NONRELATIVISTIC
QUANTUM
MECHANICS

Third Edition

Anton Z. Capri

World Scientific



NONRELATIVISTIC
QUANTUM
MECHANICS

Third Edition

Anton Z. Capri

Department of Physics
University of Alberta, Canada

\‘ World Scientific

Singapore * New Jersey ¢ London e Hong Kong



Published by

World Scientific Publishing Co. Pte. Ltd.

P O Box 128, Farrer Road, Singapore 912805

USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Capri, Anton Z.
Nonrelativistic quantum mechanics / Anton Z. Capri. -- 3rd ed.
p.cm.
Includes bibliographical references and index.
ISBN 981024634X (alk. paper) -- ISBN 981024651X (pbk. : alk. paper)
1. Nonrelativistic quantum mechanics. 2. Perturbation (Quantum dynamics) I. Title.

QC174.24.N64 C37 2002
530.12--dc21 2002028870

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2002 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

This book is printed on acid-free paper.

Printed in Singapore by Uto-Print



To Kim, Karin, Irene and Skaidrite
for giving me time and love.






Preface to the First and
Second Editions

Most textbooks start as a set of lecture notes which expand and undergo nu-
merous revisions over the years. The present version is no exception and is the
culmination of many revisions of such lecture notes. I have taught quantum
mechanics at several different levels and thus attempted to make this book of
sufficiently broad scope for different courses. The book includes material for
undergraduate courses as well as a one semester graduate course. As a guide
for possible division of the material in this book I have included a few pages in
the following section entitled “How to use this Book”.

It is a long way from lecture notes to a text-book and on this journey I have
been greatly helped by many people. My first debt is to my students who forced
me to clarify and expand my lecture notes. Without their prodding this book
would never have been started.

Dr. M. Razavy has also been most generous with his time and ideas. Not
only did he test this book in his quantum mechanics classes, but he willingly
proof-read all of the present version. He also helped with many pertinent refer-
ences and comments; his criticism of chapter 21 was particularly useful. With-
out his constant encouragement and support my enthusiasm would have flagged
many times and this book might never have been written.

During the early stages, Dr. W. Brouwer also helped considerably with his
detailed criticisms of the first fourteen chapters. I thank him for his generous
contribution of time and ideas.

The first version of this book was expertly typed by Mrs. M. Yiu. Had she
not been here to read my scrawl, I am sure this book would never been written.
I thank her for her patience and tolerance.

The diagrams are due to the heroic efforts of Mrs. J. Hube. Her attention
to detail turned some rather skimpy sketches into actual diagrams. I am most
grateful for her skills.

Finally, I acknowledge with many thanks the expertly accomplished job of
preparing the final manuscript. This was ably handled by Christine Fischer and
Laura Heiland. Their friendly attitude did much to make a painful job easier.

I would also like to thank all of my colleagues who, in one way or another,
influenced me during our coffee-room discussions. Their contributions, although
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less tangible, are nevertheless very real. It is my hope that in writing this book
I may have helped a few students to discover the beauty of quantum mechanics.

Anton Z. Capri
Edmonton, Alberta
April, 1985



Preface to the Third
Edition

In this new edition I have added some topics that have aroused interest in the
last two decades. I have also omitted or shortened the discussion of certain topics
that are no longer of major interest. The presentation of the ideas of distribution
theory and rigged Hilbert spaces has been well received by my students and
remains virtually unchanged. Even though these concepts do not immediately
empower students to better compute physical effects, it seems to make them
feel more comfortable with the whole machinery of quantum mechanics. As I
like to tell my students, “A physicist has to learn rigorous mathematics so that
he or she knows when it is safe to be sloppy”.

A topic like quantum mechanics is always listed as part of “modern” physics.
This, in spite of the fact that the subject is now more than three quarters of
a century old. Nevertheless, quantum mechanics continues to produce fresh
problems that keep the subject young and vibrant. In this category one has to
view the Aharonov-Bohm effect, as well as Berry’s phase. In the present edition
I have included a discussion of both of these.

Quantum mechanics is a most robust theory and even after more than three
quarters of a century there is not a single experiment in conflict with it. Yet,
epistemological problems remain. To give some flavour of these problems I
have included a short discussion of the recent models on decoherence since this
promises to be an area of ongoing research, yet is accessible to the earnest
student.

The number of problems at the end of each chapter has been expanded and
revised in an attempt to make them more useful to the students. In certain
cases the subject matter of the main text is amplified in the problem section.

Finally I would like to thank Professor Ruggero Ferrari who some years
ago first introduced me to the questionable pleasures of using Tex with all the
backslashes and braces. Without his goading I might never have attempted to
master that art and a revision of this book.

As in the first edition, it is still my hope that in some way I have contributed
to helping students understand and enjoy this most wonderful subject.

Anton Z. Capri
Edmonton, Alberta

June, 2002. .
X
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Chapter 1

The Breakdown of Classical
Mechanics

1.1 Introduction

During the nineteenth century many of the great advances in physics of the
eighteenth century were consolidated and extended. In addition, the theory of
electromagnetism was completed by J.C. Maxwell. Except for a few unexplained
effects or anomalies there seemed little more in terms of fundamental physics to
be done by the beginning of the twentieth century. Yet it is precisely in the year
1900 that quantum theory starts with Planck’s formula for blackbody radiation.
Soon there were a host of experimental results, both new ones and earlier ones
that again attracted attention. All of these pointed to flaws in the physics
of the nineteenth century. In almost all cases these anomalies resulted when
Newtonian mechanics and electromagnetism were simultaneously involved. In
trying to elucidate these various experimental facts a new theory of physics,
quantum theory, was born.

In the next few sections we briefly examine several of these experiments
and discuss them with some modern hindsight. First we consider blackbody
radiation from the pre-quantum or classical point of view. We then turn to
a consideration of the stability of the classical Rutherford atom. Although
Rutherford had experimentally demonstrated the planet-like structure of the
electrons in atoms, his model caused a lot of theoretical problems.

An even older effect, dating back to Hertz in 1887, the photoelectric effect,
provides another example of the complete breakdown of classical physics. After
considering this effect we discuss the elastic scattering of light off electrons, the
Compton effect, which also clearly demonstrates the corpuscular nature of light.
On the other hand, the Davisson-Germer experiments demonstrate very clearly
the wavelike nature of electrons and are discussed in the following section. As a
final example we consider the Franck-Hertz effect. This is a beautiful experiment
demonstrating that only certain definite quanta of energy can be absorbed by

1




2 CHAPTER 1. THE BREAKDOWN OF CLASSICAL MECHANICS

atoms in inelastic collisions with electrons.

1.2 Blackbody Radiation

Blackbody radiation refers to the equilibrium radiant energy to be found inside
a cavity whose walls are completely opaque and held at a fixed temperature T.
Such a cavity is called a blackbody cavity. The interest in such radiation derives
from the fact that this radiation is independént of the nature of the walls of the
cavity (their material properties, or their geometry); the spectral properties of
the radiation depend only on the temperature of the walls. A very simple proof
of this fact, utilizing only the second law of thermodynamics, was given by
Kirchhoff [1.1]. The fact that the radiation depends only on the temperature of
the walls means that it is somehow universal. Most glowing bodies such as a hot
piece of iron or our sun are good approximations of a blackbody. By measuring
the spectrum of their radiant energy we can determine their temperature. Since
blackbody radiation was so simple, a theory for its spectrum was soon derived
from classical mechanics and electromagnetism. The resultant spectral formula,
called the Rayleigh-Jeans Law proved to fail completely at high frequencies. We
now derive this classical formula.

Completely opaque walls for a cavity can be described mathematically by
assuming that all the radiation is reflected at|the walls. Thus, we want standing
waves inside the cavity. If the cavity is a cube with sides of length L, then the
components of the wavelength of the radiation in each direction must exactly
fit into L. This means that there are nodes at the walls. Thus, we have for the
component of the wavelength of the lowest frequency mode in the z-direction.

As1 = % : (1.2.1)

The next mode has:

2L
/\a:,Z = 7 . (122)
The 3rd mode has:
20
Aea = 5 (1.2.3)
and so on. The nth mode has
2L
Ao = o (1.2.4)
ny =1,2,3,... . (1.2.5)

A similar discussion holds for the y and z directions. It is useful to convert
these formulas into formulas involving wave numbers because then the integers
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Ng, Ny, N, appear in the numerator. The wave numbers kg, ky, k, are related to

the corresponding wavelengths by

2 2r 2
— k [ f— = —. v
Az y Y Ay ’ k /\z (1 2 6)

The different vibration modes are therefore characterized by three integers
(nz,ny,n,) giving the total wave number

k= k4 k2 + k2 (1.2.7)

Using (1.2.4) and (1.2.6) we get

ky =

27)?
k= (4L)2 (n,2+ny2+n,2). (1.2.8)
The wave number k is also related to the frequency v by
ck

where c¢ is the speed of light.

Now each mode of vibration of the electromagnetic field can be considered
as two degrees of freedom of the field; the different vibration modes are indepen-
dent of each other. One degree of freedom is associated with the kinetic energy
and one with the potential energy since the modes of the field are treated as
harmonic oscillators. However, according to the equipartition principle of sta-
tistical mechanics we have, for a temperature T, an amount of energy 1/2 kgT
for each degree of freedom of the field. Here T is the temperature of the cavity
wall and kp is Boltzmann’s constant. From the equipartition principle we can
therefore write the formula:

The energy dU in a frequency interval between v and v + dv
= kgT x ( number of modes of oscillation in this interval ).

So to obtain the blackbody spectrum requires that we count the number of
modes of oscillation corresponding to a frequency interval between v and v +dv.
It is easier to first obtain all modes up to a given frequency v. This is simply
the number of points (the volume) inside one quadrant (i.e. 1/8) of a sphere
(since ng,ny,n, are all positive) whose equation according to equation (1.2.8)
is:

41?2
ng’ +ny? +n,t= —cz—t/2 (1.2.10)
The result is
Io\3
N= % X gn(‘%’) X2 . (1.2.11)

The last factor of 2 is due to the fact that for light two independent polarizations
for each vibration mode are possible. Thus, the number of degrees of freedom
is increased by this factor of 2.
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The number of modes dN in the frequency interval between v and v + dv is
now given by:

3
dN = w(%) vidv (1.2.12)

Hence, using our formula for the energy per unit volume in this frequency in-
terval we get:

1 81|’kBT 9
du= VkBTdN =—a dv (1.2.13)

where we have used the fact that the volume V = L3. So by applying the
classical equipartition theorem and classical lelectromagnetic theory we obtain
for the energy density the unambiguous result

du  8mkgT
p(v) = = c3B v, (1.2.14)

For low frequencies this result agrees splendidly with the experimental spec-
trum, but for high frequencies, as shown in figure 1.1, this result fails miserably.
Furthermore, on purely theoretical grounds 'alone, equation (1.2.14) must be

Rayleigh-Jeans Law: z?
cShp(v) T
T b

1.0 4 Blackbody Spectrum

/ z3/(e® - 1)

0.5+

4

Figure 1.1: Blackbody radiation.

wrong since it predicts that for a cavity of volume V at a temperature T the
total radiant energy in this volume is given by

{o0] o0
E:V/ o)y = ETRBTV [ s
0

vidp . (1.2.15)

Clearly this is an utterly nonsensical result. Our eyes are not seared by X-rays
and gamma rays when we look at a cold stove or even a hot stove.

Exactly in the year 1900, Planck, who had previously found an analytic

formula that fit the experimental results, gave a theoretical derivation of his

C3 0
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formula. To “derive” his formula Planck applied the same tools as we did
above, but in addition he made the very radical assumption that radiation of
frequency v carries energy

E=hy (1.2.16)

where, as determined by experiment, it was found that h = 6.63 x 10~34 Joule-
seconds and is now known as Planck’s constant and plays a fundamental role
in all of modern physics. Planck’s energy-frequency relation equation (1.2.16)
was a completely new and revolutionary equation in physics. Until Planck,
the energy of a wave could be any number and was proportional to the square
of the amplitude of the wave. Suddenly the energy was quantized in lumps
proportional to the frequency. This was a very exciting new development, but
it took a while to make an impact on the physics community. In section 1.10
we derive Planck’s radiation formula by using his energy-frequency relation.

1.3 Stability of Atoms: Discrete
Spectral Lines

In the early part of this century, atoms were beginning to be taken seriously
by physicists as actual physical objects and not just models. As a consequence
experiments to explore the structure of atoms were begun. The very reasonable
model, due to J.J. Thomson, of an atom as a cloud of positive charge with bits
of negative charge (the electrons) interspersed was proven wrong by experiment.

In a long series of brilliant scattering experiments Rutherford showed con-
clusively in 1911 that the atom consisted of a tiny positive core of magnitude
about 10~12 ¢m, called the nucleus, with electrons whirling about this nucleus
at a much greater distance of about 108 cm. This planetary model caused a
crisis because atoms were known to be stable lasting for millions of years. But,
as we now show, such planetary atoms are intrinsically unstable on the basis
of classical physics. In fact, given this planetary model we can even obtain a
qualitative picture of the classical radiation spectrum. This also turns out to
be wrong when compared with experiment.

From classical electromagnetic theory we find that a charge of magnitude e
(in Coulombs) undergoing an acceleration a radiates energy at the rate

2¢2a? [ 1
5=15 [E] (1.3.17)
where a is measured in m/s? and ¢, the speed of light, is measured in m/s.
The charge of an electron in Coulombs is e = 1.602191710 x 107° C. If we
use e.s.u. (electrostatic units) then the factor [4"1—60] must be dropped. Later
we shall use e.s.u. exclusively but in this chapter we give the formulas in MKS
rationalized units with a square [ ] bracket for the factor to be dropped to get
the corresponding formula in electrostatic units.
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Now consider an hydrogen atom consisting of an electron in a spherical orbit
about a proton. To a good approximation the centre of mass is located at the
centre of the proton. The acceleration is given by:

_v 1.3.18
a=" (13.18)

where v is the speed of the electron and R the radius of its orbit.
Equating the mass times the centripetal iacceleration and force of electro-
static attraction we get:

v? 2 1

Combining (1.3.18) and (1.3.19) yields

e? 1

= W[E] (1.3.20)
so that
2 b 13

From this we can estimate the time ¢ that it would take for an electron to lose
all its kinetic energy and spiral into the proton according to

kinetic energy

tr 1.3.22
S (1322
Thus,
e2 1 3m?2PR* 1 2
A S LA LN 32
t R2[47I'€0]2 €8 [47T60] (1.3.23)
or
3m?c3RY 1 2
ta ————[—] . 1.3.24
4 et [47rco] ( )

The mass of an electron in MKS units is about m = 9.1 x 10~3! kg and a good
approximation for the hydrogen atom radius is about 10~1° m. Substituting all
of the above numbers in equation (1.3.24) yields

tmdax10710s, (1.3.25)

Compared even to only 1 year = 3.1 x 107 s this prediction is wrong by an
incredible factor of 10'7 . In fact millions of years or 10'4 s are more reasonable
estimates so that the classical prediction is wrong by at least a factor of 10%4.
Clearly classical physics contradicts the stability of atoms.

There is a second difficulty with the classical result. It has to do with the
radiation spectrum. The radiation frequency v is, in fact, determined by the
angular frequency w of rotation of the electron in its orbit according to

w=2mv. (1.3.26)
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Now using that the acceleration of the electron in its orbit is given by
a=w’R (1.3.27)
and using (1.3.21) we get
- 1 ]262R2
" Y4meg’3 3
So we conclude that the spectrum of the radiated energy is continuous. This
also contradicts the experimental fact, namely that atomic spectra consist of
discrete series of very sharp lines.
Such lines had been studied for half a century and were well classified by
the turn of this century. After studying the spectra of many atoms, Rydberg
and Ritz [1.2] independently discovered a very important result. They found

that the discrete frequencies observed could be expressed more simply. In fact
all frequencies could be described by

Vpm = Ap — Am n,m=1,23,... (1.3.29)

that is, a difference of two terms. Thus, far fewer terms A, than frequencies
are required. This so-called Rydberg-Ritz Combination Principle provided an
important clue in the development of quantum mechanics.

@r)ht. (1.3.28)

1.4 Photoelectric Effect

A schematic diagram of the experimental arrangement for studying the pho-
toelectric effect is shown in figure 1.2. We shine light of a fixed frequency v
on a clear metal surface. The retarding voltage is then increased to a voltage
V. at which the current, as measured by the galvanometer, ceases. We now
summarize some of the experimental results that are observed.

1. The frequency of the light ¥ must be greater than some critical frequency
vy (even for zero retarding voltage) in order that photo-electrons be emit-
ted.

2. For light intensities as low as 107!° watts/m the delay in time for the
photo-current to reach a steady state is less than 10~ s.

3. For a fixed frequency, the photo-current is proportional to the intensity of
the light.

4. The energy of the photo-electrons increases linearly with the frequency of
the light.

We now consider this experiment in purely classical terms and see that the
experimental results are in violent disagreement with the conclusion we obtain.
Classically, the time-averaged energy density of an electromagnetic wave is given
by

u= [41rcg]$lE|2 (1.4.30)
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e
©

©

Figure 1.2: The photoelectric effect.

and is independent of frequency. Here E is the amplitude of the electric field in
volts/m. Furthermore, classically, all electrons in the surface of the metal absorb
energy uniformly. Thus, all the electrons eventually acquire enough energy to
be emitted. It is therefore completely impossible to explain results 1. and 4.
The experimental result 3. has some hope of being explained this way but it is
not clear. The time delay, which is measured as 10~ s or less for an intensity of
1071 watt/m? can be estimated however. To do this we need a few numbers.
The typical binding energy of an electron in the surface of a metal is 1 to 2
eV or about 107° Joules. The typical size of an atom in a metal is about
1A= 10"19 m. Thus, in 1m? of surface we have about 102° atoms each of which
requires an energy of 1071° Joules. Thus about 10 Joules of energy must be
absorbed by 1m? of metal surface before photo-electrons will be emitted. Since
we are illuminating the surface with 10710 watts/m? the time ¢ required for
photo-emission to occur is given by

10719 =10 (1.4.31)
or
1xt=10" 5~ 3,000 years. (1.4.32)

The discrepancy between theory and experiment is an incredible factor of 10%°.
Einstein [3] succeeded in explaining this discrepancy by making the same
assumption as Planck, namely that light comes in quanta of energy given by

E=hy . (1.4.33)

Thus, a given electron either absorbs all the energy E or none. Hence if v is
large enough so that E exceeds the binding energy ¢ of the electron, then photo-
electrons will be emitted almost instantaneously. If, however, v is too small,
then no photo-electrons will be emitted at all. Thus the experimental results 1.
and 4. are explained immediately. Result 3. also follows since the number of
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photons in the beam is what determines the number of photo-electrons emitted.
But the number of photons N is given by

I
N = ™ (1.4.34)
where I is the intensity of the beam.
The final result 4. is also easily explained now. We simply equate the energy
absorbed to the kinetic energy of the electron plus the energy required for the
electron to break loose from the surface. This gives

%mvz +¢=hv (1.4.35)

which represents the linear relation between frequency and kinetic energy of the
photo-electrons observed experimentally.

These results seem to indicate that photons are somehow particle-like, car-
rying a definite amount of energy, and are localized in space so that one atom
can absorb a whole photon. In the subsequent section we discuss several more
ideas and experiments that conclusively established the particle-like nature of
photons.

1.5 Wave Particle Duality

Even in classical physics, light was not always considered as a wave motion. In
fact, Newton formulated a completely corpuscular theory of light. The laws of
reflection and refraction (Snell’s Law) can then be derived purely on the basis of
conservation of momentum and energy. The situation is as shown in figure 1.3.
A particle with momentum p; is incident from the left in a homogeneous medium
described by a constant potential ¥} and is either reflected or transmitted into
a homogeneous medium described by a constant potential V. The particle
thus experiences a force only at the interface between the media. This force
is normal to the interface, since in a direction parallel to the interface gradV
vanishes. Actually the particle receives an impulse on hitting the interface.

1.5.1 Reflection

Since the force is normal to the interface, the tangential component of momen-
tum is conserved. Furthermore, since energy is conserved, the magnitude of the

momentum p; = \/2m(E — V) is conserved. Hence, we get

p1sinf; = p;sinf; . (1.5.36)
Thus,

6, = 8] (1.5.37)

so that the angle of incidence equals the angle of reflection.
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1.5.2 Refraction

In this case we still have

2 2 ‘
_h _ P2
E= . +V = o +V . (1.5.38)

The tangential component of momentum is still conserved. Thus, we also have

D1 = v/2m(E — V1) as before, and p; = \/2m(E — V;) . Equating the tangential

i, Vo
Py
)
) [23
6,
21

Figure 1.3: Snell’s law.

components of momentum gives
p1sinf; = pysinf, (1.5.39)
so that,
sinfy _py _ V2m(E-V2) m
sinf; ~ p1 \2m(E-Vi) ™

Here we have defined n the index of refraction to be /2m(E — V). This is
reasonable since y/2m(E — V) is simply a number for a given medium and
hence also for a particle of a given energy.

If one uses wave optics one finds that the index of refraction of a medium is
inversely proportional to the wavelength of the light in the medium. Thus,

(1.5.40)

ng _ ./\_2_
ol vl (1.5.41)

This suggests that for a particle of momentum p there may be an associated
wavelength A such that
1

Ax - . 1.5.42
; (1.5.42)
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1.6 de Broglie’s Hypothesis

de Broglie presented a very simple argument for photons to fix the constant
of proportionality in the above relationship. The relationship de Broglie used
connects the energy £ and momentum p for a plane electromagnetic wave. It
states

E=cp (1.6.43)

where c is the speed of light. This equation follows from the fact that photons
travel at the speed of light ¢ and have an effective momentum

E E
P=e=— (1.6.44)
as stated in equation (1.6.43). If we combine this relationship with the Planck
energy-frequency relation E = hv, we get:

hv=cp. (1.6.45)
Thus,
a=lzh (1.6.46)
v p

This is the famous de Broglie hypothesis, namely that with any particle carrying
momentum p one should associate a wave-length A = h/p.

1.7 The Compton Effect

The photoelectric effect indicated that photons were somehow granular or particle-
like carrying a definite amount of energy given by E = hv. By scattering X-rays
(photons) off free electrons, A.H. Compton [4] showed that photons are definitely
particle-like, carrying a definite momentum and scattering like point particles.
The situation is as depicted in figure 1.4.

The incoming photon carries energy E = hv and momentum p = (hv)/c in
the z-direction, while the electron is initially at rest (energy E = mc? ). The
scattered photon carries energy E' = hv' and total momentum p’ = (hv')/c
in the direction given by the angle §. The electron, which was originally at
rest, recoils with momentum p in the direction given by the angle ¢. Applying
conservation of energy and momentum as for point particles we get:
Conservation of Energy

hv+med =h/'+E . (1.7.47)
Conservation of Momentum
h h'
—CK = —”cosﬂ+pcos<p (1.7.48)
c

h !
0= —Vsin0—psingo . (1.7.49)
c
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E' = hv
6 p=h'/c

Y B2 = mlct 4 2p?
p#0

Figure 1.4: The Compton effect.

In his experiments Compton measured the change in wavelength of the scattered
X-rays as a function of the scattering angle 6. According to classical electro-
magnetic theory no change in wavelength should occur. Now in writing down
equations (1.7.47) - (1.7.49) we have treated the X-rays as if they were point
particles. Before further discussion we first obtain a formula for the change in
wavelength AX = A — X in terms of §. By rearranging (1.7.48) and (1.7.49),
squaring and adding we get:

h2v2 + k2" — 2h2uy' cos B = c?p? (1.7.50)
Rearranging (1.7.47) and squaring yields:

B2 + h2'? = 2h%uy' cos§ = E? + m?c* — 2Emc? (1.7.51)
Subtracting (1.7.50) from (1.7.51) and using the energy momentum relation

E*=c’p? 4+ mict (1.7.52)
we get:

—2h%wV'(1 = cos B) = —2mc?(E — mc?) . (1.7.53)

But from equation (1.7.47) we have
E-mc? =h(v-v'). (1.7.54)
Thus, we finally get:

_ )
LA (1.7.55)

vv! v v

h
—(1=cosf) =
mc( cosf) =c¢
So the increase in wavelength is given by

Ad=X - X =Ac(l ~cos¥) . (1.7.56)
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Here we have introduced the Compton wavelength of the electron, given by

e =—. (1.7.57)
me

Compton’s measurements showed that equation (1.7.56) agreed splendidly with
the experimental results. Thus, a photon has particle properties just like a
particle has wave properties. In the next section we discuss an experiment (the
Davisson-Germer experiment) that proved conclusively the wave-like nature of
particles. So it was found that on the one hand waves sometimes behaved like
particles whereas on the other hand particles sometimes behaved like waves.

1.8 The Davisson-Germer Experiment

If we consider the de Broglie relation

r= (1.8.58)

mv

for an electron with 100 eV energy then we find

100eV =100 x 1.6 x 10719 J = %mvz (1.8.59)
so with m = 9.11 x 1073! kg we get

mv = 5.40 x 1072* kg m/s (1.8.60)
and

h -10
A= —=123x10"""m/s (1.8.61)
mv

or

A=123A. (1.8.62)

Thus, A is about the same as the wavelength of a hard X-ray.

Now the diffraction of X-rays by crystals had already been observed and
explained in 1913 by the father and son team of W.L. and W.H. Bragg [1.5].
The planes of a crystal lattice act as a very fine diffraction grating. Secondly,
de Broglie during his thesis defence suggested that the matter waves predicted
by his formula could be observed in such a manner. The actual experiment,
however, was carried out almost simultaneously by Davisson and Germer as
well as G.P. Thomson [6]. Davisson and Germer produced such a diffraction
pattern with an electron beam without knowing about the de Broglie hypothe-
sis. {This experiment was also performed by E. Rupp [7] using a ruled grating
and grazing incidence.) Davisson and Germer had been scattering electrons off
polycrystalline nickel targets when a fortunate accident occurred. The vacuum
system broke down and their nickel target oxidized. After repairing the vac-
uum they tried to expel the oxygen from the nickel by heating. This process
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changed the polycrystalline nickel to several large crystals. On recommencing
the scattering experiment they found thati 54 volt electrons incident at 50° to
the surface of the nickel, led to extremely, strong reflection of these electrons.
The result had all the appearance of Bragg reflections. Now from X-ray data
the lattice spacing 2a for nickel was known to be 2.15 A= 2.15 x 10~1° m. The
Bragg formula (derived below) states that for reflection maxima the incident
angle should be given by:

nA=2asind n=123,.. (1.8.63)
Using n =1, 2a = 2.154, 6 = 50° yields:

A=1654 (1.8.64)
Computing the wavelength of a 54 volt electron from

a=h_ bk (1.8.65)

P 2meV

we find

A=1674 (1.8.66)

This is splendid confirmation of the de| Broglie hypothesis. We now derive
the Bragg formula . The situation is as depicted in figure 1.5. The small spheres

—@ L ® —@ 00—
Al=1ly+13—-1; =2asinf

Figure 1.5: Bragg reflection.

represent individual atoms. We begin by computing the path difference Al for
the two rays reflected as shown. This path: difference is given by:

Al=l +l3-1 (1867)

Now,

a
b=l3= i (1.8.68)
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Also,
b=1lycos0+1l3cosf =2acotd . (1.8.69)
But,
2
I :bcos9=2afc_)—s-0— . (1.8.70)
sind
Therefore,
Al= 2% (1~ cos?0) = 2asind (1.8.71)
= ——(1 —cos*6) = 2asinf . 8.
sin @

For constructive interference (maxima) we need that
Al=n) n=123,... (1.8.72)

Thus, we have arrived at the Bragg formula.

1.9 The Franck-Hertz Effect

This effect was first observed in an experiment in 1914 in which J. Franck and G.
Hertz [8] looked for the “grainyness” of matter suggested by Planck’s radiation
law. A later experiment in 1924 by G. Hertz [9] verified Bohr’s atomic model
predictions. We describe both experiments at the same time since the second
experiment was simply a more detailed investigation of the first. A schematic
diagram of the experimental set-up is shown in figure 1.6. Electrons are emitted
from the hot cathode c and accelerated by the potential difference V' between
the cathode ¢ and the grid g towards the anode a. The current I reaching the
anode a is measured by the ammeter A. The current observed as a function
of the accelerating voltage is displayed in figure 1.7. The first drop in current
occurs at 4.9 eV, the second at 9.8 eV and the third at 14.7 eV. Thus, it appears
that the mercury atoms absorb 1 x 4.9 or 2 x 4.9 or 3 x 4.9 eV of energy from
the accelerated electrons. Now the most prominent spectral line emitted by
mercury is in the ultraviolet at A = 2537 A.
If we use the Planck energy-frequency relation E = hv = (hc)/\ we find
that this wavelength corresponds to an energy
6.63 x 10~34 x 3.00 x 108
E= S ET X 10-7 =783x1071°J=49eV. (1.9.73)
This result can be interpreted as follows. For an energy below 4.9 eV the
electrons make essentially elastic collisions with the mercury atoms and the
current increases with voltage. At 4.9 eV the electrons can collide inelastically
with the mercury atoms to excite the 2537 A line and thus give up all their
kinetic energy. Thus, the current drops. Then as the voltage increases further
the current again rises until we reach a voltage of 9.8 = 2x4.9 volts. At this point
the electrons can make two inelastic collisions and lose all their kinetic energy.
The process again repeats until at 14.7 = 3 x 4.9 volts the electrons can make
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Mercury Vapour | g

®
AAN]
[

Figure 1.6: The Franck-Hertz Experiment.

three inelastic collisions. To verify this interpretation G. Hertz [9] measured
the radiation emitted by the mercury atoms and found that below 4.9 volts the
ultraviolet radiation corresponding to A = 2537 A was not emitted, whereas
above 4.9 volts it was emitted strongly. In fact, Hertz was able to correlate the
occurrence of many of the spectral lines of mercury with a threshold voltage of
the electrons. Thus, the quantized nature of the energy levels of an atom was
definitely established.

1.10 Planck’s Radiation Law

We now return to a discussion of blackbody radiation. Planck combined classi-
cal statistical mechanics with his energy frequency relation. Thus he made the
following assumptions:

1. In accordance with classical statistical mechanics, the probability for an
oscillator of energy E to be excited is proportional to the Boltzmann factor
exp(—E/kpT) .

2. The energy of the oscillators is quantized and comes in quanta given by
() =nhv,n=1,2,3,....

Combining these assumptions we can compute the average energy (E) of an
oscillator from

(E) = Sum [(Probability of energy E;)x (energy E)]

S0

Zn nhye—nhv/ksT

(B) = S (1.10.74)
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discharge —»

Figure 1.7: Current-Voltage Curve for the Franck-Hertz Experiment: The ordi-
nate is the current (in arbitrary units) as measured by the ammeter A.

This can be written
(B)= —E(—_df)lnze-"'w/m . (1.10.75)
¥sT n

After carrying out the sum of the geometric series we get

d
()= =gy = e (1.10.76)

(E) = kgT hv/kgT

B C_h_”/kBT—l . (1.10.77)

We next combine this result with the result obtained in section 1.1 and write
the equation.

The energy per unit volume du in a frequency interval between v
and v+ dv
= (E) x (number of modes of oscillation in this interval) .

After dividing by the volume V' of the blackbody cavity we find from equation
(1.2.12) that

1 8r ,
VdN =3V dv. (1.10.78)
Thus,
1 8w hv3
du = (E)VdN = ?mdll (11079)
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SO

8 hv?

pv) = E (1.10.80)
This is the famous Planck’s blackbody radiation formula shown in fig. (1.1). We
notice that for low frequencies namely hv/(kpT) << 1, this law just goes over
into the Rayleigh-Jeans law since for these frequencies we have exp(hv/(kpT)) ~
1+ hv / (k BT).

The establishment of this formula and the introduction of the constant h
was one of the most revolutionary developments in all of physics.

1.11 Einstein’s Model for Specific Heat

Soon after Planck’s enunciation of his blackbody law, Einstein [1.10} in 1907
used a very similar argument to explain why the specific heat of solids goes
to zero at zero temperature. Einstein’s model was only qualitatively correct, a
better model was published in 1912 by P. Debye [1.11]. This so-called Debye
model remains valid today. We shall briefly discuss this model after considering
Einstein’s model. From the classical equipartition theorem one obtains for the
internal energy U of one mole of a monatomic solid at temperature T the value

U= %IcBT x (number of degrees of freedom) (1.11.81)

or
U =3NakpT (1.11.82)

where N is Avagadro’s number 6.02 x 1022 /mole. Here we have assumed that
the atoms are harmonically bound so that associated with each degree of freedom
for the kinetic energy there is also a degree of freedom for the potential energy.
That is why we again have kpT without the factor of 1/2. Now, N4kp = R
is the molar gas constant with a value of ~ 2 cal/mole.K . Hence, the specific
heat at constant volume Cy is given by

Cv = (%%)V =3R~6 cal/moleK. (1.11.83)
This result, known as the law of Dulong and Petit, agrees very well at high
temperature but fails miserably for low temperatures where Cy goes to zero
like T3,
By assuming that the atoms in a monatomic crystal are harmonically bound
(simple oscillators) and applying Planck’s assumptions to these oscillators Ein-
stein obtained that the average energy (E) of such an oscillator is given by

hv/(ksT)

(E) = kBTehu/(kBT) _1

(1.11.84)
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Now applying the equipartition principle and using the fact that for one mole of
a monatomic solid the number of degrees of freedom is given by 3N4 he found
that the total internal energy U is given by

hv/(kgT)

U= 3NakpTrtts (1.11.85)
Clearly at high temperatures (hv/(kgT) < 1) and we again have

M/ *5T) o 1 4 hw/(kBT)
and thus,

U 3NakpT = 3RT : (1.11.86)

in accord with experiment and the classical result. At low temperatures
(hv/(kBT) > 1) we have

P !*8T) _ 1 x ehv/(kpT)
and thus,
U~ 3N ghve P/ (k:aT) (1.11.87)

Thus, both U and Cv = (8U/dT)y vanish exponentially at low temperature.
The agreement with experiment is certainly much better than the classical re-
sult.

1.12 The Debye Model

The reason that U vanishes too rapidly at low T was pointed out by P. Debye
(1.11]. He assumed that the vibration spectrum of a monatomic solid may be
treated, as we have done above, as a homogeneous medium except that the total
number of modes is cut off at 3N, where N is the number of atoms per unit
volume (= N4 for one mole), to yield the correct number of degrees of freedom
of N atoms. This yields a cutoff frequency vy, Now the number of modes per
unit volume with frequency less than vy, is given by a formula like (1.2.11)
namely,

1 4 (w\®
IN==-x-orm|— . 1.12.88
5 %37 <v0) X3 (1.12.88)
Here vy 1s an average speed of sound in the solid and the last factor of 3 is
due to the fact that there are two transverse modes plus one longitudinal mode
of vibration in a solid. We have replaced the two different velocities for these
modes by one “average” velocity. Thus, the cutoff frequency is given by

3N 1/3
Ymaez = U0 (T:) (11289)
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The internal energy per unit volume, dU, for frequencies between v and v + dv
is now given by the number of modes in this interval times the average energy
per mode, namely

127 , hy
dUu = EV d”———-ehu/(kBT) 1 (11290)
Thus, the total internal energy is given by
12r [“me= R3dy
v /0 . (1.12.91)
Letting,
hv hpax
r = m y Lmaz = m—‘ (11292)
we find
12r(kgT)* ["me= 23
U= . 12.
h3v,3 /0 e? ~1 (1.12.93)

This is Debye’s expression. Notice that for very low temperatures z,,,, — o0
and so the integral just becomes a number which can be calculated and turns
out to be about 2.40437. Thus, U is proportional to T* and therefore, Cy is
proportional to T2 for low temperatures. The dimensionless parameter Z,,q,
can be rewritten as

0p
Emas = 2 (1.12.94)

where the Debye temperature p is given by

hvg <3NA)1/3
fp = 20 (214
kp

41r (1.12.95)

The Debye temperature characterizes the specific crystal through the velocity
vg. Typical values of fp range from 150 K to 1000 K.

1.13 Bohr Model and the Hydrogen Atom

In this section we describe a model that was a precursor of quantum mechanics.
Bohr extended Planck’s hypothesis and made some additional assumptions. We
describe these now and apply them to the hydrogen atom in the next section.

1. To get the observed stability of atoms, Bohr assumed that atoms exist
only in certain definite states in which they do not radiate. These are the
stationary states. The energy is therefore automatically quantized since
only these stationary states occur and not all possible states.
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2. To get discrete spectra Bohr assumed Planck’s law in the form
E;—Ex=hv. (1.13.96)

Here E;, E are the energies associated with two stationary states. Thus,
he made the implicit further assumption that the energy changes discon-
tinuously from one state to another. This explains discrete spectra both
for emission and absorption:

Emission occurs if E; > Ej
Absorption occurs if Ex > Ej .

This also gives the Rydberg-Ritz combination principle immediately since
from the combination principle

v=Aj - A (1.13.97)

Thus, the terms A; can be identified with E;/h .

3. The correspondence principle was one of Bohr’s most useful assumptions.
It states: In the limit of large quantum numbers the classical predictions
must be recovered at least asymptotically.

A motivation for this assumption can be found in the experimental fact that

a
Ap = m (1.13.98)
for almost all atomic spectra. Thus,
ah
Then,
ah ah
E,-E,= - 13.
nTEmETE T () (1.13.100)
and
_n?
En—Em e ahe e —0 . (1.13.101)
m?n

Hence, AE, — 0 and we get a continuum of energies for large quantum num-
bers.

We now show that the correspondence principle leads to quantization of
orbital angular momentum and then use this result to derive the hydrogen
spectrum.

We assume the electron in an hydrogen atom is in a circular orbit about a
force centre given by the Coulomb attraction of the proton. Also we choose the
zero of energy to correspond to an unbound electron with zero kinetic energy.
Thus, in the bound orbit E is negative. Classically the frequency w at which the
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electron radiates is given by the angular frequency of rotation of the electron in
its orbit. Thus,

w="2. (1.13.102)
r
The total energy of the electron in its orbit is
1, .1 ¢

Equating the Coulomb force of attraction to the mass times the centripetal
acceleration gives

v? 1 .e?
Thus,
E=—tm?=_t ]‘32 (1.13.105)
T2 T Mrmey 2r o
Also,
L = mur = mwr? (1.13.106)
and since
v? 1 €
m— = [m]ﬁ (1.13.107)
we find that
1 1
2, _ 2 2,22 _ 72 _[_1_ 2 13
my'r = [4”6016 or mivr‘=1 [41r60]mre (1.13.108)
Therefore,
L2
r= [41rco]m—e2 . (1.13.109)
Then,
1] 1 1% me
E=-3 [4—;0] o (1.13.110)
and
dE 1 1% met
I [31?5] T (1.13.111)
But, as we found above,
2\*  [4neo]?L?
L =mwr? = mw ([4#60]—2> = w% . (1.13.112)
me me
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So,
1 1* met
—_— —==w. 1.13.11
[4#60] J7 2 (1.13.113)
This means that the change in E when L changes is given by
AE
AL =Y (1.13.114)

Now, the smallest change that is possible in E according to Planck is AE =
hv = hw. Therefore, we get that

AE = hv =2mvAL . (1.13.115)

This in turn means that the smallest change possible in L is given by

h

:%:

So, the angular momentum is quantized and we have

AL h. (1.13.116)

L=nh. (1.13.117)
Replacing this back in the expression (1.13.110) for the energy E we get

1] 1] met
Eny=——|—|==.

(n) 2 l:47l'€0] n2h?

Thus, we have calculated the terms in the Ritz combination principle for hydro-

gen. The result agrees with experiment to better than 0.01% . As a side benefit
we also get

(1.13.118)

_ n’k? _ 2
n = [dmeo] —n = an” . (1.13.119)

Here we have introduced the Bohr radius

n?h?
ag = [4méo] —5 =0.0529 nm . (1.13.120)
me

This completes a brief review of the major developments that led to the
modern quantum theory. In the next chapter we briefly review certain aspects
of classical mechanics that turned out to be particularly useful in developing an
understanding of quantum theory.

Up to this point we have used MKS rationalized electromagnetic units. In
atomic physics most calculations are performed in Gaussian units. Thus, charge
is measured in esu. so that e ~ 4.8 x 1071° esu. and magnetic fields are mea-
sured in Gauss. To convert our previous equations to Gaussian units simply
drop the square factors [4meo] or I47153] appearing in equations involving electro-
magnetism.
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1.14 Problems

1.1 Calculate the principle quantum number for the earth in its orbit about
the sun. What is the energy difference between two neighbouring energy
levels? Hint: For large n, E, & Ecjassical -

1.2 What is the wavelength associated with gas molecules at a temperature
T 7 Estimate this wavelength for a typical gas at room temperature and
compare it to visible light.

1.3 For a monochromatic beam of electromagnetic radiation (A ~ 5000 A) of
an intensity of 1watt/ m?, calculate the number of photons passing 1 cm?
of area normal to the beam in one second.

1.4 Show that if one assumes that the circumference of a stationary state orbit
of an electron in an hydrogen atom is an integral multiple of the de Broglie
wavelength, one also obtains the correct energy levels equation (1.13.115).

1.5 List several experiments or observational results that may be used to obtain
a lower bound on the lifetime of atomic hydrogen in free space.

1.6 Estimate the effect on the specific heat of reducing a crystal to a fine powder
of dimensions of about 10~¢ cm.
Hint: Study the Debye model of specific heat and realize that the size
of the crystal now also imposes an upper limit on the wavelength of the
sound waves in the crystal.

1.7 The shortest possible wavelength of sound in sodium chloride is twice the
lattice spacing, about 5.8 x 10~ cm. The sound velocity is approximately
1.5 x 10° cm/sec.
a) Compute a rough value for the highest sound frequency in the solid.
b) Compute the energy of the corresponding phonons, or quanta of vibra-
tional energy.
c¢) Roughly what temperature is required to excite these oscillations ap-
preciably?
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Chapter 2

Review of Classical
Mechanics

2.1 Introduction

Classical mechanics was reformulated in an elegant manner during the nine-
teenth century. In this chapter we review some of these formulations. To lead
into the discussion we consider in section 2.2 the mechanics of a point particle
confined to one dimension and acted on by a conservative force. We use this to
give an heuristic introduction to Hamilton’s principle and the Euler-Lagrange
equations as well as Hamilton’s equations. In section 2.3, we review the La-
grangian and Hamiltonian formulation of many-particle systems. This section
assumes a somewhat deeper knowledge of analytical mechanics. The discus-
sion of section 2.3 is further elaborated to Hamilton- Jacobi theory in sections
2.4 and 2.5. In section 2.6, we then apply some of these classical techniques
to find constants of the motion and perform Bohr-Sommerfeld quantization for
the hydrogen atom. Finally we give a heuristic derivation, actually more of a
plausibility argument, for the Schrodinger equation in section 2.7.

2.2 Classical Mechanics:
Particle in One Dimension

We begin by considering a particle of mass m moving in one dimension and
acted on by a conservative force F(z). The equation of motion is given by:

mog = F(z) (2.2.1)

This equation contains all the information about the dynamics (forces) of this
system. In addition (since equation (2.2.1) is second order in time) we need
two pieces of initial data, say the position z and velocity vy of the particle at

26
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some instant to, in order to determine the motion of the system (particle) for
all subsequent times. We now restate this simple fact in somewhat more fancy
language which will later allow us to compare classical and quantum mechanics
more easily.

To begin with we define z(t) and v(t) = dz/dt to be dynamical variables.
Because equation (2.2.1) allows us to express a(t) = d’z/dt? in terms of z(t),
it follows that all dynamical variables such as acceleration, energy, momentum,
etc. may be expressed in terms of z(t) and v(t). That we need both z(t), and
v(t) follows from the fact that (2.2.1) is second order in time. We therefore
say that z(t) and v(t) form a complete set of dynamical variables. Specifying
a complete set of dynamical variables (i.e. z(t) and v(t)) at a given time tg,
specifies the state of the system completely at the instant ¢5. This means that if
we know z(to) and v(tp) then all physical quantities at ¢ = tg are, in principle,
determined.

To determine the state of the system at any later time ¢ > ¢ we need to
solve equation (2.2.1) for ¢ > t;. We want to bring out more clearly this fact
that ¢ and v specify the state completely. To this end we want to find a pair
of first order differential equations for a complete set of dynamical variables. It
turns out that rather than z and v it is more convenient to use z and p. Here
p is the linear momentum. !

p=mv. (2.2.2)

We now rewrite equation (2.2.1) using the fact that the force F is conservative.
This means that there is a potential V(z) such that

ov
=——. 2.2.
F 2 (2.2.3)
Then, (2.2.1) reads:
d?z 1%

This equation may be immediately integrated if we multiply by ‘;—f. We then
get

1 d (de\® 8V de

so that integrating between ¢, and t we find

%mv2(t) +V(z) = %mvz(to) +V(zo) =E . (2.2.6)

Equation (2.2.2) defines the momentum correctly for this example. In general, the “canon-
ical” momentum is involved and a more general definition is required. This is done in detail
in the next section, equation (2.3.39). See also equation (2.2.31).
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Here F is a constant of integration. It represents the total energy. If we solve
equation (2.2.2) for v in terms of p and substitute the result in equation (2.2.6)
we get:

»

—+V()=F . 2.2.7

P v (2:27)
The function of p and « on the left hand side!of this equation still represents the
total energy but as a function of p and z it is called the Hamiltonian H(z, p) of
this system.

2
P
H =—+V(z) . 2.2.8
()= L+ V(2) (229)
If we know the Hamiltonian, it is a simple matter to find a pair of equations
equivalent to the definition (2.2.2) and equation of motion (2.2.4). In fact by
straightforward differentiation we see that:

OH p dz
and

OH oV _ _dp

i e b (2.2.10)
The pair of equations

dr OH

dp oH

Pl (2.2.12)

are called Hamilton’s equations of motion. At this stage they appear to be
nothing more than a fancy way of rewriting (2.2.1) and (2.2.2). In 1834 and
1835, Sir William Rowan Hamilton [2.1] published two papers which gave deep
insight into classical mechanics. We give a heuristic discussion of this Hamilton’s
principle before we state it.

Consider a simple harmonic oscillator (consisting of a point mass m and
spring with constant k), which starts from rest with the spring compressed.
Thus, all the energy is initially potential and none of the energy is kinetic.

T(0)=0, V(0)=E (2.2.13)

After 1/4 of a cycle 7 the spring is completely unstressed and the potential
energy is zero. On the other hand the particle is moving with maximum velocity
so that the kinetic energy is a maximum, in fact the total energy:

T(%) =E, V(g) =0. (2.2.14)
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After 1/2 cycle the situation is again reversed. The particle has overshot the
equilibrium and the spring is stretched with the particle momentarily at rest so
that

T(Z)=0, V(I)=E. (2.2.15)
2 2
After 3/4 cycle we have:
&) =5, vi&)=o, (2.2.16)
4 4
and after a full cycle we are back to our initial configuration
T(r)=0, V(r)=F. (2.2.17)

If we consider this motion, we see that as it progresses, we alternate between
potential energy V and kinetic energy 7. Thus, the motion is such that the
function

L= / (T - V) (2.2.18)

of the particle path is minimized. We call L the action and
L=T-V (2.2.19)

the Lagrangian of the system. Hamilton’s principle states:
A dynamical system evolves along that path which minimizes or maximizes the
action. To see how this works let us consider our one-dimensional particle.

L= /t :2 er? - V(:c)] dt (2.2.20)

where we are writing & for dz/dt . In extremizing (maximizing or minimizing)
L we must choose z(t), z(t) such as to pass through (1), z(t1) and 2(t2), z(t2).
The state at the end points ¢; and ¢, is fixed. We now assume that z(t) is that
motion which makes L an extremum. To find the equation for z(t) we introduce

E(t) =z(t) +¢t) (2.2.21)
where €(t) is a small but arbitrary deviation from z(t). One frequently writes

E(t) — z(t) = €(t) = dz(2) (2.2.22)
The fact that the motion is fixed at the end points means

€ti)) =€(tz) =0 . (2.2.23)

Substituting (2.2.21) in the expressions for T' and V and keeping only terms of
lowest (first) order in €(t) we get:

T= % £+ = %maﬂ + maé (2.2.24)
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V=V(E@+e)=V(z)+ e‘?)—‘;- . (2.2.25)
Thus,
i = [ rew) - vl [ e - veole

S 14
/; [mze - e-a—;] dt. (2.2.26)

For an extremum we must have §L = 0. So we get:

/h[ de c—]dt_O (2.2.27)

Integrating the first term by parts and using (2.2.23) we find

/' ' —e(t) [mx + ‘Z—‘;] dt=0. (2.2.28)

But ¢(t) is arbitrary so whenever mi + 8V/8z is positive we can make €(t)
negative and vice versa. Thus, we can always make the integrand positive.
Therefore the only way to ensure that for arbitrary ¢(¢) the integrand in (2.2.27)
vanishes is to have

—=0. 2.2.29
mz + oz ( )
This, however, is just Newton’s law of motion with which we started.
If we had carried this computation through for an arbitrary Lagrangian £,
equation (2.2.29) would read

%35 B2 =0. (2.2.30)
Either of equations (2.2.29) and (2.2.30) is known as the Euler-Lagrange equa-
tion for this system. Thus, for a general system, to find the equations of motion
find the kinetic energy T and potential V and form £ = T — V. The Euler-
Lagrange equation is then the equation of motion.

To obtain Hamilton’s equations (2.2.11), (2.2.12) we transform variables
from z , £ to 2, p. Equation (2.2.2) defining the momentum p may be written
more generally as

-
P=%

We then define the Hamiltonian function H{z,p) by the Legendre transforma-
tion

(2.2.31)

H(z,p) = g—gi—ﬁ, (2.2.32)
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where & is replaced by p as obtained from (2.2.31). In our example (2.2.31)
yields:

oL .
p=5 =mE (2.2.33)
or
p= 2
E=— (2.2.34)
Then,
oc .
H(z,p) = PR L
= mig— [-limxz - V(:c)] , (2.2.35)
or finally
»
H(z,p) = o +V(z). (2.2.36)

This result agrees, of course, with our previous equation (2.2.8).
In the next section we generalize these results to a system of many particles.

2.3 Lagrangian and Hamiltonian Formulation

In classical mechanics, as we stated before, the state of a system at a given time
t is specified by giving the values of a complete set of dynamical variables at time
t . A complete set is one from which all other dynamical variables at time ¢ may

be calculated. For example we may specify all generalized coordinate ¢, ..., qn
and the corresponding velocities g1, - -, dn. In the Lagrange formulation there
is then one scalar function £(qy,...,9n,q1,.--,4¢n) from which the equations

of motion for all coordinates are determined by the so-called Euler-Lagrange
equations

d (oL oL
— == -5—=0. 2.3.37
i (5) =0 (2:3:7)
These equations result from finding an extremum of the action integral Thus,
(2.3.37) follows from

5| cdt=0. (2.3.38)

t

Where the variations at the end points vanish. By introducing a Legendre
transformation one arrives at Hamilton’s principle. Therefore, we define the
generalized momenta p, conjugate to ¢, according to

oL

= 2.3.
= (2.3.39)
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and the Hamiltonian function H by the Legendre transformation

Y ac
H=H(‘Ily---,(INaP1;~~~,PN)22%(1}—12. (2.3.40)
r=1 r

The ¢, have to be eliminated in the Hamiltonian H and replaced by the p, using
(2.3.39). The resulting equations of motion are:

. Qli . 0H
" 7T e
Notice that classically one may get many different Hamiltonians to describe the

same system by performing so-called contact transformations about which we
will say more shortly. First, some examples. Consider the Lagrangian

1

(2.3.41)

L, = §mq'2 . (2.3.42)
The equation of motion is
§=0. (2.3.43)

Now consider the (artificial) Lagrangian

Lo = AePQ . (2.3.44)
The equation of motion is

d% (84¢29) =0 (2.3.45)
which yields

Q=0. (2.3.46)

Thus, both Lagrangians give the same equation of motion. We now look at their
Hamiltonians.
In the first case we get

0L, .
= = 2.34
95 =™ (2:3.47)
and
Hy=lmpp = 2 (2.3.48)
a=gmi = o 3.
This is clearly the total energy. In the second case we get
p=2L _ 400 (2.3.49)
0Q
so that
. 1. P
=-In— (2.3.50)
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and
Hy=4[pQ - 1] (2.3.51)
or, after substituting for Q
p p
=|ln—-1{= . 2.3.52
o= o 21| 7 (235)

Although this has the dimensions of an energy, it does not represent the total
energy of a free particle. The Hamilton equations of motion are:

0H,

0H, P

O m

(b)

_ OH, _
P=-50 ="
_OHy 1 P
Q P = 3" 34

For classical mechanics it clearly does not matter much which Hamiltonian we
use, but for quantum mechanics it does. Therefore, we agree henceforth to
choose the Hamiltonian H such that H coincides with the total energy of the
system.

2.4 Contact Transformations:
Hamilton-Jacobi Theory

In classical mechanics, given the set of variables {¢;, p;} we can introduce new
variables

Qi = Qi(gr, pr) (2.4.53)
P; = Pi(‘Ir;pr) .

Of particular interest are those transformations that preserve the form of Hamil-
ton’s equations. Thus, there must exist a function K(Q;, P;) such that the
equations of motion read

0K . 0K

o P=50 (2.4.54)

= 0Q:
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In this case, such transformations (2.4.54) are called contact or canonical. Since
Qi , P satisfy (2.4.54) they must also satisfy a variational principle (2.3.38).
But,

L= pigi-H (2.4.55)
and
§ tt’ e -H(p,-,q,-)] dt =0 (2.4.56)
1 L
as well as
5 ttz EPQ,— (P, Q)| ¢ (2.4.57)

Thus, the two integrands can differ at most by a total differential dF/dt since
then

2 dF
/ Sdt = F(2) - F(1) (2.4.58)
t1
and the variation
t2
J (fl_fdt F(2)-F(1)=0. (2.4.59)
ty

The function F is called the generating function of the transformation. Naively,
one expects F to be a function of the 4N + 1 variables ¢;, p; , Q;, P;, t. How-
ever, due to the connecting equations (2.4.54) only 2N +1 are independent. For
example

F= Fl(qi’Qj)t) . (2460)
Since the integrands differ only by dF/dt we have

dF;
Zpsq: H= EPQz K+ ——1 . (2.4.61)
But
dF1 3F1 ) 0F; - 0F;
Z 0% (2.4.62)

Since the ¢; and @; are independent variables we get from (2.4.61) and (2.4.62)
that

_OR
p= (2.4.63)
p =90 (2.4.64)

0Q:
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0F
K=H+—. 2.4.65
+ 5 (2.4.65)
The equations of motion (2.4.54) in the new variables are particularly easy to
solve if

0K .
3F = Q=0 (2.4.66)
and
0K .
-——=PF=0. 2.4.67
50; 0 (2.4.67)
This is most easily achieved by choosing K = 0. Thus, F; is determined by
0F;
—_— =0. 24.
5 +H=0 (2.4.68)

In this case it is more convenient to choose a function F, as a function
of the ¢; and P;. This generating function F» is related to F; by a Legendre
transformation

F(gi, Piyt) = Fi(9:, Qi t) + ) PiQi . (2.4.69)
It is then an easy matter to check that instead of (2.4.63) - (2.4.65) we get
0F,
;= —2 2.4.
pi= g0 (24.70)
_0F,
Qi= 7P (2.4.71)
. OF,
K=H+ 5 (2.4.72)
Thus with H = H(¢;, p;) the equation for K = 0 reads:
oF oF oF
Hlq, - qv;7—, =t +=—=0 2473
(41 ™ 50 Ban ) 5 ( )

where we have dropped the subscript on F' and used (2.4.70) to replace the p;
by 8F/dg;. This is the celebrated Hamilton-Jacobi equation.

Example:

p2
H= o (2.4.74)

Then,

OF 1 (O0F\?
E"‘I‘ﬁ(—a—q) =0 (2.4.75)
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and a solution of (2.4.75) is

F=aq-pt (2.4.76)
with
o?
B=o. (2.4.77)

Before proceeding we do some more formal manipulations that will give us a
basis later for a heuristic “derivation” of Schrédinger’s equation.

Consider the Hamilton-Jacobi equation(2.4.73) and call S a solution of it.
Equation (2.4.73) is a first order partial differential equation in N + 1 variables.
However if S is a solution so is S + « for any constant a. Thus S contains only
N constants as far as transformations are concerned. Furthermore,

Pi=0. (2.4.78)
Thus the P; are constants. Hence,
S=5(q1 - qn 01N, t) (2.4.79)
is a solution where
Pi=q;
0S5(¢qi, o, t)
= 2.4.80
P g ( )
and
o 05(qi, i, 1)
Qi=p= e (2.4.81)

We can now invert these equations (2.4.79) and get:

g = gi(er, By 1) . (2.4.82)

In our example

a?t
S= “om +agq (2.4.83)
and
S at
=g=22__% 2.4.84
@=p=25_ o (2484
So
g=0+ a—t . (2.4.85)
m

Thus, solving the Hamilton-Jacobi equation

0S 0S oS
H(Ql,”',QN,E;"',&I—N,O+a—t—0 (2.4.86)
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gives a solution of the dynamical problem. Note that we can always write
S(gi @i, t) = W(gi, o) — ant . (2.4.87)

Then (2.4.86) becomes
ow ow
Hlg, i, 7t =a1. 2.4.88
(ql ™ 90 Oqn ) " ( )

This equation is t-independent. We can separate the equation even further by
writing

W=Y Wilg,oan). (2.4.89)
Then we get N equations
ow
H (%’a%"'yal'”aN) = . (2.4.90)

These are first order ordinary differential equations. The momenta p; are still
given by the equations of the canonical transformations

_ oW (gi, a1+ an) .

pi 90 (2.4.91)

If the motion is periodic, then the action integral
J,’ = fp,'dq,' = f aam dq,‘ (2492)
qi

is a function only of a; - - -a . Thus, J; is a constant. The rules for quantization
given by Bohr were extended by Sommerfeld to cover such periodic motions
according to

fp,-dq,- =nh=2rhn . (2.4.93)

Here we have introduced the new constant i = h/2r . This constant will occur
more often than the simple Planck’s constant. The rules stated in equation
(2.4.93) are the so-called Bohr-Sommerfeld quantization rules. In order to un-
derstand where they come from we now discuss the meaning of the J; . As an
example we use our old friend the simple harmonic oscillator.

2
_ P ﬁ 2
H= om + 2q . (2.4.94)

Setting p = % we get the equation

1 (0S\* k, @S
%(37}) +§q +E—0' (2.4.95)
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Now we set
S(g,,t) =W(g,a) —at . (2.4.96)
Then,
1 (ow\® &,
- (W) ti=a (2.4.97)
so that

W = ik / PTQ — q2dg (2.4.98)
20
S:\/mk/\/—k——(ﬂdq—at. (2.4.99)

Also q is given by

as m dq
_05_ m[__dg 24,
== / e : (2.4.100)

and

or
8= —t—‘/ﬂcos‘l[\/iq] . (2.4.101)
k 20
Thus
2a
g=1/ 5 cos w(t+6) (2.4.102)
where
w=1/X (2.4.103)
m

To get o and § we have to impose initial conditions. For example if at ¢ =
0, p=0, and ¢ = go then § = 0 and & = k/2¢2 . Thus, a = total initial energy.
Then, finally

q = qocoswt , (2.4.104)

a result we could have obtained by much more elementary means.
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2.5 Interpretation of Action-Angle Variables

In this case

J =fpdq:f—aw(§3’a) dq

= vk f \ /27" —q2dg. (2.5.105)
Let
200,
R — sin 6. (2.5.106)

Then,
J=2 m/” 2940 = 9ma | = 272 (2.5.107)
= 40 k A COos = k = " . D
Therefore,
Jw
=H=—= 2.5.1
a o Jv ( 08)
so that
0H
— =V . 5.1
ey (2.5.109)

This last result is of more general validity than the derivation indicates.
Now from the correspondence principle we have for vggssicar a function of E
as the quantum number m = oo

Emn — E,

z - thlanical . (25110)
Thus,
0F
a_n = hvegssicat = 2mhvlassical (25111)
and we get as a quantization rule
E,
mazr dE
——— =2mnh . 2.5.112
/E’m,,, Vclaau'cal(E) ( )
But,
0H OF
a7 =37 =V 2.5.113
ok ok ( )
)
dE
o =dhi (2.5.114)
Thus,
fdJ,- = fp;dq; =2mnh . (2.5.115)

This is one way to arrive at Bohr-Sommerfeld quantization.
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2.6 Hydrogen Atom: Bohr-Sommerfeld
Quantization

As an example of the use of this technique we work out the hydrogen atom
including elliptical orbits. The Hamiltonian is:
PP 1

:2m P Im

2 2 2

2, Pa Py €
- 2.6.116
Pt gt r23in29] . (2.6.116)

where now e is measured in e.s.u. The quantization is given by

fp,-dq,- = nh = 2mnh . (2.6.117)
Also,

pr = mr

DPe = mTZé

pp, = mrisin?f¢ . (2.6.118)

The Hamilton-Jacobi equation for W is

1 [/ow\? 1 fow)\? 1 ow\?| e
27;[(@—) +:z‘<‘ae—) +rzsin20(%) Ty Em=Eo @61

Separating the variables

W= Welr) + Wal0) + We(p) (2:6.120)
we get
3('3% = @, = constant
(%)2 * sizéa = o
(Og,)z + %25 = 2m (E+ ?) - (2.6.121)

These last three equations are three conservation statements. The first gives:
Py = @, conservation of p, . (2.6.122)

The second gives:

2, P
Pit+——=a} . (2.6.123)
sin” @
This is just conservation of total angular momentum and follows from the fact
that
L? e?

1 2
e (2.6.124)
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so that
2
L*=pj+—% (2.6.125)
sin® 4
as stated.
We now apply the quantization.

Jo = fpwdg: = ‘?{aq,dgo =2ra, = 2rm'h (2.6.126)
so that the constant a,, is quantized and given by

a,=mh. (2.6.127)
Then,

J—f o2 — % _qp (2.6.128)

°= T -

To evaluate this integral we use a trick.
Since the equations for generalized coordinates do not involve the time ¢
explicitly we have for the kinetic energy T

2T =) pigs (2.6.129)
so that in polar coordinates

2T = p+ Lp = p,r + pob + pop . (2.6.130)
Here ¢ = angle of azimuth of the particle in its orbit. (See figure 2.1.) Thus,
1z

orbit arbitrary reference

N mark

Figure 2.1: Orbit of electron in a hydrogen atom.

podd=Ldp—p,dp. (2.6.131)
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From (2.6.131) we get:

Jo= dew ){ Py dp. (2.6.132)

Now as 8 goes through a complete cycle ¢ and ¢ go through 27. Also, as we
already saw,

L = oy = constant (2.6.133)
and

Do =0 . (2.6.134)
Therefore,

Jo = 2m(ap — ap) = 2x(l - m')h. (2.6.135)
Hence,

Jp = f [2 gy (J”%;ZTJ;)E] v dr=2r(n-Dh.  (2.6.136)
We evaluate this integral by contour integration. Now,

Jo+Jp = 2l (2.6.137)
Then,

J, = ]{ [2 mE 4 27 ’i’f] v dr. (2.6.138)

The motion is bounded only if E < 0. The maximum and minimum values of r
are then obtained from

2 122
—om|E| + me? - = =0. (2.6.139)
This gives:
_ 2me? £ \/dm?2e* — Bm|E|I2h?
71,2 = Pmax,min = 4m|E| . (26140)
Considered as a function of z, the function
2 ik
—9m|E| + me? ——
z

has branch points at 7; and r, and poles at 0 and oo. (See figure 2.2.)

The integral for J, is given by the contour shown. However, by considering
this contour as enclosing its external rathér than its internal part we get the
same result if we integrate in the reverse direction (clockwise). Then,

g

2mi x (residue at 0 and oo)

2m(me? /v/2m|E| - Ih)

2r(n - Dk . (2.6.141)

It



2.7. THE SCHRODINGER EQUATION 43

Thus,
1 me!
=-_F=__—__ 2.6.142
Bl =-F =5 o0 (26.142)
or
1 ,et 1 1 ,,1
= —imc Wﬁ = —§mc [47 ﬁ . (26143)

So, the Rydberg constant is given by

R, = %mc%ﬁ/h (2.6.144)

Jjust as we found before.

On the other hand, the procedure we just used is very clumsy and applies
only to periodic motions. We now look for some way to generalize this procedure.
To do this we study the connection between geometrical and physical optics to
obtain a generalization of classical mechanics.

2.7 The Schrodinger Equation

Consider a one-dimensional system with Hamiltonian

2
H=T+v=L 1y (2.7.145)

2m
which is:
1) The total energy;
2) A constant of the motion.
As previously stated we only consider such Hamiltonians.

Now the principal function S and the characteristic function W are related
by

S(g,p,t) = W(g,p) - Et. (2.7.146)
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Furthermore,
oS
=—. 2.7.147
P=3 ( )
This means that
s ow
% _ ) 2.7.148
P= 5 = (2.7.148)

Therefore, since the Hamiltonian H equals the total energy E the Hamilton-

Jacobi equation for Hamilton’s characteristic function reads:

1 (oW
dq

This equation tells us how to determine the actual motion of a particle if we are

given W. From (2.7.149) we see that

2
) +V(Q)=E . (2.7.149)

2m

att=0S=W
at ¢t = 1 the surface S = 0 coincides with W = F
at t = 2 the surface S = E coincides with W = 2F

and so on.

Thus, as time progresses, a fixed surfade S = constant moves over the sur-
faces W = constant. Therefore, we can say that S describes a wave motion in
coordinate space. What is the speed of propagation of these waves? In going
from (z,t) to (¢ + dz,t + dt) the change in S is

_ 85 aS

If this is just due to propagation with a velocity u during the time dt then we
have

§S=0 (2.7.151)
and

§z = uét . {2.7.152)
Thus,

as  8S

o + ug- = 0 (2.7.153)
or

0S

§+u-p— 0. (2.7.154)
Hence,

as

—— =u-p=muu (2.7.155)
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where v is the particle velocity. Now,

oS
%= —E (2.7.156)
and
E= -;-mvz +V (2.7.157)
so that
=y 2AE=Y) (2.7.158)
m
and we get
E

(2.7.159)

S AemESY)

Also the Hamilton-Jacobi equation can be rewritten in terms of u to read

(3—5)2 = % (‘Zt—S)Q . (2.7.160)

This already has some of the appearance of a wave equation.

It is therefore very plausible for us to think that classical mechanics is some
sort of approximation to a wave theory. Hence we write down the simplest
possible wave equation

Py _ 1
0z ~ u? Ot?
where ¥ is to describe this quantum mechanical wave whose interpretation we

must look for later. Now since the velocity u depends only on z we can separate
out the time by writing

U(z,t) = P(e)e  E/P (2.7.162)

(2.7.161)

The minus sign in the exponential is conventional. The choice of E/h as the
coefficient of ¢ is motivated by Planck’s law since E/A is an angular frequency.
Substituting (2.7.162) into (2.7.161) and using (2.7.159) we find

Py _2m(E -V)

2y i, (2.7.163)
or
R 62
‘é‘n?a_z% V= By (2.7.164)

This is the time-independent Schrodinger equation.
To recover the time dependence multiply ¢(z) by exp(—iEt/k). Thus, the
time-dependent ¥(z,t) satisfies:
h? 00 ov

om0z + V¥ = zﬁg . (2.7.165)
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This is the time-dependent Schrodinger equation.

The steps above do not in any way constitute a derivation of these two
equations, they are simply plausibility arguments. These equations describe a
new set of physical laws and their validity derives from experimental tests of
the effects they predict. Our task for most of the rest of this book will be to
study the physical interpretation and meaning of these equations.

2.8 Problems

2.1 Find the Lagrangian for an harmonic oscillator. Use the definition of
conjugate momentum to find p and H.

2.2 Repeat problem 2.1 for the simple pendulum. Interpret the momentum p
conjugate to the angle variable §.

2.3 Use Bohr-Sommerfeld quantization to [calculate the energy levels of a one-
dimensional simple harmonic oscillator.

2.4 Use Bohr-Sommerfeld quantization to|calculate the energy levels of a par-
ticle confined to a box of length L. For simplicity assume this is a "one-
dimensional box”.

2.5 Suppose a gyroscope has a magnetic moment g proportional to its angular
momentum L according to

ji=ML.

The potential energy due to placing the gyroscope in a magnetic field B is
V = —fi - B. Assume B is constant and derive the equation of motion for
L. Show that the gyroscope precesses| with the angular Larmor frequency

szMB.

2.6 The system of quantization proposed by Bohr in 1913 is not applicable to
all systems. To what general kinds of physical systems is Bohr’s procedure
applicable? For what kinds of systems is it not applicable.

2.7 Consider the time-dependent Schrédinger equation (2.7.165) and put
¥ = AT

where A = constant. Show that in the limit as i — 0 equation (2.7.164)
reduces to the Hamilton-Jacobi equation (2.7.149).

2.8 In problem 2.7 set S = W — Et and let W = Wy + AW, + B2Wy + - - - for
the case of a one-dimensional Schrdinger equation. Find the equations for
Wy and W; and solve the equation for Wy. This is the so-called Wentzel-
Kramers-Brillouin or WKB approximation.
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Chapter 3

Elementary Systems

3.1 Introduction

In the last chapter (section 2.7) we gave a heuristic derivation of the Schrodinger
equation. It is important to note that no valid derivation of this equation from
classical mechanics is possible since it represents a new law of physics extending
beyond classical mechanics. From this point of view it is clear that section 2.7
was only in the nature of a plausibility argument and nothing was missed if you
skipped it.

Just as in classical mechanics one does not derive Newton’s laws but simply
starts with them, so here we shall simply start with the Schrodinger equation.
The purpose of this chapter is to start familiarizing ourselves with this equation.
We begin by considering the simplest case of a free particle and consider the
solutions of the corresponding Schrodinger equation. We next obtain a conserva-
tion law on the basis of the Schrodinger equation. This law provides a guide for
obtaining Born’s probability interpretation for the solutions to the Schrodinger
equation. This interpretation is then examined by considering Young’s double
slit experiment. We then proceed to look at some properties of a wave packet
solution to see how it describes a particle. There we also introduce the concept
of group and phase velocity.

To see how to make the transition from classical to quantum mechanics we
go on to consider some purely formal analysis as well as mathematical relations.
These lead us to some formal rules for quantizing. Sometimes, however, some
of these rules can lead to ambiguities and we discuss some of the most promi-
nent ambiguities. Finally we consider the Hamiltonian function for the very
important electromagnetic interaction. The results of this last section will not
be used until Chapter 15 and may thus be skipped on a first reading.

48
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3.2 Plane Wave Solutions

As a first look at the Schrodinger equation consider the case for a particle in
free space, where no forces are acting on it or the potential ¥V = 0. Then

N K2 _,
A solution is
Vp(r,t) = Aexp [%(p T— Et)] (3.2.2)
where
p

This solution describes a wave of frequency

w= % (Planck’s relation) (3.2.4)

and a wavelength
A= 2:4 (de Broglie’s relation). (3.2.5)

Thus, two of our previous quantum mechanical results are automatically given
by the Schrodinger equation.

The solution (3.2.2) is, however, physically not very realistic since according
to it a physical particle has associated with it a wave uniformly spread out
through all space. Fortunately this is not a defect of the theory but rather of
our treatment. Since equation (3.2.1) is linear, the most general solution of it is
an arbitrary linear superposition of solutions of the form (3.2.2). Thus, we can
get solutions of the form

i

¥(r,t) = /A(p) exp [h(p ‘T— %t)] d3p . (3.2.6)

As we shall see this can describe a localized wave and is called a wave packet.
We shall now try to give a physical interpretation of the wavefunction.

3.3 Conservation Law for Particles

So far, we have stressed the similarity between light and particles. But even
quantum mechanically there are some very important differences. Light may
be absorbed or emitted. Thus, the number of photons changes with time and
no conservation law for the number of photons holds. On the other hand, as
long as we are in a non-relativistic regime, particles cannot be destroyed or
created. Of course particles can form bound states as when an electron and a
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proton combine to form an hydrogen atom. However, we then still have two
particles. Thus, in general, except for such relativistic effects as pair creation
or annihilation, the number of particles is conserved. So, in a non-relativistic
theory of quantum mechanics we should have conservation of particles. If we
consider the Schrodinger equation, (2.7.163), it is easy to derive a conserved
density and current. We have

., OV A _,
If we complex conjugate this expression we jget
ov* B2 _,
—th— = ——V*¥* LA 3.
ih o 2mV +V (3.3.8)
Multiplying (3.3.7) by (—i/h)¥* and (3.3.8) by (i/h)¥ and adding we get
ov* LOY iR, b e
6t\11+\1:—5t-_2m(wv\1:—w\1:). (3.3.9)
This is of the form
dp .
hd o4 = 3.1
5 TV i=0 (3.3.10)
where
p=TU"T (3.3.11)
and
o b .
= -5 (T -YVE). (3.3.12)

Thus, we have an equation of continuity. Integrating over a fixed volume V and
calling

R=/ pdz (3.3.13)
v
we obtain, by using the equation of continuity and the divergence theorem, that
dR th . . .
™ S(\Il AR Ava\j )dAﬁ/S,ydA (3.3.14)

where the surface S surrounds the volume|V. This suggests that the rate of
change of R in the volume V in (3.3.13) is given by the flux of the current j
through the surface S surrounding V. It is therefore reasonable to associate the
conserved quantity R with the number of particles. For only one particle R =1
if V is all of space. Hence p is a density for ithe particle. However, classically a
particle is at some point or it is not; it is not all smeared out, so p cannot be
a matter density. The most reasonable interpretation is that p is a probability
density . This gives us an interpretation of p and hence of ¥.
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So we interpret ¥ to be a probability amplitude . One further comment: In
the derivation of (3.3.9) we assumed that the potential V is real. This is true,
of course, for classical potentials and remains true in quantum mechanics. It is
also crucial in our derivation and will be examined later (see problem 3.2).

To justify our interpretation further we consider some experimental results.
Very early in the history of quantum mechanics experiments were performed to
test experimentally the wave nature of matter. The classic experiments which
we have already discussed, are those of Davisson and Germer. Thomson and
Rupp [3.1], independently used powdered crystals and obtained the analogue
of Debye-Scherrer patterns. For a modern version see C. Jonsen [3.2]. We now
consider a slightly idealized experiment which was not performed until much
later.

3.4 Young’s Double Slit Experiment

The experimental set up is well known and is shown in figure 3.1. The intensity

Screen —

Intensity
distribution

Collimated
electron )
beam

Figure 3.1: Young’s double slit experiment.

distribution of a wave is given by |¥|? , the square of its amplitude. This is also
found to be the case for a high intensity beam of particles. On the other hand,
when we decrease the beam intensity to the point where we can see individual
particles arriving at the screen, we find that they arrive at specific points and
not spread out all over the screen. The point at which any given particle arrives
is completely unpredictable. However, |¥|? still gives information, in fact, the
probability density. Thus, we find experimentally that |¥|? dz is the probability
that the particle arrives at a point lying between z and z + dz. Thus, our
interpretation of ¥ as a probability amplitude is again justified.
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Incidentally it is also possible to do this experiment with light by decreasing
the intensity to the point where individual photons are observed.

3.5 The Superposition Principle and Group
Velocity

A fundamental property of the Schrodinger equation is that it is linear in ¥.
This has the following important consequence. If ¥; and ¥, are two different
solutions, then A\, ¥; + A3 ¥ is also a solution if A; and A, are constants. This
is known as the superposition principle.

As an example of the use of this principle we now construct and examine a
wave packet. We already wrote down the equation for a wave packet equation
(3.2.6). For simplicity we work in one space dimension.

A plane monochromatic wave is given by

uk(t,z) = elthe=wt) (3.5.15)
where
_ (hk)?
hw = 5 (3.5.16)
for a free particle. Also, the wavelength is given by
2
A= —. 5.
P (3.5.17)

In general w = w(k). Forming a superposition of such plane waves we build up
a wave packet

Y(z,t) = / F(k)eilez—w )] g (3.5.18)

We want to find out where this wave is concentrated in z-space and with what
velocity the peak of the wave travels. This is known as the group velocity.

To do this we assume f(k) is a smooth well-behaved function concentrated
in a region Ak about k = ko. We further assume that in this region w(k) may
be expanded in a power series about kg.

dw

w(k) =wy+ (k - ko) ik

+ - (3.5.19)
ko

where we have written wg for w(ko). Substituting this expression into (3.5.18)
we get
_ kot+Ak
U(z,t) ~ efltor—wot] f(k)exp [z(k ~ ko)(z - Z—:
ko- Ak

t)] dk . (3.5.20)
0

This expression is of the form

dw

0] Y i[koz—wot]F _w
(z,t)~e T T

Ot) . (3.5.21)



3.5. THE SUPERPOSITION PRINCIPLE AND GROUP VELOCITY 53

This is an envelope function F, the Fourier transform of f, multiplying a plane
monochromatic wave. The phase velocity is given by the monochromatic wave
and is

=
The envelope function is unchanged if we replace « and t by = + dz and ¢ + 6t
such that

_dw

(3.5.22)

Yp

= —| dt. 5.2
oz 0 |, (3.5.23)
Thus, the group velocity is
dw
= — . .5.24
U= o - (3.5.24)

To make these considerations valid, the phase
¢ = kz — w(k)t (3.5.25)

of the integrand in (3.5.18) must not vary too rapidly in the region about kg,
otherwise the positive and negative contributions cancel. In fact we require
roughly that not more than one oscillation to occur in this region. This gives
the condition

d¢
Ak —| >1. 5.
dk |, > 1 (3.5.26)
But,
dé dw dw
E—.’C—Etr\».’t—ﬁot . (3527)
This shows that the centre of the packet is given by
dw
o = E Ot . (3528)
Therefore,
do dw
T W 0t (z—z0) = Az (3.5.29)

Thus, the packet is concentrated in a region Az such that
AkAz>1 . (3.5.30)

Since p = hk this can be written ApAz > h. This is an example of Heisenberg’s
uncertainty relation. We shall have more to say about this relation later on.

The group velocity vy as previously calculated corresponds to the velocity
of the classical particle. We can see this as follows. Classically,

_dE
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Now we also have

E=zho , p=hk (3.5.32)
and

dE  dw

ch = E = Ug (3533)
as stated.

There is one more property of a plane wave that is very enlightening and
fortifies our faith in the interpretation of ¥ given so far. This is the value of the
current or flux for such a wave. If we take a plane wave

U = A¢ilke—wt) (3.5.34)
and use (3.3.12) to compute the current we|get that

j = _l_h_|A'2 e—i(kz‘—wt)_d_ei(kz—wt)e—i(kx—wt)_ie—i(kz—wt)
2m de

dz
hk
= =4 . 5.
- |A] (3.5.35)
Since the momentum p = kk and p/m = v, the velocity, we have:
j=v|AP . (3.5.36)

Thus, the current consists of the velocity v times the intensity |A|? of the wave.

3.6 Formal Considerations

This part consists mostly of some mathematical observations. However, these
niceties will be very useful later. First we introduce the concept of an operator.
As motivation let us re-examine the Schrodinger equation

4 _ R
' ot~ 2m

This equation was derived for a system with a classical Hamiltonian

VY + V. (3.6.37)

p2
H=o=4V. (3.6.38)

Now if we replace p by ?V , then we get an operator Hop such that

52
Hy, ¥ = —Q—mV2‘II +Vv. (3.6.39)
And the time independent Schrodinger equation reads
Hpp=Ev¢. (3.6.40)
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So our equation looks much more suggestive this way. In fact this procedure
of replacing classical variables by operators has much more than merely formal
significance.

Now suppose ¥ is a function describing a given state, then di/dz is another
function and is obtained by operating on ¢ with d/dz. Clearly d/dz can operate
only on functions where the first derivative exists. These functions then lie in
the domain of d/dz. More generally if one has a procedure that assigns to every

function of a set {#1,...,%s} a unique function of some other set {¢1,...,dm}
one says that this mapping is given by an operator and we write
(AY)i = ¢i . (3.6.41)

The operators of interest in quantum mechanics are in a sense the simplest; they
are linear. An operator A4 is linear if

A1 + Aate) = MAY1 + Ao Ay (3.6.42)

where A; and A, are arbitrary constants and v¥; and v are two arbitrary states.
Examples:
The operator d/dz is linear since

d d d
M+ davs) =l 4+ da ot (3.6.43)
On the other hand the operator 1/ is not linear since

VO + Xats) # MV + AV (3.6.44)

Another important example of a linear operator is multiplication by a function
say f(z) since

F@)(Mvr + Aavh) = A f(2)9r + Ao f ()92 - (3.6.45)

We shall only consider linear operators from now on unless we expressly state
otherwise.

It is also possible to have an algebra of operators. The following operations
with operators are defined.

1) Scalar multiplication AA is defined by

(AA)y = A(Ay) . (3.6.46)
2) Addition

(A+B)y =AY+ By. (3.6.47)
3) Multiplication

(AB)Y = A(BY) . (3.6.48)
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These last two also satisfy distributive laws, namely
A+(B+C)=(A+B)+C (3.6.49)
and
A(BC)=(AB)C. (3.6.50)

On the other hand, the product is not commutative and in general AB # BA .
For example,if A=z, B=d/dz

dy
=g-L .6.51
(AB)y e (3.6.51)
whereas
d dy
(BA)Y = . (zy) = +le? . (3.6.52)
To express the lack of commutativity we introduce the commutator
[A,Bl]=AB-BA. (3.6.53)
Thus, in the example above
d
—,z]=1 3.6.54
since
d d
H—z(m/)) - I:i% =19. (3.6.55)

The commutator plays a very important role in quantum mechanics. In a sense
it shows to what extent the quantum operator differs from the corresponding
classical variable. We will have much more to say about this later. Other
familiar examples of operators are grad and curl.

3.7 Ambiguities

As we saw, the time independent Schrédinger equation could be written in the
form

Hopto = Etb . (3.7.56)

The rule for forming H,, from the classical Hamiltonian H was simply to replace
p by h/i V. This rule, however, is not completely unambiguous. There are at
least two sources of ambiguity which we now discuss. The first of these has to
do with the use of different coordinate systems and does not present any serious
problems in principle. The second is due to the fact that operators do not usually
commute. Here the ambiguities must be resolved partly by mathematics and
partly by physics.
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3.7.1 Use of Different Coordinate Systems

Consider the free particle Hamiltonian

p?
H=—. 3.7.57
om (3.7.57)
In Cartesian coordinates this reads

— _1_ 2 2 2
H=— (P2 +p} +p2) (3.7.58)

giving a quantum mechanical operator Hamiltonian

K9t 8
Hop= =5~ <@ ta7t 37) . (3.7.59)

In cylindrical coordinates (3.7.57) reads:

1 1
H=— (pf + r—zp}; + pf) . (3.7.60)

2m

If one naively replaces p, by /i /0r and p, by h/i 0/dp this gives

2 2 2 2
H;p=_f—(6 4109 ) (3.7.61)

2m \9r? " 129p2 | 922

whereas if one transforms (3.7.59) to cylindrical coordinates one gets:

2 /52 2 2
H h((? 10 19 8)

= =t t5—=+—= 3.7.62
o’ 2m \8r?  rdr r20p?  02° ( )
In fact, the latter is correct. The difference is due to the fact that we must
distinguish between covariant and contravariant vectors. However, it is possible
to get away without knowing this distinction by adhering to the following simple
rule. Always write all momenta in Cartesian coordinates and then make the

replacements

L ho
Pe i0z
L ho
Py idy
ko

After that, transform to the desired coordinate system. The problem will now
usually become the standard one of writing the Laplacian in the appropriate
coordinate system, and should not give any difficulties. It may also be useful to
consult [3.4].
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3.7.2 Non-Commutativity

In classical mechanics, since all dynamical variables commute, it does not matter
in which order we write them as factors. This is not the case in quantum

mechanics. For example,
1, 1 1
= pp— .7.64
P = 5Pz bE (3.7.64)

classically. But this is definitely not the case in quantum mechanics. In fact,
using the relation

l9(=), Pl = ih%q (3.7.65)

(see problem 3.1) we obtain
92 = 2p gep+ 2y
zp 7Pz = ep3op+aplp,

1, 1
=2p_p- zfi:l:p:l:—2

1, 1, . 2ih
=z-p +z[p ;]p — thr <_:c_3>
=p? +i§p—i§p—ihz (—@) (3.7.66)
T z T
or
1 2h?
pgpr=p = £ (3.7.67)

This example was, of course, artificially constructed, but unfortunately there
is no rule for obtaining the correct order. This has to come from experiment,
although in some cases mathematics can help because all physical observables
must have corresponding hermitian operators. Sometimes this helps to eliminate
some of the many possible orderings. Fortunately, in almost all cases of physical
interest, the order is known. Furthermore, the classical Hamiltonian usually has
an especially simple form

H=T+V (3.7.68)

where
. p}

T = kinetic energy = ,- om (3.7.69)

and
. 1
V = potential energy = 5; Vij(zi — zj) . (3.7.70)
i#j

In this case the dynamical terms can be translated directly and no difficulty oc-
curs. There are a few very important exceptions. One is the so-called spin-orbit
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interaction which we will encounter much later and another is the interaction
of a charged particle with an electromagnetic field. In both these cases we get
terms of the form p- A(z). We discuss the electromagnetic interaction next.
This discussion is classical but allows a direct translation to quantum mechanics.
For further discussions see [3.5).

3.8 Interaction with an Electromagnetic Field

Classically the force in this case is the Lorentz Force

F=q(E+ %v <B). (38.71)
The corresponding Lagrangian is

L=T—q(é- %v-A) (3.8.72)
where

E = —grad¢ (3.8.73)

B = curlA (3.8.719)
and

T= %mvz ‘ (3.8.75)

We are considering time-independent electromagnetic fields. If they are time
dependent, equations (3.8.73) and (3.8.74) have to be suitably modified. The
momentum p conjugate to x is given by

_oc _oc_ g,
pi = 6—:0, =5 = my; + cA' (3.8.76)
or
p=mv+ %A . (3.8.77)

Hence we get the Hamiltonian

H = Zp,-a':.-—ﬁ:p«v—ﬁ

= m?+ Iy.a- lmv2 +qé — 1y.4 (3.8.78)
c 2 c
or
1 9
H= 5m +qé . (3.8.79)

We now have to use (3.8.77) to replace v by p. Then,

R P IR’
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or expanding

P2 q ¢ 2
H=+ - (p-A+A- ——=A . 8.81
am "2 c(p + p)+2 = +9¢ (3.8.81)

In this form the Hamiltonian translates directly into Ho, by replacing p by
hfi V.
We are now ready to start looking at solutions of the Schrédinger equation.

3.9 Problems
3.1 a} Verify the identity

[AB,C] = A[B,C]+[A,C)B.

b) Using the result above and [z, p] = ih prove that
[22,p) = 2ihz

and
[, p] = nihe™ " .

Hence prove that for any function g(z) analytic at the origin

_ ., dg(z)
[!I(‘”)ap]—'ﬁﬁ— .

3.2 Assume that the potential V is complex of the form V = U + iW. Show
that W corresponds to a sink or sourge of probability.
Hint: Show that
dp . 2
E +V J= EWp .
This proves that unless W = 0 probability is not conserved.

3.3 a) In deep water the phase velocity of water waves of wavelength A is

_ /2
v= 27[‘.

What is the group velocity?
b) The phase velocity of a typical electromagnetic wave in a wave guide
has the form

c

- 1- (c;.)o/w)2

where wp is a certain characteristic frequency. What is the group velocity
of such waves?
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3.4 Which of the following operators are linear?
a)
Ki(a) = [ Ko,y
b) K3 where K is defined above.
¢) AB if A and B are linear.
d) B~1if B is linear and B~! is defined by B-!B=BB~1=1.
e) expA=3n AL if Ais linear.
f) A¢ = exp(Ay) .

3.5 a) Compute, in closed form, the probability density p(t, z) for the wave-
function.

Y(t,z) = ‘/j: dk A(k) exp—i (Et - kz)

2m

where
Alk) = e LK12

b) What is the “width” of the probability density at time ¢ = 0 and at
time ¢ ?

3.6 Show that if we write
L=rxp= Er x V
i
then

LiLy~LyL, = ihL,
LyL,—L,L, = ihL,
L.L,-L;L, = ihL, . (3.9.82)

These relations will be used later.

3.7 Assume a beam of free particles is moving along the z-axis with velocity v
is such that there is one particle in a volume V.

a) What is the corresponding normalized, time-dependent wave function
for such a particle?

b) What is the number of particles crossing a unit area, normal to the
z-axis, per unit time?
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3.8 A free particle has the wave packet at time ¢ = 0 given by:

' 00 eikx

Determine an expression for the wavefunction for a later time ¢ . Do not
attempt to evaluate the resulting integral.

Hint: Use equation (3.5.18) and remember that the energy for a free par-
ticle is given by equation (3.5.16).

3.9 You are given the classical Hamiltonian for the motion of a particle in the
form

2
P
H=_—e%
2m
where a is a constant. Find an acceptable Hamiltonian operator for this
system. Notice that the answer is by no means unique.

3.10 In classical mechanics, the reference level for the potential energy is arbi-
trary. What are the effects on the wavefunction and energy of adding a
constant potential in the time-dependent Schrodinger equation?
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Chapter 4

One-Dimensional Problems

4.1 Introduction

The purpose of this chapter is to further build up our familiarity with the
Schrodinger equation by solving several problems. We begin by classifying two
types of problems. Then we study a model of a particle in a box and look for
the corresponding energy levels. This leads us naturally to consider the effect of
mirror symmetry or parity. The next problem we treat, in considerable detail,
is scattering from a potential with a step. We then examine the energy levels for
a particle in a finite potential well. Next we study tunneling through a square
potential barrier. Finally we briefly consider the concept of time reversal and
how to include it in a quantum mechanical treatment.
Starting with the Schrodinger equation

ov
U =1th— 1
H th 5 (4.1.1)
we look for stationary state solutions. These are of the form
U(t,z) = vp(z)e” ** . (4.1.2)

Henceforth we suppress the subscript E in ¥g, and simply write . Then ¢
satisfies the time independent Schrédinger equation

Hy=Ey . (4.1.3)

For one dimensional systems we consider Hamiltonians of the form

2
- =
H=T+V= 2m+V(l‘) . (4.1.4)
Thus, the Schrodinger equation (4.1.3) becomes:
K d?

In order to develop our intuition we study this equation for some simple solvable
cases. The problems to be considered can be divided into two cases.

63
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1) Scattering: In this case E > 0. The potential may be attractive V < 0 or
repulsive V > 0.

2) Bound States: In this case we generally have E < 0, except if the potential
has infinitely high walls. If the potential does not have infinitely high walls
we use our freedom in defining energy to within an arbitrary constant to
choose the zero of energy to have E < (. The potential must be attractive.

Before proceeding, we rewrite (4.1.5) in dimensionless form. Call

2m
Uz) = FV(z) (4.1.6)
and
2mE
k= - (4.1.7)
Then we get
d%y 2
HE = =0. (4.18)

This is the equation we shall study for a while. To specify our solutions further
we state that we are looking for solutions on —oo < & < 0o such that they are

1. everywhere finite
2. continuous and differentiable.

Now as we saw before, (Problem 3.2) V(z) has to be real in order to ensure
conservation of probability. Thus, if our boundary conditions are real, we are
looking for real solutions of (4.1.8). This is always the case for bound state
problems. For scattering problems, the boundary conditions are complex since
they specify some incoming wave of the form (3.5.18).

4.2 Particle in a Box

From a comparison of geometrical and wave| optics we expect wave phenomena
to be most prominent when the index of refraction changes rapidly. Thus,
quantum effects are most prominent if V'(z) and hence U(X) vary rapidly in
one wavelength. This is always the case if U/(z) has a step. Thus, to see this
effect and for simplicity, we consider the following simple potential

U(:E):{

This potential models a particle in a one-dimensional box |z| < a . The potential
has impenetrable walls, in other words, it is infinitely high.
Thus, we have to solve
d*y

= k=0 (4.2.10)

0 ifjz]<a
oo iff|z]>a

(4.2.9)
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subject to
v=0at z=+a . (4.2.11)

The boundary conditions (4.2.11) follow from the fact that the wave-function
is continuous and that the particle is confined to the box so that there must be
zero probability for finding the particle outside the box. The solutions are

e k() = Ag cos(kz) + Bysin(kz) —a<z<a . (4.2.12)
Applying the boundary conditions at £ = +a
Yk(2a) =0 (4.2.13)

we obtain the two conditions

|
o

Ay cos(ka) + B sin(ka)
Ay cos(ka) — By sin(ka)

I
o

(4.2.14)
Thus we have two kinds of possible solutions

By 0 cos(ka)=0
Ak 0 sin(ka)=0 . (4.2.15)

So we have two sets of eigenvalues:

Bi = 0 ka=(n+1/2)7 n=0,1,2,...
A = 0 ka=nt n=123,... . (4.2.16)

In the first case the energy eigenvalues are

R*k:  Rr?

E, = @2n+1)? n=0,1,2,3,... (4.2.17)

9m ~ 8ma?

and the wavefunction is

¥n(z) = Ap cos ((2n_+1)7r_a3

- . 4.2.
% ) a<z<a (4.2.18)

In the second case the energy eigenvalues are

Kt 9
E, = W(?n) n=1,2,3,-- (4.2.19)

and the wavefunction is
Yn(z) = Basin (“0) —a<z<a. (4.2.20)
a

The infinite square well is not as unphysical or artificial as it might appear
at first. In fact, it is a good mathematical representation of a particle confined
to a (one-dimensional) box. In such a box, a measurement of the energy of
the particle yields one of the energies we computed. However, for macroscopic
boxes, the energy levels are so closely spaced that they are experimentally in-
distinguishable from a continuum of energy levels.
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4.3 Parity

In the previous example we found two classes of solutions corresponding to
Class 1. ¥(—z) = ¢(z) and
Class 2. ¢(~z) = —y(z) .

This is a consequence of an interesting property of the Hamiltonian.
Consider a general Hamiltonian

2

P
H= om +V(z) (4.3.21)
where
V(i-z)=V(z) . (4.3.22)

The Schrodinger equation reads:
Hy = Ey (4.3.23)

and due to the symmetry of V(z) we find that whenever 4(z) is a solution then
so is the even combination

1
Yi(z) = ﬁw(z) +9(-2)] (4.3.24)
as well as the odd combination
1
Y-(z) = %['/f(r) —P(-z)] . (4.3.25)

Of course if 4 is an even function then 1_ vanishes and if ¢ is an odd function
then 94 vanishes.

These considerations lead us to introduce an operator P called the parity
operator such that

(PY)(z) = ¥(-2) . (4.3.26)

That is, P operating on a function ¢ evaluated at z gives the same function
with a negative argument ¥(—z). In effect if a state is described by () then
(P¢)(z) describes the mirror image of this|state. We henceforth simplify the
notation and write (P)(z) simply as Py(z). The eigenvalue equation for P is
particularly simple since if

Py(z) = Ay(z) . (4.3.27)
Then,

Pxy(z) = A2 y(z) . (4.3.28)
But,

P*y(z) = Py(-z) = ¢(x) . (4.3.29)
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So A% = 1 and the eigenvalues of P are +1. Clearly the functions %, , ¥_ are
eigenfunctions of P since

Pyo=+1-9, (4.3.30)
and
Py_=~1-9_ . (4.3.31)

If we now consider the Schrodinger equation with a potential V which is an
even function of z so that V(—z) = V(z) and apply P to both sides of the
Schrodinger equation we find since

2 2 g2
;—m = -2% % (4.3.32)
is also even under reflection that
PHY = PHP%) = HP = EPy (4.3.33)
where we have used the fact that
P’=1 and PV(2)P=V(-2)P*=V(z). (4.3.34)

Thus, we have that if ¢ is an eigenfunction of H then so is Py. So we see that
it is possible for 4 to be an eigenfunction of H and P simultaneously. In fact,
quite generally, as we shall see later, if two observables commute (in this case
HP = PH) one can solve the eigenvalue problem for them simultaneously.

In general, whenever the Hamiltonian has some special symmetry, this re-
flects itself in the wave-functions. It is of great assistance to recognize and utilize
this symmetry from the start as in the case of parity above.

4.4 Scattering from a Step-Function Potential

We next consider a scattering problem. This time we choose a step function
potential

_fU ifz<0
Uz) = { Uy ifz>0 ° (4.4.35)
Case 1.
U<k <U, . (4.4.36)

Classically, the problem is as follows. We have a particle corresponding to energy
K%k?/2m come from —oo , hit the potential Us and reflect back. The particle
can not enter the region z > 0 since this would yield a negative kinetic energy.
Thus, we call the region = > 0 the classically forbidden region.

In the quantum mechanical situation we must solve the wave equation both
in the classically allowed as well as in the classically forbidden region. We expect
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z=0 z

Figure 4.1: Scattering from a potential step: V; < E < V5.

the wave to penetrate some distance into the forbidden region. Thus, we expect
damped exponential behaviour (figure 4.1). The Schrodinger equation is:

d*y

:1? + kf'tp = 0 < 0

d*y

d—ﬁ—kg = 0=z>0. (4.4.37)
Here,

K o= K-U,>0

B o= Uy-k>0. (4.4.38)

We can therefore write the general solution as

Y = Al 4+ Re™™?] 2<0
v = ASe™k® £>0. (4.4.39)

1]

We have already imposed the condition that #(z) must vanish for 2 — oo.
Furthermore we have chosen a particular form for the solution for z < 0. Thus,
the incoming wave A e*'* has been given an amplitude A.

4.4.1 Boundary Conditions

In most scattering problems in one dimension it is more convenient to match
logarithmic derivatives

1 dy
v de
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rather than ¢ and dv/dz separately. This is because the normalization constants
then cancel. In our case matching

1dy
¥ dzx
yields:
ik1(1-R)
1+R

This is an equation for R. So,

atz=0

=—ky . (4.4.40)

_ky—iky

Tk tiky
Now, matching ¢ at z = 0 gives

2k,

ky+iky
Notice that we still have one free parameter, say A . This corresponds to the fact
that we are free to specify the flux of incoming particles, i.e. we can normalize
¥ to yield the correct incoming flux. Before discussing the physics of this case

we solve another case. We then discuss the physics for both these cases.
Case 2.

Uy <Us < k. (4.4.43)

(4.4.41)

S=1+R=

(4.4.42)

In this case we can have particles incident both from the left and right unlike
Case 1 where particles were incident only from the left. Our theory, however, is
linear and therefore we can consider the two cases (particles from the left and
particles from the right) separately and superimpose the results. Physically this
corresponds to the fact that particles coming from the left and from the right
scatter independently from the potential. This means that we are omitting any
possible interactions between the particles.

4.4.2 Particles from the Left

Suppose we normalize the flux coming from the left so that the incident wave is
¢*%_ Then the solution of the Schrodinger equation under condition (4.4.43) is:

,¢) — eik‘x +Re-ik11 r< 0

v o= Se*T e>0. (4.4.44)
In this case

o= K-l

ko= kK -U,. (4.4.45)

Equating logarithmic derivatives at z = 0 gives:

ik =ik R
H——R = 1k2 . (4446)



70 CHAPTER 4. ONE-DIMENSIONAL PROBLEMS

Hence
k1 — ks
R= 4447
ki + ko ( )
or
R=YEVi-vE_ 1 (4.4.48)
_\/E—Vl-}-\/E—Vz‘ -
Furthermore, equating the wave functions at z = 0 yields
2k,
S=1+4R= . 4.4.49
+ ky+ ko ( )

R gives the amplitude of the reflected wave, S gives the amplitude of the trans-
mitted wave. We have to multiply |S|? by appropriate velocity factors to get
the actual transmitted flux. This we do later.

If instead we had started with a beam of particles incident from the right
instead of the left we would look for a solution of the form

Y = e%HT 4 Retkr 55
Semthiz g <0 (4.4.50)

and impose continuity of ¥ and dy/dz at 2 = 0 to solve for R and S.

We now turn to an examination of the!physics involved in these solutions.
To do this we rewrite the solutions slightly and compare them with the classical
problem.

Case 1.

N<KE<V,. (4.4.51)

As we have already stated, classically this|corresponds to a particle of energy
E = (K*k*/2m) incident from the left with velocity v = hk;/m. At z = 0 it
bounces elastically off the potential V, (i.e. it receives an impulse) and starts
to travel back towards £ = —oo with the original velocity v; .

We now examine the quantum mechanical case. The biggest difference be-
tween the classical and quantum mechanical description lies in the fact that
classically the particle can never enter the region £ > 0 where V5 > E. In this
case we would have

E=T+V,<Vy (4.4.52)
where T is the kinetic energy. This would mean
1
T= 5mu2 <0 (4.4.53)
and cannot occur. On the other hand, quantum mechanically we see that 1 # 0

for £ > 0 . In fact ¢ is only damped exponentially. We now examine the second
case.
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Case 2. Both classically and quantum mechanically there are two possible
motions in this case. The particles can be incident from the left or the right.
We discuss only the former case.

Classically the particle is incident from the left with a velocity

_th

v = (4.4.54)

m

experiences a sudden change in velocity at £ = 0 (an impulse) and continues to
the right at a velocity

- (4.4.55)

m

Quantum mechanically this motion is described as follows. We have

e*17 4 Re=thir 5 <0
11) - { Seikza: z> 0 (4456)
where, as we found earlier
ki — ko
= ) 4.4.57
ky+ k2 ( )

Thus, unlike the classical case, there is now a non-zero probability that the
particle is reflected at the discontinuity in the potential. This is similar to light
hitting a window pane, some is transmitted and some is reflected.

In order to get a better understanding of the two coefficients R and S we
return to our concept of probability current. Recall that the probability density
is given by

p=V"V =¥ (4.4.58)
and the probability density current is given by
. _ —ih * *

As we saw earlier (section 3.3) these quantities satisfy the conservation law

Op .
E+v._]_0 , (4.4.60)

the equation of continuity. It is this equation that puts us finally in a position
to interpret the coefficients R and S.

4.4.3 Interpretation of R and §
We have the solution

Yo = ef1T L RemthiT if 2 < ()

¥(z) = { bs = otk £z 0 (4.4.61)
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where
ky — ks
= 4.4.62
ky + ko ( )
2k,
_ . 4.4.63
kl +k2 ( )

Throughout this problem we have velocities v; given by v; = (kk;)/m. If we
compute the probability density flux j for £ < 0 we get

. 0 0
i) = g (v 5 v )

— __217% [(e—iklz +R* eikw) lkl (eikw - Re-iklz)]

ih

+% [(eikl:v + Re-—ik;z‘) (—lkl) (e—ik,z - R eiklx)]

— & [1 _ Re—izk,z‘ +R* ei2k‘.r _ |R|2]
m

+% [1 4 Reithiz _ e githar _ |RI2] (4.4.64)

or

ty —[1-|R]=v - w|R[. (4.4.65)

i®) =
Thus, for z < 0 we have a flux v; to the right and a flux vi|R|? to the left.
This has the nice interpretation that |R|?|is the fraction of the flux reflected
and hence |R|? is the reflection probability| R.
For & > 0 we get

@)= - % [57 &= (iky) 5 ¢h3¢]
+ -2% [S €27 (—iky)S* e~27] (4.4.66)
or
i) = 2P = vy 5[ (44.67)
This can be rewritten as
i@) = '”‘1 k2|S|2 f|5|2 . (4.4.68)
The fraction of the incident flux transmitted is therefore given by
1";1'5'2 k2 wlsP (4.4.69)

Thus, the transmission probability 7 is

T= —|S|2 (4.4.70)
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As a check we have that a particle is either transmitted past the potential step
or reflected. Thus, we need to find that

T+R=1. (4.4.1)
But this gives

ky [ 2k >2 (kl - k2>2 dkiky + (kg — ky)?

—£ = =1 4.4.72

3 (k1+k2 Tk (k1 + k)? (4472)
as required.

Returning to Case 1 where k% < U we find that the transmitted current for
z > 0 is zero. On the other hand the reflection coefficient R is given by

ky — ik |?

=|R|*=
R=IR ky + ik,

(4.4.73)

This clearly shows that, even though the beam penetrates into the classically
forbidden region, all of the beam is reflected, just like in the classical case.

4.5 Finite Square Well: Bound States

Unlike the case of an infinitely deep square well (a particle in a box) we now
look at a finite potential well.

_ 0 if |z]|>a
U(:c)—{ U if biea (4.5.74)

where U > 0. For bound state problems we call
5 2m|E| 2mE
K= -

T TR T TR (4.5.75)

since £ < 0 and

2m(E+U

—(m—l =k?. (4.5.76)
Thus, the Schrodinger equation (4.1.8) becomes

%

W — K 'w =0 |Z‘| > a

&

— = . 4.5.

dx2+k1/) 0 J|z] < a (4.5.77)

Clearly the potential is symmetric under £ — —z. This means that the Hamil-
tonian does not change under parity and we can look for even and odd parity
solutions. Furthermore we want fjom [#|>dz to represent the probability of
finding the particle somewhere since |¢|? is the probability density. So,

/m |2 de=1. (4.5.78)

—0Q
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In order that (4.5.78) be possible it imposes the restriction that t(z) vanishes
as £ — £0o . Thus, we get the following two classes of solutions.
Even parity

Aer® z<—a
Y4(z)={ Bcoskr |z|<a . (4.5.79)
Ae™™ z>a
0Odd parity
Ae*® z< —a
Y_(z)=¢ Bsinkz |z|<a . (4.5.80)
—Ae™ z>a

From the differential equation (4.5.77) it follows by integrating about the
points £ = +a that both ¢ and dv//dz are continuous at these points. There-
fore, imposing continuity of the logarithmic derivative we obtain
Even parity

k = ktanka (4.5.81)
and

A= Be" coska. (4.5.82)
0Odd parity

k =—kcotka (4.5.83)
and

A=—-Be* sinka. 4.5.84)

In either cases it requires numerical or graphical techniques to determine the
energy eigenvalues. For example, setting

ka=2z and ka=y (4.5.85)
we get
22+ = (K + kY’ =Ud® (4.5.86)
or
2ma?
P ty=—U=R. (4.5.87)

In addition the two eigenvalue equations are:
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Case 1:
rtanz =y (4.5.88)
and
Case 2:
zeotz = —y . (4.5.89)

It is now an easy matter to solve these equations graphically or numerically.
If [£] << 1 we can also get an approximate solution for Case 1 since then

?xy 224y =R2. (4-5.90)
So,
v+y-R'=0 (4.5.91)
and
YR —-;-:}: %\/1%-41%2 . (4.5.92)
Only the + sign applies. Furthermore R? < 1 so we get
1
y~ 5[1 +2R*- 1]~ R?. (4.5.93)
But
2mE
y=kKa= —r (4.5.94)
Therefore,
K2 R*
E=-—— .5.95
e (4.5.95)

and substituting back all the values

2ma?

E= W

Ut (4.5.96)

This is an approximation for the lowest eigenvalue. For values of the numerical
solution see the book by L. Schiff [4.1].
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4.6 Tunneling Through a Square Barrier

Classically a particle is never found in a region in which V' > E, but as we saw
previously, in the quantum mechanical case there is a non-zero probability of
finding a particle in a classically forbidden region although the wave function
decreases exponentially the further we penetrate into the forbidden region. If
the forbidden region is not too broad, the tail of the wave function can penetrate
part of it and thus, it is possible for a quantum particle to penetrate a potential
barrier. This is known as tunneling. To illustrate this, consider the following

problem.
We have a potential
_ [ W>0 0<z<a
Viz)= { 0 z<0orz>a. (4.6.97)

A wave e** (corresponding to a particle of definite momentum hk) is incident
from the left. We assume

R2k?

E=—<V. 4.6.98

2m <Y ( )
Thus, the region 0 < ¢ < a is classically forbidden and a classical particle
incident from the left would simply rebound elastically in this case. In the
quantum mechanical case we must solve the Schrodinger equation which can be
written

%+k21/1 = 0 z<0orz>a

%-nz«p = 0 0<z<a (4.6.99)
where

K2 = %’—;’-(vo -E). (4.6.100)

The solution for # < 0 is dictated by the physical boundary condition that we
have an incoming wave (whose amplitude/ we are free to choose and therefore
set equal to 1) plus a reflected wave

v=e* 4 Re™* £ <0. (4.6.101)

Also, for > a we have a purely transmitted wave travelling to the right. Here
we have chosen the physical condition to ¢orrespond to no wave incident from
the right.

v=8e* r>a. (4.6.102)

The transmission coeflicient 7 is given by

T= %ISIZ =|5]%. (4.6.103)
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Also, for 0 < £ < a we must take the most general solution so that we have
Yp=Ae"”+Be™ 0<z<a. (4.6.104)

We now match the wave function and its derivative at both z = 0 and = = a.
z2=0

1+4R = A+B (4.6.105)
ik(1-R) = k(A-B) (4.6.106)
z=a
Se*® = Ae" 4 Be "0 (4.6.107)
ikSe** = k[Ae™ +Be "] . (4.6.108)

We can solve these four equations in four unknowns. However, only R and S
are physically interesting. We get:

%k = A(x+ik) - B(x — ik) (4.6.109)
0 = Alk—ik)e™® — B((k + ik)e~"® . (4.6.110)

Thus,
A = Zik(x + ik) (4.6.111)

(K + ik)? — (k — 1k)2e2%a
%ik(x — ik)eno

B = (hl + 1]{?)2 — (n - ik)262na . (46112)

Now,
1 , .
R = ﬂ[—A(n—zk)qLB(n—Hk)]
—ika
S = W[A(K+ik)e“ + B(k —ik)e™"%] . (4.6.113)

Substituting for A and B yields:
(K2 + kZ)(ena __e—na)

T (et ik)2era — (k= ik)2era (4.6.114)
or
_ (k% + k) sinh ka
= (k% - K2) sinh ka + 2ikk cosh ka (4.6.115)
Similarly,
2k —ika
5= o : (4.6.116)

(k? — k?)sinh ka + 2ikx cosh ke
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The transmission coefficient 7 is therefore/given by:

4k2 2

T=1|5?%= . 4.6.117
1 (k2 — k2)2sinh® ka + 4k2k2 cosh? ka ( )
using cosh? ka — sinh? ka = 1 we can rewrite this to read
4k2x?
T = . 4.6.118
(k2 + k2)2sinh® ka + 4k2x2 ( )
Expressed in terms of the energy this reads
T=1+4 —W——sinh2 Ka B (4.6.119)
' TaEW - B) >
where as before
2
k2a? = 2%“— (Vo-E) . (4.6.120)

Thus, the transmission coefficient decreases exponentially as the width of the
barrier increases. Also, as E — 0o, T — 1 so that we get complete transmis-
sion. Again, as a check we have

T+R=1 (4.6.121)
where
R =|R). (4.6.122)

Thus, the beam is either reflected or transmitted.

4.6.1 Resonance Transmission

The derivation above remains valid even'if E > V5 . In this case the only
modification required is that we replace Vo — E by F — V} so that & becames
imaginary and we replace it by ¢K. This means that the transmission coefficient
becomes

T
T=[1+ IEE -V sin®Ka| . (4.6.123)
It now follows that if Ka = nm n=1,2,... then
T=1 (4.6.124)

so that all of the beam is transmitted. This is known as resonance transmission.
Notice that the resonance condition, Ka = n, when written out gives energies

2,2

h
En=Vo+ 2m—’;2 n? (4.6.125)

which, except for the additive constant Vj are the same as the energies for a
particle in a box of width a.
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The physics behind all this is very nice and we now discuss this. The com-
plete reflected wave is a superposition of the wave reflected at z = 0 and the
wave reflected at £ = a. The optical path difference is therefore 2Ka. This does
not yet give the total phase difference between the two waves since the wave
relected at z = a is reflected at an optically more dense medium ! and acquires
an additional phase change of w. Thus, the total phase difference between the
two waves is 2Ka + 7. To have no reflected wave, these two waves must inter-
fere destructively this requires that the phase difference be an odd multiple of
7. Writing this out we get

2Ka+7m=(2n+ . (4.6.126)

But this is precisely the condition we obtained above for resonance transmission.

4.7 Time Reversal

In the previous sections we found that the use of mirror symmetry, or parity,
greatly facilitated the computation. There is another discrete symmetry which
is frequently useful, it is called time reversal. Imagine a system such as perfectly
elastic billiard balls on a frictionless surface. In viewing a movie of the collisions
of these billiard balls we are unable to tell whether the movie is running forwards
or backwards; the motions obtained by reversing the direction of the film or
time, are equally physically possible. ‘We state this by saying that the system
is invariant under time reversal. To examine this a little more closely we first
consider the following classical transformation T' which maps ¢ into —t. So,

Tt=~t . (4.7.127)

From this it then follows that if the motion is reversible then

Tx(t) = x(—t) = x(t) (4.7.128)

Tp(t) = p(-t) = —p(t) (4.7.129)
and

TV(x) =V(x). (4.7.130)
Thus, if we have a system with a Hamiltonian

H= é%pz +V(x), (4.7.131)

and we change ¢ to —t then we obtain, as equations (4.7.128) to (4.7.130) show,
the same Hamiltonian. This means (classically) that if a possible motion of the
system (solution of the equations of motion) is given by (x(t), p(t)) then another

Medium A is optically more dense than medium B if the wavelength in medium A is less
than the wavelength in medium B
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possible motion is given by (x(—t), p(—t)). [This is one way to sometimes obtain
new solutions from old ones.

We now look at this from the point of view of quantum mechanics. The
Hamiltonian (4.7.131) which is invariant under the transformation (4.7.127), is
our starting point. The time-dependent Schrédinger equation reads:

v
PLAIUL) B (47.132)
ot

If we complex conjugate this equation and then do the transformation

t=st =—t (4.7.133)
we find

Lovr (-t z .

zh——(at—,-—) = HV* (-, z) (4.7.134)

where we have used the fact that H is invariant under ¢ — —t. Dropping the
primes we see that ¥*(—t, z) satisfies the same Schrodinger equation as ¥(2, z).
We therefore define the action of the time reversal operator T on ¥(t, z) by

(T9)(t, z) = ¥* (-, ) (4.7.135)

and TV is a solution of (4.7.132) if ¥ is a solution. This operator is anti-linear
due to the complex conjugation. Thus, if A is a complex number we find

T(\F) = A T¥ . (4.7.136)

The operator T acting on other operators such as  and p has the following
property

Te =2T (4.7.137)

Tp=—pT (4.7.138)
and for the Hamiltonian (4.7.130), as we saw

TH = HT . (4.7.139)

This particular way of implementing time-reversal is called Wigner [4.2] time-
reversal.

4.8 Problems

4.1 An electron has an energy of 10 eV. For which of the following potentials
will a classical approximation be valid?
a) A step function of height 10 eV, 0.1 eV, 1073 eV.
b) A potential V = V; exp[—z2/a?] with Vp = 100 eV a = 10~ cm, 107
cm, 1073 cm, 1.0 cm.
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4.2 A beam of particles of mass m moving from left to right encounters a sharp
potential drop of amount V. Let E be the kinetic energy of the incoming
particles and show that the fraction of particles reflected at the edge of
the potential (located at z = 0) is given by

(m-\/ﬁz
VE+V%+VE]

In view of this result, what will happen to a car moving at 10 km/hr if it
meets the edge of a 200 m cliff? Is this answer reasonable? If not, why
not?

4.3 A particle moving in one dimension interacts with a potential of the form
V(ig)=0 |z|>a

Yo

2a

=
&
I

lz| < a .

Find the equation determining the energy eigenvalues of this system. Solve
it approximately assuming a is very small. What happens in the limit
a—0?

4.4 The wavefunction of an electron in the ground state of a hydrogen-like
atom is
— —Zrfa _ __hz_
¥(r) = Ae ) 4=
where Z is the charge on the nucleus.
a) Determine the constant A, so that the wave- function is normalized to
unity. Remember that you are in three dimensions and r represents the
radial variable in spherical coordinates.
b) At what distance from the origin is the probability of finding the elec-
tron a maximum?
c) Determine the average value of: the kinetic energy, the potential energy
and the total energy.
This verifies the virial theorem for the Coulomb potential.

4.5 Show that the wavefunction for a particle in a bound state may always be
chosen to be real. By computing the current density give an explanation
of the physical meaning of this result.

4.6 We found that for a particle in a box with sides at z = %a the eigenfunctions
and eigenvalues were:
5 h2r?
2ma?

Gin=Ancos[(n+1/9) 7] | Eypn=(n+1/2)
a
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5 h2n?
=n .
2ma?

Y_n= By sin[nﬂ%] , E_n

If we have a particle in such a box and its wavefunction at time ¢ = 0 is

given by
¥(0,2) = 7z sinls ]
,Z) = \/asm "
find ¥(t,z) .

4.7 Find the energy levels and wavefunctions for a particle in the potential

_JO0 if z<0,z>a
V(z)‘{vo if 0<z<a

4.8 If a particle, in a box with sides at # = +a, is in a state described by the
wavefunction

f(z) = Acos(mz/2a) + Bsin(nz/a)

a) Choose A and B so that the particle is in the lowest possible energy
state.
b) Choose A4 and B so that the state has parity = +1 .

4.9 A beam of free particles with intensity [N particles per second and energy E
is incident on a potential. Find the number of particles that are reflected
in one second. How many particles per second are transmitted?

4.10 A beam of free particles with intensity Ny, particles per second and energy
Ej is incident from the left on a potential

_J 0 if 0<z<a
V(x)_{oo if £<0,z2>a

At the same time another beam of free particles with intensity Ng particles
per second and energy Eg is incident from the right. Calculate the total
particle current travelling to the right.

Hint: The waves from the left and right are completely independent and
their scattering from the potential can be handled independently.

4.11 The Ramsauer-Townsend Effect
Consider scattering of a particle with energy E > Vy > 0 from a potential

Vo if <0
Viz)=¢ 0 if 0<z<a
Vo if z>a
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Show that if the wavelength of the particle in the region 0 < z < a is such
that nA = a then no reflection occurs.

The actual Ramsauer-Townsend Effect was observed in the scattering of
electrons off atoms of the noble gases since due to their closed shell con-
figurations these atoms have very sharp outer boundaries.

4.12 For the one-dimensional Schrodinger equation with potential V(z) and
any two independent solutions u(z) and v(z) , corresponding to the same
energy, show that the Wronskian

W(z) = u'(z)v(z) — u(z)v ()

is a constant.

Hint: Write out the Schrédinger equation for the two solutions and mul-
tiply each of the equations by the other solution. Use this to obtain a
differential equation for W.

4.13 Consider a repulsive potential V(z) > 0 such that it vanishes outside a
finite region a < ¢ < b . Show that the reflection coefficient is the same
for a particle incident from either the left or the right. Assume that the
solutions in the interval a < z < b have been normalized such that their
Wronskian (see problem 4.11) is 1.
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Chapter 5

More One-Dimensional
Problems

5.1 Introduction

We continue our familiarization with the Schrédinger equation in this chapter.
To understand how boundary conditions lead to discrete eigenvalues we begin
with a qualitative discussion of the bound state problem. We then consider one
of the most important solvable problems in both classical and quantum physics,
the simple harmonic oscillator. We intraduce this problem and solve it, for
the first of several times, at this stage. In preparation for later needs we also
introduce the concept of the delta function. To gain familiarity with it we solve
two problems with it. These serve to illustrate that delta-function potentials
are really a form of boundary condition. Finally we again consider scattering
from a potential well and construct parity invariant solutions. This allows us to
introduce the concept of phase shifts.

5.2 General Considerations

Before proceeding with a study of several more specific cases we pause and con-
sider the one-dimensional bound state problem quite generally. The procedure
will be heuristic but will hopefully give some insight. As always we start with
the Schrodinger equation.

B2 4%y

o 4z +Vy =E¢ (5.2.1)

and rewrite it in the now familiar, canonical form

d2
ﬂt’f‘ (24U =0 (5.2.2)

84
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since we are interested in the case where U is a potential well U < 0 and
~k% = (2mE)/h? < 0. Furthermore, ¢ is chosen to be real since we have real
boundary conditions ( ¥ — 0 as ] = o). Another property of the potential
is that it is short range. This means U — 0 for |z| = co. Thus, for large = we
have:

d%yp

== Ky (5.2.3)
so that

Y(z) e for z large (5.2.4)

YP(z) = e*  for — z large. (5.2.5)

It is precisely these condition that lead to the quantization of energy levels
as we now show. In fact the condition that ¢ has to be square integrable is
what makes this an eigenvalue problem and gives a discrete set of eigenvalues.
Consider again equation (5.2.2)

dy

= (K +U)p. (5.2.6)
and suppose we are in a classically permitted region so that U — k% = —k? < 0.
Then,

d*p

— = k2 5.2.

dz? v (62.7)

in this region. Furthermore, if 4/ > 0 then (5.2.7) states that d%y/dz? < 0 so
that ¢ curves downwards as shown in figure 5.1. On the other hand, if ¥ < 0

¥(z)

Figure 5.1: The classically permitted region with ¢ > 0.

then d%4/dz? > 0 and 4 curves up as shown in figure 5.2. Thus, in the classically
permitted region, ¢ always bends towards the z-axis and the behaviour may be
described as oscillatory.

Suppose the classical bounds are given by £ = —a , z = b. Thus, U = «? at
z = —a and ¢ = b as shown in figure 5.3. Then, —a < z < b is the classically




86 CHAPTER 5. MORE ONE-DIMENSIONAL PROBLEMS

P(z) |a

Figure 5.2: The classically permitted region with ¢ < 0.

U(z)

—a b
|
I
I
[

./
_/ €

Figure 5.3: Classical turning points.

permitted region and in this region ¢ is “oscillatory”. In the classically forbidden
regions ( z < —a and 2 > b ) we have

d%y

dz?
and ¢ curves away from the axis. Now consider a solution as shown in figure 5.4.
The solution is oscillatory between —a < z|< b and curves away from the z-axis
for b < z < —a, but goes to —oco as |z| increases. This solution has exponential
growth rather than decay and is not square integrable and hence not physically
acceptable. If k2 is a little smaller, then ¢ oscillates a little more slowly in the
classically allowed region —a < z < b. In this case we may get a solution of the
form shown in figure 5.5. Again the growth for large |z| is exponential and the
solution is unacceptable. On the other hand, it is possible to choose a value of
k? between the two values just considered o that ¢ behaves as shown in figure
5.6. In this case for large || the wavefunction 1 is exponentially damped. Note
that the value of k% so chosen means that the energy E is fixed. Thus, for a
given number of nodes in the classically permitted region we get a fixed value

= k% (5.2.8)
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Figure 5.4: Solution for an energy that is slightly too large.

of the energy F and hence quantization.

Next we study several problems which besides being soluble are of intrinsic
physical interest. The first of these is the simple harmonic oscillator. This is a
problem that crops up over and over again in many different contexts.

5.3 The Simple Harmonic Oscillator

The Hamiltonian for this problem is

2
P L
H= o + 2k:c . (5.3.9)
This gives us the time dependent Schrodinger equation
., 0¥
zhﬁ = HV. (5.3.10)
or
ov B 41
h— = ——— + kz? | ¥ . 3.
1hat < dez2+2z> (5.3.11)
For the stationary states we put, as usual
U(t,z) = e~ B/ hy(z) (5.3.12)
and then the time independent Schrodinger equation reads
R 42 1 .,
<_%W + Ek.’l‘ ) v=FEy. (5.3.13)

As in the case of the square well we introduce dimensionless variables. To
this end we set w = /k/m = the classical frequency. Also, we set

pE (5.3.14)
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Figure 5.5: Solution for an energy that is slightly too small.

_(mk 1 [ (5.3.15)
y=1\ 72 r=g[5E 3.

and
$(2) = u(y) . (5.3.16)
Then, the time independent Schrédinger equation (5.3.13) becomes
d*y 9
—-— - =0. 3.1
Y=o 6317

Since we are looking for bound states the solutions must be damped for y = +o0.
To ensure this we therefore first look at the asymptotic behaviour of u. For |y|
large we can neglect . Then,

dz

Ey% ~ . (5.3.18)
This yields that

un e/ (5.3.19)

Obviously, for a square-integrable u, we must choose the asymptotic solution
with the minus sign. To solve the problem we now use the polynomial method
of Sommerfeld [5.2]. Thus, we set

u=Hy)e /¥ (5.3.20)

and look for the equation satified by H(y). When (5.3.20) is inserted into
(5.3.17) the resultant equation is
d*H dH

o7 Wy t-DHE=0. (5.3.21)
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Figure 5.6: Bound state solution.

We solve this equation using the method of Frobenius by expanding the function
H in a power series

Hiy) =) any" . (5.3.22)
n=0

Substituting this expansion into (5.3.21) gives:
Z[n(n = 1)any* ™% = 2na,y" + (1 — 1)a,y"] = 0. (5.3.23)
n=0

For n # 0,1 we can replace n by n’ + 2 in the first term to get
Y U0+ 2)(n' + Danryz = 20'an + (1 — Dan]y™ = 0. (5.3.24)
n'=0

Hence, since the different powers of y are linearly independent, we get

n+1-p
an+2=(

—0a, n=0,1,2,3,... . 5.3.25
n+2)(n+1)a n=190 3 ( )

This allows us to express

a2 in terms of ag ,

ag in terms of a; ,

a4 in terms of a5 ,

as in terms of a3 , and so forth.

The two constants ag and a; are arbitrary. Furthermore, the Hamiltonian is
invariant under the parity transformation that we introduced in section 4.3.
Just as the parity operator was very useful for the square well considered in
that section it is also very useful here since we find that it commutes with the
Hamiltonian.

PH=HP . (5.3.26)
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Therefore, the eigenfunctions of the Hamiltonian H may be chosen to be either
even or odd functions. For ag = 0, a; arbitrary we get odd solutions. For
_ay =0, ap arbitrary we get even solutions. | Thus, these are solutions of definite
parity.
If we now consider the recursion relation (5.3.25) for large n we find that

2
n+2

an . (5.3.27)

Ap42 N

However, if we expand

=) %;ﬁ“ , (5.3.28)
the coefficient b, of ¥ is
by = —— (5.3.20)
(n/2)!
and
1 1 2

b
0,

(5.3.30)

ﬂ:

— —_ b
btz = /2+1) " (n/2+1) " nt2 "

Thus, unless the series (5.3.22) terminates, H(y) behaves asymptotically as eV’
so that u behaves like e¥’e~¥*/2 = ¢¥*/2_ This behaviour is unacceptable. Thus
the series (5.3.22) must terminate. Note that this is the condition for u to be
square integrable and leads to quantization| For the series to terminate requires
that one of the a,, vanish. This will automatically happen if u is an odd integer

p=2N+1. (5.3.31)

Then, an+2, N +4, aN+s, etc. vanish. Thus| we have the quantization condition.
Substituting back for u we get the quantized energy levels

En=(N+1/2)hw . (5.3.32)

Except for the additional 1/2 hw this is Planck’s original assumption for the
elementary oscillators of the electromagnetic field. There is a simple way to
generate all these polynomials satisfying equation (5.3.21). With their normal-
ization chosen in this way they are called hermite polynomials.

5.3.1 Generating Function for Hermite Polynomials
The function
S(t,y) = et +2 (5.3.33)

is called the generating function for the hermite polynomials because as we now
show

0

S(t,y) =M =" —Hy(y) . (5.3.34)

n=0
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To see this we simply differentiate both sides of this equation and show that the
functions H, defined by this relation have to satisfy (5.3.21), the equation for
the hermite polynomials with 4 = 2n + 1, where n is an integer. Thus,

65 _t?+2¢ > 2tn+1
@ = 2te y=Z ol Hn(y)

n=0

Y, gH;(y) ) (5.3.35)
n=0

Equating equal powers of ¢t we find

Hy(y) = 2nHa1(y) - (5.3.36)
Also,
as _ = (=2t + 2y)t"
—67 = (—2t+2y)e t2+2ty:Z_—__( ! y) Hn(y)
n=0 '
el tn-—l
= Hy(y) . 5.3.37
> Gt (53.37)

Again equating equal powers of ¢ we get

Hoy1(y) = 2yHa(y) — 2nH,1(y) . (5.3.38)

The simplest (lowest order) differential equation involving only H,(y) that can
be obtained from (5.3.36) and (5.3.38) is precisely (5.3.21). Thus, the functions
Hu(y) defined by the generating function (5.3.33) are precisely the hermite
polynomials. The first five are listed below.

Ho(y) = 1

Hily) = 2

Hy(y) = 4y°-2

Hy(y) = 8°-12y

Hy(y) = 16y* —482 +12.

5.3.2 Rodrigues Formula for Hermite Polynomials

We again start with the generating function and realize that it may also be
written as

2

S(t,y) = e 2 = o’ ~(t-0)" (5.3.39)

oS

It therefore follows that
== eV’ %e-('-v)’ =—¢¥ (-%e-(‘—y)’ : (5.3.40)




92 CHAPTER 5. MORE ONE-DIMENSIONAL PROBLEMS

Repeating this n times we get

‘;t_f =¥ 56‘56"("”)2 = (-1)"e’ a%e-("w’ : (5.3.41)
This may be rewritten to read
Hm(y) m-n n_y? an —(t-y)?
Z(m_n)!t = (-1)"¢ e (t-v" (5.3.42)

If we now set ¢ = 0 the only term that survives in the sum on the left hand side
is the term with m = n. Thus, we get

n y? v _ 2
Hn(y) = (—1) Cy -dFE y . (5343)

This is a Rodrigues formula for the hermite polynomials and is extremely useful.

5.3.3 Normalization
To normalize the wavefunctions
Un(y) = An Ha(y) eV’ /? (5.3.44)

we can use the generating function. Thus, we want to evaluate

/ " @) Haly) e dy.

—-00

To this end we multiply the generating function with itself and integrate to get

00
2 2 2
/ —t +2ty -3°42sy e~ Y dy

Z :,7:' / eV dy. (5.3.45)

n,m=0
The integrand on the left hand side may be rewritten to read

2
e—(t+s—y) o2t

So, this integral is just a Gaussian integral and yields
[0 0]
2ts)"
Vre =yr )y (—f"—)- . (5.3.46)
n!
n=0
Therefore, equating powers of ¢ and s in the sums we have

[00]
/ Ha()Hm(y)e™¥ dy= /72" nlbym . (5.3.47)

So the normalized eigenfunctions are
1 1

—_ = —y2/2
u"(y) - 7]_]/4 \/W Hﬂ(y) € . (5348)
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In terms of the unscaled variable z this becomes

141 )
1/),,(:):(%) mﬂn(,/mu/hx)e-<mw/h)x/2. (5.3.49)

We do not pursue the properties of the hermite polynomials any further
since in section 9.1 we again solve the Schrodinger equation for the harmonic
oscillator problem in a completely different way and there the normalization of
the wave-function as well as other properties can be obtained in a much easier
fashion.

Why is the simple harmonic oscillator (S.H.O.) so important? Aside from
the fact that it can be solved in closed form, it provides a possible means of
quantizing fields, for example, the electromagnetic. Furthermore, as we shall
see later, the hermite functions H,(y)exp(—y?/2) are particularly convenient
to work with. As a consequence they crop up in a large number of “practical”
applications.

Another use of the S.H.O. is for estimating the ground state (lowest) energy
of a system. This works well if the potential is smooth. Consider the potential
shown (figure 5.7). Near the bottom, the potential is closely approximated by

\ / 1/2k(z - a)? -V

— — ground state energy
Vo

Figure 5.7: Simple Harmonic oscillator approximation for the ground state.

a parabola. This is in fact what a S.H.O. is. Thus, in the case shown the
ground state energy is closely approximated by 1/2 fw — V. To get the “spring
constant” k we simply find the point z = a where V(z) is a minimum and
evaluate k = d?V/dz?|;=,. This is an extremely simple method for obtaining
an estimate of the energy for low lying levels in the case of a complicated but
smooth potential.

5.4 The Delta Function

There is one more class of potentials that occurs fairly often in practice due to
the extreme simplicity of the solutions of the corresponding Schrodinger equa-
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tion, the so-called delta function. This function plays a large role in later dis-
cussions and we therefore introduce it at this stage. Properly speaking, it is not
a function at all and we define it rigorously in Chapter 7. For the time being,
however, the following definitions suffice.

Definition
z)=0 =z#0
() is so singular at z = 0 that
b
[ 1318z = 500 (5450

whenever the interval (a,b) contains the origin.
The following integral representation is|also valid for d(z)

1 [* .
8(z) = — e dk 4.51
(z) 27"‘/-006 (5.4.51)
where the integral is to be understood as
T _1__ ® iko—ek?
§(x) = El_lf& o /_w € dk (5.4.52)

and the limit is to be taken only after the delta function has itself been integrated
with a smooth function. Thus, for example

/ f(2)6(a)dz = % / / % f(2) da dk
_ L / ” f(k) dk
- 27[. oo ()
= f(0) (5.4.53)
where
F(k) = / f()e* da (5.4.54)
is the Fourier transform of f(z). The inverse transform is given by
f(z) = L / Fk) e~ dk (5.4.55)
2T J_o
so that clearly
1 [® .
70) = - /_ . (5.4.56)

Again, a rigorous proof of all these relations is delayed until Chapter 7.
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Some of the more commonly used properties of the delta function (see prob-
lems 5.8 and 5.9) are listed below.

/—Z f(z)é(z — a) dz = f(a) (5.4.57)
Mu):%ﬂﬂ (5.4.58)
f(z)dé(z — a) = f(a)d(z — a) (5.4.59)
/;00 3z — y)o(y — 2)dy=4(z - 2) (5.4.60)
§(e? —a?) = ﬁ[é(z —a)+é(z+a). (5.4.61)

With these preliminaries out of the way we are ready for some examples.

5.5 Attractive Delta Function Potential

We want to find the bound states for the Hamiltonian
2

_F_
H=7—-A) , A>0. (5.5.62)

The corresponding Schrédinger equation for the bound states is

Hy = Ey (5.5.63)
with £ < 0. Written out explicitly this reads:
R d2
o T Ai(z)| ¥(z) = E9(z) (5.5.64)
or
d%
Froie &2 = a8 (z)(x) (5.5.65)
where
2mE
Icz = —-—ﬁ-z-— >0 (5566)
and
2mA
az = —h—z— >0. (5567)
Thus, for = # 0 we have the Schrodinger equation
dZ
LR (5.5.68)

dz?
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with the solutions

Y(z) = Ae™ z>0
P(g) = Be™ <0 (5.5.69)

where we have already used the fact that ¢ must be square integrable and
therefore vanish at £ — too. We must also choose ¥(z) to be continuous at
z = 0. This gives

A=B . (5.5.70)

However, the derivative of ¥, say ¢/, is discontinuous at £ = 0. This discon-
tinuity can be computed directly from the|Schrédinger equation (5.5.65). For
this purpose we consider the expression

€ d2

im [ Y = ¥'(0+) — 9" (0+)

e~0+ /_, dx?

lim [ /_ () dz—o? [ (2)d(e) d:c]

=04 —c

—a?9(0) (5.5.71)

where we have used the fact that (04) = %(0—) . Thus,

¥'(0+) = ¥'(0-) = —a®9(0) . (5.5.72)
Substituting the solutions equation (5.5.69) we get:
—kA— kA= —a’A (5.5.73)
or
A
K=o’j2= T (5.5.74)

But, since E = —(h%x2)/2m | we therefore get

mA?
E= o (5.5.75)
So the attractive delta function has one bound state with the above energy. The
corresponding normalized wavefunction is

¥ = re "l (5.5.76)

The main point of this problem was to show how to handle the delta-function.
We now consider the corresponding scattering problem, but for variety we choose
a repulsive delta function.
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5.6 Repulsive Delta Function Potential
In this case the potential is
V(z)=Ad(z) , A>0. (5.6.77)

As before the wavefunction ¥ is continuous at £ = 0 and has a discontinuity in
its first derivative at z = 0. The Schrédinger equation can be rewritten to read

d2
ey i 61)

where k* = 2mE/R? and o? = 2mA/k?. If we call the solution for < 0, ¥¢
and for £ > 0, v then the matching conditions at = 0 are

¥<(0) = ¥5(0)
ve(0) = ¢5(0)—a®¥5(0). (5.6.79)

Since for £ # 0 the Schrodinger equation reduces to the equation for a free
g q q

particle, the solutions are e***2. If we start with a particle incident from the

left we have

Y (z) = €5 4 Re~%® (5.6.80)

¥y (x) = Te'*® (5.6.81)
where we have used our freedom in choosing the amplitude of the incoming wave
as well as the physical requirements that for z > 0 we have only a transmitted
wave. Using the matching condition at # = 0 we now get

1+R=T (5.6.82)

ik —ikR = (ik = o))T . (5.6.83)

The solutions of these equations are

aZ

2ik
—_— m . (5.6'85)
The transmission and reflection coefficients 7', R are then given by
4k?
— |72 =
T_ lTl - 4k2+a4 (5686)
ot
R=|R’= —— . (5.6.87)

T 4k2 4o
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5.7 Square Well: Scattering and Phase Shifts

In section 4.2 we considered the finite square well

_J 0 ifjz]>a
Uz) = { U iffe]<a (5.7.88)

and found all possible bound states. At the same time we saw that the invariance
of this potential V(z) under parity, that is

PV(2)P = V(~z) = V() (5.7.89)

could be used to good advantage since the itotal Hamiltonian was then also in-
variant under parity. This allowed us to consider separately the positive parity
(even) eigenfunctions and negative parity|(odd) eigenfunctions. Such a sep-
aration into positive and negative parity states is also possible for scattering
solutions and frequently simplifies the computations. However these solutions
of definite parity do not correspond directly to the scattering solutions with the
physical boundary conditions that we have been considering so far. Correspond-
ing to the potential above, physical boundary conditions are:

For £ < —a we have an incoming wave (normalization 1) plus a reflected wave,
or

¥(z) = e*" + Re™™** for 2 < —a. (5.7.90)
For z > a we have only a transmitted wave, or
P(z) =Te*®  forz>a. (5.7.91)

To make contact between these solutions and those of definite parity is fortu-
nately quite easy.
As in section 4.2 we now define

2mE  _, 2m(E+VU)
2 _ -2 _

k — 7 y A —_ }i—:! . (5.7.92)
The Schrddinger equation then reads:

d*y 2

W + K 1,[) =0 Il‘l <a

d*y 9

Tz T Ep=0 |z|>a. (5.7.93)

Choosing the normalization in the regions |z| > @ to be unity, we can write the
solutions of definite parity as

cos(kz —48;) ifz<—a
V()= AcosKz iflz|<a (5.7.94)
cos(kz+40;) ifzx>a
and
isin(kz —4_) ifz<-a
Y_(z) =< BsinKz if |z} <a (5.7.95)
isin(kz +0-) ifz>a
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where clearly we have
Ps(z) = ¢ (~2) = 2¢1(2) (5.7.96)

so that ¢4 and y_ are respectively positive and negative parity solutions. The
parameters J; are known as the phase shifts and reflect the presence of the
potential. They contain all the information that the reflection and transmission
amplitudes R and T contain. To see this we proceed as follows: For 2 < —a we
consider

ey (z) + €=y () = 47 4+ % [+ ~ -] etk (5.7.97)
Comparing this with the solution given by (5.7.90) for # < —a we see that

R= % [e2o+ — e2id-] (5.7.98)
Similarly for £ > a we consider

e, (z) —e-y_(z) = % [em" + em‘] ke (5.7.99)
and comparing this with the solution given by (5.7.91) for z > a we find

T= % [e%+ 4 e%0-] (5.7.100)

Thus, the problem is reduced to finding the phase shifts .

To complete the solution and determine the phase shifts we have to match
the wavefunctions and their slopes at # = a. There is a simplification that
can be used due to the fact that we are not interested in the constants A, B
in equations (5.7.94) and (5.7.95). Thus, instead of matching ¢ and dy/dz
separately, we match the so-called logarithmic derivative (1/1)(dv/dz). This
has the effect of cancelling the unwanted constants.

From (5.7.94) we therefore get:

ktan(ka+d;) = Ktan Ka (5.7.101)
and from (5.7.95) we get
kcot(ka+6-) = Kcot Ka . (5.7.102)
Thus,
o [ K
84 =tan %-tan KAl - ka (5.7.103)
4| K ,
d_ = cot ?cot KA| —ka. (5.7.104)

Inserting these results in equations (5.7.98) and (5.7.100) we obtain after some
lengthy and tedious, simplifying algebra that
(k2 - 1{2)6—2ika

T - o,
(k2 + K2) + ik K (cot Ka — tan Ka) (5.7.105)
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and
ikK (cot Ka + tan Ka)e~%*a
(k2 + K2) + ikK (cot Ka — tan Ka)

So as always |T|? + |R|? = 1. This result is, in fact, obvious from equations
(5.7.98) and (5.7.100) if & are real. Also, as U — 0 or, what amounts to the
same thing, K — k we clearly see that 6+ 0 and hence R—+0and T — 1 as
required by the physical situation. This is also obvious from equations (5.7.105)
and (5.7.106). The expressions (5.7.105) and (5.7.106) for T and R could have
been obtained directly by solving the Schrédinger equation (5.7.93) as we did
in the previous examples. From the way we introduced the phase shifts, it
would appear that they are only a computational tool. This is probably true for
one-dimensional scattering problems. However in three-dimensional scattering
problems (as we shall later see) the phase shifts have intrinsic physical interest,
corresponding to quantities directly measurable in the laboratory. Thus, in
anticipation of their future utility we have introduced them now.

R= (5.7.106)

5.8 Periodic Potentials

There are many physical situations which display discrete translational symme-
try. Such situations are modelled by periodic potentials

Viz+a)=V(z) . (6.8.107)
Iterating this equation we see that for n =0, £1,+2,.--,N
Vie+na)=V(e+(n-1)a)=---=V(z) . (5.8.108)

In practice, the number N is very large, of|the order of Avagadro’s number.

As a first step we show that if u(z)|is a solution of the corresponding
Schrodinger equation then so is u(z+a) and hence u(z+na) n = 0,%1,£2,---,N.
The Schrodinger equation for the solution %(z) reads

_h_z d?u(z)

+ V(z)u(z) = Eu(z) . (5.8.109)

Now consider the function u(z 4+ a) . Then,
_fzz_ d?u(z + a)
2m  dz?

h? d*u(z + a)
= —%W +V(z +a)u(z +a)
= Fu(z+a) . (5.8.110)

This shows that that u(z+a) is again a solution. Now if two linearly independent
solutions of (5.8.109) are uy(z) and uz(z) then we must have that the two
linearly independent solutions u;(z + a) and us(e + a) are linear combinations
of uy(z) and ug(z). This means that we have

+ V(z)u(z + a)

u(z+a) = ecpui(e)+ cious(e)
uz(z+a) = eaui(z)+ coua(z) - (5.8.111)
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5.8.1 Floquet’s Theorem

We now show that the coefficients ¢;; may be chosen such that there are solutions
v; , 1=1,2 such that

vi(z + a) Avi(z)
va(z+a) = Ava(z) (5.8.112)

where )A; are constants such that

MAz=1 . (5.8.113)
It furthermore follows immediately that

vi(z+na) = A vi(z) n=0,+£1,42,---N . (5.8.114)

This is Floquet’s theorem. The proof is straightforward. We simply use the fact
that the functions v;(z) are again linear combinations of u;(z) and write out

(5.8.111). The result is
vi(x+a) = Ajui(z+ a)+ Biua(z +a)
= Ajlenui(z) + craua(z)] + B; [earur (2) + cazua(z)]
= )\,‘ ’U,‘(:L')
= XN [A,-ul(z) + B,UQ(.’C)] . (58115)
For this equation to hold requires that
Aien+ Bien = M A;
Aic1a + Bicss = M B; . (5.8,116)
For a non-trivial solution for A; , B; we need that the determinant of the
coefficients vanish.

ci— A en
=0. 8.117
c12 22 = A; (5.8.117)

This quadratic equation clearly yields two solutions A; and A;. Thus, we also
have two solutions v; and vs.
The Wronskian W (see problem 4.11) of these two solutions

d dv
W(z) = vlﬁ -~ t (5.8.118)

is, as shown in problem 4.11, a constant and using (5.8.112) clearly also satisfies
the relationship

W(z+a)=M\W() . (5.8.119)
This means that ‘
A =1 (5.8.120)

as was claimed at the beginning of this section.
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5.8.2 Bloch’s Theorem

Bloch gave a more detailed description of the solutions we have just discussed.
His results are of far-reaching importance!for studies of crystalline structures.
We now describe his findings.

Suppose A; > 1 and therefore Ay < 1. In this case we find by repeated use
of (5.8.114) that

vi(z+na) = Al vi(z) n=0,41,42, - (5.8.121)

and for n = +oco the amplitude of v;(z/+ na) blows up. This means that
for £ = 400 v1(x) blows up and hence cannot be normalized to 1. Similarly,
applying this result to va(z) we find that

va(z —na) = A" ve(z) n=0,1,2,---,N (5.8.122)

and for n — 400 the amplitude of v3(z — na) blows up. So again this solution
can not be normalized. This shows that for an acceptable physical solution we
may only have

Ml=1 . (5.8.123)
In this case we can choose
A =eKe )y = eiKe (5.8.124)

with K real and such that —~ma < K < a since exp(i2rn) = 1. This means
that the physically acceptable solutions are such that

v(z + na) = Ko y(z) . (5.8.125)
This equation is only possible if the v(z) are of the form

v(z) = %% vk (z) (5.8.126)
with

vg(z +a) = vk (z) . (5.8.127)

This is the celebrated Bloch’s Theorem. The value of K follows from the bound-
ary conditions that we apply to the extreme ends of the crystal. In practice,
we usually apply periodic boundary conditions to the end of the lattic and the
beginning. In other words, we think of the one-dimensional lattice as a circle.
Thus, we require that

v(z 4+ Na) =v(z) . (5.8.128)
Using (5.8.125) this becomes

VK y(z) = u(z) . (5.8.129)
Thus,

eiNKa - (5.8.130)



5.9. THE KRONIG-PENNEY PROBLEM 103

and
2mn

_zamo 8.131
K== n=0,21,12, (5.8.131)

The utility of Bloch’s theorem is that we need solve the Schrodinger equation
in only one of the intervals say 0 < ¢ < a and then use the appropropriate
boundary conditions.

5.9 The Kronig-Penney Problem

To illustrate the use of the results discussed above we now solve the following
simple model known as the Kronig-Penney Problem. For the potential we choose

V(z) = Vpa "§° d(z + na) . (5.9.132)

n=-00

This potential is also known as a Dirac comb. After a change of variables so
that we can introduce the wavenumber k and the dimensionless variable U

K2E? ImVya®

E= T >0, U= 2 (5.9.133)
the Schrodinger equation becomes

U X )

e ;n;wé(x+na)t/)+k $=0. (5.9.134)

We next apply Bloch’s theorem and look for solutions valid in the interval
0 < z < a. These are clearly solutions of

d*u

= +ku=0 (5.9.135)
and are of the form

u(z) = Asinkz+ Bcoskz 0<z<a . (5.9.136)

It now follows from Bloch’s theorem that for @ < = < 2a the solution is given

by
u(z) = ¢ [Asink(e —~a)+ Bcosk(z—a)] a<z<2 . (59.137)

The boundary conditions at £ = a are
1) u(z) is continuous so that

u(a+0) = ua-0) . (5.9.138)

2) The second boundary condition follows from integrating equation (5.9.134)
about ¢ = a and yields a discontinuity in the first derivative of u(z). The result
is

W(a+0)-'(a-0)= Zufa) . (5.9.139)

a
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Applying these conditions we get

Be'E3 = Asinka+ B coska
: U,
kAe'®® _ k[A coska — B sinka) = ;B eke . (5.9.140)

For a nontrivial solution for A and B requires that the determinant of their
coefficients vanish. Thus, we need
iKa

sin ka coska—e ke | =0 (5.9.141)

det | iKa _ coska sinka— Le
The result is

sin ka — EUE e sinka + (coska — e"K")2 =0. (5.9.142)
After a little algebra this reduces to

. U .
cos Ka = coska + g Sin ka . (5.9.143)

The energy eigenvalues are given by (5.9.133)

h2k?
E= o {6.9.144)
and the allowed values of k are to be determined from (5.9.143). In this case

we see that we get bands of energy. In fact all values of k such that
|coska + —g—sin ka]<1 (5.9.145)
2ka - -

are allowed. Thus, we have regions of allowed k values (energy bands) with
gaps, given by

| coska + %sin ka| >1 (5.9.146)
between them. These gaps represent regions of forbidden energies. Due to the
very large value of N almost any energy is permitted within the band. It is
the existence of the energy gaps that accounts for the very large difference in
conductivity between insulators, semi-conductors and conductors. This model
serves to illustrate the existence of such bands.

So far we have been solving very concretely specified problems. The purpose
of this has been two-fold: to develop our technical abilities and to build up
our intuition. We now leave the discussion of specific problems for a while to
embark on a consideration of the formal aspects of quantum mechanics. In
this process we shall develop a certain mathematical language which may, at
first, seem artificial but is, in fact, very important if not essential for a clear
formulation of quantum mechanics.
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5.10 Problems

5.1 A wavefunction
ot,)= [ et ag
—00
1s normalized such that

/°° Wit z)de=1.

—00

Assume f(k) is a smooth function vanishing rapidly at infinity. Show that
the velocity of the centre of mass z defined by

z= /w 2|y(t, z)|* dz

—00
is given by

dz © dw 9

Hint: Use the fact that

/ ¢F=9% dg = 276(k — q) .

— 00

Show furthermore that if w(k) is adequately approximated by

d
w(k) ~ w(0) + (k — ko) d—‘; .
then
i dw
dt = dk |,

(the group velocity).

5.2 Compute the probability density p and the current j for the wavefunction
in the previous problem 5.1. What are the possible forms of w(k) such
that the equation of continuity is satisfied? Explain this result recalling

that E = hw and p = hk.
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5.3 A potential sometimes used in molecular physics is the so-called 6-12 po-
tential

v =e|(2)"-2(2)] <<

a) Sketch this potential and indicate the values of the most interesting
points in the diagram.

b) Estimate the ground state (lowest) energy eigenvalue for a particle of
mass m bound in this potential.

5.4 A particle is in the potential
V(z) = Voexplaz?/2] .

Estimate the energy of the 2 lowest eigenstates. What are the parities of
these states?

5.5 Find the wave-function for a particle at rest at the origin of a coordinate
system fixed in space.

5.6 Calculate the transmission probability for a particle of mass m incident on
a potential

V(z) = Als(z + a) + é(z - a)]

Compute also the phase shifts.

5.7 Complete all the steps in going from (5.7.98), (5.7.100), (5.7.103), (5.7.104)
to (5.7.105), and (5.7.106).

5.8 Using the representation
d(z) = !g'% he(2)

where

-2-12 if—e<z<e
0 if—e>z>e

he(z) = {

Verify equations (5.4.57) to (5.4.61).
Hint: Integrate both sides of the equation with a well-behaved function

f(=)-

5.9 Repeat problem 5.8 using the representation (5.4.52).
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5.10 Find the energy levels and normalized wavefunctions of the stationary
states of a particle moving in the potential

o ifz<0

Vie) = { lke? ifz>0

Compare the zero point energy in this potential with that for the simple
harmonic oscillator with the same force constant k. Explain any differ-
ences you find.
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Chapter 6

Mathematical Foundations

6.1 Introduction

In this chapter we present a mathematical interlude to provide a more formal
language which will allow us to set the mathematical foundations of quantum
mechanics. Sections 6.2 and 6.3 contain a discussion of Hilbert space and should
be read by all those not familiar with this concept. The remaining sections are
somewhat more mathematical in nature and are provided for those who desire
more rigour.

In section 6.4 we discuss linear operators in Hilbert space and introduce the
concept of self-adjointness. The Cayley transform is introduced in section 6.5
and used to classify all self-adjoint extensions of a symmetric operator. Section
6.6 is devoted to some examples illustrating the results of section 6.5. More
examples are also provided in section 6.7.

6.2 Geometry of Hilbert Space

The language we have used so far is one of wave-functions or state vectors and
operators on these wave-functions. There is a ready-made mathematical lan-
guage for this. This is the language of Hilbert space and quantum mechanics is
naturally formulated in Hilbert space. Actually, for practical purposes Hilbert
space Is too small and the appropriate géneralization is to a so-called rigged
Hilbert space. We shall ignore this for the time being and discuss it briefly in
Chapter 8, where we shall also give references for those who are interested in
more of the details. What is Hilbert space? First of all it is a vector space
analogous to the usual Euclidean spaces &3 or &£,, however unlike £ which is 3-
dimensional and &, which is n-dimensional, Hilbert space is co-dimensional. As
a conceptual model of Hilbert space H one can think of taking some represen-
tation of a vector in &,, say (ay,...,a,) and writing it (a1, ...,a5,0,0....,0).
Then, letting n increase without limit we arrive at the notion of #. However,
unlike all ordered n-tuples which automatically can be considered in &,, not all

108
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infinite ordered sequences can be considered to belong to H. The reason for
this is that not all of them have finite “length” and we wish to include in #
only elements of finite length. This is tantamount to saying in the language of
wavefunctions that we want the wavefunction to be square integrable. We start
by listing those properties of £, which remain true in the transition to . The
elements of the space are vectors f on which certain operations are defined.

1) Scalar multiplication : If f € H and X is a complex number then A\f € .

2) Addition: If f; and f, € H then f; + fo» € # . Thus, combining 1) and 2)
we see that all finite linear combinations of elements in H belong to H.

3) Inner Product: In # there is defined an inner product (f, g) for all f,g € H.
This inner product maps elements of # into complex numbers and satisfies
the following conditions.

a)
(f,9) =19, (6.2.1)

where the star means “complex conjugation”.

b
(A1f, A29) = A a(f, 9) (6.2.2)

where A; and A, are complex numbers. We sometimes also use a bar over
a number to indicate complex conjugation.

c)

(fi+f29) = (fr,9)+(f2,9)

(fiom+g2) = (f)+(f92) - (6.2.3)
d)

I(f,9)* < (f, f)g,9) - (6.24)

This last inequality is the Schwarz inequality. We shall later derive this.
In terms of the inner product we define the “length” or norm of a vector in
the usual way by

£ 1= (f,5) - (6.2.5)

It is also possible to define orthogonality using the inner product. Thus, f is
orthogonal to g if and only if (abbreviated iff)

(f,9)=0. (6.2.6)

A set of vectors {f;} is orthonormal that is orthogonal and normal iff

(fis fi) =dij . (6.2.7)
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We now come to some of the differences. For this we need two definitions.

Definition: A set {f;} of vectors is complete iff any vector in H can be writ-
ten as a linear combination of vectors from the set {f;}. A complete set of
orthonormal vectors forms a basts.

Example:
Consider the Euclidean space £3 and choose three orthonormal vectors (é;, é3, €3).
Thus, (é;,é;) = d;;. Then any vector f € £3 can be written

3
F=) Nés (6.2.8)
i=1
and in fact
Xi=(&,f). (6.2.9)

The é; are obviously complete and form a|basis in £. On the other hand, if we
choose just two of these vectors, say é; and é;, they do not form a complete set
since for example any vector with a component along é3 cannot be expressed in
terms of just the first two.

The ); are usually called the components of the vector. If we then agree to
keep the basis fixed, we can suppress the basis vectors and write f = (A1, A2, A2).
In this manner we establish a one-one correspondence between vectors in £3 and
ordered triplets. The norm of f is given by

3
Y AN ()

ig=1

3
Y NNidij

i,j=1

3
ST (6.2.10)
i=1

£

This formalism above is all exceedingly trivial and you may wonder why bother.
The reason is to establish a precise formalism so that when the situation becomes
complicated we can rely on the formalism and not just our intuition.

Another use for the word complete is|in the description of a vector space.
This concept again is trivial for £, but is non-trivial for #. Consider a sequence

of vectors fy, fo, f3,.... Furthermore, suppose that for every € > 0 we can find
an n such that for any finite m
| fagm = fall<e. (6.2.11)

This is just a statement of the Cauchy criterion for convergence using the norm
| - || rather than the absolute value as is the usual case for numerical sequences.
We call such a sequence a Cauchy sequence. Now if H in this case is finite
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dimensional say &, then it is trivial to show that the limit of the sequence exists
and is a vector in &,. This property that all Cauchy sequences have a limit in
£y is stated by saying that &, is complete. In fact all finite dimensional vector
spaces are complete. This is also true for co-dimensional Hilbert spaces. There
is a deep theorem of analysis known as the Riesz-Fischer Theorem which states
that the space used by us (called £, by mathematicians) is complete and thus
a Hilbert space.

6.3 Ly: A Model Hilbert Space

The elements of £, are square-integrable complex-valued functions f(z) of a
real variable z. More generally z is a vector in some real finite vector space
so that f is a function of n real variables. This generalization has no effect

whatever on the ensuing statements and so we ignore it. The norm || - || in £,
is defined by
1£1P=(1.0) = [ F @) (63.12)

The range of integration in (6.3.12) is over the full range of the variable z. Thus,
if z is unrestricted, the integral runs from —oo to co. It is trivial to check our
first two conditions for elements in £, . Thus,

f€Ly = A€l (6.3.13)
and
fii2€le = fitfr€ls . (6.3.14)

Furthermore, as defined by (6.3.12) the inner product obviously satisfies condi-
tions a), b) and c).

a)

o= f*gdz:( [ dx) =0, f) (6.3.15)
b)

(A1f, Aeg) = / (ALf)"(A2g) dz = A1), / Fradz =X (f, 9) (6.3.16)
B

i+ forg) = / (i 4 f2)*gda = / fgde + / fods

= (f1,9)+(f2,9) (6.3.17)

and

(oo +9) = ] F (91 + 92) de = / Foudet / farde
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The only condition left to verify on the inner product is the Schwarz inequality.
To do this consider the vector

h=f+Mg, flg (6.3.19)
where f,g € L5 and ) is a real number. Then,

(h,h) =l A P> 0 . (6.3.20)
Therefore,
0 < (F+ Mg, N, f+Xg, M)

(£, ) +2N(£,9)1° + 3*|(£,9)*(9.9) - (6.3.21)

This means that the quadratic polynomial in A cannot have two real distinct
zeros and hence that the discriminant is negative, giving

(£, 9I* = 1(£,9)*(f, /)9,9) <O . (6.3.22)

The equality sign obviously applies when (f,g) = 0 or f = pg. Thus, even if
(f,9) =0, we get

(9P < (.0)(a.9) (6:323)
as required.
Orthogonality is still given by: f is orthogonal to g iff
(f,9)=0. (6.3.24)
An example of two orthogonal vectors in £ 1s:
1 —z2/2 2z —z2/2
f:F/—‘;E .’L‘/ g:me z/ (6325)

where the range of intergration is (—oo, 00). The functions displayed are the
first two hermite functions. As we see later, it is a general fact that eigenfunc-
tions corresponding to different eigenvalues are orthogonal. In fact for physical
Hamiltonians, the eigenfunctions properly normalized can be taken as a basis.
This is an important fact since it implies|that these eigenvectors form a com-
plete set. Although we do not prove the Riesz-Fischer Theorem we restate it
here. Consider a sequence of functions f1, fs, . . . all of which belong to £5. Fur-
thermore, let this be a Cauchy sequence. This means that given any ¢ > 0 we
can find an n > 0 such that

1/2
[ / |frtm — ntde] <e. (6.3.26)

Then the Riesz-Fischer Theorem asserts that
a) limp, 00 fm (-’5) = f(z)
exists and, most important,
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b) f(z) € L, .
That is,

/ If(z)] de < oo . (6.3.27)

This guarantees that we can take limits of sequences in L. Clearly £, is
the model for the quantum mechanical Hilbert spaces. All Hilbert spaces are
complete by definition and so all limits of Cauchy sequences are again elements
of the space. We shall see that the inner product plays an exceedingly important
role in the physical interpretation of quantum mechanics. There is one more
technical point, namely that for any set of linearly independent vectors { fi}it
is possible to construct an orthonormal set of vectors {e;} which span the same
space. The orthogonalization process is called the Schmidt Orthogonalization
Procedure. The proof is by construction. Choose one of the f; say f1. Then,

h

e = —— . 6.3.28
YTAT (6.3.28)
Now form
92= fo— (e1, fo)er (6.3.29)
and
g2
ey = 7 . 6.3.30
= el (6:3.30)
Clearly, e; and e are orthonormal. Next form
93 = f3— (e1, fa)er — (e2, fa)ea (6.3.31)
and
93
e3 = —— . 6.3.32)
e (

The process is now obvious.
We next turn to another aspect of Hilbert space, namely operators.

6.4 Operators on Hilbert Space:
Mainly Definitions

An operator on Hilbert space is a mapping which maps certain elements of
into H. Thus, if A is an operator with domain D4 C H then for all f € D,

g= Af EN. (6433)

The domain D4 consists simply of all those vectors in # such that the result of
operating with A on a vector in D, is again a vector in . Thus, for example,
if 7 is the space £ and A is the operator z? (multiplication by z?) then

(Af)(z) = 2*f(2) . (6.4.34)
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Clearly even if f € £ not all functions z?f(z) are in L,. For example

f(z) = (z* +a®)™™ (6.4.35)
is in Ly for R(m) > 1/4. But, z2f(z) = 2%(z® + ¢®)™™ is not in L unless
R(m) > 5/4.

Again we shall only be interested in linear operators. Thus,

Aifi+ X2 fo) = MAfL + X Af (6.4.36)

For example, the operator z? defined above is linear and so are the operators
h df

pf = T (6.4.37)

and
o0
(k1)@ = [ K dy. (6:438)

On the other hand, log f and +/F are definitely not linear operators acting on
the function f . Linear operators are also familiar in finite dimensional vec-
tor spaces. They are usually represented by matrices in this case. There is
an analogous representation for operators in Hilbert space. Formulated in this
way quantum mechanics is called matrix mechanics to distinguish it from the
Schrodinger formulation or wave mechanics. Both formulations are just two
different mathematical ways of looking at |the same thing. We examine matrix
mechanics after we have developed all the necessary mathematical machinery.
To illustrate the matrix operator formalist we first derive the form of the most
general linear operator on a finite vector space say &,. Let A be such an oper-
ator. Call

g=Af , (6.4.39)
and consider taking for f different elements of a basis set {e;}. Thus, let
gi = Ae; . (6.4.40)

Then writing
F=Y Ne (6.4.41)
and

9= pies (6.4.42)

we get by linearity:

Zp,‘e; = E Aide; = Z/\gg,' . (6.4.43)
i i i
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Now using
(eisej) = dij (6.4.44)

and taking inner products in (6.4.43) we get:
1 =) diles, Aes) = ) Milej,g4) (6.4.45)

This means that the operator A is completely determined in this basis by the
matrix of numbers

Aj' = (ej,Ae,-) . (6446)

Conversely if we are given a matrix (n x n) then it can always be used to define
a linear operator according to (6.4.46). Thus, as stated previously, the most
general linear operator on &, can be considered to be an (n x n) matrix. With
only some attention to details the same argument will go through for an oco-
dimensional Hilbert space. Just as a matrix algebra is possible, so an algebra of
linear operators is generally possible. It is only necessary to pay due attention
to such things as domains of the operators. Let A be an operator on H with
domain Dy. Then AA is also an operator on # with domain D, and acts as
follows:

(AA)f = MASf) . (6.4.47)

This is almost too obvious. If A, B are operators with domains D4 and Dp
respectively, then A + B is an operator with domain D4 N Dg defined by

(A+B)f = Af + Bf . (6.4.48)

The range R4 of an operator A is defined as the set of all vectors obtained by
operating with A on elements in D4. Symbolically,

Ra=AD, . (6.4.49)

Then if A, B are operators with domains D4 and Dg and R4 C Dp we can
define the product operator BA according to

(BA)f = B(Af) . (6.4.50)

This is well defined since by assumption

feDy. (6.4.51)
Therefore

Af €RaC Dp (6.4.52)
and hence

Af€Dp. (6.4.53)
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Conversely if Rp C D4 we can define the product
(AB)f = A(BY) . (6.4.54)

This points out the interesting possibility that although BA may exist as an
operator AB might not, and conversely. Another property which many opera-
tors of physical interest possess is hermiticity. Actually the interesting property
is self-adjointness and we shall examine these two properties in some detail to
bring out the difference. First we need some definitions. Let A be an operator
on H and f € Dy4. Then consider the expression (g, Af). If for some g € H we
find that there is an h € # such that

(9,Af) = (h,]) (6.4.55)
for all f € D4 then we define the adjoint operator A! of A by
h=Alg (6.4.56)

with domain D4+ = the set of all g for which (6.4.55) holds. In that case we
can write

(9, A1) = (A, f) . (6.4.57)

Note that the element h in (6.4.55) is defined uniquely by g if the domain Dy
contains sufficiently many vectors. The precise statement of this is that Dy is
dense in H. For our purposes a set in A |is dense if any element in # can be
approximated arbitrarily closely by an element from this set. Thus, D4 is dense
if for any f € H there exists a g € D4 such that given

e>0 ||f-gl<e. (6.4.58)

In this case the proof that h is unique is trivial. For, assume there is another
such vector h’. Then,

(9,Af) = (V. ) (6.4.59)
as well. Combining this with (6.4.55) we get
(h=H,5)=0. (6.4.60)

Thus, h — k' is orthogonal to every vector in Ds. But Dy is dense in H so that
for any vector g € H

I(h =k, g)| <e. (6.4.61)

This is possible only if h = A’. The adjoint operator is also a linear operator as
is immediately obvious. Now again let A be an operator in # with domain D4
then A is hermitian if for all f,g € D4

(Af,9) = (f,Ag) . (6.4.62)
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An operator A is symmetric if it is hermitian and its domain of definition D4
is dense in #. From the definition of A' it then follows that for a symmetric
operator A

D4 C Dyt (6.4.63)
as we show for an example. If in addition

Dy = Dyt (6.4.64)
or as this implies

A=Al (6.4.65)

Then, A is self-adjoint. To make this less abstract consider the momentum
operator
_hd
T ide
defined on the Hilbert space £;(a, ) of functions square-integrable on the in-
terval [a,b]. As domain of this operator we choose

(6.4.66)

D, = {f € La(a,b) | 3—'2 is bounded on (a,d) , f(a) = f(b) = 0} . (6.4.67)

With this definition it is easy to see that p is hermitian and in fact symmetric.
The domain D, is dense in L3(a, b). Thus, if p is hermitian, it is symmetric. To
see hermiticity let

feD, , g€D,. (6.4.68)
Then,

b
e = [ roriea

b *
;’.if*(z)g(x)|3+ / <?%> g(e)dz . (6.4.69)

Since f*(a) = f*(b) = g(a) = g(b) = 0, the term obtained from integration by
parts vanishes and so we have

(f,pg) = (pf,9) . (6.4.70)

Thus, p is hermitian (symmetric) as claimed. On the other hand p # p! since,
as we now show, the domain D+ of p! is much larger than the domain D, of p,
Le. Dy C Dyt , but Dy # Dpt. This means that D, is a proper subset of Dpt.
To see this consider any g € D, and let f be any function whose derivative is
bounded over (e, b) and such that

f(b) = ¢ f(a) (6.4.71)
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where 0 is a constant. Then by a computation, identical to the one above, we
again find

(f,pg) = (pf,9) - (6.4.72)
Thus, as a differential operator
hd
- -2
P=a (6.4.73)

but the domain of p' is larger than the domain of p. It is furthermore easy to
check that if we define

Dyt = {f € Lo(a,b) }% is bounded on|(a, b) and f(b) = eief(a)} (6.4.74)

then p! is also symmetric. Thus, we say that p! is a symmetric extension of p.
In fact one can check that p! is self-adjoint because Dyt = Dp1t. Thus, we have
a self-adjoint extension of p.

A symmetric operator A is essentially self-adjoint if A'! is self-adjoint.
What this means is that although A itself|is not necessarily self-adjoint there is
a unique way to extend it to a self-adjoint operator. That A't is an extension
of A follows from

DA C DA? C DAH’ . (6475)

The operator p discussed above is not essentially self-adjoint because, for
each value of the parameter 6 used to define Dy, we get a different self-adjoint
extension. This means that the physical results we get for different values of
6 are different. A neat way to say this is/that different self-adjoint extensions
give different physics. Rather than being'a nuisance, this makes the structure
of quantum mechanics much richer.

6.5 Cayley Transform: Self-Adjoint Operators

We now examine under what conditions a general symmetric operator possesses
self-adjoint extensions and how many. To do this we need some more machinery.
The operation analogous to a rotation in a Euclidean space &, is a unitary
transformation in H. The characteristic property of a rotation in &, is that it
preserves length and angles or more succinctly, it preserves the inner product.
This is also its characteristic in H.

Definition U is unitary iff Dy = Ry = H! and
ULUN=(1) - (6.5.76)

From this we immediately get

Ut =1 . (6.5.77)
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And since Dy = Ry = H we also get
vut=1. (6.5.78)

Note, unlike the case for finite vector spaces, (6.5.77) does not imply (6.5.78)
without the additional assumptions about domains on U. We now show that A
is self-adjoint iff the operator

U=(A-il)(A+i1)? (6.5.79)
called the Cayley transform of A is unitary.

Proof
Suppose A is self-adjoint in # and f € D4. Then,

| Af if |I? (Af, Af) £i(Af, f) Fi(f, Af) + (£, )
NAFIP+0 712 - (6.5.80)

Therefore, (A+il)f = 0 is only possible if f = 0. Thus, the operators (A4i1)~?
and hence U exist. Furthermore, as we now show, the ranges R44;; and Ra—i1
are dense in #. For suppose g is orthogonal to all vectors in R44; . Then for
f € Ratir or equivalently, f = (A £ i1)h we have:

0=1(g,f) = (g, Ah 2 ih) = (9, Ah) 2 i(g, R) . (6.5.81)
Thus,

(9, AR) = Fi(g, ) . (6.5.82)
So,

gEDyp =Dy (6.5.83)
and

Alg = Ag = +ig . (6.5.84)

But as we have seen this is not possible unless g = 0. Thus, the ranges Ra+i1
are dense in H. We now prove that in fact

Razin =M. (6.5.85)

Let g € H , then since Ra44; is dense in H the limit g, = Af, £if, — g exists.
Also, using (6.5.80)

| gn — gm ”2 = ” A(fn = fm) £ i(fn = fm) ”2
= A= Fm) P+ 1 (fa = f) IP? (6.5.86)

and thus the f, and Af, converge to some vectors f and h respectively. Fur-
thermore, because A is self-adjoint

fE€D, (6.5.87)
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and

h=Af. (6.5.88)
Hence, by definition of g as the limit of g, it follows that

9=Af+if € Razi1 . (6.5.89)

Thus, the limit g of the approximating vectors gy, itself belongs to R4+;;. How-
ever, by taking limits of sequences one may obtain any vector in H. Thus, this
limit may be any element in #. Hence,

Raxin=H (6.5.90)
and we have that
Dy=Ry=%H. (6.5.91)

Now choose any element f, then f € Dy and hence f € D(44i1)-1. Thus, we
can write

f=(A+il)g (6.5.92)
and

Uf = (A-il)(A+i))"Y(A+il)g

= (A-il)g. (6.5.93)
Therefore,
NUFIP = 1A-)g =l Ag II* + 1l ¢ |I?
= (A+ig ]
I FI% . (6.5.94)

Thus, assuming A = Af we conclude that UUt = UtU = 1. It is also always
possible to recover A from U according to

A=i1-U)'1+0) =it +U)1-U)L. (6.5.95)

We now prove the converse, that if U is unitary, then A is self-adjoint. Let
g € D4+ and define

g=Alg. (6.5.96)
Then for any f € Dy

(9,4) =@ f) - (6.5.97)
But since

A=i1+0)1-0)7", (6.5.98)
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all f € Dy are of the form

f=(1-U)h (6.5.99)
where

heDy=% . (6.5.100)
Therefore, (6.5.97) reads:

(9,41 +U)h) = (3,(1 - U)h) (6.5.101)

for any h € H. Now since U is unitary and therefore defined everywhere and con-
serves inner products, we can replace (k, g) by (Uh,Ug) and (h, §) by (Uh,Ug)
to get from (6.5.101)

(Ug,iUR) + (g,h) — (Ug,Uh) + (g, Uh) =0 (6.5.102)
or

(-iUg—ig—-Ug+§,Uh)=0 . (6.5.103)
Thus, —iUg —ig —U§+ § is orthogonal to all elements of H and hence vanishes

—iUg—ig-Ujg+§=0 . (6.5.104)
From this we get

g=—-1§—U(g —13) . (6.5.105)
We now perform some algebra. Thus,

g-1 g+ig

9== —T—U(g—zg) . (6.5.106)

Using (6.5.104) again this becomes

g—ij  Ulg-1§)

9=+ =~ Ulg =) (6.5.107)
and hence

g=(1-0)I=9 (6.5.108)
Similarly we get

g:i(l+U)¥. (6.5.109)

This proves two things: If g € D4+ then a) g € D4 according to (6.5.108), i.e.
it is in D(I_U)—l.

b) Ag=j = Alg (6.5.110)
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since

(v—19) (6.5.111)

Ag=i(1+U)(1-U)"'(1- )25

or
(¢ — i9)
2

This proves that A" = A and hence that (A is self-adjoint. Before proceeding
let us examine the reasons for our interest in self-adjointness. The examination
will be, of necessity, somewhat cursory.

Ag=i(1+U) =7. (6.5.112)

6.6 Some Properties of Self-Adjoint
Operators

To begin, consider the operator A which|means multiplying by a number a.
Self-adjointness implies that for f,g € H

(f,a9) = (af,9) - (6.6.113)
But according to the definition of the inner product we have

(f,ag) = (a*f,9) . (6.6.114)
Thus,

a=a". (6.6.115)

and hence a must be real. This is not a|coincidence. In fact self-adjoint op-
erators, in some sense which will become clear, correspond to real numbers.
To make this precise we now discuss the eigenvalue problem for self-adjoint
operators. Again, let A be a self-adjoint operator; then there are certain vec-
tors belonging to the domain of 4 on which operations by A are particularly
simple. The operation involves multiplication by a number. We have already
encountered this in our solution of the Schrodinger equation

Hyp = EYg . (6.6.116)

Here, operating with H on the vector ¥ involves multiplying ¥ by E. The
vector ¥ is called an eigenfunction of H belonging to the eigenvalue E. More
generally, f; is an eigenfunction of the operator A belonging to the eigenvalue
aj if

Af;=a;f; . (6.6.117)
The important properties of self-adjoint operators are that:
a) All eigenvalues of a self-adjoint operator are real.

b) Eigenvectors belonging to different eigenvalues are orthogonal.
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c) The eigenvectors form a complete set.

We now prove a) and b). The eigenvalues of a self-adjoint operator are real and
the eigenvectors belonging to different eigenvalues are orthogonal.

Proof
Let f;, f; be two eigenfunctions of A belonging to the eigenvalues a; and a;
respectively. Thus,

Afi = aif; (6.6.118)
and
Afj = ajfj . (6.6.119)

Forming the inner product of (6.6.118) with f; we get

(fi Af) = (Afi, fi) = (fiyaifi) = (ai fi, fi) - (6.6.120)
Therefore,
a; =a} (6.6.121)

as required. Note the self-adjointness was necessary for otherwise we do not
know that f; € D+. This proves part a).
To prove part b) we use (6.6.118) and (6.6.119) to get

(fi, Afj) = (Afi, f5) - (6.6.122)
This means that

a;(fi, f5) = ai(fi, £5) (6.6.123)
so that

(aj-ai)(fi, f;) =0 . (6.6.124)
Thus, if a; # a;, then

(fi, fi)=0. (6.6.125)

Thus, we have established the results.

The proof of completeness of the eigenfunctions of a self-adjoint operator is
beyond the scope of this book. Consequently we only show a sort of converse
which makes the result appear plausible. The general theorem is known as the
Spectral Theorem and is discussed in detail in reference [6.1].

Let A be a linear operator with a'complete orthonormal set of eigenvectors
{fx} and corresponding set of real eigenvalues a,, then A is self-adjoint. Thus,
we have that if

Afn = anfn (66126)
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and

(fm fm) = Jnm (66127)
where the {a,} are real and the {f,} are complete. Then A = A

Proof
We must show that D4 = D4+ and that for f,g € Dy
(Af,9) = (f, Ag) - (6.6.128)

The proof is based on knowing A on a basis (the eigenfunctions). Suppose
f,9 € Dy4. Then because the {f,} are complete we have the following expansions

f= ) onfn

g = Xn:ﬂnfn (6.6.129)
where n

an = (fa,f)

Bn = (fn,9)- (6.6.130)

Suppose f € Dy. Then,
(f, Af) = Z(amfm,Aanfn)

n

Za,.a’,"na,.

n

= Z(ﬂmamfmyanfn)

n

i

) (Aamfm, anfa)

n

(Af, 1) = (A}, f) . (6.6.131)

Therefore, f € D4t and in a similar manner we get (g, Af) = (Ag, f). Thus, A
is self-adjoint.

6.7 Classification of Symmetric Operators

We now complete the classification of symmetric operators. For the purposes
of physics there is no need to distinguish between self-adjoint and essentially
self- adjoint operators since the latter always have a unique and obvious exten-
sion to self-adjoint operators. We are mainly concerned in determining which
symmetric operators have several self-adjoint extensions. Our main tool in this
investigation is the Cayley transform that we discussed previously.
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Suppose A is an arbitrary symmetric operator (not necessarily self-adjoint).
In that case the corresponding Cayley transform U need not be unitary and the
domain Dy and the range Ry = U Dy need not coincide with the whole Hilbert
space H. If we consider the sets of vectors D and R§ orthogonal to Dy and
Ry, the “size” of these sets gives us an indication of the extent to which U is not
unltary and A is not self-adjoint. It is straightforward to check that the sets Dj;
and Rj are in fact subspaces. We call these subspaces the deficiency subspaces
of A and their dimensions the deficiency indices. Thus, the deficiency indices
of A are

(m,n) = (dim D} , dim R}) . (6.7.132)
Now all elements in Dy are of the form

f=(A+il)y. (6.7.133)
Thus, if h € Dﬁ , then

(b, f)=(h,(A+il)g) =0 (6.7.134)
or

(h, Ag) = —i(h,g) = (ih,g) . (6.7.135)
So h € Dy and

Ath=ih. (6.7.136)
But, if this is true, then,

(h,(A+il)g) = (AT = il)h,g) = 0 (6.7.137)
and h € D. So, we have shown that h € D¢ iff

Ah = ih (6.7.138)

for any h € Dy+.
Thus, dimD is given by the number of linearly independent solutions of

Ath =ik (6.7.139)

belonging to Dy .

Similarly, all vectors in Ry are of the form (4 — il)g and hence by a set
of steps like above, we find that dim R} is given by the number of linearly
independent solutions of

Ath = —ih (6.7.140)

belonging to D 4.

Now from our previous results we know that A is self-adjoint iff U is unitary
and hence iff Ry = Dy = H. Thus, A is self-adjoint iff the deficiency indices
are (0,0). To see what this means we return to our previous example of the
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momentum operator defined on the interval (a, b) and begin with the symmetric,
but not self-adjoint operator with domain

D, ={f€C'|f(a) =0} (6.7.141)

where C! means “functions whose first derivative is continuous”. If we now
consider the expression

b
(o) = [ wiLa

B+ / (’:‘”‘) fdz (6.7.142)

it follows from f(a) = f(b) = 0 that h € Dpf for any h € H such that both
h,h' € L,. Furthermore, the action of p! is the same as that of p, namely

(/3) (d/dz) .
The only solutions of (6.7.136) and (6.7.140) respectively are:

hy = Ae™*/" | h_ = Ae*/*, (6.7.143)

Thus, the deficiency indices are (1,1).

In general if the deficiency indices of a symmetric operator A are (m, n) with
(m #0,n # 0) it is possible to extend (increase the domain) the operator A as
follows. Let two solutions of (6.7.136) and (6.7.140) be hy and h_ respectively.
Then for g € D4 define the operator A’ by:

Allg+0(hy +h_)] = Ag+i8(hy —K_) . (6.7.144)

Clearly A’ is an extension of A since now hy +h_) belongs to D 4. Furthermore,
the deficiency indices for A’ are (m — 1,n + 1). To see this one simply needs to
verify that the corresponding Cayley transform of A, namely U is extended to
U’ where

Uf=Uf if feDy (6.7.145)
and
Uhy=h_ . (6.7.146)

One can proceed in this manner until one gets deficiency indices (r,0) or (0, 7).
In this case no further extension is possible. If one then finds that r # 0, one
has to conclude that such an operator has no self-adjoint extensions.
Although the procedure above yields the self-adjoint extensions of symmetric
operators with deficiency indices (n,n) it is not the most useful approach. For
physicists boundary conditions are usually of important physical significance
with direct physical interpretations. This is brought out in the approach we now
take. For example, if the deficiency indices are (1,1) we get a one-parameter
family of self-adjoint extensions, and for deficiency indices (n,n) we get an n?-
parameter family of self-adjoint extensions. Mathematically this is as far as
one can go. To pick the “correct” extension in these cases depends on the
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physical situation and cannot be decided by mathematics. It requires physics.
To illustrate these points we now discuss some specific examples.

Again consider the momentum operator p = (fi/i) (d/dz) on Ls. Let p be
defined on the interval (=00, 00). In this case the equations for the deficiency
indices read as before

hdf

oo = if (6.7.147)
or

g 1

L=z (6.7.148)

The solutions are
f=AeF/h (6.7.149)

But neither of these solutions is square integrable on (—0,00) and hence the
deficiency indices are (0,0) and defined over the interval (—co < & < 00) the
operator p is self-adjoint.

Now consider the case where the operator (%/i) (d/dz) is defined on the
interval (0, 00). As before the solutions are

f=AeFelh (6.7.150)
This time
f=Ae~elh (6.7.151)

is square integrable, but
f=A4et (6.7.152)

is not. Thus, the deficiency indices are (1,0) and defined over (0 < z < o) the
operator (fi/7) (d/dz) has no self-adjoint extensions. The reason for this is easy
to see. Consider

hdg\ [% . hdg
( idz)_/o (29 ae (6.7.153)

After integrating by parts, this becomes

hdgl k., ® fhdf\*
<f'2.a—r> = z-.f.‘]'o +/(; (;% gde

h o oo, (Rdf
- [y + (idr,g) : (6.7.154)

1

So, for (h/i) (d/dz) to be self-adjoint requires that

h
Iy =0 (6.7.155)
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Now we know that both f and g vanish for 2 — co. Therefore we require
F(0)=0 or g(0)=0. (6.7.156)

In fact to make p = (h/i) (d/dz) self-adjoint requires D, = D, and hence both
f(0) = g(0) = 0. On the other hand, the “eigenfunctions” of this p are Ae'*®
and only vanish at = 0 if A = 0. Thus, this p would have no eigenfunctions if
it were to be self-adjoint. There is also a physical reason for the lack of a self-
adjoint extension in this case. We discuss! this, in more detail, a little further
on.

Finally, consider the operator p = (%/i) (d/dz) defined on the interval a <
z < b. In this case, both solutions Ae**/? are square integrable and the de-
ficiency indices are (1,1). This means that the self-adjoint extensions should
depend on precisely one parameter as we already indicated. We now examine
what this parameter is. In this case we have

b
A
(f,pg) = /f*;:—idz

= ? Fale+ (pf.9) - (6.7.157)
Therefore for self-adjointness we require
f*(b)g(b) = f*(a)g(a) (6.7.158)
L”)) -9
(f(a) =00 (6.7.159)

This implies that
=l =l (6.7.160)

So @ is the parameter determining the different self-adjoint extensions. Actually,
this is a specification of boundary conditions. Thus, if we choose § = 0 we have
periodic boundary conditions. These are the most common. Note that once we
have specified that the domain of p is the set of all square-integrable functions
for a < & < b (abbreviated £2(a,b)) such that

() =€ f(a), (6.7.161)

then the domain of p is the same as that of p and the deficiency indices become
(0,0) showing that p is self-adjoint. To give some idea of the physics behind
these three situations we state a theorem without proof and then use it to
explain the physics behind all this.

Stone’s Theorem

If A is a self-adjoint operator, then

U(s) = e*4 (6.7.162)
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is a unitary operator for every real number s. Furthermore,
Us)U@)=U(s+t) (6.7.163)
and
U(-s)=U(s)t =U(s)7! . (6.7.164)

Conversely given a set of continuous unitary operators satisfying (6.7.163) and
(6.7.164) then there is a self-adjoint operator A such that (6.7.162) holds and
A is given by

iA=lim 201

€0 €

(6.7.165)

Operators satisfying (6.7.163) and (6.7.164) form an algebraic structure called
a group. We now construct such a set of unitary operators and use them to
interpret what we did.

Consider the operator

U(s)f(z) = f(z +) . (6.7.166)
Then,
U(0)f(2) = f(z) (6.7.167)

UYU(s)f(x) =U@)fz+s)=flz+s+t)=U(t+s)f(z) . (6.7.168)

Thus, the operators defined by (6.7.166) satisfy (6.7.163) and also (6.7.164) as
we see by setting ¢t = —s for a left inverse and s = —t for a right inverse. On
the other hand, if f(z) is analytic for a < R(z) < b it has the Taylor expansion

0] n d"'
flets) = Y 5—f)
- 2 (3) 3w
= & ?hf(g) . (6.7.169)
Thus,
U(s) = e*?/® (6.7.170)

and we have succeeded in expressing U(s) in the form (6.7.162). It makes
sense to call U(s) the translation operator since it “translates” functions by
an amount s. Furthermore we call p the generator of translations since for
infinitesimal translations.

s

U(s)—>1+zh

p as s/h—0. (6.7.171)
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In terms of these considerations we can understand why p has a one-parameter
family of self-adjoint extensions on La(a, b).| Actually, our considerations depend
on the fact that f is analytic for a < R(z) <|b. This, however, is not a restriction
since the functions square-integrable and analytic over ¢ < R(2) < b form a
dense set in Ly(a, b).

Suppose f(z) is an infinitely differentiable function which is non-zero only
on an interval completely contained in @ < z < b. An example of such a function
is

0 fe<a<a,z>f>b
f(z) = exp (‘ﬁz“al—x) fa<s<g . (6.7.172)

Note that this function is definitely not analytic over ¢ < ¢ < b since it has
essential singularities at both # = « and z = . Also, an analytic function
cannot vanish on an open interval unless it is identically zero. Now consider the
normalization (i.e. unit probability) associated with f, namely, f: |f(z))? dz.
We want the translation operator U(s) to preserve this normalization, that is,
to be unitary. Thus, we need

/lU |2dz—/ If(2)|? de . (6.7.173)

U(s)f(z) = f(z +9) (6.7.174)

and if s > b— 3 part of the wavefunction “disappears” past the right end point.
To conserve the integral above requires that what disappears at the right must
reappear from the left. Of course the phase of the function can be shifted in
reappearing from the left. Furthermore, all/functions must experience the same
phase shift. Thus, if f; and f, are two such functions and if their phase shifts
are different, say 6; and 0, then translation of the function f = f; + fo will
eventually produce the function f’ = e*1 f + €%z f,. But,

/|U de;e/ (2 de (6.7.175)

unless 8; = 03. So the superposition principle limits the number of phase shift
parameters to one.

Why then does p not have any self-adjoint extensions on L£4(0,00)7 The
answer is as follows. Translating # to the right will never take the function
past the right endpoint. On the other hand, by translating to the left we can
always bring the function past the left endpoint (the origin). In this case there
is not anywhere from where the function can reappear to conserve probability
and hence p can not be made self-adjoint.  This also explains why p is already
self-adjoint on L£4(—00,0).

Another extremely simple problem is the case of a particle in a strongly
repulsive potential such as a quartic or cubic potential

Vig)=—g2" g>0 n=3,4. (6.7.176)
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In this case the Hamiltonian is

2 2

- =P g
H= o +V(z) = o 92" (6.7.177)

By redefining the variables we can bring this to the form

@
H=--7s—a" a>0. (6.7.178)

We want to examine this Hamiltonian on £5(—00,00). To get a feel for the
physical situation consider the problem classically. In the previous example we
saw that the existence of different self-adjoint extensions depended on the fact
that the particle can reach a boundary (a or ) and have to be transmitted or
reflected.

In this case the boundaries are at +00. So we must see if the particle can
in fact reach these boundaries. Now suppose the particle starts at = 0 with
energy E > 0. Then classically its velocity v is given by

%mvz -gz"=E (6.7.179)

[2E 2
v= F+ e L (6.7.180)

Therefore the time to reach oo is

. / Cdr /' « dz

o v 0 /.2"_{3 + % gzn
And for n = 3 or 4, t < . So, the particle reaches +co in a finite time. To
conserve probability it must be reflected and return to the origin in a finite time.
Thus, the time-averaged particle position is near the origin. We therefore expect
to find that all eigenfunctions of this Hamiltonian are square integrable and that
the spectra of the self-adjoint extensions of H are discrete. This is, in fact, the
case and this Hamiltonian is analogous to a free particle Hamiltonian on a finite
finite interval (a,b), (see problem 6.7). For the repulsive quartic potential the
points +oo behave like the end points (a,b). So it is not surprising that the
deficiency indices are (2, 2) for both cases. For the repulsive cubic potential the
situation is different. The particle can again reach £ = 400 in a finite time but
it can never reach £ = —co. Thus we need only specify boundary conditions at
z = +00. In this case the deficiency indices turn out to be (1,1). The main
point of this discussion is that whenever an operator, which is a candidate for
representing an observable, is not self-adjoint but has self-adjoint extensions,
then there are good physical reasons ifor this.

or

(6.7.181)
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6.8 Spontaneously Broken Symmetry

The concept of spontaneously broken symmetries plays a very important role in
some field theories of elementary particles. Since it fits naturally into the topics
we have just discussed, we shall start by defining the concept and then proceed
to illustrate it with an example.

Suppose we have some observable, whose representative operator ¢} com-
mutes with the Hamiltonian H. Then either @ corresponds to a discrete symme-
try operation @Qp such as parity, or else we can use @ to define a one-parameter
family of unitary operators,

Ua) = €9 (6.8.182)
for which @ is the generator. It then follows from

@ H]=0 (6.8.183)
that

e Qe = | (6.8.184)
or else for a discrete symmetry

QpHQL =H. (6.8.185)

We also require that the ground state of the Hamiltonian ¢¢ should be invariant
under either U(e) or @p. This means

U(a)do = o (6.8.186)
or
Qpédo = o - (6.8.187)
Definition

A symmetry corresponding to an observable @ (Qp) is spontaneously broken
if all the above statements except (6.8.186) (respectively (6.8.187)) hold. For
this to occur requires that the ground state be degenerate. This, in itself,
is an unusual phenomenon. To illustrate this phenomenon we consider the
Hamiltonian

p2
H=2 (6.8.188)

2m

defined on the interval —a < z < a. We furthermore pick for p = (h/i) (d/dz)
the self-adjoint extension corresponding to the domain

D, = {f(x) €C" | f(a) = -f(-a)} . (6.8.189)

Thus, instead of periodic we pick “anti-periodic” boundary conditions.
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The complete set of normalized eigenfunctions of this momentum operator
are given by:

falz) = %e”(w/?)ﬂ/a n=041,42,... (6.8.190)

with corresponding eigenvalues (n +1/2)7k/a. These wavefunctions have the
following symmetry properties

fa(2) = f-(n41)(—2) (6.8.191)
and
fa(@) = f-(nr1)(2) - (6.8.192)

Thus, the parity operator P and the time-reversal operator T' have the following
action on them

(Pfa)(®) = f-(n41)() (6.8.193)
T(fa)(®) = f-(n1)(2) - (6.8.194)
The set of functions {f,} are also eigenfunctions of the Hamiltonian. In fact,
n2h?
Hfn = 5—5(n+1/2)f» (6.8.195)
n2h?
Hf (ny1y = Cy— (n+1/2)*f— (a1 - (6.8.196)

Thus, all eigenvalues including the ground state eigenvalue
Eo = E_; = (?K%)/(2ma?)

are doubly degenerate. We further see that although the Hamiltonian H, the
parity operator P, and the time-reversal operator T' commute, the two ground
states fo and f_; are not eigenstates of either the parity operator or the time-
reversal operator

(Pfo)(z) = T(fo)(z) = f-1(2) (6.8.197)
and
(Pf-1)(z) = T(f-1)(2) = fo(z) . (6.8.198)

Thus, parity and time-reversal are spontaneously broken symmetries.
It is possible to restore these symmetries by defining states

6 (2) = 75 1) + S (@)] = o oostn+1/272 (88199

S

as well as
0o(z) = % [~fa@) + fouiny(@)] = % sin(n+1/2)= . (68200)
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These are now simultaneous eigenstates of H, P, and T.

(Pga)*(z) = % g5 () (6.8.201)

(T9n)* () = £ 95 (2) (6.8.202)
n2h?

Hy(2) = 5— 02(2) - (6.8.203)

So, parity and time reversal are no longer broken symmetries. In this case,
however, we have an even more surprising symmetry breaking, for although the
momentum operator p and the Hamiltonian p?/2m commute, these eigenstates
of the Hamiltonian are not eigenstates of the momentum operator. In fact,

nh
pos (¢) = F—(n+1/2) 67 () (6.8.204)
so that in particular
rh _
Pg§ (z) = =5 95 (=) (6.8.205)
and
_ mh |
pgo (2) = +5 90 (2) - (6.8.206)

In this case we therefore have translational symmetry spontaneously broken
since the translation operator

U(s) = ei*?/h (6.8.207)

does not leave the ground states goi invariant. In fact, by expanding

Us)=)_ % (’%”)" (6.8.208)

n

and repeatedly applying (6.8.205) and (6.8/206) we get:

U(s)g (z) = cos (E) g% () Fisin (E) gt (z) . (6.8.209)
2a 2a
This demonstrates conclusively that the translational symmetry is broken.

We now relate the mathematical model we have displayed, to a definite phys-
ical system. If one considers a one-dimensional crystal consisting of only one
type of atom, then the boundary condition in going from nearest neighbour
to nearest neighbour is periodic. The situation repeats itself. Similarly for a
one-dimensional crystal with alternating atoms (ABAB) ..., as in an antiferro-
magnet, the boundary condition from an atom to its next nearest neighbour is
periodic, and hence from nearest neighbour to nearest neighbour anti-periodic.

We can now visualize the physical situation corresponding to our model and
get a clearer understanding of the cause of the broken symmetry. If we consider
such an antiferromagnetic crystal and consider the interval between nearest
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neighbours as fundamental, we must impose antiperiodic boundary conditions.
Furthermore, since the end points correspond physically to different situations
(atoms) it makes a difference whether a particle travels freely from left to right
or right to left. The situations are not mirror images of each other and hence
not eigenstates of the parity operator. Since time-reversal reverses the direction
of travel, these states are also not eigenstates of the time-reversal operator.

One can take a superposition of states of particles travelling to the left and
right, as we did, to get standing waves which are then automatically time-
reversal as well as parity invariant. In this case, however, conservation of prob-
ability brings about a loss of translation invariance. It is clear now that this
“unusual” self-adjoint extension of the momentum operator has just as physical
an interpretation as the usual one with periodic boundary conditions.

It is perhaps also worth while to notice that the commutation relation

[z,p) =ik (6.8.210)

is not valid in this representation since for f € D, , zf ¢ D, in general. In fact,
in this case, zf € D, only if f(a) = f(—a) = 0. Nevertheless, it is true that

[2",p] = 2nh2? ' n=0,1,2,... . (6.8.211)

This concludes our mathematical treatment of self-adjointness. We now turn to
a systematic analysis of the physical interpretation of quantum mechanics.

6.9 Problems

6.1 Consider the set of functions {fx(z) = ¢**f(z) , f(z) € £3}. Show that

kllrgo(y,fk) =0g€Lls
whereas
I fi IP=I1 £ IP£0

The above type of convergence of fi — 0 is called weak convergence as
opposed to the notion of strong convergence defined in the text. Hint: Use
the Riemann-Lebesgue Theorem [1].

6.2 Show that every Cauchy sequence in a finite dimensional vector space
converges strongly (see problem 6.1).

6.3 Consider the operator A = pz?"*! + 2?"+1p where p = (h/i)(d/dz) and
n=1,2,3,.... Find the eigenvalues and eigenfunctions of A. What are
the deficiency indices of A 7 The Hilbert space in this case is £4(—00, 00).
For n = 1 this example is due to von Neumann.
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6.4 A projection operator is a self-adjoint, non-negative operator P satisfying
P2 = P. Let f, be a normalized eigenfunction of a self-adjoint operator
A with only discrete eigenvalues A,
a) Show that the operator P9 = f,.( fn, ) is a projection operator.
b) Show that A can be written

Ap = ZjA fnle )dy-ZA Pub .

This is called the spectral resolution of the operator A.
Hint: Assume completeness of the eigenfunctions.

6.5 Find the spectral resolution (see problem 6.4) of the operator

A= ( . a1+ ) u; real.

a) —ag —ag

6.6 For any operator A the corresponding operator R(z) = (A—21)~", where 1
stands for the unit operator, is called the resolvent operator. Show that for
any square matrix A , R(z) is analytic in z with poles at the eigenvalues
of A.

6.7 Find the deficiency indices and hence all self-adjoint extensions of the
Hamiltonian

B d
" 2m de?

defined on the interval (a, b).
Hint: It may be useful to express the boundary conditions on a function
f € Dy in terms of 2-component quantities

ro) = (1) = Fo)= (75)

and assume that F(b) = UF (a) where U is a non-singular 2 x 2 matrix.

6.8 Given an orthonormal basis set {u,: n = 0,1,2,...} and an operator a
which has the following action on this basis:

at, =\/nu,-; n>0.

Find the adjoint operator a! by explicitly giving its action on this basis
set. Also find the commutator [a,a'] .
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Chapter 7

Physical Interpretation

7.1 Introduction

At this stage we have developed all the formal mathematical machinery that
we need. This does not mean we have deyeloped all the techniques needed or
useful in solving concrete problems. What we have developed is a machinery
that allows us to form the physical interpretation of the theory in a precise and
economical manner. We do this by displaying classical and quantum mechanics
side by side.

In classical mechanics the state of a physical system is described by a point in
phase space. Thus, specifying z and p for each one of a system of point particles
specifies the system completely. For simplicity we consider systems consisting
of a single point particle. Thus, in classical mechanics there is no distinction be-
tween specifying the values of certain observables (z, p) and specifying the state
of a system. In quantum mechanics the situation is quite different. Here, there
is a definite distinction. We now state this in terms of a series of assumptions
or axioms.

7.2 Al - Physical States

The state of a physical system is completely specified by a ray in Hilbert space.
A ray is a constant multiple of a vector. Conversely to every vector in Hilbert
space corresponds the state of a physical system.

This last assumption needs to be modified in certain cases, called super-
selection rules, with which we are not concerned. Also, these modifications do
not occur for the physics we discuss so we ignore them. Notice, that Al is a
very strong assumption in that it states that the physical state is completely
specified by the Hilbert space ray. Thus, if f € H, then f and cf (where cis a
complex number) both describe the same state and furthermore, everything that
can in principle be determined about the state is contained in f. Furthermore,
A1 says nothing about observables. This is contained in our next assumption,

138
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but first we must define observables. In classical mechanics an observable is
any dynamical variable or any function of dynamical variables. In quantum
mechanics the situation is again quite different. We define observables as follows.

In quantum mechanics, an observable is any physical quantity whose value is
obtained by a definite physical operation. Thus, the physical operation or method
of measuring defines the observable. The measurement need not be performed
but it must be possible, in principle, to perform the operation yielding the
measurement. Furthermore, we shall assume that the measurement operation is
ideal in the sense that all experimental errors are zero. It will also turn out that
there is not a one-one correspondence between observables in classical mechanics
and observables in quantum mechanics To be explicit we shall denote observables
by script letters A, B,C etc. Another point is worth mentioning. In classical
mechanics we do not distinguish between the mathematical representation of
an observable and the value of an observable. Thus z(t) represents both the
function and the value of the position at time ¢. In quantum mechanics the
situation is again quite different.

7.3 A2 - Observables

Any physical observable A is represented in quantum mechanics by a self-adjoint
operator A in the Hilbert space of physical states. Furthermore, since A is self-
adjoint it possesses a complete set of eigenfunctions with a corresponding set of
real eigenvalues

Afi=a;f; . (7.3.1)

Also any measurement of A can yield as a value only one of the eigenvalues
a; and no other number. Conversely to every self-adjoint operator A there
corresponds a physical observable A. For simplicity we assume that all the
eigenvalues a; are distinct. In that case the eigenfunctions f; are orthogonal
and we may as well consider them normalized. Thus, the {;} form a basis set
in H called the eigenbasis of A. This means that any physical state f can be
written as a linear superposition of the f;

F=Y 505 (7.3.2)

This has important implications. Notice also that A being self-adjoint guaran-
tees that the value of A is a real number, namely one of the a; . We now know
that the possible outcome of a measurement is one of the a; but we do not know
which one or, if this cannot be stated, what is the probability for a given one.
This is in fact the content of our next assumption.

7.4 A3 - Probabilities

For an observable A as specified in (A2) and any physical state f (assumed
normalized) the most detailed statement one can make regarding a measurement
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of A is that any one of the eigenvalues of A may occur and that the probability
P; that a given eigenvalue a; occurs is given by:

Pi= (i NI (74.3)

Notice that (f;, f) is the coefficient of f; in the expansion of f as a linear
superposition of the {f;} . Thus, writing

F=Ya;f (7.4.4)
we have
o = (). (7.45)

It is therefore appropriate to call a; the probability amplitude for observing
the value a; since this probability is given by

Pj=lajl* . (7.4.6)

This is of course the point at which quantum mechanics differs most radically
from classical mechanics. Thus, although [we may know a state completely, we
are nevertheless unable, in general, to predict the outcome of an experiment to
measure a given observable with certainty, Even worse if we make two separate
but identical measurements on a system| taking due care that in both cases
the system is in exactly the same state before each measurement, the results
of the two measurements will generally differ. The point is that states and
observables are defined differently in quantum mechanics whereas a state in
classical mechanics is defined in terms of observables.

We must now check that our interpretation is consistent. This requires some
elementary considerations. In order that P; be a probability we need

o< P
2) P =1
The first follows trivially from Schwarz’s inequality since
01U NP <IN PN S IP=1. (14.7)
The second follows from (7.3.2)
F=Y Dk (74.8)
Therefore,
(1) = 1= 05 N f3) =165 DI (7.4.9)

Although in general we can only make predictions of probabilities, there are
occasions when predictions can be made with absolute certainty. For example,

if in (7.4.6)
o =0 j#k (7.4.10)
J



7.4. A3 - PROBABILITIES 141

and

o;=1 j=k (7.4.11)
we get that

Pe=1 and P;=0 j#k. (7.4.12)

Thus, in this case the result of a measurement is certain to be a5 . Furthermore,
using (7.4.4) we see that the state on which the measurement is performed is
f=l.

Thus, if the system is in an eigenstate of an observable, then a measure-
ment of that observable is certain to yield the eigenvalue corresponding to this
eigenstate. This in no way implies that the states which are eigenstates of the
operator A corresponding to some observable A are more precisely specified
than states which are not eigenstates of A, because if B is another observable,
the eigenstates of A (the operator corresponding to A) are generally not also
eigenstates of B (the operator corresponding to B). Thus, although the value
of A will be well-defined in this state the value of B will not. In fact we shall
agree that an observable has a value only for states which are eigenstates of this
observable. Of course if the state under consideration is “almost” an eigenstate
then we may say that the observable has approximately the value corresponding
to the predominant eigenstate. To make this more precise we introduce the con-
cepts of average or expectation value of an observable and the root-mean-square
(RMS) deviations of an observable.

The expectation or average value (A) of an observable A is given by summing
all possible values multiplied by their probabilities. Thus, using assumption
A2 we get:

(Ay=>_Pja; (7.4.13)
J
and using (7.4.3) this becomes
() = 215D e
J

Y (£ 55 D e

J

Y LA D - (7.4.14)

J

Since A is self-adjoint, and therefore has a complete set of eigenstates, we can
write this

(4)

> (£ AR )

7

S (Af, )i )

J

(Af,f)=(f,Af) . (7.4.15)
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Thus,

(A) = (f,Af) . (7.4.16)
The RMS deviation AA is defined by:

(A4 = ((A-(4)*
= (A% -24(4) +(4)")
(A7) — 2(ANA) +(4) . (7.4.17)
Therefore,
(A4)? = (4%) - (4). (7.4.18)

The RMS value AA provides a measure of how spread out the “value” of A is.
Thus, if f is an eigenstate say f;. Then,

(4) (fi, Af;)
(fi»a;f;)
= aj(fj,fj) = aj . (7.4.19)

1l

Also, in this case, it is obvious from the definition that

AA=0 (7.4.20)
since,
(B4 = (4%)-(4)"
(£ A'f;) - &
= al-ai=0. (7.4.21)

Thus, in an eigenstate the RMS deviation from the expectation value is zero.
This means that A has a sharp value, and in this case the expectation value
will coincide with the observed value. Thus, the expectation value corresponds
to the average of a large number of identical measurements on systems in the
same state prior to the measurement. It may be worth pointing out that the
expectation value will not usually coincide with any of the actually measured
values.

So far we have talked about performing measurements on systems in the
same state. This implies that we have somehow “prepared” the systems in this
state. We now show how to do this. For although two separate measurements
of an observable made on systems in the same state do not generally yield the
same result, we do not have complete unpredictability. In fact if we make a
measurement on a system and then immediately repeat it before the system has
a chance to evolve, the results of the two measurements are identical. This is
in fact the content of our next assumption.
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7.5 A4 - Reduction of the Wave Packet

If the system is in a state specified by the wavefunction 3 and a measurement
of an observable A is made yielding the value a; , then immediately after the
measurement the state of the system will be specified by the wavefunction f;
where f; is an eigenfunction of the operator A corresponding to the eigenvalue
a;. Also A is the operator corresponding to the observable 4. Thus,

Afj=aif; . (7.5.22)

The wording above was deliberate when we stated that f; is an eigenfunction
of A. This is because it is possible for an operator to have several eigenfunc-
tions corresponding to one eigenvalue. In that case we say that the eigenvalue
is degenerate and any linear combination of the eigenfunctions corresponding
to this eigenvalue is also an eigenfunction. Thus, the wavefunction f; in the
assumption above may be any such linear combination if a; is degenerate. Sup-
pose a; is non-degenerate, then we know the state precisely and so to perform
a measurement in quantum mechanics is the same as to prepare a state. In
fact, that is how we prepare states quantum mechanically. Thus, unless we are
in an eigenstate of A it is impossible to predict, with certainty, the result of
a measurement of .4 prior to the measurement. Performing the measurement
causes an uncontrollable change in the wavefunction. This means that a single
measurement cannot tell us anything about what the state of the system was
prior to the measurement, it only tells us what the state is immediately after
the measurement. This is quite different from what a measurement does in clas-
sical mechanics. In classical mechanics an observable always has a value and
in principle we can measure its value without disturbing the system. Thus, in
classical mechanics a measurement tells us both what the state of the system
was before as well as what the state of the system is after the measurement. In
quantum mechanics we can only determine what the state is after the measure-
ment. There is no retrodiction, no specifying of what the state was before the
measurement.

7.5.1 Example

Consider the operator

03 = ( (1) _01 ) (7.5.23)

corresponding to an “observable” in a two-dimensional Hilbert space. Clearly
the eigenvalues are &1 and the corresponding eigenvectors are

f+:(é> and f_:((;) . (7.5.24)

Suppose we are given a wave-function

Y= ( cos ) . (7.5.25)

sin ¢
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Then,

(¥,¢) =sin?8 +cos?0=1. (7.5.26)
So 1 is normalized. Also,

Y =cosff; +sinff_ . (7.5.27)

A measurement of the observable corresponding to 3 must, therefore, yield
either +1 or —1. The corresponding probabilities are cos? and sin?§. The
expectation value is

(03) = (¥, o3%) = cos? f —sin? § = cas 20 (7.5.28)

and can lie anywhere between —1 and +1 depending on the value of 6.
Thus, if 6 = 0 or ¢ = f4, then

(03) = +1. (75.20)
If 6 = n/2 or ¥ = f_ then,

(03) = —1. (7.5.30)
The RMS deviation is given by:

(Ac3)* = (03) = (03)* . (7.5.31)

(03)* = ( - ) (7.5.32)

SO

((03)%) = +1. (7.5.33)
Therefore,

(Ac3)? =1—cos? 8 =sin? 9 . (7.5.34)

Thus, for 8 = 0 or 7/2
(Ag3)? =0. (7.5.35)

This means that if ¢ is an eigenstate, (Adi3)? = 0. On the other hand, for any
value 0 < 6 < 7/2, o3 does not have a definite value but only a probability
for obtaining +1 or —1 can be given. For example if § = 7/4 we have a 50%
chance of obtaining either +1 or —1 in a|measurement. Incidentally o3 does
correspond to a physical observable and we shall encounter this operator again
later.

So far we have only considered measurements on a single observable and have
found a profound difference between classical mechanics and quantum mechanics
We now consider measurements of several different observables. This will tend to
accentuate the difference between classical mechanics and quantum mechanics.
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As stated before, in classical mechanics every dynamical variable has a definite
value in every conceivable state of the system. On the other hand, in quantum
mechanics a dynamical variable or observable has a definite value only if the
system is in an eigenstate of the corresponding operator. If we now consider two
observables, they can both have sharp values iff the system is a simultaneous
eigenstate of both of them. What does this entail?

Let A and B be two observables with the corresponding self-adjoint operators
A and B having a common dense domain. Then if a measurement of A yielding
a,, is immediately followed by a measurement of B and a second measurement
of A, we say that A and B are compatible if the second value obtained for A
is always the same as the first (namely a, in this case). We saw an example of
compatible operators in the case of an Hamiltonian H with a potential that is
an even function of &, namely V(z) = V(—z). In that case the operators for
corresponding compatible observables were the Hamiltonian H and the parity
operator P. In fact the following three statements are equivalent.

7.6 Compatibility Theorem and Uncertainty
Principle

The following statements are equivalent for a pair of observables A, B.
1) A and B are compatible.

2) A and B possess a common eigenbasis.

3) A and B commute, that is

[A,B]= AB-BA=0.

An example of two observables that are always compatible is .4 and f(A), any
function of A. This is reasonable in view of how the operator f(A) corresponding
to f(A) is obtained (as a power series in A).

We are now ready to discuss the Heisenberg Uncertainty Principle. Suppose
A and B are not compatible, then [A, B] # 0. This means that there exists at
least one state f belonging to the common domain of A and B such that

(AB - BA)f #0. (7.6.36)

Now there are many pairs of observables (in fact all classically conjugate vari-
ables) for which the commutator is particularly simple, namely just a number.
For example, using

kd

P=T 0 (7.6.37)
we have
_hd R df .
[p,2)f = - @) -ze - =—ihf (7.6.38)
so that

[p,2lf =—ih f . (7.6.39)
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For such observables their lack of compatibility is expressed by the Heisenberg
uncertainty principle which states:

Heisenberg Uncertainty Principle
Let the state of a system be described by the wavefunction ¢ and let A and B
be two observables. Then the uncertainties (RMS deviations from the mean) in
A and B satisfy the inequality

AAAB > 1|19, [4, B! (7.6.40)

This is a rather formidable looking expression but if [4, B] is just a c-number
(ordinary number rather than an operator which is called a q-number), then the
expression simplifies. Thus if

[4,B]=¢ (7.6.41)
then (7.6.40) reads, for a normalized 1,

AAAB > %|c| . (1.6.42)

We shall derive (7.6.40) shortly but first let us consider its implications. Clas-
sically observables are not operators and therefore the commutator is always 0,
implying that all observables are compatible. Now for conjugate variables such
as p and z in the example above, ¢ = ifi so!that

ApAz > g : (7.6.43)

Thus, we see that in some sense classical mechanics corresponds to the limit
k = 0. Of course we know this already from the way Planck introduced h as
the smallest lump of action possible.

In quantum mechanics according to (7.6.42) we see, however, that if we
increase the precision with which a given observable is known, the corresponding
non-compatible observable becomes more uncertain. As we shall see, for p and
 this is strictly a property of Fourier transforms. However, it is one of the most
outstanding features of quantum mechanics. We now give a physical derivation
of (7.6.43) using the so-called Heisenberg microscope and then we proceed to
the mathematical derivation.

7.7 The Heisenberg Microscope

The experiment considered here is not an jactual but rather a “Gedanken” or
thought experiment: We have a microscope as shown (figure 7.1) illuminated
by light from the left. Suppose we are examining an electron represented by the
little sphere. Also assume that the electron;is at rest. We now try to determine
its position as precisely as possible. We already know that the momentum is
zero.. Now in order to “observe” the electron, we must scatter at least one
photon off it. This will impart some momentum to it and since the aperture
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hv

Figure 7.1: The Heisenberg microscope.

of the microscope is of finite width we do not know how much momentum
was imparted. In fact the reflected photon can travel anywhere in the cone
designated by the angle 6. If the wavelength of the photon is A then the resolving
power of the microscope is

A
sinf
The momentum transferred to the electron (the uncertainty in the momentum)
is given by:

Az = (7.7.44)

Ap=psind (7.7.45)
where p is the momentum of the photon. But
h
=— . 74
P=x (7.7.46)
Therefore,
AzAp~ h . (7.7.47)

Notice that this “derivation” implies that this inaccuracy is intrinsic and cannot
be decreased by getting better instruments. We now turn to the mathematical
proof. It is based on the following properties:

1) A and B are self-adjoint.

2) The expressions for AA and AB are:

(A4)? = (A~ (4))%)

(AB)* =((B-(B))*).
3) The Schwarz inequality,

(£,9)I* < (£, £)(9,9) -
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The statement to be proven is:

AAAB > |(¥,[4, BlY)| . (7.7.48)
We first define the operators
A'=A-(A) (7.7.49)
B'=B-(B). (7.7.50)
These are still self-adjoint. Also,
[4',B1=[A4,B] . (7.7.51)
All we have done is to subtract the mean values. Furthermore, we now have:
(AA)? = (A'y, A'Y) (7.7.52)
since
(A4)? = (4%
= (¥, (4-(4)%)
= ((A-(4)%). (7.7.53)

To obtain (7.7.48) we now just apply the Schwarz inequality after the following
short computation

¥, [A,BlY) = (4,[4,BTY)
(¢, A'B'$) - (4, B'A'Y)
= (A%, B'Y) - (B'Y, AY)
= (A4, B'Y) - (A4, B'Y)"
= uS(A'Y, B ¥) . (7.7.54)
Thus,
(4, [A, Bl¥)| = 2S(A'Y, B'Y)|
< 2(A', B'Y)] (7.7.55)
and by Schwarz’s inequality
S (A/,(p Alw)l/Z(Blw’Bl¢)l/2
= 2AAAB . (7.7.56)
Thus, finally we find
AAAB > 3](4, 4, BlY) (1.7.57)

as stated. The proof just given is completely general except for the case where
[A, B] # 0 and the state 9 is an eigenstate of either A or B, say

Ap=ap. (7.7.58)
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The point here is that in this case, either v is not in the domain of B or else By
is not in the domain of A. So, in either case an expression such as (v, [4, B]y)
is meaningless. To see this consider

(¥,(A, Bl¥) (¢, ABY) — (¢, BAY)
(AY, BY) — a(¥, BY)
a(, BY) —a(¥, Bp) =0 (7.7.59)

contrary to our assumption of a non-zero commutator.

In arriving at this contradiction we have also made heavy use of the fact
that A is self-adjoint. For the case where ¢ is indeed an eigenstate of say A one
can either arrive at a general result by a different means [7.4] or else one can
reconsider the whole question from the start by explicitly using that state.

We now proceed to discuss the time-evolution of a quantum state. In classical
mechanics the evolution of a state is given by a set of first order differential
equations, Hamilton’s equations, and is therefore unique. The corresponding
thing in quantum mechanics is Schrodinger’s equation which is also first order
in time and hence predicts the evolution of a state uniquely. Furthermore,
the evolution of a state ¥(¢,z) gives the time evolution of any observable’s
expectation value according to

11

(A = (¥(t,2), AV(L,z)) . (7.7.60)

On the other hand, the “value” of the observable does not evolve in a completely
predictable fashion. Just as in classical mechanics the Hamiltonian plays a
special role in determining the evolution so does the Hamiltonian operator in
quantum mechanics. We now state this as our fifth and final assumption.

7.8 A5 - The Schrodinger Equation

For every physical system there exists an observable, the total energy, to which
there corresponds a self-adjoint operator H called the Hamiltonian. The Hamil-
tonian determines the time evolution of the system according to the time-
dependent Schrodinger equation

ihe— = HY (7.8.61)

provided the system is not disturbed.

Note, the last proviso states that if a measurement is made, (7.8.61) ceases to
hold. This is due to the fact that making a measurement involves disturbing the
system in an essentially unpredictable manner as we saw with the Heisenberg
microscope. If the disturbance were predictable we could include it as some new,
perhaps time-dependent, “potential” in the Hamiltonian and thus in principle
predict the outcome of all experiments. This is not possible, however.

In order that our interpretation of quantum mechanics as given by A1, A2
A3 and A4 be consistent with A5 we need that if ¥ is normalized at some
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instant, that it should remain so. This implies that (¥(¢,z), ¥(¢, z)) must be
time-independent. But

d%(\ll(t, 2),¥(t,2)) = (%,w,n) + (\Il(t,z), awgt, ”)) (7.862)

and using (7.8.61)

4 (t,2),9(t,2)

i (w0900 + (w00, w000

= (Y0, 2), %, 2) - (90t 2), H9,2)

- %[(W(" z), H¥(t,z)) - (¥(t,z), H¥(t,2))]

0 (7.8.63)

where we have used the fact that H is self-adjoint.

The way we have formulated the time-dependence via the Schrodinger equa-
tion allows us to consider the time ¢ as a parameter labelling different states
on the hilbert space . All that the Schrédinger equation does is to determine
how one vector in H evolves into another., Thus, it is natural to look for an
operator that performs this evolution. In fact, to preserve the inner product,
the evolution operator must be unitary. Allso if we compare (7.7.50) with our
statement of Stone’s Theorem we see that the Hamiltonian H is the generator
of the evolution operator. Rather than use $tone’s Theorem we shall derive this
result directly. Thus, assume that there exists a unitary operator U(t,?o) such
that

U(t,z) =U(t, to)¥(to, 2) (7.8.64)
where

Ut,to) =1. (7.8.65)
Substituting into (7.8.61) we get

t,1

[man%’ o _ HU(t,to)] Y(to,z) =0. (7.8.66)

This must be true for all possible initial states ¥(¢o,z), and hence
U(t,t

ihé—% = HU(t,to) . (7.8.67)

The solution is
tH
U(t,to) = exp [_T(t - to)] (7.8.68)

or

Ult,to) = 1+ i% [@] (7.8.69)
n=1
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where (7.8.69) gives a definition of the function exp. Notice that U(t,1o) is
not an observable since it is not self-adjoint. Nevertheless it is a very physical
object. We shall encounter this operator again when we examine the so-called
transformation theory of quantum mechanics

7.9 Time Evolution: Constants of the Motion

The expectation value of an observable A is given by

(A), = (¥(t,2), AU(t, 2)) . (7.9.70)
Hence,
TN = 2 (¥(02), AV, 2)

(%ﬁ,mp(z,z)))r (W(t,z),A%> . (1.9.11)

Using (7.8.61) this becomes
44y [(—%H\P(t,z),A\I’(t,z)) + (\P(t,z),A(—%H)\P(t,x))]

a
= 2 (¥(t,2), (HA- AH)¥(t,2) (7.9.72)

where we have used the self-adjointness of H. Thus,
L) = 3 (¥(t,2), [, A}¥(,2)) (1.9.73

This gives the evolution of the “mean value” of an observable and is sometimes
very useful for evaluating (A);. It is frequently simpler to solve this as a dif-
ferential equation rather than to evaluate (A); directly. For an example see
problem 7.5.

Now, suppose [H, A] = 0. Then (7.9.73) gives

%(A)t =0. (7.9.74)

Thus, the expectation value of A does not change in time and we can state that
A is a constant of the motion. In a similar manner we can show that (Problem

7.8)

d

-d—t(AA), =0. (7.9.75)
An important special case of this is the Hamiltonian itself. Since [H,H] =0
we immediately get that the Hamiltonian is a constant of the motion. But the
Hamiltonian represents the total energy of the undisturbed system. Thus, we.
have shown that for an undisturbed system, the total energy does not change
with time.
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7.10 Time-Energy Uncertainty Relation

The inequality (7.6.40) states that for classically conjugate variables (i.e. those
satisfying [p,q] = ih) we have the Heisenberg uncertainty or indeterminacy
relation

ApAg> h/2. (7.10.76)

Such a relation holds also for the time andl energy variables even though they
do not satisfy a commutation relation

(E, 1] =ih. (7.10.77)

This commutator might be conjectured from the fact that in the time-dependent
Schrodinger equation the “energy operator” appears as

., 0

E= zh-a—t . (7.10.78)
As we now show equation (7.10.77) is false for any physical system. The reason
for this is that the energy for a physical system must have a finite lower bound.
Otherwise the system would wind up in the lowest state of negative energy at
E = —co (by radiating its energy away) and stay there forever. No perturbation
would be strong enough to excite the system from E = —oo to a finite value.
This being the case we must have a finite Ey with all energies E > Ep and
thus there can be no self-adjoint extensions for an operator ¢ satisfying the
commutator equation (7.10.77). (See problem 7.10.) ! Hence time could not be
an observable if equation (7.10.77) were to hold.

We now show directly that if there exists a finite lower bound Ej (the lowest
energy eigenvalue of H) such that all eigenvalues E satisfy E > Ey then we
obtain a contradiction from equation (7.10.77) if both the Hamiltonian H (total
energy) and the time ¢t are to be observables.

Let ¢o be the energy eigenfunction corresponding to the lowest energy Ey .

Héo = Eogo - (7.10.79)
Now pick any positive frequency w and define the operator

b=ewt. (7.10.80)
Then, (see problem 7.12)

[H,b) = —hwb . (7.10.81)
So,

Hbgo = bH $g — Fuwbgy (7.10.82)
or

H{bgo) = (Eo — hw)(beo) . (7.10.83)

'If the energy is also bounded above, then ¢ has a one-parameter family of self-adjoint
extensions. In this case, however, the spectrum of the t-operator is discrete.
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Therefore, either Ey is not the lowest eigenvalue of H or else
bpo =0 .

But, if ¢ is to be an observable then wt must be self adjoint and b = ¢** must
be unitary. As a consequence

bpo=0 = ¢o=0.

Thus, we have to conclude that the commutator (7.10.77) is false.

In spite of the absence of a “time-energy commutation relation”, a time-
energy uncertainty relation holds. This relation is extremely useful and it is
important to understand what it means. It is for this reason we have given such
a lengthy discussion above. We now proceed to the derivation of this relation.

The “time” involved in the time-energy uncertainty relation is not the time
parameter in the Schrodinger equation, instead it is the “time of a process”
associated with an observable A. We therefore define the evolution time T4
associated with the observable A by

A ; (7.10.84)

To see what this means consider the change in the expectation value A(A); of
the observable A in a time interval At. This is

AA) = [(Adsar ~ (Al

d(4)

.10.
- At . (7.10.85)
Now for the change |A(A)| to be measurable requires that |A(A4)| be at least as
large as the uncertainty (AA); in the observable A. This gives us the length of

time At which we must wait to be able to “see” any change in A{A); . Equating
|A{A)| with |A(A) | we find

A =Ta (7.10.86)

But this is just the time T,. So T4 is the time required for the expectation
value of A to change by an amount equal to the uncertainty in A.

Returning to the time-energy uncertainty relation we find according to (7.9.73)
that

1
= sl A4

.M
at

= Sl A)) (1.1087)
where as before
H = H-(H)
A = A-(4). (7.10.88)
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Then, by the same sequence of steps used to obtain the general uncertainty
relation (7.6.40), we get:

d(A)| 2
‘T‘ < SAHA(A). . (7.10.89)

Writing AE for AH and solving for T4 we find

AETy > h/2 (7.10.90)
or writing At for T4 we have

AEAt > k2. (7.10.91)

This is the famous time-energy uncertainty relation. Its meaning is clear from
the derivation. Namely, let AE be the uncertainty (RMS deviation from the
mean) in the total energy and let At be| the minimum time required for a
measurable change to occur in a given observable evolving according to the
Hamiltonian describing the total energy. Under these circumstances the relation

AEAt > /2 (7.10.92)

holds.

7.11 Time Evolution of Probability Amplitudes

We now derive an equation that tells us how the probability amplitudes evolve
in time. Since the Hamiltonian H is self-adjoint it has a complete set of eigen-
vectors uk(x). Assume these are normalized and therefore form a basis. Thus,

H ui(z) = Ey ug(2) (7.11.93)

where Ej are the eigenvalues of H and thus the allowed values of the total
energy of the system. A given eigenstate then evolves according to

Ui (t,z) = e~ Bt/ Py (2) (7.11.94)
Now, suppose an operator A corresponding to an observable A has eigenvalues

{an} and eigenstates {¢,(z)}. If the state of the system is ¥(¢,z) we can write
the probability amplitude a, for observing a,, as

an(t) = (én(z), ¥(t,2)) . (7.11.95)

Thus, we get the expansion

U(t,2) =Y an(t)dn(2) . (7.11.96)
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Equation (7.11.94) is obviously a special case of this where the observable A is
the total energy. From (7.11.95) we get

dan(t) oV
a (¢"’ at)

= _E(d’nyH‘I’)
- 1 <¢,,,Hzam(t)¢m)
“‘Z"m ) (60, Hém) - (7.11.97)
Thus,
%:-;-;am(t)m,wm) . (7.11.98)

For an arbitrary observable A this is as far as we can go. If, however, A is the
Hamiltonian H so that ¢, = un,, then we get

day(t)
@ - hz ) Emam
= —EE,.a,.(). (7.11.99)
So
an(t) = ap(0) e HEnt/A (7.11.100)

This result follows of course immediately from (7.11.94) by recalling that
an(t) = (¢n, ¥) .

In fact, this is precisely how we previously introduced the concept of statlonary
state in connection with the Schrédinger equation.

We now use these results to examine the time development of observables
that are constants of the motion. Thus, if A is a constant of the motion then

[A4,H]=0 . (7.11.101)

We have already found that this implies that (A); does not change in time and
similarly (AA), is constant in time.  Now since (7.11.101) is time independent
and A and H are both self-adjoint ‘with an assumed common dense domain,
they have a common eigenbasis. Thus, both

Huy = Ey uy (7.11.102)
and

Agn =an¢n . (7.11.103)
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We can by relabelling (or reordering) arrange that
¢n,k = Uk,n (7.11.104)

so that, as stated, the operators have a common eigenbasis. The probability of
measuring a, for a system in the state ¥(¢,z) is as before given by

laa ()* = (6,6 O = |(uk,n, ¥)I* - (7.11.105)
Thus

|°‘n(t)|2

‘(uk,n,\Il(O,;c) E—iEnt/h) ‘2

(5., ¥(0, )
|(#n 4, ¥ (0, 2)) (7.11.106)

and is independent of ¢. This means that all measurements we can perform on
A do not change with time and so we are truly justified in calling A a constant
of the motion whenever [4, H] = 0.

We have now formulated non-relativistic quantum mechanics as a theory
of linear operators on a Hilbert space. A |predominant role is played by the
Hamiltonian operator. Thus, a rule for obtaining this operator is desirable.
Unfortunately aside from the considerations we gave in Chapter 3 not much
more can be done in general. There are more formal ways of approaching this
problem of making a classical observable Into a self-adjoint operator on the
Hilbert space of physical states. Basically the problem is as follows.

Find pairs of classically conjugate variables p, , ¢,. Then impose the formal
algebraic relation

[Pr,qs] = —ihéys . (7.11.107)

Now look for operators on a Hilbert space H such that these operators satisfy
the relation (7.11.107) and are self-adjoint.| Worded in a slightly different way
this problem was considered by von Neumann who found the following result.
Except for unitary transformations (which pmount to a rotation of the Hilbert
space and are thus of no physical consequence) the Schrédinger representation of
the commutation relations (7.11.107) is unique. The Schrédinger representation
is

h o
P S5 (7.11.108)
gr =, . (7.11.109)

Actually von Neumann showed that there is a slight generalization of (7.11.108)
and (7.11.109) called a direct sum, but this is also of no importance to us. It
essentially amounts to writing

L)

ro g

pr=< 1('(9)z‘r Ao ) (7.11.110)
i 9yr
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4= ( zr 0 ) (1.11.111)

0 v

or even larger diagonal matrices with different independent variables z,y, z etc.
in each new row. We shall have no need for this. Now once we have the
representation (7.11.108) and (7.11.109) we form operators as stated in Chapter
3, paying due attention to the possible ambiguities there considered.

7.12 Problems

7.1 A particle is in a state given at ¢t = 0 by:

1 i\/2

¥ = guo(z) + %"1(4‘?) - ?W(x)

where up, w3, up are simple harmonic oscillator eigenfunctions corre-
sponding to the energies 1/2fw, 3/2fw and 5/2hw; respectively.

a) What is the most likely value of the energy that will be found in a
single observation on this'system? What is the probability of finding
this value?

b) What is the average of the energy that would be obtained if the ex-
periment in part a) could be repeated many times? What is the
probability of getting this value?

¢) A measurement of the energy yields a value 3/2hw. The measurement
is immediately repeated. What is the resultant value of the energy?
What is the wave-function immediately after the second measure-
ment?

d) What is the wavefunction of the undisturbed system after a time ¢ has
elapsed?

7.2 A free particle is located at £ = a at t = 0 1.e. its wavefunction at ¢t = 0 is
given by

¥(0,z) =d(z —a) .

Find the wavefunction for ¢ > 0. This solution is called the free particle
propagator.

Hint: To evaluate an integral of the form [ exp{iAz?+ifz} dz pretend
that X is A44e with € > 0 so that the integral is convergent. Then complete
the square in the exponent of the exponential and change variables. The
t€ in your answer will allow you to decide whether to take the positive or
negative square root. Finally let ¢ — 0.
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7.3 Minimum Uncertainty wavefunction.
We have seen (7.6.43) that AzAp > h/2. Assume (z) = (p) = 0. Now use
the Schwarz inequality (6.2.4)

IF 119 172 1(£,9)P2

and put

f=z¢ , g=p¢ .

Show that the equality in the uncertainty will hold only if

p=Azy
with ) a constant and

(%, (zp+pz)y) =0 .

Hence derive an equation for ¥ and solve it explicitly.

7.4 A free particle of mass m is at ¢ = 0 in a state described by
¥(0,2) = [2nL?] " exp —(2/2L)? .

What is the wavefunction for an arbitrary timet > 07 Compute the uncer-
tainties Az and Ap as functions of time. This illustrates the “spreading”
of a wave packet.

Hint: Look at problem 7.2.

7.5 A free particle is, at t = 0, in a state described by the wavefunction

_f Asin®22 |z|<a
\Il(O,z)_{ 0 ‘ |z| > a

Find for t > 0 the following expectation values

(), (2o, B, (3524 p)), and finally (2%

Hint: Use equation (7.9.73). If you try to evaluate these results using the
time-dependent wavefunction ¥(¢,z) you will get some impossible inte-
grals.

7.6 Consider a particle under the influence of an Hamiltonian

2

=P
H_2m+V(z)
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so that

v
th— = HVY .
"o
Show that if (z) is the “centre of mass” of the wave packet and (p) the
average momentum of the particle then

dz) _ (»)
dt m
and
d(p) dV(z)

T = (Pl = ~(S)

These are known as the Ehrenfest Equations. To be equivalent to Newton’s
equations requires that

(F(z)) = F((=)) -
Discuss under what circumstances this condition is approximately valid.
7.7 Prove the compatibility theorem.
7.8 Show that if [H, A] = 0 then AA does not change in time.

7.9 Consider a free electron described at time ¢ = by the Gaussian wavepacket
¥(0,2) = [27L?) V¥ exp—(2/2L)2 .

Using the experience from problem 7.4 answer the following questions:

a) What is (z) at any time?

b) What is Az as a function of time?

This is known as the spreading ¢f a wave packet. If this packet corresponds
to an electron with 20 keV energy and a width of 100 A at ¢ = 0, what is
its width after travelling 100 m?

7.10 Consider the space of functions:of E belonging to £2(0, 00). The relation-
ship

[E,t)=ih
can be represented on this space by

Ef(E) = Ef(E)
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and

_ g ¥(E)
tf(E) = —Zhﬁ‘ .

Show that the operator ¢ so defined kcan not be an observable, i.e. that it
has no self-adjoint extensions. This proves that if the energy has a lower
bound, a relationship such as (7.10.77) cannot hold if time is to be an
observable.

7.11 A particle is in a state described by the unnormalized wave function:
flz) = Ae~l"l ¢>0.

Find the length of an interval around the origin such that the probability
of finding the particle in this interval is 40 % .

7.12 Show that for any two operators A, B such that
[4,B] = ¢ ac-number
then
[A,eB] =ceB .
Hint: Expand ¢ and use the fact that

[4,B") = neB™! .
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Chapter 8

Distributions and Fourier
Transforms

8.1 Introduction

In this chapter we develop some more mathematical tools. Again these tools
are not important for computational purposes, but they are important as a
justification for the calculations performed in practice. Although physicists need
not, as a rule, practice mathematics with the same rigour as a mathematicians
they need to know mathematics sufficiently well to know when it is safe to
be sloppy. Furthermore in areas such as quantum field theory where it is not
known whether the difficulties encountered are due to bad mathematics, or bad
physics, or both it is important to ensure that the mathematics at least, is
correct. To this end, we give here a brief introduction to some of the results of
modern analysis. The presentation, although still at a submathematical level
is intended for the more mathematically inclined student. We give definitions
and theorems, but the proofs for the theorems are only sketched, or omitted
altogether. To compensate for this we list several relevant references at the end
of the chapter.

8.2 Functionals

A function may be considered as a mapping from a certain well-defined set of
numbers called the domain into another set of numbers called the range. Thus,
if f denotes a function then f(z) denotes the value of the function f at the point
z. This distinction is not always made but clearly there is such a distinction.
We shall now consider a mapping whose domain is a set of functions called test
functions and whose range is the set of real numbers. Such a mapping is called
a functional. If T is a functional then T'(f) is the value of the functional T
at the function f. Thus the arguments of functionals are functions. From the

161
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class of all possible functionals we pick out a particularly simple class, namely
the linear functionals. A functional T is linear if for f and g belongmg to the
domain of T and a, b two numbers

T(af + bg) = aT(f) +bT(g) . (8.2.1)

An example of such a functional is

1= [ te) fe)de (5.22)

-0

where #(z) is a fixed function and f(z) is in the domain of T if the right hand
side is convergent. Furthermore a functional T is bounded if for all f in a given
space |T(f)] < c || f || where c is a positive constant. There is a remarkable
theorem for bounded linear functionals ona Hilbert space.

Riesz Representation Theorem
Let A be a Hilbert space and T a bounded linear functional on . Then there
exists a uniquely determined vector fp of H such that

T(g) = (fr,9) (8.2.3)

for all g € H. Conversely, of course, any véctor f € H defines a bounded linear
functional T} by

Ty(9) = (f.9) - (8.2.4)

Proof
The proof is rather straightforward and is la proof by construction. Uniqueness
is obvious. For suppose f’ is another vector besides fr satisfying (8.2.3), then

(f = fr,9)=0 (8.2.5)
for all g € H. Thus f' — fr = 0 as desired. ' To prove that fr exists consider the
null space N7 of T where

Nr={g€H|T(g)=0}. (8.2.6)

If Nr = H take fr = 0. This is the trivial case. Now assume Nr # #.
Then there exists at least one vector fo # 0 belonging to Ni, the orthogonal
complement of N7 . In this case define

T(fo)"
fr= f 8.2.7
ThiE ™ 620
This is the desired fr as we now prove. Suppose g € Ny. Then
T(g)=0=(fr,9)- (8.2.8)

Next, if g is of the form
g=afo (8.2.9)
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then we have

(fr.9) = (fr,a fo) = aT(fo) = T(g) (82.10)
as required. We now show that any g € H can be written

g=afo+phfi (8.2.11)
where f; € Np. To prove this recall that

T(fr)#0. (8.2.12)
Then we have the identity

1= (o- 7 ) + 7 8213

which is of the form (8.2.11). Thus, since T is linear we have completed our
proof and shown that

T(9) = (fr,9) (8.2.14)

for all ¢ € H. This shows that on a Hilbert space the only linear functionals
are those given by inner products. We want to extend this notion somewhat.
Therefore, it is natural that we must go beyond the concept of Hilbert space.

In general to define a space we must have a criterion for deciding when two
points of the space are “close”. This criterion defines the topology of the space.
For example, in the finite dimensional vector spaces £, we use the Euclidean
norm (z3 4 23 + - - -+ 22)1/2 to measure closeness. In Hilbert space we use the
norm

I £lI=(f,5)? (8.2.15)

to measure closeness. For functions one also frequently uses point-wise estimates
of the form |f(z) — g(z)|. All of these criteria are useful and define different
topologies. For functionals one also has an estimate which is derived by analogy
with (8.2.2). Thus, if T and S are bounded linear functionals, meaning that
there are positive constants ¢, ¢’ such that

T(f) <cll £l (8.2.16)

and

Sy < £l (8.2.17)

for all f in a given space X , then T and S are “close” if [T'(f) — S(f)| is small.
Here || f || denotes the appropriate norm in X. Thus, the notion of “close” (or
topology) of the linear functionals on X is derived from the topology of &’ itself.

Dual Space
Let X be a space of functions with a given topology. Now consider the set X’
of all bounded linear functionals on X. Then X’ is itself a linear vector space
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with the topology of X’ determined by the topology of X. We call X’ the dual
space of X.

An example of these concepts is Hilbert space itself. In this case the dual
of H is H itself. In fact it is logically correct to consider the inner product on
a Hilbert space as being formed by elements from two spaces, the Hilbert space
H and its dual, which is of course a copy of #.

The point of all this is that one can| take linear functionals that are as
singular or pathological as one wishes if it is possible to find a space of functions
sufficiently nice to compensate for these pathologies. The space of nice functions
is called the space of test-functions. There are many test-function spaces. One
of the most useful of these is the Schwarz space S. Its dual space is called &', the
space of tempered distributions and is sufficiently general to encompass almost
any kind of “function” we shall encounter. To describe these spaces we need
some more terminology.

A function with continuous derivatives|up to and including the nth is called
C™. Thus, continuous functions are called C°. If a function is C™ for all n it
is called C*°. Using this terminology we can define S as the space of all C*
functions which together with their derivatives vanish at infinity faster than the
inverse of any polynomial. To make this more explicit we define the sequence
of semi-norms !

n

Il f IIr,n=sgp e (8.2.18)
where “sup” means “least upper bound”. In that case f belongs to § iff
I f llrn< 00 (8.2.19)

for all integers 7, n. This specifies the topplogy or notion of closeness in § So,
for example, a sequence {f;} of functions in S converges to f if for each r and
n

Jim [ f5 = £ llon=0. (8.2.20)

In terms of this the tempered distributions also have a topology whose definition
can be made very similar to the ¢,d definition for ordinary functions. Thus, T
is continuous at fy if given an € > 0 there exist integers r,n and a § > 0 such
that for

| f=follrn<$d (8.2.21)
we have
IT(f) = T(fo)l <e. (8.2.22)

One way to ensure that (8.2.22) follows from (8.2.21) is to insist that for all , n
there exists a positive constant ¢ such that

TN < e |1 f llrn (8.2.23)

IThe difference between a semi-norm and a norm is that a semi-norm may vanish for a
given element even though that element is different from zero.
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since then

IT() =T =IT(f = foll e I = follrn - (8.2.24)

In fact, there is a theorem that states that every continuous linear functional
T on § satisfies (8.2.23). This means that one can use (8.2.23) to define the
topology on &'

To prepare us for future applications we introduce two more notations for
distributions. To specify the value of T at f we have used T(f). We can also
write this (T, f). This does not mean we have an inner product, it is simply
another way of writing T'(f). As a matter of fact as physicists we carry this
even a step further and write this as

T(f) = / " T(e) fle) da . (8.2.25)

Again this is a purely symbolic way of writing T(f) and does not imply that
any integral such as (8.2.25) exists in any of the usual senses of integral. Nev-
ertheless, the notation (8.2.25) is extremely suggestive and thus if applied with
due caution one may treat this expression as an integral.

The most common of the distributions so treated is the § function. It is

defined by

3(f) = f(0) . (8.2.26)
On the other hand we frequently write this as

/_ " §(2) f(z) dz = £(0) (8.2.27)

It is an easy matter to prove that no function 6 with the property (8.2.27) can
exist. 2 However, if we realize that (8:2.27) does not imply a genuine integral of
a function 4 and is just another, but very suggestive, way of writing (8.2.26) then
all objections to writing (8.2.27) are removed. That d is not a function can also
be seen from the fact that although functions may be multiplied by functions
to give functions, distributions cannot generally be multiplied by distributions
or functions. For example, if we consider the product of 1/x and é(z) this is
not defined in general. Nevertheless there is a smaller domain for which this
product makes sense. An even more acute example is the product

§(2)8'(z) (8.2.28)

where &’(z) is the derivative of é(z).
We now define differentiation of distributions. In fact the definition is given
by analogy with integration by parts using (8.2.25). Thus, we define

‘;IT ()= ()T (%) 4 (8.2.29)

2See von Neumann's book [8.4], pages 23-25.
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This expression is obviously well-defined for all T' € &' since if f € § so is
% € S. In the notation (8.2.25) the definition of the derivative reads

:: %f(z) dz = (-1)" —/—: T(z) % dz . (8.2.30)

It is a simple matter to generalize these results to test functions of several
variables and distributions over these variables. Thus, if f(z1,2,...,2x) is an
element of S*) in each variable, then we may have a distribution T in the dual
space §' *) such that T(f) is well defined. Again another possible symbolic
notation for T'(f) would be

T(f) = /T(zl]zg,...,xk) flzr, 22, .., zk) derdey .. . de, . (8.2.31)
We emphasize once more that although (8.2.31) looks like an integral it is not.

This is simply a symbolic way of writing T(f). Nevertheless we shall use this
way of writing almost all the time since it is the standard notation for physicists.

8.3 Fourier Transforms

Consider the linear transformations F and F defined on S according to

EN0) = [ e fla) iz = R (£332)
(FF)(z) = % /- " v Fp)dp (8.3.33)

Clearly (8.3.32) defines a uniformly and absolutely convergent integral since
e'?% can only improve the convergence of an already splendidly convergent
integral. We shall now prove that F and F map S onto § in a continuous one
to one manner. The proof will give us as a side benefit the formal result
1 [ .
ePEVdp=b(z—y) . (8.3.34)

o

Consider the expression

00 o0
lim L €% dpe=P” / e f(y) dy . (8.3.35)

=0+ 21 J_ oo

Now, for ¢ > 0 both integrals exist and we may interchange their order. Fur-
thermore,

% ipr—ep? ) 2
ePTmP dp = | [ — exp{—a?/4e} . (8.3.36)
oo €
Thus, we get for (8.3.35)

1 0 2
i —(z-y)*/4e
B Tie /_m ¢ flv)dy (8:3.37)
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Now consider a circle (z — y)? = R?. Clearly, due to the factor e=(e-y)*[4e any
contribution to the integral (8.3.37) from points outside the circle vanishes in
the limit as ¢ — 0. Thus, we can estimate the difference between f(z) and
(8.3.37) by

1 ey )
Ve |$—y5Re Y [4e[f(y) — f(z)) dy
< sup |fle) = f(s)] >0 o B0 8539
lz-yI<R

This justifies (8.3.34) and shows that

FF=1. (8.3.39)
Using (8.3.34) we now also get

FF=1. (8.3.40)

Also we have that 7, F map S onto § as stated.

Now, in mapping S onto a copy of itself using F what happens to S'?
In order to keep things well-defined, S’ must be mapped onto §'. Using the
symbolic notation of (8.2.25) this is trivial to see. Since F is a unitary operator
on Hilbert space we have for f,g € H that

(Ff,Fg) = (f,9) - (8.3.41)
This is known as Parseval’s theorem and written out reads
o0 o0
[ rocwi= [ resde (8342
- -00

[ rwa [ e [ @ [ v rep e

where we have used the formulae defining F and G in terms of f and g and
vice-versa. (8.3.43) is already in the desired form to define the Fourier transform
of distributions. Thus suppose g € &' then (8.3.43) reads

(Fo)(F*)=g((FF)) . (8.3.44)

Thus we define the Fourier transform of distributions in &’ using (8.3.44). In
other words if T € S’ then the Fourier transform F7T is defined by

(FT)(f) =T ((F1)) (8.3.45)

where T € S.
It is now a simple matter to use (8.3.45) to show that the Fourier transform
maps &' onto §'.
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8.4 Rigged Hilbert Spaces

To motivate the use and definition of rigged Hilbert spaces (also known as
Gel’fand Triples), we begin by considering the following eigenvalue problem on
H = La(~00,00)

pug = hkuy . (8.4.46)
Since
hd
p=s (8.4.47)
we get
1 ikz
ug(z) = —€"7. (8.4.48)

Var

Now the operator p corresponds to a physical observable, the momentum and
hence the eigenvalue problem (8.4.46) has a definite physical meaning. It tells
us what the possible results of measurements of p are and is also supposed to
give the probability amplitude for obtaining a given measurement. Nevertheless
the “eigenfunctions” uk(z) are not square-integrable and hence do not belong to
our Hilbert space. This is an undesirable situation. It can of course be obviated
by forming wave packets. However the plane waves (8.4.48) are particularly
convenient for practical calculations and we would be reluctant to have to give
up using them. Thus, we are tempted to enlarge our state vector space beyond
Hilbert space. Actually this also provides many simplifications in the analysis
of operators. However we shall not study that aspect.

To show one possible extension we first note that the functions ux(z) belong
to &' if we define them as distributions in| the following manner

ug(f) = ./00 uk(z) f(z)dz . (8.4.49)

—00

Why did we choose 8'? The reasons are mainly technical. Thus F§' is again &'
and this is desirable. Actually other spaces of distributions may be used, but for
the sake of concreteness we concentrate only on §’. Now how does considering
ux as an element of §' help? To answer this we start with a definition.

Let A be a linear operator in §. This means that A is also a linear operator
in A. In fact if A has a dense domain in & it has a dense domain in # since §
is dense in #. To see this consider the hermite functions Hn(:c)e"”z/ 2. All of
these are in § and any element in L£2(—00,00) can be approximated by linear
combinations of these functions. Thus § is dense in H.

Now given such an operator A then T' € &' is called a generalized eigenvector
of A corresponding to the eigenvalue A if

T(Af) = AT(f) (8.4.50)
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for all f € S. Notice that by definition ux(z) is a generalized eigenvector of the
momentum operator p = /i d/dz since in the notation (8.2.25) we have

® 1 ikz h‘ df — ® 1 itk
for f € §. We have simply “integrated” by parts. Thus, we can now legitimately
consider functions such as u,(z) as generalized eigenvectors. We still have to tie
this together with the concept of Hilbert space. One more example is in order
first.

Formally, the eigenvalue problem

ga(2) = aga(2) (8.4.52)
has the solution
9a(z) =b(z —a) . (8.4.53)

Clearly d(z — a) is not square integrable and hence is not in our Hilbert space
H. But for f € § we have

/°° zd(z —a) f(z)dz = a/°° d(z—a) f(z)dz . (8.4.54)

-0 -0

Thus d(z — a) is a generalized eigenvector of the position operator z. We now
define our rigged Hilbert space.

We begin with the space §. On § are defined a countable sequence of norms
| f |ln.r- We now also define on S an inner product which coincides with the
L4 inner product. Now as stated S is dense in £, and we identify H with £, .
Thus § is identified as a subset of #. Together with § and H we consider the
space S'. The triplet of spaces

S,H,S
form a rigged Hilbert space. It is usually denoted by
ScHcCsS .

The advantage of the symbolic notation (8.2.11) is now obvious. Thus, “inner
products” exist between elements of # and H and elements of $ and S’ . We do
not form inner products between elements of 8’ and §’. This is all about rigged
Hilbert spaces that we shall need. It is sufficient to provide a justification of
most of the manipulations that we shall carry out. Further details are readily
available in the references. From now on we shall proceed as if “functions” like
6(z) and e™* were elements of #. To justify our manipulations we can always
fall back on the concept of rigged Hilbert spaces, but we shall not explicitly do
so. As stated at the beginning, this chapter was simply to show that our formal
manipulations can be fully justified.
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8.5 Problems

8.1 Show that the appropriate normalization for the positive parity solution for
scattering from a square well equation (5.7.94) to yield §-function normal-
ization is 1//m. You will have to use the continuity of the wavefunction
at £ = +a as well as equation (5.7.101).

8.2 Show that T is a tempered distribution if T is defined by

o [ d* f(z)
= Fy(z)

where F}, are continuous functions bounded by

dz

|Fk(z)] < Ci(1 4+ |zl)

for some Cy and j depending on k.!As a matter of fact every tempered
distribution can be written in this form. Symbolically one then writes

= d* Fi(z)
Z=: k dak

This formula cannot be taken literally however since the Fy(z) need not
be differentiable. It arises from a formal integration by parts of the first
equation above.

8.3 The test function space D consists of the space of C(®) functions of bounded
support. The support of a function f, (supp f) is the complement of the
largest open set on which the function vanishes. Show that if ferp
then f is an entire function.

8.4 Prove the Theorem: The Fourier transform of a tempered distribution of
fast decrease is a C(*) function bounded by a polynomial. A tempered
distribution of fast decrease F is of the form

F=fT

where f € § and T is also a tempered distribution.
Hint: To prove that the Fourier transform of F is bounded by a polynomial
use the result of problem 8.2.

8.5 Let f(z) be an entire function vanishing rapidly at large [R(z)]. Show that

Y 1 1 _p " fl@)
Egrgl+2[w [z—a+if + x—a—ic] fle)dz =P _oox—adx
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where the principle value integral is defined by

" 1 e i [ L s +Ef(_’ °E

Furthermore, show that

e/n
lim 2/ 7=
=20+ 24 4 ¢

=4(z).

Hence conclude that considered as distributions

1 1 .
cl—lbl(IleL:c—a:l:zc Px_aq:zfrd(:c—a)
that is,
o0
- Sf=)de / f .
1 .
c—%l+ :c—a:tze mf(a)

8.6 Using the result of problem 8.4 and defining
L L™ ks O e
— e dk = hm — / ezk(x+tc) dk +/ ezk(x—:e) dk
21 J_oo =0+ 27 0 oo
prove that

/ e dk = é(z) .

—00

8.7 Let f(k) be a C(*) function bounded by a polynomial. Show that

- /_ Z F(k) €™ dk

is an entire function for S(z) > 0. Using this and the result of the The-
orem proved in problem 8.3 show that every tempered distribution is the
boundary value of an analytic function.

8.8 Calculate the Fourier transform of §()(z).
8.9 Show that

0 if n<m
g™ (z)=<{ (-1)"m! J(x) if n=m
1
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Chapter 9

Algebraic Methods

9.1 Introduction

Having developed all the tools we need we now turn to “practical” applica-
tions of these concepts. The first problem we reconsider is the simple harmonic
oscillator.

We then move on to consider the rigid rotator in one and three dimensions.
This allows us to introduce the concept of angular momentum. Next we solve
the angular momentum eigenvalue problem analytically as well as algebraically.
After that we discuss rotational invariance.

The algebraic solution of the angular momentum eigenvalue problem yields
half odd-integral as well as integral eigenvalues. These half odd-integral eigen-
values correspond to a new degree of freedom of a particle, called spin. This is
the final topic of discussion in this chapter.

9.2 Simple Harmonic Oscillator
The Hamiltonian for the simple harmonic oscillator is
2
=P L
H= om t 2k:c . (9.2.1)

As before, we introduce the classical angular frequency

w=km. (9.2.2)

Furthermore, as always we have
[z,p] = ih. (9.2.3)

We now define dimensionless operators

P=——p (9.2.4)

173
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Q=52 (9.2.5)
and get
H= %hw (P*+@Y) . (9.2.6)

The commutator between P and @ is easily computed and yields
[P,Ql=—i. (9.2.7)

So far we haven’t done anything except some algebra to introduce dimensionless
operators. Unlike earlier when we solved this problem by solving a differential
equation, we now solve it using operator algebra techniques. To this end we in-
troduce two non-hermitian operators, called annihilation operator and creation
operator respectively.

a = —\/1§(Q+iP),
at = :/%(Q_ip). (9.2.8)

In terms of these the operators = and p can be written as

[h
r = 2mw(at+a) ,
p = i/_’f‘_;ﬁ(a?_a) . (9.2.9)

Recall that P and @ are both self-adjoint on our Hilbert space which is £o(—00, ).
Now consider the commutator

[a.al] = 5[Q+iP,Q-iP]
= S1Q.Q+ilP,Q-iQ,Pl+ [P, P)
= %[0+1+1+0]=1. (9.2.10)
Thus,
[a,al]=1 . (9.2.11)

Solving (9.2.8) we get,

Q (aT-I-a) ,

S

P = (a'—a) . (9.2.12)
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Therefore,
H = %ﬁw @+ P?)
= hllal +a)? ~ (a! —a)]

= %}‘)/.u[(a’)2 +ala+ad' +a? - (a")?2 +ala+aa —a?]  (9.2.13)

or

H= %hw(afa +aal) . (9.2.14)
Using (9.2.11) we can rewrite the Hamiltonian H to read

H = hw(a'a + %) = hw(aa' - %) . (9.2.15)
Furthermore,

[H,d] = -hwa (9.2.16)
and

[H,a')=hwa . (9.2.17)

Now since P and @ are self-adjoint it follows from (9.2.6) that H is a non-
negative self-adjoint operator. Thus, all the eigenvalues of H are nonnegative.
In fact they are positive.

So, let 1y be the lowest eigenstate of H. That is, ¢ is the state correspond-
ing to the smallest eigenvalue. Let this eigenvalue be Ej. Then,

H o= Eg ¢y . (9.2.18)
And hence

aH o = Eg ayy . (9.2.19)
But,

aH = Ha+|[a, H]

= Ha+hw . (9.2.20)

Therefore, we find

(Ha+ hwa) 1o = Eo (aho) (9.2.21)
and hence

H{(a o) = (Eo — hw) aho . (9.2.22)

Thus, clearly we have that either

ap =0 (9.2.23)
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or ayy is another eigenfunction of H corresponding to the eigenvalue Ey — hw.
On the other hand, Ej is the lowest eigenvalue by assumption. Thus,

a'lf)o =0.
From (9.2.23) we also get, by multiplying by Awa! from the left, the equation

hwala 4 =0. (9.2.24)
But,

twala = H - %hw : (9.2.25)
Therefore,

(H - %ﬁw)wo =0 (9.2.26)
or

H g = %hw to - (9.2.27)
So we have found the lowest eigenvalue, namely

Ey = %hw . (9.2.28)

Now we operate on (9.2.27) once more with af to get:

alH o = %hw alyy . (9.2.29)
Using (9.2.17) again this gives

(Ha' - hwa') 4 = %ﬁw aley . (9.2.30)
Therefore,

H (alya) = (1+ 3o (aldo) (9.231)

So a4y is another eigenfunction corresponding to the eigenvalue (1+ %)fw This
shows that a' is a “raising operator”; it raises the eigenvalue of the Hamiltonian
by one unit. Hence it is called a raising or step-up operator . We also call it
a creation operator since it creates a quantum of energy fw. If we repeat this
procedure n times we get

1 ((@)"go) = (n+ )k ((a')40) (9232

Thus, in this manner we get a whole sequence of eigenfunctions. We now find
Po(z) explicitly. We have

ao(z) = 0. (9.2.33)
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Writing this out we get

(@ +iP)to(z) =0 (9.2.34)

(\[ﬂ;ﬂ - \/% di) Yolz) = 0 (9.2.35)

which simplifies to

or

(% + %) bo(z) =0. (9.2.36)

The solution of this equation is
Yo(z) = A e~ka'12h (9.2.37)

To normalize 1y we compute

($0,%0) = 1
— |A|2/ e—kx’/hw dr
= |A] % . (9.2.38)

Thus, choosing the phase of A we get

B\ M4
A= (%) (9.2.39)
and hence
_ k e —kz?[2hw

Furthermore, note that this solution is unique. Why do we emphasize this?
The reason is that it allows us later to conclude that we have found all the
eigenfunctions. First, however, we shall find the proper normalization for all
the ¥, (). Thus, we have

Yn(2) = ca ()" Yo(2) - (9.2.41)

The factor c, is included for normalization, that is, to make

(¢ny¢n) =1. (9.2.42)
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Then,
(d’m‘pn) =1
2
= ‘n (atlbn—l:at"l’n—l)
Cn—-1
o |2
= & ('(bn-l,aafibn—l)
Cn-1
e P 1
= c,,r_ll -m—d('Pn—l,(H*i-l/?ﬁw)d)n—l)
c 2
= |2 "1 n(Yn-1,¥n-1) - (9.2.43)
Therefore,
leal? = %|c,._1|2 . (9.2.44)

Using ¢p = 1 we can solve this recursion relation to get

th =

1
o (9.2.45)

where we have made an arbitrary choice of phase. Thus,

Ynle) = % [\/_’;—g z- ,/% %} Yolz) (9.2.46)
or

ole) = (17— (Z“’—k)/ - e (;’;;)1/4 120 (9.9.47)

These eigenfunctions are the hermite functions. We already know that they
form a complete orthonormal set. Thus, since ¥g(x) is unique, we have all the
eigenfunctions of H. It is a simple matter to check the orthogonality. Consider
first

(o,%1) = e1(vo,a'vo)
= ci(ayo, %) =0 (9-2.48)
since atyy = 0. Similarly
(1[)0)11)71) = cn(d)Oa(at)"'pO)

ci(avo, (@) 14) =0 . (9.2.49)

If we now consider (¥n,¥m) with n < m we are led to consider expressions of
the form

(@) vo, (@)"n) = nl(aa! (@) 4o, (&)™ 40)
1

= ((H +1/2h9)(a")" o, (a1) " o)

= n((ah)" e, (@)™ 4y) . (9.2.50)
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Repeating this we get eventually

()0, (a)™n) = nl(¥o, (a))™"¥0)
n!(agg, (a')* "™ 1he) =0 . (9.2.51)
Notice that throughout these computations the crucial formula was

ao=0 . (9.2.52)

Thus we have solved the simple harmonic oscillator using algebraic techniques
except to find 4 explicitly. Notice, however, that we did not need to find 1
explicitly. In fact all the results that we obtained followed directly from the
operator properties of H, p and z. The usefulness of a and at do not end here.
In fact all physical quantities pertaining to the simple harmonic oscillator may
be calculated using only a and a!. Later we shall have occasion to re-examine
the time-dependence of the simple harmonic oscillator. We shall then find that a
and a' also have analogous quantities classically, and these classical quantities
simplify the classical computation. Now, however, we illustrate some of the
applications of a and a!.

9.2.1 Expectation Values

Earlier we expressed the position and momentum operatores,  and p in terms
of the creation and annihilation operators a! and a

z = \/%(atka)
) = i/%(at_a) . (9.2.53)

Thus, we can evaluate expectation values of # and p by using only a and al.
For example

('/’nyP'/’n) = Vmhw(yn, Pi,)

= iy/mhw/2 [(dﬁn,atlﬁn) - (1/),,,01/),.)]
- 0. (9.2.54)

Similarly,

(’/’m-’“ﬁn) =0 .

This is to be expected since the average momentum and position of a simple
harmonic oscillator are indeed zero. The same applies for any other dynamical
variable. For example, consider the kinetic energy
2
p
T = —
2m
_ miw p2
2m
1

= -;—ﬁw(—§)(aT ~a)(a' - a) (9.2.55)
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or multiplying out

T = %(aa7+a1a—a72—a2)

- -;-H—ihw(a12+a2). (9.2.56)
Thus,
(6o T) = 3 (i, Hon) — 3ol (a¥” +a)n)
1
= 2 (dn Hon)
11

Actually we have proven more since we showed that
1
(T) = §(H) . (9.2.58)

This is the same as the classical virial theorem and states that the average
kinetic energy equals one-half the average total energy. Also we have

(V)= (H) = (T) = %(H) . (9.2.59)

Another set of useful formulae is obtained using (9.2.41) and (9.2.44). Thus we
have:

¢

alyn = - ”lwnH =Vt Wy, (9.2.60)
nt+

showing clearly why a! is called a “step-up” operator. It also shows why al is

known as a “creation” operator since it “creates” a higher eigenstate. Applying

a to this equation we get

aalyn = Vit 1agnsr - | (9.2.61)
Therefore,
1
app, = %aawn-l
11
= \/_ﬁﬁ:(H'{'l/?m))'/’n—l . (9.2.62)
Thus,
an = V-1 (9.2.63)

So a is a “lowering” or “step-down” operator. It is also sometimes known as
an “annihilation” operator. To further show how these operators are used we
considér a matrix element of the form

(1/)ryp'/}a) = iy mhw/2 [(1/),,(1“/),) - ('/)r,mp.s)]
= iy/mhw/2 [Vs+ 1(¥r, Ys1) = Vs(¥r,¥s-1)] - (9.2.64)
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Thus, we have found that

.|k —
("/)rrpd)a) =1 % [ s+ 1‘Sr,\s+l - \/g‘sr)a—l] . (9265)
In a similar manner we get

(¥r,2%s) = iv/mhw/2 [Vs + 16 s41 — V50,6-1] (9.2.66)

In this way it is possible to evaluate, in a purely algebraic manner, all matrix el-
ements between simple harmonic oscillator eigenstates. We now turn to another
problem that can also be handled by purely algebraic methods.

9.3 The Rigid Rotator

Consider a diatomic system which we approximate as follows. It is a “dumbbell”
with masses attached at the ends of a rigid rod and free to rotate in any direction
(figure 9.1). The moment of inertia about the line through the masses is assumed

Figure 9.1: A dumbbell molecule.

to be negligible (zero). If we assume that the center of mass of the system is
fixed then the only motion possible is a rotation. In that case the classical
Hamiltonian is

L2

H=— 9.3.67

5] (9.3.67)
where L is the total angular momentum and I is the moment of inertia about the
axis through the center of mass and normal to the line connecting the masses.
We wish to solve this problem quantum mechanically. Now,

L=rxp. (9.3.68)
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L: = yp.—2py
Ly = zp:—zp,
L, = zpy—yps. (9.3.69)

To quantize this system we simply replace p by £/i V. So the quantum me-
chanical angular momentum operator is given by

L= ?r xV (9.3.70)
or
0 0
L, th (Za_y - ya—z)
a 0
Ly, = ih (:c-a—z - z6—>
0 0
: = hly—-z=—] . 3.
L i (yc')z x8y> (9.3.711)
Now introducing spherical coordinates
z = rsinfcosy
= rsinfsing
= rcosf (9.3.72)
we get
o f . .0 0
L, = ik (sm9 5 + cos <pcot05‘;)
o f 0 0
Ly = 1 (suupcow % — cos gobg)
0
L, = —-th—. 3.
m(?qp (9.3.73)

At this stage we can introduce a simplifying assumption in our problem.
We assume that our “molecule” is constrained to rotations in a plane which we
choose to be the  —y plane. In that case we are considering a One-Dimensional
Rotator. Furthermore, our Hamiltonian simplifies to

L2
=== 3.74
H 57 (9.3.74)
Writing out the eigenvalue problem we get.
2 12
LY _ Ey . (9.3.75)

_ﬁd_npz_
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Before proceeding we must consider whether L, is self-adjoint. Thus, we
look at the equation for the deficiency indices

., df .
—ih a; =4ihf. (9.3.76)
The solutions are

fi =¥, (9.3.77)

Since 0 < ¢ < 27 both solutions are admissible and the deficiency indices are
(1,1). Thus we have a one-parameter family of self-adjoint extensions and we
must pick an appropriate one. We do this partly by symmetry considerations.
Thus, suppose f(p) is some physical state. In that case we want f(p + 27) to
represent the same state. This means that we must have

flo+2m) =€ f(p) . (9.3.78)

Here a is the parameter labelling the different self-adjoint extensions. What
does this mean? It is easy to show (in the same manner we used to show that
p. is the generator of translations in the z-direction) that L, is the generator
of the translations of ¢ ; that is, L, is the generator of rotations about the z-
axis. Thus, rotating by 27 about the z-axis brings us back to the original point
and we must specify the boundary condition. The usual argument given is that
the wave function should be single-valued and hence = 0. This argument,
although correct, is not completely satisfactory since none of our assumptions
about quantum mechanics, made so far, required the wave function to be single-
valued. We now summarize the results of a careful investigation [9.1] that shows
why the wave-function must indeed be single-valued.

For a spherically symmetric system, it is physically necessary that not only
should one component of the angular momentum (L, in this case) be conserved
but that, in fact, the total angular momentum

LP=L2+L)+1? (9.3.79)

must be conserved. Thus, we must be able to simultaneously diagonalize L2
and some one component say

L,=naL (9.3.80)
of the angular momentum. Here, 7 is a unit vector. This requires
[Ln, L3 =0. (9.3.81)

The above relation follows formally if one works out the commutation relations
between L, Ly, L, and L?. We shall do this later. Furthermore, since we
can arbitrarily decide how we shall label a set of three orthogonal axes as z, y
and z, the three operators L;, L, , L, must be equivalent. Consider now the
self-adjoint extensions LY corresponding to the boundary conditions (9.3.78).
In this case there are corresponding self-adjoint extensions for L; and Ly say
L7 and Ly . The results for these extensions are as follows.
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1) The eigenvalues of L¢ and Ly are integral regardless of o. The eigenvalues
of LY are integral only for o = 0.

2)Fora=0
LY=L+ L+ L2y

for every ¢ € Dy2, where we have also dropped the superscript. For a # 0
this relation is false.

)a=0
(L%, L2) = [1%, L] = [1%, L2] = 0.
If a # 0 we still have
(L%, L] =0

but L? does not commute with Lg and Lg. Thus, neither L? and L% nor
L? and Ly have simultaneous eigenfunctions for a # 0.

4)Ifa =0and ¢ € Dya then
LeLytp — LyLop = ihLl,9 .

For a # 0 this is no longer true. In this latter case there are eigenfunctions
of L? to which neither L, Ly nor L,L, can be applied.

These results show that for & # 0 not only is there a special preferred direc-
tion, the z-direction, but even the algebra lof angular momentum operators no
longer holds. However, this is not the case physically. Thus, the only physically
acceptable self-adjoint extension is given by a = 0. This corresponds to having
single-valued wavefunctions. For this case we drop the superscript. Notice, that
mathematics alone could not decide on the appropriate self-adjoint extension,
the decision that the wavefunction has to be single-valued had to be made on
physical grounds. For more details on this question we list a series of references
at the end of this chapter. We can now return to a consideration of our original
problem of the one-dimensional rotator

LR
T T T2l dy?

(9.3.82)

where f € Dy, requires that
flo+2m) = f(o) (9-3.83)
and for f € Dy also that f has to be twice differentiable. Clearly,
[L;,H)=0. (9.3.84)
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Thus, we can simultaneously diagonalize L, and H. The eigenvalue problem for

L, can be written

—ih d—? =mhd .
dp

Thus,

Bpn(p) = Ae™ .

Applying the boundary condition with & = 0 we get

ezm(<p+21r) -

Thus,
61m27r =1.
Hence

m=0,+1,£2,....

If we use the Hamiltonian H we get

LZ
H®,=E,®, = -2—;<I>m
and this reads
ﬁ2
En®,, = ﬁmZQm

which shows that the energy eigenvalues are
R,
Emzﬁm m=0+1,£2,... .

The normalization is obtained from

27 27
/ @ dp = |A|2/ do=1.
0 0

Thus, choosing the phase of A we get

1
A= — .
V27
Hence,
o, = —1 eime

(9.3.85)

(9.3.86)

(9.3.87)

(9.3.88)

(9.3.89)

(9.3.90)

(9.3.91)

(9.3.92)

(9.3.93)

(9.3.94)

(9.3.95)
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9.4 3D Rigid Rotator: Angular Momentum

We are now ready for the full rigid rotator| problem. Here

L2 1 2 2 2
H=gr=g(La+ L +17) . (9.4.96) .
Clearly,
[L* H]=0 (9.4.97)

and as we show next, the projection of L along any direction ## commutes with
L2

[Ln, L% =[L,,H]=0 . (9.4.98)
We use the form (9.3.68) for L to compute several commutators. Now,
(Lo, Ly] = [yp: — zpy, 2Pz — p:]
= [Pz, 2pc) = [2py, 2pe] = [upz, 2p:] + 2y, 2p] - (9.4.99)

Consider the first term

lp.,2pz] = ylp., 2p:] + [y, 2p:]p:
Ylps, 2lpe + y2lpz, p2) + [y, 2]pap: + 2y, plp:
= —ihyp, + 0+ 0+ 0 = —ihyp, . (9.4.100)

The second and third terms both contribute nothing. The last term contributes
thxpy. Thus,

(Le, Lyl =R L, . (9.4.101)
Proceeding in this manner we get the commutation relations

[Ly,L;)=4hL; , (9.4.102)

(Ls, L} =1dRLy . (9.4.103)

Notice that these are just cyclic permutations of z,y, 2z as shown.

Y
7N
Tz

We further compute

(Lo, L) = (Lo, L7)+ (L, L2) 4+ [Lg, L2
= 0+ Ly[Ls, Ly] + [Ls, Ly)Ly + Lo [Ls, L2] + [La, L] L,
= ih(LyL, + L, Ly — LyL, — L,L,) =0 . (9.4.104)
Thus,

L, LA =0 . (9.4.105)
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Similarly,
[Ly, L] =0 (9.4.106)
and
[L:, L =0. (9.4.107)

We have, therefore, shown that L? and one component of L can be simultane-
ously diagonalized. Since L, has the simplest representation as a differential
operator (in spherical coordinates) one chooses L,.

Thus, calling the eigenvalues of L2, I(l + 1)k? and of L,, mh we have to
solve the following eigenvalue problems

L*Yim(8,0) = 11 + 1) Yim (6, ) (9.4.108)
L:Yim (8, 0) = mhYim (0, ) . (9.4.109)

The energy eigenvalues are then given by

ﬁ2
=2l +1). (9.4.110)

The factors [(I+1)A? are chosen for later convenience. We could obviously have
chosen anything else and then wound up with this result. If we now use (9.3.73)
and the definition of L? we find

2o [ L0 (nel )y L &
L*=~h [Sinﬂaﬂ smﬂaa +sin203¢72 . (9.4.111)

This form becomes much more significant if we look at the Laplace operator in
spherical coordinates

Y. .
V= 5o 61‘ -3 (9.4.112)

Thus, the angular portion of V2 is given completely by LZ.
In order to solve (9.4.108), (9.4.109) we try to separate variables. Therefore,
we set

Yim(8, ¢) = cim P™(cos 0)®m () (9.4.113)
where ¢, is a normalization constant. Then,

Yim(8,¢) = \;‘;;ﬂ img pm(cos 6) . (9.4.114)

So that (9.4.109) is automatically satisfied and (9.4.108) becomes

2
[511110:0 (sm0 0 ) - Slr:—?g] P (cos) = —I(l + 1) P (cosb) . (9.4.115)
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If we set cos§ = z then

d 1 d

—_—=— . 9.4.116

dz sinf df ( )
Writing out the expression (9.4.115) it reads

d N i m?

2= - |Pm=0. 4117

i 1 :c)dx]+[l(l+1) T2 " =0 9 )
Simplifying this equation we obtain

d’P dpP m?
-— 2 — — —_— = e 3
(-2 )da;2 Zxdx + [l(l+1) l—xZ]P 0. (9.4.118)

This is the differential equation for the associated Legendre functions which are
denoted by P?(z). For m = 0 it is the differential equation for the Legendre
polynomials P;(z). Rather than solve the differential equation (9.4.118) we shall
proceed as for the simple harmonic oscillator and solve the problem algebraically.
Since in the algebraic solution we are not restricted to having a representation
of the angular momentum operator L as a differential operator in ordinary space
we shall find not only the solutions above but also some new solutions that do
not correspond to orbital angular momentum but to something new called spin
angular momentum.

9.5 Algebraic Approach to Angular
Momentum

The assumptions involved are as follows.
1) Commutation Relations

[Ly, L,] = iAL,

and cyclic permutations.
2) Angular momentum is an observable. This means that every component of
L is a self adjoint operator. It then follows that

LP=L+L}+1}
is a positive, self-adjoint operator. Thus,

L*>0 and L*> L. (9.5.119)
Also as we saw before

L, L] =0. (9.5.120)

Thus, we may diagonalize L? and one component of L simultaneously. It is
conventional to choose L,. We now introduce two non-hermitian operators L4

Ly =Ly +il, (9.5.121)
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analogous to the raising or creation and lowering or annihilation operators a'
and a used with the simple harmonic oscillator. We also need the commutation
relations for L. First we note that it follows directly from (9.5.120) that

(Ls, L3 =0 . (9.5.122)
Also,

[L:,Ly] = [Li, L) +i[L,, Ly)

= ihLy xi(—ikL;)
= 3h(L; +ily). (9.5.123)

Hence,

(L., Ly]=+hLy . (9.5.124)
Finally we also get by straightforward multiplication that

LiLy =12+ L2 +hL, (9.5.125)
so that

LyLly=L*—L2+hL,. (9.5.126)
We now consider the simultaneous eigenvalue problems

L*) = ah?y (9.5.127)

L,y =bhy . (9.5.128)
Since

L*> 2 (9.5.129)
we get that

ah? > b2h? (9.5.130)
or

a>b? . (9.5.131)
Now apply L, to (9.5.128) and use (9.5.124). This gives

LiLp=bhl,p =L, Lo — KLy . {9.5.132)
Thus,

L (L) = (b4 V)A(L1 o) . (9.5.133)

This shows that L4 is a new eigenfunction of L, with eigenvalue (b + 1)A.
Since L+ and L? commute, Ly is still an eigenfunction of L? with the eigen-
value ah?. However due to (9.5.131) we see that there must exist a maximum
eigenvalue for L, for otherwise we could violate (9.5.131). Suppose ¥y,qz is this
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eigenfunction. In that case applying L yields (9.5.133). Thus, consistency can
only be maintained if

L+d’ma:c =0 (95134)

where ¥4, is the eigenfunction corresponding to the largest eigenvalue of L,.
Now we apply L_ to (9.5.134) and use (9.5.126). Then we get

L_Lytmar = (L* = L = KL, )mazr = 0 (9.5.135)
or

(ah?® — 12 — bh?)mar = 0 . (9.5.136)
Thus,

a=b+b. (9.5.137)

We now proceed downwards from the largest eigenvalue. Thus, we operate on

(9.5.128) with L_ and use (9.5.124) to get

L, (L-%maz) = (b= D)A(L-Ymaz) - (9.5.138)
Repeating this n times we get
L (L2 %maz) = (b — n)A(L" Ymaz) - (9.5.139)

Now by making n large enough we can again violate (9.5.131). This means we
must reach a point where

¢ = (L” $maz) (9.5.140)
and

Ly’ =0. (9.5.141)
Applying L, to this equation and using (9.5.126) then gives:

LyL o' = (L* = L2 = hL,) (L™ Ymaz) = 0 (9.5.142)
or

[ah? = (b —n)?h2 + (b — n)A%](L" Ymaz) = 0 . (9.5.143)
Thus,

a=(b-n)*-(b—n) . (9.5.144)
We combine this with (9.5.137) and get:

2b(n+1)=n(n+1). (9.5.145)
Thus,

b=

1
—

(9.5.146)

|3
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where
1=0,1/2,1,3/2,25/2, ... .
Also,
a=bb+1)=1(+1) . {9.5.147)
So, we can label the eigenstates with [ and m such that
L% = I+ D) B2y (9.5.148)
L, Yim = mhipim (9.5.149)

where [ is the largest value of |m].
Sol > |m|or

m=L1-11-2...,-(1-1),-1 . (9.5.150)

As we have already seen, for the orbital angular momentum [ is an integer, and
the ¥y, are the spherical harmonics Y; , (6, ¢). We now re-examine them using
the algebraic techniques. The case of half-odd-integer angular momentum is
examined in section 9.7. Consider

h o
L. = -—
i Op
; 0 0
— L E il
Ly = he [ﬂcae +zcot6'a¢]
1 0 a 1 6
[} = R |-— = (sinf= |+ ———| . 9.5.151
[sinb‘ 9 (S"‘ 30) T aw] (9:5.151)
If we start with the state of lowest angular momentum, Y; _;(f, ¢) we have
LY = (1 + 1)A%Y (9.5.152)
LY,y =-IRY, 4 (9.5.153)
and
LY, =0. (9.5.154)

We can also work up from this point using L. Thus,
Yl,—l+1 = CL+Y1’_1 (95155)

and so on, eventually reaching the highest wavefunction ¥;;. Then,

LYY, = (14 1)k,
LY, = I,
LYy = 0. (9.5.156)
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To look for the eigenfunctions explicitly we proceed as before by writing

1 .
Yim = —=€™PP™(cosf) . 9.5.157
[ m i ( ) ( )
We then get from
LY =0 (9.5.158)
that
. l .
e'® e”“"%’—l cot 8l Pl = 0 (9.5.159)
or
dp _ |
Thus,
Pl =A;sin'g. (9.5.161)
We get A; by normalization
A2 L = AP / sin? § sinfdf =1 . (9.5.162)
0
This leads to the recursion relation (see problem 9.19)
2
1= m]l—l . (95163)
Iterating this we find
2
=gyt
2 20-1) I
A+1 20-1)+1 "2
221(1-1)
@A+1)@-1)""
2
= L. (9.5.164)

@+1)@2d-1)..31°
This simplifies to

221+1 l[ 2
I = (—2% . (9.5.165)

Choosing the phase of A; to be (—1)} we get

T+ 1)
@ADL g (9.5.166)

F= (0 =gy
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Thus,

-1)" /(2! + 1) sin* ;
Yiu(8,¢) = (\/21_71 ( ;1) S;’If) singeile | (9.5.167)

To get the other spherical harmonics we apply L_. So we find

Yiei =y LYy, (9.5.168)
and finally

Yim=amI-™y, . (9.5.169)
Therefore, we can write

Yim = cf;':l LYy . (9.5.170)

To evaluate the normalization constants ¢; , we simply use

2n
(Yim, Yim) = / d%/ Sinf A9y, Vi = 1 0811)
0 0
to get
Cm :
1 = (L-Yim41, L_Yimy1)
Clim+1
[V 2
- M (Yl,m+1) L+L-Y2,m+1)
Clm+1
2
= ] (Vimer, (12 = L2 4 ALYy )
C m+1
= hz[l(l +1)=m(m+1)]. (9.5.172)
CI ;m+1
Thus, finally
LYy = =VII+ 1) = m(m+ DAY, . (9.5.173)

Now applying L, to this equation and using (9.5.126) we get

[+ D)= (m+1)*+ (m 4+ )]A2 Y gy = VIO +1) = m(m + 1)k LY m(9.5.174)

or

LiYim = VI +T) = m{m + DYy . (9.5.175)

We can combine (9.5.173) and (9.5.175) into one very useful equation

LiYim = VIl +1) = m(m £ A Y]y, (9.5.176)
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Using L_ and iterating from Y;; we finally|get an explicit form for Y; .

!
(I +m)! etem) ey (9.5.177)

Yom =\ @)= m)1

Furthermore, using the explicit form for PT* we get that

fas11 ( 4
P(cos ) = — o0 (m) (cos?8 —1)". (9.5.178)

This we now recognize as a Rodrigues formula for the Legendre polynomials
Py(cos ) which are normalized such that

P(cos ) = \ 21; lPl(cos 9) . (9.5.179)

Writing out equation (9.5.177) explicitly in terms of the P™(cosf) equation
(9.4.114) becomes

A+1 (I-m)

4r  (I+m)!

1/2 .
Yim(0,0) = < ) B (cos §)e'™* . (9.5.180)

The P™(cos) for m > 0 may be defined by what is called Ferrer’s formula,
namely

m 1™ dH-m
PP(a) = %(1 ) (e 1y (9.5.181)
and the corresponding functions for —m , m > 0 are then defined by
-m —_ (_1\m (l - m)l m
P (z) =(-1) 0T m)!P‘ (z) . (9.5.182)
From the normalization condition (9.5.171) we can now deduce the relationship:
L3 1
/ P™(cos H)P’,"" (cosf) sinfdf = / P,m(:c)P,"" (z)de
0 -1
2 (I+m)
— 0. 5.1
A+1 (—my (9:5.183)
Now using (9.5.180) and (9.5.182) it follows that
Yiom(0,9) = (<1)"¥;im (8, ) - (9.5.184)

For later reference we list the spherical harmonics for ! = 0,1,2,3and m > 0.
The spherical harmonics for negative m can be deduced from (9.5.184). The
phases are as given by (9.5.167) and (9.5.177).

The utility of spherical harmonics extends to all systems with spherical sym-
metry. We shall have many occasions to use them in subsequent chapters. For
the present we first examine several more aspects of angular momentum.
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Table 9.1: The Spherical Harmonics Y1 (6, ¢).

l = 0 Yo,o = 7};

I=1 Yi1=—y/&sinfe?
Yio0= 4—37;cos0

=2 Yoy= ,/3125 sin? 0 2
Yo1=- 8—1rsin0 cosf e'®

ngo = 8_311'-(200820 - 1)

3ip

I
[
&0
2

1

|

32 sin 3¢

ég5 sin’ § cos§ 2

Y31 = =/ &= sinf(5cos? § — 1)e'?
Ya0=1/ 161r(5 cos3 6 — 3cos )

9.6 Rotations and Rotational Invariance

A rotation of a system about a point O is a displacement of all points P of
the system such that the distance between any two points remains unchanged.
Rotations of coordinate systems are implemented by orthogonal matrices. Thus
if the point x’ is obtained from x by a rotation R about the origin of the
coordinate system we write

X =Rx , (9.6.185)

or in component form

;=Y Rie; . (9.6.186)
J

Since we need invariance of the distance from the origin we get as a condition
Z.’L‘:.’l‘: = Z R,’jZ‘jR,'k:tk = Z Ty . (96187)
i ijk &
This requires that
Z RijRix = 0k (9.6.188)
i

and states that R, considered as a matrix, is orthogonal, namely

RR'=R'R=1. (9.6.189)
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Here R! is the “transpose” of the matrix R. This equation immediately shows
that

detR detR' = (detR)?> =1. (9.6.190)
Thus,
detR=+1. (9.6.191)

However, if we use the parity operator (section 4.13)

Px = -x (9.6.192)
we see that
detP = —1. (9.6.193)

And if det R = —1, then det(PR) = det Fdet R = 1. Conversely any R with
determinant —1 can be written as

R=PR, (9.6.194)
where
det R, = +1. (9.6.195)

We call rotations with determinant +1, proper rotations (hence the subscript
p). Those with determinant —1 are called improper and involve a parity trans-
formation. Henceforth we consider only proper rotations and drop the subscript
p.

Suppose we are in a coordinate system 5 with a quantum mechanical single
particle state specified by a wavefunction ¢. Then if we rotate the coordinate
system to a new system S’ we get a new state 1'. Since none of the physics has
changed we require that all probabilities r¢main unchanged. So if ¢ is another
state and ¢’ its image after rotation, we require that

(", ) = I8, 9)I” - (9.6.196)

E. Wigner [2] has shown that (9.6.196) implies that ¢’ , ¢ can always be
obtained from ¢ , ¥ by either unitary or antiunitary transformations. The
antiunitary transformations correspond to having time-reversal (section 4.6).
We therefore consider unitary transformations. Thus,

V' = Urd (9.6.197)
where

UlUr=UrUL=1. (9.6.198)
Clearly, if R; and Ry are two rotations such that

RiR» = Rs (9.6.199)
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then we need
Ur,r, = Ur,Ur, = Ug, . (9.6.200)

This statement together with (9.6.198) says that the operators {Ugr} yield a
unitary representation of the rotation group.

To proceed further we need to decide on how to specify a rotation. There are
very many different methods available. The procedure we use is to specify an
axis of rotation (unit vector) i and angle of rotation  about this axis. Consider
a rotation about the z-axis by an angle 0, i.e., R, g. Then,

z’ cosf sind 0 T
¥ | =| —sinf cosf 0 y . (9.6.201)
k4 0 0 1 z
If we apply this transformation to the coordinates of a wavefunction ¥(z,y, z)
we get

U, p¥(2,y,2) = P(zcosf + ysind, —zsinf + ycosb, 2) . (9.6.202)

Now let 6 — 0, i.e., we consider an infinitesimal transformation. Then, to lowest
order in 8

Usptplz,y,2) = Yz + yb,—20 +y,2) . (9.6.203)

Taylor expanding (again to first order in §) we obtain

Usoble,1,2) = B(e,uz)+0 [yﬁ - zi] We,w )

0y dz
= ¥(z,y,2,) - %Lzﬂb(z,y, z). (9.6.204)
Thus, to lowest order in
U,p=1- %Lz . (9.6.205)
Similarly, we find for # = é, or é, and infinitesimal 6§ that:
Upg=1- %Lz , Uyo=1- é:—Ly. (9.6.206)

Thus more generally for infinitesimal 8
17
Unp=1- %n L. (9.6.207)

Now we use equations (9.6.200) and (9.6.207) for a finite angle 6 together
with an infinitesimal angle €

Un,€+e = Un,eUn,B

(1 - %n : L) Uns - (9.6.208)
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Thus, taking the limit as € — 0 we get:
lim [Un,0+e - Un,ﬁ]

=0 €

= lim [—%(ﬁ : L)U,.,,,] . (9.6.209)

=0

Or since the limit defines a derivative we get

d i,

EU"'G = —ﬁ(" ‘L)Unyg , (9.6.210)
where

Uno=1. (9.6.211)

Thus integrating we find
Unso = exp{—%(fz ‘L)f} . (9.6.212)

From (9.6.210) and (9.6.212) we see that the angular momentum operators
1/k L are the generators of rotations in the sense of Stone’s Theorem (section
6.6). As always, the function e of an operator A is defined by its power series
expansion.

Now consider a classical Hamiltonian H that remains invariant under rota-
tions of the coordinate system. Typically such an H will be of the form

p’ p’
H= o +V(r)) = 9 +V(r) . (9.6.213)

If the rotational invariance is to remain in the transition to quantum mechanics,
we require that the Schrodinger equation also remain invariant under rotations.
Thus, we need that

Hy = Ey (9.6.214)
should imply that Ug® is a solution whenéver 1 is a solution. But

UrH¢ = UrRHUZ'Urt = EUgY . (9.6.215)
So for Ur to be a solution of (9.6.214) requires that

UrHUR' =H . (9.6.216)

This is the condition that the quantum mechanical Hamiltonian be invariant
under rotations. Multiplying equation (9.6.216) on the right by U and using
infinitesimal rotations about the z, y and z{axis respectively we obtain (problem
9.11) the equations

[H,L]=0. (9.6.217)

Equation (9.6.217) is equivalent to (9.6.216) and states necessary and sufficient
conditions for rotational invariance of the Hamiltonian H.
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9.7 Spin Angular Momentum

In finding the eigenvalues of L? and L, by algebraic techniques we obtained,
equation (9.5.146), that the eigenvalue ! could be half-integral as well as in-
tegral. We now examine the special case of ! = 1/2. In this case L cannot
represent orbital angular momentum since by solving the differential equation
for the eigenvalues of L, equation (9.3.85) we found that the eigenvalues m,
equation (9.3.89), had to be integers. The case of angular momentum 1/2 h
represents a new intrinsic or internal quantum number called spin. It is as
much a fundamental property of a particle as its charge or mass. If the total
angular momentum which we now call spin s, is s = 1/2 # then the z-component
of spin s, can have eigenvalues m,h with

my=s,5s—1,...,—|s| =1/2,-1/2. (9.7.218)

Thus, there are only these two eigenvalues of m,, namely +1/2, possible. We
call the corresponding eigenfunctions %+ and u— spinors.

s'ug = (s2 + 52+ sD)us = %(% + DA% uy (9.7.219)
and
1
S Uy = :}:§ﬁ Ug . (9.7.220)

If we further write
s+ =5, L isy (9.7.221)

and use equations (9.5.176) for [ = 1/2 we get:

spup =0, s_u_ =0 (9.7.222)

s —\/1(1+1)+1( L buy = h (0.7.223)

==V g\ g TN = A -
1.1 1,1

s_u+ = \/5(5 + 1) - 5(5 - 1)hu+ = hU_ . (97224)

Evaluating the matrix elements of s, and s4 on the two-dimensional subspace
spanned by uy the result can be written as 2 matrices. This allows us to write
the spin operators as matrix operators.

Lo h(1 0
T\ 0 -t
k(0
S+—§0

5. = g(? ) (9.7.225)

OO O e
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where the spinors uy are explicitly given by

u+=<(1)) ,u_=((1)). (9.7.226)

But,
1 hio0o 1
s = 5(s4+s-) =3 ( 10 ) (9.7.227)
and
i R0 —i
Sy = 5(3_ —8+) = 5 ( i 0 ) (97228)
and multiplying out and adding we find
3 10
s?=s2 4 sy+ st = th < 01 ) . (9.7.229)

Thus, we have a simple matrix representation of the spin 1/2 operators and
eigenfunctions. It is conventional to introduce the following three matrices

_ 0 1
% = {10
0 —i
% T i o0
o, = ( 0 -1 ) (9.7.230)
called the Pauli matrices. In terms of these we can express the spin matrices s

by

s= ga . (9.7.231)

By explicit multiplication it is easy to verify that the Pauli matrices anti-
commute. This means
020y + 0y0s = 050, + 0,0, = 0y0, H 0,0, =0. , (9.7.232)

The commutation relations among the Pauli matrices can also be obtained either
by explicit multiplication or by using (9.7:230) and the commutation relations
for sz, sy, s,. In either case we get

0p0y —0y0y = 2i0,

040, — 0,0y = 2i0;

0,0; — 0,0, = 2ioy. (9.7.233)
Combining these results with (9.7.232) we get

o0y = 10,

o0, = i0,

0,0, = ioy. (9.7.234)
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Table 9.2: Typical Magnetons and g-Factors

Particle Magneton (erg/gauss) g-Factor

electron  0.927 x 10~2° —-2.00
proton  0.505 x 10~23 2x2.79
neutron  0.504 x 10~23 -2x1.91

To understand the effect of spin, consider a free electron. Since an elec-
tron has spin 1/2, the energy is now 4-fold not just 2-fold degenerate. The
eigenfunctions of the Hamiltonian

H= f—m (9.7.235)
are
; 1
Yit(x) = (—;l)v,-e'kx ( 0 ) , p=hk, s,=h/2 (9.7.236)
i 0
Yy (%) = Gy €% ( 1 ) , p=hk, s, =-h/2 (9.7.237)

wex [ 1
Yoki(x) = e ( . ) . p=-hk, s, =h/>2 (9.7.238)

(0
Yoy (x) = Wc-zkx( ; ) , p=—hk, s,=—k/2 . (9.7.239)

They are just the product of the momentum and spin eigenfunctions since all
three spin operators s commute with H. In general, the Hamiltonian may have a
spin-dependent part and then s does not commute with H. In that case we have
to solve a pair of coupled differential equations to obtain the eigenfunctions and
eigenvalues of H. This occurs whenever an external magnetic field is applied
because a particle with spin carries a magnetic moment y proportional to the
spin, i.e.,

p= guTBs . ' (9.7.240)
Here g is the so-called gyromagnetic'ratio (a pure number usually of the order
of 1 in magnitude) and pp is the mdgneton of the particle. Thus,

_ lak

B p=—
2me

(9.7.241)

where ¢ is the charge, m is the mass of the particle involved, and ¢ is the speed
of light. Typical numbers are given in Table 9.2.
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In the case of the electron, the quantity

eh —20
P 0.927 x 10™*° erg/gauss (9.7.242)

is known as one “Bohr magneton”. The value of

eh

- -23
Wye = 0.505 x 10™*° erg/gauss (9.7.243)

where M, the mass of the proton is known as one “nuclear magneton”. We
examine the effect of the electronic magnetic moment in Chapter 16. For the
present we leave further considerations of spin.

9.8 Problems

9.1 Use algebraic techniques to evaluate the following expectation values as a
function of time for a simple harmonic oscillator state which at ¢t = 0 is
given by

¥(0,z) = Aug(z) + Buy(z) + Cus(z)

where uo(z) is the ground state, u;(¢) is the first excited state and us(z)
is the third excited state of a S.H.O.;

(H), (p*/2m) , (1/2k2?), (), (z), (Ap)?, (Ax)?.

9.2 a) Compute the 3 x 3 matrices (Lj)m m j =z, y, 2 corresponding to! = 1.
b) Show that they satisfy the cyclic commutation relation

[Lg,Ly)=14hL, etc.

¢) Furthermore show that each matrix L; satisfies the characteristic equa-
tion

(L2-R1)L; =0

d) Evaluate in closed form the expression for the matrix exp(iL,6).
Hint: Write out the series and resum fit after using the characteristic equa-
tion to simplify. Compare this result to a rotation matrix corresponding
to a rotation through an angle @ about the z-axis for the quantities corre-
sponding to

z+1y r—1y
Vi)
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9.3 Diagonalize the following Hamiltonian, that is, find a unitary operator U
that brings the following Hamiltonian to diagonal form.

H=Eda+V(a+ad)
where E and V are constants and
[a,a') = 4%,

a positive constant.
Hint: Try to transform to operators

b=ua+v, b =u'al +v*

where u and v are complex numbers, and recall the simple harmonic os-
cillator.

9.4 Evaluate matrix elements of the form (Y} m, 2Yis ms). These occur in the
evaluation of dipole radiation rates.
Hint: Use the following recurrence relation:

21+ 1P (z) = (1+ m)PZy (2) + (1 - m + 1)PY (=) .
9.5 Let A be an operator such that
A, L:]=[ALy)=0.

Calculate [A4, L?].
Hint: First compute [4, L,].

9.6 Let a wavefunction be given by

2? — y? + 2izy 3z
- a2+ + 22
Yp=A P + l2+y2+22+5 exp(—ay/z? +y? + 22).

Find the probability of obtaining any (I, m) value.

9.7 a) A measurement of the z-component of angular momentum is made on

a particle in a state of total angular momentum 1 and z-component 1.
What are the probabilities for obtaining the values 1,0, —1?
b) For a particle in a state of total angular momentum 1 and z-component
1 a measurement is made of the component of angular momentum along
an axis lying in the z — z plane and making an angle 8 with the z-axis.
What is the probability of getting the values 1,0, 17

9.8 Compute the commutators [x, L] and [p, L] and compare the results with
[L,L]. What does this suggest about the commutator [A, L] where A is
an arbitrary vector operator? Note that each of the commutators above
constitutes nine commutators.
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9.9 Formally one can derive the relation
[Lz,¢] =ik
and deduce from it that
AL, Ap > hf2.

Now Ay is of necessity < 27 , and injan eigenstate of L, we have AL, = 0.
This violates

AL, Ap> k2.

Explain this apparent paradox.

Hint: Examine the domain of L, on which it is self-adjoint. A similar
argument also holds for [p,z] = ik and a particle confined to a finite
interval on the line. See also Carruthers & Nieto [9.2].

9.10 A system is in a state of angular momentum given by
¥ =aY +bY10+cY1
where
laf? + 1 + || =1 .

a) Compute the expectation value of L.

Hint: equation (9.5.176) may be useful.

b) Compute the expectation value of L2.

c) What are possible values of the cpefficients a,b, ¢ in order that

L,V =h¥ ?

It may again be useful to recall that
Ly = %(L+ +L.) .

9.11 Starting from equation (9.6.216),

UrHUR' = H

and using
U= exp{%ﬁ L}

with || << 1 obtain to first order in ¢ that
[H,a-L]=0.

Hence conclude that

[H,L]=0 .



9.8. PROBLEMS 205

9.12 Show that for any eigenstate of the simple harmonic oscillator
(Az)? = ()
(Ap)* = ()
and also show for the state with quantum number n that
(Az)(Ap) = (n+1/2)h
9.13 Show that if you have two operators A, B such that
[A4,[4,B]]=[B,[4,B]} =0
then

A+B _ A B ,~1/2[A,B]

€ =e e €

Hint: Consider the operator

f( )__ e:rA B
and show that
df

=(A+ B+[A,Blz) f(z) .
Integrate this equation and obtain the desired result. This result is a
special case of the Baker-Campbell-Hausdorff formula.

9.14 Show that if

[A,B] =)
then
AP =ereP A

This formula can be used, for example, if the operator B is proportional
to the Hamiltonian fw(a'a 4 1/2) and the operator A is proportional to
either a or af.

9.15 A particle is in a state described by the wave function

\/6[Y11+21Yu 1= Y] .
a) What are the most probable values that would be obtained in a single
measurement of L2 and L,? What are the possible values of L, and what
are their corresponding probabilities?

b) Compute (AL,)? the uncertainty in L, for this state.

c) If the state is now simply Y} , find the uncertainty (AL,)? in L,.
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9.16 In Ehrenfest’s theorem you proved that

L) =~G0) = (F ().

Suppose that
F(z) = Az’ , A= constant .

Given that the system of interest is a simple harmonic oscillator and the
wave function at t =0 is

¥(0,2) = 3Vun(2) + itns (8]

compute the difference between F((z)) and (F(z)) as a function of time.

9.17 Compute Az and Ap for a particle in the state 1, (2) of a simple harmonic
oscillator. Also verify the uncertainty relation.

9.18 Show that if A and B are two vector operators that commute with the
Pauli matrices ¢ then the following equation holds

G -A)G-By=A-B+iz-(Ax B) .
9.19 Verify equation (9.5.163)

o
TA41

starting from

I Iy

1,:/ sin® 0 sinfdf .
0
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Chapter 10

Central Force Problems

10.1 Introduction

There are many systems such that the potential is a function of only the distance
r from the centre of force. In these cases the Hamiltonian is invariant under
rotations and thus commutes with all components of the angular momentum op-
erator. Such problems are called central force problems. We begin by extracting
the angular variables (separation of variables) by using the eigenfunctions Y} ,,
of L2 and L,. The Schrodinger equation is thus effectively reduced to an equiv-
alent Schrodinger equation in one variable. We then proceed to solve this radial
Schrédinger equation for three different potentials: the infinite square well, the
isotropic harmonic oscillator and the Coulomb potential. The isotropic simple
harmonic oscillator is solved in Cartesian coordinates as well as in spherical
coordinates. This latter solution allows us to introduce the parity operator in
spherical coordinates. The associated Laguerre polynomials also arise naturally
in these solutions. The hydrogenic atom (Coulomb potential) is discussed next.
There we also give a further discussion of the associated Laguerre polynomials.
Finally we show how to reduce a tworbody problem to an equivalent one-body
problem by extracting the centre of mass motion.

10.2 The Radial Equation

In this chapter we only consider Hamiltonians of the form

p2
H= W + V(T) . (10.?.1)

Since this Hamiltonian shows spherical symmetry we already saw (problem 9.12)
that

[H,L]=0 . (10.2.2)

207
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So, H commutes with every component of L and hence
H,L]=0 . (10.2.3)

Thus, it is possible to diagonalize H, L?, and L, simultaneously. As always we
could have chosen L, or Ly instead of L,, but the choice of L, is conventional.
If we now consider the eigenvalue problem

HvYg1m=EvEim (10.2.4)

then we can proceed by separation of variables or use the results of the previous
chapter. We take the latter approach and|set

VYEim = Retm(r) Yim(6,0) . (10.2.5)

This is possible because

1 82 2
Pl = —K Vi = hz-g—g( ry) + %zb . (10.2.6)
Thus (10.2.4) reads
A% 1 8? L?
_W;W(w) S v+ V()Y =Ey. (10.2.7)

We have dropped the m dependence of R since (10.2.7) shows that R is inde-
pendent of m. Now, using (10.2.5) this becomes

A% 1 d? [ (I +1)R?

~onrrarz CRE) | Toprpe +V(r)] Rgi(r) = ERgy(r) . (10.2.8)

If we now call

up(r) =7 Rp,(r) (10.2.9)

we get:

K2 dQ’uE,[(r) [l(l + 1)h2

TOM T dr? M2 +V(")} upy(r) = Eugy(r) . (10.2.10)

This is identical in form to the one-dimensional Schrédinger equation. The
effective potential is given here by

Viss(r) = %+V(r]. (10.2.11)

There is, however, one very major and significant difference here, namely 0 <
r < oo and U(0) = 0 as can be seen from (10.2.9). Thus, to make this prob-
lem completely equivalent to a one-dimensional problem we need an effective
potential (see figure 10.1)

1(I+1)A
{ G4V r>0 (10.2.12)

Vers(r) r<0
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Vers

Figure 10.1: Typical effective potentials for a central force problem.

On the other hand, as we saw before (section 6.4), h/i d/dr is not a self-adjoint
operator and has no self-adjoint extensions and thus cannot be considered as
an observable, such as for instance “the momentum operator in the radial di-
rection”. A possible candidate for a radial momentum operator with the inner
product

(f,9)= 000 fr(r)g(r)r?dr (10.2.13)
is
hld
prf=2o(rf) (10.2.14)

If we consider the deficiency indices of this operator for £4(0, 00) we get

prf=%ihf . (10.2.15)
Thus,

i(rf) =Frf (10.2.16)

™ =Frf. 2.
The solutions are

fe= %e*’ : (10.2.17)

Thus the deficiency indices are (1, 0) and p, is not a possible observable. In fact
there does not seem to be an observable corresponding to the radial momentum.
Nevertheless p, is a useful operator in that we can write the kinetic energy

p’ _p L

o "o Tame

(10.2.18)
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This is an easy way to remember the Laplace operator in spherical coordinates.

Let us now reconsider equation (10.2.10) with the effective potential V;;
given in (10.2.12). We are primarily interested in bound state problems so that
V(r) has to be attractive (negative). In fig.10.1 we have sketched Vys(r) for
r > 0 for several different [ values. Thus,|as [ increases, the depth of the well
decreases and the well’s minimum shifts to the right. Hence a particle tends to
be less tightly bound. Also, since the wave function tends to concentrate above
the minimum of the potential the most probable point for finding a particle
moves further out. This is, of course, the same as in classical mechanics. A
particle with high angular momentum is less tightly bound and tends to be in
an orbit with a larger radius. We now consider some specific problems.

10.3 Infinite Square Well

The simplest problem we considered in one dimension was the infinite square
well. We now reconsider the same problem in three dimensions. The potential
we choose is

0 r<a

V= { o r>a (10.3.19)
Thus, we must solve the Schrodinger equation

p?

2 w=E 10.3.20

Pov=gy (10.3:20)
with

=0 at r=a. (10.3.21)

Since the potential is spherically symmetric we can set

YELm = RE)(r)Yim(0,9) - (10.3.22)
Then,

L% im =1+ 1) Y 1m (10.3.23)

LYg m =mhop)m (10.3.24)
and

HYgim = E¥gim - (10.3.25)

This last equation reduces to an equation for Rg i(r), namely:

A% 1 42

_mld l(l-{-l)fi2
2M r dr?

Vi E] Rp,;=0. (10.3.26)

rRe;) + [
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Setting,
2ME

k= (10.3.27)
and

c=kr , Rpu(r)=yei(z) (10.3.28)
we get

1 I+ 1)

;W(ry&l) + [1 - |¥Ei= 0 (10.3.29)
or

&£ 92d I0+1)
[E:;E tinm T 1- 27| VB4 = 0. (10.3.30)

The solutions of this equation are the spherical Bessel functions which we
examine in detail in section 19.6. They are written j;() and ny(z) where

. [
]l(.’t) = 2—- JH,1/2(I) (10‘3.31)
z
T
m(z) = (-1)} /2—70- J_(i41/2)() - (10.3.32)
Here J,(z) is the ordinary Bessel function which satisfies the differential equa-
tion
e 14d n?
[E:-t—z + ;E + (1 - F):l Jn(l‘) =0. (10333)

To bring (10.3.30) to this form set

y=2"%u . (10.3.34)
Then u satisfies (10.3.33). Now the behaviours of ji(x) and ny(x) for small &
are given by !

1

le) = ¢ for 0 (10.3.35)

_r
A+ 1)

1
n(z) =— ~(21 - 1)!!W for 20 . (10.3.36)

One of our boundary conditions is that yg ;(x) be finite at the origin. Thus, we
have to drop the n; solution and get

ye(2) = Aji(e) . (10.3.37)

VAl results pertaining to spherical Bessel functions are derived in section 19.6.
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The equation for the energy eigenvalues is now given by the boundary condition
Rgy(a) =0 (10.3.38)
or
Jifa)=0 . (10.3.39)
Thus, if A, is the nth zero of ji(z) then we have the energyE, ; given by

h2
2Ma?

We shall not carry this problem any further. Instead we now consider the
eigenvalue problem for the three dimensional simple harmonic oscillator.

En = Ay (10.3.40)

10.4 Simple Harmonic Oscillator: Cartesian
Coordinates

The Hamiltonian in this case is

2
P 1l
H= oot ok (10.4.41)

We first solve this problem in Cartesian coordinates.
Clearly we can write H as

H=H,+H,+H, (10.4.42)
where
2
_ Pz l 2
Hy = oM + 2k1: (10.4.43)

and similarly for Hy, and H,. Each of these is just a one-dimensional simple
harmonic oscillator of the kind we solved before (section 9.2). Furthermore, all
of these Hamiltonians are mutually commnting.

[He, Hy| = [Hy, Ho) = [H,, Hy) =0 . (10.4.44)
Thus, we can diagonalize them simultaneously. Hence the eigenfunction 4 of

Hipy = Epty (10.4.45)
can be written

¥ =X(2)Y(y)Z(z) (10.4.46)
where

HyXp, (z) = En, Xy, (2) (10.4.47)
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and so forth. As we saw before, the eigenvalues are

En, = (m+1/2)w

E,, = (n2+1/2)hw

E,, = (n3+1/2hw . (10.4.48)
Thus,

En = Ep,nyns = (n1 +ng +ng + 3/2)fw (10.4.49)
or

E,=(n+3/2)hw (10.4.50)
where

n=n;+ny+nz. (10.4.51)

10.4.1 Degeneracy

We mentioned this concept before and simply recall the definition. An eigen-
value is degenerate of order g if there are g linearly independent eigenfunctions
yielding this eigenvalue. In this case as a glance at (10.4.50) and (10.4.51) shows
all eigenvalues except the ground-state (lowest state) are degenerate. Generally
a degeneracy indicates that the Hamiltonian has some special symmetry prop-
erty. In this case the Hamiltonian is spherically symmetric, hence the degener-
acy. Another general property is that the ground-state is non-degenerate. We
now examine the degeneracy of our oscillator more closely.

n = 0 In this case n; = ny = ng = 0 and this state is non-degenerate.

n = 1 In this case we have 3 possibilities: ny =1, ny =nz3=0;n; =1, n; =
n3 =0;n3 =1, n; =ny =0. Thus we have a three-fold degeneracy and the
following eigenvalue solu.ious

Hi100 = 5/2hwipop
Hipo0 5/2hwo,1,0
Hpo0,1 5/2hwibo,1 - (10.4.52)

Lastly, n = 2. In this case the degeneracy is 6-fold.
The general formula for g, the order of the degeneracy, is

_(n4+2)(n+1)
- 2

. (10.4.53)

10.5 Simple Harmonic Oscillator: Spherical
Coordinates

We now solve this problem again making explicit use of the spherical harmonics
and orbital angular momentum. Since

g2 L (10.5.54)
_2M 27', 0.
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we can write

Y =tPnim = Ray(r)Yim(d,¢) . (10.5.55)
This follows because
(L% H)=[L,,H]=[L%L,]=0 . (10.5.56)

In addition we find that the Hamiltonian (10.4.52) is invariant under parity
transformations. Now under parity transformations both the position operator
r and the momentum operator p change sign. Therefore under a parity trans-
formation the angular momentum operatar L = r x p also remains invariant.
Thus,

PL=LP . (10.5.57)

This allows us to choose simultaneous eigenstates of H, L?, L,, and P. Writing
out the parity transformation

PrPl=y¢ =-r (10.5.58)

in spherical coordinates, we find (see also figure 10.2)
z

T i

Figure 10.2: Parity transformation in spherical coordinates.

g’ = r'sinf'cosy’ = —rsinfcosy
Y = r'sin@'sing’ = —rsinfsingp
7 = rcos =—-rcosh (10.5.59)



10.5. HARMONIC OSCILLATOR: SPHERICAL COORDINATES 215

so that
o= r
0 = n-9¢
¢ = p4m. (10.5.60)

On the other hand, using the explicit form equations (9.5.180), (9.5.181) for the
spherical harmonics, we find that

Yim(m—0,0+7) = (=1)) Vi m(8,9) - (10.5.61)
Thus,
(PYim)(8,9) = (1) Yim(6,¢) - (10.5.62)

This shows that the spherical harmanics are eigenstates of the parity operator
with the eigenvalue +1 if / is even and —1 if  is odd.

Now we are ready to consider the radial equation for the simple harmonic
oscillator. Setting, as usual,

PRoi = tUny (10.5.63)
we find

d?u [M2%? , U(1+1) 2ME

W —_ h2 r + ,.2 Uu=-— hz u . (10564)

To solve this equation we first consider the behaviour of u for » — 0 and r — co.
These are respectively

u~ it (10.5.65)
and

u ~ exp[—(Mw)/(2h)r?] . (10.5.66)
We again use Sommerfeld’s polynomial method to find a solution of the form

u= A(r)r'*? exp[-(Mw)/(2k)r?] . (10.5.67)

Substituting this expression in equation (10.5.64), we get the following equation
for A(r)
d?A (l+1 Mw ) dA [2ME Muw

a? |~ @ +3)|A=0 .(10568)

TR
Since we have already extracted the asymptotic behaviour for u(r) the solutions
for A(r) must be a polynomial. Thus, we try

MI
A=) ar" . (10.5.69)
n=0
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Substituting this expression into equation| (10.5.68) and collecting terms with
the same power of r we get

M(
Z{n(n+l+2)an+z— %( n+1+3/2) - 21;“5] an}r"ZO. (10.5.70)

n=0
Thus, a solution exists if

e 4 1+3/2) - 48

an42 = n(n+l+2 an . (10571)
If furthermore,
apM/ 42 = 0 (10.5.72)

so that aps is the highest term in the expansion (10.5.69) then the numerator
on the right side of (10.5.71) must vanish for n = M’. This gives us the energy
quantization

Eyy=ho(M +14+3/2) M'=0,1,2,... (10.5.73)
or

En = lw(N +3/2) (10.5.74)
where

N=M+1. (10.5.75)

Thus, the energy is highly degenerate since we can have for a given M’ all |
values from 0 to N — M’. However, if we insist on parity as a good quantum
number then according to equation (10.5.62) we can either have all even [ or all
odd ! between 0 and N — M’ for a given M’. This means that M’ must be an
even integer, M’ = 2m. It is now a simple matter to count the degeneracy and
see that we get the same result as equation (10.4.53).

There is another way to proceed for the radial equation that allows us to
make contact with functions (polynomials) that occur in the solution of the
hydrogenic system considered next in section 10.5. The trick is to introduce a
new independent variable

p= I (z) = A(r) (10.5.76)
= o y(z) = . 5.
With these changes equation (10.5.68) becomes
d%y dy 2E
xﬁ+(l+3/2—r)gz—+4 (hw 2l ~ 3>y_0. (10.5.77)

This is just a special case of the equation for the associated Laguerre polynomials
L% _,(z), namely

dZL &)+ B4 1=2) LI (@) 4 (- L y(e) =0, (10578)
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Thus to express y(z) in terms of L%_,(z) we need the identification

b=1+1/2 (10.5.79)
1 (2E

b= (= —2-3) . 10.5.

a 4(hw 3) (10.5.80)

It is a general property of equation (10.5.78) (see section 10.6.1) that for the
solutions to be polynomials we need that a — b = m , an integer. Thus,

a=l+1/24m m=012... (10.5.81)
and

: (% Y -3) =m . (10.5.82)
So

Enmy = bl +2m + 3/2) = (N +3/2) (10.5.83)
where

N=l+4m. (10.5.84)

This is the same result we discovered above by using the parity operator, namely
ENy=h(N+3/2) N=1l+2m m=0,1,2,... . (10.5.85)

We introduced the associated Laguerre polynomials here in a rather ad hoc
fashion. In the next section we encounter them again and discuss them in more
detail.

10.6 The Hydrogenic Atom

We consider a particle of charge —e in the electromagnetic field of a fixed charge
Ze. Then

z 2
V(r) = -_:_ (10.6.86)
and
2 2
p Ze
H=——— . 10.6.
2M r (10.6.87)
Since the potential is central, angular momentum is conserved and we have
[L* H) =L, H]=[L*L,)=0 . (10.6.88)

Therefore, the Schrodinger equation

Hy = Ev (10.6.89)
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separates and we can write

d}n,l,m = Rn,l(r) Yl,m(a; @) (10690)
or putting
Un,i(r) = rRay(r) (10.6.91)

as in equation (10.2.9) we get the radial equation

B I+ 1)E Ze?

——— = . 10.6.92
amar t o v (10.6.92)
It is convenient to introduce dimensionless quantities. To this end we define
9 2ME
K= ——
The minus sign is due to the fact that we |are looking for bound states so that
the energy E is negative. Now let

(10.6.93)

r=2kr u(r)=y(z) . (10.6.94)

Then, with
MZe?

vE— {10.6.95)

equation (10.6.92) becomes
+1) v 1
' A S e A ) —
Yy [ o -t 4] y=0. (10.6.96)

We again consider first the asymptotic forms of y and then use Sommerfeld’s
polynomial method. For large z (10.6.96) becomes:

1
Y - ik 0 zo . (10.6.97)
So,
y~et g 00, (10.6.98)

Since y must be square-integrable only the minus sign is acceptable. For small
z the equation becomes

{i+1)
¥ - ——7 Ym0, (10.6.99)

The solutions are
y~z*! and y~zt . (10.6.100)

Since we must have y — 0 as z — 0 only y ~ 2t is acceptable. We therefore
set

y =zt e/ y(x) (10.6.101)
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and substitute this into (10.6.96) to obtain an equation for v(z). The resultant
equation is

2"+ (2A+2-2)p +(v-1-1)p=0. (10.6.102)
This is precisely of the same form as equation (10.5.78) if we set

b=2+1 , a=l+v. (10.6.103)
To get polynomial solutions requires that

a-b=v-1-1 (10.6.104)
be a non-negative integer. Thus,

v=Il+N=n , N=12,.... (10.6.105)
This is precisely the quantization condition for the energy since

MZe? _ MZe? h?

= - =n . 10.6.1
v — 9 SME =" (10.6.106)
Thus
1. 7% 1
E,= M3 (10.6.107)

or introducing a dimensionless quantity called the fine structure constant

ac S L (10.6.108)
T he 137 o

we get
En=-iMe2%? L n=12 (10.6.109)
n=-3 = 2, 6.

This is the same result we obtained using Bohr-Sommerfeld quantization (sec-
tion 2.4). This equation may also be written

722 1
E, = ——200 oz (10.6.110)
where
h2
apg = W (106111)

is the Bohr radius.
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10.6.1 Laguerre Polynomials

We now return to a systematic study of equation (10.5.78), or equivalently
(10.6.102). If we try a series solution

D_(z)=14+az+az®+...+ay_12V! (10.6.112)

and substitute this into equation (10.5.78) and equate the coefficients of equal
powers of r we get:

(n+1)(n+1+b)any = (n+b—a)on . (10.6.113)
If we want ay_; # 0 but ay = 0 then we need that

N-14+b-a=0 (10.6.114)
or

N=a-b+1. (10.6.115)

This is the condition we used in the previous section to ensure that our solu-
tions are polynomials. If our solutions were not polynomials we would have to
examine the convergence of the series ) a,z", where equation (10.6.113) yields
a recursion relation for the coefficients a,.| From (10.6.113) we see that

an n+b—a-1 1

= - . 10.6.116
— n(nFh) —)n as n— 0o ( )

Thus, the asymptotic behaviour of the series would be such that

o _1 (10.6.117)

An—1 n

or

1
W= (10.6.118)
This would lead to behaviour like e* and in view of the asymptotic behaviour dis-
played in equation (10.6.101) is unacceptable. Now consider equation (10.5.78)
with y = L3_, (2).
2

d*y dy _
xw+(b+1—x);l;+(a-—b)y_0. (10.6.119)

We look for a convenient integral representation for the solution of this
equation. Thus, we try

y(z) :f e~ f(t)dt (10.6.120)
c

where we shall later choose the integration path for our convenience. Substitut-
ing into (10.5.78) and differentiating under the integral sign yields:

ff(t) [et? — (b+1=a)t +a—be=tdi=0 . (10.6.121)
C
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This can be rewritten as
% f@) [ +a—b—(b+1)t] e”tdt=0 . (10.6.122)

We now rewrite the first term as a total differential by subtracting and adding
a term —e~*'d/dt[f(t)t(t + 1)]. Then we get

§ Gl e 1] s
f(ce-u {t(t+l)%+[a_b+1_(b_l)t]f(t)} dt=0. (10.6.123)

If the contour C forms a closed path then the first integral vanishes. To make
the second integral vanish we now simply choose f to satisfy

i _

t(t+ l)dt =—la-b+1-(b- 1)) . (10.6.124)
The solution to this equation is:
t4+1)¢
fit) = A(ta——b+)1 . (10.6.125)

Now in order to be able to close the contour we must not cross any branch
points. Thus we need a = integer, a — b+ 1 = integer. This allows us to choose
the contour to be a circle enclosing the origin. We then find

et 1)
Af ‘ta dt=0. (10.6.126)

Now we have only the contribution from the simple pole at ¢ = 0. This residue
is obtained by expanding the exponential and binomial

-z - (_z)ﬂ n
e = T (10.6.127)

and

(t+1)° Z( ) (10.6.128)

so that the integrand is

>y L

n
Ta;) ( i > gnrb-a-1 (10.6.129)
n=0r=0

Thus we have a simple pole whenever
n+r+b—a=0 (10.6.130)
or

n=a-b-r . (10.6.131)
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The contribution of this pole is

_a(t+1)° (z)"" [ a
}{e =l il ) (10.6.132)
Thus, up to normalization, we now have
a—b
(—2)°- —b-r (g
b‘AZQ’”—a_b_r), . ) (10.6.133)

The normalization is by convention such that
L3(0) = La(0) = a! . (10.6.134)

The functions L,(x) are known as the Laguerre polynomials. Substituting this
into (10.6.133) we get

al

A= — . 10.6.1
i (10.6.135)
So we have
— o= @ [ (41T
La(z) = Ly(z) = 5—75}{6 Jat dt . (10.6.136)
We can rewrite this as
al ., . d* [eoltt)
L@) = gmet(-1) dxafwl——dt
a a! T d° - -z
(1) et ftm dte (10.6.137)
or, evaluating the integral,
T da a_—x
La(z) = ¢* (z%7%) . (10.6.138)

This is a Rodrigues’ formula for the Laguerre polynomials L,(z).
To get the associated Laguerre polynomials L _,(z) we first note that the
Laguerre polynomials L,(z) satisfy the equation
:cdz +(1 )d+a Lo(z) =0 . (10.6.139)
dz2 z dz - .0.
If we differentiate this equation b times we find that
&L,
Ya = ditb

satisfies

(10.6.140)

d? d
d1:2 +(+1-2)—

=t (a=b)| yi(z) =0 (10.6.141)
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which is the same as equation (10.5.78). Thus, we have

_ b dbLa

b
La—b(z) =¢q dzb

(10.6.142)

where c® is a constant which by convention is chosen as (—1)°. Thus,

b
L2, (z) = (—1)"% (10.6.143)

or using (10.6.126) and (10.6.135)

a! o (t+1)°

b —
La—b(a“) - % 10—b+1

dt . (10.6.144)

In terms of these functions we are now ready to write down the bound-state
wave functions for the hydrogenic atom.

A note of caution is in order.
The functions that we have written as L%_,(z) are also written sometimes as
Lb(z). Since both notations are fairly common, care must be exercised when
mixing formulas from different books. For reference we list some of the more
common textbooks and their notation. The notation used in this book, L%_, (z),
is the same as that used by Liboff, Merzbacher, and Messiah [10.4]. The nota-
tion L%(z) is used by: Pauling and Wilson, Schiff, and Tomonaga [10.5]. The
notation used by Gradshteyn and Ryzhik [10.6] is related to ours as follows:
Li(z) (Capri) = (p+¢)!'L§(z) (Gradshteyn and Ryzhik).

Up to normalization the hydrogen atom wave functions are given by (our
notation)

bnim(r,0,0) = Anse™®2 2! L2 (2)Vim(0,9) (10.6.145)

where we have kept £ = 2kr. The constant A, ; is the normalization constant
and may be evaluated in a number of ways (most often a generating function is
used). The result is

omntt) = () L ()

27
x g~Zringo [241 (ﬁ) Yim(0, ) (10.6.146)
where, as before, ag is the Bohr radius.
h?
ap = ot (10.6.147)

Since the hydrogen atom has a high degree of symmetry (it is invariant un-
der rotations) we expect at least the usual (2! + 1)-fold degeneracy associated
with a central potential. In fact the degeneracy is even higher. This so-called
“accidental” degeneracy is due to the fact that the hydrogen Hamiltonian does
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not change under an even larger group of transformations than just the three-
dimensional rotations.

We now calculate gy, the degree of thé degeneracy for each level n. Since
the value of E, depends only on n we have degeneracy with respect to both m
(rotational) and [ (accidental). For each fixed value of n, I can vary from 0 to
n — 1 and for each of these values m can vary over 2/ 4+ 1 values from —! to /.
Thus, the degree of degeneracy (ignoring spin) is given by:

n-1
& =Z(21+1)=2@

=0

+n=n?. (10.6.148)

The problem we have solved yields only the bound state (square-integrable)
wavefunctions for the hydrogenic atom. These do not form a complete set. In
addition there are solutions that are only|d-function normalizable. These so-
lutions correspond to continuous positive values of the energy and represent
solutions for particles scattered by a Coulomb potential. Due to the fact that
the Coulomb potential decreases only very slowly (as r~!), these solutions are
rather complicated and will not be considered by us. They are expressible in
terms of hypergeometric functions but are usually avoided. In practice the
Coulomb potential is usually “screened” by other charges and thus yields an
effective potential that decreases more rapidly. This yields a simpler scattering
problem and is considered in section 19.5 where we obtain the quantum mechan-
ical analogue of Rutherford scattering by this means. In our treatment of the
hydrogen atom we have not yet justified the use of a fixed center of force. We
now do so and show how this is accomplished for a general two-body problem.
The procedure is identical to that used in classical mechanics for removing the
center of mass motion.

10.7 Reduction of the Two-Body Problem

Consider a general Hamiltonian for two particles interacting only with each
other. Then, using the fact that space is homogeneous (no preferred origin)
restricts the possible interaction potential to a function of r; —ry where rq and
ry are the position vectors of particles 1 and 2 respectively. The Hamiltonian is
therefore of the form

p} p3
=21 L2 Ly - . 10.7.149
21+22+ (r1—r3) ( )
We now introduce the centre of mass and relative coordinates

R = It ety (10.7.150)
my + my

r=r;—ry. (10.7.151)
It is also convenient to introduce the total and the reduced mass
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= Tz (10.7.153)
my + mz

as well as the total momentum

P =-ikVg (10.7.154)
and the relative momentum

p = —ihV, . (10.7.155)
The Hamiltonian can then be rewritten (problem 10.3) to read

H= %+ ;%+V(r). (10.7.156)
Furthermore

[P,p]=0 (10.7.157)
and

[P,H]=0. (10.7.158)

Thus, we can diagonalize P and H simultaneously. This amounts, of course, to
extracting the centre of mass motion. In fact, if we call

p2
Ho=2—+V(r). (10.7.159)

2m

Then Hy, H and P can all be simultaneously diagonalized to give

P 4(R) = K 4(R) (10.7.160)

Hob(r) = Eov(r) (10.7.161)
and

Ho¥(R, x) = (h;]\lf + Eo) ¥(R,1). (10.7.162)

This is, in fact, accomplished simply by separation of variables, i.e.
¥(R,r) = (R)y(r) . (10.7.163)
Then

_ 1 iK-R
Equation (10.7.161) is now nothing more than the Schrodinger equation for
a particle in a fixed centre of force. Thus, we get the equivalent one-body
problem from a given two-body problem by simply using the reduced mass in
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the relative coordinate system. For the hydrogen atom this amounts to replacing

the electron mass m, by the reduced mass
= el (10.7.165)

me + my

where m,, the proton mass is about 1840 m,. Thus, this produces a correction

of about 0.05% and is well within the limits of observable effects.

This concludes our treatment of exactly solvable problems. There are sev-
eral more classes of potentials for which closed-form solutions are known. The
principal merit of these exact solutions is that they produce a point of departure
for approximate solutions. This will be the subject matter of a later chapter.
In preparation for this we next develop some more formalism and in the process
improve our notation as well.

10.8 Problems

10.1 Solve the isotropic simple harmonic agscillator problem in two dimensions
in both Cartesian and cylindrical coordinates.
Hint: L, commutes with the Hamiltonian.

10.2 Consider the attractive potential
Vir)=-Vpe "

for I = 0. This is one of the few solvable problems.
Hint: Change variables to u = ¢~°", The resultant equation is Bessel’s
equation. Discuss carefully the boundary conditions to be obeyed by

¢(u) = R(r).
10.3 Show that the Hamiltonian given in (10.7.149) reduces to the Hamiltonian
in (10.7.156) under the transformations (10.7.150) - (10.7.153).

10.4 A particle is in a spherical potential well

_f -V for r<a
V(r)_{ 0 for r>a

Find the transcendental equation which yields the energy eigenvalue for
the state with angular momentum /. What is the minimum degeneracy of
this state? If a proton and neutron are bound in an | = 0 state with an
energy of 2.2 MeV, determine V; given that a ~ 2 x 10713 cm

10.5 A particle is free to move on the surface of a circular cylinder of radius
R. The Laplacian in cylindrical coordinates is given by:

V2—£+1£+li2_+02
T Or2 rlr r20g? 022

Find the energy eigenvalues and eigenfunctions for this motion.



BIBLIOGRAPHY 227

10.6 An electron in the Coulomb field of a proton is in a state described by the
ket:

% [4|1,0,0)+3|2, 1,1) - 2,1,0)+ V10[2, 1,-1)]

where the labelling is |n,!, m). Find

a) The expectation value of the energy.
b) The expectation value of L.

c) The expectation value of L,.

10.7 Show that under a parity transformation

060 =n-0
gy =p+m .
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Chapter 11

Transformation Theory

11.1 Introduction

The choice of a set of coordinate axes or basis is completely arbitrary in Eu-
clidean space. The same thing is true in|Hilbert space. It is therefore very
useful to know how to change from one basis to another. This is known as
“transformation theory”. Since the basis set is completely arbitrary it is also
useful to work as much as possible in a basis independent manner. This is what
we do in Euclidean space when we work with equations for vectors rather than
with equations for the components of vectors. There is a completely analogous
procedure available in Hilbert space involving a special vector notation called
Dirac notation. This powerful notation is discussed in this chapter. Trans-
formations from one basis set to another are carried out by means of unitary
transformations. If we also permit time-dependent unitary transformations we
can throw all, or part, of the time dependénce onto the operators. We refer to
these time transformed representations as fpictures” and discuss three of them,
the Schrédinger, Heisenberg and Dirac in detail.

11.2 Rotations in a Vector Space

Since by definition, a basis set is any complete orthonormal set, say {un (21, 22, z3)},
we can expand any given wave function ¥)(z1, z2,x3) in terms of such a basis
set. The index n may be a multi-index consisting of a set of discrete indices
as in the three-dimensional oscillator where n = (ny,7ng,n3) or it may be a
set of continuous indices or a mixture of discrete and continuous indices. We
shall use a summation sign as a generic symbol for summation over discrete and
integration over continuous indices. Thus, in the case stated,

Yz, 9, 23) =Zanun(fc1,i€2,-’ﬂ3) (11.2.1)
n

228
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where

an = (%) . (11.2.2)

It is clear that once we have picked the basis set {u,}, the wave function is com-
pletely specified by the set of ordered numbers (ay, a3, ...). This is completely
analogous to the representation of vectors by ordered n-tuples in ordinary ana-
lytic geometry. For example in £3 we may pick an orthonormal triad {é;, é2, €3}
Then we can write any vector v as

3
V=) anén (11.2.3)

ap = (én,v) . (11.2.4)
It is now quite common to suppress the basis vectors {é,} and write
v = (a1,0a2,4a3) . (11.2.5)

The change from one basis set to another is accomplished in £ by means of
rotations or orthogonal transformations. To see this consider a second basis set
{f1, f2, f3} obtained from the set {1, 3,3} by a rotation R. Thus, we have:

3
fo=) Ruéi. (11.2.6)
I=1
The statement, that the set { f fn} is still orthonormal, when written out, reads
(fn: fm) = Jmn
(Z Rnké, Z Rmtél)
k i
Z Rk Rt (k, &)

ki

Z Rk R
Y

ZRnkRmk . (1127)
k

In terms of the matrix R, equation (11.2.7) reads:
RR'=R'R=1. (11.2.8)

Here the superscript ¢ means “transpose”. Equation (11.2.8) states that the ro-
tation matrices R are orthogonal. Conversely if the matrices R are orthogonal
so that equation (11.2.8) holds then the vectors f,, defined by equation (11.2.6)
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also form an orthonormal basis set if the é, do. A completely analogous con-
dition holds for vectors in Hilbert space #|. In this case, since the vectors are
complex, we have complex orthogonal or upitary transformations. To see how
this works consider two different orthonormal basis sets {u,} and {v,}. Then,
since the sets are by definition complete we can expand one set in terms of the
other. Thus, we have

Un =Y Vamlim (11.2.9)

and

Un = Vorktm . (11.2.10)

That V! exists is obvious from the fact that the u, may be expanded in terms
of the v,. Now using the orthonormality of the sets we get

(vn,m) = Omn

Z ok Vi (g, )

Z Vi Vi
ki

I

N Vi Vi (11.2.11)
k

or in operator form
vvit=vit=1. (11.2.12)

In a similar fashion using (11.2.10) and expanding u, in terms of the v, we
obtain:

o = Zvn_le,:;I: (11.2.13)

or in operator form

voiyt-l=1. (11.2.14)
Taking the inverse of this last equation we jget
vitv=1. (11.2.15)
So we have
viv=vvt=1. (11.2.16)
Definition

An operator V is unitary if and only if it satisfies both equations (11.2.16).
This definition is equivalent to the definition we gave in section 6.5 as we saw
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there. Combined with the calculation we have just done, it means that in order
to transform from one basis to another, V' must be a unitary operator. So, to
change bases in H we require unitary transformations. Actually, the reason we
must use unitary transformations is'not as purely mathematical as the above
argument would indicate. It is dictated by physics. The results of any physical
measurement are contained in all the possible matrix elements or, what amounts
to the same thing, inner products. This means that any “rotations” that we may
perform must preserve all inner products. This is the same thing as requiring
that the transformations be unitary.

11.2.1 Fourier Transform of Hermite Functions

As an example of what we just discussed we consider a unitary mapping from
configuration space to momentum space where the basdis set in configurAation
space is the hermite functions (simple harmonic oscillator eigenfunctions.

A complete orthonormal basis in # for one-dimensional problems is provided
by the hermite functions {u,(z)} given by equation (9.2.47). If we choose units
such that k/hw = 1 then we have

1 1 d "1 2
— (VP [ _ 2
un(2) = (-1) WTE (dz x) vyl . (11.2.17)

These functions, as stated, form a complete orthonormal set. If we also admit
continuous eigenvalues (rigged Hilbert space) then the functions

w(z) = \/%e“‘f (11.2.18)

also form a complete orthonormal set. We now find the unitary operator V'
with matrix elements Vi , connecting the two sets. Notice that the index n is
discrete while the index k is continuous. Thus,

vh(2) = Y Vkntn(z) . (11.2.19)

Using the orthonormality of the un we get

(ks um) = Y Vi (tn, ) = Vi, - (11.2.20)
n
We therefore need only evaluate the inner product (vk,usm). We leave it as an
exercise (problem 11.1) to show that the result is
Vin =" un(k) . (11.2.21)

This shows furthermore that the Fourier transform of a hermite function is again
a hermite function.
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11.3 Dirac Notation

So far we have always, in a sense, used a representation of our states in only
one definite basis, the position basis. This| basis has, however, been suppressed
in all cases. This characterization is really true only in a rigged Hilbert space
but we continue to use the language of ordinary Hilbert space as explained at
the end of Chapter 8. To make clear what is meant by the statement above,
recall that the eigenfunctions of position are é-functions. Thus,

zé(z —a) = ad(z - a) . (11.3.22)

These form a complete orthonormal set and any function %(«) can be considered
as an expansion in terms of this set.

Y(z) = -/-00 Y(a)é(z —a)da . (11.3.23)

This is not as purely formal as it seems and Dirac [11.2] very early devised
an ingenious notation to take advantage of this. We now explain this notation.
To begin with we consider an abstract vector space of states. Thus, linear
superposition of states is defined but not an inner product. The elements of the
space are called kets and are denoted by | ). If we want to specify a specific ket
we insert a label |a). This specification of kets is completely basis independent.
This means that we do not explicitly write any wavefunction ¥,(x) but only
write the symbol |a). Now just as in the|case of 14(z), the label “a” usually
refers to the eigenvalue of some operator A. This statement we now no longer
write as

Athg(z) = athe(z) (11.3.24)
but as
Ala)=ala) . (11.3.25)

Both equations (11.3.24) and (11.3.25) say| the same thing, except that in equa-
tion (11.3.25) we have not committed ourselves to a definite function or its
Fourier transform or what have you. Corresponding to the space of kets we in-
troduce the dual space (see section 8.1) of continuous linear functionals defined
on the kets. This is called the space of bras and they are written ( - |. Specific
bras are labelled in the same manner as kets. Furthermore if A is an operator
on the space of kets then the corresponding operator on the space of bras is Af.
Thus, the equation corresponding to (11.3.25) is given on the space of bras by

(a|A! = a*(a] . (11.3.26)
It corresponds to taking the dagger of equation (11.3.24), namely
vt Al = a* i (2) . (11.3.27)

Since the bras are linear functionals over the kets they give a mapping from the
kets into the complex numbers. We write this as (-|-) or for two specific ones
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as {alb) . (This makes it clear where the names “bra” and “ket” come from.)
Again in terms of wavefunctions the corresponding expression is (¥4, %s). The
completeness relation for these states, as we verify later, reads

1= " |n)n| (11.3.28)
n
if the label n is discrete or
1= / K)dk(k] (11.3.29)
if the index k is continuous. These equations correspond to the equations
§(z—9) =) Yal2)n(y) (11.3.30)
if the index n is discrete or

o =)= [ dbunlalvito) (11331)

if the index k is continuous.

The expectation value of an operator is now written as (a|A|a). It is impor-
tant to remember that, although this expression looks symmetric with respect
to left and right, the operator A acts to the right in this formula. The opera-
tor acting to the left is A!. Again in/terms of wave functions this is written as
(%, Athy) and clearly if A acts to the left we have (Al9,,45). In the compressed
notation of Dirac we have to remember that Al acts to the left. To establish
precisely the connection between Dirac’s bra, ket notation and the usual wave-
function formalism consider a specific eigenket |n) of the hamiltonian H. Thus,

Hin)=E,|n) . (11.3.32)
Now let the ket |2) be an eigenket of the position operator z,, so that
Toplz) = |2) . (11.3.33)

We have written z,, but clearly this operator is just “multiplication by z”. We
now state that the eigenfunctions ¢,(z) of the hamiltonian H in configuration
space are given by

¢n(z) = (z|n) (11.3.34)
$n(2) = (nfz) . (11.3.35)

The orthogonality relation of two eigenfunctions ¢, and ¢,, now follows from
the orthogonality of the ket |n) and the bra (m|, namely

(m[n) = Gyn (11.3.36)
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and the closure condition (completeness relation)

/ le)da(z| =1 . (11.3.37)
This last equation is the same as equation|(11.3.29). Thus, consider
(bmibn) = [ ér(2)on(a)do
- / (mlz)dz(z|n)
= (mln) =dmn . (11.3.38)

To make contact between equation (11.3.32) and the usual form of the time-
independent Schrodinger equation we use (11.3.33) as well as the fact that if p
is the momentum operator then

khd
Then if
p
H=—+V 11.3.4
T + V(z) (11.3.40)
we take the inner product of equation (11.3.32) with the bra (x| to get
(z|H|n) = En(z|n) = En¢n(z) . (11.3.41)
The left side of this equation can be rewritten as follows:
(eliln) = [tell)datoln) = [ (elHluddgny). (11.3.42)
But using the explicit form for the Hamiltonian we have
(@|V(2)ly) = V(y)(=ly) = V(y)é(z —|y) (11.3.43)

where we have used the fact that |y) is an eigenket of the position operator z
and hence also of V(z). Furthermore,

2 2 2
p h d
<x|%|y) = "“'(’3|d—5|y)
B d2
~om dy2< zy)
K d?

= _%d_yfd(x -y). (11.3.44)

Substituting equations (11.3.43) and (11.3/44) into equation (11.3.41) and inte-
grating by parts twice (or using the definition of the derivative of a distribution)

we get:
B2 d%¢,
/[ om jy +V(y)on(y)| 6(z — y) dy

K ¢
_%m(bn(:") + V(z)¢n(x) (11'3'45)

(z|Hly)
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so that equation (11.3.32) now reads explicitly

h? d?
~5 25 9n(2) + V(2)én(2) = Endn(c) (11.3.46)

which is the usual form of the Schrédinger equation.

We have carried out these computations with excessive detail to illustrate all
the steps that are involved. In practice, one frequently treats the bras and kets
as if they were nothing more than wavefunctions with a little triangular bracket
stuck on to them. This is all right in most circumstances; however, on occasion
it is important to remember how they are really related to the wavefunction.
This latter circumstance occurs when products of operators are operating on
a ket. For example, if we have the expression AB|n) and we wish to write it
in terms of wavefunctions then we can use the basis set {|z}} consisting of the
eigenkets of the position operator. The expression is then rewritten as follows

/ (2| Aly)dy(y|B|2)d=(zln)

/ dydz(z| Alg)(31Bl) o (2) - (11.3.47)

(z|AB|n)

In a few paragraphs we shall see that this expression has a quite simple inter-
pretation.

We next verify the completeness rélations (11.3.28). The expression (11.3.29)
is obtained in exactly the same way. Let {u,,} be a complete basis and let {|n)}
and {(n|} denote the corresponding domplete sets of kets and bras respectively
so that

un(z) = (z|n) (11.3.48)
and
up(z) = (nlz) . (11.3.49)

Now any wavefunction ¢ and corresponding ket |1) can be expanded as
Y=Y anun (11.3.50)
n
or
[¥) =) anln) . (11.3.51)

In both cases we have

n = (un,¥) = (n]y)) . (11.3.52)
Thus,

[9) =) In)(nl¥) (11.3.53)
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which implies
Y In)n|=1. (11.3.54)

This is the completeness relation expressed in bra, ket notation.

If we now consider matrix elements of any operator A between wavefunctions
¢ and 1 we can write the whole expression in bra and ket notation. Using
(11.3.53) and (11.3.54) we see that the matrix element (¢, Ay) can be written
as

($lA[) = (glm)(m|Aln)(n|v) . (11.3.55)

Then (m|A|n) is a “matrix” representing the operator A in the standard basis
we have used for labelling our bras and kets. In fact the right side of (11.3.55)
is symbolically a matrix product where (n|t) are column and (¢|m) row matrix
elements. Similarly (m|A|n) are the elements of a square matrix. This also
shows that the right hand side of equation (11.3.47) may be interpreted as
multiplying from left to right the square “matrices” (z|A|y) and (y|B|z) with
the “column matrix” (z|n) = ¢,(2).

Formulated in this way, quantum mechanics is historically referred to as
matrix mechanics in contrast to the Schrodinger formulation which is called wave
mechanics. Clearly they are just two different versions of the same thing, now
called quantum mechanics. It is very useful to have many different formulations
of the same theory. This allows us to choose the most convenient one for a
particular computation and also gives us deeper insight into the structure of the
theory. From now on we freely employ the Dirac notation and switch to different
formulations as the mood or convenience strikes us. In fact, we shall soon lose
track of exactly which formulation we are| using because in Dirac notation no
commitment to a particular formulation is|required.

To begin the process of familiarizing ourselves with this notation we first
revisit some aspects of the simple harmonic oscillator. After that we reconsider
angular momentum and obtain matrix representations for the various operators.

11.4 Coherent States

Although the creation and annihilation operators, introduced when we studied
the simple harmonic oscillator, are not self-adjoint it is still possible to diago-
nalize the annihilation operator. Clearly the ground state is an eigenstate of
the annihilation operator corresponding to;the eigenvalue zero. The eigenstates
of the annihilation operator are known as ¢coherent states and have found many
applications in recent’ years in fields such as quantum optics. On the other
hand, there are no normalizable eigenstates of the creation operator (see prob-
lem 11.13). This is because there is no state which will yield the ground state |0)
after being acted on by the creation operator. On the other hand, all eigenstates
of the number operator can be reached by action of the annihilation operator
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and so this operator can be diagonalized. The coherent states are the solutions
of the equation

alz) = zz) . (11.4.56)

To find these solutions we expand the state |z) in terms of the eigenstates [n)
of the number operator ata.

2} =Y ea(2)In) . (11.4.57)
Applying the annihilation operator to this equation and using (11.4.56) we find

Y enl2) [zln) - valn - 1)] = 0. (11.4.58)

Since the states |n) are linearly independent, this requires that

2¢n_1 =/ney, (11.4.59)
or
z
= =t (11.4.60)
Therefore, we get after iteration that
Zﬂ
Ch = ﬁCQ . (11461)
Substituting this into equation (11.4.57) and normalizing we find
leof? el = 1. (11.4.62)

Thus, we have the normalized eigenstates of the annihilation operator a.

|2) = e-lzl’ﬂ; ﬁm) . (11.4.63)

Notice that there are no restrictions on the eigenvalues z; they may be any
complex number. Also the inner product between two different states is easily
found to be (problem 11.11)

(w]2) = exp = [Jwf? + |2? — w"z — wz*] = e~lw=21" | (11.4.64)

This shows that states belonging to different eigenvalues are not orthogonal.
They do, however, form a complete set, in fact an overcomplete set. The corre-
sponding formula is

1
1= ;/dzzlz)(zl. (11.4.65)
Here we are using that

z=x+iy , d’z=dzdy . (11.4.66)
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The factor of 1/x in front of the integral shows that the set is overcomplete.
To prove (11.4.65) we begin by expanding an arbitrary state |f) in terms of the
eigenstates of the number operator

1) =) faln) - (11.4.67)

This means that we have to show that

1fy = Y faln)

L[ o
= - [@0n
= %Z fn /d22|z)(z|n) : (11.4.68)
We now insert (11.4.63) and change to polar coordinates using
z=re | d’z=rdrdd . (11.4.69)

Then we find that

250 [ Efeln)

lZ:fn‘/f'drdﬂﬁ_"2 prtm gi(n—m)8 |m)
T

n!m!
— 1 —r? 2n+1 |n>
= ;;fﬂ/rdre pint o
= Y him=I1h . (11.4.70)

This proves our result. Here we have used|that

2r
2i dgetn-mP =g, (11.4.71)
mJo
and
i 2 n!
/ drrintler =3 - (11.4.72)
0

There is another convenient way of writing these coherent states. To do this
we use the explicit form for the states |n).

(ah)"
n)=
In) = "75
and substitute this in (11.4.63) to get

gz o 2 (a)
v>=e“”§7;;ﬂm

L12/9 = 2% (ah)?
JuH ""}:%IO)
n=0

= el zee gy (11.4.74)

|0) (11.4.73)
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Finally we may also view any coherent state as the ground state of a new set of
annihilation and creation operators, namely

b=a-z and b =al -2 : (11.4.75)
since we clearly have

B,of =1 (11.4.76)
and

blz) =0 . (11.4.77)

In configuration space the coherent states are just displaced ground states
of the simple harmonic oscillator. To see this we use the explicit form of the
annihilation operator

mw h d
a= /EI-’_M%% (11.4.78)

and a wavefunction for a displaced ground state of a simple harmonic oscillator

mw 1/4 mw 9
¥(z) = (W—h) exp ( <5 (&= %0) ) : (11.4.79)
Then, we find that

ap = %xg V. (11.4.80)

11.4.1 The Forced Simple Harmonic Oscillator

We now show that the ground state of a simple harmonic oscillator driven by a
constant force F is just a coherent state. The Hamiltonian in this case is
2

Pt
H 2m+2mwz zF

= (a'a+1/2) - QYZMF

=h“( 2F 3)(

If we now define

41 F?

F
b = a-
2mhw3
o= ot —L (11.4.82)
2mhw3
we see that this Hamiltonian is diagonalized with eigenvalues

F2
T omw?

En=(n+1/2)hv
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This also shows that the ground state is the coherent state |F/v/2m#Aw3) since
the equation

F
b|———)=0 11.4.83
o (114
implies that
F F F
a = 11.4.84
|\/2mhw3> VImhw? I\/2mhw3) ( )
as claimed.

11.5 Quasi-classical States

We want to find a quantum state |z) that|gives us the the best approximation
for a classical simple harmonic oscillator. | This means that we want a state in
which the uncertainties Az and Ap are constant in time and minimized. This
problem is easiest to treat in the Heisenberg picture where, as we saw, the
time-dependent annihilation and creation pperators are given by

alt) = ae”i
al(t) = ale®t. (11.5.85)

Next we introduce the shifted operators

b(t) = a(t) - (zla(t)]2)
t

bt) = al(t) - (z|a'(t)]2) . (11.5.86)
Then,
(e = o [(ABO) e+ (AB1(0) %"
( 15(0)8(0) + (06! (0)]2)]
(Ap(W))? = == [(Ab(0))? e 4 (Ab1(0)) %"
—(z IbT( 0)b(0) +b(0)8'(0)[2)] - (11.5.87)

For these expressions to be time-independent requires that
(Ab(0)* = ([b(0)b(0)}2) = 0
(Ab(0))* = (z[b'(0)b1(0)|2) = 0. (11.5.88)

Therefore, since there are no normalizable eigenstates of b1(0) (see problem
11.13) we require that

b(0)]2) 0
(z]pT(0) = 0. (11.5.89)
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In that case we have that

A2 = (BB ()]

Bl = (O O)f) (11.5.90)
and

Me()Ap(t) = SEHO(O)]2)

k *
= Stelle-2)a - )2

h 2
= 3 [(z]aa’|z) + |2|?]

= g(2|z|2 +1) . (11.5.91)
This is clearly minimized if
|z| = (z]a]z) = 0. (11.5.92)

This is therefore the best approximation for a classical state for the simple
harmonic oscillator.
To see all of the above more clearly we now look at this result in configuration
space where we are interested in the time-evolution of the displaced oscillator
muw 1/4 —(mw/2h)(z—20)?
¥(z,0) = (—) e o) (11.5.93)
nh
This is, as we saw earlier, a coherent state which may be written (z|z) where
the parameter z labelling the coherent state is

mw
2=y /—2p .

2h

This state can also be written as
¥(z,0) = (z|z) = (zle~P=/*|0) . (11.5.94)

Here |0) is the ground state of the simple harmonic oscillator. Also the state
¥(z,t) is the time evolved state

U(z,t) = (z|e  H/A|2) = (z]eHE/R gipzolh|g), (11.5.95)
Now,

P70/ h|() = g=mw/4hed gy/muw/2h zoal ) (11.5.96)
Therefore,

U(z,t) = e—mw/4ﬁx§<$|€—i(a'a+1/2)wt eV/mw/2h zgaf|0) ] (11.5.97)
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Expanding the exponential operators we find

e—ia*awt e\ /mw 2k zoat IO)

i zwt (\/ mw /2R o) (a)!]0) . (11.5.98)

I

n,l=0

But, (see problem 11.14)

[ata, (a")] =1(a")' . (11.5.99)
Therefore,
(a'a)"(a')'|0) = I"(a')'|0) - (11.5.100)

and

e—ia*awt e\/rmruafl(»
N (—iwt)” vm o)
— Z ( t) (l)n ( w/2h ) (af)l |0)

n! )

n,l=0

- Z e—zlwt V mw/2ﬁ IO)

8 =

———(a")'|0)
— i(VW/QhZOe im) (aT)lw)

I
= |\/mw/2hzee ") (11.5.101)

where this last ket denotes a coherent state with the parameter

z=+/mw/2hzy et (11.5.102)

So,

ad mw/2hzge ) L —mmw /4h 22
= (ol 3 LB L gy eometons

n=0
\/an/2hl‘o e~iwt)n —m 2
\/m ) (z|n)e wiahz]
hzg/2eiwt)r /4 .,
Vol n3 ) (N -t ) et

Z(
n=0
Z_%(

- (%i)““ exp{~ (5) (e~ z0e)’} (11.5.103)

where in the last step we have recognized the sum as the generating function
for the hermite polynomials.
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Now, if the parameter z in the expression for
|2) = e=#%|0) = eV 3R 20 |q) e=mw/4h 27 (11.5.104)

were real then the state |z) would be properly normalized since ¢'P* would be
a unitary operator. However, if z is complex, e?* is no longer unitary and the
state |z) has to be normalized. Thus, if for example z = z¢+iy, then the proper
normalization for

(22)" - () -]

(%)1/4 exp {' (%) (z—=z0— iyo)z} e~mw/2hyg

Using this result we have that

4 ima e
‘I’(t,t) — (%) e—(T)(z—z‘ocoswt)"’ 61( o )xusmwt(r—-zocoswt) ) (115105)

The probability density for this state is
Y(z, 1) = (ﬂ)m ¢~ (52)(z=zocoswt)? (11.5.106)
, - 5.
and clearly shows that the peak of the displaced harmonic oscillator ground
state wavefunction moves exactly like a classical simple harmonic oscillator.

11.6 Squeezed States

Equations (11.4.75) to (11.4.77) suggest a possible generalization of the coherent
states by using another transformation that also preserves the commutation
relations. The most general transformation has to be linear in @ and af. An
example of this is

_ a-—zal b= at — 2%a
VI-[: VI-lP

This can still be followed by a transformation of the form given in (11.4.75) to
yield the most general form. This transformation also preserves the commuta-
tion relations so that we still have

(11.6.107)

Bof=1. (11.6.108)

Equation (11.6.107) is an example of a Bogoliubov transformation. Also the
state |z) now defined by

blz) =0 (11.6.109)
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is again the ground state of the number| operator btb. To find the state |2)
explicitly in terms of the eigenstates |n) of the number operator a'a we proceed
as before and write

|2) = )" can(2)|20) . (11.6.110)

n

In this case only even powers of n occut and so we have already made this
explicit. Now writing out equation (11.6.109) using (11.6.107) and (11.6.110)
we get

ZCzn ) [Vanlen - 1)~ 2vEn ¥ 1 Ti2n+1)] =0 (11.6.11)

Therefore,

2n+1
Ca(n41) = 24/ Ing ol (11.6.112)

Iterating this equation we obtain

S (%3)!1!_)”% (11.6.113)
where

(@n-1)1= @n-1)2n—3)...531 (<1)l=1 (11.6.114)

@n)=2n.(2n—2)...642=2"n! Ol=1 . (11.6.115)

The normalization of this state may be obtained by the following trick. We
first compute the norm directly from equation (11.6.109) which may be written,
using (11.6.107)

blz) = (a —za')]z) = 0 (11.6.116)
or

alz) = zal|z) . (11.6.117)
Taking the norm of this equation we find

(zla'alz) = |2|X(z|aat|2) = |2[*(z|aal+ 1]2) . (11.6.118)
So that

(el2) = 2L patal (11.6.119)

Expanding both sides of this equation using (11.6.110) and (11.6.113) we get

z A ( Qn
leol? lelz" = ' i |co]? Z| 12 , . (11.6.120)
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If we call
(zl2) = leo*F(|2]) = |eo? lelz"————l (11.6.121)

we see that (11.6.120) may be written

_1- |Z|2
11.6.122
Imposing the initial condition F(0) = 1 we find
F(lz]) = (1 - |25~ Y2 . (11.6.123)
Therefore, we have
2y = (1 - |24 Z |2n) (11.6.124)
This may be rewritten (see problem 11.11) as
lz) = (1 - |z|)"* exp (%a'z) |0) (11.6.125)
or in the even more suggestive form
|2) = exp <§aT - —a ) |0) (11.6.126)
where
tanh |u| = |2] . (11.6.127)
The operator
S(u) = exp (ga12 - %az) (11.6.128)

is called the squeezing operator. The reason for that is if u is real so that
u=lul=r (11.6.129)
or equivalently z is real
z = tanhr (11.6.130)
then, (see problem 11.11)

St(r)zS(r) = \/ ﬁw—st(r)aTS(r) =ez . (11.6.131)

This clearly shows that the position variable is “squeezed” by the factor e” so
that

(z]2?|2) = €7 (0]2?|0) (11.6.132)
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where |0) is the ground state of the number operator ata. Correspondingly it is
easy to check that (see problem 11.12) that

(2[p?[2) = e (0]p?|0) . (11.6.133)

This shows that the coherent state |2) is still a minimum uncertainty state.
Notice, however that in a squeezed state we can make the uncertainty in either
z or p as small as we wish. This is what makes squeezed states so useful. This
completes our discussion of coherent and|squeezed states. A rather readable
introduction to this subject is the article given in reference [11.5].

11.7 Example: Angular Momentum

Our whole discussion of angular momenta (if we do not restrict ourselves to
orbital angular momenta) could have been carried out using only the algebraic
properties of the operators. In this case il is conventional to denote the total
angular momentum by J and the eigenvalues by j and m. Thus, the equations
corresponding to (9.4.101) - (9.4.103) are

[Jz, By} = ik, (11.7.134)

[Jy,J:] = ihkJ, (11.7.135)

[J:Je] = hdy . (11.7.136)
Also,

V33 =0. (11.7.137)
We again define

Je=J: iJy, . (11.7.138)
The simultaneous eigenkets of J2 , J, are iow denoted by |j, m). Thus, we have

i, m) = §(j + 1)R%|j, m) (11.7.139)

J;|j, m) = mhjj, m) (11.7.140)

and corresponding to (9.5.176) we have

Jeli,m) = V/j(j +1) — m(m £ 1)h|j, mt) . (11.7.141)

It is now a straightforward matter to evaluate the matrix elements of J2, J,, Jy
and J;. Thus,

(', m' |2, my = 3 (5 + VR, |G, m) = 55 + 1)E280mm: - (11.7.142)

So in this basis J? is given by a diagonal matrix. If the values of j, j’ are fixed
so that j = j' then the matrixis 2§+ 1 by 25+ 1. Thusfor j=35' =1

100
(1,m’|J2|l,m):2h2(0 1 0) : (11.7.143)
001
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Similarly, J, is given by a diagonal matrix.
(1,m'|J3|1,m) = mﬁaj]’/ mm! - (11.7.144)
and for j = j' = 1 this becomes (recall problem 9.2)
10 0
1,m|L1,m)=h| 0 0 0 . (11.7.145)
0 0 -1

To evaluate the matrix elements for J; and Jy it is more convenient to first
evaluate Ji. Thus,

(7', m\Jsli,m) = /GG F D) — m(m £ Dhdjjdmmss . (117.146)

Again for j = j’ = 1 these take the following form.

0 V2 0
I, | L,my=k| 0 0 W2 (11.7.147)
0 0 0
and
0 0 0
(Lm/[J_]l,m)=h| V2 0 0 . (11.7.148)
0 V2 0
They are obviously the hermitian conjugates of each other as is clear from
Ji=Jo i, . (11.7.149)
We can now solve for
1
Je = 3 (Jy +J2) (11.7.150)
and
-1
Jy= 5 (e =00 (11.7.151)
to get
A 01090
1,m|t,m)=—[ 1 0 1 (11.7.152)
V2 010
and

g [0 =i 0
O )Jtmy=—=| i 0 —i | . (11.7.153)
VI



248

CHAPTER 11. TRANSFORMATION THEORY

Both of these correspond to observables and so, as we see, are represented by
hermitian matrices. The general scheme is given by (11.7.142), (11.7.143) and
(11.7.146) and looks as follows

(7', m'|7%j, m)

of o
o 2
0 o0
0 o0
=il 0 0
o o
0 o
0 o
0 o
0 o0

for j, j' integral.
blocks by m, m’.

We also have

<jl7 m/|‘]Z|jr m)

[0 0
of 1
0f
o o
=il 0 0
of o
of o0
of o0
of ©
of 0

and

-1 0 0 0
_I e e
0 2 0 0 0
0 0 1 0 0
of 0 0 0 0
oo 0 0 0 -1
0 0 0 0 0

(el el e B e BN =)

etc.
(11.7.154)

The blocks are labelled by j j' and the elements within the

etc.
(11.7.155)
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(g, m'|J-13,m)

0 0 0 0 0 0 0 0 0 0

o0 0 0o 0 0 0 0 0 0 ©
o0 v2 0o 0o 0 0 0 0 0
00 o0 v2 0 0 0 0 0 0 O
- - ___ _l _— = _I .
=h} O 0 o0 O 0 0 0 0 0 O
o0 0 o0 O v4 0 0 0 0 0
00 0 0 o 0 6 0 0 0 O
o0 0 0 0 0 0 6 0 0 0
00 0 0 0 0 0 0 4 0 0

00 0 0 0 0 0 0 0 0 et
(11.7.156)

A specific example of the above general case (namely j = 1/2) has already
been examined in detail in section 9.6. A brief re-reading of that section might
be useful now. The matrices for j = 1 given by equations (11.7.144), (11.7.152)
and (11.7.153) are completely equivalent to using the differential operators for
Lz, Ly, L, on the three-dimensional basis set Y11, Y10, ¥1-1. In many
instances it is much more convenient to use these matrix representations of the
angular momentum operators rather'than the differential operators.

11.8 Schrodinger Picture

The word “representation” is sometimes used in the literature with a somewhat
different meaning from the one we have employed so far. We shall avoid that
use and call these other representations “pictures” throughout this text. They
occur when time-dependent unitary transformations are used. So far we have
always worked in the so-called Schrddinger picture. In this picture the operators
are generally time-independent and lall the time dependence is carried by the
states as given by the Schrodinger equation.

The matrix representations of operators in this picture, as stated, are time-
independent unless they are ezplicitly time-dependent as in the case of an in-
teraction that is switched on and off. We leave the discussion of such explicitly
time-dependent operators for later (chapter 15).

Consider a basis set {u,} or {|n)}. Then,

(1)) = an(t)In) (11.8.157)

and

LT0)

= = Hw () (11.8.158)
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can be rewritten to read

dan(
hz : )= an(t)Hln) . (11.8.159)
Or taking matrix elements with (m| and using the fact that
(m|n) =6 n (11.8.160)
we get
dam
ZHmnan (11.8.161)
where
Hpyn = (m|H|n) (11.8.162)

is clearly time independent if H does not|explicitly depend on time. Similarly
any other operator A has time independent matrix elements (m|A|n). Of course
the expectation value of A is time dependent through the time dependence of

() .

11.9 Heisenberg Picture

We have previously seen (7.8.64) and (7.8.68) that the evolution of a state in
the Schrodinger picture may be described; by a unitary operator, the so-called
evolution operator

U(t,1o) = exp [—ih]i(t - to)] . (11.9.163)

Suppose we apply the inverse of this unitary operator (with ¢o = 0) to every state
of our Hilbert space. For concreteness let |¥s(¢)) be a state in the Schrodinger
picture which has evolved according to U|(t) = U(t,0) from t = 0. Then, we
define a state in the Heisenberg picture |¥z) by

W) = e (1) 19s(0)
= UN)es(t)
= UN)U(t)|¥s(0)) . (11.9.164)
Thus,
Wr) = |¥s(0)) (11.9.165)

since UTU = UU' = 1 by virtue of the unitarity of the operator U. This shows
that states |¥g) in the Heisenberg picture are time-independent and coincide
with states in the Schrodinger picture at time t = 0.
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Since the physically interesting objects are expectation values or matrix el-
ements of the type (¥s(¢)|A|®s(t)) these must remain invariant under our uni-
tary transformation. Thus, it is necessary that the operators in the Schrodinger
picture As transform to operators Ay in the Heisenberg picture. This gives

(Us(t)|As|bs(t)) = (Wg ()| Ax|®a(t)) - (11.9.166)
Thus,
(s AsU®IDs(t) = (TalU'(6)AsU (1) @)
= (Uy|Ag|®y) . (11.9.167)
Hence,
An(t) = Ul (t)AsU(t) . (11.9.168)

This shows that in the Heisenberg picture the time dependence is carried by the
operators. To find the equation of motion they satisfy we simply use the fact
that

ihdl{Tt(t) = HU(t) (11.9.169)
and (remembering that dH/dt = 0) we differentiate (11.9.168) to get
. dAg . dut ) dU(t)
hi— = ih—A tAs——=
z pm [ & sU(t) + ihU' As o
= —HU'AsU+U'AsUH
= —-HAy+ AgH (11.9.170)
or
dA
ihTtH =[An,H). (11.9.171)

These are the famous Heisenberg equations of motion. They are identical
with the classical Hamilton’s equations if we replace —ih times the commutator
(that is —ik[{A, H]) by the classical Poisson bracket {A, H}. We do not pursue
this formal similarity any further, although this is the prescription originally
used by Dirac to obtain quantization.

To illustrate this Heisenberg approach we consider once more the simple
harmonic oscillator. Then,

P2 1,
H=—+-kz*. 9.
9m + 5 z (11.9.172)

In the Heisenberg picture the equations of motion are

L dz L P D
zhﬁ _[z,H]_ [m’—n—”g]—Zhr_n- (119173)
or

i=L (11.9.174)
m
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and
d 1
m%:@iﬂ=ywmmﬂ=—mm% (11.9.175)
or
p=-mwlc . (11.9.176)
These are clearly identical with the classidal equations of motion. Hence,
dz  p 9
m=Llo (11.9.177)
dZ
a§=-mw¢=_wp. (11.9.178)
Thus,
Ty .
& = rgcoswt + — sin wt (11.9.179)
w
Po .
P = pocoswt + ;smwt . (11.9.180)

These solutions also appear identical with the classical ones; however, z, po,
&g, Po are now operators.
We furthermore have the first order equations

p=mi = —mwzgsinwt + mag coswi . (11.9.181)
Therefore, using this condition at ¢ = 0 we find

Po

— = —mwiy (11.9.182)
w
and
Po = mp (11.9.183)
so that
z = zgcoswt + L sinwt (11.9.184)
mw
P = pgcoswt — mwzysinwt . (11.9.185)

As already stated above, in spite of the similarity with the classical solutions,
zo and po are operators. In fact they arethe same as the Schrodinger picture
operators.

It is interesting to note that in this case also the creation and annihilation
operators are useful. We have

i=L (11.9.186)

m



11.10. DIRAC OR INTERACTION PICTURE 253

p=-mu'z. (11.9.187)

Introducing the annihilation and creation operators as defined by (9.2.4), (9.2.5)
and (9.2.8), (9.2.9) we get

iha = [a, H] = hwa (11.9.188)

iha! = [af, H} = —hwa! . (11.9.189)
The solutions are

a = ape” "t (11.9.190)

ol = afe™t . (11.9.191)

So in this case we had only first order equations to solve. The commutators
in (11.9.188) and (11.9.189) were obtained from (9.2.16), (9.2.17). We could of
course just have used (11.9.186) and(11.9.179) directly to get the same result

ihe = b [mwi + if]
V2mwh
= ih [wp — imw?z] (11.9.192)
2mwh
or
ihi = —“ [mws + ip] = hwa (11.9.193)
V2mwh

which coincides with (11.9.188). This shows that introducing a, a' would also
simplify the classical problem for the simple harmonic oscillator. The states
in this case are of course time independent and coincide with the states of the
Schrodinger picture at time zero.

There is one more picture which is of great utility in applications and we
discuss it next. It is clear, however, that it is possible to define as many different
pictures as there are time-dependent unitary transformations. They vary, of
course, in their utility. The so-called Interaction or Dirac picture is one of
the more useful and has played a very important role in the development of
Quantum Electrodynamics.

11.10 Dirac or Interaction Picture

As the name implies, this picture is useful in the case of interactions and can be
thought of as lying half-way between the Schrodinger and Heisenberg pictures.

Suppose we have an, of necessity iself-adjoint, Hamiltonian H which is itself
the sum of two self adjoint operators Hy and H' such that they have a common
dense domain. That is,

H=Hy+H' . (11.10.194)
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In practice Hy will usually be an exactly diagonalizable Hamiltonian and H' a
complicated interaction part. Again let |¥s(t)) be a state in the Schrodinger
picture and define the unitary operator

Volt) = exp (—i%—%) . (11.10.195)

The evolution of [s(t)) is according to the Schrodinger equation with the full
Hamiltonian

0
iha—tl\Ilg(t)) = (Ho+ H)|¥s(t)) . (11.10.196)
We then define a state in the Dirac picture |¥p(t)) by
[¥p(t)) = UL (1)[¥s(t)) . (11.10.197)
Since U] (t) satisfies the equation
ih%UJ =—HoU} . (11.10.198)

The equation of motion for |¥p(t)) is found from

ih%hlln(t)) ik (%Ug) [¥s(t)) + U] gt—l\lfs(t))
= —HoU|¥s(t)) + Ul (Ho + H')|s(t))
USH'|Ws(t))
= U H'UUL|Ws(t)) (11.10.199)

or
ih%hllp(t)) = H.|¥p(t) (11.10.200)
where we have used [U], H] = 0 and defined

Hy =UlH'U, . (11.10.201)

Thus, in the interaction picture the state levolves only according to the inter-
action part Hj, of the Hamiltonian. The| price we have paid for this is that
all operators including Hy, are now time dependent. In fact they satisfy an
Heisenberg type of equation of motion. So, if A is any operator in the interac-
tion picture, that is

Ap = UlAsUp . (11.10.202)
Then,

., d L[ d . d
zhEAD ih (EUJ> Aon+lﬁUJAsan

—HoU} AsUs + Ud AsUo Hy (11.10.203)
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or

ih(%AD =[Ap,Hj] . (11.10.204)
This is of course also the equation of motion for Hy,. Thus,

ih%H}_, = [Hp, Ho] . (11.10.205)
To see how all of this looks in matrix form consider solving first the equation

Holk) = Exlk) . (11.10.206)
Then, we can call

|k, 1) = |k)e~Ext/h (11.10.207)
and therefore write

[U(t)) = ) ax(t) [k)e~ B 1/" (11.10.208)

k

where

ihgt-llll(t)) = H|¥(t)) = (Ho + H')|¥()) . (11.10.209)

Hence we get:

. . —iExt .Ek —iEit
zh%j(ak(t)lk)e E /h—z—h—ak(t)lk)e E /">

= ax(t)Holk)eBxt/h 1y " ay () H' [k)e*Er /R (11.10.210)
k k
This simplifies using (11.10.206) to
ihy " ax(t) [k)e ™ BR P =S " ap (t) H'|k)e ™ ER M (11.10.211)
k k
Multiplying by (gle‘Pe*/® we get
' = (alH'|k) (11.10.212)
where
ihag = Hy yellBa=Bn/ Mg, (11.10.213)
k

and e'Bat/Af'e=1Exqt/h ig the ¢, k matrix element of H’ in the interaction picture
and could be written as

Hp gy = e Bathple=iBxtih (11.10.214)
Thus,

., dag

i ﬂzzk:Hbq'kak . (11.10.215)

This is the matrix form of the Schrédinger equation in the interaction picture.
We return to these equations again when we discuss time-dependent pertur-
bation theory.
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11.11 Hidden Variables

We begin by recalling certain facts about the physical interpretation of quantum
mechanics as discussed in chapter 7. If we have an observable A, represented
by a self-adjoint operator A , and a state |)) and we make a measurement of A
then we must get one of the eigenvalues a, of A as the result. Now, unless |1))
is an eigenstate of A that is:

Aln) = a,|n) (11.11.216)
we cannot say which eigenvalue we will obtain. We can only give the probability
P =|(nl)* . (11.11.217)

In classical mechanics (for example statistical mechanics) situations also arise
where we have only probabilities. This is due to the fact that, in these situations,
we have an incomplete knowledge or specification of the state of the system of
interest. In classical mechanics if the state of the system is completely specified
then the value of any dynamical variable may be known with certainty. This
has led people to speculate that the quantum mechanical specification of a state
by a ket |1)) may be incomplete and that there may be some, as yet unobserved,
or hidden variables A such that a complete specification say [, A) is possible.
The X’s presumably are distributed with a classical probability P()) so that
P(X)dX = fraction of particles with the variable A lying between A and A + d).
Also,

/P(A)dA:l , P(A)>0 . (11.11.218)

The result of a measurement (if the hidden variable A is known) is now a
definite number. The result of a measurement will be known with certainty.
This, however, is not enough. We also have to recover the quantum mechanical
results by averaging over the probability distribution of the hidden variables.

That such a program is doomed to failure was proven by J. S. Bell [11.3] in
1965. He obtained the remarkable result that any such hidden variable theory in
which the hidden variables are local, i.e. do not affect each other over spacelike
distances, must disagree with quantum mechanics. We now demonstrate his
result with two spin 1/2 particles. The proof is, however, completely general
since from any Hilbert space we can always extract such a finite dimensional
subspace. We begin with some preliminaries. Consider two spin 1/2 particles,
labelled 1 and 2, in a singlet (s = 0) state

1
[¥) = E[HH_ [=)+)] - (11.11.219)

Here |a)|b) represents the state in which particle 1 is in the state with spin a and
particle 2 is in the state with spin b. Suppose these two particles now fly apart
and we have two detectors set up far away to detect their spins. The detectors
are set up so as to allow us to measure their spins along any one of three given
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directions specified by three unit vectors #; , (i = 1,2,3). The corresponding
spin operators are:

h
For convenience, we factor out the A/2 and consider only the quantities 7 - #;.

The angles between the three directions are

fll . flg = Cos 912
fig-fi3 = coslag
fa-fy = cosfs . (11.11.221)

We can of course express the eigenstates |+) of spin up and down in terms of
eigenstates of spin up and down alang any of the three axes of the detectors
namely the states |i , +) , |i , —).. Now suppose that we measure & - #; for
particle 1 and & - #; for particle 2.  We are interested in the probabilities of
getting +1 for particle 1 and simultaneously +1 for particle 2. We call these
probabilites:

Pi4 j+ = probability that particle 1 has spin +//2 along i and particle 2 has
spin +//2 along j.

P;4 ;- = probability that particle 1 has spin +Hh/2 along ¢ and particle 2 has
spin —h/2 along j.

Pi_ j4+ = probability that particle 1 has spin —//2 along i and particle 2 has
spin +h/2 along j.

P;_ ;- = probability that particle 1 has spin —/i/2 along i and particle 2 has
spin —h/2 along j.

We now compute these probabilities. The simplest way to do this is to align
our coordinate system so that the vector #; points along the z-axis.

A = (0,0,1) . (11.11.222)

Then, ¢ - 7; = 03 and the corresponding eigenstates are

li, +) = ( (1) ) (11.11.223)

i, ) = ( 0 ) . (11.11.224)

With #; - fj = cos6;; the most general possibility for 7; is
fi; = (sin ;5 cos a, sin By sin a, cos ;) . (11.11.225)

In this case we have

S . cosy;  eT'*sinf;;
o-n;= ( et Siﬂg,’j —-COS@;]' . (11.11.226)
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The eigenvalues of this matrix are, of coutse, £1. The eigenstates are

oy [ e P cos(6;/2)
|],+)_( el g ) (11.11.227)

i, =)= ( :_a:fzs;zgg’ﬁ;) ) : (11.11.228)

Now, recall that we are in a singlet state as in equation (11.11.219). This means
1

= —[l5, H)li, -) = 15,4, +)] - 11.11.229

¥) 7% (I, $)lj, =) = 15, )i, +)] ( )

Therefore, the probability that electron 1lis in the state |i, +) is 1/2. Also if

this is the case, then electron 2 is certainly|in the state |j, —). This means that
the probability P;, ;4 is given by

. .
Piy e = 500, =5, +)? (11.11.230)
or
Piyjs = %sinz ?-21 : (11.11.231)
Similarly,
1, . 1,0
Py = -2—|(z,—|],)|2 = -2—cos2 7’ (11.11.232)
1 . . 2 1 20,']'
Pio 4 = 5,415, H)I* = 5 cos” - (11.11.233)
2 27 2
- 1 . . 2 _ l .2 0”
Piej- = 3l i =) = 3sin® 55 (11.11.234)

These are all the correlations we need. We ¢an now show that these probabilities
cannot be reproduced by hidden variables|

The idea is to perform the following experiments. We prepare the electrons
in a state of total spin s = 0 and allow them to fly apart. Then far away, but
equidistant from the source of electrons we have two spin detectors, A and B.
For each detector we have three angle settings. The results for the two detectors
are recorded and the correlations are then compared. During the experiment
the angle setting is varied at random at each detector.

Now let us assume, contrary to quantum mechanics, that each electron al-
ready has definite spin properties when the!two electrons separate and, not as in
quantum mechanics, that their spin values emerge in the process of detection.
This latter (quantum mechanical) assumption says that there is an instanta-
neous correlation between the two electrons no matter how far apart they are.

So, we assume that each electron carries six labels (A1) Az, Az; pa, pa, pa)
where A; = +1 and p; = +£1. The ); are the values of & - f; measured by
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detector A on particle 1 and the p; are the values of 6- 7; measured by detector
B on particle 2.

Let P(A1, A2, As; p1, pia, pa) be the probabilities that for particle 1 in the
directions f; we get A; and at the same time for particle 2 in the directions 7;
we get p;. These measurements are clearly correlated since the pair of electrons
are in a state of total spin s = 0. This means that

P(x, X2, Ag; £, p2, p3) = 0 (11.11.235)
P(A, £, Ag; p, £, p3) = 0 (11.11.236)
P(Ay, A, £5p1,p2,2) =0 . (11.11.237)

In fact all the probabilities, except those with A; = p;, vanish. Furthermore,
all of these probabilities are non-negative. The space of hidden variables has
(subject to constraints) 2% = 64 parameters. Another constraint is

Y P(Ar, Ao, As; i, iz, p3) = 1 (11.11.238)
where the sum runs over all values of the hidden variables.

We now use these expressions to recompute the probabilities

1. ,90
Piyap = §sm2§

= Z P(+, A2, As; 1, p2, +)

A2,A3;piz, b3

= ZP(+)A21_;—)A2)+)

= P(+,+,—;——+)+P(+,—,——++) . (11.11.239)
Similarly,
1.,46
P2+'3+ = 55"12 ?
= P(H+,———#)+P(—+,—+,—-,+) (11.11.240)
and
_ 1. 2012
P1+'2+ = 2Sln D)
= P(+,— 4+ =)+ Pl — == ++) . (11L11.24])
Now we add the last two equations and compare to the first to get:
P(+?+)_;_7_?+)+P(_)+)_;+a_7+)
+ P(+a—;+;_: )+P(+a Ty T 1+v+)
1, 093 1 o2 912 2 913
= 2sm + + 2

+ P( )+) )+7 7+)+P( y ;_1+y—) . (1111242)
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Since all the probabilities are non-negative, this equation immediately yields
one of Bell’s inequalities

§sm T+§sm 2 273 2
This inequality must hold if the hidden variables are to be able to reproduce the
results of quantum mechanics. To check this, we now choose all three vectors
f; to lie in the same plane and such that 71, bisects the angle #,3. So,

Linzf Lot o 100 (11.11.243)

012 = 33 = 0173 (11.11.244)
and we obtain
6 | 6 6
in2 22> Zsin26,, = 2sin? =2 cos?| 22
sin” - 22sm 612 = 2sin 5 CosT 5 (11.11.245)
Hence we obtain
6 1
2 V12
Az 2 11.11.246
cos® o= < 5 ( )
or
n
612 > ik (11.11.247)

So, for the hidden variables theory to agree with quantum mechanics, this
inequality must hold. If this inequality fails then the hidden variables can not
reproduce the results of quantum mechanics. In this way we have a way to check
experimentally the existence of hidden variables.

To try and bring out what is happening we now repeat this whole argument
for a very specific case. For each particle there are three possible directions and
two possible outcomes, namely +1. Thus| for each particle there are 23 = 8
possible parameters. Since 8 x 8 = 2 we have the same result as previously,
namely 64 parameters. The eight possible outcomes per particle are + + +,
++—-,+—+4+, -++, +——, —+—, ——+, — — —. These results are completely
anticorrelated for the two particles since the total spin is zero. This means that
if particle 1 is in the state |+) then particle 2 is in the state |—) and vice versa.
We now consider two definite experiments.

a) The two detectors are exactly correlated. That is, we measure the outcomes
for the settings 11, 22, 33. In this case we find perfect anticorrelation
100% of the time. The experiment yields only +— or —+. Not a single
case of ++4 or —— is observed.

b) We now choose the angles

013 T
19 = gy = — = — .
12 23 9 3
We chose this angle since it is greater than 7/4 and thus will yield different
results for quantum mechanics and hidden variables.
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Now if the two detectors have different settings, that is 12, 13, 21, 23, 31, 32 we
find that the experiment yields the following results. The detectors are anticor-
related exactly 1/4 of the time. Thatiis, 1/8 of the time we measure +— and 1/8
of the time we measure —+. The detectors are perfectly correlated 3/4 of the
time. That is, 3/8 of the time we measure ++ and 3/8 of the time we measure
——. All of these results are in perfect agreement with quantum mechanics. To
explain these results using a theory ‘with hidden variables requires for part a)
that the hidden variables for the two particles are completely anticorrelated.
Thus, if particle 1 carries the information + + — then particle 2 must carry the
information — — +. In our previous language it means that the only non-zero
probabilities occur for

P(A1, A2, A3 =A1, = A9, —A3)

This assumption is required in order that we obtain agreement with the exper-
imental results obtained in part a). We next turn our attention to the experi-
ments in part b). Here we have the six possible detector settings already listed,
namely 12, 21, 13, 31, 23, 32. Now suppose particles 1 and 2 carry the infor-
mation + + — and — — + respectively. This is just the assumption necessary
for part a) that the detectors are perfectly anticorrelated. In the case at hand,
the detectors will now give oppositeireadings (anti-correlation) for the settings
12 and 21 but the same readings (correlation) for the settings 23, 32, 13, 31.
So the hidden variable theory predicts that the readings will be anticorrelated
exactly 1/3 of the time. The same result holds if any two labels are different,
that is, the particles carry the information

+—+ —+-
+-— —++
-4+ +--
—+- +-+
-—+ ++-

The only other possibilities are ++4+ ; —~— and — — — ; + ++. In this latter
case the theory always predicts perfect anticorrelation. Thus, with the hidden
variable theory, we are led to the following conclusion. If the detectors are set
at different angles, they will be antilcorrelated at least 1/3 of the time. This is
a specific case of Bell’s inequality which reads

The fraction of anticorrelations for different detector settings > 1/3 .

As we saw, quantum mechanics predicts exactly 1/4 for the same result and
is thus in violent disagreement with the hidden variable theory. Experiments
performed by A. Aspect [11.4] agree with quantum mechanics at the level of
three standard deviations. The accuracy of these experiments rules out any
possibility of local hidden variable theories being able to replace quantum me-
chanics.
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11.12 Problems

11.1 Verify equation (11.2.21), that is, compute the Fourier transform of the

Hermite functions.

11.2 Find and solve the Heisenberg equation of motion for a particle with an

Hamiltonian
2
14
H=—.
2m

If at t = 0 the particle is in the state |0, 0, 0) of a harmonic oscillator basis,
find (r?) as a function of ¢.

11.3 Transform the displaced one-dimensional S.H.O.

P 1
H="_4 ke + Bz =Ho+ e
2m 2

to the Dirac picture. Solve for both 1p(t), the wavefunction of the system
and zp(t), the position operator of the system. Assume ¥p(0) describes
the ground state of Hy in the Schrodinger picture.

Hint: Rewrite everything in terms of the Schrodinger picture annihilation
and creation operators and use the results of problem 9.14. The expression
for ¢¥p(t) can not be completely evaluated.

11.4 Repeat problem 11.3 for the Heisenberg picture.

11.5 Use the Heisenberg picture to find the expectation values for p and z

for a particle in an harmonic oscillator potential and also acted on by a
constant force F. Assume that the state of the system is the ground state
of the simple harmonic oscillator without the constant force F'.

11.6 A free particle is acted on by a constant force F. Use the Heisenberg

picture to find the expectation values of p and z if the state of the particle
is described by a Gaussian wavefunction.

11.7 Repeat problem 11.6 in the Schrodinger picture.

Hint: Do not try to actually find the time-dependent wavefunction, but
try to find an alternate method. It may help to review some of the results
of Chapter 7. The point that this problem is illustrating is that in this
case (a constant force) it is much simpler to do the calculation in the
Heisenberg picture.

11.8 An electron in the potential V(x) is also acted on by a weak constant

magnetic field so that the resultant Hamiltonian is

H= o (p-eA) +V(x)
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with

1
A=—§XXB.

Introduce the interaction picture with

Ho=5-(B)" + V(x)

and find the equations of motion for p and x in this picture. Write also
the Schrodinger equation for the wavefunction in the interaction picture.
Hint: Use the fact that the magnetic field is weak as well as the result that
you will prove later (problem 17.8) that if B is a constant vector then

P-A+A.-p=B.L.

11.9 Show that the normalized coherent state |z) in equation (11.4.74) may
also be written

|2) = elza’=="allg)
Hint: Use the results of problem 9.13.
11.10 Verify equation (11.4.64).

11.11 Verify equation (11.6.125).

11.12 Use the result of problem 9.15 to derive equation (11.6.131), namely

$1(r)25() = | =S (r)a + a1)S() = €'z

as well as the result

. [mwh -
ST(r)pS(r) = —z\/‘TST(r)(a - a’)S(r) =e’"p.

11.13 Show that the creation operator has no normalizable eigenstates.
Hint: Assume that eigenstates exist and show that they are not normal-
izable.

11.14 Prove that
[aTa, (aT)l] = l(aT)' .

Hint: Use induction.
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11.15 Given the Hamiltonian for a “forced” simple harmonic oscillator

2

L. R O e

H(t):% 5

where both F(t) and G(t) vanish outside the interval 0 < t < T, calculate
the probability P(n) that the system is in the state of n quanta of the
Hamiltonian H(t > T) if it was originally in the ground state of the
Hamiltonian H(t < 0).

Hint: Use the Heisenberg picture.
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Chapter 12

Non-Degenerate
Perturbation Theory

12.1 Introduction

So far we have only discussed problems that permitted exact analytic solutions.
This is, in fact, seldom the case and one is forced to use approximation proce-
dures. The exact solutions obtained so far then help to give one an intuitive
feeling for what to expect in complicated situations. Thus, faced with what
may be a more or less exact but complicated, Hamiltonian H describing a given
physical situation one can adopt several different approaches.

In many situations it is convenient to view the Hamiltonian as a mathemat-
ical model of the situation. It then becomes reasonable to modify the model
until one arrives at a simpler Hamiltonian that still retains the essential physical
features. To check the model dependence of the results one can then construct
many different models all of which, in some sense, approximate the situation of
interest and study how the results vary from model to model. This approach
requires a good deal of physical insight and has been much employed in nuclear
and solid state physics.

On the other hand, even using model Hamiltonians one is frequently still left
with a problem that cannot be solved exactly and such that further approxima-
tions on the model would destroy the physics of interest. In this case one requires
techniques for handling such Hamiltonians in an approximate fashion. Here also
the problems divide into essentially two classes. In one case one is interested in
the modification of the stationary states of the system under the perturbation.
In the second case one is interested not in the shifts in the stationary states but
rather in the transition between stationary states due to the perturbation. This
latter situation usually arises with time-dependent perturbations. We shall not
consider the second case for several chapters but concentrate instead on the first
case for now.

A particularly happy situation occurs if in a given physical problem, say

265
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an Hamiltonian H, it is possible to split the problem into a relatively simple
(solvable) part Hy and a “small” part AH' so that

H=Hy+AH' . (12.1.1)

Small here means that in some sense H' and Hy are comparable and A < 1 or
else A & 1 and H’ is small compared to Hq. Both these statements are vague
since both Hy and AH' are unbounded. To make them concrete, we assume for
the time being that for any eigenket |n) of Hy

[(n|Holn)| > [(n|AH'|n)] . (12.1.2)

In such a case it is possible to treat AH' as a perturbation on Hy. A number of
different and useful techniques have been developed for this and it is the purpose
of this chapter to study some of these.

12.2 Rayleigh-Schrodinger Perturbation
Theory

Consider an Hamiltonian of the form
H=Hy+ \H' (12.2.3)

where AH' is small with respect to Hy. We further suppose that Hy is sufficiently
simple that we are able to solve its eigenvalue problem exactly. Thus, we have

Ho|n)® = EQ|n)©® (12.2.4)

where |n)(®), ©) are the exact eigenkets and eigenvalues of Hy. We as-
sume throughout this section that the eigenvalue of interest, say E,(,O), is non-
degenerate. The reason for this assumption will become obvious shortly. We
further assume that E\ is a discrete eigenvalue and that as A — 0 the ex-
act eigenvalue E,, of H approaches Eﬁ.n). In this case it is reasonable that for
small X we can expand the eigenfunction |n) and eigenvalue E,, of H in a fairly
rapidly converging power series in A. The eigenket |n) is specified only up to an
arbitrary normalization constant which we fix by requiring that

Onln) = O(njn)® =1 (12.2.5)

This assumption states that all “corrections” to the unperturbed state |n)(®)
are orthogonal to |n)(%) and not merely a change in the normalization. Also our
assumption of a power series now leads us/to write

E,=E® 4 ) EQD + NED + ... (12.2.6)
In) = [n)® 4 Al 4+ X2n)@ 4 ., . (12.2.7)

Substituting this in the Schrodinger equation
Hin) = Ep|n) (12.2.8)
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and equating the coefficients of equal powers of A we get:

(Ho— EQ)n) =0 (12.2.9)
(Ho — E) ) + (H' = EM)|n)® =0 (12.2.10)
(Ho — En)Y® 4 (H' — ED)n)V) — EQ )0 = (12.2.11)

(Ho = EP)m)® + (H' = ED)n)=Y = EP|n)=2)
- .= EDm)® =9 . ‘ (12.2.12)

Clearly (12.2.9) is identical with (12.2.4) and simply states that E,(,O) and |n)(©
are eigenvalues and eigenfunctions respectively of Hy. The normalization con-
dition (12.2.5) when substituted into!(12.2.7) now gives

Onjn)® = O(n|n)® 4 X Onn)V 4+ A2 O@nn)® 4+ ... (12.2.13)
so that we get
O )V = Onny® = .. = Omlp)) =0 . (12.2.14)

This simply reflects, as we stated above, the fact that we have chosen all cor-
rections to |n)(®) to be orthogonal to |n)(®). To repeat, the corrections involve
only the changes in |n)(®) and not any rescaling of |n)(®).

Now, (12.2.9) determines the zeroth order approximation for E, and |n},
(12.2.10) the first order approximation in terms of the zeroth and finally (12.2.12)
the rth order approximation in terms of all the lower order approximations. To
see this we simply form the inner product with (O)(n| of equation (12.2.12) to
get

O n|H'|n)"-D — B = ¢ (12.2.15)

where we have used (12.2.14) and the fact that Hy is self-adjoint. If we now
further take the inner product of equation (12.2.12) with (O)(n| for m # n we get
the components of |n)(") along |m)(®), and together with (12.2.14) this specifies
[n)(") completely in terms of the lower order corrections. Thus, we get

(Er(r?) - ET(lO)) O ) +O) (m|H' = ELny=1) — E®) O)(m|n)(r=2)

— =BV OV =0 im#£n (12.2.16)
or
T 1 r— r—
) (mjn)(") = I [(o><m| H' — ENn)(=1) — E@) ©O)(pp|n(r=2)
EY) — Ey
= B Ofmln)=9 — .~ BCD Omlm)®]  m#n . (12217)

We next look at the lowest orders of perturbation in more detail.
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12.3 First Order Perturbations

If we set » =1 in (12.2.15) and (12.2.17) we get that

EW = O(n|H'|n)D) (12.3.18)

and
1
(0) ny — - (0 1 _ glip)0)
(0) /1) (0)
{m| Bl (12.3.19)
EY - EY

Hence to first order in A

En = EQ + AEWY = On|Hy + AH'[n)® (12.3.20)

This is just the expectation value of the total Hamiltonian H in the unperturbed
state |n)(©).

Also from (12.3.19) and since (9(n|n){!) = 0 we see that to first order in A
the eigenket

[n) = [n)(© 4+ Ajn)®) (12.3.21)

is

m (0) (0) m|H'|n (0)
DEIDRESYSY Im) E“’)(— |E(0)| iy (12.3.22)

m#n
We can also write this as
-1
In) = )@ 42 3 (E,(,") - Ho) [m)© O(m[H/|n)®) . (12.3.23)
m#n

Since |n)(®) is already normalized it might appear from (12.3.22) or (12.3.23)
that |n) is not. However, to order A, |n) is indeed normalized since

(0) ) (0) (0) 117,1(0)
Onfn)® 422 3 (plH'|m)™ O (m|H'|n)

(nln) = 7
(0) (0)
m#n (E" - Em )
, 2
_ ( 0 L )2 n,m
= ( )(n|n)( )+/\ M
= Onn)® 4 terms of order A? . (12.3.24)

The cross-terms cancelled in view of the self-adjointness of Hy and H’. Clearly
the degree of convergence of |n) is determined by the ratio

2

H!
I n.m (12.3.25)

E) - EQ)
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It is clear now why the assumption of non-degeneracy was made. For otherwise,
EY) — B could vanish giving a divergent rather than a small finite result. In
fact if Hy has close-lying levels so that E,(,O) - E,(,?) is small, these levels also
have to be treated as if they were degenerate.

We next illustrate the above procedure by means of some examples.

12.4 Anharmonic Oscillator

The Hamiltonian is
2
H = r + lmwza:2 + Azt
2m 2

Ho+Xz* . (12.4.26)
We consider the first order perturbation of the ground state |0) of Ho. Thus,

1
Hol0) = Eﬁw|0) (12.4.27)
and in terms of the annihilation operator a

al0)=0 (12.4.28)

z= \/%(a-}-at) (12.4.29)

where we have used (9.2.5) and (9.2,12). Using (12.3.20) we get the ground
state energy to first order in A as

and

(0[Ho + Az*[0) = %hw +A(0]z4[0) . (12.4.30)

But,

1l

2
(0fz*]) (i) (Ol(a -+ a')?[0)

2mw

2mw
+aata2 + aalaal + aaTza + aaT3 + ala® + afazat
+a'aata + alaa'? + a'?a® + o'2aa’ + at3a + at4|0)

K \2
<W) (0la®a'? + aa'aat|0)
W

2
(L) (0]a* + a®a! + a%a’a + a%at?

_ 4 (5‘:;)2 . (12.4.31)

Hence, to first order in A the ground state energy is given by

2 2 m2w3

Fo= thw <1 + QL) : (12.4.32)
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12.5 Ground State of Helium-like Ions

The Hamiltonian in this case is
p=B P2 2 (12.5.33)

where (see figure 12.1) r; and r; are the position vectors of the first and second

—e Tl & 71 — Ty —-¢

Ze
Figure 12.1: Geometry for helium-like ions.

electron respectively and rj3 = |r; — r3| is the separation between the two
electrons. Also Z = 2 for helium but we leave it arbitrary for the time being
since we also consider helium-like ions. If we at first neglect the repulsion of the
two electrons we get:

Ho=Ho1 + Hpy (12.5.34)
where
2 2
pi  Ze
Hyi= 2 22 5.
0 =g - y (12.5.35)

1s just the hydrogenic Hamiltonian. Furthermore,
(Hot, Hoo] =0 . (12.5.36)

Therefore we can diagonalize Hy; and Hyz and hence Hg = Hy; + Hyg simulta-
neously. The solution for the ground state energy is then

2
E® = _2%52— (12.5.37)
where
2
ez (12.5.38)

=7 T Zme
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and the ground state eigenfunction of Hy is
(0) — L ri+r
Yo (r1,r2) = —se (rtra)/a (12.5.39)

The correction E‘()I) due to the electrostatic repulsion of the two electrons is
then, to first order, given by

/ 1/) &*ry dry

—_2(”%)/“(1 & 12.5.40
1r2a6/ Il‘l—l‘gl r1 ro . ( D )

E

This is just the electrostatic energy due to two spherical charge distributions
with charge densities

— € -2rfa
plr) = ——e fa (12.5.41)

To evaluate the integrals in (12.5.40) we first expand 1/|r; — rs| in terms of
spherical harmonics (problem 12.1)

|l'1—1'2| Z o 2l+1 Z Yo (81)Yim (B2) (12.5.42)
where
r = r if ri<ry dr. = re if Py <y (12 5 43)
STl rp if m<n and > = ry if ra<ry e
Then,
E(l) _ 16 9 o8] 1 9 N o0
5 = T p(riridry p(rorsdra + 1y p(raradry
0 0 ry
e2
= §Z——— (12.5.44)
2a

where we have used the explicit form of p(r) and (12.5.42). Hence the ground
state energy to first order in the electrostatic repulsion of the two electrons is
given by

2 5
Ey=- - — 5.
0 aOZ (1 8Z> (12.5.45)

Since the perturbation decreases with increasing Z we expect the accuracy of
our result to improve as we go from He to Be *+. The results are as presented
in table 12.1.



272 CHAPTER 12. NON-DEGENERATE PERTURBATION THEORY

Table 12.1: Ground State Energies of Helium & Helium-Like Ions

Atom 7 Ey eV Ey eV % Error
(calculated) experimental

He 2 -74 -79 6

Lit 3 -193 -197 2

Bett 4 -366 -370 1

12.6 Second Order Perturbations

We now take a closer look at perturbations to second order. From (12.2.15) we
get that

E® = O(n|H'|n)V) . (12.6.46)

But we also have that
) = 3 O Oml ) 12.6.47
"; E(o) ED (12647)

Hence we get

(0)(n[H’|m)(°) (0)(m|H'|n)(°)
ER =% . (12.6.48)
(0) (0)
m#n Ey’ — Em
Or calling, as before
H) = On|H|m)® (12.6.49)
we have to second order in A
0 0 ! 0 2 IH:l ml2
m#n Un - T Lm

We leave it as an exercise (problem 12.2) to show that by setting » = 2 in
equation (12.2.17) one gets the second order correction to the wavefunction

e = ¥ |m>E°> <°><mu(f')|)r>(<0>(<° <r|H('|S>
0 ~(0 0
m,r#n E En - Er
T m)(® OXm| H'|n) (%) ©)(n|H'|n)()
mn (E(O) r(n))

(0)(
- Z'" | mIH’|n2 i : (12.6.51)
m;én (E(O E,(,?))
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The use of the second order perturbation formulae is considerably more compli-
cated than the first order perturbations due to the infinite sum over intermediate
states. In case there are only a finite number of intermediate states that con-
tribute, the infinite sum reduces to a finite sum. We shall now illustrate this
with an example and give a physical interpretation of the perturbation sum.

12.7 Displaced Simple Harmonic Oscillator

The Hamiltonian we want to consider is

Pl
H = %+§mw2x2+)\z‘

= Hy+)z . (12.7.52)

We want to treat Az as a perturbation. Since in terms of creation and annihi-
lation operators

h
— t
z=1/5 (a+a') . (12.7.53)

We have that to first order in A

E, = (n|Ho+ Az|n) = (n+1/2)hw + A(n|z|n)
= (n+1/2)hw . (12.7.54)

Then to second order in A we have

(n+1/2)ho + 22 3 zlrrlzin)

En

st (n —r)hw
A2 (nla+ al|r)(r|a + a'|n)
= (n+1/2)ho+ 57— Z#: o) . (12.7.55)
Using (9.2.60) and (9.2.63) namely,
alln) = Vn+1jn+1) (12.7.56)
and
aln) =+/njn - 1) (12.7.57)
we get that to second order in A
A2 nén,r+l + (n + 1)(sn,r—l
En=(n+1/29hw + 57— ; o (12.7.58)
or
)\2
En=(n+1/2)hw - (12.7.59)

2mw?
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If we compare this with the exact solution, which is easily obtained (problem 9.3
with # = 1and V = A/k/2mw) or by completing the square in the Hamiltonian
(12.7.52) we get

/\2
2mw?

which agrees exactly with the second order perturbation theory. The reason for
this is that the exact eigenvalue has only quadratic dependence on A. Thus, all
higher order perturbation terms must vanish. We now try to make plausible,
without computation, the absence of third order terms.

In first order perturbation theory the perturbation H’' must connect the
given unperturbed state |n) with itself if it is to contribute. In second order H’
must connect |n) with some other state and then back. Pictorially this is as
shown in figure 12.2. This corresponds to the term

En=(n+1/2)hw - (12.7.60)

l

Figure 12.2: Second order perturbation.

{n|H'|r)(r|H'|n)

. 2.7.61
B _E. r#n (12.7.61)

We then sum over all such intermediate states. In the example above we have
r=nz1 as the only possible intermediate states. In third order the picture is
as in figure 12.3. This corresponds to a term

(n|H'|m){m|H'}r)(r|H'|n)
(En - Em)(Em - Er)

rm#£n . (12.7.62)

This also explains wfly there are no third order terms in our previous example.
There we could only have either

n—on+l < n+2 (second order) (12.7.63)
or
non-1 Jom (second order) . (12.7.64)
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gA

H' H

Figure 12.3: Third order perturbation.

In either case there is no non-vanishing matrix element connecting n + 2 with
n. Hence, there are no third order contributions.

We next develop non-degenerate perturbation theory up to arbitrary order.
The technique we employ will allow us to recover the Rayleigh-Schrodinger
method as well as another method kriown as the Brillouin-Wigner.

12.8 Non-degenerate Perturbations to all
Orders

We again start with the Hamiltonian

H=Hy+\V (12.8.65)

and assume that the eigenvalues E® of Hy are non-degenerate with eigenkets
[n)(®). Suppose we wish to calculate the eigenvalue E,, and corresponding eigen-
ket |n) of H. Thus,

(Ho+ AV —Ep)n) =0. (12.8.66)
We retain the normalization

Ofnlny =1. (12.8.67)
Then using (12.8.66) and (12.8.67) we obtain by using

(n]Ho|n)® = E (n|n)(©) (12.8.68)
that

EO 4+ (a|Vn)® = E, . (12.8.69)



276 CHAPTER 12. NON-DEGENERATE PERTURBATION THEORY

This gives us the level shift due to the perturbation.
En— EQ = (n|V[n)® = O(n|V|n). (12.8.70)

Unfortunately (12.8.70) involves the unknown exact eigenket |n}.
To avoid having to exclude the term m = n in the sum over m in the
expansion for |n) we define the projection operator (see problem 6.4)

P, = |n)® O] (12.8.71)
which has the property of projecting any ket along |n)(®). The operator
Q.=1-P, (12.8.72)

is also a projection operator and has the property that any state Q,|¢) is always
orthogonal to |n)(®). Any ket |-) can now be written as a sum of a term parallel
to [n)(®) and a part orthogonal to |n)(®).

I') = Pal) + @nl) - (12.8.73)
Hence, in particular, for the ket |n) we have

[n) = Paln)+Qnln)
n)©) + Qnln) (12.8.74)

where we have used (12.8.67).
Now let z be an arbitrary complex number then we may write

(Ho = 2)|n) = (En = AV = 2)|n) (12.8.75)
and hence,
In) = ﬁwﬂ ZAV = )Y . (12.8.76)

Next, multiply this equation by

1= P+ Qn (12.8.77)
to get
1 1
ITL> = an(bjn —AV - z)|n) + Qnm':_z'(En - AV - z)]n)
1
= Pin)+ Q"H—(E" — AV = 2z)|n) . (12.8.78)
00—z
Thus
In) = [n)® + Qn—ﬁl—(E,, —AV = 2)jn) (12.8.79)
0 —

where in the last step we have used equation (12.8.74).
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To get the perturbation series we 51mply iterate this equation by replacing
|n) on the right side in terms of |n)(®). After the first step we get

o = 1O +Quy

Z(E,, = AV = 2)[n)®
1 1
+ Q,,m(E,l = AV = 2)Qn m(En = AV —z)in) . (12.8.80)

Repeating this procedure indefinitely we finally obtain

— (B = AV - z)]m [ny© (12.8.81)

=3 o

Substituting this in the expression for the energy shift we then get

E,—E© = ,\Z O (n|v [Q,. i !
m 0

W= AV — z)]m Iny(© . (12.8.82)

By choosing appropriate values for z we now either recover the Rayleigh-Schrodinger
theory or else obtain the Brillouin-Wigner Theory.

Thus, choosing z = E,(,O) we recover Rayleigh-Schrodinger perturbation the-
ory.

m
1
_ g 0 _ (0) ©
E, = E{ +/\§; (n|V Q,,Ho E“”( AV — EO)| |n)(©(12.8.83)
and
1 m
) =Y [@u———5;(En = AV = EP)[  |n)®). 12.8.84
)= 2 | )| ) (12.8.84)

If instead we choose z = E,, we obtain the Brillouin-Wigner perturbation theory.
Here,

E.=E{ + AZ O (n|v [Q

,\V] n)(® (12.8.85)

and

= ; [Q,, Ho_—lE,. Avr [n)© . (12.8.86)
We can use either set to obtain E, ‘and |n) to arbitrary order in A. Thus, to
first order (12.8.85) yields
En = EQ 4+ 2O (n|v|n)© (12.8.87)
and to second order it yields

©) |V |m)O|?
= BO 4 30 0,y 5 [2nlVIm©
En = EQ + A0V £ 27 Y g0

m#n

(12.8.88)



278 CHAPTER 12. NON-DEGENERATE PERTURBATION THEORY

This equation must still be solved for E,. That is why Rayleigh-Schrodinger
perturbation theory is used more often; it jgives E,, directly. On the other hand,
the Brillouin-Wigner theory converges more rapidly in certain situations and
may therefore be more convenient.

These formal expansions to all orders are not any more useful than our
previous result in section 12.2 for obtaining numerical values. They are mainly
of utility in trying to prove general results.

12.9 Sum Rule: Second Order Perturbation

Second order perturbation theory inevitably gives us sums of the form

O)(n|H'|m)(© (°)<m|H’|n)(°)
(2) _
E® = }m: om0 . (12.9.89)

These sums are infinite in general and cannot be done in closed form. An

approximation procedure that has been used on occasion [12.3] is to set EY =
E, a constant. Then,

1
)= __ - (0) N1} (@) (0) "1n)(0)
B = Er(.o)—E,,,Z;é,. (n[H|m)™ PN (m| H'|n)
Lo Vel ) Ol ) = | OB
Ey -E
Using the completeness relation
Y m)© O] =1 (12.9.91)
the above expression reduces to
1
E® = s [©mi(Ey1m)y® + | Onl B n) O] (12.9.92)

Thus, we have a neat closed form expression. Unfortunately it still contains
the parameter E which must somehow be| chosen in an arbitrary fashion. This
presents the major drawback for this method.

Fortunately there are quite a few cases in which the sum (12.9.89) can be
evaluated exactly if one can solve a certain differential equation. Since one can
then do the sum in closed form we obtain a sum rule. In practice there are many
different kinds of sum rules [12.4]; we concentrate here only on the particular
sum expressed by equation (12.9.89).

To evaluate this perturbation sum we look for an operator F, such that

H'|n)® = [F,, Ho]|n)® . (12.9.93)
Here as before

H=Hy+\H'. (12.9.94)
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Since the right hand side of (12.9.93) vanishes if we take an inner product with
(©)(n| we have to modify this equation slightly to read

O (m|Faln)® = EL8p m + O (m|[Fy, Ho)n)(® . (12.9.95)
This expression clearly simplifies since

O (m|[Fn, HolIn)( = OX(m|F Ho — HoFa|n)(®)
O (m|F, E®) = EQ F,|n)®

= (E,(P)—E,(,?)) ) (m| Fy ) . (12.9.96)

Substituting this result on the right side of (12.6.48) we find

E',(f) = Z (0)(n|H’|m)(°) (0)(m|pn|n>(0)
m#n
= Y Ol ) o]y )
— O H'|n)©) O)n|F, |n)®) (12.9.97)
or
EQ =O) (n|H'F,|n)®) — ED O (n|F,|n)® (12.9.98)
For the last step we have again used the completeness relation
Y Im)©® O] =1 (12.9.99)
as well as the fact that
EWD = On|H'|n)©) . (12.9.100)

Thus, if we can find such an F, then the sum for the energy in second order
perturbation theory can be reduced to an integral. To see how this F,, may be
evaluated in practice, consider the following Hamiltonian for a system in one
dimension

2
H= 5’% +V(z) +\U(z) (12.9.101)
where the unperturbed Hamiltonian
P
H= o + V(z) (12.9.102)

has the eigenfunctions ¢, (z) corresponding to the non- degenerate eigenvalues

EYY. We now assume that the operator Fy, is simply a function of 2. Equation
(12.9.93) when written out then reads:

2 2 2
Ule)dn(s) = —;—m{Fn(z)Mﬂ—%;[Fn(z)m(x)]}

dz?

R (dF, dF,(z) déu(2)
= —{d12¢"(x)+2 iz de }

(12.9.103)
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Thus,

@F,  ¢n(x)dFy(z) _ 2m

e +2¢n(2‘) e h—2U(x) (12.9.104)
Calling

dFu(z)

— = f(z) (12.9.105)

we get the first order linear equation

df $n, 2m
&+ =206 (12.9.106)

which may be integrated by multiplying by the integrating factor

R=¢}(z) (12.9.107)
to give

d 2

% (4nf) = h—%i(x)U (2) . (12.9.108)

Hence, up to an integration constant

dF, 2 :
fe) =4 = E?'qsiz / U(y)62 () dy - (12.9.109)

Integrating once more, we find

2m [T dy
Fo(z) = — —
=% ), B
The constants a and b simply determine the value of F,, (b) = 0and dF, /dz |;=q =

0. Since these values can always be changed by adding to our particular solution
(12.9.110) an arbitrary solution of the homogeneous equation

/y U(2)¢2(4) dz . (12.9.110)

d’F, ¢l (z) dF,(z)
dz? +2¢,,(z) dz

they have no effect on the sum we want to evaluate. The reason for this is
that solutions of the homogeneous equatjon correspond to U () = 0. This
simply means that, as far as our perturbation sum is concerned, the boundary
conditions on F, are arbitrary and may bé chosen for convenience as above.

We have now succeeded in reducing the sum for the second order energy
perturbation to integrals over known functions. In practice these integrals can
seldom be done in closed form. However, whenever the perturbation sum is
infinite, the integrals are easier to evaluate numerically than the sum.

=0 (12.9.111)
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12.10 Linear Stark Effect

A practical example using the sum rules just developed, was first worked out by
Dalgarno and Lewis [12.6] and yields, to second order, the shift in the ground
state energy of an hydrogen atom due to a constant electric field. This is known
as the linear Stark effect. In this case the unperturbed Hamiltonian Hy is just
the hydrogen Hamiltonian

2 2

p e
= 12.10.112
Ho 2m r ( )

The corresponding ground state wavefunction is

do = e~le (12.10.113)

1
Vrad
The perturbation term is

H =e&z2 (12.10.114)

where £ is the strength of the electric field.
This means that the operator Fy must satisfy the equation

e€ze”"% = [Fy, Hole™™/* . (12.10.115)
We try to solve this equation by choosing
Fo=zf(r)=cosbrf(r) . (12.10.116)
Straightforward algebra then yields the following differential equation for f(r)
df 2r\ df 2
—4{4d-—)=—-=f= .10.
" + ( a) o af 2ar (12.10.117)
where
me€
o= (12.10.118)
A particular integral of this equation is
f(r) = —aa(r/2 +a) . (12.10.119)
Thus,
Fo=—aaz(r/2 +a) . (12.10.120)
It is now a simple matter to evaluateithe energy shift
-1 a?h?
E(Q) - ~2r/a 2 2 : . 10.
o =5 [e —6z (r/2 + a)r® dr sin 8dOdyp (12.10.121)

Since the directions z, y, z are all equivalent we can replace z% by

1
§(x2+ ¥ +2%) = %rz .
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The 0 and o integrations can then be performed immediately and we arrive
at
2 4 a2h2 o —_9r
EQ = T ), € 2/9(r/2 +a)rtdr . (12.10.122)
This integral is easily evaluated and we find
252
@ _ 9 9 5.,
Ey” = =0 & . (12.10.123)
This result is the same as what we would obtain if we were to evaluate the
following sum plus integral

-(eg)ﬁ[ Y KLOOeln Lm)it / A MLOUERE | o 1) 10y

#11,m % (1-1/n?) 2%:—0 o
where |n,l,m) and [k) are hydrogen atom eigenkets.

We have treated the effect of a constant electric field as a perturbation in
spite of the fact that for z — oo the total potential energy due to the per-
turbation tends to —oo. This means that an exact solution of the perturbed
Schrodinger equation would no longer yield bound states, but would lead to a
continuous spectrum. The total potential as a function of 2 (for fixed z and y)
looks as shown in figure 12.4. This picture also yields the physical reason why

Vl

. . /\ .
\ z

Figure 12.4: The Stark effect.

the perturbative solution makes sense. An electron trapped in the region be-
tween z; and 2 has a finite, but exceedingly small probability to tunnel through
to the region z > z3 where it would become unbound. The probability for this
to happen is, however, so low that the quasi-bound state that we used in our
calculation still makes sense and gives useful results.

This completes our treatment of non-degenerate perturbation theory. In the
next chapter we develop perturbation theory for states which are degenerate in
energy.
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12.11 Problems

12.1 Verify formula (12.5.42).
Hint: Solve the problem

VZ(r) = é(r — 1)

by

a) expanding in spherical harmonics,

b) realizing that ¢(r) is the potential for a unit charge located at r’, and
comparing the two solutions.

12.2 In (12.2.17) set r = 2 and derive equation (12.6.51) for the second order
correction to the wavefunction.

12.3 Consider the Hamiltonian

P L, 1y
H—2m+2kx +2/\z kE>0.
a) Find the exact energy of the n’th state of this Hamiltonian and expand
it to order A% assuming |A| < k.

b) Use perturbation theory, treating (1/2)Az? as a perturbation, and find
the energy of the nth state to order A? .

¢) Find the rth order correction and hence show that the perturbation
series converges for |A| < k.

12.4 a) Find the approximate ground state energy to second order for the

Hamiltonian
2
P L e
H—2m+2k;c +4/\z k>0

using the Rayleigh-Schrodinger perturbation theory.
b) Find the ground state correct to order A.

12.5 Repeat problem (12.4a) using Brillouin-Wigner perturbation theory.

12.6 Consider the Hamiltonian
H=Hy+ AH'
where
[ E 0 , 0 da
HO‘( 0 Ez) H_<—-ia 0>
a) Solve for the exact eigenvalues and eigenfunctions.

b) Solve for both eigenvalues and eigenfunctions to 2nd order using Rayleigh-
Schrodinger perturbation theory.
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12.7 A particle of mass m moves in a potential
1 ,
V= §k|z12+f lef<1.

Estimate the energy of the ground state.

Hint:
kl |Pe = lkx - lk( = |zt ~ %kx2 + %kleﬂ =] -
Also,
/Oooe 'z lnxdx—%a'aﬂ[ _%(c+ln4a)]
where

¢ =0.577216...= Euler’s constant .

12.8 For a particle of mass m moving in the potential

V= %mz + %klz?‘ +Azy |k — k| > 2A
a) find the exact energy levels.

b) Use perturbation theory to find to order A? the energy of all the levels
and compare with the exact solution to this order.

12.9 Kuhn-Thomas-Reiche Sum Rule
Classically the polarizability « of an atom is defined as the induced electric
dipole moment e|F] divided by the strength of the inducing electric field
E. So,

_ el
E]

and for harmonically bound electrons takes the form

47r2 Zuz—zﬂ ’

Here, f; are dimensionless constants called the “oscillator strengths”. In
quantum mechanics these are defined by

4m

i = VJOImJOI

3he?
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where

|jo| = (I7j0[0)
and

|70l = {|750|0) .

For N uncoupled electrons one then has the Kuhn-Thomas-Reiche sum
rule

ijzN.
j

This polarizability can be used to describe the absorption of light which
carries an electron from its ground state |0) to an excited state |n) in an
atom. If, the Hamiltonian for the bound electron is

P
H= m + V() .
a) Show that

(Ba = Eo)fan = = - (nl0)

Hint: Use the commutator [H, 7] and work component by component.
b) Use the commutators

[z,p:) = [y, py] = [2,p2) = ik

together with the results of part a) to prove that for a single electron

2m(E, — E
3 2 = Bo) 1 lynol? + o) = 1
3h
and hence deduce the Kuhn-Thomas-Reiche sum rule.
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Chapter 13

Degenerate Perturbation
Theory

13.1 Introduction

In many cases of physical interest the energy levels of a simple Hamiltonian
are degenerate. This is always the case if the simple Hamiltonian is invariant
under some symmetry operation such as a spatial rotation or reflection. Thus,
for example all levels except the ground state of the three-dimensional simple
harmonic oscillator show the 2/ + 1 fold degeneracy arising from rotation sym-
metry. A similar statement is true for the hydrogen atom although in this case
the degeneracy is larger since an even larger symmetry group than just rotations
leaves the hydrogen Hamiltonian invariant.

Now in order that the perturbation expansions {12.2.6), (12.2.7) be mean-
ingful and useful, it is necessary that the series converge relatively fast. In fact
to be useful we should be able to truncate the series after the first few terms for
otherwise the computations become excessive. This further requires that the
successive terms in the series decrease rapidly. On the other hand if we have
degenerate or even just close-lying energy levels, the second order terms

2
32 | ]
%: 0 _ g

will give an excessively large contribution whenever the m and n levels are
degenerate or close. This is due to our treatment and we now develop techniques
to handle this situation.

13.2 Two Levels: Rayleigh-Schrodinger Method

In this section we consider the case of only two levels, say |1,1)(°) and |1, 2)(®)
that are degenerate. As discussed above, for perturbation theory to be applica-

287
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ble at all, we require that

NH, ol < |EQ —EQ| n#m . (13.2.1)

Our Hamiltonian, as always, splits into

H=Ho+AH' (13.2.2)
with the unperturbed, nondegenerate states given by

Holn)® = EOn)®)  n£1 (13.2.3)
and the unperturbed, degenerate states given by

Holt,1)® = E®)1,1)@

Hol1,2@ = EO)1,20 | (13.2.4)

Here we have explicitly shown that two eigenvalues say Ego) of Hy are degener-
ate. In this case condition (13.2.1) will be violated for the two levels |1,1)(%) and
I1, 2)(0). Suppose further that all the other energy levels that are non-degenerate
are widely spaced. In that case the sum

/\2E(2) — /\2 Z I}{:l,ml2 (13 9 5)
noT E(O) _ E(O) e
m¥n N m
diverges for m = 1 unless the matrix element
Hi,=Hyy" = O1,1]H]1,2)® (13.2.6)

vanishes. This vanishing can indeed be adcomplished due to the fact that, in
the subspace spanned by the eigenfunctions corresponding to the degenerate
eigenvalues, any linear combination of the eigenfunctions is also an eigenfunc-
tion. In other words, there is no reason to prefer the basis which starts with
|1,1)©, |1,2)(® over any other basis set which starts with a linear combination
of [1,1)(® and |1,2)(%) and the remaining basis kets |2)(®) , |3)(® ... etc. Thus,
instead of the basis set

L), 1,2, 20, 13 j9©@ .
we can start with the set
a11[1, 1) +a12]1,2)@ | an |1, 1) 4 ag1,2)@ | 12O | [3)©) 4y

where the matrix
A= ( d 2 ) (13.2.7)
azy Qa2

is unitary. We can now further specify the matrix A by requiring that it di-
agonalize H' in the degenerate subspace spanned by |1,1)(®) and |1,2)(%). So,
defining the matrix

H|, H
V= ( g H;z) (13.2.8)
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where

", =O0pHNn)O p=12 v=12. (13.2.9)

We require that AV At be diagonal. This is accomplished by solving the follow-
ing eigenvalue problem

V(Z):v(‘;) (13.2.10)

and forming the matrix A from the eigenvectors. For a non-trivial solution we
require

det(V —v1) =0 (13.2.11)
giving us the characteristic equation
(Hi = v)(Hy o —v) — |H{ o> =0. (13.2.12)
The roots of this equation are
H,+H), 1
ve = IR g o SO L 4P (13.2.13)
If we now define
2|H1,|
= 13.2.14
tan T~ Hi, (13.2.14)
we get that the corresponding eigenvectors satisfy
ay _ v
b, = cot 2
S L _tanl (13.2.15)
= an 5 2.

so that the normalized eigenvectors are

(i)=(oa) - (5)-(7f)  we

and we get:
0 6
[¢1,1) = cos §|l, l)(o) + sin §|1, 2)(0)
lbrg) = —sin gu, 1y 4 cosg|1,2)(0) . (13.2.17)

Therefore, we now use |11,1), |¢1,9) as the first two members of our basis.
This ensures that in the degenerate subspace H' is diagonal so that all its off-
diagonal elements vanish. This means that no correction appears for these levels
in first order and in the perturbation to second order the two divergent terms
also do not appear. We make all of this more explicit now.
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Having settled on the basis states with which we want to start, we pro-
ceed with standard perturbation theory as developed in the previous chapter.
However, as stated, we use the set

{9} = {l¥11), 112, 12O, 3@, |9)@ | ..}

as a basis set from the start. Thus, as always, we let
By =EP + BN+ NED 4. (v=1,2) . (13.2.18)
Also the exact wavefunctions |1,v) (to order A2) for (v = 1,2) are given by

1) = fou) + A6 2) + A 3] ol ©

k1
+ A+ A2 Y 0k
k#1
= 1) + AL DY 4221, 1)@ (13.2.19)
L2 = )+ A1) + 2 3 ol Ie)©
k#1
+ A2 1) + A2 Y a@)ky©
k1
= [gr2) + AL 2N +A%)1,2)® (13.2.20)
Substituting these expansions into the Schrédinger equation
(Ho + AH")[1,v) = By |1, v) (13.2.21)
and proceeding to second order in A we arrive (for v = 1, 2) at
Hol1,) = E®y1.) (13.2.22)
(Ho = E)1,0)® + (' ~ EX))pr) = 0 (13.2.23)

(Ho = EO)1L,0)@ + (' - ED)L D — E@Jpr) =0 . (13.2.29)

These equations may now be solved just as|in the non-degenerate case. Writing
them out, using (13.2.19) and (13.2.20), we get to first order

Y e ED ~ ED)RO + (H - ED)gr,) =0 (13.2.25)
k#1

where we have already used the fact that the energies for the states [¥1,)
(v =1,2) are degenerate. To second order 'we find

3 af) (B — EO)k©
k#1

+ (= ED) |8 + Y al R ©
k#1
- g (13.2.26)

- Efrzlwl,u)
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Solving in the usual manner, by taking inner products, first with (41 ,,| we find
from (13.2.25) that

D= (Gl H Y1) = 02 (13.2.27)
and then taking the inner product with (O)(k|

(0) k|H'
a, ;= E{O) — E‘Eo)
However, we do not get any equations for b( ) from the first order equations
(13.2. 25) In fact, the equations for these coeﬂicients come from the second
order equations (13.2.26). At this stage we just write down the answer since we
repeat the calculation, in detail, for/the general case in the next section.

o _ 91,601, H'[m)O O (m] H'|8h1,,)
L =3 © _ 70 g0 _ 70
(EY = Em’')E1, —- Ei,)

m#1l
) <°><m|H'|¢1,u>}
0
E® - EY
for p#v . (13.2.29)

The states that are not degenerate are perturbed in the same manner as before,
namely:

m)©® O m|H'|n
In)=n)0+ 1Y U—% . (13.2.30)
m#n En

The second order term for the energy is then given by:

m

0 ' (0) 2
-3 |(¢;;0|)H I;ﬂ()o) I (13.2.31)
2 1 =
and
S |Hyl’

(2) = _aml
B = Z O _ g©

m#n

n#l . (13.2.32)

This technique will, of course, only work if the perturbation H’ removes the
degeneracy in first order, that is, if w1 are distinct and sufficiently widely sep-
arated. Otherwise one must perform an exact diagonalization of the matrix
corresponding to second order in the degenerate subspace. The case discussed
is the most important in practice and we do not discuss the more complicated
situation where one must go to second order to remove the degeneracy.
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13.3 Rayleigh-Schrodinger: Degenerate Levels

We now repeat the calculation of the previgus section, but this time we assume
that every energy eigenvalue E,(,O) of the unperturbed Hamiltonian is g,-fold
degenerate. Again the Hamiltonian is

H=Hy+AH" . (13.3.33)
The eigenfunctions corresponding to the degenerate eigenvalue EY are
I, 1), [n,2), .. [n, ga)©).

As discussed in the previous section, the difficulty due to degeneracy which is
obvious in second order perturbation for the energy will not occur if the degen-
eracy can be lifted in first order by diagonalizing H' in each of the degenerate
subspaces. To do this we take a new basis set {|¢m ) #=1,2,...,9m} ob-
tained from the original set {|n, »)(®)} by alunitary transformation. Thus,

gm

[Ymu) = D aflm, w)) . (13.3.34)

p'=1

We further choose the set {|¥m )} so that| using it as a basis diagonalizes H’
in the corresponding g,,-dimensional subspace of interest. We therefore have to
solve the following set of eigenvalue equations

(Ymu | H' [m ) = Eg,)pdﬂ,ﬂ' (13.3.35)

where E,(,},)“ are the resultant eigenvalues. This then reads

Im
Z [(0)<m,pIH'ITIl,#')(0) _ E,(T}’)“Ju'u, a:l”,’ﬂ =0 . (13.3.36)
pw'=1

Here p is a label to distinguish the different eigenvalues that were degenerate in
lowest order.

Assuming that all the eigenvalues of (13.3.36) are distinct and well separated,
we now proceed with the usual perturbation theory using the eigenfunctions
[¥)m,u) from the start. Thus, we let

Emy=EQ +AEQD), + NED + ... (13.3.37)
and
Im, 1) = Jom ) + M, )+ N2, )P (13.3.38)

Substituting these expansions into the Schrbdinger equation
Him, p) = Ep, ,|m, ) (13.3.39)
we obtain the equations corresponding to (12.2.9) to (12.2.12). Thus, we have
Holym,u) = ER [tom, ) (13.3.40)
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(Ho — EQ)m, p)® + (B’ = EX),)|$m ) = 0 (13.3.41

)
(Ho— EQ)lm, ) + (H' = EQ))Im, 1) = ED), [hm ) = 0 .(13.3.42)
)
)

Just like the case of only two degenerate levels, we again expand the state |m, p
in terms of the unperturbed eigenkets |{m /) p' # p and the states |k, k)
k # m. Then,

9m
I, ) = 3" b ) + Y Zaﬁ,ﬁf‘ ok, ) (13.3.43)
EJn k#m k=1

with a similar expression for |m, ){?). The first order perturbations are now
obtained from (13.3.41). So, by taking the inner product with (¢, ,| we find

ED, = (G ul H'[Ym,) - (13.3.44)

Also the coefficients af;}‘ «x that give part of the first order corrections to the

wave function are obtained from (13.3.41) by simply taking the inner product
of that equation with the bra ()(k, k|.

To obtain the first order coefficients bE‘IL, we have to use the second order

equations (13.3.42). These read in analogy to equations (13.2.26)

3 Z a2) B — EO)lk, x)©

k#Zm k=1
b (= B0 | 3 60 ) 4 T 3 a0
Wp k#m k=1
= ED |¥m,) . (13.3.45)

Taking the inner product with the bra (Y, x| ' # g we find

(BS) — ED)b ,+ZZam,"kn(wu',‘/|H’|k,n)(°):0 . (13.3.46)

k#m k=1

(1)

Thus, we have solved for by
order.

"/)m, "/)m ’IHllk (©) () |HI|¢
lmyﬂ)(l) ZZ Z L (1) - 1) ;() 3?)—( ko)) v)

, and we have the wave function correct to first

k#Ema=1p'#p
k,
n ZE' m)C O |)¢"' ) (13.3.47)
k#m k=1 k

The energy, to second order, is now given by

gk / O
B2, = 33 [ H e YO (13.3.48)

myk 0 0
k#Zm k=1 e E’(") - El(w )

We next illustrate the techniques just developed with some simple examples.
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13.4 Example: Spin Hamiltonian

We want to consider the following simple YHamiltonian”
H = AS? + b(S2 - S2) (13.4.49)

for a system with a total spin S = 1. This Hamiltonian arises if one considers an
ion with spin 1 located in a crystal at a point where the effective potential has
rhombic symmetry and one only considers this perturbation on the background
of large kinetic and Coulomb energies. The constants A and b are determined
by the ionic crystal properties. In general |b| < |A4| so that we can treat the

term b(S2 — S7) as a perturbation on the term AS?.

The eigenfunctions of the unperturbed Hamiltonian AS? are

1 0 0
|1>(0) — ( 0 ) , |2)(0) = ( 1 ) , |3)(°) = ( 0 ) (13.4.50)
0 0 1

with the corresponding unperturbed energies
EO=arr | EP=0, EY = ar* . (13.4.51)

Clearly Efo) and E§,°J are degenerate. In fact on the basis set above the Hamil-
tonian becomes

A0 b
H=rﬂ( 000 ) . (13.4.52)
b 0 A

We first give an exact solution and then use Rayleigh-Schrédinger perturbation
theory
13.4.1 Exact Solution
To diagonalize the Hamiltonian H we simply solve

H|n) = Ep|n). (13.4.53)
With

n) = a1,0 1)@ + a3,2|2)@ + a3 ,[3)(@ (13.4.54)
this requires that

det(H — E,1) =0 (13.4.55)
and gives us the characteristic equation

(AR? — E,)?E, — (bK*)?E, =0 . (13.4.56)
Hence one value of E, is E; = 0 and Ej, Ej are given by:

(AR —E,)2 - (bh*)? =0 n=1,3 (13.4.57)
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or

Ey = AR 40K
E2 = 0
E; = AR -bh? . (13.4.58)
As is easily checked the corresponding normalized eigenkets are
1

D=2 0O+ =R, m=

[|1)(°) - |3)(°>] (13.4.59)

13.4.2 Rayleigh-Schrodinger Solution
Since Eﬁo) and E:(,O) are degenerate we must use the degenerate perturbation
theory approach. This requires that we diagonalize the perturbation part H' of

the Hamiltonian in the degenerate subspace. On the basis set of unperturbed
states this portion of the Hamiltonian is

0 b
H(,iegenerate = hz ( b 0 ) * (13'4'60)
The corresponding eigenvalues are
EMN =bh? | EM = —bi? . (13.4.61)

Also the corresponding eigenkets which must be linear combinations of [1)(%)
and |3)(®) and are easily found to be

O]

respectively. These are the kets |t1) and |13) which we have to use to do further
perturbation calculations. To first order we then get

B = () |H'|41) = bh®
Es = (Y3 H'|¢3) = —bh? (13.4.62)

and to this order the eigenkets are |1,), [2)(%), and |¢)). These results coincide
with the exact solution. It is easily checked that the second order perturbations
vanish. We do this only for E;. Thus,

2 2
P o L L
b BO-E) DB

(13.4.63)

as stated.
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13.5 Problems

13.1 Find the shift in the energy of the/n = 2 levels of an hydrogen atom,
to first order due to a constant electric field (linear Stark effect). The
potential is

V =—eE-r=—ez .
13.2 A particle is in a 2-dimensional box of sides a. If a perturbation
V' = Azy
is applied find the change in the energy of the ground state and first excited

state to first non-trivial order. Find also the wavefunctions correct to first
order.

13.3 For the two-dimensional simple harmonic oscillator with
Hy= ﬁw(a{al + a;az)
calculate the effect, to second order, of the perturbation
H = A(a{a{alal + agagaQaz)

on the second excited states and to first order on the third excited states.
What are the effects on the ground state and first excited states?

13.4 Repeat problem 13.3 with
H' = N(alag + alay)]
This problem can also be solved exadtly by introducing operators
Aj = cosfa; + sinhfa,
As = —sinfa; + cos

and choosing § appropriately. Do this and compare with the perturbation
result.

13.5 For a particle of mass m moving in the potential
L2, 1, o
V= iklx + §k2y +Azy |ky — ko) < 2X

Find to order A? the energy of the first exited state. Compare your answer
with the exact solution obtained in problem 12.8c.
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13.6 A particle of mass m and a charge ¢ is placed in a box of sides (a,a,b)
where b < a. A weak electric field

E=¢£(y/a,z/a,0)

is applied to this particle. Find the energy of the ground state and first
excited states correct to order |£|.
13.7 Consider the Hamiltonian
P

Hy=— on -a<z<a
2m -

with the domain for p given by
D, = {f(z) € C* | f(~a) = ~f(a)}

Find the shift in energy of all the energy levels to first nontrivial order
due to a perturbation

A =Xz .
Hint: The solutions for Hy aré given in section 6.8.

13.8 A system with moment of inertia I has an Hamiltonian

L2

Hy=— .
0= 9T

a) What are the energies of the lowest and first excited states?
b) A perturbation

H =g¢g—L,
me

is applied. Find the splitting of the first excited states.

13.9 Find the energy correct to order A? for the second excited state of the
Hamiltonian

H=H0+/\Hl

where

1 2 2 1 2(,.2 2
Ho=%(px+py)+§mw (*+y*)
and

H =zpy .

Can this problem be solved exactly?
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Chapter 14

Further Approximation

Methods

14.1 Introduction

The approximation methods for the 'state vectors and energy levels of a given
system that we discussed in the twa previous chapters work very well indeed
when the perturbation part H’ of the Hamiltonian is small. The techniques
were based on truncating the power series expansions for the state vector and
energy. In practice it is often simpler/to estimate the energy levels by assuming
some approximate wavefunction with a reasonable shape. In this case one has
to optimize the fit by varying the parameters that determine things like the
width of the approximate wavefunction. In a case like this, the computations
are greatly facilitated by the use of an expression that is stationary since the
result will then be fairly insensitive to the details of the wavefunction.

The use of a stationary expression comes even more to the fore when one
picks a set {14 } of wavefunctions which depend on a set of parameters. Here a
is a generic label for such a set of parameters. Since the expression used is to be
stationary in the vicinity of the exact value we clearly expect the approximation
to optimize by choosing those values of the parameters that do, in fact, make
the expression stationary. In general, however, it is not enough to make the
expression stationary. What one needs, in fact, is an extremum principle. We
now elaborate these statements somewhat.

Suppose for example that a quantity to be calculated, say @, is some func-
tional of the wavefunction

Q=F(¥). (14.1.1)

An example of such an expression would be the formula for the energy E given
by

(6, Hy)

7=

(14.1.2)

299
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Suppose now that the expression (14.1.1) for @ is stationary when ¢ satisfies
the correct Schrodinger equation i.e. when we have the exact 1. We then take
our family {1} of wavefunctions and compute the quantities

Q(a) = F(ta) - (14.1.3)

By varying the parameters & we now maké Q(a) stationary. Thus, we compute
dF /6 and form the set of equations
F_0Q _ (14.1.4)
iy Oo
This will yield one (or several) values o’ for the parameters & such that @ is
stationary. One would then expect these values of @ to optimize the value for
Q. However, unless one has an eztremum principle rather than just a stationary
principle this will not necessarily be the case.

For example, let F(1) be maximized by the correct 9. Then choosing a ¥
which satisfies (14.1.4) could, in fact, give|the worst value for Q if it minimizes
F. This shows the necessity for an extremum principle if one wants to be sure
of optimizing the approximation.

In this chapter we first develop and theri demonstrate the use of an extremum
principle for the ground state energy of a system. The technique can also be
extended to higher energy levels and we shall indicate how this is done. In gen-
eral, however, the method is most useful for the ground state energy. That the
ground state energy should satisfy a minimum principle is not at all surprising
since it is after all the minimum energy that a system can possess.

In the last half of this chapter we introduce and discuss the “geometri-
cal optics” approximation for quantum mechanics. This is also known as the
Wentzel-Kramers-Brillouin or WKB approximation (see problems 2.7, 2.8), al-
though many more names could be associated with this approximation. This
then concludes our treatment of time independent approximation methods.

14.2 Rayleigh-Ritz Method

We shall not be concerned with the formal structure of the variational formulas
obtained, nor shall we be concerned with their possible deeper interpretations.
To us, the purpose of variational formulas, will be simply a means for facilitating
approximations. As a first step we derivela minimum principle for the ground
state energy for a system.

Theorem 1
Let H be the Hamiltonian of a system, then the functional,

_ i)
(¥l¥)
is minimized when |4} is the ground state wavefunction.

Proof
Let {|n)} be the complete set of eigenkets of H corresponding to the eigenvalues

E(¥)

(14.2.5)
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E, where Ej is the ground state energy, F; is the energy of the first excited
state and so on. Now consider any normalized state

)= anln) . (14.2.6)
Then,

E($) =" Eqlan|® (14.2.7)

E($) > Folan|* = Eo (14.2.8)

where the equal sign in the “greater than or equal to” holds only if all a, = 0
for n # 0. In that case, however, |/) = |0) is the eigenfunction corresponding
to Ejy as required.

Theorem 2
Let E(¢) be defined as in (14.2.5). Then any |¢), for which E(4) is stationary,
is an eigenfunction of H.

Proof
Rewrite (14.2.5) in the form
E@Wl) = ($|H[¥) - (14.2.9)
Varying both sides with respect to 9 yields
SE(YIY) + E(YI0) + E@[) = (Y| H|6¢) + (§¥1H|¢) (14.2.10)

and if E is stationary (i.e. 6E = 0) this yields
($|H — E|6d) + (6¢|H — E|9)'=0 . (14.2.11)

Now although the variations |d%) and (03| are not independent they may be
treated as independent since (14.2.11) is valid for arbitrary variations. In that
case replacing |§¢) by |69} in (14.2.11) yields

i(Y|H — E|6v) — (6| H - E|) = 0. (14.2.12)

Multiplying (14.2.12) by i and adding the result to and subtracting it from
(14.2.11) yields

($|H — E|6%) =0 and (S9|H - E|$) =0 . (14.2.13)

These two equations are equivalent to (14.2.11) if the variations |d) and (6¢|
are treated as independent and arbitrary. In that case, however, they imply

(IH-E)l$)=0 (14.2.14)

(WI(H"-E") =0. (14.2.15)
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On the other hand, H is an observable and therefore self-adjoint so that E is
also real. Thus, (14.2.15) reads

(¥I(H-E)=0. (14.2.16)

This is simply the hermitean adjoint of|(14.2.14). Thus, as stated, if E is
stationary |1) satisfies the Schrodinger equation for this energy.

This now provides a means for obtaining a minimum principle for the higher
energy levels. The technique presupposes!that the wavefunctions for the lower
levels are known. Thus, for example, if we are interested in finding the energy
of the first excited state and if |0) is the exact ground state wavefunction then
it is a simple matter to show that

_ (9] = (¥10)(0]) H (I¥) — (01#}0))
(ol = (#10)401) (%) - (0l¥)10))

is minimized by the wavefunction for the first excited state.
Similarly if {|k) , k =0,1,2,...} are the wavefunctions corresponding to the
first n levels and

Ei(y) =

(14.2.17)

n-1

Paoy =) [k)K| (14.2.18)

k=0
then,

<1/)l(1 - Pn—l)H(l - Pn—l)l'/))
(WI(1 = Paca)l9)
is minimized by |¢) = |n), the wavefunction for the nth excited state. As we

stated before, this is not generally a useful method for obtaining the energy of
excited states.

E, (w) =

(14.2.19)

To use the variational method in practice one picks a set of wavefunctions

[#(a1,as,...,0,)) depending on a set of n parameters (a;,as,...,a,) and
computes
YIHY
() = <«l/)|¢|>> . (14.2.20)

One then minimizes (H) with respect to these parameters. In choosing these
trial wavefunctions one must insure that they satisfy the correct boundary con-
ditions. What then remains is to solve the n equations

=0 j=1,2,...,n (14.2.21)

for the n parameters a;. If several sets of solutions are obtained one takes that
set which minimizes (H). We now give some illustrations.
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14.3 Example: Simple Harmonic Oscillator

This first example is simply to illustrate the technique before we consider a more
realistic problem. We have

g=2 4 L (14.3.22)
T 9m 2 ’ e
As a trial wavefunction we choose
2\ _
¥(z) = (7") e (14.3.23)

Even if we did not know the answer: this choice would be reasonable since the
ground state must be an even function of z (an even parity state) and has to
decay rapidly at +oco. Evaluating (H) we get

o  mw?
o= e 14.3.24
(H) 2m 8a (14.3.24)
Solving for the value of a that minimizes (H), namely the equation
O(H)
- 14.3.25
5 =V ( )
we get
mw
and hence the ground state energy is approximated by
1
(H)l(x:(mw)/(Qh) = 5’”") . (14327)

Since we chose a wavefunction of the right form, this result coincides with the
exact result as previously found. We next consider a more realistic example.

14.4 Example: He Ground State

We discussed this problem before when we did perturbation theory. The Hamil-
tonian is given by

2 2 2
H= &4-22——262 _1._{_1. +_c;_' (14.4.28)
2m  2m r r ris

As we saw previously, if we neglect the term e2/r, arising from the interaction
of the two electrons, we obtain an approximate wavefunction

— 8 —2(ry+r2)/ a0
Y(ry,r2) = -t . (14.4.29)

In fact, we used this wavefunction as a basis for our perturbation calculation.
Now the effect of the interaction of the two electrons is to repel each other. This
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can be thought of as a mutual screening of the nucleus. In that case it becomes
reasonable to think of the range of the wavefunction as a parameter. Thus, we
take as a normalized trial wavefunction

3
W1, 1) = g Zlratral/an (14.4.30)
Ta}
where Z is our variational parameter. With this wavefunction we evaluate

(H) = (¥|H|¥) (14.4.31)

just as we did in the perturbation calculation to get (see problem 14.2)

2
(Hy =% (22 _ 2_72) , (14.4.32)
ap 8
Solving 0(H)/ 8Z = 0 yields:
27
= — 14.4.
Z=T (14.4.33)

Thus, our physical intuition was correct and Z is indeed less than 2 and greater
than 1, indicating a screened nucleus. Substituting this result back in (14.4.32)
we get an estimate for the ground state energy

e? (27\?
Ey= “a (E) =-76.6eV. (14.4.34)
This is closer to the experimental values of —78.6 eV than the value of =74.0 eV
previously obtained from perturbation theory. Furthermore both approximate
values are higher than the experimental result. This is simply in conformity
with the minimum principle previously enunciated.

The Rayleigh-Ritz variational principle|elucidated above has found a tremen-
dous amount of application in molecular|physics. The use of computers has
facilitated the use of trial functions with very large numbers of parameters.
Although one can thus improve the fits to experimental data, the physical in-
terpretation of many of the parameters is [frequently obscure. This situation is
particularly acute in these cases since one!is not only trying to obtain the best
fit for the energy eigenvalue but is actually interested in the wavefunction itself.
Nevertheless such unesthetic procedures are sometimes unavoidable.

14.5 The WKB Approximation

In Chapter 2, part 4 we gave a heuristic|derivation of the Schrodinger equa-
tion by postulating that the Hamilton-Jacobi equation is a geometrical optics
approximation for some wave equation. This was examined a little further in
problems 2.7 and 2.8. We now study this question more systematically to de-
velop a useful approximation technique.

It is useful to recall the geometrical optics approximation and work at first in
analogy to it. We then justify our procedure later. Now, in general, geometrical
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optics is valid if the index of refraction n varies little in a distance of one
wavelength. This means we need

dn

/\dr

<1. (14.5.35)

Actually a number of step discontinuities in n are permitted as long as the dis-
tances between these discontinuities are also large compared to the wavelength.
This occurs for instance at the surfaces of mirrors or lenses in optics. On the
other hand, if the jump discontinuities are separated by distances comparable
to the wavelength, as in the case of gratings, physical optics becomes necessary.

In Chapter 1 we saw that if an index of refraction is to be associated with
a given medium for matter waves then n o p and since A « 1/p condition
(14.5.35) reduces to

d (Ao Ao
i (7) =
where we have written n = Ag/A. In general n is of the order of unity so this
condition reduces to

dx
dz

d

o<1 (14.5.36)

<1. (14.5.37)

Thus, we expect a geometrical optics approximation for quantum mechanics to
be valid when (14.5.37) is satisfied. Now,

h h

A== . (14.5.38)
p 2m(E -V)
Therefore,
h|v
d_ -m—|drﬁ , (14.5.39)
de|  om(E - V)Y
So (14.5.37) becomes
h 4L
mh | (14.5.40)

2m(E — V)2

Having given a heuristic argument for the validity of a geometrical optics
approximation we now derive the approximation as well as its region of validity.

In the transition from physical to geometrical optics we ignore the wave
nature of light and follow the trajectories of light rays. Thus, to make the
analogous transition for particles is to ignore their wave nature and follow their
trajectories. We accomplish this by expanding in powers of A and keeping only
the lowest order terms.

Our starting point is the time-dependent Schrodinger equation

ov h

2
th— = 2 . 54
zhat 2mv v+ Ve (14.5.41)
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First we write
¥ = Agev/? (14.5.42)
with Ao a constant. The Schrédinger equation (14.5.41) then becomes

ow 1 9 ih _,
4 - =0. 14.5.
5 +2m(Vw) +V 2mV w=0 (14.5.43)

Letting k — 0 we get

0

6—1:’ +H(r, V)= 0. (14.5.44)
This is just one form of the classical Hamilton-Jacobi equations (equation (2.4.61))
where w is Hamilton’s principal function. [Furthermore, just as in classical me-
chanics one can get a separation of the time variable. Thus, if ¥ is a stationary
state, we have

U = g(r)e B (14.5.45)
In that case

w(r,t) = S(r) — Et (14.5.46)
where S(r) corresponds to Hamilton’s characteristic function. We now have

B(r) = Age S/ (14.5.47)
and

L wsp-E-v)-Pyzg-g (14.5.48)

2m 2m - o

The WKB approximation uses the last term in (14.5.48) to get one term beyond
the classical expression.

We now show how to do this quite generally for the one-dimensional Schrodinger
equation. In one dimension we start with

d®u  2m
T + W2 (E-V)u=0 (14.5.49)
and put as before,

u=Ae~S/h (14.5.50)

However, in order that A and S be real we|also let A depend on z. Substituting
(14.5.50) into (14.5.49) we get on separating real and imaginary parts

ds\? ,1d%4
(Ei) ~2m(E ~V) =Ko (14.5.51)
and
2
pdAdS L 45 ¢ (14.5.52)

dz dz dz?
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From (14.5.52) we get, using primes to indicate differentiation, that

f}' _ _%S?'/' (14.5.53)
so that

A= Ag(§)2, (14.5.54)
Substituting this back in (14.5.51) we find:

(S)? = 2m(E = V) + B [g <§s‘)2 _ %"_] . (14.5.55)
Now writing S as a power-series expansion in A2

S=80+hS + kS, +... (14.5.56)
and collecting the coefficients of equal powers of A2 we get to Oth order in h?

(S5)? = 2m(E - V) (14.5.57)
and to first order in A2

2
25,5 = g (‘;—‘D _ %i—z . (14.5.58)

The S term gives a correction to the S term. We use it to estimate the region
of validity of the WKB approximation, but first we solve (14.5.57) for Sp. To
integrate this equation we must distinguish between two regions.

1. The classically allowed region E > V.

2. The classically forbidden region E < V.

1. In the classically allowed region we define

k(z) = %\/Qm(E‘ V(). (14.5.59)

Then

Sy = 2hk(z) (14.5.60)
giving
So = :{:h/ k(z')dz' + ¢ (14.5.61)
Iy

and combining this with (14.5.54) we get the approximate wave function

do = \/fkl("z_)cos [ / k() de’ + ¢] (14.5.62)
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where Ao and ¢ are constants and the lower limit z; of the integral may be
picked to be any convenient number.
2. In the classically forbidden region we define

K(e) = 2\Im(V(E) — ) - (14.5.63)

leading eventually to the approximate wave function

up = ﬁ [Bo exp ‘/x1 k(z')dz' + Cp exp—/a;l Kk(z") d:c'] . (14.5.64)

Before proceeding with the discussion of how to match the solutions (14.5.62),
(14.5.64) at the classical turning points given by E = V(z) we examine condi-
tions for the validity of this approximation. In fact, we only derive a necessary
condition, but in practice this condition is also usually sufficient.

Recall that by analogy with optics we arrived at the condition for validity
of geometrical optics that

av
2m(E - v)*/?

Now in order that uo be a good approximation it is necessary that the next
correction to ug be small. The next correction gives a factor exp¢hS; and this
will be close to unity, so that the correction will be small, if AS) is small. Thus,
a necessary condition is that

|hSy| < 1. (14.5.66)

We therefore look at (14.5.58), the equation for S; in more detail. Now in the
classically allowed region (E > V), Sy = $/ik() so that substituting this result
into (14.5.58) yields

(14.5.65)

12 1
s, LK% K
4h 263 T k2
1 {3/ 1, (k\?
o [5 (p) ok (1?2) } . (14.5.67)
Hence,
VK 1 7R\,
AS1 =3 {FW/,I (1?2) k(z')de'| . (14.5.68)

Clearly if [k'/k?| < 1 then hS; < 1 as required. This, however, is precisely the
condition (14.5.40) or (14.5.65). Thus, our intuitive formula is verified. For the
classically forbidden region (E < V) simply replace k by ix to get a similar
result. Both results can be included in the single condition

av

m <1. (14.5‘69)
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Although the condition (14.5.69) is necessary in order that the first-order WKB
approximation be useful, it tells us nothing about the convergence of the power
series for S. Detailed examination shows that this series is asymptotic and
therefore provides a good approximation if A is small. This simply means that,
in examining the series, /i is treated as a parameter and not that A actually
varies. In practice, if (14.5.69) is satisfied, / is sufficiently small so that the first
term yields a good approximation.

14.5.1 Turning points

Those points z at which
E=V(z) (14.5.70)

are where the kinetic energy changes sign. Classically of course, the kinetic en-
ergy is always non-negative and therefore the classical motion reverses at these
points. These points are known, therefore, as turning points. Furthermore,
the approximate wave function ug given by (14.5.62) and (14.5.64) changes at
a turning point. This “discontinuity” is not a property of the solutions of the
original Schrodinger equation (14.5.49) but is rather a consequence of the ap-
proximations made. In fact, at the turning point we have that k = 0, so that
the condition |k’'/ k| < 1, necessary for the validity of the approximation, is
violated. Thus, the approximate solutions ug are valid only up to some distance
(several wavelengths) from the turning points. It is therefore necessary to find a
means of connecting an approximate solution in the classically forbidden region
with an approximate solution in the classically allowed region. The difficulty
just mentioned can be traced back to the effective potential for the approxi-
mate solutions. By straightforward differentiation we find that in the classically
allowed region uy satisfies the following Schrodinger equation

d2 3’("2 1%
2+ (k2 -t ﬁ> w=0 . (14.5.71)

Thus, we have in fact introduced a singular effective potential. The singularities,
being due to the vanishing of k, occur precisely at the turning points.

Now suppose that z; is a turning point with the allowed region z > z1 (see
fig. 14.1). In the region of the turning point we can approximate the potential
V(z) by the tangent to V(z) at £ = z;. Thus, we have

h?
V(iz)~ E - %02@ —&1) near r=uz;. (14.5.72)
This leads to
2
K(z) = h—T(E —V)=cz-21) >z
) = PWoB)=-o-2) <2 . (14.5.73)
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V(z)~ E - (z — zi) N

Zy x

Figure 14.1: Turning point and linear approximation for potential.

Substituting these linear approxunatlons for k* and x? into the Schrodinger
equation we obtain

d2

m+c(z—x1)u =0 z>n
d%u
pr) +cf(zi—2)u = 0 z<z; . (14.5.74)

The solutions of these equation can be expressed in terms of Bessel functions of

order 1/3.

ui( )= A:l:yI/sJ:tl/s( ) >z

uf(2) = Bz Plyyjs(z) 2z <o (14.5.75)
where “a” stands for “allowed” (z > z; in this case) and “f” stands for “for-
bidden” (:c < &1 in this case), and

T

y k(z')dz' = %c(:c —2)%? >

T

/ k(z')de’ = ;C(Il -2 z<a . (14.5.76)

z

As stated, J,,(z) is an ordinary Bessel function satisfying equation (10.3.33) and
I.(2) is a modified Bessel function corresponding to a J,(z) with imaginary
argument.

These, equations (14.5.75), are exact solutions of a differential equation
that coincides with the exact Schrédinger equation at a turning point when-
ever (14.5.72) is a good approximation. Thus, we can use these solutions to
match the WKB solutions across a turning point. Away from a turning point
we have the WKB solutions. Also away from the turning point we can use
the asymptotic forms of the solutions (14.5.75). Notice that both y(z) and
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z(z) were defined so as to increase as we move away from the turning point.
The asymptotic forms of these solutions can be found in any book on Bessel or
transcendental functions [14.2] and are given by

Jriy3(y) = ;23;005(3/ —n/4F 7/6) for y— o0 (14.5.77)
I1/3(z) =4/ % [6‘ + e""e“”““*"”] for z—o00 . (14.5.78)

The exponentially damped term e~ in (14.5.78) is only meaningful if we take a
linear combination I3 /3(2) —I_1/3(2) so that the e* terms cancel, since in writing
(14.5.78) we have dropped terms of order €?/z and these are large compared to
e~*. For small |z — 1] we also have the asymptotic forms

(y/2)*/3
T(1+1/3)
(z/?)ﬂﬁ

Iy1/3(2) = 213

Je173(y) = for y—0 (14.5.79)

for z2—0 . (14.5.80)

Thus, in the vicinity of a turning point the solutions (14.5.75) become

o 2_1/3(26/3)2/3
a ~

— ' (z- 14.5.81
91/3
TN Al—o 14.5.82
u; /) (14.5.82)
2‘1/3(2c/3)2/3
tn —_——z + 14.5.
uj B, T(4/3) |z + z1] (14.5.83)
21/3
T~ BL——— . 14.5.
uy T8 (14.5.84)
So we find that u} joins smoothly to u}' if Ay = —Bj, and u; joins smoothly
to uy if A_ = B_. So we choose thd constants
Ay=-By=A_=B_=A. (14.5.85)

The solutions then divide into two kinds: u* and «~. They join smoothly and
have the asymptotic forms
allowed region

uf = A Lcos(y —5n/12) for |z -z > o0 (14.5.86)

Tk(z)

forbidden region

1 .
uF o —A———— " +e %™/ for |o— 1| = o0 14.5.87
! 2mk(z) [ ] ! ! ( )
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and
allowed region

2
u; = A chs(y -7/12) for |z —z;| 5 o0 (14.5.88)
forbidden region

u; > A e’ + e_ze'i”/G] for |z—-2z1| 500 . (14.5.89)

1
27k (z) [

Thus, for example, if we want an asymptotically damped solution in the classi-
cally forbidden region we take u}' plus ug . In the classically forbidden region
this has the asymptotic form

1
2K

A

[B_,’n-/s _ e—nrs/e] e~? (14.5.90)

and joins smoothly onto the solution u} + u; which in the classically allowed
region has the asymptotic behaviour

A\/%[cos(y ~5m/12) + cos(y — 7/12)] = A\/%\/?_)cos(y—wﬂl) (14.5.91)

Simplifying this expression, by cancelling common factors, we obtain the first
of our connection formulas

K2 e = gp~1/2 cos(y — m/4) . (14.5.92)

The fancy arrow means that the asymptotic solution in the classically forbid-
den region appearing on the left of the arrow goes over into the solution with
asymptotic behaviour appearing on the right of the arrow. The converse is false
since a very small error in the phase of the cosine term would integrate back
to produce a small admixture of the dominating exponentially growing term
on the left. In fact in computer integration of the Schrédinger equation one
frequently integrates “in from infinity” precisely because one wants to avoid the
exponentially growing term due to round-off error.

On the other hand if we want a solution that in the classically allowed region
has a definite phase, as for example k~1/2 cos(y — m/4 + p) where ¢ # nr with
n=0,%1,%2,+... we start by again realizing that

uf fu; o A\/;l;[cos(y = 5m/12) + cos(y — 7/12)]
= A\/%? cos(y — 7/4) cos(m/6)

= A\/%\/gcos(y —7/4)
2

uf —up o A\/:—;[cos(y —57/12) — cos(y — 7/12)]
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A\/%? sin(y — m/4) sin(7/6)

2,
A ﬁs1n(y—7r/4) (14.5.93)

and we further recall that

1l

cos(y — m/4) cosp —sin(y — v/4)sinp = cos(y —w/4+¢) .  (14.5.94)
Thus, the solution in the classically, forbidden region matching onto the one

with the above asymptotic behaviour is given by:

L cos plut + u”] — sinplut - u”) (14.5.95)

V3

and assumes after some simplification the form

2 1 :
—singpe® + e it 14.5.96
\ o sine o ( )

The exponentially damped term on the right is clearly not meaningful and is to
be dropped. Thus, we get another cannection formula:

%cos(y —7/d+ )= %sincpez p#0. (14.5.97)

The two formulas, (14.5.92), (14.5.97), suffice for handling all problems. In
using these formulas it is important to remember two things, namely that y and
z are so defined as to increase as we move away from the turning point and
secondly that the formulas may only be used to connect the solution on the left
of the arrow to the solution on the right of the arrow and never in the reverse
direction.

Next we illustrate the use of this method with some examples that frequently
occur in practice.

14.6 WKB Applied to a Potential Well

Consider a potential well as shown in figure 14.2 rising to infinity for very
large |z|. For the energy E shown there are clearly two classical turning points
indicated by z; and z5 . Regions 1 and 3 are classically forbidden and region
2 is classically allowed. Therefore, we want exponentially damped solutions in
regions 1 and 3. As usual this should, and will, lead to an energy quantization.

Considering first the point z; we have using (14.5.62), (14.5.64) that

uy = A exp — k(e dz' z <z
VE(z) z
u = \/2kf(1x—) cos [/ﬁ k(z")dz' - %] p<z<zy . (14.6.98)
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1V (2)

111

Ty T9 z
Figure 14.2: Bound state problem in WKB approximation.

Here we have already fixed the phase and amplitude, in the solution (14.6.98)
for the classically allowed region 2, by applying the connection formula (14.5.92)
at £ = z;. Similarly we have that in region 3

B “ 7 /
Uy = ————exp — k(z')dz' z>zx 14.6.99
0 ) P ., (z')dz 2 ( )

and hence by applying the connection formula (14.5.92) at 2, we get that for
n<er<ey

w = 2?z)cos U:zk(x')dz'—g]

\/%cos [ /I“k(:c’)dx’—g«k / jzk(:c’)d:c'] . (146.100)

This last solution can be further rewritten as
2B £ T 2 T
4 = ———cos |- [ k(z’' d.z"+——+/ k(< dm’—-—]
’ k(x)[/,l() 1t MOy
2B

VE(z)

o~

T
cos [/ k(z')ydz' - % - a] rp<z<zy  (14.6.101)
where
T2 T
a :/ k(z')dz' — 7 (14.6.102)

Since this solution must coincide with the solution (14.6.98) for this region we
require that

a=nr n=0,1,2,... (14.6.103)
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and
B=(-1)"A. (14.6.104)

Hence, we get the energy quantization condition
T2
/ k(z')dz' = (n+1/2)r n=0,1,2,... . (14.6.105)
T

But,

k(z) = %\/2m(E V)= %”p (14.6.106)

so that (14.6.103) reads

22
/ pdz=(n+ 1/2)% (14.6.107)

1

or more compactly
j{pdz = (n+1/2)h . (14.6.108)

Except for the additional term h/2 on the right this is just the Bohr-Sommerfeld
quantization rule which now emerges quite naturally as a semi-classical approx-
imation to the Schrodinger equation.

14.6.1 Special Boundaries

So far we have only discussed turning points occurring at points where V(z)
is continuous. If V/(z) experiences a finite jump discontinuity then one knows
that the exact solution of the Schrédinger equation as well as the first derivative
are continuous. In this case one simply matches the function and its derivative
at the point of discontinuity regardless of whether or not this point is also a
turning point. As long as V(z) varjes slowly on either side of this point, the
asymptotic WKB solutions may be used right up to it. In general this simplifies
the calculation since it eliminates the necessity for explicit use of the connection
formulas.

If V(z) experiences an infinite discontinuity at the point £ = a so that
say V = oo for £ < a, then the exact wavefunction vanishes there and the
appropriate WKB solution to use for > a, a classically allowed region, is

u= \/ki(;jsin ( / xk(z’)dz’) . (14.6.109)

This assumes of course that k(z) is slowly varying so that the whole WKB
procedure is valid.

This type of situation occurs, for| example, in practice for the s-wave (! = 0)
radial wavefunction Ro(r). One has an equation for u(r) = rRo(r) so that u(r)
must vanish at the origin.
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14.7 WKB Approximation for Tunneling

As a second example to illustrate the use of the connection formulas we consider
tunneling through a smooth potential barrier as shown in fig. 14.3. The turning

“V(.’L‘)
/ | E
I [
I | II | III

I I

I I

| | -
Z T z

Figure 14.3: Tunneling in WKB approximation.

points are z; and z; with £, < z3. The classically allowed regions are
region [ : z < z3
and
region 1] : 2 > z,.
The classically forbidden region is
region I] : z; < z < 5.
We are interested in the case of a particle with energy E incident from the
left. Thus, in region I we have the WKB solution

Vi) = \/—,:—(z—) exp—i( /;lk(:c’)dz’—%)
* ReXpi(/:lk(z,)dz’_g)J : (14.7.110)

We have arbitrarily chosen the amplitude of the incoming wave as 1 and called
the amplitude of the reflected wave R. Also the phase factors of exp(xin/4)
have been included to facilitate the use of the connection formulas. Rewriting
(14.7.110) in terms of trigonometric functions we obtain

1 o1 T

vi(z) = 7 [(1+R)cos (/x k(z')dz'_z>
= (1= R)sin ([lk(r’)dr’—g)} : (14.7.111)
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In region I the general solution is given by:

oo ([ e
4+ Bexp (/: n(m')dm')]

Yri(z)
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(14.7.112)

In region 111 we must have a purely transmitted wave. Hence, we get

Y (z) =

T\/%expiujk(x')dx'-g)

(14.7.113)

where we have called the amplitude of this wave T'. This wave can be rewritten

as

binle) = T7k1(=z) eos (| jk(z') - 7)
+ isin (/ﬂ:k(r’)dz’ - g)]

We now use the connection formula {14.5.92) at z; with

::/ k(z")dz' | z:/ k(') dz’'
z z

as well as (14.5.97) with ¢ = —n /4. This yields that
1
A:§(1+R) , B=i{l-R) .
We repeat this procedure at x5, but ‘this time we have:

=/ k(z')dz' z:/ k(z') dz’ .

So, we define

T2
S:exp—/ k(z')dz' .

1

Then 17 can be written to read:

i (z \/_ [AS exp( K(z') d:c’)

+ b5 ton (- [ ate ar')]

The connection formulas can now be| applied directly and yield

T =2BS™" = 2i(1 - R)S~

(14.7.114)

(14.7.115)

(14.7.116)

(14.7.117)

(14.7.118)

(14.7.119)

(14.7.120)
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and
T =iAS = %(1+R)S. (14.7.121)
Solving these equations for T and R we find
iS
T 7577 iS (14.7.122)
1-S5%/4 2
R= m~ 1-5°/2. (14.7.123)

The last two approximations are in keeping with the spirit of the WKB approx-
imation which requires that S| < 1. The quantities T and R have the obvious
interpretation of transmission and reflection amplitude respectively.

Two more comments are in order regarding this example. The first deals
with the region of validity of our approach. Clearly if 23 — 2, = L is too
small then the wavefunction 1;; never assumes its asymptotic form and our
connection formulas are not valid. This occurs if the energy E is too close to a
maximum of the tunneling potential.

The second point is that we do not have connection formulas connecting an
exponentially growing solution in the forbidden region to solutions in the allowed
region. The reason is that the phase in the allowed region depends crucially on
the admixture of the negligible, damped solution. Thus, if the forbidden region
is of finite extent so that both exponentially growing and damped solutions can
exist, then we must use both connection formulas. The exponentially damped
solution in the forbidden region connects to the cosine solution with the phase
—7/4 and amplitude 2 in the allowed region, whereas the other solution of
definite phase in the classically allowed region connects to the exponentially
growing solution in the classically forbidden region.

14.8 Alpha Decay

An interesting application of the WKB approximation is to alpha decay. For
this process the experimental data show that half-lives of the alpha emitters
vary from 10~7 seconds up to 1010 years while the energy of the emitted alphas
varies only over a very small range from about 8.95 MeV for Po?!2 to 4.05 MeV
for Th?*2. The simple model we present is able to account for these extremes
in half-lives.

We first present a somewhat heuristic discussion and then follow with a more
detailed analysis based on a discussion by Gamow [14.4].

14.8.1 Heuristic Discussion

We begin by approximating the potential experienced by the alpha particle
as shown in figure 14.4. We consider only the s-wave and write the radial
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Figure 14.4: Model potential for alpha decay.

wavefunction in the form

Then, u(r) satisfies

&2 -K%u r<a
u
={ +r¥(r)u a<r<b

~k*(r)u r>b

where

K= sz(f+vn) r<a
K(r) = 3:2m[‘;(r)_E] a<r<b

k) = Y2REVOL
and m is the reduced mass of the alpha particle

_ moM
T e+ M

Here, M is the mass of the daughter nucleus.
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(14.8.124)

(14.8.125)

(14.8.126)

(14.8.127)

Now using the results of the previous section we have from (14.7.122) that

T=~iS

where

S =exp [- /ab k(') dr’]

(14.8.128)

(14.8.129)
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and a, the radius of the nuclear potential, and b = (2Z¢?)/E are the two classical
turning points. The integral in the exponential is simply

4mZ7 62

e (14.8.130)
After deﬁnmg the “alpha particle Bohr radius”
hZ
o= — 8.131
ta = —s (14.8.131)

the integral may be rewritten in dimensionless form

1
o= ‘/:—Zb de/1/z - 1. (14.8.132)
a¥ Jafb

Since @/b << 1 the integral involved may be approximated by

/;bdx\/Fx—_:/Oldz\/l/z_——-/oa/bdxm (148.133)
the first integral is easily evaluated by letting
€ =cos’d
and yields the value 7/2. The second integral is approximated by
afb afb g
/O dz\/mz/o N 2/afb . (14.8.134)

Therefore,

- \/? [7/2 - 2v/ap] . (14.8.135)

The transmission amplitude may therefore be written

S = exp [—27rZ\/E/Eo +4v/(Za) /aa] (14.8.136)
where we have introduced the characteristic energy
2
Ey=— =993 kev. (14.8.137)
20,

The transmission coefficient is given by
T=62, (14.8.138)

However, to compute the transition rate, and hence the half-life of the alpha
emitter we have to multiply the transition probability T by the collision fre-
quency f (the number of times per second that the alpha particle hits the
barrier). This is easily estimated by

v p
f 2a  2ma ( 39)
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where v is the velocity and p is the momentum of the alpha particle inside the
nucleus. We estimate this from the energy E, of the emitted alpha particle
by assuming that the kinetic energy of the alpha particle inside the nucleus
is is equal to the energy of the emitted alpha. This is not quite correct and
underestimates the kinetic energy somewhat. However, the dominant behaviour
comes from the energy dependence in the transmission coefficient and so we are
content to use this approximation. This means that

f =§ Eo/(2m) . (14.8.140)

Thus, the decay rate is given by

I=fT= %\/Ea/(Qm) exp [-—47rZ\/E/Eg +8v/(Za) /aa] . (14.8.141)
The half-life is then given by

To see how remarkably successful this model is we compute the half-lives
for the two isotopes mentioned in the introduction. For Thorium (Z=90) the

daughter nucleus is radium (Z = 88). If we use a nuclear potential with a range
of a = 9.00 fm then we find that

T~13x107%. (14.8.143)
The collision frequency is
f="7.77x10% collisions per second . (14.8.144)

Thus, the decay rate is T = fT ~ 1.3 x 1073 x 7.77 x 10*° = 1.01 x 10718 5.
The corresponding half-life is

Tijp = lﬂrz =6.9%x10'7 s =2.2x10'° years. (14.8.145)
If we do the same calculation for Po?'? we get

T~82x10713. (14.8.146)
and

f=115x10%"  collisions per second (14.8.147)
so that

F=115x10?! x 8.2 x 10713 = 9.43 x 107 per second . (14.8.148)
Thus, in this case the half-life is

Ty =7.34x 1071%. (14.8.149)

Although our results give only qualitative agreement with the experimental
results, they must be considered satisfactory in view of the extreme simplicity of
the model used. Furthermore they illustrate how, in spite of the small variation
in energy of the emitted alphas, the lifetimes can vary over many orders in mag-
nitude due to the very strong energy dependence of the transmission coefficient

T.
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14.8.2 Detailed Analysis

For the more detailed analysis we approximate the potential as before, but
we analyze the wavefunction in more detail. Although we wind up with an
eigenvalue equation for the alpha particles in the nuclear potential well, the
resulting energies are complez since the resulting states are not stationary but
decay in time due to the fact that the alpha particles are able to tunnel out. This
is due to the fact that the Hamiltonian with the prescribed boundary conditions
(only an outgoing wave outside the nucleus r > b and no incoming wave) is not
self-adjoint. The imaginary part of the energy now gives the decay rate. As
before, the radial s-wave function is given by

¥(r) = ur) (14.8.150)

T

Then, u(r) is given by

sin Kr r<a
_ k(r)"Y? [Aex " k(') dr')
ur) =N + Bexp ([— f:ig’) dr')] a<r<p (14815D)

k(r)_I/ZS expi(fbr k(r')dr' - %) b<r

where N is an overall normalization factor and we have imposed the condition
that for r > b there is only an outgoing wave.

Also, we have already written u(r) in the form of a WKB wavefunction for
the region r > a. In the case at hand, we can simply match the wavefunction
and its derivative at r = a and use the WKB matching conditions at r = b .
Thus, writing as in the previous section,

o= %/b V2m[V(r) — E]dr (14.8.152)

we find
4 = YO [sinKa (1+ ’“/(“))

k%(a)

&(a)

+ L cos I\"a]

(
p = V0 [sin e (1_:2&))) %cos[{a] L (148153)
Also,
24 = Se7°
B = _ige (14.8.154)
Here, using
V=22
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we find that
«'(a) A
- =- . 14.8.155
2@~ (e@aaae, (18159
If we insert typical values as in the previous section we find that
«'(a)
) < 0.03 . (14.8.156)
Thus, we can drop these terms in (14.8.153) and get
e g e
A = sin Ka + —cos Ka
x(a)
B = V ';(“) [sin Ka- ;%cos Ka] . (14.8.157)
Combining (14.8.157) and (14.8.154) we get the eigenvalue equation
, K i -2 K
tan Ka + ) 7€ [tanKa n(a)] . (14.8.158)

This clearly shows that the eigenvalues are complex. On the other hand, all
estimates of ¢ , as we saw in the heuristic estimates in the previous section,
lead to values of e=2° < 10~!%. Thus, the right hand side in the eigenvalue
equation is approximately zero and the eigenvalue equation becomes

tan Ka _K . (14.8.159)
x(a)

Furthermore, for low-lying states and heavy nuclei (high Coulomb barriers)
K << k(a). This means that the real part of the eigenvalues is given by

tanKan0 K= ';—” . (14.8.160)

These are identical to the energies of a particle in an infinite square well. Thus,
the lowest energies are given by

Rrin?

En = 2ma?

-V (14.8.161)

The estimate of o also shows that the overall normalization may be computed
from the interior region of the nucleus. Thus, we have that

a
1 ~ |N|247r/ u?(r)dr
Oa
= |N|247r/ sin® Krdr
0

2
= 2”'N Eika- %sin(ﬂ(u)]. (14.8.162)
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This yields, using Ka = nr, that

|NI2% _1_

ot (14.8.163)

To compute the decay rate we now compute the probability flux out of the
nucleus. The radial component of the current for > b is given by

B [w‘dzp di*] _ h|INSP?

~om |¥ ar 4 dr mrl (14.8.164)

Here we have used that u = r¢. The decay rate is now given by computing the
flux through a large sphere centred at the nucleus.

2
r:/() a2 = arMVSE
m

We have already evaluated |[N|2. The constant S is most easily evaluated by
recalling that tan Ka ~ —K/k(a) ~ 0. Then, sin Ka ~ ~K/k(a) cos Ka and
cos Ka ~ £1. Thus, from (14.8.153) we get that
Brt—t_ (14.8.166)
x(a)

After substituting this result into (14.8.154) we get

(14.8.165)

ISE=|B? e % » —]‘ie-” (14.8.167)
o . 8.

Therefore, we have that

RK 4K _,,

4.8.16
= 2ma ;c(a)e (14.8.168)

The first factor (AK')/(2ma) is clearly just the collision frequency p/(2ma).
The remaining factors are just the transmission coefficient. This is therefore
qualitatively similar to the results of our heuristic calculation. However, in this
case we also have an expression for K and the energy of the alpha particles.

It is also possible to obtain the same result if we just solve for the imaginary
part of the energy and realize that the complex energy E must be of the form

E=FEy—il/2 (14.8.169)

where Ej is the real part of the energy. This form results from realizing that
the probability density for finding the particle inside the nucleus must decay
exponentially with the decay constant I'. But, the time dependence of the
wavefunction is given by

U(t) = ppe Bt | (14.8.170)
And using the form (14.8.169) above we get that
[e(@))* = |gef e . (14.8.171)
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To see how this works we begin with the eigenvalue equation

tan Ka + £ ;
— S 2 (14.8.172)
tan Ka — m 2

Clearly the eigenvalue K is now complex and since the real part of K say Kj is
given by

K
tan Koa + —— 0 (14.8.173)
Kko(a)
we can set
K = Ko—iA (14.8.174)

where |A| << Kp.
In this case, since

RK?  RKZ  R2K)A
E= 2; ~ 2;" i :n" = Ey—il/2 (14.8.175)
we have that
2K KoA
r= _m—O . (14.8.176)

So, we need to solve for A.
Now using (14.8.174) and the fact that |A| << Kq we get

tan Koa — iAa

tanKa ~ —8M —
1+ iAatan Kpa
~ tan Kpa —iAa (l+tan2 Koa)
= tan Kya iAa
- 0%~ Cos? Koa
~ tan Koa—iAa . (14.8.177)
But,
tan Koa & — -0 (14.8.178)
Therefore,
tan Ka = — —iAa . 14.8.179
"o(@) ( )
So we get
i -20 : —K:O(a)
- = —ida—= . 14.8.1
5e iAa 2R (14.8.180)
Thus,
K
A= 2% (14.8.181)
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Therefore, using (14.8.176) we get that
22K (-2

= (14.8.182)

This is exactly the same result as obtained before.

14.9 Problems

14.1 Use the trial wavefunction
Y(z) = Ae
to estimate the ground state energy of a simple harmonic oscillator.

14.2 Use the trial wavefunction (14.4.30) to evaluate the expectation value of
the Hamiltonian (14.4.28).

14.3 Use the connection formulae to solve the tunneling problem for a square
barrier with the WKB approximation. This result agrees with the exact
result in the text.

14.4 Use a variational approach to find the ground state energy for a particle
in the potential

2

V(r) = —Voe "

if the particle involved is an electron and a = 5.29 x 10!3 em=2 |, V; = 20
eV. A numerical answer is required.

14.5 An electron is in the spherically symmetric potential
V(r) = Ari(r? - d?)
where
a=2.00x 10"'nm
a'A=190eV.

Use Rayleigh Ritz to estimate the ground state energy. A numerical an-
swer is required.

14.6 A particle is in a potential

V:{ mgz 2>0

1) 2=0

This corresponds to a perfectly elastic ball bouncing on a floor. Find
the WKB solution for the ground state energy and wavefunction of this
particle.
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14.7 Estimate the ground state energy of Hj, an ionized hydrogen molecule.

14.8 Use the WKB approximation to solve for the reflection and transmis-
sion coefficients for scattering of a particle with momentum ik from the
potential given by

Vz{ V(J(I—L:—[) lz] < b

0 lz]>b
if
2.2
Vo>>ﬂ b>a>0.
2m

14.9 Repeat problem 14.8 if

212

Ww<< — b>a>0.
2m

14.10 Use a variational technique to find the ground state energy of a particle
of mass m in the potential

o  r<-a
V=S W —-a<z<a
00 z>a

Hint: Pay close attention to the boundary conditions that the trial wave-
function has to satisfy.
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Chapter 15

Time-Dependent
Perturbation Theory

15.1 Introduction

In the previous chapters we discussed techniques that are applicable if the per-
turbation is considered as causing a change in the states of the unperturbed
system leading to shifts in the energy. This requires that the perturbation be
time-independent.

In the present chapter we are not interested in the modifications of the
states of the unperturbed system, rather we are interested in the transitions
occurring between levels of the unperturbed system under the influence of the
perturbation. This means, we are interested in computing transition rates. In
general we therefore have time-dependent perturbations.

15.2 Formal Considerations

For the sake of concreteness consider a Hamiltonian
H=Hy+ V() (15.2.1)

where the perturbation V() is written as explicitly time-dependent. Let {|n)}
be a complete set of eigenkets of Hy (in the energy representation) so that

Holn) = Eq|n) . (15.2.2)

If A were zero these would be the stationary states of the system, but due to
the perturbation, transitions between these states occur. Now, suppose that at
some definite time ¢ = 0 the system is known (prepared) to be in the state |n).
Then at some later time ¢ the system will be in a state U(t)|n) where U(t) is
the evolution operator and is given by solving

au(t)

ih—s = = HU(1) (15.2.3)

329



330 CHAPTER 15. TIME-DEPENDENT PERTURBATION THEORY

with
U)=1. (15.2.4)
The probability of finding the system at time ¢ in the state |m) is then given by
Pom = (mlU(#)n)* . (15.2.5)

If n = m, this gives the probability that the system has not changed in the
time ¢. Thus the main problem in computing transitions reduces to calculating
the amplitudes (m|U(t)|n). We, theore, reconsider the equations for U(t) in
more detail.

Equation (15.2.3) may be combined with the initial condition (15.2.4) in a
single integral equation

vE)=1-1 /0 RO (15.2.6)

We can also extract the behaviour due to Hy by going to the interaction picture.
"Thus, let Up(t) be the evolution operator corresponding to Hy, that is

ma[{;t(” = Hyl(t) (15.2.7)
Vo(0) =1. (15.28)

We then look for an operator Uy (t) such that

U(t) = Uo(t)Ur(2) (15.2.9)
and since Uy is unitary we have

Ur(t) = Ud () U () . (15.2.10)

Substituting this into (15.2.3) and (15.2.4), and using (15.2.7) and (15.2.8) we
obtain the equation for Uy (%).

ihaUI (t)

5 = MiUi(t) (15.2.11)

with
Ur(0)=1. (15.2.12)
Hi(t) = U ()V (£)Us (1) - (15.2.13)

This again gives rise to an equivalent integral equation

. t
Uty =1- % Hi (YUt dt' . (15.2.14)
0
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A formal solution, which is also the basis of an approximation procedure, is now
obtained by iterating (15.2.14). Doing this, we get

Uity = 1+<%)/ctH,(t')dt’

2 pt t!
+ (%) /0 dt’ /0 H(¢"\H (¢ U (") dt” (15.2.15)

or continuing the procedure we arrive at:
o0
Ur(t) =1+ Y U (t) (15.2.16)
n=1

where

v = (%)nfotdtl/oh dty ...
/Otn_l dtn Hi(t1)Hr(t2) ... Hr(tn) - (15.2.17)

It is important to note the order of the operators Hy(t) since they need not
commute for different times. Combining (15.2.17) with the definition of Uy in
terms of Up = U(®) we get

U@)=UO1) + f: U™(t) (15.2.18)

n=1

where

/\ n t ty
v = vO@) <E> /dtl/ dty...
0 0

tno1
/ dt, UONt)V (1)U t))
0
x  UONt)V (1) UO ) .. .U,V (t)UO(t,) . (15.2.19)
If we now use the fact that Hy is time-independent we have that

Uo(t) = UO(t) = exp (-”’%) : (15.2.20)

In that case the transition probability, to different orders in A , can be written
explicitly in terms of the transition amplitudes

(MU @)Im) =Y (m'|[U™)(t)|m) (15.2.21)

n=1

where U(")(t) is given by (15.2.19). Writing out the first few orders we have

(Bt
(m'|U O (t)|m) = exp (—l - )Jm,m' (15.2.22)
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(m'|U)(t)|m)
t

% / dte™ Ent IDE=0) (1! |V (¢, )| m)e~ (Em /B2 (15.2.23)
0

(mI|U(2) (t)|m) = ( ) Z/ dtl/ dtge —i(Ept [B)(t-t1) o

x(m'|V (t1)|n)e = Em/ M=) (| (t,) e Em/Bt - (15.2.94)

where the sum over n runs over the complete set of kets |n).

15.3 Transition Amplitudes

This whole procedure discussed in the previous section may also be obtained in
a much less formal and more direct manner which we now describe. We start
with the exact Schrodinger equation

ih%hl!(t)) = H|¥(t) (15.3.25)

and expand |¥(t)) in the terms of the stationary states of Hy. This is the same
as going to the interaction picture. Then we get

¥(1)) =Y an(t)e " Ent/An) . (15.3.26)

Note that the coefficients a,(t) have to be explicitly time dependent. Substi-
tuting this in the Schrédinger equation (15.3.25) we obtain

ik Z da, e~ iEn t/ﬁ|n)+2anEne_iE"t/h|n)
n

= Z an[Ho + AV]e= Ent/b|n)

n

= Y an Ve Bt n) 4§ g, Bem B ) (15.3.27)
If we now form the inner product with (k| and call
Ey — En = hwy (15.3.28)
we get
da A iwrnt
- S Eﬂ:(len)aﬂe : (15.3.29)

This differential equation is exact and corresponds to the equation (15.2.11) for
the evolution operator in the interaction picture, namely
dU;

rzW = HU(t) . (15.3.30)
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If furthermore in the past, say for ¢ < 0, V(t) vanished and at that time the
system was in the state |m) then we have
dak

T 0 for t<0 (15.3.31)

so that ax = constant. This constant is either 0 or 1 depending on whether
k # m or k = m. Thus, we have an initial condition for (15.3.29), namely

ak(O) = 5k,m . (15.3.32)

We can now rewrite (15.3.29) as an integral equation incorporating (15.3.32).
To emphasize the fact that the initial state was |m) we write aj , instead of
ax. We then have

t
()= b+ 5 3 [ VO a0 (15338

This is analogous to equation (15.2.14). It is now a simple matter to iterate this
equation to obtain equations analogous to (15.2.22) and (15.2.23) etc. Thus,
the zeroth order term in A is

o) (t) = bm (15.3.34)

and the first order term is
1 A t . '
on(t) =35 [ GV mpeent (15:3.3)

The second order term is obtained by inserting this result in equation (15.3.33).
We now apply this result to several special cases which are of particular interest
in practice.

15.4 Time-Independent Perturbation

We begin with equation (15.3.35) and consider transitions during the time from
~T to T. Then the probability amplitude to find a particle in the state |k) at
a time ¢t > T if it was in the state |m) at time —T is given to first order by

T
am(t) = ;A,; / L RV Em) elrnt’ (15.4.36)

The transition probability per unit time w to make a transition from an initial
state |m) to a single final state |n) is therefore given by

wsingle - |an,m(T)|2
£ T oar

A2 L A I L
- (5) |<n|V|m>|2/ eifnnt dt’ﬁ/ et 4t . (15.4.37)
-T

-T
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In general one wants to calculate this rate for very long times T so that the
result does not depend on T'. To do this we take the limit as T — co. Then, we
find

T 1 T
lim eiwnmt’ dt’ i e—iw,.,,.t" dt"
T J_p 2T J_p

T

_ . 1 ~iWamt” 1
= T]LIEO2WJ(wn,m) 2—1:./—7‘6 dt

. L
= Tll'n;o 278 (wn,m) ﬁ/:T dt

E,-E,
s )

9156 (En — Em) . (15.4.38)

Combining this with equation (15.4.37) we have

; 2
ws® = SV im) 2 (E, - B | (15.4:39)

Clearly, the delta-function expresses the conservation of energy and such a tran-
sition can only occur between two levels with the same energy. This means we
have to have either degenerate levels or, what is more interesting, elastic scat-
tering. In practice it is this latter case that is of interest. In such a situation one
cannot measure the exact momentum of the final state since the detector has
a finite resolution so that the best one can do is to state that the momentum
after scattering (the momentum of the final state) lies between Ak and h(k+dk).
This situation is then described by introducing a “density of final states” p(k)
which tells us how many states lie between k and k + dk. In terms of p(k) this
number is given by

p(k) &k = p(k) K2dk dQ . (15.4.40)

The density of final states that also conserves energy is then given by (notice
that now the function p is defined by its argument)

p(Ex) = 6(Ex — En)p(k) . (15.4.41)

The transition probability per unit time to such an interval of states is therefore
given by

sin, 2
Wi = WSS p(k) = %]x\(n|V|m)|2p(Ek) . (15.4.42)

This is the celebrated Fermi’s Golden Rule. We now rederive it for a time-
dependent perturbation.
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15.5 Periodic Perturbation of Finite Duration

The perturbation part of the Hamiltonian is in this case assumed to have the
special form

0 for t<0,t>T

(kY (#)lm) = { 2(k|v|m)sinwt for 0 <t <T (15.5.43)

Here v is assumed to be some time-independent operator. The special form of
the time dependence during the interval 0 < ¢ < T is not a restriction. We could
have taken an arbitrary time dependence in the interval 0 <t < T. In that case
(klv]m) would be just the appropriate Fourier component for the frequency w.

We can immediately compute thé first order term af‘l)(t). Fort > T we then
have as before

T
a,(‘l)(t) = %(Ic|v|m)/0 9sinwt’ e“rmt’ gy’ (15.5.44)
or
i(wim—w)T _, i(wWem4w)T _
W A e 1 e 1
()= S [T A s

Since |(k|v|m)| is assumed small, the transition probability will be appreciable
only if one of the denominators almost vanishes. This leads to two cases.
Case 1

Wkm —w R 0 (15.5.46)
or

Ex R Eyp+hw . (15.5.47)
Case 2

wim w0 (15.5.48)
or

ExrEy —lw . (15.5.49)

Thus, we may interpret that the effect of the perturbation is to transmit to or
absorb from the system one quantum /w of energy. For a perturbation with
only one sharp frequency, as given, the probability is appreciable only if one of
the “resonance” conditions (15.5.47) or (15.5.49) is satisfied.

We now specialize this problem even further and consider the transition
probability from a bound state |m) to a continuum state |k). In that case
Ei > E,, and only case 1 applies. The probability of finding the system in the
state |k) if it was initially in the state |m) is then to lowest order in A given by

2 2

et Wkm=w)T _ 1

0 = [36vin) (155.50)

Wekm — W
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or

= UV Im)

aM(t)? = o — sin[(wim — w)T/2] . (15.5.51)

Intuitively one would expect this probability to be proportional to T, the length
of time the interaction was on. If one considers the function

sin[(wem — w)T/2] _ sin’z T2
(Wem ~ w)? T 4z

(15.5.52)

where
¢ = (wkm —w)T/2 (15.5.53)

we see that for reasonably small T and due to the resonance condition z ~ 0
that [a,(cl)(t)|2 is essentially proportional to T2. This seems to contradict our
intuition since we would expect the number of quanta inducing the transition to
be proportional to the length of time the interaction is on. The answer lies, in
fact, in the finite time over which the interaction is effective. Since a sinusoidal
signal lasting a time T can be thought of as a pulse, of length T', such a signal
is not monochromatic with frequency w, but has its energy distributed over a
band width proportional to 1/7". In particular the Fourier transform F(w') of
the function

f(t):{ 0 for t<0,t>T

sinwt for 0<t<T (15.5.54)

1 iw’wT?Si(l )/ iw/—wTZi(’ )/
F(w') —,[e( +)/___n(u, “)12_.6( )/__—Sn(“, “)72
(15.5.55)

For the region of interest to us, namely w’ > 0, w > 0 this function peaks at
w’ = w and simplifies to

i it —w)ry2 SID(W — w)T/2
F(W')~ ﬂa )T/"’((w,—_w))/— ) (15.5.56)
The points w' at which
1
IF(W")] = 51F()] (15.5.57)

determine the “width” of this function. They are approximately given by
Ww'=wt % x1.9 . (15.5.58)

Thus,

A =2 x % x1.9= 7T—6 (15.5.59)
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as stated. This shows why, for a unit frequency interval centred about the peak
of this spectral distribution, the energy of this pulse is proportional to the square
of the duration of the pulse.

In practice, as already discussed above, one does not usually have such short
pulses of radiation and one does not usually measure the transition to exactly
one final state |k) but rather to a set of such states all with approximately the
same energy and hence all approximately satisfying the “resonance” condition.
In such a case one is interested in the rate at which such transitions occur.
Thus, one calculates w, the transition probability per unit time. This is given
to lowest order in A by

/ la{"(2)] (15.5.60)

where p(k)dE} is the number of states per unit volume with energy between Ej
and Ej + dEj. Changing the variable of integration from Ej to

L (B = B — h)T (15.5.61)
2h
so that
dz = %dEk , (15.5.62)

and substituting from (15.5.53) we get

2)2 sin’ z
=20 bt = s (15.56)

Now in order to evaluate this integral we make some further approximations.

If T becomes large, the function sin?z/z? has a high narrow peak with
respect to the k variable. Thus, the idensity of final states p(k) and the matrix
element (k|v|m) are essentially constant over the range where this function is
large and may be taken outside the|integral. Furthermore for very large T we
may extend the limits of integration|from —o0 to co. Thus,

0o 2
ws HMkplmPalt) [ 2 de (15.5.60
so that to a good approximation
2 9
w = = Mklom)*p(k) - (15.5.65)

This formula is again the celebrated Fermi’s Golden Rule. It crops up over
and over again in many problems. To illustrate the use of this first-order theory
we now apply it to a physically interesting problem.
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15.6 Photo-Ionization of Hydrogen Atom

The problem we are interested in consists of calculating the transition proba-
bility per unit time that a hydrogen atom in its ground state placed in a high
frequency electromagnetic field ejects an electron into a solid angle lying between
 and Q + dQ.

The Hamiltonian for the electron, assuming it is bound in a fixed Coulomb
potential, is then given by

H=Hy+V (15.6.66)
where Hy is the hydrogen atom Hamiltonian
2 2
H=2_% (15.6.67)
2m r
and
V =efré2sinwt . (15.6.68)

This is called the dipole approximation. Here £ has the obvious interpretation
as the strength of the applied electric field and € is a unit vector in the direction
of the electric field (the polarization). The initial state 1;,, of the electron is the
ground state of an electron in the hydrogen atom

1

a3

bin = Y1,00(r) = e~rle (15.6.69)

The final state 4oy, is a positive energy (scattering state) of an electron in the
presence of a point charge. The resulting wave function is very complicated
due to the very long range of the Coulomb potential. We, theore, assume that
the Coulomb potential is effectively screened by surrounding matter so that the
ejected electron is free. ! The final electron state is then well approximated by
a plane wave

Your = (2m) 32 ¢k, (15.6.70)

We also need to calculate the density of final states. For this purpose it is
simpler first to consider the electron placed in a very large cube of sides L and
then later take the limit L — co. At the surface of the box we impose periodic
boundary conditions since these are the simplest boundary conditions yielding
a self-adjoint extension of the momentum operator. In that case we have

Your = (L)~3/2 k™ (15.6.71)
with
2

k= f(n,,ny,nz) (15.6.72)

'In interplanetary space, which is the best vacuum known, there are only about 10 free
protons and electrons per cm®. This, however, suffices to already shield the Coulomb field for
distances greater than 1 m.
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where (ng, ny,n,) are integers. The counting now proceeds just as for the black
body radiation (section 1.2). Thus the number of modes in the range between
k; and k; + dk, etc. is

L L L
= An, L = —dk,—dk, —dk,
dN AnzAnyAn 2ﬂ_dk 27|-dky27r
L\? L\?
= (2) @k=(=2) K dksingdodyp . (15.6.73)
2r 2r

The use of spherical coordinates:in k-space is convenient since energy con-
servation fixes |k| = k according to

Ex = Eo + hw (15.6.74)
or
(hk)? _ 1 4 4
Bl . 15.6.
5 gmea + hw (15.6.75)

From equation (15.6.73) we get that

1 1
—dN =
BN = G

p(k)dEy = k2 dk sin0d6 dp . (15.6.76)

However, we also have

hz
dEy = o— kdk (15.6.77)
and hence
p(k)dQ = # ksinddodg . (15.6.78)

Next we need to evaluate the matrix element

(KJv[1,0,0) / Pt (£)eEEr Yin(r) dr

23 1 / —-ikr 2 —r/ap 3
= ——= e ére d’r. 15.6.79
mad \/(2r)3 ( )
The integral may be written as é-I where
I= /e_“” re /% @ (15.6.80)

Such vector integrals may be more easily evaluated by using the following
symmetry argument. The direction of I must be the same as k since that is the
only vector occuring in the integrand besides the integration variable itself. We
can therefore write

1=kl (15.6.81)
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and take the inner product of this equation with k to get
K = / e kT k. pemT/% gy (15.6.82)

This integral is easier to evaluate than the original expression (15.6.79) since it
involves only the angle between k and r, rather than two angles.
We now choose the z-axis in the integrand to be parallel to k. Then,

0 T 27
k21=/ rzdre"/“"/ em#reos? brcos@sin@'dy’ | dy'  (15.6.83)
0 0 0

where k- r = krcos#’. The ¢ integration is immediate and yields 27 while the
¢ integration is easily performed by introducing u = cos#’. Then we get

00 1
k21 = 2nk / r3dre="/% / ek du (15.6.84)
0 -1

These integrals are standard and yield

k2] = 32nie£ad(kao)? .

it (ka0)2]3 (15.6.85)
Hence, we have the matrix element
2mie£adé k
(Klo|1,0,0) = S2mic agé (15.6.86)

(2m)3/2(mad) /2 [1 + (kao)?]”
Combining this with our expression for p(k), the density of final states, we can
use Fermi’s golden rule to get

_ 32(e€ad)®m  (kag)?

d
T TR (1 (kao))

< cos” Osin 0 d6 dyp ' (15.6.87)

where
kcosf=¢ék . (15.6.88)

With dQ = sinfdfdy we see that dw/dQ o cos?d. This simply means that
the electron is most likely to be ejected in the direction in which the incident
photons are polarized. Also the energy for which dw/dQ is maximum is given
by setting d?w/dQdk = 0 and solving for k. The result is

1 me?
k= e = ——. 15.6.89
V3ay V3R ( )
Hence the energy is
(RE)* 1 5,
= == . .6.90
o = gMC @ (15.6.90)

This is in fact one third times the ground state energy of the hydrogen atom.
We next consider two other types of approximations that are frequently used
in practice.
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15.7 The Adiabatic Approximation

The perturbation method developed above is generally valid if AV (¢) is small
for all ¢, the criterion of smallness being the same as for time-independent
perturbation theory. It is also possible to develop approximation methods based
on how rapidly V(t) varies with time. Thus, we have an approximation based
on very slow time variation, called the adiabatic approximation, which we now
discuss and we also have an approximation based on very rapid time variation,
called the sudden approximation which we discuss in the next section.

In the adiabatic approximation |AGV/dt| is assumed to be small, so we try
to arrange the computation in such a manner that this term will appear. We
start as always with

H(t) = Hy+ AV (2) (15.7.91)

and using the slow variation of H(t) write the “instantaneous” Schrodinger
equation

H)un(t) = Ea(t)ua(t) - (15.7.92)

In this equation ¢ is treated simply as & parameter. What we are tacitly assuming
in writing (15.7.92) is that if at ¢ = 0 the system is in the state u,,(0) with energy
E,(0) then at a slightly later time the system will be in the state approximated
by

un(t) exp (—%/Ot E,,(t’)dt') (15.7.93)

with energy E,(t) where the energy Ey(t) varies very slowly. Thus, if we write
the time dependent Schrodinger equation

ih%—? = H(t)¥ (15.7.94)

and expand ¥ in terms of the slowly varying “eigenstates” u,(t) so that
i t
U= Zk:ak(t)uk(t)exp (—}1-/0 Ex(t) dt’) . (15.7.95)

Then the coefficients a, (t) should be approximately constant and equal to dj ,.
We further assume that the u,(t) are orthonormal so that

(un(t),uk(t)) = 6n,k . (15.7.96)

They are of course complete since H(t) is assumed self- adjoint. Substituting
(15.7.95) into (15.7.94) yields

i i [
ik . . ' _ "N oyl
1 ; [akuk + ajug hEkak:I exp ( ﬁ/o Ek(t )dt )

.t
= ZakHuk exp (—%/ Ek('l') dtl) . (15.7.97)
k 0
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Using (15.7.92) then yields

zk: [akuk + arug] exp <—% /: Ex (@) dt') =0. (15.7.98)
Taking the inner product of this equation with

Up, €XP (—% /Ot En(t) dt’) (15.7.99)
we obtain the following equation which is still exact

dm =Y Gk (tim, k) exp (-i /0 twk,m(t') dt’) . (15.7.100)

k

Here we have defined
hwg m(t) = Ex(t) — Em(t) . (15.7.101)

In order to solve (15.7.100) we need to compute (um, dux/0t). It is at this point
that the slow variation of V (t) appears. From (15.7.92) we get by differentiation

o0H Oug _ OFE) Oug

Taking the inner product with u,, we find

OH 6uk 8Ek 3Uk
(um, —&-uk) +E,, (um,-a—t> =5 (tm, ug)+Ex (um, —a—t—)(l5.7.103)

and hence for m # k

Ouyg _ OH
(um, W) (Bk = Ep) = (um, Wuk) (15.7.104)
or more compactly,
6uk A ov
(Um, W) = ﬁw—k,,; (um, —6Tuk> k#m . (15.7.105)
We also need (upm, Oum /0t). From (upm, um) = 1 we get
Ot Ourm _
<Um, W) + (77Um> =0 (15.7.106)
or
aum (?um *
ms " op my o, = . 15.7.
(u 5 )+<u o ) 0 (15.7.107)
Thus,

(um, 6—;}') = ia(t) (15.7.108)
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where « is real. If we now consider changing the phase of u,,(t) by an amount
¥(t) to

wh (1) = um(t)e®) . (15.7.109)
Then,
/ a_m) _ gum ) | ;07()
(“"" a) - " )T e

i (a(t) + %) . (15.7.110)

Therefore by choosing

t
y= -/0 o)) dt! (15.7.111)
so that
Oy
alt) + 5 =0 (15.7.112)
we get that
/
(“5"’6;_;") =0 . (15.7.113)

We henceforth assume that the phase of u,, has been chosen in this way and
can be ignored. We therefore drop the primes. This dropping of the phase, as
we shall see in section 15.10, is not always possible and can then lead to a very
interesting result. However, for the time being we assume that this phase is of
no physical significance. Then we have

Oum\ _
(um,w> =0 . (15.7.114)

In that case we arrive at the following exact equation replacing the Schrodinger
equation (15.7.94).

dam _ A av(Y) —i [ wk,m (") dt’
o= - Xk: For (um, uk) e ax . (15.7.115)

d ot

Our approximation now consists of recalling that V(t) and hence E,(t) and
un(t) vary slowly with ¢. Thus, as a first approximation for a; we choose these
quantities constant. As initial condition we further assume that at ¢ = 0 the
system is in the state u, so that

ap(t) = ax(0) = 0k . (15.7.116)
With the approximations above (15.7.115) becomes

dam _ A (um,%pu") enmt it (15.7.117)

At hwnm
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This combined with the initial condition yields

__A ov(t) min,mt
=, (um, u,,) [e 1] m#n. (157.118)

am(t) 5

This is then the solution in the case of the adiabatic approximation. It fol-
lows from this equation that for m # n, a; oscillates and does not increase
monotonely with ¢. In fact

’\% (um, agtt u")
lam(t)| = _E——E— 2|sin(w,,,mt/2)| (157119)

where T = 2m/wy, ;. However if V(2) is itself oscillatory with a frequency w
comparable to wy 1, then V (t) can no longer be considered to vary slowly and, in
fact, the approximation breaks down since we get “resonance”. In this case small
changes in V' can cause large changes in |a,,(t)| as we saw in the perturbation
treatment. This means we can no longer neglect 8V/0¢. To be specific, suppose
we have

H=Ho+2Vysinwt . (15.7.120)
Thus,
(?9—‘: = 2wV coswt . (15.7.121)

We assume that both 7' 0V//0t and V' are small so that an(t), ua(t), and wp, p(t)
still depend only weakly on ¢. Then, in (15.7.117) we can neglect their time
dependence and as before put

o = b (15.7.122)
Then,
d 2 ;
% = _hww (um, Voup) coswt e~*<mmt
n,m
w :
- _ u ,V u e—l(wn,m—w)t
ﬁwn,m( my Y0 n) [
n e—i(wn,m+w)t] (15.7.123)
or integrating
w e iWam—w)t _ 1 p—i(wa,mtw)t _
— 15.7.124
m ihwn m (tm, Voun) [ Wnm — W Wam +w (15.7.124)

Clearly for w & wy, , the adiabatic approximation breaks down since then for

t< —" (15.7.125)
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the quantity T dV/dt is not small and furthermore we find that

e—i(wn,m—w)z -1
e (15.7.126)
Wnm — W

so that |a,, | o< t. The same thing happens of course for w ~ —Wn,m . In fact, in
either case we obtain the same result as in the perturbative treatment. Thus,
we have for w & wp m

~ (tm, Voun) e=iwa,m-w)t _

i = (15.7.127)
Wnom — W
and for w x —wn m
—i(Wn,mtw)t __
. (um, Voun) 1 (15.7.128)

am ~ g
th Wn,m +w

These are precisely the results obtained from the perturbative treatment. This
should not come as a surprise since to derive this we had to assume that V(¢)
was small. However, for the adiabatid approximation this was not required since
then we only needed that

ov
Yo

’ <<1. (15.7.129)

15.8 The Sudden Approximation

As outlined in the previous section the sudden approximation is based on the
fact that

H=Hy+ V() (15.8.130)

changes rapidly. In fact, it is complementary to the perturbative treatment
in the following sense. The perturbative treatment is valid if the time T' over
which the interaction is on is relatively long compared to 1/wy m. The sudden
approximation is valid when the time dependence of the Hamiltonian is on for
a very short time 7. In general the Hamiltonian will be of the type

Hy t<0
H= H 0<t<T . (15.8.131)
Hy t>T

This type of behaviour will occur, for example, if electrons are bound to an
atom whose nucleus at { = 0 beta-decays so that suddenly the nuclear charge is
increased by one. In this case for ¢ < 0 the nuclear charge is Z and for ¢ > T it is
Z + 1. During the interval 0 < ¢ < T'the Hamiltonian changes rapidly and in a
very complicated manner. The advantage of the sudden approximation is that if
T is sufficiently small one need not even know H;. The approximation consists,
in fact, in replacing the Hamiltonian|(15.8.131) by the simpler Hamiltonian

_ Ho t<0
H_{Hl S0 (15.8.132)
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In this case we solve the two time independent Schrédinger equations

Houp, = Equy, (15.8.133)
and

Hyv, = ¢uv, . (15.8.134)

Then {un} and {v,} both form complete (not necessarily discrete) sets. We
assume that both sets are orthonormalized. Then the general solution of the
time dependent Schrodinger equation

ov

T 8.1
iha = HY (15.8.135)
is
U= aquze B/t < (15.8.136)
U= buvueiet/h 150 (15.8.137)

where the sum is to be interpreted as a sum over the discrete and an integral
over the continuous energy eigenvalues. Furthermore since U satisfies a first
order differential equation in time with a simple jump discontinuity in ov/ot,
it follows that W is continuous at ¢ = 0. Hence we get that

Y antn = byu,. (15.8.138)

Using the orthonormality of the {v,} we then get that

by = Ea,,(v,,,un) ) (15.8.139)

Typically we start with the system in a pure state say u,,. Then for ¢ < 0,
@n = 0 m so that

by = (v, um) . (15.8.140)

Thus, starting with a pure state with energy E,,, we wind up after the interaction
in a superposition of states with energy ¢,. Actually this is only due to our mode
of description. In fact, as stated, ¥ is continuous so the state of the system has
not changed and remains an eigenstate of Hy. In a sense, the Hamiltonian
changes too rapidly for the system to follow and thus it remains unchanged
in an eigenstate of Hy. However, for ¢ > 0 it evolves according to the new
Hamiltonian. This is to be contrasted with the adiabatic case where the system
evolves from an eigenstate of the original Hamiltonian into an eigenstate of the
final Hamiltonian.

To illustrate the application of the methods we have developped we next
consider the case of a magnetic dipole in a magnetic field that oscillates or is
increased either adiabatically or suddenly to some final value.
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15.9 Dipole in a Time-Dependent Magnetic Field

The problem we want to consider is that of an electron in a magnetic field. We
assume that all other energies of the electron such as its kinetic energy can be
neglected. Since the electron has a spin S it has associated with it a magnetic
dipole moment operator (see section 9.7)

i=_t
i=-—s. (15.9.141)

Thus, with our approximations, the Hamiltonian for this electron is
h
H=-iB=-—-S.B= —GB (15.9.142)
me 2me

where G are the Pauli matrices (see section 9.7). We consider three separate
cases in all of which

B=B;+ Bl(l) (159143)

where Bg has only a z-component By and B (t) has only an z-component. The
three cases are:

1)

0 t<0
By(t) = { bsinwt t>0 (15.9.144)
2)
0 t<0
Bi(t) = { b(l—eat)t 150 (15.9.145)
3)
0 t<0
By (t) = { bot>0 (15.9.146)
We first solve for the steady states of the unperturbed Hamiltonian
_ eﬁBo 1 0
Hy= e ( 0 -1 ) . (15.9.147)

The eigenstates are

[+) = ( (1, ) |-} = ( (1) ) (15.9.148)

with eigenvalues kg respectively, where

By

= . 15.9.149
2me ( )

0
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15.9.1 Oscillatory Perturbation

In this case the Hamiltonian is

H = hQgo3 + kQ, sinwt oy (15.9.150)

or
1 0 . 01

H =1Qq ( 0 -1 ) + hQy sinwt ( 10 ) (15.9.151)

where
eb
1= (15.9.152)
0
zhgllll(t)) = H|¥(t)) (15.9.153)

according to (15.3.26) with
Ey = £k (15.9.154)

then we have only one transition frequency, namely

Eyf —E_ =21y . (15.9.155)

Also, we write, as in equation (15.3.26)
—iqet [ 1 it [ 0

U(t) = ay(t)e™ 0 +a_(t)et 1 (15.9.156)
so that (15.3.29) reduces to the two equations:

d:—: = —iQ e sinwta_ (15.9.157)

da_ . —2iQt -

T —iQe” " sinwtay . (15.9.158)

If furthermore for ¢ < 0 the electron is in the state [+) then the integral equations
equivalent to (15.3.33) are

¢
ap=1- info et sinwt! a_(t') dt’ (15.9.159)

¢
a. = —in/ =29t ginwt’ ay (¢') dt’ . (15.9.160)
0

These equations are still exact. If we now iterate them to obtain successive
approximations, then the zeroth order terms in Q; are

d’=1 =0 (15.9.161)
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and the first order terms in Q; are

a(,rl) =0
aV = —igy /0 e Gy (15.9.162)
The second order terms are
af) = - /t 2%t sinwt’ dt’ /tl 2%t sinwt” dt”
0 0
A = 0. (15.9.163)

The first two of these equations are precisely (15.3.34) and (15.3.35) for the
specific Hamiltonian (15.9.142) with By (t) given by (15.9.144).
To first order in ; we then have

lag? = 1
¢ 2

la_? = @2 / =200t sinit! dt! (15.9.164)
0

or
Q2 |e=i(2Q-w)t _ | o=i(2tw)t _ 1|2
2 1
e - 15.9.165
| l 4 20 —w 200 +w ( )

Thus, to lowest order, we find that the system will almost certainly remain in its
original state |[+) and there is only a second order term giving the probability
of finding the system in the state |—) after a time .

15.9.2 Slowly Varying Perturbation
Here we consider
[0 t<0
Bl(t)_{ B—e=t) 150 (15.9.166)

and apply the adiabatic approximation. Since the typical time constant here is
given by 21 /§, this approximation will be valid if /€ is very small. We now
find

dB;

- = 15.9.1

=0 t<0 (15.9.167)
and

d

% =abe”® t>0. (15.9.168)

The Hamiltonian is

H=hQ003+hQ (1-e )0y t>0 (15.9.169)
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or
_ 1 0 —at 01
H—hQO<0 _1>+ﬁ§21(1—e )(1 0) t>0 (15.9.170)
and
1 0
H:Ho:hﬂg( 0 -1 ) =Mooz t<0 (159171)
where as before
_ EBQ _ eb
Qo = ome Q= ome (15.9.172)

The time-dependent Schrédinger equation can be rewritten to yield the equa-
tions corresponding to (15.7.115). They are

. ath —at . tE - FE_ ’
ay = me (U+,0'x )exp[ / 5 dt'| a_ (159173)

a_ = Ei”f‘QIE‘+e_“‘ U_, 00Uy ) exp [ / E+ dt] (15.9.174)

where E., E_ and u,, u_ are solutions of the Hamiltonian for ¢ > 0
H({t)ux(t) = Ex(t)ux(t) . (15.9.175)

These equations are still exact and also far too complicated to solve. The
adiabatic approximation consists in choosing the a4, uy on the right hand side
of (15.9.173) and (15.9.174) as well as the energies E4 as constants. Thus, if
for example the initial state at ¢ = 0 was u; then on the right side of (15.9.174)
and (15.9.173) we have ay = 1, a_ = 0. This yields,

day

dt 0
da_ ath —at ~2iflot
— = “ ° 9.1
di Qth (15.9.176)
or, integrating
a, = 1
a 4 [ ~(a+2i)t
L= —— -1
¢ 9+ 2i0) Qo L ]
_i®0 [ (asainon _
o [e 1] ‘ (15.9.177)
So, to lowest order in o/, the state at time ¢ is given by
1
Y(t) = a0 [o-(a+2i)t _ | . (15.9.178)
PToY [e -1]

This shows that the state evolves slowly from its original state u4 to a mixture
of uy and u_.
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15.9.3 Sudden Approximation

In this case the Hamiltonian is

H = Ry < (1) _01 ) =Hy=Mlos t<0 (159179)
and
H=HWwo3+ oy =H t>0 (159180)
or
1 0 01
H:th<0 _1>+h91<1 0>:H1 1>0. (15.9.181)

The eigenstates of Hy are, as before,

l+) = ( (l) ) =)= ( (1) ) (15.9.182)

with
Ey = £hQ . (15.9.183)

If we call the eigenfunctions and eigenvalues of Hj, v, and €, respectively, we
have for

vy = ( ; ) (15.9.184)

the eigenvalue equation

ﬁ( g‘l’ _950 ) ( ‘; ) =¢, < ‘; ) . (15.9.185)

The eigenvalues are:

ex = £hy/Q2 4+ Q2 . (15.9.186)

Calling

Q=02+ 02 (15.9.187)
we have

€ = thQ . (15.9.188)
We then get:

vy = \/ﬁ ( iQQ_l Q% ) . (15.9.189)

If at t = 0 the system is in the state uy = [+), then for ¢ > 0 the system will
be in the state

W(t) = bpvye ™ ¥ 4 b_v_e'M (15.9.190)
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where by are determined by the initial condition

Uy = b+’U+ + b_U_ (159191)
or

by = (ve,uq). (15.9.192)
Thus,

b= (15.9.193)

V2AQF Q)

Combining these results we get

cos S — i< gin Ot
U(t) = ( —i%‘l s?th ) . (15.9.194)

This wavefunction ¥ is an exact solution of the Hamiltonian (15.9.179) and
(15.9.180) with the initial condition ¥(0) = u,. The approximation is made in
writing the Hamiltonian (15.9.179), (15.9.180) in the first place.

15.10 Two-Level Systems

In section 13.2 we considered a two-dimensional degenerate subspace. We also
considered such a two-dimensional system in the previous sections. We now
re-examine such two-dimensional systems in general. Two-dimensional systems
frequently provide a good approximation to a real physical system other than
a spin 1/2 system as discussed above. An important example is provided by an
ionized hydrogen molecule where the electron may be found in the ground state
around either of the two protons.

To bring out the essential features of such a system we write the Hamiltonian
in the following form:

H=Hy+V (15.10.195)

where

E—¢ 0
H0_< 0 E+€) , €>0 (15.10.196)

with eigenvalues E; = E —¢, E2 = E 4 ¢ and eigenvectors

X1 = ( (1) ) , X2 = ( [1) ) ‘ (15.10.197)

The interaction term V is written

0 H * i
V::(HZI 012> v Hiz=Hj = vle™ . (15.10.198)
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We have written V without any diagonal elements since these could always be
absorbed in a redefinition of Hy. The eigenvalues of the full Hamiltonian H are:

Ey =Ex+/+ . (15.10.199)

We now define, as in section 13.2,

tanf = '-':—l . (15.10.200)

The eigenvectors of H corresponding to E4 are (up to an arbitrary choice of
phase), given by:

_( cosB/2¢ _ ( sin6/2¢
v-= ( —sinf/2 ) Ve ( cos /2 ) ’ (15.10.201)
An interesting point to note here is that the eigenvectors do not depend on the

“average unperturbed energy” E but only on the difference . Furthermore, we
see that

|Ey — E_| > |Es — Ey| = 2 . (15.10.202)

Thus, the effect of the interaction is to “repel” the two energy levels. This result
was also found in section 13.2.

The time evolution of this system is, as usual, governed by the Schrodinger
equation.

22 = v (15.10.203)
ot
so that
Y(t) = e HMg(0) (15.10.204)

Now the most general solution of equation (15.10.203) is given by:
U(t) = ci(t)x1 +e2(t)xz - (15.10.205)

If we use the spectral decomposition (see problem 6.5) of H in the form

H = E_y_yl +Eryyyl
- 5 cos?0/2 —sinf/2 cos /2 €™
- —sinf/2 cosf/2 e~ sin® 0/2
sin 0/2 sin0/2 cos 0/2 ¢'*
+ By ( sinf/2 cosf/2 e cos? /2 ) (15.10.206)

then we also have
e~ iHUB _ e—iE_t/h’lﬁ_'l/)T_ + e—iE.,,t/hw_(_wl . (1510207)
So we can immediately write
() = e H/hg()
e E Iy (4, W(0)) + e+ M (4, 9(0) . (15.10.208)
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Using this equation we are ready to compute a particularly important result
which is sometimes known as the Rabi Formula. What we are interested in is
the probability Py, that, the system which starts out at time ¢ = 0 in the state

¥(0) = x1 (15.10.209)

is at time ¢ in the state x2. We don’t need to compute the probabilty P;; that,
the system which starts out at time ¢ = 0 in the state y; is again in the same
state x; at time ¢ since this is given by 1 — Pj5. We, theore, only need to
compute

. 2
Py = ‘(Xg,e_’Ht/h xl)‘ . (15.10.210)

To accomplish this we first express x; in terms of ¢, ¥_ and use (15.10.207).
Now, from (15.10.201) we get

X1 = € '*(cosf/249- +sinb/2¢y)

X2 —sinf/2¢_ +cosf/2¢, . (15.10.211)
Theore,

il | gmia (coso/ze-w-‘/w_ +sin@/2e-E4t/h ¢+) (15.10.212)

Hence we find,

. R 2
Py = coso/ze-'E—'/"(xz,w_)+sin9/2,e-’E+‘/"(Xz,¢+)|
_ isin’& |e—iE+t/ﬁ _ e—z’E_t/hlz
= lsin20 1—cos Mt . (15.10.213)
2 h
So finally
Py =sin’f sin® (1—?*—2_#0 : (15.10.214)

Substituting for E4 — E_ and sin? 6 from (15.10.199) and (15.10.200) we get

2 2 2
Po=-0 g 2(“ + vl t) . (15.10.215)

- + |v? sin h

This is the Rabi Formula. It shows that as the system evolves in time, it
oscillates between the levels x; and x with angular frequency

2 2
ws= ——V‘:{'”' . (15.10.216)

An example of such a two-level system, as stated at the beginning of this section,
is given by the ground state of an Hf molecule. There the electron oscillates
between the two states in which it is localized first around one proton and then
around the other. In this case, the unperturbed energy levels are degenerate
and € = 0.
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15.11 Berry’s Phase

In section 15.7 we studied the adiabatic approximation and assumed that we
could ignore a certain phase factor ¢*7(!) so that we could set

Oum \ _
(um,w> =0 . (15.11.217)

This was equation (15.7.114). Of course, the dynamical phase factor

exp (—% /0 t E.(t) dt’)

was, as always, present. In 1984, M;V. Berry [15.3] showed that if the adiabat-
ically varying Hamiltonian H (t) is periodic such that

Hty) = H(ts) (15.11.218)

then, for a time interval from ¢; to #, one obtains, in addition to the dynamical
phase above, an additional observable topological phase factor e?'=. We now
present his argument.

Consider the Hamiltonian H(t) and assume that the time dependence of
H(t) is through a set of k slowly varying parameters

R(t) = (Ru(t), Ra(t), -+, () (15.11.219)
that are periodic so that for times ¢ , t2
R(t2) = R(t1) (15.11.220)
and
1 dRi(t) 1 dE,®1)
15.11.221
Ri(t) dt i ’E,,(t) dt (15 )

This last inequality is just a more specific statement of the adiabatic condition.

The Schrodinger equation now reads
iﬁ%hll(t)) = H(R(ENIY (@) . (15.11.222)

We again have instantaneous eigenkets, |n, R(t)), of H(R(t)) with instantaneous
energy eigenvalues Ep,(R(t)).

H(R(t))In, R(t)) = En(R(2))In, R(2)) - (15.11.223)
A solution of the time-dependent Schrédinger equation can therefore be written

9(1)) = exp (—% /0 "Bt dt’) 10 |n, R(t)) . (15.11.224)

Here, in addition to the usual dynamical first exponential factor we have in-
cluded the explicit phase factor ¢?7#(*) which was argued away in section 15.7.
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Berry’s crucial discovery was that, for certain situations, -, (¢) is non-integrable,
that is, 7, (t) can not be written as a function of R and, in particular, is not
single-valued under completion of a period: from #; to ¢,. Thus,

Tn(t1) £ Mm(t2) - (15.11.225)

As in section 15.7, the explicit expression for yy (t) is obtained by substituting
the expression (15.11.224) into the Schrodinger equation. This yields

ddlt" = i(n, R(t)|n, R()) . (15.11.226)

The term |n, R(t)) may be rewritten

k
In B0 = Y- gl B Rs = (Valo, RO & (15.11.227)

Here we have introduced the symbol Vg as an obvious generalization of the
gradient to k dimensions. Using this expression we find that the net phase
change of |¥(t)) in one period (say from ¢; to t2) is given by

[®(t2)) = (D exp (—% /h En(t) dt’) [¥(t1)) (15.11.228)

t1

where the geometrical phase change is

Tn (C)

ty
i [t BIValn B Bt
1

1}{ (n,B|Vg|n,R)-dR . (15.11.229)
C

This shows explicitly that v,(C) is given by integrating around a closed loop
in the parameter space (i.e. from R(t;) to R(t2) = R(t1)). We now go one
step further and use Stoke’s theorem to convert the line integral into a surface
integral in parameter space. The surface integral runs over any surface having
the closed curve C, in parameter space, as a boundary.

At this stage we also restrict the argument to the more intuitive and phys-
ically most interesting case of a three-dimensional parameter space. With this
restriction it is useful to introduce a vector field A(R) by writing

i(n, R|Va|n, R) = A(R) (15.11.230)

where we are now also writing R instead of R. We then have the more suggestive
formula

w(C) = jé A(R)-dR

/(V x A)-dS . (15.11.231)
S
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This use of a “vector potential” A shows that if we redefine the phase of |n, R)
so that we introduce

In', R) = ¢A®) |n, R) (15.11.232)

as we did earlier to get rid of the term (n, R(t)|n, R(t)), the net effect is merely
to produce a change analogous to a gauge transformation on A, namely

ASA =A-VA . (15.11.233)

Then, as (15.11.231) shows, the geometric phase ¥, (C) is left unchanged since
/v < (m)us:f w-m:f dA=0 . (15.11.234)
s c c

Thus, in this case it is impossible to get rid of this phase by a redefinition as
we did before. Equation (15.11.231) furthermore also shows that the geometric
phase v, (C) is just the flux through the surface S of a vector field V,, given by
the curl of A. :

V.=V XxA (15.11.235)
and
1(C) = / Vo dS . (15.11.236)
5
To proceed we first rewrite the real vector field V,,. Here we use the obvious
notation that
Veln,R) = |Vg(n,R)) (15.11.237)
Vr(n,R| = (Vg(n,R)|. (15.11.238)
Then,
V., = iVrx{n,R|Vgn,R)
= #Vg(n,R)| x Vr(n,R))
= —Q‘(VH(TL,RH X VR(n,R»
= -9 (Vk(n,Vr)lm,R)| x (m,R|VR(n,R)).  (15.11.239)

Next, we use the instantaneous Schrédinger equation (15.11.223) and operate
on it with V. Then, we take matrix elements with (m,R| m # n to get:

(m,R|VrH(R)|n,R) H Epn(R){m, R|Vg(n,R))
= E,(R)(m,R|Vg(n,R)) . (15.11.240)
Thus, we find

(m,R|VRH(R)|n,R)
En(R) — Em(R)

(m,R|Vg(n,R)) = m#n . (15.11.241)
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Furthermore, we have

(n,R[n,R) =1 (15.11.242)
so that

(n,R|VR(n,R)) +(Vr(n,R)|n,R) =0 . (15.11.243)
This shows that

R(n,R|VRr(n,R)) =0 (15.11.244)

and means that (n, R|Vg(n,R)) is purely imaginary. Theore, in the sum over
intermediate states in (15.11.239) the term with m = n (which is purely real)
does not contribute. Hence, we finally get

_ (n, R|VRH(R)}m, R) x (m, RIVzH(R)|n, R)
ValR)=-8 ) e R T En (R

(15.11.245)

m#n

For the loop integral

fV,,-dR
C

to give a non-zero result requires that V, have a singularity inside the loop.
In other words, V, must have a source. Clearly this will occur if we find
that for some value of t, the parameter R(t) is such that degeneracy of the
instantaneous energy eigenvalues occurs so that E,(R({)) = Ep,(R(t)). This
means, that in this case, the occurence of a non-zero Berry’s phase is connected
with the occurence of degeneracy. Berry’s phase is then the flux associated with
the source of the field V,,.

A simple specific example of this kind is demonstrated in problems 15.10 and
15.11 below by the Hamiltonian of a spin 1/2 particle with a magnetic moment
p in the field of a time-dependent “magnetic monopole”.

15.12 Problems

15.1 A particle is in the ground state of the Hamiltonian

2
=L 4y
2m

where

V= 0 z<-a,z>a
Tl -W —a<z<a

Find the transition probability per unit time to a state of energy Ej > 0,
due to a perturbation

H'(t)=ve/* sinwt

where v is a constant and a << a. You may use the result of problem 8.1.
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15.2 The deuteron is an s-wave (I:= 0) bound state of a proton and neutron
with a binding energy of 2.226 MeV. It is well approximated as a bound
state in a square well of depth V5 = 36.2 MeV and a width a = 2.02x 10713
cm. Using these data, compute the probability for photo-disintegration
of the deuteron. Assume the incident photon can be approximated by a
perturbation

V= eA rsinwt t>0
B 0 t<0

where A is a constant vector of magnitude about 1 x 10% V/ecm. Use
whatever other approximations seem reasonable.

15.3 An atom is initially in the ground state of a simple harmonic oscillator
H=hwda .
At t =0 a perturbation
V' = hQ(a + a)

is turned on. Find the transition probability to any exd state of the system
for t > 0. What is the probability that the atom remains in its ground
state for ¢t > 07

15.4 Repeat problem 15.3 with
V'=HQala .

15.5 An atom has two energy levels +/2. A weak disturbance V (t) connecting
these two levels and varying periodically in time such that

AV (t)|2) = AQ, sinwt

is turned on at ¢t = 0.

a) Find a model Hamiltonian for this system.

b) If the atom was originally in its ground state, estimate the probability
P(t) that it is in its exd state at time ¢.

15.6 An hydrogen atom in an exd state |n,!,m) is perturbed by a uniform
electric field. If the interaction can be written

_ ) eE-r2sinwt | 0<t<T
V(t)_{ 0 t<0,t>T

Find an expression for the transition probabilities to a definite lower level.
Do not attempt to evaluate the radial integrals. This is how intensities of
spectral lines can be computed. You may use the results of problem 9.4.
See also reference [15.1].
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15.7 A particle is in the ground state in a one dimensional box of length L.
Suddenly, at t = 0 the box expands (symmetrically) to a length 2L leaving
the wavefunction undisturbed. Calculate the probability that at some later
time ¢ the particle will be found in the ground state of the expanded box.

15.8 A particle is bound by a simple harmonic oscillator potential and is in the
first exd state. If a perturbation

V' =z

is turned on at time ¢ = 0, find the probability that the particle will be in
the new ground state for times ¢ > 0.

15.9 An atom has two energy levels of energy +E. So the Hamiltonian may
be written

H:EO’3

where

s (10
37\Vo0 -1

If this atom is in the ground state at time ¢ = 0 and a perturbation

(01
H“V(10>

is turned on find the probability that this atom is still in its ground state
at some later time .

15.10 Consider the Hamiltonian
H(R() = - 5o R()
where
B(t) = By [sinf coswt e, + sinfsinwt ey + cosf e,]
so that
B(t + 2r/w) = B(?) .

Show that if w << pBy then
(T(t = 2r/w)|¥(t = 0)) = exp (ii—ﬂuBg) exp[—im(1 — cos )] .

Hint: 2% B, is just the dynamical phase — 02"/“' E(t)dt and
—m(1 —cosf) = —AQ/2

is the geometric phase (Berry’s phase).
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15.11 Consider a neutron (charge = 0 , magnetic moment g = —y%a ina
magnetic field consisting of a uniform component B in the z-direction and
a component b(t) rotating in the z — y plane. Assume that at ¢ = 0 the
neutron has its spin pointing in the negative z-direction. Find Py (t), the
probability that at time ¢ > 0 the neutron has spin A/2 in the positive
z-direction. Find the condition between B and b such that the amplitude
of oscillation of the spin between +%/2 and ~h/2 is a maximum.
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Chapter 16

Particle in a Uniform
Magnetic Field

16.1 Introduction

In this chapter we apply the techniques, developed in the previous chapters, to
some specific, interesting problems. Interactions with the electromagnetic field
are of particular interest to us. Since these interactions are written in terms
of electromagnetic potentials we study the consequences of choosing different
potentials (gauges) that give rise to the same electromagnetic field. We go
on to include interactions between the electromagnetic field and the magnetic
moment of an electron due to its spin as well as its orbital angular momentum.

In particular, we also study the splitting of spectral lines due to the magnetic
field - the Zeeman effect. To carry out computations for this effect requires the
study of the addition of angular momenta. This problem constitutes a major
portion of this chapter.

16.2 Gauge Transformations
In Chapter 3, equation (3.8.80), we wrote the Hamiltonian H for a charged par-

ticle in an electromagnetic field. There we found that for a static field described
by a scalar potential ¢ and a vector potential A such that

E=-V¢ (16.2.1)
B=VxA (16.2.2)

the Hamiltonian for a particle of mass m and charge g is

Lt 2
H= 5 (P—yq/cA) +4q¢ . (16.2.3)

362
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Of course ¢ and A do not describe the electromagnetic field (E, B) uniquely
since both E and B are left unchanged by gauge transformations. An example
of such a transformation is

A SA' =A+VA
¢ —=¢'=¢ (16.2.4)

where A is an arbitrary time-independent scalar field. Clearly
VxA'=VxA (16.2.5)

since the curl of a gradient vanishes. Thus, both A and A’ describe the same
magnetic field B.

If we now consider the Schrédinger equation with the Hamiltonian (16.2.3)
then, to keep this equation invariant under the gauge transformation (16.2.4)
so that the physics does not depend on our choice of gauge, the phase of the
wave-function ¥ must change

Yoy =Xy . (16.2.6)

This is the active view of gauge transformations. With a proper choice of y, the
pair of transformations (16.2.4), (16.2.6) leave the Schrodinger equation

o (b= 0/cAY' ¥ + a9y = By (16.27)

unchanged. To see this we replace A and ¥ by A’ and ¢ respectively to get

1 ; : ;
5o (P=g/cA +q/cVA) ey L ogem Xy = Bem Xy . (16.28)

Now writing out the action of the operator p we find
(p—q/cA’ +g/cVA)e X ¢/ = e=iX [-hvx +p- % (A - VA)] V. (16.2.9)
Thus, if we choose
X=—2A (16.2.10)
he
then equation (16.2.9) shows that

(p—q/cA’ + g/cVA) e~ a/hIA gy — o=ilalhe) [p - %A’] Y. (16.2.11)

Operating on (16.2.11) once more with (p — g¢/c A’ + ¢/c VA) we find that for
X given by (16.2.10) the Schrodinger| equation (16.2.8) reduces to

N | o= gfe A 44| =N By (1621
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After cancelling the phase factor e~#(9/A)A we recognize this as the original
Schrodinger equation (16.2.7) with primes on all the quantities. Thus, we have
found that under the local gauge transformation

A SA'=A+VA

6 ¢ =¢ (16.2.13)
¥ g = eli9/hAy, (16.2.14)
the Schrodinger equation
1
5 (P—a/cA) Y +qdY = By (16.2.15)

remains unchanged in form. Furthermore, the charge and current densities

p=vY (16.2.16)
and

. h tq '

i=g— [«p <v+ A) Y- (v- EA) ¥ ] (16.2.17)

also remain unchanged. This is a very important physical result since it shows
that whatever set of potentials (¢, A) we choose, the resultant Schrodinger
equation does not depend on our choice as long as these different potentials are
connected by local gauge transformations or, what is the same thing, describe
the same electromagnetic field (E, B). The adjective “local” in the above dis-
cussion simply ers to the fact that the gauge field A depends on the coordinates
z in a local manner. If the electromagnetic field (E, B) is time-dependent then
the potentials (¢, A) are time dependent and
16A

E=-Vé-—= (16.2.18)

B=VxA . (16.2.19)

In this case we must consider the invariance of the time-dependent Schrodinger
equation

5\1-' 1
Bt (p g/c A’V + q¢¥ (16.2.20)

under time—dependent local gauge transformations. A computation similar to
equations (16.2.9) and (16.2.11) (see problem 16.4) shows that the set of trans-
formations

A A =A4+VA
10A
6 ¢ =¢--=

U S0 = ia/hor g (16.2.21)
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leaves the time-dependent Schrédingér equation (16.6) unchanged or invariant.
In this discussion A is an arbitrary time-dependent scalar field.

Local gauge invariance, as discussed above, has not only the important phys-
ical consequence that the physics of interactions with the electromagnetic fields
does not depend on the choice of gauge, but has proved to be an important
guiding principle in modern theories of elementary particles.

As an example, that we use in the next section, we consider the vector
potential for a constant magnetic field B. Using the vector identity

Ux(FxG)=F(V-G)- G(V-F)— (F-V)G+(G-V)F  (162.22)
we see that if we choose

Az—%pr (16.2.23)
then

VxA:—%HVIH—MVw%{rVW+ﬂ}VM:B.(m&%)

Thus, a possible choice of vector potentials is given by (16.2.23). This is some-
times called the symmetric gauge.

For convenience we now choose our coordinate system so that the z-axis is
parallel to B. Then,

B =(0,0,B) (16.2.25)
and
B
A=-2(y-2,0) . (16.2.26)

If we now perform a gauge transformation of the type given by equation (16.2.4)
with the gauge function

A:—gw (16.2.27)
then
B
VA= —E(y,x,O) (16.2.28)
and
A= A+VA=-B(y00) . (16.2.29)

The potential A’ is just as good as the potential A for computing the magnetic
field B. The choice of potential A’ is called the Landau gauge [16.1]. In the
next section we consider the motion of an electron in a uniform magnetic field
and use both forms of the vector potential to see that they yield the same result.

For computational purposes one should, of course, attempt to find a gauge
(potentials) that simplifies the computations as much as possible.
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16.3 Motion in a Uniform Magnetic Field

The problem of the motion of an electron in a uniform magnetic field again
became a “hot” topic in solid state physics in the 1980’s due to the discovery
by von Klitzing [16.2] of the quantum Hall effect. Much of the physics of this
effect can be understood by solving the Schrodinger equation for an electron in
a uniform magnetic field. The resultant discrete energy levels are called Landau
levels [16.1] and are discussed in a later section. We begin by describing the
integer quantum Hall effect. Then we solve the corresponding classical problem
as well as the quantum problem. The integer quantum Hall effect manifests
itself as a series of plateaus (fig. 16.1) in the Hall resistance Ry of materials
in which the electrons are confined to motion in a plane. These are so-called
two-dimensional electrons and occur at the interfacial oxide layer between a
metal and a semiconductor in a device called a Metal-Oxide Semiconductor
Field Effect Transistor or MOSFET. The actual layer is usually of the order of
100 A so that the electrons are not truly two-dimensional but are confined to
a thin layer.

classical Hall resistance _"/

AN
/ quantum Hall
resistance
/

>

B

Figure 16.1: Schematic of plateaus in the quantum Hall effect.

16.3.1 Classical Hall Effect

To understand the term “Hall resistance” consider the schematic for an exper-
iment shown in fig. 16.2. We assume that the current I flowing down the thin
strip (thickness ¢ and width w) is due to charge carriers of charge ¢ and drift
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velocity vg. In this case the current density j = I/wt is given by
I
j=— =N ( )

where N is the number of charge carriers per unit volume. Due to the magnetic
field B the charge carriers experience a Lorentz force

F= %quB . (16.3.31)
15
&+++++ ++4
o
E; \ "\

, N\
‘ \

Figure 16.2t The Hall effect.

This force pushes the charges to one side of the strip, where they accumulate,
and depletes the charges on the other side of the strip. This separation of charges
produces an electric field

F 1
EF=—=-yB (16.3.32)
g ¢
between the two sides of the strip and a force that just balances the Lorentz
force as we have written down. This electric field leads to a potential difference,
called the “Hall potential”

Vg = Bw (16.3.33)

between the two sides of the strip.
The Hall resistance is defined by

Ry = VTH . (16.3.34)
Using the results above, we find that
1 B
=-— . 16.3.35
" NG ( )

It is convenient at this stage to introduce the two-dimensional or areal density
of charge carriers

Ny=Nt . (16.3.36)
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Then we find that
1B
T cNaiqg

It is worth noticing that the Hall resistance is positive if ¢ is positive and negative
if ¢ is negative. Thus, an experiment in which one measure the Hall resistance,
provides a means for measuring the sign of the charge on the charge carriers.
Furthermore, the Hall resistance depends only on the areal density of charge
carriers and no other properties of the underlying material.

H (16.3.37)

16.3.2 Landau Levels

We now again solve the same problem, but this time we do it using quantum
mechanics. We begin with the case of only a constant uniform magnetic field.
The Hamiltonian is given by

1 e \?2
H=_— -A) . 16.3.
2m(p+c ) (16.3.38)
For convenience we choose the Landau gauge so that
A =-B(y,0,0) . (16.3.39)
The Hamiltonian can now be written out explicitly and reads
1 eB\Y 1, 1,
H= om (p,,- - Ty) + 2_mpy + 2_mpz . (16.3.40)

Since H does not contain any function of z or z we see that
[H,p:)=[H,p:]=0 . (16.3.41)

Since p, and p, also commute we see that p;, p, and H form a complete set of
observables and can be simultaneously diagonalized. To this end we look for a
wavefunction of the form

= 51; eilkerthi) () (16.3.42)
Then,

petb = hkyyp (16.3.43)

P = Bk, 0 (16.3.44)

and the Schrodinger equation (16.3.34) reduces to
d%¢ 2mE miw?

T R T )| e=0 (16.3.45)
Here we have defined the Larmor frequency
w=% (16.3.46)

mc
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and the parameter

cky
Except for the constant k2, equation (16.3.45) is just the equation for a simple
harmonic oscillator centred at yo. The energy is therefore given by

(f'ﬂc 2

Eng, = (n+1/2)hw + o2t (16.3.48)

The corresponding wavefunction (up to a normalization constant A,) is

Unpok, = =2 ik thes) o=(V00)"/ % g () 0y /) (16.3.49)

2T

Here, as always, the H,, represent hermite polynomials and we have also intro-
duced a new parameter

A= (%) (16.3.50)

called the magnetic length. The physical significance of this parameter together
with this problem are discussed in greater detail in the section after the next
where we again solve this problem in a completely different manner.

It is worth noting that the energy does not depend on the wavenumber k.
This means that each of the energy levels is infinitely degenerate. The physical
reasons for this fact and some of its implications are also explored in the next
sections. Furthermore, in the next!section, we solve a mathematically very
similar problem for crossed electric and magnetic fields. This, as we saw, is the
situation of interest for the Hall effect.

16.4 Crossed Electric and Magnetic Fields

The Hall effect occurs, as we saw in|the classical case, when uniform magnetic
and electric fields perpendicular to each other are applied to a semiconducting
medium. We model this effect by considering a single electron in empty space.
The resultant Hall current is, as in the classical case, perpendicular to both the
electric and magnetic fields.

Our model Hamiltonian is

He o (ptSA) —ep (16.4.51)
where we again choose the Landau gauge. Thus,

A=-B(y0,0) , B=(0,0,B) (16.4.52)
and

¢=-€y , E=(0,£0). (16.4.53)
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The Hamiltonian when written out reads

1 eB\) 1., 1,
- — — Ey . 16.4.54
2m< y) + 5Pyt 5Pt efy (16.4.54)
Again we find that
(H,ps] = [H,p:] =0 (16.4.55)
and we can write, as before
w— — '(k’“’k")é(y) ) (16.4.56)

The Schrodlnger equation for ¢(y) now reads

2 2, .2 2 E 2 2
¢4 _mu ——[y - (v - ) ¢+ “ W —— (250 — )| ¢ =0.(16.4.57)

dy?
We have again introduced the parameters
cky eB
=h—= = — 16.4.5
Yo = ¢eB ' w me ( 8)

as well as the parameter

e€

B=rrg (16.4.59)
Calling

a=Y — %N (16.4.60)
we can now write the solution immediately as

Un ko, = 5o e Frothed) e~ W= g ((y—a)/)) . (16.4.61)

T
The energy is given by
Bk;)? mw?
En o, = (n+1/2)hw + % -5 (4% - 2y190) - (16.4.62)

The quantity of interest to us is the electric current density
eh . . .

T [@* (V + (ie/hc)A) Y — ¢ (V — (ie/hc)A) ¥*] . (16.4.63)
The y-component of the current density clearly vanishes since the wavefunction
describes a bound state in that direction. The other two components are given

by

Jn:kx,kz =

_eh(ks = y/3) ¢’

Jo = G (16.4.64)
2
J. = —Rk:lonl? (16.4.65)

(2m)2m
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If we integrate over the y-coordinatei to get the net current and use the fact that
|#s]? is an even function of y as well as that

[ awra=1 (16.4.66)
we find

[ZL@@:-é%% (16.4.67)
as well as

/_ Z J(y)dy = ~ (;zk;m . (16.4.68)

If we now recall that ik, and hk, are just respectively the z and z-components
of momentum then we see that these results coincide with the classical results.

16.4.1 The Quantum Hall Effect

We finally have all the ingredients for the quantum Hall effect. What we need is
to compute the two-dimensional electron density N, for the case of an electron
in a magnetic field. This amounts to counting the degeneracy of the Landau
levels for electrons confined to motion in a plane. Now the solution that we
found, in section 16.3, for the wave function is

An
¢n,k,,k, — %ei(kzz‘}'kxl) e_(y-d)2/2A2 Hn((y _ a)//\) ) (16469)

However, if the electrons are confined to the plane z = 0 then we see that the
solution is of the form

Aﬂ ikzz —(y—a)? 2
Yn ko k. :gek’ e" W= 12 g (y—a)/A) . (16.4.70)

Here we have written @ for yo. Since the variable z is confined to 0 < z < L,
we need boundary conditions to make p, self-adjoint. The simplest conditions
are that the wavefunction be periodic. This means

expiksLy =1 . (16.4.71)
Therefore, we have for k, the discrete values
2
b= r=1,2,3,... . (16.4.72)
L,

From equation (16.4.58) we recall that

cky
= = h—= . 4.

a = Yo B (16.4.73)
This means that

_ By

ky = eBL, _ Ly

St =5 (16.4.74)
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Therefore, the index r has a maximum value

r _ kr max Ls _ LzLy
T o T oma?

This number ryay is the number of states available in each Landau level (if we
neglect spin) for a sample with area LgLy. Thus, rmax/ (LzLy) determines the
degeneracy per unit area of the sample in question. The resulting degeneracy
is therefore

(16.4.75)

Tmax eB
No = =

== (16.4.76)
w Ly

The considerations above suffice to obtain the Hall resistance. Each Landau
level can hold the same number Ny of electrons per unit area (neglecting spin).
Therefore, if we have exactly j Landau levels filled then we must have

No=jNo j=123,.... (16.4.77)
Substituting this into the expression for the Hall resistance, namely
1 B
=- 16.4.
Ry cNos (16.4.78)
we get:
1 B h
=W T =L (16.4.79)

This simple equation illustrates why the quantum Hall effect is so important.

The Hall resistance depends only the ratio of two fundamental constants, namely

h and e?. The Hall resistance provides the modern standard for resistance since

Ry = —ha = @2—8—1 Q. (16.4.80)
Je J

Furthermore, the quantum Hall effect also provides the most precise measure-

ment of the value of Planck’s constant h.

We have furthermore found that the discrete Landau levels explain the quan-
tized steps in the Hall resistance. They do not, however, explain why the Hall
resistance remains constant over a range of values of the magnetic field (the
plateaus). This effect is due to defects in the material. These defects have the
effect of spreading out the Landau levels. The discussion of how this happens
is beyond the scope of this book, but is discussed in a qualitative fashion in the
article by Halperin [16.2]. An argument based on gauge invariance is also to be
found in the article by Laughlin [16.3].

16.5 Magnetic Field: Heisenberg Equations

We now return to the problem discussed in section 16.3 and solve it again.
To illustrate how similar the classical equations of motion and the Heisenberg
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equations are, we solve the Heisenberg equations. To further illustrate the use
of other gauges we this time employ|the symmetric gauge so that with a uniform
magnetic field in the z-direction we have

A= g(—y,:c,O) . (16.5.81)

Finally to obtain the wavefunctions we use an algebraic technique similar to the
method used in section 9.2 to solve the harmonic oscillator. The Hamiltonian
is again

1 e

H=o—(p+ ZA)Z =7 (16.5.82)

where we have introduced the mechanical momentum 7 related to the canonical
momentum p by

F=p+ %A . (16.5.83)

If we were doing classical mechanics, the mechanical momentum 7 would just
be equal to mv. In quantum mechanics it is, however, the canonical momen-
tum components p; that satisfy the canonical commutation relations with the
coordinate components z,. In other words

[pj, 2k] = —ihdjy. . (16.5.84)

Using this fact, and the explicit form for A given by (16.5.81) we can compute
the various commutators among the mechanical momenta. Thus,

e e
(M, my] = ;[PrvAy]*’z[Az}py]

eB eB
= %[Px: z] + %[—y» Py]

ieh B
= ——B=—j—i. 16.5.
. kv (16.5.85)
Similarly, we find
[rg,m] = [my, ;] =0. (16.5.86)
It is now straightforward to obtain ithe Heisenberg equations of motion
. 1 eB
Ty = 5[7&,, H]= =Ty = Wy (16.5.87)
. 1 eB
Ty = i—h[ny, H)= Ty =Wy (16.5.88)
. 1
T, = ﬁ[ﬂ’z,H] =0 (16.5.89)
and
mi= —[r, H] = 7 . (16.5.90)
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Equation (16.5.89) shows that m, is a constant of the motion. Furthermore
writing out m, explicitly we see that it coincides with the canonical momentum
p:. Thus,

T, = p, = constant . (16.5.91)

This result is exactly the same as the result obtained earlier and also coincides
with the classical result.

We next use equation (16.5.90) to replace r, and 7, by my and mé respec-
tively on the right hand side of equations (16.5.87) and (16.5.88) to get

frp = —mwy (16.5.92)

fty = mwé . (16.5.93)
These equations can be integrated immediately to yield:

Tz + Mwy = mwy, (16.5.94)

Ty — MWE = —MWTy . (16.5.95)

We have written the constants of integration as mwyo and —mwzy. This means
that zo and yo are also constants of the motion and commute with the Hamil-
tonian H. They also commute with both 7, and my;. On the other hand they
do not commute with each other. In fact

= g v 4 T
o] = [e- Ty ]
1 1 1
= syt e m] - gy, ] (16.5.96)
So, working this out, we find
ih ke
[l'(),yo] = —'n; = 15 =i\ . (16597)

It is interesting to note that the equations of motion (16.5.87) to (16.5.90),
as well as the first integrals (16.5.94) and (16.5.95) coincide with the classical
results. For the classical motion we have free motion along the z-direction and
circular motion in the = — y plane with the centres of the circles located at
(0, 40). In fact, for constant energy we have

H—i(n2+n2)+i—E+i (16.5.98)
Tom V' ET W T gm T T T oy e

where we have introduced the conserved “transverse energy” E,. If we now
consider (2E;)/(mw?) and write this out we get classically

2B, 1
mw? T m2w?

(724 72) = (2 — 20)® + (y — w0)° - (16.5.99)

This is the equation for a circular orbit with radius

g 2B
" mw?

(16.5.100)
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and centre at (g, yo). The same result holds quantum mechanically. This does
not mean, however, that the trajectory of such an electron in a fixed energy
eigenstate of the Hamiltonian

1
He= o (2 +72) (16.5.101)
is exactly measurable. Only the radius R is measurable. The centre of the
circle is uncertain because zo and yo do not commute but satisfy instead the
commutation relation given by equation (16.5.97). Thus, they also satisfy the
uncertainty relation

)‘2
AzoAyo > 5. (16.5.102)

So if, in conformity with the classical results, we interpret (zq,yo) as the opera-
tors whose eigenvalues yield the coordinates of the centre of the circular motion,
then the centre of the circle is not exactly measurable. This is why a trajectory
is not observable. Writing out the Hamiltonian (16.5.101), we find

1 e?B? eB
o (P24 8)) + o (2" + ) + 5—(apy — )

1 1 1
5 (P2 +p%) + gmw?(x2+y2)+ swls - (16.5.103)
We can easily check that L, is also a constant of the motion since it commutes
with both H, and p?/2m. It is, however, not an independent constant of the
motion since we can write

Hy

1
L, =zpy — yps = amy — yms + Emw(:v2 ) (16.5.104)
and then use equations (16.5.94), (16.5.95) and (16.5.99) to rewrite this as

1
L = mwle(z—zo)+y(y = w) = 5(2" + 4]
1

= §mw(R2 —zi-y3) (16.5.105)

This concludes our discussion of constants of the motion and solutions of
the Heisenberg equations. The physical interpretation is now clear. The motion
of the electron is as in the classical case, there is linear motion parallel to the
magnetic field and circular motion about the magnetic field. Only the location
of the centre of the orbit is indeterminate to roughly within a circle of radius A.

16.6 Energy Eigenfunctions

We can also obtain the energy eigenfunctions using the Heisenberg operators.
In fact the procedure is similar to what we did for the simple harmonic oscillator
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when we solved that problem algebraically. However, because there are addi-
tional conserved quantum numbers the problem is somewhat more complicated.
To start we introduce, in the symmetric gauge, the operators

i = 22 e (0]
a_ﬁﬁ(ny+z1r,,)_)‘\/_2_[ 3 +A (3:0: zay (16.6.106)

A . 1 [z+y a .0
t= 2 (n, — = — S T T
al = ﬁ\/i(ﬂy ing) Wi [ 3 A (82: -Hay)] . (16.6.107)

Then,

[a,al] =1 (16.6.108)
and the Hamiltonian H; can be written as
Hy=hw(a'a+1/2) . (16.6.109)

So we have exactly recovered the Hamiltonian for a simple harmonic oscillator.
This means we can define the ground state by

ade=0 (16.6.110)
and
Tz ¢0 :ﬁk¢0 . (166111)
The normalized state ¢, is then given by
1 n
$n = T (a")" 0. (16.6.112)

To find ¢o we use the explicit form of @ as given by eqn (16.6.106) as well as
the explicit form of 7, = —ih0/0z to solve equations (16.6.110) and (16.6.111).
We then obtain

(16.6.113)

0,5 = f(x —iy)exp {ikz _E4y }

42

where f is an arbitrary function. This fact reflects the infinite degeneracy of
these states. It also means that we can impose another condition on ¢g. A
possible condition is that ¢o should also be an eigenfunction of either 2, or yo.
Either of these conditions is motivated by the fact that

[20, ] = [20, a'] = [30, ] = [30,a"] = 0 (16.6.114)
and thus if
Zoo = € do (16.6.115)

or

Yobo =ndo , (16.6.116)
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we see, if we use (16.6.112), that we also have

Zobne =€ Pne (16.6.117)

or

yoﬁbn,r] = 77¢n,1y . (16.6.118)
Writing out 2y and yo we find
d

== + zx-’a (16.6.119)
y
) 0
Yo = 2 —iX o (16.6.120)

The use of either (16.6.117) or (16/6.118) destroys the obvious symmetry be-
tween z and y. This suggests that we introduce the more symmetric operators

Ty + zyg z+ zy 0 0 )}
= — 16.6.121
BV [ <6x o (16.6.121)
-1 1 [z—: 0 0

ptoZo=io 1 [____y X <__ - _)] _ 16.6.122

W2 W2 2 Oz lay ( )

Then we find that

(6,61 =1 and [a,b]=][a,b)=0. (16.6.123)

So both b and 4! commute with the Hamiltonian H;. This means that we can
label the eigenstates not only by the Landau level quantum number n but also
by the eigenvalue m of btb. That is, we solve instead of either equation (16.6.117)
or (16.6.118) the equation

btb¢n,m = m¢n,m . (166124)
This is easily achieved by setting
bpno=10 (16.6.125)

and
1 e
_\/ﬁ(b) bn0 -

The explicit solution for ¢g g is given by:

$nm = (16.6.126)

2 2
exp {ikz - ‘Lfl} . (16.6.127)

¢0,0 = 4)2

1
2r A2
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16.7 Translation Invariant States

We now use the results just obtained to construct translation invariant states.
In doing so we follow closely the paper by Ferrari [16.4]. Such states are again
solutions of the Schrédinger equation with the Hamiltonian H, but, in addition,
they also satisfy boundary conditions on the boundary of the material. We
specify the precise form of these boundary conditions after we first develop
some machinery. To this end we consider the operator

c*b — cbt
V2

where ¢ is a complex number related to a two-dimensional vector ¢ with com-
ponents

¢ = (cz,cy,0) (16.7.129)

S(c) = exp] ] (16.7.128)

by
c=cz+icy . (16.7.130)

The operator S(¢) may also be written

i
S(e) = exp[ﬁc (p—e/cA)] . (16.7.131)
It is important to notice the sign in front of the vector potential; it is the opposite
of the sign appearing in the term defining the mechanical momentum operator
#. The operator S(c) is known as a coherent-state operator and as such has
been extensively studied. For further references see the paper by Ferrari [16.4).

Now suppose that d is another complex number corresponding to a vector d.
Then,

S(e)S(d) = S(c +d) exp[—%] . (16.7.132)
The argument of the exponential when written out reads

—5*"4%“’*- =~ 5y3(ede — caty) = 2/;2 (cxd)-e,.  (167133)
Hence, we find that

S(c)S(d) = S(c +4d) exp[—m(c x d) - e;] (16.7.134)
and, repeating the process

S(e)S(d) = S(d)S(c) exp|— A’ (cxd)-e] . (16.7.135)

Therefore, if the parallelogram with sides given by the vectors ¢ and d has an
area which is an integral multiple of 2mA2, that is,

(exd)-e, =2n\%u u=1,23,... (16.7.136)



16.7. TRANSLATION INVARIANT STATES 379

then S(c) and S(d) commute
[S(e), S(d)] =0 . (16.7.137)

So, remembering that A? = (fic)/(eB), we see that u is the number of units of
flux, of size hc/e, passing through the parallelogram with sides ¢, d. From now
on we shall only consider vectors ¢, d such that (16.7.136) is satisfied. Clearly
the operators S(c) commute with both a and a' and hence with the Hamiltonian
H,. The action of S(c) on coordinates is obtained just as for the case of the
squeezing operator in section 11.5. One begins by seeing that if we write S(c)

S(e) = €f (16.7.138)
then

F= %c -(p—e/cA) (16.7.139)
and

[r,F]=-c. (16.7.140)
Therefore, it follows that

ref=eFix+e), (16.7.141)
so that

S(c)rS(e)~! = S(c)rS(=c) =r+c. (16.7.142)

This does not mean that S(c) is simply a translation operator. It is a trans-
lation operator followed by a coordinate-dependent phase as is clear when it is
rewritten as

S(c) = ex d (cxr)-e;| ex 0 + 0 (16.7.143)

= — - e tey—| - 1.
Plax | P %8s T Yoy

Since the range of z and y is finite, 7 and 7, have each a one-parameter family
of self-adjoint extensions. These extensions may be specified by the boundary
conditions

S(Ll)'d) e“"d)
S(Lo)y = ey (16.7.144)

where 6, 6, label these unitarily inequivalent self-adjoint extensions of the
coherent state operator p — e/cA. In our previous discussion of the quantum
Hall effect we had chosen the parameters §; = 6 = 0. We now look at what

parameters are possible. The conditions (16.7.144) are clearly compatible only
if

S(L1)S(La) = S(L)S(Ly) (16.7.145)
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so that we require
(L1 x Ly) -e;| = 27A%g1 g1 =1,2,3,... . (16.7.146)

It will turn out that gy, is the degeneracy of the Landau level, just as we saw
before. Hence the subscript L. Now if

Li=pc p=123,... (16.7.147)
and
Ly=p'c+qd p,q¢=1,2,3,... (16.7.148)

with as above

(cxd) e, =2r\2u u=1,2,3,... (16.7.149)
we find that
gL = pqu (16.7.150)

and the vectors ¢, d form a lattice which provides a tiling of the area A bounded
by L; and Ls.

We now use these operators S(c) and S(d) to construct a translation covari-
ant basis. To do this we begin with the wavefunction ¢, o in equation (16.6.125)
and form the double series

¢pu — \/_ Z —’I‘ ( ) _”’] On 0() . (167151)

r,8s=—00
Using the explicit form of the operator S we can rewrite this expression as

¥i (r)
) 71_15 Y (—1yreuemiluntve) giftectretsdixr g (Lo sd) . (16.7.152)

This series converges pointwise since ¢, o is Gaussian for large values of the
argument. Furthermore, since the operators S(c) and S(d) both commute with
Hy this is again an eigenstate of H, with eigenvalue (n + 1/2)hw. This function
is a Bloch function constructed from the coherent states associated with the -
lattice formed by the vectors ¢ and d. The phases p and v are fixed by the
boundary conditions (16.7.144). In fact we find

S(eyyn” = ergny
S(yph” = e yh . (16.7.153)
Now, using the fact that

S(Ly) = S(pe) = (S(c))" (16.7.154)
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and

S(Ly) = S(p'c + qd) = S(p'c) S(qd) exp { 2’;3 (cxd)-e } (16.7.155)

we find that the boundary conditions are satisfied if

pp = 6,42y

mup'q+p'utqu = 6y+2mny (16.7.156)
or
1
po= = =01 42mny]
p
1
v = [ —p'n1 + png) + E[—P'gl + pby) (16.7.157)
where

n=0,1,...,p-1
0< ([-p'na+pna) <pg . (16.7.158)

Thus, we have a set of eigenfunctions of H; that also satisfy the boundary con-
ditions (16.7.144). Clearly, different choices of 8; and 8, correspond to different
self-adjoint extensions of the coherent state operator p—e/cA and hence to dif-
ferent dynamics. The difficult questions of normalization and other properties
of these solutions as well as further references to the literature are to be found
in the paper by Ferrari [16.4].

16.8 Gauge Transformations

The calculations so far were performed in the symmetric gauge. This was done
only for convenience. We now show that the whole procedure goes through for
any gauge. To do this we again write equations (16.6.106) and (16.6.107) as

A .

a= -h—\/i('rry + im,) (16.8.159)
A .

al = m(ﬂy —img) (16.8.160)

where, as before the mechanical momentum is
F=p+ %A . (16.8.161)

However, this time the vector potential A is in an arbitrary gauge. Furthermore,
we also define

+1y
b = —T+z
a Aﬁ
o= a4 1Y (16.8.162)

W2
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This reduces to our previous definition (16.6.121) and (16.6.122) for the sym-
metric gauge. It now again follows that

Ja,all=1, [B81]=1, [0,8)=[a,b7]=0. (16.8.163)

So these operators satisfy the same algebra as those previously defined and
hence are related to the old operators by a unitary transformation. This trans-
formation amounts to multiplying each state by a phase factor. Thus, if we
let

A= g—(—y,z, 0) + VA(z, ) (16.8.164)

then the unitary operator is given by
U = exp (—E A) . (16.8.165)
he

Furthermore, the boundary conditions do not change since the transformation
given is unitary.
For example, if we choose

A= gzy (16.8.166)

we recover for the basis functions, the solutions in the Landau gauge (equa-
tion (16.3.49)). Also we find that the factor exp(ik,z) is replaced by a factor
exp[(iy(z — 2a))/(2A?)]. Now, using the fact that @ = zo = —(fic)/(eB)k, and
A2 = (hc)/(eB) we find that this factor is just exp[i(zy)/(2A?) + ikyy]. The
first factor is simply due to the gauge transformation from the Landau to the
symmetric gauge with the gauge function

A= g:cy. (16.8.167)
The factor
exp[—ikzz + ikyy] = exp[i(zyo — yz0)/(2A%))] (16.8.168)

reflects the arbitrariness in the choice of the centre (g, yo) for the orbit.

These eigenfunctions not only play an important role in understanding the
quantum Hall effect but also the energy levels of atoms in superstrong magnetic
fields. By superstrong magnetic fields we mean fields so strong that the “orbits”
due to the magnetic field have shrunk to the order of magnitude of Bohr orbits.
Thus, these magnetic fields must be so strong that their Larmor orbit

[ hw h?
Ry = W S ap = m . (16.8.169)

Substituting for the Larmor frequency w and solving for B we find
m2e3
3
For such strong fields it is not the magnetic interaction that is the perturbation

but rather the Coulomb term [16.2] and the atoms become more “cigar” than
“spherical” in shape.

B> c. (16.8.170)
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16.9 Problems

16.1 The strongest static magnetic fields currently achieved in laboratories are
of the order of 3 x 10° gauss; For fields of this strength estimate the
magnitude of the term

e?

ome2
16.2 Solve the eigenvalue problem for
=+

where zo and yo are given by lequations (16.4.70) and (16.4.71). It may
be useful to write the eigenvalue problem in the form

rafy = (2 + 1A% .

Interpret the meaning of this result.

16.3 Show that in the presence of a time-dependent electromagnetic field (¢, A)
the equation of continuity holds for a particle of charge —e if the charge
density is given by

p=—e¥'V¥

and the current density is given by
j=4%%N%V+MW@MW—WW—kﬂmMWﬂ.

Hint: Start with the time-dependent Schrodinger equation.

16.4 Show that the Schrodinger equation is form invariant under the gauge
transformations given by equations (16.2.21).

16.5 Under a gauge transformation we have that for static electromagnetic

fields
Ao AM=A+VA
p—ot=9¢
¥ — YA = (/R )

so that the Schrodinger equation remains form invariant. We also require,
however, that observables be gauge invariant in the sense that their matrix
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elements remain invariant under gauge transformations. This means that
if under a gauge transformation an observable

O(p, A, ¢) = O(p, A%, ¢*)
we require that

(¥,0(p, A, 6)8) = (¥*,0(p, A", ¢*)2") .
The left side may be rewritten as

(¥,0(p, A, 9)®) = (¥",0%(p, A, 4)2"),
where

0*(p, A, ) = ¢i(a/h)A O(p, A, ¢) e~i(a/h)A

is the unitary transform of the operator O(p, A, ¢). Show that the result-
ing necessary and sufficient condition, namely

O*p, A, ¢) = O(p, A%, 41)
is satisfied if and only if
O*p,A,4)=0(p+q/cA,¢) .

See reference [16.5] for further discussion.
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Chapter 17

Applications

17.1 Introduction

In this chapter we continue the study of the interaction of electrons with the
electromagnetic field. In particular, we study the splitting of spectral lines due
to a magnetic field - the Zeeman effect. To carry out computations for this
effect requires the study of the addition of angular momenta. This problem
constitutes a major portion of this chapter.

17.2 Spin and Spin-Orbit Coupling

We now consider an electron interacting with both an electric as well as a
constant magnetic field. The “orbital” part of the Hamiltonian is then given by
(16.2.3) with ¢ = —e,

H, (p+ %A)2 - (17.2.1)

" m

where the subscript o stands for “orbital”. Choosing the symmetric gauge such
that

A=-jrxB (17.2.2)

we can rewrite this Hamiltonian (se¢ problem 17.8) as

2 2

P B ¢ A2_
H, = o +V(r)+ 2ch L+ 2mc2A ed (17.2.3)
where V = —e¢. For most cases of weak magnetic fields we drop the second

last term since it is much smaller than the other terms.
This is not yet the complete Hamiltonian for an electron in an electromag-
netic field. The fact that the electton has spin adds two more terms to this

385
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Hamiltonian. The first of these arises from the fact that due to its spin the
electron also has a magnetic moment (section 9.7)

- ge

=8, 17.2.4

f=5— (17.24)
The factor g is known as the gyromagnetic ratio and was first measured spec-
troscopically to have the value g = —2. This factor arises automatically in
Dirac’s relativistic equation for an electron and is exactly —2 except for very
small corrections due to quantum electrodynamic effects. The measured value
of g agrees with the value calculated from quantum electrodynamics and is

9=-2x (1411596389 x 1073) . (17.2.5)

We shall use the value g = —2. Thus, the energy due to this magnetic moment
is given by

Hn=-ji-B=-3B.5s. (17.2.6)

2me

There is a second energy term which arises due to the interaction of the
spin magnetic moment of the electron with the magnetic field created by its
orbital motion. Crudely speaking, the electromagnetic field due to the nucleus as
described in (17.2.6) above is viewed in the rest frame of the nucleus. However,
to get the same field in the rest frame of the electron we must perform a Lorentz
transformation. This causes the originally purely electric field

0ér

E=-2tt (17.2.7)

to acquire a magnetic component
v
Byorentz = _'; xE . (1728)

The interaction of this magnetic field gives rise to the so-called spin-orbit inter-
action
v

4

. ge
H;.o. = —ji - Brorentz = —% (

x E) S (17.2.9)
or
€
Hio =758 (Exp). (17.2.10)

This term was first proposed by Goudsmit and Uehlenbeck [17.1]. Unfortunately
it was too large by a factor of 2. Thomas, however, showed that relativistic
effects cause a further precession of the spin vector to effectively reduce H,,
by a factor of 2. Thus, the spin-orbit interaction is given by

Hyo = S-(Exp) . (17.2.11)

&
2m2c?
If the central electrostatic field is described by a potential ¢(r) then
ldg _ 1dV

r
E= _|V¢I; Y er dr

(17.2.12)
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where we have introduced the potential energy V = —eé. So finally
1 1dV
H,, = e ;ES ‘L. (17.2.13)
Thus, the resultant Hamiltonian is given by
2
P e 1 1dV
H=—+4V —B- (L ——--—8-L. 17.2.14
2m +V(r)+ 2me (L+28)+ 2m2c?r dr ( )

17.3 Alkali Spectra

Consider any alkali atom in the absence of a magnetic field. Furthermore restrict
your attention to the outer or valence/electrons and treat the inner electrons as
inert closed shells. Then this is effectively a one electron problem in some central
electrostatic potential V(r). Then, the appropriate corresponding Hamiltonian
is given by (17.2.14) with B=0

2 1 1dV
H=2 4v(@)+ Zs.1L

o o2y dr (17.3.15)
Now, the total angular momentum J = L + S satisfies
F¥=L"+8*+2L-S (17.3.16)
so that
L-S= % (I?2-12-8%) . (17.3.17)

Also since H, J%, L? and S? are mutually commuting we can label the eigenkets
of H by |n,j,!,s). Thus, fixing j and [ the effective potential becomes
2
Verr(r) = V(r) + 47:—282%%[](] +1)-l(l+1)-3/4]. (17.3.18)

Here we have used the fact that S = h/2. Thus, in fact, j =1 £ 1/2 except for
S-waves (I = 0) in which case j = 1/2. The effect of this is to give a different
effective potential for levels with the same n and [ but different orientations of L
and S or in fact different J, except for S-waves. This means that all degenerate
levels with I # 0 have in fact two different effective potentials depending on the
two values of j. So, all energy levels with I # 0 are doublets. For example, all
I = 1or P levels split into the doublets P39 and Py;; where the subscript ers
to the value of j.

If we now treat the spin-orbit term in (17.3.15) as a perturbation then to
first order in perturbation theory we can calculate the splitting resulting from
the spin-orbit interaction. Thus,

ABgouvlet = Epgip1/2— Enyi-1/2

B2 1dV
= g grnh

(+1/2)(1+3/2) -1 +1)-3/4
(- 1/ +1/2) +1( +1) + 3/4] (17.3.19)
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or

h? 1dv
AEgoublet = m(n,ll;—d—;|ﬂ,l)(2l+ 1) (17.3.20)

where we have written |n,l) for both |n,I +1/2,1,1/2), and |n,l - 1/2,1,1/2)
since the matrix elements for both these states are identical.

It is this interaction that is responsible for the well known spectroscopic dou-
blet in sodium called the sodium D lines. This doublet occurs in the transition
from the Py/; and P, /2 states to S states. Here we are using the spectroscopic
notation S, P, D, F, G, H, etc. for ! = 0,1,2,3,4,5 etc. and the subscript
denotes the j value of the level.

The reason that the sodium doublet is more widely split than the hydrogen
doublet is due to the more rapid variation of V (r). Thus, dV/dr is much larger
for sodium than hydrogen since the inner closed shells in the case of sodium
screen the valence electron and more of the nuclear charge becomes effective on
the valence electron as it penetrates the outer shell.

After considering spin-orbit coupling the obvious next step is to consider an
atom in a weak magnetic field as well and to study the Hamiltonian (17.2.14).
Unfortunately we must first study another aspect of angular momentum, namely
how to add two angular momenta since (17.2.14) involves the term L + S.
We shall therefore do this first and then return to the Hamiltonian given by
(17.2.14).

17.4 Addition of Angular Momenta
Consider a pair of particles with angular momenta J; and Js. Then,

This will also be the case if J; ers to the orbital angular momentum L and J 2
ers to the spin angular momentum S of just one particle. In either case the total
angular momentum J is given by

I=3,+13, . (17.4.22)

If we now consider commutators, again picking 2 as the perred direction, we
find two sets of mutually commuting operators, namely

1) J2, J,, JE, J2
and
2) J127 le, Jzzs J2z .

Thus, it is possible to simultaneously diagonalize all the operators in either the
first or the second set. We label the corresponding eigenkets as

1) |j)m1j1’j2)
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and

2) IjI) mlaj2y mZ) .

Both sets of eigenkets then form complete orthogonal sets and can be nor-
malized so that both sets may be used as basis sets. Thus, the two sets are
related by a unitary transformation and we may write

limyj1,52) = Y (Grjzmama|jmljs, my, j2,ma) - (17.4.23)
mi,ma

The coefficients (j;j2m1m2|jm) are the matrix elements of the unitary transfor-

mation connecting the two basis sets/and are referred to variously as “Clebsch-

Gordon” ,“ Wigner” or “Vector-addition” coefficients. The inverse of equation
(17.4.23) is written as:

iy ma, jo,ma) = Y (jmljrjamima)lj, m, ji, ja) - (17.4.24)

jm

Thus, we immediately have that

3 (Grgzmima|jm)(jm|jy j2mim) = bon,mi mymy, (17.4.25)
jm
and
Y (imljrjamima) (i jamima|i'm’) = 85 bmm: - (17.4.26)
my,mz

Clearly the range of summation in (17.4.23) and (17.4.26) is over —j; < m; < ji
and —j, < my < jo since that is the full range of my and m;. On the other
hand we have yet to find the range for j and m. We now do this by a counting
procedure as well as by explicitly constructing some of the vectors |j, m, j1, j2)
in terms of the vectors |1, my, jo, ma). We first notice that the vector

Ijlvml)j2ym2) = |j15m1>|j2am2) (17427)

where |j;,m;) are the eigenkets of J? and J;,. This is easily seen to be the
case since JZ, Jy, operate only on |ji, m;) and J2, Jo, operate only on |jz, m3).
Furthermore, each of these vectors i3 also an eigenvector of J, with eigenvalue
{(my + ma)h since

By = Jis + s (17.4.28)

and hence

J1zlg1, madlde, me) + Joz g1, ma) iz, ma)
(m1 + mz)ﬁljl,ml)ljz,m2> . (17.4.29)

J: |71, m1, ja, ma)

The maximum values of m;,m;, are j; and j, and therefore the maximum eigen-
value m of J, is

Mmax = J1 + J2 - (17430)
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But, since J satisfies the standard algebra of an angular momentum operator it
follows from this that the maximum value of j (corresponding to the eigenvalue
of J2) is also j, + jo. Hence,

Jmax = j1+7J2 - (17.4.31)
We now show that in fact j assumes once and only once all the values

J=n+in+i-10+2-2,..,lh—jl. (17.4.32)
It is clear that by repeatedly applying the operator J_ to the state

limaxMmaxjijz) = |j1 + ja, j1 + J2, j1ja)
171, J1; Jo, J2)
i1, 51)d2, j2) (17.4.33)

we get all states |j; 4 jz2,m, jij2) with m running from (ji + j2) to —(jy + ja).
Thus, there are 2j + 1 different possible values of m for j = j; + j,. The same
argument holds for any other j value so that there are 25 + 1 different values of
m for every state of definite j.

Now consider states with m = j; 4+ j» — 1. These can be obtained in two
ways; namely from m; = j; , ma = jo — 1 or my = j; — 1,mg = jo. Hence, there
must be two and only two states of definite j with these m values. They are
the states with

i=hti m=j-1
AR . 17.4.34
J=h+j-1 m=j. ( )
Similarly for the case of m = j; + j; — 2 theére are exactly three states of definite
my, my values corresponding to the pairs (j1,j2—2), (ji—1,j2—1), (j1~2, j2).
Thus, there are also exactly three states of definite j, namely

J=j1+72 m=j-2
J=n+ip-1 m=j-1 (17.4.35)
J=h+p-2 m=j.

Similarly for m = j; + j; — 3 there correspond exactly four states of definite m;,
my values, namely7 (]1 )j2 - 3)7 (]1 -1 7j2 - 2)7 (Jl -2 7j2 - 1)7 (]1 - 3 vj?) and
hence also exactly four states of definite 5, namely

i=j+j m=j-3
i=ji+j—-1 m=j-2
J=h+ja—-2 m=j-1
Jj=hi+ja-3 m=j.

(17.4.36)

Continuing in this way we finally arrive at states with m = j, — j, where for
convenience we assumed j; > jp. In this case there are exactly 2j; + 1 states
of definite my, my values. They correspond to the pairs (my, mp) = (ji, —j2),
(jl_lv_j2+1)y (jl_j2+l)1)) (jl—j2_212)1 LR (j1_2j2+laj2—l)) BRRY)
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(71 — 242, j2). It therefore follows as before that there are also exactly 2js + 1
states of definite j, namely
J=iiti m=ji —2js
J=i+ip-1 m=j-25+1
(17.4.37)

J=i+i2—=2 m=j—2j2+ja.

Thus, the possible values of j are given in (17.4.32). As an additional
check we can count the number of wvectors in the two sets |j,m, j1,ja) and
|71, m1, j2,m2). From the form of the states [ji, my, j2, m2) as given in (17.4.33)
we see that for fixed (jy, jo) there are (2j; + 1)(2j2 + 1) states of this type. For
the states of type |j,m, j1, j2) we have that for fixed (j1,j2) there are (25 + 1)
states for each j value over the whole possible range of j values. Therefore, the
number of such states is

J1+i2
Y. (2+1)
J=lii=jel
i) et 1 C (i — =) o
_ ol .72)(]21 24 1l) i J2|(|J; j2[ =) +iitia— (ol —1)
=(21+1)(2j2+1) (17.4.38)

as desired.
With this result we have arrived at the fundamental additition theorem for
angular momenta.

Fundamental Addition Theorem for Angular Momenta.
In the (2j; + 1)(2j2 + 1)-dimensional space spanned by the basis set
|7,m, j1, j2) with ji and j, fixed, the possible values of j are

=i+, h+ja-L,ji+d2—2,..., 51— sl

Corresponding to each of these j values there are 2j + 1 vectors obtained
by repeatedly applying J_ to the state |jjjj2) .

17.5 Two Spin % States

In this case we have j; = j, = % The four possible states in the |ji, m; j2, ma)
representation are:

11,11 11,1 1 1 1,11 1 1,1 1

3l lp3llp =) lp=3llpg) I3 =3l 3
In the |§,m; ji, j2) representation the!four possible states are:

11 11 11 11

1,1;-, = - - -1;=, = =, =) .
lv 72$2) ’ |170’212) ] l]-: 1a212) ) I0v0v2»2)
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The state of highest weight is given by
11,11
115,50 = 15,2015, 3)
The other two states with total S = 1 are obtained by applying S_ = S1_+55—
to both sides of equation (17.5.39). This yields

ST =TT 01k L
1(1+1) ~ 11 =Tl 0515, 7

T R D b e bl -bh s

(17.5.39)

so that
11 1 1 1,11 11,1 1
1 — == =)+ l= D) s, =) 17.5.
1059 =75 {53+l (17541
Similarly applying S_ once more to (17.5.41) or else realizing that both spins

1/2 must point down to get a total z-component of spin (i.e. S;) of —1% we find
that

11 1 1,1 1
llr _1’ '2'7 5) - ,51 _§>|§7 "5) .
The singlet (S = 0) state must be orthogonal to the above three states. A
simple calculation then shows that

11 1 1,11 11,1 1
2 2) \/’2‘{'57_'2_)'§a§)_l'i)i)li’_i)}
In writing equation (17.5.43) we have made an arbitrary choice of phase.

To display the matrix of Clebsch-Gordon coefficients we rewrite equations
(17.5.39) to (17.5.43) as one matrix equation. Thus,

11,1;1/2,1/2) 1 0 0 0\ /11/2,1/2)|1/2,1/2)
I1,-1;1/2,1/2)] "o 0 0 1|]11/2,1/2)]1/2,~1/2)
0,0;1/2,1/2) 0 1/v2 -1/v2 0) \[1/2,-1/2)]1/2,-1/2)

Clearly the 4 x 4 matrix (1/2,1/2, my, mo|jm) is unitary .

(17.5.42)

0,0; = (17.5.43)

(17.5.44)

17.6 Spin % + Orbital Angular Momentum

The only examples of interest to us will be the coupling of orbital and spin
angular momentum for an electron. Since S = 1/2 the only possible j values
are [ +1/2, for I # 0. If | = 0 only j = 1/2 is possible. We shall simplify the
notation somewhat in this case and denote the states |l £ 1/2,m;l,1/2) simply
by |l £1/2,m;l) . Thus, again the state of maximum weight (maximum J,) is
given by

11
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Now using the matrix representation

1

0
for |3, 1) and the coordinate representation Y;; for |I,1) we have the represen-
tation

(¥)

for the state |I + é,l+ ;1. All other states |l + £, m;[) are now obtained from
this state by repeated a.pphcation of

Jo=L_+85- . (17.6.46)

Construction of the state || — £,/ — - ;1) , from which all states || — %,m;l)
are again obtainable by applying J_, i 1s somewhat more difficult. (See problem
17.1.) The answer, in fact, is

1 1 11 2 1 1

|l"—)l > \/2IT| >|2’§)_ m'hlﬂél-i)

. (17.6.47)

17.7 The Weak-Field Zeeman Effect

We are now finally able to consider the Hamiltonian (17.2.14) which reads:

2 €
H = m+V(r)+f(r)S‘L+§T—n—EB-(L+2S)

b

2

P’ €

o TV + (1S L+ —B-(I+5) (17.7.48)

where

1 1dV
1) = v ar
is the radial part of the spin-orbit term.
We choose the z-direction to be along the direction of the B field which is
assumed constant and uniform. Then| defining the Larmor frequency
B
W= —— (17.7.50)

2me

(17.7.49)

the last term becomes w(J; + S;). The eigenstates of the Hamiltonian without
the last term may be labelled |n,{+1/2,m,l) where n is the principal quantum
number and j is { £ 1/2. If we treat the term due to the magnetic field, namely

w(J; +S;) by means of first order perturbation theory we get an energy shift
AE given by

AE =w(n,l£1/2,m|J, + S;|n,l £1/2,m,]) (17.7.51)
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or
AE = hum + w(S,) . (17.7.52)

To evaluate this further we must calculate explicitly the spin dependence of the
states. Thus, we need a formula of the form

n 2 1/2,m )= Y (1,1/2,mi,mell 2 1/2,m)ln, |, mi,m,) . (17.7.53)

my,m,

Rather than evaluate the Clebsch-Gordon coefficients (I,1/2, my, m,|l +1/2, m)
we calculate these states directly. As a first step we write the operators corre-
sponding to the total angular momentum J = L + S in matrix form.

([ L.+kh2 0
J, = ( 0 Lk ) . (17.7.54)

To go along with this we write the state [n,{+1/2,m,l) = |n, j, m,[} in config-
uration space as

Unjmi = ( :ﬁ; ) . (17.7.55)
Then, using

(L: +h/2)¢1 = mhi

(L: = h/2)s = mhy (17.7.56)
we find

Y1 = Ru(r) a1V m-1/200,¢)

VY2 = Ru(r)aYimy/200,9) - (17.7.57)

We now fix the constants a; and a; by requiring that ¢y, jm should also be an
eigenfunction of

-z L*+3h+hL, KL, —iL,)
2= (L+8)?= 4 @ W Ty 17.7.58
(L+5) ( MLe +iLy) L*+ 3h—hL, ( )

with eigenvalue j(j + 1)A%. Thus, using the equations

LiYim = VIl +1)—m(m £ 1)RY) pas (17.7.59)
we get

G+ =Il(l+1)-m=1/4a; - /(I+1/2)2—m2a; = 0

VI+1/22=m2ay - [jG+1) -l +1)+m—1/4]a; = 0 .(17.7.60)

For a solution to exist we need that the determinant vanishes. This yields that

j=14+1/2 or j=1-1/2 .
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For j =1+ 1/2 we get, up to a normalization factor,

a = Vi+m+1)2
ag = l-m+1/2 . (17.7.61)

So,

Rui(r) ( VIEm+1/2Ymo1/2 ) . (17.7.62)

VAFI\ I=m+1/2Ymy1p2
Here we have included the normalization factor 1/4/20 4+ 1. Similarly for j =

[ —1/2 we get
v = Rn(r) ( l=m+1/2Yim1/2 ) (17.7.63)
n,j=l-1/2,m, VAFI\ —l+m+1/2 Yims1/2 '

We can now complete our calculation of AE. Thus, for example, for the
state [n,j =1+ 1/2,m,l) we have

(S:) =

1 ((\/l+m+%¥},m_%(0,¢)),sz(1/l+m+%}’,1m_%(9,¢)))

Y j=l+1/2,mi =

A+1 \/l_m+%yl,m+%(0’¢) Vl_m'}'%yl,m-}-%(g:‘p)
(17.7.64)
so that in this case
(S:) =
A U+ ma DY Yy y) = (= m+ DYy Vi)
221+1 +m+2 l,m-%v l,m—% - _m+2 l,+%1 l,+%
mh
= CTIS] (17.7.65)
and
1
AE[+1/2’m’[ = hwm (1 + m) . (17.7.66)
Similarly for the state |n,j =1—1/2,m,I)
<SZ> =
1 \/l_m+%yl,m—%(0lsa) s Vl—m+%yl,m—%(0"p)
U+ T\ ~/l+m+ 1Y,y 1(6,9) —\fl4m+ LY n(0,0)
(17.7.67)
s0
(S:)=
h 1 1 1
S [0+ Py Y ) = (s D3, )

__mh_ (17.7.68)
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and in this case we obtain for the weak field Zeeman Effect

1
AEI—I/?,m,[ = hwm (1 - 21—+1'> . (17769)

17.8 The Aharonov-Bohm Effect

In Chapter 16 as well as in this chapter we considered the interaction of a charged
particle with an electromagnetic field. We now again look at this interaction in
some detail. The Aharonov-Bohm (AB) effect was first mentioned by Ehrenberg
and Siday [17.4], but was really brought to the foront by the work of Aharonov
and Bohm [17.5]. A controversy over this effect raged for more than two decades
but has been settled, by some fine experimental work [17.6], in favour of the
conventional quantum mechanical interpretation.

In the AB effect a charged particle, such as an electron, is seen to be affected
by electromagnetic potentials in regions in which no electromagnetic fields exist.
An important point here is that for this effect to occur, space no longer forms
a simply connected region. The effect is crucially dependent on the non-trivial
topology of space.

A second important point, which we now recall, is that the wave-function for
angular momenta must be single-valued. This was discussed in chapter 9 (see
reference [9.1]). We now turn to two classes of explicit problems that illustrate
this effect. In this discussion we follow closely the original papers of Aharonov
and Bohm.

Consider a charged particle, such as an electron, surrounded by a conductor
which is connected to a time-varying potential. Inside the conductor the electric
potential can only vary in time, not in space. Thus, the Hamiltonian of the
charged particle, inside the conductor, has an additional term eV (¢) so that

H=Hy+eV(t) (17.8.70)

where Hy is the Hamiltonian when the conductor is grounded. If the wave-
function corresponding to Hy is ¥o(z,t) then the solution ¥(z,t), for the full
Hamiltonian H, is given by

¥(z,t) = d;o(x,t)exp(—%eS) , S= /V(t) dt . (17.8.71)

The addition of the phase factor exp(—ie/AS) has no observable physical effect.
Now consider the case of an electron beam that is split so as to pass through two
different regions (fig. 17.1) each of which is partly surrounded by a conductor. In
this case, space is no longer simply connected, there is a “hole” in space, a region
inaccessible to the electrons. Now apply a different time-varying potential to
each of the conductors and only during the time that the electrons are completely
inside the conductors. The idea is to avoid exerting any forces on the electrons.
Let the solution, when both conductors are grounded, be

¥(z,t) = Y10z, 1) + ¥2,0(2, t) (17.8.72)



17.8. THE AHARONOV-BOHM EFFECT 397

Vit)

Beam
Recombiner

¥

Beam
Splitter

X

Incoming
Beam

Screen /

Va(t)

Figure 17.1: The electric Aharonov-Bohm effect.

where 1 o(2,t) and %2 o(2,t) represent those parts of the wavefunctions that
correspond to the paths 1 and 2 respectively. The solutions with potentials
turned on, as described above, are then

Y(e,t) = ¥y 0(z,t) exp(—i{e/R) 51) + P20(z,t) exp(—i(e/h) Sa) (17.8.73)

where
SI:/I/l(t)dt , Sg:/Vg(t)dt. (17.8.74)

This time the phases, from the two different regions, are different and thus
produce interference when the two beams are recombined. The phase difference
is given by

%(s1 -8 = fV(t) dt . (17.8.75)

A similar result holds in the case of purely magnetic fields and only a vector

potential, as can be seen from the relativistic generalization of the integral in
(17.8.75), namely

%}{ [V(t) dt - %A‘dx] . (17.8.76)

Thus, in the case of only a magnetic field, the interesting quantity is

€

€ € €
ES“E}{A'd"‘"h_c/B'da‘_h_cq’ (17.8.77)

where @ is the total magnetic flux passing through the area enclosed by the loop
in the loop integral.

To see how this comes about we again consider a coherent beam of electrons
which is split into two parts as in figure 17.2 so that each part passes on ei-
ther side of a solenoid containing a quantity of magnetic flux ® before being
recombined. This time the Hamiltonian of interest is

H= (p - %A)Z . (17.8.78)
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Figure 17.2: The magnetic Aharonov-Bohm effect.

If the magnetic field is a pure gauge field,
B=VxA=0 (17.8.79)

(so that also @ = 0) and if the region is simply connected then the wavefunction
% for the above Hamiltonian can always be found from

¥ = o exp(—i(e/h) S) (17.8.80)
where
VS = %A (17.8.81)

and v is the wavefunction corresponding to A = 0. On the other hand, for
the situation of interest, where space is divided into two regions such that the
magnetic field B is nonzero in an infinitely long tube and zero outside this tube,
the solution (17.8.80) above would be a multiple-valued function, for any path
that circles the solenoid, and therefore not an acceptable solution. However, if
we consider the beam of electrons passing on either side of this solenoid then
each part of the beam is in a simply connected region and therefore single-
valued. Thus, each portion of the beam is of the form given by (17.8.80), and
the recombined beam is of the form

¥ = Yr0exp(—i(e/h) S1) + $a,0 exp(~i(e/h) S2) (17.8.82)

where S; and S, are given by
-};/A -dx (17.8.83)

along their respective paths. The interference between the recombined beams
is therefore determined by the phase difference

e e e
Z(S) — So) = — cdx = —® . .8.84
ﬁ( 1~ S2) hcfA dx ﬁc(p (17.8.84)

It is important to note here, that in spite of the appearance of potentials in
the expression (17.8.75) and (17.8.84) for the phase difference, the results are
nevertheless gauge invariant and depend only on the total magnetic flux @.
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This result is the magnetic AB eéffect. The important point here is that
the theory predicts that a charged particle, such as an electron, can be influ-
enced by potentials even if the particle only passes through regions where the
electromagnetic field is zero. In a multiply connected region of space, free of
electromagnetic fields, a charged particle will still experience measurable effects
that depend on the potentials. The results are, of course, still gauge invariant
and depend only on the total flux ® = § A - dx. However, the particle never
experiences the electromagnetic fields or the forces exerted by them. The con-
clusion to be reached is that it is not only the electromagnetic fields that are
physically measurable but also gauge/invariant quantities such as the magnetic
flux.

17.9 Problems
17.1 Show that the operator
T = Aljadi— — j1J2-]
where A is a normalization constant, has the property that
Tlj,4,51,42) = 1i = 1,5 = 1, j1, j2)
forj=ji+ja.

17.2 Evaluate the expectation value {S,) for the states || +1/2,m,!) and hence
the shift in energy due to a uniform magnetostatic field.

17.3 A particle of angular momentum 1/2 is coupled to a particle of angular
momentum 1. List the states that are eigenstates of

JP= (3,4 3,)?
and
J: = J1z + Ja,
and express them in terms of the eigenstates of
(J3,J1;) and (J2,J2,) .
17.4 Consider a set of three operators T,, m = 1,0, —1 such that

T) = Tn

Ve, Tm] = V2 =-m(m 1) hT,
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(75, Tn] = mh T

where J are the total angular momeéntum operators. Evaluate the total
m' , m" dependence of the matrix elements (j, m'|T,,|j, m").

Hint: Express T}, in terms of 3 x 3 'matrices. This is an example of the
Wigner-Eckart Theorem.

17.5 Consider the unitary operator
Rafp) = 1m0l

where J is the angular momentum operator.
a) If j = 1/2 expand Rn(y) in a Taylor series to obtain a simpler expression
and apply it to the states

( (1) ) and ( (1) ) .
What is the effect of Ry (¢)?
b) If j = 1 repeat part a) but consider the states

() () = (1)

17.6 A particle of total angular momentum j; = 1/2 is coupled to another
particle with total angular momentum j, = 3/2. What are the states of
possible total j7 Express all the states with the lowest possible j in terms
of the states |ji, m1), |j2, m2).

17.7 An electron (spin = 1/2) is in a state of either / = 0 or / = 1. Ex-
press all states of total angular momentum |j, m;) in terms of the states
|1, mi)[1/2,m,) where l=0o0r!=1.

17.8 Show that if

1
A="§I'XB

where B is a constant vector, then
P-A+A-p=B-L.
17.9 Use induction to show that

G+m)!

m—j pj-m ..

|n7j1 m’l> =
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17.10 Show that if A is a vector operator such that
[‘]x, Ax] =0 , [Jz)Ay] =1h4, , [J,,,Ay] = —iﬁAy

and cyclic permutations. Then,

a)
[J%, 1%, A]) = 2K3(JPA 4 AJ?) — 4K*(A - )]
b) Use this result to show that

(JM|S - 3|J M)
M MY = Mhr———— L
(I MIS:1TM) J(J + 1)A?

and
c) hence evaluate the matrix element for the weak-field Zeeman effect

B
AE = ”BT{Mh+(nLSJM|Sz|nLSJM)} = ppBMy
where
JU+D)+S(5+1)-L(L+1
=14 (J+1)+S(S+1) - L(L+1)

2J(J+1)

is the Landé g-factor.
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Chapter 18

Scattering Theory - Time
Dependent

18.1 Introduction

So far, except for a few examples in Chapters 4 and 5, we have been concerned
almost exclusively with the discrete part of the energy spectrum. In this chapter
we commence a discussion of the continuous spectrum. Thus, we do not solve
for the energy; in fact, we solve for the wave-function corresponding to certain
initial conditions. These initial conditions correspond to a current of particles
incident on some potential and a current of particles scattered by the same
potential.

A very large number of microscopic phenomena have their origin in the
collisions of particles. For example such diverse properties as the conductivity of
metals and the critical masses of nuclear reactions are ultimately determined by
scattering phenomena. Furthermore,/almost all nuclear and high energy physics
experiments are collision experiments| and require some form of scattering theory
for their interpretation. Thus, scattering theory is one of the most important
tools of a modern physicist.

The time-dependent formulation [allows a very intuitive approach since the
concepts used correspond closely to]those used in classical scattering theory.
However, for computational purposes, the time-independent formulation is more
convenient. Therefore those readers more interested in the applications of scat-
tering theory may omit all of this chapter except section 18.7 and proceed di-
rectly to Chapter 19. The only other result used later is equation (18.9.111).
This section may be then read with profit after section 3 of Chapter 19.

To bring out the similarity between the time-dependent formulation of scat-
tering theory and classical scattering theory we begin with a quick review of the
main physical concepts used in the classical scattering problem.

403
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18.2 Classical Scattering Theory

Consider two particles that may interact with each other. Classically the state
of this two-particle system at any time ¢ isigiven by the four vectors x, (t), pi(t),
x3(t), p2(t) specifying the trajectories of both particles. In practice it is much
more convenient to reduce this problem to an equivalent one-body problem using
the law of conservation of momentum. Thus, we define

)= m1x; (t) + moXa(t)

X(t e — (18.2.1)
x(t) = x1(t) — x2(t) (18.2.2)
P(t) = p1(t) + pa(t) (18.2.3)
p(t) = mlrizmzpl(t) - mlrilmzm(t) ' (18.24)

Conservation of momentum then implies that P(t) is a constant independent of
time, say P;,, and hence X(¢) depends linearly on ¢ so that

Pin

t) = X;
X n+m1+m2

(18.2.5)

Equation (18.2.5) is simply a statement of the fact that the centre of mass moves
like a free particle with momentum P;,,, mass M = my + my and position X;,,
at ¢ = 0. One now has to solve for the trajectory of the equivalent one-body
problem described by the variables x(t}, p(t).

In a scattering problem involving an interaction of short range the trajectory
will have the qualitative features shown in fig. 18.1. Far from the interaction

Figure 18.1: Classical scattering by a central force.

region the fictitious particle corresponding to the reduced mass

myms
my +my
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moves like a free particle indicated by the two trajectories X;n(t) and Xous(t)-
In the interaction region the trajectory is complicated. We can describe the two
asymptotic trajectories by

Xin(t) = Xin(0) + 2 ¢ (18.2.6)
m
Xout (1) = Xour(0) + B2t . (18.2.7)

Due to the assumed short-range nature of the potential we may also impose the
asymptotic conditions

x(t) = xin(t) for t > —o0 (18.2.8)
and
x(t) = Xoue(t) for t— o0 . (18.2.9)

This limit has to be defined precisely and is in fact defined by

t_l’lr_noo It x(t) — xin(t) ||= 0 (18.2.10)
and

tl_lglo | x(t) — Xous(t) ||= 0 (18.2.11)
where || - || here represents the Euclidean norm. From the two asymptotic

trajectories we obtain the scattering angle by using
xin(t) ’xaut(t)
Il %in (8) 1] Xoue (2)

This is just the “overlap” between the asymptotic states. We next derive the
analogous procedure in quantum mechanics.

cosf =

(18.2.12)

18.3 Asymptotic States: Schrodinger Picture

We start immediately with the Hamiltonian for the equivalent one-body problem

2
p
H=—+V(r). 18.3.13
P v (18313)
As in the classical case we assume that V (r) is short range ! so that for large
[r] = », V(r) dies out rapidly and H approaches Ho, the Hamiltonian for a free
particle
p
Hoy=—. 18.3.14
0= o ( )
1A precise definition of a short-range potential is not required, but the condition r2V(r) —
0 for r = oo is sufficient.
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In the classical description the trajectories X;n(t), Xoue(t) were in fact deter-
mined by Hy. Similarly, in the quantum mechanical case, we assume that there
exist states W;,(t), ¥oyu:(t) evolving according to Hy such that

Jim | 9(t) = Win(t) [|= 0 (18.3.15)
Jim || 9(t) ~ Voue(1) =0 . (18.3.16)

These limits, if they exist, define the asymptotic incoming and outgoing states.
Here ¥(t) is a solution of the full Schrodinger equation with the Hamiltonian
(18.3.13). The symbol || - || here represents the Hilbert space norm and the
limits involved are called strong limits. (See problem 6.1.) One states this by
saying that W(t) converges strongly to W;,(t) as ¢ — —oo and ¥(t) converges
strongly to W, (t) as t = oco.

Since H and Hj are self-adjoint, they determine unitary evolution operators

U(t) = e~ iHt/A (18.3.17)
and
Us(t) = et/ (18.3.18)

Thus, the requirements for asymptotic states (equations (18.3.15) and (8.2.29))
may be written

lim || —iHRg(0) — e~ Hot/ Py, L (0) [|= 0. (18.3.19)

tstoo

Using the unitarity of these operators we can further write

Jim | ot/ e=HING(0) — Wi 006(0) ||= 0 (18.3.20)
We are thus led in a very natural fashion to consider the two operators
ol = lim etHot/h et (18.3.21)
t—a+too

These operators are known as the Mpller wave operators. Just as in the classical
case the two asymptotic trajectories gave us the amount of scattering (scattering
angle), so also quantum mechanically the amount of scattering is determined
by the overlap between the two asymptotic solutions. It is in this respect that
the two Mgller operators are particularly useful.

18.4 The Mgller Wave Operators
We have from the definition of Q4 that

Win(1)) = QL [¥(2)) (18.4.22)
and

[out () = QL |E(2)) . (18.4.23)
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But from (18.3.20) we can also deduce that

(1)) = Q4 [¥in(2)) = Q- |¥oue (2)) (18.4.24)
Hence combining these with (18.4.22) and (18.4.23) we get

Win(t)) = QL Q4 i (2)) (18.4.25)

[Woue (t)) = QL Q| ¥, (2)) . (18.4.26)

We assume of course that the “in” and “out” states span the entire Hilbert space
of scattering states so that at any time every scattering state can be written as
a linear superposition of states |¥;,(t)) or |¥,yu:(t)). From this and (18.4.25) or
(18.4.26) we conclude that

oloy =1 (18.4.27)

on the space of scattering states. This does not, however, imply that the oper-
ators {24 are unitary on the whole Hilbert space since one cannot establish the
relation Q;Qi =1 for all physical states even though we do have

QLU (1)) = |¥(1)) (18.4.28)

on the space of scattering states |¥(¢)). The reason for this is, that if H has
bound states then the scattering states |¥(t)) do not span the entire Hilbert
space. All the scattering states are orthogonal to the bound states and these
can therefore not be expanded in terms of scattering states. If we now return
to the Schrodinger equation for |¥(t)) or either ¥, (t)) or |Woue(t)) we get

ih(%l\ll(t)) = H|¥(t)) (18.4.29)
and
ih%|win,out(t)) = H0|‘I‘in,out(t)) . (18430)

Substituting (18.4.24) into (18.4.29) and comparing with (18.4.30) we get the
so-called inter-twining property of the Mgller wave operators

HQs = Qi H, . (18.4.31)
Another very useful relation is obtained by combining (18.4.24) with (18.4.23).
[Woue(t)) = QL Q4 [ Win (1)) - (18.4.32)

This relates the asymptotic states at ¢ = —oo to those at ¢ = +00. The combi-
nation Q! 2+ plays an extremely important role in scattering theory and defines
the S-operator

S=0'Q, . (18.4.33)

Evaluated on the basis of free states this operator is called the S-matrix.
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If instead of combining (18.4.24) with (18.4.23) we had combined (18.4.24)
with (18.4.22) we would have obtained instead of (18.4.32) the relation

[Win () = QLQ-Wous (1)) (18.4.34)
[in(2)) = ST [Wour (1)) - (18.4.35)

Since the sets {|W;n(t))} and {|¥,qu:(t))} are complete we can conclude that S
is unitary

Sst=515=1. (18.4.36)

Using the relation (18.4.31), as well as the fact that H and Hy are self-adjoint,
we find

HQy =QuHy and HoQL =0QLH . (18.4.37)

Multiplying the first of these by Q! on the left and the second by Q4 on the
right, we get

o HO, =l o, H, = SH, (18.4.38)
and

HtQ, = HyS = 0 HQ, . (18.4.39)
Thus, we conclude that

SHy = HyS . (18.4.40)

This means that if we take matrix elements of S with eigenstates of Hy (basis
of free states) the resultant S-matrix elements are independent of time.

18.5 Green’s Functions and Propagators

Our Hamiltonian is as before

H=Hy+V(r) (18.5.41)
with
p?
Hy=— . 18.5.42
T om (18.5.42)

We now define four Green’s functions or propagators via the equations

(ih% - Ho) GE(t)y=d(t)1 (18.5.43)

(m% ~ H) G*(t) = 6(t)1 (18.5.44)



18.5. GREEN’S FUNCTIONS AND PROPAGATORS 409

and the boundary conditions
Git)=G*(t)=0 for t<0 (18.5.45)
Gy(t)=G7(t)=0 for t>0. (18.5.46)

In the usual terminology of differential equations GE)", G are retarded Green’s
functions, while Gy, G~ are advanced Green’s functions. They are closely
related to the Mgller wave operators.

Formal solutions of (18.5.43) and (18.5.44) incorporating the boundary con-
ditions (18.5.45) or (18.5.46) are

GH) = —% e~Hat/h () (18.5.47)

Gy (t) = %e-mot/"o(-t) (18.5.48)
and

GH(t) = —%e_”'“/” 0(t) (18.5.49)

G(t) = %e-”’t/" o(~1) . (18.5.50)
The function 6(t) is defined by

_J 1 t>0

o(t) _{ 0 120 (18.5.51)
such that

tl—l>%1+0(t) =1

Jlim 6() = 0. (18.5.52)

These solutions are to be understood in the sense of distributions (see Chapter
9) if matrix elements of these solutions are involved. Clearly they are very
closely related to evolution operators and that, in fact, is the reason they are
also called propagators. Thus, if |¥o(t)) is a solution of the Schrédinger equation

(m% - H0> ¥o(t)) = 0 (18.5.53)

then for t > t' we can write
[Wo(t)) = iRGF (t — t')|Wo(t')) . (18.5.54)

Thus G propagates states, evolving according to Ho, from one time to a later
time. Similarly if |¥(¢)) is a solution of

(ih% - H) () =0 (18.5.55)
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then for ¢ > ¢/
|W(t)) = hG*(t — ') (t")) (18.5.56)

so that G* propagates states, evolving according to H, from one time to a later
time.

In a completely analogous fashion we also obtain the relations
[Wo(t)) = ~ihGy (t — t')|Wo(t)) for .t <t' (18.5.57)
and
|¥(t)) = —hG~(t — )| ¥ (¢)) for t<t . (18.5.58)

Next we show that the Mgller operators are appropriate limits of these propa-
gators, corresponding to propagation from a time —oo to a time t or from ¢ to
a time +00.

Consider a state |¥(¢')), which evolves with the Hamiltonian H and is there-
fore a solution of the full Schrodinger equation. We now define the state

[Wo(t)) = ihGF (t - t')|¥(t")) . (18.5.59)

Then for ¢ > t' |¥o(t)) evolves with the Hamiltonian Hy and is therefore a
solution of the Schrédinger equation with the Hamiltonian Ho. Furthermore,
taking the limit ¢ — ¢’ + 0 we find that

[o(t)) = |¥(t')) (18.5.60)
since
Jim GEt) = -3 (18.5.61)

according to the definition (18.5.52) of the f-function. Next consider taking
the limit ¢ — —oo. This limit yields |¥in(t)). To see this we use the formal
solutions (18.5.50) and (18.5.47) for the Green’s function and their properties
as propagators given in (18.5.54) and (18.5,55). In particular, using (18.5.58)

[(t')) = —ihG~ (¢ — t")|¥(t")) for t' <t . (18.5.62)
Now we use the definition (18.5.59)
[Wo(t)) = ihGE (t — t')|¥(t')) for t >t (18.5.63)
and substitute from (18.5.47) and (18.5.50) to obtain
[Wo(t) = e HoC=IPg(t — ) M=ot )| w ("))
for t>t">¢ . (18.5.64)
Or since

[Wo(2)) = e Hol=t"VR|go(t")) for t>¢" (18.5.65)
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we obtain
[Wo (")) = B(t — t')8(" — t)e Holt'~¢"V o= H('~t") A (1)) (18.5.66)
If we now let ¢’ — —oo then the twa f-functions reduce to 1 and we get

[Bo(t")) = lim _eiFol'=th =M= g (1)) (185.67)

or, by the definition of QT+

1o (t")) = QL2 (t")) . (18.5.68)
Thus, dropping the primes, we have
[@o(t)) = |¥in(t)) (18.5.69)
as required.
In a similar manner one can define a free state |¥f(¢)) by taking the limit
[¥5(t)) = lim Gy (t - ¢)|¥(t')) (18.5.70)
t'=o00

and show that |¥5(¢)) is in fact | ¥,y (t)). Both results are used a little later.

18.6 Integral Equations for Propagators

We have the equations for the propagators

(mg—t - Ho) Gty =é(tn (18.6.71)
. a i
zha —H|G*(t)=4é(t)1 (18.6.72)
and the boundary conditions
GYt)=G*({t)=0 for t<0 (18.6.73)
Got)=G~(t)=0 for t>0. (18.6.74)

Also, we use the fact that
H=Hy+V. (18.6.75)

It is possible to use th to derive integral equations for G%. In fact simply using
(18.6.71) and (18.6.72) we obtain immediately

(ih;% - Ho) GE(t) =8()1 + VGE() . (18.6.76)
Now, applying the boundary conditions (18.6.73) and (18.6.74) we get

GE(t) =GE(t) + / " GE(t -t VGE(t)dt' . (18.6.77)
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These equations are integral equations for G* in terms of Goi. Their Fourier
transforms in ¢ play an important role in the time-independent formulation of
scattering theory and are known as the Lippmann-Schwinger equations.

1t is also possible to derive integral equations for the state |¥(t)) by using
the results for |U;,(t)) or [¥,u:(t)) and the Green’s functions Goi(t). Thus, we
have

(ih% - H0> [®(t)) = V]E@)). (18.6.78)
Hence,
[OE (1)) = [Win oue(t)) + / N GE(t —t)Vw(t))dt' (18.6.79)

as is easily checked by differentiation. Also the boundary conditions

Jim [UE (1)) = Wi oue(t)) (18.6.80)

are already included. These equations are sometimes referred to as the Kallén-
Yang-Feldman equations.

The meaning of these equations is as follows. We prepare a state for a scat-
tering experiment. This would normally be a collimated beam moving towards
the scattering target. This prepared state is described by |¥;,(t)) and contains
all the information about the incident beam and target at ¢ = —oo. That is, it
is labelled with all the appropriate quantum numbers. This state then evolves
under the influence of H into the state |¥*(¢)) which is labelled in exactly the
same manner as |¥;,(t)). In other words, the same set of quantum numbers
(p, $%, s, etc.) may be used to label both. Thus, ¥ (¢)) is a state that arises
from a given prepared state |¥;,(¢)) in the remote past. As |¥*(¢)) continues to
evolve, it again becomes a free state |¥,y¢(¢)) which contains not only the origi-
nal beam |¥;,(¢)) but also some outgoing scattered wave. One can, in principle,
also consider a state specified or selected inithe remote future, namely [¥,y:(t)).
This state would then arise from the state |[¥~(t)). In practice this is of course
impossible. However, both |¥,,;(t)) and [¥~(t)) would also be labelled by the
same set of quantum numbers.

18.7 Cross-Sections

In a scattering experiment the quantity actually measured is the number of
particles at a given energy scattered by the target into the element of solid
angle between  and Q + d2. This number is proportional to what is known as
the differential cross-section

da (8, p)

dQ

Alternatively, suppose the incident beam has a current density j;,,. and a fraction
of these incident particles are scattered by a potential producing a scattered
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beam of current density jycqe, then N, the number of scattered particles per
unit time that pass through an element of surface area ds, is

AN = jyear - ds . (18.7.81)

This number is proportional to |j;ng| and d2. The constant of proportionality
is defined as the differential cross-section

do(8, ¢)
Q-

Thus, we have

_pi. (dold,9)
dN = Jine| o) dQ (18.7.82)
where
n-ds

and 72 is a unit vector in the direction of the scattered beam. From this discussion
it is clear that the differential cross-section has the dimensions of an area.

One can think of

do(f, ¢)
ds

as the effective cross-sectional area of the target particles so that incident par-
ticles are scattered by them into the element of solid angle dQ2. Thus, if the
incident current consists of J partidles per unit area per unit time and if the
target, irradiated by the incident beam, contains Ny particles (scattering cen-
tres) then the number of particles dN scattered into the element of solid angle
d$2 per unit time is given by

dN = JN(,% Q. (18.7.84)

In practice the observed quantity isidN. The quantities J and Ny are known
from other considerations or measurements and df2 is given by the location and
effective area of the detector. In this manner one gets a measurement of the
differential cross-section do/df). The total cross-section ¢ is then defined by

_ [da(8,9)
a_/ oo (18.7.85)

where the integral extends over the full solid angle of 4.
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18.8 The Lippmann-Schwinger Equations

In preparation for the time-independent formulation we now start by Fourier
transforming the Green’s functions G (t) and G* (t). We also call their Fourier
transforms G (E) and G*(E) so that the functions are partly defined by their
argument. This should not be the source of any confusion. Thus,

o]
GE(E) = / e PR GE(t) dt (18.8.86)
-
and
GY(E) = / BN GE(t) dt . (18.8.87)
-00

These integrals as they stand are not well defined due to convergence difficulties
for large |t|. -Since GF(t) and G*(t) both vanish for ¢ < 0 we can ensure
convergence by giving E a small positive imaginary part ie. Similarly Gy (t)
and G~ (t) vanish for ¢ > 0 and their Fourier transforms are obtained by giving
E a small negative imaginary part —ie. Inserting (18.8.86) and (18.8.87) into
the differential equations (18.6.71) and (18:6.72) we get

G%(E) = (E +ie— Ho)™! (18.8.88)
G*(E)=(E+ie—H)™ . (18.8.89)

Thus the +ie can be seen to indicate how one is to integrate past the poles
in GE(E) and G*(E) when transforming back to G%(t) and G*(t). They re-
flect the boundary conditions originally imposed on the time-dependent Green’s
functions. One can also Fourier transform the state vectors to get

|¥(E)) = /_ " B W(t)) dt . (18.8.90)
as well as

[¥in(E)) = ]_ ) B (1)) dt (18.8.91)

[¥out (E)) =f_m B IR (1)) dt . (18.8.92)

If we now Fourier transform equation (18.6.79) and use (18.8.88) we get

|+ (E

) [Win(E)) + (E + ie — Ho)~'V|¥H(E))
v~ (E)

)
) |Wout (E)) + (E — ie — Ho) ' V¥~ (E)) (18.8.93)

where |Ut(E)) and |¥~(E)) are states labelled with the same quantum numbers
as | Ui, (E)) and |¥,u:(E)) respectively.
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Equations (18.8.93) constitute the Lippmann-Schwinger equations for the
wave functions. We can also obtain Lippmann-Schwinger equations for the
Green’s functions by Fourier transforming equations (18.6.77).

GH(E) = (E +ic — Ho) ™ + (E +ie — Ho)'VG*(E)

G~ (E) = (E — ic — Ho)™* + (E — ie — Ho)"'VG~(E) . (18.8.94)
It has become conventional to write
1
E +ie - Hp)™? —_—
(Bic—Ho™ a8 g

and we shall do so freely in the future. From our previous discussion of distri-
butions (Chapter 9) we know that for such functions

1 1
= in6(E — Ho) . 18.8.
sre=T = Prom Tl Ho) (18.8.95)

This is extended to operators by simply defining
§(E - Ho)|¥O(E") = §(E - [E')| ¥ O(E")) (18.8.96)

where
Ho|¥O(E")) = E'|9O(E")) (18.8.97)

so that |U(©)(E’)) is an eigenstate of Ho. Since the |¥(°)(E")) form a complete
set, this suffices to define §(E — Ho). Similarly, P E_IHU is defined by

1

P
E—-H,

ny — 1 4

It is important to notice that these aperators are functions of Hy and are defined
by the action on eigenstates of Hy. If they were functions of an operator A they
would be defined by the action on eigenstates of A.

18.9 The S-Matrix and the Scattering Ampli-
tude

We have already introduced the S-operator which connects incoming and out-
going states via

[Win) = ST ¥our) (18.9.99)
[Wour) = S|¥in) (18.9.100)

When its matrix elements are evaluated on free states of definite energy, such as
plane wave states, it is called the Simatrix and its elements are of considerable
interest since they contain all the information for a scattering process. To see
this consider a typical scattering experiment. We send a particle down a beam
tube. This particle is described by a free state |¥is(t)) = |¥o(,t)) where a'isa
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complete set of labels that are eigenvalues of operators that commute with the
Jree Hamiltonian Hy. This state evolves in time into a state |¥(*)(a, )) labelled
in exactly the same way. The operators, whose eigenvalues label |¥o(e,)) and
[¥(+)(a,)) do not, however, commute with the full Hamiltonian H. They
simply state how [¥(1)(a, t)) was prepared in the remote past; they are simply
the labels attached to the original particle we sent down the beam tube.

In the remote future this state again evolves into a free state [¥,y:). This
state does not carry the same labels as |¥;n) because it contains an admixture
of states due to scattering.

The purpose of any scattering experiment is to measure the probability of
finding a given free state |¥o(8,t)) in the state that will have evolved in the
distant future from the state |[¥(t)(a,)) . Clearly this is given by

Jim (Wo(8, ) [ (a,8)) = (Yo (B, 1) Ware (1)) (18.9.101)
and using (18.9.100) this becomes

(To(B,1)|S|Win (t)) = (¥o(B,1)|S|¥o(a,t)) . (18.9.102)

Thus, as stated, the elements of the S-matrix contain all the information ob-
tained in a scattering experiment.

In order to obtain a useful formula for these matrix elements we view the
scattering experiment in a somewhat different fashion.

The state |Woy;(t)) must arise from the state |¥~(83,t)). Again the labels 8
are the eigenvalues of a complete set of observables that commute with Hy. It
1s, of course impossible to prepare such a state | ¥,y (83,2)). Nevertheless we can
now think of a scattering experiment as a 'means to measure the probability of
finding in the state |[¥~(,¢)) the particle described by [¥t(a,t)) and prepared
in the remote past as [¥o(a,t)). The corresponding probability amplitude must
coincide with the one obtained above. Hence, we find

(Wo(8,1)|S¥o (e, 1)) = (¥~ (8,1)|¥* (a, 1)) . (18.9.103)

This result will be used immediately in conjunction with the Lippmann-Schwinger
equations to obtain a neat formula for the S-matrix elements. For this purpose
we consider eigenstates of the Hamiltonian Hy. Thus our states are labelled
|¥o(E)) where temporarily we suppress the additional labels a.

As a first step we write a formal solution of the Lippmann-Schwinger equa-
tions

(E-H)|¥*) = (E - Hp)|¥)
= (E-H+V)|¥)
= (E-H)|¥%)+V|¥) . (18.9.104)

Thus,

[W%) = [9%) + (E - H +ie) 1V |¥,) (18.9.105)
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where [¥o) is a free state of energy E| corresponding to an incoming or outgoing
wave depending on the appropriate initial condition specified by +ée. The states
| W) are labelled by the same set of quantum numbers as [¥o). The labels + er
to the +ie and simply mean that for |Ut), the state |¥o) is an incoming wave
whereas for |¥~) it is an outgoing wave. The function |¥o) is the same function
in either case; it is just a solution of the free Schrédinger equation. Note that
equation (18.9.105) is purely a formal solution since we must still evaluate the
operator (E — H £ ie)~" and from our definition of such expressions this require
a knowledge of the eigenfunctions of H. Thus, we have not really succeeded in
solving the Lippmann-Schwinger equations, we have simply rewritten them.
As we saw (equation (18.9.103)) the S-matrix elements Sy; are specified by

Spi = (U (Ey)|¥H(E))
= (U (B + (U (By) — (¥ () [+ (E:) (18.9.106)

where we have chosen energy eigenstates for |¥o) and are still suppressing all
other labels. Now using our formal solutions (18.9.105) we can write

0 ()4 () = () (¥ - 5 g (189100

Also the kets |¥*(E;)) are assumed orthonormal so that
(U (Ep)|U* (E:) = éi (18.9.108)

where
81i =0(E; — Ei)dayp - (18.9.109)

Here a, f specify all the other quantum numbers, besides energy, which we
have so far suppressed and which are required to completely label [¥t(E)). We
therefore obtain the relation

1 1
b+ (YO(Ep)| |V -V
i+ (T f)l( Ef-H+ie  E;j—H—ie

Sy ) o (E:))

1l

1 |
Jf,' + (PEf ) . tTl’tS(Ef —E',')

PE,iE,. —M(Ef—E.-)) (WO(E))|VIUH(E;))  (18.9.110)

where we have used the relations (18.8.95), (18.8.96), and (18.8.98). Thus,
finally

Spi = 8p; — 2mis(Ey — Ei)(¥°(Ey) VU (E))) (18.9.111)
or somewhat more concisely

Spi = &5 — 2mid(Ey — Ei)Tys (18.9.112)
where

Ty = (YO(Ep)|V Y (E;)) for Ey=E; (18.9.113)
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is the T-matriz element on the energy shell. Multiplied by —1/4x it is called
the scattering amplitude f(k,0). Aside ftom the conservation of energy and
other quantum numbers specified by the two delta functions, T}; contains all
the information about a scattering process|

If originally we had replaced |¥*(E;)) by

0= (B:)) + 19 (B:)) - |9 (2)
then by exactly similar steps we would have arrived at the relationship

Spi =8y — 2mis(Ey — Ei)(¥™ (Ey)|V|¥O(E;)) (18.9.114)
so that we also have

Tyi = (U~ (E;)|V|YO(E;)) for E; = E; . (18.9.115)

In the next chapter we develop a systematic formulation of scattering theory
starting from the time-independent Schrédinger equation. During this process
we rederive some of the results obtained here. In this way we hope, not only
to emphasize the more important results, but also to elucidate the concepts
involved. In practice, computations commence almost always with the time-
independent formalism.

18.10 Problems

18.1 A proton beam producing a current of 5 x 10~° amps is incident on
a target of copper. Assume the target thickness is such that the areal
density is 0.2 mg/cm?. The detector has an area of 0.5 cm?, normal to the
scattered beam, and is 20 cm from the target. If 10 protons are counted by
the detector every second at a partidular angle, calculate the differential
cross-section for protons scattering off copper at that angle.

18.2 Use the expressions (18.5.47) and (18.5.48) and evaluate the matrix ele-
ments (p|GZ(t)|k) where |p), |k) are free particle states of momentum p
and k respectively.

18.3 Calculate the Fourier transform of the distribution 6(t).
Hint:

f(w) = lim/ etlw=it gy
0

=0+

The limit here is to be understood in the sense of distributions.

18.4 Assume that V is independent of time and use (18.6.77) to obtain an
equation for the Fourier transform G* (w) of G*(t) in terms of the Fourier
transforms of G (t). Write a formal solution for G (w).
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18.5 In equation (18.9.113) approximate |¥*(E;)) by a free particle state. If
V is a screened Coulomb potential

o
V=-1

r

calculate the scattering amplitude. The approximation used is known as
the first Born approximation.
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Chapter 19

Scattering Theory - Time
Independent

19.1 Introduction

In the previous chapter we gave a time-dependent formulation of scattering.
By Fourier transforming these quations we obtained a time-independent set of
equations known as the Lippmann-Schwinger equations. In this chapter we start
from the time-independent Schrodinger equation and rederive these results along
the way. This chapter is independent of all of Chapter 18, except section 18.7,
and may be studied before Chapter 18. The results obtained here provide an
efficient means for computing differential ¢ross-sections. To recall the definition
of cross-section it is worthwhile to read or re-read section 18.7.

19.2 The Scattering Amplitude

We start with the time-independent Schrodinger equation for a one-body prob-
lem where

2

H= ;’—m +V(r) (19.2.1)

and m may be the reduced mass of a two-particle system in which case V (r)
is the potential between the two particles. It is usual in potential scattering to
introduce

2mE 2mV (r)
e V=T

In that case the time-independent Schrodinger equation corresponding to the
Hamiltonian H becomes:

(V24 7) $(x) = U(r)(r) . (19.2.3)

k% = (19.2.2)

420
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In order to have a mathematically simple scattering problem it is desirable that
U(r) = 0 sufficiently rapidly as r — co. We assume this to be the case. ' With
these conditions satisfied we can look for solutions of (19.2.3) that consist of a

given incoming wave say ¢'®T plus a'scattered wave Yscat(r) so that

1/}(1‘) =ekr + "/)scat(r) . (19.2.4)
The current due to the incident beam is

. hk

Jine = — (19.2.5)

and corresponds to a flux of particlés moving in the k direction with uniform
momentum fk. If we consider a very!large sphere of radius R with centre at the
scattering centre (potential) namely r = 0, then the flux through the surface of
that sphere due to the scattered wave is

R? f (e 2, 0

where (jscqt - /7) g is the radial component of the current due to the scattered
beam, evaluated at » = R. This is given by

h * 3 sca 6 3ca
(Jscat r/") (w,m Vicat — Yscat 1/)7’ t)

2im

(19.2.6)
r=R
If the scattered flux through the surface of the sphere is to tend to a constant
value independent of R as R — oo, we must have

v O¥scat function of k&9
% (wacat ar ) - T fOI' R - 00. (1927)
This means that
kR kR
Rli‘m Yscat(R) = T(k k’) = f(k, 0) (19.2.8)

where k is the incident momentum, and k' is the scattered or outgoing mo-
mentum and @ is the angle between k and k’. The quantity f(k,6) is called
the scattering amplitude. The flux of scattered particles through an element of
solid angle dS2 is therefore given by

R%dQ hi
m

2 1 ﬂc. 2
Fk O 5 = ISk O)Pdg
incll £ (k, 0)[dQ2 . (19.2.9)

Hence, using the definition of do/d(}, equation (18.7.82), we see that the differ-
ential cross-section is given by

=|f(k,0) . (19.2.10)

Since the experimentally accessible quantity we are interested in is do/dQ our
task is reduced to computing the scattering amplitude f(k,8).

12V (r) =+ 0 for r — o is sufficient.
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19.3 Green’s Functions

In order to find a solution of the form (19.2.4) we convert the Schrodinger
equation (19.2.3) to an integral equation. To do this we must determine the
Green’s function satisfying the relation

(V2 + k%) Go(r,r') = d(r - 1') . (19.3.11)
This is analogous to solving for an operator Go(E) using
(~Ho+ E)Go(E)=1 . (19.3.12)

Now for E complex, say z, the operator-valued function

Go(z) = (2 ~ Hp)™? (19.3.13)
is well defined ? since the eigenfunctions %(°)(E) of Hy form a complete set
Hop)(E) = EyO(E) . (19.3.14)
Thus,
1
GovO(E) = —F v O(E) . (19.3.15)

When z approaches real values this operator develops poles in z at the eigen-
values and must be defined in the sense of distributions. We examine this point
more explicitly starting from (19.3.11). If we Fourier transform (19.3.11) using

Golr, ') = / 1) G (q) % (19.3.16)

1
(2m)°

and use the integral representation of the.§ function

S(r—1) = (271)3 / eia(=r) g3, (19.3.17)
then,

Go(q) = Fi_qz . (19.3.18)
Consequently

Gofr, ) = ﬁ / %dsq . (19.3.19)

Since the integrand has poles on the path of integration, we must specify how
this integral is to be defined. Thus, it can be defined as a principal value integral
by omitting the poles or differently by including a portion of the residue due to

21t is called the resolvent of Hy. See also problem (6.6).
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each pole. Each of these integrations gives rise to a different Green’s functions.
We are particularly interested in two of these Green’s functions, namely

GE(r,r) = lim — S (19.3.20)
05 =0+ (2m)3 | ¢% + (k2 L ie)

We can immediately integrate over the azimuthal angle if we choose the ¢,-axis
aligned with r — r' so that

q-(r—r)=gjr—r|cosf . (19.3.21)

This choice for the z-direction of the integration variable is a trick that can be
frequently used to evaluate three-dimensional Fourier integrals. The integral in
(19.3.20) now reduces to

2 B A q%dq LR
+ ! iglr—r'lu d 3.
Gy (r,x') = C11161 e )3/0 T /_16 u (19.3.22)

where we have integrated over ¢ and made the substitution u = cosf. The
integration over u is now easily performed to yield

-1 1 0 ¢?dg el _ gmiglr-r]
+ / :
= 1
Go(r,r) 0t (2m)? i|r—r’|/0 g® - k? Fie q
) i 1 0 gigr-r'|
- sl—l.I(111+ (2m)2 [r — /| /;oo 2 — k2 Fie 9dg - (19.3.23)

To evaluate these integrals we now close the contour with a half circle in the
upper half of the g-plane so that thé exponential is damped. The poles in the
integrant are located either at +(k+je) or at £(k —ie). In either case we obtain
only the residue from the pole in the upper half plane. Thus, we get

-1 eiiklr—r’]

+ A
Golnr) = oo

(19.3.24)

If we remember that time dependence gives us a factor e’“* then we see that
G* corresponds to a wave travelling away from the potential centered at r = 0
{an outgoing wave) and G~ corresponds to an incoming wave.
The expressions in (19.3.24) are simply the configuration space expressions
for the operators
1
G(E)= —— 19.3.25
0(B)= g L ( )
that we considered before. It is now a simple matter to rewrite the time-
independent Schrodinger equation as an integral equation. The boundary con-
ditions are incorporated in the +ic. [In fact the equation is given by

U (r) = 00(r) 4+ / GE(x,)U(r')E (') (19.3.26)



424 CHAPTER 19. SCATTERING THEORY - TIME INDEPENDENT

where ¥ is a solution of the free Schrodinger equation. The fact that U*(r)
satisfy the correct boundary conditions is clear from the short range nature of
U(r) which allows us to take the limit » — co under the integral sign. To see
that ¥ (r) satisfy equation (19.2.3) we need only apply the operator V2 + k2
to both sides and use equation (19.3.26). We then find

(V2 4+ k%) 0% (r)

0+ /J(r - U ) () &>
U(r)¥*(r) (19.3.27)

as required.
Thus, the solutions ¥* corresponding to GOi do indeed satisfy equation
(19.3.26). Going back to the Schrodinger equation in the form

(E - Ho)|[¥°(E)) = V|¥°(E)) (19.3.28)

we get

1

[¥*(E)) = [9°(E)) + m"!‘l’iw)) :

(19.3.29)
Thus, (19.3.26) is simply (19.3.29) written out in configuration space. In either
case the equations are known as the Lippmann-Schwinger equations.

To show the equivalence of (19.3.26) and (19.3.29) we simply transcribe
(19.3.29) into the configuration space representation using the relations

¥E(r) = (r|¥%(E)) (19.3.30)
and
V() = (x[¥E))
_ 1 ipr
- (27r)3/26
= (r|lp (19.3.31)
where
h2p2
E=—. (19.3.32)

2m

Then, (19.3.29) becomes

) = ) +(x] VIv*(E))

1
E— Hytie
Vo(r) + /dsk Pqd®r " (r|k) -

(k| (al'}' |[VIe") (e |9 % (E)) (19.3.33)

|
FoHy i
where we now use the fact that V is local so that

(VY = V() ") . (19.3.34)
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Next, writing E = A2p?/2m, the integral over k becomes

2m 1 &3k Aesy  2m
32 (eert) _ B Nk
R (2m)® /;ﬂ TR i’ = Golr-r) . (19.3.35)
Putting this back into (19.3.33) and 'recalling that
2m
U=z vi) (19.3.36)

we immediately obtain (19.3.26).

19.4 The Born Approximation

The Lippmann-Schwinger equations provide an immediate approximation tech-
nique when the interaction V is small compared to the energy E. Thus, it
becomes more exact as the energy increases. To get the Born [19.3] series 3 one

simply iterates equation (19.3.29) to get

[ee]

LEINEDY (mv) [¥°(E)) . (19.4.37)

n=0

The usefulness of this series is that for small V or large E it may be truncated
after only a few terms. In fact, in practice one frequently keeps only the first
non-trivial term. This is known as the first Born or simply Born approximation.
Written out it reads

1
[¥*(E)) = [¥°(E)) +

0
e . 19.4.
E—ngticvlql (E) (19.4.38)

Going over to configuration space this becomes for U*, the wave that contains
the scattered or outgoing wave,

Ut(r) = e*r 4 / G =)V (') ¥(r') d® . (19.4.39)

We could have obtained this directly, of course, by just iterating equation
(19.3.26) once and dropping all other terms.
Substituting for ¥°(r’) as well as G§ (r — ') we obtain

. 9m 1 1k|r—r I
+ 1k-r ck r' 3.1
¥T(r) = Wi / T= r’| d°r (19.4.40)

To get the scattering amplitude we require the asymptotic solution for large r.
Now,

k-2 = r*—2r'cosa+r?

2 J
- r (1 - Trcos a) for r— o0 (19.4.41)

3Mathematicians call this the Neumann series. See Chapter 2 of reference [19.1].
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where
r-r

cosa=—o- (19.4.42)
Therefore,

[p—1r'|+r—r'cosa for r— 0. (19.4.43)
Similarly,

!
! 1, reosa for r—o00. (19.4.44)
[r—r] " r r2

Since we are only interested in the solution which behaves asymptotically as
e'*" [r (see the discussion of section 2) we can drop the higher order term in the
denominator at this stage. We must, however retain it in the argument of the
exponential since the exponential varies more rapidly. Thus, we have

etklr=r'| eik(r—r'cosa)

for r— 0. (19.4.45)

[r—r| - r

Since V(r) is assumed short range, the integral in equation (19.4.40) converges
uniformly and we are justified in using the asymptotic form in the integrand.
Thus,

ikr_ 2m 1 etkr

\I’B —> € —_—
orn h? 47 r

/eik~r'_ikr’cosa V(?‘,) dar/ for r = 0o (19446)

If we now call the scattered momentum k’ such that
k' -x' =kr'cosa (19.4.47)

then the argument of the exponential becomes i(k — k) - r'. We further define
the change in momentum or momentum transfer q as

q=k-k . (19.4.48)

Then calling 6 the scattering angle (angle between k and k') we have, since the
scattering is elastic (conserves energy), that

k| =|K|=k . (19.4.49)

¢* = k* — 2k? cos 0 + k2 = 2k*(1 — cos 0) = 4k?sin?(6/2) . (19.4.50)
This gives

q = 2k|sin(8/2)] . (19.4.51)

The Born term now yields

. 1 ikr o,
Wpor — €57 — o ~ /e'q'r U(r')d®* for r— . (19.4.52)
T
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Or defining the Fourier transform U (q) of U(r') by

i(q) = / e U () (19.4.53)
we obtain

v qe“‘"-ieikrﬁ() for r =00 (19.4.54)

Born ir r q . 4.

Comparing this with (19.2.8) we see that in the first order Born approximation
the scattering amplitude f(k, ) is given by

f(k,0) = -Zl;f}(k -K). (19.4.55)

19.5 The Yukawa Potential

As an example of the application of the Born approximation we consider the
Yukawa or screened Coulomb potential

eTH"

Vir)=-W " (19.5.56)
In this case
2m‘/0 iq- e"‘” 3
v =-2 /e g (19.5.57)
Performing the angular integrations,|as before, we now get
- _ 2mVo 2 [® —r(p+iq) _ —r(u+iq)
Ua) =~ 7, /0 [e ¢ ] dr . (19.5.58)
Hence,
~on 2mVy Am
Thus,
2ng 1
k)= ————. 5.
fk,0) = — e (19.5.60)

Substituting this into (19.2.10) and|using (19.4.51) we obtain the differential
cross-section

do 1 do 4m?V 1

W desd = W G0 TR (19.5.61)
If Vo = Ze? and p = 0 this becomes
1 d 4 2724
i mZ e (19.5.62)

Irdcos  16htkAsin'(6/2) |
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Recalling that (A%k?)/2m = E we get
1 do 7%
2mdcos6 ~ 16E2sin*(4/2)
which is just the classical Rutherford cross-section for the scattering of an elec-
tron of charge e by a Coulomb potential of charge Ze. Although the formula
(19.5.63) is correct its derivation is not entirely correct since for g = 0 the po-
tential (19.5.56) is no longer short-ranged. This trick of replacing the Coulomb
potential 1/r by e™#"/r and letting 4 — 0 at the end permits us to use our
standard scattering theory without worrying about the long-range nature of the
Coulomb potential. The pure Coulomb potential leads to logarithmically os-

cillating phase contributions ([18.2] (section 14.6) in the wave function ¥*. In
fact,

(19.5.63)

. gilkr+n In 2kr] )
Pt ~ eilhzmnink(r=2)] L f(k, ) ————— + higher order terms
r

where n = (Ze?m)/h%. In this case one treats f(k,6) as the scattering ampli-
tude. These complications can be avoided by using the “adiabatic switching off”
of the Coulomb potential for long range with the factor e #" and then letting
pu—0.

It is rather fortunate that for the case of Coulomb scattering the quantum
mechanical and classical cross-sections agree, for otherwise Rutherford’s famous
experiments would not have yielded the simple interpretation of a tiny nuclear
core inside an atom that they did yield. The results of these experiments were
of paramount importance in the development of quantum mechanics since they
were the basis of Bohr’s model as well as Schrodinger’s computation of the
spectrum of the hydrogen atom.

The fact that the scattering amplitude and hence the differential cross-
section are independent of the azimuthal angle ¢ is not simply a coincidence
but is a consequence of the spherical symmetry of the potential. Thus, just as
for classical scattering, a spherically symmetric potential gives rise to a differen-
tial cross-section independent of the azimuthal angle. We shall begin to exploit
this in the next sections. As a first step we develop some more mathematical
machinery.

19.6 Free Particle in Spherical Coordinates

In section 10.2 we had occasion to consider the Schrodinger equation in spherical
coordinates. The solutions involved spherical Bessel functions. We now re-
examine this problem systematically and develop some properties of these Bessel
functions. We start with the free Schrodinger equation

(VP4 =0 . (19.6.64)
The solution can be expanded in spherical harmonics
B(r) = D Ri(r)Yy (k) Yim (7) (19.6.65)

Im
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where k, 7 represent the 8, ¢ directions of k and r respectively. Substituting
(19.6.65) into (19.6.64) we are led toithe radial equation

@ 2d I(1+1)

a2 T rdr T 12

+ k| Ri(r)=0 . (19.6.66)

As stated in section 10.2, the solutions of this equation are the spherical Bessel
functions jj(kr) and ny(kr). In addition to these it is convenient to intro-
duce two additional solutions corresponding to Hankel functions of the first and
second kind namely

hY (kr) = ji(kr) + imy (kr) (19.6.67)
h® (kr) = ji(kr) — imy(kr) . (19.6.68)

To explore the properties of these functions we derive integral representations
for them. We also replace kr by « and R;(r) by Zi(z) in order to simplify the
notation. Thus, (19.6.66) becomes

&2 24 I +1)
Tl _.2_.] Zi() =0. (19.6.69)

To derive the integral representations we look for a solution of the form
b
Zy(z) = r*/ e™ f(u)du (19.6.70)
where we specify the limits a, b later.| Substituting this into (19.6.69) we obtain
x’\'2/ T f(u) AA+1) =10+ 1) + 200 + Dzu + (u® +1)z7] du = 0.(19.6.71)
We now choose A(A + 1) = (I + 1) so that
A=l or A=-(141) . (19.6.72)
We then obtain from (19.6.71), after cancelling a factor «
b
A-2 2 d TU
T flu) [2(A+ Du+ (v® 4 l)t—i; e du=0. (19.6.73)
Next we rewrite the second term as a total differential by using the identity
d ru ru d d T
7 @ + D e = e = [fu)(u” + D] + fu) (e + 1) =™, (19.6.74)
This yields

A

)~ 55 U + 1] da

S-I..I&

[
o

(W +1)e™] du=0 . (19.6.75)
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We now make both integrals vanish separately: the first by causing the integrand
to vanish and the second by an appropriate choice of the limits of integration.
The first condition gives

% [fu)(w? + 1)] = 2(A + Duf(u) . (19.6.76)
The solution of this equation is

f(w) = fO)(u® +1)*. (19.6.77)
To get the second condition we integrate/the last term in (19.6.75) to get

FO)®2 +1)€™ - fla)(a® +1)e** =0. (19.6.78)

Since z is arbitrary this requires both f(a)(a? + 1) e®® and f(b)(b% + 1) e®® to
vanish. After substituting for f from (19.6.77) this reduces to

e a’ + 1)1 =0 (19.6.79)
and

B2+ 1M =0, (19.6.80)

For A =1 > 0 this is easily accomplished by choosing a = —i, b = i. Another
possibility for 0 < argz < 7/2 is to take pne of the limits, that is either a or b,
as coe'* where /2 < o < 7. Thus, there are three possibilities:

(=i, i) (ocoe'™, i)  (—i, cce™®) .
Each of these limits gives rise to a different function Z(z), corresponding re-
spectively to j(z), hl(l)(:c), hfz)(z’). The constant f(0) gives the appropriate
normalization.

We work out one case in detail and leave the rest as exercises. Consider the
case

Z)(z) = f(0) /_ e (u? + 1) du. (19.6.81)

Since this function is finite at the origin and is a solution of (19.6.69) it must be
proportional to ji(z). To make it equal to ji(z) we choose f(0) appropriately.
Now, for ¢ — 0 we have

z

But we also have that
Zi(z) —» f(O):c’/ (u? +1) du = f(0)'l; for -0 (19.6.83)
where we have made the identification

I = / (W24 1) du. (19.6.84)
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To evaluate this integral put u = ¢t then

1
I = z/ (1—tH dt. (19.6.85)
-1
Integrating by parts one can now show (problem 19.1) that
L= 2 L, 1>1 (19.6.86)
P 2 .6.
Since Iy = 2i, we immediately get
2
I = @+ 1)”1 . (19.6.87)
Thus, we have
. 2!+1“ .
Zi(z) - zf(O)m:c for' £ —=0. (19.6.88)
But as stated earlier
I
T
] —_— . 19.6.89
Jz) = N for £ =0 ( )
So, if we choose
) 1
if(0) = ST (19.6.90)
we get
. xl ‘ Tu (2 14
gile) = s _‘e (w*+ 1) du . (19.6.91)

Letting u = it again this can be rewritten as

. z 1
Ji(z) = W‘/—l (1-1%) costdt . (19.6.92)
The various properties of ji(z) can now be easily derived from this integral
representation (problem 19.2).

In a similar manner we define

! i

z Ty
hf”(r):m . (u? + 1) du (19.6.93)
9 2 ooe’
h(z) = W/ e (u? 4 1) du (19.6.94)

where 7/2 < a < 7 and 0 < argz € 7/2. For completeness we now list some
of the most useful properties of the spherical Bessel functions. If one takes the
integral representations as definitions of the spherical Bessel functions then all
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their properties can be derived from them.
Asymptotic Behaviour

a(z) = %cos[x -+ )r/2)= —sm(z' —Inf2) for 2500 (19.6.95)
n(z) = %sin[x — (4 1)r/2 = —%cos(z —1n/2) for - oo (19.6.96)
r(z) = %ei[”"('+l)’/2] for & — o0 (19.6.97)
W (@) = 2 T for g0 (19.6.98)

This shows that hl(l)(x) corresponds asymptotically to an outgoing spherical

wave and hl(z)(:c) corresponds asymptotically to an incoming spherical wave.
Behaviour for Small Argument

!

. xr
- 1!
() = _a=nn for £ —0 . 19.6.100)
i+t

Also since A\ (z) = ji(z) + iny(z) and h{*(z) = ji(z) — iny(z) their behaviour
for small values of z is given by

(@2 - 1!
WO (@) - -1(le) for z—0 (19.6.101)
—_ 1\
h,(z)(z)—>i(21:cl+11)" for 250 . (19.6.102)

This shows that ji(z) is the only one of these functions that is finite at z = 0.
We are now in a position to derive the partial wave decomposition of a plane
wave, a result that we will need in the immediate future. Thus, we write

' —Za, (k7)Y (k) Yi i (7) (19.6.103)

where as before k, # indicate the directions of the corresponding variables.
If we let 6 be the angle between k and r so that cos = k - # and then use
the addition theorem for the spherical harmonics, namely

Zy,m Vi m(F :2’4L1P,(cosa) (19.6.104)
™

m=-1

the expansion (19.6.103) can be written

e = 2+1
ek :,ZO: ym ar(kr)P(cosd) . (19.6.105)
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Now using the orthogonality relation for the Legendre polynomials and calling
cosf = u we get

1
a(kr) = 27 / e* Py(u) du . (19.6.106)
-1

But from the Rodrigues formula for the Legendre polynomials (equation (9.5.178)
we have

(_1)1 dl
21 dut

Substituting this into (19.6.106) and integrating by parts ! times we get

P(u) = (1-u?). (19.6.107)

a(kr) = 47 (kr) 1”"“(1—u2)ldu (19.6.108)
! = SIF1]] —16 . 6.

Comparing this with (19.6.92) gives| us the desired formula

e** = (20 + 1)iji (kr) P(cosf) . (19.6.109)
=0

19.7 Partial Wave Analysis

We now apply the tools developed inithe previous section to a study of scattering
from a spherically symmetric potential V' (r). Throughout this section we assume
that V/(r) is short range in the sense that

/r2V(r) dr < oo . (19.7.110)

Not only does this ensure that we have a well-defined scattering problem but it
also ensures that various expressions, that we shall encounter, converge.

Consider the Schrodinger equation for a particle in such a spherically sym-
metric potential written in the form (19.2.3)

(V24 k?=U(r)) 9(r) = 0. (19.7.111)
As before we now decompose #(r) into spherical harmonics

Y(r) = 4m Y i Ry(r) Y (K)Yim (7) (19.7.112)

I,m

The factor 47# is included for later convenience. In terms of cosf = k - # this
expression becomes

o0

¥(r) = (2 + 1)Ri(r)Pi(cosb) . (19.7.113)
=0
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In either case substituting into (19.7.111) yields the radial equation for R;(r)
@ 2d I(+1)

2~ =0 71
dr?  rdr r2 Tk U(r)]R,(r) 0 (19.7.114)

We still need to specify the boundary conditions on R(r). For r — 0 we want
Ry(r) finite. Thus, if U(r) is bounded near the origin by ¢/r for some constant
¢ then (19.7.114) reduces for » — 0 to

dz 2 d l(i+1)

W ;dr et T] R[(T’) =0 (19.7.115)

and the solution finite near the origin is r*. Thus,
Ri(r) > Ar' for 7150 . (19.7.116)

The remaining boundary condition is determined by the physics of the situation
that far from the potential we have the incoming beam plus the scattered beam.
We start with an incoming beam """ which can be decomposed in each partial
wave into an incoming spherical wave and an outgoing spherical wave as follows:

ikr

e i‘(2l + 1)ji(kv) Py (cos 6)

I
M

Il
DO =
e ~

(20 +1) [ (kr) + b2 (kn)] Pi(cost) (19.7.117)
I=

where we have used equations (19.6.67) and (19.6.68).

The effect of the potential is to cause scattering and hence modify the am-
plitude of each of the outgoing spherical waves. Thus, asymptotically the full
solution must be of the form

o

¥r) - Zi’(2l+1)%[h,(:')(kr)+51(k)h,(1)(kr)] Py(cos 0)

for r — 00 (19.7.118)

where S; contains the total effect of the scattering. We have incorporated here
the fact that for r — oo, ¥(r) must satisfy the free Schrodinger equation due
to the short-range nature of the potential as well as the fact that the scatter-
ing process affects only the outgoing waves. Equation (19.7.118) can now be
rewritten as

<

(r) =
ii’(?l +1) [ (kr) + A (kr) + [S1(K) - l]h,(l)(kr)] Pi(cosf)

=0

B —

= Y i@+ [j,(kr) + %[S,(k) - 1]h§”(kr)] Pi(cos 8)

=0
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""+Z 2 +1)5 [5( ) = 1)) (kr) Py(cos )
1=0
forr = 00 . (19.7.119)

Since this is the solution for large 7 we can replace hl(l)(kr) by its asymptotic
form (19.6.97) to get the final asymptotic form for ¢(r).

ikr
P(r) = €% + f(k,0) (19.7.120)
r
where
—kz (2 + 1) [Si(k) — 1] Pi(cosb) . (19.7.121)
1=0

The asymptotic expression (19.7.120) is precisely of the form we previously de-

rived quite generally (equations (19.2.4), (19.2.8)) and thus shows that f(k,8) %" /:

is the scattered wave. Thus, f(k,6) can again be identified as the scattering

amplitude. Recalling (19.2.10) we see that the differential cross-section do/dQ2

is given by
do
aQ

Thus, our scattering problem is solved if we find f(k,6) or alternatively S, (k).

The remaining boundary condition for Rj(r) can now be extracted from these
results.

=|f(k,0)* (19.7.122)

Rur) = 5 [ 0r) 4 SRR ()] for 1 oo (19.7.123)

2

or, using the asymptotic forms of the spherical Hankel functions we obtain

Rz(r) - —

m ["[""(‘“ /24 5 (k)ebr=t ] for r 00 (19.7.124)
r

19.8 Phase Shifts

For elastic scattering, from a spherical potential, probability must be conserved
for each partial wave since different |l values do not couple (L? commutes with
H). Thus, the magnitude of the radial flux, through a sphere of radius r, for
each incoming and outgoing partial wave must be the same but in opposite
directions. The incoming partial waves are given by hl(Z)(kr). The outgoing

partial waves are given by Sl(k)h,(l)(kr). In both cases we can compute the
flux, through a very large sphere, using their asymptotic form. Equating the
magnitude of the two fluxes yields

E[eilbr=(40n/2] g p=ilkr—(+1)7/2]

— lim 47r% — _
rveo T 2im kr dr kr
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e—ilkr—(+1)r/2] d ei[kr—(l+1)1r/2]
kr dr kr

e-ilbr=(+1)m/2] g Gilkr—(i4+1)r/2)
kr dr kr
ilbr=(+1)1/2] g g=ilkr—(14+1)/2]
kr dr kr ]
Writing this out we find
ISi(k)?=1 . (19.8.126)

Thus, for elastic scattering, the S-matrix elements, S;(k) may be expressed in
terms of real numbers §;(k) called the phase shifts and defined by

Sy(k) = e¥(*) (19.8.127)

h
_ 0k 2 " 2
= rh_glo 4mr 5 |Si(k)] [

(19.8.125)

where the factor of two is conventional.
These phase shifts have an intuitive interpretation which we now describe.
For this purpose we consider a potential of finite range so that

U(r)=0 for r>a . (19.8.128)
Then, for r > a the most general solution of the radial equation is
Ri(r) = Ai[cos & ji(kr) — sindy my(kr)] r>a . (19.8.129)
The asymptotic behaviour of this solution for large r is
A
Ri(r) > k_rl' [cos §; sin(kr — I /2) + sin &; cos(kr — Im/2)] (19.8.130)
or
A
Ri(r) > o sin(kr — Ir/2+68;) for r—o00. (19.8.131)

On the other hand the free incoming wave is
A
alr) - k—lsin(kr —ir/2) for r > 00. (19.8.132)
r

Thus, the effect of the potential is to shift the phase of the solution in the region
of no interaction. In a later section we demonstrate this result explicitly for a
square well potential.

The phase shifts here defined coincide with the ones in equation (19.8.127).
This also agrees with the definition of phase shifts given for the one-dimensional
scattering problems in section (5.8). If we now use the definitions of phase shifts
to compute the differential cross-section we obtain

£ (k,0)°

do _
aQ
1 o e
= 3 Z {20+ 1)(2 + 1) sind; sin &y cos(d; — &) x
1LI'=0
x Py(cos 8) Py (cos f) . (19.8.133)
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Here we have used the fact that the sums over ! and I’ are symmetric in / and
I to replace e(%=%") by the symmetrized term

% [e"(d"'s") + ei(d"'a')] = cos(d; — &) . (19.8.134)

In general these are infinite sums and difficult to evaluate. However, as we
now indicate, for potentials of short or finite range and for low energies, these
sums may be truncated after just a few terms. In other words, only a few partial
waves contribute.

Suppose that for r > a the potential may be neglected. Then for this region
the total energy of a particle is kinetic (fk)?/2m and exceeds [A%I(I+1)]/(2mr?),
the energy due to orbital motion alone

()2 HI(+1)

T (19.8.135)
or
k2a® > 1(141) (19.8.136)
whence we get the inequality
I<ka . (19.8.137)

Thus, if I violates this inequality the corresponding partial wave cannot partic-
ipate in the scattering classically and we may truncate the sums in (19.8.133)
by the largest [ < ka.

Clearly for potentials of finite range the length a is well defined. For short
range potentials, however, it is not as clear how to perform the approximation.
In section 19.11 we replace the above heuristic argument with a rigorous deriva-
tion and prove that those higher partial waves that violate (19.8.137) do not
contribute appreciably to the differential cross-section.

19.9 The Optical Theorem: Unitarity Bound

If we integrate (19.8.133) to get the total cross-section we find using

/Pl(cos 0)Pu(cos0)dQ = ——6; s (19.9.138)

2l+1

that all the cross terms disappear and

4
c= k’; (2 +1)sin24; . (19.9.139)

1=0
On the other hand

S(f(k,8) = —

- Z 20+ 1}R(1 — 5;) Pi(cos 6)

[

(20 + 1) 3in? §; P (cos ) . (19.9.140)

I
|-
e ¢

=0
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If we now set § = 0 and use P(1) = 1 we get

o0
==Y (A+1)sin4 . (19.9.141)
=0

?r’lr—*

Comparing this with (19.9.139) we obtain 'the optical theorem

c= 4” S(f(k,0)) . (19.9.142)

This relation is very useful for experimentalists since it allows them to get
a good approximation for the total cross section by measuring the scattering
amplitude as close as possible to the forward (6 = 0) direction. This relation
also shows why it is so difficult to measure the total cross section; it is necessary
to measure scattering in the forward direction, which is precisely the direction
that the unscattered beam goes.

The total cross-section (19.9.139) can also be written

c=Y o (19.9.143)

where the ith partial cross-section oy is given by

o=

kz (21 +1)sin®4; . (19.9.144)

For elastic scattering, the phase shifts are real and it therefore follows that for
elastic scattering

4r
o < F(?I +1). (19.9.145)
The value (4r/k?)(2! + 1) is known as the unitarity bound and is reached only

for & = (n+1/2)m. This is the condition for resonance and shows up as a local
maximum in the cross-section for the corresponding partial wave.

19.10 Partial Waves: Lippmann-Schwinger
Equation

The Lippmann-Schwinger equation in configuration space reads
$®)(r) / GE(x, )V (') (x') &' (19.10.146)
where G*(r,r') are the free Green’s functions satisfying

(V2 + E)GE(r,r') = (r —1') (19.10.147)

with outgoing and incoming wave boundary conditions.
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To obtain the partial wave decompositions of these equations, we set

) = §:wﬁ) () Yign (k) Yien (7)
yO(r) = Zcb,“) (r) Yoo (k) Yiem (7) (19.10.148)

where as always k, 7 indicate the 8, v directions of k and r respectively. We
also expand the Green’s functions

ZG r, ™YY () Yin (7). (19.10.149)

We then substitute all of these expressions into (19.10.146) and integrate out
explicitly the angular variables corresponding to r'. This yields the expression

v ) = O / GE)(r, )V () E (') 12’ (19.10.150)

where we have also used the fact that the potential is spherically symmetric and
the spherical harmonics form a complete orthonormal set. The explicit form for
the partial wave Green’s functions G,(i)(r, 7') is obtained by substituting the
expansion (19.10.149) into the defining equation (19.10.147) for the full Green’s
functions G* (r,r’). This yields

(d_2+ 2d _ ’(’;‘ D) k:') G )(r,r') = %5(“7") (19.10.151)

dr? " rdr

where the partial wave Green’s functions are finite at » = 0 and have asymptotic
behaviour specified by the superscripts (+). These Green’s functions are fur-
thermore continuous at 7 = 7’ and have a discontinuity in their first derivative.
This discontinuity is obtained by integrating both sides of equation (19.10.151)
about r = 7' to get

d

—GE)(r, )

d
dr - —G,(i)(r, 7‘,)

= = . 19.10.152
= (19.10.152)

r=r'-0 r

r=r'40

We therefore have, to begin with, as general solutions of (19.10.151)

GH(r,ry = A{*)( Nillkr) r<r
G (r,r') = B (') hi(kr) r>7' (19.10.153)
Gl(_)(r,r) ( )( )hz(kr) r>7r .

We now impose the boundary conditions: continuity of these functions as
well as the given discontinuity in the first derivatives to get the “constants”
+ +
AP ), B ().

AV = —ikhM (k')
AT = ikh2(kr)
BE() = Fikj(kr') . (19.10.154)
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Thus, the partial wave Green’s functions afe given by
G (rr) = —ikji(kro)h (kry) (19.10.155)
G ) = ikilkr ) (krs) (19.10.156)

where

I for r<r
<TY M for P>

[ r for P>
= { ¥ for r<y (1910157)
In obtaining these results we have also used the Wronskian (see problem 19.4)
. ) 1
(@) ni(2) - m() ji(2) = . (19.10.158)

This completes the partial wave decomposition of the Lippmann-Schwinger
equations. They are given by (19.10.150) with the explicit forms (19.10.155)
and (19.10.156) for G*(r,r’) respectively. 'These equations are extremely use-
ful, since they are completely equivalent to the radial Schrodinger equation plus
boundary conditions. It is this fact, that the integral equations already incor-
porate the boundary conditions, that makes them so useful.

19.11 Effective Range Approximation

1t is frequently desirable to have a parametrization of scattering data in terms of
variables more readily interpreted than phase shifts. For low energy scattering a
set of such variables is provided by the scattering length and effective range. In
this section we develop expressions for these two parameters. We furthermore
supplant the heuristic argument of section 19.8, that only a few partial waves
contribute for low energy scattering, by rigourous bounds.
To this end, we consider the Schrodinger equation for the Ith partial wave
in a spherically symmetric potential
a2 24 I(1+1)
— 2 AT — =0. 19.11.1
(dr2+rdr = +k=U(r) ) Ri(r) =0 (19.11.159)
We want to compare the solution to this equation with the solution for the ith
partial wave of the free Schrédinger equation that is finite at the origin
a2 2d l(l+1)
dr? " rdr r2
To compare these solutions we multiply (19.11.159) by j;(kr) and (19.11.160)
by Ri(r) and subtract to get

d2Ry(r)

+k2) Ji(kr) =0. (19.11.160)

gi(kr)—== = Ri(r) dzg:f i ; [J'l(kr)‘———dely) - Rl(’")—djlgr)

= ji(kr)U(r)Ro(r) . (19.11.161)
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We next integrate from 0 to some point a to be fixed later, and use integration
by parts on the first term to get

[ﬁdr% j,(kr)d}fi‘ﬁ'") ()d”( )]

2 [ rie i) 2L oy 21

o [ 2B — 2]

/ ' ridrji(kr)U(r)Ri(r) . (19.11.162)

0

+

il

Now we choose a sufficiently large |value for a so that Ri(a) as well as ji(ka)
assume their asymptotic forms

R~ €% [cosd; ji(ka) — siné ny(ka)]

; in(ka —Ir/2 -
n et oo Sk =10/D) | s oskaZIn/D] g 11 163)
ka ka
and we already used
. _ sin(ke — In/2) __cos(ka—Ir/2)
jilka) » TR TE k) v - L (1911164
So,
Ry(a) n ot S0lka = [n/2+8) (19.11.165)

ka

Substituting these results into (19.11.161) we obtain the following integral rep-
resentation for the phase shifts

€ sind) ~ k/ drr?j(kr) U(r) Ri(r) . (19.11.166)
0

For a sufficiently large value of a this equation becomes exact. To obtain an
estimate for the phase shift, we replace R;(r) by exp(id;) j; (kr). This extremely
crude approximation assumes & is small and yields

sin d; zk/ dre?jE(kr)U(r). (19.11.167)

A much more accurate approach using a variational technique was introduced
by Schwinger [19.4] and used by Blatt and Jackson [19.5]. Now suppose the
potential has a range p and the energy is sufficiently low so that kp << 1. In this
case we can (firstly) replace the upper limit in the integral by p and (secondly)
use the asymptotic behaviour for small argument of the Bessel functions. This
yields the relation

) (kp) 21+1 (I+1)
sindy & 2+1 ”]Zp/ drU(r ( ) . (19.11.168)

From this relation we can make the following deductions:
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1) The phase shifts are odd functions of &.
2) For low energies (kp << 1) the phase shifts decrease rapidly with [.

In order to prove this second observation we maximize the integral by setting
r = p. Also we replace sind; by §;. Then we get

b (k) & _ (k)
b \3 " & (15)2

etc.

This shows that for low energy the scattering occurs predominantly in the lower
partial waves, particularly the ! = 0 or s-waves. This also justifies our previous
heuristic arguments that partial wave analysis is useful for low energy scattering
since only a few partial waves contribute. With this in mind we now examine
in more detail the s-wave scattering for low energy. Restricting the discussion
to s-wave solutions, we can repeat the previous computation starting from the
radial equations

& 24,
[—drﬁ;a?*’“ “U(’")] Rolbir) = 0
d 2d
[W ;;“U(’)J Ro(0,r) = 0. (19.11.169)

Again, multiplying the first of these by by Ro(0,7) , and the second by Ro(k,r)
and subtracting we obtain

Ro(0,7)Ry(k,r) — Ro(k, ) Ry(0,7)
+ 2[Ro(0, )Rk, ) = Rolk, )5 (0,1)]
= —k*Ro(0,7)Ro(k,7) . (19.11.170)
For large r we have the asymptotic form of Ry (k, )

Rolk,r) ~ ¢ sin(kr + o)
’ r

= f(k,r). (19.11.171)

This function f(k,r) clearly satisfies the free I = 0 radial Schrédinger equation
as does f(0,7). Hence we obtain

f0,7)f"(k,7) = f(k,7)£"(0,7)
+ 20,97 () - k) 0,7
= —k2f(0,r)f(k,7) . (19.11.172)
If we further choose

1
= 19.11.1
¢ sinéo ( 9 73)
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then
. 1 [sindgcoskr cosdgsinkr
for) = lll—% sin dg [ r r
= —+kcotdp
r
- ! (1 - i) (19.11.174)
r Co
where
1__ lim k cot dp . (19.11.175)
Co k=0

We now subtract (19.11.172) from (19.11.170) and integrate the resultant equa-
tion from 0 to co. If we further usethe easily computed result that

r? [f(k,7)f'(0,7) = FO,7) f' (ky7))cg = cl + kcot by (19.11.176)
0

we get
k cot 6y = —ci+k2/ r2dr [f(k,r)£(0,7) — Ro(k,m)Ro(0,7)] .(19.11.177)
0 0

This result is usually referred to as the Bethe formula. It is useful for short
range potentials such as are encountered in nuclear physics when one can divide
space into two regions:
1) an internal region r < ry , krg < 1 where the potential |[V| > E and
2) an external region r > ry where the potential |V| < E.

To obtain the effective range approximation we make one final low energy
approximation and set k = 0 in the|integral and define

ro = 2/°° rdr [f2(0,r) — R3(0,7)] . (19.11.178)
0

The final formula for the low energy s-wave phase shift in the effective range
approximation is then

k cot g ~ _1 + 1k2r0 . (19.11.179)
Co 2

The constant ¢q is known as the scattering length and rg is called the effective
range. Actually equation (19.11.179) says only that k cot dy is an even function
of k for small k. The usefulness of this formula derives from the interpretation
that can be given to it for potentials strong compared to the energy. For smooth
potentials that do not change sign, ry is proportional to the range of the po-
tentials. However for more complicated potentials 7o may even be negative and
the above simple interpretation does not follow. Since for “simple” potentials
7o depends only on the range and depth of the potential, equation (19.11.179)
is also known as the shape-independent approximation.
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The scattering length is related to the existence of bound states. From
(19.11.173) we see that co gives the location of the zero in f(0,r), the zero-
energy form of the asymptotic solution (19.11.171). If the potential has a range
p and a depth V; then for Vp so small that there are no s-wave bound states
we have that

% >d0>0

and, as we see from (19.11.175), ¢o < 0.
If Vyp is at the transitional strength for producing the first bound state,

and ¢y = +oo.
For Vyp sufficiently strong to produce a'bound state,

g<50<1r

so that ¢g > 0. The three cases are depicted in figs.19.1, 19.2, and 19.3 with a
corresponding square well potential.

Ro(O,T)
rf(0,7)

Co

-V

Figure 19.1: No s-wave bound states: m/2 > dy > 0, co < 0.

19.12 Resonant Scattering

One of the simplest potentials for which the scattering problem can be solved
in closed form is the square well. We use this potential to illustrate some of
the results to be expected in potential scattering, in general. Also there are
many instances in which more realistic potentials can be approximated by an
appropriate square well potential. For a square well we have with V; > 0

V(r):{ s rse (19.12.180)
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Ro(O,r) _ = /_ —_ —_— —

rf(0,r)

-V

Figure 19.2: Transitional strength : d = 7/2, ¢o = £ 0.

If we now define, as usual,

B 2m(E + Vi)

2 _
k ==z o K= 2 (19.12.181)
the radial equation becomes
2 2d l(l+ 1)
—_ = <
[drz rdr +K? Ri(r) 0 r<a
2 2d l(l + 1) 2

The solutions of these equations|satisfying the conditions that R;(0) is finite
and Ry(r) corresponds to a fixed incoming flux for large values of r are

R(r) = { () ree (19.12.183)

akr) + 3 [Sik) =11 RN (k) r>a

Replacing the S)(k) by the phase shifts we obtain an alternate expression for
r>a.

Ry(r) = €' [cos &1 (kr) — sin &ny (kr)] (19.12.184)

where we have also used the relation hl(l) = ji + in;. Since R; and its first
derivatives are continuous we can match the solutions at r = a. To eliminate
the irrelevant constant A; it is convenient to match logarithmic derivatives. We
thus get

Kjj(Ka) _ k[cosédyji(ka) — sin &;n(ka)]
ji(Ka) ~  cosdji(ka) — sin§ny(ka)

(19.12.185)
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rf(0,r)
R()(O, T') M
~ <
~
~
~
4 >
! r
Co
-

Figure 19.3: One s-wave bound state: 7/2 < dy < 7, o > 0.

where the primes indicate derivatives with respect to the argument. A little
algebra then yields

kiji(Ka)jj(ke) — Kj;(Ka)ji(ka)
kji(Ka)nj(ka) - Kjj(Ka)n(ka)

tand; = (19.12.186)
To continue with a more general discussion we consider an arbitrary smooth
potential of finite range a. Then for » > a, that is, outside the range of the
potential, the solution is as before. We can now write a formal expression for
the phase shift in terms of the logarithmic derivative

1 _a_th

T Ridr 19.12.187
w(k) Ridr|._, ( )
Then,
kay(k)jj(ka) = ji(ka)
t' 6 - : . .
» ka~,(k)n})(ka) — ny(ka) (19.12.188)
However, in the general case 4 (k) is not given by
.y
R e (19.12.189)

(k) G(Ka)

but must be found by solving the radial equation for r < a.

For low energies we can use the asymptotic form for the spherical Bessel
functions and find
2+ 1)(ka)?+t Iy (k) -1

tand; (k) = ( . 19.12.190
(k) (@D U+ Dyu(k)+1 ( )
Now, in general, for ka — 0 we see that §;(k) tends to zero. However, if it
happens that the potential is such that for some value Eq = (h%k2)/2m of the
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energy we have that (I + 1)%,(ko) +1 — O then &;(ko) can approach m/2. This
is resonance. In this case the phase shift may be approximated near Eg by

r/2
k) = . 12,
tan d; (k) B_E (19.12.191)
The corresponding partial cross-section is
4r . 9 Am
o = k—2(2l+1)sm (51(]6)-— F(Ql-{-l)m
4T I?/4
= — —_— 12,192
2@ D T T (19.12.192)

This is known as a Breit- Wigner form and clearly displays the resonance at
E, with a width I'. The cross-section reaches its maximum allowed value, the
unitarity bound
4
k2
at the resonance. This generalizes our discussion of resonances that we started
with alpha-decay in Chapter 14.

(20+1)

19.13 Problems

19.1 Derive equation (19.6.86)

19.2 Use the integral representation for the spherical Bessel functions Z(z) to

show that
a)
2041
Zi-1(x) + Zi41 () = : Zy(z) for 121
b)
d 41

EZI(:L') = Zi-1(z) - —x—ZI(:c) for 1>1

% [+~ Zi(2)] = 27" Zija (2) -

Here Z)(z) may be any one of|the four spherical Bessel functions.

19.3 A useful formula for generating any one of the spherical Bessel functions
is the Rodrigues formula

Zi(z) =2 (-li)lzo .

zdz
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Use the results of problem 19.2 to get

Gl = 1L <_Z'-l)

-1
and hence derive the generating formula above.
19.4 Show that the Wronskian
W = ji(2)ni(z) — m(z)ji(z)

satisfies the differential equation

Solve this equation and use the behaviour of j;(z), n;(2) for small = to fix
the constant of integration to get

W=—=.

)
Hint: Start with the differential equations for ji(z) and n(z) .

19.5 Find the equation for the phase shifts for scattering off a hard sphere
potential.

V(T)z{ oo for r=a

0 for r>a

Solve this for | = 0, 1.

19.6 a) Calculate the differential cross section in first Born approximation for
the potential

V(r) = Voe .

b) To the same approximation compute the s-wave (I = 0) phase shift.

19.7 Repeat problem 19.6 for the potential

_ ) =W for r<a
V(r)_{ 0 for r>a

19.8 Compute the phase shifts for scattering by a potential

V(r) = Voad(r—a) .
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19.9 Compute approximate ! = 0 and [ = 1 phase shifts for scattering a high
energy particle of mass m by a short range potential

e—or

V(T) = Vo

r
Use whatever seems to be an appropriate approximation.

19.10 Consider a potential “shell” of value Vj between r = @ and r = b and
zero otherwise. Calculate the [s-wave phase shift and show that for large
Vo (with respect to what?) resonances occur approximately at energies
which would be bound states if the particles were confined to a “box”

between r = a and r = b.
19.11 Verify directly by using the differential equation and their behaviour near
z = 0 that

sinz cos T
] = — d r) =~ .
Jo(z) pall ng(t) "

19.12 Given the potential

Vo r<a
V(r):{ 00 r>a

find the effective range and the scattering length for the s-wave ({ = 0)
19.13 Repeat problem 19.12 for the Yukawa potential

e H"

V=-W .
r
19.14 Use the results of problems 19.12 and 19.13 to fix the parameters of
the Yukawa potential in terms of those of the square well so that both
yield the same s-wave scattering length and effective range. The fact that
this is possible is what is meant by calling this a “shape-independent”
approximation.

19.15 a) Find the phase shifts for scattering by a hard sphere

<
V=13 15

b) Find the total cross-section for an incoming energy
B2k
" om
in the two limits:

k=0
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k—=oo.

Give a physical explanation for the factors of 4 and 2.
Hint: For k —) oo use the asymptoticforms of j; and n; to obtain a simple
form for sin® &. Furthermore, replacel the sum over ! by an integral so that

l=ka

a'_Zaz~—— 2l+1)sm & dl.

19.16 Use the exact solution for the square well to find the condition on the
potential for the s-wave (I = 0) to produce a resonance at an energy
E() = (h2k[2))/2m

19.17 a) Find the differential cross-section for scattering of 3.0 eV electrons
from a double slit. Assume the slits are cut into very thin material and
that the incident beam is normal to the plane of the slits. Also assume
that the scattering is weak.

b) Calculate the minimum intensity of the incident beam so that if a
detector is 2.5 m from the slits at the position of the first maximum,
beyond the central maximum, and is the width of the first maximum it
receives a counting rate of 200 electrons/s.

c) Is this first maximum resolved from the central maximum according to
the Rayleigh criterion?

19.18 Show that for a spherically symmetric potential V(r) the total cross-
section in first Born approximation is given by

m [
=— d
s |, V(0P ads

where V is the Fourier transform of V. Use this result together with the
properties of the Fourier transform to conclude that for high energies and a
potential of finite range a the scattering is appreciable only in the forward
direction where the scattering angle 4 satisfies

sin(9/2) < ﬁ
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Chapter 20

Systems of Identical
Particles

20.1 Introduction

One of the most profound and far-reaching consequences of quantum mechanics
results from the indistinguishability of two identical particles. That two identi-
cal particles are indistinguishable seems a tautology. Nevertheless classically it
is possible to follow (at least in principle) the trajectory of any particle. Thus,
in classical mechanics, if two identical particles interact we can, in principle,
follow each particle even throughout the region of interaction until they are
separated. In this sense the particles retain their individuality and are in fact
distinguishable, in principle. This meansithat in classical mechanics, no real
difference occurs in the treatment of a system of distinguishable or indistin-
guishable particles.

In quantum mechanics the situation is very different and that is why the
discussion has been delayed until now. If we consider two identical particles
that come together, interact and then separate, their individuality is lost. This
occurs because during the interaction their wavefunctions must overlap (occupy
the same portion of space at the same time). The wavefunction is no longer
a product of two functions, but just a single function which depends on the
variables for both particles. When the particles move apart it is impossible
to tell which particle was which. There is simply one complicated function
describing both particles. This is a consequence of the fact that we cannot follow
the individual trajectories of the two particles and since they are identical we
cannot say, even when they are again separated, where each one came from.

Of course this is not built into the theory a priori and we must now do just
that. To simplify the discussion we begin by considering a system of only two
identical particles. Later we generalize this to an arbitrary number.

452
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20.2 Two Identical Particles

Consider a system of two identical particles interacting with each other via a
two-body potential Vn¢(x1,x2). Since, according to Newton’s third law, action
and reaction are equal and opposite we must have

Vint(x1,X2) = Vine(x2,%1) . (20.2.1)

In addition to the two-body potential we can have an external force, described
by a potential V(x), acting on the! particles. The Hamiltonian for the two
particles is then given by

H=T+T+ V(xl) + V(Xz) + Wn,(xl,xz) (2022)
where T; is the kinetic energy for the particle labelled i. Thus
2
- _ PP
T = o {20.2.3)

We write this Hamiltonian as H(1, 2)| to indicate the dependence on the particle
labels. The indistinguishability of the particles is reflected in the fact that

H1,2) = H(2,1). (20.2.4)

If we let ¢(1,2) be the wavefunction for the two particles then the Schrodinger
equation reads

H(1,2)¥(1,2) = E¢(L,2) . (20.2.5)
We now define a particle-exchange operator Py with the property that

Pioy(1,2) = 9(2,1) . (20.2.6)
Then as a consequence of (20.2.4) we have that

PiuH(1,2)PR = H(2,1) = H(1,2) (20.2.7)
so that

(P2, H(1,2)]=0. (20.2.8)

It therefore follows that the eigenstates of H(1,2) can be labelled with the
eigenvalues E of H(1,2) and the eigenvalues a of P;5 as well as whatever other
labels are necessary. The eigenvalues of P;3 are easily found since as (20.2.6)
shows

Ph=1. (2029)
This implies that
a’=1 , a=4%1. (20.2.10)

The two eigenvalues correspond to two physically very different types of parti-
cles, known as bosons for a = +1 and fermions for a = —1.
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For bosons the wavefunction is symmétric under the interchange of particle
labels

¢(11 2) =¥(2, 1) : (20211)

For fermions the wavefunction is antisymmetric under the interchange of a pair
of particle labels

¥(1,2) = -¢(2,1) . (20.2.12)

These simple rules when generalized to a system of N particles have very far-
reaching consequences. Before carrying out this generalization we consider in
more detail one specific problem involving two electrons.

20.3 The Hydrogen Molecule

The hydrogen molecule consists of two hydrogen atoms bound together. Thus,
we have two protons and two electrons as|shown in fig. 20.1. Since the protons
are much more massive than the electrons we neglect their motion and treat
them as fixed centres of force. With this approximation the Hamiltonian for a
hydrogen molecule becomes

e p: e 2 2 g? e

g P

- 2m L8 2m 2 r12 R ™B E (20313)

where the various quantities are labelled in fig. 20.1. We write this Hamiltonian
as

H=Ho+H' (20.3.14)

Figure 20.1: Geometry of the hydrogen molecule.
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where Hy is the “hydrogen atom” part of the Hamiltonian

2 2 2 2
P ¢ p; ¢
Ho=21_> (P2 20.3.1
= om r1+2m re (20.3.15)
and
2 2 2 2
=, &< _° (20.3.16)

ria R rmp ra

The Hamiltonian (20.3.13) is of precisely the same form as the Hamiltonian
(20.2.2). Here the two-body potential is 2/r1,, whereas —(e2/r) + €2/r1p) is
the “external” potential for particle 1 and —(e2/ry + €2/r24) is the “external”
potential for particle 2. The repulsive potential e2/R between the two protons
is just a constant.

To find the ground state energy of the hydrogen molecule we treat H' as a
perturbation. In that case we only need to find a good approximation for the
ground state wavefunction. The energy is then approximated by the expectation
value of the total Hamiltonian, H in this approximate ground state. Now for R
sufficiently large we have two unperturbed hydrogen atoms with the Hamiltonian
Hy. We use this for our approximate ground state.

Electrons have spin 1/2 and therefore are fermions. Thus, the total wave-
function must be antisymmetric in all the particle labels, and hence we must
include the spin. There are two states of good total spin:

s = 1, the triplet state x*, which is even in the two particle labels, and
s = 0, the singlet state x*, which is odd in the two particle labels.
The corresponding spatial wavefunctions are therefore,

¥s(r1,r2) = A, [¥4(1)¥B(2) +¥Ya(2)¥B(1)] (20.3.17)

and

Yi(r1,r2) = A [Ya(1)¥8(2) — ¥a(2)¥B(1)] (20.3.18)

where A, and A; are normalization constants, and ¥4 (j), ¥5(k) represent hy-
drogen atom ground state wave functions of electron j and k centred at A and
B respectively. Thus,

1 -r1/a 1 -rz2/a
)=z e = e

1 —-raafa ! -riB/a
va(2) = — ¢ ale ¢B(1):ﬁa_3e s/ (20.3,19)

where a is the Bohr radius appropriate for a nucleus of chage 2e

2
= (20.3.20)

2me?

The normalizations A; and A, are given by

L= A7 (1+2((¢a, ¥8)P +1) (20.3.21)
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1= A, (1-2(¢a, ¥8)* +1) (20.3.22)
SO
1
Ay = —— (20.3.23)
201 + A?)
1
At = —— (20.3.24)
2(1 - A2)
where the overlap integral A is given by
1 -(r1+riB)/a 3
A= (Ya,¥B) = m/e (ritris)/a g3y (20.3.25)
To evaluate this integral we transform to elliptical coordinates
_rn+ns _T"-"B
= —&r "% ) (20.3.26)

where ¢ is the angle of rotation about the line joining the two protons. The
volume element in these coordinates is [20.3]

d*r = 582(52 ~ n?)dédndyp (20.3.27)
with the range of integration

1<€é<o0 —-1<9<1l 0<p<2r. (20.3.28)
Thus,

1 R 3 jpo0 1 2n
= g (B) [Femora [ @i [ ap
87\ a 1 -1 0

R 1 (R\®
I+ =+ -4 (=
a 3 a

To the extent that ¥, and ¢; are good wavefunctions, the ground state energy

of the hydrogen molecule can be approximated in the singlet and triplet states
by

e Rla, (20.3.29)

E,(R)

/z/;,(l,?) Hys(1,2) d®ry d3ry

Ey(R)

/ ¥ (1,2) H(1,2) dr dPry . (20.3.30)

These integrals can be rewritten with a little algebra in the form

J+K
14 A?
J-K

E(R)-2B) = = (20.3.31)

E,(R)-2E, =
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where

2
Ey = —%— = the ground state energy of the hydrogen atom  (20.3.32)
a

2 TIB T4 R
= ——/lw P i - [ =,
+ | AP S yp 2)P dr P (203.33)
T12
and
~ e2 g2 2 o2 s
K = /1/)/;(1)'/13(2) (E - E - a- + E) ¢A(2)'([)B(l)d ™ d T2

2 2 2
= SUP=A [0 va) Era - 4 [wa) S vs)
2
+ [ a0 va@a() o dr, (20.3.34)

The integral J is called the Coulomb!Interaction Integral and contains the fol-
lowing terms.

1. The first term gives the Coulomb repulsion of the two protons.

2. The second term gives the energy due to the interaction of the proton at
B with the “charge density” —e|14(1)]? due to electron 1 at A.

3. The third term gives the interaction energy between the proton at A and
the “charge density” —e|y5(2)|? of electron 2 at B and is therefore equal
to the second term.

4. The last term gives the interaction between the two “charge densities”
—el$a(1)]® and —e|p(2)|? of the two electrons centred at A and B.

The integral K is something totally foreign to classical physics. It is called
the exchange energy and results strictly from the indistinguishability of the two
electrons. It is this type of term that gives rise to covalent bonding. The various
integrals are evaluated as follows. The two integrals

2 € 3. _ 2i 3
]WA(I)I Ed r = /|¢B(2)| -~ d°ry (20.3.35)

are evaluated by the use of elliptical coordinates (eqns. (20.3.26) - (20.3.28))
and yield

Jisatp S = <E [ eerreteag /1 eRle dy
4 rg 2a% |[J, 1
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00 1
+ / e Rt/ df/ ne~Fnla dn]
1 -1

—_ 32‘ +2R/a _Ri
= 3 [1 —e (1 + a)] . (20.3.36)
Also we can write
2
[ AP 1a@)F Erara= [ pats) (203.37)
where
pa(l) = —elpa(1)[? (20.3.38)

is the “charge density” due to electron 1 centred at A and ¢ B(1) is the “poten-
tial” at r; due to electron 2 with charge density —e|4p(2)|? centred at B. Thus
#p(1) satisfies the Poisson equation

V2$5(1) = 4melp(2)]* . (20.3.39)

This “potential” is calculated in several books on electrostatics [20.1]. Hence
we can combine all these results and get

2 2 3

& pma [ SR _3(RY_1(R

R 8a 4\a 6 \a
For the exchange integral K the terms involving only one integration are again
obtained by going to elliptical coordinates. The last term cannot be expressed

in terms of elementary functions. It can, however, be expressed in terms of
exponential integrals

(20.3.40)

o0 e—t
Ei(z) = —/ Tdt . (20.3.41)
This was done by Sugiura [20.2]. The final result for K is

2
K = Za [1+§(C+ln5>]
5 a

R
¢ Com |11 1SR 49 (RY 1L (R

a 8 20a 15\a 15 \a

R 1(R\’
~2R/a v s o

+ e 1 a+3(a> Ei(~4R/a)

12, pal, R, 1(R)
- A 1=y 3(;”15,(—23/(1) (20.3.42)

where C' = 0.577215.. .. is Euler’s constant.
If all these results are combined we obtain the results sketched in fig. 20.2
for the energies E,(R), E¢(R).
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5 Rja

Figure 20.2: Energy as a function of separation.

Although the quantitative agreement with experiment is rather poor for the
above computation, the qualitative features are correct and are shown in fig.
20.2. The computation can again be improved by replacing ¥4, g by wave-
functions with an effective proton charge Ze and treating Z as a variational
parameter. This improves the quantitative agreement with experiment consid-
erably. The main point of this calculation, however, was to bring out the effect
of the exchange energy. This energy is a purely quantum mechanical effect and
is entirely a consequence of the antisymmetry of the electron wavefunction un-
der the interchange of the two electrans. We next consider what happens in the
case of several particles.

20.4 N Identical Particles

We now take up again the discussion started in section 2, except that we do not
limit ourselves to two particles. The argument follows very closely the argument
of section 2. The general Hamiltonian for a system of N identical particles takes
the form

N p)
B2 ) = 3 [E V] 4 o120 (20.4.43)
i=1

where V(i) is an external potential acting on the ith particle and Vin(1,2,..., N)
represents the mutual interaction between the particles. If, as is usually the case,
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the interaction between the particles is due only to two-body interactions then

N
1 .
Vint(1,2,+,N) = 53 Vine(i, 1) (20.4.44)
i#j
where again due to Newton’s third law
Vint(1,5) = Vine(4, ) (20.4.45)

The labels ¢, j etc. represent all of the particle coordinates, internal as well as
external. Also the factor of 1/2 in front'is to avoid double counting (counting
the same interaction twice). Combining equations (20.4.43) - (20.4.45) we see
that the N-particle Hamiltonian is invariant under the interchange of particles.
Thus, it is again possible to introduce a particle exchange operator P;; that
commutes with the total Hamiltonian. The action of P;; is

Pid(L,2, .. 4o dye  N) = (1,2, G, iy o N) . (20.4.46)

As for the case of two particles the eigenvalues of P;; are £1 and can be used
together with the energy F to label the ¢igenstates of the Hamiltonian.

It is a remarkable fact of nature, that greatly simplifies all considerations,
that for a given type of particle all the eigenvalues of P;; are either +1 or —1
and are never mixed. Particles with the eigenvalue +1 are called bosons and
particles with the eigenvalue —1 are called fermions.

To illustrate these considerations we consider a wavefunction for three iden-
tical particles and write out the (3! = 6) symmetry conditions.

1) Three identical bosons

¥(1,2,3) = ¥(1,3,2) = %(2,1,3) = 01(2,3,1) = %(3,1,2) = (3,2, 1) .

2) Three identical fermions
'/)(1:2,3) = —1/}(1,372) = —'(/)(2; 113’) = ¢(2137 1) = 1/](37 112) = —¢(3, 21 1) .

The nature of a given type of particle is furthermore intimately connected with
its spin. This result is summarized in the following theorem.

Spin and Statistics Theorem

All particles with integer spin (including spin zero) are bosons and all particles
with half-odd integer spins are fermions.

The proof of this theorem is beyond the scope of this book since it requires
the machinery of relativistic quantum field theory. We, therefore, content our-
selves with the statement of this theorem. Experimentally it has been verified
to a very high degree for electrons and also for photons.

There is one result, the Pauli Ezclusion Principle, which follows quite straight-
forwardly from the requirement that a fermion wavefunction is totally antisym-
metric. For a system of N identical fermions no two particles may occupy the
same state.

This result follows quite trivially. Let ¢k, .. k;. kn(T1...2i...2j...2N)

be the totally antisymmetric wave function for a system of N non-interacting
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identical fermions. Here k; is a complete labelling of the state occupied by
particle 4. If such a labelling is possible also for interacting fermions then the
rest of our argument also applies to them. The total antisymmetry means that

d)kln-k.-.-k,'-..kN(ml EERE 7 IRRE .:L'N)
= Uk bk k(T T &L IN)
= —'wkl...k,»,..k‘-,,,k”(.’cl....73,'....’l‘j...ch) . (20.4.47)

If we now assume that two particles are in the same state, or what is equivalent
that k; = k; then we have the further result that

Tpkl,,,k,mkj,_,kN(l'l...x,'...l'j.‘..’cN)
= kykjoki k(1T ay) for Ri=ky . (20.4.48)

Combining this result with eqn. (20.4.47) we obtain that for identical fermions

Vkyoki ko k(T Tz i2N) =0 . (20.4.49)

This result is known as the Pauli FEzclusion Principle. It states that no two
fermions (both interacting as well as non-interacting) may simultaneously oc-
cupy the same state. Under state we must understand here all the quantum
numbers of the particles involved. Thus, particles with different mass or charge
automatically have different states. This principle was originally postulated by
Pauli to provide an explanation for|the periodic table. Its consequence are,
however, of much greater generality. Thus, for example, many of the properties
of solids are a consequence of this principle.

20.5 Non-Interacting Fermions

Consider a system of N fermions that do not interact with each other but are
subject to an external potential V(). The Hamiltonian for this system is

N ¢ o N
H=Y" [;’—m + V(z,-)] =) Hi . (20.5.50)
izl i=1

Since the index i simply labels the various particles, their corresponding single
particle Hamiltonians H; commute

(Hi,Hj] =0 (20.5.51)
and hence
[Hi,H]=0. (20.5.52)

Thus, to diagonalize the N-particle Hamiltonian (20.5.50) we need only diago-
nalize the single-particle Hamiltonians. This is, of course, a consequence of the
unrealistic assumption of no interaction between the particles.



462 CHAPTER 20. SYSTEMS OF IDENTICAL PARTICLES

We now let |k), k=0,1,2,... be a complete set of one-particle states satis-
fying the one-particle Schrodinger equation

Hilk) = By k) . (20.5.53)

An eigenstate of the total Hamiltonian is then given by nﬁ_.l |k;). This state
must of course be totally antisymmetrized. If 4 is an antisymmetrization op-
erator then the N particle fermion eigenfunction of the Hamiltonian (20.5.50)
is

[k, kay. .. k) = Alki)|ka) ... [kN) (20.5.54)
Here k; is the value of k for the i-th particle. Clearly, we also have
Hlkl, ko, .. .,kN> = (Ek1 + Ek2 + -4 EkN)Ikly ko ..., kN) . (20555)

We shall now repeat the procedure abové for a fixed representation. This will
make it easy to carry out the appropriate antisymmetrization.
The one-particle states in configuration space are given by

Sk (25) = (x;]k) . (20.5.56)

We again emphasize that the labels k are a complete set of labels for the one-
particle states and that z; denotes the configuration space variable for the j-th
particle. In this fixed coordinate representation, a totally antisymmetric eigen-
state of the full Hamiltonian is given by & so-called Slater determinant. Thus,
if the single-particle wavefunctions are normalized then the antisymmetrized
and normalized N-particle wave function is given by the following determinant
known as a Slater determinant.

ok, (21) dry(22) - Ok (zN)

1 det ¢k,¥$1) Pry(x2) - dry(an)

\I’klmkN(Il, . .,.l‘N) = W . (20557)

Sn(21) bry(z2) -+ drylzn)

The antisymmetry of a determinant under the interchange of rows or columns
makes it obvious that this wavefunction has the required antisymmetry. The
fact that the wavefunction can be written as a sum of products of single-particle
wavefunctions is again a consequence of the unphysical assumption of no inter-
action between the individual particles.

Nevertheless a wave-function of the form of a Slater determinant is frequently
the starting point for a computation involving an interacting fermion system.
The main justification for this is the simplicity of the approach.

20.6 Non-Interacting Basons

We now repeat the discussion of the previous section for a system of N bosons
that do not interact with each other but are subject to an external potential
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V(z). As before we have an Hamiltonian consisting of a sum of single-particle
Hamiltonians

N ¢ N
H=Y [;’_m + V(:c,-)] =Sm . (20.6.58)

We again start with a complete set of one-particles states {|k}, ¥ =0,1,2,...}
that are eigenstates of the single particle Hamiltonian

Hilk) = Exlk) . (20.6.59)

An eigenstate of the total Hamiltonian is then given by a symmetrized product
of such single particle states. Thus, we have the N boson state

1
kikay o ky) = —= ) ki)lka).. |k 20.6.60
b b) = S Dl o) (206.50)

where the sum is over all N! permutations of the N particle labels. It is again
straightforward to go to a fixed representation and construct the analogue of
a Slater determinant. We start with a normalized set of one-particle wave-
functions in configuration space

Pr(z;) = (zj|k) . (20.6.61)
In terms of these an N particle boson state is given by the following permanent

Or,(21) Ok (z2) -+ ok (zN)

U kyl(z1,..,2N) = ﬁPerm ¢k2le) ¢k’_(z2) ¢k2(‘xN) (20.6.62)
» ¢kN(x1) ¢kN(x2) ¢kN(xN)

where “Perm” means a permanent, which is the same as a determinant without
changes of sign.

Thus, again we have the N-particle state expressed as a sum of products of
one-particle states. As for the case of fermions this is again a consequence of
the lack of interaction between the particles. In the next section we refine this
method of description even further. It is to be remembered, however, that the
labels are single-particle labels. Thus, we do not have a convenient machinery for
handling collective phenomena, such! as particle correlations or phase transitions,
starting from a basis of one-particle states.

20.7 N-Space: Second Quantization for Bosons

In this section we develop an elegant method for handling the symmetrization of
boson states. In order to do this we first generalize from a system with a definite
number N of particles to a system with an arbitrary number of particles.

We again start with a complete basis of one particle states {|k) , k =
0,1,2,...}, and corresponding wavefunctions ¢x(z;). An N-boson state can
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now be described by stating that particle 1 is in the state |k;), particle 2 is in
the state |ks) etc. and then symmetrizinz to get the state |ky,..., kn).
Another but completely equivalent way of stating this is to say that there
are ng particles in the state |0), n; particles in the state |1} etc. up to ne. The
reason this specification of an N boson state by the sequence of integers

|n07n17"‘7noo>

is equivalent to giving the state |ky, ..., kn) explicitly is due to the fact that the
state |k, ..., kn) is totally symmetric. Thus, we can define a state of N bosons
in occupation number space or N-space by an infinite sequence of non-negative
integers |ng, ny, ..., ) such that 1

(o]
Y m=N. ‘ (20.7.63)
k=0
In this way of specifying states, the four particle states 10,2,5,5) corresponding
to a symmetric product of the states |0), |2),|5),|5) is given by
11,0,1,0,0,2,0,0,0,...,0,...).

This says that there is one particle in the ground state k = 0, one particle in
the state k = 2, two particles in the state k = 5, and no particles in any other
state. If the one-particle states are the eiéenstates of a one-particle Hamiltonian
H(z;) such that the N-particle Hamiltonian is

N
H=) H(z;) (20.7.64)
Jj=1
then the state |ng,ny,...,ne) is an eigenstate of H. The eigenvalue of H is

given in terms of the single particle energies Ey
H(z;)|k) = Ex|k) . {20.7.65)
In fact,

Hlng,ny,n4,...) = (Z nkE'k) |ng, m1,n1,...) . (20.7.66)

k=0

It therefore becomes convenient to introduce operators Ny such that
Nk|n0,n1,n1,...) =nk|n0,n1,n1,...) . (20.7.67)
Thus, the operators Ny “count” the number of particles in the state |k} and are

appropriately named number operators. The Hamiltonian may now be written

H=) NiE . (20.7.68)

k=0
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We now take the further step and write Ny in terms of annihilation and creation
operators like we did for the harmonic oscillator

Ni = alay (20.7.69)
where we assume the commutation relation
[ak, al] = &, (20.7.70)
with all other operators commuting
lak, a5} = [al,a}] =0. (20.7.71)
With this notation we now have
o 0]
H= Epala . (20.7.72)
k=0

Notice that a and a,t respectively annihilate and create quanta of energy E.
The ground state (zero-particle state or vacuum) is |0,0,0,...,0,...) and is
annihilated by all the annihilation operators. A general state can now be written
as

My, = --+|0,0,0,...) . 20.7.73
An N-particle state in configuration space is furthermore given by
‘I’no'nhm(rl,l‘g,...,l']\j) :(zl,zg,...,rmno,nl,...) . (20774)

Thus, the completeness relation for N-particle states in occupation number
space 1s

Y Ino,ns,.. Mo, 1, ... (20.7.75)
{n}

where the sum extends over all sequences {ng,n,...} with a fixed number N
of particles

Yom=N. (20.7.76)

It is therefore also convenient to define a total number operator N such that the
eigenvalue of N for an N-particle state is N. This operator is given by

N=Y Ne=) ala. (20.7.77)

The orthonormality of these states in occupation number space is expressed by

s

(no,n1y .. iy ngy g, ) =

Sug - (20.7.78)

k=0
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It is therefore straightforward to write an arbitrary state (a state with an arbi-
trary number of particles) in terms of the occupation number space basis

[¥) =Y "o, my,.. Yno,ny,... W) . (20.7.79)

The coefficients (ng, ny,...|¥) are the Iprobability amplitudes for finding ny
particles in the state [0), n; particles in the state |1), etc. if the state of the
system is |¥). For a fixed number N of particles these coefficients are, in fact,
nothing else but the permanent given by eqn. (20.6.62).

In arriving at eqn. (20.7.73) we have in fact rewritten a system of N non-
ineracting bosons like an infinite system of harmonic oscillators. This procedure,
at present, is nothing other than an elegant formalism for incorporating the sym-
metry of bose states. It turns out, however, to have far reaching consequences in
solid state physics where many computations are facilitated, and much physical
insight is gained from this machinery.

20.8 N-Space: Second Quantization
for Fermions

We now carry out a discussion parallel to that of the previous section except
that we deal with a system of fermions. It is again convenient to generalize
from a system with a fixed number N of particles to a system with an arbitrary
number of particles.

As before let {|k) , k =0,1,2,...} bela complete basis of one-particle states.
An N-fermion state is then given if we state that particle 1 is in the state k1),
particle 2 is in the state |ks) etc. We then simply antisymmetrize and obtain
the N-fermion state |ky,kz,...kn). Due to the antisymmetry none of the k;
may coincide.

The next step now is to introduce the occupation number space (N-space)
representation for these states. Thus, we define a state |ng,ny,...,ns) where
each ny is either 0 or 1. If nx = 0 it means there is no particle in the state ),
whereas if ny = 1 there is exactly one particle in the state |k). The antisymmetry
of fermion states restricts the occupation numbers ng to the two values (0,1).
On the other hand the antisymmetry further gives a one to one relation between
an N-fermion state |ky, ko,...kn) and astate |ng, ny,...,nc) where

inkzN .
k=0

For example, the 2-particle state |0, 3) corresponding to

1
—= (|0)[3) — |3}|0 20.8.80
75 (0)13) = 13)10)) ( )
where the first state on the right of (20.8.80) refers to particle 1 and the second
state to particle 2 is now written as |1,0,0,1,0,0...). This simply says that

10,3) =
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there is one particle in the ground state ¥ = 0 and one particle in the excited
state k = 3. Notice again that due to the Pauli exclusion principle we can have
at most one particle in a given state.

We now assume that the one-particle states {|k), k =0,1,2,...} are eigen-
states of a one-particle Hamiltonian H (z;) such that the N-particle Hamiltonian
is

H= f:H(:cj) . (20.8.81)
j=1
Then we have that
H(x;)|k) = Exlk) (20.8.82)
angd the state |ng, n1,...,n) is an éigenstate of H

k=0

=]
H|n0,n1,n1,...) = (anEk) |ng,n1,n1,...) . (20883)

We now again introduce number ioperators Ny that state whether the state
|k) is occupied or not. Thus, they must have the eigenvalues 0,1. This requires
that

NE=N; . (20.8.84)

We next try writing the number operators in terms of annihilation and creation
operators

Ny =alax (20.8.85)

This time, however, a; and a,t cannot:satisfy the commutation relations (20.7.70)
and (20.7.71) for otherwise we would have boson operators as before and the
number operators would have all non-negative integers as eigenvalues and would
therefore not satisfy (20.8.84). Furthermore the states produced would be sym-
metric. To ensure that a state |ng, ny,nq,...) can still be written in the form

t no T ni
Ino, ny,...) = (% (337 -40,0,0,..) (20.8.86)

with not more than one particle in a given state requires that

(al)?=0. (20.8.87)

This immediately implies that
(ak)*=0. (20.8.88)
Furthermore the two-particle state

0,... ,1, 0,...,0, 1, 0',... )=alal[0,0,0,..)

h . (20.8.89)
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is antisymmetric in k and j. This requiresithat

ala! = —ala] (20.8.90)
or
a,ta} + a}al =0. (20.8.91)

Again the hermitian adjoint of this equation yields
ara; + ajay =0. (20.8.92)

Equations (20.8.91) and (20.8.92) imply (20.8.87) and (20.8.88). If we now
further postulate that

alaj + ajal = 6; (20.8.93)
it is a simple matter to verify (20.8.84). Thus, we need

NZ=N,.
But this reads

alaka,tak = a}‘ak(alak + aka,t) = alak (20.8.94)

as required. The first equality follows from a2 = 0 and the second from (20.8.93).
Thus, fermion creation and annihilation operators satisfy the anti-commutation
relations given by (20.8.91) - (20.8.93). We henceforth write these equations as

[ax, a;]4 = [a},al]y = 0 (20.8.95)
and

la}, a;]4 = &; (20.8.96)
where

[A,B]; = AB+ BA (20.8.97)

is called the anti-commutator of A and B.

Computations for fermions may now be carried out in the same manner
as for bosons except that the creation and annihilation operators satisfy anti-
commutation instead of commutation relations. Thus, the Hamiltonian (20.8.81)
may now be written

H =) Eala . (20.8.98)
k=0

An N-particle state is now picked out by restricting ourselves to that subspace
of occupation number space for which

Y m=N. (20.8.99)
k=0
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Corresponding to this it is convenient to define a total particle number operator
N such that

N=Y M=) dala. (20.8.100)

An N-particle state then belongs to the subspace for which the total number
operator N has the eigenvalue N.

Again an arbitrary state |¥) may be expanded in a basis of occupation
number states. Thus,

V=) |ng,m,...)no,n1, ... |¥) (20.8.101)

just as for the case of bosons. The completeness and orthonormality relations
are also the same as for bosons namely (20.7.75) and (20.7.79). The expansion
coefficients (ng, ny, ...|¥) are just the Slater determinant (20.5.57) and give the
probability amplitude for finding ng |particles in the state |0), ny particles in the
state |1), etc. Throughout, of course, all the nj are either 0 or 1.

20.9 Field Operators in the Schrodinger
Picture

In this section we treat the Fermi and Bose case at the same time. Where neces-
sary we indicate the differences. We begin by defining the field operators 1(x),
P! (x). Although we use the same symbols as previously used for wavefunctions,
¥(x) and 9T (x) now represent operators. This is the conventional notation.

0

$(x) = Y (xlk)a (20.9.102)

k=0

Yl(x) =Y (klx)a} . (20.9.103)

WK

x>
1}

0

We then have the following

—_

anti)commutation relations

[¥(x), 9! ()]s (x|i)(kly)[a;, al)+

1]
gk

k=0
= S xlky)
= ;(::: —y) (20.9.104)
Also
[¥(x), (¥))z = W' (%), ¥'(¥)] =0 . (20.9.105)

Throughout this section, the upper |sign applies to fermions and the lower sign
to bosons.
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The inverse of eqns. (20.9.102) and (20.9.103) is

o = / (kp)p(x)d%s (20.9.106)

al = / (x|k)y! (x)d®z (20.9.107)
where we have used the closure or completeness condition
/ |x){(x|d®z = 1. (20.9.108)

The total number operator N may now also be expressed in terms of the field
operators. Thus, we have

[o0]
N = Zaiak
k=0

S [y ikt ots)

= / Pzt (x)p(x) . (20.9.109)
The operator ¥!(x)4(x) can therefore be interpreted as a particle density op-

erator. To further obtain an interpretation of the field operators we calculate
their commutator with N for both fermion and boson operators.

N yHx)] = / @y {81 (v)0(y)8! (x) - 1 (09! (3)8(3))

[ uv ix-)
¥i(x) . (20.9.110)

This result holds for both fermions and bosons and identifies /! (x) as a creation
operator for those particles for which N is a number operator. Similarly we get
that

N, %(x)] = —(x) (20.9.111)

and that t(x) is an annihilation operator.
We now define a vacuum or no-particle state |2) such that

Y(x)[2) =0. (20.9.112)
This implies that

a|Q) =0 (20.9.113)
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for all k and hence this vacuum |Q) is the same as the state [0,0,...) of occu-
pation number space. That this is a no-particle state is further demonstrated
by the fact that

N|Q) = 0. (20.9.114)
It then follows that ¢1(x)|Q) is a one-particle state, since using (20.9.110) we
obtain

NG (1) = {9 GON + 9100} 19) = 1- 9 ()19) (20.9.115)
The probability amplitude for finding the particle, which is in the state y1(x)|2),
in the state |a) is {a|y!(x)|Q). Thus, if [a) = |y) we get

@) = (@)Y E)IR)
§(x - y)(QIQ)
= d(x-y) (20.9.116)

1l

showing that ¥!(x)|Q) is the state for a particle located at the point x. Thus,
¥!(x) creates a particle localized at the point x. Such states are not normal-
ized and must be turned into wave-packets (they must be smeared with a test
function) before they belong to Hilbert space. That is, we find

Q)9 (x)|2) = §(0) . (20.9.117)
To form wave-packets we can either smear the states

%) = [ (x)|2) (20.9.118)
to get the states

= [ & = [ &t 1) (20.9.119)
or else we smear the operators to form smeared operators

W0 = [ 21l (20.9.120)
from which we form states

1 =9'010) = [ &= 1 i) (20.9.121)

In either case the resultant states have a finite norm if f(x) is square integrable
since

i) / B dy () F QDR ()[92)

/ &z |f(x)|? . (20.9.122)
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The smeared operators may be viewed as|creation and annihilation operators
for particles localized according to the wave-packets f(x). They satisfy the
following (anti) commutation relations:

[(£), ¢! (9)l+ = / &’z f*(x)g(x) (20.9.123)

[W(f), ¥(9)le = W'(f), ¥ (g)]e =0 . (20.9.124)

It is, therefore, quite natural to treat the probability amplitude {a|¢!(x)|Q) as a
wavefunction Fj;(x), and the corresponding amplitude (Q|1(x)|a) as the wave-
function F,(x). The reason for our choice of complex conjugates will become
clear a little later.

Similarly a two particle wavefunction in configuration space is then given
by (Q[4(x)¥(y)|a1, @2) and an N-particle wavefunction in configuration space
is given by (Q|9(x1)¥(x2) ... ¢¥(xn)|a1, a3, ..., an). We shall use these results
very soon to show how the second quantized formalism in terms of field operators
may be used to describe N-particle Schrédinger equations.

20.10 Representation of Operators

In practice we know the representation of operators in configuration space. We
now first rewrite them in the occupation number space representation. This
allows us to express them in terms of the field operators.

Thus, suppose we are given a local operator F in configuration space. We
assume that this operator does not change the number of particles. In that case
its configuration space representation is

(Xlaxza-~-,XN|F|YI,YZY-~,YM)

N
= SvmFN (x1,%s,...,xn) [] 6(%; - v5) - (20.10.125)
Jj=1
We now use the completeness of the states |x;,Xz,...,%xn) to write

(ng,nl,...|F|m0,m1,..‘) = /d321 . ..ds.’L‘N d3y1 N .dayN

X {ng,ma,...|%X1,X2,. .., XN X1, X3, .., XN]|

Flyn,yz, .., yn)(¥1,¥2,-. ., yn|mo,my, ..)

= /dal‘l .. .dazN d3y1 . .d3yN

X (no,nl,‘..]W(xN)...wT(x1)|Q)(Q|¢(x1)¢(XZ)...t/;(xN)
F|Y1,Y2, o ')YN)(yl)y27 .. ~,}’N|m07m17 . > (2010126)

or

By ... dPey(ng,ny,.. .|

1
(no,ny,...|Flmg,my,.. )= Il
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[¥t(xn) .. .1/)7(x1)|Q)FN(x1,x2, < XN)
(Q(x1)¥(x2) ... ¥ (%) Mo, my, ....) (20.10.127)

where we used that
(xlyx21 . 'nylelay2y .. ,YN) = H J(XJ - y]) (2010128)

and also integrated out all the y; variables. Furthermore,

Yoni=d m=N. (20.10.129)

Now |9(x1)¥(x2) ... ¥(xn){mo,myy...) with 3 m; = N has a non-vanishing
inner product only with the no-particle state. We may therefore replace the
intermediate state |§2)(€2| with a sum over all possible intermediate states, or

1= Ino,ny,.. Mno,my, .| (20.10.130)
{n}

to get

1
{no,n1,...|Flmo,my,...y = N‘/daxl daxN(no,nl,...|

1/)T(xN) ‘e 'd}T(xl)FN(xl)va e ‘,XN)IIJ(XI) . ~¢(XN)

To proceed further we first consider the Hamiltonian

N
H=Y Hxj) (20.10.132)
j=1

consisting of a sum of one-particle| Hamiltonians. In this case a considerable
simplification occurs. This can be seen by taking the terms in the above sum,
one at a time. The last term yields

;lfdaxl By (ngny, .. |t (xn) .. YT (x1)H(xn)
xN)|mUamls )
= /daxl Pry (noyni, ... |01 (xn) H(xn)
w*(xN_l)...w?(xl)w(xl).._¢(xN)|m0,m1,...) (20.10.133)

where as before Y n; =Y " m; = N. The integral over d3z; produces the number
operator [ d®z19!(x1)y(x1) applied to the one-particle state

w(x2) N .1[)(XN)|m0, my,.. )
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and thus yields 1 times the same state. After that, the integral over d3z4 again
produces the number operator, namely [ d3z29'(x2)9(x2) applied to the two-
particle state

1,/)(1(3) .o .¢(xN)|mo, my,.. )
and yields 2 times this state. Proceeding in this fashion we eventually get
1
ﬁ/da:cl @y (ng,ny,. . Ut (xN) .. 0t (x1) H(xN)$(x1) . 9(xn)
|m0} my,.. )

= %/d%N(ng,nl,...|1/;T(xN)H(xN)¢(xN)|mg,m1,...). (20.10.134)

Now every term in the sum can be brought to this form by commuting, or
anticommuting all the %! (x;)H(x;) to the extreme left and every ¥(x;) to the
extreme right. Hence we get that

(ng,nl,...|H|mo,m1,...)

1 N
WZ/ds:cj(no,nl,...|1/;T(xj)H(xj)z/)(xJ~)|mg,m1,.4.)
.j:I

/ @z (no, 1, .. |91 () B (x)$(x) [mo, mi, .. ) - (20.10.135)

Thus, the occupation number space representation of the Hamiltonian corre-
sponding to the sum of one-particle Hamiltonians (20.2.4) is given by

H

/dax P! (%) H(x)9(x)

/ Bz pt(x) [—%W + V(x)] ¥(x) . (20.10.136)

To complete our treatment we also need to consider a general N-body interac-
tion. Fortunately, it appears that for systems whose interactions may be de-
scribed by potentials, the most general interaction involves a sum of two-body
interactions of the form

N
1
V(x1,%3,...,xN) = 5ZV(xj,x,,) . (20.10.137)
J#k
No intrinsic three-body forces or higher have so far been found necessary for a
description of actual systems.

Applying the results of equation (20.10.131) to the interaction (20.10.137)
we obtain in occupation number space the following operator (see problem 20.8)

V=3 / Pz dy 6! (<) (Y)V (x, ¥)$(¥)¥(x) - (2010.138)
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The order of the last two operators is deliberately reversed to remove the self-
interaction V (x, x) which does not occur in (20.10.137).

Thus, a Hamiltonian containing lan external potential Vo(x) as well as two-
body interactions V (x,y) would have the second-quantized form

o= [ @evtin[-1= 7+ v o)

s / Pz By} ()9 (3)V (%, Y)Y () - (20.10.139)

20.11 Heisenberg Picture

We next transform to the Heisenberg picture and obtain the equations of motion
for the field operators. Many theoretical discussions commence with these field
equations, which are known as the Heisenberg equations. They are, as we shall
see, a sophisticated summary of the Planck frequency condition F = hv.

The field operators we have uséd so far have all been in the Schrédinger
picture. To distinguish them from the Heisenberg picture operators, we are
about to introduce, we label them with a subscript s. Thus, the states in the
Heisenberg picture are related to the states in the Schrodinger picture through

|¥) = exp(tHt/h)|T,(t)) (20.11.140)
and the operators are related by
¥(x,t) = exp(¢Ht/R)y,(x) exp(—iHt/k) . (20.11.141)

Since these transformations are unitary they preserve the equal time (anti)
commutation relations. Thus,

[B(x,1), ¥} (y, )]+ = é(x ~ ¥) (20.11.142)
and
[B(x,1), ¥(y, )]z = [¥'(x,0), 91 (v, )]+ = 0 . (20.11.143)

By astraightforward differentiation of equation (20.11.141) we obtain the Heisen-
berg equation of motion for the field operators

oY(x,t)

iﬁT = [d’(x)t)rH]
ihwg’” = W) H) (20.11.144)

If we consider the Hamiltonian (20.10.139) then since H is time independent we
get

0. W= [ ot 0, 016.0] { -7+ Vo) | +
[P0V 09 09 e 0]V i) (01115)
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This yields the following field equation

., 0 K2
zh% = {—Z-n—V2+Vo(x)} ¥(x,1)

/d“’yw‘(y,t)V(y,x)w(y,t)zp(x,t) . (20.11.146)

To illustrate how this is obtained we consider the last term in equation (20.11.145).
As before we treat fermions and bosons simultaneously; the upper sign always
applies to fermions. We first note that

[V(x,1), ¥(z,1)¢(y,1)] = 0 (20.11.147)

both for fermions and bosons. Therefore the commutator in the last term in
(20.11.145) reduces to

[¥(x,1), 9" (y, )8 (2, )] (2, t)¥(y, 1) . (20.11.148)
But,
[W(x,1), ¢! (v, 1)¢! (2, )] = (x t)¢'(y )y (,)—z/z‘(z,t)rl»'(y,t)ﬂ/f(x,t)
= {vix, )9 (y,1) 01 (v, )9(x,1)} ¥ (2,
F V.0 {vix )9z, )w(z t)y(x, )}
= S(x—y)¥i(z,t) Fo(x —z)pi(y,1) . (20.11.149)

Combining all these results and integrating out the delta functions yields
3 [ v 1060, 817,091 o, 0806, 005,01V (9,2
= 53 [ POV (000 F vl 9 ,0)
= [ 5V vty 0v(x 1) (20.11.150)

To obtain the first equality we used Newton’s third law in the form V(x,y) =
Vi(y,x).

Equation (20.11.146) occurs whenever we have two-body interactions. Thus,
in a sense it contains almost all of solid state physics. The problem is that it
1s not only an equation for operators and thus represents an infinite number
of scalar equations, but it is also non-linear. There is therefore no hope of an
analytic solution of this equation except in the most trivial cases. In practice
it is frequently more convenient to work with the annihilation and creation
operators. In that case the Hamiltonian (20.10.139) becomes

H= ZEmna ot Y Vegmnafalanan (20.11.151)

kJlmmn

where

Epn= /d% (m|x) [—%VQ + Vo(x)] (x|n) (20.11.152)
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and
Vitma = [ &y ()R (5, 3)xlm)y ) (0.11153)

The states |n) here denote one-particle basis states. If they are chosen as eigen-
states of the single particle Hamiltonian

Hy = -%vz + Vo(x) (20.11.154)
with eigenvalues E,, then equation [(20.11.152) reduces to
Emn=Epbpm. (20.11.155)
In that case
H= Z Epnal ap + Z Vk’hm',,a,'ca;'aman . (20.11.156)
m=0 km,n

As a final consideration we assume that we have eigenstates of energy F
of the Hamiltonian (20.11.151) of our system. Denoting these states by |E)
and taking matrix elements in this basis of the Heisenberg equation of motion
(20.11.144) for the field operator we get

ih(E|6wg;’t) |E') = (E' — E)\E|$(x,1)|E") . (20.11.157)
If we furthermore Fourier decompose ¥(x,t) as

1 [ .

— —iwl

5 /;oo Y(x,w) e dw (20.11.158)
we find that

2i” [hw = (E' = EY(Elp(x, w) | E'Ye= " dw = 0 (20.11.159)

and we have that
(E|Y(x,w)|E'Y =0 unless E'— E=hw. (20.11.160)

Thus, we have rederived the Planck frequency relation from the Heisenberg
equation of motion.

20.12 Problems

20.1 Using the Pauli exclusion principle, determine the maximum number of
electrons in any energy level n of an atom. Neglect the interactions be-
tween the electrons.

20.2 Two electrons are in the d-state (I = 2) of an helium atom. Write all
permitted spin wavefunctions for this case and state what all the possible
total angular momentum valugs are.
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20.3 Two identical spin 1/2 particles collide.
a) Assume that the wavefunction for the two particles after the collision
corresponds to a relative orbital angular momentum with ! = 0. Write
out the possible spinor wavefunctions.
b) Repeat part a) if [ = 1.

20.4 Consider the collision of two identical spin 0 particles. Separate the wave-
function into centre of mass and relative coordinates. Discuss the symme-
try required of the relative wave function. Use this to obtain the modifi-
cations required for the scattering amplitude and hence an expression for
the differential cross-section.

20.5 Repeat problem 20.4 for two identical spin 1/2 particles. Again, separate
the wavefunction into centre of mass and relative coordinates as well as
spin coordinates. Assume the particles scatter from a spin-independent
potential.

a) Discuss the symmetry required of the relative wavefunction if the scat-
tering occurs in a singlet (s = 0) state. Use this to obtain the modifications
required for the scattering amplitude and hence an expression for the dif-
ferential cross-section.

b) Repeat part a) if the scattering occurs in a triplet s = 1 state.

20.6 Consider a system of non-interacting bosons and write the Hamiltonian
in the form

[o9]
H= Z hwa}:ak .
k=0
Find an explicit expression for

exp[iHt /h] ¥(x, 1) exp[—iHt/k]
where
o]
0o0) = Y Gxlkan
k=0
Hint: Expand the second exponential and commute ay through, showing
that
ax ekalak — eA(aIak-H) a

k -

20.7 Repeat problem 21.6 for fermions.

20.8 Obtain equation (20.10.138) for the occupation number space representa-
tion of the interaction specified by equation (20.10.137).
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20.9 Show that the Hamiltonian

H= z [Eka,tak + /\kalal + )\,:akak] , Ex> 2|/\k|
k

can be diagonalized if ai, aL are bose operators.
Hint: introduce operators

b = ukaL + vgag

and choose the constants u; and vy appropriately. What happens if ax,
a,'c are fermi operators? These are simple examples of Bogoliubov trans-
formations.

20.10 Let A and B be arbitrary operators. Derive the following formula

o 1
-Ap A _
e Bet = E E[ByA]n

n=0

where,
[B, A]o =B , [B,A]n+1 = [[BrA]ﬂ’A] .

20.11 Let ag, a,t be fermi operators k = 1,2 and define

b}:ua'{—vag , blzu*al—v*ag
bg:va1+ua2 , b;:v*al-i-u'ag

with
luf+p)2=1 , w*~u'v=0.

a) Verify that b, b,t are fermi operators.
b) Show that for an appropriate choice of the constant ¢

B =vdut |, b =UayU!

b =UdUt | by =UayUt
where

U =exp {ca}ag —c* agal}

is a unitary operator. This is/known as a Bogoliubov transformation.
Hint: Use the result of problem 20.10 .
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20.12 a) Diagonalize the Hamiltonian
H=3 hoalas+ LT V(k La}
= :4:3 alax + 5; (k)[akax + alal] .

where w(k) and V (k) are given functions of k and

[ak,al] = Ok 5 lak,a] =0
Hint: Use the Bogoliubov transformation

by = ugay — vkal , b,t = u,':aL — v
with

fug* ~ Jos]* = 1.

b) Is this Bogoliubov transformation unitary for all w(k) and V' (k)? If not
what conditions on w(k) and V (k) will guarantee that it is unitary?

20.13 Consider a finite set N of bose operators a; such that
la,a)) =6 , lak,a_p)=0., [a},al]=0.
Define

bx = cosh Aay +sinh A a,t
bl = cosh Aal +sinh gy .

a) Find the commutation rules for the by, b,‘;.
b) Find a unitary operator

Vi = exp(iTy)

in terms of the ay, a,Tc such that
Vv ar Vi = by .

c) Show that
Jim (¥[Vi|@) =0

where |¥), |®) are any states of the form
[Tall0) -
k

What does this last result mean?
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Chapter 21

Quantum Statistical
Mechanics

21.1 Introduction

In the previous chapter we developed techniques for dealing with systems of
particles. If the system consists of a very large number of, say 10?3, particles
then it is neither possible nor desirable to have exact knowledge of the state of
the system. In this case, statistical techniques are required to handle this incom-
plete knowledge. The procedure here is quite analogous to classical statistical
mechanics as developed by Boltzmann and Gibbs.

In quantum statistical mechanics, the probability or statistical concepts en-
ter at two levels. There is the statistical distribution of results of a measurement
of an observable on identically prepared systems. This has been the subject of
our discussion up until now. These quantum mechanical probabilities add coher-
ently and are described by probability amplitudes. There is also the statistical
distribution due to an incomplete knowledge of the state of the system. These
are the incoherent probabilities used in classical statistical mechanics. Thus, in
equilibrium, this second level of probabilities is determined by an ensemble, as
developed by Gibbs. We now develop techniques to incorporate both effects.

The approach we take is more heuristic than rigorous, but it brings out the
relevant physical input. We start by dividing the universe into two parts

1) The system of interest to us; this we simply call our “system”.

2) The external world.
Thus, for example, we could consider a gas in a container as our system and the
rest of the universe including the physical container as the external world. We

furthermore assume that our system interacts “weakly” with the external world
through the boundaries of the system (walls of the container).

482
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Let [¢)) be a ket describing both our system and the external world,and let
{|k)} be a complete orthonormal set of kets for our system. In that case we can
write

W)= lex)lk) (21.1.1)
k

where the {|cx)} are a complete set of kets for the external world.

Now suppose A is an operator corresponding to an observable of our system.
Thus, A operates on the space of kets {|k)}. An instantaneous expectation value
of this observable is given by

(V]Al¥)

(¥l¥)

This quantity represents an average result for a large number of identical mea-
surements performed at the same time. We now rewrite this expression

(YIA[Y) _ 2o mlcnlem)(n|Alm)
('j’hb) B En(cﬂ|c") )

We have used here the fact that A corresponds to an observable of our system
and does not operate on the states of the external world. Now (¢|¢) is time
independent and therefore so is also 3 (cnlcn)-

In a laboratory, we do not perform instantaneous measurements on a many-
particle system, but rather time averaged measurements. Thus, we measure

(21.1.2)

WIAlDY cnlem Y n|Alm
oy < T _ T EaendolAm) oy

(#1¥) 2on/(cnlcn)
Here the bar represents a time average. The assumptions of quantum statis-
tical mechanics, when referring to|a macroscopic observable of a macroscopic
system in thermodynamic equilibrium, are assumptions on the time-averaged
coefficients (cn|cm). These coefficients form an object called the density matriz.

21.2 The Density Matrix

We begin with some examples to illustrate the previous ideas about the density
matrix. These examples conform as closely as possible to classical statistical
mechanics.

21.2.1 The Microcanonical Ensemble

In this case we assume that our system consists of N particles in a volume
V. We further assume that their energy is fixed between F and E + A where
A << E. If H is the (N-particle) Hamiltonian of our system we choose as our
basis set {|k)} the set of eigenkets of H.

Hlk) = Eilk) . (21.2.4)
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Here k) represents a state for N particles with total energy Ej enclosed in a
volume V. We now make the following statistical assumptions.

——— [ 1 E<E,<E+A
ML (ealem) = 0 otherwise

Assumption of equal a priori probabilities.

M2. {cnlem) =0 forn # m
Assumption of random phases.

We can thus write

[¥) = baln) (21.2.5)

where the b, are numbers with random phases such that

0 otherwise

I lz_{l E<E,<E+A

This is a specification by the outside world or heat bath.
We thus get

((4)) = —Ei%zﬂ"—) : (21.2.6)

The postulate of random phases implies that the equilibrium state is an inco-
herent (classical) superposition of eigenstates. The quantities,

[bn 2
2on 1Bal?

may clearly be considered as classical probabilities p,,. Since this is the case,
we can rewrite the above expression so that mo reference to phases need occur.
Thus,

{(4))

)" pan|Aln)
= Y (n|Alm)p (m|n)

n,m

= D _(mln)pa(n|Am)

n,m

= Tr(Zln)p,,(nM)
= Tr (ZA|n)pn(n|) (21.2.7)
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where Tr means “trace” or “sum! of the diagonal elements” of the operator
following. This expression can also be written as

({4)) = Tr(Ap) (21.2.8)

where

p= Inpalnl - (21.2.9)

n

The operator p is called the density matrix. Thus, in our example of the micro-
canonical ensemble the density matrix is, up to normalization, given by

p= Z |n){(n| . (21.2.10)

E<E.<E+A

It is now an easy matter to display the density matrix for other ensembles.

21.2.2 The Canonical Ensemble

In this case we have N particles in a volume V. The total energy however is
no longer fixed, instead states are weighted with the Boltzmann factor e=#£~
where 8 = 1/(kgT), with kp Boltzmann’s constant. Thus, in analogy to the
microcanonical ensemble we make two statistical assumptions.

Cl. (cn|cn) = e7PEn,
Assumption of weighting according to the Boltzmann factor

C2. (enlem) = 0 for n #m.
Assumption of random phases.

We then obtain for the unnormalized density matrix

p o= ) In)ePEn(n|
= ¢ PHY In)(n] (21.2.11)
p =exp(—SH) . (21.2.12)

One also defines the normalization or partition function for N particles Zn by:
Zn = Trexp(—pH) . (21.2.13)

This quantity yields the interesting macroscopic or thermodynamic observables.
We defer a discussion of this until later.
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21.2.3 The Grand Canonical Ensemble

If we wish to consider a system in which even the particle number N is not
specified, but only the average number, we can introduce a further “Boltzmann
factor” exp(BuN) for the particle number. In this case u is the chemical poten-
tial. Thus, in this case, we have for the unnormalized density matrix

p=exp[-B(H - uN)] . (21.2.14)
This yields a grand partition function (normalization of the density matrix)
Zg = Trexp[-B(H — pN)] . (21.2.15)

The connection between statistical mechanics and thermodynamics is made
through the thermodynamic functions. This is the same as in classical statistical
mechanics. Thus, the internal energy U of a system in the Grand Canonical
Ensemble is given by the average value of the Hamiltonian. This means

U =25 "Tr(pH) . (21.2.16)
Since p is given by (21.2.14) it is easily seen that
U= _(_% In Z6 (s, V, T) + u((N)) . (21.2.17)

This, however, is not the most convenient form for the expression of the internal
energy. A better form is obtained by first expressing Z¢ as a function of the
fugacity, volume and temperature. This is done below.

The average number of particles in our system is given by

((N)) = ZZ5 ' Tr(pN) . (21.2.18)
To evaluate this expression it is convenient to introduce the fugacity

z=efr . (21.2.19)
Then,

p = exp(uN) exp —(BH) = 2z exp —(BH) . (21.2.20)

Hence we get that the grand partition function is

00

Z6=) "2, . (21.2.21)

n=0
Combining this result with (21.2.18) we obtain
({(N)) = za(?—zanG . (21.2.22)

Equation (21.2.22) is usually inverted to express the chemical potential in terms
of the average density of particles. This result is then substituted into equa-
tion (21.2.17) to express the internal energy as a function of temperature and
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density. In fact, by performing Legendre transformations (see section 2.3) it is
now possible to compute all other thermodynamic functions. Thus once Zg is
obtained, all thermodynamic quantities are determined in principle.

We simply list the relevant relations. Their derivation is left as an exercise.

Zg = Trlexp—P(H — pN)] = i P (21.2.23)

n=0

The average number N = ((N)) of particles in our system (of volume V') is given
by

N ={((N)) = z% InZg . (21.2.24)
The internal energy can also be written as

U= —%anG(u,V,T) + u((N)) . (21.2.25)
Just as in classical statistical mechanics we also have

% =InZg . (21.2.26)

The three equations (21.2.24), (21:2.25), and (21.2.26) suffice to determine all
thermodynamic quantities. Thus, for example, to compute the entropy S one
uses (21.2.24) to eliminate z from (21.2.25) and to express the internal energy
U as a function of N, V and T. The specific heat at constant volume Cy is now
obtained as

ou
={—=] . 21.2.27
or=(or), (21220
This allows us to express the entropy as
ds = Cvg . (21.2.28)

For more details on thermodynamic relations we direct the reader to the refer-
ences at the end of this chapter.

Next we consider, by way of illustration the simplest possible systems, the
ideal gases.

21.3 The Ideal Gases

We now combine the discussion of the previous section with the second quantiza-
tion techniques developed in sections 7. and 8. of Chapter 20. This allows us to
illustrate the usefulness of these techniques as well as to derive the Bose-Einstein
and Fermi-Dirac distributions.

The reason, the second quantized formalism is so useful, is that for the
grand canonical ensemble the number of particles is not fixed. This makes the
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occupation number space representation ideally suited for computations in the
grand canonical ensemble.

The system we consider consists of an indefinite number of non-interacting
(free) particles confined to a fixed volume V. This system can therefore be
described by the Hamiltonian

H=Y Exalar =) EcNi (21.3.29)
k k

where as discussed in section 7. and 8. of Chapter 20, the E} are one-particle
energies and we are working in the occupation number space representation. To
evaluate

Zg = Tr{exp[-B(H — pN)]} (21.3.30)

we simply take matrix elements for a complete set of states and sum over the
diagonal elements.

Zg = Z (n1...ne|exp[—B(H — pN)] in; .. .ny)
= Y (mngle PR BN LNy ng) L (213.31)
We have simply used (21.3.29) and the definition
N=>" N (21.3.32)
k
of the total number operator.
Using,
Nilni.. . ne) = nilny...ng) (21.3.33)

the expression for the grand partition function becomes

Zg = Z(nﬂe‘ﬁ(&m—um”nl) . Z(nm|e—ﬂ(Ewnm—unw)|noo> (21.3.34)

Neo

or

Zg = [ [ Try e#(Brnamnns) (21.3.35)
k

where Trx means a trace over the subspace corresponding to the one-particle
states |k).

Up to here, the treatment did not depend on whether we were dealing with
bosons or fermions. We must now treat the'two cases separately.

1) Bosons: Since for bosons the occupation numbers ny are unrestricted we
must sum ny over all integers. Thus, we get

[e 9]

Ze = ﬁie-ﬂwk—mn - H (1 - e-ﬁ(Ek-ﬂ‘)>_1 ) (21.3.36)

k n=0 k
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2) Fermions: For fermions the oc¢cupation numbers ny can take on only the
values 0 and 1. Thus, we get

o 0]

H 3 ehlBi n _H (14 emoEmm) (21.3.37)

k n=0,1

If we take the logarithm of Zg we can treat both systems (bosons and fermions)
simultaneously since we have :

InZg =+ In(1£eEn) (21.3.38)
k \
From now on the upper sign always refers to fermions and the lower sign always
refers to bosons.
Introducing the fugacity (equaqlon (21.2.19)) we get

nZg=+) In(l+ ze'ﬂE"i) : (21.3.39)
The average numl’;er of particles N = ((N)) is then, as before, given by

N= z;—z In Zg i (21.3.40)
and yields

N= Z lize‘ﬁE* _; [ePBem) 2 1]_1 . (21.3.41)

Similarly, we find that the mtemaJl energy (when Zg is expressed in terms of
Ej and 2) is given by |

U= _%m Zo (21.3.42)
yields ‘
U= Z Eyze P S [eﬁ(E"'“):lzl]_l (21.3.43)
1+zePE: — ol ' e

To proceed further we must evaluate the sums > - This is most easily accom-
plished by taking the so-called thq‘rmodynamic limst. This simply means that
we count the density of states (nunﬁlber of modes) in the range k. and k, + dk,,
ky and ky + dk, as well as k, and k; + dk,. This result as already found in
chapter 1 ylelds
V3
oy ¢

One then takes the limit V — oo. Thus, the sums go over into integrals; in fact

; N #/(ﬂk = (42’:)/ /k2 dk . (21.3.44)
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If we now further use that for non-interacting particles

h2k?
By =5 — (21.3.45)

and write simply E instead of Ej we get

v (2m\*"? [,
Yoo yoe (7{2—) /E/ dE . (21.3.46)
k

We can apply these results immediately to ithe ideal Fermi gas (later we shall
also apply them to the ideal Bose gas) and obtain for the average number of
particles N and the internal energy U

vV (2m\*? [® EV24E
_ Eab 91.3.47
4n? (h2 ) A 2z~ 1ePE 41 (21.3.47)
and
vV [am\%¥? (> g324E
- ETab 91.3.4
v 4r? <ﬁ2 ) /0 77 1ePE 4+ 1 (21.3.48)

The next step is to invert equation (21.3.47) and solve for the fugacity z in
terms of the mean density of particles

1 N

== 21.3.49

k7 ( )
This result is then substituted into equation (21.3.48) to express the internal
energy per unit volume U/V as a function of the mean density 1/v and the
temperature 1/6.

Unfortunately, even for the simple case of an ideal Fermi gas it is not possible
to express the integrals (21.3.47) and (21.3.48) in terms of elementary functions.
It is therefore usual to define certain functiors in terms of these integrals. Thus,
putting

BE = z* (21.3.50)
and introducing the thermal wavelength
arh? \'/°
= —— .3.51
(22 mas)
we get
1 4 [® 2z
—=A"— —_ 21.3.52
v VT o zler® 41 ( )
and
U 1 4 ztde
— =13 = 21.3.53
1% p Vo v ler’ 41 (21.3.53)
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We now introduce the functions

) i n+1 n
fsy2(2) / z?dzIn l+ze =) (21.3.54)
\/_ n=1 n5/2
and
oo n+1
faja(2) = f5/2 Z n3/2 . (21.3.55)

Differentiating (21.3.54) under the integral sign shows that

f / 2’ de (21.3.56)
3/2 \/—' —lex2 +1 . Q.
Also, an integration by parts of f5/5(z) shows that

24 [®° gidr

fs/z(z)zg\/—E e (21.3.57)
Thus, we have

1

== X732 f34(2) (21.3.58)

U 3kpT

V=38 fsy2(z) - (21.3.59)

To obtain the corresponding results for an ideal Bose gas requires some care in
replacing the sum §_, by an integral. This is due to the fact that as z — 1 the
single term due to k = 0 diverges and may be as important as the entire sum.
We therefore first remove the term| corresponding to k = 0 and replace the rest
of the sum by an integral. So, we get for the Bose gas

z vV o[(2m\¥? [~ E\V24E
N= 1—Z+W<n_2) /0 —E (21.3.60)
and
Vo [2m\%? o E324E
_m(?ﬁ /0 S (21.3.61)

Again introducing

2\ 1/2
pogp LN h(%h)
v V

kaT
we get
I 1 2 _3
1‘)‘ - V 1 — + /\ g3/2(z) (21362)
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and

U 3kpT

V=3 )\_395/2(2) (21.3.63)
where

4 ® o, o\ 2"

95/2(2) __ﬁ/o s daln (1-ze )_’; o (21.3.64)

and
0 > 2"
93/2(2) = 23—295/2(2) = Z,: w3z (21.3.65)

To invert the function fa/4(2) or gs/a(z) to express z in terms of v leads
to very complicated expressions. Since our purpose was only to introduce the
techniques of statistical mechanics we refer the reader, for further discussions,
to one of the standard texts listed at the end of this chapter.

21.4 General Properties of the Density Matrix

The use of the density matrix extends beyond the confines of statistical mechan-
ics to all systems for which it is desirable to have a description of the extent to
which the states are specified. Thus even pure, or completely specified states
can be described by means of the density matrix. It is desirable to have criteria
on the density matrix itself such that one can distinguish density matrices for
pure and impure or incompletely specified systems. We develop such criteria
as well as other formal properties of the density matrix in this section.

As our starting point we take the defining equation (21.2.9) for the density
matrix

p=Y_ In)pa(n| (21.4.66)
n
where the p, are classical probabilities so that
Yom=1. (21.4.67)
n
With this condition we immediately obtain the normalization
Y (min)pa(n|m)
m,n
Z Jm,npn
m,n

= Y=t (21.4.68)

Trp

il
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so that

Trp=1. (21.4.69)
It is also immediately clear that p is self-adjoint

pl=p. (21.4.70)
The diagonal matrix elements of p are

(ml|p|m) = pm ‘ (21.4.71)

and are clearly real and satisfy 0 < p,, < 1.
Consider a density matrix for!a pure state. In this case the probability for
the pure state say |m) is p,, = 1.'All other states have zero probability. Thus,

Pn = Jn,m (21.4.72)
SO
p=_ In)bnm(n| = |m)m]| . (21.4.73)
n
Clearly
P=p. (21.4.74)

Thus, if p describes a pure state it is necessarily idempotent i.e. it satisfies
equation (21.4.74). We now show that the converse is also true. Assume p is
idempotent, that is, equation (21:4.74) is valid. We then have

Y Inpa(n] = ) Im)pm(m| Y In)pa(nl

= " [m)pmpadmn(n| - (21.4.75)
Hence,
Y Inpa(nl =" In)pi(n] (21.4.76)
It therefore follows that
P =pn (21.4.77)
so that
pn=20,1 foral n. (21.4.78)

But

Y =1 (21.4.79)
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It therefore follows that only one of the probabilities Pn = 1 and all others are
zero. Thus, p describes a pure state.

We have so far been working in a diagonal representation for p. Thisis a
direct consequence of the assumption of random phases for the wavefunctions
of the external world, i.e. (ca|cn) for n # m. One can, however, start from
a different viewpoint. In that case the density matrix is not automatically
diagonal, but nevertheless self-adjoint, so that it can still be brought to diagonal
form by a unitary transformation. In the representation in which p is diagonal,
one can again interpret the wavefunctions for the external world as satisfying
the assumption of random phases.

Now suppose we can write the Hamiltonian for our system as well as the
external world as

H=Hy+Hy+ Hezternal (21480)

where Hy is the Hamiltonian for our system, Hezternar 1s the Hamiltonian for
the external world and Hj is the coupling of our system to the external world.
If we now consider the external world as providing only a heat bath then, in
fact, we perform time averages over the wavefunctions of the external world.
Thus, we are led to consider

H= HO + FII + (He:tternal> (21481)

where now (Hesternal) is a constant and H; acts as an external interaction
(potential) on our system which still has the internal dynamics Hy. We can
now drop all reference to the external world and ignore the constant (H external)-
Under the action of this Hamiltonian, the density matrix will evolve according
to the evolution operator.

U(t,to) = exp —%(Ho+ﬁ1)(t — 1) (21.4.82)
so that
p(t) = Ult,to)p(to)UT(t, to) . (21.4.83)

Thus, the equation of motion for the density operator is
0
ihgil =[H,4]. (21.4.84)

This equation is known as the Liouville equation and, although similar to the
Heisenberg equations of motion, clearly has the commutator reversed. Further-
more, we are working in the Schrodinger picture, that is, the wavefunctions carry
all the time dependence and the operators are time independent. If we trans-
form to the Heisenberg picture and the Hamiltonian H is independent of time
then p becomes a constant (time independent) operator. Equation (21.4.84)
represents the quantum mechanical version of Liouville’s theorem.

This concludes our formal treatment of the density operator. In the next
section we apply some of these results to a system with finite degrees of freedom.
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21.5 The Density Matrix and Polarization

As stated before, the density matrix is particularly useful in a discussion of
systems for which the states are not pure or completely specified. This occurs in
the case of scattering of particles with spin when the particles are only partially
(or not at all) polarized. The density matrix is well suited to a discussion of
this case, as well as the case of complete polarization.

To illustrate this use of the density matrix, we apply it to a discussion of
spin 1/2 particles. For a discussion of arbitrary spins, the reader is referred to
the literature cited at the end of this chapter [21.1].

If we consider a beam of spin 1/2 particles, say electrons, and if we are only
interested in the spin-orientation or polarization of this beam, then we have a
system with two degrees of freedom. Thus, the system is completely specified
by two complex numbers a, b i.e. the wavefunction can be written

X=a(é>+b<?> (21.5.85)

where
la?+ B2 =1. (21.5.86)

We now describe this system in terms of a density matrix. This is possible
since the physical system is completely specified by the three components of
polarization

p=(5) (21.5.87)

and also involves only three real parameters. A general 2 x 2 hermitean matrix
can be written

p=uyl+u-é (21.5.88)
where (ug,u) are real parameters. Requiring that
Trp=1=2u (21.5.89)

leaves us with only three independént real parameters. These are related to the
polarization through (21.5.87).

p = (&) = Tr(p¢) = Tr[ueé + &(u - )] = 2u . (21.5.90)
Thus,
1
p=3li+p-3. (21.5.91)

To relate p directly to x we consider the matrix

a - al® ab
P=xxt= ( b )(a ) = ( L,,lb b2 ) . (21.5.92)
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Clearly,

Trp' = |a> + 0% . (21.5.93)
From (21.5.85) we get

(7= (x,6x) = p = (2R(a"b),23(a"b), |a|* - |b]*) . (21.5.94)
But,

Tr(p') = (2R(a*b),2S(a*b), |al? - [b]) . (21.5.95)
Thus,

F=p. (21.5.96)

In this form it is easy to see that

PX=X (21.5.97)
and

P=p (21.5.98)
so that p corresponds to the pure state with polarization p. This is seen from

Fpx=x - (21.5.99)

If our beam of particles passes through a magnetic field B, the polarization
will be changed due to the connection between magnetic moment and spin. The
corresponding Hamiltonian! is

H=—i-B=-31"G.B. (21.5.100)
More generally the Hamiltonian would simply be an hermitean 2 x 2 matrix
H= %(Aol +A-d) (21.5.101)
with (Ao, A) constants. We then get
ih‘Z—It) = ih;t—Tr(p&')
= T (%5)

= T, )
= Tr(Hps — pH?)
= Tr(p[, H)) (21.5.102)

1 Actually H is not an Hamiltonian in the sense of the total energy of the system since
there is no kinetic energy term. Nevertheless, H is the generator of time translation for the
“observable” o.
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where we have used (21.4.84) and the cyclic property of the trace. Applying
this result to the specific Hamiltonian (21.5.101) we get:

m‘;—‘t’ - %Tr(p[&,Aﬁ])
- %Tr(pi(A x )
= iAxp (21.5.103)
so that

d
hd—‘t’ =Axp. (21.5.104)
This equation is similar to the Euler equation for a symmetrical top in classical
mechanics. Furthermore, a magnetic field can only rotate the spin. This is
easily seen by considering

%Z:Qp-lfl—rt):%p-(AXp):O. (21.5.105)
The polarization vector is thus seen to maintain its length and is only rotated.

For cases of spin greater than 1/2 as occurs for certain nuclei, the discussion
must be generalized. If the spin is j| then the density matrix will be an hermitean
(27 +1) by (2§ + 1) matrix with unit trace. Thus, it requires more than the 3
components of the polarization vector to specify the density matrix. For spin
1, (see problem 22.6) the density matrix can be determined in terms of the 3
components of the polarization vector p and the 5 components of the quadrupole
polarization tensor Q;;.

21.6 Composite Systems

The main purpose of this section is to develop the density matrix formalism for
composite systems and to show under what circumstances the density matrix
of the composite system is determined by the density matrices of the individual
systems.

We consider two systems S; and S, with respectively k and j degrees of
freedom and corresponding coordinates g1, ..., qx and z1, ..., z;. The composite
system S. = Sy ® Sy therefore has n = k + j degrees of freedom. The inner
products in the corresponding Hilbert spaces are

(6,90 = /¢*(qi)¢(q;) dgy ... dgx (21.6.106)

@ = [ 0@ dor...ds, (21.6.107)
and

(¢, %) = /é‘(qi,xg)lp(q;,:c‘)dql codgrdey . dej o (21.6.108)
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The corresponding observables are labelled A1), A(2) and A(®), Any observable
AW in 8 is naturally also an observable in S,. The same is true for any A
in S3. If {|1,m)}, and {|2,n)} form bases in the hilbert spaces of S; and S,
respectively, then,

le;n, m) = |1, m)|2,n) (21.6.109)

forms a basis for the hilbert space of S,.
The matrix correspondence between A(!) considered as an element of S; or
S is now given by

(e;m, n|AW|e;m’| ') (1, m|AD|1, m')(2,n|2, n')

(L, m|AD|, '), (21.6.110)

The correspondence for A(?) is analogous.

We now consider density matrices in Sy, Sy and S; ® S, labelled p(1), p(2)
and p(©) respectively. Now any density matrix p(©) in S, determines a density
matrix p{*) in S; (¢=1,2). To see how this correspondence is made we consider
matrix elements of the density matrices referred to the bases we have given.
Then using (( - ) to indicate statistical averages we have:

(A9 = Tr (pu) A(,-)) =5 .40 (21.6.111)

m,m’

for the averages evaluated in S;. Evaluated in S. we get
(ADYy = Ty (,,(c) Au))

1
= E pfrcl?n;m’,n'AEn.)m'J"r"'

m,m’;n,n’
1
= 2 (pr?";m’,n> A (21.6.112)
m,m! n
So we have
Pg,)m' = Zﬂﬁﬁ?n;mgn (21.6.113)
n
and analogously
pfff,, = Pfﬁ?n;m,n: : (21.6.114)
m

Thus, given a density matrix in the composite system determines uniquely
a density matrix in the subsystem. We now consider the converse question.
Under what circumstances do the density matrices p(*) and p(?) determine the
density matrix p{¢) uniquely? That there is always at least one solution is clear,
for if we define

ﬁm,n;m',n’ = pg:y)m;pifl/ (21.6.115)
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then clearly (see problem 22.8) j satisfies all the conditions of a normalized
density matrix and furthermore (21.6.113) and (21.6.114) are also satisfied. This
solution is, however, not unique except when either p(t) or p(?) corresponds to
a pure state (see problem 22.9). Since there are no correlations between $; and
S, in the solution (21.6.115), this is not at all unexpected. For, if this solution
were unique, we could never have statistical correlations between subsystems
of a system. Of course, if one of the subsystems is a pure state then all the
correlations are trivial a.nd (21.6. 115) is unique. This is easy to prove. Let p(1)
correspond to a pure state. Then|using the same basis as before we can write
without loss of generality

pM =Y 1, m)oy by me (1, ] (21.6.116)

m,m’

Then, we get from (21.6.113)

3P i = Ot - (21.6.117)

Also, because p{© is a non-negative operator p(¢) > 0 we have for m or m' # 1
that
(c)

Prnnm‘

=0 for mor m' #£1. (21.6.118)

Therefore, if m = m’ = 1 we can write

P ht —prf.)nmnf P (21.6.119)

where we have used (21.6.114). Thus, all matrix elements of p() are uniquely
determined and hence p{© is unique. To summarize we have the following
theorem.

Theorem
A density matrix p(®) corresponding to a composite system S; ® Sy is uniquely
determined by

Pt = P P (21.6.120)

if and only if either p(!) or p(2) carresponds to a pure system. In this case PV
and p(® are called the projections of p(c) in S; and S, respectively. The “only
if” part of this theorem is proved in problem 22.9. We use this theorem in the
next section.

21.7 von Neumann’s Theory of Measurement

As an interesting application of the density matrix formalism we give a brief
discussion of von Neumann’s theory of measurement [21.5] as elaborated by
F.W. London and E. Bauer [21.7]| This is not strictly within the bounds of the
Copenhagen interpretation. In the viewpoint adopted by N. Bohr, (the strict
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Copenhagen interpretation) a formal quantum theory of measurement is not
required. This is a consequence of Bohr’s lbelief that all measurements must
reduce to classical concepts which are not |themselves further reducible since
they constitute the ultimate data of sense experience.

The approach taken by von Neumann is|closer to the approach we sketched
in chapter 7, and will now be described in more detail.

A state |¥) evolves in general in two distinctly different ways. If H is the total
Hamiltonian of the system then |¥) evolves according to the time-dependent
Schrodinger equation.

zhgl\ll) = H|¥) (21.7.121)
ot
or equivalently

[¥(t)) = e 77 (0)) (21.7.122)

This evolution is purely causal. Corresponding to this time development, the
density matrix evolves according to

p(t) = e HHUA py(0) B/ (21.7.123)

The evolution (21.7.122) can be written in the density matrix formalism by
choosing

p(0) = [¥(0))(¥(0)] (21.7.124)
p(t) = [W(0))(¥(t)] . (21.7.125)

On the other hand during a measurement process, |¥(0)) will change discontin-
uously and non-causally. Thus if {|k)} is a complete set of eigenkets correspond-
ing to the eigenvalues of the observable measured, then during the measurement
process, p(0) goes over into.

Bty =D IRCE(0)Ik)(K| - (21.7.126)
k
The two processes
p(0) = p(t) (21.7.127)
and
p(0) = 5(2) (21.7.128)

correspond to fundamentally different situations. It is important to note that
the density matrix 5(¢) is diagonal; 5(t) has no off-diagonal elements and so is
incoherent or classical,

A measurement can always be considered to involve a “system”, an “ap-
paratus” and an “observer”. According to von Neumann the measurement is
completed when the “observer” has made a certain subjective observation. To
quote from von Neumann, “Indeed experience only makes statements of this
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type: an observer has made a certain (subjective) observation; and never like
this: a physical quantity has a certain value.” This viewpoint is taken in or-
der to avoid an infinite regression. For without this viewpoint we could always
attempt to analyze the measurement process further. For example, we might
decide to stop when light reflected from the dial of the apparatus hits the retina
of the observer’s eye. On the other|hand we might wish to consider the eye as
part of the apparatus and stop with the electrical signal from the optic nerve
reaching the brain. Indeed we could go on and consider the chemical changes
occurring in the observer’s brain and on and on. With the assumption made
above, we can stop with any point called the observer. However, to justify this
viewpoint it is necessary to show that it does not matter at which stage we stop
the analysis. Regardless of how much of the inner workings of the observer are
included with the “apparatus” we must always be able to obtain the same result
for a measurement as long as it terminates with the subjective awareness of the
observer.

The proof of this possibility consists of showing that we can always lump
either the “system” and “apparatus” or else the “apparatus” and “observer”
together and obtain equivalent results. Before proving these results we dispose
of another possibility - whether the statistical character of measurements can
depend on the state of knowledge of the observer.

The statistical character of a measurement cannot be due to the observer’s
lack of knowledge of his (or his apparatus’) initial state, since the probability
of obtaining a result corresponding to a state |n) is given by |(¥|n)|* and is
completely determined by the state ||¥). Thus it does not depend on the state of
the apparatus or the observer. We therefore assume that an observer making an
(ideal) measurement is completely aware of his initial state. This simply means
that he knows that he is seeing a dial pointing at a given place. Furthermore
the apparatus (dial) is also in a pure state.

If apparatus and observer are lumped then the evolution is according to
(21.7.126) and the probability of observing the state |k} is [(¥|k)|2. If, how-
ever, we lump the system and apparatus, then evolution according to (21.7.126)
should occur only when the observer intervenes.

Thus, we consider a composite| system with the original system in an un-
known state given by

o) = |u)(9] . (21.7.129)
The apparatus is in a known pure state given by
P = |a)a] . (21.7.130)

Let {|an)} be a complete set of eigenstates of an observable A corresponding to
dial readings {a,,}. The possible eigenstates of the original system corresponding
to the observable S being measured are |k), with eigenvalues s;. The numbering
is such that the eigenvalue s, corresponds to the dial reading a,. Thus, the
composite system (apparatus + system) is in a state given by

§9) = 5 @ 5@ = |W)|a)a](¥] . (21.7.131)



502 CHAPTER 21. QUANTUM STATISTICAL MECHANICS

Now the measurement (by the apparatus on the system) corresponds to a unitary
evolution as given by (21.7.123)

pO(t) = e~ HE ple) () giHH/H (21.7.132)

Thus, according to the observer, a measurement is only performed if he measures
the eigenvalues of the simultaneously measurable observables S and A. These
pairs of variables s,,, a, have a probability 0 for m # n and [(¥|n)|? for m =
n. This last requirement is dictated by quantum mechanics. In this case the
evolution is of the type given by (21.7.126).

PO = 5 (t) = 3 low) k) (1) (ke (21.7.133)
k

If all this holds then the measuring process, so far as it occurs in the appa-
ratus, is explained because the split: system,(apparatus + observer) can also
be viewed as the split: (system + apparatus), observer. 2 Thus, our problem
reduces to the following: Given a basis set {|k)} for our system, find a basis set
{lan)} and state |a) for the apparatus, together with an Hamiltonian H of the
form

H= Hsystem + Happaratua + Hinteraction (217134)

and a time interval ¢ such that the following holds. If |®) is an arbitrary state
of the system and

|®',a’) = e~ *H/A |§)|q) . (21.7.135)
Then we have

@', 0') = Y "(m|®)|m)]apm) . (21.7.136)

m

Notice, that instead of finding an Hamiltonian H, it is sufficient to find an
unitary operator U that gives this evolution, since Stone’s Theorem (Chapter
6) then guarantees the existence of H. For convenience in proving the existence
of U we assume (without loss of generality)

la) = |ao) . (21.7.137)

We now define the obviously unitary operator U by

v Z fanlm)lan) = Z fm,n|m)|am+n). (21.7.138)

mmn=-o0 m,n=-o00

2In modern terminology the word “observer” is replaced by “environment” and the evolu-
tion p(¢) () = #€)() is seen as due to the environment. In either case, observer or environ-
ment, this involves a coupling to a many-body system and a loss of coherence i.e. decoherence.



21.8. DECOHERENCE 503

But,

o0

U > (m|@)m)]ao)

m=—00

U1®)]a)

o0

Y (m(®)m)lan) - (21.7.139)

m=-00

This completes the proof and yields a completely consistent quantum theory of
measurement.

21.8 Decoherence

The approach of von Neumann, although consistent leaves one with an uneasy
feeling. It does not explain how the collapse of the wavefunction comes about.
To this end it is desirable to find |a mechanism that makes the density matrix
for a macroscopic observable such as the pointer on a dial become diagonal
very rapidly due to its very large number of internal degrees of freedom. This
is what is meant by the term decoherence: the coherent parts of the density
matrix which are responsible for possible interference effects, the off-diagonal
elements, decay rapidly to zero. |What remains, the diagonal part, has clas-
sical probabilities associated with it and therfore there is no need to bring in
the consciousness of the observer.| The “consciousness of the observer” in von
Neumann’s theory is replaced by |the very large number of internal degrees of
freedom of the macroscopic apparatus.

At present there are only models that show how this comes about in specific
cases. There is no general result that demonstrates how decoherence is achieved
for an arbitrary macroscopic system. That such a result will be very difficult
to find is demonstrated by the fact that certain macroscopic systems, such as
superfluids, remain quantum mechanical.

To illustrate the concept we analyze a model of how a macroscopic oscillator
in a superposition of two states becomes “classical” when coupled to a very
large number of very closely spaced oscillators (the internal vibrations). These
internal vibrations may be thought to consist of the phonons (sound vibrations)
in the spring of the macroscopic oscillator, but a definite physical system is not
specified by this model which is merely defined by its Hamiltonian. The model
Hamiltonian is

H=hoala+ Y hopblbs+ Y (Ak alby + X} ab,{) (21.8.140)
k k

where the annihilation and creation operators a, af, b, b,t satisfy the usual
commutation relations and the a, a! commute with the b , bL .

As we saw in section 11.5, the best approximation for a “classical” state is a
coherent state. Thus, we look for the evolution of a density matrix corresponding
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to the initial superposition of two coherent states. These individual, normalized,
coherent states are labelled |, {3}) where

ala, {B}) = ale, {B}) (21.8.141)
bjla, {B}) = B e, {Be}) (21.8.142)
The initial state is a superposition of |a1(0), {# = 0}) and [a2(0), {B = 0}) .
[¥(0)) = Alay(0), {Bx = 0}) + B |ax(0), {4 = 0}) . (21.8.143)

Normalization requires that

|[AP+|B>=1 . (21.8.144)
The initial density matrix is

p(0) = [¥(0))(¥(0)] (21.8.145)

We are interested in the reduced density matrix corresponding to tracing over
the “environmental” degrees of freedom represented by the {Bx}. The result is

pr(0) = AP |e1(0))(@1(0)] + |BI |o2(0)){a2(0)]
+ AB |a1(0))(a2(0)] + A* B |an(0)){er1 (0)] - (21.8.146)

This initial density matrix clearly has a non-diagonal part that will produce
interference and is non-classical. We now consider the evolution of the density
matrix and find the reduced density matrix at some later time ¢. To do this
we differentiate the explicit form of the coherent states (equation (11.6.117))
and assume that the parameters a and S are time-dependent. Then we use
our model Hamiltonian and write out the Schrodinger equation. Thus, we first
evaluate the state |¥(¢)) and compute the density matrix at time ¢ from this
rather than using the Liouville equation.
From (11.6.117) we have

lor, {84} = 7112 eaa” TT e16+I/2 eB48% 1o {0} . (21.8.147)
k

So that, if we assume that the moduli || and || remain constant in time, we
find that

L0 . d d
zﬁala, {Be}) = ik (a*a—j + zk:b,t%) lo, {Be}) . (21.8.148)

On the other hand we have, using (21.8.140) - (21.8.142), that
Hlar {Bk}> =

(huafa + ) bl + > (Mal B + A;b,ta)) lo, {Bk}) . (21.8.149)
k k .
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Combining these results we find that the Schrédinger equation is satisfied if

d
1:1% = wa+ Z Ak Bre
z(—ic%- = wrf + M. (21.8.150)

This system of equations is known as the Weisskopf-Wigner system [21.14] and
was used to study the effective damping of atomic lines due to interaction with
an heat bath. To solve this system of equations we first set

alt) = aft)e ™
Blt) = Pilt)emixt. (21.8.151)
Then,
dd (w—w )
lﬁ = Z)\ke( ")tﬂk
dg .
i% = Aerilwmwity (21.8.152)
From the equation for [fk we get
t
B = —iX; / et W=t 4 ¢y dt’ . (21.8.153)
0 .
After substituting this into the equation for & we find
. ¢
i‘;—j‘ =iy [l / eilw=wn)t=t) 4(¢') dt’ . (21.8.154)
* 0

At this stage we take a “thermodynamic limit” in the sense that we assume that
the heat bath has a continuous distribution of oscillators described by a density
n(w). Then we can replace the sum over k by an integral over w with the weight
n(w). Thus, we get

dé

dt
Here wp repesents the Debye frequency (see chapter 1). However, to simplify
the computation we extend the integration over w to oo and include a small
damping factor e=¢(*'=*) in the integrant over ¢’ and then take the limit ¢ — 0
at the end of the calculation. The resulting expression becomes

wp t . s ,
- / Aot (W) du! / == Gty dt (21.8.155)
0 0

dé ® b o ie) (it
- " / o Pn(w’) do’ / W=+ G dt’ (21.8.156)
0 0

After integrating over ¢’ by parts |we get

da * 1

— = _ 3 A2 ! Pl - A

7 z/o [Awr[*n(w’) dw [w—w’-}-ifa(t)

. ' 1
_ —i{w-w')t 2
¢ w—uw + € &(0)

Y da(t
_ /ez(w—w ye-vy L da( )dt’] . (21.8.157)
0

w—w +ic dt’
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Next we examine these terms a little more closely to make some physically
Justified approximations. In the term on the second line we see that for large
times ¢ (large compared to 1/wp) we get very rapid oscillations which interfere
destructively. Thus, we drop these fluctuations. The third term is also small
because for weak damping G(t’) varies slowly and thus has a small derivative.
In addition, we get destructive interference except for t ~#'. Thus, we also drop
this term. The result is

da _ '/oou () d' ——— (1) (21.8.158)
a =-1 A w! | n{w W md . 0.
So we finally find
((ii_(: = (—iAw - 7)&(t) (21.8.159)
where we have used
I )
g _Pw—w’ —imd(w — w') (21.8.160)
to obtain
7 = 1fn(w)
Aw = P/o |/\w/|2n(w’)w_1w, dw' (21.8.161)
Therefore we have that
at) = af0)etawt-t
+ fluctuations that we have neglected (21.8.162)
and
a(t) — a(O) e~ i(wtAw)t—7t
+ fluctuations that we have neglected . (21.8.163)

This result can now be substituted back into (21.8.153) to obtain fx Therefore,
we finally find

B ,\: [e—i(Aw—i'y)t _ 1]

Be(t) =

RE Y —— a(0) . (21.8.164)

Now we can examine the density matrix at time ¢. Actually all we are
interested in is again the reduced density matrix obtained by tracing over the
internal degrees of freedom. But first we split the density matrix into two parts:
the diagonal or incoherent part p4 and the off-diagonal or coherent part p.. The
results are

pa(t) = A Alaa(t), {Bk(t)}){ea (1), {Be(t)}]
+ B Blas(t), {Bk(t)}){aa(t), {8 () }] (21.8.165)
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and

pe(t) = B Alan(t), {Be()}){e2(t), {8k ()}
+  A"Bloa(t), {Bx(t)}){e2(t), {B (D} - (21.8.166)

Tracing over the diagonal part is trivial and produces the reduced diagonal
density matrix

par(t) = A* Alay(t)){as(t)] + B* Blas(t))(a2(t)] - (21.8.167)

The coherent part requires a little more calculation.

Pe,r(t)
= B*Alen(t)) Y_ {8 (O} {Be(t)})a2(t) ({Bx (1) }HB(1)})
k

+ A*Blax(t)) d_{B OB Ner(I{B B D). (21.8.168)
k

To evaluate this we use the fact that

BB = TIE®I8®)
k

= exp (_ Y -;-w,g(t) - ﬂk(t)|2) : (21.8.169)
k

Here we have used equation (11.4.77). Next we use the conservation equation
(see problem 21.10)

;t (a o +Zﬂkﬁ,¢) =0 (21.8.170)

to simplify this result to get

118018k (1)) = exp [—% (l21(0) = a(0)|* = |es(t) - az(t)|2)] . (21.8.171)

k

After substituting for oy (¢) and a(t) we get
H(ﬂfc(t)lﬂk (t)) = exp [—% (Ial(O) - a(0))?(1 - e—2'vt))] . (21.8.172)
k

The result for the reduced coherent density matrix is
per = (AB*|a1(0)){e2(0)] + A" Blaz(0))(1(0)])
1
X exp [—5 (1 (0) = 2(0)*(1 - e‘m))] . (21.8.173)
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If we assume that initially the macroscopic oscillator was in a superposition of
states with momentum zero and positions 1 (0) and z5(0) then we can use the
equation

a= 27lnﬁw (mwzg + ipo) (21.8.174)
to get
per = (AB|a(0)){a2(0)] + A" Blaz(0))(e1(0)])
X exp —%T%w(zl(o)—zz(O))Z(l—e‘”) . (21.8.175)

This is the result we wanted to obtain.

To see what this means we have to look at the numerical value of some of the
parameters for realistic situations. For this purpose we consider the damping
time y~!. Suppose this damping v is very small so that the damping time is
quite large. Then for short times ¢ we can write =27 & 1 — 2y¢. In this case
the coherent part of the reduced density matrix is exponentially damped with
a damping time 7 given by

4h N 1
mw(z1(0) — 22(0))2 ~ 27

T= (21.8.176)
To see how remarkably small this number turns out to be we choose y~! to be
of the order of one hour, w of the order of one radian/second, m to be one gram
and the separation of the initial positions to be 10~ meter. In this case we find
that

Tal5x 107 s (21.8.177)

This means that such a macroscopic quantity becomes classical in about 15
picoseconds.

21.9 Conclusion

We have now completed a development of nonrelativistic quantum mechanics.
The theory is consistent and even complete. Nevertheless, from its inception
attempts have been made to show that quantum mechanics is only a superficial
theory based on a more fundamental hidden variables theory. In the last few
years, however, experiments designed to test Bell’s inequality [21.9] have forced
proponents of hidden variable theories to retreat further and further. It thus
seems very unlikely that modifications of the quantum concept will be required
in the near future.

There still remains the problem of providing a successful union of quantum
mechanics and relativity theory. The groundwork for this was laid in the early
thirties. Although the product of this unification, modern quantum field theory,
has been highly successful we cannot yet claim to know that quantum field
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theory is a completely consistent theory. This statement is made in spite of the
great advances of the last several decades.

On the more philosophical level some difficult epistemological questions re-
main. In this book we have, for the most part, employed what is essentially
the Copenhagen interpretation of quantum mechanics. There are at least two
rival interpretations: the Statistical [21.10] and the Many Worlds [21.11] in-
terpretations. They are radically different in the pictures of reality that they
present, yet they agree on all experimental predictions. Thus they are, in prin-
ciple, experimentally indistinguishable from the Copenhagen interpretation. At
this stage it is a matter of personal preference which interpretation is employed.
This means that a very large element of subjectivity has entered physics at a
very fundamental level.

21.10 Problems

21.1 Compute the average energy of an assembly of identical simple harmonic
oscillators using:
a) the microcanonical ensemble
b) the canonical ensemble
c) the grand canonical ensemble.

21.2 Prove the following properti¢s of a density matrix.
a) p* < p. This implies p > 0.
b) Tr({p, A]) = 0
and discuss the sufficient conditions on the operator A for this equation
to hold. To see that this is nbt trivial, consider Tr([x,p]).

21.3 In a gas of electrons, a fraction p are known to have their z-component of
spin in the up direction. Assime the remainder are random.
a) What is the average value of s, sy, and 5,7
b) If nothing is known about the spins of the remaining fraction 1 — p
of electrons what are the maximum possible values of ((s:)), ((sy)) and

((s2)) 7
21.4 Verify equation (21.2.24).

=((N)) = z— InZg .

21.5 Show that for spin 1, the density matrix can be completely specified by the
polarization vector p, and the quadrupole polarization tensor Q) defined
for spin j by

_@
jh
(Jidk + I i) |2

—| 70k -

R T E



510 CHAPTER 21. QUANTUM STATISTICAL MECHANICS

21.6 Show that for the case of general spin j, if we again define the polarization
vector by

and are given a “Hamiltonjan”
H=-4J-B

where B is a magnetic field, then we have

dp

4 = "P*B
dzp
a0

21.7 Show that § defined by (21.6.115) satisfies the general properties of a
density matrix

a)

5t

p=p
b)

Trp=1
©)

iF<p
as well as

d) the equations (21.6.113) and (21.6.114).
21.8 Show that if we have

PV =a10W 4 5rV | a4 Bi=1, o, f>0
P = a0 4 g7 | ay+ Ba=1, ay,B;>0
and
Trol) = Trr = 1
Then any combination

p= ac) ®c® 4+ ﬂo-(l) ® 2 + 77—(1) ®o® 447 ® 7
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with
atf=a; aty=o
T+té=p B+=4

satisfies (21.6.113) and (21.6.114) and is a possible density matrix for the
composite system. This establishes the necessity of the condition that )
and p(® correspond to pure states in order that (21.6.115) give a unique
solution for a density matrix for the composite system.

21.9 Consider a “gas” of Bose particles with energy either +E or —E. The
Hamiltonian for this system lis

H= E(agaQ - a{al)

where a; , al (i = 1,2) are the usual annihilation and creation operators

1
for bosons.
a) Show that the canonical partition function is given by

_ sinh fE(N +1)
N = T inh BE

and that the grand canonical partition function is given by
Z¢ = [1 —2zcosh BF + z2]_1 .
b) Compute the internal energy U, and the average number of particles

{(N)) and express U as a function of 8 and ((N}) rather than as a function
of # and z.

21.10 Verify the conservation law (equation (21.8.170))

d
@ (“*a'ikjﬁ;:ﬂ;) =0.

21.11 Consider two point masses connected by a spring so that the Hamiltonian
18

2 2
4 P3 1 2
=4 =4 -k -
2my + 2my + 2 (21— 22)

Find the density matrix for the nth excited state

pn(xl) $’1§$27 xlz) = /(/}K,ﬂ(xly Tz)wK,n(-’c;, ;"‘12)‘l
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where
ﬁ2K2
Hpg n(z1,22) = m+(n+ 1/2)hw | Yk (21, 22)
and
w=k/m , m= "
m; + mg

Finally compute the reduced density matrix for particle 1 and show that it
is not idempotent; i.e. that correlations between the two particles persist.
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