courtesy of Professor
A.J. Grass

First, these flows are partly turbulent2 in the sense that the turbulent
regime coexists with the laminar one (which is usually close to irrota-
tional), as well as with the transitional states between laminar and turbu-
lent regimes (see figure 1.5). Second, the ‘boundary’ between the laminar

2This term comes from Scorer (1978).
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Figure 1.5. Coexistence of different flow regimes – laminar, transitional and turbulent –
in a boundary layer on an axisymmetric body visualized in a smoke photograph. The
upper picture corresponds to a nonspinning body, the lower picture corresponds to a
spinning body. In the former regular waves (Tollmien-Schlichting waves) are seen at the
early stage of transition. In the latter the T-S waves coexist with the so-called cross-flow
vortices. Courtesy of Professor T.J. Mueller (see Mueller et al., 1981)

and turbulent flow regions is strongly corrugated with many space-time
scales involved. It is ‘fractal’-like, but nonetheless distinct. The largest
scales are such that the ‘laminar’ fluid is found quite close to the wall. Third,
the fluid from the laminar region is continuously entrained into the turbu-
lent region through the boundary between the two. That is the entrainment
process is such that laminar fluid becomes turbulent in the proximity of the
laminar/turbulent boundary. This is one of the basic processes of transition
of the flow state from laminar to turbulent. An important overall charac-
teristic of this process is the entrainment rate, but there much more.

The three features mentioned above are also observed in the so-called
free (of rigid or other boundaries) turbulent shear flows: jets and plumes,
wakes, mixing layers and flows in separation regions as well in more com-
plicated situations in geophysical and astrophysical contexts. The simplest
example is the entrainment process at the bottom of the turbulent surface
(warmer) layer of the ocean. These flows all are also partially turbulent
with corrugated boundary between the laminar and turbulent regions, and
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entrainment of fluid from the former into the latter. It seems that in free
shear flows the approximately irrotational fluid can be found deep in the
region occupied by the turbulent fluid3 just as in the turbulent boundary
layer, though both observations are mainly based on images of passive
scalars. However, frequently (but not always, see chapter 4) they are in
agreement, at least qualitatively, with observations made by other methods
such as optical (shadowgraph, schlieren and interferometric). A somewhat
dissimilar example of the coexistence of different flow regimes is shown in
figure 1.6.

Turbulent jets, plumes
Turbulent jet-like flows are ubiquitous in engineering and nature, e.g., jets
from aircraft and rocket engines and discharges from smoke stacks, volca-
noes and other geologic nozzle eruptions, see figures 1.7–1.8.

Turbulent wakes past bodies and mixing layers
The flow in the wake past a sphere undergoes a number of changes from
laminar to fully turbulent4 as the Reynolds number grows. At Re < 1 the
flow is time independent without separation; at Re∼ 1÷10 the flow remains
steady and symmetric but separates at the back of the sphere in the form
of a vortex ring, which becomes larger with increasing Reynolds number;
at Re∼ 10 ÷ 102 the flow loses its symmetries: it becomes time dependent
but (approximately) periodic, and the vortex ring is deformed into a helical
vortex, which rotates around the (former) axis of the flow. The separation
line is no more a circle and assumes a complicated form, which is chang-
ing in time. At Re∼ 102 ÷ 105 the wake becomes (apparently) random and
aperiodic but with large-scale structures, which are more complicated than
the destroyed helical vortex. The boundary layer (before the line of sepa-
ration) on the sphere remains laminar. At Re>∼ 105 the boundary layer
also becomes turbulent. It is noteworthy that the separation zone past the
sphere (figure 1.9) for Re = 3 · 105 is much narrower due to the onset of
turbulence in the boundary layer of the sphere.

This causes a strong decrease, by a factor of 6, of its drag, e.g., see
figure 1.5 in Schlichting (1979). This is an example when transition to
turbulence is reducing the losses instead of increasing them, as in most
cases. The reason is that the delayed separation leads to a much narrower
wake and hence smaller losses. This feature is also exhibited in changes of

3See figures below and figures 109, 117, 134, 151, 158, 166, 167, 174, 176, 177 in
van Dyke (1982). Note the figure 151, showing a turbulent wake behind a projectile at
supersonic speed with a remarkably sharp boundary between the turbulent flow in the
wake and the ambient irrotational flow.

4The term fully developed turbulence (voll ausgebildet turbulenz) is most probably
derived from L. Prandtl (1926).
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Figure 1.6. Coexistence of different flow regimes – laminar, transitional and turbulent –
in a fountain in the center of Washington, photo by the author (1985). Here the process
is reverse due to the decrease of Reynolds number in each subsequent step: the turbulent
flow regime in the upper part is replaced at the next step by the transitional one with
sporadic outbursts of turbulent activity. This in turn is replaced by regular wavelike
motions similar to those observed in the initial transitional stage in a boundary layer
flow shown in figure 1.5. Note the difference in the meaning of the term ‘coexistence’ in
this example and the one shown in figure 1.5. However, in both cases the changes in the
flow regime are related to the changes of the value of the ‘local’ Reynolds number. Hence
the similarity between the two examples

pressure distribution over the surface of the sphere. No such phenomena
are observed in flows past bodies with sharp edges, e.g., past a circular disc
with its plane normal to the direction of the undisturbed flow. In such a case
the normalized drag CD = Fdrag

ρU2d2 (and consequently the energy dissipation)
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Figure 1.7. Coexistence of different flow regimes – laminar, transitional and turbulent
– in a circular jet. Courtesy of Professor H. Nagib

Figure 1.8. Left: a turbulent jet from testing a Lockheed rocket engine in the Los
Angeles hills, courtesy of Professor P.E. Dimotakis. Right: eruption of Mount St. Helen
volcano on 18 May 1980, US Geological Survey

remains independent of the Reynolds number up to the highest achievable
Reynolds numbers of the order 106, figure 1.10. Other numerous examples
of this kind can be found in Idelchik (1996).
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Figure 1.9. Flow in the near wake region past a sphere at three values of the Reynolds
number, based on the free stream velocity and the sphere diameter: (a) – 2 · 104,
(b) – 2 · 105, (c) – 3 · 105 (Werlé, 1987; by permission from ONERA)
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Figure 1.10. Reynolds number dependence of the resistance coefficient, CD, of a circular
disc with its plane normal to the direction of the undisturbed flow. Adapted from Schiller
(1932); see also Muttray (1932)

Wakes past bodies exhibit very-large-scale fluctuations (undulations) in
the far field in which the wake undulates essentially as a whole (figure 1.11).
This is an indication that these large-scale undulations are the result of a
large-scale instability not directly related to the turbulent nature of the
flow within the wake5. This is probably the main reason for the similarity
of the large-scale features between the two flows shown in figure 1.11, in
spite of a large difference in the value of their Reynolds numbers. Similar
large-scale features are observed in other free shear flows such as plumes
(figure 1.12) and mixing layers (figure 1.13).

Quasi-isotropic and homogeneous flows
Quasi-isotropic and homogeneous flows are realized in the laboratory in a
flow past a grating or a grid such as those shown in figures 1.14 and 1.15.

Another way to produce such flows is via direct numerical simulations of
the Navier–Stokes equations with appropriate forcing at the right hand in
cubic box with periodic boundary conditions. An example of some results
in such a computation is shown in figure 1.16.

Flows as shown in figures 1.11–1.16 are considered by many as of purely
academic interest, since they represent an approximation to an idealized
situation called homogeneous isotropic turbulent flow. Nevertheless these
kinds of flows are of special interest for several reasons. Initially this interest

5Though these and similar structures are frequently termed as “coherent structures”
of turbulent flows.
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Figure 1.11. Top: a wake past an inclined plate at a Reynolds number 4300. Bottom:
a wake of leaking oil past a grounded tanker at a Reynolds number ∼107. Courtesy of
Professor B. Cantwell

was due to the relative ‘simplicity’ and analytical convenience of such flows.
However, there is one more aspect which makes the flows shown in the last
three examples of special interest and importance. Namely, it appears that
there exist many universal features at the level of basic physical processes of
turbulent flows, which are manifested in this idealized situation, regardless
of the origin of a specific turbulent flow, at least qualitatively. The particular
significance of these kinds of flows follows from the fact that (quasi-) ho-
mogeneous and isotropic flows are free from external influences, like mean
shear, centrifugal forces (rotation), buoyancy, magnetic field, etc., which
usually act as an organizing factor, favouring the formation of the so-called
(large-scale) coherent structures of different kinds (quasi-two-dimensional,
helical, etc.). These external influences in many cases have usually a strong
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Figure 1.12. Similarity in large-scale flow patterns of a water drop dyed with fluorescein
into clear water (inverted) at Reynolds number Re∼ 102 and of a nuclear test in Nevada
at Reynolds number Re∼ 109 (Sigurdson, 1997; by permission CRC Press LLC)

(linear) masking effect on the intrinsic nonlinear turbulent processes in such
situations as those described by rapid distortion theory, in which nonlinear
interactions between turbulent fluctuations are neglected for the duration
of the distortion (Savill, 1987; Hunt and Carruthers, 1990). In other words
the nonlinear nature of turbulent flows is manifested more distinctly in
(quasi-) homogeneous and isotropic turbulence.

It is argued here that most of the intrinsic properties of turbulent flows,
that is their physics, are seen in the cleanest and relatively ‘simple’ way
in quasi-homogeneous isotropic flows. This is the reason for some emphasis
given to such flows.

As mentioned there are many factors and influences which cause a real
turbulent flow in nature and technology to deviate from this idealized state,
sometimes strongly. In the latter case turbulent flows may lose most of their
resemblance to the three-dimensional homogeneous isotropic flow, but can
be quite similar to the (quasi-) two-dimensional one. This aspect of various
influences on turbulence is addressed in chapter. 8.

Before finishing this section it is important to note that all the above
examples show the spatial intricacy of turbulent flows. The temporal be-
haviour obviously cannot be seen from a single snapshot. An example of
time recordings of several quantities is shown in figure 1.17.
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Figure 1.13. An example of a turbulent mixing layer. Top – side view, bottom – (half)
plan view, both shadowgraph. The undisturbed velocity of the upper part of the flow
(nitrogen) is 10 m/s and the undisturbed velocity of the lower part (mixture of helium
and air) is 3.8 m/s. From Konrad (1976)

All the quantities exhibit apparently random temporal patterns, though
quite different. Similar differences occur in the spatial variations of these
quantities. We will return to these differences and many other related issues
in the subsequent chapters.

The above examples of flows show that one can easily observe at least
some manifestations of turbulence and even can describe some of them
qualitatively, i.e., without mathematics. It is natural to use the qualita-
tive manifestations of turbulent flows as a first step to ‘define’ what is
turbulence.

1.2.2. IN LIEU OF DEFINITION: MAJOR QUALITATIVE UNIVERSAL
FEATURES OF TURBULENT FLOWS

Turbulence is a phenomenon which sets in a viscous fluid
for small values of the viscosity coefficient ν, . . . hence its
purest, limiting form may be interpreted as the asymptotic,
limiting behavior of a viscous fluid for ν → 0 (Neumann,
1949).
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Figure 1.14. Flow past a grating of five circular cylinders visualized by two colours,
by Tetsuo SAGA, The University of Tokyo, Fantasy of Flow (1993), by permission
Ohmsha, Ltd

Already from the observation of the examples given in the previous sec-
tion it is easy to arrive at a conclusion that turbulence is an extremely
intricate and complicated phenomenon. Therefore, it would be näıve and
hopeless to attempt its definition in a few sentences6, see the collection of
citations in appendix A. What is turbulence? showing that this is really not
easy if not impossible. Indeed, let us try to give such a ‘definition’:

Turbulence is the manifestation of the spatio-temporal chaotic behaviour
of fluid flows at large Reynolds numbers, i.e., of a strongly nonlinear

6Though there are many attempts to do so. In contrast to mathematical theories in
which the definition of the main object of the theory precedes the results, in turbulence
(as in any field of physics) even if such a definition would be possible it is likely to come
after the basic mechanisms of turbulence as a physical phenomenon are well understood.
In any case there is considerable ‘turbulence’ in the attempts to define what is turbulence
indicating that such attempts at the present stage are conceptually incorrect and futile.
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Figure 1.15. Examples of a turbulent flow past a grid. Top – in the proximity of the
grid. Bottom – in the far field. Courtesy Professor H. Nagib

dissipative system with an extremely large number of degrees of freedom
(most probably) described by the Navier–Stokes equations.

Obviously, it is practically useless and absolutely not sufficient to say
this or anything similar. So instead of futile attempts to define what is
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Figure 1.16. Visualizations of the magnitude of (left) the vorticity, ω, and (right) the
scalar gradient, G (Gi ≡ ∂θ/∂xi), in a direct numerical simulation of the Navier–Stokes
equations in a cubic box with periodic boundary conditions at Reλ = 58. The statisti-
cally stationary state is achieved by adding an appropriate forcing in the RHS of NSE.
The threshold values for both ω and G are larger than 2.5 times of their RMS value.
Contour colouring corresponds to the cos(ω, λ2) and cos(G, λ3) alignments. The vectors
λi form the eigenframe of the rate of strain tensor, sij , corresponding to its eigenvalues
Λi (Λ1 > Λ2 > Λ3; Λ1 > 0, Λ3 < 0). Red indicates strong alignment. From Ph.D. Thesis
by Flohr (1999)

turbulence, one starts by description of its main qualitative features, as
did Tennekes and Lumley (1972). The following is an updated list of such
features with cross references to the examples given in the previous section.

• – Intrinsic spatio-temporal randomness, irregularity. Turbulence is defi-
nitely chaos. However, vice versa, generally, is not true: many chaotic flow
regimes are not turbulent, e.g. Lagrangian/kinematic chaos or ‘Lagrangian
turbulence’, laminar ‘turbulent’ flows.

One of the most important aspects is that the stochastic/random na-
ture of turbulent flows is its intrinsic property (self-stochastization or self-
randomization). There is no necessity for external random forcing either in
the interior of the fluid flow or at its boundaries, nor does one need to start
the turbulent flow with some random initial conditions provided that the
Reynolds number is large enough7. The fascinating question is how such

7In this sense the random behaviour of nonlinear systems as a response to random
forcing is not necessarily turbulence. One of the most popular examples is the Burgers
equation: without external random forcing it does not exhibit any chaotic behaviour.
Another example is a randomly forced flow at very small Reynolds numbers which
though random, is in many respects trivial (as any randomly forced linear system), e.g.,
there is no interaction between its degrees of freedom/modes.
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Figure 1.17. An example of a time recording of various quantities in a field experiment
at Reλ = 104 in the atmospheric surface layer in a point at height 10 m from the sur-
face. The measurements in this experiment included all the three velocity components
at five neighboring points. This allowed evaluation all nine velocity derivatives ∂ui

∂xk
, and

to obtain such quantities as instantaneous enstrophy, ω2, total strain, s2 ≡ siksik, en-
strophy production, ωiωksik and many others; (Kholmyansky et. al., 2001b). Note the
intermittent nature of the signals associated with velocity derivatives: peaks which are
many hundreds times larger than the mean as well as very low values, are not rare
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a behaviour can arise from purely deterministic equations as the Navier–
Stokes equations are, deterministic forcing along with smooth initial and
boundary conditions. The answer is its extreme sensitivity to disturbances
whatever small (initial conditions, boundary conditions, external noise).
Turbulence is both a strongly nonlinear (stochastic) oscillator and an am-
plifier with an (almost) ‘infinite’ gain.

The feature described here is seen in all the examples given in the pre-
vious section.

• – Extremely wide range of strongly interacting degrees of freedom. Tur-
bulent flows are large systems. In atmospheric flows, relevant scales range
from hundreds of kms to parts of a mm, i.e., there exist ∼1029 excited de-
grees of freedom8, many of which are strongly interacting. Hence extreme
complexity of turbulence (along with its intrinsic randomness) means that
description of turbulent flows should be of statistical nature. We emphasize
that statistical description is not synonymous to statistical theorization.

The interaction between the many degrees of freedom, resulting from
the nonlinearity of turbulent flows is essential (linear systems can have
arbitrarily many degrees of freedom as well, but they do not interact, and
each degree of freedom lives its own life without knowing anything about
other degrees of freedom), but not sufficient: the nonlinear interaction may
lead to strongly organized regular behaviour, e.g., solitons in the systems
described by the Korteveg–de Vries and Shrödinger equations, and shocks
in the Burgers equation.

Again most of the examples given in the previous section clearly show
the multi-scale nature of turbulent flows in space. Turbulent flows exhibit
also quite complex behaviour in time as well, see figure 1.17.

• – Loss of predictability. Two initially nearly (but not precisely) identical
turbulent flows become unrecognizably different on the time scale of dynam-
ical interest. The details of any realization are strongly different from any
other realization. This is because any individual realization is extremely
sensitive to small perturbations/disturbances. However, different realiza-
tions of the same turbulent flow have the same statistical properties, such
as drag of a sphere or rate of mixing of some contaminant. That is the
statistical properties (not only some means, but almost all statistical prop-
erties) of turbulent flows are insensitive to disturbances – turbulent flows
are statistically stable, they possess statistically stable properties. This in-
sensitivity to disturbances is only statistical. In other words turbulent flows

8This includes all scales of the atmosphere. Not all of them are considered as turbulent
in the atmospheric community. For example, Orlanski (1975) considers only the first
several hundred meters as turbulent. With this approach the number of excited degrees
of freedom is still enormous ∼1018.
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possess both predictable and unpredictable features. The well-known prob-
lem of predictability from meteorology is essentially about the dynamics
and statistics of an initial error, which is the measure of the differences
between some two realizations of a turbulent flow under almost (hence the
error) the same conditions. An important aspect is that the error also pos-
sesses stable statistical properties in the sense that errors corresponding to
different pairs of realizations have the same statistical properties.

• – Turbulent flows are highly dissipative, i.e., carry lots of strain. A source
of energy is required to maintain turbulence (gradients of mean velocity,
buoyancy, or other external forces). The energy supply is usually at large
scales, its dissipation is at small ones9. Statistical irreversibility is involved,
i.e., the processes in turbulent flows are ‘one way’ in time.

The immediate examples that come to mind are the resistance in pipes
and the drag of bluff bodies, which in the turbulent regime are orders of
magnitude larger than their laminar counterparts at the same Reynolds
number.

• – Turbulent flows are three-dimensional and rotational, i.e., carries lots
of vorticity. They are ‘random’ fields of vorticity, ω≡ curl u, with predom-
inant vortex stretching, i.e., continuous positive net production of enstro-
phy, ω2, by inertial nonlinear processes, which is ‘dissipated’ by viscosity.
An important concomitant process is a positive net production of strain,
sij = 1/2(∂ui/∂xk + ∂uk/∂xi). Both are the result of self-amplification of
the field of velocity derivatives in/by turbulent flows, and comprise one of
the most basic specific dynamical properties of turbulence. The latter, i.e.,
production of strain, is directly related to the dissipative nature of tur-
bulent flows, whereas the former, i.e., amplification of vorticity, is related
to dissipation only in an indirect manner. Random potential flows are not
turbulence.

It is not difficult to observe the three-dimensional nature of turbulent
flows, but their rotational nature can be ‘seen’ from the direct numerical
simulations of the Navier–Stokes equations, as shown in figure 1.3.

There is no consensus whether two-dimensional chaotic flows even with
many degrees of freedom should be qualified as turbulence. The main reason
is that such flows lack the mechanism of vorticity and strain amplification.
This issue is discussed in chapter 8.

9The common view of turbulence dynamics involves the Richardson–Kolmogorov cas-
cade of energy (the famous poem by Richardson). However, there are numerous examples
in which turbulence develops from small scales into larger ones, e.g., in all spatially devel-
oping turbulent flows. All the examples given in the previous section on partly-turbulent
flows are such, both free and wall-bounded. The important point is that the so-called
‘cascade’ takes place not in the physical space. We will return to this point and to the
notion of scale later in chapter 5 (see also appendix C).
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• – Strongly diffusive (random waves are not). Turbulent flows exhibit
strongly enhanced transport processes of momentum, energy, passive ob-
jects (scalars, e.g., heat, salt, moisture, particles; vectors, e.g., material
lines, gradients of passive scalars, magnetic field). It should be emphasized
that in respect with passive objects only this property is true of a much
broader class of systems. Namely, any random velocity field and even lam-
inar flows, which are Lagrangian chaotic, exhibit enhanced transport of
passive objects.

This aspect is manifested in the large resistance occurring in pipe flows,
the enlarged drag of various bodies, and the enhanced heat and mass trans-
fer and rate of mixing in turbulent flows as compared to their laminar coun-
terparts. The latter process is illustrated in figure 1.14. It shows also how
two separate passive scalars are mixed – an aspect important for chemical
reactions and combustion. Using the terms ‘turbulent viscosity’ and ‘tur-
bulent diffusivity’, one can say that they are orders of magnitude larger in
turbulent flows than their molecular counterpart. It is the right place to
note that turbulence is a property of fluid flows not fluids. For instance,
molecular viscosity and diffusivity are properties of fluids (liquids, gases)
and are independent of the flow. On the contrary the so-called ‘turbulent
viscosity’ and ‘turbulent diffusivity’ are properties of fluid flows and depend
on the fluid flow in question. The difference is more than essential.

These mostly widely known qualitative features of all turbulent flows
are essentially the same, i.e., it is meaningful to speak about qualitative uni-
versality of turbulent flows. The concept of qualitative universality is not
just a fuzzy idea: in chapter 10 it will be given a number of quantitative
attributes. Indeed these qualitative features of turbulent flows are universal
for all turbulent flows arising in qualitatively different ways and circum-
stances and generally characterize turbulent flows as a whole. In addition
to these general qualitative features, there are universal quantitative fea-
tures which are more specific for turbulent flows. They are described later
in this book, since they require more specific information and terminology.
Many (but not all) quantitative properties may vary largely with the range
of scales of interest. The large-scale properties of turbulent flows depend on
particular mechanisms generating turbulence and, generally, are quantita-
tively not universal, though as mentioned they are qualitatively universal. It
is the small-scale turbulence which, since Kolmogorov, is believed to possess
a number of universal properties independent of the large-scale flow struc-
ture, though there is quite a bit of evidence that the latter is not correct.
This point of view is not accepted universally: . . . perhaps there is no ‘real
turbulence problem’, but a large number of turbulent flows and our problem
is the self imposed and possibly impossible task of fitting many phenomena
into the Procrustean bed of a universal turbulence theory (Saffman, 1978;
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see also Hunt et al., 1994). The issue is one of several continuously debated
controversies in the problem of turbulence. This includes the meaning of
the term ‘universality’. For example, one issue involves the invariance of
Reynolds number of (some) properties of a particular turbulent flow at
large enough Reynolds numbers. Another issue is concerned with the uni-
versality of scaling properties of small-scale turbulence, which has remained
for more than fifty years one of the most active fields of inquiry. Deriva-
tion of scaling properties of fully developed turbulent flows directly from
the Navier–Stokes equations analytically is one of the most popular illusive
goals of theoretical research. This (scaling) and other phenomenological as-
pects are extensively reviewed in Monin and Yaglom (1971, 1975, 1992,
1996), Frisch (1995), and Sreenivansan and Antonia (1997).

Two notes are in order.
First, the most accepted division of turbulent flows on large and small

scales is to a large extent artificial and in some sense even unphysical due
to strong coupling between the two and due to an ambiguity of the very
term ‘scale’ and the problematic nature of the decomposition approach to
the phenomenon of turbulence and the necessity to handle turbulence as a
whole (see chapters 3, 5, 9 and appendix C).

Second, it should be stressed that some of the (possibly universal) prop-
erties of turbulent flows (such as scaling) are characteristic of a much
broader class of nonlinear systems, others are specific to turbulent flows.
Both are addressed later in the book with the emphasis on the properties
of fluid dynamical turbulence.

1.3. Why turbulence is so impossibly difficult10?
The three N’s

Turbulent flow constitutes an unusual and difficult problem
of statistical mechanics, characterized by extreme statistical
disequilibrium, by anomalous transport processes, by strong
dynamical nonlinearity, and by perplexing interplay of chaos
and order (Kraichnan, 1972).
The experience of 100 years should suggest, if nothing else,
that turbulence is a difficult problem, that is unlikely to sud-
denly succumb to our efforts. We should not await sudden
breakthroughs and miraculous solutions (Lumley, 1999).

1.3.1. ON THE NAVIER–STOKES EQUATIONS

The basic equations and some other essential information are given in ap-
pendix C. Here we provide some general notes regarding the Navier–Stokes
equations (NSE) and related matters.

10See also the collection of citations in appendix B.
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Though there exists a set of deterministic differential equations (NSE)
probably containing (almost) all of turbulence, most of our knowledge about
turbulence comes from observations and experiments (laboratory, field and
later numerical)11. This was understood long ago by A.N. Kolmogorov:
I soon understood that there was little hope of developing a pure, closed the-
ory, and because of absence of such a theory the investigation must be based
on hypotheses obtained on processing experimental data (see Tikhomirov,
1991)12. Much later he wrote that the observational material is so large,
that it allows us to foresee rather subtle mathematical results, which would
be very interesting to prove (Kolmogorov, 1978).

However, the conclusion that NSE are useful as only an experimental
tool would be incorrect. It is true that there is little substantial theoret-
ical use of NSE in turbulence, since there is almost no way to use them
explicitly in theoretical approaches, e.g., by solving them by ‘hand’. How-
ever, there are several ways to do this implicitly, i.e., by indirect use of
NSE and their consequences. For example, looking at the NSE and their
consequences themselves enables us to recognize the dynamically impor-
tant quantities and physical processes involved. In other words, NSE and
their consequences tell us what quantities and relations should be studied.
So far this can be done mostly experimentally, but this kind of ‘guiding’
should also be useful theoretically. The most elegant exception is a set of
theoretical results on the a priori upper bounds13 of long time averages of
dissipation and global transport of mass, momentum and heat (see Doer-
ing, 2009 and references therein). In this sense the NSE tell us more than
any estimates of the dimensions of attractors and similar things.

Though the NSE have (at best) a limited kinetic foundation (for gases
only), they are commonly believed to be adequate in the sense that their
solutions correspond to real fluid flows. This is not obvious, since the NSE
are a gradient expansion. So in principle, higher order terms may become
dominant in regions with large velocity gradients. Also, NSE are the result
of coarse graining over the stochastic (molecular) effects. However, one can
take the standpoint of continuum mechanics at the very outset. In the latter
case one encounters the problem of the relation between the stress tensor
and the rate of strain tensor in the fluid flow. The Newtonian fluid is the
one in which this relation is linear (see, e.g., Serrin, 1959). There exists

11This is the main reason that this book is biased experimentally.
12Therefore, the importance of experimental research in turbulence goes far beyond

the view of those who think of an experimentalist as a superior kind of professional fixer,
knowing how to turn nuts and bolts into a confirmation of their theories. The issue of
confirmation/validation of ‘theories’ in turbulence is far more serious, see chapter 3.

13Unfortunately, there are no results on the lower bounds, except trivial values corre-
sponding to the laminar flows.
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large empirical evidence that NSE are adequate, at least, at all accessible
Reynolds numbers, so we will take the standpoint of continuum mechanics.
This does not exclude the possibility that in very ‘hot spots’, where the
strain rate is extremely large, the Newtonian fluids become non-Newtonian
(see chapter 10). So far there is no direct evidence of this14.

1.3.2. ON THE NATURE OF THE PROBLEM

Formally, the problem is to solve the Navier–Stokes equations subject to
initial and boundary conditions. At present, it is possible to obtain fully
resolved solutions at moderate Reynolds numbers via direct numerical simu-
lations of the Navier–Stokes equations. However, the important point is that
looking at the behaviour of a particular solution does not solve the prob-
lem, since any particular solution (which is not in an analytical form) may
not contribute much to the understanding of the basic physics of turbulent
flows15. Ideally, one needs for this a method of understanding the qualitative
content of equations (Feynmann, 1963). In other words, nothing less than a
thorough understanding of the [global behaviour of the] system of all their
[NSE] solutions would seem to be adequate to elucidate the phenomenon of
turbulence (Neumann, 1949). That is in order to understand the dynamics,
or the main characteristics of the dynamics, it is necessary to understand
a significant portion of the phase flow (see glossary of terms), especially
the unstable solutions16. However, at present (if ever) it is impossible due
to very high dimension and complicated structure of the underlying attrac-
tors (assumed to exist): one may never be able to realistically determine the
fine-scale structure and dynamical details of attractors of even moderate di-
mension . . . . The theoretical tools that characterize attractors of moderate
or large dimensions in terms of the modest amounts of information gleaned
from trajectories [i.e., particular solutions] . . . do not exist . . . they are more
likely to be probabilistic than geometric in nature (Guckenheimer, 1986).

14The success of NSE equations for the laminar flows of viscous fluids seems to be well
established, but even in this case, it is, in fact, surprising that the assumption of linearity
in the relation between τij and sij as usually employed in continuum theory . . ., works
as well, and over as large a range, as it does. Unless we are prepared simply to accept
this gratefully, without further curiosity, it seems clear that a deeper explanation must be
sought (Goldstein 1972).

15There is no consensus on what is (are) the problem(s) of turbulence and what would
constitute its (their) solution. Neither is there agreement on what constitutes under-
standing. It is definitely not the proof of the existence of the smooth solution of the NSE
on a three-dimensional domain for all time or anything similar. The discussion of this
and related matters is postponed to the chapter 10.

16In dynamical systems the unstable solutions give the key to understanding of the
global behaviour in some significant parts of the phase space.
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However, the situation is not that bad, since in many cases an individual
realization of a turbulent flow in a large enough space/time domain allows
us to obtain important information of rather general nature. The reason is
the property of ergodicity, which is believed to be true in turbulence (and
NSE) and has a considerable empirical support17.

1.3.3. NONLINEARITY

The nonlinearity of turbulence is the most frequently fingered as the main
‘guilty party’. There are several ‘howevers’.

First, there are nonlinear problems that are completely integrable. The
well-known examples, are systems displaying solitons or solitary waves. In
these systems the many degrees of freedom are so strongly coupled that
they do not display any chaotic/irregular behaviour. Instead they are en-
tirely organized and regular (see Zakharov, 1990 and references therein).
By a quite questionable analogy it is thought that the so-called coherent
structures in turbulent flows may be treated/ viewed in a similar way.

Second, nonlinearity is frequently blamed for the difficulties in the so-
called closure problem which is associated with some form of decomposition,
such as the Reynolds decomposition of the flow field into the mean and the
fluctuations, or similar decompositions into resolved and unresolved scales
associated with large eddy simulations. The essence of the problem is that
the equations for the mean field (resolved scales) contain moments of the
fluctuations (unresolved scales) due to the nonlinearity of the NSE. How-
ever, a similar problem exists for the so-called advection-diffusion equation
describing the behaviour of a passive scalar in some flow field. But this
equation is linear. The problem arises due to the multiplicative nature of
the velocity field, since velocity enters this equation as its coefficients. Fi-
nally, a noteworthy caveat is that the inertial interactions as expressed
by nonlinearity in the Euler setting, i.e., (u · ∇)u have a relative nature;
they are eliminated in the transformation to the particle attached reference
system (Monin and Yaglom, 1975, p. 532). In other words, in a pure La-
grangian setting (see appendix 3) the acceleration term is linear, see further
discussion in chapter 3.

1.3.4. NON-INTEGRABILITY

In 1788 Lagrange wrote: One owes to Euler the first general formulas for
fluid motion . . . presented in the simple and luminous notation of partial
differences . . . By this discovery, all fluid mechanics was reduced to a single

17But no theoretical/mathematical support: The problem with this ergodicity assump-
tion is that nobody has ever even come close to proving it for the Navier–Stokes equations
(Foias, 1997), though some mathematical results, which are claimed to be relevant to tur-
bulence are given in Foias et al. (2001).
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point analysis, and if the equations involved were integrable, one could
determine completely, in all cases the motion of a fluid moved by any forces.
(Mécanique analitique, Paris, 1788, section X. p. 271).

The if in the above citation is crucial: the Navier–Stokes equations are
not integrable.

Integrable systems, such as those having a solution ‘in closed form’
exhibit regular organized behaviour, even those having (formally) an infi-
nite number of strongly coupled degrees of freedom. A prominent example
is provided by the solitons in the systems described by the Korteveg–de
Vries and Shrödinger equations. Two other examples are the Burgers and
the so-called restricted Euler equation, which are integrable equations, and
exhibit random behaviour only under random forcing and or initial condi-
tions, otherwise their solutions are not random18. That is, these examples
represent the response of nonlinear systems to random forcing and which
otherwise are not random, and should be distinguished from problems in-
volving genuine turbulence. Navier–Stokes equations at sufficiently large
Reynolds number have the property of intrinsic stochasticity in the sense
that they possess mechanisms of self-randomization (most probably at all
scales) which are not fully understood.

1.3.5. NONLOCALITY

This is probably one of the main reasons the problem of turbulence is so
difficult.

Formally, nonlocality is due to the fact that the Navier–Stokes equa-
tions are integro-differential for the velocity field, and hence the velocity
field is nonlocal in physical or any other space. Physically, it is because of
the presence of long-range forces due to pressure. The property of nonlo-
cality of NSE is two-fold. On the one hand, it is due to pressure (‘dynamic’
nonlocality), since ∇2p = ρ∂2uiuk

∂xi∂xj
, and therefore pressure is nonlocal due

to nonlocality of the operator ∇−2: the pressure is defined in each space
point by the velocity in the whole flow field. This aspect of nonlocality is
strongly associated with the essentially non-Lagrangian nature of pressure,
which is related to the ‘memory’ of turbulence, i.e., nonlocality in time.

18There is no consensus on the meaning of the term integrability, but it is agreed
mostly that integrable systems behave nicely and are globally ‘regular’, whereas the non-
integrable systems are not ‘solvable exactly’ and exhibit chaotic behaviour. See Zakharov
(1990) and Kosmann-Schwarzbach et al. (2004) for more examples and discussion on
what is integrability. The latter write It would fit for a course entitled “Integrability” to
start with a definition of this notion. Alas, this is not possible. There exists a profusion of
definitions and where you have two scientists you have (at least) three different definitions
of integrability but mention the definition by Poincaré: to integrate a differential equation
is to find for the general solution a finite expression, possibly multivalued, in a finite
number of functions.
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One cannot get rid of nonlocality by taking the rot of the NSE, thereby
getting rid of the pressure gradient ∇p, and looking at the resulting equa-
tion for vorticity ω. The reason is that the equation for vorticity is nonlocal
in vorticity, since it contains the rate of strain tensor sij = ∂ui

∂xj
+ ∂uj

∂xi
, u =

rot−1ω due to the nonlocality of the operator rot−1(‘kinematic’ nonlocal-
ity). In other words, since (for incompressible fluids) ∇2u = −rotω, the
whole flow field is defined in each space point by the vorticity in the whole
flow field and boundary conditions on velocity19. This in turn means that
the large scales as represented by the velocity field and the small scales as
represented by vorticity (and strain) should be strongly coupled, as indeed
is the case. Note that this coupling is bidirectional, i.e., the small scales
cannot be seen as passive or as ‘slaved’ to the large scales – the small scales
react back in a nonlocal manner. There is no such relation in the case of a
passive contaminant (or any other passive object) in a turbulent flow. The
relation in this latter case, though also nonlocal, is one-directional: the fluid
flow does not ‘know’ anything about the presence of the passive object.

The nonlocality due to the coupling between large and small scales is
also manifested in problems related to various decompositions of turbulent
flows and in the so-called closure problem. For example, in the Reynolds
decomposition of the flow field into the mean and the fluctuations and in
similar decompositions associated with large eddy simulations (LES), the
relation between the fluctuations and the mean flow (or resolved and unre-
solved scales in LES, etc.) is not pointwise in space/time, it is a functional.
That is the field of fluctuations at each time/space point depends on the
mean (resolved) field in the whole time/space domain. Vice versa, the mean
(resolved) flow at each time/space point depends on the field of fluctuations
(unresolved scales) in the whole time/space domain. This is because the
equations for the fluctuations (unresolved scales) contain as coefficients the
mean (resolved) field. This means that in turbulent flows, point-wise flow
independent ‘constitutive’ relations analogous to real material constitutive
relations for fluids (such as stress/strain relations) can not exist, though
the ‘eddy viscosity’ and ‘eddy diffusivity’ are frequently used20 as a crude
approximation for taking into account the reaction of fluctuations (unre-
solved scales) on the mean flow (resolved scales). The fact that the ‘eddy

19Note that, just like in the case of vorticity, the whole flow field is determined entirely
by the field of strain. This is seen from the equation ∇2ui = 2∂sik/∂xk, which together
with the boundary conditions uniquely defines the velocity field.

Note that the evolution of the rate of strain tensor is governed by the equation (C.17 )

containing the pressure Hessian ∂2p
∂xi∂xj

, so, in fact the pressure is present in the equation

for vorticity (C.9) either.
20But Scorer (1978) is quite critical about the doubtful meaning of an eddy transfer

coefficient.
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viscosity’ and ‘eddy diffusivity’ are flow (and space/time) dependent is just
another expression of the strong coupling between the large and the small
scales. More details on the issue of nonlocality are given in chapter 621.

1.3.6. ON PHYSICS OF TURBULENCE

The difficulties described above are mostly of a formal/technical nature.
There is another difficulty of a more general nature. It is the lack of knowl-
edge about the basic physical processes of turbulence and its generation and
origin, and poor understanding of the processes which are already known.
For example, the underlying mechanisms of predominant vortex stretching,
which is why in turbulent flows vorticity is stretched more than compressed,
are (at best) poorly understood and essentially not known. Until recently a
not less important concomitant process of strain production was mostly ne-
glected by the community. It is this process (rather than vortex stretching)
that is directly responsible for the enhanced dissipation of turbulent flows.
There are qualitative differences between the two. The enstrophy produc-
tion is a nonlocal process with predominant stretching, whereas the strain
production is a local process with predominant compressing, see chapters
6 and 9. Another example concerns the question on how well defined is the
concept of inertial range and the consequences of the so-called ‘anomalous
scaling’.

1.3.7. ON STATISTICAL THEORIES

It has been realized since the beginning that the problem
of turbulence is a statistical problem; that is a problem in
which we study instead of the motion of a given system, the
distribution of motions in a family of systems . . . It has not,
however, been adequately realized just what has to be as-
sumed in a statistical theory of turbulence (Wiener, 1939).
Thus the analogy with the kinetic theory of gases is of rel-
atively little help in the formulation of the theory of tur-
bulence, and is useful only for a preliminary understanding
of the concept of a statistical approach to physical theory
(Monin and Yaglom, 1971).
The statistical-mechanical treatment of turbulence is made
questionable by strong nonlinearity and strong disequilib-
rium that result in the creation of ordered structures imbed-
ded in disorder (Kraichnan and Chen, 1989).

21There are also many ‘small’ n’s such as non-gaussianity, non-markovianity, no low-
dimensional description, no small parameters and no theory based on first principles as
NSE equations, which is a real frustration for a theoretician.
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Just as in statistical physics, the statistical approach should be adopted in
turbulence not only in ‘theories’ but also in handling the data from phys-
ical and numerical experiments from the outset/start due to the extreme
complexity of turbulence phenomenon(a). In both cases certain statistical
hypotheses are made. But the former was quite successful in making a num-
ber of important predictions, whereas the latter, with few exceptions, such
as the Kolmogorov four-fifths law (Kolmogorov, 1941b), was unable to pro-
duce genuine predictions based on the first principles. All the rest – in the
words of P.G. Saffman – are postdictions. Apart from the above-mentioned
reasons for such a failure it should be mentioned that, unlike statistical
physics, in turbulence neither ‘simple objects’ (such that a collection of
these objects would adequately represent turbulent flows) ‘to do statistical
mechanics’ with them, nor ‘right’ statistical hypotheses have so far been
found. The question about the very existence of both remains open, for
more see, e.g., Monin and Yaglom, 1971, pp. 4–5. The problem seems to
be even a bit more complicated as turbulence (being studied by all kinds
of statistical methods of description) cannot be considered as just a prob-
lem of statistical physics/mechanics only. There is no effective/satisfactory
theoretical framework to handle turbulence (nothing new: this was stated
by von Neumann in 1949), though it is true that turbulence can be seen
also (but only in part!) as a problem of nonequilibrium statistical physics
or whatever.

1.4. Outline of the following material

Our main emphasis is on the basic properties of turbulent flows. Therefore
origins of turbulence and ways of its creation are discussed only briefly in
chapter 2, together with some points concerning the basic differences with
transition to chaos. Instability and transition to turbulence and chaos com-
prise several separate disciplines, in which many thousands of publications
already exist.

Chapter 3 is devoted to the problem of describing and studying tur-
bulent flows, with the stress on the principal points. The main additions
concern Eulerian versus Lagrangian descriptions (section 3.6) and ergod-
icity (section 3.7). In addition main technical issues (appendix E in the
first edition) are also given an overview in this chapter with a discussion of
the issue of experimental ‘validation of theories’ and measurements at high
Reynolds numbers.

Selected kinematic issues are discussed in chapter 4. Namely, we con-
centrate on those issues of the behaviour of passive objects in random flows
and kinematic (Lagrangian) chaos which are relevant for comparison with
the dynamical aspects of turbulent flows.
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The primary aspects of phenomenology are discussed in chapter 5, with
the stress placed on the concepts of inertial range, cascade, decompositions
and related matters. The main addition is a section on anomalous scaling
and ill-posedness of the concept of inertial range.

Chapters 6 and 7 are devoted to the dynamics of turbulence and its
structure, with the emphasis placed on the dynamics of the field of veloc-
ity derivatives: vorticity and strain, and their interaction. Special attention
is given to nonlocality, non-Gaussianity and geometrical statistics, inter-
mittency and its relation to structure(s). Additional stress and evidence is
given to the role of strain in turbulent flows, the so-called Tennekes and
Lumley balance, nonlocality and fluid particle accelerations.

An overview of turbulent flows under various influences and physical
circumstances, some of which serve also as sources of energy for sustain-
ing the turbulence, is given in chapter 8. These include shear, buoyancy,
rotation, (electro-) magnetic field, compressibility and additives. The main
additions concern new evidence on the phenomenon of entrainment, quali-
tative differences between quasi-two-dimensional and pure two-dimensional
turbulent flows, and turbulent flows of dilute polymer solutions. For obvious
reasons the material of this chapter is limited by only the most important
essential features and changes in turbulent flows under various influences.

Chapter 9 is a new one which grew out of a one page appendix D in
the previous edition. Its title tells clearly what it is: Analogies, misconcep-
tions and ill-defined concepts. The main emphasis is given to differences
rather than similarities. The primary reason for this is that understand-
ing of differences is expected to aid better understanding of both systems
and avoid misconceptions associated with extending the analogies too far.
Second, dealing with conceptual aspects of turbulence research leads nec-
essarily to addressing misconceptions which have arisen during more than
a century of turbulence research attempting to achieve some physical un-
derstanding/picture of this enigmatic phenomenon.

Chapters 2 to 7 and chapter 9 are concluded by a brief summary.
The former chapter 9 became chapter 10. It is devoted to the recapit-

ulation of some main points with somewhat different emphasis, and to the
discussion of issues of general nature not addressed in previous chapters.
The main addition there is a section called Turbulence versus mathematics
and vice versa dealing mainly with the issue of how relevant are the existing
mathematical developments to (understanding of) turbulence.

This last chapter is followed by a list of references and appendices. The
latter contain glossaries of some terms, and a glossary of essential fluid
mechanics containing some not broadly known facts. These are followed by
subject and author indices.
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1.5. In lieu of a summary

MAJOR QUALITATIVE UNIVERSAL

PROPERTIES OF TURBULENCE

– Intrinsic spatio-temporal randomness, irregularity. Turbulence is
chaos (but not necessarily vice versa); its intrinsic property is self-
stochastization or self-randomization.

– Loss of predictability, but stable statistical properties.
– Extremely wide range of strongly and nonlocally interacting degrees

of freedom (‘scales’ in time and space).
– Highly dissipative, statistically irreversible.
– Turbulent flows are three-dimensional and rotational with continuous

self-production of vorticity and strain.
– Strongly diffusive with enhanced transport of momentum, energy,

and passive objects.
– Strongly nonlinear, non-integrable, nonlocal, non-Gaussian.



CHAPTER 2

ORIGINS OF TURBULENCE

Overview of instability, transition and chaos

2.1. Instability

Yet not every solution of the equation of motion, even if it is
exact, can actually occur in Nature. The flow that occurs in
Nature must not only obey the equations of fluid dynamics
but also be stable (Landau and Lifshits, 1959).
Kolmogorov’s scenario was based on the complexity of the
dynamics along the attractor rather than on its stability
(Arnold, 1991).
To the flows observed in the long run after the influence of
the initial conditions has died down there correspond certain
solutions of the Navier–Stokes equations. These solutions
constitute a certain manifold M = M(µ) (or M = M(Re))
in phase space invariant under phase flow . . . The notion of
stability here refers to the whole manifold and not to the
single motions contained in it (Hopf, 1948).

It is a common view that the origin of turbulence is in the instability of
some basic laminar flow(s). This is understood in the sense that any flow
is started at some moment in time from rest, and as long as the Reynolds
number (or a similar parameter) is small, the flow remains laminar. As the
Reynolds number increases, some instability sets in, which is followed by
further (secondary, tertiary . . .) instabilities (bifurcations), transition and a
fully developed turbulent state1. Such sequences of events occur not only
throughout the whole flow field, but also at successive downstream locations
of a single flow, such as the spatially developing flows as shown in figures 1.4,
1.5, 1.7, 1.8, 1.11 and 1.13 of chapter 1. However, it is important to stress
that transition to a turbulent regime may be quite sudden. For example, this

1The literature on fluid flow instabilities and transition is vast. Comprehensive reviews
and lists of references can be found in Drazin and Reid (2004) and references to the
foreword by John Miles, Huerre and Rossi (1998), and Monin and Yaglom (1971, 1992),
and also Monin (1986) .
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Figure 2.1. Centreline velocity time records as examples of puff (left) and slug (right).
Note the abrupt transition between the laminar and turbulent states and vice versa.
(Durst and Ünsal, 2006)

may happen ‘in no time’ in pipe flows under certain conditions2 (see figure
2.1) or in the process involving the impingement of a laminar vortex ring
upon a rigid wall (see figure 2.2) and at the laminar/turbulent ‘interfaces’
in turbulent spots and in all partly-turbulent flows (see chapter 8). In all
these there is a distinct Lagrangian aspect: the abrupt transition of fluid
particles (i.e., Lagrangian objects) from the laminar to turbulent state when
passing across the laminar/turbulent ‘interface’.

From the mathematical point of view the transitions from one flow
regime to another with increasing Reynolds number – as we observe them
in physical space – are believed to be a manifestation of generic structural
changes of the mathematical objects called phase flow and attractors in the
phase space through bifurcations in a given flow geometry (Hopf, 1948).
However, partly-turbulent flows (a special feature of these flows is the co-
existence of regions with laminar and turbulent states of flow) do not easily
‘fit’ in this picture. Note that in partly-turbulent flows there is a continu-
ous transition of laminar flow into turbulent as a result of the entrainment
process occurring across the boundary between the two (see section 8.2).
We emphasize that the above transition is of distinctly Lagrangian nature
as it happens with fluid particles which are purely Lagrangian objects!

Whereas the processes by which flows become turbulent are quite di-
verse, all known qualitative and a number of quantitative properties of

2For example in a pipe flow which is held laminar at rather large Reynolds number
by special precautions at Re up to 105, and then subject to disturbance of finite ampli-
tude. This is possible because It is thought that pipe flow is stable for all infinitesimal
disturbances and it may be that appropriate kinds of disturbance will grow when the am-
plitude exceeds a value which depends on Reynolds number (Taylor, 1962). This property
is proven rigorously for the plane Couette flow.
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Figure 2.2. Sudden transition of a laminar vortex ring to a turbulent state (Schultz–
Grunov, 1980)

many (but not all) turbulent flows do not depend either on the initial con-
ditions or on the history and particular way of their creation, e.g., whether
the flows were started from rest or from some other flow and/or how fast the
Reynolds number was changed. The qualitative properties of all turbulent
flows are the same.

The diversity of the processes by which flows become turbulent is in part
due to the sensitivity of the instability and transition phenomena to various
details characterizing the basic flow and its environment. For example, the
Orr–Sommerfeld equation governing the linear(ized) (in)stability contains
the second derivative of the basic velocity profile. Many flows (some of the
so-called open flows, such as flows in pipes, boundary layers, jets, wakes,
mixing layers) are very sensitive to external noise and excitation. There are
essential differences in the instability features of turbulent shear flows of
different kinds (wall-bounded – pipes/channels, boundary layers, and free –
jets, wakes and mixing layers), thermal, multidiffusive and compositional
convection, vortex breakdown, breaking of surface and internal waves and
many others3. It is important that such differences occur also for the same
flow geometry, which display in words of M.V. Morkovin bewildering va-
riety of transitional behaviour. The specific route may depend on initial
conditions, level of external disturbances (receptivity), forcing, time his-
tory and other details in most of the flows mentioned above (see figure 2.3
for an example of such sensitivity).

This diversity is especially distinct for the very initial stage, which is the
(quasi-) linear(ized) instability. Later nonlinear stages are less sensitive to
such details. Hence there is a tendency to universality in strongly nonlinear

3For a description of particular examples and references see Tritton (1988, chapters
17, 18, 22–24), Sherman (1990, chapter 13) and Huerre and Rossi (1998).
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Figure 2.3. Flow patterns of a square jet of cold flow (nitrogen, top) and combusting
gas (propane, bottom) exhibiting strong dependence on forcing (4 Hz, left column) at
the jet exit by piezoelectric actuators. Courtesy of Professor A. Glezer

regimes, such as developed turbulence4. We shall discuss this tendency in
more detail in later chapters.

4By tendency, it is meant that universality occurs on the qualitative, but not neces-
sarily on the quantitative level.
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One of the important common features of processes resulting in tur-
bulence is that all of them tend to enhance the rotational and dissipative
properties of the flow in the process of transition to turbulence. The first
property is associated with the production of vorticity, whereas the second
property is due to the production of strain (see chapters 5, 6 and 8).

2.2. Transition to turbulence versus routes to chaos

One of the main achievements of modern developments in deterministic
chaos is the recognition that chaotic behaviour is an intrinsic fundamental
property of a wide class of nonlinear physical systems (including turbu-
lence) and not a result of external random forcing or errors in the input of
the numerical simulation on the computer or the physical realization in the
laboratory. The nonlinear systems and the equations describing them pro-
duce an apparently random output ‘on their own’, ‘out of nothing’, which
is their very nature. However, there is a variety of qualitatively different
systems exhibiting such a behaviour just as there is a large diversity of such
behaviours.

The qualification of turbulence as a phenomenon characterized by a
large number of strongly interacting degrees of freedom enables us to make
a clear distinction between transition to turbulence and transition to chaotic
behaviour.

The main point of distinction is as follows.
Low-dimensional chaotic systems like the famous Lorenz (1963) system

or the spherical pendulum studied by Miles (1984) change their behaviour
from simple regular (as periodic) to distinctly chaotic as some parameter of
the system changes. However, obviously the number of degrees of freedom
of all such systems remains the same, only the character of the interaction
of these degrees of freedom changes.

At early stages of transition to turbulence some fluid dynamical systems
(but not all)5 exhibit the same behaviour as found in the so-called ‘routes to
chaos’ in low-dimensional dynamical systems. Namely, they have only a few
excited degrees of freedom and a fixed number of them, which are strongly
correlated over the whole flow domain. Hence their dynamics is essentially
temporal: it is chaotic but rather ‘simple’, i.e., the chaos is temporal only,
the spatial structure of the flow is not changing. However, at more advanced
stages of transition, the number of excited degrees of freedom in fluid flows
increases rapidly with the Reynolds number (or similar parameters such as

5The so-called closed systems, like small aspect ratio Rayleigh-Bènard convection and
Taylor–Couette flow, see e.g., Aref and Gollub (1996), Mullin (1993) and Tritton (1988,
section 24.7) and references therein.
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the Rayleigh number in thermal convection) and in the developed stage,
it is ∼Re9/4 (see appendix 3 and chapter 5). This steep increase in the
number of excited degrees of freedom results in a qualitative change in
the behaviour of the flow. It is chaotic as well, but qualitatively different,
much more complicated kind of chaos: it is both temporal and spatial and
high-dimensional: ‘more is different’ (Anderson, 1972, 1991, 1995). The idea
that the essential feature of transition to turbulence is an increase of the
number of excited degrees of freedom dates back to Landau (1944) and
Hopf (1948) and is correct, though the details of their scenario appeared
to be not precise (see Monin, 1986). However, Kolmogorov’s ideas on the
experimentalist’s difficulties in distinguishing between quasi-periodic sys-
tems with many basic frequencies and genuinely chaotic systems have not
yet been formalized (Arnold, 1991). In other words it is very difficult if not
impossible to make such a distinction in practice.

Here is the right place to note that there is an important difference be-
tween the number of degrees of freedom roughly proportional to the number
of ordinary differential equations necessary to adequately represent a sys-
tem described by partial differential equations (NSE) and the dimension
of the attractor of the system (if such exists). In a particular dynamical
system, the former is obviously fixed and is independent of the parameters
of the system, whereas the latter is changing with the parameters but is
bounded. In turbulence both are essentially increasing with the Reynolds
number and become very large at large Reynolds number.

2.3. Many ways of creating turbulent flows

Any turbulent flow is maintained by an external source of energy produced
by one or more mechanisms. The mechanisms maintaining/sustaining tur-
bulence, at least some of them, are believed to be closely related (but are
not the same) as those by which laminar and transitional flows become tur-
bulent. We address this issue in chapter 8. Here we note that, apart from a
great variety of turbulent flows in nature/technology and ‘natural’ ways re-
sulting from instabilities, turbulent flows can be produced by ‘brute force’,
i.e., by applying external forcing of various kinds both in real physical sys-
tems and in computations by adding some forcing in the right hand side
of the Navier–Stokes equations6. For example, one of the simplest kinds of
turbulent flow such as quasi-homogeneous and isotropic, can be established
by moving a grid through a quiescent fluid or placing such a grid in a wind
tunnel, or oscillating such grids in a water tank. Turbulence is produced
by forcing in the interior of the fluid flow (by electromagnetic forces, e.g.,
in electrolytes, liquid metals or plasma; or other body forces) or at flow

6The random force method in turbulence theory is due to Novikov (1963a, 1964).
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boundaries, which can be still or moving/flexible, smooth or rough, sim-
ple or complex. Similarly turbulent flow can be produced numerically with
an infinite versatility by adding a force (random or deterministic) to the
right-hand side of the Navier–Stokes equations and/or forcing the flow at
its boundaries.

An important point is that the nature of forcing (deterministic, ran-
dom, temporally modulated or whatever) is secondary in establishing and
sustaining a turbulent flow, provided that the Reynolds number is large
enough and the forcing is mostly in the large scales. Another important
point is that the forcing does not have to be random. Even if a turbulent
flow is produced by random forcing, the primary role of such forcing (as
of any forcing) is to supply energy to the flow and to trigger the intrinsic
mechanisms of self-stochastization or self-randomization of turbulent flow,
i.e., creation of randomness out of ‘nothing’. This is the reason why both
kinds of turbulent flows – those arising ‘naturally’, e.g., by a simple (time
independent and smooth in space) deterministic forcing, or produced by
some external random source, are the same qualitatively and in some (but
not all) essential respects quantitatively. However, the nature of forcing
if, e.g., it is not large-scale, may result in qualitative differences such as
in the case of broadband forcing7. Similarly, boundary, initial and inflow
conditions may cause qualitative difference as well.

At small enough Reynolds numbers, the flow produced by deterministic
forcing is not random, it is laminar, but the flow produced by random forc-
ing, though random, is in many respects trivial (as any randomly-forced
linear system), e.g., there is no interaction between its degrees of free-
dom/modes. Strictly speaking this latter is true of pure dynamical flow
properties described in an Eulerian setting because some of its ‘kinematic’
properties as described in a pure Lagrangian setting can be (and usually
are) pretty complex and not trivial, see chapters 3, 4 and 9.

Thus a turbulent flow originates not necessarily out of a laminar flow
with the same geometry. It can arise from any initial state including a
‘turbulent’ one, such as random initial conditions in direct numerical simu-
lations of the Navier–Stokes equations. That is, the transition from laminar
to turbulent regime is not the only causal relation. This problem is related
to a somewhat ‘philosophical’ question on whether flows become or whether
they just are turbulent, and to the unknown properties of the phase flow,
attractors and related matters, which are far beyond the scope of this book.

7In this case if the forcing is strong enough not only in the large scales it can balance
the viscous effects directly, thereby bypassing the nonlinearity, see chaper 6.
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2.4. Summary

There is a great variety of ways/routes in which a laminar flow becomes
turbulent, just as there are many ways to establish approximately the same
turbulent flow. In other words, the view that turbulent flows always develop
from laminar ones is too narrow.

Once a flow becomes turbulent, it seems impossible to find out its origin.
The reason is due to the chaotic nature and the irreversibility of turbulent
flows.

The main difference between the transition to chaos and to turbulence is
that in the former the number of degrees of freedom remains fixed, whereas
in the latter the number of degrees of freedom increases strongly with in-
creases in the Reynolds number and/or other similar parameters.



CHAPTER 3

METHODS OF DESCRIBING AND STUDYING
TURBULENT FLOWS

Deterministic, structural, statistical or something else?

While the experimental techniques that have been invaluable in
understanding phase transitions promise to be very useful in the
study of hydrodynamic phenomena, I suspect that the recent ad-
dition to our theoretical arsenal may be less effective than many
had hoped (Martin, 1976).
I think that the k-space decomposition does actually obscure the
physics (Moffatt, 1990a).
In contrast to this experimental cornucopia, theory can offer only
a few crumbs (Siggia, 1994).
. . . the observational material is so large, that it allows to foresee
rather subtle mathematical results, which would be very interest-
ing to prove (Kolmogorov, 1978).
Sometimes experiments provide us with so beautiful and clear re-
sults that it is a shame on theorists that they cannot interpret
them (Yudovich, 2003).

One of the major problems in describing turbulence stems from its ex-
tremely intricate effectively/apparently random behaviour along with a
huge number of strongly and nonlocally interacting degrees of freedom.
Other reasons why the turbulence problem is so impossibly difficult have
been mentioned in chapter 1. One more consideration involves the fact that
adequate tools to handle both the problem and the phenomenon of turbu-
lence are not developed enough. In this respect the state of matters is not
very much different from the one depicted by von Neumann (1949):

The entire experience with the subject indicates that the purely ana-
lytical approach is beset with difficulties, which at this moment are still
prohibitive. The reason for this is probably as was indicated above: That
our intuitive relationship to the subject is still too loose – not having suc-
ceeded at anything like deep mathematical penetration in any part of the
subject, we are still quite disoriented as to the relevant factors, and as to
the proper analytical machinery to be used.

That is there is no way and no tools so far, if ever, to treat turbulence
analytically – turbulence is beyond analytics (TBA). Unfortunately, this is

43
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true of other theoretical approaches such as attempts to construct statistical
and/or other theories.

Another matter concerns the technical tools, which are of purely exper-
imental and observational nature. Unlike the theoretical issues/problems
much essential progress has occurred in developing numerical, laboratory
and field experimental approaches to turbulent flows. It is noteworthy that
in view of the state of the theoretical field, the experimental research in tur-
bulence was and remains the main source of knowledge of turbulent flows.
Therefore, the role of experiments in turbulence goes far beyond the view of
those who think of experimentalists as a superior kind of professional fixers
knowing how to turn nuts and bolts into a confirmation of other people’s
‘theories’. From the basic point of view there is almost nothing to be con-
firmed so far. On the contrary the essential mathematical complications of
the subject were only disclosed by actual experience with the physical coun-
terparts of these equations (von Neumann, 1949), and . . . the observational
material is so large, that it allows to foresee rather subtle mathematical re-
sults, which would be very interesting to prove (Kolmogorov, 1978). These
statements remain as valid today as they were earlier. The experiment re-
mains a major exploratory tool in elucidating the properties of turbulence
as a physical phenomenon. We recall here that this does not mean that
the Navier–Stokes equations are useful as an experimental tool only (see
chapter 1, subsection 1.3.1.)

This chapter is devoted to some matters of principle regarding the meth-
ods of describing turbulent flows and related issues.

3.1. Deterministic versus random/stochastic
or how ‘statistical’ is turbulence?

There is probably no such thing as a most favoured or most rele-
vant, turbulent solution. Instead, the turbulent solutions represent
an ensemble of statistical properties, which they share, and which
alone constitute the essential and physically reproducible traits of
turbulence (Von Neumann, 1949).
The “statistical” community . . . strongly disputes the possibility
of any coherence or order associated to turbulence (Lesieur, 1997).
The transition from laminar to turbulent flow is a nonequilib-
rium phase transition to a more organized motion (Klimontovich,
1996).

It is quite common to contrapose the ‘traditional’ statistical and the deter-
ministic/structural approaches in turbulence research. However, contrast-
ing the terms ‘deterministic’ and ‘random’ has lost most (but not all)
of its meaning with the developments in ‘deterministic chaos’: it is well
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established that even simple systems governed by purely deterministic non-
linear sets of equations, such as those described by only three nonlinear
ordinary differential equations, as a rule exhibit irregular apparently ran-
dom/stochastic behaviour. In fact, in respect to turbulence this was known
long before the ‘discovery of chaos’. However, since Leray (1934) one was
not sure about the (theoretical but not observational) possibility that tur-
bulence is a manifestation of breakdown of the Navier–Stokes equations.

Early justifications for the necessity of statistical approaches to tur-
bulence were usually based on the extreme complexity of the individual
realizations of turbulent flows:

In . . . turbulent motion, an enormous number of degrees of freedom
are always excited, and hence the variation with time (and space) of any
physical value will be described . . . by functions of extremely complicated
nature.

The theory of turbulence by its very nature cannot be other than statis-
tical, i.e., an individual description of the fields of velocity, pressure, temper-
ature, and other characteristics of turbulent flow is in principle impossible.
Moreover, such description would not be useful even if possible, since the
extremely complicated and irregular nature of all the fields eliminates the
possibility of using exact values of them in any practical problems . . .

In the present-day statistical fluid mechanics, it is always implied that
the fluid mechanical fields of a turbulent flow are random fields in the sense
used in probability theory. (Monin and Yaglom, 1971, pp. 3–4, 7).

From the very beginning it was clear that the theory of random functions
of many variables (random fields), whose development only started at that
time, must be the underlying mathematical technique. (A.N. Kolmogorov,
1985 in notes preceding the papers on turbulence in the first volume of his
selected papers, English translation, Tikhomirov, 1991, p. 487).

Later the very large dimension (see table 3.1) and complicated (stochas-
tic?) structure of the underlying attractors, assumed to be in existence, was
invoked in the justification of the unavoidable necessity of statistical meth-
ods of description (and ‘theories’) of turbulent flows: one may never be
able to realistically determine the fine-scale structure and dynamical de-
tails of attractors of even moderate dimension . . . The theoretical tools
that characterize attractors of moderate or large dimensions in terms of
the modest amounts of information gleaned from trajectories [i.e. particu-
lar solutions] . . . do not exist . . . they are more likely to be probabilistic
than geometric in nature (Guckenheimer, 1986).

Apart from the extreme intricacy of turbulent flows and their stochastic
nature, there is another advantage in favour of the statistical methods of
description (not necessarily ‘theories’). Namely, all the experience accumu-
lated during the period of a century of studying turbulent flows shows that
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TABLE 3.1. Dimensions of “attractors”. Here DL – is the so-called Lyapunov
dimension, DKL – is roughly the number of modes to account for 90% of the en-
ergy, and Dl – is the well-known Landau estimate, which is roughly proportional
to the number of ODE’s needed to adequately represent the flow (it was removed
from the last Russian and subsequent English editions). This is an updated table
based on the one by Sirovich (1997)

DL DKL Dl · 10−6

Isotropic

Landau Re9/4

Pipe

Huang and Huang (1989) >11

Sieber (1987) >10

Plane Channel

Keefe et al. (1992) 800 400 26

Sirovich et al. (1991) 1500 4200 100

Webber et al. (1997) 300 650 15

turbulent flows possess stable statistical properties (SSP).1 It is important
to stress that stable statistical properties means not only means (aver-
ages) and other simple things, but much more, presumably all statistical
properties together with those which are related to what can be called the
structure of turbulence, which is not the same as what is called structures
of turbulence, e.g., its instantaneous structure-like features (see chapter 7).
The existence of SSP seems to be an indication of the existence of what
mathematicians call attractors. But again, matters are more complicated
than that. Many statistical properties of nonstationary (time-dependent in
the statistical sense) turbulent flows are quite similar to those of statis-
tically stationary ones as long as the Reynolds number of the former is
not too small at the particular time moment of interest. For example, in
a decaying turbulent flow past a grid, almost everything is very similar
qualitatively and in many respects quantitatively to what is happening in
decaying or statistically stationary-forced turbulence in a cubic box with
periodic boundary conditions (see De Bruyn Kops and Riley, 1998; Galanti
and Tsinober, 2000; Tsinober et al., 1997 and references therein).

It should be emphasized that our concern here is not with statistical
theories all of which are using various ad hoc assumptions on the nature

1The existence of an asymptotic statistical state is strongly suggested experimentally,
in the sense that reproducible statistical results are obtained. However, physical plausibil-
ity aside, it is embarrassing that such an important feature of turbulence as its statistical
stability should remain mathematically unresolved, but such is the nature of the subject
(Orszag, 1977).
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and properties mainly of the small-scale structure and its relation with the
rest of the flow, and/or attempting to represent turbulence as a collection
of more or less simple objects. Our concern is much less ambitious – the
focus is on statistical methods of description and interpretation of the data
from laboratory, field and numerical experiments on turbulent flows via
appropriate processing of the data. The latter is likely to be a prereq-
uisite for any worthy ‘theory’ of turbulence. Quoting A.N. Kolmogorov,
1985: . . . I soon understood that there was little hope of developing a pure,
closed theory, and because of absence of such a theory the investigation
must be based on hypotheses obtained on processing experimental data
(Tikhomirov, 1991, p. 487). This view goes back to Leonardo da Vinci:
Remember, when discoursing about water, to induce first experience, then
reason.

It should be stressed that even the simplest nonlinear systems exhibit-
ing chaotic behaviour are analyzed via various statistical means. Also, the
so called ‘coherent structures’ in turbulent flows are looked for using essen-
tially statistical methods, such as conditional statistics though with limited
success (Bonnet, 1996). Finally, methods of dimensional analysis, similarity
and symmetries (group theoretical methods) and phenomenological argu-
ments are applied exclusively to quantities expressing the statistical prop-
erties of turbulent flows.

3.2. On statistical theories, reduced (low-dimensional)
representations and related matters

As mentioned, statistical methods of describing turbulent flows should not
be confused with statistical theories of turbulent flows. The latter are out-
side the scope of this book for the reasons explained above, so only a few
brief remarks on this subject are given below.

The natural tendency to simplify the problem is manifested in numerous
searches for a reduced description of turbulent flows2:

One of the most basic questions in turbulence “theory” (which usually
is not asked) is whether there exists a closed representation that is simple
enough to be tractable and insightful, but powerful enough to be faithful to
the essential dynamics (Kraichnan and Chen, 1989).

An early goal of the statistical theory of turbulence was to obtain a fi-
nite, closed set of equations for average quantities, including the mean ve-
locity and energy spectrum. That goal now is viewed to be unrealistic. The
goal is now to reduce to a manageable number the many degrees of free-
dom necessary to describe the flow, to determine the equations governing

2The whole issue is closely related to the problem of decomposition/representation of
turbulent flows (next section) and their structure (chapter 7).
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the dynamics of the reduced degrees of freedom, and to solve those equa-
tions analytically or numerically to calculate fundamental quantities that
characterize the flow (Frisch and Orszag, 1990).

If we assume as a basic starting point in every theory of turbulence
its representation in terms of spectral coefficients, statistical or physical
averages, or more generally simple objects conditionally extracted by a weak
background, turbulence modelling could be defined reductively, as the art of
writing the equations that produce directly such quantities (Germano, 1999).

The emergence of collective modes in the form of coherent structures in
turbulence amidst the randomness is an intriguing feature, somewhat rem-
iniscent of the mix between the regular “islands” and the “chaotic sea” ob-
served in chaotic, low-dimensional dynamical systems. The coherent struc-
tures themselves approximately form a deterministic, low-dimensional dy-
namical system. However, it seems impossible to eliminate all but a finite
number of degrees of freedom in a turbulent flow – the modes not included
form an essential, dissipative background, often referred as an eddy viscos-
ity, that must be included in the description (Newton and Aref, 2003).

These citations represent the most popular view/hope/belief/
assumption and an implicit claim that such a reduction is possible and re-
sults in an adequate description of the remaining degrees of freedom, which
presumably include some of the so-called ‘coherent structures’3. Such a be-
lief goes back to the early forties: . . . it is necessary to separate random
processes from the nonrandom processes (Dryden, 1948), and, in fact, is
the essence of the concept of ‘eddy viscosity’ (Boussinesq, 1877; Kraichnan,
1976, 1988). The implication is that such a separation is possible. But it is
not obvious at all that such a reduction is possible, as it is seen from the
futility of enormous efforts to do so throughout the whole history of tur-
bulence research. The difficulty is a nontrivial one. For example, one even
does not know how to separate random gravity-wave motion and genuine
turbulence in a stably stratified fluid (Stewart, 1959).

There is, however, a less popular view too:
Most problems in classical stochastic processes are reduced to solubil-

ity by statistical independence, or the assumption of a normal distribution
(which is equivalent) or some other stochastic model; because of the govern-
ing differential equations, the turbulent velocity at two space-time points
is, in principle, never independent – in fact, the entire dynamical behaviour
is involved in the departure from statistical independence. The equations,
in fact, preclude the assumption of any ad hoc model, although this is often
done in the absence of a better idea (Lumley, 1970).

3This is related to a more general assumption that perhaps(!) large systems actually
boil down to a much smaller number of degrees of freedom than actually excited, because
many of them are strongly correlated within a group representing a ‘coherent structure’.
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Perhaps the biggest fallacy about turbulence is that it can be reliably
described (statistically) by a system of equations which is far easier to solve
than the full time-dependent three-dimensional Navier–Stokes equations
(Bradshaw, 1994).

Theoretical estimates of the dimension of the attractor for channel tur-
bulence appear to preclude truly low-dimensional description (Omurtag and
Sirovich, 1999).

In spite of these warnings there is a general belief that an adequate
reduced (low-dimensional) description is possible4, e.g., via reduction of
the huge number of degrees of freedom by retaining the so-called relevant/
important ones, though the meaning of what are the relevant/important
modes/degrees of freedom is quite problematic (Holmes et al., 1997; Kraich-
nan, 1988). Most frequently it is argued that these are ‘modes’ containing
most of the energy, but – at least from the physical point of view – the
‘modes’, e.g., carrying most of the energy dissipation and vorticity are not
less relevant/important in some sense. ‘Mixed modes’ related to both small
and large scales such as eigenfunctions of 〈ui(x)ωj(x + r)〉 may appear even
more relevant/important5. Even in such a case it is not clear whether it
is possible to obtain a low-dimensional approximation representing ade-
quately the flow field6. For instance, such a ‘simple’ turbulent flow as the
flow in a plane channel at rather low Reynolds number Re = 3300, which
attractor dimension is estimated to be of the order 103 (see table 3.1).
Possible exceptions are when the flow, though turbulent, at the outset is
strongly dominated by some ‘low-dimensional subsystem’/coherent struc-
tures (e.g., Holmes et al., 1996, 1997; Lesieur and Metais, 1996; O’Neil and
Meneveau, 1997; Jimenez and Simens, 2001). As mentioned in chapter 1,
it is quite possible that such large-scale structures are the result of a large-
scale instability of the flow as a whole not related directly to the turbulent
nature at least of free shear flows. The situation is more complicated in
wall-bounded turbulent flows. These matters are discussed in chapter 8.

4There are even claims that the dynamical system which may describe fully developed
turbulence can be approximated using just three degrees of freedom, Robinson (1998).
See also Patil, D.J., Hunt, B.R., Klanay, E., Yorke, J.A., and Ott, E. (2001). Local low
dimensionality of atmospheric dynamics, Phys. Rev. Lett., 86, 5878–5881. That is, it may
be possible to gain low- dimensional insight to, and interpretation of, high-dimensional
dynamics locally in space and time (C. Doering, private communication).

5Note that two most important quantities: Lamb vector ω × u ≡ εijkωjuk and the
vortex stretching vector Wi = ∂(uiωj)/∂xj are precisely of this kind and are closely
related to the tensor ui(x)ωj(x + r).

6Inadequate (too) low-dimensional approximations may lead to spurious chaotic be-
haviour, which disappears when the number of the basic functions becomes large enough
and adequate resolution is used (Curry et al., 1984; see also Rempfer, 2000).
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We add that in a recent attempt Farge (2007) used orthogonal wavelets
to represent what they call the coherent part of velocity and vorticity in
a three-dimensional flow in a periodic box. The claim is that out of total
1.4 · 107 degrees of freedom 4 · 105 (2.8% of the total) are sufficient in order
to adequately represent the ‘coherent’ part of the flow. It is still quite a lot.
However, the advantage of their approach is that their 2.8% include both
large and small scales, so that it seems that these 2.8% represent reasonably
the whole flow field rather than its ‘coherent’ part only.

It is natural to seek a closed representation that is mathematically sim-
ple enough to be tractable and insightful, but powerful enough to be faithful
to the essential dynamics (Kraichnan and Chen, 1989). But this does not
justify oversimplified treatment of small scales via methods like eddy vis-
cosity, because the small scales contain a great deal of essential physics of
turbulent flows, much of which is not known or poorly understood, and
which are intimately and bidirectionally related to the large scales (see
chapter 6, section 6.6).

Various models of turbulent flows – a really huge number of them – are
all statistical theories in the sense mentioned above. They differ from, e.g.,
‘physical’ theories only by different methods of ‘closure’ of the resulting
equations for the chosen statistical variables. All of them have in common
some ad hoc assumptions of unknown validity and obscured physical and
mathematical justification. In this sense none of the statistical theories are
rigorous.

Hans Liepmann wrote in 1979: Turbulent modelling is still on the rise
owing to rapid development of computers coupled with the industrial need
for management of turbulent flows. I am convinced that much of this huge
effort will be of passing interest only. Except for rare critical appraisals . . .
much of this work is never subjected to any kind of critical or compara-
tive judgement. The only encouraging prospect is that current progress in
understanding turbulence will restrict the freedom of such modelling and
guide these efforts toward a more reliable discipline (Liepmann, 1979).

Liepmann’s criticism was directed at (already at that time) the great
number of publications which used a variety of assumptions, most of them
very remote from any physical basis, to say nothing of any rigorous math-
ematical foundation. This state of affairs seems to be changed. It was rig-
orously proved (Fursikov and Emanuilov, 1995 and references therein) that
the Keller–Fridman (1925) chain of equations for the moments (and conse-
quently the Hopf equation) has a unique solution for initial conditions in
an appropriately chosen functional space7. In other words a positive answer
was given to the question whether the closure problem has a solution, and

7Provided that the corresponding three-dimensional problem for the Navier–Stokes
equations does have a unique solution.
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an estimate of convergence of approximations for the closure of the infinite
chain of equations for moments was given. Thus, it became clear – at least
in principle – that turbulence modelling can be put on a rigorous founda-
tion. However, just like direct numerical simulation by itself does not bring
understanding, neither does modelling of whatever sophistication.

3.3. Turbulence versus deterministic chaos

. . . the implications for fully turbulent flows are slight . . . attempts
to understand particular turbulent flows . . . have not been signif-
icantly modified or aided by the new developments. It is neces-
sary to stress this rather negative fact mainly because of excessive
claims that have been made for the new ideas. It has been said
that ‘the turbulence problem has been solved’ . . . this can give a
false impression. (Tritton, 1988).

Another rather recent and popular view emerged from the developments in
the ‘deterministic chaos’ already mentioned in chapter 2, i.e., comparatively
simple nonlinear systems exhibiting chaotic behaviour. This, however, did
not ‘solve the problem of turbulence’ neither ‘the right path was found’ as
was claimed quite frequently, e.g., There have been important changes in
our understanding of the mechanism whereby turbulence occurs. Although
a consistent theory of turbulence is still a thing in the future, there is reason
to suppose that the right path has finally been found. (M.I. Rabinovich, in:
L.D. Landau and E.M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon
Press, 1987).

Today it seems that the application of dynamical systems methods and
results to turbulence in fluids is hardly appropriate8. Methods of dynam-
ical systems theory, after an initial period of euphoria and even claims
that the problem of turbulence was solved, have proved to be ineffec-
tive/irrelevant for the theory of fully-developed turbulence. Quoting G.K.
Batchelor (1989): ‘. . . considerations of the properties of fully-developed
turbulence require rather different ideas . . .’ (J. Fluid Mech., 205, 593).

It is now recognized that despite the considerable successes of the present
studies of the application of modern ideas on chaos to well-controlled fluid
flows, they appear to have little relevance when applied to the more gen-
eral problem of fluid turbulence (Mullin, 1993, p. 93; see also Tritton, 1988,
p. 410).

So it is quite plausible that any fluid flow which is adequately repre-
sented by a low-dimensional system is not turbulent – a kind of definition
of ‘non-turbulence’. The immediate examples are low-dimensional chaotic
fluid flows.

8Though some authors hold an opposite opinion, Bohr et al. (1998), Ruelle (1990).



52 CHAPTER 3

3.4. Statistical methods of looking at the data only?
Or what kind of statistics one needs?

Whatever the origins of real turbulent flows9, turbulent flow states are so
complicated that the use of statistical tools is unavoidable. The question
is about what kind of statistics one has to use. It is directly related to the
most difficult question on what are the problems, i.e., to the skill/art to
ask the right and correctly posed questions, which is quite a problem in
turbulence research.

At early stages, the interest was in relatively simple quantities like
means10, correlations, spectra, and probability density functions (PDFs)
of various quantities. With the digital methods of data acquisition and pro-
cessing, conditional statistics became a powerful tool of data analysis (Van
Atta, 1974; Antonia, 1981).

Standard statistical tools like means and correlations smooth out some
important qualitative features of (typical) individual realizations. The ‘mean
fields’, e.g., large-scale averages of velocity or concentration of some species
or particles, are smooth whereas the individual realizations are not. They
are corrugated, highly intermittent and contain clusters/regions of high
level of some quantity/ies (enstrophy, dissipation, passive tracer, reacting
species, particles, etc.) surrounded by low level ‘voids’ of this quantity. In
other words, ‘standard’ ‘traditional’ statistical methods to a large extent
ignore the structure(s) of turbulent flows, which was the main reason for
numerous objections against statistical methods often understood as aver-
aging only. More subtle statistical properties of turbulent flows associated
with their structure(s) both in small and large scales are important in many
applications. For instance, special information on small-scale structure(s) is
needed in problems concerning, e.g., combustion, disperse multiphase flow,
mixing, cavitation, turbulent flows with chemical reactions, some environ-
mental problems, generation and propagation of sound and light in turbu-
lent environments, and some special problems in blood flow related to such
phenomena as hemolysis and thrombosis. In such problems, not only special
statistical properties are of importance like those describing the behaviour
of smallest scales of turbulence, but also actual ‘nonstatistical’ features like
maximal concentrations in such systems as an explosive gas which should
be held below the ignition threshold, some species in chemical reactions,
concentrations of a gas with strong dependence of its molecular weight on
concentration (such as hydrogen fluoride used in various industries, e.g., in

9Whether turbulence is a priori random/stochastic because Nature is such or the
intricacy of turbulent flows arises out of deterministic equations like NSE or any other
unknown reason.

10The true aim of turbulence theory is to predict the mean properties and their de-
pendence on boundary conditions (Saffmann, 1960).
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production of unleaded petrol) and toxic gases. Similarly, problems such
as the manipulation (and possibly control) of turbulence and turbulence
induced noise require information on large-scale structure(s) of turbulent
flows far beyond such simple statistical characteristics as averages, correla-
tions, spectra and PDFs.

In other words statistical methods have their limitations, so that in
many cases one has to look not only at the properties of turbulent flows
en masse, but also at some specific properties of individual realizations like
those involved in weather forecasting. After all one does not need ensemble
averaging to be sure that the coffee will be well mixed via only one, and
pretty short, realization. Likewise, not much can be done statistical-wise to
cope with a destructive hurricane or a tropical cyclone. It may also be that
such (i.e., very rare and exceptionally strong) events are rather sensitive
to details of the physics that do not appreciably affect the character of the
majority of events. This does not mean that one should not keep trying, by
insight and discernment, to discover useful statistical measures, but rather
that statistics will have to be used with that humility and appreciation of
the combination of admission of ignorance and decision to ignore detail so
successfully used by workers in the past (Mollo-Christensen, 1973).

Each particular statistical tool has its own limitations; being useful in
one context/respect, it may say nothing in many others. A typical ex-
ample is correlation, widely used in many aspects of turbulence research.
Usually if a correlation between two quantities is not small, it reflects
some important relation. However, if the correlation is small, it is not
necessarily insignificant. For instance, let us have a look at the famous
Reynolds stress 〈u1u2〉 – the correlation between the velocity fluctuations
in the direction of the mean flow (x1) and those normal to the wall (x2)
in a wall-bounded turbulent flow. The typical value of the corresponding
correlation coefficient is 〈u1u2〉/u′

1u
′
2 ∼ 0.4. However, the real quantity

entering the equation for the mean flow (RANS, see appendix C) is the
derivative d〈u1u2〉/dx2. In a developed turbulent flow with its mean prop-
erties independent of the streamwise coordinate, x1, (flat channel, pipe),
d〈u1u2〉/dx2 = 〈(ω × u)1〉 ≡ 〈ω2u3〉 − 〈ω3u2〉. That is the ‘turbulent force’
is due to the coupling between large and small scales (again nonlocality, see
chapter 6). The corresponding correlations between velocity and vorticity
are small: both 〈ω2u3〉 and 〈ω3u2〉 are of order 10−2. However, this does not
mean that the coupling between ω and u is insignificant. Indeed, without
such a coupling d〈uv〉/dx2 = 0, so that the mean flow would not ‘know’
anything about turbulent fluctuations at all and therefore would remain as
the laminar one.

Moreover, even if a correlation between two quantities is very small
or even precisely vanishing, this still does not necessarily mean that the
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interrelation/coupling between these two quantities is not existing or is
unimportant. For example, in homogeneous turbulent flows, velocity and
vorticity, and vorticity and the rate of strain tensor are precisely uncorre-
lated, 〈ω × u〉 ≡ 0, 〈ωisij〉 ≡ 0, but their interaction is in the heart of the
physics of any turbulent flow. Similarly, the correlation coefficient between
u and ∇2u is very small (∼Re−1/4) in high Reynolds number flows, but
is very significant as directly related to the rate of dissipation of energy in
turbulent flows. We will return to this issue in chapter 6.

One more example of the limited value of quantities like correlations
and correlation coefficients is provided by a helically-forced turbulent flow
(Galanti and Tsinober, 2006). In such a flow, correlations between u and
ω, (and also ω and curlω) are not vanishing due to lack of reflectional
symmetry. Nevertheless these correlations are an order of magnitude smaller
that those between u and curlω (and ω and curlcurlω). This is in spite of
the fact that the scales of u and ω are ‘closer’ than those of u and curlω in
the sense that the characteristic scales of u and ω differ less than those of
u and curlω. Moreover, in flows with reflectional symmetry the correlation
coefficients between u and ω (and ω and curlω) vanish, whereas correlations
between u and curlω (and ω and curlcurlω) remain practically unchanged.
The latter is directly related to the rate of dissipation of energy in turbulent
flows as, e.g., in homogeneous flows 〈u · curlω〉 = −2〈sijsij〉.

Single-point statistics in many cases may be (and usually is) insufficient
and even misleading. For example, single-point PDFs of velocity fluctua-
tions are known to be quite close to the Gaussian distribution. In particular,
the third moment of velocity fluctuations is close to zero (more precisely
its skewness,

〈
u3

1

〉
/

〈
u2

1

〉3/2 ≈ 0), and the flatness,
〈
u4

1

〉
/

〈
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1

〉2 ≈ 3, as
in a Gaussian field. Similarly other higher order odd moments are small,
and even moments assume values close to those of a Gaussian field, e.g.,〈
u6

1

〉
/

〈
u2

1

〉3 ≈ 15. However, the conclusion that velocity fluctuations are
really almost Gaussian would be a misconception, not to mention the field
of velocity derivatives (chapters 6 and 7). This is already seen when one
looks at two-point statistics. For instance, in such a case the odd moments
are significantly different from zero (e.g., Frenkiel et al., 1979). This is
one of the simplest among numerous examples when multi-point (in space
and time) statistics is useful. The widely known two-point correlations for
some separation r and/or time t are related to the flow structure(s) larger
than ∼r/t. An example of application of three-point statistics to struc-
tures of the passive scalar in turbulent flow is given by Mydlarski and
Warhaft (1998).
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3.5. Decompositions/representations

Thus, because it is not possible to separate eddies into clearly de-
fined classes according to the source of their energy . . . therefore a
single coefficient is used to represent the effect produced by eddies
of all sizes and descriptions. (Richardson, 1922).
. . . for the very smallest eddies the motion is entirely laminar.
(Batchelor, 1947, p. 535).
. . . at the small scales it becomes more difficult to argue for funda-
mental differences between these two types of flows. (Southerland
et al., 1994).

One of the common approaches both in theory and data analysis is a re-
ductionist one, i.e., some decomposition of the flow field.

The first known decomposition was given by Reynolds (1895), in which
the flow field is represented as a sum of a mean and a fluctuative, the latter
being just the difference between the mean (assumed to exist) and the in-
stantaneous fields. There have been attempts to extend this approach to a
triple decomposition consisting of a mean, ‘coherent’ and ‘random’ contri-
butions. Most of these attempts are of heuristic nature since the ‘coherent’
contribution is well defined only in rather special cases. It is noteworthy
that when means (in some sense) exist the Reynolds decomposition is more
physically and mathematically natural than its analogues, such as triple
decompositions or those associated with large eddy simulations (LES).

The formal decompositions employ some suitable basis of expansion of
the flow field. These are represented by the Fourier decomposition or its ‘rel-
atives’ such as Fourier–Weierstrass, Gabor, helical, Littlewood–Paley, the
so-called SO(3) decomposition (Cambon and Teissedre, 1985; Kurien and
Sreenivasan, (2001b); Biferale and Procacia, 2005) or any other complete
basis depending on the geometry of the flow, wavelets, wavepackets, soli-
tons (Arneodo et al., 1999; Farge, 2007; Meneveau, 1991; Frick and Zimin,
1993), and filters and multiscale (Germano, 1999; Leonard, 1974; Mene-
veau and Katz, 2000; Eyink, 2006), Karhunen–Loève or proper orthogonal
decomposition (Holmes et al., 1996, 1997; Sirovich, 1997).

In heuristic decompositions the flow field is represented as a ‘two-fluid’
one, e.g., organized and incoherent or deterministic and random (Cantwell,
1990; Farge and Guyon, 1999; McComb and Watt, 1992; She, 1991), or
as a collection of some ‘simple’ objects – vortex filaments, vortons, ‘eigen-
solutions’, etc. (Pullin and Saffman, 1997; Davidson and Pearson, 2005).
Another kind of heuristic representations is prompted by the intermittent
structure of turbulent flows: breakdown coefficients/multipliers (Novikov,
1971, 1990a) or equivalently (multi)fractals (Frisch, 1995).
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There are several difficulties with all/any decompositions (as an essen-
tially linear procedure) mainly due to the nonlinear and nonlocal nature
of turbulence11. These difficulties are not trivial and seem to be ‘generic’.
As mentioned above, it is not even known how to separate random gravity-
wave motion (which does not produce vertical transport) and genuine tur-
bulence (which does) in a stably stratified fluid (Stewart, 1959). Under
turbulent motion/dynamics the interaction of ‘modes’, whatever they are,
is strong. The resulting structure(s) is(are) not represented by the modes
of any known decomposition, for example by a Fourier-decomposition of a
flow in a box with periodic boundary conditions. The emergence of struc-
tures in such a flow, such as the slender vortex filaments, in a random
fashion (at random times with random orientation, and to a large extent
random shapes) points to the limitation of utilization of Fourier decom-
position (or similar), which does not ‘see’ these or any other structure(s).
Another example is the chaotic regime of a system with few degrees of
freedom only, e.g., three as in the Lorenz system (Lorenz, 1963), or four in
the forced spherical pendulum (Miles, 1984), but with a continuous spec-
trum. Hence the ambiguity of Fourier decomposition (see Liepmann, 1962;
Tennekes, 1976 and Lohse and Müller-Groeling, 1996 for other aspects of
Fourier-transform ambiguity). All the attempts to find a ‘good’ decompo-
sition are related to what Betchov (1993) called the ‘dream of linearized
physicists’, i.e., a superposition of some, desirably simple elements (e.g.,
Germano, 1999). The dream is, of course, to find sets consisting of small
numbers of weakly interacting elements/objects adequately representing
the turbulent field. Those known so far are interacting strongly12 and most
of them nonlocally13. This is a reflection of one of the central difficulties
in ‘solving the turbulence problem’ as a whole, in general, and the ‘closure
problem’ such as LES and other reduced descriptions of turbulence (Kraich-
nan, 1988), in particular, as well as in construction of a kind of statistical
mechanics of turbulence generally (Kraichnan and Chen, 1989).

11With the exception of the Reynolds decomposition.
12Landau wrote (1960, p. 245): It is well known that theoretical physics is at present

almost helpless in dealing with the problem of strong interactions. The situation in tur-
bulence seems to be not better if not worse.

13From time to time there appear claims to decompositions with weakly interacting
elements/objects. This appears to be true only if some parameter is small as in RDT-
like theories, but not for genuinely nonlinear/strong turbulent flows, for which no hope
that small parameter does exist. A recent example, concerns the SO(3) which is the
tensorial generalization of the well-known procedure of decomposing a scalar function into
components of different irreducible representations using the spherical harmonics. Here
too the different components of the decomposition (called anisotropic sectors) interact
weakly among themselves and with the isotropic one only in case of weak anisotropy.
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3.6. Eulerian versus Lagrangian descriptions

One owes to Euler the first general formulas for fluid motion . . .
presented in the simple and luminous notation of partial differ-
ences . . . By this discovery, all fluid mechanics was reduced to a
single-point analysis, and if the equations involved were integrable,
one could determine completely, in all cases the motion of a fluid
moved by any forces. (Lagrange, 1788).
Of course, fluid mechanics can, in principle, be worked entirely in
the Lagrangian frame . . . Even neglecting viscous forces . . . yield
awkward moment equations. (Corrsin, 1962b).
. . . the inertial interactions have a relative nature; they are elimi-
nated in the transformation to the particle-attached reference sys-
tem . . . the use of the viscous Lagrangian equations in turbulence
theory is still a matter for the future. (Monin and Yaglom, 1971).
Though the Lagrangian description of the flow . . . has many at-
tractions . . . it is generally unwieldy to work with. Even the
kinematic task of determining closed-form solutions for the parti-
cle paths . . . from an initial position . . . is generally intractable.
(Soward and Roberts, 2008).

Practically all the issues just discussed are considered in the Eulerian set-
ting. There are essential differences when one looks at the Lagrangian de-
scription.

The Lagrangian14 description15 of fluid flows is physically more natural
than the Eulerian one16, since it is related most directly to the motion of
fluid elements. Nevertheless, mostly technical difficulties (both in physical
and numerical experiments) strongly hindered the use of the Lagrangian
approach in most fluid dynamical problems. The traditional problems for
which the Lagrangian description is considered especially appropriate are
transport and mixing in diverse applications, e.g., geophysical and envi-
ronmental, cloud formation, chemical technology, combustion and mate-
rial processing, sedimentation, bio-medical and recently microfluidics, and
many others. In most of the above issues the concern is with the kinematic
aspects, i.e., with what is called today “passive turbulence”, i.e., evolution
of passive objects in prescribed velocity fields (see next chapter and chapter
9). Another aspect is associated with the dynamics of inviscid fluids, such
as theoretical problems of Euler equations, inviscid vortex dynamics and
vortex methods, stability, dynamics of interfaces and surface waves, com-
pressible flows. Though these issues seem to have little to do with genuine

14In fact it is also due to Euler, see Lamb, 1932. A detailed account on the ‘misnomer’
by which the ‘Lagrangian’ equations are ascribed to Lagrange is found in Truesdell, 1954.

15In which the observation is made following the fluid particles wherever they move.
16In which the observation of the system is made in a fixed frame as the fluid goes by.
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turbulence, there are views/beliefs that such things like possible singularity
formation and collapse in Euler flows and that the infinite Reynolds num-
ber limit of NSE (or similar equations) is described by singular solutions of
Euler equations. We return to these in chapter 10.

There is little (if any) treatment of dynamical aspects of turbulent flows
(e.g., those corresponding to those described by NSE in the Eulerian set-
ting) in a pure Lagrangian setting which is one of our main concerns here17.
Among the reasons is the view that a principal objective of any theory of
fluid motion is the prediction of the spread of matter or “tracer” within the
fluid (Bennet, 2006), though not many in the turbulence community will
accept this view. In fact, the main reasons take their origin in the difficulties
in handling the pure Lagrangian equations (C.62, C.63, C.66) and related
issues. In view of these difficulties it is natural to ask the following ques-
tions. Is it true that dynamical issues in turbulence per se can be treated
satisfactorily in the Eulerian setting only? Is there any need to use for this
purpose the Lagrangian setting too? Are there dynamical problems which
require such an approach? A plausible answer is that there are important
problems/questions of dynamical nature for which Lagrangian information
is of utmost importance (as well), i.e., one has to employ both settings.
The first example is given by the class of flows where turbulence memory
and/or sensitivity to the inflow conditions plays an essential role (e.g., jets,
mixing layers, wakes and flows past grids too – the recent example of flows
past fractal grids provides especially strong evidence for this, Seoud and
Vassilicos, 2007). It has to be mentioned that the issues concerning the
conventional Taylor hypothesis and the Random Taylor hypothesis and a
number of questions on accelerations belong to this sort of problems too
(see chapter 6). Most flows mentioned above belong to the kind of the so
called partly-turbulent flows. The main special features of these flows are
the coexistence of regions with laminar and turbulent states of flow and
continuous transition of fluid particles (purely Lagrangian objects!) from a
laminar state into a turbulent one via the entrainment process through the
‘boundary’ between the two. Hence the necessity of a Lagrangian approach
in studying this transition process in proximity to the laminar-turbulent
‘interface’. This issue is addressed in chapter 8. Flows with polymer solu-
tions provide another important example where the Lagrangian approach
is unavoidable at least for two additional reasons: 1) since the material
elements (again purely Lagrangian objects!) in such flows are not passive
and 2) there are no equations reliably describing flows of polymer solutions
such as NSE for Newtonian fluids. So one needs Lagrangian experimen-
tation with such turbulent flows in the first place (chapter 8). A similar
statement is true of flows with any other active additives.

17For other issues of Lagrangian aspects of mostly kinematical nature see Falkovich
et al. (2001); Toschi and Bodenschatz (2009) and references therein.



METHODS OF DESCRIBING AND STUDYING TURBULENT FLOWS 59

On the technical side, since in a pure Lagrangian setting the equa-
tions (C.62–C.63) are intractable18 (so far) in order to obtain true (not
modelling!) Lagrangian information, one typically solves the problem in
Eulerian setting (i.e., using NSE) and using this information together with
the equation (C.64) one can obtain the Lagrangian evolution of any fluid
particle19. As the Euler information is defined on the computational grid it
is necessary to use an appropriate/adequate interpolation scheme (Yeung,
2002)20. The issue is, however, not just in technical differences in the La-
grangian and Eulerian settings. They are different conceptually in several
aspects. One of the main points is that many flows that are laminar in Eule-
rian setting (E-laminar) exhibit chaotic behaviour in the Lagrangian setting
(L-turbulent) see, chapter 4. It is important that this chaotic behavior is
of pure kinematic nature21. We stress that the E-turbulence is a dynamical
phenomenon, whereas this is not necessarily the case with the L-turbulence
which may be a purely kinematic one. In other words, the flow can be
purely L-turbulent (i.e., E-laminar) as in the above examples with artificial
velocity fields or real flows at very low/zero Reynolds numbers. However, if
the flow is E-turbulent (i.e., Re � 1) it is L-turbulent as well. An important
consequence is that the structure and evolution of passive objects in genuine
turbulent flows arises from two (essentially and unfortunately inseparable)
contributions: one due to the Lagrangian chaos and the other due to the
random nature of the (Eulerian) velocity field itself. Hence, one can expect
adequate kinematic simulation or simulation in random and/or multi-scale
real E-laminar flows of those properties (Lagrangian) which are insensitive
(or weakly sensitive) to the differences between the genuine turbulent veloc-
ity fields and those used for the purposes of modelling (quite a non-trivial
issue). An important counterexample is the difference between backwards
and forwards relative dispersion (with the mean square separation following
particle pairs backwards in time22 being at least twice as large as forwards)

18but allow the posing of nontrivial and important questions.
19On the theoretical side hybrid formulations have been known since the end of the 19th

century, see Lamb (1932); Cartes et al. (2007); Kuznetsov (2008); Soward and Roberts
(2008); Ohkitani and Constantin (2008) and references therein. All of them are mostly
not ripe yet for handling the issues of turbulence.

20There exist several versions of the so-called hybrid (i.e., Lagrangian–Eulerian) nu-
merical approaches which still rely heavily on using the NSE equations.

21This qualification includes all artificial velocity fields both random and/or multi-
scale or not. The field of particle trajectories is (can be seen) as a passive object: it is a
Lagrangian signature of the underlying (and prescribed) velocity field of any nature be it
genuinely turbulent, or Lagrangian chaotic such as E-Laminar, synthetic random or not,
restricted Euler, kinematic simulations of Lagrangian chaotic evolution, turbulent-like
multi-scale fields, including real E-laminar flows at Re ∼ 0 from linear Stokes equations
with random forcing, flows in porous media, microdevices, to name some.

22Following particles backwards in time was introduced by Corrsin (1952, 1972a).
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in genuine turbulence (Berg et al., 2006; Sawford et al., 2005; Thomson,
2003 and references therein). Another example is the qualitative difference
in alignment properties of a passive vector in genuine (NSE) and Gaussian
velocity fields with the same energy spectrum (see chapter 9).

As mentioned, Eulerian and Lagrangian settings are different concep-
tually, not just/only technically. The Eulerian setting reveals the pure dy-
namical chaotic aspects of genuine turbulence as contrasted to “mixing”
of the kinematical with the dynamical ones in the Lagrangian setting, i.e.,
in genuine turbulence the latter contains both which seem to be essen-
tially inseparable. This seems to comprise an inherent difficulty in using
the Lagrangian setting in handling the dynamical issues of genuine turbu-
lence because of the impossibility of separating the Lagrangian (kinematic)
chaos from the genuinely dynamical (Eulerian) stochasticity. Thus with
the exception of problems as in examples given above, the Euler setting
seems to be preferable for studying dynamical aspects of (e.g., NSE) gen-
uine turbulence as more revealing the dynamical chaotic aspects of genuine
turbulence as contrasted to “mixing” of the kinematical with the dynamical
ones in the Lagrangian setting. In genuine turbulence the latter contains
both.

On the mathematical side there is an important aspect associated with
the ‘more chaotic’ nature of the Lagrangian setting, which is traced back
to early Lagrangian simulations (Amsden and Harlow, 1964; see also Har-
low, 2004). Namely, one is tempted to conjecture that the pure Lagrangian
dynamical equations (C.62–C.63) (so far intractable for viscous flows) are
more rich than their Navier–Stokes counterpart (C.4, C.6). The former be-
ing equivalent to the latter plus the equation (C.64) relating the Eulerian
and Lagrangian descriptions. Though such a conjecture looks plausible,
there remain nontrivial issues on the relation between Lagrangian versus
Eulerian settings in purely dynamical contexts. One such issue deserves
special mention. In the Lagrangian setting the fluid particle acceleration
is linear in the fluid particle displacement (see equation C.62) and the ‘in-
ertial’ effects are manifested only by the term containing pressure. That
is, one can hardly speak about things like Reynolds decomposition and
Reynolds stresses, turbulent kinetic energy production in shear flows in a
pure Lagrangian setting. It seems that nonlinearity in the Lagrangian rep-
resentation cannot be interpreted in terms of some cascade (as it cannot be
maintained by pressure gradient alone) and it is far less clear (if at all) how
one can employ decompositions even at the problematic level as done in
the pure Eulerian setting (we address the issue of ‘cascades’ in chapters 5
and 9). Also there is no sweeping of any kind at the outset as there are
no terms like the advective terms (u · ∇)u in the pure Eulerian setting,
so one cannot speak about the interaction between advective and diffusive
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processes in the pure Lagrangian setting. However, in contrast to (C.62),
there is interaction between inertial23 and diffusive effects at the level of
vorticity, gradient of passive scalar and passive solenoidal vectors (mag-
netic field) as is seen, e.g., from the vorticity equation (C.65) and passive
scalar (C.67) in the pure Lagrangian setting. A particular manifestation of
such interaction is the so called Tennekes-Lumley balance24 between the
enstrophy production and its viscous destruction, production of the energy
of the gradient of a passive scalar and its destruction due to diffusivity, and
similarly for the energy of the magnetic field.

Further issues related to Lagrangian versus Eulerian settings concern
accelerations, the random Taylor hypothesis and some other, see chapter 6.
The issues of the relation between the Lagrangian and Eulerian descriptions
is discussed in chapters 4 and 9.

3.7. Ergodicity

The time average which is produced in a physical or computer
experiment corresponds to probability measure invariant under
time evolution (in statistical mechanics this would be called an
ensemble). For a given differentiable dynamical system, like Hénon
map, there are however many invariant probability measures, and
one has to decide which one is selected in experiments. My belief
is that the choice is produced by the smoothing influence of the
small level noise present in physical experiments (roundoff errors
in computer studies) (Ruelle, 1983a).
There is no way to confirm that those turbulence data used in
analysis represent typical properties of turbulence (van Veen et al.,
2006).
The ergodicity of turbulence sounds to me as an assumption which
is hard to avoid or test (Mann, 2006).

For statistically stationary flows ergodicity is (roughly) equivalence of ‘true’
statistical properties (not only means/averages, but ‘almost’ all statistical
properties) of an ensemble to those obtained using time series in one very
long realization. A similar property is defined in space by replacing time
by space coordinate(s) in which the flow domain has an infinite extension,
at least in one direction.

Though it is not known whether three-dimensional turbulent flows are
ergodic25, it is common to use the ergodicity hypothesis in turbulence

23These inertial effects are due to the interaction of vorticity and the velocity gradients
(strain) and are not relative, as is the advection term (u · ∇)u.

24The issue of the T-L balance and related are discussed in chapter 6.
25Foias et al. (2001) have shown that there are measures on a function space that

are time-invariant. However, invariance under time evolution is not enough to specify
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research, e.g., in physical and numerical experiments: turbulent flows are
just believed to be ergodic. In other words, in statistically stationary situ-
ations the time statistics obtained in experiments is believed to correspond
to a (unique) probability measure invariant under time evolution. This com-
prises the essence of the ergodic hypothesis, which is usually expressed in
terms of ensemble and is widely used in experiments. A similar statement
is made for situations with at least one homogeneous spatial coordinate. In
dynamical systems the equivalence of two is used as a definition of ergod-
icity: Definition 7.1: An abstract dynamical system is ergodic if for every
complex-valued μ-summable function the time mean is equal to the space
mean, Arnold and Avez (1968).

Most mathematical treatments of ergodicity in turbulent flows deal with
the so-called stochastic Navier–Stokes equations (SNSE), i.e., with stochas-
tic forcing26 both in 3D and 2D27. In such a case it is natural to expect the
property of ergodicity. However, what about a great variety of turbulent
flows in which the ‘forcing’ is not random and in many cases is even not
time dependent – just constant in time, such as constant in time overall
pressure gradient? Such flows at large enough Reynolds numbers become
turbulent due to what can be called intrinsic stochasticity (nobody seems
to know what it is precisely). All statistically stationary turbulent flows are
massively studied using temporal statistics instead of the ‘true’ one based
on ensembles or probability measures (which are anyhow not accessible).
All observed so far statistical (not only average but ‘almost’ all) proper-
ties of many such turbulent flows (but not all) are remarkably reproducible
(statistical stability) and – as mentioned – are believed to be ergodic in
spite of the fact that a deterministic, say, a constant in time large-scale
forcing breaks the ergodicity ‘on large scales’.

There seems to exist no direct evidence regarding the validity of the er-
godicity hypothesis in turbulent flows. An attempt to obtain such evidence
via direct numerical simulations of the Navier–Stokes equations by perform-
ing a large number of simulations (or similarly many physical experiments)
at different initial conditions representing the members of an ensemble is
too laborious and costly. Instead, one can obtain such evidence exploit-
ing the property of a turbulent flow which is both statistically stationary in

a unique measure which would describe turbulence. Another problem is that it is not
clear how the objects that the authors have constructed and used in their proofs are
relevant/related or even have anything to do with turbulence.

26One of the oldest open problems in theoretical physics is that of describing fully-
developed turbulence on the basis of a macroscopic model. The latter is usually taken to
be the stochastic Navier–Stokes (NS) equation subject to an external random force that
models the energy injection by large-scale modes, Adzhemyan et al. (2003).

27In the latter case it is unlikely that with a deterministic forcing one can expect
anything like ergodicity, though there are numerous examples with random forcing which
are ergodic.



METHODS OF DESCRIBING AND STUDYING TURBULENT FLOWS 63

time and homogeneous in space. In such a flow its temporal and spatial sta-
tistical properties should be the same if the ergodic hypothesis is correct. An
important consequence is that it is not necessary to perform a large num-
ber of time/labor consuming “brute force” experiments with different ini-
tial conditions in order to compare the time-statistics of a given observable
against the “ensemble” one at a given time28. Such an attempt was made
by Galanti and Tsinober (2004) in a periodic box with resolution 1283 uni-
formly distributed grid points29. A deterministic forcing in large scales was
used in the form f = A cos z cos y, B cos x cos z, C cos y cos x; A = B = C.
This forcing has the property to be locally non-helical, f · curlf = 0. The
Taylor microscale Reynolds number, Reλ ≈ 145. In order to have compara-
ble information for the time statistics the equations were run for 2,200,000
time steps (cf. with 1283 = 2,097,152).

Since the large-scale deterministic forcing breaks the ergodicity on large
scales the mean (weak) velocity was removed before comparing the temporal
and spatial statistics of the velocity field. After such a removal both statis-
tics become very similar for one-point statistics, though some differences
remained for two-point statistics, especially at large values of separation
between the points. This is most probably due to not large enough scale
separation between the spatial integral scale and that of the computational
box. Another reason is that the flow is only approximately statistically ho-
mogeneous. The temporal and spatial statistics associated with the field of
velocity derivatives exhibit much more similarity than those for the velocity
field itself. An example of comparison of spatial and temporal statistics for
velocity derivatives is shown in figure 3.1, see Galanti and Tsinober (2004)
for other numerous examples.

As in other examples of this kind the figures corresponding to time
statistics show traces of time evolution, whereas corresponding examples
associated with spatial statistics have nothing to do with the time evolution.
The similarity between the two can be seen as an indication of equivalence
of two formulations of the ergodic hypothesis. The first one corresponds to
the ‘evolutionary’ view on ergodicity, i.e., that the long enough trajectory
will sample almost all of the attractor in the phase space. Therefore the
statistical properties of statistically stationary flows of an ensemble are
equivalent to those obtained using a time series in one very long realization.

28Thus, one deals with two different results: one is a statistical analysis over the entire
flow field at a certain moment in time, and another one for one position in space over
a very long period of time. The first one may not be representative for a longer period
of time, while the second one may not be representative for all the points in space. The
point is that if the flow is ergodic the two types of statistics should give the same result.

Many ensembles (like the human populations), are not ergodic.
29Some similar results concerning scaling of velocity time increments were obtained by

Chevillard et al. (2005) and Lévêque et al. (2007).
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Figure 3.1. The ‘tearing drop’ pattern, which is the joint PDF of the invariants
R, Q of the velocity gradient tensor ∂ui/∂xj , R = −1/3{sijsjkski + (3/4)ωiωjsij}, and
Q = (1/4){ω2 − 2s2}. On the left is shown temporal statistics corresponding to a time
series at single point in space. On the right is shown spatial statistics based on a single
time snapshot over the flow domain. Note that the time statistics (left) shows traces of
time evolution, whereas nothing of the kind is observed with the spatial statistics (left)
as it has nothing to do with the time evolution. Galanti and Tsinober (2004)

Another formulation does not involve the evolutionary aspects and merely
states the equivalence of statistical properties of the two.

The results from a long enough in time numerical simulation provides
clear evidence that if a turbulent flow is both statistically stationary in
time and homogeneous in space, then its temporal and spatial statistical
properties are the same. This can be seen as evidence in favor of validity of
the ergodic hypothesis in turbulence. One of the ‘side’ outcomes is a positive
addition to the answer to the question (when) do simulations reproduce
statistics? At least in some cases one time snapshot is pretty representative.

Is this really the case for all statistically stationary turbulent flows? Can
one claim more than that? Whereas it is natural to expect that nonlinear
systems driven by a random force should be ergodic, it has to be stressed
that the above simulation was made with purely deterministic and constant
in time nonhelical forcing. Nevertheless, the flow clearly exhibited strong
similarity between its temporal and spatial statistical properties with the
exception of the largest scales. A possible ‘explanation’ is that this happens
due to the property of self-randomization of fluid-dynamical turbulence
(intrinsic stochasticity).
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3.7.1. CHAOTIC BEHAVIOUR VERSUS ERGODICITY

A possible criticism of the point that the forcing is deterministic is that it
is very well-known that deterministic forcing can yield a random dynamics
even for a few degrees of freedom, let alone for a turbulent flow. The latter
is correct, but it is also known that most low-dimensional chaotic systems
are not ergodic. Moreover, the issue is broader and is a part of that on
differences between ergodicity and randomness. The story goes back to the
general belief that any kind of nonlinearity in a system with a large number
of degrees of freedom would give rise to ergodicity (e.g., Fermi, 1923 and
Orszag and McLauchlin, 1980)30, and the latter was assumed to serve as
the mechanism for the onset of statistical behavior in dynamical systems.

3.7.2. ON DETERMINISTIC LARGE-SCALE FORCING

There is another important and very difficult issue. As mentioned, since
large-scale deterministic forcing breaks the ergodicity on large scales, the
mean velocity was removed before comparing the temporal and spatial
statistics of the velocity field. So one may put forward an objection that
ergodicity is a global property of the dynamical system represented by the
Navier–Stokes equations and there cannot be a large-scale or a small-scale
ergodicity. Another question is about the impact of nonlocality, i.e., di-
rect and bidirectional coupling of large and small scales, especially in case
of purely deterministic forcing. It also seems to spoil the cleanness of the
ergodicity of turbulent flows. Is it possible to speak about ‘approximate’,
‘small-scale’ ergodicity or ‘modified’ ergodicity?

3.7.3. ARE THERE NON-ERGODIC STATISTICALLY-STATIONARY
TURBULENT FLOWS?

There are many flows that cannot be easily qualified as ‘cleanly’ ergodic:
flows in diffusers with separation on one side; flows in ‘French washing
machine’; confined turbulent convection; all partly-turbulent flows (mixing
layers, jets and wakes past bodies – especially axisymmetric ones with spon-
taneous swirl, boundary layers); properties of these flows depend strongly
on the inflow conditions (small oscillations of the body, acoustic excitation,
etc.) and on the level of disturbances in the quasi-potential flows outside.
Minute changes in both often result in dramatic changes in flows as men-
tioned above. Sometimes this is considered as ‘long memory’ of such flows,
but there seems to be much more than that as minute changes produce

30In this paper the authors have exhibited a set of dynamic systems having a cou-
pling similar to the Euler equations that seem ergodic over the energy surface for typical
parameter choices.
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dramatic changes in the statistical properties of these flows. Some kind of
remedy can be imagined in attempting to look at ‘ensembles’ of such flows,
e.g., flows in diffusers with separation with a large enough variety of ini-
tial/inflow conditions. In such a way the statistical characteristics would
become symmetric and would not feel the one-side separation. There are
two problems here. The first problem is of purely theoretical nature in rec-
onciling the statistics based on an ensemble and long time statistics. The
latter for a flow for some individual inflow condition would (and is ob-
served to) exhibit a well reproducible (!) strong asymmetry. And second,
there seems to be little use for such an approach from a practical point.

A natural question concerns the non-homogeneous flows. One can expect
similar results as obtained above for flows with homogeneous coordinates,
such as the flow in a plane channel. An obvious conjecture is that the
temporal and spatial statistical properties of such a flow will be the same
for fixed values of the distance from the wall.

All the above refers to the Eulerian setting. The problem with the La-
grangian setting is that, generally, Lagrangian statistical properties are not
(and cannot be) stationary for stationary fields in the Euler setting with
the exceptional cases such as homogeneous and stationary Eulerian field
implying stationarity of Lagrangian statistical functions dependent on a
single space point, Lumley (1962a), see also section 9 in Monin and Yaglom
(1971). This along with the ‘more chaotic nature’ of the Lagrangian setting
is the likely reason that nonergodicity is encountered in the Lagrangian
setting for flows which are ergodic in the Euler setting, see e.g., Girimaji
and Pope (1990); Chevillard et al. (2005); Lévêque et al. (2007); Cruzeiro
and Malliavin (2008).

3.8. On methods of studying turbulent flows

Methods of studying turbulent flows are usually divided into theoretical
and experimental. As discussed in chapter 1 and above in this chapter, in
fact, there exist no adequate theoretical methods31. However, most valuable
is the language and terminology which comes from numerous theoretical
approaches. The experimental methods are subdivided into physical (lab-
oratory and field), and numerical. Both are extensively described in the
literature with thousands of references, though most books on turbulence
contain very little (if any at all) material on the physical methods, whereas
the numerical methods, including modelling, are covered extensively.

31Since our main concern is with basic aspects of turbulent flows, various methods of
modelling are mentioned here briefly in the specific context/question. Namely, whether
one can address basic conceptual issues of turbulent flows using such methods. The only
exception seems to be the Navier–Stokes equations.
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3.8.1. DIRECT NUMERICAL SIMULATIONS
OF THE NAVIER–STOKES EQUATIONS

Progress in numerical calculation brings not only great good but
also awkward questions about the role of the human mind. The
human partner in the interaction of a man and a computer often
turns out to be the weak spot in the relationship. The problem of
formulating rules and extracting ideas from vast masses of compu-
tational or experimental results remains a matter for our brains,
our minds (Zeldovich, 1978).
The ability of a computer code to simulate flow that is difficult
to realize in the laboratory has its unfortunate extension the abil-
ity of a computational solution to be altogether unphysical (Aref,
1986).
It is not sufficient to set up the code and let the computer zip
along. It zips all right, but to where? (Kadanoff, 1997).
Fearless engineers write gigantic codes that are supposed to pro-
duce solutions to the equations: they do not care at least (when
they are conscious of the problem, which unfortunately seldom
seems to be the case) that what they study are not the Navier–
Stokes equations, but just the informatic code they produced
(Gallavotti, 2002).
Once you certify the code, it can go to work, and you really know
that the answer is going to be true to a given accuracy (Jimenez,
2002).

Some of the above citations serve as a warning about taking special care
in using numerical simulations. The problem arises due to the extreme
sensitivity to very small variations in the initial and boundary conditions
and possible different behaviour of the chaotic system approximating the
original one32. Therefore it is not clear how to interpret numerical exper-
iments designed to test the accuracy of DNS (hence the term numerical
experiments)33. Nevertheless it is impossible to overestimate the importance
of direct numerical simulations of the Navier–Stokes equations (Moin and
Manesh, 1998; Mathieu and Scott, 2000; and Pope, 2000). This is especially
true regarding most of the issues in basic research, since in many contexts

32This problem is less serious when handling (some) statistics, but can be acute when
attempting to follow a particular realization.

33Whenever they fail in their predictions, scientists tend to blame the poor accuracy
of the observations, the lack of computer power and the inadequate parametrization in
their numerical models, rather than their own lack of skill in computing the accuracy
that can be obtained with present resources. Sloppy reasoning of this kind is responsible
for much of the thoughtless expansion and escalation numerical modelers in all branches
of science indulge in . . . A calculation that does not include a calculation of its predictive
skill is not a legitimate scientific product (Tennekes, 1993).
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one needs neither high Reynolds numbers nor very complex geometry. By
its very nature numerical simulation allows one not only to simulate flow
that is difficult to realize in the laboratory and to get access to quantities
which are not accessible in the laboratory, but also to realize situations
which are not reproducible in the laboratory. The immediate examples are
the ‘unphysical’ situations, such as pure two-dimensional turbulence, and
three-dimensional turbulence with any desirable forcing.

Experimentalists do not query the importance of computations in tur-
bulence, whereas numerists tend pretty frequently to consider physical (lab-
oratory, field) experiments as superfluous. This is a hubris which has been
exhibited many times in the history of science – achieving some goal one is
inclined to think that any/every problem can be coped with by the same
methods. It seems, however that just as equations cannot replace Nature,
experiments cannot be ever fully replaced by computations. Another point
is that no sophisticated experiment (laboratory or DNS) by itself brings
understanding. This can be brought only by a genuine theory, which seems
to be not in existence so far.

3.8.2. PHYSICAL EXPERIMENTS

Not only in basic/fundamental but also in a great many practical problems
the most (and perhaps the only) reasonable approach is still to carry out
specific ad hoc experiments. There seems to be no way to replace experi-
ments in turbulence in the forseeable future and even beyond: nobody will
believe in ‘theoretical’ predictions only. As mentioned, there is a big issue
about the very existence of such.

In view of the above, it is natural to ask: why bother measuring espe-
cially difficult quantities such as velocity derivatives in the age of super-
computers? Indeed, we repeat that many numerical fluid dynamists seem
to be inclined to consider physical experiments as superfluous. Yet not ev-
ery problem in turbulence can be studied by a numerical approach. First,
it is useful to remember that Nature is far richer than the Navier–Stokes
equations, so that one can encounter surprises at large Reynolds numbers34.
Turbulent processes in very large systems such as the atmosphere and the
ocean are not and never will be accessible to direct numerical computa-
tion. Today, it is possible to perform direct numerical simulations of the
Navier–Stokes equations at rather moderate Reynolds numbers in simple
geometries and the prospects for higher Reynolds numbers are rather mod-
est and not only for the immediate future. Though the scale resolution
problem is serious, both in laboratory and numerical experiments, there is

34Apart from things like aliasing, numerical viscosity, inadequate BC and other ‘small’
problems.
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an essential difference between the two: inadequate resolution in numer-
ical experiments leads usually to erroneous results of the whole output,
whereas in laboratory/field experiments one has the true flow and correct
results for the scales resolved even when some range of scales is not re-
solved. Second, even at small Reynolds numbers, it is not always possible
to use the numerical approach either. An important example is represented
by flows in complex geometries such as flows with rough walls and flows in
plant canopies. Similar problems arise in handling flows involving sediment
transport and other additives (various particles, bubbles), and especially
polymers and surfactants for which even no adequate equations seem to be
known. This is a partial list only of the limitations of numerical approaches
and the reasons for the importance of physical experiments. One more rea-
son is that it is the physical experiment (dealing with real turbulent flows)
that provides the final verdict to the results of both numerical simulations
and theories.

The experimental methods of studying turbulent flows are quite elab-
orate. There is a host of methods of flow visualization providing mostly
qualitative information; see references mentioned in section 1.1. Of special
interest are methods providing local-in-space and instantaneous-in-time val-
ues of various quantities. The main methods include hot-wire anemometry,
laser Doppler and ultrasonic anemometry, electromagnetic methods, parti-
cle image velocimetry and stereoscopic particle image velocimetry, particle
tracking velocimetry, laser induced velocimetry and other methods of local
tagging of fluid elements, holographic velocimetry and nuclear magnetic
resonance. The advanced ones access all the spatial and temporal velocity
and passive scalar derivatives. Selected references can be found in Bonnet
et al. (1998); Bruun (1995); Dracos (1996); Gulitski et al. (2007a,b,c); San-
ford et al. (1999); Tao et al. (2002); Toschi and Bodenschatz (2009). The
review by Corrsin (1963) deserves special mention for anyone intending to
perform any experiments in turbulence. There exist also numerous methods
to measure temperature, salinity, moisture and other species.

3.8.3. ON VALIDATION OF THEORIES

This is the right place to add a comment on experimental validation of
‘theories’ understood as any theoretical treatment including modelling. This
is directly related to the question on how meaningful, and in what sense,
is the experimental ‘confirmation’ of a ‘theory’.

The highly-dimensional nature of turbulence is one of the main reasons
and obstacles for assessment of conceptual (!!) validity/reliability of any
theory let alone low-dimensional (LD) modelling. From a conceptual point
of view the main question remains whether it is at all possible and why does
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it ‘work’35. Any LD model or any kind of a “theory” that represents a corre-
sponding LD part/aspect of some particular kind/class of turbulent flows –
but not necessarily for the right reason – will be (and usually is) inadequate
in other flows. Just like simple interpolation/fits polynomials, etc. describe
faithfully the behavior of data without any physical reason (pure technical),
so many models do precisely the same. Mostly they are postdictions (rather
than predictions) and, quite often, successful and useful semi-empirical in-
terpolation schemes. There are many theories – many with contradictory
premises – but all agreeing well with some experimental data. The issue
is more serious as there are many situations in which agreement with ex-
periment may not help too much even if the agreement between “theories”
and experiment is excellent as the correspondence with the experimental
results may occur for the wrong reasons as happens from time to time in the
field of turbulence. For example, there are quantities/properties that are
insensitive/invariant to some specific properties of the flow field whether
it is real or in some sense synthetic, gaussian/quasi-normal, markovian,
etc. For example, addressing issues associated with gaussian/quasi-normal
manifestations of turbulent flows (see subsection 6.8.2) and having a per-
fect agreement with some theory based on quasi-gaussianity and/or quasi-
normality an experimentalist may encounter, in fact, a dilemma whether
his measurements are perfect or just a nice gaussian noise.

Note that the most of evidence was obtained at moderate Reynolds
numbers for finite nontrivial systems, e.g. jets which consist of coexisting
turbulent-nonturbulent regions. Theoreticians claim ‘explanations’ based
on infinite objects/boxes. Today they say that the effects of finite box are
of special interest.

An outstanding example of different nature is the Kolmogorov 4/5 law
which is independent of and insensitive to the nature of the dissipation
mechanism as it depends on the mean energy injection rate only. Two more
examples are the Yaglom 4/3 law for the passive scalar and the Richard-
son pair diffusion law which are true for any random isotropic velocity
field including the Gaussian one. In the basic context there are numer-
ous misinterpretations of the experimental observations strongly biased by
wishful thinking and replacing the sought explanations by mere descrip-
tions of some kind. The so called ‘multifractal formalism’ is an example
of this kind. It is claimed to be an explanation of the ‘anomalous scaling’
and that the multifractal model is well supported by experimental evidence
(Frisch, 1995; Yakhot and Sreenivasan 2005; Eyink, 2008) whereas in fact
it is another description of anomalous scaling36, i.e., of the experimental

35And, of course, there is a serious concern about the meaning of the term ‘work’.
36There are alternative – sometimes standing in contradiction with each other –

descriptions which are also well supported by the experimental evidence. More details
are given in chapters 5 and 10.
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evidence. This issue (and some related) is more serious as there are prob-
lems concerning the experimental evidence itself. We discuss these matters
in chapter 5 especially in the context of the so-called anomalous scaling and
ill-posedness of the concepts of inertial range and cascade. Other examples
are given in chapters 6, 9 and 10.

3.8.4. ON HIGH-REYNOLDS-NUMBER MEASUREMENTS
IN TURBULENT FLOWS

There is little doubt that in order to make any further progress it is vital
to have the full vector of velocity, vorticity and the rate of strain tensor
(pressure is not so easily accessible). From the general point of view this
allows to deal with quantities invariant of the system of reference (sepa-
rate components are not such) as the most appropriate to characterize the
physical processes, which do not know of any frames of reference. In spite of
considerable progress in a variety of modern techniques, such as those men-
tioned above the hot-wire anemometry (more precisely hot-sensor anemom-
etry) remains the only technique capable of measuring the smallest and the
fastest physically relevant fluctuations of velocity fluctuations in turbulent
flows especially at large Reynolds numbers, see Gulitski et al. (2007 a,b,c)
which describe and use a system allowing one to access velocity derivatives
without invoking the Taylor hypothesis and thereby access accelerations.
The HWA technique for 3-D measurements, especially of velocity deriva-
tives, still has more of the caprice of an art than the complete reliability
of a routine laboratory procedure (Kovasznay, 1959) and it is this ‘caprice
of the art’ which leads many people not only to worry about the calibra-
tion of the instrument but also the person carrying out the measurements
(Perry, 1982). It is still very far from being a routine laboratory procedure
and/or just technical issue and requires long term, very nontrivial efforts
not only of a technical nature. Apart from the reasons given above and
the general fundamental importance of high quality of such measurements,
there is an urgent need due to massive use of large eddy simulations for
computations of large Reynolds number turbulent flows, the very basis of
which requires reliable information on the properties of the small scales
in such flows. There is no way other than experiment to obtain such in-
formation which so far does not exist. Therefore, no investment seems to
be exaggerated for such an endeavor. One of the main challenges for fu-
ture efforts in technical aspects is reducing the relative errors such as for
the acceleration components in a system moving with mean velocity and
accessing sub-Kolmogorov scales. It is noteworthy that the latter is of par-
ticular importance for the new approach/concept of studying turbulence as
an “undecomposable” whole since such concepts as inertial range and cas-
cade are not well-defined, see chapters 5 and 6. Accessing sub-Kolmogorov
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scales requires substantial improvement of the system such as i) the probe
construction requiring miniaturization of its individual arrays as well as of
the whole probe in order to minimize the influence of velocity gradients
both across the individual arrays as well as the whole probe, and ii) im-
provement of a number of issues related to the calibration (both hardware
and software).

3.9. Summary

There is no basis for contraposing ‘statistical’ and ‘deterministic’, just as it
seems impossible to separate the structure(s) and the ‘random structureless’
background from the nonrandom processes. With few exceptions there seem
to exist no other way of handling turbulence than by statistical methods. It
should be stressed that these include not only the ‘traditional’ things like
means/averages and other simple characteristics, but all kinds of statistics
including rather intricate/exquisite ones such as conditional statistics can
be, depending on the nature of problems in question and the ability/skill
of the researcher to formulate such questions.

The difficulties in using various decompositions are not trivial and seem
to be ‘generic’ as all of them are essentially the tools borrowed from methods
used in linear problems and therefore not suitable for treatment of turbu-
lence. There is a conceptual necessity to handle turbulence as a whole and
undecomposable as it is meaningful as a whole, e.g., due to the N’s men-
tioned above. Separate “components” have at best very limited meaning if
at all. For example, it is impossible and conceptually incorrect to say that
the turbulent flow is completely laminar or not at smallest scales (Batchelor,
1947; Southerland et al., 1994). It is a matter of principle and a conceptual
question whether studying turbulence via (some) decompositions is aiding
understanding of its fundamental physics. More than one hundred years of
experience seems to be a clear indication that it is not. Any decomposition
results in a nontrivial bidirectional relation between the small and the large
scales (whatever this means) which is non-local (functional) both in space
and time (i.e., history-dependent). Hence there is little chance that this de-
pendence can be local (in several meanings) as has been insisted upon for
quite a period of time. Today – also in view of accumulating evidence – it
is becoming clear that locality is at best an extremely crude approximation
which in many cases is good for empirical purposes, but not as a basis for
studying the physics of turbulence.

The question whether adequate low-dimensional description of turbu-
lent flows is possible depends on the meaning of the term ‘adequate’. In
the strict sense, i.e., from the basic point of view, it seems that there does
not exist such a description, though as a (semi) empirical tool it may be
definitely more than satisfactory.
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The Lagrangian description of fluid flows is physically more natural
than the Eulerian one, since it is related most directly to the motion of
fluid elements. Though a great variety of dynamical issues in turbulence
per se can be treated satisfactorily in the Eulerian setting, further insight
into the basic physics of turbulent flows requires information on time evo-
lution and associated Lagrangian statistics of such quantities as vorticity,
strain, accelerations, etc., as relating the spatial structure (the most pop-
ular time snapshots) and the time dimension. There are important prob-
lems/questions of dynamical nature for which Lagrangian information is of
utmost importance (as well), i.e., one has to employ both settings. Exam-
ples include the class of flows where turbulence memory and/or sensitivity
to the inflow conditions plays an essential role, partly-turbulent flows in-
volving the entrainment phenomenon and flows with polymer solutions and
other additives.

From the conceptual point there is still only partial justification (which
is almost all empirical and belief-based) for the assumption that turbulent
flows are ergodic.

Not only in basic/fundamental, but also in a great many practical prob-
lems the most (and perhaps the only) reasonable approach is still to carry
out specific ad hoc experiments. There seems to be no way to replace ex-
periments in turbulence in the forseeable future and even beyond: nobody
will believe in theoretical predictions only. As mentioned there is a big issue
about the very existence of such.



CHAPTER 4

KINEMATICS

Mostly on the behaviour of passive objects

The term kinematic(s) is associated with several issues, all of which have
in common things which are not directly related to the (Navier–Stokes) dy-
namics of turbulence. In other words, the dynamics of fluid motion, except
incompressibility, does not enter into the problems in question. These issues
include the following:

* – Kinematic (statistical) properties/structure of real turbulent and ar-
tificial (in some sense, e.g., Gaussian) random flows such as (an)isotropy,
(in)homogeneity, etc.
* – Passive objects in random flow fields including artificial ones.
* – Kinematic (Lagrangian) chaos.

In other words, by dynamics we mean dynamics of fluid motions per se,
e.g., the flow properties associated with the dynamics obeying the NSE.

The first issue is of purely technical nature and is covered extensively
in several monographs (e.g., Hinze, 1975; Monin and Yaglom, 1971, 1975;
Mathieu and Scott, 2000; Pope, 2000). This aspect is also closely related
to the so-called eddy structure identification in turbulent flows (Bonnet,
1996). We do not give here any systematic information on these matters.
Instead appropriate references and reminding are made in the text in an
ad hoc manner throughout the book.

The second and the third issues are described mostly to the extent nec-
essary as a background for comparison with the genuine dynamical features
of turbulent flows. The material is included in this chapter, since it is essen-
tially of kinematic nature in the sense mentioned above. Its place here un-
derscores the qualitative difference between the behaviour of passive objects
in random flow fields (including artificial ones) and kinematic/Lagrangian
chaos, and real fluid dynamical turbulence1. The relation to and compari-
son with a variety of aspects of the dynamics of turbulence is discussed in
chapters 6–10.

1Especially in view of the claims made in the chaos community that ‘the problem of
turbulence was solved’ with the developments in chaos theory.
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4.1. Passive objects in random fluid flows

By definition a passive object in a fluid flow has no dynamical effect on the
fluid motion itself, and one is interested in the effects of fluid turbulence
(or some artificial random velocity field) on the field of a passive object.
Passive objects include passive scalars such as dispersing contaminants,
chemical species, temperature, moisture; passive vectors such as material
lines, (weak) magnetic field in an electrically conducting fluid; passive sur-
faces such as material surfaces, and in some cases reacting surfaces and
turbulent flames; material volumes.

An essential point is that the evolution of passive objects obeys linear
equations in which the velocity field does not ‘know’ anything about the
presence of these objects and therefore the velocity field is considered as
given a priori be it a real fluid flow field or some artificial one. There is
no involving phenomenon such as pressure2. This does not mean that the
problems of the evolution of passive objects are simple. The main complica-
tion and simultaneously rich variety of phenomena comes from the fact that
the velocity field enters as a coefficient in front of the spatial derivatives,
i.e., due its multiplicative character, so that statistical problems become in
a sense nonlinear.

The strongly enhanced mixing properties in a turbulent flow are asso-
ciated with the fact that the fluid particles wander away from their initial
positions even in the absence of any mean flow. Equally, or even more im-
portant is the fact that particles which were originally neighbors move apart
as the motion proceeds, so that in a diffusive motion the average value of
l2/l20 continuously increases (Taylor, 1938a). Here, l0 = l(0) is the initial
distance between the two fluid particles and l = l(t) is this distance at some
subsequent time moment, t. This intuitive idea of the relative diffusion re-
ceived support in the paper by Cocke (1969). Namely, Cocke proved the
following important results3.

The first result is that the length of an infinitesimal material line ele-
ment, l ≡ |l|, increases on average in any isotropic random velocity field.
Similarly, Cocke showed that an infinitesimal material surface element, N,
identified by its vector normal, N, increases on average in any isotropic
random velocity field as well4. We stress again that these are purely kine-
matic results: the flow does not have to be a real one, i.e., to satisfy

2Hence ‘shocks’ in the form of ramp–cliff structures just as in the Burgers equation.
3For more details and a review of other related references see Monin and Yaglom

(1975), § 24.5; for later references see Bohr et al. (1998); Chaté et al. (1999); Drummond
(1993); Girimaji and Pope (1990); Tabor and Klapper (1994); Yeung (1994).

4More precisely Cocke showed that ln[〈l(t)〉/l(0)] ≥ 0, and ln[〈N(t)〉/N(0)] ≥ N2(0)
for all t > 0 with equality holding only if there is no fluid motion at all. Arguments
similar to those by Cocke (1969) show that 〈lp(t)〉 ≥ lp(0) and 〈Np(t)〉 ≥ Np(0) for any
p > 0 (Monin and Yaglom, 1975, pp. 579–580).
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the Navier–Stokes equations and/or to be observable in the laboratory or
elsewhere – the only requirement is that the flow should be random and
isotropic. For example, this result is true for a Gaussian velocity field as
well, which is important for the purpose of comparison of material line el-
ements, which are passive, and vorticity, which is not (see chapters 6–7).
On the qualitative level the results by Cocke were confirmed in a number
of DNS experiments both for real and artificial flow fields (Drummond,
1993; Girimaji and Pope, 1990; Huang, 1996; Yeung, 1994) and laboratory
experiments (Lüthi et al., 2001, 2005; Guala et al., 2005; Liberzon et al.,
2005).

In view of the fact that l and N satisfy equations (C.1) and (C.2) re-

spectively, the results by Cocke mean that
D〈l2(t)〉

Dt = 〈liljsij〉 > 0 and
D〈N2(t)〉

Dt = −〈NiNjsij〉 > 0, and the mean growth rates
〈

1
l(t)

Dl(t)
Dt

〉
=

〈liljsij/l
2〉 > 0 and

〈
1

N(t)
DN(t)

Dt

〉
= −〈NiNjsij/N

2〉 > 0. That is, the mean
rate of material line (surface) stretching is positive. In other words, there
is prevalence of stretching over compressing. It is important to emphasize
that 〈lilksik〉 = 0 for random sij and random (and independent of sij) ori-
entation of li. The mean 〈lilksik〉 > 0 because though the vector, li, and the
stretching vector, W l

i ≡ ljsij, are completely random in space, they tend to
be strictly aligned due to the constraint imposed by equation (C.1), so that
their scalar product l · Wl = lilksik tends to be positive, and the PDF of
the cosine of the angle between these two vectors, cos(l,Wl), is positively
skewed (see below). Similarly, the scalar product −N · WN = −NiNjsij

tends to be positive, and the PDF of cos(N,WN ), W N
i = −Njsij, is posi-

tively skewed as well due to the constraint imposed by equation (C.2).

Let us now look at passive vectors in the presence of molecular diffusiv-
ity. There are two kinds of such vectors corresponding in some sense to l
and N. The first one, B, is the vector obeying equation (C.36), and is frozen
into the fluid in the absence of molecular diffusive effects. A well-known ex-
ample is the (weak) magnetic field in an electrically conducting fluid. The
second kind of passive vectors, G, is the gradient of some passive scalar,
θ, i.e., it is governed by the equation (C.33); in the absence of molecular
diffusive effects, the surfaces θ = const become material surfaces.

Cocke’s results allow us to expect that the quantities 〈BiBksik〉,
−〈GiGksik〉 and corresponding rates all should be positive in the presence
of molecular diffusive effects as well. It is noteworthy that the similarity in
the (statistical) behaviour between the material elements, l (surfaces, N)
and some ‘normal’ passive vectors, B (or G) is not at all trivial for two
reasons. First, there are many fewer field lines of ‘normal’ vectors, such as
magnetic field lines, than the material ones – at each point there is typically
only one such line of B (or G), but there are infinitely many material lines



78 CHAPTER 4

(surfaces) passing through a point. This may (and does) lead to differences
in the statistical properties of the two fields. Second, there is a subtle issue
of the singular limiting behaviour of a system with its diffusivity tending
to 0. It can be very different from the purely diffusionless case when the
diffusivity is put to 0 at the outset, as in the case of material elements, l,
and surfaces, N, though some parameters may be similar (see Childress and
Gilbert, 1995; Ott, 1999 and references therein). An additional difference
between l and B is that the latter is solenoidal (divB = 0), whereas the
former, generally, is not. Similarly G = ∇θ is a potential vector, whereas
the material surface element N is not. Nevertheless, there is reasonable
evidence that the quantities, such as 〈BiBksik〉, 〈BiBksik/B

2〉, −〈GiGksik〉
and −〈GiGksik/G

2〉 are positive – a property which can be seen as universal
for any random fluid flow, be it real or artificial, such as the Gaussian
velocity field. This is indeed the case as observed in numerical simulations
(Huang, 1996; Brethouwer et al., 2003; Ohkitani, 1998; Ruetsch and Maxey,
1991, 1992; Tsinober and Galanti, 2001, 2003; Gulitski et al., 2007c).

The net positive stretching in all the mentioned cases is associated with
two concomitant processes, tilting and folding (and production of curva-
ture), so that any random fluid flow acts in such a way as to create a
fine structure in the field of a passive object. For example, in case of a
passive scalar, the positiveness of the term −〈GiGksik〉 is associated with
two aspects. First, it represents the rate of production of the ‘dissipation’
χ

〈
∂θ
∂xi

∂θ
∂xi

〉
≡ χ

〈
G2(t)

〉
of a passive scalar (see equation [C.35]), so that

the latter is continuously amplified by the stretching process reflected in
the term −〈GiGksik〉. Production of the gradients G2(t) of a scalar field
is associated with the fine structure of the passive scalar, θ, itself. Sec-
ond, the term −〈GiGksik〉 is balanced, at least in part, by the ‘dissipation’,
−χ

〈
∂Gi
∂xk

∂Gi
∂xk

〉
, of the vector G itself (see again the corresponding balance

equation [C.35]). The consequence is that the gradients ∂Gi
∂xk

, associated with
the fine structure of G, are amplified too. An example of such structure
both for the passive scalar itself (concentration of a fluorescent dye) and
its dissipation is shown in figure 4.1.

It is noteworthy that the continuous stretching even of infinitesimal
material elements and other passive vectors by random flows is a statisti-
cal tendency; it occurs in the mean only, not every individual element is
stretched. This is seen, for example, from the PDF of the rates lilksik/l

2

and NiNksik/N
2 shown in figure 4.2. Namely, these quantities are negative in

about 1/3 of the volume occupied by the fluid flow. This latter is associated
with the compressing and folding of material elements and the production
of their curvature. Similar behaviour is observed in the case of nonzero
diffusivity, i.e., for the quantities 〈BiBksik〉, 〈BiBksik/B

2〉, −〈GiGksik〉
and −〈GiGksik/G

2〉. Examples of positively skewed PDF of corresponding
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Figure 4.1. Fully resolved three-dimensional data volume of a) the scalar field, θ, and
b) its ‘dissipation’, (∇θ)2 (Frederiksen et al., 1997)

quantities are shown in figure 4.3 along with the PDFs of enstrophy produc-
tion for the case of a statistically stationary velocity field maintained in a
cubic domain with periodic boundary conditions by a deterministic forcing
in RHS of NSE, Tsinober and Galanti, 2003. The production −〈GiGksik〉
is balanced by the diffusive term in contrast to the 〈BiBksik〉, which is
slightly exceeding the dissipative term. The consequence is that, the mean
energy of the field B is continuously growing with time during all the time
of simulation. This is akin to the so-called dynamo effect of spontaneous
magnetic field amplification by the motion of electrically conducting fluid
under certain conditions (see Childress and Gilbert, 1995; Ott, 1999 and
references therein)5. The growth of B is due to the linearity of the equa-
tion (C.36) and the absence of the Lorenz force j × B in the NSE, which
when present ‘reacts back’ and causes nonlinear saturation of the magnetic
field growth (Galanti et al., 1992; Brandenburg, 1995; Brandenburg et. al.,
1996). The results of DNS (Tsinober and Galanti, 2001, 2003; Vedula et al.,
2001) show that the balance in equations (C.34, C.37) is dominated by the
production terms −〈GiGksik〉 and 〈BiBksik〉 respectively, with the forcing
term at least an order of magnitude smaller. That is, the main contribution
to the formation of small-scale structure of passive objects comes mostly
from the strain of the velocity field, with a much smaller contribution from

5The ABC forcing is strongly helical, curlF ‖ F, and therefore, along with kinetic
energy such a forcing makes an input of helicity into the flow. Presence of nonzero helicity,
〈ω · u〉, is known to aid the process of amplification of the magnetic field. However, this
is not the only possibility. The amplification of B was observed with the nonhelical (NH)
forcing, f · curlf =0, which does not make an input of helicity into the flow.
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Figure 4.2. PDFs of the mean growth rates of material line and surface elements, adapted
from Girimaji and Pope (1990). Note that both PDFs are clearly positively skewed, but
contain a considerable negative contribution, corresponding roughly to 1/3 of the volume
occupied by the fluid flow. Both distributions correspond to the statistically stationary
state of the fluid flow maintained by forcing the flow at large scales in a cubic domain

with periodic boundary conditions. Note that even if the rates D ln l(t)
Dt

= liljsij/l2 and
D ln N(t)

Dt
= −NiNjsij/N

2 are statistically stationary (which is approximately the case

shown here), e.g., 〈liljsij/l2〉 and 〈−NiNjsij/N
2〉 are time independent, the ‘energy’

〈l2〉 and 〈N2〉 is continuously growing with time as follows from Girimaji and Pope
(1990). Their results are valid for moderate Reynolds numbers (◦, •, and � correspond
to Reλ = 38, 63 and 90) and as Cocke’s results (1969) for small material line and surface
elements; see also Lüthi et al. (2001, 2005); Guala et al. (2005)

the external forcing. This is akin to the so-called Tennekes and Lumley
balance for enstrophy production. We discuss this issue in chapter 6 and
the differences between the fields Gi, Bi, and the vorticity, ωi in more detail
in chapter 9.

The production processes described by the following terms: 〈BiBksik〉,
〈BiBksik/B

2〉, −〈GiGksik〉 and −〈GiGksik/G
2〉 are directly associated with

the rate of strain, sij, only. This is because when looking at the energy bal-
ance, i.e., of G2 and B2, one deals only with the magnitudes G and B.
Among the consequences is a qualitative difference in behavior of the pro-
duction conditioned on s2 and ω2, figure 4.4. However, the direction of G
and B, especially their orientation in respect to the eigenframe, λi, of the
rate of strain tensor, sik, does depend on vorticity. This is seen immediately
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Figure 4.3. PDFs of −GiGksik, BiBksik and ωiωksik, Tsinober and Galanti (2003).
Here too, as in figure 4.2, the PDFs are clearly positively skewed, and contain a con-
siderable negative contribution. This is true in respect of all the three for the NSE flow
field and also for the −GiGksik, BiBksik in a Gaussian velocity field, but not for ωiωksik

which is symmetric. The latter reflects a qualitative difference between the NSE and
Gaussian velocity fields – in the Gaussian velocity field the mean enstrophy production
vanished identically. For other examples and references see Tsinober (2001a)

Figure 4.4. Conditional averages of −GiGksik on ω2, s2 and G2 in A field experiment
at large Reynolds number, Reλ ∼ 104, Gulitski et al. (2007c)

from the vector identity Bk
∂ui
∂xk

= Bksik + 1
2εijkωjBk. In other words, many

aspects of the behaviour of the vector fields Gi, Bi, such as alignments and
other geometrical relations, are influenced by vorticity as well6. For in-
stance, the alignments reflect important details about how the quantities
−〈GiGksik〉 and 〈BiBksik〉 and the corresponding rates become positive:

6Their and similar statistical properties are denoted by the term geometrical statistics.
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the orientation of vectors G and B with respect to the eigenframe, λi, of
the rate of strain tensor, sik is of utmost importance. For example, vortic-
ity and strain contribute equally to the tilting, i.e., the rate of change of
G, B and ω, Gulitski et al. (2007a,c).

4.1.1. GEOMETRICAL STATISTICS

Gradient of a passive scalar
Following Betchov (1956), it is convenient to represent the production term
−GiGjsij in the eigenframe, λi, of the rate of strain tensor, sij, as

−GiGjsij = −G2{Λi cos2(G,λi). (4.1)

Here Λi (Λ1 > Λ2 > Λ3) are the eigenvalues of the rate of strain ten-
sor and cos(G,λi) is the cosine of the angle between G and λi. In addi-
tion, it is useful to represent the relation (4.1) as 〈−GiGjsij〉 = G ·WG =
GW cos(G,W), W G

i = Gjsij, so that the positiveness of 〈−GiGjsij〉 should
be associated with the strict alignment between G and the correspond-
ing stretching vector WG and positively skewed PDF of cos(G,W) =
−{Λi cos2(G,λi){Λ2

i cos2(G,λi)1/2. The details depend on the mutual ori-
entation of G and the eigenframe, λi, of sij , and the behaviour of its eigen-
values, Λi.

Since Λ1 + Λ2 + Λ3 = 0, Λ1 > 0, Λ3 > 0, it is straightforward to see from
(4.1) that the positiveness of 〈−GiGjsij〉 is associated with the predominant
tendency of alignment between the scalar gradient, G, and the eigenvector,
λ3, corresponding to the compressive (negative) eigenvalue, Λ3, of the rate
of strain tensor, sij. This tendency is observed in DNS and in laboratory
and field experiments, see figure 4.5, figure 1.16 (right).

In other words the amplification of the gradients, Gi, of the passive-
scalar field (i.e., increase of the equi-surfaces of the passive scalar) is asso-
ciated with predominant compression. The importance of compression in
the process of production of the gradients of the passive-scalar field is re-
flected in the structure(s) of this field: it is sheet-like (Chen and Cao, 1997;
Flohr, 1999; Frederiksen et al., 1997; Su and Dahm, 1996); see figures 4.1
and 1.16 (right). The so-called ramp/cliff structures are also due to the pre-
dominant compression (see figure 5 in Warhaft, 2000 or figure 3 in Shraiman
and Siggia, 2000; also Celani et al., 2001). This should be contrasted to the
predominant stretching in case of passive vectors of ‘frozen’ type, Bi, and
also in case of vorticity with structure(s) of a different kind, e.g., tube-
like. Of course, due to incompressibility, stretching in some direction is
necessarily accompanied by compressing at least in one another direction.
However, the above comparison shows that there is hardly any analogy
between the behaviour of passive vectors Gi and Bi. On the differences
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Figure 4.5. PDFs of the cosines of the angle between the scalar gradient, G, and
the eigenframe of the strain tensor in a DNS simulation and a Gaussian velocity field,
Tsinober and Galanti (2003). For other examples and references see Tsinober (2001) and
Gulitski et al. (2007c)

between passive vectors of ‘frozen’ type, Bi, and/or material lines and vor-
ticity, see chapter 9.

‘Frozen’ passive vectors
In a similar way it is seen from

BiBjsij = B2Λi cos2(B,λi) = B ·WB = BW B cos(B,WB), (4.2)

that the positiveness of 〈BiBjsij〉 is associated with the predominant ten-
dency of alignment between the vector B and the eigenvector λ1 corre-
sponding to the largest stretching (positive) eigenvalue, Λ1, of the rate of
strain tensor, sij. Such an alignment was observed in numerical simulations
by Drummond and Münch (1990); Girimaji and Pope (1990); Huang (1996)
and in PTV experiments, Luthi et al. (2005) for material line elements, li.

However, since in real turbulent flows Λ2 is positively skewed, another
possibility would do too: alignment between the passive vector, B, and
the eigenvector of the rate of strain, λ2 corresponding to the intermediate
eigenvalue, Λ2, of the rate of strain tensor, sij (as does vorticity, see chap-
ters 6 and 7). The results by Ohkitani (1998) and Tsinober and Galanti
(2001, 2003) (both with nonzero diffusivity) show such a tendency for align-
ment between B and both λ1 and λ2 with stronger alignment between
B and λ2. Tsinober and Galanti (2001, 2003) observed this tendency in
three cases (ABC, NH and compressible) though with some differences,
figure 4.6. However, in all three cases the alignment between B and the
corresponding stretching vector WB , W B

i = Bjsij is essentially the same.
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Figure 4.6. PDFs of the cosine of the angles between magnetic field, B, and the eigen-
frame of the strain tensor in a DNS simulation, Tsinober and Galanti (2003). For other
examples and references see Tsinober (2001a)

Figure 4.7. PDFs of the cosine of the angle between B,G and ω with their stretching
vectors for the data as in figures 4.5 and 4.6

This can be seen from figure 4.7, which shows the tendency of strict align-
ment between B and WB corresponding to the positiveness of 〈BiBjsij〉 =
〈B ·WB〉 and the positively skewed PDFs of BiBjsij = B ·WB, see (4.2)
and figure 4.3. Note that, if Λ2 is positively skewed, the PDF of
cos(B,WB) = {Λi cos2(B, λi)}/{Λ2

i cos2(B, λi)}1/2 ∼ 1 in both cases, when
either cos2(B, λ1) ∼ 1, or cos2(B,λ2) ∼ 1.

Note, the difference in the alignment properties of B and G with the
eigenframe λi. First, there is no tendency of double alignment (i.e., with
λ1 and λ2) for G and this alignment is the same for the NSE and for a
Gaussian field. This tendency is also absent for B in a Gaussian velocity
field.
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An important point is, that though the rate of production of B2 (and
similarly of G2), i.e., BiBjsij/B

2 = Λi cos2(B,λi), does not directly depend
on the magnitude of B, it depends on B via the dependence of alignments,
i.e., cos2(B,λi), on the magnitude of B. This dependence is such that the
preferential alignments become stronger at larger magnitudes of B and
correspondingly of G.

Two-dimensional flows
It is well known that the behaviour of dynamical variables (velocity, vortic-
ity, etc.) is qualitatively different in three and two dimensions (see chapter
8 and appendix C). When dealing with, e.g., passive scalars, it is believed
that in many respects their behaviour is similar in three and two dimen-
sions, since the conservation properties of the scalar do not depend on
dimensionality (see Holzer and Siggia, 1994; Warhaft, 2000 and references
therein). However, there are also differences some of which can be seen
via geometrical statistics, e.g., alignments. In two dimensions the rate of
strain tensor has only two eigenvectors: one positive, and one negative –
there is no intermediate one. Therefore, in the two-dimensional case the
positiveness of quantities like 〈liljsij〉, (〈BiBjsij〉), 〈NiNjsij〉 (〈GiGjsij〉)
and the corresponding rates is always due to the tendency of alignment of
the corresponding vector with the eigenvector corresponding to the positive
(negative) eigenvalue.

More details on the behaviour of the alignments can be seen from the
equations for the evolution of vectors aG

i = cos(G,λi) and aB
i = cos(B,λi).

This approach allows us to distinguish between pure strain effects and ro-
tation. The latter consists of two contributions: vorticity and the rotation
of the eigenframe, λi, of the rate of strain tensor, sij (see Lapeyre et al.,
2001; Brethouwer et al., 2003; Nomura and Post, 1998; Tabor and Klapper,
1994 and references therein).

A final remark is that the viscous effects also influence the alignments.
However, practically nothing is known about this influence so far.

4.2. Kinematic/Lagrangian chaos/advection

In the previous section the velocity field was assumed random, so that
the chaotic behaviour of passive objects was mainly due to the random
nature and the multiplicative character of the velocity field and, as in some
problems, due to random forcing.

Since the equations describing the evolution of passive objects are linear,
it may seem that there is no place for chaotic behaviour of passive objects
if the velocity field is not random and is regular and fully laminar, because
the chaotic behaviour appears/shows up in nonlinear systems. There is,
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however, no real contradiction or paradox. This apparent contradiction is
resolved via the following observations.

Until now we used the Eulerian description, in which the observation of
the system is made in a fixed frame as the fluid goes by. In this case the
motion is characterized by the velocity field u(x,t) as a function of position
vector, x, and time, t. Another way to characterize the fluid flow is the
Lagrangian description in which the observation is made following the fluid
particles wherever they move. Here the dependent variable is the position
of a fluid particle, X(a,t), as a function of the particle label, a (usually it’s
initial position, i.e., a ≡ X(0)) and time, t. The relation between the two
ways of description is given by the equation7

∂X(a,t)
∂t

= u[X(a,t); t], (4.3)

i.e., the Lagrangian velocity field, v(a,t) = ∂X(a,t)
∂t , is related to the Eulerian

velocity field, u(x,t), as V(a,t) ≡ u[X(a,t); t].
If the Eulerian velocity field is known/given – as in all problems of

kinematic nature – then the equation (4.3) serves for determination of the
trajectory of a fluid particle with the initial position X(0) ≡ a. This equa-
tion is nonlinear (for almost all) even for very simple fluid flows and is
generically non-integrable for all such flows. This seemingly simple equa-
tion is generally intractable even in the kinematic setting of determining
closed form solutions for the particle paths X(a, t) from an initial position
x = a with given u(x, t).

One of the important developments of the so-called deterministic chaos
is that (even) simple systems governed by a purely deterministic nonlinear
set of equations as a rule exhibit irregular, apparently random/stochastic,
behaviour (see, e.g., Mullin, 1993 and references therein). In particular it
is well established that the trajectories of fluid particles – their motion
is governed by equation (4.3) – exhibit chaotic behaviour even when the
Eulerian velocity field is not random but is regular and fully laminar. In
other words, though the Eulerian velocity field, u(x; t) is not chaotic and is
regular and laminar, the Lagrangian velocity field v(a,t) ≡ u[X(a,t); t] is
chaotic because X(a,t) is chaotic. This is generally true of two-dimensional

7The relation between the two ways of description can be seen also by looking at
any conservative property of fluid particles (i.e., a nondiffusive passive scalar) such as
nondiffusive ‘dye’ or any other (e.g., radioactive) label. Due to its conservative character
it is time independent in the Lagrangian description, i.e., has the form ϑ(a), but is time
dependent in some fixed point of space, x, i.e., in the Eulerian description, and has the

form θ(x,t). Hence, both are related via ϑ(a)= θ[X(x,t), t]̇. Since ∂ϑ(a)
∂t

= Dθ
Dt

= 0 it

follows that ∂θ
∂t

+ uk
∂θ

∂xk
= 0, which is just an expression of the fact that the material

derivative of any Lagrangian conservative property should vanish (see Monin and Yaglom,
1971).
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time dependent flows, three-dimensional time-independent flows, and, of
course, time-dependent ones. In other words, many fluid flows which are
laminar in the Eulerian sense (E-laminar) exhibit the so-called Lagrangian
(kinematic) chaos or Lagrangian turbulence (chaotic advection), i.e., they
are L-turbulent. This chaotic Lagrangian property of simple Eulerian fluid
flows can lead to enhanced mixing properties of such flows at any, even very
small, Reynolds numbers, i.e., enhanced transport of passive objects occurs
not only in genuinely turbulent (E-turbulent) flows, but also in simple E-
laminar flows possessing the property of Lagrangian chaos (L-turbulent)8.
An example out of a great many of such enhanced mixing at Re∼ 1 only is
shown in figure 4.8 (see also Aref, 2002; Kim and Stinger, 1992; Sturman
et al., 2006 and references therein for further examples).

It has to be stressed that this chaotic behavior is of purely kinematic na-
ture resulting solely from equation (4.3) (and various equations for passive
objects – reminding again – linear in the Euler setting) and has nothing to
do with dynamics, i.e., genuine (as NSE) turbulence.

The enhanced transport of passive objects by E-laminar but L-turbulent
flows is closely related to the property that (almost all) nearby fluid ele-
ments separate exponentially in time. That is, the material elements are
stretched on average in such flows too, D

〈
l2(t)

〉
/Dt = 〈lilksik〉 > 0 and〈

1
l(t)

Dl(t)
Dt

〉
= 〈lilksik/l

2〉 > 0. This stretching property appears to be nec-
essary for the same behaviour of passive vectors with nonzero diffusiv-
ity, in spite of the qualitative difference between the two cases (Childress
and Gilbert, 1995; Ott, 1999; Zeldovich et al., 1983, 1990 and references
therein). As mentioned, this is a subtle issue, as other issues associated
with the behaviour of systems described by differential equations in which
the diffusivity (i.e., the coefficient in front of the highest derivative) is small
and tends to zero: the singular limiting behaviour of the system is usually
qualitatively different from the case when the diffusivity (viscosity) is put
to zero at the outset. First, one of the reasons is easily seen in the case of
incompressible flows. Stretching in one (or two) direction(s) results in com-
pressing in, at least, one other direction bringing fluid elements very close
one to another, so that the diffusive (viscous) effects become important for
whatever small diffusivity (viscosity). This does not happen if the diffu-
sivity (viscosity) is precisely vanishing at the outset. Second, it is typical
for chaotic flows (i.e., L-turbulent, but both E-laminar and/or, of course,
E-turbulent) that as the diffusivity becomes smaller, passive objects de-
velop more fine-scale structure, so that the advective and diffusive terms
in the corresponding equations remain of the same order in the spot-like

8This chaotic property of the trajectories of the fluid particles makes it more difficult
to follow them, i.e., much more difficult to utilize the Lagrangian description of even the
simplest fluid flows which exhibit Lagrangian chaos.
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Figure 4.8. Mixing in PPM – partitioned-pipe mixer at very low Reynolds number.
RePPM:axial = 〈vz〉R/ν = 0.3 and RePPM:cs = vRR/ν = 1.8; here 〈vz〉− average
axial velocity and vR = 1

2
(|v1|max + |v1|min) – characteristic cross-sectional velocity.

0 < RePPM:axial < 0.8 and 0 < RePPM:cs < 8. a) schematic of the PPM, b) is
a close-up of the upper part of c). From Kusch and Ottino (1992). For other examples
see Acrivos (1991); Kim and Stringer (1992); Aref and El Nashie (1994) and references
therein

(intermittent) regions throughout the whole flow domain. The formation
of the small-scale structure is both due to the predominant production of
the type 〈BiBksik〉, i.e., stretching, and diffusive effects as well as their
interaction. The latter is an important issue as the outcome is not just a
result of both as if they were additive and independent, e.g., the presence
of diffusion changes qualitatively the nature of the production. Hence the
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small-scale structure developing in diffusionless systems, e.g., as a conse-
quence of Lagrangian chaos with zero diffusivity, is, generally, qualitatively
different from that for whatever small but nonzero diffusivity. It seems
well established that the positiveness of quantities such as 〈lilksik〉 and
〈lilksik/l

2〉, and 〈BiBksik〉 and 〈BiBksik/B
2〉 can be seen as a universal

qualitative property not only of any Eulerian random fluid flow (be it real
fluid turbulence or artificial), but of any fluid flows that are Lagrangian
chaotic, many of which are simple laminar in the Eulerian sense. These
and similar quantities are closely related to the positiveness of the so-called
Liapunov exponents associated with exponential stretching, at least in some
part of the flow region9. However, the structure or even simpler properties
of flow regions where the Liapunov exponents are or should be positive is
not known even for simple flows, e.g. three-dimensional time-independent
flows. Note that the linearization of the equation (4.3) for a small distur-
bance l (i.e., difference of equation (4.3) for X + l and for X) is precisely
equation (C.1) Dli

Dt = lk
∂ui
∂xk

, and the RHS of the equation for l2 is precisely
lilk

∂Ui
∂xk

≡ lilksik.

4.3. On the relation between Eulerian and Lagrangian fields

Given the marker dispersion the problem is to determine the
source(s) of agitation. In general, owing to chaotic advection, this
inverse problem is impossible to solve (Aref, 1984).
... the possession of such relationship would imply that one had (in
some sense) solved the general turbulence problem. Thus it seems
arguable that such an aim, although natural, may be somewhat
illusory (McComb, 1990).
What one sees is real. The problem is interpretation.

The relation between Eulerian and Lagrangian fields is a long-standing and
most difficult problem. The general reason is because the Lagrangian field
X(a, t) (and velocities v[X(a, t); t]) is a complicated functional of the Euler
velocity field u(x, t) resulting from the equation (C.64). Roughly, there is a
general relationship in terms of path (Feynman, functional) integrals, but
this does not help much (if at all)10. Apart from this ‘formalistic’ issue there
is one more important aspect of conceptual nature associated with the ‘more
chaotic’ nature of the Lagrangian setting. This can be seen as an indication
that the pure Lagrangian dynamical equations (so far intractable for viscous
flows) are more rich than their Navier–Stokes counterpart. The complexity

9See Acrivos (1991); Bohr et al. (1998); Childress and Gilbert (1995); Ott (1999);
Sturman et al. (2006); Zeldovich et al. (1990) and references therein.

10For more on these issues see Monin and Yaglom (1971, 1, Ch. 9, pp. 568–578),
also Bennet (2006, pp. 21–24). The start was made by Corrsin (1959a,b) and Lumley
(1962a,b).
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of the relation between the Lagrangian and Eulerian fields is seen in the
example mentioned in the previous section of Lagrangian (kinematic) chaos
or Lagrangian turbulence (chaotic advection) with a priori prescribed and
not random Eulerian velocity field (E-laminar)11. In such E-laminar but
L-turbulent flows the Lagrangian statistics has no Eulerian counterpart, as
in the flow shown in the figure 4.8. Indeed, though the Eulerian velocity
field, u(x; t) is not chaotic and is regular and laminar, the Lagrangian
velocity field v(a,t) ≡ u[X(a,t); t] is chaotic because X(a,t) is chaotic.
This shows that, in general, there does not exist a unique relation between
Lagrangian and Eulerian statistical properties in genuine turbulent flows
as was foreseen by Corrsin in 1959b: in general, there is no reason to expect
that Lik (the Lagrangian two-point velocity correlation tensor) and Eik (the
Eulerian two-point velocity correlation tensor) will be uniquely related. In
other words it may be meaningless to look for such a relation, though there
is a considerable number of papers attempting to give such relations mostly
for practical purposes12.

The intricacy of the relation between the Eulerian and Lagrangian fields
of the same fluid flow has a number of important consequences. In fact, this
is a part of a broader issue addressed in chapter 9.

4.4. Summary

The predominance of stretching over compressing of passive objects and
formation of intricate structure can be seen as a universal qualitative prop-
erty of any Eulerian random fluid flow, be it real fluid turbulence or some
artificial random field. In the latter case, the non-Gaussianity of a passive
field possessing structure arises from a simple Gaussian ‘structureless’ ve-
locity field. This is a kind of irreversible effect of the randomness of velocity
field on passive objects independent of the nature of this randomness.

The predominance of stretching over compressing of passive objects also
occurs in all fluid flows that are Lagrangian chaotic (L-turbulent) a set that
includes most of the simple laminar flows in the Eulerian sense (E-laminar).
Hence, generally, there is no one-to-one relation between the Lagrangian
and Eulerian statistical properties in turbulent flows, just as there may be
no correspondence between the structure(s) of a passive object (dye) and

11This is why Lagrangian description – being physically more transparent – is much
more difficult than the Eulerian description, see the citation from Lagrange on page 27.

12This was also started by Corrsin (1959a) who proposed the so-called independence
approximation to relate the Lagrangian and Eulerian velocity correlations assuming that
at large times the probability distributions of particle displacements and of the Eulerian
velocity field become statistically independent. Generally this hypothesis (as a host of
others) is not correct as is shown in recent experiments by Ott and Mann (2005), see also
Weinstock (1976).
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the field of a dynamically active variable (velocity, vorticity) in the same
fluid flow.

Thus the essential differences in the behaviour of passive and active
fields and the intricacy of the relation between them require caution in
promoting analogies between the two. We return to this issue in more detail
in chapter 9.



CHAPTER 5

PHENOMENOLOGY

And the Kolmogorov 4/5 law

Correlations after experiments done is bloody bad. Only predic-
tion is science. (Hoyle, 1957)
Phenomenology – The branch of a science that classifies and de-
scribes its phenomena without any attempt at explanation (Web-
ster’s New World Dictionary, College edition, 1962).
. . . even wrong theories may help in designing machines (Feynman,
1996).
In our present state of understanding, these simple models will be
based, in part on good physics, in part on bad physics, and in part
on shameless phenomenology (Lumley, 1992).
Our present understanding of anything turbulent is at best phe-
nomenological . . . (Siggia, 1994).

5.1. Introductory notes

There is no definition of what is phenomenology of turbulent flows. In a
broad sense, it can be defined by a statement of impotence: it is almost ev-
erything except the direct experimental results (numerical, laboratory and
field) and/or results (a very small set indeed), which can be obtained from
the first principles, e.g., NSE. Phenomenology of turbulence involves use of
dimensional analysis, a variety of scaling arguments, symmetries, invariant
properties and various assumptions, some of which are of unknown valid-
ity and obscured physical and mathematical justification (if any). Thus in
the broad sense phenomenology of turbulence includes also most of the
semi-empirical approaches and turbulence modelling1. Doing all this re-
quires insight into the basic physics of turbulence, hard experimentation
and painful efforts of interpretation. The latter may be quite problematic,
especially in models having enough free parameters2 to guarantee the right
results not necessarily for the right reasons.

1Most of this enormous material is beyond the scope of this small book. Relevant
references can be found in Davidson (2004); Frisch (1995); Lesieur (1997); McComb
(1990); Meneveau and Katz (2000); Mathieu and Scott (2000); Monin and Yaglom (1971,
1975); Pope (2000); Sagaut and Cambon (2008); Tennekes and Lumley (1972).

2Sometimes these parameters are changed according to circumstances – in words of
von Karman a kind of “science of variable constants”.

93
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It is often claimed that in turbulence research, phenomenology helps to
explain some features of turbulent flows, so that there is such a thing as
phenomenological understanding of turbulence. This seems too ambitious;
phenomenology is mostly a kind of description of some statistical aspects
of turbulent flows, which is based on or motivated by some experimental
data. The best that can be achieved by phenomenology is formulation of
some plausible a priori hypotheses, i.e., those before experiments are done.
The famous Kolmogorov hypotheses belong to this category. We start with
an overview of what is called Kolmogorov phenomenology, though it has
been discussed in many books, reviews and numerous papers. There are
several reasons to do so. First, we will need this material as background to
several discussions below and the following chapters. Second, in many cases
Kolmogorov has been ascribed things he did not write, so our exposition is
based exclusively on his original papers in Russian (Kolmogorov, 1941a,b).
This is followed by a discussion of inertial range, cascade and other central
phenomenological ideas and related matters.

5.2. Kolmogorov phenomenology and related subjects

The two Kolmogorov’s well-known similarity hypotheses are frequently
called universality hypotheses (e.g., Frisch, 1995). However, it is important
to note that before putting forward these two similarity hypotheses, Kol-
mogorov formulated the hypothesis of local isotropy based on definitions
of local homogeneity and isotropy. Together with his definition of local
isotropy3 this hypothesis postulates that at large Reynolds numbers all the
symmetries of the Navier–Stokes equations are restored in the statistical
sense4, except for one involving scaling: . . . we think it rather likely that in
an arbitrary turbulent flow with sufficiently large Reynolds number Re = LU

ν
the hypothesis of local isotropy is realized with good approximation in suffi-
ciently small regions G of the four-dimensional space (x1, x2, x3, t) not lying
close to the boundaries of the flow or its other special regions. The text in
the English translation of the Kolmogorov papers published in Friedlander

3The Kolmogorov (1941a) definition of local isotropy states:
The turbulence is called locally-isotropic in the domain G, if it is homogeneous and if,

besides, the distribution laws mentioned in Definition 1 (see below) are invariant with
respect to rotations and reflections of the original system of coordinate axes (x1,x2,x3,).

Local homogeneity as defined in Kolmogorov’s Definition 1 states the invariance of
the distributions Fn on space and time translations and Galilean transformations. Here
Fn is a 3n-dimensional distribution law of probabilities for the n velocity increments

w(P (n)) = u(P (n)) − u(P (0)) between n points P (n)(x
(n)
1 , x

(n)
2 , x

(n)
3 ) and a certain fixed

point P (0)(x
(0)
1 , x

(0)
2 , x

(0)
3 ).

4Frisch (1995) presents this in the form of his hypothesis H1 (p. 74), but omits to
mention that it is due to Kolmogorov: there is no presentation of the hypothesis of local
isotropy in his book.
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and Topper (1961) is reprinted in a slightly less satisfying version in a spe-
cial issue of the Proc. Roy. Soc. London (1991), A434: in turbulent flow
with sufficiently large Reynolds number in sufficiently small regions G of
the four-dimensional space (x1, x2, x3, t) not lying close to the boundaries
of the flow or other singularities of it. This translation is not very accurate.
Specifically, the term singularities used for the Russian osobennosti is in-
adequate in this particular case. Therefore the last four words in the above
citation were replaced by its other special regions.

Naturally, this hypothesis, which we have put forward in such a general
and somewhat indefinite form, cannot be proved rigorously. This is followed
by an exposition of the turbulence cascade process on a 2/3 page footnote as
a qualitative justification of the suggested hypothesis. In order to make its
experimental justification possible for individual special cases, Kolmogorov
presents a number of consequences of the hypothesis of local isotropy and
only then turns to his similarity hypotheses. The first similarity hypoth-
esis states that for the locally-isotropic turbulence the distributions Fn

are uniquely determined by the quantities νand ε. The second similarity
hypothesis states that, if the separations between the points are large in
comparison with η = ν3/4/〈ε〉1/4, then the distributions Fn are uniquely
determined by the quantity 〈ε〉 and do not depend on ν. It is Kolmogorov’s
second similarity hypothesis which is introduced in order to cope with the
possible scale invariance symmetry of NSE5 at Re � 1 and which allowed
him to find the 2/3 famous exponent; Kolmogorov used the term hypothe-
ses of similarity, i.e., scale invariance, intentionally, and avoided using the
term universality. Namely, straightforward dimensional analysis applied to
the second-order structure function in the so-called inertial range of scales
r, L � r � η, resulted in

S‖
2(r) ∝ C2〈ε〉2/3r2/3. (5.1)

Here S‖
p(r) = 〈(Δu‖)p〉, p = 2, – is the second-order structure function

of the longitudinal velocity increment Δu‖ ≡ [u(x + r) − u(x)] · r/r, and
C2 is an ‘absolute’ constant; 〈ε〉 is the mean rate of energy dissipation,
ν − kinematic viscosity, and η = ν3/4〈ε〉1/4 is the Kolmogorov dissipation
scale.

It is noteworthy that Kolmogorov never worked in Fourier space6. This
was done by his Ph.D. student A. Obukhov (1941), who formulated the

5Kolmogorov was aware of the self-similarity before the completion of the first K41
paper, but ‘did not know how to determine the exponent m’ (Yaglom A.M., 1994, Annu.
Rev. Fluid Mech., 24, p. 8).

6Though it is very common to ascribe to him that he did so. For example, The idea
of similarity in physical space is old – Richardson (1922), for example, expressed it ex-
plicitly – but the force of Kolmogorov’s theory seems to have oriented attention in later
years to wavenumber space. Sreenivasan (1991, p. 541).

There are other numerous similar ascribings to Kolmogorov in the literature. A recent
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−5/3 law for the energy spectrum

E(k) = CK〈ε〉2/3k−5/3, (5.2)

which in some sense (only) is equivalent to (5.1).
The 2/3 and −5/3 laws are claimed to have received considerable ex-

perimental support7, though looking at the compensated data (i.e., at
S‖

2(r)r−2/3 and/or E(k)k5/3) at large Reynolds numbers (including the fa-
mous experiments by Grant et al., 1962) shows that in most of the ex-
periments the exponents in (5.1) and (5.2) are correspondingly larger than
2/3 and smaller than −5/3, see below. These and similar results have vari-
ous serious consequences concerning the asymptotic behaviour of turbulent
flows as ν → 0 (Re → ∞) such as applicability of some singular solutions
of the Euler equation for description of this asymptotic state, see chapter
9. It has to be stressed that in practice one deals always with a ‘pseudo-
limit’ Re � 1 (ν 	 1) which can make a qualitative difference for several
reasons. First, the true limit Re → ∞ (ν → 0) is singular, so one cannot
exclude the possibility that what is observed at whatever large but finite
Re can be very much different from what happens in the limit Re → ∞
(ν → 0) if there is a way to define this limit properly. So strictly speaking,
based on whatever experimental evidence, one cannot claim that turbulence
remains dissipative even at infinite Reynolds numbers. Second, there is a
consensus (but still only a belief) that solutions of NSE at any finite Re
are not singular; for a discussion of these and similar issues, see chapter 9.

As mentioned, in his 1941a paper Kolmogorov explicitly treated only the
second-order function, though all his hypotheses were formulated for statis-
tical properties of velocity increments and thereby for structure functions
of any order. Instead, the 1941a paper was followed by the most remark-
able quantitative prediction, perhaps the only prediction in the theory of
turbulence made so far, of his 4/5 law obtained as a direct consequence from
the Navier–Stokes equations (Kolmogorov, 1941b) for the inertial range
L � r � η

S‖
3(r) = −4/5〈ε〉r, (5.3)

in which the constant C3 = −4/5. However, this relation was obtained for
globally-, not for locally-isotropic turbulence. A number of justifications for

example is Kolmogorov took a further step: based on his result for the third-order lon-
gitudinal structure function S3,0(r), he concluded that U = O(εr1/3) and proposed a

general law: Sn,0 ∝ rn/3, Yakhot (2003). Kolmogorov never handled structure functions

of order higher than three, though the scaling Sn,0 ∝ rn/3 follows directly from his second
similarity hypothesis.

7See references in Monin and Yaglom (1975); Frisch (1995); Saddoughi (1997);
Sreenivasan and Antonia (1997). In a recent experiment by Kholmyansky et al. (2001b)
and Gulitski et al. (2007a) the 5/3 law spans over three decades for all the three velocity
components.
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various versions of locally-isotropic and/or locally- homogeneous turbu-
lent flow was made by Danaila et al. (1999); Hill (1997); Lindborg (1996,
1999); Mann et al. (1999); see also references in these papers and in Kurien
et al. (2004); Tatarskii (2005); Antonia and Burattini (2006); Takaoka et al.
(2007); Kaneda et al. (2008); Mininni et al. (2008). A rigorous proof that

lim
r/L,η/r→0

S‖
3(r)/〈ε〉r = −4/5 was obtained by Nie and Tanveer (1999) with-

out any assumptions on local homogeneity, isotropy and stationarity with
S‖

3(r) defined by integrating in space/time and over all possible orienta-
tions of r, though for a number of reasons they were unable to check their
results numerically: low Reynolds number (Reλ = 155) and prohibitive
computational expense to compute over all orientations of r (solid angle
integrations), which is necessary due to possible anisotropy of the flow, see
Taylor et al. (2003), and also Duchon and Robert (2000) for a local version
of the 4/5 law.

The Kolmogorov papers (1941a,b) raised a number of basic issues which
have kept the turbulence community quite busy until now. We address
briefly three of them.

The first issue is about the validity of the 4/5 law. Since the 4/5 law
is a consequence of the Navier–Stokes equations, it should be possible,
at least in principle, to obtain it from experiments (laboratory, DNS or
even field) in a rather clean way. However, even at rather high Reynolds
numbers, the results exhibit large variability for the range of r in which
K = S

||
p (r)/(−4/5εr) ≈ 1. For example, in the experiments by Gagne

(1987) in the S1 wind tunnel in Modane at Reλ ∼ 3000, this range was
less than one decade, whereas in similar experiments by Malecot (1998) at
Reλ ∼ 2500 and in experiments by Mydlarski and Warhaft (1996) with the
turbulent grid flow even at Reλ ∼ 450 there was almost no such range at all.
In experiments by Praskovsky (1998) at similar Reλ the range of r in which
K ≈ 1 was about one and a half decades for two flows (mixing layer and
return channel) in the large wind tunnel of TSAGI (near Moscow). Even at
Reλ ≈ 104 in experiments by Sreenivasan and Dhruva (1998); Kholmyansky
et al. (2001b); Gulitski et al. (2007a); Kholmyansky and Tsinober (2008)
in the atmospheric surface layer, this range was less than three decades.
However, attempting to define the scaling range in a more precise manner
via local slopes of K causes this range to become much shorter and in
some experiments even to disappear. In some cases when the large scales
are approximately isotropic, the 4/5 law is observed even at Reλ ∼ 220,
though in a rather limited range slightly more than half a decade, as in the
DNS by Chen and Cao (1997).

Among the possible causes for deviations from the 4/5 law, Frisch (1995,
p. 129) lists the following: lack of asymptoticity (e.g., contamination by the
dissipation range), lack of homogeneity and/or isotropy, violations of Taylor
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hypothesis, violation of the hypothesis . . . of the finiteness of energy dissi-
pation, inaccurate determination of the dissipation rate, and poor quality
of the data.

It is noteworthy that these and/or possibly other causes (see e.g., Moisy
et al., 1999; Danaila et al., 1999 and references therein) result in consider-
able deviations from the 4/5 law, whereas these same causes, whatever they
are, have little (but not negligible) effect on the 2/3 (5/3) law. This seems
surprising, since the 4/5 law is a consequence of Navier–Stokes equations,
while the 2/3 law is only a consequence of dimensional arguments (dimen-
sional necessity) supplemented by the above mentioned hypotheses. So far
there is no clear answer to this issue. One of the possible reasons is the lack
of isotropy in two meanings. First, the 4/5 law applies strictly to globally-
isotropic flows. Second, flows even with very large Reynolds number may
lack local isotropy8.

There were many attempts to test the hypothesis of local isotropy in a
variety of ways, all of which exploit some consequences of this hypothesis.
These include testing the kinematic relations between various quantities
both in physical and in Fourier space, and many other such approaches.
The issue has a long history and cannot be reviewed here in full; for a
partial list of references, see Ferchichi and Tavoularis (2000); Saddoughi
(1997); Shen and Warhaft (2000); Tsinober (1993, 1998a); Yeung et al.
(1995) and Zhou and Antonia (2000).

We mention here only the turbulent shear flows as those for which con-
siderable evidence has accumulated since the early fifties against the hy-
pothesis of local isotropy at rather high Reynolds numbers. The recent ones
are the experimental results obtained in an approximately homogeneous
shear flow by Garg and Warhaft (1998) and Shen and Warhaft (2000) for
Reλ ∼ 103 (see also Ferchichi and Tavoularis, 2000)9. On a qualitative

8The difficulty in a clean experimental confirmation of the 4/5 law at large Reynolds
numbers is two-fold. First, it is extremely difficult, if not impossible, to set up experi-
mentally a large Reynolds number flow which is isotropic in large scales.

Second, if one gives up the isotropy in the large scales, then one has to use the re-
sult obtained by Nie and Tanveer (1999). That is in order to determine the third-order
structure function it is necessary to perform both space/time and solid angle averaging,
i.e. over all possible orientations of the separation vector r. With the existing techniques
this is impossible in high-Reynolds-number physical experiments where the averages are
performed over time only. As for direct numerical simulations, that may be possible
for moderate Reynolds numbers with rather large scale of computations as was done
by Taylor et al. (2003). Until then we can hold strong opinions either way (Feynmann,
1963), though there is little doubt about the validity of the 4/5 law in a globally-isotropic
turbulent flow.

As concerned the higher-order statistics (e.g., structure functions) the problems are
even more serious, as one is forced to use very long time records to achieve statistical
convergence. This means that very large scales (which hardly are isotropic) are involved
in the process.

9Ferchichi and Tavoularis (2000) draw contrasting conclusions to those of Shen and
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level their results show that local isotropy holds for second-order statistics,
but is violated for higher-order statistics10 in agreement with the results
mentioned above regarding the deviations from the 4/5 law. One of their
quantitative results is that the skewness, 〈(Δu12)3〉/〈(Δu12)2〉3/2, of the
longitudinal velocity increments, Δu12 = ui(x1,x2 + r, x3) − u1(x1, x2, x3),
along the mean velocity gradient, is ∼0.5 in the inertial range, whereas it
should be close to zero if the flow is locally-isotropic in this range. This ef-
fect is much stronger for the super-skewness 〈(Δu12)5〉/〈(Δu12)2〉5/2. These
results, compared to those for flows without mean shear, imply that there
is a direct influence of mean shear on the small scales – an effect inferred
already by Townsend (1954) among others.

Such an effect is possible due to the permanent bias of the mean shear
to which the field of fluctuations is exposed due to its very large residence
time in the mean shear. More generally, the anisotropy in large scales seems
to be felt down to the smallest scales in the inertial range and may be
(but may also not be, see chapter 6) ‘forgotten’ only in the range of scales
comparable with the Kolmogorov scale, η. In this sense the ‘cascade’ (see
next section) is not an information-losing process. In other words, there
is quite reliable experimental evidence, that, at least in turbulent shear
flows, the hypothesis of local isotropy is violated11, and this seems to be
the case with many other (but not all) flows, which are anisotropic in the
large scales12.

One of the main possible reasons for the violation of local isotropy (and
the so-called anomalous scaling) even at the largest accessible Reynolds
numbers is the direct and bidirectional coupling between large and small
scales when the large scales are anisotropic – one of the manifestations of
nonlocality of turbulent flows. This matter is taken up in chapter 6 in the
section on nonlocality. We add here that violation of local isotropy means
violation of the basic hypothesis of the so-called fully-developed turbulence,
that all the symmetries of the Navier–Stokes equations are restored in the
statistical sense locally in time and space (see, e.g., Frisch, 1995).

The second issue is about the behaviour of dissipation of turbulent flows
at very large Reynolds numbers. It is widely thought that the Kolmogorov
similarity hypotheses imply that the mean dissipation, 〈ε〉, remains finite/

Warhaft (2000). This seems to be a matter of interpretation: closer inspection of the
results shows that both support the conclusions of Shen and Warhaft (2000).

10Anisotropy of velocity derivatives at the level of second-order statistics was observed
in jet flows in the form of locally axisymmetric turbulence; see Hussein (1994) and refer-
ences therein.

11Similar evidence exists since Stewart (1969) for passive scalars in the presence of a
mean gradient of passive scalar; see references in Warhaft (2000) and Villermaux et al.
(2001).

12This is one of the reasons we chose to discuss the 4/5 law in this section.
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non-vanishing as Re→∞. More precisely the issue is whether the nor-
malized mean dissipation ε = U3L−1〈ε〉 tends really to a finite limit as
Re→∞ (ν → 0), or is Re dependent even at very large Reynolds numbers13.
There is much speculation about this subject, while the experimental and
recent evidence from DNS favouring the former is still limited (see refer-
ences in Pearson et al., 2004; Burattini et al., 2005 and Ishihara et al.,
2009) though in engineering practice this fact was recognized long ago in a
great variety of flow configurations (see e.g., Idelchik, 1996 and also figure
1.8). Recent results obtained using glycerol, water and low-temperature
helium gas (Cadot et al., 1997; see also references therein), show that
ε = const within the range of Reynolds numbers varying over more than
three decades, 3 · 103 < Re < 7 · 106 (see figure 5.1) when the flow is forced
by very ‘rough’ moving boundaries.

However, when the moving boundaries were smooth, ε(Re) �= const,
and was a decreasing function of Reynolds number similar to such Re-
dependence in other configurations, e.g., in pipes with smooth walls. Nev-
ertheless, the bulk of the flow exhibited clear Re-independent behaviour,
indicating that the main difference between the two cases is due to the dis-
similarity in the coupling between the boundaries and the bulk of the flow,
or more generally due to the difference in the mechanisms of turbulence
production14.

An interesting ‘exception’ is the observation by Seoud and Vassilicos
(2007) on dissipation and decay of turbulence generated by space-filling
fractal square grids. In these experiments the normalized dissipation is re-
ported to behave as 100Re−1

λ reaching the value below 0.15 as contrasted
to the ‘usual’ value ∼0.5. This together with a kind of ‘counterexample’ by
Ohkitani (2008) raises the question whether ε(Re) remains always finite at
large enough Re. There is limited evidence that the dissipation of helicity
tends to remain finite as well, see chapter 6, Galanti and Tsinober (2006)
and references therein.

It is noteworthy that rigorous upper bounds of ε are independent of the
Reynolds number at large Re (see Doering, 2009 and references therein)
and thereby are consistent with the experimental results15. The Reynolds-
number-independent behaviour of some global characteristics of turbulent
flows at large Re, such as the total dissipation in the above example, the
drag of bluff bodies (figure 1.8) and resistance in many other configurations,
comprises one of the quantitative universal properties of turbulence at large

13The scaling U3L−1 for the mean dissipation was obtained by Taylor (1935).
14It should be emphasized that the independence of some parameter of viscosity at

large Reynolds numbers does not mean that viscosity is unimportant. It means only that
the (cumulative) effect of viscosity is Reynolds number independent.

15Unfortunately the lower bounds are not as good, since they correspond just to the
values for laminar flows.
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Figure 5.1. Reynolds number dependence of normalized dissipation rate of energy ε
in a turbulent flow in a circular tank forced by counter rotating top and bottom. The
schematic of the water/glycerol and low-temperature helium gas facilities are shown in
the upper part of the figure. Adapted from the Ph.D. Thesis by O. Cadot et al. (1995),
Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, Université Paris VII.
Similar results were obtained in the Couette–Taylor flow, on both see Cadot et al. (1997)

Re. This is distinct from some possibly universal (mostly scaling) properties
of small-scale turbulence.

Since the finite limit of the mean dissipation ε = U3L−1〈ε〉 at large Re
defines a unique scaling exponent in the 2/3 law (5.1) and since the 4/5
law (5.3) is a consequence of the Navier–Stokes equations, the two scaling
exponents, ζ2 = 2/3 and ζ3 = 1, possess a special status.

The third issue is about the scaling exponents, ζp, of order higher than
3, p > 3 in the inertial range of separations r, defined as η 	 r 	 L.
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5.3. Anomalous scaling

It is plausible but not certain that there are intermittency correc-
tions to the K41 theory of the inertial range. (Frisch, 1995).
The presence of a finite injection scale, L, irrespective of its large
value, is felt throughout the inertial range precisely via the anoma-
lies < (Δu)p >∝ rp/3(L/r)p/3−σp . (Falkovich et al., 2001).
. . . the dissipative structure is responsible for the anomalous scal-
ing of the structure functions of order larger than 5. (Nakano et al.,
2003).
there are a variety of models of higher statistics that have meager
or nonexistent deductive support from the NS equations but can
be made to give good fits to experimental measurements . . . (Goto
and Kraichnan, 2004).

Attempts of experimental verification of the scaling exponents for the
higher-order structure functions showed that instead of ‘normal’ scaling

S‖
p(r) ∝ rp/3, (5.4)

one has the ‘anomalous’ one (see figure 8.8 in Frisch, 1995 and figure 7.1)

S‖
p(r) ∝ rζp, (5.5)

with ζp = p/3 − μp < p/3, which means that in order to make the latter
relation dimensionally correct it is necessary to extend the list of governing
parameters beyond the mean dissipation rate, 〈ε〉 (e.g., Kuznetsov et al.,
1992 and references therein).

For example, such a parameter may arise due to the lack of local isotropy
discussed above, an effect which is not ‘felt’ at low-order scaling exponents.
In such a case, an additional parameter may be the degree of anisotropy
and/or some characteristic large scale, so that ‘simple’ dimensional analysis
is not simple anymore. Another commonly believed alternative is that the
observed deviation of the scaling exponents in relations of the type (5.5)
for structure functions S

||
p (r) for p > 3 from the values implied by the

Kolmogorov theory (i.e., ‘anomalous scaling’) is a manifestation of the so-
called small-scale intermittency (in the inertial range!) which frequently is
understood as synonymous with the ‘anomalous scaling’16 as displayed by
(5.5). This is directly related to what is called inertial (sub)range (and how
inertial it is) and attempts to formulate various ‘explanations’ such as the
so-called multi-fractal formalism.

16This matter is addressed in chapter 7, which deals with some aspects of intermittency
and the turbulence structure(s).
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5.3.1. INERTIAL RANGE. IS IT A WELL-DEFINED CONCEPT?

The second hypothesis of similarity. If the moduli of the vectors
y(k) and of their differences y(k)− y(k′) (where k �= k′) are large in
comparison with λ , then the distribution laws Fn are uniquely de-
termined by the quantity ε and do not depend on ν (Kolmogorov,
1941a).
. . . the mechanism of turbulent energy transport is not affected
by the viscosity . . . the nonlinear terms are not affected by the
viscosity (Kovasznay, 1948).
The corresponding subranges of r and τ . . . are usually referred
to as the inertial subranges (since inertial forces play the main role
as far as the energy balance of the corresponding disturbances is
concerned) (Monin and Yaglom, 1975, p. 351).
We therefore conclude that, for the large eddies which are the ba-
sis of any turbulent flow, the viscosity is unimportant and may be
equated to zero, so that the motion of these eddies obeys Euler’s
equation . . . we may say that none of the quantities pertaining to
the eddies of sizes r � η can depend on ν (more exactly, these
quantities cannot be changed if ν varies but other conditions of the
motion are unchanged) (Landau and Lifshits, 1944, pp. 118–119
in English edition).
In the inertial range, the viscosity plays in principle no role (Ruelle,
1984).
In the inertial range the velocity structure functions are Re-
independent; that is, if the displacement r belongs to the interval
η 	 r 	 L, then Sn,m(r) do not involve any information about
the dissipation scale (Yakhot and Sreenivasan, 2005).
If the Reynolds number is large enough, turbulence is expected
to exhibit scale invariance in an intermediate (inertial) range of
wave numbers, as shown by power-law behaviour of the energy
spectrum and also by a constant rate of energy transfer through
wave number . . . The inertial range of wave numbers is defined as
being where the time derivative and the viscous term are negligible
(McComb, 2008).

The first citation above is with the original notations of Kolmogorov
(the English text is from Proc. Roy. Soc., 434, p. 12). It is the formula-
tion of the second hypothesis of similarity stating that the statistics of the
velocity increments Δui ≡ ui(x + rq) − ui(x) depends on the mean dissi-
pation only and is independent of viscosity as long as the separation r is
much larger than the Kolmogorov scale η. This is the original definition
of inertial range (IR). Note the caveat by Monin and Yaglom as far as
the energy balance of the corresponding disturbances is concerned. This is
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a hint that the inertial range makes sense for low-order statistics in which
strong events do not seem to play any significant role. In this sense for
(most of) the large eddies . . . the viscosity is unimportant (though they still
do not obey the Euler equations!). However, there is a non-negligible num-
ber of eddies-outliers/very strong events (comprising a significant subset
mainly of the tails of the PDF of Δui(r) in the nominally defined inertial
range η 	 r 	 L) for which viscosity/dissipation is of utmost importance
(see below) at whatever large Reynolds number. In other words the iner-
tial range is ill-defined in the sense that not all but almost all statistics
of Δui(r) is independent of viscosity. As long as one deals with low-order
statistics of Δui(r) (as Kolmogorov did) this is of little (but not always
negligible) importance. However, these events contribute significantly to the
higher-order structure functions and thereby a nonnegligible contribution to
the higher-order structure functions is dominated by viscosity/dissipation.
Thus it is meaningless to speak about inertial-range behavior of higher-
order structure functions in contrast to the views that each structure func-
tion is characterized by its own dissipation scale (i.e., crossover scale from
inertial to dissipative behavior) which is a decreasing function of the order
of the structure function (Paladin and Vulpiani, 1987a,b; Frisch and Vergas-
sola, 1991; Lvov and Procaccia, 1996; Fairhall et al., 1998; Yakhot, 2003).
In other words, the ‘anomalous scaling’ as exhibited by the behaviour of
higher-order structure functions is due to significant contribution of viscos-
ity/dissipation in the inertial range. The higher the order of the structure
function the stronger is the contribution due to viscosity (i.e., from the
tails of the PDFs of Δui(r)) and the weaker is the ‘inertial’ contribution
(i.e., from the core of the PDFs of Δui(r)) to the structure function. Our
claim that it occurs at least at any η 	 r 	 L at whatever high Reynolds
number17, so that it is not just (but also) a finite-Reynolds-number effect,
as proposed in a number of papers (Barenblatt et al., 1999; Lundgren, 2008;
Lvov and Procaccia, 1995; Nakano et al., 2003; Qian, 1998). This is due to
the fact that dissipative ‘events’, the outliers, are important at any, however
large, Reynolds numbers. The support for this view comes from a recent
analysis of large Reynolds number data in field experiments (Kholmyansky
and Tsinober, 2009 and references therein). Two examples are shown in
figure 5.2.

The first example is with scaling exponents of structure functions S
||
p (r)

up to order 8 corresponding to the full data and the same data in which
the strong dissipative events with different thresholds were removed (top-
left). By an event we mean a velocity increment, Δui ≡ ui(x + r) − ui(x).
It is qualified as a strong dissipative event if at least at one of its ends

17In order to cope properly with the issue on what happens at scales of order η and
smaller one needs data at sub-Kolmogorov resolution for large Reynolds numbers.
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Figure 5.2. Top – exponents of structure functions for the longitudinal velocity compo-
nent for the full data (left) and the same data in which the strong dissipative events with
different thresholds were removed (right). Bottom – two examples of histograms of the
increments of the longitudinal velocity component for the same data as above: r/η = 40
correspond to the lower edge of the inertial range (left) and r/η = 400 is deep in the
inertial range (right). Kholmyansky and Tsinober (2009)

(x, x + r) the instantaneous dissipation ε > k〈ε〉 for k > 1. We have chosen
k = 3, 6, 12 and 20. This corresponds to the instantaneous Kolmogorov-like
scales 0.76, 0.64, 0, 54, and 0.47 of the conventional Kolmogorov scale η
based on the mean dissipation 〈ε〉. It is seen that removal of the strong
dissipative events results in an increase of the exponents ζp. For example,
with removal of the dissipative events between the threshold 3〈ε〉 (0.76η)
and 6〈ε〉 (0.64η) the dependence of ζp on p becomes pretty close to the Kol-
mogorov p/3. The strong events/outlilers themselves have different scaling
properties (top-right). The second example shows that indeed removal of
the strong dissipative events results in narrowing of the tails in the PDFs
of Δu1(r). The effect of the removal of the dissipative events is obviously
much stronger for higher- order structure functions. For example, there are
only 5% of dissipative events for k = 6 sitting mostly at tails of the PDF
of Δui(r) for r/η = 400 (i.e., deep in the ‘inertial’ range), which contribute
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about 38% to the total dissipation. These events contribute about 45% to
the value of S

‖
8(r) at Reλ ∼ 104. These same events change the S

‖
2(r) by

about 10%, but contribute about 7% to S
‖
3(r) (see below). It is noteworthy

that the data used in Kholmyansky and Tsinober, 2009 was somewhat spa-
tially under-resolved, 1 ÷ 3η. This means that the conclusions are to some
extent qualitative. However, with properly resolved data the lost dissipa-
tive events in the under-resolved ones would enhance the tendencies just
described above. Additional support comes from the fact that essentially
the same results are obtained using the same data smoothed over 2 − 4η.
Finally, using enstrophy ω2 and/or the surrogate (∂u1/∂x1)2 as a criterion
for the threshold instead of dissipation gives the same qualitative (but not
quantitative) results. Indeed, essentially the same results are obtained using
the same data smoothed over 2 − 4η.

The above evidence (for more see Kholmyansky and Tsinober, 2009) and
arguments indicate that the results and the suggestion by Schumacher et al.
(2007) that the asymptotic state of turbulence is attained for the velocity
gradients at far lower Reynolds numbers than those required for the inertial
range are related to (and possibly can be explained by) the dominance of
viscous effects as described above. This is qualitatively different from the
common view/belief that the nonlinear dependence of the algebraic scaling
exponents ζn on the moment order n is a manifestation of the inertial-range
intermittency, see, e.g., page 2 in Schumacher et al. (2007). Similarly the
possibility put forward by Schumacher et al. (2007) that the magnitudes
of inertial-range exponents (Re→∞) are prescribed by the matching condi-
tions on the ultra-violet cut-offs formed in the low-Reynolds-number regimes
follows directly from the above arguments18.

Other effects which are expected to contribute to ‘anomalous scaling’
include nonlocality both of kinematical and dynamical nature. The former
include the fact that the velocity field is defined by the fields of vorticity
or strain, and there are purely kinematic correlations between large- and
small-scale quantities. An example of the latter is the so-called Tennekes

18A related result of interest is by Kurien and Sreenivasan (2001a). They compared
the relative scaling exponents (i.e., normalized on ζ3) of structure functions up to the
10th order in high-Reλ (∼19,000) field experiment with those from DNS of NSE by Cao
et al. (1996) at rather low Reλ ∼ 180. Both sets appear to be practically identical both
for low- and higher-order structure functions. It may be easy to understand the latter,
but not so the former. The observed Re- independence (if true) of the scaling exponents
of low-order SF and of higher-order SF is of different nature since the former are due
to the inertial effects, whereas the latter are due to viscosity. So one has to understand
why the higher-order SF do depend on viscosity in such a way so that their scaling is Re-
independent. Solution of these and related issues requires information at high Reynolds
numbers with sub-Kolmogorov resolution down to, say, 0.1η. There are other important
reasons and motivation for much better resolution such as a variety of issues associated
with the field of velocity derivatives, accelerations, modified helicity and other quantities
possessing the property of being pointwise inviscid Lagrangian invariants.
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and Lumley balance, see chapter 6. Again addressing such issues is a matter
of far more precise and well-controlled experiments.

A special remark is about the contribution of the dissipative events as
defined/described above to the low-order statistics and in particular to the
4/5 law. These events do contribute to the 4/5 law and removing them leads
to an increase of the scaling exponent above unity, see figure 5.2 left. An
important point here is that the neglected viscous term in the Karman–
Howarth equation does not contain all the viscous contributions. Those
which are present in the structure function S3 itself remain and keep the
4/5 law precise. In this sense this law is not a pure inertial law.

It is the right place to mention that velocity increments (let alone struc-
ture functions and their scaling if such exists) are not the only objects of
interest and do not constitute a representation basis for a flow (Goto and
Kraichnan, 2004). This along with the ill-posedness of the inertial range
as described above clearly shows that structure functions are not the best
choice in several aspects/issues. This is especially acute in the issue of
asymptotics at large Reynolds numbers.

5.3.2. ON THE MULTI-FRACTAL MODELS

One might hope, and even expect, that eventually a theoretical
underpinning – like that of Kenneth Wilson’s renormalization ap-
proach – will be developed to anchor this subject. Without that
underpinning much of the work on fractals seems somewhat super-
ficial and even slightly pointless. It is easy, too easy, to perform
computer simulations upon all kinds of models and to compare the
results with each other and with real-world outcomes. But with-
out organizing principles, the field tends to decay into a zoology of
interesting specimens and facile classifications. Despite the beauty
and elegance of the phenomenological observations upon which the
field is based, the physics of fractals is, in many ways, a subject
waiting to be born. (Kadanoff, 1986).
The multi-fractal model describes intermittency that increases
with decrease of scale size. Multi-fractal models of turbulence have
not been derived from the NS equation, but they are supported by
theoretical arguments and their parameters can be tuned to agree
well with a variety of experimental measurements . . . Multi-fractal
models may or may not express well the cascade physics at large
but finite Reynolds numbers. (Goto and Kraichnan, 2004).

The Navier–Stokes equations obey the scaling transformation for h=−1
only (see appendix 3 (C.29)). However, it is a common belief that it may
be justified at very high Reynolds number . . . that there are infinitely
many scaling groups, labelled by their scaling exponent h, which can be
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any real number, i.e., in the inviscid limit, the Navier–Stokes equation is
invariant under infinitely many scaling groups, labelled by an arbitrary
real scaling exponent h (Frisch, 1995, p. 18, 144) just as in the case of the
Euler equation. Along with the experimental results shown in figure 5.2
the above is one of the main premises for introducing the multi-fractal
phenomenological model(s) (MFM)19. There are three problematic points
of conceptual nature.

First, it is not at all clear why one can ignore the singular nature of
the limit Re → ∞ (ν → 0) when handling the issue of scaling exponents
and/or related matters20. In fact there are two singular limits: one is the
dissipation scale → 0 (i.e., ν → 0) and the other some outer scale (e.g.,
forcing scale) L → ∞ (Lvov et al., 1996).

Second, even if(!) the Navier–Stokes equation is invariant under in-
finitely many scaling groups, labelled by an arbitrary real scaling exponent
h in the limit Re → ∞ (ν → 0), the very existence of scaling exponents in
a statistical sense (as, e.g., for various structure functions or corresponding
PDFs, etc.) which is taken for granted, is a problem by itself. Namely, the
existence of the scaling symmetry as any other symmetries of the Euler,

19The main ingredient of this model is the Hmf hypothesis replacing the Kolmogorov
second similarity hypothesis (Frisch, 1995, p. 144):

Hmf : Under the same assumptions as in H1 the turbulent flow is assumed to possess
a range of scaling exponents I = (hmin, hmax). For each h in this range, there is a set
Jh ⊂ R

3 of Hausdorff dimension D(h) such that as � → 0,

δv�(r)

v0
∼

(
�

�0

)
, r ∈ Jh, (8.39)

For more details, references and other versions see Frisch, 1995, chapter 8. The main
feature of the multi-fractal hypothesis/model is that here its authors are back with univer-
sality, postulating a whole range of exponents and a function. Unfortunately, in contrast
with K41, the multi-fractal model (like many other intermittency models) is an arbitrary
construction in the sense that it lacks dynamical motivations in general and with respect
to the postulated multi-fractal universality in particular. Having that much assumed (i.e.,
a whole range of exponents and a function) it is really easy to fit to this frame almost any
experimental/DNS data and whatever. In other words, though multi-fractality was de-
signed to ‘explain’ the anomalous scaling, intermittency, etc. it is in fact a very intelligent
fitting.

There are claims of using the first principles in obtaining the multi-scaling à la MFM
(Belinicher et al., 1998; Yakhot and Sreenivasan, 2004 and references therein), which is
true in part as all of them use closures.

20It is important to stress that we deal, in fact, with a ‘pseudo-limit’ Re � 1 (ν � 1).
This can make a qualitative difference for at least two reasons. First, as mentioned, the
true limit Re → ∞ (ν → 0) is singular, so one cannot exclude the possibility that what is
observed at whatever large but finite Re can be very much different from what happens
in the limit Re → ∞ (ν → 0) if there is a way to define this limit properly. Second,
there is a consensus (but still only a belief) that solutions of NSE at any finite Re are
not singular, for a discussion of these and similar issues, see chapter 9. In other words it
is not clear at all why one should forget that at any finite Re there is no such freedom
as there is for a pure Euler case.
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and presumably of the Navier–Stokes, equations at very large Reynolds
numbers does not guarantee that various statistical characteristics should
also possess such symmetries. Their restoring in the statistical sense is
only a hypothesis. The experimental support of the existence of scaling
ranges from the evidence available is rather weak, sometimes marginal,
though there are continuing efforts on determination of varieties of scaling
exponents (see references in Biferale and Procaccia, 2005). There are many
difficulties in determining inertial ranges and the corresponding scaling ex-
ponents (see, for example, figures 6, 10 and 11 in Anselmet et al., 1984 and
figure 8.6 in Frisch, 1995; also, Praskovsky and Onsely, 1997; Praskovsky,
1998; Sreenivasan and Dhruva, 1998 and references therein). As mentioned
above, attempting to define the scaling range in a more precise manner via
local slopes and/or compensated plots causes this range to become much
shorter and in some experiments even to disappear. In a work based on
the experimental data of Gagne (1987) and Malecot (1998), Arneodo et al.
(1999) concluded that because of the scale invariance breaking, the notion of
inertial range is not well defined 21. Third, there is one more difficulty asso-
ciated with the empirical basis of the MFM as follows. As mentioned above
one of the consequences of the multi-fractal model is that each structure
function is characterized by its own dissipation scale (i.e., crossover scale
from inertial to dissipative behavior) which is a decreasing function of the
order of the structure function (Paladin and Vulpiani, 1987a,b; Frisch and
Vergassola, 1991; Lvov and Procaccia, 1996; Fairhall et al., 1998; Yakhot,
2003) and which becomes much smaller than the ‘conventional’ Kolmogorov
scale for higher-order structure functions. That is according to MFM in or-
der to adequately compute/measure the higher-order structure functions it
is necessary to have resolution much finer than η. However, all the exper-
imental results, which served as a basis for the MFM and similar models,
were obtained with resolution at best of the order (typically a bit exceed-
ing) of the Kolmogorov scale η. This means that, in fact, there is no direct
experimental evidence on the multi-fractal structure of turbulent flows, as

21 A more general difficulty in the experimental context is associated with the direct
large/small-scale coupling, see chapter 6. As the Reynolds number increases the char-
acteristic scale between (!) the regions of strong small-scale activity (‘intermittency’) is
increasing, whereas the characteristic scale of these regions themselves is decreasing. On
the other hand when looking at higher- order structure functions Sp ∼ rζp one is forced
to use very long time records to achieve statistical convergence. This means that very
large scales (which are anisotropic) are involved in the process. In other words, as the
Reynolds number and the order of the structure function increase so (most likely) does
the ‘deviation’ from p/3. This means that experimentally (!) it may be not realistic to
get a reasonable and reliable estimate of the exponents ζp if such exist. This becomes less
realistic as the order of the structure function and the Reynolds number are increasing.
All the above provided that the experimental errors are small. Here again the larger the
order of the structure function the larger is the influence of the errors.
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by the above argument these experiments cannot accurately predict the
properties of the violent structures of turbulence, i.e., the anomalous scal-
ing of higher-order SF. The bottom line is that references on the existing
experimental results as a basis for MFM and similar models (see Eyink,
2008; Frisch, 1995; Yakhot and Sreenivasan, 2005 and references therein)
are hardly justified: as mentioned, one needs far better resolution than η
at high Reynolds numbers (!). This does not mean, however, that such ex-
periments will provide better basis for the MFM in view of ill-posedness of
the concept of the inertial range at the outset as described above.

5.4. Cascade

One gets an impression of little, randomly structured and dis-
tributed whirls in the fluid, with the cascade process consisting
of the fission of the whirls into smaller ones, after the fashion
of the Richardson poem. This picture seems to be drastically in
conflict with what can be inferred about the qualitative structure
of high-Reynolds-number turbulence from laboratory visualization
techniques and from plausible application of Kelvin circulation
theorem (Kraichan, 1974).
. . . the idea of conservative inertial cascade local in scale size is
consistent prima facie, provided that the actual statistics do not
differ strongly from Gaussian. (Kraichan, 1991)
The notion that turbulent flows are hierarchical and involve enti-
ties . . . of varying sizes is a common idea . . . This common notion
underlies the concept of cascade, the third key element of turbu-
lence theory (Frisch and Orszag, 1990).
All this cascade in Fourier space is a dream of linearized physicists.
(Betchov, 1993).

The tree examples [jet, boundary layer, and wake] . . . show that
there is something wrong with this idea (the Richardson poem).
In each case turbulence begins at small scales and grows larger:
not the other way around (Gibson, 1996).
The conceptual picture is that of a cascade organized by wall dis-
tance and by eddy size, where energy is transferred to smaller
scales at any given location, and to larger ones away from the wall
(Jimenez, 1999).
This suggests that the Kolmogorov cascade process is basically
incorrect, albeit an excellent approximation (Shen and Warhaft,
2000).
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5.4.1. INTRODUCTION

The cascade22 picture of turbulent flows takes its origin from Richardson
(1922, p. 66): . . . we find that convectional motions are hindered by the
formation of small eddies resembling those due to dynamical instability.
Thus C.K.M. Douglas writing of observations from aeroplanes remarks:
“The upward currents of large cumuli give rise to much turbulence within,
below, and around the clouds, and the structure of the clouds is often
very complex”. One gets a similar impression when making a drawing of a
rising cumulus from a fixed point; the details change before the sketch is
completed. We realize thus that: big whirls have little whirls that feed on
their velocity, and little whirls have lesser whirls and so on to viscosity—in
the molecular sense23.

The last sentence became very popular, though Richardson makes no
further use of this ‘cascade’ picture at any time. Instead Richardson pro-
poses to use the eddy viscosity approach, since he realized the inherent
difficulty of the most problematic issue of decomposition of a turbulent
field (see chapter 3): Thus, because it is not possible to separate eddies into
clearly defined classes according to the source of their energy . . . there-
fore a single coefficient is used to represent the effect produced by eddies
of all sizes and descriptions. We have then to study the variations of this
coefficient.

As mentioned above, the cascade picture supplemented by the assump-
tion about the chaotic nature of cascade was used by Kolmogorov (1941a)
in a 2/3 page footnote as a qualitative justification of his hypothesis on the
local isotropy of turbulent flows for very large Reynolds numbers.

The cascade picture is based on the intuitive notion that turbulent flows
possess a hierarchical structure consisting of ‘eddies’ (Richardson’s ‘whirls’,
Kolmogorov’s ‘pulsations’, etc.) as a result of successive instabilities. The
essence of this picture is in its successive hierarchical process, and in this
sense it is the same as the Landau–Hopf picture of transition to turbu-
lence as a ‘cascade’ of successive instabilities. The difference is that the
Richardson-Kolmogorov cascade refers to a process at some fixed Reynolds
number, whereas the Landau–Hopf picture describes the process of changes
occurring as the Reynolds number increases (see chapter 2).

The cascade picture of turbulence is more a reflection of the hierarchic
structure of various models of turbulent flows rather than reality. Most of
these models have no connection with Navier–Stokes equations (e.g., see

22The term ‘cascade’ comes from Onsager (1945, 1949).
23Note that this observation was made by looking at the structure of clouds, i.e.,

condensed water vapour, at the interface between laminar and turbulent flows in their
bulk, which do not necessarily reflect the structure of the underlying velocity field; see
chapter 4.
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Jimenez, 2000 and references therein). Hence the term ‘phenomenological’
models.

5.4.2. IS THERE CASCADE IN PHYSICAL SPACE?

The Richardson–Kolmogorov cascade picture was formulated in physical
space and is used frequently without much distinction both in physical and
Fourier space, as well as some others. However, it was Neumann (1949) (see
also Onsager, 1949) who recognized that this process occurs not in physical
space, but in Fourier space: . . . the system is “open” at both ends, energy
is being supplied as well dissipated. The two “ends” do not, however, lie in
ordinary space, but in its Fourier-transform. More specifically: The supply
of energy occurs at the macroscopic end—it originates in the forced motions
of macroscopic (bounding) bodies, or in the forced maintenance of (again
macroscopic) pressure gradients. The dissipation, on the other hand, oc-
curs mainly at the microscopic end, since it is ultimately due to molecular
friction, and this is most effective in flow-patterns with high velocity gra-
dients, that is, in small eddies . . . Thus the statistical aspect of turbulence
is essentially that of transport phenomenon (of energy)—transport in the
Fourier-transform space. That is, the nonlinear term in the Navier–Stokes
equation redistributes energy among the Fourier modes24 not scales as is
frequently claimed, unless the ‘scale’ is defined just as an inverse of the
magnitude of the wave-number of a Fourier mode, which is not easy for
everybody to swallow. A natural question is then what does the nonlinear
term in physical space do? Is energy transferred from large to small scales
in physical space? The answer to the last question depends on the definition
of what is a ‘scale’ in physical space. First, we recall that here is no contri-
bution from the nonlinear term in the total energy balance equation (and
in a homogeneous/periodic flow it’s contribution is null in both the total
and the mean), since the nonlinear term in the energy equation (C.8) has
the form of a spatial flux, ∂{ . . . }/∂xj . In other words the nonlinear term
redistributes the energy in physical space, but does it do more than that? It
is straightforward to see that in a statistically homogeneous turbulent flow
the mean energy of volume of any scale (Lagrangian and/or Eulerian)25 is
changing due to external forcing and dissipation only – there is no contri-
bution in the mean of the nonlinear term, which includes the term with the
pressure. That is, if one chooses to define a ‘scale’, l, in physical space as
a fluid (or a fixed) volume, say, of order ∼l3, then in a statistically homo-
geneous flow there is no cascade in physical space in the sense that, in the

24See section 2.4 and 6.2.4 in Frisch (1995) for a demonstration of this process.
25Following a Lagrangian volume for a reasonable time in turbulent flows is not a

simple matter, since Lagrangian volumes ‘lose their identity’ very fast in turbulent flows.
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mean, there is no energy exchange between different scales. This happens
because the nonlinear term in the energy equation (C.8) has the form of a
spatial flux, ∂{ . . . }/∂xj , i.e., there is conservation of energy by non linear
terms. In other words, the nonlinear term redistributes the energy in phys-
ical space if the flow is statistically nonhomogeneous. So, generally, it is a
misconception to interpret this or any other process involving spatial fluxes,
∂{ . . . }/∂xj (e.g., momentum flux), as a ‘cascade’ in physical space26.

On the other hand, in a statistically stationary state
∫

F · udτ =
∫

εdτ ,
i.e., energy input, which is associated with large scales, equals dissipation,
which occurs mostly in the small scales. Is there a contradiction? Does the
equality

∫
F · udτ =

∫
εdτ (or similarly, see appendix C, the text following

the equation (C.49)) mean that the energy should be somehow ‘transferred’
from large to small scales via some multi-step process? Not necessarily – for
example, two big neighboring eddies can dissipate energy directly through
encounters with each other at small scale – much smaller than their own
scales. Such a process still will look in Fourier space as continuous energy
transfer from modes with small to modes with large wave numbers. The
resolution of the apparent contradiction lies in clarifying the meaning of
the term ‘scale’, which mostly is understood as an inverse of the wave-
number magnitude in a Fourier representation, and what is the meaning
of ‘transfer of energy (or whatever) from large to small scales’ in physical
space. This issue is directly related to the decomposition/representation
of the turbulent flow field. Indeed, the reason for the above result on the
absence of energy exchange between different scales in physical space is
because no decomposition is involved in the above ‘definition of scale’.

Any decomposition (be it in physical space, Fourier or any other) brings
the ‘cascade’ back to life. For example, there are various ways of filtering
the flow field widely used in large eddy simulations. However, one of the
problems with decompositions is that the nonlinear term redistributes the
energy among the components of a particular decomposition in a different
way for different decompositions, i.e., the energy exchange/transfer is de-
composition dependent27. Therefore one may ask whether quantities like en-
ergy flux are well defined. In other words the term ‘cascade‘ corresponds to
a process of interaction/exchange of (not necessarily only) energy between
components of some particular decomposition/representation of a turbulent
field associated with the nonlinearity and the nonlocality of the turbu-
lence phenomenon, two of the three N’s: nonlinearity, nonlocality and non-
integrability, which make the problem so impossibly difficult (chapter 1).

26See Appendix D for a collection of some other major misconceptions.
27For instance, Fourier, wavelets, POD, filtering and so on: Frick and Zimin (1993);

Germano (1999); Holmes et al.(1996); Mahrt and Howell (1994); Meneveau (1991);
Sirovich (1997); Borue and Orszag (1998).
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On the other hand, energy transfer, just like any physical process, should be
invariant of particular decompositions/representations of a turbulent field.
In this sense Kolmogorov’s choice of dissipation (and energy input) are well
defined and decomposition independent quantities, whereas the energy flux
is (generally) not, since it is decomposition dependent. After all Nature
may and likely does not know about our decompositions.

It is noteworthy that the ‘cascade’ arising from a decomposition of the
flow field viewed as a process of exchange of energy, momentum, etc. be-
tween the components of this decomposition is a dynamical process. This
should be distinguished from ‘cascading processes’ resulting from a de-
composition of some quantity, e.g., dissipation, usually of its surrogate
(∂u1/∂x1)2, obtained from experimental signals (for recent examples see
Frederiksen et al., 1998; Arneodo et al., 1999; Renner et al., 2001; Chen
et al., 2003a; Cleve, et al., 2004; Davidson and Pearson, 2005 and refer-
ences therein). The former is a dynamical process, whereas the latter is a
representation characterizing some aspects of the spatial and/or temporal
structure of some flow characteristics. In other words, ‘structure’ is not syn-
onymous with ‘process’: it is the result of a process. Therefore, generally it
is impossible to draw conclusions about the former from information about
the latter, though this is done quite frequently. For example, simple chaotic
systems with few degrees of freedom only (e.g., three as in the Lorenz (1963)
system or four in the forced spherical pendulum, Miles (1984), also Mullin
(1993)), produce also ‘fine structure’, e.g., continuous spectrum, but there
is no ‘cascade’ whatsoever, though, of course, the signal with the continuous
spectrum can be cast in a multiplicative representation.

Another example, is the complicated structure of a passive object28 aris-
ing in a simple fluid flow via a single instability only(!) (Ott, 1999). This is
true also of the vorticity field resulting from a linear instability of such a flow
(see also chapter 4). One more example is represented by the phenomenon
of entrainment in a broad class of partly-turbulent flows (see chapter 9) and
transitional regimes such as pipe flows and turbulent spots. In all of these
the characteristic feature is the abrupt transition of fluid particles from
the laminar to turbulent state when passing across the laminar/turbulent
‘interface’ in ‘no time’ (on a time scale of the order of Kolmogorov scale)
again without any ‘cascade’. This is an indication that (just as in Eule-
rian representation) one can hardly speak about the Lagrangian nature of
the cascade as the fluid particles are purely Lagrangian objects, see also
section 3.6.

28Such structure with power law spectrum, (multi-)fractality and significant variations
down to very small scale can be produced by a single instability at much larger scale
without any ‘cascade’ of successive instabilities.
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5.4.3. WHAT ARE THE ‘SMALL SCALES’ IN TURBULENT FLOWS?

We have seen that there is an ambiguity in defining the meaning of the term
‘small scales’ (or more generally ‘scales’ or ’eddies’, see appendix C) and
consequently the meaning of the term ‘cascade’. The specific meaning of this
term and associated inter-scale energy exchange/‘cascade’ (e.g., spectral en-
ergy transfer) is essentially decomposition/representation dependent29. Per-
haps, the only common thing in all decompositions/representations (D/R)
is that the small scales are always associated with the field of velocity
derivatives30. Therefore, it is natural to look at this field as the one ob-
jectively (i.e., D/R independent) representing the small scales. Indeed, the
dissipation is associated precisely with the symmetric part of the velocity
derivative tensor ∂ui/∂xj – the rate of strain field sij both in Newtonian
and non-Newtonian fluids, whereas vorticity ωi = εijk∂uj/∂xk is, in fact,
its anti-symmetric part. Before proceeding with the small scales let us men-
tion that the large scales are naturally characterized by the velocity field
itself, u. This is justified also by the fact that sustaining turbulent flows
requires energy input into the flow, e.g., in case of a prescribed force, F, the
power input is associated with this force is

∫
F · udV , i.e., with the velocity

field, u.
The advantage of the above ‘definition’ of small scales can be seen from

the following.
While the mean contribution of the nonlinear term in the energy balance

is vanishing, the nonlinearity definitely is producing vorticity and strain in
physical space, since the mean enstrophy and strain production are strictly
positive31. As mentioned above it is natural and justified from the physical
point of view to associate the field of velocity derivatives with small scales.
It is immediately seen that 3-D turbulent flows have a natural tendency to
create small scales32. Namely, the velocity field (and its energy) arising in
the process of (self-) production of the field of velocity derivatives is the one
which is associated with small scales. This process is what can be called as

29Indeed, the meaning of (small) scales is different for different representations: it is
not the same for Fourier (‘regular’ and helical) and similar (Littlewood–Paley), Wavelets
(wavepackets, solitons), POD, LES. It is also different in various heuristic representations,
e.g., ‘two-fluid’ (Organized/Incoherent, Deterministic/Random and some other two-fluid
models); intermittency-prompted (breakdown coefficients/multipliers, fractals); Moffat’s
‘smart decomposition’, Moffatt (1990b) and the ‘punctuated’ conservative dynamics.

30Differentiation is a kind of high-pass filtering, so one can use also higher-order deriva-
tives, especially those appearing in the NSE and their consequences, such as velocity
Laplacian, etc.

31This question involving also the relation between ‘cascade’ and the process of the
self-production of the field of velocity derivatives is addressed in more detail in chapters
6 and 7, see also appendix C.

32This is why the cascade is usually associated with vortex stretching and enstrophy
production. We shall see in chapter 6 that this is far from being a precise statement.
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energy (and not only energy) transfer from large to small scales in physi-
cal space33. The latter are not necessarily created via a stepwise turbulent
‘cascade’: it can be bypassed, and most probably is so in turbulent flows,
for example via broad-band instabilities with highest growth rate at short
wavelengths (Pierrehumbert and Widnall, 1982; Smith and Wei, 1994) or
some other approximately single-step process (Betchov, 1976; Douady et al.,
1991; Ott, 1999; Shen and Warhaft, 2000; Vincent and Meneguzzi, 1994).
The problem goes back to Townsend (1951): . . . the postulated process dif-
fers from the ordinary type of turbulent energy transfer being fundamen-
tally a single process (see also Corrsin, 1962a and Tennekes, 1968). Indeed,
as mentioned two large neighboring eddies can dissipate energy directly by
encountering each other on a very small scale. Such a view goes back to the
observation made by Batchelor and Townsend in 1949: the mean separation
of the visible activated regions is comparable with the integral scale of the
turbulence, i.e., with the size of the energy-containing eddies (p. 253)34.

The process of vorticity and strain production is not just creation of
the field of velocity derivatives. It literally involves creation of small-scale
structure in the following sense. Namely, an inevitable concomitant process
to vortex stretching is tilting and folding of vorticity due to the energy
constraint (Orszag, 1977; Chorin, 1982; Tsinober, 1998a). Simultaneously,
the strain field is built up at the same rate too (see chapter 6). This together
with limitations on the volume scale leads to formation of fine small-scale
structure.

The above ‘definition’ of small scales has a variety of consequences. For
example, since the whole flow field (including velocity, which is mostly a
large-scale object) is determined entirely by the field of vorticity, i.e., the
velocity field is a functional of vorticity u = F{ω(x, t)}35, the production
of vorticity ‘reacts back’ in creating the corresponding velocity field36, i.e.,
the small scales are not just ‘swept’ by the large ones. Similarly, the ve-
locity field is a functional of the strain tensor, u = G{sij(x, t)}37, so that

33We still insist on the above ‘definition’ of small and large scales and the processes
associated with the creation of the small scales as given in the first edition of this book,
Tsinober (2001, pp. 77–80). A very similar (but not identical) ‘definition’ of both was
given by Sagaut and Cambon (2008, pp. 110 and 112).

34Note also the quite convincing ‘anti-cascade’ arguments by Chorin (1994, p. 56) in
Fourier space. He makes an attempt to ‘rescue’ the cascade picture, but the reader is
invited to see whether the arguments given really help.

35This is seen from the equation ∇2u = −curlω, which together with boundary condi-
tions defines uniquely the velocity field. In case of an infinite flow domain this results in
the Biot–Savart relation u =1/(4π)

∫
(ω×r)/r3dr (see appendix C).

36This essential process is fully ignored in (quasi-) linear approaches like rapid distor-
tion theory (RDT) (Savill, 1987; Hunt and Carruthers, 1990).

37This is seen from the equation ∇2u = 2∂sik/∂xk, which together with boundary
conditions defines uniquely the velocity field, see equation (C.14′) in appendix C. Of
course, the vorticity and strain are not independent and are functionals of each other.
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production of strain ‘reacts back’ on the velocity field as well. Therefore
from the physical point of view it seems incorrect to treat the small scales
as a kind of passive objects swept by the large scales or just ‘slaved’ to them
(Novikov, 2000). Similarly it seems impossible to ‘eliminate’ the small scales
(as is done in many theories) reducing their reaction back to some eddy vis-
cosity or similar things only. It is noteworthy that due to nonlocality of the
relations u = F{ω(x, t)}, u = G{sij(x, t)} mostly small-scale vorticity and
strain are, generally, creating also some large-scale velocity. This and other
aspects of nonlocality (see chapters 1 and 6) contradict the idea of cascade in
physical space, which is local by definition (e.g., see Frisch, 1995, p. 104). In
particular, the frequently assumed statistical independence of large scales,
such as structure functions S‖

p(r) = 〈(Δu‖)p〉, Δu‖ ≡ [u(x + r)−u(x)] ·r/r,
in the inertial range on the (nature) of dissipation, i.e., strain, stands in
contradiction with the relation u = G{sij(x, t)} together with the process
of self-production of strain in turbulent flows, see chapter 6.

In view of the above arguments it seems that in physical space the energy
is dissipated not necessarily via a multi-step cascade-like process38. Instead,
there is an exchange of energy (and everything else) in both directions,
whereas the dissipation occurs in ‘small scales’.

Therefore, it is quite possible and quite plausible that, insofar as phys-
ical space is concerned, Richardson’s famous verse mentioned above (1922,
p. 66) on the hierarchy of ‘whirls’

Big whirls have little whirls,
Which feed on their velocity.
And little whirls have lesser whirls
And so on to viscosity –
In the molecular sense

should be replaced by Betchov’s (1976, p. 845)

Big whirls lack smaller whirls,
To feed on their velocity.
They crash and form the finest curls
Permitted by viscosity.

The notion of cascade is still widely used (see e.g., Eyink, 2008 and refer-
ences therein), but some previous users admit that however attractive the

See chapter 6, section 6.6 on nonlocality and appendix C, equations (C.15) and the
following text.

38As mentioned, linear stability analysis of a vorticity field in a smooth velocity field has
shown that a power law and fractality are produced by a single instability. In other words,
significant variations down to very small scale can be produced by a single instability at
much larger scale without any ‘cascade’ of successive instabilities (Ott, 1999). This shows
also that nonlinearity in the Lagrangian representation cannot be interpreted in terms
of some cascade.
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notion of energy cascades, though, it must be taken mostly as pedagogical
imagery (Falkovich and Sreenivasan, 2006); and that . . . the small-scale dy-
namics are strongly coupled to the large-scale phenomena. This may be a
reason for a serious reexamination of the very concept of the turbulence en-
ergy cascade which, within the framework of the present development, seem
neither possible nor needed. (Yakhot, 2006), but see Falkovich (2009).

5.4.4. IS CASCADE LAGRANGIAN OR EULERIAN, IN SOME
DECOMPOSITION, PHASE SPACE OR WHATEVER? CASCADE
OF PASSIVE OBJECTS?

As mentioned in chapter 3, in the Lagrangian description the fluid par-
ticle acceleration is linear in the fluid particle displacement (see equation
C.62) and the ‘inertial’ effects are manifested only by the term containing
pressure – there are no terms like the advective terms (u · ∇)u in a pure
Eulerian setting (u · ∇)u. Therefore, the nonlinearity in the Lagrangian
representation cannot be interpreted in terms of some cascade (as it can-
not be maintained by pressure gradient alone) and it is far less clear (if at
all) how one can employ decompositions even at the problematic level as
done in pure Eulerian setting.

It is natural to look at a ‘cascade’ of a passive object in the pure La-
grangian setting. However, here too there is no advective term like (u · ∇)C
in the pure Eulerian setting, so it is not clear how meaningful is ‘cascade’
of a passive object in Lagrangian setting as well, though some proposals
are reviewed in Falkovich (2009).

On conceptual level there are problems in the Eulerian setting as well.
It is rather common, since Obukhov (1949) and Corrsin (1951), to speak
about cascade in case of a passive scalar and more recently passive vector 39.
The main argument is from some analogy. Indeed, as mentioned in chapter
4, for instance in any random isotropic flow the rate of production of ‘dissi-
pation’ (i.e., corresponding field of derivatives) of both passive scalars and
passive vectors is essentially positive (see equations C.35, C.38 in appendix
C), which can be interpreted as a sort of ‘cascade’. However, the equa-
tions describing the behaviour of passive objects are linear. Hence, there
is no interaction between modes of whatever decomposition of the field of
a passive object: the principle of superposition is valid in case of passive
objects40. Therefore, it seems more appropriate to describe the process in

39See references in, e.g., Warhaft (2000); Falkovich et al. (2001).
40Here by ‘mode’ is meant as a solution of the appropriate equation, e.g., of the

advection-diffusion equation (C.30). Of course, there are many ways to use ‘modes’ that
are not solutions of this equation, such as Fourier modes. In this case the Fourier modes
do interact, since one of the coefficients of the advection-diffusion equation, the velocity
field, is not constant. This interaction is interpreted frequently as a ‘cascade’ of passive
objects. But, as mentioned, this interaction is decomposition dependent, and therefore is
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terms of production of the field of derivatives of the passive object, which
is performed by the velocity straining field, just as it is proposed above for
the velocity field. Hence the extension of Kolmogorov arguments and phe-
nomenology to passive objects seems to be much less justified (if at all)41.
No wonder that the phenomenological paradigms for the velocity field failed
in most cases when applied to passive objects42. We are reminded that the
‘analogy’ between the passive objects and the active variables is, at best,
very limited for several reasons, the main ones of which are the linear na-
ture of ‘passive’ turbulence, Lagrangian chaos, the ‘irreversible’ effect of
the randomness of the velocity field on passive objects independent of the
nature of this randomness, e.g., even a Gaussian one, and the one-way in-
teraction between the velocity field and the field of a passive object (see
chapters 4, 6 [e.g., section 6.8 p. 194], 7 and 9).

5.4.5. ON ‘ANOMALOUS SCALING’ FOR PASSIVE OBJECTS
AND RELATED ISSUES

Passive objects exhibit also ‘anomalous scaling’, see e.g., figure 7.1 and
numerous references in Falkovich et al., 2001; see also Falkovich, 2009. As
in the case of velocity field the experimental evidence is obtained at finite
Reynolds numbers, i.e., for smooth velocity fields. On the other hand the
popular explanation of the anomalous scaling of passive objects is based
on the existence of the so-called ‘zero modes’ and ‘statistical conservation
laws’ so that anomalous scaling arises only from nonsmooth velocity fields
with power-law correlations in space . . . in the inertial range (Falkovich and
Sreenivasan, 2006; see also Falkovich et al., 2001). That is, the question is
again how justified/relevant is the above explanation of the observations.
The problem with the zero modes becomes more serious and problematic
as the behavior of structure functions for temperature becomes less anoma-
lous with employing the same procedure (i.e., removing strongly dissipative

not appropriate for description of physical processes, which are invariant of our decom-
positions. There is a point concerning the behavior of an individual solution. Namely, the
evolution of its energy spectrum is expected to exhibit positive energy transfer to higher
wave numbers as a consequence of production of the field of derivatives of the passive
field. Can one see this as a kind of ‘cascade’? Even if the answer were affirmative it is a
very different kind of cascade, if at all.

41As mentioned, this analogy was initiated by Obukhov (1949) and Corrsin (1951). It
is noteworthy that the dimensional reasoning in this case is far ‘less clean’ as there are
more parameters than in the case of a velocity field. One has additional dissipation and
diffusivity, so that some saving tricks are necessary to arrive at ‘analogous’ results, see,
e.g., Monin and Yaglom (1975, pp. 377–387); Tennekes and Lumley (1972, pp. 281–286).

42For example, experiments by Villermaux et al. (2001) clearly show that this is the
case. The behaviour of passive scalar in their experiments is distinctly nonlocal in the
sense that the main mechanism responsible for mixing involves direct interaction between
large and small scales ‘bypassing’ the (nonexistent) cascade.
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events) as described for velocity increments in section 5.3, Kholmyansky
and Tsinober, 2009. Among the consequences is also ill-posedness of the
‘inertial range’ of a passive scalar.

A similar question concerns things like “spontaneous stochasticity” and
“breakdown of Lagrangian flow” (Bernard et al., 1998; for other references
and discussion see Falkovich et al., 2001 and Eyink, 2008) which arise in
some pretty freely manipulated limits such as Re → ∞, if there is a way
to define the singular limit properly43. In particular, non-uniqueness and
stochasticity of Lagrangian trajectories arise for an individual velocity field
realization which is assumed to be rough in a manner convenient for analyt-
ical treatment (and in very special unphysical settings), but not necessarily
physically meaningful and/or corresponding to the behaviour of velocity
field at very large Reynolds numbers, which is smooth. Indeed, there is a
consensus (but still only a belief) that solutions of NSE at any finite Re are
not singular. Using rough velocity fields is a nice mathematical exercise,
but it is far from clear how (if at all) it is relevant to observations in real
turbulent flows at whatever large but finite Reynolds numbers. With rough
velocity fields – as used in the above mentioned papers – the uniqueness
of the solutions of equation (C.64) is violated. Thus using rough veloc-
ity fields does not seem to be justified. It is obscuring the physics rather
than clarifying it. Our main premise is that the flow field is smooth. In
such flows “phenomena” like “spontaneous stochasticity” and “breakdown
of Lagrangian flow” do not arise and one has to look at different more
realistic possibilities. The simple alternative given above in the context of
velocity structure functions seems to be valid here too.

A final remark is in the form of a question: what about “cascade” in
Lagrangian chaotic/Eulerian Laminar flows?

5.5. Summary

Kolmogorov a priori phenomenological hypotheses include the hypothe-
sis of local isotropy and two similarity hypotheses. The hypothesis of lo-
cal isotropy states that at large Reynolds numbers all the symmetries of

43The claim in Bernard et al. (1998) is that the nondeterministic behavior of Lagrangian
trajectories at high Reynolds number (is) caused by the sensitive dependence on initial
conditions within the viscous range where the velocity fields are more regular. That is, if
one stays with finite, however large, Re and looks at the whole range of scales (not just
the inertial range in the “limit ν → 0”) there is no problem with the nondeterministic
behavior of Lagrangian trajectories at high Reynolds number or spontaneous stochasticity
and breakdown of Lagrangian flow. This is related to an important conceptual issue on
whether the inertial range is a well-defined concept as discussed above. It is a good notion
for some practical treatment especially of experimental data, but it is doubtful that it
can be employed in clean theoretical approaches, especially those claiming mathematical
rigor.
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the Navier–Stokes are restored in the statistical sense (more precisely all
the statistical properties of velocity increments) locally in time and space
in regions far enough from the boundaries of any turbulent flow or its
other special regions. That is, high-Reynolds-number turbulent flows are
locally homogeneous, isotropic and stationary. It appears that turbulent
shear flows do not conform with this hypothesis, so that regions with mean
shear should be considered as ‘special’ in the sense of Kolmogorov. How-
ever, the problem seems to be more serious, since there is also evidence that
other kinds of anisotropy in the large scales can result in anisotropy in the
small scales. The most likely reason is the nonlocality of turbulence, which,
among other things is manifested in direct and bidirectional coupling be-
tween large and small scales. Consequently, problems arise also with the
similarity hypotheses, which state that all statistical properties of velocity
increments for small separations in space/time and large Reynolds num-
bers are independent of the large-scale properties of turbulent flows, except
for the mean energy dissipation or energy input. Thus, there are serious
reasons to doubt the restoring of all the symmetries (including the scale
invariance; see chapter 7) of the Navier–Stokes equations locally in time in
space in the statistical sense.

The concept of inertial range is not well defined, e.g., in the context
of ‘anomalous’ scaling behavior of higher-order structure functions in the
nominally defined inertial range. This is due to the contamination of the
inertial range by strong dissipative events at whatever large Reynolds num-
bers. One of the consequences is that the ‘decomposition’ into inertial and
dissipative ranges is not that nice and that the anomalous scaling is not the
attribute of the inertial range. Along with the fact that velocity increments
(let alone structure functions and their scaling if such exists) are not the
only objects of interest and do not constitute a representation basis for a
flow (Goto and Kraichnan, 2004) they are not a good object to define a
perfect IR which is especially acute in the issue of asymptotics at large
Reynolds numbers. Such a definition seems to be not possible in principle
due to a variety of nonlocal effects understood in a broad sense as direct
and bidirectional coupling/interaction between large and small scales, see
chapter 6. How a theoretical attack on the inertial-range problem should
proceed is far from clear Kraichnan (1974).

A special remark is about the contribution of the dissipative events as
defined/described above to the low-order statistics and in particular to the
4/5 law. These events do contribute to the 4/5 law and removing them leads
to an increase of the scaling exponent above unity, see figure 5.3 left. An
important point here is that the neglected viscous term in the Karman–
Howarth equation does not contain all the viscous contributions. Those
which are present in the structure function S3 itself remain and keep the
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4/5 law precise. In this sense this law is not a pure inertial law.
The multi-fractal and similar models are not based on adequately re-

solved experimental data.
The hypothesis of the finite dissipation limit with increasing Reynolds

number seems to have reasonable experimental support.
The notion that turbulent flows are hierarchical, which underlies the

concept of the cascade, though convenient, is more a refection of the un-
avoidable (due to the nonlinear nature of the problem) hierarchical struc-
ture of models of turbulence and/or decompositions rather than reality.
The concept of cascade as occurring through the inertial range (which is
not well defined) is not well defined as well. The class of flows called partly-
turbulent comprises a strong counter-example to the cascade and does not
comply with the concept of cascade. In all such flows the fluid becomes
turbulent in ‘no time’ when passing across the laminar/turbulent interface
without any cascade whatsoever. As mentioned in chapter 3 there is a con-
ceptual necessity to handle turbulence as an undecomposable whole. The
ill-posedness of the cascade concept is emphasized in the case of passive
objects, whose evolution is governed by linear equations, with the velocity
field entering multiplicatively in these equations, thus making them ‘statis-
tically nonlinear’.



CHAPTER 6

DYNAMICS

With the emphasis on the rotational and dissipative
nature of turbulence

6.1. Introduction

The true problem of turbulence dynamics is the problem of its origin(s) and
successive development from some initial conditions and at some boundary
conditions to an ultimate (statistical) state1. However, since this route is
extremely complicated and involved, a second approach is used quite fre-
quently. Namely, turbulent flows are studied ‘as they are’ disregarding their
origin2, and without looking into some of the details of the mechanisms of
turbulence production and sustainment. In both approaches, at least some
aspects of the time evolution are of central importance, since turbulence
dynamics is a process.

One of the simplest examples of the second approach is when turbu-
lence is produced numerically in a box with periodic boundary conditions
by some forcing in the right hand-side of the Navier–Stokes equations. If
the Reynolds number is not too small almost any forcing will do – random
and deterministic – the flow will be turbulent. In both cases it is possible to
produce a turbulent flow which is approximately (only) homogeneous and
isotropic, and if the forcing is statistically stationary or just time indepen-
dent the resulting turbulent flow is statistically stationary. In such a case
the overall energy balance is described by equation similar to (C.49), and
in this particular case the total turbulent energy balance for the whole flow
domain is

dET

dt
= Wf −D (C.49a)

1With the hope (based on rich experimental data) that, at least with statistically
stationary (which includes time independent) boundary conditions and forcing, such a
state does exist. This does not mean that it is impossible to define a kind of ‘ultimate
state’ for statistically nonstationary turbulent flows. The simplest example is represented
by periodically forced flows (e.g., blood flow in the human body) allowing us to employ
the so-called phase averaging assuming precise periodicity.

2As mentioned in chapter 2 that once a flow becomes turbulent, it seems impossible
to find its origin.

123
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Figure 6.1. PDFs of the cosine of the angle between velocity and force, cos(u, f) and
between vorticity and the curl of the force, cos(ω, curl f)

where ET =
∫

eT dV is the total kinetic energy of turbulent fluctuations,
Wf =

∫
uifidV is the total rate of production of energy of turbulent fluc-

tuations by external forces, and D = 2ν
∫

sijsijdV is the total rate of
dissipation (simply dissipation) of energy of turbulent fluctuations by vis-
cosity. If the flow is statistically stationary the production equals dissipation
Wf = D, i.e., Wf > 0. This implies that there should be a tendency for
alignment between the velocity vector, u, and the force, f . Indeed, this is
what is observed (see figure 6.1). These results (Galanti and Tsinober,
2000) were obtained with a deterministic forcing corresponding to the so-
called ABC flow, f = f{A sin z+C cos y, B sin x+A cos z, C sin y+B cos x},
A = B = C. This choice was mainly due to the strong instability of ABC
flows guaranteeing fast transition to turbulence at a rather low Reynolds
number (Galanti et al., 1992; Podvigina and Pouquet, 1994 and references
therein). It should be emphasized that the results are practically the same
in cases where the coefficients A,B,C are random functions of time. The
ABC forcing is strongly helical, curlf ‖ f , and therefore along with kinetic
energy such a forcing makes an input of helicity into the flow. Very similar
results were obtained also for other kinds of forcing, e.g., with a force in
the form f = f{A cos z cos y, B cos x cos z, C cos y cos x}, A = B = C.
This forcing, denoted in the sequel as NH, is nonhelical, f · curlf = 0, and
a mixed random forcing was also used consisting of weighted sums of the
ABC and NH forcings. In all the above-mentioned cases the Taylor mi-
croscale Reynolds number Reλ ≈ 110. In addition some runs were made at
different Reynolds numbers in order to have a qualitative impression of the
Reynolds number effects.

The results shown in figure 6.1 are not unexpected: there should be some
alignment between velocity and force in order to have the work performed
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Figure 6.2. Time behaviour of the energy input, WF = V −1
∫

uiFidV , and dissipation,

D = 2νV −1
∫

sijsijdV for the case of ABC forcing at the resolution 643, corresponding
to Reλ ≈ 60. Time is measured in turnover times

by the force, f , positive. A more interesting result is that both the energy
input, Wf =

∫
uifidV , and dissipation, D = 2ν

∫
sijsijdV , are far from

being instantaneously equal, and exhibit quite large fluctuations in time,
up to 40% of their long time averages (see figure 6.2)3. The latter are equal
within less then 0.1%. The equality

∫ T
0 WfdV =

∫ T
0 DdV occurs at large

times, T ≈ 500, even at rather low Reynolds number4. The result shown
in figure 6.2 is similar to the one obtained by Pinton et al. (1999) in an
experiment in a ‘French washing machine’ such as the one mentioned in
chapter 5, figure 5.1. Note the time lag that occurs from the large-scale
energy injection to the fine-scale energy dissipation, which was observed
also by Pearson et al. (2004). This should be compared with almost no
delay when one looks at the enstrophy production and its dissipation and
similarly for strain, see section on the Tennekes and Lumley balance below.
Thus the lag seen in figure 6.1 cannot be explained by some kind of ‘cascade’
as 1) enstrophy and strain are dissipated ‘immediately’ and 2) the flow field
is fully defined by the field of vorticity and/of strain at each time moment.
A similar lag is observed also in the case of a passive scalar. But the lag is
very small between its gradient production and dissipation just as in case
of magnetic field.

3With prescribed force the energy input and consequently the dissipation depend on
the velocity field. Therefore, generally, they cannot be prescribed independently.

4The energy input and dissipation, which are equal in the mean in statistically station-
ary flows, are two different quantities. Using the (pretty ambiguous) language of “scales”
one is a large-scale quantity and the other is a small-scale one.
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Among the most important attributes of turbulence are its rotational
and dissipative nature. This dictated the main emphasis of this chapter.

6.2. Why velocity derivatives?

Velocity derivatives, Aij = ∂ui/∂xj , play an outstanding role in the dy-
namics of turbulence for a number of reasons. Their importance has become
especially clear since the papers by Taylor (1937, 1938a)5 and Kolmogorov
(1941a,b). Taylor emphasized the role of vorticity as a manifestation of the
rotational nature of turbulence, i.e., the antisymmetric part of the velocity
gradient tensor Aij = ∂ui/∂xj , whereas Kolmogorov stressed the impor-
tance of the dissipative nature of turbulence, and thereby strain, i.e., the
symmetric part of the velocity gradient tensor.

It is noteworthy that the whole (incompressible) flow field is fully de-
termined by the fields of vorticity or strain with appropriate boundary
conditions, see appendix C.

Apart from vorticity and strain/dissipation, there are many other rea-
sons for special interest in the characteristics of the field of velocity deriva-
tives, Aij = ∂ui/∂xj , in turbulent flows. For example,
• – The field of velocity derivatives is much more sensitive to the non-
Gaussian nature of turbulence or more generally to its structure, and hence
reflects more of its physics (see Tsinober, 2000, and references therein).
• – The possibility of singularities being generated by the Euler and the
Navier–Stokes equations (NSE) and possible breakdown of NSE are inti-
mately related to the field of velocity derivatives (Constantin, 1996; Doer-
ing, 2009; Doering and Gibbon, 1995).
• – In the Lagrangian description of fluid flow in a frame following a fluid
particle, each point is a critical one, i.e., the direction of velocity is not
determined. So everything happening in its proximity is characterized by
the velocity gradient tensor Aij = ∂ui/∂xj . For instance, local geometry
topology is naturally described in terms of critical points terminology6 (see
Chacin and Cantwell, 2000; Chertkov et al., 1999; Martin et al., 1998; Ooi
et al., 1998 and references therein).

5Taylor (1937, 1938a) was motivated by the assumption of von Karman (1937) that

the expression
∑

i

∑
k ωiωk

∂ui
∂uk

(i.e., enstrophy production, see equation (C.16)) is zero

in the mean and that he (vK) cannot see any physical reason for such a correlation.

Taylor (1937) conjectured that there is a strong correlation between ω2
3 and ∂u3

∂u3
so that

(the mean of) ω2
3

∂u3
∂u3

is not equal to zero (x3 is directed along vorticity) and showed

that this is really the case, Taylor (1938a). He also expressed the view that stretching of
vortex filaments must be regarded as the principal mechanical cause of the higher rate
of dissipation which is associated with turbulent motion.

6This approach was initiated by Perry and Fairlie (1974).
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• – There is a generic ambiguity in defining the meaning of the term small
scales (or more generally scales) and consequently the meaning of the term
cascade in turbulence research. As mentioned in chapter 5, the specific
meaning of this term and associated inter-scale energy exchange/‘cascade’
(e.g., spectral energy transfer) is essentially decomposition/representation
dependent. Perhaps, the only common element in all decompositions/
representations (D/R) is that the small scales are associated with the field
of velocity derivatives. Therefore, it is natural to look at this field as the
one objectively (i.e., D/R independent) representing the small scales. In-
deed, the dissipation is associated precisely with the strain field, sij, both
in Newtonian and non-Newtonian fluids.

There is a number of more specific reasons why studying the field of velocity
derivatives is so important in the dynamics of turbulence. This is one of
the main themes of this chapter. Additional emphasis is given to several
relatively new aspects, such as geometrical statistics.

6.2.1. VORTEX STRETCHING AND ENSTROPHY PRODUCTION

Vorticity amplification is a result of the kinematics of turbulence.
(Tennekes and Lumley, 1972).
The physics of vortex stretching is well understood. (Siggia, 1977).
. . . amplification of the vorticity by vortex stretching, a well-
understood mechanism in 3D Euler flow. (Pomeau and Scia-
marella, 2005).

One of the most basic phenomena and distinctive features of three-
dimensional turbulence is the predominant vortex stretching, which is mani-
fested in positive net enstrophy production, 〈ωiωjsij〉 > 0. This was
discovered by Taylor (1938)7, and was confirmed subsequently both ex-
perimentally and numerically in a number of investigations (see references
in Tsinober, 1998ab, 2000).

The nonlinear terms ωjsij and ωiωjsij are responsible for the predomi-
nant vortex stretching (VS) and enstrophy production. In other words, part
(but not all) of the essential dynamics of 3D-turbulence is contained in the
interaction between vorticity, ω, and the rate of strain tensor, sij. Both
ωjsij and ωiωjsij vanish identically for 2-D flows.

So far, no theoretical arguments in favor of positiveness of 〈ωiωjsij〉 have
been given. The argument that the reason is the (approximate) balance be-
tween the enstrophy production and enstrophy dissipation is misleading and
puts the consequences before the reasons, since it is known that, for Euler

7Taylor, 1938 addressed the mean 〈ωiωjsij〉. The positively skewed PDF of
ωiωjsij was first observed by Betchov (1975) in a numerical simulation of ‘Euler’
equations.
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equations, the enstrophy production increases with time very rapidly, ap-
parently without limit (see references in Tsinober, 1998ab, 2000). Another
rather common view that the prevalence of vortex stretching is due to the
predominance of stretching of material lines is – at best – only partially
true, since there exist several qualitative differences between the two pro-
cesses, we discuss these differences in more detail in chapter 9.

As mentioned above, 〈ωiωjsij〉 is an essentially positive quantity in
3-D turbulence – the PDF of ωiωjsij is strongly positively skewed (see
figure 6.3). This fact reflects one of the most basic specific properties of
three-dimensional turbulent flows – the prevalence of the vortex stretching
process. The enstrophy production ωiωjsij is an outstanding nonzero odd
moment of utmost dynamical importance in turbulence. Indeed, in the hy-
pothetical case of absence of vortex stretching and enstrophy generation
or even in cases in which only 〈ωiωjsij〉 = 0 – as assumed by von Karman
(1938) – the three-dimensional turbulence, as we observe it, would not exist.

6.2.2. WHY STRAIN TOO?

It is to be stressed that along with vortex stretching and enstrophy pro-
duction, of special interest is the production of strain. There are several
reasons for this. First, though formally all the flow field is determined en-
tirely by the field of vorticity, the relation between the strain and vorticity
is strongly nonlocal (Constantin, 1994; Novikov, 1967; Ohkitani, 1994). In
many cases, they are only weakly correlated (statistically) or not correlated
at all. Second, energy dissipation is directly associated with strain and not
with vorticity. Third, vortex stretching is essentially a process of interaction
of vorticity and strain. Four, strain dominated regions appear to be the most
active/nonlinear in a number of aspects (see section 6.4.2). The energy cas-
cade (whatever this means) and its final result – dissipation, are associated
with predominant self-amplification of the rate of strain/production and
vortex compression rather than with vortex stretching. This means that
another nonzero odd moment sijsjkski (responsible for the production of
strain, see below) is not less important than the enstrophy generation, Tsi-
nober (2000). Finally, regions of major nonlinear activity are associated
with large strain and its production rather than with regions of concen-
trated vorticity with lower dissipation. This is clearly seen from the ‘tear
drop’ plots in a variety of flows, see for example figure 10.1.

Production of strain. Is turbulent dissipation due to vortex stretching?
The appropriate level of dissipation moderating the growth of turbulent
energy is achieved by the build up of strain of sufficient magnitude which
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is described by the equations (C.17, C.18). It is seen from the latter equa-
tion that in the mean the only term contributing positively to the produc-
tion of strain/dissipation, s2, is the term −sijsjkski = −(Λ3

1 + Λ3
2 + Λ3

3) =
−3Λ1Λ2Λ3, since 〈sijsjkski〉 = −3/4〈ωiωjsij〉, and 〈sij

∂2p
∂xi∂xj

〉 = 0 due to
homogeneity and incompressibility. Moreover, since, Λ1 > 0 and Λ2 is pos-
itively skewed, i.e.,

〈
Λ3

2

〉
> 08, the positiveness of −〈sijsjkski〉 comes only

from the term −
〈
Λ3

3

〉
. In other words, Λ3 is responsible for most of the

‘cascade’, at least, one of the final results of the ‘cascade’ – dissipation of
energy, which is directly associated with sij and not with ωi. An exam-
ple of ratios between

〈
Λ3

i

〉
is given in table 6.1. Hence, the ‘cascade’ is

TABLE 6.1. The ratios between the
〈
Λ3

i

〉
. The values for

Reλ = 75 are given for a computation in a box with peri-
odic boundary conditions, but very similar results as well
as many others were obtained in a grid turbulence exper-
iment (Tsinober et al., 1997). The values for Reλ = 104

are given for a field experiment in the atmospheric surface
layer at the height 10m (Kholmyansky et al., 2001b)

Reλ

〈
Λ3

1

〉 〈
Λ3

2

〉 〈
Λ3

3

〉

DNS 75 1.2 0.05 −2.25

Field 104 1.62 0.05 −2.67

directly associated with compressing/squeezing of fluid elements and not
with (vortex) stretching. It is noteworthy that this idea is not entirely new:
‘It is clear, therefore, that production of vorticity is associated essentially
with Λ3 and production of ω1 and ω2. This suggests that the most impor-
tant processes associated with production of vorticity and energy transfer
resemble a jet collision and not the swirling of a contracting jet (Betchov,
1956). Betchov arrived at this conclusion analyzing the means 〈ωiωjsij〉
and −〈sijsjkski〉, and assuming both of them positive. Looking at equa-
tion (C.18), it is seen that the above conclusion is also true of production
of strain, which is associated with Λ3, and with the ‘jet collision’ regions
such as sheet-like structures as observed in the laboratory (Frederiksen et
al., 1997; Schwarz, 1990) and numerical experiments (Brachet et al., 1992;
Boratav and Pelz, 1997; Chen and Cao, 1997; Flohr, 1999). As for enstro-
phy production we shall see in the sequel that it is true in part: roughly two
thirds of its positive contribution occurs in the ‘jet collision’ regions, the
remaining third happens in the ‘swirling of a contraction jet’ regions. Also

8See for example figure 6.10. This was first discovered by Ashurst et al. (1987) and
confirmed by She et al. (1991); Su and Dahm (1996); Tsinober et al. (1989, 1992). In a
Gaussian velocity field the PDF of Λ2 is strictly symmetric.
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Figure 6.3. Left – PDFs of 3
4
ωiωjsij , −sijsjkski, and −17.5(∂u1/∂x1)

3 normalized

on their means, Reλ = 104. Right – Joint PDF and scatter plot of 3
4
ωiωjsij versus

−sijsjkski, normalized on their means, Reλ = 104 (Gulitski et al., 2007a)

it is noteworthy that production of ω2 requires two partners ωi and sij, and
interaction between the two, but production of sij is in some sense (locally)
less dependent on ωi, though without vorticity it is impossible. Indeed en-
strophy production is due to the term ωiωjsij containing both vorticity and
strain, whereas production of strain is due to the term sijsjkski containing
strain only. In this sense strain production is more self-production and is a
local process, whereas ωiωjsij is nonlocal. Among other things, the differ-
ence is manifested in correlation coefficients shown in table 6.2 for the field
experiment mentioned above (Kholmyansky et al., 2001b). The main fea-

TABLE 6.2. Correlation coefficients between production terms versus
enstrophy and strain

ωiωisij −(4/3)sijsjkski ωiωisij/ω2 −(4/3)sijsjkski/s2

ω2 0.35 0.16 0.14 0.11

s2 0.31 0.41 0.24 0.28

ture is that strain production is much less correlated with enstrophy than
with strain, whereas enstrophy production is equally correlated with both,
but its rate is more correlated with strain. This feature is better seen in
joint PDFs/scatter plots (figure 6.4).

The next important point is that the enstrophy production ωiωjsij ap-
pears in the equation (C.18) with the negative sign, so that the vortex
stretching is opposing the production of dissipation/strain: all instantaneous
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positive values of ωiωjsij make a negative contribution to the right-hand
side of (C.18), i.e., enstrophy production ωiωjsij has an additional role as
drain of “energy” of strain (i.e., s2)9. Since ωiωjsij is essentially a positively
skewed quantity, its mean contribution to strain production is negative.
In other words, the energy cascade (whatever this means) is associated
primarily with the quantity −sijsjkski, rather than with the enstrophy
production ωiωjsij and that vortex stretching suppresses the cascade and
does not aid it10, at least in a direct manner (Tsinober et al., 1999; Tsinober,
2000). On the contrary, it is the vortex compression, i.e., ωiωjsij < 0, that
aids the production of strain/dissipation and, in this sense, the ‘cascade’.
Negative enstrophy production is associated with strong tilting of the vor-
ticity vector and large curvature of vortex lines (see section 6.4.2), which in
turn are associated with large magnitudes of the negative eigenvalue, Λ3,
of the rate of strain tensor (Kholmyansky et al., 2001b; Tsinober, 2000).
This is in full conformity with the above mentioned fact that Λ3 is respon-
sible for most of the ‘cascade’. i.e., predominant compressing rather than
stretching!

One does not have to be confused that 〈sijsjkski〉 = −3/4〈ωiωjsij〉 (due
to Betchov, 1956) or even by similarity of their PDFs (figure 6.3, left), since
their pointwise relation is strongly nonlocal due to the nonlocal relation
between vorticity and strain (Constantin, 1994; Novikov, 1967; Ohkitani,
1994). Consequently, locally they are very different, as can be seen from
their joint PDF and scatter plots (figure 6.3, right): they are only weakly
correlated and there are a great many points with small ωiωjsij and large
−sijsjkski and vice versa11. More details can be found in Tsinober (2000a),
Kholmyansky et al. (2001b) and Gulitski et al. (2007a).

9This is consistent with recent results on a Lagrangian experiment using a 3D particle
tracking velocimetry with access to velocity derivatives (Lüthi et al., 2005; Guala et al.,
2006). Namely, it was found that the statistical evolution of strain and enstrophy can
be interpreted as a kind of a life-cycle for strain and enstrophy and can be summarized
in a sequence of processes starting with the strain self-amplification in low strain low
enstrophy regions. This is followed by enstrophy production and growth, leading to the
formation of high strain high enstrophy regions. The depletion of both strain and its pro-
duction in parallel to the growth of enstrophy is related to the evolution of these regions
into high enstrophy low strain regions, i.e. to the evolution of vortex sheets (shear layers)
into vortex filaments. These regions evolve into weak enstrophy - strain regions since the
enstrophy production, in presence of low strain and preferential alignment between ω
and λ2, cannot oppose the viscous destruction of enstrophy. This cyclic sequence consists
of local and non-local processes of different Lagrangian time scales which governs the
dynamics of small-scale turbulence.

10In contrast to the most common belief: It seems that the stretching of vortex filaments
must be regarded as the principal mechanical cause of the high rate of dissipation which
is associated with turbulent motion (Taylor, 1938a).

11The same is true of ω2 and s2 which obey 2
〈
s2

〉
= 〈ω2〉. In order to illustrate the

limitations of looking at means only it is instructive to have a look at the equation of
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Figure 6.4. Joint PDFs/scatter plots of ωiωisij/ω2 and −(4/3)sijsjkski/s2 versus ω2

and s2 from the field experiment, Kholmyansky et al. (2001b)

Apart from nonlinear interaction between vorticity and strain there is
a conceptually and qualitatively different phenomenon concerning the field
of strain in genuine turbulent flows. It is the self-amplification of the field
of strain which is a specific feature of the dynamics of turbulence having
no counterpart (more precisely analogous – not more) in the behaviour of

evolution of the quantity ε = 1
2

(
ω2 + 4s2

)
,

Dε

Dt
= −4sijsjkski − 4sij

∂2p

∂xi∂xj
+ 4νsij∇2sij + 4sijFij + εijk

∂Fk

∂xj
(C.18a)

which does not contain enstrophy production at all and its only production mechanism
is due to −4sijsjkski. Though 〈ε〉 = 3

〈
s2

〉
= 3

2
〈ω2〉 the above equation governs neither

the evolution of s2 nor of ω2. Another example is an equation for the second invariant,
Q = 1

4
(ω2 − 2s2), of the velocity gradient tensor. For a homogeneous flow the RHS of

this equation does contain production terms involving neither 〈ωiωjsij〉 nor 〈sijsjkski〉.
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passive and also active objects. This process (i.e., −sijsjkski) is local in
contrast to ωiωjsij, see section on nonlocality.

There are several other (see the examples below) important processes in
which predominant compressing is the main player (Corrsin, 1953a): there
is no reason to push stretching everywhere, especially vortex stretching.

Stretching or compressing?
Of course, there is no stretching without compressing, but their roles are
quite different in different process. For example, that the predominant vor-
ticity stretching occurs roughly in 2/3 of the fluid flow domain and is as-
sociated both with the positive and intermediate eigenvalue/vectors of the
rate of strain, see section on geometrical statistics.

TKE production in turbulent shear flows The turbulent energy produc-
tion in a turbulent shear flow is known to be represented by the term
−(〈uiuk〉Sik) > 0 with ui being the components of velocity fluctuations,
and Sik the mean rate of strain. Using the representation −〈uiuk〉Sik =
−〈u2ΛS

k cos2(u, λS
k )〉 one can see that the positiveness of −〈uiuk〉Sik) is

due compression rather than stretching. Here, u2 = uiui, ΛS
i are the eigen-

values and λS
1 are the corresponding eigenvectors of the mean rate of strain

tensor Sik, ΛS
1 > 0, ΛS

2 < 0 and ΛS
3 ≶ 0 and is positively skewed.

A similar statement is true for the energy flux Π� = −τSGS
ij ≺ Sij � at

scale � for the filtered quantities in the filtering approach. Namely, recalling
that τSGS

ij = ≺ uiuj � − ≺ ui �≺ uj � and passing over to the eigenframe
of ≺ Sij � . Here ≺ · · · � means the filtering operation (see appendix 3)
and ui and are the instantaneous velocity components in, and Λ≺�

i are
the eigenvalues of, the filtered rate of strain tensor ≺ Sij � and Λ≺�

1 >
Λ≺�

2 > Λ≺�
3 and Λ≺�

1 > 0,Λ≺�
3 < 0 and Λ≺�

2 ≶ 0 with positively skewed
distribution.

For more details see chapter 8.

Passive objects The production of gradients of passive scalar −GiGjsij =
−G2Λk cos2(G, λk) is positive in the mean again due to the contribution
associated with the alignment of the gradient G and the eigenvector, λ3,
corresponding to the compressive eigenvalue, Λ3: it is due to −G2Λ3 cos2(G,
λ3). A similar statement is true for the production term −AiAjsij for the
vector potential A of magnetic field (B = rotA) see Tsinober and Galanti
(2003).

Production of vorticity gradients in two-dimensional turbulence This has
the form −ξiξksik, with ξi = ∂ω/∂xi and it easy to see again that −〈ξiξksik〉
> 0 due to the compression rather than stretching.
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Evolution of the disturbances in genuine and ‘passive’ turbulence In this
case one looks at the evolution of the disturbance Δu

i of some flow realiza-
tion ui in a statistically stationary state and similarly for other quantities
(active or passive, see again Tsinober and Galanti, 2003). The process of
evolution and amplification of disturbances – both in genuine and ‘passive’
turbulence – is dominated by the strain field of the basic flow. For example,
the energy production of the disturbance Δu

i has the form −Δu
i Δu

j sij, see
equation (C.59). It is seen again that −〈Δu

i Δu
j sij〉 > 0 is due to a dom-

inant contribution from compression rather than stretching. That is, just
like the mean, −〈uiuj〉Sij, is positive in turbulent shear flows, the integral
of the production of the energy of error, PΔu = −

∫
Δu

i Δu
JsijdV, over the

flow domain at any time moment is positive. There is a strong tendency
of alignment between the error vector, Δu, and the eigenvector of the rate
of strain tensor of the instantaneous velocity field, sij, corresponding to
its negative eigenvalue. Concomitantly Δu tends to be normal to the two
other eigenvectors of sij .

Role of strain in the evolution of flows with polymer additives In this
case an additional term appearing in the NSE is ∂τij

∂xj
with the stress τij

expressed in a variety of models12 via the so-called conformation tensor Rij

as τij = νp

τp

{
f(x,t)ρ−2

0 Rij − I
}

, f(x,t) = ρ2
m−ρ2

0
ρ2

m−Rkk(x,t)
. The evolution of the

tensor Rij is governed by

DRij

Dt
= AikRkj + AkjRik − 1

τ p

{
f(x)Rij − ρ2

0δij

}
, Aij = ∂ui/∂xj

The only point to be stressed here is that the two terms AikRkj + AkjRik

in this equation, in fact, contain the strain only since AikRkj + AkjRik ≡
sikRkj + Rikskj. This latter allows us to see immediately that the stress
tensor τij is indeed a functional of the strain tensor sij only as it should
be. This does not contradict the observations of vortex inhibition (Gadd,
1968, Chiou and Gordon, 1976; Latorre et al., 2004) as it occurred in the
potential flow (which is vorticity free!) surrounding the vortex core and
similar phenomena in vortex streets (Cressman et al., 2001).

Polymer solutions represent an example of active additives which react
back on the flow field (including the field of strain) and modify it not only
in the small, but in all dynamically relevant scales.

We would like to recapitulate the qualitative differences between the
enstrophy and strain production. It is the strain production (rather than
vortex stretching) that is directly responsible for the enhanced dissipation

12Whatever the detailed mechanism (individual molecules, aggregates/clusters, etc.)
the process of interaction of diluted polymers and turbulence is manifested in stretch-
ing/compressing of material elements and their reaction back on turbulence – in this case
the material elements are not passive anymore as in pure water.



DYNAMICS 135

of turbulent flows and it is a local process with predominant compressing
whereas the enstrophy production is a nonlocal process with predominant
stretching.

6.3. The Tennekes and Lumley (TL) balance and
self-amplification of the field of velocity derivatives

6.3.1. VELOCITY DERIVATIVES

It is commonly believed that, at least at large Reynolds numbers, the vortex
stretching is a process of self-amplification because . . . the deformation [i.e.
rate of strain ]tensor, responsible for amplification, is expressed in terms of
local characteristics (Novikov, 1993a), or self-sustaining, since it does not
require a large-scale mean flow (Tennekes, 1989).

This belief is based on the order of magnitude estimates (Tennekes
and Lumley, 1972; Novikov, 1993b), for the mean quantities entering the
equation (C.51) for the balance of the mean enstrophy 〈ω2〉. In case of
homogeneous turbulence with external force δ-correlated in time, this es-
timate shows (Novikov, 1993b), that the ratio of the term associated with
the external forcing to 〈ωiωjsij〉 is of order Re−3/2. So the approximate
balance is

〈ωiωjsij〉 ≈ −ν〈ωi∇2ωi〉.

This balance appears to be valid in different meanings (not only in the
mean) as follows. This is seen from figure 6.5. The first feature that the
TL balance holds at Reλ as low as ≈60. Second, it holds pointwise in time,
i.e., the integrals over the flow domain of the enstrophy production and of
its viscous destruction are approximately balanced at any time moment,∫

ωiωjsijdV ≈ −ν
∫

ωi∇ωidV (see equation (C.20)) . Consequently, the
time derivative of the overall enstrophy d

(∫
1
2ω2dV

)
/dt is at least an or-

der of magnitude smaller than both
∫

ωiωjsijdV and ν
∫

ωi∇ωidV,, i.e., in
this respect the process is quasi-stationary. The spatial integral of the cor-
responding forcing term Cω =

∫
ωi(curlf)idV is much smaller than all the

three integrals just mentioned.
Computations at larger Reλ showed that – as expected – the above

balance becomes more precise. We shall use the example of the ABC and
NH forced turbulent flows mentioned above in order to make more pre-
cise the meaning of the term self-amplification. Namely, we will see that
the process of self-amplification refers to the whole field of velocity deriva-
tives, i.e., both vorticity and strain, since in fact there exist two nonlocally
interconnected and weakly correlated processes: along with predominant
vortex stretching/enstrophy production associated with the positiveness of
〈ωiωjsij〉 > 0, there exist a concomitant predominant self-amplification of
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Figure 6.5. Time behaviour of dEω/dt, Eω = V −1
∫

ω2dV ; Pω = V −1
∫

ωiωjsijdV ;

Dω = ν
V

∫
ωi∇2ωidV and Cω = V −1

∫
ωi(curlf)idV for the case of ABC forcing

at the resolution 643, corresponding to Reλ ≈ 60. Time is measured in turnover
times. Note that the graphs for the quantities associated with the strain production,
Ps = − 4

3
V −1

∫
sijsjkskidx; Ds = 2νV −1

∫
sij∇2sijdV and Cs = 2V −1

∫
sijfijdx, are

precisely the same, since for periodical boundary conditions Pω = Ps, Dω = Ds and
Cω = Cs (see equation (C.21))

the rate of strain/production of total strain, s2 ≡ sijsij, associated with
the positiveness of 〈−sijsjkski〉 > 0 (Tsinober, 2000).

The key result as obtained in the above computations relates to the
comparison of the terms corresponding to the self-amplification of the field
of velocity derivatives with the forcing terms in the equations (C.9) and
(C.17) for the evolution of vorticity and strain, and in the equations (C.16)
and (C.18) for the enstrophy, ω2, and the total strain, s2. Namely, it appears
that the quantities {ωjsij}2, {sikskj}2, in the equations for ωi and sij , and
the quantities ωiωjsij, and −sijsjkski in the equations for ω2 and s2 are
three orders of magnitude larger than the corresponding terms associated
with forcing, {curlf}2 and fijfij, and ω·curlf and sijfij respectively. This
is true not only of the mean values, but is much stronger, since the same
difference in values is observed for their max | · | (see tables 6.3, 6.4).
Moreover, the essential dominance of the self-amplification of the velocity
derivatives over the forcing occurs not only in the mean and in respect
of their extremal values, but almost pointwise throughout the flow field.
This was checked by looking at the volume fractions (relative number of
points) of the whole flow domain, ρK = VK(|ω · curlf |, |ωiωjsij|), in which
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TABLE 6.3. Comparison of the mean square values and the maxima
of the squares of the terms ωjsij and (curlf)i, and the terms −sikskj

and fij ≡ 1
2

{
∂fi
∂xj

+ ∂fi
∂xj

}
in the equations (2) and (3)

Forcing A B C A B C Nonhelical Nonhelical

mean max mean max

{ωjsij}2 8.3 4.5 · 104 4.6 7.3 · 103

{curlf}2 4.3 · 10−4 1.7 · 10−3 2.3 · 10−4 1.2 · 10−3

{sijsjk}2 18.5 2.5 · 104 7.7 9.8 · 103

{fij}2 8.6 · 10−4 3.4 · 10−3 4.7 · 10−4 2.4 · 10−3

TABLE 6.4. Comparison of the mean values and the max | · | of
the terms ωiωjsij and ωi(curlf)i, and −sijsjkski and sijfij in the
equations (4) and (5)

Forcing A B C A B C Nonhelical Nonhelical

mean max| · | mean max| · |
ωiωjsij 3.2 4.7 · 103 1.5 1.5 · 103

ω · curlf 7.6 · 10−3 1.1 2.7 · 10−3 0.64

−sijsjkski 2.4 1.5 · 103 1.1 7.8 · 102

fijsij 7.6 · 10−3 0.8 2.7 · 10−3 0.4

|ω · curlf | > K |ωiωjsij |. It appears that for K < 100 there are no such
points at all, for K = 100 this fraction ρK < 10−8, and ρK ∼ 10−4 even for
K = 103. Similar results are true for the volume fractions for the rest of the
quantities discussed above. In other words the process of production of the
field of velocity derivatives – both vorticity and strain – is a spatially local
self-amplification process in the sense that the forcing does not play any role
in the production of velocity derivatives locally in space. It is noteworthy
that the Reynolds number, Reλ ≈ 110, in the above simulations was very
moderate. Selected runs for Reλ ≈ 250 showed that the difference between
the quantities responsible for the self-amplification of velocity derivatives
({ωjsij}2, {sikskj}2, ωiωjsij, and −sijsjkski) and the quantities associated
with the external forcing ({curlf}2, fijfij, ω · curlf and sijfij) becomes
much larger, so that the former are about four orders of magnitude larger
than the latter. It is interesting that even at Reλ ≈ 35, the difference is still
two orders of magnitude. There are clear indications that the predominance
of the self-production of the velocity derivatives has a universal character
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Figure 6.6. PDFs of the cosine of the angle between vorticity, ω, and the vortex stretch-
ing vector Wi ≡ ωjsij , cos(ω,W) (right), and of the cosines of the angles between
vorticity, ω, and the eigenframe λi of the rate of strain tensor, sij (left)

(Sandham and Tsinober, 2000; Kholmyansky et al., 2001b; Gulitski et al.,
2007a; see chapter 8).

We return to figure 6.1. While there is a strong tendency for alignments
between velocity, u, and force, f , the PDF of the cosine of the angle between
vorticity and the curl of the force, cos(ω, curlf) is practically flat. Another
feature is that these PDFs for the ABC and the NH forcings are only
qualitatively similar.

On the contrary, the alignments associated with the self-amplification
process are much closer quantitatively as can be seen from the two
examples13 shown in figure 6.7. Similar behaviour is observed also for two
groups of other quantities. The first group contains the PDFs of quantities
associated with the forcing which appear to be quite different for the ABC
and NH forcings, (curlf)2, fijfij, ω · curlf and sijfij.

The second group consists of the quantities (ωjsij)2, (sikskj)2, ωiωisij

and sijsjkski responsible for the self amplification of the velocity derivatives.
Their statistical properties for both ABC and NH cases are very sim-

ilar as shown in figure 6.6 and other quantities associated with the self-
amplification process tend to be universal in the sense that they are weakly
sensitive to the details of the forcing. Many other, such as other relevant

13We shall see in section 6.4 on geometrical statistics that alignments of vorticity, ω,
and the vortex stretching vector, W, Wi = ωisij , and of vorticity, ω, and the eigenframe,
λi of the rate of strain tensor, sij , are dynamically very important. This is seen from the
simple relation between the enstrophy production and the above quantities ωiωjsij =
ω · W = ωW cos(ω,W) = ω2Λi cos(ω,λi). Here Λi, are the eigenvalues of the rate of
strain tensor, sij .
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alignments and those associated with the terms ∂2p
∂xi∂xj

and sij
∂2p

∂xi∂xj
, exhibit

the same tendency. The terms ∂2p
∂xi∂xj

in (C.17) and sij
∂2p

∂xi∂xj
are respectively

at least an order of magnitude smaller than sijsjk and sijsjkski.
Finally, we are reminded that self-amplification of strain is more ‘self’

and more local than that of vorticity. This is seen from the equations (C.17)
and (C.18 ), which show that production of strain is associated with the
terms sijsjk and −sijsjkski containing strain only. On the other hand,
production of vorticity is, in the first place, interaction of vorticity and
strain, since it is associated with the terms ωjsij and ωiωjsij, as is seen from
the equations (C.9 ) and (C.16). This does not mean that strain produc-
tion is totally independent of vorticity: there is no strain production with-
out presence of vorticity in the flow. For example, in a homogeneous field,
sijsjkski = −(4/3)ωiωjsij (see also equations (C.15, C.17, C.18, C.15′)).

The features concerning the TL balance appear to be true for temporally
modulated turbulent flows and for flows with hyperviscosity of different or-
ders, h = 2, 4, 8 (h = 1 corresponds to Newtonian fluid). This was observed
in DNS of NSE for Reλ up to 200.

6.3.2. PASSIVE OBJECTS

The DNS similar to those mentioned above reveal that the TL balance
holds for the gradient of passive scalar G2 and magnetic field B2,

〈GiGjsij〉 ≈ ν〈Gi∇2Gi〉,
∫

GiGjsijdV ≈ D
∫

dV Gi∇2GidV,

〈BiBjsij〉 ≈ −ν〈Bi∇2Bi〉,
∫

BiBjsijdV ≈− η

∫
Bi∇2BidV.

There is, however, an important qualitative difference between the two.
The balance for G2 is similar to that of ω2 in the sense that both
quantities −〈GiGjsij〉 and ν〈Gi∇2Gi〉 reach a stationary mean; and both
−

∫
GiGjsijdV ≈ D

∫
dV Gi∇2GidV oscillate around this mean. The quan-

tities 〈BiBjsij〉 and −η〈Bi∇2Bi〉 with the means taken over short periods
of time both grow exponentially in such a way that 〈BiBjsij〉 is slightly
larger than η〈Bi∇2Bi〉. The integrals

∫
BiBjsijdV ≈ −η

∫
Bi∇2BidV os-

cillate around these means with the former sitting a bit above the mean of
the latter. The above behaviour for the spatial integrals can be character-
ized by the ratios rω, rG, and rB defined as rω,G,B = production+dissipation

|production|+|dissiptation| .
The ratios rω, rG oscillate effectively around a zero (<10−4) in the range
±0.03, whereas rB oscillates around a positive quantity of the order 10−2

in the range −0.02÷ +0.05. This is a reflection of the fact that d
dt

∫
ω2dV

and d
dt

∫
G2dV vanish in the mean, whereas d

dt

∫
B2dV grows exponentially
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(MHD-dynamo). The underlying reason for this difference is that there are
(inviscid and nondiffusive) conservation laws for the kinetic energy u2 and
squared passive scalar θ2, whereas there is no such law for the vector po-
tential A of the magnetic field (B = curlA). Consequently there is no
necessity to add forcing to the equation for A (or B) as the field A is
driven by the strain field sij via a term −AiAjsij (Galanti and Tsinober,
2003; see chapter 9).

It is important to stress that all the discussed balances are approximate
(in some sense) and the small difference between production and dissipation
plays a crucial role in the evolution of vorticity, strain, passive scalar gradi-
ent and magnetic field. It is the qualitative and fundamental dissimilarity
between these differences which is one of the major factors responsible for
the contrast in the evolution of vorticity, strain, passive scalar gradient and
magnetic field.

The approximate balance as described above between the ‘inertial’ and
diffusive processes shows that they are very far from being additive and
point to strong mutual interaction. In particular, this is a strong indication
that the nature of dissipation is important in the enstrophy production and
the properties of the vorticity field. This in turn means that it should be im-
portant in the properties of the velocity too as the latter is fully determined
by the field of vorticity. A final remark is that the T-L balance points to
a problem in the definition of the Reynolds number: at the level of vortic-
ity/strain the production terms are of the same order as the viscous ones,
i.e., the Reynolds number defined via comparing the inviscid (production)
and the viscous terms is always of order of unity.

6.3.3. A NOTE ON KELVIN/HELMHOLZ THEOREMS

One of the consequences of the TL balance for vorticity is that vortex
lines are not frozen in the flow field at however large Reynolds number, i.e.
at any however small viscosity ν �= 0, in contrast with the pure inviscid
(Euler) case ν = 0. In this latter case vorticity is frozen in the flow field
(Helmholz theorem) and the Kelvin theorem on conservation of circulation
over material loops holds:

d

dt

∮

C(t)
u(r, t) · dr = 0.

In the presence of viscosity this relation becomes

d

dt

∮

C(t)
u(r, t) · dr = −ν

∮

C(t)
curlω(r, t) · dr

and the TL balance tells us that the RHS in this equation is not small
at any, however small, viscosity, thus being one of the manifestations of
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the singular nature of the limit ν → 0. Hence the Kelvin theorem does
not hold at any however small viscosity either. Constantin and Iyer, 2008
derived a probabilistic representation of the deterministic 3D NSE based
on stochastic Lagrangian paths with the particle trajectories given by a
stochastic differential equations driven by a uniform Wiener process. In
this formulation some identities for Euler equations are formally valid af-
ter averaging (over the Wiener measure) with ν �= 0. These include the
stochastic versions of the Kelvin theorem and the Cauchy formula for the
evolution of vorticity ωi(X, t) = ωk(a, t0)∂Xi/∂ak. It is tempting to inter-
pret such results of Constantin and Iyer, 2008 as a kind of “frozenness” of
(stochastic) vortex-lines to the ensemble of stochastic flows X(a, t) which
replace the classical Lagrangian trajectories14. However, though such rela-
tions look like those for the ‘usual’ Euler equations, the consequences are
quite different. For example, Constantin and Iyer, 2008 prove that vorticity
given by their analogue to the classical inviscid Cauchy formula satisfies
the ‘ordinary’ Helmholz equation (C.10), as should be, with ν �= 0. This
means that the ‘conventional’ Kelvin/Helmholz theorems do not hold and
there is no frozenness of vorticity in the physical flow field, they are not
material lines in any sense, and their behavior is essentially different from
that of material lines, see chapter 9.

A final remark is about a similar phenomenon of self-production of
superhelicity Hs =

∫
ω · curlωdx. It is observed in both helically and non-

helically forced flows along with approximate balance (like the TL balance
discussed above) between its production

∫
curlω · curl(u× ω)dx and dissi-

pation Hh =
∫

curlω · curlωdx and irrelevance of forcing at this level, see
Galanti and Tsinober, 2006 for more information, details and references.

6.4. Geometrical statistics

Geometrical invariant quantities (such as enstrophy and strain production,
helicity, etc., see appendix C) and relations, such as alignments between var-
ious vectors – being independent of the frame of reference - are among the
most appropriate for studying physical processes, their possible universal
properties, and the characterization of the structure(s) of turbulent flows.
Moreover, just like phase relations, these are the quantities and relations of

14One of the important ingredients of the approach of Constantin and Iyer (2008) is
the replacement of classical Lagrangian trajectories by stochastic flows driven by the ve-
locity field. Averaging the stochastic trajectories produces the solution of the NSE. That
is instead of deterministic Lagrangian trajectories they use noisy trajectories of a corre-
sponding auxiliary stochastic equation and average the noise out. These noisy trajectories
(the stochastic flow) are not material in any sense and do not possess Lagrangian identity
associated with the fluid flow. They are employed in order to reproduce the viscous term
in NSE as was done first by Chorin (1973) who demonstrated the connection between
stochastic evolution and the NSE in two-dimensional flows.
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utmost dynamical significance. A number of subtle issues related to quan-
titative aspects of structure of turbulence and other questions15, which are
beyond phenomenology, can be effectively addressed via what is denoted in
the sequel by the term geometrical statistics16.

Examples which belong to geometrical statistics were already given in
chapter 4 and figures 6.1 and 6.6. Here we bring two more general examples.

It is rather common to use ‘surrogates’ of the type (∂u1/∂x1)n to repre-
sent the ‘true’ quantities such as dissipation, enstrophy (n = 2), enstrophy
production (n = 3), etc. However, this is true only of their means, whereas
other properties of the surrogates’ and of the true quantities are generally
different. Their PDFs are essentially different even in the case of a random
Gaussian velocity field (Tsinober et al., 1992 and Shtilman et al., 1993).
Hence most of their statistical properties are different too, and so are their
spectra and ‘fractal’ properties.

The widely known example of utmost importance of geometrical rela-
tions in turbulence is the qualitative difference between the dynamics of
3D and 2D turbulence. In the latter ωjsij and ωiωjsij ≡ 0 because in two-
dimensional flows ω ⊥ λi (i = 1, 2). One of the essential aspects of dynam-
ics of 3D-turbulence – the interaction between vorticity, ω, and the rate of
strain tensor, sij – depends strongly on the geometry of the field of velocity
derivatives. For instance, a usual phenomenological argument results in the
estimate ωiωjsij ∼ ω3, whereas in reality it is only ωiωjsij ∼ ω7/3 in slots
of ω, but ωiωjsij ∼ ω3 in slots of s (see below), showing the importance of
taking into account the mutual orientation of vorticity, ω, and the eigen-
frame, λi, of the rate of strain tensor sij. In other words important dynami-
cal aspects of 3D-turbulence contained in the interaction between vorticity,
ω, and the rate of strain tensor, sij, depends strongly not only on the
magnitude of vorticity and strain but also on the geometry of the field of
velocity derivatives.

6.4.1. ALIGNMENTS

Various alignments comprise important simple geometrical characteristics
and manifestation of the dynamics and structure of turbulence. For exam-
ple, there is a distinct qualitative difference between the PDFs of cos(ω, λi)

15Such as active versus passive, weak versus strong, Gaussian versus non-Gaussian,
structured versus nonstructured and some others.

16In a broader sense geometrical statistics has its beginning in the works of Buffon
(1777). Most of the work on the subject has been summarized by Stoyan and Stoyan
(1992). A number of random geometric problems suggested by turbulence were reviewed
by Corrsin (1972b). Some topological aspects (partially related to turbulence) are treated
in Moffatt and Tsinober (1990, 1992), Moffatt et al. (1992) and Ricca and Berger (1996).
A number of specific aspects of geometrical statistics in turbulence were raised by Con-
stantin (1994) and Tsinober et al. (1995); see references in Tsinober (1998a,b).
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for a real turbulent flow and a random Gaussian velocity field. In the last
case, all these PDFs are precisely flat. An example of special dynami-
cal importance is the strict alignment between vorticity, ωi, and the vor-
tex stretching vector Wi ≡ ωjsij, since the enstrophy production is just
their scalar product, ωiωjsij = ω ·W. In real turbulent flows, the PDF of
cos(ω,W) is strongly asymmetric in full conformity with the prevalence
of vortex stretching over vortex compressing, i.e., positiveness of 〈ωiωjsij〉,
whereas it is symmetric for a random Gaussian field (see figures 6.9, 6.10).
Thus, the very existence of alignments such as mentioned above points to
the presence of internal organization of flow at various scales, i.e., align-
ments belong to the rare quantitative statistical manifestation of the exis-
tence of structure in turbulence. They are the simplest representative of a
much broader class of geometrical statistics in turbulent flows. It is note-
worthy, that while the above mentioned (and some others) alignments are
intimately related to the dynamics of turbulent flows, there are alignments
which are mostly of kinematic nature, e.g. alignment between the Lamb
vector ω × u and its potential part (pressure gradient), the alignment be-
tween velocity and the eigenvectors of rate of strain tensor and some others
(Tsinober, 1996a, 1998a; see also sections 6.7 and 6.8).

Alignments, by their very definition, are suitable for events of any mag-
nitude, since they do not contain the amplitude of the quantities involved.
Finally, alignments are invariant in the sense that they are independent of
the system of reference and therefore, along with other invariant quanti-
ties, are the most appropriate in studying of physical processes generally
and in particular for characterization of the structural nature of turbulent
flows.

Due to these properties, using of alignments enables us to answer in a
simple and reliable way a number of questions on turbulence structure.

6.4.2. THE GEOMETRY OF VORTEX STRETCHING

In order to address this issue let us recall some simple relations for the
key quantities of turbulence dynamics – the vortex stretching vector, Wi =
ωjsij, and enstrophy production, ωiωjsij, and some related quantities (see
also appendix C).

ωiωjsij = ω2
i Λi cos2(ω, λi) = αω2; W 2 = ω2

i Λ
2
i cos2(ω, λi), (6.1)

Here α = Λi cos(ω, λi) is the rate of enstrophy production. It is seen from
the relations (6.1) that indeed – as mentioned above – that part of dynam-
ics of 3D-turbulence contained in the interaction between vorticity, ω, and
the rate of strain tensor, sij, depends strongly not only on the magnitude
of vorticity and strain but also on the geometry of the field of velocity
derivatives, in particular on the mutual orientation of vorticity, ω, and the
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eigenframe, λi, of the rate of strain tensor, sij. This is true especially re-
garding the rate of enstrophy production, α = ωiωjsij/ω

2 = Λi cos(ω, λi),
and a similar quantity for W 2, W 2/ω2 = Λ2

i cos(ω, λi), both of which de-
pend explicitly only on the orientation of vorticity and the shape of the
strain tensor, but not on their magnitude.

In view of the importance of the predominant vortex stretching and pos-
itive net enstrophy production, i.e., 〈ωiωjsij〉 > 0, it is useful to introduce
an angle between ω and W, since ωiωjsij ≡ ω ·W (Tsinober et al., 1992).
It is easy to see from the simple relation

cos(ω,W) =
Λi cos2(ω, λi)

{Λ2
i cos2(ω, λi)}1/2

(6.2)

that the alignment between ω and W (i.e., positive ωiωjsij) is realized in
two situations: i) ω is aligned with λ1 (Λ1 > 0) and ii) ω is aligned with
λ2. Indeed, the contributions both to σ ≡ ωiωjsij and α associated with Λ1

and Λ2 are positive (see table 6.5). Most important is that the largest con-
tribution to the enstrophy production and its rate comes from the regions
associated with the largest eigenvalue17, Λ1, of the rate of strain tensor, sij ,
and not from the one associated with the intermediate, eigenvalue Λ2, since
it is known that there exists a strong alignment tendency between ω and
λ2, as shown in figure 6.8. This alignment was recognized by Siggia (1981)
and discovered by Ashurst et al. (1987) (for subsequent references see Tsi-
nober, 1998a). This apparent contradiction is resolved by noting that: i)
the intermediate eigenvalue, Λ2, assumes both positive and negative values
thus reducing the terms ω2Λ2 cos2(ω, λ2) and Λ2 cos2(ω, λ2), whereas Λ1 is
positive; and ii) the magnitude of Λ1 is much larger (see table 6.6).

The reason that the contribution to 〈ωiωjsij〉 associated with Λ2 is
positive is because Λ2 is positively skewed (see figure 6.7; Ashurst et al.,
1987; She et al., 1991; Su and Dahm, 1996; Tsinober et al., 1989, 1992).

Meanwhile we note that the alignments between ω and λ1, ω and λ2

and between ω and λ3 correspond to regions of turbulent flow that are, in
several respects, qualitatively different (see below).

Turbulence background – not a stuctureless random sea
Use of alignments allowed us to show that – contrary to the common view –
the so-called ‘background’ is strongly non-Gaussian, is dynamically not
passive and is not structureless (figures 6.8–6.10).

17This is qualitatively different from the alignment of vorticity with the largest eigen-
value Λ1 of the ‘nonlocal’ part of strain defined in different but similar ways. The common
feature is the exclusion of the ‘local’ part of the strain in the proximity of some (any)
point in space x such as obtained by integration over a relatively small domain around
this point of (C.15), see Porter et al. (1998); Hamlington et al. (2008).
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TABLE 6.5. Contribution to the total mean of enstrophy production
〈ω2Λi cos2(ω,λi)〉 from the terms corresponding to the eigenvalues Λi of
the rate of strain tensor sij . Grid turbulence and DNS, Reλ = 75 and field
experiment Reλ = 104

Reλ 〈ω2Λ1 cos2(ω, λ1)〉 〈ω2Λ2 cos2(ω,λ2)〉 〈ω2Λ3 cos(ω, λ3)〉
DNS 75 1.06 0.51 – 0.57

Grid 75 1.17 0.39 – 0.56

Field 104 1.44 0.47 – 0.97

Figure 6.7. PDFs of the eigenvalues, Λi, of the rate of strain tensor, sij , in the field
experiment at Reλi = 104. Note the skewed PDF of the intermediate eigenvalue, Λ2.
These PDFs are similar to those in the DNS and grid turbulence at Reλi = 75

TABLE 6.6. The ratios between the 〈Λi〉 and
〈
Λ2

i

〉

obtained in a field experiment in the atmospheric
surface layer at the height 10m, for Reλ = 104, see
Kholmyansky et al. (2001b)

〈Λ1〉 〈Λ2〉 〈Λ3〉
0.47 0.06 −0.53〈
Λ2

1

〉 〈
Λ2

2

〉 〈
Λ2

3

〉

0.41 0.04 0.55
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Figure 6.8. PDFs of cos(ω,λ2), DNS, Reλ = 75. Top left – conditioned on enstrophy ω2

and s2, top right – conditioned on curvature C of vortex lines. Note that the tendency
for alignment between ω and λ2 exists both in regions of large ω2 and large s2. For a
Gaussian velocity field these PDFs are precisely flat. Bottom – joint PDF of cos(ω, λ2)
and ω2. The joint PDF of cos(ω,λ2) and s2 is similar to the one shown in this figure. It
is seen that the maximum of joint PDF of cos(ω,λ2) and ω2 (and similarly of cos(ω, λ2)
and s2) takes place at cos(ω, λ2) ≈ 1 and ω2 ≈ 0, i.e., at the points with weakest vorticity
and strongest alignment between ω and λ2

Though the strongest tendency for alignment between ω and λ2 is ob-
served for large ω2, this alignment is still significant (see bottom of figure
6.8) in the ‘background’ (say ω2 < 〈ω2〉), especially taking into account that
the background is occupying about 70% of the flow volume (cf. with the
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volume occupied by strong vorticity, say ω2 > 3〈ω2〉, which is only about
6% of the flow volume). Note that this does not contradict the mostly
known result about the tendency of alignment between ω and λ2 in regions
of concentrated vorticity; the regions with such an alignment are an order
of magnitude larger than those with concentrated vorticity only.

Similar results are valid for the normalized enstrophy production ωiωjsij

ω−1 W−1 = cos(ω,W), figure 6.10. Just as in the case of cos(ω, λ2) the
tendency for alignment between ω and W exists both in regions of large
ω2 and s2. However, it is much stronger for large strain s2, as are all the
nonlinearities in these regions (see section 6.5). It has been seen that the
maximum of joint PDF of cos(ω,W) and ω2 (and of cos(ω,W) and s2)
takes place at cos(ω,W) ≈ 1 and ω2 ≈ 0, i.e., at the points with weakest
vorticity and strongest alignment between ω and W.

Note also the strong asymmetry of the PDF of cos(ω,W) for the back-
ground ω2 < 〈ω2〉, which is almost the same as for the whole field. This
asymmetry remains significant, even for ω2 < 0.1〈ω2〉, and becomes stronger
for ω2 < 〈ω2〉 and cos(ω, λ2) > 0.9 (not shown). Moreover, this asymme-
try remains significant for both small ω2 and s2 (see figure 6.10) showing
the significance of the background. We are reminded that, for a Gaus-
sian velocity field, the PDF of cos(ω,W) is symmetric. One can see from
figures 6.8 and 6.9 that the maxima of the joint PDFs of both cos(ω, λ2)
and cos(ω,W) are located at weakest enstrophy and strongest alignment
between ω and λ2, and ω and W. The same is true for a variety of joint
PDFs of other quantities (see references in Tsinober, 1998a).

The above results show clearly that the background is strongly non-
Gaussian, not structureless and not passive.

Strained vortical (Burgers-like) objects
Regions with concentrated vorticity constitute a subset of much larger re-
gions in which there is a tendency for alignment between ω and λ2. This is
clearly seen from figure 6.8. Indeed, regions corresponding to cos(ω, λ2) >
0.9 occupy about 20% of the total flow volume, whereas the set of points
with concentrated vorticity, say, ω2 > 3〈ω2〉, is comprised of less than 6%
of the total flow volume.

The main feature and shortcoming of these objects (straight strained
vortices) is that they possess one-dimensional vorticity and therefore zero
curvature of vortex lines. Though the relation between vorticity and strain
is essentially nonlocal, ‘the presence of a strained vortex itself modifies the
local strain field’ (Le Dizes et al., 1996) – after all both are composed of
derivatives of the same velocity field. However, the special feature of the
straight strained vortices is that they are impotent in the sense that they do
not change that part of the strain by which they are strained themselves:
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Figure 6.9. PDFs of cos(ω,W ), Wi = ωisij ; DNS, Reλ = 75. Top left – conditioned
on enstrophy ω2 and s2, top right – conditioned on curvature of vortex lines; bottom –
joint PDF of cos(ω, W ) and ω2. The joint PDF of cos(ω, W ) and s2 is similar to the one
shown in this figure

this part of strain is prescribed a priori, i.e., it is independent decoupled
from its vorticity. These vortices do change only that part of the strain field
which is not reacting back on their vorticity. In other words, there is only
one way interaction: the vorticity is strained by that part of strain which
does not ‘know’ anything about the vorticity. In this sense such vortices
are passive: the essential ingredient of nonlinearity, the main feature of
true genuine nonlinear interaction – the self-amplification via interaction
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Figure 6.10. PDFs of cos(ω, W ) for the ‘weakest’ part of turbulent flow; DNS, Reλ = 75

Figure 6.11. Comparison of enstrophy production (left) and its rate (right) with their
viscous reduction in slots of ω2 and s2. DNS, Reλ = 100

with strain – is absent in these objects. In this sense, the nonlinearity is
reduced in these objects. This property is directly related to zero curvature
of vortex lines in straight strained vortices – the genuine nonlinearity is
present only in regions with nonvanishing curvature. This is what is ob-
served when looking for (apparent) singularities of Euler equations and
vortex reconnection (see references in Tsinober, 1998a). In other words
regions with concentrated vorticity with small curvature in real turbulent



150 CHAPTER 6

flows seem to be mostly the result, the consequence rather than dominating
factor of the turbulence dynamics. Possessing (almost) maximal enstrophy
they are in an approximate equilibrium in the sense that their fairly large,
(but not largest!, see next section) enstrophy production is approximately
balanced by the viscous reduction, and in this sense, they are less active
than the strain dominated regions possessing much larger (apparently max-
imal) enstrophy production, which is considerably larger than its viscous
reduction. This is seen from the comparison of the rate enstrophy produc-
tion α ≡ ωiωksik/ω

2 and its viscous reduction νωi∇2ωi/ω
2 in slots of ω

and s as shown in figure 6.11. Indeed, the imbalance between stretching
and viscous terms in slots of s is much larger than in slots of ω. This dif-
ference is especially large at large values of ω and s. This means that the
time scale estimated from the imbalance of stretching and viscous terms
ω2{Dt(ω2/2)}−1 ≈ {ωiωksik/ω

2 + νωi∇2ωi/ω
2}−1 in slots of ω is much

larger than such a time scale in slots of s. In other words, the life time
of regions with concentrated vorticity is large compared to that of regions
with large strain, i.e., large rate of energy dissipation. This explains – at
least in part – the observability of the regions with concentrated vortic-
ity and the difficulties in observing the regions with large dissipation. It
also points to the importance of studying more carefully such regions of
turbulent flows as those with strong imbalance between vortex stretching
and viscous destruction of vorticity. It is noteworthy that the Burgers-like
objects in real turbulent flows possess small but not vanishing curvature,
so that the self-amplification of their vorticity is not vanishing, as in the
perfectly straight ones used in a great variety of models18.

Regions of strongest vorticity/strain interaction
The important point is that at least in quasi-isotropic flows the largest
contribution to the enstrophy production ωiωjsij = ω2

i Λi cos2(ω, λi) comes
from the regions associated with the largest eigenvalue Λ1 of the rate of
strain tensor sij and not from the ones associated with the intermediate
eigenvalue Λ2 to which mainly belong the regions of concentrated vorticity.
Namely the ratio of 〈ω2Λ1 cos2(ω, λ1)〉 to 〈ω2Λ2 cos2(ω, λ2)〉 is roughly 2:1
or even more as in the field experiment mentioned several times before (see
table 6.5). The same is true of other nonlinearities (see section 6.5).

This shows that there exist regions (intense and weak – both structured
and dynamically active) other than concentrated vorticity regions, which

18See, for example, the review by Pullin and Saffman (1997) and the papers by
Hosokawa (2000) and Kambe and Hatakeyama (2000). A number of arguments and facts
were given in Tsinober (1998a) as to why regions of concentrated vorticity in turbulent
flows are not as important as previously thought. Here we mention in addition some of
the latest references supporting various aspects of this view: Chavanis and Sire (2000);
Dernoncourt et al. (1998); Min et al. (1996); Roux et al. (1998) and Sain et al. (1998).



DYNAMICS 151

Figure 6.12. Conditional averages of enstrophy production σ (left) and its rate α (right)
in slots of cos(ω,λ1). DNS, Reλ = 75

at least in the above sense are dynamically more important. These regions
are associated mainly with largest strain rather than enstrophy, strong ten-
dency of alignment between ω and λ1 (see table 6.5 and figure 6.12) and
fairly large curvature of vorticity lines. These regions are characterized by
the largest, apparently maximal, enstrophy production and its rate (as
shown in figure 6.14), which are much larger than their viscous reduction
as discussed above. This is consistent with the PDFs of the rate of enstro-
phy production conditioned on ω and s (see figure 6.13) and with the results
of Constantin et al. (1996) that the dominating contribution to ωiωjsij/ω

2

comes from the local (self) interaction of vorticity ω and strain sij , which
is absent in Burgers-like objects. The behaviour of W 2 and W 2/ω2 in slots
of ω and s is essentially the same. These results also show that there is
much vortex compression in regions with concentrated vorticity (see also
Jimenez and Wray, 1994). Similarly the dependence of enstrophy produc-
tion σ ≡ ωiωjsij and its rate α ≡ Λi cos2(ω, λi) on ω and on s ≡ (sijsij)1/2

is qualitatively different for small and large curvature of vortex lines in
such a way that the nonlinearity is manifested stronger in regions of large
curvature. In particular, the disparity in the behaviour of σ and α in slots
of ω and s becomes larger at small curvature, whereas at large curvature
the dependence of σ and α on ω and s is very similar. This last fact is a
reflection of stronger interaction of vorticity and strain in regions with large
curvature and positive α and, consequently, with non-negligible vortex fold-
ing and tilting (see the next section). The regions just discussed comprise a
subset of larger regions dominated by strain. Namely, these are the regions
with large vortex lines curvature. There exist at least two other kinds of
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Figure 6.13. PDF’s of the enstrophy production rate for the whole field and conditioned
on ω2 (left) and s2 (right). DNS, Reλ = 75. Considerable regions with vortex compression
exist also for large enstrophy (see also Jimenez and Wray, 1994), whereas in regions with
large strain the rate of enstrophy production is mostly positive

strain dominated regions: those with small curvature of vortex lines, which
wrap around the vorticity dominated regions (tubes/worms), and which
contribute mostly to the alignment of ω and λ2 as shown in figure 6.8.
There are also regions with large magnitude of Λ3 and large negative α, in
which most of vortex compressing, tilting and folding occur.

Vortex compression, tilting, folding and curvature
The most basic phenomenon in turbulence – the predominant vortex
stretching, i.e., predominant enstrophy production, σ ≡ ωiωjsij, so that
〈ωiωjsij〉 > 0 – cannot occur in a finite volume and finite energy without
its concomitants – vortex compressing (σ < 0) and folding (Chorin, 1982,
1994)19. Hence, the importance of looking at properties of turbulent flow
in regions with large curvature and σ < 0, which typically occupy about
1/3 of the whole flow volume, and for the evidence and characterization of
the vortex folding in three-dimensional turbulence. These regions play an
important role in the dynamics of turbulence. For example, these regions
make a positive contribution to the magnitude of the vortex stretching
vector Wi ≡ωjsij in (C.9). Indeed, W 2 = ω2Λ2

i cos2(ω, λi) and W 2/ω2 ≡Λ2
i

cos2(ω, λi) are large for large Λ2
3 cos2(ω, λ3), for which the enstrophy pro-

duction σ ≡ ωiωjsij = ω2Λi cos2(ω, λi) and its rate α = σω−2 =
19The term folding was introduced by Reynolds in 1894 in the context of folding of

material lines.
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Figure 6.14. Conditional averages of the magnitude of the rate of change of vorticity
direction η2 = W 2/ω2 − α2 = Λ2

i cos2(ω,λi) − {Λi cos2(ω,λi)}2. Left – in slots of ω and
s, from which it is seen that the direction of vorticity is changing much stronger in strain
dominated regions. Right – in slots of Λ3, showing that this rate of change is (apparently)
largest in (sub)regions of vortex compression with large magnitude of Λ3. Similar increase
of η2 is observed in slots of Λ1 and Λ2 too, but at slower rates (not shown). Note that it
is not so simple to separate the contributions to η2 associated with the eigenvalues Λi

Λi cos2(ω, λi) are negative (see table 6.7). Similarly, enstrophy production
(and α) can be small, whereas W 2 (and W 2/ω2) can be large.

TABLE 6.7. Contribution to the total mean of the magnitude of vortex
stretching vector 〈W 2〉 ≡ 〈ω2Λ2

i cos2(ω,λi)〉 from the terms corresponding
to the eigenvalues Λi of the rate of strain tensor sij . DNS, Reλ = 75. Field
experiment Reλ = 104

Reλ 〈ω2Λ2
1 cos2(ω, λ1)〉 〈ω2Λ2

2 cos2(ω, λ2)〉 〈ω2Λ2
3 cos2(ω,λ3)〉

DNS 75 0.53 0.15 0.32

Field 104 0.52 0.12 0.36

A closely related process is the vortex tilting, which is characterized by
the rate of change of direction of vorticity. This rate is obtained from the
equations (6.3, 6.4) for the magnitude of vorticity ω and its unit vector
�i = ωi/ω, which are equivalent to the equations (C.9, C.16) without the
forcing terms

Dtω = αω + vt, Dt�i = sij�j − α�i + V T, (6.3, 6.4)

where and V T stands for viscous terms. The vector ηi = sij�j − α�i =
Wi/ω − αωi/ω is the inviscid rate of change of the unit vector � along
the direction of vorticity ω, and is responsible for the rate of change of its
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direction, Constantin (1994), and η ⊥ ω, i.e., vector η is associated with in-
viscid vorticity tilting. Its magnitude is η2 = W 2/ω2−α2 = Λ2

i cos2(ω, λi)−
{Λi cos2(ω, λi)}2. From this it is seen that in regions with negative enstro-
phy production the rate of change η of the unit vector � can be large,
since, as mentioned, these regions make a positive contribution to the
magnitude of the vortex stretching vector Wi ≡ ωjsij, so that W 2/ω2 =
Λ2

i cos2(ω, λi) can be large and α2 = {Λi cos2(ω, λi)}2 can be small. This
happens in regions associated with large magnitudes of Λ3 as is seen from
figure 6.14.

It is reasonable to associate the above process with large curvature of
vortex lines and similar quantities, which should reflect their folding and
tilting – at least the resulting aspect of these processes. Hence among the
questions of interest are those about the properties of curvature and the
relation between curvature and dynamically relevant quantities such as en-
strophy ω2, enstrophy production σ, rate of enstrophy generation α ≡ σ/ω2

and relations such as various alignments. Of course, the ultimate clarifica-
tion of such relations can be obtained from looking at global properties.
One can hope that some insights can be gained from local analysis, i.e.,
from working with point quantities at a particular time moment.

In a simplified form, the logic is that strong stretching results in strong
vorticity: indeed regions with strong vorticity are known to be tube-like
with a small curvature, as observed visually in a number of numerical sim-
ulations. However, closer inspection shows that matters are much more
complicated due to a number of qualitative differences between material
and vortex lines (see chapter 9). The curvature decreases with magnitude
of ω. It appears that this behaviour is practically the same for the whole
field, for positive and for negative rate of enstrophy production20. This last
fact, i.e., the behaviour of curvature C versus ω for negative rate of enstro-
phy production (α < 0) and strong increase of curvature with strain21 (see
figure 6.15) undermines the simple analogy with the behaviour of material
lines in turbulent flows.

Similarly, as is expected, the curvature of vortex lines is increasing with
|α| for α < 0 due to folding of vortex lines, but again, most interestingly the
same behaviour of C is observed for α > 0 due to self-induction, unlike the
case of material lines. This is consistent with the results on the comparison
of dependence of enstrophy generation ωiωksik and its viscous reduction
νωi∇2ωi on ω and s (figure 6.11) and also curvature C. Namely, the pref-
erential alignment between ω and λ2 is correlated with small curvature

20The reader is reminded again that typically regions with α > 0 occupy about 2/3 of
the turbulent flow field, and regions with α < 0 comprise about 1/3 of the whole flow
volume.

21Again for the whole field and both for α > 0 and for α < 0.
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Figure 6.15. Conditional averages of curvature Cω of vortex lines (left) and magnitude
of the inviscid tilting ηi

ω of vorticity (right) on ω2 and s2 in a box DNS at Reλ ≈ 100.
Courtesy B. Galanti

and there is no preferential alignment between ω and λ2 at large curvature
(figure 6.8, top right).

The above shows that the ‘most nonlinear’ are the regions with large
curvature, dissipation, i.e., strain, and preferable alignment between ω and
λ1, and not the regions of concentrated vorticity with small curvature and
preferable alignment between ω and λ2, such as the filaments observed in
direct numerical simulations of the Navier–Stokes equations and laboratory
experiments22. This brings us to next issue.

6.5. Depression of nonlinearity

The notion known as depression of nonlinearity was introduced by Kraich-
nan and Panda (1988). Since this paper, several aspects of this problem
have been addressed (see references in Tsinober et al., 1999). Kraichnan
and Panda suggested comparing the nonlinearities in real turbulent flows
with their Gaussian counterparts. This is meaningful for even moments
only, for example,

〈|u × ω|2〉/〈|u × ω|2〉G < 1 (∼0.8);
〈
W 2

〉
/
〈
W 2

〉
G

< 1 (∼0.7 ÷ 0.8);
Wi ≡ ωjsij .
〈|u × ω −∇(p + 1

2u2)|〉/〈|u × ω −∇(p + 1
2u2)|〉G < 1 (∼0.5 ÷ 0.6).

In this sense nonlinearity is reduced. However, as measured by odd mo-
ments the real nonlinearity is ‘infinitely’ larger, since for a Gaussian velocity

22It is noteworthy that regions of concentrated vorticity are not free of vortex com-
pression in the same proportion as in the whole turbulent field, see below.
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field the odd moments vanish identically. This includes the longitudinal ve-
locity structure functions of odd order S2n+1(r) = 〈{[u(x + r) − u(x)] ·
r/r}2n+1〉, enstrophy generation 〈ωiωksik〉, 〈sijsjkski〉 and many others. In
other words, the build up of odd moments is an important specific manifes-
tation of the nonlinearity of turbulence, and is, as well, a manifestation of
its structure – there is no turbulence without odd moments; the nonzero
〈ωiωksik〉 is associated with the strict alignment between ω and W. In this
sense this alignment enhances the nonlinearity. We have seen above that this
alignment is significant throughout all the regions of turbulent flow. On the
other hand, the alignment between u and rot ω reduces 〈ωiωksik〉. Indeed,
since 〈ωiωksik〉 = 〈ω · rot(u× ω)〉 = 〈rotω · (u×ω)〉 = −〈ω · (u× rotω)〉,
and since −〈u · rot ω〉 ≡ 〈ω〉2 > 0 there is a tendency of (anti-)alignment
between u and rot ω reducing the magnitude of u × rotω and thereby of
〈ωiωksik〉. Though this is a purely kinematic effect it is directly related
to the dissipative and rotational nature of turbulent flows, since the mean
dissipation 〈ε〉 � ν〈ω〉2.

One more aspect of reduction of nonlinearity is related to the tendency
of alignment between u and ω, and the so-called beltramization (see Moffatt
and Tsinober, 1992; Tsinober, 1998a; and references therein). The align-
ment between u and ω implies reduction of the magnitude of the Lamb
vector, ω × u, (e.g. 〈|ω × u|2〉) and corresponding increase of a quantity
called helicity density h = u ·ω (e.g., 〈|u · ω|2〉). This is a very difficult and
controversial issue for many reasons. First, u and ω are weakly correlated
by their very nature – u is a large-scale quantity, and ω is a small-scale one.
Second, the Lamb vector is neither potential nor solenoidal, and it has a
large potential part (see section 6.6). The latter can be considered as a kind
of reduction of nonlinearity, since only the solenoidal part of ω × u matters
in the dynamics of vorticity. However, this is not the case with strain.

6.5.1. RELATIVE DEPRESSION OF NONLINEARITY IN REGIONS
WITH CONCENTRATED VORTICITY

We are interested here in the behaviour of the key nonlinearities related to
velocity gradients in flow regions dominated by enstrophy and strain. Typi-
cal examples are the magnitude of the vortex stretching vector W ≡ |ωjsij|,
the enstrophy generation ωiωjsij and its rate ωiωjsij/ω

2, the production of
dissipation, i.e., the inviscid terms in equation (C. 18), the inviscid terms
in equations (C.23, C.24) and all physically meaningful nonlinearities in-
volving velocity derivatives. The central result is that all of them – though
increasing with ω (e.g., ωiωjsij increases as ω7/3, i.e. faster than ω2, but
slower than ω3), are essentially reduced in regions dominated by enstro-
phy as compared to the strain dominated regions, see figures 6.11, 6.12,
6.14. Another manifestation of depression of nonlinearity is the decrease in
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the curvature of the vortex lines in the regions with concentrated vorticity,
and enhanced rate of change of vorticity direction in the strain dominated
regions (see figures 6.14, 6.15). Indeed, we have seen that enstrophy pro-
duction and its rate are much larger in strain dominated regions (than that
in enstrophy dominated ones) with finite curvature of vortex lines. Both are
associated with the largest eigenvalue Λ1 of the rate of strain tensor and
alignment between ω and λ1. The main contribution to vortex stretching
in these regions comes from local effects associated with the (self) interac-
tion of ω and sij (Constantin et al., 1996) in contrast with the enstrophy
dominated regions in which the vortex stretching is sustained mostly by
nonlocal effects. Similarly, other nonlinear dynamically relevant quantities,
e.g., magnitude of the vortex stretching vector W 2 and its rate W 2/ω2,
and the quantity η2 responsible for the vorticity tilting (see figure 6.14
left), eigen-contributions to the enstrophy production ω2Λk cos(ω, λk) (no
summation over k) are also strongly reduced (see figure 10. 2) in regions
of concentrated vorticity, as compared to their values in strain dominated
regions.23

Another aspect of reduction of nonlinearity is seen clearly from
figure 6.16. Namely, the nonlinearity associated with the production of
ωiωjsij (see equation (C.23)) occurs only in strain dominated regions. Note
the qualitatively different behaviour of ωiωj

∂2p
∂xi∂xj

(figure 6.16) in enstro-
phy dominated regions (decreasing with ω) as compared to that in strain
dominated regions (increasing with s); for more see Tsinober et al. (1999)
and Tsinober, 2001a.

6.5.2. ARE REGIONS OF CONCENTRATED VORTICITY
QUASI-ONE-DIMENSIONAL?

One of the popular reasons for reduced nonlinearity in the regions of con-
centrated vorticity, i.e., mainly in the long, thin tubes-filaments-worms, is
because these objects are believed to be in some (!) sense locally quasi-one-
dimensional (Frisch, 1995), i.e., that nonlinearity is stronger outside of these
structures. Hence the term depletion (expulsion) of nonlinearity. Following
this line one would expect that in regions with strong alignment between
vorticity ω and the intermediate eigenvector λ2, vortex stretching and en-
strophy generation should decrease as | cos(ω, λ2)| increases. Indeed W and
its rate are decreasing but remain essentially finite. However, contrary to
the above expectation the enstrophy generation and its rate increase in

23Though the above results are likely to be true at large Reynolds numbers, they
cannot be seen as an indication that NSE may not develop a singularity in finite time,
since these results reflect statistical tendencies. For example, there exist small regions
with very large enstrophy, enstrophy production and alignment between ω and λ1.
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Figure 6.16. Conditional averages of the nonlocal term ωiωj
∂2p

∂xi∂xj
in slots of ω and s,

DNS. Reλ ≈ 75. (see equation (C.23))

Figure 6.17. Conditional averages of: left – enstrophy production σ ≡ ωiωjsij , vortex
stretching W 2, right – rates of enstrophy production α, vortex stretching W 2/ω2, inter-
mediate eigenvalue of the rate of strain tensor Λ2 and the ratio Λ2/s in slots of cos(ω,λ2).
DNS, Reλ = 75

slots of | cos(ω, λ2)| and become maximal at | cos(ω, λ2)| ∼ 1 (figure 6.17).
In other words in these regions the rate of creation of enstrophy ω2 is the
largest and in this sense the nonlinearity is stronger and not weaker than
in, at least, some of their background using | cos(ω, λ2)| as a criterion. The
above tendencies are stronger in regions with strong vorticity and survive
in the background, e.g., regions of weak enstrophy. Note that none of
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the quantities ωiωjsij , W, Λ2 and Λ2/s become small for | cos(ω, λ2)| ∼ 1
indicating that the flow does not become locally two-dimensional. In par-
ticular, it is important that in these regions the intermediate strain (i.e.,
Λ2) is positive and is increasing along with | cos(ω, λ2)|, which corresponds
to strong straining in these regions (cf. with pure two-dimensional flow in
which Λ2 ≡ 0). Thus one can speculate that there is a tendency to ‘localiza-
tion of nonlinearity’ in space which, somewhat paradoxically, is sustained
by nonlocal effects due to the nonlocal relation between strain and vorticity
and due to pressure (‘nonlocal localization’; see next section on nonlocality
of turbulence). Note, that the claim to ‘localization of nonlinearity’ is sup-
ported by the behaviour of Λ2/s in slots of | cos(ω, λ2)|, which is similar to
the one of Λ2/〈s〉 as shown in figure 6.17. In order to get more insight it is
necessary to look into more subtle aspects of geometrical statistics than just
single space/time point alignments. For the moment, it is clear that ‘sim-
ple’ structures in three-dimensional turbulence are qualitatively different
from those in pure two-dimensional turbulence in which the nonlinearity
is really depleted in such structures – however, in three-dimensional tur-
bulence such structures do not seem to be the best candidates to look for
depletion of nonlinearity in the absolute sense. Nevertheless, we have seen
above that taking the enstrophy generation ωiωjsij as a measure of non-
linearity, the objects with strong alignment between ω and λ2 appear to
be not the most nonlinear, since their enstrophy generation ωiωjsij comes
mostly from nonlocal effects and not from self-stretching.

The non-2D character of the regions with concentrated vorticity is seen
also from figure 6.12 left and figure 6.18. In addition Jimenez and Wray,
1994 have shown that the statistics of the rate of enstrophy production
is the same in the whole flow field and in the ‘worms’. It is noteworthy
that the features seen in figures 6.12, 6.17 and similar ones were, in fact,
reported already by Ruetsch and Maxey, 1991.

6.5.3. ADDITIONAL ISSUES

Pressure Hessian
Equation (C.23) for the rate of change of enstrophy production contains
two terms. The first term in (C.23) (which is just the squared magnitude
of the vortex stretching vector) is strictly positive, ωisijωkski ≡ W 2 > 0.
This means that the nonlinear processes involving vortex stretching (or
direct interaction of vorticity and strain) always act to increase even the
instantaneous enstrophy production. This, however, does not explain why in
turbulent flows 〈ωiωjsij〉 > 0, since the inviscid rate of change of enstrophy
production contains also a second term reflecting the interaction (which
has a nonlocal contribution) between vorticity and the pressure Hessian
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Figure 6.18. An example of distribution of normalized radius and circulation along
worm axes, as a function of arclength for four worms chosen at random. Reλ = 94.5,
Adapted from Jimenez et al., 1993

∂2p
∂xi∂xj

. This is the term −ωiωj
∂2p

∂xi∂xj
. It appears (Tsinober et al., 1995)

that 〈ωiωj
∂2p

∂xi∂xj
〉 is positive and is about 〈W 2〉/3, i.e., in the mean, the

nonlinearity in (C.23) is reduced by this nonlocal term, since for a Gaussian
velocity field 〈ωiωj

∂2p
∂xi∂xj

〉 ≡ 0, see figures 6.19, 6.20.

Broadband forcing
Most turbulent flows are excited at large scales, so that in the rest of the
scales the nonlinearity (mostly) does not have to ‘cope’ with forcing. This
may not be the case with broadband forcing. If this forcing is strong enough
not only in the large scales, it can balance the dissipative effects directly and
thereby bypass the nonlinearity. That is in such a situation the nonlinearity
may be reduced. Indications for this were obtained by Mazzi and Vassili-
cos (2004) in a DNS of a fractal forced flow with a bit ‘unusual’ forcing in
Fourier space ∼akk

β , β > 0 and ak = 1 for k < KF and vanishing other-
wise. Namely, they observed reduced energy transfer in Fourier space and
reduced velocity derivative skewness. Another interesting observation was
made by Biferale et al. (2004). They used a random Gaussian forcing with
a power-law spectrum, Ef (k) ∼ k3−y. They found that – judging by the
scaling behavior – small-scale turbulent fluctuations change from a forcing
independent, FI, (at y > 4) to a forcing dominated, FD (at y < 4). In the
latter case, as the scale decreases, the small-scale fluctuations get closer and
closer to a Gaussian statistics and intermittency (in the sense of scaling)
disappears. As the forcing is Gaussian this is consistent with the scenario
of bypassing (and reduction of) the nonlinearity in small scales24. This is

24A purely linear system with Gaussian forcing has Gaussian statistics.
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Figure 6.19. Visualization of the field of interaction of vorticity and pressure Hessian

ωiωj
∂2p

∂xi∂xj
from the data in DNS of NSE in a circular pipe flow at Re≈ 7000, performed

by Eggels et al. (1994). Note large regions with strong interaction far away from the
boundary. Courtesy of Professor F.T.M. Niewstadt and Dr. J.M.J. den Toonder

also supported by the observation of Biferale et al. (2004) that the tail in
the PDF of the dissipation is much shorter in the forcing dominated (at
y = 3.5) as compared to the forcing independent case (at y = 6).

It is natural to expect that in the FI regime the usual (Tennekes and
Lumley) balance between ωiωjsij and νωi∇2ωi should hold and the term
associated with forcing will be small as compared to ωiωjsij and νωi∇2ωi.
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Figure 6.20. Visualization of the field of interaction of vorticity and pressure Hessian

siksjk
∂2p

∂xi∂xj
from the data in DNS of NSE in a circular pipe flow at Re≈ 7000, performed

by Eggels et al. (1994). Note large regions with strong interaction far away from the
boundary. Courtesy of Professor F.T.M. Niewstadt and Dr. J.M.J. den Toonder

In the FD regime the forcing term should come into play so that much of
the balance will come from that between νωi∇2ωi and εijkωi

∂Fk
∂xj

. Similarly,
in the equation for strain. In other words in the FD regime the forcing is
expected to bypass the nonlinearity and to balance the dissipation directly.
Hence one can expect that in the FD regime ωiωjsij and sijsjkski will be
strongly reduced as compared to the regime FI.
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Along with the above difference one wonders what happens with passive
scalar (and also vector) in these two cases. If one takes the case with linear
mean gradient of a passive scalar the expectation is that there will be
no “Reynolds analogy”: in both cases, e.g. the production of the scalar
gradient, −GiGksik, will be of the same order and even larger in the FI
regime.

6.6. Nonlocality

Kolmogorov related the poor predictability of flows with the in-
fluence of the higher-order harmonics on the basic, lower-order
modes. (Arnold, 1991).
. . . the local cascade . . . seems to be actually rather diffuse.
(Kraichnan, 1968).
Are the small scales actually statistically independent of the large
scales when ν → 0 and are they isotropic if the large scales are
not? (Saffman, 1978).
The mean strain rate in turbulent shear flow must tend to make
the structure anisotropic in all parts of the spectrum. (Corrsin,
1958).
. . . the energy transfer is rather nonlocal. (Deissler, 1978).
The small and large scales are strongly coupled . . . If cascade pic-
ture makes sense, one probably must have a complex interplay
between distant shells. (Chorin, 1994).
The experimental evidence shows that the large and the small
scales are strongly coupled and that traditional cascade picture,
which promotes universality, is a crude representation. (Warhaft,
2000).
The large scales of turbulence are insensitive to viscosity at high
enough Reynolds number. (Mathieu and Scott, 2000).
. . . when there exists a range of scales (the inertial range) in which
effects of viscosity, boundary conditions, and large-scale structures
are not important . . . (Meneveau and Katz, 2000).

6.6.1. INTRODUCTION AND SIMPLE EXAMPLES

As mentioned in chapter 1, nonlocality is among the three main reasons25

the problem of turbulence is so difficult.
The term nonlocality is used here in several related meanings which will

become clear in the course of the discussion of the issues throughout this
section (see also Tsinober, 2001a,b, 2003).

25The three N’s: nonlinearity, non-integrability and nonlocality.
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We start from a simple example. Taking the position that velocity fluc-
tuations represent the large scales and the velocity derivatives represent the
small scales, one can state that, in homogeneous (not necessarily isotropic)
the large and the small scales do not correlate. This can be expressed quan-
titatively by a correlation between velocity and vorticity. For example,
in a homogeneous turbulent flow the Lamb vector 〈ω × u〉 = 0 and also
〈(u · ∇)u〉 = 0. If the flow is statistically reflectionally symmetric, then
〈ω · u〉 = 0 too. However, as mentioned in Chapter 1, vanishing correla-
tions do not necessarily mean absence of dynamically important relations.
Indeed, the quantities (u · ∇)u ≡ ω × u + ∇(u2/2) and ω × u, are the
main ‘guilty parties’ responsible for all we call turbulence. Both contain
the large scales (velocity) and small scales (velocity derivatives, vorticity).
So some kind of coupling between the two is unavoidable. Let us begin
with the kinematic relation between velocity and vorticity, which is a mere
consequence of the relation ω = curl u. Therefore any altering of ω results
in its ‘reacting back’ on the velocity field. This point is not as trivial as may
seem. Indeed, take a Helmholz decomposition of the most significant part
of the nonlinear term in NSE, the Lamb vector, ω × u (Tsinober, 1990a)

ω × u = ∇α + ∇× β.

Assuming that ω and u are random Gaussian and unrelated, i.e. ω �= rotu,
the result is that 〈

(∇α)2
〉

=
〈
(∇× β)2

〉
.

However, if ω = rotu and u is quasi-Gaussian, i.e., obeys the zero-forth-
cumulant relation26 then (Tsinober, 1990a)

〈
(∇α)2

〉
∼ 2

〈
(∇× β)2

〉
;

i.e. in this case the rms of the potential part of the Lamb vector is twice
as large as its solenoidal part27. In other words ω ‘reacts back’ on velocity,
and consequently on ω × u, even for purely kinematic reasons.

More generally, vorticity does not just involve small scales. It is of special
importance, since together with boundary conditions the whole flow field
is determined entirely by the field of vorticity28 . This, of course, includes

26The so-called Millionschikov hypothesis (Monin and Yaglom, 1975), suggested by
A.N. Kolmogorov.

27In real turbulent flows this difference is even larger (Shtilman et al., 1993).
28As mentioned before this is seen from the equation ∇2u = −curlω, which together

with boundary conditions defines uniquely the velocity field. One can imagine a kind of
“counter-argument” that the Biot–Savart law connects the (weak) large-scale vorticity
to the large-scale velocity and small-scale vorticity to the (weak) small-scale velocity.
The following simple counter-example shows that this is obviously incorrect. Take the
potential vortex which – except at the origin (i.e., “almost nowhere”) – has no vorticity,
but has lots of velocity also far from the origin, and very large (!) velocity close to the
origin.
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the velocity field itself, and therefore the large scales are determined by
the small scales. This is the simplest indication not only for direct interac-
tion/coupling between large and small scales, but also that this interaction
is bidirectional.

A natural question is what about the correlation(s) and coupling be-
tween velocity, ui, and the strain, sij. First we recall that, just as in the
case of vorticity, the whole flow field is determined entirely by the field
of strain. This is seen from the equation ∇2ui = 2∂sik/∂xk, which to-
gether with boundary conditions defines uniquely the velocity field29. Again
in a homogeneous turbulent flow velocity, ui, and the strain, sij do not
correlate, 〈uisij〉 = 0. However, velocity is correlated with small scales of
‘higher order’. Namely, the correlation,

〈
ui∇2ui

〉
= −2 〈sijsij〉 = −

〈
ω2

〉
,

is essentially nonvanishing again for purely kinematic reasons. This and
other aspects of “kinematic” nonlocality coupled with self-production of ωi

and sij have non-trivial dynamical consequences. It is of special dynami-
cal significance as it is directly related to the dissipation of turbulent en-
ergy, 〈ε〉 = 2ν 〈sijsij〉 , which for dynamical reasons remains finite for very
small ν. Therefore the correlation

〈
ui∇2ui

〉
becomes very large at small

ν. However, the corresponding correlation coefficient 〈ui∇2ui〉
〈u2〉1/2〈(∇2u)2〉1/2 =

〈ω2〉
〈u2〉1/2〈(rotu)2〉1/2 at large Reynolds numbers is roughly of the order Re−1/4,

i.e., becomes very small30. This, of course, does not mean that the coupling
between u and ∇2u becomes unimportant at large Reynolds numbers. The
correlation between u and ∇2u is directly related to the correlation between
velocity, u, and acceleration, a, since, for example, in a homogeneous tur-
bulent flow, 〈u · a〉 = ν

〈
u · ∇2u

〉
(Mann et al., 1999). Hence again coupling

between large (u) and small (a) scales.
One can use the above example with the Lamb vector to illustrate the

dynamical nature of this coupling. For this we retreat from (quasi-) ho-
mogeneous isotropic flows and consider a unidirectional in the mean fully-
developed turbulent shear flow, such as the flow in a plane channel in which
all statistical properties depend on the coordinate normal to the channel

29This undermines the most common belief that turbulence is an inertial phenomenon
in the sense that the precise nature of the dissipation mechanism does not affect the
structure of the large (energy containing) scales, so that turbulence is statistically in-
distinguishable on energy-containing scales in gases, liquids, slurries, foams, and many
non-Newtonian media.

30Indeed,
〈ui∇2ui〉

〈u2〉1/2〈(∇2u)2〉1/2 =
〈ω2〉

〈u2〉1/2〈(rotω)2〉1/2 = 〈ε〉/ν

〈u2〉1/2〈(rotω)2〉1/2 ∼
〈ε〉/ν

U[(ε/ν)1/2]/η
∼ Re1/2 (η/L)1/2 =Re−1/4. We used here the standard order of magnitude

phenomenological estimates (see Tennekes and Lumley, 1972). Namely,
〈
u2

〉1/2 ∼ U ,

〈ε〉 ∼ U3/L, and
〈
(rotω)2

〉1/2 ∼ (〈ε〉 /ν)1/2/η with U and L some integral scales of
velocity and length.
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Figure 6.21. Dependence of the mean Reynolds stress 〈u1u2〉 on the distance from the
wall in turbulent flows in channels of cross section with large aspect ratio. Adapted from
Wei and Wilmarth (1989).

boundary, x2, only. In such a flow, a simple precise kinematic relation is
valid

d〈u1u2〉/dx2 ≡ 〈ω × u〉1 = 〈ω2u3 − ω3u2〉 �= 0, (6.5)

which is just a consequence of the vector identity (u·∇)u ≡ ω×u+∇(u2

2 ) in
which incompressibility and d〈· · · 〉/dx1,3 = 0 where used, and 〈· · · 〉 means
an average in some sense (e.g., time or/and over the planes x2 = const, etc.).
The dynamic aspect is that in turbulent channel flows d〈u1u2〉/dx2 �= 0 is
essentially different from zero at any arbitrarily large Reynolds number (see
figure 6.21). Therefore one can see from (6.5) that at least some correlations
between velocity and vorticity in such flows are essentially different from
zero.

Since vorticity is basically a small-scale quantity the relation (6.5) is
a clear indication of a dynamically important statistical dependence be-
tween the large scales (u) and small scales (ω). Without this dependence
d〈u1u2〉/dx2 ≡ 0, which means that the mean flow would not ‘know’ about
its turbulent part at all. It is noteworthy that both correlation coefficients

〈ω2u3〉
〈ω2

2〉1/2〈u2
3〉1/2 , 〈ω3u2〉

〈ω2
3〉1/2〈u2

2〉1/2 (and many other statistical characteristics, e.g.,

some, but not all, measures of anisotropy) are of order 10−2 even at rather
small Reynolds numbers. Nevertheless, as we have seen, in view of the
dynamical importance of interaction between velocity and vorticity in tur-
bulent shear flows31 such ‘small’ correlations by no means imply absence

31The relation (6.5) is approximately valid in many important turbulent flows such
as boundary layers, wakes, jets, etc. in which d〈· · · 〉/dx1,3 � d〈· · · 〉/dx2. The argument
here is based on nonvanishing gradient of the Reynolds stress d〈u1u2〉/dx2 and not the
Reynolds stress itself. As noted, without this gradient the mean flow would not ‘know’
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of a dynamically important statistical dependence and a direct interaction
between large and small scales. Indeed it is this interaction that results in
drastic changes of the whole mean flow.

The direct interaction between large and small scales similar to the one
in the above example may exist in a much broader class of turbulent flows
and regions in these flows, e.g., with appropriate scale (in time and space)
separation such as vorticity ‘pancakes’ (Brachet et al., 1992).

6.6.2. DIFFERENT ASPECTS OF NONLOCALITY

From the formal point of view a process is called local if all the terms in the
governing equations are differential. If the governing equations contain in-
tegral terms, then the process is nonlocal. The Navier–Stokes equations are
integro-differential for the velocity field in both physical and Fourier space
(and any other). Therefore, generally, the Navier–Stokes equations describe
nonlocal processes32. The problem is intimately related to the one of de-
compositions/representations, which was already discussed in chapter 5,
but the relation between the two becomes more clear from what follows in
the sequel.

The nonlocal nature of the Navier–Stokes equations in physical space
is two-fold33. On one hand, it is due to pressure (‘dynamic’ nonlocality),
since ρ−1∇2p = ω2 − 2sijsij = − ∂2uiuj

∂xi∂xj
, so that pressure is nonlocal due

to the nonlocality of the operator ∇−2 (see appendix C). This nonlocality
is strongly associated with the essentially non-Lagrangian nature of pres-
sure. For example, replacing in the Euler equations the pressure Hessian

∂2p
∂xi∂xj

, which is both nonlocal and non-Lagrangian, by a local quantity
1
3δij∇2p = ρ

6{ω2 − 2sijsij} turns the problem into a local and integrable
one and allows us to integrate the equations for the invariants of the tensor
of velocity derivatives ∂ui/∂xj in terms of a Lagrangian system of coor-
dinates moving with a particle (see Cantwell, 1992 and references therein.
One of the reasons for the disappearance of turbulence (and formation of
singularities in finite time) in such models, called restricted Euler models, is
that the eigenframe of sij in these models is fixed in space (Novikov, 1990b),
whereas in a real turbulent flow it is oriented randomly in space and time.
This means that nonlocality due to pressure is essential for (self-)sustaining
turbulence: no pressure Hessian – no turbulence. A related aspect is that
the Lagrangian acceleration Du/Dt – a kind of small-scale quantity – is
dominated by pressure gradient, ∇p (Vedula and Yeung, 1999; see next
section).

about its turbulent part at all. Precisely this happens when a shear flow is assumed to
be homogeneous. In such a flow the gradient d〈u1u2〉/dx2 ≡ 0.

32This does not mean that processes described by pure differential equations are local.
An example is a passive object (scalar, vector) in a random velocity field.

33On nonlocality of turbulence in Fourier space see, for example Deissler (1979).
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Taking the rot of the NSE and getting rid of the pressure does not
remove the nonlocality. Indeed, the equations for vorticity (C.9) and en-
strophy (C.16) are nonlocal in vorticity, ω, since they contain the rate of
strain tensor, sij, due to the nonlocal relation between vorticity, ω, and
the rate of strain tensor, sij (‘kinematic’ nonlocality)34. The two aspects of
nonlocality are related, but are not the same. For example, in compressible
flows there is no such relatively simple relation between pressure and ve-
locity gradient tensor as above (see equation C.13), but the vorticity-strain
relation remains the same. It is noteworthy that while the production of
enstrophy ωiωjsij is nonlocal, the main responsible for production of strain
−sijsjk ski is local, though production of strain involves participation of
nonlocal contributions from −1

4 ωiωjsij and (in inhomogeneous flows) of
−sij

∂2p
∂xi∂xj

, see equation (C.18).
Both aspects of nonlocality are reflected in equations (C.17) and (C.18)

for the rate of strain tensor and total strain/dissipation, s2 ≡ sijsij, and
equations (C.23) and (C.24) for the third-order quantities. An important
aspect is that equations (C.23) and (C.24) contain invariant quantities
ωiωj

∂2p
∂xi∂xj

and sikskj
∂2p

∂xi∂xj
reflecting the nonlocal dynamical effects due to

pressure and can be interpreted as interaction between vorticity and pres-
sure and between strain and pressure. In particular, equation (C.23) for the
rate of change of enstrophy production shows both aspects of nonlocality
of the vortex stretching process (see also Ohkitani and Kishiba, 1995). The
first term in (C.23) (which is just the squared magnitude of the vortex
stretching vector) is strictly positive, ωisijωkski ≡ W 2 > 0. This means
that the nonlinear processes involving vortex stretching (or direct interac-
tion of vorticity and strain) always tend to increase even the instantaneous
enstrophy production. Here also the term W 2

3 = ω2λ2
3 cos2(ω, λ3) associ-

ated with the negative eigenvector of the rate of strain tensor Λ3, i.e., vor-
tex compressing or negative enstrophy production, ω2

3Λ3 cos2(ω, λ3), makes
a positive (!) contribution to the rate of change of enstrophy generation,
W 2

i = ω2
i Λ

2
3 cos2(ω, λi). However, the inviscid rate of change of enstrophy

production contains also a second term reflecting the interaction between
vorticity and the pressure Hessian ∂2p

∂xi∂xj
. This is the term −ωiωj

∂2p
∂xi∂xj

.

Without this term the question why 〈ωiωjsij〉 > 0 would be immediately
answered. It appears (Tsinober et al., 1995) that 〈ωiωj

∂2p
∂xi∂xj

〉 is positive
and is about 〈W 2〉/3, i.e., in the mean, the nonlinearity in (C.23) is reduced

34Nonlocality of the same kind is encountered in problems dealing with the behaviour of
vortex filaments in an inviscid fluid. Its importance is manifested in the breakdown of the
so-called localized induction approximation (LIA) as compared with the full Bio–Savart
induction law, see Ricca et al. (1999).
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by this nonlocal term, since for a Gaussian velocity field 〈ωiωj
∂2p

∂xi∂xj
〉 ≡ 0.

The nonvanishing correlations 〈ωiωj
∂2p

∂xi∂xj
〉, 〈sikskj

∂2p
∂xi∂xj

〉 are also one of
the manifestations of nonlocality, see figures 6.19 and 6.20.

Direct coupling between large and small scales
Nonlocality, in the sense as discussed above, is an indication of direct cou-
pling between large and small scales. There exists massive evidence that
this is really the case as there are many indications that this interaction
is bidirectional, see also section 5.3.135. We should first mention the well-
known effective use of fine honeycombs and screens in reducing large-scale
turbulence in various experimental facilities (Laws and Livesey, 1978; Tan-
Attichat et al., 1982). The experimentally observed phenomenon of strong
drag reduction in turbulent flows of dilute polymer solutions and other drag
reducing additives (Gyr and Bewersdorff, 1995) is another example of such
a ‘reacting back’ effect of small scales on the large scales (see chapter 8).
Third, one can substantially increase the dissipation and the rate of mixing
in a turbulent flow by directly exciting the small scales experimentally in a
jet (Wiltse and Glezer, 1998)36 and in DNS in a periodic box (Suzuki and
Nagano, 1999). Before proceeding further, we should also mention a re-
lated phenomenon concerning the stability of spatially periodic flows. Such
flows may destabilize directly into small-scale three-dimensional structures
(Pierrehumbert and Widnall, 1982).

Anisotropy. One of the manifestations of direct interaction between large
and small scales is the anisotropy in the small scales. Though local isotropy
is believed to be one of the universal properties of high Re turbulent flows, it
appears that it is not so universal: in many situations the small scales do not
forget the anisotropy of the large ones. There exists considerable evidence
for this point, which has a long history starting somewhere in the 1950s (see
references in Biferale and Procaccia, 2005; Ferchichi and Tavoularis, 2000;
Gylfason and Warhaft, 2004; Shen and Warhaft, 2000, 2002; Sreenivasan
and Antonia, 1997; Staicu et al., 2003; Tsinober, 1993b, 1998b; Yeung et al.,
1995; Warhaft, 2000; Warhaft and Shen, 2002). Along with other manifes-
tations of direct interaction between large and small scales, the deviations
from local isotropy seem to occur due to various external constraints like
boundaries, initial conditions, forcing (e.g., as in DNS), mean shear/strain,
centrifugal forces (rotation), buoyancy, magnetic field, etc., which usually
act as an organizing factor, favoring the formation of coherent structures

35Note that in case of passive objects, there is no such a bidirectional relation – it is
only one way.

36These authors claim also that forcing induces coupling (or long-range interactions)
between small and large scales within the flow, whereas this coupling does exist indepen-
dently of forcing, and in the presence of the latter is manifested in enhanced dissipation.
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of different kinds (quasi-two-dimensional, helical, hairpins, etc.). These are
as a rule, large-scale features which depend on the particularities of a given
flow and thus are not universal. These structures, especially their edges
seem to be responsible for the contamination of the small scales. This ‘con-
tamination’ is unavoidable even in homogeneous and isotropic turbulence,
since there are many ways to produce such a flow, e.g., many ways to pro-
duce the large scales. It is the difference in the mechanisms of large-scale
production which ‘contaminates’ the small scales. Hence, non-universality.

Let us turn again to the ‘simple’ example above and look at the prop-
erties in the proximity of the midplane, x2 ≈ 0, of the turbulent chan-
nel flow. In this region dU/dx2 ≈ 0, but the flow is neither homogeneous
nor isotropic, since though 〈u1u2〉 ≈ 0 in this region too, the gradient
d〈u1u2〉/dx2 is essentially �= 0 and is finite independently of the Reynolds
number, as far as the data allow one to make such a claim (see figure 6.21).
This is also a clear indication of nonlocality, since in the bulk of the flow,
i.e., far from the boundaries, dU/dx2 ∼ 0. This is also a clear counterex-
ample to the hypothesis of the local isotropy: even in the proximity of the
centerline of the channel this hypothesis does not hold for any magnitude
large Reynolds numbers37.

The first experimental evidence on anisotropy in small scales at large
Reynolds numbers was provided by the atmospheric boundary layer exper-
iments. It was found that the skewness of the derivative of temperature
fluctuations is not small and is of order 1 (Stewart, 1969), whereas for a
locally isotropic flow it should be close to zero. This and related results
were obtained later in a number of laboratory flows, field observations and
in numerical simulations (see Biferale and Procaccia, 2005; Kurien and
Sreenivasan, 2001b; Gylfason and Warhaft, 2004; Sreenivasan and Anto-
nia, 1997 and Warhaft, 2000 for further references). An important feature
of these flows is the presence of a mean gradient of the passive scalar – the
rest is not so important: the phenomenon is observed for a Gaussian and
two-dimensional velocity field (Holzer and Siggia, 1994; also Kraichnan and
Kimura, 1994). This is related to the weak sensitivity of the passive-scalar
field to the details of the velocity field and its Reynolds number (Kraichnan,
1968; Warhaft, 2000). On the other hand, passive objects exhibit chaotic be-
haviour and mixing in purely laminar flows – a phenomenon closely related
to what is called Lagrangian chaos/chaotic advection. Therefore generally,
the behaviour of a passive scalar may not reflect the structure of turbulent
flows (chapter 4).

As mentioned in chapter 5, similar observations have, quite recently,
been made for the velocity increments and velocity derivatives in the

37Those who like structure functions can see the derivative d〈u1u2〉/dx2 as the limit
at small Δx2 of a “structure function” 〈u1(x + Δx2j)u2(x + Δx2j) − u1(x)u2(x)〉 .
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direction of the mean shear both in numerical and laboratory experiments
(see references in Biferale and Procaccia, 2005; Kurien and Sreenivasan,
2001b; Shen and Warhaft, 2000, 2002; Staicu et al., 2003 and Warhaft and
Shen, 2002). It was found that the statistical properties of velocity incre-
ments and velocity derivatives in the direction of the mean shear do not
conform with and do not confirm the hypothesis of local isotropy. More-
over, our results imply that the large scales are directly coupled to the small
scales. (The anisotropy disappears when the large-scale shear is removed;
Shen and Warhaft, 2000). More precisely these results imply that there is
a direct influence of mean shear on the small scales due to the permanent
bias of the mean shear to which the field of fluctuations is exposed on ac-
count of its large residence time in the mean shear38. Of course, one of the
explanations of these results is that the large scales are directly coupled to
the small scales. However, this does not mean that there is no such coupling
when the large-scale shear is removed. This coupling is an intrinsic/generic
property of turbulent flows and exists independently of the presence of
mean shear or other external factors, but has different manifestations for
different external factors (see below).

Recently attempts were made to employ the SO(3) decomposition (which
is the tensorial generalization of the well-known procedure of decomposing
a scalar function into components of different irreducible representations
using spherical harmonics) to “separate” the anisotropic “part” of vari-
ous tensorial objects/structure functions and to estimate their behaviour
with scale (defined simply as the distance r between two points) Reynolds
number and shear (see references in Biferale and Procaccia, 2005; Kurien
and Sreenivasan, 2001b; Shen and Warhaft, 2000, 2002; Staicu et al., 2003
and Warhaft and Shen, 2002). The most effective way do so is to choose
objects that are zero for purely isotropic turbulence, though this is good
enough without making reference to the SO(3) decomposition39. Among
other reasons the latter was necessary assuming that each component of
this decomposition has its own (‘universal’) scaling exponent in r. The
results seem to indicate that anisotropic exponents are consistently larger
than those known for isotropic parts, which suggests that anisotropy effects
decrease with decreasing scale, though more slowly than expected. The evi-
dence is not uniform in the sense that even for the smallest accessible scales
the anisotropic contribution appears to be of the same order of magnitude
as the isotropic part (Kurien and Sreenivasan, 2001b; Staicu et al., 2003;
Warhaft and Shen, 2002) because the amplitudes of the anisotropic con-
tributions are not small as is assumed in the theories based on the SO(3)

38We remind a statement by Corrsin, 1958: The mean strain rate in turbulent shear
flow must tend to make the structure anisotropic in all parts of the spectrum.

39As did first Stewart (1969); and Gibson et al. (1970, 1977) for passive scalars.
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decomposition. Another problem concerns the moments (those which vanish
for isotropic turbulent flow) composed of derivatives, which remain finite at
all accessible parameters (Rosset et al., 2001; Stewart, 1969; Gibson et al.,
1970, 1977; Schumacher, 2004 and references therein), and for which the
above definition of “scale” just as the distance r between two points is
obviously not good enough.

It should be mentioned that in the experiments by Shen and Warhaft,
2000 and Warhaft and Shen, 2002 the value of the Corrsin criterion
S∗

C = (dU/dx2)(ν/〈ε〉)1/2 ≈ 2.4 · 10−2. This criterion represents the ratio of
the Kolmogorov time scale, τη = (ν/〈ε〉)1/2, to the time scale, (dU/dx2)−1,
associated with the mean shear, and it should be small enough in order
to have isotropy in small scales (Corrsin, 1958). The main problem is how
small. There is no agreement on this issue (see Saddoughi, 1997; Schu-
macher, 2004 and references therein), but there is evidence that in order to
have one decade of isotropic inertial range in boundary layer flows (both
simple and complex) at Reλ ≈ 1500, it is necessary that S∗

C < 10−2 (see
Saddoughi, 1997 and references therein). This brings us to the next issue.

Statistical dependence of small and large scales. An important observa-
tion was made by Praskovsky et al. (1993), Sreenivasan and Dhruva (1998),
Kholmyansky and Tsinober (2000) and Gulitski et al. (2007). The specific
feature of these large-scale experiments is rather high Taylor microscale
Reynolds number Reλ ∼ 104. At these high Reynolds numbers, there is also
clear evidence of strong coupling between large and small scales. In view of
severe limitations on statistical convergence at such Reynolds numbers, the
approach is different from the one undertaken by Shen and Warhaft (2000,
2002). Namely, if the large scales are not coupled directly to the small scales,
there should be no dependence of conditional statistics of the small-scale
quantities (e.g., velocity increments, enstrophy, total strain) conditioned on
the large-scale ones (velocity). The results from Praskovsky et al. (1993);
Sreenivasan and Dhruva (1998); Kholmyansky and Tsinober (2000) and
Gulitski et al. (2007) show the opposite – there is such a dependence. Below
we mention some results from Gulitski et al. (2007), since in their experi-
ment the mean shear was rather small, less than 0.1s−1. This corresponds
to the value of the Corrsin criterion S∗

C = (dU/dx2)(ν/〈ε〉)1/2 ≈ 2 · 10−3,
which is an order of magnitude smaller than in the experiments by Shen and
Warhaft (2000) and five times lower than the value 0.01 mentioned above.

The results by Gulitski et al. (2007) similar to ones obtained by
Praskovsky et al. (1993) exhibit the following tendencies. First, there is
a clear tendency that the conditional averages of the structure functions
increase with the energy of fluctuations and, second, such a tendency, that
is the direct coupling, is observed also for the smallest distance of the order
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Figure 6.22. Left – conditional averages of enstrophy ω2 and total strain sijsij con-
ditioned on magnitude of velocity fluctuations vector, u. The fit is in the spirit of the
Kolmogorov refined similarity hypothesis, though it is a fit in the first place. This fit
cannot be expected to be universal quantitatively and should at least have different coef-
ficients a and b for flows with different large-scale properties in the spirit of the Landau
remark. Right – conditional averages of squared acceleration magnitude a2 on magnitude
of velocity fluctuations vector, u. Gulitski et al. (2007a,b). See also Mordant et al. (2004)

of Kolmogorov scale ∼η, which was used for estimates of the derivatives.
This is shown in figure 6.22 as conditional statistics for the enstrophy ω2

and the total strain sijsij and also of the squared acceleration a2. An in-
teresting observation, which seems to be related to the coupling between
large and small scales, is that, in 3-D turbulence not only are 〈ωiωjsij〉
and −〈sijsjkski〉 essentially positive quantities but also all

∫
VL

ωiωjsijdVL,
−

∫
VL

sijsjkskidVL over volumes of the order of integral scale are essentially
positive (see figure 1 in Tsinober, 1998a and figure 6.5).

The observations on the coupling between large and small scales and
the ‘reaction back’ of the small scales on the large ones by no means are
exhausted by the references given above. As an example from atmospheric
physics we bring a quotation of the first conclusion reached at the Sympo-
sium on the nature of the so-called CAT – clear air turbulence: The energy
dissipated at small scale by clear air turbulence influences the large-scale
atmospheric motion (Pao and Goldburg, 1969).

The next example concerns a set of pure kinematic exact relations for
isotropic turbulence pointing to statistical dependence between large and
small scales. Of special interest is the pure kinematic relation involving the
third-order structure function (Hosokawa, 2007)−〈u3−〉 = 3〈u2

+u−〉, which
together with the 4/5 law results in a relation equivalent to the 4/5 law

〈
u2

+u−
〉

= 〈ε〉 r/30. (6.6)

Here 2u+ = u1 + u2, 2u− = u2 − u1 ≡ Δu, u1 = u(x) = u+ − u−,
u2 = u(x+r) = u++u; u(x) is the longitudinal velocity component, and 〈ε〉
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Figure 6.23. Left – conventional 4/5 law. Right – equation (6.6), Kholmyansky and
Tsinober (2008) and a similar equation not involving u+, Kholmyansky et al. (2008)

– is the mean kinetic energy dissipation. The relation (6.6 ), and thereby the
4/5 law, is a clear indication of absence of statistical independence between
u+ and u−, i.e., between small and large scales. A second feature is that
this relation has an important advantage for experimentalists: it is linear in
velocity increments, while the 4/5 law is cubic. Therefore this relation holds
much better than the 4/5 law, especially in the case of lower quality data,
as in the airborne experiment, see figure 6.23, Kholmyansky and Tsinober
(2008).

The role of kinematic relations in the issue of nonlocality goes far be-
yond their use in the nonlocal interpretation of the Kolmogorov 4/5 law. For
example, it appears that structure functions of all orders are expressed via
terms, all of which have the form of correlations between large- and small-
scale quantities, Kholmyansky, Sabelnikov and Tsinober (2008). Thus, in
the absence of nonlocal interactions – as manifested by correlations be-
tween large-scale (velocity) and small-scale (velocity increments) quanti-
ties – all structure functions vanish. There is no exaggeration in saying
that without nonlocality (understood as direct and bidirectional coupling
of large and small scales) there is no turbulence. Hence the utmost dy-
namical importance of purely kinematics relations. Another point is that
all kinematic relations under consideration stand in contradiction with the
so-called sweeping decorrelation hypothesis (SDH), understood as statisti-
cal independence between large and small scales. This is seen from many
of the relations given by Kholmyansky, Sabelnikov and Tsinober (2008).
For, example, as follows from the relation (6.6) the quantity

〈
u2

+u−
〉

scales
as r in the “inertial” range, whereas assuming SDH to be valid, it should
scale as r1/3. The simplest are the relations 〈(Δu)2〉 = −〈u1Δu〉 = 〈u2Δu〉,
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the right-hand side of which vanishes assuming the sweeping decorrelation
hypothesis to be valid, whereas in reality the left-hand side is well known
to scale as r2/3.

Nonlocality versus decompositions. As discussed in chapters 3 and 5
any decomposition of a turbulent flow field results in a process of interac-
tion/exchange of (not necessarily only) energy between components of some
particular decomposition/representation of a turbulent field associated with
the nonlinearity of the problem. The general expectation is that this inter-
action should be nonlocal. This has been convincingly demonstrated by
Laval et al. (2001) on an example of a particular decomposition of the
flow field40. Laval et al. interpret their results as evidence that nonlocal
interactions are responsible for intermittency corrections in the statistical
behaviour of 3-D turbulence as well as for the deviations from Gaussianity.
By intermittency corrections the authors mean the anomalous corrections in
the scaling behaviour of the structure functions (and corresponding PDFs).
In view of the existing evidence (see again 6.6) the claim about the impor-
tance of nonlocal interactions – understood in a broader sense as direct and
bi-directional interaction/coupling of large and small scales – is definitely
correct. However, the anomalous corrections in the scaling exponents can
hardly be interpreted as necessary and reliable manifestations of intermit-
tency of turbulence, nor are such corrections necessarily associated with or
due to thin vortices as explained in the next chapter (see also Tsinober,
1998). Likewise, the non-Gaussian nature of turbulence – which is among
the intrinsic/generic properties of turbulence – is far more than just a con-
sequence of the nonlocality of turbulence and even it’s intermittency, as
follows, for example, from the 4/5 law.

40Laval et al. use a cutoff in Fourier space and define the large scales, Ui, and small
scales, ui, correspondingly as those below and above the cutoff; which results in essentially
the same equations for Ui and ui as (C.43, C.44) or (C.55, C.57). The authors interpret as
nonlocal terms, involving the product of a large-scale and a small-scale component, and
a local term, involving two small-scale components. This is not the same as the authors
claim several lines before that by nonlocal interactions, they mean interaction between
well-separated scales (or highly elongated wave number triads), since Ui and ui are not
that well separated, they are ‘neighbors’, since the smallest ‘scales’ of Ui are just of the
same order as the largest ‘scales’ of ui.

In order to study the dynamical effect of these contributions (i.e., the terms of the type
uu called local, and terms of the type Uu called nonlocal) at small scales, the authors
performed two types of numerical experiments along with the full DNS. The first type
are those in which the local interactions were neglected in the equations for small scales
(only), thus turning the entire problem into a linear one (the RDT simulation). Among
other things this resulted in stronger deviations from the Kolmogorov-like scaling just
as in other linear problems such as for passive objects. The second type are those in
which local interactions are the only ones retained. This resulted in even higher (than in
RDT) level of small scales, but exhibited in much less intermittency . . . in the sense of
deviations from the Kolmogorov-like scaling.
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Along with the nonlocal nature of the interactions between components
of some particular decomposition/representation of a turbulent field there
are claims on locality of cascades (Eyink, 2005; Domaradzki and Carati,
2007 and references therein). The analysis of detailed interactions (Alexakis
et al., 2005; Domaradzki and Carati, 2007) shows that the individual non-
local contributions are always large, but significant cancellations lead to
global/integrated quantities (energy transfer, the energy flux, and the SGS
energy transfer) to be asymptotically dominated by local interactions. The
key word is asymptotically as the results are based on pretty modest Reλ

slightly exceeding 200. One encounters a similar problem with the attempts
to establish sufficient conditions for locality of turbulent cascades, by an
exact analysis of the fluid equations, Eyink (2005). These are based on the
regularity that is assumed for Euler solutions in the high-Reynolds-number
limit to be the Hölder type that was conjectured theoretically [1,2] (Onsager,
1949 and Parisi and Frish, 1983) and is observed (in a space-mean sense)
experimentally [3] (Anselmet et al., 1984). There are several problems with
such an assumption. First, it is not at all clear how the properties of Eu-
ler(!) solutions can be observed experimentally (if at all). Second, all the
experiments the authors refer to (and all others as well) are done at pretty
low Reynolds numbers at which there are no very long inertial ranges to al-
low for local transfer to dominate, if this happens at all41. Thus the scaling
exponents obtained from experiments such as in Anselment et al. (1984)
and similar later ones (and, of course, numerical computations) are not
necessarily those which can be expected at very large Reynolds numbers.
Third, there is a problem concerning the relation of the exponents defined
in the paper to the usual (absolute) structure-function exponents, which, in
fact, are rather different objects.

The general belief that nonlocal interactions should weaken as the
Reynolds number increases has rather moderate support such as via looking
at the scaling with Re of the nonlocal energy fluxes (Mininni et al., 2008
and references therein). This, however, is a particular aspect of the whole
issue of nonlocality in turbulence. Even if the nonlocal effects in the energy
transfer do weaken at large Reynolds numbers, this does not mean that
the same will happen with their impact on other aspects of nonlocality. An
immediate example is the ‘anomalous scaling’ discussed in sections 5.3 and
5.4.5. It is likely that a variety of other aspects of nonlocality should exist
at any large Reynolds number.

41A crude estimate is that one needs about six decades for this, i.e., Taylor microscale
(!) Reynolds numbers exceeding 108, which cannot be reached in any experiment in the
forseeable future if ever.

We recall also the problems concerning the observed scaling exponents, etc. as discussed
in chapter 5.
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One more example comes from the field of ‘data assimilation’ in meteo-
rology and related to what is called ‘determining modes’, see Henshaw et al.
(2003); Yoshida et al. (2005) and references therein. The main point is that
one can reconstruct the small-scale spatial Fourier modes to a very good
degree of accuracy by incorporating the time history of the first Fourier
modes (the large scale) as known forcing into the equations governing the
small-scale evolution42, though there are situations when the small scale is
uncoupled from the large scale and cannot be reconstructed. These results
definitely suggest coupling between the large and small scales, but do not
imply that small eddies are subordinate to large eddies, Yoshida et al.
(2005), because the small scales are not passive and good reconstruction is
achieved due to very special forcing known a priori which already “knows”
about the small scales. In natural conditions the poor predictability is due
to the reaction back of the small scales43. Moreover, as mentioned, the
flow field can be modified substantially by directly exciting the small scales
(Wiltse and Glezer, 1998; Suzuki and Nagano, 1999). Similar effects are
observed with small-scale acoustic excitation.

Intermittency and structure(s). Batchelor and Townsend (1949) in their
studies on small-scale intermittency (see chapter 7) wrote: All the evidence
is consistent with the inference that the fluctuations are small in the region
of smallest wave-numbers of equilibrium range and become increasingly
large at larger wave-numbers (p. 252) and that . . . the mean separation of
the visible activated regions is comparable with the integral scale of the
turbulence, i.e., with the size of the energy-containing eddies (p. 253). This
latter observation is intimately related to the direct interaction/coupling of
the large and small scales.

At least some of the structure(s) of turbulence reflects such a relation
as well. The most popular ‘structure’ observed in various turbulent flows –
the vortex filament/worm – has at least two essentially different scales: its
length can be of the order of the integral scale, whereas its cross-section is
of the order of the Kolmogorov scale. Similarly, the ramp-cliff fronts in the
passive-scalar fields (and similar ‘structures’ associated with strain) have a

42This is done by updating in the second run the low k modes (which cover the integral
scale and ‘touch the inertial range’) at each time step. Thus the second run is not the
‘same’ as there is a forcing which is absent in the first run.

43Kolmogorov related the poor predictability of flows with the influence of the higher-
order harmonics on the basic, lower-order modes. Suppose, he would say, that the velocity
field be changed in every cubic kilometer without changing its average in this cube. We
have to study what the time interval is beyond which this change will crucially affect the
weather. It is clear that dynamic weather prediction is impossible for longer periods (and
will remain impossible in spite of all the future progress in computer techniques). This
reasoning, which Kolmogorov related to infinite-dimensional tori, is in fact independent
of their conjectural existence: an attracting invariant torus of sufficiently high finite di-
mension, covered by quasi-periodic orbits. would lead to the same conclusions, Arnold
(1991).
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thickness much smaller than the two other scales, see chapter 7. The issue
dates back to the famous Landau remark stating that the important part
will be played by the manner of variation of ε over times of the order of
the periods of large eddies (of size �), Landau and Lifshits (1944, see 1987,
p. 140).

Helicity. Helicity,
∫

ω · udx, and its density, ω · u, deserve here also spe-
cial mention. The formal reason is that if 〈u · ω〉 �= 0, this is a clear indi-
cation of direct coupling of large and small scales. So it is not surprising
that, in flows with nonzero mean helicity, the direct coupling between small
and large scales is stronger than otherwise. The stronger coupling between
the large and small scales in flows with nonzero mean helicity 〈u · ω〉 aids
creation of large-scale structures out of small-scale turbulence (see Droege-
meier et al., 1993 and references therein). This does not mean that in case
〈u · ω〉 = 0, or even u · ω = 0 as in two-dimensional flows, such a cou-
pling does not exist. We return to these matters below. The hypothesis
of local isotropy (K41a) includes restoring of all the symmetries in small
scales. Thus one expects restoring of reflection-invariance at small scales.
However, to maintain finite helicity dissipation to balance the finite helic-
ity input (in a statistically stationary turbulence) the tendency to restore
reflection symmetry at small scales can not be realized. This is because
helicity dissipation is associated with broken reflection symmetry at small
scales, as helicity dissipation, DH = −νHs which is just proportional to
the superhelicity Hs =

∫
ω · curlωdx, showing the lack of reflection sym-

metry of the small scales. The important point is that helicity dissipation
is vanishing if reflectional symmetry holds in small scales. Moreover, if the
helicity dissipation should remain finite as the Reynolds number increases
(see figure 6.24) this lack of reflectional symmetry should increase since the
dissipation of helicity (DH = −νHs) is proportional to viscosity.

A natural question is how it is possible that both energy and helicity
dissipation (presumably) remain finite with increasing Reynolds number.
A possible explanation is due to the imperfect alignment between vortic-
ity ω and curlω can make it possible that the ‘singularities’ arising from
the finiteness of both energy and helicity dissipation can be matched (the
correlation coefficient between ω and curlω for the case shown in figure 6.24
is 0.1 only). This is also aided by the fact that ω · curlω is not a positively
defined quantity. Note that, nevertheless, the quantity DH = −νHs acts as
dissipation of helicity in flows with helical forcing: superhelicity Hs is single
signed and has the same sign as helicity H, see Galanti and Tsinober, 2006
for more information, details and references.

Flows with additives (see references in Tsinober, 2003). The basic inter-
action of the carrier fluid flow with particulates occurs at the scale of the
particle size, i.e., at small scales. However, a number of essential phenomena
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Figure 6.24. Dependence of normalized dissipation of helicity DH

u′3l−2 and energy DE

u′3l−1

on the Taylor microscale Reynolds number Reλ. Error bars are shown. ◦ – corresponds
to the data from Chen et al. (2003b), � – corresponds to the data from Kurien et al.
(2004) and references therein

emerge at much larger scales in a variety of particulate flows: sedimenting
suspensions, fluidized beds, formation of bedforms and their interaction
with the carrier fluid, preferential concentration of particles/bubbles (clus-
tering) in and modification of turbulent flows. These phenomena are treated
in terms of large-scale instabilities, intrinsic convection in sedimenting sus-
pensions, collective phenomena, long-range multibody hydrodynamic in-
teractions/correlations, clusters. All these are essentially fluid mediated
phenomena/interactions as contrasted with direct particle/particle interac-
tions. Therefore, nonlocality is expected to be significant in these phenom-
ena (see Tsinober, 2003 for more information and references). For example,
an important process in the interaction of the carrier fluid flow with par-
ticles (or any other additives) is the production (or more generally modifi-
cation) of velocity derivatives, i.e., vorticity and strain. The modified field
of velocity derivatives reacts back in changing the large scales of the flow
(both velocity and pressure). It is tempting to see this process as the one
underlying the formation of the mentioned large-scale features, though the
details in each case are different and in most cases are poorly understood.
These processes are modified by specific features such as inertial bias, i.e.
inertial response of particles to fluid accelerations and preferential concen-
tration of particles(bubbles) in strain (vorticity) dominated regions. The
latter may lead to enhanced bias of strain dominated regions (heavy parti-
cles), i.e., regions with large dissipation, or regions with strong enstrophy
(bubbles).
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Turbulent flows can be strongly modified by additives in even extremely
small concentrations. The most spectacular changes occur with only few
parts per million of flexible polymers added to the solvent. These changes
are exhibited in a number of flow parameters, both in large and small
scales. However, the direct interaction of the dissolved polymers with the
carrier fluid flow is obviously in the small scales. Hence again nonlocality.
The large-scale manifestations are represented in the first place by strong
reduction of drag (up to 80%) in turbulent shear flows. Along with this
effect, other global large-scale effects on turbulence structure are observed
both experimentally and in simulations.

Effects of initial/inflow conditions. The far field statistical properties
of free shear turbulent flows (mixing layers, wakes, jets and also boundary
layers are known to possess strong memory (‘nonlocality in time’): they are
sensitive to the conditions at their ‘start’ (i.e., initial, inflow conditions and
flow history) with some properties being not universal in Reynolds num-
ber and other aspects, Bevilaqua and Lykoudis (1978); Dimotakis (2005);
George and Davidson (2004); George (2008) and references therein. These
flows develop in space beginning with small scales into the large ones, in
apparent contradiction to the Richardson–Kolmogorov cascade ideas. It is
noteworthy that passive tracers in such flows possess even stronger memory,
Cimbala et al. (1988), due to enhanced importance of Lagrangian aspects
of their evolution. It should be kept in mind that many turbulent flows
exhibiting memory effects are partly-turbulent and most probably have
different large-scale stability properties for different inflow conditions not
directly related to the turbulent nature of the flow within the turbulent
region. This can make a contribution to the differences in observations.

The problem of predictability of turbulent flows involves nonlocality in
time as well: a small-scale disturbance (both in time and space) perturb
substantially the whole flow including the largest scales within time of
the order of integral time scale. In this sense instability can be seen as
nonlocality in time.

Other related issues. The nonlocality in the sense of concern here is es-
pecially strongly manifested in the atmospheric convective boundary layers
in which the common downgradient approximation is not satisfactory due
to countergradient heat fluxes, Zilitinkevich et al. (2006) and references
therein. We mention also a similar phenomenon in stably stratified turbu-
lent flows, the so called PCG, persistent countregradient fluxes. The essence
of PCG is the countergradient transport of momentum and active scalar. It
is observed at large scales when stratification is strong, but in small scales
it is present with weak stratification as well. There is a class of flows with
the so-called phenomenon of ‘negative eddy viscosity’, see chapter 8. Un-
der certain conditions it occurs in the presence of an energy supply other
than the mean velocity gradient. In such flows the turbulent transport of
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momentum occurs against the mean velocity gradient, i.e., from regions
with low momentum to regions with high momentum (i.e., the Reynolds
stresses as one of the agents of coupling the fluctuations with the mean flow
act in such flows in the ‘opposite’ direction as compared to the usual tur-
bulent shear flows). Concomitantly, kinetic energy moves in the ‘opposite’
direction too from fluctuations to the mean flow.

Flows with negative eddy viscosity are akin to nonturbulent but non-
stationary flows in a fluid dominated by its fluctuating components and
known (since Rayleigh, 1883) under the name (acoustic) steady streaming,
Riley (2001), in the sense that in these flows a mean (time averaged) flow
is induced and driven by the fluctuations. Recently turbulent flows of this
kind were observed too, Scandura (2007).

There are examples of ‘usual’ turbulent flows with turbulence induced
mean flows. The best known ones are flows in pipes with noncircular cross-
section. In such flows a mean secondary flow is induced which is absent
in purely laminar flow. For example, see Pettersson Reif and Andersson
(2002) for references on such flows in a square duct. For earlier references,
see Schlichting (1979).

On closures and constitutive relations. Nonlocality due to coupling be-
tween large and small scales is a concern in the problem of the relation
between fluctuations and mean flow as in the Reynolds decomposition in
the Reynolds averaged Navier–Stokes equations or resolved and unresolved
scales in large eddy simulations (LES)44. Namely, this relation is a nonlin-
ear functional, i.e., the field of fluctuations (the unresolved field in LES) at
each time/space point depends on the mean (resolved) field in the whole
time/space domain. Vice versa, the mean (resolved) flow at each time/space
point depends on the field of fluctuations (unresolved scales) in the whole
time/space domain. This means that, in turbulent flows, local ‘constitutive’
relations analogous to real material constitutive relations for fluids (such
as stress/strain relations) can not exist, though the ‘eddy viscosity’ and
‘eddy diffusivity’ are used frequently as a crude approximation for taking
into account the reaction back of fluctuations (unresolved scales) on the
mean flows (resolved scales). The fact that the ‘eddy viscosity’ and ‘eddy
diffusivity’ are flow (and space/time) dependent is just another expression
of the strong coupling between the large and the small scales. The sim-
plest version of this approach with a scalar eddy viscosity leads always to

44Or other low-dimensional representations with modelling to account for neglected
modes (Holmes et al., 1996) . . . eliminating the small scales produces a stress whose depen-
dence upon the large-scale velocity u is, in general, spatially non-local, history-dependent
and stochastic (Lindenberg, West and Kottalam, 1987; Eyink, 1996). Thus, an exact con-
stitutive relation for the turbulent stress is formally available, but it is quite unwieldy and
not of direct practical use. Eyink (2006). Our comment is that it is an illusion that small
scales are really eliminated.
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a positive subgrid dissipation (positive energy flux from the resolved to the
unresolved scales), whereas a priori tests of data from real flows (exper-
iments and DNS) show that there exist considerable regions in the flow
with negative subgrid-scale dissipation (called backscatter). The exchange
of ‘information’ between the resolved and unresolved scales is rich and is
not limited by energy. Hence the qualification of large-scale (resolved) ed-
dies as the most important ones is too subjective: all eddies are important
in view of direct and bidirectional coupling of a great many ‘eddies’45.

6.7. Acceleration and related matters

If the velocity of the air stream which carries the eddies is very
much greater than the turbulent velocity, one may assume that
the sequence of changes in u at the fixed point are simply due to
the passage of an unchanging pattern of turbulent motion over the
point. (Taylor, 1938b).
An underlying assumption of the Kolmogorov theory is that very
large spatial scales of motion convect very small scales without
directly causing significant internal distortion of the small scales.
This assumption is considered to be consistent with, and to imply,
statistical independence of small and large scales . . . The physical
picture is that large-scale motions should carry small eddies with-
out distorting them. It is not obvious that this needs to be true,
but the idea is certainly intuitively plausible. (Kraichnan, 1964).

As the material derivative of the velocity vector, the fluid particle ac-
celeration field in turbulent motion

a ≡Du
Dt

=
∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν∇2u

is among the most natural physical parameters of special interest in turbu-
lence research for a variety of reasons, ranging from studies of small-scale
intermittency to applications in Lagrangian modelling of dispersion (see
references in Vedula and Yeung, 1999; Tsinober et al., 2001 and Gulitski et
al., 2007b).

45There exist a number of attempts to make the filtering, LES and similar approaches
‘rigorous’ and to handle ‘fundamental physics’ by such methods (see Piomelli and Balaras,
2002; Eyink, 2006 and references therein). However, there is still a conceptual question
whether these methods – as any other decompositions – are suitable in principle to
address ‘fundamental physics’ of turbulence since a vitally important part of physics of
turbulence resides in the small/unresolved scales.
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6.7.1. ACCELERATION VARIANCE, DOES IT HAVE A
KOLMOGOROV-LIKE SCALING, ε3/2ν−1/2?

The acceleration variance, 〈a2〉 ≡ 〈akak〉, is a key quantity in a number
of issues. Its value and scaling with the Reynolds number are essential
for stochastic Lagrangian models and for Lagrangian probability density
function models of turbulent diffusion if these models are to incorporate
finite-Reynolds-number effects. However, its scaling is a controversial issue.
Following Yaglom (1949) (see Monin and Yaglom, 1975, pp. 368–369) it
was mostly accepted that it scales as ε3/2ν−1/2. The argument in favour of
such a scaling goes as follows (see the above reference):

. . . in sufficiently small space-time regions the field a(x, t) will be iso-
tropic and its probability distribution will be stationary and dependent
only on ε and ν.
Consider the Lagrangian time correlation tensor for the acceleration field

B0,ij(τ) = ai(t|x0)aj(t + τ |x0), (21.48)

where a(t|x0) = a(X[x0, t), t] is the acceleration of the fluid particle
which occupies the point x0at time t0. In view of isotropy and similarity
in the quasi-equilibrium range of t, this tensor should be of the form

B0,ij(τ) = B0(τ)δij ;B0(τ) =
v2
η

τ2
η

a(τ/τ η) = ε3/2ν−1/2a(ε3/2ν−1/2τ),

(21.49)
where a(x) is a universal function . . . The mean square of the turbulent
acceleration is then given by

〈a2〉 = Kε3/2ν−1/2, (21.51)

where K = 3a(0) is a universal numerical constant (Yaglom, 1949a).

The problematic aspect here is that one cannot take x = 0 in the “uni-
versal” function a(x) as x is in “the quasi-equilibrium range”, i.e., x > 1,
at least. In other words, the above argument is not applicable at τ = 0 and
thus does not imply that acceleration variance does scale as ε3/2ν−1/2 as
widely claimed46 A similar problem (i.e., the scaling ε3/2ν−1/2) is with the
pressure gradient variance as it makes a dominant contribution to the ac-
celeration variance, though the contribution of the viscous term is of crucial
importance47. Figure 6.25 shows a number of points obtained by Gulitski
et al., 2007b. The main feature is that there seems to be no saturation in

46Note that in the quasi-equilibrium range, e.g., the Eulerian spatial correlations of
accelerations should depend on 〈ε〉 and r only, i.e., 〈ε〉4/3 r−2/3 though in many cases

written as 〈ε〉3/2 ν−1/2(r/η)−2/3 thus making a misleading impression that viscosity is
‘therein’.

47The viscous term is obviously extremely important as it is responsible for the
solenoidal part of the field of acceleration and curla = ∂ω/∂t+ω×u = Dωi/Dt−ωiωjsij .
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Figure 6.25. Normalized acceleration variance, a0 = (1/3)〈akak〉ε3/2ν−1/2, vs. Reλ (from
Gylfason et al., 2004) with added experimental data from field experiment (Gulitski et
al., 2007) and from the PTV experiments (Lüthi et al., 2005).

the Re-dependence of the acceleration variance normalized on ε3/2ν−1/2.
This means that the scaling proposed by Yaglom (1949) is not ‘perfect’
and the acceleration variance is larger than that proposed by Yaglom. The
trend seen in figure 6.25 may be contaminated by the imperfections of the
method. The issue seems to be open and requires further, far more precise,
measurements.

Another aspect of concern is that a2 ∼ ε3/2ν−1/2 ∼ u
9/4
0 L−3/4ν1/4, i.e.,

the acceleration variance along with viscosity, ν, depends explicitly on the
large-scale characteristics, u0, of the flow contrary to the claim that the
turbulent acceleration is determined largely by the very small-scale motions
l � η (Monin and Yaglom, 1971). Indeed, the observations show (see figure
6.22 right) that the conditional statistics of a2 on u0 show a significant
statistical dependence, see also Biferale et al., 2005; Lüthi et al., 2008 and
references therein. The bottom line is that fluid particle acceleration vari-
ance does not (seem to) obey K41 scaling at any Reynolds number Hill
(2002).
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6.7.2. THE LAGRANGIAN ACCELERATION VERSUS
ITS EULERIAN COMPONENTS

Another basic issue concerns the relations between the Lagrangian accelera-
tion, a, and its various (Eulerian) ‘components’ a = al+ac = al+aL+aB =
a‖ + a⊥ = ai + as. Here al = ∂u

∂t is the local acceleration, which expresses
the unsteady rate of change of the velocity vector at a fixed point, and
ac = (u ·∇)u is the convective acceleration responsible for the velocity rate
of change due to the spatial derivatives and also embodies nonlinearity ef-
fects. On the other hand ai = −1

ρ∇p and as = ν∇2u represent respectively
the irrotational and the solenoidal parts of a. Further aL = ω × u is the
Lamb vector, aB = ∇(1

2u2), a‖ = (a · û)û with û = u/u and a⊥ = a − a‖.
We make here some essential points. More details can be found in Tsinober,
2001a; Tsinober et al., 2001 and Gulitski et al. 2007b and references therein.
The results in Tsinober et al. (2001) are obtained from a DNS database
(Vedula and Yeung, 1999) for isotropic turbulence at ensemble-averaged
Taylor microscale Reynolds numbers ranging from 38 to 240 using up to
5123 grid points, whereas those in Gulitski et al. (2007b) are from a field
experiment at large Reλ of the order up to 104.

The relation between the total acceleration and its local
and convective components
The familiar part of the issue is known as the random Taylor hypothesis or
the sweeping decorrelation hypothesis. It takes its origin from the so-called
Taylor hypothesis (Taylor, 1935) for computation of the spatial derivative
in the direction of the mean flow, ∂/∂x1 via the time derivative ∂/∂t from
the relation ∂/∂x1 = −U−1∂/∂t by assuming that (the grid) turbulence is
transported by the mean velocity, U, without change. This approximation
appears to be valid if the magnitude of turbulent fluctuations, say

〈
u2

〉1/2
,

is small enough compared to U , i.e., 〈u2〉1/2/U � 1. This is seen from a
(thought) experiment in which the observer (probe) is moving through the
turbulent flow with some velocity U , which can be (assumed to be) very
large, for instance in a real experiment (as in Busen et al., 2002) when the
probe is mounted on a research aircraft moving through a turbulent region
in the atmosphere. For references on the Taylor hypothesis see Tsinober
et al. (2001).

Tennekes (1975) suggested that in turbulence with high Reynolds num-
bers . . . the dissipative eddies flow past an Eulerian observer in a time much
shorter than the time scale which characterizes their own dynamics48. This

48That is τE/τL ∼ Re−1/4. Hence in the Lagrangian setting the correlation times are
expected to be much larger which is mostly – but not always – the case. Already at the
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suggests that Taylor’s ‘frozen-turbulence’ approximation should be valid for
the analysis of the consequences of large-scale advection of the turbulent
microstructure49. In fact, Tennekes’ hypothesis consists of two ingredients.
First, it is proposed that the Lagrangian acceleration of fluid particles,
a, is in some sense small, and in order to obtain estimates and compari-
son of Lagrangian and Eulerian time scales Tennekes put just a = 0. It is
noteworthy that this assumption is local pointwise in space/time and is not
a statistical one. The second assumption made by Tennnekes is of statistical
nature, namely, that the microstructure is statistically independent of the
energy containing eddies.

The equality a = 0 should not be understood literally50. The accel-
eration of fluid particles cannot be vanishing, since a = 0 may be mis-
interpreted as the balance between the pressure gradient and the viscous
term in the Navier–Stokes equations, which is obviously incorrect because
ai = −1

ρ∇p is irrotational and as = ν∇2u is solenoidal. Also a = 0 would
mean that the flow is described by the equation ∂u/∂t + (u · ∇)u = 0.

More precisely a ≈ 0 means that in some sense a is small compared both
to al and ac, e.g., 〈a2〉/〈a2

l 〉 � 1 and 〈a2〉/〈a2
c〉 � 1. This in turn is possible

if there is mutual (statistical) cancellation between the local acceleration,
al, and convective acceleration, ac

51. Since these quantities are vectors, the
degree of this mutual cancellation should be studied both in terms of their
magnitude and the geometry of vector alignments.

In terms of magnitude, it appears that the acceleration is much smaller
than its local and convective components. The two ratios 〈a2〉

〈a2
l 〉

, 〈a2〉
〈a2

c〉 decrease,

and the ratio 〈a2
l 〉

〈a2
c〉 tends to unity with increasing Reynolds number. At the

highest accessible Reynolds number, Reλ ≈ 240, the variance of the local
acceleration, 〈a2

l 〉1/2, is about 0.9 of the magnitude of convective accel-
eration, 〈a2

c〉1/2. At this Reynolds number the total acceleration is about
0.1〈a2

c〉1/2, i.e., an order of magnitude smaller than both its components.

very beginning one encounters an ambiguity (not the only one) as the time scale (like
many other things) of the Eulerian observer depends on the velocity of the Eulerian frame
in which the Eulerian observer lives.

49In fact this is not so new: An underlying assumption of Kolmogorov theory is that very
large spatial scales of motion convect very small scales without directly causing significant
internal distortion of the small scales. The assumption usually is considered to be con-
sistent with, and to imply, statistical independence of small and large scales, Kraichnan,
1964.

50Just as the microstructure is not statistically independent of the energy containing
eddies (see previous section).

51A similar issue is encountered in other fields, e.g., in the Ohm’s law in moving con-
ductor j = rotH = σ{−∇φ + u × B}. On one hand the electrical current is rotH which
is a small-scale quantity, but u × B is a large-scale quantity. There is no contradiction
since there is a great deal of cancellation between the electrical −∇φ and u × B. Note
that both (−∇φ and u × B) depend on the reference system, whereas j does not.
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Similarly, the correlation coefficient between al and ac, is expected to be
O(1) and tend to unity (with minus sign) with increasing Reynolds num-
ber. Indeed, it reaches the value −0.98 at Reλ ≈ 240. It is noteworthy that
a and al are practically decorrelated.

An important point is that though the magnitude of the total accel-
eration becomes small compared to both its local, al, and convective, ac,
components as the Reynolds number increases, the latter do not compen-
sate each other totally. This cannot happen at any Reynolds number, since
al is divergence-free, whereas ac is not, and its irrotational part, which is
equal to ai = −1

ρ∇p, contributes most to the magnitude of the total accel-
eration (Shtilman et al., 1993; Tsinober, 1990a; Vedula and Yeung, 1999).
Since the solenoidal part of the total acceleration, as = ν∇2u on the one
hand, and as = al + acs (acs is the solenoidal part of ac) on the other, the
only way as can become small is that al and acs compensate each other,
i.e., they should be almost the same in magnitude but almost antiparallel.
Indeed, the ratio 〈a2

l 〉
〈a2

cs〉 ≈ 1 similar to 〈a2
l 〉

〈a2
c〉 and their correlation coefficient

is very close to −1 even at rather moderate Reynolds numbers.
The geometrical aspect of the above results is seen from the alignments

between the vectors involved. Namely, if a = al + ac is small compared to
al and ac, then the last two vectors are expected to be (anti-) aligned, i.e.
the cosine of the angle between al and ac, cos(al,ac) should be negatively
skewed, i.e., to have a maximum around −1. This, indeed, is observed in
figure 6.26. This alignment exhibits an essential dependence on Reynolds
number: the tendency of alignment between al and ac is strongly enhanced
with increasing Reynolds number. The result shown in figure 6.26 is for
a DNS in a periodic box without a mean flow, Tsinober et al. (2001).
The alignment between al and ac as many other features is not Galilean
invariant, i.e., depends on the reference system. This is seen from figure 6.27.

The ‘true’ dynamical effect is observed in the frame of reference moving
with the mean velocity. The alignment between al and ac is a consequence of
even stronger alignment between al and acs, with stronger Re-dependence
as well. On the other hand both ‘components’ of as, i.e., al and acs, are
about twenty times larger than as itself even at the smallest Reynolds
number, and at the largest Reλ, 〈a2

s〉2 ≈ 3 · 10−3 of 〈a2
cs〉2 and/or 〈a2

l 〉2. In
other words, there is a tendency of compensation between the local acceler-
ation, al = ∂u

∂t , and the solenoidal part, acs, of the convective acceleration,
ac = (u · ∇)u. It is this tendency, which is increasing with Reynolds num-
ber, that makes the solenoidal part of the acceleration, as, much smaller
than the irrotational part of the acceleration, ai = aci (aci is the irrotational
part of ac). It is natural to call this tendency the reduction of solenoidality
of the total acceleration. In fact this tendency is seen in figure 1 of Vedula
and Yeung (1999). We return to this matter in the next section.
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Figure 6.26. Alignments. PDFs of the cosine of the angle between al and ac. The insets
show this dependence with the vertical in log and in the proximity of cos(al, ac) ∼ −1.
This alignment was observed in laboratory experiments (Lüthi et al., 2005) and in the
atmospheric surface layer Gulitski et al. (2007b)

Figure 6.27. Alignments. PDFs of cos(al,ac) in (a) the frame attached to the ground
and (b) in the frame moving with the mean velocity from the field experiment; (c) PDF
of cos(al, ac) from PTV experiment. Gulitski et al. (2007b)

This tendency should be distinguished from an opposite tendency when
comparing the solenoidal part, acs, of the convective acceleration, i.e., of
the nonlinearity (u · ∇)u,∂u

∂t , (and also al), and its potential part, aci: as
the Reynolds number increases, both al and acs become large compared
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to ai (or aci which is the same). For example, the ratio 〈a2
ci〉

〈a2
cs〉 decreases

substantially with Reynolds number. In other words, along with the above-
mentioned tendency of reduction of solenoidality of the total acceleration,
there is a concomitant tendency of enhancement of solenoidality of its
convective part, ac, i.e., the nonlinearity, (u · ∇)u, tends to become more
solenoidal as the Reynolds number increases. It appears that this tendency
is, to a large extent, of kinematical nature (see below Tsinober, 1990a and
Pinsky et al., 2000). Namely, for a Gaussian velocity field the solenoidal
part of the convective acceleration ac ≡ (u · ∇)u is larger than its irrota-
tional part.

The alignment as described above is of rather general nature in the
sense that any two quantities of the type ∂Q

∂t and (Q · ∇)Q tend to align
in the same manner as do ∂Q

∂t and (u · ∇)u. Here Q can be a scalar, vector
(gradient of temperature, magnetic field, vorticity) or tensor (rate of strain
tensor), see Galanti et al. (2003).

The relation between total acceleration and its irrotational
and solenoidal components
The relation between a, ai = −1

ρ∇p and as = ν∇2u is qualitatively different
from that considered in the previous section. The main contribution to the
total acceleration variance comes from its irrotational part, ai (Vedula and
Yeung, 1999). Consequently, the correlation between a and ai is close to
unity and is ∼0.98 at Reλ ≈ 240. The variance of the solenoidal part of
the acceleration 〈a2

s〉
〈ε〉3/2ν−1/2 is independent of Reynolds number in the range

investigated (Vedula and Yeung, 1999), so that the increase of the ratios
〈a2〉
〈a2

S〉
and 〈a2

i 〉
〈a2

S〉
with Reynolds number is due to the increase of the irrotational

part of the acceleration.
Again the geometrical aspect is seen from the alignments between the

vectors involved. Namely, the only strongly exhibited alignment is the one
between a and ai. The alignment between a and as is weak, and there is no
alignment between ai and as, since they are orthogonal in the sense that
〈ai · as〉 = 0. All these alignments are weakly sensitive to the Reynolds
number.

6.7.3. SCALE DEPENDENCE

The scale dependence can be seen by looking at one-dimensional spectra
and/or the spectral analogues of the quantities addressed above, e.g., Sa

Sal
,

where Sa, Sal
are the one-dimensional energy spectra of a, al.

The tendencies described above regarding the relations between a,al

and ac are expected to be strongest at smaller scales. This is clearly seen
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Figure 6.28. Ratios: left – Sa
Sal

(�), Sa
Sac

(◦) and
Sac
Sal

(
); right – Sa
Sai

(◦), Sa
Sas

(�) and
Sai
Sas

(
) as functions of the wave number at Reλ = 240. Here η – is the Kolmogorov

microscale

from figure 6.28, i.e., the ratio Sac
Sal

tends to unity, whereas the ratios Sa
Sal

, Sa
Sac

decrease with kη and become much smaller than their overall analogues 〈a2〉
〈a2

i 〉
,

〈a2〉
〈a2

s〉 at largest Reynolds numbers, i.e., these relations are quite sensitive to
the Reynolds number.

A different picture is seen with respect the ratios Sa
Sai

, Sa
Sas

and Sai
Sas

. As

expected the ratio Sa
Sai

is of order 1, except at the smallest scales, where

it is larger due to the contribution from as. Both ratios Sa
Sas

and Sai
Sas

are
much larger than Sa

Sai
, especially at large scales, and are quite similar ex-

cept again in the small scales due to the same reason as above. The pattern
is the same qualitatively at all four Reynolds numbers, but is quite different
quantitatively: at large Reynolds numbers (the only one shown in
figure 6.28) the differences become orders of magnitude larger than at small
Reynolds numbers.

6.7.4. KINEMATICAL VERSUS DYNAMICAL EFFECTS

By kinematical we mean the effects which are exhibited in random Gaussian
analogues of the real fields. In some aspects these effects can be dominant
(Shtilman et al., 1993; Tsinober, 1990a). The reference random Gaussian
fields are Gaussian in the sense of the velocity gradients being (artificially)
Gaussian, but have the same form of the energy spectrum and Reynolds
number corresponding to each grid resolution.
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It appears that the behaviour of real fields and of their Gaussian coun-
terparts is qualitatively the same in a number of aspects. This is true, for
example, of the alignments discussed above and also of the joint PDFs of
ac and al and of a and ai. In other words, the discussed effects are mainly
(but not entirely) of kinematical nature (see also figure 6.30).

Along with the significant qualitative resemblance between the real and
the random Gaussian cases, there is a quantitative difference. This differ-
ence is exhibited in several ways. First, the Reynolds number dependence
of the effects described above is stronger in the case of real flow field. Sec-
ond, the essential difference between the real and the Gaussian fields is
seen from the PDFs of the magnitudes of a, ac, and al, and a, ac, and al.
All the PDFs for the real flow field are more intermittent than those for
their Gaussian counterparts, in the sense that they have much higher flar-
ing tails. The Reynolds number dependence of this effect is also stronger
for the real field. For more details see Tsinober (2001a) and Tsinober et al.
(2001).

It is noteworthy that Gaussian fields are by definition not intermittent:
the non-Gaussian shape of the PDFs of quantities like ai for a Gaussian
velocity field is because ai is nonlinear in velocity.

Thus the quantitative meaning of the smallness of the total acceleration,
a, is that it appears to be small in comparison to its local and convective
components, al = ∂u

∂t and ac = (u · ∇)u. Already at Reλ = 240, the variance
of a is more than an order of magnitude smaller than the variance of al and
ac. At this Reynolds number the local and the convective accelerations are
strongly (anti) correlated with a correlation coefficient exceeding | − 0.9|.
On the other hand, a is of the same order as its potential part ai = −1

ρ∇p,
and both are much larger than the solenoidal part of the acceleration as =
ν∇2u. The smallness of as is maintained by strong cancellation between
local acceleration al (which is solenoidal), and the solenoidal part of the
convective acceleration acs (ac = acs + aci), so that the irrotational part of
ac, which is equal to the irrotational part of the total acceleration, aci =
ai, comprises the main contribution to the total acceleration, but is much
smaller than both al and/or ac.

We summarize the above as

〈a2
s〉 � 〈a2〉 ≈ 〈a2

i 〉 = 〈a2
ci〉 � 〈a2

c〉 ≈ 〈a2
cs〉 ≈ 〈a2

l 〉. (6.8)

The meaning of � in the above relation is (at least) ‘an order of magnitude
smaller than’ at the largest accessible Reynolds numbers.

The relation between various components of acceleration as expressed
by (6.8) becomes stronger in small scales. It is natural to expect that, at
still larger Reynolds numbers the meaning of ‘�’ in the above relation will
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become ‘several orders of magnitude smaller than’. If true this fact provides
some justification for the ‘random sweeping decorrelation hypothesis’. We
tend, however, to give a more limited interpretation to this hypothesis in the
sense that the microstructure (whatever this means) is statistically decorre-
lated from the energy containing eddies. This is different from the original
assumption made by Tennekes (1975), in which he held that the microstruc-
ture is statistically independent of the energy containing eddies. The large
and small scales are statistically not independent, though they are practi-
cally decorrelated. Indeed, there is a variety of manifestations of direct and
bidirectional impact/coupling of large and small scales as exposed in the
previous section and section 5.3 of chapter 5.

It should be stressed that, though the ‘components’ al and acs (or Ls)
of the solenoidal part of the acceleration, as = acs + al, mostly cancel each
other, this fact does not mean that separately they are unimportant. Their
importance is seen at the level of velocity derivatives. For example, the main
contribution to the enstrophy production is associated with acs (or Ls), but
not with al. Namely, the enstrophy production term is curl{acs− (u · ∇)ω}
and is approximately balanced by the viscous term in the equation for the
enstrophy, whereas curl{al + (u · ∇)ω} is much smaller than curl{acs −
(u · ∇)ω} and is balanced by the sum of the enstrophy production and the
viscous terms (see section 6.3). It is also noteworthy that the nonlinearity
in NSE both the whole (u · ∇)u and the Lamb vector ω × u have a property
of becoming more solenoidal as the Reynolds number increases.

A final remark concerns the nature of Kraichnan/Tennekes ‘decompo-
sition’. Namely, there are two main ingredients in the (Eulerian) decorre-
lation: i) – the sweeping of microstucture by the large-scale motions (and
associated kinematic nonlocality), ii) – and the local straining (which is
roughly pure Lagrangian). It appears that this kind of ‘decomposition’ is
insufficient as it is missing an essential dynamical aspect – the interaction
between the two. As we have seen the random Taylor hypothesis (and, of
course, the conventional Taylor hypothesis) lack/discard this aspect at the
outset (this does not mean that these hypotheses are useless): both are ‘too
kinematic’. A closely related issue is with the rather popular assumption
that choosing an appropriate ‘local’ system of reference one can get rid
(mostly) of the sweeping of the small scales by the large-scale motions. The
underlying assumption is that small scales are ‘passive’ and just ‘swept’
by the large scales without any participation in the process, i.e., without
any reaction back. This is a major misconception: we have seen that there
is a rich direct an bidirectional coupling between SS and LS. The issue of
sweeping is closely related to the comparative aspects of Lagrangian versus
Eulerian descriptions – an issue of utmost importance and difficulty, see
section 3.6 and appendix C.
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6.8. Non-Gaussian nature of turbulence

The conclusion seems inescapable that the hypothesis of quasinor-
mality has a good chance of success only outside Kolmogorov’s
“universal equilibrium range”. (Hopf, 1962).
. . . it would be a miracle if the usual procedure of imposing station-
arity, truncating the resulting system of equations, and looking for
a Gaussian solution, would lead to results much related to physics.
(Ruelle, 1976).

The non-Gaussian nature of turbulence is another ‘N’ contributing to the
difficulty of turbulence – in addition to the three mentioned before nonlin-
earity, non-integrability and nonlocality.

A rather common view/assumption was that the field of turbulent fluc-
tuations is – in some sense(s) – nearly-Gaussian. For example, there were
many attempts to treat the problem as a perturbation of a Gaussian field52

(see e.g., references in Saffman, 1978). More recently, it was proposed that
some parts of a turbulent field are nearly-Gaussian, so that it can be de-
composed into a (nearly-) Gaussian part and a (strongly-) non-Gaussian
one (e.g., Chertkov et al., 1999; Farge et al., 1999; Katul et al., 1994;
Lewalle et al., 2000; She et al., 1991). This is a tempting assumption, since
it helps to simplify the problem. However, without entering into a compre-
hensive review of the whole issue, we shall argue that such an assumption
is inadequate53. For this purpose, we give a number of (counter-) examples
with emphasis on the dynamical aspects. Additional aspects are addressed
in the next chapter.

6.8.1. ODD MOMENTS

First we mention that a purely Gaussian velocity field is dynamically impo-
tent. Indeed, in such a field, all the odd moments vanish54. This contradicts
the Kolmogorov 4/5 law, turns the Karman–Howarth equation into a linear
one (see Monin and Yaglom, 1971), and prevents the production of enstro-
phy and strain (i.e., dissipation): in a Gaussian velocity field 〈ωiωjsij〉 ≡ 0
and 〈sijsjkski〉 ≡ 0. Even if the flow field is initially Gaussian, the dynamics
of turbulence makes it non-Gaussian with finite rate. This is seen by taking
〈. . . 〉 from the equation (C.23) (dropping the viscous term)

D

Dt
〈ωiωjsij〉 = 〈ωjsijωksik〉 −

〈
ωiωj

∂2p

∂xi∂xj

〉
. (6.9)

52Even Hopf (1962) was tempted by quasi-Gaussianity.
53Most frequently it is assumed that the ‘unresolved’ (i.e., mainly the small-scale) part

of the turbulent field is nearly-Gaussian, in contradiction to observations showing that
this part of flow is the most non-Gaussian (see also 6.4).

54Therefore they are so convenient in assessing the ‘deviations’ from Gaussianity.
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For a Gaussian velocity field 〈ωiωjsij〉G = 0,
〈
ωiωj

∂2p
∂xi∂xj

〉

G
= 0 and

〈ωjsijωksik〉G = 1
6〈ω2〉2 > 0. Since the quantity ωjsijωksik ≡ W 2,Wi =

ωjsij, it is positive pointwise for any vector field. Hence at t = 0,
{

D

Dt
〈ωiωjsij〉

}

t=0

= {〈ωjsijωksik〉}t=0 > 0, (6.10)

It follows from the equation (6.10) that, at least for a short time interval t,
the mean enstrophy production will become positive. We recall that for later
moments the vorticity–pressure Hessian correlation

〈
ωiωj

∂2p
∂xi∂xj

〉
becomes

finite, and nothing is known rigorously. As follows from DNS of NSE in a
periodic box, the correlation

〈
ωiωj

∂2p
∂xi∂xj

〉
is positive, but is smaller than

〈ωjsijωksik〉 ≡
〈
W 2

〉
. Namely,

〈
ωiωj

∂2p
∂xi∂xj

〉
∼ 1

3

〈
W 2

〉
, so that the RHS

of (6.9) remains positive (Tsinober et al., 1995). The nonzero
〈
ωiωj

∂2p
∂xi∂xj

〉

is another manifestation of non-Gaussianity. It is noteworthy that the equa-
tion (6.9) with

〈
ωiωj

∂2p
∂xi∂xj

〉
= 0 is precisely the one arising using the quasi-

Gaussian approximation D2

Dt

〈
ω2

〉
= 1

3

〈
ω2

〉2 (Proudman and Reid, 1954;
Orszag, 1977), since D

Dt 〈ωiωjsij〉 = 1
2

D2

Dt

〈
ω2

〉
and under quasi-Gaussian

approximation 〈ωjsijωksik〉 = 1
6

〈
ω2

〉2 and
〈
ωiωj

∂2p
∂xi∂xj

〉
= 0. The essential

point is that at t = 0, the relation (6.10) is precise due to freedom of the
choice of initial condition. On the other hand, we have seen that, if the
initial conditions are Gaussian, the flow ceases to be Gaussian with finite
rate. In other words, it is seen directly from (6.10) that turbulence cannot
be Gaussian (see also Novikov, 1967). In this sense, Gaussian initial condi-
tions are not ‘good’, since no flow state existing in reality is Gaussian. In
a similar way, one can see from the equation (C.24) that the mean rate of
production of strain becomes positive at small times (at t = 0 it vanishes)
for an initially Gaussian velocity field.

The next point is that the Kolmogorov 4/5 law, S3(r) = −4
5 〈ε〉 r,

S3(r) =
〈(

Δu‖|
)3

〉
, is a clear demonstration of the non-Gaussian and

dissipative nature of turbulence; S3(r) is essentially nonvanishing.
A special aspect of the non-Gaussian nature of turbulence as manifested

in the 4/5 law is seen when one looks at the analogy between the 4/5 law
and Yaglom’s 4/3 law for fluctuations of a passive scalar, θ. The latter has
the form

〈
Δu‖|(Δθ)2

〉
= −4

3 〈εθ〉 r, where Δu‖ ≡ [u(x + r) − u(x)] · r/r,
Δθ = θ(x + r) − θ(x), and εθ = D ∂θ

∂xi

∂θ
∂xi

is the dissipation of the passive
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scalar. The analogy, though useful in some respects (Antonia et al., 1997)55,
is violated for a Gaussian velocity field. Namely, the 4/3 law remains valid
for such (as any other isotropic) velocity field, whereas the 4/5 law is not,
because S3(r) ≡ 0 for a Gaussian velocity field. This points to serious
limitations on analogies between the passive and active fields mentioned
above, which are discussed in chapter 9.

More generally, the build-up of odd moments, such as S3(r), 〈ωiωksik〉 ,
〈sijsjkski〉 and many others is an important manifestation of the nonlin-
earity and non-Gaussianity of turbulence and is closely related to its ir-
reversibility. It is one of the prominent and distinctive specific features of
turbulent flows of utmost dynamical significance involving such processes as
production of enstrophy and total strain (dissipation). Hence the particular
emphasis on the odd moments. For this reason, the quantity cos(ω,W) =
ωiωjSij|ω|−1|W |−1 proved quite useful in the diagnostics of the non-
Gaussian nature of the ‘random structureless’ sea in turbulent flows, which
appeared to be quite the opposite, i.e., not structureless, dynamically not
passive and essentially non-Gaussian (see section 6.4). This is in contrast
with various recent proposals that the ‘weak’, in some sense, part of the field
is nearly-Gaussian. It seems that there exist no such part(s). More work is
necessary to clarify the issue starting with the quasi-Gaussian manifesta-
tions of turbulent flows.

Before proceeding we mention that there were a number of attempts
to ‘explain’ the origins of non-Gaussianity of fluid turbulence (e.g., Siggia,
1977; Betchov and Larsen, 1981 and references in Li and Meneveau, 2005),
though it seems rather obvious: today it is pretty clear that Gaussianity
and randomness/stochasticity are not synonymous and one has to explain
why he would expect Gaussian behaviour in genuine turbulent flows and
not the other way around.

It is important to reiterate, however, that the origins of non-Gaussian
statistics in various nonlinear systems and genuine turbulence are generally
quite different qualitatively. Therefore, it seems to be misleading to ‘ex-
plain’ such properties of genuine turbulence by analogy with non-Gaussian
behaviour of, e.g., Burgers and/or restricted Euler or similar equations (e.g.,
Betchov and Larsen, 1981; Li and Meneveau, 2005): both pressure and dis-
sipative effects are crucial for genuine turbulence at the very outset56. An
important point is that these are integrable equations, and exhibit random
behaviour only under random forcing and/or initial conditions, otherwise

55Antonia et al. (1997) looked at the analogy between the 4/3 law for the passive scalar
and the 4/3 law for the velocity field in the form

〈
Δu‖(Δu)2

〉
= − 4

3
〈ε〉 r, which turns

into the 4/5 law by isotropy.
56A result very similar to that in Li and Meneveau (2005) is obtained from a trivial toy

model based on elementary solution u(t) = (t + u−1
0 )−1 of the simplest Riccati equation

du/dt + u2 = 0 with random Gaussian initial condition ut=0.
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their solutions are not random. These examples represent the response of
nonlinear systems to random forcing and which otherwise are not random,
and should be distinguished from problems involving genuine turbulence.
Navier–Stokes equations at not too small Reynolds number have the prop-
erty of intrinsic stochasticity in the sense that they possess mechanisms of
self-randomization.

6.8.2. QUASI-GAUSSIAN MANIFESTATIONS

Turbulence – being essentially non-Gaussian – is such a rich
phenomenon that it can ‘afford’ a number of Gaussian-like
manifestations, some of which are not obvious and even non-
trivial.

Single-point moments of velocity fluctuations are known to be close to
Gaussian57, see for example, Van Atta and Chen (1969); Lu and Willmarth
(1973). However, this does not mean that the field of velocity fluctuations is
really Gaussian. For example, non-Gaussian behaviour of the field of veloc-
ity fluctuations has been observed in experiments by Frenkiel et al. (1979)
on grid turbulence, see also Vedula et al. (2005) and references therein.
They measured correlations of the type Rm,n(τ) = 〈um(t)um(t+τ)〉

〈u2(t)〉(m+n)/2 . The non-

Gaussian behavior of the field of velocity fluctuations is seen clearly for
τ �= 0: the odd-order correlations, R2,1(τ), R4,1(τ), R3,2(τ), are essentially
nonzero especially around Uτ/M ∼ 1 (see an example shown in figure 6.29).
It is noteworthy that at h = 0 the R2,1(τ), R4,1(τ), R3,2(τ) are indistin-
guishable from zero, showing the importance of two-point correlations. The
even moments up to the sixth order (not only numbers but the whole cor-
relation functions) are very close to Gaussian too, see figure 6.29 left. This
means, for example, that the fourth-order correlation shown in this figure
is very well approximated by the Millionschikov hypothesis (zero-fourth
cumulant) as for a Gaussian velocity field (see also Vedula et al., 2005).
The velocity derivatives in the experiments of Frenkiel et al. (1979) exhibit
clear non-Gaussian behaviour for all moments. There are more intricate
examples of nearly-Gaussian manifestations of turbulent flows. Two ex-
amples are shown in figures 6.30 and 6.31. The example in figure 6.31 is
interesting in that the Gaussian-like behaviour is exhibited by third-order
quantities. For other examples, see Tsinober (1998a). The fourth exam-
ple involves pressure. It was shown by Holzer and Siggia (1993) that for a
Gaussian velocity field the PDF of pressure is strongly negatively skewed

57This is not true of strong fluctuations of velocity. It was observed in laboratory
and numerical experiments that the single-point PDF of velocity at large amplitudes of
velocity fluctuations is sub-Gaussian and recently was confirmed theoretically using the
so called instanton formalism (see references in Tsinober, 1998b; for other quasi-Gaussian
manifestations see Brun and Pumir, 2001 and references therein).
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Figure 6.29. Third- (left) and fourth- (right) order time correlations for turbulent
velocities. Adapted from Frenkiel et al. (1979). Here Rm,n = 1

2
[Rm,n(τ ) + Rn,m(τ )].

The correlation Rm,n was used instead of individual odd-order correlations Rm,n(τ ),
since the latter exhibited large dispersions from sample recording to sample recording –
a well known problem to everybody tried to evaluate odd-order moments. Here M is the
grid mesh and U is the mean velocity of the flow

Figure 6.30. PDFs of the angle between the Lamb vector ω × u and its potential part
∇α ≡ ∇p for a numerically simulated turbulence and a random (approximately Gaussian)
velocity field with the same energy spectrum (Shtilman et al., 1993). The similarity is
obvious

and has exponential tails. This result is not unexpected, though it is not
easy in this case to demonstrate it directly due to nonlocal relation be-
tween pressure and velocity fields. It is much easier to do this by looking at
∇2p. Using the same method as in Shtilman et al. (1993), the PDF P(x),
x = ∇2p

ρ〈ω2〉 = ω2−2sijsij

2〈ω2〉 , is expressed in the following way (Spector, 1996,
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Figure 6.31. PDFs of the cosine of the angle between vortex stretching vector Wi = ωisij ,
and the eigenvectors λi of the rate of strain tensor; left – grid turbulence, right – DNS
and random Gaussian (– – – –). Reλ ≈ 75. The behaviour for λ2 seems to contradict the
ones shown in figures 6.8 and 6.9, since there is a tendency for alignment between ω and
W and between ω and λ2. However, closer inspection shows that the alignments shown
in figure 6.31 and in figures 6.8, 6.9 are associated with different regions in the flow

private communication):

P(x) = {31/255/2}/(4π) x2 ex [K2(4x) − K1(4x)], x < 0,

which for large |x| has the asymptotics ∼|x|1/2 e−3|x|, and

P(x) = {31/255/2}/(4π) x2 e−|x|[K2(4x) + K1(4x)], x > 0,

which for large x has the asymptotics ∼x3/2 e−5x. We see that the dis-
tribution of ∇2p for a Gaussian velocity field has exponential tails and is
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Figure 6.32. PDF of the Laplacian of pressure x = ∇2p
ρ〈ω2〉 =

ω2−2sijsij

2〈ω2〉 . ——— – grid

turbulence, Reλ ≈ 75; - - - - - - slope +4.5, — — — — – slope –2.9

negatively skewed. This result is in agreement with the ones from labo-
ratory and DNS experiments (figure 6.32). It shows that these effects are
mostly of kinematical nature, as many others like those given above usually
are.

A related example is shown in figure 6.33. It is clear from this figure
that the correlation function of the total acceleration, 〈a(x + r)a(x)〉 is
practically the same in real flows, as it is in laboratory grid turbulence
(Hill and Thoroddsen, 1997) and in DNS (Vedula and Yeung, 1999), and
in artificial velocity fields under zero forth-cumulant assumption – Million-
schikov hypothesis (Pinsky et al., 2000), and/or for the assumption of joint
Gaussian velocities (Hill and Thoroddsen, 1997). This behaviour is of the
same nature as the one shown in figure 6.29, right. Similar observation
can be seen in 1) Aringazin, 2004 for the PDFs of acceleration statistics in
turbulent flows with Gaussian velocities, which is in good agreement with
the experimental data by Mordant, Crawford and Bodenschatz (2004); and
2) experimental results by (Xu et al. 2007) on acceleration correlations and
pressure structure functions with those by Obukhov and Yaglom (1951)
in which it was assumed that velocity derivatives (!) at two spatial points
have the joint Gaussian probability distribution. We recall the similarity in
behaviour of real fields and of their Gaussian counterparts in a number of
aspects as mentioned in the section on accelerations above.

The examples shown in figures 6.29–6.33 together with other quasi-
Gaussian manifestations of turbulent flows should not be misinterpreted
to conclude that turbulent flows are Gaussian. Indeed, we have seen that



200 CHAPTER 6

Figure 6.33. The correlation function of the total acceleration 〈a(x + r)a(x)〉: � – grid
turbulence (Hill and Thoroddsen, 1997); � – DNS (Vedula and Yeung, 1999); —— under
zero forth-cumulant assumption – Millionschikov hypothesis (Pinsky et al., 2000); 
 –
joint Gaussian velocities (Hill and Thoroddsen, 1997). The figure is from Pinsky et al.
(2000)

there are many non-Gaussian manifestations of turbulent flows, which are of
special dynamical significance. As mentioned, turbulence – being essentially
non-Gaussian – is such a rich phenomenon that it can ‘afford’ a number of
manifestations which are Gaussian-like. Non-Gaussianity adds to the list of
n’s together with non-lognormality and non-Markovianity.

6.9. Irreversibility of turbulence

The equations (6.9, 6.10) and similar ones for 〈sijsjkski〉 can be seen as
one of the manifestations of the statistical irreversibility of turbulent flows
(Betchov, 1974; Novikov, 1974). The corresponding dynamical instanta-
neous (inviscid) equations are reversible. Hence, the term statistical. The
(apparent) randomness of turbulent flows is important even at the kine-
matical level, e.g., the predominant tendency of stretching of material lines
and other passive objects (see chapter 4). There exist, at least, two different
aspects of this problem. The first one is related to purely inertial behaviour
governed by the Euler equations as mentioned above. Though these equa-
tions are reversible, it is (empirically) known that for Euler equations the
enstrophy generation increases very rapidly with time – apparently with-
out limit (see references in Tsinober, 1998b, 2000). This aspect is closely
related to the (possible) formation of singularities in 3D Euler flows in finite
or infinite time. The above example (equations (6. 9, 6.10) and similar ones
for 〈sijsjkski〉) is closely related to this aspect. The 4/5 law can be seen
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also as a manifestation of statistical irreversibility of turbulent flows. The
second aspect is associated with the dissipative nature of turbulent flows.
Among other roles viscosity provides a sink of energy, enstrophy, etc. mod-
erating their unbounded growth in the inviscid case. An important point
is that turbulent flows are strongly (not slightly) dissipative at whatever
large Reynolds numbers.

6.10. Summary

Turbulent flow in a box forced by a steady (or random) force exhibits
large fluctuations in time of the overall quantities such as the energy in-
put, dissipation, enstrophy, enstrophy production and others, of their long
time averages. This process is similar to that observed experimentally in
the ‘French washing machine’ at the level of energy dissipation and most
probably occurs in almost all turbulent flows.

One of the intrinsic processes of turbulence dynamics is the process
of self-amplification of velocity derivatives. It involves both vorticity and
strain, i.e., this process is characteristic of the whole field of velocity deriva-
tives. It consists of two strongly (but nonlocally) interconnected processes:
predominant vortex stretching/enstrophy production and predominant self-
amplification of the rate of strain/production of total strain. The enstro-
phy production is essentially a nonlocal process of interaction of vorticity
and strain with predominant stretching. The production of strain (rather
than vortex stretching, which resists the amplification of strain) is directly
responsible for the enhanced dissipation of turbulent flows. It is more a
self-amplification and is local with indirect (but essential) aid of vorticity
with predominant compressing. The self-amplification of strain is a spe-
cific feature of the dynamics of three-dimensional genuine (as contrasted
to ‘passive’) turbulence. The essential dominance of the self-amplification
of the velocity derivatives over the external forcing (or other factors driv-
ing the flow at the level of velocity field) occurs already at very moderate
Reynolds numbers and becomes stronger with increasing Reynolds number.
A similar phenomenon is observed in a turbulent shear flow in a channel
over most of its cross section except in the proximity of the wall, and in
the atmospheric surface layer (see chapter 8). This dominance occurs not
only in the mean, but practically pointwise throughout the whole flow field,
i.e. the self-amplification of velocity derivatives by turbulence is a process
which is local in space. The property of self-amplification is a universal one
not only qualitatively, it possesses a number of quantitative universal prop-
erties which are independent of the details of forcing. The self-amplification
is a quasi-stationary process in the sense that the integrals over the flow do-
main of the enstrophy (and strain) production and of its viscous destruction
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are approximately balanced at any moment in time. Hence the time deriva-
tive of the overall enstrophy (and strain) is much smaller than the over-
all enstrophy production and of its viscous destruction. It is not yet clear
how to reconcile the self-amplification of velocity derivatives with the prop-
erty of nonlocality of turbulent flows, especially the aspect of direct cou-
pling/interaction between large and small scales.

Most of the enstrophy production, production of strain/dissipation and
other nonlinear processes are associated with i – large strain, rather than
with intense vorticity (large enstrophy), ii – alignment of vorticity with the
largest eigenstrain (not with the intermediate one), iii – strong tilting of
vorticity and finite curvature of vortex lines (not with Burgers-like objects
with small curvature). The nonlinearities are an order of magnitude larger
in the regions dominated by strain than in the enstrophy dominated re-
gions. In this sense the enstrophy dominated regions are characterized by
reduced nonlinearities. In other words the most intense nonlinear processes
occur in the strain dominated regions. In particular, there is an approxi-
mate balance between the nonlinearities (e.g., vortex stretching) and the
viscous terms (e.g., viscous destruction of vorticity) in the regions with con-
centrated vorticity, whereas in strain dominated regions the nonlinearities
(e.g., the enstrophy production) are an order of magnitude larger than the
viscous terms. All this also supports the view that regions of concentrated
vorticity in turbulent flows are not as important as previously thought.
The energy cascade (whatever this means) and its final result – dissipation
are associated with the production of strain, i.e., with the local process of
production of strain −sijsjkski, rather than with the nonlocal process of
enstrophy production ωiωisij. The latter (i.e., vortex stretching) suppresses
the ‘cascade’ (production of strain) and does not aid it, at least in a direct
manner.

The primary effect of viscosity (apart from energy dissipation) is to bal-
ance the production of velocity derivatives, both strain and vorticity (the
so-called Tennekes and Lumley balance). This balance holds at any, how-
ever large, Reynolds numbers and not only in the mean, and not only in
statistically stationary flows. Viscosity allows what is called vortex recon-
nection. The role of this process in turbulence remains not fully clear. The
conceptual difficulty is that with ν �= 0 (however small) vorticity is not
frozen in the flow field (again at any, however, large Reynolds numbers).
In other words, vorticity lines do not possess a Lagrangian identity so that
there is no way to follow them unambiguously in time.

Turbulence is a nonlocal process. This nonlocality is manifested among
other things in direct and bi-directional interaction/coupling of large and
small scales. It is a generic internal property of turbulent flows and ex-
ists independently of the presence of mean shear or other external factors,
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but has different manifestations for different external factors. For exam-
ple, in the presence of a mean shear the small scales become anisotropic,
whereas if the small scales are artificiality excited, the overall dissipation
and mixing rate of the turbulent flow increase substantially. The direct in-
teraction/coupling of large and small scales is in full conformity and is the
consequence of the generic property of Navier–Stokes equations, which are
integro-differential due to the nonlocal relation between pressure and ve-
locity fields. It appears that the Kolmogorov 4/5 law can be interpreted
as one of the manifestations of nonlocality in the above sense. Nonlocality
is associated also with ‘kinematics’ due to the nonlocal relations between,
e.g., velocity and its increments and between vorticity and strain. The ma-
terial velocity derivative – the fluid particle acceleration – is also related in
a nonlocal manner to the velocity field, since the main contribution to the
acceleration comes from the pressure gradient.

In view of the direct and bidirectional interaction/coupling of large and
small scales the notion of an inertial range is not well defined. Consequently,
there are conceptual problems on the nature, definition, distinction, prop-
erties of conventionally-defined inertial and dissipative ranges in turbulence
at high Reynolds numbers. There is a conceptual necessity of studying tur-
bulence as an undecomposable whole and sub-Kolmogorov resolution as a
key means for coping with such problems, see chapter 5. This has serious
implications for modelling such as ‘eddy viscosity’ representations of the
subgrid scales, etc. Eddy viscosity does not explain the enhanced transfer
rates. It is just a purely empirical way of accounting for such rates.

From the statistical point turbulence is irreversible and essentially non-
Gaussian, but possesses a number of quasi-Gaussian manifestations.
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STRUCTURE(S) OF TURBULENT FLOWS

Is there turbulence without structure(s)?

Although symmetric causes must produce symmetric effects,
nearly symmetric causes need not produce symmetric effects:
a symmetry problem need have no stable symmetric solu-
tions (Birkhoff, 1960).
Turbulence is and will remain the most difficult problem of
fluid mechanics, and past experience suggests that a subse-
quent fall of interest in the coherent structures is more than
likely. The resulting net gain in understanding of turbulence
may be less than our high expectations of today but will
certainly be positive (Liepmann, 1979).
I emphasized the concept of “broken symmetry”, the ability
of a large collection of simple objects to abandon its own
symmetry as well as the symmetries of the forces governing
it and to exhibit the “emergent property” of a new symme-
try (Anderson, 1991).
Kolmogorov’s work on fine-scale properties ignores any
structure which may be present in the flow (Frisch, 1995).
At this stage, this alternative approach (i.e., the ‘structural’)
has not led to a generally applicable quantitative model, nei-
ther – for better or worse – has it a major impact on the
statistical approaches (S.B. Pope, 2000).

7.1. Introduction

The nature and characterization of the structure(s) of turbulent flows are
among the most controversial issues in turbulence research with extreme
views on many aspects of the problem – in words of Richard Feynmann
(1963, p. 41–12), holding strong opinions either way. For example, as men-
tioned in chapter 3, it is common in the vast literature on turbulence to
consider the terms statistical and structural as incompatible or even con-
tradictory:

. . . it became obvious that statistical averaging was in fact destroying the
most interesting and important phenomena in turbulence – the formation,
dynamics and persistence of vortex motion.

205
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Its blindness to these structural facts is precisely the disability of the
statistical idea . . . In place of theory without structure, the result to date
has been structure without theory.

Following Lumley (1989), who provides many such examples, the refer-
ences are suppressed to protect the guilty.

However, there are common points as well. For instance, it is mostly
agreed that turbulence definitely possesses structure(s) – whatever this
means – and that intermittency, which is addressed in the next section,
is intimately related to some aspects of the structure(s) of turbulence.

It is argued in the section following the one on intermittency that it is
a misconception to contrapose the statistical and the structural and that
they represent different facets/aspects of the same problem, so that there
is no gap between structure(s) and statistics1. Just as it seems impossible
to separate the structure(s) from the so-called ‘random structureless back-
ground’ or the ‘random processes from the nonrandom processes’ (Dryden,
1948) due to strong interaction (and nonlocality), both between individual
structures, and between structures and the ‘background’. In other words
there is no turbulence without structure, every part of the turbulent field
just like the whole possess structure2. Structureless turbulence or any of
its part contradicts both the experimental evidence and the Navier–Stokes
equations. It is noteworthy that the statement that turbulence has struc-
ture is in a sense trivial: to say that turbulent flow is ‘completely random’
would define turbulence out of existence (Tritton, 1988, p. 295) – after all
turbulent flows seem to obey the Navier–Stokes equations.

7.2. Intermittency

At any instant the production of small scales is . . . occur-
ring vigorously in some places and only weakly in the others
(Tritton, 1988).
Typical distribution of scalar and vector fields is one in which
there appear characteristic structures accompanied by high
peaks or spikes with large intensity and small duration of
spatial extent. The intervals between the spikes are charac-
terized by small intensity and large extent (Zeldovich et al.,
1988).
Intermittency is a phenomenon where Nature spends little
time, but acts vigorously (Betchov, 1993).

1Both issues are intimately related to the non-Gaussian nature of turbulence (and
some of its quasi-Gaussian manifestations) and the necessity and the only objective means
to handle the issues of turbulence structure(s) via statistics.

2There are proposals to scan out the structure(s). In fact there is no way to do so, since
structure is everywhere. Even the so-called ‘simple’ structures (worms) are ‘renormalized’
by the background.
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The term intermittency is used in two distinct (but not independent) as-
pects of turbulent flows. The first one is the so-called external intermittency.
It is associated with what is called here partly-turbulent flows, specifically
with the strongly irregular and convoluted structure and random movement
of the ‘boundary’ between the turbulent and nonturbulent fluid. This kind
of intermittency was studied first by Townsend (1948). We will address this
matter in chapter 8.

The second aspect is the so-called small-scale, internal or intrinsic inter-
mittency. It is usually associated with the tendency to spatial and temporal
localization of the ‘fine’ or small-scale structure(s) of turbulent flows.

Our concern here is with the intermittency of this second kind. It is
noteworthy that in a broad sense intermittency is a ubiquitous phenomenon
occurring in a great variety of qualitatively different systems; see chapter 8
in Zeldovich et al. (1990) for a lively exposition of a wide number of differ-
ent systems exhibiting intermittency, and also Vassilicos (2001). The main
common features of all of them are (space/time) randomness and local-
ization (both spatial and temporal) of their ‘fine’ structure. However, this
is not enough to define intermittency. For example, almost any nonlinear
function or almost any nonlinear functional of a random Gaussian field is
intermittent in the above sense, though random Gaussian fields by defini-
tion lack any intermittency.

7.2.1. WHAT IS SMALL-SCALE INTERMITTENCY?

The phenomenon of small-scale intermittency was discovered by Batchelor
and Townsend (1949) in experiments with turbulent grid flows and in a
wake past a circular cylinder3:

The basic observation which requires explanation is that activation of
large wave-numbers is very unevenly distributed in space. These space vari-
ations in activation can be described as fluctuations in the spectrum at large
wave-number . . . As the wave-number is increased the fluctuations seem to
tend to an approximate on-off, or intermittent variation. Whatever the
reason for the occurrence of these fluctuations, they appear to be intrinsic
to the equilibrium range of wave-numbers. All the evidence is consistent
with the inference that the fluctuations are small in the region of smallest
wave-numbers of equilibrium range and become increasingly large at larger
wave-numbers . . . the mean separation of the visible activated regions is
comparable with the integral scale of the turbulence, i.e., with the size of
the energy-containing eddies (pp. 252–253)

3The intermittent nature of the small-scale structure of turbulent flows was foreseen
by Taylor (1938b): . . . the view frequently put forward by the author that the dissipation
of energy is due chiefly to the formation of very small regions where vorticity is very
high. However, note that dissipation is high in regions where strain – not vorticity – is
high (see section 6.2).
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Batchelor and Townsend obtained some evidence that the deviation
from Gaussianity is stronger as the Reynolds number is increased4, which
was confirmed by a number of subsequent experiments such as by Kuo and
Corrsin (1971)5.

An example of time records of the streamwise velocity component, and
their derivatives obtained in a field experiment at Reλ = 104 is shown
in figure 1.17. The increasingly intermittent behaviour of the signal with
the derivative order is seen quite clearly. Also shown are records for the
enstrophy ω2, total strain 2s2 ≡ 2sijsij and their surrogate (∂u1/∂x1)2,
and enstrophy production ωiωjsij, sijsjkski and their surrogate (∂u1/∂x1)3.
The experiment was performed in the atmospheric surface layer at a height
10m in approximately neutral (slightly unstable) conditions.

A qualitative summary is that small-scale intermittency of turbulence
is associated with its spotty (spatio-temporal) structure which among other
things is manifested as a particular kind of non-Gaussian behaviour of tur-
bulent flows. This deviation from Gaussianity increases with both 1) in-
creasing the Reynolds number and 2) decreasing the ‘scale’. In other words,
intermittency involves two (not independent) aspects of turbulent flows –
their structure/geometry and statistics. These two aspects are reflected in
attempts to ‘define’ intermittency. Two examples of such definitions are
given below.

Structural/geometrical. A positively defined quantity μ (measure) is
intermittent in space if for arbitrarily small μ0, the fraction V0/V of any
volume V of fluid within which μ > μ0 tends to zero as the Reynolds num-
ber Re → ∞, i.e., μ(x, t) becomes increasingly spiky, being concentrated
almost entirely in this vanishingly small part V0 of the volume V . This is a
modified version of Moffatt’s (1988) definition of intermittency of dissipa-
tion. In fact, all known dynamically important quantities including those
which are not positively defined (e.g., enstrophy and strain production)
exhibit such a spiky behaviour. Note that the above definition refers to
rather general property of turbulence structure – the ‘increasingly spiky’
structure of some variable can be realized in a great variety of ways: both
the structure of these spiky regions and of the ‘background’ may be very
different for the same V0.

Statistical. A variable with zero mean will be called intermittent if it has
a probability distribution such that extremely small and extremely large

4However, they did not appreciate this effect and claimed that the flatness factors
seem to vary a little with Reynolds number, though this factor changed from 5 to 7 for
the third-order derivative; see their figure 5 for the flatness factor of velocity derivatives
of different orders and different Reynolds numbers.

5For an updated overview of the subsequent results see, e.g., Sreenivasan and Antonia
(1997).
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excursions are much more likely than in a normally distributed variable
[i.e., Gaussian]. Therefore, the kurtosis [flatness] of an intermittent variable
with zero mean is large. Correspondingly, a non-negative variable is called
intermittent if its variance is large compared to the square of its mean value
(Tennekes, 1973). This definition ignores Reynolds number dependence. For
other definitions see Frisch (1995), Libby (1996).

It is important that intermittency implies non-Gaussianity, but not nec-
essarily vice versa – practically any parameter can at most indicate the de-
gree of intermittency of a flow already known to be intermittent (see next
section).

7.2.2. MEASURES/MANIFESTATIONS OF INTERMITTENCY

Intermittency factor(s)
Loosely, an intermittency factor is defined as a fraction of volume (time)
where the variable is ‘active’. This is one of the most reliable direct mea-
sures of intermittency. The main deficiency is that intermittency factors
depend on the choice of the threshold below which the variable is consid-
ered ‘inactive’ (Kuo and Corrsin, 1971; Kuznetsov et al., 1992 and references
therein).

Flatness factor
Flatness factor or kurtosis of a variable is defined as

F (a) =
〈
a4

〉

〈a2〉2
.

For a Gaussian field FG(a) = 3, i.e., the flatness factor can be used as a
measure of non-Gaussianity. The specific choice is justified by the fact that
the inverse of flatness increases with and is roughly proportional to the
fraction of volume/time where the variable is ‘active’.

It has been established experimentally that the flatness increases with
both the order of derivative (scale dependence) and the Reynolds number
of the turbulence (Batchelor and Townsend, 1949; Kuo and Corrsin, 1971).
Kuo and Corrsin interpreted this result (using also the intermittency factor)
as a decrease in the volume fraction occupied by fine-structure both as the
Reynolds number is increased and as the structure becomes finer.

As mentioned, a statistical measure such as flatness may deviate strongly
from a Gaussian value without any intermittency in the flow field. The
simplest example is the Gaussian field itself, which by definition lacks any
intermittency. However, any nonlinear function (or functional) of a vari-
able which is Gaussian, is non-Gaussian. For instance enstrophy, dissipa-
tion, pressure, etc. of a Gaussian velocity field possess exponential tails and
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their flatness is quite different from 3 (see chapter 6 and also figure 4 in
Kennedy and Corrsin, 1961). For example, for a Gaussian velocity field
FG(ω2) = 〈ω4〉/〈ω2〉2 = 5/3 and FG(s2) = 〈s4〉/〈s2〉2 = 7/5. But this by
no means indicates that, for a Gaussian velocity field, these quantities are
intermittent. Moreover, the flatness of enstrophy is larger than that of to-
tal strain, Fω2 − Fs2 = 4/15. Does one have to conclude from the above
result (as some authors did) that the enstrophy field is more intermittent
than that of total strain in a Gaussian velocity field? Certainly not, since
intermittency is, by definition, absent in any Gaussian field. This example
shows that it is not sufficient to define intermittency as uneven distribution
of enstrophy and dissipation in space, as is quite frequently done.

Similarly, the Reynolds stress uiuj exhibits ‘intermittency’. The main
contribution to this intermittency comes from the fact that uiuj is a product
of two random variables both distributed close to Gaussian. For example,
the PDF of the u1u2 of the strongly intermittent signal obtained by Lu and
Willmarth (1973) in a turbulent boundary layer is strongly non-Gaussian.
However, the PDF of u1u2 is approximated with high precision by assuming
both u1 and u2 to be Gaussian with a correlation coefficient between them
adjusted from the experiment (−0.44) (see chapter 8)6.

Passive objects (scalars like heat, vectors like magnetic field) in a ran-
dom velocity field (real or artificially prescribed) are nonlinear functionals
of the velocity field and forcing. Therefore, even when both the velocity
field and forcing are Gaussian the field of a passive object is expected to be
strongly non-Gaussian as usually (but not always) is the case (Majda and
Kramer, 1999). Such kinematic intermittency is observed in a great number
of theoretical and some experimental works (for a partial list of references
see chapter 4). The term ‘kinematic’ is used here in the sense that there
is no relation to the dynamics of fluid motion, which does not enter in the
problems in question, and the velocity field is prescribed and often assumed
to be Gaussian.

It is noteworthy that both criteria – the intermittency and the flatness
factors are of purely kinematic nature, i.e., they are not related – at least
directly – to the dynamical aspects of turbulence. One would think that
the situation is different with the so-called odd moments. However, this is
not the case either.

Odd moments
Any odd moment of a Gaussian variable vanishes, for example skewness
SG(a) ≡ 〈a3〉/〈a2〉3/2 = 0. Therefore, odd moments are very sensitive to

6The above examples may serve as a warning that multiplicative models enable us to
produce intermittency for a purely nonintermittent field as is the Gaussian velocity field.
See Zeldovich et al. (1990) on interesting observations on this and related matters.
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deviations from Gaussianity, so that non-zero odd moments may be es-
pecially good indicators of intermittency. Build-up of odd moments is a
result of both the (kinematic) evolution of a passive field in any random
velocity field and the dynamics of turbulence itself. In the latter case,
non-vanishing odd moments are the most important, dynamically signif-
icant manifestations of non-Gaussianity, i.e., they reflect directly the dy-
namic aspects of intermittency. The most prominent odd moments are the
third-order structure function for longitudinal velocity increments S

||
3 =〈

{[u(x + r) − u(x)] · (r/r)}3
〉

entering the 4/5 law, the enstrophy produc-
tion 〈ωiωksik〉 and the third-order moment of the strain tensor 〈sijsjkski〉
(see chapter 6). Note that all these and other odd moments vanish in a
Gaussian velocity field. In contrast similar odd moments for passive ob-
jects, 〈GiGksik〉, 〈BiBksik〉 do not vanish (chapter 4). Hence, the passive
objects in some respects are “more intermittent”, e.g., see figure 7.1.

We remind that the non-Gaussian nature of genuine turbulent flows
and of passive objects is qualitatively different (see chapter 9) just as is
intermittency in physically different systems.

Scaling exponents and PDFs
It is commonly believed that among the manifestations of the small-scale
intermittency7 is the experimentally observed deviation of the scaling ex-
ponents for structure functions S

||
p = 〈{[u(x + r)− u(x)] ·(r/r)}p〉 for p > 3

from the values implied by the Kolmogorov theory (i.e., anomalous scaling),
which in turn is due to rare strong events. Namely,

S‖
p(r) ∝ rζ

‖
p , (7.1)

where ζ
‖
p = p/3 − μp < p/3 is a convex nonlinear function of p (see

figure 7.1).
However, there are two major problems with scaling as follows, plus see

sections 5.3 and 5.4.5.
First, there exists no one-to-one relation between simple statistical man-

ifestations and the underlying structure(s) of turbulence8. An example is
shown in figure 7.2. Moreover qualitatively different phenomena can pos-
sess the same set of scaling exponents (see appendix C, section C.2), so
that one needs more subtle statistical characterizations of turbulence struc-
ture(s) and intermittency. For example, until recently one of the common

7A recent example is the paper by Seiwert et al. (2008) who studied the decrease of
intermittency in decaying rotating turbulence via looking at the scaling of the longitu-
dinal velocity structure functions, up to order q = 8. This decrease can be explained
by suppression of strong dissipative events in the presence of rotation as proposed in
section 5.3

8This issue is addressed in more detail in the next section.
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Figure 7.1. Exponents of structure functions for the longitudinal velocity component
(�, •,×) and temperature (�, ◦ ); � – Anselmet et al. (1984); � – Antonia et al. (1984);
◦ – Ruiz-Chavaria et al. (1996); • – Vincent and Meneguzzi (1991). Exponents of structure
functions for the transverse velocity component, × – Noullez et al. (1997). This figure is
from Tsinober (1998b)

Figure 7.2. Iso-ω surfaces for three kinds of forcing of the RHS of DNS of NSE in a cubic
box with periodic boundary conditions. Left – forcing in the lowest Fourier wave-numbers,
middle – 〈|fk|2〉 ∼ k−3, and right – 〈|fk|2〉 ∼ k−5. In all cases the scaling properties are
practically the same and are in agreement with other results (Sain et al., 1998).

beliefs was that the observed vortex filaments/worms are mainly responsi-
ble for the phenomenon of intermittency understood as anomalous scaling.
However, it appears that this is not the case (see the evidence for that given
in Tsinober, 1998a; and chapter 6). This was confirmed also by recent anal-
ysis by Roux et al. (1999) of the data from the experiments by Cadot et
al. (1995), which strongly suggests that the statistical contribution of vor-
ticity filaments is not responsible for the intermittency phenomenon, i.e.,
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anomalous scaling. A similar result was obtained by Dernoncourt et al.
(1998), (see also Chavanis and Sire, 2000; Min et al., 1996 and Sain et al.,
1998)9.

Likewise similar PDFs of some quantities can correspond to qualita-
tively different structure(s) and quantitatively different values of Reynolds
number (Kraichnan and Kimura, 1994; Tsinober, 1998a,b). The emphasis is
on some quantities like pressure or some other usually (but not necessarily)
even-order quantities in velocities or their derivatives, since the PDFs of
other appropriately chosen quantities are sensitive to structure (see below).
Another example is represented by numerous models that attempted to
reproduce the anomalous scaling (7.1) (a partial list of references is given
in Sreenivasan and Antonia, 1997 and Tsinober, 1998b). These models fol-
lowed the Kolmogorov (1962) refined similarity hypothesis (RSH) in which
the mean dissipation 〈ε〉 was replaced by ‘local’ dissipation εr averaged over
a region of size r10. The scaling exponents obtained in all of these models
are in good agreement with the experimental and numerical evidence, e.g.,
these models exhibit the same scaling properties (and some other such as
PDFs) as in real turbulence. It is noteworthy that many of these models are
based on qualitatively different premises/assumptions and with few excep-
tions have no direct bearing on the Navier–Stokes equations11. The most
common justification for the preoccupation with such models is that they
(at least some of them) share the same basic symmetries (perhaps also some
hidden symmetries), conservation laws and some other general properties,
etc. as the Navier–Stokes equations. The general belief is that this – along
with the diversity of such systems (there are many having nothing to do
with fluid dynamics, e.g., granular systems, financial markets, brain activ-
ity) – is the reason for the above mentioned agreement. However, this is not
really the case, e.g., in Kraichnan (1974) a counter-example of a ‘dynamical
equation is exhibited which has the same essential invariances, symmetries,
dimensionality and equilibrium statistical ensembles as the Navier–Stokes
equations but which has radically different inertial-range behaviour’ ! The

9Jimenez and Wray (1998) hold an opposite view, that the filaments are responsible
for most of the intermittency effects of the higher moments of the velocity derivatives (p.
283).

10Kolmogorov proposed this hypothesis following the Landau objection to universality
in the first Russian edition of Fluid Mechanics by Landau and Lifshitz (1944) about the
role of large-scale fluctuations of energy dissipation rate, i.e., non-universality of both the
scaling exponents ζp and the prefactors Cp in (7.1).

11Therefore the success of such models can hardly be evaluated on the basis of how
well they agree with experiments. For example, there exist many theories which produce
the k−5/3 energy spectrum for qualitatively and/or physically different reasons. A recent
example is a suggestion that the spectrum of fully-developed turbulence is determined by
the equilibrium statistics of the Euler equations and that a full description of turbulence
requires only a perturbation, small in some appropriate metric, of a Gibbsian equilibrium,
(Chorin, 1996).
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majority of models exhibit temporal chaos only. Therefore, such and most
other models hardly can be associated with the intermittency of real fluid
turbulence, which involves essentially spatial chaos as well. Again, for the
above reasons the agreement between such models and experiments (both
laboratory and numerical) cannot be used for evaluation of the success of
such models. There are proposals to use two sets of independent exponents
ζ
‖
p and ζ⊥p (Chen et al., 1997), and there exist other ‘universality’ proposals

involving ‘many more’ scaling exponents (see e.g., Biferale and Procaccia,
2005; Frisch, 1995; Kurien and Sreenivasan, 2001b and references therein).

All the above is a clear indication that the question about the origins
of intermittency (understood as anomalous scaling and/or in any other
sense as above) in real turbulent flows remains open. Similarly open are the
questions on universality of the intermittency manifestations (if such exist)
in Navier–Stokes equations, though judging by the multitude of models of
intermittency there is no universality whatsoever.

Phenomenology and models only will hardly be useful and convincing,
since almost any dimensionally correct model, both right or wrong, will
lead to correct scaling without appealing to NSE and/or elaborate physics.
Scaling laws alone are not necessarily theories.12 With all the importance of
scaling, turbulence phenomena are infinitely richer than their manifestation
in scaling and related matters. Most of these manifestations are beyond the
reach of phenomenology. Phenomenology is inherently unable to handle
the structure of turbulence in general, and phase and geometrical relations
in particular, to say nothing of dynamical features such as build up of
odd moments, interaction of vorticity and strain resulting in positive net
enstrophy generation/predominant vortex stretching. It seems that there is
little promise for progress in understanding the basic physics of turbulence
in continuing to ask questions about scaling and related matters only (Badii
and Talkner, 2001; Feigenbaum, 1997; Tsinober, 1996b), without looking
into the structure and, where possible, basic mechanisms which are specific
to turbulent flows. In fact, the main question of principle which should
have been asked long ago is: Why on earth should we perform so many
elaborate measurements of various scaling exponents without looking into
the possible concomitant physics and/or without asking why and how more

12For example, the Kolmogorov theory and many subsequent models used dissipation
as a basic quantity, i.e. intimately related to strain. Several later theories are based on
hierarchies of vorticity-dominated structures. Most of both kinds of these theories agree
with experimental results. However, while there is a basic reason, not only on dimen-

sional grounds, for RSH Δu
‖
r = β1(rεr)

1/3, since it can be seen as a ‘local’ version of

the 4/5 Kolmogorov law 〈(Δu‖)3〉 = −4/5〈ε〉r, a similar claim (Chen et al., 1997), that

Δu⊥ = β2(rΩr)
1/3 (Ω = νω2) remains just one more dimensionally – but not necessar-

ily physically – correct relation (note that 〈(Δu⊥)3〉 ≡ 0). Here, β1, β2 are stochastic
variables independent of Re and r.
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Figure 7.3. PDFs of the increments of longitudinal (a) and transverse (b) velocity
fluctuations obtained in a field experiment at Reλ = 104 (Kholmyansky and Tsinober,
2000; Kholmyansky et al., 2001b). The increasing deviation from a Gaussian behaviour
with decreasing r is manifested quite clearly. The curve for η ≈ 1 is essentially a PDF
of the longitudinal derivative. Note the asymmetry of the PDfs of the increments of
longitudinal velocity fluctuations, which becomes largest at smallest separations

precise knowledge of such exponents, even assuming their existence, can aid
our understanding of turbulent flows?

Second, as discussed in chapter 5 the very existence of scaling exponents
in a statistical sense (as, e.g., for various structure functions or correspond-
ing PDFs, etc.), which is taken for granted, is a problem by itself.

A similar question arises in respect with multi-fractality which was de-
signed to ‘explain’ (but in fact it is another description of) the ‘anomalous’
scaling (7.1), since there is no direct experimental evidence on the multi-
fractal structure of turbulent flows. So there is a possibility that multi-
fractality in turbulence is an artifact (see Frisch, 1995, p. 190). Moreover,
it is very likely that multi-fractality in fact is kind of finite Reynolds number
effect at any large Re, see chapter 5.

The PDFs of an intermittent variable are quite useful, and they do
not suffer from problems like scaling exponents. For example, using PDFs
of velocity increments for different separations between two points it be-
comes clear that, the closer the two points, the more the PDFs deviate
from a Gaussian distribution both in the center and at the tails. An ex-
ample is shown in figure 7.3. However, PDFs also (both single-point and
two-point PDFs) contain rather limited information. Namely, such PDFs
carry the information showing that extremely small (the center anomaly)
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and extremely large values (tails of the PDF) are much more likely than for
a Gaussian variable. However, they contain no information on the struc-
ture of the underlying weak and strong events, nor on the structure of the
background field. Hence, the same PDFs can have qualitatively different
underlying structure(s) of the flow, i.e., ‘how the flow looks’. For example,
the qualitative difference in the behaviour and properties of regions domi-
nated by strain and those with large enstrophy cannot be captured by such
means and other conventional measures of intermittency. Also the PDFs,
like scaling exponents, do not allow us to infer much about the underlying
dynamics. This, however, is true of ‘conventional’ PDFs like those of veloc-
ity increments, but not of any PDFs such as those directly associated with
geometrical flow properties (see below section 7.3).

Note that the largest deviation from Gaussianity occurs at small scales
(smallest distances between two points; see figure 7.3). In this sense, the
field of velocity derivatives, ∂ui/∂xk, is more intermittent than the field
of velocity, ui, itself. One of the possible reasons for this is in the different
nature of nonlinearity at the level of velocity field, i.e., in the Navier–Stokes
equations and, for example, in the equation for vorticity (C.9). Namely, the
nonlinearity in the Navier–Stokes equations, (u · ∇)u = ω × u + ∇(u2/2) =
∇(α+u2/2)+∇×β contains a considerable irrotational part, ∇(α+u2/2)
(see chapter 6, sections 6.5–6.7). This potential part can be included in the
pressure term, i.e., the solenoidal part of nonlinearity is reduced. There is
no such reduction of nonlinearity on the level of vorticity. Hence the differ-
ence, since the nonlinearity can be seen as one of the general reasons for
intermittency of genuine turbulence.

On the 4/5 law – is it related to intermittency?
There are no ‘corrections’ to the scaling exponent in the 4/5 law – it is an
exact consequence of NSE. However, as 1) it manifests the non-Gaussian na-
ture of turbulence and 2) the PDFs of the longitudinal velocity increments
especially at small r have flaring tails (hanging far above the Gaussian
PDF) the 4/5 law should be considered as related to intermittency. This
shows that ‘intermittency corrections’ are not that reliable as indicators of
intermittency, if at all.

We turn now to the discussion of more specific possible reasons/origins
of intermittency.

7.2.3. ON POSSIBLE ORIGINS OF SMALL-SCALE INTERMITTENCY

As one of the manifestations of turbulence structure(s), intermittency has
its origins in the structure of turbulence (see next section). Therefore we
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briefly address here the issue on possible origins of intermittency. There are
roughly two kinds of origins of intermittency: kinematic and dynamic.

Before proceeding we reiterate that non-Gaussianity and intermittency
are not synonymous, just like the origins of non-Gaussian statistics in vari-
ous systems and genuine turbulence are generally quite different even qual-
itatively. Therefore, it may be misleading to ‘explain’ such properties of
genuine turbulence by analogy with non-Gaussian behaviour of, e.g., Burg-
ers and/or restricted Euler equations. An important point is that these are
integrable equations, and exhibit random behaviour only under random
forcing and or initial conditions, otherwise their solutions are not random.
These examples represent the response of nonlinear systems to random forc-
ing and which otherwise are not random, and should be distinguished from
problems involving genuine turbulence. Navier–Stokes equations at suffi-
ciently large Reynolds number have the property of intrinsic stochasticity
in the sense that they possess mechanisms of self-randomization.

Direct interaction/coupling between large and small scales
As discussed in chapter 6, direct interaction/coupling between large and
small scales is one of the elements of the nonlocality of turbulence. It is
both of kinematic and dynamic nature. The first recognized manifestation
of such interaction is that the small scales do not forget the anisotropy of
the large ones. There is a variety of mechanisms producing and influencing
the large scales: various external constraints like boundaries with differ-
ent boundary conditions, including the periodic ones, initial conditions,
forcing (as in DNS), mean shear/strain, centrifugal forces (rotation), buoy-
ancy, magnetic field, external intermittency in partially turbulent flows,
etc. Most of these factors usually act as organizing elements, favouring the
formation of coherent structures of different kinds (quasi-two-dimensional,
helical, hairpins, etc.). These, as a rule, large- scale features depend on the
particularities of a given flow that are not universal. Therefore the direct
interaction between large and small scales leads to ‘contamination’ of small
scales by the large ones, e.g., the edges of large-scale structures are believed
to be responsible for such ‘contamination’. This contamination seems to be
unavoidable even in homogeneous and isotropic turbulence, since there are
many ways to produce such a flow, i.e., many ways to produce the large
scales. It is the difference in the mechanisms of large-scale production which
‘contaminates’ the small scales. Hence, non-universality.

The direct interaction/coupling of large and small scales seems to be a
generic property of all turbulent flows and one of the main reasons for small-
scale intermittency, non-universality, and quite modest manifestations of
scaling. This dates back to the famous Landau remark stating that the
important part will be played by the manner of variation of ε over times
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of the order of the periods of large eddies (of size 	), Landau and Lifshits,
1944, see 1987, p. 140.

Near singularities
It is not known for sure whether Euler equations and/or Navier–Stokes
equations at large Reynolds numbers develop a genuine singularity in fi-
nite time, though there is some evidence that, at least for Euler equations,
this may be true. Whatever the real situation is, it seems a reasonable
speculation that these ‘near’ singularities trigger topological change and
large dissipation events (for Navier–Stokes equations); their presence is felt
at the dissipation scales and is perhaps the source of small-scale intermit-
tency (Constantin, 1996). However, this does not help to understand the
inertial range intermittency (if such exists13) without invoking the reacting
back of the dissipation range on the inertial range. As mentioned, such reac-
tion back is possible due to the direct coupling between the large and small
scales and other nonlocal effects. The experimentally observed phenomenon
of strong drag reduction and change of structure of turbulent flows of dilute
polymer solutions and other drag reducing additives is an example of such
a ‘reacting back’ effect (see section 6.6 for other examples).

Near singular objects associated with non-integer values of the en-
ergy spectrum scaling exponents14 are thought to be closely related with
some structure(s) and, consequently, with intermittency of turbulent flows
(Vassilicos, 1996; see also Gibbon, 2009).

In any case, the ‘near’ singular objects may be among the origins of
intermittency of a dynamical nature15. However, there is a problem with
two-dimensional ‘turbulence’. Namely, in this case everything is beauti-
fully regular (Doering and Gibbon, 1995), but there is intermittency in the
sense of the above definitions, with the exception of scaling exponents for
velocity structure functions and corresponding quasi-Gaussian behaviour.
However, non-Gaussianity is strong at the level of velocity derivatives of
a second order (see chapter 8). Hence the possible formation of singulari-
ties in 3-D is not necessarily the underlying reason for intermittency in 3D
turbulence. Another example relates to modified Navier–Stokes equations
such as those using hyperviscosity replacing the Laplacian by a higher-
order operator (−1)h+1∇2h with h > 1 (see Borue and Orszag, 1998;
Haugen and Brandenburg, 2004; Lamorgese et al., 2005 and references

13It is plausible but not certain that there are intermittency corrections to the K41
theory of the inertial range (Frisch, 1995).

14As mentioned the existence of such scaling exponents is an assumption and has some
empirical foundation only as the data can be approximated in a different manner as well.
In this sense there is a problem in a clean definition ‘near’ singularities.

15We mean singularities which appear at random in space and time and not in a strictly
periodic (and fully coherent and mutually amplifying) fashion as in DNS with periodic
boundary conditions.
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therein) with the underlying assumption that this manipulation changes
only the small scales. In this case also everything is beautifully regular for
h > 5/4, (i.e., the solution remains regular for all times and any Reynolds
number, Ladyzhenskaya, 1975; Lions, 1969) and some features of turbulence
are reproduced well (such as the k−5/3 spectrum) including intermittency,
but its structure(s) appear quite different from those for true NSE.

Multiplicative noise, intermittency of passive objects in random me-
dia. It has been known for about thirty years that passive scalars exhibit
‘anomalous scaling’ behaviour (but see section 5.4.5) and other strong
manifestations of intermittency (see figure 7.1) even in a pure Gaussian
random velocity field (see Shraiman and Siggia, 1999, 2000; Sreenivasan
and Antonia, 1997; Tsinober, 1998b; Warhaft, 2000; Zeldovich et al., 1988,
1990 and references therein). Similar behaviour is exhibited by passive
vectors (Kraichnan and Kimura, 1994; Rogachevskii and Kleeorin, 1997;
Vergassola, 1996). These are dynamically-linear systems, but they are of
the kind which involve the so-called multiplicative ‘noise’, i.e., the coeffi-
cients in the equations that depend on the velocity field. Therefore, statis-
tically they are ‘nonlinear’, since the field of passive objects is a nonlinear
functional of the velocity field. Therefore, passive objects exhibit strong
deviations from Gaussianity. In such systems, intermittency results either
from external pumping (forcing term on RHS of the equations), or in sys-
tems without external forcing from instability (self-excitation) of a passive
object in a random velocity field under certain conditions.

The velocity field does not ‘know’ about the passive objects. In this
sense, problems involving passive objects are kinematic in respect with the
velocity field in real fluid turbulence. They reflect the contribution of kine-
matic nature in real turbulent flows. It is noteworthy that some of the
intermittency effects in such linear systems are stronger than in real fluid
turbulence and exhibit anomalous scaling, which, generally, is non-universal
(Falkovich et al., 2001; Shraiman and Siggia, 1999, 2000; Warhaft, 2000). In
view of the recent progress in this field it was claimed that investigation of
the statistics of the passive-scalar field advected by random flow is interest-
ing for the insight it offers into the origin of intermittency and anomalous
scaling of turbulent fluctuations (Pumir et al., 1997; see also Majda and
Kramer, 1999; Shraiman and Siggia, 1999, 2000). More precisely it offers
an insight into the origin of intermittency and anomalous scaling of fluc-
tuations in random media generally and independently of the nature of the
random motion (Zeldovich et al., 1988), i.e., it gives some insight into the
contributions of kinematic nature, but does not offer much regarding the
specific dynamical aspects of strong turbulence in fluids. Moreover, anoma-
lous diffusion (including scaling) of passive objects occurs in purely laminar
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flows in the Eulerian sense (E-laminar flows) as a result of Lagrangian chaos
(L-turbulent flows), i.e., intermittency of passive objects may have nothing
to do with the random nature of fluid motion, see chapter 9.

Thus in real turbulent flows there are two contributions to the behaviour
of passive objects, kinematic and dynamic. It seems hopeless to separate
them in any sense. In a way, the problem of passive objects is more com-
plicated than the dynamical one.

Summarizing, intermittency specifically in genuine fluid turbulence is
associated mostly with some aspects of its spatio-temporal structure, es-
pecially the spatial one. Hence, the close relation between the origin(s)
and meaning of intermittency and structure of turbulence. Just as there
is no general agreement on the origin and meaning of the former, there is
no consensus regarding what are the origin(s) and what turbulence struc-
ture(s) really mean. What is definite is that turbulent flows have lots of
structure(s). The term structure(s) is used here deliberately in order to
emphasize the duality (or even multiplicity) of the meaning of the underly-
ing problem. The first is about how turbulence ‘looks’. The second implies
the existence of some entities. Objective treatment of both requires use of
some statistical methods. It is thought that these methods alone may be
insufficient to cope with the problem, but so far no satisfactory solution
was found. One (but not the only) reason – as mentioned – is that it is not
so clear what one is looking for: the objects seem to be still elusive. For
example, some still are not sure that the concept of coherent structure is
much different from the dress of the naked king.

7.3. What is (are) structure(s) of turbulent flows?

. . . worms do not seem to play a special role in the overall
dynamics of turbulent flows (Jimenez et al., 1993).
Numerical experiment shows that turbulent flow is domi-
nated by vortex tubes of small cross-section and bounded
eccentricity (Chorin, 1994).
Vortex filaments: the sinews of turbulence? (Frisch, 1995).
. . . it is now clear from direct numerical simulations that
three-dimensional isotropic turbulence is composed of an
ensemble of thin tubes of high vorticity . . . (Lesieur,
1997).
. . . in turbulence one does not know yet what structures
are key to our understanding the statistical properties of
turbulent flows . . . kinking or intertwining of tubes; the
latter is known to provide building blocks of turbulent
transfer of energy to small scales in 3D and as such the
source of the multi-scale problem (Pouquet et al., 2003).
What we see is real. The problem is interpretation.
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The difficulties of defining what the structure(s) of turbulence are (mean)
are of the same nature as the question about what is turbulence itself. So
first, and in order to ‘see’ or ‘measure’ the structure(s) of turbulence, one
encounters the most difficult questions such as: what is a (say, dynamically
relevant) structure?, Structure of what? Which quantities possess structure
in turbulence? What is the relation between structure(s) and ‘scales’? Can
structure exist in ‘structureless’ (artificial) pure random Gaussian fields ?
Which ones? All these – like many other issues – are intimately related to
the skill/art of asking the right and correctly posed questions.

The meaning of structure(s) depends largely on what is meant by tur-
bulence itself, and especially structure(s) of the particular field one is look-
ing. For example, as discussed in chapter 4, the velocity field may have
no structure, but the passive tracer may; simple laminar Eulerian velocity
field (E-laminar) may create a complicated Lagrangian field (L-turbulent).
A purely Gaussian, i.e., ‘structureless’ velocity field, creates structure in the
field of passive objects. The structure(s) seen in the velocity field depend
on the motion of the observer (see figure 7.4).

Finally, an example shown in figure 7.5 is what is called “coherent struc-
tures” or “organized motion”, which has been rediscovered many times.
This flow (mixing layer) represents the case in which the structures may
be not directly related to the turbulent nature of the flow but are rather a
result of large-scale instability of the flow as a ‘whole’ (zooming out).

7.3.1. ON THE ORIGINS OF STRUCTURE(S) OF/IN TURBULENCE

This question – in some sense – is a ‘philosophical’ one. But its importance
is in direct relation to even more important questions about the origin of
turbulence itself.

Instability
As mentioned in chapter 2, the most commonly accepted view on the origin
of turbulence is flow instability. An additional factor is that instability is
considered as one of the origins of structure(s) in/of turbulence. However,
this latter view requires the assumption that turbulence has a pretty long
‘memory’ of or, alternatively, that the ‘purely’ turbulent flow regime (i.e.,
at large enough Reynolds numbers) has instability mechanisms similar to
those existing in the process of transition from laminar to turbulent flow
state. Tritton (1988) defines turbulence as a state of continuous instability.
The problem is that speaking about (in)stability requires one to define the
state of flow (in)stability of which is being considered, which is not a simple
matter in the case of a turbulent flow.



222 CHAPTER 7

Figure 7.4. The four upper pictures, Tollmien (1931), correspond to the visualization of
a turbulent water flow in an open 6 cm wide channel photographed by a moving camera
at different speeds. The mean velocity of the flow is 16.7 cm/s. The two lower pictures
are from Prandtl and Tietjens (1934). In the right-hand picture, the camera moves with
the speed equal to the velocity of water in the center of the channel. In the left-hand
picture, the speed of the camera is small and close to the velocity of the water near the
walls
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Figure 7.5. Coherent structures in a mixing layer flow (Michel, 1932)

Emergence
Another less known view holds that structure(s) emerge in large Reynolds
number turbulence out of ‘purely random structureless’ background, e.g.,
via the so-called inverse cascades or negative eddy viscosity (see chapter 8).
Among the spectacular examples, are the ‘geophysical vortices’ in the at-
mosphere, and ocean, as well as astrophysical objects. Another example
is the emergence of coherent entities, such as vortex filaments/worms and
other structure(s), out of an initially random Gaussian velocity field via the
NSE dynamics16. An example of such structure(s) is shown in figure 1.16,
for other examples see references in Tsinober (1998a,b).

It ‘just exists’, or do flows become or are they ‘just’ turbulent?
To the flows observed in the long run after the influence of the initial
conditions has died down there correspond certain solutions of the Navier–
Stokes equations. These solutions constitute a certain manifold M = M(μ)
(or M = M(Re)) in phase space invariant under phase flow (Hopf, 1948).

16Recall P.W. Anderson (1971, 1995) who emphasizes the concept of ‘broken symme-
try’, the ability of a large collection of simple objects to abandon its own symmetry as
well as the symmetries of the forces governing it and to exhibit the ‘emergent property’ of
a new symmetry. One of the difficulties in turbulence research is that no objects simple
enough have been found so far such that a collection of these objects would adequately
represent turbulent flows.
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Kolmogorov’s scenario was based on the complexity of the dynamics along
the attractor rather than its stability (Arnold, 1991; see also Keefe, 1990a;
Keefe et al., 1992).

This view is a reflection of one of the modern beliefs that the structure(s)
of turbulence – as we observe in physical space – is (are) the manifestation
of the generic structural properties of mathematical objects in phase space,
which are called (strange) attractors and which are invariant in some sense.
In other words here the structure(s) assumed to be ‘built in’ the turbulence
independently of its origin (hence the tendency to universality)17. It is note-
worthy that the assumed strange-attractor existence makes sense for sta-
tistically stationary turbulent flows. However, for flows which are not such,
e.g., decaying turbulent flows past a grid or a DNS simulated flow in a box
the attractor is trivial. Nevertheless, these flows possess many properties
which are essentially the same as their statistically stationary counterparts
provided that their Reynolds numbers are not too small (Reλ ∼ 102).

The above refers to the dynamical aspects of real turbulent flows. We
mention again here also the

Emergence of structures in passive objects in random media
in which the velocity field and the external forcing are prescribed. Whatever
their nature – even Gaussian – structure is emerging in the field of passive
objects (Zeldovich et al., 1988; Ott, 1999 and references therein). In other
words structure(s) of passive objects emerges also in structureless (artificial)
random Gaussian velocity fields.

7.3.2. HOW DOES THE STRUCTURE OF TURBULENCE ‘LOOK’?

Until recently, very little was known about the nature of structure of tur-
bulence and about the appearance of its structures (in physical space). The
structure in question is the so-called fine structure and not the one which
is promoted by various external factors and/or constraints like boundaries,
mean shear, centrifugal forces (rotation), buoyancy, magnetic field, etc.,
which usually act as organizing factors, favouring the formation of coher-
ent structures of different kinds (quasi-two-dimensional, helical, hairpins,
etc.). These structures, are, as a rule, large-scale features which depend on
the particularities of a given flow and thus are not universal. We will re-
turn to some of these mostly large-scale structures including what is called
‘coherent structures’ or ‘organized motion’ in chapter 8.

Since the first DNS simulations by Siggia (1981), a number of compu-
tations have been performed (see references in Tsinober, 1998a,b), which

17In the strange attractor theory, the experimental measurements are viewed as pro-
jections of these attractors onto low dimension that correspond to these measurements.
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demonstrated clearly that even turbulence which is ‘homogeneous’ and
‘isotropic’ has structure(s), i.e., contains a variety of strongly localized
events. The primary evidence is related to spatial localization of subre-
gions with large enstrophy (i.e., intense vorticity) which are organized in
long, thin tubes-filaments-worms. Such filaments were also directly ob-
served in laboratory experiments (the ones mentioned in figure 5.1) em-
ploying the property of intense vorticity to be strongly correlated with
regions of low pressure and using small air bubbles to visualize these re-
gions (Douady et al., 1991; Villermaux et al., 1995; for more references see
Tsinober, 1998a). This follows from the Poisson-like equation for pressure
2∇2p/ρ = ω2 − 2sijsij. There is some evidence that in regions with moder-
ate magnitude of vorticity it is organized in sheet-like structures. Much less
is known about regions with large strain, sijsij, i.e., dissipation. They were
tentatively identified as layered vortex sheets in Schwarz (1990), an obser-
vation that has not been confirmed by other observations or computations
so far. Most common observations at Reynolds numbers accessible in DNS
showed that isosurfaces of high strain are wrapped around the regions of
strong enstrophy. However, in Tanaka and Kida (1993) and in recent com-
putations by Boratav and Pelz (1997), the isosurfaces of large strain were
observed as sheet-like objects with very sharp edges (razors/flakes). In fact
such objects were observed already by Siggia (1981, figure 21). This does
not mean that the vorticity field in these regions is simple and is necessarily
sheet-like too, see Ishihara et al., 2009.

Some examples of the results mentioned are shown in figure 7.6. The
relatively simple appearance of the observed structures as shown above
prompted a rather popular view that turbulence structure(s) is (are) sim-
ple in some sense and that essential aspects of turbulence structure and
its dynamics may be adequately represented by a random distribution of
simple (weakly interacting) objects, such as straight strained (Burgers-like)
vortices (see chapter 6 and references in Tsinober, 1998a). In particular, it
is commonly believed that most of the structure of turbulence is associated
with and is due to various strongly localized intense events/structures, e.g.,
mostly regions of concentrated vorticity so that ‘turbulent flow is dom-
inated by vortex tubes of small cross-section and bounded eccentricity’
(Chorin, 1994, p. 95) and that these events are mainly responsible for the
phenomenon of intermittency (Belin et al., 1996; Frisch, 1995; Katul et al.,
1994; Nelkin, 1995; Jimenez and Wray, 1998 and references therein). It is
argued in Tsinober (1998a) that such views are inadequate (see chapter 6
for more details and latest references). It appears that – though impor-
tant – these structures are not the most dynamically-important ones and
are the consequence of the dynamics of turbulence rather than its dom-
inating factor. Namely, regions other than those involving concentrated
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Figure 7.6. Vortex filaments in DNS (She et al., 1991; top left) and laboratory (Douady
et al., 1991; top right). Isosurfaces of the second invariant of the velocity derivatives tensor
Q = ω2−sijsij (bottom left) at 2 rms positive level, i.e., vorticity-dominated regions, and
isosurfaces of strain sijsij (bottom right) at 2 rms level, i.e., strain-dominated regions
(Boratav and Pelz, 1997). The two bottom pictures were not included in Boratav and
Pelz (1997), but are available at http://www.eng.uci.edu/˜boratav/ and are used here
by permission. The figure is from Tsinober (1998a)

vorticity such as: i – ‘structureless’ background, ii – regions of strong vor-
ticity/strain (self) interaction and largest enstrophy and strain production
dominated by large strain rather than large enstrophy, and iii – regions with
negative enstrophy production are all dynamically significant (in some im-
portant respects more significant than those with concentrated vorticity),
strongly non-Gaussian, and possess structure. Due to the strong nonlocality
of turbulence in physical space all the regions are in continuous interaction
and are strongly coupled. A similar statement can be made regarding the
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so-called streamwise vortices observed in many turbulent flows (see
chapter 8).

The above conclusions are the outcome of the use of quantitative man-
ifestations of turbulence structure, which just like intermittency are in the
first place of statistical nature.

7.3.3. STRUCTURE VERSUS STATISTICS

The statistical community . . . strongly disputes the possi-
bility of any coherence or order associated to turbulence.
(Lesieur, 1997).
The transition from laminar to turbulent flow is a
nonequilibrium phase transition to a more organized mo-
tion. (Klimontovich, 1996).
. . . to say that turbulent flow is completely random would
define turbulence out of existence. (Tritton, 1988).

On a qualitative level, it is widely recognized that fluid-dynamical tur-
bulence (even ‘homogeneous’ and ‘isotropic’) has ‘structure(s)’, i.e. con-
tains a variety of strongly localized events, which are believed to influence
significantly the properties of turbulent flows. It is impossible to overes-
timate the observational information on the instantaneous structures of
turbulent flows. Being extremely useful, the individual observations of such
events/structures are inherently limited as compared to the statistical in-
formation, which requires us to employ the quantitative manifestations of
turbulence structure. In order to proceed to the quantitative aspects of
the problem it is not sufficient to look at pictures (however beautiful); one
has to turn to numbers and quantitative relations such as in the above-
mentioned anomalous scaling, which is one of many other more specific
quantitative manifestations of turbulence structure.

The question about what structure(s) of turbulence mean(s) can be
answered via a statement of impotence: speaking about ‘structure(s)’ in
turbulence the implication is that there exists something ‘structureless’,
e.g., Gaussian random field as a representative of full/complete disorder.
A gaussian field is appropriate/natural to represent the absence of structure
in the statistical sense. Hence all non-Gaussian manifestations of turbulent
flows can be seen as some statistical signature of turbulence structure(s)18.
However, simple probability criteria are insufficient, since one can find in
statistical data irrelevant structures with high probability (Lumley, 1981).
In other words the structure(s) should be relevant/significant in some sense.

18This does not imply that an exactly Gaussian field does not necessarily possess any
spatial or temporal structures, see, e.g., figure 3 in She et al. (1990) – any individual
realization of a Gaussian field does have structures. However, an exactly Gaussian field
does not possess dynamically relevant structure(s), it is dynamically impotent, see below.
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For example, it should be dynamically relevant for a velocity field, and
related quantities such as vorticity and strain. This does not mean that
kinematical aspects of turbulence structure(s) are of no importance. For
example, anisotropy is a typical kinematic statistical characteristic of tur-
bulent flows which hardly can be applied to individual structures, e.g., a
turbulent flow consisting mostly of ‘anisotropic’ individual structures can
be statistically-isotropic. Among the first statistical treatments of turbu-
lence structure is, of course, the first paper by Kolmogorov (1941a), the
very title of which is The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers.

The advantage of such an approach is that it allows one to get insights
into the structure of turbulence without the necessity of knowing much
(if anything) about the actual appearance of its structures. This is espe-
cially important in view of numerous problems/ambiguities in definitions
of individual structures in turbulent flows, their identification and statisti-
cal characterization as well as their incorporation in ‘theories’. The main
reason is that there exist an intrinsic problem of both defining what the
relevant structures are (see Bonnet, 1996 for references and a review of ex-
isting techniques) which all are based on statistics anyhow, and of defining
extracting/educing and characterizing the so-called coherent structures. For
a number of reasons, it is very difficult, if not impossible, to quantify the
information on the instantaneous structures of turbulent flows into dynam-
ically relevant/significant form. The observed individual structures are not
simple, neither are they weakly interacting between themselves or with the
background. Indeed, you can find structures, essentially arbitrary, which
have equal probability to the ones we have latched onto over the years:
bursts, streaks, etc . . . If structures are defined as those objects which can
be extracted by conditional sampling criteria, then they are everywhere one
looks in turbulence (Keefe, 1990b). For instance, looking at a snapshot of
the enstrophy levels of a purely Gaussian velocity field in She et al. (1990),
one can see a number of filaments (the irrelevant ones) like those observed
in real turbulent flows, i.e., a pure Gaussian velocity field has some struc-
ture(s) too.

The next most difficult question is about the relevance/significance of
some particular aspect of non-Gaussianity for a specific problem in question.
It seems that here one enters the subjective realm: the criteria of significance
(which is the matter of physics!) are decided by the researchers. However,
the following examples show that objective choice of the structure sensitive
statistics is dictated by general dynamical aspects of the problem. In the
following, we will discuss the dynamical aspects of the problem. Various
‘kinematic’ issues, like the transport of passive objects (scalars, vectors,
etc.), in which Gaussian or other prescribed velocity fields are used rather
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successfully, are beyond the scope of this section. We mention only that
structure(s) of the field of passive objects can be treated in a similar way
as the one described in this section.

For instance, the build up of odd moments is an important specific
manifestation of structure of turbulence along with being the manifestation
of its nonlinearity. The two most important examples are the third-order
velocity structure function S3(r) = 〈{[u(x + r) − u(x)] · r/r}3〉 and the
mean enstrophy production 〈ωiωksik〉 . The first one is associated with the
−4/5 Kolmogorov law S3(r) = −4/5〈ε〉r (Kolmogorov, 1941b), which is
the first strong indication of the presence of structure in the inertial range
showing that both non-Gaussianity and the structure of turbulence are
directly related to its dissipative nature. It is remarkable that the title of
this paper by Kolmogorov is Dissipation of energy in the locally-isotropic
turbulence. The −4/5 Kolmogorov law clearly overrules the claims that
‘Kolmogorov’s work on the fine-scale properties ignores any structure which
may be present in the flow’ (Frisch, 1995, p. 182) and that it is associated
with near-Gaussian statistics, (Chertkov et al., 1999; Farge and Guyon,
1999; Katul et al., 1994; She et al., 1991 and many others). It is noteworthy
that – as shown by Hill (1997) – the 4/5 Kolmogorov law is more sensitive
to the anisotropy, i.e., the third-order statistics (again odd moments), than
the second-order statistics. Likewise the structure functions of higher odd
orders S

‖
p(r) = 〈(Δu‖)p〉 are essentially different from zero, see references

in Betchov (1976), Sreenivasan and Antonia (1997), Tsinober (1998b).
The essentially positive value of the mean enstrophy generation 〈ωiωksik〉

discovered by Taylor (1938) is the first indication of the presence of struc-
ture in the small scales, where turbulence is particularly strongly non-
Gaussian and intermittent (Kraichnan, 1967; Novikov, 1967; Sreenivasan
and Antonia, 1997). The above two examples show that both the essential
turbulence dynamics and its structure are associated with those aspects
of its non-Gaussianity exhibited in the build up of odd moments, which
among other things means phase and geometrical coherency, i.e., structure
(see section on the non-Gaussian aspects of turbulence in chapter 6). Hence,
the importance of odd moments as indicators of intermittency. It is to be
noted that the non-Gaussianity found experimentally both in large and
small scales is exhibited not only in the nonzero odd moments, but also in
strong deviations of even moments from their Gaussian values. Thus both
the large and small scales differ essentially from Gaussian indicating that
both possess structure.

We return to the question about what kinds of statistics are most ap-
propriate to characterize at least some aspects for turbulence structure.
But first we must mention some
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7.3.4. EXAMPLES OF STATISTICS WEAKLY SENSITIVE
TO STRUCTURE(S)

The first examples of this kind are energy spectra in which the phase (and
geometric) information is lost. Hence their weak sensitivity to the struc-
ture of turbulence. This insensitivity, in particular, is exhibited in the
scaling exponents when/if such exist. For example, the famous −5/3 ex-
ponent can be obtained for a great variety of qualitatively different real
systems – not necessarily fluid dynamical – and theoretical models. A par-
tial list of references contains the papers by Biferale et al. (1994), Cheklov
and Yakhot (1995), Chorin (1994, 1996), Kiya and Ishii (1991), Lundgren
(1982), Moffatt (1993), Nore et al. (1997), Pullin and Saffman (1997),
Taguchi (1995), Tsinober (1998b), Vassilicos and Brasseur (1996), Zakharov
et al. (1993). Of course, one can also construct a set of purely-Gaussian ve-
locity fields, i.e., lacking any dynamically-relevant structure(s), with any
desired length of the −5/3 ‘inertial’ range (Elliott and Majda, 1995). An
extreme example is a single sharp change in velocity. Represented in Fourier
space it has an energy spectrum ∝ k−6/3 which is not so easy to distinguish
from k−5/3! Vice versa the spectral slope can change, but the structure re-
mains essentially the same ‘yet retaining all the phase information’ (Armi
and Flament, 1987; see figure 7.7). Moreover, not only ‘the spectral slope
alone is inadequate to differentiate between theories’ (Armi and Flament,
1987), alone it does not correspond to any particular structure(s) in tur-
bulence or it’s absence : there is no one-to-one relation between scaling ex-
ponents and structure(s) of turbulence. This is true not only of exponents
related to Fourier decomposition with its ambiguity (Tennekes, 1976), but
of many other scaling exponents including those obtained in some wavelet
space, SO(3) decomposition and in the physical space – a much overstressed
aspect of turbulent flows. Likewise, similar PDFs of some quantities can
correspond to qualitatively different structure(s) and quantitatively differ-
ent values of Reynolds number (Kraichnan and Kimura, 1994; Tsinober,
1998a,b). The emphasis is on some quantities like pressure or some other
usually (but not necessarily) even-order quantities in velocities or their
derivatives, since the PDFs of other appropriately chosen quantities are
sensitive to structure (see below).

7.3.5. STRUCTURE SENSITIVE STATISTICS

Use of odd-order structure functions
This is an example of how structure sensitive statistics can help in looking
for the right reasons for measured spectra in the lower meso-scale range,
Lindborg (1999). The procedure involves using the third-order structure
functions which are generally positive in the two-dimensional case (contrary
to the three-dimensional case). Calculations are based on wind data from



STRUCTURE(S) OF TURBULENT FLOWS 231

Figure 7.7. An example of spectral analysis of an infrared image of the ocean sea-surface
temperature off the northern coast of California. The left figure corresponds to the spec-
tral density of slope k−4, the middle k−3, and the right k−2. An important point is that
all the three correspond to the same original image and retain the phase information, but
place less emphasis on the observed spectrum. Courtesy of Professor L. Armi; for more
details see Armi and Flament (1987)

airplane flights, reported in the MOZAIC data set. It is argued that the k−3-
range is due to two-dimensional turbulence and can be interpreted as an
enstrophy inertial range, while the k−5/3-range is probably not due to two-
dimensional turbulence and should not be interpreted as a two-dimensional
energy inertial range. There is a competing hypothesis that the large-scale
−5/3 range is the spectrum of weakly nonlinear internal gravity waves
with a forward energy cascade (Van Zandt, 1982). A third claim is that the
spectral slope in the enstrophy range is more shallow than −3 and is close
to −7/3 (Tsinober, 1995a). This range and related anomalous diffusion is
explained in terms of the phenomenon of spontaneous breaking of statistical
isotropy (rotational and/or reflectional) symmetry – locally and/or globally.

Another example is the demonstration (mentioned in chapters 5 and 6)
that the small-scale structure of a homogeneous turbulent shear flow is
essentially anisotropic at Reynolds number up to Reλ ≈ 1000 (Shen and
Warhaft, 2000; see also Ferchichi and Tavoularis, 2000). In order to detect
this anisotropy the authors measured the velocity structure functions of
third and higher odd orders of both longitudinal and transverse velocity
components and corresponding moments of velocity derivatives. In partic-
ular, they found a skewness of order 1 of the derivative of the longitudi-
nal velocity in the direction of the mean gradient, which should be very
small (or ideally vanish) for a locally-isotropic flow. Similar results were
obtained in DNS (see references in Biferale and Procaccia, 2004; Kurien
and Sreenivasan, 2001b; Shen and Warhaft, 2000, 2002; Warhaft, 2000 and
Biferale and Procaccia, 2005; also Borue and Orszag, 1996 and Shebalin
and Woodruff, 1997). We should recall that analogous ‘misbehaviour’ of
large-Reynolds-number turbulence regarding the skewness of temperature
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fluctuations in the atmospheric boundary layer has been known since the
late 1960s (Stewart, 1969; Gibson et al., 1970, 1977).

Geometrical statistics
This example shows how conditional sampling based on geometrical statis-
tics can help to get insight into the nature of various regions of turbulent
flow, e.g., those associated with strong/weak vorticity, strain, various align-
ments, and other aspects as described in the previous chapter. The first gen-
eral aspect is the qualitative difference in the behaviour and properties of
regions with large enstrophy from strain-dominated regions, which is also
one of the manifestations of intermittency. Another example is the PDF
of the cosine of the angle between vorticity, ω, and the vortex stretching
vector, Wi ≡ ωksik, cos(ω,W). It is strictly symmetric for a Gaussian ve-
locity field, whereas it is strongly positively skewed in real turbulent flows.
It remains essentially positively skewed for any part of the turbulent field
(see figure 6.10), e.g., in the ‘weak background’ (involving whatever defini-
tion based on enstrophy, strain, both and/or any other relevant quantity).
Thus, contrary to common beliefs, the so-called ‘background’ is not struc-
tureless, dynamically not inactive and essentially non-Gaussian, just like
the whole flow field or any part of it. The structure of the apparently ran-
dom ‘background’ seems to be rather complicated. The previous qualitative
observations (mostly from DNS) about the ‘little apparent structure in the
low intensity component’ or the ‘bulk of the volume’ with ‘no particular
visible structure’ should be interpreted as meaning that no simple visible
structure has been observed so far in the bulk of the volume in the flow.
It is a reflection of our inability to ‘see’ more intricate aspects of turbu-
lence structure: intricacy and ‘randomness’ are not synonyms for absence
of structure.

Pressure Hessian
Recently, special attention has focused on the pressure Hessian ∂2p

∂xi∂xj
.

Among the general reasons for such an interest is that the pressure Hessian
is intimately related to the nonlocality of turbulence in physical space (see
chapter 6 and references in Tsinober, 1998a,b).

One of the quantities in the present context directly associated with the
pressure Hessian is the scalar-invariant quantity ωiωk

∂2p
∂xi∂xk

. It is respon-
sible for the nonlocal effects in the rate of change of enstrophy generation
ωiωksik (see equation [C.23] in appendix C). What is special about this
quantity, which is of even order in velocity, is that for a Gaussian velocity
field

〈
ωiωk

∂2p
∂xi∂xk

〉

G
≡ 0, whereas in a real flow it is essentially positive and

〈
ωiωk

∂2p
∂xi∂xk

〉
∼ 1

3

〈
W 2

〉
, where Wi ≡ ωksik is the vortex stretching vector.
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Thus interaction between the pressure Hessian and the vorticity is one of
the essential features of turbulence structure associated with its nonlocality.
It is noteworthy that a similar quantity involving strain is non-vanishing
for a Gaussian velocity field, 〈sikskj

∂2p
∂xi∂xj

〉G = − 1
20 〈ω2〉2G, see figures 6.19

and 6.20.

7.4. Which quantities possess structure in turbulence
and how one ‘digs’ them out?

We have seen that different quantities possess different structure(s) in the
same flow the velocity field may have no structure, but the passive tracer
may well have a pretty nontrivial one. A simple laminar Eulerian veloc-
ity field (E-laminar) creates complicated Lagrangian field (L-turbulent).
A purely Gaussian, i.e., ‘structureless’ velocity field creates a structure in
the field of passive objects. The structure(s) seen in the velocity field depend
on the motion of the observer (see figure 7.4).

The most commonly used methods in looking at structure(s) are based
on the so-called conditional sampling techniques, which employ some cri-
teria to educe some structure(s). Among the simplest criteria is sampling
based on equilevels of some function, e.g., enstrophy ω2 (this is how the first
evidence of concentrated vorticity/filaments/worms was obtained). More
generally, this problem is related to pattern recognition and requires defin-
ing a conditional sampling scheme. This scheme is in turn based on what
a particular investigator thinks are the most important physical processes,
features, etc. This in turn opens a Pandora’s box of possibilities and con-
tains an inherent element of subjectivity and arbitrariness, since the physics
of turbulence is not well understood. In this sense, the circle is closed: in
order to objectively define and educe some structure, one needs clear un-
derstanding of the physics of turbulence, which, it is in turn believed, can
be achieved via study of turbulence structure(s).

The most popular method is to look for structure(s) using a criterion
based on one parameter only, e.g., enstrophy ω2. Though such an approach
is useful and ‘easy’, it is inherently limited and reflects the simplest as-
pects of the problem. For example, even for characterization of some as-
pects of the local (i.e., in a sense ‘point’-wise) structure of the flow field
in the frame following a fluid particle requires at least two parameters.19

Therefore attempts to adequately characterize finite-scale structure(s) by
one parameter only are unlikely to be successful, and one needs something

19Q = 1/4(ω2 − 2sijsij) and R = −1/3(sijsjkski + 3/4ωiωjsij). Here Q is the second
and R is the third invariant of the velocity gradient tensor ∂ui/∂xk. The first is vanishing
due to incompressibility (see Chacin and Cantwell, 2000; Ooi et al., 1998 and references
therein). We return to this issue in chapters 8 and 9 in different contexts.



234 CHAPTER 7

like pattern recognition based on some conditional sampling scheme involv-
ing more than two parameters. A similar problem arises when attempting
to characterize structure(s) of turbulent flows using two-point information
but based on a single velocity component only, e.g., longitudinal structure
functions S

||
n(r), since such an approach does not ‘know’ (almost) anything

about the two other velocity components.
The ‘not objective enough’ nature of a variety of conditional sampling

procedures resulted in a whole ‘zoo’ of ‘structures’ in different turbulent
flows, which some people believe to be significant in some sense, but many
do not. Among the reasons for such scepticism is some evidence that the
attempts at representation of such a complicated phenomenon like tur-
bulence as a collection of simple objects/structures only are unlikely to
succeed (see chapters 5 and 6; and Tsinober, 1998a,b). As mentioned, until
recently it was believed that concentrated vorticity/filaments is the domi-
nating structure in turbulent flows in the sense that most of the structure
of turbulence is associated with and is due to regions of concentrated vor-
ticity. It appears that – though important – these structures are not the
most dynamically important ones and are the consequence of the dynamics
of turbulence rather than being its dominating factor.

Nevertheless, as shown above some ‘objectiveness’ can be achieved using
quantities appearing in the NSE and/or the equations which are exact
consequences of NSE.

More information and references about various attempts to define, educe
and characterize various ‘coherent structures’ can be found in Bonnet (1996)
and Holmes et al. (1996, 1997).

7.4.1. STRUCTURE(S) VERSUS SCALES AND DECOMPOSITIONS

It is natural to ask how meaningful it is to speak about different scales in the
context of ‘structure(s)’ and in what sense, especially when looking at the
‘instantaneous’ structure(s) of/in turbulence. The known structures indeed
possess quite different scales. Vortex filaments/worms have at least two
essentially different scales; their length can be of the order of the integral
scale, whereas their cross-section is of the order of the Kolmogorov scale.
Similarly, the ramp-cliff fronts in the passive-scalar fields have a thickness
much smaller than the two other scales. This fact is consistent with the
observation by Batchelor and Townsend (1949), that the mean separation
of the visible activated regions is comparable with the integral scale of the
turbulence, i.e., with the size of the energy-containing eddies.

It is believed that appropriately chosen decompositions may represent
structure(s) of turbulence, e.g., Holmes et al. (1996, 1997). Here again sev-
eral notes are in order. First, this position depends strongly on what is
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meant by structure(s). Second, such a possibility is realistic when the flow
is dominated by (usually large-scale) structures, when many, or practically
any reasonable decompositions will do anyhow. And third, structure(s) (and
related issues such as geometry) emerging in the ‘simplest’ case of turbulent
flows, in a box with periodic boundary conditions, is(are) are inaccessible
via Fourier decomposition, the most natural one in this case.

One of the popular ‘decompositions’ is into ‘coherent structures’ and
random/dissipative ‘background’20. This latter is generally considered as
structureless and as a kind of passive sink of energy. As we have seen this
is not true: the background is not passive at all, it is strongly coupled with
the ‘coherent structures’, and possess lots of its ‘own’ structure(s). There
are many problems of conceptual and technical nature with what is called
‘coherent structures’ starting from the very beginning of their definition
and ending with their role in fluid flows both in Euler and Lagrange set-
tings, see chapter 9. It is for this reason that At this stage, this alternative
approach (i.e. the ‘structural’) has not led to a generally applicable quanti-
tative model, neither – for better or worse – has it a major impact on the
statistical approaches. Consequently the deterministic viewpoint is neither
emphasized nor systematically presented, Pope (2000). This does not mean
that there exists a “generally applicable quantitative model” based on sta-
tistical approaches. It appears that (so far) Liepmann was correct (but a
bit over-optimistic) in his prediction: Clearly, the exploration of the con-
cept of coherent structure is still on the rise. Turbulence is and will remain
the most difficult problem of fluid mechanics, and the past experience sug-
gests that the subsequent fall of interest in the coherent structures is more
than likely. The resulting net gain in understanding of turbulence may be
less than our expectations of today but will certainly be positive, Liepmann,
1979. Unfortunately, (so far) the resulting net gain in understanding of
turbulence is far less than was expected in 1979 and on.

7.5. Summary

Small-scale intermittency of turbulence is associated with its spotty
(spatio-temporal) structure, which among other things is manifested as
a particular kind of non-Gaussian behaviour of turbulent flows (however,

20An example of a typical statement is represented by the following: The emergence of
collective modes in the form of coherent structures in turbulence amidst the randomness
is an intriguing feature, somewhat reminiscent of the mix between the regular “islands”
and the “chaotic sea” observed in chaotic, low-dimensional dynamical systems. The coher-
ent structures themselves approximately form a deterministic, low-dimensional dynamical
system. However, it seems impossible to eliminate all but finite number degrees of freedom
in a turbulent flow–the modes not included form an essential, dissipative background, of-
ten referred as an eddy viscosity, that must be included in the description, Newton and
Aref (2003).
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non-Gaussianity does not necessarily imply intermittency). This deviation
from Gaussianity increases with both the i) Reynolds number and ii) as
the ‘scale’ decreases. In other words intermittency involves two aspects of
turbulent flows – their structure/geometry and statistics. Intermittency
specifically in fluid turbulence is associated mostly with some aspects of its
spatio-temporal structure. Hence, the close relation between the origin(s)
and meaning of intermittency and the structure of turbulence.

There is no turbulence without structure(s). Every part (just as the
whole) of the turbulent field – including the so-called ‘structureless back-
ground’ – possesses structure. Structureless turbulence (or any of its parts)
contradicts both the experimental evidence and the Navier–Stokes equa-
tions. The qualitative observations on the little apparent structure in the
low intensity component or the bulk of the volume with no particular vis-
ible structure should be interpreted as indicating that no simple visible
structure has been observed so far in the bulk of the volume in the flow.
It is a reflection of our inability to ‘see’ more intricate aspects of turbu-
lence structure: intricacy and ‘randomness’ are not synonyms for absence
of structure. This complexity of turbulence phenomena and its structure(s)
makes it necessary and unavoidable to use statistical methods of descrip-
tion/characterization of turbulence phenomena and its structure(s). It is
important to emphasize the distinction between statistics weakly depen-
dent on structure(s) and structure sensitive statistics, which is intimately
related to and underscores the non-Gaussian nature of turbulence. The lat-
ter allows one to obtain information on the structure of turbulence without
knowing anything about its structures’ actual appearance. Statistical de-
scription (not ‘theories’) is the only quantitative alternative to the visual
qualitative methods. We remind the reader that ‘statistical’ means not only
the ‘traditional’ things like means/averages and other simple means, but
all kinds of statistics including rather exquisite ones such as conditional
statistics can be, depending on the nature of problems in question and the
ability/skill of the researcher to formulate such questions.

The view that turbulence structure(s) is(are) simple in some sense and
that turbulence can be represented as a collection of simple objects only
seems to be a nice illusion which, unfortunately, has little to do with real-
ity. It seems somewhat wishfully naive to expect that such a complicated
phenomenon like turbulence can merely be described in terms of collections
of only such ‘simple’ and weakly interacting objects.



CHAPTER 8

TURBULENCE UNDER VARIOUS INFLUENCES
AND PHYSICAL CIRCUMSTANCES

Closer to real-world turbulent flows

8.1. Introduction

As mentioned in chapter 1, there are many factors and influences which
cause a real turbulent flow in nature and technology to deviate from the
idealized homogeneous and isotropic state, sometimes strongly. In the lat-
ter case, turbulent flows may lose most of their resemblance to the three-
dimensional homogeneous isotropic flow, but can be quite similar to the
(quasi-) two-dimensional one. Here we are inevitably back also to the ori-
gins of turbulence but with a different focus: the source sustaining the
turbulence, such as mean shear, buoyancy, electromagnetic forces, shock
waves. In other words there are different kinds of influences. The ‘simplest’
influences are ‘one way’1. They modify the turbulent flow in some way, but
are neither influenced by the turbulent flow nor sustain it, e.g., rotation
under some conditions. Another kind of influences are ‘two way’. They are
truly interactive in the sense that along with modifying the turbulent flow
they are changed by the flow too, e.g., magnetic field, density stratifica-
tion and other active scalars. Under certain circumstances these influences
contribute also to production and sustaining of turbulent flows, such as in
the case of turbulent convection. Turbulent flows with mean shear (strain)
belong to this latter category.

What follows in the sequel is an overview of turbulent flows under var-
ious influences and physical circumstances, which include shear, buoyancy,
rotation, (electro-) magnetic field, compressibility and additives. For obvi-
ous reasons the material of this chapter is limited by only the most im-
portant essential features, simple examples and qualitative aspects with
references on comprehensive sources and some early and latest papers.

1These are ‘one way’ only in some sense since they act not as if the associated terms
were additive and independent of, e.g., nonlinearities. The outcome is due to their inter-
action and mutual influence, which can change qualitatively the nature of and in some
extreme cases suppress the nonlinearity. In this latter case the flow can hardly be quali-
fied as turbulent. Any features in flows under some influence cannot be claimed to arise
due to this influence solely as long as the flow is turbulent, see e.g., Staplehurst et al.
(2008) and references therein.

237
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For the same reasons, no summary is given at the end of this chapter2.
The two main common features of turbulent flows under various in-

fluences and physical circumstances are anisotropy and inhomogeneity3.
Along with other consequences anisotropy results in nonzero off-diagonal
Reynolds stresses, −〈uiuj〉, i �= j, whereas inhomogeneity leads to nonzero
gradients of the Reynolds stresses. Only in the latter case is there a two-
way coupling between the mean flow and the field of fluctuations, since the
Reynolds averaged equations (C.43) for the mean flow contain the gradients
of the Reynolds stresses4. Note that anisotropy can have a great variety of
manifestations. For example, the flow in the proximity of turbulent channel
flow cannot be considered either approximately homogeneous or isotropic
in spite of the fact that in this region both the gradient of the mean veloc-
ity dU1/dx2 and the Reynolds stress are small, because the gradient of the
Reynolds stress, d{−〈uiuj〉}/dx2, is not small.

The Reynolds stresses, −〈uiuj〉, react back on the mean flow. This re-
action results – among other things – in enhanced (turbulent) momentum
transport, and consequently turbulent kinetic energy production−〈uiuj〉Sij .
The simplest manifestation is much larger than in the laminar counterpart
resistance, i.e., large gradients of mean velocity on the wall, and a flat
velocity profile far from the boundaries in the turbulent channel flow.

The total turbulent energy balance for the whole flow domain is

dET

dt
= P + WF −D (C.49)

where ET =
∫

eT dV, eT = 1
2〈u2〉, is the total kinetic energy of turbulent fluc-

tuations, P =
∫
−〈uiuj〉SijdV is the total rate of production/destruction

of energy turbulent fluctuations by the mean strain, Sij, (mean velocity
gradients), WF =

∫
〈uiFi〉dV is the total rate of production of energy of

turbulent fluctuations by the external forces and D = 2ν
∫
〈sijsij〉dV is the

total rate of dissipation (simply dissipation) of energy of turbulent fluctu-
ations by viscosity. If the flow is statistically stationary and is a pure shear

2For example, we do not include mostly empirical material such as the lively discussion
whether the near-wall turbulence has complete similarity, leading to the log law for the
mean velocity, or if it possesses incomplete similarity leading to a power law for the mean
velocity. It seems that with appropriate ‘tuning’ both – being dimensionally correct – do
well, and that without deeper physical foundation than just similarity and dimensional
analysis the ‘controversy’ cannot be resolved. For discussion and references see Monkewitz
et al. (2008).

3An inhomogeneous field is also anisotropic, but not vice versa.
4In case of a (hypothetical) homogeneous shear flow, the mean flow, which is just

U = (Sx2, 0, 0), does not ‘know’ about the turbulent fluctuations, since d〈u1u2〉/dx2 = 0.
Therefore, without some additional sustaining mechanism turbulent fluctuations cannot
be stationary and will decay. Moreover, it was shown by Harris et al. (1977) that such a
flow as a whole (i.e., mean plus fluctuations) is impossible.
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flow, i.e., WF = 0, the dissipation equals production P = D, i.e., P > 0.
If there is no mean flow to supply energy to the field of fluctuations, the
statistically stationary state can be maintained by some external source
(as, e.g., in thermal convection), and the energy balance equation takes the
form WF = D. It is noteworthy that in the presence of some energy supply
other than the mean shear/strain the total rate of production of energy
turbulent fluctuations by the mean strain, P, does not have to be positive
even in the case of statistically-stationary turbulent flow, since in this case
the balance is WF +P −D = 0. This leads to the possibility that the field
of turbulent fluctuations ‘feeds’ the mean flow, as in examples described in
section 8.5.

8.2. Shear flows

We limit the following discussion to ‘simple’ turbulent shear flows, which
have a (quasi-) one-dimensional mean U =(U i, V j, 0), V � U , with slow
streamwise and no spanwise variations, ∂〈· · ·〉/∂x2 � ∂〈· · ·〉/∂x1, ∂〈· · ·〉/
∂x3 = 0, and axisymmetric analogues, where 〈· · ·〉 designates some mean
of any quantity. These are turbulent flows in channels (pipes) and bound-
ary layers (on weakly curved bodies), which are called wall-bounded tur-
bulent flows, and turbulent flows in jets, plumes, wakes and mixing layers,
which are called boundary-free (or simply free) turbulent shear flows. More-
over, for qualitative purposes it is sufficient to assume that U = (U i, 0, 0),
and ∂〈· · ·〉/∂x1,3 = 0 as in turbulent channel flows with x1, x2, x3 for the
streamwise, wall-normal and spanwise coordinates in which all statistical
properties depend on the coordinate, x2, normal to the channel boundary
only. Such a flow possesses a mean vorticity Ω = (0, 0, dU/dx2) having only
a spanwise component, and a mean rate of strain, Sij , with nonzero com-
ponents S12 = S21 = 1

2dU/dx2, and with the eigenvectors along the axes
inclined at π/4 and 3π/4 to the streamwise direction, x1, and corresponding
eigenvalues ΛS

1 = 1
2dU/dx2, ΛS

2 = −1
2dU/dx2 and ΛS

3 = 0.
The turbulent fluctuations are exposed to the persistent action of this

mean strain, which leads to anisotropy of the Reynolds stress tensor of
turbulent fluctuations −〈u1u2〉 in such a way that the eigenframe of the
instantaneous Reynolds stress tensor −u1u2 tends to be aligned with the
eigenframe of Sij , see left column (especially bottom) in figure 8.26. This
alignment occurs in such a way that the term −uiujSij responsible for
turbulent energy production (see equation [C.47]) is positively skewed,
so that its mean is (usually) positive and so is the total rate of pro-
duction/destruction of energy turbulent fluctuations by the mean strain,
P =

∫
−〈uiuj〉SijdV . In fact, the above alignment is nothing but the ten-

dency for alignment between vector ui (more precisely its projection on the
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plane x, y) and the eigenvector of Sij corresponding to its negative eigen-
value, which is seen from the relation −uiujSij = u2ΛS

i cos2(u, λS
i ). It is

noteworthy that this kind of behaviour is of more general nature and is
observed in production of gradients of a passive scalar, energy of a dis-
turbance/error and some other. In such situations the dominant process is
compressing rather than stretching. Shear flows belong to this category.

TKE production in turbulent shear flows The turbulent energy production
in a turbulent shear flow is known to be represented by the term −〈uiuk〉Sik,
with ui being the components of velocity fluctuations, and Sik the mean
rate of strain. In a turbulent flow which is two-dimensional in the mean
(i.e., such that ∂ 〈. . .〉/∂x3 = 0) the production term can be represented as

−〈uiuk〉Sik = −〈u2ΛS
1 cos2(u, λS

1 )〉 − 〈u2ΛS
2 cos2(u, λS

2 )〉 (8.1)

where u2 = u1
2 +u2

2, ΛS
i are the eigenvalues and λS

1 are the corresponding
eigenvectors of the mean rate of strain tensor Sik, and ΛS

1 > 0, ΛS
2 < 0

(ΛS
3 = 0). Since the term associated with the stretching of material ele-

ments is negative, −〈u2ΛS
1 cos2(u, λS

1 )〉 < 0, and the term associated with
the compressing of material elements is positive, −〈u2ΛS

2 cos2(u, λS
2 )〉 > 0,

the production term −〈uiuk〉Sik can be (and usually is) positive due to
positiveness of the term associated with the compressive (negative) eigen-
value/eigenvector [ΛS

2 , λS
2 ], of the mean strain Sik. In this sense the turbu-

lent energy production is due to the predominant compressing of material
elements rather than stretching. One can see that −〈uiuk〉Sik > 0 in a
general shear flow taking into account that ΛS

3 is a positively skewed quan-
tity. The above was observed both experimentally in a turbulent boundary
layer and numerically in a turbulent channel flow, Gurka et al. (2004), see
figure 8.1.

A similar statement is true for the energy flux Π� = −τSGS
ij ≺ Sij � at

scale � for the filtered quantities in the filtering approach. Namely, recalling
that τSGS

ij = ≺ uiuj � − ≺ ui �≺ uj � and passing over to the eigenframe
of ≺ Sij � it is seen that

Π� = −{(≺ u2
i � − ≺ ui �2)Λ≺�

i , (8.2)

where ≺ . . . � means the filtering operation (see appendix 3), ui are the
instantaneous velocity components and Λ≺�

i are the eigenvalues of the
filtered rate of strain tensor ≺ Sij �, and Λ≺�

1 > Λ≺�
2 > Λ≺�

3 and
Λ≺�

1 > 0,Λ≺�
3 < 0 and Λ≺�

2 ≶ 0 with positively skewed distribution. It
is easily seen that the energy flux can be positive if the term −(≺ u2

3 �
− ≺ u3 �2)Λ≺�

3 (which is positive due to ≺ u2
3 � − ≺ u3 �2> 0 and

Λ≺�
3 < 0) corresponding to compression of material elements is dominat-

ing, i.e., the energy flux to small scales is due to such compressing events



TURBULENCE UNDER VARIOUS INFLUENCES 241

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

0.3

0.3

0.2

0.2

0.1

0.1

0

0

0.3

0.2

0.1

0

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

y/h y/h

0 20 40 60 80 0

0 20 40 60 80 100

200 400 600 800 1000
y+y+

Figure 8.1. Eigencontributions −u2ΛS
1 cos2(u, λS

1 ) (top) and −u2ΛS
2 cos2(u, λS

2 ) (bot-
tom) as functions of the distance from the wall. Left – DNS, channel flow, Re = 5600;
Right – experiment, turbulent boundary layer, Re = 27000. In both the notations are
as follows: Solid line, −u2ΛS

1 cos2(u, λS
1 ); dashed line, −u2ΛS

2 cos2(u, λS
2 ); dashed-dotted

line, −u2ΛS
1 cos2(u, λS

1 ) −u2ΛS
2 cos2(u, λS

2 ); circles, −2〈u1u2〉S12. As a check the total
production term −〈uiuk〉Sik was calculated both directly and via (8.1). Gurka et al.
(2004)

rather than stretching. Moreover it is the “backscatter” which is associated
with stretching of material elements. As the energy flux is known to be
positively skewed (Cerutti and Meneveau, 1998; Chen et al., 2003c) the net
flux is due to predominant compressing of material elements rather than
stretching. Note that this statement is in terms of material elements rather
than vorticity which is believed to be stretched in a similar way (Taylor,
1938 and on), though the physics of the two processes is essentially different
(we return in more detail to this issue in chapter 9). In any case it is a clear
indication that the widely accepted belief that ‘vortex stretching plays the
major role in energy cascade’ (for one of the latest examples and references
see Eyink, 2006, 2008) is quite a bit exaggerated and misinterpreted. On
the contrary it is associated with the predominant compression5 and is in
conformity with the mentioned above conclusion by Betchov (1956) that

5of material elements which is qualitatively different from vortex stretching, see
chapter 9.
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the most important processes associated with production of vorticity and
energy transfer resemble a jet collision and not the swirling of a
contracting jet.

Similarly, vorticity (more precisely its projection on the plane x, y) tends
to align in this region with the stretching eigenvector of the mean strain
Sij, which is inclined at the angle π/4 to the streamwise direction (Moin
and Kim, 1985). This tendency is also of more general nature6. In wall-
bounded flows, both alignments are influenced by the wall. Very close to
the wall, the eigenframe of −〈u1u2〉 tends to coincide with the x1, x2, x3, so
that the Reynolds stress −〈u1u2〉 vanishes in the immediate proximity of
the wall. Similarly vorticity, ‘vortices’ and other associated ‘structures’ tend
to be closely aligned with the streamwise direction x1, forming a pattern
of ‘streamwise vortices’ with low speed ‘streaks’ in between. Among other
things the importance of the streaks is in the bursts of intensity of the
fluctuating motion, in which most turbulent kinetic energy is produced
(see figure 8.2 and below). These bursts arise on the background of the
streaks in the low speed regions with inflection points in the profile of the
streamwise velocity component. The meaning/definition(s) of the quasi-
streamwise vortices close to the wall and structures in the outer region
such as horseshoe or hairpin vortices with two and/or one leg, asymmetric
staggered vortices and many others, vary considerably among authors in the
turbulent shear flows community (see Panton, 1997 and references therein;
also Chacin and Cantwell, 2000). A recent conception of a hairpin vortex
packet is promoted by Adrian et al. (2000). It is certain that all turbulent
shear flows produce streamwise, ω1 (and also wall-normal, ω2) vorticity, in
patterns possessing some structure with a number of robust features, which
cannot be identified as purely random7.

The quasi-streamwise vortices are believed to be the dynamically impor-
tant feature of turbulent flows that is mostly responsible for the turbulent
momentum transport, i.e., the Reynolds stress −〈u1u2〉, and consequently
turbulent kinetic energy production. However, this interpretation is not nec-
essarily the correct one as is shown in the example of the fully-developed
turbulent flow such as the flow in a plane channel considered in section 6.6.

6Namely, vorticity tends to align with the stretching eigenvector of the large-scale
‘part’ of the rate of strain tensor (Kevlahan and Hunt, 1997; Porter et al., 1998; Ham-
lington et al., 2008). This does not contradict the tendency of vorticity to align with
the eigenvector corresponding to the intermediate eigenvalue of the instantaneous rate of
strain (and its fluctuative part).

7Creation of streamwise vorticity is an inherent property of many flows possess-
ing background spanwise vorticity with a primary instability that is two-dimensional.
The secondary instability leads to the formation of streamwise ‘vortices’ (Brown, 1970;
Pierrehumbert and Widnall, 1982; Phillips et al., 1996 and references therein).
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Figure 8.2. Turbulent boundary layer as visualized by hydrogen bubbles. Top view:
a) y+ = 2.7, b) y+ = 38, c) y+ = 407 (Kline et al., 1967). Side view: d), e) – selected
frames showing formation and breaking of a streamwise vortex motion, f) – same for a
transverse vortex motion, g) – showing a ‘wavy mode’ of bursting (Kim et al., 1971)

In such a flow
〈u1u2〉 ≡

∫ x2

0
〈ω2u3 − ω3u2〉dx2, (8.3)

i.e., the Reynolds stress is associated directly with the wall-normal and
spanwise vorticity components ω2 and ω3, but not with the streamwise
vorticity component ω1. In fact, more important is the x1-dependence,
since a flow having also a ω1-component, but lacking the x1-dependence
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is impotent in the sense that, in such a flow, there is only one-way cou-
pling between the flow in the cross-stream plane, x2, x3 and the streamwise
flow. Namely, the flow in the cross-stream plane influences the streamwise
flow, but the streamwise flow does not affect the flow in the cross-stream
plane. Consequently there is no source of energy to sustain the flow in the
cross-stream plane. Moreover, a pure two-dimensional ‘turbulent’ channel
flow8, possessing no streamwise vorticity at all (it has only spanwise vor-
ticity, ω3) is capable of producing considerable Reynolds stresses (see fig-
ure 8.22). In any case the relation (8.1) or the one from which it follows,
d〈u1u2〉/dx2 = 〈(ω × u)1〉, (6.5), show the importance of vorticity in main-
taining the Reynolds stresses in turbulent flows (Tennekes and Lumley,
1972). We recall that in turbulent shear flows 〈(ω × u)〉 �= 0, whereas it is
vanishing in homogeneous turbulent flows.

The origin of the (coherent) structures in turbulent shear flows is usu-
ally associated with some kind (not well defined) instability of imaginary
flows with turbulence but without coherent structures (Lumley and Yaglom,
2000). This kind of instability is sometimes considered to be the driv-
ing instability of the underlying mean flow in fully-developed turbulence
(Roshko, 1993). A constructive example of such an approach is given by
Nikitin and Chernyshenko (1997). They looked at the instability of the
mean flow in the near-wall region resulting from the action of a ‘body
force’ ∂Q/∂x2, Q = 〈u3u3〉 − 〈u2u2〉. The resulting spacing between the
fastest growing modes is the same as experimentally observed between the
low speed streaks. It is noteworthy that this agreement is achieved by us-
ing an empirical expression for Q by approximating the data from DNS.
Another view is that coherent structures result from the preferential am-
plification of a particular class of perturbations (Farrell and Ioannou, 1998;
Marasli et al., 1991). However, this approach is based on the linear stability
theory, which means that turbulent flow should have quite long ‘memory’
and ability for selective amplification in the sea of broadband excitation
(including direct excitation of small scales) occurring in naturally arising
turbulent flows. Alternatively this may mean that at least in some flows
(as mixing layers, wakes) the large-scale structure(s) result(s) from a large-
scale instability not related directly to the turbulent nature of the flows
under consideration.

The origin of coherent structures in the wall turbulent shear flows is
also associated with the phenomenon of bursting. This name was given by
Kline et al. (1967) to the sequence of events happening to the near-wall

8It is noteworthy that the interaction of fluctuations and the mean flow is essentially
three-dimensional, i.e., it involves u3 fluctuations. Therefore, it was believed that pure
two-dimensional flows are incapable of developing appreciable Reynolds stressess (Ten-
nekes and Lumley, 1972, p. 41).
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Figure 8.3. Time records of the streamwise, u, and normal, v, components of velocity
fluctuations, and the Reynolds stress, uv, the latter exhibiting an intermittent behaviour
(Wei and Willmarth, 1989)

structures: lift up, oscillation and break up (or down; see figure 8.2). Other
people found an ‘ejection sweep cycle’ similar to bursting; see Cantwell
(1990), McComb (1990) and Holmes et al. (1996) for an overview of what
is called coherent structures and associated phenomena in turbulent shear
flows. The first evidence was obtained from flow visualizations. These were
interpreted as some sort of secondary instability producing a burst of instan-
taneous Reynolds stress, u1u2, mainly responsible for the turbulence pro-
duction and maintaining in the wall-bounded flows. The bursty behaviour
of u1u2 was observed directly in measurements, for example by Lu and
Willmarth (1973; see figure 8.3) and many others. It is the right place to
be reminded (see section 7.2.2) that the intermittent behaviour of u1u2 can
be accounted for solely by the multiplicative nature of the Reynolds stress
(as a product) assuming both u1 and u2 to be Gaussian with the corre-
lation coefficient between them adjusted from the experiment (−0.44). In
such a way the PDF of u1u2 is approximated with high precision (Lu and
Willmarth, 1973). This means that dealing with such signals one has to
be able to separate such ‘false’ intermittency from the one inherent to the
flow field. Relatively simple low-dimensional systems also exhibit features
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Figure 8.4. The self-sustaining process, courtesy of Professor F. Waleffe

like the bursting phenomenon (Holmes et al., 1996, 1997 and Knobloch and
Moehlis, 2000). There seems to be little doubt that in real turbulence the
bursting phenomenon is a result of its dynamics, but the above examples
(see also Tsuji and Dhruva, 1999), show that such phenomena may arise
not necessarily for the ‘right’ reasons. The bursting process involves most
of the scales from those represented by the velocity field to those related to
the velocity derivatives. In terms of time scales, the duration of the bursts
is pretty short; it is a fast process. Therefore, it is likely that the burst-
ing process is associated with strain-dominated regions, just as in the case
of nonsheared turbulent flows the most intense nonlinear activity is associ-
ated with the regions dominated by strain (see chapter 6 and the discussion
below at the end of this section).

The near-wall structure of wall-bounded turbulent flow is closely related
to the process of production and self-sustaining of turbulence in such flows.
Attempting to get an insight into the details on how energy is fed in the field
of fluctuations in turbulent shear flows, such a self-sustaining mechanism
was proposed by Waleffe (1990; see figure 8.4) the essence of which is a
nonlinear mechanism consisting of creation, destruction and regeneration
of streaks.

The proposal by Waleffe (1990) was followed by a convincing confirma-
tion of such mechanisms in direct numerical simulations, though not with-
out a variety of disagreements (Jimenez and Pinelli, 1999; Panton, 1997 and
Waleffe and Kim, 1998). Waleffe (1990) also proposed that the streak spac-
ing of ∼100 wall units, i.e., x+

2 = x2u
+/ν, u+ = (νdU/dx2|x2=0)1/2, should

be considered as a critical Reynolds number for transition from laminar
1D flow to a 3D finite amplitude state in shear flows. The 100+ spacing
would then correspond to the smallest Reynolds number at which a flow
can be maintained in a state different (not necessarily turbulent) from uni-
directional laminar flow. This idea is based on the computations by Jimenez
and Moin (1991) for different Reynolds numbers, the main result of which
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is that turbulent flow cannot be maintained in boxes which are narrower
than 100 wall units in the spanwise direction. The self-sustaining processes
are known to exist in other flows, e.g., in the near wake of a bluff body (see
Huerre and Rossi, 1998).

The three-dimensional self-sustaining process (SSP) is reminiscent of
enstrophy and strain self-production, discussed in section 6.3. The differ-
ence is that in the SSP energy is fed into the system directly, whereas, in
case of self-amplification of the field of velocity derivatives, they are pro-
duced entirely by the fluctuative field itself, once created and supported by
the velocity field. In case of turbulent shear flows, there are many terms
contributing to production of enstrophy and strain (see equations [C.51,
C.53] in appendix C). Well-known order of magnitude estimates (Tennekes
and Lumley, 1972) show that at large Reynolds numbers production of
enstrophy, 1

2〈ω2〉, is mainly associated with the term 〈ωiωksik〉, i.e., with
the self-amplification of the field of vorticity/strain fluctuations. According
to these estimates contributions to the enstrophy production associated
with the mean velocity gradient, 〈ukωi〉∂Ωi/∂xk, 〈ωiωk〉Sik, Ωk〈ωisik〉,
i.e., due to presence of mean vorticity Ωi and strain Sij, are small com-
pared to 〈ωiωksik〉. Similar estimates remain valid for the production of
the total mean squared strain s2 ≡ 〈sijsij〉 (see equation [C.53]). Namely,
its production is mainly due to the term −〈sijskiski〉, whereas contribu-
tions to the strain production associated with the mean velocity gradient,
−〈uksij〉∂Sij/∂xk, 〈sijsjk〉Skj, are small compared to −〈sijskiski〉.

The field experiments by Kholmyansky et al. (2001b), Gulitski et al.
(2007) at Reλ ∼ 104 showed that this is really the case. The largest terms
among the mentioned above, 〈ukωi〉∂Ωi/∂xk and −〈uksij〉∂Sij/∂xk are two
orders of magnitude smaller than 〈ωiωksik〉 and −〈sijskiski〉.

It appears that the dominance of 〈ωiωksik〉 and −〈sijskiski〉 and ‘small-
ness’ of the RDT-like terms may occur already at rather moderate Reynolds
numbers. Such an example is given by Sandham and Tsinober (2000) for
a turbulent channel flow at the overall Re = 3300, based on the half chan-
nel width and the mean velocity at the centreline (see figure 8.5). The
main result, shown in 8.5, is that the terms 〈ωiωksik〉 and −〈sijskiski〉 are
indeed the dominant ones, except in the proximity of the wall, x+

2 < 20,
x+

2 = x2u
+/ν, u+ = (νdU/dx2|x2=0)1/2. In the region close to the wall the

terms 〈ωiωksik〉 and −〈sijskiski〉 remain of the same order as some of the
RDT-like terms. This result is consistent with the one obtained by Kim
(1989) in his analysis of pressure fluctuations in simulated channel flow.
Contrary to the common belief that the RDT-like contribution to pressure
is the dominant component, Kim found that the pure nonlinear pressure
is comparable near the wall and is larger away from the wall than the
RDT-like contribution.
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Figure 8.5. Budgets of from top to bottom kinetic energy, enstrophy and strain mag-
nitude showing near-wall behaviour on the left and channel central region on the right.
Solid, dashed, chain dot, and chain triple-dot stylelines refer respectively to terms 1–4
in the equations (C.48′), (C.51′) and (C.53′). The approximate sign means that other
terms in the equations (C.48), (C.51) and (C.53) in appendix C turn out to be small in
the channel flow. From Sandham and Tsinober (2000)

We mention also another result of importance for section 8.9. Namely,
there is a strong correlation between vorticity and strain in the proximity
of the wall, x+

2 < 20, so that ω2 = 2s2 instantaneously at x+
2 ≤ 10. Far

away from the wall, they are decorrelated, as in homogeneous turbulence.
In this latter case (see chapter 6), most enstrophy production, produc-
tion of strain/dissipation and other nonlinear processes are associated with
large strain, rather than with intense vorticity (large enstrophy). This was
observed also by Kholmyansky et al. (2001b) at Reλ = 104 in the field ex-
periments, and by Sandham and Tsinober (2000) in the turbulent channel
flow.

DU 〈eT 〉
Dt

≈ − ∂

∂xj
{〈ujeT 〉 − 2ν〈uisij〉} − 〈uiuj〉Sij − 2ν〈s2〉. (C.48′)

1
2

DU 〈ω2〉
Dt

≈ 〈ωiωjsij〉 + 〈ωiωj〉Sij + 〈ωisij〉Ωj + 〈νωi∇2ωi〉. (C.51′)

DU
1
2 〈sijsij〉
Dt

≈ −2〈sijsik〉Skj − 1

2
〈ωisij〉Ωj − 〈sijsjkski〉 − 1

4
〈ωiωjsij〉 + νsij∇2sij .

(C.53′)
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Figure 8.6. Time-averaged Reynolds stress (left), turbulent kinetic energy generating
events (center) and dissipative events in the R − Q plane. From Chacin and Cantwell
(2000)

A similar phenomenon was observed in a recent analysis of flow in a tur-
bulent boundary layer by Chacin et al. (1996), Chong et al. (1998) and
Chacin and Cantwell (2000). These authors used directly the eigenvalues
and invariants of the velocity gradient tensor ∂ui/∂xj . In particular, they
looked at various flow properties in association with the invariant map
of the second invariant, Q = 1

4ω2 − 1
2siksik versus the third invariant,

R = −1
3sikskmsmi − 1

4ωiωksik of the velocity gradient tensor. One of the
most interesting (from our point of view) findings is that the main contribu-
tion to the shear stress, turbulent energy production, and dissipation comes
from the regions with Q < 0 with larger contribution from the lower right
quadrant, i.e., Q < 0 and R > 0, not only dominated by strain, but also by
production of strain, −sikskmsmi, see figure 8.6 and also figures 5, 8, 11
and 14 in Chacin and Cantwell (2000). It should be emphasized that these
regions are mainly not the ones corresponding to vortices (hairpins or what-
ever), which are located mostly in the regions with Q > 0, or a bit more
precisely in regions with D > 0, where D = 27

4 Q3 + R2 is the discriminant
of ∂ui/∂xj . That is the regions of major nonlinear activity are really associ-
ated with large strain (mainly corresponding to what Chacin and Cantwell
call ‘blank’ spaces) rather than with regions of concentrated vorticity with
lower dissipation (see Tsinober, 2000 for similar results in quasi-isotropic
turbulence). In other words, it seems that concentrated vorticity is not
that important also in turbulent shear flows and that structure(s) associ-
ated with turbulence (not only its energy) production are mainly due to the
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large strain rather than large vorticity9. Structure(s) associated with the
latter seem to be a consequence of the turbulent dynamics rather than its
dominating factor10.

In closing this section we mention that, in wall-bounded turbulent flows,
there are two factors influencing turbulence: the mean shear and the bound-
ary. Hence in order to ‘isolate’ the second factor, one can look at the shear-
free turbulent flows near different boundaries, solid and free, permeable and
not (see Aronson et al., 1997 and references therein).

8.3. Partly-turbulent flows – entrainment and phenomena
in the proximity of interfaces

. . . the intermittent character of the disturbance. The dis-
turbance would suddenly come on through a certain length
of the tube and pass away and then come on again, giving
the appearance of flashes, and these flashes would often com-
mence at one point in the pipe . . . This condition of flashing
was quite as marked when the water in the tank was very
steady, as when somewhat disturbed (Reynolds, 1883).
In reality, however, every turbulent flow is bounded by fluid
not in turbulent state (Corrsin and Kistler, 1955).
One of the properties of the region of rotational turbulent
flow is that the exchange of fluid between this region and
the surrounding space can occur only in one direction. The
fluid can enter this region from the region of potential flow,
but can never leave it (Landau and Lifshits, 1959).
. . . entrainment – the erosion by turbulence of the underly-
ing non-turbulent fluid . . . (Phillips, 1966).

9This fact is, in a way, not so unexpected because it is the strain that is responsible
for local deformation of fluid elements (and, consequently, dissipation in Newtonian and
non-Newtonian fluids), whereas vorticity acts locally only as a rigid rotation. It is, there-
fore, likely that the turbulent strain is the cause of quite a fascinating phenomenon of
bioluminescence (known, at least, since the fifteenth century, Harvey, 1952) in turbulent
wakes of ships and dolphins in warm seas (Vasil’kov et al., 1992; Herring, 1998). Rohr
et al. (1997) found that turbulent flow is necessary to provide significant bioluminescence
stimulation. They suggested using bioluminescence as a flow diagnostic. This same idea
was communicated to the author by Y. Couder and S. Douady in 1995 in Paris.

10The interpretation of the results by Chacin and Cantwell (2000) given here is not in
full agreement with their conclusions, especially regarding the role of vortices and concen-
trated vorticity. This does not contradict (6.5), (8.1) stating the importance of vorticity
in maintaining the Reynolds stress. First, these are relations for the mean quantities, and
second, there is no turbulent flow without vorticity. However, important details of the
relations between Reynolds stress, vorticity, strain and their production remain not clear
enough.
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Partly-turbulent flows have already been mentioned in chapters 1 and 2.
The main special features of these flows are the coexistence of regions with
laminar and turbulent states of flow and continuous transition of laminar
flow into turbulent via the entrainment process through the boundary be-
tween the two. In fact, most turbulent flows are partly-turbulent: boundary
layers, all free shear turbulent flows (jets, plumes, wakes, mixing layers),
penetrative convection in the atmosphere and in the ocean, gravity cur-
rents, avalanches and other phenomena at the boundary between single
phase fluid and fluid loaded by a sediment (which includes resuspension),
clear air turbulence, and many others (e.g., combustion). Transitional flows
consisting as a rule of turbulent regions growing in a laminar environment
are also partly-turbulent flows.

The so-called external intermittency is associated with the coexistence
of laminar and turbulent flow regions – an observer located in the proximity
of (either side of) the ‘mean’ boundary between these regions observes
intermittently laminar and turbulent flow in the form of a signal similar
to that as, say ω2, in figure 1.17, see also figure 21.4 in Tritton (1988),
clearly demonstrating the external intermittency in the wake past a circular
cylinder. Here we again encounter the question about what turbulence is.
When we look at a flow like the one in figure 1.3 or figure 151 in van
Dyke (1982), we clearly see what is turbulent and what is laminar. But
the question is how one can say whether a small part of flow is turbulent.
In other words if turbulence is to be identified by statistical means, then
what is the meaning of ‘turbulent’ locally? This involves taking decisions
about what is turbulent using some (conditional) criterion (see discussion
and references in Kuznetsov et al., 1992).

This distinction starts with Reynolds (1883) in the form of such quali-
tative description of transitional phenomena as flashes of turbulence in the
pipe, i.e., he makes a clear distinction between laminar and turbulent flow
regions (quasi-) locally without invoking any statistical characteristics. The
first physically qualitative distinction between turbulent and non-turbulent
regions made by Corrsin (1943) and Corrsin and Kistler (1954, 1955), is
that turbulent regions are rotational, whereas the non-turbulent ones are
(practically) potential, thus employing one of the main differences between
turbulent flow and its random irrotational counterpart on the ‘other’ side
of the interface separating them. It is difficult to implement such a dis-
tinction, since it requires information on vorticity which until recently was
not accessible, and no experiments are known to adequately employ vor-
ticity in studying the properties of the laminar-turbulent interface and the
entrainment across it11. The analysis by Bisset et al. (2001) of the data
from direct numerical simulation of a temporally developing plane wake

11An attempt was made by Foss and Klewicki (1984) to measure and use for this
purpose the spanwise vorticity component in a plane shear layer.
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by Moser et al. (1998) confirmed Corrsin’s approach. One can see a steep
change of vorticity across the laminar-turbulent interface, and a much less
sharp change in temperature.

Corrsin discovered that i) the boundary between the two regions is
essentially a thin interface which he called the ‘viscous superlayer’, in which
viscosity plays a dominant role, and ii) the ‘effectiveness’ of the entrainment
process is strongly enhanced by the large-scale undulations of the interface
due to large-scale motions which result in engulfment of irrotational fluid
into the turbulent flow.

The main mechanism by which non-turbulent fluid becomes turbulent
as it crosses the interface is believed to involve viscous diffusion of vortic-
ity across the surface. As this process is associated with small scales it is
thought to be the reason why the interface appears sharp compared to the
scale of the whole flow.

However, at large Reynolds numbers, the entrainment rate and the prop-
agation velocity of the interface relative to the fluid are known to be in-
dependent of viscosity (see for example Ricou and Spalding, 1961; Hinze,
1975; Townsend, 1976; Tritton, 1988 and Hunt et al., 2006 for more in-
formation and references). Therefore the slow process of diffusion into the
ambient fluid must be accelerated by interaction with velocity fields of ed-
dies of all sizes, from viscous eddies to the energy-containing eddies so that
the overall rate of entrainment is set by large-scale parameters of the flow
(Townsend, 1976). That is although the spreading is brought about by small
eddies [viscosity] its rate is governed by the larger eddies. The total area
of the interface, over which the spreading is occurring at any instant, is
determined by these larger eddies (Tritton, 1988). This is analogous to in-
dependence of dissipation of viscosity in turbulent flows at large Reynolds
numbers. In other words, small scales do the ‘work’, but the amount of work
is fixed by the large scales12 in such a way that the outcome is independent
of viscosity. This shows that independence of some parameter of viscosity
at large Reynolds numbers does not mean that viscosity is unimportant.
It means only that the (cumulative) effect of viscosity is Reynolds number
independent.

It is important that becoming rotational is only a necessary condition of
becoming turbulent13. Once the irrotational fluid acquired some vorticity
via viscous diffusion this vorticity is amplified by the process of predominant
vortex stretching due to the random nature of the motion in the proximity

12In fact, there is strong bidirectional coupling between the large and small scales, i.e.,
the small scales are not passive as usually claimed.

13For example, becoming rotational in pure two-dimensional flow does not help much:
entrainment is an essentially three-dimensional process – vorticity and strain cannot be
amplified in two-dimensional flows.
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of the interface, though there is no direct evidence that this really happens.
This points to another possibility. Due to the random nature of the flow
at both sides of the interface a small amount of ‘seeding’ of vorticity will
bring into action the mechanism of the predominant vortex stretching in
the ‘irrotational’ part of the flow. There is no evidence that this really hap-
pens either. Some indication comes from the equation (6.10, see chapter 6)
showing that an initially Gaussian and irrotational velocity field with a
small seeding of vorticity will produce – at least for a short time – an es-
sentially positive enstrophy production (as well as production of strain)
though strictly this is true for homogeneous turbulence. This mechanism
can be effective with a sufficient level of seeding vorticity and only in the
proximity of the interface where large strain should exist (e.g., Bisset et al.,
2001), because the fluctuations attenuate exponentially with the distance
from the interface in the irrotational part of the flow14. Since in real flows
it is likely that some small amount of vorticity is always present in the
‘potential’ part of the flow, this second possibility would seem quite real-
istic. It appears, however, that the small-scale phenomena at the interface
are more involved and the small-scale nibbling of the non-turbulent flow
region by the turbulence at the interface consists not only of a nontrivial
interplay of both diffusion of vorticity by viscosity and vorticity amplifica-
tion via predominant vortex stretching in the proximity of the interface. An
important additional process is associated with the strain production and
viscous destruction. All these processes are enhanced due to the strongly
convoluted shape of the interface caused by motions on a wide range of
scales which includes what is sometimes called large-scale engulfment.

Typically, partly-turbulent flows involve shear and other influences as
stratification, etc. However, in order to systematically address the physical
processes in the proximity of turbulent/non-turbulent ‘interface’ (TNTI) it
is logical to start from the simplest configuration without a mean shear or
other influences with an emphasis on the “small-scale” processes associated
with vorticity, strain and fluid particle accelerations. We recall (chapters
1–4, 9) that the continuous transition of laminar flow into turbulent flow in
the proximity of the TNTI is of distinctly Lagrangian nature as it happens
with fluid particles which are purely Lagrangian objects. Hence the neces-
sity of the Lagrangian approach in studying this transition process. This
approach was adopted in the study of flow properties in the proximity of a
propagating interface produced by an oscillating grid (Holzner et al., 2007,
2008, 2009) via particle tracking velocimetry (PTV) and DNS in a similar
configuration. One of the first results is a qualitative difference between
the behavior of vorticity and total strain s2 on the irrotational side of the
TNTI15 and on its turbulent side, see figure 8.7, and figures 8.8–8.10.

14See Landau and Lifshits (1959, p. 129) for a simple explanation of this attenuation.
15Note that the term “irrotational” is used for the region which is not all really irro-
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Figure 8.7. Schematic of the proximity of the TNTI. Courtesy A. Liberzon

Figure 8.8. Logarithmic contour levels of ω2 (left) and 2s2 (right) from a DNS snapshot
at x3 = 2.5L. The color bar refers to both, (a) and (b) and the axes are normalized by
the integral length scale L. Holzner et al. (2009)

While vorticity is practically vanishing in all this region, the strain re-
mains finite especially close to the TNTI and becomes (exponentially) small
far away from the TNTI.

The initiation of the process of entrainment can be seen as started on
the irrotational side of the TNTI via the production of strain due to its self
production −sijsjkski and the strain-pressure Hessian interaction −sijpij

(pij ≡ ∂2p
∂xi∂xj

) see figures 8.10 right and 8.11.
Note that on the irrotational side both −sijsjkski and −sijpij have the

form of a flux ∂/∂xi{. . .}, i.e., their nonzero (as observed positive) means

tational. The very proximity of the region x2 < 0 is rotational. This is due to the special
choice of the origin of x2 = 0, see below.
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Figure 8.9. Average profiles of a variety of quantities from PTV (symbols), and DNS
(lines) relative to the TNTI. Left – enstrophy and strain, Right – quantities involved in
the strain balance equation. The axes are normalized by using the Kolmogorov length
and time scales. The error bars represent the accuracy of the measurement. The symbol
〈· · ·〉 denotes the ensemble average of the respective quantity. Holzner et al. (2009)

Figure 8.10. Conditionally-averaged Lagrangian evolution of quantities involved in the
enstrophy (left) and strain (right) balance equation, DNS. Holzner et al. (2008)

are essentially due to the inhomogeneous nature of the flow in the proximity
of TNTI. It is seen that the strain-pressure Hessian term, −sijpij, is more
effective than the self production, −sijsjkski, in the strain production both
in magnitude and at much farther distances. This is because −sijpij is
nonlocal, whereas −sijsjkski is local.
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Figure 8.11. Left – PDF of the cosine between the rate of strain tensor and pressure
Hessian for the turbulent (solid line) and irrotational (dashed line) regions. Right – Joint
PDF of the rate of change of strain versus the product of the rate of strain tensor and
pressure Hessian in the irrotational region, DNS. Holzner et al. (2009)

Figure 8.12. Average profiles of the modula of (left) acceleration, pressure gradient and
viscous term and (right) Lagrangian acceleration and its Eulerian components. PTV –
symbols, and DNS – lines. Note that the dominating contribution to the acceleration in
the irrotational region is made by its local component al. Holzner et al. (2009)

The strain production on the irrotational side of the TNTI aids the
enstrophy production closer to the TNTI, the latter occurring with some
delay. Indeed, the peaks of Ds2/Dt, −sijsjkski, and −sijpij are located
farther into the irrotational flow region than those of Dω2/Dt, ωiωjsij

and especially νωi∇2ωi (see figure 8.9) A feature of special interest is the
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behavior of the viscous term νωi∇2ωi: it has a distinct positive maximum.
This is the reason for using the location of the maximum of the viscous
term as an objective location of the ‘interface’, defined in a physically more
appealing way than the threshold-dependent crossing. The main contri-
bution to the enstrophy production close to the TNTI on the x2/η < 0
side is mainly due to the viscous production (νωi∇2ωi is positive in the
mean) with a smaller contribution from the inviscid enstrophy production
ωiωjsij. This, in fact was conjectured by Corrsin. The viscous term re-
mains positive and active in a small region x2 > 0 (a bit larger than that
for x2 < 0), where it aids activation in full of the enstrophy production.
At a short distance of the order of few Kolmogorov lengths on the x2 > 0
side both terms become ‘normal’ as they are in the usual turbulent flow,
i.e., in the mean ωiωjsij is positive and νωi∇2ωi (changing sign) is negative
and thus balance each other (T-L balance). The viscous term ν∇2ωi in the
equation for vorticity is usually interpreted as ‘diffusion due to viscosity’.
Though formally correct this interpretation hides an important conceptual
aspect, since ν∇2ω = (1/ρ)curlFs, where F s

i = 2ν∂sik/∂xk is the force due
to viscous stresses which arise due to gradients of strain. Thus the term
νωi∇2ωi reflects the interaction between strain and vorticity due to viscos-
ity. One more aspect concerning the term νωi∇ωi is that it can be positive
in the mean (as observed in the proximity of the TNTI) due to the inho-
mogeneity of the flow. Indeed, ωi∇2ωi ≡ ∇2(ω2/2) − (∂ωi/∂xk)(∂ωi/∂xk)
and only the purely diffusive term ∇2(ω2/2) (which vanishes for a homo-
geneous flow) can make the viscous term positive in the mean, see inset in
figure 8.916. A noteworthy aspect is also the difference in the behavior of
the vorticity and strain related quantities. In particular, the viscous term
νsik∇2sik is negative in the mean everywhere; i.e., it is not contributing
to the production of s2. As mentioned the strain production due to self
production −sijsjkski and the strain–pressure Hessian interaction −sijpij

(pij ≡ ∂2p
∂xi∂xj

) is significant in the irrotational region in which no analogue
exists for enstrophy. There are also differences as reflected in quantities like
accelerations and pressure gradients. The acceleration of a fluid particle is
precisely irrotational in the region x2 < 0 (except very close to the origin)
and a (=−∇p) ≈ al (a = al + ac; al = ∂u/∂t; ac = (u · ∇)u), since ac is
quadratic in velocity. This is similar, but qualitatively different from the
region x2 > 0 in which the acceleration is also dominated by the pressure

16Note that the above decomposition of νωi∇2ωi – though useful – has a limitation
since it is not unique and there is an infinite number of possibilities to represent it as
a sum of a ‘dissipation’, i.e., a negatively defined quantity, and a flux term, i.e., as a
divergence of some vector. For example, ω · ∇2ω = (∇× ω)2 −∇ · {ω × (∇× ω)}.

There is no way to define dissipation (i.e., to choose one among many purely negative
expressions) of enstrophy as it is not an inviscidly-conserved quantity, unlike kinetic
energy (Tsinober, 2001a).
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gradients, i.e., in some sense a ≈ −∇p, but not precisely17, i.e., a �= −∇p.
Here the the relation a ≈ −∇p is due to strong cancellation between al and
ac thus leading to eliminating most (but never all) of the solenoidal part in
the sum al + ac. These aspects are reflected in figure 8.12.

The above features reflect some of the basic aspects of turbulent pro-
cesses such as entrainment in the proximity of the interfaces between tur-
bulent and non-turbulent regions in partly-turbulent flows as concerns the
‘small-scale’ properties. It is hoped that they are universal, at least qualita-
tively. One cannot expect quantitative universality due to the non-universal
nature of the large-scale properties in different flows. The small-scale pro-
cesses can be considerably modified in the presence of shear, stratification
and other influences, but also can react back on the large scales18. The real
challenge is the simultaneous study of direct and bidirectional (i.e., local
and nonlocal) interaction of the large- (e.g., velocity field) and small-scale
(e.g., vorticity and strain) flow properties in the proximity of TNTI. An
important issue of basic interest is whether the above described features
are qualitatively the same in transitional flows such as in the proximity of
the TNTI in puffs and slugs in transitional pipe flows and turbulent spots.

8.4. Variable density

There are several effects causing variations of fluid density. These are due
to variations of temperature, presence of additives (salt, moisture, small
particles) and compressibility. All of them can have a profound influence
on the properties of turbulent flows and lead to a number of new effects.
For example, in many cases (but not always) fluids with variable density
can support waves, so that regions with turbulence can radiate such waves
and can interact with waves radiated from other regions (see figure 8.15).
Turbulence can be produced locally by the breaking of such waves, which
also may transfer momentum and energy to the mean turbulent flow. An-
other important effect is anisotropy appearing, for example, in the presence

17The difference is essential. In the region x2 < 0 the flow is irrotational (a = −∇p),
whereas in the region x2 > 0 the flow field contains both irrotational and solenoidal
components (u = ∇φ + ∇× ψ; ∇2φ = 0) in the proximity of TNTI and only far away
becomes almost strictly solenoidal (u ≈ ∇× ψ) as in ‘usual’ turbulent flows; it is strictly
solenoidal, that is u = ∇× ψ, for example, in homogeneous turbulent flows or in flows
with periodical boundary conditions. In this region a = −∇p + ν∇2u. The viscous term
though small, e.g., in the sense of RMS (see chapter 6) it plays obviously an essential
role: there is no turbulence without a dissipative term.

18There is an interesting issue associated with the irrotational nature of the flow on
one side of the TNTI and solenoidal far enough from the TNTI on the other. Due to the
‘engulfment’ is it natural to expect existence of ‘approximately’ irrotational blobs in the
turbulent side with weak vorticity – at least close to the the TNTI. One is curious to
compare them with regions with the same level of vorticity (just voids of enstrophy) in
the turbulent region far away from the TNTI as the latter are rotational.



TURBULENCE UNDER VARIOUS INFLUENCES 259

of gravity. Finally, additional mechanisms of vorticity production and dis-
sipation arise in some flows with variable fluid density.

8.4.1. CONVECTION

The term (free) convection refers usually to buoyancy-induced flows pro-
duced by inhomogeneity of fluid density in the presence of gravity. Thus,
convection can be thermogravitational if the density variations are caused
by changes of temperature, thermohaline (double-diffusive) if the density
inhomogeneity is due to both variations in temperature and salt content (or
salts with different diffusivities)19, and compositional if the density varia-
tions are caused mainly by changes of composition such as those occurring
in the presence of crystallization (ice, salt, magma) or resulting from disso-
lution/melting. Convection is a most typical example of a situation when
turbulence is produced and driven by a mechanism totally different from
mean shear. The simplest situation is when a heavier fluid is overlying
lighter fluid, a state referred to as unstable stratification. Closely related
are turbulent motions resulting from the so-called Rayleigh–Taylor instabil-
ity (Dalziel et al., 1999) and Richtmyer–Meshkov instability (Prasad et al.,
2000).

The term convection is used to emphasize the fact that the only reason
for the motion is the spatial inhomogeneity of fluid properties, which in turn
is changed by the fluid motion and which therefore contrast with passive
objects, which are not felt by turbulent motions.

Turbulent convection sets in at large enough imposed gradients of, say,
temperature or heat flux, reflected in large values of appropriately defined
Rayleigh numbers, Ra = gαΔTd3/νκ, – a non-dimensional imposed tem-
perature difference ΔT , where g is the acceleration due to gravity, d is
some external characteristic length (depth of the heated fluid layer), and
α, ν and κ are the fluid properties, respectively coefficient of thermal ex-
pansion, kinematic viscosity and thermal diffusivity. The flow properties of
both turbulent convection and its onset20 depend on a further parameter
– the Prandtl number, Pr = ν/κ. Systematic description and review (with
plenty of references) of turbulent convection is found in Tritton (1988),

19In the case of several species contributing to fluid density, convection arises also when
the fluid density is homogeneous and even statically stably-stratified, but the content of
individual species is not homogeneous. The flow motion then is induced by the differences
in diffusion properties of the species and subsequent instability leading to a release of
the potential energy of the unstably (top-heavy) distributed component(s) (see Turner,
1985).

20The transitional regimes in thermal convection may exhibit an entire sequence of
states of flows. For example, convection in a horizontal layer heated from below exhibits
at least eight transitions judging by the behaviour of the dependence Nu(Ra) (Zimin and
Frik, 1988; Siggia, 1994 and references therein).
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Siggia (1994), Zimin and Frik (1988); see also Niemela et al. (2000) and
Ahlers et al. (2008). Here, as usually in this chapter, we deal mostly with
simple examples and qualitative aspects.

Several examples of convection are shown in figure 8.13. Just like in
turbulent shear flows it was only recently recognized that there also ex-
ist in turbulent convection large-scale objects called thermal plumes, which
are similar to those observed in transitional stages like those shown in fig-
ure 8.13c. These structures are believed to be important in heat transfer
and interaction with the boundary layers and in some cases with the in-
duced mean flow called ‘turbulent wind’ (see section 8.5). This recognition
was mostly used in order to cope with the problem of the dependence of
the Nusselt (and also Reynolds) number, Nu = Hd/(ρCpκΔT ), the non-
dimensional heat flux, H, on the Rayleigh number, Ra. This dependence
is usually assumed as a power law, Nu∼Raβ , with the exponent β and
a prefactor both depending on the Prandtl number, Pr. In this respect,
turbulent convection is not different from some other fields in turbulence
research: scaling behaviour to a large extent has monopolized researchers′
attention and resulted in several different theoretical explanations of the
observed behaviour. These are described in Siggia (1994), Grossman and
Lohse (2000), Niemela et al. (2000), Ahlers et al. (2009) and references
therein. The only point we want to repeat here is that scaling laws by
themselves are not sufficient for testing theories, since there is no one-
to-one relation between scaling exponents and physical processes, which
among other things is reflected in qualitatively different theories leading to
the same scalings. As an example we mention the 2/7 law (Nu ∼ Ra2/7)
corresponding to the so-called ‘hard turbulence’ at very large Ra. In reality
this may be equally not a 2/7 exponent at all: as noted by Grossmann and
Lohse (2000) the expression Nu = 0.27Ra1/4 +0.038Ra1/3 (with the prefac-
tors obtained from experiment) mimics the 2/7 power-law over ten orders
of magnitude in Ra in the range 105 < Ra < 1014 (for Pr∼ 1), see their fig-
ure 421. Similarly, Niemella et al. (2000) in their cryogenic helium gas exper-
iments obtained a relation Nu = 0.124Ra0.309 in the range 106 < Ra < 1017

and Pr between 0.7 and 12, which is described equally well by another rela-
tion Ra = 0.0587(Ra3/2lnRa3/2)1/5. A third example refers to the so-called
ultimate regime predicted by Kraichnan (1962a), in which Nu ∼ Ra1/2.
This regime is characterized by the dominant contribution of turbulence
(as compared to that by conduction) to the heat transport in the boundary
layer on the heated (cooled) wall and is a dimensional necessity following
from the assumption that the heat flux is independent of molecular proper-
ties, i.e., viscosity and thermal conductivity. The independence of heat flux

21High precision measurements by Xu et al. (2000) clearly indicate that there does not
seem to exist any single exponent describing the Nu(Ra) relation.
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Figure 8.13. Examples of convective motions. a) Smoke visualization of transition in
free convection boundary layer on a vertical heated plate ( Čolak-Antić, 1964). b) Violent
(double-diffusive) convective motion induced by injection of sugar solution into a salt
solution of approximately the same density (Turner and Chen, 1974). c) Thermals rising
in water from a heated horizontal surface (Sparrow et al., 1970). d) Thermals tilted by
the ‘thermal wind’ along the bottom, and e) the same flow as in d) with the thermals
prevented from tilting by vertical inserts (Ciliberto et al., 1996)
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of molecular properties is expected to occur at very large Rayleigh numbers
and indeed was observed in cryogenic experiments in cells with smooth and
rough walls (Roche et al., 2001) at Ra > 1012 and Pr = 1.45 ÷ 4.9 (see
also figure 3 in Siggia, 1994). This regime was also observed in numerical
simulations by Vincent and Yuen (2000) in the range 1010 < Ra < 1012

at Pr = 1, but for two-dimensional flow. In addition they observed the
conventional relation Nu∼Ra1/3 in the range 108 < Ra < 1010. Does this
mean that the three-dimensional nature of turbulence is unimportant to
the overall heat transfer in turbulent convection? Since turbulent convec-
tion is essentially an interaction of hydrodynamic and thermal fields, the
next question is what properties of the hydrodynamic field are important in
this interaction. Whatever the answer, it seems fundamentally important to
study the properties of real three-dimensional convective turbulence. This
includes far more than just the existence (or not) of the ‘ultimate state’ of
convection, which by some authors (Ahlers et al., 2009) is considered as the
most important challenge.

The second important development in turbulent convection was recog-
nition of the existence and importance of a ‘turbulent wind’ discovered
by Krishnamurti and Howard (1981). This is a mean turbulent shear flow
which also stirs the fluid in the bulk of the convective flow. The turbulent
wind is fed by the thermal plumes, see section 8.6.

8.4.2. STABLE STRATIFICATION

Unstable stratification, as described above, is the cause itself of the turbu-
lent flow. In case of stable stratification, i.e., lighter fluid overlying heavy
fluid, the situation is drastically different. In the presence of stable strat-
ification a fluid particle displaced from its equilibrium state experiences a
restoring force due to buoyancy. This leads to two major effects. The first
one is that stably-stratified fluids can support waves called internal waves.
Internal waves at scales ranging from parts of meters to several kilometers
are observed in various natural environments22. The second effect is that
stable stratification limits the vertical motions, thereby tending to suppress
turbulence (with an additional sink of kinetic energy by turning it into po-
tential energy of the system in the process of mixing) and leading to a
pancake-like anisotropy of turbulence. This is in contrast with cigar-like
anisotropy in the case of unstable stratification. A more important differ-
ence is that stable stratification itself cannot be the cause of a (turbulent)
motion, so that an additional factor such as mean shear is necessary to

22Internal waves play an important role in a variety of flows in technological, geophys-
ical and astrophysical contexts, see, e.g., Staquet and Sommeria (1996). Internal waves
in the atmosphere are thought to be used by some birds surfing on them while crossing
the Atlantic, Mollo-Christensen (1980, private communication).
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support turbulent flows in the presence of stable stratification. However,
due to stable stratification, turbulence can be produced in a special way via
breaking of the internal waves (see figure 8.15b and c)23. The so-called CAT
(clear air turbulence; Pao and Goldburg, 1969) is believed to be associated
mainly with the breaking of internal waves in the atmosphere. Similarly
breaking waves both internal and surface may be important in production
of turbulence in the ocean and air-sea interaction as well (see references
in McIntyre, 1993; Melville, 1993 and Staquet and Sommeria, 1996). For
review and references on turbulence in the presence of stable stratification
see Hopfinger (1987), Riley and Lelong (2000), Thorpe (1987), Sagaut and
Cambon (2008) and also Smyth and Moum (2000a,b), for some latest ref-
erences and very useful expositions of the issues of scales and anisotropy
in stably-stratified mixing layers. Finally, turbulence can be produced in
double-diffusive systems with statically stable stratification created by, e.g.,
salinity and temperature together.

Examples of fluid phenomena in the presence of stable stratification are
shown in figures 8.14 and 8.15.

Coexistence and especially interaction of turbulence and waves in stably-
stratified fluids makes it difficult to distinguish between the two. The wave
field is usually associated with that part of flow that propagates, whereas
turbulence is identified with the nonpropagating part of the motion. How-
ever, it is not clear up to now how to separate random gravity-wave motion
(which does not produce vertical transport) and genuine turbulence (which
does) in a stably-stratified fluid (Stewart, 1959). This issue becomes more
serious in cases of strongly nonlinear internal waves, and interaction be-
tween turbulence and waves, and, of course, when breaking of the latter
produces turbulence, which in turn can radiate internal waves.

When the stratification is strong enough, turbulence becomes strongly
anisotropic and sometimes is identified as quasi-two-dimensional due to
strong suppression of the vertical velocity component. However, the similar-
ity to two-dimensional flow, generally, ends at the level of velocity field. The
vertical velocity gradient (i.e., horizontal vorticity) may be quite large, as
observed by Fincham et al. (1996) and Spedding et al. (1996) in the form of
a complex 3D network of structures in which layers of eddies cannot evolve
independently of one another. Herring and Metais (1989), in their numerical
experiments, observed formation of small scales in the vertical and other at-
tributes of three-dimensionality at pretty strong stratification. Among oth-
ers the reasons for such essentially three-dimensional nature are believed
to be associated with instabilities specific for strongly-stratified flows24.

23Breaking of internal waves leads to irreversible mixing. In that it is different from
wave breaking at an interface between two immiscible fluids such as surface water waves.

24It is noteworthy that Phillips already in 1972 asked the question: turbulence in
strongly-stratified turbulence – is it unstable? and pointed to possible instability.
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Figure 8.14. Turbulent wake past a sphere in stably-stratified (by salt) flow. Left –
top view, Hopfinger (1997), right – side view Pao (1969). The distance from the sphere
increases from top to bottom. It is seen that, farther from the sphere, the turbulence
is suppressed (collapses) leaving striations in the vertical density structure due to in-
complete mixing after multiple overturnings, and degenerates into a (quasi-) horizontal
large-scale flow with vortices resembling those observed in a wake past a cylinder in a
fluid with constant density. No internal wave radiation is discernible in these images, but
see figure 4 in Spedding et al. (1996) in which the internal wave component is clearly
seen, as it is ‘separated’ from the vortical one

A recent example is the so-called ‘zigzag’ instability (Billant and Chomaz,
2000). This instability was suspected to be one of generating mechanisms re-
sponsible for the multiple-layer phenomena observed in laboratory, field and
numerical experiments in strongly- stratified flows as well as other ‘unusual’
phenomena such as ‘pancake’ eddies. In other words, due to the ‘horizontal
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Figure 8.15. Turbulence suppression and collapse in a stably-stratified fluid. Top four
figures – collapse of turbulence developed from Kelvin–Helmholz-type instability (Thorpe,
1971), time increases from left to right and from top to bottom (a→ d). The three bottom
figures show the time evolution (from left to right) of turbulence produced by a vertical
(on the left of each frame) oscillating grid (Browand et al., 1987). One can see formation
of turbulent intrusions due to limitation on the vertical scale of turbulent motions by the
stratification and subsequent collapse of turbulence

freedom’ and the internal waves mechanism, strongly-stratified fluids pos-
sess along with the ‘intrinsic’ stability caused by the restoring force, some
specific instabilities leading to essentially three-dimensional structure of
such flows especially in small scales. At even stronger stratification, ac-
tive turbulence collapses into a state of nearly horizontal ‘fossil’ motion
(figures 8.14 and 8.15). Later observations (see Brethouwer et al., 2007 and
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Riley and Lindborg, 2008 and references therein) showed that strongly-
stratified turbulent flows indeed can produce large gradients mainly in the
vertical direction and maintain certain part of nonlinearities finite at no
matter how strong the stratification. This and other related features are
sometimes interpreted as a special kind of (anisotropic) downscale cascade
(see Riley and Lindborg, 2008 and references therein), though as mentioned
in chapter 5 the cascade/decomposition approach may appear of little help
in understanding of the physics of turbulent flows. It seems that physical
space would be more effective in this particular case.

Many complications and additional effects arise in the presence of boun-
daries (rigid or free) and other influences such as rotation.

8.4.3. COMPRESSIBLE FLOWS

Compressibility influences turbulence in several ways. For example, there
are several mechanisms influencing the dissipation of turbulent energy. It
appears that the so-called dilatational dissipation associated with com-
pressibility is usually unimportant (see footnote after equation (C.19) in
appendix C).

In shear flows, the dissipation is mainly reduced due to reduced level of
turbulence production and not due to dilatational effects (Sarkar, 1995).

Compressibility can lead to an increase in dissipation as well. This hap-
pens in the presence of shock waves25. After such a wave vorticity increases,
generally turbulence is amplified (Andreopulos et al., 2000), and most prob-
ably so does strain, so that the dissipation increases. As the Mach number
of turbulence Mt = u′/Vs increases (u′ is the turbulence intensity and Vs

is the speed of sound), eddy shocklets – shock waves associated with the
turbulent motion – arise in the flow. They provide an additional mecha-
nism for the dissipation of energy which can be important in astrophysical
contexts.

Turbulence acts as an amplifier of almost any disturbance that it is sub-
jected to, so no wonder that turbulence is a source of noise (see figure 8.16f).
Finally, turbulence can be manipulated by acoustic excitation.

For review and references see Friedrich and Bertolotti (1997); Lele (1994,
1997); Andreopulos et al. (2000) and a special issue on aeroacoustics of
Theoretical and Computational Fluid Dynamics, 6, Nos. 5–6, October 1994,
and Sagaut and Cambon (2008).

25But may also occur in subsonic flows (Briassulis et al., 2001).
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8.5. Rotation

Rotating fluids have much in common with stably-stratified ones. They
also can support waves called inertial waves26 (see figure 8.16d,e), since the
Coriolis force also acts as a restoring force, though somewhat differently
than that of buoyancy27. Turbulence in the presence of rotation becomes
anisotropic and tends to acquire in some sense a quasi-two-dimensional
structure in the plane normal to the axis of rotation. Strong rotation in most
cases leads to turbulence suppression and collapse. There are differences
too. For example, strong rotation also reduces the gradients along the axis
of rotation, so that turbulence acquires cigar-like anisotropy (in contrast
with the pancake-like anisotropy of stably- stratified flows) and becomes
close to two-dimensional at the level of velocity derivatives. The second
difference involves generation of intense vortices in the presence of local
forcing, for example at the boundaries (see figure 8.23b).

In the presence of rigid boundaries, shear and stratification lead to ad-
ditional effects, resulting both in stabilizing and destabilizing influences.
We mention here three examples. The first one is turbulent flow in a ro-
tating pipe. Most observations show the stabilizing influence of rotation
leading among other things to considerable drag reduction (see Orlandi,
1997 and references therein). On the other hand experiments by Nagib
et al. (1971) clearly showed that under rotation the pipe flow becomes less
stable, so that the critical Reynolds number drops from 2500 in the ab-
sence of rotation to 900 in the presence of rotation. The second example
comes from the experiments of Ibbetson and Tritton (1975). Contrary to
other observations, they observed faster decay of turbulence past a towed
grid in the presence of rotation. One of the possible explanations is that
the rotation was not strong enough, so that the additional dissipation in
the so-called Eckmann layers on the walls normal to the axis of rotation
won the competition with the effect of turbulence two-dimensionalization
by rotation. The third example is provided by computations of Dritcshel et
al. (1999). They show clearly that structure of rotating and stratified flows
is intrinsically three-dimensional on small-to-intermediate scales, reflect-
ing the competition between the pancake-like anisotropy of stratified flows
with the cigar-like anisotropy of rotating flows. For review and references
on turbulent rotating flows see Cambon (1994), Hopfinger (1989), Tritton
(1985), Godeferd and Lollini (1999) and Sagaut and Cambon (2008). The
examples shown in figure 8.16 do not exhaust the list of waves existing in
fluids. For example, in addition to sound waves in compressible fluids, there

26The term is derived from Bjerknes et al. (1933).
27In the case of buoyancy, a fluid particle slightly displaced from its equilibrium state

moves along a straight line, whereas in a rotating fluid it moves in a circle, since the
Coriolis force acts in the direction normal to the direction of velocity.
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Figure 8.16. Turbulence and waves. a) – internal waves propagating from an oscillating
body in a stratified fluid (Mowbray and Rarity, 1967). A similar pattern (d) is seen in
a rotating fluid (inertial waves) which under certain conditions degenerates into state of
disorder (e) due to the phenomenon of resonant collapse (McEwan, 1970). b) shows an
internal wave breaking in a laboratory tank filled by a linearly-stratified fluid, courtesy
of Dr. J. Sommeria. A similar phenomenon is shown in c) for the case when the density
variation is confined in a relatively thin layer (Pao, 1969) which is analogous to the
breaking waves on a water surface. f) shows a supersonic jet and sound waves radiated
by turbulence in the jet (Tam, 1972)
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are also shock waves. Apart from inertial waves in rotating fluids there ex-
ist Rossby waves arising in particular geometrical arrangements. A whole
variety of waves exist also in flows of electrically conductive fluids in the
presence of magnetic field (MHD flows).

8.5.1. HELICITY

Rotating fluids lack reflectional symmetry. As a consequence, the quantity
called helicty28, see section 2.2.1 in appendix C, is nonvanishing. Large
helicity may lead to reduction of nonlinearity and consequently reduction of
drag and dissipation. A recent example is the numerical study of turbulent
flow in a rotating pipe by Orlandi (1997). He observed a clear positive
correlation between increase in helicity and decrease in dissipation. More
subtle issues include spontaneous breaking of reflectional symmetry and
production of helicity ‘out of nothing’, and the role of helicity when its
mean vanishes. For review and references on this issue and in general, on
helicity in turbulent flows, see Droegemeier et al. (1993), Kholmyansky et al.
(2001a), Kida and Takakoka (1994) and Moffatt and Tsinober (1992).

As noted in chapter 6, section, 6.6, nonzero mean helicity 〈u · ω〉 is an
indication of stronger coupling between large and small scales favouring
creation of large-scale structures out of small-scale turbulence – a process
which is frequently called ‘inverse energy cascade’. A similar phenomenon
is observed in the so-called turbulent dynamo when small-scale turbulent
flows of an electrically conducting fluid are able to generate large-scale
magnetic fields (Childress and Gilbert, 1995 and references therein). Such
phenomena are akin to a class of fluid flows described in the next section.

8.6. Negative eddy viscosity phenomena

The term negative eddy viscosity is used to denote flow situations in which
the turbulent transport of momentum occurs against the mean velocity gra-
dient, i.e., from regions with low momentum to regions with high momen-
tum, so that the Reynolds stress, −〈u1u2〉, and the mean velocity gradient,
dU/dx2, are of opposite sign29. In other words, the role of the Reynolds
stress as one of the agents of coupling the fluctuations with the mean flow

28The term ‘helicity’ in the fluid dynamic context was introduced by Betchov (1961) for

the quantity εijk

〈
ui(x)

∂uj

∂xk

〉
≡ 〈u · ω〉 = 6E(0), where E(r) is the third scalar function

defining the second-order correlation of homogeneous and ‘semi-isotropic’ turbulence, i.e.,
invariant under rotations but not reflectionally invariant: 〈ui(x)uj(x + r)〉 = C(r)δij +
S(r)rirj + E(r)εijkrk.

29For the sake of simplicity, it is assumed here that the mean flow is one-dimensional,
U = U i, and that the only nonvanishing gradient of the mean velocity is in the direc-
tion x2.
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is not necessarily one-directional, as in pure turbulent shear flows it may
act also in the ‘opposite’ direction. Concomitantly, kinetic energy moves in
the ‘opposite’ direction too – from fluctuations to the mean flow. It should
be stressed that the above does not imply anything more than what is said,
e.g., no eddy viscosity in the narrow sense or any other such thing.

Such a situation is possible in the presence of some energy supply other
than the mean strain. Then the total rate of production/destruction of
energy turbulent fluctuations by the mean strain, P = − 〈u1u2〉dU/dx2,
does not have to be positive even in the case of statistically-stationary
turbulent flows, since in such cases the balance is WF + P − D = 0. Such
situations are observed both in laboratory experiments and in the large-
scale flows of geo- and astrophysics. Selected examples and references are
given below. Additional examples and references can be found in Maubach
and Rehme (1972), Tsinober (1990b) and Paret and Tabeling (1998).

8.6.1. LABORATORY EXPERIMENTS

The popular example is the jet in which the turbulent energy production,
−〈u1u2〉dU1/dx2 < 0, is negative in the region between the locations in
the flow cross section where dU1/dx2 = 0 and −〈u1u2〉 = 0. This region is
rather narrow and the mean velocity gradient there is rather small. It was
therefore argued that, though the mean velocity may gain energy locally,
when integrated over the entire cross section, the effect will be a decrease
in the total kinetic energy of the mean motion. Another example is the
boundary layer at a convex wall. The effect of curvature on the outer part
of the layer leads, in some cases, to a reversal of the turbulent stress.

In this connection, of special importance are experiments in highly co-
herently forced mixing layer (see Weisbrot and Wygnanski, 1988 and ref-
erences therein). In these experiments, a whole region in the flow field was
found to have turbulent shear opposing the mean velocity gradient over
the entire flow cross section (see figure 8.17). It is noteworthy that, unlike
other flows, this phenomenon is especially strong close to the middle of
the mixing layer cross section, where the mean velocity gradient is max-
imal. Several simple kinematic explanations of the process were proposed
in terms of orientation changes (tilting) of elliptically shaped vortices sim-
ilar to the explanation given by Starr (1968) in a geophysical context (see
also Busse, 1983). Though it is tempting to explain the above phenomenon
in simple kinematic (two-dimensional) terms, or more generally in terms of
(also dynamical) properties of two-dimensional turbulence (see section 8.7),
it should be emphasized that the above phenomenon seems to be essentially
three-dimensional. A clear indication of this is found in measurements by
Oster and Wygnanski (1982). It follows from their results that, in the zone
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of opposing turbulent shear, the ratio w/u ∼ 0.4 ÷ 0.5 (v/u ≈ 2), while
for a regular (non-forced) mixing layers, it is 0.9 ÷ 1.0 (v/u ≈ 1); here
u, v, w – are the intensities of turbulent velocities correspondingly in the
streamwise, lateral and spanwise directions. In other words, the forced mix-
ing layer becomes more anisotropic, but still remains far from being even
quasi-two-dimensional30.

Krishnamurti and Howard (1981) discovered the so-called ‘turbulent
wind’, i.e., a mean flow in experiments on turbulent convection in a hori-
zontal layer of fluid heated from below and cooled from above. Namely, at
high enough Rayleigh number, there exist a nonzero horizontally averaged
velocity along the bottom in one direction and along the top in the opposite
direction. The direction of this mean flow is random, as it would be in a
symmetry breaking bifurcation. This, however, happens only when the flow
is essentially turbulent and the direction of the momentum transport by
the Reynolds stress is up and not down the gradient of this mean velocity,
i.e., the Reynolds stress contributes to the maintenance of the mean flow.
The main feature is that almost all plumes rising from the heated bottom
were tilted away from the vertical in such a way as to aid the momentum
transport to the mean flow. Concomitantly, the energy of the fluctuations
is transferred to the mean flow. Later Krishnamurti and Howard (1983)
performed a similar experiment in an annular cell in which they measured
both the mean velocity and the Reynolds stress, which appeared to be of
the sign opposite to that of the gradient of the mean velocity in most of
the vertical positions from the heated bottom in conformity with the neg-
ative eddy viscosity. The opposite sign of the Reynolds stress to that of
the mean velocity gradient is only a manifestation of the negative eddy
viscosity phenomenon, but not an explanation of its existence31.

The ‘turbulent wind’ was observed subsequently in other experiments
(for references see Grossman and Lohse, 2009 and Siggia, 1994). For ex-
ample, the tilted plumes observed in experiments by Ciliberto et al. (1996)
are shown in figure 8.7d, whereas a number of statistical characteristics
(including the mean horizontal velocity profiles) obtained by Burr et al.
(2003) are shown in figure 8.18.

30The experiments by Hilberg and Fiedler, 1989 deserve special mention. They per-
formed experiments on a mixing layer with lateral extent an order of magnitude larger
that its spanwise width and observed that the coherence and energy contents of large-
scale structures were highly above the values found in the normal shear layers flow. One
can expect that, due to much higher anisotropy, a negative eddy viscosity phenomenon
may exist in this kind of flow. Similar phenomena were observed in a shallow jet by Dra-
cos et a1., 1992. We recall that in these flows (and many other partly-turbulent flows)
large-scale instabilities not directly related to their turbulent flow nature may arise.

31Note that in the absence of a driving source, such as pressure gradient, the simplest
form of the Reynolds equation is ν d2U/dx2

2 = d〈u1u2〉/dx2, i.e., ν dU/dx = 〈u1u2〉 +
const. This does not allow us to claim that the sign of −〈u1u2〉 is opposite to that of
dU/dx, since it is not a simple matter to find the const.
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Figure 8.17. The negative eddy viscosity phenomenon in a forced mixing layer.
a) – width and momentum thickness. b) – integrated turbulent energy production. Note
the region 0.55 < x < 0.84m where the mixing layer becomes narrower and the Reynolds
stress and the turbulent energy production reverse their signs. c) – profiles of Reynolds
stresses and turbulent energy production at several streamwise locations. Adapted from
Weisbrot and Wygnanski (1988). The figure is from Tsinober (1990b)
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Figure 8.18. Distributions of flow quantities along the vertical direction y in the re-
gion adjacent to the bottom (heated wall). Averages are presented along the x-direc-
tion over three regions: the region 40 mm × 80mm where the mean flow is accelerating,
the region 80 mm × 120 mm, where the vertical mean velocity is small and the region
120 mm × 160 mm, where the mean flow is decelerating. a) Mean velocity profiles U
and V , b) turbulent kinetic energy e = 〈(u2 + v2)〉, c) Reynolds shear stresses 〈uv〉,
d) turbulent energy production P = −2〈uiuj〉∂Ui/∂xj ; i, j = 1, 2. Burr et al. (2003)

Systems in which small-scale flows are driven by electromagnetic forces
in a particular way may develop a mean flow essentially in the same way
(see references in Paret and Tabeling, 1998 and Tsinober, 1990b,c). Wei
and Willmarth (1992) also observed negative Reynolds stresses and nega-
tive production of turbulent energy in the near-wall region in a turbulent
channel flow with drag-reducing polymer injection (see section 8.9). Finally,
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we mention a related phenomenon in stably-stratified turbulent flows – the
so-called PCG, persistent countergradient fluxes. The essence of PCG is the
countergradient transport of momentum and active scalar. It is observed
at large scales when stratification is strong, but in small scales it is present
with weak stratification as well (see Gerz and Schumann, 1996; Komori and
Nagata, 1996 and references therein).

8.6.2. EXAMPLES FROM GEOPHYSICS

There exists considerable evidence that a number of processes taking place
in large-scale flows in geo- and astrophysics are associated with the phe-
nomenon of the negative eddy viscosity. For example, the generation and
maintenance of mean flows by large-scale fluctuations, such as jet flows in
the atmosphere and in the ocean, as well as zonal circulation in the atmo-
spheres of some planets of the solar system and of the sun (see Busse, 1983;
Monin, 1987; Monin and Yaglom, 1996; Starr, 1968 and references therein).
There are two main kinds of fluctuative motions feeding such mean flows.
The first kind are the convective motions (similar to those producing the
‘turbulent wind’ in laboratory experiments), such as produced by the sup-
ply of solar energy to the Earths’ atmosphere. The second kind are the
so-called Rossby waves (see Tritton, 1988 for a simple explanation of what
they are). Propagation and breaking of these waves are thought to be re-
sponsible for the generation of the large-scale mean motions mentioned
above (Monin, 1987; McIntire, 1993)32. Along with turbulence production
the wave propagation and breaking lead to transferring of momentum and
energy to the mean flows. At least some of these phenomena are analo-
gous to the so-called acoustic wind in which a mean flow is produced by
acoustic waves (Lighthill, 1978). There is an essential difference too, since
acoustic streaming is a (quasi-) linear phenomenon, whereas wave breaking,
mostly responsible for the wave contribution to the negative eddy viscos-
ity phenomenon, is essentially nonlinear. This makes it (almost) impossible
to make a clear distinction between turbulence and waves – a difficulty
noted already by Stewart in 1959 in the context of the issue of distinguish-
ing between internal waves and turbulence in the atmospheric flows (see
section 8.3.2).

8.6.3. POSSIBLE EXPLANATIONS

An explanation (at least qualitative) of the ‘anomalous’ negative eddy vis-
cosity phenomena is usually given via properties and by analogy with two-
dimensional turbulence (see section 8.7), which, under certain conditions,

32This idea dates back to the proposal by Rossby in 1947.
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exhibit negative eddy viscosity and other ‘anomalous’ properties such as
“inverse energy cascade”. The first attempt of this kind was made by
Lorenz (1953). He considered a two-dimensional (turbulent) flow consisting
of mean and fluctuative components, both unsteady, and the interaction be-
tween the two. In the case when scales of the smaller motions of the mean
flow and of the largest ones in the fluctuations overlap, the energy of the
fluctuations can be transferred to the mean flow, i.e., the eddy viscosity be-
comes negative. For other two-dimensional examples, see Paret and Tabel-
ing (1998) and Tsinober (1990b). The analogy, however, is qualitative only,
and geophysical and other flows with negative eddy viscosity (and energy
production reversal) at best can be considered as coexistence of quasi-two-
dimensional structures (mostly in large scales) with more three-dimensional
smaller scales. What seems to be certain is the fact that all negative eddy
viscosity flow configurations are considerably anisotropic (more than ‘nor-
mal’ flows) due to some external influences (geometrical constraints, rota-
tion, density stratification, magnetic field, etc.). There exist a number of
theoretical models of three-dimensional flows in simple geometry (see ref-
erences in Tsinober, 1990b). The common feature of these models is that
the background small-scale motions should be in some sense anisotropic
to be able to develop a large-scale instability. At present, it is not clear
whether any of the existing approaches enable researchers to explain obser-
vations about negative eddy viscosity phenomena. In fact, no theoretical
framework is available to describe the kinematical and dynamical features
of these flows. The more fundamental problem, to explain from first princi-
ples why there is a mean flow . . . is beyond reach . . .. The effect is intrinsic
and not understood (Siggia, 1994; but see Malkus, 1996).

8.7. Magnetohydrodynamic flows

. . . it is extremely important to treat the deviations from hy-
drodynamics that are caused by the magnetic field (Heisen-
berg, 1949).
A clearer understanding of turbulent hydromagnetic flows
will result in greater insight into strictly hydrodynamic tur-
bulence and into the mechanism of transition between lam-
inar and turbulent flow regimes (Harris, 1960).
Two-dimensional turbulence . . . can occur in any uniform
external magnetic field no matter how strong . . .. We may
say that the two-dimensional flow “does not see” a uniform
field. In a strong external field, the turbulence degenerates
just into this two-dimensional form (Landau and Lifshitz,
1984).
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Figure 8.19. Drag reduction in a circular pipe by a longitudinal magnetic field, Krasil-
nikov et al. (1971). Here Ha = BL(σ/ρν)1/2 is the non-dimensional parameter propor-
tional to the intensity of the magnetic field B. The figure is from Tsinober (1990c)

An electrically conductive fluid flowing in the presence of an electromag-
netic field experiences a (ponderomotive) body Lorenz force per unit mass
j × B, where B is the magnetic field induction (or simply magnetic field)
and j is the electric current density induced by an externally applied elec-
trical field and/or by the electrical field induced by the fluid motion in
the presence of the magnetic field. The magnetic field is in turn changed
by the electrical currents induced by the fluid flow and governed by an
equation such as (C.36) without a forcing term. Concomitant to the in-
teraction between the fluid flow and the electromagnetic field is the Joule
dissipation, j2/σ, σ is the fluid electrical conductivity, and corresponding
losses. Nevertheless, the total losses (e.g., total drag and dissipation) can
be smaller than in a flow without electromagnetic field by virtue of the
dramatic changes in stability properties and/or structure of the fluid flow
(figure 8.19).

There is a vast variety of possible configurations of MHD-flows even in
the simplest geometries. We restrict ourselves in the following to examples
in the situation when the changes of the magnetic field induced by the
fluid flow are negligible (i.e., the case of small magnetic Reynolds number,
Rem = σUL � 1)33 and when this magnetic field is homogeneous. For
review and references, see Moreau et al. (2007) and Tsinober (1990c).

Our main purpose here is to illustrate some typical effects of turbulent
flows arising in the presence of a magnetic field.

33The opposite situation, i.e., Rem = σUL � 1, is typical in astrophysical contexts. In
systems containing large amounts of liquid metal, such as fast reactors, Rem can be of
the order 102. It is many orders of magnitude larger in astrophysical objects. We address
some specific aspects for finite Rem in chapter 9.
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Figure 8.20. The effect of a magnetic field on the perturbations in the wake behind a
cylinder. a) cylinder axis perpendicular to the magnetic field, b) cylinder axis parallel to
the magnetic field (Kit et al., 1970)

One of the most prominent effects of a magnetic field on a turbulent
flow of electrically conducting fluid is again anisotropy. Namely, in the
presence of an externally imposed magnetic field, gradients of various flow
properties in the direction of the magnetic field are reduced. Hence, there
is a possibility of a quasi-two-dimensional flow when the magnetic field is
strong enough, provided that boundaries (and boundary conditions) favour
such a flow. Indeed, such flows have been observed in a number of cases
(see references in Tsinober, 1990c; and Porthérat et al., 2000). As in some
other quasi-two-dimensional flows, the MHD quasi-two-dimensional flows
exhibit reduced dissipation, by analogy with purely two-dimensional flows
which lack strain (i.e., dissipation) production. An example of such an effect
is shown in figure 8.20. It indicates that in cases when the geometry of
boundaries and the boundary conditions favour quasi-two-dimensional flows
in the plane perpendicular to the magnetic field (the case of azimuthal
magnetic field), i.e., when the axis of the cylinder is parallel to the magnetic
field, the turbulence intensity in the wake of the cylinder is three times
larger than in the absence of magnetic field. This happens because a quasi-
two-dimensional turbulent flow is unable to dissipate the energy of the
disturbances created in the proximity of the cylinder in the way in which
a three-dimensional flow does in the absence of a magnetic field.

The above example is qualitatively different from many other MHD
(and not only MHD) quasi-two-dimensional (Q2D) flows in which, e.g.,
boundaries normal to the direction of the magnetic field dominate the flow,
such as the Hartmann flows. These flows, though Q2D in strong magnetic
fields are inertialess and therefore can hardly be qualified as turbulent.
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Another effect of quasi-two-dimensionalization of some MHD-flows is
the anisotropic transport. Namely, in the presence of a magnetic field, one
observes suppression of the transport of a passive scalar (e.g., indium dis-
solved in mercury) in the direction of the magnetic field and its enhance-
ment in the plane perpendicular to the magnetic field (see figure 11b in Tsi-
nober, 1990c). A related recent example is displayed in figure 8.21, which
shows some results of convection of sodium-potassium alloy driven by a
horizontal temperature gradient in the presence of a horizontal magnetic
field. It is seen that a moderately strong magnetic field causes an increase
in heat transport between the two vertical walls. The reduction of turbu-
lent energy content in the small scales and its increase in the large scales
is consistent with the tendency to quasi-two-dimensionalization. In larger
magnetic fields, the flow is suppressed by the so-called Hartmann effect on
the walls perpendicular to the magnetic field. In the absence of such a break-
ing effect, the enhancing influence of the magnetic field on the transport
properties of the turbulent flow in the plane perpendicular to the magnetic
field would be stronger.

There exist many turbulent MHD-flows with the influence of a magnetic
field totally different from that shown in the above examples and that
depends, e.g., on properties (geometry, electrical conductivity) of the flow
boundaries and the nature of magnetic field (AC, DC, inhomogeneous).

8.8. Two-dimensional turbulence

Thus the non-ergodic conservation law which presumably
blocks the development of turbulence in two dimensions is
closely related to the conservation of vortex-points in two
dimensions (von Neumann, 1949).
This trend towards well-defined large-scale structures can
make it questionable if the 2D flow should be described as
‘turbulent’ and it casts some doubts on the concept of iner-
tial range and the relevance of energy spectra . . .. Random
initial vorticity distribution quickly assumes a stringlike pat-
tern, which persists as the flow simplifies into a few ‘cyclones’
or ‘finite area vortex regions’ (Fornberg, 1977).

Two-dimensional turbulence (whatever this means) can be seen as one of
the extreme anisotropic states of fluid flow. Though not strictly realiz-
able (except in direct numerical simulations), two-dimensional turbulence
is of interest for several reasons. First, it is believed that properties of
pure two-dimensional turbulence may be useful in treating turbulence in
a number of quasi-two-dimensional systems. Such flows include large-scale
geophysical flows (Lindborg, 1999); flowing soap films (Rivera et al., 1998);
some flows in rotating or/and stratified systems (Riley and Lelong, 2000),
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Figure 8.21. The effect of a horizontal magnetic field on convection of sodium-potassium
alloy driven by a horizontal temperature gradient (Burr et al., 2000). Hartmann number,
Ha, is defined as in figure 8.13

and some magnetohydrodynamic flows (Kraichnan and Montgomery, 1980;
Porthérat et al., 2000). Second, pure two-dimensional turbulence is accessi-
ble, at least in part, by methods of statistical physics, contrary to the case of
three-dimensional turbulence (Danilov and Gurarie, 2000; Kraichnan and
Montgomery, 1980; Onsager, 1949; Pomeau, 1995; Sommeria, 2001 and ref-
erences therein). Third, in two-dimensional turbulence, there exist a process
which is to some extent analogous to vortex stretching in three-dimensional
turbulent flows. Namely, this is the process of predominant stretching of
the vorticity gradient ζ = ∇ω (=∂ω/∂xi) or equivalently ξ = rotω (see
equation [C.22] in appendix C; Herring et al., 1974; Novikov, 1997; Weiss,
1991). For example, in numerical simulations of decaying two-dimensional
turbulence the mean palinstrophy production 〈ξiξksik〉 becomes pretty large
before starting to decay (see figure 8.22). The nonzero 〈ξiξksik〉 is a clear
indication of non-Gaussian nature of two-dimensional turbulence, though
at ‘lower levels’ (velocity, velocity increments for points at not too small dis-
tances), it is close to Gaussian (see Boffeta et al., 2000; Paret and Tabeling,
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Figure 8.22. Time behaviour of total energy, E = 1
2

∫
u2dA; enstrophy, E = 1

2

∫
ω2dA;

palinstrophy, P = 1
2

∫
ξ2dA; and palinstrophy production, Π =

∫
ξiξksikdA, in 2D de-

caying turbulence from an initially random state with Reλ = 1300. Note the slow decay
of energy and the increase of palinstrophy to six times its initial value before starting to
decay. The palinstrophy production is normalized on PE1/2 at t = 0. The two-dimen-
sional skewness ΠP−1E−1/2 reaches an approximately constant value after a relatively
short transient time as in Herring et al. (1974). Courtesy of Dr. Y. Kimura

1998 and references therein). It is noteworthy that the predominant stretch-
ing of vorticity gradients and positiveness of palinstrophy production is a
genuinely nonlinear (inviscid) process and not the consequence of the (ap-
proximate) balance between palinstrophy production and its viscous de-
struction.

Nevertheless, one of the main arguments against qualifying two-dimensi-
onal chaotic flows as turbulence is the absence of the vortex stretching pro-
cess and strain production and generally of the process of self-amplification
of the field of velocity derivatives. This qualitative difference leads to re-
duced ability of such flows to dissipate energy and a number of other impor-
tant differences, see the next section. For example, in order to numerically
simulate two-dimensional turbulence, it is common to do this by starting
with random initial conditions for decaying turbulence and adding a ran-
dom forcing in the right-hand side of the Navier–Stokes equation (and some
dissipation at large scales too) when looking at/for a statistically stationary
situation, just as in the case of the Burgers equation. In three-dimensional
turbulence the results are not sensitive (at least qualitatively) to whether
the forcing is random or deterministic or even time independent. This does
not seem to be the case in two-dimensional turbulent flows. For instance,
a two-dimensional flow in a plane channel driven by a constant pressure
gradient or with fixed mean flow rate (Jimenez, 1990; Lomholt, 1996) ex-
hibits a very different kind of chaotic behaviour than that which is observed
in simulations with random forcing. Namely, the two-dimensional channel
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flow develops mostly large-scale and quite slow-in-time and organized-in-
space variations, which hardly anybody will recognize as turbulent. This is
a reflection of the fact that chaotic properties of two-dimensional flows are
qualitatively different from those of three-dimensional turbulence.

The latter example is interesting also in the context of the similarities
and differences between pure 2D and quasi-2D turbulent flows.

8.9. Pure two-dimensional versus quasi-two-dimensional

The common view was, until recently, that the essential aspects of quasi-
two-dimensional turbulent flows (Q2D) can well be described by pure two-
dimensional ones (P2D), both globally and locally, i.e., that ε in Q2D =
P2D + ε is small in some sense. Is it really the case that ε is always small?
Not too long ago this question would seem rather strange since at least in
some flows the factors causing the flow to become Q2D were considered just
as stabilizing (‘against’ 3D-instability), e.g., such as strong stratification,
rotation and magnetic field effects. There is a long history and long list
of papers with claims that strongly anisotropic turbulence considered as
quasi-2D is close to pure 2D turbulence (if such exists with its impotence
without production of vorticity and strain and consequently weak dissipa-
tion); attempts to explain some properties of the former by invoking those
of the latter; and even profound analogies between different Q2D states
(stratified, rotating, MHD). Though anisotropy is extremely diverse, such
claims and attempts were (and are being) made with respect to turbulence
in strongly- (stably-)stratified environments, rotating frames, thin domains
(e.g., in geophysical turbulence), MHD and even strong shears.

One of the popular beliefs is that locally this is true of Q2D regions
with concentrated vorticity (vortex filaments). However, it appears that lo-
cally quasi-two-dimensional regions corresponding to large cos(ω, λ2) (see
section 6.5.2), to which belong the regions of concentrated vorticity, are
qualitatively different from purely two-dimensional ones, in that they pos-
sess essentially nonvanishing enstrophy generation ωiωjsij and intermediate
eigenvalue Λ2 of the rate of strain tensor, which are identically zero in P2D
flows. Moreover, in these regions both ωiωjsij and Λ2 are larger than in the
whole field and in this sense ε is not small in Q2D = P2D + ε.

Another example relates to the behaviour of the wall-bounded turbulent
shear flows in the wall proximity, namely, that flow in the viscous sublayer is
almost two-dimensional and two-component over fairly long periods of time
(Fischer et al., 2001 and references therein). However, this seems to be true
(at best) of the level of the velocity field. The field of velocity derivatives
and related quantities remains far from being quasi-two-dimensional even
in the closest proximity of the wall (Tsinober et al., 1995).
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Figure 8.23. A two-dimensional ‘turbulent’ flow in a channel. Left – mean velocity, the
continuous line corresponds to the actual flow, the dashed line is the Poiseulle parabolic
velocity profile; note that, along with similarity of the two velocity profiles, there is a
large velocity gradient at the wall. Right – the Reynolds stress (continuous line) and the
total stress (dashed line). The figure is from Lomholt (1996). These results are practically
the same as those obtained by Jimenez (1990)

In the case of globally Q2D turbulent flows, the matters seem to be
even controversial. For example, the experimental (and recent numerical)
results obtained for turbulent MHD flows in channels with large aspect ratio
in the presence of an azimuthal magnetic field showed that, in such flows,
at Re ≤ 104 (which are Q2D) on the one hand, the drag is indistinguishable
from its laminar value, and on the other hand, the level of turbulence may
be substantially higher than that in the same flow without a magnetic
field (see e.g., the review in Tsinober, 1990c). However, examination of the
results of Jimenez (1990) concerning the DNS of NSE of a plane Poiseulle
turbulent flow (which is P2D) at Re ∼ 104 shows that its drag is about
twice as large as the purely laminar value and is only twice as small as its
value for the 3D turbulent flow. In other words, the P2D plane Poiseulle
turbulent flow is not that low dissipative. Moreover, the Reynolds stresses
in this flow are not small either (as had been expected) and contribute
about a half to the total stress (see figure 8.23)34.

Thus the problem of the relation(s) between Q2D and P2D turbulent
flows is complicated further by the multiplicity of Q2D states: there ex-
ist several Q2D flows such as flows in rotating frames, flows with stable
density stratification, MHD-flows and some others, which along with being

34It is noteworthy that since the common belief was that any two-dimensional turbulent
flow should be low dissipative along with the results on really low dissipative nature of
Q2D flows in MHD channels with spanwise magnetic field, the author of this book tended
to think that the results by Jimenez (1990) were erroneous. It was, however, a calculation
of the same flow undertaken by Sune Lomholt (1996) using an essentially different code
that confirmed unequivocally the results of Jimenez (1990).
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kinematically/geometrically similar are in many respects dynamically very
different (see figure 8.23). As mentioned, Q2D MHD turbulent flows created
in different conditions may be essentially qualitatively different, e.g., iner-
tialess (i.e., not turbulent) and nonlinear and both different from pure two-
dimensional flows. Another example is related to the MHD convection flow
shown in figure 8.19. It appears that the P2D analogue to this flow studied
numerically by Burr (1999, private communication) exhibits totally differ-
ent behaviour from that of Q2D (see also Dolzhansky, 1999). Nevertheless,
the importance of the two-dimensional configuration in MHD flows is be-
lieved to be in that it is a state to which tends any MHD flow in some sense
depending on the specific configuration due to development of anisotropy
(local and/or global) in such flows. The above mentioned belief is also ex-
tended to the MHD-dynamo problem. Namely, the common assumption is
that in the saturated regime the flow field becomes quasi-two-dimensional
locally with respect to the magnetic field (Schekochihin et al., 2004 and
references therein). However, recent computations (Iskakov et al., 2009)
showed that this effect is pretty mild. Instead there is a restructuring and
mutual reorientation of both the fluid flow and the magnetic field in such
a way that, in the saturated regime, the production of a magnetic field is
balanced by Joule dissipation. This is different from strong reduction of the
production of magnetic field BiBisij, which remains of the same order as in
the kinematic regime just like the Joule dissipation. The flow field remains
essentially three-dimensional becoming “just a bit more anisotropic” than
in the kinematic regime locally with respect to the magnetic field35. For
example, bibj∂ui/∂xj(≡BiBisij/B

2) (which is the gradient of the compo-
nent of the velocity vector along the direction of magnetic field) is slightly
reduced, but remains significant. However, the main attributes of three-
dimensional turbulent flows are observed in the saturated regime. These
include the PDFs of the eigenvalues of the rate of strain tensor, production
of enstrophy and strain, the R − Q plot and many others. Their statistics
do not change much both locally with respect to the magnetic field and in
a fixed frame.

An example of the difference in the dynamical nature as contrasted to
kinematical similarity is exhibited in the above-mentioned zigzag instability
in strongly stably-stratified flows (Billant and Chomaz, 2000). Recent de-
velopments in the study of strongly-stratified flows clearly show that they
are far from being low dissipative, see Brethouwer et al., 2007; Riley and
Lindborg, 2008 and references therein.

35An isotropic turbulent flow is locally anisotropic with respect to the magnetic field
also in the kinematic regime due to special orientation of magnetic field as to enable the
dynamo.
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Figure 8.24. Two-dimensional and quasi-two-dimensional turbulence. a) three-dimen-
sional and b) quasi-two-dimensional turbulence induced by excitation at the bottom, in
b) the tank is rotating (McEwan, 1976); c) and d) quasi-two-dimensional turbulence (as
seen from the top) past a grid towed in a stably-stratified fluid (Maxworthy et al., 1987).
e) quasi-two-dimensional turbulence in a soap film (Rivera et al., 1998); f) numerical-
ly-simulated two-dimensional turbulence, courtesy of Dr. B.L. Hua

There is little doubt about the qualitative difference between Q2D
states produced by physically different processes, e.g., the ones in MHD
are of dissipative nature (Joule dissipation), whereas those with rotation
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are not. Strong anisotropy is a necessary condition only for Q2D and/or low
dissipative behaviour, e.g., shear turbulent flows with strong shear are both
strongly anisotropic and strongly dissipative. Similarly, strong correlations
along some direction, i.e., Q2D behaviour, do not exclude the possibility
of vorticity stretching in this direction. There is one more really profound
difference between Q2D flows with rotation, stable stratification, rotation
and P2D as the former possess an additional mechanism, the ability of
sustaining waves, whereas the latter do not know anything of this kind of
process.

A final remark concerns the limiting behaviour of Q2D flows which
remain turbulent as some parameter grows without limit. We recall that
one of the most popular and frustrating questions in 3D-turbulence is what
happens when the Reynolds number is increasing. The question about the
behaviour of ε in Quasi-2D = Pure 2D + ε as some parameter (associated
with stratification, rotation, magnetic field and appropriately normalized)
is increasing is in a way similar, e.g., in that here too one may expect
phenomena like the “dissipative anomaly” in 3D turbulence so that our ε
above may remain finite in the limit, at least in some cases.

8.9.1. SOME ADDITIONAL DIFFERENCES BETWEEN
TWO-DIMENSIONAL AND THREE-DIMENSIONAL TURBULENCE

Apart from the above-mentioned differences between three-dimensional and
two-dimensional turbulence, there are some additional ones which deserve
special mention.

There is a positive net production of s2 in the 3D case, whereas it
is conserved (inviscidly) in the 2D case. Note that s2 is not a pointwise
Lagrangian invariant, as are vorticity and enstrophy in two-dimensional
flows.

In 3D turbulence, vorticity, ωi, and strain, sij, are equal partners, both
are self-amplified, ‘live’ on the scales of the same order, and are related by
a conjugation symmetric relation (Ohkitani, 1994). In 2D, it is ξ = rotω,
or equivalently vorticity gradient, ζ = ∇ω (=∂ω/∂xi) that is amplified
via interaction with strain, so that the partners are not equal anymore:
the strain is not amplified and the characteristic scales of ξ (and/or ζ) are
much smaller than those of sij, which can be interpreted as a kind of scale
separation. It is this scale separation and the absence of amplification of
strain that makes the 2D problem more regular than in 3D, i.e., in 2D
the nonlinearity is ‘less nonlinear’. Indeed, it is known that the solution to
the 2D Navier–Stokes equations with smooth initial and boundary condi-
tions at any Re is smooth for all times, i.e., does not have any singularities
(Doering and Gibbon, 1995). This is, of course, true of vorticity gradients.
As mentioned, the reason for this is that the behaviour of strain (which
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plays a crucial role in amplification of vorticity gradients) is different in
the 2D case than in the 3D case. Namely, in the 2D case the strain is an
inviscid invariant, whereas in the 3D case it is not due to the predominance
of its production due to term −sijsjkski in the equation (C.18). This seems
to be also the reason for some similarity in the behaviour of vorticity and
passive scalar in two-dimensional turbulent flows along with some differ-
ences (Lapeyre et al., 2001 and references therein). The main reasons for
such differences are that, just as in the three-dimensional case, the whole
flow field is defined by vorticity with appropriate boundary conditions on
velocity, and that the equation for a passive scalar is linear, whereas vortic-
ity dynamics is governed by a nonlinear equation. Along with the absence
of the self-amplification of velocity derivatives, this nonlinearity may lead
to formation of large-scale structure(s) (‘vortices’) out of small-scale one(s)
– a process which is usually called inverse cascade of energy (Bracco et al.,
2000; Paret and Tabeling, 1998; Sommeria, 2001 and references therein).
In this respect, the behaviour of the passive scalar is qualitatively different
from that of vorticity; instead of ‘vortices’, sharp fronts are formed in the
field of a passive scalar (e.g., Celani, 2001).

8.10. Additives36

Turbulent flows can be strongly modified by additives in even extremely
small concentrations. The most spectacular changes occur with only a few
parts per million of flexible polymers added to the solvent (see references in
Cadot et al., 1998; Gyr and Bewersdodff, 1995; McComb, 1990 and Sreeni-
vasan and White, 2000). These changes are exhibited in a number of flow
parameters both large-scale and small-scale, though the direct action of the
dissolved polymers is obviously in the small scales. The large-scale manifes-
tations are represented in the first place by strong reduction of drag (up to
80%) in turbulent shear flows37. An example for smooth and rough pipes
is shown in figure 8.25. Apart from drag reduction, the figure displays the
phenomenon of maximum drag reduction or the maximum drag reduction
asymptote (MDR). The essence of this phenomenon is that one cannot
achieve drag reduction beyond MDR either by increasing the concentra-
tion of polymer or switching to another polymer. In other words, there is

36We address here only experimental aspects. The main reason is that there are no
equations describing the flow of polymer solutions as reliable as do NSE for Newtonian
fluids.

37There is evidence that the concentration of even 0.5 wt ppm of polyethileneoxide in
water can reduce the drag up to 40% (McComb, 1990). There are polymers of extremely
high molecular weight which lead to the same effect with only 0.05 wt ppm (Bewersdorff
et al., 1993; Gyr and Bewersdorff, 1995). Along with turbulent momentum, transport of
other quantities (heat, mass) is inhibited as well.
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Figure 8.25. Friction factor for maximum drag reduction in smooth and rough
pipes. Solid points refer to solvent, hollow points to polymer solutions yielding max-
imum drag reduction. (1) – laminar, Poiseuille’s law, (2) – turbulent for smooth
pipes, (3) – ‘maximum’ drag asymptote; Values of R/k – relative inverse roughness:
	 − 14.6, � − 22.8, � − 35, circle – smooth (Virk, 1971). The dashed line is a continu-
ation of (1) and it was added to indicate the difference between the minimal achievable
drag with that of purely laminar flow. Note that the drag reducing effect is considerably
diminished at large Reynolds numbers when the wall roughness is large enough. This
effect was brought to an extreme by Cadot et al. (1998) in experiments with the facility
schematically shown in figure 5.1: in the presence of baffles at the top and bottom of the
rotating disks the polymer has no effect on the drag at all. This was also observed by
Liberzon et al. (2005, 2006)

a saturation of drag reduction effect, which is limiting the drag reduction
leaving the drag considerably larger than its purely laminar counterpart.

Another phenomenon is the threshold effect. Namely, the drag in flows
of polymer solution follows the normal behaviour of the solvent until the
deviation starts at some Reynolds number beyond which the drag reduction
occurs. Sometimes this is thought to be connected with a threshold in the
wall shear stress.

Along with global effects there are effects on turbulence structure. The
first effect is directly related to drag reduction – it is a strong decrease of
the Reynolds stresses (and turbulence production) as can be seen from an
example given in figure 8.26.

However, the strong suppression of the Reynolds stresses occurs with-
out substantial reduction of the energy of turbulent fluctuations. The sup-
pression of the Reynolds stresses is due to decorrelation of the streamwise
(u ≡ u1) and wall-normal (v ≡ u2) components of the velocity fluctuations
(see figure 8.27).
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Figure 8.26. An example of suppression of the Reynolds stresses in a turbulent channel
flow (Gampert and Yong, 1990; see also Warholic et al., 1999)

The turbulent energy in flows of drag reducing solutions may be some-
what smaller than in normal flows, but also may be increased (see references
in Tsinober, 1990b). This is not in contradiction with substantial reduction
of turbulent energy production, since concomitantly the dissipation is also
strongly reduced as well. An important effect is the increased anisotropy:
the wall-normal velocity fluctuations are considerably suppressed (McComb,
1990; Tsinober, 1990b; Tong et al., 1990; see also figure 8.27). Anisotropy
was also observed in grid generated turbulence (Hibberd and Dohmann,
1988; Doorn et al., 1999; see also the references mentioned above). How-
ever, this latter anisotropy seems to be mostly associated with the effects
in the process of turbulence production on and in the closest proximity of
the grid. Some authors, the latest example being in Doorn et al. (1999),
observe a reduced rate of decay of the grid generated turbulence38, while
others do not (e.g., Hibberd and Dohmann, 1988).

Visual observations by Cadot et al. (1998) show that polymers have
an effect on the structure of the flow both when there is drag reduction
and when such a reduction does not occur in the case of inertial forcing
by baffles (see figures 8.25 and 5.1, see also Liberzon et al., 2005, 2006). In

38One of the possible reasons for the slower decay is the initial anisotropy. For example,
a cigar-like turbulence was created past a honeycomb installed after a conventional grid
(Hidenaru et al., 1988). The streamwise velocity component was considerably larger than
the two other components. The rate of decay of this turbulence was observed to be
substantially slower than that for quasi-isotropic turbulence.
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Figure 8.27. Joint PDFs of the streamwise and wall-normal velocity fluctuations in a
turbulent channel flow. Left column – water; right column – polymer solution (Gampert
and Yong, 1990)

both cases, the low pressure filaments (vortices) are smaller in numbers and
larger in scale. The absence of drag reduction in the case of inertial forcing
by baffles – as observed by Liberzon et al. (2005, 2006) – is consistent with
rather small difference in the behavior of TKE production in this case.
Namely, the difference in the TKE production between the pure water and
polymer solution flows is much smaller in this case than in flow with smooth
walls, see figure 8.28.

Cadot et al. (1998) also report changes on larger scales. This latter
effect was observed in various forms in previous studies. An example is
shown in figure 8.29 (see also figure 14.1 in McComb, 1990). The results in
figure 8.28 show that changes on larger scales depend strongly on boundary
conditions. Spectral and correlation measurements show that the energy
content of turbulent flows is shifted to larger scales; the small scales carry
much less energy than without polymers.

Thus, there are clear indications that the polymer drag reduction is not
associated with suppression of turbulence, but with qualitative changes of
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Figure 8.28. Left – PDFs of the turbulent kinetic energy production, P , average values
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angle between the Reynolds and mean strain tensors. Average values are 24, 0.11, 0.26,
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some of its structure and production. In other words, there exist turbulent
flows with strongly reduced drag and consequently dissipation. This implies
that in such turbulent flows the nonlinearities should be strongly reduced.
Suppression of the Reynolds stresses is an effect of this kind. One can
expect that such a reduction of nonlinear processes should occur also at
the level of velocity derivatives, i.e., the process of (self-) production of
velocity derivatives (vorticity and strain) should be suppressed in flows of
drag reducing polymers.

A direct indication that this is the case was obtained by Gyr and Tsi-
nober (1996). They compared the quantity −〈(∂u/∂x)3〉 in turbulent flows
of polymer and surfactant solutions and of water in a pipe of square cross
section. We are reminded that in isotropic turbulent flows 〈ωiωjsij〉 =
−4

3〈sijsikski〉 = −35
4 〈(∂u1/∂x1)3〉, so that the latter can be used as a ‘sur-

rogate’ of the enstrophy and strain production. The main result is that
−〈(∂u/∂x)3〉 is an order of magnitude smaller in turbulent flows of poly-
mer and surfactant solutions both in the flow bulk and in the near-wall
region, thus indicating that enstrophy and strain production in drag reduc-
ing flows is strongly inhibited. As expected, a similar behaviour is observed
for the ‘surrogate’ of the dissipation 〈(∂u/∂x)2〉 in the near-wall region,
but not in the bulk. This is in conformity with the view that the major
contribution to drag reduction process comes from the near-wall region as
was clearly shown in the experiments by Cadot et al. (1998).

There exist several attempts to explain the phenomenon in flows of
drag reducing additives (see references in the above citations). In spite of
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Figure 8.29. Schlieren images of mixing layer for a) water, b) 50 ppm Polyacrilamide,

c) 900 ppm C14)TASal surfactant (Riediger, 1989)

considerable efforts, the physical mechanisms underlying the phenomenon
remain poorly understood39. Perhaps, the common feature of all specu-
lations is the belief that the effects observed are directly associated with
extension of polymeric coils. This extension is caused by the field of strain,
mostly by its fluctuative part. The existence of the threshold effect leads to
a conjecture that only strain above some level is able to stretch the polymer
coils. An important requirement is that the field of strain should be compli-
cated enough, e.g., random in some sense, to be able to stretch the polymers
effectively (see Chertkov, 2000; Groisman and Steinberg, 2000 and refer-
ences therein). The reaction back of the polymer coils then is expected to
change the field of strain in such a way (nobody seems to know/understand
how precisely) as to cause the observed effects.

Most probably, the presence of polymer molecules resists large strain.
Indeed, the PTV techniques allowed observation of this effect in the form of
reduction of the rate of stretching of material lines, liljsij/l

2 in the presence
of polymers, figure 8.30 by direct measurements of liljsij/l

2 and by estimat-
ing the first eigenvalue Υ1 of the matrix Tkm = BikBjmsij, where Bij is the
well-known B-matrix (see, e.g., Girimaji and Pope, 1990 and Monin and
Yaglom, 1975) along with reduction of strong strain and vorticity events. It
appears that in isotropic flow 〈liljsij〉 = 〈Υ1〉, Liberzon et al. (2005), and
as seen from figure 8.30 Υ1 is substantially reduced in the turbulent flow
of dilute polymer solutions as compared to that of pure water.

39This is not surprising, since the problem is a combination of two poorly understood
problems, which in the words of McComb (1990) comprise a possible candidate for the
title of ‘most difficult problem in physics’.
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The direct effect of polymers on a turbulent flow is the depletion of
small-scale velocity derivatives, see figure 8.31. This effect is due to the ad-
ditional mechanism of dissipation introduced by polymers and it is clearly
observable in the turbulent bulk region. This is directly seen in the inertial
forcing case with baffles, in which the amount of kinetic energy and its pro-
duction remain unaltered in the water and the dilute polymer solution flow
cases. Therefore, the observed reduction of the rate-of-strain40 provides a
direct estimate of the reduced viscous dissipation and of the added polymer
induced dissipation.

This is consistent with the observed strong reduction of the occurrence
of bursting events, and one can expect also reduction of small-scale inter-
mittency in other turbulent flows.

In order to explain the effects with very low polymer concentrations, it
is tempting to assume that the polymer molecules form associations which

40There is no contradiction between the primary role of the interaction of strain with
polymer coils and the relation (8.3), showing the importance of vorticity in maintenance
of the Reynolds stress. The answer is that in the near-wall region, vorticity and strain are
strongly correlated, so that close to the wall ω2 and 2s2 are (practically) instantaneously
equal (e.g., Sandham and Tsinober, 1990). Hence suppression of strain (by whatever
mechanism) results in suppression of vorticity and thereby of the Reynolds stresses, as
follows from (8.3).
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(2006)

are preferentially located in regions of large strain, as happens with small
particles possessing densities larger than that of the carrying fluid (Eaton
and Fessler, 1994; Elperin et al., 2000; Vaillancourt and Yau, 2000 and ref-
erences therein). This in turn results in the suppression of production of
strain (and vorticity) in the ‘hot spots’, reduced dissipation and drag re-
duction, but not necessarily any suppression of turbulence. In such a case
the fluid in a turbulent flow of dilute polymer solution is intermittently
rheological just like, and because of, the turbulent flow is itself intermittent
(Bewersdorff et al., 1993). The above is, however, just one more specula-
tion among many. It seems, however, that in any case the intermittency,
especially of strain and thereby of dissipation, is of central importance and
hardly can be neglected.

Drag reduction and other modification effects on turbulence are ob-
served in turbulent flows with other additives. Turbulent flows with added
surfactants, very large aspect ratio fibres and some non-fibrous additives
exhibit clear drag reducing effects (Gyr and Bewersdorff, 1995; McComb,
1990). However, much less is known about the structure of these flows. For
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example, some authors report suppression of turbulent energy, while oth-
ers observed the contrary. A similar situation concerns particle and bubble
loaded flows (Crowe, 2000; Poelma et al., 2007; Zaichik et al., 2008 and
references therein).

It is noteworthy that the effects of additives on turbulence is one of
the manifestations of nonlocality of turbulence: the primary effect is in the
smallest scales which results in changes at all levels.

The overview presented in this chapter attempted to give an exposition
of turbulent flows in a variety of physical situations. There are many more.
See for example, the paper by Gibson (1996) for an interesting account of
turbulent flows in geophysical and astrophysical contexts. Turbulent flow
phenomena in liquid helium at very low temperatures, at which it is a
mixture of normal and quantum fluids, comprise another most fascinating
field (Donnelli, 1999; Liepmann and Laguna, 1984; Vinen and Niemela,
2002). All the factors influencing turbulent flows (those mentioned above
and many others) can be used in attempting to control turbulence – a
pretty bold and ambitious endeavor with a huge number of publications
within a very short time. Apart of practical importance such an approach
is definitely useful in using these influences in a systematic way to study
the basic mechanisms of ‘ordinary’ turbulence.



CHAPTER 9

ANALOGIES, MISCONCEPTIONS AND
ILL-DEFINED CONCEPTS

What is genuine turbulence?

Our understanding of the general character of the small-scale fea-
tures of turbulent motion is very far from complete . . .. Very few
theoretical or experimental results have been established so that
for the most part we must proceed by analogy and plausible infer-
ence (Batchelor, 1956, p. 183).

9.1. Introduction

The above statement by Batchelor is true of far more than just what is
called “small-scale” features of turbulence. In other words, analogies in
turbulence research have a special status mainly due to unsatisfactory
state of not only theory but also of hard evidence on the small-scale fea-
tures/properties of turbulent flows. Most of these analogies are aimed to
look at similarity between genuine turbulence and some “analogous” system
such as evolution of some passive object (e.g., scalar, vector, etc.), poly-
mers, and some other (see below) in a prescribed random (usually Gaussian)
velocity field. This led in many cases to exaggerated and consequently mis-
leading claims on analogous behaviour between the two and consequently to
misconceptions even for systems with the same generic features, such as the
same symmetries, conservation laws, etc., which do not guarantee similar
behaviour, Kraichnan (1974). Hence the purpose of this chapter is twofold.
First, the main emphasis is given to differences rather than similarities. The
primary reason for this is that (at least some) understanding of differences is
expected to aid better understanding of both systems and avoid misconcep-
tions associated with extending the analogies too far. Second, dealing with
conceptual aspects of turbulence research leads necessarily to addressing
misconceptions which have arisen during more than a century of turbu-
lence research attempting to achieve some physical understanding/picture
of this enigmatic phenomenon. Apart from the critical aspects, the main
constructive outcome from addressing a variety of misconceptions is the
hope to achieve a deeper understanding of the problems to be encountered
and coped with. This is the main aim and emphasis of this chapter.

295
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The story starts with the ‘eddy viscosity’ of Boussinesq (1877) and the
Reynolds analogy in 1874 on transport of momentum and heat (Reynolds,
1874)1 and his proposal to study fluid motion by means of ‘color bands’
(Reynolds, 1894), which can be seen as the foundation of flow visualiza-
tion. The next example concerns the frozenness of vorticity in the flow
field in inviscid flows thereby indicating the analogy between vorticity and
(infinitesimal) material lines (Helmholz, 1858; Kelvin, 1880). Taylor, 1938
used this analogy to justify the view that vorticity is amplified due to pre-
dominant stretching of material lines in a random flow and Batchelor, 1950
proposed a similar analogy between amplification of vorticity and magnetic
field in a turbulent flow of conducting fluid. Recent statements (see below)
are made in the same spirit.

The problem with misconceptions starts with the question What is tur-
bulence? and the attempts to give a definition of what turbulence is. Are
such attempts conceptually correct? In a mathematical theory the defi-
nition of the main object of the theory precedes the results. In physics,
especially in new fields, it is vice versa. Usually it happens when one stud-
ies a new phenomenon and only at a later stage, after understanding it
sufficiently, classifies it, finds its proper place in the existing theories and
eventually the most reasonable definition is chosen. Though turbulence in
not a new field the above is so much true of turbulence – there is no theory
so far. This time has not yet come, and it may not come soon if at all –
to quote A.N. Kolmogorov (1985): I soon understood that there was little
hope of developing a pure, closed theory, and because of absence of such a
theory the investigation must be based on hypotheses obtained on processing
experimental data, see Tikhomirov (1991, p. 487).

The justification for using some ‘analogous’ system is usually based on
the claim that it is ‘mimicking’ the real turbulent flow which is far from
being synonymous to reflecting the real physical processes and in many
cases (if not all) is just getting the ‘right’ result not necessarily for the
right reasons. In particular, this approach is a widespread assumption (and
a great variety and huge number of papers) that models represent physical
processes in real turbulence. The list of models is a very long one indeed. It
starts with the ‘eddy viscosity’ as the simplest version of the ‘solution’ of the
‘problem of closure’, low-dimensional representation and integrable systems
and ends with most sophisticated versions of LES and similar (so far). Many
of these models are based on qualitatively different (and even contradictory)
premises/assumptions, but agree well with some experimental data and are
claimed to “work well”.

1Reynolds postulated the existence of an analogy between wall shear and heat flux
based on studies with fully-developed pipe flow and self-similar external boundary layers.
Analogies in this spirit are pursued also at present, e.g., Abe and Antonia (2009).
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9.2. Eddy viscosity, models

Thus, because it is not possible to separate eddies into clearly de-
fined classes according to the source of their energy ; and as there
is no object, for present purposes, in making a distinction based
on size between cumulus eddies and eddies a few meters in diame-
ter (since both are small compared with our coordinate chequer),
therefore a single coefficient is used to represent the effect pro-
duced by eddies of all sizes and descriptions (Richardson, 1922).
Note that this citation from Richarson, 1922 follows right after his
famous verse.
Gradient transport ideas (which have been around since the begin-
ning) are understood to be wrong in principle, yet they are used
daily with moderate success by industry. Understanding how this
can be (it is thoroughly explained by Tennekes and Lumley, 1972,
p. 57) sheds light on turbulence (Kraichnan, 1976).
... the theoretical basics for the use of simple eddy viscosities to
represent subsgrid scales is substantially insecure. Why then have
they worked so well in practice? Apparently this is largely be-
cause the flow has built-in compensatory mechanisms. The effect
of a crude and inaccurate term to represent the passage of energy
or enstrophy through the boundary at km has the principal effect
of distorting the flow in a relatively restricted wavenumber range
below km (Kraichnan, 1976).

One of the oldest and greatest analogies/misconceptions is the one on
eddy viscosity in the sense that it ‘explains the enhanced transfer rates’,
whereas it is just an empirical way of accounting for such rates but not at
all an explanation in any sense. Similarly it is a too an optimistic claim, for
example, that LES of wall-bounded flows . . . resolve all the important ed-
dies . . . has received increased attention, in recent years, as a tool to study
the physics (!) of turbulence in flows at higher Reynolds number, or in
more complex geometries, than DNS, Piomelli and Balaras (2002). The
qualification of large-scale (resolved) eddies as the most important ones
is too subjective: unresolved eddies are not less important in view of di-
rect and bidirectional coupling of essentially all eddies whatever the term
‘eddies’ means. It seems conceptually incorrect that LES or any other sim-
ilar approach can be used as a tool to study the physics of turbulence,
since a vitally important part of physics of turbulence resides in the un-
resolved scales. Nevertheless, most of the numerous models are in good
agreement with the experimental and numerical evidence. This is not sur-
prising since agreement with limited (by necessity) experimental evidence
is not very much significant when one deals with such a highly-dimensional
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system as turbulence. The only exception seems to be the Navier–Stokes
equations: Perhaps the biggest fallacy about turbulence is that it can be
reliably described (statistically) by a system of equations which is far eas-
ier to solve than the full time-dependent three-dimensional Navier–Stokes
equations, Bradshaw, 1994. In other words, it is doubtful that any model
except (hopefully) the NSE can be used to adequately study the physics of
turbulent flows which in the first place means its basic/fundamental and
conceptual aspects.

9.3. Genuine turbulence versus passive “turbulence”

Passive contaminants are transported by turbulent motions in
much the same way as momentum. . .Momentum is not a passive
contaminant; “mixing” of mean momentum relates to the dynam-
ics of turbulence, not merely its kinematics (Tennekes and Lumley,
1972).
The advection-diffusion equation, in conjunction with a velocity
field model with turbulent characteristics (prescribed a priori),
. . . serves as a simplified prototype problem for developing theo-
ries for turbulence itself (Majda and Kramer, 1999).
. . . the well-established phenomenological parallels between the
statistical description of mixing and fluid turbulence itself sug-
gest that progress on the latter front may follow from a better
understanding of turbulent mixing (Shraiman and Siggia, 2000).
An important progress has been achieved in the last decade in
understanding some simpler systems exhibiting behaviors similar
to developed turbulence. These include the so-called weak or wave
turbulence, the advection of passive scalar and vector fields by
random velocities that mimic the turbulent ones, and, to certain
extent, the so-called burgulence, the phenomena described by the
Burgers equation (Gawedzki, et al. 2002).
The Kraichnan model . . . is a perfect paradigm for Onsagers vision
of generalized “inviscid” solutions of PDEs that sustain turbulent
dissipation . . .. It remains a huge challenge to carry over these im-
portant insights from the Kraichnan model to the incompressible
Euler equation (Eyink, 2008).

The differences are more than essential: the evolution of passive objects is
not related to the dynamics of turbulence in the sense that the dynamics
of fluid motion does not enter in the problems in question – the velocity
field is prescribed a priory in all problems on evolution of passive objects.
Consequently, the problems associated with the passive objects are linear
(in Euler setting); whereas genuine turbulence is a strongly nonlinear prob-
lem – nonlinearity (along with other N’s and n’s) is in the heart of turbulent
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flows and is underlying the main manifestations of the differences between
genuine and passive turbulence.

9.3.1. SELF-AMPLIFICATION OF VELOCITY DERIVATIVES

Nonlinearity of genuine turbulence is the reason for the self-amplification
of the field of velocity derivatives, both vorticity and strain. In contrast
there is no phenomenon of self-amplification in the evolution of passive
objects (such as material lines, gradients of passive scalar and solenoidal
passive vectors with finite diffusivity). We stress that the process of self-
amplification of strain is a specific feature of the dynamics of genuine tur-
bulence having no counterpart in the behavior of passive objects. In con-
trast, the process of self-amplification of vorticity, along with essential
differences2, has common features with analogous processes in passive vec-
tors; in both, the main factor is their interaction with strain, whereas the
production of strain is much more ‘self’ and (local).

A related important difference is absence of pressure in case of passive
objects.

9.3.2. DIFFERENCES IN STRUCTURE(S)

Along with some common features, the mechanisms of formation of struc-
ture(s) are essentially different for passive objects and dynamical variables.
Among the reasons is the presence of Lagrangian chaos, which is manifested
as a rather complicated structure of passive objects even in very simple reg-
ular velocity fields. On the other hand, e.g., the ramp-cliff structures of a
passive scalar are observed in a pure Gaussian ‘structureless’ random veloc-
ity field, just like those in a variety of real turbulent flows practically inde-
pendently of the value of the Reynolds number. In other words the structure
of passive objects in turbulent flows arises from two essentially inseparable
contributions: one is kinematic due to the Lagrangian chaos and the other
dynamic due to the random nature of the (Eulerian) velocity field itself,
i.e., the behaviour of Lagrangian objects in E-turbulent flows is much more
complicated than that of purely Eulerian objects. Therefore one cannot
claim that statistical properties of this so-called ‘passive-scalar’ turbulence
are decoupled from those of the underlying velocity field (Shraiman and
Siggia, 2000), since the non-trivial statistical properties of scalars turn out
to originate not only in the mixing process itself, but are inherited from the
complexity of the turbulent velocity field as well. Study of passive-scalar

2We would like to stress again that vorticity is an active vector, since it ‘reacts back’
on the velocity (and thereby on strain) field. This is not the case with passive objects –
the process here is ‘one way’: the velocity field does not ‘know’ anything about the passive
object.
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turbulence is therefore not decoupled from the still intractable problem
of calculating the velocity statistics. Among other reasons are differences
in sensitivity to initial (upstream) conditions (i.e., Lagrangian ‘memory’),
‘symmetries’, e.g., the velocity field may be locally-isotropic, whereas the
passive scalar may be not and some others (see references in Tsinober,
2001a). A recent result, Baig and Chernyshenko, 2005 for turbulent flow in
a plane channel is an interesting addition to the list of these differences:
although the vortical structure of the flow is the same, the scalar streak
spacing varies by an order of magnitude depending on the mean profile
of the scalar concentration. Moreover, passive-scalar streaks were observed
even in an artificial “structureless” flow field.

One more issue is related to the so-called Lagrangian structure functions
initiated by Haller in 2000 (see Mathur et al., 2007 and references therein).
In this approach coherent structures in the Lagrangian (particle-based)
frame are defined as distinguished sets of fluid particles (which are passive
objects). These Lagrangian coherent structures (LCS) are claimed to have a
decisive impact on fluid mixing3 by their special stability properties. Direct
Lyapunov exponents (DLE) are used to visualize the two kinds of LCSs (re-
pelling and attracting) as local ridges of the DLE field which turn out to be
close (!) to evolving material lines, i.e the fluid flux across them is claimed to
be small at any time. A fluid particle is subject to attraction to nearby blue
curves and simultaneous repulsion by nearby red curves. The complex tangle
formed by these two sets of curves is the underlying cause of turbulent par-
ticle motion, the Lagrangian skeleton of turbulence (Mathur et al., 2007).
It has to be stressed that the attraction/repulsion occurs not because these
sets have the “power” to do so – it is just a reflection of the action of the
underlying fluid flow (the Eulerian one) and the factors causing this flow.
Therefore, the causal part of the above statement is overreaching as the
authors deal (very nicely) with purely-kinematical aspects of the problem4

whereas turbulence (particle motion included) is due to dynamical rea-
sons/causes. In other words, what is observed is the reflection/description
in terms of DLE, etc. of the real cause which is due to action of the under-
lying velocity field (especially strain) producing stretching/compressing of
material passive objects closely related to repelling/attracting of fluid par-
ticles to the above mentioned sets. An important aspect is precisely in the
same way one would observe a Lagrangian skeleton of, e.g., a pure Gaussian
(structureless) velocity field as well. One of the claims is that these curves

3In this sense this is a kinematic aspect of LCS’s as contrasted to the dynamics (i.e.,
Eulerian). In other words the most difficult question is about the relation/connection or
importance of these distinguished sets of fluid particles for turbulence dynamics not just
kinematics.

4That is they would observe a Lagrangian skeleton of pure Gaussian (structureless)
velocity field as well.
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turn out to be close to evolving material lines, i.e., the fluid flux across
them is negligible at any time. An important point is that the two sets of
curves are Lagrangian only approximately (i.e., their Lagrangian identity is
not perfect). Therefore – though one can define them at any time moment –
it is not clear how one can follow the same line in time. The LCS issues
are a typical example of the issues associated with problems of the relation
between the Lagrangian and Eulerian descriptions: there is a necessity of
an in-depth study of the connection between Lagrangian coherent structures
and their dynamic signature... (Salman, 2007). However, this is far more
than being trivial as can be seen from the next subsection and mentioned
in chapters 3 and 4.

9.3.3. SCALING EXPONENTS AND STATISTICALLY
CONSERVED QUANTITIES

There is a number of publications insisting in some sense on a kind of
essential linearization of genuine turbulence problem when this concerns
scaling exponents (mainly of structure functions) and the role of statis-
tically conserved quantities. The claims are summarized by arguing that
the mechanism leading to anomalous scaling in Navier–Stokes equations
and other nonlinear models is identical to the one recently discovered for
passively advected fields, Angheluta et al. (2006).

If this is really true it means that this is just one more aspect – as in
RDT – which can be treated via a linear model which in some cases enables
us to handle some aspects of turbulent flows, but not their genuine nonlinear
aspects: One can thus speculate that the anomalous scaling for the genuine
turbulence can also appear as a linear phenomenon in the following sense.
Let us split the total velocity field into the two parts, the background field
and the perturbation . . . linearize the original stochastic equation with re-
spect to the latter, choose an appropriate statistics for the former . . . . Then
the small-scale perturbation field will show anomalous scaling behavior with
nontrivial exponents, which can be calculated systematically within a kind
of ε-expansion model. In such a case the passive vector field can give the
anomalous exponents for the NS velocity field exactly, Antonov et al. (2003).

Similar statements are made with respect to so-called statistically con-
served quantities/zero modes which have been discovered for passive ob-
jects, but not really for genuine NSE, see Falkovich and Sreenivasan (2006);
and Eyink (2008) and references therein. The main point is that these au-
thors (as some others) claim or/and strongly imply a fundamental analogy
between results obtained for passive scalars for the Kraichnan model and
genuine turbulence5.

5The Kraichnan model employs what is sometimes called ‘Kraichnan enesmble’: a
velocity field which is δ-correlated in time and Gaussian in space for fixed time, i.e.,
characterized by the two-point function 〈ui(t, r)uj(t

′, r′)〉 ∝ δ(t − t′)Dij(r − r′).
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One can now state with confidence that stochastic equations like those
that describe aspects of turbulence (i.e., the Kraichnan model for passive-
scalar and Burgers turbulence) demonstrate the inadequacy of Kolmogorov
dimensional reasoning. In particular, the community has learned that sta-
tistical conservation laws (again for a passive scalar!) play a fundamental
role in establishing that inadequacy . . . . If anomalous scaling is to result,
the advecting velocity field must not be smooth and it must generally pos-
sess power-law correlations in the inertial range, Falkovich and Sreenivasan
(2006); see also Falkovich (2009).

The Kraichnan model (21) is a perfect paradigm for Onsager’s vision of
generalized “inviscid” solutions of PDEs that sustain turbulent dissipation...
It remains a huge challenge to carry over these important insights from the
Kraichnan model to the incompressible Euler equation, Eyink (2008).

9.3.4. ISSUES ASSOCIATED WITH THE E-L RELATIONS. ANALOGY
BETWEEN GENUINE TURBULENCE AND LAGRANGIAN CHAOS

The intricacy of the relation between the Eulerian and Lagrangian fields of
the same fluid flow has a number of other important consequences. This is a
part of a broader question. Namely, what can be learnt about the properties
and especially dynamics of real turbulence from studies of passive objects
(scalars, vectors)? In particular, what can be learnt about the velocity field
and other dynamical variables in real turbulence from comparison of the
behaviour of passive objects in real and some ‘synthetic’ turbulence?

The first issue includes flow visualization in which the relation between
the field of velocity and that of a passive scalar (dye, very small particles)
plays a crucial role, as does the interpretation of this relation. It appears
that the meaning of ‘seeing’ turbulent flow is far from being trivial.

We have seen that the structure of a passive tracer can be (and usually
is) very complicated (figure 4.8), whereas the corresponding velocity field is
rather simple. Another example is shown in figure 9.1. After the two vor-
tices merged, the structure of the passive markers is rather complicated as
compared to the initial state, but the structure of the flow field is essentially
the same as in each individual vortex before the merging.

One more example is shown in figure 9.2. It is seen that the passive
tracer has structure at locations where the velocity field has none.

These examples show that flow visualizations used for studying the
structure of dynamical fields (velocity, vorticity, etc.) of turbulent flows
may be quite misleading. The general reason is that passive objects do
not ‘want’ to follow the dynamical fields (velocity, vorticity, etc.)6 – along

6Formally, it is obvious since passive objects and active fields obey different equations.
In particular the problems associated with the former are essentially linear, whereas the
problems involving the latter are genuinely nonlinear.
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Figure 9.1. Dye visualization of two co-rotating vortices with the vorticity of the same
sign. Time is increasing from left to right and from top to bottom. Note the resulting
rather complicated pattern of dyes, whereas the corresponding fluid flow consists of just
one ‘simple’ vortex. Courtesy of Dr. T. Leweke (see Meunier and Leweke, 2000)
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Figure 9.2. Same flow – not the same pattern. Smoke visualization of a wake past a
circular cylinder at Re = 90 (Cimbala et al., 1988). The velocity field in figures a) – d)
is the same. The difference is in the location of the smoke release. The figure d) clearly
indicates that beyond the distance x/d = 150 there is no von Karman vortex street in the
velocity field at all, whereas looking at the figure a) only would imply quite the opposite

with some common features, the mechanisms of formation of structure(s)
are essentially different for the passive objects and dynamical variables. As
mentioned, one of the reasons is the presence of Lagrangian chaos, which
is manifested as a rather complicated structure of passive objects even in
very simple regular velocity fields. On the other hand the ramp-cliff struc-
tures of a passive scalar are observed in a pure Gaussian ‘structureless’
random velocity field (Holzer and Siggia, 1994), just like those in a vari-
ety of real turbulent flows, practically independently of the value of the
Reynolds number (Warhaft, 2000 and references therein). Therefore – as
mentioned above and discussed in chapters 3 and 4 – one can expect that
the structure of passive objects in turbulent flows arises from two (essen-
tially inseparable) contributions: one of purely kinematic nature due to
Lagrangian chaos and the other having a dynamical origin due to the ran-
dom nature of the Eulerian velocity field itself. Among other reasons are
the differences in sensitivity to initial (upstream) conditions, as in the case
shown in figure 9.2, the difference in ‘symmetries’, e.g., the velocity field
may be locally-isotropic, whereas the passive scalar may be not (see ref-
erences in Celani et al., 2001; Villermaux et al., 2001 and Warhaft, 2000)
and some others. This does not mean that qualitative study of fluid motion
by means of colour bands (Reynolds, 1894) is impossible or necessarily er-
roneous. However, watching the dynamics of material ‘coloured bands’ in
a flow may not reveal the nature of the underlying motion, and even in
the case of correct qualitative observations the right result may come not
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necessarily for the right reasons. The famous verse by Richardson belongs
to this kind of observation.

The second issue is how sensitive is, e.g., the field of a passive scalar to
the properties of dynamical fields (velocity, vorticity, etc.). It appears that
many, especially qualitative but also quantitative, characteristics of passive
scalars are insensitive to the details of the velocity field (Kraichnan, 1968;
Majda and Kramer, 1999; Warhaft, 2000), as long as the velocity field
is random. For example, the 4/3 Richardson law is observed in a purely
Gaussian and two-dimensional field (Elliott and Majda, 1996), and even
independent of the nature of the turbulent flow (Ola, 2002). This is the rea-
son that many properties of passive scalars are essentially the same for a
Gaussian velocity field and for real turbulent flows (see Holzer and Siggia,
1994; Majda and Kramer, 1999; Warhaft, 2000; Shraiman and Siggia, 2000
and references therein). This is true not only of various statistical proper-
ties, but also of structural details such as formation of the mentioned above
ramp-cliff structures – a name given to the sheetlike fronts (shocks) with
sharp gradients of a passive scalar across them. They were observed both in
numerical simulations of a (two-dimensional) passive scalar in a Gaussian
velocity field (Holzer and Siggia, 1994), and in various experiments and
field observations as well as in numerical simulations of the Navier–Stokes
equations together with the advection-diffusion equation in a periodic box7.
In other words nontrivial statistical behaviour of passive objects is expected
for any random velocity field independently of the nature of this random-
ness. This is not very surprising, since – as mentioned – the Lagrangian
field is an extremely complicated nonlinear functional of the Eulerian field.
Still, it should be remembered that the phenomenon itself is a linear one
in the Eulerian setting.

On the other hand there are properties of passive objects which do de-
pend on the details of the velocity field. For example, the PDF of a passive
scalar depends on a variety of factors, such as Reynolds number, the pres-
ence of mean shear flow and/or mean scalar gradient, and many others (see
Majda and Kramer, 1999). Just these very properties can be effectively used
to study the differences between real turbulent flows and artificial random
fields. More precisely the essential differences in the behaviour of passive
objects in a real and synthetic turbulence may be exploited in order to gain
more insight into the dynamics of real turbulence. At present, however, the
knowledge necessary for such a use is very far from being sufficient. With
few exceptions it is not even clear what can be learnt about the dynamics
of turbulence from studies of passive objects (scalars and vectors) in real

7For references and further details see Celani et al. (2001), Majda and Kramer (1999),
Overholt and Pope (1996), Gawedzki and Vergassola (2000), Shraiman and Siggia (2000)
and Warhaft (2000).
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and ‘synthetic’ turbulence. This requires systematic comparative studies of
both. An attempt of such a comparative study was made by Tsinober and
Galanti (2003). This is a relatively small part of a much broader field of com-
parative study (in both Euler and Lagrange setting) of ‘passive’ turbulence
(reflecting the kinematical aspects) and genuine turbulence representing
both the dynamical processes and the kinematical aspects.

9.3.5. KOLMOGOROV 4/5 VERSUS YAGLOM 4/3 LAWS AND
NON-GAUSSIAN NATURE OF GENUINE AND ‘PASSIVE’ TURBULENCE

The Kolmogorov and the Yaglom laws are respectively

S3(r) ≡
〈(

Δu||
)3

〉
= −4

5
εr and

〈
Δu|| (Δθ)2

〉
= −4

3
εθr (9.1a, 9.1b)

where Δu|| ≡ [u(x + r) − u(x) · r/r, Δθ = θ(x + r) − θ(x), ε is the rate
of dissipation of kinetic energy and εθ = D ∂θ

∂xi

∂θ
∂xi

is the rate of dissipation
of fluctuations of a passive scalar. The analogy between these two laws8,
though useful in some respects (Antonia et al., 1997) is obviously violated
for a Gaussian velocity field. Namely, the 4/3 law remains valid for such
(as any other random isotropic) velocity field, whereas the 4/5 law is not,
because S3(r) ≡ 0 for a Gaussian velocity field9. This difference is one
of the manifestations of the dynamical nature of the Kolmogorov law as
contrasted to the kinematical nature of the Yaglom law. It reflects the
difference between genuine turbulence as a dynamical phenomenon and
‘passive’ turbulence as a kinematical process.

The above underscores the essentially and qualitatively different origin
of the non-Gaussian nature of genuine turbulence and various passive ob-
jects which sometimes is masked in the Lagrangian description. There are
two main aspects here. The first one is seen in the pure Eulerian description
in which the genuine turbulence is non-Gaussian due to the nonlinearity
(see chapter 6), whereas the evolution of passive objects is an essentially
linear process and its non-Gaussian properties arise due to the multiplica-
tive manner in which velocity enters in the governing equations. Hence
strong non-Gaussianity and nontrivial structure of passive objects appear
even in a structureless purely-Gaussian10 isotropic velocity field. Another
aspect is the non-Gaussian behavior of L-turbulent passive objects (with
no counterpart statistics) in purely E-laminar flows.

8The 4/5 Kolmogorov law follows by isotropy from the 4/3 law for the velocity field

in the form
〈
Δu‖(Δu)2

〉
= − 4

3
〈ε〉 r.

9See below a law for the vector potential of a magnetic field similar to the 4/3 Yaglom
law for passive scalar.

10Prescribed ‘by hand’ or in some other way as in an NS flow at Re < 1 with a
Gaussian forcing.
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9.4. Vorticity versus passive vectors

9.4.1. MATERIAL LINES

Turbulent motion is found to be diffusive, so that parti-
cles which were originally neighbors move apart as motion
proceeds. In a diffusive motion the average value of d2/d2

0

continually increases. It will be seen therefore . . . that the
average value of ω2/ω2

0 continually increases (Taylor, 1938).
. . . the interesting physical argument that <ωiωjsij> is pos-
itive because two particles on average move apart from each
other and therefore vortex lines are on average stretched
rather than compressed (Hunt, 1973).
The relative diffusion of a pair of probe particles in grid
turbulence at high Reynolds numbers is treated as the
most clear-cut manifestation of vortex stretching (Mori and
Takayoshi, 1983).
When Re is large this vorticity is virtually frozen into the
fluid, p. 154. However, since material-line stretching seems to
be a norm for the broader class of kinematically-admissible
fields, it should also be the norm for the narrower class of
dynamically-admissible velocity fields, and so one should not
be surprised that vortex-line stretching, like material-line
stretching, is seen in practice, p. 259 (Davidson, 2004).
...Vorticity amplification is a result of the kinematics of tur-
bulence (Tennekes and Lumley, 1972).
A major open problem, in particular, is how to relate turbu-
lent dissipation of energy, precisely, to the inviscid motion
of vortex-lines (Eyink, 2008).

The above selection of citations11 represent a rather common view and a
major misconception that the prevalence of vortex stretching is due to the
predominance of stretching of material lines12. Chorin (1994) points to the
problematic aspect of such a view: Vortex lines are special lines, and con-
stitute a negligible fraction of all lines (there is one vortex direction at each
point, but an infinite number of others). All arguments that involve averages
with respect to a probability measure may fail to hold in a negligible fraction
of cases, and thus one cannot conclude from (5.1) (i.e., d/dt〈|δx(t)|2〉) that
vortex lines stretch, even in isotropic flow. But he ends with the statement
that This conclusion is, however, eminently plausible. Indeed, it is plau-
sible, since it is observed in the laboratory and in numerical simulations.

11There is a multitude of similar statements in the literature.
12This view originates with Taylor (1938) who demonstrated experimentally the preva-

lence of vortex stretching in a turbulent grid flow.
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But the underlying reasons/processes are still not understood, unlike in
the case of passive material lines. The main problem with the view that the
prevalence of vortex stretching is due to the predominance of stretching of
material lines is that it is of kinematic nature (as employing the Richardson
pair diffusion), whereas at the very outset one would expect that the un-
derlying cause of vortex stretching in turbulent flows should be a dynamical
one. So the main question is whether vorticity and material lines really are
stretched in the same way and for the same reason, and what is the mean-
ing of the “same way”. Another important question is whether vortex lines
are (approximately) frozen into the fluid at high Re. So the main prob-
lems with the kinematic view are as follows. First, the vortex lines are not
frozen into the fluid at however high Reynolds number – otherwise how can
the enstrophy production be approximately balanced by viscous terms (the
Tennekes–Lumley balance see chapter 6) at any however large a Reynolds
number13, which is not the case with material lines: the production lilisij

is not balanced at all14. One of the consequences is that Kelvin/Helmoholz
theorems do not hold – even approximately – at large Reynolds numbers15.
Second, even if frozen vorticity is not a marker, it reacts back strongly:
everybody knows the Biot–Savart law, or more generally ∇2u = −curlω.
Third, even if frozen, those material lines coinciding with vorticity are spe-
cial and not the other way around. Namely, the material line elements which
initially and thereby consequently coincide with vorticity are special in the

13... a material line which is initially coinciding with a vortex line continues to do so.
It is thus possible and convenient to regard a vortex-line as having a continuing identity
and as moving with the fluid. (In a viscous fluid it is, of course, possible to draw the
pattern of vortex lines at any instant, but there is no way in which a particular vortex-
line can be identified at different instants), Batchelor (1967, p. 274). In other words, at
any Reynolds number a vortex line does not have a (Lagrangian) identity and it seems
meaningless to speak about an “approximate” identity in view of the balance between
enstrophy production and its destruction due to viscosity – we stress again – at any
however large (but finite, so that the velocity field is smooth) Reynolds number. This
lack of Lagrangian identity is also one of the difficulties in handling the phenomenon of
reconnection. Thus it is clear that it is meaningless to look for the solution of the major
open problem . . . how to relate turbulent dissipation of energy, precisely, to the inviscid
(!) motion of vortex-lines, Eyink, 2008. Also we do recall that at any finite Reynolds
number the causal relation is between dissipation and strain and its production rather
than vorticity.

14Indeed, the equation for l2,

Dl2

Dt
= lilisij ,

does not contain any diffusive term unlike the equation for the enstrophy (C.16).
15As discussed in chapter 6 the stochastic versions of the Kelvin theorem and the

Cauchy formula for the evolution of vorticity for NSE (i.e., ν �= 0) by Constantin and
Iyer, 2008 are just formal analogues and cannot be interpreted as any kind of “frozenness”
of (stochastic) vortex-lines to the ensemble of stochastic flows X(a, t) which replace the
classical Lagrangian trajectories.
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Figure 9.3. Comparison of time evolution of the 0.5Dω2/Dt (dashed line) and the
enstrophy production ωiωjsij (solid line). (a) – trajectories originating at locations with
balance of viscous and forcing terms; (b) – randomly chosen initial conditions. Galanti
et al. (2008)

sense that they are not dynamically passive quantities anymore and react
back on the flow precisely as does vorticity. In other words, the fact that
vorticity is frozen in the inviscid flow field does not mean that vorticity
behaves the same way as material lines, but the other way around: those
material lines which coincide with vorticity behave like vorticity, because
they are not passive anymore as are all the other material lines: a contin-
uum of other choices. This is a different kind of “non-uniqueness”: there is
one vortex direction at each point, but an infinite number of others. This
kind of behavior was observed in a low-Reynolds-number (!) numerical ex-
periment (Reλ = 50). The idea was to look at the Lagrangian evolution
of vorticity and material elements associated with fluid particles originat-
ing from locations where the forcing and the viscous terms are balancing
each other. Due to persistency of Lagrangian evolution this (approximate)
balance remains valid for about ten Kolmogorov time scales, thus allow-
ing to observe locally in space/time ‘purely’ inviscid evolution, figure 9.3.
Another feature is that the evolution of material lines and vorticity is very
close only for those material lines which i) are initially identical to vorticity
and ii) for trajectories originated at locations with balance of viscous and
forcing terms, figure 9.4. Any other material lines behave differently, even
those satisfying ii) but not i). For example, material lines initially identical
to the compressing eigenvalue, λ3, of the rate of strain tensor are strongly
compressed during 10τη . More details are given in Galanti et al. (2008).

Other differences include the rate of stretching: 〈liljsij/l
2〉 is up to 1.5

times larger than 〈ωiωjsij/ω
2〉, Guala et al. (2005), Lüthi et al. (2005),

alignment properties: material elements are preferentially aligned with λ1
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Figure 9.4. Comparison of the time evolution of vorticity and material lines. Upper
panel: time evolution of the norm 2[l/l0 − ω/ω0]

2[(l/l0)
2 + (ω/ω0)

2] for (a) material
lines initially identical to vorticity for trajectories originated at locations with balance
of viscous and forcing terms (solid line) and from randomly chosen initial conditions
(dashed line); (b) material lines initially randomly oriented but for trajectories originated
at locations with balance of viscous and forcing terms (solid line) and from randomly
chosen regions (broken line); Bottom panel: evolution of the cosines between the vorticity
vector and the material lines. (c) – material lines as in a); (d) material lines as in b).
DNS data: resolution – 2563, Reλ = 50. Based on average of 388 independent trajectories
originated from regions with balance of viscous and forcing terms and 600 randomly
selected trajectories. Galanti et al. (2008)

(Drummond, 1993; Lüthi et al., 2005), whereas vorticity aligns with λ2 even
in Euler flows (see references in Tsinober, 1998a,b). An additional difference
is that a vorticity field is solenoidal, divω ≡ 0, whereas the field of material
elements l is not: its divergence is a precise pointwise Lagrangian invariant
divl ≡ const. It is vanishing only for an initially solenoidal field of l, but,
as mentioned, there is a continuum of other fields l with divl �≡ 0. Finally,
in two-dimensional turbulent flows (the Cocke, 1969 proof works in 2-D
in the same way) and any Lagrangian chaotic flows (which are E-laminar)
the material elements are predominantly stretched, whereas nothing of the
kind happens with vorticity.
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9.4.2. SOLENOIDAL VECTOR FIELDS WITH NONVANISHING
DIFFUSIVITY

The usual comparison is based on looking at the equations for vorticity ω
and the (solenoidal) passive vector, B, e.g., magnetic field in electrically-
conducting fluids (Batchelor, 1950),

∂ω

∂t
= ∇×(u × ω) + ν∇2ω,

∂B
∂t

= ∇× (u × B) + η∇2B (9.2a, 9.2b)

Though a number of differences are known, they are hidden when one looks
at the equations for ω and B, which, as mentioned, are identical in form.
However, a more ‘fair’ comparison should be made between the velocity
field, u, and the vector potential A, with B = ∇× A, Tsinober and Galanti
(2003). Such a comparison allows to see immediately one of the basic differ-
ences between the fields u and A (apart from the first being nonlinear and
the second linear) which is not seen from the equations (9.2). Namely, the
Euler equations conserve energy, since the scalar product of u · (ω × u) ≡ 0
is identically vanishing. In contrast – unless initially and thereby subse-
quently u ≡ A – the scalar product of A · (u× B) �≡ 0.16 It is this term
A · (u × B) ≡ −AiAksik + ∂/∂xk{AkAlul − 1

2ukA
2} which acts as a pro-

duction term in the energy equation for A. In other words, when the initial
conditions for u and A are not identical, the field A (and B), is sustained by
the strain, sik, of the velocity field – in contrast to the field u which requires
external forcing. The production term −AiAksik is positively skewed and
〈−AiAksik〉 > 0. A noteworthy feature is that an analogue of Kolmogorov
4/5 law is valid for the vector potential A (see e.g., Gomez et al., 1999 and
references therein) 〈

Δu||(ΔA)2
〉

= −4/3rεA, (9.3)

where Δu|| ≡ Δu ·r/r ≡ [u(x + r)−u(x)] ·r/r, ΔA = A(x+r)−A(x), and
εA is the mean dissipation rate of the energy of A. An important point is
that the relation (9.3) holds for any random isotropic velocity field including
the Gaussian one, which is not the case for the velocity field itself, since〈
Δu||(Δu)2

〉
≡ 0 for a Gaussian velocity field. Similarly, there are essential

differences in the behaviour of vorticity, ω and B. First, in a statistically
stationary velocity field (NSE but not Gaussian) the enstrophy ω2 saturates
to some constant value, since vorticity is not a dynamically passive quantity.
In contrast the energy of magnetic field B2 grows exponentially without

16The corresponding equation for the vector potential A has the form

∂A

∂t
+ B × u = −∇pA + η∇2A.
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limit: in the kinematic regime the magnetic field is a passive vector and the
fluid flow does not know anything about its presence. Second, growth of
the magnetic field is insensitive to the particulars of the random flow, e.g.,
the velocity field can be artificial, such as Gaussian. In such a velocity field
the production term BiBksik is also positively skewed and 〈BiBksik〉 > 0.
This is not the case with vorticity: there is no amplification of vorticity in
a Gaussian velocity field, the PDF of ωiωksik is precisely symmetric and
consequently 〈ωiωksik〉 ≡ 0: to be amplified vorticity needs for this ‘its own’
genuine turbulent velocity field. For other results concerning differences
between ω and B see Tsinober (2001, 2007), Tsinober and Galanti (2003)
and references therein.

A note on the similarities and differences in production
of enstrophy and its passive counterparts
In all the three cases the forcing is small compared to the production by
strain, i.e. all the three ωiωjsij,−GiGjsij and BiBjsij are approximately
balanced (mostly in the mean but not only) by the corresponding dif-
fusive terms νωi∇2ωj, DGi∇2Gi, and ηBi∇2Bi. However, the details of
this balance are important. For example, at later stages both the fields
ω and G reach a statistically stationary state (i.e., there is a balance
〈ωiωjsij〉 = −ν

〈
ωi∇2ωj

〉
and 〈GiGjsij〉 = D

〈
Gi∇2Gi

〉
). This does not

happen in case B which does not reach a statistically stationary state in
the kinematic regime (the production BiBisij is typically ‘a bit’ larger than
ηBi∇2Bi) and is growing all the time exponentially (dynamo) even with-
out forcing in B (NSE should be forced). The origin of this difference is
that while there are non-diffusive conservation laws for the velocity field u
and the passive scalar θ, there is no such law for the vector potential A
of the magnetic field. So a balance 〈BiBjsij〉 = −η

〈
Bi∇2Bi

〉
is reached in

the saturated regime, i.e., the dynamical regime via the reaction back of the
magnetic field on the fluid flow field. The flow field in the saturated regime
is different from the kinematic one, but is not close to a 2-D state as widely
believed, since the production BiBjsij is not vanishing – it is just balanced
more ‘precisely’ by ηBi∇2Bi, see section 8.9.

Two-dimensional flows
In two dimensions (x, y) the differences between ω and B are even more
drastic. First, a vorticity vector in this case has only a z-component and
there is no stretching/amplification of vorticity as in three dimensions.
A magnetic field can possess all three components and there is a process
of stretching of the magnetic field in the plane (x, y). This process can
lead to substantial transient growth of the magnetic field, which at later
times is always overcome by the diffusion and consequent eventual decay.
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However, this transient regime can be very long. This would mean that
in the dynamical case the difference between the behaviour of ω and B
becomes even larger than that at the kinematic level (see references in
Tsinober, 2007).

Geometrical statistics
In a Gaussian velocity field all the production terms for passive objects
(liljsij,−GiGjsij and BiBjsij) are essentially positively skewed and similar
to that in genuine turbulent flows, whereas ωiωjsij is precisely symmetric
in a Gaussian velocity field. Therefore among other things the mean of the
enstrophy production vanishes in a Gaussian velocity field, but the means
of liljsij,−GiGjsij and BiBjsij are essentially positive, see figure 4.2.
The alignment properties are directly related to the above. The cos(l, λi),
cos(G, λi), cos(B, λi) and also cos(Wl, l), cos(WG,G) and cos(WB ,B)
are qualitatively the same for both a Gaussian velocity field and gen-
uine turbulence. With a NSE velocity field there is alignment of B both
with λ1 and λ2, whereas only alignment with λ2 is observed in a Gaus-
sian velocity field, figure 4.5. The cos(ω, λi) and cos(Wω, ω) are qualita-
tively different: for a Gaussian velocity field all the cos(ω, λi) are flat and
cos(Wω, ω) is symmetric, and the PDF of Λ2 is symmetric as well, whereas
for genuine turbulence cos(ω, λi) (see figure 4.6) exhibits strong alignment
with λ2, and the PDFs of cos(Wω, ω) and Λ2 are essentially positively
skewed.

9.4.3. EVOLUTION OF DISTURBANCES

Important aspects of the essential differences between the evolution of fields
ω and B arising from the nonlinearity of the equation of ω and linearity of
the equation for B are revealed when one looks at how these fields amplify
disturbances, see figure 9.5. In other words, B and ω possess essentially
different stability properties. The reason is that the equation for the dis-
turbance of vorticity differs strongly from that for vorticity itself due to the
nonlinearity of the equation for the undisturbed vorticity ω, whereas the
equation for the evolution disturbance of the field B is the same as that for
B itself due to the linearity of the equation for B. Consequently, the evolu-
tion of disturbances of the fields ω and B is drastically different, figures 9.5
and 9.6. For example, in a statistically stationary velocity field the energy
of the disturbance of B grows exponentially without limit (just like the
energy of B itself), whereas the energy of vorticity disturbance grows much
faster than that of B for some initial period, until it saturates at a value
which is of order of the enstrophy of the undisturbed flow. It is noteworthy
that much faster growth of the energy of disturbances of vorticity during
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the very initial (linear in the disturbance) regime is due to additional terms
in the equation for the disturbance of vorticity, which have no counterpart
in the case of passive vector B. Indeed, the equation for the disturbance of
vorticity Δω

i ,

DΔω
i

Dt
= Δω

j sij + ωjΔs
ij + −Δu

j
∂ωi

∂xj
+ Δω

j Δs
ij − Δu

j
∂Δω

i

∂xj
+ ν∇2Δω

i , (C.60)

contains three terms Δω
j sij, ωjΔs

ij,−Δu
j

∂ωi
∂xj

all linear in disturbance, where-
as the equation for the disturbance of a magnetic field is just the same
as that for the magnetic field itself. It is important to stress that these
additional ‘linear’ terms

(
ωjΔs

ij and − Δu
j

∂ωi
∂xj

)
in (C.60) arise due to the

nonlinearity of the equations for the undisturbed vorticity. In this sense the
essential differences between evolution of the disturbances of vorticity and
evolution of the disturbance of passive vector B with the same diffusivity
can be seen as originating due to the nonlinear effects in genuine NSE tur-
bulence even during the linear regime, see figure 9.6. Note the much faster
growth of the energy of disturbances of active variables such as vorticity
during the very initial (linear in the disturbance) regime and decay of dis-
turbances associated with passive scalar. For more details and other results
concerning differences between the evolution of disturbances of ω and B
see Tsinober and Galanti (2003).

It is noteworthy that the gradient G of a passive scalar and the vector
potential A of magnetic field B (=rotA) both are frozen in the flows field
in the sense that both are material surfaces in the purely nondiffusive case.
But they are qualitatively different as the former is irrotational, whereas
the latter is solenoidal. That is they belong to qualitatively different subsets
of material surfaces and one should expect them to behave qualitatively dif-
ferently as well. For example, in case of finite diffusivity shown in figure 9.5,
the disturbance of G is decaying whereas that of A is growing exponen-
tially. It has to be stressed that typically there is a single surface element
passing through a point in space corresponding to the fields G or A, but
there are infinitely many other (neither irrotational nor solenoidal) surface
elements passing through this point, i.e., there are infinitely many fields
N corresponding to surface elements. In other words, G and A represent
small subsets (qualitatively different) of material surfaces.

The above concerns differences in the behavior of disturbances of vor-
ticity and passive vectors in an Euler setting. These differences are not
the same in the Lagrangian setting mainly due to the fact that in the
Lagrangian setting that (unlike in the Euler approach) there is also a
disturbance of strain sij too in the equation for passive objects, Galanti
et al. (2008).
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Figure 9.5. Time evolution of the energy of disturbances of velocity EΔu = 1
2

∫
(Δu)2dV,

vorticity EΔω = 1
2

∫
(Δω)2dV, strain EΔs = 1

2

∫
(Δs)2dV, the vector potential

EA = 1
2

∫
A2dV, passive vector EB = 1

2

∫
B2dV , passive scalar Eθ = 1

2

∫
θ2dV, and

its gradient EG = 1
2

∫
G2dV. All quantities are normalized on their initial values.

Tsinober and Galanti (2003)

9.5. Summary

9.5.1. GENERAL REMARKS

Until recently the emphasis was on analogies between genuine and ‘pas-
sive’ turbulence. Most probably it started with the well known Reynolds
analogy on transport of momentum and heat (Reynolds, 1874) and study
of fluid motion by means of ‘colour bands’ (Reynolds, 1894). Since then
such analogies were promoted in a number of papers as described in part in
this chapter. However, the essential differences in the behaviour of passive
and active fields including those described above point to serious limita-
tions on analogies between the passive and active fields (and many others)
and show that caution is necessary in promoting such analogies. They also
serve as a warning that flow visualizations used for studying the structure
of dynamical fields (velocity, vorticity, etc.) of turbulent flows may be quite
misleading, making the question “what do we see?” extremely nontrivial.
The general reason is that the passive objects may not ‘want’ to follow the
dynamical fields (velocity, vorticity, etc.) due to the intricacy of the relation
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Figure 9.6. Left – time dependence of 1 – ΣΔω = −
∫

Δu
kΔω

i
∂ωi
∂xk

dV +
∫

Δω
i Δω

k sikdV +∫
Δω

i Δs
ikωkdV +

∫
Δω

i Δω
k Δs

ikdV of the energy of disturbance Δω in the equation (C.60),
and contributions of separate terms to ΣΔω in the proximity of the origin t = 0. 2 –
−

∫
Δu

kΔω
i

∂ωi
∂xk

dV ; 3 –
∫

Δω
i Δs

ikωkdV +
∫

Δω
i Δω

k Δs
ikdV ; 4 –

∫
Δω

i Δω
k sikdV . Note that

the main contribution is due to the vorticity gradients. Right – comparison of time depen-
dence of the two analogous production terms 4 –

∫
Δω

i Δω
k sikdV and 5 –

∫
ΔB

i ΔB
k sikdV .

Tsinober and Galanti (2003)

between passive and active fields (in the same flow) and Lagrangian chaos,
just as there is no one-to-one relation between the Lagrangian and Eulerian
statistical properties in turbulent flows. This does not mean that qualita-
tive and even quantitative study of fluid motion by means of ‘colour bands’
is always impossible or necessarily erroneous. However, watching the dy-
namics of material ‘coloured bands’ in a flow may not reveal the nature of
the underlying motion, and even in the case of right qualitative observa-
tions the right result may come not necessarily for the right reasons. The
famous verse by Richardson belongs to this kind of observation. It is the
right place to recall the outstanding and specific property of genuine tur-
bulence – self-amplification of the field of strain. This is underlying some
of (but not all) main differences between genuine and passive turbulence
since there is no counterpart to this process in the behaviour of passive
objects. It is a reflection of a more general property of genuine turbulence
possessing an intrinsic dynamical mechanism generating randomness (in-
trinsic stochasticity), whereas in the case of passive objects randomness is
imposed by the velocity field and/or forcing. On the other hand, there are
properties of passive objects which do depend on the details of the velocity
field (see above, Tsinober, 2007; Tsinober and Galanti, 2003 and refer-
ences therein). Just these very properties can be effectively used to study
the differences between the real turbulent flows and the artificial random
fields. More precisely the essential differences in the behaviour of passive
objects in a real and synthetic turbulence may be exploited in order to gain
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more insight into the dynamics of real turbulence. At present, however, the
knowledge necessary for such a use is very far from being sufficient. With
few exceptions it is even not clear what can be learnt about the dynamics
of turbulence from studies of passive objects (scalars and vectors) in real
and ‘synthetic’ turbulence. This requires systematic comparative studies of
both. An attempt of such a comparative study was made in Tsinober and
Galanti (2003). This is a relatively-small part of a much broader field of
comparative study of ‘passive’ turbulence reflecting the kinematical aspects
and genuine turbulence representing also the dynamical processes. It seems
that this branch of turbulence research is quite promising.

In the following subsections three lists are given as a kind of summaries
of main accents of this chapter: 1) evolution of vorticity versus passive vec-
tors, 2) other/more analogies, and 3) a list of misconceptions and ill-defined
concepts, mentioned and not mentioned in this and previous chapters.

9.5.2. EVOLUTION OF VORTICITY VERSUS PASSIVE VECTORS

• – The equation for a material line element l is a linear one and the vector l is
passive, i.e., the fluid flow does not ‘know’ anything whatsoever about l: the vector l
(as any passive vector) does not exert any influence on the fluid flow. The material
element is stretched (compressed) locally at an exponential rate proportional to
the rate of strain along the direction of l, since the strain is independent of l.
• – On the contrary, the equation for vorticity is a nonlinear partial differential
equation and the vector ω is an active one – it ‘reacts back’ on the fluid flow.
The strain does depend in a nonlocal manner on ω and vice versa, i.e., the rate of
vortex stretching is a nonlocal quantity, whereas the rate of stretching of material
lines is a local one. Therefore the rate of vortex stretching (compressing) is different
from the exponential one and is unknown. There are much ‘fewer’ vorticity lines
than the material ones – at each point there is typically only one vortex line, but
infinitely many material lines. This leads to differences in the statistical properties
of the two fields. In the absence of viscosity, vortex lines are material lines, but they
are special in the sense that they are not passive as are all the other material lines.
Vorticity is divergence-free, whereas material elements are not, with the exception
of the special ones.
• – Consequently while a material element l tends to be aligned with the eigen-
vector corresponding to the largest (positive) eigenvalue of sij , whereas vorticity ω
tends to be aligned with the eigenvector corresponding to the intermediate (pos-
itively skewed) eigenvalue of sij : the eigenframe of sij rotates with an angular
velocity Ωs of the order of vorticity ω.
• – For a Gaussian isotropic velocity field the mean enstrophy generation vanishes
identically, 〈ωiωjsij〉 ≡ 0 whereas the mean rate of stretching of material lines
is essentially positive. The same is true of the mean rate of vortex stretching
〈ωiωjsij〉|ω|−2 and for purely two-dimensional flows. In turbulent flows the mean
growth rate of material lines is larger than that of vorticity. The nature of the
vortex stretching process is dynamical and not a kinematic one as is the stretching
of material lines and other passive vectors.
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• – The curvature of vortex lines increases with strain and positive rate of vor-
tex stretching, whereas the curvature of material lines decreases with strain and
positive rate of material line stretching.
• – An additional difference due to viscosity is more than essential due to the
Tennekes and Lumley balance at any large Reynolds number. Vortex reconnec-
tion is allowed by nonzero viscosity. No such phenomena exist for material lines.
Reconnection is possible in 2D for magnetic field, it is not with vorticity.
• – Comparing vorticity with a passive vector in the presence of the same diffusivity
as viscosity, the analogy is partial not just because the equation for vorticity is
nonlinear, but also because in the case of vorticity the process is due to self-
amplification of the field of velocity derivatives, whereas in case of a passive vector
it is not.
• – In presence of diffusivity the energy of a passive vector under certain conditions
grows without limit, i.e., not balanced by diffusivity, whereas growth of enstrophy
is balanced by viscous effects.

• – Evolution of disturbances of vorticity is qualitatively different from that of
passive vectors.

9.5.3. OTHER/MORE ANALOGIES

• ‘Burgulence’17.
• Dynamical systems, e.g., low-dimensional description. Truncated Euler and loop
removals. Shell models.
• Analogy between the Navier–Stokes equations and Maxwell’s equations: appli-
cation to turbulence. Screening.
• Beyond the Navier–Stokes equations, e.g., analogy between Boltzmann kinetic
theory of fluids and turbulence.
• Modelling nearly-incompressible turbulence with minimum Fisher information.
• Neural networks approach, the simulation and interpretation of free turbulence
with a cognitive neural system.
• Analogy with statistical physics/mechanics. Variety of approaches from statis-
tical physics/mechanics such as critical phenomena, Levy walks, Gibbsian hy-
pothesis in turbulence, Tsalis non-extensive statistics, quantum kinetic models of
turbulence, superfluid turbulence.
• Polymer analogies.
• Stock market dynamics and turbulence: parallel analysis of fluctuation
phenomena.

There are more, but all (as the above) with modest success (if at all).
17 Even Kraichnan and Sinai were tempted by this analogy: In order to keep the formal-

ism as simple as possible, we shall, work here with the one-dimensional scalar analog to
the Navier–Stokes equation proposed by Burgers. In the method to be presented here, the
true problem is replaced by models that lead, without approximation, to closed equations
for correlation functions and averaged Green’s functions . . . The treatment of Navier–
Stokes equation for an incompressible fluid, which we shall discuss briefly, does not differ
in essentials. Kraichnan (1961).

Mathematical analysis will deal with several basic models. The simplest one is the 1D
Burgers equation with random forcing. It displays several basic features of turbulence . . .
3D Navier–Stokes systems probably need completely new ideas. Sinai (1999).
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9.5.4. MISCONCEPTIONS AND ILL-DEFINED CONCEPTS, MENTIONED
AND NOT MENTIONED ABOVE

Some of the major misconceptions were mentioned above and in previous chapters.
The latter include the concepts of inertial range and cascade. Here we mention
some additional ones.
• – ‘Statistical’ and ‘structural’ contrapose each other.
• – Turbulence is nearly Gaussian and/or possesses a random (quasi-) Gaussian
background.
• – Kolmogorov picture is structureless and quasi-Gaussian, i.e., K41 is consistent
with near Gaussian statistics.
• – Large scales and small scales are statistically decoupled.
• – Turbulence can be described adequately by equations ‘simpler’ than the Navier–
Stokes equations, e.g., by a low-dimensional system.
• – ‘Eddy viscosity’ and ‘eddy diffusivity’ explain the enhanced transfer rates of
momentum, energy and passive objects.
• – Spatial fluxes represent ‘cascade’ in physical space.
• – At large Re the ratio of nonlinear and the viscous terms is large.
• – Vorticity amplification is a result of the kinematics of turbulence, i.e.,
• – Vortex lines are on average stretched rather than compressed, because two
particles on average move apart from each other.
• – TKE production is the consequence of predominant vortex stretching.
• – When Re is large, vorticity is virtually frozen into the fluid.
• – The vorticity intensification process is the strongest where vorticity already
happens to be large.
• – Vorticity is stretched only. Hence inadequate representation of turbulent field
by a collection of purely stretched (or other ‘simple’) objects.
• – Concentrated vorticity dominates the flow and is quasi-two-dimensional.
• – Reynolds number represents the ratio of inertial to viscous forces.
• – For large Re the viscous interactions turn out to be quite weak.
• – Enhanced dissipation in turbulent flows is due to vortex stretching.
• – Strain rate in turbulent flows is irrotational.
• – Turbulent energy production is due to predominant (vortex and/or material
elements) stretching.
• – The difference between quasi-two-dimensional and pure-two-dimensional tur-
bulent flows is always small. Q2D and even P2D is always low dissipative.
• – For the very smallest eddies the motion is entirely laminar.
• – Efficient mixing requires random velocity field.
• – Well established phenomenological parallels between the statistical description
of mixing and fluid turbulence itself and similar analogies between ‘passive’ and
genuine turbulence.
• – The primary mechanism for production of scalar dissipation is the nonlinear
amplification of scalar gradients by strain rate.
• – Richardson’s energy cascade is a direct consequence of vortex stretching.
• – Spatial fluxes represent ‘cascade’ in physical space.
• – Ambiguity of language, ‘definitions’ of ‘scale’ or ‘eddy’.
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CONCLUSION/CLOSE

So what is important?

The problem of turbulence is not just to find more accurate for-
mulae for various physical quantities associated with a turbulent
fluid, but also to obtain a conceptually satisfactory theory based
on first principles . . . In spite of satisfaction which one may have in
writing rigorous inequalities originating from nontrivial linear the-
ory, it must be said that the great difficulty which remains is to
understand the nonlinear objects of turbulence (Ruelle, 1990).
In spite of a huge number of papers and a large amount of research
on turbulence, it remains an unsolved problem left for future gen-
erations (Sinai, 1999).
. . . with all due respect for the coherent structures of the seven-
ties, the insight gained from the chaos theory in the eighties, the
achievements of Direct Numerical Simulations (DNS) and Large
Eddy Simulation in the nineties, we all hope in our heart of hearts
to see the great breakthrough in turbulence, stirring Sir Horace
Lamb in his eternal sleep to bring him the long awaited revelation
(Wijngaarden, 2000).
Even after 100 years turbulence studies are still in their infancy. We
do have a crude practical working understanding of many turbu-
lence phenomena but certainly nothing approaching comprehensive
theory and nothing that will provide predictions of an accuracy de-
manded by designers (Lumley and Yaglom, 2001).
Turbulence nears a final answer (Frisch, 1999).

The purpose of this last chapter is twofold. First, it aims to recapitulate
some main points with somewhat different emphasis, and to discuss some
issues of general nature not addressed above. The first issue is universality.

10.1. Universality

Since the Kolmogorov papers (1941a,b), there exists almost a religious belief
in some universal properties of turbulence. This belief was strengthened by
achievements in dynamical chaos, such as the discovery of some universal
numbers by Feigenbaum, etc.

321
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On the other hand, with the exception of 4/5 law, there appeared to ex-
ist no quantitative universality so far: the first doubt came from the famous
remark by Landau in the first Russian edition of Fluid Mechanics by Lan-
dau and Lifshits about the fluctuations of energy dissipation rate. These
were followed by various ‘universal’ corrections, which did not appear to
be universal either. These corrections were followed by the (multi-)fractal
approach using either the so-called D(h) or f(α) formalisms, in which the
functions D(h) and/or f(α) are assumed to be universal. However, they
do not seem to be universal either. There is quite solid evidence accumu-
lated during the last 50 years against the most beautiful hypothesis on the
restoring of the symmetries in the statistical sense of the Navier–Stokes
equations locally in time and space, i.e., local isotropy together with scale
invariance (see discussion and references in chapters 5, 6 and 7). And so
people started to look for some universality in the anisotropic properties of
turbulent flows (see references in Biferale and Procaccia, 2005; Kurien and
Sreenivasan, 2001b). This involves the SO(3) decomposition of tensorial ob-
jects assuming universal (!) scaling behaviour in r of each component of the
decomposition. Consequently there is no “simple” scaling of, say, structure
functions in r, but rather the different terms of the SO(3) decomposition
each with its own scaling exponent assumed to be universal. Thus all the
attraction of simple scaling as in Kolmogorov 41 has gone.

The assumption of universality has no serious justification and is more a
kind of a belief much weaker than the belief in the inertial range. Moreover,
it is not clear at all why each “sector” of the irreducible representation
is expected to have its own universal scaling exponent independently of
the physical/dynamical nature/underlying mechanisms of anisotropy such
as mean shear, strain, rotation, stratification (both stable and unstable),
magnetic field, etc.? The expectation of universality is especially problem-
atic in case of strong anisotropy (Q2D) in all the above cases. There is a
claim that the amplitudes of the various contributions are non-universal
and that it is possible to fit the experimental data by keeping fixed the
scaling properties and adjusting only the prefactors1. This however, does
not prove much regarding universality and may well be the “right result
not necessarily for the right reason”. One more difficulty may arise due to
non-uniqueness of the SO(3) decomposition in the sense that there exists
more than one possibility to choose its basis in the case when the SO(3)
decomposition is applied to tensorial objects. There are also similar claims
on universality related to passive objects. This kind of a claim is quite
surprising, as passive objects are governed by linear equations and thus its

1It is also noteworthy that in determination of anisotropic scaling exponents one
encounters the same kind of difficulties as those known from previous experience (see,
for example, figures 6, 10 and 11 in Anselmet et al., 1984 and figure 8.6 in Frisch, 1995).
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statistics and scaling exponents are expected to be sensitive to the statistics
of the velocity field (see Falkovich et al., 2001; Majda and Kramer, 1999
and references therein).

In other words, it seems that our dream of quantitative universality of
turbulence, i.e., universality of numbers, may never come true2. The main
reason is the nonlocality leading to breaking of the symmetries embodied
in the Navier–Stokes (and Euler) equations along with the ill-posedness of
the concept of inertial range as discussed in section 5.3. However, though
there may not exist such a thing as quantitative universality of turbulence
(i.e., universality of numbers), there seems to exist a qualitative one. It
is natural to include into the term ‘qualitative universality‘ such general
properties of turbulence as randomness, enhanced effective diffusivity and
dissipation, rotational nature, and others as discussed in chapter 1. The
question is whether there exist more specific qualitative universal proper-
ties of turbulent flows. The answer is positive. Moreover, these qualitative
universal properties possess quantitative attributes, as will be seen in what
follows. The likely reason for the qualitative universality is that the non-
linear terms . . . remain active at surprisingly low Reynolds numbers, as
observed by Mansour and Wray (1994) in DNS of decaying turbulence at
low Reynolds numbers. The resemblance of the flow patterns of turbulent
flows in the same geometry, but at very different Reynolds numbers, also
can be seen as one of the manifestations of the qualitative universality (see
figures 1.9 and 1.12).

10.1.1. SELF-AMPLIFICATION OF VELOCITY DERIVATIVES

As discussed in chapter 6 there is some evidence that the process of self-
amplification of velocity derivatives, both vorticity and strain, is a universal
phenomenon which occurs at Reynolds numbers as low as Reλ ∼ 60. This
seems to be one of the key physical processes in all turbulent flows. The
details of this process are not well understood, and apart from geometrical
statistics and similar information and tools, one needs much more. Since
the whole flow is defined by the field of velocity derivatives (either vortic-
ity or strain), proper understanding of the process of self-amplification of
velocity derivatives in turbulent flows would bring considerable progress in
the understanding of the physics of turbulence as a whole.

It should be stressed that there is an essential and qualitative differ-
ence between the process of self-amplification of strain and other similar
processes. It is a specific feature of the dynamics of turbulence having no
counterpart in the behaviour of passive objects. In contrast, the process of

2For other negative statements about universality see, for example, Saffman (1978, p.
216) and Hunt and Carruthers (1990, pp. 497, 498).
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self-amplification of vorticity, along with essential differences, has a num-
ber of common features with analogous processes in passive vectors; in both
the main factor is their interaction with strain, whereas the production of
strain is much more ‘self’, i.e., local (section 6.3).

10.1.2. TENNEKES AND LUMLEY BALANCE

As discussed in chapter 6, this property is manifested in the approximate
balance between enstrophy (strain) production and viscous destruction and
similar (but qualitatively different) balance for passive objects. The main
point here is that this property is observed for a variety of flows and for a
wide range of Reynolds numbers starting with rather moderate ones.

10.1.3. ON UNIVERSAL ASPECTS OF TURBULENCE STRUCTURE

In dynamical systems, one looks for structure in the phase space (Shlesinger,
2000; Zaslavsky, 1999), since it is relatively ‘easy’ due to low-dimensional
nature of the problems involved. In turbulence nothing is known about its
properties in the corresponding infinite-dimensional phase space3. There-
fore, it is common to look for structure in the physical space with the hope
that the structure(s) of turbulence – as we observe it in physical space – is
(are) the manifestation of the generic structural properties of mathematical
objects (in phase space), which are called (strange) attractors and which are
invariant in some sense. In other words, the structure(s) is (are) assumed
to be ‘built in’ in the turbulence independently of its (their) origin – hence
universality. However, as mentioned, the expectation for universal numbers
seems to be unjustified. It is more natural to expect universal qualitative
statistical features in the physical space rather than universal numbers.
Indeed, some of such features have been already observed, which are com-
mon for very different – essentially all known – turbulent flows. These are
not only the general qualitative features of turbulent flows as described in
chapter 1, but rather specific ones.

We bring three examples with features which are essentially the same
for all known incompressible flows such as grid-turbulent flow, periodic flow
in a computational box, turbulent boundary layer and channel flow, mixing
layer and compressible flows as well. Such features can be seen as universal
statistical manifestations of the structure of turbulent flows.

The first example is the so-called ‘tearing-drop’ feature observed in the
invariant map of the second invariant, Q = 1

4(ω2−2siksik), versus the third
invariant R = −1

3(sikskmsmi + 3
4ωiωksik) of the velocity gradient tensor

3Hopf (1948) conjectured that the underlying attractor is finite-dimensional due to
presence of viscosity.
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Figure 10.1. The ‘tear-drop’ pattern in the Q − R plot, a) through e), in different
turbulent flows and the symmetric pattern, and (f) for a Gaussian velocity field (Chertkov
et al., 1999). a) – turbulent flow in a periodic box (Borue and Orszag, 1998); b) – turbulent
boundary layer (Chong et al., 1998); c) – compressible flow, courtesy of A. Pouquet, P.
Woodward and D. Porter; d) – mixing layer (Soria et al., 1994); e) – turbulent grid flow
(Tsinober et al., 1997). Note that the two invariants are not describing all the aspects
of the structure of the field of velocity derivatives, see Chacin and Cantwell (2000) and
Tsinober (2000) for Q − R plots with a variety of additional information

∂ui/∂xk. This feature appears to be essentially the same for a great variety
of flows, some of which are shown in figure 9.1.

We draw attention to the ‘tail’ of the tear drop which is mainly located
in the quadrant Q < 0, R > 0, in which most of turbulent activity happens
in a variety of ways (Chacin and Cantwell, 2000; Chertkov et al., 1999;
Tsinober, 2000). The important point is that this is the region dominated
by strain as compared with enstrophy (2siksik > ω2) and by production of
strain as compared with production of enstrophy (−sikskmsmi > 3

4ωiωksik).
This is in full conformity with the behaviour of nonlinearities in these re-
gions, see section 6.5 and figure 10.2 below).

The second example is related to depression of nonlinearity. We mention
here one aspect of this problem, which seems to be universal in the sense
that it is true for different flows and different Reynolds numbers, though the
evidence is still quite limited. Namely, practically all nonlinearities appear
to be much stronger in the strain-dominated regions rather than in regions
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Figure 10.2. Examples of conditional averages of the eigencontributions to the en-
strophy production showing the difference in the behaviour of nonlinearities in vortic-
ity- (open symbols) and strain-dominated regions in an atmospheric surface turbulent
boundary layer at Reλ ∼ 104. Left – ω2Λ1 cos2(ω, λ1), middle – ω2Λ2 cos2(ω, λ2), right –
ω2Λ3 cos2(ω, λ3) (Gulitski et al., 2007a)

with concentrated vorticity, in contrast to the common expectation that,
for example, the vorticity amplification process will be strongest where the
vorticity already happens to be large. The regions with concentrated vor-
ticity are in approximate equilibrium in the sense that the rate of enstrophy
production is in approximate balance with the viscous destruction in these
regions even at low Reynolds numbers, Reλ ∼ 80. Therefore, their life time
is considerably larger than the life time of the regions dominated by strain,
which are in strong disequilibrium in the sense that the rate of enstrophy
production is much larger than its destruction by viscosity in these regions.
Here an example from the latest observations at large Reynolds numbers is
shown in figure 9.4.

The third example is related to geometrical statistics. These are various
alignments such as the alignments between vorticity and the eigenbasis of
the rate of strain tensor, and between vorticity and the vortex stretching
vector. It appears that these and many other similar properties are the
same for all known flows and, moreover, for a broad range of Reynolds
numbers. For example, the character of the above alignments is essentially
the same at Reλ ∼ 102 and Reλ ∼ 104. An example for Reλ ∼ 104 is shown
in figure 9.3.

It is seen that the qualitative4 behaviour of the above mentioned align-
ments is precisely the same as at Reλ = 75 shown in figure 6.7.

The same similarity was observed recently for a variety of alignments
and other properties associated with fluid particle accelerations, Gulitski
et al. (2007b). A variety of similar results were obtained for passive scalars,

4The quantitative difference is mostly due to the problems of underresolution in the
case of Reλ = 104.
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Figure 10.3. Alignments in a turbulent boundary layer at Reλ = 104. Right – PDFs
of the cosine of the angle between vorticity, and the vortex stretching vector, cos(ω,W ).
Left – PDFs of the cosine of the angle between vorticity, and the eigenframe of the rate
of strain tensor, cos(ω,λk) (Kholmyansky et al., 2001b)

Gulitski et al. (2007c), such as alignments of passive-scalar gradient, G with
the eigenframe λi of the rate of strain tensor, conditional averages on ω2

and s2 of the production −GiGjsij, tilting of G and some others.
This brings us to the issue of Re-dependence and the (possible) asymp-

totic state of turbulent flows at very large Reynolds numbers.

10.2. Reynolds-number dependence and the limit
of vanishing viscosity

Theoreticians like to handle cases with very small or very large
Reynolds numbers. Experimentalists and engineers encounter fi-
nite Reynolds numbers in real life (Liepmann, 1962).
If no parameters in the world were very large or very small, science
would reduce to an exhaustive list of everything (Trefethen, 1998).
Does fully-developed turbulence exist? Reynolds-number indepen-
dence versus asymptotic covariance (Barenblatt and Goldenfeld,
1995).
Whatever the tools, it is crucial that the theory be able to describe
what happens at finite Reynolds numbers, both to understand
the limit of infinite Reynolds number and to interpret correctly
the data from existing experiments and simulations (Kraichnan,
1991).

Only some properties of turbulent flows become Reynolds-number indepen-
dent as the Reynolds number becomes large enough. An example is given
in figure 1.8 – the drag coefficient of a disc is independent of Reynolds
number beyond Re∼103. Another example is given in figure 5.1, showing
the independence of dissipation of Reynolds number over three decades of
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Re. There are many other related examples (Idelchik, 1996), just like the
friction factor for pipes with rough walls possessing large enough rough-
ness (Schlichting, 1979). It is this property that gives a special status to
the scaling exponent 2/3. However, dissipation (energy input) or drag only
are not sufficient to define the properties of a turbulent flow. For exam-
ple, Bevilaqua and Lykoudis (1978) performed experiments on flows past a
sphere and a porous disc with the same drag. However, other properties of
these flows, even on the level of velocity fluctuations, were quite different;
see also Wygnanski et al. (1986) who performed similar experiments with
a larger variety of bodies with the same drag5. Similarly, many properties
of turbulent flows with rough boundaries are not defined uniquely by their
friction factor either (Krogstad and Antonia, 1999). Though the dissipa-
tion is known (empirically) to saturate to a nonzero limit as ν → 0, this
however, does not mean that there exists a limit as ν → 0 in the sense (or
any other sense) that all other flow characteristics do saturate as well.

There exists considerable evidence on Reynolds-number dependence of
various properties in different turbulent flows; for a partial list of recent
references, see Belin et al. (1997), Buschmann and Gad-el-Hak (2007), Fer-
chichi and Tavoularis (2000), Fisher et al. (2001), Kahaleras et al. (1998),
McKeon (2007), Metzger et al. (2001), Moser et al. (1999), Shen and Warhaft
(2000), Sreenivasan and Antonia (1997), Tsinober (1998b) and Zhou and
Antonia (2000). For example, the flatness factor of the streamwise veloc-
ity derivative ∂u1/∂x1 is increasing from 3 ÷ 4 at Reλ ∼ 10 to about 40
at Reλ ∼ 4 · 104, without showing any trend for saturation (see figure 6 in
Sreenivasan and Antonia, 1997; Gulitski et al., 2007 and references therein).
There is no understanding of the reasons for such a strong Reynolds-
number dependence at large values of the Reynolds number. Another ex-
ample is about the Reynolds-number dependence of the relation between
the solenoidal and irrotational ‘components’ of the nonlinearity as repre-
sented by (u · ∇)u and Lamb vector ω×u shown in figure 10.4. There is
a clear tendency of enhancement of solenoidality of the nonlinearity as the
Reynolds number increases. Here too it is not clear what will happen when
the Reynolds number will become very large.

The third example is the behavior of acceleration, see figure 6.22. Though
the evidence is not conclusive, the indication is that there is no saturation
of acceleration variance at large Reynolds numbers.

Finally, as discussed in section 5.3, the so-called ‘anomalous scaling’ in
the inertial range is due to viscous/diffusive effects with two options. One is

5It should be kept in mind that in both cases the flow was partly-turbulent and most
probably had different large-scale stability properties for different bodies not directly
related to the turbulent nature of the flow within the wake. This may contribute too to
the differences in the observations.
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Figure 10.4. Reynolds-number dependence of the ratio of the variances of the irrotational
and solenoidal parts of the nonlinear term (u · ∇)u and ω × u in a DNS simulation of
quasi-isotropic turbulence (Tsinober et al., 2001)

just the finite-Reynolds-number effect. The other one is due to the influence
of viscous/diffusive effects mostly (but not only) in the tails (i.e., strong
events) of corresponding PDFs and is present at any Reynolds number. The
evidence seems to favor the latter option.

These examples, along with other results, show that the issue of the
asymptotic ‘ultimate’ regime/state of turbulent flows at very large Reynolds
numbers remains and will remain open for quite a while.

10.3. Turbulence versus mathematics and vice versa

There are many mathematical publications which contain the term “tur-
bulence” in some way or another6.

So it is natural to ask the question: What really do we have from math-
ematics and mathematicians for understanding of turbulence? The claims
are sometimes pretty strong. A recent example: . . . there are enough firm
results available assuring that many of the widely accepted experimental re-
sults are meaningful and in consonance with the theory of the Navier–Stokes

6Here is a selection of publications with many more references in them: Bardos and
Titi (2007); Constantin (2007); Doering (2009); Duchon and Robert (2000); Foias et al.
(2001); Gibbon (2008); Hopf (1962); Ladyzhenskaya (1970, 1975, 2003); Leray (1933,
1934); Lions (1996); Ruelle (1983b, 1990); Shnirelman (2003); Smale (1977); Vishik and
Fursikov (1988).
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equations, Foias et al. (2001, p. 169). This is an example of the widespread
view that what all experiments (both physical and numerical) should do
is to validate a theory. Unfortunately, as mentioned in chapter 3, there is
no theory in/of turbulence, at least as concerns its basic aspects. This is
why Kolmogorov wrote in 1985: I soon understood that there was little hope
of developing a pure, closed theory, and because of absence of such a the-
ory the investigation must be based on hypotheses obtained on processing
experimental data (see Tikhomirov, 1991, p. 487)7.

All “consumers” of turbulence from those concerned with pure basic
issues to people dealing with a great variety of applications believe that
NSE are adequate for describing turbulent flows and would expect that NSE
possess smooth solutions in a global sense, i.e., for all times and for any
however large Reynolds numbers. Nevertheless, since Leray (1933, 1934)
nobody has been able to prove this, so that this problem has been included
by the Clay Mathematics Institute among seven major mathematical (not
as a physical one) problems for the twenty-first century (Fefferman, 2000).
If Navier–Stokes Equations are so nice, the question is again: what do the
Navier–Stokes equations tell us about turbulence? (Foias, 1997). It appears,
unfortunately, not so much (to put it mildly) as concerns mathematics and
mathematicians.

At least since Kolmogorov (1941a,b) an enormous effort has been in-
vested in attempts to study asymptotic properties of turbulent flows at
vanishingly-small viscosity. Considerable evidence shows that these flows
at however small viscosity possess nonvanishing dissipation (the so-called
dissipation anomaly), i.e., such flows are very much unlike classical solu-
tions of the Euler equations, which have the property of energy conservation
for smooth velocity fields.

Less known (and less established) is that this seems to be the case for
other dissipative mechanisms – most probably for a wide class of fluids (and
even in other dissipative systems than fluid flows), e.g., fluids with hyper-
viscosity (but there are outstanding counter-examples). In other words this
property is not specific of turbulence in the narrow sense and belongs to a
number of manifestations of turbulence which are weakly (if at all) sensitive
to the nature of dissipation at large Re (and even more generally to specific
properties of the system as long as it is dissipative), e.g., things like 2/3,
4/5 and 4/15 laws, k−5/3 spectrum and some others.

7This is also why this author (following the advice of Kolmogorov with quite a delay)
switched to experiments after spending fifteen years on things like functional analysis
and many other sophisticated things both in mathematics and theoretical physics at the
very highest level all of which appeared to be of little help in turbulence research (so far).
However, this was not in vain since, without a broad and deep corresponding theoretical
background, it is impossible to properly plan, perform and especially to analyze the
results of the experiments.
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10.3.1. WEAK SOLUTIONS OF NAVIER–STOKES EQUATIONS

Duchon and Robert (2000) wrote a local energy balance for weak solutions of
Navier–Stokes equations ∂/∂t(u2/2)+ ∂/∂xk{u2/2+ p)uk} − ν∇2(u2/2)+
ν|∇u|2+ D(u), where D(u) is a distribution defined in terms of the local
smoothness of velocity field u. They found an explicit expression for D(u)
which makes the above equation identity in the sense of distributions. Thus
D(u) measures a possible dissipation (or production) of energy caused by
a lack of smoothness in the velocity field u in the spirit of Onsager, 1949.
For smooth solutions D(u) ≡ 0. Thus – they write – the non-conservation
of energy originates from two sources: viscous dissipation and a possible
lack of smoothness in the solution; and stress that D(u) measures a possible
dissipation (or production) of energy caused by a lack of smoothness in the
velocity field u, this term is by no means related to the presence or absence
of viscosity. The latter statement being formally/mathematically nice is
problematic from the physical point of view. As long as one is speaking
about NSE this looks definitely unphysical: so far no physical process is
known that can bring an additional dissipation into operation that is for-
mally described by the distribution D(u). An important point is that if one
looks at real turbulence at finite Reynolds numbers (however large) there
seems to be no need for weak solutions at all.

10.3.2. THE LIMIT OF VANISHING VISCOSITY AND DISSIPATIVE
SOLUTIONS OF EULER EQUATIONS

... There is still some doubt as to whether weak solutions of the
Navier–Stokes equation, the uniqueness of which is unknown, or
hypothetical weak solutions of the Euler equation, are relevant to
the description of turbulent flows at high Reynolds numbers . . .
(Duchon and Robert, 2000).
As for today, we have no weak solution (of the Euler equation) at
hand which really describes a turbulent flow (Shnirelman, 2003).
It may be less commonly appreciated that singular solutions of
the incompressible Euler equations ... are a good candidate to
describe turbulent flow in the asymptotic limit Re → ∞, as first
conjectured by Onsager (Eyink, 2008).

One of the ‘natural’ conjectures in the mathematical community was that
turbulent flows may be described asymptotically correctly by some sort of
specially selected weak solutions of the Euler equations which are called
“dissipative” – an approach which goes back to Onsager (1949). Indeed,
examples of weak (or distributional) solutions have been constructed with-
out energy conservation (Lions, 1996; Shnirelman, 2003; De Lellis and
Sžekelyhidi, 2007; see Eyink, 2008 for more references). It appears that



332 CHAPTER 10

there exist very different kinds (examples only) of weak solutions, having
little in common, and some of them are physically meaningless (with nega-
tive dissipation, i.e., energy creation), at least, in the context of turbulent
flows. Moreover, there is no uniqueness of a weak solution: the phase space
of Euler is too rich. In other words, one needs additional conditions to ensure
physical meaning and uniqueness of solution. Simply stated the solution has
to be dissipative in the first place. But this condition is not sufficient to
guarantee the uniqueness and adequacy to real dissipation! Moreover, the
dissipation is not the only issue either, even in finite Reynolds-number flows.
Indeed, dissipation (energy input) or drag only are not sufficient to define
the properties of a turbulent flow. As mentioned, Bevilaqua and Lykoudis
(1978) and Wygnanski et al. (1986) performed experiments on flows past a
sphere and a porous disc and other bodies with the same drag, i.e., the same
dissipation (more examples can be found in George, 2008). However, other
properties of these flows even on the level of velocity fluctuations were es-
sentially different. Strongly-stratified flows are quasi-two-dimensional, but
exhibit a k−5/3 energy spectrum, a forward energy cascade and large dissi-
pation comparable to non-stratified three-dimensional flows.

It is not clear whether there exist a set of criteria apart from positive
dissipation enabling one to select the ‘right’ generalized/weak solutions8 of
the Euler equation adequately describing turbulent flows at Re → ∞. To
quote Shnirelman, 2003: as for today, we have no weak solution at hand
which really describes a turbulent flow (the observed one). If this is not a
dream. Having a “good candidate” it would be an extremely difficult (if
not impossible) task to decide whether it really describes a turbulent flow.
Moreover, to find such a candidate seems to be as difficult as the “solution
of the problem of turbulence” itself.

In view of the above difficulties (existence, non-uniqueness, etc., see
Eyink, 2008, pp. 1960–1961) the possible justification for the view that
singular solutions of the incompressible Euler equations... are a good candi-
date to describe turbulent flow in the asymptotic limit, Re → ∞, is sought
in physical considerations and, in particular, in that experiments and sim-
ulations of high-Reynolds-number turbulence show, that scaling laws hold
〈|δu (r) |p〉1/p ∼ rσp for all p � 1 in the inertial range η 	 r 	 L. The
general claim is that If Onsager is correct, then inertial-range dynamics of
turbulent flow are governed by singular solutions of the Euler fluid equa-
tions. Observational evidence and rigorous results are consistent with the
idea (Eyink, 2008). The issue of consistency (with) and relevance (to) the

8There are several problems with the issue of weak solutions, e.g. i – the formal defini-
tion of a weak solution is too wide, ii – there may exist other objects than distributions –
quoting Shnirelman, 2005 (private communication): I believe that in a viscous fluid with
vanishing viscosity what is left of viscosity is some force which is not a distribution as
well. This “immaterial” force results in quite material dissipation of the kinetic energy.
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available experimental and numerical evidence is quite problematic for the
following reasons. First, as mentioned before it is not clear why results for
finite Re (i.e., for NSE having no singularities or extremely ‘intermittent’
ones) are relevant for the limit (if such exists) Re → ∞ (e.g., for Euler equa-
tion with space-filling singularities) let alone that all the results have been
obtained for moderate finite Reynolds numbers. Second, there are several
problems with the evidence itself even at rather moderate Reynolds num-
bers. For example, it is at best marginal in the context of the very existence
of scaling laws and especially of multi-fractal scaling behaviour9, see chap-
ters 5 and 7. It is hard to accept claims like the observations suggest that
Euler solutions relevant to infinite-Reynolds turbulence have u ∈ B

σp
p ...

(see p. 1961 in Eyink, 2008). The simplest example with the most reliable
data, concerns the Onsager conjecture directly. Among the first beliefs is
that the Kolmogorov 2/3 law (or 5/3) implies that for the typical flows the
velocity field is a Hölder function with the Hölder exponent close to 1/3.
This means that the solutions of NSE are asymptotically, as Re goes to
infinity, some sort of generalized, or weak, solutions of the Euler equations.
However, (assuming the existence of) the corresponding solutions of Euler
(following the conjecture by Onsager, 1949 and subsequent proofs in Besov
spaces, see refs in Constantin, 2007; Eyink, 2008) conserve energy if the ex-
ponent is larger than 1/3 and are expected (but not more than that) to be
dissipative otherwise. The experimental observations however show that the
exponents are never equal to 2/3 (−5/3) but are larger(!) than 2/3 (smaller
than −5/3), see figure 10.5. With such exponents there is energy conserva-
tion in Euler. So if one takes the position that experimental observations
at finite (relatively large) Reynolds numbers can imply anything about the
Euler solutions relevant to infinite-Reynolds turbulence, the implication is
negative. This does not invalidate Onsager’s conjecture about the possible
existence of dissipative solutions of Euler, but there is a long (if not infinite)
distance between this conjecture and the claim that they are relevant to
turbulence. The claim that Onsager’s conjecture is not about an esoteric or
unphysical mathematical problem but, rather, about the fluid dynamics of
turbulence at high Reynolds numbers (Eyink, 2008) is quite a bit an over-
shoot. One of the premises of the above speculations on the relevance of
generalized/weak solutions of Euler to turbulence is the assumption that
the properties of the inertial range (IR) of turbulence at large Reynolds
numbers are independent of viscosity/nature of dissipation as long as it is
associated with “small scales”. In other words, all that remains in the limit
Re → ∞ (ν → 0) is the inertial range and therefore the hypothetical limit

9We recall that scaling alone is a too broad characteristic. There is no one-to-one
relation between the scalings (of whatever nature) and various properties of specific
systems such as PDFs, structure and many others, see chapter 7.
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Figure 10.5. Examples of compensated second-order structure functions r−2/3S
‖
2 (r)

(top panel) and energy spectra k5/3E(k) (bottom panel) in high-Reynolds-number ex-
periments. Top left: squares – Chambers and Antonia, 1984; circles – Gagne, 1987. Top
right: squares – Gulitski et al. (2007a); circles – Kholmyansky et al. (2001b). Bottom left:
squares – Kurien and Sreenivasan (2001a); circles – Grant et al. (1962); Bottom right:
squares – Gulitski et al. (2007a); circles – Kholmyansky et al. (2001b). The curves are
slightly shifted

cannot be dependent on the nature of viscosity/nature of dissipation. How-
ever, there is hard evidence that at least some properties of IR do depend
on the nature of dissipation at whatever large Re. It looks like an artificial
trick to ascribe dissipation to an inviscid flow by imposing a very “rough”
velocity field and moving to infinity the dissipative “tail”/sink of energy in
a real flow (which is smooth) and thereby having a flux of energy to this
sink. It is this flux which is interpreted as “dissipation”. The premise is
that the nature of this sink does not matter! However, the rough velocity
field with space-filling dissipative singularities for Euler (but no singulari-
ties at all for Navier–Stokes) ‘dissipates’ energy ‘everywhere’, so where is
the inertial range, which by definition is ‘dissipationless’, at least at any
finite however large Reynolds number? All this makes the Euler dissipative
business quite problematic regarding its relevance to turbulence.
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10.3.3. NATURE OF DISSIPATION – IS IT (UN)IMPORTANT?

. . . the only connection between the equilibrium range and the re-
mainder of the turbulence lies in the transfer of energy at a rate ε
(Batchelor, 1953).
In any case, the dissipation processes, independently of their na-
ture, serve only as energy sinks, which cut off the spectrum of
turbulent fluctuations at small scales but do not affect the main
turbulence scales (Biskamp, 2003).
In fact, turbulence is an inertial phenomenon. That is, turbu-
lence is statistically indistinguishable on energy-containing scales
in gases, liquids, slurries, foams, and many non-Newtonian media.
These media have markedly different fine structures, and their
mechanisms for dissipation of energy are quite different. This ob-
servation suggests that turbulence is an essentially inviscid, iner-
tial phenomenon, and is uninfluenced by the precise nature of the
viscous mechanism (Holmes, Berkooz and Lumley, 1996).
. . . there is nothing “irrelevant” in the (NSE) equation (except,
maybe, as ν → 0, the precise nature of the dissipative term)
(Frisch, 1984).
Causality is from large to small scale, and how the energy is dis-
sipated in the latter does not influence the former, as long as the
amount is correct . . . (Jimenez, 2000).
The natural question is, therefore: Is it at all important that this
subsidiary agent be viscosity? Might other dissipative, perturb-
ing forces not do equally well? In planning for a test of this
question, one might first think of investigating other forms of
the law of viscosity, i.e., other equations of flow instead of those
of Navier–Stokes, where viscosity might be described by a term
other than ∇2u or by entirely different, nonlinear changes in the
equations . . . In any event, it would be interesting to determine,
whether such modifications could lead to different forms of tur-
bulence (in the pure limiting, i.e., ν → 0)... The whole character
of the Kolmogorov–Onsager–Weizsacker theory would make one
inclined to surmise that this is not the case (von Neuman, 1949).
We therefore conclude that, for the large eddies which are the ba-
sis of any turbulent flow, the viscosity is unimportant and may be
equated to zero, so that the motion of these eddies obeys Euler’s
equation . . . The viscosity of the fluid becomes important only for
the smallest eddies, whose Reynolds number is comparable with
unity . . . (Landau and Lifshits, 1959).
Dissipation in real fluids is just the transfer of macroscopically
organized (hydrodynamic) energy to molecular thermal energy.
(Frisch et al., 2008).
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Thus it is quite a common view that the precise nature of dissipation is
mostly unimportant in high-Reynolds-number turbulence except for the
smallest scales. This forms, e.g., the basis for what is called inertial range
(IR), which properties are believed to be asymptotically independent of Re
and/or the nature of dissipation. In view of various aspects of nonlocality
the natural question is: what does it mean, what kind of quantities do not
really depend on the nature of dissipation, why and in what sense, as well
as many similar closely related questions, some of which were touched in
chapters 5 and 6.

Is it obvious that the inviscid limit is always the “same” Euler indepen-
dently of the nature of dissipation/viscosity? The D(u) – as a distribution
– may be (?) the same for different dissipation mechanisms, but the limit-
ing “rough” velocity field may well depend on the nature of the dissipative
processes. In other words the question is whether the hypothetical weak
dissipative solutions of Euler (which are supposed to describe turbulence
“adequately”) depend on the nature of dissipation in the corresponding
equations like NSE. Is the limit the same for any dissipative terms, be it
Newtonian, hyper-viscous or whatever? This question is closely related to
the issue of the influence of nature of dissipation and/or role of viscosity
on the properties of turbulence for finite, however large Re � 1, in general,
and on what is called inertial range, in particular, see chapters 5 and 6.
There is some evidence that the very concept of inertial range is ill-defined
and that strong dissipative events (which appear to be not so rare) make
a nonnegligible impact on the behaviour of traditionally-inertial charac-
teristics such as structure functions and are at the origin of the so-called
anomalous scaling, see section 5.3.

If the precise nature of dissipation is unimportant in high-Reynolds-
number turbulence and if the nature of dissipation is not important either,
why to work hard specifically on NSE instead of, e.g., taking some modi-
fied version of NSE (Leray, 1933, 193410; Lions, 1969; Ladyzhenskaya, 1970,
1975; Friedlander and Pavlović, 2004 and references therein) or lattice gas
hydrodynamics approximation (Chen and Doolen, 1998; Yu and Girimaji,
2005), which have regular solutions for any time and at any Reynolds num-
bers? And why does the Clay Mathematics Institute insist specifically on
NSE? Is it really the case that the precise nature of dissipation is unimpor-
tant? Why not take such equations (which are all right at any Re and for
all times) and use them to obtain the results which are claimed to be not
achievable for NSE due to their “nasty” mathematical nature?

Is it really the case that the precise nature of dissipation is unimpor-
tant? This seems to be true (but mostly not proven) only in respect with

10The modification of NSE, introduced by Leray (1934), consists in mollifying the
nonlinearity rather than changing the dissipative term as did the other authors.
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a number of manifestations of turbulence which are really weakly-sensitive
to the nature of dissipation at large Re (and even more generally to specific
properties of the system as long as it is dissipative), e.g., things like 2/3,
4/5 and 4/15 laws, k−5/3 spectrum and some others. The most convincing
example is the 4/5 law showing that the third-order structure function is
universal, i.e., it depends on the mean energy injection rate only. It is note-
worthy that Duchon and Robert (2000) proved a local version of the 4/3 law
with the mean energy dissipation rate replaced by an instantaneous mean
energy dissipation rate over a local region of flow. Eyink, 2003 extended
their result to the 4/5 law and pointed to the similarities and differences
between this result and the Kolmogorov, 1962 refined similarity hypothesis.
It should be related to the experimental observation that

∫
ωiωjsijdx and

−
∫

sijsjkskidx become all positive for finite volumes smaller than some
integral scale of turbulence. However, there are many aspects which do
depend on the nature of dissipation.

10.3.4. ROLES OF VISCOSITY/DISSIPATION

ii – destabilizing factor (at least in some flows); iii – modifies substantially,
qualitatively the nonlinearity, i.e., it is not a passive sink of energy; iv –
adds to Lagrangian acceleration a solenoidal part (absent in Euler); v –
allows/is a cause of vortex reconnection, i.e., changes the topology of the
vorticity field11; vi – prevents singularities, at least in modified versions of
NSE and, most probably in NSE too; vii – turns the system into a finite-
dimensional one, Hopf (1948) conjectured that the underlying attractor is
finite-dimensional due to presence of viscosity, Foias et al. (2001) proved
some aspects, but all starts with Kolmogorov–Landau; and viii – makes the
flow ergodic (most probably, see Foias et al., 2001; Galanti and Tsinober,
2004 and chapter 3).

Is it possible that the nature of such a factor can be unimportant in
turbulence? At least the points ii–vi indicate the opposite.

Of particular interest here is the point iii. Modification of nonlinearity by
the dissipative term is clearly seen from looking at the equations for vortic-
ity and enstrophy, e.g., at any Reynolds number the enstrophy production
is approximately balanced by its viscous destruction, the forcing term at
this level is irrelevant, Tennekes and Lumley (1972), Tsinober (2001, 2007),
chapter 6. An essential point is that the evidence (and physical considera-
tions) clearly indicate that this balance is a universal property and holds

11There seems to be no one-to-one relation between the reconnection of vortex lines
and the realm of viscosity influence. In other words, viscosity reconnection events reflect
only a part of events/locations where viscosity is important. For example, the strain field
is influenced by viscosity as well, but in an essentially different manner. Almost nothing
is known about this last process.
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at whatever large Reynolds numbers – the larger the Reynolds number the
more precise the balance. That is turbulence is an essential interaction be-
tween nonlinear and linear processes at any however-high Re and not just a
simple cascade of energy or whatever down to smaller scales. For example,
in case of modified equations such as those with hyperviscosity the enstro-
phy balance is quite different from that for NSE, so that the nonlinearity
is quite different as well. Along with nonlocality (direct interaction of large
and small scales irrespective of their separation, see references in Tsinober
(2001, 2003) and broken scale invariance this means that the nature of dis-
sipation is felt in large scales as well, see again section 5.3. Direct influence
of viscosity on the inertial-range properties was observed also in “turbu-
lence” shell models (Leveque and She, 1995; Schörghofer et al., 1995 and
Gledzer, 2005).

One may say that vorticity and strain are “small-scale” quantities and
so they are “irrelevant” to the inertial range. The whole point is that they
are relevant very much for several reasons no matter how large the Reynolds
numbers (see chapters 5 and 6, see e.g. figures 5.2 and 6.19). We mention
here the most “trivial” one: the velocity field (and thereby velocity incre-
ments and whatever) is fully-defined by both the field of vorticity and/or
strain.

10.3.5. POSSIBLE CONSEQUENCES FOR THE INVISCID LIMIT

The differences in the behaviour of systems with different dissipation at fi-
nite Reynolds numbers points to a possibility that the hypothetical limiting
solution will depend on the kind of dissipation we have at finite Reynolds
number (recall the above quotation by Neumann, 1949) even if their “invis-
cid dissipation” manifested in D(U) would be the same. Of special interest
is what happens in this limit with enstrophy/strain and their production
and similar things. For example, assume that for a hyperviscous case the
mean dissipation ε → const (or just nonvanishing) as some viscosity νh

goes to zero, then velocity derivatives (both vorticity and strain) grow on
the average as ν1/2h, which compared to the Newtonian case h = 2 is
pretty slow, if say, h = 8 as used in many simulations. Similarly, the en-
strophy/strain production will be different and thereby the limit of the
equations for the enstrophy and strain for the Newtonian case and of the
modified equations (as e.g., with hyperviscosity) will be not the same. In
fact, it is necessary to clarify the meaning of limits of quantities involving
vorticity and strain. For example, let us look at the equation for enstro-
phy ω2: 1/2Dω2/Dt = ωiωjsij + V T + TF . The viscous term here, V T ,
is different for NSE and for the modified equations. Since in some sense
the enstrophy production ωiωjsij is mostly balanced by V T , this implies
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that ωiωjsij is different for NSE and for the modified equations. A similar
statement is true in respect of strain production −sijsjkski. The question
is what happens in the inviscid limit to the field of velocity derivatives
(vorticity and strain) and their production, etc., which play a crucial role
in turbulence and in formidable problems in mathematical issues. Will, for
example, the limit of ωiωjsij be the same in some sense or will it be different
for different viscous models, just like any quantity related to vorticity or
the whole field of velocity derivatives? There should be an essential differ-
ence as enstrophy production ωiωjsij should be balanced by something in
the limit too! What kind of objects are these quantities in the limit? Also
what happens to the above equation itself. The bottom line is the question
whether one can arrive at different limits for Euler moving along different
“paths” or if any path would lead to the same limit12. A more general ques-
tion is how does look, say, the equation for enstrophy production following
from Euler, with singular solutions, etc. An important consequence of the
balance between enstrophy production ωiωjsij and its viscous destruction
at any however large Re is that there is no such thing as inviscid motion
of vortex-lines at any however large Reynolds numbers (see chapter 9)13

so it seems meaningless to tackle the problem (in the limit ν → 0) how to
relate turbulent dissipation of energy, precisely, to the inviscid motion of
vortex-lines (Eyink, 2008)14.

Another set of questions about the Euler equation itself concerns the
fluid particle acceleration a. With finite viscosity there is a solenoidal part of
acceleration: curla = Dω/Dt−(ω · ∇)u, which contains the vortex stretch-
ing/compressing term, (ω · ∇)u, and plays an essential role in turbulence
at any Re! What happens to the solenoidal part of the fluid particles accel-
eration as ν goes to zero? Formally in the limit one stays with the gradient
of pressure only. So far there is no evidence to guide a guess/conjecture.
The evidence as shown in figure 10.4 at moderate Reynolds numbers clearly
indicates an increase of solenoidality of the nonlinearity, but is of little help
here due to strong cancellation effect between, e.g., the local acceleration
∂u/∂t and the solenoidal part of (u · ∇)u, see chapter 6.

It is noteworthy that in the two-dimensional case there are at least a
number of examples in which the limit ν → 0 depends explicitly on the
nature of the dissipative term (Kuksin, 2007, private communication).

12The issue dates back to Neumann in 1949: the laws of non-viscous flow have a highly
multiple infinite family of gliding and vortex motions (gliding is actually a limiting form
of vortex motion) indeterminate. Any small amount of viscosity establishes a definite sta-
tistical pattern for these “extra” motions, and this pattern appears to be perfectly definite
even in the limiting case of viscosity tending to zero (ν → 0). So one wonders how pres-
ence of whatever small amount of viscosity aids the selection from the vast phase space
of Euler, and as mentioned whether the nature of dissipation matters in this selection.

13This is like being slightly pregnant.
14The reader is reminded that the local causal relation is between dissipation and strain

(and its production, see eq. (C.18)) rather than vorticity. See also chapters 6 and 9.
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One more question concerns a number of issues in which the limit
Re → ∞ (and other limits) is manipulated rather freely in the context of
the behaviour of passive objects. A recent example is the so-called ‘break-
down of the Lagrangian flow’ or ‘spontaneous stochasticity’ (see references
in Falkovich et al., 2001 and Eyink, 2008), which is roughly manifested in
non-uniqueness and stochasticity of Lagrangian trajectories for an individ-
ual velocity field realization which is assumed to be rough in a manner con-
venient for analytical treatment but not necessarily physically-meaningful
and/or corresponding to the behaviour of the velocity field at very large
Reynolds numbers, which is smooth, see chapter 6.

10.3.6. WHAT ARE THE QUESTIONS?

. . . the essential mathematical complications of the subject were
only disclosed by actual experience with the physical counterparts
of these equations (von Neumann, 1949).
. . . the observational material is so large, that it allows to foresee
rather subtle mathematical results, which would be very interest-
ing to prove (Kolmogorov, 1978).
Sometimes experiments provide us with so beautiful and clear re-
sults that it is a shame on theorists that they cannot interpret
them (Yudovich, 2003).

This is one of the most difficult questions in turbulence research.

Some ‘conventional’ results
By working directly with the Navier–Stokes equations and stationary sta-
tistical solutions obtained through time averages, Foias et al. (2001b,c)
prove in a mathematically rigorous manner, the existence of transfer of en-
ergy to higher modes and that the energy flux to higher modes is nearly
equal to the energy dissipation rate throughout a certain range of wave
numbers much smaller than the Taylor wave number. A number of es-
timates concerning characteristic numbers and non-dimensional numbers
related to turbulent flows such as the number of degrees of freedom in
the spirit of Kolmogorov dimensions of attractors and others were ob-
tained by these and other authors, see references in Foias et al., (2001a,b,c,
2005) and Babin (2003). All these and similar ones are of interest for their
own sakes, but from the point of view of theoretical study of turbulence
(and its understanding) it is definitely not the first priority to reproduce
in a (more or less) rigorous manner simple known results by complicated
theory.

This seems to be true also of questions like Do the Navier–Stokes equa-
tions on a 3-dimensional domain Ω have a unique smooth solution for all
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time? the belief that The solution of this problem might well be a fun-
damental step toward the very big problem of understanding turbulence
(Smale, 1998), and that turbulence will be solved when well-formulated
mathematical statements describing the properties of Navier–Stokes sys-
tems are proven (Sinai, 1999).

It is quite a bit exaggerated to think that resolution of such and sim-
ilar problems can aid in understanding. The majority of “practitioners”
of turbulence (geo/astrophysicists, engineers and many others) cope with
great many problems (not only ‘practical’) without having the solution of
the above-mentioned problems and there seems to be no need for the solu-
tion of these problems in the above sense. Mathematics of this kind alone
does not seem to help much (so far). Assume that the answer is known.
So what does it add to understanding? Indeed, in the two-dimensional case
the above problems are resolved (Doering and Gibbon, 1995), but this did
not add much to the understanding of the basic physics of two-dimensional
chaotic flows. Non-uniqueness of the solutions per se thus cannot play a
role in turbulence (Lumley, 1970).

There are many deep mathematical ideas behind the dynamical systems
approach to the study of nonlinear phenomena which are aimed at under-
standing the origins and structures of complicated behaviour, not merely
describing it (Mullin, 1993, p. xvii). However, so far these ideas appear to
be very useful in low-dimensional systems. It remains to hope that similar
ideas will emerge in regard with highly-dimensional systems, as well as with
the PDEs.

Singularities and intermittency
Real singularities, if they exist, provide a nice explanation for the
scaling properties observed in fully-developed turbulence (Frisch,
1984).
. . . the main impediment to progress in the rigorous analysis of
turbulence is the present lack of understanding of possible blow-
up in individual solutions of the Euler and Navier–Stokes systems
(Constantin, 2000).
. . . there is no chance of detecting a singularity of the 3D Eu-
ler equation by numerical simulations and the same observation
holds for the Navier–Stokes equation with small viscosity (Bardos,
2003).

As mentioned, there is reasonable evidence that the normalized mean dis-
sipation ε = U3L−1〈ε〉 tends to a finite limit (not necessarily universal) as
Re → ∞. Since 〈ε〉 = 2ν〈s2〉 ≈ ν〈ω2〉 this means that at large Reynolds
numbers both 〈s2〉, 〈ω2〉 ≈ ν−1, i.e., the field of velocity derivatives is not
only Reynolds-number dependent, but also becomes very large/singular in
the limit ν → 0 (Re → ∞). Due to the intermittent nature of the field
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of velocity derivatives one can expect that the maximal values of s2, ω2

(or max(|∂ui/∂xk|)) increase even faster with the Reynolds number. This
possible unboundness of the field of velocity derivatives as Re → ∞ has an
implication that the Newtonian approximation can break down as ν → 0,
since the linear stress/strain relation is only the first term in the gradi-
ent expansion. So far, however, there seems to be no evidence that the
Navier–Stokes equations are inadequate for describing turbulent flows, i.e.,
breakdown of the hydrodynamic approximation15. Among the possible rea-
sons that this (possible) violation is not so easy to detect is that, even if it
happens, it will occur in rather large-Reynolds-numbers flows and small re-
gions due to the strong intermittency of the field of velocity derivatives. So
far there is no experimental evidence for this. This is also an indication of
absence of breakdown of the NSE due to possible formation of singularities
in finite time (Constantin, 1996).

Are singularities or their absence that important for turbulence, in gen-
eral, and its understanding, in particular? Possible (real space) singularities
of NSE fill a very slim set (see references in Doering and Gibbon, 1995; Gib-
bon and Doering, 2005), and they hardly exist at all. If we consider modified
viscosity, there are no singularities at all for any small viscosity. Not many
people believe in singularities for NSE either. As for Euler the set of pos-
sible singularities is enormous and one has to look for the “right” ones
which possibly form as ν → 0. A number of authors relate intermittency
and regularity issues in 3D Navier–Stokes turbulence (Constantin, 1996;
Gibbon and Doering, 2005). This is typically based on the “definition” of
intermittency as a state in which short, high-amplitude events associated
with the fine structure are seen to be distinct from quieter, longer regions
or a similar one (similarly in space).

But is it really necessary to associate intermittency and regularity?
Not necessarily, as is seen readily from the four following examples: two-
dimensional turbulence, modified Navier–Stokes equations such as those
using hyperviscosity replacing the Laplacian by a higher-order operator,
lattice gas hydrodynamics approximation and passive objects (scalars and
vectors) in random velocity fields. In all these everything is beautifully reg-
ular, i.e., the solution remains regular for all times and any Reynolds num-
ber, but there is intermittency in the above sense. This does not necessarily
mean that there is no relation between intermittency and regularity issues
in genuine three-dimensional flows. This means only that understanding its
intermittency in the above sense is too broad, e.g., any power of purely
Gaussian field exhibit such kind of “intermittency”, which is stronger for

15But see Ladyzhenskaya (1975) and McComb (1990, pp. 401–403), Friedlander and
Pavlović (2004) on alternatives to NSE, and Tsinober (1993b) and references therein. It
is safe to keep in mind that no equations are Nature.
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higher powers (for other less trivial examples and discussion of related issues
see chapter 7).

Some of the questions
Some of them were discussed above such as the ‘more chaotic’ nature of the
Lagrangian setting, which is traced back to early Lagrangian simulations
(Amsden and Harlow, 1964). It is doubtful that one has to accept the ‘nat-
ural expectation’ that nothing new can be expected in a pure Lagrangian
setting? There are several reasons for caution. First, purely Lagrangian and
Eulerian settings are different not only technically, but conceptually due to
the ‘more chaotic’ nature of the Lagrangian setting, see chapter 3. The er-
godic properties of both settings seem to be qualitatively different as well,
though not much (if anything) is known on these as concerns turbulent flows.
Finally, the issue of the limit ν → 0 has at least one additional nontrivial
aspect concerning the so-called Cauchy invariant Ω expressed in terms of
vorticity and the Jacobi deformation matrix ∂Xk(a, t)/∂aj . The peculiar
feature is that the equation for the Cauchy invariant is a parabolic equation
(C.66) which is linear in Ω having a complicated viscous term with coeffi-
cients defined by the metrics of the Lagrangian trajectories X(a,t). Setting
ν = 0 results in Ω = const along fluid particle trajectories, i.e., it is an
inviscid pointwise invariant. It is unlikely that the same result is arrived in
the limit ν → 0?

One of the questions is the process of self-amplification of velocity
derivatives (both vorticity and strain) which is intimately related to the
main mathematical difficulties. Indeed, it is just the sort of quantities asso-
ciated with this process that are involved when one is trying to find rigorous
upper bounds to various norms when studying the well-posedness (in the
large) of the Euler and Navier–Stokes problems. It is surprising that it has
received relatively little attention. One of the reasons seems to be due to
the misconception that it is ‘obvious’ due to the analogy with material lines
behaviour, though there is no such an analogy for strain, see chapter 9. The
main difficulty is that it is too trivial and crude to estimate quantities like
ωiωjsij via global norms of the involved quantities. In this case ωiωjsij is
estimated as ||ω||3. It seems that an essential role is played by the geomet-
rical relations between the quantities involved (such as alignments between
ω and the eigenframe, λk of the tensor sij, see chapter 6). There are some
empirical indications that ωiωjsij is estimated as ∼|ω|7/3, which is far ‘less’
than |ω|3, see Tsinober (1988) and references therein.

Another issue related to the above discussion is a set of questions related
to the approximate balance between enstrophy production and its viscous
destruction. This balance is not just something like mean or the L2-norm.
For example it holds (empirically) locally in time for the space integrals
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of the quantities involved. This feature is very robust and is observed in a
variety of turbulent flows also at very modest values of Reynolds numbers.

There is some evidence that the (statistical) properties of some turbu-
lent flows with the same geometry at very modest Reynolds numbers are
invariant of the boundary and initial conditions (BC and IC). For example,
typical DNS computations of NSE of turbulent flows (e.g., in a circular
pipe and a plane channel, in a cubic box, etc.) involve extensive use of
periodic BC. The results of these computations agree very well with those
obtained in laboratory experiments, in which the BC have nothing to do
with periodicity16 and in which the IC were totally different from those in
DNS (De Bruyn Kops and Riley, 1998; Nikitin, 1995, 2001 and references
in Tsinober, 1998b). No explanation of this kind of invariance is known
so far, but it is natural to expect that it is related to some kind of hid-
den symmetry(ies) of the NSE. If such exist, this may be the reason for
the similarity of results obtained via DNS of NSE in, e.g., periodic boxes
by various forcing (different deterministic, random/stochastic, etc.). This
property, however, is not universal and there are many examples of long
memory of turbulent flows which do ‘remember’, e.g., the inflow and initial
conditions, see chapter 6.

10.4. On the goals of basic research in turbulence

Progress in numerical calculation brings not only great good
but also awkward questions about the role of the human
mind... The problem of formulating rules and extracting
ideas from vast masses of computational or experimental re-
sults remains a matter for our brains, our minds (Zeldovich,
1979).
Taking into account the absence of serious progress since
the work of Leray and the fact that the NSE contains in it-
self turbulent phenomena, the reviewer conjectures that one
should consider the problem the other way round and say
that all that can be deduced from NSE by functional analy-
sis is already done, and that in the absence of new progress
in the qualitative understanding of turbulence there are very
few chances that the problem of the regularity and unique-
ness of the solution of 3D NSE will be solved (Bardos, 2002).

16The correlation coefficient between two values of any quantity at the opposite ends
of such boundaries (i.e., the points separated at maximal distance in the flow domain)
will be precisely equal to unity and close to unity for the points in the proximity of such
boundaries, whereas in any real flow the correlation coefficient becomes very small for
points separated by a distance on the order of (and larger than) the integral scale of
turbulent flow.
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The phenomenon of turbulence is still one of the least understood ones,
so that many issues in the ‘problem’ of turbulent flows are unsettled. As
a consequence, different, strongly disparate and even contradictory views
are not a rarity. As mentioned, there is no consensus even on what is(are)
the problem(s), just as there is no agreement on what are the aims/goals
of turbulence research/theories.

Our view has not changed since the first edition of this book, Tsinober
(2001a). The first priority should be given to study of basic physical mech-
anisms of turbulence with the emphasis on qualitative aspects, keeping in
mind a somewhat old-fashioned view that curiosity drives better science
than ‘strategies’17 . This priority includes the study of turbulence itself (per
se), rather than multitudes of its models. From the basic point of view, it
seems not justified to put too much (often futile) effort into it’s modelling
which mostly is mimicking it without much understanding, as the former
is not synonymous to the latter.

The only exception seems to be the Navier–Stokes equations. Since there
is no simple mathematical aid for what is usually called understanding, it
is naive to think that the ‘problem of turbulence’ would be resolved if
one would have a super-hyper computer enabling one to ‘solve’ the NSE
or whatever at any Reynolds number. Suppose one can do this and also
to measure whatever one wants. The real problem is to know what to do
next with the really huge amounts of data. Only this knowledge will aid in
exposing the basic problems and will lead to real understanding and real
‘solutions’ and possibly will produce a method of understanding the qual-
itative content of equations [PDEs] (Feynmann, 1963). Qualitative is the
key word, since there is a qualitative difference between being able to mea-
sure and/or compute/calculate all one wants and understanding. Perhaps
the efforts of the turbulence community should be somewhat shifted to the
qualitative aspects of the problem. Following the advice of Leonardo da
Vinci: Remember, when discoursing about water, to induce first experience,
then reason one has to put the emphasis on the physical aspects based in
the first place on observations and empirical facts as distinct from intuitive
conjectures, hypotheses and ‘models’. The observational aspect is not that
trivial in such a highly-dimensional system as turbulence: it is intimately
related to the skill/art of asking the right and correctly-posed questions.

17Science pursued solely/mainly for the purpose of making better weapons and neater
gadgets (and, of course, money) is destined to degeneration as science: There are no such
things as applied sciences, only applications of science, Louis Pasteur (1872), Address 11
Sept. 1872, Comptes Rendus des Travaux du Congress Viticole et Sericole de Lyon, 9–14
Septembre, 1882, p. 49.

Nowadays scientists are forced to become literary businessmen rather than in-depth
productive researchers. These trends of hunting money as a first priority (which were fore-
seen at least fifty years ago) may kill the remaining spots of basic research in turbulence
with irreversible (or reversible at a very long time scale) consequences.
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An important aspect is related to what is called here qualitative univer-
sality of turbulent flows. It implies that (contrary to the common views)
it is not always necessary to ‘hunt’ very large values of Reynolds num-
ber in studying and trying to understand the basic physics of turbulence,
and one needs neither very high Reynolds numbers nor precise determi-
nation of scaling exponents18, etc. at such Reynolds numbers. This follows
from a comparison of the results of the high-Reynolds-number experiments,
Reλ ∼ 104 (Gulitski et al., 2007a,b,c and references therein) and low-
Reynolds-numbers (Reλ ∼ 102), both from DNS and experiments. It ap-
pears that in many respects the basic physics of turbulent flow at high
Reynolds numbers, at least qualitatively, is the same as at low ones. This is
true of such basic processes as enstrophy and strain production, geometrical
statistics, the role of concentrated vorticity and strain, and depression of
nonlinearity, Tennekes and Lumley balance, a variety of non-local effects,
and a number of issues concerning fluid particle accelerations and their Eu-
lerian components and properties related to temperature and its gradient.

It is important to emphasize that our claim that “the basic physics
of turbulent flow at high Reynolds number Reλ ∼ 104, at least qual-
itatively, is the same as at moderate Reynolds numbers, Reλ ∼ 102 ”
does not mean that what is called ‘Reynolds-number dependence’ is unim-
portant. An immediate example comes from the indirect evaluation of
the acceleration variance. There are clear indications that – if scaled as
proposed by Yaglom (1949) – it exhibits a definite Re-dependence and
does not saturate at least up to Reλ ∼ 104. Another well-known example
is the behaviour of flatness of individual velocity derivatives and similar
quantities based on vorticity and/or strain. Reynolds-number dependence
is of extreme importance in a great variety of purely engineering prob-
lems and other applications. Reynolds-number dependence and the na-
ture of dissipation is important in basic issues of asymptotic behaviour
and limiting state(s) of turbulent flows as Re → ∞. It remains to classify
and distinguish between Reynolds-number-dependent and Reynolds-number-
independent quantities/phenomena in turbulence. The existing modest ev-
idence indicates that some of the former may never saturate as Re → ∞.
There is, of course, an issue with the ‘inertial’ range as an ill-defined con-
cept. The resolution of this and similar issues requires both high Reynolds
numbers and most importantly sub-Kolmogorov resolution.

18As mentioned in chapters 5 and 7, scaling and related matters have not proven very
useful (so far) in understanding the basic physics of turbulence or in justifying, e.g., enor-
mous efforts in accurately measuring exponents at very large values of Reynolds number.
It is not at all clear why and to what extent accurate measurement and/or knowledge of
exponents would aid understanding of turbulence. Moreover, the very existence of such
exponents (with few exceptions) is quite problematic, e.g., Arneodo et al. (1999), Badii
and Talkner (2001), Feigenbaum (1997), Tsinober (1996b). Recent evidence, section 5.3,
indicates that scaling exponents and the concept of inertial range are not well-defined.
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It is remarkable that in spite – or perhaps just because – of frustrated
and unsuccessful attempts to construct a predictive theory of turbulent
flows based on the first principles, the attraction of the turbulence problem
is still very reasonable: curiosity drives better science than ‘strategies’ and
bureaucratic ‘planning’. However, this is not reflected anymore in continu-
ing and increasing efforts in basic research in the field. So at present one
cannot be optimistic that sometime soon, the basic aspects of the glori-
ous enigma of turbulence as a physical phenomenon will be resolved (if at
all). It seems that it will be a long time before the turbulence community
will be no longer divided between experimentalists who observe what still
cannot be explained and theoreticians who try to explain what can not be
observed, and there will be no more attempts to replace explanation with
mere description.

Presently the turbulence community is not that simple and is divided
into more than just two groups. To quote Lumley: Turbulence is rent by
factionalism. Traditional approaches in the field are under attack, and one
hears intemperate statements against long time averaging, Reynolds de-
composition, and so forth. Some of these are reminiscent of the Einstein–
Heisenberg controversy over quantum mechanics, and smack of a mistrust of
any statistical approach. Coherent structure people sound like The Emper-
ors’s new Clothes when they say that all turbulent flows consist primarily of
coherent structures, in the face of visual evidence to the contrary. Dynami-
cal systems theory people are sure that turbulence is chaos. Simulators have
convinced many that we will be able to compute anything within a decade...
The card-carrying physicists dismiss everything that has been done on tur-
bulence from Osborne Reynolds until the last decade. Cellular Automata
were hailed on their appearance as the answer to a maidens prayer, so far
as turbulence was concerned (Lumley, 1990, as quoted by Cantwell, 1990).
There are many more, see chapter 9.
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APPENDIX A. WHAT IS TURBULENCE?

Attempts of definition(s)

This is a partial list. Other citations are given in the main text.

* – Turbulence is the name given to the imperfectly-understood class of
chaotic solutions to the Navier–Stokes equation in which many degrees of
freedom are excited.

H. Aref, 1999, Turbulent statistical dynamics of a system of point vor-
tices, in A. Gyr, W. Kinzelbach and A. Tsinober, eds., Fundamental prob-
lematic issues in turbulence, Birkhäuser.

* – It is a well-known fact that under suitable conditions, which normally
amount to a requirement that the kinematic viscosity ν be sufficiently small,
some of these motions are such that the velocity at any given time and po-
sition in the fluid is not found to be the same when it is measured several
times under seemingly identical conditions. In these motions the velocity
takes random values which are not determined by the ostensible, or con-
trollable, or, ‘macroscopic’ data of the flow, although we believe that the
average properties of the motion are determined uniquely by the data. Fluc-
tuating motions of this kind are said to be turbulent.

G.K. Batchelor, 1953, The theory of homogeneous turbulence, Cam-
bridge University Press, p. 1.

* – Turbulence is a three-dimensional time-dependent motion in which vor-
tex stretching causes velocity fluctuations to spread to all wavelengths be-
tween a minimum determined by viscous forces and a maximum determined
by the boundary conditions of the flow. It is the usual state of fluid motion
except at low Reynolds numbers.

P. Bradshaw, 1972, An introduction to turbulence and its measurement,
Pergamon, p. 17.

* – The only short but satisfactory answer to the question “what is turbu-
lence?” is that it is the general solution of the Navier–Stokes equation.

P. Bradshaw, 1972, The understanding and prediction of turbulent flow,
Aeronaut. J., 76, p. 406.

* – The distinguishing feature of turbulent flow is that its velocity field
appears to be random and varies unpredictably. The flow does, however,
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satisfy a set of differential equations, the Navier–Stokes equations, which
are not random. This contrast is the source of much of what is interesting
in turbulence theory.

A.J. Chorin, 1975, Lectures on turbulence theory, Publish or Perish,
Berkeley, p. 1.

* – Creation of small-scale activity and dissipation is the principle of turbu-
lence. Classical fluid-dynamical instabilities play a role of the fuel, vortex
stretching is the engine, and viscous dissipation is the breaks.

P. Constantin, 1994, Geometric statistics in turbulence, SIAM Review,
36, p. 73.

* – The next great era of awakening of human intellect may well produce
a method of understanding the qualitative content of equations. Today we
cannot. Today we cannot see that the water flow equations contain such
things as the barber pole structure of turbulence that one sees between
rotating cylinders. Today, we cannot see whether Schrödinger’s equation
contains frogs, musical composers, or morality – or whether it does not. We
cannot say whether something beyond it like God is needed, or not. And
we can all hold strong opinions either way.

Richard P. Feynman, 1963, The Feynman lectures on physics, II,
Addison–Wesley, p. 41–12.

* – Turbulence with its limit of self-excitation, with the characteristic hys-
teresis in its appearance and disappearance as the velocity of flow producing
it is increased or reduced and the primary role of nonlinearity in its devel-
oped (stationary) state, is, in fact, a self-oscillation. Its specific features are
determined by the fact that it is self-oscillation of a continuous medium,
i.e., a system with an infinite number of degrees of freedom.

G.S. Gorelik, 1956, as quoted by M.I. Rabinovich, Stochastic self-
oscillations and turbulence, 1978, Sov. Phys. Uspekhi, 21, p. 444.

* – Das “Turbulenzproblem” der Hydrodynamik ist ein Problem der ener-
getischen, nicht der dynamischen Stabilität.

W. Heisenberg, 1923, Über Stabilität und Turbulenz von Flüssigkeitströ-
men, Ph.D. Thesis, p. 37.

* – The following definition of turbulence can thus be tentatively proposed
and may contribute to avoiding the somewhat semantic discussion on this
matter:

a) Firstly, a turbulent flow must be unpredictable, in the sense that a
small uncertainty as to its knowledge at a given initial time will amplify so
as to render impossible a precise deterministic prediction of its evolution;
b) Secondly, it has to satisfy the increased mixing property defined above;
c) Thirdly, it must involve a wide range of spatial wave lengths.
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M. Lesieur, 1997, Turbulence in fluids, Kluwer, p. 2.

* – Turbulence can be defined by a statement of impotence reminiscent
of the second law of thermodynamics: flow at a sufficiently high Reynolds
number cannot be decelerated to rest in a steady fashion. The deceleration
always produces vorticity, and the resulting vortex interactions are appar-
ently so sensitive to the initial conditions that the resulting flow pattern
changes in time and usually in stochastic fashion.

H.W. Liepmann, 1979, The rise and fall of ideas in turbulence, Amer-
ican Scientist, 67, p. 221.

* – A body of fluid is a mechanical system with an infinite number of
degrees of freedom. It may therefore be expected to execute a rather random
motion comparable to that of the molecules in a gas. If one regards such a
chaotic motion as analyzed into harmonic components of various scales, one
recognizes that frictional forces tend to dissipate the small-scale oscillations
and keep the motion more or less regular. Thus, when viscous forces are
sufficiently strong, i.e., at sufficiently low Reynolds numbers, the motion will
become laminar. On the other hand, at sufficiently high Reynolds numbers
the motion will tend to become random fluctuating, even when external
conditions are steady.

C.C. Lin and W.H. Reid, 1963, Turbulent flow, Theoretical aspects, in:
Handbuch der Physik, Band VIII/2, Springer, p. 438.

* – Perhaps a satisfactory definition would be an ensemble of nonperiodic
solutions of the Navier–Stokes equations. Ensembles of solutions of sim-
plified or otherwise modified forms of the Navier–Stokes equations will not
qualify as turbulence; we shall instead regard them as models of
turbulence.

E.N. Lorenz, 1972, Investigating the predictability of turbulent motion,
In: M. Rosenblatt and C. Van Atta, editors, Statistical models and turbu-
lence, Springer, p. 195.

* – We have therefore defined turbulence as random fluctuations of the
thermodynamic characteristics of vortex flows, thereby distinguishing it at
the outset from any kind of whatever random irrotational, i.e., potential
flows, ...

A.S. Monin, 1978, On the nature of turbulence, Sov. Phys. Uspekhi, 21,
p. 430.

* – Definition of Randomness.
Of special interest to us here are the strange attractors, on which phase
trajectories display the following properties of randomness:

(1) An extremely sensitive dependence on initial conditions, due to ex-
ponential divergence of trajectories which are initially close together (and

Appendix A. WHAT IS TURBULENCE?
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leading to their unpredictability for initial conditions which are given with
arbitrarily-high (but finite) precision). (2) The everywhere-denseness at the
attractor of almost all trajectories, i.e., their arbitrarily-close approach to
any of the attractor’s points (which implies that they return infinitely often
to the attractor), and the property that any initial nonequilibrium proba-
bility distribution (measure) over the phase space (or, more precisely, over
the region of attraction of the strange attractor) reduces to some limiting
equilibrium distribution at the attractor (an invariant measure). (3) The
mixing property: For any (measurable) subsets A and B of the attractor,
the probability after emerging from A of arrival at B is proportional after
a long time of measure of B:

lim
t→∞P{(F tA) ∩ B} = P (A) P (B)

where the symbol ∩ denotes set intersection. A consequence of the mix-
ing property is the fact that the time-averaged value < Φ[u(t)] > of any
function Φ(u) defined on the strange attractor is independent of the initial
conditions u0 (for almost all u0) and that this average value coincides with
the average Φ̄(u) over the invariant measure (ergodicity):

< Φ >≡ lim
T→∞

T−1
∫ T

0
Φ[u(t)]dt =

∫
Φ(u)Pdu ≡ Φ̄.

A characteristic of the mixing property is a rather rapid decay of the cor-
relation functions as τ → ∞:

Bjl(τ) =< [uj(t)− < uj >][ul(t + τ)− < ul >] >,

which is to say continuity of their Fourier transforms with respect to τ , i.e.,
their spectral functions.

It appears expedient to have the term turbulence refer to the random
evolution [in the sense of (1)–(3) above] of the flow of a (viscous) fluid which
possesses vorticity. Stochastic potential flows of a fluid are by preference re-
ferred to as random wave fields, while for nonhydrodynamic systems one
should preferably restrict oneself, where necessary, to the adjective stochas-
tic.

A.S. Monin, 1978, Hydrodynamic instability, Sov. Phys. Uspekhi, 29,
pp. 856–857.

* – Turbulence is a phenomenon which sets in in a viscous fluid for small
values of the viscosity coefficient ν (reckoning ν in significant units, that is,
as the reciprocal Reynolds’ number 1/Re), hence its purest, limiting form
may be interpreted as the asymptotic, limiting behavior of a viscous fluid
for ν → 0 . . .
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The circumstances described above made it very plausible that turbu-
lence is a phenomenon of instability . . .

A complete theory of the general solutions of the Navier–Stokes equa-
tions are called for . . . nothing less than a thorough understanding of the
system of all their solutions would seem to be adequate to elucidate the
phenomenon of turbulence.

Turbulence proper is tied . . . to 3-dimensionality.
John von Neumann, Recent theories of turbulence—A report to the office

of Naval Research, 1949, in: Collected works, vol. 6, pp. 439, 441, 448, 462,
ed. A.H. Taub, Pergamon.

* – One of the best definitions of turbulence is that it is a field of random
chaotic vorticity.

P.G. Saffman, 1981, Vortex interactions and coherent structures in tur-
bulence, in: Transition and turbulence, ed. R. Meyer.

* – . . . the turbulence syndrome includes the following symptoms: The ve-
locity field is such a complicated function of space and time that a sta-
tistical description is easier than a detailed description; it is essentially
three-dimensional, in the sense that the dynamical mechanism responsi-
ble for it (the stretching of vorticity by velocity gradients) can only take
place in three dimensions; it is essentially nonlinear and rotational, for the
same reasons; a system of partial differential equations exists, relating the
instantaneous velocity field to itself at every time and place.

R.W. Stewart, as quoted by J.L. Lumley, 1972, Stochastic tools in tur-
bulence, Academic Press, p. ix.

* – Turbulence is an irregular motion which, in general, makes its appear-
ance in fluids, gaseous or liquid, when they flow past solid surfaces or even
when neighboring streams of the same fluid flow past or over one another.

G.I. Taylor and Th. von Karman, in: von Karman, Th., Twenty-fifth
Wilbur Wright memorial lecture—Turbulence, 1937, J. Roy. Aeronaut. Soc.,
41, p. 1109.

* – In many cases, it is allowable to deal with a system of finite dimensions
as a model of a continuous fluid and this is particularly the case at the stage
of generation of “turbulence”, at which only a limited number of degrees of
freedom of motion have been excited. The approximation of a fluid in terms
of a model system of finite dimensions provides us with a powerful means
of analysis and it is by this reason that the recent progress in the theory of
“chaos” has enabled us to look straight at the fundamental mechanism of
“turbulence”.

On the other hand, it is generally recognized that “turbulence” in its
Fully-developed state has a singular structure in space and time and that

Appendix A. WHAT IS TURBULENCE?
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the singularity is closely connected with the peculiar property of “turbu-
lence” such as the nonzero viscous dissipation in the limit of vanishing vis-
cosity. Such a singular behaviour of the fluid cannot be described correctly
by means of a model system of finite dimensions which remains regular in
the inviscid limit. Thus, in this restricted area, “chaos in fluids” covers only
a part of “turbulent” phenomena.

T. Tatsumi, 1984, Irregularity, regularity and singularity in turbulence,
in: Turbulence and chaotic phenomena in fluids, ed. T. Tatsumi, Elsevier,
p. 1.

* – Before 1970, I would not have dreamt of putting the words turbulence
and predictability side by side, as in the title of this summer course. To
me, turbulence was unpredictable by definition. Turbulence was the chaos
that arises in fluids because of the innumerable instabilities associated with
vortex stretching.

These days, I tend to think of turbulent flow as flow in which determin-
istic calculations become useless in a finite time interval.

H. Tennekes, 1985, A comparative pathology of atmospheric turbulence
in two and three dimensions, in: Turbulence and predictability in geophys-
ical fluid dynamics and climate dynamics, eds., M. Ghil, R. Benzi and G.
Parisi, North-Holland, p. 45.

* – Everyone who, at one time or another, has observed the efflux from a
smokestack has some idea about the nature of turbulent flow. However, it
is very difficult to give a precise definition of turbulence. All one can do is
list some of the characteristics of turbulence flows:
Irregularity . . . Diffusivity . . . Large Reynolds numbers . . . Three-
dimensional vorticity fluctuations . . . Dissipation . . . Continuum . . . Turbu-
lent flows are flows . . .

H. Tennekes and J.L. Lumley, 1972, A first course in turbulence, MIT
Press, pp. 1–3.
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APPENDIX B. ABOUT THE ‘SNAGS’ OF THE PROBLEM

� – I had less difficulty in the discovery of the motion of heavenly bod-
ies in spite of their astonishing distances, than in the investigation of the
movement of flowing water before our very eyes. Galileo as cited by R.
Narasimha, 1983, The turbulence problem: a survey, J. Indian Inst. Sci.,
64(A) Jan. p. 1. (1–59).

� – As a doctorate I proposed to Heisenberg no theme from Spectroscopy
but the difficult problem of Turbulence, in the hope, that WENN IRGEN-
DEINER (if anybody), would solve this problem. However, the problem is
until now not solved. A. Sommerfeld, 1942, Scientia, Nov./Dez. 1942.

� – The universal similarity theory of the small-scale components of the
motion stands out in this rather grey picture as a valuable contribution, of
which an increasing number of applications is being made... G.K. Batche-
lor, 1962, The dynamics of homogeneous turbulence: introductory remarks,
In: A. Favre, editor, Mécanique de la Turbulence, Colloques Internationaux
du CNRS, No. 108 (Marseille, 28 Aôut–2 Septembre 1961), p. 96.

� – It remains to call attention to the chief outstanding difficulty (i.e., tur-
bulence) of our subject. Sir Horace Lamb, 1927, Hydrodynamics, p. 651.

� – I am an old man now, and when I die and go to Heaven there are two
matters on which I hope for enlightenment. One is quantum electrodynam-
ics and the other is the turbulent motion of fluids. And about the former
I am rather optimistic. Sir Horace Lamb, 1932, as quoted by S. Goldstein,
1969, ARFM, 1, 23.

� – I soon understood that there was little hope of developing a pure, closed
theory, Selected works of A.N. Kolmogorov, I, ed., V.M. Tikhomirov, p.
487, Kluwer, 1991.

� – It is at this point that the study of turbulence does prove to be an
exception: the applied physics involvement is almost completely absent.
In view of the extraordinary practical importance of turbulence . . . this is

355
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quite astonishing. Yet the reason for such apparent neglect is easily found.
Quite simply the fundamental problems of turbulence are still unresolved.
D. McComb, 1990, The physics of turbulence, Oxford Univ. Press, p. vii.

� – The entire experience with the subject indicates that the purely-
analytical approach is beset with difficulties, which at this moment are
still prohibitive. The reason for this is probably as was indicated above:
That our intuitive relationship to the subject is still too loose – not hav-
ing succeeded at anything like deep mathematical penetration in any part
of the subject, we are still quite disoriented as to the relevant factors,
and as to the proper analytical machinery to be used. Under these condi-
tions there might be some hope to “break the deadlock” by extensive, but
well-planned computational efforts. J. von Neumann, 1949, Recent theories
of turbulence—A report to Office of Naval Research. Collected works, 6
(1963), 469, ed. Taub., A.H., Pergamon.

� – . . . the absence of a sound theory is one of the most disturbing aspects of
the turbulence syndrome. R.W. Stewart, 1969, Turbulence Nat. Committee
for Fluid Motion Films (dist. Encyclopedia Britannica Educational Corp.).

� – . . . we should not altogether neglect the possibility that there is no such
thing as ‘turbulence’. That is to say, it is not meaningful to talk of the prop-
erties of a turbulent flow independently of the physical situation in which
it arises. In searching for a theory of turbulence, perhaps we are looking
for a chimera, P.G. Saffman, 1978, Problems and progress in the theory of
turbulence, Lect. Notes in Phys., 76 (II), p. 276.

� – . . . I just cannot think of anything where a genuine prediction for the
dynamics of turbulent flow has been confirmed by an experiment. So we
have a big vast empty field. P.G. Saffman, 1991, in: The Global Geometry
of Turbulence, NATO ASI Ser., B 268, ed. J. Jimenez, p. 349, Plenum.

� – Turbulence was probably invented by the Devil on the seventh day of
Creation when the Good Lord wasn’t looking. P. Bradshaw, 1994, Experi-
ments in Fluids, 16, p. 203.

� – . . . less is known about the fine-scale turbulence... than about the struc-
ture of atomic nuclei. Lack of basic knowledge about turbulence is hold-
ing back progress in fields as diverse as cosmology, meteorology, aeronau-
tics and biomechanics. U. Frisch and S. Orszag, 1990, Phys. Today, 43,
32.
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� – . . . a fundamental theoretical understanding is still lacking. M. Nelkin,
1994, Adv. Phys., 43, 143.

� – Turbulence is the last great unsolved problem of classical physics.
Remarks of this sort have been variously attributed to Sommerfeld, Ein-
stein, and Feynman, although no one seems to know precise references, and
searches of some likely sources have been unproductive. Of course, the al-
legation is a matter of fact, not much in need of support by a quotation
from a distinguished author. However, it would be interesting to know when
the matter was first recognized. P.J. Holmes, G. Berkooz and J.L. Lumley,
1996, Turbulence, coherent structures, dynamical systems and symmetry,
Cambridge University Press.

� – Turbulence is the graveyard of theories, H.W. Liepmann, 1997, as cited
by S.J. Kline, 1997, A brief history of boundary layer structure research,
in Self-sustaining mechanisms of wall turbulence, ed. R.L. Panton, p. 4,
Comp. Mech. Publ.

� – Every aspect of turbulence is controversial, R. Salmon, 1998, Lectures
on geophysical fluid dynamics, Oxford University Press.

Appendix B. ABOUT THE ‘SNAGS’ OF THE PROBLEM
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APPENDIX C. GLOSSARY OF ESSENTIAL FLUID
MECHANICS

Contains also some not broadly known facts

This appendix contains basic information on fluid mechanics, in gen-
eral, and turbulent flows, in particular, with some specific relevant items.
This includes flow kinematics, equations of motion, and some of their con-
sequences for velocity derivatives, and basic relations for description of
turbulent flows.

13.1. Kinematics

The evolution of vector, li, connecting two material points, x and x + l,
follows the equation Dli

Dt = ui(x + l)−ui(x). If the vector li is infinitesimal,
this equation becomes

Dli
Dt

= lj
∂ui

∂xj
= ljsij + ljaij = ljsij +

1
2
εijkωjlk, (C.1a)

or in vector notation

Dl
Dt

= (∇ · u)l = s · l +
1
2
ω × l, (C.1b)

where sij = 1
2

(
∂ui
∂xj

+ ∂uj

∂xi

)
is the rate of strain tensor, aij = 1

2

(
∂ui
∂xj

− ∂uj

∂xi

)

is the rotation tensor, and aij = −1
2εijkωk, where ωi = εijk

∂uk
∂xj

= εijkakj ,

ω = curlu is the vorticity vector and D
Dt = ∂

∂t + uj
∂

∂xj
.

The equivalent to (C.1) statement is that the velocity field in a small
region surrounding the position x consists, to the first order in the linear
dimensions of this region, of the superposition of a uniform translation with
velocity u(x), a pure straining motion characterized by the rate of strain
tensor sij , and a rigid-body rotation with an angular velocity 1

2ω:

ui(x + dx) = ui(x) + sij(x)dxj +
1
2

εijkωj(x)dxk. (C.1c)

The equation for infinitesimal area, identified by its vector normal, Ni,
follows from the conservation of fluid volume, Nili, i.e., DNili

Dt = 0 which
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together with (C.1) gives

DNi

Dt
= −Nk

∂uk

∂xi
, (C.2)

In compressible fluids this should be replaced by DρNili
Dt = 0 with the re-

sulting equation DNi
Dt = −Nk

∂uk
∂xi

+ Ni
∂uk
∂xk

, where ρ is the fluid density.
Note that, generally, neither is vector l solenoidal, nor vector N is po-

tential. A useful relation concerns a rather special pointwise Lagrangian
invariant which is divl, i.e.,

D(divl)
Dt

= 0, (C.3)

13.2. Dynamics

13.2.1. BASIC EQUATIONS AND THEIR CONSEQUENCES

In the sequel D
Dt = ∂

∂t + ui
∂

∂xi
is the material (Lagrangian) derivative.

Incompressibility

div u ≡ ∂ui

∂xi
= 0. (C.4)

Euler Equations (EE)
Dui

Dt
= −∂(p/ρ)

∂xi
. (C.5)

Navier–Stokes equations (NSE)

Dui

Dt
= −∂(p/ρ)

∂xi
+ ν∇2 ui + Fi. (C.6)

The Lamb’s form of the NSE in vector notation

∂u
∂t

+ ω × u = ∇
(

p/ρ +
1
2
u2

)
+ ν∇2 u + F. (C.7)

Three typical examples of real forces, F, are as follows. The first one is
the force due to buoyancy, Fb = Δρ

ρ0
g, in fluids with density variations,

represented by the difference Δρ = ρ − ρ0, with respect to some reference
density ρ0, where g is the gravitational acceleration. The second example
is the Coriolis force in rotating systems, Fc = −2Ωsyst × u, where Ωsyst is
the angular velocity of the system. Finally, the third example is the elec-
tromagnetic force in electrically-conductive fluids, Fem = 1

ρ(j × B), where
j = curlB= σ(E + u× B), B – magnetic field, E – electrical field.
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It is important that the force F can be prescribed in any desirable way in
direct numerical simulations of the Navier–Stokes equations. For example,
one can realize the ‘unrealistic’ (quasi-) isotropic turbulent flow by choosing
an appropriate force.

Note that NSE are integro-differential equations, since the pressure
field at some point in space is defined by the velocity in the whole flow
domain, due to the nonlocality of the inverse Laplace operator, because
∇2p = {ρ(ω2/2 − s2)} ≡ 2Q, s2 ≡ sijsij. In an unbounded fluid flow
p(x) = −(2π)−1

∫
Q(x) dy

|x−y| . This can be represented as a sum of local and
nonlocal terms, p(x,t) = −1

3u2(x,t) + N(x,t), N(x,t) = 1
4π

∫
P.V.{3

yiyj

y2 −
δij}Rij(x − y,t) dy

|y|3 , Rij = uiuj (Constantin and Fefferman, 1994). Here
∫
P.V. stands for the Cauchy’s principal value.

Equation for the kinetic energy, 1
2u2

D

Dt

(
1
2
u2

)
= − ∂

∂xj
{ujp/ρ − 2νuisij} − 2νsijsij + uiFi. (C.8)

Note that – as follows from the NSE in Lamb’s form (C.7) – vorticity does
not contribute directly to the local (i.e., without integration over the whole
flow domain) energy balance/transfer, since u · (ω × u) ≡ 0.

Equation(s) for vorticity, ωi

Dωi

Dt
= ωjsij + ν∇2ωi + εijk

∂Fk

∂xj
, (C.9)

or in vector notation

Dω

Dt
= (ω · ∇)u + ν∇2ω + curlF. (C.10)

The vortex-stretching vector Wi ≡ {(ω ·∇)u}i = ωj
∂ui
∂xj

= ωjsij reflects the
interaction between vorticity and rate of strain tensor and is responsible
for stretching (compressing) and tilting of vorticity.

If the fluid density is not constant, the equation for vorticity becomes

Dω

Dt
= (ω · ∇)u + ωdivu +

1
ρ2

∇ρ ×∇p + ν∇2ω + curlF. (C.11)

This equation can be rewritten for the potential vorticity, ω/ρ, as

Dω/ρ

Dt
= {(ω/ρ) · ∇}u− 1

ρ
∇

(
1
ρ

)
×∇p +

ν

ρ
∇2ω +

1
ρ
curlF, (C.12)
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where use was made of mass conservation divu = −1
ρ

Dρ
Dt .

A useful equation for the dilatation, Θ = divu, is

DΘ
Dt

=
1
2
ω2 − s2 − 1

ρ
∇2p +

1
ρ2

∇ρ · ∇p + ν∇2Θ + divF. (C.13)

Note, that the equation for vorticity is integro-differential, since the velocity
field at some point in space is defined by the vorticity in the whole flow
domain, for example, by the Biot–Savart law in case of the whole space,

ui(x, t) =
∫

αij(r)ωj(y, t)d1y, αij(r) =
1
4π

εijk
rk

r3
, ri = xi − yi, (C.14)

and consequently the rate of strain tensor

sij(x) =
∫

P.V.
βijk(r)ωj(y,t)d3y, βijk = − 3

8π
εijlrlrk + εkjlrlri

r5
, (C.15)

where
∫
P.V. stands for the Cauchy principal value (Novikov, 1967). A sim-

ilar expression for ωi can be obtained in terms of strain, sij, and both
relations can be cast in a symmetric form using the rotation tensor aij =
1
2

(
∂ui
∂xj

− ∂uj

∂xi

)
(Ohkitani, 1994). It is important that this symmetry is only

kinematic. Dynamically the two quantities are very different in many re-
spects. For example, pressure is present in the equation for the rate of strain
tensor, but it is absent in the equation for vorticity. Another difference is
seen in the absence of viscosity. In this case vorticity is frozen in the fluid
motion. There is no such property associated with the rate of strain.

In an arbitrary flow domain the velocity field is defined from a Poisson
equation ∇2u = −curlω, with appropriate boundary conditions. This is
true also of the rate of strain tensor: just as in the case of vorticity the
whole flow field is determined entirely by the field of strain. This is seen from
the equation ∇2ui = 2∂sik/∂xk, which together with boundary conditions
defines uniquely the velocity field. In particular, it is straightforward to
obtain an analogue of the Biot–Savart law for the whole space under the
same conditions for the Biot–Savart law to be valid,

ui(x, t) =
∫

γj(r)sij(y, t)dy, γj(r) = − 1
2π

rj

r3
, ri = xi − yi. (C.14′)

We stress these simple purely-kinematic relations with the emphasis that
the velocity field is completely defined by the field of vorticity or strain.
Thus it is the first and the simplest indication that the ‘small’ scales (rep-
resented by velocity derivatives, i.e., vorticity and strain) and the ‘large’
scales (represented by velocity) are not that separate for whatever Reynolds
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number. Note that the small scales, generally, are not ‘integrated out’ in
(C.14) and (C.14′) due to the singular nature of the kernel.
Equation for enstrophy 1

2ω2

1
2

Dω2

Dt
= ωiωjsij + νωi∇2ωi + εijkωi

∂Fk

∂xj
. (C.16)

The term ωiωjsij is responsible for the enstrophy production.
The enstrophy production and its rate, α = ωiωjsij

ω2 , can be expressed
in terms of vorticity only for an infinite domain in the following nonlocal
form (Constantin, 1994)

α(x) =
3
4π

∫

P.V.
D{ỹ,ω̃(x + y, t), ω̃(x, t)}|ω(x + y, t)| dy

|y|3 , (C.15′)

where D{a1,a2,a3} = (a1 · a2)Det{aij} and ã = a/a.
Equation for the rate of strain tensor sij, (Yanitski, 1982)

Dsij

Dt
= −sikskj −

1
4
(ωiωj − ω2δij) −

∂2p

∂xi∂xj
+ ν∇2sij + Fij , (C.17)

where Fij =
(

∂Fi
∂xj

+ ∂Fj

∂xi

)
.

Equation for the total strain, sijsij ≡ s2

1
2

Ds2

Dt
= −sijsjkski −

1
4
ωiωjsij − sij

∂2p

∂xi∂xj
+ νsij∇2sij + sijFij . (C.18)

Just like the term ωiωjsij in (C.16) is called enstrophy production, the term
−sijsjkski − 1

4ωiωjsij − sij
∂2p

∂xi∂xj
in (C.18) can be called (inviscid) produc-

tion of total strain. Note that the mean 〈−sijsjkski− 1
4ωiωjsij〉 = 1

2〈ωiωjsij〉
is strictly positive in homogeneous flows and comprises the generation of
strain in such (incompressible) flows, since sij

∂2p
∂xi∂xj

= ∂
∂xk

{· · ·} and there-

fore 〈sij
∂2p

∂xi∂xj
〉 = 0.

If the fluid density is not constant, the equation (C.18) for s2 contains
two more terms in its RHS: −1

ρsij
∂2p

∂xi∂xj
+ sij

2ρ2

{
∂ρ
∂xi

∂p
∂xj

+ ∂ρ
∂xj

∂p
∂xi

}
.

There is a following qualitative difference between the equation for the
kinetic energy, 1

2u2, and the equations for the enstrophy, 1
2ω2, and total

strain, 1
2s2. Integrate these over a domain with homogeneous, periodic

or/and other boundary conditions causing the surface integrals to vanish.
The nonlinear terms do not contribute to the equation for energy due to
their conservative nature – they can be written in the form ∂

∂xj
(· · ·) .

d

dt

∫

V

(
1
2
u2

)
dV = −

∫

V
εdV +

∫

V
uiFidV. (C.19)
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That is, kinetic energy is an inviscid invariant, and therefore it is meaningful
to speak of its dissipation1.

On the contrary the nonlinear term,
∫

ωiωjsijdV, corresponding to the
net enstrophy production is (empirically) known to be strictly positive
both from laboratory and numerical experiments (Taylor, 1938a,b; Betchov,
1976; Tsinober et al., 1997), i.e., its contribution does not vanish,

1
2

d

dt

∫

V
ω2dV =

∫

V
ωiωjsijdV −

∫

V
εωdV +

∫

V
εijkωi

∂Fk

∂xj
dV. (C.20)

That is, enstrophy is not an inviscid invariant and therefore the expression
εω = −νωi∇2ωi, as any other, cannot be termed as dissipation of enstrophy,
since there is no way to find a unique expression for εω (as in the case of
ε): it can be written as (curlω)2, ∂ωi

∂xj

∂ωi
∂xj

and many other forms, all of them

differing by terms in the form ∂
∂xj

(· · ·) .

A similar equation can be written for the total strain,

1
2

d

dt

∫

V
s2dV = −

∫

V

(
sijsjkski +

1
4
ωiωjsij

)
dV −

∫

V
εsdV +

∫

V
sijFijdV,

(C.21)
1See Loitsyanskii (1966), also Serrin (1959), for a simple demonstration that dis-

sipation rate of kinetic energy, i.e., the rate at which mechanical energy is turned
locally into heat in an incompressible Newtonian fluid, is ε = 2νsijsij . It should
be emphasized that this is the true local energy dissipation rate in incompressible
flows. The stress is made here, since this expression can be written for example, as

ε = 2νsijsij = νωiωi + ∂2

∂xi∂xj
{uiuj} . That is with appropriate boundary conditions

2ν
∫

sijsijdV = ν
∫

ωiωidV . Also for homogeneous turbulence 2ν 〈sijsij〉 = ν 〈ωiωi〉 ,
and at large Reynolds numbers 2ν 〈sijsij〉 ≈ ν 〈ωiωi〉. These are nothing more than kine-
matic relations. The true physical causal relation is between dissipation and strain both
in Newtonian and non-Newtonian fluids. Therefore it is a misconception to associate
dissipation directly with vorticity. Dissipation is a quantity essentially associated with
strain.

For a viscous Newtonian compressible fluid,

εc = 2ν
(

sij − 1

3
δij

∂uk

∂xk

)(
sijsij − 1

3
δij

∂uk

∂xk

)
+

ζ

ρ

{
∂uk

∂xk

}2

where ζ is the so-called second or bulk viscosity. Even if ζ ≈ 0 (an assumption valid in
many cases) compressibility effects reduce the dissipation.

It is customary to rearrange the terms in the expression for εc and to represent it as

εc =

(
4

3
ν +

ζ

ρ

){
∂uk

∂xk

}2

+ νωiωi + ν
∂

∂xi

{
∂uiuj

∂xj
+ uj

∂ui

∂xj
− 3

∂

∂xj

(
uj

∂uk

∂xk

)
· · ·

}

with the first term called compressible or dilatational dissipation and the second term
called solenoidal or incompressible dissipation (Lele, 1994; Friedrich and Bertolotti, 1997
and references therein). Though this is done for their means only, from the physical point
the latter is still misleading.



365

where εs = −νsij∇2sij , and the −
∫
(sijsjkski+1

4ωiωjsij)dV = 1
2

∫
ωiωjsijdV,

corresponding to the net strain production, is also positive.
In summary, the nonlinearity does not contribute to the rate of change of

energy, but only redistributes it in space. On the contrary, the nonlinearity
makes a positive contribution to the rate of change of the total enstrophy
and strain2.

In two-dimensional flows the ‘source’ terms ωiωjsij and sijsjkski vanish,
and both enstrophy and total strain are inviscid invariants. Moreover, vor-
ticity, and consequently enstrophy (but not the total strain) is a pointwise
Lagrangian inviscid invariant, i.e., vorticity of any infinitesimal material
fluid element does not change. However, the quantity of the next level, the
palinstrophy, ξ2, ξ = curlω, is not an inviscid invariant, since it obeys the
equation

1
2

Dξ2

Dt
= ξiξjsij + νξi∇2ξi (C.22)

and its net production
∫

ξiξjsijdV is again a positive quantity.
Equivalently, the equation for ζ2, where ζ = ∇ω (= ∂ω/∂xi) is the

vorticity gradient, takes the form

1
2

Dζ2

Dt
= −ζiζjsij + νζi∇2ζi, (C.22′)

and the net production of ζ2 (−
∫

ζiζjsijdV =
∫

ξiξjsijdV ) is a positive
quantity as well.

2This has interesting implications in the context of stability theory. Namely, the
Reynolds–Orr equation for the total energy of a disturbance, ui, of an undisturbed shear
flow Ui (assumed to be a solution of NSE) does not contain cubic terms in the disturbance
(corresponding to the nonlinear terms in NSE)

d

dt

∫

V

(
1

2
u2

)
dV = −

∫
uiuj

∂Ui

∂xj
dV −

∫

V

εdV.

This means that the rate of change of the energy of the disturbance E−1dE/dt does not
depend on the disturbance amplitude, i.e. in some sense, is the same for infinitesimal
and finite amplitude disturbances. This was interpreted (see references in Henningson,
1996) in the sense that the disturbance energy produced by linear mechanisms is the
only disturbance energy available. In contrast to the energy equation, the corresponding
equation for enstrophy (and a similar equation for strain)

d

dt

∫

V

(
1

2
ω2

)
dV =

∫ (
−ωiuj

∂Ωi

∂xj
+ ωiωjSij + ωisijΩj + ωiωjsij

)
dV −

∫

V

εωdV.

does contain the cubic term, ωiωjsij corresponding to the self-amplification of vorticity.
Hence the rate of change of the enstrophy of the disturbance E−1

ω dEω/dt does depend on
the disturbance amplitude, and is different for infinitesimal and finite amplitude distur-
bances. A similar statement is true of the total strain.

This shows the advantages of using velocity derivatives (vorticity and strain) in eluci-
dating the essential aspects of physics.
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13.2.2. SOME ADDITIONAL CONSEQUENCES FROM THE NSE
AND INVARIANT QUANTITIES

Equation for enstrophy production ωiωjsij
3

D

Dt
ωiωjsij = W 2 − ωiωj

∂2p

∂xi∂xj
+ V T. (C.23)

Equation for sijsjkski

D

Dt
sijsjkski = −3

{

s4 +
1
4
(W 2 − s2ω2) + sikskj

∂2p

∂xi∂xj

}

+ V T, (C.24)

where W 2 = ωjsijωksik, s4 = sikskjsilslj and V T stands for viscous terms.
Writing such equations allows us to identify in a natural way the dyna-

mically-significant geometrical invariant quantities and relations between
such invariants of different order via dynamical equations, all of which are
the consequence of the Navier–Stokes equations. Namely the quantities of
the second order are ω2 and s2; the invariants of the third order are ωiωjsij ,

sijsjkski and sij
∂2p

∂xi∂xj
. All of them appear in the equations for enstrophy

(C.16) and total strain (C.18). The invariants of the fourth order are

I1 = sikskjsilslj; I2 = ω2s2; I3 = ωisijωksik ≡ W 2; I4 = ω4. (C.25)

The right-hand side of the equations (C.23) and (C.24) contain three of the
four invariants. The fourth invariant, I4 = ω4, appears in the equations
for the higher-order quantities. Thus the invariants I1 − I4 are pointwise
quantities of dynamical significance. Siggia (1981) identified the means 〈Ii〉 ,
i = 1 − 4, in the kinematical context as invariants determining all the 105
terms of the tensor of the fourth rank T

(4)
i,j,k,l... = 〈 ∂ui

∂xj

∂uk
∂xl

...〉 for an isotropic
velocity field.

An important aspect is that the equations (C.18), (C.23) and (C.24)
contain three additional invariant quantities containing the pressure Hes-
sian, hij = ∂2p

∂xi∂xj
: one of third order, sij

∂2p
∂xi∂xj

and two of fourth order,

I5 = ωiωj
∂2p

∂xi∂xj
; I6 = sikskj

∂2p

∂xi∂xj
. (C.26)

All three reflect the nonlocal dynamical effects due to interaction of the
pressure Hessian with vorticity and strain.

3In the equations of this subsection the terms associated with the external force, Fi,
are dropped.
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Geometrical invariants remain unchanged under the full group of rota-
tions (i.e., rotations plus reflections)4 in contradistinction with other nonin-
variant combinations of velocity derivatives. For this reason the geometrical
invariants are mostly-appropriate for studying physical processes in (turbu-
lent) fluid flows, their structure and universal properties (Tsinober, 1995,
1996a and references therein).

Another way of choosing invariant quantities is to look directly at the
invariants of the velocity gradient tensor ∂ui

∂xj
: the first invariant – P = ∂ui

∂xi
,

vanishing for incompressible flow; the second invariant –Q = 1
4(ω2 − 2s2),

and the third invariant R = −1
3(sijsjkski + 3

4ωiωjsij), both written for
incompressible flows (see Chacin and Cantwell, 2000; Martin et al., 1998;
Ooi et al., 1999 and references therein). These invariants arise naturally
as coefficients in the characteristic equation for the eigenvalues of ∂ui

∂xj
. It

is a convenient and useful way to study some of the local flow properties
in the R − Q plane. This analysis should be complemented by looking
at the invariants of sij (e.g., its eigenvalues, Λi), the invariant quantities
mentioned above as well as some other discussed below.

It is noteworthy that some of the invariant quantities allow useful geo-
metrical interpretation. For example,

ωiωjsij = ω2Λi cos2(ω, λi) ≡ ω · W = ωW cos(ω,W,) (C.27)

where λi is the eigenframe of the rate of strain tensor, sij , and Λi are its
eigenvalues. The vector Wi = ωjsij is the vortex stretching vector. Another
example, ωisijωksik ≡ W 2 = ω2Λ2

i cos2 (ω, λi).
Note a useful relation

cos(ω,W) =
Λi cos2(ω, λi)

{Λ2
i cos2(ω, λi)}1/2

, (C.28)

which shows that cos(ω,W) is independent both of the magnitude of vortic-
ity and total strain. As expected it depends only on geometrical properties
of the velocity gradients: the mutual orientation of vorticity vector, ω, and
the eigenframe, λi, of the strain tensor, sij, and of the shape of the latter,
e.g., the ratios Λ2/Λ1 and Λ3/Λ1.

The cosines cos(ω, λi) and cos(ω,W) are examples of invariant quanti-
ties of the kind discussed here. As we shall see in chapters 6–9, they allow us
to study an important aspect of the essential dynamics of 3-D turbulence
associated with the geometrical properties of the field of velocity deriva-
tives.

4They are also invariant under space/time translations and the Galilean transforma-
tion (see below).
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Inviscid invariants
Here by invariants are meant quantities which remain unchanged under the
inviscid dynamics, i.e., invariants of the Euler equations.
Kinetic energy

dE

dt
= −

∮

A
pundA −

∫

V
εdV.

Helicity
dH
dt

=
∮

A
ωnC dA − 2ν

∫

V
ω · curl ω dV,

where E =
∫
V

1
2u2dV, H =

∫
V hdV, h = ω · u, C = (1/2)u2 − p/ρ, and

A is the surface bounding some volume V , p – pressure, ρ – fluid density,
and the fluid is assumed incompressible.

Thus in the absence of viscosity and external forces, and with vanishing
surface integrals, both kinetic energy and helicity of a fluid (and space)
volume are conserved. The essential difference is that – unlike kinetic en-
ergy – helicity is a non-positively defined quantity. This makes it more
difficult to use this important quantity (see Moffatt and Tsinober, 1992
and Droegemeier et al., 1993). Another difference is that it is not invari-
ant under reflections – it is pseudoscalar, so that it changes its sign under
reflections. Finally we mention that one can define a modified helicity den-
sity as h̃ω ≡ ω · v with v = u + ∇φ and u being the fluid particle velocity.
There exists a particular choice of φ such5 that h̃ω is a pointwise inviscid
Lagrangian invariant.

We did not mention here other invariants such as those linear in velocity
(e.g., angular momentum) and several others (see Monin and Yaglom, 1971,
1975), as their application to turbulent flows is quite limited and is beyond
the scope of this small book.

13.2.3. SYMMETRIES OF EULER AND NAVIER–STOKES EQUATIONS

The Euler and the Navier–Stokes equations are invariant under the follow-
ing transformations (see Frisch, 1995; also Oberlack, 2002).

– Translations in space and time
– Full group of rotation including rotations and reflections
– Galilean transformation u(x, t) ⇒ u(x − Ut, t) + U, U = const

The Euler equation is in addition invariant under

– Time reversal t ⇒ − t, u ⇒ − u, p ⇒ p
– Scaling transformation

r ⇒ λr; t ⇒ λ1−ht; u ⇒ λhu; p ⇒ λ2hp, λ > 0 for any h. (C.29)
5The function φ should satisfy the equation Dφ

Dt
= p−u2/2+ν∇2φ, Oseledets (1989).
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The Navier–Stokes equations obey the scaling transformation for h = −1
only. However, it is a common belief that it may be justified at very high
Reynolds number . . . that there are infinitely many scaling groups, labelled
by their scaling exponent, h, which can be any real number, i.e., in the
inviscid limit, the Navier–Stokes equation is invariant under infinitely many
scaling groups, labelled by an arbitrary real scaling exponent h (Frisch,
1995, p. 18, 144) just as in the case of the Euler equation. However, it
is not at all clear why one can ignore the singular nature of the limit
Re → ∞(ν → 0) when handling the issue of scaling exponents and/or
related matters.

13.3. Passive objects

13.3.1. PASSIVE SCALARS

The behavior of a passive scalar with concentration θ is described by the
(deceptively simple, but still linear) advection-diffusion equation6

Dθ

Dt
= D∇2θ + Φ, (C.30)

where Φ is the external source/forcing7. The corresponding ‘energy’ equa-
tions are

D

Dt

(
1
2
θ2

)
= −DG2 + D∇2

(
1
2
θ2

)
+ Φθ, (C.31)

d

dt

∫

V

(
1
2
θ2

)
dV = −D

∫

V
G2(t)dV +

∫

V
ΦθdV, (C.32)

where G2 = GiGi, Gi = ∂θ
∂xi

and in the last equation the surface integrals
are assumed vanishing.

13.3.2. PASSIVE VECTORS

There are roughly two kinds of passive vectors.

Gradient of a Passive Scalar
It is a passive vector, Gi = ∂θ

∂xi
, governed by the equation

6In compressible fluids, ∂θ
∂t

+ uk
∂θ

∂xk
+ θ ∂uk

∂xk
= D∇2θ.

7The external forcing can be roughly of two kinds. In the case of homogenous and
isotropic flow, the only way to sustain a statistically-stationary state is to apply an
isotropic forcing in the RHS of the corresponding equations. In the case of homogeneous
flow, the forcing term may have its origin in the mean gradient. For example, one of
the simplest cases – which is homogeneous, but not isotropic – is when a constant mean
gradient, g, is imposed on the scalar, i.e., Θ = θ+ g · x, and ∂θ

∂t
+uk

∂θ
∂xk

= χ∇2θ−ukgk,

so that the forcing is dependent on the velocity field.
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∂Gi

∂t
+ uk

∂Gi

∂xk
= −Gk

∂uk

∂xi
+ D∇2Gi +

∂Φ
∂xk

, (C.33)

with the energy equations in the form

D

Dt

(
1
2
G2

)
= −GiGksik − εG + ∇2

(
1
2
G2

)
+

∂Φ
∂xi

Gi, (C.34)

d

dt

∫

V

(
1
2
G2

)
dV = −

∫

V
GiGksikdV −

∫

V
εGdV +

∫

V

∂Φ
∂xi

GidV, (C.35)

where εG = D ∂Gi
∂xk

∂Gi
∂xk

. In the absence of diffusivity, D = 0, and external forc-
ing, the vector Gi is proportional to the (infinitesimal) vector representing
a material surface element (its normal), Ni, thus satisfying the equation

∂Ni

∂t
+ uk

∂Ni

∂xk
= −Nk

∂uk

∂xi
. (C.2)

‘Frozen’ Passive Vectors
Such vectors obey the equation8

∂Bi

∂t
+ uk

∂Bi

∂xk
= Bk

∂ui

∂xk
+ χ∇2Bi + Fi, (C.36)

with an ‘energy’ equation in the form

D

Dt

(
1
2
B2

)
= BiBksik − εB + χ∇2

(
1
2
B2

)
+ FiBi, (C.37)

d

dt

∫

V

(
1
2
B2

)
dV =

∫

V
BiBksikdV −

∫

V
εBdV +

∫

V
FiBidV, (C.38)

where εB = χ∂Bi
∂xk

∂Bi
∂xk

.
Again such a vector, in the absence of molecular diffusive effects, χ = 0,

and external forcing is frozen into the fluid motion, i.e., its lines consist of
the same material particles during the evolution, and it is proportional to
the (infinitesimal) material line elements, li, thus satisfying the equation9

∂li
∂t

+ uk
∂li
∂xk

= lk
∂ui

∂xk
. (C.1)

8Provided that B is solenoidal, for example, a magnetic field. Otherwise an additional
term ui

∂Bk
∂xk

enters the RHS with one more term, −Bi
∂uk
∂xk

, in the case of compressible

fluids.
9The equation for vorticity in an inviscid fluid has a similar form ∂ωi

∂t
+ uk

∂ωi
∂xk

=

ωk
∂ui
∂xk

. Moreover, vorticity is also frozen in the fluid motion. However, since ωi = εijk
∂uj

∂xk
,

vorticity is not a passive vector – it ‘reacts back’, see Chapter 6.
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Figure 13.1. Studies of an Old Man Seated and of Swirling Water, Leonardo da Vinci,
Windsor, RL, No. 12, 579r, The Royal Collection c©2001, Her Majesty Queen Elizabeth
II

Just as in the dynamical problem the quantities GiGksik, NiNksik, BiBksik,
lilksik; cos(G, λi), cos(N, λi), cos(B, λi), cos(l, λi); cos(G,WG),
cos(G,WN ), cos(B,WB), cos(l,Wl) all are geometrical invariants in the
sense discussed above with W G

i = −Gjsij,W
N
i = −Njsij,W

B
i = Bjsij ,

W l
i = ljsij.

13.4. Some basic relations for the statistical description
of turbulent flows

From now on (as in the main text) capital letters will be used for the
mean/average quantities (if not indicated otherwise), whereas the lower
case letters – for the fluctuations, i.e., the instantaneous value of some
quantity, z̃, is equal to Z + z. The mean/average in some sense (ensemble,
time, space) will be denoted by 〈· · ·〉 , i.e., 〈 z̃ 〉 = 〈Z + z〉 = Z, 〈z〉 = 0, and
where necessary specified. This is called Reynolds decomposition, which
was described in words by Leonardo da Vinci on one of his drawings, figure
13.1 (Richter, 1970): Observe the motion of the surface of the water which
resembles that of hair, which has two motions, of which one depends on
the weight of the hair, the other on direction of curls; thus the water forms
eddying whirlpools, one part of which is due to the impetus of the principal
current and the other of incidental motion and return flow.
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13.4.1. SCALING, SCALES AND RELATED MATTERS

Scaling laws are at the heart of turbulence research
(Tennekes and Lumley, 1972).
The wonderful thing about scaling is that you can get ev-
erything right without understanding anything
(Kraichnan, as cited by Kadanoff, 1990).

There is no contradiction between the two views10, since the first is mainly
about the parameters determining the order of magnitude of some quantity
of interest, whereas the second concerns primarily the scaling in the sense
of power laws and their scaling exponents. Both are closely related to the
use of dimensional analysis, similarity and related matters11.

However,
. . . it is clear that if a result can be derived by dimensional analysis

alone . . . then it can be derived by almost any theory, right or wrong, which
is dimensionally-correct and uses the right variables (Bradshaw, 1994). That
is, the correspondence with the experimental results may occur for the
wrong reasons, as happens from time to time in the field of turbulence.

Use of similarity and dimensional analysis in turbulence is more an art
than science (Ya.B. Zel’dovich, 1971 as quoted by G.S. Golitsyn, 1999).

In other words a prerequisite for the use of dimensional analysis, simi-
larity and symmetries (group theoretical methods) in turbulence is at least
some minimal understanding of the basic physics of turbulent flows.

Scales and ‘eddies’

What is meant by “scale” is hard to define precisely
(Chorin, 1994).
Fully-turbulent flows consist of a wide range of scales, which
are classified somewhat loosely as either large or small scales
(Sreenivasan and Antonia, 1997).
An eddy eludes a precise definition, but it is conceived to be
turbulent motion, localized within a region of size �
(Pope, 2000).
. . . to a large extent we have failed. The key point is that we
have not yet agreed on what we mean by an eddy
(Davidson, 2004, p. 412).

10There is a third view: It is increasingly clear that deterministic chaos and universal
scaling theories can explain everything (Normal, 1993).

11See Corrsin (1953a) for a short and very instructive exposition of dimensional analysis
and similarity in the fluid dynamical contexts including turbulence.
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It is rather common to admit that the term ‘scale’ is not a well-defined
concept. However, it is much more common to use the term scale(s) in
a great variety of contexts and meanings in turbulence. For example, it
is frequently used in physical space and in Fourier space without much
distinction, though a narrow band in Fourier space involves a broad range
of scales in physical space and vice versa due to the integral nature of
the Fourier transform. This ambiguity of language is one (among many)
of the reflections of the inherent problems in turbulence ‘theories’12. One
of the main difficulties is due to the nonlinearity and nonlocality of the
turbulence phenomenon. That is, different ‘scales’ are not so separated as
usually assumed, and therefore the division of turbulent flow into large and
small scales is quite problematic, though useful from the technical point.
Speaking about interaction, dependence, and coupling of scales, it is meant
that some quantities ‘residing’ on these scales are involved and characterize
such interaction. Therefore, it is important to specify these dynamically-
relevant quantities, which adequately represent the ‘scales’. We will use the
term scale mainly in two meanings: i – in its simplest direct geometrical
meaning in the physical space and in a similar way in time, and ii – implying
the quantities representing these scales in some sense. For instance, velocity
(fluctuations) are representative of large scales, whereas the field of velocity
derivatives (vorticity and strain) is appropriate to represent the small scales
(chapter 5). Note that using such a ‘definition’ of small scales does not
specify the small scales uniquely: the small scales associated with vorticity
are different from the scales related to strain.

Some characteristic statistical scales of turbulent flows
There are several useful scales used in turbulence, which belong to its sim-
plest statistical characteristics, i.e., they are not some specific scales, but
they are statistically-defined quantities. Some of these scales are given be-
low, others that are more specific appear in the main text.
Kolmogorov scales. The Kolmogorov length scale is defined on dimensional
grounds as

η = (ν3/ε)1/4, (C.39)

where ν is the fluid kinematic viscosity and ε is the mean rate of en-
ergy being pumped into the system, which is equal to the mean dissipation
in statistically-stationary flows (see below). Similarly, the corresponding
time, velocity and acceleration scales are defined as τη = (ν/ε)1/2, uη =
(νε)1/4 and a = ε3/2ν−1/2. The Kolmogorov scale, η, can be defined in
various ways. For example, imposing the condition Re = uηη

ν ≈ 1 and
12The ambiguity of Fourier decomposition was addressed by Liepmann (1962) and

Tennekes (1976); see also Lohse and Müller-Groeling (1996).
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Figure 13.2. PDFs of ω2 and s2 (left) and their Joint PDF (right) in a field experiment
at Reλ ∼ 104 (Gulitski et al., 2007a)

writing ε ≈ ν(uη/η)2 with uη ≈ ν/η one arrives again at (C.39). It is
known that adequate space/time resolution (in laboratory, field or numeri-
cal experiments) is achieved if the smallest resolved scales are of the order of
the space/time Kolmogorov scales as defined above. For instance, η is consi-
dered as the smallest spatial relevant scale in turbulence. As mentioned in
Tsinober (2001a), this, however, is not obvious, since the instantaneous
dissipation ε is not narrow-banded around its mean ε, but is distributed
with a rather long tail, so that values as large as 102ε are not that rare
in laboratory experiments, Tsinober et al. (1992). In a field experiment,
Gulitski et al. (2007a), the tail in the PDF of s2 is longer (figure 13.2) and
the instantaneous ε may reach values as high as 104 〈ε〉. This corresponds
to scales an order of magnitude smaller than η.

Integral scales. These are in some sense the largest relevant scales of the
system. Regions, separated by scales much larger than the integral ones,
both in space and time, do not ‘know’ much about each other. For a ho-
mogeneous turbulent field this is defined, e.g., as

L =
1

Ruu(0)

∫
Ruu(r)dr, (C.40)

where Ruu(r) = 〈ur(x + r, t)ur(x, t)〉 is the longitudinal correlation func-
tion of the velocity component along r. An integral scale which is associ-
ated with the transverse velocity correlation is of the same order of mag-
nitude. Similarly the integral time scale T is defined via the analogous
time correlation. One of the definitions of the integral velocity scale is
U = 1

L3

∫
Ruu(r)dr, which is of the order of the variance of velocity fluctu-

ations Ruu(0) = 〈u2
r〉, and the integral time scale T ∼ L/U . For practical
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purposes L and T are usually taken to be of the order of (but smaller than)
the external scales of the system.

Taylor microscale. The Taylor microscale, λ, is defined from the relation13

ε ∼ ν
U2

λ2
, (C.41)

where U is the integral scale of turbulent velocity fluctuations. That is, λ is
a mixed hybrid scale, since U is an integral scale and ε occurs mostly in much
smaller scales. The Taylor microscale, λ, is not the smallest relevant scale
in turbulent flow, and it is different from the Kolmogorov scale. Though
λ is not a physically-representative length scale, it is used as a convenient
length scale in evaluating the Reynolds number, associated with the field
of velocity derivatives.

Relation between the statistical scales. This is obtained using the estimate
ε ∼ U3/L, Taylor (1935). It follows that

η

L ∼ Re−3/4,
η

λ
∼ Re−1/2;

λ

L ∼ Re−1/2;

τη = τλ =
(

ν

ε

)1/2

∼ T Re−1/2. (C.42)

These relations allow one to estimate the number of degrees of freedom as
(L/η)3 ∼ Re9/4, see the first (!) edition of Landau and Lifshits (1959), since
this estimate was removed from the subsequent editions.

It is noteworthy that all the above definitions make sense with the ‘con-
ventional’ large-scale forcing. For example, the definition (C.39) of the Kol-
mogorov scale with the broadband forcing is less meaningful, since in the
forcing-dominated regime (see section 6.5.3) the forcing is expected to by-
pass the nonlinearity and to balance the dissipation directly.

13.4.2. REYNOLDS-AVERAGED NAVIER–STOKES EQUATIONS AND
RELATED

Introducing the quantities, decomposed into a sum of averages and fluctu-
ations, into the Navier–Stokes equations and averaging, results in:

13This scale was originally defined by Taylor (1935) as ε ∼ 15ν
〈
u2

1

〉
/λ2 where u1 is

the x1-component of velocity fluctuations. The motivation for the coefficient 15 is that
in isotropic turbulence ε = 15ν

〈
(∂u1/∂x1)

2
〉
, so that λ2 =

〈
u2

1

〉
/
〈
(∂u1/∂x1)

2
〉

– the
most frequently used definition. The Taylor microscale is associated with the correlation
function Ruu(r) and can be defined as λ2

T = −Ruu(0)/2R′′(0). It is a technical matter to
show that λT = 2λ in (C.41).
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The Reynolds-averaged Navier–Stokes equations (RANS) for themean flow14

DUUi

Dt
=

∂

∂xj

(
−1

ρ
Pδij + 2νSij − 〈uiuj〉

)
; (C.43)

here −ρ〈uiuj〉 = τReynolds

ij is the Reynolds stress tensor and DU
Dt = ∂

∂t +Uj
∂

∂xj
.

Subtracting this equation from the NSE gives an equation for the field of
fluctuations

∂ui

∂t
+Uj

∂ui

∂xj
+uj

∂Ui

∂xj
+

∂

∂xj
{uiuj−〈uiuj〉} =

∂

∂xj
{−1

ρ
pδij+2νsij}. (C.44)

Using a similar equation for uj, one can obtain an equation for the instan-
taneous tensor uiuj, which after averaging becomes:
The equation for the Reynolds stress tensor 15

DU 〈uiuj〉
Dt

+ 〈ujuk〉
∂Ui

∂xk
+ 〈uiuk〉

∂Uj

∂xk

= − ∂〈uiujuk〉
∂xk

− 1
ρ

{
∂

∂xi
〈puj〉 +

∂

∂xj
〈pui〉

}

+
2
ρ
〈psij〉

+ 2ν
∂

∂xk
{〈ujsik〉 + 〈uisjk〉} − 2ν

{〈
sik

∂uj

∂xk

〉
+

〈
sjk

∂ui

∂xk

〉}
. (C.45)

This equation contains third-order quantities (in the second line). This
process can be continued, producing the (infinite) Keller–Friedmann (1925)
chain of equations. Each finite subset of this chain has more unknowns
than equations. Roughly, this comprises the essence of the famous ‘closure’
problem; see Kraichnan (1962b) for a detailed exposition of the closure
problem. On the simplest level one tries to introduce some (statistical)
hypotheses on the relation between the Reynolds stress tensor 〈uiuj〉 and
the mean flow Ui. In order to do this in an intelligent way, one has to
understand – at least qualitatively – the essential physical processes of
turbulent flows under consideration. It should be emphasized that in the
strict sense such a relation does not exist due to the nonlocal nature of the
relation between the mean flow and the fluctuations: it is not a function,
but a functional as can be seen from the equations (C.43), (C.44) and a
similar equation for uj , see section 6.6.

14We subsequently dropped the external force. It is explicitly noted when the force is
present.

15Similar equations can be written for two-point correlations in space, such as
〈ui(x)uj(x + r)〉, and in space/time 〈ui(x; t)uj(x + r; t + t′)〉 (see Hinze, 1975; Favre
et al., 1976). Such quantities are particularly useful in the case of homogeneous and
isotropic turbulence.
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The equation for the kinetic energy of the mean flow ET = 1
2UiUi

DUET

Dt
=

∂

∂xj

{
−1

ρ
PUj + 2νUiSij − 〈uiuj〉Ui

}
+〈uiuj〉Sij +2νS2. (C.46)

The equation for turbulent kinetic energy eT = 1
2uiui

Instantaneous

DUeT

Dt
= ui

∂〈uiuj〉
∂xj

− ∂

∂xj

{
ujeT +

1
ρ
puj − 2νuisij

}
− uiujSij − 2νs2.

(C.47)
Mean

DU 〈eT 〉
Dt

= − ∂

∂xj

{
〈ujeT 〉 − 2ν〈uisij〉 +

1
ρ
〈puj〉

}
− 〈uiuj〉Sij − 2ν〈s2〉.

(C.48)
The total turbulent energy balance for the whole flow domain is

dET

dt
= P −D (C.49)

where ET =
∫
〈eT 〉 dV is the total kinetic energy of turbulent fluctuations,

P =
∫
− < uiuj > SijdV is the total rate of production/destruction of

energy turbulent fluctuations by the mean strain (velocity gradients), and
D = 2ν

∫
〈sijsij〉 dV is the total rate of dissipation (simply dissipation)

of energy of turbulent fluctuations by viscosity. If the flow is statistically
stationary, the dissipation equals production P = D, i.e., P > 0.

If there is no mean shear (more precisely mean strain) to supply the
energy to the field of fluctuations, the statistically-stationary state is still
possible in the presence of some external forcing, as it happens in DNS of
NSE. Then the energy balance equation takes the form WF = D, where
WF =

∫
〈uiFi〉 dV is the total rate of production of energy of turbulent

fluctuations by the external forces. It is noteworthy that, in the presence
of some energy supply other than the mean strain, the total rate of pro-
duction/destruction of energy turbulent fluctuations by the mean strain,
P, does not have to be positive even in the case of a statistically- sta-
tionary turbulent flow, since in this case the balance is WF + P − D = 0.
For example, there is some evidence that in this way the fluctuative mo-
tions produced by the supply of solar energy to the Earth’s atmosphere are
feeding such a ‘mean’ flow as the famous jet stream (see chapter 8).

A similar procedure can be applied to the vorticity equation giving:
The equation for the enstrophy of the mean flow 1

2Ω2

1
2

DUΩ2

Dt
= − ∂

∂xj
{Ωi〈ωiuj〉} + 〈ujωi〉

∂Ωi

∂xj
+ 〈ωisij〉Ωj
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+ ΩiΩjSij + νΩi∇2Ωi. (C.50)

The equation for the mean enstrophy of the turbulent fluctuations 1
2 〈ω2〉

1
2

DU 〈ω2〉
Dt

= −〈ujωi〉
∂Ωi

∂xj
− 1

2
∂

∂xj
{〈ujωiωi〉} + 〈ωiωjsij〉

+〈ωiωj〉Sij + 〈ωisij〉Ωj + ν〈ωi∇2ωi〉. (C.51)

One of the possible interpretations of the terms in this equation for tur-
bulent enstrophy is given in Tennekes and Lumley (1972). Here we draw
attention to the two kinds of terms associated with the production of en-
strophy of fluctuations 〈ω2〉: i – the RDT16-type terms involving the mean
velocity gradients, −〈ujωi〉∂Ωi

∂xj
, 〈ωiωj〉Sij and 〈ωisij〉Ωj , and ii – the terms

containing the fluctuative quantities only 〈ωiωjsij〉 and ν〈ωi∇2ωi〉. A sim-
ilar procedure can be applied to the equation for strain, sij, giving:
The equation for the strain of the mean flow 1

2SijSij

DU
1
2SijSij

Dt
= − ∂

∂xk
{Sij〈uksij〉} + 〈uksij〉

∂Sij

∂xk
− SijSjkSki

−1
4
{〈ωiωi〉Sij + ΩiΩjSij} − Sij

∂2P

∂xi∂xj
+ νSij∇2Sij.(C.52)

The equation for the mean total strain of the turbulent fluctuations 〈sijsij〉

DU
1
2 〈sijsij〉
Dt

= −〈uksij〉
∂Sij

∂xk
− 1

2
∂

∂xk
{〈uksijsij〉} − 2〈sijsik〉Skj

−1
2
〈ωisij〉Ωj − 〈sijsjkski〉 −

1
4
〈ωiωjsij〉 −

〈

sij
∂2p

∂xi∂xj

〉

+ν〈sij∇2sij〉.(C.53)

As in (C.51), there are two kinds of terms in the equation (C.53) asso-
ciated with the production of the total strain of fluctuations 〈ω2〉 : i –
the RDT-type terms involving the mean velocity gradients, −〈uksij〉∂Sij

∂xk
,

−2〈sijsik〉Skj and −1
2〈ωisij〉Ωj , and ii – the terms containing the fluc-

tuative quantities only, −〈sijsjkski〉, −1
4〈ωiωjsij〉, and −〈sij

∂2p
∂xi∂xj

〉 and
ν〈sij∇2sij〉.

Equations similar to those given above can be written for passive objects
as well.

16Rapid distortion theory (Savill, 1987; Hunt and Carruthers, 1990).
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13.4.3. FILTER DECOMPOSITION

In this case instead of some average, as above, one defines a large-scale
or ‘resolvable’ component of each ‘raw’ variable, f̃(x, t) as its convolution
with some filter function17

≺ f̃(x, t) �≡ F (x, t) =
∫

G(x − x′, t − t′;Δ, θ)f(x′, t′)dx′dt′, (C.54)

where Δ, θ are the widths of the spatial and temporal filters respectively,
so that f̃ = F + f , where f represents the subgrid scale (SGS) or the
unresolved part, which is an analogue of the fluctuations in the Reynolds
decomposition.
The equations for the filtered (‘resolved’) quantities are found in a similar
way as in the case of RANS applying the operation ≺ · · · � to the NSE18

∂Ui

∂t
+

∂UiUj

∂xj
=

1
ρ

∂

∂xj

(
−Pδij − τ SGR

ij + 2ρνSij

)
, (C.55)

where the subgrid-scale stress19

τ SGR
ij = −ρ {≺ ũiũj � −UiUj} (C.56)

should be modelled in some way, i.e., expressed in terms of the filtered field
≺ ui � on the basis of some hypothesis, though, again, in the strict sense
such a relation does not exist for the same reason as in RANS.

Subtracting the equation (C.55) from the NSE gives the equation for the
unresolved part of the flows, which is analogous to the field of fluctuations
in the Reynolds decomposition

∂ui

∂t
+ Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
=

1
ρ

∂

∂xj

{
−pδij + 2ρνsij − ρuiuj − τ SGR

ij

}
. (C.57)

The filter decomposition is formally more general than the Reynolds de-
composition. However, the former is one among many decompositions, so
to say, of a technical nature, whereas the latter is physically more natural
provided that the means/averages do exist in some sense. It is noteworthy

17This approach is based on Leonard (1974); see also Germano (1999); Piomelli and
Balaras (2002); Meneveau and Katz (2000) and references therein.

An example of a spatial filter function is G(x;Δ) =6/(πΔ2)3/2 exp(−6x2/l2);∫ G(x; Δ)dx = 1.
18That is, the quantities ≺ ũi 	, etc., are analogous to Ui in RANS.
19Generally, τSGR

ij = −ρ {Uiuj + Ujui+ ≺ uiuj 	} 
= − ≺ uiuj 	. Only for filters such
that ≺≺ f 		=≺ f 	 the subgrid stress takes the form of a usual Reynolds stress
τSGR

ij = −ρ ≺ uiuj 	 .

Appendix C. GLOSSARY OF ESSENTIAL FLUID MECHANICS



380 CHAPTER 13

that equations such as (C.45) for correlations, or (C.55) for filtered quanti-
ties by their very nature (apart from the ‘closure problem’) contain much
less information on the turbulent flow than the Navier–Stokes equations.
The main problem is the lack of clarity about how much and which physics
is retained in the RANS or LES equations.

13.4.4. EQUATIONS GOVERNING THE DYNAMICS OF ‘ERROR’

Since in many cases one is unable to reproduce precisely the initial (and
boundary) conditions, it is of interest to follow the dynamics of an ‘er-
ror’, e.g., in initial conditions20. That is, one looks at the behaviour of the
difference Δu of some undisturbed flow realization u and the one with a
disturbance u + Δu. This behaviour is governed by an equation similar to
(C.44)

DΔu
i

Dt
=

∂

∂xj

{
−1

ρ
Δpδij + 2νΔs

ij − Δu
i Δu

j

}
− Δu

j

∂ui

∂xj
, (C.58)

where D
Dt = ∂

∂t + uj
∂

∂xj
and Δp, Δs

ij are the pressure and the rate of strain
errors.

The corresponding equation for the energy of the error, eΔu = 1
2Δu

i Δu
i ,

is analogous to the equation (C.47)

DeΔu

Dt
= − ∂

∂xj

{
Δu

j eΔu +
1
ρ
ΔpΔu

j − 2νΔu
i Δs

ij

}
− 2νΔs

ijΔ
s
ij − Δu

i Δu
j sij.

(C.59)
The ‘source’ term, −Δu

i Δu
Jsij, in the RHS of (C.59) is analogous to the

turbulent energy production term, −uiujSij, in (C.47). The analogy is not
only formal. Namely, just as the mean, −〈uiuj〉Sij, is positive in tur-
bulent shear flows, the integral of the production of the energy of error,
PΔu = −

∫
Δu

i Δu
JsijdV, over the flow domain at any time moment is posi-

tive, because the production of the error energy, −Δu
i Δu

Jsij, appears to be
a positively-skewed quantity (Tsinober and Galanti, 2003).

Similar equations can be easily written also for the errors of vorticity,
Δω

i , and strain, Δs
ij. For example,

DΔω
i

Dt
= ωjΔs

ij + Δω
j sij − Δu

j

∂ωi

∂xj
+ Δω

j Δs
ij − Δu

j

∂Δω
i

∂xj
+ ν∇2Δω

i , (C.60)

DeΔω

Dt
= Δω

i Δs
ijωj + Δω

i Δω
j sij − Δu

j Δω
i

∂ωi

∂xj

20This approach takes its beginning from the predictability problem in meteorology
(Holloway and West, 1984; Lorenz, 1985; Novikov, 1959) but is of more general impor-
tance. See also Bohr et al. (1998) and Lesieur (1997) and references therein.
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+Δω
i Δω

j Δs
ij − Δu

j Δω
i

∂Δω
i

∂xj
+ νΔω

i ∇2Δω
i , (C.61)

where eΔω = 1
2Δω

i Δω
i is the energy of the vorticity error. It is seen from

(C.61) that apart from Δω
i Δω

j sij, several other terms are involved in the
production of eΔω . Equations similar to (C.60), (C.61) can be written for
Δs

ij, see Tsinober and Galanti, 2003. Following evolution of an ‘error’ of
some quantity along a fluid particle trajectory (i.e., in a Lagrangian fashion
but in an Euler representation) results in somewhat-different equations,
e.g., involving also quantities such as Δω

i and Δs
ij in the equations for

passive objects.

13.5. Pure Lagrangian description

The Lagrangian formulation of the Navier–Stokes equations (see Monin and
Yaglom, 1971, ch. 9; Corrsin, 1962b).

Newton’s Law

∂2Xi/∂
2t = [Xj,Xk, p] + ν{[X2,X3,[X2,X3, ∂Xi/∂t]]

+ [X3,X1,[X3,X1, ∂Xi/∂t]]+[X1,X2,[X1,X2,∂Xi/∂t]]}
(C.62)

Incompressibility
[X1,X2,X3] = 1. (C.63)

Here (i, j, k) means an even permutation of the indices (1, 2, 3). The vector
X(a,t) is the particle position vector for a particle labelled by a. Usually
a ≡ X(a,t0), i.e., the initial positions of fluid particles are used as their
labels. The expression [A,B,C] ≡ ∂(A,B,C)

∂(a1,a2,a3) is an abbreviation for the
Jacobian of the variables A,B,C with respect to variables a1, a2, a3. We
denote [X1,X2,X3] ≡ J.

The terms on the RHS of (C.62) are highly nonlinear, the viscous one
being of fifth-order nonlinearity.

The relation between the Lagrangian and Eulerian setting is described
by

∂X(a,t)
∂t

= U[X(a,t); t], (C.64)

where U[x,t] is an Eulerian velocity field, i.e., U[X(a,t);t] = V(a, t) is the
velocity of the a-particle at t.

Note that (in contrast to the NSE in the Euler setting) the acceleration
term in the Lagrangian setting ∂2Xi/∂

2t is linear, and the ‘inertial’ effects
are manifested only by the term containing pressure.
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The equation for vorticity retains a purely-inertial term – the interaction
of vorticity and velocity gradients (strain)

∂ωi/∂t = ωm[Xj,Xk, ∂Xi/∂t] + ν{[X2,X3,[X2,X3, ωi]]
+[X3,X1,[X3,X1, ωi]] + [X1,X2,[X1,X2,ωi]]} (C.65)

with (m, j, k) meaning an even permutation of the indices (1, 2, 3).
However, there is no ‘conventional’ nonlinearity in the equation (C.66)

below for the Cauchy invariant vector Ωi(a, t) = εilj
∂vk
∂al

Jkj (Jkj = ∂Xk
∂aj

is
the Jacobi matrix), related to vorticity via ω = J−1{Ω(a,t)·∇a}X(a, t) (here
J is the determinant of the Jacobi matrix and X(a, t) is the particle position
vector for a particle labelled by a, and G ≡ J kiJkj is the metric tensor, see
Bennet, 2006; Kuznetsov, 2008; Yakubovich and Zenkovich, 2002 for more
details and references):

∂Ω
∂t

= −νcurla

{G
J

curla

(G
J
Ω

)}
. (C.66)

Thus Ω is indeed a pointwise Lagrangian inviscid invariant. Just as in
equations (C.62) there is no “conventional” nonlinearity/advection, and
equation (C.66) does not contain any analogue to the vortex stretching
term ωisij in equation (C.9) for vorticity in the Euler setting and in the
equation (C.65) for the Lagrangian setting. But note that the Jacobi matrix,
Jkj = ∂Xk

∂aj
, plays an essential role in the relation between ω and Ω.

Similarly to (C.62) there is no term analogous to the advection term in
the Euler setting in the equation for a passive scalar θ(a,t)

∂θ/∂t = D{[X2,X3,[X2,X3,θ]]
+ [X3,X1,[X3,X, θ]] + [X1,X2,[X1,X2,θ]]} (C.67)

i.e., θ does not depend on time when D = 0 as any nondiffusive property
is constant along a fluid particle trajectory.
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APPENDIX D: GLOSSARY OF SOME TERMS

Anisotropy – Lack of isotropy. There are many kinds and different mani-
festations of anisotropy of turbulent flows, depending on quantities in ques-
tion. These may be of different order, consist of velocity components, their
derivatives of various orders taken at the same or different space/time
points. See Monin and Yaglom (1971, 1975), Hinze (1975), Favre et al.
(1976) and Lumley (1978).

Attractor – A set in the phase space that the system approaches at large
times. Invariant under evolution (phase flow).

Bifurcation – Topological change of the phase flow as some parameter,
say Reynolds number, changes.

Degrees of freedom – Proportional to (say, 1/2 of) the number of first-
order ODEs, adequately describing the system in question. The effective
number of degrees of freedom is smaller due to the conservation laws and
constraints imposed on the system.

Ergodicity – For statistically stationary flows it is (roughly) equivalence
of ‘true’ statistical properties (not only means/averages, but ‘almost’ all
statistical properties) of an ensemble, to those obtained using time series in
one very long realization. A similar property is defined in space by replacing
time by space coordinate(s) in which the flow domain has an infinite ex-
tension, at least in one direction. Turbulent flows are known (empirically)
to be ergodic. Other chaotic systems may be non-ergodic; see Shlesinger
(2000), Zaslavsky (1999).

Homogeneity – Invariance of all statistical properties/parameters of tur-
bulent flow to translations in space. No real flow is strictly homogeneous.

Isotropy – Invariance of all statistical properties/parameters of tur-
bulent flow to rotations and reflections, i.e., to the full rotation group.
This is essentially the definition given by Taylor (1935) and Kolmogorov
(1941a). Note the statistical nature of isotropy, homogeneity and station-
arity. Isotropic flows are necessarily homogeneous. No real flow is strictly
isotropic.

Phase flow – All trajectories originating from all possible initial condi-
tions in a given flow geometry (boundary conditions), i.e., all fluid flows in
a given geometry for all possible initial conditions comprise the phase flow.
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Phase space – Set of all possible (instantaneous) states of a system.
For incompressible fluid flows, a ‘point’ in the phase space is a solenoidal
velocity vector in the flow domain, satisfying the boundary conditions. A
time-dependent fluid flow comprises a trajectory in the phase space.

Stationarity – Invariance of all statistical properties/characteristics of
turbulent flow to translations in time.

A glossary of basic terms related to turbulence is found in Bradshaw
(1971).
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itor, Mécanique de la turbulence, Proceedings of the Colloques Interna-
tionaux du CNRS, Marseille, 28 Aug.–2 Sept. 1961, Publ. CNRS No 108,
Paris, pp. 27–52.

Corrsin, S. (1963) Turbulence: experimental methods, In: S. Flugge and
C. Truesdell, editors, Handbuch der Physik, Band VIII/2, Strömungsme-
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(1976) La turbulence et mécanique des fluides, Gauthiers–Villars.

Fefferman, C. (2000) Existence and smoothness of the Navier–Stokes
equation, http://claymath.org/Millenium-Prize-Problems/Navier– Stokes-
Equations, Clay Mathematics Institute.

Feigenbaum, M. (1997) Where will the future go? in: E. Infeld, R. Ze-
lazny and A. Galkovski, editors, Nonlinear dynamics, chaotic and complex
systems, pp. 321–326.

Ferchichi, M. and Tavoularis, S. (2000) Reynolds number dependence
of the fine structure of uniformly sheared turbulence, Phys. Fluids, 12,
2942–2953.



398 BIBLIOGRAPHY

Fermi, E. (1923), Beweis dass ein mechanisches normal system im all-
gemeinen quasi-periodischist, Phys. Z., 24, 261 sd.

Feynmann, R. (1963) Lectures on Physics, Addison-Wesley, 2.
Feynmann, R. (1996) Lectures on Computation, Addison-Wesley.
Fincham, A.M., Maxworthy, T., and Spedding, G.R. (1996) Energy dis-

sipation and vortex structure in freely decaying, stratified grid turbulence,
Dyn. Atm. Oceans, 23, 155–169.
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A., and Yorish, S. (2007c) Velocity and temperature derivatives in high
Reynolds number turbulent flows in the atmospheric surface layer. Part 3.
Temperature and joint statistics of temperature and velocity derivatives, J.
Fluid Mech., 589, 103–123.

Gurka, R., Hetsroni, G., Liberzon, A., Nikitin, N., and Tsinober, A.
(2004) On turbulent energy production in wall bounded flows, Phys. Fluids,
16, 2704–2707.

Gylfason, A. and Warhaft, Z. (2004) On higher-order passive scalar
structure functions in grid turbulence, Phys. Fluids, 16, 4012–4019.

Gyr, A. and Bewersdorff, H.-W. (1995) Drag reduction of turbulent flows
by additives, Kluwer.

Gyr, A. and Tsinober A. (1996) On some local aspects of turbulent drag
reducing flows of dilute polymers and surfactants, Adv. Turbul., 6, 449–452.

Hamlington, P.E., Schumacher, J., and Dahm, W. (2008) Direct assess-
ment of vorticity alignment with local and nonlocal strain rates in turbulent
flows, Phys. Fluids, 20, 111703/1–4.

Hancock, R., Glezer, A., and Trump, D. (1992) Manipulation of a square
jet by piezoelectric actuators, Phys. Fluids, A4, 1877.

Harlow, F.H. (2004) Fluid dynamics in Group T-3 Los Alamos National
Laboratory (LA-UR-03-3852), J. Comp. Phys., 195, 414–433.

Harris, L.P. (1960) Hydromagnetic channel flows, Wiley, p. 2.
Harris, V.G., Graham, J.A.H., and Corrsin, S. (1977) Further exper-

iments in nearly homogeneous turbulent shear flow, J. Fluid Mech., 81,
657–687.

Harvey, E.N. (1952) Bioluminescence, Academic Press, NY.
Haugen, N.E.L. and Brandenburg, A. (2004) Inertial range scaling in

numerical turbulence with hyperviscosity, Phys. Rev., E70, 026405-1/7.
He, G., Chen, S., Kraichnan, R.H., Zhang, R., and Zhou, Y. (1998)

Statistics of dissipation and enstrophy induced by localized vortices, Phys.
Rev. Lett., 81, 4636–4639.

Heisenberg, W. (1949) Discussion of the influence of magnetic fields on
turbulence, in: Problems of Cosmical Aerodynamics, Proceedings of Sym-
posium “Problems of motion of gaseous masses of cosmical dimensions”,
Paris, August 16–19, 1949, pp. 218–221.

Helmholz, H. (1858) On integrals of the hydrodynamical equations which
express vortex motion. Translated from German by P.G.Tait, 1867 with a
letter by Lord Kelvin (W.Thomson) in London Edinburgh Dublin Phil. Mag.
J. Sci., Fourth series, 33, 485–512.



BIBLIOGRAPHY 403

Henningson, D.S. (1996) Comment on transition in shear flows. Nonlin-
ear normality versus non-normal linearity, Phys. Fluids, 8, 2257–2258.

Henshaw, W., Kreiss, H.-O., and Yström, J. (2003) Numerical experi-
ments on the interaction between the large and small scale motions of the
Navier–Stokes equations, Multiscale Modeling Sim. 1, 119–149.

Herring, J.R. and Métais, O. (1989) Numerical experiments in forced
stably stratified turbulence J. Fluid Mech., 202, 97–115.

Herring, J.R., Orszag, S.A., Kraichnan, R.H., and Fox, D.G. (1974)
Decay of two-dimensional homogeneous turbulence J. Fluid Mech., 66, 417–
444.

Herring, P.J. (1998) Dolphins glow with the flow, Nature, 393, 731–733.
Hidenaru, M., Takao, I., and Akiyoshi, I. (1988) An experimental study

of axisymmetric turbulence, Trans. Jap. Soc. Mech. Engn., B54, No. 505,
2408–2415.

Hibberd, M.F. and Dohmann, J. (1988) The anisotropy of grid-generated
turbulence in dilute polymer solutions, in Xth International Congress on
Rheology, Sydney, 1, 404–406.

Hilberg, D. and Fiedler, H.E. (1988) The spanwise confined one-stream
mixing layer, Adv. Turbul., 2, 443–448.

Hill, R.J. (1997) Applicability of Kolmogorov’s and Monin’s equations
to turbulence, J. Fluid Mech., 353, 67–81.

Hill, R.J. (2002) Scaling of acceleration in locally isotropic turbulence
J. Fluid Mech., 452, 361–370.

Hill, R.J. and Thoroddsen, S.T. (1997) Experimental evaluation of ac-
celeration correlations for locally isotropic turbulence, Phys. Rev., E55,
1600–1606.

Hinze, O. (1975) Turbulence, McGraw–Hill.
Holloway, G. and West, B.J. (1984) Predictability of fluid motions, AIP,

New York.
Holmes, P.J., Berkooz, G., and Lumley, J.L. (1996) Turbulence, coherent

structures, dynamical systems and symmetry, Cambridge University Press.
Holmes, P.J., Lumley, J.L., Berkooz, G., Mattingly, J.C., and Witten-

berg, R.W. (1997) Low-dimensional models of coherent structures in tur-
bulence, Phys. Reports, 287, 337–384.

Holzer, M. and Siggia, E. (1993) Skewed, exponential pressure distribu-
tions from Gaussian velocities, Phys. Fluids, A5, 2525–2532.

Holzer, M. and Siggia, E. (1994) Turbulent mixing of a passive scalar,
Phys. Fluids, 6, 1820–1837.

Holzner, M., Liberzon, A., Nikitin, N., Kinzelbach, W., and Tsinober,
A. (2007) Small-scale aspects of flows in proximity of the turbulent/non-
turbulent interface, Phys. Fluids, 19, 071702/1–4.



404 BIBLIOGRAPHY

Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W., and
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of the Colloques Internationaux du CNRS, Marseille, 28 Aug.–2 Sept. 1961,
Publ. CNRS No 108, Paris, pp. 99–106.

Kraichnan, R.H. (1964) Komogorov’s hypotheses and Eulerian turbu-
lence theory, Phys. Fluids, 7, 1723–1734.

Kraichnan, R.H. (1966) Isotropic turbulence and inertial-range struc-
ture, Phys. Fluids, 9, 1728–1752.

Kraichnan, R.H. (1967) Intermittency in the very small scales of turbu-
lence, Phys. Fluids, 10, 2080–2082.

Kraichnan, R.H. (1968) Small-scale structure of a scalar field convected
by turbulence, Phys. Fluids, 11, 945–963.

Kraichnan, R.H. (1972) Some modern developments in the statistical
theory of turbulence, in: S.A. Rice, K.F. Freed, and J.C. Light, editors,



BIBLIOGRAPHY 409

Statistical mechanics. New concepts, new problems, new applications, The
University Chicago Press, pp. 201–228.

Kraichnan, R.H. (1974) On Kolmogorov’s inertial-range theories, J.
Fluid Mech., 62, 305–330.

Kraichnan, R.H. (1976) Eddy viscosity in two and three dimensions, J.
Atmosph. Sci., 33, 1521–1536.

Kraichnan, R.H. (1987) Eddy viscosity and diffusivity: exact formulas
and approximations, Complex systems, 1, 805–820.

Kraichnan, R.H. (1988) Reduced descriptions of hydrodynamic turbu-
lence, J. Stat. Phys., 51, 949–963.

Kraichnan, R.H. (1991) Turbulent cascade and intermittency growth,
Proc. Roy. Soc. Lond., 434, 65–78.

Kraichnan, R.H. and Chen, S. (1989) Is there a statistical mechanics of
turbulence? Physica, D37, 160–172.

Kraichnan, R.H. and Kimura, Y. (1994) Probability distributions in
hydrodynamic turbulence, Progr. Astron. Aeronaut., 162, 19–27.

Kraichnan, R.H. and Montgomery, D. (1980) Two-dimensional turbu-
lence, Rep. Prog. Phys., 43, 571–619.

Kraichnan, R.H. and Panda, R. (1988) Depression of nonlinearity in
decaying isotropic turbulence, Phys. Fluids, 31, 2395–2397.

Krasilnikov, E.Yu., Luschchik, V.G., Nikolaenko, V.S., and Panevin,
I.G. (1971) Experimental study of the flow of an electrically conducting
liquid in a circular tube in an axial magnetic field, Fluid Dynamics, 6,
317–320.

Krishnamurti, R. and Howard, L.N. (1981) Large-scale flow generation
in turbulent convection, Proc. Natl. Acad. Sci. USA, 78, 1981–1985.

Krishnamurti, R. and Howard, L.N. (1983) Large-scale flow in turbulent
convection: laboratory experiments and a mathematical model, Papers in
Meteorological Research, A Journal of the Meteorological Soc. of the Re-
public of China, 6 (2), 143–159.
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Ott, S. and Mann, J. (2005) An experimental test of Corrsin’s conjecture
and some related ideas, New J. Phys., 7, 142/1–24.

Overholt, M.R. and Pope, S.B. (1996) Direct numerical simulation of a
passive scalar with imposed mean gradient in isotropic turbulence, Phys.
Fluids, 8, 3128–3148.

Overholt, M.R. and Pope, S.B. (1998) A deterministic forcing scheme
for direct numerical simulation of turbulence, Comp. Fluids, 27, 11–28.

Paladin, G. and Vulpiani, A. (1987a) Degrees of freedom of turbulence,
Phys. Rev. A35, 1971–1973.

Paladin, G. and Vulpiani, A. (1987b) Anomalous scaling laws in multi-
fractal objects., Phys. Rep., 156, 147–225.

Panton, R.L. editor (1997) Self-sustaining mechanisms of wall turbu-
lence, Comp. Mech. Publ.

Pao, Y.-H. (1969) Origin and structure of turbulence in stably stratified
media, in: Pao, Y.-H. and Goldburg, A., editors, Clear air turbulence and
its detection, pp. 73–99, Plenum.

Pao, Y.-H. and Goldburg, A. (1969) Clear air turbulence and its detec-
tion, Plenum.

Paret, J. and Tabeling, P. (1998) Intermittency in the two-dimensional
inverse cascade of energy: experimental observations, Phys. Fluids, 10,
3126–3136.

Pearson, B.R., Yousef, T.A, Haugen, N.E.L., Brandenburg, A., and
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Rosset, L., Paranthoën, P., Lecordier, J.-C., and Gonzalez, M. (2001)
Anisotropy of thermal field at dissipative scales in the case of small-scale
injection, Phys. Fluids., 13, 3729–3737.

Roux, S., Muzy, J.F., and Arneodo, A. (1999) Detecting vorticity fila-
ments using wavelet analysis: about the statistical contribution of vorticity



BIBLIOGRAPHY 425

filaments to intermittency in swirling turbulent flows, Eur. Phys. J., B8,
(Condensed Matter Physics), 301–322.

Ruelle, D. (1976) The Lorenz attractor and the problem of turbulence,
in: R., Temam, editor (1976) Turbulence and Navier–Stokes Equations,
Lect. Notes Math., 565, 146–158, Springer.

Ruelle, D. (1983a) Five turbulent problems, Physica, 7D, 40–44.
Ruelle, D. (1983b) Differential dynamical systems and the problem of

turbulence, Proc. Symp. Pure Math., 39, 141–154.
Ruelle, D. (1984) Conceptual problems of weak and strong turbulence,

Physics Reports, 103, 81–85.
Ruelle, D. (1990) The turbulent fluid as a dynamical system, in: L.

Sirovich, editor, New perspectives in turbulence, Springer, pp. 123–138.
Ruetsch, G.R. and Maxey, M.R. (1991) Small-scale features of vorticity

and passive scalar fields in homogeneous turbulence, Phys. Fluids, A3,
1587–1597.

Ruetsch, G.R. and Maxey, M.R. (1992) The evolution of small-scale
structures in homogeneous turbulence, Phys. Fluids, A4, 2747–2760.

Ruiz-Chavaria, G., Baudet, C., and Ciliberto, S. (1996) Scaling laws and
dissipation scale of a passive scalar in fully-developed turbulence, Physica,
D99, 369–380.

Saddoughi, S.G. (1997) Local isotropy in complex turbulent boundary
layers at high Reynolds number, J. Fluid Mech., 348, 201–245.

Saffman, P.G. (1960) Lectures on homogeneous turbulence, in: N.J.
Zabusky, editor, Topics in nonlinear physics, pp. 485–614, Springer.

Saffman, P.G. (1978) Problems and progress in the theory of turbulence,
in: Structure and Mechanics of turbulence, II, ed. Fiedler, H., Lect. Notes
Phys., Springer, 76, pp. 274–306.

Saffman, P.G. (1991) in: J. Jimenez, editor, The global geometry of tur-
bulence, NATO ASI Ser. B 268, Plenum, p. 348.

Sagaut, P. and Cambon, C. (2008) Homogeneous turbulence dynamics,
CUP, Cambridge.

Sain, A. (1998) Multiscaling in three-dimensional fluid turbulence, Ph.D.
Thesis, Department of Physics, Indian Institute of Science, Bangalore.

Sain, A., Manu and Pandit, R. (1998) Turbulence and multiscaling in
the randomly forced Navier–Stokes equation, Phys. Rev. Lett., 81, 4377–
4380.

Salman, H., Hesthaven, J.S., Warburton, T., and Haller, G. (2007)
Predicting transport by Lagrangian coherent structures with a high-order
method, Theor. Comput. Fluid Dyn., 21, 39–58.

Salmon, R. (1998) Lectures on geophysical fluid dynamics, Oxford Uni-
versity Press.



426 BIBLIOGRAPHY

Sandham, N. and Tsinober A. (2000) Kinetic energy, enstrophy and
strain rate in near-wall turbulence, Advances in turbulence, 8, 407–410.

Sanford, T.B., Carlson, J.A., Dunlap, J.H., Prater, M.D., and Lien, R.-
C. (1999) An electromagnetic vorticity and velocity sensor for observing
fine scale kinetic fluctuations in the ocean, J. Atm. Ocean. Techn., 16,
1647–1667.

Sarkar, S. (1995) The stabilizing effect of compressibility in turbulent
shear layers, J. Fluid Mech., 282, 163–186.

Savill, A.M. (1987) Recent progress in rapid distortion theory, Ann.
Rev. Fluid Mech., 19, 531–575.

Sawford, B., Yeung, P.K., and Borgas, M.S. (2005) Comparison of back-
wards and forwards relative dispersion in turbulence, Phys. Fluids, 17,
095109/1–9.

Scandura, P. (2007) Steady streaming in a turbulent oscillating bound-
ary layer, J. Fluid Mech., 571, 265–280.

Schekochihin, A.A., Cowley, S.C., Taylor, S.F., Maron, J.L., and
McWilliams, J.C. (2004) Simulations of the small-scale turbulent dynamo,
Astrophys. J. 612 (1), 276–307.

Schiller, L. (1932) Fallversuche mit Kugeln und Scheiben, in: L. Schiller,
editor, Handbuch der Experimentalphysik, vol. 4. part I, pp. 339–387.

Schlichting, H. (1979) Boundary layer theory, McGraw-Hill.
Schultz-Grunov, F. (1980) Sudden transition to turbulence, in: R. Eppler

and H. Fasel, editors, Laminar–turbulent transition, Springer, pp. 389–395.
Schumacher, J. (2004) Relation between shear parameter and Reynolds

number in statistically stationary turbulent shear flows, Phys. Fluids, 16,
3094–3102.

Schumacher, J., Sreenivasan, K.R., and Yeung, P.K. (2003) Derivative
moments in turbulent shear flows, Phys. Fluids, 15, 84–90.

Schumacher J., Sreenivasan, K.R., and Yakhot, V. (2007) Asymptotic
exponents from low-Reynolds-number flows, New J. Phys., 9, 89 (1–19).

Schwarz, K.W. (1990) Evidence for organized small-scale structure in
fully-developed turbulence, Phys. Rev. Lett., 64, 415–418.

Schörghofer, N., Kadanoff, L., and Lohse, D. (1995) How the viscous
subrange determines inertial range properties in turbulence shell models,
Physica, D88, 40–54.

Scorer, R.S. (1978) Environmental aerodynamics, Wiley.
Seiwert, J., Morize, C., and Moisy, F. (2008) On the decrease of inter-

mittency in decaying rotating turbulence, Phys. Fluids, 20, 071702/1–4.
Seoud, R.E. and Vassilicos, J.C. (2007) Dissipation and decay of fractal-

generated turbulence, Phys. Fluids, 19, 105108/1–11.



BIBLIOGRAPHY 427

Serrin, J. (1959) Mathematical principles of classical fluid mechanics, in:
S. Flugge and C. Truesdell, editors, Handbuch der Physik, Band VIII/1,
Stromungsmechanik, Springer, pp. 125–263.

She, Z.-S. (1991) Intermittency and non-Gaussian statistics in turbu-
lence, Fluid Dyn. Res., 8, 143–158.

She, Z.-S., Jackson, E. and Orszag, S.A. (1990) Intermittent vortex
structures in homogeneous isotropic turbulence, Nature, 344, 226–229.

She, Z.-S., Jackson, E., and Orszag, S.A. (1991) Structure and dynamics
of homogeneous turbulence: models and simulations, Proc. Roy. Soc. Lond.,
A434, 101–124.

Shebalin, J.V. and Woodruff, S.L. (1997) Kolmogorov flow in three di-
mensions, Phys. Fluids, 9, 164–170.

Shen, X. and Warhaft, Z. (2000) The anisotropy of the small-scale struc-
ture in high Reynolds number (Reλ = 1, 000) turbulent shear flow, Phys.
Fluids, 12, 2976–2989.

Shen, X. and Warhaft, Z.(2002) Longitudinal and transverse structure
functions in sheared and unsheared wind-tunnel turbulence, Phys. Fluids,
14, 370–381.

Sherman, F.S. (1990) Viscous flow. McGraw-Hill.
Shlesinger, M.S. (2000) Exploring phase space, Nature, 405, 135–137.
Shnirelman, A. (2003) Weak solutions of incompressible Euler equa-

tions, in: S. Friedlander and D. Serre, editors, Handbook of mathematical
fluid dynamics, 2, Elsevier, pp. 87–116.

Shraiman, B. and Siggia, E. (1999) Fluctuations and mixing of a passive
scalar in turbulent flow, in: H., Chaté, E. Villermaux, and J.M., Chomaz,
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Lüthi, B., 77, 80, 83, 131,
184, 188, 309–310,
388, 401–402, 404,
411–413



446 AUTHOR INDEX

Lvov, V., 104, 108–109, 386–388,
397, 414, 437

Lykoudis, P.S., 180, 328, 332, 388

M

Majda, A.J., 210, 219, 230, 298,
305, 323, 396, 414

Malecot, Y., 97, 109, 406, 414
Malkus, W.V.R., 275, 414
Malliavin, P., 66, 394
Mann, J., 61, 90, 97, 165, 388,

413–414, 421
Mansour, N.N., 323, 414, 417
Marasli, B., 244, 414, 436
Martin, J.N., 126, 367, 414, 420
Martin, P.C., 43, 414
Mathieu, J., ix, 67, 75, 93, 163,

414
Mathur, M., 300, 415
Maxey, M.R., 78, 159, 425
Maxworthy, T., 284, 398, 415
Mazzi, B., 160, 415
McComb, W.D., ix, 55, 89, 93,

103, 245, 286, 288–289,
291, 293, 342, 356, 415

McEwan, A.D., 268, 284, 415
McIntyre, M.E., 263, 415
McKeon, B.J., 328, 415
Melville, W.K., 263, 415
Meneguzzi, M., 116, 389, 433–434
Meneveau, C., 49, 55, 93, 113,

163, 195, 241, 379, 391,
411–412, 415, 419, 430

Metzger, M.M., 328, 415
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