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Preface

The purpose of the book is to discuss nonequilibrium phenomena in fluidized
granular materials, with an accent on granular kinetic theory and some of its
stochastic extensions. A few other books exist on this subject. The difference in this
new one is to provide the reader with a brief introduction, which goes through a few
salient points in the subject: models for collisions, Boltzmann equation, funda-
mental boundary conditions, transport equations and hydrodynamics, macroscopic
ordered phenomena, the motion of tracer particles, and the breaking of time-reversal
symmetry.

This book is not a topical review. Therefore reference sections are not meant to
be exhaustive. My intent is to offer a selection of starting points, for instance by
citing reviews or other books, where the reader will find more detailed bibliogra-
phies. This book merges material from two courses given for Ph.D. students at the
Physics Department of Sapienza University (2010 and 2012), and a general reor-
ganization of the results of GranularChaos project. GranularChaos is a 5-year-long
project (2009–2014) funded by the Italian Ministry for University and Research,
after winning the selection at the Eureopean Research Council (Starting Grant
2007). The focus of the project is fluctuations in granular media.

I am indebted to Angelo Vulpiani for most of what I learned about nonequi-
librium statistical mechanics and granular materials: collaboration with Angelo has
always been enjoyable and fruitful. The hint to write this Brief came from him:
again an interesting and challenging incitement. Umberto Marini Bettolo Marconi,
Alberto Petri and Vittorio Loreto are the other three friends who greatly improved
my knowledge and understanding of the subject, since the beginning of my study of
granular fluids. Many of the ideas and results contained in this book are due to
collaboration and discussions with them, during the last 15 years and more. I wish
to say thanks also to Andrea Baldassarri, who shared with me many progresses on
granular kinetic models and, in the early years of my doctorate, was an intense
stimulus to become a better c-programmer and a more careful researcher.
My understanding of granular fluids in the wider context of nonequilibrium steady
states has received a great impulse during a stay of 2 years in Orsay (Paris), where
I collaborated with Alain Barrat, Emmanuel Trizac, and Frederic van-Wijland,
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whom I wish to warmly thank. In the last years I had the exciting possibility, as a
coordinator of the GranularChaos project, to interact with brilliant young collab-
orators, in particular with Giulio Costantini, Giacomo Gradenigo, Alessandro
Sarracino, and Dario Villamaina, whom I acknowledge for a constant passion,
curiosity, and their many intriguing interrogatives: they shaped my ability to
explain and teach. My hope is that, as a consequence, this book will be clear and
useful to students and young researchers. The GranularChaos project, thanks to the
crucial help of Andrea Gnoli, has allowed me to enter in the fascinating world of
real experiments with granular fluids, an experience which has deeply influenced
my perspective on this subject. A special acknowledgment goes to Andrea Gnoli,
Alessandro Sarracino, Camille Scalliet, and Angelo Vulpiani, who read the man-
uscript, found plenty of errors, and gave me many useful advices.

Last, but certainly not least, I wish to thank my beloved family, in particular
Fabiana (well before that unstoppable and joyful creature which dwells in our house
since a couple of years), for their patience, tolerance, and love.

Roma, July 2014 Andrea Puglisi
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Introduction and Motivation

A granular material is a substance made of grains, i.e., many macroscopic particles
with a spatial extension (average diameter) that ranges from tenths of microns to
millimeters. In line of principle the size of grains is not limited as far as their
behavior can be described by classical mechanics. For example, the physics of
planetary rings (made of objects with a diameter far larger than centimeters) is
sometimes studied with models of granular media. More often the term “granular”
applies to industrial powders: in chemical or pharmaceutical industries the
problem of mixing or separating different kinds of powders is well known; the
problem of the transport of pills, seeds, concretes, etc., is also widely studied by
engineers; the prevention of avalanches or the study of formation and motion of
desert dunes are the subject of important studies, often involving granular theories;
silos containing granular products from agriculture sometimes undergo to dramatic
breakages, or more often their content become irreversibly stuck in the inside,
because of huge internal force chains; the problem of diffusion of fluids through
densely packed granular materials is vital for the industry of natural combustibles;
the study of ripples formations in the sand under shallow seawaters can solve
important emergencies on many coasts of the world. Rough estimates of the losses
suffered in the world economy due to ignorance of granular laws amount to
billions of dollars a year.

The study of granular materials dates back to the nineteenth century, with the
first studies by Coulomb in 1773, Faraday in 1831, Reynolds in 1885 and much
more recently by Bagnold, who really opened the way to the systematic study of
granular rheology. For decades granular systems have been a blessing and a curse
for engineers. In the last 50 years they have become more and more present in
physics laboratories. The rise of computer simulations has led to a huge increase of
interest in the study of realistic granular models.

In parallel, a closer look at the fundamental properties of granular media
(inelasticity of collisions and entropic constraints) motivated the introduction of
new minimal models. These “granular cartoons” have the remarkable charm of
displaying an intriguing behavior in spite of their simplicity. Granular gases
represent a noteworthy example. As for spin glasses, some models of granular gas
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can be observed only in the silicon cage of a computer simulation. Nevertheless,
their study is fundamental to understand the relevance of the basic assumptions
(and limits) of Kinetic Theory, Hydrodynamics, and general nonequilibrium
Statistical Mechanics.

The goal of this book is to present a brief sketch of the many theoretical tools
and models which succeed in describing fundamental granular experiments.
Structures, patterns, correlations, and motor effects, all phenomena that cannot
appear in equilibrium molecular fluids, are found to be common in flowing
granular materials. Simple microscopic models based on inelastic collisions
reproduce all these effects. At the same time they constitute a possible starting
point for the developement of granular hydrodynamics. Such a macroscopic theory
for “slow” granular flow is hopefully more robust than its microscopic foundation.
Frequently in this book the reader will find examples of such a counterintuitive
effect. Starting from microscopic Molecular Chaos, macroscopic ordered struc-
tures, correlations, clusters, convective cells, or directed motion will appear. This
is not a contradiction of the hypothesis: on the contrary, it is the beauty of new
phenomena emerging when the scales of description change.

The purpose of Chap. 1 is to offer first a quick introduction to the “wild world”
of granular materials, which goes well beyond the study of granular fluids, and
then a more focused overview of phenomena observed in fluidized granular media.
In Chap. 2 I sketch the classical derivation of Boltzmann kinetic equation from the
Liouville equation, discussing the points where a granular gas differs from a
molecular one. In Chap. 3 I review the basic steps of the Chapman-Enskog
procedure to derive hydrodynamics from the Boltzmann equation. In this chapter
I also discuss the arguments given by L. Kadanoff and I. Goldhirsch who criticized
the blind application of hydrodynamics to granular fluids, and I conclude with
some noteworthy applications where hydrodynamics gives a fair description of
observed phenomena. In Chap. 4 the diffusion of a tracer is discussed in different
limits, and the case of an asymmetric tracer is given as an example of “granular
ratchet,” also realized in recent experiments. In Chap. 5, finally, I revisit some of
the models introduced in the previous chapters, in the broader perspective of
nonequilibrium statistical mechanics and stochastic processes, by discussing linear
response and entropy production.
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Chapter 1
Granular Fluids: From Everyday Life
to the Lab

Abstract In this chapter, I introduce the basic concepts and tools useful to study
granular media. A tour is offered through some of the many fascinating granular
phenomena. These include hydrodynamic instabilities such as granular jets, finger-
ing, spontaneous segregation, thermal-like convection, and the several ratchet-like
phenomena where “thermal” fluctuations are somehow rectified. The analogy with
active fluids is also discussed.

1.1 The Granular “States”

Physicists try to reduce the complexity of real situations. Such an attitude toward
simplification is evident in experiments where the fundamental behavior of granular
media is probed. The models proposed by theoretical physicists are even more ide-
alized, in order to catch the essential ingredients of phenomena. In an experiment
the grains are often smooth spheres with the same size, same restitution coefficient,
perfectly dry, possibly in microgravity and in the void, and so on. In a numerical
simulation the grains can become rods moving on a segment or disks with con-
stant restitution coefficient. The effect of a shaker can be modelled as a thermostat.
Notwithstanding such a multiplicity of viewpoints, some fundamental ingredients are
common in all the approaches and, in a sense, constitute the definition, in physics,
of the granular state of matter.

Granular matter is distinct from the usual molecular matter because of the size of
elementary constituents. Grains are macroscopic, typically with a minimum linear
size of∼0.1 mm. As a consequence, they are described by rules of classical mechanics
with dissipative interactions. In a collision the kinetic energy of grains’ centers of
masses is transferred to internal degrees of freedom, i.e. heat, and rapidly dispersed
to the environment. In essence, a fraction of kinetic energy disappears from the
description of the system. Dissipative interactions have many implications, the most
fundamental being the breakdown of symmetry under time-reversal. Furthermore,
the mass of a grain is of the order of 1020 molecular masses: the kinetic or potential
energy of a grain is therefore many orders of magnitude larger than molecular thermal
energy. As a matter of fact, the temperature of the environment plays a negligible
role in the dynamics of the grains, i.e. they can be safely considered at T = 0.

© The Author(s) 2015
A. Puglisi, Transport and Fluctuations in Granular Fluids,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-10286-3_1
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2 1 Granular Fluids: From Everyday Life to the Lab

In the kinetic theory of granular gases the role of “microscopic degrees” is played
by the grains themselves, and a “granular temperature” is introduced in terms of the
kinetic energy of grains. To realize a motion of the granular particles, some kind of
“thermostat” is required. Several ways exist to inject energy into a granular system:
the most used is by applying forces to the container, i.e. by moving it. The motion of
the container is transferred to the grains, through grain-boundary collisions. More-
over grains can be considered rigid bodies for many purposes: the volume occupied by
a grain is excluded by the volume available for all the other grains. When total occu-
pied volume is a relevant fraction of the total available one, this property has impor-
tant consequences: geometrical frustration, strong spatial correlations, relevance of
collisional transport versus streaming transport, enhancement of re-collisions in the
kinetic equations (breakdown of molecular chaos), and much more.

In view of the above mentioned essential features of granular matter, it is custom-
ary to take as a reference two opposite “limit states”: granular solids and granular
gases [35, 49]. A real granular material is usually in an intermediate state between
these two limits, depending upon the external conditions, available volume, intensity
of the driving, degree of inelasticity, presence of interstitial fluids, and so on. The
experimental and theoretical instruments used to tackle granular solids, for instance
elastoplastic continuum models, can be very different from those applied to the study
of granular gases, where one typically resorts to kinetic theory.

A few main categories of granular problems can be individuated in the literature
of the last 30 years.

• Stable or metastable granular systems: this family comprehends the study of the
distribution and the analysis of correlations of the internal forces in a pile or silo
of grains, the characterization of the propagation of sound inside densely packed
arrays, the very slow compaction dynamics observed under tapping (the grains
can rest in a metastable state, in the absence of vibration, which is far from the
minimum packing fraction attainable), the study of time and size distributions of
avalanches in a pile which has reached its critical slope [13].

• Slow granular flows: within this regime, particles stay in contact and interact
frictionally with their neighbors over long periods of time. This is the “quasi-
static” regime of granular flow and is typically studied using modified plasticity
models based on a Coulomb friction criterion [1].

• Rapid-flow regime: this corresponds to high-speed flows [7, 80]. Instead of moving
in many-particle blocks, each particle typically moves freely and “independently”
from the others. In the rapid-flow regime, the velocity of each particle may be
decomposed into a sum of the mean velocity of the bulk material and an apparently
random component to describe the motion of the particle relative to the mean. The
analogy between the random motion of the granular particles and the thermal
motion of molecules in the kinetic-theory picture of gases is strong: building upon
such an analogy, the mean-square value of the random velocities is commonly
referred to as the “granular temperature”—a term first used by Ogawa [63]. When
the stationary velocity of the flow increases (due to an increase of external driving
forces) the shear work induced by internal friction generates granular temperature
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and granular pressure, which in exchange produces a decrease of volume fraction
occupied by grains [7]. This suggests that a rapid flow is likely to be dilute and
that theoretical methods belonging to kinetic theory, as well as a hydrodynamic
description, can be tried and are sometimes successful. Every kind of typical
fluid experiment has been performed on granular systems: from Couette cells to
inclined channels to rotating drums, finding non-linear constitutive relations. High
amplitude vibrations can generate interesting convection phenomena, associated
to size and density segregation. Patterns, such as two dimensional standing waves,
can form on the free surface of a vibrated granular layer. The study of simulated
models posed new questions on the constitutive behavior in rapid flows. Recent
experiments and numerical studies have focused on this subject, measuring the
velocity probability distribution functions and finding that in a wide set of situations
this distribution is not Gaussian. The study of internal stress fluctuations and of
velocity structure factors has given further elements to adjust granular kinetic
theories. A debate has developed on the limits of application of hydrodynamic
formalism, see Sect. 3.2.

1.2 Granular Flows

This section briefly reviews a few common situations where the granular materials
behave as fluids. There is not a unique classification of experiments for granular
fluids: the number of different setups investigated is quite large and the number of
observed phenomena is even much larger. My personal choice is that of grouping
experiments on the basis of the mechanism of energy injection. This is the part of
each apparatus which is better controlled by the experimentalists.

1.2.1 Air Fluidization

Air or other gases can be continuosly pumped through a container filled by grain. The
result is a state of granular fluidization that can be controlled by pressure or velocity
of the injected gas. The method is inspired to real applications, e.g. in mineral or
metallurgical engineering, where it is called fluidized bed technology. It is effective
in creating a fast and uniform granular flow. Recent experiments with air fluidization
have demonstrated the potential of such a technique to probe fundamental features of
granular dynamics. In a horizontal quasi-2d setup, for instance, an upward flow of air
induce stochastic motion of grains on a plate. Within this setup, spatial heterogeneity
increasing with packing fraction has been investigated. A strong analogy has been
found with structural glasses near the glass transition, where long time-scales are
associated with large spatial correlation lengths [39].

An interesting question arises in the context of air fluidization, concerning the
role of surface-tension effects. A Hele-Shaw cell is used for this purpose: the cell is
constituted by two plates separated by a gap of a few (2 or 3) grain’s diameters. The

http://dx.doi.org/10.1007/978-3-319-10286-3_3
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gap is filled with grains and a hole in the middle of the cell lets a gas be pumped
into the system at fixed high pressure. The gas expands through the packed granular
material, creating a fingering pattern whose dynamical and geometrical properties
reveal features of the granular fluid. The same phenomenon is well known when
the experiment is performed with two fluids of different viscosity, where the width
of the fingers is related to the capillary number, that is the ratio between viscous
drag and surface tension. Usually fingers are larger and smoother as the velocity
of the low viscous fluid decreases. The granular fingering experiment [9] shows
the opposite behavior, i.e. fingers’ width increases with the fluid velocity at the
granular-fluid interface. Moreover, the fractal dimension of patterns is close to that
of the diffusion-limited-aggregation (DLA) model, which is expected for fluids in
the limit of zero surface tension.

Another instability of fluids explained by hydrodynamics is the Rayleigh instabil-
ity. This is usually observed when a free falling stream of fluid breaks up into smaller
packets with the same volume but less surface area, exploited also in ink-jet technol-
ogy. Again the driving force of the instability is surface tension. Experiments have
been performed [76] by following with a fast camera a falling granular stream. The
fascinating break-up into droplet patterns is reproduced by certain granular materials
and not by others. A debate about the origin of the instability, in the absence of an
evident granular surface tension, has led to individuate grain-grain attractive inter-
actions coming from a combination of van der Waals and capillary bridges between
surface asperities. The role of granular temperature and the possibility of a dynamical
surface tension induced by inelasticity has been ruled out.

The effect of gas entrainment is crucial also for the developement of the so-called
granular jets . This beautiful phenomenon occurs when a solid sphere impacts on a
deep layer of granular medium [85]. The impact produces a cylindrical cavity in the
material, which subsequently collapses. The axisymmetrical collapse towards the
center of the cavity generates a pressure spike which drives up the granular material
in a narrow and high jet along the axis of symmetry, see Fig. 1.1 [75].

1.2.2 Shear

Classical studies of granular shear rheology are carried out in the common Couette
geometry.

Even if there were earlier important experimental studies on the flow proper-
ties of granular materials (mainly initiated by Hagen [33] and Reynolds [72]), the
modern pioneering work on the constitutive behavior of rapid granular flows was
Bagnold’s study [2] of wax spheres, suspended in a glycerin-water-alcohol mixture
and sheared in a coaxial cylinder rheometer (Couette experiment). His main finding is
a constitutive relation between internal stresses Ti j (where i and j denote Cartesian
components, e.g. x , y and z) and shear rate γ :

Ti j = ρpσ
2γ 2Gi j (φ) (1.1)
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Fig. 1.1 Formation of a
granular “jet”: the two
sequences (a)-(b)-(c) and
(d)-(e)-(f) differ in the air
pressure. Reprinted by
permission from Macmillan
Publishers Ltd: Nature
Physics 1, page 164 [75],
copyright 2005

with ρp the particle density, σ the particle radius and Gi j a tensor-valued function of
the solid fraction φ. This relation has been confirmed in shear-cell experiments with
both wet or dry mixtures.

Bagnold measured not only shear stresses (i.e. transversal components, say i �= j
in Ti j ), but also normal stress (i = j), that is the analogous of pressure in gas
kinetics: he referred to them as “dispersive stresses” as they tend to cause dilation of
the material.

Other experiments have focused on different phenomena observed in the Couette
rheometer.

• Fluctuations of stresses: already in [82] large fluctuations of internal (normal)
stresses were observed; in [34] (see Fig. 1.2) a two-dimensional Couette exper-
iment demonstrated that the mean internal stress follows a continuous transition
when the packing fraction of the granular material changes and passes through a
critical value φc = 0.776: when the packing fraction is above the critical threshold
the material shows strong fluctuations of internal stress, while under the threshold
the stresses are averagely zero and the system is highly compressible.

• Microstructure in 3d: the bulk microstructure was studied in the dense shearing
regime in a 3D Couette rheometer, using non-invasive imaging by X-Ray microto-
mographyin [61]; it appears that the velocity parallel to the shear direction decays
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Fig. 1.2 An experiment in a
Couette cylinder: the paths of
the internal forces are
evidenced by photo-elasticity.
Image courtesy of Dan
Howell and Robert Behringer,
Duke University

more rapidly than linear (from exponential to Gaussian-like decay, depending upon
the regularity of the grains). A similar strong decay of the flow with the distance
from the moving wall was observed in many experiments, for example in [51].

• Diluted (air-fluidized) shear: Couette experiments may be performed with a flow
of air coming from the bottom of the cylinder, in order to fluidize the material and
obtaining smoother profiles of the shear stress T (y) [53]. It is seen that the RMS
fluctuations of velocity and the shear forces are related as T 1/2(y) ∼ γ (y)α with
α = � 0.4.

• Size segregation: convection patterns and size segregation are common in Couette
flows, for instance in [40] the authors check the effect of interstitial fluids, finding
it irrelevant.

• Planetary rings: planetary rings (those of Saturn for example) have been sometime
studied in the framework of granular rheology, whereas the “geometry” of the
planetary experiment is similar to a Couette cell (grains are circularly sheared
because the angular velocity depends upon the distance from the planet). A review
of these studies can be found in [6].

Another way to induce shear is making the granular flow along an inclined chan-
nel. In this kind of experiments the whole material is accelerated by gravity, but the
friction with the plane induce shearing, so that measurements similar to the ones
performed in Couette cells can be performed [15, 73, 79]. Interest has focused on
constitutive relations, as before, but also on the profiles of the hydrodynamic fields,
mainly flow velocity and solid fraction: computer simulations (see for example [8]
and for an exhaustive review the classical work of Campbell [7]) have allowed the
measurement of the temperature field: this has confirmed the picture of a fluid-like
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behavior, explaining the reduction of density (solid fraction) near the bottom by
means of an increase of granular temperature, due to the shear work. In this frame-
work the scheme representing the “mechanical energy path” sketched by Campbell
in his review on rapid granular flow [7] is enlightening. The external driving force
(i.e. gravity) induces mean motion (kinetic energy) which consequently generates
friction with boundaries, that is shear work (granular temperature). The randomiza-
tion represented by the granular temperature induces collisions among the grains,
which are dissipative. Moreover, granular temperature generates internal (transversal
as well as normal) stresses.

Another configuration of granular flow under the force of gravity is the simple
hopper geometry (a hopper is a funnel-shaped container in which materials, such
as grain or coal, are stored in readiness for dispensation). The bottom of a hopper
is opened and the grains start to pour out. As already discussed, the pressure (and
therefore the flow rate) does not depend upon the height of the column of material.
However, the flux of grains leaving the container produces complex flow regions
inside the container. Four regions of density and velocity can be identified, most
notably a tongue of dense motion just above the aperture and an area of no grain
motion below a cone extending upwards from the opening (a similar effect can be
observed in a silo, see Fig. 1.3). For large opening angles, density waves propagate
upward from above the aperture against the direction of particle flow, but downwards
for small angles [4] . The flow can even stop due to “clogging”, i.e. the grains can
form big arches above the aperture and sustain the entire weight of the column.

Other experiments have been performed on granular flows along inclined planes
or chutes, evidencing several phenomena.

Fig. 1.3 Image of convergent
flow of grains in a silo
draining through an orifice.
The silo was initially filled in
horizontal layers with glass
beads with two different
colors but otherwise similar
properties. Image courtesy:
Azadeh Samadani and Arshad
Kudrolli
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• Validations of kinetic theory: in [10] an experiment of grain flow along an inclined
channel was used to study the stationary profiles of velocity, solid fraction and
granular temperature. The authors verify that there is a limited range of inclinations
of the channel that allow for a stationary flow. Moreover they have probed the
validity of the kinetic theories developed in the previous years [36, 37, 55, 56, 81],
based on the assumption of slight perturbation to the Maxwellian equilibrium. The
profiles of hydrodynamic fields show two different regions: a collisional region
(higher density) where the transport is mainly due to collisions, and a ballistic
region (on the upper free surface) where the grains fly almost ballistically.

• Size segregation in silo filling or emptying: the authors of [78] have studied the
phenomena of size segregation in a quasi-two dimensional silo emptying out of
an orifice. They have also studied the effects of interstitial fluids [77].

• Size segregation in rotating drums: another typical experiment, inspired to many
industrial situations, is the tumbling mixer, or rotating drum, i.e. a container with
some shape that rotate around a fixed axis, usually used to mix different kind of
granular materials (typically powders in the pharmaceutical, chemical, ceramic,
metallurgical and construction industry). Depending on the geometry of the mixer,
the shapes of the grains, the parameters of the dynamics and so on, the grains can
mix or separate. A very large literature exists on this phenomena (see the review
in [66]). Usually, segregation is strictly tied to convection: there is a shallow
flowing layer on the surface of the material inside the rotating drum, the grains
at the end of it are transported into the bulk and follow a convective path so that
they emerge again in another point of the surface. Segregation happens in many
different ways: segregated bands appear and slowly enlarge (like in a coarsening
model), segregation can emerge in different directions, e.g. parallel to the rotation
axis as well as transversal to it.

• Shear stress fluctuations and frictional (stick-slip) properties of a granular medium
has been studied in a ring-shaped cell with a rotating cover, finding agreement
with a simple Brownian model similar to those underlying the Barkhausen effect
in ferromagnets [3].

1.2.3 Shakers

Many interesting observations can be done when the granular medium is subject to
vertical vibration, usually under the effect of gravity. As already mentioned the effect
of slow vibration of a container filled of grains induces a very slow compaction of
the material. When the amplitude of vibration is strong enough, i.e. when

Γ = amax

g
> 1 (1.2)
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(where amax is the maximum acceleration of the vibrating plate, e.g. amax = Aω2 if
the plate is harmonically vibrating with A amplitude and ω frequency) the granular
shows several phenomena.

• Convection and segregation: A large literature [23] exists on the convection and
segregation phenomena observed in granular media contained in a shaken box.
Faraday [24] was perhaps the first to observe such a phenomenon. The geometry
of the container can change dramatically the quality of the convection (e.g. in a
cylinder may happen that the grains near the walls move downwards and the ones
in the bulk move upwards, while inside an inverted cone the convection occurs in
the opposite direction). Usually, the larger grains (independent of their density)
tend to move upwards, so that the material segregate (see for example [16, 41–43,
48]).

• Pattern formation in surface waves: another problem that has been extensively
studied in recent years is the formation of patterns on the surface of vibrated layers
of grains. Depending on the whole set of parameters (amplitude and frequency of
the vibration, shapes and sizes of the grains, size of the container, depth of the
bed and so on) different qualities of standing waves can be observed, leading to
unexpected and fascinating textures [58–60, 87] (see Figs. 1.4 and 1.5).

• Clustering: in [44, 46] the formation of clusters was studied, measuring the density
distribution in an experiment consisting of steel balls rolling on a smooth surface
which could or could not be inclined with a vibrating side. The experiment took into
account a monolayer (not completely covered) of grains, in order to study a true
2d setup. In both cases (inclined or horizontal), at high enough global densities,
the distribution of density (going from Poissonian to exponential) indicates strong
clustering. The formation of high density clusters has also been studied in a vibrated
cylindrical piston [20–22]. A transition has been observed with the increasing
number of particles in the cylinder, from a gas-like behavior to a collective solid-
like behavior. Such a transition has been also observed in the framework of fluidized
beds [64], i.e. vertically shaken granular monolayers: the authors have observed

Fig. 1.4 Different surface
patterns obtained by vertical
vibration of granular layers.
© 1996 Paul B. Umbanhowar.
All rights reserved
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Fig. 1.5 The oscillon: a
two-dimensional solitary
standing wave on the surface
of a granular monolayer.
© 1996 Paul B. Umbanhowar.
All rights reserved

a transition (with reducing the vibration amplitude) from a gas-like motion to a
coexistence of a crystallized state (a pack of particles arranged in an ordered way)
and a gas.

• The Leidenfrost effect is a particular stationary configuration, obtained under grav-
ity and vertical shaking, consisting in a granular “drop” at high packing fraction
floating above a more dilute granular gas which is in direct contact with the vibrat-
ing boundary [19]. In liquids this effect is known since the 18th century and is
encountered when a liquid drop is let in contact with a surface at a temperature
much higher than its boiling point. In cooking, it is common to observe such an
effect when sprinkling water droplets on the hot surface of a pan: if the pan is hot
enough, drops skitter across the surface. The drop takes a long time to evaporate
because of a thin vapour layer that isolate them from direct contact with the pan.

• A systematic study in a vertically vibrated quasi-two dimensional container with
length and height much larger then depth, allowed to trace a quite robust phase
diagram [18]. The experiment showed a wide variety of phenomena: bouncing bed,
undulations, granular Leidenfrost effect, convection rolls, and granular gas. These
phenomena and the transitions among them are characterized by a few main control
parameters: the shaking maximum acceleration Γ , the number of bead layers F ,
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Fig. 1.6 The phase diagram
in the experiment with a
quasi-2d vertically vibrated
container. Reproduced with
permission from Eshuis et al.
[18]. © 2007, AIP Publishing
LLC

the inelasticity parameter 1 − r2 where r is the restitution coefficient, and the
aspect ratio, i.e. the ratio between the length of the container and the height of the
granular media at rest. The authors studied in particular the effect of Γ and F ,
obtaining a phase diagram of the kind in Fig. 1.6. The diagram slightly changes
when other parameters are modified.

• In the context of random lasers, shaken granular lasers have appeared recently
[27, 28]. The general idea of random lasers consists in pumping light through
a scattering/amplifying random medium. Emitted light display a spectrum with
random peaks which depend on many parameters of the scattering system. In this
framework, a shaken granular laser is obtained by vibrating a cell which contains
glass or steel spheres (1 mm diameter) dispersed in a “gain medium”, i.e. a light-
amplifying fluid such as a rhodamine solution. The added value of shaking is in
a direct control of statistical properties of emitted spectra: different choices of
shaking parameters lead to different stationary regimes with more dilute or dense
granular assemblies.

• Validations of kinetic theory: a part of the experimental effort [54, 90–92] has
also devoted to the study of hydrodynamic and kinetics fields (i.e. packing frac-
tion profiles, granular temperature profiles, self-diffusion, velocity statistics) in
vertically vibrated boxes (or vertical slices, that is 2d setups). The interest has also
focused on the difficulties of imposing boundary conditions to the existing kinet-
ics model, due to the existence of non-hydrodynamic boundary layers. This has
also led to the formulation of hypothesis of scaling for the granular temperature
as a function of the amplitude of vibration [47, 83]. For more recent experiments
see [93].

• Non-Gaussian velocity distributions: after the evidences found in the numerical
study of granular rapid dynamics, the question of the true form of the veloc-
ity distributions has arisen and has induced many new experiments in order to
give an answer to it. In [45] the distributions of velocities were studied along an
inclined plane with varying angles of inclination, obtaining non-Gaussian sta-
tistics with enhanced high energy tails; it was seen that increasing the angle
of inclination the distributions tends toward the Maxwellian. The experiment
reported in [64, 65] with a horizontal granular monolayer subject to a vertical
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Fig. 1.7 Probability
distributions of horizontal
velocities of grains in a
vertically shaken granular
monolayer. Reprinted with
permission from Olafsen and
Urbach [64]. Copyright 1998
by the American Physical
Society

vibration (and measuring horizontal velocities) has proven that, in the presence
of clustering, the distributions are non-Gaussian, showing nearly exponential tails
(see Fig. 1.7). A different experiment [52] on a similar monolayer with verti-
cal vibration verified that both the theoretical predictions of [88] on the high
energy tails for cooling and driven granular gases are correct, measuring expo-
nential tails for the former and exp(−v3/2) for the latter. More recently [74],
the velocity fluctuations in a vertically vibrated vertical monolayer of grains
have been measured, obtaining again a velocity distribution with exp(−v3/2)

tails.
• Non-equilibrium behavior: a few experiments have been devoted to the study of

non-equilibrium granular properties. In particular two experiments have verified
the breakdown of energy equipartition [25] and have measured the fluctuations of
internal energy flow [26]: in the last experiment the authors claimed a verification
of the Gallavotti-Cohen Fluctuation theorem [29], but successive theoretical work
has proven that it was not necessarily the case [68]; more recently, the exchanges
of energy between a granular gas and a harmonic oscillator, in the stationary
state [62] or during periodic cycles between different forcings [57], have been
measured.

• Velocity correlations: experiments similar to the setup of [45] has revealed strong
correlations between velocity particles [5]. More recently, velocity structure fac-
tors, in good agreement with fluctuating granular hydrodynamics, have been mea-
sured at average packing fraction (30–40 %) in a monolayer of spheres moving
on a vertically vibrating horizontal rough plate [32, 67]. The measured velocity
correlations are characterized by a correlation length which increases with the
packing fraction.

• Linear response has been studied in similar experiments where a Brownian rota-
tor is suspended in a granular gas and is excited with a small torque. The first
experiment [12] probed a very dense system over long time-scales, observing
the validity of a fluctuation-dissipation relation similar to equilibrium, with an
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effective temperature. More recently, a similar experiment has been carried out
in dilute and averagely dense configurations [30]: it has been possible to put in
evidence the entanglement between fast and slow time-scales, which induce non-
equilibrium correlations growing with the density and a consequent breakdown of
the Einstein relation, which is equivalent to the fluctuation-dissipation relation at
equilibrium.

• A series of experiments under gravity and vertical vibration, in container separated
into communicated chambers (compartments), have demonstrated the tendency
of granular fluids to violate many entropic trends of fluids at equilibrium [50].
Typical examples are phase separation (dense versus dilute) between different
compartments, and spontaneous segregation of mixtures into different compart-
ments. These scenario have been often assimilated to the realization of a “Maxwell
Demon” experiment.

• Conceptually similar to the Maxwell Demon phenomenon illustrated above, the
realization of a granular ratchet more strikingly illustrates the rectification of unbi-
ased fluctuations under non-equilibrium conditions. Models have been proposed
since [11], but the first experimental realization has been obtained in [17]. More
recently an experiment in fair quantitative agreement with kinetic theory have
been carried out, with surprising results about the crucial role of Coulomb fric-
tion [31].

1.3 Granular Versus Active Fluids

Younger than granular materials, the study of active fluids reveals several analogies
in the observed phenomena and in the methods of investigation. Under the name of
active fluid or active matter one includes a large class of systems, mostly in the realm
of living organisms, involving a large number of “self-propelled” constituents [70].
Examples include biofilaments and molecular motors in vitro or in vivo [38], collec-
tions of motile microorganisms such as alga blooms or biofilms, bird flocks and fish
schools [86], and chemical or mechanical imitations.

The fundamental ingredient in active fluids is the propulsion: the elementary
constituents, or “particles”, displace themselves by walking, crawling, swimming,
flying, etc. An active particle is able to transform energy from a reservoir into directed
motion. The most famous example is, perhaps, that of molecular motors inside cells,
where the propulsion is obtained through chemical reactions involving the hydroly-
sis of ATP. Organisms at all lengthscales (from bacteria to birds and fishes) display
mechanisms of propulsion of great variety, complexity and beauty. For active flu-
ids, however, the details of the propelling device are not the main object of study.
Researchers are instead interested in the collective properties of many particles under
given boundary conditions [89]. The presence or absence of a solvent fluid determines
the kind of interaction among the particles, which can be dissipative or conserva-
tive, at contact or long-range. Self-propelled particles dispersed in a fluid, usually
provided with a well-defined polarity, are also called “swimmers”. In general they
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are divided in two categories: pushers and pullers, depending on the origin of the
movement, i.e. from the front of from the rear (this has consequences on the kind of
flow generated in the surrounding fluid and therefore on the interaction with other
particles).

A collection of self-propelled particles is intrinsically out-of-equilibrium. Each
particle injects kinetic energy into the system, as the result of conversion from an
external reservoir. Viscous dissipation through the solvent, or—more rarely—non-
conservative interactions with surrounding particles, balances the injection and may
determine a statistically steady state. Such a balance of energy currents is reminiscent
of the energy cycle in shaken granular fluids: grains take energy from hitting the
moving walls of a shaken container, and dissipate it through collisions. A closer
look suggests that a granular fluid is often an anti-active fluid: indeed the smallest
length-scale (the grain or the particle) is responsible for dissipation in granular fluid,
while it is the source of energy in active fluids. However there are examples where
the analogy is even more fitting (see for instance the thermostat model discussed in
Sect. 2.3.5).

The most common phenomena observed in active fluids is one or more ordering
transitions. These transitions, typically toward a polar (i.e. ferromagnetic) or nematic
order, occur when parameters such as propulsion velocity or particle density are
changed. The elonged shape which allows to define the “direction” of a self-propelled
particle, is perhaps the main difference with respect to the large majority of granular
systems. The reader, however, will notice that the shear instability in cooling granular
materials, where clusters of grains appear to move as “swarms”, see Sect. 3.3.1, is not
dissimilar from collective behavior in many models of active particles for bacterial
suspensions and colonies [86].

The analogy between active and granular fluids have been pursued in some exper-
iments. The granular particles were shaped in such a way that isotropy was bro-
ken, and put above a vertically vibrated horizontal plate. The anisotropy, together
with subtle frictional mechanisms and vertical vibration, produced a self-propulsion
effect. Several properties, including collective “swarming”-like effects, have been
demonstrated [14].

The strongest analogy with granular materials is, however, in the methods of
investigation. Hydrodynamics, which is extensively discussed in Chap. 3 of this book,
is used to describe many collective phenomena in granular fluids as well as in active
fluids [71]. The working principle is the same: a few slowly evolving observables
are identified and transport equations for these observables are built, based upon
more or less rigorous kinetic theories. Symmetry arguments are usually sufficient to
determine the basic structure of these equations, while more refined (microscopic)
calculations are necessary to assign values to the transport coefficients. Even the
qualitative form of hydrodynamic equations, with approximate orders of magnitude
for the transport coefficients, are enough to catch the stable states and the transitions
between them.

Active hydrodynamics faces risks or problems similar to those encountered in
granular hydrodynamics: the number of microscopic constituents are not huge, the
separation of scale between macroscopic and microscopic lengths or times is not

http://dx.doi.org/10.1007/978-3-319-10286-3_2
http://dx.doi.org/10.1007/978-3-319-10286-3_3
http://dx.doi.org/10.1007/978-3-319-10286-3_3
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always clear and guaranteed. In many situations huge fluctuations are observed [69]
and a stochastic treatment of the macroscopic equations becomes hardly avoidable.
Fluctuating hydrodynamics for active fluids is still in its infancy [84], while a few
important steps have been carried out for granular systems.
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Chapter 2
Boltzmann Equation: A Gas of Grains

Abstract A simple but realistic and rich model for fluidized granular media is the
gas of inelastic hard spheres. In this chapter its statistical description is reviewed.
A key role is played by the assumption of Molecular-Chaos and by the Boltzmann
equation. A comparison with the case of elastic hard spheres is made, pointing out
the analogies and the differences. The chapter is concluded with the discussion of
the protocols used for energy injection.

2.1 Collisions

Let us consider two point-like particles with masses m1 and m2, coordinates r1 and
r2 and velocities v1 and v2. One can introduce the center of mass vector rc:

rc = m1r1 + m2r2

m1 + m2
(2.1)

and the relative position vector:

r = r1 − r2. (2.2)

Their time derivatives are the velocity of the center of mass

vc = m1v1 + m2v2

m1 + m2
(2.3)

and the relative velocity

V12 = v1 − v2. (2.4)

The forces between these two particles depends only on their relative position and
are of equal magnitude and pointing in opposite directions:

F12(r) = −F21(r). (2.5)

This is equivalent to say that the center of mass does not accelerate, i.e.:
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d2rc

dt2 = 0 (2.6)

while the relative position obeys to the following equation of motion:

m∗ d2r
dt2 = F12(r) (2.7)

where

m∗ =
(

1

m1
+ 1

m2

)−1

(2.8)

is the reduced mass of the system of two particles. If the “collision” is elastic an
interaction potential can be introduced so that:

F12 = −dU (r)

dr
r̂ (2.9)

where r̂ is the unit vector along the direction of the relative position of the two
particles. The force vector lies in the same plane where the relative position vector
and relative velocity vector lie. The evolution of the relative position r is the evolution
of the position of a particle of mass m∗ in a central potential U (r). The angular
momentum of the relative motion L = r × m∗V12 is conserved. This means that
the particle trajectory, during the collision, will be confined to this plane. Figure 2.1
sketches the typical binary scattering event when the interacting force is repulsive
(monotonically decreasing potential), in the center of mass frame.

In the center of mass frame the elastic scattering has a very simple picture: the
velocities of the particles are v1c = V12m∗/m1 and v2c = −V12m∗/m2. The elastic
collision conserves the modulus of the relative velocity V12 and therefore also the
moduli of the velocities of the particles in the center of mass frame. If one consider
the collision event as a black box and observes the velocities of the particles “before”
and “after” the interaction (i.e. asymptotically, when the interaction is negligible),
then the velocity vectors are simply rotated of an angle χ called angle of deflection,
which also represents the angle between asymptotic initial and final directions of the
relative velocity. During the collision the total momentum is conserved (this holds
for both elastic and inelastic collisions) but is redistributed between the two particles,
i.e. the variation of the momentum of the particle 1 is δ(m1v1) = m∗(V′

12 − V12)

where the prime indicates the post-collisional relative velocity. Obviously δ(m1v1) =
−δ(m2v2). Finally, one can calculate the components of the momentum transfer
parallel and perpendicular to the relative velocity:

δ(m1v1)‖ = −m∗V12(1 − cos χ) (2.10a)

δ(m1v1)⊥ = m∗V12 sin χ. (2.10b)
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m2

v2c
0

b
v1c
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f

f

χ

χ

Fig. 2.1 The binary elastic scattering event in the center of mass frame, with a repulsive potential
of interaction. The superscripts 0 and f denote initial and final velocities

To calculate the angle of deflection χ one needs the exact form of the interaction
potential, the asymptotic initial relative velocity V 0

12 and the impact parameter b
that is the minimal distance between the trajectories of the particles if there were no
interaction between them:

χ = π − 2

∞∫
rm

dr
b

r

[
r2 − b2 − 2r2U (r)

m∗(V 0
12)

2

]−1/2

(2.11)

where rm is the closest distance effectively reached by the two particles. From Eq.
(2.11) it is evident that the angle of deflection decreases as the initial relative velocity
increases.

2.1.1 Elastic Smooth Hard Spheres

Two hard spheres in 3D (hard disks in 2D, hard rods in 1D) of diameters σ1 and σ2
interact by means of a discontinuous potential U (r) of the form:

U (r) = 0 (r > σ12) (2.12a)

U (r) = ∞ (r < σ12) (2.12b)

where σ12 = (σ1 + σ2)/2 = rm is the distance of the centers of the spheres at
contact. The potential in Eqs. (2.12a, 2.12b) can be taken as a definition of hard
spheres systems. In this case the deflection angle is given by



22 2 Boltzmann Equation: A Gas of Grains

Fig. 2.2 The collision
between two elastic smooth
hard spheres

x

n̂

σ12

V12

12V’

m

m1

2

χ = 2 arccos

(
b

σ12

)
(2.13)

and the dependence from the initial relative velocity disappears: only geometry deter-
mines the deflection angle.

In the study of smooth hard spheres (i.e. such that particles’ rotation is not rel-
evant), a complete description of the dynamics requires only the positions of the
centers r and their velocities v. In particular the collision is an instantaneous trans-
formation of the velocities of two particles i and j at contact which are “reflected”
with the following rule (see Fig. 2.2):

v′
i = vi − 2m2

m1 + m2
n̂[n̂ · (vi − v j )] (2.14)

v′
j = v j + 2m1

m1 + m2
n̂[n̂ · (vi − v j )] (2.15)

where n̂ = (ri −r j )/|ri −r j | and the primes denote the velocities after the collision.
This collision rule conserves momentum and kinetic energy. It only changes the
direction of the component of the relative velocity of the particles in the direction of
n̂ (normal component), leaving unchanged the tangential component.

2.1.2 Statistics of Hard Spheres Collisions

The concept of mean free path was introduced in 1858 by Rudolf Clausius [17]
and paved the road to the kinetic theory of gases. For the sake of simplicity, here I
consider a single species gas composed of elastic smoth hard spheres, all having the
same diameter σ and mass m (see [16]).

The mean free time is the average time between two successive collisions of a
single particle. I define ωcdt the probability that a given particle suffers a collision
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between time t and t + dt (ωc is called collision frequency) and assume that ωc is
independent of the past collisional history of the particle. The probability ftimedt of
having a free time between two successive collisions larger than t and shorter than
t + dt is equal to the product of the probability that no collision occurs in the time
interval [0, t] and the probability that a collision occurs in the interval [t, t + dt]:

ftime(t)dt = Ptime(t)ωcdt, (2.16)

where Ptime(t) is the survival probability, that is the probability that no collisions
happen between 0 and t , and can be calculated observing that Ptime(t + dt) =
Ptime(t)Ptime(dt) = Ptime(t)(1 − ωcdt) so that d Ptime/dt = −ωc Ptime, i.e.
Ptime(t) = e−ωct .

Finally one can calculate the average of the free time using the probability density
ftime(t):

τc =
∞∫

0

dtt ftime(t) =
∞∫

0

dttωce−ωct = 1

ωc
. (2.17)

With the same sort of calculations an expression for the mean free path, that is the
average distance traveled by a particle between two successive collisions, can be
calculated. One again assumes that there is a well defined quantity (independent
of the collisional history of the particle) αdl which is the probability of a collision
during the travel between distances l and l + dl. The survival probability in terms
of space traveled is Ppath(l) = e−αl and the probability density of having a free
distance l is f path(l) = e−αlα so that the mean free path is given by:

λ = 1

α
(2.18)

Above, for simplicity, I have considered a homogeneous probability for collisions.
A more precise treatment requires to consider the hard core collision process as a
non-homogeneous stochastic Poisonnian process: indeed the transition rates for the
particle’s change of velocity depend on the relative velocity between the colliding
particles [50]. This is discussed in details in Chap. 4.

The other important statistical quantity in the study of binary collisions is the
so-called differential scattering cross section s. In a unit time a particle suffers a
number of collisions which can be seen as the incidence of fluxes of particles coming
with different approaching velocities V12 and scattered to new different departure
velocities V′

12. Given a certain approaching velocity V12 the incident particles arrive
with slightly different impact parameters (due to the extension of the particles) and
therefore are scattered in a solid angle dΩ ′. If I0 denotes the intensity of the beam of
particles that come with an average approaching speed V12, which is the number of
particles intersecting in unit time a unit area perpendicular to the beam (I0 = nV12
with n the number density of the particles), then the rate of scattering d R into the

http://dx.doi.org/10.1007/978-3-319-10286-3_4
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small solid angle element dΩ ′ is given by

d R

dΩ ′ = I0s(V12, V′
12) (2.19)

where s is a factor of proportionality with the dimensions of an area (in 3D) which is
called differential cross section and depends on the relative velocity vectors before
and after the collisions. The total rate of particles scattered in all directions, R is the
integral of the last equation:

R = I0

∫ ∫
4π

dΩ ′s(V12, V′
12) = SI0 (2.20)

and defines the total scattering cross section S.
In the case of a spherically symmetric central field of force, the differential cross

section is a function only of the modulus of the initial relative velocity V12, the angle
of deflection χ , and the impact parameter b which in turn, once fixed the potential
U (r), is a function only of χ and V12, that is s = s(V12, χ). In particular it is easily
seen that

s(V12, χ) = −b(V12, χ)

sin χ

db

dχ
. (2.21)

The differential scattering cross section for hard spheres is calculated from Eq. (2.21)
obtaining a very simple formula: s(V12, χ) = σ 2/4 which can be integrated over the
entire solid angle space giving an expression for the total cross section S = πσ 2.
This result is consistent with the physical intuition of the cross section: it is the
average of the areas of influence of the scatterer in the planes perpendicular to the
approaching velocities of the incident particles.

To conclude this paragraph I recall that the collision frequency in a homogeneous
stationary gas is related to the total scattering cross section by the relation

ωc = nS〈V12〉 (2.22)

where n is the uniform density of the gas and 〈V12〉 is an average of the relative
velocities. Assuming that velocities in the gas are independent and their distribution
is the Maxwell-Boltzmann distribution:

P(v) = m3/2

(2πkB T )3/2 e
− mv2

2kB T (2.23)

the collision frequency can be calculated obtaining the formula:

ωc = 2
√

2√
π

nSvT (2.24)
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where vT is defined as

vT =
√

2kB T

m
. (2.25)

In the same way the mean free path is given by

λ = 1√
2nS

. (2.26)

2.1.3 Inelasticity

Granular particles collide dissipating the kinetic energy of their relative motion [11].
This is due to the macroscopic nature of the grains: during the interaction, irreversible
processes happen inside the grain and energy is dissipated in form of heat. In a
collision between two free particles, these processes conserve momentum so that the
velocity of the center of mass of the two grains is not modified.

Many models of the binary inelastic collision have been proposed (soft spheres [13,
25, 35, 51, 52] as well as hard spheres models [12, 21, 27, 41]): this is usually a
relatively difficult problem. Simplification often pays more, as very idealized models
lead to physically meaningful results. The most used model in granular gas literature
is also the simplest: the gas of inelastic smooth hard spheres, with fixed restitution
coefficient. It is given by the following prescriptions:

m1v′
1 + m2v′

2 = m1v1 + m2v2 (2.27a)

(v′
1 − v′

2) · n̂ = −r(v1 − v2) · n̂ (2.27b)

where, as usual, the primes denote the postcollisional velocities, n̂ is the unit vector
in the direction joining the centers of the grains, and 0 ≤ r ≤ 1. In this model the
collisions happen at contact and are instantaneous. When r = 1 the gas is elastic
and the rule coincides with the collision description for hard spheres given in the
Sect. 2.1.1. When r = 0 the gas is perfectly inelastic, that is the particles exit from
the collision with no relative velocity in the n̂ direction.

As a matter of fact, the transformation that gives the (primed) postcollisional
velocities from the precollisional velocities of the two colliding particles is

v′
1 = v1 − (1 + r)

m2

m1 + m2
((v1 − v2) · n̂)n̂ (2.28a)

v′
2 = v2 + (1 + r)

m1

m1 + m2
((v1 − v2) · n̂)n̂ (2.28b)

Sometimes it may be useful to have the reverse transformation that give precollisional
velocities from postcollisional ones, with the primes exchanged:
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v′
1 = v1 −

(
1 + 1

r

)
m2

m1 + m2
((v1 − v2) · n̂)n̂ (2.29a)

v′
2 = v2 +

(
1 + 1

r

)
m1

m1 + m2
((v1 − v2) · n̂)n̂ (2.29b)

As it can be seen, the inverse transformation is equivalent to a change of the restitution
coefficient r → 1/r . Obviously, in the case of a perfectly inelastic gas (r = 0) there
is no inverse transformation. I also note that in 1D and when m1 = m2 Eqs. (2.28a,
2.28b) become:

v′
1 = 1 − r

2
v1 + 1 + r

2
v2 (2.30a)

v′
2 = 1 + r

2
v1 + 1 − r

2
v2 (2.30b)

which correspond to an exact exchange of velocities in the elastic (r = 1) case, and
in a sticky collision in the perfectly inelastic (r = 0) case. In dimensions higher than
one the r = 0 case is very different from the so-called sticky gas, which is defined
as a gas of hard spheres that in a collision become stuck together. In one dimension,
instead, the r = 0 case may be considered equivalent to a sticky gas but a further
prescription of “stickiness” must be given in order to consider collisions among more
than two particles.

Variants of this models have been largely used in the literature. The importance
of tangential frictional forces acting on the grains at contact may be studied taking
into account the rotational degree of freedom of the particles, i.e. adding a variable
ωi to each grain. The simplest model which takes into account the rotational degree
of freedom of particles is the rough hard spheres gas [22, 28, 31, 36–38, 42]. In
this model the postcollisional translational and angular velocities are given by the
following equations (where the bottom signs in ± or ∓ are to be considered for
particle 2):

v′
1,2 = v1,2 ∓ 1 + r

2
vn ∓ q(1 + β)

2q + 2
(vt + vr ) (2.31a)

ω′
1,2 = ω1,2 + 1 + β

σ(1 + q)
[n̂ × (vt + vr )] (2.31b)

where q is the dimensionless moment of inertia defined by I = qm(σ/2)2 (with I
the moment of inertia of the hard object), e.g. q = 1/2 for disks and q = 2/5
for spheres; vn = ((v1 − v2) · n̂)n̂ is the normal relative velocity component,
vt = v1 − v2 − vn is the tangential velocity component due to translational motion,
while vr = −σ(ω1 − ω2) is the tangential velocity component due to particle rota-
tion. In Eqs. (2.31a, 2.31b) the tangential restitution coefficient β appears: it may
take any value between −1 and +1. When β = −1 tangential effects disappear, i.e.
rotation is not affected by collision (rough spheres become smooth spheres). When
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β = +1 the particles are said to have perfectly rough surface. It can be easily seen
that (when r = 1) energy is conserved for β = ±1.

Other models for collisions have been introduced, justified by a deeper analysis of
the collision process. In these models the restitution coefficient r (or the coefficients r
and β in the more detailed description given above) depends on the relative velocity of
the colliding particles. In particular it has been seen that the collision tends to become
more and more elastic as the relative velocity tends to zero. This refined description,
referred to as ‘viscoelastic’ model [10, 26], has relevance in different issues of the
statistical mechanics of granular gases. An important kinetic instability of the cooling
(and sometimes driven) granular gases is the so-called inelastic collapse [40, 41],
i.e. a divergence of the local collision rate due to the presence of a few particles
trapped very close to each other: simulations of the gas with the viscoelastic model
have shown that this instability is removed, suggesting that it is an artifact of the
fixed restitution coefficient idealization.

Here, I give an expression of the leading term for the velocity dependence of the
normal restitution coefficient r in the viscoelastic model (the viscoelastic theory may
be applied to give also a velocity dependent expressions for the tangential restitution
coefficient):

r = 1 − C1|(v1 − v2) · n̂|1/5 + · · · (2.32a)

where C1 depends on the physical properties of the spheres (mass, density, radius,
Young modulus, viscosity).

2.1.4 Inelastic Collapse

In the 1990s, several numerical studies have unveiled a problem in the model of
inelastic collisions with a fixed restitution coefficient. Such a problem went under the
name of “inelastic collapse”. The simplest example involves just three particles on a
line, as shown in Fig. 2.3 [5, 40]. The two outer particles move monotonically toward
each other and the one in the middle bounces between them. One can easily show that,
after the two collisions shown in the figure, the relation between the final and initial
velocities is u′ = M u where u = (v1, v2, v3)

T and M is a 3x3 matrix whose entries
are quadratic polynomials in r . If this matrix has one real eigenvalue in the interval
(0, 1), the cycle shown in Figure endlessly repeats with geometrically smaller space
and time scales at each successive cycle. This requires r = rc < 7 − 4

√
3 ≈ 0.0718

to happen. In this case an infinite number of collision happens in a finite time. When
r > rc, inelastic collapse can still occur but with the collective participation of more
than three particles or with the presence of an inelastic wall (because of symmetry,
this is equivalent to an interaction between four inelastic particles), as displayed in the
Figure. As the coefficient of restitution r increases toward 1, the number of particles
required for collapse increases. For instance, with r = 0.8, it is required that N = 16
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Fig. 2.3 Examples of
particles’ trajectories with or
without a wall: a three
particles collapse
(r < 7 − 4

√
3 ≈ 0.0718); b

two particles bouncing off an
inelastic wall: when
r > 0.346015 they finally
leaves the wall and never
come back; c critical value
r = 0.346015, the inner ball
remains stationary after two
collisions with the other
particle; d when
r < 3 − 2

√
2 ≈ 0.17157

there is inelastic collapse.
Reproduced with permission
from McNamara and
Young [40]. Copyright 1992,
AIP Publishing LLC

particles bounce off an inelastic wall. Rough estimates suggest (in agreement with
numerical calculations) that Nmin(r) ≈ ln(4/(1 − r))/(1 − r) as r → 1.

In more than 1 dimension, the trapping necessary to have collapse can be realized
in a large cluster, as shown in Fig. 2.4.

Fig. 2.4 A snapshot from a
MD simulation of cooling
inelastic hard spheres. The
particles in black are those
that have participated in the
last collisions, just before a
collapse. Reprinted with
permission from Schorghofer
and Zhou [48]. Copyright
1996 by the American
Physical Society
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2.2 The Boltzmann Equation

The Boltzmann equation for a gas of elastic or inelastic hard spheres can be derived
in several ways [15]. Here, I review the typical reduction scheme which starts from
the Liouville equation and goes through the BBGKY hierarchy.

2.2.1 Liouville and Pseudo-Liouville Equations

In order to discuss the behavior of a system of N identical hard spheres (of diameter
σ and mass m) it is natural to introduce the phase space, i.e., a 6N—dimensional
space where the coordinates are the 3N components of the N position vectors of the
sphere centers ri and the 3N components of the N velocities vi . The state of the
system is represented by a point in this space. I call z the 6N -dimensional position
vector of this point. If the positions ri of the spheres are restricted in a space region
Ω , then the full phase space D is given by the product Ω N × �3N

If the state is not known with absolute accuracy, one must introduce a probability
density P(z, t) which is defined by

Prob(z ∈ D at time t) =
∫
D

P(z, t)dz (2.33)

where dz is the Lebesgue measure in phase space. One implicitly assumes that the
probability is a measure absolutely continuous with respect to the Lebesgue measure.
The mean value of a dynamical observable A(z) can be calculated from either the
following expressions:

∫
∞

dzP(z, 0)A(z(t)) =
∫
∞

dzP(z, t)A(z) (2.34)

which are respectively the Lagrangian and Eulerian averages (analogous to the
Heisenberg and Schroedinger averages in quantum mechanics). In Eq. (2.34) the
time dependence of the observable A and of the distribution P is due to the time
evolution operator St , also called streaming operator, that is A(z(t)) ≡ St (z)A(z).
Considering the equivalence in Eq. (2.34) as an inner product implies that

P(z, t) = S†
t P(z, 0) (2.35)

where S†
t is the adjoint of St .

In a general system (not necessarily made of hard spheres) with conservative and
additive interactions, the force between the particle pair (i j) is Fi j = −∂U (ri j )/∂ri j

so that the time evolution operator is given by:
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St (z) = exp[t L(z)] = exp

⎡
⎣t

∑
i

L0
i − t

∑
i< j

Θ(i j)

⎤
⎦ (2.36)

where the Liouville operator L(z) . . . ≡ {H(z), . . .} is the Poisson bracket with the
Hamiltonian, so that

L0
i = vi · ∂

∂ri
(2.37a)

Θ(i j) = 1

m

∂U (ri j )

∂ri j
·
(

∂

∂vi
− ∂

∂v j

)
(2.37b)

and St (z) is a unitary operator, S†
t = S−t , while L† = −L . In Eq. (2.36) the evolution

operator St has been divided into a free streaming operator S0
t = exp[t ∑i L0

i ] which
generates the free particle trajectories, plus a term containing the binary interactions
among the particles.

Finally the Liouville equation is obtained writing explicitly Eq. (2.35):

∂

∂t
P(z, t) =

⎛
⎝−

∑
i

L0
i +

∑
i< j

Θ(i j)

⎞
⎠ P(z, t) (2.38)

which is an expression of the incompressibility of the flow in phase space.
In the specific case of identical hard spheres, the interaction among particles is

defined by Eqs. (2.12a, 2.12b). It can be shown that this kind of interaction carries
no contraction of phase space at collision, i.e.

P(z′, t) = P(z, t) (2.39)

where z′ and z are the phase space points before and after a collision. This can be
considered a form of detailed balance law. It is important to stress that z′ �= z: a
collision represents a time discontinuity in the velocity section of phase space. In
particular I use the elastic collision model defined in this list of prescriptions [it
coincides with the collision rule for smooth hard spheres, see Eq. (2.14)]:

|ri − r j | = σ (2.40a)

n̂i j = (ri − r j )/σ (2.40b)

Vi j = vi − v j (2.40c)

Vi j · n̂i j < 0 (2.40d)

z ≡ (r1, v1, r2, v2, . . . , ri , vi , . . . , r j , v j , . . . , rN , vN ) (2.40e)

z′ ≡ (r1, v1, r2, v2, . . . , r′
i , v′

i , . . . , r′
j , v′

j , . . . , rN , vN ) (2.40f)

r′
i = ri (2.40g)

r′
j = r j (2.40h)
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v′
i = vi − n̂i j (n̂i j · Vi j ) (2.40i)

v′
j = v j + n̂i j (n̂i j · Vi j ) (2.40j)

these relations conserve the total momentum and the total energy of the system.
In order to derive the Boltzmann equation, the collisions events z → z′ are

considered as boundary conditions and the Liouville Equation (2.38) is restricted to
the interior of the phase space region Λ ≡ Ω N × �3N − Λov where

Λov =
{

z ∈ Ω N × �3N | ∃ i, j ∈ {1, 2, . . . , N } (i �= j) : |ri − r j | < σ
}

(2.41)

is the set of phase space points such that one or more pairs of spheres are overlapping.
With this conditions, the Liouville equation reads:

∂

∂t
P(z, t) =

(
−

∑
i

vi · ∂

∂ri

)
P(z, t) (z ∈ Λ) (2.42a)

P(z, t) = P(z′, t) (z ∈ ∂Λ). (2.42b)

This version of the Liouville equation is time-discontinuous: this means that formal
perturbation expansions used in usual many-body theory methods cannot be applied.

An alternative master equation for the probability density function in the phase
space can be derived [18]. The streaming operator St for hard spheres is not defined
for any point of the phase space z ∈ Λov. In the calculation of the average (2.34)
of physical observables, this is not a problem, as the streaming operators appears
multiplied by P(z, 0) which is proportional to the characteristic function X (z) of
the set Λ (the characteristic function is 1 for points belonging to the set and 0 for
points outside of it). In perturbation expansions it is safer to have a streaming oper-
ator defined for every point of the configurational space. A standard representation,
defined for all points in the phase space, has been developed for elastic hard spheres
and is based on the binary collision expansion of St (z) in terms of binary collision
operators. The binary collision operator is defined in terms of two-body dynamics
through the following representation of the streaming operator for the evolution of
two particles:

St (1, 2) = S0
t (1, 2) +

t∫
0

dτ S0
τ (1, 2)T+(1, 2)S0

t−τ (1, 2), (2.43)

with S0
t = exp(t L0) the free flow operator and a collision operator

T+(1, 2) = σ 2
∫

V12·n̂<0

dn̂|V12 · n̂|δ(σ n̂ − (r1 − r2))(bc − 1), (2.44)
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where bc is a substitution operator that replaces v1, v2 with v′
1, v′

2 (see Eqs. (2.40a)).
The Eq. (2.43) is a representation of the evolution of two particles as a convolution

of free flow and collisional events. Noting that T+(1, 2)S0
τ (1, 2)T+(1, 2) = 0 for

τ > 0 (two hard spheres cannot collide more than once), Eq. (2.43) can be put in the
form

St (1, 2) = exp {t[L0(1, 2) + T+(1, 2)]} , (2.45)

that can be generalized to the N-particle streaming operator (here considered for the
case of an infinite volume):

S±t (z) = exp

⎧⎨
⎩±t

⎡
⎣L0(z) ±

∑
i< j

T±(i, j)

⎤
⎦
⎫⎬
⎭ (2.46)

where

T−(1, 2) = σ 2
∫

V12·n̂>0

dn̂|V12 · n̂|δ(r1 − r2 − σ n̂)(bc − 1). (2.47)

Equation (2.46) defines the so-called pseudo-streaming operator. In order to write an
analogue of the Liouville Equation (2.38), the adjoint of S±t is needed; its definition
is identical to that in Eq. (2.46) but for the binary collision operators which must be
replaced by their adjoints:

T ±(1, 2) = σ 2
∫

V12·n̂<
>

0

dn̂|V12 · n̂|[δ(r1 − r2 − σ n̂)bc − δ(r1 − r2 + σ n̂)]. (2.48)

Finally the pseudo-Liouville equation can be written:

∂

∂t
P(z, t) =

⎛
⎝−

∑
i

L0
i +

∑
i< j

T −(i j)

⎞
⎠ P(z, t). (2.49)

This equation is the analogue of Eq. (2.38) for the case of hard core potential (hard
spheres). In this sense it replaces Eqs. (2.42a, 2.42b) and its modification for inelastic
collisions will be discussed in Sect. 2.3.

2.2.2 The BBGKY Hierarchy

Reduced (marginal) probability densities Ps are defined as
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Ps(r1, v1, r2, v2, . . . , rs , vs , t) =
∫

Ω N−s×�3(N−s)

P(r1, v1, r2, v2, . . . , rN , vN , t)
N∏

j=s+1

dr j dv j .

(2.50)
In order to derive an evolution equation for Ps the first step is to integrate Eqs. (2.42a,
2.42b) with respect to the variables r j and v j (s+1 ≤ j ≤ N ) over Ω N−s ×�3(N−s),
obtaining:

∂ Ps

∂t
+

s∑
i=1

∫
Λs

vi · ∂ P

∂ri

N∏
j=s+1

dr j dv j +
N∑

k=s+1

∫
Λs

vk · ∂ P

∂rk

N∏
j=s+1

dr j dv j = 0, (2.51)

where the integration spaceΛs extends to the entire�3(N−s) for the velocity variables,
while it extends to Ω N−s deprived of the spheres |ri −r j | < σ (i = 1, . . . , N , i �= j)
with respect to the position variables.

The typical term in the first sum contains the integral of a derivative with respect to
a variable ri over which one does not integrate, but in the exchange of order between
integration and derivation one must take into account the domain boundaries which
depend on ri , writing:

∫
Λs

vi · ∂ P

∂ri

N∏
j=s+1

dr j dv j = vi · ∂ Ps

∂ri
−

N∑
k=s+1

∫
Λs

Ps+1vi · n̂ikdσikdvk (2.52)

where n̂ik is the outer normal to the sphere |ri − rk | = σ , dσik is the surface element
on the same sphere and Ps+1 has k as its (s + 1) − th index.

The typical term in the second sum in Eq. (2.51) can be immediately integrated
by means of the Gauss theorem, since it involves the integration of a derivative taken
with respect to one of the integration variables (and assuming that the boundary of
Ω is a specular reflecting wall or a periodical boundary condition):

∫
Λs

vk · ∂ P

∂rk

N∏
j=s+1

dr j dv j =
s∑

i=1

∫
Ps+1vk · n̂ikdσikdvk

+
N∑

i=s+1,i �=k

∫
Ps+2vk · n̂ikdσikdvkdri dvi . (2.53)

The last term in the above equation, when summed over s + 1 ≤ k ≤ N vanishes:
this fact directly stems from the equivalence Eq. (2.42b). Moreover, in both above
equations the integral containing the term Ps+1 is the same no matter what the value
of the dummy index k is, so that I can drop the index and write r∗, v∗ instead of
rk, vk .

As a matter of fact, Eq. (2.51) finally reads:
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∂ Ps

∂t
+

s∑
i=1

vi · ∂ Ps

∂ri
= (N − s)

s∑
i=1

∫
Ps+1Vi · n̂i dσi dv∗ (2.54)

where Vi = vi −v∗, n̂i = (ri − r∗)/σ and the arguments of Ps+1 are (r1, v1, r2, v2,

. . . , rs, vs, r∗, v∗, t). Integrations in Eq. (2.54) are performed over the 1-particle
velocity space �3 and over the sphere Si (given by the condition |ri − r∗| = σ ) with
surface elements dσi . Eq. (2.54) is complemented by reflecting boundary conditions
(of the same kind of (2.40a)) on the reduced boundary surface Λs .

Equation (2.54) states that the evolution of the reduced probability density Ps is
governed by the free evolution operator of the s-particles dynamics, which appears
in the left hand side, with corrections due to the effect of the interaction with the
remaining (N−s) particle. The effect of this interaction is described by the right-hand
side of this equation.

Usually Eq. (2.54) is written in a different form, obtained using some symmetries
of the problem. In particular one can separate the sphere Si of integration in the right-
hand side, in the two hemispheres Si+ and Si− defined respectively by Vi · n̂i > 0 and
Vi · n̂i < 0 (considering also that dσi = σ 2dn̂i ):

∫
Ps+1Vi · n̂i dσi dv∗ = σ 2

∫
�3

∫
Si+

Ps+1|Vi · n̂i |dn̂i dv∗ −σ 2
∫

�3

∫

Si−

Ps+1|Vi · n̂i |dn̂i dv∗,

(2.55)
and observe that in the Si+ integration are included all phase space points such that
particle i and particle ∗ (the (s + 1) − th generic particle) are coming out from a
collision: this means that on the sphere Si+ I can write the substitution

Ps+1(r1, v1, . . . , ri , vi , . . . rs, vs, ri − σ n̂i , v∗)
→ Ps+1(r1, v1, . . . , ri , vi − n̂i (n̂i · Vi ), . . . rs, vs, ri − σ n̂i , v∗ + n̂i (n̂i · Vi )).

(2.56)

Moreover one can make the change of variable in the second integral (that on the
sphere Si−) n̂i → −n̂i which only changes the integration range Si− → Si+. Finally,
replacing n̂i with simply n̂ (and therefore Si+ → S+) one has:

∂ Ps

∂t
+

s∑
i=1

vi · ∂ Ps

∂ri
= (N − s)σ 2

s∑
i=1

∫
�3

∫
S+

(P ′
s+1 − Ps+1)|Vi · n̂|dn̂dv∗, (2.57)

where I have defined

P ′
s+1 = Ps+1(r1, v1, . . . , ri , vi − n̂i (n̂i · Vi ), . . . rs, vs, ri − σ n̂i , v∗ + n̂i (n̂i · Vi )).

(2.58)
The system of Eqs. (2.57) is usually called the BBGKY hierarchy for the hard sphere
gas (from Bogoliubov, Born, Green, Kirkwood and Yvon, sometimes called simply
Bogoliubov hierarchy).
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2.2.3 The Boltzmann Hierarchy and the Boltzmann Equation

In a rarefied gas, N is a very large number and σ is very small; let us say, to fix ideas,
that we have a box whose volume is 1 cm3 at room temperature and atmospheric
pressure. Then N � 1020 and σ � 10−8cm and [from Eq. (2.57)] for small s we
have (N − s)σ 2 � Nσ 2 � 1 m2; at the same time, the difference between ri and
ri +σ n̂ can be neglected and the volume occupied by the particles (Nσ 3 � 10−4cm3)
is very small so that the collision between two selected particles is a rather rare event.
In this spirit, the Boltzmann-Grad limit has been suggested as a procedure to obtain
a closure for Eq. (2.57): N → ∞ and σ → 0 in such a way that Nσ 2 remains finite.
I stress the fact that (as seen in Sect. 2.1.2) the total number of collisions in the unit
of time (for volume and typical velocities both of order 1) is proportional to the total
scattering cross section multiplied by N , which for a system of hard spheres gives
Nπσ 2. The Boltzmann-Grad limit, therefore, states that the single particle collision
probability must vanish, but the total number of collisions remains of order 1. Within
this limit, the BBGKY hierarchy reads:

∂ Ps

∂t
+

s∑
i=1

vi · ∂ Ps

∂ri
= Nσ 2

s∑
i=1

∫

�3

∫
S+

(P ′
s+1 − Ps+1)|Vi · n̂|dn̂dv∗ (2.59)

where the arguments of P ′
s+1 and of Ps+1 are the same as above, except that the posi-

tion of the (s +1)− th particle (r′∗ and r∗) is equal to ri (as σ → 0). Equation (2.59)
gives a complete description of the time evolution of a Boltzmann gas (i.e. the ideal
gas obtained in the Boltzmann-Grad limit), usually called the Boltzmann hierarchy.

Finally, the Boltzmann equation is obtained if the molecular chaos assumption is
taken into account

P2(r1, v1, r2, v2, t) = P1(r1, v1, t)P1(r2, v2, t) (2.60)

for particles that are about to collide (that is when r2 = r1 − σ n̂ and V12 · n̂ < 0).
This assumption naturally stems from the Boltzmann-Grad limit, as it is reasonable
that, in the limit of vanishing single-particle collision rate, two colliding particles
are uncorrelated. The lack of correlation of colliding particles is the essence of the
molecular chaos assumption. I underline that nothing is said about correlation of
particles that have just collided.

With the assumption (2.60) one can rewrite the first equation of the hierarchy
(2.59), omitting the 1 subscript (and obvious time dependence) for simplicity:

∂ P(r, v)

∂t
+ v · ∂ P(r, v)

∂r
= Nσ 2

∫

�3

∫
S+

(P(r, v′)P(r, v′∗) − P(r, v)P(r, v∗))|V · n̂|dv∗dn̂

(2.61)



36 2 Boltzmann Equation: A Gas of Grains

with v′ = v − n̂(V · n̂), v′∗ = v∗ + n̂(V · n̂), V = v − v∗. This represents the
Boltzmann equation for hard spheres. I also observe that the integral in Eq. (2.61)
is extended to the hemisphere S+ but could be equivalently extended to the entire
sphere S2 provided a factor 1/2 is inserted in front of the integral itself, as changing
n̂ → −n̂ does not change the integrand.

From a rigorous point of view, the molecular chaos has to be assumed and cannot
be proved. However, it has been demonstrated that if the Boltzmann hierarchy has a
unique solution for data that satisfy for t = 0 a generalized form of chaos assumption:

Ps(r1, v1, . . . , rs, vs, t) =
s∏

j=1

P1(r j , v j , t) (2.62)

then Eq. (2.62) holds at any time and therefore the Boltzmann equation is fully
justified. Otherwise it has also been proved that if Eq. (2.62) is satisfied at t = 0 and
the Boltzmann equation (2.61) admits a solution for the given initial data, then the
Boltzmann hierarchy (2.59) has at least a solution which satisfy (2.62) at any time
t [34, 49].

2.2.4 Collision Invariants and H-theorem

The integral appearing in the right-hand side of Eq. (2.61) is usually called collision
integral:

Q(P, P) =
∫

�3

∫
S+

(P ′ P ′∗ − P P∗)|V · n̂|dv∗dn̂ (2.63)

where I have used an intuitive contracted notation (the prime or ∗ must be considered
applied to the velocity vector in the argument of the function P). In the collision
integral, the position r is the same wherever the function P appears, and therefore it
can be considered a parameter of Q(P, P).

Let us have a look to the integral, for a generic function Φ(v),

∫

�3

Q(P, P)Φ(v)dv =
∫

�3

∫

�3

∫
S+

(P ′ P ′∗ − P P∗)Φ(v)|V · n̂|dv∗dn̂dv (2.64)

which can be transformed in many alternative forms, using its symmetries. In par-
ticular one can exchange primed and unprimed quantities, as well as starred and
unstarred quantities. With manipulations of this sort, it is immediate to get the fol-
lowing alternative form of Eq. (2.64):
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∫

�3

Q(P, P)Φ(v)dv = 1

8

∫

�3

∫

�3

∫
S+

(P ′ P ′∗ − P P∗)(Φ + Φ∗ − Φ ′ − Φ ′∗)|V · n̂|dv∗dn̂Φ(v)dv

(2.65)

From this equation it comes that if

Φ + Φ∗ = Φ ′ + Φ ′∗ (2.66)

almost everywhere in velocity space, then the integral of Eq. (2.65) is zero inde-
pendent of the particular function P . Many authors have proved under different
assumptions that the most general solution of Eq. (2.66) is given by

Φ(v) = C1 + C2 · v + C3|v|2 (2.67)

Furtherly, if Φ = log P , from Eq. (2.65) it follows that

∫

�3

Q(P, P)Φ(v)dv = 1

8

∫

�3

∫

�3

∫
S+

(P ′ P ′∗ − P P∗) log(P P∗/P ′ P ′∗)|V · n̂|dv∗dn̂Φ(v)dv ≤ 0

(2.68)
which follows from the elementary inequality (z − y) log(y/z) ≤ 0 if y, z ∈ �+.
This becomes an equality if and only if y = z, therefore the equality sign holds in
Eq. (2.68) if and only if

P ′ P ′∗ = P P∗. (2.69)

This is equivalent to two important facts. First, Φ + Φ∗ = Φ ′ + Φ ′∗ [taking the
logarithms of both sides of Eq. (2.69)], so that one can use the result (2.67) obtaining
P = exp(C1 + C2 · v + C3|v|2) = C0 exp(−β|v − v0|2) where I have defined C0 =
exp(C1), β = −C3 and v0 = C2/2β; this function is called Maxwell-Boltzmann
distribution or simply Maxwellian. Second, Q(P, P) ≡ 0, i.e. the collision integral
identically vanishes for the Maxwellian.

Equation (2.68) is a fundamental result of the Boltzmann theory (it is often called
Boltzmann Inequality) and can be fully appreciated with the following discussion. I
rewrite the Boltzmann Equation (2.61) with a simplified notation:

∂ P

∂t
+ v · ∂ P

∂r
= Nσ 2 Q(P, P). (2.70)

I multiply both sides by Φ = log P and integrate with respect to v, obtaining a
transport equation for the quantity Φ:

∂ H

∂t
+ ∂

∂r
· jH = SH (2.71a)



38 2 Boltzmann Equation: A Gas of Grains

H =
∫

�3

P log Pdv (2.71b)

jH =
∫

�3

vP log Pdv (2.71c)

SH = Nσ 2
∫

�3

log P Q(P, P)dv. (2.71d)

Then Eq. (2.68) states that SH ≤ 0 and SH = 0 if and only if P is a Maxwellian. For
example, if one looks for a space homogeneous solution of the Boltzmann equation,
it happens that

∂ H

∂t
= SH ≤ 0 (2.72)

that is the famous H-Theorem. It simply states that there exists a macroscopic quan-
tity (H in this case) that decreases as the gas evolves in time and eventually goes to
zero when (if and only if) the distribution P becomes a Maxwellian. When the homo-
geneity is not achievable (due to non-homogeneous boundary conditions) rigorous
results are more complicated, but one is still tempted to say that the Maxwellian
represents the local asymptotic equilibrium, with the spatial dependence carried by
the parameters of this distribution function. For a discussion of the meaning of the
H-theorem and the long debate about irreversibility and its many paradoxes, see [20].

2.2.5 The Maxwell Molecules

The collisional integral of Boltzmann equation for hard spheres, Eq. (2.63), contains
a term g = |V · n̂| which multiplies the probabilities of particles entering or coming
out from a collision. In general, the collisional integral must contain the differential
collision rate d R/dΩ for particle coming at a certain relative velocity (in modulus g
and direction n̂, or equivalently scattering angle χ centered in the solid angle dΩ),
which may be expressed in terms of the scattering cross section s [see for example
Eq. (2.19)]:

d R

dΩ
= gs(g, χ)P2(r, r + σ n̂, v1, v2, t)dv2. (2.73)

I discussed in Sect. 2.1.2 the fact that the scattering cross section depends strongly
on the kind of interaction between the molecules of the gas. For power law repulsive
interaction potential U (r) ∼ r−(a−1), the scattering angle χ depends on the relative
energy g2/2 and on the impact parameter b only through the combination (g2ba−1).
This means that there exists a function γ (χ) such that:

b = g−2/(a−1)γ (χ) (2.74)
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and this means that from relation (2.21) one obtains:

gs(g, χ) ∼ g1−4/(a−1) γ (χ)

sin χ

dγ

dχ
(2.75)

which holds in d = 3. The extension to generic dimension of the last equation is:

gs(g, χ) ∼ g1−2(d−1)/(a−1) γ d−2

(sin χ)d−2

dγ

dχ
∼ g1−2(d−1)/(a−1)α(cos χ). (2.76)

Therefore, when a = 1 + 2(d − 1) (i.e. a = 5 for d = 3 and a = 3 for d = 2)
the collision rate gs(g, χ) does not depend upon g. This property defines the so-
called Maxwell molecules [19]. Interaction with a < 1 + 2(d − 1) are called
soft interactions (e.g. the electrostatic or gravitational interaction). Interactions with
a > 1 + 2(d − 1) are called hard interactions. Hard spheres (a → ∞) belongs to
this set of interactions, with gs(g, χ) ∼ g. It has been also studied the Very Hard
Particles model, which is characterized by gs(g, χ) ∼ g2, which is not attainable
with an inverse power potential, as it requires an interaction harder than the hard
sphere interaction.

The advantage of Maxwell molecules is that the Boltzmann equation is greatly
simplified, as g does not appear in the collision integral. A further simplification
of the Boltzmann equation came from Krook and Wu [32], who studied the Boltz-
mann equation of Maxwell molecules with an isotropic scattering cross-section, i.e
α = const , often called Krook and Wu model. A very large literature exists for linear
and non-linear model-Boltzmann equations [for a review see [19]]. The importance of
the Maxwell molecules model is the possibility of obtaining solutions for it: the gen-
eral method (extended to other model-Boltzmann equations) is to obtain an expansion
in orthogonal polynomial where the expansion coefficients are polynomial moments
of the solution distribution function. For Maxwell molecules the moments satisfy
a recursive system of differential equations that can be solved sequentially. Given
an initial distribution, one can solve the problem if the series expansion converges.
Bobylev [8] has shown that if one searches for similarity solutions [i.e. solutions
with scaling form P(v, t) ≡ e−αt F(e−αt v)], then the solution can be found solv-
ing a recursive system of algebraic equation. The Maxwell molecules model has
been subject of study also in the framework of the kinetic theory of granular gases
[2, 4, 9].

2.2.6 The Enskog Correction

The Boltzmann-Grad limit (see Sect. 2.2.3) restricts the validity of the Boltzmann
equation to rarefied gases. This conditions is necessary to consider valid the Molec-
ular Chaos which states the independence of colliding particles. In principle, in fact,
two colliding particles can be correlated due to an intersection of their collisional
histories: one simple possibility is that they may have collided some time before
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or, alternatively, they may have collided with particles that have collided before.
Moreover, the spatial extension of particles (i.e. the fact that they are not really
pointlike) restricts the possibilities of motion and as a consequence the degree of
independence (this is the so called excluded volume effect). All these kinds of cor-
relations become relevant when the gas is not in the situation considered by the
Boltzmann-Grad limit, that is when the gas is not rarefied but (either moderately or
highly) dense.

The first approach to the problem of not rarefied gases was introduced by
Enskog [16]: he did not consider the effects of velocity correlations due to com-
mon collisional histories, but simply added to the Boltzmann equation an heuristic
correction to take into account short range correlations on positions only. In general
the two-body probability distribution function can be written in terms of the one-body
functions:

P2(r1, v1, r2, v2, t) = g2(r1, v1, r2, v2)P1(r1, v1)P1(r2, v2) (2.77)

where g2 is the pair correlation function. The Molecular Chaos assumption states that
before collisions g2(r1, r1 + σ n̂, v1, v2) ≡ 1. In the Enskog theory the Molecular
Chaos assumption is modified in the following way:

P2(r1, v1, r1 + σ n̂, v2, t) = Ξ(σ, n(r1))P1(r1, v1)P1(r1 + σ n̂, v2) (2.78)

i.e. g2 at contact is a function Ξ(σ, n) of σ and local density n(r1) only, for particles
entering or coming out from a collision. The term Ξ(σ, n) becomes a multiplicative
constant in front of the collisional integral Q(P, P), giving place to the so-called
Boltzmann-Enskog equation. Of course, in a general non-homogeneous situation, the
density is a spatially and temporally non-uniform quantity which can be described by
a macroscopic field: one may assume (as it is in kinetic theory) that this field changes
slowly in space-time, so that the Boltzmann-Enskog equation can be locally solved
with constant n as it was a Boltzmann equation with an effective total scattering cross
section Ξ(σ, n)Nσ 2. For elastic hard disks or hard spheres, spatial correlations may
be described by the formulas of Carnahan and Starling [14]:

Ξ(σ, n) = 1 − 7φ/16

(1 − φ)2 (d = 2) (2.79a)

Ξ(σ, n) = 1 − φ/2

(1 − φ)3 (d = 3) (2.79b)

where φ is the solid fraction (φ = nπσ 2/4 in d = 2, φ = nπσ 3/6 in d = 3).
This formula is expected to work well with solid fractions below φc, where a phase
transition takes place [1]. The Enskog correction produces, for example, important
corrections to the transport coefficients and to the pressure terms in transport equa-
tions.
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2.3 The Boltzmann Equation for Granular Gases

The binary collision operator T −(1, 2), for inelastic particles, must be changed [44]
according to the inelastic collision rules, Eqs. (2.28a, 2.28b) and (2.29a, 2.29b). It
must be noted that when r = 1 (elastic collisions), the two set of equations coincide,
i.e. the direct or inverse collision are identical transformations. This is not true if
r < 1. Therefore, in the definition of the inverse binary collision operators at the
end of Sect. 2.2.1, that is T−(1, 2) and T −(1, 2), I have put the same operator bc

that appears in the direct binary collision operators T+(1, 2) and T +(1, 2), while in
general it must be used the operator b′

c that replaces velocities with precollisional
velocities [using the transformation given in Eqs. (2.29a, 2.29b)]. The adjoint of
inverse binary inelastic collision operator (the only one needed in the following)
therefore reads:

T −(1, 2) = σ 2
∫

V12·n̂>0

dn̂|V12 · n̂|
[

1

r2 δ(r1 − r2 − σ n̂)b′
c − δ(r1 − r2 + σ n̂)

]

(2.80)
Deriving from this the BBGKY hierarchy and putting in the first equation of it
the Molecular Chaos assumption, the Boltzmann Equation for granular gases is
obtained [30, 44]:

(
∂

∂t
+ L0

1

)
P(r1, v1, t) = Nσ 2 Q(P, P) (2.81)

Q(P, P) =
∫

dv2

∫
V12·n̂>0

dn̂|V12 · n̂|
[

1

r2 P(r1, v′
1, t)P(r1, v′

2, t) − P(r1, v1, t)P(r1, v2, t)

]

(2.82)

where the primed velocities are defined in Eqs. (2.29a, 2.29b). A major difference
with respect to the elastic case is the presence of the factor 1/r2 in front of the gain
collisional term. This term is the main source of unbalance between gain and loss,
and is at the basis of the violation of time reversal symmetry and of the H-theorem
(see discussion in Sect. 2.3.6).

This equation has been first studied in the spatially homogeneous case (no spatial
gradients, L0

1 = 0), with the Enskog correction (i.e. a multiplying factor Ξ(σ, n) in
front of the collision integral) by Goldshtein and Shapiro [22] and by Ernst and van
Noije [43]. The equation in this case reads

∂

∂t
P(v1, t) = Ξ(σ, n)nσ 2 Q(P, P). (2.83)

2.3.1 Average Energy Loss

It is useful to define a rescaled distribution, under the assumption of spatial
homogeneity:
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N P(r, v, t) = n

v3
T

f̃ (v/vT ) (2.84)

with (assuming kB = 1) T (t) = m〈v2〉/3 = 1
2 mv2

T (t) e c = v/vT and n the average
number density. One sees that N 2 Q → n2v−2

T Q̃ where

Q̃ =
∫

dc2

∫
+

dn̂|c12 · n̂|
[

1

r2 f̃ (c′
1, t) f̃ (c′

2, t) − f̃ (c1) f̃ (c2)

]
. (2.85)

The main contribution to the time derivative of temperature is given by the effect of
inelastic collisions: in homogeneous situations, where collisions reduce the kinetic
energy by a quantity proportional to the kinetic energy itself, one expects to find
Ṫ ∝ T . The rigorous calculations reads

d

dt

(
3

2
nT

)∣∣∣∣
coll

=
∫

dv
mv2

2
σ 2 N 2 Q(P, P)

= σ 2n2vT
mv2

T

2

∫
dc1c2

1 Q̃ = −σ 2n2vT T μ2 (2.86)

with

μp = −
∫

dc1cp
1 Q̃ (2.87)

so that

dT

dt
|coll = −ζ(t)T (2.88)

where

ζ(t) = 2
√

2

3
nσ 2μ2

√
T

m
. (2.89)

Computation of μ2, and therefore of ζ , requires the knowledge of f̃ (c, t).

2.3.2 Sonine Polynomials

It is useful to introduce a polynomial expansion which reveals useful in standard
kinetic theory as well as in granular kinetic theory: in fact it serves the purpose of
describing small corrections to the Maxwellian. Such small corrections appear in
homogeneous granular gases, as well as in all (granular or elastic) dilute gases in
spatially non-homogeneous situations. The expansion reads:
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f̃ (c) = fM B(c)

⎡
⎣1 +

∞∑
p=1

ap Sp(c
2)

⎤
⎦ (2.90)

with the basic Maxwellian given by

fM B(c) = π−3/2exp(−c2). (2.91)

The polynomials Sp are said “Sonine” polynomials (they are in fact associated

Laguerre polynomials S(m)
p with m = d/2 − 1) and constitute a complete set of

orthogonal functions:

∫
dc fM B(c)Sp(c

2)Sp′(c2) = 2(p + 1/2)!√
π p! δpp′ = Npδpp′ (2.92)

In granular homogeneous situations one finds good fit by using expression (2.90)
stopping the expansion at p = 2. In dimension d = 3 the first polynomials read

S0(x) = 1 (2.93)

S1(x) = −x + 3/2 (2.94)

S2(x) = x2

2
− 5x

2
+ 15

8
(2.95)

It is easy to verify that

〈c2〉 = 3

2
(1 − a1) (2.96)

and

〈c4〉 = 15

4
(1 + a2). (2.97)

Note also that

N
∫

dv
mv2

2
P(r, v, t) = mv2

T

2
n
∫

dcc2 f̃ (c) = 〈c2〉mv2
T

2
n (2.98)

and

N
∫

dv
mv2

2
P(r, v, t) = n

m〈v2〉
2

= 3

2
nT = 3

2
n

mv2
T

2
(2.99)

so that 〈c2〉 = 3/2 and therefore a1 = 0: the first non trivial coefficient is a2.
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Equations for a2 are found once a model (boundary conditions) is specified.
The explicit expression for μ2 reads

μ2 = −
∫

dc1c2
1

∫
dc2

∫
+

dn̂|c12 · n̂|
[

1

r2 f̃ (c′
1, t) f̃ (c′

2, t) − f (c1) f (c2)

]

(2.100)

By using the Sonine expansion truncated at p = 2, it is finally obtained

μ2 = √
2π(1 − r2)

(
1 + 3

16
a2 + O(a2

2)

)
. (2.101)

2.3.3 The Homogeneous Cooling State

This is the simplest granular regime: it is assumed spatial homogeneity and absence
of any energy injection. The system is initialized with some initial non-trivial velocity
distribution.

The rescaled distribution implies the appearance of additional contribution to the
time-derivative:

∂ N P

∂t
= n

v3
T

∂ f̃

∂t
+

(
−3n

v4
T

f̃ + n

v3
T

∂ f̃

∂c1

∂c1

∂vT

)
dvT

dt
. (2.102)

The following time evolution equation is obtained:

1

vT

∂ f̃

∂t
− 1

v2
T

∂(c1 f̃ )

∂c1

dvT

dt
= σ 2nQ̃. (2.103)

Recalling the expression for Ṫ (t) = −ζ(t)T (t) as well as for ζ(t), one can see that

1

v2
T

dvT

dt
|coll = 1

2vT T

dT

dt
= −1

3
σ 2nμ2 (2.104)

is time-independent.

It is usually assumed that a scaling function exists f̃ → f̃HC with ∂ f̃HC
∂t = 0. If

it exists, it must satisfy

μ2

3

∂(c1 f̃HC )

∂c1
= Q̃. (2.105)

This is the kinetic definition of Homogeneous Cooling State.
The solution of the temperature equation reads:
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T (t) = T (0)

(1 + ζ(0)t
2 )2

(2.106)

Eq. (2.106) is known as Haff’s law [24].
Using the Sonine approximation truncated at the second polynomial one has

ζ(t) = 4
√

π

3
nσ 2

√
T (t)

m
(1 − r2)

(
1 + 3

16
a2 + O(a2

2)

)
= 1 − r2

3
ωc(t) (2.107)

with

ωc = 4
√

πnσ 2

√
T (t)

m

(
1 + 3

16
a2 + O(a2

2)

)
(2.108)

the collision frequency.
After the Haff’s law, it is immediate to realize that

ωc ∼ 1

1 + ζ(0)t/2
(2.109)

which means that the cumulated number of collisions goes as ∼ ln(1 + ζ(0)t/2).
This observation suggests to introduce a new time-scale

τ(t) = τ0 ln(1 + ζ(0)t/2) (2.110)

with arbitrary τ0, getting

∂

∂t
= τ0ζ(0)/2

1 + ζ(0)t/2

∂

∂τ
. (2.111)

This is interesting, since it shows that

1

vT (t)

∂

∂t
= τ0ζ(0)/2

vt (0)

∂

∂τ
. (2.112)

Finally, with the new time-scale, one has

∂ f̃

∂τ
+ nσ 2μ2

3

∂(c1 f̃ )

∂c1
= σ 2nQ̃ (2.113)

equivalent to the Boltzmann equation for particles under the effect of a force

F = nσ 2μ2c
3

(2.114)
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which is equivalent to a positive viscosity!
All this equivalence makes sense until the state remains homogeneous. I will

show in Chap. 3 that the homogeneous cooling state is unstable for large wavelength
perturbations.

Ernst and van Noije [43] have given estimates for the tails of the velocity distri-
bution, using an asymptotic method employed by Krook and Wu [32]. This method
assumes that for a fast particle the dominant contributions to the collision integral
come from collisions with thermal (bulk) particles and that the gain term of the
integral can be neglected with respect to the loss term.

The loss term in the Boltzmann equation reads

−
∫

dc2

∫
+

dn̂|c12
˙̂n| f̃ (c1) f̃ (c2) ≈ −πc1 f̃ (c1). (2.115)

If f̃ is isotropic, then c d
dc f̃ = c d

dc f̃ . Then it remains

μ2 f̃ + 1

3
μ2c

d

dc
f̃ = −πc f̃ (2.116)

and for large c one finds

f̃ ∼ exp

(
−3π

μ2
c

)
. (2.117)

It must be recalled that μ2 ∼ (1 − r2), which means that this estimate is valid when
c > 1/(1 − r2).

2.3.4 Inelastic Maxwell Molecules

The inelastic version in one dimension of the Boltzmann equation for Maxwell
molecules, discussed in Sect. 2.2.5, reads

∂τ P(v, τ ) + P(v, τ ) = β

∫
du P(u, τ )P (βv + (1 − β)u, τ ) (2.118)

where β = 2/(1 + r) and the τ counts the number of collisions per particle. It is
interesting to remark that Eq. (2.118) is the master equation of the inelastic version
of a process introduced by Ulam [6]: at each step an arbitrary pair is selected and
the scalar velocities are transformed according to the rule of Eqs. (2.28a, 2.28b).
This model has been considered for the first time by Ben-Naim and Krapivsky [4].
They obtained the evolution of the moments of the velocity distributions. Since at
large times, 〈vn〉 ∼ exp(−τqn), and the decay rates qn �= nq2/2 (they depend

http://dx.doi.org/10.1007/978-3-319-10286-3_3
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non-linearly on n), they argued that such a multiscaling behavior prevents the
existence of a rescaled asymptotic distribution f such that P(v, τ ) → f (v/v0(τ ))

/v0(τ ), for large τ , where v2
0(τ ) = ∫

v2 P(v, τ )dv = E(τ ). On the contrary, the
“multiscaling” behavior only indicates the fact that the moments of the rescaled dis-
tribution

∫
xn f (x)dx = 〈vn〉/vn

0 diverge asymptotically for n ≥ 3, and does not
rule out the possibility of the existence of an asymptotic distribution with power law
tails. In fact, the Fourier transform of Eq. (2.118)

∂τ P̂(k, τ ) + P̂(k, τ ) = P̂[k/(1 − β), τ ]P̂[k/β, τ ] (2.119)

possesses several self-similar solutions of the kind P̂(k, τ ) = f̂ (kv0(τ )), which
correspond to the asymptotic rescaled distribution P(v, τ ) = f (v/v0(τ ))/v0(τ ).
Many of them do not correspond to physically acceptable velocity distributions [4].
The divergence of the higher moments implies a non analytic structure of f̂ in k = 0,

since 〈vn〉/vn
0 = (−i)n dn

dkn f̂ (k)|k=0, and represents a guide in the selection of the
physical solution, which is

f (v/v0(τ )) = 2

π
[
1 + (v/v0(τ ))2

]2 (2.120)

corresponding to the self-similar solution f̂ (k) = (1 + |k|) exp(−|k|). Notice that
(2.120) is a solution of Eq.(2.119) for every r < 1, i.e. the asymptotic velocity
distribution does not depend on the value of r < 1. The discovery of this exact
scaling solution [2] paved the way to a long list of papers by different groups, where
the problem in more dimensions was tackled and rigorous results for convergence,
uniqueness, etc. were obtained [7].

2.3.5 Bulk Driving

The randomly driven granular gas [introduced in [45, 46]] consists of an assembly of
N identical hard objects (spheres, disks or rods) of mass m and diameter σ . I put, for
simplicity, kB = 1 (the Boltzmann constant). The grains move in a box of volume
V = Ld (L is the length of the sides of the box), with periodic boundary condi-
tions, i.e. opposite borders of the box are identified. The mean free path (calculated
exactly in Eq. (2.26) for the case of an homogeneous gas of 3D hard spheres with a
Maxwellian distribution of velocities) can be roughly estimated as

λ = 1

nS
(2.121)

where n = N/V is the mean number density and S is the total scattering cross
section. I stress the fact that S has the dimensions of a surface in d = 3 (S ∼ σ 2), of
a line in d = 2 (S ∼ σ ) and no dimensions in d = 1 (this is consistent with the fact
that the diameter, in d = 1 is irrelevant).
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The dynamics of the gas is obtained as the byproduct of two physical phenomena:
continuous interaction with the surroundings and inelastic collisions among the
grains. The first ingredient is modeled in the shape of a Langevin equation with
exact fulfillment of the Einstein relation [see for example [33]], for the evolution of
the velocities of the grains in the free time between collisions. The inelastic collisions
follow the usual inelastic rule. The equations of motion for a particle i that is not
colliding with any other particle, are:

m
d

dt
vi (t) = −γbvi (t) + √

2γbTbηi (t) (2.122a)

d

dt
xi (t) = vi (t). (2.122b)

I call the parameters τb = m/γb and Tb characteristic time of the bath and tem-
perature of the bath, respectively. The function ηi (t) is a stochastic process with
average 〈ηi (t)〉 = 0 and correlations 〈ηα

i (t)ηβ
j (t

′)〉 = δ(t − t ′)δi jδαβ (α and β being
component indexes) i.e. a standard white noise.

In the dynamics of the N particles, as defined in Eqs. (2.122a, 2.122b) and by the
inelastic hard core collision rules, the most important parameters are:

• the coefficient of normal restitution r , which determines the degree of inelasticity;
• the ratio ρ = τb/τc between the characteristic time of the bath and the “global”

mean free time between collisions.

On the basis of these two parameters, one can define three fundamental limits of
the dynamics of our model:

• the elastic limit: r → 1−;
• the collisionless limit: ρ → 0 (τc � τb);
• the cooling limit: ρ → ∞ (τc � τb).

The elastic limit is smooth in dimensions d > 1, so that one can consider it
equivalent to put r = 1. In this case the collisions mix up the components leaving
constant the energy (in the center of mass frame as well in the absolute frame). One
can assume that, in this limit, the effect of the collisions is that of homogenizing
the positions of the particles and making their velocity distribution relax toward the
Maxwellian with temperature T = 〈v2〉/d = 〈v2

x 〉 [this temperature is equal to the
starting kinetic energy, but is modified by the relaxation toward Tb due to the Langevin
Eqs. (2.122a, 2.122b)]. In one dimension this mixing effect (toward a Maxwellian)
is no more at work, as the elastic collisions exactly conserve the starting velocity
distribution (the collisions can be viewed as exchanges of labels and the particles as
non-interacting walkers).

In the collisionless limit we have τc � τb and, therefore, the collisions are very rare
events with respect to the characteristic time of the bath. In this case we can consider
the model as an ensemble of non-interacting Brownian walkers, each following the
Eqs. (2.122a, 2.122b). Therefore, whatever r is and in any dimension, the distribution
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of velocities relaxes in a time τb toward a Maxwellian with temperature T = 〈v2〉/
d = Tb with a homogeneous density.

Finally, in the cooling limit, the collisions are almost the only events that act on
the distribution of velocities, while between collisions the particles move almost
ballistically. In this limit (if r < 1), the gas can be considered stationary only on
observation times very long with respect to the time of the bath τb, where the effect
of the external driving (the Langevin equation) emerges. For observation times larger
than the mean free time τc but shorter than τb, the gas appears as a cooling granular
gas.

To conclude this brief discussion on the expected behavior of the randomly driven
granular gas model, I sketch a scenario with the presence of two fundamental sta-
tionary regimes:

• the “collisionless” stationary regime: when ρ � 1, i.e. approaching the collision-
less limit; in this regime one expects, after a transient time of the order of τb, the
stationary statistics of an ensemble of non-interacting Brownian particles (homo-
geneous density and Maxwell distribution of velocities, absence of correlations);

• the “colliding” stationary regime: when ρ � 1, i.e. approaching the cooling limit,
but observing the system on times larger than τb; here, we expect to see anomalous
statistical properties.

For this model, the Boltzmann equation includes two additional contributions
which are equivalent to the “Fokker-Planck” operators which evolve the velocity
distribution in a Langevin equation. The equation therefore reads:

∂ P

∂t
= nσ 2 Q(P, P) + γb

m

∂vP

∂v
+ γb

m

Tb

m
∇v P, (2.123)

with Q(P, P) defined in Eq. (2.81). Using the definition of rescaled distribu-
tion (2.84), and obviously v̇T = 0 (we are in a statistically stationary state), one
gets

∂ f̃

∂t
= vT nσ 2 Q̃ + γb

m

∂c f̃

∂c
+ γb

2m

Tb

T
∇c f̃ . (2.124)

From the definition, it follows that

T = m

d
〈v2〉 (2.125)

and therefore

〈vv̇〉 = Ṫ

2m
= −γb

m
〈v2〉 + γb

m

Tb

m
− ζ

T

2m
. (2.126)

Imposing Ṫ = 0, in the stationary state, we get
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T − Tb = ζ τbT (2.127)

which can be (numerically) solved to obtain T (I remind that ζ ∝ (1 − r2)T 1/2).
It is worth noting that r e τb appear through a factor (1 − r2)τb.

Assuming that at large velocities Q̃ ∼ −πc f̃ , one finds

− πvT nσ 2c f̃ + γb

2m

Tb

T

(
d2

dc2 + 2

c

d

dc

)
f̃ + γb

m

(
3 + c

d

dc

)
f̃ = 0. (2.128)

This has two different “solutions”

• in the limit γ → 0 (with Tb → ∞ with finite γ Tb ), one has f̃ ∼ exp(−c3/2) [43]
• when γ > 0 one apparently finds f̃ ∼ exp(−c2) but in this case the approxima-

tions (in particular having neglected the gain term in the collisional integral) are
not guaranteed.

I conclude this description of the bulk-driving model, by mentioning that recent
experiments have demonstrated the relevance of this model for real fluidized granular
systems [23, 47].

2.3.6 Looking for a “Granular” H-theorem

The H functional, see Eqs. (2.71a–2.71d), is monotonously non-increasing for an
evolution dictated by the homogeneous elastic Boltzmann equation. When collisions
are inelastic, however, monotonicity of H can no more be proven, and indeed numer-
ical simulations demonstrate that it is no more true [3]. It is worth to mention a recent
observation [39] which suggests a possible replacement of the Boltzmann H func-
tional in the case of so-called Boltzmann-Fokker-Planck model (BFP). This model is
basically the one discussed in Sect. 2.3.5, precisely it is represented by Eq. (2.123).
Variants have also been considered, where the velocities are discretized and the
Fokker-Planck operator is replaced by a stochatic jump operator with transition rates
that satisfy detailed balance with respect to an equilibrium steady distribution.

The candidate Lyapunov functional is the following

HC (t) =
∫

dvP(v, t) log
P(v, t)

Π(v)
, (2.129)

where Π(v) is the stationary velocity distribution reached asymptotically. Numerical
observations and some analytical arguments indicate that for the BFP model the
following relation holds

d HC (t)

dt
≤ 0. (2.130)
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In particular, in the elastic version of the BFP model, the result (2.130) can be
demonstrated. Note that the elastic BFP model has a trivial steady state, but a non-
trivial dynamics.

The origin of the apparently exact result (2.130) is still unknown and a general
demonstration is awaited.
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Chapter 3
Hydrodynamics: A Sea of Grains

Abstract A granular fluid with typical boundary conditions used in laboratory or in
silico, will develop structures and inhomogeneities in space and time. When spatial
and temporal gradients are small, slow fields such as density, flow velocity and
granular temperature evolve accordingly to the equations of granular hydrodynamics.
The main steps to derive and close those equations, starting from granular Boltzmann
equation, are described in this chapter. The application of the method to common
situations are discussed. The interesting and still debated problem of fluctuations is
introduced, in the last part of the chapter.

3.1 Granular Kinetic Theory

Fluids can be in spatially non-homogeneous situations. This can be an effect of non-
equilibrium initial conditions (the experimentalist sets up the system far from the
final situations, and then observes the system relaxing toward it), or a consequence
of forcing boundary conditions which keep the system in a non-equilibrium stationary
state. For granular fluids there always exists an intrinsic energy “sink” which keeps
the system out of equilibrium. One can—eventually—apply an external forcing in
order to keep the fluid in a stationary state. An example of homogeneous forcing
has been discussed in the previous chapter, Sect. 2.3.5. Here, non-homogeneous
situations are addressed. An example—due to non-homogeneous forcing (coming
from only one boundary)—is shown in Fig. 3.1. The theory sketched in this chapter is
however valid independently of the origin of non-homogeneity, as long as it satisfies
the criterion of “small gradients”. It will be useful, for example, to describe the
departure from homogeneity in the cooling regime, where no external driving is
present.
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Fig. 3.1 A sketch of an
experiment where the
granular assembly is driven
by gravity plus a (periodically
or stochastic) vibrating wall
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3.1.1 A Sketch of the Chapman-Enskog Approximation Method

The Chapman-Enskog procedure is a way of constructing a non-homogeneous solu-
tion, for weak gradients, of the Boltzmann equation [9, 16, 28]. The procedure goes
through a few key steps:

• define densities and fluxes for “slow” variables
• write continuity equations (always valid) for the “slow” quantities
• first assumption: P(v, r, t) depends on r and t only through the above “slow”

quantities; this means that the Boltzmann equation is replaced by a local Boltzmann
equation plus equations for the slow parameters

• second assumption: mean free path λ is small with respect to linear size of gradients
L (which is of order comparable to linear size of the experiment); ε = λ/L � 1
is called “Knudsen” number

• for small ε expand fluxes and take only up to linear order in the gradients: “transport
coefficients” remain to be determined

• for consistency an expansion in powers of ε is set for P → f (0) + ε f (1) +
ε2 f (2) + · · · and for all spatial and time derivatives: this is equivalent to assume
that the solution P is the sum of contributions which change on different space
and time-scales (i.e. different powers of ε)

• these expansions, put into the Boltzmann equation and its supplementary “slow”
equations, lead to families of equations at different order which can be solved
separately: each equation governs the evolution of P at a given space-time scale

• at order 0 one has the homogeneous solution (Euler equation for elastic fluids) and
find f (0)

• at order 1 one can find f (1) through its coefficients of the linear expansion in
gradients; the transport coefficients are functions of these coefficients

• equations at order 2 (hydrodynamics at Navier-Stokes order) are closed now; if
solved, they can be used to find f (2).
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3.1.2 Densities and Fluxes

I assume that a single-particle distribution function is defined, P(r, v, t), normalized
to give the total number of particles N in the fluid if integrated over the full coordinate-
velocities space. P is assumed to be the solution of the Boltzmann Equation (2.62).
The particle number density is defined as

n(r, t) =
∫∫∫

∞
d3vP(r, v, t). (3.1)

The average molecular velocity is defined as

u(r, t) = 1

n(r, t)

∫∫∫
∞

d3vvP(r, v, t) (3.2)

and this allows to introduce the random velocity vector

V(r, t) = v − u(r, t) (3.3)

which depends on time and position (while v is independent of t and r) and has zero
average:

∫∫∫
∞

d3cVi P(r, V, t) = 0. (3.4)

The average fluxes of the molecular quantity W (v) can be expressed as velocity
moments of the phase space distribution function:

j i
W (r, t) =

∫∫∫
∞

d3vvi W (v)P(r, v, t). (3.5)

When W = m one has the mass flux:

j i
m = mn(r)ui (r, t). (3.6)

When W = mv j one has the momentum flux:

j i
mv j

= mn(r, t)〈vi v j 〉 = mnui u j + mn〈Vi Vj 〉 (3.7)

which is a 3 × 3 symmetric matrix. In the last form two contributions can be recog-
nized, that is the flux due to the bulk (organized) motion and the flux resulting from
the random (thermal) motion of the gas particles. This second term is usually called
the pressure tensor Pi j = mn〈Vi Vj 〉. One can define, from this discussion, two
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quantities that are the scalar pressure p and the vector temperature Ti :

p = 1

3
(Pxx + Pyy + Pzz) (3.8)

1

2
kB Ti = 1

2
m〈V 2

i 〉 = 1

2

Pi i

n
(3.9)

and in the isotropic case Ti = T so that p = nkB T . It can be also defined the stress
tensor T as:

Ti j = δi j p − Pi j (3.10)

which expresses the deviation of the pressure tensor from the equilibrium Maxwellian
case (for which Pi j = pδi j ).

Finally, the flux of the quantity W = mv j vk is given by:

j i
mv j vk

= mnui u j uk + uiP jk + u jPik + ukPi j + Qi jk (3.11)

where Qi jk = mn〈Vi Vj Vk〉 is the generalized heat flow tensor and describes the
transport of random energy Vj Vk due to thermal motion Vi of the molecules (for all
the permutations of i, j, k).

In Eq. (3.11) three contributions can be recognized: the first term describes the
bulk transport of the bulk flux of momentum; the second, third and fourth terms
describe a combination of bulk and random momentum fluxes; the last term is the
transport of random energy component due to the random motion itself. Often a
“classical” heat flow vector is introduced, more intuitive than the generalized heat
flow tensor:

qi = Qikk

2
= n

〈
Vi

mc2

2

〉
. (3.12)

3.1.3 Equations for the Densities

Multiplying the Boltzmann equation by 1, v and v2 and integrating over v, one gets
equations for the slow variables:

∂n

∂t
+ ∇ · (nu) = 0 (3.13a)

∂u
∂t

+ u · ∇u + (nm)−1∇ · P = 0 (3.13b)

∂T

∂t
+ u · ∇T + 2

3n

[
P : (∇u) + ∇q

] + ζ T = 0. (3.13c)
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These are the continuity equations and are always valid. The only term which does
not appear in the continuity equation for elastic gases is, obviously, the ζ T term
(indeed ζ ≡ 0 for elatic collisions). I recall that ζ(t) has been defined in Eq. (2.90)
in the previous chapter.

3.1.4 Chapman-Enskog Closure

The Chapman-Enskog procedure consists in

1. change spatial scale r → εr where ε = λ/L , i.e. if old positions were measured
in terms of mean free path λ, now the new ones are measured in terms of the
characteristic length L which is the macroscopic scale (macroscopic boundary
conditions impose spatial variations at this scale); all gradients are transformed
as ∇ → ε∇;

2. for small ε the fluxes can be approximated as linear in the gradients

Pi j = pδi j − ηε

(
∇i u j + ∇ j ui − 2

3
δi j∇ · u

)
(3.14a)

q = −κε∇T − με∇n (3.14b)

the main missing ingredients are, therefore, the coefficients η, κ and μ;
3. the “linear” continuity equations are obtained

∂n

∂t
= −ε∇ · (nu) (3.15a)

∂u
∂t

= −ε

(
u · ∇u − 1

nm
∇ p

)
+ ε2 η

mn

(
∇2u + 1

3
∇(∇ · u)

)
(3.15b)

∂T

∂t
= −ζ T − ε

(
u · ∇T + 2

3n
p(∇ · u)

)
+ ε2G, (3.15c)

with

G = 2η

3n

[
(∇i u j )(∇ j ui ) + (∇ j ui )(∇ j ui ) − 2

3
(∇ · u)2

]
+ 2

3n
(κ∇2T +μ∇2n);

(3.16)

4. a “normal solution” (also called “Hilbert-class”) is assumed for the distribution
P(v, r, t) → f [V |n(r, t), u(r, t), T (r, t)], (I recall that V = v − u), so that
derivatives read

∂ f

∂t
= ∂ f

∂n

∂n

∂t
+ ∂ f

∂u
· ∂u

∂t
+ ∂ f

∂T

∂T

∂t
; (3.17)
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5. for consistency with the above expansions (and the assumption of “normal” form)
one can introduce time-scales which measure the time-variations associated to
growing powers of ε (i.e. happening at different spatial scales):

∂

∂t
= ∂(0)

∂t
+ ε

∂(1)

∂t
+ ε2 ∂(2)

∂t
+ · · · (3.18)

where ∂(i)

∂t stands for a partial derivative with respect to a time which changes on
a scale εi (a rigorous treatment can be found in [16]);

6. for the same reason, a spatially non-uniform f can be expanded as

f = f (0) + ε f (1) + ε2 f (2) + · · · ; (3.19)

7. all these expansions are put into the original Boltzmann equation which (because
of the assumed “normal” form) must be supplemented by Eqs. (3.15) for the
slow variables; terms at the same order in ε can be solved separately: this must
be executed in order of growing powers of ε since at each order the solution at
smaller order is needed.

At the smallest (zero) order in ε, the Boltzmann equation with its supplementary
equations for slow parameters read:

∂(0) f (0)

∂t
= Q( f (0), f (0)) (3.20a)

∂(0)n

∂t
= 0 (3.20b)

∂(0)u
∂t

= 0 (3.20c)

∂(0)T

∂t
= −ζ (0)T . (3.20d)

It describes of course a spatially homogeneous situation. The solution of these equa-
tions has been already discussed in the previous chapter, it is the Homogeneous
Cooling State, i.e. f (0) = f̃HC :

f (0) = n

v3
T

f̃ (0)

(
V
vT

)
(3.21)

with

ζ (0) = − m

3nT

∫
dv1v2

1 Q( f (0), f (0)) = 2

3
nσ 2

√
2T

m
μ2. (3.22)



3.1 Granular Kinetic Theory 59

At first order one has:

∂(0) f (1)

∂t
+

(
∂(1)

∂t
+ v · ∇

)
f (0) = Q( f (0), f (1)) + Q( f (1), f (0)) (3.23a)

∂(1)n

∂t
= −∇(nu) (3.23b)

∂(1)u
∂t

= −u · ∇u − 1

nm
∇ p (3.23c)

∂(1)T

∂t
= −u · ∇T − 2

3
T ∇ · u − ζ (1)T . (3.23d)

Putting f (0) + f (1) in the expression for ζ and keeping the first order in ε one has

ζ (1) = 2
(1 − r2)mπσ 2

24nT

∫
dv1dv2v3

12 f (0) f (1) (3.24)

The above equations are the Euler equations if r = 1 (elastic collisions). In elastic
case, they describe transport without dissipation (i.e. no viscosity or heat conduc-
tivity). Some particular regimes of highly non-homogeneous granular flows may be
described by such equations, e.g. the Ideal Granular Hydrodynamics [17].

Knowledge (even formal) of f (0) allows to write an equation for f (1) only. It is

necessary to express ∂(1) f (0)

∂t as

∂(1) f (0)

∂t
= ∂ f (0)

∂n

∂(1)n

∂t
+ ∂ f (0)

∂u
· ∂(1)u

∂t
+ ∂ f (0)

∂T

∂(1)T

∂t
(3.25)

The terms in ∂(1)

∂t are taken from the continuity equations at 1st order. Prefactors are

known: ∂ f (0)

∂n = f (0)/n, ∂ f (0)

∂u = − ∂ f (0)

∂V , ∂ f (0)

∂T = − 1
2T

∂(V f (0))
∂V ; analogously one can

also write down the “streaming” term v · ∇, recalling that p = nT , getting to

∂(0) f (1)

∂t
+ J ( f (0), f (1))−ζ (1)T

∂ f (0)

∂T
= A·∇ ln T +B·∇ ln n+Ci j∇ j ui (3.26)

with J = −Q(0, 1) − Q(1, 0).
R.h.s. depends upon three coefficients which depend only on f (0) and on “slow”

fields
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A = V
[

T

m

(
mV 2

2T
− 1

)
1

V

∂

∂V
+ 3

2

]
f (0) (3.27)

B = −V
(

T

m

1

V

∂

∂V
+ 1

)
f (0) (3.28)

Ci j =
(

Vi Vj − 1

3
δi j V 2

)
1

V

∂ f (0)

∂V
(3.29)

The most general scalar function depending linearly on vectorial and tensorial
gradients is

f (1) = α · ∇ ln T + β · ∇ ln n + γi j∇ j ui (3.30)

with coefficients that depend only on V and on space-time through the slow fields.
Putting this form into the Boltzmann equation and comparing terms with same

gradients, one obtaines equations for the coefficients of f (1) α, β and γi j .
The missing transport coefficients can be expressed as functions of the above

coefficents of f (1)

η = − 1

10

∫
Di jγ j i dV (3.31a)

κ = − 1

3T

∫
S · αdV (3.31b)

μ = − 1

3n

∫
S · βdV (3.31c)

ζ (1) = 0, (3.31d)

where I have used S(V ) = (
mV 2/2 − 5/2T

)
V e Di j = m

(
Vi Vj − 1

3δi j V 2
)
.

In the elastic case f (0) is the Maxwellian fM , Φ when rescaled to have unitary
variance. In this case it is found that B = 0 and therefore β = 0, leading finally to
μ = 0 (Fourier’s law).

One gets

η = − 5

2σ 2

√
mT/2

1

Ωη[Φ(c1),Φ(c2)] (3.32)

κ = − 75

16σ 2

√
2T/(m)

1

Ωκ [Φ(c1),Φ(c2)] (3.33)

with the following “pure” numbers
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Ωη =
∫

dc1

∫
dC2

∫
dn̂Θ(−c12 · n̂)|c12 · n̂|Φ1(c1)Φ2(c2)

×
[
(c′

1 · c2)
2 + (c′

2 · c2)
2 − (c1 · c2)

2 − (c2 · c2)
2 − 1

3
c2

2�(c2
1 + c2

2)

]

(3.34)

and

Ωκ =
∫

dc1

∫
dC2

∫
dn̂Θ(−c12 · n̂)|c12 · n̂|Φ1(c1)Φ2(c2)

×
(

c2
2 − 5

2

) [
(c′

1 · c2)(c
′
1)

2 + (c′
2 · c2)(c

′
2)

2 − (c1 · c2)c
2
1 − (c2 · c2)c

2
2

]
(3.35)

obtaining finally

η = 5

16σ 2

√
mT/π (3.36a)

κ = 75

64σ 2

√
T/(mπ) (3.36b)

f (0) + f (1) = fM (V )

(
1 − 2mκ

5nT 3 S · ∇T − η

nT 2 Di j∇ j ui

)
. (3.36c)

3.1.5 Inelastic Case

In the inelastic case f (0) is not known analytically, but can be expressed as an
expansion in Sonine polynomials, and the coefficients can always be calculated (at
any order), for instance stopping at the 2nd order, recalling that c = V/vT :

f (0) =
(

n

v3
T

)
Φ(c)[1 + a2S2(c

2)] (3.37)

with

S2(x) = 1

2
x2 − 5

2
x + 15

8
. (3.38)

For consistency, in the coefficients Ω now one must insert Ω[(1 + a2S2)Φ(c1),

Φ(c2)]. One finally gets
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η = 15

2(1 + r)(13 − r)σ 2

(
1 + 3

8

4 − 3r

13 − r
a2

) √
mT/π (3.39a)

κ = 75

2(1 + r)(9 + 7r)σ 2

(
1 + 1

32

797 + 211r

9 + 7r

) √
T/(πm) (3.39b)

μ = 750(1 − r)

(1 + r)(9 + 7r)(19 − 3r)nσ 2 (1 + q(r)a2)

√
T 3/(πm) (3.39c)

ζ = 2

3
nσ 2

√
2T

m
μ2 + ζ (2), (3.39d)

with q(r) a quite lengthy function of the restitution coefficient r (see [4]). In Eq.
(3.39d) we have included the contribution ζ (2) from second-order gradients to the
cooling rate: this contribution is necessary for consistency with the rest of the equa-
tions (see below). The contribution, however, for low inelasticities is negligible. A
detailed discussion can be found in [4].

It is therefore obtained the solution of the Boltzmann equation at first order in the
gradients:

f (1)(V ) = − 1

nT 2

[
2m

5T
S · (κ∇T + μ∇n) + ηDi j∇ j ui

]
fM (V ). (3.40)

I conclude this section noting that the above procedure (sketched in great gen-
erality) leads to a “solution” for the f (i)(V ) at order i in the gradients, as well as
to closed equations for the slow fields n(r, t), u(r, t), T(r, t), which include fluxes
at order i in the gradients, and therefore (since continuity is given by divergence of
fluxes), are at order i + 1 in the gradients.

The granular hydrodynamics equations at the Navier-Stokes order, therefore, are
Eq. (3.13), with constitutive relations given by Eq. (3.14) and transport coefficients
given by (3.39)

3.2 Critiques of Granular Hydrodynamics

In 1995 Du, Li and Kadanoff [15] have published the results of the simulation of
a minimal model of granular gas in one dimension. In this model N hard rods (i.e.
hard particles in one dimension) move on a segment of length L interacting by
instantaneous binary inelastic collisions with a restitution coefficient r < 1. To
avoid the cooling of the system (due to inelasticity) a thermal wall is placed at one
of the boundaries, i.e. when the leftmost particle bounces against the left extreme
(x = 0) of the segment it is reflected with a new velocity taken out from a Gaussian
distribution with variance T . This particle carries the energy to the rest of the system.
The main finding of the authors was that even at very small dissipation 1 − r � 1
the profiles predicted by general hydrodynamic equations [26, 30]) were not able
to reproduce the essential features of the simulation. In particular the stationary
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state predicted by hydrodynamics is a flow of heat from the left wall to the right (it
goes to zero at the right wall), with no macroscopic velocity flow (u(x, t) = 0), a
temperature profile T (x, t) which decreases from x = 0 to x = L , and a density
profile inversely proportional to the temperature (as the pressure p = nT is constant
throughout the system). The simulations demonstrated that the system settles in an
“extraordinary” and non-hydrodynamic state: almost all the particle move slowly
and very near the right wall, while kinetic energy is concentrated in the leftmost
particle. Reducing the dissipativity 1−r at fixed N the cluster near the wall becomes
smaller and smaller. If the heat bath is replaced by a sort of saw-tooth vibrating wall
which reflects the leftmost particle always with the same velocity v0, the evolution
of the baricentrum changes in a stationary oscillation very near to the rightmost wall,
so that this clustering instability does not disappear. The Boltzmann Equation (see
below) can give a qualitative prediction of this clustering phenomena in the limit
N → ∞, 1 − r → 0 with N (1 − r) ∼ 1. Further studies [43] have shown that this
model has no proper thermodynamic limit, i.e. when N , L → ∞ with N/L ∼ 1 the
mean kinetic energy and the mean dissipated power reduce to zero. This is consistent
with the scenario suggested in [15]: the equipartition of energy is broken and the
description of the system in terms of macroscopic (slowly varying) quantities no
more holds. In this scenario, usual thermodynamic quantities such as mean kinetic
energy or mean dissipated power, are not extensive quantities. The thermodynamic
limit is recovered if a different setup is considered where the energy is injected
“everywhere”: this is obtained for instance by coupling each particle to the energy
source (e.g. if grains move on a vertically vibrated horizontal plate), as in the model
discussed in Sect. 2.3.5 [42].

Kadanoff has addressed, in a general review article [32], a set of experimental
situations in which hydrodynamics seems useless, for instance in [29], where a con-
tainer full of sand is shaken from the bottom and the shaking may be very rapid.
The observations indicate that there is a boundary layer of a thickness of few grains
near the bottom that is subject to a very rapid dynamics with sudden changes of
motion of the particles. At the top of the container, instead, the particles move bal-
listically encountering very few collisions in their trajectory. Both the top and the
bottom of the container cannot be described by hydrodynamics, as the assumption
of slow variation of fields or that of scale separation between times (the mean free
time must be orders of magnitude lower than the characteristic macroscopic times,
e.g. the vibration period) are not satisfied. On the other hand, the slow dynamics
regime has been studied, when the vibration is reduced to a rare tapping, so that
the system reaches mechanical equilibrium (stop of motion) between successive tap-
pings [34]. The equilibrium is reached at different densities, and—as the tapping
is carried on—the “equilibrium” density slowly changes and its evolution depends
on many previous instants and not on the very last tap, i.e. is history dependent.
This non-locality in time cannot be described by a set of partial differential equa-
tions, therefore the hydrodynamic description here fails again. Moreover, in the
study of inelastic collapse Kadanoff and Zhou [54] have pointed out that there is a
correlation between velocity directions of the particles involved in the collapse: in
particular collapse is favored by parallel velocities (because they cannot escape in

http://dx.doi.org/10.1007/978-3-319-10286-3_2
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perpendicular directions). This situation implies a dramatic breakdown of Molecular
Chaos assumption and gives evidence of the fact that Inelastic Collapse cannot be
described even by a Boltzmann equation.

Along similar lines, Goldhirsch [19–23] raised some points where the hydrody-
namics derivation is unclear or possibly ill posed. Using his words, “the notion of a
hydrodynamic, or macroscopic description of granular materials is based on unsafe
grounds and it requires further study”. He addresses two fundamental issues:

1. in granular materials a reference equilibrium state is missing;
2. in granular materials the spatial and temporal scales of the dynamics of the par-

ticles are not well separated from the relevant macroscopic scales.

The first problem is more evident than the second. If a molecular gas is left to
itself it comes to an equilibrium state given by the stationary solution of the cor-
responding kinetic equation, e.g. rarefied gases follow the Boltzmann equation. If
such an equilibrium state is well defined, perturbations around it can be used as
solutions of non-equilibrium problems. Moreover, if external time scales are much
larger than the microscopic time scale of relaxation to equilibrium, most of the
degrees of freedom of the gas are rapidly averaged and only a few variables are
needed for the description of the out of equilibrium dynamics, which obey to macro-
scopic equations such as Euler or Navier-Stokes equations. If a granular gas is left
to itself, instead, the only equilibrium state is an asymptotic death of the motion of
all the particles, but before it happens, different kinds of correlations arise leading
to strong inhomogeneities (clustering, vortices, shocks, collapse, and so on). In this
sense the relaxation to equilibrium has a characteristic time which is infinite and many
other characteristic times given by different instabilities, due to the non-conservative
nature of the collisions. What reference state can be used in a perturbative method
like the Chapman-Enskog expansion? In the first derivations of granular hydrody-
namics the Maxwell-Boltzmann equilibrium was used [31], in the latest derivations
a more rigorous Chapman-Enskog expansion has been followed using solutions of
the Enskog-Boltzmann equation by means of a Sonine expansion (which again must
be performed around a Maxwell distribution). Goldhirsch has observed however that
the limit (1−r) → 0 and ε → 0 (with ε the Knudsen number, indicating the intensity
of the gradients) is smooth and non singular for the granular Boltzmann equation,
since the relaxation to local equilibrium takes place in a few collisions per particle,
while the effect of (low) inelasticity is relevant on the order of hundreds or thousands
of collisions. This means that a perturbative (in 1 − r2 and ε) expansion may be
applied to the Boltzmann equation around a well suited “elastic” equilibrium, but it
is expected to breakdown as (1 − r) or ε are of order ∼1.

The second issue, raised by Goldhirsch, stems from a more quantitative discussion.
He stresses that the lack of scales separation is not only a mere experimental problem:
one can in principle think of experiments with an Avogadro number of grains and
very large containers. Instead, it is a fundamental problem for granular materials. In
fact, such a problem arises not only in granular kinetic theory: when molecular gases
are subject to large shear rates or large thermal gradients (i.e. when the velocity
field or the temperature field changes significantly over the scale of a mean free
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path or the time defined by the mean free time) there is no scale separation between
the microscopic and macroscopic scales and the gas can be considered mesoscopic.
In this case the Burnett and super-Burnett corrections (and perhaps beyond) are of
importance and the gas exhibits differences of the normal stress (e.g. Pxx �= Pyy)
and other properties characteristic of granular gases. Even if clusters are not expected
in molecular gases, strongly sheared gases do exhibit ordering which violates the
molecular-chaos assumption. In granular gases this kind of mesoscopicity is generic
and not limited to strong forcing. Moreover, phenomena like clustering, collapse
(and of course avalanches or oscillon excitations) pertain only to granular gases.
In mesoscopic systems fluctuations are expected to be stronger and the ensemble
averages need not to be representative of their typical values. Furthermore, like in
turbulent systems or systems close to second-order phase transitions, in which scale
separation vanishes, one expects constitutive relations to be scale dependent, as it
happens in granular gases.

The quantitative demonstration of the intrinsic mesoscopic nature of (cooling)
granular gases follows from the relation [22]

T = C
γ 2λ2

1 − r2 (3.41)

that relates the local granular temperature with the local shear rate γ and the mean
free path λ. The above relation stems from the temperature balance equation in the
spatially homogeneous case, by neglecting the (usually small) heat conduction term.
It holds until γ can be considered a slow varying (decaying) quantity with respect
to the much more rapid decay of the temperature fluctuations (this can be observed
by a linear stability analysis and also by the fact that shear modes decay slowly for
small wave-numbers—a result of momentum conservation). From the Eq. (3.41) it
follows that the ratio between the change of macroscopic velocity over a distance
of a mean free path λγ and the thermal speed

√
T is

√
1 − r2/

√
C , e.g.  0.44

for r = 0.9, that is not small. Thus, except for very low values of 1 − r2, the
shear rate is always large and the Chapman-Enskog expansion should be carried out
beyond the Navier-Stokes order. The above consideration is a simple consequence
of the supersonic nature of granular gases [20]. It is clear that a collision between
two particles moving in (almost) the same direction reduces the relative velocity,
i.e. velocity fluctuations, but not the sum of their momenta, so that in a number of
these collisions the magnitude of the velocity fluctuations may become very small
with respect to the macroscopic velocities and their differences over the distance
of a mean free path. Also the notion of mean free path may become useless: λ is
defined as a Galilean invariant, i.e. as the product between the thermal speed

√
T

and the mean free time τc; but in a shear experiment the average squared velocity of
a particle is given by γ 2 y2 + T (y is the direction of the increasing velocity field),
so when y � √

T /γ , the distance covered by the particle in the mean free time
τc is l(y) = yλγ/

√
T = y

√
1 − r2/

√
C and therefore can become much larger

that the “equilibrium” mean free path λ and even of the length of the system in the
streamwise direction.
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Furtherly, the ratio between the mean free time τc = λ/
√

T and the macro-
scopic characteristic time of the problem 1/γ , using expression (3.41), reads again√

1 − r2/
√

C . This means that also the separation between microscopic and macro-
scopic time scales is guaranteed only for r → 1. And this result is irrespective of the
size of the system or the size of the grains. This lack of separation of time scales poses
two serious problem: (a) the fast local equilibration that allows to use local equilib-
rium as zeroth order distribution function is not obvious; (b) the stability studies are
usually performed linearizing hydrodynamic equations, but the characteristic times
related to the (stable and unstable) eigenvalues must be of the order of the character-
istic “external” time (e.g. 1/γ ) which, in this case, is of the order of the mean free
time (as just derived), leading to the paradoxical conclusion that the hydrodynamic
equations predict instabilities on time scales which they are not supposed to resolve.

Goldhirsch [20] has also shown that the lack of separation of space and time scales
leads to scale dependence of fields and fluxes. In particular he has shown that the
pressure tensor depends on the scale of the coarse graining used to take space-time
averages. This is similar to what happens, for example, in turbulence, where the
“eddy viscosity” is scale dependent. Pursuing this analogy, Goldhirsch has noted
that an intermittent behavior can be observed in the time series of experimental
and numerical measures of the components pressure tensor: single collisions, which
are usually averaged over in molecular systems, appear as “intermittent events” in
granular systems as they are separated by macroscopic times.

I conclude this section mentioning that the bulk-driving mechanism described in
Sect. 2.3.5 is supposed to solve most of the problems discussed above. When every
particle interacts with the external bath, the local balances are drastically changed and
most of the instabilities are smoothed out. In a stationary state it is expected that the
system fluctuates around a well defined “most probable state” (described by a well
defined n-particles distribution function, hopefully n = 1) and again an expansion
around it can be performed. This program has only recently been realized [18].

3.3 Applications of Granular Hydrodynamics

3.3.1 Linear Stability Analysis of the Homogeneous
Cooling State

A granular gas prepared with a homogeneous density and no macroscopic flow, at a
given temperature T (0), reaches the Homogeneous Cooling State in a few free times
τc. To study the behavior of small (macroscopic, i.e. for wave vectors of low mag-
nitude k � min{2π/λ, 2π/σ }) fluctuations around this state, a linear stability study
of hydrodynamics equations has been performed by several authors (Goldhirsch and
Zanetti [22], Deltour and Barrat [14], van Noije et al. [51]). I follow the discussion
provided in [50], reviewing their result for the linearized hydrodynamics of rescaled
fields. The rescaled fluctuation fields are defined as

http://dx.doi.org/10.1007/978-3-319-10286-3_2
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δñ(r, τ ) = δn(r, t)/n, (3.42a)

ũ(r, τ ) = u(r, t)/vT (t), (3.42b)

δT̃ (r, τ ) = δT (r, t)/T (t), (3.42c)

where I recall T (t) = 1
2 mv2

T (t) (see discussion in Sect. 2.3.3). Their Fourier trans-
forms are given by δã(k, τ ) = ∫

dr exp(−ik ·r)δã(r, τ ), where a is one of (n, u, T ).
The vector ũ(k, τ ) can be decomposed in (d − 1) vectors perpendicular to k, called
indistinctly ũ⊥, and one vector parallel to k, called ũ‖. The linearized hydrodynamics
for these fluctuations is given (in Fourier space) by the following equation:

∂

∂τ
δã(k, τ ) = M̃ (k)δã(k, τ ) (3.43)

where

ã =
{

(n, u⊥, u‖, T ) (d = 2)

(n, u⊥, u′⊥, u‖, T ) (d = 3).
(3.44)

The matrix M̃ is given (in d = 2) by:

M̃ =

⎛
⎜⎜⎜⎜⎝

0 0 −ikλ 0
0 γ0(1 − k2ξ2⊥) 0 0

−ikλ
(

1
2nT χT

)
0 γ0(1 − k2ξ2‖ ) −ikλ

( p
2nT

)
−γ0g(n) 0 −ikλ

(
2p

dnT

)
−γ0(1 + k2ξ2

T )

⎞
⎟⎟⎟⎟⎠ (3.45)

with γ0 = 1−r2

2d .
Here I have introduced the correlation lengths ξ⊥, ξ‖ and ξT that depend on

the transport coefficients (shear and bulk viscosity and heat conductivity), on the
isothermal compressibility χT = (∂n/∂p)T /n and on the pair distribution function
g(n) already mentioned. I refer to [50] for detailed calculations of these correlation
lengths.

Several facts can be noted in the study of the dispersion relations, i.e. the exponen-
tial growth rates of the modes as functions of the wave number [40]. The first is that
(in this linear analysis) the evolution of fluctuations of normal velocity components
(shear modes, ũ⊥) are not coupled with any other fluctuating component. At the
same time, all the other components are coupled together. The study of eigenvalues
and eigenvectors confirms the fact that the shear modes are not coupled with the
other modes. The eigenvectors of the matrix define, beyond the shear modes, three
other modes: one heat mode and two sound modes, denoted in the following with the
subscripts H and + or − respectively. The associated eigenvalues are ζ⊥(k), ζH (k),
ζ+(k) and ζ−(k). It is immediate to see that ζ⊥(k) = γ0(1 − k2ξ2⊥). At low values of
k (in the dissipative range defined below) also the heat mode is “pure”, as it is given

http://dx.doi.org/10.1007/978-3-319-10286-3_2
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by the longitudinal velocity mode ũ‖ only, with eigenvalue ζH (k)  γ0(1−ξ2‖ k2); in
this range the sound modes are combination of density and temperature fluctuations.

The most important result of this analysis is that ζ⊥(k) and ζH (k) are positive
below the threshold values k∗⊥ = 1/ξ⊥ ∼ √

γ0 and k∗
H  1/ξ‖ ∼ γ0 respectively,

indicating two linearly unstable modes with exponential (in τ ) growth rates.
The shear and heat instabilities are well separated at low inelasticity, as k∗⊥ ∼ √

γ0
while k∗

H ∼ γ0, so that k∗⊥ � k∗
H . It is also important to note that the linear total size

L of the system can suppress the various instability, as the minimum wave number
kmin = 2π/L can be larger than k∗

H or even than k∗⊥.
Moreover, the study of the eigenvalues of the linear stability matrix, shows that

several regimes in the k-space are present:

• for 2π/L � k � γ0/λ (dissipative range), all the eigenvalues are real, so that
propagating modes are absent;

• for γ0/λ � k � √
γ0/λ (standard range), the eigenvalues corresponding to sound

modes are complex conjugates, so that the sound modes propagate;
• for

√
γ0/λ � k � min{2π/λ, 2π/σ } (elastic range) the heat conduction become

dominant; in this range the dispersion relations resemble those of an elastic fluid.

The above picture, of course, requires the scale separation γ0 � √
γ0 (valid at low

inelasticity).

3.3.2 A Solvable Case: Granular Sedimentation in 2D

An interesting, solvable [4], case is that of hydrodynamics in two dimensions with
gravity acting in one direction and a vibrating base. Here g = (0, ge) and ge < 0),
with the following assumptions: the fields do not depend upon x (the coordinate
parallel to the bottom wall), i.e. ∂/∂x = 0, and the system is in a steady state, i.e.
∂/∂t = 0. The continuity equation then reads ∂

∂y (n(y)uy(y)) = 0 and this can be
compatible with the bottom and top walls (where nvy = 0) only if n(y)vy(y) = 0,
that is in the absence of macroscopic vertical flow. The equations are written for
the dimensionless fields T̃ (ỹ) = kB T (y)/(−gemσ)|y=σ ỹ and ñ(ỹ) = n(y)σ 2|y=σ ỹ ,
while the position y is made dimensionless using ỹ = y/σ . Finally for the pressure I
put p(y) = P22 = n(y)kB T (y). With the assumption discussed above the equations
of granular hydrodynamics read:

d

d ỹ
(ñ(ỹ)T̃ (ỹ)) = −ñ(ỹ) (3.46)

1

ñ(ỹ)

d

d ỹ
Qr (ỹ) − C(r)ñ(ỹ)T̃ (ỹ)3/2 = 0 (3.47)

where Qr (ỹ) is the granular heat flux expressed by
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Qr (ỹ) = A(r)T̃ (ỹ)1/2 d

d ỹ
T̃ (ỹ) + B(r)

T̃ (ỹ)3/2

ñ(ỹ)

d

d ỹ
ñ(ỹ). (3.48)

In the above equations A(r), B(r) and C(r) are dimensionless monotone coeffi-
cients, all with the same sign (positive), related to the transport coefficients calculated
in Sect. 3.1.5 and explicitly given in [7]. In particular B(1) = 0 and C(1) = 0, i.e.
in the elastic limit there is no dissipation and the heat transport is due only to the
temperature gradients, while when r < 1 a term dependent upon d

d ỹ ln(ñ(ỹ)) appears
in Qr (ỹ). The use of dimensionless fields eliminates the explicit g dependence from
the equations, that remains hidden in their structure (the right hand term of equation
(3.46), that is due to the gravitational pressure gradient, disappears in the equation
for g = 0).

A change of coordinate can be applied to Eqs. (3.46) and (3.47) in order to obtain
a simpler form:

ỹ → l(ỹ) =
ỹ∫

0

ñ(y′)dy′ (3.49)

It follows that when y spans the range [0, L y], the coordinate l spans the range
[0, σ/Lx ]. With this change of coordinate it happens that

d

d ỹ
→ ñ(l)

d

dl
(3.50)

and the first Eq. (3.46) reads:

d

dl
(ñ(l)T̃ (l)) = −1 (3.51)

from which is immediate to see that

H = ñ(l)T̃ (l) + l (3.52)

is a constant, i.e. d
dl H = 0. This is equivalent to observe that

p(y) − g

y∫
0

n(y′)dy′ (3.53)

is constant which is nothing but the Bernoulli theorem for a fluid (at zero velocity)
in the gravitational field with the density depending upon the height.

The relation (3.52) is verified by the model simulated in this work for almost all
the height of the container, apart of the boundary layer near the bottom driving wall.
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Using the coordinate l introduced in (3.49) and the elimination of ñ(l) using the
recognized constant, that is

ñ(l) = H − l

T̃ (l)
(3.54)

the second Eq. (3.47), after some simplifications, and after a second change of coor-
dinate l → s(l) = H − l, becomes:

α(r)s

T̃ (s)1/2

d2

ds2 T̃ (s) − α(r)s

2T̃ (s)3/2

(
d

ds
T̃ (s)

)2

+ β(r)

T̃ (s)1/2

d

ds
T̃ (s) − sT̃ (s)1/2 = 0

(3.55)

where α(r) = (A(r)− B(r))/C(r), β(r) = (A(r)− 1
2 B(r))/(C(r)) are numerically

checked to be positive (α is positive for values of r not too low, about r > 0.3) and
are divergent in the limit r → 1.

The Eq. (3.55) become a linear equation in T̃ (s) as soon as the change of variable
z(s) = T̃ (s)1/2 is performed:

2α(r)s
d2

ds2 z(s) + 2β(r)
d

ds
z(s) − sz(s) = 0 (3.56)

giving the solution:

z(s) = A s−ν(r) Iν(r)(s/
√

2α) + Bs−ν(r)Kν(r)(s/
√

2α) (3.57)

where Iν and Kν are the modified Bessel functions of the first kind and the second
kind respectively, ν(r) = B(r)/(4(A(r) − B(r))) is real and positive for all the
values of r greater than the zero of the function A(r) − B(r) (about r  0.3), with
ν(1) = 0, while A and B are constants that must be determined with assigning the
boundary conditions.

Then one can derive the expressions for T̃ (l) and ñ(l):

T̃ (l) = (H − l)−2ν(r)(A Iν(r)((H − l)/
√

2α(r)) + BKν(r)((H − l)/
√

2α(r)))2

(3.58)

ñ(l) = (H − l)1+2ν(r)

(A Jν(r)((H − l)/
√

2α(r)) + BNν(r)((H − l)/
√

2α(r)))2
(3.59)

To calculate the expressions of T̃ and ñ as a function of the original coordinate ỹ
one needs to solve the equation

d

dl
ỹ(l) = 1

ñ(l)
(3.60)
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putting in it the solution (3.59). However, one can obtain a comparison with the
numerical simulations using the new coordinate l. For a discussion of the boundary
conditions needed to eliminate the constants H, A and B I refer the reader to [7]. In
this paper the authors show that the solution fit very well a large region in the bulk but
cannot work on the boundary regions near the vibrating bottom and near the open
surface. The authors show also that a minimum of the temperature is compatible
with the proposed equations. It is important to underline that a minimum in the
temperature profile implies an extremal point where the heat conduction term due to
temperature gradient vanishes: in such a situation, the only energy transport can be
due to the “anomalous” heat conduction due to density gradients [45].

3.3.3 Thermal Convection

Under the effect of gravity, the laterally invariant steady state discussed in Sect. 3.3.2
becomes unstable when the lateral size of the system grows. The most common steady
configuration is a convective one, in analogy with thermal convection in molecular
fluids. The difference with respect to molecules, is that a granular fluid under gravity
spontaneously develops a thermal gradient, i.e. a second external temperature is not
required to induce convection.

Granular thermal convection is governed by three dimensionless numbers. One
is the Freude number Fr = 2gLz

v2
0

= Lz
zmax

, where zmax = v2
0/2g is the maximum

height reached by a projectile launched vertically with initial velocity v0 which is the
typical velocity of the vibrating base. The second dimensionless parameter relevant
for the problem, the Knudsen number [27]

ε = 2√
π

(σ Lz〈n〉)−1 = 2√
π Nlayers

(3.61)

is related to the mean free path and Nlayers = Nσ/L is the number of filled layers at
rest. Finally, in the case of pure (monodisperse) systems, it is relevant the dissipative
parameter

R = 8qε−2 = π(1 − r)N 2
layers (3.62)

where q = (1 − r)/2 is a measure of the inelasticity of the system and r is the
coefficient of restitution. R depends both on the inelasticity and on the collision rate,
since R → 0 if either r → 1 or Nlayers → 0.

It is useful to recall the hydrodynamic predictions concerning the phase behav-
ior of the system. In [33] it has been presented the following phase diagram (see
Fig. 3.2): at fixed Fr and ε, convection rolls appear with increasing inelasticity, i.e.
if R overcomes a critical value Rc. Such a value, Rc, is an increasing function of the
Knudsen number, ε, which in turn decreases with the number of particles present in
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the system. With respect to the Froude number, instead Rc is a non-monotonic func-
tion of Fr . As shown in Fig. 3.2, at low Fr (i.e. at low gravity or strong shaking) Rc

first decreases, i.e. convection is easier to obtain as the gravity increases. Rc however
reaches a minimum and then increases as the gravity is further increased.

3.3.4 Other Instabilities of Granular Hydrodynamic

The equations of granular hydrodynamics, within linear approximation or by elim-
inating some terms for special situations, or in its full form, has been applied to
explain several laboratory or numerical experiments. A non-exhaustive list of note-
worthy phenomena studied by means of granular hydrodynamics includes:

• Gas–liquid or gas–solid phase separation: in this case linear stability analysis is
sufficient to predict the transition, while studies of the full non-linear equations
can be used to setup a theory analogous to spinodal decomposition [10, 11].

• The Leidenfrost effect can be predicted on the basis of granular hydrodynamics, as
a state where density is larger on the top while energy comes from the bottom [38].

• During the pure cooling of granular materials, after the shear instability has broken
the HCS, several routes can be followed deep in the non-homogeneous regime.
Many hydrodynamic scenario have been proposed, with confirmations coming
from event-driven molecular dynamics simulations of hard disks or spheres. In
all those scenario, some terms in the transport equations can be neglected. For
instance, in one dimension the inviscid Burgers equation, which is hydrodynamics
with no pressure in the limit of zero viscosity, gives a rather fair description of the
granular shocks observed in simulations [1]. The flow by inertia scenario (where
there is no pressure neither viscosity) [39] and ideal granular hydrodynamics [17]
(where there are no dissipative flows such as heat and shear transport) are dif-
ferent simplifications which both display the appearance of a singularity at finite

Fig. 3.2 Phase diagram in
the plane (Fr , R), at fixes ε,
showing the predictions of
hydrodynamic theories [27].
Convection is expected
increasing R (path A), e.g.
decreasing the restitution
coefficient r , as well as
changing Fr in an adequate
interval (path B). At too low
or too high values of Fr (e.g.
very low or very high gravity)
the system does not reach
convection

Fr

R

No convection

Convection

A
hta

P

Path B
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times. Many of these scenario are inspired by hydrodynamics theories applied in
cosmology to describe galaxies and other structures in outer space [44].

• Finally, some theories exist for Non-Newtonian Granular Hydrodynamics, where
momentum or heat fluxes are not assumed to be linear in the gradients. These the-
ories do not have the ambition to replace granular hydrodynamics, but to describe
and/or enumerate some of the states that can be encountered in granular simula-
tions. A notable example is the so-called Uniform Shear State, which generalizes
the simple observation that, due to the energy sink term, the temperature equation
can be in a steady state even without heat flow (e.g. with homogeneous tempera-
ture and density), but with the only presence of a non-uniform velocity field which
generates viscous heating [53].

3.4 Fluctuating Hydrodynamics

A fascinating and largely open problem in granular fluids is that of fluctuations
of macroscopic observables. A granular media is often a small system, made of a
number of grains which can be in the range of 102–104 grains, that is much smaller
than the Avogadro number valid for a molecular fluid. As a consequence, fluctuations
in granular fluids are easily observed macroscopically. The problem is made more
difficult and interesting by the inherent non-equilibrium nature of granular noise.
The relevance of fluctuations represents an interesting point of contact with small
molecular systems, e.g. cell sub-units and other systems of biophysical interest,
as well as with micro/nano-mechanical devices. Those systems are often in non-
equilibrium situations too.

A promising approach is that of fluctuating hydrodynamics, that is the study of
fluctuations around an evolution which follows hydrodynamic equations. In summary
it consists in separating the evolution of the system into a set of slowly evolving vari-
ables and a rapidly relaxating remainder which is treated as noise. This approach
is made simpler when the system is at equilibrium: in this case the presence of
time-reversal symmetry enforces strong constraints which noise must satisfy. The
first example was given by Einstein in his theory of Brownian motion, and appeared
in the form of the so-called Einstein relation between diffusivity and mobility. An
impressive list of other examples were given in the first decades of the 20th century,
culminating with a general theory of linear response, founded around the equilib-
rium Fluctuation-Dissipation theorem [3]. Fluctuating hydrodynamic near equilib-
rium [36] makes use of those results through the Green-Kubo relations which relate
transport coefficients to the time-correlation of currents or, equivalently, to amplitude
of hydrodynamic noise.

Such an elegant and systematic programme fails when considering systems far
from equilibrium, such as a granular fluid. Nevertheless, reasonable assumptions for
hydrodynamic noise can be found in order to get fluctuating equations. In alternative,
a more rigorous derivation from microscopic models can be tried, in few cases with
success.
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3.4.1 Simple Models of Noise

Here I review a few noteworthy cases where certain properties of the noise are
assumed. The validity of such assumptions is checked by deriving results for the
amplitude of fluctuations, e.g. correlations, and comparing them with numerical or
even experimental results.

For the sake of simplicity, I focus on a particular hydrodynamic mode, that is the
shear mode in two dimensions:

U⊥(k, t) =
N∑

j=1

vy, j (t)e
−ikx j (t). (3.63)

where k is the wave number of chosen mode, and x j (t), vy, j (t) are the x-coordinate
and the y-velocity of particle j at time t , respectively. It was already shown in
Sect. 3.3.1 that in granular linearized hydrodynamics (as in standard linearized
Navier-Stokes equations) U⊥(k, t) is decoupled from all other modes.

The main function under investigation, to probe the amplitude of fluctuations, is
the rescaled autocorrelation

C⊥(k, t) = 〈U⊥(k, 0)U∗⊥(k, t)〉
2Ty

, (3.64)

measured in the steady state, where Tβ = 〈v2
β〉 is the “granular temperature” in the

β direction, with β being x or y. Note that Ty/Tx = 1 in isotropic systems (e.g.
in homogeneous cooling or bulk-driven systems). I also use the shorthand notation
U⊥(t) ≡ U⊥(kmin, t) and C⊥(t) ≡ C⊥(kmin, t) for the largest mode kmin = 2π/Lx .

At equilibrium (at temperature T ), the Landau-Lifshitz fluctuating hydrodynam-
ics, based on Einstein fluctuation formula, predicts

∂tU⊥(k, t) = −νk2U⊥(k, t) + ξ(k, t), (3.65)

where ν = η/n is the kinematic viscosity and ξ(t) is a white Gaussian noise with
zero average and

〈ξ(k, t)ξ(k′, t ′)〉 = δk′,−kδ(t − t ′)2T Nνk2. (3.66)

Notice that here I am considering the extensive (order ∼ N ) field U⊥(k, t), and
therefore the noise variance appears of order N : the noise associated to the intensive
field U⊥(k, t)/N has of course variance scaling with ∼1/N . Based on Eq. (3.65),
one has

C⊥(k, t) = N

2
e−νk2t . (3.67)
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In the inelastic homogeneous cooling regime the Einstein formula for noise ampli-
tude is expected to fail. However, one may insist to apply it in a consistent way (I
will show that such a failure is not dramatic): the trick consists in using the granular
temperature instead of thermostat temperature, which is not defined [49]. Additional
care is required, however, since the amplitude of fluctuations is decaying: indeed,
because of cooling, the kinematic viscosity ν(t) ∝ √

T (t) and T (t) decrease with
time (see [5] for details). In particular a constant q = ν(t)/ωc(t) can be defined,
where ωc(t) ∝ √

T (t) is the collision frequency at time t . It is crucial to introduce
a new time-scale τ which is proportional to the cumulative number of collisions [6]:
dτ = ωc(T (t))dt . This implies a rescaling of velocity w(k, τ ) = U⊥(k, τ )/

√
T (τ )

and noise ξ ′ = ξ/(ωc
√

T ), obtaining the following stochastic equation

∂τ w(k, τ ) = −z(k)w(k, t) + ξ ′(k, t), (3.68)

with z(k) = −ζ⊥(k) = qk2 − γ0 which is now time-independent. The statistical
properties of noise are time-independent as well, for the same reason. Indeed

〈ξ ′(k, τ )ξ ′(k′, τ ′)〉 = δk′,−kδ(τ − τ ′)2Nqk2. (3.69)

As already discussed previously (see Sect. 3.3.1) modes are stable only for z(k) > 0,

i.e. k >

√
γ0ωc

ν
. Those modes reach a steady state. Solving for the corresponding

autocorrelation C⊥(k, t) in the steady state, one gets

C⊥(k, τ ) = N

2

qk2

z(k)
e−z(k)t . (3.70)

In the elastic case γ0 = 0 and the Einstein-Landau result (3.67) is recovered.
More complicate is the case of a driven granular gas. A first study has been done

in [52], where the hydrodynamics of a gas of inelastic grains which receive energy
by random uncorrelated velocity kicks was considered. In that work hydrodynamic
fluctuations are described using an effective noise that is the sum of an internal and
an external noise. The former is originated from the rapid fluctuations of microscopic
degrees of freedom and its strength can be obtained from an FDR with respect to
internal relaxation, as in the Einstein-Landau picture above. The latter, instead, is
due to the random accelerations received by particles from the external driving. The
strength of this noise is such that, in the steady state, it balances the energy loss due
to the collisions, Ṫ |coll = −ζ T (see Eq. 2.90). The result for the shear mode with
small inelasticity is a Langevin equation:

∂τU⊥(k, t) = −νk2U⊥(k, t) + ξ ′′(k, t), (3.71)

with

〈ξ ′′(k, t)ξ ′′(k′, t ′)〉 = δk′,−kδ(t − t ′)N T
(

2νk2 + ζ
)

, (3.72)

http://dx.doi.org/10.1007/978-3-319-10286-3_2
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where the internal (∝ νk2) and external (∝ ζ ) contributions are recognised. The
corresponding autocorrelation C⊥(k, t) is written as

C⊥(k, t) = N

2

ζ/2 + νk2

νk2 e−νk2t , (3.73)

which diverges for small k. The Einstein-Landau result is obtained in the elastic case,
ζ = 0.

The situations changes if the external source of energy includes an external vis-
cosity [42], as discussed in Sect. 2.3.5. The fluctuating hydrodynamics for such a
model has been recently studied [18, 24] and demonstrated to fairly describe the
experimental behavior of a quasi-2D system on a horizontal vibrating plate [25, 41],
where roughness of the surface is modelled as a kick+dissipation mechanism which
on average defines a “bath temperature” Tb and an interaction time 1/γb. Repeating
the arguments of [52] for this case, one gets

∂τU⊥(k, t) = −(νk2 + γb)U⊥(k, t) + ξ ′′′(k, t), (3.74)

with

〈ξ ′′′(k, t)ξ ′′′(k′, t ′)〉 = δk′,−kδ(t − t ′)2N
(
νk2T + γbTb

)
. (3.75)

Eq. (3.75) leads to the interesting result

C⊥(k, t) = N

2

νk2T + γbTb

νk2 + γb
e−(νk2+γb)t , (3.76)

which turns back to (3.67) in the elastic case when the external bath is detached
from the system (γb = 0). Equation (3.76) is interesting because the static structure
factor C⊥(k, 0) defines a finite correlation length λ⊥ = √

ν/γb, a crucial difference
with respect to the non-viscous bath, γb = 0. For lengthscales smaller than λ⊥ the
structure factor settles to the granular temperature T , while for larger lengthscales,
it saturates to Tb. In a real experiment, the measure of C⊥(k, 0) is an effective way
to access to Tb, an “external temperature” not easy to be detected with other means.

To conclude, I mention the case of a steady state obtained by boundary driving,
which corresponds to spatially inhomogeneous steady hydrodynamic fields. In par-
ticular, to avoid complex situations, gravity is considered, as in the model discussed
in Sect. 3.3.2. In this case there is not a uniform source of energy throughout the
system, but the injection is localizated at the bottom of the box. One may divide the
system in horizontal layers of width L , equal to the total system’s width, and height
�. The choice of � is to be smaller than macroscopic typical lengths but larger than
the mean free path. Such a scale is expected to exist if a hydrodynamic description is
possible. With such a choice, each layer can be considered spatially homogeneous.
In the i-th layer (far enough from the bottom and top boundaries), on average, there
is a balance between the energy gain coming from adjacent layers and the energy dis-

http://dx.doi.org/10.1007/978-3-319-10286-3_2
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sipated in collisions. It is therefore tempting to introduce an effective external noise
whose amplitude is determined, as in the case of non-viscous bulk driving discussed
above, Eq. (3.71), by the energy balance and is proportional to Niζi Ti , where the
subscript i restricts the measure of averages inside the layer. In [13] the validity of
this proposal has been verified numerically with fair success.

3.4.2 Deriving the Fluctuations from the Kinetic Equation

The programme of deriving the hydrodynamic noise from the Boltzmann equation
has been carried out in a few cases. The programme requires to setup fluctuating
Boltzmann equations and to carefully analyze the contribution of the second equation
in the Boltzmann hierarchy, which is related to 1/N fluctuations even in the dilute
limit [12, 46].

In the case of the HCS, rigorous treatment from a fluctuating Boltzmann equation
demonstrates the validity of Eq. (3.68) for the rescaled shear mode [5], but with a
different expression for the noise:

〈ξ ′(k, τ )ξ ′(k′, τ ′)〉 = δk′,−k2Nk2G(|τ − τ ′|), (3.77)

with G(|s|) �= δ(s) a function which is discussed in details in [5]. As a matter of
fact, a careful study of correlations demonstrate the presence of non-white noise.
The steady autocorrelation C⊥(τ ) obtained from the above Langevin equation is not
a simple exponential; anyway it has an exponential tail at large times. In particular
one obtains

C⊥(k, 0) = N

2

ν1k2

νk2 − ζ/2
(3.78)

C⊥(k, τ ) = N

2

(ν1 + ν2)k2

νk2 − ζ/2
e−(νk2−ζ/2)τ τ → ∞ (3.79)

where the two new coefficients ν1 and ν2 (the latter is usually smaller than the first)
are computed in [5]. In the elastic limit ζ → 0, ν1 → ν and ν2 → 0 and result (3.67)
is recovered. In the inelastic case (ζ > 0) of course one must limit the theory to large
enough values of k to have νk2 − ζ/2 > 0: modes with smaller wavenumbers are
unstable, as usual. That condition obliges to consider systems smaller than a critical
size to avoid the instability.

Similar calculations for the bulk-driving mechanism without viscosity have been
performed in [48]. In this case, by adding a simplifying but realistic assumption on
two-particles correlation functions, the validity of Eq. (3.71) has been demonstrated,
with the same form for the (white) noise.

A more general framework to study fluctuations in the hydrodynamic limit has
been setup studying models on a lattice [2]: it goes under the name of “Macroscopic
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Fluctuation Theory” (MFT). This programme has been developed well outside the
scope of granular kinetic theory. Microscopic probabilistic equations of motion have
been proposed to mimic typical transport phenomena, e.g. heat or mass conduction
among two reservoir. The simplicity of these models is compensated by a transpar-
ent and rigorous procedure to derive the hydrodynamic limit. The theory of large
deviations [8, 47] is the natural tool to investigate the role of fluctuations in this
limit. Within this approach, one gets a large deviation functional for the fluctua-
tions of the macroscopic observable of interest by contraction, that is by finding the
extreme of an action functional related to the average hydrodynamic equations. This
procedure, when it can be carried out, is able to describe fluctuations beyond the
linear—and therefore Gaussian—approximation, which underly the cases discussed
in this section up to this point.

MFT has been applied to a one-dimensional granular kinetic model in [37]. The
model consists of a lattice sites equipped with an energy field. The dynamics of the
model consists in inelastic collisions, i.e. random choice of neighbouring sites (with
probability that can depend on the energy itself) and dissipation plus re-distribution
of energy. The fluctuating hydrodynamic equation for the energy density reads

∂tρ(x, t) = −∂x j (x, t) − νρ(x, t), (3.80)

with the fluctuating current j (x, t) = −D[ρ]∂xρ(x, t) + ξ(x, t), ν a dissipa-
tion coefficient that is function of microscopic parameters, and ξ(x, t) a Gaussian
field which is exactly calculated to satisfy 〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(x ′, t ′)〉 =
N−1σ [ρ]δ(x − x ′)δ(t − t ′). A steady state can be obtained by coupling the system
with energy reservoirs, for instance to the first and last site, with equal or different
temperatures. Even with equal temperatures, the steady state for the inelastic system
is out of equilibrium, as a balance of energy current and energy dissipation. In [37]
the probability of the fluctuations of the total energy dissipation d averaged on a
finite time τ in the steady state is computed to be

Pτ (d) ∼ eτ N G(d), (3.81)

with G(d) that satisfies

G(d) = − min
j (x)

1/2∫
−1/2

dx
{ν j (x) − D[− j ′/ν] j ′′(x)}2

2ν2σ [− j ′/ν] . (3.82)

The solution of this variational problem has been discussed in [37] and yields the
so-called optimal profile to sustain a certain average value of dissipation d. Other
discussions in the same spirit have been given in [35].
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Chapter 4
Tracer’s Diffusion: Swimming Through
the Grains

Abstract In this chapter I consider the stochastic dynamics of an intruder in a
granular fluid. Under the same assumptions used to derive the Boltzmann equation,
a Master Equation for the intruder’s velocity is derived. In the limit of large intruder’s
mass, the dynamics is described by an Ornstein-Uhlenbeck process. I discuss the
effects of collisions’ inelasticity and of non-Gaussian properties of the surrounding
gas. When the shape of the intruder breaks some spatial symmetry, part of the energy
dissipated in collisions can be converted in useful work. A granular Brownian motor
is then realized.

4.1 The Markovian Limit

A starting point to study the dynamics of an intruder in a granular fluid is the kinetic
equation for a two-species mixture [33]. Again I focus on the simplest case of inelastic
hard core interactions for smooth disks or spheres, with a constant restitution coef-
ficient. The kinetic theory of this model has been extensively described in Chap. 2.
In order to set the system in a steady state, I consider an external driving modelled
as a thermal bath with temperature Tb and viscosity γb, as discussed in Sect. 2.3.5.
The two species correspond to the host fluid and the intruder, whose velocities are
denoted here as v and V, respectively. The gas particles have mass m and diameter
σ , while the intruder has mass M and diameter �. I also define the following quan-
tities which will be useful: ε = √

m/M and χ = n(σ/2 + �/2)d−1 (with n the gas
density).

Under the assumption of Molecular Chaos, two coupled Boltzmann equations can
be written [5], for the time derivative of the separated velocity distributions p(v, t)
and P(V, t):

∂ P(V, t)

∂t
=
∫

dV′[Wtr (V|V′)P(V′, t) − Wtr (V′|V)P(V, t)] + Btr P(V, t)

∂p(v, t)

∂t
=
∫

dv′[Wg(v|v′)p(v′, t) − Wg(v′|v)p(v, t)] + Bg p(v, t)

+χ Q[v|p, p], (4.1)
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where it must be immediately said that Wtr and Wg depend upon the distributions
P(V, t) and p(v, t) and therefore do not represent Markovian transition rates, as
discussed in details below.

In Eq. (4.1), Q[v|p, p] is the collision operator for the gas particle-particle inter-
actions, which has been discussed in Chap. 2. Collisional cross terms are also present,
for the tracer and the gas particles, respectively. The related transition rates take the
form

Wtr (V|V′) = χ

∫
dv′
∫

dn̂ p(v′, t)Θ
[− (V′ − v′) · n̂

] (
V′ − v′) · n̂

× δ(d)
{
V − V′ + k(ε, r)

[(
V′ − v′) · n̂

]
n̂
}
, (4.2)

with k(ε, r) = ε2

1+ε2 (1 + r), and

Wg(v|v′) = χ

N

∫
dV′

∫
dn̂P(V′, t)Θ

[− (V′ − v′) · n̂
] (

V′ − v′) · n̂

× δ(d)

{
v − v′ + 1 + r

1 + ε2

[(
v′ − V′) · n̂

]
n̂
}

, (4.3)

where Θ(x) is the Heaviside step function and δ(d)(x) is the Dirac delta function in
d dimensions.

Finally, the operators Btr and Bg take into account the interactions with the
thermal bath, as discussed in Sect. 2.3.5:

Btr P(V, t) = γb

M

∂

∂V
[VP(V, t)] + γbTb

M
ΔV [P(V, t)] (4.4)

Bg p(v, t) = γb

m

∂

∂v
[v p(v, t)] + γbTb

m
Δv[p(v, t)], (4.5)

where Δv is the Laplacian operator with respect to the velocity.
It is important to underline that Eqs. (4.1) do not describe a Markovian process.

Indeed the transition rates at a given time depend on the probabilities themselves.
A second important observation concerns energy equipartition between the two
species. It has been shown that when r < 1 the two species do not achieve equipar-
tition, that is m〈v2〉 �= M〈V 2〉 [11, 23]. In the following I will use T to denote the
granular temperature of the gas and Ttr to denote the granular temperature of the
intruder.

4.1.1 Decoupling the Gas from the Tracer

The system of Boltzmann equations (4.1) is simplified when the quantities P(V, t)
and p(v, t) significantly change on well-separated characteristic time scales: this sit-

http://dx.doi.org/10.1007/978-3-319-10286-3_2
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uation is achieved when χ/N � 1, so that Wg ∼ 0. Then one may safely assume that
the probability distribution function p(v) is stationary. The assumption of stationary
p(v) implies that the first equation of the mixture (the evolution of the intruder prob-
ability) is linear in P(V): it becomes a Master Equation for a Markov process with
transition rate Wtr .

A first approximation, often not far from numerical or experimental evidence, is
to take the steady p(v) to be a Gaussian function with variance T/m:

p(v) = 1

(2πT/m)d/2 exp

[
−mv2

2T

]
. (4.6)

When necessary, this approximation can be improved by including its first Sonine
non-trivial correction (the second polynomial). The discussion of Sonine corrections
has been carried out in Sect. 2.3.2.

4.1.2 The Transition Rate

When p(v) is stationary, one can calculate the transition rate for the intruder.
I first discuss in detail what happens during a collision in order to understand the

physical meaning of the final expression. Then I give a rigorous derivation of the
transition rate. The collision rule reads

V′ = V − k(ε, r)[(V − v) · n̂]n̂ (4.7)

where n̂ is the direction joining the centers of the two colliding particles. There are
some consequences of the collision rules which have to be remarked. For simplicity
I assume to be in dimension d = 2.

• ΔV = V′ −V is parallel to n̂ with n̂x = cos θ and n̂ y = sin θ and θ = arctan ΔVy
ΔVx

.
The fact that (V − v) · n̂ must be negative determines completely the angle θ , i.e.
the unitary vector n̂. From here on, I call ΔV ≡ ΔVn ≡ ΔV · n̂;

• from (4.7) one has vn ≡ v · n̂ = ΔV
k(ε,r)

+ Vn ;
• the component of v which is not determined by V and ΔV is the one orthogo-

nal to n̂. I call τ̂ the direction perpendicular to n̂, i.e. the vector of component
(− sin θ, cos θ). I define vτ = v · τ̂ .

From the above discussion, it follows that the transition probability for the intruder
to change velocity during a collision, going from V to V′, must be

Wtr (V′|V) = C(V, V′)
∫

dvτ p(v) (4.8a)

v = vn n̂ + vτ τ̂ (4.8b)

n̂ = (cos θ, sin θ) (4.8c)

http://dx.doi.org/10.1007/978-3-319-10286-3_2
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τ̂ = (− sin θ, cos θ) (4.8d)

θ = arctan
ΔVy

ΔVx
(4.8e)

vn = ΔV

k(ε, r)
+ Vn . (4.8f)

The function C does not depend on the host gas p(v) and must be of dimen-
sions 1/ length. Therefore Wtr has dimensions 1/(velocitydtime) which is expected
because Wtr is a rate of change of the velocity pdf (in d dimensions).

Now, I want to obtain the complete result, starting from the expression (4.2) for
the intruder’s transition rate. Using that for a generic d-dimensional vector r = r r̂
one has δ(r − r0) = 1

rd−1
0

δ(r − r0)δ(r̂ − r̂0), one may rewrite (4.2) as

Wtr (V′|V) = χ

∫
dv
∫

dω̂Θ[(V − v) · ω̂] |(V − v) · ω̂|
Δvd−1

p(v)δ(n̂ + ω̂)δ
(
ΔV + k(ε, r)|(V − v) · ω̂|) .

(4.9)

Then, performing the angular integration over ω̂, one obtains:

Wtr (V′|V) = χ

∫
dvΘ[(V − v) · ω̂] |(V − v) · ω̂|

Δvd−1 p(v)δ
(
ΔV + k(ε, r)|(V − v) · n̂|) .

(4.10)

Denoting by vn the component of v parallel to n̂, and by vτ the (d − 1)-dimensional
vector in the hyper-plane perpendicular to n̂, the above equation is rewritten as

Wtr (V′|V) = χ

∫
dvndvτ Θ[(V − v) · ω̂] |(V − v) · ω̂|

Δvd−1
p(v)δ

(
ΔV + k(ε, r)|(V − v) · n̂|) .

(4.11)

Finally, integrating over dvn , one gets the following formula:

Wtr (V′|V) = 1

k(ε, r)2 χ |ΔV |2−d
∫

dvτ p[u(V, V′, vτ )], (4.12)

where the integral in the above expression is (d − 1)-dimensional. The vectorial
function u() is defined as

u(V, V′, vτ ) = vn(V, V′)n̂(V, V′) + vτ . (4.13)

If P(v) = 1
(2πT )d/2 exp

(
− v2

2T

)
, the transition rate Wtr (v, v′) immediately fol-

lows:

Wtr (V′|V) =
(

1

k(ε, r)

)2

χ |ΔV |2−d 1√
2πT

e− v2
n

2T . (4.14)
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In the following I specialize to the two dimensional case, where the above equation
simplifies to

Wtr (V′|V) = χ
1√

2πT/mk(ε, r)2

× exp
{
−m

[
V ′

n − Vn + k(ε, r)Vn
]2

/(2T k(ε, r)2)
}

. (4.15)

As discussed in details in Chap. 5, with the assumption of well-separated characteris-
tic time scales, the dynamics of the tracer alone is Markovian, and the transition rates
(which do not take into account the external driving) satisfy detailed balance with
respect to a Gaussian invariant probability P(V) [22, 27]. A simple explanation for
such a counter-intuitive effect (since we are out of equilibrium) is given in Chap. 5.

When Sonine corrections are considered, one has p(v) = 1
(2πT/m)d/2 exp

(
−mv2

2T

)
(1 + a2Sd

2 (mv2/2T )) with Sd
2 (x) = 1

2 x2 − d+2
2 x + d(d+2)

8 . The calculation of the
integral needed to have an explicit expression of the transition rate is straightforward:

∫
dv2τ p(v) = e− mv2

n
2T√

2πT/m

(
1 + a2Sd=1

2 (mv2
n/2T )

)
, (4.16)

which leads to

Wtr (V′|V) =
(

1

k(ε, r)

)2

χ |ΔV |2−d 1√
2πT/m

e− mv2
n

2T

(
1 + a2Sd=1

2

(
mv2

n

2T

))
.

(4.17)

Detailed balance is no more satisfied in such a case [27].

4.2 The Large Mass Limit

With the assumption of separation of time-scales discussed above, the system of
Eq. (4.1) is decoupled. This allows us to write the following Master Equation for the
tracer

∂ P(V, t)

∂t
= Lgas[P(V, t)] + Lbath[P(V, t)], (4.18)

and the Markovian linear operator Lgas can be expanded as

Lgas[P(V, t)] =
∞∑

n=1

(−1)n∂n

∂Vj1 . . . ∂Vjn

[
D(n)

j1... jn
(V)P(V, t)

]
, (4.19)

http://dx.doi.org/10.1007/978-3-319-10286-3_5
http://dx.doi.org/10.1007/978-3-319-10286-3_5
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(the sum over repeated indices is meant) with

D(n)
j1... jn

(V) = 1

n!
∫

dV′(V ′
j1 − Vj1) . . . (V ′

jn − Vjn )Wtr (V′|V), (4.20)

and

Lbath[P(V, t)] = Btr P(V, t). (4.21)

In the limit of large mass M , i.e. small ε, one expects that the interaction between
the granular gas and the tracer can be described by means of an effective Langevin
equation. In this case, I keep only the first two terms of the expansion [19, 31, 33, 36]

Lgas[P(V, t)] = − ∂

∂Vi
[D(1)

i (V)P(V, t)] + ∂2

∂Vi∂Vj
[D(2)

i j (V)P(V, t)]. (4.22)

A justification of this truncation, in the limit of small ε, comes from observing that
terms D(n)

j1... jn
are of order ε2n : this can be obtained by plugging the collision rule

into (4.20).
It is useful at this point to introduce the velocity-dependent collision rate and the

total collision frequency

ω̃(V) =
∫

dV′Wtr (V′|V), (4.23)

ωc =
∫

dV P(V)ω̃(V). (4.24)

The former quantity can be exactly calculated under the assumption of Gaussian
p(v), giving

ω̃(V) = χ

√
π

2

(
T

m

)1/2

e−ε2q2/4

×
[
(ε2q2 + 2)I0

(
ε2q2

4

)
+ ε2q2 I1

(
ε2q2

4

)]
, (4.25)

where the rescaled variable q = V/
√

T/M is introduced in Appendix A through
Eq. (A.14) and In(x) are the modified Bessel functions. To have an approximation
of ωc, on the other side, one has to make a position about P(V). For the sake of
obtaining a first result, let us take it to be a Gaussian with variance Ttr/M . With this
assumption, the collision rate turns out to be

ωc = χ
√

2π
√

T/m + Ttr/M = χ
√

2π

(
T

m

)1/2
√

1 + Ttr

T
ε2 = ω0 K (ε), (4.26)
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where ω0 = χ
√

2π
( T

m

)1/2
and K (ε) =

√
1 + Ttr

T ε2.

One is then able to compute the terms D(1)
i and D(2)

i j appearing in Lgas . The result
and the details of the computation of these coefficients as functions of ε are given in
Appendix A. Here, in order to be consistent with the approximation in (4.22), from
Eq. (A.15) I report only terms up to O(ε4)

D(1)
x = −ω0(1 + r)ε2Vx + O(ε5) (4.27)

D(1)
y = −ω0(1 + r)ε2Vy + O(ε5) (4.28)

D(2)
xx = D(2)

yy = χ
√

π/2

(
T

m

)3/2

(1 + r)2ε4 + O(ε5)

= ω0

2

T

m
(1 + r)2ε4 + O(ε5) (4.29)

D(2)
xy = O(ε6). (4.30)

The linear dependence of D(1)
β upon Vβ (for each Cartesian component β) allows

to define an effective granular linear drag with coefficient

ηg = ω0(1 + r)ε2. (4.31)

In the elastic limit r → 1, one retrieves the classical results: ηg → 2ω0ε
2 and

D(2)
xx = D(2)

yy → 2ω0ε
2 T

M . In this limit the Fluctuation-Dissipation relation of the
second kind is satisfied [20, 21, 26], i.e. the ratio between the noise amplitude and
ηg , associated to the same source (collision with gas particles), is exactly T/M .
When the collisions are inelastic, r < 1, one sees two main effects: 1) the time
scale associated to the drag τg = 1/ηg is modified by a factor 1+r

2 , i.e. it is weakly
influenced by inelasticity; 2) the Fluctuation-Dissipation relation of the second kind
is violated by the same factor 1+r

2 . This is only a partial conclusion, which has to be
re-considered in the context of the full dynamics, including the external bath: this is
discussed below, in Chap. 5 [16].

4.2.1 Langevin Equation for the Tracer

Putting together the results in Eqs. (4.27–4.30) with Eqs. (4.18–4.22), a Langevin
equation for the tracer can be written:

MV̇ = −Γ V + E , (4.32)

where Γ = γb + γg and E = ξb + ξ g , with

γg = Mηg = Mω0(1 + r)ε2 = ω0(1 + r)m (4.33)

http://dx.doi.org/10.1007/978-3-319-10286-3_5
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〈Ei (t)E j (t
′)〉 = 2

[
γbTb + γg

(
1 + r

2
T

)]
δi jδ(t − t ′), (4.34)

concluding that the stationary velocity distribution of the intruder is Gaussian with
temperature

Ttr = γbTb + γg
( 1+r

2 T
)

γb + γg
. (4.35)

Equation (4.32) is consistent with the Gaussian ansatz used in computing ω0.
I resume here the main consequences of Eq. (4.32), specializing for simplicity to

the one-dimensional case:

MV̇ = −Γ V + E (4.36)

with 〈E 〉 = 0 and 〈E (t)E (t ′)〉 = 2TtrΓ δ(t − t ′).
The solution of this stochastic equation is

V (t) = e−tΓ/M

⎡
⎣V (0) +

t∫
0

dsesΓ/ME (s)

⎤
⎦ (4.37)

which implies, in the stationary state, that

C(t) = 〈V (t)V (0)〉 = 〈V 2〉e−tΓ/M . (4.38)

The position of the intruder follows the diffusion equation which implies

〈(X (t) − X (0))2〉 =
〈 t∫

0

ds

t∫
0

ds′V (s)V (s′)
〉

→ 2Dt (t → ∞) (4.39)

with

D =
∞∫

0

dtC(t). (4.40)

For the granular intruder it is immediately obtained

D = Ttr

Γ
= γbTb + γg

( 1+r
2 T

)
(γb + γg)2 . (4.41)

Solving numerically the equation for the granular temperature and substituting the
result into the above equation, one can study D as a function of the restitution
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coefficient r [33]. When all other parameters are kept constant and r is reduced
from 1, the behavior of D is non-monotonic, it decreases, has a minimum and then
increases for lower values of r . Anyway, this minimum is expected for quite low
values of r or high values of the packing fraction φ, where the approximations
involved in this theory are not good. For this reason, at the values of parameters
chosen to have a good comparison with simulations, this non-monotonic behavior is
not observed.

It should be also noticed that, in the Homogeneous Cooling State, the self-diffusion
coefficient at a given granular temperature increases as r is reduced from 1, i.e. it has
an opposite behavior with respect to the present case [1, 2]. Other studies on different
models of driven granular gases have found expressions very close to Eq. (4.33),
which is not surprising considering the universality of the main ingredient for this
quantity, i.e. the collision integral [4, 25].

4.3 Non-Markovian Tracer’s Diffusion

As the packing fraction is increased, the Enskog approximation fails in predicting
dynamical properties [16, 29]. In particular, the velocity autocorrelation function
(VACF) C(t) = 〈V (t)V (0)〉 shows an exponential decay modulated by oscillating
functions [12, 33]. The Enskog approximation is unable to explain the observed
functional forms, because it only modifies by a constant factor the collision frequency
[3, 33]: a model with more than one characteristic time is needed. Additional time-
scales appear if memory effects are considered, therefore a non-Markovian model is
needed. However, as it is often the case when memory decays in a finite time, a non-
Markovian model can be mapped onto a Markovian one by increasing the number
of degrees of freedom. Very slow time-decay of memory kernels apparently rule out
such a Markovian embedding: nevertheless, even non-integrable power-law decays
can be represented as sum of a few exponential decays [15, 28] up to a time-scale
which is sufficiently long for all practical purposes.

A first approximation beyond the Markovian limit discussed above, is given by
coupling the intruder’s velocity to an auxiliary field:

MV̇ = −ΓE (V − U ) +√2ΓE T EV (4.42)

M ′U̇ = −Γ ′U − ΓE V +√2Γ ′TbEU ,

where EV and EU are white noises of unitary variance. Two new parameters appear:
the mass of the local field M ′ and its drag coefficient Γ ′. The dilute limit here is
obtained for Γ ′ ∼ M ′ → ∞. In such a limit indeed U → 0 and the equation for V
comes back in the form discussed above [33], see Eq. (4.32).

In Eq. (4.42), the dynamics of the tracer is remarkably simple: indeed V follows
a Langevin equation in a Lagrangian frame with respect to a field U , which can
be interpreted as the local average velocity field of the gas particles colliding with
the tracer. A first justification of this model comes from realizing [28, 38] that it is
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equivalent to a Generalized Langevin Equation with exponential memory, which is
consistent with a typical approximation done for Brownian Motion when, at high
densities, the coupling of the intruder with fluid hydrodynamic modes, decaying
exponentially in time (see [39], Sects. 8.6 and 9.1), must be taken into account. Here
such a coupling, which in principle involves a continuum of modes, is simplified to
be dominated by a single mode. This is sufficient to introduce a new timescale which
explains the oscillations in the VACF.

The full coupling would reproduce finer features which become relevant at larger
densities or larger times, such as long-time power-law tails. The fact that the “tem-
perature” of the local velocity field U is equal to the bath temperature Tb comes as a
consequence of the conservation of momentum in collisions, implying that the aver-
age velocity of a group of particles is not changed by collisions among themselves
and is only affected by the external bath and a (small) number of collisions with
outside particles. This scenario is fully consistent with the study of hydrodynamic
fluctuations for the velocity field of the same fluid model [17, 18].

A stronger justification comes, however, from its effectivness in reproducing the
numerical results, as detailed in [33]. From the simulations it is seen that the relaxation
time of the local field τU = M ′/Γ ′, rescaled by the mean collision time, increases
with the packing fraction and with the inelasticity, as expected. At high densities
it appears that Γ ′ ∼ 1/φ, and Ttr ∼ T , likely due to stronger correlations among
particles. At large φ, moreover, Ttr is larger than the value predicted with Molecular
Chaos, Eq. (4.35), consistently with a smaller dissipation for correlated collisions.

Equation (4.42) is not only able to reproduce the non-monotonic VACF seen
in numerical experiments, but also explains the violation of the Einstein relation,
which is one of the non-equilibrium effects discussed in Chap. 5. The presence of
an additional degree of freedom, U (t), is sufficient to break detailed balance. Such
a possibility was absent in the Langevin model, valid in the dilute limit, Eq. (4.32).

4.4 The Granular Brownian Ratchet

The topic of the intruder considered in Sect. 4.1 has an interesting extension, when
an asymmetric shape is considered. An example is shown in Fig. 4.1.

The model depicted in the Figure and discussed in this Section [6, 7], consists
of a triangular particle of mass M , shaped as an isosceles triangle with base l and
angle opposite to the base 2θ0 and surrounded by a gas of N disks of diameter σ = 1
and mass m = 1. For analogy with other mechanisms [30], in the following I call
“ratchet” the triangular particle. Note that the ratchet can only slide, without rotating,
along the direction x , perpendicular to its base and the whole system is enclosed in
a squared box of side L with periodic boundary conditions. The N + 1 particles
(for the moment all denoted by velocity v) undergo binary instantaneous collisions
described by the rule:

vi = v′
i − (1 + ri j )ci j [(v′

i − v′
j ) · n̂]n̂, (4.43)

http://dx.doi.org/10.1007/978-3-319-10286-3_5
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Fig. 4.1 Sketch of the 2D
model. The triangle is
constrained to move only in
the x̂ (left/right) direction,
while its orientation is fixed,
i.e. it cannot rotate. Gas
particles collide against it and
occasionally receive energy
from an external bath

l
2θ0

where v and v′ are the post-collisional and pre-collisional velocities, respectively.
The quantity ri j ≤ 1 are the coefficients of restitution for that particular collision,
taking value rd if both objects are disks or value rr if the ratchet is involved, n̂ is the
outward-pointing unit vector normal, in the contact point, to the surface of particle
i , and ci j is a coefficient which takes, in the different collisions, the values

ci j =
⎧⎨
⎩

1/2 if objects are both disks
1/(1 + ε2n̂2

x ) if j is the triangle
ε2/(1 + ε2n̂2

x ) if i is the triangle
(4.44)

where ε2 = m/M . Because of the constraint, the vertical velocity of the ratchet is
always 0. The collision rule (4.43) conserves the total momentum if i and j are disks,
and conserves the x-component of the momentum only, when the triangle is involved.
If ri j = 1 the total kinetic energy is also conserved. Three possible cases may be
considered: (i) a pure elastic gas where rd = rr = 1, (ii) a mixed gas where rd = 1
and rr < 1, (iii) a pure inelastic gas where rd < 1 and rr < 1. In both cases (ii) and
(iii) an external driving mechanism is needed to attain a stationary state and avoid
indefinite cooling of the system. To simplify the discussion, the driving mechanism is
again assumed to be analogous to a thermostat as in Sect. 2.3.5, and—in particular—
it is coupled only to the gas particles. The ratchet reaches a statistically steady state
because of the coupling with the gas.

4.4.1 Continuous Limit

In the Markovian limit discussed in Sect. 4.1, it is reasonable to study the ratchet
dynamics by means of the first of Eq. (4.1). Having detached the intruder from the
heat bath, I put Btr ≡ 0. The intruder’s transition rate now includes the details of

http://dx.doi.org/10.1007/978-3-319-10286-3_2
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the collision which depend on the point (angle θ ) along the intruder’s surface, i.e.

Wtr (V |V ′) = n

2π∫
0

dθ SF(θ)

∞∫
−∞

dv′
x

∞∫
−∞

dv′
y p(v′

x , v′
y)

× (V′ − v′) · n̂Θ
[
(V′ − v′) · n̂

] · δ[V − Vpost (V ′, v′, rr , ε)] (4.45)

with p(v) the gas particle distribution, Vpost the post-collisional ratchet veloc-
ity [see Eq. (4.43)], Θ the Heaviside step function, S the perimeter length, n̂ =
(sin θ,− cos θ) and for the triangle

SF(θ) = l

2 sin θ0

{
2 sin θ0δ(θ − 3π/2) + δ(θ − θ0) + δ[θ − (π − θ0)]

}
. (4.46)

Following numerical evidence, I approximate the velocity pdf of the gas, p(v), by
a Maxwellian with zero mean and variance T . It is straightforward to verify that
detailed balance, in the form

P(V )Wtr (V ′|V ) = P(−V ′)Wtr (−V | − V ′), (4.47)

holds only if rr = 1.
As numerical results suggest, the ME describes a driven-diffusive process. In order

to gain a deeper insight, it is convenient to approximate the ME by a Fokker-Planck
equation (FPE), from which I can extract the analytical expression of the drift and
diffusion terms. This is achieved by expanding the transition rates as in Sect. 4.2.
By retaining only the first two terms one obtains the sought FPE, which can be
still simplified by expanding these terms in the small parameter ε. The resulting
expressions suggest a simple physical picture, which can be illustrated with the help
of the Langevin equation associated with the FPE:

V̇ (t) = −γ V (t) + F

M
+ E (t) (4.48)

with noise

〈E (t)E (t ′)〉 = 2γ Tr

M
δ(t − t ′) 〈E (t)〉 = 0 (4.49)

The quantities γ and F are effective parameters related to the original parameters by

γ = 4ηnlε

√
T

2π M
(1 + sin θ0) (4.50)

F

M
= −nl

T

M
ε2(1 − sin2 θ0)η(1 − η) (4.51)
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1 − η = 1 − Tr

T
= 1 − rr

2
(4.52)

Hence, for rr < 1 the ratchet drifts with an average negative velocity

〈V (t)〉 = F

Mγ
= −1 − rr

8

√
2πT

M
ε(1 − sin θ0). (4.53)

Indeed, the net velocity vanishes linearly with ε → 0 and is very tiny for massive
ratchets. It is of interest to observe that in virtue of Eq. (4.52) the net driving force
is proportional to the temperature difference T − Tr , so that the tracer and the gas
temperatures play roles analogous to the two reservoir temperatures of the Brownian
ratchet model considered by [37]. In principle it is possible that for a purely inelastic
system (case iii), for some choice of inelasticity and masses, the difference T − Tr

can change sign, implying a change of sign of the average ratchet velocity.
From Eqs. (4.48)–(4.52) it is also possible to estimate the signal to noise ratio:

√
〈V (t)〉2

〈V 2(t)〉 − 〈V (t)〉2  √
2π

1 − rr

8
ε(1 − sin θ0). (4.54)

The measure of 〈V 〉 can be blurred by thermal noise in the limit of large M/m, a fact
that can be avoided with a large number of independent trajectories.

4.4.2 Other Methods, Models and Experiments

Collisional granular ratchets, or “motors”, have been studied under different kinds
of assumptions and with several models. The motor effect is present (it can even be
much stronger) also when the mass of the intruder is comparable or even smaller than
the mass of the gas particles. In such a situation the computation for ε � 1 does not
reproduce the numerical results. Typically skewed non-Gaussian distributions P(V)

appear and other approximations must be used [8].
The signal-to-noise ratio for the motor effect is considerably improved in the case

of a symmetric intruder with opposite faces made of different materials, i.e. with
different restitution coefficient [8]. In that case it is found that the 〈V 〉 is of order√

Ttr/M instead of ε
√

Ttr/M .
Experiments have also been performed in order to reproduce the predicted

effect [10, 13, 24]. In a real experiment, however, among the many effects not
included in the above theory, one plays a particular role: Coulomb friction. To sus-
pend the intruder in the granular fluid it is necessary to put it in contact with some
bearings. In most of the cases the intruder will suffer from an additional dissipative
force: Fcoul ∝ sign(V ) where sign() is the sign function. The theoretical study of
the effect of Coulomb friction on the model (4.1), even in the Markovian limit, is in
its infancy, but it has already revealed interesting surprises [9, 14, 32, 34, 35].
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Chapter 5
The Arrow of Time: Past and Future of Grains

Abstract In a granular fluid the balance between energy fluxes entering and leaving
the system establishes a non-equilibrium stationary state. Therefore time-reversal
symmetry is broken and this affects the statistical features of many observables.
A few examples are discussed here, pertaining to the two main paradigms studied in
previous chapters: tracer’s dynamics and hydrodynamics. In both cases the choice
of a reduced number of degrees of freedom appears as a contraction of information.
Sometimes this reduction affects non-equilibrium properties.

5.1 Equilibrium from a Dynamical Perspective

The condition of thermodynamic equilibrium can be stated in a very general way,
from the point of view of dynamics. Let us assume that we have an evolution equa-
tion which generates trajectories between time 0 and time t , and let us denote each
trajectory as

Ω t
0 ≡ {r(s), v(s)}t

s=0 (5.1)

starting from an initial condition r(0), v(0). The evolution can be stochastic (as in
Eq. (4.32)) or deterministic with random initial conditions. In both cases we have
an ensemble of possible trajectories. Let us assume that we are somehow able to
determine the probability “weight” (or density, if in a continuous space) of each
Ω t

0: P(Ω t
0). We stress that this is meant to be the absolute probability, i.e. it is not

conditioned by initial conditions.
Finally, let us define the time inversion operator T

T Ω t
0 = {r(t − s),−v(t − s)}t

s=0. (5.2)

Obviously T 2 = I (the identity operator).
The condition of thermodynamic equilibrium is equivalent to dynamical time

reversibility [29]. It simply states that

P(Ω t
0) = P(T Ω t

0). (5.3)
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5.1.1 The Case of Markov Processes

For a continuous time Markov process σ(t), a trajectory is described by the
sequence of visited states (σ0, σ1, σ2, ..., σn) and the time of permanence in each
state (t0, t1, t2, ..., tn with

∑
ti = t) and its probability is

P(ΩT
0 ) = p(σ0, 0)pperm(σ0, t0)W (σ0 → σ1)pperm(σ1, t1)...W (σn−1 → σn)

× pperm(σn, t − tn−1), (5.4)

where p(σ, t) is the probability of finding the process in state σ at time t , pperm(σ, t)
is the probability of staying for a time t in state σ , and W (σ → σ ′) is the conditional
probability of changing state from σ to σ ′.

In this case, condition (5.3) is satisfied if and only if

1. the system is in the stationary state, i.e. the time is very large and any memory of
the initial condition is lost; at large times one has p(σ, t) → μ(σ) the so-called
invariant probability;

2. for any couple of states σ and σ ′, the transition rates and the invariant measure
must satisfy the following condition

μ(σ)W (σ → σ ′) = μ(T σ ′)W (T σ ′ → T σ), (5.5)

called “detailed balance condition”.

5.1.2 Entropy Production

Whenever condition (5.3) is not satisfied, one may distinguish between the forward
and the backward time direction by appropriate measurements. Spatially extended
systems reveal their non-equilibrium properties through the appearance of spatially
directed currents. For instance, a substance coupled to two thermostats at different
temperatures T1 > T2, is crossed by a heat current flowing from temperature T1 to
T2. Anyway, the definition of equilibrium based on the probability of trajectories,
allows to construct a more general and abstract “current” which universally reveals
the presence of a time-arrow:

Jt = lim
t→∞

1

t
〈Wt 〉 (5.6)

with

Wt = log
P(Ω t

0)

P(T Ω t
0)

. (5.7)
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The current defined in (5.6) is called “entropy production rate” and the stochastic
variable in (5.7) is said “fluctuating entropy production”. This latter quantity has
been extensively analyzed in [15].

It is immediate to see that—in the stationary state—one has

prob(Wt = x)

prob(Wt = −x)
= ex (5.8)

which is called “fluctuation relation” (or sometimes “transient fluctuation relation”).
This is a simpler version of a very general relation which is valid (with appropriate
definitions of its object) also for chaotic deterministic systems [6–8].

For Markov processes one easily finds

Wt = log
p(σ0, 0)

p(σn, t)
+

n−1∑
i=0

log
W (σi → σi+1)

W (σi+1 → σi )
≈

n−1∑
i=0

log
W (σi → σi+1)

W (σi+1 → σi )
(5.9)

where the last approximation is true for bounded systems and large times (for large
times, when the system is not bounded, it may be not true, see for instance the
discussion in [21], and references therein).

5.1.3 Observables Related to Entropy Production

It is clear that the entropy production defined in (5.7) is very difficult to be mea-
sured as it is: even in simulations, one needs an expression for P(Ω t

0) which is not
easily calculated for a generic process. This is simplified for Markov processes, but
the problem of “experimentally” accessing (5.7) remains open, when a model (e.g.
transition rates) is not available [34]. In many situations, particularly those with a
well defined thermostat at temperature kB/β, it is found that entropy production is
related to the power injected by non-conservative forces acting on the system, e.g.

Jt ≈ βẇnc, (5.10)

where wnc is the work of non-conservative forces. Such a work is often given as
product of a generalized force and an internal current generated by the force (for
instance a difference of potential generating a charge current). Unfortunately this
relation is not as general as one hopes: it is sufficient to realize that there are many non-
equilibrium situations where a temperature is not clearly defined. Relation (5.10) is
considered to be valid in all situations near equilibrium, where—for instance—the so-
called “non-equilibrium thermodynamics” fairly describes the system [4] and entropy
production has a definition in terms of thermodynamic currents and generalized
thermodynamic forces.
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An instructive example of calculation of the entropy production can be given for
a simple process which is a slight generalization of Eq. (4.36):

v̇ = −Γ v + F(t) + E (5.11)

with Gaussian noise 〈E 〉 = 0, 〈E (t)E (t ′)〉 = 2T Γ δ(t − t ′), and where F(t) =
Fc + Fnc is a sum of a conservative force Fc = −U ′(x) and a non-conservative force
Fnc(t). This is also the equation that governs, at a first approximation, the process
of pulling a terminal of a macromolecule anchored to a surface and surrounded by
water; this system has been studied in recent experiments [16, 24].

To compute the probability of a trajectory, it is sufficient to consider discrete
times t0 + kτ with τ arbitrarily small and k ∈ [0, n] with n being the integer part of
(t − t0)/τ . Since the noise is Gaussian and delta-correlated, the sequence of variables
ηk = η(t0 + kτ) has the probability density

P[(ηn, t |...|η0, 0)] ∝ exp

(
−1

2

n∑
k=0

η2
kτ

)
(5.12)

which, in the limit τ → 0, becomes

P[(ηn, t |...|η0, 0)] ∝ exp

⎛
⎝−1

2

t∫
0

dsη2(s)

⎞
⎠ . (5.13)

Equation (5.11) tells us that η(t) = (v̇ + Γ v − F)/
√

2Γ T , which finally gives us

P[{η(t)}] ∝ exp(−L), (5.14)

where

L = 1

4Γ T

t∫
0

ds (v̇ + Γ v − F)2 =
t∫

0

v̇2 + Γ 2v2 + F2 − 2Fv̇

4Γ T
ds

+ v2(t) − v2(0) + 2{U [x(t)] − U [x(0)]}
4T

−
∫ t

0 Fnc(s)v(s)ds

2T
(5.15)

is called the thermodynamic action. To find the most probable path from (x0, 0) to
(xt , t), it is sufficient to minimize the action (5.15) while keeping fixed the endpoints.

The entropy production reads:

Wt = log
P(Ω t

0)

P(T Ω t
0)

= 	H

T
+

∫ t
0 Fnc(s)v(s)ds

T
(5.16)

http://dx.doi.org/10.1007/978-3-319-10286-3_4
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where 	H = v2(t)−v2(0)
2 + U [x(t)] − U [x(0)]. Equation (5.16), for large times,

allows one to identify the work done by non-conservative forces wnc(t) = Fnc(t)v(t)
done by the external non-conservative force (divided by T ) as the entropy produced
during the time t . This is an example of the result by Kurchan [13] and by Lebowitz
and Spohn [15] about the Fluctuation Relation for stochastic systems. An updated
review of the huge amount of literature which focuses on stochastic thermodynamics
in Langevin systems can be found in [27].

5.2 The Case of the Granular Intruder

As seen in Chap. 4, when N � 1 and in the limit of vanishing packing fraction,
the gas evolution is not perturbed by the intruder, which implies that the granular
intruder performs a Markov process. An analysis of the transition rates Wtr (V ′|V )

related to the collision with the gas [23] shows that the detailed balance property
depends on the form of the p(v) assumed for the gas. The intruder transition rates
satisfy detailed balance (with respect to a Gaussian invariant probability), if p(v) is
Gaussian, otherwise detailed balance is violated.

Anyway one has to consider the combined effect of the two baths, i.e. the collisions
with the gas together with the stochastic force of the external bath, as it is stated in the
first of Eqs. (4.1). It is not difficult to realize that, even if p(v) is Gaussian, this total
rate cannot satisfy detailed balance. The conclusion is that, in general, the granular
intruder cannot be modelled as an equilibrium process. Given in different words, one
has always the possibility—measuring suitable observable—to discriminate between
the correct time direction and its inverse.

5.2.1 The Paradox of the Large Mass Limit

In Chap. 4 we have seen that the granular intruder, in the limit of large mass and when
the surrounding gas is dilute, follows a Langevin equation with white noise and linear
drag. Only the formula for the parameters of the equation (drag coefficient Γ and
noise amplitude 〈E 2〉) show the joint effect of two different baths, which is peculiar
of granular systems. Anyway the linear Langevin equation is a standard example of
stochastic motion. It was proposed by Paul Langevin [14]—roughly a century ago–to
describe the so-called Brownian motion, i.e. the erratic trajectory of a pollen grain
suspended in water. In that case the “bath” is unique (just water) and the system is
at equilibrium, i.e. is invariant under the operation of time-reversal. Thanks to such
a symmetry, the work of Langevin (and of Einstein before him [5]) to compute the
coefficients of the equation was significantly simplified: there is no need to derive
them from microscopic kinetic equations, as we have done in Sect. 4.2.

Nevertheless, apart from the difference in the derivation, the equations are the
same. If one looks at the motion of the granular intruder any measurement would give

http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
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the same results as for the pollen grain: in other words, it is not possible to realize that
non-equilibrium processes occur (e.g. the inelastic collisions), if the intruder position
and velocity are the only available observables. Equivalently, Eq. (5.16) shows that
for the intruder in the large mass limit, the entropy production rate is zero.

Could we expect this result? The intruder is coupled to two different baths, one is
the original (external) thermostat, the second is the “gas” surrounding the intruder,
which acts as a bath in the large mass limit. What about energy fluxes in this system?

The energy injection rates of the two termostats are [33]

Qb = 〈V(t) · (ξb − γbV)〉 = 2 γb
M (Tb − Ttr ) (5.17)

Qg = 〈V(t) · (ξ g − γgV)〉 = 2 γg
M (T ′ − Ttr ), (5.18)

where T ′ = 1+r
2 is the granular temperature “probed by the tracer”. It is easy to

see that the balance of fluxes Qb = −Qg is equivalent to formula (4.35) for Ttr .
This balance implies that, if Ttr < Tb, then Ttr > T ′. When r < 1, the two fluxes
are different from zero, i.e. energy is flowing from the external driving, through the
tracer, into the granular bath.

Apparently, this contradicts the “equilibrium” nature of the Langevin equa-
tion (4.32). Actually this is not a paradox but only a consequence of Molecular
Chaos and the separation of time-scales which allows us to write Eq. (4.18) without
memory terms [19, 25]. The absence of memory terms implies that both ξb and ξg are
white noises and makes them undistinguishable: an observer which can only measure
V(t) cannot obtain separate measures of Qb and Qg , but only a measure of the total
energy flow Q = M〈V · V̇〉 = 0 which hides out the presence of energy currents.

A more detailed analysis, e.g. by relaxing some of the assumptions (large mass,
infinite surrounding gas or Molecular Chaos), puts in evidence the different time-
correlations of the two baths [26]: eventually, the observer, by means of some “filter”,
should be able to sort out their different contributions Qb and Qg . A model where this
separation is explicit has been discussed in Sect. 4.3-a discussion on its time-reversal
properties is given below, in Sect. 5.2.4.

5.2.2 Linear Response

If one applies to Eq. (4.32) an external time-dependent external force F(t), it appears
that

〈δV (t)〉 = 〈V (t)〉F(t) − 〈V (t)〉F≡0 =
t∫

−∞
ds R(t − s)F(s) (5.19)

with R(s) the so-called “response”. Equation (5.19) is a direct consequence of the
linearity of the Langevin equation. In general, for non-linear equations, one may
still use (5.19) to define the response function, neglecting terms of higher order in

http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
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F(t), which makes sense if F(t) is small enough. Obviously, in the impulsive case
F(t) = F0δ(t) one immediately has

R(t) = 〈δV (t)〉
F0

. (5.20)

It is straigthforward to realize that, in our case:

R(t) = C(t)

Ttr
, (5.21)

which, integrated in time, gives

∞∫
0

R(t) = 1

Ttr
D (5.22)

which is known as Einstein relation. The integral on the left hand side is the so-
called mobility: it corresponds to the ratio V∞/F0, when V∞ is the asymptotic
velocity reached by the intruder when a constant force F0 is applied from time 0 (i.e.
F(t) = F0θ(t)).

The Einstein relation is a particular case of a more general theorem, the so-
called Equilibrium Fluctuation-Dissipation relation (EFDR), which is valid for small
perturbations of a system at equilibrium, i.e. a system with stationary probability in
phase space given by ∼exp(−βH(r, v)). In such a system, when the perturbation
appears as an additive contribution −h(t)A(r, v) to the Hamiltonian, it is found for
the linear response [12, 18]

ROh = 〈O(t)〉h(t) − 〈O(t)〉h≡0

δh
= −〈O(t) Ȧ(0)〉h≡0. (5.23)

This is a fundamental result expressing a deep relation between linear response to
a perturbation and correlations measured in the absence of the perturbation. In the
last decades a large amount of scientific literature has been devoted to the study of
generalization of this relation to non-equilibrium situations [18]. The fact that a tracer
in a driven diluted granular fluid satisfies the EFDR has been seen numerically [19,
20] and, very recently, also in experiments [9].

5.2.3 The Granular Motor

As discussed in Sect. 4.4, when the intruder is not isotropic and its anisotropy breaks
symmetry with respect to a fixed direction (for instance in the triangle example of

http://dx.doi.org/10.1007/978-3-319-10286-3_4
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Fig. 4.1), a spontaneous constant force F appears, see for instance Eq. (4.48). This
leads to an asymptotic average velocity V = F/Mγ .

The time extensive contribution to the entropy production for this system reads

Wt = log
P(Ω t

0)

P(T Ω t
0)

≈ Tr − T

4Tr T

√
2πT γ [X (t) − X (0)]. (5.24)

Note that, on average, Wt > 0 since Tr < T and X (t) < X (0). It is always
〈|X (t) − X (0)|〉 ∼ t since the ratchet has an average constant velocity V .

In conclusion the asymmetry unveils the non-equilibrium property of the granular
intruder even in the large mass limit. It is interesting at this point to verify that the
breakdown of time reversal also breaks the EFDR [32].

It is immediate to see that, for this system, the linear response reads

R = 〈V (t)V (0)〉 − V
2

Tr
, (5.25)

which is a violation of the Einstein relation R = C(t)/C(0) (e.g. Eq. 5.21). As
expected, in the absence of detailed balance, the EFDR breaks down. This example
is quite simple: indeed the equation for the massive ratchet can be recast in an equation
for the variable z(t) = V (t) − V which is an equilibrium Langevin equation, for
this variable response and correlation are proportional as in the Einstein relation.
Anyway, such a re-casting hides out the lack of time-reversal symmetry expressed
by relation (5.24): the reason is that the new variable z(t) has not a well defined
symmetry with respect to time-reversal (V (t) − V goes into −V (t) − V when time
is inverted). Our analysis in terms of V (t) (and not z(t)) is, therefore, the only one
consistent and the breakdown of the EFDR is real, even if very simple.

More general out-of-equilibrium Fluctuation-Dissipation relations can be found
in the very recent literature, see for instance [1, 3, 17, 18, 28].

5.2.4 Coupling with the Fluid: Non-equilibrium Re-established

In Sect. 4.3, we have discussed a stochastic model for the intruder’s dynamics,
which is a fair approximation for moderate densities of the fluid. In Eqs. (4.42),
the non-Markovian effects due to the interaction between the intruder and the fluid
are accounted for by an auxiliary variable U (t). The auxiliary variable represents the
fluctuating local velocity field near the intruder.

An analysis of the steady state properties of Eqs. (4.42), along the same lines of
Sect. 5.1.3, shows that entropy production takes the form [22, 26],

Wt ≈ ΓE

(
1

T
− 1

Tb

) t∫
0

ds V (s)U (s). (5.26)

http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
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This functional vanishes exactly in the elastic case, r = 1, where equipartition holds,
T = Tb, and is zero on average in the dilute limit, where 〈V U 〉 = 0. Formula (5.26)
reveals that the leading source of entropy production is the energy transferred by the
“force” ΓEU on the tracer, weighed by the difference between the inverse tempera-
tures of the two “thermostats”.

Therefore, to measure entropy production, one needs to measure the fluctuations
of U , that is a local average of particles’ velocities in the proximities of the intruder.
In [26] such a procedure has been carried out and the Fluctuation Relation Eq. (5.8)
has been verified in numerical simulations at moderate densities.

A further success of the simple two-variables model in Eq. (4.42) comes with the
prediction of the linear response which, at moderate densities, does not satisfy the
Einstein relation Eq. (5.21). Indeed model (4.42) predicts C(t)/C(0) = fC (t) and
R(t) = fR(t) with

fC(R) = e−gt [cos(ωt) + aC(R) sin(ωt)]. (5.27)

The variables g, ω, aC and aR are known algebraic functions of ΓE , T , Γ ′, M ′
and Tb. In particular, the ratio aC/aR = [T − Ω(Tb − T )]/[T + Ω(Tb − T )],
with Ω = ΓE/((Γ ′ + ΓE )(ΓE M ′/M − Γ ′)). Hence, in the elastic (T → Tb) as
well as in the dilute limit (Γ ′ → ∞), one gets aC = aR and recovers the Einstein
relation C(t)/C(0) = R(t). Such predictions have been verified in numerical sim-
ulations [26]. Some of the results of [26] are reproduced in Fig. 5.1 which depicts
correlation and response functions in a dense case (elastic and inelastic): symbols
correspond to numerical data and continuous lines the analytical curves. In the inelas-
tic case, deviations from R(t) = C(t)/C(0) are observed. In the inset of Fig. 5.1 the
ratio R(t)C(0)/C(t) is also reported. Very recently an experimental verification of
this whole scenario has been obtained by studying the linear response of a rotating
probe in a shaken granular medium [9].

Fig. 5.1 Normalized
correlation function
C(t)/C(0) (black circles) and
response function R(t) (red
squares) for r = 1 and
r = 0.6, at φ = 0.33.
Continuous lines show curves
obtained with Eq. (5.27).
Inset the ratio R(t)/C(t) is
reported in the same cases
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It is important to notice that the main responsibility for the breakdown of the
Einstein relation is the coupling between V and U [2], indeed Eq. (5.27) can be
expressed in a different way: R(t) = aC(t) + b〈V (t)U (0)〉 with a = [1 − (T −
Tb)Ωa/Γ ′] and b = (T − Tb)Ωb, where Ωa and Ωb are known functions of the
parameters. At equilibrium or in the dilute limit the Einstein relation is recovered [19].

To conclude this section, we stress that velocity correlations 〈V (t)U (t ′)〉 between
the intruder and the surrounding velocity field are responsible for both the violations
of the Einstein relation and the appearance of a non-zero entropy production. It must
be stressed that coupling is different from correlation. Indeed a coupling between
V and a local field U certainly exists also for dense fluids at equilibrium. In this
case, anyway, the two temperatures in Eq. (4.42) are equal and a simple computation
shows that 〈V (t)U (t)〉 = 0. The variables are coupled but not correlated.

We also mention that larger violations of Einstein relation can be observed using
an intruder with a mass equal or similar to that of other particles [20], with the
important difference that in such a case a simple “Langevin-like” model for the
intruder’s dynamics is not available. In this case the system obeys the full Master
Equation (4.1).

5.3 Time-Reversal in Fluctuating Hydrodynamics

The principle learnt above roughly states that a coupling, between variables at differ-
ent temperatures, is sufficient to break equilibrium. Remarkable consequences are:
correlations among variables which are uncorrelated at equilibrium, the appearance
of currents or entropy production, the breakdown of the EFDR.

Another interesting situation, in this book, where coupled stochastic equations
for different fields appear, is fluctuating hydrodynamics, discussed in Sect. 3.4. In
particular, it has been mentioned that the linear approximation is already capable of
useful qualitative predictions for correlations, i.e. structure factors.

Let us consider the spatially homogeneous models discussed in this book, which
are the homogeneous cooling under suitable rescaling, see Sect. 2.3.3, and the
“bulk”-driving, see Sect. 2.3.5. In both cases, linearization around the homogeneous
state, a suitable choice of noises (see Sect. 3.4) and a space-Fourier transform, lead
to the following Langevin equation:

˙̃ai (k) = Ai j (k)ã j (k) + ξi (k), (5.28)

where the specific form of the dynamic matrix A and of the noise amplitudes
depend on the kind of thermostat, see [11]. In Eq. (5.28), in two spatial dimen-
sions (d = 2), for each wavevector k, ã is a four-dimensional complex field vector
ã = (δn(k), δT (k), u(k), v(k)). By u and v we mean the longitudinal and transverse
velocity field, respectively.

Static and dynamic structure factors in the steady state 〈ãi (k, t)ã∗
j (k, 0)〉 can

be computed from Eq. (5.28). They give information on correlation among

http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_4
http://dx.doi.org/10.1007/978-3-319-10286-3_3
http://dx.doi.org/10.1007/978-3-319-10286-3_2
http://dx.doi.org/10.1007/978-3-319-10286-3_2
http://dx.doi.org/10.1007/978-3-319-10286-3_3
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hydrodynamic fields. Some of these correlations vanish at equilibrium, which cor-
responds to the elastic limit. A noteworthy example is given by correlations in the
velocity field, which are absent at equilibrium, but become observable in the granular
(inelastic) case, as discussed in Sect. 3.4, in particular for the transverse modes we
have seen the simple expression Eq. (3.76). The complete study of correlations for
the homogeneous cooling state has been done in [30], for the bulk-driving without
viscosity in [31], and for the case of finite viscosity in [11].

A study of entropy production rate for such three models [10] reveals a common
structure to all such models:

Jt (k) = h(k)�[〈δn(k, t)Ṫ ∗(k, t)〉], (5.29)

with h(k) a complicate function of k and of the parameters of the system which van-
ishes in the elastic case. In particular in the bulk-driving model with finite viscosity,
where a bath-temperature Tb is defined, it is seen that h(k) ∝ Tb −T . Equation (5.29)
identifies the correlation among density and temperature time-derivative as the source
of violation of detailed balance. The study of Eq. (5.29) as a function of mode number
k for the three models [10], shows that:

• for bulk-driving with finite viscosity, Jt has a maximum at a finite k, while goes
to zero in both limits k → ∞ and k → 0: this is consistent with the picture that
both large scales and small scales are at equilibrium with temperature Tb and T
respectively;

• for bulk-driving without viscosity, Jt takes a finite value for k → 0 and decreases
toward 0 as k → ∞: in the absence of a macroscopic damping, the system is out
of equilibrium even at large scales;

• for the homogeneous cooling, Jt diverges for k → 0, signaling the instability at a
finite small k.

A study of non-linear fluctuating hydrodynamics is still lacking and certainly
deserves attention in the future.
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Conclusion and Perspectives

In the five chapters of this book I traced an itinerary across the wide subject of
granular fluids. The leitmotif of this personal walkthrough has been the discussion
of analogies and differences with respect to molecular systems.

A first analogy is the possibility of using kinetic theory, starting with an adaptation
of the Boltzmann equation, to describe the statistical properties of dilute granular
models and experiments. Analogies also include the possibility of a hydrodynamic
description, when slow space-time scales can be separated from the fast ones. Such
a condition is more common than originally thought: somehow, granular hydrody-
namics has a wider range of application than what expected from simple estimates.
Another clear point of contact with ordinary fluids is the appearance of transitions to
ordered structures (patterns) which are well described by hydrodynamic instabilities.
Last but not least, the dynamics of tracers dispersed in granular fluids is, for many
purposes, difficult to be distinguished from tracer’s normal diffusion, e.g. that of
colloids in molecular solvents. Violations of the equilibrium fluctuation-dissipation
relations, in many situations, can be small and not easily detected.

The most evident difference is the inherent non-equilibrium nature of granular
fluids: even a spatially homogeneous granular gas is constantly dissipating kinetic
energy and, to be stationary, needs energy injection from external sources. As a result,
common phenomena which, in molecular fluids, may arise only under an external
forcing (which introduces spatial currents), in granular fluids occur spontaneously:
shear and cluster instabilities are a fundamental example. A second striking difference
is the small number of elementary constituents, which is several orders of magnitude
lower than the typical size of molecular systems. This is reflected upon the magnitude
of fluctuations, which are much more relevant than in ordinary fluids. As a matter of
facts, fluctuations in a granular system can rarely be ignored. This makes granular
fluids an ideal benchmark for the many theories on non-equilibrium fluctuations
which enriched statistical physics in the last two decades.

From the perspective outlined here, one may highlight some problems deserving
further attention in the next future. Only a few attempts have been done toward
microscopic derivations of granular noise, e.g. for hydrodynamic fluctuations or
tracer’s diffusion. Such problem is an occasion to develop new statistical tools, or
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refine the existing ones, such as fluctuating Boltzmann equations and techniques
based upon projection operators. Large deviation theory offers a promising route,
but it must be adapted to the peculiarities of granular hydrodynamics considering,
e.g., the importance of inertia and the necessity to cope with vectorial fields. Another
important open problem is that of the fluid-solid (ordered or glassy) transition and
coexistence, and the role played in it by fluctuations. Such an issue is strictly related
to that of dense granular fluids, where the Molecular Chaos assumption fails because
of frequent recollisions. A promising starting point in this direction seems to be the
study of tracer’s dynamics, which displays memory effects as the host fluid’s density
grows. A fascinating connection could be conceived with microrheology in driven
(e.g. sheared) jammed granular systems. Last but not least, an almost unexplored
territory is that of the foundations of granular hydrodynamics, which relies upon
the fast relaxation to local equilibrium of many degrees of freedom. The H-theorem,
which is only valid for conservative interactions, should be replaced here by some new
guiding principle (see Sect. 2.3.6 for a recent attempt). Hydrodynamics foundations
also need the correct choice of relevant fields: for instance the choice of temperature
can be rigorously justified only in the limit of elastic collisions. When fast and slow
scales are not separated by many orders of magnitudes, the choice of fields is non-
trivial and could hold surprises.
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Appendix A
Expansion of the First Two Moments
of the Transition Rates for Large Mass
of the Tracer

For larger generality, in this Appendix I discuss the case where the gas surrounding
the intruder may have a non-zero average u:

p(v) = 1√
(2πT/m)d

exp

[
−m(v − u)2

2T

]
(A.1)

which is a task involving only the definition of new shifted variables

c = V − u (A.2)

c′ = V′ − u. (A.3)

We are interested in computing

D(1)
i (V) =

∫
dV′(V ′

i − Vi )Wtr (V′|V)

=
∫

dc′(c′
i − ci )χ

1√
2πT/mk(ε)2

× exp
{
−m

[
c′
σ + (k(ε) − 1)cσ

]2
/(2T k(ε)2)

}
. (A.4)

In order to perform the integral, we make the following change of variables (see
Fig. A.1 for an example)

cσ = cx
c′

x − cx√
(c′

x − cx )2 + (c′
y − cy)2

+ cy
c′

y − cy√
(c′

x − cx )2 + (c′
y − cy)2

c′
σ = c′

x
c′

x − cx√
(c′

x − cx )2 + (c′
y − cy)2

+ c′
y

c′
y − cy√

(c′
x − cx )2 + (c′

y − cy)2
(A.5)
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Fig. A.1 An example for the
change of variables
(c′

x , c′
y) → (cσ , c′

σ ),
introduced in Eq. (A.5). Such
change of variable, when
inverted, has two possible
determinations: in this
example both represented
vectors c′ yield the same
(cσ , c′

σ )

c’

c

c’

c

c

c’

σ

σ

which implies

dc′ = dc′
x dc′

y → dcσ dc′
σ |J |, (A.6)

where

|J | = |c′
σ − cσ |√

c2
x + c2

y − c2
σ

Θ(c2
x + c2

y − c2
σ ) (A.7)

is the Jacobian of the transformation. The collision rate is then

r(V) = χ

√
π

2T/m
e− mc2

4T

[
(c2 + 2T/m)I0

(
mc2

4T

)
+ c2 I1

(
mc2

4T

)]
, (A.8)

where In(x) are the modified Bessel functions. For D(1)
i we can write

D(1)
i (V) = χ

+∞∫
−∞

dcσ

∞∫
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dc′
σ (c′
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}
(A.9)
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where we have enforced the constraint of the theta function, namely cσ ∈ (−c,+c),

with c =
√

c2
x + c2

y . Notice that the integral in dc′
σ is lower bounded by the condition

c′
σ ≥ cσ which follows from the definition of cσ . In order to compute the integral,

we have to invert the transformation (A.5). That yields two determinations for the
variables c′

x and c′
y (see Fig. A.1)

(A)

⎧⎨
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Then the integral (A.9) can be written as
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yielding

D(1)
x = −2

3
χk(ε)

√
mπ

2T
cx e− mc2

4T

[
(c2 + 3T/m)I0(

mc2

4T
) + (c2 + T/m)I1(

mc2

4T
)

]
,

D(1)
y = −2

3
χk(ε)

√
mπ

2T
cye− mc2

4T

[
(c2 + 3T/m)I0(

mc2

4T
) + (c2 + T/m)I1(

mc2

4T
)

]
.

(A.11)

Analogously, for the coefficients D(2)
i j one obtains
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Then we introduce the rescaled variables

qx = cx√
T/m

ε−1 qy = cy√
T/m

ε−1, (A.14)

obtaining
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Up to this last results we have not introduced any small ε approximation. The next
step consists in assuming that q ∼ O(1) with respect to ε, which is equivalent to
assume that c2 ∼ T/M : this assumption must be compared to its consequences, in
particular to Eq. (4.35). When the assumption is consistent, expanding in ε and using
that I0(x) ∼ 1 + x2/4 and I1(x) ∼ x/2 for small x , one finds Eq. (4.30).
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