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1 Introduction 

'every chapter is an &troduction' (from D'Arcy Thompson) 

We are chemists, and as chemists we find it necessary to build models for 
the understanding and description of structures in science. This book 
concerns the tool we found in order to build and describe structures with the 
use of mathematics. 

Chemistry, as well as the rest of natural science, is awfully complicated - 
because it is Nature. Mathematics is man-made and therefore not as 
complicated. We found good use of it from group theory for crystal 
structure determination and description [1], and we used the intrinsic 
curvature to explain reactions and structures in inorganic solid state 
chemistry. We dealt with minimal surfaces, isometric transformations and 
applications in natural science [2]. Together with mathematicians and bio- 
scientists THE LANGUAGE OF SHAPE [3] was born. 

We found the daily use of the mathematics involved somewhat heavy, for 
instance the differential geometry, Riemann surfaces or Bonnet 
transformations. As chemists we are, we tried new routes - other branches - 
of mathematics. 

We introduced the Exponential Scale a few years ago, and the articles 
published are collected below. The field is unusually rich, and instead of 
writing more articles we decided to write this book, and search as deep as 
possible into the mathematics. 

We found that the 3D representations of the hyperbolic functions are the 
concave adding of planes, and the convex subtraction of planes. These give 
polyhedra in the first case, and saddles in the second. 

We also found that the multiplication of planes give the general saddle 
equations and the multispirals. And that the simplest complex exponential 
in 3D (also composed of planes) is a fundamental nodal surface, within 
0.5 % the same as the famous Schwartz minimal surface as found by 
Schwartz himself. This surface is in a way identical to a classical chemical 
structure. We found that the functions we do can be dissecting into planes 
or lines, which may be the roots that build the fundamental theorem of 
algebra, and our finite periodicity. 
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Here the natural exponential, e x, in 3D is a cube comer, and the Platonic 
polyhedra are the cosh(x) function. The complex exponentials with the 
general permutations in space are the same as the fundamental cubic 
symmetries as represented by primitive packing of bodies, face centred 
cubic packing, body centred packing and diamond packing. 

We derive the equation of symmetry, which really contains the 
exponential scale with its functions for solids, the complex exponentials 
with all the nodal surfaces, and the GD (gauss distribution) mathematics. 

We study the three dimensional structures of mathematical functions, such 
as the polynoms of the fundamental theorem of the algebra, the natural 
exponential, the circular functions, and the GD functions. And 
combinations of these. Doing this we can study the reaction of a sphere 
with itself or with a plane, or a complex exponential. And the same for a 
polyhedron, and also make the hyperbolic polyhedra. We do the same with 
rods or cylinders, or with other objects. 

And very important, we study finite, or infinite, periodicity of spheres, 
cylinders, or anything. 

We study the addition, the subtraction and the multiplication of functions. 

This is what we call the Nature of  Mathematics. 

During the work with this book we were surprised to realise that some 
earlier work in chemistry came to daylight again-  but now in form of 
mathematics. Starting almost 30 years ago, inorganic crystal structures in 
the solid state were systematically organised in an axiomatic and hierarchic 
way. The crystallographic operations translation, rotation and reflection 
were applied to fundamental building blocks in order to describe 
complicated structures. The work was finally summarised in a monograph 
[5], and later the rod packings were derived [6,7]. All this was 'handmade'. 

Piece by piece we found our descriptions of structures and the structure 
building operations in form of mathematical functions. The description of 
a structure is the nature of mathematics itself. We are now tempted to say 
that crystal structures and 3D mathematics are synonyms. 

We also found functions for the rod packings, and for defects in solids. And 
the mathematics for giant molecules like the cubosomes, the DNA double 
helix [8], and certain building blocks in protein structures. With the 
mathematics for dilatation we make twins, trillings, fourlings and sixlings. 
With the GD mathematics we make them periodic. 



Introduction 3 

Some beautiful work in chemistry has been carried out using the ELF 
(electron localisation function) method from quantum physics the recent 
years. The ELF descriptions of the boron hydrides are of particular interest 
[4] here as they also are described by fundamental functions in several 
different kinds of mathematics. They show up as simple roots to the 
fundamental theorem of algebra. They also show up in the 'cubosome' 
mathematics, in the GD mathematics and also as products of GD functions 
and complex exponentials. 

We conclude: 

We see topologies, more or less by accident, that are relevant to natural 
sciences. 
We see motion, attraction, or repulsion without the notions of time, speed 
or acceleration. 
We see molecules or crystal structure, without the notion of energy. 
We make molecules or structures from the fundamental theorem of algebra. 
We make molecules or structures from the Gauss distribution function. 

This is what we call the Mathematics of Nature. 

So we had the name to this book. 

We found we h a d -  unintentionally - written a continuation of THE 
LANGUAGE OF SHAPE. 

Michael Jacob 
Sten Andersson 

Stockholm, Sweden 
Sandvik, Oland 
March 1998 
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2 The  Roots  o f  M a t h e m a t i c s  - the Roots  o f  S truc ture  

Kant had said that it was Nature herself, and not the mathematician, 
brings mathematics into natural philosophy (D'Arcy Thompson [1]). 

who 

Here we describe the fundamental theorem of algebra in two and three 
dimensions, and show that functions often can be dissected into straight 
lines or planes. Polynomial products with suitable roots contain the 
commencement of periodicity and we give the link to the sinus function. 
Permutations of variables, and polynomial additions in three dimensions 
give the fundamental polyhedra, structure of simple molecules in natural 
science, and the core of the fundamental sphere packings. 
We give the link to The Exponential Scale. 
We study saddles, and also some important minimal surfaces. 
In Appendix 1 we introduce you to Mathematica, differential geometry, 
shapes of polyhedra and curvature. 

2.1 Multiplication of Polynomials 

The idea with this book is to study the variation of the variables x, y and z, 
which includes geometry. We will mainly work in 3D space, and only in 2D 
or 1D to clarify. 

Mathematics 
in between. 

have numbers, negative and positive, with the important zero 

For functions there are variables, and we explain these following Hardy [2]: 
When a volume V of a gas is compressed with a pressure p, the product of p 
and V is constant (Boyle's l aw-  this is natural science so there are 
deviations, but we assume it is ideal). 

pV =C 2.1.1 

With C being the constant, this means that if p is large, V is small and vice 
versa, just like using a manual pump for the filling of air in an empty tube 
to your bike. We have here described variables, but normally we call them x 
in one dimension, x and y in two dimensions, and x, y and z in three 
dimensions. 



-i 

-1 

- 2  . . . . . . . . . . . . . . . . . . .  

-2 -i 0 1 2 

Fig. 2.1.1. Equation after 2.1.2 with 
C=0. 

-I 
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- 2  . . . . . . . . . . . . . . . . . . . .  

-2 -i 0 1 2 

Fig. 2.1.2. C=0.1 

-2 
-2 -i 0 1 2 

Fig. 2.1.3. C=0.01 

1.5 

0.5 L~ 
0 o'.S { 'i'.5 2 

Fig. 2.1.4. C-0.1 

We plot this our first function after equation 2.1.2 (capital C means 
isosurface constant throughout this study). 

xy - C  2.1.2 

With C-0, 0.1, 0.01 and 0.1 we get figures 2.1.1, 2.1.2, 2.1.3 and 2.1.4. 
When C-0, two lines intersect as in 2.1.1, and as soon as C~0 as in 2.1.2 
and 2.1.3 the lines divide. Figure 2.1.4 is the part of the function that 
corresponds to Boyle's law above, with only positive values for the 
variables. 
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From this we leam that this function is described by two lines that cross 
each other without intersection for C different from O. 

We bring in the roots 

( x ) ( x -  1) 

and 

x 3 - 2x 2 + x - ( x ) ( x -  1)(x + 1) 

and study these in two dimensions, x and y: 

( x ) ( x -  1)(y)(y - 1) - C 2.1.3 

and 

( x ) ( x -  1)(x + 1 ) (y ) (y -  1)(y + 1)= C 2.1.4 

In figures 2.1.5 and 2.1.7 C=0, and in 2.1.6 and 2.1.8 C=0.01. 

-i 

-2 

- 3  . . . . . . . . . .  , , , , 0 . . . . . . . . . . . . . . .  

-3 -2 -i 0 1 2 3 

Fig. 2.1.5. Equation after 2.1.3 with 
C=0. 

-I 

-2 

-3 
-3 

(3 

-2 -i 0 1 2 3 

Fig. 2.1.6. C-0.01 
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-1 

-2 

-2 

-1 

- 3 - 2 - 1  o I 2 3 ~. . . . .  

Fig. 2.1.7. Equation after 2.1.4 
with C=0. 

-2 

-3 
-3 -2 -i 0 1 

Fig .  2 .1 .8 .  C = 0 . 0 1  

We have seen one of the most important properties of science: the 
commencement of periodicity itself and how it comes from the roots of an 
algebraic equation. The idea is to show how such an equation looks like in 
two and three dimensions-  we have chosen roots that give equidistant 
translation in order to keep complexity down. In figure 2.1.7 the output is 
more than the input, here there are 9 points identical via translation 
originating from the three points in x and three in y. C=0.01 in equation 
2.1.4 produces a structure of a continuos function of separated particles in 
figure 2.1.8. 

We continue with the equation of the seventh degree: 

x 7 - 14x 5 + 49x 3 - 36x - C 

o r  

x ( x -  1)(x + 1)(x- 2)(x + 2 ) (x -  3)(x + 3) = c 2.1.5 

The periodicity in 2D is shown in figure 2.1.9 after equation 2.1.6. 

x ( x -  1)(x + 1)(x-  2)(x + 2 ) ( x -  3)(x + 3) 

�9 y ( y  - 1 ) ( y  + 1 ) ( y  - 2 ) ( y  + 2 ) ( y  - 3 ) ( y  + 3)  - C - 0 
2.1.6 
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-2  -2  

- 4  - 4  . . . . . . . . . . . . . . . . . . . . .  
- 4  -2  0 2 4 - 4  -2  0 2 4 

Fig. 2.1.9. Periodicity after equation 
2.1.6. 

Fig. 2.1.10. Defect structure after 
equation 2.1.7. 

We can make a defect structure as well, by omitting one line in equation 
2.1 .7  as shown in figure 2.1.10. 

x ( x -  1)(x- 2)(x + 2 ) (x -  3)(x + 3) 

�9 y ( y  - 1 ) ( y  + 1 ) ( y  - 2 ) ( y  + 2 ) ( y  - 3 ) ( y  + 3)  - C = 0 
2.1 .7  

Fig. 2.1.11. Equation after 2.1.8 
with C =1. 

Fig. 2.1.12. Equation after 2.1.8 
with C-- 1. 

We extend to 3D with the function in 2.1.8  as shown in figure 2.1.11 with 
C =1. In 2.1.12 C =-1 to show the reverse tetrahedral symmetry with larger 
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boundaries and changed sign of the constant. This also to show the planes 
which build up the surface. 

xyz =C 2.1.8 

This space contains symmetry, the structure is tetrahedral with four 
identical surfaces from three variables. Increased boundaries show four 
"cube comers" that make the first fragment of periodicity. The total 
structure at Cr is built of perpendicular and non-intersecting planes. 

More roots show extended periodicity using the polynom 2.1.9. 

(x ) (y ) (z ) (x -  1)(x + 1)(x-  2)(x + 2) 

�9 (y  - 1)(y + 1 ) ( y -  2 ) ( y  + 2)  

�9 ( z - 1 ) ( z  + 1 ) ( z - Z ) ( z + 2 )  = 0.1 

or the identical 

(x)(y)(z)(x 2 - 1)(y 2 - 1)(z 2 - 1) 

�9 (x 2 - 4)(y 2 - 4)(z 2 - 4) - 0.1 
2.1.9 

Fig. 2.1.13. Equation after 2.1.9 with C-0.1. 
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In figure 2.1.13 the central part of the function is shown which is the 
structure of face centred cubic arrangements of bodies. With larger 
boundaries and the same function 2.1.9, we see the formidable periodicity 
in figure 2.1.14. 

Fig. 2.1.14. Equation after 2.1.9 with larger boundaries shows 
periodicity of the fundamental theorem of algebra. 

The result above is very similar to the fundamental solution of the wave 
equation: 

sinxsiny sinz = 0 2.1.10 

How comes? We have seen that periodicity itself is simple, exact and easily 
obtained with well chosen equations. But this periodicity is finite, as most 
phenomena in nature are. Going infinite means infinite products and we 
arrive at one of the definitions of sine as shown in 2.1.11. 

s in x = x( 1 - x~~.)( 1 - 
x 2 x 2 

)(1- )...  
22~ 2 32~ 2 

2.1.11 

o r  
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 (x2) 
s i n x -  xI- I 1-  

r=l r27z 2 

A first rearrangement gives equation 2.1.12, 

sinx=(~nn!) "2 x(x2-~ 2) (x2-22~ 2) (x2-32~ 2) (x2-42~2)...(x2-n2~2)...2.1.12 

and finally polynoms as 2.1.13. 

71; 
s i n g x -  ~ x(x 2 - 1)(x2 - 4)(x 2 - 9)...(x 2 - n  2) 2.1.13 

(n!) 2 

This clearly shows the relationship between sinus and the algebra, the roots 
of the polynom are the nodes of the circular function. 

For n=12 we have plotted this function together with sin~x in figure 
2.1.15. 

Fig. 2.1.15. Equation 2.1.13 with twelve roots compared with sinwx. 

The description of a structure with an algebraic equation has advantages - 
one is that changes can be introduced as a part of the function. We did so 
above in 2D and do so using equation 2.1.9 in 3D and take away one plane 
as in 2.1.14, which is shown in figure 2.1.16. 

( y ) ( z ) ( x -  1)(x + 1)(x-  2)(x + 2) 

�9 (y - 1)(y + 1)(y - 2)(y + 2 ) ( z -  1)(z + 1) (z-2) (z  + 2) = 0.1 
2.1.14 

Instead of taking away the plane we can move it after equation 2.1.15 
which is shown in 2.1.17. 
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( x -  0 .3)(y)(z)(x-  1)(x + 1)(x-  2)(x + 2) 

�9 (y - 1)(y + 1)(y - 2)(y + 2 ) ( z -  1)(z + 1)(z-  2)(z + 2) = 0.1 
2.1.15 

Fig. 2.1.16. One plane is missing after equation 2.1.14. 

We may choose any roots and as there are two or three variables whose 
combinations give more roots, the output becomes larger than the input. 
Another way to say this is that lines in 2D - or planes in 3D - meet. Any 
roots produces lines or planes, which may be irregularly spaced, but as the 
planes or lines are parallel, there is a structure. It may or may not have a 
sharp Fourier transform indicating long range order. Algebra offers beautiful 
models via its roots for natural solids and supports the structure building 
principles and the models for planar defects as developed for crystals [3]. 
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Fig. 2.1.17. The plane is back but moved. 

2.2 Addition of Polynomials 

The fundamental theorem of algebra says that every algebraic equation has 
a root, which means that a polynomial like 

1 2.2.1 f ( z ) -  an xn + an_l xn- + .... al  X+ a 0 

always can be written as a product of the roots: 

f(z) = k ( x -  x 1 ) (x-  x2) .... ( x -  x n) 2.2.2 

We just studied this theorem in 3D by multiplying the x, y and z terms. 
Addition is the next step, and the first formula is the simplest; 
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x n + yn + z n = C 2.2.3 

With n=2 there is the sphere, and n=4 brings out the 
planes with a constant of  1 O0 in figure 2.2.1. 

character of  the 

Fig. 2.2.1. Equation 2.2.3 with 
n-4. 

Fig. 2.2.2. Equation 2.2.3 with 
n=10. 

Fig. 2.2.3. Equation 2.2.3 with 
n-3 and C-0. 

Fig. 2.2.4. Equation 2.2.3 with 
n-3 and C-5. 
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For n=10 and the same constant there is figure 2.2.2, and we see that the 
curvature of the comers increases with n. Similarly the permutations of 
variables in space give the octahedron, the tetrahedron and the rhombic 
dodecahedron. But more about that in the next chapter. 

Odd n in equation 2.2.3 brings in negative numbers, and the result is 
hyperbolic geometry where planes meet in a centre point. Adding a 
constant brings in a cube comer and with this elliptic geometry. Figures 
2.2.3 and 2.2.5 are for n=3 and n=5, both with C=0. Figures 2.2.4 and 2.2.6 
are for n=3 and 5, and C=5. Higher exponentials increase sharpness and 
plane character, and curvature. 

Fig. 2.2.5. Equation 2.2.3 and 
n=5 and C=0. 

Fig. 2.2.6. Equation 2.2.3 and n=5 
and C=5. 

The observations above are contained in the power expansions of the 
natural function 

where 

e x = coshx+ sinhx 2.2.4 

1 e_ X c o s h x - - ( e  x + ) 
2 

and 
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1 
sinh x - - ( e  x - e  -x )  

2 

This is beautiful in three dimensions - cosh is elliptic and gives the 
polyhedra and morphology of crystals, whereas sinh is hyperbolic and gives 
the monkey saddles, which is the commencement of periodicity. The 
expansions below show that the geometry above is contained in the general 
functions: 

cosh x + cosh y + cosh z - 

l ( x 2 + y 2  z 2 1 (x 4 +  4 z 4 
=3+2-[. + ) + ~  Y + ) . . . -  

= e  x +e  y +e  z +e  - x  +e-Y +e  - z  

2.2.5 

Clearly it will become more cubic with more terms. 

The other expansion is 

sinh x + sinh y + sinh z - 

l ( x  3 + y 3 + z  3 1 y5 z 5 5+ + )...- 
"-" X "~ y -~- Z -~" 3- ~ 

= e  x +e  y +e  z - e  - x _ e - y  _e -Z  

2.2.6 

The exponential functions are the general case and we have said they 
belong to the Exponential Scale [4]. This will be further developed in the 
next chapter. 

We recall equation 2.2.3 again and point out that for n even we had elliptic 
geometry, and for n odd we had hyperbolic geometry. 

Bringing in roots as in equation 2.2. 7 means (finite) periodicity. And how a 
cube gradually turns into a cubic periodic structure. 

x ( x -  1)(x + 1)+ y ( y -  1)(y + 1)+ z ( z -  1)(z + 1) - 0 2.2.7 

The result is shown in fig. 2.2.7, and with larger boundaries and a different 
direction in 2.2.8. We use this topology to give the mechanism for how 
matter goes through a wall without making a hole in it (much has been 
written about the cubic equation but we doubt there is anything like this); 

x 3 - 2x 2 + x + y3 _ 2y2 + y + z 3 _ 2z 2 + z - C 2.2.8 
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With a C of-0.5 we have figure 2.2.9, with a const of 0 figure 2.2.7 and 8, 
and for a constant of 0.5 figure 2.2.10. 

Fig. 2.2.7. The cubic equation from 
2.2.7 with C=0. 

Fig. 2.2.8. As Fig. 2.2.7 but with 
larger boundaries and different 
direction. 

Fig. 2.2.9. The cubic equation 
with C---0.5. 

Fig. 2.2.10. C-0.5 

Figure 2.2.7 is the origin of the P surface (see appendix 2) and is as this 
periodic, and steadily growing out of a surrounding surface by expanding 
each equation with more roots as in the following few figures. We start 
doing this in equation 2.2.9 with one more term and its figure 2.2.11, which 
is close to the electron structure of our first molecule, B6H6 [5]. This dual 
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form of the molecule is now a finite periodic structure as shown in figure 
2.2.12 for a constant of 36, and which also is a primitive cubic structure. 

x ( x -  1)(x + 1)(x-  2) + y(y - 1)(y + 1)(y - 2) 

+ z ( z -  1)(z + 1)(z-  2) = -1 
2.2.9 

Fig. 2.2.11. Equation from 2.2.9 
gives electron structure of B6H6, as 
a larger part of the P surface. 

Fig. 2.2.12. Constant of 36 gives a 
f'mite primitive arrangement of 
bodies. 

Still another term, as in equation 2.2.10, gives figure 2.2.13 with a larger 
part of the P surface in the centre of the monkey saddle. 

x ( x -  1)(x + 1)(x-  2)(x + 2) + y(y - 1)(y + 1)(y - 2)(y + 2) 

+ z ( z -  1)(z + 1)(z - 2)(z  + 2) = 0 
2.2.10 

Finally in equations 2.2.11 and 2.2.12 there are more terms and the 
corresponding figures are 2.2.14 and 2.2.15 with still larger parts of the P 
surface. Figure 2.2.14 has been made more P-like by adding a constant. 
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Fig. 2.2.13. More roots give a larger part of the P surface. 

x ( x -  1)(x + 1 ) (x -  2)(x + 2 ) ( x -  3)(x + 3) 

�9 ( x -  4 ) (x  + 4 ) ( x -  5)(x + 5 ) ( x -  6) 

+y(y  - 1)(y + 1)(y - 2)(y + 2)(y - 3)(y + 3) 

�9 (y - 4 ) (y  + 4 ) (y  - 5)(y + 5)(y - 6 )  

+ z ( z -  1)(z + 1)(z-  2)(z + 2 ) ( z -  3)(z + 3) 

�9 (z - 4)(z + 4)(z - 5)(z + 5 ) ( z -  6) = 20000 

2.2.11 

x ( x -  1)(x + 1 ) (x -  2)(x + 2 ) ( x -  3)(x + 3) 

�9 ( x -  4 ) (x  + 4 ) ( x -  5)(x + 5 ) ( x -  6 ) (x  + 6) 

+y(y  - 1)(y + 1)(y - 2)(y + 2)(y - 3)(y + 3) 

�9 (y  - 4 ) (y  + 4) (y  - 5)(y + 5)(y - 6) (y  + 6) 

+z(z - 1)(z + 1)(z - 2)(z + 2 ) ( z -  3)(z + 3) 

�9 ( z -  4)(z + 4 ) ( z -  5)(z+ 5 ) ( z -  6 ) (z+  6) = 0 

2.2.12 
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Fig. 2.2.14. Roots after equation 2.2.11. 

Fig. 2.2.15. Roots after equation 2.2.12. 
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We continue with the simplest permutations of the variables x, y and z, 
which are (x+y), (x+z), (y+z), (x-y), (x-z), (y-z) and (x+y+z), (x-y-z), (-x- 
y+z), (-x+y-z). We have already made the cube from equation 2.2.3, and as 
said it is easy in the same way to show the rest of the symmetry of space 
with the other fundamental polyhedra - the octahedron, the tetrahedron 
and the rhombic dodecahedron. As the general case is the use of the 
exponential scale instead of algebra or classic geometry, this will be 
developed in the next chapter. 

Bringing in the roots after translation in these permutations of the 3D 
variables give the first fragments of periodicity. We have already done the 
beginning of the primitive cubic packing and the related molecule B 6 H 6  [5 ]  

above and continue with the octahedron of a presumptive BgH8 with the 
equation 

[(x + y + z )  2 - 1][(x + y + z )  2 - 9] 

+ [ ( x -  y - z) 2 - 1] [ ( x -  y - z) 2 - 9] 

+ [ ( - x -  y + z )  2 - 1 ] [ ( - x -  y + z )  2 - 9 ]  

+ [ ( - x  + y - z )  2 - 1] [ ( -x  + y - z )  2 - 9] - -10  

2.2.13 

The structure is shown in figure 2.2.16, which is the beginning of the cubic 
close packing. Next is the tetrahedron, o r  BAH4,  the equation of which is 
2.2.14, and the molecule in figure 2.2.17 gives the beginning of the 
diamond structure. 

(x + y + z)(x + y + z - 1)(x + y + z + 1)(x + y + z - 2) 

+ ( x -  y - z ) ( x -  y - z -  1 ) (x -  y - z + 1 ) (x -  y - z -  2) 

+ ( - x -  y + z ) ( - x -  y + z -  1 ) ( - x -  y + z + 1 ) ( - x -  y + z -  2) 

+(y - z -  x)(y - z -  x -  1)(y - z -  x + 1)(y - z - x -  2) = -0 .6  

2.2.14 

Equation 2.2.15 has the symmetry of the rhombic dodecahedron, with its 
compressed octahedron as shown in figure 2.2.18, and which is the 
beginning of body centred packing of bodies. 

[(x + y)2 _ 1][(x + y)2 _ 9] + [ ( x -  y)2 _ 1][ (x-  y)2 _ 9] 

+ [ ( x  + z)  2 - 1][(x + z)  2 - 9] + [ ( x -  z)  2 - 1 ] [ ( x -  z)  2 - 9] 

+[(y + z )  2 - 1][(y + z )  2 - 9] + [(y - z )  2 - 1][(y - z )  2 - 9] - -23  

2.2.15 
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Fig. 2.2.16. From equation 2.2.13 
the structure is the electron density 
of BsHg, dual of the molecule and 
beginning of the cubic close packing 
of bodies. 

Fig. 2.2.17. From equation 2.2.14 
the structure is B4H4, the beginning 
of the diamond structure. 

Fig. 2.2.18. From equation 2.2.15 the structure is the beginning 
of the body centred packing of bodies. 
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As was the case with the primitive cubic structure and the P surface above 
in figures 2.2.11 and 2.2.12, these polyhedra also constitute small parts of 
translation structures. The nodal surfaces [6] -topologically related to the 
periodic minimal surfaces [7] - are here the FRD-surface for the 
octahedron, the D-surface for the tetrahedron and the IWP-surface for the 
rhombic dodecahedron. 

The simplicity is astonishing. The roots of these functions are the 
symmetry of space and also the roots of structure and mathematics. How is 
it that they are also very close to the ELF structures of molecules? 
Symmetry brings the fundaments of chemistry and mathematics together. 

There are of course many ways to mix addition and multiplication in space 
and we shall just do one more, a simple, but important one in the section to 
follow. 

2.3 Saddles 

The classical saddle equation is 

x 2 _ y2 _ z = (x + y ) ( x -  y ) -  z = 0 2.3.1 

and in figure 2.3.1 there are planes, (x+y) and (x-y), multiplied with each 
other in equation 2.3.1, and subtracted by z. Only a rotation of 7z/4 differs 
this equation from xy-z=0 (see below). 

Fig. 2.3.1. Multiplication of two 
planes as in equation 2.3.1 gives 
the classical saddle. 

Fig. 2.3.2. Multiplication of three 
planes as in equation 2.3.2 gives 
the classical monkey saddle. 
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The planes are perpendicular and with a set of three meeting and non- 
intersecting planes separated by rff3 there is the classic monkey saddle as in 
equation 2.3.2 and figure 2.3.2. 

x(x 2 - 3y 2 ) -  z - 0 2.3.2 

The saddle function becomes periodic along c by using a circular function, 
as cos(z); 

(x + y ) ( x -  y ) -  cos rcz = 0 2.3.3 

Its surface in figure 2.3.3 is very similar to a classical minimal surface, the 
so-called Scherk's surface (exercise 2.4). 

The corresponding tower surface for the monkey saddle is 

x(x 2 - 3y 2) - cos nz = 0 2.3.4 

which is shown in 2.3.4. 

Fig. 2.3.3. The saddle is repeated 
along z after equation 2.3.3 and 
form a tower surface. 

Fig. 2.3.4. This tower surface is 
derived from the monkey saddle as 
in equation 2.3.4. 

The concept of deriving saddles by non-intersecting 
generalised [8] to 

i < n  �9 �9 

H [XCOS( 1~ ) + Y sin( 1---~ )] - z = 0 
i=O n n 

planes can be 

2.3.5 
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Fig. 2.3.5. Illustration of the general saddle equation 2.3.5. (a) Two-fold saddle 
created with n=2, in the region-2<x,y,z<2. (b) Three-fold saddle with n=3 in the 
region-3<x,y,z<3. (e)Four-fold saddle with n=4, -3<x,y<3, -2<z<2. (d) Five-fold 
saddle with n=5, -2<x,y,z<2. (e) Six-fold saddle with n=6, -2<x,y,z<2. (f) 17-fold 
saddle, n = 17, -3<x,y<3, -2<z<2. 
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Fig. 2.3.6 Equation 2.3.6 for saddle tower surfaces at corresponding n-values to Fig. 
2.3.5. (a)Saddle tower surface with n-2 and p=l.0. Illustrated in the region 
-4<x,y<4, -6<z<6. (b) Three-fold saddle tower (n=3, p=n), -3<x,y,z<3. (e) Four-fold 
saddle tower (n=4, p=n), -3<x,y,z<3. (d) Five-fold saddle tower (n=5, p=It), 
-3<x,y,z<3 (e) Six-fold saddle tower (n=6, p=n), -3<x,y,z<3. (f) 17-fold tower, n-17. 



30 Chapter 2 

and in figures 2.3.5 a-f there are saddles for n=2, 3, 4, 5, 6 and 17, the last 
one to indicate the generality. 

And as above these saddles can be repeated after z using a circular function, 
and beautiful surfaces are obtained, topologically the same as the minimal 
surfaces called tower surfaces. The general equation for these surfaces is 

i < n  �9 �9 

H[XCOS(In) + y sin(IX)]- cos(pz) - 0 
i=O n n 

2.3.6 

where p is the distance between saddles. The surfaces corresponding to the 
saddles above are shown in figures 2.3.6 a-f. 
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Exercises 2 

Exercise 2.1. coshx + coshy + coshz-10=0 is a rounded cube. Make it more 
cube-like by subtracting a sphere according to the expansion. 

Exercise 2.2. Square equation 2.28 and study the surface. 

Exercise 2.3. Find a Fibonacci structure in two dimensions using polynoms. 

Exercise 2.4. Plot the real Scherk minimal tower surface sinz=sinhxsinhy. 

Exercise 2.5. Plot the Scherk' first surface eZcosx=cosy, which also is a 
minimal surface. 

Exercise 2.6. Plot the surface eZcosTzx=y. Extended boundaries (+ 3, + 3, + 
5 of x,y,z) reveal an incredible transformation of an infinite number of 
planes into a single one. This equation is also a solution to the heat 
equation and was found to describe the seasonal variation of temperature 
below ground as a fraction of surface temperature [9]. 
This function has also been found to describe the potentials of a field 
between parallel electrodes terminated by a plane electrode [10]. 

Exercise 2.7. Describe the first tower surface and the helicoid with 
polynoms to show that finite periodicity is useful. The equations are 
xy+cosz=0 and xsinz+ycosz=0. 
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Answer  2.1 
a. ContourPlot3D[ Cosh[x]+Cosh[y]+Cosh[z]-.5 (x^2+y^2+z^2)-10, 
{ x,-4,4 }, { y,-4,4 }, { z,-4,4 } ,MaxRecurs ion-> 2,P lotPoints- 
>{ {5,3},{5,3},{5,3}, 
Boxed->False,Axes->True,AxesLabel-> {x,y,z} ] 

b. ContourPlot3D[Cosh[x]+Cosh[y]+Cosh[z]-10, 
{x,-4,4}, {y,-4,4}, {z,-4,4}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } } ,Boxed->False, 
Axes->True,AxesLabel-> {x,y,z} ] 

Fig. 2.1. a. 
Fig. 2.1. b. 

Answer  2.2 
ContourPlot3D[ (x y z)^2-1,{x,2,-2},{y,2,-2},{z,2,-2},MaxRecursion ->2, 
PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } } ,Boxed->False,Axes->True] 

Answer  2.3 
ImplicitPlot[ (x-l) (x-2) (x-3) (x-5) (x-8) (x-13) (y-l) (y-2) (y-3) (y-5) 
(y-8) (y-13)==O,{x,-1,14},{y,-1,14},PlotPoints->200] 

Answer  2.4 
ContourP lot3 D[ S in [Piz]-S inh [Piy] S inh [Pix], { x,-3,3 }, {y,-3,3 }, { z,-2.1,2.1 }, 
MaxRecursion->2,PlotPoints-> { {4,4}, {4,4 }, {4,4} }, 
Boxed->False,Axes->True] 
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Fig. 2.2. 

14 

12 

i0 

0 2 4 6 8 i0 12 14 
Fig. 2.3. 
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Fig. 2.4. 

Answer 2.5 
ContourPlot3D[Cos[Pi x] EAz-(Cos[Pi y]),{x,2,-2},{y,2,-2},{z,4,-4}, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, {4,4} }, 
Boxed->False,Axes->True] 
Note the different resolution in z. 

Answer 2.6 
ContourPlot3D[Cos[Pi x] EAZ-y,{x,3,-3},{y,3,-3},{z,5,-5}, 
MaxRecursion->2,PlotPoints-> { { 3,5 }, { 3,5 }, { 3,5 } }, 
Boxed->False,Axes->True] 

Answer 2.7. We use the fundamental theorem 
translation function: 

of algebra just as a 

x y + z (z+.5) (z,.5) (z+l) (z-l) (z+l.5) (z-l.5)=0 

and the result is in 2.7.a and is nearly identical with the minimal surface of 
Scherk in 2.7.b. 

The helicoid is also a saddle function 

xsinz+ycosz=0 
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We construct an equation with the polynomials of the algebra, with proper 
phase shifts to give the helicoid surface: 

xz(z + 1) (z -  1)(z + 2)(z - 2)(z + 3)(z - 3) + 

+y(z  + 0.5)(z - 0.5)(z + 1.5)(z - 1.5)(z + 2 .5 ) (z -  2.5) - 0 

The result is below and the similarity with the screw surface as calculated 
from the circular function is extraordinary, as the reader may find out for 
himself. 

Fig. 2.5. 
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Fig. 2.6. 

Fig. 2.7.b. 
Fig. 2.7.a. 
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Fig. 2.7.c. 
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3 The Natural Function and the Exponential Scale 

'for the present the reader may be content to draw his curves as common 
sense dictates' (Hardy) [1]. 

Here we give functions to polygons and polyhedra using the Exponential 
Scale. We calculate curvature. We derive the equation of symmetry in 
space and the fundamental polyhedra; the cube, the tetrahedron, the 
octahedron and the rhombic dodecahedron. We derive the equations for the 
icosahedron and the pentagonal dodecahedron from the equations of 
fundamental polyhedra. We give the mathematics for hierarchy and the 
compound polyhedra. 

3.1 Polygons and Planar Geometry 

The function 

y = e  x 3.1.1 

is y =e.e.e. . .  multiplied x times. This is called the natural exponential, 
which we will have great use of in this book. 

The natural number e was invented by Euler and he realised it to be so 
important that he named it after himself. The easiest way to define it is via 
its expansion: 

x x 2 x 3 x 4 
e x = 1+--+  + ~ +  ...... +... 3.1.2 

1! 2! 3! 4! 

The number e itself is calculated by making x=l, and results in e=2.718... 

The important property that its derivative is identical with the function 

de x 
itself, dx = ex' is easily realised from the expansion by derivating it. 

The first function is equation 3.1.3, in fig 3.1.1. This is really two straight 
lines, continuously transforming into each other. 
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y + e X - 0  3.1.3 

We continue with a number of  functions below. 

e x = 0  3.1.4 

e y = 0  3.1.5 

e x + e  y - 1 3.1.6 

x + y = 0  3.1.7 

e x+y =1 3.1.8 

First we look at e x = 0 which is a straight line in the same way as e y is, in 
figs 3.1.2 and 3.1.3. Adding the two after eq. 3.1.6 gives us the remarkable  
comer  of  3.1.4. Just adding x+y gives the straight line in 3.1.5 which is the 

tangent to the comer  as shown below. We see in 3.1.6 that e x+y also is a 
straight line. 

-5 

-i0 

-15 

2 

1 

0 

-20  . . . . . . . . . . . . . .  
- 20  -15  -10  -5  0 

Fig. 3.1.1. After equation 3.1.3. 

-i 

-2 

m 3 . . . . . . . . . . . . .  

-3 -2 -i 0 1 2 3 

Fig. 3.1.2. After equation 3.1.4. 
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-i 

-2 

~ 3  . . . . . . . . . . . . . . . . . . . . .  

-3 -2 -i 0 1 2 3 

Fig. 3.1.3. After equation 3.1.5. 

-2 

-4 

-6 

-8 

-iC .................... 
-i0 -8 -6 -4 -2 0 

Fig. 3.1.4. After equation 3.1.6. 

-i 

-2 

~ 3  . . . . . . . . .  , i . . . . . . . . . . . . . . .  

-3 -2 -i 0 I 2 3 

Fig. 3.1.5. After equation 3.1.7. 

2 

1 

0 

-I 

-2 

-3 ............................... 
-3 -2 -I 0 1 2 3 

Fig. 3.1.6. After equation 3.1.8. 

We add two more lines to eq. 3.1.6, 

e x +e y +e -x +e -y =C 3.1.9 

and for a constant of respectively 102 and 1011 we have the squares in 
figures 3.1.7 and 8. By calculating curvature (see Appendix 4) of the square 
comer we find it approaches a constant value of '42/2 with size; it is the 
size difference that makes the square in fig. 3.1.8 having sharper comers. 
Exponential addition in 3.1.10 of a tangent truncates the square in fig. 
3.1.9. 
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By subtracting the tangent we open the square as in fig. 3.1.10 and by 
adding all the tangents we get the formidable octagon in fig. 3.1.11. 
Subtracting all the tangents give the beautiful figures in 3.1.12 and 13. 

e x +e  y +e  -x + e - y  + e0.65(x+y) = 1011 3.1.10 

e x +e  y +e  -x + e - y  _ e0.55(x+y) = 10 4 3.1.11 

e x +e  y + e  - x  + e - y  

+e~ + e-0.65(x+y) + e 0.65(x-y) + e-0.65(x-y) = 1011 
3.1.12 

e x + e  y + e  - x  + e - y  

- e  0"65(x+y) - e  -0"65(x+y) - e  0"65(x-y) - e  -0"65(x-y) = 0 
3.1.13 

e x + e  y + e  - x  + e - y  _ e  x +e  y + e  - x  + e - y  

-e~ _ e-0.65(x+y) -e0"65(x-Y) _ e-0.65(x-y) = 10 5 
3.1.14 

-2 

-4 

S 20 

. . . . . . . . . . . . . .  . . . . . . . . . . .  

-4 -2 0 2 4 

Fig. 3.1.7. After equation 3.1.9. 

i0 

-i0 

-20 

-20 -i0 0 i0 20 

Fig. 3.1.8. After equation 3.1.9. 
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20,I 

i0 

-i0 

-20 

-20 -i0 0 i0 20 

Fig. 3.1.9. After equation 3. I. 10. 

i0 

-5 

-i0 

f 

k.__ _j 

-i0 -5 0 5 i0 

Fig. 3.1.10. After equation 3.1.11. 

20 

i0 

-i0 

-20 

-20 -I0 0 i0 20 

20 

i0 

0 

-i0 

-20 

/ 

-20 -i0 0 I0 20 

Fig. 3.1.11. After equation 3.1.12. Fig. 3.1.12. After equation 3.1.13. 
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20 

i0 

-i0 

-20 

-20 -i0 0 i0 20 

Fig. 3.1.13. After equation 3.1.14. 

On the exponential scale the addition of lines gives circular geometry, 
while subtracting gives hyperbolic. 

A great deal of classic geometry the last 2300 years consisted of adding 
lines or planes to construct more and more complicated polygons or 
polyhedra. This is easily done with the exponential scale. We derive 
general expressions for polygons, and use the formula 3.1.15 to find the 
lines to be added in 2 D for an m-gon. 

i_<m �9 �9 
E (XcOS(17"~) + Y sin(l~)) 
i=O m m 

3.1.15 

and the general expression for any polygon becomes 

i~m e(XCOS ( in/m )+y sin( in/m))n = C 

i=0 
3.1.16 

Fig 3.1.14 is a triangle, m=3, n=l and C=20. In fig. 3.1.15 n=3, and the 
advantage of higher exponential is obvious. The equation for the triangle is 
in eq. 3.1.17, and we continue with the equations for the square, the 
pentagon, the hexagon and the heptagon. 

In the examples below n=4 for m even, and n=3 for m odd. 
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-2 

-4 

-4 -2 0 2 4 

Fig. 3.1.14. After equation 3.1.16, 
m=3, n=l and C=20. 

-2 

-4 

///// 
-4 -2 0 2 4 

Fig. 3.1.15. After equation 3.1.17. 

Triangle 

e(XC~ 3 + e(XC~ 3 

+e (xc~ = 2.105 
3.1.17 

Square 

e (xc~ + e (xc~ = 2.10 5 3.1.18 

Pentagon 

e (xc~ 3 + e (-xc~ 3 

+e (xcos(3~/5)+ y sin(3r~/5)) 3 + e(-XCOS(4r~/5)- y sin(4r~/5)) 3 

+e (xc~ = 2.105 

3.1.19 
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2 

1 

0 

-i 

J 

~ 2  , . . . .  , , , - . . . . . . . . . . . .  

-2 -i 0 1 2 

Fig. 3.1.16. After equation 3.1.18. 

-2 

m 4 , ,  . . . .  0 . . . . . . . . . . . . . . .  

-4 -2 0 2 4 

Fig. 3.1.17. After equation 3.1.19. 

-I 

-2 

-2 -i 0 1 2 

Fig. 3.1.18. After equation 3.1.20. 

-i 

-2 

-2 -i 0 1 2 

Fig. 3.1.19. After equation 3.1.21. 

Hexagon 

e(XC~ 4 + e(XC~ 

+e (xc~ = 2.105 
3.1.20 
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Heptagon 

e (xc~ -I- e (-xc~ 

+e(XCOS(3rc/V)+y sin(3n/7)) 3 + e(-XCOS(4r~/Y)-y sin(4~/7)) 3 

+e(XC~ 3 + e(-XC~ 3 

+e (xc~ = 2.10 5 

3.1.21 

3.2 Polyhedra and Geometry 

We apply the polygon results in 3D. In fig. 3.2.1 we have added two planes 
on the exponential level, in fig. 3.2.2 three planes, and in 3.2.3 six planes 
and the equations are 3.2.1, 3.2.2 and 3.2.3 respectively. 

10 x + 1 0  y - 1 0 5  = 0  3.2.1 

10 x + 1 0  - x + 1 0  y - 1 0 5  =0  3.2.2 

10 x + 10 -x + 10 y + 10 -y + 10 z + 10 -z - 105 = 0 3.2.3 

Fig. 3.2.1. Two planes meet on the 
exponential scale. 

Fig. 3.2.2. Three planes meet on 
the exponential scale. 
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Fig. 3.2.3. A cube after equation 3.2.3. 

We can of course make the rest of the Platonic solid. We can calculate all 
sorts of crystal shapes. You can invent your own polyhedra and calculate 
them. We show you how with the tetrahedron in Appendix 3. 

We show the tetrahedron and the octahedron with their equations. 

e (x+y+z) +e  (x-y-z) +e  (-x-y+z) +e  (-x+y-z) = 400 3.2.4 

e(X+y+z) + e(X-y-z) + e(-X-y+z) + e(-X+y-z) 

+e -(x+y+z) +e  - (x-y-z)  +e  - ( -x-y+z)  +e  - ( -x+y-z)  = 40000 
3.2.5 
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Fig. 3.2.4. A tetrahedron after 
equation 3.2.4. 

Fig. 3.2.5. An octahedron after 
equation 3.2.5. 

Another way saying this is that e (x+y+z) is a plane, and we call it an 
exponential plane. If such planes are added together we can construct 
morphological shapes with continuos mathematical functions. 

By adding eight octahedral planes with weighting after eq. 3.2.6 the cube is 
truncated as in fig. 3.2.6, and by changing sign for one of the terms 
(x+y+z) as in eq. 3.2. 7 we get the picture of 3.2.7. As in two dimensions. 

10(x+Y +z) + 10(x-Y -z) + 10(-x-Y +z) + 10(-x+Y -z) 

+10-(x+Y +z) + 10-(x-Y -z) + 10-(-x-Y +z) + 10-(-x+Y -z) 

+102"3x + 10 -2'3x + 102"3y + 10-2"3y + 102"3z + 10 -23z = 1010 

3.2.6 

-10(x+Y +z) + 10(x-Y -z) + 10(-x-Y +z) + 10(-x+Y -z) 

+1 o-(x+Y +z) + 1 o-(x-Y -z) + 10-(-x-Y +z) + 10-(-x+Y -z) 

+102"3x + 10 -2.3x + 102"3y + 10-2.3y + 102.3z + 10 -2.3z = 1010 

3.2.7 

We do the same with the rest of the comers (eq. 3.2.8) and have the 
formidable fig. 3.2.8. 
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Fig. 3.2.6. A trtmcated cube after 
equation 3.2. 6. 

Fig. 3.2.7. Subtraction of one 
truncation opens the cube after 
equation 3.2. 7. 

Fig. 3.2.8. Subtraction of all truncations opens all comers of the cube 
after equation 3.2.8. 
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_10(x+y +z) _ 10(x-y-z) _ 10(-x-y+z) _ 10(-x+y-z) 

_10-(x+y +z) _ 10-(x-y-z)  _ 10-(-x-y+z)  _ 10-( -x+y-z)  

+102"3x + 10 -2.3x + 102.3y + 10-2-3y + 102-3z + 10-2.3z = 1010 

3.2.8 

Another simple way to show this effect is by changing sign for one of the 
terms in the equation for the cube" 

e x +e  y +e  z +e  - x + e  - y - e  -z - 100 3.2.9 

This is shown in fig. 3.2.9, and with 3.2.10 we get two more catenoidic 
openings as shown in figs. 3.2.10 and 11, with constants of C=-30 in fig. 10 
and C=+30 in 11. The monkey saddle in fig. 3.2.12 (with planes (110)) is 
clearly a transition state at zero constant and also clean hyperbolic 
geometry. 

e x +e  y +e  z - e - x - e  - y - e  -z = C  3.2.10 

We have now some rules" Adding planes means positive (elliptic) curvature, 
while subtracting means negative (hyperbolic) curvature. 

Fig. 3.2.9. Subtraction of a side of 
the cube after equation 3.2.9 
opens the cube. 

Fig. 3.2.10. Three sides subtracted 
with negative constant. 
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Fig. 3.2.11. Three sides 
subtracted with positive 
constant. 

Fig. 3.2.12. Three sides subtracted 
with zero constant give a monkey 
saddle. 

3.3 Curvature 

A larger isosurface constant, C, results in sharper comers for the 
polyhedron. But how does the size of the polyhedra actually change the 
curvature? We study the cube. For calculating the Gaussian and mean 
curvature we use the Mathematica scripts in Appendix 4. 

With the base e, the equation for the cube is 

e x +e y +e z +e -x +e -y +e -z =C 3.3.1 

We simplify the expressions of the curvatures by looking at three special 
cases, a vertex, an edge and the middle of a face. 

At a vertex the coordinates are one of the eight permutations 
and the Gaussian curvature in such a point is 

of x=y=z, 

2____~_1 _e  4x 
e4X 

K - 3.3.2 

(_e-X + e x)2 (6 - 3_~ _ 3e2X) 
2x e 

and the mean curvature 
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H ~ 

l l _ e x  +e3X) 
-~f3( e 3----x- - eX 

(_e -x +eX)(6_  3 _ ~ _ 3 e  2x) 
e 2x 

3.3.3 

The free variable, x, is the size of the cube. From this we see that the two 
curvatures decrease with increased size, to reach a constant value for larger 

1 
1 and the mean to H = ~ ,  cubes. The Gaussian curvature converges to K = 5  

which is seen in diagrams 1 a and b. 

K 
3 

2.5 
2 

1.5 
1 

0.5 

H 

3 

0 
X 

1 2 3 4 0 i 

Diagram la. Gaussian curvature of a 
comer of the exponential scale cube. 

. . . . . . . .  X 

2 3 4 

Diagram lb. Mean curvature of a 
comer. 

At an edge, x=y, while z=0. The curvatures at this point are 

K ~ 

2( -1 1 eX e3 x -t-  ~ - t -  - ) 
3x x e e 

(_e -x + eX)2(4_ 2__~__ 2e 2x) 
e 2x 

H ~ 

1 2 1 eX 2e 2x +e  - ( - 4  + ~ -~ 
e 3x e2X e x 

~f2(-e -x + e x)(4 2 2e2X) 
2x e 

3x) 

These plots are shown in diagram 2a and b. 

3.3.4 

3.3.5 



K 
3 

2.5 

2 

1.5 

1 

0.5 
, . . . . . . . . . .  

1 2 3 

H 
3 

2.5 

2 

1.5 

1 

0.5 
x 

0 4 0 
. . . . . . . . . .  ' . . . . . . .  X 

1 2 3 4 

Diagram 2a. Gaussian curvature of an 
edge. 
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Diagram 2b. Mean curvature of an 
edge 

As expected the Gaussian curvature converges to zero, since the edge is 
similar to a cylinder and thus has parabolic geometry. The mean curvature 

1 
converges to 2---~" 

At the middle of  a face the two curvatures converge to zero because the 
face turns more and more planar. The curvatures are 

8 -  4 _ 4e2X 
e 2x 

K =  3.3.6 
(_e-X + e x)2 (2 - e -2x - e 2x) 

4 2 2e2X 
2 x  

H =  e 3.3.7 
( - e  -x + e x)(2 - e -2x - e 2x) 

and their plots are shown in diagram 3a and b. 

K 
3 

2.5 

2 
1.5 

1 

0.5 

1 2 
' x o :3 4 

Diagram 3a. Gaussian curvature of a 
face in the exponential scale cube. 

H 
3 

0 . . . . . . . .  

0 1 2 
" X 
3 4 

Diagram 3b. Mean curvature of a 
face 
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Thus, all polyhedra in the exponential scale converge their Gaussian and 
mean curvatures when they grow with the isosurface constant. At faces, 
both of them are zero, and at edges the Gaussian curvature is zero. 

The smaller the polyhedra, the lower the constant and the more each 
vertex gets affected by the others which results in the polyhedra turning 
spherical and the curvatures increase. 

3.4 The Fundamental Polyhedra- and Others 

We shall now in particular study polyhedra, or bodies related to polyhedra. 
We take the complete permutations of the space variables x, y, z in the 
formula 

e(X+y+z)n +e(_X+y+z)n +e(X+y_z)n +e(X_y+z)n 

+e(X+y) m z +e(-X+y) m +e (+x)  m +e(Z-x)m 3.4.1 

+e (y+z)m +e (y-z)m +e (x)p +e (y)p +e (z)p - C  

This is a formula of symmetry in space and is particularly useful for 
describing shapes and forms of polyhedra and the transformation of one 
solid into another. It has often been said that topology is mathematics 
without equations. With this equation we can do topology with equations. 

For n,m=0 and p=l we have the natural exponential in 3D, which then also 
is a cube comer in fig. 3.4.1. 

e x +e y +e z =200 3.4.3 

e x3 +e y3 +e z3 = 200 3.4.4 

And for p=3 we show the effect of going up in the exponent in fig. 3.4.2. 

For p even we have the cube, and we show it for p=4 in fig. 3.4.3. 

e x4 +e y4 +e z4 = 1010 3.4.5 

For n,p=0, m=6 we have the equation for the rhombic dodecahedron with a 
constant of 104 and the base of e as shown in fig. 3.4.4. 
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Fig. 3.4.1. Natural exponential or 
cube comer after equation 3.4.3. 

Fig. 3.4.2. Cube comer with higher 
exponential after equation 3.4. 4. 

Fig. 3.4.3. Cube after equation 
3.4.5. 

Fig. 3.4.4. Rhombic dodecahedron 
after equation 3.4.9. 
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For m,p=0 and n odd we have the tetrahedron 
constant of 40000 and n=3 in fig. 3.4.5. 

which we show for a 

For m=0, p=0 and n even we have the octahedron, and we have chosen 
C=4000 and n=4 in fig. 3.4.6. 

Fig. 3.4.5. Tetrahedron after 
equation 3.4. 7. 

Fig. 3.4.6. Octahedron after 
equation 3.4.8. 

From these kinds of mathematics we leam that the fundamental polyhedra 
are the cube, the tetrahedron, the octahedron and the rhombic 
dodecahedron, and we summarise: 

cube 

e x4 + e y4 + e z4 = 1010 3.4.6 

tetrahedron 

e(X+y+z)3 )3 +e (x-y-z +e (-x-y+z)3 +e (-x+y-z)3 = 4.104 3.4.7 

octahedron 

e(X+y+z)4 +e(X-y-z)4 +e(-X-y+z)4 +e(-X+y-z)4 = 4.10 3 3.4.8 
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rhombic dodecahedron 

e(X+Y) 6 + e(X-Y) 6 + e(Z+X) 6 

+e(Z-X)6 +e(y+z) 6 +e(y-z) 6 = 104 
3.4.9 

We do the classic truncations of the first three just by adding equations for 
polyhedra: 

e(X+y+z)4 +e(X-y-z)4 +e(-X-y+z)4 +e(-X+y-z)4 

+e x8 +e y8 +e z8 = 107 
3.4.10 

e(X+y+z)2 +e(X-y-z)2 +e(-X-y+z)2 + e(-X+Y-Z) 2 

+e x8 +e y8 +e z8 - 10 5 

3.4.11 

e(X+Y+Z) 2 + e(X-Y-Z) 2 + e(-X-Y+Z) 2 + e(-X+Y-Z) 2 

+e (x+y+z)3 +e (x-y-z)3 + e (-x-y+z)3 +e (-x+y-z)3 =4 .10  6 
3.4.12 

Fig. 3.4.7. Truncated octahedron 
after equation 3.4. I 0. 

Fig. 3.4.8. Truncated cube aider 
equation 3.4.1 I. 
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Fig. 3.4.9. Truncated tetrahedron after equation 3.4.12. 

We have earlier found the equation for the icosahedron from the face 
vectors. The same equation is found from the addition of the octahedron 
and the rhombic dodecahedron as in equation 3.4.13. The constants a and b 
are varied from a=l,  b=l.2 for fig 3.4.10, a=l,  b=l.5 for fig. 3.4.11, and 
a=l.5, b=2.5 for 3.4.12. For a=1.618 (~), 2 �9 b=2.168 (~ )  there the i s  
icosahedron as in fig. 3.4.13. 

10a(x + y + z)4 + 10a(_x + Y + z) 4 _ )4 0a(x_y+z)4 +10a(x+y z +1 

+10(x + by) 4 + 10(-x + by) 4 + 10(z + bx) 4 + lo(z_ bx)4 3.4.13 

+10(Y +bz) 4 + 10(Y- bz) 4 = 104 
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Fig. 3.4.10. The addition of the 
octahedron and the rhombic 
dodecahedron gives the icosahedron 
after equation 3.4.13, a = 1, b-- 1.2. 

Fig. 3.4.11. a=l, b=l.5. 

Fig. 3.4.12. a=l.5, b=2.5. Fig. 3.4.13. a=x, b='l; 2 (icosahedron) 

Next is just a variation of b in the equation for the rhombic dodecahedron: 

10 (x+by)6 +1 0 (-x+by)6 +1 0 (z+bx)6 +1 0 (z-bx)6 

+ 10 (y +bz )6  -i- 10 (y-bz)6 = 10 4 

3.4.14 
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In the remarkable series of pictures, 3.4.14 - 3.4.19, the amalgamation of 
the rhombic dodecahedron and the cube (b=0) give a number of interesting 
solids. The pentagonal dodecahedron is one in fig 3.4.16, the pyritohedron 
in fig 3.4.17 is another, and the various shapes represented by figures 
3.4.18 and 19, are others. If the edges parallel to the cube axes are 
truncated in fig. 18 or 19, solids are obtained with great similarity to the 
picture of curved pyrite given by Hyde [2]. We like to thank Carlos Otero 
Diaz, Madrid for having given us a sample of this mineral, and stimulated 
this study. 

Fig. 3.4.14. b=l rhombic 
dodecahedron. 

Fig. 3.4.15. b=.85 

Fig. 3.4.16. b=l/x, the pentagonal 
dodecahedron. 

Fig. 3.4.17. b-.5, the pyritohedron. 
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Fig. 3.4.18. b=.4. Fig. 3.4.19. b=.25. 

3.5 Optimal Organisation and Higher Exponentials 

In chemistry the building block principle is common, but by no means 
unique for just chemistry. In astronomy it is called clustering of stars, 
growing to more complex structures; in biology for the building of proteins, 
DNA, evolution, life itself; and it exists in society as well indeed. The 
common dividend is the popular word hierarchy (in church), or rank (in 
army) or optimal organisation (science). We will show the mathematical 
machinery to use for the description of such structures, and also for their 
growth. 

The exponential scale is shown below and going up in organisation means 
just going up in scale, and we will demonstrate that with an example where 
we end up using the last term in the second equation, 3.5.2, below. 

e X 

x; eX; e ex., e e 3.5.1 

o r  

x 2 x 2 

x2; e x2., e e ,. e ee 3.5.2 

An approach to the understanding of relations of consecutive terms in the 
scale is via power expansion. 
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We start by the addition of six parallel planes in equation 3.5.3, giving a 
cube in fig. 3.5.1" 

e x2 + e y2 + e z2 - 4 - 0 3.5.3 

To make it simple we add another cube but smaller, the size being 
determined by the constant, and the different sizes are now locked by 
having different exponential functions on the next higher scale as in eq. 
3.5.4. It is here important to introduce a negative sign to obtain repetition 
and also to avoid too high numbers. This finding will be developed and used 
very much in structure building operations in forthcoming sections. 

e -(ex2 +ey2 +ez2 -4) +e -(ex2 +ey2 +e(z-2)2 -2) - 0 . 2 - 0  3.5.4 

The shape of the original functions is kept very well in the centaur 
function 3.5.4, which is shown in fig. 3.5.2. The new auxiliary parameter 
0.2 decides the size of the centaur function. A catenoid joins the two cubes. 

Fig. 3.5.1. Cube after equation 
3.5.3. 

Fig. 3.5.2. Two cubes after one 
function equation 3.5. 4. 

We now have a building block, which we want to use to build a more 
complex structure. We shall tum the unit of two cubes up and down and 
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start to put the two building blocks together. We need to go up on the scale 
again in order to lock the original shapes and the next equation is 3.5.5. 

x 2 e(e-(e x2 +e y2 +e z2 -4) +e-(e +e y2 +e (z-2)2 ~2) ~0.2) 

+e(e (e (x-3)2 +e y2 +e z2 -2) +e-(e (x-3)2 +e y2 +e (z-2)2 -4)_0.2) ._ 1.8 
3.5.5 

The new auxiliary parameter, 1.8, determines of course the size of the 
whole thing, as seen in fig. 3.5.3. 

Fig. 3.5.3. Two building blocks after equation 3.5.5. 

In order to make the two blocks join we change the x-parameter 
equation 3.5.6. 

to 

x2 +e y2 +e~Z-2) 2 -2) e(e-(e x2 +e y2 +e z2 -4) +e-(e -0.2) 

+e y2 +e z2 +e y2 +e (z-2)2 -4) +e(e (e (x-2)2 -2) +e-(e (x-2)2 -0.2) = 1.8 

3.5.6 

And in fig. 3.5.4 and 3.5.5 (projection) we see the finished building block 
with a centre of symmetry, and we can now use the equation to repeat and 
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build periodic structures. We can build larger building blocks by using this 
block to fuse with another unit, by going still higher up on the scale. 

Fig. 3.5.4. The two building blocks 
joint to one after equation 3.5.6. 

Fig. 3.5.5. The fusion of the two 
blocks in projection. 

We shall find great use of these simple rules later on in this book. But we 
shall show one spectacular example here. 

The octahedron can be said to consist of two sets of tetrahedral planes" 

eX+y+z +eX-y-z  + e-X-y+z + e-X+y-z 

+e - x - y - z  +e  -x+y+z +e  x+y-z +e  x-y+z = C  
3.5.7 

We lift them up each one separately as below on a double scale: 

e-(e (x+y+z)3 +e (x-y-z)3 +e (-x-y+z)3 +e (-x+y-z)3 -200) 

+e-(e (-x-y-z)3 +e (-x+y+z)3 +e (x+y-z)3 +e (x-y+z)3 -200) = 0.2 
3.5.8 
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Fig. 3.5.7. The 
octahedron after equation 
3.5.9. 

Fig. 3.5.6. Kepler's stella octangula after equation 
3.5.8. 

With this trick of using the double scale the tetrahedra are kept, in the 
different orientations, and we get the formidable picture of 3.5.6. This is 
what is called a compound of two tetrahedra in mathematics, an 
interpenetration twin in mineralogy, and Kepler's stella octangula in the 
history of science, and a cluster called Mo6C18 in chemistry. We shall find 
great use of this property of the double scale later on in this book. 

Just adding on the normal scale gives equation 3.5.9 and the octahedron in 
fig. 3.5.7. 

e(X+y+z)3 +e(X-y-z)3 +e(-X-y+z)3 +e(-X+y-z)3 

+e(-X-y-z)3 +e(-X+y+z)3 +e(X+y-z)3 +e(X-y+z)3 = 400 

3.5.9 
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Exercises 3 

Exercise 3.1. Make higher polygons, for example the 17-gon 
(heptadecagon). 

Exercise 3.2. Do the curvature of the 2D natural exponential (e x +eY). 

Exercise 3.3, The curvature of the comer increases with increasing 

exponent. Show this for the function e x2 + e y2 + e z2 . 

Exercise 3.4. Make the polyhedron between the cube and the octahedron 

Exercise. 3.5. Show how an octahedron may be transformed into a 
tetrahedron. 



~~
§ 

§ 
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Answer 3.2 
Calculate mean curvature and plot after below 

w[x,y,z]=E^x+E^y; 
meancurv[w,x,y,z] 
Plot[2(E^(2x+x)+E^(x+2x))/(2(E^(2x)+E^(2x))^(1.5)), 
{x,0,1 },PlotPoints->200,Axes->True] 

1.5 

1.25 

1 

0.75 

0.5 

0.25 

" ' 0 1 4  0 1 6  O i 8 " i  
Fig. 3.2 

Answer 3.3 
Calculate mean curvature for the 2D case and study the exponents in the 
denumerator and the dividend 

Answer 3.4 
The equation to use is 

e-(e x6 +e y6 +e z6 -1.75) 

+e-(e (x+y+z)4 +e (-x+y+z)4 +e (x+y-z)4 +e (x-y+z)4 -200) = 0.2 

Answer 3.5 
Use equation 

ea(X+y+z) 2 +ea(X-y-z) 2 +ea(-x-y+z) 2 +e+a(-x+y-z)2 + 

eb(-x-y-z) 3 +eb(-x+y+z) 3 +eb(x+y-z) 3 +eb(x-y+z) 3 _ 
-4000 

The octahedron is for the square and the tetrahedron for cubic exponent. 
We show: a=l, b=.85 in 3.5 a and a=.75, b=l in 3.5 b. 
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Fig. 3.4 

Fig. 3.5 a Fig. 3.5 b 
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4 Periodicity and the Complex Exponential 

Je dis que... (LaVallde Poussin in his description of 'fonctions circulaires' 
[1] 

o r  

'although measurement is the sieve which separates grain from chaff..., 
measurement without imagination is only an empty sieve' (Synge [2]). 

Here we describe the complex exponential in three dimensions. We show 
the topology of the minimal surfaces called P, D, G, IWP, FRD and O, C- 
TO as derived from various exponential equations. Permutation of space 
variables in periodic functions give pictures of crystal structures. 

4.1 T h e  T r a n s l a t i o n  V e c t o r  

In mathematics things repeat with isometry or dilatation. Infinite 
periodicity with a translation vector describes the isometric repetition in 
nature. Light waves are periodically repeated, like waves on water can be. 
Crystals are periodically organised, which means most solids are periodic 
since these represent the majority of solids. Glass does not transional 
periodicity, as it is a solidified liquid. Enzymes can crystallise, and billions 
of giant enzyme molecules then know exactly where to sit in a crystal. We 
say "know" because the molecule has a memory function given by its 
structure and hence knows how to repeat in a crystal. Just like the sodium 
and chloride ions do in a crystal in your table salt. So why do we have the 
translation vector-  the memory-  that describes repetition? Such questions 
are not really allowed - they are too difficult to answer. But we can always 
say that the structure is the optimal state. Or go over to negations and say 
- without the translation vector we had no ice to float on water, we had no 
crystals, we had no DNA, we had no calciumphosphate to build Apatite that 
builds our skeleton, we had no life and would not exist to raise these 
questions. If of any help. 

In the description of translation, the one dimensional version it 
relatively simple - walking is an example, propagation of waves another. 

is 

In two dimensions the translation vectors give periodicity 
directions, and lines interact in the plane to give 2D repetition. 

in two 
Which is 
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unique. The Alhambra omaments are one example, ordinary wall paper is 
another. 

Our main goal in this section is to study repetition in 3D. Our approach is 
to take the permutation of the space variables in functions derived from 
the general complex exponential, e TM. It quickly becomes very complicated, 
but to our surprise we can recognise crystal structures, even among the very 
difficult pattems, chemists as we are. 

We were taught, and we believed, that crystal structures are physical objects 
and should be explained as such. We now know better and will show that the 
description of the arrangement of atoms in crystals may be considered as a 
part of the mathematics in space. 

Crystals are built of atoms occupying various positions, and for a 
crystallographical description all the coordinate systems are necessary. The 
simplest case is the cubic, then comes the hexagonal, the tetragonal, the 
orthorhombic, the monoclinic and finally the triclinic. In the cubic case all 
unit vectors have equal magnitudes, and are perpendicular to each other. 
For the triclinic case the translation vectors all have different magnitudes, 
and the angles between them are all separated from 90 ~ . Symmetry 
operations like mirror, rotation and their combinations, the screw and 
glide, give the 230 groups in space (or 17 in the plane). Group theory gives 
the positions for the general variables, and finding the atomic positions in a 
crystal - also with protein molecules - is nowadays close to a 
straightforward technology. 

There are plenty of text books in the field, and here those that describe 
structures are of interest [3]. 

During this journey in mathematics we will find the most common of the 
simpler structures, and we describe them in the order we find them. That 
will be the way you learn crystal structures. 

In chapters to come we show several kinds of repetition - the circular, the 
handmade and the Gauss distribution functions. We need them all for the 
study of this subject- periodicity in space. 

Translation in natural science and mathematics is described with the 
circular functions, and often using the convenient relation between the 
complex number and the natural function, or the complex exponential. 
This is developed below. 

For a description - or definition - of what sin(x) really is (which is in no 
way straightforward) we refer to textbooks of mathematics by Hardy, 
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LaVall6e Poussin, Whittaker & Watson [4,1,5] and to chapter 2 in this 
book. 

The symmetry operations reflection and rotation are best studied in the 
structures formed by translation. The very important combination rotation 
+ translation (--the screw) will be dealt with in the next chapter. 

Small changes in the expansion of the natural exponential 

x x 2 x 3 x 4 x 5 
e X = l + ~ .  + 2! + 3! + 4! + 5! 

give the expansions for the circular functions 

cos x = 1 - 
x 2 x 4 

+ 
2! 4! 

and 

s i nx=  x - - -  
x 3 x 5 

+ ~ m . , o  

3l 5! 

which are periodic and describe infinite translation. 

12 

i0 

2 4 6 s 1o 12 

Fig. 4.1.1. The two functions 
cosx=0 and cosy=0 plotted on top of 
each other. 

12 

i0 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 2 4 6 8 10 - 1'2 

Fig. 4.1.2. The function 
cosxcosy=0 
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The function cos(x)=C is an infinite number of parallel lines in 2D, cos(y) 
likewise, and these two set of lines intersect in space at right angles in a 
Cartesian system. The two individual functions are plotted in fig 4.1.1. The 
combined function, the product, is plotted in 4.1.2. In fig 4.1.3 the 
isosurface constant is 0.02 which is increased to give 'atoms' in fig 4.1.4. 

12 

i0 

8 

6 

4 

2 

-3 .... ~ ~ 
0 2 4 6 8 i0 12 

Fig. 4.1.3. The function 
cosxcosy=0.02. 

12 

10 0 0 0 
) 0 0 ( 
O O O 

) O O ( 
O O O 

o .q. . . . . . . .  ~ . . . . . . .  ~ . . . . . . .  r- .  
0 2 4 6 8 i0 12 

Fig. 4.1.4. The function 
cosxcosy=0.4. 

Going 3D with the function 

cos rrx cos 7 D, cos ~z = C 4.1.1 

gives of course the similar pattem as shown in fig 4.1.5 and 4.1.6, with 
const of 0 res)ectively 0.1. The bodies in space are in cubic close packing, 
called fcc (face centred cubic). 

Fig. 4.1.5. Equation 4.1. I with 
C=0. 

Fig. 4.1.6. Equation 4.1.1 with 
C-0.1. 
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We go to addition with the function 

cos 7zx + cos rg:/= C 4.1.2 

Here we again have intersecting lines, this time of the x+y type in fig 4.1.7 
which with an increased C become 'atoms' in fig 4.1.8. 

For 3D we start with 

cos 7vx + cos z~j + cos 7zz = C 4.1.3 

0 1 2 3 4 5 6 

Fig. 4.1.7. Equation 4.1.2 with C=0. 

> 0 < 

0 1 2 3 4 5 6 

Fig. 4.1.8. Equation 4.1.1 with 
C=0.5. 

Fig. 4.1.9. Equation 4.1.3 with C=0. Fig. 4.1.10. Equation 4.1.3 with C=I. 
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This gives the well-known P-surface with C=0 in fig 4.1.9, the ReO3 
structure with C=I in fig 4.1.10, and primitive cubic (pc) packing of bodies 
with C=2 in fig 4.1.11. We can now see that the so famous P-surface is 
easily derived from perpendicular planes in the three directions. This is 
certainly pronounced for the ReO3 structure which is directly built of x+y+z 
planes. 

Fig. 4.1.11. Equation 4.1.3 with C=2. 

These figures represent the two simplest structures e v e r -  the primitive 
cubic packing of atoms and the so called ReO3 structure. The ReO3 
structure has metal atoms in the centre of the octahedra, which have 
oxygen atoms at the vertices. In the primitive cubic (pc) packing of atoms 
each atom has six neighbours. In each comer of the unit cell, or cube, there 
is one atom. This is a bad packing for spheres, but excellent if the bodies 
are cubes and made to approach each other. So, how well atoms are packed 
in solids depends on their shape. 

A simple combination as in eq. 4.1.4 gives cubes touching each other in fig 
4.1.12. 

cos 7t~ cos ~ + cos ~x cos rl;z + cos ~)t cos ~;z = 0 4.1.4 
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Fig. 4.1.12. Equation 4.1.4 with 
C=0. 

Fig. 4.1.13. Equation 4.1.4 with 
C=0.5. 

Instead of zero we have to choose a constant of 0.5 to get the surface in 
fig. 4.1.13, which now has different volumes on the different sides of the 
contours. The corresponding minimal surface is IWP. These three surfaces 
above are the simplest periodic surfaces and they are also mathematically 
identical to the three fundamental constant energy (Fermi) surfaces for 
metals in reciprocal space. The first surface, of intersecting planes, is for a 
body centred cubic (bcc) metal, the second, the so called P surface is for a 
simple cubic metal and the IWP is for a fcc or close packed cubic metal. 

Some slight changes of the trigonometric equations give more surfaces; 

Eq 4.1.5 is the D surface and eq. 4.1.6 is the G surface, and both are shown 
and discussed separately below. 

cos ~xcos ~vy cos rcz + sin rex sin roy sin nz = 0 4.1.5 

cos 7zxsinr~y + sinrcxcos rcz + cos rpy sin~z = 0 4.1.6 

The systematic mathematics for these surfaces above, and many more, 
were derived by von Schnering and Nesper in their description of their zero 
potential surfaces [6,7]. They call these surfaces nodal surfaces and they 
have also described their close relations to the minimal surfaces [8]. 
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4.2 The Complex Exponential and Some Variants 

We shall here use a somewhat different derivation of these nodal surfaces 
that makes these mathematics directly related to everything else we do. 

The traditional way to handle periodicity in chemistry and physics is to use 
the so called complex exponential. So we explain what that is. 

We start to use complex numbers. The number i is an imaginary number, it 

does not exist for us. Similar to minus one apple. The number i is ~ .  

From the expansions of the circular functions, shown in equations 4.2.1a 
and 4.2.1b, 

x 3 x 5 
sinx = x - ~  + ~ - .  .... 4.2.1a 

3! 5! 

x 2 x 4 
cosx - 1 -  ~ + - - - - .  ..... 4.2.1b 

2! 4! 

x x 2 x 3 x 4 x 5 
e x = 1 + - - +  + ~ +  + ~ .  .... 

1! 2! 3l 4l 5l 
4.2.2 

it is clear that e ix c a n  be written 

e ix = cos x + isinx 4.2.3 

and it is easy to show that 

1 i(eiX _e  -ix) sinx = ~  4.2.4a 

1 (eiX ix c o s x = ~  + e -  ) 4.2.4b 

These are the miracles in mathematics: The derivative of cos is sine and 
vice versa, the derivative of e x is e x ,which is the natural function. The 
complex exponential is ix e , and its remarkable and strange relations with 
the circular functions are given in eq 4.2.4a and b. And all adding up to give 
the periodic power expansions. We conclude giving the most beautiful 
formula of all, discovered by de Moivre: 
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e n i = - 1  4.2.5 

Using e ix means that the real part is cosx and the imaginary part is sinx. 
Or, 

Re[e ix] = cos x 

and 

Im[e ix] = sinx 

But the general thing to use is the complex exponential" 

e nix + e niy + er[iz 4. 2.6 

We write 

e ix = cos x + is inx 

and the real part of  the complex exponential is 

Re[e rfix +e  niy +e  niz ] = c o s ~  + c o s ~  + cos~z 4.2.7 

We simplify with the famous formula 

e ni = - 1  

and we get 

i 2x + i 2y + i 2z 4.2.8 

which is identical with 4.1.12. 

This is a bit snobbish- we could as well just use cosx+cosy+cosz. Or just use 
-1 as in the equation 

(-1)  x + ( -1)  y + (-1)  z = 0 4.2.9 

since 
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( -1)  x - cos rex + isin nx 

We could use -1 as base in these equations, there is no need to use e or i, in 

this book. Or sin or cos. It is all built into an expression like ( -1)  x. But we 
will still use e and i, as it is also useful in other kinds of mathematics. 

The P nodal surface is within 0.5% identical with the P minimal surface. 

Using complex numbers is simple and straightforward 
Useful routines are shown in Exercises. 

in Mathematica. 

The general complex exponential is obtained from the 
symmetry in eq. 3.4.1 by multiplying with i in the exponent: 

equation of 

e[i(x+Y+Z)] n + e[i(-x+Y+Z)] n + e[i(x+Y-Z)] n + e[i(x-Y+Z)] n 

+e[i(x+Y)] m + e[i(-x+Y)] m + e[i(z+x)] m + e[i(z-x)] m 

+e [i(y+z)]m + e [i(y-z)]m + e [i(x)]p + e [i(y)]p + e [i(z)]p = 0 

4.2.10 

n,m=0, p=l  give the P-surface, n,p=0, m=l  give the gyroid (Im-part) and 
IWP (Re-part), m,p=0, n=l give the D-surface (Im+Re), m=0, n and p=l  
give the Neovius surface (Re part) etc. The variation of constant and 
various combinations give all kind of crystal structures as we have discussed 
elsewhere [9], and to some extent will do below. 

_ x  2 
n,m,p=0 or 2 give expressions of the type e , 
distribution which will be discussed in detail in chapter 7. 

or the Gaussian 

A variant to study is functions of type 

e Re[eix] - e c~ 4.2.11 

This we have done to some detail elsewhere [9]. 

Another variant of study is the square of the whole function which gives 
two roots, one surface on each side of the original one: 

(cos x + cos y + c o s  z )  2 = 0.4 4.2.12 
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Fig. 4.2.1. Two interpenetrating P surfaces from equation 4.2.12. 

This is at this constant two interpenetrating 
structure is that of Nb6F15 as shown in fig. 4.2.1. 

ReO3:s and the chemical 

We continue with the complex exponential and for n =1, and C=0, and get 
the so called D surface in fig 4.2.2. Changing C to 3, and increasing the 
boundaries, we get bodies or atoms - the diamond structure - projected 
along a cube axis in fig. 4.2.3. With a C of 2.5 the atoms become 
connected via catenoids as in fig. 4.2.4 and its projection is in fig. 4.2.5. It 
is easy to realise the diamond structure in which each atom is bonded to 
four others and the structure is also that of cristobalite, or cubic ice. 

Re[ei(X+Y +z) + ei(X-Y -z) + ei(-x-Y +z) + ei(-x+Y-Z) ] 

+Im[e i(x+y+z) +e i(x-y-z)  +e i(-x-y+z) +e i(-x+y-z)]  =C 
4.2.13 
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Fig. 4.2.2. D-surface after equation 
4.2.13. C=0. 

Fig. 4.2.3. Diamond structure after 
equation 4.2.13. D=3. 

Fig. 4.2.4. Cubic ice with C=2.5 
after equation 4.2.13. 

Fig. 4.2.5. Fig. 4.2.4 in projection. 

We now square the function 4.2.13 as in eq. 4.2.14 below and for a 
constant of C=I and of 6.25 there are figures 4.2.6 and 4.2.7. The latter 
shows the structure of the extreme high pressure form of ice which we for 
obvious reasons call double ice. Or double diamond, as this could be the 
structure of a high pressure form, a metallic bcc structure, of diamond. 

(Re[e i(x+y+z) + ei(X-Y -z) + ei(-x-Y +z) + ei(-x+Y-Z)] 

+Im[e i(x+y+z) +e i(x-y-z) +e i(-x-y+z) + ei(-x+Y-Z)]) 2 = C  
4.2.14 
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Fig. 4.2.6. Two interpenetrating 
D:s after equation 4.2.14. 

Fig. 4.2.7. Double ice (high 
pressure form) after equation 4.2.14. 

In the pc structure as derived from the P surface, each atom had six 
neighbours. In the diamond structure each carbon atom has four other 
atoms as neighbours. We continue with the next - three neighbours. From 
the symmetry equation we derive the equation below: 

e i(x+y) +e  i(x-y) +e  i(x+z) +e i(-x+z) +e  i(y+z) +e  i(y-z) = C  4.2.15 

For a zero constant and the Im part we get the gyroid type surface as in 
figures 4.2.8 and 4.2.9. In order to bring out the neighbours clearly we use 
the square as in the equation 4.2.16 and obtain fig. 4.2.10. 

Fig. 4.2.8. Im part of equation 
4.2.15 gives gyroid surface. 

Fig. 4.2.9. Figure 4.2.8 in 
projection. 
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(e i(x+y) + e  i(x-y) + e  i(x+z) +e  i(-x+z) + e  i(y+z) + e i (y-z) )  2 -6 .25  

4.2.16 

This double net is two three-connecting nets, e.g. if in one of the nets an 
atom is placed at the junctions, each such atom has three neighbours. This 
net, when it exists for itself on one side of the gyroid surface, corresponds 
to the Si part structure of the SrSi2 structure, with the Sr atoms on the 
other side. In the case of the double net the whole structure is then of the 
y-Si type (a high pressure form of Si). There is a contact between the Si 
atoms across the fiat points of the gyroid surface completing the four 
coordination of silicon. The findings of these structures and nets come 
from Wells [10] and Nesper and von Schnering [6]. 

Fig. 4.2.10. Double gyroid after equation 4.2.16. C=6.25. 

At a constant of C=I in eq. 4.2.15, Re part, we have the important bcc, or 
body centred cubic packing of bodies in fig. 4.2.11. This is the structure for 
many metals and alloys (stainless steel). Each atom has here eight metal 
bonds to another identical atom at a distance of ~/3/2 of the cubic unit cell 
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edge. There are also another six identical metal bonds as indicated in the 
figure in form of fragments of atoms, with a distance of one unit cell apart. 
That is why this is described as 6+8 coordination for metals. 

This is also the structure of CsC1 with Cs and C1 atoms ordered in every 
second position. And every atom has eight electrostatic bonds to the other 
kind of atom. 

We square also this 
remarkable fig. 4.2.12. 

equation and for a constant of 3 we have the 

Fig. 4.2.11. Bcc pacing of bodies 
after equation 4.2.15, C=I. 

Fig. 4.2.12. The square of equation 
4.2.15, C=3. 

The beautiful four-connected net is that for the structure of NbO with Nb 
and O taking alternate positions of four coordination [10]. This is a very 
open description of the metallic structure of this oxide and we assume space 
is filled with electron densities localised to the spheres. This could also 
serve as the anti structure to the bcc metal structure, with the four 
connected surface as the electron density. 

The IWP surface has different volumes on each side of the surface - this is 
the reason why this square is different from those above. 
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4.3 Some Other Exponentials 

Another variant to study is the exponential functions below: 

(COS 71;X) 2 + (COS 7Zy)2 + (COS 71;Z) 2 - 2 4.3.1 

( c o s ~ )  4 + (cosTgy) 4 + (cos~z) 4 - 2  4.3.2 

(cos 7Zx) 6 + (cos ~y)6 + (cos ~z) 6 = 2 4.3.3 

and we plot them in figures 4.3.1, 2 and 3. We see that the octahedra go 
apart, and are only joined by thin tube-like catenoids as an effect of going 
up in exponential. 

By making x,y approach 0, the value of (cos z) n stay close to zero over 
longer intervals of z, with increasing n. 

Similarly we do the function 

(cos ~:(x + y))8 + (cos r r (x-  y))8 + (cos~;(x+ z)) 8 

+(cos r r (z-  x)) 8 + (cos ~:(y + z)) 8 + (cosr r (y-  z)) 8 = 2 
4.3.4 

Fig. 4.3.1. The equation is 4.3.1 
with C-2. 

Fig. 4.3.2. The equation is 4.3.2 
with C=2. 
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Fig. 4.3.3. The equation is 4.3.3 with C=2. 

Fig. 4.3.4. Part of the O,C-TO 
surface from 4. 3.4 with C=2.99. 

Fig. 4.3.5. C=2. 
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This is a part of the O,C-TO surface which compared with the IWP has six 
extra catenoids in octahedral symmetry, and which for a constant of 2 are 
extremely thin as seen in fig. 4.3.4. At higher constants we are coming 
back to the IWP as in fig. 4.3.5 calculated for a constant of 2.99. 

In fig. 4.3.6 we have used equation 

(cos~(x+ y))4 + (cos~(x_ y))4 + (cos~(x+ z)) 4 

+(cos ~(z - x)) 4 + (cos ~(y + z)) 4 + (cos 71;(y - z)) 4 - 1.5 
4.3.5 

to describe the O,C-TO surface. Chemically this corresponds to the sodalite 
structure [9]. 

Fig. 4.3.6. Equation 4. 3.5 gives 
O,C-TO surface or sodalite 
structure. 

Fig. 4.3.7. Square four connected 
net from equation 4.3.6. 

Just using squares and a constant of 2.1 according to equation 4.3.6 give an 
interesting distortion of the IWP. This is the square four connected net 
again in fig 4.3.7, now without the spheres from fig 4.2.12. 

(cos rl;(x + y))2 + (cos ~ ( x -  y))2 + (cos ~(x + z)) 2 

+ ( c o s ~ ( z -  x)) 2 + (cos~(y + z)) 2 + ( c o s ~ ( y - z ) )  2 = 2.1 
4.3.6 

The complete permutation has an interesting development for the 
equation: 
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(cos n(x + y + z)) 4 + (cos ~ ( x -  y - z)) 4 

+(cos ~ : ( -x-  y + z)) 4 + (cos ~:(-x + y - z ) )  4 - C 

4.3.7 

With a constant of 1 we have a beautiful Kepler star of fourteen atoms in 
cubic close packing. We make the atoms approach each other by changing 
constant, and at a value of 1.05 extra particles are created as shown in fig. 
4.3.9. 

Fig. 4.3.8. Kepler star of bodies 
from equation 4. 3.7 with C = 1. 

Fig. 4.3.9. Small particles appear at 
C-1.05. 

When the constant increases, the small round particles grow into 
tetrahedral shape and finally join the larger round bodies, each at eight 
places via catenoids. The larger bodies become cube-like. Chemically this 
can be said to be the structure of Till2 with the larger bodies as titanium 
atoms in ccp, while the small atoms are the hydrogens. The structure is of 
the type of CaF2. 

Each small atom is surrounded by four larger in a tetrahedral manner, which 
with the catenoids developed is a piece of the D-surface. The larger bodies 
are surrounded by eight small ones, giving a shape as a piece of the IWP 
surface. Two typical polyhedral parts of this FRD surface are given in 
figures 4.3.12 and 4.3.13, both calculated for a C of 1.5. 

And in fig. 4.3.14 we give the complete FRD surface as calculated for a 
constant of 1.6. 
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For a constant of  1.97 we get a beautiful variant of FRD as seen in fig. 
4.3.15. 

Finally we show again the remarkable behaviour of the function for a 
constant of  2 in eq. 4.3.8 and fig. 4.3.16. 

(cos rr(x + y + z)) 8 + (cos n ( x -  y - z)) 8 

+(cos n : ( - x -  y + z)) 8 + (cos zr(-x + y - z)) 8 = 2 
4.3.8 

Fig. 4.3.10. At C=1.2 a description 
of the Till2 structure. 

Fig. 4.3.11. At C=1.25 the FRD surface 
starts to develop. 

Fig. 4.3.12. At C=1.5 the IWP 
part of the FRD surface. 

Fig. 4.3.13. At C=1.5 a typical 
part of the FRD surface, still from 
equation 4.3.7. 
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Fig. 4.3.14. At C=1.6 the complete part 
of the FRD surface. 

Fig. 4.3.16. At C=2 an interesting 
variation of the FRD surface as in 
figures 4.3.1-3. 

Fig. 4.3.15. At C-1.97 a beautiful variation of  the 
FRD surface. 
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Exercises  4 

i2x 
Exercise 4.1 Expand e ix and e 

Exercise 4.2 Do the equation (-1) 2x +(-1) 2y +(-1) 2z =0 ,  and the 

equation (-71:) 2x + (_~)2y + (__71;)2z = 0. Explain the difference. 

Exercise 4.3 Plot Re[(-1) 2x +(-1) 2y + (-1) 2z -0 ]  and describe the result. 

Exercise 4.4 Do the calculation below (written for Mathematica) and find 
out what surface it is, and describe the part obtained. 

C ontourP lot3 D [((Cos [Pi(x+y-z)])^4+(Cos [Pi(x-y+z)])A4+ 
(Cos [Pi(-x+y+z)])A4+(Cos [Pi(-x-y-z)])^4) - 1.5, {x,. 5,0 }, {y,.5,0 }, { z,.5,0 }, 
MaxRecursion->2,PlotPoints-> { { 5,3 }, { 5,3 }, { 5,3 } } ,B oxed->False, 
Axes->True] 

Exercise 4.5 Plot the expansion of cosine using 12 terms. Compare with 
cosine. 

Exercise 4.6 Show that the equation 4.2.13 is identical with 4.1.5. 



Periodicity and the Complex Exponential 95 

Answer 4.1 

ComplexExpand[E^(I x)] = cos x + i sin x 
ComplexExpand[E^I^(2 x)] = cos xsin nxe c~ + isinsin ~:xe c~ 

Answer 4.2 

ComplexExpand[-12x] = (-12x) - cos27vx + isin27vx 

ComplexExpand (__~2x) _ ~2x cos2zt~ + i~ 2x sin2rt~ 

Answer 4.3 

A A A ContourPlot3D[Re[(-Pi) (2x)+(-Pi) (2y)+(-Pi) (2z)], 
{x, 1,- 1 }, {y, 1,- 1 }, {z, 1,- 1 },MaxRecursion->2,PlotPoints 
-> { { 5,3 }, { 5,3 }, { 5,3 } } ,Boxed->False,Axes->True] 

Fig. 4.3 

This a concentric structure of type described in [6]. The changing of the 
base from n to something closer to one, say 1.5, reveals a mechanism for a 
transformation to the P-surface. This means we have the topology for 
making a small molecule grow to a bigger, and finally ending up with an 
infinite lattice. Try and show how a B6H 6 molecule grows into the P 
surface. 
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Fig. 4.4 

The tetrahedral part of FRD 

-1 

A n s w e r  4.5  

Plot[ { 1-1/2xA2+ 1/(4 !)xA4 - 1/(6 !)xA6+ 1/(8 !)X^8 - 
1/( 10!)X A 10+ 1/( 12 !)X^( 12 )- 1/( 14 !)X^( 14)+ 1/( 16 !)XA( 16)- 
1/( 18 !)x^( 18)+ 1/(20 !)x^(20) 
- 1/(22 !)x^(22)+ 1/(24 !)x~24),Cos [x] }, {x,O, 13 } ,PlotPoints->200] 

. 12 
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Fig. 4.5 
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Answer 4.6 

Use Mathematica. 

ComplexExpand[Re[EA(I(x+y+z))+EA(I(x-y-z))+EA(I(-x-y+z))+ 
EA(I(y-z-x))]+Im [EA(I(x+y+z))+EA(I(x-y-z))+E^(I(-x-y+z))+E^(I(y-z-x))]] 

C o s [x-y- z] +C o s [x+y-z] +C o s [x-y+z] +C o s [x+y+z] + S in [x-y-z]- S in [x+y- z]- 
Sin[x-y+z]+Sin[x+y+z] 
Expand[%,Trig->True] 

4 Cos[x]Cos[y]Cos[z]- 4 S in [x] S in [y] S in [z] 
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5 The Screw and the Finite Periodicity with the Circular 
Functions 

The general rigid motion of space & called a screw, rotations and 
translations being regarded as limiting cases. (Hilbert [1]). 

Here we discuss the space curves and the time parametrisation, and propose 
that our variation of isosurface constant is just another parametrisation. 
We introduce finite periodicity from circular functions. We describe the 
screw and the general multi-spiral. And the mathematics for giant 
molecules like the cubosomes, the DNA and certain building blocks in 
protein structures. 

5.1 Chirality, the Screw and the Multi Spiral 

A fundamental property of life is chirality - a good example is our two 
hands, one is left and the other is right. They are transformed into each 
other by an operation what in politics and medicine is called bilateral - we 
call it a mirror. 

A molecule can be left or right handed. Their physical properties are 
identical but a molecule used as a drug must have correct chirality to be 
active. With wrong chirality it might have no effect at all, or it might be 
deadly poison. Like for example Neurosedyne, one of the enantiomorphs 
works as an excellent sedative, while the other damages the fetus during 
pregnancy. Chirality is a matter of shape and function - recognition- a left 
handed screw does not fit to a right handed bolt. Most enzymes are chiral 
and so is of course DNA. 

Chirality cannot be described with energy, or minimisation. So it is not 
quantisized. Chirality is a property of symmetry in three dimensions. The 
change of chirality for the screw in mathematics is easily done just by 
changing sign. To continuously go from one of the shapes to the other is 
not trivial. Special cases exist, like turning a glove in and out. 

Translation and rotation are special cases of motions in space, and the 
combination of the two give the most fundamental motion - t h e  screw, 
which is chiral. 

The important one is the cylindrical helix, the shape of a stair case, and 
has the parametric equations 
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r = a ,  z = c 0  5.1.1 

which is cylindrical coordinates, or 

x 2 + y2 = a 2", Y = tan z 5.1.2 
X C 

which means that the circular helix is the curve of  intersection between two 
surfaces, the helicoid and the circular cylinder. 

But we prefer to work implicit so we formulate the following equation, 
which is quite analogous with the parametric one above. A cylinder is added 
to a helicoid, and we get a surface instead of a space curve, a cylindrical 
helicoid - a spiral - in fig 5.1.1. 

xcos rcz - y sin rtz + x 2 + y2 = 0 5.1.3 

The projection 
y = sin rcz 

of  a circular helix on a plane x = 0  is the sine curve 

Fig. 5.1.1. A spiral surface after 
equation 5.1.3. 

Fig. 5.1.2. A projection of fig. 
5.1.1. 

In order to approach a curve we have varied the constant in eq. 5.1.4. For 
C=0.2 there is fig. 5.1.3 and in 5.1.4 C=0.2494, and the cylindrical spiral is 
approaching the space curve - the cylinder gets infinitely thin. 

xcos  nz - y s innz + x 2 + y2 + C = 0 5.1.4 
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Fig. 5.1.3. C=0.2 from equation 
5.1.4. 

Fig. 5.1.4. C=0.2494 from equation 
5.1.4. 

We now go back to the simple function xz and make two cyclic functions, 
shown in fig. 5.1.5-6 and equations below: 

ycosr~z =0.05 

xsin rcz - -0.05 

Fig. 5.1.5. Equation y cosnz = 0.05. Fig. 5.1.6. Equation x sin~z =-0.05 
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By adding these two we get the equation for the helicoid (5.1.5), the very 
famous minimal surface which also is ruled (fig 5.1.7). We clearly see that 
the structure of the helicoid is composed of the two simpler surfaces glued 
together, or x and y planes plus the dominating periodic z planes. 

y cos nz - x sin nz - 0 5.1.5 

Fig. 5.1.7. The helicoid after equation 5.1.5. 

The x and y planes are perpendicular in space. We can now systematically 
introduce more and more perpendicular planes and get multiple helicoids, as 
was done deriving the general expression for the tower surfaces [2]. We 
have above shown that the helicoid could be turned into a spiral using a 
cylinder operator. So we arrive at the complete equation in 5.1.6. 
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i n  )1 I-I (xcos(i~z/n)+ ysin(ix/n) cos~:z 
[.i=l 

[i=n( )] peX2 
- 1-I xcos( i~/n+n/2n)+ysin( inn+n/2n)  sinnz+ +y2 =C 

i=l 
5.1.6 

With p=0 and C=0 we get intersecting surfaces for n>l. A constant C=0.05 
is enough to make them non-intersecting. This is shown in figures 5.1.8 a, 
b, c. for the double helix case with n=2, p=0, C=0, and n=2, p=0, C=0.05 
and finally n=2, p=0.1, C=0 respectively for the double spiral. 

Fig. 5.1.8. (a) Double helicoid from 
eq. 5.1.6 with n=2, p=0 and C=0. 
(b) The same as in (a), but with C=0.05. 
(c) Double helix made from eq. 5.1.6 
with n=2, p=0.1 and C=0. 
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Various multiple spirals are shown in figures 5.1.9 a-h, with the used 
constants as indicated. Here n=2 is a double helix, n=3 is a triple helix, n=4 
quadruple helix etc. It is obvious from these studies why a rope with more 
than four strands needs a goke, from the cylindrical void in the centre. 

Fig. 5.1.9: 
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Fig. 5.1.9. Various multiple spirals from eq. 5.1.6. (a) Single helix with n=l, 
p=0.3, C=0 displayed in the region -1.4<x,y<l.4, -2.0<z<2.0. (b) Double helix with 
n=2, p=0.1, C=0, in the region-1.7<x,y<l.7, -2.0<z<2.0. (e) Triple helix, n=3, 
p=0.05, C=0, in the region-2<x,y<2, -3<z<3. (d) Tetragonal helix, n=4, p=0.03, 
C=0,-2.5<x,y<2.5, -4.0<z<4.0. (e) Pentagonal helix, n=5, p=0.02, C=0, 
-3.0<x,y<3.0, -5.0<z<5.0. (f) Hexagonal helix, n=6, p=0.02, C=0, -3.0<x,y<3.0, 
-6.0<z<6.0. (g) 17-fold helix, n=17, p=0.008, C=0, -6.0<x,y<6.0, -17.0<z<17.0. (h) 
Same as (g), but with C=-10000. 
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Fig 5 .1 .10 .  The helical saddle tower surfaces created with equation 5.1.7 and 
illustrated for different n-values. (a) Two-fold helical saddle tower with n=2, p=q---~ in 
the region -2.5 < x,y < 2.5, -2 < z < 2. (b) n=3, p=q=rr, -2.5<x,y<2.5, -2<z<2. (c) 
n=4, p=q=rr,-2.5<x,y<2.5, -2<z<2. (d) n=5, p=q--rr,-2.5<x,y<2.5, -2<z<2. (e) n=6, 
p=q=rr, -2.5<x,y< 2.5, -2<z<2. (f) n= 17, p=q=rr, -3<x,y<3, -2<z<2. 
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The earlier described tower surfaces can be made into screws to obtain the 
helicoidal tower surfaces [2] with the equation 5.1.7. 

i < n  �9 �9 

cos(qz) 1--I [xcos( 1--~ ) + y sin(1--~-~ )] 
i=0 n n 

i<n " 71;) ~n - sin(qz) 1--I [x cos(l~ + +ysin(ln + ) ] -  cos(pz) = 0 
i=0 n 2n n 

5.1.7 

These beautiful surfaces are shown in figures 5.1.10 a-f. The q-value gives 
the pitch while p controls the distance between the saddles. 

Squaring the equations for the building planes of the tower surfaces makes 
the saddles close up and give the so-called disc surfaces [3]. We give the 
simplest one in figure 5.1.11 with the equation: 

x2y 2 - cos  z = 0 5.1.8 

Fig 5.1.11. Tetragonal disc surface 
with equation x2y2=cos(~z) illustrated in 
the region-3<x,y,z<3. 

All these families can be modulated via tilting the planes, and this means of 
course lowering the symmetry. Beautiful surfaces are obtained and we refer 
to the original reference for further studies. 
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These studies above stimulated to derive a mathematical 
describes the DNA spiral [2]. The equation is: 

function that 

1 _y2 sin(l:Z cos(~.~) 3e(X2+y2)/lO xY c~ + 2 (x2 ) O1- + -  5 =0 5.1.9 

Here a two-fold helical tower surface is used with ten bridging planes per 
helical pitch. By adding a cylinder exponentially, one side of the surface 
will close up and result in the structure of figure 5.1.12. This represents a 
DNA double-helix with ten base pairs per pitch, displaying also the bridging 
hydrogen bonds created by the saddles. 

Fig 5.1.12. A function illustrating the DNA double helix chain 
with the bridging hydrogen bonds created from the two-fold helicoidal 
saddle tower surface with the addition of a cylinder on the exponential 
scale, eq. 5.1.9. The tower surface is constructed with ten bridges per 
pitch in order to model the DNA structure. 
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5.2 The Bending of a Helix 

In the organisation of rods in space later on, rods meet (or touch) each 
other, and then pack. We just used the cylinder to make a helix above 
which means helices can pack in space like rods. We shall now bend a helix 
with the help of cylinders, and as this is a good example of how to work 
with the exponential scale, we shall carry out this to some detail. 

We start making three cylinders with lids according to figs 5.2.1-3, and 
equations 5.2.1-3. 

e -(x2 +y2 +e-z) =0.5 5.2.1 

e- (z 2 +y2 +e-X +eX-5 ) = 0.5 5.2.2 

e -((x-5)2 +z2 +eY) = 0.5 5.2.3 

We add them together in the equation 5.2.4 

e -(x2+y2+e-z) +e -(z2+y2+e-x+ex-5) +e -((x-5)2+z2+ey) =0.6 
5.2.4 

and have the result in fig. 5.2.4 a and b in different projections. 

Fig. 5.2.1. Single 
closed cylinder after 
equation 5.2.1. 

Fig. 5.2.2. Double closed 
cylinder after equation 5.2.2. 

Fig. 5.2.3. Single closed 
cylinder after equation 
5.2.3. 
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Fig. 5.2.4. a The three cylinders 
added together at closed ends 
after equation 5,2. 4. 

Fig. 5.2.4. b Different projection of 
a .  

We show again how to make a helix out of a helicoid in fig. 5.2.5 after eq, 
5,2.5, and we also put a lid on after eq. 5.2.6 to make the helix limited in 
extension, and form a snake's head as in fig. 5.2.6. 

xcos 7zz- y sin~z + x 2 + y2 = 0.25 5.2.5 

x c o s z z -  ysinz~z+ x 2 + y2 +e z =0.25 5.2.6 

Fig. 5.2.5. The spiral surface 
again after equation 5.2,5. 

Fig, 5.2.6. A snakes head after 
equation 5.2.6. 
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We saw here that a negative constant makes the helix grow thicker - but we 
need thinner for the bending below, so we use positive constants. 

In order to make two helices meet (at snake's heads) we formulate the 
equation below using eq. 5.2.4 and the exponential scale, 

e-(y coswx-z sin ~x+z 2 +y2 +eX-5 +0.2) 

+e-((x-5)cosrvy-z sin wy+z 2 +(x-5) 2 +e y +0.2) _ 0.6 
5.2.7 

and the result is illustrated in fig. 5.2.7. 

We may also change the periodicity in one of the helices, and also flatten 
the cylinder as in fig. 5.2.8 after equation 5.2.8. This is the way to change 
a helix into a loop or band. 

e_(y cos ~.x_z sin ~x+z 2 +y2 +eX-5 +0.25) 

+e-((x-5)cos 0.25ny-z sin 0.25r~y + 3z 2 +(x-5) 2 +e (y-0"75) +0.4) = 0.6 
5.2.8 

Fig. 5.2.7. Two of the cylinders above used to make 
two helices meet (at snake's heads) after equation 5.2. 7. 
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Fig. 5.2.8. A helix is changed into a band or sheet after equation 5.2.8. 

The importance of the screw and helix is well known in science and 
technology - as one example we have just shown the mathematics for the 
double helix in form of the DNA molecule above [2]. The joining of two 
helices as in fig. 5.2.7 gives a loop via the snake-heads. The terms in the 
equation is organised to give a helix-turn-helix structure as it occurs in 
prokaryotic DNA binding proteins [4]. 

Obviously one can make bigger structures in this way. A small enzyme 
molecule like Myoglobine is possible to describe with one mathematical 
function with a resolution of the level of the experimental one. What 
requires for this is a big computer, a better graphic program, and plenty of 
patience. 

5.3 Finite Periodicity- Molecules and the Larsson Cubosomes 

The derivation of finite structures in two or three dimensions will be 
continued similarly. We may add spheres or cylinders or planes, as they are 
contained in a power expansion as shown below. We repeat the power 
expansions for cos and sin; 

cos x = 1 - - -  
x 2 x 4 

2! 4! 



The Screw and the Finite Periodicity with the Circular Functions 113 

and 

x 3 x 5 
sinx = x - ~  + ~ -  

3! 5! 

And rearrange 

x 2 x 4 
cos x -  1 + = 5. 3.1 

2! 4! 

which in 3D we set 

2 cos 7zx + 2 cos ~ + 2 cos ~z + x 2 + y2 + z 2 _ 2 5.3.2 

and is shown in fig. 5.3.1. 

Fig. 5.3.1. Part of the power expansion of cos, after equation 5.3.2. 

This part of the expansion of cosine is the ELF structure of the molecule 
B 6 H  6 [7] .  It is also the P-surface cut off by a sphere. 

The corresponding equation for sine is 

sin rrx + sin rvy + sinr~z- (x + y + z) = 0 5.3.3 

and is shown in two projections in fig 5.3.2 and 5.3.3. 
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Fig. 5.3.2. Part of the power expansion 
of sine. After equation 5.3.3. 

Fig. 5.3.3. Different projection of 
fig. 5.3.2. 

Fig. 5.3.4. Block structure after 
equation 5.3.4. 

Fig. 5.3.5. Column structure after 
equation 5.3.5. 

In the cosine case one may say we use a sphere, and in the sine case we use 
a plane. Like above using a cylinder to get a spiral from the helicoid. We 
add a cylinder to the P-surface, and also two planes in eq. 5.3.4 and 5.3.5, 
and the result is seen in figures 5.3.4 and 5.3.5. 

cos ~Yx + cos rVy + cos ~;z + x 2 + y2 _ 1 5.3.4 

cos 7rx + cos 7~7j + cos 71;z + x 2 - 0.5 5.3.5 
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These three structures - the block (fig. 5.3.1), the column (5.3.4) and the 
layer (5.3.5) structures are the fundaments for the building block principle 
in crystal structures [6,8]. 

We make more advanced cubosome structures by changing periodicities as 
in fig 5.3.6, after equation 5.3.6. 

cos 2nx + cos 2~3' + cos 2rcz + x 2 + y2 + z 2 = 2 5.3.6 

Slightly changing the equation as to 5.3. 7 gives fig 5.3.7 where a number of 
bodies have condensed, or are just about to. 

2 cos2r~x + 2 cos 2rpy + 2cos2~z + x 2 -I- y2 + z 2 _ 2 5.3.7 

Fig. 5.3.6. A Larsson cubosome 
made after equation 5.3.6. 

Fig. 5.3.7. Slight change to equation 
5.3. 7 make bodies land. 

We have earlier found, by using similar functions, that we could describe 
small molecules, or the giant ones like the Larsson cubosomes [5,9,10,11]. 
We do this here by using the fundamental equation of symmetry and adding 
its complex exponential. We have then the complete description of a 
crystal, with its crystal structure and atomic positions from the complex 
exponential, and the outer shape and its symmetry from the natural 
exponential. 

We add a cube as boundary after equation 5.3.8, which is shown in fig 5.3.8. 

z 2 e c~176176 +e x2 +e y2 +e = 8.7 5.3.8 
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Fig. 5.3.8. A cube as boundary to the P surface after equation 5.3.8. 

Fig. 5.3.9. A split of fig. 5.3.8. 
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In fig. 5.3.9 the above structure is shown as a split, revealing 27 atoms in 
the full cube. 

And we make a tetrahedral crystal which is a small cubosome of D type, or 
of course a piece of diamond after equation 5.3.9, and shown in fig 5.3.10. 

e Re(e hi(x+ y+ z) +e hi(x- y- z) +eni(-x- y+ z) +eni(- x+ y-z) ) 

.elm(eni(x+Y+ z) +eni(x-Y -z) +eni(-x-y+ z) +eni(-x+y-z)) 

+e x+y+z +e  x -y -z  +e  -x-y+z +e  -x+y-z = 11 

5.3.9 

Fig. 5.3.10. A tetrahedron as boundary to the D surface after 
equation 5.3.9. 

The two most common symmetries for the cubosomes are the diamond 
symmetry with a surface of D-type as above, or the bcc in form of the 
space group Ia3d, and the surface is then gyroid. So if the diamond surface 
in fig 5.3.10 represents a very small cubosome, the gyroid surface as seen in 
fig 5.3.11 is of 'normal'  size. The boundary is a cube as in equation 5.3.10. 

e Im(e 4hi(x+ y) +e 4hi(x- y) +e 4hi(x+ z) +e 4hi(- x+ z) +e 4hi(y+ z) +e 4hi(y-z) 

+e x2 + e y2 + e z2 - 5.5 
5.3.10 
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Fig. 5.3.11. A cube and the gyroid surface give a Larsson cubosome 
after equation 5.3.10. 



The Screw and the Finite Periodicity with the Circular Functions 119 

Exercises 5 

Exercise 5.1. The equation cos______.~_~ = e lcosnz is the nodal correspondence 
c o s  ~ x  

to the CLP minimal surface[12] and can easily be derived from a surface 
given earlier here. Find it and describe the relationships. 

Exercise 5.2. In our lungs there is a multiple layer membrane of essential 
physiological importance. It has been found with electron microscopy that 
this layer has the topology of the CLP surface[13],but the boundaries 
correspond to a 45 ~ rotation along c of the tetragonal coordinate system. 
Show a piece of this membrane. 

Exercise 5.3. Use the simple formula in exercise 4.6 as obtained for the D- 
nodal surface to construct the smallest possible cubosome, which also is the 
ELF structure for molecule B4H4. 
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Answer 5.1 

The surface is Scherk' first surface e z cos x = cosy,  which also is a minimal 

surface, plotted in exercise 2.5, chapter 2. If made periodic in z it becomes 
the nodal correspondence of CLP. Below is plotted in two projections the 
tetragonal nodal surface of CLP from equation above in 5.1. 

Fig. 5.1. a Fig. 5.1. b Along the 
tetragonal axis. 

Answer 5.2 

The equation is 
1 

7~ 
c o s - - ( x -  y)r 10 

4 

7t 
- c o s - - ( x + y )  = 0 

4 

A n s w e r  5.3 

The equation and the molecule is below. 

10 c~ rrxc~ ~ cosltz+sin wxsin my sin nz 

+10 (x+y+z) + 10 (x-y-z) + 10 (-x-y+z) + 10 (y-z-x) = 8 
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Fig. 5.2. 

Fig. 5.3. 
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6 Multiplication, Nets and Planar Groups 

'makes it surprising that geometers have not explored this fieM during the 
past two thousand years' (Wells, Three dimensional nets and polyhedra 
[1]). 

Here we go circular with the general saddle equation. We derive 
mathematical equations for nets and the planar square groups, and also the 
quasi-periodic symmetry. Extending to 3D we give the mathematics for 
some fundamental metal structure types like hcp, A1B2, CaZn5 and CuA12. 

6.1 Lines and Saddles 

In this chapter we go to multiplication, after addition and subtraction of 
the circular functions. We find a way to describe nets, and here we shall 
develop them in 2D and also go to 3D. We have earlier given some nets in 
3D [2,3]. 

Nets in 2D have always fascinated mankind. Why is hard to understand, but 
perhaps it is the mysterious periodicity, and the property of symmetry, 
perhaps it is the applications in crystal chemistry, or in art as the 
Alhambra ornaments, or carpets or just wall paper. 

The approach could be to go circular via the equation for polygons (eq. 
3.1.11) or the finite products of the fundamental theorem of algebra (eq. 
2.1.4 or 2.2.2). Or the multiple eigenvalues for a square membrane of 
eigenfunctions of type sinmxsinmy +sinnxsinmy, which give similar or 
identical results [10]. 

The approach we have taken is the saddle mathematics [4] where the 
products of equations of intersecting planes were used as in equation 2.3.5. 
We shall only use a few planes, up to five and the equations for these 
planes are: 

xy=O 6.1.1 

x ( ~ +  y ) ( - -  + y ) - 0  
2 2 2 

6.1.2 



xy(x§ 6.1.3 

6.1.4 

I; 41+1; 2 4 1 ;  2 x(~-x + y ) ( , -  1 1+ x-I- ~ )  
21; 2 2 

. (_z -1  41+I; 2 I; 41+x 2 
+ ~ ) ( - - x  + ~ ) -  o 

2 2 2 21; 

-2 

We give the corresponding figures in 6.1.1-4. 

-4 

-i 

-4 -2 0 2 4 
i 

-2 -i 0 1 2 

Fig. 6.1.1. After equation 6.1.1. Fig. 6.1.2. After equation 6.1.2. 

-2 
-2 -i 0 1 2 

-I 

-2 

-2 
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-3 -2 -i 0 1 2 3 

Fig. 6.1.3. After equation 6.1.3. Fig. 6.1.4. After equation 6.1.4 
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6.2 Nets with Two Planes, and Variations 

Multiplication of  the type 

sinr~xsinrvy = 0 6.2.1 

gives the saddle net repeated in fig. 6.2.1, and with a constant as in eq. 
6.2.2 there is the structure in fig. 6.2.2. 

sin wxsin rpy = O. 8 6.2.2 

There are various ways to proceed and get beautiful nets and we restrict us 
to a simple one with equations of the type 

sin wx sin rvy + sin rv~ sin nrvy - C 

For equations 6.2.3 and 6.2.4 there are the beautiful nets of figures 6.2.3 
and 6.2.4. 

s i n r ~xs i n~  + sin3r~xsin3rvy - 0.8 6.2.3 

sin wxsin rpy + sin 5nxsin 5rvy = 0.4 6.2.4 

i 

-2 -i 0 1 2 

Fig. 6.2.1. After equation 6.2.1 with 
C=0. 

2 

1 @ <) 
o 

-1 

~ 2  , . . . .  �9 . . . . . . . . . . . . .  

-2 -i 0 1 2 

Fig. 6.2.2. C=0.8 
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-1  

-2  

o o 

0 0 0 0 

0 0 
o o 

0 0 0 0 

0 0 

0 0 0 0 

0 0 
o o 

0 0 0 0 

0 0 

-2 -i 0 1 2 

Fig. 6.2.3. After equation 6. 2. 3. 

2fo~ ~ ~ 
~t~ o~176 o ~  

0l?_~~~ o~176 o ~ 
i o o O o ~ o O  O o ~  

_~.t.~-~.~ oO~-k~ ,o,~ 
-2 -i 0 1 2 

Fig. 6.2.4. After equation 6.2.4. 

And for cosine there are the equations 6.2.5 and 6.2.6 and the nets in figs. 
6.2.5 and 6.2.6. 

cos xxcos  xy + cos 2xx cos 2xy = 0.5 6.2.5 

cos xxcos  my + cos 4mxcos 4my - 0.8 6.2.6 

-1 

-2 

J L./ k.3 t./ k.3 t_ � 9 1 6 9 1 6 9  
% 0 % 0 < 

3 0 % 0 <3 6 
Q O C 3  

% 0 % 0 < 

3 0 % 0 % � 9 1 6 9  
-2 -i 0 1 2 

Fig. 6.2.5. After equation 6. 2.5. 

-i 

-2 

,3 0 0 0 0 C ,o o~oo o~oo~ 
,) o o o o ( 

) o o o o o o o o o r .~~o o~o o~c 
) 0 o o o o o o o 0 ( 

) o o o o o o o o o < ~~o o~o o~~ 
. . . . . . . . . . . . . . . . . . . . . . . . .  

-2 -i 0 1 2 

Fig. 6.2.6. After equation 6.2.6. 
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6.3 N e t s  w i t h  T h r e e  P l a n e s ,  a n d  V a r i a t i o n s  

Multiplication of the type 

sinrrxsinrr - +  y sinrr - - +  y = 0 
2 2 2 2 

6.3.1 

/ ) sinrrxsinrr-+ y s i n z r - - +  y =0.1 
2 2 2 2 

6.3.2 

which gives intersecting lines in fig. 6.3.1, and with a constant of 0.1 we 
have a primitive trigonal structure as seen in fig. 6.3.2. We continue like 
above in the equations 6.3.3 and 4 which give the trigonal nets of figures 
6.3.3 and 6.3.4. 

sin xx sin rr -- + y sin rr - -  + y 
2 2 2 2 

+sin2rrxsin2rr( x ~f~ ] ( x ~f~ - +  y s i n 2 u - - +  
2 2 2 2 

Y/=0.5 

6.3.3 

sinn~xsin~--+, y s i n ~ - - +  y 
2 2 2 2 

+sin3n~xsin3~(x ~]3 ] ( x  %/3 ) - +  y sin3~z---+ y =0.4 
2 2 2 2 

6.3.4 

ii 
-2 -i 0 1 

Fig. 6.3.1. After equation 6. 3.1 
with C=0. 

-1 

-2 
-2 -i 0 1 2 

Fig. 6.3.2. As in fig. 6.3.1 but with 
C=0.1. 
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-i -i 

0 0 0 0  0 ~ 
0 0 0  0 0 0  
0 0 0 0  0 ~ 
0 0 0  0 0 0  
0 0 0 0  0 ~ 

. ~ 0 _  .~  . . . .  r> . .O .~  . . . .  
-i 0 l 2 

- 2  - 2  
- 2  - 2  

Fig. 6.3.3. After equation 6. 3.3. 

) o  ~(o 
0 7L.) 0 

~ & ~ o ~  &--'So 
0 - k . )  0 7k . )  

~?o~ &--qo~ 
7 \ )  O 7L.) 0 
o &~oO &~o 
0 7 U  0 7 U  

~ o ~  c---qo ~ 
7 \ )  O Z k )  O 
o &~oO &~o 
o 7L.o O 7 L )  

-i 0 l 2 

Fig. 6.3.4. After equation 6.3.4. 

Multiplication of the type 

COS TVX COS 71; - - + - - y  COS71; - - - + - - y  = C  
2 2 2 2 

6.3.5 

gives the Kagom6 in fig. 6.3.5, and with a constant of 0.3 we have a 
hexagonal structure, fig. 6.3.6. We continue like above in the equations 
6.3.6 and 7 which give the hexagonal nets of figures 6.3.7 (eq. 6.3.6), 6.3.8 
(eq. 6.3. 7, C=0.2) and 6.3.9 (eq. 6.3. 7, C=0.8), the last net very similar to 
the Apatite structure. 

c o s  7zxcos  ~z -- + y c o s  ~z - - -  + y 
2 2 2 2 

- -+  y c o s 2 r c - - +  y =0.5 
2 2 2 2 

6.3.6 

cos wxcos - + y cos ~z - -  + y 
2 2 2 2 

- +  y c o s 3 g - - - +  
2 2 2 2 

y]=c 6.3.7 
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sinTrxsinrc-+ y s i n r c - - +  y 
2 2 2 2 

sin4~xsin4~(x xf3 ) ( x  X/3 / �9 - +  ..... y sin4rc - - +  y -0.1 
2 2 2 2 

6.3.8 

- i  

-2  

~176 Oo o O-O L 
")  o 

3o o o o(9_.t 0 o o o ( 

o~o O~Oo o o~o Oo 
o~o o~o o~o o c 
oA ~ O~Oo o o,,~ ~ Oo 

!o . . . .  o~o O~Oo o o~o Oo 
O'w'_ C) ~ O _'~'O c 

-2 -I 0 1 2 

Fig. 6.3.9. After equation 6.3.7 with 
C=0.8. 

-1 

-2  

oOo o G o o O o  o o 
o o o oo o o~o 

o o o o o O O O 
o � 9  oooo o 
o oo o o oo~O 

o o o o o o o o 
oOo o � 9  o o 
O O O OO O O~O 

O O O O O O O O 
o�9 oGoo o 
O oo o O oo~O 

o o o o o o o o 
oOo oOoo o oGo 
o o O o o O O  O o 

O O O O O O O O 
oOooOo oooo o 
o oo O o ooOO 

o o o O o o o O oOo o�9  o o�9 
o o o oo~o o o 

-2 -I 0 1 2 

Fig. 6.3.10. After equation 6.3.8 
the zeolite Gmelinite. 

6.4 Nets  with Four  Planes,  and Variat ions  

We continue with four planes from the saddle equation, and eq. 6.4.1 gives 
the structure of CuAI 2 shown in fig. 6.4.1. 

sin ~xsin ~y sin ~(x, y) sin ~(x- y)- 03 6.4.1 

Cosine instead of sine as in eq. 6.4.2 gives a zeolite similar structure in fig. 
6.4.2. 

cos~xcos~ycos~(x § y)cos~(x- y)- 01 6.4.2 

A simple phase shift as in eq. 6.4.3 gives for the two different constants, 
0.3 and 0.1, the two figures 6.4.3 and 6.4.4. 
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6.5 Structures in 3D from the Nets 

This is not a general study of nets in 3D - we have touched that before - 3D 
is a vast subject. 

We continue on the approach above and an equation like sinx.siny.sinz 
which we know gives intersecting planes in space. A non-zero constant 
gives a primitive structure of bodies (which joint with straight lines gives 
the simplest possible 3D net). The cosine addition in 
sinx.siny.sinz+cosx.cosy.cosz gives the diamond net and so on. This we 
also saw in chapter 2 in the study of the fundamental theorem of algebra in 
three dimensions. 

We try below a somewhat different road going to 3D with the net functions 
of 2D just derived. Using the simple functions extended to 3D in a cubic 
way give the simple and fundamental structures described earlier in this 
book. As an example of the more complicated structures that quickly tum 
up at a systematic variation of equations we apply addition and 
multiplication and do permutations in space for a simple equation as below 
in 6.5.1. The structure of this is shown in fig. 6.5.1. 

sin wxsin rpy sin 2rrx sin 2r~, + sin nxsin nz sin 2rrx sin 2rtz 

+ sin nzsin rpy sin 2rcz sin 2r~y = 0.6 
6.5.1 

Fig. 6.5.1. A simple equation as in 6.5.1 gives this formidable 
structure in space. 
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Joining the centres of these bodies gives of course a bcc net. 

For the hexagonal nets we use the simplest of the equations above and first 
we multiply with a z-term as in equations 6.5.2 and 6.5.3. In the 
corresponding figures 6.5.2 and 6.5.3 there are the structures of hexagonal 
close packing and A1B2 resp. The small bodies are the boron atoms. 

sin2 sin2 (x (x - + y sin2rc - -  + y sin2rcz - 0.1 
2 2 2 2 

6.5.2 

cos2 xcos2 (x (x - + y cos 2re - -  + y sin3rcz = 0.06 
2 2 2 2 

6.5.3 

Fig. 6.5.2. Hcp structure after 
equation 6. 5.2. Fig. 6.5.3. A1B2 structure after 

equation 6. 5. 3. 

Addition and sine gives the H surface at zero constant by using eq. 6.5.4, 
which with the constant of 0.9 gives a polyhedral description of hop, in 
form of trigonal bipyramids sharing comers as in fig. 6.5.4. 

- +  y sin2 - - +  y +sin3r~z=C 
2 2 2 2 

6.5.4 



134 Chapter 6 

Fig. 6.5.4. Trigonal bipyramids describe the hcp 
structure after equation 6. 5. 4. 

Fig. 6.5.5. Trigonal bipyramids 
describe the CaZn5 structure after 
equation 6. 5. 5. 

Fig. 6.5.6. Change of constant 
to 0.3 in 6.5.5 makes the Zn 
atoms show up. 
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Cosine as in eq. 6.5.5 below gives the surface of fig. 6.5.5 which is useful 
for the CaZn5 structure. Adding a constant of 0.3 makes the Zn atoms 
show up in fig. 6.5.6. 

3cos2 xcos2 (x - -+ y c o s 2 ~ - - - +  
2 2 2 2 

y) + 0.25cos 4nz = 0 6.5.5 

We go 3D with four planes adding a z-term after eq. 6.5.6. 

6 sinwxsinraj sin~:(x + y)sinr~(x- y) + sin2~z = 0 6.5.6 

A beautiful surface for the CuA12 structure is shown in fig. 6.5.7. In 6.5.8 
we see the A1 atoms of the crystal structure of CuA12 from multiplication 
with the z-term in equation 6.5. 7. 

6 sin 7rxsin r~] sin rc(x + y)sinrc(x- y)sin2rcz = 0.75 6.5.7 

Fig. 6.5.7. A surface for the CuA12 
structure after 6. 5. 6. 

Fig. 6.5.8. The A1 atoms in CuA12 
show up after 6. 5. 7. 
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6.6 Quasi 

This long-range order without periodic translation has recently been 
reviewed by one of us [6], and the structure of the icosahedral case has also 
been separately reported [7,8]. 

6.6.1 Four Planes and Quasi 

With four planes or more, the use of irrational numbers in eq. 6.6.1 from 
the general saddle equation brings out quasi-periodic symmetry as shown in 
fig. 6.6.1 for a constant of O. 

sin xxsin ~ sin[ 2~-~2 rc(x + y)] s i n [ 4  n(x - y)] = C 6.6.1 

The quasi symmetry is more obvious in fig. 6.6.2, calculated for a constant 
of 0.2. 

The structure in fig. 6.6.2 can be understood as close to an interpenetrating 
fourling of the CuA12 structure. 

3 

2 

1 

0 

-i 

-2 

-3 

d 

-3 -2 -i 0 1 2 3 

Fig. 6.6.1. After equation 6. 6. I with 
C=0. 

10 

-5 

-10  

~176 "0~ 0~ " o QO ~ o 0~ o 
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00(3 000 ~ 000 " o �9 
o 0"0 o 0 o 0"0 0"0 .. O" 
0 0 0  0 0 0 o  �9 o O 0 O  O O O ,  ~  ~ . 

o * 0  ~ o O ~  o ~  �9 " 0 ~  0 ~  
o 0 o  " . 0 o  o 0 o 0  o o O o  o 0 o 0  o 

O 0 0  " o ~  ~ o ~  0 0 0  ~ ~  o 
0 . 0  0.0 o O. o 0.0 o .0 o 
~  ~ 1 7 6  ~)o~176 d Oo ~ OoO �9 o ' 0 " o  ~3~  0 0  

o o O o o  O o O  O o 0 o  �9 o 0 O  0 O o O  
c ) o  0 0 o 0 "  . ~  0 o 0  o ~ 1 7 6  �9 
0 0 o 0  0 o 0  0 0 o 0  0 o 0  Oo 
0 0 ~  ~  0 0 0  ~ . 0 0 0 o  "000 ' o 

o O"  o 0 ~  o "0 o O" 0 0 " 0  
0 0 0  . Q o~176176 o ooo0~176176176 $ 

Oo 0 0 o 0 .  . . 0 o o  O o O  o o 0 o  o 
�9 0 O 0 0 o  " 0 0 0  0 0 0  o . ~  0 0 0  
.0 .. 0.o 0.0 o 0 o 0"0 o 

O o . O 0 o o  _ OoO O o 0 o  o 0 o  o O o 0  
o d o ~  , " 0  ~ o 0 ~  o ~  o 
o OoO o o 0 o  o . 0 o  0 0 o 0 o  ' o 0 o  

-i0 -5 0 5 I0 

Fig. 6.6.2. After equation 6. 6. I with 
C=0.2. 
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6.6.2 Five Planes and Quasi 

Five planes in the saddle way in eq. 6.6.2, and with sine and a constant of 
0.31, shows a beautiful 5-fold quasi periodic symmetry in fig. 6.6.3, outside 
the origin. In analogy with observations above, this should be a structure, 
and it is remarkable how well it agrees with the quasi-structure model as 
derived [6,7,8]. Going cosine and a constant of 0.25 gives fig. 6.6.4, which 
looks exactly as the Fourier transform, or the commonly shown diffraction 
patterns of A1 alloys. 

6.6.2 

1 8  

1 2  

1 0  

2 . 5  

' . U  
0 0 

0 o o  0 

o o  
0 

O O  o o o  
* o  

5 7 . 5  

": u 

0 0  0 0  

O 0  0 0  

o o  0 .  
o Q  O O  

o o  * O 0  
0 0 :  

0 -  a O O  
0 0 '  . o  

0 '  
0 0  O O  

0 0 0 0  

0 o o  
o o  0 0  

o '  0 0 
1 0  1 2 . 5  1 5  1 7 . 5  

0 0  o o  
0 0 0  

-3  -2 -1 0 1 2 3 

Fig. 6.6.3. After equation 6.6.2 with 
C=0.3 1. 

Fig. 6.6.4. After equation 6.6.2 
with cosine and G0.25.  

A slight deviation from numbers containing 7 (after eq. 6.6.3, with 0.8 
instead of 2/2 as an example) gives a beautiful structure of translational 
symmetry in fig. 6.6.5. 

cos2nxcos 2n( 0 . 8 ~  + 0.6y)cos2n(O.3~ + y) 

~cos2n(-0.3090x + y)cos2n(-O.8x + 0 . 6 ~ )  = 0.5 
6.6.3 



~.
~ 

.
.

.
.

.
 

o 
.

.
.

.
.

.
 

o 
.

.
.

.
.

.
 

o 
.

.
.

.
 

o 
o 

o 
o 

o 
o 

A
 

A
 

o ~ 
o 

~ 
t,

d 

~
,,

,i
 

~ 

o 

o 
o 

o 
o 

o 
o 

o 
o 

o 
o 

o 
o 

o 
o 

o 

) 
o 

0 
o 

o 
0 

o 
o 

0 
o 

o 
o 

o 
o 

o 
o 

0 
o 

o 
0 

o 
o 

0 
o 

o 

0 
0 

0 
0 

0 
0 

o 
o 

o 

0 
0 

0 
0 

0 
0 

o 
o 

o 
0 

0 
0 

0 
0 

0 

0 
o 

o 
0 

o 
o 

0 
o 

o 
o 

o 
o 

o 
o 

o 

o 
0 

o 
o 

0 
o 

o 
0 

o 

o 
o 

o 
o 

o 
o 

0 
o 

o 
0 

o 
o 

0 
o 

o 

0 
0 

0 
0 

0 
0 

o 
o 

o 



Multiplication, Nets and Planar Groups 139 

Exercises 6 

Exercise 6.1. Do four planes with cosine. Analyse! 

Exercise 6.2. Go commensurate with sine and four planes, and show the 
relation to the CuA12 structure. 

Exercise 6.3. Go commensurate with cosine and discuss the translational 
structure. 

Exercise 6.4. Show the nets that build the structures for five, six, seven 
and ten planes (these are dilated variants of the circulants graphs as 
described by Skiena [ 11 ] - the vertices are pulled out to infinity). 
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Answer 6.1 

The four planes build two identical square nets that interpenetrate to an 
incommensurate structure as in fig 6.1a. Notice the shift of centre 
compared to sine. A small constant shows the beautiful eight fold 
symmetry in 6.lb. The equation is as in 6.6.1 with constant of zero and 
0.1 respectively, and cosine of course. 

-1 

-2 

/ 

/ 

\ 
1 

o 
/ 

/ -2 

o ~ C > u /  o 

o Q �9 

-2 -i 0 1 2 -2 -i 0 1 2 

Fig. 6.1a. Fig. 6.lb. 

Answer 6.2 

The equation is 

sinTzxsinTw s i n [ 7 ~ ( x  + y)] s i n [ 7  7z(x - y)] = 0.65 

and the relation to CuAI2 is obvious. The origin of the unit cell of the 
commensurate structure is from permutations of type 0,0; 0,10; etc. 

Answer 6.3 

The equation is 

cos rrx cos ~3, c o s [ 7  ~(x + y)] c o s [ 7  ~(x - y)] = 0.7 

and the fourfold symmetry shows up beautifully in a zeolite like structure. 
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i0 

-5 

-i0 

0 0 �9 0 0 �9 0 

0 o 0 o 0 

o 0 o 0 

0 �9 0 0 o 0 0 

o o 
�9 �9 

0 0 �9 0 0 = 0 
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o 

o o o o o 

o o o o o 

0 �9 0 0 o 0 0 
�9 �9 

�9 �9 �9 

o 0 , o 0 �9 0 

0 o 0 0 0 

0 o 0 o 0 

0 �9 0 0 �9 0 0 
�9 . �9 

�9 , 

0 o �9 0 o �9 0 

o o o o o 

o o o o o 

0 �9 0 0 �9 0 0 

. o �9 

o 0 �9 0 0 �9 0 
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0 �9 0 0 * 0 0 

-I0 -5 0 5 i0 

Fig. 6.2. 
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o �9 �9 o 

o o o �9 

o o o o o 

�9 o o �9 

o + �9 o 

o o o o 

o 

o o o o 

o 

o o o o 

o �9 �9 o 

-7.5-5-2.50 2.5 5 7.5 

Fig. 6.3. 

Answer 6.4 

The term incommensurate was used already in the English translations of 
Euclid, The Elements, with reference to the discovery of the irrational as 
due to the Pythagoreans [9]. The incommensurate net in answer 6.1a, and 
its relation to the square commensurate nets as discussed above, was surely 
known to the Greeks. As well as what is given below. 
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Use the general saddle equation from 2.3.5 in 2D: 

i < n  in " 
1-I [xcos(--)  + y sin(tn)] = 0 

i = O  n n 

6.4.a 

We derive the equations and from the graphs below we conclude that in the 
description of the n-fold rotation symmetry the intersections-or the 
symmetries-are derived from the rotations of simple nets of translational 
periodicity. For n even there are always square nets, and for n odd there are 
always rhombic nets, with the rhombic angles directly related to the n/2~. 

n n 2n 2n  
sin nxsin rffxcos-- + y sin )sin n(xcos + y sin T )  

5 5 
3n 3n 4n 

�9 s i n r f f x c o s ~  + ysin sinrffxcos 
5 T ) 5 

4~ 
+ y s i n t )  = o 

6.4.b 

sinn(xcos + y sin )sinrc(xcos 4n 
5 5 

47[ 
+ y sin---)  = 0 

5 "  
6.4.c 

27"1; 
sin rrx sin zr(xcos rr zr -- + y sin ) sin n(xcos 

6 6 6 

3n 6 4re �9 s i n n ( x c o s ~ +  ysin )sinrc(xcos 
6 6 

5re 5re 
�9 s i n n ( x c o s ~ + y s i n  )=  0 

6 - 6  

271; 
+ y sin--~-) 

47g 
+ ysin T )  6.4.d 

sin n(xcos n r~ - + y sin )sin n(xcos 
6 6 

4re 4re 
....... +ysin  - 0  

6 -6-) 
6.4.e 

2~ 
sin nxsin rc(xcos n - -  + y sin )sinrffxcos 

7 T 7 
3r~ 3n 4r~ 

�9 sin n(xcos ~ + y sin sin n(xcos 
7 -7-) 7 

�9 sin n(xcos 5n 5re + y sin )sin n(xcos 6n 
7 7 7 

27[ 
+ y sin-- T )  

4~ 
+ ysin T )  

6~ 
+ y s i n ~ )  - 0 

7 "  

6.4.f 
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rc 4re 4~ 
sin n ( x c o s - -  + y sin ) sin n (xcos  - + y sin ) = 0 

7 7 7 " 7  
6.4.g 

7c 7c 
sin nx sin n(x  cos - -  + ys in  ) 

10 

2n 2n 37z . 3~ 
�9 sin n (x  cos ~ + y sin sin n(x  cos ~ + y 

10 " ~ )  10 sm-~-~-) 

47z . 47z 5n . 5~ 
�9 sin n(x  cos - -  + y sin n(x  cos - -  + 10 s m - ~ )  10 Y sm'i-ff) 

6n 6~ 7n  . 7n  
�9 sin Tz(x cos - -  + y sin ) s i n r c ( x c o s - - + y s m  ) 

8n . 8~ 9n 9n 
�9 s i n r c ( x c o s - - + y s m  ) s i n n ( x c o s ~ + y s i n  ) = 0  

10 "~- 10 " ~  

6.4.h 

sin n'x sin r f f x c o s  5n  5re ---- + y s i n  ) = 0  
10 

6.4.i 

1.5 

1 

0 5 

0 

-0.5 

1 

-i 5 
-1.5 

X.-~ 
-1 -0.5 0 0.5 1 1.5 

2 

1 

0 

-i 

-2 
-2 -i 0 1 2 

Fig. 6.4. a. Fig. 6.4. b. 
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1.5r 

0.5 

0 

-05 

1 

-15 ............................... 
-1.5-1-0.5 0 0.5 1 1.5 

Fig. 6.4. c. 

1.5 
1 

0.5 
0 

-0.5 
-i 

-1.5 
-1.5~0.H30. 511.5 

Fig. 6.4. d. 

15<___ <i 
1 < 

o 

-0 5 

1 

-i 5 ............................... 
-1.5 -i -0.5 0 0.5 

/ 

1 1.5 

1.5 

1 

0 5 

0 

-0 5 
1 

-1.5 
-I.510.EDO. 511.5 

Fig. 6.4. e. Fig. 6.4. f. 
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7 The Gauss Distribution Function 

'Good work is not done by 'humble' men' [1]. 

Here we describe the remarkable properties of the Gauss distribution (GD) 
function, and use it to describe finite periodicity and the geometry of 
molecules, small ones or large ones, as cubosomes. Models for defects in 
crystals are also given. The broken symmetry in DNA and the possibility 
of a mathematical code matching this is sketched. A model for different 
grooves in DNA is also given. By mixing phases the outer shape of a 
crystal can be varied. Non convex polyhedra are shown. A structure of 
dilatation symmetry is given. The link to cosine is shown. The shape of 
several radiolarian creatures are derived. 

7.1 The GD Function and Periodicity 

Infinite and regular periodicity is not the normal case in Nature, since 
crystals are finite and also contain defects, often planar. The giant DNA 
molecule is certainly finite, and the double spiral has deviations - giving the 
genetic code-  from the ideal wavy periodicity. Nevertheless, the circular 
functions are used and said to describe these structures of crystals or 
molecules, and some of their properties. 

The periodicity of the circular functions was made finite above with a 
special parametrisation, and was found useful in the description of crystals 
and molecules, small or large. 

One definition of a circular function is via the infinite products of roots. In 
chapter 2 we used some first few terms in such a product, which is a 
polynomial from the fundamental theorem of algebra. This was found 
useful in the description of defect crystals as well as symmetry of 
dilatation. 

We have found that periodicity can be constructed from the GD function 
which to its nature is finite [2]. We shall give a detailed description of this. 

The GD function 

_ x  2 
e =C 7.1.1 
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has two lines (or po in t s ) -  the roots of the function. These go apart for 
small constants, as in fig 7.1.1 (C=0.2), and disappear when the constant 
approach unity as in 7.1.2. 

-i 

- 2  . . . . . . . . . . . . . . . .  

-2 -I 0 1 2 

Fig. 7.1.1. After equation 7.1.1 with 
C=0.2. 

-i 

- 2  . . . . . . . . . . . . . . . .  

-2 -i 0 1 2 

Fig. 7.1.2. After equation 7.1.1 
with C=0.999. 

We now introduce some periodicity as we did with the polynoms; 

e -x2 + e -(x-2)2 + e -(x-4)2 + e -(x-6)2 + e -(x-8)2 

+e-(X-lO)2 +e-(X-12)2 +e-(X-14)2 +e-(X-16)2 

+e -(x-18)2 +e -(x-20)2 +e -(x-22)2 =C 

7.1.2 

The function 7.1.2 is positive so we use a constant as shown in fig 7.1.3, 
and it seems to be identical with cosine, or rather its square. 

Oo!i!f. . A.A.A.f .A.A. : : AAAAAAAAA 
00 VI V V~ V VVV ~ 

Fig 7.1.3. After equation 7.1.2 
with C=0.88. 

Fig. 7.1.4. After equation 7.1.3 
with C=0. 



The Gauss Distribution Function 149 

We make the GD function oscillate around zero just like a circular function 
by using equation 7.1.3, which is shown in fig. 7.1.4. As this function is 
built up term by term, it is possible to go into the function and 'disturb' the 
periodicity. This can be done by a small coordinate, or phase, shift, or also 
just by changing the base in one term. The base is changed from e to 2.5 in 
eq. 7.1.4, and the effect is shown in fig. 7.1.5. 

(x + 2)e -(x+2)2 + xe -x2 + (x- 2)e -(x-2)2 + (x- 4)e -(x-4)2 

+(x - 6)e -(x-6)2 + (x- 8)e -(x-8)2 + (x - lO)e -(x-lO)2 

+(x- 12)e -(x-12)2 +(x-  14)e -(x-14)2 +(x-  16)e -(x-16)2 

+(x - 18)e -(x- 18) 2 + (x - 20)e -(x-20)2 + (x - 22)e -(x-22)2 = C 

7.1.3 

(x + 2)e -(x+2)2 + xe -x2 + (x - 2)e -(x-2)2 + (x - 4)e -(x-4)2 

+(x_6)e-(X-6) 2 +(x_8)e-(X-8) 2 +(x_lO)(2.f)-(x-lO) 2 

+(x 12)e-(X-12)2 +(x 14)e -(x-14)2 2 - - + (x - 16)e -(x-16) 

+(x 18)e - (x-18)2  - + (x- 20)e -(x-20)2 + (x - 22)e -(x-22)2 = C 

7.1.4 

0.2 

0 1 

-o 1 oi/ o 

V 0 2 

Fig. 7.1.5. After equation 7.1.4 with C=0. 

Before we go 2D we shall show applications of this type of function and we 
do two helicoids. First is the traditional one, 

xsin rcz + y cos rtz - 0 7.1.5 
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which is shown in fig 7.1.6. In equation 7.1.6 there is now the periodic GD 
function instead of the circular, and the result in fig 7.1.7 which seems to 
be identical with 7.1.6. 

x[ze -z2 + (z - 2)e -(z-2)2 + (z - 4)e -(z-4)2 

+(z + 2)e -(z+2)2 +(z +4)e -(z+4)2 ] 

+y[(z + .5)e -(z+'5)2 + (z + 2.5)e -(z+2"5)2 

+(z - 1.5)e -(z-1"5)2 + (z - 3.5)e -(z-3"5)2 ] - 0 

7.1.6 

Fig. 7.1.6. After circular equation 
7.1.5 with C=0. 

Fig. 7.1.7. After GD equation 7.1.6 
with C=0. 

One of us [3] has earlier given the topology for the DNA molecule in form 
of an equation. As the molecule in reality is not exactly a double spiral, the 
change to the mathematics which would match the structure of coding has 
to be found. We propose a possible path via a slight phase change as done 
on the coordinate of x=6. This gives a topological change in the 
corresponding catenoid in equation 7.1.7. In eq. 7.1.8 there is the 
undistorted version. The corresponding figures for these equations are in 
pictures 7.1.8 and 7.1.9. 
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e(X2+y2)/10 + xy COS( ) + -~(X 2 - y  2) s i n ( ~ ) +  (z + 2)e -(z+2)2 

z 2 +ze- +(z-2)e -(z-2)2 +(z-4)e -(z-4)2 +(z-6.2)e -(z-6"2)2 7.1.7 

+(z- 8)e -(z-8)2 + (z- 10)e -(z-10)2 + (z- 12)e -(z-12)2 = 1 

~r 1 e(X 2 +y2)/10 + xy c o s ( ~ )  + ~(x  2 ~;z -( z + 2)2 
_ y 2 ) s i n ( ~ )  + (z + 2)e 

_z 2 +ze +(z-2)e -(z-2)2 +(z-4)e -(z-4)2 +(z-6)e -(z-6)2 

+(z _ 8)e-(Z-8) 2 + (z - 10)e -(z- 10)2 + (z - 12)e -(z-12)2 = 1 

7.1.8 

Fig. 7.1.8. Distorted DNA after 
equation 7.1.7 with C = 1. 

Fig. 7.1.9. Regular DNA after 
equation 7.1.8 with C- 1. 

In the DNA molecule the two spirals are not separated by a simple 
translation. There are two different distances between them, one is moved 
along the spiral axis with respect to the other. In order to find the 
mathematics we must have two functions different in phase, which we 
separate with the exponential scale as in eq. 7.1.9 and showed in fig 7.1.10. 

(x2+y 2) (ycos~z+xsin--z) (ycos (z+2)+xsin (z+2)) 
e +e 2 +e =3.5 7.1.9 
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Fig. 7.1.10. DNA after 
equation 7.1.9 with C=3.5. 

Fig. 7.1.11. DNA after 
equation 7. I. 10 with C=3.5 
showing different grooves. 

Changing the weight of one of the spirals is a simple way to have the 
spirals non-equidistant, as in eq. 7.1.10 and shown in fig 7.1.11. We have 
chosen this topology instead of separated spirals in order to demonstrate 
the different grooves. It is remarkable how similar this picture is to the 
common ball and stick models of B-DNA. 

5 +xsm--z " ~: 1 ~(z+2)+xsin~(z+2) (x 2 + y2 ) y cos 2 z y cos 
e +e  2 + - e  z z =3.5  7.1.10 

2 

Changing the available constants give a great variety of topologies - the 
pitch is of course the same. One example with even more marked 
difference in grooves is shown in equation 7.1.11 and the picture in 7.1.12. 

ycos--x+zsin--x 1 yc~ 
e 0"16(z2+y2) +e  2 2 + - - e  2 2 =2.55 

2 
7.1.11 
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Fig. 7.1.12. DNA after equation 7.1.11 with C=2.55. 

-2 
-3 -2 -i 0 1 2 3 

�9 . , , , , . . . . . . . . . . . . . .  

-4 -2 0 2 4 6 

Fig. 7.1.13. After equation 7.1.12 
with C=0.4. 

-2 

-4 

-6 
-6 

-i 

Fig. 7.1.14. After equation 7.1.13 
with C=0.4. 

-2 

-4 

~ 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-6 -4 -2 0 2 4 6 

Fig. 7.1.15. After equation 7.1.13 with 
C=0.9995. 

-i 

-2 

m 3 . . . . . . . . . . . . . . . . . . . . . . .  

-3 -2 -i 0 1 2 3 

Fig. 7.1.16. After equation 7.1.13 
with C=1.05. 



154 Chapter 7 

Going 2D, we start with the lines in eq. 7.1.12, shown in fig 7.1.13, which 
together with the lines from eq. 7.1.1 form equation 7.1.13, and figure 
7.1.14. Continuing changing the constant gives the development in the 
following figures. Via hyperbolic geometry the lines switch over to the 
diagonal type, to form a circle like closed curve at the end. 

_y2 
e - 0 . 4  7.1.12 

_x 2 e +e -y2 - C  7.1.13 

-i 

-2 
-2 -i 0 1 2 

Fig. 7.1.17. After equation 
7.1.13 with C=1.3. 

1 

0 .5  

- - 1  . . . . . . . . . . .  

-1-0.50 0.5 i 

Fig. 7.1.18. After equation 
7.1.13 with C=1.8. 

We use more terms to show the periodicity as in eq. 7.1.14, shown in fig 
7.1.19. 

-x 2 -(x-2) 2 -(y-2) 2 
e +e -y2 +e +e 

+e-(X-4)2 +e-(Y-4) 2 + +e-(X-6) 2 + e-(Y-6) 2 

+e-(X-8)2 +e-(Y-8) 2 +e-(X-10)2 +e-(y-10) 2 

+e-(X-12)2 +e-(y-12) 2 +e-(X-14)2 +e-(y-14) 2 

+e-(X- 16) 2 + e-(y-  16) 2 = C 

7.1.14 

In fig 7.1.20 we have taken away two planes and have a structure with 
planar defects. 
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15 

12.5 

i0 

7.5 

5 

2.5 

0 

o 0 0 0 0 0 0 0 o 

o 0 0 0 0 0 0 0 o 

o 0 0 0 0 0 0 0 o 

o 0 0 0 0 0 0 0 o 

o 0 0 0 0 0 0 0 o 

o 0 0 0 0 0 0 0 o 

o 0 0 0 0 0 0 0 o 

o 0 0 0 0 0 0 0 o 

o 0 0 0 0 0 0 0 o 

0 2.5 5 7.51012.515 

Fig. 7.1.19. After equation 7.1.14 
with C=2. 

15 

12.5! 

i0 

7.5 

5 

2.5 

0 

o 0 0 o o 0 0 o 

o 0 0 o o 0 0 o 

o 0 0 o o 0 0  o 

o 0 0 o o 0 0 o 

o 0 0 o o 0 0 o 

o 0 0 o o 0 0 o 

o 0 0 o o 0 0 o 

o 0 0 o o 0 0 o 

021s5  vi51o12,sls 

Fig. 7.1.20. After equation 7.1.14 but 
with two terms or planes missing. 

7.1.1 Handmade Periodicity 

With the GD function a plane can be moved and put anywhere, and we do 
the same with the circle below in fig 7.1.21" 

e -(x2 +y2) =0.9 7.1.15 

0.5 

0 

- 0 . 5  

m 1 . . . . . . . . . . . . . . . . . . .  

-I -0.5 0 0.5 1 

Fig. 7.1.21. After equation 7.1.15. 
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We add more circles after eq. 7.1.16 and show this in fig 7.1.22. 

e_(X 2 +y2) + e_((x_2)2 +y2) + e_((x_4)2 +y2) 

+e -(x2 +(Y-2)2) + e -(x2 +(Y-4)2 ) = 0.9 
7.1.16 

-i 

4 

0 

0 0 0  o 

-I 0 1 2 3 4 5 

Fig. 7.1.22. After equation 7.1.16. 

0 o 

0 

0 0 o 
-i 0 1 2 3 4 5 

Fig. 7.1.23. After equation 7.1.17. 

This time there is no periodicity- the circle is a closed function. There are 
no lines to collaborate in space to give true periodicity. But we can still 
build a structure by putting out the figures one by one, as we have done in 
eq. 7.1.17 and shown in fig 7.1.23. We call this handmade periodicity, 
which also is useful and will be developed in next chapter. 

e_(X 2 +y2 ) + e_((x_2)2 +y2 ) + e_((x_4)2 +y2 ) + e_(X 2 +(y_2)2 ) 

+e -(x2 +(Y-4)2 ) + e -((x-4)2 +(Y-4)2) = 0.9 
7.1.17 

7.2 The GD Function and Periodicity in 3D 

The general natural exponential in eq. 7.2.1, here called the equation of 
symmetry, is particular useful for describing shapes and forms of polyhedra, 
and also for giving finite periodicity to the circular functions. 
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e(X+y+z)n + e(_X+y+z)n )n )n + e(X+y-z + e(X-y+z 

+e(X+y) m +x) m e(Z-x)m e(y-z) m +e(-X+y) m +e (z + +e(Y+Z) m + 

+e (x)p + e (y)p + e (z)p - C 

7.2.1 

Multiplication with i as in eq. 7.2.2 gives the general complex exponential 
for n,m,p=l. 

e[i(x+Y+Z)] n + e[i(-x+Y+Z)] n + e[i(x+Y-Z)] n + e[i(x-Y+Z)] n 

+e[i(x+y)]m +e[i(-x+y)]m +e[i(z+x)]m 

+e[ i (z-x)]  m + e[i(Y+Z)] m + e[i(Y-Z)] m 

+e[i(x)] p +e[i(Y)] p e[i(z)]P + =0 

7.2.2 

For a value n,m,p=2 we have the general GD function in three dimensions, 
and for n,m=0 and p=2 we have the simple GD function in 3D. 

_x 2 e + e -y2 + e -z2 - C 7.2.3 

The three dimensional Gauss distribution in eq. 7.2.3 has a remarkable 
development with the constant. From an anti-cube composed of six planes 
in fig. 7.2.1 at a constant of 0.1, it forms via fig. 7.2.2 at C=I an open 
octahedron at C=1.8, composed of the intersection of six rods in fig 7.2.3. 
Finally at C=2.5 there is a body-  an octahedrally distorted sphere - in fig. 
7.2.4. 

The equation 7. 2.4, 

_x 2 z 2 e 4- e -y2  + e -  + e - (x -2 )2  4- e - ( y - 2 ) 2  4- e - ( z - 2 ) 2  = C 7.2.4 

which is a simple translational extension of eq. 7.2.3, gives a similar 
pattem, and in figures 7.2.5-7 we see that periodicity starts to emerge. 

Equation 

e -x2 +e -y2 +e-Z2 + e - (x-2)2  + e - (y -2 )2  + e - ( z -2 )2  

+e -(x-4)2 + e -(y-4)2 + e -(z-4)2 = C 
7.2.5 
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gives fig. 7.2.8, which shows how six bundles of rods meet to form a nodal 
surface of P-type in the centre at a const of 1.8, and in fig. 7.2.9 the 
complete primitive structure is shown. 

Fig. 7.2.1. After equation 7.2.3 
with C=0.1. 

Fig. 7.2.2. After equation 7. 2. 3 
with C=1. 

Fig. 7.2.3. After equation 7.2.3 with 
C-1.8. 

Fig. 7.2.4. After equation 7.2.3 
with C-2.5. 
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Fig. 7.2.5. After equation 7.2.4 with C-1.8. 

Fig. 7.2.6. After equation 7.2.4 
with C=2.7. 

Fig. 7.2.7 After equation 7.2.4 with 
C=2.9. 
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Fig. 7.2.8. Atter equation 7.2.5 with 
C=1.8. 

Fig. 7.2.9. After equation 7.2.5 
with C=2.85. 

Fig. 7.2.10. Large crystal or cubosome after equation 7.2.6. 
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Next could be a picture of a big zeolite crystal, such as Linde A, or a 
Larsson-cubosome in fig. 7.2.10, from equation 7.2.6. 

-x 2 e-(X-2) 2 e-(Y-2) 2 e-(Z-2) 2 e +e  -y2 +e  -z2 + + + 

+e-(X-4) 2 + e-(Y-4) 2 + e-(Z-4)2e-(X-6) 2 + e-(Y-6) 2 + e-(Z-6) 2 

+e-(X-8) 2 + e-(Y-8) 2 + e-(Z-8) 2 

+e -(x-lO)2 +e -(y-lO)2 +e -(z-lO)2 = 2.65 

7.2.6 

7.3 The BCC and Diamond Symmetries 

More symmetry groups in space are obtained via the permutation 
variables, using the GD function. 

of the 

In order to get the IWP and gyroid surfaces for comparison, we use the real 
respectively imaginary part of function 7.3.1 below. 

i (x+y) + i (x-y) + i (x+z) + i -(y+z) + i -(-x+z) + i -(y-z)  = C 7.3.1 

Eq. 7.3.2 gives planes, in this case two as in fig. 7.3.1. 

e -(x+y)2 =0.8 7.3.2 

0 . .  ~ 

--0o 

1 
Fig. 7.3.1. After equation 7.3.2. 
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The prehistory is complicated, so we directly show the equation for the 
gyroid surface as shown in 7.3.3. 

e-(X+y-0.5)2 +e-(X-y-0.5)2 +e-(X+Z-0.5)2 +e-(y+z-0.5) 2 

+e-(-x+z-0.5) 2 + e-(Y-Z-0.5) 2 + e-(X+y-2.5) 2 + e-(X-y-2.5) 2 

+e-(X+Z-2.5) 2 + e-(Y+Z-2.5) 2 + e-(-x+z-2.5) 2 + e-(Y-Z-2.5) 2 

+e-(X+y-4.5)2 +e-(X-y-4.5)2 +e-(X+Z-4.5)2 +e-(y+z-4.5) 2 

+e-(-x+z-4.5) 2 + e-(Y-Z-4.5) 2 + e-(X+y+l.5) 2 + e-(X-y+l.5) 2 

+e-(X+z+l.5) 2 + e-(Y+z+l.5) 2 + e-(-x+z+l.5) 2 + e-(Y-z+l.5) 2 

+e-(X+y+3.5) 2 + e-(X-y+3.5) 2 + e-(X+Z+3.5) 2 + e-(Y+Z+3.5) 2 

+e-(-x+z+3.5) 2 + e-(Y-Z+3.5) 2 + e-(X+y+5.5) 2 + e-(X-y+5.5) 2 

+e -(x+z+5"5)2 +e -(y+z+5"5)2 +e -(-x+z+5"5)2 +e -(y-z+5"5)2 = 5.3 

7.3.3 

The gyroid calculated in this way is shown in fig. 7.3.2, and the 
corresponding surface, as calculated with the Im part of the complex 
exponential in eq. 7.3.1, is shown in fig. 7.3.3. The complete surface as 
obtained from eq. 7.3.3 with larger boundaries is shown in 7.3.4. The 
boundary properties of the finite periodical function closes the surface and 
forms the particle. This is again a possible Larsson cubosome of the G type, 
or also a crystal of with the structure of garnet. The outer shape is that of a 
rhombic dodecahedron. 

Fig. 7.3.2. The gyroid surface from 
equation 7. 3.3. 

Fig. 7.3.3. The nodal gyroid 
surface from equation 7.3.1. 
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Fig. 7.3.4. The complete gyroid surface from equation 7.3.3 from larger 
boundaries. 

A smaller cubosome-like gyroid surface is shown along the three fold axis in 
fig. 7.3.5 and the equation is 7.3.4. 

e-(X+y-0.5)2 +e-(X-y-0.5)2 +e-(X+Z-0.5)2 +e-(y+z-0.5) 2 + 

+e-(-x+z-0.5)2 +e-(y-z-0.5) 2 +e-(X+y-2.5)2 +e-(X-y-2.5)2 + 

+e-(X+Z-2.5)2 +e-(y+z-2.5) 2 +e-(-x+z-2.5)2 +e-(y-z-2.5) 2 + 

+e-(X+y+ 1.5) 2 + e-(XY + 1.5) 2 + e-( x+z+ 1.5) 2 + e-(Y+Z+ 1.5) 2 + 

+e -(-x+z+1"5)2 + e -(y-z+1"5)2 = 5.3 

7.3.4 

The real part of the complex exponential in eq. 7.3.1 gives the IWP nodal 
surface. The corresponding symmetry for the exponential function is 
developed with translations of 2, 4, 6 in eq. 7.3.5, and give the IWP surface 



164 Chapter 7 

in fig. 7.3.6, and also the body centred packing of bodies as isosurfaces. And 
the inside is in fig. 7.3.7. 

e-(X+Y) 2 + e-(X-Y) 2 + e-(X+Z) 2 + e-(Y+Z) 2 + e-(-x+z) 2 + e-(Y-Z) 2 

+e-(X+y-2)2 +e-(X-y-2)2 +e-(X+Z-2)2 +e-(y+z-2) 2 

+e-(-x+z-2) 2 + e-(Y-Z-2) 2 + e-(X+y-4) 2 + e-(X-y-4) 2 

+e-(X+ z-4) 2 + e-(Y+ z-4) 2 + e-( -x+ z-4) 2 + e-(Y-Z-4) 2 

+e-(X+y+2)2 +e-(X-y+2)2 +e-(X+Z+2)2 +e-(y+z+2) 2 

+e-(-x+z+2)2 +e-(y-z+2) 2 +e-(X+y+4)2 +e-(X-y+4)2 

+e-(X+Z+4) 2 + e-(Y+Z+4) 2 + e-(-x+z+4) 2 + e-(Y-Z+4) 2 

+e-(X+y+6)2 +e-(X-y+6)2 +e-(X+Z+6)2 +e-(y+z+6) 2 

+e -(-x+z+6)2 + e -(y-z+6)2 = 5.2 

7.3.5 

Fig. 7.3.5. Smaller part of the gyroid surface after equation 7. 3.4. 
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Fig. 7.3.6. Bcc arrangement of bodies after equation 7.3.5. 

Fig. 7.3.7. Inside of fig. 7.3.6. Fig. 7.3.8. After equation 7.3.6. 
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In the last set of GD functions the translation shift corresponds to ordinary 
sine. One term gives planes, in this case two as in fig. 7.3.8 after eq. 7.3.6. 

e -(x+y+z)2 - - -0.8 7.3.6 

The first permutation is in equation 7.3. 7: 

e-(X+y+z+0.5) 2 + e-(X-y+z+0.5) 2 

+e-(X+y-z+0.5) 2 + e-(-x+y+z+0.5) 2 =C 

7.3.7 

In fig. 7.3.9 the constant is 1.8 and the prehistory is as earlier. At C=2.3 in 
fig. 7.3.10 the structure describes a Cal l  4 molecule. 

Fig. 7.3.9. After equation 7.3.7 with 
C=1.8. 

Fig. 7.3.10. After equation 
7.3.7 with C=2.3. 

One more set of terms in the summation gives the following equation: 

e-(X+Y+Z+0.5) 2 + e-(X-Y+Z+05) 2 +e-(X+y-z+0.5)2 

+e-(-x+y+z+0.5)2 +e-(X+y+z-l.5)2 +e-(X-y+z-l.5)2 

+e -(x+y-z-l'5)2 +e -(-x+y+z-l'5)2 = 3.7 

7.3.8 



The Gauss Distribution Function 167 

The prehistory is again bundles of rods that this time intersect to a 
structure describing the admantane molecule in fig. 7.3.11, which really is a 
part of the diamond structure. A larger part of this structure, which of 
course starts to look like a cubosome, is shown in fig. 7.3.12, and the 
equation is in 7. 3.9. 

e-(X+Y+Z+0.5) 2 + e-(X-Y+Z+0.5) 2 +e-(X+y-z+0.5)2 

+e-(-x+y+z+0.5)2 +e-(X+y+z-l.5)2 +e-(X-y+z-l.5)2 

+e-(X+Y-z-l'5) 2 + e-(-x+Y+z-l.5) 2 +e-(X+y+z+2.5)2 

+e -(x-y+z+2"5)2 +e -(x+y-z+2"5)2 +e -(-x+y+z+2"5)2 = 3.7 

7.3.9 

Fig. 7.3.11. Admantane 
molecule after 7.3.8. 

Fig. 7.3.12. Piece of diamond after 7.3.9. 

A summation with only negative phase shifts as eq. 7.3.10 
structure of the methane molecule (CH4) as shown in fig. 7.3.13. 

e-(X+Y+Z+0.5) 2 + e-(X-y+z+0.5) 2 + e-(X+y-z+0.5) 2 

+e-(-x+y+z+0.5)2 +e-(X+y+z+2.5)2 +e-(X-y+z+2.5)2 

+e -(x+y-z+2"5)2 +e -(-x+y+z+2"5)2 = 3.7 

gives the 

7.3.10 
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Fig. 7.3.13. After equation 7.3.10. 

We have obviously derived the exponential mathematics for the so called 
D-nodal surface, and the summation in eq. 7.3.11 gives the surface in 
7.3.14. 

e-(X+Y+Z+0.5) 2 + e-(X-Y+Z+0.5) 2 + e-(X+Y-Z+0.5) 2 

+e-(-x+Y+Z+0"5) 2 + e-(X+Y+z-l.5) 2 + e-(X-Y+z-l.5) 2 

+e-(X+Y-z-l.5) 2 + e-(-x+Y+z-l.5) 2 +e-(X+y+z+2.5)2 

+e-(X-Y+Z+2.5) 2 + e-(X+Y-Z+2.5) 2 + e-(-x+Y+Z+2.5) 2 

+e-(X+Y+Z-3.5) 2 + e-(X-Y+Z-3.5) 2 + e-(X+Y-Z-3.5) 2 

+e-(-x+y+z-3.5)2 +e-(X+y+z+4.5)2 + e-(X-Y+Z+4.5) 2 

+e -(x+y-z+4'5)2 + e -(-x+y+z+4"5)2 = 3.5 

The corresponding equation for the classical nodal D surface is 

7.3.11 

Im [i x+y+z + i x-y+z + i x+y-z + i -x+y+z ] = 0 7.3.12 

which we show in fig. 7.3.15 for comparison. 

The complete surface for equation 7.3.11 is given in fig. 7.3.16, and its 
projection shown in fig. 7.3.17. The shape is octahedral. 
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Fig. 7.3.14. GD mathematics after 
equation 7. 3.11. 

Fig. 7.3.15. Complex exponential after 
equation 7. 3.12. 

Fig. 7.3.16. Larsson cubosome D after equation 7.3.11. 
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Fig. 7.3.17. Projection of the octahedron in fig 7.3.16. 

By using only positive 'phase shift' or translations 7.3.13, the outer shape 
is the tetrahedron shown in fig. 7.3.18. 

e-(X+Y+Z+0.5) 2 + e-(X-Y+Z+0.5) 2 + e-(X+Y-Z+0.5) 2 

+e-(-x+Y+Z+0.5) 2 + e-(X+Y+Z+2.5) 2 + e-(X-Y+Z+2.5) 2 

+e-(X+Y-Z+2.5) 2 + e-(-x+Y+Z+2.5) 2 + e-(X+Y+Z+4-5) 2 

+e-(X-y+z+4.5)2 +e-(X+y-z+4.5)2 +e-(-x+y+z+4.5)2 

+e-(X+y+z+6.5)2 +e-(X-y+z+6.5)2 +e-(X+y-z+6.5)2 

+e-(-x+Y+Z+6.5) 2 + e-(X+Y+Z+8.5) 2 + e-(X-Y+Z+8-5) 2 

+e -(x+y-z+8'5)2 +e -(-x+y+z+8'5)2 = 3.5 

7.3.13 
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Fig. 7.3.18. A tetrahedron after equation 7.3.13, 
and still the D-surface. 

Only using negative phases in eq. 7.3.13 gives the dual tetrahedron. By 
truncating eq. 7.3.11, or mixing the 'phases' as in eq. 7.3.14, we get a 
somewhat irregular outer shape that still has perfect ordered inside, as in 
fig. 7.3.19. 

e-(X+Y+Z+0.5) 2 + e-(X-Y+Z+0.5) 2 + e-(X+Y-Z+0.5) 2 

+e-(-x+Y+Z+0.5) 2 + e-(X+Y+z-l-5) 2 + e-(X-Y+z-l.5) 2 

+e-(X+Y-z-l.5) 2 + e-(-x+Y+z-l.5) 2 +e-(X+y+z+2.5)2 

+e-(X-y+z+2.5)2 +e-(X+y-z+2.5)2 +e-(-x+y+z+2.5)2 

+e -(x+y+z+4"5)2 = 3.5 

7.3.14 
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Fig. 7.3.19. Still the D- surface but with different outer crystal shape, 
after equation 7. 3.14. 

It is clear that the changes of phases causes dramatic changes of shapes, so 
this is of course a way to mimic the various shapes crystals take. 

Introducing a real defect in the phases as in eq. 7.3.15 - actually breaking 
the regularity, or symmetry-  is shown in fig. 7.3.20. 

e-(X+Y+Z-0.5) 2 + e-(X-Y+Z-0.5) 2 + e-(X+Y-Z-0.5) 2 

+e-(-x+Y+Z-0"5) 2 + e-(X+Y+Z-2.5) 2 + e-(X-Y+Z-2-5) 2 

+e-(X+Y-Z-2.5) 2 + e-(-x+Y+Z-2.5) 2 + e-(X+Y+Z'4.5) 2 

+e-(X-Y+Z4-5) 2 + e-(X+Y-Z-4.5) 2 + e-(-x+Y+Z-4.5) 2 

+e-(X+Y+Z-6"5) 2 + e-(X-Y+Z-6"5) 2 + e-(X+Y-Z-6.5) 2 

+e-(-x+y+z-6.5)2 +e-(X+y+z+0.5)2 + e-(X-Y+Z+0"5) 2 

+e-(X+Y-Z+0"5) 2 + e-(-x+Y+Z+'5) 2 + e-(X+Y+Z+2"5) 2 

+e-(X-Y+Z+2"5) 2 + e-(X+Y-Z+2.5) 2 + e-(-x+Y+Z+2'5) 2 

+e-(X+Y+Z+4"5) 2 + e-(X'Y+Z+4"5) 2 + e-(X+Y-Z+4"5) 2 

+e-(-x+Y+Z+4"5) 2 + e-(X+Y+Z+6"5) 2 + e-(X-Y+Z+6"5) 2 

+e -(x+y-z+6"5)2 +e  -(-x+y+z+6"5)2 = 4.15 

7.3.15 
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Fig. 7.3.21. After equation 7. 3.16 - tetrahemihexahedron. 

These two surfaces are remarkable - they are very similar to the non 
convex polyhedra, and the octahemioctahedron and tetrahemihexahedron. 
Like these polyhedra, the surfaces are built of four equatorial hexagons and 
three perpendicular squares, which lie in planes which are described above to 
generate periodicity. These planes may also be regarded as twin planes, and 
as such these generate unique structures. 

The real term of eq. 7.3.17 gives intersecting planes as a nodal surface, 
shown in fig. 7.3.22. 

Re[i x+y+z + i x-y+z + i x+y-z + i -x+y+z ] = 0 7.3.17 
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Fig. 7.3.22. After equation 7.3.17. Fig. 7.3.23. After equation 7. 3.18 - a 
FRD related surface. 

With the GD function developed with translations of 2, 4, 6 in eq. 7.3.18, 
which corresponds to cosine in terms of the circular functions, we have a 
surface related to the FRD as shown in fig. 7.3.23. This surface is a 
beautiful demonstration of how perpendicular planes continuously can go 
through each other without intersections. 

10-(x+Y+Z) 2 + 10-(x-Y+Z) 2 + 10-(x+Y-Z) 2 + 10-(-x+Y+Z) 2 

+10-(x+Y+Z+2) 2 + 10-(x-Y+Z+2) 2 + 10-(x+Y-Z+2) 2 + 10-(-x+Y+Z+2) 2 

+10-(x+Y+Z+4) 2 + 10-(x-Y+Z+4) 2 + 10-(x+Y-Z+4) 2 + 10-(-x+Y+Z+4) 2 

+10-(x+Y+Z+6) 2 + 10-(x-y+z+6) 2 + 10-(x+Y-Z+6) 2 + 10-(-x+Y+Z+6) 2 

+10-(x+Y+Z-2) 2 + 10-(x-y+z-2) 2 + 10-(x+Y-Z-2) 2 + 10-(-x+Y+Z-2) 2 

+10 -(x+y+z-4)2 + 10 -(x-y+z-4)2 + 10 -(x+y-z-4)2 + 10 -(-x+y+z-4)2 

+10 -(x+y+z-6)2 + 10 -(x-y+z-6)2 + 10 -(x+y'z-6)2 + 10 -(-x+y+z'6)2 = 2.33 

7.3.18 

Any degree of irregular structures may of course be designed in 3D, as was 
done in 2D. The obvious application is functions of dilatation symmetry. 
In eq. 7.3.19 we have formulated a function which indeed gives the 
remarkable structure of a 3D Fibonacci periodicity, illustrated in fig. 7.3.24. 
The structure is a dilated P-surface, or dilated primitive packing of bodies. 
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In fig. 7.3.25 we give a larger region of this beautiful symmetry as the 
corresponding 2D plot, at a constant of 1.9. 

e-(X-3) 2 + e-(Y-3) 2 + e-(Z-3) 2 + e-(X-5) 2 + e-(Y-5) 2 + e-(Z-5) 2 

+e-(X-8)2 +e-(Y-8) 2 +e-(Z-8)2 +e-(X-13)2 +e-(y-13) 2 +e-(Z-13)2 

+e-(X-21) 2 + e-(y-21) 2 + e-(Z-21) 2 

+e -(x-34)2 + e -(y-34)2 + e -(z-34)2 = 2.5 

7.3.19 

Fig. 7.3.24. 3D Fibonacci periodicity 
after 7. 3.19. 

5 oo o o o o 
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25 
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i0 
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O0 o o o o 

O0 o 0 o 0 

............................. 

0 5 i0 15 20 25 30 35 

Fig. 7.3.25. 2D Fibonacci 
periodicity. 

7.4 The Link to Cosine 

For a constant of 2 according to eq. 7.4.1, 

_x 2 e +e  -y2 +e -z2 = 2 

there is the remarkable octahedron in fig. 7.4.1. 

7.4.1 
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Fig. 7.4.1. Octahedron after 
equation 7. 4.1. 

Fig. 7.4.2. Octahedron shifted after 
equation 7. 4.2. 

This octahedron may be shifted after eq. 7.4.2 

e -(x-4)2 + e -(y-4)2 + e -(z-4)2 = 2 7.4.2 

which gives fig. 7.4.2. 

Fig. 7.4.3. Adding the two octahedra gives eight after equation 
7.4.3. 
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By adding the two octahedra after eq. 7.4.3 we get eight as in fig 7.4.3, 
which means beginning of periodicity. 

- x  2 - ( x - 4 )  2 - ( y - 4 )  2 4) 2 e + e  -y2  +e -z2 +e +e +e - (z -  = 2 7.4.3 

We take the octahedra apart as in figures 7.4.4 and 7.4.5 after equations 
7.4.4 and 7.4.5 respectively. 

-x 2 e-(X-6)2 -(y-6) 2 6) 2 e +e  -y2 +e -z2 + +e +e - (z -  = 2 7.4.4 

_x 2 e + e -y2 + e -z2  + e - ( x -8 )2  + e - ( y - 8 ) 2  + e - ( z - 8 ) 2  = 2 7.4.5 

Fig. 7.4.4. After equation 7. 4. 4. Fig. 7.4.5. After equation 7.4.5. 

The surfaces of the circular equations from chapter 4, 

(COS X) 2 + (COS y)2 + (COS Z) 2 = 2 7.4.6 

(COS x) 4 + (COS y)4 + (COS z) 4 = 2 7.4.7 

(COS x) 6 + (COS y)6 + (COS z) 6 - 2 7.4.8 
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are very similar to figures 7.4.3-5. Especially is this the case for the figures 
4.3.3 and 7.4.5 - to the eye they look identical. 

Note that the constant is always 2 whichever we use, the GD function or 
cosine function. From these observations it is obvious that there must be a 
link between the GD-function and the circular functions. 

The GD function is very famous for its applications: 

-x2 7. 4.9 y = e  

The function is the fundamental solution to the diffusion equation [4], 

t)u t)2U 

/)t ~)x 2 
- 0  7.4.10 

and its solution with time. 

x 2 

1 4t 
u ( x , t ) -  44pt  e 

7.4.11 

For a constant time we have the so called GD function below in fig. 7.4.6, 
which is plotted after eq. 7.4.9. 

�9 

O � 9  �9 

6 

-'4 -2 2 4 -'4' -2 ' 2 4 6 8 i0 

Fig. 7.4.6. Gauss-distribution 
(GD) function after equation 
7.4.9. 

Fig. 7.4.7. Handmade periodicity with 
GD function after equation 7. 4.12. 

With a shift as 

-x 2 6) 2 y - e  +e  -(x-  7.4.12 
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we can build a handmade  periodicity as in fig 7.4.7. 

W e  do the expansions 

_x 2 
e - 1 - x  2 + 0 . 5 x  4 - 0 .16667x 6 + 0 .041667x 8 ..... 7.4.13 

cos x - 1 - 0.5x 2 + 0 .041667x 4 ..... 7.4.14 

cos2 x = 1 - x  2 + 0.333x 4 ...... 7.4.15 

and see already by squaring cosx and expanding that there are similari t ies to 
the GD function, which is the background to the 3D pictures above.  

After  some trials we found the function 

X _x 2 
c ~  ~ n  :=~ e ,n---~ oo 7.4.16 

and its convergence is shown below. Compare  

_x 2 
e - 1 - x  2 + 0 . 5 x  4 - 0 . 1 6 6 6 7 x  6 + 0 .041667x 8 ..... 7.4.17 

with 

I 1 
c~ x 400 = 1 - x  2 + 0 .49958x 4 - 0 .16625x 6 + 0 .041459x 8 ..... 

7.4.18 

and 

cos 20000 x / 1 0 0 -  1 - x  2 + 0 . 4 9 9 9 8 x  4 - 0 . 1 6 6 6 5 x  6 + 0 . 0 4 1 6 5 8 x  8 7.4.19 

The function for n=10, or y - c o s  2~ x ~ - ~  is compared  with cosx in fig. 

7.4.8 and we see that the periodici ty is increasing with n. 
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t 
- 0 . 5  

6 1 2  

-1 

Fig. 7.4.8. n=l 0 in equation 7.4.16 as compared with cosx. 

The typical GD similar shapes are separated and very flat, or close to 0, 
between the peaks, and we continue with the cosine function for n=200 in 
figures 7.4.9 and 7.4.10. 

- 3 - 2 - 1  1 2 3 

Fig. 7.4.9. n=200 in equation 
7. 4.16 and the first peak. 

1 

0.8 

0.6 

0.4 

0.2 

30 31 32 33 34 

Fig. 7.4.10. n=200 in equation 
7. 4.16 and the second peak. 

To left there is t h e  shape around x=0 in fig 7.4.9, and after that the 
function is flat all the way until x is about 31.5, in fig. 7.4.10, where it 
repeats again for the first time. 

Of course it is not possible to distinguish the plots of the GD function and 
this cosine function for this value of n. We have to go back to a value of 
n=20 to see any difference of the two functions as they are plotted in 
figure 7.4.11. 

Is there any use for this function? In the precipitation of crystals, or 
particles, from a solid or a liquid, there should be a concentration gradient 
with a shape such as that of this new function. And of course the 
concentration is constant, or flat, between the crystals. Indeed the 
precipitation phenomena may be periodic which also has been reported by 
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Terasaki [5]. He also points out the relevance for the Liesegangs rings as a 
periodic precipitation. 

- - , , . , , i 

1 2 3 

? 
C 8 

C 6 

C 4 

2 

. . . . .  i . . . .  

-2 -1 
i , 

-3 
Fig. 7.4.11. n=20 in equation 7.4.16 as compared with 
the GD function. 

More examples come from the general permutations in space as in 
equations 7.4.20 and 7.4.21, which are shown in figures 7.4.12 and 7.4.13 
respectively. 

(cos(x + y + z)) 8 + ( cos (x -  y - z)) 8 

+ ( c o s ( - x -  y + z)) 8 + (cos( -x  + y - z)) 8 = 2 
7.4.20 

)2 e -(x+y+z)2 +e  -(x-y-z)2 +e  -(-x-y+z)2 +e  - ( -x+y-z  = 2  7.4.21 

Fig. 7.4.12. After equation 7.4.20. Fig. 7.4.13. After equation 7.4.21. 
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And also the permutations: 

coszr(x+ y) 8 + coszr(x- y) 8 +coszr(x+ z) 8 

+cos rr (z-  x) 8 + cos rr(y + z) 8 + cosn:(y- z) 8 =C 
7.4.22 

e-(X+y)2 +e-(-x+y) 2 +e-(y+z) 2 

+e -(-y+z)2 +e -(x+z)2 +e -(-x+z)2 =C 
7.4.23 

Fig 7.4.14 shows the cos function, and 7.4.15 the GD function, both for a 
constant C=2, which is the limit for the extremely thin catenoids running 
out from the cube faces, of octahedral symmetry. 

Fig. 7.4.14. After equation 7. 4.22 
for C=2. 

Fig. 7.4.15. Aider equation 7. 4.23 
for C=2. 

Going to a constant C=3, the catenoids are extremely thin so we show figs 
7.4.16 and 7.4.17, both calculated for a constant of 2.99 from equations 
7. 4.22 and 7. 4.23 respectively. 

The remarkable shapes above are descriptions of some strange creatures, 
the radiolarians. 
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Fig. 7.4.16. After equation 7. 4.22 for C=2.99. 

Fig. 7.4.17. After equation 7.4.23 for C=2.99. 
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The science of the shape of these organisms is enormously rich, and we will 
make no attempt to describe it here. But we would like to point out the 
extraordinary similarity in the discussion of their formation and the 
recently discovered so-called giant zeolites. It is enough to quote d'Arcy 
Thompson [6, page 723] 'skeletons are formed --- by surface action --- by 
the adsorptive deposition of silica in walls and wedges, corresponding to the 
manifold surfaces and interfaces of the s y s t e m . - - - t h e  skeletons consists 
(1) of radiating spicular rods, definite in number and position, and (2) of 
interconnecting rods or plates, tangential to --- that of a geometric, 
polyhedral solid.' These creatures are obviously grown by a chemical 
transport reaction, controlled by diffusion which is in perfect agreement 
with our models above as fundamental solutions they are to the diffusion 
equation. 
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Exercises 7 

Exercise 7.1. Plot the GD function and the new cosine function for 
n=100. Do the numerical integration for both, with suitable boundaries and 
show the difference. (Hint: Use Mathematica's Nlntegrate function). 

Exercise 7.2. Show which curve is which in fig 7.4.11. 

Exercise 7.3. Do the planar square group p4g as in chapter 6, but with the 
fundamental theorem of algebra. 

Exercise 7.4. Do the equation for fig 7.1.20. 

x 2 
Exercise 7.5. Compare a GD function like xe-  with sine. 
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Answer  7.1 

Nlntegrate[EA(-xA2), {x,-3,3 }] 
1.77241 
Nlntegrate [Cos[(2/100)A. 5X] A 100, 
1.768 
dev .25% 

{x,-3,3}] 

Or just 

Integrate [Cos [(2/100)A.5x]A100, 
1.768 

{x,-3,3}] 

P1ot[Cos[(2/100)A.5x]A100, {X,-3,3} in 7.1a, 
P1ot[EA(-xA2), {X,-3,3} in 7.1b, 
PlotPoints->400, Axes->True] PlotPoints->400, Axes->True] 

-3 -2 -i 1 2 3 -3 -2 -i 1 2 3 

Fig. 7.1a Fig. 7.1b 

Answer 7.2 

Use smaller boundaries doing the Nlntegrate and you will see. 

Answer 7.3 

ImplicitPlot[ 
x(x- 1 )(x-2)(x-3 )(x-4)(x- 5)(x- 6)(x- 7)(x- 8)(x+y)(x+y- 1 )(x+y-2) 
(x+y-3)(x+y-4)(x+y- 5)(x+y-6)(x§ 8) 
y(y- 1 )(y- 2)(y-3 )(y-4)(y- 5)(y- 6)(y-7)(y- 8)(x-y)(x-y- 1 )(x-y-2) 
(x-y-a)(x-y-4)(x-y-5)(x-y-6)(x-y-7)(x-y-8)--1000000000, 
{x,2,6 }, {y,-. 5,3.5 } ,PlotPoints-> 100] 
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. . . . . . . . . . .  , , , , i . . . .  i 

2 3 4 5 6 

Fig. 7.3 

Answer 7.4 

e -x2 + e -y2 + e -(x-2)2 + e -(y-2)2 + e - (x-4)2 + e -(x-6)2 + e -(y-6)2 

+e-(Y-8) 2 +e-(X-lO)2 +e-(y-lO) 2 +e-(X-12)2 +e-(y-12) 2 +e-(X-14)2 

+e- (y-  14) 2 + e-(X- 16) 2 + e- (y-  16) 2 = C 

Answer 7.5 
Plot[ 
{(x+2) E^-(x+2)^2+xE^-(x)^2+(x-2)E^-(x-2)^2+ 
(x-4)E^-(x-4)^Z+(x-6)E^-(x-6)^Z+(x-8)E^-(x-8)^2+ 
(x- 10)(E)^-(x - 10)^2+(x - 12)E^-(x - 12)^2+ 
(x- 14)E^-(x - 14)^2+(x - 16)E^-(x - 16)^2+ 
(x- 18)E^-(x - 18)^2+(x-20)E^-(x-20)^2+ 
(x-ZZ)E^-(x-22)^2, 0.236 Sin[Pi x]},{x,0,20}, 
PlotPoints->400,Axes->True] 
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Fig. 7.5a 

Plot as above but with the boundaries{x,6,7}, 
PlotPoints->400,Axes->True] 

0.2 

0.15 

0.I 

0.05 

6.2 6.4 6.6 6.8 7 

Fig. 7.5b 
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8 Handmade Structures and Periodicity 

There is no business like show business (origin unknown). 

Here we continue to use the exponential scale and the GD function to build 
constructions of different kinds. We do some classic geometry. We see 
repulsion and also the hanging drop. 
We see the hyperbolic plane and use it to revisit the radiolarians. 
In chapter 7 we added planes - here we add closed bodies, one by one, to 
periodic structures. 
We derive surfaces from structures by making spheres meet in space. We 
analyse the topology of the surfaces created. We find that a periodic 
structure has a dual. We describe some fundamental oxide chemistry. 
We make closed bodies, like tetrahedra and octahedra, meet in space and 
show in that way how mathematical functions describe crystal structures. 

8.1 Prelude 

Handmade constructions have been touched earlier in the section for 
hierarchical growth, and described in the last chapter. Here we shall start 
from scratch and develop it. 

We showed earlier that it was necessary to go higher up in the exponential 
scale, in order to keep the original characters of the units we put together 
into a continuos function. This is more pronounced the higher up you are 
on the scale, and with the scale we mean as before: 

eX; e ex., e eex 

In chapter 7 we used planes or lines in GD functions and had real 
periodicity after our definition. Now we use closed bodies like spheres or 
polyhedra, and build them one by one to a periodic structure. We shall first 
give a short study of spheres, cylinders and planes, as a preparation before 
we start with the GD functions. 

We said it before, cylinders and spheres consist of collaborating planes. We 
start with the cylinder; 

x 2 + y2 _ 1 8.1.1 
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x 2 =1 is two planes as in figure 8.1.1, and so is y2=l. The 
collaborate and form the cylinder of equation 8.1.1. 

four planes 

Fig. 8.1.1. Two planes after x2=l. Fig. 8.1.2. Two intersecting 
planes after equation 8.1.2. 

For 

x 2 _ y2 = 0 8.1.2 

there are two intersecting planes. It is important to note that the function 
can be written as (x-y)(x+y) which are the planes in fig. 8.1.2. 

For 

x 2 _ y 2  -0 .05  8.1.3 

there is fig. 8.1.3, and for 

x 2 _ y2 = -0.05 8.1.4 

fig. 8.1.4. 

And for 

x 2 + y2 + z 2 = 1 

there are six planes in space that collaborate to form a sphere. 
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Fig. 8.1.3. After equation 8.1.3. Fig. 8.1.4. After equation 8.1.4. 

The equation 

x 2 + y2 _ z 2 = 0 8.1.5 

is a double cone as in fig 8.1.5. Adding a constant, 

x 2 + y2 _ z 2 _ 1 8.1.6 

gives a catenoid structure as in fig 8.1.6, while subtraction gives parabolic 
geometry. We can also say that we opened up a sphere by making one of  
its terms negative. Or that the addition of  two planes to the cylinder makes 
it spherical. 

Fig. 8.1.5. After equation 8.1.5. Fig. 8.1.6. After equation 8.1.6. 
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Adding two spheres like in 

x 2 + y2 + z 2 + x 2 + y2 + (z_2)2  = 10 8.1.7 

gives one sphere but with shifted centre, illustrated in fig. 8.1.7. 

Fig. 8.1.7. After equation 8.1.7. Fig. 8.1.8. After equation 8.1.8. 

Going to the exponential scale and adding the same two spheres with 
different centres with equation 8.1.8, gives again complete fusion as in fig. 
8.1.8. From the shape it is obvious that the origin is two spheres. 

eX2 +y2 +z 2 +y2 +(z_ 2)2 +e x2 = 20 8.1.8 

Going to negative scale, or GD similar functions, helps. We see drastically 
increased resolution and two different spheres as in eq. 8.1.9 and fig. 8.1.9. 
It is possible to build things from several parts. 

_(x 2 + y 2 + z  2) e_(X 2+y2+(z_2)  2 _0.8 
e + - 8.1.9 

We have shown earlier that two different functions can be added on the 
exponential scale so that the sum function is continuos and the properties 
of the original functions are kept. A centaur function is a good name - the 
man and his horse are intergrown via a catenoid - there is negative 
curvature. A change of coordinates, or change of constant, makes the 
bodies in fig. 8.1.9 approach and form a catenoid- negative curvature as in 
fig. 8.1.10. And an example of a centaur function is the cylinder and sphere 
grown together - the hanging drop - in fig. 8.1.11 after eq. 8.1.10. 



Handmade Structures and Periodicity 195 

e_(X 2 +y2 +z 2) + e_(X 2 +(z_1.9)2 = 0.8 8.1.10 

Fig. 8.1.9. After equation 8.1.9. Fig. 8.1.10. After equation 
8.1.9 but with z=l.9. 

Fig. 8.1.11. Hanging drop after equation 
8.1.10. 

Fig. 8.1.12. Almost a sphere 
after equation 8.1.11. 
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We said that the sphere consists of six planes, and in equation 8.1.11 we 
have separated two of them using the exponential scale as seen in fig. 
8.1.12. The operation left us with a cylinder, with two lids as given by the 
two planes. 

e x2 + e y2 + z2 -- 1000 8.1.11 

Using the GD function gives beautiful geometry. We start with the 
analogous equation in 8.1.12 as shown in fig. 8.1.13. The picture talks for 
itself. We note again that with the normal exponential scale things are 
added, and positive Gaussian curvature is kept as above. Using the GD 
function instead gives negative curvature as below. 

_x 2 e + e- (y2 + z 2 ) = 0.5 8.1.12 

Increasing the constant towards unity makes the planes come together and 
the geometry is approaching the topology for the pseudosphere, famous 
for having constant negative Gaussian curvature. With one plane as in eq. 
8.1.13 and with a constant close to unity the surface is pulled out from the 
plane, as shown in fig. 8.1.14. 

e -z +e -(x2+y2) = 0.99 8.1.13 

Fig. 8.1.13. Two GD planes open a 
cylinder. 

Fig. 8.1.14. With C close to 1 
a 'pseudosphere' is pulled out 
of the plane. 
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With eq. 8.1.14 we pull 'pseudospheres' out from a sphere as well, as shown 
in fig. 8.1.15. 

e -(x2+y2+z2) +e -(y2+z2) = 1 8.1.14 

In fig. 8.1.16 there are two cylinders after eq. 8.1.15. 

e- (x 2 + y2 + z 2 ) + e-  (y2 + z 2 ) + e- (x 2 + z 2 ) = 1 8.1.15 

Fig. 8.1.15. Two 'pseudospheres' are 
pulled out of the sphere after equation 
8.1.14. 

Fig. 8.1.16. Four 'pseudospheres' 
are pulled out of the sphere. 

These two cylinders are after two unit cube axes, and in fig. 8.1.17 we have 
also added a cylinder which is a space diagonal in the cube. The equation for 
that cylinder in eq. 8.1.16 is from the next chapter. 

e- (x 2 + y2  + z 2 ) + e-  (y2 + z 2 ) + e-  (x 2 + z 2 ) + 

+ e  - ( ( x + z ) 2  + ( x - y ) 2  +(Y+Z)2) = 1 
8.1.16 

This is a powerful method for making radiolarians by just using the cylinder 
approach from next chapter. This topology shows that many structures in 
Nature might well be built with constant negative curvature. The 
mathematics of the hyperbolic plane is difficult, and not possible to use 
directly. It has been pointed out before that the geometry of many leaves, 
in particular the holly ones, are related to the hyperbolic plane [1] and the 
structure of water [2]. Perhaps the development of this topology in Nature 
is favoured by the finite growth, which the GD functions indeed can offer. 
The deviations from the real hyperbolic plane are certainly small. 
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Fig. 8.1.17. Three 'pseudospheres' are pulled out of the 
sphere after equation 8.1.16. 

Subtracting two planes from the sphere gave the double cone above. Using 
the scale or the GD function give similar results. Subtracting more planes as 
in eq. 8.1.17, give a number of bodies or particles between the cones, as 
shown in figure 8.1.18. 

e -x2 - e -(y2 +z2 ) + e -(x-2)2 4- e -(x-4)2 = 0  8.1.17 

With the square of functions we get concentric structures as in figures 
8.1.19 and 8.1.20. 

(x 2 + y2 + z 2 _ 2)2 _ 0.5 8.1.18 

(x 2 + y2 _ 1)2 _ 0.5 8.1.19 

With the sphere, pairs are added to a remarkable concentric structure as in 
eq. 8.1.20 and fig. 8.1.21, which is the topology of s-electron shells of the 
structure of an atom.. 

e -(x2+y2+z2-2)2 +e  -(x2+y2+z2-4)2 +e  -(x2+y2+z2-6)2 =0.8  8.1.20 
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Fig. 8.1.18. A cylinder and two planes subtracted give a double cone and 
two added 'concentrations' give two extra bodies, after equation 8.1.17. 

Fig. 8.1.19. Concentric spheres are 
obtained by squaring. 

Fig. 8.1.20. After equation 
8.1.19. 

We add 2 spheres by coordinate shift, with the individual radii in the 
exponent, which generates the 'double' structure as in eq. 8.1.21, illustrated 
in fig. 8.1.22. 

e -(x2 +(Y+ 1)2 +z2-0"5)2 + e -(x2 +(Y-l)2 +z2-0"5)2 = 0.9 
8.1.21 



200 Chapter 8 

We make the bodies approach by a small shift in y, and during the resulting 
fusion the inner spheres are distorted as if they repel each other, as in eq. 
8.1.22 and fig. 8.1.23. 

e -(x2 +(Y+0"9)2 +z2-0"5)2 +e -(x2 +(Y-0"9)2 +z2-0"5)2 = 0.9 8.1.22 

Fig. 8.1.21. After equation 8.1.20. 

Fig. 8.1.22. Two spheres added by 
coordinate shifts and squared give 
'double' structure after equation 
8.1.21. 

Fig. 8.1.23. The spheres are made 
to approach, and the inner spheres 
distort as after repulsion. After 
equation 8.1.22. 
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8.2 Simplest of Periodic Structures 

We continue to structures of some extension in space. First we give 
coordinates for eight atoms, and put them together in the GD function in 
eq. 8.2.1. The structure is illustrated in figure 8.2.1. 

g-(x2 +y2 +z 2 ) + e-((x-2)2 +y2 +z 2) + e-(x2 +(y-2)2 +z 2 ) 

+e_(x 2 +y2 +(z_2)2 ) + e_((x_2)2 +y2 +(z_2)2 ) 

+e-(x 2 +(y-2) 2 +(z-2) 2) + e-((x- 2) 2 +(y-2) 2 +z 2) 
8.2.1 

+e -((x-2)2 +(Y-2)2 +(z-2)2 ) = 0.8 

Fig. 8.2.1. Structure after equation 
8.2.1. 

Fig. 8.2.2. After equation 8.2.2. 

Using circular periodic functions we changed size of bodies by changing 
constant, and could make them approach each others. We may do that as 
well here, but we can also change distances between bodies- actually move 
them as in eq. 8.2.2 with the result displayed in fig. 8.2.2. 

e_(X 2 +y2 +z 2 ) + e_((x_ 1.95)2 +y2 +z 2 ) + e_(X 2 +(y_ 1.95)2 +z 2 ) 

+e_(X 2 +y2 +(z- 1.95) 2 ) + e-((x- 1.95) 2 +y2 +(z_ 1.95)2) 

+e-(X 2 +(y- 1.95) 2 +(z- 1.95) 2 ) + e-((x- 1.95) 2 +(y- 1.95) 2 + z 2) 

+e -((x-1"95)2 +(Y-1"95)2 +(z-1"95)2) = 0.8 

8.2.2 
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We have continued with equation 8.2.3 and this is shown in fig. 8.2.3. 

e_(X 2 +y2 +z 2 ) + e_((x_ 1.9)2 +y2 +z 2 ) + e_(X 2 +(y_ 1.9)2 +z 2 ) 

+e_(X 2 +y2 +(z_1.9)2) + e_((x_l.9)2 +y2 +(z_ 1.9)2) 

+e- ( x 2 +( y - 1.9 )2 +( z -  1.9)2 ) + e_(( x- 1.9 )2 +( y_ 1.9 )2 + z 2 ) 

+e - ( (x -  1.9) 2 +(y- 1.9) 2 +(z- 1.9) 2 ) _ 0.8 

8.2.3 

Fig. 8.2.3. After equation 8.2.3. Fig. 8.2.4. Inside of fig 8.2.3 shows 
the dual. 

When bodies still come closer together -1.82 instead of-1 .9  in eq. 8.2.3 - 
the oetahedral body of dual shape is more pronounced with proper 
boundaries as shown in fig. 8.2.4. If this is the B6H6 octahedron, the dual 
shape in fig. 8.2.3 is then the Savin-ELF structure of the molecule. This 
dual relation was pointed out by von Schnering et al. in their study of the 
electronic structure of boron hydrides [3]. 

Finally the octahedral dual structure - which of course is a part of the 
spheres that were made to approach each other - is reduced to a small 
particle at a distance of 1.76 in fig. 8.2.5. 

We may disorder as in eq. 8.2.4, which gives fig. 8.2.6. 
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e_(X 2 +y2 +z 2 ) + e_((x_ 2.2)2 +y2 +z 2) + e_(X 2 +(y_ 1.95)2 +z 2) 

+e_((x+ 0.2)2 +(y+ 0.2)2 +(z_2.5)2) + e_((x_2.3)2 +y2 +(z_2.1)2) 

+e-(X 2 +(y- 1.95) 2 +(z- 1.9) 2) + e-((x-2.3) 2 +(y-2.3) 2 +z 2) 

+e -((x-2'5)2 +(Y-2'5)2 +(z-2"5)2) = 0.8 

8.2.4 

Fig. 8.2.5. After equation 8.2.3 with coordinate shift of 1.76 
instead of 1.9. 

Fig. 8.2.6. Disordered structure after equation 8.2.4. 
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In order to prepare us for the next section, we go back to the cube of bodies 
and put an extra body, an interstitial atom, in the cube with eq. 8.2.5. In 
order to keep the same coordinates and resolution we have gone up in scale. 
The ordinary scale would mean fusion of the small sphere with the bigger. 
We take advantage of these special mathematics, and take off a comer 
atom so you can see better. The comer atom we put on the desk to the 
right, so it can be put back when needed. Figure 8.2.7 describes the whole 
thing and is given by eq. 8.2.5. 

- e  x2 + y2 + z 2 - e  ( x -  2)2 + y2 + z 2 - e  x2 + ( y -  2)2 + z 2 
e +e  +e  

_eX2 + y2 +(z_2)2 _e(X_2)2 +(y_2)2 +z 2 
+e +e 

_e x2 +(y-2) 2 +(z-2) 2 _e(X-2)2 +(y-2) 2 +(z-2) 2 
+e +e  

_e2((x_ 1)2 +(y_l)2 +(z_ 1)2) _e(X_5)2 + y2 + z 2 
+e +e  =0.1 

8.2.5 

Fig. 8.2.7. A smaller interstitial body in the centre of eight bodies of 
a primitive cube. One of the comer bodies is taken off and put on the 
desk to right. The whole thing after equation 8.2.5. 
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8.3 Contact of Spheres in Space - Structures and Surfaces 

Earlier we used surfaces to derive structures [4,5,6,7], and now we shall do 
the reverse - we use structures to derive surfaces. The structures here are 
spheres placed in space after a certain pattern we choose from structural 
chemistry. The jargon is that we say the spheres are organised in primitive 
packing (pc) above in fig 8.2.1, 8.3.1 and 8.3.6, in body centred packing 
(bcc) in fig. 8.3.8, in cubic close packing (ccp) in fig. 8.3.16, in diamond 
packing (D) in fig. 8.3.23, the G-packing (G) in 8.3.27 and finally 
hexagonal close packing (hcp) in fig. 8.3.29. These structures are described 
in terms of neighbours - in ccp and hop each body has 12 neighbours, in bcc 
there are 6+8, in pc 6, in D 4 and in G only 3. What about 2? It is not 
trivial, but it occurs in ordinary structural chemistry, and is much more 
important in biology. 

With the spheres spread out in these various packings, we shall make the 
spheres move against each other so that catenoids develop between them, 
just as above, or in soap water chemistry, or in the mathematics of the 
minimal surfaces. To some surprise we get the topology of just the famous 
minimal surfaces one by one, or the nowadays equally famous nodal 
surfaces [8,9]. As shown below. 

Fig. 8.3.1.27 spheres in pc arrangement 
after equation 8.3.1 with C=0.83. 

Fig. 8.3.2. After equation 8.3.1 with 
C=0.75. 
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In fig. 8.3.1 we have 27 spheres after eq. 8.3.1 and a constant of 0.83. By 
decreasing the constant to 0.75, the spheres expand and catenoids are 
formed as in fig. 8.2.2. But normalisation to constant sizes of spheres 
means that the whole structure shrinks. The auxiliary parameter - t h e  
constant - is physically the temperature, or the reverse of pressure. 

e_(x 2 +y2 +z 2 ) + e_((x_ 2)2 +y2 +z 2 ) + e_(x 2 +(y_2)2 +z 2 ) 

+e_(x 2 +y2 +(z_2)2) + e_((x_2)2 +y2 +(z_2)2) 

+e-(x 2 +(y-2) 2 +(z-2) 2 ) + e-((x-2) 2 +(y-2) 2 +z 2) 

+e_((x_2)2 +(y_2)2 +(z_2)2 ) + e_((x_4)2 +y2 +z 2 ) + 

+e_(x 2 +(y_4)2 +z 2 ) + e_(x 2 +y2 +(z_4)2 ) + e_((x_4)2 +y2 +(z_2)2) 

+e-(X 2 +(y-2) 2 +(z-4) 2 ) + e-((x-4) 2 +(y-E) 2 +z 2 ) 

+e -((x-2)2 +y2 +(z-4)2) +e -(x2 § § 8.3.1 

+e-((x-2) 2 +(y-4) 2 +z 2 ) + e-((x-4) 2 +(y-E) 2 +(z-2) 2 ) 

+e-((x-2) 2 +(y-2) 2 +(z-4) 2) + e-((x- 2) 2 +(y-4) 2 +(z-2) 2) 

+e -((x-4)2 +(Y-2)2 +(z-4)2 ) -I- e -((x-4)2 +(Y-4)2 +(z-2)2 ) 

+r +(y_4)2 +(z_4)2 ) + r +y2 +(z_4)2 ) 

+e-(X 2 +(y-4) 2 +(z-4) 2 ) + e-((x-4) 2 +(y-4) 2 +z 2 ) 

+e -((x-4)2 +(Y-4)2 +(z-4)2) - 0.83 

We change the constant to 0.68 and in fig. 8.3.3 we see the great similarity 
with the P surface with the boundaries used. The circles are even slightly 
square. 

A constant of 0.58 gives fig. 8.3.4 and 0.50 gives 8.3.5. 

In equation 8.3.2 we have added 27 spheres on the double exponential 
scale, and in fig. 8.3.6 we see the result. The spheres are almost undistorted, 
but still connected via catenoids. 
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Fig. 8.3.3. After equation 
8.3.1 with C=0.68 the 
inside shows the P surface. Fig. 8.3.4. C=0.58 

Fig. 8.3.5. C=0.5 
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+y2+z2 _e(X-2)2 +y2 z 2 eX2 +(y_2)2 +z 2 _eX2 +y2 +(z-2) 2 _e x2 + _ 
e +e  + e  + e  

_e(X_2)2 +(y_2)2 +z 2 _e(X_2)2 +y2 +(z_2)2 _eX2 +(y_2)2 +(z_2)2 
+e +e  + e  

_e(X_2)2 +(y_2)2 +(z_2)2 _e(X_4)2 +y2 +z 2 
+e + e  

_e x2 +(y-4) 2 + z 2 
+ e  

+y2 +(z_4)2 4)2 +(y_2)2 +z 2 e(X_4)2 +y2 +(z_2)2 _e x2 _e(X- _ 
+e +e  + e  

_eX2 +(y_2)2 +(z_4)2 _e(X_2)2 +(y_4)2 +z 2 _e(X_2)2 +y2 +(z_4)2 
+e +e  + e  

_e x2 +(y- 4) 2 +(z-2) 2 _e(X-4)2 +(y-2) 2 +(z-2) 2 
+e +e  

_e(X-2)2 +(y-2) 2 +(z-4) 2 _e(X-2)2 +(y-4) 2 +(z-2) 2 
+e +e  

_e(X-4)2 +(y-2) 2 +(z-4) 2 _e(X- 4)2 +(y-4) 2 +(z-2) 2 
+e +e  

_e(X_2)2 +(y_ 4)2 +(z_4)2 _e(X_ 4)2 + y2 +(z_4)2 _e(X_ 4)2 +(y_4)2 + z 2 
+e +e  +e  

_e x2 +(y-4) 2 +(z-4) 2 _e(X- 4)2 +(y-4) 2 +(z-4) 2 
+e +e  =0.075 

8.3.2 

Fig. 8.3.6. The double exponential scale as in equation 
8.3.2 gives more spherical bodies. 
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We are now ready for a denser combination of spheres, the so called bcc or 
body centred cubic packing. This is a structure very common in Nature, for 
example in many metals or alloys, like stainless steel. Figure 8.3.7 shows a 
small unit for this packing from eq. 8.3.3, and it is clear that the central 
atom pushes the comer atoms so they loose contact with each other. 
Instead, catenoids along the space diagonals are generated. 

e-(X2 +y2 +z 2) + e-((x-3)2 +y2 +z2) + e-(X2 +(y-3)2 +z 2) 

+e-(X2 +y2 +(z-3) 2 ) + e-((x-3)2 +y2 +(z-3) 2) 

+e-(X 2 +(y- 3) 2 +(z-3) 2) + e-((x-3) 2 +(y- 3) 2 +z 2 ) 

+e -((x-3)2 +(Y-3)2 +(z-3)2 ) + e -((x-1"5)2 +(Y- 1'5)2 +(z-1"5)2) = 0.3 

8.3.3 

Fig. 8.3.7. Bcc arrangement of 
bodies after equation 8.3.3. 

Fig. 8.3.8. The centres of 14 bodies 
in bcc form a rhombic dodecahedron. 
After equation 8.3.4. 

In fig. 8.3.8 there are six more atoms after eq. 8.3.4, still with the same 
constant of 0.3, and the bodies form the comers of a polyhedron, the 
rhombic dodecahedron, which is characteristic for this geometry. The 
central atom is surrounded by 6+8 others and is the commencement of a 
surface called IWP, as shown in fig. 8.3.9. 
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e-(X2 +y2 +z 2 ) + e-((x-3)2 +y2 +z 2 ) + e-(X2 +(y-3)2 +z 2 ) 

2 +e-(X2+y2+(z-3) 2) + e-((x-3)2+y2+(z-3) 2) +e-(X +(y-3)2+(z-3) 2) 

+e-((x-3) 2 +(y-3) 2 +z 2 ) + e-((x- 3) 2 +(y-3) 2 +(z-3) 2 ) 

+e-((x- 1.5) 2 +(y- 1.5) 2 +(z- 1.5) 2 )e-((x-4.5) 2 +(y- 1.5) 2 +(z- 1.5) 2 ) 

+e-((x- 1.5) 2 +(y-4.5) 2 +(z- 1.5) 2) + e-((x- 1.5) 2 +(y- 1.5) 2 +(z-4.5) 2) 

+e-((x+ 1.5/2 +(y- 1.5) 2 +(z- 1.512 ) + e-((x- 1.512 +(y+ 1.5/2 +(z- 1.5) 2 ) 

+e -((x-1"5)2 +(Y-1"5)2 +(z+1"5)2) = 0.3 

8.3.4 

Fig. 8.3.9. Catenoids around the central body reveal the 
commencement of the IWP surface. After equation 8.3.4. 

In order to make all atoms touch each other in bee, every second atom has 
to be smaller, which is the ease in fig. 8.3.10. In 8.3.11 the central part is 
shown with 6+8 catenoids to its neighbours, and a surface better suited for 
bee. The equation for all this is 8.3.5 and we went to double exponential to 
get better resolution. The topology of the surface is O,C-TO after Schoen. 
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_e(X2+y2+z 2) 
e + e  

_e((X-2)2+y2 +z 2 ) 
-t-e 

_e(X 2 +(y +2) 2 +z 2 ) 

_e(X2+y 
+e 

2+(z-2)2) _e((X+2)2 +y2 +z 
+ e  

2) _e(X2 +(y_2)2 +z 2 ) 
+ e  

_e((X) 2 
+e 

+y2+(z+2)2) 
-e  + e  

1.5((x- 1) 2 +(y- 1) 2 +(z-  1) 2 ) 

-e  +e 
1.5((x+ 1) 2 +(y- 1) 2 +(z- 1) 2 ) 

- e  + e  
1.5((x- 1) 2 +(y + 1) 2 +(z-  1) 2 ) 

-e  +e 
1.5((x- l) 2 +(y- 1) 2 +(z+ 1) 2) 

-e  + e  
1.5((x+ 1) 2 +(y+ 1) 2 +(z+l) 2) 

-e  +e 
1.5((x- 1) 2 +(y + 1) 2 +(z+ 1) 2 ) -e  1.5((x+ 1) 2 +(y-  1) 2 +(z+ 1) 2 ) 

+ e  

-e  +e 
1.5((x+ 1) 2 +(y+ 1) 2 +(z- 1) 2) 

=0.12 

8.3.5 

Fig. 8.3.10. Sizes of bodies 
changed so all touch each 
other. After equation 8. 3.5. 

Fig. 8.3.11. Catenoids around the 
central body reveal the commencement 
of the O,C-TO surface. After equation 
8.3.5. 

In the close packing of spheres, cubic or hexagonal, the tetrahedron and 
the octahedron are essential parts. So we make the tetrahedron with four 
spheres in eq. 8.3.6, and for a constant of 0.16 they fuse together via 
catenoids in fig. 8.3.12. In the centre there is a tetrahedron of reverse 
orientation, the dual, which is a result of the catenoid openings between the 
spheres. For C=0.15 the tetrahedron is small and isolated, illustrated in fig 
8.3.13. 
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Fig. 8.3.12. Four bodies fused together tetrahedrally. 
After equation 8.3.6 and C=0.16. 

Fig. 8.3.13. After equation 8.3.6 and C-0.15. 
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e_((x_3)2 +y2 +z 2 ) + e_((x_3)2 +(y_3)2 +z 2) 

+e-((x-1.5) 2 +(y- 1.5) 2 +(z+2.121) 2) 

+e-((x-4.5) 2 +(y-4.5) 2 +(z+2.121) 2) = C 

8.3.6 

We propose here that the dual relation between a molecule and its ELF 
structure [3] has a correspondence in a crystal of an ionic or metal infinite 
structure. A simple example is the classic solid Perovskite, CaTiO3, in 
which the negative TiO3 part consists of TiO6 octahedra sharing comers 
and exists as one isosurface as in fig. 8.3.4, while the dual, the positive Ca 
part, exists as bodies for another constant as in fig. 8.3.1 or 8.3.2. 

The dual behaviours as also seen above in figures 8.2.3 and 8.2.4, and here 
in figures 8.3.12 and 8.3.13, correspond to the molecules B6H6 and B4H4 
and their dual ELF structures. So we show here that the atoms in the 
molecule, as well as their dual electron structure, is described in one 
continuos and closed function. We also show a mechanism of formation by 
letting spheres interact in space. We continue with the octahedron by 
letting six equidistant spheres approach each other in space as in fig. 
8.3.14, after eq. 8.3.7. The split is shown in fig. 8.3.15, and reveals the 
dual cube that corresponds to a molecule BaH8. 

e_(X 2 +y2 +z 2) + e_(X 2 +(y_3)2 +z 2) 

+e_((x_l.5)2 +(y_1.5)2 +(z_2.12)2) + e_((x_3)2 +y2 +z 2) 

+e -((x-3)2 +(Y-3)2 +z2) + e -((x-1"5)2 +(Y-1"5)2 +(z+2"12)2) = 0.16 

8.3.7 

In fig. 8.3.16 there is a structure of two edge sharing octahedra - into the 
bargain comes tetrahedral interstices between the octahedra - and in the 
split in 8.3.17 we see the dual structure of a string of comer sharing cubes 
and tetrahedra. The edge sharing of octahedra is a fundamental building unit 
in solid state chemistry - one example is the Rutile structure which contains 
just such chains of edge sharing octahedra. VO2 is one of the many 
compounds that have this structure, and the chains are used to explain the 
drastic changes of electric conductivity that occurs with temperature for 
crystals of this material [10]. We propose that the dual structure could be a 
picture of this phenomenon - the structure of fig. 8.3.17 would correspond 
to the metal conducting form, while the change of constant that gives 
isolated cubes would give the structure of the oxide insulator. 
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Fig. 8.3.14. Octahedron after equation 8.3.7. 

Fig. 8.3.15. Split of octahedron reveals the dual cube. 
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Fig. 8.3.16. Two edge sharing octahedra as in the structure 
of Rutile 

Fig. 8.3.17. Split of octahedron reveals a dual structure of 
comer connected cubes and tetrahedra_ 

We are now ready for a more complete piece of cubic close packing of 
bodies, and in fig. 8.3.18 we see eight tetrahedra sitting on one octahedron, 
and it is called after its inventor, Kepler's stella octangula. The split in fig. 
8.3.19 shows the dual structure, one cube, sharing comers with eight 
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tetrahedra, and it's equation is in 8.3.8. This structure is a model for several 
clusters in chemistry, and we just mention the celebrated Mo6C18 and point 
out that it was discovered by W. Klemm. The octahedron has six 
molybdenum atoms and the chlorine atoms form the outer tips of the 
tetrahedra. 

e_(X 2 +y2 +z 2) + e_(X 2 +(y_3)2 +z 2) + e_((x_l.5)2 +(y_1.5)2 +(z_2.12)2) 

+e_((x_3)2 +y2 +z 2) + e_((x_3)2 +(y_3)2 +z 2) 

+e-((x-l.5)2 +(y-l.5) 2 +(z+2.12) 2) + e-((x-4.5) 2 +(y-l.5) 2 +(z-2.12) 2) 

+e-((x-4.5) 2 +(y-l.5) 2 +(z+2.12) 2) + e-((x-l.5) 2 +(y+l.5) 2 +(z-2.12) 2) 

+e-((x-l.5) 2 +(y+l.5) 2 +(z+2.12) 2) + e-((x-l.5) 2 +(y-4.5) 2 +(z-2.12) 2) 

+e-((x- 1.5) 2 +(y-4.5) 2 +(z+2.12) 2) + e-((x+l.5) 2 +(y-l.5) 2 +(z-2.12) 2 ) 

+e -((x+1"5)2 +(Y-1"5)2 +(z+2" 12)2) = 0.161 
8.3.8 

Fig. 8.3.18. Kepler's stella octangula, or Mo6Cls in 
chemistry. After equation 8. 3.8. 
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Fig. 8.3.19. Split of fig 8.3.18 reveals a dual structure of a 
cube comer connected with eight tetrahedra. 

In cubic close packing (ccp) each atom has 12 neighbours at the comers of 
a cube octahedron as in fig. 8.3.20, and we can get the corresponding 
surface in fig. 8.3.21 by letting 12 such spheres approach a central one. 
This is the commencement of a surface related to the so called F-RD, also 
one of the minimal surfaces of Schoen. The equation is in 8.3.9. 

e_(X 2 +y2 +z 2 ) + e_((x_3)2 +y2 +z 2) 

+e-(X 2 +(y-3) 2 +z 2) + e-((x-l.5) 2 +(y-l.5) 2 +(z-2.121) 2) 

+e-((x-3)2 +(y-3) 2 +z 2) + e-((x-4.5) 2 +(y-l.5) 2 +(z-2.121) 2) 

+e-((x+l.5) 2 +(y-l.5) 2 +(z-2.121) 2) = 0.2 

8.3.9 

Fig. 8.3.20. Twelve bodies in ccp. 
After equation 8. 3.9. 

Fig. 8.3.21. The FRD surface. After 
equation 8. 3. 9. 
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In ccp there are octahedral interstices as shown in fig. 8.3.22 with a smaller 
body in the centre of the octahedron. One atom of the bigger is then 
surrounded by 12+6 catenoids connecting to other atoms in the packing, 
and the equation is below in 8.3.10. 

_e(X2 +y 2 + z 2 ) _e((X- 2) 2 + y 2 + z 2 ) _e(X2 +(y- 2) 2 + z 2 ) 
e +e +e  

_e((X- 2) 2 +(y- 2) 2 + z 2 ) 
+e 

_e((X- 1) 2 +(y- 1) 2 +(z- 1.414) 2 ) 
+e  

_e((X- 1) 2 +(y- 1) 2 +(z+ 1.414) 2 ) 
+e 

+ e -e6((x- 1)2 +(Y- 1)2 +z2 ) = O. 1 

8.3.10 

Fig. 8.3.22. Split of an octahedron with a 
small interstitial body. After equation 
8.3.10. 

Fig. 8.3.23. Diamond. After equation 
8.3.11. 

We take out every second atom from ccp and get the diamond structure in 
fig. 8.3.23, which is the well known D-surface, and the equation is in 
8.3.11. 

_e(X- 0.5)2 +(y-0.5) 2 +(z-0.5) 2 _e(X+0.5)2 +(y +0.5) 2 +(z+0.5) 2 
+e 

_e(X+ 0.5)2 +(y- 1.5) 2 +(z- 1.5) 2 
+e 

_e(X- 1.5)2 +(y + 0.5) 2 +(z- 1.5) 2 
+e  

_e(X-0.5)2 +(y-2.5) 2 +(z-2.5) 2 
+e 

_e(X-2.5)2 +(y-0.5) 2 +(z-2.5) 2 
+e 8.3.11 

_e(X+ 1.5) 2 +(y-0.5) 2 +(z-2.5) 2 
+e 

2 2 2 _e (x-0.5) +(y+ 1.5) +(z-2.5) 
+e  

_e(X- 1.5)2 +(y- 1.5) 2 +(z+0.5) 2 
+e =0.1 
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In fig. 8.3.23 each sphere is a silicon atom, the catenoids oxygen atoms, 
and we have a part of the cristobalite structure, which is more clearly 
shown in fig 8.3.24. The equation is 8.3.12 with a constant of 0.08. The 
smaller spheres are now the Si atoms, which have the weight 1.5 in the two 
last terms, and the larger are the oxygen atoms. We need to go to the 
double scale to resolve the smaller atoms. The composition is Si207. 

_eX2+y2+z 2 _e(X-2)2+(y-2)2 +z2 _e(X+2)2 +(y+2)2 +z2 
e +e +e 

_eX2 +(y-2)2 +(z-2) 2 ) _eX2 +(y+2)2 +(z+2) 2 
+e +e 

_e(X_2)2 +y2 +(z_2)2 _e(X+2)2 +y2 +(z+2)2 
+e +e 

-e l'5((x- 1)2 +(y- 1)2 +(z- 1)2) -e 
+e + e 

1.5((x+1) 2 +(y+l) 2 +(z+ 1) 2) 
=0.08 

8.3.12 

Fig. 8.3.24. A piece of the cristobalite 
structure. After equation 8.3.12. 

Fig. 8.3.25. A three-connector 
net is described by equation 
8.3.13, and its surface centre is a 
monkey saddle of the gyroid 
type. 

Next arrangement of spheres is somewhat special. We have seen space nets 
as mathematical functions, with spheres that move towards each other 
giving 14, 12, 8, 6, and 4 neighbours to a central body. The latter was the 
diamond arrangement. The next is the simplest, a cubic three-connector 
that has been described by Wells [11 ], and which we shall study. As we focus 
on the net we use the ordinary scale. Wells' net has got eight points in the 
cubic unit cell: 
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( !  1 1 / ( 5 3  5 37 5 7 1 73 

e_((x+0.5)2 +(y_0.5)2 +(z_0.5)2 + e_((x_0.5 )2 +(y_0.5)2 +(z_1.5)2 

+e-((x-0.5) 2 

+e-((x+0.5) 2 

+e-((x-0.5) 2 

+e-((x-3.5) 2 

+e-((x-4.5) 2 

+e-((x-l.5) 2 

+e-((x-2.5) 2 

+e-((x-3.5) 2 

+e-((x-3.5) 2 

+e-((x+0.5) 2 

+e-((x-0.5) 2 

+(y+0.5) 2 +(z-2.5) 2 

+(y- 4.5) 2 +(z_O. 5) 2 

+(y-3.5)2 +(z-2.5) 2 

+(y-3.5) 2 +(z-3.5) 2 

+(y-4.5)2 +(z-l.5) 2 

+ e-((x+0.5) 2 +(y+0.5) 2 +(z-3.5) 2 

+ e-((x+0.5) 2 +(y-3.5) 2 +(z-3.5) 2 

+ e-((x-0.5) 2 +(y-4.5) 2 +(z-1.5) 2 

+ e-((x-3.5) 2 +(y-4.5) 2 +(z-0.5) 2 

+ e-((x-l.5) 2 +(y-l.5) 2 +(z-l.5) 2 

+(y-2.5) 2 +(z-2.5) 2 + e-((x-2.5) 2 +(y-2.5) 2 +(z-3.5) 2 

+(y-l.5) 2 +(z-.5) 2 + e-((x-4.5) 2 +(y-3.5) 2 +(z-2.5) 2 

+(y-0.5) 2 +(z-0.5) 2 + e-((x-4.5) 2 +(y-0.5) 2 +(z-l.5) 2 

+(y+0.5) 2 +(z-3.5) 2 + e-((x-4.5) 2 +(y+0.5) 2 +(z-2.5) 2 

+(y-0.5) 2 +(z-4.5) 2 + e-((x-0.5) 2 +(y-0.5) 2 +(z-5.5) 2 

+(y+0.5) 2 +(z-6.5) 2 + e-((x+0.5) 2 +(y+0.5) 2 +(z-7.5) 2 

+e-((x+.5) 2 +(y-4.5) 2 +(z-4.5) 2 + e-((x+.5) 2 +(y-3.5) 2 +(z-7.5) 2 

+e-((x-0.5) 2 +(y-3.5) 2 +(z-6.5) 2 + e-((x-0.5) 2 +(y-4.5) 2 +(z-5.5) 2 

+e-((x-l.5) 2 +(y-l.5) 2 +(z-5.5) 2 + e-((x-l.5) 2 +(y-2.5) 2 +(z-6.5) 2 

+e-((x-2.5) 2 +(y-2.5) 2 +(z-7.5) 2 + e-((x-2.5) 2 +(y-l.5) 2 +(z-4.5) 2 

+e-((x-3.5) 2 +(y-4.5) 2 +(z-4.5) 2 + e-((x-4.5) 2 +(y-4.5) 2 +(z-5.5) 2 

+e-((x-3.5) 2 +(y-3.5) 2 +(z-7.5) 2 + e-((x-4.5) 2 +(y-3.5) 2 +(z-6.5) 2 

+e-((x-3.5) 2 +(y-0.5) 2 +(z-4.5) 2 + e-((x-4.5) 2 +(y-0.5) 2 +(z-5.5) 2 

+e-((x-3.5) 2 +(y+0.5) 2 +(z-7.5) 2 

8.3.13 

+ e -((x-4"5)2 +(Y+0"5)2 +(z-6"5)2 = 0.9 
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We derive centres for 28 spheres after eq. 8.3.13, and each sphere has 
three neighbours. 

By starting to vary the constant we get the gyroid surface with the typical 
monkey saddle in fig. 8.3.25, as calculated from eq. 8.3.13 with a constant 
of 0.65 instead of 0.9. The boundaries given show the central part of the 
surface. 

Wells also showed that it is possible to make a racemate consisting of two 
interpenetrating nets of this kind, one D and one L. This is shown in fig. 
8.3.26 for two interpenetrating gyroid nets after equation 8.3.14 [4], which 
clearly shows the three connectors. Another way to do this was shown 
earlier in fig. 4.2.10. 

eC~ ~xsin ~z+cos ~j, sin wx+cos ~zsin ~j, 

+e-(COS wxsin fez+cos 7vy sin wx+cos rtz sin wy) = 3.9 
8.3.14 

Fig. 8.3.26. Two interpenetrating gyroid nets, three connecting, 
after equation 8. 3.14. 
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Going back to equation 8.3.13, we now use the constant 0.9 and get then 
the original net by Wells as shown in figures 8.3.27 and 8.3.28, the latter 
projected along the cube-axes of the used boundaries. This is surely an 
alternative to derive a cubosome shape for the gyroid. To this structure 
could be added another interpenetrating structure like in fig. 8.3.26, using 
double as many spheres in the equation above. The resulting total structure 
would be two interpenetrating structures, separate and closed, one left- 
handed and the other right-handed! 

Fig. 8.3.27. Finite gyroid net, three 
connecting, after equation 8.3.13. 

Fig. 8.3.28. Projection of fig. 8.3.27. 

In fig. 8.3.29 we show the hexagonal correspondence to the 
cubeoctahedron with thirteen spheres in hexagonal close packing, and they 
are brought close to each other via eq. 8.3.14 to develop catenoids. The 
central part of the surface for hexagonal close packing is shown in fig. 
8.3.30. 
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_e(X2 +y 2 + z 2 ) _e((X- 2)2 +y 2 +z 2 ) 
e +e  

_e((X- 1)2 +(y-.577) 2 +(z- 1.633) 2 ) 
+e 

_e(X 2 +(y- 2.309) 2 +(z- 1.633) 2 ) 
+e 

_e(X 2 +(y+ 1.155) 2 +(z- 1.633) 2 ) 
+e 

_e((X+ 1) 2 +(y-.577 )2 +( z-  1.633) 2 ) 
+e 

_e((X- l) 2 +(y- 1.732) 2 +(z-3.27) 2 ) 
+e 

_e((X- 1)2 +(y_ 1.732)2 + z 2 ) 
+e  

_e((X-2) 2 +(y- 2.309) 2 +(z- 1.633) 2) 
+e  

_e((X-2) 2 +(y + 1.155) 2 +(z- 1.633) 2 ) 
+e  

_e((X-3) 2 +(y-.577) 2 +(z- 1.633) 2 ) 
+e  

_e((X_ 2)2 +y2 +(z_3.27)2 ) 
+e  

_e(X 2 +y2 +(z_3.27)2) _ 0.11 
+e  

8.3.14 

Fig. 8.3.29. Hexagonal close packing of bodies after 
equation 8. 3.14. 
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Fig. 8.3.30. The central part of fig. 8.3.29. 

Similarly we can derive a surface for tridymite or ice, the hexagonal 
correspondence to the D surface, by using a part of the structure as shown 
in fig. 8.3.31. 

Fig. 8.3.31. A piece of the ice, or tridymite, structure. 



Handmade Structures and Periodicity 225 

Finally there is the simple triangle arrangement of spheres in space, or for 
a chemist the structure of primitive hexagonal packing (the structure of W 
in WC). In fig. 8.3.32 there are six spheres at the comers of a trigonal 
prism, using only the six first terms of eq. 8.3.15. The dual structure is a 
trigonal bipyramid, and in fig 8.3.33 all the spheres from eq. 8.3.15 are 
included to show the CaZn5 arrangement (without Ca) as the dual structure 
of a primitive hexagonal arrangement of bodies. 

e_(X 2 +y2 +z 2 ) + e_((x_3)2 +y2 +z 2) + e_((x_ 1.5)2 +(y_2.6)2 +(z)2) 

+e_((x_3)2 +(y)2 +(z_2)2) + e_((x_l.5)2 +(y_2.6)2 +(z_2)2) 

+e_((x)2 +(y)2 +(z_2)2) + e_((x+l.5)2 +(y_2.6)2 +(z_2)2) 

+e_((x+l.5)2 +(y_2.6)2 +(z)2) + e_((x_3)2 +(y)2 +(z+2)2) 

+e_((x_l.5)2 +(y_2.6)2 +(z+2)2) + e_((x)2 +(y)2 +(z+2)2) 

+e -((x+ 1"5)2 +(Y-2"6)2 +(z+2)2) = 0.17 
8.3.15 

Fig. 8.3.32. Primitive 
hexagonal packing of bodies 
after equation 8. 3.15 only 
using six terms. 

Fig. 8.3.33. The dual structure of fig 8.3.32 
(CaZns) after equation 8.3.15. 
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8.4 How Tetrahedra and Octahedra meet in Space 

With these mathematics we can also make complicated structures, like a 
part of the zinc blende structure, or of a shear plane as it occurs in Nb307F 
[12], and pieces of tridymite or ice as we believe they form a part of the 
structure of water [13]. The equations for these structures are rather 
lengthy and we refer to our original publications, except for the zinc blende 
and a simple shear plane. 

We give the equation of each tetrahedron in a unit of four, in eq. 8.4.1, 
using the double scale with proper coordinate shifts. This is a part of the 
zinc blende structure of four tetrahedra meeting at a comer as in figure 
8.4.1. In 8.4.2 we show the part where the four tetrahedra meeting at high 
resolution to show that the function is continuos. 

e_(e-X+y-z +e-X-y+z +eX-Y-Z +eX+Y+Z _22) 

+e_(e-X+y-z+ 8 +e-X-y+z +eX-Y-Z +eX+Y+Z-8_22) 

+e_(e-X+y-z+ 8 +e-X-y+z +eX-Y-Z- 8 +eX+Y+Z _22) 

-(e-X+Y-Z+8 +e-X-Y+Z-8 +eX-Y-Z +eX+Y+Z-22) - 2 
+ e  

8.4.1 

Fig. 8.4.1. Part of the zinc blende structure after equation 8. 4.1. 
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Fig. 8.4.2. High resolution of centre of fig. 8.4.1. 

Octahedral edge sharing to give shear is one of the most important building 
operations in chemistry. Mathematically it is just translation. In eq. 8.4.2 
we have four sub-equations for four octahedra, translated to give edge 
sharing, and they form the function on the double exponential level that 
gives the structure in fig. 8.4.3. We use the base of 20 to get the sharpness 
of the octahedra, or resolution, needed. 

octl = 20 -x+y+z + 20 x+y-z-4  + 20 x-y+z + 20 x+y+z-4 

+20x-Y -z  + 20-x-Y +z+4 + 20-x+Y -z  + 20-x-Y-Z+4 _ 1500 

oct2 - 20 -x+y+z+4 + 20 x+y-z-8 + 20 x-y+z-4 + 20 x+y+z-8 

+20 x - y - z - 4  + 20 -x-y+z+8 + 20 -x+y-z+4 + 20 -x -y-z+8  - 1500 

oct3 = 20 -x+y+z+4 +20x+Y-Z-4 +20x-Y+Z-4 +20x+Y+Z-4 

+20 x - y - z - 4  + 20 -x-y+z+4 + 20 -x+y-z+4 + 20 -x -y - z+4  - 1500 
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oct4 = 20 -x+y+z  + 20 x + y - z  + 20 x - y + z  + 20 x+y+z 

+20 x - y - z  + 20 - x - y + z  + 20 - x + y - z  + 20 - x - y - z  - 1500 

e-OCtl + e-OCt2 + e-OCt3 + e-OCt4 = 4 8.4.2 

Fig. 8.4.3. Shear plane in solid state 
chemistry after equation 8. 4.2. 
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E x e r c i s e s  8 

Exercise 8.1. 
a. Show in 3D that a cylinder may be described as built of planes. 

1 y2 (Hint: use equations like x 2 + ~ - 1 . )  
10 

b and c. Do the same for the sphere. 

(Hint: Use equation x 2 + y2 + Az 2 _ 1 for bigger or smaller A. And we have 
already shown a cylinder consists of planes.) 

Exercise 8.2. Make the drop fall in fig. 8.1.11! 

Exercise 8.3. Make a radiolarian more spherical. 

Exercise 8.4. Plot and describe 

a. x 2 + y 2 + z = 0  

and compare with 

b. x 2 - y  2 + z = O  

Exercise 8.5. 
a. Make a string of seven spheres well separated (with the constant). 
b. Make a local contact via catenoids by making one of the spheres elliptic. 
c. Or via just one catenoid by adding an extra sphere of low weight. 

Exercise 8.6. Describe the Diophantine equation for some n. 
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Answer 8.1 

Fig. 8.1a. 

Fig. 8.lb. A=0.05 

Fig. 8.1c. A=10 
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Answer 8.2. We make the 'Gedanke'-experiment that the cylinder of 
some solid material is covered by a film of a liquid. In getting rid of an 
excess a drop is formed. Using equation 

e_(X 2 +y2 +z 2) + e_(X 2 +(z_1.92)2 = 0.8 

we can increase the distance between the objects as is done in 8.2a. Using 
equation 

e_(X 2 +y2 +z 2) + e_(X 2 +(z_1.9)2 = 0.82 

there is fig 8.2.b. 

We can feed more liquid to the cylinder by changing constants 
equation 

after 

e_(X 2 +y2 +z 2) + e_(X 2 +(z_1.94)2 = 0.8 

and the drop falls. 

Fig. 8.2a Fig. 8.2b 
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Fig 8.2c 

Answer 8.3. 

e - ( x 2 + y 2 + z 2 ) 2  + e  - ( y 2 + z 2 )  = 1 

Answer 8.4. 

x 2 _ y2  + z = 0 is a saddle 

Fig. 8.3 Fig. 8.4. 
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Answer 8.5a 

_eX2 +y2 +z 2 _e(X_2)2 +y2 +z 2 
e + e  

_e(X_4)2 +y2 +z 2 
+e +e 

_e(X_6)2 +y2 + z 2 

_e(X+2)2 +y2 +z 2 _e(X+4)2 +y2 +z 2 
+e +e 

_e(X+6)2 +y2 +z 2 
+ e  =0.18 

Fig. 8.5a. 

Answer 8.5b 

-e x2 + y2 + z 2 
e 

_e.7((x_2)2 +y2 +z 2) 
+ e  

_e(X_4)2 +y2 +z 2 
+ e  

_e(X_6)2 + y2 + z 2 
+ e  

_e(X+2)2 +y2 + z 2 
+ e  

_e(X+4)2 +y2 +z 2 
+ e  

_e(X+6)2 + y2 + z 2 
+ e  =0.18 

Fig. 8.5b. 
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Answer 8.5c. Only the part of the function where the extra small sphere 
gives a catenoid is shown. 

_eX2+y2+z 2 _e(X-2)2 +y2 +z2) _e(X-4)2 +y2 +z2 
e +e +e 

_e(X_6)2 +y2 +z 2 _e(X+2)2 +y2 +z 2 _e(X+4)2 +y2 +z 2 
+e +e +e 

_e(X+6)2 +y2 +z 2 _e(X_ 1)2 +y2 +z 2 
+e + 0.15e = 0.18 

Fig. 8.5c. 

Answer 8.6. The equation is: 
x n + yn _ z n = 0 

Increasing n brigs out the planes. 

Fig. 8.6a. n =1 Fig. 8.6b. n=2 
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Fig. 8.6c. n=3 
Fig. 8.6d. n =12 

Fig. 8.6e. n=13 
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9 The Rods in Space 

l'art d'ennuyer consiste ~ tout dire [1]. 

Here we derive the mathematics for how cylinders pack in space. We also 
describe the geometry when such packings condense into surfaces. 
We describe the rod-structure relations to crystal structures. 
We also make finite cubosome-like structures. 

9.1 Primitive Packing of Rods 

In three dimensions, cos(x)=C are planes, cos(y)=C are planes and so are 
cos(z)=C. If all three are added, they cooperate to form the P surface in 
space. The function cos(x)+cos(y)=C are parallel rods in space, and so are 
the pairs cos(x)+cos(z)=C and cos(z)+cos(y)=C, as shown in figure 9.1.1, 
according to eq. 9.1.1. 

7g 7g 
cos-- x + cos-- z = 0.5 9.1.1 

2 2 

Fig. 9.1.1. Parallel rods in space 
after equation 9.1.1. 

Fig. 9.1.2. Rods meet in space 
after equation 9.1.2. 

Adding up to a function as in 9.1.2, makes the rods meet to form a P-type 
surface as in fig. 9.1.2. 
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eC~176 2 +eC~176 +eC~176 = 6 9.1.2 

In order to make the rods non intersecting, we move them via translation, 
or a phase shift, as in equation 9.1.3 and get fig. 9.1.3. 

cos~-z+cos~(y+2) ~y+cos--n (x+2) cos x+cos (z+2) cos 
e +e  +e  2 2 = 6  

9.1.3 

Fig. 9.1.3. Primitive packing of rods after equation 9.1.3. 

So what have we done in more general terms? We go to the equation of 
symmetry and write it like this: 

e x+ Y+Z+eX+Y + e x = C 9.1.4 

This can equally well be written 
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eXe ye z +eXe y +e  x = C 

And we go circular below, 

e cos x e cos y e cos z + e cos x e cos y + eC~ x = C 9.1.5 

We have just found experimentally that the term cosx+cosy, or 

eC~ c~ or the identical e c~176 means a cylinder, and we can get 
cylinder packings by the addition on the exponential scale as above. 

The GD mathematics offer another way of deriving the rod packings. 

We know that x 2 + y2 is a cylinder in space and we go exponentially to 

add rods in eq. 9.1.6, as shown in fig. 9.1.4. 

e_(X 2 +y2)2 )2 e_(Z 2 +x2)2 + e  -(y2 +z2 + =0.65 9.1.6 

Fig. 9.1.4. Rods meet after GD 
function in equation 9.1.6. 

Fig. 9.1.5. Primitive packing of 
rods after equation 9.1.7. 

By proper coordinate shifts - or translations - in eq. 9.1.7 we have non 
intersecting rods in fig. 9.1.5. 

e_(X2 +(y+2)2)2 2)2 e_(Z2 +(x+2)2)2 + e-(y  2 +(z+2) + = O. 65 9.1.7 
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By adding more rods as in eq. 9.1.8 we get fig 9.1.6, which is turned in 9.1.7 
to show that it is nearly identical with fig. 9.1.3. 

e-(X2 +(Y+2)2)2 + e_(y2 +(z+2)2)2 + e_(Z2 +(x+2)2)2 

+e_(X 2 +(y_2)2)2 + e_(y2 +(z_2)2)2 + e-  (z 2 +(x_2)2)2 = 0.65 
9.1.8 

Fig. 9.1.6. More rods as after 
equation 9.1.8. 

Fig. 9.1.7. Different projection 
after equation 9. I. 8. 

Expanding the original function to 9.1.9 and using two terms after below, 
also gives us this rod packing, as shown in fig 9.1.8. 

2)12 + [cos-z  + cos- (y  + 2)j + [cos z-y + cosz-(x + 2)12,1 [cos ~ X + c o s - - ( z  + 
2 2 2 2 2 

+[cos~x+cos~(z+2)] 3 +[cos~z+cos~(y+2)] 3 +[cos~y+cos~(x+2)]3 =5.5 
2 2 2 2 2 z 

9.1.9 

Changing the constant to 7.6 isolates the atoms in the rod packing, which 
are the Nb atoms in Nb3Sn, as shown in fig. 9.1.9. 

We can also get the Sn atoms in Nb3Sn by adding the P surface to equation 
9.1.3, and get 9.1.10, and the whole structure is seen in fig. 9.1.10. 

71; 71; 71; 71; 71; 71; cos-~y+cos-~(x+2) cos-~z+cos-~(y+2) cos~x+cos~(z+2) 
e +e +e 

+2e c~176176 = 7 

9.1.10 
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Fig. 9.1.8. Power expansion also 
gives this rod packing after 
equation 9.1.9. 

Fig. 9.1.9. Change of constant 
brings out bodies as the Nb atoms 
in Nb3Sn, after equation 9.1.9. 

Fig. 9.1.10. Adding the P surface gives the complete 
structure of the superconducting NbsSn. 
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9.2 Body Centred Packing of Rods 

We constructed an algorithm saying that around a central goke you can 
have 3, 4 and 6 rods, and obtain fundamental packings [2]. So if we put a 
central goke in the primitive packing in fig. 9.1.7, and make all the rods 
have the same diameter and touch each other, we find that they all are 
space diagonals of the cube. The packing is now bcc of rods, or also the 
garnet packing of rods. The space group is Ia3d. The mathematics to come 
is just like before - permutation of the x,y,z variables following the 
structure of the equation of symmetry in space from eq. 3.4.1 and 4.2.10. 
We use the GD mathematics first as in eq. 9.2.1, and show four rods in this 
packing in fig. 9.2.1. 

e-((x-y) 2 +(y+z) 2 +(x+z) 2) + e-((x+Y) 2 +(y+z+2) 2 +(x-z-2) 2) 

+e -((x-y+2)2 +(Y-Z-2)2 +(x-z)2) + e -((x+y-2)2 +(Y-Z)2 +(x+z-2)2) = 0.5 
9.2.1 

And with seven rods we have eq. 9.2.2, which is illustrated in fig. 9.2.2. 

e-((x-y) 2 +(y+z) 2 +(x+z) 2) + e-((x+y+2) 2 +(y-z) 2 +(x+z+2) 2) 

+e-((x+y) 2 +(y+z+2) 2 +(x-z-2) 2) + e-((x-y+2) 2 +(y-z-2) 2 +(x-z) 2) 

+e_((x+y_2) 2 +(y_ z)2 +(x+ z_2) 2) 2 + e-((x+y)2+(Y +z-2) +(x-z+2) 2) 

+e -((x-y-2)2 +(Y-Z+2)2 +(x-z)2) = 0.5 

9.2.2 

Fig. 9.2.1. Four rods in body 
centredarrangementafter 
equation 9.2.1. 

Fig. 9.2.2. Seven rods in body centred 
arrangement after equation 9.2.2. 
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We have made a bigger model in fig. 9.2.3 by using four bundles with seven 
rods in each after equation 9.2.3 below. 

e-((x+y) 2 +(y+z+2) 2 +(x- z-2) 2 ) + e-((x+Y) 2 +(y+z-2) 2 +(x-z+2) 2) 

+e-((x+y-4) 2 +(y+z-2) 2 +(x- z-2) 2) + e-((x+y+4) 2 +(y+z+2) 2 +(x-z+2) 2 ) 

+e-((x+y+4)2 +(y+z+6) 2 +(x- z-2) 2) + e-((x+y-4) 2 +(y+z+2) 2 +(x-z-6) 2) 

+e-((x+y) 2 +(y+z+6) 2 +(x-z-6) 2) + e-((x-Y) 2 +(y+z) 2 +(x+z) 2) 

+e-((x-y) 2 +(y+ z+4) 2 +(x+ z+4) 2) + e-((x-y+4) 2 +(y+ z) 2 +(x+ z+4) 2) 

+e-((x-y+4) 2 +(y+z-4) 2 +(x+z) 2) + e-((x-Y) 2 +(y+z-4) 2 +(x+z-4) 2 ) 

+e-((x-y-4) 2 +(y+z) 2 +(x+z-4) 2 ) + e-((x-y-4) 2 +(y+z+4) 2 +(x+z) 2) 

+e-((x+y+2) 2 +(y-z) 2 +(x+z+2) 2) + e-((x+y-2) 2 +(y-z) 2 +(x+z-2) 2) 

+e-((x+y-2) 2 +(y-z-4) 2 +(x+z+2) 2) + e-((x+y+2) 2 +(y-z+4) 2 +(x+z-2) 2) 

+e-((x+y+6) 2 +(y-z+4) 2 +(x+z+2) 2) + e-((x+y+6) 2 +(y-z) 2 +(x+z+6) 2 ) 

+e-((x+y+2) 2 +(y-z-4) 2 +(x+ z+6) 2) + e-((x-y+2) 2 +(y-z-2) 2 +(x-z) 2) 

+e-((x-y-2)2 +(y-z+2) 2 +(x-z) 2) + e-((x-y+2) 2 +(y-z+2) 2 +(x-z+4) 2) 

+e-((x-y-2) 2 +(y-z-2) 2 +(x-z-4) 2 ) + e-((x-y+6) 2 +(y-z-2) 2 +(x-z+4) 2) 

+e -((x-y+2)2 +(Y-Z-6)2 +(x-z-4)2) + e -((x-y+6)2 +(Y-Z-6)2 +(x-z)2) = 0.5 

We now go circular and derive the corresponding equation: 

It, ~ 7r, eCOS ~(x- y) +cos~(y+ z)+cos ~(x+ z) 

+eCOS2(x+y+2)+cos2(Y-Z)+COS2 (x+z+2) 

+eCOS ~( x + y) +cos ~(y + z + 2) +cos ~( x- z-2) 

cos2(x-y+2)+cos2(Y- z-2)+cos2(x-z) 
+e = 15 

9.2.3 

9.2.4 
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Fig. 9.2.3. Twenty eight rods in body centred arrangement 
after equation 9.2.3. 

Fig. 9.2.4. Same structure but 
with circular functions after 
equation 9.2.4. 

Fig. 9.2.5. Different projection. 
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We see again the structure in two different projections in figs. 9.2.4 and 
9.2.5 from these mathematics of the circular functions. A constant is 
chosen so the cylinder diameter is small to give more open pictures of the 
structure. 

O'Keeffe [3] has discovered that the two packings discussed so far can 
interpenetrate each other, and this is shown below with two different 
projections in figs. 9.2.6 and 9.2.7, using only one of the four garnet rod 
systems (the thinner rods)to interpenetrate the primitive system. The 
equation is: 

71; ~ ~ 71; 
cos-~y+cos-~(x+2) cos-~z+cos~(y+2) cos x+cos (z+2) 

e +e +e 

71; 71; 
1 eC~176 (y+z)+c~ 

+ - -  

4 
=6.5 

9.2.5 

Fig. 9.2.6. The two rod structures 
discussed interpenetrate each other 
after equation 9.2.5. 

Fig. 9.2.7. Different projection. 
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9.3 Tetragonal and Hexagonal Packing of Rods 

According to the algorithm, next is four rods around a goke, and there are 
different ways to obtain the mathematics. We start with the GD 
mathematics. 

We have seen that in the packings above, the rods were parallel with a cube 
edge respectively a cube diagonal. We will now show that in this tetragonal 
packing, the rods are parallel to face diagonals (giving the structure a c/a~l, 
of course). We shall demonstrate the packings directly by using the cube. 
Doing so we take advantage of the exponential scale as is obvious from the 
figures below. 

We show first the packings described above in equations 9.3.1 and 2, and 
figures 9.3.1 and 2. 

y2 +e(Z+2)2 z 2 x+2) 2 e-(exE+e (y+2)2) +e-(e  ) +e- (  e +e ( ) 

2 2 
+e-(eX2+e y +e z -10) = 0.08 

9.3.1 

_(e(X+Z)2 +e(Y+Z+2)2 ) e_(e(Y+Z)2 +e(X+y+2)2 ) 
e + 

_(e(X+y)2 z+2)2 1)2 +e(Y_l)2 )2 +e +e (x+ ) + e-(e (x- +e (z-1 -30) = 0.08 

9.3.2 

Fig. 9.3.1. P.c. packing of rods 
and the cube. 

Fig. 9.3.2. Bcc packing of rods 
and the cube. 
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The relation of the tetragonal packing with the cube is shown in eq. 9.3.3 
and illustrated in fig. 9.3.3. 

e_(e(X-y+z)2 +e(-X-y-z+4)2 ) + e-(e (-x-y-z)2 +e(-X+y+z-4)2 ) 

+e_(e(-X+Y+Z)2 +e(X+Y-Z+4) 2 ) + e-(e (x+y-z)2 +e(X-y+z-4)2) 

2 2 
+e-(eX2+e y +e z -10) = 0.08 

9.3.3 

Fig. 9.3.3. Tetragonal packing of rods 
and the cube after equation 9.3.3. 

Below we give the equation for this packing by itself, which is also shown in 
figs. 9.3.4 and 5. 

e-(X-y+z)2 +(-x-y-z+4) 2 + e-(-x-Y-Z) 2 +(-x+y+z-4) 2 

+e -(-x+y+z)2 +(x+Y-Z+4)2 + e -(x+y-z)2 +(x-Y+Z-4)2 = 0.2 
9.3.4 
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Fig. 9.3.4. Tetragonal packing of 
rods after equation 9. 3. 4. Fig. 9.3.5. Different projection. 

We can add a circular goke in eq. 9.3.5 and fig. 9.3.6. 

e-(X-y+z)2 +(-x-y-z+4)  2 + e-(-x-Y-Z) 2 +(-x+y+z-4) 2 

+e-(-x+y+z)2 +(x+y-z+4) 2 + e-(X+Y-Z) 2 +(x-y+z-4) 2 

+e -(x2+y2+'5) = 0.35 

9.3.5 

Fig. 9.3.6. A goke is added to the 
tetragonal packing alter equation 
9.3.5. 

Fig. 9.3.7. A square goke is added 
to the tetragonal packing after 
equation 9. 3.6. 
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As the structure is tetragonal we make a square goke in 9.3.6 as illustrated 
in fig. 9.3.7. 

e-(X-y+z)2 +(-x-y-z+4)  2 + e-(-x-Y-Z) 2 +(-x+y+z-4) 2 

+e-(-x+y+ z)2 +(x+y-z+4) 2 z) 2 +(x-y+ z-4) 2 +e -(x+y- 9.3.6 

x 4 
+2e-(e +e y4-2) = 0.35 

The circular mathematics was derived accordingly, as seen in eq. 9.3.7. 
Because of low graphical resolution, the terms had to be squared. And the 
periodic packing is shown in different projections in figures 9.3.8 and 9.3.9. 

e (cos 2(x-Y + z)+cos 2 ( - x - y - z +  1)) 2 

+e(COS2(-x-y-z)+cos2(-x+y+ z-l))2 

+ e(COS 2 ( -  x + y + z) +cos 2(x + y-  z + 1)) 2 

9.3.7 

+e(COS 2(x + y-  z)+cos 2(x-y  + z-1)) 2 
= 40 

Fig. 9.3.8. Tetragonal rods with the 
circular functions after 9. 3.7. 

Fig. 9.3.9. Different projection. 
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A larger region is shown in fig. 9.3.10. 

Fig. 9.3.10. A larger region. 

Fig. 9.3.11. Different c/a after equation 9.3.8. 
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And at a different c/a according to eq. 9.3.8 below gives fig. 9.3.11. 

e(COS2(x-y+2z)+cos2(-x-y-2z+l))2 

7~ 7~ + e (cos-~(- x-y-  2 z) + cos-~(- x +y +2 z- 1)) 2 

+e(COS2(-x+y+2z)+cos2(x+y-2z+l))2 

(cos2(x+y-2z)+cos2(x-y+2z-1))2 
+e = 40 

9.3.8 

Next is the hexagonal rod packing after eq. 9.3.9 and seen in different 
projections in figs. 9.3.12 and 13. 

(-0.5x+-~y+0.4z) 2 (0.4 ~f3-4) 2 
e-(e +e z---~-y 

_ (e( O. 5x +--~~63 y + 0.4 z-4)2 (O. 4 z_ ~333 y )2 
+e +e 

_(e(-0.5x+~-~y+0.4z-4)2 (0.5x+-~y+0.4z) 2 
+e +e ) 

_(e(_O.5x+_~y_O.4z)2 (-0.4z--~y+4)2 
+e +e 

(0.5x+~363 y- 0.4z+ 4)2 (-0. ~ .)2 
+e-(e +e 4z---~-y 

(e ( 0.5x+ ~363 y_0.4 z )2 (_0.5x+ ~363 y_0.4z+ 4 )2 
+e- +e 

9.3.9 

+e_(X 2 +y2)2 = O. 09 
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Fig. 9.3.12. Hexagonal rod packing 
after equation 9. 3.9. Fig. 9.3.13. Different projection. 

The rods in tetragonal packing, and in hexagonal, meet after equations 
9.3.10 and 11 and are shown in figs. 9.3.14 and 9.3.15. 

e-((-x+y+z) 2 +(x+y-z) 2) + e-((x+Y-Z) 2 +(x-y+z) 2) 

+e-((x-Y +z)2+(-x-y-z)2) + e -((-x-y-z)2+(-x+y+z)2) - - 0.35 
9.3.10 

(-0.5x+-~y+0.4z)2 (0.4z__~y)2 
e-(e +e ) 

(0.5x+ ~363 y + 0.4 z )2 (0.4 z_ ~333 y ,2 
+e-(e +e ) 

(-0.5x+-~y+0.4z)2 (0.5x+-~y+0.4z)2 
+e-(e +e 

(-0.5x +-~ y-0.4 z )2 (-0.4 z--~ y )2 
+e-(e +e ) 

(0.5x+ ~363 y_ 0.4 z )2 (-0.4 z--~ y )2 
+e-(e +e ) 

(0.5x+ ~363 y_0.4 z )2 (_0.5x+ ~363 y_0.4 z )2 
+e-(e -~e ) =0.11 

9.3.11 
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Fig. 9.3.14. Rods meet in a 
tetragonal structure after equation 
9.3.10. 

Fig. 9.3.15. Rods meet in a 
hexagonal structure after equation 
9.3.11. 

9.4 Larsson Cubosomes of Rods 

We showed in chapter 5 how the Larsson cubosomes were made. We make 
similar structures with the rods. 

We add a sphere to a cylinder after equation 9.4.1, and have a spherical 
torus as in fig. 9.4.1. 

e-(X2 +y2) 2 e0.15(x2 +y2+z2) 
+ = 1.95 9.4.1 

In fig. 9.4.2 we have added three A15 rods to a sphere after equation 9.4.2. 
The structure is chiral and can be said to be a 3D propeller. This is best seen 
in its projection in fig. 9.4.3. 

e -(x2 +(Y+2)2)2 + e-(y 2 +(z+2)2)2 + e_(Z 2 +(x+2)2)2 

+e 0"05((x+1)2 +(Y+l)2 +(z+l)2) = 1.9 
9.4.2 
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e_(X2 +(y+2)2)2 2)2 + e-(y 2 +(z+2) 

+e-(Z 2 +(x+2)2) 2 + e-( x2 +(y-2)2) 2 

+e_(y2 +(z_2)2)2 z 2 )2 e0.04(x2 +y2 +z2 ) +e -( +(x-2)2 + =1.95 

9.4.3 

Fig. 9.4.1. Spherical torus 
after equation 9. 4. I. 

Fig. 9.4.2. Finite primitive packing 
of rods after equation 9. 4.2. 

Fig. 9.4.3. Different projection. Fig. 9.4.4. Six cylinders in f'mite 
primitive packing after equation 9. 4.3. 
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Next is to add three more cylinders in the A15 rod 3D propeller, after 
equation 9.4.3. Increasing the A15 packing to six cylinders in this way 
means a centric structure and the chirality is lost. This is a beautiful 
structure indeed, and is shown in fig. 9.4.4 and as a split in 9.4.5. The rod 
systems are non-intersecting, so this spherical body can also be used as a 
propeller. Blowing a thin beam of air on to the body along the three fold 
axis means spinning as the other rod system of opposite chirality is hidden. 
Organising another beam of exactly opposite direction, blowing 
simultaneously, would then make the body spin even better! 

Fig. 9.4.5. Split of fig. 9.4.4. 

Using the circular equation as in 9.4.4 for the bcc or garnet packing of rods 
and adding a sphere, we get fig. 9.4.6 and its split in 7. 

eCOS2(x-y)+cos2(Y+ z)+cos2 (x+z) 

+eCOS~(x+y+2)+cos~(y-z)+cos~(x+z+2) 

+eCOS2(x+y)+cos2(Y+ z+2)+cos2 (x- z-2 ) 

+ eCOS ~( x- y + 2 ) +cos ~(y-  z-2 ) + cos ~(x-  z) 

+e 0"4(x2+y2+z2) = 15 

9.4.4 
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Fig. 9.4.6. Finite garnet packing of rods after equation 9. 4. 4. 

Fig. 9.4.7. Split of fig. 9.4.6. 
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In figures 9.4.8 and 9 there is a cylinder giving boundaries to a tetragonal 
rod packing after eq. 9.4.5. 

e-((x+z+2) 2 +(y+z-2) 2) + e-((Y+Z+2) 2 +(x-z+2) 2) 

+e-((y-z+2) 2 +(x-z-2) 2) + e-((Y-Z-2) 2 +(x+z-2) 2) 

+e-((y+z-1 O) 2 +(x+z-6) 2) + e-((Y+Z-6) 2 +(x-z+l O) 2) 

+e-((y-z+l O) 2 +(x-z+6) 2) + e-((Y-Z+6) 2 +(x+z-1 O) 2) 

+e O'O15(y2+x2) = 1.5 

9.4.5 

Fig. 9.4.8. Cylindrical boundary to tetragonal rod packing 
after equation 9. 4.5. 
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Fig. 9.4.9. Different projection. 

9.5 Packing of Rods, and their Related Surfaces 

Below we see the primitive packing of rods transforming to a surface. The 
rods approach each others by lowering the constant. At 4 there is fig. 
9.5.1 and at 3.6 there is the classic IWP fig. 9.5.2. The equation is in 9.5.1. 

e-COS 7zx+cos nz + e-COS nz+cos rvy + eCOS rrx-cos ~y = 4 9.5.1 

Fig. 9.5.1. Primitive rod structure transforming 
to a surface after equation 9.5.1. C=4. 
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Fig. 9.5.2. At C=3.6 the surface is IWP. 

The gamet packing - I a3d -  gives a complicated surface related to the D 
surface and its hexagonal correspondence. We start with eq. 9.2.4 and a 
constant of 6, and its projection seen in figures 9.5.3 and 4. 

Fig. 9.5.3. Garnet packing of rods approaching a 
surface after equation 9.2.4 and a constant of 6. 
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Fig. 9.5.4. Different projection. 

At a constant of 4.9 a tetrahedral structure is shown in fig. 9.5.5, projected 
after a cubic space diagonal. A larger region is shown in fig. 9.5.6. And 
there are three more like that, meaning that the non-intersecting rods are 
kept in form of non intersecting channels of tridymite type. The 
tetrahedral network is created in the regions where the rods meet. The 
structure is intermediate in its nature to the cristobalite and the tridymite 
structures. 

We have also used the handmade structures with the GD mathematics for 
this purpose. The change of constant for the primitive and the garnet, or 
bcc, packing of rods, also here make the rods condense into surfaces of 
exactly the same type as was the case for the circular functions, as shown 
above. 

Conclusion: 
The fundamental and simplest rod packings are not related to the simple 
and fundamental surfaces like P, D or G. 
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Fig. 9.5.5. At C=4.9 there is a tetrahedral structure 
projected after a cubic space diagonal. 

Fig. 9.5.6. A larger region of fig. 9.5.5. The structure is 
intermediate in its nature to the cristobalite and the 
tridymite structures. 



262 Chapter 9 

Exercises 9 

Exercise 9.1. Show what happens when the constant in eq 9.1.1 
approaches 0. 

Exercise 9.2. Make a hexagonal radiolarian. 

Exercise 9.3. Make a 2D correspondence to equation 9.1.2. 

Exercise 9.4. Add a perpendicular non-intersecting rod to 3. 
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Answer 9.1. C=0.05 

Fig. 9.1. 

Answer 9.2. 

e-((-.5x+.29y+.4z)2 +(.4z-.58y) 2) + e-((.5x+'29y+'4z) 2 +(.4z-.58y) 2) 

+e-((.5x+.29y+.4z) 2 +(-.5x+.29y+.4z) 2) + e-((-.5x+.29y-.4z) 2 +(-.4z-.58y) 2) 

+e-((.Sx+.29y-.4z) 2 +(-.4z-.58y) 2) + e-((.5x+.29y--4z) 2 +(-.5x+.29y-.4z) 2) 

+e_(X 2 +y2 + z 2) _ 1 = 0 

Fig. 9.2. 



264 Chapter 9 

Answer 9.3. 

7~ ~ 7I 7I 

eC~176 2 +eC~176 - 4 . 5  

Fig. 9.3. 

Answer 9.4. Note that only a part of 9.3 is used. 

7I 7~ 7~ 7/ 
cos--x+cos--z cos--z+cos y 

e 2 2 +e  2 
cos--~(y+l)+cos--~(x+l) 

+e  2 2 2 2 =6.5 

Fig. 9.4. 
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I0 The Rings, Addition and Subtraction 

'...and what is the use of  a book,' thought Alice, 
'without pictures or conversations?' (Lewis Caroll, from Synge [1]). 

Here we show examples of addition and subtraction in 3D. We add or 
subtract spheres to planes, cubes, the natural exponential, and show how to 
derive the equation of a ring or a torus. 
We study the various ways of combining rings using these operations. We 
obtain examples of spherical and hyperbolic geometries, and we also add a 
torus and a periodic nodal surface. 
By the subtraction of polyhedra from the sphere we obtain the hyperbolic 
polyhedra. 

10.1 Some Simple Examples of Subtraction and Addition in 3D 

We subtract a sphere from a plane, or give curvature to a plane, with a 
sphere after eq. 10.1.1. By gradually changing the exponential function as 
constant A varies from 4, 1, 0.73, to 0.65 respectively, we have the 
pictures below in figs 10.1.1-4. 

x 2 +y2 + z 2 -eAZ = 0 10.1.1 

Fig. 10.1.1. A sphere subtracted from a plane after equation 
I0.1.1. A=4. 
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Fig.  10.1 .2 .  A = 1. 
Fig. 10.1.3. A=0.73. 

Fig. 10.1.4. A=0.65. 

We also call it the falling drop. Or going through a wall without making a 
hole in it. Or that we have subtracted a sphere from a plane. 

We do the same with two planes. The constant A in equation 10.1.2 is 1.5, 
1.0, and 0.5 for figs 10.1.5-7. The subtraction gives a catenoidic joint of 
the two planes which is cylindrically elongated in fig. 10.1.6. The sphere is 
liberated in fig. 10.1.7. 

x 2 +y2 + z 2 _eAZ_e-AZ = 0 10.1.2 
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Fig. 10.1.5. A sphere subtracted 
from two planes after equation 
10.1.2. A=l.5. 

Fig.  10.1.6.  A = 1. 

Fig. 10.1.7. The sphere is liberated at C=0.5. 
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The 3D exponential function in eq. 10.1.3 can be interpreted as a cube 
comer. 

e x +e  y +e  z = C 10.1.3 

We add and subtract the exponential function and the function of the 
sphere, perhaps the two most fundamental functions ever. Equation 10.1.4 
gives fig 10.1.8 which obviously is a sphere added continuously to the cube 
comer. Fig. 10.1.9 from equation 10.1.5 is also obvious-  a sphere taken 
away from the comer of the cube. 

e x +ey  +e  z + x 2 +y2  + z 2 = 200 10.1.4 

e x +ey  +e  z _ x  2 _ y 2  _ z 2 _ 0 10.1.5 

Fig. 10.1.8. A sphere added 
to a cube comer- or the 
natural exponential added to 
the sphere. After equation 
10.1.4. 

Fig. 10.1.9. A sphere taken away from a cube 
comer. After equation 10.1.5. 

Changing the exponent shows the sphere leaving, after equation 10.1.6 and 
figures 10.1.10 and 10.1.11, and A=0.69 and 0.72 respectively. 

eAX +eAY + e A Z _ x  2 _ y 2  _ z 2 = 0 10.1.6 
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Fig. 10.1.10. The sphere is leaving after equation 10.1.6 
with A=0.69. 

Fig. 10.1.11. A=0.72. 
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Fig. 10.1.12. A sphere subtracted from a cube 
after equation 10.1.7. 

Fig. 10.1.13. The liberated cube shown in a split. 
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We extend to subtract the whole cube and the sphere, as in fig. 10.1.12, and 
the sphere is distorted. The liberated cube is shown in fig. 10.1.13, 
calculated with the same function, 10.1.7, but with different boundaries. At 
higher constants there is catenoidic contact between the sphere and the 
cube (not shown here). 

10 x +10 y + 10 z + 10 -x  + 10 - y  + 10 - z -  1010(x2+y2+z 2 ) 1  = 550 
10.1.7 

10.2 The Rings 

Instead of a sphere we now take a cylinder. Closing it means adding two 
planes, one at each end, and opening it up means subtracting the two 
planes. We need to go exponential and subtract, 

x 2 + y2 _ e z _ e-Z = 0 10.2.1 

which is a slightly modified formula for the classic catenoid minimal 
surface, and we clearly see the cylinder and the z-planes of the surface in 
figs 10.2.1, and 10.2.2. We can say that the structure of this famous 
function is two parallel planes perpendicularly meeting a cylinder without 
self-intersections. So the use of an exponential scale is by no way n e w -  it is 
essential to use when deriving one of the most classical surfaces ever! 

Fig. 10.2.1. A catenoid after 
equation 10.2.1. 

Fig. 10.2.2. Larger boundaries of fig. 
10.2.1. 
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Adding a sphere to the catenoid means closing it. Subtracting a sphere 
means bending the planes so they meet and become a torus. We need to go 
exponential, and the constant in the exponent for the sphere is used to 
vary the size of the torus from A=0.16 in fig. 10.2.3 to 0.22 in 10.2.4. 

x 2 + y2 _ e z _ e-Z _ eA(X 2 +y2 +z 2) = 0 10.2.2 

Fig. 10.2.3. Subtracting a sphere 
from the catenoid gives the toms 
after equation 10.2.2 and A=0.16. 

Fig. 10.2.4. A=0.16. 

We have studied in detail how genus one is topologically der ived-  or how 
to make a hole in a sphere in a series of pictures. The equation used is 

eO.15(x2+y2+z2) _ ( x  2 + y2 _ eO.5z _ e-O.5z) = C 10.2.3 

and the value of C is given under each picture below in fig. 10.2.5 a-f. 

Below is a beautiful demonstration of the rule of addition, as we see a double 
torus in fig. 10.2.6 (eq. 10.2.4) and triple in 10.2.7 (eq. 10.2.5). We also 
call them 3D pretzels. 

e(X2 +y2_eZ _e_ Z_e0.22(x2 +y2 +z 2)) + 

+e(X 2 +z 2-e y -e  -y -e0"22(x2 +y2 +z 2)) = 1 

10.2.4 
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Fig. 10.2.Sa-f. How to make a hole in a sphere, or how to derive genus one. From 
equation 10.2.3. The value of C is in (a) 20, (b) 10, (c) 5, (d) 3, (e) 2, and in (f) 0. 
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e(X2 +y2_eZ_e_Z_e0.22(x2 +y2 +z 2)) + 

+e(X 2 +z2_eY _e_y _e0.22(x2 +y2 +z 2 )) + 

+e (z2+y2-ex-e-x-eO'22(x2+y2+z2)) = 1 

10.2.5 

Fig. 10.2.6. Double torus after 
equation 10.2.4. 

Fig. 10.2.7. Triple torus after 
equation 10.2.5. 

K. Larsson and one of us proposed 1986 [2] that the lipid bilayer in 
membranes had intrinsic curvature, which gave them long range periodicity 
that provided a mechanism for communication. We used a ring model for 
the hyperbolic geometry and it is here a pleasure to give a mathematical 
function in equation 10.2.6 and a picture in 10.2.8. 

e(X 2 +y2-eZ _e-Z _e0.22(x2 +y 2+z2)) + 

+e((X+5) 2 +z2-e y _e-Y _eO.22((x+5)2 +Y2+Z2)) + 

+e ((y+5)2 +z2-eX-e-X-e0"22(x2 +(Y+5)2 +z2)) = 1 

10.2.6 
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Fig. 10.2.8. Ring model for lipid bilayer after equation 
10.2.6. 

Fig. 10.2.9. Two Olympic rings after equation 10.2. 7. 
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Next we separate the two rings in fig 10.2.6 by a simple translation in eq. 
10.2.4 to get 10.2.7, and the result is shown in fig. 10.2.9. 

e(X 2 +y2-eZ _e-Z _e0.22(x2 +y 2+z2)) + 

e((X+2) 2 +z2-e y _e-Y _e0.22((x+2)2 +y 2+z2)) =0.8 
10.2.7 

And in eq 10.2.8 we have derived the case for three interpenetrating rings. 

e((X_0.5)2 +z2_eY_e_Y_e0.22((x_0.5)2 +y2 +z 2)) + 

e((X_4)2 +y2_eZ_e_Z_e0.22((x_4)2 +y2 +z 2)) + 

e((X_7.5)2 +z2_eY_e_Y_e0.22((x_7.5)2 +y2 +z 2)) = 1 

10.2.8 

10.3 More Ways to make Rings 

There are different ways to make rings. Below we add a cone and a cylinder 
- for obvious reasons we square the equation of the cylinder. For a constant 
of zero in equation 10.3.1 we still have the cone, but for a constant of 0.1 
a torus has developed in figs. 10.3.1 and 10.3.2. 

x 2 +y2 _ z  2 _ ( x  2 +y2)2 _ C  10.3.1 

Fig. 10.3.1. Another way to make a 
torus after equation 10. 3.1. C=0. 

Fig. 10.3.2. C=0.1. 
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If we square we get two rings in fig. 10.3.3, and the equation is 10.3.2. 

(x 2 + y2 _ z 2 _ (x 2 + y2 )2 )2 _ O. 04 10.3.2 

Fig. 10.3.3. The square gives a torus in a sphere after 
equation 10. 3.2. 

The ordinary equation of a torus is in eq. 10.3.3 and shown in 10.3.4. 

((x 2 + y2 )0.5 _ 2)2 + z 2 _ 1 10.3.3 

And on exponential scale it is shown in fig. 10.3.5, from eq. 10.3.4. 

+y2)O.5-2)2+z2 e ((x2 = 3 10.3.4 

Fig. 10.3.4. The ordinary toms after 
equation 10. 3.3. 

Fig. 10.3.5. The ordinary torus on 
the exponential scale after equation 
10.3.4. 
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We add two spheres after equation 

1 (((x 2+y2)0"5-2)2+z 2) e_(X 2+y2+(z+3)2) e_(X 2+y2+(z_3)2) 
- e - - - -  + + = 0 . 1  
2 

10.3.5 

and the result is illustrated in fig. 10.3.6, and is a good picture of the ELF 
structure of the C1F2 ion [3], and as proposed the isoelectronic molecule 
XeF2 [4]. 

We can also add just one sphere as in eq 10.3.6 and fig. 10.3.7. 

e -(((x2+y2)0"5-4)2+z2) + e -(x2+y2+z2) = 0.2 10.3.6 

Fig. 10.3.6. The structure of the C1F2 ion, or the 
isoelectronic molecule XeF2 after equation 10.3.5. 

Or we can add a cylinder. 

e-(((x2+y 2)0"5-4)2+z2) + e -(x2+y2+l) - 0.2 10.3.7 

We made Larsson cubosomes - or a molecule - by adding the equation of a 
periodic surface to a sphere. Here we add the nodal P-surface to the torous 
and obtain similar results. 
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e ((x2+y2)0"5-10)2+z2 + e c~176176 = 6 10.3.8 

Fig. 10.3.7. After equation 10.3.6. Fig. 10.3.8. After equation 10. 3.7. 

Fig. 10.3.9. A torus and the P surface in 'body' form after 
equation I 0. 3.8. 
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Fig. 10.3.10. A change in constant makes the surface interpenetrate 
the torus after equation 10.3.9. 

Fig. 10.3.11. A further change in the constant as in 
equation 10.3.10 cuts the torus into pieces of the P 
surfacetype. 

In fig. 10.3.9 the P surface is in 'body' form and for a change in constant 
as in eq. 10.3.9 there is a complete surface interpenetrating the torous 
shown in fig. 10.3.10. 
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e ((x2+y2)0"5-10)2+z2 + e c~176176 = 3.8 10.3.9 

Finally a further change in the constant as in eq. 10.3.10 cuts the torus into 
pieces of the P surface type shown in fig. 10.3.11. 

e ((x2+y2)0"5-4)2+z2 + e c~176176 = 2.7 10.3.10 

10.4 More Subtraction- Hyperbolic Polyhedra 

In equation 10.4.1 we subtract two planes from a sphere and get fig. 10.4.1. 

e(X2+y2+z 2) e x2 
- - 1  10.4.1 

Fig. 10.4.1. Two planes subtracted from a sphere after 
equation 10. 4.1. 

Fig. 10.4.2. Two planes subtracted from a sphere after 
equation 10. 4. 2. 
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We subtract two more planes in eq 10.4.2 and get fig. 10.4.2. 

e(X 2 +y2 +z 2) _ eX2 2 - e  y - 0  10.4.2 

And subtracting three planes (or a cube)as  in eq. 10.4.3, we get the 
hyperbolic octahedron (the dual), as in fig. 10.4.3. 

e (x2+y2+z2) - e  x2 - e  y2 - e  z2 = 0 10.4.3 

Fig. 10.4.3. A cube subtracted from a sphere after equation 
10.4.3. 

We subtract an octahedron from the sphere in equation 10.4.4 and get the 
dual as illustrated in fig. 10.4.4. 

e3(X2 +y2 +z 2) _ e(X+y+z)2 _ e(X_y+z) 2 _ e(X+y_z) 2 _ e(y+z_x) 2 = 0 

10.4.4 
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e ((x2+y2)0"5-10)2+z2 + e c~176176 = 3.8 10.3.9 

Finally a further change in the constant as in eq. 10.3.10 cuts the torus into 
pieces of the P surface type shown in fig. 10.3.11. 

e ((x2+y2)0"5-4)2+z2 + e c~176176 = 2.7 10.3.10 

10.4 More Subtraction- Hyperbolic Polyhedra 

In equation 10.4.1 we subtract two planes from a sphere and get fig. 10.4.1. 

e(X2+y2+z 2) e x2 
- - 1  10.4.1 

Fig. 10.4.1. Two planes subtracted from a sphere after 
equation 10. 4.1. 

Fig. 10.4.2. Two planes subtracted from a sphere after 
equation 10. 4. 2. 
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In equation 10.4.5 a rhombic dodecahedron is subtracted from a sphere and 
fig 10.4.5 shows the dual, a hyperbolic cube octahedron. 

e2(X2 +y2 +z 2) _ e(X+y)2 _ e(X_y)2 _ 

- e  (y-z)2 - e (x+z)2 - e (x-z)2 = 0 

e(y+z) 2 
10.4.5 

In equation 10.4.6 the pentagonal dodecahedron is subtracted from a 
sphere, and the resulting dual - the hyperbolic icosahedron - is shown in fig. 
10.4.6. Note the remarkable simplicity of  the formula. 

e(X2 +l)(x 2 +y2 +z 2) _ e(XX+y)2 _ e(_,t.x+y)2 

_e(XY+Z)2 _ e(-XY+Z)2 _ e('~z+x)2 _ e(-Xz+x)2 = 0  

10.4.6 

Fig. 10.4.6. The pentagonal dodecahedron subtracted 
from a sphere after equation 10. 4. 6. 
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Below the equation of  an icosahedron is subtracted from a sphere and the 
result - a beautiful hyperbolic pentagonal  dodecahedron - is shown in fig. 
10.4.7. 

e(X3 +x2 +l)(x 2 +y2 + z 2) _ e '1;2 (x+y+ z) 2 _ e x2 ( - x + y +  z) 2 

- e  "1:2 (x+y-z )2  _ e "c2 (x -y+z)2  _ e(x+xZy )2 _ e(_x+xZy )2 

_ _ _ ) 2  - e  (z+x2x)2 e (z-1:2x)2 e (y+x2z)2 e (y-x2  = 0 

10.4.7 

Fig. 10.4.7. An icosahedron subtracted from a sphere after equation 
10.4.7. 

A cube may be constructed from two dual tetrahedra, and we show in fig. 
10.4.8 the result o f  the subtraction of  a tetrahedron from a cube, after 
equation 10. 4. 8. 

e x + e  y + e  z + e  - x  + e - Y  + e  - z  

- e  (x+y+z) - e ( x - y - z )  - e ( - x - y + z )  - e ( y - z - x )  = 0 
10.4.8 
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Fig. 10.4.8. A tetrahedron subtracted from a cube 
after equation I0. 4. 8. 
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Exercises  I0 

Exercise 10.1. Make a half catenoid after equation 10.2.1. 

Exercise 10.2. Subtract a tetrahedron (exponential) from a sphere (non- 
exponential). 

Exercise 10.3. Subtract a rhombic dodecahedron from an octahedron. 
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Answer 10.1 

x 2 + y 2 - e Z  = 0  

Fig. 10.1. 

Answer 10.2 

e(X+y+z ) + e(X_y_z ) + e(-X-y+z)  + e ( y - z - x  ) _ 2(x 2 + y2 + z 2 ) _ 6 = 0 

Fig. 10.2. 
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Answer 10.3 

e(X+Y +z) + e(X-Y -z )  + e(-X-Y +z) + e(Y - z - x )  

+e-(X+Y +z) + e-(X-Y -z )  + e - ( - x - Y  +z) + e- (Y-Z-X)  

_e(X+Y) _ e(X-Y) _ e(Y +z) _ e(Y -z )  _ e (x+z) _ e(X-Z) 

- e  - (x+y)  - e - ( x - y )  - e - (y+z)  - e - ( y - z )  - e - (x+z)  - e - ( x - z )  = 0 

Fig. 10.3. 
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11 Per iod ic  Di la tat ion  - Concentr i c  S y m m e t r y  

'lt shows how boM it is to draw conclusions about the area o f  a domain 
from the time it takes to sail around it' (Hildebrandt et al [1] about the 
coast line o f  Riigen, an island in the Baltic Sea). 

Here we describe dilatation, in natural science called cyclic twinning. The 
geometry is the same as the one proposed as a structure building operation 
in solid state chemistry [2]. But here it is done with mathematics, and the 
Exponential Scale. 
We give a mathematical mechanism for crystal growth - the circular 
function multiplied with the GD function gives the combination of 
translation and dilatation. The growth is exponential by the periodic 
property of the GD function. We also use the GD mathematics to describe 
the motion of solitons. 

11.1 Dilatation and Translation in 2D 

In photography it is called enlargement and in school geometry 
congruence. We may say it is a similarity that preserves angles and we call 
it dilatation or concentric symmetry. For an excellent description we refer 
to Coxeter- a good reading as background is his chapter 5 'Similarity in the 
Euclidean plane' [3]. 

What use will we have of the functions below? We surely believe they will 
have some importance in chemistry, physics or biology. Besides onions in 
botany, and multiple twins in mineralogy or crystallography. And this 
symmetry is also somewhat contained in the fundamental theorem of 
algebra which started this book. And some surfaces are very beautiful which 
is a reason as good as any. 

We study mathematical functions that give structures which interest us. As 
we want periodic functions we start to study the simple and general product 

of a variable and its cosine, xcosx, or eXcosx or to make the 3D 

representation of the function sharper, e nx2 cos x with n as an integer. And 

_X 2 
the product of the Gauss Distribution function and cosine, e cos x. 

So we start in 2D with the function, 
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e 6x2 cos 7D[ + e 6y2 cos 7vy' = 0 11.1.1 

2 

0 

-2 

-4 

-6 

�9 

-6-4-2 0 2 4 6 

Fig. 11.1.1. Square dilatation after 
equation 11.1.1. 

2 . 5  

- 2 . 5  

-5 

- 7 . 5  
- 7 . 5 - 5 - 2 . 5 0  2 . 5  5 7 . 5  

Fig. 11.1.2. Fourling operation 
with the corresponding GD 
function after equation 11.1.2. 

In fig. 11.1.1 there is typical dilatation, and the structure can be regarded as 
a fourling of a lamellae structure. Shift to the GD as in function 11.1.2, 
gives a fourling operation to the whole structure as in 11.1.2. 

e -6x2 cos 7vx + e -6y2 cos ~ = 0 1 1.1.2 

Using the property of periodicity of the GD function makes it now possible 
to build the mathematics for the cyclic twinning or cyclic periodicity, and 
we build the first function in eq. 11.1.3, which gives figure 11.1.3. Here we 
have the first fragment of a periodic fourling structure and we increase the 
size of it in 11.1.4 by adding more terms as in equation 11.1.4. 

(e -6x2 + e -6(x-2)2 + e -6(x+2)2 )cos 7Px 

+(e -6y2 + e -6(y-2)2 + e -6(y + 2)2 )cos 7L'y - 0 
11.1.3 

(e -6x2 + e -6(x-2)2 + e -6(x+2)2 + e -6(x-4)2 + e -6(x+4)2 )cos 71;x 

+(e -6y2 + e -6(y-2)2 + e -6(y+2)2 + e -6(y-4)2 + e -6(y+4)2 )cos ~3' = 0 

11.1.4 
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-2 

-4 

-6 
-6 -4 -2 0 2 4 6 

Fig. 11.1.3. The fourling unit 
grows with translation with 
equation 11.1.3. 

-2 

-4 

-6 
-6 -4 -2 0 2 4 6 

Fig. 11.1.4. Further growth with 
equation 11.1.4. 

So far we have taken the inner square of the dilatation structure - n o w  we 
want to take a larger part of the structure in fig. 11.1.1 to repeat. This is 
done by increased translation as in eq. 11.1.5 and 11.1.6 and the structures 
are in fig. 11.1.5 and 11.1.6. 

(e -6x2 + e-6(x-4) 2 e-6(x+4)2 + )cos 7~x 

+(e-6Y 2 + e-6(y-4) 2 4) 2 + e -6(y+ ) cos ~'y = 0 

11.1.5 

(e -6x2 + e-6(x-4) 2 + e-6(x+4) 2 + e-6(x-8) 2 + e -6(x+8)2 )cos ~7x 

+(e-6Y 2 + e-6(y-4) 2 + e-6(y+4) 2 + e-6(y-8) 2 + e -6(y+8)2 )cos ~ = 0 

11.1.6 

We want to cut an even bigger part of the dilatation structure in fig. 11.1.1, 
and do so with the equations 11.1.7-8. These beautiful examples of the 
combined translation and dilatation are shown in figures 11.1.7-8. 

(e -6x2 + e -6(x-6)2 + e -6(x+6)2 )cos 

+(e -6y2 + e -6(y-6)2 + e -6(y+6)2 )cos 7~y = 0 
11.1.7 



296 Chapter 11 

(e -6x2 + e-6(x-6) 2 + e-6(x+6) 2 + e-6(x-12) 2 e-6(x+12)2 + )cosTvx 

+(e_6y2 2 e_6(y+6)2 2 + e -6(y-6) + + e -6(y-12) + e -6(y+12)2 )cos r~f = 0 

11.1.8 

utlu[ll 

-7.5-5-2.5 0 2.5 5 7.5 

Fig. 11.1.5. Further growth includes 
dilatation in each building block with 
equation 11.1.5. 

i0 

-51 

-i0 

,~1 Iu I I u! lUll~ !~ 

-i0 -5 0 5 i0 

Fig. 11.1.6. Size of building 
block increased after 11.1.6. 

loi , L 
~ , 

lUl 

iE i i) z 

-i0 -5 0 5 i0 

Fig. 11.1.7. Still larger size of 
building block increased after equation 
11.1.7. 

15 

i0 

-5 

-i0 

-15 

-15-10 -5 
, 0 . . . . . . . . . . . . . . . . . . . . .  

0 5 i0 15 

Fig. 11.1.8. Size of building block 
after 11.1.8. 
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We do the same with dilatation of the triangle after equation 11.1.9, 
showed in fig. 11.1.9, and we do the twin operation as in eq. 11.1.10, 
showed in fig. 11.1.10. The polygon trigonometry is from chapter 3. 

6(x cos(rr/3) + y sin(rr/3)) 
cos ~(xcos(~/3)  + y sin(~/3))e 

6(-x cos(2n/3)-y sin(2rr/3)) 
+cos rr(-xcos(2rr/3) - y sin(2 rr/3))e 

6(x cos(3rr/3)+y sin(3rr/3)) 
+cos rr(xcos(37r/3) + y sin(3 rr/3))e = 0 

11.1.9 

cos rr(xcos(rr/3) + y sin(rr/3))e 
-6(x cos(71:/3)+ y sin (n/3)) 2 

+cos rr(-xcos(2rc/3) - y sin(2 rr/3))e 
-6 ( -x  cos(2rr/3)-y sin(2n/3)) 2 

+cos rr(xcos(3rr/3) + y sin(3 rr/3))e 
-6(x cos(3rr/3)+ y sin(3~:/3)) 2 

= 0  

11.1.10 

7 . 5  \ ~ \  
! 

5 

2 5 

0 

-2 5 

-7 . . . .  / . . . . . . . . . . .  , . . 
- 7 . 5 - 5 - 2 . 5  0 2 .5  5 7 .5  

Fig. 11.1.9. Triangular dilatation 
after equation 11.1.9. 

7.5 

2.5 

-2.5 

-5 

-7.5 

J 
/ / /  

lj D 
 IIi 

-7.5-5-2.5 0 2.5 5 7.5 

Fig. 11.1.10. Sixling operation 
with the corresponding GD 
function after equation 11.1.10. 

And the repeated sixling of a rather advanced dilatation triangular block is 
derived in equation 11.1.11 and the formidable structure is shown in fig. 
11.1.11. 
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-6(x cos(~/3)+ y sin(~/3)) 2 
cos ~(xcos(~/3)  + y sin(~/3))e 

-6( -x  cos(2 n/3)- y sin(2 n/3)) 2 
+cos n ( -xcos(2~/3)  - y sin(2 rc/3))e 

-6(x cos(3~/3) + y sin(3 re/3)) 2 
+cos ~:(xcos(3~:/3) + y sin(3 rc/3))e 

-6(x cos(re/3) + y sin(re/3)-12) 2 
+cos rffxcos(~:/3) + y sin(~/3))e 

-6( -x  cos(2rc/3)-y sin(2n/3)-12)2 
+cos ~(-xcos(2rc/3) - y sin(2 ~:/3))e 

-6(x cos(3~/3)+y sin(3~:/3)- 12) 2 
+cos rffxcos(3~/3) + y sin(3 ~/3))e 

-6(x cos(r~/3) + y sin(rc/3) + 12) 2 
+cos rffxcos(rc/3) + y sin(~;/3))e 

-6( -x  cos(2 n/3)- y sin (2 r~/3) + 12) 2 
+cos ~(-xcos(2rc/3) - y sin(2 ~:/3))e 

-6(x cos(3 n/3) + y sin(3 re/3) + 12) 2 
+cos n(xcos(3rc/3) + y sin(3 ~:/3))e = 0 

11.1.11 

1 

-i0 

-15 

-15 -i0 -5 0 5 i0 15 

Fig. 11.1.11. Translation of a building block of triangular 
dilatation after equation 11.1.11. 



And the pentagonal dodecahedron in equations 11.1.12 and 11.1.13 and in 
figures 11.1.12 and 11.1.13. 

11.1.12 

6(x cos(n/5)+ y sin(n/5)) 
cos ~(xcos(~/5) + y sin(~:/5))e 

6(-x cos(2n/5)-y sin(2~/5)) 
+cos ~:(-xcos(2n/5) - y sin(2 n/5))e 

6(x cos(3n/5)+y sin(3~z/5)) 
+cos n(xcos(3~:/5) + y sin(3 ~:/5))e 

6(-x cos( 4 ~/5)- y sin(4 ~:/5)) 
+cos ~:(-xcos(4~: /5)  - y sin(4 ~:/5))e 

6(x cos(5n/5) + y sin(5n/5)) 
+cos ~:(xcos(5~:/5) + y sin(5 ~:/5))e = 0 

cos n(xcos(g/5) + y sin(~:/5))e 

+cos g(-xcos(2~:/5) - y sin(2 ~:/5))e 

-6(x cos(n/5)+ y sin (rr/5)) 2 

+cos ~:(xcos(3~/5) + y sin(3 ~:/5))e 

-6(-x cos(2 ~/5)- y sin (2 rr/5)) 2 

+cos n(-xcos(4~/5)  - y sin(4 7z/5))e 

-6(x cos(3~/5) + y sin(3~/5)) 2 

-6(-x cos(4 n/5)- y sin(4 ~:/5)) 2 

=0  
-6( x cos(5 ~/5) + y sin(5 n/5)) 2 

+cos g(xcos(Sg/5) + y sin(5 g/5))e 

i0 

11.1.13 

i 

-5 

-10 
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-i0 -5 0 5 i0 

Fig. 11.1.12. Pentagonal dilatation 
after equation 11. I. 12. 

i0 

5 

0 

-5 

-i0 
-i0 

/ 

S 
S 

< 

-5 0 5 i0 

Fig. 11.1.13. Tenling operation 
after equation 11.1.13. 
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11.2 Dilatation and Translation in 3D 

In 3D the first equation is 11.2.1 
beautifully shown in fig. 11.2.1. 

and its symmetry of dilatation is 

e 6x2 cos rex + e 6y2 cos rpy + e 6z2 cos rcz = 0 11.2.1 

Fig. 11.2.1. Dilatation in 3D after equation 11.2.1. 

An eightling operation is provided by equation 11.2.2 and the formidable 
structure is in fig. 11.2.2. 

e -6x2 cos ~x + e -6y2 cos ~ + e -6z2 cos ~z = 0 11.2.2 

Before we continue we shall study the explicit function in eq. 11.2.3. This 
may be described as the multiplication of cosine with a damping factor like 
the GD function, and it is shown in fig. 11.2.3. A wave packet like this is 
used in quantum physics to represent a particle such as an electron. In its 
3D form it describes cyclic twinning combined with dilatation. 

_ lx2  
y = e 2 COS2XX 11.2.3 
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Fig. 11.2.2. Eightling operation with the corresponding 
GD function after equation 11.2.2. 

1 

t 
U _  2 ~ ' - 3  -3 ~-2 i_ 

5 

0 5 

- 5 

Fig. 11.2.3. Wave packet after equation 11.2.3. 

As this is GD mathematics, we can add two wave packets after eq. 11.2.4, 
and show them in fig. 11.2.4. 

__1x2 
y = e  2 cos 2rrx + e -1(x-5)2 cos2r~x 11.2.4 
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Fig. 11.2.4. Two wave packets after equation 11.2.4. 

We can make one of them move and go through the other with equation 
11.2.5, where n is varied 5, 3, 1, -1, -3, -5 in figure 11.2.5. 

y = e -2x2 cos27rx + e -2(x-n)2 cos27rx 11.2.5 

We may of course just use two GD functions as in equation 11.2.6, where n 
is varied 6, 3, 0 , - 3 ,  -6, and the wave packet, moving as a soliton, is going 
through the diffusion profile from right to left. Note the different scale 
after y at n=0. 

-x  2 e-2(x-n)2 y = e + cos2zrx 11.2.6 

We shall now study this wave packet in 3D with the equation 11.2. 7. 
Equation 11.2.2 showed infinite cubic dilatation in eight directions. By 
reducing the weight of the GD function, the cubic character is reduced (the 
symmetry is still cubic of course) and the cubes are joined by catenoids as 
shown in the split figure 11.2.7 of eq. 11.2. 7. It could be described as if the 
P surface is enveloped by the GD function (compare with figure 7.2.5). 

_ lx2  _ ly2  _ l z2  
e 2 cos rrx + e cos rpy + e 2 cos rcz = 0 11.2. 7 
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1 

~ "o~ t 
_t;~A'T ~ . . . . .  A ~ ~ 

_O_o i V, -~ V 
eel. 1 
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.... .WA. ," .... ~ .... 
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0 . 7  
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0 . 2  
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~ ~ 
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Fig. 11.2.5. One of the two wave packets move after equation 11.2.5. 



304 Chapter 11 

1 

~ ~ 
-0.5 

-6 -4 -2 0 2 4 6 

Ool ................ ......... 
-6 -4 -2 0 2 4 6 

2 
1.5 

1 
0.5 

0 
-0.5 

-i 
-6 -4 -2 0 2 4 6 

1 o~ ~ ~  
0 

-0.5 
~ 1  . . . .  ' . . . .  " . . . .  i . . . .  i . . . .  , . . . .  i . . . .  , . . . .  

-6 -4 -2 0 2 4 6 

0~ 
- 0 . 5  

~ 1  . . . . . . . . . .  . . . . . . . . . . . . .  , , . . . .  i . . . .  i . . . .  

-6 -4 -2 0 2 4 6 

Fig. 11.2.6. One wave packet is moving through a diffusion profile after equation 11.2. 6. 

Fig. 11.2.7. Dilatation structure of the P-surface after 
equation 11.2. 7. 
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As above in 2D and equation 11.1.5, we add to 3D in eq. 11.2.8, and have 
the beautiful picture in fig. 11.2.8 which shows the translation of a 
dilatation structure, all in a cyclic twin operation. 

(e -6x2 + e -6(x-4)2 + e -6(x+4)2 )cos rtx 

+(e -6y2 + e -6(y-4)2  + e -6(y+4)2 )cos 7vy 

+(e -6z2 + e -6(z-4)2  + e -6(z+4)2 )cos ~z = 0 

11.2.8 

Next is tetrahedral dilatation in eq. 11.2.9, and the picture is in fig. 11.2.9. 

e 6 ( -x+y-z )  cos ~:(-x + y - z) + e 6 ( -x -y+z)  cos ~ ( - x -  y + z) 

+e 6 (x -y -z )  cos r f f x -  y - z) + e 6(x+y+z) cos ~:(x + y + z) 

+e 6 ( -x+y-z )  s in~:(-x + y - z) + e 6 ( -x -y+z)  s i n ~ : ( - x -  y + z) 

+e 6 (x -y -z )  s i n g ( x -  y - z) + e 6(x+y+z) s ing(x  + y + z) = 0 

11.2.9 

Fig. 11.2.8. Translation of a dilatation structure after equation 11.2.8. 
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Fig. 11.2.9. Tetrahedral dilatation after equation 11.2.9. 

Fig. 11.2.10. Octahedral dilatation after equation 11.2.10. 

And the octahedron which with dilatation from equation 11.2.10 gives 
figure 11.2.10 and the corresponding GD function gives figure 11.2.11 with 
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the fourling symmetry that has octahedral, as well as tetrahedral comers. 
This is more clear in a smaller region in figure 11.2.12. 

e6(-x+y+z) 2 cos ~:(-x + y + z) + e 6(x+y-z)2 cos rc(x + y - z) 

+e 6(x-y+z)2 c o s r f f x -  y + z) + e 6(x+y+z)2 cos rc(x + y + z) = 0 

11.2 .10  

Fig. 11.2.11. Octahedral dilatation and translation making a 
GD function of equation 11.2.10. 

Fig. 11.2.12. Smaller region of fig. 11.2.11. 
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With translation as in equation 11.2.11 we only get octahedra - a ReO3 
with every second octahedron missing, as in fig. 11.2.13. 

e 6(-x+y+z)2 cos ~:(-x + y + z)+ e 6(x+y-z)2 cos ~:(x + y -  z) 

+e 6(x-y+z)2 cos 7z(x- y + z) + e 6(x+y+z)2 cos ~:(x + y + z) 

+e 6(-x+y+z-2)2 cosrff-x + y + z ) + e  6(x+y-z-2)2 cos~(x + y -  z) 11.2.11 

+e 6(x-y+z-2)2 cosg(x y + z ) + e  6(x+y+z-2)2 - cos ~:(x + y + z) 

+e6(-x+y+z+2) 2 cos ~ ( - x  + y + z) + e 6(x+y-z+2)2 cos rffx + y - z) 

+e6(X-y+z+2) 2 cos rc(x-  y + z) + e 6(x+y+z+2)2 cos n(x + y + z) = 0 

Fig. 11.2.13. With translation after equation 11.2.11 
there are only octahedra within the boundaries. 

We only show a small piece of dilatation symmetry of the rhombic 
dodecahedron after equation 11.2.12, as shown in fig. 11.2.14. 

e6(X+y) 2 cos rc(x + y) + e6(Y+ z) 2 cos n(y + z) 

+e 6(x+z)2 cos ~(x + z) + e 6(x-y)2 cos ~:(x - y) 

+e 6(z-y)2 cos rc(z y) + e 6(x-z)2 - c o s  n ( x  - z )  = 0 

11.2.12 
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Fig. 11.2.14. Dilatation symmetry and 
the rhombic dodecahedron after equation 
11.2.12. 

Fig. 11.2.15. Dilatation symmetry and the pentagonal 
dodecahedron atter equation 11.2.13. 

The concentric symmetry of the pentagonal 
11.2.15 after equation 11.2.13. 

dodecahedron is in fig. 



310 Chapter 11 

cos ~('t~x + y)e 6(vx+y)2 + cos ~(- ' rx + y)e 6(-xx+y)2 

+cos~(~j  + z)e 6(xy+z)2 + cos ~ ( -zy  + z)e 6(-xy+z)2 

+cos ~(Xz + x)e 6(xz+x)2 + cos ~('l:z- x)e 6(xz-x)2 = 0 

11.2.13 

The multiplication of variables with their circular function becomes 
complicated in 3D, and we showed above that the use of exponential 
equations allowed for reasonably simple and straight results. We shall below 
use a very simple equation to demonstrate interesting and beautiful surfaces 
which belong to the same symmetry as the surfaces above. 

We start with equation in 11.2.14 with small boundaries as in fig. 11.2.16. 

x sin rex + y sin ~y + z sin ~z - 0 11.2.14 

Slightly changing the equation to 11.2.15, gives the molecule B6H6 again in 
fig. 11.2.17. The similarity to the functions of the general theorem of 
algebra in chapter 2 is remarkable, and now we know why. 

x sin nx + y sin r~y + z sin nz = 1 11.2.15 

Fig. 11.2.16. After equation 
11.2.14. 

Fig. 11.2.17. With C = 1 of equation 
11.2.15 there is B6H6 again. 

We increase boundaries and find shell after shell as in the two projections 
figs. 11.2.18 and 11.2.19. 
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Fig. 11.2.18. Still after equation 11.2.15 with 
larger boundaries. 

Fig. 11.2.19. Different projection. 
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Still bigger boundaries, as in the split of one eight of a regular unit in fig. 
11.2.20, show more layers. The general picture is that concentric cubes, 
joined via catenoids, build the structure. 

Fig. 11.2.20. Split shows that concentric cubes, joined via catenoids, 
build the structure. 

11.3 Pure Dilatation 

We start with the circle after equation 11.3.1, 
dilatation in fig. 11.3.1. 

and obtain beautiful 

cos 2rc(x 2 + y2 ) = 0 11.3.1 

Next equation is eq. 11.3.2 which gives dilatation of the hyperbolas as in 
fig. 11.3.2. 

cos 2~(x 2 - y2 ) = 0 11.3.2 
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-i 

-2 

-i 

-2 

-3 
-2 -i 0 1 2 -3 -2 -I 0 1 2 3 

Fig. 11.3.1. Concentric circles after 
equation 11.3.1. 

Fig. 11.3.2. Dilatation of hyperbolas 
after equation 11.3.2. 

The simple equation of 11.3.3 gives the beautiful mixture of hyperbola and 
circles in fig. 11.3.3. 

cos ~ 2  + cos ~,2 _ 0 11.3.3 

3 

i 

-3F ............................... 
-3 -2 -i 0 1 2 3 

Fig. 11.3.3. Dilatation of circles and hyperbolas 
after equation 11.3.3. 
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The equation 11.3.4 gives an excellent dilatation in fig. 11.3.4. 

cos 7zx 2 cos rvy 2 = 0 11.3.4 

2 

1 

0 

-i 

-2 

-3 
-3 

. ~ 

-2 -i 0 i 2 3 

Fig. 11.3.4. Dilatation of squares after equation 11.3.4. 

The dilatation of the spiral is obtained with the equation 11.3.5, and shown 
in fig. 11.3.5. 

y cos 2n(x 2 + y2 ) + xsin2~(x 2 + y2 ) = 0.4 11.3.5 

1 

0.5 

0 

-0.5 

-i 

- 1 . 5  . . . . . . . . .  ~ . . . . . . . . . . . . . . . .  
-1.5-1-0.5 0 0.5 1 1.5 

Fig. 11.3.5. Spiral dilatation after equation 11.3.5. 
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We do some of these simple functions in 3D and start with the concentric 
spheres in fig. 11.3.6 after equation 11.3.6. 

cos 2~(x 2 + y2 + z 2 ) = 0 11.3.6 

Fig. 11.3.6. Concentric spheres after equation 11.3.6. 

Fig. 11.3.7. Concentric cubes after equation 11.3.7. 
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The product in eq. 11.3.7 gives intersecting planes repeated with dilatation 
in fig. 11.3.7. 

cos 7o~ 2 cos rt) ,2 cos ~z 2 - 0 11.3.7 

The sum as in eq. 11.3.8 gives the formidable dilatation of the P surface in 
fig. 11.3.8. 

cos rex 2 + cos xy 2 + cos ~z 2 = 0 11.3.8 

Fig. 11.3.8. Dilatation of the P surface after equation 11.3.8. 

With equations of type x cos z 2 + y sin z 2 we get helicoids with pitch 

dilatation, and we design the equation 11.3.9 to make the spiral in fig. 
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11.3.9. One left handed spiral is joined to a right handed via a mirror - 
cylinder- and the spirals are dilatated. 

eXCOSnZ2 +ysinnz 2 + eX2 +y2 = 1.95 11.3.9 

Fig. 11.3.9. Two spirals and a mirror after equation 11.3.9. 

Many are the surfaces which may be derived with these types of functions. 
We shall just show a couple of remarkable ones. The very simple equation 
of 11.3.10 gives the fourling of dilated P in fig. 11.3.10, with catenoids to 
a 'fourling plane' which has the topology of the fifth surface of Scherk, or 
also called Scherk's tower surface, and showed earlier in chapter 2. 

y sin rrx + xsin ny + sin rrz = 0 11.3.10 

Fig. 11.3.10. A fourling of P with Scherk's fifth surface after 
equation 11.3.10. 
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With the equation in 11.3.11 we have the remarkable eightling structure of, 
again, dilated P, and now with 'twin planes' built of four cube comers in fig. 
11.3.11. 

xysinnz + zy sin zrx + xzsin ny - 0 11.3.11 

Fig. 11.3.11. An eightling of P with intersecting twin planes. 
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Fig. 11.3.12. Single twin plane reflecting two 
identical parts of the P surface after equation 11.3.12. 

Finally we can give the single twin plane in a structure in figure 11.3.12, 
which is reflecting two identical parts of the P surface. The mathematics as 
given in 11.3.12 is very simple as it should be, giving a picture of a very 
common phenomenon in Nature. 

sin rcz + z sin wx + z sin ~y = 0 11.3.12 

We conclude saying that the three different twin planes as observed, 
topologically are minimal surfaces. 
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Exercises 11 

Exercise 11.1. Introduce a negative sign in the equation for spherical 
dilatation, and describe the result. 

Exercise 11.2. Do the Nautilus in 2D. 

Exercise 11.3. Do the double spiral in 2D. 

Exercise 11.4. Do the double Nautilus. 

Exercise 11.5. Make the snail come out of Nautilus. 

Exercise 11.6. Make the twin plane disappear in the structure of fig. 
11.3.12 and explain why it works. 
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A n s w e r  11.1. The equation is 

cos 2~:(x 2 + y2 _ z 2 ) = 0. 

Fig. 11.1. 

Answer  11.2. The equation is 

y c o s 2 ~ ( x  2 + y2)0.2 + xsin2~:(x 2 + y2)0.2 _ 0 

20 

i0 

0 

-i0 

- 2 0 .  ~ .  . . . . . . . . . . . . . . . . . .  / . . . .  
-20 -i0 0 i0 20 

Fig. 11.2. 
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Answer 11.3. The equation is 

(y cos 2~(x 2 + y2 ) + xsin2~(x 2 + y2 ))2 = O. 4 

0 

-0 .5  ~, 

-1 

-i -0.5 0 0.5 1 

Fig. 11.3. 

Answer 11.4. The equation is 

(y cos 2~(x 2 + y2 )0.2 + xsin2~(x 2 + y2 )02 )2 = 10 

i0 

-5 

-i0 

-15 -i0 -5 0 5 i0 15 

Fig. 11.4. 
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Answer  11.5. The equation is 

y c o s 2 ~ ( x  2 + y2)0.2 + xsin27z(x 2 + y2)0.2 + e0.1(x2+y2) = 1 

-2 

~ 4  . . . .  , i . . . .  , . . . . . . . . . . . .  

-4 -2 0 2 4 
Fig. 11.5. 

Answer  11.6. The equation is 

cosrcz + zsinnx + zsinrcy = 0 

Fig. 11.6. 
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References 11 

U. Dierkes, S. Hildebrandt, A. Kuster and O. Wohlrab, .MINIMAL 
SURFACES 1 and 2, Springer Verlag, Berlin, 1991. 

B.G. Hyde and S. Andersson, INORGANIC CRYSTAL STRUCTURES, 
Wiley, New York, 1988. 

H.S.M. Coxeter, INTRODUCTION TO GEOMETRY, Wiley, New 
York, 1969. 



325 

A p p e n d i x  1 - M a t h e m a t i c a  

We have been using Mathematica, and give here some examples. The 
subroutines ContourPlot3D and ImplicitPlot are for the implicit functions 
w e  u s e .  

ImplicitPlot [E^y^4+E^x^4==200000, 
{x,-2,2}, {y,-2,2},PlotPoints->200,Axes->False] 

Fig. A.I.I Square after plot above. 

ContourPlot3D [x ̂ 10+y ̂ 10+z ̂ I0-I00, 
{x,2,-2}, {y,2,-2}, {z,2,-2}, 
MaxRecursion>2,PlotPoints->{{4,4}, {4,4}, {4,4}}, 
Boxed->False, Axes->True] 

Fig. A.I.2. Cube after plot above. 
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Appendix  2 - Curvature and differential geometry  

We have introduced saddles, monkey saddles, minimal surfaces - we need a 
course in differential geometry with the concept of curvature. 

Take a surface and let a plane rotate through a surface point in its normal. 
The section of this normal plane and the surface is a curve of curvature k. 
During the rotation, k must attain one maximum and one minimum value, 
kl and k2. These are called principal curvatures, and corresponding planar 
curves principal lines of curvature. These two curvatures are very useful in 
the description of the properties of surfaces. Their product is the Gaussian 
curvature (K), 

kl k2 = K A 2.1 

and the mean curvature (H) describes the sum. 

A plane has both K=0 and H=0, while a cylinder has K=0 for every point as 
one of the principal curvatures is a straight line. 

A point on a cylinder is called parabolic. 

A point on a sphere or an ellipsoid has always positive curvature, and for 

the sphere K=l/r 2 and H=l/r. Such a point is called elliptic. 

x 2 + y 2 + z  2 = 4  A 2.2 

2x 2 + y 2 + z  2 = 4  A 2.3 

A simple example of a surface of negative Gaussian curvature is the saddle. 
An example of this is shown in fig. A.2.1, with the equation 

x 2 _ y 2 _ z = 0 .  A 2.4 

A point on such a surface is called hyperbolic. 
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Fig. A.2.1. Saddle. After equation 
A 2 . 4 .  

Fig. A.2.2. Monkey saddle. After 
equation A 2.5. 

The monkey saddle in fig. A.2.2 is a very remarkable surface. Hilbert gave 
it the name - a monkey beside its two legs also has a tail. The monkey 
saddle has negative Gaussian curvature everywhere, except in the centre 
where it is zero. Such a point is called umbilic or a fiat point. We have used 
a simple function A 2.5 to show the monkey saddle in fig. A.2.2. 

x(x2-3y 2) - z = 0 A 2.5 

Examples of surfaces built of saddles are the catenoid and the helicoid with 
the equations 

x 2 + y2 _ coshz = 0 (catenoid) A 2 . 6  

and 

xcos4z - ysin4z = 0 (helicoid) A 2 . 7  

Both are minimal surfaces, or soap water surfaces. Another way saying this 
is that H=0. These two surfaces are very special, they have the same 
Gaussian curvature on corresponding points. That means they are isometric 
and can be bent into each other without stretching, like a paper can be 
rolled into a cylinder. This has been used by us to describe phase transitions 
without cost of energy in liquid crystals and Martensite. It is called the 
Bonnet transition. 

Monkey saddles and ordinary saddles build the strongly related and famous 
3-periodic nodal and minimal surfaces. Some parts of this book deal with 
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these types of surfaces. The minimal surfaces are well characterised, having 
H=0 everywhere and K_<_0. We show the nodal surface, equation A2.8, 
which deviates within 0.5% from the P -  minimal surface, in fig. A.2.5. 

cosx + cosy + cosz = 0 A 2.8 

The mathematics of the 3-periodic minimal surfaces are immensely more 
complicated than that of the nodal surfaces. 

Fig. A.2.3. Helicoid after equation 
A2.7. 

Fig. A.2.4. Catenoid after equation 
A2.6. 

Fig. A.2.5. P-surface after equation A2.8. 
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Appendix 3 - Formal way to derive the shapes of polyhedra 

Bodies that may be described with planes, can be given a mathematical 
function from the exponential scale. We derive the normal vectors of 
these planes and, use them in the exponents. 

We will show you with the tetrahedron. 

Fig. A.3.1 A suitable orientation of a tetrahedron. 

Place a tetrahedron in a coordinate system, for example as shown in fig 
A. 3.1. The origin is in the centre of the outlined cube and the vertices (v) 
for the tetrahedron are: 

v 1 =(-1 -1  -1) 
v 2 = (1 1-1) 
v 3 = (-1 1 I) 
v4 = (I - I I) 
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In order to determine the face vectors, we need the normal vectors to the 
four faces. Each face is defined by three vertices; 

face 1: v l, v2, v3 

face 2: Vl, v3, v4 

face 3: v l, v4, v2 

face 4: v2, v4, v3 

We need five of the tetrahedrons 
and the vectors for these are: 

six edges (e) to determine the normals, 

el2 = v 2 - v  1 = (2 2 0) 
el3 = v 3 - v  1 = (0 2 2) 
el4 = v 4 - v  1 = (2 0 2) 
e23 = v 3 - v  2 = (-2 0 2) 
e 2 4 = v  4 - v  2 = ( 0  - 2 2 )  

The normals (n) are then the vector product of two edge vectors for the 
face (note that they are multiplied counter-clockwise in order to get the 
correct sign, or direction, of the normals); 

n l = e 1 3 x e 1 2 = ( - 4 4  - 4 )  
n 2 = e 1 4 x e 1 3 = ( - 4  - 4  4) 
n 3 = e 1 2 x e 1 4 = ( 4  - 4  - 4 )  
n 4 = e23 xe24 = (4 4 4) 

For any face (even square, pentagonal or higher polygons) it is sufficient 
with just three vertices for the normal vector calculation, as three points 
define a plane. 

And finally, to determine the face vectors we need a scale factor (s) for the 
distance of the face to the origin. This is calculated by scalar multiplication 
of  the normal vector with an arbitrary vector to the face. For the Platonic 
solids the scale factors are naturally the same for all faces, but in this 
example we still calculate them all, and as our arbitrary vectors, we just 
choose one of  the faces' vertex vectors; 

s 1 = n l . v  1 =4  
s 2 = n 2 .v 1 = 4 
s 3 = n 3 .v 1 = 4 
s 4 = n 4 .v 2 = 4 

Now, to calculate the face vectors (u), we divide the normal vectors with 
the corresponding scale factor, and get; 
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u 1 = (-1 1 - 1) 
u 2 = (-1 - 1 1) 
u 3 =(1 -1  -1) 
u 4 = (1 1 1) 

The exponential scale equation for the tetrahedron is thus: 

10 tetr - 10 ul'(x y z) + 10 u2"(x y z) + 10 u3"(x y z) + 10 u4"(x y z) = 

= 10 - x + y - z  + 10 - x - y + z  + 10 x - y - z  + 10 x+y+z =C  
A 3.1 

This method of face vector derivation is general for all polyhedra, and you 
can also scale and orient them as you like. 

For the tetrahedron, octahedron, the icosahedron, and dodecahedron we 
derive accordingly the following equations, with a short notation obvious 
from below: 

Tetrahedron 
vectors: (111),(1 1 1),(1 1 1),(1 1 1) 

Octahedron 
vectors" (+1,+1,+1) 

Icosahedron 

vectors" (+x, +z, +z), (+z2 , 0, +l), (+ l, +z2 , 0), (O, +l, +z 2) 

Dodecahedron 
vectors, (+x, + 1, 0), (+ 1, 0, +~), (0, +z, + 1) 

( 
2 

=1.618 is the golden section, ~, and 2.618 is ~+1, or "c2.) 
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Appendix 4 -  More curvature 

The following is a Mathematica Notebook code for calculation of the 
Gaussian and mean curvature of a function w[x,y,z]. It is written by 
Stephen Hyde, Applied Mathematics, ANU, Canberra, Australia, and works 
for the program Mathematica. 

We show it exactly as it appears in Mathematica, except for the outputs, 
and we carry out the calculation of the natural exponential, or a cube 
comer, of the equation eX+eY+e z below: 

wl [x_,y_,z_] : =D [w [x, y, z ] ,x] ; 
w2 [x_,y_,z_] :=D[w[x,y,z] ,y] ; 
w3 [x_,y_,z_] :=D[w[x,y,z] ,z] ; 

wll [x_, y_, z_] :=D[wl [x,y,z] ,x] ; 
w12 [x_,y_,z_] :=D[wl [x,y,z] ,y] ; 
w13 [x_,y_,z_] :=D[wl[x,y,z],z] ; 

w21[x_, y_, z_] :=D[w2 [x,y,z] ,x] ; 
w22 [x_, y_, z_] : =D [w2 [x, y, z ] , y] ; 
w23 [x_,y_,z_] :=D[w2 [x,y,z],z] ; 

w31 [x_,y_, z_] :=D[w3 [x,y,z] ,x] ; 
w32 [x_,y_, z_] :=D[w3 [x,y,z] ,y] ; 
w33 [x_,y_,z_] :=D[w3 [x,y,z],z] ; 

matrix [w_, x_, y_, z_] : = { 
{wll[x,y,z]-l,wl2 [x,y,z] ,w13 [x,y,z] ,wl[x,y,z] }, 
{w21[x,y,z] ,w22 [x,y,z]-l,w23 [x,y,z] ,w2 [x,y,z] }, 
{w31 [x,y,z] ,w32 [x,y,z],w33 [x,y,z]-l,w3 [x,y,z] }, 
{wl[x,y,z] ,w2 [x,y,z] ,w3 [x,y,z] ,0}} 

det [w_, x_, y_, z_] : =Det [matrix [w, x, y, z ] ] ; 

a [w_, x_, y_, z_] :=Coefficient[det[w,x,y,z],l,2] ; 
b[w_,x_,y_,z_] :=Coefficient[det[w,x,y,z],l,l] ; 
c[w_,x_,y_,z_] :=Coefficient[det[w,x,y,z],l,0] ; 

meancurv [w_, x_, y_, z_] -=-b[w,x,y,z] / (2*a[w,x,y,z] 
*Sqrt[wl[x,y,z]^2+w2 [x,y,z]^2+w3 [x,y,z]^2]) ; 
gausscurv [w_, x_, y_, z_] : =c [w, x, y, z ] / (a [w, x, y, z ] 
*(wl[x,y,z]^2+w2[x,y,z]^2+w3[x,y,z]^2)) ; 
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Examp i e : 

w [x, y, z ] =E^x+E^y+E^z ; 

gausscurv [w, x, y, z ] 

Out[108]= 

(e 2x+y+z + eX+2y +z + eX+y +2z ) / ( e  2x + e 2y + e2Z) 2 

Instead of Gauss curvature we calculate 

meancurv [w, x, y, z ] 

O u t [ 1 2 9 ]  = 

(e 2x+y + eX+2y + e 2x+z + e2y +z + e x+2z + ey+2z)/2(e2X+e2y+e2Z) 3/2 

If x=y=z as it is in the comer, the Gaussian curvature is 1/3 and the mean 
curvature is 1A/3 and independent of size of the comer. These are exactly 
the values the cube comers converge to above in equations 3.3.2 and 3.3.3. 
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A p p e n d i x  5 - R a i s o n  d ' e t r e  

In a description of space it is convenient to follow Coexeter[1]; 
The general motion is covered by a similarity, which is either an isometry 
or a dilative rotation. There are three kinds of isometry, rotation, 
translation, and reflection. These combine in commutative pairs to form 
the twist (screw displacement), glide reflection and rotary reflection. 
Which gives the crystallographic groups. 

The continuos rotation of a point gives the circle - the continuos dilatation 
gives the line. And the combination in the plane - the continuos dilative 
rotation- of a point gives the equiangular spiral, or the logarithmic spiral, 
or in Nature the Nautilus. 

The simple twist, a combination of continuos rotation and continuos 
dilatation of a point perpendicular to the plane of rotation, gives a space 
curve which is the circular helix or the screw. Or half the DNA molecule. 

We can think of curves in space as paths of a point in motion. These words 
by Struik form the background to the modem description of space curves, 
physics of particle motion and symmetry in space. 

In certain parametrisations of curves motion along the curve the speed of a 
curve or the acceleration of a curve are defined. 

We exemplify with the circle and the circular helix: 

x - a c o s  u ,  y = a sin u, z = 0 (circle) 

x = a cos u, y = a sin u, z = bu (circular helix) 

a is the radius of the circle (projected for the helix), 2rob is the pitch, in 
French pas, in German GanghOhe, in Swedish stigning. With b positive the 
helix is right handed, if negative the helix is left handed. 

It is often convenient to think of u as the time and define speed, 
acceleration, and force accordingly. Relations between curvature and energy 
may be obtained. 
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While curvature for a curve measures the deviation from a tangent, the 
torsion measures the deviation for a curve from sitting in a plane. Planar 
curves have only curvature while space curves have curvature and torsion. 
If K is curvature and ~ is torsion they are related to radius and pitch by the 
equations 

a 2 + b  2 

and 

' 1 7 = ~  
a 2 + b  2 

As u increases, the arc length s increases, s may be described as 

ds 2 - dy 2 + dy 2 + dz 2 

or 

S= j'~/X 2 + y2 + Z 2du 

A so called natural parametrisation can be made with s, torsion and 
curvature, which provide general equations for space curves as a reduction 
of the Riccati equations. 

A simple example is the blowing up of a circle or a sphere. Time and 
curvature become synonyms which is a tempting description of time in 
mathematics. But the application to more complicated space curves is not 
transparent. 

Going to surfaces the Gaussian curvature is the product of two principal 
curvatures, and the mean curvature the sum. The torsion is now included in 
this. 

So we conclude that in a geometric description of curves and surfaces the 
ordinary curvature, the torsion, the Gaussian curvature, and the mean 
curvature are tools to make the properties of these things available for our 
perception. Parametrisation brings in a variable like time and the notion of 
point motion in space curves allows for a definition of physical concepts 
like speed, acceleration and force. Which also then are useful for the 
description of the space curve itself. 
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As time is not a mathematical concept we shall avoid it here and use 
implicit functions. In particular we study the change of the constant 
belonging to an implicit function. This is not an ordinary parametrisation 
but it is an auxiliary variable we have found great use to vary. Again we 
take the sphere as an example - a change of radius (blowing up the balloon) 
is a change of constant, or curvature, or time. 

We shall see that the change of constant for more advanced functions 
means drastic changes of curvature and topology, and offers descriptions of 
reactions in mathematics without the use of the physical notions of time or 
speed. 

Reference 

H.S.M. Coxeter, INTRODUCTION TO GEOMETRY, Wiley, New 
York, 1969. 
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Euclid �9 141 
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Euler. 39 
Exponential Scale. 1; 5; 7; 19; 39; 293 

F 

face centred cubic �9 2; 13; 76; 79 
falling drop- 268 
Fibonacci �9 31; 175; 176 
finite. 2; 13; 19; 21; 31; 99; 112; 123; 147; 156; 162; 197; 237; 254 
fourling �9 136; 294; 295; 307; 317 
fourling plane �9 317 
fundamental polyhedra �9 7; 24; 39; 57 
fundamental theorem of algebra. 1; 3; 7; 13; 16; 34; 123; 132; 147; 186; 

293 

G 

G surface" 79 
garnet. 162; 242; 245; 255; 256; 259; 260 
garnet packing of rods. 242; 255; 256; 259 
Gauss distribution function. 3; 74 
Gaussian curvature. 52; 53; 54; 55; 196; 327; 328; 334; 336 
general saddle equation- 1; 29; 123; 136; 142 
genetic code �9 147 
genus one- 274; 275 
gmelinite �9 129; 130 
goke- 104; 242; 246; 248; 249 
grooves. 147; 152 
gyroid- 82; 85; 86; 117; 118; 161; 162; 163; 164; 219; 221; 222 

H 

handmade periodicity �9 156; 180 
hanging drop �9 191; 194 
Hardy- 7; 38; 39; 71; 74; 98; 190 
helical saddle tower surfaces �9 106 
helicoid-31; 34; 35; 100; 102; 103; 110; 114; 328 
heptadecagon. 67 
hexagonal close packing. 123; 133; 134; 205; 222 
hexagonal rod packing- 251 
hierarchy. 39; 62 
hyperbolic plane �9 191; 197 
hyperbolic polyhedra �9 2; 267 



342 Index 

ice �9 73; 83; 84; 85; 224; 226 
icosahedron �9 39; 59; 60; 286; 287; 332 
incommensurate �9 140; 141 
infinite products �9 13; 147 
interpenetrating gyroid �9 221 
interstitial �9 204; 218 
isometry �9 73; 335 
isosurface constant. 8; 52; 55; 76; 99 

K 

Kant .  7 
Kepler star.  91 
Kepler's stella octangula �9 66; 215; 216 
Klemm �9 216 

L 

Larsson cubosome �9 115; 118; 162; 169; 253; 281 
LaVall~e Poussin �9 73; 75 
Liesegangs rings �9 182 
lipid bilayer �9 276; 277 

M 

martensite- 328 
Mathematica �9 7; 52; 82; 94; 97; 186; 325; 333 
mean curvature. 52; 54; 55; 69; 327; 333; 334; 336 
minimal surfaces. 1; 7; 26; 30; 73; 79; 205; 217; 319; 327; 328; 329 
Mo6CIs �9 66; 216 
monkey saddles. 19; 327 
multiple eigenvalues �9 123 
multiple twins.  293 
myoglobine. 112 

N 

natural exponential. 2; 39; 55; 67; 75; 115; 156; 267; 270; 333 
Nb3OTF- 226 
Nb3Sn �9 240; 241 
NbO.  87 
Neovius. 82 
Nesper- 38; 79; 86; 98; 236 
Neurosedyne- 99 
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Nlntegrate �9 1 8 6 ;  1 8 7  

nodal surfaces. 2; 26; 79; 80; 205; 329 

O 

O'Keeffe �9 4; 245; 265 
octahedron �9 18; 24; 26; 39; 48; 49; 57; 58; 59; 60; 65; 66; 67; 69; 157; 

170; 176; 177; 202; 211; 213; 214; 215; 217; 218; 284; 285; 286; 289; 
306; 308; 332 

octahemioctahedron �9 173; 174 
olympic rings. 277 
optimal organisation- 62 
oxide chemistry �9 191 

P 

P surface- 20; 21; 22; 26; 79; 83; 85; 95; 116; 206; 207; 237; 240; 241; 
281; 282; 283; 302; 316; 319 

pentagonal dodecahedron. 39; 61; 286; 287; 299; 309 
periodic fourling �9 294 
Perovskite �9 213 
pitch. 107; 108; 152; 316; 335; 336 
planar groups �9 131 
polygon. 44; 47; 297 
polynomial additions. 7 
precipitation �9 181 
pretzels. 274 
primitive cubic- 21; 24; 26; 78;85; 205 
primitive hexagonal packing. 225 
primitive packing of rods. 254; 258 
propeller- 253; 255 
protein molecules. 74 
pseudosphere �9 196 
pyrite �9 61 
pyritohedron �9 61 

quasi �9 123; 136; 137 

Q 

R 

radiolarian �9 147; 229; 262 
repulsion �9 3; 191; 200 
rhombic dodecahedron. 18; 24; 26; 39; 55; 57; 58; 59; 60; 61; 162; 209; 

285; 286; 289; 308; 309 
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rings * 182; 267; 273; 277; 278; 279 
rods in space * 109; 237 
roots 9 1; 3; 7; 9; 10; 12; 14; 15; 16; 19; 20; 22; 24; 26; 82; 147; 148 
Rutile * 213; 215 

S 
saddle equation - 1; 26; 29; 123; 130; 136; 142 
saddle tower surfaces * 30; 106 
sail * 293 
Scherk 27; 31; 34; 120; 317 
screw * 35; 74; 75; 99; 112; 335 
shear plane 226 
sinh * 19 
skeletons 185 
Skiena - 139; 146 
snake’s head * 110; 11 1 
sodalite 90 
solitons * 293 
sphere packings * 7 
spiral surface 100; 1 10 
stainless steel * 86; 209 
structure of water * 197; 226 
Synge * 73; 98; 267; 292 

T 
Terasaki - 182; 190 
tetrahedral * 11; 12; 65; 91; 96; 117; 213; 260; 261; 305; 307 
tetrahedron * 18; 24; 26; 39; 48; 49; 57; 59; 67; 69; 117; 170; 171; 21 1; 

tetrahemihexahedron - 1 74 
theorem of algebra * 1; 3; 7; 13; 16; 34; 123; 132; 147; 186; 293; 310 
TiH2 - 91; 92 
topology * 19; 55; 73; 95; 119; 150; 152; 191; 196; 197; 198; 205; 210; 

317; 337 
torus * 253; 254; 267; 274; 276; 278; 279; 281; 282; 283 
tower surface 27; 30; 31; 102; 106; 107; 108; 317 
translation vector * 73; 74 
tridymite - 224; 226; 260; 261 
trigonal bipyramid 133; 225 
trigonal prism * 225 
triple 104; 274 
twin plane 

226; 287; 288; 289; 330; 332 

174; 3 18; 3 19; 320 
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V 

V02" 213 
von Schnering �9 4; 38; 79; 86; 98; 122; 202; 236 

W 

wave equation �9 13 
wave packets. 301; 302; 303 
W C - 2 2 5  
Wells �9 86; 98; 123; 146; 219; 221; 222; 236 
Whittaker & Watson.  75 

XeF2- 280; 292 

X 

zeolite. 129; 130; 140; 161 
zinc blende- 226 

Z 
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