
Engineering Design via
Surrogate Modelling
A Practical Guide

Alexander I. J. Forrester, András Sóbester and Andy J. Keane

University of Southampton, UK

A John Wiley and Sons, Ltd., Publication

Engineering Design via
Surrogate Modelling

Engineering Design via
Surrogate Modelling
A Practical Guide

Alexander I. J. Forrester, András Sóbester and Andy J. Keane

University of Southampton, UK

A John Wiley and Sons, Ltd., Publication

This edition first published 2008
© 2008 John Wiley & Sons Ltd.

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex,
PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how
to apply for permission to reuse the copyright material in this book please see our website at
www.wiley.com.

The right of the authors to be identified as the authors of this work has been asserted in accordance
with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the
prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product or
vendor mentioned in this book. This publication is designed to provide accurate and authoritative
information in regard to the subject matter covered. It is sold on the understanding that the publisher
is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Library of Congress Cataloging in Publication Data

Forrester, Alexander I. J.
Engineering design via surrogate modelling : a practical guide / Alexander I.J.
Forrester, András Sóbester, and Andy J. Keane.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-06068-1 (cloth : alk. paper) 1. Engineering
design—Mathematical models. 2. Engineering design—Statistical methods.
I. Sóbester, András. II. Keane, A. J. III. Title.
TA174.F675 2008
620′.0042015118—dc22

2008017093

A catalogue record for this book is available from the British Library

ISBN 978-0-470-06068-1

Set in 10/12pt Times by Integra Software Services Pvt. Ltd. Pondicherry, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

Contents

Preface ix

About the Authors xi

Foreword xiii

Prologue xv

Part I Fundamentals 1

1 Sampling Plans 3
1.1 The ‘Curse of Dimensionality’ and How to Avoid It 4
1.2 Physical versus Computational Experiments 4
1.3 Designing Preliminary Experiments (Screening) 6

1.3.1 Estimating the Distribution of Elementary Effects 6
1.4 Designing a Sampling Plan 13

1.4.1 Stratification 13
1.4.2 Latin Squares and Random Latin Hypercubes 15
1.4.3 Space-filling Latin Hypercubes 17
1.4.4 Space-filling Subsets 28

1.5 A Note on Harmonic Responses 29
1.6 Some Pointers for Further Reading 30
References 31

2 Constructing a Surrogate 33
2.1 The Modelling Process 33

2.1.1 Stage One: Preparing the Data and Choosing a Modelling Approach 33
2.1.2 Stage Two: Parameter Estimation and Training 35
2.1.3 Stage Three: Model Testing 36

2.2 Polynomial Models 40
2.2.1 Example One: Aerofoil Drag 42
2.2.2 Example Two: a Multimodal Testcase 44
2.2.3 What About the k-variable Case? 45

vi Contents

2.3 Radial Basis Function Models 45
2.3.1 Fitting Noise-Free Data 45
2.3.2 Radial Basis Function Models of Noisy Data 49

2.4 Kriging 49
2.4.1 Building the Kriging Model 51
2.4.2 Kriging Prediction 59

2.5 Support Vector Regression 63
2.5.1 The Support Vector Predictor 64
2.5.2 The Kernel Trick 67
2.5.3 Finding the Support Vectors 68
2.5.4 Finding � 70
2.5.5 Choosing C and � 71
2.5.6 Computing �: �-SVR 73

2.6 The Big(ger) Picture 75
References 76

3 Exploring and Exploiting a Surrogate 77
3.1 Searching the Surrogate 78
3.2 Infill Criteria 79

3.2.1 Prediction Based Exploitation 79
3.2.2 Error Based Exploration 84
3.2.3 Balanced Exploitation and Exploration 85
3.2.4 Conditional Likelihood Approaches 91
3.2.5 Other Methods 101

3.3 Managing a Surrogate Based Optimization Process 102
3.3.1 Which Surrogate for What Use? 102
3.3.2 How Many Sample Plan and Infill Points? 102
3.3.3 Convergence Criteria 103

3.4 Search of the Vibration Isolator Geometry Feasibility Using
Kriging Goal Seeking 104

References 106

Part II Advanced Concepts 109

4 Visualization 111
4.1 Matrices of Contour Plots 112
4.2 Nested Dimensions 114
Reference 116

5 Constraints 117
5.1 Satisfaction of Constraints by Construction 117
5.2 Penalty Functions 118
5.3 Example Constrained Problem 121

5.3.1 Using a Kriging Model of the Constraint Function 121
5.3.2 Using a Kriging Model of the Objective Function 123

5.4 Expected Improvement Based Approaches 125
5.4.1 Expected Improvement With Simple Penalty Function 126
5.4.2 Constrained Expected Improvement 126

5.5 Missing Data 131
5.5.1 Imputing Data for Infeasible Designs 133

Contents vii

5.6 Design of a Helical Compression Spring Using Constrained
Expected Improvement 136

5.7 Summary 139
References 139

6 Infill Criteria with Noisy Data 141
6.1 Regressing Kriging 143
6.2 Searching the Regression Model 144

6.2.1 Re-Interpolation 146
6.2.2 Re-Interpolation With Conditional Likelihood Approaches 149

6.3 A Note on Matrix Ill-Conditioning 152
6.4 Summary 152
References 153

7 Exploiting Gradient Information 155
7.1 Obtaining Gradients 155

7.1.1 Finite Differencing 155
7.1.2 Complex Step Approximation 156
7.1.3 Adjoint Methods and Algorithmic Differentiation 156

7.2 Gradient-enhanced Modelling 157
7.3 Hessian-enhanced Modelling 162
7.4 Summary 165
References 165

8 Multi-fidelity Analysis 167
8.1 Co-Kriging 167
8.2 One-variable Demonstration 173
8.3 Choosing Xc and Xe 176
8.4 Summary 177
References 177

9 Multiple Design Objectives 179
9.1 Pareto Optimization 179
9.2 Multi-objective Expected Improvement 182
9.3 Design of the Nowacki Cantilever Beam Using Multi-objective, Constrained

Expected Improvement 186
9.4 Design of a Helical Compression Spring Using Multi-objective, Constrained

Expected Improvement 191
9.5 Summary 192
References 192

Appendix: Example Problems 195
A.1 One-Variable Test Function 195
A.2 Branin Test Function 196
A.3 Aerofoil Design 197
A.4 The Nowacki Beam 198
A.5 Multi-objective, Constrained Optimal Design of a Helical Compression Spring 200
A.6 Novel Passive Vibration Isolator Feasibility 202
References 203

Index 205

Preface

Think of a well-known public personality whom you could easily identify from a photograph.
Consider now whether you would still recognize them if most of the photograph was
obscured, except for the corner of an eye, a small part of their chin and, perhaps, a half of
their mouth. This is a game often played on television quiz shows and some contestants (and
viewers at home) often display an uncanny ability to come up with the correct name after
only a few small sections of the picture are revealed.

This is a demonstration of the brain’s astounding ability to fill in blanks by subconsciously
constructing a surrogate model of the full photograph, based on a few samples of it. The key
to such apparently impressive feats is that we actually know a great deal about the obscured
parts. We know that the photograph represents a human face, that is the image is likely to
be roughly symmetrical, and we know that somewhere in the middle there must be a pattern
we usually refer to as a ‘nose’, etc. Moreover, we know that it is a famous face. The ‘search
space’ thus reduced, the task seems a lot easier.

The surrogate models that form the subject of this book are educated guesses as to what
an engineering function might look like, based on a few points in space where we can afford
to measure the function values. While these glimpses alone would not tell us much, they
become very useful if we build a number of assumptions into the surrogate based on our
experience of what such functions tend to look like. For example, they tend to be continuous.
We may also assume that their derivatives are continuous too. With such assumptions built
into the learner, the surrogate model becomes a very effective low cost replacement of the
original function for a wide variety of purposes.

Surrogate modelling has had a great impact on the way the authors think about design
and, after many years of combined experience in the subject, it has become a fundamental
element of our engineering thought processes. We wrote this book as a means of sharing
some of this experience on a practical level. While a lot has been written about the deeper
theoretical aspects of surrogate modelling (indeed, references are included throughout this
text to the landmarks of this literature that have informed our own thinking), what we strove
to offer here is a manual for the practitioner wishing to get started quickly on solving their
own engineering problems. Of course, like any sharp tool, surrogate modelling can only be
used in a scientifically rigorous way if the user is constantly aware of its dangers, pitfalls,
potential false promises and limitations – the present text goes to great lengths to point these
out at the appropriate times.

x Preface

To emphasize the practical dimension of this guide, we accompany it with our own
MATLAB® implementation of the techniques described therein. Snippets of this code are
included in the text wherever we felt that, through the ‘maths-like’ and compact nature of
MATLAB, they contribute to the explanations. These, as well as all the rest of the code, can
be found on the book website at www.wiley.com/go/forrester. Template scripts are
also provided, ready for the user to replace our objective function modules with his or her
own. It is worth noting here that our own example functions, while mostly representing ‘real
life’ engineering problems, were designed for easy experimentation; that is they take only
fractions of a second to run. We expect, however, that most of the applications the codes
will be used for ‘in anger’ will be several orders of magnitude more time-consuming.

This is a self-contained text, though we assumed a basic familiarity with calculus, linear
algebra and probability. Additional ‘mathematical notes’ are included wherever we had to
refer to more advanced topics within these subjects. We therefore hope that this book will
be useful to graduate students, researchers and professional engineers alike.

While numerous colleagues have assisted us in the writing of this volume, a few names
stand out in particular. We would like to thank Prasanth Nair and David Toal of the
University of Southampton, Max Morris of Iowa State University, Donald Jones of the
General Motors Co., Natalia Alexandrov of NASA, Tom Etheridge of Astrium, Lucian
Tudose of the Technical University of Cluj Napoca, Danie G. Krige and Stephen J. Leary
of BAE Systems for their suggestions and for reading various versions of this manuscript.

Finally, a disclaimer. Surrogate modelling is a vast subject and this text does not claim
nor, indeed, can hope to cover it all. The selection of techniques we have chosen to include
reflect, to some extent, our personal biases. In other words, this is the combination of tools
that works for us and we earnestly hope that it will for the reader too.

Alexander Forrester, András Sóbester and Andy Keane
Southampton, UK

Disclaimer

The design methods and examples given in this book and associated software are intended
for guidance only and have not been developed to meet any specific design requirements. It
remains the responsibility of the designer to independently validate designs arrived at as a
result of using this book and associated software.

To the fullest extent permitted by applicable law John Wiley & Sons, Ltd. and the authors
(i) provide the information in this book and associated software without express or implied
warranties that the information is accurate, error free or reliable; (ii) make no and expressly
disclaim all warranties as to merchantability, satisfactory quality or fitness for any particular
purpose; and accept no responsibility or liability for any loss or damage occasioned to any
person or property including loss of income; loss of business profits or contracts; business
interruption; loss of the use of money or anticipated savings; loss of information; loss of
opportunity, goodwill or reputation; loss of, damage to or corruption of data; or any indirect
or consequential loss or damage of any kind howsoever arising, through using the material,
instructions, methods or ideas contained herein or acting or refraining from acting as a result
of such use.

About the Authors

Dr Alexander I. J. Forrester is Lecturer in Engineering Design at the University of
Southampton. His main area of research focuses on improving the efficiency with which
expensive analysis (particularly computational fluid dynamics) is used in design. His
techniques have been applied to wing aerodynamics, satellite structures, sports equipment
design and Formula One.

Dr András Sóbester is a Lecturer and EPSRC/ Royal Academy of Engineering Research
Fellow in the School of Engineering Sciences at the University of Southampton. His research
interests include aircraft design, aerodynamic shape parameterization and optimization, as
well as engineering design technology in general.

Professor Andy J. Keane currently holds the Chair of Computational Engineering at the
University of Southampton. He leads the University’s Computational Engineering and
Design Research Group and directs the Rolls-Royce University Technology Centre for
Computational Engineering. His interests lie primarily in the aerospace sciences, with a
focus on the design of aerospace systems using computational methods. He has published
over two hundred papers and three books in this area, many of which deal with surrogate
modelling concepts.

Foreword

Over the last two decades, there has been an explosion in the ability of engineers to build
finite-element models to simulate how a complex product will perform. In the automotive
industry, for example, we can now simulate the injury level of passengers in a crash, the
vibration and noise experienced when driving on different road surfaces, and the vehicle’s
life when subjected to repeated stressful conditions such as pot holes. Moreover, our ability
to quickly modify these simulation models to reflect design changes has greatly increased.
The net result is that the potential for using optimization to improve an engineering design
is now higher than ever before.

One of the major obstacles to the use of optimization, however, is the long running time
of the simulations (often overnight) and the lack of gradient information in some of the
most complicated simulations (especially crashworthiness). Due to the long running times
and the lack of analytic gradients, almost any optimization algorithm applied directly to the
simulation will be slow.

Despite this slowness, one could still bite the bullet and invest one’s computational budget
in applying an optimization algorithm directly to the simulations. But this is unlikely to
be satisfying, because rarely does a single optimization result settle any design issue. For
example, if the result is not satisfactory, one may want to gain insight into what is going on
by performing parameter sweeps and plotting input-output relationships. Or one might want
to repeat the optimization with a modified formulation (different starting point, different
constraints). All this, of course, requires doing more simulations. On the other hand, if the
result is satisfactory, one still want might to do further investigations to see if a better
tradeoff can be struck between competing objectives. Again, this requires more simulations.
Clearly, if one uses up all the available resources solving the first optimization problem, all
these follow-up studies would not be possible, or at least lead to missed deadlines.

The basic idea in the ‘surrogate model’ approach is to avoid the temptation to invest
one’s computational budget in answering the question at hand and, instead, invest in
developing fast mathematical approximations to the long running computer codes. Given
these approximations, many questions can be posed and answered, many graphs can be made,
many tradeoffs explored, and many insights gained. One can then return to the long running
computer code to test the ideas so generated and, if necessary, update the approximations
and iterate.

xiv Foreword

While the basic idea of the surrogate model approach sounds simple, the devil is in the
details. What points do you sample to use in building the approximation? What approximation
method do you employ? How do you use the approximation to suggest new, improved
designs? How do you use the approximations to explore tradeoffs between objectives? What
do you do if your simulation has numerical noise in it? And, equally important: Where do
I get the computer code to do all these things?

In Engineering Design via Surrogate Modelling: A Practical Guide, the authors answer
all of these questions. They are like cooks giving you a recipe for an entire meal: appetizer,
salad, entrée, wine, dessert, and coffee. It is not an isolated recipe for bread rolls such as
you might find in the cooking section of the Sunday paper. The authors start at the very
beginning, with variable screening to determine which variables to include in the study.
One then learns how to develop a sampling plan for developing the initial approximations.
Several approximation methods are then discussed, but the authors’ preference for Kriging is
clear. They then show how to use Kriging approximations to do unconstrained optimization,
constrained optimization, and tradeoff studies. At each step, sample code is provided in
MATLAB, which is also available in electronic form on an associated website.

No different than any cook, the authors have their biases: they like particular ways of
sampling, particular ways to use Kriging for optimization, etc. To their credit, however, in
several sections the authors go out of their way to mention other possible approaches and to
provide references for you to follow up if you are interested.

In my view, the book can appeal to two audiences. For those experienced in the field
of surrogate models, the book provides a glimpse at what the authors, as experienced
practitioners, consider to be the state of the art. For those just beginning, the book provides
a self-contained introduction to the field.

Like any cookbook, the book is a place to start, not to finish. I suspect that people reading
this book will take some recipes as they are, will modify others to suit their taste, and will
ignore still others in favor of their own recipes. But I am convinced that even the most
experienced persons in the field will find new things that pique their interest (this was
certainly true for myself). So, to all those beginning this book, may I say, Bon Appetit!

Donald R. Jones
General Motors Co.

Prologue

Engineering design is concerned with the making of decisions based on analysis, which
directly impact the product or service being designed. To accomplish this, engineers
typically engage in a great deal of analysis to understand the background to their
decisions. It is often necessary for months of analysis by dedicated teams to be undertaken
to inform key product decisions. It is against this backdrop that the current book
has been written. For example, in modern aerospace design offices the computational
power needed to support advanced decision making can be prodigious and, even with
the latest and most powerful computers, designers still wish for greater understanding
than can be gained by straightforward use of the familiar analysis tools, such as those
coming from the fields of computational fluid dynamics or computational structural
mechanics.

One way of gaining this desirable increased insight into the problems being studied is
via the use of surrogate (or meta) models. Such models seek to provide answers in the
gaps between the necessarily limited analysis runs that can be afforded with the available
computing power. They can also be used to bridge between various levels of sophistication
afforded by varying fidelity physics based simulation codes, or between predictions and
experiments. Their role is to aid understanding and decision taking by wringing every last
drop of information from the analysis and data sources available to the design team and
making it available in a useful and powerful way. This book aims to discuss the application
of such surrogate models using some of the most recent results stemming from the academic
and industrial research communities. To place these ideas in context we begin with a (far
from exhaustive) summary of where surrogate models typically find use in engineering
design.

The simplest, and currently most common, use of surrogate models is to augment the
results coming from a single, expensive simulation code that needs to be run for a range of
possible inputs dictated by some design strategy (perhaps a planned series of runs or those
suggested by some search process). The basic idea is for the surrogate to act as a ‘curve fit’
to the available data so that results may be predicted without recourse to use of the primary
source (the expensive simulation code). The approach is based on the assumption that, once
built, the surrogate will be many orders of magnitude faster than the primary source while
still being usefully accurate when predicting away from known data points. Note that there

xvi Prologue

are two key requirements here: (1) a significant speed increase in use and (2) useful accuracy.
Clearly, these factors are often in tension with each other and the user will often have to
balance these competing needs carefully.

Another increasingly common use for surrogates is to act as calibration mechanisms for
predictive codes of limited accuracy. It is quite common when producing a software model
of some physical process to have to simplify the approach taken so as to gain acceptable
run times. For example, in computational fluid dynamics there are a whole raft of different
simulation approaches that run from simple but very rapid potential flow solvers, through
Euler codes to Reynolds averaged Navier–Stokes methods to large eddy simulations and on
to direct numerical simulation of the full equations. A surrogate may well be trained to bridge
between two such codes by being set up to represent the differences between a simple but
somewhat inaccurate code and a more accurate but slower approach, the idea being to gain
the accuracy of the expensive code without the full expense. Such ‘multi-fidelity’ or ‘multi-
level’ approaches can be extended to dealing with data coming from physical experiments
and their correlation with computational predictions – indeed, much early work in this field
stems from long term agricultural experiments where data coming from crop trials had to be
interpreted.

A third use of surrogate models is to deal with noisy or missing data. It is a commonplace
experience that results coming from physical experiments are subject to small random errors.
These need to be dealt with when the data are used, often by some process of averaging. It
will also often occur in physical experimentation that some experiments fail to yield usable
results at all. It is less well known that the results of computational codes also suffer from
such problems, though in this case any noise is generally not random. Computational ‘noise’
stems from the schemes used to set up computational models, notably discretized and iterative
approaches where solutions are not fully independent of the discretization or the number of
iterations used. Similarly, most numerical schemes are rarely completely foolproof and will
sometimes fail in unexpected ways. In these circumstances surrogate models can be used as
filters and fillers to smooth data, revealing overall trends free of extraneous fine detail and
spanning any gaps.

Finally, surrogate models may be used in a form of data mining where the aim is to
gain insight into the functional relationships between variables open to the design team
and results of interest. If appropriate methods are selected and applied to sets of data,
surrogates can be used to demonstrate which variables have most impact and what the forms
of such effects appear to be. This can allow engineers to focus on those quantities that
have most importance and also to understand such quantities with greater clarity. Sometimes
such understanding comes directly from the equations resulting from surrogate construction;
alternatively surrogates may be used in visualization schemes to map and graph different
projections of the data more rapidly than would be possible by repeated runs of the available
analysis codes.

In all the above cases the basic steps of the surrogate modelling process remain essentially
the same, and are illustrated in the flowchart in Figure P.1, where each stage is related to
the chapter that describes it.

Firstly, some form of data set relating a series of inputs and outputs is obtained, typically
by sampling the design decision space, making use of the available, and often expensive,
analysis codes. In other words, a number of possible candidate designs are generated and
analysed, using whatever computational or experimental means are at hand.

Prologue xvii

Figure P.1. The surrogate modelling process

Following this, a suitable surrogate model form must be selected and fitted to the available
data – this process lies at the heart of this book. Its parameters must be estimated, it must be
assessed for accuracy and a number of schemes can be used to do this. Note a key limitation
of the surrogate approach at this point: if the problem being dealt with has many dimensions
the number of points needed to give reasonably uniform coverage rises exponentially –
the so-called curse of dimensionality. Currently the only way around this problem is either
to limit the ranges of the variables so that the shape being modelled by the surrogate is
sufficiently simple to be approximated from very sparse data or, alternatively, to freeze many
of the design values at hopefully sensible values and work with just a few at a time, iterating

xviii Prologue

around those being made active as the design process progresses (for example, in aircraft
design, dealing with aerodynamic quantities at one stage with structural variables fixed and
then swapping these around).

Since the initial design selections made to produce the first set of data will almost inevitably
miss certain features of the landscape, the construction of a useful surrogate often requires
further, judiciously selected calls to the analysis codes. These additional calls are termed
infill points and the process of applying them is known as updating. The selection of new
points is usually made either in areas where the surrogate is thought to be inaccurate or,
alternatively, where the surrogate model suggests that particularly interesting combinations
of design variables lie. The selection of such points is often made using an optimization-
based search over the surrogate. The updating of the surrogate with infill points may be
carried out a number of times until the surrogate is fit for purpose (or perhaps the available
budget of computing effort has been exhausted).

Having constructed (and hopefully tested) a suitably accurate model, it is then finally
exploited or explored in some fashion, perhaps being embedded in a modified solver or as a
subject for use along with optimization or visualization tools. The processes of exploration,
exploitation and updating may well be closely interlinked so that the surrogate remains
usefully accurate as the design process evolves. Moreover, data coming from previous design
processes may well also be melded into the system if appropriate.

It turns out that it is rare for a completely fixed approach to be appropriate in all cases
of interest, since the data itself may well influence the directions taken. This will call for
knowledge, care and experience from those constructing and using the surrogates – hopefully
the following sections and chapters will help support this process. A good understanding of
the capabilities and limitations of the various techniques presented will be the hallmark of
the knowledgeable designer.

Part I
Fundamentals

1
Sampling Plans

Engineering design problems requiring the construction of a cheap-to-evaluate ‘surrogate’
model f̂ that emulates the expensive response of some black box f come in a variety of
forms, but they can generally be distilled down to the following template.

Here f�x� is some continuous quality, cost or performance metric of a product or
process defined by a k-vector of design variables x ∈ D ⊂ Rk. In what follows we shall
refer to D as the design space or design domain. Beyond the assumption of continuity,
the only insight we can gain into f is through discrete observations or samples{
x�i� → y�i� = f�x�i���i = 1� � � � � n

}
. These are expensive to obtain and therefore must be

used sparingly. The task is to use this sparse set of samples to construct an approximation
f̂ , which can then be used to make a cheap performance prediction for any design x ∈ D.

Much of this book is made up of recipes for constructing f̂ , given a set of samples.
Excepting a few pathological cases, the mathematical formulations of these modelling
approaches are well-posed, regardless of how the sampling plan X = {

x�1�� x�2�� � � � � x�n�
}

determines the spatial arrangement of the observations we have built them upon. Some
models do require a minimum number n of data points but, once we have passed this
threshold, we can use them to build an unequivocally defined surrogate.

However, a well-posed model does not necessarily generalize well, that is it may still be
poor at predicting unseen data, and this feature does depend on the sampling plan X. For
example, measuring the performance of a design at the extreme values of its parameters may
leave a great deal of interesting behaviour undiscovered, say, in the centre of the design
space. Equally, spraying points liberally in certain parts of the inside of the domain, forcing
the surrogate model to make far-reaching extrapolations elsewhere, may lead us to (false)
global conclusions based on patchy, local knowledge of the objective landscape.

Of course, we do not always have a choice in the matter. We may be using data obtained by
someone else for some other purpose or the available observations may come from a variety
of external sources and we may not be able to add to them. The latter situation often occurs
in conceptual design, where we wish to fit a model to performance data relating to existing,
similar products. If the reader is only ever concerned with this type of modelling problem,
he or she may skip the remainder of this chapter. However, if you have the possibility of

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

4 Engineering Design via Surrogate Modelling

selecting your own objective function sampling locations, please read on, as in what follows
we discuss a number of systematic techniques for building sampling plans that will enable
the surrogate model to be built subsequently to generalize well.

1.1 The ‘Curse of Dimensionality’ and How to Avoid It

It is intuitively obvious that the higher the number of design variables in a modelling problem,
the more objective function measuring locations we need if we are to build a reasonably
accurate predictor. What is more striking is just how many more: if a certain level of prediction
accuracy is achieved by sampling a one-variable space in n locations, to achieve the same
sample density in a k-dimensional space, nk observations are required. To get a better feel
for why this is often referred to as the curse of dimensionality, consider the following
example.

Let us imagine that we would like to model the cost of a car tyre and we have a complex
computational tyre design software that, given a set of geometrical variables, can, through
a range of simulations, design a tyre and plan a manufacturing process for it, the latter
model resulting in a cost estimate. For the sake of this example, let us assume that the
analysis and design process takes one hour of computation per design. If we need a model
of wheel diameter versus cost and have a computational budget of, say, ten hours, we can
thus compute ten cost values at diameter values ranging from the smallest to the largest car
in the manufacturer’s range. Ten simulations should give us a reasonably accurate predictor,
even considering that the response can be highly nonlinear (for example due to different
types of tools being needed for different sizes, nonlinearity of performance requirements,
etc.). What happens, however, if we decide to refine the model by including other variables,
say, tread width, groove spacing, sidewall height, flexing area thickness, shoulder thickness,
bead seat diameter and liner thickness? We now have eight parameters, which, assuming
the same sampling density as on the wheel diameter, means that our computational budget
requirement jumps to 108 runs. This will take almost 11 416 years!

There are two important conclusions here. Firstly, evaluating the objective function
for every possible combination of every possible design variable value can become a
very expensive undertaking. Statisticians refer to this type of scenario as a full factorial
experiment.

The second conclusion we can draw is that the number of design variables has a massive
impact on the number of experiments required. It is therefore imperative that we minimize
this at the outset. The question is, how can we tell which variables can be left out of a design
study, that is, which variables do not have a significant effect on the objective function?
More to the point, how can we answer the above question with a minimum number of runs
of the (usually expensive) simulation? We will discuss this shortly, but first we need to
make a few general points about physical and computational experiments, the two sources
that may be used to obtain the objective function.

1.2 Physical versus Computational Experiments

The results of physical experiments are almost always subject to experimental error. These
departures from the ‘true’ result come from three main sources:

Sampling Plans 5

• human error, that is error introduced simply by the experimenter making a mistake;
• systematic error, due to a flaw in the philosophy of the experiment that adds a consistent

bias to the result;
• random error, which is due to measurement inaccuracies inherent to the instruments

being used.

The key concept that differentiates between the last two items in this list is repeatability.
If there is a systematic component in the experimental error, this will have the same value
each time we repeat the experiment. The random error, however, will be different every time
and, given enough experiments, it will take both positive and negative values.

Computational experiments are also subject to experimental error, resulting from:

• human error, ‘bugs’ in the analysis code, incorrectly entered boundary conditions in the
solution of a partial differential equation, etc., and

• systematic error. For example, an inviscid mathematical model of the viscous flow
around a body (an approximation sometimes made for computing time saving purposes)
will consistently underestimate the drag forces acting on the body. Another example is
the error caused by the inherently finite resolution of the numerical modelling process
(e.g. errors caused by insufficient mesh resolution in a finite element solve). While this
type of error can lead to underestimates or overestimates, it will do so in exactly the same
way if we repeat the experiment.

The difference, therefore, compared to physical experiments is that computational
experiments are not affected by random error – they are deterministic.

We dwell on this seemingly academic point here for three good reasons. Firstly, it is
germane to a question of terminology. Physical experimentalists often use the term ‘noise’,
referring to the random error that corrupts their experiments. Somewhat confusingly, though,
‘noise’ often crops up in the computational experiments literature as well, referring to
systematic error (hardly ever stating this explicitly, but it must do, as computers do not
make random errors!). This is not an especially pernicious usage, as long as both author and
reader understand what it refers to. To that end, we shall, throughout this book, differentiate
between the two meanings by putting a pair of inverted commas around ‘noise’ when it
refers to the systematic errors of computer experiments and leaving them out when we are
talking about the random noise of physical experiments or about both types.

Beyond the semantics, it will also be important for the reader to be aware of the
differences between the various types of error when, later on, we tackle Gaussian process
based approximation techniques. The reason is that the statistical apparatus behind these
methods requires a fictional ‘physicalization’ of computer experiments: we will view the
outputs (results) of computer experiments, known to be deterministic values, as realizations
of a stochastic process. This is merely to facilitate the mathematical process and one of the
purposes of this section is to dispel, well in advance, any confusion this artifice may cause.

The final reason for insisting on the differences between the two types of experiments
is to explain why their respective experimental design techniques are so different. A vast
literature has been written on devising screening strategies and sampling plans for physical
experiments, which are aimed, among other things, at mitigating the effects of the random
error that affects the responses. In principle, this is done by replicating experiments – a
pointless exercise, of course, when a deterministic computer code provides the data upon
which the approximation will be built.

6 Engineering Design via Surrogate Modelling

1.3 Designing Preliminary Experiments (Screening)

We saw earlier just how important it is to minimize the number of design variables
x1� x2� � � � � xk before we attempt to model the objective function f . But how do we achieve
this screening, as we shall call this process in what follows, without compromising the
relevance of the analysis?

If f is at least once differentiable over the design domain D with respect to each x� �f/�xi�x
is a useful criterion for establishing a taxonomy of design variables. Namely:

• if �f/�xi�x = 0�∀x ∈ D, the variable xi can safely be neglected,
• if �f/�xi�x = constant �= 0�∀x ∈ D, the effect of the variable xi is linear and additive,
• if �f/�xi�x = g�xi��∀x ∈ D, where g�xi� �= constant� f is nonlinear in xi,• if �f/�xi�x = g�xi��∀x ∈ D, where g�xi� xj� � � � � �= constant� f is nonlinear in xi and

involved in interactions with xj� � � �,

The above classification is merely a statement of terminology, as in practice we have no
way of measuring �f/�xi�x across the entire design space. Even a reasonable estimate is
a tall order considering that the budget available for the screening study is generally very
limited. Incidentally, there is no hard and fast rule as to what percentage of the available time
should be spent on screening the variables, as this is largely problem-dependent. If we expect
many variables to be inactive, a thorough screening study has the potential of enhancing
the accuracy of the subsequent model considerably (due to its reduced dimensionality). If,
however, there is an (engineering) reason to believe that most variables have a considerable
impact on the objective, it is advisable to focus efforts on the modelling itself.

A great deal has been written about sampling plans and modelling methods specifically
aimed at input variable screening (Jones et al. (1998)). Their working principles vary
according to the assumptions they make about the objective function and the variables. Here
we concentrate on an algorithm described by Morris (1991) because the only assumption it
makes is that the objective function is deterministic (a feature shared by most computational
models).

1.3.1 Estimating the Distribution of Elementary Effects

In order to simplify the presentation of what follows we make, without loss of generality,
the assumption that the design space D = �0� 1�k; that is we normalize all variable into the
unit cube. We shall adhere to this convention for the rest of the book and we strongly urge
the reader to do likewise in implementing any algorithms described here, as, in addition to
yielding clearer mathematics in some cases, this step safeguards against scaling issues.

Before proceeding with the description of the Morris algorithm we need to define an
important statistical concept. Let us restrict our design space D to a k-dimensional, p-level
full factorial grid, that is xi ∈ 	0� 1/�p−1�� 2/�p−1�� � � � � 1
, for i = 1� � � � � k. For a given
baseline value x ∈ D, let di�x� denote the elementary effect of xi, where

di�x� = y�x1� x2� � � � � xi−1� xi +��xi+1� � � � � xk�−y�x�

�
� (1.1)

where � = �/�p−1�� � ∈ N∗ and x ∈ D such that its components xi ≤ 1−�.

Sampling Plans 7

Morris’s method aims to estimate the parameters of the distribution of elementary effects
associated with each variable, the principle being that a large measure of central tendency
indicates a variable with an important influence on the objective function across the design
space and a large measure of spread indicates a variable involved in interactions and/or in
terms of which f is nonlinear. In practice, we estimate the sample mean and the sample
standard deviation of a set of di�x� values calculated in different parts of the design space.

Clearly, it is desirable to generate the preliminary sampling plan X in such a way that each
evaluation of the objective function f will participate in the calculation of two elementary
effects (instead of just one, if we were to pick, naively, a random spread of baseline x’s and
then to add � to one of their variables). Also, the sampling plan should give us a certain
number (say, r) elementary effects for each variable, independently drawn with replacement.
The reader interested in a thorough discussion of how to obtain such an X is invited to
read Morris’s original paper (Morris, 1991) – here we limit ourselves to a description of the
process itself.

Let B denote a k+ 1 × k sampling matrix of 0s and 1s with the property that for every
column i = 1� 2� � � � � k there are two rows of B that differ only in their ith entries (we shall
give an example of such a matrix in the MATLAB® implementation of the method). We then
compute a random orientation of B, denoted by B∗:

B∗ = (
1k+1�1x∗ + ��/2�

[
�2B−1k+1�k�D∗ +1k+1�k

])
P∗� (1.2)

where D∗ is a k-dimensional diagonal matrix, where each element on the diagonal is either
+1 or −1 with equal probability, 1 is a matrix of 1s, x∗ is a randomly chosen point in our
discretized, p-level design space (limited around the edges by �, as discussed previously)
and P∗ is a k× k random permutation matrix in which each column contains one element
equal to 1 and all others equal to 0 and no two columns have 1s in the same position. Here
is a MATLAB implementation of Equation (1.2):

function Bstar=randorient (k, p, xi)
% Generates a random orientation for a screening matrix
%
% Inputs:
% k – number of design variables
% p – number of discrete levels along each dimension
% xi – elementary effect step length factor
%
% Output:
% Bstar – random orientation matrix

% Step length
Delta=xi/(p-1);
m=k+1;

% A truncated p – level grid in one dimension
xs=(0:1/(p-1):1-Delta);
xsl=length(xs);

(continued)

8 Engineering Design via Surrogate Modelling

% Basic sampling matrix
B=[zeros(1,k); tril(ones(k))];

% Randomization

% Matrix with +1s and -1s on the diagonal with equal probability
Dstar=diag(2∗round(rand(1,k))-1);
% Random base value
xstar=xs(floor(rand(1,k)∗xsl)+1);
% Permutation matrix
Pstar=zeros(k);
rp=randperm(k);
for i=1:k, Pstar(i,rp(i))=1; end

% A random orientation of the sampling matrix
Bstar=(ones(m,1)∗xstar+(Delta/2)∗� � �

((2∗B-ones(m,k))∗Dstar+ones(m,k)))∗Pstar;

To obtain r elementary effects for each variable, the screening plan is built from r random
orientations:

X =

⎡⎢⎢⎣
B∗

1

B∗
2

� � �
B∗

r

⎤⎥⎥⎦ � (1.3)

or in MATLAB:

function X=screeningplan(k, p, xi, r)
% Generates a Morris screening plan with a specified number of
% elementary effects for each variable.
%
% Inputs:
% k – number of design variables
% p – number of discrete levels along each dimension
% xi – elementary effect step length factor
% r – number of random orientations (=number of elementary
% effects per variable).
%
% Output:
% X – screening plan built within a [0,1]∧k box

X=[];
for i=1:r

X=[X; randorient(k,p,xi)];
end

Sampling Plans 9

We then compute the value of f for each row of X; in what follows we shall store these
objective function values in the r�k+1�×1 column vector t. Taking one random orientation
at a time, the adjacent rows of the screening plan and the corresponding function values from
t can be inserted into Equation (1.1) to obtain k elementary effects (one for each variable).

Once a sample of r elementary effects has been collected for each variable, the sample
means and sample standard deviations of these can be computed and represented on the
same chart for comparison purposes. Here is how screening plot.m accomplishes this:

function screeningplot(X, Objhandle, Range, xi, p, Labels)
% Generates a variable elementary effect screening plot
%
% Inputs:
% X – screening plan built within a �0�1�∧k box (e.g. with
% screeningplan.m)
% Objhandle – name of the objective function
% Range – 2xk matrix (k – number of design variables) of lower
% bounds (first row) and upper bounds (second row) on
% each variable.
% xi – elementary effect step length factor
% p – number of discrete levels along each dimension
% Labels – 1xk cell array containing the names of the variables

k=size(X,2);
r=size(X,1)/k-1;

for i=1:size(X,1)
X(i,:)=Range(1,:)+X(i,:).∗(Range(2,:)-Range(1,:));
t(i)=feval(Objhandle,X(i,:));

end

for i=1:r
for j=(i-1)∗(k+1)+1:(i-1)∗(k+1)+k

F(find(X(j,:)-X(j+1,:)∼=0),i)=(t(j+1)-t(j))/(xi/(p-1));
end

end

% Compute statistical measures
for i=1:k

ssd(i)=std(F(i,:));
sm(i)=mean(F(i,:));

end

figure, hold on

for i=1:k
text(sm(i),ssd(i),Labels(i),’FontSize’,25)

end

axis([min(sm) max(sm) min(ssd) max(ssd)]);
xlabel(’Sample means’)
ylabel(’Sample standard deviations’)

10 Engineering Design via Surrogate Modelling

Before illustrating the process by means of an engineering design example, it is worth
mentioning two scenarios, where the deployment of the algorithm described above requires
special care.

Firstly, if the dimensionality k of the space is relatively low and we can afford a large
r, one should keep in mind the increased probability of the same design cropping up twice
in X. If the responses at the sample points are deterministic, there is, of course, no point
in repeating the evaluation. This issue does not occur especially often, as large numbers of
elementary effects are generally needed when screening spaces with high dimensionalities.

Secondly, numerical simulation codes sometimes fail to return a sensible (or, indeed, any)
result, due to meshing errors, the failure of a partial differential equation solution process to
converge, etc. From a screening point of view this is significant because an entire random
orientation B∗ is compromised if the objective function computation fails for one of the
points therein.

A ten-variable weight function

Let us consider the following analytical expression (implemented in liftsurfw.m) used
as a conceptual level estimate1 of the weight of a light aircraft wing:

W = 0036S0758
w W 00035

fw

(
A

cos2�

)06

q0006�004

(
100tc

cos �

)−03

�NzWdg�
049 +SwWp (1.4)

Table 1.1 contains a nomenclature of the symbols used in Equation (1.4), as well as a baseline
set of values, roughly representative of a Cessna C172 Skyhawk aircraft and a somewhat
arbitrarily chosen range for each variable. These baseline values and the ranges were used to
generate a filled contour plot of the weight function (see Figure 1.1) by varying the inputs
pairwise and keeping the remaining variables at the baseline value.

Table 1.1. Nomenclature of the ten-variable screening example problem

Symbol Parameter Baseline Minimum value Maximum value

Sw Wing area �ft2� 174 150 200
Wfw Weight of fuel in the wing (lb) 252 220 300
A Aspect ratio 7.52 6 10
� Quarter-chord sweep (deg) 0 –10 10
q Dynamic pressure at cruise �lb/ft2� 34 16 45
� Taper ratio 0.672 0.5 1
tc Aerofoil thickness to chord ratio 0.12 0.08 0.18
Nz Ultimate load factor 3.8 2.5 6
Wdg Flight design gross weight (lb) 2000 1700 2500
Wp Paint weight �lb/ft2� 0.064 0.025 0.08

1 Such equations are generally derived by fitting curves to existing aircraft data. This particular formula has been
adapted from Raymer’s excellent aircraft conceptual design text (Raymer, 2006).

Sampling Plans 11

W
fw

N
z

W
d

g
W

p

Sw Wfw A Nz Wdg

A
Λ

q
λ

 t
c

Λ q λ tc

180

200

220

240

260

280

300

320

Figure 1.1. Light aircraft wing weight (W) landscape. Each tile shows a contour of the weight
function (Equation (1.4)) versus two of the ten variables, with the remaining eight variables held at
the baseline value (See Plate I for colour version).

So what does the plot reveal from the point of view of variable activity? As expected, for
example, the weight per unit surface area of the paint �Wp� does not make much of an impact
on the shape of the surface, whereas the load factor Nz (which determines the magnitude
of the maximum aerodynamic load on the wing) is clearly very active and it is involved in
interactions with other variables. A classic example is the interaction with the aspect ratio
A: the red area in the top right-hand corner of the weight versus A and Nz indicates a heavy
wing for high aspect ratios and large g-forces (this is the reason why highly manoeuvrable
fighter jets cannot have very efficient, glider-like wings).

Of interest to us here, however, is how much of all this would we have guessed simply
from a cheap screening study, without an understanding of the engineering significance of
the variables involved (which is quite often the case in engineering design) and without the
ability to compute such a tile plot (which is almost always the case in engineering design –
after all, if the objective f was so cheap to compute, we would not be thinking about
surrogate modelling anyway).

So what does Figure 1.2, depicting the results of an r = 5 screening study, reveal? The
first observation we can make is that there is a clearly defined group of variables clustered
around the origin – recall that a small measure of central tendency is a feature of inputs
with little impact on the objective function. Indeed, we find the weight of the paint here, as

12 Engineering Design via Surrogate Modelling

−20 −10 0 10 20 30 40 50

10

20

30

40

50

60

70

80

90

Sw

W fw

A

Λ
q

λ

tc

Nz

Wdg

W
p

Sample means

S
am

pl
e

st
an

da
rd

 d
ev

ia
tio

ns

Figure 1.2. Estimated means and standard deviations of the elementary effect distributions of each
of the 10 variables of the wing weight example.

expected, as well as the dynamic pressure (meaning that it does not make a big difference
in wing weight where we are in our chosen range of dynamic pressures – with the cruising
speed specified, this can be viewed in terms of a cruising altitude range). The same reasoning
applies (and is confirmed by Plate I) to the taper ratio and the quarter-chord sweep.2

Although still close to the zero mean, the variable with the largest central tendency within
this group is the fuel weight Wfw. Its sample of elementary effects has a very low standard
deviation and a mean slightly larger than the rest of the group, indicating that it is more
important than them but is not involved in interactions. The plot indicates A and tc having
similar importance, but having a nonlinear/interactive effect (as seen from their high standard
deviation values).

Finally and unsurprisingly, a large (absolute) central tendency and large measure of spread
point to Wdg� Sw and Nz having the most significant impact on wing weight. Of course, aircraft
designers know that the overall weight of the aircraft and the wing area must be kept to
a minimum (the latter usually dictated by constraints such as required stall speed, landing
distance, turn rate, etc.) and that a requirement for high Nz will translate into a need for
sturdy, heavy wings. In fact, this is precisely why we have used such a well-understood
function here to illustrate the workings of the screening algorithm. Screening will be done
in anger, however, when no such prior knowledge is available and the identification of the
important variables can merely rely on the objective function as a black box.

The script wing.m will run the example discussed above and will produce Plate I and a
scatter plot similar to Figure 1.2 (MATLAB will generate a slightly different screening plan
each time, as this comprises random orientations of the sampling matrix B).

2 Large variations in the sweep angle would make a significant difference. Here, however, we are looking at a
small range of values (−10 to +10 degrees) typical of light, low speed aircraft.

Sampling Plans 13

We shall return briefly to the issue of establishing the order of importance (or activity)
of the inputs of the objective function in the section about Kriging models. For now, let us
look at the next step of the modelling process. With the active variables identified (either
through engineering judgement or through a systematic screening study) we can now design
the main sampling plan in the space defined by these variables. This will form the basis of
the data that the model of the objective will be built upon.3

1.4 Designing a Sampling Plan

1.4.1 Stratification

A feature shared by all of the approximation models discussed in this book is that they are
more accurate in the vicinity of the points where we have evaluated the objective function. In
later chapters we will delve into the laws that quantify our decaying trust in the model as we
move away from a known, sampled point, but for the purposes of the present discussion we
shall merely draw the intuitive conclusion that a uniform level of model accuracy throughout
the design space requires a uniform spread of points. A sampling plan possessing this feature
is said to be space-filling.

The most straightforward way of sampling a design space in a uniform fashion is by
means of a rectangular grid of points. This is the full factorial sampling technique referred
to in the section about the curse of dimensionality.

Here is the simplified version of a MATLAB function that will sample the unit hypercube
at all levels in all dimensions, with the k-vector q containing the number of points required
along each dimension. The variable Edges specifies whether we want the points to be
equally spaced from edge to edge �Edges=1� or we want them to be in the centres of
n = q1 ×q2 ×· · ·×qk bins filling the unit hypercube (for any other value of Edges).

function X=fullfactorial(q, Edges)
% Generates a full factorial sampling plan in the unit cube
%
% Inputs:
% q – k – vector containing the number of points along each
% dimension
% Edges – if Edges=1 the points will be equally spaced from
% edge to edge (default), otherwise they will be in
% the centres of n=q(1)∗ q(2)∗ � � � q(k) bins filling
% the unit cube.
%

(continued)

3 There may be some cases where the runs performed for screening purposes may be recycled at the actual model
fitting step, in particular when the objective is very expensive. For example, if some of the variables turn out not
to have any impact at all, these runs can form part of the reduced dimensionality sampling plan. Of course, life is
rarely as black and white as this and the ignored variables will have had some effect. In this case, a judgement will
have to be made regarding the trade-off between losing some expensive runs versus introducing some additional
noise into the model fitting data.

14 Engineering Design via Surrogate Modelling

% Output:
% X – full factorial sampling plan

if nargin < 2, Edges=1; end

if min(q) < 2
error(‘You_must_have_at_least_two_points_per_dimension.’);

end

% Total number of points in the sampling plan
n=prod(q);

% Number of dimensions
k=length(q);

%Pre–allocate memory for the sampling plan
X=zeros(n,k);

%Additional phantom element
q(k+1)=1;

for j=1:k
if Edges==1

one_d_slice =(0:1/(q(j)-1):1);
else

one_d_slice =(1/q(j)/2:1/q(j):1);
end

column=[];

while length(column) <n
for l=1:q(j)

column=[column; ones (prod(q(j+1:k)),1)∗ · · ·
one_d_slice(l)]

end
end

X(:,j)=column;
end

For example, fullfactorial([3 4 5],1) will produce the three-dimensional
sampling plan shown in Figure 1.3. Clearly, such a design will satisfy the uniformity criterion,
but it has two major flaws.

Firstly, it is only defined for designs of certain sizes, those that can be written as products
of the numbers of levels for each dimension, that is n = q1 ×q2 ×· · ·×qk.4 Secondly, when
projected on to the axes, sets of points will overlap and it can be argued that the sampling

4 Random sampling plans provide an alternative, which clearly can be created for any number of design points and
they do make sense in some cases. For example, if we sample the design variables according to some distribution,
we can assess how the objective values are distributed (Santner et al., 2003), a scenario typical of robustness
studies. In most cases, however, the spread of a random plan can be quite uneven and therefore not space-filling
(especially for small values of n).

Sampling Plans 15

0
0.5

1
0

0.33

0.67

1
0

0.25

0.5

0.75

1

 x1

x2

 x
3

Figure 1.3. Example of a three-dimensional full factorial sampling plan.

of any individual variable could be improved by making sure that these projections are as
uniform as possible.

This can be done by splitting the range of that variable into a relatively large number
of equal sized bins and generating equal sized random subsamples within these bins. This
approach is known as stratified random sampling. A natural development of this idea is to
generate a sampling plan that is stratified on all of its dimensions. The technique commonly
used to achieve this is known as Latin hypercube sampling.

1.4.2 Latin Squares and Random Latin Hypercubes

As we have seen, stratification of sampling plans aims to generate points whose projections
onto the variable axes are uniform. Before we look at generic techniques for building such
plans, it is worth considering the case of discrete valued variables in two dimensions.
Such uniform projection plans can be generated quite readily: if n designs are required,
an n × n square is built by filling every column and every line with a permutation of
	1� 2� � � � � n
, that is every number must only appear once in every column and every line.
For example, for n = 4, a Latin square (for this is what such plans are usually known as)
might look like this:

2 1 3 4

3 2 4 1

1 4 2 3

4 3 1 2

16 Engineering Design via Surrogate Modelling

We have highlighted the 1’s to illustrate the point about the uniform projection idea but,
of course, we could have chosen 2, 3 or 4 just as well. Also, this is just one, arbitrarily
chosen four-point Latin square – we could equally have picked any of the other 575 possible
arrangements. Incidentally, the number of distinct Latin squares increases rather sharply with
n; for example, there are 108 776 032 459 082 956 800 Latin squares of order eight! (It is
left as an exercise for the reader to check this.)

Building a Latin hypercube, that is the multidimensional extension of this, can be
done in a similar way, by splitting the design space into equal sized hypercubes (bins)
and placing points in the bins (one in each), making sure that from each occupied
bin we could exit the design space along any direction parallel with any of the axes
without encountering any other occupied bins. This is illustrated for three dimensions in
Figure 1.4.

We achieve this using the following technique. If X denotes the n×k matrix in which we
wish to build our sampling plan of n points in k dimensions (each row represents a point)
we begin by filling up X with random permutations of 	1� 2� � � � � n
 in each column and we
normalize our plan into the �0� 1�k box. The following code performs this in MATLAB.

x1x2

x 3

x1

x 2

x1

x 3

x2

x 3

Figure 1.4. Three-variable, ten-point Latin hypercube sampling plan shown in three dimensions (top
left), along with its two-dimensional projections. All ten points are visible on each of the latter, while
each row and column of bins contains exactly one point.

Sampling Plans 17

function X=rlh(n, k, Edges)
% Generates a random Latin hypercube within the [0,1]∧k hypercube.
%
% Inputs:
% n – desired number of points
% k – number of design variables (dimensions)
% Edges – if Edges=1 the extreme bins will have their centres
% on the edges of the domain, otherwise the bins will
% be entirely contained within the domain (default
% setting).
%
% Output:
% X – Latin hypercube sampling plan of n points in k
% dimensions.

if nargin < 3
Edges=0;

end

% Pre – allocate memory
X=zeros (n,k);

for i=1:k
X(:,i)=randperm(n)’;

end

if Edges==1
X=(X-1)/(n-1);

else
X=(X-0.5)/n;

end

The above recipe will thus yield a randomized sampling plan, whose projections on to
the axes are uniformly spread (multidimensional stratification). This, however, does not
guarantee that the plan will be space-filling. After all, placing all of the points on the main
diagonal of the design space will fulfil the multidimensional stratification criterion, but,
intuitively, will not fill the available space uniformly. We therefore need some measure of
uniformity that will allow us to distinguish between ‘good’ and ‘bad’ Latin hypercubes, even
in cases that are not as clear-cut as the diagonal example given above.

1.4.3 Space-filling Latin Hypercubes

One of the most widely-used measures to evaluate the uniformity (‘space-fillingness’) of a
sampling plan is the maximin metric introduced by Johnson et al. (1990). The criterion based
on this may be defined as follows.

Let d1� d2� � � � � dm be the list of the unique values of distances between all possible pairs
of points in a sampling plan X, sorted in ascending order. Further, let J1� J2� � � � � Jm be
defined such that Jj is the number of pairs of points in X separated by the distance dj .

18 Engineering Design via Surrogate Modelling

Definition 1.1. We will call X a maximin plan among all available plans if it maximizes
d1 and, among plans for which this is true, minimizes J1.

Clearly, this definition could be applied to any set of sampling plans, but, since we would
like to keep the appealing stratification properties of Latin hypercubes, we restrict our scope
to that class of designs. Nonetheless, even across this narrower domain, Definition 1.1 might
still yield several maximin designs. Therefore we shall use the more complete ‘tie-breaker’
definition of Morris and Mitchell (1995).

Definition 1.2. We call X the maximin plan among all available plans if it maximizes
d1, among plans for which this is true, minimizes J1, among plans for which this is true,
maximizes d2, among plans for which this is true, minimizes J2� � � � , minimizes Jm.5

Before proceeding further, we need to clarify what we mean by ‘distance’ in the above
definitions. The metric most widely used is the p-norm of the space:

dp

(
x�i1�� x�i2�

)=
(

k∑
j=1

�x�i1�
j −x

�i2�
j �p

)1/p

 (1.5)

For p = 1 this is the rectangular distance (sometimes also referred to as the Manhattan norm
in reference to the district’s grid-like layout) and p = 2 yields the Euclidean norm. There
is little evidence in the literature of one being more suitable than the other for sampling
plan evaluation if no assumptions are made regarding the structure of the model to be fitted,
though it must be noted that the rectangular distance is considerably cheaper to compute.
This can be quite significant, especially if large sampling plans are to be evaluated.

And now, onto the practicalities of working with Definition 1.2 in a computational context.
First, we need to build the vectors d1� d2� � � � � dm and J1� J2� � � � � Jm. Here is a MATLAB
implementation of a function that accomplishes this task:

function [J,distinct_d]=jd(X,p)
% Computes the distances between all pairs of points in a sampling
% plan X using the p–norm, sorts them in ascending order and
% removes multiple occurrences.
%
% Inputs:
% X – sampling plan being evaluated
% p – distance norm (p=1 rectangular – default, p=2 Euclidean)
%
% Outputs:
% J – multiplicity array (that is, the number of pairs
% separated by each distance value).
% distinct_d – list of distinct distance values

(continued)

5 To be completely rigorous, Definition 1.1 has been shown by Johnson et al. (1990) to be equivalent to the
so-called D-optimality criterion used in linear regression, whereas Definition 1.2 is simply intuitively appealing and
practically more useful. As we are considering sampling plans that do not make any assumptions relating to model
structure, we shall use the latter.

Sampling Plans 19

if ∼exist(’p’,’var’)
p=1;

end

% Number of points in the sampling plan
n=size(X,1);

% Compute the distances between all pairs of points
d=zeros(1,n∗(n-1)/2);
for i=1:n-1

for j=i+1:n
% Distance metric: p–norm
d((i-1)∗n-(i-1)∗i/2+j-i)=norm(X(i,:)-X(j,:),p);

end
end

% Remove multiple occurrences
distinct_d=unique(d);

% Pre-allocate memory for J
J =zeros(size(distinct_d));

% Generate multiplicity array
for i=1:length(distinct_d)

% J(i) will contain the number of pairs separated
% by the distance distinct_d(i)
J(i)=sum(ismember(d,distinct_d(i)));

end

A very time-consuming part of this calculation is the creation of the vector that contains
the distances between all possible pairs of points. This becomes especially significant for
large sampling plans (for example, in the case of a 1000-point plan almost half a million
calculations are required). Therefore pre-allocation of the memory is essential, which leaves
us with the somewhat roundabout way of computing the indices of d (as opposed to
appending each new element to d, which would require the use of expensive dynamic
memory allocation).

We now need to implement Definition 1.2 itself. Since finding the most space-filling design
will require pairwise comparisons, we ‘divide and conquer’ the problem by simplifying it
to the task of choosing the better of two sampling plans. The function mm(X1,X2,p)
accomplishes this, returning the index of the more space-filling of the two designs and 0 if
they are equal (the p-norm is used to compute the distances):

function Mmplan=mm(X1,X2,p)
% Given two sampling plans chooses the one with the better
% space–filling properties (as per the Morris–Mitchell criterion).
%
% Inputs:

(continued)

20 Engineering Design via Surrogate Modelling

% X1, X2 – the two sampling plans
% p – the distance metric to be used (p=1 rectangular –
% default, p=2 Euclidean)
%
% Outputs:
% Mmplan – if Mmplan=0, identical plans or equally space –
% filling, if Mmplan=1, X1 is more space-filling,
% if Mmplan=2, X2 is more space–filling.

if ∼exist(’p’,’var’)
p=1;

end

if sortrows(X1)==sortrows(X2)
% If the two matrices contain the same points
Mmplan=0;

else
% Calculate the distance and multiplicity arrays
[J1,d1]=jd(X1,p); m1=length(d1);
[J2,d2]=jd(X2,p); m2=length(d2);

% Blend the distance and multiplicity arrays together for
% comparison according to Definition 1.2B. Note the different
% signs – we are maximizing the d’s and minimizing the J’s.
V1(1:2:2∗m1-1)=d1;
V1(2:2:2∗m1)=-J1;
V2(1:2:2∗m2-1)=d2;
V2(2:2:2∗m2)=-J2;
% The longer vector can be trimmed down to the length of the
% shorter one
m =min(m1,m2);
V1=V1(1:m); V2=V2(1:m);

% Generate vector c such that c(i)=1 if V1(i)>V2(i), c(i)=2 if
% V1(i)<V2(i) and c(i)=0 otherwise
c=(V1>V2)+2∗(V1<V2);
% If the plans are not identical but have the same space–filling
% properties
if sum(c) ==0

Mmplan=0;
else

% The more space–filling design (mmplan)
% is the first non–zero element of c
i=1;
while c(i)==0
i=i+1;

end
Mmplan =c(i);
end

end

Sampling Plans 21

As we stated above, searching across a space of potential sampling plans can be
accomplished by pairwise comparisons. We could, therefore, in theory, write an optimization
algorithm with mm as the comparative objective. However, there is some experimental
evidence (Morris and Mitchell, 1995) that the resulting landscape will be quite deceptive
from an optimization point of view and therefore difficult to search reliably. The reason is
that the comparison process will stop as soon as we find a nonzero element in the comparison
array c and therefore the remaining values in d1�d2� � � � � dm and J1� J2� � � � � Jm will be
lost. These, however, could provide the optimization process with potentially useful ‘slope’
information on the global landscape.

Morris and Mitchell (1995) define the following scalar-valued criterion function used to
rank competing sampling plans. This, while based on the logic of Definition 1.2, includes
the vectors d1�d2� � � � � dm and J1� J2� � � � � Jm in their entirety:

�q�X� =
(

m∑
j=1

Jjd
−q
j

)1/q

 (1.6)

The smaller the value of �q, the better the space-filling properties of X will be. Here is
Equation (1.6) in MATLAB-speak:

function Phiq=mmphi(X, q, p)
% Calculates the sampling plan quality criterion of Morris and
% Mitchell.
%
% Inputs:
% X – sampling plan
% q – exponent used in the calculation of the metric
% p – the distance metric to be used (p=1 rectangular –
% (default, p=2 Euclidean)
%
% Output:
% Phiq – sampling plan ‘space–fillingness’ metric

% Assume defaults if arguments list incomplete
if ∼exist(’p’,‘var’)

p=1;
end

if ∼exist(’q’,‘var’)
q=2;

end

% Calculate the distances between all pairs of
% points (using the p–norm) and build multiplicity array J
%
[J,d]=jd(X,p);

% The sampling plan quality criterion
Phiq=sum(J.∗(d�∧(-q)))∧(1/q);

22 Engineering Design via Surrogate Modelling

This equation distills the cumbersome definition of the maximin criterion into a rather
neat and compact form, but it raises the question of how to choose the value of q. Large
q’s will ensure that each term in the sum dominates all subsequent terms. Thus, because
the distances dj are arranged in ascending order, �q will rank sampling plans in a way that
matches the original definition of the criterion quite closely and therefore we are back to the
original problem. Lower values of q yield a �q landscape that, while it may not match the
definition exactly, is more amenable to optimization.

To illustrate the relationship between Equation (1.6) and the maximin criterion of
Definition 1.2, let us consider sets of 50 random Latin hypercubes of different sizes and
dimensionalities. Let us then compute the ranking of each plan within its set according
to Definition 1.2, as well as according to �q (using p = 1 in each case) for a range of
values of q.

Figure 1.5 depicts the results of this small investigation. It is unwise to draw far-reaching
conclusions from only a few arbitrarily chosen experiments and we neither attempt this here,
nor is it really necessary for practical purposes. Nonetheless, the correlation plots suggest
that the larger the sampling plan, the smaller the q required to produce a ranking based
on �q that matches that of Definition 1.2 almost exactly. Taking the case of the set of 50
100-point 15-variable hypercubes, the bottom right-hand tile of Figure 1.5 indicates that the
�250-based ranking only differs from that of the definition in three places and even these
plans are only mis-ranked by one place. At the other end of the scale, it can be seen that for
q = 1, there is virtually no correlation, except for the smallest sampling plans considered.

Should the reader wish to conduct their own investigation for different families of sampling
plans, here are the tools required to do it. The rankings according to mm and mmphi using a
simple bubble sort algorithm are implemented in mmsort.m and phisort.m respectively:

function Index=mmsort(X3D,p)
% Ranks sampling plans according to the Morris–Mitchell criterion
% definition. Note: similar to phisort, which uses the numerical
% quality criterion Phiq as a basis for the ranking.
%
% Inputs:
% X3D – three–dimensional array containing the sampling plans
% to be ranked.
% p – the distance metric to be used (p=1 rectangular –
% default, p=2 Euclidean)
%
% Output:
% Index – index array containing the ranking

if ∼exist(’p’,‘var’)
p=1;

end

% Pre-allocate memory
Index=(1:size(X3D,3));

(continued)

Sampling Plans 23

% Bubble–sort
swap_flag=1;

while swap_flag==1
swap_flag=0;
i=1;
while i<=length(Index)-1
if mm(X3D(:,:,Index(i)),X3D(:,:,Index(i+1)),p)==2

buffer=Index(i);
Index(i)=Index(i+1);
Index(i+1)=buffer;
swap_flag=1;

end
i=i+1;

end
end

phisort.m only differs in having q as the third argument, as well as the comparison
line being: if mmphi(X3D(:,:,index(i)),q,p) > mmphi(X3D(:,:,index(i+
1)),q,p).

So how does one find the best Latin hypercube for a given application? Morris and
Mitchell (1995) recommend minimizing �q for q = 1� 2� 5� 10� 20� 50 and 100 (Figure 1.5
confirms these to be reasonable values) and then choosing the best of the resulting plans
according to the actual maximin definition. This is one more possible use for mmsort.m;
one can create a matrix X3D with each two-dimensional slice being the best sampling plan
found according the various �q’s and mmsort(X3D,1) will then rank them according to
Definition 1.2 using the rectangular distance metric. The only remaining question then is,
how to find these optimized �q designs? We discuss this next.

Optimizing �q

Having established a criterion that we can use to assess the quality of a Latin hypercube
sampling plan, we now need a systematic means of optimizing this metric across the space
of Latin hypercubes. This is not a trivial task – the reader will recall from the earlier
discussion of Latin squares that this space is vast. Indeed, it is so vast that for many practical
applications we have little hope of locating the globally optimal solution and we therefore
must aim to find the best possible sampling plan within a given computing time budget.

This budget depends on the computational cost of obtaining an objective function value.
The optimum division of the total computational effort between generating the sampling
plan and actually computing objective function values at the sites therein is an open research
question, though typically one would rarely allocate more than about 5% of the total wall
time to the former task.

Parallels can be drawn with choosing how much time to spend devising a timetable for
revision before an exam. A better timetable will make the revision more effective, but one
doesn’t want to take too much of the revision time itself!

24 Engineering Design via Surrogate Modelling

0 50
0

50

Maximin rank

Φ
1

ra
nk

Φ
10

 r
an

k

Φ
10

0
ra

nk

Φ
25

0
ra

nk
Φ

25
0

ra
nk

Φ
25

0
ra

nk
Φ

25
0

ra
nk

Φ
25

0
ra

nk
Φ

25
0

ra
nk

Φ
10

0
ra

nk
Φ

10
0

ra
nk

Φ
10

0
ra

nk
Φ

10
0

ra
nk

Φ
10

0
ra

nk

Φ
10

 r
an

k
Φ

10
 r

an
k

Φ
10

 r
an

k
Φ

10
 r

an
k

Φ
10

 r
an

k

Φ
1

ra
nk

Φ
1

ra
nk

Φ
1

ra
nk

Φ
1

ra
nk

Φ
1

ra
nk

n = 25, k = 3

n = 25, k = 5

n = 50, k = 5

n = 50, k = 10

n = 100, k = 10

n = 100, k = 15 n = 100, k = 15 n = 100, k = 15 n = 100, k = 15

n = 100, k = 10 n = 100, k = 10 n = 100, k = 10

n = 50, k = 10 n = 50, k = 10 n = 50, k = 10

n = 50, k = 5 n = 50, k = 5 n = 50, k = 5

n = 25, k = 5 n = 25, k = 5 n = 25, k = 5

n = 25, k = 3 n = 25, k = 3 n = 25, k = 3

0 50
0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank

0 50
0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank

0 50
0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank

0 50
0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank

0 50
0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank

0 50
0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank
0 50

0

50

Maximin rank

Figure 1.5. Scatter plots of maximin rankings versus rankings according to �q , different values of q
for sets of 50 random Latin hypercubes of different sizes and dimensionalities (the rectangular distance
metric was used).

Sampling Plans 25

One of the challenges of devising a sampling plan optimizer is to make sure that the search
process always stays within the space of Latin hypercubes. We have seen that the defining
feature of a Latin hypercube X is that each column is a permutation of the list of the possible
levels of the corresponding variable. The smallest alteration we can therefore make to a
Latin hypercube without spoiling its key multidimensional stratification property is to swap
two of the elements within any of the columns of X. Here is a MATLAB implementation
of ‘mutating’ a Latin hypercube in this way, generalized to random changes applied to
multiple sites:

function X=perturb(X, PertNum)
% Interchanges pairs of randomly chosen elements within randomly
% chosen columns of a sampling plan a number of times. If the plan is
% a Latin hypercube, the result of this operation will also be a
% Latin hypercube.
%
% Inputs:
% X – sampling plan
% PertNum – the number of changes (perturbations) to be made
% to X.
%
% Output:
% X – perturbed sampling plan

if ∼exist(’PertNum’,’var’)
PertNum=1;

end

[n,k]=size(X);

for pert_count=1:PertNum
col=floor(rand∗k)+1;
% Choosing two distinct random points
el1=1; el2=1;
while el1==el2

el1=floor(rand∗n)+1;
el2=floor(rand∗n)+1;

end

% Swap the two chosen elements
buffer=X(el1,col);
X(el1,col)=X(el2,col);
X(el2,col)=buffer;

end

We use the term ‘mutation’ because this is a problem that lends itself to nature-inspired
computation. Morris and Mitchell (1995) use a simulated annealing (SA) algorithm, the
detailed pseudocode of which can be found in their paper. As an alternative here we offer a
method based on evolutionary operation (EVOP).

26 Engineering Design via Surrogate Modelling

Evolutionary operation

As introduced by Box (1957), evolutionary operation was designed to optimize chemical
processes. The current parameters of the reaction would be recorded in a box at the centre
of a board, with a series of ‘offspring’ boxes along the edges containing values of the
parameters slightly altered with respect to the central, ‘parent’ values. Once the reaction was
completed for all of these sets of variable values and the corresponding yields recorded, the
contents of the central box would be replaced with that of the setup with the highest yield
and this would then become the parent of a new set of peripheral boxes.

This is generally viewed as a local search procedure, though this depends on the mutation
step sizes, that is on the differences between the parent box and its offspring. The longer
these steps, the more global is the scope of the search.

For the purposes of the Latin hypercube search, we apply a variable scope strategy. We
start with a long step length (that is a relatively large number of swaps within the columns)
and, as the search progresses, we gradually home in on the current best basin of attraction
by reducing the step length to a single change.

In each generation we mutate (randomly, using perturb.m) the parent a pertnum
number of times. We then pick the sampling plan that yields the smallest �p value (as per the
Morris–Mitchell criterion, calculated using mmphi.m) among all offspring and the parent;
in evolutionary computation parlance this selection philosophy is referred to as elitism.
Should the reader wish to opt for a nonelitist approach (for example to encourage a more
global search), the EVOP code can be modified fairly easily to exclude the parent from the
selection step.

The EVOP based search for space-filling Latin hypercubes is thus a truly evolutionary
process: the optimized sampling plan results from the nonrandom survival of random
variations.

Putting it all together

We now have all the pieces of the optimum Latin hypercube sampling process puzzle: the
random hypercube generator as a starting point for the optimization process, the ‘space-
fillingness’ metric that we need to optimize, the optimization engine that performs this task
and the comparison function that selects the best of the optima found for the various q’s. We
just need to put this all into a sequence. Here is the MATLAB embodiment of the completed
puzzle (with some of the frills omitted):

function X=bestlh(n,k, Population, Iterations)
% Generates an optimized Latin hypercube by optimizing the Morris–
% Mitchell criterion for a range of exponents and plots the first two
% dimensions of the current hypercube throughout the optimization
% process. %
% Inputs:
% n – number of points required
% k – number of design variables
% Population – number of individuals in the evolutionary
% operation optimizer
% Iterations – number of generations the evolutionary

(continued)

Sampling Plans 27

% operation optimizer is run for
% Note: high values for the two inputs above will ensure high
% quality hypercubes, but the search will take longer.
%
% Output:
% X – optimized Latin hypercube

if k<2
error(’Latin hypercubes are not defined for k<2’);

end

% List of qs to optimize Phi_q for
q=[1 2 5 10 20 50 100];

% Set the distance norm to rectangular for a faster search. This can
% be changed to p=2 if the Euclidean norm is required.
p=1;

% We start with a random Latin hypercube
XStart=rlh(n,k);

% For each q optimize Phi_q
for i=1: length(q)

fprintf(’Now optimizing for q=%d � � � \n’, q(i));
X3D(1:n,1:k,i)=mmlhs(XStart, Population, Iterations, q(i));

end

% Sort according to the Morris–Mitchell criterion
Index=mmsort(X3D,p);
fprintf (’Best lh found using q=%d � � � \n’, q(Index(1)));

% And the Latin hypercube with the best space–filling properties is� � �

X=X3D(:,:,Index(1));

% Plot the projections of the points onto the first two dimensions
plot (X(:,1),X(:,2),’ro’);drawnow;

title (strcat(’Morris–Mitchell optimum plan found using q=’,� � �
num2str(q(Index(1)))));

xlabel(’x 1’); ylabel(’x 2’);

It is worth noting that we need not necessarily have sorted all the candidate plans in
ascending order – after all, it is the best one we are really interested in. Nonetheless, the
added computational complexity is minimal (the vector is only ever going to contain as
many elements as there are candidate q values and only an index array is sorted, not the
actual repository of plans) and this gives the reader the opportunity to compare, if desired,
the plans different choices of q lead to.

28 Engineering Design via Surrogate Modelling

1.4.4 Space-filling Subsets

We have, so far, looked at the problem of minimizing �q over the space of all Latin
hypercubes of a certain size n and dimensionality k. Another question might be: how do we
find the best space-filling plan across a more restricted space, say, that of ns element subsets
Xs of an n element plan X? This is not merely an academic exercise, as this problem will
arise later on when we discuss improving the quality of a predictor by running a space-filling
subset of its training data through higher fidelity analysis.

Since selecting the ns element subset that minimizes �q is an NP-complete problem and
an exhaustive search would have to examine ns

Cn = ns!/n!�ns −n�! subsets (infeasible for
all but very moderate cardinalities), an alternative strategy could be the following greedy
algorithm aimed at locating at least a local optimum.

Strategy one: greedy local search

We start from a sample point x�i�� i ≤ n, as the first member of Xs, we then loop through
the remaining candidates x�j�� j = 1� � � � � i−1 and j = i+1� � � � � n, and add the point that
minimizes the Morris–Mitchell criterion. This loop is then repeated (always leaving out
the points we have already included), choosing each time the point that, when added to Xs,
minimizes the optimality criterion over the points we have so far. This is akin to a local
optimization of the citerion – better results can be achieved by repeating the process from
all nc possible starting points, keeping the best Xs overall (multistart local search).

While not exhaustive, even this approach can prove computationally prohibitive beyond
plans greater than a few dozen elements. Here is an even cheaper alternative.

Strategy two: exchange algorithm

We start from a randomly selected subset Xs and calculate the �q criterion. We then exchange
the first point x�1�

s with each of the remaining points in X\Xs and retain the exchange that
gives the best �q. Here is the MATLAB implementation of this technique:

function [Xs,Xr]=subset(X,ns)
% Given a sampling plan, returns a subset of a given size with
% optimized space – filling properties (as per the Morris–Mitchell
% criterion).
%
% Inputs:
% X – full sampling plan
% ns – size of the desired subset
%
% Outputs:
% Xs – subset with optimized space – filling properties
% Xr – remainder X\Xs
n=size(X,1);

% Norm and quality metric exponent – different values can be used if
% required
p=1; q=5;

(continued)

Sampling Plans 29

r=randperm(n);

Xs=X(r(1:ns),:);
Xr=X(r(ns+1:end),:);

for j=1:ns
orig_crit=mmphi(Xs,q,p);
orig_point=Xs(j,:);

% We look for the best point to substitute the current one with
bestsub=1;
bestsubcrit=Inf;

for i=1:n-ns
% We replace the current, jth point with each of the
% remaining points, one by one
Xs(j,:)=Xr(i,:);
crit=mmphi(Xs,q,p);

if crit< bestsubcrit
bestsubcrit=crit;
bestsub=i;

end
end

if bestsubcrit<orig_crit
Xs(j,:)=Xr(bestsub,:);

else
Xs(j,:)=orig_point;

end
end

1.5 A Note on Harmonic Responses

We conclude our discussion of sampling plans with uniform projections with some ‘small
print’ regarding cases when exact uniformity is actually undesirable.

If the function being sampled is expected to have a harmonic component with a wavelength
comparable to an integer multiple of 1/n (the width of each bin in a Latin hypercube),
the completely uniform projection properties of a Latin hypercube (or full factorial design)
might lead to misleading samples (they always sample the signal in the same phase, therefore
it will seem like the points could have come from a constant function). This potential
(though somewhat unlikely) pitfall can be avoided by adding a small random perturbation
to each point:

% Add a random perturbation
% if harmonic component suspected
if perturb ==

X=X+(rand(n,k)-0.5)∗(1/n)∗0.25;
end

30 Engineering Design via Surrogate Modelling

1.6 Some Pointers for Further Reading

The importance of sampling plan design in a wide range of disciplines is reflected in
the richness of the relevant literature (though not all of this body of work uses the same
terminology as the present text). Our practical introduction to the subject is limited to a
small subset of the plethora of techniques that have emerged and it is inevitably subject, to
some extent, to the authors’ personal bias. More significantly, though, we have highlighted
the approaches that, in our view, make the weakest assumptions regarding the type and the
size of the problem.

We have also limited the descriptions of the theoretical backgrounds of the techniques
covered to what we deemed to be necessary for their correct use. Here are a few additional
resources the reader may wish to consult.

The history of Latin hypercubes began in 1979 with a Technometrics paper by McKay
et al. (1979). A series of refinements have followed, including the application of intersite
distance criteria to Latin hypercube plans. Of these we have focused here on the maximin
criterion – the text by Santner et al. (2003) is a good source of information on others.

Another class of sampling plans that have generated some interest in recent decades are
orthogonal arrays. An n × k matrix X with entries from a set of s ≥ 2 symbols is called
an orthogonal array of strength r, size n with k constraints and s levels if each n × r
submatrix of X contains all possible 1× r row vectors with the same frequency � (note the
rather awkward restriction that the number of entries must be n = �sr). In a 1993 paper,
Tang (1993) introduces orthogonal array based Latin hypercubes. These essentially extend
the univariate stratification properties of Latin hypercubes to r-variate margins, again for a
limited range of plan sizes.

The sampling plans discussed in this chapter are generally based on the assumption that
the size n of the plan is predetermined. This is not always the case, as, although we may
know what the total computing time is we can budget for, it is not always obvious how many
candidate designs we will be able to evaluate in that time (some designs may be harder to
analyse than others).

Should we run out of time after evaluating, say, 80% of the points of our carefully
constructed Morris–Mitchell optimal Latin hypercube, there will be no guarantees regarding
the space-filling properties of that 08n-strong subset.6 In such cases it often makes sense to
start with a plan small enough to fit safely into the budget and select subsequent points one
by one (until the time runs out) based on models fitted to the points we have thus far, that
is deciding where we are sampling next based on which areas appear promising. We shall
discuss such procedures in detail later on; however, if they are infeasible for some reason
(for example the budget is very large and thus the repeated model fitting process may be
impractical), there is an alternative: Sobol sequences (Sobol, 1994). These are sampling plans
with reasonably good space-filling properties (at least for large n) and have the property
that, for any n and k > 1, the sequence for n−1 and k is a subset of the sequence for n and
k. Thus, from a ‘space-fillingness’ point of view, it does not matter when the time runs out.

6 A question arising from here is, what is the ordering of a sampling plan X = 	x1� x2� � � � � xn
 that, given the ‘space-
fillingness’ metric �, optimizes � �	x1� x2
� � � �	x1� x2� x3
� � � � � and � �	x1� x2� x3� � � � � xn
� simultaneously?

Sampling Plans 31

References
Box, G. E. P. (1957) Evolutionary operation: a method for increasing industrial productivity. Applied Statistics,

6(2), 81–101, June.
Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990) Minimax and maximin distance designs. Journal of

Statistical Planning and Inference, 26, 131–148.
Jones, D., Schonlau, M. and Welch, W. (1998) Efficient global optimization of expensive black-box functions.

Journal of Global Optimization, 13, 455–492.
McKay, M. D., Beckman, R. J. and Conover, W. J. (1979) A comparison of three methods for selecting values of

input variables in the anslysis of output from a computer code. Technometrics, 21(2), 239–245, May.
Morris, M. D. (1991) Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2),

161–174.
Morris, M. D. and Mitchell, T. J. (1995) Exploratory designs for computational experiments. Journal of Statistical

Planning and Inference, 43, 381–402.
Raymer, D. P. (2006) Aircraft Design: A Conceptual Approach, Education Series, 4th edition, American Institute

of Aeronautics and Astronautics, Washington, DC.
Santner, T. J., Williams, B. and Notz, W. (2003) The Design and Analysis of Computer Experiments, Springer-

Verlag, Berlin.
Sobol, I. M. (1994) A Primer for the Monte Carlo Method, CRC Press, Boca Raton, Florida.
Tang, B. (1993) Orthogonal array-based latin hypercubes. Journal of the American Statistical Association, 88(424),

1392–1397, December.

2
Constructing a Surrogate

This text is written around the core problem of attempting to learn a mapping y = f�x� that
lives in a black box, which obscures the physics that converts the vector x into a scalar
output y. This black box could take the form of either a physical or computer experiment, for
example a finite element code, which calculates the maximum stress �f� for given product
dimensions (x). The generic solution method is to collect the output values y�1�� y�2�� � � � � y�n�

that result from a set of inputs x�1�� x�2�� � � � � x�n� and find a best guess f̂ �x� for the black box
mapping f , based on these known observations.

In this chapter we discuss the fundamentals and some of the technical minutiae of a number
of specific surrogate model types capable of accomplishing this learning process. We begin,
however, with a generic discussion of the key stages of the surrogate model building process.

2.1 The Modelling Process

2.1.1 Stage One: Preparing the Data and Choosing a Modelling
Approach

Chapter 1 dealt with two of the preliminary steps of this stage. The first was the identification,
through a small number of observations, of the inputs that have a significant impact on f ;
that is the determination of the shortest design variable vector x = �x1� x2� � � � � xk�

T that, by
sweeping the ranges of all of its variables, can still elicit most of the behaviour the black box
is capable of. If the black box was an electronic device fitted with a large array of controls,
this screening step would amount to identifying the k controls that, when tweaked, influence
its behaviour – an operation made difficult by the possible interactions between the controls.
The ranges of the various design variables also have to be established at this stage.

The second step was to recruit n of these k-vectors into a list X = {x�1�� x�2�� � � � x�n�
}T

,
such that this represents the design space as thoroughly as possible, the challenge being

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

34 Engineering Design via Surrogate Modelling

that n is often small, as it is constrained by the cost (usually computational) associated with
obtaining each observation.

It is perhaps worth reiterating here that it is a good idea to scale x at this stage into the
unit cube �0� 1	k, a step that can make some of the subsequent mathematics easier and can
save us from a plethora of multidimensional scaling issues.

With Chapter 1 having put a suitable panoply of techniques in place for accomplishing
the above, here we consider the next phase of the process, the actual attempt at learning
f through the data pairs ��x�1�� y�1��� �x�2�� y�2��� � � � � �x�n�� y�n���. This so-called supervised
or instance based learning process is, essentially, a search across the space of conceivable
functions f̂ that would replicate observations of f .

This space is infinite. After all, any number of (hyper)surfaces could be drawn to go
through or pass within a certain range (accounting for experimental error) of the known
observations. However, the overwhelming majority of these would generalize very poorly;
that is they would be practically useless at predicting responses at new sites, which is what
the purpose of the exercise is. Consider the somewhat extreme example of the ‘needle(s) in
the haystack’ function:

f̂ �x� =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y�1� if x = x�1�

y�2� if x = x�2�

� � � � � � � � �
y�n� if x = x�n�

0 otherwise

(2.1)

Clearly, while all of the training data can be reproduced by this predictor, there is, at least
as far as most engineering functions are concerned, something severely counter-intuitive and
unsettling about it predicting 0 everywhere else. Of course, there is a minute chance that the
function does look like (2.1) and by some extraordinary chance we happened to sample it
exactly where the needles are, but this is quite unlikely.

One could invent many other, perhaps less contrived, examples that also feel somehow
unnatural and, more to the point, generalize badly – ultimately all this suggests that we need
some systematic means of filtering out such nonsensical predictors. Some scholars take a
Bayesian stance here, for example the philosophy advocated by Rasmussen and Williams
(2006) is ‘(speaking rather loosely) to give a prior probability to every possible function,
where higher probabilities are given to functions that we consider to be more likely, for
example because they are smoother than other functions’.

The approach we shall take in what follows is to hard-wire the structure of f̂ into the model
selection algorithm and search over the space of its parameters to tune the approximation
to the observations. For example, consider one of the simplest possible models: f̂ �x� w� =
wTx + v. Learning f with this model implies that we have decided on its structure – it will
be a hyperplane – and the model fitting process consists of finding the k + 1 parameters
(the slope vector w and the intercept v) for which wTx + v best fits the data (this will be
accomplished by Stage Two).

All of the above is often further complicated by the presence of noise in the observed
responses (we shall assume that the design vectors x are not corrupted in any way). We have
discussed the nature of this noise early in Chapter 1. Here we concentrate on learning from
such data, a process sometimes fraught with the danger of overfitting.

Constructing a Surrogate 35

Overfitting occurs when the model is, in some sense, too flexible and it fits the data at
too fine a scale, that is it fits the noise, as well as the actual underlying behaviour we are
seeking to model. The second stage of the surrogate construction process deals with this
complexity control problem through the process of estimating the parameters of the fixed
structure model, but some foresight in this direction is also required here, at the model type
selection stage.

This usually involves physics based considerations; that is the choice of modelling
technique depends on our expectations of what the underlying response might look like. For
example, if we have some observations of stress in an elastically deformed solid in response
to small strains, it makes sense to model the stress with a simple linear approximation.

If such insights into the physics are not available and we fail to account for, say, the
linearity of the data at this stage, we will end up adopting a complex, excessively flexible
model. This will not be the end of the world (after all, the parameter estimation stage will
hopefully ‘linearize’ the approximation through appropriate selection of the parameters that
control its shape), but we will have missed an opportunity to obtain an algebraically simple,
robust model. While they lack flexibility, simple linear (or polynomial) models have a lot
going for them: for example, they can be used in subsequent symbolic calculations.

Conversely, if we assume erroneously that the data comes from, say, an underlying
quadratic process and in reality the true function f features multiple peaks and troughs, at
the parameter estimation stage we will not be able to make up for the badly chosen model.
A quadratic will simply be too stiff to fit a multimodal function, whatever its parameters.

2.1.2 Stage Two: Parameter Estimation and Training

Let us assume that in Stage One we have indentified the k critical design variables, we have
acquired the learning data set and we have selected a generic model structure f̂ �x� w�, the
exact shape of the model being determined by the set of parameters w. We are now faced
with a parameter estimation problem: how do we select these w’s such that the model best
fits the data? Of the several known estimation criteria here we choose to discuss two.

Maximum Likelihood Estimation

Given a set of parameters w and thus the model f̂ �x� w�, we can compute the probability
of the data set ��x�1�� y�1� ± ��� �x�2�� y�2� ± ��� � � � � �x�n�� y�n� ± ��� having resulted from f̂
(where � is some small, constant margin around each point). For example, if we assume that
the errors � are independently randomly distributed according to a normal distribution with
the standard deviation � , the probability of the data set is

P = 1
�2�2�n/2

n∏
i=1

⎧⎨⎩exp

⎡⎣−1
2

(
y�i� − f̂ �x� w�

�

)2
⎤⎦ �

⎫⎬⎭
 (2.2)

Intuitively, this should be the same as its reverse, that is the likelihood of the parameters
given the data. The evergreen scientific computing text of Press et al. (1986) explains this
artifice, remarking that ‘statistics is not a branch of mathematics’. Nonetheless, accepting

36 Engineering Design via Surrogate Modelling

this intuitive relationship as a mathematical one facilitates model parameter estimation. Here
is how. We simply maximize it, or, rather, to simplify calculations, minimize the negative
of its natural logarithm:

min
w

n∑
i=1

[
y�i� − f̂ �x� w�

]2

2�2
−n ln �
 (2.3)

Note that, if we assume a constant � and a constant �, Equation (2.3) simplifies to the
well-known least squares criterion:

min
w

n∑
i=1

[
y�i� − f̂ �x� w�

]2

 (2.4)

Cross-Validation

Cross-validation involves splitting the data (randomly) into q roughly equal subsets, then
removing each of these subsets in turn and fitting the model to the remaining, aggregated,
q − 1 subsets. A loss function L can then be computed, which measures the error between
the predictor and the points in the subset we set aside at each iteration; the contributions to
L are then summed over the q iterations.

More formally, if a mapping � � �1� � � � � n� → �1� � � � � q� describes the allocation of the
n training points to one of the q subsets and f̂−��i��x� is the value (at x) of the predictor
obtained by removing the subset ��i� (i.e. the subset to which observation i belongs), the
cross-validation measure, which we employ here as an estimate of the prediction error, is

�cv�w� = 1
n

n∑
i=1

L
[
y�i�� f̂−��i��x�i�� w�

]

 (2.5)

Introducing the squared error in the role of the loss function and recalling from the previous
section that our model f̂ is still a generic one, depending on the two parameters left
undetermined there, we can rewrite Equation (2.5) as

�cv�w� = 1
n

n∑
i=1

�y�i� − f̂−��i��x�i�� w�	2
 (2.6)

To what extent Equation (2.6) is an unbiased estimator of true risk depends on the choice
of q. It can be shown that if q = n��cv is an almost unbiased estimator of true risk. However,
the variance of this leave-one-out measure can be very high, due to the n subsets being very
similar to each other. Hastie et al. (2001) recommend compromise values of q = 5 or q = 10.
In practical terms, using fewer subsets has the added bonus of reducing the computational
cost of the cross-validation process by reducing the number of models that have to be fitted.

2.1.3 Stage Three: Model Testing

If the observational data are plentiful, a randomly selected subset (Hastie et al., (2001)
recommend around 0
25n x → y pairs) should be set aside at the outset for model testing

Constructing a Surrogate 37

purposes. These observations must not be touched during Stages One and Two as their sole
purpose is to allow us to evaluate the testing error (based on the difference between the true
and approximated function values at the test sites) once the model has been built. We may,
however, bizarre as it may sound, not be overly concerned with the global accuracy of our
model if we are building an initial surrogate to seed a global infill criterion based strategy
(see Section 3.2). In such cases the model testing phase may be skipped.

We note here that, ideally, the parameter estimation (Stage Two) should also be based on
a separate subset, but observational data is seldom so abundant as to allow this luxury (if the
function is very cheap to evaluate and we can choose our evaluation sites, we may not be in
need of a surrogate model in the first place) if data are available for model testing and our
main objective is a globally accurate model, we advocate using either a root mean squared
error (RMSE) metric or the correlation coefficient �r2�. To test the model, we simply take
a set of test data of size nt and a set of predictions at the locations of the test data and
calculate either

RMSE =
√∑nt

i=0 �y�i� − ŷ �i��
2

nt

(2.7)

and/or

r2 =
(

cov�y� ŷ�√
var�y�var� ŷ�

)2

(2.8)

=
⎛⎜⎝ nt

∑nt

i=0 y�i� ŷ �i� −∑nt

i=0 y �i�
∑nt

i=0 ŷ �i�√[
nt

∑nt

i=0 y �i �2 − �
∑nt

i=0 y�i ��2
] [

nt

∑nt

i=0 ŷ �i�2 − �
∑nt

i=0 ŷ �i��2
]
⎞⎟⎠

2

� (2.9)

Naturally we want the RMSE metric to be as small as possible, though it will, of course,
be limited by any errors in the objective function �f� calculation. If, for example, the level
of experimental or discretization error in an objective function calculation is known (i.e. the
standard deviation), we might aim to fit a model with an RMSE within, say, one standard
deviation. More likely one would aim for an RMSE within a certain percentage of the range
of objective values in the observed data. As an example, Figure 2.1 shows the RMSE for
a Kriging prediction as the number of sampling plan points is increased (Kriging will be
covered in Section 2.4). The RMSE has been divided by the range of the test data. With
random elements in both the sampling plan generation and the Kriging tuning process, there
is a good deal of scatter in trend of lower RMSE for increased n. However, it is clear
that more than 10 points is required for a reasonable global model, with RMSE < 10%, and
approximately 20 points will yield a very good model, with RMSE < 2%.

The correlation coefficient can be used without worrying about the scaling of the two
sets of data: it, in effect, only compares the shape of the landscapes, not the values. This
is an advantage when comparing models of varying fidelity (we build multi-fidelity models
in Chapter 8), where we may want to identify a low fidelity model that can predict the
location of optima but not necessarily their values. In our experience, an r2 > 0
8 indicates
a surrogate with good predictive capabilities.

Figure 2.2 shows how r2 behaves for the same Kriging models used to produce Figure 2.1,
where r2 = 0
8 roughly corresponds to a normalized RMSE of 0.1.

38 Engineering Design via Surrogate Modelling

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

n

R
M

S
E

 /r
an

ge
(f

)

Figure 2.1. Normalized RMSE for a Kriging prediction of the Branin function as the number of
sampling plan points is increased.

2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

r2

Figure 2.2. The correlation coefficient r2 for a Kriging prediction of the Branin function as the
number of sampling plan points is increased.

Constructing a Surrogate 39

0 100 200 300
0

100

200

300

prediction

te
st

 d
at

a

n = 5

0 100 200 300
0

100

200

300

prediction

te
st

 d
at

a

n = 10

0 100 200 300
0

100

200

300

prediction

te
st

 d
at

a

n = 15

0 100 200 300
0

100

200

300

prediction

te
st

 d
at

a

n = 20

Figure 2.3. Predictions versus test data for varying n.

The above methods provide a quantitative measure of model accuracy, but it is also useful
to have a visual understanding of the quality of the surrogate. In Figure 2.3 we have plotted
the test data against the corresponding surrogate model predictions for four different sample
plan sizes. From Figures 2.1 and 2.2 we know how the quality of the model improves as n
increases, and from Figure 2.3 we can see how the predictions gradually converge towards
the values of the test data.

It is clear from the above figures that there is little point increasing n beyond 20. The
RMSE will never be precisely zero, but will fluctuate around the low value attained at
n = 18, 19 and 20. At this stage the surrogate model is saturated with data, and any further
additions will not improve the model globally (there will, of course, be local improvements
at the newly added points if an interpolating model is used, as we are doing here). One
could consider this as being rather like adding sugar to a cup of tea (the tea is the surrogate
and the sugar is the data). A point is reached where no more sugar can dissolve and the tea
cannot get any sweeter. A more flexible model (e.g. one with more parameters, or moving to
interpolation rather than regression) will increase the saturation point – like making a hotter
cup of tea!

40 Engineering Design via Surrogate Modelling

2.2 Polynomial Models

Let us consider the scalar valued function f observed according to the sampling plan
X = �x�1�� x�2�� � � � x�n��T, yielding the responses y = �y�1�� y�2�� � � � y�n��T. A polynomial
approximation of f of order m can be written as

f̂ �x�m� w� = w0 +w1x+w2x
2 +· · ·+wmxm =

m∑
i=0

wix
i (2.10)

In the spirit of the earlier discussion of maximum likelihood parameter estimation and
equation (2.4), we shall seek to estimate w = �w0�w1� � � � �wm�T through a least squares
solution of �w = y, where � is the Vandermonde matrix:

� =

⎡⎢⎢⎢⎣
1 x1 x2

1 · · · xm
1

1 x2 x2
2 · · · xm

2

· · · · · · · · · · · · · · ·
1 xn x2

n · · · xm
n

⎤⎥⎥⎥⎦ (2.11)

The maximum likelihood estimate of w is thus

w = �+y (2.12)

where �+ = (�T�
)−1

�T is the Moore–Penrose pseudo-inverse of � (pinv(Phi) in
MATLAB speak). This gives us a handy way of estimating w, but it is not very useful in
terms of estimating m.

The polynomial approximation (2.10) of order m of an underlying function f is, essentially,
a Taylor series expansion of f truncated after m + 1 terms (Box and Draper, 1987). This
suggests that greater values of m (i.e. more Taylor expansion terms) will usually yield a
more accurate approximation. However, the greater the number of terms, the more flexible
the model becomes and there is a danger of overfitting the noise that may be corrupting the
underlying response. Also, we run the risk of building an excessively ‘snaking’ polynomial
with poor generalization.

We can prevent this by estimating the order m through a number of different criteria
(Cherkassky and Mulier, 1998, Ralston, 1965) – here we shall consider cross-validation.
This means minimizing Equation (2.6) and, since this has to be done over the rather limited,
discrete space of m’s (m ∈ N∗ and usually m ≤ 15), a direct search makes the most sense.
We therefore compute the cross-validation measure for each m = 1� 2� � � � � 12 by summing
up the losses (squared errors) resulting when re-predicting the subsets of observations left
out in, say, q = 5 rounds (as described in the second part of Section 2.1.2). At the end of
the process the m that yielded the smallest cross-validation metric is chosen.

Of course, the coefficient vectors w will be different for each m considered (even in terms
of their length) and for each cross-validation subset, so its least squares determination via
Equation (2.12) has to be integrated as a lower level ‘repair’ step into the evaluation of
each m.

Constructing a Surrogate 41

Here is the MATLAB implementation of this recipe, followed by two examples of practical
applications:

function [BestOrder, Coeff, MU]=polynomial(X,Y)
% Fits a one–variable polynomial to one–dimensional data
%
% Inputs:
% X,Y – training data vectors
%
% Outputs:
% BestOrder – the order of the polynomial, estimated using
% cross–validation
% Coeff – the coefficients of the polynomial
% MU – normalization vector

% The cross-validation will split the data into this many subsets
% (this may be changed if required)
q=5;

% This is the highest order polynomial that will be considered
MaxOrder=15;

n=length(X);

% X split into q randomly selected subsets
XS=randperm(n);

FullXS=XS;
% The beginnings of the subsets � � �
From=(1:round(n/q):n-1);
To=zeros(size(From));

% � � � and their ends
for i=1:q-1

To(i)=From(i+1)-1;
end

To(q)=n;

CrossVal=zeros(1,MaxOrder);

% Cycling through the possible orders
for Order=1:MaxOrder

CrossVal(Order)=0;

% Model fitting to subsets of the data
for j=1:q

Removed=XS(From(j):To(j));
XS(From(j):To(j))=[];

[P,S,MU]=polyfit (X(XS),Y(XS),Order);

(continued)

42 Engineering Design via Surrogate Modelling

CrossVal(Order)=CrossVal(Order) + � � �
sum((Y(Removed) – polyval(P,X(Removed),S,MU)).∧2)� � �
/length(Removed);

XS=FullXS;
end

end

[MinCV, BestOrder]=min(CrossVal);

[Coeff,S,MU]=polyfit(X,Y,BestOrder);

2.2.1 Example One: Aerofoil Drag

The circles in Figure 2.4 represent 101 drag coefficient values obtained through a numerical
simulation by iterating each member of a family of aerofoils towards a target lift value
(see the Appendix, Section A.3). The members of the family have different shapes, as
determined by the sampling plan X = �x1� x2� � � � � x101�. Clearly, the responses CD ={
C

�1�
D �C

�2�
D � � � � �C

�101�
D

}
are corrupted by ‘noise’, these are deviations of the systematic

variety (recall the Chapter 1 discussion of types of deviations), caused by small changes in
the computational mesh from one design to the next.

To obtain the best polynomial through this data we simply compute:

>>[m,wrev,mnstd] = polynomial(X,CD)

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
0.028

0.03

0.032

0.034

0.036

0.038

0.04

x

C
D

Figure 2.4. Eighth-order polynomial fitted through the aerofoil drag data – the order selected via
cross-validation, the coefficients through likelihood maximization.

Constructing a Surrogate 43

This yields m=8, that is, we now know that an eighth-order polynomial minimizes the
cross-validation metric,1 as well as the vector of coefficients:

>> wrev

wrev =

Columns 1 through 4

-0.00023896141908 -0.00015154784822 0.00120279110271
0.00054322515686

Columns 5 through 8

-0.00172519329792 -0.00048110429064 0.00246816618471
0.00271690687886

Column 9

0.03041507825750

and the vector mnstd, containing the mean � and the standard deviation � of X:

>> mnstd

mnstd =

-0.10000000000000
0.11720068259187

Making a prediction now using these values is very straightforward. There are two
fundamental ways of doing this. Firstly, MATLAB’s polyval can be used – here is an
example. Let us assume we wish to sample the predictor CD across the whole range, in steps
of 0.005. We compute this by entering

>> CDhat=polyval(wrev,(-0.3:0.005:0.1),[],mnstd);

For a safer fitting process the data is normalized around its mean in polynomial.m,2

hence the need to compute the vector mnstd and to feed it into polyval as well. The
coefficient vector wrev is also computed based on the normalized data and this must be
taken into account if a second evaluation method is selected: the explicit evaluation of the
polynomial. This might be desired, for example, if further analytical calculations are to be
performed on the fitted model.

1 To be precise, this yields m = 8 most of the time. As the calculation of the cross-validation metric involves the
random selection of subsets, the result may differ slightly (usually by one order either way) from one run to the
next. This variability is particularly noticeable when there are relatively few training points. We therefore suggest
running the function a few times and, if different values of m result, using the most frequently obtained value.
2 On this occasion we did not scale the data into the [0, 1] interval; there is no need to do two scaling operations.

44 Engineering Design via Surrogate Modelling

As wrev is actually w in reverse order, the polynomial approximation of CD will, in this
case, be

ĈD�x� = 10−3�30
4151+2
7169x̄+2
4682x̄2 −0
4811x̄3 −1
7252x̄4

+0
5432x̄5 +1
2028x̄6 −0
1515x̄7 −0
2390x̄8� (2.13)

where x̄ = �x−��X�� /��X� = �x+0
1�/0
1172.

2.2.2 Example Two: a Multimodal Testcase

Let us consider the one-variable test function f�x� = �6x−2�2 sin�12x−4� (see the Appendix,
Section A.1), depicted by the dotted line in Figure 2.5. Its local minima of different depths
can prove deceptive to some surrogate-based optimization procedures, so we shall revisit it
in subsequent sections. Here we merely use it as another example, this time a multimodal
(featuring multiple optima) one, of the two-level polynomial fitting procedure.

We have generated the training data (depicted by circles in Figure 2.5) by adding some
normally distributed ‘noise’ to the function, as follows:

>>X=(0:0.02:1)‘;

>>n=length(X);

>>y=(6.*X-2).ˆ2.*sin(12.*X-4)+randn(n,1)*1.1;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

x

y

Training data
Polynomial approximation
True function

Figure 2.5. Seventh-order polynomial fitted through the data resulting from adding random noise to
the test function depicted by the dotted line.

Constructing a Surrogate 45

It turns out that a seventh-order polynomial fits this data best. This is shown by the continuous
line in Figure 2.5.

2.2.3 What About the k-variable Case?

With the two illustrative examples presented above we conclude our brief foray into
polynomial approximation, limiting ourselves here to the one-variable case. Nonetheless, it is,
of course, possible to extend the formulation of Equation (2.10) to several variables. Perhaps
the simplest way of viewing such approximations is in the form of a linear combination of
basis functions

f̂ �x� =
nb∑
i=1

wi�
�i� (2.14)

where the �’s are picked from a catalogue of all possible terms of order not greater than m.
For example, for m = 3� ��i� ∈ {1� x1� x2� x3� x1x2� x1x3� x2x3� x2

1� x2
2� x2

3� x2
1x2� � � � � x3

3

}
. This

now becomes a very complex parameter estimation problem, where not only the order m
and the coefficients w have to be determined but we also need to determine which entries
we should pick from the catalogue. A great deal of work has been devoted to solving this
problem and we shall conclude this chapter with some pointers (in Section 2.6) for the reader
interested in a more detailed treatment. For now, we turn our attention to the most versatile
of all the modelling approaches discussed in this book.

2.3 Radial Basis Function Models

Many branches of science often deal with complicated functions by expressing them in terms
of a ‘vocabulary’ of basic functions, which have well-known properties and are more amenable
to analysis. In fact, we have just touched upon an example, that of multivariable polynomials.

Perhaps the best known of such techniques are those that apply this logic to periodic
functions (Fourier analysis), but here we are interested in the more general case of
approximating any smooth, continuous function as a combination of simple basis functions.
More specifically, we shall consider the case of symmetrical bases centred around a set of
points (basis function centres) scattered around the design space. We begin with the case
of interpolating radial basis function models, that is approximations built on the assumption
that the data are not corrupted by noise.

2.3.1 Fitting Noise-Free Data

Let us consider the scalar valued function f observed without error, according to the sampling
plan X = �x�1�� x�2�� � � � � x�n��T, yielding the responses y = �y�1�� y�2�� � � � y�n��T. We seek a
radial basis function approximation to f̂ of the fixed form

f̂ �x� = wT� =
nc∑
i=1

wi���x − c�i��� (2.15)

where c�i� denotes the ith of the nc basis function centres and � is the nc-vector containing
the values of the basis functions � themselves, evaluated at the Euclidean distances between

46 Engineering Design via Surrogate Modelling

the prediction site x and the centres c�i� of the basis functions. Readers familiar with the
technology of artificial neural networks will recognize this formulation as being identical to
that of a single-layer neural network with radial coordinate neurons, featuring an input x,
hidden units �, weights w, linear output transfer functions and output f̂ �x�.

Thus far, the number of undetermined parameters stands at one per basis function and this
will remain the situation if we choose one of a number of fixed bases. Examples include
(with the relevant basis identification code in brackets, as defined for the purposes of our
MATLAB implementation, to be discussed shortly)

• linear ��r�= r (ModelInfo.Code=1),
• cubic ��r�= r3 (ModelInfo.Code=2) and
• thin plate spline ��r�= r2 ln r (ModelInfo.Code=3)

basis functions. More freedom to improve the generalization properties of Equation (2.15),
at the expense of a more complex parameter estimation process, can be gained by using
parametric basis functions, such as the

• Gaussian ��r� = e−r2/�2�2� (ModelInfo.Code=4),
• multiquadric ��r� = �r2 +�2�1/2 (ModelInfo.Code=5) or
• inverse multiquadric ��r� = �r2 +�2�−1/2 (ModelInfo.Code=6).

Whether we choose a set of parametric basis functions or fixed ones, the good news is that
w is easy to estimate. This can be done via the interpolation condition

f̂
(
x�j�
)=

nc∑
i=1

wi���x�j� − c�i��� = y�j�� j = 1� � � � � n (2.16)

Herein lies the beauty of radial basis function approximations. Equation (2.16) is linear in
terms of the basis function weights w, yet the predictor f̂ can express highly nonlinear
responses! It is easy to see that one of the conditions of obtaining a unique solution is that the
system (2.16) must be ‘square’, that is nc = n. It simplifies things if the bases actually coincide
with the data points, that is c�i� = x�i�� ∀i = 1� � � � � n, which leads to the matrix equation

�w = y (2.17)

where � denotes the so-called Gram matrix and it is defined as �i�j = ���x�i� −x�j���� i� j =
1� � � � � n. The fundamental step of the parameter estimation process is therefore the
computation of w = �−1y, and this is where the choice of basis function can have an
important effect. For example, it can be shown that, under certain assumptions, Gaussian
and inverse multiquadric basis functions always lead to a symmetric positive definite Gram
matrix (Vapnik, 1998), ensuring safe computation of w via Cholesky factorization3 – one

3 A symmetric and positive definite � can be decomposed into an upper triangular matrix and its transpose, such
that Equation (2.17) becomes UTUw = y. This is then solved in two steps, first for Uw and then for w. In MATLAB,
this translates into performing the decomposition with [U,p]=chol(Psi), followed by the computation of
w=U\(U′\y), where p is a positive integer if Psi is not positive definite and zero otherwise. If � cannot be
guaranteed to be positive definite, LU decomposition is used instead.

Constructing a Surrogate 47

reason for the popularity of these basis functions.4 It is also worth mentioning here that
very close proximity of any two points in X can cause ill-conditioning (Michelli, 1986),
with subsequent failure of the Cholesky factorization. This is a rather unlikely event if X
is a space-filling sampling plan, but can become a nuisance if clusters of infill points (see
Section 3.2) are added subsequently in specific areas of interest within the design domain.

Beyond determining w, there is, of course, the additional task of estimating any other
parameters introduced via the basis functions. A typical example is the � of the Gaussian
basis function, usually taken to be the same for all basis functions, though a different one
can be selected for each centre, as is customary in the case of the Kriging basis function,
to be discussed shortly (once again, we trade additional parameter estimation complexity
versus increased flexibility and, hopefully, better generalization).

While the correct choice of w will make sure that the approximation can reproduce the
training data, the correct estimation of these additional parameters will enable us to minimize
the (estimated) generalization error of the model. As discussed previously, this optimization
step, say, the minimization of the cross-validation error estimate, can be performed at the
top level, while the determination of w can be integrated into the process at the lower level,
once for each candidate value of the parameter(s).

The function rbf.m is our MATLAB implementation of this parameter estimation process
(based on a cross-validation routine), while predrbf.m will represent the surrogate,
once its parameters have been estimated. The model building process is very simple. The
bookkeeping device is the already alluded to structure ModelInfo, with ModelInfo.X
containing the sampling plan X and ModelInfo.y the corresponding n-vector of responses
y. ModelInfo.Code specifies the type of basis function to be used. After running rbf.m
the structure will also contain the estimated parameter values w and, if a parametric basis
function is used, � . These are stored in ModelInfo.Weights and ModelInfo.Sigma
respectively. This is all the information predrbf.m needs to make a prediction, so its
only input (other than ModelInfo, which must be made visible to it via global) is the
k-vector representing the point where we wish to make the prediction.

The following MATLAB script illustrates the process through a simple example, where
we attempt to learn the underlying response f�x� = 1/k

∑k
i=1 1 − �2xi − 1�2� x ∈ �0� 1	k

(dome.m), in two dimensions (k = 2) from a 10-point sample, using a thin plate spline
radial basis function. The results are shown in Figure 2.6.

% Make ModelInfo visible to all functions

global ModelInfo

% Sampling plan
ModelInfo.X=bestlh(10,2,50,25);

% Compute objective function values – in this case using
% the dome.m test function

(continued)

4 Theoretically, other bases can also be modified to have this property through the addition of a polynomial term;
see, for example, Keane and Nair (2005).

48 Engineering Design via Surrogate Modelling

for i=1:size(ModelInfo.X,1)
ModelInfo.y(i)=dome(ModelInfo.X(i,:));

end

ModelInfo.y=ModelInfo.y’;

% Basis function type:
ModelInfo.Code=3;

% Estimate model parameters
rbf

% Plot the predictor
x=(0:0.025:1);

for i=1:length(x)
for j=1:length(x)

M(j,i)=predrbf([x(i) x(j)]);
end

end

contour(x,x,M)

Finally, a note on prediction error estimation. We have already indicated that the
guarantee of a positive definite � is one of the advantages of Gaussian radial basis
functions. They also possess another desirable feature: it is relatively easy to estimate their
prediction error at any x in the design space. Additionally, the expectation function of the

x1

x 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Underlying response
Thin plate spline surrogate
Sample points

Figure 2.6. Contour plots of the underlying function f�x1� x2� = 0
5�2 − �2x1 − 1�2 − �2x2 − 1�2	
(dome.m) and its thin plate spline radial basis function approximation, along with the 10 points of a
Morris–Mitchell optimal Latin hypercube sampling plan (obtained via bestlh.m).

Constructing a Surrogate 49

improvement in minimum (or maximum) function value with respect to the minimum (or
maximum) known so far can also be calculated quite easily, both of these features being
very useful when the optimization of f is the goal of the surrogate modelling process. We
do not delve into these aspects here as in Section 3.2 we shall discuss them in great detail
in the context of Kriging, a special case of which are Gaussian radial basis functions.

2.3.2 Radial Basis Function Models of Noisy Data

If the responses y = �y�1�� y�2�� � � � � y�n��T are corrupted by noise, following the recipe above
may yield a model that overfits the data; that is it does not discriminate between the
underlying response and the noise. Perhaps the easiest way around this is the introduction of
added model flexibility in the form of the regularization parameter � (Poggio and Girosi,
1990). This is added to the main diagonal of the Gram matrix. As a result, the approximation
will no longer pass through the training points and w will be the least squares solution of

w = ��+�I�−1y (2.18)

where I is an n × n identity matrix. Ideally, � should be set to the variance of the noise
in the response data y (Keane and Nair, 2005), but since we usually do not know that, the
remaining option is simply to add it to the list of parameters that need to be estimated.

Another means of constructing a regression model through noisy data using radial basis
functions is to reduce the number of bases. Fewer than n bases will, of course, yield a
nonsquare � and Equation (2.16) can then be used to obtain a least squares estimate of w.
Any additional parameters (e.g. the �’s of Gaussian bases) can then be obtained once again
through a higher level search, whereby we are seeking the optimum of some generalization
error estimate (such as the cross-validation measure (2.6)). It is also possible to combine this
with the regularization approach, adding further flexibility (but also making the parameter
estimation process more complex).

The reduced number basis function method raises the nontrivial question of how to select
the data points that will have bases attached to them. There are a number of ways in which
this can be done. We shall discuss one such technique, the support vector regression method,
later in this chapter; for the reader interested in others, pointers are included in Section 2.6.

The more general issue of fitting noisy data will be discussed in much more detail in the
context of Kriging in Chapter 6.

2.4 Kriging

Of particular significance in surrogate based optimization, and as such given a section of its
own, is the basis function of the form

��i� = exp

(
−

k∑
j=1

�j
 x
�i�
j −xj
pj

)

 (2.19)

It is this basis function that is used in the method known as Kriging (see the historical
note). Looking at Equation (2.19), we can see similarities with the Gaussian basis

50 Engineering Design via Surrogate Modelling

function introduced in the previous section. Where a Gaussian radial basis function has
1/�2, the Kriging basis has a vector � = ��1� �2� � � � � �k�

T, allowing the width of the basis
function to vary from variable to variable. Also, where in the Gaussian basis the exponent
is fixed at 2, giving a smooth function through the point x�i�, Kriging allows this exponent
�pj = �p1� p2� � � � � pk�

T� to vary (typically pj ∈ �1� 2) for each dimension in x. With p fixed
at p�1�2� � � � �k� = 2 and with a constant �j for all dimensions, the Kriging basis function is
in fact the same as the Gaussian. We will first look at how to build a Kriging model and
examine the benefits of using the vectors � and p. For now, we will only consider Kriging
interpolation. We will cover Kriging regression in Chapter 6.

Historical note: Kriging and Danie G. Krige

Matheron (1963) coined the term Krigeage, in honour of the South African mining engineer Danie
Krige, who first developed the method now called Kriging (Krige, 1951). Kriging made its way
into engineering design following the work of Sacks et al. (1989), who applied the method to the
approximation of computer experiments.

Danie Krige (kindly provided by Prof. D. G. Krige)

Prof. Danie Krige’s origins in South Africa stretch back for 350 years to the 17th century when
the Cape was settled by the Dutch. In that period, the first South African Krige, of Dutch/German
origin, married a French Huguenot girl and so initiated the South African Krige family tree.
Danie was born in the Orange Free State in 1919, grew up on the Witwatersrand and graduated
as a Mining Engineer at the University of the Witwatersrand at the end of 1938. His early career
was spent in the gold mines, followed from 1945 by some 5 years in the Government Mining

(continued)

Constructing a Surrogate 51

Engineer’s Department in Johannesburg and by the major part of his career in the Head Office
of the Anglovaal Mining Group from 1950. After retirement in 1980 he occupied the Chair
of Mineral Economics at the University of the Witwatersrand for ten years. He has also been
extensively involved in private consulting work for various mining concerns.

His research into the application of mathematical statistics in ore valuation started during his
time in the Government Mining Engineer’s office and was based on very practical analyses of
the frequency distributions of gold sampling values and of the correlation patterns between the
individual sample values, and also between the grade estimates of ore blocks based on limited
sampling of the block perimeters and the subsequent sampling results from inside the ore blocks
as they were being mined out. These distribution and correlation models led directly to the
development of useful spatial patterns for the data and the implementation of the geostatistical
Kriging and simulation techniques now in extensive use, particularly in mining circles worldwide.

During his career Danie received the MSc(Eng) and DSc(Eng) degrees from the University of the
Witwatersrand as well as many honours, including three honorary degrees, including one from
the Moscow State Mining University.

2.4.1 Building the Kriging Model

We are going to start with a set of sample data, X = �x�1�� x�2�� � � � � x�n��T , with observed
responses, y = �y�1�� y�2�� � � � � y�n��T, and we want to find an expression for a predicted value
at a new point x. There is a certain amount of matrix algebra in the derivation of the Kriging
prediction, but the reader is encouraged to pay more attention to the concepts rather than the
mathematical detail, which is explained in separate notes where necessary. We must begin
with a slightly abstract concept, which is that we are going to view our observed responses
as if they are from a stochastic process (even though they may in fact be from a deterministic
computer code). We denote this using the set of random vectors

Y =
⎛⎜⎝Y�x�1��

Y�x�n��

⎞⎟⎠

This random field has a mean of 1� (1 is an n × 1 column vector of ones). The random
variables are correlated with each other using the basis function expression

cor�Y�x�i��� Y�x�l��	 = exp

(
−

k∑
j=1

�j
 x
�i�
j −x

�l�
j
pj

)

 (2.20)

From this we can construct an n×n correlation matrix of all the observed data:

� =
⎛⎜⎝cor�Y�x�1��� Y�x�1��	 · · · cor�Y�x�1��� Y�x�n��	

cor�Y�x�n��� Y�x�1��	 · · · cor�Y�x�n��� Y�x�n��	

⎞⎟⎠ � (2.21)

52 Engineering Design via Surrogate Modelling

and a covariance matrix (see the following mathematical note)

Cov�Y� Y� = �2�
 (2.22)

This assumed correlation between the sample data reflects our expectation that an
engineering function will behave in a certain way – most importantly that it will be smooth
and continuous. This assumption has been a continuous thread throughout this chapter and
Kriging is the most unassuming method yet, due to the greater number of model parameters.

Mathematical Note: Covariance

Covariance is a measure of the correlation between two or more sets of random variables

cov�X� Y� = E��X −�X��Y −�Y �	 (2.23)

= E�XY 	−�X�Y (2.24)

where �X and �Y are the means of X and Y and E is the expectation. From the covariance we
can derive the correlation

cor�X� Y� =
cov�X� Y�

�X�Y

(2.25)

where �X and �Y are the standard deviations of X and Y.
For a vector of random variables,

Y =

⎛⎜⎜⎜⎝
Y �1�

Y �2�

Y �n�

⎞⎟⎟⎟⎠
the covariance matrix is a matrix of covariances between elements of a vector:

cov�Y� Y� =

⎛⎜⎝cov�Y �1�� Y �1��

 cov�Y �1�� Y �n��

cov�Y �n�� Y �1��

 cov�Y �n�� Y �n��

⎞⎟⎠ (2.26)

and, from Equation (2.25),

cov�Y� Y� = �2
Y cor�Y� (2.27)

We now have a set of random variables (Y) which are correlated in some way and this is
described in our matrix � . These correlations depend on the absolute distance between the
sample points
 x

�i�
j −x

�1�
j
 and the parameters pj and �j .

Figure 2.7 shows how exp�−
 x
�i�
j −xj
pj � varies with the separation between the points.

The correlation is intuitive insofar as when the two points move close together, x
�i�
j −xj → 0�

Constructing a Surrogate 53

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

xj − xj
(i)

p = 0.1
p = 1
p = 2

ex
p(

−
|x

j
 −

 x
j|p)

(i)

Figure 2.7. Correlations with varying p.

exp�−
 xj −x
�i�
j
pj � → 1 (the points show very close correlation and Y�x�i�

j � = Y�xj��, and
when the points move apart, x

�i�
j −xj → �� exp�−
 �x

�i�
j −xj�
pj � → 0 (the points have no

correlation). Three different correlations are shown in Figure 2.7: pj = 0
1, 1 and 2. It is
clear how this ‘smoothness’ parameter affects the correlation, with pj = 2 we have a smooth
correlation with a continuous gradient through x

�i�
j −xj = 0. Reducing pj increases the rate

at which the correlation initially drops as
 x
�i�
j − xj
 increases. With a very low value of

pj = 0
1, we are essentially saying that there is no immediate correlation between the two
points and there is a near discontinuity between Y�x�i�

j � and Y�xj�.
Figure 2.8 shows how the choice of �j affects the correlation. It is essentially a width

parameter that affects how far a sample point’s influence extends. A low �j means that all
points will have a high correlation, with Y�xj� being similar across our sample, while a
high �j means that there is a significant difference between the Y�xj�’s �j . We can therefore
consider �j as a measure of how ‘active’ the function we are approximating is. For example,
if we performed a set of experiments where we measured the acceleration of a car for
varying colour �x1�, fore and aft engine location �x2� and engine size �x3�, we would expect
to see �1 = 0, since colour should have no effect on speed, �2 would be slightly higher,
since engine location would affect the traction and, because engine size would be the most
dominant variable, �3 would be the highest. Considering the ‘activity’ parameter �j in this
way is helpful in high-dimensional problems where it is difficult to visualize the design
landscape and the effect of the variables is unknown. By examining the elements of � one
can determine which are the most important variables and perhaps eliminate unimportant
variables from future searches.

We mentioned the possibility of using Kriging to establish the order of importance
of variables when considering the light aircraft wing weight function in Section 1.3.1.

54 Engineering Design via Surrogate Modelling

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

xj − xj
(i)

ex
p(

−
θ|

x j
 −

 x
j|2)

(i)

θ = 0.1
θ = 1
θ = 10

Figure 2.8. Correlations with varying �.

Table 2.1. Ranking of the wing weight variables based on the Kriging � parameter

Symbol Parameter �

Nz Ultimate load factor 0.1606
Wdg Flight design gross weight (lb) 0.1501
Sw Wing area �ft2� 0.1194
tc Aerofoil thickness to chord ratio 0.1187
A Aspect ratio 0.1082
q Dynamic pressure at cruise �lb/ft2� 0.0157
Wp Paint weight �lb/ft2� 0.0086
� Taper ratio 0.0018
Wfw Weight of fuel in the wing (lb) 0.0014
� Quarter-chord sweep (deg) 0.0012

Following the procedure we will outline in the remainder of this section, �j’s have been
estimated based on the same number of objective function values used in the screening study
of Section 1.3.1. These estimates are used to rank the variables in Table 2.1. The � vector
cannot tell us about interactions between the variables, but from Table 2.1 it is seen that the
order of importance is roughly the same as that shown in Figure 1.2 and, more importantly,
the same group of five variables with very little activity has been found.

We now know what our correlations mean, but how do we estimate the values of � and
p and where does our observed data y come in? One answer is to choose � and p to maximize
the likelihood of y. Ultimately we hope that this will minimize the generalization error of
the model.

Constructing a Surrogate 55

In Equation (2.2) it was assumed that the errors � are independently randomly distributed.
In doing so we are effectively saying that our surrogate can exactly replicate the function and
� is purely due to errors in evaluating y. In fact, these errors are likely to be due to error in
the surrogate model and be largely a function of x. For deterministic computer experiments
without noise � will be entirely due to surrogate model error and so the premise that � is
independently randomly distributed is completely false, albeit an often useful fiction. Here
we are building a model which interpolates the data and we can eliminate � because we
assume that there is no error in y and we do not want to allow for modelling error. Our
likelihood is therefore

L�Y�1��

 � Y�n�
 ���� = 1
�2�2�n/2

exp
[
−
∑

�Y�i� −��2

2�2

]
�

which can be expressed in terms of the sample data as

L = 1
�2�2�n/2
�
1/2

exp
[
− �y −1��T�−1�y −1��

2�2

]

 (2.28)

To simplify the likelihood maximization we take the natural logarithm to give

ln�L� = −n

2
ln�2�− n

2
ln��2�− 1

2
ln
�
− �y −1��T�−1�y −1��

2�2

 (2.29)

By taking derivatives of Equation (2.29) and setting to zero, we obtain maximum likelihood
estimates (MLEs) for � and �2:

�̂ = 1T�−1y
1T�−11

� (2.30)

�̂2 = �y −1��T�−1�y −1��

n

 (2.31)

These MLEs can now be substituted back into Equation (2.29) and constant terms removed
to give what is known as the concentrated ln-likelihood function:

ln�L� ≈ −n

2
ln��̂2�− 1

2
ln
�

 (2.32)

The value of this function depends on our unknown parameters � and p. We want to find
values for these parameters which maximize Equation (2.32). This is rather difficult to
achieve because we cannot differentiate the function like we did to find expressions for
�̂ and �̂2. Instead, we use a numerical optimization technique. The concentrated ln-likelihood
function is very quick to compute (if n and k are not too large) so we do not need to
use a statistical model – we just search the function directly. A global search method such
as a genetic algorithm or simulated annealing (see Section 3.1) usually produces the best
results. Looking back at Figure 2.8, we see that there is as much change between � = 0
1
and � = 1 as between � = 1 and � = 10. It makes sense, therefore, to search for �̂ on a
logarithmic scale. We find that suitably wide search bounds are from 10−3 to 102 (though
this is by no means a hard and fast rule). The scaling of the observed data does not affect the

56 Engineering Design via Surrogate Modelling

values of �̂, but the scaling of the design space does. It is therefore, once again, advisable
to always scale variable ranges to between zero and one in order that the values �̂j takes
indicate the same degree of activity from problem to problem.

While tuning p̂ is advantageous in producing accurate predictions in many problems, in
order to reduce the complexity of our code, in our examples we have fixed this model
parameter at p̂ = 2 and will only tune �̂.

Implementing an MLE of the Model Parameters

The matrix algebra involved in calculating the likelihood is the most computationally
intensive part of the Kriging process and so care must be taken that the computer code is as
efficient as possible.

Since � is symmetric, only half of the matrix needs to be computed before adding to
its tranpose. To calculate the ln-likelihood, a number of matrix inversions are required. It
is quickest to perform one Cholesky factorization (chol.m) and then use backward and
forward substitution for each inverse.

The Cholesky factorization will only work for a positive-definite matrix, which � is.
However, if � becomes close to singular, which happens when x�i�’s are densely packed,
the Cholesky factorization may fail. We could use an LU-decomposition in such cases,
which would yield an answer, but it would be an unreliable one. In situations where �
is close to singular, the best options are to either use regression (see Chapter 6) or, as we
do here, attach a poor likelihood value to the parameters which produced the near singular
matrix and so divert the MLE search of the parameters to better conditioned � ’s. The
MATLAB function chol.m provides a convenient way of implementing this strategy. Using
[U,p]=chol(Psi), if p = 0, Psi is non-positive-definite (or in our case is close to
singular, so that for all intents and purposes it is non-positive-definite), and we simply give
the negative of the concentrated ln-likelihood a very high value in such cases.

Another subtlety of calculating the concentrated ln-likelihood is that det(Psi) → 0
for poorly conditioned matrices, and it is therefore advisable to use twice the sum of the
natural logarithms of the diagonal of the Cholesky factorization when calculating ln�
�
� in
Equation (2.32).

The following MATLAB code constructs the correlation matrix � and returns the negative
of the concentrated ln-likelihood for given values of �.

function [NegLnLike,Psi,U]=likelihood(x)
% Calculates the negative of the concentrated ln – likelihood
%
% Inputs:
% x – vetor of log(theta) parameters
%
% Global variables used:
% ModelInfo.X – n x k matrix of sample locations
% ModelInfo.y – n x 1 vector of observed data

(continued)

Constructing a Surrogate 57

%
% Outputs:
% NegLnLike – concentrated ln – likelihood ∗−1 for minimizing
% Psi – correlation matrix
% U – Cholesky factorization of correlation matrix

global ModelInfo
X=ModelInfo.X;
y=ModelInfo.y;
theta=10.∧x;
n=size(X,1);
one=ones(n,1);

% Pre–allocate memory
Psi=zeros(n,n);
% Build upper half of correlation matrix
for i=1:n

for j=i+1:n

Psi(i,j)=exp(−sum(theta.∗(X(i,:)−X(j,:)).∧2));
end

end

% Add upper and lower halves and diagonal of ones plus
% small number to reduce ill conditioning
Psi=Psi+Psi’+eye(n)+eye(n).∗eps;
% Cholesky factorization
[U,p]=chol(Psi);

% Use penalty if ill–conditioned
if p> 0

NegLnLike=1e4;

else

% Sum lns of diagonal to find ln(det(Psi))
LnDetPsi=2∗sum(log(abs(diag(U))));
% Use back–substitution of Cholesky instead of inverse
mu=(one’∗(U\(U’\y)))/(one’∗(U\(U’\one)));
SigmaSqr=((y−one∗mu)’∗(U\(U’\ (y−one∗mu))))/n;
NegLnLike=−1∗(−(n/2)∗log(SigmaSqr) − 0.5∗LnDetPsi);

end

Example: Training the Kriging Model to Fit the Branin Function

This example details the training of a Kriging model using the functions provided in on the
book website. To train the Kriging model we first need our sample data. For the purposes
of this tutorial we will use values from a simple test function known as the Branin function
(see the appendix, Section A.2). The function has two variables �k = 2� and we will use

58 Engineering Design via Surrogate Modelling

a sampling plan of 20 points �n = 20�. The reader may wish to experiment with different
values of n and see how the quality of the model is affected (as we have done in Section
2.1.3).

Working through the MATLAB script below, as explained in Section 2.3, we first need
to define ModelInfo as a global variable in order to make it available to all functions.
We then define the number of variables and number of sample points. This information is
then fed into the bestlh.m function to create the sampling plan. This plan is stored in the
variable X which lives inside the structure ModelInfo. Each row of the sampling plan is
fed into branin.m to find the observed data, which is stored in ModelInfo.y.

Now that we have the observed data we can set up the tuning of the Kriging model.
We first set upper and lower bounds for the search of Theta. We are searching for the
log of � so 2 and −3 refer to the upper and lower limits of 102 and 10−3. The likelihood
can now be searched using a genetic algorithm. After searching the likelihood, we then run
likelihood.m again using the MLE values for � so that we can store the correlation
matrix � and its Cholesky factorization in ModelInfo, ready to be used when we make
predictions using the Kriging model.

global ModelInfo
% Number of variables
k=2;
% Number of sample points
n=20;

% Create sampling plan
ModelInfo.X=bestlh(n,k,50,20);

% Calculate observed data
for i=1:n
ModelInfo.y(i,1)=branin(ModelInfo.X(i,:));

end

% Set upper and lower bounds for search of log theta
UpperTheta=ones(1,k).∗2;
LowerTheta=ones(1,k).∗−3;

% Run GA search of likelihood
[ModelInfo.Theta,MinNegLnLikelihood]= � � �
ga(@likelihood,k,[],[],[],[], LowerTheta,UpperTheta);

% Put Cholesky factorization of Psi, into ModelInfo
[NegLnLike,ModelInfo.Psi,ModelInfo.U]=likelihood(ModelInfo.Theta);

This search of the Kriging model parameters yields the values log10 �̂1 = 0
7686 and
log10 �̂2 = −0
6458. We can immediately see, before making any predictions using the
Kriging model, that, based on our 20 samples, the first variable is the more dominant, with
�̂1 much higher than �̂2. With the model parameters found, we are now ready to make
predictions at new points.

Constructing a Surrogate 59

2.4.2 Kriging Prediction

In this section we use our Kriging correlation to predict new values based on the observed
data. Our derivation of the Kriging predictor is taken from Jones, (2001) and is, we
feel, the most straightforward and intuitive way of explaining the way predictions are
made.

We have chosen correlation parameters which maximize the likelihood of the observed
data, y. A new prediction, ŷ at x, should be consistent with the observed data and therefore
with the correlation parameters we have found. Hence we choose a prediction which
maximizes the likelihood of the sample data and the prediction, given our correlation
parameters. To achieve this we first augment the observed data y with the new prediction ŷ,
the value of which is to be determined, to give the vector ỹ = �yT� ŷ�T. We also define a
vector of correlations between the observed data and our new prediction:

� =
⎛⎜⎝cor�Y�x�1��� Y�x�	

cor�Y�x�n��� Y�x�	

⎞⎟⎠=
⎛⎜⎝��1�

��n�

⎞⎟⎠
 (2.33)

Now we can construct an augmented correlation matrix:

�̃ =
(

� �

�T 1

)

 (2.34)

Note that the last element of �̃ is one. This is a continuation of the leading diagonal of
ones in � , which represent the correlation of a point with itself where
x�i� − x�i�
 = 0 and
so cor�Y�x�i��� Y�x�i��	 = 1.

The ln-likelihood of the augmented data is

ln�L� = −n

2
ln�2�− n

2
ln��̂2�− 1

2
ln
�̃
− � ỹ −1�̂�T�̃−1� ỹ −1�̂�

2�̂2
� (2.35)

and only the last term of this depends on ŷ; so we need only consider this term in our
maximization. Substituting in expressions for ỹ and �̃ gives

ln�L� ≈
−
(

y −1�̂

ŷ − �̂

)T(
� �

�T 1

)−1(
y −1�̂

ŷ − �̂

)
2�̂2

 (2.36)

To maximize this equation, we must first find the inverse of �̃ using the partitioned inverse
method of Theil (1971) (see the following mathematical note):

�̃−1 =
(

�−1 +�−1��1−�T�−1��−1�T�−1 −�−1��1−�T�−1��−1

−�1−�T�−1��−1�T�−1 �1−�T�−1��−1

)

 (2.37)

60 Engineering Design via Surrogate Modelling

This can be substituted into Equation (2.36) and terms without ŷ removed to give

ln�L� ≈
(−1

2�̂2�1−�T�−1��

)
�̂y − �̂�2 +

(
�T�−1�y −1�̂�

�̂2�1−�T�−1��

)
�̂y − �̂�
 (2.38)

The maximum of this quadratic function of ŷ is then found by differentiating with respect
to ŷ and setting to zero:(−1

�̂2�1−�T�−1��

)
�̂y − �̂�+

(
�T�−1�y −1�̂�

�̂2�1−�T�−1��

)
= 0
 (2.39)

Thus, our MLE for ŷ is

ŷ�x� = �̂+�T�−1�y −1�̂�
 (2.40)

It is not immediately obvious how Equation (2.40) relates to the radial basis function
Equation (2.15). In Equation (2.40) our basis functions are contained in the vector �. These
are centred around the n sample points and are added to a mean base term � with weightings
w = � �y−1��. The model is constructed in such a way that the prediction goes through all
the data points (it interpolates the data): if we make a prediction at x�i�� � is the ith column
of � , and this means that ��−1 is the ith unit vector. Thus ŷ�x� = �̂+y�i� − �̂ = y�i�.

Mathematical Note: Partitioned Inverse
For a nonsingular n × n matrix A there is a unique n × n inverse matrix A−1 which satisfies
AA−1 = A−1A = I (I is a matrix of zeros with ones down the leading diagonal – the identity
matrix). Therefore, given the nonsingular matrix

A=
(

P1 R1

RT
1 Q1

)
�

where P and Q are nonsingular submatrices, we wish to solve

A−1A = I =
(

P2 R2

RT
2 Q2

)(
P1 R1

RT
1 Q1

)
=
(

I 0
0 I

)

(0 is a matrix of zeros). This splits into the four submatrix equations:

P2P1 + R2RT
1 = I� (2.41)

P2R1 + R2Q1 = 0� (2.42)

RT
2 P1 + Q2RT

1 = 0� (2.43)

RT
2 R1 + Q2Q1 = I
 (2.44)

(continued)

Constructing a Surrogate 61

From Equation (2.43) RT
2 = −Q2RT

1 P−1
1 , which is substituted into Equation (2.44) to give Q2�Q1 −

RT
1 P−1

1 R1� = I. Thus

Q2 = �Q1 −RT
1 P−1

1 R1�
−1 (2.45)

and

RT
2 = − �Q1 −RT

1 P−1
1 R1�

−1RT
1 P−1

1 � (2.46)

R2 = −P−1
1 R1�Q1 −RT

1 P−1
1 R1�

−1
 (2.47)

By substituting Equation (2.45) into Equation (2.41), P2P1 −P−1
1 R1�Q1 −RT

1 P−1
1 R1�

−1RT
1 = I and

so

P2 = P−1
1 +P−1

1 R1�Q1 −RT
1 P−1

1 R1�
−1RT

1 P−1
1
 (2.48)

Putting Equations (2.45), (2.46), (2.47) and (2.48) together, A−1 can now be expressed as(
P−1

1 +P−1
1 R1�Q1 −RT

1 P−1
1 R1�

−1RT
1 P−1

1 −P−1
1 R1�Q1 −RT

1 P−1
1 R1�

−1

−�Q1 −RT
1 P−1

1 R1�
−1RT

1 P−1
1 �Q1 −RT

1 P−1
1 R1�

−1

)

Implementing a Kriging Prediction

With the model parameters estimated, the process of making a prediction at a new point is
relatively straightforward.

The Kriging prediction is based on a large quantity of data and, rather than passing these
explicitly to the prediction code or recalculating, it is easiest to bundle these up in a data
structure and, as already mentioned, make this a global variable. This structure can now be
accessed by the following function, which will return a prediction at a new point.

function f= pred�x�
% Calculates a Kriging prediction at x
%
% Inputs:
% x – 1 x k vetor of design variables
%
% Global variables used:
% ModelInfo.X – n x k matrix of sample locations
% ModelInfo.y – n x 1 vector of observed data
% ModelInfo.Theta – 1 x k vector of log(theta)
% ModelInfo.U – n x n Cholesky factorization of Psi
%
% Outputs:
% f – scalar Kriging prediction

(continued)

62 Engineering Design via Surrogate Modelling

global ModelInfo
% Extract variables from data structure
% slower, but makes code easier to follow
X=ModelInfo.X;
y=ModelInfo.y;
theta=10.∧ModelInfo.Theta;
U=ModelInfo.U;

% Calculate number of sample points
n=size(X,1);

% Vector of ones
one=ones(n,1);

% Calculate mu
mu=(one’∗(U\(U’\y)))/(one’∗(U\(U’\one)));
% Initialize psi to vector of ones
psi=ones(n,1);

% Fill psi vector
for i=1:n
psi(i)=exp(−sum(theta.∗abs(X(i,:)−x).∧2));

end

% Calculate prediction
f=mu+psi’∗(U\(U’\(y-one∗mu)));

Example: Making Predictions of the Branin Function with the Kriging Model

We will now predict the shape of the Branin function using the observed data and parameters
from the previous example. Following the MATLAB code below, the process is quite simple.
We make predictions using the pred.m function. Here we are going to plot out our function
over a 21×21 grid, so we start by making a vector of 21 points between 0 and 1. We then
need two for loops, one nested inside the other to allow us to create a 21 × 21 matrix of
predictions. Because the Branin function is very quick to evaluate, here we can also create
a matrix of true function values to compare with our predictions.

Xplot=0:1/20:1;
for i=1:21

for j=1:21
BraninPred(j,i)=pred([Xplot(i) Xplot(j)]);
BraninTrue(j,i)=branin([Xplot(i) Xplot(j)]);

end
end

Constructing a Surrogate 63

x1

x 2 x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

x1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

Figure 2.9. The Kriging prediction of the Branin function based on 20 sample points (left) compared
with the true Branin function (right).

With the predictions and true values calculated, we can now plot the results to see the
form of the function and how close the prediction is to the true Branin function. Figure 2.9
shows that the Kriging prediction is, in fact, a very close representation of the true Branin
function.

Although Kriging is rather more complicated than other radial basis function methods,
and so given its own section, it is, nevertheless, simply a sum of weighted basis functions.
The 20 basis functions (with Gaussian form) used to construct the prediction of the Branin
function are shown in Figure 2.10 and, after multiplication by their respective weightings,
Figure 2.11. These weighted bases are summed and added to the MLE of the mean, �, to
produce the prediction in Figure 2.9.

2.5 Support Vector Regression

Support vector regression (SVR) allows us to specify or calculate a margin � within which we
are willing to accept errors in the sample data without them affecting the SVR prediction �̂f �.
This may be useful if our sample data has an element of random error due to, for example,
finite mesh size, since through a mesh sensitivity study we could calculate a suitable value
for �. If the data is derived from a physical experiment, the accuracy of the measurements
taken could be used to specify �, e.g. if measurements are taken using a ruler � might be
set at ±0
5 mm and the SVR would only consider deviations greater than this when fitting
a prediction. To demonstrate this, we have sampled our one-dimensional test function (see
the Appendix, Section A.1) at 21 evenly spaced points, but included a random error, with a
mean of zero and a variance and standard deviation of one, to simulate physical or computer
experiment error. With this known standard deviation, we have chosen � = 1. The resulting
SVR prediction �̂f � is shown in Figure 2.12. The sample points which lie within the ±�
band (known as the �-tube) are ignored, with the predictor being defined entirely by those
that lie on or outside this region: the support vectors.

SVR is usually considered as a special case of support vector machines (SVMs), with the
majority of the literature concentrating on the use of SVMs for classification rather than SVR

64 Engineering Design via Surrogate Modelling

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Figure 2.10. The 20 basis functions, with each plot showing the value of ��i� within the bounds of
the design space D. At the the centre of the basis function �x�i�� ��i� = 1 and as
x�i� − x
 gets larger
the correlation reduces and ��i� → 0.

for function prediction. In engineering design there is usually more interest in predicting the
actual value of an output rather than classifying sets of data. As such, we will consider SVR
as an extension to radial basis function methods rather than SVMs. In fact, as will be seen
later in this section, the interpolating radial basis function (RBF) models of Sections 2.3
and 2.4 occur as a special case of SVR.

The basic form of the SVR prediction is the familiar sum of basis functions ��i�, with
weightings w�i�, added to a base term �. All are calculated in different ways to their
counterparts in Sections 2.3 and 2.4, yet contribute to the prediction in the same way:

f̂ �x� = �+
n∑

i=1

w�i���x� x�i��
 (2.49)

2.5.1 The Support Vector Predictor

To simplify matters, we will begin by considering linear regression, i.e. ��
� = x:

f̂ �x� = �+wTx
 (2.50)

Constructing a Surrogate 65

0

10
20

−2000

−1000
0

0
1000
2000

0

100
200

−1000
−500

0

−2
−1

0

−1000
−500

0

0
200
400

0

1000
2000

−400
−200

0

0
500

1000

−200

−100
0

0
500

1000

−1000
−500

0

−10
−5

0

0
1000
2000

0

5

−1000

−500
0

−4000

−2000
0

−200
−100

0

Figure 2.11. The 20 basis functions after multiplication by the weightings w = � �y − 1��. These
weighted functions are added to �̂ to give the prediction in Figure 2.9.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

x

f(
x)

prediction
+ε
−ε
sample data
support vectors

Figure 2.12. A SVR prediction using a Gaussian kernel through the one-dimensional test function
with added noise. The area between the dashed lines is known as the �-tube.

66 Engineering Design via Surrogate Modelling

To produce a prediction which generalizes well, we wish to find the function with, at most, �
deviations from y and, at the same time, minimum complexity.5 We can minimize the model
complexity by minimizing the vector norm
w
2, that is, the flatter the function the simpler
it is and the more likely it is to generalize well. Cast as a constrained convex quadratic
optimization problem, we wish to

minimize
1
2

w
2

subject to

{
y�i� −w ·x�i� −� ≤ �

w ·x�i� +�−y�i� ≤ �

(2.51)

Note that the constraints on this optimization problem assume that a function f̂ �x� exists
that approximates all y�i� with precision �. Such a solution may not actually exist and it is
also likely that better predictions will be obtained if we allow for the possibility of outliers.
This is achieved by introducing slack variables, �+ for f̂ �x�i�� − y�x�i�� > � and �− for
y�x�i��− f̂ �x�i�� > �. We now

minimize
1
2

w
2 +C

1
n

∑n

i=1
��+�i� +�−�i��

subject to

⎧⎪⎨⎪⎩
y�i� −w ·x�i� −� ≤ �+�+�i�

w ·x�i� +�−y�i� ≤ �+�−�i�

�+�i�� �−�i� ≥ 0

(2.52)

From Equation (2.52) we see that the minimization is a trade-off between model complexity
and the degree to which errors larger than � are tolerated. This trade-off is governed by
the user defined constant C ≥ 0 (C = 0 would correspond to a flat function through �).
This method of tolerating errors is known as the �-insensitive loss function and is shown in
Figure 2.13. Points that lie inside the �-tube (the �-tube is shown in Figure 2.12) will have
no loss associated with them, while points outside have a loss which increases linearly away
from the prediction with the rate determined by C.

The constrained optimization problem of Equation (2.52) is solved by introducing
Lagrange multipliers, �+�i�� �−�i�� �+�i� and �−�i�, to give the Lagrangian

L = 1
2

w
2 +C

1
n

n∑
i=1

��+�i� +�−�i��−
n∑

i=1

��+�i��+�i� +�−�i��−�i��

−
n∑

i=1

�+�i�
(
�+�+�i� −y�i� +w ·x�i� +�

)
−

n∑
i=1

�−�i�
(
�+�−�i� +y�i� −w ·x�i� −�

)

 (2.53)

5 The requirement of minimizing model complexity to improve generalization derives from Occam’s Razor (also
Occam’s Razor): non sunt entia multiplicanda praeter necessitatem, which translates to ‘entities should not be
multiplied beyond necessity’ or, in lay terms, ‘all things being equal, the simplest solution tends to be the best one’.
This principle is attributed to William of Ockham, a 14th century English Franciscan Philosopher.

Constructing a Surrogate 67

f (x(i)) − y (x(i))+ε−ε

loss

ˆ

Figure 2.13. The �-insensitive loss function.

which must be minimized with respect to w, � and �± (the primal variables) and maximized
with respect to �±�i� and �±�i� (the dual variables), where �±�i�� �±�i� ≥ 0 (± refers to both
+ and − variables). For active constraints, the corresponding ��−�i� + �+�i�� will become
the support vectors (the circled points in Figure 2.12), whereas for inactive constraints
��−�i� +�+�i�� = 0 and the corresponding y�i� will be excluded from the prediction.

The minimization of L with respect to the primal variables and maximization with respect
to the dual variables means we are looking for a saddle point, at which the derivatives with
respect to the primal variables must vanish:

�L

�w
= w −

n∑
i=1

��+�i� −�−�i��x�i� = 0� (2.54)

�L

��
=

n∑
i=1

��+�i� −�−�i�� = 0� (2.55)

�L

��+ = C

n
−�+�i� −�−�i� = 0� (2.56)

�L

��− = C

n
−�−�i� −�−�i� = 0
 (2.57)

From Equation (2.54) we obtain

w =
n∑

i=1

��+�i� −�−�i��x�i� (2.58)

and, by substituting into Equation (2.50), the SVR prediction is found to be

f̂ �x� = �+
n∑

i=1

(
�+�i� −�−�i�

) (
x�i� ·x

)

 (2.59)

2.5.2 The Kernel Trick

Until now we have always considered our data X to exist in real coordinate space, which
we will denote as � ∈ Rk. We wish to extend equation (2.59) beyond linear regression to
basis functions (known in the SV literature as kernels), which can capture more complicated

68 Engineering Design via Surrogate Modelling

landscapes. To do this we say that x in Equation (2.59) is in feature space, denoted as
� , which may not coincide with Rk. We can define a mapping between these two spaces,
� � � �→ � . We are only dealing with the inner product (also known as the dot product or
scalar product) x · x and, conveniently, x · x = � ·�. We can actually choose the mapping
� and can use our basis functions from Sections 2.3 and 2.4 by using � = � ·�:

f̂ �x� = �+
n∑

i=1

(
�+�i� −�−�i�

)
��i�
 (2.60)

The maths so far will still hold true, so long as certain conditions are satisfied:

1. � is continuous,
2. � is symmetric, i.e. ��x� x�i�� = ��x�i�� x�, and
3. � is positive definite, which means the correlation matrix � = � T and has nonnegative

eigenvalues.

Basis functions satisfying these conditions are known as Mercer kernels. Popular choices
for � are:

��x�i�� x�j�� = �x�i� ·x�j��� (linear)

��x�i�� x�j�� = �x�i� ·x�j��d� �d degree homogeneous polynomial)

��x�i�� x�j�� = (x�i� ·x�j� + c
)d

� �d degree inhomogeneous polynomial)

��x�i�� x�j�� = exp
(−
x�i� −x�j�
2

�2

)
� and (Gaussian)

��x�i�� x�j�� = exp
(

− k∑
l=1

�l
x�i�
l −x�j�

l
pl

)

 (Kriging)

(2.61)

Whichever form of � is chosen, the method of finding the support vectors remains
unchanged and, after this brief aside, we now attend to that task.

2.5.3 Finding the Support Vectors

With the kernel substitution made, the support vectors are found by substituting
Equations (2.54), (2.55), (2.56) and (2.57) into Equation (2.53) to eliminate �−�i� and �+�i�,
and finally to obtain the dual variable optimization problem:

maximize

{
1
2

∑n
i�j=1��

+�i� −�−�i����+�j� −�−�j��� �x�i�� x�j��

−� 1
2

∑n
i=1��

+�i� +�−�i��+∑n
i=1 y�i���+�i� −�−�i��

(2.62)

subject to

{∑n
i=1��

+�i� −�−�i�� = 0

�±�i� ∈ �0�C/n	

The formulation of quadratic programming algorithms used to solve problems such as
(2.62) is outside of the scope of this book. However, the following code shows how to
find support vectors by solving (2.62) using MATLAB’s quadprog. We will use the SVR
prediction of our one-variable test function in Figure 2.12 as an example. The data was
found using the following code:

Constructing a Surrogate 69

% Calculate vector of test data from 1D test
% function with normally distributed errors
X=(0:0.05:1)’;
n=length(X);
y=(6.∗X-2).∧2.∗sin(12.∗X-4)+randn(n,1);

A Gaussian basis function is used and we first build a matrix of correlations between the
21 sample points (see Section 2.4 for more details on correlation matrices):

% Build correlation matrix (arbitrarily
% set sigma=0.2 without tuning)
sigma=0.2;
Psi=zeros(n,n);
for i=1:n

for j=1:n
Psi(i,j)=exp(-(1/sigma∧2)∗(X(i)-X(j))∧2);

end
end

In order to find �+ and �−, rather than a combined ��+ − �−�, we must rewrite
problem (2.62) as

minimize

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2

(
�+

−�−

)T(
� −�

−� �

)(
�+

−�−

)

+
(

1T�−y
1T�+y

)T(
�+

−�−

)

subject to

⎧⎪⎨⎪⎩1T

(
�+

−�−

)
= 0

�+��− ∈ �0� C/n	

(2.63)

Note that we have also transformed the maximization problem into a minimization, which
is solved in MATLAB as follows:

% User defined constants
e=1; C=1e3; xi=1 e-6;

% Matrix of correlations
Psi=[Psi -Psi;-Psi Psi];

% Constraint terms
c=[(e∗ones(n,1)-y); (e∗ones(n,1)+y)];
% Lower bound |alpha|>=0
lb=zeros(2∗n,1);

(continued)

70 Engineering Design via Surrogate Modelling

% Upper bound |alpha|<=0
ub=C/n∗ones(2∗n,1);
% Start at alpha=[0;0; � � � ;0]
x0=zeros(2∗n,1);
% Set sum(alpha ∧+- alpha ∧-)=0
Aeq=[-ones(1,n) ones(1,n)]; beq=0;

% Run quadprog
alpha=quadprog(Psi,c,[],[],Aeq,beq,lb,ub,x0);

% Combine alphas into nx1 vector of SVs
alpha_pm=alpha(1:n)-alpha(n+1:2∗n);

2.5.4 Finding �

In order to find the constant term �, known as the bias, we exploit the fact that at the point
of the solution of the optimization problem (2.62) the product between the dual variables
and the constraints vanishes6 and see that

�+�i�
(
�+�+�i� −y�i� +w��x�i��+�

)= 0� (2.64)

�−�i�
(
�+�−�i� +y�i� −w��x�i��−�

)= 0 (2.65)

and

�+�i�

(
C

n
−�+�i�

)
= 0� (2.66)

�−�i�

(
C

n
−�−�i�

)
= 0
 (2.67)

From Equations (2.66) and (2.67) we see that either �C/n−�±�i�� = 0 or �±�i� = 0 and so
all points outside the �-tube (where the slack variable �±�i� > 0) must have a corresponding
�±�i� = C/n. Along with Equations (2.64) and (2.65), and noting that w��x�i�� =∑n

j=1��
+�j� −

�−�j����x�i��� �x�j��, this tells us that either

�+�i� = 0

and

� = y�i� −
n∑

j=1

��+�j� −�−�j����x�i�� x�j��+� if 0 < �−�i� <
C

n
� (2.68)

6 This is one of the Karush–Kuhn–Tucker conditions (see, for example, Schölkopf and Smola, (2002)).

Constructing a Surrogate 71

or

�−�i� = 0

and

� = y�i� −
n∑

j=1

��+�j� −�−�j����x�i�� x�j��−� if 0 < �+�i� <
C

n

 (2.69)

Using Equations (2.68) and (2.69), we can compute � from one or more �±�i�’s which are
greater than zero and less than C/n. More accurate results will be obtained if an �±�i� not
too close to these bounds is used. The following code calculates � from the support vector
closest to C/2n.

% Find indices of SVs
sv_i=find(abs(alpha_pm)>xi);

% Find SV mid way between 0 and C for mu calculation
[sv_mid,sv_mid_i]=min(abs(abs(alpha_pm)-(C/(2∗n))))
% Calculate mu
mu=y(sv_mid_i)-e∗sign(alpha_pm(sv_mid_i)) � � �
-alpha_pm(sv_i)’∗Psi(sv_i,sv_mid_i)

With the support vectors and � found, we can now use the MATLAB code below to
calculate the SVR prediction at 101 points to produce the plot in Figure 2.12.

% Points at which to plot prediction
x=[0:0.01:1];

for i=1:101
% Basis function values at point to be predicted
for j=1:n

psi(j,1)=exp(-(1/sigma∧2)∗(x(i)-X(j))∧2);
end

% SVR prediction
pred(i)=mu+alpha_pm’∗psi;

end

2.5.5 Choosing C and �

Our initial slack variable formulation (2.52) was a trade-off between model complexity and
the degree to which errors larger than � are tolerated and is governed by the constant C.

72 Engineering Design via Surrogate Modelling

0 0.5 1
0

0.5

1

x

f(
x)

C = 0 RMSE = 0.21 σ = 1

0 0.5 1
0

0.5

1

x

f(
x)

C = 0.01 RMSE = 0.22 σ = 0.62

0 0.5 1
0

0.5

1

x

f(
x)

C = 0.1 RMSE = 0.21 σ = 0.28

0 0.5 1
0

0.5

1

x
f(

x)

C = 1 RMSE = 0.18 σ = 0.34

0 0.5 1
0

0.5

1

x

f(
x)

C = 10 RMSE = 0.19 σ = 0.13

0 0.5 1
0

0.5

1

x

f(
x)

C = 100 RMSE = 0.19 σ = 0.16

Figure 2.14. SVR predictions and corresponding RMSEs for varying C �� = 4/range = 0
18�y��.

A small constant will lead to a flatter prediction (more emphasis on minimizing 1
2
w
2),

usually with fewer SVs, while a larger constant will lead to a closer fitting of the data
(more emphasis on minimizing

∑n
i=1��

+�i� +�−�i��), usually with a greater number of SVs.
We wish to choose C which produces the model with the best generalization. The scaling
of y will have an effect on the optimal value of C, so it is good practice to start by
normalizing y to have elements between zero and one. Figure 2.14 shows SVRs of the
noisy one-dimensional function (this time with noise of standard deviation four), normalized
between zero and one, for varying C. The Gaussian kernel variance, �2, has been tuned
to minimize the RMSE of each prediction using 101 test points. This RMSE is displayed
above each plot. It is clear that, although there is an optimum choice for C, this exact
choice is not overly critical. It is sufficient to try a few C’s of varying orders of magnitude
and choose that which gives the lowest RMSE for a test data set. For small problems it is
possible to obtain a more accurate C by using a simple bounded search such as MATLAB’s
fminbnd.

Here we have prior knowledge of the amount of ‘noise’ in the data and so have been able
to choose � as the standard deviation of this ‘noise’. There are many situations where we
may be able to estimate the degree of ‘noise’, e.g. from a mesh dependency and solution
convergence study. Situations, however, arise where the noise is an unknown quantity, e.g. a
large amount of experimental data with measurements obtained by different researchers. In
these situations we can calculate a value of � which will give the most accurate prediction
by using �-SVR.

Constructing a Surrogate 73

2.5.6 Computing �: �-SVR

In �-SVR the parameter � is traded off against the model complexity and slack variables
using the constant � ∈ �0� 1	. The corresponding constrained convex quadratic optimization
problem is to

minimize
1
2

w
2 +C

(
��+ 1

n

∑n

i=1
��+�i� +�−�i��

)

subject to

⎧⎪⎨⎪⎩
y�i� −w��x�i��−� ≤ �+�+�i�

w��x�i��+�−y�i� ≤ �+�−�i�

�±�i�� � ≥ 0

(2.70)

In the same way as standard SVR, we introduce Lagrange multipliers to obtain the
Lagrangian:

L = 1
2

w
2 +C��+C

1
n

n∑
i=1

��+�i� +�−�i��−��−
n∑

i=1

��+�i��+�i� +�−�i��−�i��

−
n∑

i=1

�+�i�
(
�+�+�i� −y�i� +w��x�i��+�

)
−

n∑
i=1

�−�i�
(
�+�−�i� +y�i� −w��x�i��−�

)

 (2.71)

Taking derivatives with respect to w and substituting into Equation (2.50) yields the �-SVR
prediction, which is the same as Equation (2.60). With the additional primal variable, �,
there is an additional derivative that vanishes at the saddle point:

�L

��
= C� −

n∑
i=1

��+�i� +�−�i��−� = 0
 (2.72)

When substituted, along with Equations (2.54), (2.55), (2.56) and (2.57), into Equation (2.71)
this allows us to eliminate � from the dual optimization problem, which is now to

maximize

{
− 1

2

∑n
i�j=1��

+�i� −�−�i����+�i� −�−�i��� �x�i�� x�j��

+∑n
i=1 y�i���+�i� −�−�i��

subject to

⎧⎪⎨⎪⎩
∑n

i=1��
+�i� −�−�i�� = 0

�±�i� ∈ �0�C/n	∑n
i=1��

+�i� +�−�i�� ≤ C�

(2.73)

It is possible to extract the value of � by equating Equations (2.68) and (2.69) to give

� = 1
2

[
y�j� −y�l� −

n∑
i=1

��+�i� −�−�i����x�i�� x�j��+
n∑

i=1

��+�i� −�−�i����x�i�� x�l��

]
if 0 < �+�j� < C/n� 0 < �−�l� < C/n (2.74)

74 Engineering Design via Surrogate Modelling

Thus to find � we need to find two support vectors with �+ ≈ C/2n and �− ≈ C/2n. This
is achieved via the following MATLAB code:

% Find SVs mid way between 0 and C/n for e and mu calculation
[sv_mid_p,sv_mid_p_i]=min(abs(abs(alpha(1:n))-(C/(2∗n))));
[sv_mid_m,sv_mid_m_i]=min(abs(abs(alpha(n+1:2∗n))-(C/(2∗n))));
% Calculate e
e=0.5∗(y(sv_mid_p_i)-y(sv_mid_m_i)-alpha_pm(sv_i)’∗ � � �
Psi(sv_i,sv_mid_p_i)+alpha_pm(sv_i)’∗ Psi(sv_i,sv_mid_m_i))
% Calculate mu
mu=y(sv_mid_p_i)-e∗sign(alpha_pm(sv_mid_p_i))� � �
-alpha_pm(sv_i)’∗ Psi(sv_i,sv_mid_p_i)

Using this method the value of � is determined by the parameter �. It can be shown that
� ∈ �0� 1	 is an upper bound on the fraction of training points which lie outside of the �-tube
and a lower bound on the fraction of training points which are support vectors. Figure 2.15
shows the effect of varying � throughout its range for a fixed C and with � tuned for
minimum RMSE. As � → 0, the prediction becomes a flat line with a very wide �-tube and
few SVs, while for � = 1� � = 0 and all points become SVs. The optimum choice for � puts
a lower bound of 20 % on the number of SVs and yields � ≈ std�y� (remember that the data

0 0.5 1
0

0.5

1

f(
x)

ν = 0.001,ε = 0.49,RMSE = 0.19,σ = 0.13

0 0.5 1
0

0.5

1

x

f(
x)

ν = 0.2,ε = 0.19,RMSE = 0.17,σ = 0.19

0 0.5 1
0

0.5

1

x

x

f(
x)

ν = 0.4,ε = 0.1,RMSE = 0.18,σ = 0.11

0 0.5 1
0

0.5

1

x

f(
x)

ν = 0.6,ε = 0.09,RMSE = 0.18,σ = 0.3

0 0.5 1
0

0.5

1

x

f(
x)

ν = 0.8,ε = 0.02,RMSE = 0.19,σ = 0.38

0 0.5 1
0

0.5

1

x

f(
x)

ν = 1,ε = 0,RMSE = 0.19,σ = 0.39

Figure 2.15. SVRs and RMSE for varying � �C = 10�.

Constructing a Surrogate 75

has been normalized and std�y� = 0
18). As with the choice of C, one can try a few �’s and
pick the best, or use a formal search routine.

2.6 The Big(ger) Picture

The purpose of this chapter was to take the reader on a tour of what these authors view as
the most important surrogate modelling approaches in current use today. The itinerary can
be argued to have been somewhat subjective; the same is true of the time we have spent
on each formulation. Should the reader wish to re-visit some of the ‘attractions’ for more
in-depth study, here are a few pointers.

Firstly, we took a general look at surrogate model building and the basics of parameter
estimation. We limited this discussion to what is necessary for an informed application of
the model building methods discussed in this book. However, these are topics that, given
sufficient time to delve into them, deserve entire books by themselves. Indeed, such books
have been written, for example that by MacKay (2003).

Polynomials were our next stop. We only touched on them relatively briefly and limited the
discussion to the one-variable case. The first reason is that polynomial models (or response
surface models, as, for historical reasons, much of the literature refers to them) are unsuitable
for the highly nonlinear, multimodal, multidimensional landscapes that the majority of
engineering design problems may throw at the engineer. Secondly, once constructed, they
offer relatively little indication as to where we should continue sampling the design space,
should we wish to optimize f . By comparison, Kriging models, for instance, come equipped
with a range of optimization handholds, as we shall see in the next chapter.

Nonetheless, polynomial models do have their uses and their advantages; for example they
can be ideal for uncertainty analysis, where the analytical modelling of the propagation of
probability distributions is often intractable when a complex model is fitted to the data. They
have many other uses too and, consequently, a whole branch of statistical science behind
them. The relevant literature deals with specific sampling planning and variable screening
techniques, the challenge of elucidating landscape ridge systems, etc. There are a number
of fine texts out there – the thorough treatise by Box and Draper (1987) is one of the most
popular and deservedly so.

We then introduced radial basis functions. Under certain assumptions they can be shown
to be universal approximators, their flexibility is easy to control (that is, we can decide on
how many parameters the model will have), they lie at the foundations of other methods
(e.g. Kriging) and they are easy to implement – just some of the reasons why they deserve
a place in any discussion of surrogate modelling. The reader seeking more detail than can
be found here may wish to consult some more general books, such as the statistical learning
text of Hastie et al. (2001). On a more specific note, more details on radial basis function
centre recruitment (noisy responses) can be found, for example, in Orr (1995).

We continued our coverage of radial basis functions with the particular case of Kriging,
which we studied in some depth. Kriging has its origins in geostatistics and, although
rather abstracted from our engineering concerns, Cressie (1993) contains a huge amount
of material for the interested reader wishing to know more. Not as practically oriented as
our discussion and directed more at statisticians, Santner et al. (2003) contains some more
advanced concepts. A modified form of Kriging, which the reader may be interested in, is

76 Engineering Design via Surrogate Modelling

one where the constant mean term � is replaced with an unknown mean that best suits the
data. This method is being developed by Joseph et al. (2008).

The final surrogate modelling approach was that of support vector regression. While our
treatise on this method may seem quite in depth, it merely scratches the surface of the field
of support vectors. The reader wishing to delve further into this area is unlikely to find a
better initial text than that of Schölkopf and Smola (2002), which appears, watered down, in
the paper by Smola and Schölkopf (2004). Indeed, our section on SVR is inspired by this
paper.

References
Box, E. P. and Draper, N. R. (1987) Empirical Model Building and Response Surfaces, John Wiley & Sons, Ltd,

Chichester.
Cherkassky, V. and Mulier, F. (1998) Learning from Data – Concepts, Theory, and Methods, John Wiley & Sons,

Ltd, Chichester.
Cressie, N. A. C. (1993) Statistics for Spatial Data. Probability and Mathematical Statistics, revised edition, John

Wiley & Sons, Ltd, Chichester.
Hastie, T., Tibshirani, R. and Friedman, J. (2001) The Elements of Statistical Learning, Springer-Verlag, New York.
Jones, D. R. (2001) A taxonomy of global optimization methods based on response surfaces. Journal of Global

Optimisation, 21, 345–383.
Joseph, V. R., Hung, Y. and Sudjianto, A. (2008) Blind Kriging: a new method for developing metamodels. Trans.

ASME, Journal of Mechanical Design 130(3), 31–102.
Keane, A. J. and Nair, P. B. (2005) Computational Approaches to Aerospace Design: the Pursuit of Excellence,

John Wiley & Sons, Chichester.
Krige, D. G. (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal

of the Chemical, Metallurgical and Mining Engineering Society of South Africa, 52(6), 119–139, December.
MacKay, D. J. C. (2003) Information Theory, Inference and Learning Algorithms, Cambridge University Press.
Matheron, G. (1963) Principles of geostatistics. Economic Geology, 58, 1246–1266.
Michelli, A. (1986) Interpolation of scattered data: distance matrices and conditionally positive definite functions.

Constructive Approximation, 2, 11–22.
Orr, M. (1995) Regularisation in the selection of RBF centres. Neural Computation, 7(3), 606–623.
Poggio, T. and Girosi, F. (1990) Regularization algorithms for learning that are equivalent to multilayer networks.

Science, 247, 978–982.
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1986) Numerical Recipes – The Art of

Scientific Computing, Cambridge University Press.
Ralston Anthony(1965) A first course in numerical analysis, McGraw-Hill, New York, 578.
Rasmussen, C. E. and Williams, C. K. I. (2006) Gaussian Processes for Machine Learning, The MIT Press,

Cambridge, Massachusetts.
Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. (1989) Design and analysis of computer experiments.

Statistical Science, 4(4), 409–423.
Santner, T. J., Williams, B. J. and Notz, W. I. (2003) Design and Analysis of Computer Experiments, Springer

Series in Statistics. Springer, Berlin.
Schölkopf, B. and Smola, A. J. (2002) Learning with Kernals. MIT Press, Cambridge, Massachusetts.
Smola, A. J. and Schölkopf, B. (2004) A tutorial on support vector regression. Statistics and Computing, 14,

199–222.
Theil, H. (1971) Principles of Econometrics, John Wiley & Sons, Inc., New York.
Vapnik, V. (1998) Statistical Learning Theory, John Wiley & Sons, Inc., New York.

3
Exploring and Exploiting
a Surrogate

Most of this chapter is about optimizing an expensive function f ; that is, considering a
continuous, smooth and well-posed mapping f � x ∈ Dk → y ∈ R, and, without loss of
generality, considering the case of minimization, we seek the value of x† ∈ Dk for which
f�x†� < f�x� for any x ∈ Dk �= x†.

Of course, more realistically, what we can usually do in practice is to find x†† such that
�f�x††�− f�x†�� is as small as possible, within a budget of a certain number of evaluations
of f , but, for simplicity, we shall refer to our best guess at the optimum simply as x†.
As this is a book about surrogate modelling, we shall discuss doing this with the aid of a
cheap surrogate of f , denoted f̂ .

The simplest surrogate based optimization recipe goes like this. If we can afford n

evaluations of f , we build a sampling plan X = {
x�1�� x�2�� � � � x�n−1�

}T
. We then calculate

the responses y = {
y�1�� y�2�� � � � � y�n−1�

}T
at these points and fit a surrogate model f̂ to this

data. If we now assume that, for all intents and purposes, f̂ stands in for f , we can locate
the x† that is as close to the true minimum of the function as we can make it. This should
be a cheap operation and we can do it fairly thoroughly, because f̂ is cheap to evaluate –
that is why we have built it in the first place. We now know the x† that minimizes f̂ and,
of course, we know the cheaply computable estimated function value there as well: f̂ �x†�.
However, the optimization task is not complete until we validate this function value against
the true, expensive function f . This is what we have saved the nth evaluation of our budget
for: the computation of f�x†�.

Now, for this technique to work well, f̂ has to emulate f fairly precisely, at least in terms
of the locations of its optima. We shall discuss a number of alternative methods applicable
when we have less faith in f̂ , but before that we take a little detour for discussing the process
of finding the global optimum x† of the cheap surrogate f̂ .

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

78 Engineering Design via Surrogate Modelling

3.1 Searching the Surrogate

Although the computational cost of evaluating f̂ �x� for a given x is usually minimal,
the problem of finding the global optimum of f̂ is not always trivial. The chief ogre is
multimodality, especially when the multiple local optima (troughs or valleys in the landscape)
are of similar depth and can therefore be quite deceptive from an optimization perspective.

While a precise taxonomy of optimization methods is outside the scope of this book, it
is worth noting that they broadly fall into two categories: local optimizers (also known as
hill-climbers) and global searches.

Local optimizers (exploiters), while very efficient on many smooth, unimodal objective
function landscapes, often provide less than satisfactory results when f̂ exhibits long valleys
and/or multiple local optima. Once trapped in a valley or at a local optimum the search
needs to be re-launched from a new (commonly random) starting point. This operation
usually involves wasteful, lengthy exploration of unpromising regions of the search space,
such as those with very poor objective values or virtually flat regions (visited before the
neighbourhood of a local optimum is reached), and one can only hope that the new starting
point is in the basin of attraction of a thus far unexploited local (or perhaps the global)
optimum.

There is another two-way split within this class of search algorithms. Firstly, there are
gradient based optimizers, which use landscape slope information explicitly in order to
compute the best path towards the (local) optimum. These include the Newton method (with
line-search or trust-region-type implementations), quasi-Newton methods (BFGS, DFP) and
conjugate gradient optimizers (Fletcher–Reeves, Polak–Ribière).1 Morè and Wright (1993)
offer a good survey of these algorithms and their implementations and Keane and Nair
(2005) also cover them in some detail.

Local optimizers that do not make explicit use of slope information, sometimes known as
direct search methods, include the Simplex method (Nelder and Mead, 1965) (implemented
in MATLAB’s fminsearch.m), the complex method of Box (1965) and the pattern search
of Hooke and Jeeves (1961). In some sense Box’s evolutionary operation method (Box,
1957), discussed in Chapter 1, also belongs here, though with increased step sizes this can
be transformed into a global explorer.

Returning to the top level of our mini-taxonomy, the second major group of search
methods, global explorers, such as genetic algorithms (see Goldberg, 1989, the classic
introductory text) or simulated annealing (Kirkpatrick et al., 1983), are good at leaving
poor objective value regions behind quickly, while simultaneously exploring several basins
of attraction. The exploration ability of population based global searches can be enhanced
by using a space-filling sampling plan, such as those described in Chapter 1, as the initial
population. MATLAB provides a genetic algorithm toolbox which we use for the examples
presented in this book. We have included our own ga.m on the book website.

In comparison with local search engines, what these explorers sometimes lack is a high
convergence speed (though this is less of a problem in terms of searching a surrogate, as
we can usually afford a large number of evaluations) and precision in the exploitation of
individual local optima.

1 Some of these methods can estimate the landscape gradients themselves, say, by finite differencing, but they are,
of course, more efficient if �f̂/�x1� �f̂ /�x2, etc., are available analytically.

Exploring and Exploiting a Surrogate 79

As the reader can see from this very cursory discussion, the science of optimization
does not provide ‘silver bullet’ solutions – there are advantages and disadvantages to every
method. In the present text, wherever an optimization process is needed we do not advocate
any method over another – we merely use one that, in our experience, appears to work
effectively.

3.2 Infill Criteria

Because our surrogate model, f̂ , is only an approximation of the true function f we wish
to optimize, it is prudent to enhance the accuracy of the model using further function calls
(infill or update points), in addition to the initial sampling plan. We may wish to improve the
accuracy solely in the region of the optimum predicted by the surrogate to obtain an accurate
optimal value quickly: local exploitation. We may, however, be unsure of the global accuracy
of the surrogate and employ an infill strategy which enhances the general accuracy of the
model: global exploration. We will consider each of these avenues in turn, before looking
at methods which combine both schools of thought. The following sections are inspired
by the excellent Taxonomy of global optimization methods based on response surfaces by
Jones (2001).

3.2.1 Prediction Based Exploitation

Applying infill points at the optimum predicted by the surrogate allows us to quickly converge
upon an optimum value. However, this may not be the global optimum. Imagine we are
searching a function with the form f�x� = �6x − 2�2 sin�12x − 4� in the range x ∈ �0� 0	5

using an interpolating model. The ‘true’ function, f , and a Gaussian RBF approximation,
f̂ , through three sample points are shown in Figure 3.1. Based on such a small sample the
surrogate is not particulary accurate.

If we minimize the RBF model and add a function evaluation at this location, upon refitting
the RBF, the approximation in Figure 3.2 is obtained. The model is now more accurate in
the region of the previous optimum. Repeating the process of adding infill points at the
minimum of the approximation results in the optimization converging on the optimum, as
shown in Figure 3.3.

We now optimize the same function again, but this time using a second-order polynomial
regression. The initial approximation is shown in Figure 3.4 and the situation after the
addition of two infill points is shown in Figure 3.5. Note how the addition of new data does
not necessarily improve the predictive capability of the surrogate and we may in fact never
find the minimum of the function. Adding further updates to the two shown in Figure 3.5
will not change the polynomial sufficiently to divert the search away from the flat spot on the
function – the optimization has stalled. This example highlights a key benefit of interpolating
models: they continually improve with the addition of infill points.2 The situation could be
improved by using a higher order polynomial. A third-order polynomial has been used in
Figure 3.6, and the search is, in fact, slowly converging towards the optimum.

2 This trait can, in some cases where the function is extremely multimodal, be a disadvantage, and regression may
be required. We will look at such a scenario later in Chapter 6.

80 Engineering Design via Surrogate Modelling

0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2

3

4

5

x

f(
x)

true function
RBF prediction
initial sample

Figure 3.1. The function f�x� = �6x− 2�2 sin�12x− 4� with a Gaussian RBF through three sample
points.

0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2

3

4

5

x

f(
x)

1

true function
RBF prediction
initial sample
update

Figure 3.2. The situation after the RBF prediction in Figure 3.1 is enhanced with one update at the
minimum of the prediction.

Exploring and Exploiting a Surrogate 81

0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2

3

4

5

x

f(
x)

12
3

45

true function
RBF prediction
initial sample
updates

Figure 3.3. The infill strategy converges on the optimum after five updates at the minimum of the
prediction.

0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2

3

4

5

x

f(
x)

true function
polynomial prediction
initial sample

Figure 3.4. The function f�x� = �6x−2�2 sin�12x−4� with a second-order polynomial through three
sample points.

82 Engineering Design via Surrogate Modelling

0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2

3

4

5

12

x

f(
x)

true function
polynomial prediction
initial sample
updates

Figure 3.5. The situation after the polynomial prediction in Figure 3.1 is ‘enhanced’ with two updates
at the minimum of the prediction. The infill strategy cannot escape the flat spot of the function.

0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2

3

4

5

1
23456

x

f(
x)

true function
polynomial prediction
initial sample
updates

Figure 3.6. A minimum prediction based infill strategy using a third degree polynomial improves
upon the second-degree polynomial in Figure 3.5, though the convergence towards the optimum is slow.

Exploring and Exploiting a Surrogate 83

Now consider the search of the same function over the range [0,1], which is shown in
Figure 3.7 along with a Gaussian RBF and a polynomial based on three sample points.
Updating the RBF model at its minimum does not lead to the discovery of the optimum of
this deceptive function: the search gets stuck at a local minimum, as shown in Figure 3.8.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f(
x)

true function
RBF prediction
polynomial prediction
initial sample

Figure 3.7. The function f�x� = �6x − 2�2 sin�12x − 4�� x ∈ �0� 1
, with a Gaussian RBF and a
second-order polynomial through three sample points.

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f(
x)

1 245

true function
RBF prediction
initial sample
updates

3

Figure 3.8. A minimum prediction based infill strategy starting from the Gaussian RBF prediction
in Figure 3.7 fails to find the global optimum of the function.

84 Engineering Design via Surrogate Modelling

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

12

x

f(
x)

true function
polynomial prediction
initial sample
updates

Figure 3.9. A minimum prediction based infill strategy starting from the second-order polynomial
prediction in Figure 3.7 fails to find even a local optimum of the function.

Using the polynomial model is even worse. The search does not even find a local minimum,
as shown in Figure 3.9. Clearly, for multimodal functions where the initial model does not
approximate the whole function well, an infill strategy that can search away from the current
minimum and explore other regions is required.

3.2.2 Error Based Exploration

The Gaussian process based models discussed in Chapter 2 permit the calculation of an
estimated error in the model and so it is possible to use this to position infill points where
our uncertainty in the predictions of the model is highest. This represents a key advantage
of Gaussian process based models.

The mean squared error (MSE) in a Gaussian process based prediction is

ŝ 2�x� = �2

[
1−�T�−1� + 1−1T�−1�

1T�−11

]
(3.1)

The derivation of this equation can be found in Sacks et al. (1989). The third term inside
the square parentheses, which is due to uncertainty in the estimate of �, is very small and is
often omitted (it does not appear if the derivation is considered from a Bayesian stance).

Figure 3.10 shows the estimated root mean squared error in the prediction in Figure 3.8,
found using Equation (3.1). Note how ŝ2 reduces to zero at the sample points. This is evident

Exploring and Exploiting a Surrogate 85

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

s(
x)

Figure 3.10. The value of s�x�, found from Equation (3.1), for the prediction in Figure 3.8.

by examining Equation (3.1). If we are calculating ŝ2�x� at a sample point x�i�, x is an
element of X and so � is a column of � . Thus �−1� is the ith unit vector so

�T�−1� = �i� = 1 (3.2)

and

1T�−1� = 1	 (3.3)

Substituting Equations (3.2) and (3.3) into Equation (3.1) yields ŝ2�x�i�� = 0. This follows
our intuition that if we are interpolating a point at which we know the answer, the error in
the prediction must be zero.3

We could choose to use maximizing the predicted error as an infill criterion. It is clear
from the values of ŝ2 in Figure 3.10 that we would escape the local minimum, however, such
an infill strategy is tantamount to just filling in the gaps and could be achieved by simply
using a larger sampling plan. We would also be faced with the question of when should
we stop adding points at maximum error and start exploiting the model? Instead of either
exploiting or exploring the model we can use infill criteria which balance these options.

3.2.3 Balanced Exploitation and Exploration

Using the estimated error of a Gaussian process based prediction found by Equation (3.1)
we can model our uncertainty in the prediction by considering it as the realization of a
normally distributed random variable Y�x� with mean ŷ�x� (the most ‘likely’ prediction

3 This logic does not apply if we are not sure about the observed value y�i� at x�i� and Equation (3.1) must be
modified. We will deal with this scenario in Chapter 6.

86 Engineering Design via Surrogate Modelling

found as an MLE) and variance ŝ 2�x�. By considering the possibility that Y�x� could take
different values, due to the size of ŝ 2�x�, we can construct infill criteria which balance the
values of ŷ�x� and ŝ 2�x�.

Statistical Lower Bound

The simplest way of balancing exploitation of the prediction ŷ�x� and exploration using
ŝ 2�x� is to minimize a statistical lower bound:

LB�x� = ŷ�x�− Âs�x�� (3.4)

where A is a constant that controls the exploitation/exploration balance. As A → 0� LB�x� →
ŷ�x� (pure exploitation) and as A → �, the effect of ŷ�x� becomes negligible and minimizing
LB�x� is equivalent to maximizing ŝ�x� (pure exploration).

With the observed data, model parameters, correlation matrix, its Cholesky factorization
and the constant A stored in a global structure ModelInfo, the following MATLAB function
will calculate the statistical lower bound. Storing the surrogate model information in this
way significantly reduces the computational expense of the large number of calls required to
search lb.m. We will use this method of storing and passing surrogate model information
to infill functions throughout this section:

function LowerBound=lb(x)
% Calculates a Kriging prediction at x minus A
% estimated standard deviations
%
% Inputs:
% x-1 x k vector of design variables
%
% Global variables used:
% ModelInfo.X – n x k matrix of sample locations
% ModelInfo.y – n x 1 vector of observed data
% ModelInfo.Theta – 1 x k vector of log(theta)
% ModelInfo.U – n x n Cholesky factorization of Psi
% ModelInfo.A – scalar weighting parameter
% Outputs:
% LowerBound – scalar lower bound

global ModelInfo
% extract variables from data structure
% slower, but (makes code easier to follow)
X=ModelInfo.X;
y=ModelInfo.y;
theta=10�∧ ModelInfo.Theta;
U=ModelInfo.U;
A=ModelInfo.A;

% Calculate number of sample points
n=size(X,1);

% Vector of ones
one=ones(n,1);

(continued)

Exploring and Exploiting a Surrogate 87

% Calculate mu
mu=(one’∗(U\(U’\y)))/(one’∗(U\(U’\one)));
% Calculate sigma ∧2
SigmaSqr=((y-one∗mu)’∗(U\(U’\(y-one∗mu))))/n;
% Initialize psi to vector of ones
psi=ones(n,1);

% Fill psi vector
for i=1:n

psi(i)=exp(-sum(theta.∗abs(X(i,:)-x).∧2));
end

% Calculate prediction
f=mu+psi’∗(U\(U’\(y-one∗mu)));
% Error
SSqr=SigmaSqr∗(1-psi’∗(U\(U’\psi)));
% Lower bound
LowerBound=f-A∗(sqrt(SSqr));

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

20

x

f(
x)

true function
RBF prediction
RBF−s
RBF−2s
RBF−5s
initial sample
updates

Figure 3.11. The statistical lower bound for the prediction in Figure 3.8 with varying A.

Figure 3.11 shows the lower bound for the prediction in Figure 3.8 for varying A. It
is clear that optimization using this infill criterion could find the global minimum, but it
is unclear how one should choose the user defined parameter A to obtain a good balance
between exploitation and exploration. We now move on to more elegant methods which do
not rely on a user defined parameter.

88 Engineering Design via Surrogate Modelling

Probability of Improvement

When performing a search and infill strategy, we wish to position the next infill point at
the value of x that will lead to an improvement on the best observed value so far, ymin. By
considering ŷ�x� as the realization of a random variable we can calculate the probability of
an improvement I = ymin −Y�x� upon ymin, the probability of improvement:4

P�I�x�
 = 1

ŝ
√

2�

∫ 0

−�
e−�I−̂y�x�
2/�2s2�dI (3.5)

This is calculated using the error function as

P�I�x�
 = 1
2

[
1+ erf

(
ymin − ŷ�x�

ŝ
√

2

)]
(3.6)

The MATLAB code used to calculate P�I�x�
 only differs slightly from lb.m (above). We
no longer require A, and the last line of code is replaced with:

ProbImp=(0.5+0.5∗erf((min(y)-y_hat)/sqrt(SSqr∗2)));

Equation (3.6) is interpreted graphically in Figure 3.12. The figure shows the prediction
in Figure 3.8 along with a vertical Gaussian distribution with variance s2�x� centred around

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f(
x)

true function
RBF prediction
observed data
ymin
distribution of Y(x)
P[I(x)]

Figure 3.12. A graphical interpretation of the probability of improvement.

4 ymin −Y�x� should be replaced by Y�x�−ymax, for a maximization problem, but in practice it is easier to take the
negative of the data so that all problems can be treated as minimization problems.

Exploring and Exploiting a Surrogate 89

ŷ�x�. This Gaussian distribution represents the uncertainty in the prediction ŷ�x� and the
part of the distribution below the dotted line indicates the possibility of improving on the
best observed value (the quantity we are integrating in Equation (3.5)). The probability of
improvement is the area enclosed by the Gaussian distribution below the best observed value
so far (the value of the integral in Equation (3.5)).

Plotting the probability of improvement for the prediction in Figure 3.8 for all values of x
yields the plot in Figure 3.13. The highest probability of improvement is in the local minimum
but there is a probability of improvement in the region of the global optimum and further infill
points would eventually find this region. We know that the global optimum will eventually
be found because P�I�x�
 = 0 when ŝ = 0, so there is no probability of improvement at a point
that has already been sampled and therefore no possibility of re-sampling. This guarantees
global convergence to a global optimum (given certain assumptions which we will consider
later) because the sampling will eventually become dense.

Note that although Figure 3.13 indicates where an improvement might be found it does
not show us how big that improvement could be. We will now turn to an infill criterion
which does just that.

Expected Improvement

Instead of simply finding the probability that there will be some improvement, we can
calculate the amount of improvement we expect, given the mean ŷ�x� and variance ŝ 2�x�.
This expected improvement is given by

E�I�x�
 =

⎧⎪⎨⎪⎩�ymin − ŷ�x���

(
ymin − ŷ�x�

ŝ�x�

)
+ s�

(
ymin − ŷ�x�

ŝ�x�

)
if s > 0

0 if s = 0

(3.7)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

P
[I(

x)
]

Figure 3.13. The probability of improvement in the prediction shown in Figure 3.8.

90 Engineering Design via Surrogate Modelling

where ��	� and ��	� are the cumulative distribution function and probability density function
respectively. This equation can be interpreted graphically from Figure 3.12 as the first
moment of area enclosed by the Gaussian distribution below the best observed value so far.
Note that because, like P�I�x�
� E�I�x�
 = 0 when ŝ = 0, a maximum expected improvement
infill procedure will also eventually find the global optimum.

Equation (3.7) is evaluated using the error function as

E�I�x�
 = �ymin − ŷ�x��

[
1
2

+ 1
2

erf
(

ymin − ŷ�x�

ŝ
√

2

)]
+ ŝ

1√
2�

exp
[−�ymin − ŷ�x��2

2̂s2

]
(3.8)

(see also Mathematical Note on page 148) or in MATLAB as:

function ExpImp=ei(x)

� � �
% Same as lb.m
� � �

% Best point so far
y_min=min(y);
% Expected improvement
if SSqr==0

ExpImp=0;
else

ei_termone=(y_min-y_hat)∗(0.5+0.5∗erf((1/sqrt(2))∗ � � �
((y_min-y_hat)/sqrt(abs(SSqr)))));
ei_termtwo=sqrt(abs(SSqr))∗(1/sqrt(2∗pi))∗exp(-(1/2)∗ � � �
((y_min-y_hat)∧2/SSqr));
ExpImp=ei_termone+ei_termtwo;

end

Plotting the expected improvement for the prediction in Figure 3.8 for all values of x
yields the plot in Figure 3.14. In contrast to the probability of improvement in Figure 3.13,
the expected improvement is greatest in the unsampled area of the global optimum. This is
because, although there is a high probability of some improvement at the point that maximizes
P�I�x�
, the actual amount of improvement is likely to be greater at the point that maximizes
E�I�x�
. The expected improvement �≈ 0	043� is in fact much smaller than the true
improvement that would be obtained at that point �≈ 9� due to the deceptive nature of the
function. We will consider this in the next section together with our assumptions about
the convergence of P�I�x�
 and E�I�x�
 based infill criteria. First though, we will look at the
performance of what seems to be our most promising criterion so far: maximizing E�I�x�
.

Figure 3.15 shows the progress of a search of the one-variable test function in the range
[0,1] using a maximum E�I�x�
 infill strategy starting from an initial sample of three points.
The left-hand column shows the progress of the Gaussian process based RBF prediction
and the right-hand column shows the expected improvement at each stage. To begin with,

Exploring and Exploiting a Surrogate 91

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

x

E
[I(

x)
]

Figure 3.14. The expected improvement in the prediction shown in Figure 3.8.

the search follows a similar route to the RBF predictor based infill strategy (Figure 3.8).
However, after isolating the local optimum to the left of the plot, there is still an expectation
of improvement to the right, and so the global optimum is found. Note that the scale of the
E�I�x�
 plots varies. To begin with there is high expectation. This diminishes through the
first three pairs of plots as the prediction ‘thinks’ it has found a very smooth function. When
the dip to the left is found the prediction becomes more multimodal and ‘realizes’ that, in
fact, the errors in the prediction may be higher, giving the possibility of improvements: hence
the higher E�I�x�
 appears in the fifth row. By the final pair of plots E�I�x�
 has diminished
to the point where we can have more confidence that the global optimum has been found.
However, were we predicting the output of a higher dimensional problem where we could
not easily visualize the surrogate model, we could not be completely certain.

In many situations maximizing E�I�x�
 will prove to be the best route to finding the global
optimum. Should the assumptions through which our confidence is based in this method
prove to be false, maximizing E�I�x�
 (and all other estimated error based criteria we have
considered) may converge very slowly or not at all. It is therefore worth considering a breed
of infill criteria which can alleviate this pitfall.

3.2.4 Conditional Likelihood Approaches

All of the methods we have covered so far could possibly be ‘tricked’ by a particularly poor
or unlucky initial sample and a very deceptively positioned optimum. Consider the third
pair of plots in Figure 3.15 where E�I�x�
 diminished to a very small value because the
prediction ‘thinks’ that the function is very smooth. In such a situation the variance of the
Gaussian correlation becomes very large (for Kriging the � parameter becomes very small),
which results in a very small estimated error ŝ 2�x). This is because when the variance of the
correlation increases all the elements of � and � get closer to 1 and so �T�−1� → 1; thus

92 Engineering Design via Surrogate Modelling

0 0.5 1
−20

0

20

f(
x)

θ = 1
0 0.5 1

0

1

2

E
[I(

x)
]

0 0.5 1
−20

0

20
f(

x)

θ = 2.65
0 0.5 1

0

0.05

0.1

E
[I(

x)
]

0 0.5 1
−20

0

20

f(
x)

θ = 0.25
0 0.5 1

0 0.5 1 0 0.5 1

0

0.01

0.02

E
[I(

x)
]

−20

0

20

f(
x)

θ = 8.5 0

0.02

0.04

E
[I(

x)
]

0 0.5 1
−20

0

20

f(
x)

θ = 17.44
0 0.5 1

0

0.5

1

E
[I(

x)
]

0 0.5 1
−20

0

20

f(
x)

θ = 16.23
0 0.5 1

0

0.05

E
[I(

x)
]

0 0.5 1
−20

0

20

f(
x)

θ = 13.24
0 0.5 1

0

0.5

E
[I(

x)
]

0 0.5 1
−20

0

20

x

f(
x)

θ = 12.51
0 0.5 1

0

5
× 10−3

x

E
[I(

x)
]

Figure 3.15. The progress of a search of the one-variable test function in the range [0, 1] using a
maximum E�I�x�
 infill strategy.

Equation (3.1) tends to zero. The erroneously small error leads to an overemphasis on
exploitation of the prediction and the search dwells for too long on local optima. The
infill criteria has fallen into this trap because we have assumed that the unknown Gaussian
process based model parameters have been estimated correctly. After the second update in
Figure 3.15, � is estimated at 0.25, whereas after six updates (when the prediction starts to
match the true function) we find the true value for � is approximately 13.

If we start to play Devil’s advocate, we can concoct similar, but more severe, scenarios
where an estimated error based infill criterion will make no progress at all. Consider the
function shown in Figure 3.16. We have been unlucky enough to sample the function at three
points with the same function value. Although in Chapter 1 we have considered how best
to avoid this problem when sampling harmonic responses, it could still occur, particularly if

Exploring and Exploiting a Surrogate 93

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x)

true function
RBF prediction
initial sample

Figure 3.16. A deceptive function with a particularly unlucky sampling plan.

large portions of the function landscape are, in fact, flat. An error based infill criterion cannot
cope with the prediction in Figure 3.16 because the estimated error is zero for all values of x.

In rare situations like that in Figure 3.16 we must, and in situations like that in the third
pair of plots in Figure 3.15 it is advantageous to employ an infill criterion that takes into
account the possibility that a deceptive sample may have resulted in significant error in
our estimation of the model parameters. We will consider two appropriate infill criteria
for use in such scenarios. These criteria do not use the surrogate to find the minimum, but
rather use the minimum to find the surrogate. Or, in a sound bite (paraphrased from Jones
and Welch, 1996), ask not what the surrogate implies about the minimum, ask what the
minimum implies about the surrogate.

Goal Seeking

In some cases we may be able to estimate the value of the objective function at the optimum,
or it may be that we would like to search for a specific improvement, e.g. over a current
product (even if it is not known if that improvement is possible), rather than an unknown
optimum. In such situations we can use a method which does not search for expectations
or probabilities of improvement, but assesses the likelihood that an objective function value
could exist at a given point (Jones, 2001).

In the derivation of the Kriging predictor in Section 2.4 we found the predictor as the
maximum of the likelihood of the sample data augmented with the point to be predicted.
Now, instead of estimating the value ŷ�x� for a given x, we assume the predictor passes
through a goal yg as well as the sample data and find the value of x̂g which best fits this
assumption. To do this we maximize the conditional ln-likelihood

−n

2
ln�2��− n

2
ln��̂2�− 1

2
ln �C�− �y −m�TC−1�y −m�T

2�̂2
� (3.9)

94 Engineering Design via Surrogate Modelling

where

m = 1�+��̂yg −�� (3.10)

and

C = � −��T� (3.11)

by varying x̂g and the model parameters (at this stage we may wish to widen the upper and
lower bounds on �). The position of the goal, x̂g, appears in Equation (3.9) via its vector
of correlations with the observed data, �. When deriving the Kriging predictor we could
differentiate the augmented ln-likelihood and set it to zero. Here we must maximize the
conditional ln-likelihood numerically in the same way as for tuning the model parameters,
e.g. using a genetic algorithm. We can first make the same substitution for the MLE �̂2 as
we made in Section 2.4 to give the concentrated conditional ln-likelihood:

−n

2
ln��̂2�− 1

2
ln �C�	 (3.12)

This can be calculated in MATLAB using the function below,

function NegCondLnLike=condlikelihood(x)
% Calculates the negative of the conditional
% ln – likelihood at x(k+1:2∗K)
%
% Inputs:
% x – 1 x 2k vector of log theta and hypothesized point
%
% Global variables used:
% ModelInfo.X – n x k matrix of sample locations
% ModelInfo.y – n x 1 vector of observed data
% ModelInfo.Goal – scalar goal
%
% Outputs:
% NegCondLnLike – scalar negative ln–likelihood

global ModelInfo
X=ModelInfo.X;
y=ModelInfo.y;
[n,k]=size(X);
theta=10�∧x(1:k);

% Hypothesized point
% xHyp=x(k+1:2∗k)
% Pre – allocate memory
Psi=zeros(n,n);

(continued)

Exploring and Exploiting a Surrogate 95

% Build upper half of correlation matrix
for i=1:n
for j=i+1:n

Psi(i,j)=exp(-sum(theta.∗(X(i,:)-X(j,:)).∧2));
end

end

% Add upper and lower halves and diagonal of ones plus
% small number to reduce ill – conditioning
Psi=Psi+Psi’+eye(n)+eye(n).∗eps;
% Cholesky factorization
U=chol (Psi);

% Vector of ones
one=ones(n,1);

% Calculate mu
mu=(one’∗(U\(U’\y)))/(one’∗(U\(U’\one)));
% Initialize psi to vector of ones
psi=ones (n,1);

% Fill psi vector
for i=1:n

psi(i)=exp(-sum(theta.∗abs(X(i,:)-xHyp).∧2));
end

% Build conditional covariance matrix
m=one∗mu+psi∗(ModelInfo.Goal-mu);
C=Psi-psi∗psi’;
% Cholesky factorization of C
U=chol(C);

% Sum lns of diagonal to find ln(abs(det(Psi)))
LnDetC=2∗sum(log(abs(diag(U))));
% Use back–substitution of Cholesky instead of inverse
SigmaSqr=((y-m)’∗(U\(U’\(y-m))))/n;
NegCondLnLike=-1∗(-(n/2)∗log(SigmaSqr)-0.5∗LnDetC);

To see how effective this method can be we will consider the search of our one-dimensional
test function. We begin with three sample points, and set an objective function goal
of −5:

ModelInfo.X=[0 0.5 1]’;
for i=1:3

ModelInfo.y(i,1) =onevar(ModelInfo.X(i));
end
ModelInfo.Goal =-5;

96 Engineering Design via Surrogate Modelling

After building the initial sample we tune a Kriging model (with such a sparsity of data, we
have reduced the upper bound on � to obtain a more reasonable prediction, as we have done
to produce the figures for all the above infill criteria):

% Tune Kriging model of objective
[ModelInfo.Theta,MaxLikelihood]=fminbnd(@likelihood, −4,1);
% Put Cholesky factorization of Psi into ModelInfo
[NegLnLike,ModelInfo.Psi,ModelInfo.U]=likelihood(ModelInfo.Theta);

before maximizing the concentrated conditional ln-likelihood:

[OptVar,NegCondLike]=ga(@condlikelihood, 2, [], [], [], [], ...
[-4 0], [1 1]);

We can now evaluate the function at OptVar, add this to the sampling plan and repeat
the process until the goal is found. In fact, we reach the goal after just four updates, as
shown in Figure 3.17.

0 0.5 1
−10

0
10
20

f(
x)

0 0.5 1
0

0.005

0.01

C
on

d.
 L

ik
e.

0 0.5 1
−10

0
10
20

−0.019826

f(
x)

0 0.5 1
0

2

4
× 10−4

C
on

d.
 L

ik
e.

0 0.5 1
−10

0
10
20

−3.0152f(
x)

0 0.5 1
0

0.5

1
× 10−4

C
on

d.
 L

ik
e.

0 0.5 1
−10

0
10
20

−0.94963f(
x)

0 0.5 1
0

2

4
× 10−5

x

C
on

d.
 L

ik
e.

0 0.5 1
−10

0
10
20

−5.9122

x

f(
x)

 true function
prediction
initial sample
updates

Figure 3.17. The progress of a search of the one-variable test function in the range [0, 1] using a
goal seeking infill strategy.

Exploring and Exploiting a Surrogate 97

The Conditional Lower Bound

In many cases we will not be able to specify a goal for the optimization, but we can still use
a conditional likelihood approach. Instead of finding the x that gives the highest likelihood
conditional upon ŷ�x� passing through a goal, we find the x which minimizes ŷ�x� subject
to the conditional likelihood not being too low. We will define what we mean by ‘too low’
in due course. This method was first proposed by Jones and Welch (1996).

Again, consider the prediction of the deceptive one-variable test function based on an
initial sample of three points. This is shown in Figure 3.18, along with the statistical lower
bound found by subtracting the estimated RMSE �̂s�x��. At x = 0	7572, which we know is the
minimum of the function, a point with yh = ŷ�x� has been imputed (i.e. we have hypothesized
that this point is part of the sample data, even though it has not actually been observed). The
likelihood conditional upon the prediction passing through this point is shown. Subsequently,
we have imputed lower and lower values at x = 0	7572 and re-optimized � to produce a
prediction through these points. These values fall well below our statistical lower bound,
but still have a conditional likelihood and so represent possible values at x = 0	7572. As the
imputed value reduces, the conditional likelihood becomes extremely low and we clearly
need a systematic method of dismissing imputations which are very unlikely. We achieve
this using a likelihood ratio test (see the mathematical note at the end of this section).

By calculating the ratio of the conditional likelihood of the MLE prediction, L0, to
the conditional likelihood, Lcond, of the prediction passing through the imputed point and
comparing it to the �2 distribution, we can make a decision as to whether to accept the value
of the imputed point. To be accepted

2 ln
L0

Lcond

< �2
critical�limit� DOF� (3.13)

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

1.11e − 002

x

f(
x)

3.15e − 003
Λ = 2.52

1.58e − 003
Λ = 3.9

8.06e − 004
Λ = 5.25

true function
initial sample
prediction
prediction−MSE
imputed points with cond. lik.

Figure 3.18. The conditional likelihood and likelihood ratio for hypothesized points with increasingly
lower objective function values.

98 Engineering Design via Surrogate Modelling

must be satisfied. The value of the critical �2 value will depend upon the confidence limit
that we wish to obtain and the number of degrees of freedom (DOF) (the number of model
parameters). For the example in Figure 3.18, if we wish to obtain a confidence interval of
0.95, we use limit = 0	975 (we are only considering the lower bound) and DOF = 1 to obtain
�2

critical = 5	0239 (from tables or using chi2inv(0.975,1) in MATLAB). Figure 3.18
shows the likelihood ratio for each hypothesized point that has been imputed, calculated
using the conditional likelihoods shown. The lowest value would be rejected based on �2

critical.
Using this likelihood ratio test we can systematically compute an upper and lower

confidence bound for the prediction. In practice it will be the lower bound that will be of
use in formulating an infill criterion. To find the lower bound we minimize yh by varying
yh and the model parameters, subject to the constraint defined by Equation (3.14). The
minimum of this lower bound can then be used as an infill criterion. So to choose a new
infill point we must minimize yh by varying yh� x and the model parameters, subject to
the constraint defined by Equation (3.14). In MATLAB this constraint may be defined as
follows:

function [C,Ceq]=likelihoodratiotest(x)
% Performs a likelihood ratio test to evaluate whether a
% hypothesized point at x falls within a confidence limit
%
% Inputs:
% x – 1 x 2k vector of y h, theta parameter and hypothesized
% point
%
% Global variables used:
% ModelInfo.X – n x k matrix of sample locations
% ModelInfo.y – n x 1 vector of observed data
% ModelInfo.Theta – 1 x k vector of log(theta)
% ModelInfo.U – n x n Cholesky factorization of Psi
% ModelInfo.Confidence – scalar confidence limit
%
% Outputs:
% C – negative if hypothesis within confidence limit
% Ceq – empty equality constraint
%
% Calls:
% predictor.m, condlikelihood.m

global ModelInfo
k=size(ModelInfo.X,2);

% Catch when location coincides with sample data
if ismember(x�end�,ModelInfo.X)

C=-chi2inv(ModelInfo.Confidence,k);
Ceq=[];

else

(continued)

Exploring and Exploiting a Surrogate 99

% Prediction at hypothesized point
ModelInfo.Option=’Pred’;
ModelInfo.Goal=predictor(x(k+2:2∗k+1));
% L_O
L0=condlikelihood([ModelInfo.Theta x(k+2:end)]);

% L_cond
ModelInfo.Goal=x(1);
Lcond=condlikelihood(x(2:end));

% Value of C must be less than zero
C=2∗(-L0+Lcond)-chi2inv(ModelInfo.Confidence,k);
% Empty equality constraint
Ceq=[];

end

Starting from ŷ�x�, the lower bound at x can be found using a constrained local search
(there are no local minima). Thus, instead of a global search using a genetic algorithm, it
may be quicker to use multiple restarts of a hill climber. Figure 3.19 shows the progress of a

0 0.5 1
−20

0

20

x

f(
x)

0 0.5 1
−20

0

20

x

f(
x)

0 0.5 1
−20

0

20

x

f(
x)

0 0.5 1
−20

0

20

x

f(
x)

true function
observed data
prediction
lower bound
new infill point

Figure 3.19. The progress of a search of the one-variable test function in the range [0, 1] using a
conditional lower bound infill strategy.

100 Engineering Design via Surrogate Modelling

search of the deceptive one-variable test problem using this infill criterion, starting from the
same three-point initial sample. A 95 % confidence interval has been chosen, with MATLAB’s
genetic algorithm used to find the minimum of the lower bound. This infill criterion can be
applied using the following MATLAB code:

% confidence interval
ModelInfo.Confidence=0�975;
for I=1:4

% Tune Kriging model of objective using upper and lower bounds
% on theta of 10∧-3 and 10∧3
[ModelInfo.Theta,MaxLikelihood]=fminbnd(@likelihood, -3,3);
% Put Cholesky factorization of Psi into ModelInfo
[NegLnLike,ModelInfo.Psi,ModelInfo.U]=likelihood� � �
(ModelInfo.Theta);

% Search lower bound with wide upper and lower bounds on y
OptVars=ga(@returnx,3,[],[],[],[],[-50 -3 0],[20 3 1],� � �
@likelihoodratiotest);

% add infill point and calculate objective
ModelInfo.X(end+1)=OptVars(end);
ModelInfo.y(end+1)=onevar(OptVars(end));

end

Mathematical Note: The Likelihood Ratio Test
Likelihood ratios are used to test nested hypotheses which are dependent upon different numbers
of parameters (known as degrees of freedom). If we wish to test the performance of a hypothesis
H which has n additional degrees of freedom to our original hypothesis H0, we calculate the
maximum likelihood of an outcome using each hypothesis and calculate the ratio:

� = MLE�H0�

MLE�H�
(3.14)

The distribution of likelihood ratio, �, can be approximated to the �2 cumulative distribution
function by �2 = −2 ln���. We can therefore compare the −2 ln��� to the critical value of the
�2 distribution with n degrees of freedom and reject or accept hypothesis H over H0 accordingly.
Figure 3.20 shows the �2 cumulative distribution function for varying degrees of freedom. The
dashed line shows the critical value for a confidence limit of 0.975 for two degrees of freedom
and is approximately 7.4. Thus, if −2 ln��� is greater than this critical value, we should reject H
because it is significantly worse than H0.

Note that, in accordance with how the likelihood ratio is used to compute infill criteria,
we are testing to see how much worse H is compared to H0. In statistical theory it is more
usual to test whether the hypothesis with more degrees of freedom is significantly better
than H0.

(continued)

Exploring and Exploiting a Surrogate 101

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dof = 1

2

3

4

5

6

7

8

χ2

cd
f(

χ2)

Figure 3.20. The �2 cumulative distribution function for varying degrees of freedom.

3.2.5 Other Methods

We have already taken up a lot of space with our discourse on infill criteria, and rightly so, since
this is a key element of surrogate based design. We have covered what we believe represents
the core building blocks of surrogate model infill criteria. However, this is an active area of
research and there are many permutations of the criteria we have looked at. We will briefly
consider two types of infill strategy, derived from those we have already considered.

Parallel Infill Points

It may be that it is possible to conduct objective function evaluations in a parallel computing
environment. In such cases it would be helpful to identify a number of infill point locations
and evaluate these in parallel.

We can identify multiple points in one of two ways. With no modification to the infill
criteria presented above, we can identify multiple local optima of the infill criterion landscape
in question (notice the multiple peaks in the conditional likelihood in Figure 3.17) using
multiple starts of a local optimizer or clusters of points found by a global optimizer. The
reader interested to know more should consult Sóbester et al. (2004) for more information
about this technique. A problem with the above technique is that we never know how many
points we are going to get – there could be any number of local optima – thus making it
difficult to align this technique with parallel computing capabilities.

We can choose how many infill points are to be applied by modifying any of the error
based infill criteria. We first choose an infill point based on the criterion. Then we impute a
new sample point y�n+1� = ŷ�n+1� at this location. A new infill point is then chosen based on

102 Engineering Design via Surrogate Modelling

the augmented set of sample data. The process is repeated for the number of infill points
required. This method is described in the context of E�I�x�
 by Schönlau (1997). The main
problem with the method is that there is no guarantee that there will be a significant distance
between the infill points found.

Hybrid Criteria

We have looked at many methods which strive for a good balance between exploitation and
exploration. There is a body of research material that attempts to tailor the balance to the
problem at hand – something which, it could be argued, the methods already considered
do. Take, for example, the E�I�x�
 criterion. The first term is based more on the level of
improvement at x and the second on the amount of error. By changing the ratio of the
terms, the balance between exploitation and exploration can be altered. Sóbester et al. (2005)
presents an in-depth study of the use of this weighted expected improvement criterion on
functions of varying complexity. The same vein of thought can be applied to the statistical
lower bound in Section 3.2.3. A weighted sum of ŷ and ŝ can give a complete sliding scale
from exploitation to exploration. A method of dynamically choosing the weighting through
reinforcement learning is presented by Forrester (2004).

3.3 Managing a Surrogate Based Optimization Process

In the preceding chapters we first looked at how to sample the design space we then presented
a variety of surrogate modelling techniques, followed by a look at various infill criteria
in this chapter. We will conclude by considering how to manage these various aspects of
surrogate based design optimization, followed by an example.

3.3.1 Which Surrogate for What Use?

Table 3.1 contains the various surrogate methods we have covered in Chapter 2 along
with what we can do with them, that is either create a global surrogate for visualizing and
comprehending the design space or use various infill criteria. The suitability of each surrogate
for each use is indicated. Also shown are the numbers of design variables and sample
points that the methods can accommodate before becoming too computationally expensive.
Naturally, these numbers are somewhat problem-dependent and only serve as a guide. For
example, if the analysis code, which the surrogate is being used in lieu of, is extremely
expensive, then a parametric surrogate model might be used with k > 20 and/or n > 500.
Likewise, if the analysis is very cheap, it would not be worth training a parametric surrogate
unless there were significantly fewer than 20 dimensions. The taxonomy in Table 3.1 should
not be taken too literally; its purpose is to provide guidelines for the inexperienced user and
different implementations of different methods will blur our clearly defined boundaries.

3.3.2 How Many Sample Plan and Infill Points?

Table 3.1 indicates the number of sample points required for different uses of a surrogate
model. If the surrogate model is to be used purely for design space visualization and

Exploring and Exploiting a Surrogate 103

Table 3.1. A taxonomy of surrogate methods

Sample plan to infill points ratio � > 2 � 1 ≈ 1 � 2 < 1 � 2

Comprehension Optimization

Simple
landscape

Complex
landscape

Local
search

P�I�x�
�

E�I�x�

Goal
seeking

Conditional
lower
bound

SVR � � �
k > 20

Fixed bases,
n > 500 e.g. cubic, thin plate � � �

Polynomials � �

k < 20
n < 500

Parametric
bases

Gaussian bases,
e.g. Kriging � � � � � �

others � � �

comprehension, all of the sample points can be chosen by a sampling plan procedure. If we
wish to perform local optimization as well, then a few points should be positioned according
to an infill criterion. If finding the global optimum design is the overriding objective then
most of the points should be positioned using an infill criterion rather than a sampling plan.
Although Gaussian process based criteria such as max�E�I�x�
� could be initialized with just
a two-point sampling plan, studies have shown that, for this infill criterion, approximately
one-third of the total number of points should be in the sampling plan, and two-thirds infill
points (Sóbester et al., 2005). Here we are assuming that a maximum number of design
evaluations has been specified. While it is most often the case that optimization studies must
be conducted within a fixed time or computational resource budget, we should also consider
an open-ended scenario when we simply wish to find the best design as quickly as possible.
In such situations we can use a small initial sample, though we would recommend that this
contain significantly more than two points and use either max�P�I�x�
�� max�E�I�x�
� or,
if a goal is available or k/n is particularly large, a goal seeking or conditional lower bound
search.

3.3.3 Convergence Criteria

Choosing a suitable convergence criterion to determine when to stop the surrogate infill
process is rather subjective. We can split the choice of criteria into three categories:
exploitation, exploration and balanced exploitation/exploration convergence criteria.

Exploitation

When choosing infill points based on minimizing the prediction (exploitation), be it regres-
sion or interpolation, the convergence criterion is simple: we stop when the change in a

104 Engineering Design via Surrogate Modelling

number of successive infill point objective values is small. The residual value will usually
be specified as a percentage of the range of observed objective function values. A similar
criterion is to stop when the Euclidean distance between a number of successive infill points
becomes very small. As we have shown in Section 3.2.1, the minimum found may not
actually be the minimum of the function, but these criteria, if sufficiently stringent, will yield
the best value that could be found with pure exploitation of the surrogate prediction.

Exploration

Pure exploration is useful when improving the global quality of the surrogate is the object,
so a criterion based on convergence to an optimum is not appropriate. Rather, we wish to
know when the surrogate will not improve if further points are added, i.e. it has become
saturated. Here we need to use validation techniques, such as the mean squared error and
the correlation coefficient, to compare successive models (recall Section 2.1.3). If the MSE
or r2 between predictions from a number of successive surrogates (built from increasing
quantities of observed data) plateaus, we can assume that adding more exploration based
infill points will not globally improve the surrogate. The surrogate might now be used for
design space visualization or the infill strategy could be switched to exploitation or balanced
exploitation/exploration.

Balanced Exploitation/Exploration

When using the probability or expectation of improvement, we can simply stop when the
probability is very low or the expectation is smaller than a percentage of the range of
observed objective function values. Care should, however, be taken since the estimated MSE
of Gaussian process based models is often an underestimate and the search may be stopped
prematurely. It is wise to set an overly stringent threshold and wait for a consistently low
P�I�x�
 or E�I�x�
.

Goal seeking is an obvious winner in terms of convergence criteria if the aim of the search
is to find a specific objective value, perhaps to beat an existing design by a specified amount,
and nothing need be added to the method itself.

When minimizing a lower bound – either ŷ�x�− Âs�x� or the conditional lower bound –
there is no quantitative indicator of convergence and we are limited to the convergence
criteria used for exploitation. Unfortunately, an infill strategy may dwell in the region of a
local minimum before jumping to another, so we cannot guarantee that a series of similar
objective values means that the global optimum has been found. Although the conditional
lower bound might be a panacea for problems with poor parameter estimates when sampling
is sparse or the function is deceptive, it may be beneficial to switch to a maximum P�I�x�

or E�I�x�
 infill strategy to conclude the search, in order to facilitate the choice of a stopping
criterion.

3.4 Search of the Vibration Isolator Geometry Feasibility Using
Kriging Goal Seeking

The vibration isolator geometry feasibility problem described in the Appendix, Section A.6,
is particularly suited to the goal seeking infill criterion described in Section 3.2.4: there is

Exploring and Exploiting a Surrogate 105

a clear goal, i.e. no intersections in the geometry. Also, with 18 design variables, there is
little possibility of sampling the design space densely enough to create a globally accurate
surrogate. If the goal is not met, the structure cannot be built, so it is not sensible to
prescribe a maximum number of design evaluations and choose the initial sample as a
fraction of this. We therefore start with an arbitrarily small sampling plan of 20 points
and apply infill points at the position of maximum conditional likelihood of the goal. The
following MATLAB code performs this search and returns a feasible design on the eighth
infill point.

global ModelInfo
% Create sampling plan
k=18;
n=20;
ModelInfo.X=bestlh(n,k,20,10)

% Calculate observed data
for i=1:n

ModelInfo.y(i,:)=intersections(ModelInfo.X(i,:));
end

% Search goal
ModelInfo.Goal=0;

% Iterate until goal is attained
while min(ModelInfo.y)> ModelInfo.Goal

% Tune Kriging model of objective
options=gaoptimset(’PopulationSize’,50);
[ModelInfo.Theta,MaxLikelihood]= � � �
ga(@likelihood,k,[],[],[],[],ones(1,k).∗-3,ones(1,k). ∗3,[],� � �
options);

% Put Cholesky factorization of Psi into ModelInfo
[NegLnLike,ModelInfo.Psi,ModelInfo.U]=likelihood(ModelInfo.� � �
Theta);

% Find location which maximizes likelihood of goal
options=gaoptimset (’PopulationSize’,100);
[OptVar,NegCondLike]=ga(@condlikelihood,2∗k,[],[],[],[],� � �
[ones(1,k).∗3 zeros (1,k],[ones(1,k).∗3 ones(1,k)],[],options);

% Add infill point and calculate objective value
ModelInfo.X(end+1,:)=OptVar(k+1 � 2∗k);
ModelInfo.y(end+1)=intersections(ModelInfo.X(end,:));

end

Starting from the same sampling plan, a max�E�I�x�
� based search finds a feasible
design on the 72nd infill point. The range of objective function values visited by both
infill strategies are shown in Figure 3.21. Although we cannot easily visualize such a high-
dimensional design space, we can see from Figure 3.21 that the max�E�I�x�
� has visited

106 Engineering Design via Surrogate Modelling

10 20 30 40 50 60 70 80 90

0

0.01

0.02

0.03

0.04

0.05

0.06

evaluation number

ob
je

ct
iv

e

goal seeking
maxE[I(x)]

Figure 3.21. Objective function evaluation history for the goal seeking and max�E�I�x�
� search of
the vibration isolator geometry feasibility. Note that the first 20 points form the sampling plan and so
are common to both searches.

many local basins of attraction containing infeasible designs before finally finding a design
with no intersections. This is due to the extremely small sampling plan, leading to poor
model parameter estimates and many, apparently promising, sparsely populated areas of the
design space.

References
Box, G. E. P. (1957) Evolutionary operation: a method for increasing industrial productivity. Applied Statistics,

6(2), 81–101, June.
Box, M. J. (1965) A new method of constrained optimization and comparison with other methods. Computer

Journal, 8(1), 42–52.
Forrester, A. I. J. (2004) Efficient Global Optimisation Using Expensive CFD Simulations. PhD thesis, University

of Southampton, Southampton, November.
Goldberg, D. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading,

Massachusetts.
Hooke, R. and Jeeves, T. A. (1961) Direct search solution of numerical and statistical problems. Journal of the

Association of Computing Machinery, 8, 212–229.
Jones, D. R. (2001) A taxonomy of global optimization methods based on response surfaces. Journal of Global

Optimisation, 21, 345–383.
Jones, D. R. and Welch, W. J. (1996) Global optimization using response surfaces, in Fifth SIAM Conference on

Optimization, Victoria, Canada, 20–22 May.
Keane, A. J. and Nair, P. B. (2005) Computational Approaches to Aerospace Design: the Pursuit of Excellence,

John Wiley & Sons, Ltd, Chichester.
Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983) Optimization by simulated annealing. Science, 220(4598),

671–680.
More, J. J. and Wright, S. J. (1993) Optimization software guide. SIAM Frontiers in Applied Mathematics, 14.

Exploring and Exploiting a Surrogate 107

Nelder, J. A. and Mead, R. (1965) A simplex method for function minimization. Computer Journal, 8(1), 308–313.
Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. (1989) Design and analysis of computer experiments.

Statistical Science, 4(4), 409–423.
Schönlau, M. (1997) Computer Experiments and Global Optimization. PhD thesis, University of Waterloo, Waterloo,

Ontario, Canada.
Sóbester, A., Leary, S. J. and Keane, A. J. (2004) A parallel updating scheme for approximating and optimizing

high fidelity computer simulations, structural and multidisciplinary optimization, 27, 371–383.
Sóbester, A., Leary, S. J. and Keane, A. J. (2005) On the design of optimization strategies based on global response

surface approximation models. Journal of Global Optimization, 33, 31–59.

Part II
Advanced Concepts

4
Visualization

The advent of the computer has brought about dramatic improvements in our ability to
model multidimensional data and multidimensional landscapes. Previously, fitting a model
to data using pen and paper would invariably come up against the already mentioned
curse of dimensionality, which would often render anything beyond two or three variables
intractable.

What has not changed significantly, however, is our (in)ability to build a mental image of
a multidimensional model, once such a model has been constructed. In fact, the popularity
of the term ‘landscape’ to refer to such models of functions, regardless of whether they have
a single variable or a hundred, indicates that the highest dimensionality we can safely grasp
is that of the topography surrounding us. This is, of course, described by a function (height
above, say, mean sea level) of precisely two variables (say, latitude and longitude), a rather
unsatisfactory number in most engineering applications.

If we also wish to capture our understanding of a landscape in an easily retrievable form,
we lose a further variable, as our books and computer screens are flat. We therefore find
ourselves resorting to some simple ‘cheats’, such as surface plots that create a ‘3D’ illusion
or contour plots. The latter type either represents the values of a function via its level curves
or by mapping its range of values against a range of colours.

A rather ubiquitous example combining the two varieties of contour plot is the synoptic
chart used by meteorologists (see Figure 4.1), where the colours represent surface height
above mean sea level and the pressure level curves (isobars) depict the surface atmospheric
pressure situation at a given time. The pressure chart is, of course, a surrogate model of the
real pressure distribution, based on measurements at a network of weather stations, fairly
uniformly distributed across the globe (at least on dry land). This example also suggests
that the colour/level curve based contour plot is a very efficient way of representing two
functions at once. Clearly, in spite of the large amount of information being conveyed

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

112 Engineering Design via Surrogate Modelling

Figure 4.1. A flat depiction of two functions of the same two variables – a colour-coded topographic
map (of height above mean sea level) and labelled isobars representing surface pressure (This is Crown
copyright material which is reproduced with the permission of the Controller of HMSO and the Queen’s
Printer for Scotland) (See Plate III for colour version).

in a relatively compact manner, there is little chance of confusing a mountain range with an
area of high pressure.

Such artifices, however, only buy us back the one dimension lost by transferring our
mental image of the function to a flat surface and further tricks are necessary to extend our
ability to plot surrogate models and the data they are built upon to higher dimensionalities.
We discuss two such techniques next.

4.1 Matrices of Contour Plots

A fairly straightforward way of gaining an insight into the features of a multidimensional
landscape is to extract strategically placed two-variable slices from it and arrange these
as tiles in some systematic way, generally in a matrix. The fundamental question
is, where should the projections of these two-dimensional slices be on the remaining
dimensions?

In general, considering the problem of representing a k-dimensional space, we have little
choice but to pick a baseline value in each dimension and hold these constant while sweeping
the ranges of all possible two-variable pairs (we shall consider alternatives for specific
values of k shortly). We have seen an example of this earlier, in Plate I, a depiction of the

Visualization 113

ten-variable wing weight function. This plot was generated using the function tileplot.m,
the header of which is listed below:

function tileplot (Baseline, Range, Labels, Objhandle,� � �
Mesh, Lower, Upper, Cont)

% Generates the �k −1�x�k −1� tile plot of a k-variable function
%
% Inputs:
% Baseline – 1xk vector of baseline values assigned to each
% variable on a tile where they are not active
% Range – 2x4 matrix of minimum and maximum values for each
% variable
% Labels – cell array containing the names of the variables
% Objhandle – name of the objective function
% Mesh – the objective function will be sampled on a mesh x mesh
% full factorial plan on each tile
% Lower/Upper – minimum/maximum value of the objective
% function – this is required to adjust the colour
% range of each tile with respect to the full
% colour range of the function (if not known, set
% to[] and the function will estimate it).
% Cont – if Cont = 1 contour lines are plotted and the spaces
% between them are filled with a colour
% determined by the function value. Otherwise
% a colour-shaded plot is generated.

As the header above indicates, implementation allows two types of tiles. Firstly, the same
function can be represented as a set of level curves and as a top view of a surface whose
colouring, varying in the same discrete steps as the spacing of the contours, depends on
the function values (Cont set to 1). This is similar, in principle, to the synoptic chart
shown in Plate III, but in this case the same function is plotted using both methods to
achieve the increased clarity demanded by the small space available for each tile (especially
for large k). Plate I is an example of this approach. Alternatively, if Cont is set to any
other value, plain, shaded contour plots result (this is an interpolated checkerboard, as
per MATLAB’s pcolor.m, the resolution of which depends on the value chosen for the
variable).

The script wing.m illustrates the use of tileplot.m. Essentially, the user’s own
objective function can be defined simply as function �f1� � � � � = name(Design),
where the first output argument f1 will be plotted by tilelplot. The input arguments
should be specified in the vector Design. If the objective function is constrained, it should
return NaN (Not-a-Number) for Design vectors that violate the constraints – the infeasible
regions will then be plotted in white – or the maximum function value (Upper), in which
case the infeasible area will be greyed out.

114 Engineering Design via Surrogate Modelling

4.2 Nested Dimensions

It is not always obvious how to choose the baseline set of values where the inactive
variables should be held on matrices of contour plots (recall that all variables are inactive,
except the two being plotted against each other on a tile). For certain values of k there
are work-arounds (Mihalisin et al., 1991). For example, for k = 4 we can simply select
two variables to plot against each other on each tile and we can generate a matrix of
such tiles, where the row and column of a tile determines the values of the remaining two
variables. It is possible to imagine various ways in which such hierarchical, nested axes
could be used to depict spaces of higher dimensionalities – here we limit ourselves to the
four-variable case.

Our implementation of this method, nested4.m, features a header similar to that of
tileplot.m, the main difference between the two being that we need to specify the order
in which the variables are assigned to the nested axes:

function nested4(Varorder, Div, Range, Labels, Objhandle,� � �
Mesh, Lower, Upper, cont)

% Generates a four variable hierarchical axis plot
%
% Inputs:
% Varorder – four – element vector specifying the assignment of
% the variables to each of the four axes [main
% horizontal main vertical, tile horizontal, tile
% vertical]
% Div – 1 x 2 vector of two variables specifying the number of
% tiles along the main horizontal and main vertical axes
% respectively
% Range – 2 x 4 matrix of minimum and maximum values for each
% variable
% Labels – cell array containing the names of the variables
% Objhandle – name of the objective function
% Mesh – the objective function will be sampled on a mesh x mesh
% full factorial plan on each tile
% Lower/Upper – minimum/maximum value of the objective
% function – this is required to adjust the colour
% range of each tile with respect to the full
% colour range of the function (if not known set
% to[] and the function will. estimate it).
% Cont – if Cont = 1 contour lines are plotted and the spaces
% between them are filled with a colour determined by the
% function value. Otherwise a colour-shaded plot is
% generated.

Finally, the following script illustrates the use of this function to represent a four-
dimensional radial basis function surrogate model, built upon data generated with a 40-point
optimized Latin hypercube sampling plan and the dome.m function as the objective. The
results are shown in Figure 4.2.

Visualization 115

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

x1 = 0

x 2
 =

 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.2. Four-variable nested plot of the surrogate of the function f�x� = 1/4
∑4

i=1 1 − �2xi −
1�2� x ∈ �0� 1�4, generated using nested4.m. Here x3 varies along the horizontal axis of each tile,
x4 along the vertical axes, while the values of x1 and x2 can be read off the bottom of each column of
tiles and the beginning of each row respectively (See Plate II for colour version).

clear global

global ModelInfo

% Sampling plan
ModelInfo.X = bestlh(50,4,50,75);

% Compute objective function values – in this case using the dome.m
test function – you would insert your own objective function here
for i= 1:size(ModelInfo.X,1)

ModelInfo.y(i) = dome(ModelInfo.X(i,:));
end

% y must be a column vector
ModelInfo.y = ModelInfo.y’;

% Select basis function type:
ModelInfo.Code = 4;

% Estimate model parameters
rbf

(continued)

116 Engineering Design via Surrogate Modelling

% Plot the surrogate if the model was successfully fitted
if ModelInfo.Success == 1

nested4([1 2 3 4], [10 10], [0 0 0 0; 1 1 1 1],� � �
{’x_1’,’x_2’,’x_3’,’x_4’}, ‘@predrbf’,� � �
30, 0, 1, 1)

else
display(‘Could not fit model. Try a different basis
function.’)

end

Reference
Mihalisin, T. Timlin, J. and Schwegler, J. (1991) Visualization and analysis of multi-variate data: a technique for

all fields, in Proceedings of Visualization’91, San Diego, California, 1991, pp. 171–178.

5
Constraints

Thus far in this book, we have focused on surrogates of a single objective function.
Engineering design is almost never so simple in practice – most problems have multiple,
often conflicting, goals and invariably a host of ever more demanding constraints, coming
from regulatory, safety and environmental concerns, as well as those that simply ensure
that the product being designed performs as expected. We turn next to how surrogate based
approaches to design improvement work alongside a consideration of constraints – we deal
with multiple objectives in Chapter 9.

5.1 Satisfaction of Constraints by Construction

The first observation to make about constraints in the design process is that the designer
should aim to remove as many as possible at the outset. This is not as pointless a statement as
it at first seems – in many cases designers will have seemingly problematic constraints, but
at the same time have considerable knowledge on what drives them. Given such knowledge
it may be possible to reformulate a design problem, incorporating such knowledge and
reducing the number of constraints that must be explicitly modelled.

First one should aim to eliminate any constraints that are unlikely to be active at the
optimum being sought, since they will not influence the outcome (it is wise to check that
this is so at the end of any search, of course). Then, any constraints that are almost bound
to be active, and where a strong relationship with a single design variable exists, should be
dealt with. For example, in stress analysis it is common for yield stress or some fraction of
it to be used as a constraint on allowable stress. At the same time the designer may well
know that certain thicknesses in the structural specification may be very directly related to
the working stress levels. Therefore, rather than leaving wall thickness as a design variable
and letting stress be constrained, it may be far better to relate stress to thickness directly

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

118 Engineering Design via Surrogate Modelling

and simply set a particular thickness based on stress assessments, so that the desired stress
levels are achieved, relying on the essentially inverse linear relationship between the two.

Similarly, a common constraint encountered during aerodynamic design of aircraft wing
sections and wings is to maintain a fixed lift while varying the geometry to minimize drag.
Usually the angle of attack can be freely varied and since lift is so directly controlled by the
angle of attack it is natural to try and eliminate the lift constraint by setting the angle so as
to satisfy the constraint.

5.2 Penalty Functions

In many cases of practical importance it is not possible to eliminate constraints by
construction and these must be dealt with directly. Perhaps the most uniformly applicable
approach that can be taken when dealing with constrained design is via the mechanism of
penalty functions. The approach is essentially very simple – whenever a design is considered
that violates (or perhaps nearly violates) one or more constraints, any objective functions
being considered are penalized in some way to reflect the concerns involved. If the constraints
being dealt with can be rapidly calculated then the resulting penalties can be simply added
directly to any surrogate models in use with no concerns over the accuracy of the applied
penalties (though choosing the penalty forms still remains an issue).

Often, however, the constraint calculations will be as expensive or perhaps more expensive
than evaluating any objectives. For example, calculating a fatigue life using a finite element
approach with contact mechanics will be many orders of magnitude more expensive than
assessing the weight or even the cost of an engine component. In such circumstances it will
be natural to construct a surrogate model for the constraint (or perhaps the penalty to be
used which is based on the constraint). The use of surrogates in this way raises a number of
further topics that the designer should be aware of.

Firstly, should a constraint surrogate be built from the same set of design points as is
being used for the objective or other constraint surrogates (assuming that more than one
surrogate is in use)? This consideration applies to any initial sample set of data and to any
update sequences.

Secondly, what functional form should be used for the constraint surrogate? A stress
constraint may be more or less complex than the other functions being dealt with and might
best be modelled in a different way. This reflects directly back on the first concern of
choice of data sets. For example, a complex constraint may well require more data during
surrogate construction to achieve an acceptable level of accuracy than a relatively simple
objective function.

Thirdly, the designer must be aware that constraints are always used in conjunction with
some form of limit; that is we are generally interested in a level curve (or contour) of the
constraint function. It is often the case that such curves are considerably more sensitive to
modelling errors than the broad overall shape of the function being represented. A small
change in surrogate modelling may well shift the position of the level curve considerably
across the design space with a resulting significant change in constraint violation. This may
lead the designer to control any penalty in a different way than would be natural given direct
evaluations of the constraint. Typically it may be wise, especially at the outset of a design
search, to use a less severe penalty function than later on when a more accurate surface has
been constructed through the process of surrogate update. This way of working fits naturally
with the penalty mechanisms originally designed for use with sequential unconstrained

Constraints 119

minimization techniques (SUMT) (see, for example, Siddall, 1982). In such schemes a
moderate initial penalty applied to both sides of the constraint boundary is typically used to
begin with, which is then increased in severity as more data is accumulated, especially when
applied to results close to the constraint limit itself.

The simplest pure penalty approach, the so called one pass external function, is to just
add a very large constant to the objective function value wherever any constraint is violated
(or if we are maximizing to just subtract this): i.e. fp�x� = f�x� + P if any constraint is
violated, otherwise fp�x� = f�x�. Then the penalized function is searched instead of the
original objective. Provided the penalty added �P� is very much larger than the function
being dealt with, this will create a severe cliff in the objective function landscape that will
tend to make search methods reject infeasible designs. This approach is external because
it is only applied in the infeasible regions of the search space and one pass because it is
immediately severe enough to ensure rejection of any infeasible designs. Although simple
to apply, the approach suffers from a number of drawbacks:

1. the slope of the objective function surface will not, in general, point towards feasible
space in the infeasible region so that if the search starts from, or falls into, the infeasible
region it will be unlikely to recover from this;

2. there is a severe discontinuity in the shape of the penalized objective at the constraint
boundary and so any final design that lies on the boundary is very hard to converge to
with precision, especially using efficient gradient descent methods (and commonly many
optima in design are defined by constraint boundaries);

3. it takes no account of the number of constraint violations at any infeasible point.

Because of these limitations a number of modifications have been proposed. First, a
separate penalty may be applied for each violated constraint. Additionally the penalty may
be multiplied by the degree of violation of the constraint and, thirdly, some modification of
the penalty may be made in the feasible region of the search near the boundary (the so-called
interior space). None of these changes is as simple as might at first be supposed.

Consider first adding a penalty for each violated constraint: fp�x� = f�x� + mP where
m is the number of violated constraints. This has the benefit of making the penalty more
severe when multiple constraints are violated. Care must be taken, however, to ensure that
the combined effect does not cause machine overflow. More importantly, it will be clear that
this approach adds more cliffs to the landscape – now there are cliffs along each constraint
boundary so that the infeasible region may be riddled with them. The more discontinuities
present in the objective function space, the harder it is to search, particularly with gradient
based methods.

Scaling the total penalty by multiplying by the degree of infeasibility can again lead
to machine overflow. Now fp�x� = f�x�+∑P��gi�x���+∑P�hj�x��, where the inequality
constraints gi�x� are taken to be greater than zero, the equality constraints hj�x� equal to
zero and the angle brackets ��� are taken to be zero if the constraint is satisfied but return the
argument value otherwise. In addition, if the desire is to cause the objective function surface
to point back towards feasibility then knowledge is required of how rapidly the constraint
function varies in the infeasible region as compared to the objective function. If multiple
infeasible constraints are to be dealt with in this fashion, they will need normalizing together
so that their relative scales are appropriate (consider dealing with a stress infeasibility in

120 Engineering Design via Surrogate Modelling

Pa and a weight limit in metric tonnes – such elements will commonly be six orders of
magnitude different before scaling). If individual constraint scaling is to be carried out we
need a separate Pi and Pj for each inequality and equality constraint respectively: fp�x� =
f�x�+∑Pi��gi�x���+∑Pj�hj�x��. Finding appropriate values for all these penalties requires
knowledge of the problem being dealt with, which may not be immediately obvious – in
such cases much trial and error may be needed before appropriate values are found.

Providing an interior component for a penalty function is even harder. The aim
of such a function is, in some sense, to ‘warn’ the search engine of an approaching
constraint boundary so that action can be taken before the search stumbles over the
cliff. Typically this requires yet a further set of scaled penalties Si, so that fp�x� =
f�x�+∑Pi��gi�x���+∑Pj�hj�x��+∑Si/gs

i �x�, where the superscript s indicates a satisfied
inequality constraint. Since the interior inequality constraint penalty goes to infinity at the
boundary (where gi�x� goes to zero) and decreases as the constraint is increasingly satisfied
(positive), this provides a shoulder on the feasible side of the function. However, in common
with all interior penalties, this potentially changes the location of the true objective away
from the boundary into the feasible region. Now this may be desirable in design contexts,
where a design that is on the brink of violating a constraint is normally highly undesirable,
but again it introduces another complexity.

All of these penalties have been defined in terms of the design responses in use. If the
SUMT approach is used, each penalty varies depending on the stage of the search, so that they
are weakened at the beginning of an optimization run when the search engine is exploring
the landscape, with suitably severe penalties applied at the end before the final optimum is
returned; i.e. the Pi� Pj and Si all become functions of the search progress. Typically the P
values start small and increase while the S values start large and tend to zero. To see this
consider Figure 5.1 (after Siddall, 1982, Figure 6.27) where a single inequality constraint
is shown for a two-dimensional problem and the final optimal design is defined by the
constraint location. It is clear from the cross-section that the penalized objective evolves as
the constraints change, so that initially a search approaching the boundary from either side
sees only a gentle distortion to the search surface, but finally this ends up looking identical
to the cliff of a simple one pass exterior penalty. A number of variants on these themes have

Contour map of f (x) Cross-section through search path

infeasible
region

infeasible
region

search
path

decreasing
interior
penalty

increasing
exterior
penalty

constrained
optimum

unconstrained
optimum

x
1
 and x

2

f (
x)

x
1

x 2

Figure 5.1. Evolution of a penalty function in a sequential unconstrained minimization technique
(SUMT) (after Siddall, 1982, Figure 6.27).

Constraints 121

been proposed and they are more fully explained by Siddall (1982), but it remains the
case that the best choice will be problem specific and often therefore a matter of taste and
experience. Here we simply adopt the one-pass external function and instead we focus on
the role of surrogate models.

5.3 Example Constrained Problem

To illustrate these issues we begin by examining a simple test problem based on the Branin
function (see the Appendix, Section A.2). In this case we add the simple constraint that the
product of the two variables should be greater than 0.2; i.e. the feasible region is above the
hyperbola in Figure 5.2. Here the global constrained optimum lies at (0.96773, 0.20667)
where the optimum design is defined by the intersection of the objective function surface
and the product constraint and the function value is 5.5757. Note that the product constraint
is relatively simple but that the nature of the objective function leads to subtle variations
of the objective along the boundary itself, with three areas where the global optimum
might lie.

5.3.1 Using a Kriging Model of the Constraint Function

We will first consider a search of this constrained Branin function where we assume that the
Branin function itself is very quick to evaluate so we do not need a surrogate. However, the
product constraint is expensive to evaluate and we need to employ a surrogate (here we will
use Kriging) in order to evaluate the function many times during the search.

To start with, following the logic already applied for constructing surrogates of goal
functions we sample the design space using an optimal Latin hypercube of six points (recall

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

Figure 5.2. The constrained Branin test function. The cross indicates the location of the true optimum.

122 Engineering Design via Surrogate Modelling

Figure 5.3. Contours of the Branin function, the product constraint level curve (black) and Kriging
estimate (bold red), together with ± one standard error (fine red). The figure also shows the location
of the data points used to sample the constraint (circles), the minimum of the function, subject to
the Kriging model of the constraint (square) and the true optimum (cross) (See Plate IV for colour
version).

Chapter 1). These are then used to build a suitably trained Kriging prediction (see Section 2.4)
of the product constraint function. We then intersect this function with the plane at 0.2 to
gain the level curve that defines the constraint boundary; this may be compared to the actual
level curve of the constraint (see Figure 5.3), which also shows the locations of the sample
points. The differences in these curves illustrate the actual errors in the surrogate.

Also shown on the plot are the level curves generated by using the error estimates coming
from the Kriging process. We simply add or subtract one MSE from the mean predictions
of the Kriging prediction of the constraint function and intersect the result at 0.2 to gain
estimated error level curves on either side of the mean estimate. It is clear that the actual
errors lie within these bounds.

Note that the error curves show significant curvature because of the placing of the
data points used to construct the model. Even so, since constraints apply by way of level
curves, having error bounds on them can be useful when carrying out a penalty function
search. For example, it may be sensible to use the error bounds to define a region over
which a penalty grows as the space is traversed from the feasible interior to the infeasible
exterior.

Constraints 123

One could, of course, use other forms of surrogate such as radial basis functions. Provided
the form chosen is able to reflect the curvature of the functions being dealt with, broadly
similar results are obtained.

It is clear from Plate IV that the use of a Kriging model of the constraint has resulted
in an optimum (found using a genetic algorithm search) very close to the true answer, the
distance between the two being just 2�1 × 10−3. At this stage the designer may seek to
improve/confirm the predicted optimum by adding an evaluation at the predicted optimal
location (note that, while here we have been able to check that we are very close to the
true optimum, this would not be possible in a real-time optimization process). This allows
the Kriging model to be refined, so that it now contains seven data points with the added
point anticipated to be near the region of most interest to the designer. Upon re-tuning the
Kriging parameters we arrive at the situation shown in Figure 5.4. By comparing Plates IV
and V we can see that the discrepancies in the prediction of the constraint level curve are
reduced. The predicted optimum now has an error of just 2�5×10−4. The infill process can
be repeated until a suitable convergence criterion has been reached (see Section 3.3.3).

5.3.2 Using a Kriging Model of the Objective Function

We next repeat this process but we now build a Kriging surrogate of the objective function
surface rather than the constraint (we assume now that the Branin function is too expensive to

Figure 5.4. Contours of the Branin function and the product constraint level curve and Kriging
estimate after one infill point (See Plate V for colour version).

124 Engineering Design via Surrogate Modelling

Figure 5.5. Contours of a Kriging prediction of the Branin function, the true product constraint level
curve, sample points (circles), the optimum of the Kriging prediction subject to the constraint (square)
and the true constrained optimum (cross) (See Plate VI for colour version).

search, but the constraint can be evaluated directly). We start by using the same six initial sample
points used in the previous calculation, which yield the prediction in Figure 5.5. It is immediately
clear that this surrogate is a rather limited model of the true objective and that this will have a
significant impact on any optimization process (note that this surface is somewhat more complex
than that of the constraint and one might have used more sample points to build the initial model).
A search of the Kriging prediction leads to the point shown in the figure, and this may then be
used to update the response surface in the normal way.

If five minimum prediction (subject to the constraint) based infill points are applied, the
resulting situation is shown in Figure 5.6. The infill strategy has located the region of the
global optimum, though not fully exploited it, and it will not explore other possible locations
because the initial sampling did not indicate these to be regions of interest; that is the
prediction based infill strategy suffers from the problems highlighted in Section 3.2.1. The
update points all lie on the constraint boundary, of course, since this is calculated from the
true constraint function during the searches.

As we have shown in Section 3.2, an infill strategy that includes an element of exploration
is often required to search the design space. We now consider constrained infill strategies
which balance exploitation and exploration.

Constraints 125

Figure 5.6. Contours of the Kriging prediction of the Branin function and the product constraint
level curve after five infill points. (See Plate VII for colour version).

5.4 Expected Improvement Based Approaches

Having set out what may be achieved by greedily exploiting the surrogates in this constrained
problem, we next turn to schemes that seek to balance the quality of the surrogates with the
desire to rapidly close on the best solution. This naturally leads to the idea of constrained
expected improvement, an approach that builds on the idea of simple expected improvement
introduced in Section 3.2.3. There, only the objective was being modelled and the aim was to
balance exploration and exploitation. The aim remains the same, but now also using constraint
data and, where possible, including constraint uncertainty information in the process.

In unconstrained expected improvement we estimate the probability that a new design
will be better than any produced so far, given the current surrogate, leading to new designs
both in areas of promising performance and also in places where there is little data and
thus significant uncertainty in the predictions. In using the expected improvement idea for
constrained problems we must also allow for the feasibility of such new points – clearly if
we are certain that a given new point is not feasible then it cannot improve on the design
and so its expected improvement must be zero.

This is a simple change to make to our approach if we are working directly with the
constraint calculations – We simply set the improvement to zero for all sets of design
variables that the direct constraint calculations indicate as violating any constraint. Life

126 Engineering Design via Surrogate Modelling

becomes more complex if we also have surrogates for the constraints. In such cases we only
have estimates for the objective and the active constraints but, if we use suitable surrogates,
we have error measures for these quantities as well. We may then allow for errors in the
constraint surrogates as well as in those in the surrogate of the objective function if we wish.

5.4.1 Expected Improvement With Simple Penalty Function

We begin by taking our previous example and constructing an expected improvement model
for the objective function following the approach outlined in Section 3.2.3, additionally
using a Kriging model of the constraint function to remove predicted infeasible points
from being considered as the current best in the formulation. Additionally, when searching
for new points a simple one-pass penalty function is applied to the expectation operator,
i.e. E�I�x��P = E�I�x��−P, in the region predicted to violate the constraint (note that this
prevents any further exploration of the regions predicted to be infeasible and means that it
is not strictly necessary to remove infeasible points in the construction of the expectation;
still, we prefer to exclude them in this way since this is in keeping with the logic of the
probability of improvement – an issue we return to shortly).

Figure 5.7 shows the expected improvement contours of the objective function model laid
over those of the true objective function, along with the constraint boundary and six initial
sample points. We have only plotted the expected improvement in the region which satisfies
the Kriging model of the constraint, since no infill points will be applied in the region where
the constraint is not satisfied because of the penalty function. The expected improvement
falls away at each sample location since there is no chance of improvement in these locations
(clearly visible for the sample point at x1 ≈ 0�6� x2 ≈ 0�4). Figure 5.8 shows the effect of
adding an infill point to the maximum shown in Plate VIII. The point which maximizes the
expected improvement inside the feasible region is now close to the global optimum.

Further infill points begin to explore the surrogate: Figure 5.9 shows that, after nine
updates, six points have been positioned in promising regions along the constraint boundary
and a further three along the upper limit of x1 where there is a trough in the function. The
next infill point will be in the local optimum close to where the upper limit of x2 intersects
the constraint boundary. Clearly this method is more appropriate for deceptive functions,
where a global search routine is required, than the previous methods covered in this chapter,
although a deceptive constraint function would present problems: it would cause the penalty
to be applied in the wrong areas.

5.4.2 Constrained Expected Improvement

We now take a fully probabilistic approach to the added constraint instead of the simpler one-
pass penalty function. This requires a new formulation to extend that presented in Section 3.2,
which we outline next. However, before delving into the mathematical presentation it
is useful to set out what we might expect when using Gaussian process (e.g. Kriging)
models for all the quantities of interest in this way. If, at a given point in the design
space, the predicted errors in the constraint models are low and the surrogate shows a
constraint violation then the expectation of improvement will also be low, but not zero,
since there is a finite possibility that a full evaluation of the constraints may actually reveal
a feasible design. Conversely, if the errors in the constraints are large then there will be a

Constraints 127

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 5.7. The log�E�I�x��� of the Kriging model in the region of predicted constraint satisfaction
(filled contours) shown together with contours of the true Branin function and the sample points.
The true constraint limit is also shown (bold contour), along with the locations of the maximum
E�I�x�� (with penalty applied, square) and the actual optimum (cross). The irregular contours at low
log�E�I�x��� are where the E�I�x�� calculation is encountering problems with floating point underflow.
See the mathematical note in Section 6.2.1 for more information and a way to avoid this (See Plate
VIII for colour version).

significant chance that the constraint predictions are wrong and that a new point will, in
fact, be feasible. Thus the expectation of improvement will be greater. Clearly, for a fully
probabilistic approach we must factor these ideas into the calculation of the expectation. It
turns out that this is relatively simple to do, although it is rarely mentioned in the literature
(a formulation can be found in the thesis of Schönlau (1997)). Provided that we assume
that the constraints and objective are all uncorrelated, a closed-form solution can readily be
derived. If not, and if the correlations can be defined, then numerical integration in probability
space is required. Since such data is almost never available this idea is not pursued further
here.

In Section 3.2.3 we discussed the probability of improvement infill criterion. Now consider
a situation when we have a constraint function, also modelled by a Gaussian process, based
on sample data in exactly the same way. Rather than calculating P�I�x��, we could use
this model to calculate the probability of the prediction being greater than the constraint
limit, i.e. the probability that the constraint is met, P�F�x��. The probability that a design
is feasible will be calculated following the same logic as for an improvement, only now

128 Engineering Design via Surrogate Modelling

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

x1

x 2

Figure 5.8. The log�E�I�x��� of the Kriging model in the region of predicted constraint satisfaction
after one infill point (key as Plate VIII). The maximum E�I�x�� (with penalty applied) has located the
region of the global optimum (See Plate IX for colour version).

instead of using the current best design as the dividing point in probability space we use the
constraint limit value, i.e.

P�F�x�� = 1

ŝ
√

2�

∫ �

0
e−�F−ĝ�x��2/�2 ŝ 2�dG� (5.1)

where g is the constraint function, gmin is the limit value, F is the measure of feasibility
G�x�− gmin� G�x� is a random variable and ŝ is the variance of the Kriging model of the
constraint. We can couple this result to the probability of improvement from a Kriging model
of the objective, and the probability that a new infill point both improves on the current best
point and is also feasible is then just

P�I�x�∩F�x�� = P�I�x��P�F�x��� (5.2)

since these are independent models.
We can also use the probability that a point will be feasible to formulate a constrained

expected improvement. We simply multiply E�I�x�� (Equation (3.7)) by P�F�x� > gmin�:

E�I�x�∩F�x�� = E�I�x��P�F�x��� (5.3)

Constraints 129

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

x1

x 2

Figure 5.9. The log�E�I�x��� of the Kriging model in the region of constraint satisfaction after nine
infill points (key as Plate VIII) (See Plate X for colour version).

In MATLAB, this constrained expected improvement can be calculated using the following
function, which calls predictor.m.

function NegLogConExpImp=constrainedei(x)
% Calculates the negative of the log of the
% constrained expected improvement at x
%
% Inputs:
% x – 1 x k vetor of of design variables
%
% Global variables used:
% ObjectiveInfo – structure
% ConstraintInfo – structured cell array
%
% Outputs:
% NegLogConExpImp – scalar -log(E[I(x)] P[F(x)])
%
global ModelInfo
global ObjectiveInfo
global ConstraintInfo

% Calculate unconstrained E[I(x)]

(continued)

130 Engineering Design via Surrogate Modelling

ModelInfo=ObjectiveInfo;
ModelInfo.Option=‘NegLogExpImp’;
NegLogExpImp=predictor(x);
% Calculate P[F(x)] for each constraint
for i=1:size(ConstraintInfo,2)

ModelInfo=ConstraintInfo{i};
ModelInfo.Option=‘NegProbImp’;
NegProbImp(i)=predictor(x);

end

% Calculate E[I(x)]P[F(x)] (add 1e50 before taking logs)
NegLogConExpImp=-(-NegLogExpImp+sum(log10(-NegProbImp+1e-50)));

Note how it is necessary to store ObjectiveInfo and ConstraintInfo as
global variables in order that they can be passed to predictor.m in turn to
find − log10 E�I�x�� and −P�F�x�� respectively, before calculating − log10 E�I�x� ∩ F�x��.
ConstraintInfo is a cell array structure, in order that a number of constraints can be
applied.

To make this last analysis more concrete we return to the test function used in the previous
sections and combine the errors from the product constraint and the objective function models
following the analysis just set out. We again start by constructing surrogates of the goal and
constraint functions by sampling the design space using the six-point sampling plan. These
are then used to build the two suitably trained Kriging models, one of the objective and
the other of the product constraint function. Now instead of intersecting the constraint with
the limit plane at 0.2 to gain the constraint level curve we instead calculate the constrained
expected improvement, as per Equation (5.3). This function can be plotted out for variations
of the two design variables (see Figure 5.10, we again plot the logarithm). It is important to
note that in this formulation the search for E�I�x�∩F�x�� is, itself, unconstrained, since the
action of the constraint has been merged directly into the objective function – the principal
benefit of the approach.

It is immediately apparent from Plate XI that the expected improvement falls away at the
sample points as in simple expected improvement. Additionally, the expected improvement
drops as the constraint boundary is approached but allows for infeasible points to be sampled
to improve the overall model quality (of both objective and constraint). This function can
be searched for the location that maximizes the expectation of improvement, where the true
functions can be evaluated to update the models, in this case a region near the centre of
Plate XI. Figure 5.11 shows the situation after an infill point is added at this location. A
noticeable ridge has appeared in the constrained expected improvement, and this ridge is
roughly aligned with the constraint limit, since P�F�x�� → 0 in the region which violates
the constraint and P�F�x�� → 1 in the region which satisfies the constraint. At this stage it
is clear that areas below and to the left of the constraint boundary are mostly returning poor
expectations of improvement, except for the extreme lower left corner where the absence of
sample data starts to lift the function because there is a small probability that the constraint
could be met.

As more update points are added the search space is widely sampled and the ridge in the
contours of the constrained expected improvement becomes more closely aligned with the
actual constraint boundary (see Figure 5.12, which is plotted after nine updates). Most of

Constraints 131

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−60

−50

−40

−30

−20

−10

0

x1

x 2

Figure 5.10. The log�E�I�x�∩F�x��� based on the initial sample of six points (filled contours), along
with the contours of the true Branin function, the true constraint limit (bold contour), the sample points
(circles) and the true optimum (cross). (See Plate XI for colour version).

the nine infill points are located near to the constraint boundary, with a cluster around the
global optimum, and the maximum constrained expected improvement is now very close to
the global optimum (the error is now 4�1×10−3).

Because our product constraint is rather simple to approximate, the constrained expected
improvement does not perform significantly better than the standard expected improvement
with a penalty function applied. However, the constrained expected improvement method is
better able to handle more difficult constraint functions and balances the desires of exploration
and exploitation more rationally, while avoiding the need for explicit penalty functions.

5.5 Missing Data

So far in this chapter we have considered the problem of constrained optimization when a
constraint function can be calculated. We will now consider the situation where the constraint
takes the form of an inability to calculate the objective function. This situation arises, for
example, when a geometry model is used which cannot cope with all parameter combinations
or a computational fluid dynamics simulation fails to converge.

In an ideal world, a seamless parameterization would ensure that the optimizer could
visit wide ranging areas of the search space and move between them without interruption.
In reality, however, the uniform, flawless coverage of the search space is fraught with
difficulties. Of course, if areas of objective function failure are rectangular, they can simply

132 Engineering Design via Surrogate Modelling

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−60

−50

−40

−30

−20

−10

0

x1

x 2

Figure 5.11. The log�E�I�x�∩F�x��� after one infill point (filled contours), along with the contours
of the true Branin function, the true constraint limit (bold contour), the sample points (circles) and the
true optimum (cross) (See Plate XII for colour version).

be avoided by adjusting the bounds of the relevant variables, but this is rarely the case. Most
of the time such regions will have complex, irregular and even disconnected shapes, and
are much harder to identify and avoid. In the presence of such problems it is difficult to
accomplish entirely automated optimization without narrowing the bounds of the problem
to the extent that promising designs are likely to be excluded. This negates the possible
benefits of global optimization routines, and the designer may well choose to revert to a
more conservative local optimization around a known good design.

Parallels can be drawn between the situation of encountering infeasible designs in
optimization and missing data as it appears in statistical literature (see, for example, Little and
Rubin, 1987). When performing statistical analysis with missing data, it must be ascertained
whether the data is Missing At Random (MAR), and therefore ignorable, or whether there
is some relationship between the data and its ‘missingness’. A surrogate model based on a
sampling plan is, in essence, a missing data problem, where data in the gaps between the
sample points is MAR, due to the space-filling nature of the sampling plan, and so is ignored
when making predictions. When, however, some of the sampling plan or infill points fail, it
is likely that this missing data is not MAR and the missingness is in fact a function of x.

Surrogate model infill processes may be performed after ignoring missing data in the
sampling plan, whether it is MAR or otherwise. However, when an infill design evaluation
fails, the process will fail: if no new data is added to the model, the infill criterion, be it

Constraints 133

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−60

−50

−40

−30

−20

−10

0

x1

x 2

Figure 5.12. The log�E�I�x�∩F�x��� after nine infill points (filled contours), along with the contours
of the true Branin function, the true constraint limit (bold contour), the sample points (circles) and the
true optimum (cross) (See Plate XIII for colour version).

based on ŷ� ŝ 2� E�I�x�� or some other surrogate based criterion, remains unchanged and
the process will stall. The process may be jump-started by perturbing the prediction with
the addition of a random infill point (a succession of random points may be required before
a feasible design is found). However, ignoring this missing data may lead to distortions in
the surrogate model, causing continued reselection of infeasible designs, and the majority
of the sampling may end up being based on random points. As such, because failed design
evaluations are not MAR we should impute values to the missing data before training the
model (Forrester et al., 2006).

5.5.1 Imputing Data for Infeasible Designs

While the statistical literature deals with feasible missing data (data missing due to stochastic
sampling) and so the value of the imputation is important, here we are faced with infeasible
missing data – there can be no successful outcome to the deterministic sampling.1 Thus the
imputed data should serve only to divert the optimization towards the feasible region. The

1 There may, of course, be a physical value to our design criterion at the location of the missing data (if the design
is physically realizable), which might be obtained through a different solution setup, but here we are interested in
automated processes with a generic design evaluation suited to the majority of viable configurations.

134 Engineering Design via Surrogate Modelling

process of imputation alone, regardless of the values, to some extent serves this purpose:
the presence of an imputed sample point reduces the estimated error (Equation (3.1)), and
hence E�I�x�� at this point, to zero, thus diverting further updates from this location. A value
better than the optimum may still, however, draw the optimization towards the region of
infeasibility. We now go on to consider which is the most suitable model by which to select
imputation values when using Kriging.

Moving away from the area of feasible designs,
x�n+1� − x�i�
 → �� 	�i� → 0, and so
ŷ�x�n+1�� →
̂ (from Equation (2.40)). Thus predictions in infeasible areas will tend to be
higher than the optimum region found so far. However, the rate at which the prediction
returns to
̂ is strongly linked to �̂. Therefore, for functions of low modality, i.e low �̂,
where there is a trend towards better designs on the edge of the feasible region, imputations
based on ŷ may draw the update process towards the surrounding region of infeasibility. It
therefore seems logical to take into account the expected error in the predictor to penalize
the imputed points by using a statistical upper bound, ŷ + ŝ 2. Now as
x�n+1� − x�i�
 →
�� ŷ�x�n+1�� + ŝ 2�x�n+1�� →
̂ + �̂2 (from Equations (2.40) and (3.1)), while we still
retain the necessary characteristic for guaranteed global convergence: as
x�n+1� − x�i�
 →
0� ŷ�x�n+1��+ ŝ 2�x�n+1�� → y�x�i��, i.e. our imputation model interpolates the feasible data
and so does not affect the asymptotic convergence of the maximum E�I�x�� criterion in the
feasible region. Although we advocate the use of ŝ 2 to penalize imputations, one could use
other error based metrics. The advantage of using ŝ 2, rather than the more intuitive s, is that
the surrogate will remain smooth when there are imputations very close to feasible points.

To demonstrate this method, instead of using the product constraint function to calculate
the feasibility of a point, we will make the Branin function fail in the region of infeasibility:
the function braninfailures.m returns NaN (Not-a-Number) if prod(x)<0.2. Since
we know that a number of points in our sampling plan will fail, we will use a larger sample.
The following MATLAB code creates a 12-point sampling plan, identifies the successful and
failed points, and builds and trains a Kriging model using the successful points:

global ModelInfo
% Create sampling plan
k=2;
n=12;
TotalX=bestlh(n,k,20,10);
% Calculate observed data
for i=1:n

Totaly(i,1)=braninfailures(TotalX(i,:));
end

% Find successful points
ySuc=Totaly(find(∼isnan(Totaly)));
XSuc=TotalX(find(∼isnan(Totaly)),:);
XImp=TotalX(find(isnan(Totaly)),:);

% Number of imputations
Imps=size(XImp,1);

(continued)

Constraints 135

% Only use successful points in Kriging model
ModelInfo.X=XSuc;
ModelInfo.y=ySuc;

% Set upper and lower bounds for search of log theta
UpperTheta=ones(1,k).∗2;
LowerTheta=ones(1,k).∗−3;

% Run GA search of likelihood
[ModelInfo.Theta,MinNegLnLikelihood]= � � �
ga(@likelihood,k,[],[],[],[], LowerTheta,UpperTheta);
% Put Cholesky factorization of Psi into ModelInfo
[NegLnLike,ModelInfo.Psi,ModelInfo.U]=likelihood(ModelInfo.Theta);

We then calculate the values to impute at the failed points, ŷ�x�+ ŝ 2�x�, using the Kriging
model through the successful points, combine the imputations and successful points into one
data set, and build and search a Kriging model though these points using max�E�I�x��:

if Imps>0
% Calculate imputations based on Kriging model through successful
% points
for i=1:Imps

ModelInfo.Option=’Pred’;
[PredImp(i,1)]=predictor(XImp(i,:));
ModelInfo.Option=’RMSE’;
[RMSEImp(i,1)]=predictor(XImp(i,:));

end
yImp=PredImp+RMSEImp.∧2;

% Concatenate successful and imputed points
ModelInfo.y=[ySuc;yImp];
ModelInfo.X=[XSuc;XImp];
% Build Kriging model through successful and imputed points
% Tune theta using the MATLAB GA
[ModelInfo.Theta,MinNegLnLikelihood]= � � �
ga(@likelihood,k,[],[], [],[], LowerTheta,UpperTheta);
% Put Cholesky factorization of Psi into ModelInfo
[NegLnLike,ModelInfo.Psi,ModelInfo.U]=likelihood(ModelInfo.
Theta);

end
% Search model
ModelInfo.Option=’NegLogExpImp’;
options=gaoptimset(’PopulationSize’,50,’Generations’,100);
[OptVar, OptEI]=ga(@predictor,k,[],[],[],[],zeros(k,1),� � �
ones(k,1), [],options)

% Add infill point
TotalX(end+1,:)=OptVar;
Totaly(end+1)=braninfailures(OptVar);

136 Engineering Design via Surrogate Modelling

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−16

−14

−12

−10

−8

−6

−4

−2

0

2

x1

x 2

Figure 5.13. The log�E�I�x��� of a Kriging model through the combined successful and imputed
data set (filled contours), along with the contours of the true Branin function, the true constraint limit
(bold contour), the sample points (circles) and the true optimum (cross) (See Plate XIV for colour
version).

Figure 5.13 shows the expected improvement of the Kriging model through the combined
successful and imputed data set. E�I�x�� is significantly reduced in areas of infeasibility,
though there is no definite ridge along the constraint boundary because we cannot model the
constraint directly. Nevertheless, the maximum of the expected improvement is in the region
of the global optimum. The above MATLAB code can be put inside a loop to iterate the
search, infill process. Without constraint function information the search cannot be expected
to perform as efficiently as the previous methods in this chapter, however, it does allow a
search to continue when sample or infill point evaluations fail.

5.6 Design of a Helical Compression Spring Using Constrained
Expected Improvement

We will now apply the constrained expected improvement infill criterion to the optimization
of a steel spring. The spring design problem described in the Appendix, Section A.5, has
two objectives: spring mass and maximum number of cycles to fatigue failure. Here we will
assume that mass is of no consequence and simply maximize the number of cycles (in fact,
we will minimize its negative) subject to the constraints on shear safety factor and buckling
stress. Assuming we have a budget sufficient for 30 spring evaluations, we will use our
rule-of-thumb of a 1:2 sampling plan to infill points ratio. The following MATLAB code

Constraints 137

creates a 10-point sample and augments this with 20 infill points based on maximizing the
constrained expected improvement criterion.

Note that the fatigue cycles objective may not yield an answer when one of the constraints
has been violated. In such cases, fatigue cycles.m returns NaN and we must filter out
these values when building the Kriging surrogate of the objective.

global ModelInfo
global ObjectiveInfo
global ConstraintInfo
% Number of variables
k=3;
% Number of sample points
n=10;

% Create sampling plan
ObjectiveInfo.X=bestlh(n,k,20,10);
ConstraintInfo{1}.X=ObjectiveInfo.X;
ConstraintInfo{2}.X=ObjectiveInfo.X;

% Run ’experiments’ to get observed data
for i=1:n

ObjectiveInfo.y(i,1)=-1∗springcycles � � �
(ObjectiveInfo.X(i,:));
ConstraintInfo{1}.y(i,1)=buckling � � �
(ConstraintInfo{1}.X(i,:));
ConstraintInfo{2}.y(i,1)=shearsafetyfact � � �
(ConstraintInfo{2}.X(i,:));

end

% Constraint limits
ConstraintInfo{1}.ConstraintLimit=0;
ConstraintInfo{2}.ConstraintLimit=0;

% Start iterating infill points
for I=1:20

% Use only successful sample points in objective function model
ObjectiveInfo.X= � � �
ObjectiveInfo.X(find(∼isnan(ObjectiveInfo.y)),:);
ObjectiveInfo.y= � � �
ObjectiveInfo.y(find(∼isnan(ObjectiveInfo.y)));

% Set upper and lower bounds for search of log theta
UpperTheta=ones(1,k).∗2;
LowerTheta=ones(1,k).∗−3;

% Tune Kriging model of objective
ModelInfo=ObjectiveInfo;
[ObjectiveInfo.Theta,MaxLikelihood]=ga(@likelihood,k, � � �
[],[],[],[],LowerTheta,UpperTheta);

(continued)

138 Engineering Design via Surrogate Modelling

[NegLnLike,ObjectiveInfo.Psi,ObjectiveInfo.U]= � � �
likelihood(ObjectiveInfo.Theta);

for i=1:size(ConstraintInfo,2)
% Tune Kriging model of constraint
ModelInfo=ConstraintInfo{i};
[ConstraintInfo{i}.Theta,MaxLikelihood]= � � �
ga(@likelihood,k,[],[],[],[],LowerTheta,UpperTheta);

[NegLnLike,ConstraintInfo{i}.Psi,ConstraintInfo{i}.U]= � � �
likelihood(ConstraintInfo{i}.Theta);

end
% Search constrained expected improvement
options=gaoptimset(’PopulationSize’,100);
[OptVar,OptEI]=ga(@constrainedei,k,[],[],[],[],[0 0 0], � � �
[1 1 1],[],options);

% Add infill point
ObjectiveInfo.X(end+1,:)=OptVar;
ObjectiveInfo.y(end+1)=-1∗springcycles(OptVar);
ConstraintInfo{1}.X(end+1,:)=OptVar;
ConstraintInfo{2}.X(end+1,:)=OptVar;
ConstraintInfo{1}.y(end+1)=buckling(OptVar);
ConstraintInfo{2}.y(end+1)=shearsafetyfact(OptVar);

end

100

102

104

106

108

1010

0 5 10 15 20 25
sample points

cy
cl

es

Figure 5.14. Number of fatigue cycles to failure at each sample point (circles), with constraint
violating points (crosses). The objective function failed for four of the initial samples, with 18 of the
infill point evaluations being successful.

Constraints 139

Figure 5.14 shows the objective function values of all the successful spring evaluations.
Designs which violated one or both constraints are indicated by a cross. The best design,
with 6�8×108 cycles to failure, was found to be the seventh infill point. By comparing this
to the fatigue cycles values on the Pareto front in Figure A.9 in the appendix, it can be seen
that we have successfully identified one end of the optimal trade-off. After the next few
infill points, with higher objective values, but which violated constraint(s), the search begins
to explore other areas of the design space, but does not find a better objective value.

5.7 Summary

In this chapter attention has focused on the role of surrogates when dealing with constrained
problems. It has been shown that a range of different approaches can be taken and a key
decision required by the designer is whether or not to seek, greedily, the best results at the risk
of missing possible global optima or, instead, to try and balance exploitation with exploration
to improve surrogate quality while at the same time finding good designs. Various Kriging
based alternatives have been set out and demonstrated on a simple two-dimensional example
problem.

References
Forrester, A. I. J., Sóbester, A. and Keane, A. J. (2006) Optimisation with missing data. Proceedings of the Royal

Society A, 462(2067), 935–945.
Little, R. J. A. and Rubin, D. B. (1987) Statistical Analysis with Missing Data, John Wiley & Sons, Inc, New York.
Schönlau, M. (1997) Computer Experiments and Global Optimization. PhD thesis, University of Waterloo, Waterloo,

Ontario, Canada.
Siddall, J. N. (1982) Optimal Engineering Design: Principles and Applications, Marcel Dekker, New York.

6
Infill Criteria with Noisy Data

The infill criteria presented in Section 3.2 were formulated on the premise that the true
engineering function to be approximated is smooth and continuous. Thus we can use a
smooth, continuous interpolating surrogate in lieu of calculations of the true function. Most
functions that are encountered do indeed have smooth and continuous trends, but function
evaluations are often scattered about this trend due to errors in the physical experiment or
computer simulation used to calculate the function. One of the key advantages of using
a surrogate is that the scatter, or noise, can be filtered out, leaving a smooth trend to be
searched by the optimization algorithm.

An example of ‘noisy’ data from a computer experiment is shown in Figure 6.1. The figure
shows the drag coefficient �CD� found from 101 Computational Fluid Dynamics (CFD)
simulations of an aerofoil as a shape parameter changes (see the Appendix, Section A.3,
for more information on the aerofoil data). There is an obvious trend in the data, but the
small degree of scatter about this trend can make optimization rather difficult. Figure 6.2
shows a max�E�I�x��� search of a Kriging approximation starting from a uniform sampling
plan of four points. Even for this one-variable example the search is running into trouble
after five updates. Note how the prediction is becoming erratic and there is high expected
improvement in areas far from the optimum. It is easy to see that the search process is failing
and where the true optimum is in this simple problem, but in a high-dimensional problem
the update process might continue to search in areas of poor designs based on high, but
misleading, expectations of improvement.

We have already considered the most simple form of noise filtering models in Section 2.2,
that is polynomial regression. By using any surrogate to filter noise we are assuming that the
function is smooth, but polynomial approximations go further to assume that the function
takes on a specific form. This approach can naturally lead to under- or overfitting, with key
trends in the data being filtered out along with the noise. Instead, an RBF or Kriging model
(recall Section 2.4) can be modified to filter noise without having to guess the underlying

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

142 Engineering Design via Surrogate Modelling

0 0.2 0.4 0.6 0.8 1
0.028

0.03

0.032

0.034

0.036

0.038

0.04

x

C
D

Figure 6.1. An example of data containing ‘noise’ due to dicretization error. See the Appendix,
Section A.3, for details on this aerofoil design problem.

0 0.5 1
0.02

0.03

0.04

x

0 0.5 1
x

0 0.5 1
x

0 0.5 1
x

C
D

C
D

C
D

C
D

0 0.5 1
0

5

x

0 0.5 1
x

0 0.5 1
x

0 0.5 1
x

E
[I(

x)
]

0.02

0.03

0.04

0

2

4

E
[I(

x)
]

0.02

0.03

0.04

0

0.5

1

E
[I(

x)
]

0.02

0.03

0.04

0

5
× 10−4

× 10−4

× 10−4

× 10−6

E
[I(

x)
]

Figure 6.2. A series of max�E�I�x��� updates of a Kriging interpolation. The process is beginning
to run into trouble as the � matrix becomes ill-conditioned after the fourth update.

Infill Criteria with Noisy Data 143

structure of the function. This can also be achieved using support vector regression, but
using an RBF or Kriging model, which can be thought of as a SVR with all points as support
vectors, has the added benefit of more readily obtainable error estimates.

6.1 Regressing Kriging

In the derivation of the Kriging predictor in Section 2.4 we showed how the prediction
interpolates the data because at a sample location the vector of correlations of the predicted
point with the sample data � is a column of the correlation matrix � . To filter noise, a
regression constant � can be added to the leading diagonal of � (Hoerl and Kennard, 1970;
Tikhonov and Arsenin, 1977), that is, we now have � +�I (I is an n×n identity matrix),
so that, as �x�i� − x� → 0	 cor�x�i�	 x� = 1 +�. Now � is never a column of � and so the
data is not interpolated. Using the same method of derivation as for interpolating Kriging,
the regressing Kriging prediction is given by

ŷr =
̂r +�T�� +�I�−1�y −1
̂r�	 (6.1)

where

̂r = 1T�� +�I�−1y
1T�� +�I�−11

� (6.2)

The last plot of Figure 6.2 is reproduced in Figure 6.3, but with a Kriging regression included,
which provides a far more feasible prediction of the true function.

0 0.2 0.4 0.6 0.8 1
0.028

0.03

0.032

0.034

0.036

0.038

0.04

x

C
D

interpolation
regression
sample points

Figure 6.3. A regressing Kriging model significantly improves the interpolating Kriging prediction,
which is reproduced from the final plot of Figure 6.2.

144 Engineering Design via Surrogate Modelling

The regression constant � is determined using maximum likelihood estimation in a similar
manner as the other model parameters (see Section 2.4.1). Indeed, the only deviation from
the code in Section 2.4.1, which builds � is the addition of � to the leading diagonal:1

Psi=Psi+Psi’+eye(n)+eye(n).∗ lambda;

Suitable upper and lower bounds for the search of an MLE for � are 10−6 and 1 respectively.
The Kriging regression in Figure 6.3 was produced using reglikelihood.m and
regpredictor.m in the same manner as described for Kriging interpolation in Section 2.4.

6.2 Searching the Regression Model

In order to search the regressing Kriging model using E�I�x�� we require an estimate of the
error in the model. By following the same derivation as for the interpolating Kriging model,
but including the regression constant �, we obtain the following expression:

ŝ
2
r �x� = �̂ 2

r

[
1+�−�T�� +�I�−1� + 1−1T�� +�I�−1�

1T�� +�I�−11

]
	 (6.3)

where

�̂ 2
r = �y −1
̂r�

T�� +�I�−1�y −1
̂r�

n
� (6.4)

(a full derivation can be found in Hoyle, 2006). Equation (6.3) includes the error associated
with the noise in the data. This means that there is a predicted error at the sample points (note
that Equation (6.3) does not reduce to zero when x ∈ X). Figure 6.4 shows the estimated
error, found using Equation (6.3), in the regression prediction shown in Figure 6.3. With
nonzero error in all areas there is also an expectation of improvement in all areas, and so
there is the possibility of re-sampling during a max�E�I�x��� search. In a situation where
a repeated experiment may yield a new result, i.e. a stochastic physical experiment, this is
a desirable characteristic of a search. The possibility of re-sampling means that the search
cannot be guaranteed to find the global optimum, but this is expected when the data contain
errors.

When repeated experiments yield identical results, i.e. they are deterministic, re-sampling
is not only counter-intuitive but would lead to a stalled search process. Figure 6.5 shows
what happens if we employ a max�E�I�x��� infill strategy using regressing Kriging. In
the first plot the initial regressing prediction passes close to, but not through, four sample
points, thus leading to a predicted error at these points. A high expected improvement is
seen at the best sample point due to the low function value and predicted error at this
location. The maximum of the expected improvement is in fact adjacent to the sample

1 In fact we were already employing a very small amount of regression (using eye(n).∗eps) to help prevent
ill-conditioning of � during the likelihood maximization.

Infill Criteria with Noisy Data 145

0 0.2 0.4 0.6 0.8 1
2.2

2.3

2.4

2.5

2.8

2.7

2.6

2.9

3

x

pr
ed

ic
tio

n
an

d
no

is
e

er
ro

rs

× 10−4

Figure 6.4. The estimated error in the regressing Kriging model including the errors due to the
‘noise’ in the data.

0 0.5 1
0.02

0.03

0.04

x

0 0.5 1
x

0 0.5 1
x

C
D

C
D

C
D

0 0.5 1
0

0.5

1

x

0 0.5 1
x

0 0.5 1
x

E
[I(

x)
]

0.02

0.03

0.04

0

2

4

E
[I(

x)
]

0.02

0.03

0.04

0

1

2

E
[I(

x)
]

× 10−5

× 10−5

× 10−5

Figure 6.5. Updates using maximum E�I�x�� of a Kriging regression.

point and an infill point is applied here, the model parameters are re-optimized with the new
point included and a new prediction is made. The process is repeated for a second infill
point, but after this stage the expected improvement is at a maximum at the location of the
first update point. The optimization is now stalled and cannot progress towards the optimum.
Even if the maximum of the expected improvement does not occur at a sample point, it is
seen from the first two updates that, prior to stalling, the optimization progresses very slowly

146 Engineering Design via Surrogate Modelling

when using this method of updating. The expected improvement is not diminishing since
there is no change in the function, nor in the error, as all points are closely packed together.
The incorrect approximation of the error also means that the sample points will not be dense
and so global convergence cannot be guaranteed.

6.2.1 Re-Interpolation

To solve this problem we re-define error to mean uncertainty in the result and therefore
eliminate the errors due to ‘noise’ from our model. This is achieved by basing the estimated
error on an interpolation of points predicted by the regression model at the sample locations.2

The error in the model excluding the error due to noise is found as follows. First we find
values for the Kriging regression at the sample locations. The column vector of these values
is given by

ŷr = 1
̂+� �� +�I�−1�y −1
̂�� (6.5)

This can now be substituted into the expression for the interpolating Kriging predictor
(Equation (2.40)), which in turn is substituted into the variance MLE (Equation (2.31))
to give

�̂2
ri = �y −1
̂�T�� +�I�−1� �� +�I�−1�y −1
̂�

n
� (6.6)

This expression for the variance is then used in the interpolating Kriging error estimate to
give a re-interpolation error estimate:

ŝ
2
ri�x� = �̂2

ri

[
1−�T�−1� + 1−1T�−1�

1T�−11

]
(6.7)

The model parameters remain unchanged from the original regression model, with no
need to re-tune. The estimated error in the regression prediction shown in Figure 6.3 from
Equation (6.7) is shown in Figure 6.6. Note how the error now diminishes to zero at the
sample points, meaning that max�P�I�x��� and max�E�I�x��� infill criteria will regain their
global convergence properties when using this method of error estimation. The function
reintpredictor.m implements this error formulation and can be used in the same way
as regpredictor.m.

A max�E�I�x��� infill strategy based on this method of re-interpolation, and executed using
the MATLAB code below, is shown in Figure 6.7. The initial prediction is identical to that in
Figure 6.5, but the expected improvement is based on the same prediction interpolating the
points shown as crosses. The expected improvement diminishes to zero at all sample points
and the regression model produces a smooth prediction of the function, guiding the search
towards the optimum, despite the ‘noise’ in the data. Note that, contrary to the interpolating
update example in Figure 6.3, the expected improvement diminishes steadily throughout the

2 There can be no certainty that the noise filtering offered by the addition of the � regression constant removes
errors solely due to noise. There may be some smoothing of trends in the data, though this will be minimal as the
sampling density increases during a search/update process.

Infill Criteria with Noisy Data 147

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

1.2

1

0.8

1.4

1.6

x

pr
ed

ic
tio

n
er

ro
r

× 10−6

Figure 6.6. The estimated error in the regressing Kriging model excluding the errors due to the
‘noise’ in the data.

0 0.5 1

0 0.5 1

0 0.5 1

0 0.5 1

0 0.5
x x

1

0.5 1

0.5 1

0.5 1

0.5 1

0.5 1

0.02

0.03

0.04

0.02

0.03

0.04

0.02

0.03

0.04

0.02

0.03

0.04

0.02

0.03

0.04

C
D

C
D

C
D

C
D

C
D

0

1

2

x

E
[I(

x)
]

0

2

4

E
[I(

x)
]

0

1

2

E
[I(

x)
]

0

0.5

1

E
[I(

x)
]

0

2

4

E
[I(

x)
]

× 10−4

× 10−5

× 10−6

× 10−8

× 10−81

Figure 6.7. Updates using maximum E�I�x�� of a Kriging re-interpolation.

148 Engineering Design via Surrogate Modelling

optimization process (note that the scale of E�I�x�� changes from plot to plot). Indeed, when
using re-interpolation to remove the errors due to noise, the estimated error can diminish to
a level where problems with floating point underflow occur when calculating E�I�x�� (see
the mathematical note at the end of this section).

% Create sampling plan
n=4;
k=1;
ModelInfo.X=[0 0.33 0.66 1]’;

% Calculate observed data
for i=1:n

ModelInfo.y(i,1)=aerofoilcd(ModelInfo.X(i));
end

% Start iterating infill points
for I=1:4

% Tune regressing Kriging model
[Params,MaxLikelihood]= � � �
ga(@reglikelihood,2,[],[],[],[],[-3 -6],[2 0]);

% Extract model parameters
ModelInfo.Theta(1:k)=Params(1:k);
ModelInfo.Lambda=Params(end);

% Put Choleski factorization of Psi
% into ModelInfo
[NegLnLike,ModelInfo.Psi,ModelInfo.U]= � � �
reglikelihood([ModelInfo.Theta ModelInfo.Lambda]);

% Find location which maximizes EI of re–interpolation
ModelInfo.Option=‘NegLogExpImp’;
[OptVar,OptEI]=ga(@reintpredictor,1,[],[],[],[],0,1);

% Add infill point
ModelInfo.X(end+1)=OptVar;
ModelInfo.y(end+1)=aerofoilcd(ModelInfo.X(end));

end

Mathematical Note: Avoiding Floating Point Underflow When Calculating E[I(x)]

The expected improvement (Equation (3.7)) is typically calculated as

�min�y�− ŷ�x��

[
1
2

+ 1
2

erf
(

min�y�− ŷ�x�√
2 ŝ�x�

)]
+ ŝ�x�√

2
exp

[
− �min�y�− ŷ�x��2

2 ŝ 2�x�

]
(6.8)

(continued)

Infill Criteria with Noisy Data 149

When using re-interpolation ŝ�x� is typically small and so erf��� → −1 and exp��� → 0. This
often leads to floating point underflow and E�I�x�� = 0. Using the substitution a = �min�y� −
ŷ�x��/

√
2̂s�x�, when a � −1	 erf�a� can be expressed using a Maclaurin series expansion and

the first term of Equation (6.8) becomes

�min�y�− ŷ�x��

[
1

2
√

exp�−a2�

�∑
n=0

�−1�n�2n−1�!!
2n

a−�2n+1�

]

Note that exp�−a2� appears in the second term in Equation (6.8) and so E�I�x�� can now be
expressed as [

�min�y�− ŷ�x��
1

2
√

�∑
n=0

�−1�n�2n−1�!!
2n

a−�2n+1� + ŝ�x�√
2

]

× exp
[
− �min�y�− ŷ�x��2

2̂s 2�x�

]
(6.9)

We can now take natural logarithms and ln E�I�x�� can be searched by the optimizer without
problems with floating point underflow. This note is drawn from Forrester et al. (2007).

6.2.2 Re-Interpolation With Conditional Likelihood Approaches

The inclusion of the regression parameter � is more problematic in conditional likelihood
based infill criteria. Recall from Section 3.2 that in such approaches we force the prediction
to pass through a hypothesized point and re-optimize the model parameters to see how
likely that point is. Using the regressing Kriging formulation directly will result in the
hypothesized point being filtered out as noise, by � increasing upon re-optimization of the
model parameters. This makes no sense, whether the data is from a physical or a computer
experiment. In the case of physical experiments the fix is simple: we can hold � constant
at the MLE found for the observed data. This ensures that no extra regression will be
used simply because the hypothesized point is unreasonable. This fix is not sufficient for
computer experiments, because there is a possibility of maximizing the conditional likelihood
at a previously sampled point. Thus the infill strategy may stall in similar scenarios to the
max�E�I�x��� criterion considered in the previous section.

Figure 6.8 shows the progress of a goal seeking infill strategy on the aerofoil design
problem using this regressed conditional likelihood method. The MATLAB code used to
perform the infill strategy is shown below. Only a slight change to the original goal seeking
code in Section 3.2.4 is required: namely the addition of an extra model parameter for
the search of reglikelihood.m and the use of regcondlikelihood.m instead of
condlikelihood.m. The goal is CD = 0�0292. Initially the MLE for � is very low and the
conditional likelihood diminishes to almost zero at the sample points. As points begin to cluster
the MLE for � increases and the conditional likelihood has a wide peak in the region of the
optimum despite there being sample points here, leading to a stalled search after three updates.
The code would actually keep running inside thewhile loop because the goal is never reached.

150 Engineering Design via Surrogate Modelling

0 0.5 1
0.02

0.03

0.04

x
0 0.5 1

x

0 0.5 1
x

0 0.5 1
x

0 0.5 1
x

0 0.5 1
x

C
D

C
D

C
D

C
D

0

1

2

C
on

d.
 L

ik
e.

0.02

0.03

0.04

0

1

2

C
on

d.
 L

ik
e.

0.02

0.03

0.04

0 0.5 1
0

1

2

x

C
on

d.
 L

ik
e.

0.02

0.03

0.04

0 0.5 1
0

5

10

x

C
on

d.
 L

ik
e.

× 1011

× 1014

× 1017

× 1021

Figure 6.8. A goal seeking search of the aerofoil problem using regressing Kriging.

global ModelInfo
% Create sampling plan
n=4;
k=1;
ModelInfo.X=[0 0.33 0.66 1]’;

% Calculate observed data
for i=1:n

ModelInfo.y(i,1)=aerofoilcd(ModelInfo.X(i));
end

% Set goal
ModelInfo.Goal=0.0292;

% Iterate infill points until goal is met
while min(ModelInfo.y)>ModelInfo.Goal

% Tune regressing Kriging model
[Params,MaxLikelihood]=ga(@reglikelihood,2,[],[],[],[], � � �
[-3 -6],[2 0]);

% Extract model parameters
ModelInfo.Theta(1:k)=Params(1:k);
ModelInfo.Lambda=Params(end);

% Put Choleski factorization of Psi
into ModelInfo

(continued)

Infill Criteria with Noisy Data 151

[NegLnLike,ModelInfo.Psi,ModelInfo.U]=reglikelihood � � �
([ModelInfo.Theta ModelInfo.Lambda]);

% Find location which maximizes likelihood of goal
[OptVar,NegCondLike]=ga(@regcondlikelihood,2,[],[],[],[], � � �
[-3 0],[3 1]);

% Add infill point
ModelInfo.X(end+1)=OptVar(k+1:end);
ModelInfo.y(end+1)=aerofoilcd (ModelInfo.X(end));

end

To solve this problem of high conditional likelihoods at sample points we re-
interpolate the observed data before finding the conditional likelihood. The function
reintcondlikelihood.m achieves this through the addition of the following few lines
of code to the original condlikelihood.m function:

� � �
% Replace observed data with regressed points
ModelInfo.Option=‘Pred’;
for I=1:n

y(i,1)=regpredictor(ModelInfo.X(i));
end
� � �

0 0.5 1
0.02

0.03

0.04

x
0 0.5 1

x

0 0.5 1
x

0 0.5 1
x

0 0.5 1
x

0 0.5 1
x

0 0.5 1
x

0 0.5 1
x

0

1

2

C
on

d.
 L

ik
e.

0.02

0.03

0.04

0

1

2

C
on

d.
 L

ik
e.

0.02

0.03

0.04

0

2

4

C
on

d.
 L

ik
e.

0.02

0.03

0.04

0

2

4

C
on

d.
 L

ik
e.

C
D

C
D

C
D

C
D

× 1011

× 1014

× 1016

× 1020

Figure 6.9. A goal seeking search of the aerofoil problem using re-interpolation.

152 Engineering Design via Surrogate Modelling

The progress of an infill strategy based on this re-interpolated conditional likelihood is
shown in Figure 6.9. As expected, the conditional likelihood drops to zero at all sample
locations and the search is truly global.

6.3 A Note on Matrix Ill-Conditioning

The use of the regression constant � filters noise and reduces ill-conditioning of the
correlation matrix. When re-interpolating the data, there are no longer problems with noise,
but ill-conditioning can still be a problem, even though the data is now smooth. This is not
normally a problem if data is sparse, which is usually the case when employing surrogates.
As data become more dense, � can become ill-conditioned and the Cholesky factorization
may fail. LU decomposition will always provide an answer when used to invert � but, with
an ill-conditioned � , this answer will be unreliable and it is preferable to add a small value to
the leading diagonal of � (usually between eps and 10−6), i.e. some regression is still used.
It is possible to direct the model parameter search towards parameters that produce well-
conditioned matrices by applying a penalty when the matrix of the Cholesky factorization
fails. For example, the following code is used in our MATLAB likelihood functions:

[U,p]=chol(Psi);
if p>0

NegCondLnLike=1e4;
else
� � �
% Likelihood calculation
� � �
end

6.4 Summary

In this chapter we have concentrated on what we believe to be the most appropriate methods
for dealing with noise in surrogate model based optimization. However, these are by no
means the only solutions to the problem. A least-squares Kriging regression can be obtained
directly by solving the prediction equation (2.40) using singular value decomposition (SVD)
(Press et al., 1992), which is simple to implement in MATLAB by using svd.m in place
of chol.m in a Kriging interpolation. However, the error estimates obtained may lead to
stalled or lengthy optimization processes.

In Section 2.2 the use of polynomial regression has been discussed. Further research in the
use of polynomials with ‘noisy’ data in an engineering design context can be found in Kim
et al. (2001), Narducci et al. (1995) and Papila and Haftka (2000). Section 2.5 discussed
the use of SVR. This method is still in its infancy in terms of engineering optimization and
little research is available. A good starting point is Schölkopf and Smola (2002).

While we have spent some time discussing the regressing Kriging method, we have not
entered into a full derivation of the regressing Kriging error estimate, since it is not required
for practical implementation. The derivation and further discussion on noise in surrogate
based optimization can be found in Forrester et al. (2006).

Infill Criteria with Noisy Data 153

References
Forrester, A. I. J., Keane, A. J. and Bressloff, N. W. (2006) Design and analysis of ‘noisy’ computer experiments.

American Institute of Aeronautics and Astronautics Journal, 44(10), 2331–2339.
Forrester, A. I. J., Sobester, A. and Keane, A. J. (2007) Multi-fidelity optimization via surrogate modelling.

Proceedings of the Royal Society A, 463(2088), 3251–3269, (doi:10.1098/rspa.2007.1900).
Hoerl, A. E. and Kennard, R. W. (1970) Ridge regression: biased estimation for nonorthogonal problems.

Technometrics, 12(1), 55–67, February.
Hoyle, N. (2006) Automated Multi-stage Geometry Parameterization of Internal Fluid Flow Applications. PhD

thesis, University of Southampton, Southampton.
Kim, H., Papila, M., Mason, W., Haftka, R. T., Watson, L. T. and Grossman, B. (2001) Detection and repair

of poorly converged optimization runs. American Institute of Aeronautics and Astronautics Journal, 39(12),
2242–2249, December.

Narducci, R., Grossman, B., Valorani, M., Dadone, A. and Haftka, R. T. (1995) Optimization methods for non-
smooth or noisy objective functions in fluid design problems, in 12th AIAA Computational Fluid Dynamics
Conference, San Diego, California, AIAA-1995-1648, June.

Papila, M. and Haftka, R. T. (2000) Response surface approximations: noise, error repair, and modeling errors.
American Institute of Aeronautics and Astronautics Journal, 33(12), 2336–2343, December.

Press, W. H., Flannery, B. P., Teulolsky, S. A. and Vetterling, W. T. (1992) Numerical Recipes in C, 2nd edition,
Cambridge University Press.

Schölkopf, B. and Smola, A. J. (2002) Learning with Kernals, MIT Press, Cambridge, Massachusetts.
Tikhonov, A. N. and Arsenin, V. Y. (1977) Solutions of Ill-posed Problems, Winston, Washington.

7
Exploiting Gradient Information

A key benefit of a surrogate model based search is that the gradients of the objective function
are not required. If gradient information is available, the designer may in fact choose to
employ a localized gradient descent search of the objective function with no surrogate model.
However, if a global optimum is sought, the gradient information can be used to enhance the
accuracy of a surrogate model of the design landscape, which can then be searched using a
global optimizer.

Although we are concerned mainly with the process of building and searching a surrogate
model which utilizes gradients, we begin this chapter with a brief overview of how gradients
of the objective function might be obtained. We then go on to show how this information
(and higher derivatives) can be used to enhance the surrogate model.

7.1 Obtaining Gradients

7.1.1 Finite Differencing

The simplest way to obtain gradient information is through finite differencing. Using a
one-sided forward difference the gradient in the lth dimension is found by

�f�x�

�xl

= f�x +h�−f�x�

h
+��h�� (7.1)

where h is a vector of zeros of length k with the lth element set to h, the finite difference
step. The truncation error is ��h�. Using central differencing the lth gradient is found by

�f�x�

�xl

= f�x +h�−f�x −h�

2h
+��h2�� (7.2)

An additional k (forward differencing) or 2k (central differencing) calculations of the
objective function are required to find all k derivatives. The choice of the step size h
represents something of a dilemma – a small step reduces the truncation error but increases
errors due to subtractive cancellation. This is the only method for calculating derivatives if
we do not have access to the objective function source code.

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

156 Engineering Design via Surrogate Modelling

7.1.2 Complex Step Approximation

With access to the source code, derivatives may be found more accurately using a complex step
approximation (Squire and Trapp, 1998). By defining the vector x as a complex variable, x+ ih,

�f�x�

�xl

= ��f�x + ih��

h
+��h2�� (7.3)

where ���� is the imaginary part of the complex objective function. Computing gradients
this way is more expensive than finite differencing, since complex arithmetic is more time
consuming. However, because there is no subtractive cancellation, h can be very small
and so the truncation error which is ��h2� can be all but eliminated. Most programming
languages can perform complex arithmetic and so implementation is quite straightforward.
Some operators such as abs() (which is not analytic) must be overloaded to permit the use
of complex numbers (see Martins et al., 2003, for more details on implementation).

The additional evaluations required to compute gradients using finite difference and
complex step approximation methods would likely be better spent on producing a more
space-filling sampling plan (see Chapter 1). Gradient information is only useful if it can
be obtained more cheaply. The most promising ways of obtaining gradient information are
through Algorithmic Differentiation (AD) (also known as Automatic Differentiation, though
the term ‘automatic’ instills false hope, since manual intervention is required in most cases),
which requires access to the objective function source code, and adjoint codes, which require
the creation of a whole new source code.

7.1.3 Adjoint Methods and Algorithmic Differentiation

A detailed description of the adjoint method and AD is beyond the scope of this book, but
we will highlight the strengths and weaknesses of each method. Further information on the
adjoint approach can be found in Giles and Pierce (2000) and for more details on AD see
Griewank (2000).

The adjoint approach comes in two flavours: the discrete approach, where governing
equations are discretized before forming the adjoint, and the continuous approach, where
the adjoint formulation deals directly with the governing equations and is then discretized.
The benefits of the discrete approach are that the exact gradient of the discrete objective
function is obtained and the creation of the adjoint problem is more straightforward. Using
the continuous approach, the physical significance of the adjoint variables and the role of
the adjoint boundary conditions is clearer and the adjoint program is simpler and requires
less memory (Giles and Pierce, 2000).

AD can be performed in forward mode or reverse mode. In forward mode the computer
program to be differentiated is decomposed into elementary operations whose derivatives are
accumulated according to the chain rule. If all derivatives are required, this process leads to a
k-fold increase in computational cost compared to evaluating f�x� alone. Although equivalent
in computational cost to one-sided finite differencing, forward mode AD is preferable, albeit
more difficult to implement, since more accurate derivatives are obtained. Forward mode
is equivalent to a complex step approximation, though it is more attractive in terms of
computational cost.

Exploiting Gradient Information 157

A forward mode AD plug-in for MATLAB called MAD has been developed by Forth (2005).
The authors have used this package successfully, finding its implementation particularly
straightforward.

In reverse mode the function value is calculated first before a backward pass to compute
the derivatives. The derivative of the final output is computed with respect to an intermediate
quantity, which can be thought of as an adjoint quantity. The reverse mode never requires
more than five times the cost of evaluating the underlying function (Griewank, 1989) and in
practice much higher computational efficiency can be obtained. As such the reverse mode
is preferred over the forward mode for all but very low dimensional problems (when the
benefit of computing gradients is doubtful anyway). A drawback with this method is that
memory requirements may be prohibitive for very high dimensional problems.

Other than at the beginning of the development of a new objective function code, the
designer does not have a choice between using the adjoint method or AD. In general the
adjoint approach is more efficient in terms of memory requirements, but requires more
programming effort than applying AD to the objective function code. AD provides exact
results for the derivatives and is arguably more suited to a continuously developing code.
The code can be differentiated by an AD tool after each modification, whereas development
of an adjoint code requires more laborious hand coding, which is more prone to errors.

Howsoever the derivatives of the objective function have been found, the methods by
which we incorporate them into the surrogate model are the same. This is the subject of the
remainder of this chapter.

7.2 Gradient-enhanced Modelling

The basis function methods in Sections 2.3 and 2.4 are built from the sum of a number of
basis functions centred around the sample data. The height of these functions determines
the value of the prediction at the sample points (usually such that the model interpolates
the data) and the width determines the rate at which the function moves away from this
value. If gradient information is available at the sample locations, we can incorporate this
into the model, using a second set of basis functions, also centred around the sample data.
The observed data is now a �k+1�n column vector:

y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y�1�

���
y�n�

�y�1�

�x
�1�
1
���

�y�n�

�x
�n�
1
���

�y�1�

�x
�1�
k
���

�y�n�

�x
�n�
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (7.4)

158 Engineering Design via Surrogate Modelling

The additional basis functions determine the gradient of the prediction at the sample points
and the rate at which the function moves away from this gradient. We will concentrate
on the use of Gaussian basis functions, that is Kriging with the exponent parameter
p set at 2.

The form of the basis function used to incorporate the gradient information is simply the
derivative of the first n Gaussian basis functions with respect to the design variables:

�	�i�

�x
�i�
l

=
� exp

(
−∑k

l=1
l�x
�i�
l −xl�

2
)

�x
�i�
l

= −2
l�x
�i�
l −xl�	

�i�� (7.5)

Note that it is necessary to use �x
�i�
l −xl� instead of �x�i�

l −xl� and set p = 2 in order that the
basis function can be differentiated through x

�i�
l −xl = 0. Figure 7.1 shows how this function

behaves as x
�i�
l −xl varies. Recall from Section 2.4 how the Kriging basis function had the

intuitive property that as x
�i�
l − xl → 0� 	 → 1, i.e. the value at xl approaches that at x

�i�
l .

In Figure 7.1 it is seen that �	/�x → 0 as x
�i�
l − xl → 0. Here we are looking at how the

prediction will be distorted from the model produced by the first n basis functions and so
it is also intuitive that no distortion should be applied at a sampled point (we can learn no
more about the value at this point than the sample data objective values). As we move away
from the point, the function pulls the prediction up or down. As before, the
l parameter
determines the activity of the function: a higher
l leads to a small region of distortion, with
the value of �	/�xl quickly returning to zero, while a low �	/�xl means that a larger area
is influenced by the value of the gradient in the lth direction at x�i�.

The −2
l�x
�i�
l − xl� multiplier means that the maximum value of the differentiated

correlation is affected by the value of
l. Referring to Figure 7.1, the higher value and steeper

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

xl − xl
(i)

−
2θ

(x
l

 −
 x

l)e
xp

[−
θ(

x l

−

 x
l)2]

(i
)

(i
)

θ = 0.1
θ = 1
θ = 10

Figure 7.1. Differentiated correlations for varying ��

Exploiting Gradient Information 159

slope of the
l = 10 correlation does not mean that it will lead to a prediction with a steeper
gradient through x�i� than lower
l’s. The height of the basis functions is dictated by the
constants � �y−1�� in the Kriging predictor (Equation (2.40)). Here we are purely concerned
with the effect of
l on the width of the correlations. The −2
l�x

�i�
l −xl� multiplier also means

that the differentiated correlation is not symmetric about x�i�. This is, of course, necessary if
a nonzero gradient is to be applied at x�i�: the predictor is distorted up on one side and down
on the other, with the direction and magnitude dictated by the sign and value of �̇ �y−1��.

But how do we construct �̇? In gradient-enhanced Kriging the correlation matrix �
must now include the correlation between the data and the gradients and the gradients
and themselves as well as the correlations between the data, and will be denoted by the
�k + 1�n × �k + 1�n matrix �̇ . The matrix, for a one dimensional problem �k = 1� is
constructed as follows:

�̇ =

⎛⎜⎜⎝ �
��

�x�i�

��

�x�j�

�2�

�x�i��x�j�

⎞⎟⎟⎠ � (7.6)

The superscripts in Equation (7.6) refer to which way round the subtraction is being
performed when calculating the distance in the correlation 	. This is not important when we
are squaring the result but, after differentiating, sign changes will appear depending upon
whether we differentiate with respect to x�i� or x�j�. Using the product and chain rule, the
following derivatives are obtained:

�� �i�j�

�x�i�
= −2
�x�i� −x�j��� �i�j�� (7.7)

�� �i�j�

�x�j�
= 2
�x�i� −x�j��� �i�j�� (7.8)

�2� �i�j�

�x�i��x�j�
= �2
 −4
2�x�i� −x�j��2�� �i�j�� (7.9)

In MATLAB, given that the � matrix has already been constructed (see Section 2.4), the
correlation matrix �̇ is built as follows:

% Pre–allocate memory
dPsidX=zeros (n,n); d2PsidX2=zeros (n,n);

% Build half matrices
for i=1:n

for j=i+1:n
dPsidX (i,j)=2 ∗ theta ∗ (X(i)-X(j))∗Psi (i,j);

d2PsidX2 (i,j)=(2∗ theta � � �
-4∗ theta∧2∗(X(i)-X(j))∧2∗Psi (i,j);

end
end

(continued)

160 Engineering Design via Surrogate Modelling

% Add upper and lower halves and diagonal
PsiDot=[Psi (dPsidX-dPsidX’); (dPsidX+dPsidX′)
(d2PsidX2+d2PsidX2’+eye(n) �∗�2∗theta���;

For problems with more dimensions �k > 1�, the correlation matrix becomes rather more
unwieldy:

�̇ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
��

�x
�i�
1

��

�x
�i�
2

· · · ��

�x
�i�
k

��

�x
�j�
1

�2�

�x
�i�
1 �x

�j�
1

�2�

�x
�i�
1 �x

�j�
2

· · · �2�

�x
�i�
1 �x

�j�
k

��

�x
�j�
2

�2�

�x
�j�
1 �x

�i�
2

�2�

�x
�i�
2 �x

�j�
2

· · · �2�

�x
�i�
2 �x

�j�
k

���
���

���
� � �

���

��

�x
�j�
k

�2�

�x
�j�
1 �x

�i�
k

�2�

�x
�j�
2 �x

�i�
k

· · · �2�

�x
�i�
k �x

�j�
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (7.10)

The additional correlation between the derivatives of different dimensions of the problem is

�2� �i�j�

�x
�i�
l �x

�i�
m

= −4
l
m�x
�i�
l −x

�j�
l ��x�i�

m −x�j�
m �� �i�j�� (7.11)

Noting that �̇ is built from three forms of correlation, ��/�xl� �2�/�xl�xm and �2�/�x2
l ,

an efficient method for constructing �̇ in MATLAB is as follows:

% Pre – allocate memory
PsiDot=zeros ((k+1)∗n, (k+1)∗n)
% Build upper half of PsiDot
for l=1:k
for m=l:k
if l==1

% Build upper half of dPsidX
for i=1:n
for j=i+1:n
PsiDot (i,m∗ n+j)=2∗ theta(m)∗(X(i,m)-X(j, m))∗ Psi(i,j);

end
end

% Add upper and lower halves
PsiDot (1:n,m ∗ n+1:(m+1)∗ n)=PsiDot (1:n,m ∗ n+1:(m+1)∗ n)� � �

- PsiDot (1:n,m∗ n+1:(m+1)∗ n)’;
end

(continued)

Exploiting Gradient Information 161

if m==l
% Build upper half of d2PsidX ∧2
for i=1:n
for j=i+1:n
PsiDot (l∗n+i, m∗n+j)= � � �
�2∗theta�l�−4∗theta�l�∧2∗ �X�i�l�−X�j�l��∧2�∗Psi�i�j�;

end
end

% Add half diagonal
PsiDot (l∗n+1:(l+1)∗ n,m∗n+1:(m+1)∗n)= � � �
PsiDot (l∗n+1:(l+1)∗n, m∗n+1:(m+1)∗ n)+eye(n).∗ theta(l);
else

% Build upper half of d2PsidXdX
for i=1:n
for j=i+1:n
PsiDot (l∗ n+i, m∗ n+j)= � � �
-4∗ theta (l)∗ theta (m)∗(X(i,l)-X(j,l))∗(X(i,m)-X(j,m)) � � �
∗ Psi(i,j);

end
end

% Add upper and lower halves
PsiDot (l∗ n+1:(l+1)∗ n,m∗ n+1:(m+1)∗ n)= � � �
PsiDot(l∗n+1:(l+1)∗n, m∗n+1:(m+1)∗ n)+PsiDot(l∗ n+1:(l+1) � � �
∗n,m∗n+1:(m+1)∗n)’;

end
end

end

% Add upper and lower halves to Psi
PsiDot=[Psi zeros (n,k∗ n); zeros (k∗ n,(k+1)∗ n)]+PsiDot+PsiDot’;

The � parameter is found by maximizing the concentrated ln-likelihood in the same manner
as for Kriging (see Section 2.4). Other than the above correlations, the only difference in the
construction of the gradient-enhanced model is that 1 is now a �k+ 1�n× 1 column vector
of n ones followed by nk zeros. The gradient-enhanced predictor is

ŷ�x� = �̂+ �̇
T
�̇−1�y −1�̂�� (7.12)

where

�̇ =
(

��
��

�x1

� � � � �
��

�xk

)T

� (7.13)

Figure 7.2 shows a contour plot of the Branin function along with a gradient-enhanced
Kriging prediction based on nine sample points. True gradients and gradients calculated
using a finite difference of the gradient-enhanced Kriging prediction are also shown. The
agreement between the functions and gradients is remarkable for this function, but the method
is unlikely to perform quite so well on true engineering functions.

162 Engineering Design via Surrogate Modelling

Figure 7.2. Contours of the Branin function (solid) and a gradient-enhanced prediction (dashed)
based on nine points (dots). True gradients (solid arrows) and gradients calculated using a finite
difference of the gradient-enhanced Kriging prediction (dashed arrows) are also shown. Note that the
true function and the prediction are so close that the solid contours and arrows almost completely
obscure their dashed counterparts.

7.3 Hessian-enhanced Modelling

We can take the use of gradients to the next step and include second derivatives in an Hessian-
enhanced Kriging model. The basis function used to incorporate the second derivative
information is the second derivative of the first n Gaussian basis functions with respect to
the design variables:

�2	�i�

�x
�i�2
l

=
�2 exp

[
−∑k

l=1
l�x
�i�
l −xl�

2
]

�x
�i�2
l

=
[
−2
l +4
2

l �x
�i�
l −xl�

2
]

	�i�� (7.14)

Figure 7.3 shows how the twice differentiated basis function behaves for varying
. Rather
counter-intuitively, the function does not reduce to zero as x�i� −x → 0. At the sample points
the weighting applied to 	 and 	̈ must be such that the model interpolates the data. More
intuitively, as
 increases the basis function has high curvature in the immediate vicinity
of x�i� and quickly returns to zero. As with 	̇, the maximum value of the basis function is
affected by
 and we must bear in mind that the height of the function will be modified by
the weights �̈ �y −1��.

Exploiting Gradient Information 163

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−20

−15

−10

−5

0

5

10

−
2θ

l +
 4

θ l
 (

x l
 −

 x
l)2

2
(i)

θ = 0.1
θ = 1
θ = 10

xl − xl
(i)

Figure 7.3. Twice differentiated correlations for varying �.

The correlations between the data and its first and second derivatives are described by a
�2k+1�n× �2k+1�n matrix:

�̈ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̇
�2�

�x
�i�2
1

�2�

�x
�i�2

2

� � �
�2�

�x
�i�2

k

�2�

�x
�j�2
1

�4�

�x
�i�2
1 �x

�j�2
1

�3�

�x
�i�2
1 �x

�j�
2

� � �
�3�

�x
�i�2
1 �x

�j�
k

�2�

�x
�j�2
2

�3�

�x
�j�
1 �x

�i�2
2

�4�

�x
�i�2
2 �x

�j�2
2

� � �
�3�

�x
�i�2
2 �x

�j�
k

���
���

���
� � �

���

�2�

�x
�j�2
k

�3�

�x
�j�
1 �x

�i�2
k

�3�

�x
�j�
2 �x

�i�2
k

� � �
�4�

�x
�i�2
k �x

�j�2
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (7.15)

The model parameters are tuned and predictions made in an equivalent manner to the
gradient-enhanced modelling in Section 7.2.

Figure 7.4 shows three predictions of our one-variable test function: Kriging, gradient-
enhanced Kriging and Hessian-enhanced Kriging. Given the small initial sample, the
maximum likelihood search yields a poor choice of
 = 100 (our upper bound) for the Kriging
model, producing a mean fit to the data with deviations to interpolate the sample data. It is
clear in this simple example that the Kriging model is poor and a lower
 would be more
appropriate. However, in a high-dimensional problem the shortcomings of the Kriging model
would not be so obvious. The gradient-enhanced model yields a more appropriate
 = 15�6
and this prediction is closer to the true function. The inclusion of second derivatives results
in an increased
 = 40�5, due to the high second derivative at x = 1 indicating a more active

164 Engineering Design via Surrogate Modelling

function. This prediction offers a significant improvement and has its minimum within the
basin of the deceptive global optimum.

The nine weighted basis functions and mean used to build the prediction in Figure 7.4
are shown in Figure 7.5. It is clear from this figure how each type of basis function affects

0.2 0.4 0.60 0.8 1
−10

−5

0

5

10

15

20

x

y

f(x)
sample points
kriging
GE kriging
HE kriging

Figure 7.4. Kriging, gradient-enhanced Kriging, and Hessian-enhanced Kriging predictions of f�x� =
�6x−2�2 sin�12x−4� using three sample points.

0.2 0.4 0.6 0 0.8 1
−6

−4

−2

0

2

4

6

8

x

y

wy
wdy/dx
wd2y/dx2

m

Figure 7.5. The nine basis functions used to construct the Hessian-enhanced Kriging prediction,
multiplied by their weights, w = �̈−1�y − 1��. These are added to the constant � to produce the
prediction in Figure 7.4.

Exploiting Gradient Information 165

the prediction. The first three �	� are simple deviations from the mean and the second three
�	̇� clearly match the gradient at the sample points. Of the final three bases �	̈�, the first
has little effect (the gradient is near constant at this point), the second works against 	 to
flatten the function, while the third adds to the curvature, resulting in the steep curve into
the global minimum.

7.4 Summary

The use of derivative information adds considerable complexity to the model and the
increased size of the correlation matrix leads to lengthier parameter estimation, but there
is clearly the possibility of building more accurate predictions. Schemes to reduce model
parameter estimation times for large correlation matrices are always the target of research
effort, though a panacea is yet to reveal itself!

Second derivatives are not often available to the designer but, with the increasing use of
algorithmic differentiation tools, models which can take advantage of this information may
soon provide significant speed-ups compared to using additional objective function values,
particularly in very high dimensional problems.

References
Forth, S. A. (2005) An efficient overloaded implementation of forward mode automatic differentiation in MATLAB.

ACM Transactions on Mathematical Software, 3(2), 195–222, June.
Giles, M. B. and Pierce, N. A. (2000) An introduction to the adjoint approach to design. Flow, Turbulance and

Combustion, 65, 393–2000.
Griewank, A. (1989) Chapter on Automatic differentiation, in Mathematical Programming: Recent Developments

and Applications, pp. 83–108, Kluwer Academic Publishers, Dordrecht, The Netherlands.
Griewank, A. (2000) Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Frontiers

in Applied Mathematics. SIAM, Philadelphia, Pennsylvania.
Martins, J. R. R. A., Sturdza, P. and Alonso, J. J. (2003) The complex-step derivative approximation. ACM

Transactions on Mathematical Software, 29, 245–262.
Squire, W. and Trapp, G. (1998) Using complex variables to estimate derivatives of real functions. SIAM Review,

40, 110–112.

8
Multi-fidelity Analysis

Often situations arise when we have more information about our objective function than the
simple vector of function values that we have considered elsewhere in this book. It may be,
for example, that as well as using finite element analysis or computational fluid dynamics,
a quick calculation can be made using empirical equations, more simple beam theory or
panel methods. A greater quantity of this cheap data may be coupled with a small amount of
expensive data to enhance the accuracy of a surrogate of the expensive function. To make
use of the cheap data, we must formulate some form of correction process which models the
differences between the cheap and expensive function(s).

Combining multiple sets of data naturally leads to a complex notation and we will try
to simplify this by limiting ourselves to two data sets. Our most accurate expensive data
has values ye at points Xe and the less accurate cheap data has values yc at points Xc. The
formulation of a correction process is simplified if the expensive function sample locations
coincide with a subset of the cheap sample locations �Xe ⊂ Xc�. The correction process will
usually take the form:

ye = Z�yc +Zd� (8.1)

With Zd = 0� Z� can take the form of any approximation model fitted to ye/yc�Xe�. Likewise,
with Z� = 1� Zd can take the form of an approximation fitted to ye −yc�Xe�. These processes
are then used to correct yc when making predictions of the expensive function fe. If the
correction process is simpler than fe, then we can expect predictions based on a large quantity
of cheap data with a simple correction to be more accurate than predictions based on a small
quantity of expensive data.

8.1 Co-Kriging

A more powerful method of calculating the correction processes is that of co-Kriging. The
following presentation of the co-Kriging method is based on Forrester et al. (2007).

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

168 Engineering Design via Surrogate Modelling

Co-Kriging is a form of Kriging that correlates multiple sets of data. Using our two sets
of data, cheap and expensive, we begin the co-Kriging formulation by concatenating the
sample locations to give the combined set of sample points

X =
(

Xc

Xe

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x�1�
c

���

x�nc�
c

x�1�
e

���

x�ne�
e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

As with Kriging, the value at a point in X is treated as if it were the realization of a stochastic
process. For co-Kriging we therefore have the random field

Y =
(

Yc�Xc�
Ye�Xe�

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Yc�x�1�
c �

���

Yc�x�nc�
c �

Ye�x�1�
e �

���

Ye�x�ne�
e �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Here we use the auto-regressive model of Kennedy and O’Hagan (2000), which assumes
that cov

{
Ye�x�i��� Yc�x��Yc�x�i��

} = 0� ∀x �= x�i�. This means that no more can be learnt
about Ye�x�i�� from the cheaper code if the value of the expensive function at x�i�

is known (this is known as a Markov property which, in essence, says we assume
that the expensive simulation is correct and any inaccuracies lie wholly in the cheaper
simulation).

Gaussian processes Zc��� and Ze��� represent the local features of the cheap and expensive
codes. Using the auto-regressive model we are essentially approximating the expensive code
as the cheap code multiplied by a constant scaling factor � plus a Gaussian process Zd���,
which represents the difference between �Zc��� and Ze���:

Ze�x� = �Zc�x�+Zd�x�� (8.2)

Where in Kriging we have a covariance matrix cov�Y�X�� Y�X�� = 	2� �X� X�, we now
have a covariance matrix constructed as follows:

cov�Yc�Xc�� Yc�Xc�� = cov�Zc�Xc��Zc�Xc��

= 	2
c �c�Xc� Xc�

cov�Ye�Xe�� Yc�Xc�� = cov��Zc�Xc�+Zd�Xc��Zc�Xe��

= �	2
c �c�Xc� Xe�

Multi-fidelity Analysis 169

cov�Ye�Xe�� Ye�Xe�� = cov��Zc�Xe�+Zd�Xe���Zc�Xe�+Zd�Xe��

= �2cov�Zc�Xe��Zc�Xe��+ cov�Zd�Xe��Zd�Xe��

= �2	2
c �c�Xe� Xe�+	2

d �d�Xe� Xe��

The notation �c�Xe� Xc�, for example, denotes a matrix of correlations of the form
c

between the data Xe and Xc. Our complete covariance matrix is thus:

C =
(

	2
c �c�Xc� Xc� �	2

c �c�Xc� Xe�

�	2
c �c�Xe� Xc� �2	2

c �c�Xe� Xe�+	2
d �d�Xe� Xe�

)
� (8.3)

The correlations are of the same form as Equation (2.20), but there are two correlations,

c and
d, and we therefore have more parameters to estimate: �c� �d� pc� pd and the
scaling parameter �. Our cheap data is considered to be independent of the expensive data
and we can find MLEs for �c� 	2

c � �c and pc by maximizing the ln-likelihood (ignoring
constant terms):

−n

2
ln�	2

c �− 1
2

ln ��c�Xc� Xc��−
�yc −1�c�

T�c�Xc� Xc�
−1�yc −1�c�

2	2
c

� (8.4)

By setting the derivatives of (8.4) w.r.t. �c and 	2
c to zero and solving, we find MLEs of

�̂c = 1T�c�Xc� Xc�
−1yc

1T�c�Xc� Xc�
−11

(8.5)

and

	̂2
c = �yc −1�̂c�

T�c�Xc� Xc�
−1�yc −1�̂c�

nc

� (8.6)

Substituting Equations (8.5) and (8.6) into (8.4) yields the concentrated ln-likelihood:

−nc

2
ln�	̂2

c �− 1
2

ln ��c�Xc� Xc�� (8.7)

and �̂c and p̂c (if not set at 2) are found by maximizing this equation. This is performed in
the same manner as for Kriging (see Section 2.4), using the function likelihoodc.m to
calculate the concentrated ln-likelihood.

To estimate �d� 	2
d � �d� pd and �, we first define

d = ye −�yc�Xe�� (8.8)

where yc�Xe� are the values of yc at locations common to those of Xe (the Markov property
implies that we only need to consider this data). If yc is not available at Xe, we may estimate
� at little additional cost by using Kriging estimates ŷc�Xe� found from Equation (2.40)
using the already determined parameters �̂c and p̂c. The ln-likelihood of the expensive data
is now

−n

2
ln�	2

d �− 1
2

ln ��c�Xc� Xc��−
�d −1�d�

T�d�Xe� Xe�
−1�d −1�d�

2	2
d

� (8.9)

170 Engineering Design via Surrogate Modelling

yielding MLEs of

�̂d = 1T�d�Xe� Xe�
−1d

1T�d�Xe� Xe�
−11

and

	̂2
d = �d −1�̂d�

T�d�Xe� Xe�
−1�d −1�̂d�

ne

� (8.10)

with �̂d� p̂d (again, if not set at 2) and �̂ found by maximizing

−ne

2
ln�	̂2

d �− 1
2

ln ��c�Xc� Xc��� (8.11)

The MATLAB function likelihoodd.m below can be used for this calculation.

function NegLnLiked=likelihoodd (x)
% Calculates the negative of the concentrated ln–likelihood
%
% Inputs:
% x – vetor of log(thetad) parameters
%
% Global variables used:
% ModelInfo.Xe – ne x k matrix of expensive sample locations
% ModelInfo.ye – ne x 1 vector of expensive observed data
% ModelInfo.yc – nc x 1 vector of cheap observed data
%
% Outputs:
% NegLnLiked–concentrated ln–likelihood ∗−1 for minimizing
%

global ModelInfo
Xe=ModelInfo.Xe;
ye=ModelInfo.ye;
yc=ModelInfo.yc;
[ne,k]=size(Xe);
thetad=10�∧x(1:k);
rho=x�k+1);
one=ones(ne,1);

% Pre – allocate memory
PsidXe=zeros(ne,ne);

% Build upper half of correlation matrix
for i=1:ne

for j=i+1:ne
PsidXe(i,j)=exp(-sum(thetad.∗(Xe(i,:) � � �
−Xe(j,:)).∧2));

end
end

% Add upper and lower halves and diagonal of ones plus

(continued)

Multi-fidelity Analysis 171

% small number to reduce ill–conditioning
PsidXe=PsidXe+PsidXe’+eye(ne)+eye(ne).∗eps;
% Cholesky factorization
[U,p]=chol(PsidXe);

% Use penalty if ill–conditioned
if p> 0

NegLnLiked=1e4;
else

% Sum lns of diagonal to find ln(det(Psi))
LnDetPsidXe=2∗sum(log(abs(diag(U))));
% Difference vector
d=ye−rho.∗yc(end-ne+1:end);
% Use back-substitution of Cholesky instead of inverse
mud=�one’∗(U\(U’\d)))/(one’∗(U\(U’\one)));
SigmaSqrd=(d−one�∗mud)’∗(U\(U’\(d−one�∗mud)))/ne;
NegLnLiked=-1∗(-(ne/2)∗log(SigmaSqrd)-0.5∗LnDetPsidXe);

end

As with Kriging (see Section 2.4), Equations (8.7) and (8.11) must be maximized
numerically using a suitable global search routine such as a genetic algorithm. Depending
upon the cost of evaluating the cheap and expensive functions fc and fe, for very high
dimensional problems the multiple matrix inversions involved in the likelihood maximization
may render the use of the co-Kriging model impractical (the size of the matrices depends
directly on the quantities of data available, and the number of search steps needed in the MLE
process is linked to the number of parameters being tuned). Typically a statistical model used
as a surrogate will be tuned many fewer times than the number of evaluations of fe required
by a direct search. The cost of tuning the model can therefore be allowed to exceed the cost
of computing fe and still provide significant speed-up. For large k and n the time required
to find MLEs can be reduced by using a constant �c�j and �d�j for all elements of �c and �d

to simplify the maximization, though this may affect the accuracy of the approximation.
To derive the co-Kriging predictor we follow a similar method to that of ordinary Kriging

(recall Section 2.4). The basis of this method is that we wish our prediction of a new expensive
point to be consistent with the observed data and the MLEs for the model parameters. We
therefore augment the observed data with a predicted value and maximize the likelihood of
this augmented data set by varying our prediction while keeping the model parameters fixed.
This gives us a MLE ŷe�x�.

The augmented data set is defined as X̃ = �XT
c XT

e xT�T and ỹ = �yT
c yT

e ŷe�x��
T, with the

covariance matrix C̃ given by⎛⎜⎝ 	̂2
c �c�Xc� Xc� �	̂2

c �c�Xc� Xe� �	̂2
c �c�Xc� x�

�	̂2
c �c�Xe� Xc� �2

c 	̂
2
c �c�Xe� Xe�+ 	̂2

d �d�Xe� Xe� ��2	̂2
c + 	̂2

d ��d�Xe� x�

�	̂2
c �c�Xc� x�T ��2	̂2

c + 	̂2
d ��d�Xe� x�T �2	̂2

c + 	̂2
d

⎞⎟⎠ �

172 Engineering Design via Surrogate Modelling

which, defining c as a column vector of the covariance of X and x, can be expressed as

C̃ =
(

C c
cT �2	̂2

c + 	̂2
d

)
� (8.12)

In Equations (8.4) and (8.9) it is seen that only the last term of the ln-likelihood contains
the sample data and so to find a MLE ŷe�x� we need to maximize:

−1
2

�̃y −1��TC̃−1�̃y −1���

which may be expressed as

−1
2

(
y −1�̂

ŷe�x�− �̂

)T(
C c
cT �2

c	̂
2
c + 	̂2

d

)−1(
y −1�̂

ŷe�x�− �̂

)
� (8.13)

The inverse of the augmented covariance matrix C̃−1 is found using the partitioned inverse
formula (Theil, 1971) (recall the mathematical note in Section 2.4):(

C−1 +C−1c��2	̂2
c + 	̂2

d − cTC−1c�−1cTC−1 −C−1c��2	̂2
c + 	̂2

d − cTC−1c�−1

−��2	̂2
c + 	̂2

d − cTC−1c�−1cTC−1 ��2	̂2
c + 	̂2

d − cTC−1c�−1

)
� (8.14)

Substituting (8.14) into (8.13) and ignoring terms without ŷe�x� we obtain(−1

2��2	̂2
c + 	̂2

d − cTC−1c�

)
�̂ye�x�− �̂�2 +

(
cTC−1�y −1�̂�

��2	̂2
c + 	̂2

d − cTC−1c�

)
�̂ye�x�− �̂��

This expression is maximized by taking the derivative with respect to ŷe�x� and setting
to zero: (−1

�2	̂2
c + 	̂2

d − cTC−1c

)
�̂ye�x�− �̂�+

(
cTC−1�y −1�̂�

��2	̂2
c + 	̂2

d − cTC−1c�

)
= 0� (8.15)

Solving for ŷe�x� now gives

ŷe�x� = �̂+ cTC−1�y −1�̂�� (8.16)

If we make a prediction at one of the expensive points, x�n+1� = x�i�
e and c is the nc +

ith column of C, then cTC−1 is the nc + ith unit vector and ŷe�x�i�
e � = �̂ + y�nc+i� − �̂ =

y
�i�
e . We see, therefore, that Equation (8.16) is an interpolator of the expensive data (just

like ordinary Kriging), but will in some sense regress the cheap data unless it coincides
with ye.

The estimated mean squared error in this prediction is similar to the Kriging error
(Equation (3.1)), and is calculated as

ŝ 2�x� ≈ �2	̂2
c + 	̂2

d − cTC−1c + 1−1TC−1c
1TC−11

� (8.17)

Multi-fidelity Analysis 173

For x = x�i�
e � cTC−1 is the nc + ith unit vector, cTC−1c = c�nc+i� = �2

c	
2
c +	2

d and so ŝ 2�x�
is zero (just like ordinary Kriging). For Xc \Xe� s2�x� �= 0 unless ye = yc�Xe�. The error at
these points is determined by the character of Yd. If this difference between �Yc�Xe� and
Ye�Xe� is simple (characterized by low �d�j’s) the error will be low, whereas a more complex
difference (high �d�j’s) will lead to high error estimates.

By using Equation (8.17) we can formulate the various infill criteria discussed in
Section 3.2. MATLAB code to calculate these infill criteria is available on the book website.

As shown for ordinary Kriging in Chapter 6, a regression parameter can be added to the
leading diagonal of the correlation matrix when noise is present. In fact, two parameters may
be used: one for the cheap data and one for the expensive data.

8.2 One-variable Demonstration

We will now look at how co-Kriging behaves using a simple one-variable function example.
Imagine that our expensive to compute data is calculated by the function fe�x� = �6x −
2�2 sin�12x − 4�� x ∈ 0� 1�, and a cheaper estimate of this data is given by fc�x� = Afe +
B�x − 0�5�−C. We sample the design space extensively using the cheap function at Xc =
�0� 0�1� 0�2� 0�3� 0�4� 0�5� 0�6� 0�7� 0�8� 0�9� 1�, but only run the expensive function at four of
these points, Xe = �0� 0�4� 0�6� 1�.

Figure 8.1 shows the functions fe and fc with A = 0�5� B = 10 and C = −5. A Kriging
prediction through ye gives a poor approximation to the deliberately deceptive function, but
the co-Kriging prediction lies very close to fe, being better than both the standard Kriging

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

x

y

fe
fc
ye
yc
Kriging through ye
co-Kriging

Figure 8.1. A one variable co-Kriging example. The Kriging approximation using four expensive
data points �ye� has been significantly improved using extensive sampling from the cheap function �yc�.

174 Engineering Design via Surrogate Modelling

model and the cheap data. This co-Kriging prediction was produced using the MATLAB code
below:

global ModelInfo
% Expensive points
ModelInfo.Xe=[0; 0.4; 0.6; 1];

% Cheap points
ModelInfo.Xc=[0.1;0.2;0.3;0.5;0.7;0.8;0.9;0;0.4;0.6;1];
k=1;

% Calculate expensive observations
for i=1:size(ModelInfo.Xe,1)

ModelInfo.ye(i,1)=onevar(ModelInfo.Xe(i));
end

% Calculate cheap observations
for i=1:size(ModelInfo.Xc,1)

ModelInfo.yc(i,1)=cheaponevar(ModelInfo.Xc(i));
end

% Estimate cheap model parameters
ModelInfo.Thetac=fminbnd(@likelihoodc, −3�3);

% Estimate difference model parameters
Params=ga(@likelihoodd, k+1,[],[],[],[],�−3 −5�,[3 5]);
ModelInfo.Thetad=Params(1:k);
ModelInfo.rho=Params (k+1);

% Construct covariance matrix
buildcokriging

% Make predictions in range 0,1
Xplot=0:0.01:1;
ModelInfo.Option=‘Pred’;
for i=1:101

pred(i)=cokrigingpredictor(Xplot(i));
end

Note that, since there is no need to calculate C in either of the likelihood maximizations,
an additional function buildcokriging.m is used for this purpose. Despite the
considerable differences between fe and fc, a simple relationship has been found between
the expensive and cheap data and the estimated error reduces almost to zero at Xc (see
Figure 8.2).

We have chosen the relationship between our low- and high-fidelity test function in order
to show how the parameters of the co-Kriging model behave. The parameters pertaining
to the cheap data, �c and pc, are only affected by this data and behave as described
in Section 2.4. Moving on to the scaling parameter �: if our cheap model parameter
A (the multiplying term linking the cheap and expensive functions) is varied such that
1/A ∈ −10� 10�, we obtain the values for �̂ shown in Figure 8.3 and see that �̂ =
1/A. Similar trials show that the parameters B and C have no effect on �. Thus we

Multi-fidelity Analysis 175

0 0.2 0.4 0.6 0.8 1
0

2

4

6

× 10−3

x

s2

Figure 8.2. Estimated error in the co-Kriging prediction in Figure 8.1. The simple relationship
between the data results in low error estimates at Xc as well as Xe.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

1/A

ρ

Figure 8.3. This plot of �̂ versus 1/A shows that the MLE for � is a scaling factor between Zc���
and Ze���, following the formulation in Equation (8.2). There is a singularity at 1/A = 0 so we have
used 1/A = 0�01 at this point.

176 Engineering Design via Surrogate Modelling

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

B

σ
2 d

Figure 8.4. Variance 	2
d as the cheap function coefficient B is altered. The variance reduces to zero

as the difference between fe and fc can be modelled purely by the scaling parameter �.

see that � is purely a scaling parameter. Note that �̂ is only an indicator of the scaling,
since this value is estimated based on the data available. For the data in Figure 8.1, �̂ = 1�87
(close to the true value of 2), but for small samples of ye the MLE may be misleading (the
slight deviations of the data in Figure 8.3 from �̂ = 1/A (shown as a dashed line) are where
our GA search has not found the true MLE).

Recall that d = ye − �yc�Xe� (Equation (8.8)) and so, with �̂ ≈ ye/yc, d represents the
difference in trends between the cheap and expensive data. Thus for our one-variable example,
when B�C = 0� �̂d� 	̂2

d → 0 for all values of A if �̂ is estimated accurately. Figure 8.4
shows how 	̂2

d varies for B ∈ −10� 10� and we see that, as B → 0 and therefore d → 0� 	̂2
d

also approaches zero. Note that �̂e and p̂e will not be affected, since the correlation in
Equation (2.20) is unaffected by the scaling of the objective data (it is, however, affected by
the scaling of X).

8.3 Choosing Xc and Xe

Selecting nc and ne and the corresponding Xc and Xe is trivial in our one-variable example,
but in higher dimensions the process is rather more challenging. Assuming fc is cheap, we
can use an extravagantly large nc to ensure that f̂c is globally accurate. If, however, each
y

�i�
c evaluation incurs a significant cost, albeit lower than that for a y

�i�
e evaluation, we may

want to be rather more conservative in our choice of nc. The resulting Xc (found using the
techniques of Chapter 1) can then be augmented according to an exploration based infill
strategy until an accurate model of fc is produced (see Section 3.3.3). With Xc in place, a

Multi-fidelity Analysis 177

particularly conservative value of ne can be chosen and a space-filling Xe selected from Xc

according to either the greedy search or exchange algorithm in Section 1.4.4. We can then
proceed with an infill strategy from Section 3.2.

8.4 Summary

Our choice of a cheap function for the above example is somewhat contrived, but this has
allowed us to show that the co-Kriging model and its parameters are behaving as we would
expect. For our test function the correction process Zd��� is linear. Co-Kriging will work
effectively for more complex correction processes with the proviso that Zd��� must be simpler
to model than Ze���. Although we have only considered combining two levels of analyses,
the co-Kriging method can be extended to multiple levels by using additional �’s and d’s
(see Kennedy and O’Hagan, 2000, for more details).

As mentioned at the beginning of this chapter, multi-level modelling can be achieved
simply by combining independent surrogates of the ratios or differences between data.
However, the co-Kriging method is more powerful, both in terms of the complexity of
relationships it can handle and its ability to provide error estimates which can be used to
formulate the infill criteria from Section 3.2.

References
Forrester, A. I. J., Sóbester, A. and Keane, A. J. (2007) Multi-fidelity optimization via surrogate modelling.

Proceedings of the Royal Society A, 463(2088), 3251–3269.
Kennedy, M. C. and O’Hagan, A. (2000) Predicting the output from complex computer code when fast

approximations are available. Biometrika, 87(1), 1–13.
Theil, H. (1971) Principles of Econometrics, John Wiley & Sons, Inc., New York.

9
Multiple Design Objectives

As already noted at the beginning of Chapter 5, engineering design is almost always
concerned with most problems that have multiple, often conflicting goals and a host of
demanding constraints. We turn now to the use of surrogate based approaches to design
improvement when dealing explicitly with multiple objectives. We note in passing that in
some cases the designer may be able to reduce problems with multiple goals to single
objective problems by some suitable weighting function that combines the goals of interest.
In aerospace applications this can often be something like weight, payload capacity or cost,
provided suitable conversions to a common form can be devised. When such an approach
can be taken the problem reverts to a single objective search and the techniques already
discussed can be applied. Sometimes, however, the correct weighting to apply between goals
is not obvious or the designer does not wish to commit to a fixed weighting while carrying
out design searches: this leads to the concept of Pareto optimality and sets of designs that
must be found and considered simultaneously.

9.1 Pareto Optimization

In aerospace design, for example, it is common to be aiming for light weight, low cost, robust,
high performance systems. These aspirations are clearly in tension with each other and so
compromise solutions have to be sought. The final selection between such compromises
inevitably involves deciding on some form of weighting between the goals. However, before
this stage is reached it is possible to study design problems from the perspective of Pareto
sets. A Pareto set of designs is one whose members are all optimal in some sense, but
where the relative weighting between the competing goals is yet to be finally fixed (see,
for example, Fonseca and Fleming, 1995). More formally, a Pareto set of designs contains
systems that are sufficiently optimized that, to improve the performance of any set member
in any one goal function, its performance in at least one of the other functions must be
made worse. Moreover, the designs in the set are said to be non-dominated in that no other
set member exceeds a given design’s performance in all goals. It is customary to illustrate

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

180 Engineering Design via Surrogate Modelling

f1 (x)

f2 (x)

Figure 9.1. A Pareto set of five non-dominated points �×� for a problem with two objectives. The
solid line is the Pareto front. The shaded area shows where new points would augment the Pareto
front, while the hatched area is where new points would dominate and replace the existing set of
non-dominated points.

a Pareto set by plotting the performance of its members against each goal function (see
Figure 9.1, where the two axes are for two competing goal functions that must both be
minimized). The series of horizontal and vertical lines joining the set members is referred
to as the Pareto front – any design lying above and to the right of this line is dominated by
members of the set.

There are a number of technical difficulties associated with constructing Pareto sets. First,
the set members need to be optimal in some sense. Since it is desirable to have a good
range of designs in the set, this means that an order of magnitude of more optimization
effort is usually required to produce such a set than to find a single design that is optimal
against just one goal. Second, it is usually necessary to provide a wide and even coverage
in the set in terms of the goal function space. Since the mapping between design parameters
and goal functions is usually highly nonlinear, gaining such coverage is far from simple.
Finally, and in common with a single objective design, many problems of practical interest
involve the use of expensive computer simulations to evaluate the performance of each
candidate, and this means that only a limited number of such simulations can usually be
afforded.

Currently, there appear to be two popular ways of constructing Pareto sets. First, and
most simply, one chooses a weighting function to combine all the goals in the problem of
interest into a single quantity and carries out a single objective optimization. The weighting
function is then changed and the process repeated. By slowly working through a range
of weightings it is possible to build up a Pareto set of designs. This approach allows
the full gamut of single objective search methods to be applied, including the use of the

Multiple Design Objectives 181

sampling and surrogate modelling technologies in this book. It does, however, suffer from
a major drawback: it is by no means clear what weighting function to use and how to
alter it so as to be able to reach all parts of the potential design space (and thus to have a
wide-ranging Pareto set). The nonlinear nature of most design problems will make it very
difficult to ensure that the designs achieved are reasonably evenly spaced out through the
design space.

In an attempt to address this limitation designers have turned to a second way of
constructing Pareto sets via the use of population based search schemes. In such schemes
a set of designs is worked on concurrently and evolved towards the final Pareto set in one
process. In doing this, designs are compared to each other and progressed if they are of high
quality and if they are widely spaced apart from other competing designs. Moreover, such
schemes usually avoid the need for an explicit weighting function to combine the goals being
studied. Perhaps the most well known of these schemes is the NSGA-II method introduced
by Deb et al. (2002). In this approach a genetic algorithm is used to carry out the search
but the goal function used to drive the genetic process is based on the relative ranking and
spacing of the designs in the set rather than their combined weighted performance. More
specifically, at each generation all the designs are compared and the non-dominated designs
set to one side. These are assigned rank one. The remaining designs are compared and those
that now dominate are assigned rank two and so on. Thus the whole population is sorted
into rank order based on dominance. This sorting into rank order dominance can be carried
out irrespective of the relative importance of the objectives being dealt with or the relative
magnitudes and scalings of these quantities.

Having sorted the population of designs into ranks they are next rewarded or penalized
depending on how close they are to each other in goal space (and sometimes also in design
variable space). This provides pressure to cause the search to fan out and explore the
whole design space, but does require that the competing objectives be suitably scaled –
an issue that arises in many aspects of dealing with multi-objective approaches to design.
When combined with the traditional genetic algorithm operators of selection, crossover
and mutation, the NSGA-II scheme is remarkably successful in evolving high quality
Pareto sets. As originally described, however, no means were provided for mitigating run
time issues arising from using expensive computer simulations in assessing competing
designs.

To overcome the problem of long run times a number of workers have advocated the
use of surrogate modelling approaches within Pareto front frameworks (Wilson et al., 2001;
Knowles and Hughes, 2005). It is also possible to combine tools such as NSGA-II with
surrogates (Voutchkov et al., 2006). In such schemes an initial sampling plan is evaluated and
surrogate models built as per the single objective case, but now there is one surrogate for each
goal function. In the NSGA-II approach the search is simply applied to the resulting surrogates
and used to produce a Pareto set of designs. These designs are then used to form an infill
point set and, after running full computations, the surrogates are refined and the approach
continued. Although sometimes quite successful, this approach suffers from an inability to
explicitly balance exploration and exploitation in the surrogate model construction, in just the
same way as when using a prediction based infill criterion in single objective search (recall
Section 3.2.1), although the crowding or niching measures normally used help mitigate these
problems to some extent. Here we will additionally consider statistically based operators for
use in surrogate model based multi-objective search so as to explicitly tackle this problem.

182 Engineering Design via Surrogate Modelling

9.2 Multi-objective Expected Improvement

To begin with, consider a problem where there is a need to minimize two objective functions
f1�x� and f2�x�, which we can sample to find observed outputs y1 and y2. For simplicity,
assume that x consists of just one design variable x �k = 1�. By evaluating a sampling
plan, X, we can obtain observed responses y1 and y2. This will allow us to identify the initial
Pareto set of m designs that dominate all the others in the training set:

y∗
1�2 =

{
�y

∗�1�
1 �x∗�1��� y

∗�1�
2 �x∗�1���� �y

∗�2�
1 �x∗�2��� y

∗�2�
2 �x∗�2���� � � � � �y

∗�m�
1 �x∗�m��� y

∗�m�
2 �x∗�m���

}
In this set the superscript ∗ indicates that the designs are non-dominated. We may plot
these results on the Pareto front axes as per Figure 9.1 discussed in the previous section.
In that figure the solid line is the Pareto front and the hatched and shaded areas represents
locations where new designs would need to lie if they are to become members of the
Pareto set. Note that if new designs lie in the shaded area they augment the set and that
if they lie in the hatched area they will replace at least one member of the set (since
they will then dominate some members of the old set). It is possible to set up our new
metric such that an improvement is achieved if we can augment the set or, alternatively,
only if we can dominate at least one set member – here we consider the latter metric
only.

Given the training set it is also possible to build a pair of Gaussian process based models
(e.g. Kriging models). As when dealing with constrained surrogates, it is assumed that these
models are independent (though it is also possible to build correlated models by using
co-Kriging, as per Chapter 8). The Gaussian processes have means ŷ1�x� and ŷ2�x� (the MLE
predictions, from Equation (2.40)), and variances ŝ 2

1 �x� and ŝ 2
2 �x� (from Equation (3.1)).

These values may then be used to construct a two-dimensional Gaussian probability density
function for the predicted responses of the form

��Y1� Y2� = 1

ŝ1�x�
√

2	
exp

[
− �Y1�x�− ŷ1�x��2

2 ŝ 2
1 �x�

]
1

ŝ2�x�
√

2	
exp

[
− �Y2�x�− ŷ2�x��2

2 ŝ 2
2 �x�

]
�

(9.1)

where it is made explicitly clear that ŷ1�x�� ŝ 2
1 �x�� ŷ2�x� and ŝ 2

2 �x� are all functions of
the location at which an estimate is being sought. Clearly this joint probability density
function accords with the predicted mean and errors coming from the two Kriging models
at x. When seeking to add a new point to the training data we wish to know the likelihood
that any newly calculated point will be good enough to become a member of the current
Pareto set and, when comparing competing potential designs, which will improve the Pareto
set most.

We first consider the probability that a new design at x will dominate a single member
of the existing Pareto set, say �y

∗�1�
1 � y

∗�1�
2 �. For a two-objective problem this may arise in

one of three ways: either the new point improves over the existing set member in goal one,
or in goal two, or in both (see Figure 9.2). The probability of the new design being an
improvement is simply P�Y1�x� < y

∗�i�
1 ∩ Y2�x� < y

∗�i�
2 �, which is given by integrating the

volume under the joint probability density function, i.e. by integrating over the hatched area
in Figure 9.2, to get

Multiple Design Objectives 183

improvement
in both functions

improvement
in f2 (x)

improvement
in f1 (x)

f1 (x)

f2 (x)

Figure 9.2. Improvements possible from a single point in the Pareto set.

P�Y1�x� < y
∗�i�
1 ∩Y2�x� < y

∗�i�
2 � =

(
y

∗�i�
1 − ŷ1�x�

ŝ1�x�

)
+

(
y

∗�i�
2 − ŷ2�x�

ŝ2�x�

)

−

(
y

∗�i�
1 − ŷ1�x�

ŝ1�x�

)

(
y

∗�i�
2 − ŷ2�x�

ŝ2�x�

)
� (9.2)

where ���� is the Gaussian cumulative distribution function.
Next consider the probability that the new point is an improvement, given all the points

in the Pareto set. Now we must integrate over the hatched area in Figure 9.1. We can
distinguish whether we want the new point to augment the existing Pareto set or dominate at
least one set member by changing the area over which the integration takes place. Here we
will only consider points which dominate the Pareto set (for formulations which deal with
Pareto set augmentation see Keane and Nair, 2005). Carrying out the desired integral is best
done by considering the various rectangles that comprise the hatched area in Figure 9.1 and
this gives

P�Y1�x�<y∗
1 ∩Y2�x�<y∗

2� =
∫ y

∗�1�
1

−�

∫ �

−�
Y1��Y1� Y2� dY2 dY1

+
m−1∑
i=1

∫ y
∗�i+1�
1

y
∗�i�
1

∫ y
∗�i+1�
2

−�
Y1��Y1� Y2� dY2 dY1

+
∫ �

y
∗�m�
1

∫ y
∗�m�
2

−�
Y1��Y1� Y2� dY2 dY1� (9.3)

184 Engineering Design via Surrogate Modelling

or

P�Y1�x� < y∗
1 ∩Y2�x� < y∗

2� =

(
y

∗�i�
1 − ŷ1�x�

ŝ1�x�

)

+
m−1∑
i=1

{

(
y

∗�i+1�
1 − ŷ1�x�

ŝ1�x�

)
−

(
y

∗�i�
1 − ŷ1�x�

ŝ1�x�

)}

×

(
y

∗�i+1�
2 − ŷ2�x�

ŝ2�x�

)

+
{

1−

(
y

∗�m�
1 − ŷ1�x�

ŝ1�x�

)}

(
y

∗�m�
2 − ŷ2�x�

ŝ2�x�

)
� (9.4)

This is the multi-objective equivalent of the P�I�x�� formulation used in Section 3.2.3.
It will work irrespective of the relative scaling of the objectives being dealt with. When
used as an infill criterion it will not, however, necessarily encourage very wide ranging
exploration since it is not biased by the degree of improvement being achieved. To do this we
must consider the first moment of the integral, as before when dealing with single objective
problems (recall Section 3.2.3).

The equivalent improvement metric we require for the two objective cases will be the first
moment of the joint probability density function integral taken over the area where improve-
ments occur, calculated about the current Pareto front. Now, while it is simple to understand the
region over which the integral is to be taken (it is just the same as in Equation (9.3)) the moment
arm about the current Pareto front is a less obvious concept. To understand what is involved, it is
useful to return to the geometrical interpretation of E�I�x�� (shown in Figure 3.12 for the single
objective case). P�I�x∗�� represents integration over the probability density function in the area
below and to the left of the Pareto front where improvements can occur. E�I�x∗�� (we will
use the ∗ superscript to denote the multi-objective formulation) is the first moment of the
integral over this area about the Pareto front. Now the distance the centroid of the E�I�x∗��
integral lies from the front is simply E�I�x∗�� divided by P�I�x∗�� (see Figure 9.3). Given this
position and P�I�x∗�� it is simple to calculate E�I�x∗�� based on any location along the front.
Hence we first calculate P�I�x∗�� and the location of the centroid of its integral, �Ȳ1� Ȳ2�
(by integration with respect to the origin and division by P�I�x∗��). It is then possible to
establish the Euclidean distance the centroid lies from each member of the Pareto set. The
expected improvement criterion is subsequently calculated using the set member closest to
the centroid, �y∗

1�x
∗�� y∗

2�x
∗��, by taking the product of the volume under the probability

density function with the Euclidean distance between this member and the centroid, shown
by the arrow in Figure 9.3. This leads to the following definition of E�I�x∗��.

E�I�x∗�� = P�I�x∗��
√(

Ȳ1�x�−y∗
1�x

∗�
)2 + (Ȳ2�x�−y∗

2�x
∗�
)2

� (9.5)

where

Ȳ1�x� =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ y
∗�1�
1

−�
∫ �

−� Y1��Y1� Y2� dY2 dY1

+∑m−1
i=1

∫ y
∗�i+1�
1

y
∗�i�
1

∫ y
∗�i+1�
2

−� Y1��Y1� Y2� dY2 dY1

+ ∫ �
y
∗�m�
1

∫ y
∗�m�
2

−� Y1��Y1� Y2� dY2 dY1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
/

P�I�x∗�� (9.6)

Multiple Design Objectives 185

f1 (x)

f2 (x)

(y1, y2)

< <

(f1, f2)

∗ ∗
centroid

(Y1(x), Y2(x))
– –

Figure 9.3. Centroid of the probability integral and moment arm used in calculating E�I�x∗��, also
showing the predicted position of the currently postulated update.

and Ȳ2�x� is defined similarly. The integrals of Equation (9.6) are somewhat tedious, but
may be carried out, by parts, to yield

Ȳ1�x�=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷ1�x�

(
y

∗�1�
1 − ŷ1�x�

ŝ1�x�

)
− ŝ1�x��

(
y

∗�1�
1 − ŷ1�x�

ŝ1�x�

)

+∑m−1
i=1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[̂
y1�x�

(
y

∗�i+1�
1 − ŷ1�x�

ŝ1�x�

)
− ŝ1�x��

(
y

∗�i+1�
1 − ŷ1�x�

ŝ1�x�

)]

−
[̂

y1�x�

(
y

∗�i�
1 − ŷ1�x�

ŝ1�x�

)
− ŝ1�x��

(
y

∗�i�
1 − ŷ1�x�

ŝ1�x�

)]
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

×

(
y

∗�i+1�
2 − ŷ2�x�

ŝ2�x�

)

+
[̂

y1�x�

(
y

∗�m�
1 − ŷ1�x�

ŝ1�x�

)
− ŝ1�x��

(
y

∗�m�
1 − ŷ1�x�

ŝ1�x�

)]

×

(
y

∗�m�
2 − ŷ2�x�

ŝ2�x�

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/
P�I�x∗���

(9.7)

186 Engineering Design via Surrogate Modelling

When defined in these ways E�I�x∗�� varies with the location of the predicted position of the
currently postulated update �̂y1� ŷ2�, also shown in Figure 9.3, and also with the estimated
errors in this prediction, ŝ1 and ŝ2, since it is these quantities that define the probability
density function being integrated.

The further the predicted update location lies below and to the left of the current Pareto front
the further the centroid will lie from the front. Moreover, the further the prediction lies in this
direction the closer the integral becomes to unity (since the greater the probability of the update
offering an improvement). Both tendencies will drive updates to be improved with regard to the
design objectives. Note that if there is a significant gap in the points forming the existing Pareto
front, then centroidal positions lying in or near such a gap will score proportionately higher
values of E�I�x∗��, since the Euclidean distances to the nearest point will then be greater.
This pressure will tend to encourage an even spacing in the front as it is updated. Also,
when the data points used to construct the Gaussian process model (i.e. all points available
and not just those in the Pareto set) are widely spaced, the error terms will be larger and this
tends to further increase exploration. Thus, this E�I�x∗�� definition balances exploration and
exploitation in just the same way as its one-dimensional equivalent in Section 3.2.3.

When calculating the location of the centroid there is still no requirement to scale the
objectives being studied but, when deciding which member of the current Pareto set lies
closest to the centroid, relative scaling will be important (i.e. when calculating the Euclidean
distance). This is an unavoidable and difficult issue that arises whenever explicitly attempting
to space out points along the Pareto front, whatever method is used to do this.

Before moving on to study examples making use of these metrics, it is worth noting that
there is no fundamental difficulty in extending this form of analysis to problems with more
than two goal functions. This does, of course, increase the dimensionality of the Pareto surfaces
being dealt with, and so inevitably complicates further the expressions needed to calculate the
improvement metrics. Nonetheless, they always remain expressible in closed form, it always
being possible to define the metrics in terms of summations over known integrable functions.

9.3 Design of the Nowacki Cantilever Beam Using Multi-objective,
Constrained Expected Improvement

The first multi-objective problem considered here is a variant of the classic Nowacki beam
problem (Nowacki, 1980). In this problem the aim is to design a tip loaded encastre cantilever
beam for minimum cross-sectional area and lowest bending stress subject to a number of
constraints (see the Appendix, Section A.4). To tackle this problem we will use the function
constrainedmultiei.m (below), which calls multiei.m in the same manner as
constrainedei.m calls predictor.m (see Chapter 5):

function NegLogConExpImp=constrainedmultiei(x)
% Calculates the negative of the log of the
% constrained multi-objective expected improvement at x
%
% Inputs:
% x−1 x k vetor of design variables
%

(continued)

Multiple Design Objectives 187

% Global variables used:
% ObjeciveInfo – structured cell array
% ModelInfo – structure
% ConstraintInfo – structured cell array
%
% Outputs:
% NegLogConExpImp – scalar -log(E[I(x∗)]P[F(x∗)>gmin])
%
% Calls:
% multiei.m, predictor.m

global ModelInfo
global ConstraintInfo

% Calculate unconstrained E[I(x∗)]
ModelInfo.Option=’NegLogExpImp’;
NegLogExpImp=multiei(x);

% Calculate P[F(x∗)] for each constraint
for i=1:size(ConstraintInfo,2)

ModelInfo=ConstraintInfo{i};
ModelInfo.Option=’NegProbImp’;
NegProbImp(i)=predictor(x);

end

% Calculate E[I(x∗)]P[F(x∗)] (add 1e50 before taking logs)
NegLogConExpImp=-(-NegLogExpImp+sum(log10(-NegProbImp+1e-50)));

The following MATLAB code begins from a 10-point sample and adds 40 infill points based
on the (constrained) E�I�x∗�� criterion, E�I�x∗�∩F�x∗��. Note that we use rather more infill
points than in single objective optimization because, instead of looking for a single optimal
design, we are searching for a host of optimal trade-offs. The functions which calculate
the constraints are formulated such that a positive value is returned when the constraint is
violated.

We begin by defining the beam properties, building a sampling plan and calculating the
objective function and constraint functions at the sample points.

global ModelInfo
global ObjectiveInfo
global ConstraintInfo

% Set up beam properties
global BeamProperties
BeamProperties.F=5e3;
BeamProperties.L=1.5;

(continued)

188 Engineering Design via Surrogate Modelling

BeamProperties.SigmaY=240e6;
BeamProperties.E=216.62e9;
BeamProperties.G=86.65e9;
BeamProperties.Nu=0.27;
BeamProperties.SF=2;

% Create sampling plan
n=10;
k=2;
% Put into ObjectiveInfo
ObjectiveInfo{1}.X=bestlh(n,k,20,10)
ObjectiveInfo{2}.X=ObjectiveInfo{1}.X;

% � � � and ConstraintInfo
nConstraints=5;
for i=1:nConstraints

ConstraintInfo{i}.ConstraintLimit=0;
ConstraintInfo{i}.X=ObjectiveInfo{1}.X;

end

% Calculate observed data
for i=1:n

ObjectiveInfo{1}.y(i,1)=area(ObjectiveInfo{1}.X(i,:));
ObjectiveInfo{2}.y(i,1)=bending(ObjectiveInfo{2}.X(i,:));
ConstraintInfo{1}.y(i,1)=arearatioconstraint � � �

(ConstraintInfo{1}.X(i,:));
ConstraintInfo{2}.y(i,1)=bendingconstraint � � �

(ConstraintInfo{2}.X(i,:));
ConstraintInfo{3}.y(i,1)=bucklingconstraint � � �

(ConstraintInfo{3}.X(i,:));
ConstraintInfo{4}.y(i,1)=deflectionconstraint � � �

(ConstraintInfo{4}. X(i,:));
ConstraintInfo{5}.y(i,1)=shearconstraint � � �

(ConstraintInfo{5}.X(i,:));
end

Based on this observed data, we perform an infill strategy. This involves optimizing the
parameters of the Kriging models of the objective and constraint functions, followed by a
genetic algorithm search of constrainedmultiei.m. The result of this search is then
added to the observed data set, before repeating the process. At each stage we also plot the
current set of non-dominated solutions.

figure
% Iterate over 40 infill points
for I=1:40

% Tune Kriging models of objectives
options=gaoptimset(‘PopulationSize’,20,‘Generations’,10);

(continued)

Multiple Design Objectives 189

for i=1:2
ModelInfo=ObjectiveInfo{i};
ObjectiveInfo{i}.Theta=ga(@likelihood,k,[],[],[], � � �
[],ones(k,1).∗-3,ones(k,1).∗3,[],options);
[NegLnLike,ObjectiveInfo{i}.Psi,ObjectiveInfo{i}.U]= � � �
likelihood(ObjectiveInfo{i}.Theta);

end

% Tune Kriging models of constraints
for i=1:nConstraints

ModelInfo=ConstraintInfo{i};
ConstraintInfo{i}.Theta=ga(@likelihood,k,[],[],[], � � �
[],ones(k,1).∗-3,ones(k,1).∗3,[],options);
[NegLnLike,ConstraintInfo{i}.Psi,ConstraintInfo{i}.U]= � � �
likelihood(ConstraintInfo{i}.Theta);

end

% Find points which satisfy constraints
y1temp=ObjectiveInfo{1}.y;
y2temp=ObjectiveInfo{2}.y;
Xtemp=ObjectiveInfo{2}.X;

for i=1:length(y1temp)
for j=1:nConstraints

if ConstraintInfo{j}.y(i)>ConstraintInfo{j}.
ConstraintLimit

y1temp(i)=nan;
y2temp(i)=nan;

end
end

end

Xtemp=Xtemp (find (∼ isnan(y2temp)),:);
y1temp=y1temp(find(∼isnan(y1temp)));
y2temp=y2temp(find(∼isnan(y2temp)));

% Find Pareto set
clear PX Py1 Py2
% � � � first sort according to objective 1
[a,b]=sort(y1temp);

% � � � yields first non – dominated point
PX(1,1:k)=Xtemp(b(1),1:k);
Py1(1)=y1temp(b(1));
Py2(1)=y2temp(b(1));

% � � � then cycle through remaining sorted list
Pnum=1;
for i=2:length(y1temp)

(continued)

190 Engineering Design via Surrogate Modelling

% � � � and look for better values of objective 2
if y2temp(b(i))<=Py2(end)

Pnum=Pnum+1;
PX(Pnum,1:k)=Xtemp(b(i),1:k);
Py1(Pnum)=y1temp(b(i));
Py2(Pnum)=y2temp(b(i));

end
end

% Plot Pareto front so far
plot(Py1,Py2,’ko’)
title(’Tradeoff’)
xlabel(’A (m)’)
ylabel(’\sigma_B (Pa)’)
axis square
drawnow

% Search constrained multi – objective E[I(x)]
options=gaoptimset(’PopulationSize’,50,’Generations’,20);
[VarOpt,EIOpt]= ga(@constrainedmultiei,k,[],[],[],[], � � �
zeros(k,1),ones(k,1),[],options)

% Add infill point
ObjectiveInfo{1}.X(end+1,:)=VarOpt;
ObjectiveInfo{2}.X=ObjectiveInfo{1}.X;

for i=1:nConstraints
ConstraintInfo{i}.X=ObjectiveInfo{1}.X;

end

% Calculate observations at infill point
ObjectiveInfo{1}.y(end+1)=area � � �
(ObjectiveInfo{1}.X(end,:));
ObjectiveInfo{2}.y(end+1,1)=bending � � �
(ObjectiveInfo{2}.X(end,:));
ConstraintInfo{1}.y(end+1,1)=arearatioconstraint � � �
(ConstraintInfo{1}.X(end,:));
ConstraintInfo{2}.y(end+1,1)=bendingconstraint � � �
(ConstraintInfo{2}.X(end,:));
ConstraintInfo{3}.y(end+1,1)=bucklingconstraint � � �
(ConstraintInfo{3}.X(end,:));
ConstraintInfo{4}.y(end+1,1)=deflectionconstraint � � �
(ConstraintInfo{4}.X(end,:));
ConstraintInfo{5}.y(end+1,1)=shearconstraint � � �
(ConstraintInfo{5}.X(end,:));

end

Figure 9.4 shows the 9 non-dominated solutions found using this infill strategy. The true
Pareto front, found from a 101 × 101 grid of points, is also shown. It is clear that a very

Multiple Design Objectives 191

2 4 6 8 10 12 14
0

2

4

6

8

10

12
×107

σ B
 (

P
a)

×10−3A (m2)

Figure 9.4. The 9 non-dominated solutions found using the max�E�I�x∗� ∩ F�x∗�� infill strategy
(circles) and the true Pareto front (line).

good indication of the optimal trade-off has been found, with all the points lying on the
Pareto front.

9.4 Design of a Helical Compression Spring Using Multi-objective,
Constrained Expected Improvement

The second example is the design of a helical spring, the formulation of which is described
in the Appendix, Section A.5. We have already considered maximizing the number of cycles
to fatigue failure in Chapter 5. Here we add the second objective – that of minimizing the
mass of the spring. The problem is solved in a similar way to the Nowacki beam problem
and we leave it to the reader to modify the code used for that problem. There is a subtle
difference in the code required to solve this problem, which is that we must handle the
NaNs which are occasionally produced by the springcycles.m function. We simply
delete these designs from both ObjectiveInfo{i} and ConstraintInfo{i}. To
produce a set of non-dominated designs, the objective function values of which are shown in
Figure 9.5, we have used a 15-point maximin sampling plan augmented by 60 infill points at
the maximum E�I�x∗�∩F�x∗��. This is a more difficult problem than the Nowacki beam, with
an extra design variable and a smaller area of feasible designs. Although the non-dominated
points are not as close to the true Pareto front as in Figure 9.4, a good representation of the
location of the optimal trade-off has been found.

192 Engineering Design via Surrogate Modelling

0 0.5 1 1.5
Spring mass (kg)

105

106

107

108

109

Li
fe

 (
nu

m
be

r
of

 c
yc

le
s)

Figure 9.5. The 14 non-dominated designs found using a max�E�I�x∗� ∩ F�x∗�� search (circles),
shown alongside the true Pareto front (derived from the data in Figure A.9).

9.5 Summary

The objective and constraint functions used in the above examples could be modelled
effectively using more simple surrogate methods, exploited within a multi-objective search
routine. However, for more complex objective and constraint functions, the E�I�x∗�� criterion
can offer significant improvements over exploitation based infill criteria, similar to the
advantages of the single objective E�I�x�� over pure exploitation (recall Section 3.2).
Compared with directly searching the objective and constraint functions using a multi-
objective search algorithm, the possible benefits are huge, requiring tens, rather than
thousands, of calls to the objective and constraint functions. While in the example presented
in this chapter the cost of calls to the objective and constraint functions is negligible, if each
experiment were a lengthy computer simulation, or even a destructive test, the potential time
and cost savings are significant.

References
Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002) A fast and elitist multi-objective genetic algorithm:

NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197, April.
Fonseca, C. M. and Fleming, P. J. (1995) An overview of evolutionary algorithms in mutliobjective optimization.

IEEE Transactions on Evolutionary Computation, 3(1), 1–16.

Multiple Design Objectives 193

Keane, A. J. and Nair, P. B. (2005) Computational Approaches for Aerospace Design: The Pursuit of Excellence,
John Wiley & Sons, Inc., New York.

Knowles, J. and Hughes, E. J. (2005) Multi-objective optimization on a budget of 250 evaluations, in Evolutionary
Multi-criterion Optimization (EMO-2005) (eds C. Coello et al.), Volume 3410 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin.

Nowacki, H. (1980) Modelling of design decisions for CAD, in CAD Modelling, Systems Engineering, CAD-Systems,
Lecture Notes in Computer Science, Springer-Verlag, Berlin.

Voutchkov, I. I. and Keane, A. J. (2006). “Multi-objective optimization using surrogates”, in Proc. 7th
Int. Conf. Adaptive Computing in Design and Manufacture, (ACDM 2006, ISBN 0-9552885-0-9), Bristol,
pp. 167–175.

Wilson, B., Cappelleri, D., Simpson, W. and Frecker, M. (2001) Efficient Pareto frontier exploration using surrogate
approximations. Optimization and Engineering, 2, 31–50.

Appendix: Example Problems

A.1 One-Variable Test Function

Our first example problem is the one-variable function

f�x� = �6x−2�2 sin�12x−4�� x ∈ �0� 0�5� or x ∈ �0� 1�� (A.1)

calculated by onevar.m. Using the term ‘test function’ we are referring to a contrived
function, with no physical meaning, which is useful in demonstrating optimization
methodologies. This function is used to represent a multimodal objective function landscape,
i.e. one where a search routine could become trapped in a local minima. Figure A.1 shows
the function across the full zero to one range, and it can be seen that there is one global
minimum, one local minimum and a region containing a zero gradient point of inflexion.
We make extensive use of this function in Section 3.2 to assess the ability of surrogate infill
strategies to find the global optimum.

To demonstrate the noise filtering capabilities of surrogate models we also use this function
with the addition of a normally distributed ‘noise’ component, using the MATLAB expression
randn(n,1). A true engineering function that exhibits ‘noise’ is described in Section A.3.

We have also constructed a multi-fidelity form of this function (cheaponevar.m):

fc�x� = Afe +B�x−0�5�−C� (A.2)

where fe is calculated from Equation A.1, which is considered to be a less accurate, ‘cheap’
form of the more accurate, ‘expensive’ original function. By varying A, B and C, we can
make the cheap function a better or worse approximation of the expensive function. We
use this formulation to demonstrate the multi-fidelity method of co-Kriging described in
Chapter 8.

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

196 Engineering Design via Surrogate Modelling

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f

Figure A.1. The one-variable function: f�x� = �6x−2�2 sin�12x−4�.

A.2 Branin Test Function

Our second function is a modified version of the two-variable Branin function:

f�x� =
(

x2 − 5�1
4�2

x2 + 5
�

x1 −6
)2

+10
[(

1− 1
8�

)
cos x1 +1

]
+5x1� x1 ∈ �−5� 10�� x2 ∈ �0� 15�� (A.3)

The final term is a modification to the traditional Branin function, and means that
there are two local optima and one global optimum, rather than three global optima
of equal value. We feel this modification makes the function more representative of
engineering functions. The MATLAB function branin.m accepts inputs in the range
�0� 1� and scales these to the ranges required by Equation (A.3). Figure A.2 shows the
contours of the Branin function. The global optimum is towards the upper left corner of
the plot.

To demonstrate the constrained surrogate methods in Chapter 5, we apply the condi-
tion that

g�x� = x1x2 > 0�2� x1� x2 ∈ �0� 1�� (A.4)

This means that only the area of the Branin function shown in Figure A.3 is considered. The
optimum is now towards the lower right corner.

Appendix 197

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

Figure A.2. The modified Branin function.

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

Figure A.3. The constrained modified Branin function.

A.3 Aerofoil Design

Computational fluid dynamics simulations are notorious for producing ‘noisy’ data due to
the discretization error arising from solving the governing equations on a finite mesh. The
aerofoil drag coefficients returned by the function aerofoilcd.m exhibit just such noise.

198 Engineering Design via Surrogate Modelling

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05
0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

w2

C
D

Figure A.4. The 101 CD values, for a fixed CL = 0�6, as the aerofoil camber parameter changes. The
thickness to chord ratio has been increased to help show the changing camber.

The drag coefficient, CD, values correspond to an Euler simulation of a transonic aerofoil
at a fixed lift coefficient, CL = 0�6. A rather coarse mesh has been used to accentuate
the discretization error. The function accepts a normalized input variable x ∈ �0� 1� which
determines the value of a shape parameter, w2 ∈ �−0�3� 0�1�, which affects the camber
towards the rear of the aerofoil (see the aerofoils in Figure A.4). For more information on
the way the geometry is parameterized, see Robinson and Keane (2001).

The function does not actually run a CFD simulation, rather it returns one of 101 discrete
CD values, with x rounded to the nearest 0.01. Minimizing CD in this one-variable design
space seems like a trivial task. However, it is surprisingly difficult to find the precise location
of the optimum, as shown when we tackled this problem in Chapter 6.

A.4 The Nowacki Beam

Based on the design problem described by Nowacki (1980), the aim is to design a tip-
loaded encastre cantilever beam for minimum cross-sectional area and lowest bending stress
subject to a number of constraints. The beam length l = 1�5 m and is subject to a tip load
F = 5 kN. The beam is taken to be rectangular in section, with breadth b and height h giving
a cross-sectional area A (see Figure A.5).

The design is subject to the following criteria:

1. a maximum tip deflection, 	 = Fl3/�3EIY �, of 5 mm, where IY = bh3/12;
2. a maximum allowable direct (bending) stress,
B = 6Fl/�bh2�, equal to the yield stress

of the material,
Y;
3. a maximum allowable shear stress, � = 3F/�2bh�, equal to one half the yield stress of

the material;

Appendix 199

4. a maximum height to breadth ratio, h/b, for the cross-section of 10;
5. the failure force for twist buckling, FCRIT = �4/l2�

√
GIT EIZ/�1−�2�, to be greater than

the tip force multiplied by a safety factor, f , of two, where IT = �b3h + bh3�/12 and
IZ = b3h/12.

The material used is mild steel with a yield stress of
Y = 240 MPa, Young’s modulus
E = 216�62 GPa, � =0.27 and shear modulus calculated as G = 86�65 GPa.

We wish to minimize the cross-sectional area (i.e. the cost) and bending stress by varying
the height �20 mm > b > 250 mm� and breadth �10 mm > b > 50 mm�. Notice that it is not
clear from the above specification which of the design limits will control the design, although
clearly at least one will, if the beam is to have a nonzero cross-sectional area.

The two objectives and five constraints are calculated by area.m, bending.m,
arearatioconstraint.m,bendingconstraint.m,bucklingconstraint.m,
deflectionconstraint.m and shearconstraint.m. The functions accept
h ∈ �0� 1� and b ∈ 0� 1� [scaling to the above limits is carried out within the functions].
The constraint functions return a value greater than zero in the event that the constraint is
violated.

Figures A.6 and A.7 show how the two objectives vary with the normalized h and b.
Clearly there is to be a trade-off between minimum bending stress and minimum cross-
sectional area solutions. To solve this problem, we wish to identify the Pareto front of optimal
trade-offs, which is shown in Figure A.8. Interestingly the constraint on the bending stress
marks one end of the resulting Pareto front, while setting both variables to their maximum
values defines the other end of the front. Locating the minimum stress solution requires an
exploration of the constraint boundaries, a characteristic common in engineering problems,
but one that some search methods find difficult to deal with.

We attempt to solve this problem using constrained multi-objective expected improvement
in Section 9.3.

l = 1.5 m

F = 5 kN

h

b

Figure A.5. Sketch of the Nowacki beam problem.

200 Engineering Design via Surrogate Modelling

b (normalized)

h
(n

or
m

al
iz

ed
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

4

5

6

7

8

9

10

11

12
× 10−3

Figure A.6. Beam cross-sectional area, A, for varying h and b.

b (normalized)

h
(n

or
m

al
iz

ed
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

4

5

6

7

8

9

10

11
× 107

Figure A.7. Beam bending stress,
B, for varying h and b.

A.5 Multi-objective, Constrained Optimal Design of a Helical
Compression Spring

Let us consider the following problem (Tudose and Jucan, 2007). A helical compression
spring is to be designed to work over a stroke of h = 50 mm with a corresponding load

Appendix 201

2 4 6 8 10 12 14
× 10−3

× 107

0

2

4

6

8

10

12

A (m2)

σ B
 (

P
a)

Figure A.8. The Pareto front for the Nowacki beam problem. This curve represents the optimal
trade-off between A and
B.

variation between Fmin = 40 N and Fmax = 500 N. ASTM A229/SAE J315 oil tempered
wire is to be used with a Young’s modulus of E = 2�06 × 105 MPa, a density of � =
7�87×10−6kg/mm3 and a rigidity modulus of G = 0�78×105 MPa.

There are two goals to be optimized here. Firstly, the mass of the spring is to be minimized
and this rather simple first objective is computed using the function springmass.m. The
second, competing, objective is that we wish to maximize the fatigue life of the spring. The
number of cycles until fatigue failure are computed by the function springcycles.m.

There are also two constraints. We have to make sure that the wire does not fail in shear,
with a factor of safety of 1.05 – the function shearsafetyfact.m computes this (a
negative value returned by the function means that the spring satisfies the constraint). We
also have to check that the spring does not buckle within its working range – a negative
value returned by buckling.m for a given design means that it does not.

As with any other design optimization problem, the parameterization of the design is a
crucial element of the process. Here we use three design variables. The first is the wire
diameter d taking values between 0.5 mm and 7 mm. The second is the index i of the spring,
defined as the ratio of the mean diameter of the spring (the diameter of the helix, measured
in the centre of the wire) and d. We allow this to vary between 4 and 16. Finally, k�, the
maximum load intercoil distance coefficient (the ratio of the distance between adjacent coils
of the fully loaded spring and the wire diameter)-this can vary between 0.1 and 1.1.

All four MATLAB functions cited above therefore take a single vector design as the
input, consisting of the normalized values of d, i and k� (the actual values are calculated
within each function, based on the ranges specified above).

While elsewhere in the book these functions (the two objectives and the two constraints)
have been used as ‘pretend-expensive’ testcases, they are, in fact, very cheap to compute,

202 Engineering Design via Surrogate Modelling

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Spring mass (kg)

Wire diameter [mm]

3.5

4

4.5

5

5.5

6

6.5

7

105

106

107

108

109

Li
fe

 (
nu

m
be

r
of

 c
yc

le
s)

Figure A.9. The 97 099 feasible designs, representing around 15.2 % of a 640 000 point full factorial
sampling plan, covering the three-dimensional design space. The requirement for light, long life springs
means that the north-western boundary of this cloud of points represents the Pareto front.

as the reader can find out by running springpareto.m, a script that generates a 64 ×
100×100 point full factorial sampling plan and computes the objectives and constraints for
each of the 640 000 designs. A scatter plot of the two objectives and the corresponding wire
diameters for all of the feasible designs is shown in Figure A.9.

A.6 Novel Passive Vibration Isolator Feasibility

The final engineering example is, as the title suggests, a little bit different. Figure A.10 shows
an optimized prototype vibration isolator test structure. The top of the structure is passively
isolated from vibrations at the base by exploiting reflections in vibration energy in the
complex structure between the two. The structure takes the form of a triangular truss, which
is ‘folded’ such that each section sits amongst the last. There are two optimization problems
in designing the structure: maximizing the vibration isolation itself and searching for a
structure that can actually be manufactured. We will consider the latter. The complex nature
of the structure, with many interleaved aluminium rods, means that most designs contain
intersections between rods. In fact, only 0.2 % of designs are feasible for the three-section
structure in Figure A.10.

The variables that determine the design are the x,y,z position of all the intermediate
joints. For the three-section structure in Figure A.10, k = 18. More complex structures,
with hopefully better vibration isolation, can be built with k = 36� 54� � � � � 9�Nsections − 1��
Nsections = 2a+1, where a ∈ �.

Appendix 203

Figure A.10. An optimized passive vibration isolator test structure.

A feasible design is one with no intersections. The distance between each rod pair is
calculated using the line-to-line distance formula

D = �c · �a ×b��
�a ×b� � (A.5)

where a = x2 − x1� b = x4 − x3 and c = x3 − x1, and x1� x2 are the Cartesian coordinates
of the ends of the first beam and x3� x4 the ends of the other beam in the pair. The rods
are 5 mm in diameter and we want a gap of at least 2.5 mm. To calculate the objective
function, we therefore sum D < 7�5 mm over all beam pairs, and the structure is feasible if
D = 0. The function intersections.m takes a k-vector of variables in the range [0,1]
and outputs the feasibility objective. Setting all the variables at 0.5 describes a uniform
structure 0.3 m high, with the intermediate joints sitting 0.01 m inside the top and base, and
an equilateral plan-view with 0.3 m sides. The range [0,1] allows the intermediate points
to vary inside 0�25 m × 0�25 m × 0�25 m cubes. The geometry concept is described in more
detail by Forrester and Keane (2007).

We use this problem to demonstrate the goal seeking infill criterion in Section 3.3.4.

References
Forrester, A. I. J. and Keane, A. J. (2007) Multi-variable geometry repair and optimization of passive vibration

isolators, in 3rd AIAA Multidisciplinary Design Optimization Specialist Conference, Hawaii.
Nowacki, H. (1980) Modelling of design decisions for CAD, in CAD Modelling, Systems Engineering, CAD-Systems,

Lecture Notes in Computer Science, Springer-Verlag, Berlin.
Robinson, G. M. and Keane, A. J. (2001) Concise orthogonal representation of supercritical aerofoils. Journal of

Aircraft, 38(3), 580–583.
Tudose, L. and Jucan, D. (2007) Pareto approach in multi-objective optimal design of helical compression springs.

Annals of the Oradea University, Fascicle of Management and Technological Engineering, 6(16).

Index

Adjoint method 156–7
continuous 156
discrete 156

Aerofoil 42, 141–2, 149–51, 197–8
see also MATLAB functions, aerofoilcd.m

Aerospace design xv, 179
Algorithmic differentiation 156, 165

forward mode 156–7
reverse mode 156–7

ANOVA 6
Automatic differentiation, see Algorithmic

differentiation
Auto-regressive 168

Basis function(s) 45–51, 60, 63–5, 67–9, 75, 157–9,
162, 164

cubic 46, 103
Gaussian 46–7, 49–50, 69, 158, 162
inverse multiquadric 46
linear 46
multiquadric 46, 103
thin plate spline 46–8, 103
see also Kernels; MATLAB functions, basis.m

Bayesian reasoning 34, 84
Black box 3, 12, 33

CFD (computational fluid dynamics) xv, xvi, 131,
141, 167, 197, 198

Euler xvi, 198
potential flow xvi
RANS (Reynolds-averaged Navier-Stokes) xvi
see also MATLAB functions, aerofoilcd.m

Cheap data 167, 169, 172–4
Chi-squared distribution 97, 100–1
Choleski factorization, see Matrix, Choleski

factorization of
Co-Kriging 167–7, 182, 195

cost of 171
covariance 168–9, 171
error 172–5
infill criteria when using 173
likelihood 169–70
MATLAB code for 170, 174
model parameters 169–71, 174–6
noise in 173
one-variable demonstration of 173–6
predictor 172
regression 173
see also MATLAB functions, buildcokriging.m;

cokrigingpredictor.m; likelihoodc.m;
likelihoodd.m

Complexity 35, 47, 66, 71, 73
Complex step approximation 156
Conceptual design 3, 10
Conditional likelihood, see Likelihood, conditional
Confidence interval 100
Confidence limit 98, 100
Constraint(s) 117–39

expected improvement with 125–31, 136–9,
186–92

function 118, 119, 121–2, 126–8
Kriging model of 121–3
level curve 118, 122–3, 130

Engineering Design via Surrogate Modelling: A Practical Guide A. I. J. Forrester, A. Sóbester and A. J. Keane
© 2008 John Wiley & Sons, Ltd

206 Index

Constraint(s) (Continued)
MATLAB code for dealing with 129–30, 137–8
probability of improvement with

127–8
satisfaction by construction 117–18
see also MATLAB functions, constrainedei.m;

constrainedmultiei.m; Penalty functions
Convergence

asymptotic 134
criteria 103–4, 123
to an optimum 82, 104

Correlation 22, 51–4, 59, 64, 91, 94, 127, 143,
158–9, 161, 163, 170, 176

coefficient 37–8, 104
Gaussian 91
matrix 51, 56, 58–9, 68–9, 86, 143, 152, 159–60,

165, 169, 173
Cost function, see Objective function
Covariance 52, 172

matrix 52, 95, 168–9, 171–2
Cross-validation

leave-one-out 36
see also Error, cross-validation

Crowding 181
Curse of dimensionality xvii, 4, 111

Dot product 68
Drag 5, 42, 118, 141, 197–8

see also MATLAB functions, aerofoilcd.m
Dual variables 67, 70

Elementary effect 6–10, 12
Empirical equations 167
Error 35–9, 63, 118, 123, 126, 131, 144

computational 4
cross-validation 47
discretization 142, 197–8
experimental 4, 34, 63, 141
function (erf) 88, 90
generalization 47, 49, 54
human 5
modelling see prediction
MSE (mean squared) 36, 40, 84, 104, 122, 172
prediction 35–9, 48, 55, 66, 71, 84–5, 91, 93,

101–2, 122, 126, 130–1, 143–8, 152, 172–5,
186

random xvi, 5, 63
re-defined 146
RMSE (root mean squared) 37
subtractive cancellation 155–6
systematic 5
testing 37
truncation 155–6

Exchange algorithm 28, 177
see also MATLAB functions, subset.m

Expected improvement 89–92, 103, 146–9
constrained, see Constraint(s), expected

improvement with
convergence 92, 104, 106
failure of 91–2, 141–2, 144–5
graphical representation of 88
MATLAB code for 90
multi-objective, see Multi-objective, expected

improvement
weighted 102
see also MATLAB functions, constrainedei.m;

constrainedmultiei.m; multiei.m predictor.m
Expensive

data 167, 169, 171, 173–6
response 3, 13, 77, 118, 121, 123, 168,

171, 195, 201
simulation xv, xvi, 4, 168, 180–1

Experiment xv
computer xvi, 4–5, 33, 50, 55, 141, 144,

149, 192
physical xvi, 4–5, 33, 63, 141, 144, 149

Exploitation, see Infill criteria, exploitation
Exploration, see Infill criteria, exploration
�-insensitive loss function 66–7
�-tube 63, 65–6, 70, 74

Feature space 68
Finite differencing 155
Floating point underflow 127, 148–9
Full factorial 4, 13, 202

see also MATLAB functions, fullfactorial.m

Gaussian
cumulative distribution function 183
pdf (probability density function) 88–90
process 5, 84, 92, 103–4, 126–7, 168, 182, 186
two-dimensional pdf 182
see also Basis function(s), Gaussian

Generalization 40, 46–7, 49, 54, 66, 72
see also Error, generalization

Geometry 104–6, 118, 131, 198, 203
Geostatistics 75
Gradient enhanced Kriging 157–65

MATLAB code for 159–61
predictor 161

Gradient(s) 155–6

Hessian enhanced Kriging 162–5

Ill-conditioning, see Matrices, ill–conditioned
Imputation 97, 133–5
Infeasible designs, see Objective function, infeasibility
Infill criteria 79–106

balanced exploitation/exploration 85–100, 102,
104, 124, 131, 139, 181, 186

conditional lower bound 97–100, 104

Index 207

convergence of 103–4
error based 84–5
expected improvement, see Expected

improvement
exploitation 78–84, 103–4, 192
exploration 78–9, 84–5, 104, 176
goal seeking 93–6, 104–6
hybrid 102
MATLAB code for 86–8, 90, 94–6, 98–100, 105
parallel 101–2
prediction based 79–84
probability of improvement, see Probability of

improvement
statistical lower bound 86–7
see also MATLAB functions, condlikelihood.m;

constrainedei.m; constrainedmultiei.m; lb.m;
multiei.m; predictor.m; regpredictor.m;
reintcondlikelihood.m; reintpredictor.m

Inner product 68
Interpolation 39, 46, 50, 142–3, 146

Jones, Donald R. xii–xiv, 59, 79, 93, 97

Karush–Kuhn–Tucker conditions 70
Kernel(s)

Gaussian 65
homogeneous polynomial 68
inhomogeneous polynomial 68
Kriging 68
linear 68
Mercer 68
trick 67
see also Basis function(s)

Krige, Danie G. 50–1
Krigeage, see Kriging
Kriging

blind 76
correlation 51
interpolation 50
MATLAB code for 56–8, 61–2
model parameters 52–9
predictor 60
regression 143–4
variable screening with 53–4
variance 55
see also MATLAB functions, likelihood.m; pred.m;

predictor.m

Lagrange multipliers 66, 73
Lagrangian 66, 73
Latin hypercube 15–23, 30

see also MATLAB functions, bestlh.m; rlh.m
Latin square 15
Learning

instance based 34

reinforcement 102
supervised 34

Lift 42, 118, 198
Likelihood 35

concentrated ln-likelihood function 55, 170,
172

conditional 93–4, 96–9, 101, 105, 149,
151, 152

function 55
ln-likelihood function 36, 55, 59
MATLAB code for calculating 56–7, 152
MATLAB code for MLE 58
MLE (maximum likelihood estimate) 35–6, 40,

54–60, 144, 161, 163, 169, 171–2, 174
ratio test 97–100
see also MATLAB functions, condlikelihood.m;

likelihood.m; likelihoodc.m; likelihoodd.m;
likelihoodratiotest.m; regcondlikelihood.m;
reintcondlikelihood.m

Linear model 18, 35, 64
LU decomposition, see Matrix, LU decomposition of

Machine overflow 119
Maclaurin series 149
MAD 157
Markov property 168–9
Matheron, G. 50
MATLAB functions

aerofoilcd.m 148, 150–1, 197
area.m 199
arearatioconstraint.m 188, 190, 199
bendingconstraint.m 188, 190, 199
bending.m 188, 190, 199
bestlh.m 26, 58
braninfailures.m 134–5
branin.m 58, 62, 196
bucklingconstraint.m 188, 190, 199
buildcokriging.m 174
cheaponevar.m 195
chol.m 56, 152
cokrigingpredictor.m 174
condlikelihood.m 94, 99
constrainedei.m 129, 138
constrainedmultiei.m 186, 188, 190
deflectionconstraint.m 188, 190, 199
dome.m 47–8, 114–15
fminbnd.m 72
fminsearch.m 78
fullfactorial.m 13–14
ga.m 78
intersections.m 105, 203
jd.m 18, 20, 21
lb.m 86
liftsurfw.m 10
likelihoodc.m 169, 174

208 Index

MATLAB functions (Continued)
likelihoodd.m 170, 174
likelihood.m 56, 58
likelihoodratiotest.m 98, 100
mmlhs.m 27
mm.m 19, 23
mmphi.m 21–3, 26, 29
mmsort.m 22–3, 27
multiei.m 186–7
nested4.m 114–16
onevar.m 195
pcolor.m 113
perturb.m 25–6, 29
phisort.m 22–3
polynomial.m 41–3
predictor.m 99, 129–30, 135,

186–7
pred.m 62
predrbf.m 47–8, 116
quadprog.m 68, 70
randorient.m 7–8
rbf.m 47–8
regcondlikelihood.m 149, 151
reglikelihood.m 144, 148–51
regpredictor.m 144, 151
reintcondlikelihood.m 151
reintpredictor.m 146, 148
rlh.m 17, 27
screeningplan.m 8
screeningplot.m 9
shearconstraint.m 188, 190, 199
subset.m 28
svd.m 152
tileplot.m 113–14
wing.m 12, 113

Matrix
Cholesky factorization of 42, 47, 56, 58,

86, 152
see also MATLAB functions, chol.m

Gram 46, 49
ill-conditioned 47, 142, 144, 152
inversion of 56, 171
LU decomposition of 46, 56, 152
(non-)positive definite 46, 48, 56, 68
(non-)singular 56, 60
partitioned inverse 59, 60, 172
sampling 7, 12
SVD (singular value decomposition) of

152
see also MATLAB functions, svd.m

Vandermonde 40
Mesh sensitivity 63
Missing at random 132
Missing data xvi, 131–6

MATLAB code for dealing with 134–5

Missingness 132
Morris, M.D. 6–7, 18, 21, 23, 25
Multi-objective(s) 179–92

expected improvement 184, 186, 199
GA (genetic algorithm) 181
MATLAB code for 186–90
optimization 179–81
probability of improvement 182–4
probability of improvement centroid 184–6
surrogate assisted GA 181
see also MATLAB functions, constrainedmultiei.m;

multiei.m; Pareto
Multiple design objectives

see also Multi-objective(s)

Needle(s) in a haystack 34
Nested dimensions plot 114–16

MATLAB code for 114
see also MATLAB functions, nested4.m

Niching 181
Noise 5, 34, 141, 152

in computer experiments 5, 42, 44, 142, 144, 146,
195, 197

filtering 141
over-fitting 35, 40, 49, 141
in physical experiments 5, 144
regressing 49

see also Kriging, regression; Regression; SVR
trends in data with 141–3, 146
underfitting 141

Nowacki beam 186, 198–200
NSGA-II 181

Objective function (s)
automated calculation of 132–3
gradient(s) of 155

see also Algorithmic differentiation; Adjoint
method

infeasibility 119, 134, 136
multiple, see Multiple design objectives
sensitivities, see Objective function(s),

gradient(s)
Ockham’s Razor 66
Optimization 78

complex method for 78
conjugate gradient 78
constrained 66, 73, 99, 113, 117–21, 136–9,

186–92
see also Constraint(s)

direct 78
dual variable 68
GA (genetic algorithm) for 78
gradient based 78, 119, 155
Hooke and Jeeves method for 78
jump-started 133
managing surrogate based 102–4

Index 209

multi-objective 179–81
Newton method for 78
Pareto 179–81
quasi-Newton method for 78
simplex method for 78
simulated annealing method for 78
stalled 79, 144–5, 149
see also MATLAB functions, fminbnd.m;

fminsearch.m; ga.m
Orthogonal array(s) 30
Overfitting 34–5, 40, 141

Parallel computing 101
Parameter estimation 35–7, 40, 45–7, 49, 73–5,

92, 165
see also Likelihood, MLE

Parameterization 131, 201
Pareto

front 139, 180–2, 184, 186, 190–2, 199,
201–2

optimality 179
optimization 179–81
set 179–84, 186

Penalty functions 118–26
expected improvement with 126
external (also exterior) 119–22
interior 119–20, 122
one-pass 121, 126

Polynomial 35, 40
MATLAB code for 41–2

Primal variables 67, 73
Probability of improvement 88–9

constrained, see Constraint(s), probability of
improvement with

convergence 89, 104
failure of 91
graphical representation of 88
MATLAB code for 88
multi-objective, see Multi-objective(s), probability

of improvement
see also MATLAB functions, predictor.m

Quadratic 35
programming 68–9

see also MATLAB functions, quadprog.m
surrogate 78

see also Polynomial

Radial basis function(s), see Basis
function(s)

Random
field 51, 168
orientation 7–10, 12
variable 51–2, 85, 88, 128
vector 51–2

Regression
constant 143–4, 146, 152
Kriging 143–5
least-squares 36, 40, 49
MATLAB code for 148, 150–1
polynomial 79
radial basis function 49
re-sampling when using 146
support vector, see SVR
see also MATLAB functions, regcondlikelihood.m;

reglikelihood.m; regpredictor.m; Polynomial,
Re-interpolation

Regularization parameter 49
see also Regression, constant

Reinforcement learning 102
Re-interpolation 146–51

conditional likelihood 149
error 146
MATLAB code for 148, 150–1
predictor 146
see also MATLAB functions, reintcondlikelihood.m;

reintpredictor.m
Repeatability 5

Sacks, J. 50, 84
Saddle point 67, 73
Saturation 39
Scalar product 68
Screening 5–13, 33, 54

MATLAB code for 7–9
see also MATLAB functions, screeningplan.m;

screeningplot.m
Search, see Optimization
Slack variables 66, 70–1, 73
Sobol sequence(s) 30
Stochastic process 5, 51, 168
Stopping criteria, see Convergence,

criteria
SUMT (Sequential unconstrained minimization

technique) 119–20
Surrogate modelling process xv–xviii, 3, 33, 77,

102
SVD (singular value decomposition),

see Matrices, SVD (singular value
decomposition) of

SVM (support vector machine) 63–4
SVR (support vector regression) 63–75

Discontinuity 53, 119
MATLAB code for 69–71, 74
�-SVR 73–5

Taxonomy 6, 78–9, 103
Test function

Branin 57, 62–3, 161, 196
constrained Branin 121–36,

196–7

210 Index

Test function (Continued)
Dome 114
multi-fidelity 173
with noise 142, 197–8
one-variable 195
see also MATLAB functions, branin.m;

braninfailures.m; cheaponevar.m; dome.m;
onevar.m

Tileplot 113
MATLAB code for 113
see also MATLAB functions, tileplot.m

Under-fitting 141
Update, see Infill criteria

Variable
interactions 6–7, 11–12, 54
screening 5–13, 33, 54

Vibration isolator 104–6, 202–3
see also MATLAB functions, intersections.m
Visualization 102, 104, 111–16

see also MATLAB functions, nested4.m;
screeningplot.m; tileplot.m

W
fw

A
Λ

q
λ

tc
N

z
W

d
g

W
p

Sw Wfw A Λ q λ tc Nz Wdg

180

200

220

240

260

280

300

320

340

Plate I. (colour version of Figure 1.1) Light aircraft wing weight (W) landscape. Each tile shows a
contour of the weight function (Equation (1.4)) versus two of the ten variables, with the remaining
eight variables held at the baseline value.

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

x 2
 =

 0

x1 = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Plate II. (colour version of Figure 4.2) Four-variable nested plot of the surrogate of the function
f�x� = 1/4

∑4
i=1 1 − �2xi − 1�2� x ∈ �0� 1�4, generated using nested4.m. Here x3 varies along the

horizontal axis of each tile, x4 along the vertical axes, while the values of x1 and x2 can be read off
the bottom of each column of tiles and the beginning of each row respectively.

Plate III. (colour version of Figure 4.1) A flat depiction of two functions of the same two variables –
a colour-coded topographic map (of height above mean sea level) and labelled isobars representing
surface pressure (This is Crown copyright material which is reproduced with the permission of the
Controller of HMSO and the Queen’s Printer for Scotland).

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

Plate IV. (colour version of Figure 5.3) Contours of the Branin function, the product constraint level
curve (black) and Kriging estimate (bold red), together with ± one standard error (fine red). The figure
also shows the location of the data points used to sample the constraint (circles), the minimum of the
function, subject to the Kriging model of the constraint (square) and the true optimum (cross).

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

Plate V. (colour version of Figure 5.4) Contours of the Branin function and the product constraint
level curve and Kriging estimate after one infill point. Key as per Plate IV.

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

Plate VI. (colour version of Figure 5.5) Contours of a Kriging prediction of the Branin function,
showing the true product constraint level curve, sample points (circles), the optimum of the Kriging
prediction subject to the constraint (square) and the true constrained optimum (cross).

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

Plate VII. (colour version of Figure 5.6) Contours of the Kriging prediction of the Branin function
and the product constraint level after five infill points.

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Plate VIII. (colour version of Figure 5.7) The log�E�I�x��� of the Kriging model in the region
of predicted constraint satisfaction (filled contours) shown together with contours of the true Branin
function and the sample points. The true constraint limit is also shown (bold contour), along with the
locations of the maximum E�I�x�� (with penalty applied, square) and the actual optimum (cross). The
irregular contours at low log�E�I�x��� are where the E�I�x�� calculation is encountering problems with
floating point underflow. See the mathematical note in Section 6.2.1 for more information and a way
to avoid this.

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Plate IX. (colour version of Figure 5.8) The log�E�I�x��� of the Kriging model in the region of
predicted constraint satisfaction after one infill point (key as Plate VIII). The maximum E�I�x�� (with
penalty applied) has located the region of the global optimum.

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Plate X. (colour version of Figure 5.9) The log�E�I�x��� of the Kriging model in the region of
constraint satisfaction after nine infill points (key as Plate VIII).

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−60

−50

−40

−30

−20

−10

0

Plate XI. (colour version of Figure 5.10) The log�E�I�x�∩F�x��� based on the initial sample of six
points (filled contours), along with the contours of the true Branin function, the true constraint limit
(bold contour), the sample points (circles) and the true optimum (cross).

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−60

−50

−40

−30

−20

−10

0

Plate XII. (colour version of Figure 5.11) The log�E�I�x� ∩ F�x��� after one infill point (filled
contours), along with the contours of the true Branin function, the true constraint limit (bold contour),
the sample points (circles) and the true optimum (cross).

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−60

−50

−40

−30

−20

−10

0

Plate XIII. (colour version of Figure 5.12) The log�E�I�x� ∩ F�x��� after nine infill points (filled
contours), along with the contours of the true Branin function, the true constraint limit (bold contour),
the sample points (circles) and the true optimum (cross).

x1

x 2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−16

−14

−12

−10

−8

−6

−4

−2

0

2

Plate XIV. (colour version of Figure 5.13) The log�E�I�x��� of a Kriging model through the combined
successful and imputed data set (filled contours), along with the contours of the true Branin function,
the true constraint limit (bold contour), the sample points (circles) and the true optimum (cross).

	Engineering Design via Surrogate Modelling
	Contents
	Preface
	About the Authors
	Foreword
	Prologue
	Part I Fundamentals
	1 Sampling Plans
	1.1 The ‘Curse of Dimensionality’ and How to Avoid It
	1.2 Physical versus Computational Experiments
	1.3 Designing Preliminary Experiments (Screening)
	1.3.1 Estimating the Distribution of Elementary Effects

	1.4 Designing a Sampling Plan
	1.4.1 Stratification
	1.4.2 Latin Squares and Random Latin Hypercubes
	1.4.3 Space-filling Latin Hypercubes
	1.4.4 Space-filling Subsets

	1.5 A Note on Harmonic Responses
	1.6 Some Pointers for Further Reading
	References

	2 Constructing a Surrogate
	2.1 The Modelling Process
	2.1.1 Stage One: Preparing the Data and Choosing a Modelling Approach
	2.1.2 Stage Two: Parameter Estimation and Training
	2.1.3 Stage Three: Model Testing

	2.2 Polynomial Models
	2.2.1 Example One: Aerofoil Drag
	2.2.2 Example Two: a Multimodal Testcase
	2.2.3 What About the k-variable Case?

	2.3 Radial Basis Function Models
	2.3.1 Fitting Noise-Free Data
	2.3.2 Radial Basis Function Models of Noisy Data

	2.4 Kriging
	2.4.1 Building the Kriging Model
	2.4.2 Kriging Prediction

	2.5 Support Vector Regression
	2.5.1 The Support Vector Predictor
	2.5.2 The Kernel Trick
	2.5.3 Finding the Support Vectors
	2.5.4 Finding <\mu>
	2.5.5 Choosing C and <\varepsilon>
	2.5.6 Computing <\varepsilon>: <\nu> -SVR

	2.6 The Big(ger) Picture
	References

	3 Exploring and Exploiting a Surrogate
	3.1 Searching the Surrogate
	3.2 Infill Criteria
	3.2.1 Prediction Based Exploitation
	3.2.2 Error Based Exploration
	3.2.3 Balanced Exploitation and Exploration
	3.2.4 Conditional Likelihood Approaches
	3.2.5 Other Methods

	3.3 Managing a Surrogate Based Optimization Process
	3.3.1 Which Surrogate for What Use?
	3.3.2 How Many Sample Plan and Infill Points?
	3.3.3 Convergence Criteria

	3.4 Search of the Vibration Isolator Geometry Feasibility Using Kriging Goal Seeking
	References

	Part II Advanced Concepts
	4 Visualization
	4.1 Matrices of Contour Plots
	4.2 Nested Dimensions
	Reference

	5 Constraints
	5.1 Satisfaction of Constraints by Construction
	5.2 Penalty Functions
	5.3 Example Constrained Problem
	5.3.1 Using a Kriging Model of the Constraint Function
	5.3.2 Using a Kriging Model of the Objective Function

	5.4 Expected Improvement Based Approaches
	5.4.1 Expected Improvement With Simple Penalty Function
	5.4.2 Constrained Expected Improvement

	5.5 Missing Data
	5.5.1 Imputing Data for Infeasible Designs

	5.6 Design of a Helical Compression Spring Using Constrained Expected Improvement
	5.7 Summary
	References

	6 Infill Criteria with Noisy Data
	6.1 Regressing Kriging
	6.2 Searching the Regression Model
	6.2.1 Re-Interpolation
	6.2.2 Re-Interpolation With Conditional Likelihood Approaches

	6.3 A Note on Matrix Ill-Conditioning
	6.4 Summary
	References

	7 Exploiting Gradient Information
	7.1 Obtaining Gradients
	7.1.1 Finite Differencing
	7.1.2 Complex Step Approximation
	7.1.3 Adjoint Methods and Algorithmic Differentiation

	7.2 Gradient-enhanced Modelling
	7.3 Hessian-enhanced Modelling
	7.4 Summary
	References

	8 Multi-fidelity Analysis
	8.1 Co-Kriging
	8.2 One-variable Demonstration
	8.3 Choosing Xc and Xe
	8.4 Summary
	References

	9 Multiple Design Objectives
	9.1 Pareto Optimization
	9.2 Multi-objective Expected Improvement
	9.3 Design of the Nowacki Cantilever Beam Using Multi-objective, Constrained Expected Improvement
	9.4 Design of a Helical Compression Spring Using Multi-objective, Constrained Expected Improvement
	9.5 Summary
	References

	Appendix: Example Problems
	A.1 One-Variable Test Function
	A.2 Branin Test Function
	A.3 Aerofoil Design
	A.4 The Nowacki Beam
	A.5 Multi-objective, Constrained Optimal Design of a Helical Compression Spring
	A.6 Novel Passive Vibration Isolator Feasibility
	References

	Index
	Color Plates

